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Summary 
Chronic obstructive pulmonary disease (COPD) is ranked the third leading cause of 

death worldwide and hence constitutes a substantial medical and financial burden. 

The disease is characterized by a poorly reversible and progressive airway 

obstruction, which is mainly caused by chronic inflammation of the lung. However, the 

cellular mechanisms underlying COPD are not well understood and thus no effective 

therapy is currently available.  

To broaden the current knowledge about the immune landscape in the lung, we 

characterized the cellular phenotypes within the alveolar space and peripheral blood 

of both COPD patients and control donors using the Seq-Well technology for single-

cell RNA-sequencing (scRNA-seq). For analysis, we developed novel computational 

approaches, including cell type annotation (GenExPro), cell type classification based 

on machine learning, and identification of differentially expressed genes and functional 

differences between COPD and control cells. In addition, we applied state-of-the-art 

methods to assess the metabolic state of cells and modelled potential differentiation 

trajectories based on RNA velocity calculations.  

The in-depth scRNA-seq analysis revealed a massive heterogeneity within immune 

cell types, especially among alveolar macrophages in the alveolar space and 

neutrophils in the blood. Interestingly, the alveolar macrophages in COPD showed an 

altered lipid metabolism with increased cellular cholesteryl ester content, reduced 

MHC I expression, defective chemotaxis towards CCL3, and a metabolic shift 

reminiscent of mitochondrial dysfunction. Furthermore, we found a shift in alveolar 

macrophage subtypes from COPD patients towards proliferating cells and cells 

expressing both monocyte and macrophage genes (referred to as ‘mono-like 

macrophages’). For the latter cells, we predicted blood monocytes as a putative source 

of replenishment. Intriguingly, the blood monocytes of COPD patients already showed 

a reduced MHC I expression similar to that of alveolar macrophages. In addition, using 

scRNA-seq data from a mouse model, we showed that some monocytes obtained from 

the lung exhibited an immature gene program reminiscent of the monocyte precursors 

in the bone marrow, suggesting that the blood monocyte population may be partially 

derived from an extramedullary hematopoiesis site in the lung. To identify signaling 

pathways that regulate differentially expressed genes between COPD and controls in 

human mono-like macrophages, we modelled the cell-cell communication of immune 



Summary 

XVII 
 

cells in the alveolar space and identified in particular the TGF-ß signaling pathway, but 

also other pathways, including NOTCH, WNT and TNF signaling pathways, as 

potential DE gene regulators in COPD. An overview of the observed changes in the 

AM population is shown in Figure 1.  

Taken together, scRNA-seq was used to provide a cellular and molecular framework 

for understanding and analyzing the pathophysiology of COPD, which is a prerequisite 

for the development of new diagnostic approaches, including molecular biomarkers, 

and causal therapies for this deadly disease. 

  

Figure 1. Schematic representation of the key findings of the present study  

In healthy lungs. alveolar macrophages surveil the alveoli and remove pathogens and debris to 
enable proper gas exchange. In the alveoli of COPD patients, the alveolar macrophages accumulate 
cholesteryl esters and are likely to acquire a foam cell morphology. In addition, blood neutrophils 
and monocytes invade the alveoli and monocytes differentiate into alveolar macrophages. The 
transcriptome of COPD alveolar macrophages indicate TGF-β-associated cell signaling in the early 
stages of monocyte-to-macrophage differentiation. The alveolar macrophages in COPD show a 
reduced ability to migrate towards chemokine. Furthermore, they express fewer MHC molecules; 
especially MHC I. Together with the reduced phagocytosis of alveolar macrophages in COPD, the 
ability of these cells for immunosurveillance is severely limited during the disease. In addition, their 
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mitochondria are leaking (e.g. to protons) and therefore produce high amounts of reactive oxygen 
species. Taken together, the guardians of normal lung function (alveolar macrophages) are severely 
altered in COPD, preventing them from fulfilling their important physiological functions properly. 
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1. Introduction 
1.1. The immune system 

The defense against pathogenic cues is an inherent characteristic of living cells. In 

higher organisms, the protection against harmful influences, led to the emergence and 

evolution of an orchestrated network of cells, known as immune system. In all 

vertebrates, such as humans, the immune system can be divided into two cooperative 

branches, called innate and adaptive immune system that can be distinguished in 

terms of speed and specificity of the immune response. The innate immune system is 

older in evolutionary respect and fully functional from birth. The cells of the innate 

immune system are called myeloid cells and include monocytes, macrophages, 

dendritic cells (DCs), mast cells and granulocytes (comprising neutrophils, eosinophils 

and basophils) (Figure 2). Its immune protection is characterized by the non-specific 

sensing of pathogenic signals and the rapid and efficient elimination of any invading 

pathogenic material. In contrast, the adaptive immune system is highly specific for the 

detection of pathogens and develops and adapts throughout lifetime, which is why it 

is also known as the ‘specific immune system’ or ‘acquired immune system’. Cells of 

the adaptive immune response are commonly referred to as lymphocytes and includes 

