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Zusammenfassung

Durch die steigende Weltbevölkerung wächst der Bedarf an Nahrung
und Energie kontinuierlich. Als eine der zentralen Nahrungs- und
Energiequellen ist die Pflanzenproduktion daher angehalten, höhere
Erträge zu erzielen. Unkrautbekämpfung und Düngung sind dabei

zentrale Maßnahmen, um hohe Ertragsraten zu erzielen. Heutzutage werden
Dünger und Herbizide gleichmäßig und in großen Mengen in den Feldern ap-
pliziert. Jedoch müssen wir eine unnötige Verwendung dieser Chemikalien ver-
meiden, um unsere Umwelt für die künftigen Generationen besser zu schützen.

Autonome landwirtschaftliche Feldroboter bieten das Potenzial für eine drastis-
che Reduzierung der eingesetzten Chemikalien. Roboter können für eine selektive
Behandlung einzelner Pflanzen und Unkräuter mit verschiedenen Aktuatoren, wie
zum Beispiel selektiven Sprühern, mechanischen Werkzeugen oder sogar Lasern,
ausgestattet werden. Die Voraussetzung für die selektive und pflanzenbezogene
Behandlung ist, dass die Roboter zunächst die einzelnen Pflanzen und Unkräuter
auf dem Feld unterscheiden und lokalisieren können. Mit diesen Informationen
können Roboter dann entscheiden, wo und wann die Aktuatorik für eine selek-
tiv Behandlung ausgelöst werden muss. Zudem können unbemannte Flugroboter
(UAVs) Felder in großem Maßstab vermessen, ohne dabei mit dem Ackerboden
zu interagieren. In Kombination mit einem Pflanzenklassifikationssystem bieten
UAVs daher die Möglichkeit, gesamte Bestände in vergleichsweise geringer Zeit
zu analysieren.

In dieser Arbeit stellen wir neuartige Pflanzenklassifikationssysteme vor, die
Feldrobotern eine selektive Pflanzenbearbeitung direkt während der Überfahrt er-
möglichen und Flugroboter in die Lage versetzen, eine Analyse der Bestände aus
der Luft durchzuführen. Wir untersuchen traditionelle und modernere maschinelle
Lernansätze für die Durchführung der dafür notwendigen Klassifikation der Pflanzen
und Unkräuter. Unsere Ansätze basieren entweder auf Random Forests oder auf
Fully Convolutional Neural Networks.

Wir schlagen in dieser Arbeit ein bildbasiertes System für die gemeisame
Klassifikations von Pflanzen- und Pflanzenstämmen vor. Unser Ansatz erkennt
gleichzeitig die Nutz-pflanzen und Unkräuter sowie deren genaue Stammposi-
tion. Unser System differenziert zudem die Unkräuter in die Klassen Gräser und
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Kräuter. Auf Basis solch automatisch gewonnener Klassifikationsergebnisse, kann
ein Roboter die effektivste Behandlung für die aktuelle Situation auf dem Feld
auswählen.

Eine große Herausforderung für bildbasierte Klassifikationssysteme besteht
darin, dass Feldroboter auf verschiedenen Feldern operieren, und daher oft mit
drastischen Veränderungen des visuellen Erscheinungsbildes der Pflanzen, der Un-
kräuter und des Ackerbodens konfrontiert sind. Daher müssen Pflanzenklassifika-
tionssysteme nicht nur eine hohe Leistung auf bereits bekannten Feldern erbrin-
gen, sondern auch robust gegenüber neuen und sich ändernden Bedingungen auf
dem Feld sein. Daher zielt diese Arbeit darauf ab, die Generalisierungsfähigkeit
von Pflanzenklassifikationssystemen für Roboter, die unter verschiedenen Feldbe-
dingungen arbeiten, zu verbessern. Wir schlagen zwei Klassifikationssysteme vor,
die zusätzlich zu den visuellen Informationen aus den Bildern auch die räumliche
Verteilung der Pflanzen bei Reihenkulturen ausnutzen können. Diese geomet-
rischen Informationen sind typischerweise innerhalb eines Feldes sowie über ver-
schiedene Felder hinweg ähnlich und daher weniger abhängig vom visuellen Er-
scheinungsbild der Pflanzen. Wir zeigen, dass unsere Ansätze, welche die räum-
liche Verteilung der Pflanzen ausnutzen, eine bessere Generalisierungsfähigkeit bei
sich ändernden Feldbedingungen bieten als Klassifikatoren, welche ausschließlich
visuelle Informationen bearbeiten.

Eine weitere Herausforderung für eine skalierbare Entwicklung robuster Pflan-
zenklassifikationssysteme ist der Bedarf an vielen und vielfältigen Trainingsdaten.
Für eine gute Leistung unter neuen Feldbedingungen muss ein Klassifikator typ-
ischerweise zunächst mit zusätzlichen Trainingsdaten angepasst werden. Dabei
müssen die Trainingsdaten die Bedingungen des neuen Feldes repräsentieren.
Dieses Vorgehensweise benötigt jedoch kontinuierlich neue Trainingsdaten und
geht daher direkt mit stetigem Annotationsaufwand einher. Wir stellen einen
semiüberwachten Ansatz vor, welcher seine Modelle während der Klassifikation-
sphase an die aktuelle Situation anpasst. Unser Ansatz kombiniert eine vi-
suelle Klassifikation mit einer geometrischen Klassifikation, welche die relative
Pflanzenanordnung ausnutzt. Wir zeigen, dass unser Ansatz mit einem nur
einminütigem Annotationsaufwand eine Klassifikationsleistung auf dem gleichen
Niveau wie klassisch angepasste Klassifikatoren bietet.

Wir präsentieren desweiteren eine umfassende experimentelle Evaluierung der
Klassifikationssysteme unter realen Bedingungen. Dazu haben wir eine große
und vielfältige Datenbasis auf verschiedenen Feldern in Mitteleuropa gesammelt
und insgesamt dafür etwa 26.500 Bilder händisch annotiert. Die Bilder wurden
von verschiedenen Feld- und Flugrobotern und unter verschiedenen Bedingungen
aufgenommen. Mit Hilfe unserer Datenbasis evaluieren wir verschiedene Aspekte
der Pflanzenklassifikatoren unter Berücksichtigung ihrer Leistung, ihrer General-
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isierungsfähigkeit, des erforderlichen Annotationsaufwands und der Nützlichkeit
zusätzlicher Nah-Infrarot-Bilder. Zudem vergleichen wir explizit die Performanz
der Random Forest Ansätze mit der Performanz der Fully Convolutional Neural
Network Ansätze. Unsere Experimente zeigen, dass Fully Convolutional Neu-
ral Network Ansätze für die Pflanzenklassifikation generell gut geeignet sind. Sie
bieten eine bessere Leistung als Random Forests, sind robuster gegenüber wechsel-
nden Feldbedingungen und liefern ihre Ergebnisse schneller, da Neural Networks
dedizierte Hardwarekomponenten ausnutzen.

Alle in dieser Arbeit vorgestellten Pflanzenklassifikationssysteme wurden in
mehreren Konferenzbeiträgen und Zeitschriftenartikeln veröffentlicht. Eines un-
serer UAV-basierten Klassifikationssysteme wurde auf der International Confer-
ence on Robotics and Automation (ICRA) als bestes Automatisierungspapier
ausgezeichnet und unser semiüberwachter Ansatz wurde auf der International
Conference on Robots and Systems (IROS) als Finalist für den Preis für das
beste Anwendungspapier ausgezeichnet.
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Abstract

Due to a continually growing world population, the demand for food
and energy increases continuously. As a central source of food, feed,
and energy, crop production is therefore called upon to produce higher
yields. To achieve high crop yields, weed control, fertilization, and

disease control are essential tasks. Nowadays, these tasks are performed by uni-
formly applying large amounts of agrochemicals, such as herbicides and fertiliz-
ers, to our fields. At the same time, we need to reduce the ecological footprint
of agricultural production to achieve the required sustainability to protect our
environment for future generations.

Autonomous agricultural field robots offer the potential for a drastic reduction
of applied agrochemicals through selectively treating individual plants and weeds
in the field. For selective weeding or fertilizing, a robot can be equipped with
different actuators such as selective sprayers, mechanical tools, or even lasers.
A prerequisite for selective and plant-specific treatment is that the robots can
distinguish and locate the plants and weeds in the field. With this information,
the robots can decide where and when to trigger the actuators to perform the
treatment selectively. In contrast to ground robots, unmanned aerial vehicles
(UAVs) can monitor farmland on a larger scale without interacting with the soil.
In combination with a vision-based system for the classification of plants, UAVs
serve excellent capabilities to retrieve the status of a field on a per-plant basis in
small amounts of time.

In this thesis, we develop novel vision-based plant classification systems that
enable agricultural ground robots for online in-field interventions and for aerial
robots to perform accurate monitoring of the plantation. We investigate tradi-
tional and more modern machine-learning approaches based on random forests
and fully convolutional neural networks to perform the necessary classification of
the crop plants and weeds. We propose a coupled plant and stem classification
system that jointly classifies the crop plants and weeds, further distinguishing
herbs from grasses, and additionally provides the precise stem locations at the
same time. Based on the classification output, the robot can select the most
effective treatment for the current situation in the field.
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A major challenge for vision-based classification systems is that agricultural
robots need to operate in different field environments under drastic changes in
the visual appearance of the plants, weeds, and soil. For real-world applications,
plant classifications systems not only need to provide a high performance in known
fields but also need to be robust to new and changing field conditions. This thesis
aims at improving the generalization performance of plant classification systems
for robots that operate under different environmental conditions. We propose two
vision-based classification systems that, in addition to visual information, exploit
the spatial arrangement of the plants in the case of row crops. Such geometric
information is typically similar within and across fields and thus less dependent
on the visual appearance of the plants. Our approaches exploiting the spatial
arrangement of plants provide superior generalization capabilities to changing
field conditions compared to state-of-the-art vision-based classifiers.

A further challenge for scalable development of robust plant classification
systems is their requirement for large and diverse training datasets. Typically,
a classifier needs to be adapted with additional labeled data representing the
conditions of the new field environment. However, this procedure comes at the
cost of a continuous effort to label new data. We present a semi-supervised
online learning approach that combines purely visual classification with geometric
classification exploiting the plant arrangement. We show that with only a one-
minute labeling effort, our approach provides a classification performance on the
same level as classically re-trained classifiers.

We conduct a comprehensive experimental evaluation of the classification sys-
tems under real-world conditions using a wide range of field datasets. We collected
a large and diverse database in various field environments located in central Eu-
rope consisting of around 26,500 labeled images acquired by different field and
aerial robots. Using our database, we evaluate different aspects of the plant clas-
sifiers considering their performance, generalization capabilities, needed labeling
effort, exploitation of additional near-infrared information, and explicitly com-
pare the random forest performance with the one obtained by fully convolutional
neural networks. Our experiments suggest that fully convolutional neural net-
works are well suited for the plant classification task. They provide a better
performance than random forest-based approaches, are more robust to changing
field conditions, and provide results faster by exploiting dedicated hardware.

All plant classification systems presented in this thesis have been published in
peer-reviewed conference papers and journal articles. One of our UAV-based plant
classification systems won the best automation paper award at the International
Conference on Robotics and Automation (ICRA). Our semi-supervised online-
learning approach for plant classification was a finalist for the best application
paper award at the Conference on Robots and Systems (IROS).
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Chapter 1

Introduction

A central societal challenge is to meet the increasing demand for food
and energy induced by an ever-growing world population [40]. Accord-
ing to Tilman et al. [145], we have to double the global yields obtained
by crop production by 2050 to meet the forecasted demands. Crop

production is the key to satisfy these needs. At the same time, arable land is
limited, and the environmental footprint of agricultural production needs to be
reduced in order to achieve the required sustainability to protect our environ-
ment for future generations. Thus, new approaches are needed for sustainable
crop production, and this thesis aims at making a contribution that addresses
these challenges.

Plants compete with weeds for the nutrients and water in the soil. For high
crop production, weed control, fertilization, and disease control are essential tasks
as they directly influence the performance of crop development. To realize effec-
tive weed control and to attain high yields, agrochemicals such as pesticides,
herbicides, and fertilizers, are currently used in conventional agriculture. Fig-
ure 1.1 (left) depicts an everyday situation in a crop field. A tractor treats the
entire field by uniformly spraying the same dose of agrochemicals to the soil,

Figure 1.1: State-of-the-art in weed control. Left: uniform application of agrochemicals on a
crop field. Right: low-throughput and expensive hand-weeding on organic farms [39].
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crop plants, and weeds. This commonly applied practice is easy to execute for
the farmer. It neither requires knowledge about the spatial distribution of plants
and weeds nor about the type of weeds. Agrochemicals, however, can harm the
environment, biodiversity, and consequently can affect human health [54]. We
must, therefore, develop new methods that avoid today’s agrochemicals or at least
reduce their use to the necessary minimum.

Weed control in organic farms, such as shown in Figure 1.1 (right), is a labor-
intensive and thus expensive task. Hand-weeding is still the current practice
when it comes to the removal of individual weeds on organic farms. Among the
chemical-free methods, this technique is the most effective way of preventing the
weed from spreading. Tractor-based mechanical weeding tools do not yet provide
the desired accuracy. Thus, in practice, weeding by hand is often additionally
performed after tractor-based mechanical weeding to deal with weeds that are
left in the crop row.

We believe that productive and future-oriented agriculture needs to focus on
both high productivity and sustainability at the same time. One goal of sustain-
able farming is to reduce the reliance on agrochemicals while keeping the yield
high. Precision farming techniques seek to address this goal. A promising but
still to be explored way consists of first monitoring the field status by measuring
key indicators of crop health as well as the spatial distributions of crop plants
and weeds and second, providing targeted approaches for selectively treating only
those plants that need it at the right time they need it.

1.1 Agricultural Robots to Advance
Sustainable Farming

In crop production, a more effective and sustainable solution is to replace the cur-
rent uniform spraying approach by more selective and targeted approaches. Au-
tonomous agricultural field robots, such as the unmanned ground vehicle (UGV)
illustrated in Figure 1.2, can perform continuous per-plant monitoring as well as
selective and targeted treatments. For selective in-field treatments, robots will
be equipped with different actuators for intervention, such as selective sprayers,
mechanical tools, or even lasers, which perform plant-specific or species-specific
treatments only at those locations where it is actually needed. Equipped with a
variety of tools, robots can choose the most effective treatment based on the type
of targeted plants and weeds. Consequently, UGVs offer an attractive solution
for a drastic reduction of agrochemicals that are applied in the fields while limit-
ing the operational costs [7, 8, 151]. To build autonomous agricultural robots for
selective and plant-specific treatments, several open problems need to be solved.
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Figure 1.2: The BoniRob V3 field robot performs selective and species-specific treatment in the
field. In this thesis, we present plant classification systems that analyze RGB and near-infrared
images to provide the spatial distribution of plants and weeds. In this example, we consider the
classes crop (green), dicotyl weed (red), grass weeds (blue), and soil. We provide the precise
location of the plant and weed stems. With this information about weed coverage and stem
positions, the robot can select the most appropriate treatment, such as spraying for grass weed,
mechanically stamping or burning dicotyl weeds, or fertilizing the crop plants.

This includes robust perception, fast and effective actuators, rough terrain navi-
gation, long-term autonomy, and several other factors [149].

This thesis tackles the central problem of robust perception in crop fields for
autonomous farming robots. We investigate the challenge of how to interpret
the image data recorded with a robot in the field. Figure 1.2 depicts one of the
used UGVs during operation in the field. We propose several novel vision-based
classification systems that provide the robot with information about the spatial
distribution of the plants and weeds. Through this, we enable robots to trigger
actuators at the right location at the right time to solve the desired task.

Another popular way to monitor farmland on a larger scale is through un-
manned aerial robots (UAVs). UAVs can cover large areas in a comparatively
short amount of time without interacting with the environment as ground robots
do [25, 150]. Depending on the altitude and the used camera system, UAVs offer
the freedom to capture image data on a rather coarse scale of a few centime-
ters ground resolution or to capture comparably dense information about field
status in the range of sub-millimeter resolution. Thus, they are conceivable for
several applications, e.g., on a larger scale for monitoring problem areas or the
spatial distribution of plants and weeds in the field, but also for determining plant
traits, monitoring specific weeds, or counting plants. This information supports
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Figure 1.3: A quad-rotor UAV (DJI Inspire II) that we use in this thesis. We use the UAV to
carry an RGB camera over the field to monitor the farmland. Then we analyze the image data
with our plant classification systems to determine the spatial distribution of crop plants and
weeds as well to identify traits such as the canopy cover and stand count.

the farmer in making decisions regarding field management and we can also de-
rive application maps from this information to guide field robots in terms of weed
control and fertilization.

In this thesis, we also investigate novel vision-based plant classification sys-
tems for processing UAV images. We propose systems which can classify crop
plants and weeds as well as different weed species in UAV data. Furthermore, we
propose an approach that can robustly count the number of plants, even under
harsh field conditions, to provide relevant information to farmers or breeders in
an automated manner.

1.2 Plant Classification Systems for
Agricultural Robots

A prerequisite for any selective and plant-specific treatment is an effective plant
classification system providing the robot with the locations of the plants and
weeds in the field. The robot can use this information to trigger its actuators to
perform the desired action in real time. For UAV-based crop monitoring, we relax
the real-time online processing constraints for the developments in this thesis as
we process the data offline, i.e., after the UAV has landed. Thus, for UAV data,
we do not target on-board processing capabilities as it is the case for the UGV.
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Figure 1.4: Goal of the plant classification systems in this thesis is to perform a pixel-wise
classification. In the illustrated example, we consider the classes soil, sugar beet, and weed.

We use cameras to observe the environment and analyze the images regard-
ing the presence and location of plants and weeds. We use RGB images and
additionally utilize near-infrared (NIR) intensity measurements. The NIR infor-
mation is especially useful for separating the vegetation from the soil and other
backgrounds due to the high reflectivity of chlorophyll and thus plants in the NIR
spectrum.

For an effective in-field intervention, it is crucial to be able to classify the
crop plants and weeds throughout the entire growing season. For weed control,
the earlier mechanical or chemical weeding actions are executed, the higher the
chances for obtaining a high yield. In contrast, fertilization is carried out as
long as vehicles can get into the field. Thus, classifications systems have to deal
with a large variety of different growth stages of plants and weeds, but also with
different soil conditions. These conditions mean that we are looking for objects
that have a diverse appearance over time and can rapidly change their appearance
due to environmental influences. We utilize machine-learning techniques that can
learn automatically from experience and improve with new data examples, but
without being explicitly programmed. We mainly investigate and use two types
of machine-learning models: first random forests and second fully convolutional
neural networks.

Figure 1.4 illustrates the principal goal of the vision-based plant classification
systems in this thesis. The system receives image data for analysis. The task of
the classifier is now to assign a class to each pixel in the output. In this thesis,
we call this process pixel-wise classification. Note that in the literature, this form
of classification is also called semantic segmentation.
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Depending on the application, a plant classification system has to provide its
output at different levels of complexity. With the term complexity, we refer to
number of classes the model has to predict and the type of output for a given
task. In the following, we give a few examples according to the addressed tasks
in this thesis.

For the application of weed control in the pre-emergence phase of the plants,
for instance, the classifier needs to provide the spatial distribution of the vegeta-
tion in the field, leading to a binary classification problem (vegetation vs. soil).
Right after the emergence of plants, the complexity of the classification problem
increases. The classifier now additionally needs to distinguish the crop plants
from the weeds. This information is required so that the robot can selectively
treat the weeds while it protects the crops from being eliminated. At the next
level of complexity, the classification system needs to detect various sets of classes
for even more sophisticated in-field operations such as species-specific treatments.
Another layer of complexity is required for high precision interventions, such as
precise mechanical and laser-based weeding, as these approaches are most effec-
tive when applied to the stem locations of small weeds. In contrast, big weeds and
generally grass-like weeds are most effectively treated by spraying agrochemicals
over their entire leaf area. For these high precision interventions, the classifier
needs to provide the exact stem location within the level of a few millimeters to
guide the robot’s actuation system.

1.2.1 Challenges and Requirements for Vision-Based
Plant Classification Systems

There exist several challenges for the development, deployment, and commercial-
ization of plant classification systems for autonomous agricultural robots. Not
only must the performance of the plant classification system be adequately high,
but the classifiers must also be robust enough to work appropriately under chang-
ing field conditions. Plants can continuously change their appearance in size,
color, and shape. Furthermore, the appearance of the field is affected by external
circumstances such as weather events or cultivation processes. This means that
the classification models must cover a high degree of heterogeneity in the data,
but should also be efficiently adaptable to local field variations and unseen situ-
ations. In the remainder of this section, we present key practical challenges for
vision-based plant classification systems and define properties that such a system
should have.

Performance: An essential property of a plant classifier is a proper plant
classification performance during its deployment. The obtained accuracy needs
to be adequate for the given task. For example, in a weed-control scenario, it
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Figure 1.5: In this thesis, we aim at keeping the classification performance of the crop-weed
detection system high, even if the training and the operational phase of the classifier are executed
on different fields and in different countries as depicted in the image above. The example images
are analyzed by one of our proposed plant classification approaches. Sugar beets (green) and
weeds (red). We can even detect tiny plant and weeds from a size of 0.15 cm2.

is crucial to know how many weeds are correctly identified as such. Another
critical variable is how many plants are falsely identified as weeds and potentially
eliminated by the robot. In the case of crop monitoring, the focus of the evaluation
is more on the performance of the plants, e.g., how accurately can we count the
plants or how precisely can we determine the size of the plants?

Generalization capabilities: In the last decade, several vision-based meth-
ods have been proposed for plant classification. Typically, such approaches are
based on supervised machine-learning techniques and report classification perfor-
mances in the order of 75-95 % in terms of classification accuracy. However, we
see a lack in the evaluation of several methods regarding the generalization capa-
bilities to unseen situations, new fields, and changing field conditions. Precision
farming robots need to operate in different field environments regularly. A typi-
cal use case is that a plant classifier has been trained on data coming from one or
more particular field environments, but is then deployed at a later point in time
or in another field, where the visual appearance of the plants, weeds, and soil has
notably changed. These changes can lead to different distributions of the image
data and features concerning the original training data. In most cases, vision-
based classification systems suffer under these conditions and provide insufficient
performance. Slaughter et al. [137] conclude in their robotic weed control systems
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review that the missing generalization capabilities of the crop-weed classification
technology constitute a major problem for the deployment and commercializa-
tion of such systems. The generalization capabilities to new field environments
are essential for the actual deployment of farming robots for selective interven-
tion and crop monitoring in the real world. Therefore, one focus of this thesis
is the evaluation of the plant classification system under changing environmental
conditions.

Labeling effort: A further challenge for supervised machine-learning ap-
proaches is the necessary amount of labeled data. Labeling training data for such
approaches is a laborious task and thus expensive. To train a classifier that works
with high performance in different scenarios, we rely on a sufficient amount of
training data. Thus, approaches to reduce the amount of labeled data are of high
relevance.

1.3 Goals and Main Contributions
The main objective of this thesis is the development of innovative vision-based
plant classification systems for agricultural robots allowing the robots to iden-
tify the value crop and distinguish it from weeds or even different weed species.
Our key developments focus on plant classification systems that enable UGVs
for online, in-field interventions and enable UAVs to be used for accurate plant
monitoring applications. We aim at improving the generalization capabilities to
new and changing field conditions. To achieve robust performance in new field
situations, we propose novel approaches that exploit that a large number of crop
plants are sown in rows. Sugar beet plants, for example, are arranged in crop
rows and often share a similar lattice distance along the crop rows. Such ge-
ometric information is typically similar within and across fields and, thus, less
dependent on the visual appearance of the plants. To the best of our knowledge,
this is the first work explicitly addressing the generalization capabilities of plant
classifiers to new and changing field conditions through the development of novel
approaches that exploit the spatial arrangement of the plants.

Under consideration of real-world applicability, we implement our methods
for use on agricultural robots. We evaluate the developed approaches to real-
world datasets in a thorough experimental evaluation. Therefore, we acquired
an extensive and diverse database. The crops considered in this work are mainly
sugar beets, an important row crop in Germany, and other countries of Northern
Europe.

In the following, we describe the main contributions of this work along with
an overview of our proposed approaches in Table 1.1. The table provides for each
approach its name, an abbreviation, the application, and a small description.
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Table 1.1: Overview of our proposed random forest-based and fully convolutional neural network
plant classification systems. Each approach has been either entirely or partially presented in
our published conference papers [82, 85, 86, 88, 89] or journal articles [83, 84, 87].

Description Random Forest FCN Description
Visual Plant Classification

Described in sections 4.3 and 5.2

Keypoint-based approach
classifying lattice-spaced

keypoints
RF-KP [81, 86] FCN [82]

Fully convolutional
neural network

for plant classification
on single images

Object-based approach
classifying connected

vegetation components
RF-OBJ [87]

Cascaded approach
combining

RF-KP and RF-OBJ
RF-CAS [87]

FCN-STEM [82]

FCN
for plant classification

and stem detection
on single images

Visual and Geometrical Plant Classification
Described in sections 4.4 and 5.4

Geometric classifier
exploiting plant arrangement GC [89] FCN-SEQ [84]

Sequential FCN
for plant classification

on image sequences

Semi-supervised approach
exploiting visual RF-CAS and

and geometric GC classifier
RF-GC [89]

FCN-SEQ-STEM [83]

Sequential FCN
for plant classification

and stem detection
on image sequences

UAV-Based Plant Classification
Described in sections 4.5 and 5.2.2

RF-CAS
exploiting geometric features

for UAV imagery
RF-UAV [88] FCN-UAV [85]

FCN
for plant classification

and stem detection
on UAV images exploiting

larger spatial context

FCN-UAV-STEM

FCN-STEM applied
crop counting and
plant classification

based on UAV imagery
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1. A vision-based cascaded plant classification system based on handcrafted
features using random forests. We call this approach RF-CAS. The random
forest-based classifier combines two subordinated approaches that exploit
two different ways to address the feature extraction for the classification
problem. The first approach extracts local features for keypoints and clas-
sifies the area around each keypoint. We refer to this approach with RF-KP.
The second variant is an object- or segment-based classification that deter-
mines all pixels in a vegetation segment. We refer to this approach with
RF-OBJ. Please note that we do not claim a contribution to the RF-KP ap-
proach in this thesis as we developed this approach with the context of the
master’s thesis by Lottes [81]. However, we propose other approaches that
build upon RF-KP. Thus, we also explain the RF-KP approach. Both ap-
proaches, RF-KP and RF-OBJ, have their advantages and disadvantages.
RF-CAS combines RF-OBJ and RF-KP in a cascade and exploits their
respective advantage and even compensates for their respective disadvan-
tages.

2. A vision-based plant classification system based on a lightweight, fully con-
volutional neural networks. We call this approach FCN.

Both vision-based classification systems RF-CAS and FCN identify plants using
RGB+NIR or RGB-only imagery as their input, can deal with small as well
as overlapping plants, can solve a multi-class problem, are deployable on real
agricultural robots, and provide the results of the classification fast enough for
online in-field interventions with UGVs.

3. Adoption of the random forest-based RF-CAS approach and the fully con-
volutional neural network-based FCN approach for analyzing UAV data.
We adapt the random forest-based by adding additional handcrafted fea-
tures exploiting the crop row structure and spatial relationships between
plants and weeds in the field. We adapt the fully convolutional neural
network-based approach by modifying its network architecture. The modi-
fications aim at enlarging the considered neighborhood in image-space that
contributes to a prediction for a single pixel, thereby allowing the fully con-
volutional neural network to learn features describing the field geometry.
We call these approaches RF-UAV and FCN-UAV, respectively.

4. A novel extension of the fully convolutional neural network-based plant clas-
sification system for pixel-wise plant segmentation to jointly detect plant
stems enabling for high precision plant- and species-specific treatments such
as shown in Figure 1.2. The system jointly estimates the pixel-wise segmen-
tation into the classes crop, dicotyl weeds, grass weeds, and soil, and addi-
tionally provides the stem locations for the crop plants and dicotyl weeds
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at the same time. We call this approach FCN-STEM and for UAV-based
applications FCN-UAV-STEM.

5. A semi-supervised online learning approach for the random forest-based
classification of crop plants and weeds by exploiting additional arrangement
information of the plants in order to adapt the visual classifier to new and
changing field conditions. We use a probabilistic model representing the
arrangement of the plants and employ a Bayesian approach to perform the
crop and weed classification only based on the geometric model. Then, we
combine the visual classifier with the additional geometric classifier that
complement each other within a semi-supervised online-learning scheme.
Therefore, we modify the visual classifier to be suitable to perform online
learning by using the predictions of the geometric classifier in order to adapt
its model to the current situation in the field. We call this approach RF-GC
and call the standalone geometric classifier GC.

6. A novel architectural extension to fully convolutional neural networks that
classify plants based on analyzing image sequences. We refer to our pro-
posed extension with the sequential module. It enables the usage of image
sequences to encode features describing the local arrangement of the plants.
Our approach exploits this geometric signal to improve the generalization
capabilities of the plant classifiers. This technique leads to a better classi-
fication performance as well as to better generalization capabilities of the
classifier, even if the visual appearance or the growth stage of the plants
change between training and test time. We show that our sequential ap-
proach outperforms classification models which operate on single images.
We call this approach FCN-SEQ for the extension of FCN and we call this
approach FCN-SEQ-STEM for the extension of FCN-STEM.

7. For the evaluation of the proposed approaches, we collected a comprehensive
database. It consists of approximately 26,500 labeled images captured by
UGVs and UAVs, providing a full pixel-wise annotation of the class labels
crop, weed, and soil. For almost 5,000 of those images, we additionally
provide additional labels of grass weeds and the location of the plant and
dicotyl weed stems. During the years 2015 and 2019, we acquired the data in
different fields located in Germany, Switzerland, and Italy. We evaluate our
approaches in the context of their performance, generalization capabilities,
labeling effort, use of additional NIR information, and architectural design
choices. For this thesis, we redid all the experiments that we previously
published in papers on the identical database to ensure a fair comparison of
the proposed approaches. Please note that the repetition of the experiments
on the complete database may lead to deviations in the performance metrics
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from the respective published published conference papers [82, 85, 86, 88,
89] or journal articles [83, 84, 87]. Besides the database, small deviations
in the performance may occur due to changed parameter settings in the
evaluation reported here.

1.4 Structure of this Thesis
This thesis is structured as follows: In Chapter 2, we present an overview of the
used machine-learning models within this thesis, i.e., random forests and fully
convolutional neural networks. Furthermore, we provide information about the
used metrics for the evaluation of our proposed plant classification systems. In
Chapter 3, we introduce the ground-based and aerial robots used for data acqui-
sition and deployment in the fields as well as our comprehensive database used
for development and evaluation of the classification systems. In Chapter 4 and
Chapter 5, we present the different plant classification models. In Chapter 4, we
describe the approaches based on handcrafted features using the random forest
as their classification model. In Chapter 5, we describe the approaches based on
fully convolutional neural networks. In both chapters, we describe the classifica-
tion models, how we integrate the use of geometric features describing the plant
arrangement into the classifiers, and how we adapt the classifiers to also work
with UAV data. Chapter 6 includes our comprehensive experimental evaluation
of the approaches presented in the approach chapters. In Chapter 7, we present
related approaches in this field and set our work into the context of the related
work. In Chapter 8, we present our conclusion and an outlook to potential future
works.

1.5 Publications
Parts of this thesis have been published in the following peer-reviewed conference
and journal articles, for which this thesis claims the main contribution:

• P. Lottes, M. Höferlin, S. Sander, M. Müter, P. Schulze-Lammers, and
C. Stachniss. An Effective Classification System for Separating Sugar
Beets and Weeds for Precision Farming Applications. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2016

• P. Lottes, M. Höferlin, S. Sander, and C. Stachniss. Effective Vision-based
Classification for Separating Sugar Beets and Weeds for Precision Farming.
Journal of Field Robotics (JFR), 34:1160–1178, 2017
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• P. Lottes, R. Khanna, J. Pfeifer, R. Siegwart, and C. Stachniss. UAV-
Based Crop and Weed Classification for Smart Farming. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2017

• P. Lottes and C. Stachniss. Semi-supervised online visual crop and weed
classification in precision farming exploiting plant arrangement. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2017

• P. Lottes, J. Behley, N. Chebrolu, A. Milioto, and C. Stachniss. Joint
Stem Detection and Crop-Weed Classification for Plant-specific Treatment
in Precision Farming. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2018

• P. Lottes, J. Behley, A. Milioto, and C. Stachniss. Fully convolutional
networks with sequential information for robust crop and weed detection in
precision farming. IEEE Robotics and Automation Letters (RA-L), 3:3097–
3104, 2018

• P. Lottes, J. Behley, N. Chebrolu, A. Milioto, and C. Stachniss. Robust
joint crop-weed classification and stem detection using image sequences.
Journal of Field Robotics (JFR), 37(1):20–34, 2020

as well as the following workshop paper:

• P. Lottes, N. Chebrolu, F. Liebisch, and C. Stachniss. UAV-based field
monitoring for precision farming. In 25. Workshop Computer-Bildanalyse
in der Landwirtschaft, 2019

1.5.1 Collaborations
Parts of this work were part of different collaborations, which we acknowledge in
the individual chapters, and have led to the following peer-reviewed conference
and journal articles with:

• N. Chebrolu, P. Lottes, A. Schaefer, W. Winterhalter, W. Burgard, and
C. Stachniss. Agricultural robot dataset for plant classification, localiza-
tion and mapping on sugar beet fields. Intl. Journal of Robotics Research
(IJRR), 36(10):1045–1052, 2017

• A. Milioto, P. Lottes, and C. Stachniss. Real-time blob-wise sugar beets
vs weeds classification for monitoring fields using convolutional neural net-
works. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences, volume IV-2/W3, pages 41–48, 2017
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• A. Milioto, P. Lottes, and C. Stachniss. Real-time Semantic Segmentation of
Crop and Weed for Precision Agriculture Robots Leveraging Background
Knowledge in CNNs. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2018

• I. Sa, M. Popovic, R. Khanna, Z. Chen, P. Lottes, F. Liebisch, J. Nieto,
C. Stachniss, and R. Siegwart. WeedMap: A Large-Scale Semantic Weed
Mapping Framework Using Aerial Multispectral Imaging and Deep Neural
Network for Precision Farming. Remote Sensing, 10, 2018

• A. Walter, R. Khanna, P. Lottes, C. Stachniss, R. Siegwart, J. Nieto, and
F. Liebisch. Flourish - a robotic approach for automation in crop manage-
ment. In Proc. of the Intl. Conf. on Precision Agriculture, 2018

• N. Chebrolu, P. Lottes, T. Laebe, and C. Stachniss. Robot Localization
Based on Aerial Images for Precision Agriculture Tasks in Crop Fields. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2019

• A. Pretto, S. Aravecchia, W. Burgard, N. Chebrolu, C. Dornhege, T. Falck,
F. Fleckenstein, A. Fontenla, M. Imperoli, R. Khanna, F. Liebisch, P. Lottes,
A. Milioto, D. Nardi, S. Nardi, J. Pfeifer, M. Popovic, C. Potena, C. Pradalier,
E. Rothacker-Feder, I. Sa, A. Schaefer an R. Siegwart, C. Stachniss, A. Wal-
ter, V. Winterhalter, X. Wu, and J. Nieto. Building an Aerial-Ground
Robotics Systemfor Precision Farming. IEEE Robotics & Automation Mag-
azine, 2020

• X. Wu, S. Aravecchia, P. Lottes, C. Stachniss, and C. Pradalier. Robotic
weed control using automated weed and crop classification. Journal of Field
Robotics (JFR), 37:322–340, 2020

• R. Sheikh, A. Milioto, P. Lottes, C. Stachniss, M. Bennewitz, and T. Schultz.
Gradient and log-based active learning for semantic segmentation of crop
and weed for agricultural robots. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2020

as well as the following workshop papers:

• F. Liebisch, J. Pfeifer, R. Khanna, P. Lottes, C. Stachniss, T. Falck, S. Sander,
R. Siegwart, A. Walter, and E. Galceran. Flourish – A robotic approach
for automation in crop management. In In Proc. of the Workshop für
Computer-Bildanalyse und unbemannte autonom fliegende Systeme in der
Landwirtschaft, 2016
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• F. Liebisch, M. Popovic, J. Pfeifer, R. Khanna, P. Lottes, C. Stachniss,
A. Pretto, S. In Kyu, J. Nieto, R. Siegwart, and A. Walter. Automatic uav-
based field inspection campaigns for weeding in row crops. In Proceedings
of the 10th EARSeL SIG Imaging Spectroscopy Workshop, 2017
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Chapter 2

Basic Techniques

This chapter describes the basic techniques and the framework for per-
formance evaluation of our proposed plant classification systems. For
the used machine-learning model, we recapitulate random forests, which
were introduced by Breiman [15] in the year 2001 and fully convolu-

tional neural networks. Furthermore, we give an overview of the used metrics to
assess the achieved plant classification performance. Here, we also present two
ways for the evaluation, i.e., a pixel-wise and an object-wise evaluation.

2.1 Machine-Learning Models
We define the input data for a classification model as a set of data points X =

{xn}Nn=0 and the corresponding classification output as Y = {yn}Nn=0. Here, N
refers to the number of data points. A classifier can be seen as a function

Y = f(X ,Θ) (2.1)

that maps the input X to the desired output Y . Here, Θ = {θd}Dd=0 refers to a set
of internal parameters of the classifier and reflects the variables we want to learn
to perform the desired classification. For instance, the input X to the classifier
can be given directly by raw sensor measurements, such as images, or by higher
level representations such as extracted features. Then the classifier f maps X to
the classification result Y . In case of pixel-wise classification of an image, Y is
again an image that encodes a class label for each pixel location of the input.

The process of classification can be split into the training phase and the
deployment phase. In the training phase, the goal is to learn values for Θ to
perform the desired mapping to the correct class labels. In the deployment phase,
we freeze Θ and apply the “learned” mapping from f : X 7→ Y .

In this thesis, we mostly perform the training of the classification models us-
ing supervised learning. This implies that we know a desired output yn, so-called
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label, for each data point in the training dataset D = {X ,Y}. Here, X is the
input data and Y the corresponding ground truth information. We are interested
in the classification of class labels Ŷ . Both, random forests as well as convolu-
tional neural networks provide the classification output in a probabilistic manner,
i.e., a discrete pseudo probability distribution of scores over the considered class
labels p(Ŷ | X ). Thus, we can formulate the classifier as

p(Ŷ | X ) = f(X ,Θ). (2.2)

Below, we describe the random forest classifier and, consequently, decision trees
as well as convolutional neural networks as our mainly used classification models
within this thesis. Both models can be represented by Equation (2.2), whereas
their corresponding input data differs due to its representation. The input data
to the random forest classification model is given by a set of handcrafted features
representing a higher-level representation of the original input. For convolutional
neural networks, the input is directly given by X , which can be the raw sensor
data, such as images, and additional information such as wheel odometry. In case
of the feature-based representation, each data point to be classified is represented
by a feature vector v = [v0, . . . , vm] with m = 0, . . . ,M . Consequently, for N data
points, we can also represent the input data by a feature matrix V of size N×M .
Each of the N rows in V represents a data point, whereas each of the M columns
represents a certain feature vm. Thus, the distribution p(vm) of a specific feature
is given by the mth column of the feature matrix V∗,m.

2.1.1 Decision Trees
As a decision tree is the core building block of a random forest, we first describe
this classification model discussing its principle, the training-, and the deployment
phase. Decision trees can be seen as a hierarchy of consecutive applied decisions
to the data alongside a tree structure.

Figure 2.1 depicts the flow of the data for two exemplary decision trees. The
first node in the tree is the so-called root node. It receives all data points. Then
the data passes decision nodes (sometimes also called split nodes) subsequently.
Within a decision node, a certain decision rule θd(m) is computed to binary split
the data into the corresponding child nodes. Thus, the root node itself is also a
decision node. Finally, the data points are split into a leaf node. The latter are
not further split and hold the classification results as each leaf node is mapped to
a certain class label or a pseudo probability distribution over the class labels. A
dataset can have many features and decision rules, and therefore the tree becomes
larger and gets more complex. Independent of the size of a tree, however, the
importance of the used features and relationships of the decision rules can be
directly accessed and lead to an interpretable model. A decision tree ϕ maps the
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Figure 2.1: Random forests [15] are an ensemble learning method building a “forest” of T

decision tree classifiers. Each decision tree is trained on randomly picked subset of the training
data and provides a pseudo probability distribution over the possible class labels Ŷ. According
to Equation (2.6), the pseudo probability distributions of each decision tree are combined and
represent the output of the random forest model, which is again a pseudo probability.

features for a data point to a pseudo probability distribution over the class labels,
i.e.,

p(ŷ | v) = ϕ(v,Θ). (2.3)

Here, Θ refers to the set decision rules responsible for splitting the data and, thus,
for the flow of the data through the tree-structured graph.

Building Decision Trees

Within the training phase, the goal is to learn Θ such that we obtain an effi-
cient tree structure for the classification of new, previously unseen, data points.
Here, efficient means that the learned tree provides the desired classification per-
formance by a minimum number D of decision rules θd. We achieve this by a
training procedure called recursive binary splitting. This procedure tries to greed-
ily find the best possible data splits within each decision node, which maximizes
the purity regarding the considered C classes Ŷc in the resulting child nodes. This
step is repeated until only leaf nodes are left over. A split is performed by a split
function

s(θm) =

{
left child, if vm ≤ θd(m)

right child, otherwise
(2.4)

as a threshold operation in feature space on a per-feature basis. To find the best
split, we iterate over the respective feature distributions V∗,m given by the features
along each column in the feature matrix and search for the θd(m) maximizing the
purity of class labels in the child nodes. Instead of maximizing the purity, we use
the gini-score G as measure for impurity in the child nodes and try to find the
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split with the minimum gini-score such as

Gθd = argmin
m∈{1,...,M}

1−
C∑
1

p(ŷ|s(θd(m)))2 (2.5)

as a measure of the impurity in the child nodes given the split. Here, G(θd)

measures how “mixed” the class labels are in the child nodes.
An important question when building decision trees is: when to stop the

training procedure? In other words, how to define a node as a leaf node? The
most naive approach is to split the data in the nodes until 100% of the data points
correspond to a single class. This, however, leads to very deep tree structures
and causes the model to over-fit to the training data as also noisy data points
and outliers are split until all nodes reach a purity of 100 %. We can address this
issue by the following techniques aiming at the early stopping of the training or
pruning the tree post-training:

• Minimum purity : Defining a node as a leaf node by postulating a par-
ticular purity for the class labels by p(ŷ) ≤ 1.

• Minimum samples: A node is defined as a leaf node if the number of
data points within the node is smaller than a defined threshold.

• Maximum depth: Stopping the splitting procedure when a branch in a
tree reaches a certain depth, e.g., a defined number of splits to reach the
leaf node.

• Pruning: After the training finishes, we prune each branch to either a
certain depth or remove a specified number of the learned splits from the
bottom up.

All these techniques have in common that they try to avoid overfitting the
model to the training data. Thus, to reduce the generalization error by better
performance on held-out test data and to the cost of a higher training error. The
choice of the method(s) and corresponding parameters for controlling the size of
the decision tree is a hyperparameter and needs to be evaluated empirically to
find the optimum given the training and validation dataset.

2.1.2 Random Forests
Random forests are an ensemble learning method for both classification and re-
gression. In this thesis, we focus on classification tasks and therefore describe
this model only in regards to this purpose. The key idea of random forests is to
construct a set of T decision-tree classifiers building the “forest” and to perform
the classification as a majority vote based on the individual classifications made
by the decision trees.
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Building Random Forests

In the training phase, the goal is to learn T decision trees representing the ran-
dom forest classifier. The term T is a hyperparameter and has to be set by the
user. The basic principle of training the individual decision trees stays the same
as described in Section 2.1.1 but with two modifications, called bagging and ran-
dom feature selection, leading to effective characteristics of random forests.

Bagging (bootstrap aggregating): The first modification aims at randomiz-
ing the training data used to learn the individual decision trees. Given the train-
ing data D of size N , we randomly generate T training datasets Ds of size N s for
each decision tree by uniform sampling from D with replacement. This leads to
a random forest that is given by

Φ(V ,Θ) = {ϕ1(V
s
1 ,Θ

s
1), . . . , ϕt(V

s
t ,Θ

s
t)}Tt=1. (2.6)

By bagging, each decision tree is trained on a small but different portion of the
training data, respectively. Thus, each decision tree learns a different set of model
parameters Θs

t resulting in a set of weak learners, which perform slightly different
predictions for the same test data points.

A further advantage of the bagging approach is that around 30 % of the train-
ing data points are never sampled by chance. Thus, these samples are not con-
sidered by any of the trees in the forest [15]. The random forest model stores
the indices of those unused samples and uses them as validation data implicitly.
These data points can then be used to provide metrics for early stopping tech-
niques of the training procedure or as an intrinsic estimate for the generalization
performance of the model.

Random feature selection: Given M different feature types, we randomly
select a number of M s ≪ M features to find the best data split given the minimum
Gini-score in the corresponding child nodes according to Equation (2.5). Thus,
it is not guaranteed to find the optimal split concerning maximizing the purity
of the class labels within the child nodes, as smaller M s leads to less similarity
in the tree structure and less correlation between individual trees. Regarding
Breiman [15], M s is the only hyperparameter of a random forest.

Both methods bagging and random feature selection lead to more diversity in
the individual decision trees in terms of the tree structure and learned decision
rules. The random forest exploits the diversity of the individual decision trees as
it performs the final prediction as a majority vote of its decision trees. Based on
the outputs of the individual decision trees, we can compute a pseudo probability
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distribution for a single data point over the possible class labels ŷ by

p(ŷ | Φ(V ,Θ)) =
1

T

T∑
1

pt(Ŷ | ϕt(V
s
t ,Θ

s
t)), (2.7)

where the elements in ŷ sum up to 1. Thus, random forests represent a multi-
class classification model providing a probabilistic output reflecting the confidence
of the classifier’s predictions for data points belonging to the considered class
labels. Through joining the respective predictions of the individual and diverse
weak learners, random forests implicitly reduce the risk of over-fitting to some
degree and are comparably robust to corrupted class labels within the training
data. These properties make random forests attractive to use compared to other
classical machine-learning models.

2.2 Neural Networks

Neural networks are the model that underlie deep learning. Many prominent
deep learning models, such as convolutional neural networks and recurrent neu-
ral networks, can be represented by constrained or modified neural networks.
Given a mapping Y = f ∗(X ,Θ), the main objective of neural networks is to
approximate f ∗. Neural networks typically consist of many simple processing
units called neurons. They are connected within the network and communicate
by receiving and responding signals via weighted connections. Neurons process
the incoming data and realize the information flow through the entire neural net-
works. Inspired by biological neural networks in the human brain, neurons are
sometimes also called perceptions, and consequently, neural networks are also
called multi-layer perceptions.

Within a neural network, neurons are organized in layers. Figure 2.2 depicts a
neural network consisting of L = 3 layers composed in a subsequent order. Note
that in this example, the neurons are only interconnected between layers. This
common structure is called a feed-forward network. The network in Figure 2.2
has a depth of three, as it consists of three consecutive layers, and has a width
of three, as it has three neurons within each layer. The layer f (l) is called the lth

layer of the network. The first layer f (1) in a network is also called the input
layer as it directly operates on the input x, whereas the last layer f (L) is called
the output layer. In-between layers are called hidden layers.

The jth neuron in the network receives as input a set of responses created by I

other neurons. These responses are so-called activations a = Θ = {ai, . . . , aI}I0.
Each ai is associated with weight parameter wi to control its influence for the
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Figure 2.2: Illustration of three layer L = 3 neural network.

computation in the jth neuron, i.e.,

aj = σ

(
I∑
1

wiai + b

)
= σ(wTa + b). (2.8)

Here, b is an additional bias parameter and σ refers a non-linear activation func-
tion of the neuron. The latter we describe in Section 2.2.1. The values for w

and b influence the information flow in the network and reflect the parameters
that have to be learned to obtain the desire mapping of the input to the tar-
get variables. In this section, we substitute the learnable parameters of a neural
network with Θ. The lth layer in the network can be formulated as

al = σ(
J∑
1

wl
ija

l−1
ij + blj). (2.9)

Written as a matrix-vector product, we obtain

al = σ
(
WTal−1 + b

)
, (2.10)

where al is the vector of resulting activations that can also be seen as the features
computed by the lth layer. The variable W refers to the weight matrix, and b
refers to the bias vector. Thus, the entire graphical model in Figure 2.2 can be
formulated as

aL = f (3)(f (2)(f (1)(x, θ1), θ2), θ3). (2.11)

2.2.1 Activation Functions
The element-wise applied activation functions σ are standard building blocks of
neural networks and allow us to define non-linear mathematical models. Only by
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integrating these functions the network can approximate a non-linear function
and establish complex relationships between the input variables and the target
variables. Concerning the optimization of the model parameters of neural net-
works, several non-linear activation functions can be chosen. However, in the
past, several works have shown that it is best practice to use the rectified linear
unit, i.e.,

σReLU(a) = max(0, a), (2.12)
for the training of neural networks. Neural networks using the rectified linear unit
activation function are less affected by the problem of the vanishing gradient and
typically show better convergence behavior. In this thesis, we use the rectified
linear unit as our standard activation function in neural networks.

The goal of a neural network-based classifier is to predict a discrete pseudo
probability distribution over a considered number of class labels. Here, the num-
ber of neurons in the output layer corresponds to the number of classes. Thus, in
our described toy example in Figure 2.2, the network considers two classes. We
apply a softmax function to the last activations aL

σsoftmax(aL) =
ea

l∑C
j=1 e

al
. (2.13)

to obtain a pseudo probability for each class for a particular data point, i.e.,

p(ŷ | x, θ) = σsoftmax(aL). (2.14)

The softmax function a non-element-wise activation and transforms the output
into a discrete pseudo probability distribution over the class labels The elements
in ŷ sum up to 1.

2.2.2 Loss Function
The training of a neural network refers to the optimization of the model param-
eters concerning a loss function L. In the case of supervised training, we have
access to the input data x as well as to the actual labels y. The loss function L
computes the discrepancy between the predictions of the network and the la-
bels. The goal of the training procedure is to adapt the model parameters Θ

to minimize L. As the loss function penalizes false classifications, the training
should lead to an adaption of the parameters such that the network produces an
appropriate mapping between the input and the output.

Several loss functions are considered to train neural networks. In this the-
sis, we use the weighted cross-entropy-loss for the training of our network-based
classification models. It has the form:

L(ŷ,y) = −
C∑
c=1

αcyc log ŷc. (2.15)
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The cross-entropy evaluates the consistency of the ground truth and predicted
distributions across the class labels. The variable αc reflects an additional weight
parameter and allows to penalize errors differently concerning their class label.

2.2.3 Gradient Descent

One of the key properties of neural networks is that they represent a fully dif-
ferentiable function, as the entire network architecture is composed of small,
but differentiable functions. Thus, we can perform a forward pass, i.e., feeding
the input into the network and infer the output given the current configuration
of parameters in the network structure. The resulting loss, according to Equa-
tion (2.15), reflects the signal we want to minimize. Therefore, gradient descent
is used to identify the direction of the steepest descent in the parameter space.
The algorithm computes the gradient of the cost function concerning Θ. The
minimization of the loss function is therefore iterative given by

θ′ = θ − ϵ∇θL(θ) . (2.16)

The parameter ϵ denotes the learning rate telling the algorithm how far the step
and, thus, how large the parameter updates are. The learning rate is one of
the most important parameters to tune. A too small learning rate leads to too
little learning progress, whereas a too-large learning rate adversely affects the
convergence behavior or even lead to a divergence of the learning process.

In practice, the computation of the gradients over the entire training dataset
is computationally expensive and thus impractical. Therefore, the parameter
updates are performed batch-wise based on an iterative random sampling of the
entire dataset. Such a sample is a so-called mini-batch, and the number of samples
within a mini-batch is the so-called batch size B. After the network has processed
all mini-batches representing the entire dataset, it has been trained over an epoch.
Commonly, we train a model over several epochs, through a random sampling of
the mini-batches in each epoch. The process is often called stochastic gradient
descent.

2.2.3.1 Batch Normalization

Concerning the optimization of the model parameters, two problems often arise.
One is the so-called vanishing gradient. Here the model parameters of deep
network structures are not sufficiently optimized in the first layers due to too-
low, vanished, gradient signals. The second problem is that during batch-wise
training, the distribution of the activations can change dramatically and prevent
the weigh parameters to converge to a stable solution. To address this problem,
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Ioffe and Szegedy [56] introduce batch normalization of the features in a batch-
wise manner during training. Batch norm tries to equalize the features by setting
their mean to zero and scaling them by forcing their standard deviation to be
one.

The normalization is followed by a learnable scaling and shifting of the feature
distribution via two further layer-specific model parameters. Through the second
scale and shift operation, the model can determine the optimal scaling and the
mean value for the features that are inserted into the next layer. Additionally,
batch normalization counteracts the model from overfitting [56, 52].

2.2.3.2 Dropout

Training a model on a limited amount of data comes at the risk of overfitting. To
address this challenge, Srivastava et al. [138] propose dropout. Dropout randomly
omits a particular amount of connections between neurons during the training
training. Thus, not every neuron contributes to the processing of the current
input.

This technique has different effects. First, dropout acts as a kind of gener-
alizer, since different neurons in the network are forced to process the same in-
formation partially independently of each other, creating the same output. This
leads to more general features, as the neuron is not allowed to rely on the pres-
ence of other neurons. Another view is that we train several networks at the
same time, which then leads to a better during the deployment phase. Secondly,
dropout means that information cannot always be processed in the same way by
the network. This reduces the risk of the network to overfit to the training data
by simply “memorizing” the correct solution.

2.3 Fully Convolutional Neural Networks
So far, we discussed neural networks with fully-connected layers, where every
neuron of a particular layer is connected to all other neurons of the previous and
subsequent layers. Classic feed-forward networks with fully connected layers use
general matrix-vector multiplication, which can be computationally demanding,
especially for the processing of high dimensional image input.

Convolutional neural networks have a similar structure to such networks in
terms of layer-wise network architecture. However, they are mainly designed to
process image data through the exploitation of convolutions instead of using fully-
connected layers. Images have a particular topological structure that is given by
the height H, the width W , and the channels or depth D of an image. Often,
neighboring pixels correlate within an image. Convolutional neural networks
explicitly exploit this information for the estimation task at hand.
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Figure 2.3: The dark blue convolutional kernel slides along the input in bright blue and sequen-
tially performs a linear transformation of the input (green). Here, a 3× 3 kernel containing the
learnable weight parameters convolves the input of size 5 × 5. Through the valid convolution
the output size is given by 3× 3. Image courtesy of [27].

The term “fully convolutional” indicates that a convolutional neural network
is an ensemble solely consisting of convolutional operations. Even for the last
layer in the network, i.e., the decision-making layer, the operation is expressed
through convolutions.

2.3.1 Convolutional Layers
The underlying mathematical operation in a convolutional layer is a discrete
convolution. Figure 2.3 illustrates the process of the convolutional operation that
is performed with the same filter over the whole input by sliding the kernel with
a particular stride across the input. The result of that operation at one position
of the input is the dot product of the kernel with the corresponding input region.
Convolutions are commonly followed by an activation function, e.g., a rectified
linear unit, and a batch norm operation that is performed channel-wise. This
intermediate result is a so-called feature map.

In convolutional neural networks, several different kernels are applied to the
same input. Each kernel produces a different feature map based on its respective
weight parameters. All feature maps that are produced in one layer of the network
form a feature volume. A feature volume represents the output of a certain
layer. At the same time, it also represents the input to the consecutive layer
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Figure 2.4: Zero-padding adds a row of zero elements to each boarder. The strided convolution
with stride 2 then downsamples the input. Image courtesy by [27].

in the network. A convolutional neural network architecture consists of several
subsequently applied convolutional layers that operate on the respective feature
volumes produced by the previous layer. The number of subsequently applied
layers defines the depth of the entire network.

Figure 2.3 shows that naively applying a stack of subsequent convolutions
shrinks the output size of the respective features maps, as one is going deeper
in the network. To control the spatial dimensions height H and width W of the
features maps along with the depth of the network, we can use zero paddings
of the feature maps to maintain their dimension. See Figure 2.4 for an example
of zero paddings to keep the same H and W for a convolved feature map. This
operation allows for the design of deeper architectures by stacking more layers.
This, in turn, can lead to a better expressiveness of the model.

Typically, the spatial resolution of feature volumes is intentionally reduced
with increasing network depth. This procedure enables the design of a deeper
architecture concerning memory requirements. Furthermore, the successive re-
duction of the spatial dimensions leads to a higher information density of the
computed features. Downsampling the feature map dimensions can be achieved
through different methods such as max pooling or average pooling. Max pool-
ing, for instance, is a kernel operator that copies maximum feature value into
the downsampled feature map, whereas average pooling computes the average
feature value. However, we use stridden convolutions in this thesis. The stride is
the distance between two successive pixel positions of the filter in the input. The
larger the stride, the lower the spatial resolution of the resulting feature volume.
See Figure 2.4 for an example. In contrast to the pooling operators, the strid-
den convolution has trainable kernel parameters. Thus, it serves as a learnable
downsampling of the features.

A particular convolutional layer in a convolutional neural network accepts an
input feature volume of size Hin × Win × Din. It produces a feature volume of
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size
Hout =

Hin −K + 2P

S
+ 1,

Wout =
Win −K + 2P

S
+ 1,

Dout = F,

(2.17)

with F being the number of convolutional filters and K their spatial extent,
i.e., the kernel size, P denoting the amount of zero-padding and S the stride.
Thus, the number of learnable parameters is given by KKDinF . Note that we
do not consider additional bias parameters. In this thesis we refrain from using
additional bias parameters in our approaches, since these become superfluous due
to the additional shifting parameters of the batch normalization operation, see
Section 2.2.3.1.

The number of parameters is significantly reduced compared to neural net-
works using fully-connected layers, as the same filter is applied over the entire
input. Therefore, the convolutional neural networks are less complex and have a
lower risk of overfitting to the training data [60].

2.3.2 Encoder-Decoder Structured Networks
In a forward pass through the network, we first process the input by consecu-
tive convolutional layers and downsampling to a smaller spatial resolution using
stridden convolutions. This part of the network can be seen as the encoder and
can be used as a feature extractor. The extracted features represent a spatially
compressed but highly informative representation of the input. For the task of
pixel-wise classification, however, we process the encoded features such that the
output of the network is of the same spatial dimensions as the input. This part
of the network can be seen as the decoder for the features and can be used to
compute the desired pixel-wise classification output. In the decoder, we process
the encoded features with convolutional layers and spatial upsampling operations
to restore the original resolution of the input. Analog to the downsampling in the
encoder, we perform the upsampling using stridden convolutions to realize the
spatial enlargement of the features in a learnable way. Here, we use the so-called
transposed convolution that represents the opposite operation of a convolution
[27] compared to fully-connected neural networks. The output is finally given by
a classification, which assigns a class to each pixel in the input.

2.4 Evaluation Metrics
In this section, we describe metrics that we use throughout the thesis for the
evaluation of different properties of the investigated vision-based plant classifica-
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Figure 2.5: Precision and recall for a binary classification problem. Courtesy: Wikipedia.

tion systems. We provide further information about the experimental setup and
evaluation strategies in our extensive experimental evaluation in Chapter 6.

Precision, Recall, and F1-Score

The precision-recall curve is a standard method to evaluate the performance of
a classifier and is widely used in the field of computer vision, machine learning,
pattern recognition, and information retrieval. The goal of the analysis of the
precision and recall of a classifier is to asses its performance beyond the achieved
classification accuracy, i.e., measuring how many data points the classifier iden-
tified correctly concerning all data points.

Consider a classification problem of crop against non crop. We want to clas-
sify each pixel in an image to determine whether it belongs to the class crop.
Figure 2.5 illustrates how precision and recall a defined for this case. For the
following explanations, we assume the crop to be the positive and non crop to be
the negative class, i.e., green referring to crop and red referring to non crop.

The circles in Figure 2.5 refer to a single data point, e.g., an image pixel in
the case of pixel-wise classification. All filled circles refer to actual crop pixels in
the ground truth data, whereas all unfilled circles refer to actual non-crop pixels
in the ground truth data. The correctly classified crop pixels are located in the
green area of classified data points in Figure 2.5. As crop refers to the positive
class in this example, these samples are called true positives (TP). The correctly
classified non-crop pixels are called true negatives (TN) and located in the red
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area of classified data points. The classifier also produces missclassifications.
Here, predicted crop pixels that actually belong to the non-crop class are called
false positives (FP). Consequently, predicted non-crop pixels that actually belong
to the crop class are called false negatives (FN).

The precision (P) for the crop can be seen as the probability that a randomly
selected classified crop data point actually belongs to the crop class. Thus, the
precision measures how likely it is that a classifier’s prediction is correct. The
term precision is defined as:

precision =
TP

TP + FP . (2.18)

The recall for the crop can be seen as the probability that a randomly selected
actual crop data point from the ground truth is correctly predicted. Thus, the
recall measures the number of actual crops that are found by the classifier. The
term recall is defined as:

recall = TP
TP + FN . (2.19)

Both the precision and recall values have their minimum at 0 and their maximum
at 1. Throughout this thesis, we provide the values for precision and recall in
percent ranging from 0 % to 100 %. The precision and recall values have a direct
meaning for the expected performance in the real world. For instance, a pixel-
wise classifier that obtains a recall of 90 % for the crop class detects 90 % of all
crop pixels in the data correctly. The precision gives an intuition on the ratio of
hallucinated crop pixels. A classifier that obtains a rather low precision for crop
predicts too many pixels as crop that are actually not crop.

For the comparison of two different classifiers, the accuracy of use and the
recognition value is disadvantageous, because we have to consider two different
values. Maybe one classifier has a high recall, but a low precession and the
competitor has high precision, but low recall. So, we might want to ask: Which
classifier is the better one? One way to approach an answer is to use the so-called
F1-score, which is the harmonic mean of precision and recall, i.e.,

F1-score = 2 · Precision · Recall
Precision + Recall . (2.20)

The harmonic mean penalizes extreme values and gives an appropriate measure
of imbalanced class distributions. Thus, the F1-score provides a single metric
describing the overall performance of a classifier that takes both precisions and
recall into account. Furthermore, the F1-score implicitly deals with imbalanced
class distributions to some degree. Therefore, we use the F1-score for the com-
parison between classifiers throughout this thesis.

The above example deals with the calculation of metrics for a binary classifica-
tion problem. However, in this thesis, we mainly deal with multi-class problems.
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Figure 2.6: Example of a precision-recall plot comparing different approaches. We compare two
approaches, called APPROACH-A and APPROACH-B, that predict classes crop, dicot-weed,
grass weed, and soil.

In this case, we calculate the average of the class-wise measures, i.e., precisions
recalls, and F1-scores across all considered classes, i.e.,

avgM =
1

C

∑
ω

Mω. (2.21)

Here, Mω acts as a placeholder for the class-wise precision, recall, or F1-score,
and C the total numbers of considered classes. By averaging across all class
metrics, we weight all classes equally, without taking into account their relative
frequency of occurrence in the data.

A characteristic of random forests and convolutional neural networks is their
probabilistic output. This means that we obtain a probability distribution p(ω |
model) over the considered class labels for every predicted data point. The eval-
uation of these probabilities offers a more detailed insight into performance than
just comparing the final class label with the ground truth information. This
also allows us to somewhat track the stability of the predictions. For multi-class
problems, we first binarize the original multi-class task to multiple one-vs.-all
classification problems. Through this, we always obtain one positive class ωp

and one negative class ωn. Then, we create the class-wise precision-recall curves
by varying a threshold t ∈ [0, 1] for the mapping of the predicted probabilistic
output p(ω | Model) of the classifier to the assigned class labels, i.e.,

ω =

{
ωp (positive), if p(ωp | Model) ≥ t

ωn (negative), otherwise
(2.22)

By changing the parameter t from its default value 0.5, we can influence the
classifier to either minimize false negatives or false positives. This allows us to
visualize one precision-recall curve for every considered class.

Figure 2.6 depicts eight different precision-recall curves evaluating the per-
formance of two different approaches for four different classes, respectively. The
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classifiers are called APPROACH-A and APPROACH-B and predict classes crop,
dicot-weed, grass weed, and soil. Perfect classifier performance is given by a recall
of 1 at a precision of 1. This means, the closer a precision-recall curve approaches
the upper-right corner in the diagram, the better is the performance of the clas-
sifier.

First, we can visually get an impression of the class-wise performance of both
classifiers. The class-wise precision-recall curves reveal that both classification
approaches deliver an almost perfect performance for the classification of the soil
class. Furthermore, both algorithms can provide crop plants with a recall of about
95 % at a precision of about 95 %. The performance for the two weed classes dicot-
weed and grass weed is below this performance. In addition, we can compare the
two classifiers at a glance. We see that the FCN-SEQ-STEM classifier achieves
better performance for all plant species when compared. This can be seen from
the fact that the respective class-wise curves are closer to the upper-right corner.
The highest performance gain of FCN-SEQ-STEM is observed in grass weeds,
where the distance between the two blue curves is most considerable.

In this thesis, we use precision-recall curves for most experiments to study the
performance of individual approaches in detail and compare different classifiers.
In an online application in the field, however, it is difficult to choose an optimal
parameter t that is particularly suitable for the data. Therefore, during the
deployment of the classifiers, we assign the class label concerning a labeling with
the most likely class label that is predicted by the classifier, i.e.,

ω∗ = argmax
ω

p(ω | model). (2.23)

For the class assignment with this method, we get one value for the precision,
recall, and the F1-score. Besides the precision-recall curves, we always report
the achieved performance that is achieved under a class labeling according to
Equation (2.23).
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Chapter 3

Agricultural Robots and Datasets

A prerequisite for any selective and targeted in-field treatment executed
by an agricultural robot is a robustly working and high-performance
plant classification system. Also, for crop monitoring applications
with UAVs, a reliably working classification is an essential component

within the process of automated data analysis. In this chapter, we present the
UGV and UAV platforms used in this thesis. We describe the sensors for image
acquisition of the UGVs actuation system for in-field weeding operations.

To cope with the large variety of different crops and weeds as well as with
inherently changing environmental conditions, we need machine-learning tech-
niques that can perform the mapping from the raw sensor input to the desired
class labels. To exploit the full potential of machine-learning algorithms for the
plant classification, a large and diverse database is essential for the development
of high-performance plant classifiers, which are also robust and reliable under
various field conditions. Existing and publicly available datasets for the plant
classification, however, are often limited to a single or a small variety of aspects,
e.g., single crop, a small amount of data, same sensor setup. They are typically
collected at low frequency, or even at a unique point in time. In this chapter, we
present an overview of the datasets that we collected within the Photogrammetry
and Robotics lab in Bonn for the development and evaluation of this thesis.

In the years 2015 to 2019, we collected an extensive database along with this
thesis including data (i) collected with different UGV and UAV platforms, (ii) in
different fields located in different countries, (iii) containing different growth
stages of crop plants and weeds, as well as different weed types and soil con-
ditions. Figure 3.1 illustrates a gallery showing example images that are acquired
using different UGVs and UAVs for field tests in this thesis. The images show a
large diversity in terms of the appearance of the plants, weeds, and soil condi-
tions. From the collected data, we manually labeled about 26,500 UGV images
concerning ground truth information on pixel level. The annotation together
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Figure 3.1: Gallery showing example images that are acquired by the employed UGVs and UAVs
for field tests. The RGB and NIR images show a large diversity in terms of the appearance of
the plants, weeds, and soil conditions. Besides the different field conditions, we recorded the
image data with different robots under varying illumination setups.

with the RGB and NIR images form our training and test database (see also
Section 3.1.1). In the case of the UAVs, we labeled about 250 high-resolution
images (up to 21 megapixels) containing hundreds to thousands of plants each.
Note that the UAV images are 10-20 times bigger in size and contain many more
plants and weeds compared to the UGV images.

This database is part of our contribution to comprehensive experiments eval-
uating the performance, generalization capabilities, labeling effort, effect of NIR,
and architectural design choices of our proposed approaches along with this the-
sis. We published parts of our datasets in our dataset paper [20], and as part of
a conference paper [82], and journal article [84].

3.1 Robots and Sensor Setup
In this section, we describe the UGV as well as UAV systems used for data
acquisition and in-field deployment. For the UGV systems in Section 3.1.1, we
describe the basic setup of the field robots, the vision-system, and the actuation
system for autonomous weeding. For the UAVs in Section 3.1.1, we describe the
used drones and the cameras for image acquisition. As no actuation and no on-
board processing is required for the plant classification systems in this thesis,
we employ the UAVs solely as flying platforms to transport the camera over the
fields. Thus, the focus of this section is more on the acquisition setup.
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Figure 3.2: Different versions of the BOSCH Deepfield BoniRob used for data acquisition and
deployment. Left: BoniRob V2 used for data acquisition in Stuttgart, Germany. Middle:
BoniRob V3 used for data acquisition at the Campus Klein Altendorf near Bonn, Germany.
Right: BoniRob V3 used in Ancona, Italy.

3.1.1 Unmanned Ground Vehicles

We conduct all field experiments with different generations of the BoniRob field
robot, shown in Figure 3.2. The BoniRob is a multi-propose field robot by
BOSCH DeepField Robotics and has been developed for agricultural applications
such as selective spraying, weed control, as well as plant and soil monitoring. The
BoniRob system provides an empty slot to install different tools for specific tasks.
In terms of navigation on rough terrain, the robot is equipped with four inde-
pendently steerable wheels and allows for further flexible movements through a
mechanism to adapt its track width to the actual distance between crop rows in
the field. In total, the BoniRob is equipped with sensors delivering visual infor-
mation, depth, 3D laser, GPS data, and wheel odometry measurements. In the
remainder of this thesis, we solely rely on the image data as well as the wheel
odometry data. Thus, we present the used camera system and do not further
explain the other sensors in detail. More information on the other sensors of the
BoniRob platform is given in our dataset paper [20].

3.1.1.1 Actuators

The actuation system is responsible for the treatment of the plants in the field.
Figure 3.3 shows the weed control unit of the BoniRob, which was developed
by BOSCH within the joint EU project Flourish. The weeds are treated either
mechanically by bolts or chemically by sprayers. For the high precision me-
chanical treatment, the unit is equipped with 18 individually controllable stamps
with 10mm-diameter bolts (Figure 3.3 bottom-right). While driving over the
field, the controller moves the bolts to the respective positions of the weeds in
the object space based on the classification results. Once the bolt is above the
shaft area of a weed, it is pneumatically punched into the ground to remove the
weed. This mechanical method is most effective with weeds that have a defined
stem area. One bolt has a diameter of about 1 cm2. Therefore, the impact is
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Figure 3.3: Left: BoniRob V3 with weed control unit mounted in the application slot (black
box). Right: CAD drawing of weed control unit including the actuators, camera sensors,
selective sprayer, and mechanical stamping tool for precision stamping. Bottom row: Examples
of sprayed weeds.

Figure 3.4: Examples of sprayed weeds. BoniRob’s spraying system is able to perform the
treatment with a spatial precision of around 6 cm. This precision in sufficient to treat also
weeds that are located close to crop plants.

most effective on smaller weeds. For larger weeds as well as grass weeds, this ap-
proach is not as effective. Here, a chemical treatment is suitable. The advantage
of this method is the spatial precision. Theoretically, it can treat weeds with an
accuracy of 1 cm2. Thus, it can treat weeds that grow close to the plants. Con-
versely, a classification system must determine a reasonably accurate position for
the impact location to ensure effective treatments. For this purpose, we develop a
classification system in Section 5.3.1, which, in addition to the pixel-wise classifi-
cation of plants, also detects the exact positions of their stem. In our experiments
in Section 6.7.1, we show that we can classify the stem with an average precision
of a few millimeters.

For selective spraying, nine individually controllable nozzles are mounted on
the back of the unit. The weed control unit is designed for the selective and
targeted treatment of plants per row. The width of the spraying array is ap-
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Figure 3.5: Spectral sensitivity of the JAI AD-130 GE camera for the red, green, and blue
band as well as for the near-infrared band. One key feature of the JAI camera system is its
prism-based design providing two CCD arrays, one CCD for RGB using a Bayer mosaic and
another CCD for NIR using a monochrome chip. Image courtesy of [1].

proximately 50 cm. One sprayer covers approximately 6 cm across the driving
direction. The sprayers’ spatial precision is lower than that of the stamping tool,
but the advantage is that the individual nozzles do not move to the location
of the plants. Therefore, the spraying system can also operate at higher driving
speeds at high throughput. The advantage of spraying is that even large weeds or
grass weeds can be treated effectively. Figure 3.4 depicts two examples of sprayed
weeds. It is possible to use both actuators simultaneously. For example, small
dicotyl weeds can be treated well by mechanical stamping, while larger weeds and
grass weeds are better treated chemically by selective spraying.

3.1.1.2 Camera

We used a 4-channel JAI AD-130 GE camera system for image acquisition. The
primary purpose of the JAI camera is to capture detailed visual information of the
plants for the crop and weed perception system of the robot and detailed visual
monitoring of the plant growth by extraction of key indicators for phenotyping
applications. As plant leaves exhibit high reflectivity in the NIR spectrum due to
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Table 3.1: UAVs used in this thesis.

Inspire II Phantom 4 Phantom RTK
Camera Zenmuse X5s Built-in Built-in
Sensor CMOS CMOS CMOS
Sensor size 4

3

′′ 1
2.3

′′
1′′

Focal length 45 mm 3.6 mm 8.8 mm
Resolution 5,280×3,956 4,000×3,000 5,472×3,648

their chlorophyll content [127], the NIR channel is useful for separating vegetation
from the soil and other backgrounds in the images.

This camera is a prism-based 2-CCD multi-spectral vision sensor, which pro-
vides image data of three bands inside the visual spectrum and observes one
band of the near-infrared spectrum. Figure 3.5 illustrates the respective sensitiv-
ities of the camera system for the four spectral bands. The Bayer mosaic color
CCD and the monochrome CCD of the JAI camera provide an image resolution
of 1, 296 × 966 pixels, respectively. One key feature of this camera system is its
prism-based design: as the optical paths of the RGB and the NIR channel are
identical, the RGB and NIR data can be treated as one 4-channel image.

The primary purpose of the JAI AD-130GE camera is to capture detailed
visual information of the plants for the crop and weed perception system of the
robot and detailed visual monitoring of the plant growth by extraction of key
indicators for phenotyping applications. As plant leaves exhibit high reflectivity
in the NIR spectrum due to their chlorophyll content [127], the NIR channel
is useful for separating vegetation from the soil and other backgrounds in the
images.

The camera points downwards on the field approximately 60 cm-85 cm above
the soil. See Figure 3.5 (right) for an illustration of the camera mounted in the
weed unit module. We use a Fujinon TF15-DA-8 lens with a fixed focal length
of 8 mm leading to a field of view of 25 cm-35 cm in driving direction and 32 cm-
45 cm orthogonal to it. This setup yields a ground sampling distance of around
0.3mm

px
-0.4mm

px
.

3.1.2 Unmanned Aerial Vehicles
We carry out aerial data acquisition and field experiments with different UAVs. The
goal of this work is to find out if and with which quality we can derive the spatial
distribution of plants and weeds, or even different weed species from RGB aerial image
data. In this work, we use the UAVs exclusively as mobile platforms to transport the
camera sensors over the field. This enables us to observe large areas quickly and to
analyze them with our classification systems in a comparatively short time. Note that
we do not perform any on-board computing on the UAV. Figure 3.6 shows the drones we
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Figure 3.6: Different UAVs used for data acquisition. Left: DJI Phantom 4 with built-in RGB
camera. Middle: DJI Inspire II with DJI Zenmuse X5s RGB camera. Right: DJI Phantom 4
RTK with built-in RGB camera

use to capture our UAV records, which we describe in Section 3.2.3 and Section 3.2.4.
We use various UAV systems from the manufacturer DJI. Compared to the camera
we use for the UGVs, the UAV camera systems are always standard RGB cameras.
The crucial differences to the UGV acquisition conditions are that the resolution of
the cameras is much higher and that the UAV images are not acquired under artificial
lighting. Therefore, the data can vary considerably, even if they are collected within
a short time by a single flight over a single field. While the UGV camera provides a
resolution of around one megapixel, the UAV cameras provide images in the range of
13 to 21 megapixels.

3.2 Datasets
In order to develop and evaluate the proposed plant classification systems, we gath-
ered a substantial amount of data from different fields located in different cities and
countries such as Bonn, Germany, Ancona, Italy, Stuttgart, Germany, and Zurich,
Switzerland. We collected these datasets with the UGVs and UAVs we described in the
previous section. Overall, these datasets represent challenging conditions for a vision-
based classification system. They contain sugar beet plants at different growth stages,
which we consider as the value crop, different dicotyl weed (weeds whose seeds having
two embryonic leaves), and grass weed types at varying sizes as well as different soil
conditions. Even within a single dataset recorded during a single run with the robot
in one field, the size of the crops and weeds can range between 1 cm2-20 cm2.

This variation is caused by natural differences in the growth of plants and weeds
but also due to the way the images are labeled. Note that we do not determine the
crop and weed sizes based on the total pixels of a plant but through a connected com-
ponent analysis on the label map. Therefore, the measured object or segment sizes are
sometimes smaller, as plants are not always represented by a single connected compo-
nent in the image space. The label map for BONN-CW-17 in Figure 3.7 illustrates the
latter situation. Here, distinct connected components represent the leaves of the sugar
beet plant. Furthermore, the image data of the respective datasets differ also in color,
brightness, and contrast, due to the changing illumination setups of the field robots.
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We categorize the acquired datasets into four main groups, i.e.:

1. In Section 3.2.1, we describe the crop-weed classification datasets acquired by
UGVs. These datasets represent the main source of data in this thesis with
around 20,000 labeled images containing the classes sugar beet as our considered
crop ωc, weed ωw, and soil background ωs.

2. In Section 3.2.2, we describe our crop-dicot-grass classification and stem detec-
tion datasets for the UGV acquired by UGVs. These datasets represent the
data source to develop and evaluate our joint plant classification and stem detec-
tion systems for selective and species-specific in-field treatments. They consist
of around 5,000 labeled images considering the classes: sugar beet ωc, dicotyl
weed ωd, grass weed ωg, and soil background ωs for the plant classification.
Furthermore, we labeled the stem locations for the sugar beets ωc and dicotyl
weeds ωd.

3. In Section 3.2.3, we describe the plant classification datasets acquired by UAVs.
Here, we distinguish two types of datasets. First, single non-overlapping images
with a high spatial ground resolution of around 1mm. These datasets contain
either the classes sugar beet ωc, weed ωw, and soil background ωs, but also im-
ages labeled for multiple weed species detection considering four different types
of weed. The second dataset type contains overlapping images with a ground
resolution of about 5mm. We first process the images with the photogrammetric
software Metashape to obtain a single Orthomosaic, which is a true-scale repre-
sentation of stitched orthophotos obtained by a bundle-adjustment procedure.

4. In Section 3.2.4, we present our crop counting dataset acquired by UAVs. This
dataset contains the measurements of a single field acquired at different points in
time. We labeled the data in terms of a pixel-wise classification of sugar beet ωc,
weed ωw, and soil background ωs, but also terms of the number of present crops
in the data.

3.2.1 UGV Crop-Weed Datasets for Plant Classification
First, we describe our UGV-based crop-weed datasets for plant classification. During
the EC-funded Flourish project [120], we used different versions of the BoniRob plat-
form for data collection and field testing. In total, we conducted experiments on five
different fields in three different countries in central Europe. We collected a diverse
database, allowing us to evaluate our classification systems under different real-world
conditions.

Throughout this section, we introduce five different datasets for the plant classi-
fication, considering the classes crop ωc, weed ωw, and soil background ωs. We first
introduce a uniform notation concerning the datasets present below. We refer to these
datasets with CITY-CWS-YEAR, where CITY stands for the city in which we recorded
the data. The term CWS refers to crop, weed, and soil. The term YEAR refers to
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Table 3.2: Key statistics of the UGV crop-weed datasets.

Dataset Images [#] Pixels [ %] Objects [#]
including soil excluding soil

(ωc, ωw) (ωc, ωw) (ωc, ωw)

BONN-CW-16 12,429 1.3 0.3 80 20 36,103 68,190
BONN-CW-17 1,854 1.1 0.8 57 43 2,695 4,272
STUTT-CW-15 3,462 1.5 0.6 69 31 6,654 20,439
ANCONA-CW-18 1,214 0.2 0.6 32 68 641 4,880
ZURICH-CW-16 2,578 0.1 0.5 21 79 5,257 36,501

the year in which we recorded the data. In the remainder of this section, we present
our datasets BONN-CW-16, BONN-CW-17, STUTT-CW-15, ANCONA-CW-18, and
ZURICH-CW-16. Figure 3.7 depicts an example RGB and NIR image pair and its
corresponding ground truth for each of the datasets.

For the entire UGV-based data acquisition, the camera field of view was shaded to
be as independent as possible from the natural light source. The artificial light setup
inside the shaded area, however, changes for the different versions of the BoniRob.
In the initial version of the BoniRob V2, the artificial lighting is provided by a series
of halogen bulbs, which resulted in a “spotty” illumination of the scene. In contrast,
for the BoniRob V3 versions, a LED-tube based system consisting of diodes in the
red, green, blue, and infra-red spectrum was used, which provided a more uniform
illumination. We collected the STUTT-CW-15 dataset with the BoniRob V2 and the
other dataset with BoniRob V3.

BONN-CW-16: This dataset represents our main source of training data for plant
classification systems in this thesis and is published in our dataset paper [20]. In spring
2016, we started to conduct a two-month data acquisition campaign at Campus Klein
Altendorf near Bonn in Germany. We collected data on a sugar beet field during a crop
season, covering the various growth stages of the plants, see Figure 3.9. On average,
we acquired data on two to three days a week, leading to 30 days of recordings in total.
Figure 3.8 depicts the trajectories of the GPS sensor of the BoniRob. The different
colors of the tracks refer to different dates of acquisition. We used the BoniRob V3
platform that is depicted in Figure 3.2 (middle). On a typical day’s recording, the robot
covers between four to eight crop rows, each measuring 400m in length. We intended
to capture the key variations of the field during the time relevant for weed control and
crop management. Thus, the data collection process was phased over-time to cover the
different growth stages of the sugar beet crop starting at germination. The dataset also
captures different weather and soil conditions ranging from sunny and dry to overcast
and wet. In comparison to the other crop-weed datasets in this section, it is the largest
one. We manually labeled around 12,500 RGB and NIR image pairs. This dataset
serves a challenging classification task, as classifiers need to consider a large variety
of growth stages, several weed types, and different soil conditions caused by changing
weather conditions during the data acquisition throughout the entire season.
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RGB NIR Ground truth
BONN-CW-16

BONN-CW-17

STUTT-CW-15

ANCONA-CW-18

ZURICH-CW-16

Figure 3.7: Example RGB and NIR images and corresponding pixel-wise ground truth informa-
tion for the plant classification considering the classes crop ωc (green), weed ωw (red), and soil
background ωs (black). The datasets differ from each other in terms of environmental changes,
including varying weed pressure, various weed types, different growth stages of crop plants and
weeds, and illumination conditions. We show further examples in Chapter 6.
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Figure 3.8: Paths estimated by the GPS sensor of the entire data acquisition campaign at the
Campus Klein Altendorf. Different colors refer to recordings of different days. Best viewed in
color.

BONN-CW-17: In autumn 2017, we recorded this dataset as well at the Campus
Klein Altendorf. In contrast to the BONN-CW-16 dataset, we used the BoniRob V3
platform that is depicted in Figure 3.2 (right). The dataset contains around 1850
labeled RGB and NIR image pairs containing crops in a 2-4 leaves stage and big crops
in a 6-12 leaves stage. The size of the sugar beets ranges from 0.5 cm²-20 cm². A
similar variation is also present in the size distribution of weeds, i.e., 0.5 cm²-15 cm².
We collected the data by driving over two distinct areas in the field. In both areas, the
plants were sown at different points in time.

STUTT-CW-15: In spring 2015, we recorded this dataset in cooperation with
BOSCH DeepField Robotics near Stuttgart, Germany. It contains around 3,500 labeled
RGB and NIR image pairs. We used the BoniRob V2 depicted in Figure 3.2 (left) to
acquire data on three days. On two days, we recorded data in the same area of the field
with a temporal difference of a week. We performed the third recording a few weeks
later than the first two recordings, but on a distinct area in the same field. Thus, the soil
conditions in this dataset are mostly comparable, but the dataset contains a substantial
amount of differently sized crop plants and weeds both ranging from 1 cm² to 25 cm².
The artificial illumination conditions induce a large difference to the other datasets.
We use a series of halogen bulbs, which result in a “spotty” illumination of the scene,
whereas in the other datasets, we use LED-tubes, providing more uniform illumination.
Furthermore, this dataset contains a substantial amount of weeds that overlap with the
crop plants. Thus, the dataset represents challenging conditions for plant classification
systems. In our experiment in Section 6.3.1.2, we split a subset STUTT-CW-15-SUB
from this dataset consisting of 1,718 images that mostly represent these conditions, see
also Figure 3.10.
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Figure 3.9: Sugar beets and weeds of the BONN-CW-16 dataset captured with the JAI AD-
130GE multi-spectral camera. The first and third rows show RGB images. The rows below
show the corresponding NIR images. The image data in the BONN-CW-16 dataset contains
sugar beet data from its emergence (first/second row) up to the growth stage at which machines
are no longer used for weed control (third/fourth row).

RGB NIR GT

Figure 3.10: Example RGB+NIR images from the STUTT-CW-15 and STUTT-CW-15-
SUB dataset, corresponding ground truth (GT) information with sugar beet ωc (green),
weed ωw (red), and soil background ωs (black).
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Figure 3.11: BoniRob operating at fields from the Field Phenotyping Platform at the Eschikon
Field Station of ETH Zurich [64].

ANCONA-CW-18: In spring 2018, we recorded this dataset near Ancona, Italy.
We used the BoniRob V3 platform that is depicted in Figure 3.2 (right). The dataset
contains around 1,200 labeled RGB and NIR image pairs containing both small crops
in a 2-4 leaves stage and big crops in a 6-12 leaves stage. As for the BONN-CW-17
dataset, we collected the data by driving over two distinct areas in the field. In both
areas, the plants were sown at different points in time. This dataset holds a substantial
amount of weeds. Almost 70% of the vegetation pixels belong to the weed class. The
datasets contain different weed species of different sizes ranging from 0.1 cm²-15 cm².
It contains both dicotyl as well as grass weeds.

ZURICH-CW-16: In autumn 2016, we recorded this dataset at the Field Pheno-
typing Platform (FIP [64], see Figure 3.11) at the Eschikon Field Station of Eidgenös-
sische Technische Hochschule Zurich, Switzerland. We used the BoniRob V3 platform.
We collected the images on three different dates once a week. As the temperatures in
autumn in Zurich were comparably cold compared to the temperatures that are nec-
essary for the normal growth of the plants, throughout all measurements, the plants
are mostly in a typical growth stage as right after emergence, i.e., two leaves unrolled
and more leaves not viable. Thus, ZURICH-CW-16 is the most challenging dataset as
it contains mostly small crop plants and weeds right after their emergence phase in
the field. Around 90% of the weeds and 66% of the crop plants have a size between
0.1 cm²-0.8 cm² and thus are only represented by a few pixels. Furthermore, crop plants
and weeds have a similar appearance at this growth stage.

Cross-Dataset Domain Shift

For our crop-weed datasets, we further analyze how different the respective datasets are
to each other concerning the visual appearance of the images. Through the thesis, we
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Figure 3.12: Domain shifts between the BONN-CW-16 dataset and all other crop-weed datasets.

call this difference the domain shift between datasets. The domain shift between two
datasets acquired in different field environments exists due to different soil conditions,
growth stages of the plants and weeds, different weeds types, but also due to different
illumination setups for the camera system.

The goal in this section is to quantify the domain shift that the classifiers have to
overcome when being trained on a single dataset, i.e., a particular field environment,
and then being deployed in another field. Understanding the domain shift helps to
better understand the classifiers’ performance, especially in terms of their generalization
capabilities to new field environments. The higher the domain shift between training
and a test dataset is, the better a classifier has to generalize to achieve a particular
performance.

We define a set of dataset-specific properties on pixel- and object-level. Pixel-level
properties describe the class-wise distribution of the RGB and NIR intensities as well
as the probability of occurrence of individual classes in the data. The object-level
properties describe the probability of class-wise objects, i.e., connected components in
the label space and the distribution of the size of objects. Note that these properties
are based on the ground truth information. Thus, they cannot be considered through
an unsupervised preprocessing procedure.

First, we preprocess all images using our proposed preprocessing procedure in Sec-
tion 4.2. The preprocessing mainly performs a color correction and a contrast enhance-
ment of the images. On pixel-level, we compute the respective means and standard
deviations for the red, green, blue, and nir channel for the crop, weed, and soil class.
Furthermore, we compute the ratio of the crop, weed, and soil pixels. The latter, we
report in Table 3.2. Through this, we obtain 27 features describing the domain of a
dataset on pixel-level in a class-wise manner. At the object-level, we compute the mean
and standard deviation of the sizes of the class-wise objects and the relative frequency
of the class-wise occurrence. Thus, we obtain 6 features describing the domain of a
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dataset at the object-level.
To quantify the domain shift between two datasets, we compute the Euclidean dis-

tance between the respective features. Before we compute the Euclidean distances, we
normalize each feature to be in the range of [0, 1] concerning its minimum and maximum
value across all datasets. Figure 3.12 illustrates the resulting domain shifts between the
BONN-CW-16 dataset and all other datasets in a two-dimensional coordinate system.
The x-axis refers to the object-level properties, and the y-axis refers to the pixel-level
properties. Note, we directly illustrate in Figure 3.12 the domain shift of each dataset
concerning the BONN-CW-16 dataset. Therefore, the BONN-CW-16 dataset is at lo-
cation (0, 0), as it is equal to itself. We choose this illustration, as we perform most
of the crop-weed classification experiments in our experimental evaluation by training
our classifiers on the BONN-CW-16 dataset and deploying them on the other dataset.

We see that the ZURICH-CW-16 dataset has the most considerable domain shift
for both pixel-level and object-level. Figure 3.7 illustrates the difference in color but
also in terms of plant size. The STUTT-CW-15 and the ANCONA-CW-18 datasets
are similar in terms of object-level but have a lager domain shift at the pixel-level. The
BONN-CW-17 dataset is most similar to the BONN-CW-16 dataset.

3.2.2 UGV Crop-Dicot-Grass Datasets for Plant
Classification and Stem Detection

Next, we describe our UGV-based crop-dicot-grass (CDGS) datasets for plant clas-
sification and stem detection. In order to evaluate the pixel-wise classification and
the plant stem detection performance as well as the generalization capabilities of the
classification system to unseen fields, we gathered data from different fields located in
different cities in different countries such as (1) Bonn, Germany, (2) Ancona, Italy,
(3), Stuttgart, Germany, and (4) Zurich, Switzerland. Our notation for referring to the
respective datasets is the same as for the crop-weed datasets presented in the previous
section. Note that the BONN-CDGS-16, ANCONA-CDGS-18, and STUTT-CDGS-
15 dataset are from the same field as in the case of the crop-weed datasets, whereas
the ZURICH-CDGS-17 dataset is from another field than the Zurich dataset from the
previous section.

All datasets contain sugar beet plants (crop) and dicotyl weeds. BONN-CDGS-
16 and ANCONA-CDGS-18 contain a substantial amount of grass weeds. No grass
weeds are present in the STUTT-CDGS-15 dataset, and only a minimal number of
grasses are present in the ZURICH-CDGS-17 dataset. In addition to the pixel-wise
labels for the plant classification task, we also label the stem locations, i.e., a particular
pixel location for the crop plants and dicotyl weeds. The datasets represent challenging
conditions for a vision-based classification system, as they contain different dicotyl weed
and grass weed types with varying sizes and different soil conditions. The image data
differs in color, brightness, and contrast due to changing light setups of the field robots.
Figure 3.13 shows examples from each dataset for the crop-dicot-grass classification and
stem detection. Table 3.3 summarizes the key statistics for each dataset.

49



3.2. Datasets

RGB NIR Ground truth Stem regions
BONN-CDGS-16

STUTT-CDGS-15

ANCONA-CDGS-18

ZURICH-CDGS-17

Figure 3.13: Example RGB and NIR images and corresponding pixel-wise ground truth in-
formation (i) for the pixel-wise classification of sugar beet ωc (green), dicotyl weed ωw (red),
grass weed ωw (blue), and soil background ωs (black) and (ii) for the stem detection task. The
datasets differ from each other in terms of environmental changes, including varying weed pres-
sure, various weed types, different growth stages of crop plants and weeds, and illumination
conditions. We show further examples within our experimental Chapter 6.

Table 3.3: Key statistics of the UGV crop-dicot-grass datasets.

Dataset Images [#] Pixels [ %] Objects [#] Stems [#]
excluding soil
(ωc, ωd, ωg) (ωc, ωd, ωg) (ωc, ωd)

BONN-CDGS-16 2,291 69 19 11 4158 28,739 7,261 3,083 19,911
STUTT-CDGS-15 2,086 71 28 1 3,126 4,776 53 2,476 4,218
ANCONA-CDGS-18 284 67 13 21 797 914 213 542 1,019
ZURICH-CDGS-17 62 55 44 2 56 1,039 27 41 1,130
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BONN-CDGS-16: With almost 2,300 labeled RGB and NIR image pairs, it con-
tains the most samples of our crop-dicot-grass datasets and holds a substantial number
of plants from all the considered classes, i.e., crop, dicotyl weeds, and grass weeds.
The images from the BONN-CDGS-16 dataset are a subset of our published dataset
paper [20]. We selected those parts of the BONN-CW-16 dataset that contain a sub-
stantial amount of grass weeds in order to have a sufficient amount of training examples
for this class.

STUTT-CDGS-15: This dataset consists of images of the STUTT-CW-15 dataset,
which were recorded on one of the measurement days. The dataset does not contain
grasses, but we labeled almost 2,100 RGB and NIR image pairs of weed stems and
dicotyl weeds to have another dataset for stem detection from another field for the eval-
uation of generalization properties to new and changing field properties. The dataset
holds around 2,500 crop stems and 4,200 dicotyl weed stems.

ANCONA-CDGS-18: This dataset consists of 284 labeled RGB and NIR image
pairs from the ANCONA-CW-18 dataset. With 67% crop pixels, 13% weed pixels, and
21% grass pixels, proportional to the total vegetation pixels, the ANCONA-CDGS-18
represents a balanced dataset concerning the distribution of the individual classes. With
284 images, it is way smaller compared to BONN-CDGS-16 and STUTT-CDGS-15. On
the other hand, it serves a substantial amount of grass weeds and is appropriate for
analyzing the classification performance of this class.

ZURICH-CDGS-17: In autumn 2017, we recorded this dataset at the FIP in
Eschikon near Zurich on the same field as for the ZURICH-CW-16 data. However,
after a difference of almost one year, it contains different soil conditions. Furthermore,
the crop plants, dicotyl weeds, and grass weeds were recorded in a different growth stage
concerning the ZURICH-CW-16 data. Thus, we see no relation between the ZURICH-
CDGS-17 and ZURICH-CW-16 dataset, except that the considered crop is sugar beet.
We used the BoniRob V3 platform that is depicted in Figure 3.2 (right). We collected
the images during a single run over the field. The dataset consists of 68 labeled RGB
and NIR image pairs. The crops are within a 4-8-leaf growth stage. For the data
recording, we selected a region in the field which was not treated with chemicals for
weed control. Thus, the data contains substantial weed pressure, see Figure 3.13. In
numbers, we labeled 28 dicotyl weeds for one sugar beet leading to 41 sugar beets and
1,130 dicotyl weed stems.

3.2.3 UAV Crop-Weed Datasets for Plant Classification
Next, we describe our UAV-based crop-weed datasets for plant classification in aerial
imagery. In order to evaluate the pixel-wise plant classification performance as well as
the generalization capabilities of the classification systems to new and changing field
conditions, we gathered data from two different fields located in Bonn, Germany, and
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Table 3.4: Key statistics of the UAV crop-weed datasets.

Dataset Images [#] Pixels [ %] Objects [#]
including soil excluding soil

(ωc, ωw) (ωc, ωw) (ωc, ωw)

BONN-UAV-17-1MM 94 9 3 76 24 5.525 17,914
ZURICH-UAV-17-1MM 88 9 4 67 33 3,660 18,263
BONN-UAV-17-5MM 20 16 5 72 28 2,123 3,850

Zurich, Switzerland. Our notation for referring to the respective datasets is similar as
for UGV-based the crop-weed datasets. The name of a dataset consists of the city, the
term UAV, and the year of its acquisition.

Throughout this section, we propose datasets for the UAV-based plant classification
considering the classes crop ωc, weed ωw, and soil background ωs. First, we present
the BONN-UAV-17-1MM and ZURICH-UAV-17-1MM high-resolution datasets with
a ground sampling distance of about 1mm per pixel. Table 3.4 summarizes the key
statistics for these datasets. Both datasets consist of around 90 pixel-wise annotated
images containing sugar beets and weeds observed in different growth stages and under
different weather conditions. Furthermore, we introduce the BONN-UAV-M-16 dataset,
which we describe in Section 3.2.3. The dataset consists of 20 fully annotated images
containing sugar beets and several weeds species that we manually labeled considering
sugar beets, saltbush, chamomile, other weeds, and soil. Third, we describe our BONN-
UAV-17-5MM dataset. This dataset is used to evaluate the plant classification at a
comparatively low soil resolution of about 5mm. As the classifiers have to differentiate
between crop plants and weeds based on less pixel information, the lower resolution
represents more challenging conditions for the classifiers. However, the lower resolution
leads to a large spatial throughput of a single flight as the observed area increases to
the square of the ground sampling distance.

BONN-UAV-17-1MM: In autumn 2017, we recorded this dataset near Bonn in
Germany at the Campus Klein Altendorf. The images of this record are taken on the
same field as the UGV dataset BONN-CW-17. The dataset consists of 94 RGB aerial
images, which we collected in five flights within three weeks. We used the INSPIRE
II for the acquisition and obtained images with a resolution of 5,280×3,956 pixels.
The flight took place at an altitude of 15m. With the given camera setup, which we
describe in Section 3.1.2, this leads to a ground resolution of about 1mm per pixel.
The field has several areas where the plants were sown at different times. Therefore,
the dataset includes sugar beets distributed across all growth stages. Besides, we made
sure that weeds could also develop. The weather was different during data acquisition.
On some days it was rainy and on some days sunny. Figure 3.14 shows two exemplary
RGB images with the respective ground truth information. Already in the early growth
phase, we see that there are numerous weeds in the field. At a later stage, the high weed
pressure creates challenging conditions for the classifiers. The weeds spread unhindered
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RGB Ground truth
BONN-UAV-17-1MM

ZURICH-UAV-17-1MM

Figure 3.14: Example UAV images and corresponding pixel-wise ground truth information
for the plant classification considering the classes crop ωc (green), weed ωw (red), and soil
background ωs (black).
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and thus overlap with the plants between and within the row. Also, when looking at
the images, we can further see that the crops grow in rows and are of similar distance
between and within the row.

ZURICH-UAV-17-1MM: In autumn 2017, we recorded this dataset at the FIP
in Eschikon near Zurich, Switzerland. The images of this record are taken on the same
field as the UGV dataset ZURICH-CDGS-17. We recorded this dataset in cooperation
with the Institute of Agricultural Sciences of the Eidgenössische Technische Hochschule
in Zurich. The dataset consists of 84 labeled RGB aerial images, which we have taken
over four weeks. For the image acquisition, we used the Inspire II with the same flight
and camera setup as for the BONN-UAV-17-1MM dataset. Also, for this dataset, we did
not carry out any weed control so that the weeds could develop unhindered in the field.
The weather was very sunny during the whole time of data acquisition. As a result,
the exposure conditions differ from the BONN-UAV-17-1MM dataset. In contrast to
the BONN-UAV-17-1MM dataset, soil conditions were not particularly good for plant
development, and animals ate some of the plants shortly after emergence. Figure 3.14
shows two sample images for the ZURICH-UAV-17-1MM dataset. We see that there
is a high weed pressure in both the early and late growth stages of sugar beet. We
also see that some of the sugar beets are missing in the data. This means that the row
information is not as stable as for the BONN-UAV-17-1MM dataset.

BONN-UAV-M-16: In summer 2016, we recorded this dataset near Bonn in Ger-
many at the Campus Klein Altendorf. The data is captured in a border region of a
sugar beet field where the plants are not sowed in crop rows. The dataset provides im-
ages obtained by an unmodified consumer DJI Phantom 4 UAV. The obtained ground
resolution of 0.8 mm

px is comparably high. The images were captured with a resolution
of 4, 000 × 3, 000pixels at a flight altitude of 3m-4m. Due to the resolution, we can
visually identify typical weeds in sugar beet fields, i.e., saltbush as a common problem
weed in terms of mass, chamomile, and other weeds. We fully labeled 20 images of this
dataset and show two examples in Figure 3.15. The dataset consists of 20 fully anno-
tated images containing sugar beets and several weeds species that we manually labeled
considering sugar beets, saltbush, chamomile, other weeds, and soil. We partially used
this dataset in our publication [88].

BONN-UAV-17-5MM: In autumn 2017, we recorded this dataset near Bonn in
Germany at the Campus Klein Altendorf. The images of this record are taken on the
same field as the BONN-UAV-17-1MM dataset. We used the Inspire II drone for the
acquisition.

There are two major differences to the high-resolution BONN-UAV-17-1MM dataset.
First, the ground resolution is five times lower at 5mm per pixel. Second, this dataset
does not consist of several single images, but a georeferenced orthomosaic. The ortho-
mosaic, sometimes also called true orthophoto, is a geometrically corrected orthorec-
tified image with a uniform scale and ground sampling distance. Thus, it is corrected
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RGB Ground truth
BONN-UAV-17-1MM

Figure 3.15: Example UAV images of the BONN-UAV-M-16 dataset and corresponding pixel-
wise ground truth information for the plant classification considering the classes crop in green,
saltbush in blue, chamomile in magenta, other weed in red, and soil background.

due to perspective distortions by using a digital surface model. The scale of the or-
thomosaic is preserved, and therefore the orthomosaic can be used for measurements.
We compute the orthomosaic by feeding the images from the flight into Metashape,
a photogrammetric software to build 3D surfaces, orthomosaics, and digital elevation
models. In other words, the orthomosaic is an image representation of an area that is
created from several images that are stitched together and geometrically corrected.

We acquired 250 images by flying the Inspire II drone at around 75m altitude over
the entire field. We planned a regular grid as a flight route with a photogrammetric
flight planning tool. We set the desired image overlap to 60% along and perpendicular
to the flight direction. Figure 3.16 illustrates the entire north-oriented orthomosaic of
the BONN-UAV-17-5MM dataset. The red bounding box defines the area in which we
conduct the crop-weed classification experiments. The zoomed views show sugar beet
plants and weeds and reveal that the sugar beet plants have different sizes and colors
as well as weeds growing between an in the crop. For the evaluation of this data, we
extracted 20 patches (blue boxes) from the orthomosaic for which we provide pixel-wise
labeling into the classes crop, weed, and soil.

3.2.4 UAV Crop-Weed Datasets for Plant Counting
Under Harsh Conditions

Finally, we describe our UAV-based crop-weed datasets for plant counting in harsh field
conditions. The goal of this dataset is to evaluate our approaches to automatically
provide exact knowledge about the number of emerged plants, as this information
reflects an essential trait for both farmers and breeders. Harsh conditions in this context
mean that the classifier has to deal with mutually overlapping crop plants and high weed
pressure. Moreover, single plants can be fragmented by straw or weeds.
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Figure 3.16: Overview of the BONN-UAV-17-5MM dataset. Top: North-oriented orthomosaic
of the field. The red bounding box illustrates the area of interest. The blue boxes refer to
patches for which we provide pixel-wise labeling into the classes crop, weed, and soil. Bottom
left: medium zoomed view showing sugar beet plants and weeds. Bottom right: strongly
zoomed view revealing sugar beet plants that have different size and color as well as weeds
growing between and in the crop.
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Figure 3.17: Overview of the GOETT-UAV-19 dataset. Left: orthomosaic of the trial field
consisting of 44 micro-plots containing sugar beet and weeds. Right: illustration of micro-plots.
The colors refer to the average size of the sugar beets. Green refers to small and red refers to
big plants regarding the average growth stage.
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20 DAS 34 DAS 52 DAS
RGB Ground truth RGB Ground truth RGB Ground truth

Figure 3.18: Exemplary micro-plots with corresponding ground truth for crop-weed classifica-
tion and stem detection. The classifier has to deal with mutually overlapping crop plants and
high weed pressure. Moreover, single plants can be fragmented through straw or weeds.

GOETT-UAV-19: In autumn 2019, we acquired this dataset in collaboration with
the Institut für Zuckerrübenforschung and ARGE NORD who supported the data col-
lection and field management. The field is located near Göttingen in Germany. As for
the BONN-UAV-17-5MM dataset, which we described in the previous section, we do
not rely on single images but on the resulting orthomosaic. We used the Phantom 4
RTK for data acquisition and flew at an altitude of around 9m resulting in a ground
sampling distance of about 1.5mm. The plants in this dataset are sown in a specific
pattern. The field is divided into 40 micro-plots for which we want to know the exact
number of plants inside. Figure 3.17 depicts the field and the plot structure as well as
a detailed view of one of the plots.

This dataset consists of three measurements of a field with 40 micro-plots each, i.e.,
120 micro-plots in total. Each plot has a size of 4,066 pixels × 985 pixels, and has a
spatial extent of around 6m×1.5m. We collected the first measurement 20 days after
seeding (DAS-20) the plants, shortly after the plants had emerged. Subsequently, two
further measurements were carried out ten days after the previous measurement, i.e.,
DAS-34 and DAS-52. Figure 3.18 depicts an exemplary micro-plot for each measure-
ment day and illustrates the aforementioned challenging conditions for the vision-based
plant counting task. Already at the early growth stage, the sugar beets overlap each
other along the crop row. Also, individual plants appear as separate components in the
image-space because they are covered and separated by straw or larger grown weeds.
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We perform ground-truthing by manually counting the plants for all 120 plots in
the images. We acquire the actual number of plants per plot for each of the three
measurement dates separately. It can happen that over time, new plants appear in a
plot due to post-emerge or plants disappear due to death or removal by animals. On
average, we counted 203 plants per micro-plot with a standard deviation of around
18 plants considering all micro-plots across the three measurement days. Figure 3.18
illustrates a zoomed view of an example plot per measurement day. For the classifier
training, we fully labeled five plots per measurement day. We pixel-wisely labeled the
crop plants and weeds as well as the stem locations for the crop plants.
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Chapter 4

Plant Classification using
Random Forests

The main objective of this thesis is the development of innovative vision-based
plant classification systems for agricultural robots allowing the robots to
identify the value crop and distinguish it from weeds. Our key developments
focus on plant classification systems that enable UGVs for online in-field

interventions and enable UAVs to be used for accurate plant monitoring applications.
In this chapter, we introduce our first series of plant classification systems enabling

UGVs and UAVs to perceive crop plants and weeds in agricultural field environments.
All classification systems we present in this chapter use random forests [15] as their
core machine-learning model and are based on handcrafted features. The classification
systems operate with RGB images, i.e., IRGB, as well as with 4-channel images, which
consist of IRGB plus an additional near-infrared measurement per pixel, i.e., INIR. The
goal is to map the image input into a label map that encodes a class label for every
pixel.

We illustrate the key processing steps of the random forest-based approaches in Fig-
ure 4.1. First, we preprocess the IRGB+INIR images and separate the vegetation from
the remaining parts of the image, i.e., the image background representing mostly soil.

RGB+NIR Input Vegetation Detection Feature Extraction        Classification

IRGB INIR INDVI IVMASK Iω

Figure 4.1: Pipeline for the random forest-based classification. From left to right: IRGB
and INIR input images, computed INDVI image according to Equation (4.2), computed vege-
tation mask according to Equation (4.1), and the classification output containing sugar beets
(green) and weeds (red).
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Then, we compute a series of handcrafted features, describing solely the image regions
that correspond to vegetation. Third, we use the extracted features to train and deploy
a random forest to perform the plant classification. We consider two variants of features
for the classification. The first variant computes local features for keypoints and classi-
fies the area around each keypoint. The second variant is an object- or segment-based
classification that makes the decision for all pixels in a vegetation segment.

A closer look at this pipeline reveals that there are two classification problems con-
nected in series. The first problem is a binary classification of vegetation and soil.
The second problem is a classification of identified vegetation from the first step into
crop plants and weeds. This two-step procedure has advantages and disadvantages.
The advantage is that in most cases, the vegetation can be separated with compara-
tively simple threshold operations based on the color information exploiting vegetation
indexes.

This simplifies the subsequent plant classification problem, and at the same time,
this drastically reduces the number of pixels to be analyzed drastically, since most of
the pixel positions in the image data belong to the soil, compare Section 3.2. The dis-
advantage of this two-step approach is that the random forest-based plant classification
step can no longer correct errors in vegetation classification.

4.1 Different Random Forest-Based
Classification Systems

Throughout this chapter, we propose four different approaches for the random forest-
based plant classification. We first introduce a uniform notation concerning the ap-
proaches presented below. We refer to a random forest-based approach with RF-*,
where RF stands for the random forest. The postfix is a placeholder for abbreviation
referring to the respective variant. All approaches follow the main pipeline shown in
Figure 4.1 and use handcrafted features, mainly visual information. We will also in-
troduce modifications of these approaches that exploit additional geometric features
about the local arrangement of plants in the field to distinguish plants and weeds.