T cells and B cells (Figure 2). However, innate lymphoid cells (ILCs), including NK 

cells, are also lymphocytes but belong to the innate arm of the immune system (Klose 

and Artis, 2016) (Figure 2). The specificity of T cells and B cells towards a pathogen 

comes from surface molecules that recognize certain molecular structures. In T cells, 

these surface molecules are T cell receptors (TCRs), which are produced in a wide 

range of antigen specificities so that each T cell carries TCRs of a unique antigen-

specificity. The underlying principles that lead to the great variability of TCRs and thus 

to antigen-specificity are also found in immunoglobulins (also called antibodies) that 

are produced by B cells. Antibodies exist in a membrane-bound form, also called B 

cell receptors (BCRs), but can also be secreted by terminally differentiated B cells - 

the plasma cells. The molecular structures that are recognized by TCRs and BCRs 

are called antigens, which is a general term for any substance capable of triggering 

an adaptive immune response, but usually describes protein fragments or peptides. 

However, antigen recognition by TCR requires the presentation of the respective 
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antigen by a major histocompatibility complex (MHC), also referred to as human 

leukocyte antigen complex, on the surface of antigen-presenting cells (APCs), such 

as DCs, monocytes and macrophages, thereby linking the innate and adaptive 

immune systems. The MHC surface receptors for antigen presentation are classified 

into MHC class I (MHC I) and class II (MHC II) molecules. MHC II molecules are mainly 

expressed by APCs and present antigens derived from extracellular pathogens (Rock 

et al., 2016) acquired by phagocytosis. In contrast, MHC I molecules are expressed 

by all nucleated cells in the body and present antigens of intracellular pathogens 

during infection (Rock et al., 2016). However, during homeostasis, MHC I molecules 

present peptides derived from the normal cellular protein turnover. Furthermore, MHC 

I molecules are to some extent able to present antigens derived from extracellular 

pathogens in a process called ‘cross-presentation’ (Embgenbroich and Burgdorf, 

2018; Joffre et al., 2012). The continuous presentation of loaded MHC I molecules on 

the cell surface is an immunological safety mechanism of the body, since the MHC I 

molecule serves as inhibitory ligand for NK cells. Some viruses (Hansen and Bouvier, 

2009) and tumors (Garrido et al., 2016) cause a reduction in MHC I surface 

Figure 2. Overview of the cellular elements of the innate and adaptive immune response 
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expression, which in turn leads to an activation of NK cell-mediated killing of the 

presenting cell (Höglund and Brodin, 2010).  

Taken together, the human immune system is characterized by a sophisticated and 

highly organized interaction network of specialized cells that aim to protect the body 

from pathogenic influences.  

 

 

1.2. The architecture of the lung  

The lung is the primary organ of the human respiratory system. It enables gas 

exchange by removing oxygen from the atmosphere and transferring it to erythrocytes 

and, in addition, by uptaking carbon dioxide from the blood and releasing it into the 

atmosphere. The human lung can be subdivided into two major parts, a right lung and 

a left lung, which are divided into air conducting areas (airways) and areas where the 

actual exchange of gas takes place (parenchyma) (Chaudhry and Bordoni, 2019). The 

airways inside the lungs comprise, ordered from large to small: the bronchi, the 

bronchioles and the terminal bronchioles (Figure 3). The terminal bronchioles divide 

further into respiratory bronchioles, which in turn divide into a series of alveolar ducts 

that terminate in alveolar sacs, where the alveoli are located, which are the 

parenchyma of the lung, since this is where gas exchange takes place. To keep the 

airways open during respiration, the bronchi and bronchioles are equipped with 

smooth muscles, while in the terminal bronchioles and the parenchyma the so-called 

surfactant takes over the task. The surfactant is produced by specialized epithelial 

cells (type II pneumocytes) and is a protein-lipid secretion that lines the air-liquid 

interface in the parenchyma and reduces surface tension. The lipid composition of 

surfactant is 90% phospholipids and 10% neutral lipids (especially cholesterol) (Nkadi 

et al., 2009).  