We start with two approaches that exploit two different ways to address the feature
extraction for the classification problem. The first approach extracts local features for
keypoints and classifies the area around each keypoint. We refer to this approach as
RF-KP. The second variant is an object- or segment-based classification that chooses
for all pixels in a vegetation segment. We refer to this approach as RF-OBJ.

Please note that we do not claim a contribution to the RF-KP approach in this the-
sis, as we developed this approach within the context of the master thesis by Lottes [81].
However, we propose other approaches that build upon RF-KP. Thus, we also explain
RF-KP.

Both methods RF-KP and RF-OBJ have their advantages and disadvantages. How-
ever, We find a way to link these two approaches exploiting both schemes for feature
extraction. We propose the RF-CAS approach, which is our first contribution in this
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thesis. RF-CAS combines RF-OBJ and RF-KP in a cascade and exploits their respec-
tive advantage and even compensates for their respective disadvantages. In Section 4.3,
we present our purely visual plant classification system RF-KP, RF-OBJ, and RF-CAS.

The visual features used in these approaches rely on the image intensities encoding
color and shape information of the plants. Besides, we also exploit additional geometric
information about the local arrangement of the plants in the field. Specifically, we aim
at bridging the performance gap of purely visual crop-weed classifiers regarding their
generalization capabilities to new and changing field conditions, e.g., in situations when
the visual appearance of the plants, weeds, and soil in the field has changed between
the training of the classifier and its deployment, see also Section 1.2.1. Therefore, we
introduce a probabilistic model representing the spatial arrangement of the crop plants
and weeds in the field using coordinate differences between plants. Then, we employ
a Bayesian approach to perform the crop-weed classification solely based on geometric
features. This leads us to our next proposed approach that combines the visual random
forest with the geometric Bayesian classifier in a semi-supervised way and is called RF-
GC. This approach reflects a further key contribution in this thesis and is presented in
Section 4.4.

Finally, we adopt our RF-CAS approach to be used with UAV data, which is our
next relevant contribution. We propose our next contribution, i.e., RF-UAV, which
is based on our RF-CAS approach but considers further geometric features exploiting
the field geometry in terms of crop row information and spatial relationships among
multiple individual plants. We describe our UAV-based approach in Section 4.5.

Within our experimental Chapter 6, we evaluate the different approaches and their
respective properties as well as our key design decisions of the classification models.
We presented the RF-KP approach in [86], RF-OBJ and RF-CAS in [87], the RF-GC
approach in [89], and the RF-UAV approach in [88]. We implement all proposed vari-
ants of the random forest-based plant classification systems as modules for the Robot
Operating System ROS [121] and evaluated them on different real field robots, see
Chapter 3. We develop computationally demanding tasks such as image preprocessing
that we explain in Section 4.2 and the extraction of handcrafted features on a graphics
processing unit (GPU) using the CUDA [24] library. Hence, we achieve a sufficient run-
time for the processing of the classification results that are required for online in-field
operations such as selective spraying or mechanical weed control.

4.2 Preprocessing of the Input
The preprocessing of the image data is the first step of the plant classification pipeline.
The procedure for preprocessing of IRGB and INIR images described in this section is
the same for all approaches presented in this chapter as well as Chapter 5.

In order for classifiers to deliver high performance on different data, it is recom-
mended to preprocess the input data. In preprocessing steps, we apply transformations
to the data to reduce its complexity and to standardize it to some degree, thereby
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BONN-CW-16 BONN-CW-17 STUTT-CW-15 ANCONA-CW-18 ZURICH-CW-16

Images processed by our preprocessing pipeline.

Images processed by standardization with means and standard deviations learned on BONN-CW-16.

Figure 4.2: Top row: IRGB images from different datasets containing different crop growth
stages, weed types, soil types, and acquired under different illumination conditions. Middle
row: Preprocessed IRGB images by our approach. Bottom row: The standardization step is
performed with the channel-wise means and standard deviations that are learned on the entire
BONN-CW-16 dataset. We qualitatively notice that the data distributions across different
datasets are more similar by using our proposed preprocessing.

increasing the chance that the machine-learning algorithm can provide better perfor-
mance than without preprocessing the data. Technically speaking, preprocessing can
help to improve the generalization capabilities of a classification system by aligning the
training and test data distribution.

In this thesis, we are dealing with images, which are recorded by the same camera
system, but under different lighting conditions and in different fields. These factors
may lead to the fact that the colors in the images can be distributed differently across
different datasets. To illustrate this effect, Figure 4.2 shows some example IRGB images
from different UGV data sets. The primary objective is to train classification models
that perform well under similar, but also under changing field conditions. Thus, the
goal of our preprocessing pipeline is to minimize the diversity in color across different
datasets.

We perform the preprocessing independently for each image and separately on all
channels, i.e., red, green, blue, and near-infrared. For each channel, we first remove
noise by performing a blurring operation using a [5 × 5] Gaussian kernel given by the
standard normal distribution, i.e., µ = 0 and σ2 = 1. Second, we standardize each
image channel by its mean and standard deviation, respectively. Third, we perform a
contrast stretch of the intensities to the range [−0.5, 0.5], which implies a zero-centering
of the data. Figure 4.2 illustrates the effect of our preprocessing for exemplary images
captured with different sensor setups.

We preprocess each image independently and standardize its respective channel
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Figure 4.3: Classification pipeline for the RF-KP and RF-OBJ approach. First, we preprocess
the input and classify the vegetation. Then, we extract keypoint-based or object-based features
describing the vegetation and classify the vegetative image regions using random forests. For
the keypoint-based approach RF-KP, we further utilize using a Markov random field to spatially
smooth the predicted labels.

means and standard deviations. Thus, there is no learning involved in our method.
Figure 4.2 qualitatively illustrates the results achieved with our preprocessing and com-
pares them to the results achieved with preprocessing using the channel-wise means and
standard deviations we learned on the entire BONN-CW-16 data set. Looking at the
images reveals that our method achieves a better alignment of intensities across the
different data sets. In the case of the other method, the effect of matching to BONN-
CW-16 is barely visible. Also, quantitatively, our results in our experimental evaluation
in Section 6.6.3 show that our method for preprocessing achieves a substantial improve-
ment for the generalization capabilities to new or changing conditions.

4.3 Vision-Based Plant Classification using
Random Forests

In this section, we discuss the purely visual plant classification systems, i.e., RF-KP,
RF-OBJ, and RF-CAS. Figure 4.3 depicts the principal processing pipeline for the
RF-KP and RF-OBJ approach. The main goal of the visual plant classification sys-
tem is to provide a pixel-wise classification of the scene. The input to our classifiers
is IRGB+INIR images. The output of the classification system is a label map considering
the classes ωcws ∈ {ωc, ωw, ωs} for crop, weed, and soil.

Our overall pipeline works in five steps: First, we preprocess the images according
to Section 4.2. Second, we identify the vegetation by performing binary pixel-wise
classification of the input. This procedure leads to a vegetation mask IVMASK, see
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Figure 4.4 (bottom right) for an example. This step is highly effective, as it allows us
to compute the features on the subsequent processing steps only for the regions that
correspond to vegetation. Third, we compute a set of features for the image regions that
correspond to vegetation. Here, we follow two different approaches: (i) a keypoint-based
approach and (ii) an object-based approach. The keypoint-based approach computes
local features on a dense grid of keypoints and performs the classification for each
keypoint. This procedure is computationally demanding but allows us to handle the
situation in which two plants are close to each other or overlap. The object-based
approach performs one classification per segment (object) and thus is substantially
faster to compute but cannot handle overlapping plants well. Forth, we classify the
keypoints or objects employing random forests, which yields a probability distribution
representing the fact that the area under consideration corresponds to our crop or
to weed. We call the approach classifying the keypoints RF-KP and the approach
classifying segmented objects RF-OBJ. Finally, we improve the classification for RF-KP
through exploiting neighborhood information using a Markov random field. Thereby,
we spatially smooth the random forest’s labeling and reduce the number of wrongly
classified keypoint. In the Subsections 4.3.1-4.3.5, we provide a detailed description of
these steps. Finally, we discuss how to combine the keypoint-based and object-based
classification.

4.3.1 Vegetation Classification
The goal of vegetation detection is to eliminate the irrelevant background from the
image so that the subsequent classification task operates on regions that correspond
to vegetation. The INIR information is especially useful for separating the vegetation
from the soil and other backgrounds due to the high reflectivity of chlorophyll and thus
(healthy) plants in the INIR spectrum [127]. We compute a vegetation mask.

IVMASK(i, j) =

{
1, if I(i, j) ∈ vegetation
0, otherwise

, (4.1)

with the pixel location (i, j). To separate the vegetation, we exploit specific reflectance
of healthy vegetation using the normalized difference vegetation index (INDVI) accord-
ing to [127] using the INIR channel INIR and the red channel IR on a per-pixel basis:

INDVI(i, j) =
INIR(i, j) + IR(i, j)

INIR(i, j)− IR(i, j)
. (4.2)

Figure 4.4 (top right) shows an example of a INDVI image INDVI for sugar beet
plants and weeds. In the field, the reflectivity of chlorophyll typically leads to a bi-
modal intensity distribution in INDVI for healthy vegetation and allows us to perform
a threshold-based classification on the INDVI information for every pixel. Figure 4.4
(bottom left) depicts the INDVI intensity distribution for an example image. Next, we
perform a the threshold-based vegetation classification, i.e.,

I∗VMASK(i, j) =

{
1, if INDVI(i, j) ≥ t

0, otherwise
, (4.3)
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IRGB INIR INDVI

p(INDVI) I∗VMASK IVMASK

Figure 4.4: From left to right (Top): Raw input IRGB image, INIR image, and processed INDVI
image. From left to right (Bottom): Histogram of INDVI values and selected threshold t (red) for
classifying the vegetation according to Equation (4.3), masked INDVI after threshold operation
containing errors, final vegetation mask after optimization.

where 1 refers to vegetation and 0 refers to the background (mostly soil). Here, we use
the INDVI as vegetation index, but different representations are possible.

A threshold-based classification based on the INDVI may lead to small residual
errors. Examples for such small errors are visible on the top right area of the middle
image in Figure 4.4. These effects are often caused by lens errors, especially chromatic
aberration, resulting in slightly different mappings of the red and the near-infrared light
from the workspace to pixels on the chip. Most of the residual errors can be eliminated
through basic image processing techniques such as (i) requiring a minimum brightness
in INIR, (ii) using morphological opening and closing to fill gaps and to remove noise at
contours, and (iii) removing regions conatining a few pixels only. Figure 4.4 (bottom
right) depicts the final application of the vegetation mask IVMASK on the INDVI image.

The vegetation classification is explicitly tested in our experimental evaluation in
Section 6.4, since it plays an important role in the whole system for all approaches in
this chapter. We first investigate which vegetation index, e.g., the INDVI, is particularly
suitable for the separation of vegetation and soil. We anticipate the investigations at
this point. We use the INDVI index if we have access to IRGB+INIR images and the
Excess Green Index (IExG) given by

IExG = 2 IG − IR − IB, (4.4)

if we only have access to IRGB images, as is usually the case with UAVs. This decision
is made based on empirical evaluation. The NDVI and ExG show superior performance
for the vegetation classification under similar and changing field conditions.
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Figure 4.5: Left: Keypoints K (white) for classification at a 3mm distance on the object. Mid-
dle: Zoomed view depicting the neighborhood PK of a keypoint K (blue) representing the region
that is considered for the local feature computation for that keypoint. Right: Segmented vege-
tation. The segments define individual objects that are used for the object-based classification.
Here, we compute the features for each segment globally and perform a single classification per
segment and not per keypoint.

4.3.2 Keypoint-Based vs. Object-Based Classification
We propose two different ways to address the feature extraction for our classification
problem. First, we can compute features for each keypoint and perform the classifica-
tion for each keypoint individually. Second, we can perform an object-based approach.
Here, we define objects as segments of the vegetation pixels through connected compo-
nents and perform only one classification per object. See Figure 4.5 for an example.

Keypoint-Based approach Please note that we do not claim a contribution to the
RF-KP approach in this thesis, as we developed this approach with the context of
the master thesis by Lottes [81]. The keypoint-based approach computes features and
performs the classification for each keypoint individually. It has the advantage that it
can deal with plants that overlap but at the cost of being computationally expensive.
A typical setup in our experimental evaluation in Chapter 6 is that keypoints are
spaced 10 pixels by 10 pixels apart. To extract information about the class label of
each keypoint, we use a fixed-sized neighborhood to compute the features. In our
current implementation, the neighborhood PK of a keypoint K has a size of 40 pixels by
40 pixels. Figure 4.5 (left, middle) illustrates the arrangement of keypoints on an image
including the neighborhood for feature extraction. Details on the features are given in
Section 4.3.3. In the remainder of this thesis, we refer to this approach as RF-KP.

Object-Based Approach Alternatively, we perform an object-based approach. Each
object O is given through a connected component of the classified vegetation pixels in
the computed vegetation mask IVMASK. Thus, we can perform one classification per
object. Figure 4.5 (right) depicts examples of found objects. This approach has the
advantage that it is substantially faster than the keypoint-based approach, as fewer
samples describing the whole vegetation within an image need to be analyzed but suf-
fers from situations in which weed and value crop overlap. In the remainder of this
thesis, we refer to this approach as RF-OBJ.
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4.3.3 Feature Extraction
Both approaches share the concept of partitioning vegetation into parts that are clas-
sified separately and thus lead to the same feature extraction procedure, except that
the areas in which the features are computed differ. We extract a set of features V
for each approach, either for PK or for the whole object O. We categorize the features
into three groups, which are explained in the remainder of this section. Note that for
some features, we use the INDVI distribution as the basis for the features. Analogous
to the vegetation detection step, we use the IExG distribution instead of the INDVI if
only the IRGB information is available.

Statistical features Our set VSt of statistical features includes the following param-
eters for describing the distribution of the inputs. Here, we use: min, max, range,
mean, standard deviation, median, skewness, kurtosis, and entropy. These statistical
means are computed on different input sources, which are given by the different input
channels of our image data as well as gradient representations, and texture information.
The set of input sources is defined by

S := {Ix,∇Ix,∆Ix,LBP(Ix),LBP(∇Ix),LBP(∆Ix)}, (4.5)

where Ix are different channels of the image data, ∇Ix are its gradients, ∆Ix are the
Laplacians, and LBP are the locally binary pattern representations encoding texture
information. All these quantities are defined in more detail in the remainder of this
section. First, we convert our four raw input channels IR, IG, IB, and INIR into the
following six channels

Ix with x = {INDVI, IG, IB, IH, IS, IL}. (4.6)

Here, INDVI is the normalized difference vegetation index as defined in Equation (4.2),
while G and B are the green channels of our images. The subscripts H, S, and L refer
to the Hue-Saturation-Lightness (HSL) representation, which is a variant of the HSV
color space, which is frequently used for plant and leaf classification, e.g., [29, 70, 134].
The HSL(I1, I2, I3) color space represents the three input channels I1, I2, I3 as cylindric
coordinates and separates intensity from color information. The dimension L called
lightness is defined by

L =
max(I1, I2, I3)−min(I1, I2, I3)

2
. (4.7)

We use the HSL space instead of the HSV space (lightness IL instead of value) because
it is related to the average range of the input intensities and, therefore, more robust
concerning biased intensities. Throughout this work, we define the HSL channels as

IHSL = HSL(INDVI, IG, IB). (4.8)

For each input source Ix, we also consider its gradients ∇Ix and the Laplacian (second-
order gradients) ∆x. The magnitudes of ∇Ix and ∆Ix provide information about struc-
ture and homogeneous regions and are computed by:

∇Ix =

∣∣∣∣∂Ix
∂i

∣∣∣∣+ ∣∣∣∣∂Ix
∂j

∣∣∣∣ (4.9)
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Representations for the feature extraction based on INDVI as input source.

INDVI ∇INDVI ∆INDVI

LBP(INDVI) LBP(∇INDVI) LBP(∆INDVI)

Representations for the feature extraction based on Lightness as input source according to (Equation (4.7)).

IL ∇IL ∆IL

LBP(IL) LBP(∇IL) LBP(∆IL)

Figure 4.6: Different input sources S according to Equation (4.5) for the statistical feature
extraction. For the sake of brevity, we only visualize the representations for the INDVI and L
input source.

70



4. Plant Classification using Random Forests

1 1

1

1

0

0 0

0 41

16

32

8

64 128

27 3

5   6

  8

  4

  2   4

                LBP =  53  =  1 + 32 + 4 + 16          

(1) (2) (2)

  6

 C = 3.5  = (7 + 6 + 6 + 8) / 4 – (3 + 4 + 2 + 4) / 4

Figure 4.7: Example for the computation of a LBP number and the corresponding contrast
measure C for a pixel given its 8-connected neighborhood. (1) input, (2) threshold operation
by value of center pixel, and (3) binomial weights according to [105].

and
∆Ix =

∣∣∣∣∂2Ix
∂i2

+
∂2Ix
∂j2

∣∣∣∣ (4.10)

Finally, we take into account distributions of texture information and contrast. These
distributions are based on local binary patterns, according to [105]. The LBP operator
performs thresholding operations within a 8-connected neighborhood based on the value
of its center pixel and converts this pattern as a binary number. Figure 4.7 illustrates
the computation of an LBP number and the associated contrast measure C for a pixel.

The computation of our nine statistical features VSt on all input sources S leads to
324 statistical features per keypoint or object. We also use a combination of features,
which turned out to be useful for the crop-weeds classification problem. Specifically,
a ratio between the entropy of the first-order gradient of the INDVI image and its
Laplacian:

V17 =
V9(∇INDVI)

V9(∆INDVI)
(4.11)

A summary of the statistical features and input sources is given in Table 4.1.

Shape Features The next set of features describes different aspects of the plant’s
shape. As for the statistical features, we compute shape features for a local neighbor-
hood PK of a keypoint or for an object O. The shape features VSh only need to be
computed on the vegetation mask IVMASK, which is a binary image. We consider the
following features describing contours, relations to geometric primitives, and geometric
ratios:

• Rectangularity of the contour using its major a and minor b axes of the minimum
enclosing oriented ellipse.

V13 =
area
a b

, (4.12)

where area refers to the area covered by vegetation within the patch or the size
of the object.
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• Aspect ratio of the major a and minor b axes of the minimum enclosing oriented
ellipse of the contour:

V14 =
a

b
(4.13)

• Area change under smoothing, which describes how the area of vegetation changes
due to a smoothing with different-sized Gaussian kernels G and is given by the
ratio of the areas:

V15 =
area(GIVMASK(σ))

area(GIVMASK(2σ))
(4.14)

• Form factor F , which provides a measure of the shape of an object:

V16 =
4π area

perimeter2
, (4.15)

where perimeter is the perimeter of the area that is covered by the vegetation. We
additionally exploit the convexity, compactness, and solidity feature as described in
[50]. Table 4.1 gives a summary of all features used in our classification system and
described based on which inputs they are computed.

4.3.4 Random Forest Classification
For the classification, we apply a random forest [15] because it provides comparably
robust classification results. As an ensemble method, random forests reduce the risk of
overfitting to some degree and can implicitly estimate confidences for the class labels.
Regarding Equation (2.7), a pseudo probability p(ω | Φ(V ,Θ)) for a predicted class
label ω can be estimated by considering the outputs of the individual decision-tree
classifiers within a set of decision trees called the ”forest”. In addition to that, random
forests are capable of solving multi-class problems. Mainly, we are interested in distin-
guishing two classes, i.e., the “crop”, referred to as ωc, and the “weed” class ωw. For the
object-based approach, however, we introduce an additional class, “mixed” (ωm), for
segmented objects that contain both weeds and sugar beets, as the plants overlap. This
is only relevant for the object-based approach and not for the keypoint-based one. In
our implementation, we use all cores of our CPU by running the individual trees of the
forest in different threads. A detailed description of the mathematical model and the
training procedure of random forests is given in Section 2.1.2. We refer to approaches
using the random forest for the classification task with the RF prefix.

The three steps (i) vegetation detection, (ii) feature extraction, and (iii) random
forest classification, lead to labeled images such as the ones shown in Figure 4.8 and
provide results that are already sufficient for weed control applications, but still, contain
errors indicated by blue arrows. The keypoint-based approach falsely classifies some
data points, whereas the object-based approach is not able to accurately classify the
entire vegetation in the example image by design. The sugar beet plant (green) and
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Table 4.1: Features used by our classification system

Nr. Feature set
Statistical features VSt(S)

V1 min
V2 max
V3 range
V4 mean
V5 standard deviation
V6 median
V7 skewness
V8 kurtosis
V9 entropy

All statistical features VSt(S) are computed from input sources in

S = {Ix,∇Ix,∆Ix,LBP(Ix),LBP(∇Ix),LBP(∆Ix)}

with x = {INDVI, IG, IB, IH, IS, IL}

this leads to 324 statical features, i.e.:
9 features on 6 channels on 6 input sources

Shape features VSh computed on binary image IVMASK

V10 Convexity
V11 Compactness
V12 Solidity
V13 Rectangularity
V14 Aspect ratio of the minimum enclosing ellipse
V15 Area change under smoothing
V16 Form factor

Other features
V17 V9(∇INDVI)/V9(∆INDVI)
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Figure 4.8: From left to right (top): Classification results considering ωc (green) and ωw (red)
on top of IRGB obtained by the RF-KP (keypoint-based) approach and by the RF-OBJ (object-
based) approach. Classification errors are illustrated by blue arrows. From left to right (bot-
tom): RF-OBJ approach considering ωc, ωw, and ωm (orange) and ground truth map.

weeds (red) are considered to belong to one object, as an under-segmented connected
component represents the vegetation. To explicitly deal with those kinds of objects, we
introduce the mixed class (orange). A further limitation of the approach is that actual
vegetation, which is not detected during the vegetation detection step, is considered to
be soil and not further analyzed by the random forest classification.

4.3.5 MRF Smoothing for Keypoint-Based Classification
This section is only relevant for the RF-KP approach and does not apply to the object-
based one. The keypoint-based classification system described so far computes each
label assignment independently of the other nearby labels. In order to improve the
classification results and to exploit the topological relationships between keypoints, we
apply a Markov random field (MRF). We compute a global classification based on the
individually computed class labels ω(K) of the keypoints by considering their spatial
distribution and class confidences p(ω(K) | Φ(V ,Θ)). We achieve this by minimizing
the energy function

E(ω(K)) =
∑
K

A(p(ω(K) | Φ(V ,Θ))) +
∑

K′∈N4(K)

B(ω(K′), ω(K))

 (4.16)

through belief propagation. Here, E(ω(K)) describes the quality of labeling under
the key assumption that neighboring labels vary slightly, but can also change erratically
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Figure 4.9: Left to right: keypoint-based random forest classification, interpolation of classifica-
tion results to full image resolution leading to label mask Iω, keypoints after spatial smoothing
with MRF, and final semantic segmentation result after interpolation of the MRF results. The
MRF smoothing eliminates the few wrongly classified keypoints at the plant stem region and
outliers.

at class borders. Therefore, two energy terms are needed. The first one, A, considers
the confidence of a class label, and through this defines the energy which is needed to
change the label. The term B describes the energy for smoothing the four-connected
neighborhood, i.e., how many neighboring labels agree. We minimize Equation (4.16)
using belief propagation [30]. The MRF optimizes the classification results, as it re-
duces wrong local estimates by exploiting neighborhood information and considers the
confidence of the individual keypoint classifications.

In order to obtain the full semantic segmentation, which is a prediction per pixel
instead of per keypoint, we perform a straightforward nearest-neighbor interpolation
of the predicted class labels concerning the vegetation mask between the keypoints.
This leads to a label mask Iω with the same resolution as the input images. Figure 4.9
depicts a typical example of a sugar beet plant, where MRF optimization leads to better
performance. One effect of the MRF smoothing is that wrongly classified plant stem
regions, as depicted in Figure 4.9 (left), are corrected. We explicitly evaluate the effect
of the MRF on the classification performance in an ablation study in Section 6.3.1.2.
As the MRF smoothing provides a performance gain in all cases, we use it as a standard
postprocessing step within the RF-KP approach.

4.3.6 Combining Keypoint-Based and Object-Based
Classification

To achieve both, the fast execution time of the RF-OBJ approach as well as the ability
to deal with overlapping plants of the RF-KP approach, we combine both approaches
in a cascade. Through a cascaded classification, we initially apply the object-based
approach for the whole image. All objects, which are identified as weeds or sugar beet
with high certainty, keep their labeling. For objects with uncertain classification results
or which are classified as “mixed” objects, i.e., under-segmented objects due to overlap,
we apply the keypoint-based approach. As a result of that, the features only need to be
computed for a comparatively small number of keypoints, and thus we can maintain an
overall fast computation time. In the remainder of this thesis, we refer to the cascaded
classification as RF-CAS. This approach can be seen as the main approach for visual
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Figure 4.10: Classification results of the RF-KP, RF-OBJ, and RF-CAS approaches. From
left to right (top and bottom): (i) classification result based on the cascaded approach, where
the detected mixed (orange) as well as uncertain (white) objects are further analyzed by the
keypoint-based approach, (ii) final semantic segmentation result, and (iii) corresponding ground
truth.

plant classification using random forest with handcrafted features.
In our experimental section (Section 6.3.1.2) we show that both the keypoint-based

RF-KP approach as well as the object-based RF-OBJ approach perform well in our
datasets and can be combined with the cascaded RF-CAS approach to compensate
their drawbacks, respectively,

In more detail, the RF-KP is only executed for objects for which at least one of the
two conditions hold. Either the random forests suggests a mixed object

argmax
ω

p(ω | V) = ωm, (4.17)

or the random forest is too uncertain about is results, i.e.

max p(ω | V) < tOmin, (4.18)

where tOmin indicates the minimum probability for the class suggested by the random
forest. All those objects are passed to the keypoint-based classifier for a further in-depth
investigation.

4.4 Exploiting Plant Arrangement
The geometric signal given by the plant and weed arrangement can be a strong sup-
porter for distinguishing these classes in the field. In row crops, humans typically can
perceive the plants and weeds just by analyzing the plant arrangement, even if they
are non-experts in the agricultural domain. Figure 4.11 depicts the typical spatial
arrangement of crop plants induced by the process of sowing.
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Figure 4.11: Common spatial arrangement of crop plants (sugar beets) in a field. Caused by
the process of sowing, the plants are arranged in rows and share a similar spacing between each
other along the row. In contrast, weeds appear randomly in the field.

This section is about how we model the plant arrangement and how we gather this
information algorithmically from the data to integrate it into our vision-based crop-
weed classification system. Specifically, we exploit the pattern of crop plants that are
given by its row structure and a similar spacing between the crop plants along the row.
In contrast, weeds grow somewhat randomly in the field and can be assumed to follow
a uniform spatial distribution.

The key idea is to model the arrangement for the crop plants as well as for weeds
as two probability distributions of coordinate differences observed between the plants
and to employ a Bayesian approach to obtain a probabilistic output describing the
likelihood that a particular vegetation object is a crop or a weed. To incorporate
this information, we design an additional and independent classifier to perform the
crop-weed classification solely based on the geometric features using a naive Bayesian
classification approach. We call this approach the geometric classifier GC. The goal
of the geometric classifier is to assign the class labels ω = {c, w} to each detected
keypoint K or object O based only on spatial information by exploiting the relative
arrangement of the plants in the field. Finally, we combine the visual RF-CAS and
geometric classifier GC that complement each other through independent predictions
and exploit the geometric signal of the spatial crop arrangement to support and retrain
the vision-based classifier in a semi-supervised way. We refer to this approach as RF-
GC.

4.4.1 Probabilistic Plant Arrangement Model

We define our relative arrangement model through conditional probability distributions

p(D | ω) with ω = {c, w}, (4.19)

of intra-class coordinate differences observed in a coordinate system, for which the x-
axis is aligned to the actual crop row direction, where

D = {∆xrow
1 , . . . ,∆xrow

N }Nn=1, (4.20)
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is a set of size N consisting of 2D coordinate differences. The intra-class coordinate
differences are given by

∆xrow = [|∆xrow|, |∆yrow|]⊤ (4.21)

and measured between the 2D positions of plants. Considering the crop plants, |∆xrow|
is the distance between sugar beet plants along the crop row reflecting the similar
spacing between them, and |∆yrow| is the distance between two sugar beets across the
crop row, which tends to take mainly small values around 0, see Figure 4.12. For the
computation of ∆xrow, we use the positions xrow

O of the center of mass for each object O
as the reference point.

4.4.2 Learning the Crop Arrangement from Data
As new data arrives, we perform three steps to learn the crop arrangement model:
(i) We represent the detected vegetation in a local map of a fixed size, (ii) estimate the
actual crop row considering the already classified crop plants on the local map, and
(iii) compute D according to Equation (4.20) and use it to update the plant arrangement
model p(D | ω). By this, we obtain an up-to-date model representing the probabilities
of observing intra-class coordinate differences within a particular local area in the field.

Vegetation Mapping First, we build a map of the segmented objects O or key-
points K. We use the wheel odometry measurements to determine the motion of the
camera and apply a pinhole camera model to project O to the surface of the field,
which we assume to be a plane. For estimating D, we consider only objects O or key-
points K that lie within an area of 2m along the crop row and 0.25m across the crop
row concerning the current position of the camera. The reason for limiting the space
along the driving direction is to minimize the effect of drift on the mapping that can be
induced through the integration of the wheel odometry measurements over time. The
space limitation across the driving direction is based on the camera’s footprint on the
field surface (see Section 3.1). Figure 4.12 shows a sketch of an obtained map.

50 cm

200 cm

Figure 4.12: Local map of the segmented objects O. The dashed line depicts the estimated
crop row defining the coordinate system to compute D.
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Figure 4.13: Plant arrangement model according to Equation (4.19) represented by the proba-
bility distributions of intra-class coordinates differences D measured between plants in a coor-
dinate system, which is aligned to the actual crop row. Left: Probability distribution p(D | c)
for sugar beets learned from data (real distribution learned after approx. 20m of traveling on a
field in Bonn). Right: Probability distribution p(D | w) for weeds obtained under the assump-
tion that weeds spatially follow a uniform distribution in object space. The shape of p(D | w)
is caused by the computation of D in a finite space leading to smaller probabilities for the
observation of large coordinate differences.

Crop Row Detection We perform the crop row detection using a Hough transform,
searching for the first voted line given the actual crop plants in the local map. Finally,
we optimize the result using a least-square estimator for line estimation by considering
the supporters of the detected line by the Hough transform.

Update of the Plant Arrangement We compute D between plant objects Oc or
keypoints Kc and update our model p(D | c) for the crop plants by accumulating a
2-dimensional histogram of D. This accumulation can be done, as the used coordinate
differences are not tied to an external coordinate system. As we have only a limited
amount of data, we smooth p(D | c) using a Gaussian kernel. For the weed class, we
obtain the distribution p(D | w) by assuming a uniform spatial distribution of weed
objects within the local map. Figure 4.13 depicts the learned arrangement model p(D |
c) for crop plants as well as the assumed p(D | w) for weeds.

4.4.3 Predictions of the Geometric Classifier

We compute the coordinate differences D from a new object O or keypoint K to already
classified plants in the local map and employ Bayes rule to obtain the probability

p(c | D) =
p(D | c) p(c)∑
ω p(D | ω) p(ω)

, (4.22)

for an object O or keypoint K belonging to the crop class. The distribution p(c | D)

reflects the output of the geometric classifier. In addition to the update of the plant
arrangement model, we also update the priors p(c) and p(w) according to the observed
class-wise occurrence counts during operation. In the training phase, we compute p(c)

and p(w) once based on the total amount of crop plants and weeds present in the
training data.
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4.4.4 Combining Visual and Geometric Classifiers
This section describes our RF-GC approach that integrates the geometric information
into the visual plant classification system. We combine the visual and the geometric
classifier to compute a joint classification of the crop plants and weeds and to achieve
an online adaption of the visual classifier to match better with the actual distribution
of the visual features.

Joint Classification It is safe to assume that the features used by the visual and
geometric classifiers are independent of each other. If the training labels used by both
classifiers are partially the same, the resulting classifiers, however, may not necessarily
be independent. We make the independence assumption and compute the class label ω∗

for an object O by maximizing the product of both distributions:

ω∗ = argmax
ω

p(ω | Φ(V ,Θ)) p(ω | D). (4.23)

By combining the two outputs of the classifiers, the entire system works even if only one
of the two classifiers provides an output. In this case, we consider a uniform distribution
for the classifier with no output. Thus, ω∗ turns into the response of the other classifier.

Table 4.2: Actions for the semi-supervised RF-GC approach.

No. Vision Geometry Prediction Action

1 confident confident agree nothing
2 uncertain uncertain (any) nothing
3 uncertain confident (any) add label to vision
4 confident confident contradict check crop row
5 confident uncertain (any) check crop row

Figure 4.14: Online adaptation of the visual classifier.
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Semi-Supervised Learning by Exploiting Crop Arrangement The goal of the
semi-supervised approach in RF-GC is first to exploit the predictions of the geometric
classifier that are not affected by the potential change in visual appearance of the
plantation in order to generate new training data for the visual classifier and second to
use the predictions of the visual classifier to identify errors in the crop row estimation.
Concerning the predictions provided by both classifiers, we perform different actions
such as adding predictions of the geometric classifier as ground truth labels for the
visual classifier or perform a check of the estimated crop row. We list the considered
actions in Table 4.2.

In cases No. 1 and 2, we perform no action. In case No. 3, we add the label provided
by the geometric classifier to the visual training data to adapt the system to the field-
specific visual feature distribution in the next retraining step. For the cases No. 4 and
No. 5, we see the following reasons to check the crop row: (i) if the appearance of the
plants changed substantially so that the visual classifier fails while assuming to provide
confident results. From our experience, this is the most common failure case. (ii) The
crop row detection is wrong. In practice, crop row detection can fail if crop plants are
not present for a longer period, e.g., due to errors during sowing or because the robot
moved outside the crop row so that no plants are visible (in combination with failure of
the odometry system). To check which classifier to trust in such situations, we estimate
two new plant arrangement models, one based on the current visual classifier and one
only from the geometric one. In both cases, we use the plant information from the
last 2m of travel. This yields the models p(D | cvis) for the visual and p(D | cgeo) for
the geometric classifier as well as two independent estimates of the location of the crop
row. Then, we compare the distributions p(D | cvis) and p(D | cgeo) to our currently
used relative plant arrangement model p(D | c). The comparison is made using the
Kullback-Leibler divergence, a general measure for the similarity of distributions. We
trust the model, which has a smaller distance under the Kullback-Leibler divergence.
If the geometric classifier is assumed to be correct, we follow case No. 3. Otherwise, we
use the crop row estimated by the visual classifier and proceed with the existing plant
arrangement model.

Online Adaptation of the Visual Classifier The main goal of the online adaption
of the visual classifier is to optimize its model to obtain high-quality classification
outputs for the vegetation objects currently being observed in the field. The random
forest framework offers two options: Either we retrain individual trees, or we gradually
replace individual trees in the random forest as new training data arrives.

Here, we explicitly utilize the newly gathered training data generated during the
operation in the actual field environment to achieve the adaption of the visual classifier
model to the current distribution of features, see Table 4.2. Figure 4.14 illustrates the
data flow for the semi-supervised online learning approach. We construct a new tree
after having obtained a given amount of training samples generated by the geometric
classifier and combine them with randomly chosen training samples obtained during the
whole operation in the actual field. This procedure leads to a field-specific adaptation of
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Figure 4.15: Labeling of the crop plants (sugar beets) with markers placed next to the plant.
We find the markers in the images and assign the label “crop” to detected vegetation based on
a distance threshold, all other vegetation is considered to belong to the “weed” class.

the random forest and thus generally leads to a better classification for this environment.
In this way, for each field, a new adaptation is possible, starting with an existing
classifier (typically learned over multiple fields).

Initialization of the Geometric Classifier To produce predictions with the geo-
metric classifier, the plant arrangement model p(D | c) needs to be properly initialized,
i.e., it must reflect the actual plant arrangement in the field. We propose two different
procedures for the initialization.

The first procedure is the initialization of p(D | c) through predictions obtained
by the visual classifier. Here, the robot first traverses around 2m of a row, and the
visual classifier detects the crop plants and weeds along the traversed field surface.
These predictions are then used to compute p(D | c). After the initialization phase, the
geometric classifier also can produce predictions for vegetation objects and supports
the visual classifier through our proposed semi-supervised approach. The benefit of
this initialization procedure is that no labeled data is necessary for its execution. A
serious disadvantage is that a wrongly initialized plant arrangement model can cause
further falsely classified crop plants and weeds.

The second procedure is based on in-field labeling using artificial markers. We
target an in-field labeling effort of approx. 1minute for a human operator and do not
consider any pre-trained classifier. We achieve this 1-minute labeling effort by placing
printed markers next to a set of crop plants at the beginning of the row. We can place
around 10-15 markers within a minute, which corresponds to approx. 2-3m of sugar
beets along a row, see Figure 4.15. The placement of the markers is the only labeling
effort that we use. Then, we assign the labels ωc and ωw concerning the distance from
markers to the detected vegetation within the local map. Based on this information,
we can initialize the plant arrangement model and start training the visual classifier
from scratch or the adaption of a pre-trained model.
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Figure 4.16: From left to right: analyzed image by our approach classifying pumpkin (green)
and weed (red). UAV operation in a sugar beet field. Multi-class prediction of an image of a
sugar beet field considering sugar beet (green), weed (red), grass (blue) and mixed (orange).

4.5 Adaption to UAVs

Using UAV data instead of data recorded with a UGV is more challenging, as the
imagery is naturally exposed to varying lighting conditions and different scales in terms
of the ground sampling distance. Figure 4.16 illustrates two exemplary classification
results and one of the UAVs used for data acquisition. Thus, UGV-based systems can
typically exploit more assumptions about the data. UGVs are capable of controlled
illumination as the sun-light can be shielded, and artificial light sources can be applied.

Our main adaptation for the UAV-based plant classification is an extension of the
RF-CAS approach by adding more relevant handcrafted features exploiting specific
characteristics of UAV images. We call our UAV-based plant classification approach
RF-UAV. Note that for UAV images, we solely rely on IRGB images as input to the
network. The desired output is also given by the plant mask Iω, whereas the desired
classes vary regarding the application and used dataset in our experimental evaluation
in Chapter 6. For the value crop, we consider sugar beets, peppermint, strawberries,
and pumpkin. For weeds, we either consider a general weed class as for the UGV case,
or we explicitly classify different weed species.

In addition to the features described in Section 4.3.3, we consider further geometric
features exploiting the field geometry. Usually, UAV images of fields capture larger
areas compared to the ones captured by UGVs. Thus, they observe a sufficient number
of crop plants within a single image to perform a row detection and to measure spatial
relationships among multiple individual plants. We investigate additional geometric
features to exploit the fact that crops mostly have a regular spatial distribution without
explicitly specifying it. Note that weeds may also appear spatially in a systematic
fashion, e.g., in spots or frequently in border regions of the field. First, we perform a
line set detection to find parallel crop rows and use distances from potential rows to O
and K as a feature for the Random Forest classifier. Second, we compute distributions
based on distances and angles in the local neighborhood around objects and keypoints
and extract statistics from it to use them as additional features.
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Figure 4.17: Left: Result of the line set detection. s (red) refers to the distance of the first
line in the set L(θ,ρ) to the origin of the image frame. r (orange) refers to the inter-row space.
Right: visual illustration of the line model feature Vline for the keypoint-based approach. The
different colors refer to different lines of the detected line set. The radius of a keypoint encodes
the value of Vline. Weeds located within the inter-row space get a higher value in Vline.

4.5.1 Line Feature for Crop Rows
In most agricultural field environments, the plants are arranged in rows, which share
a constant inter-row space, i.e., the distance between two neighboring crop rows. The
main goal of the line feature

Vline =
d

r
, (4.24)

is to exploit the distance d of an object O or keypoint K to a crop row. We normalize d
by the inter-row space r and use Vline as an additional feature for the classifier. The
values d and r are measured in pixels and can be directly obtained in image space.
From a mathematical point of view, crop rows can be represented as a finite set of
parallel lines.

L(θ,ρ) = {l1(θ, ρ1), . . . , lI(θ, ρI)}Ii=1, (4.25)

where, θ refers to the orientation of the line set and ρ are the distances from each line li
to the origin of the image frame.

Figure 4.17 depicts an exemplary result of a detected line set and illustrates the
concept of our line-based feature. We introduce the constraint that ρi are equidistant
to exploit the fact that the inter-row space of crop rows is constant. Note that we
do not make any assumptions about the size of r, i.e., the inter-row space. To detect
the set L(θ,ρ) of parallel lines, we employ the Hough transform on the vegetation
mask IMASK. This Hough space accumulates the number of votes vρ,θ, i.e., the number
of corresponding vegetation pixels for a given line with the parameters θ and ρ. To
compute L(θ,ρ), we analyze the Hough space and perform the following three steps.

Step 1: Estimating the main direction of the crop rows We compute the main
direction θL of the vegetation in an image in order to estimate the direction of the crop
rows. This direction can be estimated by considering the votes for parallel lines in
Hough space. Here, we follow an approach similar to the one proposed by Midtiby and
Rasmussen [94]. To obtain θL, they compute the response
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E(θ) =
∑
ρ

v2ρ,θ, (4.26)

for each direction and select the maximum E(θ). The term vρ,θ refers to the number
of votes for a particular line with the parameters θ, ρ. In contrast to [94], we do not
only select the maximum of E(θ) but consider the N best values for E(θ) to evaluate
the N best-voted directions in Hough space given the vegetation in the subsequent
steps. In our implementation, we use N = 15. We consider the 15 best main directions
supported by the vegetation in order to handle scenarios with large amounts of weed.
Tests under high weed pressure show that the maximum response is not always the
correct choice, as many weed plants may lead to more votes for false detection of the
rows.

Step 2: Estimating the crop rows as sets of parallel lines Given the N best-
voted orientations of possible line sets from Step 1, we want to estimate in which
direction we find the best set of parallel lines with equidistant spacing.

We search for an unknown but constant spacing r between neighboring lines as well
as the offset s of the first potential crop row in image space, see Figure 4.17 for an
illustration. Thus, we search for the maximum response of

E(θ, r, s, Lr) = P +
R∑

r=1

r∑
s=0

Lr−1∑
l=0

v(s+l r),θ, (4.27)

with the penalty term

P = −Lr v̄θ, (4.28)

by varying the size of r and s. The term Lr refers to the number of lines that intersect
with in the image for a given r. The penalty term P is an additional cost term that is
introduced for each line of the set in order to penalize an increasing number of lines.
Here, v̄θ is the mean response over the column corresponding to θL in the Hough space.
This leads to the effect that E, according to Equation (4.27), increases for lines, which
have a better response vs+l r,θ > v̄θ and vice versa decreases if the response is lower.
The maximum response according to Equation (4.27) provides the best voted line set,
which has a constant inter-row space.

Step 3: Refitting the best line set to the data Crops are commonly sown out
in fixed assemblages of a certain number of rows, called plots. It can happen that the
inter-row space between plots differs slightly due to the limited position accuracy of the
sowing machine. To overcome this, we finally fit each line of the best set obtained from
step 2 to the data by using a robust estimator based on a Huber kernel and obtain a
robust estimate L(θ,ρ) for the crop rows.

85



4.6. Summary

Figure 4.18: To describe spatial relationships among individual plants, we compute spatial
relationship features for every object and every keypoint in an image considering distances and
azimuths from a query object Oq or keypoint Kq to all other nearby objects or keypoints.

4.5.2 Spatial Relationship Features
In order to describe spatial relationships among individual plants, we compute spatial
relationship features for every object and every keypoint in an image. First, we com-
pute the distances and azimuths from a query object Oq or keypoint Kq to all other
nearby objects or keypoints in world coordinates (which requires knowing the flying
altitude of the UAV). We compute the differences between the measured distances of
the query object and its neighbors. Through this, we obtain a distribution in the form
of a histogram. Similarly, we obtain the distribution over angles from the observed
azimuths. From these distributions, we compute common statistical qualities, such as
min, max, range, mean, standard deviation, median, skewness, kurtosis, and entropy
(see Table 4.1), and use them as features for the classifier. In addition to that, we
count the number of vegetation objects O or keypoints K in their neighborhood in
object space. Figure 4.18 illustrates the considered neighbors for the extraction of the
spatial relationship features for one crop object (green) and one weed object (red). We
limit the considered neighbors by a certain radius for two reasons. First, to grasp in-
formation about the local arrangement of the plants and weeds. Second, to control the
computational efforts. Both the spatial relation features as well as the line features
allow for encoding additional geometric properties and, in this way, to improve the
random forest classifier used to make the actual decision.

4.6 Summary
In this chapter, we presented different approaches to the random forest-based plant
classification. All these approaches follow the main pipeline shown in Figure 4.1 and use
handcrafted features that encode visual information. The first two approaches, RF-KP
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and RF-OBJ, address the feature extraction for the classification problem in different
ways. The keypoint-based approach RF-KP extracts local features for keypoints and
classifies the area around each keypoint. The object-based approach RF-OBJ extracts
features for each object- or segment-based and classifies all pixels within a vegetation
segment. Please note that for RF-KP, we do not claim a contribution in this thesis, as
we developed this approach with the context of the master thesis by Lottes [81].

Next, we propose a way to link RF-OBJ and RF-KP within our approach RF-CAS,
which combines the object-based and keypoint-based feature extraction and classifi-
cation in a cascade and exploits their respective advantage and even compensates for
their respective disadvantages.

Furthermore, we propose a probabilistic model encoding the spatial arrangement
of the crop plants and weeds in the field using coordinate differences between plants.
We integrate this model into our next contributed approach RF-GC, which combines
the visual random forest classifier RF-CAS with a geometric Bayesian classifier in a
semi-supervised way.

Finally, we extend our proposed RF-CAS approach to also appropriately process
UAV images, i.e., RF-UAV. Here, we consider further geometric features exploiting
the field geometry in terms of crop row information and spatial relationships among
multiple individual plants.

87





Chapter 5

Plant Classification Using Fully
Convolutional Neural Networks

The main objective of this thesis is the development of innovative vision-based
plant classification systems for agricultural robots, allowing the robots to
identify the value crop and distinguish it from weeds or even different weed
species. In this chapter, we introduce our second series of plant classification

systems enabling UGVs and UAVs to perceive crop plants and weeds in agricultural
field environments.

It has been shown that fully convolutional neural networks for pixel-wise classifica-
tion, i.e., semantic segmentation tasks achieve superior performance for a large number
of different applications [5, 55, 108, 126]. In this chapter, we introduce our second series
of plant classification systems enabling UGVs and UAVs to perceive crop plants and
weeds in agricultural field environments. All classification systems, we present in this
chapter, use fully convolutional neural networks as their core machine-learning model.
The classification systems operate with RGB images (IRGB) as well as with 4-channel
images, which consist of IRGB plus additional near-infrared measurements per pixel,
i.e., INIR. The goal is to map the image input into a label map that encodes a class
label for every pixel.

IRGB INIR Iω

Figure 5.1: Plant classification pipeline based on fully convolutional neural networks. From left
to right: IRGB, INIR, fully convolutional neural network-based classification model, predicted
label mask Iω. In contrast to the random forest-based approaches described in Chapter 4, the
fully convolutional neural network-based approaches do not perform a preliminary vegetation
classification step.
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5.1. Different Fully Convolutional Neural Network-Based
Classification Systems

We illustrate the key processing steps of the fully convolutional neural network-
based approaches in Figure 5.1. First, we feed the IRGB+INIR images into the network.
In contrast to the proposed approaches in Chapter 4, fully convolutional neural networks
neither rely on the design of handcrafted features nor require a preliminary vegetation
detection step before the actual plant classification. Handcrafted features, however,
can limit the capacity, i.e., the representational power of the classification model. Fully
convolutional networks, in contrast, operate in an end-to-end manner. They learn the
features and perform the classification simultaneously.

The fully convolutional neural network-based plant classification systems in this
chapter enable agricultural field robots to recognize and locate the crop plants and
weeds. Through this, field robots can perform automated in-field treatments such as
selective and plant-specific treatments. One of the key components of fully convolu-
tional neural networks is its architectural design. In our experimental Chapter 6, we
analyze the plant classification performance obtained by different architectures such
as Resnet-34 [52], DarkNet [124], ErfNet [125], MobileNet-V2 [132], and DeepLab-
V3+ [22]. The architectures of these related works are typically designed for complex
classification problems with up to a thousand different classes. They contain several
million free parameters that are learned during training.

Our experiments in Chapter 6 suggest that DenseNet-based architectures based on
the work of Huang et al. [55] and Jegou et al. [58] provide the best performance and a
faster convergence time in the training phase. Thus, we design an architecture based on
architectural building blocks from DenseNets and modify it for the plant classification
task tasks at hand. We design our network architecture, keeping in mind that the
classification needs to provide results online such that an actuator can directly act upon
the incoming information while the robot traverses the field. The plant classification
tasks that we consider in this thesis range from a minimum of three classes for the crop-
weed classification to a maximum of seven classes for the crop-dicot-grass classification
with joint crop-dicot stem detection. Thus, we design lightweight networks explicitly
for the plant classification task.

5.1 Different Fully Convolutional Neural
Network-Based Classification Systems

Throughout this chapter, we propose five different variants for the fully convolutional
neural network-based plant classification. We refer to a fully convolutional neural
network-based approach with FCN-*, where FCN stands for the fully convolutional
neural network. The postfix is a placeholder for abbreviation referring to the respective
variant. All approaches follow the main pipeline shown in Figure 5.1. In the course
of this chapter, we will also introduce modifications of these approaches that exploit
additional geometric features about the local arrangement of plants in the field to
distinguish plants and weeds.

Our first approach is called FCN. In Section 5.2.1, we design a lightweight encoder-
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decoder structured network architecture that performs a pixel-wise classification consid-
ering the classes ωcws ∈ {ωc, ωw, ωs} for crop, weed, and soil. The network architecture
of the encoder and the decoder presented therein represents the basic architectural
design for all approaches presented in this chapter.

Subsequently, we present the FCN-UAV approach that we explicitly design for
processing UAV images in Section 5.2.2. UAV images differ from UGV images mainly
in terms of the ground resolution and the camera’s footprint in object space. The
architecture of FCN-UAV follows that of our FCN approach, but we adjust the receptive
field to use a larger area in the image for the classification of a pixel. In this way, we
allow the FCN-UAV approach to implicitly incorporate information about the relative
arrangement of plants in the image in the feature extraction.

A further goal of this work is to use robots to control different weeds with different
treatments. For this purpose, the field robot has to be able to differentiate not only
between plants and weeds but also between weeds that should be treated differently.
High-precision interventions, such as precise mechanical and laser-based weeding, are
most effective when applied to the stem locations of small weeds. Selectively spraying
agrochemicals over their entire leaf area, however, is still the most effective approach
to treat big weeds and generally grass weeds. Therefore, we introduce FCN-STEM in
Section 5.3. FCN-STEM is a single model for jointly determining both, the exact stem
location of dicotyl weeds and plant as well as pixel-wise plant classification considering
the classes ωcdgs ∈ {ωc, ωd, ωg, ωs} for crop, dicotyl weeds, grass weeds, and soil. In
addition, we present in Section 5.3.3 our FCN-STEM approach in the context of plant
counting. Stem detection turns out to be particularly suitable for the identification of
single plants.

Next, we propose a way to exploit additional geometric prior information about
the local arrangement of the plants in the field to improve the performance of the
classification systems in terms of performance and generalization capabilities to new and
changing field conditions. We integrate this information by analyzing image sequences
that cover a local strip of the field surface and thus implicitly carry the information
about the plant arrangement. Section 5.4.2 describes one of our main contributions,
i.e., the sequential module, which is a subnetwork that analyzes visual features of
consecutive images from a sequence and extracts spatio-temporal features that encode
the field geometry. The integration of the sequential module into our FCN approach
leads to our proposed novel FCN-SEQ approach, which we describe in Section 5.4.3.
FCN-SEQ is an end-to-end trainable network that provides a pixel-wise classification
of plants and weeds exploiting image sequences.

In Section 5.4.4, we also integrate the sequential module into our FCN-STEM ap-
proach and propose our novel FCN-SEQ-STEM approach that jointly predicts stem
locations and performs a pixel-wise plant classification exploiting spatio-temporal fea-
tures. Throughout our experimental evaluation, we demonstrate the ability of the se-
quential module to extract spatio-temporal features encoding the relative arrangement
of the plants. Furthermore, we empirically show that our sequential approaches provide
superior classification and generalization performance compared to the approaches that
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process single images independently.
We presented the FCN as well as the FCN-STEM approach in [82], whereas we

published the FCN-SEQ approach in [84], the FCN-SEQ-STEM approach in [83], and
the deployment of our FCN-UAV approach for UAV-based crop monitoring applications
in [85].

All proposed approaches for UGVs achieve a sufficient runtime for the processing of
the classification results that are required for online in-field operations such as selective
spraying or mechanical weed control. We implement the inference for all proposed
variants of the fully convolutional neural network-based plant classification systems as
ROS modules and evaluate them on different real field robots, see Chapter 3. For
training and inference, we use the TensorFlow library [2].

5.2 Fully Convolutional Neural Network-Based
Plant Classification: FCN

This section describes our base, fully convolutional neural network model for pixel-
wise plant classification on single images, which we call FCN in the remainder of this
thesis. The main objective is to provide a pixel-wise classification of the input images
IRGB+INIR, where we either use solely IRGB or IRGB+INIR as input to the network.
In the IRGB+INIR case, we concatenate the images along their channel axis such that
we obtain a 4-channel image as input. The desired output is given by the plant mask
Iωcws considering the classes ωcws ∈ {ωc, ωw, ωs} for crop, weed, and background.

The principal processing pipeline executes the following key steps and is illustrated
in Figure 5.1. First, we preprocess each image according to Section 4.2. Next, we
feed the preprocessed images into the encoder-decoder structured architecture, which
directly outputs the per-pixel probability distribution p(ωcws | FCN)(i, j) over the
desired class labels for each pixel location (i, j). Finally, we obtain the label mask Iωcws

by determining the label with the highest probability according to Equation (2.23), i.e.,

Iωcws = argmax
ω

p(ωcws | FCN)(i, j). (5.1)

Equation (5.1) reflects the standard approach to assign the class labels based on the
probabilistic output of a classifier for multi-class problems. A colored illustration of
Iωcws is given in Figure 5.1 (right).

5.2.1 Encoder-Decoder Network Architecture
Common, fully convolutional neural network architectures follow the so-called “hour-
glass” structure, referring to a downsampling operation of the resolution in the encoder
followed by a complementary upsampling in the decoder to regain the full resolution of
the input image for the pixel-wise classification. More specifically, the encoder part of
the network compresses the content of the input images into a small but highly infor-
mative representation, and the decoder part of the network simultaneously reconstructs
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Figure 5.2: FCN architecture for pixel-wise plant classification, also called semantic segmenta-
tion. Given IRGB+INIR as input, we first compute the visual code by the encoder. The visual
code is then again upsampled by the decoder resulting in the visual features, which are then
turned into Iωcws considering the classes ωcws ∈ {ωc, ωw, ωs}. Dimensions are for the crop-weed
classification based on the IRGB+INIR input.

the spatial resolution of the input and maps it to the pixel-wise (pseudo) probabilities
distribution over class labels.

As a basic building block in our encoder-decoder fully convolutional neural network,
we follow the ideas of the so-called fully convolutional DenseNet [58], which combines
the recently proposed densely connected CNNs [55] organized as dense blocks with fully
convolutional neural networks [80]. The key idea is a dense connectivity pattern that
iteratively concatenates all computed feature maps of subsequent convolutional layers
in a feed-forward fashion. These “dense” connections encourage deeper layers to reuse
features produced by earlier layers and additionally support the gradient flow in the
backward pass. As commonly used in practice, we define our 2D convolutional layer
as a composition of the following components: (i) 2D convolution, (ii) rectified linear
unit (ReLU) as non-linear activation, (iii) batch normalization [141], and (iv) dropout
[138]. We repeatedly apply bottleneck layers to the feature volumes and thus keep the
number of feature maps small while achieving a deep architecture. Our bottleneck is a
2D convolutional layer with a [1× 1] kernel.

A dense block is given by a stack of L subsequent 2D convolutional layers operating
on feature maps with the same spatial resolution. Figure 5.2 depicts the information
flow in a dense block. The input of the lth 2D convolutional layer is given by a concate-
nation of all feature maps produced by the previous layers, whereas the output feature
volume is given by the concatenation of the newly computed feature maps within the
dense block. Here, all the concatenations are performed along the feature axis. The
number of the produced feature maps is called the growth rate G of a dense block [55].
We consequently use two times G convolutional kernels for the bottleneck layers within
a dense block. Through this, we reduce the computational cost in the subsequent 2D
convolutional layers as the number of feature maps is limited to two times the growth
rate.
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Figure 5.2 illustrates the information flow through the fully convolutional neural
network. The first layer in the encoder is a 2D convolutional layer augmenting the
preprocessed 3-channel (IRGB) or 4-channel (IRGB+INIR) images using 32 [15 × 15]

kernels. The following operations in the encoder are given by a recurring composition
of dense blocks, bottleneck layers, and downsampling operations, where we concatenate
the input of a dense block with its output feature maps. We perform the downsampling
by stridden convolutions employing 2D convolutional layers with a [5× 5] kernel and a
stride of 2. All bottleneck layers between dense blocks compress the feature volumes by
a learnable halving along the feature axis. In the decoder, we revert the downsampling
by a stridden transposed convolution [27] with a [2 × 2] kernel and a stride of 2. To
facilitate the recovery of spatial information, we concatenate feature maps produced by
the dense blocks in the encoder with the corresponding feature maps produced by the
learnable upsampling and feed them into a bottleneck layer followed by a dense block.
In contrast to the encoder, we reduce the expansion of feature maps in the decoder by
omitting the concatenation of the input of a dense block with its output.

The output of the FCN network p(ωcws | FCN) represents a pixel-wise probability
distribution over the class labels. We obtain this distribution by passing the decoded
features through the classification block, which is a chain of another 2D convolutional
layer with eight kernels of size [15×15], a bottleneck convolution with C [1×1] kernels,
where C is the number of desired class labels, and a softmax layer along the resulting
depth dimension to achieve the pixel-wise probabilities for each class label. Finally, we
obtain the plant label mask Iω according to Equation (2.23). Figure 5.3 (bottom left)
illustrates an example for Iω projected onto the IRGB input image.

5.2.2 FCN-UAV for UAV-Based Crop Monitoring
UAVs can be employed over an entire crop season to monitor important traits for the
crop plants or to measure the spatial distribution of the crop plants and weeds. This
provides a temporal dimension to the monitoring of the field, which is necessary to
understand how the field status is evolving and also to know when to trigger specific
field management tasks. Thus, it is crucial to have an automatic classification pipeline
that monitors and analyzes the crop plants automatically and provides a report about
the status of the field over time.

For the processing of UAV imagery, we propose the FCN-UAV approach. Archi-
tecturally, the network is the same as FCN, except for the depth of the encoder and
decoder and the used kernel size for the convolutional layers. We add one more stage
of downsampling followed by one further dense block, as described in Section 5.2.1.
Through this, we enlarge the receptive field of the final feature volume of the encoder
from 245 pixels to 837 pixels regarding the image input.

The UAV images typically cover a larger spatial area of the field containing sufficient
information about the spatial distribution of plants and weeds. The increased receptive
field enables the encoder to extract features considering a lager spatial context of the
input images.
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5. Plant Classification Using Fully Convolutional Neural Networks

Input: RGB, NIR. Output: Plants and stems.

Figure 5.3: Joint plant classification and stem detection pipeline. Top left: RGB image IRGB.
Top right: NIR image INIR. Bottom left: plant label mask Iω considering sugar beet (green),
dicotyl weed (red), grass weed (blue), and background (no color) overlayed on IRGB. This
result is produced by FCN-STEM approach. Bottom right: detected stems (circles) and their
corresponding ground truth (filled circles) considering sugar beet (green) and dicotyl weed (red)
overlayed on INIR. This result is produced by the FCN-STEM approach

In contrast to the random forest-based RF-UAV approach for UAV-based plant
classification, we do not specifically need to design handcrafted features describing the
field geometry, as the FCN-UAV approach is principally able to learn this information
implicitly by exploiting the larger receptive field.

Note that for UAV images, we solely rely on IRGB images as input to the network
in this thesis. The desired output is also given by the plant mask Iω, whereas the
desired classes vary regarding the application and use the dataset in our experimental
evaluation in Chapter 6.

5.3 Joint Stem Detection and Plant
Classification: FCN-STEM

A versatile system that aims at reducing the use of agrochemicals to the minimum
necessary should not be limited to a single actuator, e.g., a selective spaying unit for
all weeds. To further minimize the chemical input to a field, a weed control system
may additionally be equipped with mechanical or thermal actuators. The key idea is
to use the chemical-free approach wherever its possible and to rely only on spraying
for cases, where mechanical or thermal methods do not work well. In this scenario, the
classification system needs to provide both the stem locations and the spatial extent of
the plants. The stem positions are a prerequisite for the selective, high-precision me-
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chanical or thermal treatments, e.g., by mechanical stamping or by laser-based weeding.
The provided pixel-wise label mask provides the area with more granulated treatment
approaches, e.g., for selectively spraying grass weeds. The BoniRob field robots we use
in this thesis are equipped with two different actuators, one for selective spraying of
chemicals and another one for precise mechanical intervention by stamping.

This section describes our approach for joint plant classification and stem detection,
which we call FCN-STEM. The main objective of FCN-STEM is to provide two outputs
simultaneously. First, a pixel-wise classification represented by the plant mask Iωcdgs

considering the classes ωcdgs ∈ {ωc, ωd, ωg, ωs} for crop, dicotyl weed, grass weed, and
background (mostly soil). Second, the positions of the stems for dicotyl weeds and crop
plants represented by the stem mask Iωcds considering the classes ωcds ∈ {ωc, ωd, ωs}
for crop stem, dicotyl weed stem, and no stem.

One key architectural design feature of FCN-STEM is that the network shares the
encoded features for classifying the stem regions as well as for the pixel-wise classifi-
cation using one encoder network and two task-specific decoder networks. Thus, the
output differs from the FCN approach described in the previous section as it consists of
two different probability distributions over the class labels for both plant classification
and stem detection.

The processing pipeline executes the following key steps and is illustrated in Fig-
ure 5.4. First, we preprocess each image according to Section 4.2. Next, we feed the pre-
processed images into the one-encoder-two-decoder structured, fully convolutional neu-
ral network, which outputs a per-pixel probability distribution p(ωcdgs | FCN − STEM)

for plant classification over the desired class labels for each pixel and, furthermore, a
per-pixel probability distribution p(ωcds | FCN − STEM) representing regions within
the image, which correspond to crop stems and weed stems. Analogous to the FCN ap-
proach, we obtain the label mask Iωcdgs by determining the class label with the highest
probability, according to Equation (2.23). Finally, we extract pixel-accurate stem po-
sitions, i.e. the stem mask Iωcds from p(ωcds | FCN − STEM), through a postprocessing
step.

5.3.1 One-Encoder Two-Decoder Network Architecture
Figure 5.4 depicts the proposed architecture of our joint plant and stem detection
approach FCN-STEM. The main processing steps of this approach are the preprocessing
(red), the encoder (orange), the plant decoder (blue), the stem decoder (green), and
the stem extraction (brown). FCN-STEM relies on the same preprocessing module
described in Section 4.2 as well as on the same principle architectural building blocks
as described in Section 5.2.1. We use the same encoder as for the FCN approach for
the extraction of the visual code.

From the encoded and compressed visual code, we generate two separate feature
volumes specialized for pixel-wise plant classification and stem detection. Thus, we
have two task-specific decoders, which perform an upsampling using a stridden trans-
pose convolution [27] with [2 × 2] kernel and a stride of 2. Both decoders also use
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Figure 5.4: FCN-STEM architecture. We first encode the input images using the encoder
and then pass the feature volumes to the task-specific decoders, the stem decoder and the
plant decoder. We obtain two outputs, the plant mask Iωcdgs considering the classes ωcdgs ∈
{ωc, ωd, ωg, ωs} for the pixel-wise classification of the plants and the stem mask Iωcds considering
the classes ωcds ∈ {ωc, ωd, ωs} for the segmentation crop-weed stem regions. Finally, we extract
the stem positions from the stem mask in the stem extraction. Note that we denote the size of
the feature map above each block of layers. Inside the layers, we show the number of output
features maps.

dense blocks as their main building blocks and follow the same architectural design to
produce the plant features and stem features. Moreover, both task-specific decoders
use feature maps produced by the encoder through skip connections. We concatenate
the corresponding feature maps sharing the same spatial resolution from the encoder
before we again use dense blocks for feature computation. Skip connections from the
encoder to the decoders facilitates the recovery of spatial information [5]. Finally, we
transform the feature maps produced by the stem decoder and the plant decoder into
the pixel-wise probability distribution over their respective class labels by a [1 × 1]

convolution followed by a softmax layer.
Note that we try to predict the area of the stem instead of regressing the stem

location. This is key to use the same architecture for learning plant classification and
stem locations. Finally, we extract pixel-accurate stem positions from the stem mask
using a postprocessing step.

Training For learning, we use a multi-task loss L combining the loss for the plant
segmentation Lplant and for the stem region segmentation Lstem, i.e.,

L = (1− α)Lstem + αLplant, (5.2)

where we use α = 0.5. The loss Lplant is the weighted cross-entropy, where we penalize
errors regarding the crop plants, dicotyl weeds, and grasses by a factor of 10. The
loss Lstem is based on an approximation of the intersection over union (IoU) metric, as
it is more stable with imbalanced class labels [122], which is the case in our problem
with under-represented stems as compared to the amount of soil. The multi-task loss
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Figure 5.5: We extract the pixel-wise stem locations by computing a weighted center of mass
of the stem regions predicted by the FCN-STEM network. For the weighting, we consider the
predicted probabilities p(ωcds | FCN − STEM) for each pixel belonging to a stem region.

also enables the sharing of information for learning the encoder, which can use the
loss information from both decoders in the backward pass of the backpropagation. For
training, we encode the stem locations as blobs with a diameter of 10mm in object
space.

5.3.2 Stem Extraction
Given the probability distribution p(ωcds | FCN − STEM) encoding regions within the
image, which correspond to crop stems and weed stems, we want to extract a well-
defined stem location by a certain pixel location for the crop plants and the dicotyl
weeds. To this end, we first determine Iωcds by selecting the class with the highest
label probability for each pixel. Next, we determine the connected components Oc

j for
the crop ωc and dicotyl weed ωd class and compute the weighted mean x̄ω

j of the pixel
locations by

x̄ω
j =

∑
x∈Oω

j
P (ω = ω | x) · x∑

x∈Oω
j
P (ω = ω | x) with ω = ωc, ωd. (5.3)

The weighted means x̄ω
j for class c are then the stem detections reported by our

approach. Figure 5.3 (bottom right) illustrates an example for the detected stems
projected onto the INIR input image.

5.3.3 FCN-STEM for UAV-Based Plant Counting
Plant counting represents a prevalent task for farmers and breeders. The exact knowl-
edge about the number of emerged plants is a necessary trait to estimate. In the early
season, this information helps to assess the seed quality as well as the overall plant
performance. During the late season, this information indicates the expected yield
and also contributes to the planning of the harvest. Nowadays, growers have had to
count plants by hand by sampling certain areas in the field. This approach is impre-
cise because it assumes a homogeneous distribution of the plants, which is difficult to
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Figure 5.6: Overview of the GOETT-UAV-19 dataset containing micro plots. The colors refer
to the average size of the sugar beets. Green refers to small and red refers to big plants regarding
the average growth stage.

Figure 5.7: Illustration of difficult conditions for counting plants using vision-based classification
approaches. Left: Mutually overlapping sugar beets. Right: Due to narrow seeding, the sugar
beets overlap early after the emergence phase. In addition, individual and contiguous plants
are separated by straw in the image space.

guarantee, especially for large farms. Even more laborious is the task of plant-counting
within a plant-breeding scenario. Here, different crop varieties are arranged in micro
plots, such as depicted in Figure 5.6. For each plot, the exact number of emerged plants
has to be measured to compare the emergence performance of the different varieties.

In practice, scenarios occur in which the solution to the plant counting problem can
only be solved to a limited extent with our FCN approach, see Figure 5.7. Mutually
overlapping crop plants often occur when the plants have reached a particular growth
stage and fill the area within and between the rows. In crop production, this row closure
usually occurs a few weeks after sowing. Nevertheless, the knowledge about the exact
number of plants in this growth phase is still valuable, as it helps the practitioners
to predict the yield. In the case of plant breeding, overlapping plants can occur even
earlier, as they are usually sown using the so-called narrow sowing method. Here, the
plants share only a fraction of the usual distance in the crop row between each other.
Moreover, single plants can be fragmented by straw or weeds. Since the FCN approach
performs a pixel-wise classification, we cannot explicitly recognize the individual plants
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Figure 5.8: Our sequential approaches analyze image sequences of local field strips. Given
a sequence of images, It−4, . . . , It, at current timestamp t, FCN-SEQ and FCN-SEQ-STEM
determine a pixel-wise classification (green for crop, red for weed, blue for grass weed) and
FCN-SEQ-STEM jointly predicts the stem positions (crosses) of crop plants and dicotyl weeds,
as shown for It.

by a subsequent connected component analysis as we would either underestimate over-
lapping plants or overestimate fragmented plants in image-space. From this point of
view, the FCN approach is not suitable for counting plants.

However, the FCN-STEM approach can identify the stem area of the plants. This
area is mostly not covered by other plants and is, therefore, a sufficient proxy for the
stand count of plants during the entire season. In our experiment in Section 6.10, we
show that our FCN-STEM is suitable for counting plants under the aforementioned
conditions.

5.4 Exploiting Plant Arrangement for
Generalizing to New Environments

One major development goal in this thesis is to minimize the performance loss in
plant classification when deploying farming robots for weed control equipped with a
previously trained classifier in new and unseen field environments. To achieve a high
generalization performance, we exploit geometric patterns that result from the fact that
several crops are sown in rows. Within a field of row crops (such as sugar beets or corn),
the plants share a similar lattice distance along the row, whereas weeds appear more
randomly. In contrast to the visual cues, this geometric signal is much less affected by
changes in visual appearance. Figure 5.8 depicts an example of an image sequence of
length S = 5 consisting of 4-channel IRGB+INIR images.

In Section 4.4, we explicitly design a probabilistic plant arrangement model to take
information about the spatial arraignment of the plants and weeds into account. In this
chapter, however, we present a way for our fully convolutional neural network-based
approaches to exploit the geometric signal of the plant’s arrangement in an implicit way.
Contrary to the design of handcrafted features, such as coordinate differences between
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plants, we let the network learn this information directly. Therefore, we propose a
novel, vision-based plant classification approach that operates on image sequences.

To allow the network to access information about the plant’s arrangement, we mod-
ify our presented approaches FCN and FCN-STEM by a novel architectural extension.
We call this extension the sequential module. It enables the usage of image sequences
to implicitly encode local field geometry. Concerning our two different classification
tasks, i.e., crop-weed classification and joint crop-dicot-grass classification and stem
detection, we propose to modify the respective architectures in a way that they can
deal with images sequences. We propose (i) FCN-SEQ as a modification of FCN and
(ii) FCN-SEQ-STEM as a modification of FCN-STEM. In both cases, the main dif-
ference is that the sequential version uses our novel sequential model, whereas the
architectures for single-image processing do not.

The use of the sequential module leads to a better generalization performance of
the classifier in previously unseen field environments, even if the visual appearance or
the growth stage of the plants changes between training and test time. The proposed
networks FCN-SEQ and FCN-SEQ-STEM are end-to-end trainable and also rely nei-
ther on pre-segmentation of the vegetation nor on any kind of handcrafted features.
In the following Section 5.4.3, we describe our FCN-SEQ approach for plant classifi-
cation using images sequences, and in Section 5.4.4, we describe the FCN-SEQ-STEM
approach for joint stem detection and plant classification.

5.4.1 Plant Classification using Image Sequences
Figure 5.9 depicts the S = 5 selected IRGB+INIR images for building the sequence
I = {It, . . . , It−4} as input to our pipeline as well as exemplary predictions and their
corresponding ground truth label masks. To exploit as much spatial information as
possible with a small number of images, we select those images along the traversed
trajectory that do not overlap in object space but have the smallest possible gap over the
observed field area between each other. Figure 5.9 (left) depicts the BoniRob traversing
a crop row and highlights the respective footprints of the images, which we select to
build a sequence. For the image selection procedure, we use the odometry information
and the known calibration parameters of the camera. The rightmost image It refers to
the current image, whereas It−1, . . . , It−4 are selected non-overlapping images from the
history of acquired images.

By inspecting the image sequence shown in Figure 5.9, we can visually recognize
both the crop row and also the similar spacing between the crop plants. This spacing
is also called the intra-row space. Moreover, we can also observe that the weeds do not
follow any specific spatial distribution and grow somewhat randomly in the field.

5.4.2 Sequential Module
In order to learn features encoding the crop-weed arrangement, the network needs to
take the whole sequence that corresponds to a crop row into account. The sequential
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Figure 5.9: BoniRob acquiring images while driving along the crop row. Our approach exploits
an image sequence by selecting those images from the history that do not overlap in object
space. Exemplary prediction of crop plants and weed for the entire image sequence from the
STUTT-CW-15 dataset. Note that these classification results are achieved by the FCN-SEQ
approach when the model was solely trained on the BONN-CW-16 dataset.
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Figure 5.10: FCN-SEQ architecture. Given a sequence of S images, we first compute S visual
code volumes. The visual codes are then again decoded, resulting in the visual features, and
passed to the sequential module, resulting in the sequence code, which are also upsampled to
full resolution by an independent spatial decoder. Finally, the visual and sequence features are
merged, resulting in a pixel-wise probability distribution Iωcws . In the spatio-temporal fusion,
we included the parameters k and d of the dilated convolution.

module represents our key architectural design contribution to enable sequential data
processing. It can be seen as an additional parallel pathway for the information flow and
consists of three subsequent parts, i.e., (i) spatio-temporal fusion, (ii) spatio-temporal
decoder, and (iii) merge layer. Figure 5.10 illustrates the three parts of the sequential
module and shows how they are embedded into the whole architecture.

The spatio-temporal fusion is the core part of the sequential processing. First,
we create a sequential feature volume by concatenating all visual code volumes of the
sequence along an additional time dimension. Second, we compute a spatio-temporal
feature volume, the sequence code, as we process the built sequential feature volume
by a stack of three 3D convolutional layers. Here, the sequential module aggregates the
S visual codes and outputs a single sequence code, which contains information about
the sequential content. We define the 3D convolutional layer analogous to the 2D
convolutional layer, i.e., a composition of convolution, ReLu, batch normalization, and
dropout. In each 3D convolutional layer, we use 16 3D kernels with a size of [5× 5×S]

to allow the network to learn weight updates considering the whole input sequence. We
apply the batch normalization to all feature maps jointly regardless of their position in
the sequence.

To allow the network to potentially exploit even more context information from the
sequence, e.g., to extract the geometric arrangement pattern of the plants, we propose
a further architectural design choice. We increase the receptive field for subsequently
applied 3D convolutional layers in their spatial domain. To achieve this, we increased
the kernel size k and the dilation rate d of the 3D kernels for subsequent 3D convo-
lutional layers. We increase k and d only for the spatial domain of the convolution,
i.e. [k × k × S] with k = {5, 7, 9} and [d × d × 1] with d = {1, 2, 4}. This leads to
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a larger receptive field of the spatio-temporal fusion, allowing the model to consider
the entire encoded content of all images along the sequence. In our experiments, we
show that the model gains performance by using an increasing receptive field within
the spatio-temporal fusion.

The spatio-temporal decoder is the second part of the sequential module that up-
samples the produced sequence code to the desired output resolution, resulting in the
sequence features. Analogous to the visual decoder, we recurrently perform the upsam-
pling followed by a bottleneck layer and a dense block to generate a pixel-wise sequence
features map. To achieve an independent data processing of the spatio-temporal de-
coder and visual decoder, we neither share weights between both pathways nor connect
them via skip connections with the encoder.

The last building block of the sequential module is the merge layer. Its main
objectives are to merge the visual features with the sequence features and to compute
the label mask as the output of the system. First, we concatenate the input feature
volumes along their feature axis and pass the result to a bottleneck layer using 12

kernels, where the actual merge takes place. Then, we pass the resulting feature volume
through a stack of two 2D convolutional layers. Finally, we convolve the feature volume
into the label mask using a bottleneck layer with C kernels for respective class labels and
perform a pixel-wise softmax along the feature axis. Figure 5.10 illustrates the details
of the specific number of layers and parameters. Furthermore, in our experiments in
Section 6.3.2, we evaluate the influence of our key architectural design decisions.

5.4.3 FCN-SEQ: Architectural Concept
Our proposed FCN-SEQ approach is an extension of the FCN approach through the
integration of our proposed sequential module. Thus, we transform the FCN model
for single images into a sequence-to-sequence model. Analogous to the FCN, the input
is either given solely by IRGB or IRGB+INIR images and the output is given by Iωcws

considering the classes ωcws ∈ {ωc, ωw, ωs}. Figure 5.10 depicts the conceptual graph
and the information flow of FCN-SEQ from its input to its output for a sequence I of
length S = 5. We divide the overall architecture into three main blocks: (i) the pre-
processing block (green), (ii) the encoder-decoder fully convolutional neural network
(orange), and (iii) the sequential module (blue).

The S visual encoders share their weights along the time axis such that we reuse it
as a task-specific feature encoder for each image separately. They can also be seen as
one visual encoder, which is applied S times. This leads to the computation of S visual
codes being a compressed, but highly informative representation of the input images.

We route the visual code along two different paths within our network. First, each
visual code is passed to the decoder of the encoder-decoder fully convolutional neural
network, also sharing its weights along the time axis. Analogous to the S visual code
volumes, this computation also leads to S decoded visual features volumes. Thus, the
encoder-decoder fully convolutional neural network is applied to each image separately.
Second, all visual code volumes of the sequence I are passed to the sequential module.
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The sequential module processes the S visual codes jointly as a sequence by using
3D convolutions and outputs a sequence code, which contains information about the
sequential content. The sequence code is then passed through a spatio-temporal decoder
to upsample it to the same image resolution as the visual features, the sequence features.
The resulting visual feature maps and the sequential feature maps are then merged to
obtain the desired label mask output.

To facilitate the recovery of spatial information, we use skip-connections and con-
catenate feature maps produced by the dense blocks in the encoder with the corre-
sponding feature maps produced by the upsampling in the decoder and feed both fea-
ture volumes into a bottleneck layer to fuse them. In contrast to the encoder, we reduce
the systematic increase of feature maps for the decoder by omitting the concatenation
of the input of a dense block with its respective output.

We designed the FCN-SEQ approach to have different behaviors during training and
test time. During training time, we treat it as a sequence-to-sequence model. Thus,
we use all S predictions to obtain the loss signal, which is responsible for the weight
updates during the backpropagation step of the training. During test time, however,
we treat the network as a sequence-to-one model, only computing the visual features
in the decoder part for the latest acquired image in the sequence.

5.4.4 FCN-SEQ-STEM: Architectural Concept
This section describes our last fully convolutional neural network-based approach.
FCN-SEQ-STEM is an extension of the FCN-STEM approach through the integration
of our proposed sequential module. It performs joint stem detection and pixel-wise
classification of plants by analyzing image sequences. Analogous to FCN-STEM, the
input is either given solely by IRGB or IRGB+INIR and the output is given by Iωcdgs

considering the classes ωcdgs ∈ {ωc, ωd, ωg, ωs}.
In the following discussion, we will not distinguish between the plant and stem

decoder, since they are architecturally the same. However, note that the decoders for
stems and plant segmentation do not share weights. We will use the term visual decoder
to denote both decoders.

Except for the sequential architectural parts, the FCN-SEQ-STEM network follows
the structure of its non-sequential counterpart FCN-STEM. For the sequential module
and the spatio-temporal decoder, however, FCN-SEQ-STEM follows the FCN-SEQ
architecture.

Figure 5.11 shows the network architecture and the information flow from the input
to the output for a sequence I of length S = 5. Conceptually, we have a network with
one visual encoder and two task-specific visual decoders such as in FCN-STEM that
takes only a single image as input and produces a single plant label mask and a single
stem region mask. Thus, the visual encoder as well the task-specific decoders share
their weights over different timesteps, respectively. This is key for using the same
architecture for learning plant classification and stem locations. To integrate sequence
information, we use the sequential module described in Section 5.4.2 that takes S
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Figure 5.11: FCN-SEQ-STEM architecture for sequential joint stem and plant classification.
We first encode the input images using the encoder and then pass the feature volumes to the
task-specific decoders as well as to the sequential module. The respective decoded features
for plant classification and stem detection are then merged with the spatio-temporal features
leading to two outputs, the plant mask Iωcdgs considering the classes ωcdgs ∈ {ωc, ωd, ωg, ωs}
for the pixel-wise classification of the plants and the stem mask Iωcds considering the classes
ωcds ∈ {ωc, ωd, ωs} for the segmentation crop-weed stem regions. Finally, we extract the stem
positions from the stem mask in the stem extraction.
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encoder feature volumes and produces the sequence features. The sequence features
are then merged with the outputs of the S task-specific decoders for plant classification
and stem detection. Finally, we extract pixel-accurate stem positions from the stem
mask using the postprocessing step as described in Section 5.3.2.

5.5 Summary
In this chapter, we presented different approaches to the fully convolutional neural
network-based plant classification. All these approaches follow the main pipeline shown
in Figure 5.1.

First, we propose our basic architectural design, i.e., our FCN approach, which
is a self-designed, lightweight encoder-decoder structured network architecture that
performs a pixel-wise classification.

Subsequently, we extend our basic FCN approach to also processes UAV images.
Therefore, we adjust the receptive field to use a larger area in the image for the clas-
sification of a pixel. We call this approach FCN-UAV. This approach can implicitly
incorporate information about the relative arrangement of plants in the feature extrac-
tion as in considers a larger part of the image for optimizing its parameters.

We introduce our FCN-STEM approach, which represents a single model for jointly
determining stem locations of plants and the pixel-wise classification of plants. In
addition, we present FCN-UAV-STEM for the application of plant counting.

Next, we propose to exploit additional geometric information about the local ar-
rangement of the plants by analyzing image sequences that implicitly carry the in-
formation about the plant arrangement for a local field strip. Therefore, we design
the sequential module, which is a subnetwork that analyzes visual features of consec-
utive images from a sequence and extracts spatio-temporal features that encode the
field geometry. The integration of the sequential module into our approaches FCN
and FCN-STEM leads to our contributions and novel approaches FCN-SEQ and FCN-
SEQ-STEM, respectively.

All UGV approaches achieve a suitable runtime for online in-field operations such
as selective spraying or mechanical weed control.
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Chapter 6

Experimental Evaluation

In Chapter 4 and Chapter 5, we present different vision-based plant classification
approaches based on either traditional machine-learning techniques such as ran-
dom forests or modern machine-learning techniques such as fully convolutional
networks. All systems aim at analyzing images to predict the type, location, and

spatial extent of the crop plants and weeds at pixel-level. On the one hand, the clas-
sification systems provide mobile robots with the classification results online, so that
the robot can carry out actions, such as selective weed control, while driving over the
field. On the other hand, the UAV-based classification provides crucial information for
crop monitoring applications.

In this chapter, we present a comprehensive evaluation of our proposed classification
systems. We collected an extensive database between 2015 and 2019, consisting of
around 26,500 manually labeled images acquired by different UGVs and UAVs in various
field environments located across central Europe. Labeling these 26,500 images was a
task of approximately six person-months and was a substantial effort to realize the
evaluation described in this chapter.

The crop considered in this work are sugar beets, an important row crop in Ger-
many, and other countries of Northern Europe. This database allows us to assess the
performance under challenging real-world conditions and to focus on different aspects.

For UGVs, we assess the performance of all our classification systems in terms of
their ability (i) to separate the vegetation from the background, (ii) to classify crop
plants and weeds enabling robots for selective treatments, and (ii) to classify crop
plants, dicotyl weeds, and grass weeds along with detecting the stem location of the
plants and weeds. The latter classifier enables robots for selective and plant-specific
high precision treatments. In the case of the UAVs, we assess the performance under
the aspects of (i) monitoring the spatial distribution of crop plant and weeds, but also
in terms of multiple weed species and (ii) plant counting.

109



6.1. Evaluation Objectives

6.1 Evaluation Objectives
We design the experiments in this chapter to explicitly analyze the classification per-
formance under the following aspects: for (i) classification performance, (ii) robustness
to changing field conditions, (iii) effectiveness to adapt to new field conditions, and
(iv) runtime.

Classification performance We pursue two different ways to investigate the perfor-
mance of a classifier. First, we report the achieved performance in a pixel-wise manner.
This measure corresponds to the coverage of the crop plants and weeds in the scene.
For this metric, we compare every pixel of the prediction with the associated pixel of
the ground truth. Thus, the resulting precision and recall measures reflect semantic
segmentation performance. The advantage of this metric is that the performance can
be read directly in terms of coverage by individual plants or weeds in the image space.
The downside of this metric is that the performance values often turn out to be to the
disadvantage of the classes with a lower probability of occurrence.

Second, we evaluate the classification systems in terms of an object-wise perfor-
mance, i.e., a metric for measuring the performance closer to the plant-level. Here, we
compare the predicted label mask with the class-wise connected components, e.g. crop
plants and weeds, from the corresponding ground truth. Compared to the pixel-wise
metric, where we perform precision, recall, and F1-score based on the comparison of
individual pixels, the object-wise metric is based on the comparison of objects, i.e.,
connected components. The pixel-wise overlap controls the data association between
objects in the prediction and the ground truth. Two objects are considered to corre-
spond to each other if their overlap is at least of an IoU ≥ 0.5. Throughout the thesis,
we only consider plant segments with a minimum size of 0.15 cm2 in object space. We
consider smaller objects to be noise as they are only represented by a few pixels and
would therefore bias the performance.

For both cases, we report the class-wise F1-score (F1), recall and precision in percent
as well as the average across all classes. We choose these metrics for our evaluation, as
these are interpretable values and allow a direct assessment of the expected performance
in the real-world. For the stem detection task, we analyze the mean average distance
(MAD) representing the error between detected to the actual stem locations. We
provide details on these metrics in Section 2.4.

Robustness to changing field conditions A focus of this thesis is the develop-
ment of crop-weed classifiers that aim at bridging the lack of classification performance
in new fields. Therefore, we explicitly evaluate the generalization capabilities of the
classification systems to new and changing field conditions. We explicitly analyze the
classification performance on datasets that were acquired in different field environ-
ments. Therefore, we train a classifier on data from a particular field and deploy it on
data acquired in another field. We explicitly choose our datasets such that they contain
various growth stages of crop plants and weeds, different weed species, and different
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soil conditions. Throughout this chapter, we refer to these experiments as “evaluation
under changing conditions”.

Effectiveness to adapt to new field conditions The transferability of a classifier
means that its statistical model can be adapted to perform appropriately on new data
that was not part of the initial training phase. We measure the transferability through
the required effort to adapt the classification model to a new dataset. Precisely, we
measure this effort in the number of extra labels that have to be created to re-train the
classifier for the target data in order to achieve a particular performance.

Runtime A model suited for online plant classification on a mobile robot must work
with a minimum required runtime in order to achieve a sufficient throughput at par-
ticular driving speed. The maximum speed of the BoniRob for the datasets, which we
present in Chapter 3, was 0.3 m

s . In this thesis, however, we assume a maximum driving
speed of about 1.4 m

s , i.e., of 5
km
h . Regarding our acquisition setup for UGVs, which we

describe in Section 3.1.1, an image covers about 300mm of the object space along the
driving direction. Thus, the algorithms have to analyze the image with at least 4.7Hz.
Otherwise, the area under the robot cannot be analyzed entirely during travel. Note
that this constraint does not hold for the development of the UAV-specific classification
models. For the UGVs, we evaluate the runtime of our approaches in Section 6.11.

A further development goal of this thesis is to define a single classifier design, which
is suitable to provide high performance and generalization capabilities for the plant
classification tasks. Given a single and consistent architectural design, we can re-train
or adapt the same network as new data arrives through re-using pre-trained weights,
and we avoid to perform expensive hyperparameter searches for different architectures.

Table 6.1 summarizes our proposed approaches that we evaluate in the context of
this experimental evaluation. Note that we have already shown Table 6.1 in Chapter 1.
For better readability and handling of the document, we show the overview of the ap-
proaches here again. The table provides for each approach its name, an abbreviation,
the application, and a small description. In the first order, we distinguish between
random forests and fully convolutional networks. Additionally, we divide the exper-
iments into three categories. The first category focuses on experiments with UGVs,
which perform the classification solely based on visual information, i.e., exploiting vi-
sual features extracted from the images. The second category covers all UGV-based
approaches that take into account additional geometric information about the spatial
distribution of plants and weeds. The third category covers our approaches optimized
for use on UAV images. Across all experiments in this chapter, we compare the per-
formance of the random forest with that of fully convolutional neural networks. What
are the advantages and disadvantages of the two different paradigms? Is one of the
two methods generally more suitable? We contribute to these questions within our ex-
periments. In the case of the UAV experiments, we solely consider RGB data as input
to the classifiers. For the UGVs, however, we have access to additional NIR informa-
tion. Many of the experiments presented here investigate the use of NIR information
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Table 6.1: Overview of our proposed random forest-based and fully convolutional neural network
plant classification systems, which we evaluate in this chapter. Each approach has been either
entirely or partially presented in our published conference papers [82, 85, 86, 88, 89] or journal
articles [83, 84, 87].

Description Random Forest FCN Description
Visual Plant Classification

Described in sections 4.3 and 5.2

Keypoint-based approach
classifying lattice-spaced

keypoints
RF-KP [81, 86] FCN [82]

Fully convolutional
neural network

for plant classification
on single images

Object-based approach
classifying connected

vegetation components
RF-OBJ [87]

Cascaded approach
combining

RF-KP and RF-OBJ
RF-CAS [87]

FCN-STEM [82]

FCN
for plant classification

and stem detection
on single images

Visual and Geometrical Plant Classification
Described in sections 4.4 and 5.4

Geometric classifier
exploiting plant arrangement GC [89] FCN-SEQ [84]

Sequential FCN
for plant classification

on image sequences

Semi-supervised approach
exploiting visual RF-CAS and

and geometric GC classifier
RF-GC [89]

FCN-SEQ-STEM [83]

Sequential FCN
for plant classification

and stem detection
on image sequences

UAV-Based Plant Classification
Described in sections 4.5 and 5.2.2

RF-CAS
exploiting geometric features

for UAV imagery
RF-UAV [88] FCN-UAV [85]

FCN
for plant classification

and stem detection
on UAV images exploiting

larger spatial context

FCN-UAV-STEM

FCN-STEM applied
crop counting and
plant classification

based on UAV imagery
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for plant classification. The camera systems currently available on the market, which
provide RGB and NIR image data, are typically more expensive. Therefore, we analyze
the necessity of NIR information for the plant classification task.

6.2 Experimental Outline and Summary of the
Results

In this section, we outline and summarize all the experiments we conduct in this chapter
and summarize the main conclusions. Due to a large number of experiments, we provide
an overview here instead of a discussion at the end of this chapter. We refer to the
individual experiments in the respective section, which deals with them in detail. For
the readers with limited interest in detailed experiments, skip those and proceed to the
section of particular interest.

Classification Models In Section 6.3, we evaluate the architectural design choices
for random forests and fully convolutional neural network classifiers. For both types
of classification models, we evaluate a common set of hyperparameters that we use
for the experiments throughout this chapter. In certain experiments, however, the
hyperparameters may deviate from the basic set in order to investigate specific aspects
of the approaches. In this case, we explicitly point this out.

We motivate the use of our RF-CAS approach for the plant classification using
random forests. RF-CAS is a classification model for the visual plant classification and
is a cascade of the two subordinated keypoint-based RF-KP and object-based RF-OBJ
approaches. RF-KP can deal with overlapping plants and weeds in the images but
at the cost of being computationally expensive. RF-OBJ has the advantage that it
is substantially faster but cannot deal with overlapping crop plants and weeds. We
show in our experiment in Section 6.3.1.2 that RF-CAS can exploit the respective
advantages of these approaches while compensating their drawbacks, i.e., being fast
and able to deal with overlapping plants and weeds. Finally, we provide an analysis of
the importance of the keypoint-based and object-based features in Section 6.3.1.3. We
show that NIR information plays an essential role in our proposed random forest-based
plant classification. Regarding the fully convolutional neural networks, we show that
our lightweight, self-designed model architecture outperforms state-of-the-art network
architecture for pixel-wise plant classification.

Vegetation Classification In Section 6.4, we analyze the performance of the threshold-
based vegetation classification step that is an essential part for any random forest-based
approach in this thesis. Furthermore, we compare the performance the threshold-based
approach with the one obtained by our FCN approach.

First, we investigate different vegetation indexes in Section 6.4.1 for the threshold-
based vegetation classification and find that the best performing vegetation index is the
NDVI, if RGB+NIR is available, and the ExG if only RGB data is available. We show
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that the NIR information is especially beneficial for the performance under changing
field conditions. Furthermore, we show that automated detection of a threshold by
Otsu’s method [104] fails in situations with imbalanced class occurrences and, thus, is
not suitable for the vegetation classification task. Thus, to achieve a suitable perfor-
mance, the threshold has to be selected manually. This reflects a limitation for the
autonomous deployment, as human intervention is needed.

Second, we show in Section 6.4.2 that our FCN approach provides a high vegeta-
tion classification performance when exploiting RGB+NIR or solely RGB data. The
FCN performance is stable under similar as well as under changing field conditions.
We conclude that fully convolutional neural networks are well suited for the task and
recommend using them in cases when solely having access to RGB data.

The only case in which we see threshold-based approaches as advantageous is when
on the one hand, NIR information is available, and on the other hand, a human operator
supervises the system and can adapt the threshold to changing situations. In such a
situation, the labeling of data and training of classifiers can be circumvented.

Vision-Based Crop-Weed Classification In Section 6.5, we perform experiments
analyzing the vision-based classification performance of our random-forest and fully
convolutional neural network approaches, i.e., RF-CAS, FCN, and FCN-RGB, where
FCN-RGB refers to the RGB-only variant of FCN. We demonstrate that the fully
convolutional neural network-based approaches provide better performance compared
to the random forest-based approach in both cases, under similar and changing field
conditions. We argue that the learned features of the fully convolutional neural network
approaches are more descriptive for the task, provide a better capacity, and generalize
better in new fields compared to the handcrafted features used in the random forest.

We show in Section 6.5.2 that the crop-weed classification using fully convolutional
neural networks is comparable when exploiting solely RGB or RGB+NIR information
under similar field conditions. Thus, having access to labels of similar field condi-
tions can compensate for the use of additional NIR information. Under changing field
conditions, however, neither the fully convolutional neural network nor the random
forest-based approaches provide suitable performance to be capable of being applied
in real-world applications when the classifier is trained once and then deployed in new
and unseen field environments (Section 6.5.1). Adding to this, we also show that a
greater diversity of the training data, e.g., data from different field environments, helps
to learn better features to generalize to new field environments.

Vision-Based Crop-Weed Classification Exploiting Plant Arrangement In
Section 6.6, we evaluate our approaches RF-GC and FCN-SEQ that additionally ex-
ploit the spatial arrangement of the crop plants and weeds within local field strips.
Both classification systems use sequences of images as input and combine visual fea-
tures along with additional geometric features encoding the spatial patterns of plant
locations resulting from the sowing process. The goal of our sequential approaches is
the development of crop-weed classifiers that bridge the lack of generalization capa-
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bilities to new field environments. In these experiments, we evaluate the sequential
classification approaches under similar and changing field conditions and compare the
achieved performance with the one obtained by the non-sequential approaches. Here,
we demonstrate our experiments demonstrate superior generalization capabilities for
the fully convolutional neural network approaches exploiting the plant arrangement
signal and show that the spatio-temporal features are key supporters for the perfor-
mance under changing field conditions. Nevertheless, exploiting the geometric features
also helps to better performance under similar field conditions.

For our random forest-based visual and geometric classification system RF-GC,
however, we observe that it cannot reliably adapt to changing field conditions if no
training data is available from the targeted field environment to properly initialize
its visual and geometric classifier. Under similar field conditions, the system can be
adequately initialized and can compensate for the limited capacity of the handcrafted
visual features to some degree. In Section 6.6.4, we furthermore demonstrate the ability
of FCN-SEQ and RF-GC to extract features encoding the relative arrangement of the
plants through an experiment with simulated data. In this experiment, we switch off
visual information about the color and shape of the plants and show that our sequential
approaches are capable of detecting the plants and weeds only based on geometric
information about their spatial distribution. Finally, we evaluate the effect on the
performance when neglecting the NIR information. We can show that using additional
NIR information aids the generalization capabilities of FCN-SEQ compared to its RGB
variant FCN-SEQ-RGB to new and changing field conditions.

Joint Plant and Stem Detection for Species-Specific Treatments In Sec-
tion 6.7, we conduct experiments to analyze the quality of our vision-based classification
pipelines for joint pixel-wise plant classification and stem detection enabling selective
and plant-specific treatments. For these experiments, we rely on a different database
compared to the previous experiments, as we need labeled data that additionally con-
siders the locations of plant and weed stems as well as an additional grass weed class
for the plant classification. For the additional task of stem detection, we extend our
fully convolutional network architectures with an additional task-specific decoder.

First, we compare our proposed FCN-SEQ-STEM approach against its non-sequential
version FCN-STEM. We show that approaches for joint plant classification and stem
detection provide suitable performance for high precision plant-specific treatments un-
der similar field conditions. The stem detection works properly and provides the stem
locations within a spatial precision of around 2-4mm.

Under changing field conditions, we can show that the fully convolutional neural
network approaches exploiting the plant arrangement signal support superior gener-
alization capabilities. Furthermore, we analyze the effect of using two task-specific
decoders for plant classification and stem detection within one the use task-specific
decoders, which share a single encoder for the feature extraction, aid the performance
for the plant classification and the stem detection.
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Supervised Classifier Transfer in the Context of Labeling Effort In Sec-
tion 6.8, we evaluate the effectiveness of our classifiers to adapt to new and changing
field conditions. We investigate the performance of the classifiers FCN, FCN-SEQ, and
RF-GC in new and changing field environments. We analyze how efficiently we can
adapt the classifiers to the environmental conditions of the targeted field by re-training
them with only a small amount of labeled data. We demonstrate that our proposed
RF-GC approach provides the best adaptability, as it adequately performs in new field
environments requiring only a labeling effort of one minute by a human operator.

We furthermore show that the sequential FCN-SEQ approach can better exploit
smaller amounts of data to adapt to new and changing field conditions compared to its
non-sequential variant FCN.

UAV-Based Plant Classification for Automated Crop Monitoring In Sec-
tion 6.9, we analyze the performance of our UAV-based plant classification systems
for the application of crop-weed classification, multi-species classification, and plant
counting. For the crop-weed classification task, we analyze the performance for high-
and low-resolution imagery, respectively. Note that for all UAV experiments, we solely
consider RGB images as the input to the classification systems. First, we show that
for high-resolution UAV images, our fully convolutional neural network provides bet-
ter crop-weed classification performance under similar as well as under changing field
conditions than our random forest-based approach. A major reason for the better
performance is that fully convolutional neural networks can adequately deal with the
separation of vegetation and soil using RGB data. These results are in line with the
vegetation classification results in Section 6.4. Besides also for the multi-species classi-
fication, the convolutional networks perform better compared to the random forest.

Second, the same observation holds also for low-resolution UAV images. Here, our
FCN-UAV approach performs better than the RF-UAV approach. Especially in cases
where plants overlap, the fully convolutional network approach can show its advantages.
However, the explicit modeling of geometric features in the random forest-based RF-
UAV approach helps to bridge the performance loss when deploying the classifiers in
new and unseen field environments.

Third, we demonstrate that our FCN-UAV-STEM approach, i.e., the approach,
we originally developed for joint plant classification and stem detection, is suitable
to perform UAV-based automated crop counting. Even under harsh field conditions
concerning high weed pressure and overlapping crop plants, our approach provides
results that are better compared to human performance.

Runtime Performance for In-Field Treatments In Section 6.11, we analyze the
runtime of our UGV-based plant classification approaches. We show that all proposed
approaches for this purpose obtain a fast enough runtime of >5Hz enabling agricultural
robots to perform on-field weed control. Our fastest approach is FCN. It can infer up
to 33 images per second.
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6.2.1 General Experimental Setup

In this section, we describe general conditions that apply to all experiments in this
chapter. If an experimental design deviates from these general conditions, we explicitly
state this in the respective section.

In the performance tables, we report the class-wise and average F1-score (F1), pre-
cision (P) and recall (R) in percent to analyze the pixel-wise classification performance
and also the object-wise performance. The term “training” refers to the training data
for a particular experiment, whereas the term “deployment” refers to the used test
dataset on which we report the performance. We report the F1-score for the soil class
as the values for the corresponding precision and recall mostly range between 99.5%
and 99.9%. Note that the performance tables always report the result that is achieved
under a class labeling according to Equation (2.23). For most of the experiments,
we additionally provide precision-recall curves evaluating the class-wise performance
of individual approaches in more detail and to compare different classifiers. For any
object-wise evaluation in this chapter, we consider objects which are of a size of around
≥ 0.15 cm2, as smaller objects are represented only by too few pixels in the image
and, thus, considered to be noise. Note that the evaluation in our related conference
papers [82, 85, 86, 88, 89] and journal articles [83, 84, 87] mostly considers a eval-
uation of objects at a size of ≥ 0.5 cm2. The evaluation in this thesis, however, is
somewhat more challenging, as typically smaller objects are harder to predict well. We
unified all boundary conditions for the evaluations provided in this thesis to ensure fair
comparisons.

For a fair comparison between the random forest-based and fully convolutional
neural network approaches, we train all classifiers from scratch. This means that we
do not use pre-trained weights for the initialization of the networks and that we do not
adapt a threshold for the vegetation classification module of the random-forest-based
during the deployment phase. A challenge for the training of neural networks lies in
the choice of the number of training epochs. Too many epochs for training can lead to
model overfitting on the training data set — too few epochs for training lead instead
to an underfitting of the model. Early stopping is a data-driven method that allows
the training process to be based on the development of performance on a validation
data record not used in training. In general, the goal of early stopping is to stop
training as soon as the model performance stops improving on the validation data set.
In the experiments in this chapter, we stop the training of the fully convolutional neural
networks when the average F1-score for the pixel-wise classification performance on the
validation data does not increase at least 1% over five epochs of training. In the case
of the random forests, none of the approaches in these experiments use the validation
data split.

Throughout our experiments, we analyze the performance of our proposed ap-
proaches under two different aspects. First, we test the performance under similar
field conditions. This means that the classifier is trained on data coming from one or
more field environments and is then deployed on a held-out portion of the test data
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coming from the same field(s). Through this, we measure the performance when the
classifier is aware of the present field conditions in the data, as it was on data that
comes from the same field. Note that we never report the performance on images that
are part of the training data itself. Second, we test the performance under changing
field conditions. We define changing field conditions if the training data and test data
are acquired in different field environments and may be captured by different robots.
Thus, in these experiments, a classifier is not aware of the field conditions within the
deployment phase on the test datasets. The performance under changing field con-
ditions reflects the generalization capabilities of the classification system to new and
changing field conditions.

For the UGV experiments, we evaluate under similar and changing field condi-
tions in the following scheme. For the case of similar field conditions, we analyze the
performance on the respective largest dataset, i.e., on BONN-CW-16 for the crop-weed
classification and BONN-CDGS-16 for the crop-dicot-grass and stem classification. Ad-
ditionally, we combine all available data sets into one overall data set, i.e.,

ALL-DATA-CW = {BONN-CW-16,
BONN-CW-17,
STUTT-CW-15,
ANCONA-CW-18,
ZURICH-CW-16},

ALL-DATA-CDGS = {BONN-CDGS-16,
STUTT-CDGS-15,
ANCONA-CDGS-18,
ZURICH-CDGS-17}.

6.2.2 Training, Validation, and Test Data Splits for UGV
Datasets

The structure of the expected input data differs according to the respective classification
models that we deploy on the UGVs. We distinguish between approaches that operate
on, single images, i.e., RF-OBJ, RF-KP, RF-CAS, FCN, FCN-STEM, and sequential
approaches that operate on image sequences, i.e., FCN-SEQ and RF-GC. To ensure
a fair comparison between all approaches, we use the same image data for training,
validation, and testing, respectively. We split each UGV dataset into chunks of fixed
size. This initial step is required as the sequential approaches require consecutively
acquired images as their input.
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Similar field conditions: One field environment for training, validation, and testing.

Figure 6.1: Data split policy for the experimental evaluation under similar field conditions. We
split the data acquired in a particular field environment into chunks for the training (green)
and validation (blue), testing (no color)

Figure 6.1 illustrates how we select the training, validation, and test split for the
evaluation under similar conditions. Here, we use data coming from one field environ-
ment. We divide the dataset into chunks of consecutively acquired images. The length
of the chunks depends on the total size of the data set but is always a minimum size of
6m along the row in object space. The width of a chunk is defined by the field of view
of the camera system, i.e., around 50 cm. For an experiment under similar conditions,
we split off the test portion of the data consisting of chunks (no color) that are located
in are a particular region of the field. By this, we ensure that we do not mix the test
split with data for the training and validation splits. We then separate the remaining
chunks into the training data (green) and the validation data (blue), see Figure 6.1,
whereas we take care that the validation data contains an example of all considered
class labels. For instance, we avoid to randomly pick a chunk for validation which does
not contain weeds.

Figure 6.2 illustrates the data split for an experiment under changing conditions.
Here, we use data from a particular field environment for training and validation. For
testing, we use the entire data from another field environment.

For the sequential fully convolutional neural network approaches, i.e., FCN-SEQ
and FCN-SEQ-STEM, we create as many sequences as possible from the chunks to
obtain the respective sets of training and validation image sequences. Consider a chunk
contains I consecutive images. Then, we extractN < I sequences of the sequence length
of S that exploit as much spatial information as possible with S images. For a single
sequence, we select those images along the traversed trajectory that do not overlap in
object space but have the smallest possible gap over the observed field area between
each other. An example sequence of S = 5 images is shown in Figure 5.8. Note that
images in the chunk can belong to more than one sequence. However, splitting the
data on the level of chunks ensures that images from the training dataset are not part
of sequences of the validation or test dataset. During training, we then randomly feed
those image sequences into the network, not considering to which training-chunk they
belong. By this procedure, we randomize the training as much as possible. This pushes
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Changing field conditions: Two fields. One for training and validation.

Another field for testing.

Figure 6.2: Data split policy for the experimental evaluation under changing field conditions.
Top: we split the training data (green) and validation data (blue) into chunks. For testing, we
feed the entire data of the targeted field environment into the classifiers.

the network to learn more general visual as well as spatio-temporal features.
For the random forest-based approach RF-CAS, however, we feed the images into

the classifier in a continuous data stream. The reason is that this approach continuously
processes the subsequent images of the last two meters along the crop row to update its
probabilistic arrangement model according to Equation (4.19). The data stream is only
interrupted when the crop row ends or no crops are detected over a certain distance.
In this case, the model is not updated again until two meters have been traveled along
a new crop row. We use this policy on splitting the data throughout the entire chapter
for all experiments with UGVs.

Finally, for the non-sequential approaches, we do not consider the chunk structure
at all. Here, we randomly sample images from the training data and feed them into
the classifier. This includes all the UAV experiments in this chapter.

6.2.3 Image Size
For all UGV experiments in this chapter, we downscale the RGB and NIR images
to a width W = 512 and height H = 384. Concerning the original image size from
the camera’s sensor of W = 1296 and H = 966, this reflects a downscaling factor of
about 2.5. The downscaling of the images leads to a resulting ground sampling distance
of around 1mm in object space. The resizing of the images has two reasons. First,
this procedure reduces the required GPU memory for the fully convolutional neural
networks. Due to the larger feature maps and the multiple uses of the encoder in the
case of image sequences (FCN-SEQ and FCN-SEQ-STEM), the memory requirements
of the models increase accordingly. Second, in the case of random forest, downscaling
mainly results in a faster runtime, as fewer pixels are used for feature extraction. We
downscale the RGB and NIR images before any performed processing and use a bicubic
interpolation for the scaling.
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Figure 6.3: Object-wise crop-weed classification performance for image data of different size.

For both types of classification systems, either fully convolutional networks or ran-
dom forests, we evaluate the effect of the downscaling on the performance for the
crop-weed classification. Therefore, we train the RF-OBJ, RF-KP, and FCN approach
on 70% of the ALL-DATA-CW dataset and evaluate the performance on a 25% held-
out test portion. We repeat this experiment for no downscaling and a downscaling with
factors s ∈ {1.5, 2.0, 2.5, 3.0, 3.5, 4.0}.

Figure 6.3 summarize the obtained object-wise performance in terms of the achieved
average F1-score across all class labels for the ALL-DATA-CW dataset. We choose the
object-wise metric for this evaluation, as it is more sensitive to smaller plants and less
affected by changes in the plant coverage due to the downscaling of the images. The
results suggest downscaling the input with up to a factor of 2.5 does not notably affect
the performance of any approach. A further downscaling, i.e., a ground sampling dis-
tance of less than 1mm

px , leads to a decrease in performance, as can be seen in Figure 6.3.
It affects the keypoint-based approach the most. The results even indicate that larger
image size can also lead to worse performance of the FCN approach. We conclude that
an image size of W = 512 and H = 384 is an appropriate choice, as it reflects the best
trade-off between classification performance and model size and, thus, runtime.