 

 

1.3. The immune system of the lung 

Among all areas in the body where pathogens can invade, the lung represents the 

greatest immunological challenge for the host. Not only is the lung one of the organs  
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that is in constant contact with the environment, but it is also the one that is most 

frequently attacked by pathogens. Moreover, due to its role as a gas exchange organ, 

the normal functioning of the lung is crucial for health and makes it extremely sensitive 

to damage. Therefore, the lung is equipped with a variety of different defense 

strategies. The frontline defense is predominantly represented by epithelial cells, 

which build a physical barrier by forming close connections to neighboring cells 

through cell-cell junctions (Denney and Ho, 2018; Nicod, 2005). In addition, the 

airways are covered with a film of mucous that traps and destroys pathogens, and the 

apical part of the epithelial cells is covered with motile cilia that have a continuous 

rhythmic beat, which transports the mucous towards the trachea and throat, where it 

is swallowed or expectorated. This mechanism is also known as "mucociliary 

escalator" (Bustamante-Marin and Ostrowski, 2017) and is found solely in the airways. 

Another important level of host defense is provided by immune cells that colonize the 

lung and cooperate closely with the epithelial cells (Lloyd and Marsland, 2017). This 

second tier of defense includes the coordinated activation of tissue- resident lymphoid 

cells, which patrol through the lung via the lymph system. Among the resident 

Figure 3. Anatomic architecture of the human lungs 
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pulmonary lymphoid cells, there are T cells and B cells, as well as ILCs (Lloyd and 

Marsland, 2017). However, as outlined above, the activation of T cells requires the 

presentation of antigens on MHC molecules. DCs are known APCs and under 

homeostatic conditions, a network of DCs traverses the airways. The pulmonary DCs 

can be divided into three different subtypes: plasmacytoid DCs (pDCs) and 

conventional DCs (cDC1 and cDC2) (Guilliams et al., 2013a; Neyt and Lambrecht, 

2013). Other important APCs are pulmonary macrophages, which describes a 

heterogeneous cell population and exhibits high plasticity to ensure rapid adaptation 

to environmental changes (Garbi and Lambrecht, 2017; Hussell and Bell, 2014). In 

lung homeostasis, two main populations of macrophages are distinguished based on 

their localization: interstitial macrophages (IMs) are found in the interstitium, while 

airway macrophages are located in the lumen of the airways and parenchyma 

(Kapellos, Bassler et al., 2018). Airway macrophages are the most abundant immune 

cells in the lung (Joshi et al., 2018; Puttur et al., 2019) and the best known 

representatives are the alveolar macrophages (AMs) that are found in the luminal 

surface of the alveolar space. Morphologically, AMs are larger in size compared to IMs 

(Hoppstädter et al., 2010) and can be readily distinguished from other luminal immune 

cells by both high autofluorescence and HLA-DR expression (Bharat et al., 2016; van 

Haarst et al., 1994; Joshi et al., 2018; Vermaelen and Pauwels, 2004). In addition, 

CD206, CD169, CD163 and MARCO are also well-known markers for AMs in human 

(Joshi et al., 2018; Kapellos, Bassler et al., 2018). AMs play an important role in the 

removal of foreign material to ensure that the alveoli remain free of debris (Baharom 

et al., 2017). In rats, it has been estimated that the population of AMs can cope with 

up 109 bacteria injected into the lung before further layers of immune response, such 

as adaptive immunity, are induced (MacLean et al., 1996), highlighting the effective 

phagocytic and surveillance abilities of AMs. Interestingly, AMs are inherently 

suppressive as they play an immunoregulatory role in preventing overshooting 

reactions and thus mitigate tissue damage, while providing an adequate immune 

response to inhaled particles (Lambrecht, 2006). For this purpose, AMs are 

maintained in a quiescent state and produce TGF-β and IL-10 to attenuate the immune 

response during homeostasis (Garbi and Lambrecht, 2017). Moreover, AMs ensure 

surfactant homeostasis by contributing up to 40% of the total surfactant-lipid 

catabolism (Garbi and Lambrecht, 2017; Whitsett et al., 2010). Previous studies 

indicated that the AM population is highly heterogeneous (Kapellos, Bassler et al., 
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2018). For example, density gradient centrifugation identified at least three AM 

subpopulations with distinct functionalities (Kapellos, Bassler et al., 2018; Spiteri et 

al., 1992). However, it is likely that higher resolution technologies will identify additional 

subpopulations and thus reveal the full spectrum of AM heterogeneity. The same is 

true for the IM population, whose heterogeneity has been demonstrated based on 

density gradient centrifugation, flow cytometry and single-cell RNA sequencing studies 

(Schyns et al., 2018, 2019). Interestingly, the morphology of IMs is reminiscent of 

monocytes, which is why these cells have long been regarded as an intermediate 

population in the differentiation process of infiltrating blood monocytes towards AMs 

(Kapellos, Bassler et al., 2018). Indeed, recent studies suggested that at least some 

IMs might be replenished by blood monocytes (Schyns et al., 2019). 