6.3 Plant Classification Models
The experiments in this section are designed to evaluate our architectural design deci-
sions for our random forest and fully convolutional neural network classifiers. Further-
more, we evaluate a basic set of hyperparameters which we then use in the experiments
presented in this chapter.

The main objective of the model selection and tuning of hyperparameters is to
maximize the plant classification performance. The goal is to deploy classifiers, which
provide a high recall and precision for the classification of crop plants and weeds, or
even multiple species in the field. To a certain extent, however, this contradicts the
restriction regarding the required runtime. Typically, larger models achieve better
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performance but provide slower runtime as more computation has to be executed.
We simultaneously address both runtime and performance of the models within the

following experiments. The output of this evaluation is two basic classification mod-
els along with a set of hyperparameters that we use in the remainder of this chapter.
In Section 6.3.1, we propose to aggregate our keypoint-based approach RF-KP and
our object-based one RF-OBJ in a cascade resulting in our base classifier RF-CAS.
Furthermore, we search for the best performing RF-CAS model by evaluating its per-
formance under the variation of certain hyperparameters. In Section 6.3.2, we compare
our proposed FCN architecture with other state-of-the-art architectures and show that
our proposed model provides the best overall performance. In addition to that, we
evaluate its performance to select an appropriate set of hyperparameters.

6.3.1 Random Forest Model

We design the experiments in this section to evaluate a set of hyperparameters for
our proposed random forest-based classifiers and to demonstrate that our RF-CAS
approach, which combines the advantages of RF-KP and RF-OBJ, provides better
results in terms of overall performance and runtime.

6.3.1.1 Hyperparameter Search for the RF-CAS Model

The random forest is an ensemble of decision trees. Regarding [15], the only crucial
decision-tree-specific hyperparameter to tune is the number of randomly selected fea-
tures that are considered to find the best data split given the minimum Gini-score
according to Equation (2.5). We additionally evaluate the number of trees forming the
forest and the maximum allowed depth for a single tree.

Another important hyperparameter of the RF-CAS model, which implies the RF-
KP model, is the definition of the keypoint size and the lattice distance, which controls
the spacing of the keypoints in image-space.

For the experiments in this section, we use the average F1-score as the criterion
for evaluating the performance of a particular hyperparameter. We solely consider the
classes crop and weed. We neglect considering the soil class for the hyperparameter
search as this performance is solely affected by the threshold-based vegetation classifi-
cation described in Section 4.3.1.

We use the ALL-DATA-CW and ALL-DATA-UAV-CW datasets for our evaluation.
Since these datasets are composed of all available crop-weed data sets, they represent
challenging conditions for a classification model and are therefore ideally suited for
the search for hyperparameters. First, we split the respective datasets into distinct
chunks of 75% and 25%. We keep the 25% split out of the experiments in this section,
as we use it later as test data for the evaluation of our approaches. We divide the
remaining 75% into two equal parts and use one to train the classifiers and the other
to validate the performance. We performed several experiments varying the following
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hyperparameters, i.e.,

Number of trees ∈ {10, 25, 50, 100, 150, 250, 500}
Random features ∈ {5, 10, 15, 25, 50, 100}

Depth of trees ∈ {5, 10, 15, 20, 25, 30, 40, 50}
Keypoint size ∈ {[5× 5], [10× 10], [20× 20], [40× 40], [80× 80]}

Lattice distance ∈ {3, 5, 10, 15, 20, 30, 40, 50}

We analyze the performance of the RF-OBJ and RF-KP approach for UGV images on
the ALL-DATA-CW dataset and UAV images on the ALL-DATA-UAV-CW dataset.
The following set of hyperparameters provide the most appropriate result concerning
size, runtime, and performance of RF-OBJ and RF-KP in the case of UGV and UAV
data: number of trees of 100, number of random features of 25, depth of trees of 10,
keypoint size of [10 × 10], and lattice distance of 10. Note that the keypoint size and
the lattice distance are only used in the keypoint-based approach. This configuration of
hyperparameters leads to an average F1-score of around 84% across the classes crop and
weed. Note that we fix this set of hyperparameters for UGV and all UAV experiments
in the remainder of this section.

6.3.1.2 Aggregation of RF-KP and RF-OBJ into RF-CAS

Our proposed RF-CAS classification system represents the base classification model
for the purely visual plant classification based on handcrafted features using random
forests. The RF-CAS approach is a cascade of the two subordinated approaches RF-KP
and RF-OBJ.

Our keypoint-based approach RF-KP has the advantage that it can deal with plants
that overlap in image-space but at the cost of being computationally expensive. In
contrast, our object-based approach RF-OBJ has the advantage that it is substantially
faster than the keypoint-based approach but cannot deal with overlapping crop plants
and weeds. Thus, we combine both approaches in a cascade to explicitly exploit their
respective advantages. To show the advantage of aggregating RF-KP and RF-OBJ in
a cascade, we separately evaluate the respective classification performance of RF-KP,
RF-OBJ, and finally, of RF-CAS.

In sum: we first show that both the keypoint-based classifier RF-KP as well as
the object-based classifier RF-OBJ perform well on real-world datasets and can be
combined to compensate their respective drawbacks. Second, we that the RF-CAS
approach is suitable for classifying crop plants and weeds under challenging real-world
conditions, including a substantial amount of overlapping plants and weeds with an
average processing rate of around 9Hz. The comparison of RF-KP and RF-OBJ is
designed to support our first claim above. We analyze the quality of their respective
classification outputs to motivate the need for a combined approach RF-CAS.

In the evaluation reported below, we use a subset of images from the STUTT-CW-15
dataset. We call this subset STUTT-CW-15-SUB, which poses challenging conditions
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Figure 6.4: Precision-recall curves for the classification performance on the STUTT-CW-15-
SUB dataset. Left: Performance of the keypoint-based approach RF-KP. Middle: Performance
of the object-based approach RF-OBJ. Right: Performance of the cascaded approach RF-CAS.
For a more detailed view on the results, we show only a cropped area of precision-recall space,
i.e. the best 50%.

concerning the downsides of RF-KP and RF-OBJ. It consists of 1,718 images and
represents challenging conditions in terms of weed pressure and inter-class overlap, i.e.,
overlapping sugar beet plants and weeds. Figure 3.10 illustrates some representative
example images reflecting these conditions. We show the RGB+NIR images along with
the corresponding pixel-wise ground truth information.

Regarding the class labels for analyzing the classification results we refer to sugar
beet plants (ωc, green) as crop and weeds (ωw, red) as weed in this section. For the
evaluation of the object-based classification RF-OBJ, we additionally refer to mixed
objects as ωm (black). For all experiments in this section, we define an object as
a mixed object if it consists of both sugar beet and weed pixels, and both classes
contribute with more than 10% of the total pixels each.

We train the random forest of the RF-KP and RF-OBJ according to the set of
hyperparameters that we evaluated in the previous section. We train the approaches
on the same random 75% training split of the STUTT-CW-15-SUB dataset, deploy it
on a 20% test split and use the remaining 5% as validation data. Note that in this
section, we do not use any features about the spatial arrangement of the plants.

The resulting precision-recall curves are depicted in Figure 6.4. They illustrate the
achieved pixel-wise classification performance on the STUTT-CW-15-SUB dataset for
the crop and weed. Note that we intentionally do not present the performance for the
soil class, as it solely reflects the performance of the vegetation classification in the case
of the random forest-based approaches. In the case of the keypoint-based approach,
the term MRF refers to the random forest combined with the MRF, as described in
Section 4.3.5.

For the keypoint-based classification, we achieve maximum overall accuracy of 96%
at t = 0.5, i.e., labeling with the most likely class according to Equation (2.23). This
means that we do not adjust the keypoint-based approach to have a preference for sugar
beet or weed. For t = 0.5, we achieve a recall of 95% for sugar with a precision of 95%.
In terms of weeds, we obtain a recall of 85% with a precision of 84%. As the recall
for sugar beet is 95%, the system classifies the majority of plants correctly and keeps
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the percentage of sugar beet keypoints, which are wrongly classified as a weed, small
with 5%. The corresponding precision-recall plot manifests that nearly all vegetation
pixels, which are classified as sugar beet, are predicted with high confidence. In terms
of runtime, RF-KP analyzes the images on average with a processing rate of around
1Hz.

In terms of MRF smoothing, we gain an improvement of 3% in overall accuracy.
The main reason for that increase in precision for weeds is due to the smoothing of stem
regions, as depicted in Figure 4.9. These results show that the classification results take
advantage of the spatial smoothing of the class labels.

The purely object-based approach RF-OBJ can select among the three classes
{ωc, ωw, ωm} using ω = argmaxω p(ω | Φ(V ,Θ)). We classify 97% of the area cov-
ered by sugar beet plants correctly with a precision of 95%. For weeds, we obtain a
recall of 95% with a precision of 95%. Even most of the mixed object are classified
correctly with a recall of 86%, but with a lower precision of 84% compared to crops and
weeds. This lower performance is due to the substantially smaller number of training
examples for the mixed class. In STUTT-CW-15-SUB, the mixed objects cover around
11% of the vegetation. Because of this, the overall performance of the object-based ap-
proach is limited. In order to deal with overlapping plants, both classification systems
should be combined.

For the cascaded RF-CAS approach, we report the results with a minimum proba-
bility of tOmin = 0.5 in Equation (4.18). Thus, we pass objects that are predicted with a
lower probability tOmin < 0.5 to the keypoint-based approach. Finally, RF-CAS achieves
a recall of 97% for sugar beets with a precision of 95%. In terms of weeds, we obtain
a recall of 90% with a precision of 98%. Generally, the RF-CAS classifier offers a sim-
ilar performance as for the keypoints. The main differences are a better precision for
weeds, which arises from high precision for weed of the object-based classification and
substantially faster execution time of around 10Hz. The RF-CAS approach is faster, as
it processes most of the vegetation in the image with the object-based approach. Thus,
only a few parts of the image are passed through the slower keypoint-based approach.

Figure 6.5 depicts two example classification results on the STUTT-CW-15-SUB
dataset obtained under challenging situations with substantial weeds growing close to
sugar beets. These results indicate the potential of the cascaded classification. The
object-based classification performs almost perfectly, meaning that single sugar beets,
weeds, as well as mixed objects, are classified correctly.

The keypoint-based classification (Figure 6.5, left column) can separate the sugar
beet plants from the adjacently grown weeds but still fails to predict a few keypoints
correctly. However, as a stand-alone classification system, the object-based approach
is not able to separate whole vegetation into crops and weeds (if no mixed labels are
allowed). RF-CAS achieved the best classification performance. Further experiments
supporting our made claims in this section can be found in [87].
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RF-OBJ RF-KP RF-CAS gt

Figure 6.5: Visual illustration of results (one result per row), achieved by the combined classifi-
cation approach. From left to right: keypoint-based, object-based, and combined classification
including mixed (orange) and uncertain (white) objects, combined classification at full resolu-
tion, ground truth. The confidences for crop plants (green) and weeds (red) are encoded with
the radius of the keypoints or in case of objects with the color intensity. Drawn arrows (blue)
indicate classification errors.

6.3.1.3 Feature Importance

Next, we design this analysis to investigate which visual features are important for
the random forest-based crop-weed classification task. Therefore, we train the RF-KP
and RF-OBJ approaches on the entire ALL-DATA-CW dataset and use the internal
out-of-bag estimates of the classifier to measure the feature importance according to
Breiman [15]. The key idea is that each particular feature that is present in a con-
structed tree is permutated, and a classification is performed for the out-of-bag data
points under the permutation. A feature is considered to be more important, the more
its permutation affects the classification performance.

The ten most important features for both, the keypoint-based as well as the object-
based approach, are listed in Table 6.2. As can be seen, the NDVI and the hue informa-
tion, as well as their respective gradient and texture representations, are key supporters
for the keypoint-based classification task. For the object-based classification, the most
relevant features are also related to the NDVI information. Furthermore, the shape
features appear highly relevant, probably, as they describe mostly complete plants in
these settings. For both approaches, the best 50 features (15% of all used features),
hold approximately 44% of the overall feature importance.

Without showing the results in detail, we also performed the same experiment
on the STUTT-CW-15 dataset. The ranking of particular features changes regarding
Table 6.2. However, the NDVI, hue, and lightness appear again under the top ten
important features.
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Table 6.2: The ten most expressive visual handcrafted features for the training on the ALL-
DATA-CW dataset. We present the features for keypoint-based classification as well as for the
object-based classification. See Table 4.1 for an explanation of the features.

Rank Keypoint feature Object feature
1 V9(∇IH) V4(∇INDVI)

2 V7(LBP(∆INDVI)) V8(∇INDVI)

3 V17 → V9∇INDVI/V9∆INDVI V16 Formfactor

4 V4(∆IH) V6(∇IL)

5 V8(LBP(∆INDVI)) V7(∇IL)

6 ∆INDVI V8(∆INDVI)

7 V5(∇IL) V6(∆INDVI)

8 V7(∇IH) V3(LBP(∆INDVI))

9 V6(∇IL) V14 aspect ratio

10 V9(LBP(INDVI)) V3(LBP(∆IG))

6.3.2 Fully Convolutional Neural Network Model

The experiments in this section are designed to evaluate a set of hyperparameters for
our proposed fully convolutional network classifier that we call FCN. We tune the hy-
perparameters and compare our proposed FCN architecture with other state-of-the-art
architectures to show that our proposed model provides superior overall performance.

6.3.2.1 Hyperparameter Search for the FCN Architecture

Bengio [10] provides a list of the most crucial hyperparameters to tune in the case
of fully convolutional neural networks. In the course of writing this thesis, we have
built up years of experience in dealing with various classifiers and influences of hyper-
parameter selection. Based on this experience and in line with Bengio [10], we search
for the following set of optimization specific hyperparameters: (i) initial learning rate,
(ii) learning rate schedule, (iii) batch size, and (iv) the used optimizer.

In terms of the architectural design of the FCN, we modulate the following architec-
tural hyperparameters: (i) number of learnable parameters, (ii) order of layers within
the convolutional layer, i.e., 2D convolution - ReLU - batch normalization and batch
normalization - ReLU - 2D convolution, (iii) the effectiveness of dropout, (iv) using
or avoiding the bias parameter subsequent to the 2D convolution, and (v) the use of
bottleneck layers.

In the following, we will discuss influences and evaluate values for specific hyper-
parameters. For all experiments in this section, we use the average F1-score across all
classes as the criterion for evaluating the performance of a particular hyperparameter.
We use the same data as for the random forest model described in Section 6.3.1.1.
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Architectural hyperparameters We design these experiments to evaluate a set of
architectural hyperparameters for our FCN approach. One of the essential character-
istics of network architecture is its size. The size of the network is correlated with the
capacity of the network, i.e., the ability to encode information. Sufficient capacity is
necessary to solve complex classification problems, such as the pixel-wise classification
of similar objects. Thus, the network size is directly related to the classification perfor-
mance. A further connection of the network size exists with the expected runtime for
the classification. Roughly speaking, the more extensive the network, the more time
the network takes to complete the task and for its training, as more operations need
to be calculated. A larger size of the network, however, causes a slower inference time
during deployment. Additionally, larger networks typically require more training data
to be trained and to reduce the risk of overfitting to a small set of training examples.

We split the network size into its width and depth components. The number of
consecutive convolutional layers defines the network depth. The more layers with non-
linear units are connected in series, the more descriptive features the model can extract
to support classification. The depth of our FCN architecture, which we present in
Section 5.2.1, is again controlled by the number of consecutive dense blocks that are
always followed by a downsampling operation. Thus, the depth-relevant hyperparam-
eters of the network are is the number of convolution layers within a dense block. In
addition to that, we use these parameters to control the network’s receptive field, which
is responsible for the size of the image content used to classify a pixel in the output.

The width of a network is given by the number of parameters of the layers in the
network. Thus, the width is defined over the number of feature maps and the used
kernel size for the convolutions. Thus, concerning our DenseNet-based FCN approach,
we control its width by setting the growth rate for dense blocks, and the number of
feature maps in the first convolutional layer. Note that the number of feature maps
in all other layers, except the last layer in the network, is determined by the internal
network logic described in Section 5.2.1.

We performed several experiments varying the parameters for the depth and width
of our propose FCN architecture, i.e.,

Kernel size ∈ {[3× 3], [5× 5], [9× 9], [15× 15], [25× 25]}
Feature maps in first layer ∈ {8, 16, 32, 64}

Growth rate ∈ {2, 4, 8, 16}
Number of layers in dense block ∈ {2, 3, 4, 5, 6}
Number of stacked dense blocks ∈ {2, 3, 4, 5, 6}

We analyze the performance of the FCN approach for UGV images on the ALL-
DATA-CW dataset and UAV images on the ALL-DATA-UAV-CW dataset. The follow-
ing architecture provides the most appropriate result concerning model size, runtime
and performance in the case of UGV data: kernel size of [5 × 5], 32 feature maps
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in the first layer, the growth rate of 4, number of layers in a dense block of 3, and
number of stacked dense blocks of 3. Given this set of hyperparameters, our model
has around 178,000 trainable parameters. This configuration of hyperparameters leads
to an average F1-score of around 89% across the classes crop, weed, and soil on the
ALL-DATA-CW dataset. In the experiment, there were five further configurations of
hyperparameters, which delivered a better performance of about 90-91% average F1-
score. However, all these models have more than six times the number of parameters.
Therefore, they are more memory intensive and too slow in terms of runtime. Note
that we fix this set of hyperparameters for UGV experiments in the remainder of this
section.

For the case with UAV images, we use almost the same architectural design as for
UGVs, but with the following exceptions: kernel size of [5× 5] and number of stacked
dense blocks of 4. Given this set of hyperparameters, our model has around 340,000
trainable parameters. The increased kernel size and additional dense block followed by
an additional downsampling operation lead to an increase of the network’s receptive
field. This change leads to a performance gain of around 5% in terms of average
F1-score for the ALL-DATA-UAV-CW dataset. We argue that the larger receptive
field enables the network to learn features considering the more spatial context from
the input images, thus enabling the network to extract features describing the relative
arrangement of the plants in the field. Note that we fix this set of hyperparameters for
UAV experiments in the remainder of this section.

We evaluate hyperparameters that are specific to our sequential FCN-SEQ approach
in Section 6.6.3.

Optimization-specific hyperparameters We design these experiments to eval-
uate a set of hyperparameters for our FCN approach that is specific to its train-
ing procedure. As the first two hyperparameters, we test the initial learning rate
and the learning rate schedule. Changing the initial learning rate is about test-
ing, in which the learning rate maximizes the learning progress of the fully con-
volutional neural network. Therefore we tested under which learning rate LR ∈
{1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001} the fully convolutional neural network
provides the best-performance when training for a particular number of epochs. We
set the number of epochs to E = 5. We achieve the best result with a distance of about
4% average F1-score to the second-best performance for a learning rate of LR = 0.01.
Next, we evaluate the learning rate schedule. Therefore, we start with LR and de-
crease the value as training progresses. Therefore, we tested different types, including
a step-wise decay, cyclic learning rate, and a manual schedule. We trained the FCN
for E = 10, respectively, and found no notable difference in performance. However,
decreasing the learning rate by a schedule provides a gain of 5% in average F1-score
compared to the training with a constant LR. Thus, we set the initial learning rate to
LR = 0.01 and divide it by ten after 50,000 performed training steps, i.e., batches. We
fix the aforementioned initial learning rate schedule for all experiments we perform in
this chapter. We also fix these hyperparameters for the experiments in this section.
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Next, we evaluate the effect of the used batch size on the performance of the FCN.
The key idea is that a larger batch size leads to more stable training, as the gradients of
the loss function can be estimated more accurately. However, a larger batch size comes
at the cost of a slower runtime for the training. The batch size further is limited due
to the memory capacity of the used hardware. We tested several batch sizes ranging
from 1-16 on the ALL-DATA-CW and ALL-DATA-UAV-CW datasets and found that
we achieve the best performance with a batch size of 4. This value represents the best
trade-off between training time and performance, given our model and datasets.

Finally, we evaluate the effect on the performance when using different optimizers
for the training such as stochastic gradient descent, RmsProp [144], and Adam [63].
Therefore, we train the FCN approach for ten epochs using the respective optimizers.
We found that Adam and RmsProp lead to a better performance than for the train-
ing with SDG. As the performance of RmsProp and Adam are somewhat similar, we
pick Adam for all further experiments throughout the experimental evaluation in this
chapter.

6.3.2.2 Comparison of FCN with State-of-the-Art Architectures

We design this experiment to show that our proposed FCN architecture provides better
performance compared to other state-of-the-art architectures to show that our proposed
model provides superior overall performance.

There exist many network architectures providing state-of-the-art performance among
different tasks and applications [52, 55, 58, 124, 125, 132].

Our initial approach to plant classification with convolutional neural networks was
to try out some of these approaches for our application. However, we found that the
native implementations of these approaches did not deliver the desired performance
immediately. This fact has led us to develop our network architecture, adapted to
our specific needs. The product of these efforts manifests itself in our proposed fully
convolutional neural network architecture FCN.

To verify that our FCN architecture is the right choice in regards to the plant
classification task, we design the following experiment for a performance evaluation
of FCN against commonly deployed state-of-the-art architectural designs, i.e., Resnet-
34 [52], DarkNet [124], ErfNet [125], MobileNet-V2 [132], and DeepLab-V3+ [22].

Regarding the task of pixel-wise classification, also called semantic segmentation,
we conceptually separate a network architecture into a feature extractor, often called
the backbone or encoder network, and a decoder network. As encoders, we use the
network architectures of Resnet-34, DarkNet, ErfNet, and MobileNet-V2. All these
approaches have been investigated in several studies, and it has been shown that these
architectures are particularly suitable for the extraction of useful features for various
tasks such as image classification, object detection, and semantic segmentation, i.e.,
pixel-wise classification of entire images. A decoder of network architecture, however,
is task-specific. Therefore, we use the best performing decoder DeepLab-V3+, which
is known to us at the time of conducting these experiments. We implemented the FCN
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approach using the Tensorflow library for deep learning [2]. All other architectures are
implemented within an internal modification of the Bonnet package [98], which is an
open-source training and deployment framework for pixel-wise classification in robotics
that builds upon the PyTorch library [109].

We evaluate all architectures regarding their performance in challenging conditions
and under changing field conditions. First, we use the ALL-DATA-CW dataset for
evaluation, as it poses challenging conditions for the classifiers due to its broad internal
diversity regarding different growth stages of plants, weed types, and soil conditions.
We run the training on a 70% training split, test on a 25% split, and use the remaining
5% for evaluation according to Section 6.2.2.

Second, we train the models on 95% of the BONN-CW-16 dataset and test on
STUTT-CW-15, BONN-CW-17, ZURICH-CW-16, and ANCONA-CW-18 datasets.
We average the performance for the test datasets and refer to it with ALLOTHER-CW.
The achieved performance on ALLOTHER-CW reflects the generalization capabilities
to a new field environment. Note that for the FCN approach, this experimental setup
is the same as in our crop-weed classifications experiment in Section 6.5. For all ar-
chitectures, we use the same preprocessing procedure as described in Section 4.2 and
initialize the weights a truncated normal distribution as proposed by [51].

We train the models using the Adam optimizer with a mini-batch size of B = 4

and use a weighted cross-entropy loss according to Equation (2.15), where we penal-
ize prediction errors for the crop plants and weeds by a factor of 10. As the optimal
learning rate schedule depends on the training data in combination with the network
architecture, we first perform an individual hyperparameter search for all baseline ar-
chitectures and report only the best individually achieved performance. Therefore,
we use the same search strategy as proposed for our FCN approach described in the
previous Section 6.3.2.1.

Table 6.3 summarizes the obtained pixel-wise classification performance. For the
second run, we report the performance when averaging the performance measures over-
all used test datasets. The results demonstrate the superior classification performance
of our proposed FCN architecture under similar and changing field conditions.

Regarding similar field conditions, our FCN approach achieves a gain of around 3%
in terms of average F1-score compared to the second-best architecture, i.e., DarkNet.
We make the general observation that all tested baseline architectures have problems
with classification in the marginal areas of plants. The plants and weeds are predicted
too large in many cases so that a remarkable number of actual soil pixels are also
recognized as plant pixels. This leads to a decrease in the precision of the crop and
weed classes, as can bee seen in Table 6.3. Our FCN approach provides sharper results
in these regions. We associate this pattern to the use of DenseNet-like architecture
and the use of skip connection within our approach, see Section 5.2.1. Both these
components can lead to better use of features from earlier layers, which often represent
differently oriented edges in the image data. This, in turn, can lead to better recognition
of the plant edges, which are often characterized by large gradients in the input image.

Also, in terms of changing field conditions, our FCN approach outperforms all
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Table 6.3: Comparison of FCN, Resnet-34, ErfNet, and MobileNet-V2. We report the pixel-wise
average F1-score for the classes crop, weed, and soil.

Approach Average
F1 P R

Training: ALL-DATA-CW (70 %)
Deployment: ALL-DATA-CW (25 %)

FCN (ours) 89.0 85.0 93.8
Resnet-34 84.0 81.2 84.9

ErfNet 79.7 75.5 82.6
DarkNet 85.1 79.2 90.3

MobileNet-V2 76.3 71.2 80.6

Training: BONN-CW-16 (95 %)
Deployment: ALLOTHER-CW

FCN (ours) 72.5 74.9 71.2
Resnet-34 68.6 75.8 64.8

ErfNet 53.4 64.4 45.3
DarkNet 67.6 71.9 67.8

MobileNet-V2 36.3 42.6 34.4

baseline models achieving a gain of around 4% in terms of average F1-score compared
to the second-best architecture, i.e., DarkNet. This indicates that our approach has
slightly better generalization capabilities. Thus, it can exploit the extracted features
better when being deployed in new and previously unseen field environments.

6.4 Vegetation Classification
We design the experiments in this section to analyze the quality of our plant classifi-
cation systems for UGVs regarding their performance for the vegetation classification.
The vegetation classification is a pixel-wise classification considering two classes veg-
etation and soil (background). This binary classification is a key processing step for
the random forest (RF-*) based approaches, as the subsequent plant classification step
relies on it.

We analyze the performance of the vegetation classification module of the random
forest-based approaches, which we present in Chapter 4, and of our proposed FCN
approach, which we describe in Section 5.2 of Chapter 5. In Section 6.4.1, we evaluate
the threshold-based vegetation classification performance exploiting different vegetation
indexes to quantify, which of these indexes is the best image representation for this task.
In Section 6.4.2, we analyze the performance of the FCN approach and compare it to
the threshold-based vegetation classification. We explicitly evaluate the performance
under similar and changing field conditions, as described in Section 6.2.1. Moreover,
we evaluate the effectiveness of exploiting additional NIR information by analyzing
the performance, when using RGB+NIR images as input or when we solely use RGB
images and input.
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6.4.1 Threshold-Based Performance Using Different
Vegetation Indexes

For the targeted application of robotic weed control, it is crucial for the random forest-
based classifiers to achieve a high recall for the vegetation class, as the subsequent
feature extraction as well as the plant classification only further analyze the predicted
vegetation pixels. To analyze which vegetation index serves as suitable representation
for the vegetation classification, we evaluate commonly applied vegetation indexes as
the basis for the threshold-based vegetation classification. To this end, we analyze the
normalized difference vegetation index given in Equation (6.1), the excess green index
given in Equation (6.2), the triangular greenness index given in Equation (6.4), the
normalized difference index given in Equation (6.3), the excess green minus excess red
index given in Equation (6.5), and the color index of vegetation extraction given in
Equation (6.6):

NDVI = NIR − R
NIR + R (6.1)

ExG = 2G − R − B (6.2)

NDI = G − R
G + R (6.3)

TGI = G − 0.39R − 0.61R (6.4)
ExGR = ExG− 1.4R − G (6.5)
CIVE = 0.881G − 0.441R − 0.385B − 18.787 (6.6)

All these vegetation indexes seek to transform the input image into a bimodal index
distribution emphasizing the vegetation pixels through high values and the soil pixels
through low values. Figure 6.6 illustrates example images and the evaluated vegetation
indexes, respectively. Note that we scale and shift the values of all vegetation indexes to
the range of [0, 255] and convert them into an 8-bit representation. Further descriptions
of the indexes can be found in Hamuda et al. [47] and Torres-Sanchez et al. [147].

The goal is to compute a threshold t ∈ [0, 255] to obtain a binary mask separating
the vegetation from the background according to Equation (4.3). First, we manually
search for t by iterating over the entire t ∈ [0, 255] range and select the threshold that
provides the best classification performance considering the ground truth for a training
dataset. We use a random 10% split of the BONN-CW-16 dataset as training data for
the search of t. Through the manual search, we imitate a human operator that selects
an appropriate threshold for the vegetation classification task given the data.

Second, we automatically derive t by using Otsu’s method [104]. Otsu’s method
can be seen as a one-dimensional case of the discriminant analysis of Fischer [32], i.e.,

Q(t) =
σ2
ωv,b

(t)

σ2
ωv
(t) + σ2

ωb
(t)

with t −→ max(Q). (6.7)

Here, ωv refers to the vegetation class and ωb to the background class. The algo-
rithm derives t iteratively. It assumes a bimodal Gaussian distribution and that both
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RGB NIR NDVI ExG

TGI NDI CIVE ExGR

Figure 6.6: Visualization of different vegetation indexes. Note that only the NDVI exploits the
additional NIR information.

modes of the distribution refer to the respective mean values of the classes. By employ-
ing Otsu’s method, we learn a separate threshold for each image in an unsupervised
manner. Thus, we do not need access to labeled data.

Best vegetation index Table 6.4 summarizes the obtained performance for the
threshold-based vegetation classification. In the case of the manually searched thresh-
old, the NDVI-based method outperforms all other vegetation indexes in terms of F1-
score. It provides reliable results with an average F1-score of >90% on every dataset.
Averaging the performance across all used datasets, we achieve around 94% average
F1-score. Thus, it classifies the majority of the vegetation and background pixels cor-
rectly. With an average F1-score of around 88% across all datasets, the ExG serves as
the most appropriate representation regarding the indexes using the RGB information
solely, not requiring NIR information. The obtained average F1-scores for the other
analyzed vegetation indexes achieve a lower performance. Based on these results, we
rely on the NDVI when having access to NIR information and on the ExG when solely
using RGB for the vegetation classification of all random forest approaches.

Figure 6.7 depicts typical results of the obtained vegetation mask IVMASK obtained
through the NDVI- and the ExG-based thresholding. In general, we can observe qual-
itatively that the NDVI-based approach leads to better results for the classification of
vegetation edges, and therefore small objects, such as weeds.

Atomated thresholding Otsu’s automated thresholding achieves a comparably poor
performance across all datasets. The achieved performance never reaches more than
63% average F1-score, which is not sufficient for subsequent plant classification. We
qualitatively inspect the results and conclude that the poor performance of Otsu’s
method is mainly caused by the imbalance in the occurrence of the two classes. On
average vegetation, pixels occur with 2%, whereby the background constitutes the re-
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Table 6.4: Pixel-wise vegetation classification performance obtained through the threshold-
based approach using different vegetation indexes. We either obtain the threshold t by manual
search or estimate it by Otsu’s method [104]. We report the average F1-scores across the classes
vegetation and soil.

Vegetation index NDVI ExG TGI NDI CIVE ExGR

Manual search on: BONN-CW-16 (10%)

90% of BONN-CW-16 95.6 93.6 86.1 72.2 68.8 78.0
BONN-CW-17 92.7 89.7 91.0 78.9 80.6 82.2

STUTT-CW-15 95.1 92.0 75.2 66.6 63.5 72.5
ANCONA-CW-18 95.3 80.5 69.9 57.9 64.6 62.0

ZURICH-CW-16 90.1 83.1 81.6 69.1 73.7 81.5

Average 93.8 87.8 80.8 68.9 70.2 75.2

Otsu’s method [104]

BONN-CW-16 58.1 85.6 68.9 39.9 58.0 49.8
BONN-CW-17 82.5 71.7 68.3 65.3 70.1 62.8

STUTT-CW-15 49.1 45.2 55.1 42.0 42.5 56.5
ANCONA-CW-18 61.7 48.9 66.4 51.6 60.0 52.8

ZURICH-CW-16 45.6 59.4 53.2 45.9 45.9 67.3

Average 59.4 62.2 62.4 48.9 55.3 57.8

RGB NDVI ExG

Figure 6.7: Typical results for vegetation mask IVMASK obtained through the NDVI- and the
ExG-based thresholding. We show an overlay of the mask (white) on top of the RGB image.
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maining 98%. Weed control has to be performed early in the crop season, where this
ration can be even more imbalanced.

We conclude that Otsu’s method is not a reliable option to derive t for the vegetation
detection on our data. Therefore, we next investigate vegetation classification using our
neural network approach and show that by this, we are capable of reliably classifying
vegetation even under changing field conditions.

6.4.2 Comparison of Threshold-Based and Fully
Convolutional Neural Network-Based Vegetation
Classification

In this experiment, we compare the performance of the threshold-based vegetation
classification using the NDVI and the ExG index with the one obtained by our pro-
posed FCN and its RGB-only variant FCN-RGB. In contrast to the threshold-based
approaches, FCN and FCN-RGB learn a rather sophisticated model to solve the task.
We train the fully convolutional neural network models on the same random 10% split
of the BONN-CW-16 dataset, deploy it on an 85% test split, and use the remain-
ing 5% as validation data to perform early stopping as described in Section 6.3.2.1.
This setup reflects the performance under similar field conditions. To furthermore
analyze the generalization capabilities to new and unseen field environments, we also
deploy the trained model on the BONN-CW-17, STUTT-CW-15, ANCONA-CW-18,
and ZURICH-CW-16 datasets.

Table 6.5 summarizes the obtained pixel-wise performance for the threshold-based
and fully convolutional neural network vegetation classification. First, we compare
FCN with FCN-RGB. Under similar as well as under changing field conditions, both
approaches perform on the same level with an average F1-score of 91% across all
datasets (changing and similar). This result is remarkable because the RGB-only vari-
ant FCN-RGB only needs the RGB input to achieve the same performance as with
exploiting the additional NIR information. This pattern is different in the case of the
threshold-based approaches. Here, the NDVI-based thresholding outperforms the ExG-
based variant with around 6% average F1-score across all datasets. Thus, concerning
the vegetation classification, the fully convolutional neural network approaches better
exploit the RGB and compensate for the additional NIR information.

Second, we compare FCN to the NDVI-based thresholding. Here the performance is
mostly comparable with each other on the BONN-CW-16 dataset, i.e., when operating
under similar field conditions. The FCN achieves a pixel-wise average F1-score of
around 97% and the NDVI-based thresholding 96%. By looking at the pixel-wise
performance, the FCN approach provides a solid recall of 99% at a precision of 88%,
which means that 99% of the actual vegetation pixels are classified correctly. Here,
the NDVI-based thresholding approach achieves a recall of 94% at a precision of 90%.
This means that the FCN approach can detect a larger portion of the actual present
vegetation in the data than the threshold-based approaches. The higher recall of the
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Table 6.5: Pixel-wise vegetation classification performance obtained by using the NDVI and
ExG vegetation indexes for the threshold-based classification as well as obtained through our
FCN and FCN-RGB approaches. We report the class-wise and average F1-score (F1), preci-
sion (P) and recall (R) according to Equation (2.23) in percent. For the vegetation class, we
additionally report the object-wise performance.The term training refers to the used training
data for a particular experiment, whereas the term deployment refers to the test dataset.

Approach Average Vegetation Soil
F1 P R F1px Ppx Rpx F1obj Pobj Robj F1

Training: BONN-CW-16 (10%) Deployment: BONN-CW-16 (85%)

NDVI 95.6 94.6 96.8 91.4 89.2 93.8 94.8 90.4 99.7 99.8
ExG 93.6 94.8 92.6 87.5 89.8 85.3 86.5 89.9 83.4 99.7
FCN (ours) 96.6 93.9 99.7 93.3 87.8 99.5 97.4 95.5 99.3 99.8
FCNRGB (ours) 96.0 92.9 99.6 92.2 85.9 99.4 96.8 95.3 98.5 99.8

Training: BONN-CW-16 (10%) Deployment: BONN-CW-17

NDVI 92.7 89.3 96.8 85.8 78.7 94.2 90.2 82.2 99.9 99.5
ExG 89.7 94.9 85.7 79.8 90.4 71.5 87.4 91.0 84.0 99.6
FCN (ours) 91.2 86.0 98.5 83.1 72.1 98.2 92.7 87.0 99.2 99.3
FCNRGB (ours) 91.8 87.6 97.3 84.2 75.3 95.6 90.9 86.1 96.2 99.4

Training: BONN-CW-16 (10%) Deployment: STUTT-CW-15

NDVI 95.1 94.9 95.4 90.4 90.0 90.9 93.8 91.2 96.6 99.8
ExG 92.0 91.6 92.4 84.2 83.4 85.1 88.8 85.2 92.8 99.7
FCN (ours) 94.2 90.5 98.8 88.7 81.0 97.9 90.5 84.6 97.2 99.7
FCNRGB (ours) 92.7 88.4 98.2 85.6 76.8 96.8 87.9 81.8 94.9 99.7

Training: BONN-CW-16 (10%) Deployment: ANCONA-CW-18

NDVI 95.3 94.1 96.5 90.6 88.3 93.1 93.4 90.2 96.9 99.9
ExG 80.6 75.6 88.1 61.4 51.2 76.6 63.9 55.0 76.1 99.7
FCN (ours) 93.6 89.1 99.2 87.2 78.3 98.4 91.4 86.4 97.0 99.9
FCNRGB (ours) 94.1 91.4 97.3 88.4 82.9 94.6 89.1 85.8 92.6 99.9

Training: BONN-CW-16 (10%) Deployment: ZURICH-CW-16

NDVI 90.1 86.1 95.3 80.5 72.2 91.0 86.2 76.0 99.6 99.7
ExG 83.1 92.5 77.2 66.5 85.2 54.5 69.8 86.1 58.7 99.8
FCN (ours) 80.5 72.3 98.6 61.4 44.7 97.8 80.8 68.3 99.0 99.6
FCNRGB (ours) 81.1 73.9 94.9 62.5 47.8 90.2 77.3 69.3 87.4 99.7
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RGB Zoomed

Ground truth and FCN classification Ground truth and NDVI classification

Table 6.6: Illustration of the pixel-wise classification error (gray). Compared to the NDVI-based
thresholding, our FCN approach tends to produce more false positives in boarder regions of the
vegetation, i.e., it predicts pixels as vegetation that actually belong to the soil class. Thus, the
vegetation classification of fully convolutional neural network are more “blobby” compared to
the NDVI-based thresholding.

FCN, however, comes at the cost of predicting more false positives, i.e., pixels that are
predicted as vegetation but belong to the soil class. The achieved recall suggests that
this pattern holds for both the vegetation classification under similar field conditions on
the BONN-CW-16 dataset and under changing field conditions in new and previously
unseen field environments on the BONN-CW-17, STUTT-CW-15, ANCONA-CW-18,
and ZURICH-CW-16 datasets.

Comparing the performance under changing field conditions, we observe a tendency
towards a better classification performance for the NDVI-based thresholding in terms
of the average F1-score. On average, the threshold-based approach achieves a 7%
better F1-score for the vegetation. This gain is mainly caused by the difference in their
performance for vegetation on the ZURICH-CW-16 dataset. Here, the FCN approach
obtains around 20% less in terms of average F1-score compared to the NVDI based
thresholding. This result is due to the reduced precision for the vegetation class of
around 44%. The ZURICH-CW-16 dataset is very challenging, as it contains mostly
tiny plants of a size ranging from 0.15 − 0.5 cm2. This also affects the performance of
the RGB-only approaches, as we see in terms of the achieved recalls.

6.4.3 Difference of Pixel-Wise and Object-Wise
Classification Performance

Figure 6.6 depicts the reason for the systematically lower pixel-wise precision of the
fully convolutional neural network. They tend to predict vegetation objects through
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a more “blobby” shape compared to the NDVI-based thresholding approaches. This
systematic leads to more false positives, i.e., vegetation pixels, which are soil pixels, at
the edges of the plants. Consequently, the fully convolutional neural networks achieve
a lower pixel-wise precision for the vegetation class.

Analyzing the object-wise performance for the vegetation class, the recall Robj for all
approaches on all datasets remains at the same high level than in terms of the pixel-wise
recall Rpx. The interesting point is that the fully convolutional neural network object-
wise precision Pobj is substantially better compared to the pixel-wise precision Ppx. On
average Pobj for the FCN is around 11% and for FCN-RGB around 9% higher than Ppx.
We see no effect when comparing this gain for similar and changing field conditions.

This effect is mainly caused by the “blobby” predictions of the fully convolutional
neural network approaches, as shown in Figure 6.6. In the case of the object-wise
metrics, these blobby predictions do not affect the precision, as an object is classi-
fied correctly if a certain overlap is between the ground truth and predicted object is
given. Thus, from an application point of view, the fully convolutional neural network
approaches perform on the same high level as the NDVI-based thresholding.

6.4.4 Conclusions for the Vegetation Classification
Experiments

Based on the so far presented results, we draw the following conclusions:

First, the best performing vegetation index is the NDVI, if RGB+NIR is available,
and the ExG, if only RGB data is available. However, to achieve a suitable performance,
the threshold has to be selected manually. Otsu’s thresholding fails in a situation
with highly imbalanced class occurrences and, thus, is not suitable for the vegetation
classification task.

Second, the threshold-based vegetation classification using the NDVI provides the
best vegetation classification results if NIR information is available. It performs better
than the fully convolutional neural network approaches under changing field conditions,
thus, generalizes better. However, for the applications of weed removal, the object-
wise metric suggests that the fully convolutional neural networks and NDVI-based
thresholding are on the same level.

Third, the threshold-based vegetation classification substantially benefits from the
additional NIR information. The fully convolutional neural network vegetation classi-
fication performs similar when exploiting NIR or solely using RGB data. Thus, in case
we solely have access to RGB data, a fully convolutional approach (FCN-RGB) is the
method of choice. It can exploit the RGB signal better compared to the threshold-based
approach.
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6.5 Vision-Based Crop-Weed Classification
We design the experiments in this section to analyze the quality of the vision-based
plant classification systems for the UGV systems regarding their crop-weed classification
performance. The crop-weed classification task is a pixel-wise classification considering
the classes crop, weed, and soil (background). Regarding the random forest-based clas-
sification systems, we evaluate the RF-CAS approach, and regarding the deep learning
methods, we evaluate the FCN and FCN-RGB approaches. Note that we do not take
the RGB-only variant of RF-CAS into account, as the evaluation for the ExG-based
vegetation classification in Section 6.4 suggests that no suitable performance can be
obtained for this application.

We perform the experiments in this section in two different variants. The first
setup is designed to evaluate the classification performance under similar field condi-
tions (Section 6.5.1). This means that the deployed classifier has seen examples from
the same field environment during training. The second setup is designed to evaluate
the generalization capabilities of the crop-weed classifiers to changing field environ-
ments (Section 6.5.2). This means that the classifier is trained on data coming from a
particular field and is then deployed in other field environments.

In this section we use the following crop-weed UGV datasets which we describe in
Section 3.2.1: BONN-CW-16, BONN-CW-17, STUTT-CW-15, ANCONA-CW-18, and
ZURICH-CW-16. All these datasets are fully labeled in a pixel-wise manner consider-
ing the classes crop, weed, and soil. The BONN-CW-16 dataset represents our primary
source of training data. It involves around 12,500 labeled images. We acquired every
other dataset on a different field at a different point in time. For the performance
evaluation under similar field conditions, we consider the BONN-CW-16 dataset and
the ALL-DATA-CW dataset, which is an aggregation of all crop-weed datasets. Here,
we train the models on a training portion and test them on a held-out test portion,
respectively. For the performance evaluation under changing field conditions, we solely
train the models on the BONN-CW-16 data and test them on the other dataset, respec-
tively. For all experiments in this section, we use a 5% split of the training datasets as
validation data for the fully convolutional neural network approaches to perform early
stopping.

6.5.1 Performance Under Similar Field Conditions
This experiment is designed to evaluate the performance under similar field conditions
explicitly. We train the classification models on the respective 70% training portions
of the training datasets and test them on the 25% portions, respectively. We use the
remaining 5% portion as validation data to perform early stopping.

Table 6.7 summarizes the obtained pixel-wise crop-weed classification performance
for the tested approaches on the BONN-CW-16 and ALL-DATA-CW datasets. These
results are obtained when we select the class with the highest probability from the
predicted distribution across the class labels. For the sake of brevity, we only report
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Table 6.7: Pixel-wise crop-weed classification performance under similar field conditions. We
report the class-wise and average F1-score (F1), precision (P), and recall (R) for labeling with
the most likely class according to Equation (2.23) in percent. The term training refers to the
used training data for a particular experiment, whereas the term deployment refers to the test
dataset.

Approach Average Crop Weed Soil
F1 P R F1 P R F1 P R F1

Training: ALL-DATA-CW (70%) Deployment: ALL-DATA-CW (25%)

FCN 89.0 85.0 93.8 92.4 88.4 96.7 74.7 66.7 85.0 99.8
FCN-RGB 86.2 81.1 92.9 90.2 84.6 96.6 68.8 59.1 82.3 99.7
RF-CAS 82.0 79.1 85.7 81.1 80.2 82.1 65.3 57.5 75.6 99.5

Training: BONN-CW-16 (70%) Deployment: BONN-CW-16 (25%)

FCN 89.7 84.6 96.7 94.8 91.5 98.4 74.4 62.5 91.8 99.8
FCN-RGB 89.1 84.2 95.7 94.3 90.8 98.0 73.2 62.0 89.3 99.8
RF-CAS 84.4 79.2 91.9 90.6 86.6 94.9 63.1 51.5 81.3 99.5

the F1-score for the soil class as the values for the precision and recall mostly range
from 99.5%-99.9%. Thus, it is a nearly perfect classification.

First, we analyze the pixel-wise performance of the fully convolutional neural net-
works on the ALL-DATA-CW dataset. As this dataset is an aggregation of all crop-weed
datasets used in this thesis, it contains the largest variety of field conditions, including
different growth stages of the crop plants, several weed types present at different growth
stages, and diverse soil conditions. In addition to that, the contributing datasets are
acquired under different illumination conditions. With an average F1-score of 86%
obtained by the FCN and 84% obtained by FCN-RGB, the fully convolutional neural
network approaches perform well and on a comparable level. Both approaches achieve
a recall of around 97% for the crop plants and 90% for the weeds. Thus, they classify
most of the actual vegetation correctly. Regarding the weed class, both approaches
achieve precision ranging from 48%-52%. Figure 6.8 (left) depicts the corresponding
precision-recall curves.

We observe an advantage in terms of precision for the FCN approach exploiting the
NIR information. We argue that the NIR information enables a better classification of
class boundaries. The described effect on the precision is specifically noticeable for the
weed class since, on average, the weeds are smaller in the ALL-DATA-CW dataset and
therefore have a lower pixel-wise probability of occurrence, in terms of the object-based
performance illustrated as a precision-recall curve in Figure 6.8 (right). However, the
fully convolutional neural networks achieve high F1-scores of around 96% for weeds.
This difference between the pixel-wise and object-wise metric is caused by the effect of
“blobby“ predictions for small weeds, as described in Section 6.4.3. First, the object-
wise metric is less affected by falsely predicted pixels on borders of plants and weeds.
Second, the dataset contains a large number of small weeds that are correctly predicted
concerning the object-wise metric, but cause a larger error in the pixel-wise metric in
the case of incorrectly classified object boundaries, see Section 6.4.3.
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Figure 6.8: Precision-recall curves for the classification performance of the fully convolutional
neural network approaches on the ALL-DATA-CW dataset. FCN has a slight advantage for
the classification of weeds. For the object-wise performance, the overall performance for both
fully convolutional neural network approaches is comparable.

Second, we analyze the performance of the fully convolutional neural networks on
the BONN-CW-16 dataset containing sugar beets and weeds observed over an entire
season. Here, we find higher comparability of the results in the comparison to the per-
formance on ALL-DATA-CW. Both approaches achieve an average F1-score of around
90%. This performance is, on the one hand, better and, on the other hand, more sim-
ilar between FCN and FCN-RGB compared to the performance on ALL-DATA-CW.
As the main reason for this, we see the overall lower diversity in the data. As a result,
the FCN approach no longer has a notable advantage over FCN-RGB. These results
indicate that FCN-RGB can learn discriminative features, which are sufficient for the
crop-weed classification task, by solely exploiting the RGB information under similar
field conditions.

Third, we analyze the performance of the RF-CAS approach on both datasets.
Compared to the fully convolutional neural network, RF-CAS obtains comparably low
average F1-scores of around 76% for the BONN-CW-16 and 69% for the ALL-DATA-
CW dataset. We investigated the confusion matrices according to these results and
found that the largest source of error is due to misclassification between classes crop and
weed. This statement is also backed by a previous vegetation classification experiment
in Section 6.4.2. Here, the NDVI-based vegetation classification that is used within
RF-CAS achieves around 94% average F1-score across all datasets. Thus, most of the
confusion goes into the separation of crop plants and weeds. We argue that the learned
features do not provide the necessary capacity to cope with the diversity of the visual
appearance, the crops plants, weeds, and soil conditions. For clarification, we once again
call the performance of RF-CAS on a data set with less intrinsic diversity, namely the
experiment on the STUTT-CW-15-SUB data set discussed in Section 6.3.1.2. Here,
RF-CAS achieves an average F1-score of around 94%. Together with the results from
this section, this pattern suggests that RF-CAS delivers a worse performance with
increasing diversity in the data.
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FCN

BONN-CW-16 BONN-CW-17 STUTT-CW-15 ANCONA-CW-18 ZURICH-CW-16

FCN-RGB

RF-CAS

Figure 6.9: Qualitative results for the crop-weed classification performance of FCN, FCN-RGB,
and RF-CAS under similar field conditions. We show a representative example per approach
and per dataset. Top rows: RGB image. Middle rows: ground truth overlayed on RGB image.
Bottom rows: predictions overlayed on the NIR image. Crop plants (green) and weeds (red)
represent the pixel-wise classification.
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Finally, we qualitatively analyze the performance of FCN, FCN-RGB, and RF-
CAS. Figure 6.9 depicts analyzed images from the experiment on the ALL-DATA-CW
dataset. The visual comparison of the fully convolutional neural network and random
forest approaches coincides with the quantitative results. The fully convolutional neural
network-approaches are better able to identify crop plants and weeds in this experiment.
The results on the BONN-CW-16 and ZURICH-CW-16 dataset show that the fully
convolutional neural networks properly segment tiny plants, and the results on the
STUTT-CW-15 datasets demonstrate their ability to produce correct classifications in
situations with high crop-weed overlap. We found that most of the error is due to the
wrong classification of vegetation pixels close to class borders. The analysis of RF-CAS
shows that this approach mainly has problems in distinguishing between crop plants
and weeds and not in terms of separating the vegetation from the soil. Thus, the
NDVI-based segmentation works appropriately, whereas the subsequent classification
is not capable of providing a suitable crop-weed classification under these conditions.

6.5.2 Performance Under Changing Field Conditions
This experiment is designed to evaluate the performance under changing field conditions
explicitly. We train the RF-CAS, FCN, and FCN-RGB approach using a 95% training
portion of the BONN-CW-16 dataset and test on the entire BONN-CW-17, STUTT-
CW-15, ANCONA-CW-18, and ZURICH-CW-16 datasets. We use the remaining 5%
portion of the BONN-CW-16 dataset as validation data to perform early stopping.
Through this, we can evaluate the generalization capabilities of the crop-weed classifiers
for different field environments. For the application of an agricultural robot in a weed-
control scenario, we want to train a “good enough” classifier for the application once
and then deploy it on different robots operating in different field environments, where
the visual appearance of the crop plants, weeds, and soil cannotably change. Thus,
from an application point of view, this experiment reflects practical circumstances for
the classifiers.

Table 6.8 summarizes the obtained pixel-wise crop-weed classification performance.
For the sake of brevity, we only report the F1-score for the soil class, as the values for
the precision and recall mostly range from 99.5%-99.9%.

Concerning the performance under similar field conditions, see Section 6.5.1, we
observe a substantial loss in performance for all approaches on every test dataset under
changing field conditions. In terms of the pixel-wise performance, we achieve an average
F1-score of around 68% by RF-CAS, 71% by FCN-RGB, and 73% by FCN averaging
all datasets. All tested approaches obtain their best performance on the BONN-CW-17
dataset. All approaches obtain the lowest performance on the ZURICH-CW-16 dataset.
Considering the cross-dataset domain shift described in Section 3.2.1, these results are
expected because the domain shift between BONN-CW-16 and BONN-CW-17 is the
smallest and between BONN-CW-16 and ZURICH-CW-16 is the largest. However,
even for the BONN-CW-17 dataset, the obtained recall for the crop class ranges from
52% to 73%.
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Table 6.8: Pixel-wise crop-weed classification performance under changing field conditions. We
report the class-wise and average F1-score (F1), precision (P), and recall (R) for a labeling with
the most likely class in percent according to Equation (2.23). The term training refers to the
used training data for a particular experiment, whereas the term deployment refers to the test
dataset.

Approach Average Crop Weed Soil
F1 P R F1 P R F1 P R F1

Training: BONN-CW-16 Deployment: BONN-CW-17

FCN 78.9 76.4 85.6 78.4 84.6 73.0 58.8 45.1 84.4 99.5
FCN-RGB 76.5 78.2 79.3 70.5 87.5 59.0 59.3 47.4 79.3 99.6
RF-CAS 68.8 68.3 71.4 57.8 65.0 52.0 49.2 40.4 62.8 99.5

Training: BONN-CW-16 Deployment: STUTT-CW-15

FCN 66.3 63.6 77.3 54.8 60.9 49.8 44.4 30.4 82.6 99.6
FCN-RGB 64.6 67.9 72.6 54.4 77.3 42.0 39.9 27.0 76.2 99.5
RF-CAS 63.3 68.0 60.2 57.3 59.9 55.0 32.6 44.4 25.8 99.8

Training: BONN-CW-16 Deployment: ANCONA-CW-18

FCN 71.1 68.0 84.2 81.3 83.6 79.2 32.2 20.6 73.5 99.8
FCN-RGB 73.7 70.7 78.5 75.3 75.6 75.1 45.8 36.8 60.7 99.8
RF-CAS 68.3 67.1 70.1 57.2 59.4 55.1 48.1 42.3 55.7 99.6

Training: BONN-CW-16 Deployment: ZURICH-CW-16

FCN 62.9 54.1 84.1 41.2 29.4 68.9 47.8 33.4 83.8 99.6
FCN-RGB 64.6 58.2 76.6 49.4 42.1 59.7 44.9 32.9 70.5 99.7
RF-CAS 61.5 67.5 60.5 29.3 52.1 20.4 55.3 50.4 61.2 99.9
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Figure 6.10: Precision-recall curves for the pixel-wise classification performance of the FCN,
FCN-RGB, and RF-CAS approach. The precision-recall curve is computed using all test images
from all test datasets. Thus, it reflects the generalization capabilities to new and unseen field
environments.
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Figure 6.10 depicts the precision-recall curves for the pixel-wise and object-wise
crop-weed classification performance computed under the consideration of the entire
set of test images coming from all test datasets, i.e., BONN-CW-17, STUTT-CW-15,
ANCONA-CW-18, and ZURICH-CW-16. This performance reflects the average per-
formance across all datasets and thus the generalization capabilities to new and unseen
field environments. We observe an achieved average recall for weeds of around 85% by
the FCN, 77% by the FCN-RGB, and 78% with the RF-CAS approach. Thus, none of
the tested approaches reaches the level of currently applied non-precision mechanical
tools. Moreover, a robot equipped with these classifiers would accidentally remove a
substantial amount of sugar beets in an autonomous weed control scenario by con-
sidering actual crop plants as weeds. The pixel-wise performance of the classifiers on
the other test datasets is even lower. Neither the fully convolutional neural network
approaches nor the random forest-based approach can provide suitable performance for
autonomous field intervention in new field environments.