Finally, mast cells and granulocytes are also found in homeostatic lungs, with a 

substantial number of marginating neutrophils within the lung microvasculature 

(Hidalgo et al., 2019).  

Collectively, several layers of defense, involving both immune cells and epithelial cells, 

maintain the homeostasis of the lung. However, there are still some gaps in the 

understanding of the immune system in the lung, which necessitates high-resolution 

techniques, such as single-cell RNA sequencing to characterize and close these gaps.  

 

 

1.4. Immunology in the era of single-cell genomics 

This chapter emphasizes how single-cell RNA sequencing has changed our previous 

understanding of myeloid immunology. 

 

As part of this partly cumulative thesis, this chapter is an extract from the following 

publication (Bassler et al., 2019): 

 

The Myeloid Cell Compartment—Cell by Cell 

Authors: Kevin Bassler, Jonas Schulte-Schrepping, Stefanie Warnat-Herresthal, Anna 

C. Aschenbrenner and Joachim L. Schultze 

Publication details: First published as a Review in Advance on January 16, 2019 in 

Annual Review of Immunology; 37:269–93; https://doi.org/10.1146/annurev-immunol-

042718-041728 
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Permission for use in the thesis: with permission from the Annual Review of 

Immunology, Volume 37 © 2019 by Annual Reviews, http://www.annualreviews.org/. 

 

To ease the tracking of the self-quotation, the citation is placed in quotation marks and 

the content is written in italics. In addition, shortenings of the original text are indicated 

by [...] and the citation style and numbering of the text and figures are adapted to the 

other texts of the dissertation. 

 

“The ongoing revolution in genomics allowing for single-cell resolution assessment of 

whole transcriptomes (Picelli et al., 2014; Ramsköld et al., 2012), genomes (Gawad 

et al., 2016; Navin et al., 2011), and epigenomes (Buenrostro et al., 2018; Cusanovich 

et al., 2015; Litzenburger et al., 2017) is currently reshaping our understanding of 

cellular constituents in every organ and cellular system. In particular, single-cell 

transcriptomics by single-cell RNA sequencing (scRNA-seq) allows for an 

unprecedented level of precision when describing cells (Shalek et al., 2013). 

Moreover, and in contrast to all other previous single-cell technologies, scRNA-seq 

can be applied in a completely unbiased fashion (Shapiro et al., 2013). This unique 

opportunity allows us to completely revise our understanding of all cellular components 

and their functionality in every organ and tissue and under any condition. 

Single-cell analysis has a long-standing track record not only in the immunological 

sciences (Hooke, 1665). Very early on, it became clear that many different immune 

cells exist. Cytological techniques based on classical light microscopy had already 

revealed that cells have many different shapes and sizes (Steinman and Cohn, 1973). 

Labeling of proteins with antibodies allowed for defining cells based on the expression 

of proteins found to be associated with a particular cell type. New technological fields 

emerged, including immunohistochemistry (Coons et al., 1941), immunofluorescence 

(Franke et al., 1978), and flow cytometry (Fulwyler, 1965) - all based on the usage of 

antibodies specifically binding to marker proteins. […] These technical developments 

have been and are still extremely important in categorizing different cell types. With 

the newest technologies, including multicolor flow cytometry (MCFC) and cytometry 

by time of flight (CyTOF), one can measure more than 50 protein markers per cell 

(Bandura et al., 2009; Bendall et al., 2011; Guilliams et al., 2016); upcoming updates 

of these technologies suggest measurements of up to 100 markers. While this led to 

an incredible wealth of novel insights into immune cell biology and the stratification of 
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subpopulations within the various immune cell types, all these methods still lack the 

ability to identify outright new cell types and cell states in an entirely unbiased fashion. 