When comparing the fully convolutional neural network approaches and RF-CAS,
it becomes clear that the fully convolutional neural network approaches outperform
RF-CAS by around 10% in terms of the average F1-score averaging across all datasets.
This means that the fully convolutional neural network-based approaches serve better
generalization capabilities to new and unseen fields compared to the random forest
approach. Most errors of the RF-CAS approach are caused by the distinction of crop
plants and weeds and less by the separation of vegetation and background. On the
one hand, this means that fully convolutional neural networks can extract more gen-
eral features for the classification task of crop and weed compared to the handcrafted
features. On the other hand, the vegetation detection using NDVI generalizes well in
new fields. These results are consistent with previous observations in Section 6.5.1 and
Section 6.4.2.

Finally, we discuss the performance of FCN in comparison to the one obtained
by FCN-RGB. In terms of the individual average F1-scores for the respective test
datasets, the FCN provides a better crop-weed classification performance leading to an
average gain of 3% over its RGB-only variant. Differently than the performance under
similar field conditions, the NIR information seems to be useful information for the
fully convolutional neural network for the generalization capabilities in a new field.

Figure 6.11 illustrates qualitative classification results of the classifiers RF-CAS,
FCN, and FCN-RGB under changing field conditions. The analysis of the qualitative
result illustrates that all approaches substantially lack in performance when the visual
appearance of the plants, weeds, and soil has notably changed between the training
and deployment phase of the classifier.

6.5.2.1 Generalization Capabilities Under Training Data Diversity

In the previous experiment, we trained the classification models on the BONN-CW-16
dataset and deployed them for all other test datasets from different field environments.
This experiment is designed to evaluate the effect on the model performance if we train
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FCN

BONN-CW-17 STUTT-CW-15 ANCONA-CW-18 ZURICH-CW-16

FCN-RGB

RF-CAS

Figure 6.11: Qualitative results for the crop-weed classification performance of FCN, FCN-
RGB, and RF-CAS under changing field conditions. We show a representative example per
approach and per dataset. Top rows: RGB image. Middle rows: ground truth overlayed on
RGB image. Bottom rows: predictions overlayed on NIR image. Crop plants (green) and weeds
(red) represent the pixel-wise classification.
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Figure 6.12: Precision-recall curves for the classification performance achieved by the FCN⋆ and
FCN approach on the STUTT-CW-15 dataset. FCN⋆ achieves a better performance, especially
in terms of the object-wise metric.

our model on a more extensive and even more diverse training dataset. The idea is to
perform the training of the classifier already using data from different field environments
containing crop plants, different weed species and at several growth stages, and different
soil conditions. Furthermore, the data has been acquired under different illumination
conditions. Thereby, we want to investigate whether the classifier is able to extract
features that work more robust in changing field conditions. If this is the case, this
experiment should lead to better performance on data coming to a further new field
environment.

We train the FCN on 95% of an aggregated dataset that involves the entire BONN-
CW-16, BONN-CW-17, ANCONA-CW-18, and ZURICH-CW-16 datasets. We use the
remaining 5% portion as validation data to perform early stopping. Then, we deploy
the classifier on the STUTT-CW-15 dataset. We expect that the classifier, which
we call FCN⋆ in this experiment, provides better performance on the STUTT-CW-15
dataset compared to the performance obtained in the previous experiment when FCN
was trained solely on the BONN-CW-16 dataset.

Figure 6.12 depicts the precision-recall curves for the pixel-wise and object-wise
crop-weed classification performance achieved by the FCN⋆ and FCN approach on the
STUTT-CW-15 dataset. The comparison shows that the classifier FCN⋆ performs bet-
ter on the STUTT-CW-15 data than that of FCN. In other words, greater diversity in
the training data can help to increase the generalization capabilities of the classifica-
tion model. If we look at the results from an absolute performance point of view, even
FCN⋆ cannot provide sufficient performance in a real-world application. Object-wise, it
achieves a recall of 68% at a precision of 60% for the crop class. For weeds, it achieves
a recall of 76% at a precision of 79% under labeling with the most likely class.

We also performed this experiment for other combinations of training and test
data. We conclude that the generalization capabilities increase with the diversity of
the training data, but the absolute performance does not reach a sufficient level for
real-world applications such as robotic weed control. Nevertheless, these results show
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that it is worthwhile to build up a diverse training database to exploit the potential of
diverse training datasets.

6.5.3 Conclusions for the Crop-Weed Classification
Experiments

The results presented in this section lead to the following conclusions:
First, the fully convolutional neural network-based approaches provide better per-

formance compared to the random forest-based approach in both cases, under similar
and changing field conditions. We conclude that the learned features of the fully convo-
lutional neural network approaches are more descriptive for the task, provide a better
capacity, and generalize better to new fields compared to the handcrafted features used
in the random forest.

Second, under similar field conditions, the fully convolutional neural network ap-
proaches do not necessarily rely on additional NIR information. Under changing field
conditions, however, the NIR information aids the generalization capabilities.

Third, neither the fully convolutional neural network nor the random forest-based
approaches provide suitable performance under changing field conditions. Thus, they
are not capable of being applied in real-world applications when the classifier is trained
once and then deployed in new and unseen field environments.

Fourth, for the FCN, a greater diversity of the training data induced by changing
field conditions helps to learn better features to generalize to new field environments.

6.6 Vision-Based Crop-Weed Classification
Exploiting Plant Arrangement

In the previous section, we showed that the performance of both the fully convolutional
neural network-based and random forest-based crop-weed classification system is not
reliable when deploying the classifiers in new and unseen field environments, i.e., in
changing field conditions.

A focus of this thesis is the development of crop-weed classifiers that aim at bridging
the lack of generalization capabilities to new field environments. To achieve more robust
performance in these situations, we propose the approaches RF-GC in Section 4.4 and
FCN-SEQ in Section 5.4 exploiting that within a field of row crops, the plants share a
similar lattice distance along the row, whereas weeds appear more randomly. We eval-
uate our approaches RF-GC, which is a random forest-based classification system, as
well as FCN-SEQ and its RGB-only variant FCN-SEQ-RGB, which are fully convolu-
tional neural network classification systems. Note that we do not take into account the
RGB-only version of RF-GC for the same reason as described in Section 6.5, namely a
too low performance for the ExG-based vegetation classification under changing field
conditions.
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Table 6.9: Pixel-wise performance gain under similar field conditions of the sequential ap-
proaches FCN-SEQ, FCN-SEQ-RGB, and RF-GC compared to their non-sequential approaches
FCN, FCN-RGB, and RF-CAS. We report the average F1-scores.

ALL-DATA-CW BONN-CW-16

avg. F1 avg. F1

FCN-SEQ - FCN 3.0 4.1
FCN-SEQ-RGB - FCN-RGB 3.7 2.6

RF-GC - RF-CAS 6.0 5.0

Our sequential approaches combine visual features along with additional geometric
features that exploit the spatial patterns of plant locations resulting from the sowing
process. Figure 5.9 illustrates a classification result obtained by our FCN-SEQ approach
on the STUTT-CW-15 dataset. The classification model was solely trained on another
dataset from a different field environment, i.e., BONN-CW-16.

We separate the experiments analogously to the previous section into a perfor-
mance evaluation under similar field conditions and under changing field conditions.
To explicitly evaluate the effectiveness of using the plant arrangement information as
an additional feature for the crop-weed classification task, we compare the results of
FCN-SEQ and RF-GC with the one obtained by the purely visual approaches FCN and
RF-CAS. We expect a better performance under similar field conditions and especially
under changing field conditions, as FCN-SEQ and RF-GC exploit an additional source
of information with the geometric features.

In this section, we consider the same datasets as for the crop-weed classification
described in Section 6.5. We keep a 5% held-out portion of the respective training
data sets as validation data to perform early stopping.

6.6.1 Performance Under Similar Field Conditions
This experiment is designed to evaluate the performance under similar field conditions.
We train the classification models on a 70% training portion of the BONN-CW-16
and ALL-DATA-CW datasets and test their performance on a 25% held-out portion,
respectively.

First, we evaluate the effect on the performance when considering the spatial ar-
rangement of the plants. We expect that the performance increases when we use ad-
ditional geometric features for the classification as they encode somewhat independent
information to the purely visual clues. That should intuitively help to solve the task.
Therefore, we analyze the achieved performance of our sequential approaches FCN-
SEQ, FCN-SEQ-RGB, and RF-GC and compare it with the performance obtained by
our non-sequential approaches FCN, FCN-SEQ, and RF-CAS.

Table 6.9 summarizes the difference in the obtained average F1-score for the pixel-
wise classification performance. The biggest beneficiary of geometric features is the
random forest. RF-GC gains 6% on the ALL-DATA-CW and 5% on the BONN-CW-
16 datasets compared to RF-CAS. In absolute numbers, RF-GC achieves a recall of
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>93% at precision >88% for the crop class on both datasets. The geometric classifier
of RF-GC uses the features of the probabilistic plant arrangement model, according
to Equation (4.22). These features compensate for wrongly classified plants and weeds
through the visual classifier. Furthermore, RF-GC constructs new trees for the ran-
dom forest during the classification. Here, it considers examples, where the visual
classifier is uncertain, but the geometric classifier is confident for a particular predic-
tion, see Table 4.2. Through the help of the geometric information, the visual classifier
also becomes better over time. Our investigations of those examples show that these
are mostly predicted crop keypoints or objects that are spatially far away from the
estimated crop row. The results suggest that the RF-GC approach can exploit the
relative arrangement of the plants through the use of an additional geometric classifier
exploiting the features of the probabilistic plant arrangement model.

For weeds, however, the recall obtained by RF-GC is 14% better on BONN-CW-
16 compared to the ALL-DATA-CW dataset. Here fully convolutional neural network
approaches are more stable with a difference of around 3%. The inner diversity in
terms of weed types and field conditions of the ALL-DATA-CW data is higher than for
the BONN-CW-16 data. We argue that the used handcrafted features of the random
forest-based approach are not able to cover the high diversity in the ALL-DATA-CW
dataset. Thus, the use of handcrafted features limits the capacity of the model to some
degree.

Additionally, we evaluate the performance of the fully convolutional neural network
approaches. The FCN-SEQ approach obtains an average F1-score of 92% in terms
of the pixel-wise classification performance on the ALL-DATA-CW datasets. This
result reflects a gain of 3% compared to the performance of its non-sequential variant,
i.e., FCN. Also, for the approaches exploiting solely RGB as input, FCN-SEQ-RGB
gains around 5% compared to its non-sequential variant FCN-RGB. We observe a
similar pattern for the performance comparison of the sequential and non-sequential
approaches on the BONN-CW-16 dataset. These results show that the sequential, fully
convolutional neural network approaches FCN-SEQ and FCN-SEQ-RGB can exploit
the relative arrangement of the plants through analyzing image sequences of local field
strips.

Next, we analyze the effect on the performance when using either RGB+NIR infor-
mation or solely RGB information as input. Therefore, we compare the performance
achieved by the FCN and FCN-RGB approach. Figure 6.13 depicts the performance of
the fully convolutional neural network approaches in terms of precision-recall curves for
every considered class on the ALL-DATA-CW dataset. On pixel-level and object-level,
FCN-SEQ provides solid performance with higher precisions at higher recalls for both
crop plants and weeds compared to FCN-RGB. Table 6.10 summarizes the performance
for a labeling with the most likely class according to Equation (2.23). FCN-SEQ ex-
ploiting RGB+NIR archives a 2% higher average F1-score on both datasets. We can
conclude that, the exploitation of the additional NIR information also leads to a better
performance in the case of the fully convolutional neural network approaches.

Another remarkable result is that FCN-SEQ-RGB, which uses RGB only, has even
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Table 6.10: Pixel-wise crop-weed classification performance under similar field conditions. We
report the class-wise and average F1-score (F1), precision (P), and recall (R) for a labeling with
the most likely class in percent according to Equation (2.23). The term training refers to the
used training data for a particular experiment, whereas the term deployment refers to the test
dataset.

Approach Average Crop Weed Soil
F1 P R F1 P R F1 P R F1

Training: ALL-DATA-CW (70%) Deployment: ALL-DATA-CW (25%)

FCN-SEQ 92.0 87.6 97.6 95.8 93.0 98.7 80.3 70.0 94.2 99.9
FCN-SEQ-RGB 89.9 84.8 96.8 94.2 90.3 98.5 75.7 64.3 92.0 99.8
RF-GC 88.1 86.1 90.5 91.6 89.9 93.3 73.4 68.8 78.6 99.5

Training: BONN-CW-16 (70%) Deployment: BONN-CW-16 (25%)

FCN-SEQ 93.8 89.8 98.8 97.0 94.5 99.6 84.6 75.0 96.9 99.9
FCN-SEQ-RGB 91.7 86.9 98.2 96.0 93.1 99.1 79.2 67.6 95.7 99.9
RF-GC 89.4 84.9 95.1 91.4 88.4 94.7 77.1 66.8 91.2 99.5
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Figure 6.13: Precision-recall curves for the classification performance of the fully convolutional
neural network approaches on the ALL-DATA-CW dataset. FCN has a slight advantage for
the classification of weeds. For the object-wise performance the overall performance for both
fully convolutional neural network approaches is comparable.
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Table 6.11: Object-wise crop-weed classification performance under similar conditions. We
report the class-wise and average F1-score (F1), precision (P) and recall (R) for a labeling with
the most likely class according to Equation (2.23) in percent. The term training refers to the
used training data for a particular experiment, whereas the term deployment refers to the test
dataset.

Approach Average Crop Weed
F1 P R F1 P R F1 P R

Training: ALL-DATA-CW (70%) Deployment: ALL-DATA-CW (25%)

FCN-SEQ 95.9 96.2 95.7 94.8 94.9 94.7 97.0 97.4 96.7
FCN-SEQ-RGB 94.6 95.1 94.2 93.7 92.7 94.8 95.4 97.4 93.5
RF-GC 78.2 80.2 79.5 74.0 87.6 64.0 82.4 72.7 95.0

Training: BONN-CW-16 (70%) Deployment: BONN-CW-16 (25%)

FCN-SEQ 98.6 98.6 98.7 98.3 97.6 99.0 98.9 99.5 98.4
FCN-SEQ-RGB 97.9 98.2 97.6 97.7 97.3 98.2 98.1 99.1 97.1
RF-GC 87.2 86.0 88.6 88.0 85.9 90.2 86.5 86.0 87.0

slightly better performance on both data sets than FCN. Thus, the use of the spatio-
temporal features extracted by the sequential module compensates for the need for the
additional NIR information, at least under similar field conditions.

Finally, we analyze the best performing approach FCN-SEQ on object-level to ob-
tain a performance estimate that is closer to the plant-level. Thereby, these results
provide a better understanding of the expected performance in terms of the applica-
tion of robotic weeding. Here, FCN-SEQ achieves an average F1-scores of 97% for both
datasets, ALL-DATA-CW and BONN-CW-16, with recalls of >95% at a precision of
>95% for both the crop plants and weeds. Also the approaches FCN-SEQ and RF-GC
achieve recalls of >95% at a precision of >95% for crops and >90% at a precision of
>90% for weed. For the weed class, the FCN-SEQ approach performs slightly better
than the RF-GC approach. Thus, all approaches classify the majority of plants and
weeds correctly and obtain results that are suitable for the application in the field.

Figure 6.14 illustrates the qualitative results of the pixel-wise plant classification
under similar field conditions. We show analyzed images from the experiment on the
ALL-DATA-CW dataset. We sort the images according to the origin of the respec-
tive datasets BONN-CW-16, BONN-CW-17, STUTT-CW-15, ANCONA-CW-18, and
ZURICH-CW-16. Visually, we can observe the slightly better performance for the fully
convolutional neural network approaches compared to RF-GC. RF-GC sometimes pro-
duces false predictions for actual weeds that are located close to the crop row. Overall,
all of the approaches provide reliable performance for the crop-weed classification task
on all datasets.

We conclude that the fully convolutional neural network-based approaches classify
the majority of objects correctly and provide substantially better performance than
the random forest-based approach. The fully convolutional neural network features
are more descriptive and provide a higher capacity to classify the data in terms of the
crop-weed classification task under similar field conditions.
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BONN-CW-16 BONN-CW-17 STUTT-CW-15 ANCONA-CW-18 ZURICH-CW-16

FCN-SEQ-RGB
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Figure 6.14: Qualitative results for the crop-weed classification performance of FCN-SEQ, FCN-
SEQ-RGB, and RF-GC under similar field conditions. We show a representative example per
approach and per dataset. Top rows: RGB image. Middle rows: ground truth overlayed on
RGB image. Bottom rows: predictions overlayed on NIR image. Crop plants (green) and weeds
(red) represent the pixel-wise classification.
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Table 6.12: Pixel-wise performance gain under changing field conditions of the sequential ap-
proaches FCN-SEQ, FCN-SEQ-RGB, and RF-GC compared to their the non-sequential ap-
proaches FCN, FCN-RGB, and RF-CAS. We report the average F1-scores.

BONN-CW-17 STUTT-CW-15 ANCONA-CW-18 ZURICH-CW-16

avg. F1 avg. F1 avg. F1 avg. F1

FCN-SEQ - FCN 4.4 18.4 16.4 8.0
FCN-SEQ-RGB - FCN-RGB 3.1 16.6 11.3 1.7

RF-GC - RF-CAS -10.0 -8.8 -9.2 -6.7

Figure 6.15: BoniRob acquiring images while driving along the crop row. We present exemplary
prediction of crop plants and weeds for an image sequence of the STUTT-CW-15 data, where
the classification model has been trained on the BONN-CW-16 dataset. The top row shows
RGB images, the middle row shows the predicted label mask projected on the NIR image (crop
in green, weed in red, background transparent), and the bottom row shows the ground truth
for comparison. These results correspond to an average F1-Score of 87%. For the entire test
images of the STUTT-CW-15 dataset, we achieve around 84%.

6.6.2 Performance Under Changing Field Conditions

We design the following experiment in this section to evaluate the performance under
changing field conditions, i.e., to examine the generalization capabilities of our se-
quential approaches FCN-SEQ, FCN-SEQ-RGB, and RF-GC to new and unseen field
environments. We train all classification models on a 95% training portion of the
BONN-CW-16 dataset and test them on the entire BONN-CW-17, STUTT-CW-15,
ANCONA-CW-18, and ZURICH-CW-16 datasets.

First, we compare the performance of the sequential approaches with the non-
sequential approaches. Thereby, we evaluate the effect of exploiting the information
about the spatial arrangement on the generalization performance. Table 6.12 quanti-
fies the performance gain achieved by our proposed FCN-SEQ, FCN-SEQ-RGB, and
RF-GC approaches on every test dataset by showing the difference in the achieved per-
formance regarding their corresponding non-sequential approaches. Table 6.13 summa-
rizes the obtained pixel-wise crop-weed classification performance for all test datasets.
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Table 6.13: Pixel-wise crop-weed classification performance under changing field conditions.
We report the class-wise and average F1-score (F1), precision (P), and recall (R) for a labeling
with the most likely class according to Equation (2.23) in percent. The term training refers to
the used training data for a particular experiment, whereas the term deployment refers to the
test dataset.

Approach Average Crop Weed Soil
F1 P R F1 P R F1 P R F1

Training: BONN-CW-16 Deployment: BONN-CW-17

FCN-SEQ 82.9 79.5 89.5 83.3 86.9 80.0 65.8 52.2 88.9 99.5
FCN-SEQ-RGB 79.5 79.3 82.5 77.5 87.9 69.3 61.4 50.4 78.5 99.7
RF-GC 58.8 58.3 59.7 35.6 37.3 34.0 41.4 38.0 45.5 99.5

Training: BONN-CW-16 Deployment: STUTT-CW-15

FCN-SEQ 84.7 82.0 87.7 87.2 82.1 92.9 67.2 64.2 70.6 99.7
FCN-SEQ-RGB 81.2 77.7 86.3 83.8 83.6 84.1 60.0 49.9 75.2 99.7
RF-GC 54.5 55.8 55.4 39.7 33.9 48.0 23.9 33.8 18.5 99.8

Training: BONN-CW-16 Deployment: ANCONA-CW-18

FCN-SEQ 87.5 85.9 89.2 89.5 87.5 91.5 73.1 70.2 76.2 99.9
FCN-SEQ-RGB 84.9 85.1 85.1 85.1 80.7 89.9 69.9 74.7 65.6 99.9
RF-GC 59.1 57.9 60.9 40.9 35.6 48.1 36.7 38.6 35.0 99.6

Training: BONN-CW-16 Deployment: ZURICH-CW-16

FCN-SEQ 70.8 62.8 85.3 51.3 42.0 66.0 61.4 46.6 90.1 99.7
FCN-SEQ-RGB 66.3 59.8 80.2 53.4 47.6 60.9 45.9 32.2 79.9 99.7
RF-GC 54.8 55.6 55.3 35.6 42.3 30.8 28.9 24.6 35.1 99.9

Average across all datasets

FCN-SEQ 81.5 77.5 87.9 77.8 74.6 82.6 66.9 58.3 81.5 99.7
FCN-SEQ-RGB 78.0 75.5 83.5 75.0 75.0 76.1 59.3 51.8 74.8 99.8
RF-GC 56.8 56.9 57.8 38.0 37.3 40.2 32.7 33.8 33.5 99.7
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Next, we analyze the achieved pixel-wise classification performance of the FCN-
SEQ approach for the STUTT-CW-15 dataset. Regarding our investigations on the
domain shift between the dataset in Section 3.2.1, this data set shows the most notable
difference concerning the training data. FCN-SEQ achieves a recall of 95% for the
crop class and 71% for the weed class leading to a performance gain of 18% in average
F1-score compared to the FCN approach. The same performance pattern holds for
comparison of the RGB-only approaches FCN-SEQ-RGB and FCN-RGB.

Figure 6.16 depicts the precision-recall curves for the pixel-wise (left column) and
object-wise (right column) crop-weed-classification performance under changing field
conditions. At first glance, the curves illustrate the superior generalization capabilities
of our proposed sequential approaches FCN-SEQ and FCN-SEQ-RGB. For all consid-
ered test datasets of different field environments, they provide superior generalization
capabilities compared to the non-sequential FCN and FCN-RGB.

Except for the ZURICH-CW-16 dataset, the biggest performance gain is achieved
for the crop class. Concerning the performance for the STUTT-CW-15 dataset, the
sequential approaches obtain a performance boost, so that crop plants are classified
with an F1 score of up to 85% for the pixel-wise classification without re-training the
classifier. Also, in the case of BONN-CW-17 and ANCONA-CW-18, the FCN-SEQ
approach achieves recalls for the crop class of >90% at a precision of 80%. From
this, we conclude that our proposed sequential module allows the extraction of useful
features for better generalization capabilities to unseen field environments. On the
ZURICH-CW-16 dataset, we observe mainly a notable pixel-wise performance boost
for the weed class obtained by FCN-SEQ. We see two reasons for this. First, the
quality of the plant arrangement is not as good as for the other datasets, see also our
analysis in Section 6.8. Thus, the learned geometric information does not generalize
well to ZURICH-CW-16. Second, the field in Zurich mostly contains very small plants,
which reflects an additional challenge for the classifier to distinguish between the plants
and weeds solely based on visual clues. Nevertheless, in terms of the object-based
performance, we still see a notable improvement of around 10% in recall and precision
for the crop class for the sequential approaches. These results, however, suggest that
a classifier deployed in a stage right after emergence still should be re-trained on data
from the particular field environment.

Under consideration of the domain-shift between the datasets, see Section 3.2.1,
we observe that the higher the domain-shift between the training and test domain,
the higher the performance gain of the sequential fully convolutional neural network
approaches. We argue that they can exploit the relative arrangement of the plants for
extracting more descriptive features that are more robust to changing field conditions.

Figure 6.15 depicts the achieved performance of FCN-SEQ on the STUTT-CW-
15 dataset, when the classifier has been trained solely on the BONN-CW-16 dataset.
Aside from the fact that we perform the classification in a sequence-to-one fashion,
we present the predictions across the whole sequence. This result supports the high
recall obtained for the crop class. Furthermore, it can be seen that the crops and weed
pixels are precisely separated from the soil, which indicates a high performance for the
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vegetation separation. The average F1-score for this sequence is about 87%. For the
entire test images of the STUTT-CW-15 dataset, we achieve around 84%. We conclude
that through the exploitation of spatio-temporal features, FCN-SEQ provides suitable
results for autonomous weeding without the need to re-train the network for the field
conditions in Stuttgart.

Next, we analyze the pixel-wise classification performance of the RF-GC approach.
The results are contrary to the expectation that the use of field geometry leads to better
performance. We determine that RF-GC does not provide usable results on the test
data. Averaging the performance across all test datasets, the RF-GC approach “only”
obtains a recall of 40% for the crop class and 33% for the weed class leading to an
average F1-score of around 57% (including the soil class).

We explore these initially unexpected results and find that the RF-GC performance
drops due to the wrong initialization of the geometrical classifier. Initial wrong predic-
tions of the visual classifier for the first few meters of the crop row can lead to the wrong
estimate for the crop row. Since neither the visual nor the geometric classifier provide
stable predictions, our strategies for combining both classifiers, which we describe in
Table 4.2, fail. As a consequence of that, RF-GC produces a loop of misclassified ex-
amples that can also be fed as new training examples to the visual classifier from time
to time. This not only prevents the visual classifier from adapting correctly to the
current situation but also re-trains it with incorrect data. Figure 6.17 qualitatively il-
lustrates the aforementioned problem. The wrongly classified crop plants indicate that
the classification system converges to a wrong estimate of the crop row. These results
indicate that RF-GC is not reliable for being deployed under changing field conditions
if no training data is available from the targeted field environment to properly initialize
its visual and geometric classifier.

Next, we analyze the generalization capabilities of the fully convolutional neural
network approaches regarding their use of the additional NIR information. There-
fore, we compare the classification performance between the approaches FCN-SEQ and
FCN-SEQ-RGB. Figure 6.16 depicts the precision-recall curves for the pixel-wise (left)
and object-wise (right) crop-weed-classification performance under changing field con-
ditions. Each plot compares the performance between the FCN approaches when using
RGB+NIR or solely RGB as input to the classification. The curves illustrate better
generalization capabilities of the FCN-SEQ approach exploiting NIR information com-
pared to its RGB-only variant FCN-SEQ-RGB. For a labeling with the most likely
class according to Equation (2.23), see Table 6.13, FCN-SEQ obtains a better recall
of around 6% for crop and 6% for weed when considering all test datasets. In terms
of the precision for crop plants and weeds, the approach exploiting the additional NIR
information gains around 2% compared to its RGB-only variant. Thus, the additional
NIR information aids the generalization capabilities of FCN-SEQ to new and unseen
field environments.

Finally, we analyze the best-performing approach FCN-SEQ in regards to its appli-
cability for real-world scenarios. Therefore, we analyze the performance on object-level
to obtain a performance estimate that is closer to the plant-level. Here, FCN-SEQ
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Figure 6.16: Precision-recall curves for the pixel-wise (left) and object-wise (right) crop-weed-
classification performance under changing field conditions. The curves illustrate the superior
generalization capabilities of FCN-SEQ.
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achieves average F1-scores ranging from 81%-85% on the BONN-CW-17, STUTT-
CW-15 and ANCONA-CW-18 datasets. Regarding the obtained recalls, this approach
successfully detects 85%-92% of the actual crop objects and 77%-91% of the actual
weed objects in the data. These results reflect a high performance considering that
the classifier is not trained on samples coming from those particular fields. On the
ZURICH-CW-16 data, however, FCN-SEQ achieves a rather low recall for the crop
plants of around 55%. Even if no other approach provides noticeably better perfor-
mance on ZURICH-CW-16 when being trained on the BONN-CW-16 dataset, these
results show that there are cases in which an adaptation of the classifier is indispens-
able to achieve a suitable performance for robotic weed control.

Figure 6.17 illustrates the qualitative results of the pixel-wise plant classification
under different field conditions within the deployment phase of the classifiers RF-GC,
FCN-SEQ, and FCN-SEQ-RGB. The analysis of the qualitative result illustrates that
the fully convolutional neural network approaches provide good classification perfor-
mance on the test datasets, whereas the random forest based approach fails due to a
wrong initialization. Furthermore, it can be seen that the crops and weed pixels are
precisely separated from the soil, which indicates a high performance for the vegetation
separation.

Thus, this experiment shows the superior generalization capabilities of our proposed
FCN-SEQ approach and demonstrates the positive impact on the performance when
exploiting sequential data. The comparison of FCN-SEQ and FCN suggests that the
additional arrangement information leads to a better classification performance and
better generalization to new and previously unseen field environments.

6.6.3 Ablation Study of Key Architectural Design
Choices for FCN-SEQ

In this experiment, we show the effect of the most central architectural design choices
of our FCN-SEQ approach resulting in the largest gain and improvement of the per-
formance under similar and changing field conditions.

We evaluate the performance of different architectural configurations by using the
70% training data split of the BONN-CW-16 dataset for training and the 20% test data
split of BONN-CW-16 as well as the entire STUTT-CW-15, BONN-CW-17, ZURICH-
CW-16, and ANCONA-CW-18 datasets for testing. We average the achieved perfor-
mance for the latter test datasets and refer to it with the term ALLOTHER-CW.
Thus, the results for the BONN-CW-16 datasets reflect the performance under sim-
ilar field conditions, whereas the performance on ALLOTHER-CW data reflects the
generalization performance to new and unseen field environments.

Table 6.14 reports the obtained object-wise average F1-scores. We start with a
vanilla FCN corresponding to our encoder-decoder FCN approach without preprocess-
ing its input. Then, we add our proposed preprocessing which helps to generalize to
different fields. It minimizes the effect of different lighting conditions, as can be ob-
served in Figure 4.2. We can furthermore improve the generalization capabilities by
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FCN-SEQ

BONN-CW-17 STUTT-CW-15 ANCONA-CW-18 ZURICH-CW-16

FCN-SEQ-RGB

RF-GC

Figure 6.17: Qualitative results for the crop-weed classification performance of FCN-SEQ, FCN-
SEQ-RGB, and RF-GC under changing field conditions. We show a representative example per
approach and per dataset. Top rows: RGB image. Middle rows: ground truth overlayed on
RGB image. Bottom rows: predictions overlayed on NIR image. Crop plants (green) and weeds
(red) represent the pixel-wise classification.
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Table 6.14: Ablation study for key components of the FCN-SEQ architecture. We report the
object-wise average F1-score for the crop-weed classification.

Approach BONN-CW-16 ALLOTHER-CW
All classifiers have been trained on 70 % of the BONN-CW-16 training data.

Vanilla FCN 93.5 67.8
+ Preprocessing (FCN) 94.4 72.5
+ Sequential Module 95.6 77.8
+ Spatial Context (FCN-SEQ) 97.3 80.1

Gain 3.8 12.8

Table 6.15: Performance Evaluation of FCN-SEQ across different sequence lengths S.

S
BONN-CW-16 ALL-DATA-CW

avg. F1 avg. F1

3 93.5 67.8
4 94.4 72.5
5 97.3 80.1
7 97.5 80.2
10 95.8 78.1

using the sequential module introduced in Section 5.4.2. Adding then more spatial con-
text to the features through increasing the receptive field of the sequential module by
using bigger kernels and dilated convolutions further improves the performance. The
latter configuration corresponds to our proposed FCN-SEQ approach. In total we gain
around 4% performance under similar field conditions and 13% performance under
changing field conditions.

The high performance of all tested configurations for the held-out BONN-CW-16
dataset indicates that fully convolutional neural networks generally obtain a stable
and high performance under a comparably low diversity in the data distribution. We
conclude that preprocessing the input and the exploitation of the repetitive pattern
given by the plant arrangement helps to improve the generalization capabilities of our
FCN-SEQ plant classification system.

Finally, we evaluate the sequence length S, i.e., the number of images that form a
sequence for the analysis. We examine the performance under the following sequence
lengths S ∈ {3, 4, 5, 7, 10}. The results in Table 6.15 show that a sequence length of
five or more produces the best results, and saturates for values larger than S = 5. This
sequence length already provides enough information about the spatial distribution of
the plants. In our setup, the length corresponds to a length of about 150 cm in the
object space along the row, so we use S = 5, since a large valuer for S has a direct
negative effect on the memory requirement and the runtime of the model. Moreover,
during training time, we can train the model with S = 10 using only a batch size B = 1,
as larger batch sizes lead to a too large memory consumption of the model on the GPU.
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6.6.4 Simulation Experiments for Learning the Spatial
Crop-Weed Arrangement

The main objective of the experimental design in this section is to evaluate our geomet-
ric approaches FCN-SEQ and RF-GC regarding their capabilities to extract information
about the spatial plant arrangement to exploit this information for the crop-weed classi-
fication task. Due to a limited footprint of the UGVs camera system, see Section 3.1.1,
a single image captured by the field robot does not cover a “large enough” area of the
field to infer information about the spatial arrangement of the plants.

Figure 6.15 illustrates a sequence of images acquired while the robot traverses the
field. Crop plants (green) grow in a row structure, sharing a similar spacing, whereas
the weeds (red) are randomly located in the scene. In this experiment, we show that in-
corporating the sequential module in the FCN-SEQ approach described in Section 5.4.2
and the plant arrangement model in the RF-GC approach described in Section 4.4 en-
able the classifiers to identify the crop plants and weeds by solely considering their
relative locations in the field.

To demonstrate this, we create synthetic images as input to the classification sys-
tems that provide only the signal of the plant arrangement as the potential information
to distinguish the crop plants and weeds. We render simulated fields as depicted in
Figure 6.18, encoding the locations of crops and weeds as uniformly sized circles. From
these data, we extract a UGV-like acquisition setup of the camera and its motion in
space to imitate the image sequences as they would have been acquired by the BoniRob
field robot. Figure 6.19 illustrates four examples of simulated image sequences. We
model the classes crop plants (green), weeds (red), and intra-row weeds (blue) in our
simulator. We explicitly consider intra-row weeds, which are located close to the crop
row, as they represent a special challenge for weeding tasks in precision-farming appli-
cations.

Figure 6.18 depicts a simulated crop field in terms of the plant, weed, and intra-
row weed locations. We use this data as a basis to extract UGV-like image sequences.
Our simulation allows us to model different properties for the arrangement of plants
and weed pressure. For practical reasons, we constrain the parameters to lie within
certain interval relevant for the applications, i.e., 10 cm-30 cm intra-row distance for
crop plants, 30 cm-60 cm inter-row distance for crop rows, 0%-500% weed pressure
considering the number of crop plants, and 0.5 cm2-8.0 cm2 plant size. In addition to
that, we perpetuate the crop locations by Gaussian noise (µ = 0 and σ = 0.1 cm-3.0 cm)
in direction of the crop row and cross to it.

To imitate the acquisition setup of the BoniRob, we model the camera’s motion with
0.2m

s -3.0
m
s and the frame rate with 1Hz-25Hz. For the motion along the row, we also

consider slight variations of the steering angle. Figure 6.19 depicts exemplary image
sequences which are created under different properties. We use them for the training
and testing of the classification systems. The first two columns show the respective
input and output for training the classification system. Column 3-5 illustrate sequences
build by different sets of properties. The input to the system are binary masks as shown
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Figure 6.18: The plant simulator creates typical crop field situation modeling the locations
of crop plants (green), weeds (red), and intra-row weeds (blue). Here: 50 cm±2 cm inter-row
distance, 20 cm±3 cm intra-row distance, 4 cm2 blob size imitating the plants, and a weed
pressure of 200%.

Input S1 Label S1 Label S2 Label S3 Label S4

It

It−1

It−2

It−3

It−4

Figure 6.19: Four simulated image sequences. From left to right. first column: binary input
data containing circles that represent different plants and weeds. second column: corresponding
ground truth data. Crop plants (green), weeds (red) and intra-row weeds (blue). The blob size
and shape is uniform within each sequence. Third column: sequence with bigger plant size.
Fourth column: sequence with a lower intra-row-distance. Fifth column: sequence obtained by
a higher frame rate of the camera.
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Table 6.16: Object-wise classification performance on simulated images sequences. We report
the class-wise and average F1-scores (F1), precision (P), and recall (R) for a labeling with
the most likely class in percent according to Equation (2.23). The term training refers to the
used training data for a particular experiment, whereas the term deployment refers to the test
dataset.

Approach Average Crop Weed Intra-Weed
F1 P R F1 P R F1 P R F1 P R

Training: 5000 sequences Deployment: 2500 sequences

FCN 39.1 37.1 41.7 57.7 57.3 58.2 54.9 49.0 62.4 4.7 4.9 4.5
FCN-SEQ 92.1 92.3 92.0 96.2 95.3 97.2 95.9 94.3 97.5 84.3 87.4 81.0
RF-CAS 40.1 38.8 42.1 53.4 47.9 60.4 56.6 55.9 57.3 10.3 12.7 8.7
RF-GC 65.4 59.4 72.7 77.9 69.3 89.0 81.9 74.4 91.2 36.2 34.6 38.0

Training: 5000 sequences Deployment: 2500 sequences
Variance of intra-row distance restricted to 20± 3 cm

RF-GC * 87.8 87.4 88.4 91.7 89.4 94.2 93.0 90.5 95.6 78.7 82.3 75.0

in column 1.
We hypothesize that an algorithm that solves the classification problem concerning

the simulated image sequences described above must be able to learn features that
describe the arrangement of crops and weeds. Note that within a given sequence, we
model plants only by blobs of uniform size. Thus, we do not provide any spectral nor
shape information as a potential input signal for distinguishing objects in the scene and
thus for the classification task. One way to solve the problem, however, is to analyze
image sequences together and to use the spatial arrangement of the objects.

We train all approaches on 5,000 simulated sequences and report the performance
on another 2,500 sequences not used during training. We compare the performance of
FCN-STEM and RF-GC exploiting visual and geometric features with the one obtained
by FCN and RF-CAS, using solely visual features. Table 6.16 summarizes the obtained
object-wise performance of the tested approaches. The results convey the superior
performance of FCN-SEQ. It achieves an average F1-score of around 92% across all
classes. For the crop and the weed class, we can report a recall of 98%. For the
intra-weed class, we achieve an F1-score of 83%, which indicates that FCN-SEQ is also
able to exploit the intra-row distance between the crops along the crop row for the
classification. We conclude that FCN-SEQ can exploit the sequential information to
extract the pattern of the crop arrangement for the classification task.

Analyzing the results of RF-GC, it becomes visible that the performance does
not reach the level of the FCN-SEQ approach. RF-GC achieves high recall for crop
and weed in the order of 90%, but a recall of 38% for intra-row weeds. This result
reflects the limited capacity of the plant arrangement model to encode different spatial
arrangements induced by varying intra-row distances. Different intra-row distances
between the plants in the training data lead to a probability mass p(d | ωc) according to
Equation (4.19), that is mostly distributed along the crop row axis, see also Figure 4.13.
Thus, it cannot properly distinguish the vegetation, especially in the intra-row space.
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To prove this statement, we further investigated the performance of the RF-GC ap-
proach. We trained and deployed it only on data of an intra-row distance of 20 cm±3 cm.
We refer to this experiment with RF-GC ⋆. Here RF-GC ⋆ achieves results compara-
ble to the FCN-SEQ approach with an average F1-score of 88% caused by the higher
recall for intra-row-weeds of around 75%. In contrast, the achieved average F1-score
of around 40% for the baseline models indicates that FCN and RF-CAS are unable
to accurately identify the crop plants and weeds as they cannot exploit the geometric
signal.

6.6.5 Conclusions for the Crop-Weed Classification
Classification Exploiting the Plant Arrangement
Information

In total, the results convey the following outcomes:
First, the results support our claim of superior generalization capabilities for the

fully convolutional neural network approaches exploiting the plant arrangement signal.
Especially when the visual appearance of the image data notably differs between the
training and test data, the spatio-temporal features extracted by the sequential module
become key supporters for the performance. Nevertheless, exploiting the geometric
features also help under similar field conditions.

Second, the RF-GC approach is not reliable for being deployed under changing
field conditions if no training data is available from the targeted field environment
to properly initialize its visual and geometric classifier. However, under similar field
conditions, the system can be properly initialized. As a resume of that initialization, the
geometric features lead to a notable boost in the performance as they can compensate
for the limited capacity of the handcrafted visual features to some degree.

Third, the additional NIR information aids the generalization capabilities of FCN-
SEQ compared to its RGB variant FCN-SEQ-RGB to new and changing field condi-
tions.

Fourth, our simulation experiments demonstrate that our sequential FCN-SEQ ap-
proach can extract features that describe the relative arrangement of the plants and
weeds. Furthermore, our RF-GC approach can exploit the geometry if the distribution
of the arrangement keeps stable, which is the case for almost all crop row fields.

6.7 Joint Plant and Stem Detection for
Species-Specific Treatments

We design the experiments in this section to analyze the quality of the vision-based
plant classification pipeline for joint pixel-wise plant classification and stem detection
enabling selective and plant-specific treatments, see Figure 6.20. The main objective of
the tested approaches in this section is to simultaneously provide a pixel-wise classifica-

166



6. Experimental Evaluation

Figure 6.20: Concept for joint plant classification and stem detection. The main objective of
FCN-STEM and FCN-SEQ-STEM is to provide two outputs simultaneously. First, a pixel-wise
classification represented by the plant mask Iωcdgs considering the classes ωcdgs ∈ {ωc, ωd, ωg, ωs}
for crop, dicotyl weed, grass weed, and background (mostly soil). Second, the positions of the
stems for dicotyl weeds and crop plants represented by the stem mask Iωcds considering the
classes ωcds ∈ {ωc, ωd, ωs} for crop stem, dicotyl weed stem, and no stem.

tion of the visual input into the classes crop, dicotyl weed, grass weed, and soil as well
as providing the positions of the stems for dicotyl weeds and crop plants. The stem
positions are a prerequisite in selective, high precision treatments, e.g., by mechanical
stamping or by laser-based weeding. The provided pixel-wise label mask provides the
area with more granulated approaches such as selective spraying.

We compare our proposed FCN-SEQ-STEM approach against its non-sequential
version FCN-STEM. We make this comparison in order to understand the gain in
performance due to the sequential module. FCN-STEM has the same architecture as
FCN-SEQ-STEM without the sequential module. Both approaches can jointly estimate
the plant stems and perform pixel-wise plant classification. In this case, the output of
the proposed networks consists of two different label masks representing a probability
distribution over the respective class labels. The first output is the plant label mask
reflecting the pixel-wise classification of the crop plants, dicotyl weeds, and grass weeds,
whereas the second output is the stem label mask segmenting regions that correspond
to plant stems and dicotyl weed stems. Finally, we extract pixel-accurate stem positions
from the stem label mask as described in Equation (5.3).

We also compare the performance of FCN-SEQ-STEM and FCN-STEM against
our pixel-wise plant classification approaches FCN and FCN-SEQ. Here, we want to
evaluate if the additional information induced by the stem detection task through a
parallel task-specific decoder helps to improve the classification of the crop plants and
weeds. Finally, we report the performance for a single image encoder-decoder FCN
solely designed for stem detection. We refer to this approach with STEM. STEM has
the same architecture as our FCN approach but is trained to output the stem label
mask instead of the plant label mask. Finally, we also evaluate its sequential version,
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so-called STEM-SEQ. We compare the performance of all these approaches and show
that sharing the encoder for stem detection and plant classification enables the networks
to learn more descriptive features. Note that in this section, we do not evaluate the
RGB-only variants of the tested approaches. We do not evaluate the performance for a
random forest-based stem detection, as the evaluation in our previous publication [82]
suggests that no suitable performance is achievable in this case.

Analogous to the previous experiments, we evaluate the performance under simi-
lar field conditions and evaluate the generalization capabilities of the classifiers under
changing field conditions. In these experiments, we use different datasets as for the
crop-weed performance evaluation in Section 6.5 and Section 6.6 for two reasons. First,
the grass weed class is underrepresented in the crop-weed datasets that are described in
Section 3.2.1. Therefore, we additionally labeled other parts of the recorded data con-
taining more examples of grass weeds. Second, the manual labeling of stem locations
for every crop plant and every dicotyl weed represents an additional labeling effort
and thus was not performed for all images in the crop-weed datasets. We perform the
experiments on the crop-dicot-grass datasets that are described in Section 3.2.2.

In this section, we use the following UGV datasets, which we describe in Sec-
tion 3.2.2: BONN-CDGS-16, STUTT-CDGS-15, ANCONA-CDGS-18, and ZURICH-
CDGS-17. All these datasets are fully labeled in a pixel-wise manner considering the
classes crop, dicotyl weed, grass weed, and soil and regarding the stem positions for
crop and dicot. The BONN-CDGS-16 dataset represents our primary source of training
data. It involves around 2,400 labeled images. We acquired every other dataset on a
different field at a different point in time. For the performance evaluation under simi-
lar field conditions, we consider the BONN-CW-16 dataset and the ALL-DATA-CDGS
dataset, which is an aggregation of all crop-dicot-grass datasets. Here, we train the
models on a training portion and test them on a held-out test portion, respectively.
For the performance evaluation under changing field conditions, we solely train the
models on the BONN-CW-16 data and test them on the other dataset, respectively.
For all experiments in this section, we use a 5% split of the training datasets as val-
idation data for the fully convolutional neural network approaches to perform early
stopping.

6.7.1 Stem Detection Performance
First, we analyze the stem detection performance and show that our approaches can
accurately detect the stem locations of crop plants and dicotyl weeds under similar and
under changing field conditions.

We consider a predicted stem to be a positive detection if its Euclidean distance
to the nearest unassigned ground truth stem is below a threshold θ = 10mm. We
choose this threshold by keeping in mind the size of the mechanical stamping tool of
the BoniRob. For the evaluation of the spatial accuracy of the detection in object
space, we compute the mean average distance (MAD) in millimeters, taking all true
positives into account.
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Table 6.17: Stem detection performance of our proposed approaches under similar field con-
ditions. We report the class-wise and average F1-score (F1), precision (P) and recall (R) as
well as the mean average distance (MAD) in millimeters that measure the spatial accuracy of
the stem predictions. We report the results for a labeling with the most likely class in percent
according to Equation (2.23). The term training refers to the used training data for a particular
experiment, whereas the term deployment refers to the test dataset.

Approach Average Crop Dicot
F1 P R MAD F1 P R MAD F1 P R MAD

Training: ALL-DATA-CDGS (70%) - deployment: ALL-DATA-CDGS (25%)

STEM 69.6 64.1 76.3 3.3 71.7 64.0 81.4 3.6 67.5 64.2 71.2 2.9
FCN-STEM 74.4 72.5 78.7 2.9 69.7 59.9 83.2 3.8 79.2 85.0 74.1 2.0
STEM-SEQ 86.1 92.8 80.3 2.9 89.2 94.5 84.4 3.1 83.0 91.1 76.2 2.7
FCN-SEQ-STEM 90.3 97.8 84.0 2.7 92.9 97.8 88.5 2.9 87.7 97.7 79.5 2.5

Training: BONN-CDGS-16 (70%) - deployment: BONN-CDGS-16 (25%)

STEM 77.7 67.6 91.5 3.6 79.0 69.3 91.9 3.9 76.5 65.9 91.1 3.3
FCN-STEM 87.3 83.0 92.9 3.0 93.1 92.8 93.4 3.1 81.6 73.1 92.3 3.0
STEM-SEQ 92.3 91.3 93.6 2.6 94.3 95.7 92.9 2.6 90.4 86.9 94.2 2.6
FCN-SEQ-STEM 92.8 93.8 91.8 2.4 93.4 95.2 91.6 2.3 92.1 92.3 92.0 2.5

Average performance under similar conditions

STEM 73.7 65.9 83.9 3.4 75.3 66.7 86.7 3.8 72.0 65.1 81.2 3.1
FCN-STEM 80.9 77.7 85.8 3.0 81.4 76.4 88.3 3.5 80.4 79.1 83.2 2.5
STEM-SEQ 89.2 92.1 86.9 2.8 91.7 95.1 88.7 2.9 86.7 89.0 85.2 2.7
FCN-SEQ-STEM 91.5 95.8 87.9 2.6 93.1 96.5 90.1 2.6 89.9 95.0 85.8 2.5

6.7.1.1 Performance Under Similar Field Conditions

We start by evaluating the performance under similar field conditions. Therefore,
we train the classification models on a 70% training portion of the BONN-CDGS-16
and ALL-DATA-CDGS datasets and deploy them on 25% test portions, respectively.
Table 6.17 summarizes the obtained stem detection performance under similar field
conditions. We see that FCN-SEQ-STEM outperforms the competing approaches on
both datasets BONN-CDGS-16 and ALL-DATA-CDGS in terms of the achieved average
F1-score. A better precision mainly causes better F1-score for both, the crop-score for
both crop plants and dicotyl weeds.

With an average F1-score of around 93% on BONN-CDGS-16 and 90% on ALL-
DATA-CDGS, the FCN-SEQ-STEM approach detects most of the stems correctly.
Also, the STEM-SEQ approach obtains a comparable performance with 93% aver-
age F1-score on BONN-CDGS-16 and 86% on ALL-DATA-CDGS. On average, the
sequential approaches exploiting spatio-temporal features that encode the arrangement
of the plants outperform the non-sequential approaches STEM and FCN-SEQ-STEM
by around 14%. The analysis of the precision and recall values reveals that the perfor-
mance benefits mainly in terms of precision. Thus, the approaches FCN-SEQ-STEM
and STEM-SEQ provide less false detections for the crop and dicotyl weed stems. These
results indicate that additional sequential information aids stem detection performance.
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Furthermore, the results show that the performance of stem detection is substan-
tially better for those classification systems that use two task-specific decoders for the
classification of plants and detection of stems in parallel. FCN-SEQ-STEM reaches a
2% higher average F1-score than STEM-SEQ, and FCN-STEM reaches a 8% higher
average F1-score than STEM. Thus, this effect seems to be greater, the more diverse
the data is. We conclude that sharing one encoder aids the performance of the task of
stem detection, as the extracted features can profit from both tasks, the classification
of the plants and stem regions.

Concerning the average MAD for stems, we report the best performance for the
FCN-SEQ-STEM approach ranging from 2.7mm on the BONN-CDGS-16, and 2.4mm
on the ALL-DATA-CDGS datasets. The worst MAD performance is obtained by the
STEM approach with 3.9mm on the BONN-CDGS-16 dataset for the crop class. In to-
tal, these results are sufficient for the precise mechanical treatments using the BoniRob,
but also, for even more precise laser-based weeding applications. Moreover, we observe
that the sequential information aids the MAD directly by exploiting the geometric sig-
nal in the data and indirectly by improving the recall and precision for stem detection.
Concerning both datasets, the sequential approaches achieve a 0.5mm more accurate
MAD.

In Figure 6.21, we illustrate qualitative results of our proposed approaches FCN-
STEM and FCN-SEQ-STEM on the ALL-DATA-CDGS datasets. We see that most of
the stems both for crops and for dicotyl weeds are detected correctly. Moreover, the
results show that our approach can detect very small dicotyl weeds, which are of a size
of around 0.15 cm2, and only represented by a few pixels in the image.

6.7.1.2 Performance Under Changing Field Conditions

Next, we evaluate the performance under changing field conditions. Therefore, we train
the classification models on 95% portion of the BONN-CW-16 dataset and test them on
all other datasets considered in this section. Table 6.18 summarizes the obtained stem
detection performance under changing field conditions. Analyzing the performance
on the datasets STUTT-CDGS-15, ANCONA-CDGS-18, and ZURICH-CDGS-17, we
report the highest average F1-scores of 77% for STUTT-CDGS-15, 75% for ANCONA-
CDGS-18, and 83% for ZURICH-CDGS-17 obtained by our proposed FCN-SEQ-STEM
approach. The second-best performance is achieved by the other sequential approach
STEM-SEQ that solely predicts the stems for crop plants and dycotyl-weeds. Even if
the performance under changing field conditions does not reach the same high level as
under similar conditions, these results indicate the superior generalization capabilities
to new and unseen field environments of the approaches exploiting the local plant
arrangement in the field. We report a noticeable gain in the generalization performance
of around 11% in terms of average F1-score caused by the exploitation of the spatio-
temporal features extracted by the FCN-SEQ-STEM approach.

FCN-SEQ-STEM achieves an 8% better average F1-score compared to STEM-SEQ
when averaging across all test datasets. Thus, using a shared encoder with two task-
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Figure 6.21: Qualitative results for the stem detection under similar field conditions obtained
by our proposed approaches FCN-STEM and FCN-SEQ-STEM on the test datasets. We show
two representative examples per dataset. We show an overlay of the NIR image with the
prediction, where crop plants (green), dicotyl weeds (red), and grass weeds (blue) represent the
pixel-wise classification. The predicted stems are illustrated by red (dicot) and green (dicot)
cycles, whereas smaller filled circles illustrate the ground truth stems.
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Table 6.18: Stem detection performance of our proposed approaches under changing field con-
ditions. We report the class-wise and average F1-score (F1), precision (P) and recall (R) as
well as the mean average distance (MAD) in millimeters that measure the spatial accuracy of
the stem predictions. We report the results for a labeling with the most likely class in percent
according to Equation (2.23). The term training refers to the used training data for a particular
experiment, whereas the term deployment refers to the test dataset.

Approach Average Crop Dicot
F1 P R MAD F1 P R MAD F1 P R MAD

Training: BONN-CDGS-16- deployment: STUTT-CDGS-15

STEM 42.4 50.5 49.4 3.6 51.8 78.3 38.7 4.3 33.0 22.7 60.1 2.9
FCN-STEM 58.9 57.0 63.0 2.9 69.8 73.6 66.4 3.1 48.1 40.3 59.5 2.6
STEM-SEQ 69.9 67.9 73.3 2.8 82.8 86.3 79.6 3.0 56.9 49.5 66.9 2.7
FCN-SEQ-STEM 77.4 73.4 82.4 2.7 83.6 82.3 84.9 2.8 71.3 64.4 79.8 2.6

Training: BONN-CDGS-16- deployment: ANCONA-CDGS-18

STEM 47.4 49.4 51.9 3.7 53.8 67.3 44.8 4.2 41.1 31.5 59.0 3.2
FCN-STEM 59.3 65.8 54.2 3.2 69.0 79.9 60.7 3.3 49.6 51.7 47.7 3.0
STEM-SEQ 62.8 71.7 57.4 2.8 63.4 82.1 51.6 2.8 62.2 61.3 63.1 2.8
FCN-SEQ-STEM 74.8 75.7 75.1 2.8 77.7 84.9 71.7 2.8 71.9 66.4 78.4 2.9

Training: BONN-CDGS-16- deployment: ZURICH-CDGS-17

STEM 60.1 54.5 76.5 3.7 52.8 37.5 89.2 4.7 67.4 71.5 63.8 2.7
FCN-STEM 76.5 80.5 74.8 3.0 77.2 71.5 83.8 3.4 75.8 89.5 65.8 2.5
STEM-SEQ 78.5 86.7 72.5 2.9 80.0 81.1 78.9 3.2 77.0 92.2 66.1 2.6
FCN-SEQ-STEM 83.1 86.2 81.0 2.7 80.7 77.5 84.2 2.9 85.4 94.9 77.7 2.4

Average performance under changing conditions

STEM 50.0 51.5 59.3 3.7 52.8 61.0 57.6 4.4 47.2 41.9 61.0 2.9
FCN-STEM 64.9 67.8 64.0 3.0 72.0 75.0 70.3 3.3 57.8 60.5 57.7 2.7
STEM-SEQ 70.4 75.4 67.7 2.8 75.4 83.2 70.0 3.0 65.4 67.7 65.4 2.7
FCN-SEQ-STEM 78.4 78.4 79.5 2.7 80.7 81.6 80.3 2.8 76.2 75.2 78.6 2.6
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specific heads leads to the learning of more descriptive features, also in terms of the
generalization performance to new fields. This pattern is also visible when comparing
the performance of the non-sequential approaches FCN-STEM and STEM.

In terms of MAD, the achieved performance for all tested approaches is on the
same level as for the evaluation under similar field conditions. This means that the
classifiers generally provide a high spatial precision when a stem is detected, but the
precision and the hit rate (recall) of stems suffer under the changed conditions on the
test datasets.

With regards to a weed control scenario, the robot would treat almost 80% of the
dicotyl weeds on the test datasets, assuming the actuator works error-free. Note that
we obtain this performance without re-training the classifier with data coming from
the targeted field environment. Further analyzing the precision for the dicot class,
the majority of false detections are located on the soil. Thus, the robot would not
accidentally eliminate a substantial number of crop plants. Comparing the performance
under changing field conditions with the one obtained under similar field conditions,
however, the recommended method in practice is still to adapt the model with data
coming from the targeted field environment, as FCN-SEQ-STEM achieves a 12% better
average F1-score on the ALL-DATA-CDGS dataset.

In Figure 6.22, we illustrate qualitative results of our proposed approaches FCN-
STEM and FCN-SEQ-STEM on the respective test datasets. We see that the FCN-
STEM approach provides an unsuitable performance for a robotic weed control appli-
cation, whereas FCN-SEQ-STEM still detects most of the plant and dicotyl weed stems
correctly. Moreover, the results show that our approach can detect very small dicotyl
weeds, which are of a size of around 0.15 cm2, and are only represented by a few pixels
in the image.

6.7.2 Pixel-Wise Crop-Dicot-Grass Classification
Performance

In this section, we analyze the performance of the pixel-wise plant classification distin-
guishing crop plants, dicotyl weeds, grass weeds, and soil under similar and changing
field conditions. Through the explicit consideration of dicotyl weeds and grass weeds,
we enable the robot to treat these types of weed differently, e.g., selectively spraying the
grass weeds and larger dicotyl weeds, whereas treating small dicotyl weeds mechanically.
We show that our sequential approach FCN-SEQ-STEM provides state-of-the-art per-
formance in terms of classification performance and generalization capabilities to new
fields.

6.7.2.1 Performance Under Similar Field Conditions

We start by evaluating the performance under similar field conditions. Therefore,
we train the classification models on a 70% training portion of the BONN-CDGS-
16 and ALL-DATA-CDGS datasets and deploy them on 25% test portions, respec-
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FCN-STEM

STUTT-CDGS-15 ANCONA-CDGS-18 ZURICH-CDGS-17

FCN-SEQ-STEM

Figure 6.22: Qualitative results for the stem detection under changing field conditions obtained
by our proposed approaches FCN-STEM and FCN-SEQ-STEM on the test datasets. We show
two representative examples per dataset. We show an overlay of the NIR image with the
prediction, where crop plants (green), dicotyl weeds (red), and grass weeds (blue) represent the
pixel-wise classification. The predicted stems are illustrated by red (dicot) and green (dicot)
cycles, whereas smaller filled circles illustrate the ground truth stems.
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Figure 6.23: Precision-recall curves for the pixel-wise (left) and object-wise (right) crop-dicot-
grass classification performance under similar field conditions.

Table 6.19: Pixel-wise crop-dicot-grass classification performance under similar field conditions.
We report the class-wise and average F1-score (F1), precision (P), and recall (R) for a labeling
with the most likely class in percent according to Equation (2.23). The term training refers to
the used training data for a particular experiment, whereas the term deployment refers to the
test dataset.

Approach Average Crop Dicot Grass Soil
F1 P R F1 P R F1 P R F1 P R F1

Training: ALL-DATA-CW (70%) Deployment: ALL-DATA-CW (25%)

FCN 89.4 94.8 85.1 97.1 97.8 96.4 83.1 92.0 75.7 77.9 89.6 68.8 99.5

FCN-STEM 90.4 93.4 87.7 96.6 99.0 94.3 86.3 88.8 83.9 78.8 85.8 73.0 99.7

FCN-SEQ 90.4 94.7 86.7 97.0 98.5 95.5 84.1 91.8 77.6 80.7 88.7 74.0 99.7

FCN-SEQ-STEM 92.7 96.0 89.8 98.9 99.0 98.9 86.7 93.1 81.1 85.4 92.5 79.4 99.6

Training: BONN-CDGS-16 (70%) Deployment: BONN-CDGS-16 (25%)

FCN 80.8 76.6 87.0 92.6 91.7 93.6 67.0 54.5 86.9 63.9 60.5 67.7 99.7

FCN-STEM 83.7 80.5 87.8 93.4 92.8 94.0 75.2 66.4 86.8 66.9 63.3 70.9 99.4

FCN-SEQ 85.7 82.4 89.8 93.8 93.1 94.5 80.1 70.4 92.9 69.4 66.7 72.2 99.6

FCN-SEQ-STEM 89.9 85.6 95.1 96.7 95.6 97.9 84.7 76.0 95.7 78.4 71.5 86.9 99.6

Average performance under similar conditions

FCN 85.1 85.7 86.0 94.9 94.8 95.0 75.0 73.3 81.3 70.9 75.1 68.3 99.6

FCN-STEM 87.1 86.9 87.8 95.0 95.9 94.2 80.8 77.6 85.3 72.9 74.5 71.9 99.6

FCN-SEQ 88.0 88.6 88.3 95.4 95.8 95.0 82.1 81.1 85.3 75.0 77.7 73.1 99.7

FCN-SEQ-STEM 91.3 90.8 92.4 97.8 97.3 98.4 85.7 84.5 88.4 81.9 82.0 83.1 99.6

175



6.7. Joint Plant and Stem Detection for Species-Specific Treatments

tively. Table 6.19 summarizes the obtained pixel-wise plant classification performance
on both datasets. Overall, we find the same patterns in view on performance as for
the stem detection in the previous experiments. First, the sequential approaches FCN-
SEQ-STEM and FCN-SEQ exploiting spatio-temporal features perform better than
the non-sequential ones. Second, the use of a shared encoder by two task-specific de-
coders in FCN-STEM and FCN-SEQ-STEM leads to a better pixel-wise classification
performance compared to single-encoder-decoder networks FCN and FCN-SEQ.

The class-wise precision-recall plots in Figure 6.23 illustrate the achieved perfor-
mance gain on the ALL-DATA-CDGS dataset when exploiting sequential input, i.e.,
considering the plant arrangement of plants in local field strips as also evaluated in
Section 6.6. FCN-SEQ-STEM achieves a substantially higher recall at higher preci-
sion for both dicotyl weeds and grass weeds compared to FCN-STEM. In terms of
labeling with the most likely class summarized in Table 6.19, FCN-SEQ-STEM ob-
tains a higher precision of 6% for the dicot and 13% for the grass class compared to
its non-sequential variant FCN-STEM. With a resulting average F1-score of around
93%, FCN-SEQ-STEM classifies most of the pixels on the 25% test portion correctly.
Thus, the spatio-temporal features of the sequential approaches help to compensate
for the confusion between the vegetation classes. In terms of the object-wise metric,
FCN-SEQ-STEM achieves class-wise F1-scores >90% for all classes.

Compared to the pixel-wise performance, the object-wise performance of FCN-SEQ-
STEM is higher in terms of precision for the grass and dicot class. The discrepancy
is mostly caused by predicted pixels in border regions of the vegetation objects. Even
with pixel-wise recalls of 88% for the dicot and 79% for grass class, the system correctly
recognizes the majority of vegetation objects with an average recall of 93% at a precision
of 92%. Figure 6.24 qualitatively supports this statement for the FCN-SEQ-STEM
approach. The visual inspection of the predictions and corresponding ground truth
reveals that FCN-SEQ-STEM can properly classify the crop plants, even if they overlap
with weeds in image-space. Moreover, it correctly identifies the grass weeds as well as
large and tiny dicotyl weeds.

For FCN-STEM, however, we observe a notable amount of false predictions. The
misclassification is caused by the confusion between the vegetation and soil as well as
between the dicotyl weeds and grass weeds. This causes a lower overall performance
of 88% for the pixel-wise and 79% for the object-wise performance in terms of av-
erage F1-score. We see two reasons for this performance loss. First, the confusion
between the grass and dicotyl weeds leads to a decrease in recall and precision for both
classes. Second, pixel-wisely, the weed classes occur less often in the data compared to
crop and soil. Thus, their class-wise performance measures are more affected by false
classifications.

We observe the same performance patterns by evaluation of the results on the
BONN-CDGS-16 data. Thus, we conclude that exploiting the sequential data stream
enables the networks to extract better features for distinguishing the considered classes.
Concerning the grass class, however, all tested approaches obtain a lower performance
on the BONN-CDGS-16 dataset compared to ALL-DATA-CDGS. The losses are ex-
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plained by the low probability of occurrence for the grass class in the BONN-CDGS-
16 data compared to the ANCONA-CDGS-18 that is part of the ALL-DATA-CDGS
dataset, see Section 3.2.2. Furthermore, The grasses in the ANCONA-CDGS-18 have a
larger spatial extent. Thus, the typical prediction errors in border regions of the grass
weeds have less influence on the pixel-wise classification performance. This statement
is also supported by the object-wise performance for grass, which is comparable for
both datasets.

Next, we analyze the performance when using a shared encoder with two task-
specific decoders. Therefore, we compare the relative performance between FCN and
FCN-STEM as well as between FCN-SEQ and FCN-SEQ-STEM. In both cases, we
see a performance boost for those networks that simultaneously classify the plants and
stem regions. Averaging the performance across the BONN-CDGS-16 and ALL-DATA-
CDGS datasets, the non-sequential approach FCN-STEM obtains a 6% higher average
F1-score than the single-encoder-decoder network FCN. For the sequential approaches,
this performance gain is around 2%. These results indicate that the stem detection task
loss also leads to the extraction of more descriptive features for the plant classification.
Intuitively, the stem information can help to classify grass weeds better. Furthermore,
the stem locations can provide a more distinct signal of the plant arrangement, as this
signal is not smudged by the spatial extent of the plants.

6.7.2.2 Performance Under Changing Field Conditions

Next, we evaluate the performance under changing field conditions. Therefore, we train
the classification models on a 95% training portion of the BONN-CDGS-16 dataset and
deploy them on the entire considered test datasets. Table 6.20 summarizes the obtained
pixel-wise classification performance under changing field conditions. First of all, we
see that the overall performance is generally lower than in the evaluation under similar
conditions. This is because the visual classifiers suffer from changes in the underlying
intensity distribution between the test and training data. This observation is consistent
with the crop-weed experiments from Section 6.5.2.

First, we compare our sequential approach FCN-SEQ-STEM with FCN-STEM to
analyze the effect of the spatio-temporal features extracted from images sequences
on the generalization capabilities to changing field conditions. On all three tested
datasets, FCN-SEQ-STEM performs substantially better than FCN-STEM. This holds
for both, pixel-wise as well as object-wise performance. On average, across all test
datasets, it obtains a gain of around 12% in terms of pixel-wise average F1-score.
Figure 6.25 depicts the resulting precision-recall curves for the achieved performance
on the STUTT-CDGS-15, ANCONA-CDGS-18, and ZURICH-CDGS-17 datasets. In
all cases, we see a notable improvement in performance for FCN-SEQ-STEM. The
crop class performance, in particular, benefits the most from the plant arrangement
information. The resulting high recall for the plants means that the robot would not
erroneously eliminate the crop plants because it considers them as weeds. In terms
of performance for the STUTT-CW-15 dataset, we can even say that with the FCN-
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Figure 6.24: Qualitative results for the crop-dicot-grass classification performance of FCN-
STEM and FCN-SEQ-STEM under similar field conditions. We show a representative example
per approach and per dataset. Top rows: RGB image. Middle rows: ground truth overlayed
on RGB image. Bottom rows: predictions overlayed on NIR image, where crop plants (green),
dicotyl weeds (red), and grass weeds (blue) represent the pixel-wise classification.
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Table 6.20: Pixel-wise crop-dicot-grass classification performance of our proposed approaches
under changing field conditions. We report the class-wise and mean (m) F1-score (F1), pre-
cision (P), and recall (R) for a labeling with the most likely class in percent according to
Equation (2.23). The term training refers to the used training data for a particular experiment,
whereas the term deployment refers to the test dataset.

Approach Average Crop Dicot Grass Soil
F1 P R F1 P R F1 P R F1 P R F1

Training: ALL-DATA-CW (95%) Deployment: STUTT-CDGS-15

FCN 56.2 68.1 57.3 35.0 78.9 22.5 33.8 25.6 49.6 99.7

FCN-STEM 58.0 69.7 58.7 38.6 81.8 25.3 35.8 27.5 51.2 99.7

FCN-SEQ 70.1 76.4 69.8 63.3 90.6 48.6 47.4 38.6 61.3 99.7

FCN-SEQ-STEM 77.6 73.1 83.3 81.6 74.5 90.1 51.6 45.2 60.1 99.6

Training: BONN-CDGS-16 (95%) Deployment: ANCONA-CDGS-18

FCN 62.0 64.6 66.5 65.6 90.1 51.5 37.2 25.9 65.7 45.5 42.6 48.8 99.9

FCN-STEM 68.2 65.3 74.4 83.1 87.0 79.5 44.8 33.2 68.8 45.1 41.1 49.9 99.7

FCN-SEQ 76.3 73.6 81.4 86.8 85.4 88.2 51.1 39.6 72.0 67.6 69.7 65.6 99.8

FCN-SEQ-STEM 77.7 74.7 83.0 88.6 87.2 90.1 51.6 40.1 72.5 70.6 71.6 69.7 99.7

Training: BONN-CDGS-16 (95%) Deployment: ZURICH-CDGS-17

FCN 54.6 61.1 52.8 52.4 74.0 40.5 52.6 45.9 61.5 13.8 25.0 9.5 99.6

FCN-STEM 65.1 66.3 64.8 71.5 72.1 70.9 60.3 56.1 65.2 28.5 37.1 23.2 99.9

FCN-SEQ 67.9 67.4 69.4 80.4 79.6 81.2 62.3 55.3 71.3 29.3 35.1 25.2 99.7

FCN-SEQ-STEM 71.8 72.9 71.0 83.4 81.4 85.6 71.2 72.9 69.6 32.7 37.5 29.0 99.9

Average performance under changing conditions

FCN 57.6 64.6 58.9 51.0 81.0 38.2 41.2 32.5 58.9 29.6 33.8 29.2 99.6

FCN-STEM 63.8 67.1 66.0 64.4 80.3 58.6 47.0 38.9 61.7 36.8 39.1 36.6 99.6

FCN-SEQ 71.5 72.5 73.5 76.8 85.2 72.7 53.6 44.5 68.2 48.5 52.4 45.4 99.7

FCN-SEQ-STEM 75.7 73.6 79.1 84.5 81.0 88.6 58.2 52.7 67.4 51.7 54.6 49.4 99.7
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Figure 6.25: Precision-recall curves for the pixel-wise (left) and object-wise (right) crop-dicot-
grass classification performance under changing field conditions. The curves illustrate the su-
perior generalization capabilities of FCN-SEQ-STEM.
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SEQ-STEM approach trained on BONN-CW-16, autonomous weed control would be
possible. Here, we reach an object-wise recall for the crop of 95% at a precision of
80%. For the other datasets, however, the overall performance is still not suitable for
autonomous weed control. Here, the classifier first needs to be adapted to the local
field conditions.

The comparison of FCN-SEQ and FCN also suggests that the additional exploita-
tion of spatio-temporal features leads to a better classification performance and better
generalization to new and previously unseen field environments. Here, the relative
gain for the sequential FCN-SEQ approach is about 14% in terms of average F1-score.
Thus, this experiment shows the superior generalization capabilities of our proposed
FCN-SEQ-STEM and FCN-SEQ approaches and demonstrates the impact to the per-
formance when exploiting a sequence of images with our proposed sequential module.

In Figure 6.26, we illustrate the qualitative results of our approach for all datasets,
respectively. Overall, we observe that the plant classification for all classes is visually
proper. However, there are small areas, particularly on crop plants and grass weeds,
which are falsely classified as dicotyl weed. Since the total area of dicotyl weeds is small
compared to the crops, even small error regions in the crop lead to a substantial drop
in the pixel-wise classification metrics for dicotyl weeds. These results explain the low
precision achieved for dicotyl weeds across all tested datasets. Note that the output used
for the evaluation is the raw prediction by our approach, and no further postprocessing
such as spatial smoothing is performed. By performing this postprocessing, we could
improve the performance substantially due to the error source as mentioned above.

Analogous to the previous experiments under similar conditions, we evaluate the
performance when using a shared encoder with two task-specific decoders. Therefore,
we again compare the relative performance between FCN and FCN-STEM as well as
between FCN-SEQ and FCN-SEQ-STEM. Also, under changing conditions, we observe
a performance boost for the networks using two task-specific decoders. On average, the
performance of the single-encoder-decoder networks FCN and FCN-SEQ drops around
6% in average F1-score compared to the multi-tasks networks. These results support
our conclusion from the previous experiment under similar conditions that the stem
detection task loss also leads to the extraction of more descriptive features for the
plant classification.

6.7.3 Conclusions for the Crop-Dicot-Grass
Classification and Stem Detection Experiments

In total, we draw the following conclusions from the results in this section:
First, our approaches for joint plant classification and stem detection, i.e., FCN-

STEM and FCN-SEQ-STEM, can provide suitable performance for plant-specific treat-
ments wit high precision under similar field conditions. The stem detection works prop-
erly and provides the stem locations within a spatial precision of around 2mm-4mm.

Second, as for the crop-weed classification experiments, the results in this section
support our claim of superior generalization capabilities for the fully convolutional
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FCN-STEM

STUTT-CDGS-15 ANCONA-CDGS-18 ZURICH-CDGS-17

FCN-SEQ-STEM

Figure 6.26: Qualitative results for the crop-dicot-grass classification performance of FCN-
STEM and FCN-SEQ-STEM under changing field conditions. We show a representative exam-
ple per approach and per dataset. Top rows: RGB image. Middle rows: ground truth overlayed
on RGB image. Bottom rows: predictions overlayed on NIR image, where crop plants (green),
dicotyl weeds (red), and grass weeds (blue) represent the pixel-wise classification.
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neural network approaches exploiting the plant arrangement signal. In our experiments,
however, the FCN-SEQ-STEM approach does not reach a performance level that is
suitable for autonomous field intervention. The most probable reason for that is that
the training dataset is too small to cover enough diversity to extract general enough
features.

Third, the use of task-specific decoders that share a single encoder for the feature
extraction aids the performance for both tasks, the plant classification, and the stem
detection.

6.8 Supervised Classifier Transfer in the
Context of Labeling Effort

In the previous experiments in Section 6.6 and Section 6.7, we have shown that the
performance, but especially the reliability of the performance in new and changing field
conditions suffers when the classifiers are deployed in new field environments. Even by
exploiting the spatial arrangement of plants, it is not always possible to reliably obtain
satisfactory results that would enable field robots to perform autonomous weed control.

In this experiment, we aim at evaluating the transferability of our classification
models. We measure the required effort to adapt a model to a new dataset containing
different environmental conditions. A typically applied case in practice is to use a
particular training database training the classification models. If we now send the
robot to a new field, it first collects new data, which is labeled to adapt the classifier
to the local conditions. The question we tackle in this section is: How much labeling
effort is needed to adapt our approaches to provide satisfactory results?

Therefore, we investigate our classifiers FCN, FCN-SEQ, and RF-GC concerning
their adaptability to new data when only training on a small amount of labeled data
from the new field environment. We use the BONN-CW-16 data to initially train
models and investigate their crop-weed classification performance on the BONN-CW-
17, STUTT-CW-15, ANCONA-CW-18, and ZURICH-CW-16 data sets after re-training
the models with 1, 5, 10, 25, 50, and 100 additional labeled images.

Figure 6.27 illustrates the evolution of the average F1-score of the pixel-wise crop-
weed classification performance after re-training the models on additional images from
the targeted field domain. We report the performance on the remaining images of the
respective test datasets. We see two noteworthy outcomes from this experiment.

As the first outcome of this experiment, the semi-supervised random forest-based
RF-GC approach that combines a visual and geometric classifier only requires a lit-
tle number of five additional images to substantially improve its performance on the
target data sets substantially. Except for the field in Zurich, RF-GC already achieves
a comparable or even better performance to the fully convolutional neural network
approaches. This is remarkable since, in all previous experiments, the random forest
performed worse than the fully convolutional neural network approaches. On average,
RF-GC achieves a performance gain of about 30% average F1-score if we leave the
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Figure 6.27: Precision-recall curves for the pixel-wise crop-weed classification performance after
re-training the models on additional images from the targeted field domain.
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Figure 6.28: Plant arrangement model p(d | ωc) according to Equation (4.19). In this illustra-
tion, we learned the respective p(d | ωc) for each dataset only considering ground truth data,
i.e., the manually labeled plants in the images. The black color refers to the probability mass
for the distribution of the coordinate difference along and perpendicular to the crop row.

ZURICH-CW-16 dataset aside. Besides, the random forest can slightly increase its
performance by including further data, but not as much as after the first five images.

There are two reasons for this substantial performance growth. First, the RF-
CAS approach starts from a rather low performance, which is caused by initialization
problems of the geometric classifier on the test data, in the case without re-training.
Therefore, an increase due to new training data is likely. The fact, however, that
the random forest with five additional images already provides better results than the
neural network approaches is because of a successful initialization of the geometric
classifier. Exploiting the plant arrangement compensates for the lack of generalization
capability of the visual classifier. Second, over time, the visual classifier is adapted and
provides better predictions that further stabilize the whole system.

We investigate why the performance on the ZURICH-CW-16 data does follow this
performance pattern. We analyze the quality of the relative plant arrangement and
conclude that the reason for the lower performance on the ZURICH-CW-16 dataset is
the higher variance for the spacing of plants along the crop row. Figure 6.28 shows the
arrangement models p(d | ωc) learned by the manually labeled ground truth data. From
the distribution of the probability mass, we can conclude the precision of the geometric
distribution of the plants. An equidistant distribution of the plants leads to a multi-
modal distribution of coordinate differences along the row axis where the individual
modes have an equal distance between each other, see Figure 6.28 (ANCONA-CW-
18). In contrast, an irregular distribution of the plants results in a distribution of a
with considerably more dispersion, see Figure 6.28 (ZURICH-CW-16). Here, the lower
quality of the intra-row spacing in Zurich leads to smaller support by the geometric
classifier. Nevertheless, the RF-CAS approach provides effective transfer capabilities
with small amounts of training data, in case of a particular quality of the plant’s row
spacing.

Regarding the second outcome of this experiment, we observe a constant perfor-
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Figure 6.29: Labeling of the crop plants (sugar beets) with markers placed next to the plant.

mance improvement when the classifier has access to more and more training data
coming from the targeted field domain for the fully convolutional neural network ap-
proaches. In particular, the sequential FCN-SEQ approach always performs better than
the non-sequential FCN approach. This is to be expected, as it already starts from a
higher performance just by applying the pre-trained model on the test data. How-
ever, if we look at the slope of the performance concerning the additional training data
available, the curve of the FCN-SEQ approach reveals a tendency that the sequential
approach can better exploit small amounts of data. Compared to the FCN curve, the
performance increase is slightly better for the re-training with up to 25 images.

We conclude that the approaches RF-GC and FCN-SEQ, which additionally exploit
the spatial arrangement of the plants, serve a more effective adaption to new and
changing field conditions under the view of the needed labeling effort. FCN-SEQ reaches
at least 85% average F1-score on the test data by using 100 images for re-training. In
three of four test cases, it reaches 90% average F1-score.

6.8.1 Comparison Under Minimal Labeling Effort
The noteworthy results for RF-CAS raise the question of whether this approach even
requires a pre-trained visual classifier to perform well on the test data. We perform
the same experiment again with the RF-GC approach and in this case only use a few
images, which were originally intended for the re-training, but in this experiment, to
initialize the visual and geometric classifier entirely from scratch.

In this experiment, we reduce the labeling effort to its extreme. We target a labeling
effort of approximately one minute for a human and do not consider any pre-trained
classifier. We achieve this one-minute labeling effort by placing printed markers next
to a set of sugar beet plants at the beginning of the row. Figure 6.29 illustrates how
the one-minute in-field labeling works. We can place around 10-15 markers within a
minute, which corresponds to approx. 2m-3m of sugar beets along a row. We find
the markers in the images and assign the label “crop” to detected vegetation based
on a distance threshold, all other vegetation is considered to belong to the “weed”
class. Based on this information, we can initialize the plant arrangement model and
start training the visual classifier of RF-GC and can train the random forest model
of RF-GC. We perform the procedure based on markers for the BONN-CW-17 and
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ANCONA-CW-18 dataset. For the STUTT-CW-15 and ZURICH-CW-16 dataset, we
use ten labeled images representing the first 3m of the crop row to approximate the
marker-based labeling.

The term “RF-GC ⋆” in Figure 6.27 refers to the performance obtained under the
aforementioned setup. For all test datasets, the achieved performance of RF-GC ⋆ is
comparable or even higher than the performance of RF-GC using a re-trained visual
classifier. This experiment shows the potential of the RF-CAS approach, which exploits
its geometric classifier to adapt the visual random forest-based classifier on the fly. For
the field in Zurich, it seems that the re-trained classier even harms the performance of
the systems. We argue that the wrong predictions of the visual classifier of the RF-CAS
approach are not in line with one provided by the geometric classifier and, thus, lead
to more false predictions in total.

We conclude that the RF-CAS approach serves excellent capabilities to rapidly
adapt to new field environments, given that the quality of the spacing of the crop
plants is “good enough”.

6.8.2 Conclusions for Supervised Classifier Transfer in
the Context of Labeling Effort

We draw the following conclusions from the results in this section:
First, under the view of the needed labeling effort, our proposed RF-GC approach

provides the best performance and adapts the best to the current situation in a new
field environment. However, it relies on a sufficient quality of the plant spacing along
the crop row.

Second, the sequential FCN-SEQ approach can better exploit smaller amounts of
data to adapt to new and changing field conditions compared to its non-sequential
variant FCN.

Third, both fully convolutional neural network approaches can be re-trained to
provide a high-quality classification in new field conditions by using around 100 images
from the targeted field domain.

6.9 UAV-Based Plant Classification for
Automated Crop Monitoring

We design the next evaluation in this section to illustrate the performance of our UAV-
based plant classification systems. We evaluate performance in two ways. First, we
analyze the classification performance for the automatic computation of the spatial
distribution of plants and weeds. This information is important for the scheduling
of weed control operations and for the provision of application maps, which are a
prerequisite for the application of the minimum amount of chemicals required for the
current situation in the field. Second, we evaluate the counting performance with
which we can derive the number of actual plants in the field. The number of plants
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in the field is an important trait for seed quality and can also be used to estimate
the expected yield. For both applications, we show that our proposed approaches are
capable of providing accurate maps of the crop plants and weeds on a per-plant basis,
also including weeds located in the intra-row space.

For all UAV experiments, we solely consider RGB images as the input to the clas-
sification systems. Using UAV data instead of data recorded with a UGV, however, is
more challenging, as the imagery is naturally exposed to varying lighting conditions.
Another difference between the UAV and UGV data is the camera footprint on the
field. UAV images are much larger with 12-21 mega-pixels and cover a larger area of
the field with only one image. The image data for the application used in this section
does not have to be processed online during data acquisition. Thus, for image process-
ing, we do not focus on runtime and, therefore, perform no downscaling of the images
as in the case of UGVs.

We separate the experiment in this section into five subsections. In Section 6.9.1
and Section 6.9.1, we evaluate the pixel-wise crop-weed classification for high- and low-
resolution imagery, respectively. In Section 6.9.3, we evaluate the performance in the
view of multi-species classification for estimating the spatial distribution of different
weed types. In Section 6.9.3, we evaluate the effectiveness of the UAV-specific, geomet-
ric features used in RF-UAV that encode information about the plant arrangement.
For these four experiments, we evaluate the random forest-based RF-UAV approach
and our FCN-UAV approach in terms of the plant classification. In Section 6.10, we
evaluate the performance to estimate the number of actual crop plants in the field. For
the plant counting experiments, we use the FCN-UAV-STEM approach.

Since the actual ground resolution of UAV images is generally coarser compared to
UGV images, we avoid downsampling the image data to a suitable resolution for the
network as for the UGVs. Consequently, we split the images into smaller chunks of
size 512× 512pixels. Furthermore, the training procedure differs from that during the
deployment phase of the classifier. Throughout the training phase, we randomly extract
image patches of size 512 × 512pixels and randomly rotate them to achieve learned
features that are robust against different orientations of the crop rows in the data. In
the classifier’s deployment phase, we divide an input image into 512×512pixel areas and
select the overlap such that we can drag the patches without resizing the original image.
After the prediction of the image patches, we stitch them together again to the original
input image size. For the overlapping regions, we average the single probabilities for
one pixel across all classes and then assign the average probability.

6.9.1 Classification Performance for High-Resolution
Imagery

We design these experiments to demonstrate that our approaches RF-UAV and FCN-
UAV can classify plants and weeds in high-resolution UAV images. With a high resolu-
tion, we mean a ground sampling distance of about 1mm. This resolution is comparable
to the one used in the UGV experiments in this chapter.
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Figure 6.30: Precision-recall curves for the pixel-wise UAV-based crop-weed classification per-
formance under similar field conditions. Left: classifier trained on BONN-UAV-17-1MM and
deployed on BONN-UAV-17-1MM test split. Right: classifier trained on ZURICH-UAV-17-
1MM and deployed on ZURICH-UAV-17-1MM test split. Green refers to crop plants and red
refers to weeds.

Table 6.21: Pixel-wise crop-weed classification performance obtained through our RF-UAV
and FCN-UAV approach under similar field conditions. We report the class-wise and average
F1-score (F1), precision (P), and recall (R) for a labeling with the most likely class in percent
according to Equation (2.23). The term training refers to the used training data for a particular
experiment, whereas the term deployment refers to the test dataset.

Approach Average Crop Weed Soil
F1 P R F1 P R F1 P R F1

Training: BONN-UAV-17-1MM (25 %) Deployment: BONN-UAV-17-1MM (70 %)

FCN-UAV 92.0 87.9 88.8 93.6 92.8 94.4 83.0 82.9 83.2 99.3
RF-UAV 87.5 84.4 79.6 88.0 87.8 88.2 75.6 81.0 70.9 98.9

Training: ZURICH-UAV-17-1MM (25 %) Deployment: ZURICH-UAV-17-1MM (70 %)

FCN-UAV 93.0 91.0 88.8 94.8 93.5 96.2 84.7 88.5 81.3 99.3
RF-UAV 89.9 84.9 86.7 87.9 87.7 88.2 83.5 82.0 85.1 98.2

The datasets used for this evaluation are BONN-UAV-17-1MM and ZURICH-UAV-
17-1MM. Both datasets consist of around 90 pixel-wise annotated images containing
sugar beets and a substantial amount of weeds observed in different growth stages
and under different weather conditions. For the high-resolution UAV imagery, we
perform two experiments. First, we evaluate the performance under similar field condi-
tions by analyzing the intra-dataset performance within the BONN-UAV-17-1MM and
ZURICH-UAV-17-1MM datasets, respectively. Second, we evaluate the performance
under changing field conditions by analyzing the cross-dataset performance between
BONN-UAV-17-1MM and ZURICH-UAV-17-1MM.

Evaluation under similar field conditions For the evaluation under similar field
conditions, we train the classifiers on a random 25% split of the images and test them on
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Figure 6.31: Qualitative results for the pixel-wise UAV-based crop-weed classification perfor-
mance of FCN-UAV and RF-UAV under similar field conditions. We show a representative
example per approach and per dataset. The FCN-UAV approach provides a high-quality crop-
weed classification, whereas the RF-UAV approach produces more wrong classifications, espe-
cially in the crop row area.
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Figure 6.32: Precision-recall curves for the pixel-wise crop-weed classification performance under
changing field conditions. Left: classifier trained on BONN-UAV-17-1MM and deployed on
ZURICH-UAV-17-1MM. Right: classifier trained on ZURICH-UAV-17-1MM and deployed on
BONN-UAV-17-1MM.

70% of the BONN-UAV-17-1MM and ZURICH-UAV-17-1MM datasets, respectively.
We use the remaining 5% as validation portion data to perform early stopping. Fig-
ure 6.30 depicts the obtained precision-recall curves of the respective test splits for the
pixel-wise crop-weed classification performance. The comparison of the two approaches
shows a significant advantage of FCN-UAV for both crops and weeds. Overall, FCN-
UAV performs around 4%-5% better than RF-UAV with respect to the average F1-
score across all classes, see also Table 6.21. One reason for this is an almost constant
high precision of around 95% for crop plants with the recall interval of 90%-97%. Also,
for weeds, FCN-UAV performs around 8% better in terms of the class-specific F1-score
on the BONN-UAV-17-1MM dataset. These results convey that our fully convolutional
neural network approach is better suited for crop-weed classification under similar field
conditions.

The qualitative results depicted in Figure 6.31 show the reasons for the different
performance of the evaluated approaches. FCN-UAV properly separates overlapping
weeds and crop plants for both datasets, whereas RF-UAV has notably more missclas-
sifications for weeds located near the crop rows. We argue that the line model feature
encoding the distance to the crop row pushes keypoints and objects located close to
row to be classified as a crop. Thus, we investigated the classification without us-
ing the line model feature. However, the precision-recall curve for the basic RF-CAS
approach in Figure 6.30 shows that not using geometric features leads to even more
missclassifications for weeds (mostly located between the rows).

Evaluation under changing field conditions For the evaluation under changing
field conditions, we use 95% of the BONN-UAV-17-1MM dataset for the training and
report the achieved performance for the entire ZURICH-UAV-17-1MM dataset. For
completeness, we also perform the same experiment in the other direction. We use
the remaining 5% as validation portion data to perform early stopping. Figure 6.32

191



6.9. UAV-Based Plant Classification for Automated Crop Monitoring

Table 6.22: Pixel-wise crop-weed classification performance obtained through our RF-UAV and
FCN-UAV approach under changing field conditions. We report the class-wise and average
F1-score (F1), precision (P) and recall (R) for a labeling with the most likely class in percent
according to Equation (2.23). The term training refers to the used training data for a particular
experiment, whereas the term deployment refers to the test dataset.

Approach Average Crop Weed Soil
F1 P R F1 P R F1 P R F1

Training: BONN-UAV-17-1MM (25 %) Deployment: BONN-UAV-17-1MM (70 %)

FCN-UAV 81.6 68.5 78.0 74.5 73.9 75.1 70.9 63.1 80.8 99.3
RF-UAV 80.7 72.8 71.9 84.8 80.1 90.1 59.0 65.4 53.7 98.2

Training: ZURICH-UAV-17-1MM (25 %) Deployment: ZURICH-UAV-17-1MM (70 %)

FCN-UAV 79.9 71.9 68.6 73.0 72.4 73.6 67.2 71.3 63.5 99.5
RF-UAV 81.1 69.3 76.1 84.0 78.6 90.2 60.9 59.9 62.0 98.2

depicts the resulting precision-recall curves for the pixel-wise UAV-based crop-weed
classification performance of RF-UAV and FCN-UAV under changing field conditions.

Under these conditions, the RF-UAV approach is not able to provide suitable re-
sults, as the threshold based vegetation classification, which is based on the threshold
learned from the training data, fails. To compare the performance concerning the
crop-weed classification, we adjust the threshold on one image of each test data set,
respectively, and report the performance under these conditions.

Figure 6.32 depicts the resulting precision-recall curves for the pixel-wise crop-weed
classification performance of RF-UAV and FCN-UAV under changing field conditions.
Table 6.22 summarizes the achieved performance for labeling with the most likely class.
First, we see that the overall performance of both approaches is lower than the one un-
der similar field conditions. This observation is in line with the evaluation for UGVs,
see Section 6.5.2. Only the RF-CAS approach can provide useful results for the classifi-
cation of crop plants. The explicit modeling of geometric features is mainly responsible
for the recall of 90% at a precision close to 80% for the crop class on both datasets.
The FCN-UAV approach cannot provide this level of performance. Since the archi-
tecture is not explicitly designed for the extraction of the field geometry, the color
information might be considered to be too important. This, in turn, leads to a loss in
performance when the visual appearance of the plants and soil changes. To test this
hypothesis, we filter the FCN-UAV results within an additional postprocessing step.
Based on the classification result, we first extract the crop row information using the
method described in Section 4.5.1. Subsequently, we re-label all falsely predicted crop
pixels that have a distance of >10 cm to the extracted crop row as weed pixels. This
procedure increases the precision for the crop by about 10% and the recall for weed by
about 20%. Thus, the geometric information has the potential to improve the purely
visual classification.

RF-UAV achieves low F1-scores of around 60% for weed on both datasets. The
primary reason for that is the F1-score for the soil of 98.2%. As the majority of pixels
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Table 6.23: Pixel-wise crop-weed classification performance obtained through our RF-UAV and
FCN-UAV approach for low-resolution imagery under similar field conditions. We report the
class-wise and average F1-score (F1), precision (P), and recall (R) for a labeling with the most
likely class in percent according to Equation (2.23). The term training refers to the used training
data for a particular experiment, whereas the term deployment refers to the test dataset.

Approach Average Crop Weed Soil
F1 P R F1 P R F1 P R F1

Training: BONN-UAV-17-5MM (45 %) Deployment: BONN-UAV-17-5MM (50 %)

FCN-UAV 93.4 91.1 90.1 93.9 91.9 96.0 87.0 90.2 84.1 99.3
RF-UAV 90.8 88.5 85.9 92.5 89.8 95.3 81.5 87.1 76.5 98.6
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Figure 6.33: Precision-recall curves for the pixel-wise UAV-based crop-weed classification per-
formance at 5mm ground sampling distance. The FCN-UAV approaches provides the best
performance. The RF-UAV approach profits from the use of the geometric features and pro-
vides the second-best performance.

belong to soil, a small percentage-wise decrease in the performance for soil can have a
substantial effect on the vegetation classes. Under this view, the FCN-UAV approach
provides better performance compared to the threshold-based vegetation classification
of RF-UAV. The threshold-based vegetation classification suffers from the sunny con-
ditions in the ZURICH-UAV-17-1MM data.

We draw the conclusions that explicitly modeling the geometric features helps to
bridge the performance loss when deploying the classifiers in new and unseen field
environments. Furthermore, fully convolutional neural networks provide a more robust
separation of soil and vegetation under changing field conditions.

6.9.2 Classification Performance for Low-Resolution
Imagery

In this section, we evaluate the performance of FCN-UAV and RF-UAV for a lower
ground resolution of the image data. While we perform the experiments in the pre-
vious section with a ground resolution of around 1mm per pixel, we now analyze the
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performance of the crop-weed classification with a ground resolution of around 5mm
per pixel. A lower resolution reflects more challenging conditions for the classifiers, as
they have to differentiate between crop plants and weeds based on less pixel informa-
tion. From the application’s point of view, however, a lower resolution is desirable, as
it leads to faster coverage during flight. Note that the observed area increases to the
square of the ground sampling distance when using the same acquisition setup.

We perform this experiment on the BONN-UAV-17-5MM dataset, which we de-
scribe in Section 3.2.3. We train the RF-UAV, and FCN-UAV approaches on nine
manually selected image regions containing sugar beets and a substantial amount of
weeds and test it on another ten test patches for which we have pixel-wise ground
truth information. We use one patch as validation data to perform early stopping.
Figure 6.33 depicts the resulting precision-recall curves for the pixel-wise UAV-based
crop-weed classification performance of RF-UAV and FCN-UAV at 5mm ground sam-
pling distance.

Figure 6.34 shows an overview of the classified field obtained by the FCN-UAV
approach. We can observe that the fully convolutional neural network approach qual-
itatively provides an appropriate accuracy for crop-weed classification. Figure 6.33
depicts the obtained precision-recall curves for the pixel-wise crop-weed classification
concerning the ten test patches.

Table 6.23 summarizes that both models classify the majority of crops correctly
and obtain a high recall of >95% at a precision of around >90%. The shapes of the
precision-recall curves indicate a stable prediction of the crop plants over the entire
recall range of 0-95%. The performance for the weed class, however, differs between
the random forest and the fully convolutional neural network. Here, the precision-recall
curve for the neural network starts decreasing later, i.e., for higher recall values. Thus,
for weeds, we see an advantage for the FCN-UAV approach. Concerning the perfor-
mance for labeling with the most likely class, the fully convolutional neural network
approach achieves a gain of around 7% in terms of thew F1-score.

For a qualitative inspection, Figure 6.34 depicts zoomed views of analyzed field
regions concerning the spatial distribution of crop plants and weeds. The FCN-UAV
approach can better classify the weeds that are located close to crop plants compared
to RF-UAV. Thus, it classifies more of the actual weed canopy correctly. The RF-
UAV approach cannot correctly classify all weeds that grow close to or overlap with
crop plants. It tends more to predict the class crop if objects or keypoints are located
close to crop row. To reason about this observation, we investigated the feature im-
portance provided by the training procedures of the random forest. Here, we find that
the line model feature (see Section 4.5.1) is the third most important feature for the
object-based features and the second most important feature for the keypoint-based
features. Therefore, we argue that the crop row feature has a too strong influence on
the prediction of these cases. Figure 6.34 (bottom row, left) illustrates that the RF-
UAV approach wrongly classifies a substantial number of weeds located next to the
left-most crop row. The reason is that the crop row extraction falsely detects another
potential crop row. In consequence, the keypoint and objects along this falsely detect
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Overview FCN-UAV

FCN-UAV

RF-UAV

Figure 6.34: Overview of the crop-weed classification result on the BONN-UAV-17-5MM dataset
obtained by FCN-UAV and zoomed view for classification results obtained by FCN-UAV and
RF-UAV
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Figure 6.35: Precision-recall curves for the pixel-wise UAV-based multi-species classification on
the BONN-UAV-M-16 dataset.

crop row get a wrong value for the line model features. We further investigated the
performance of the RF-UAV approach when reducing the size of the patches to up to
10×10 pixels. However, the steering to a smaller patch size did not lead to an increase
in the performance.

Thus, we conclude that the performance of the RF-UAV approach can be limited
through a lower ground resolution and that the FCN-UAV is well suited for the esti-
mation of crop-weed maps for both high- and low-resolution imagery.

6.9.3 Multi-Species Classification
In this section, we target the detection of common weed species in sugar beet fields in
Northern Europe, which is an important problem and a challenging task for precision
farming systems. The information about the spatial distribution of different weed
species in a field can be exploited to trigger weed control tasks and to plan the most
appropriate mixture of herbicides, given the current species distribution in the field.
We design this experiment to demonstrate that our approaches RF-UAV and FCN are
capable of classifying sugar beets and different weed species, which are common on
sugar beet farms.

Therefore, we analyze the multi-species classification performance on the BONN-
UAV-M-16 dataset, which we describe in Section 3.2.3. The dataset consists of 20 fully
annotated images containing sugar beets and several weeds species that we labeled
manually as sugar beets, saltbush, chamomile, other weeds, and soil. We train the
classifiers on nine images, test them on ten images, and use one image as validation
data to perform early stopping. Note that for the RF-UAV approach, we do not exploit
the line model features as no crop row structure is present in this dataset.

Figure 6.35 depicts the precision-recall curves for the multi-species classification at
the pixel level as well as at the object level. Considering the pixel-wise performance,
it shows that FCN-UAV and RF-UAV can achieve class-wise recalls greater than 90%
depending on the selected threshold for the label assignment. The class labeling based
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Table 6.24: Pixel-wise multi-class classification performance btained through RF-UAV and
FCN-UAV approach under similar field conditions. We report the class-wise and average F1-
score (F1), precision (P), and recall (R) for a labeling with the most likely class in percent
according to Equation (2.23). The term training refers to the used training data for a particular
experiment, whereas the term deployment refers to the test dataset.

Approach Average Crop Chamomile Saltbush Weed Soil
F1 P R F1 P R F1 P R F1 P R F1 P R F1

Training: BONN-UAV-M-16 (45 %) Deployment: BONN-UAV-M-16 (50 %)

FCN-UAV 87.6 89.1 94.6 97.3 97.2 97.5 85.9 80.9 91.6 79.4 76.1 83.0 77.5 75.6 79.5 99.3
RF-UAV 82.0 81.1 86.8 92.9 92.8 93.1 74.5 69.4 80.4 78.6 75.7 81.8 67.3 60.2 76.4 98.2

on the predicted maximum confidences of the FCN-UAV and RF-UAV approach leads
to the results that are listed in Table 6.24. In terms of the average F1-score across all
classes, the fully convolutional neural network approach achieves a 6% better perfor-
mance at the pixel level. This performance gain is mainly caused by the better results
for chamomile and other weeds. Generally, the overall precision of both classification
systems suffers from the obtained recall for other weeds ranging from 76% for RF-UAV
to 80% for FCN-UAV. This result is affected by having a small number of examples
within the datasets and probably by a higher intra-class variance, since all actual other
weeds, which occur in this dataset, are represented by this class. More datasets with
different weed types are needed to clarify that. If we only focus on crop-weed classifica-
tion, the overall F1-Score increases by 9% for both approaches to 97% for FCN-UAV
and 91% for RF-UAV.

Object-wise, the FCN-UAV approach achieves a substantially higher for the sugar
beet class with around 17%. Moreover, it can predict the different weed species with
a higher precision, leading to better overall performance. We conclude that the fully
convolutional neural network approach can extract more descriptive features to dis-
tinguish different weed species and, thus, can better deal with the small number of
training images.

Figure 6.36 depicts analyzed images for the multi-class classification obtained by the
RF-UAV and FCN-UAV approach. In this illustration, we do not show the ground truth
image because a direct comparison is difficult to achieve visually. The visual inspection
of the predictions reveals that most of the plants and weeds are classified correctly by
the fully convolutional neural network approach, whereas the random forest produces
more misclassifications in between the different weed species. This observation also
coincides with the performance on object-level that is depicted in Figure 6.35 (right).

6.9.3.1 Impact of Geometric Features for RF-UAV

The additional geometric features, namely the line model feature for crop rows described
in Section 4.5.1 and the spatial relationship features described in Section 4.5.2, repre-
sent the adoption of the RF-UAV to UAV images based on the basic RF-CAS approach.
We design this experiment to demonstrate the impact in performance when using ge-
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RGB

FCN-UAV

RF-UAV

Figure 6.36: Multi-species classification results on the BONN-UAV-M-16 dataset. Example
UAV images analyzed by our approaches RF-UAV and FCN-UAV. Different colors refer to
the plant classification considering the classes crop in green, saltbush in blue, chamomile in
magenta, other weed in red, and soil.
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ometric features in our RF-UAV approach. Therefore, we compare the performance of
the RF-CAS and RF-UAV approach on the high-resolution BONN-UAV-17-1MM and
ZURICH-UAV-17-1MM datasets as well as on the low-resolution BONN-UAV-17-5MM
dataset.

First, we analyze the impact of exploiting the geometric features for high-resolution
images under similar field conditions. Figure 6.30 depicts the performance of RF-
CAS and RF-UAV in terms of precision-recall curves for the BONN-UAV-17-1MM and
ZURICH-UAV-17-1MM datasets. RF-UAV achieves substantially better performance
for crop plants and weeds on both datasets. The geometric features lead to a perfor-
mance gain of around 6% average F1-score taking both datasets into account. The
biggest gain is achieved for weed on the ZURICH-UAV-17-1MM dataset with around
10% in F1-score. The RF-CAS approach suffers from the comparably large diversity
in the respective UAV datasets. The exploitation of geometric features in RF-UAV,
however, compensates for the performance loss and thereby improves the performance
close to the level of the fully convolutional network.

Figure 6.32 depicts the precision-recall curves for the performance under changing
field conditions. Compared to the purely visual random forest, RF-UAV obtains a
better F1-score of around 12% on the BONN-UAV-17-1MM and 7% on the ZURICH-
UAV-17-1MM dataset for the crop. Also, for weed, the performance increases up to
5% F1-score when using geometric features. Concerning all tested approaches to these
data, RF-UAV is the only method providing decent performance for the crop class
under changing field conditions.

Our evaluation shows that for high-resolution imagery, the use of geometric features
supports the classification based on visual features, as it improves the overall accuracy
and precision, especially for the crop, on the tested datasets.

We observe the biggest gain in performance for the BONN-UAV-17-5MM dataset
containing low-resolution images with a ground sampling distance of around 5mm.
Here, the detection of RF-CAS based only on visual appearance, i.e., features ignoring
geometry, suffers from the comparably low ground resolution. Thus, geometric features
become great supporters for the detection, as they are rather invariant to the image
resolution. First, we add our proposed spatial relationship features to RF-CAS. The
term RF-SR refers to the performance that is achieved in this case. We observe a
performance gain of around 4% for the weed and 6% for the crop class. Adding the
line model features on top further increases the performance. In total, the RF-UAV
approach achieves a better F1-score of around 10% for weed and 16% for crop compared
to RF-CAS. The corresponding precision-recall curves indicate that this amount is
mainly caused by better detection of the crop class. Thus, the geometric features are
key supporters for the crop-weed classification on low-resolution imagery.

We conclude that using geometric features for the classification task is an appropri-
ate way to exploit spatial characteristics of plantation in agricultural field environments.
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6.10 UAV-Based Plant Counting Under Harsh
Conditions

We design the experiment in this section to evaluate the performance of the FCN-UAV-
STEM approach in applying plant counting under harsh conditions. These experiments
were conducted in collaboration with the Institut für Zuckerrübenforschung and ARGE
NORD, who supported the experiment in data collection and field management. We
demonstrate the effectiveness of FCN-UAV-STEM by performing the analysis of plant
counting under hard conditions, as described in Section 6.10. The conditions include
overlapping plants, high weed pressure, straw- and weed-overlaid and concealed plants
in various growth stages, and images recorded under different weather conditions.

For this experiment, we use the GOETT-UAV-19 dataset described in Section 3.2.4.
This dataset consists of three measurements of a field with 40 microplots each, i.e., 120
microplots in total, see Figure 3.17 for an illustration. Already at the early growth
stage, the sugar beets overlap each other along the crop row. Individual plants appear
as separate components in the image-space because they are covered and separated by
straw or larger grown weeds.

We train our classification model FCN-UAV-STEM on five manually labeled mi-
croplots per measurement day, i.e., 15 microplots in total, see Figure 3.18 for an illus-
tration. We follow the conclusions of the joint plant and stem detection experiments
in Section 6.7 and use FCN-UAV-STEM in its two task-specific decoder variant, as the
performance is better for both stem detection and plant classification. Therefore, we la-
beled the ground truth for these experiments considering the pixel-wise labeling of crop
plants, weeds, and background. Besides, we labeled the stems for the crop plants. As
test data, we use the remaining 105 microplots. For these plots, we manually counted
the number of plants per plot in the UAV images. As a baseline, we furthermore eval-
uate our FCN-UAV approach that solely provides the pixel-wise classification into the
classes crop, weed, and background. To count the plants, we perform a subsequent
connected component analysis on the predicted class label mask by only considering
the crop class.

To analyze the plant counting performance, for each micro plot m, we compare the
predicted number of plants cp with the number of plants coming from the ground truth
cgt. We calculate the absolute error over per micro plot by

AEm =
∑
M

|cp − cgt| . (6.8)

We then measure the performance based on the individual measurement days. We
analyze the same microplots 20 days after seeding (DAS-20), 34 days after seeding
(DAS-34), and 52 days after seeding (DAS-52), via the mean absolute error across as

MAEDAS =
35∑

m=1

AEm with DAS = {20, 34, 54}, (6.9)
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Table 6.25: Plant counting performance of FCN-UAV-STEM and FCN-UAV on the GOETT-
UAV-19 dataset.

Approach DAS-20 DAS-34 DAS-52
MAE MAE [ %] MAXE MAE MAE [ %] MAXE MAE MAE [ %] MAXE

Training: GOETT-UAV-19 15 plots Deployment: 105 plots

FCN-UAV-STEM 9.8 4.8 14 7.6 3.7 12 9.6 4.7 15
FCN-UAV 19.0 9.3 37 24.4 11.9 52 35.8 17.5 64

and in addition to that, we report the maximum absolute error per measurement day
MAXE, which is found for a single micro plot.

Table 6.25 summarizes the obtained counting performance achieved by FCN-UAV-
STEM and FCN-UAV. These results demonstrate the superior counting performance
of our proposed FCN-UAV-STEM architecture compared to the baseline. Across all
measurement days, it achieves an average MAE of 9 plants per plot, which reflects a
counting error of 4.4%. 15 plants give the maximum counting error for a single plot.
These results are comparable to human performance.

The FCN-SEQ approach achieves a comparably low performance with an MAE of
around 24 plants per plot. In the worst case, it produces a counting error of 64 plants
for a single plot. Thus, the performance is not suitable for crop counting. The reason
for the larger error is depicted in Figure 6.26. While FCN-UAV-STEM can properly
locate the stems of individual crop plants, the connected component assumption for
the postprocessing of the FCN-UAV result does not hold, as over-segmented crop plant
objects lead to too many counts per plot. The over-segmentation is mostly caused by
the straw that fragments individual plants in image-space and mistakes in the pixel-wise
classification. FCN-UAV-STEM is robust to both of these effects and thus provides a
stable estimate for the stand count, even when the pixel-wise classification into crop
and weed is not always correct.