[…]However, […] novel unbiased technologies hold great hope to directly address 

major unmet health needs. In fact, the single-cell genomics technologies should further 

propel the field of human immunology (Davis and Brodin, 2018), since measurements 

are finally possible on an unprecedented detailed level. Is there already sufficient 

evidence that such unbiased high-resolution technology can be successfully applied 

to answer burning questions about the myeloid cell compartment? Overall, several 

seminal papers have clearly demonstrated that single-cell genomics distinguishes 

immune cell types with remarkable resolution, leads to the identification and 

investigation of effects of the cellular environment, and can discover previously 

unknown types or states of immune cells (Gaublomme et al., 2015; Mass et al., 2016; 

Shalek et al., 2013, 2014), even when they are embedded in complex tissues (Jaitin 

et al., 2014; Gaublomme et al., 2015; See et al., 2017; Tirosh et al., 2016), and with 

spatial resolution of the immune response (Angelo et al., 2014; Liu et al., 2015). […] 

While we agree with many colleagues about the enormous excitement, the significant 

scientific insights, and the impact these technologies have on our understanding of 

myeloid cells in health and disease, we would like to firmly state that these 

technologies are far from routine, particularly in application to human samples. 

Moreover, some of the scRNA-seq techniques heavily advertised and used need to 

be approached with caution, considering the investigation of complex transcriptional 

and epigenetic processes and states including the plasticity of the myeloid cell 

compartment. […] 

 

 

1.4.1. New insights into the precursors of the myeloid cell compartment 

There has been tremendous progress in the understanding of the ontogeny of tissue 

macrophages […] and monocytes. While most tissue macrophages are derived from 

embryonic precursors in the yolk sac and fetal liver (Ginhoux and Jung, 2014; Varol et 

al., 2015), monocytes, granulocytes, and DCs originate from a multipotent stem cell, 

the so-called hematopoietic stem cell (HSC) (Laurenti and Göttgens, 2018). Over a 

century ago, scientists proposed a model that all cell lineages are like branches of a 

tree, with stem cells representing the trunk (Laurenti and Göttgens, 2018). This tree 
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was later adopted to describe hematopoiesis and is still used in text- books. In fact, 

extensive work has been performed to define different developmental stages and 

lineages within the hematopoietic system, including defined precursors of the myeloid 

cell compartment […]. Yet, novel single-cell analyses challenge this view on the 

hematopoietic system. […] HSCs may be a heterogeneous pool of multipotent cells 

that are precommitted to different extents. The term precommitment needs to be 

defined in this context. Assuming that the cellular program of HSCs can be seen as a 

balance with a myeloid lineage program on the one side and the lymphoid lineage 

program on the other side, commitment could mean that one of the programs weighs 

more (e.g., the myeloid lineage program). Thus, under normal circumstances, the HSC 

will prefer to develop into cells of the myeloid lineage. However, the balance can easily 

be shifted in the presence of certain stimuli (e.g., stress), and the lymphoid lineage 

program would hence be favored. Consequently, precommitment does not rule out 

plasticity of a progenitor cell but rather describes its preference for a certain lineage at 

a given time […] Precommitment might also become more pronounced during aging 

or could even be seen as an aging process of the immune system. This model would 

explain why aged HSCs and progenitor cells exhibit a marked bias toward the myeloid 

lineage along a decreased output of cells of the lymphoid lineages (Benz et al., 2012; 

Young et al., 2016) or the recently identified HSC bias toward platelet programming 

found using scRNA-seq (Grover et al., 2016). Whether this is accompanied by 

complete loss of plasticity requires further investigation. In addition to supporting 

findings on early precommitment, scRNA-seq also led the way to the development of 

tools that add a pseudotemporal layer to the analysis. Since the data generated by 

scRNA-seq methods present a snapshot of cells in different developmental, 

differentiation, or cell cycle states, the expression profiles can be used to 

computationally order the cells along a pseudo–time course in a trajectory (Ji and Ji, 

2016; Moignard et al., 2015; Qiu et al., 2017a). Using such algorithms confirmed that 

hematopoiesis constitutes a continuum of differentiation (Nestorowa et al., 2016; 

Schultze and Beyer, 2016; Tusi et al., 2018; Xue et al., 2014). Thus, under this 

assumption, the previously described developmental interims might rather represent 

transitory states or branching points along the differentiation trajectory. To circumvent 

the limitations of the tree model, we introduce what we call the autobahn model, which 

highlights the immense dynamics and plasticity of cells within hematopoiesis (Figure 

4). 
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1.4.2. The monocyte compartment revisited 

Monocytes are a major cellular compartment derived from HSCs. In humans, they are 

defined as blood-circulating, phagocytic immune cells. Based on the assessment of 

the expression of CD14 and CD16 on the cell surface, three different subsets 

(classical, intermediate, and non-classical monocytes) are currently distinguished 

(Ziegler-Heitbrock, 2015). In mice, only two subsets are regularly classified, the short-

lived circulating Ly6C+ monocytes (corresponding to CD14hiCD16lo monocytes in 

human) and Ly6C− monocytes (corresponding to CD14loCD16hi monocytes in human). 

So far, no equivalent for the intermediate phenotype in humans has been observed in 

mice. In 1968, Van Furth introduced the concept of the mononuclear phagocyte 

system, stating that circulating monocytes continuously replenish tissue macrophages 

in homeostasis (van Furth and Cohn, 1968). Research over the last decade has 

revised this concept and consistently demonstrated that resident macrophages of 

most tissues are established prenatally by distinct waves of embryonic precursors from 

the yolk sac and fetal liver and maintained through adulthood by longevity and self-

renewal independently of circulating monocytes (Ginhoux et al., 2010; Gomez 

Perdiguero et al., 2015; Guilliams et al., 2013b; Hoeffel et al., 2012, 2015; Merad et 

al., 2002; Schulz. Christian et al., 2012; Sheng et al., 2015; Yona et al., 

2013).However, under pathological conditions, monocytes constitute a major source 

of effector cells, as they can transform into cells with inflammatory macrophage- or 

DC-like phenotypes after infiltrating affected tissues. Most of our knowledge 

concerning the origin of monocytes is derived from studies in mice. Mainly based on 

MCFC analysis of bone marrow–derived cells, the progenitors of monocytes 

macrophage- or DC-like phenotypes after infiltrating affected tissues. Most of our 

knowledge concerning the origin of monocytes is derived from studies in mice. Mainly 

based on MCFC analysis of bone marrow–derived cells, the progenitors of monocytes 

were defined as macrophage and DC precursors (MDPs), which give rise to common 

monocyte progenitors (cMoPs) followed by differentiation into Ly6C+ and Ly6C− 

monocytes. 
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Figure 4. The autobahn model of hematopoiesis and myeloid cell differentiation 

Since the understanding of early hematopoiesis and later differentiation into circulating and 
tissue-resident myeloid effector cells has changed dramatically during the recent past, we 
propose a new model describing the current understanding of its organization. […] The 
autobahn model aims at combining the concept of a continuous, hierarchical differentiation 
spanning multiple intermediate states with the cellular plasticity needed to explain the ability 
to cope with diverse physiological and pathological challenges. The autobahn model is an 
adaptation and extension of the classical Waddington landscape (Waddington, 1957), 
which is commonly used to describe cell differentiation. However, the autobahn model also 
takes into account the continuum of differentiation and both precommitment as well as the 
plasticity of a cell. We find the motorway junction presents a comprehensible analogy to 
the complex system of hematopoiesis. Traffic presents a continuous and active progress 
along straight paths to reach a predetermined destination while allowing course changes 
at multiple branches to respond to momentary situations, such as traffic jams. […] Similar 
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However, already in the early years of scRNA-seq, it was hypothesized that these 

proposed progenitor populations are actually heterogeneous (Ginhoux and Jung, 

2014) and that scRNA-seq might shed light on the real developmental trajectories. For 

example, very recently a novel precursor monocyte population was identified in the 

bone marrow, positioned developmentally between the cMoP state and fully 

differentiated Ly6C+ monocytes - a transitional pre-monocyte population (Chong et 

al., 2016). […] In a very recent study, it was proposed that there are human 

counterparts for cMoPs and the pre-monocytic population giving rise to fully 

differentiated monocytes (Kawamura et al., 2017). 

Whether the fully differentiated monocyte populations show further heterogeneity and 

whether this is dependent on environmental factors are other important questions 

being addressed by many groups. It was recently shown […] that a subset of Ly6C+ 

monocytes in the bone marrow seems to exist that is already predetermined to 

become either […] inflammatory macrophages or monocyte-derived DCs (moDCs) 

under inflammatory conditions (Menezes et al., 2016). Interestingly, another scRNA-

seq study confirmed the presence of committed Ly6C+ monocyte populations (e.g., 

moDC-primed monocytes) and found that they originate from different progenitors 

within the hematopoietic system (Yáñez et al., 2017). […] Collectively, all these studies 

favor a model of precommitted monocytes. 