We conclude that our FCN-UAV-STEM approach is suitable to perform UAV-based
automated crop counting in harsh conditions.

6.10.1 Conclusions for the UAV-based Crop-Weed
Classification

We draw the following conclusions from the presented results:
First, for high-resolution UAV images, fully convolutional neural networks provide

better crop-weed classification performance under similar as well as under changing
field conditions compared to the random forest-based approaches. One reason for the
better performance is that fully convolutional neural networks can better deal with
the separation of vegetation and soil. Especially under changing field conditions, the
threshold-based vegetation classification reveals unreliable. For a high-quality perfor-
mance, it has to be adapted manually.

Second, for low-resolution UAV images, the FCN-UAV approach performs better
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DAS-20 DAS-30 DAS-40
RGB

Plant classification

Stem classification

Table 6.26: Zoomed view of microplots and corresponding crop-weed classification and stem
detection results.
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than the RF-UAV approach. As in the case of the high-resolution images, the RF-UAV
approach produces more missclassifications. First, in the case of weeds that are located
close to the crop row. Second, for weeds that overlap with the crops. The performance
of the random forest approach is limited for lower ground resolution.

Third, the explicit modeling of geometric features substantially helps to bridge
the performance loss when deploying classifiers in new and unseen field environments.
Thus, we recommend exploiting the crop row information, preferably under new and
changing field conditions.

Fourth, regarding the UAV-based multi-species classification, the FCN-UAV ap-
proach performs better than the RF-UAV approach. Fully convolutional neural net-
works can extract more descriptive features to distinguish different weed species.

Fifth, the FCN-UAV-STEM approach is suitable to perform UAV-based automated
crop counting, even in harsh conditions with high weed pressure and overlapping crop
plants. The stem detection serves as a good method to extract the plant count from
the data for several growth stages.

6.11 Runtime Performance for In-Field
Treatments

A classifier suited for online plant classification must work a minimum required runtime
to ensure a desired throughput of the robotic weed control system. Within Section 6.1,
we define the minimum required runtime for our setup to be around 5Hz. The last
experiment in our experimental evaluation is designed to support the claim that our
proposed approaches run fast enough to provide suitable results for the online operation
of a robotic weed control system. We evaluate the runtime on the computer that is
installed on the field robot (Intel i7 CPU, Nvidia GeForce GTX-2080 GPU).

We implemented all parts of our random-forest based classification pipeline in C++.
We implemented most of the components in the pipeline using CUDA to exploit the
parallel processing capabilities of the GPU. For the random forest and some basic
functionality, we use the OpenCV library [2]. For the Markov random field smoothing,
we use the implementation provided by Felzenszwalb et al. [30]. We implemented all
parts concerning the pipeline for the fully convolutional neural networks in Python.
For the design and training of the networks, we use Keras [23]. For the inference, we
use Tensorflow [2].

Note that we do not claim that our implementations are fully optimized for a fast
runtime. We deploy the random forest on the CPU running the inference on eight trees
in parallel, each tree on a separate core. For the fully convolutional neural network-
based approaches, we neither optimize the inference graph using the TensorRT library
for faster inference, nor do we use quantized inference. Thus, there is still potential to
speed up the runtime of our algorithms.

For all experiments in this section, we deploy the preprocessing on the GPU. For
the random forest-based approaches, we use our CUDA implementation, whereas for
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Table 6.27: Runtime analysis of the random forest-based and the end-to-end fully convolutional
neural network-based plant classification approaches. For the random forest-based pipeline, we
present the runtime for the key processing steps. We report the runtime for the inference on
the BONN-CW-16 dataset using RGB+NIR images of size 512× 384 as the input.

Function Device Min Std Max
[ms] [ms] [ms]

Random forest approaches

Preprocessing GPU 18 3 20
Vegetation Classification GPU 15 1 18

Object�based RF-OBJ

Feature extraction GPU 22 3 31
Classification GPU 4 2 15
Overall 69 97

Keypoint�based RF-KP

Feature extraction GPU 89 25 213
Classification CPU 85 22 149
MRF smoothing CPU 356 78 566
Overall 563 966

Semi-supervised RF-GC

Geometric classification CPU 8 1 15
Geometric classifier update CPU 4 2 6

Fully convolutional neural network approaches

FCN GPU 30 1 32
FCN-STEM GPU 53 1 54
FCN-SEQ GPU 83 1 85
FCN-SEQ-STEM GPU 154 1 156

the fully convolutional neural networks, we perform the preprocessing using the native
TensorFlow functionality. For all experiments in this section, we perform the classifi-
cation on the BONN-CW-16 dataset to record the runtime for the respective pipelines.
We use RGB+NIR images of size 512× 384 as the input.

We exploit the GPU using our CUDA implementation for the vegetation classifica-
tion, which we describe in Section 4.3.1, as well as for the extraction of the keypoint-
based and object-based features, which we describe in Section 4.3.3. As the keypoint
and object features are computed only for image regions that correspond to vegeta-
tion, the total runtime of the RF-KP and RF-OBJ approach depends on the amount
of classified vegetation for each image.

Table 6.27 illustrates an overview of the execution time of different parts of our
classification system for the RF-KP and the RF-OBJ approach. The average execution
time to extract the handcrafted features is around 90ms for the keypoints and 22ms
for the objects. Furthermore, we use the GPU for our preprocessing step to obtain
normalized intensities for each input channel. The execution time for this task is around
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five times faster compared to the CPU implementation, see Table 6.27. The most time-
consuming part is currently the MRF smoothing of the keypoint-based approach, which
runs on the CPU. Generally, we need many more keypoints than objects to cover the
vegetation of an image. Thus, the object-based classification is substantially faster.
The RF-OBJ approach requires, on average, around 70ms for the inference on a single
image, whereas the keypoint approach RF-KP needs around 560ms and in the worst
case almost a second. Thus, on its own, it is too slow for being applied for on-field
weed control. The geometric classifier of the RF-UAV approach contributes on average
a negligible amount with around 12ms of extra runtime to the pipeline. The cascaded
RF-CAS approach combining RF-OBJ and RF-KP provides an average runtime of
around 110ms. However, in the worst case, the total runtime can sum up to the one
of RF-OBJ plus RF-KP, which is too slow. To ensure a fast enough runtime, we can
constrain the number of keypoints and do not use the MRF smoothing.

We also report the inference time for the fully convolutional neural networks in
Table 6.27. Note that the reported runtime covers the entire duration for inferring
the classification result for a single image, also including the preprocessing. We see
that with an increasing model capacity, the runtime slows down. Our FCN approach
provides the fastest runtime with around 30ms, which corresponds to the processing
of 33 images per second. Even the complex FCN-SEQ-STEM model using two task-
specific decoders and the sequential module achieves a runtime of around 154ms per
image, i.e., 6.5 images per second. In the course of implementing our FCN approach
on a small mobile robot for selectively spraying weeds in rail tracks, we compiled the
FCN architecture using the TensorRT library for the NVIDIA Jetson Xavier. Here,
we achieved a runtime of about 50ms, which corresponds to predicting 20 images per
second.

We conclude that all proposed approaches in this thesis provide an average run-
time of >5Hz, enabling agricultural robots to perform on-field weed control. Here,
we exclude the keypoint-based approach, as it is not deployed as a standalone for the
UGV-based applications. Fully convolutional neural networks are beneficial compared
to the random forest-based approaches. Fully convolutional neural networks provide
both a faster runtime and a generally better classification performance. Furthermore,
nowadays, they are way easier to implement, as several optimized open-source libraries
exist that handle most of the low-level operations exploiting dedicated hardware com-
ponents.
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Chapter 7

Related Work

For more than two decades, estimating semantic information from sensor data
has been a highly relevant topic in robotics and computer vision [107]. Var-
ious approaches have been proposed to analyze the environment around a
robot in indoor as well as in outdoor environments [9, 11, 68, 74, 75, 139,

148, 157], e.g., for optimizing mapping, traversability analysis [11, 139, 157], navi-
gation [68], object detection [74], pedestrian detection [75], autonomous driving [9],
face detection [148], and for many other applications. In the past, a variety of clas-
sification techniques such as Boosting methods [34], support vector machines [13], or
random forests [15] have been applied. We refer to these kinds of methods as tradi-
tional machine-learning approaches. Within the last ten years, however, deep learning
has revolutionized the semantic interpretation of image or laser range data in a large
number of domains, including precision farming.

In the field of precision farming and agricultural robotics, semantic interpretation
of the sensor data plays a major role and is a key driver for several directions for
development such as autonomous navigation [33, 116, 155], task planning [4], site-
specific and selective treatments [82, 84], autonomous harvesting [72, 73, 130], and many
more [7, 8, 110]. To infer actionable data from the field status and to enable robots
to perform targeted weed control, selective sampling, manipulation, and harvesting,
we need reliable and robust working classification systems that can detect the desired
targets in the field. Shamshiri et al. [133] provide a comprehensive overview of recent
achievements in agricultural robotics, specifically for autonomous weed control, field
scouting, and harvesting. They conclude that the research and development in these
fields have made significant progress. On the other hand, prototype robots for weeding
and harvesting are not close to being able to compete with the human operator, yet.
Thus, robotics has not reached a commercial scale for agricultural applications for
now. As major challenges, they identify robust perception, task planning algorithms,
and optimization of sensors. Their conclusion is in line with the one of Bechar and
Vigneault [7, 8]. They conclude that information-acquisition systems in agriculture,
including sensors, fusion algorithms, and data analysis, need to be adjusted to the
dynamic conditions of unstructured agricultural environments. Agricultural robotic
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systems for plant cultivation operate under unstructured agricultural environments
without compromising the productivity and quality of work compared to currently
employed methods. Across a variety of applications, common problems for successful
commercialization are poor detection performance, inappropriate decision-making, and
low action success rate in unstructured, dynamic environments.

In this chapter, we present the work related to the developments in this thesis.
We divide this chapter into six sections in which we deal with individual aspects of
the structure of this work. In Section 7.1, we present different works that use tradi-
tional machine techniques. in Section 7.2, we present works that use deep learning.
Section 7.3 handles approaches that particularity aim to detect plant stems, enabling
robots for precise mechanical intervention. Section 7.4 deals with related work, which is
specifically related to data analysis of UAV images. Note that the papers in this section
use traditional and modern machine-learning approaches. Finally, our Section 7.6 deals
with works that are dedicated to solving specific challenges such as the generalization
capabilities of plant classifiers to new and changing field conditions. Here, we present
works that aim to reduce the effort of the laborious labeling of the data.

7.1 Traditional Classification Systems Based
on Handcrafted Features

Traditional approaches rely on machine-learning algorithms based on handcrafted fea-
tures encoding the image content utilizing statistical, color, shape, and texture descrip-
tors. These handcrafted features are usually adjusted to the crop plants and weeds
that are present in the specific dataset or a particular application. Thus, relying on
handcrafted features usually involves the tweaking of parameters to adapt them to a
different situation. A classifier using these features will always be limited by the em-
ployed features and by the information extracted by these features. Therefore, much of
the research has focused on the development of more complicated non-linear classifiers,
such as support vector machines or random forests, to overcome the limitations of the
employed features.

In this field, several approaches, such as [50, 53, 103], are often based on a supervised
machine-learning classification system, which needs to be trained on domain-specific
data in order to predict the desired output during the operational phase. Mostly, the
concept of such systems is given by a two-stage classification system, where the first
step is to separate the vegetation, and the second step is to analyze the vegetation parts
further and distinguish them into crops and weeds or multiple species of weeds. Haug et
al. [50] propose a method to distinguish carrot plants and weeds in RGB and near-
infrared images that are acquired with the same camera system that we also employ
in this work, see Section 3.1.1. They obtain an average accuracy of 94% under similar
field conditions on a dataset containing 70 images. Hemming and Rath [53] propose a
vision-based system that distinguishes carrots, cabbage, and weeds using a fuzzy logic
classifier. For leaf classification based on RGB images, they perform a pre-segmentation
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into individual plants to extract shape and color features per segment. They evaluate
their approach in open field experiments and achieve classification accuracies of 72%
up to 88%, but report that pre-segmentation of plants entails problems and embodies
a limiting factor of their approach. This conclusion coincides with ours that the vege-
tation classification on pure RGB data sometimes does not provide sufficient results in
terms of the vegetation classification. Nieuwenhuizen [103] presents an approach in his
thesis on the automated detection and control of volunteer potato plants in sugar beet
fields based on a Bayesian classifier and an artificial neural network classifier. Both
classifiers are fed with features encoding mostly color information. He observes sub-
stantial performance differences when deploying the trained classifier in different field
environments, where the illumination conditions have changed. He concludes that the
chosen handcrafted features do not generalize well to previously changing field condi-
tions. He furthermore observes that the neural network classifier generally performs
better than the Bayesian classifier.

Also, our random forest-based classification systems, which we describe in Chap-
ter 4, follow a two-step approach. They first recognize the vegetation and then divide
the vegetation into the desired classes. We use random forests for the classification as
they provide comparatively robust results and use a variety of different color, shape,
and texture features for the classification. However, to achieve both, a fast execution
time as well as the ability to deal with overlapping plants, we combine both approaches
and propose our cascaded RF-CAS approach in Section 4.3.6.

In the context of agricultural applications, several vision-based crop and weed de-
tection approaches for specific plants have been proposed, and innovative solutions
have been developed for in-field treatments. Müter et al. [101] propose a mechanical
approach that focuses on the removal of weeds through the design and control of a
mechanism for intra-row weeding. McCool et al. [91] propose a study about the effi-
ciency of different mechanical tools for robotic weeding. They consider tilling below
the surface with arrow hoes, above-surface tilling by tines, and weed cutting. They find
that the above-surface tilling by tines is most effective for a variety of weed species, but
also point out the importance of early intervention. Lehnert et al. [73] demonstrate
their robotic harvester that can autonomously harvest sweet pepper in protected crop-
ping environments. In their paper, they explain the design and functionality of the
harvester, including scanning, detection, grasping, and the picking of the sweet pepper
crops. Pretto et al. [120] summarizes the work and developments of the EC-funded
project Flourish, in the context of which this work is carried out. For autonomous weed
control, we use a collaborative approach of UAVs and UGVs, which first detect weeds
in the field and then control them with different treatment solutions, i.e., by selective
spraying or precise mechanical stamping.

Also, concerning robotic harvesting systems, the robots must be equipped with
a fruit recognition system that works under practical conditions. McCool et al. [93]
present a crop detection system applied to the task of field sweet pepper detection. The
paper deals with the detection of red and green sweet pepper on a green background
formed by leaves. The authors can detect 70% of highly occluded crops under practical

209



7.1. Traditional Classification Systems Based on Handcrafted
Features

conditions. They propose a two-step processing pipeline. First, they segment the
crop using a conditional random field based on visual texture features. Second, they
analyze the resulting pixel-wise probability map for the sweet pepper detection by
applying a Laplacian of Gaussian multi-scale blob detector. Sa et al. [130] present a
3D visual detection method for detecting peduncles of sweet peppers in the field. They
exploit both color and geometry information acquired from an RGB-D sensor and utilize
a supervised learning approach for the peduncle detection task. They achieve high
classification performance for red sweet pepper examples on a background consisting
of green leaves. However, for green sweet pepper examples, the performance decreases
due to the similar color features concerning the background.

In terms of multispectral data analysis, several works have been published. Borre-
gaard et al. [12] perform crop versus weed classification using narrowband reflectance
at 694 nm and 970 nm. Feyaerts et al. [31] conduct a multispectral machine vision
study to design an online weed detection system for selective spraying. They collect
multispectral images using six channels with different wavelengths, i.e., 441 nm, 446 nm,
459 nm, 883 nm, 924 nm, and 988 nm, in the field. They report crop versus weed classi-
fication rates of 80% for sugar beet plants and 91% for weeds. Strothmann et al. [140]
use a multi-wavelength line scanner for crop and weed classification using a Bayesian
approach. To adapt their classifier, they label a small amount of data covering the
actual feature distribution and retrain their classifier.

Other researchers have investigated the use of texture computed from grayscale
and color images to identify plant species. Shearer et al. [134] used gray level co-
occurrence matrices in the hue-saturation-value (HSV) color space. Related to that,
Burks et al. [17] evaluated the color texture classification of different weed species us-
ing a neural network classifier. Both works report that using statistical parameters
extracted from co-occurrence matrices provide high discriminative power to identify or
separate plants but accentuate that more research is needed for testing under uncon-
trolled field conditions. Latte et al. [70] use features based on color space and gray-level
co-occurrence matrices to classify crop field images containing eight different types of
crop. They apply an artificial neural network classifier and achieve an average classifi-
cation accuracy of 84% when using both the HSV based and gray-level co-occurrence
matrices based features. Their results show that using statistical moments of the HSV
distribution improves the overall classification performance. McCool et al. [90] develop
an approach to automate the process of vegetation cover estimation. In their paper,
they address the problem of distinguishing grasses and weeds in RGB images, where
the weeds are located with a field of grasses, i.e., solving a “green-on-green” problem.
First, they model the distribution of color using a multivariate Gaussian based on the
Lab, Luv, and HSV color spaces to separate the vegetation from the background. In
a second step, they classify each vegetation pixel regarding its class affiliation being
grass weed or herb. This classification step is performed by template matching using
local binary pattern features.

Several works have been conducted in the context of leaf image classification and
segmentation [18, 67, 152]. In work done by Wang et al. [152], leaf images are seg-
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mented using morphological operators, and shape features are extracted and used in
a moving center hypersphere classifier to infer plant species. Kumar et al. [67] start
from segmented images of leaf using a binary classifier on global image signatures as
a validity test and curvature features compared with a given database to extract the
best match. To cover a variety of leaf shapes, also deformable leaf models and mor-
phology descriptors have been exploited by Cerruti et al. [18]. Elhariri et al. [29]
compared a random forest classifier and a linear discriminant analysis-based approach
in their study to classify 15 plant species through leaf images. They exploit HSV color
space of leaf images as well as gray level co-occurrence matrices to extract shape, color
and vein features. Hall et al. [46] conduct a study on features for leaf classification.
They compare classification performance on different feature types like typical hand-
crafted and convolutional neural network (ConvNet) features using a random forest
classifier. They evaluate the robustness of those features under simulated varying con-
ditions on the public Flavia leaf dataset. They report an average accuracy of around
97% by combining traditional and ConvNet features and conclude that the combina-
tion of handcrafted and ConvNet features adds robustness to varying conditions in the
classification process.

Tellache et al. [143] present a vision-based approach for selective weed spraying.
They capture images inclined downwards concerning the horizontal plane of field scenes
and subdivide them into grid cells. For each cell, a decision is made based on structural
and area features using Bayesian decision theory. A further cell-based approach by
Aitkenhead et al. [3] fragments images in a top-down fashion containing seedlings of
crop and weeds into 16 cells and classify each of them using a self-organized neural
network. They attain a classification performance close to 80%, but as in the case
of Tellaeche et al. [143] at a comparably low resolution of the cells. In contrast, we
provide labels for the full image resolution to allow a high precision treatment in object
space. In contrast, all our proposed approaches in this thesis provide labels for the full
image resolution at the pixel-level to allow a high precision treatment in object space.

Other works such as Gai et al. [36] and Weiss and Biber [153] exploit 3D information
obtained from sensors such as laser scanners and depth cameras to separate crops from
the background soil for localization and mapping applications. Gai et al. [36] propose
a system to recognize and localize broccoli and lettuce plants based on a combination
of 2D and 3D information. They use a Kinect V2 sensor for data acquisition in real
fields, observing different growth stages of the plants. They train different classifiers,
such as support vector machines, random forests, and logistic regression, using different
handcrafted features describing color, texture, and morphology in 2D images as well as
in 3D morphology. As a preliminary step, they separate the vegetation from the soil
based on hight difference by exploiting the 3D information. They state that the major
challenges of their proposed approach are the wrong segmentation of the vegetation
situation with high weed pressure and poor plant segmentation for small plants at the
early growth stage. Weiss and Bieber [153] present in their article an approach for
in-field classification and mapping of maize plants with mobile robots using 3D LIDAR
information. They show that they can reliably detect the maize plants and distinguish
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them from the ground, despite the use of a comparably low-resolution FX6 LIDAR
sensor by Nippon. Nevertheless, both approaches are based on the segmentation of
plants utilizing 3D information, or precisely, the plant height. However, this approach
may result in small or generally flat plants that cannot be identified robustly because
the signal is not sufficient for a too noisy environment.

Therefore, we focus on the detection of plants using high-resolution RGB or RGB+NIR
image data. Due to the high soil resolution, we can detect even the smallest plants or
even seedlings with a size of 0.2 cm2 or more. This is essential for effective weed control,
as weeds must be detected and eliminated as early as possible during the vegetation
period.

7.2 Modern Classification Systems Based on
Deep Learning

The advent of end-to-end trainable convolutional neural networks [66] spurred inter-
est in end-to-end learnable crop-weed classification pipelines to overcome the earlier
described limitations of handcrafted pipelines since they allow to learn feature repre-
sentations directly from the training data using backpropagation [128]. Such a richer
feature representation aggregated over multiple layers of convolutions, pooling opera-
tions, and non-linearities enables the convolutional neural networks to get away with
simple linear classifiers on top of these more complex features compared to those men-
tioned above simpler handcrafted features.

A considerable number of publications treat the classification of plants and herbs
as an image classification problem, i.e., the classifier predicts a predefined number of
classes for the entire input image. Lee et al. [71] study the performance of convolutional
neural networks for the classification of 44 different plant species based on the AlexNet
architecture proposed in Krizhevsky et al. [66] for a leaf dataset. This dataset is named
MalayaKew Leaf Dataset collected at the Royal Botanic Gardens in England. The
dataset contains images from pre-segmented leaves. They train the classifier on 2,300
leaf images and report a classification accuracy of 99% achieved on 530 test images.
Furthermore, they investigate a visualization technique for the importance of features
based on deconvolutional networks. Their results show that the network mostly exploits
the venation structure of the leaves to identify different plant species. Olsen et al. [106]
propose the DeepWeeds dataset. It is a multi-class image dataset of weed species from
the Australian rangelands. It consists of 17,509 labeled images concerning eight different
weed species. The images are labeled according to the presence of one or more specific
weeds. Thus, the data is labeled for being treated as an image classification problem.
The classifier should output a probability for each weed species being in an image.
Along with the dataset, the authors present two convolutional neural network baselines
following the Inception-V3 and ResNet-50 architectures. They initialized the models
with weights that were trained on the ImageNet dataset and fine-tuned the models with
samples from their proposed DeepWeeds dataset. They report classification accuracies
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in the order of 95% for the multi-class problem. Teimouri et al. [142] propose an image
classification approach based on the Inception-V3 architecture for counting leaves of
18 different weed species. They present the classifier cropped images from different
weeds that are typical in Denmark. They consider nine classes ranging from one leaf
to nine leaves. They train the network on almost 12,000 RGB images and report a
classification accuracy of around 70% for the leaf counting on a test dataset containing
around 2,500 RGB images. However, their evaluation of the confusion matrix suggests
that most of the errors lie in the range of one leaf concerning the ground truth.

A limiting factor of image classification is that the classification decision applies
to the entire image. Therefore, the spatial resolution is always defined by the image
content. To address this problem, convolutional neural networks are often applied in a
pixel-wise fashion operating on image patches provided by a sliding window approach.
Using this principle, Potena et al. [117] use a cascade of convolutional neural net-
works for crop-weed classification, where the first convolutional neural network detects
vegetation, and only then the vegetation pixels are classified by a deeper crop-weed
convolutional neural network. These pixel-wise approaches operating on small patches
extracted from the image can only use very local information present inside the patch.
This limits the receptive field of the convolutions and, therefore, also the amount of
context incorporated into the classifier. All of our proposed fully convolutional neural
network architectures use the whole image instead and provide a pixel-wise classifica-
tion. Therefore, our approaches use potentially information from the whole image in
higher layers. Fully convolutional networks [80] directly estimate a pixel-wise segmen-
tation of the complete image and can, therefore, use information from the whole image.
The encoder-decoder architecture of SegNet [5] is nowadays a common building block
of semantic segmentation approaches [108, 126].

In the past three years, other papers have been published that treat plant recogni-
tion as a pixel-wise classification. The work by Milioto et al. [97] combines an effective
end-to-end semantic segmentation also based on a fully convolutional network archi-
tecture with plant features, which are comprised of low-level image features, like a
vegetation index. They also show that the network can be fine-tuned to novel data
using only very few labeled images. Cechlinski et al. [21] propose an online crop-weed
classification system that works at 10 frames per second with a Raspberry Pi mini-
computer. Their approach performs a pixel-wise classification into the classes crop,
weed, and soil. They exploit the MobileNet-V2 [132] architecture, which is designed for
high-speed inference on mobile devices and propose a further architectural extension
to it based on DenseNet architectures [55, 58].

Yu et al. [158] propose an approach for weed detection in ryegrass based on convolu-
tional neural networks to enable mobile robots for selective spot-spraying. The authors
treat the problem as an object-detection problem that predicts bounding boxes around
the present weeds in the data and report F1-scores for weed detection of around 93%.
They also train the network to predict four different weed species. Here, they report an
average recall of 93% at a precision of 70% under similar field conditions. They do not
explicitly evaluate changing field conditions. McCool et al. [92] propose an approach
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to obtain a mixture of lightweight convolutional neural networks that are suitable to
be deployed on small robotic platforms. The goal of the networks is to provide an
appropriate crop-weed classification performance that enable the robot for selective
and plant-specific in-field treatments. Common state-of-the-art architectures, such as
Inception-V3 [141], are too large and thus too slow for being deployed for online opera-
tions in the field. Therefore, the authors present a three-step approach to compress the
model architecture such that it is suitable for online processing. First, they fine-tune a
very deep convolutional neural network based on the Inception-V3 architecture on the
training data. Second, they apply model compression by training the lightweight “stu-
dent” networks using the output of the large “teacher” network. Third, they ensemble
several trained lightweight models and obtain a classification accuracy of around 90%
for the weed detection task. This performance is 4% less compared to the one obtained
by the Inception-V3 model, but also 4% higher compared to a traditional approach.

7.3 Plant Stem Detection for Precise
Intervention

Several works have focused on identifying the stem locations of the plants. Most of these
approaches are also based on handcrafted heuristics targeted towards specific applica-
tions. Kiani et al. [62] use handcrafted shape features selected through a discriminant
analysis to differentiate corn plants from weeds and identify stem positions of the plants
as the centroid of the detected vegetation. This leads to sub-optimal results, mainly
when the plant shapes are not symmetric or multiple plants are overlapping. Midtiby et
al. [95] present an approach tailored to sugar beet plants by detecting individual leaves
and using the contours of the leaves for finding the stem locations. However, such
approaches usually fail to locate the stems in the presence of occluded leaves or over-
lapping plants. Langer et al. [69] propose a two-step approach for geometric stem
detection. First, they detect the vegetation using a threshold-based approach based on
vegetation indexes in RGB and near-infrared images. Then, an initial leaf detection is
performed using convexity defects in the convex hull of connected components in the
binary mask that encodes the detected vegetation. The final stem detection is then
obtained from the intersection of the estimated main axis of the leaves.

Moving in the direction of a data-driven machine-learning approaches, Haug et
al. [49] propose a system to detect plant stems using keypoint-based random forests.
They use a sliding window-based classifier to predict stem regions by using several
handcrafted geometric and statistical features. Their evaluation shows that the ap-
proach often misses several stems of overlapping plants or generates false positives for
leaf areas that locally appear to be stem regions. Krämer et al. [65] aim at addressing
this issue by increasing the field of view of the classifier using fully convolutional net-
works. The goal of their work is to identify plant stems over a temporal period allowing
them to use stem locations as landmarks for robot localization in the field.

Our work overcomes many of the limitations by taking a holistic approach by jointly
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detecting stems and estimating a pixel-wise segmentation of the plants based on FCNs.
Our network shares the encoded features for classifying the stem regions as well as
for the pixel-wise classification using an encoder network along with two, task-specific
decoder networks. Moreover, we explicitly distinguish crop and dicotyl weeds stems
since it enables plant-specific treatment, for example, fertilizing a crop or destroying a
weed mechanically.

Another approach, which does not perform stem detection, but provides a multi-
task network benefit is the one by Pound et al. [118]. They present a multi-task classifier
based on stacked encoder-decoder structured, fully convolutional neural networks, as
proposed by Newell et al. [102]. They analyze high-resolution images containing wheat
and perform a pixel-wise classification to segment the spikelets and detect the spikes
jointly. They furthermore show that it is possible to add a third task to the network,
i.e., to predict for a shown image if the plants are awned or not. Based on a dataset
containing 520 images, they train and test their network and report classification ac-
curacies of 96% for spikes and 99% for spikelets.

7.4 UAV-Based Field Monitoring
UAVs equipped with different sensors serve as an excellent platform to obtain fast and
detailed information on arable field environments [150]. Monitoring crop height, canopy
cover, leaf area, nitrogen levels, or different vegetation indices over time can help to au-
tomate data interpretation and thus to improve crop management, see [37, 61, 115, 146].
Geipel et al. [37] as well as Khanna et al. [61] focus in their work on the estimation
of crop height using UAV imagery. Both these works apply a bundle adjustment pro-
cedure to compute a terrain model and perform a vegetation segmentation in order to
estimate the crop height based on the obtained 3D information. Tokekar and Hook [146]
introduce a concept for a collaboration of a UGV and a UAV with the goal to measure
nitrogen levels of the soil across a farm. They use UAVs for the measurements and
UGVs for the transport of the UAVs due to its limited energy budget.

Several works have been conducted in the context of vegetation detection by using
RGB as well as multispectral imagery of agricultural fields [42, 48, 147]. Hamuda et
al. [48] present a comprehensive study about plant segmentation in field images by using
threshold-based methods and learning-based approaches. Torres Sanchez et al. [147]
investigate an automatic thresholding method based on the normalized difference veg-
etation index and the excess green index in order to separate the vegetation from the
background. They achieve an accuracy of 90-100 % for the vegetation detection based
on their approach. In contrast, Guo et al. [42] apply a learning approach based on
decision trees for vegetation detection. They use spectral features for the classifica-
tion exploiting different color spaces based on RGB images. We use a threshold-based
approach based on the excess green index and normalized difference vegetation index
in order to separate the vegetation from the background, i.e., mostly soil. Fuentes-
Pacheco et al. [35] propose a self-designed encoder-decoder structured, fully convolu-
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tional neural network for pixel-wise crop classification in UAV images. They classify
fig plants in RGB images of a crop grown under difficult circumstances of complex
lighting conditions. They train the classifier on a small amount of manually labeled
images considering the classes fig and non-fig. They report a mean pixel-wise classifi-
cation accuracy of around 94%. As the training and test data are sampled from the
same dataset, we consider this as the performance under similar field conditions. Fur-
thermore, they perform the classification by a threshold-based approach using different
RGB-based vegetation indexes. They observe that the threshold-based classification
provides acceptable performance but is clearly surpassed by the convolutional neural
network approach.

The next level of data interpretation is the classification of the detected vegetation
by separating it into the classes crop and weed. Several approaches have been proposed
in this context. Peña et al. [111] introduced a method for the computation of weed
maps in maize fields based on multispectral imagery. They extract super-pixels based
on spatial and spectral characteristics, perform a segmentation of the vegetation, and
detect crop rows in the images. Finally, they use the information about the detected
crop rows to distinguish crops and weeds. In a follow-up work by Peña et al. [112], they
evaluate a similar approach according to Peña et al. [111] for different flight altitudes
and achieve the best performance, i.e., around 90% overall accuracy for crop/weed clas-
sification using images captured at an altitude of around 40m with a spatial resolution
of 15 mm

px . Furthermore, they conclude that using additional near-infrared information
leads to better results for vegetation detection. Similarly, Montalvo et al. [99] perform
a crop row detection for high weed pressure based on a Hough transform and use of
prior knowledge about the crop rows location within the images.

Also, machine-learning techniques have been applied to classify crops and weeds, in
UAV imagery of plantation [41, 57, 113, 114]. Perez-Ortiz et al. [113] propose a weed
detection system based on the classification of image patches into the values crop, weed,
and soil. They use pixel intensities of multispectral images and geometric information
about crop rows in order to build features for the classification. They evaluate different
machine-learning algorithms and achieve overall accuracies of 75-87% for the classifi-
cation. Perez-Ortiz et al. [114] use a support vector machine classifier for crop/weed
detection in RGB images of sunflower and maize fields. They present a method for
both inter-row and intra-row weed detection by exploiting statistics of pixel intensities,
textures, shape, and geometrical information as features. Guerrero et al. [41] propose
a method for weed detection in images of a maize field, which allows identifying the
weeds after its visual appearance changed in image space due to rainfall, a dry spell,
or herbicide treatment. Garcia et al. [57] conduct a study on separating sugar beets
and thistle based on multispectral images with a comparably large number of narrow
bands. They applied a partial least squares discriminant analysis for the classification
and achieved a recall of 84% for beet and 93% for thistle by using four narrow bands
at 521 nm, 570 nm, 610 nm, and 658 nm for the feature extraction. Another noteworthy
approach is the one by Mortensen et al. [100]. They apply a deep convolutional neural
network for classifying different types of crops to estimate individual biomass amounts.
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They use RGB images of field plots captured at 3m above the soil, and report an overall
accuracy of 80% evaluated on a per-pixel basis.

Various studies have also investigated the use of multispectral cameras on UAVs
for plant classification [59, 129, 131, 159]. Sa et al. [129] propose to use the Seg-
Net [5] architecture for multispectral crop-weed classification from a UAV. They acquire
narrow-band images in the near-infrared (790 nm) and the red (660 nm) spectrum and
aim for classifying crop plants and weeds using an onboard computer mounted on the
UAV. They obtain classification accuracies of around 85% under similar field condi-
tions. However, under changing field conditions, the classification fails. They conclude
that more and diverse training data is required to train a proper model being ro-
bust under changing field conditions. In their follow-up paper, Sa et al. [131] provide
the WeedMap framework. This article deals with UAV-based crop-weed classification
through the analysis of multispectral images. The two differences to the previous paper
are, that no online detection is required in the field and that the image classification
is not performed on single images of the camera, but a previously processed orthomo-
saic of the entire field. This preprocessing of the data allows a spectral and geometric
correction of the image data and thus increases the quality of the classifier’s input.
They use the same SegNet-based architecture as in Sa et al. [129], but this time feed
the classifier with five input channels, i.e., red, green, blue, red-edge, near-infrared and
four additional vegetation indexes. They achieve a classification accuracy of about
90% with this setup on two sugar beet fields in Germany and Switzerland. They con-
clude that performance decreases drastically under changing field conditions. Another
disadvantage of multispectral image data is the low spatial resolution of the camera
compared to standard RGB cameras. This leads to the fact that small plants are often
not recognized at practical flight altitudes.

In this thesis, we present two plant classification systems for analyzing UAV im-
ages. Our RF-UAV approach is based on random forests, and our FCN-UAV approach
is based on fully convolutional neural networks. Both approaches can work on sin-
gle images as well as on orthomosaics and can treat several classification problems
classes, i.e., vegetation classification, plants, and weed classification, or can even detect
different weed species. Besides, our RF-UAV approach explicitly exploits geometric
features of the relative plant arrangement, thereby achieving better performance and
generalization properties in new and changing field conditions.

Zhao et al. [159] propose a new method for rice lodging assessments based on a
fully convolutional neural network exploiting the U-Net architecture [76]. They com-
pare the classification performance for the lodging obtained by analyzing RGB with
multispectral image data. They obtain an intersection over union score of around 93%
for the lodging areas with a slightly better performance with RGB data. However, they
solely conduct studies where they train and test on examples coming from the same
field environment. Bullock et al. [16] propose a binary image classification approach to
detect grass weeds in maize crop using UAV imagery. Therefore, they divide the images
into small patches and perform the binary classification for each patch. They analyze
the effect of adding “context” on the classification performance through varying the
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image patch sizes to be analyzed. They report classification accuracies in the order of
96% and suggest to select larger patch sizes to allow the network to learn features also
considering more context, i.e., analyzing the surrounding location for potential weeds.
Kampen et al. [59] use UAVs and multispectral images to classify trees and detect
stress symptoms. Thus, even low-resolution multispectral cameras provide a sufficient
number of pixels representing the tree. They analyze orthomosaics containing six dif-
ferent tree species and obtain a classification accuracy of around 96%. They employ
random forests as the classification model using spectral features. Furthermore, they
perform disease detection and classify infested and non-infested trees with an accuracy
of around 87%. Their feature selection shows that the classification works best when
using the red, red edge, and near-infrared reflectances.

Guo et al. [43] propose a two-step machine-learning, voting-based image processing
method to detect and count the number of sorghum heads from high-resolution images
captured by UAVs. The authors first train an ensemble of decision-tree classifiers on
a pixel-wise basis using handcrafted features encoding color and texture. The goal
of each decision tree is to provide a binary mask separating the image into sorghum
and non-sorghum head regions. Second, they employ a voting process for all the seg-
mented images from all decision trees to acquire the most reliably detected region of the
sorghum heads, i.e., by filtering out outliers that do not have enough votes. Ghosal et
al. [38] propose an active learning approach which is inspired by weakly-supervised
deep learning approaches for sorghum head detection and counting from UAV-based
images. They use a network architecture for object detection based on RetinaNet [79]
and combine it with building blocks from the Resnet-34 [52] architecture. The key idea
is to label only a few sorghum head examples, train the network, and deploy it on other
images. Then, a human operator corrects errors made by the object detector. The new
labels are then fed into the training process until the classifier obtains a satisfactory
detection performance on a validation dataset. With our FCN-STEM approach, how-
ever, we also propose a framework based on fully convolutional neural networks for
jointly classifying crop plants and weeds and counting.

7.5 Generalization Capabilities to New and
Changing Field Condition

As both previous related work sections suggest, several vision-based methods have been
proposed for plant classification. Typically, such approaches are based on supervised
machine-learning techniques and report classification performances in the order of 70-
95% in terms of classification accuracy. However, most of the related works lack in
the evaluation of several methods regarding the generalization capabilities to unseen
situations, new fields, and changing field conditions. Precision-farming robots need
to operate in different field environments regularly. A typical practical use case is
that a plant classifier has been trained on data coming from one or more particular
field environment, but is then deployed later in time or in another field where the
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visual appearance of the plants, weeds, and soil has notably changed. These changes
can lead to different intensity distributions of the image data concerning the original
training data. Both related works by Nieuwenhuizen [103] and Sa et al. [129] evaluate
their classification systems under changing field conditions. In both works, the authors
observe that the classifiers do not provide sufficient performance for the desired tasks.

We explicitly address this generalization gap in the performance of plant classifica-
tion and propose novel approaches that exploit that a large number of crop plants are
sown in rows. Sugar beet plants, for example, are arranged in crop rows and often share
a similar lattice distance along the crop rows. Such geometric information is typically
similar within and across fields and, thus, less dependent on the visual appearance
of the plants. The following contributions aim at exploiting this geometric signal to
improve the generalization capabilities of the plant classifiers.

For the random forest-based classification, we propose the RF-GC approach that
integrates the geometric information into the visual plant classification system. We
combine the visual and the geometric classifier to compute a joint classification of the
crop plants and weeds and to achieve an online adaption of the visual classifier to
match better with the actual distribution of the visual features. For the FCN-based
approaches, we propose a novel way to exploit additional geometric prior information
about the local arrangement of the plants in the field by analyzing image sequences that
cover a local strip of the field surface and thus implicitly carry the information about
the plant arrangement. We introduce a subnetwork, called sequential module, that
analyzes visual features of consecutive images from a sequence and extracts spatio-
temporal features that encode the field geometry. The integration of the sequential
module into our FCN approach leads to our proposed novel FCN-SEQ and FCN-SEQ-
STEM approaches.

7.6 Reducing the Required Labeling Effort
A further challenge for supervised classification approaches is the necessary amount of
labeled data. The labeled data is typically obtained at a high cost. In recent years,
several studies have focused on how to minimize the effort for the data labeling itself
or on how to minimize the number of labeled data points to transfer a classifier for a
new field domain.

The easiest way to adapt a classifier to new conditions is to retrain it on new la-
beled data from the new domain. This approach is called supervised transfer learning.
Strothmann et al. [140] use a multi-wavelength line scanner for crop and weed classifi-
cation using a Bayesian approach. To adapt their classifier, they label a small amount
of data covering the actual feature distribution and retrain their classifier. Bosilj et
al. [14] study in their article the retraining efforts that are required to transfer classi-
fiers between different types of crop and different field conditions to obtain sufficient
classification performance for crop plants and weeds. They use convolutional neural
networks and propose a two-step process to label data for the targeted domain in order
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to adapt the classifier. First, they let the classifier predict a pixel-wise classification of
an image in the targeted field environment. Second, they correct the prediction of the
classifier instead of creating annotations from scratch for the target domain. Through
this procedure, they save time for labeling effort and focus on annotating data, which
the classifier is not able to predict correctly. They show that the classification perfor-
mance is within 2% of the performance which is obtained by networks that are trained
with laboriously annotated pixel-wise data.

Another approach to get enough data for the training is to create simulated data.
The amount of data can help to increase performance and improve the generalization
capabilities of the classifier. Di Cicco et al. [26] try to reduce the human effort for
labeling by constructing synthetic datasets using a physical model of a sugar beet leaf.
Their results indicate that such artificially generated datasets can support traditional
approaches by providing additional training data. Potena et al. [117] reduce the re-
quired amount for labeling by an unsupervised dataset summarization procedure before
the actual labeling process takes place. The key idea is to select a subset of a fixed
size, which gives the most informative description of the whole dataset. Dyrmann [28]
presents in his Ph.D. thesis an approach based on fully convolution neural networks
that perform a pixel-wise classification into the classes crop, weed, and soil, under natu-
ral lighting conditions. For the weeds, this work considers the 17 most common species
in Danish fields. About 4,500 pictures are annotated by hand for the training of the
networks. The annotated data is then used to artificially create additional images, in
which the annotated plants are first cut out of the RGB data and then randomly re-
inserted into images with only soil pixels. Based on this data augmentation technique,
the used convolutional neural network architecture VGG16 [136] archives and overall
classification accuracy of around 87%.

Hall et al. [44] argue that one limitation for the deployment of classifiers for weed
detection is that they are typically trained on a defined set of known weed types. In
practice, however, other weed species may appear in the field. These examples can
most likely not be handled by the classifier. Thus, the authors propose a clustering
approach to weed scouting, which can be utilized in any field without the need for prior
species knowledge. The key idea is to detect patches of plants in the field, cluster them
regarding their similarity, and finally assign a semantic label to the detected clusters.
First, they detect the vegetation using a multivariate Gaussian classifier based on color
features. Then, they extract features using convolutional neural networks for each
patch and pass them to the cluster analysis. Hall et al. [45] present a system for
weed classification for mobile robots. They minimize the labeling effort by using an
unsupervised weed scouting process. They first employ the clustering and afterward
only label a small number of candidates to label the whole acquired data. Based on
the labeled dataset, they train a multi-class linear support vector machine and perform
autonomous precision weeding using the trained classifier. With this approach, they can
perform selective and species-specific weed control. However, this approach considers
that the robot visits the field two times. Once for scouting and once for weed control.

Other researchers take advantage of prior information about the process or the
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field environment to generate training data semi-automatically. Wendel and Under-
wood [154] address this by proposing a method for training data generation in order
to feed a classifier for crop and weed detection with it. They use a multispectral line
scanner mounted on a field robot and perform a vegetation segmentation followed by
a crop-row detection. Subsequently, they assign the label crop for the pixels corre-
sponding to the crop-row and the remaining ones as a weed. Rainville et al. [123]
propose a vision-based method to learn a probability distribution of morphological fea-
tures based on a previously computed crop-row. Similar to the work of Wendel and
Underwood [154], they also exploit crop-row structure as prior to labeling. Bah et
al. [6] propose a semi-supervised approach for UAV-Based crop and weed classifica-
tion. They exploit that row crops grow in line. They first classify the vegetation using
a threshold-based approach based on the excess green index. Second, they identify
the crop rows in the images through performing skeletonization on the binary veg-
etation mask. Next, they perform a superpixel segmentation in the RGB image and
assign vegetation super-pixels that lie on the estimated crop row as crop and vegetation
super-pixels that lie between the rows as a weed. Next, they train a fully convolutional
neural network based on the Resnet-34 [52] architecture using the labeled super-pixels.
Then they deploy the trained network on extracted super-pixels of other images from
the dataset and report classification accuracies of around 94%. They furthermore show
that by this semi-supervised labeling procedure, they obtain only a slightly lower per-
formance compared to a run of the classifier that has bee trained by manually labeled
super-pixels.

Within our RF-GC approach, we exploit the plant arrangement to re-learn a ran-
dom forest with minimal labeling effort in a semi-supervised way. We target an in-field
labeling effort of approximately one minute for a human operator and do not consider
any pre-trained classifier. We achieve this one-minute labeling effort by placing printed
markers next to a set of crop plants at the beginning of the row. Based on this infor-
mation, we can initialize our classification system and can directly obtain predictions.
The geometric and visual classifiers complement each other and adapt to changing field
conditions in an online manner through retraining parallel to the deployment.
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Chapter 8

Conclusion

In this thesis, we proposed and developed novel plant classification systems for the
deployment of autonomous agricultural robots such as unmanned ground robots
but also aerial vehicles. Our classification systems provide the basis for selective
and plant-specific treatments in the field, such as selective spraying or precise

mechanical intervention. Furthermore, they can process aerial image data to estimate
the spatial distribution of crop plants, weeds, or even different weeds species, and can
robustly count plants, even under harsh conditions.

As our first two contributions, we developed two different vision-based plant classi-
fication systems. The first classification system is based on handcrafted features using
random forests and the second plant classification system is based on a lightweight,
fully convolutional neural networks. Both vision-based classification systems identify
plants using RGB and near-infrared images or solely RGB images and can deal with
small plants and weeds. Also, in situations with substantial inter-class overlap, our
classifiers provide a stable performance allowing the robots to intervene with high-level
precision. Our random forest-based classifier achieves this by combining local features
for keypoints with object- or segment-based features within a cascaded approach. Our
fully convolutional neural network approach is based on a self-designed, lightweight
encoder-decoder architecture that learns features and performs the classification in an
end-to-end manner. We demonstrated that both the random forest-based and the fully
convolutional neural network-based classifies can handle multi-class problems, e.g., to
predict different weeds species, and can be deployed on real agricultural robots, as they
provide the classification results fast enough for online on-field operations.

As our third contribution, we adopted the random forest-based and fully convolu-
tional neural network-based plant classification systems to work with aerial image data.
Here, we enhanced the random forest with additional handcrafted features exploiting
the crop row structure and spatial relationships between plants and weed in the field. In
contrast, we adapt the fully convolutional neural network-based approach by enlarging
its receptive field. Through this, we enable the network to learn the spatial patterns
in the data implicitly instead of modeling them by hand explicitly. We showed in our
experiments that under similar field conditions, i.e., when the classifiers have access to
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training data from the same field environment, the fully convolutional neural networks
perform substantially better than the random forest. Under changing field conditions,
however, the explicit modeling of the crop row structure is a key supporter for achieving
a robust performance. This outcome suggests also combine such information with a
convolutional network, e.g., within a postprocessing step.

As our fourth contribution, we presented a novel end-to-end trainable fully convolu-
tional neural network for joint pixel-wise plant classification and plant stem detection.
We designed a network architecture with a shared encoder for the feature extraction
and two task-specific decoders for the pixel-wise classification of plant stems. The
system enables the robot for high precision and plant-specific treatments in the field.
First, the system jointly estimates the pixel-wise segmentation into the classes crop,
dicotyl weed, grass weed, and soil. The information about the class and spatial extent
of the plants and weeds can be used for the guidance of the selective sprayers. Second,
the system estimates the precise locations of plant and dicotyl weed stems. This in-
formation can be used to guide precise mechanical tools or even lasers. We showed in
our experiments that our architectural design choice to use two task-specific decoders
outperforms network architectures suited for only one task, i.e., plant classification or
stem detection.

In this thesis, we furthermore aim at bridging the performance gap in visual crop
plant and weed detection if the distribution of the features at training time differs
from the one observed during operation. This situation commonly arises when a robot
equipped with a pre-trained classifier is supposed to perform the classification in new
or changing field environments. To address this challenge, we proposed two novel
approaches that exploit a large number of crop plants that are sown in rows and share
a similar lattice distance along the crop rows. As our fifth contribution, we proposed
a semi-supervised online learning approach for the random forest-based classification
system. We developed a probabilistic model representing the arrangement of the plants
encoded through coordinate differences between plants. We employ this model as a
purely geometric classifier and combine it with the visual random forest classifier in a
semi-supervised way. Furthermore, our semi-supervised approach has online learning
capabilities and thus can adapt itself to new and unseen data. In our experiments,
we demonstrate that this approach can perform on the same level with state-of-the-art
plant classifiers by only requiring a labeling effort of around one minute for a new field
environment.

Our sixth contribution is a novel architectural extension to fully convolutional neu-
ral networks that allows the network to process sequences of images using 3D convo-
lutions. We call this extension the sequential module. It exploits successively acquired
images to learn features describing the local arrangement of the plants implicitly. We
show in our experiments that this technique leads to a better classification and gener-
alization performance, even if the visual appearance or the growth stage of the plants
change between training and test time and outperforms classification models that op-
erate on single images.
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Our comprehensive experimental evaluation and extensive comparisons represent
our seventh contribution of this thesis. Here, we demonstrate that we could sub-
stantially improve the generalization performance of plant classification through our
approaches that exploit the spatial arrangement of the plants in the field. We showed
that the random forest-based classifiers rely more on the additional near-infrared in-
formation for accurate vegetation classification. Also, in terms of plant classification,
the fully convolutional neural networks generally perform better. We have observed
that they can handle a greater diversity of data appropriately. It turns out that neural
networks can learn better features than the handcrafted ones in the random forest.
However, we also observe that even though the exploitation of the field geometry, the
classifiers provide not always reliable results under changing field conditions. For the
evaluation of the proposed approaches, we collected an extensive database consisting
of approximately 26,500 labeled images. We acquired the data in different fields lo-
cated in Germany, Switzerland, and Italy and evaluate our approaches in the context
of their performance, generalization capabilities, labeling effort, use of additional NIR
information, and architectural design choices.

8.1 Future Work

We have gained a deep insight into scientific and practical challenges for vision-based
plant classification systems for mobile robots during the compilation of this thesis
and the re-running of all experiments with all approaches under the same conditions.
The partially remaining challenge for the practical deployment of autonomous systems
is the generalization capabilities of classifiers to new and changing field conditions,
see Figure 8.1. Moreover, the scalable use of such classification systems can only be
achieved if the annotation effort for the adaptation of the model is wholly omitted or
only very small.

We showed that vision-based classification systems for plant classification could
obtain high classification performances in the order of 90+% in terms of classification
accuracy when the training and test data where acquired under similar environmental
conditions with the same camera setup. However, the classification performance suffers
under substantial changes in the plant appearance and soil conditions between training
and testing phase as the classifier, which is trained on labeled data coming from previ-
ously seen fields source domain, has never learned to handle the different distribution
of the data coming from new field environments target domain. Here the performance
can drop to unsuitable results for the desired intervention. Although we have shown
that the relative spatial distribution of plants is an essential feature for addressing this
challenge, classifiers have not always been able to deliver consistently high performance
in all situations.
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Figure 8.1: Data acquisition under varying conditions, in different fields, and with different
cameras and robots leads to highly distinctive image domains that challenge pre-trained plant
classification systems to generalize well. We propose an effective approach for adapting existing
systems to new environments, different crops, and other different field conditions.

8.2 Outlook: Unsupervised Domain
Adaptation for Transferring Plant
Classification Systems to New Field
Environments, Crops, and Robots

In our recently submitted paper, which is currently under review at the Conference on
Robots and Systems (IROS, 2020), we make a first step towards the challenge of un-
supervised domain adaptation for transferring plant classification systems to new field
environments, crops, and robots. We propose an effective approach to unsupervised
domain adaptation for plant segmentation systems in agriculture and thus to adapt
existing systems to new environments, different value crops, and other farm robots.
We aim to bridge the performance gap in visual crop and weed classification by trans-
ferring the visual classifier to the targeted domain without the need for an additional
labeling effort. We target unsupervised domain adaptation towards an approach that
enables us to train a fully convolutional neural network with suitable performance on
the target domain while exploiting labels only from the source domain. This work was
done in tight collaboration with Dario Gogoll.

The key idea of our proposed approach is to transfer both images and corresponding
labels from a training dataset, i.e., the source domain, into the style of the conditions
of the new or changed conditions in the targeted field, i.e., the target domain. We
simultaneously train a fully convolutional neural network during this domain transfer
using the translated images in the style of the target domain alongside copied labels
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BONN-CW-16 Translated to STUTT-CW-15 STUTT-CW-15

ZURICH-UAV-17 Translated to BONN-UAV-17 BONN-UAV-17

ANCONA-CW-18 Translated to SUFLOWER SUFLOWER

ZURICH-CW-16 Translated to MAKO MAKO

Source domain Ours CycleGAN [160] Target domain Ours CycleGAN [160] Ground truth

Figure 8.2: Qualitative results of our domain adaptation approach. Our approach exploiting
semantics provides a better translation into the target domain compared to CycleGANs. Our
approach preserves fine structures and properly transfers the semantic information in a pixel-
wise manner. The CycleGAN approach suffers from missing semantic information. It wrongly
translates pixels that belong to small vegetation objects or fine structures.

from the source domain in a supervised manner. Our proposed system is based on
CycleGANs [160] and enforces a semantically consistent domain transfer by constraining
the images to be classified in the same way before and after translation. As a result,
our approach generates labeled images of the target domain that enables us to retrain
existing segmentation systems.

We design a set of experiments to show that our approach can translate images
from one domain into the other and can train a fully convolutional neural network
that achieves a high classification performance in the target domain, without the need
for labeled data from the target domain. We evaluate our approach on eight different
real-world datasets consisting of 6,221 images.

Our evaluation shows that our unsupervised domain adaption approach provides
a solid performance for the semantic segmentation of crop, weed, and soil in the tar-
get domain, while not requiring extra labels from the target domain for the adaption
of the classifier. Furthermore, it outperforms CycleGANs and other baselines on the
target domain for all tested datasets. Finally, it allows to perform domain adaptation
between different field environment, different crops, and different robots and camera
setups. Our approach achieves substantial performance gains of around 20%-50% for
the pixel-wise classification accuracy in the target domain compared to the classifica-
tion without domain adaption. Also, it outperforms the original CycleGAN approach.
Figure 8.2 illustrates the qualitative results obtained by our proposed domain adap-
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tation approach. The results reveal excellent plant classification results in the target
domain. Our approach reliably generates images in the style of the target domain while
keeping the source domain images semantics. This, in turn, allows us to train a fully
convolutional neural network for the target domain using the translated images along
with the original labels from the source domain.

We believe that such domain adaptation approaches are essential to achieve a scal-
able deployment of agricultural robots in the real world. We think that unsupervised
domain adaption is a field that should be further explored by researches in the future.
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