navigation system to find his or her way, epigenetic modifications direct a cell toward its 
destination and therefore predefine a cell’s commitment toward a certain lineage. 
Additionally, the cell can dynamically respond to external signals, such as stress, 
inflammation, or other environmental factors, and integrate these with the internal 
disposition, enabling necessary deviations from its original path. In this scenario, autobahn 
interchanges present self-contained roads that, in principle, allow drivers to postpone their 
decision for the next route. Circulating in such autobahn interchanges would represent 
cellular dormancy and self-renewal of multipotent progenitor cells within the autobahn 
model. Accordingly, precursor cells persevere in specific self-contained niches to assure a 
steady supply of new cells following a certain path corresponding to required cellular 
phenotypes. Moreover, the autobahn interchange would be seen as an analog to the 
classically defined progenitor states, which should not be seen as discrete cell types but 
rather as transitory states. Finally, severe accidents or special events can cause one road 
to be impassable or jammed. Respectively, hematopoietic malignancies could be seen as 
the analogy of such events. They can affect specific lineages of the hematopoietic system 
and, for example, induce unrestricted overpopulation of certain cell types.” 
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However, alternative models have also been presented: It was recently hypothesized 

that all human blood-derived CD14+ monocytes possess the potential to differentiate 

into inflammatory macrophages, whereas in the presence of certain environmental 

ligands […], monocytes mainly differentiate into moDCs (Goudot et al., 2017). Under 

steady-state conditions, CD14+CD16− classical monocytes could not be further 

subdivided by scRNA-seq in this study. Furthermore, signatures derived from 

inflammatory macrophages were identified in all monocyte populations, including 

classical, intermediate, and non-classical subsets, suggesting that these cells are very 

homogeneous. Although intriguing, these interpretations should be taken with caution 

[…], considering the sparsity of scRNA-seq data, confirming or rejecting the existence 

of precommitted monocytes might be hampered by missing data values. Clearly, this 

will require enrichment analyses with statistical models that enable the detection of 

small tendencies to identify subtle preferences as described in the precommitment 

model above. […] 

The definition of monocyte subsets was further complicated by a recent report 

suggesting four monocyte populations in human blood, including the classical and 

non-classical monocyte populations as well as two additional populations, with one 

expressing a cytotoxic gene signature (e.g., GNLY and CTSW) (Villani et al., 2017). 

Albeit interesting, these findings require further exploration […]. Collectively, there is 

a strong necessity of future efforts to carefully link exciting new findings derived from 

scRNA-seq data to previous knowledge in the field. In the next iteration of defining the 

human myeloid cell atlas, we need to determine whether our previous classification of 

monocytes needs to be revisited and develop procedures that unequivocally define 

newly identified immune cell subsets in the framework of current knowledge. […] 

 

 

1.4.3. Tissue macrophages – one cell at a time 

Macrophages constitute a broad family of tissue-resident, professional phagocytic 

cells, including […] lung alveolar macrophages […], that play an important role not 

only in defense against pathogens but also in tissue development and homeostasis 

(Ginhoux et al., 2016; Mass, 2018). Several studies have now been published using 

single-cell profiling to shed light on the ontogeny of these cells and their tissue-specific 

homeostatic and repair functions, as well as their diverse roles in immune responses. 
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In contrast to the long-held view that circulating monocytes constitute the primary 

source for the replenishment of tissue-resident macrophages throughout life, we know 

today that resident macrophages of most tissues are established prenatally from 

embryonic precursors and, under homeostatic conditions, are maintained by self-

renewal independently of monocytes (Ginhoux et al., 2010; Gomez Perdiguero et al., 

2015; Guilliams et al., 2013; Hashimoto et al., 2013; Hoeffel et al., 2012, 2015; Merad 

et al., 2002; Schulz. Christian et al., 2012; Sheng et al., 2015; Yona et al., 2013). Under 

pathological conditions, monocytes infiltrate affected tissues and adapt inflammatory 

phenotypes and functions of macrophages and DCs, supporting efficient resolution of 

the inflammation (Ginhoux and Jung, 2014).How long these monocyte-derived 

macrophages (also referred to as inflammatory macrophages) persist within the 

tissues, adopt the phenotype of tissue-resident macrophages, and thus 

inconspicuously contribute to the population of tissue-resident macrophages is a topic 

of ongoing debate, as is how these compositional alterations of the resident 

macrophage population affect functional heterogeneity. Understanding the delicate 

mechanisms underlying macrophage ontogeny […] and their heterogeneous 

homeostatic and immunological behavior require sophisticated approaches with 

single-cell resolution. 

Using scRNA-seq analysis of CD45+ cells […] researchers under the leadership of 

Geissmann added an essential part to the puzzle of macrophage ontogeny: An 

intermediate cell type, labeled premacrophages, […] simultaneously colonize the 

whole embryo from embryonic day 9.5 while adapting a core macrophage expression 

program, which is diversified immediately after colonization by the expression of 

tissue-specific transcriptional regulators (Mass et al., 2016). […] 

Furthermore, […] scRNA-seq studies focused on macrophages in the heart […], in 

CNS […] and cardiovascular disease [...]. In fat tissue, adipose tissue macrophages 

(ATMs) constitute the predominant resident immune cells and accumulate in obesity, 

suggesting critical involvement in physiological and pathological processes. In a small-

scale, explorative scRNA-seq analysis, two transcriptionally distinct ATM populations 

were identified (Hill et al., 2018). In follow-up experiments, these two subsets were 

characterized microscopically to be of unique morphology and tissue localization, and 

population-level omics analyses revealed distinct transcriptomic and epigenetic 

profiles. […] 
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1.4.4. Defining single myeloid cells in major diseases 

Cells of the myeloid compartment are of great clinical relevance, as the evidence for 

their implications in the etiology and pathophysiology of disease is ever growing. This 

is no coincidence: They function as tissue-resident sentinels to maintain tissue 

homeostasis or as patrolling cells ensuring the first line of defense for the immune 

system and reacting to pathogenic threats or endogenous inflammatory triggers. As 

described above, single-cell analyses have greatly advanced our understanding of the 

population structures of […] monocytes and macrophages in different organs as well 

as delineated the respective subset characteristics - prerequisites to study these cells 

in pathophysiological contexts. Inflammation changes the composition of myeloid cell 

populations found in diseased tissue; for example, monocytes infiltrate and acquire 

characteristics similar to the tissue-resident cells depending on the tissue environment 

as well as disease conditions. Under these circumstances it is important to rely on 

more than a few markers for distinguishing cell types, which single-cell analyses 

clearly accomplish. […] 

Atherosclerosis is another pathophysiological condition in which myeloid cells play a 

crucial role in etiology. In two back-to-back studies the immune compartment within 

atherosclerotic plaques in a murine model was analyzed by scRNA-seq to describe 

the different leukocyte populations in the aorta and their changes in atherosclerosis, 

which nicely overlapped with data from a parallel CyTOF approach (Cochain et al., 

2018; Winkels et al., 2018). In addition to the tissue-resident macrophages present in 

healthy and atherosclerotic aortic arches, plaques contained monocytes, moDCs, and 

two atherosclerosis-specific populations of inflammatory macrophages, one of which 

was newly characterized as Trem2+ (Cochain et al., 2018). 

Monocytes are also recruited and beneficial during lung regeneration following 

pneumectomy, as characterization of the accumulating myeloid cell subsets by single-

cell analysis determined them to promote alveolar epithelial stem cell proliferation 

(Lechner et al., 2017). On the other hand, a monocyte-derived macrophage population 

with a fibrosis-driving phenotype was specifically enriched in a mouse model for lung 

fibrosis (Aran et al., 2018). In the context of chronic kidney injury, it had been unclear 

which cell type contributes to the fibrosis in late stages of the disease. Kramann et al. 

(Kramann et al., 2018) determined this to be circulating monocytes by employing a 
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parabiosis model as well as scRNA-seq. […] Collectively, these early examples 

applying novel single-cell technologies to define the heterogeneity of the myeloid cell 

compartment in major diseases give a first glimpse of the future potential of this 

approach for a better understanding of many chronic inflammatory conditions and 

hence the development of refined or novel therapeutic strategies. Finding alterations 

in the local immune environment at an early stage in disease as well as precise 

delineation of the subpopulation structure that may respond differentially to current 

therapies will allow the identification of new, effective therapeutic avenues. […] 

As outlined in this review, single-cell genomics - with scRNA-seq […] - will provide us 

with novel molecular microscopes, allowing us to rewrite our understanding of myeloid 

cell biology. This will include all aspects of cell ontogeny, differentiation, homeostasis, 

and activation, including pathological activation during disease. These molecular 

microscopes with high-content information for each cell as well as spatial and temporal 

resolution will help us to better understand the cellular heterogeneity and plasticity of 

cells within the myeloid cell compartment. […] 

With the increasing evidence that the myeloid cell compartment is the major immune 

cell compartment involved in those chronic inflammatory diseases our communities 

are suffering from, we expect single-cell analysis of myeloid cells to become a driving 

force of biomarker exploration as well as diagnostic test and therapy development for 

all major diseases. […] We strongly believe that single-cell genomics should lead the 

efforts in human immunology, as described recently by Davis and colleagues (Davis 

and Brodin, 2018). 

However, before we can routinely apply such sophisticated technology to medical 

questions, we must tackle numerous open questions and practical considerations […]. 

In contrast to others in the field, we are not convinced that this will be a trivial task. 

Rather, this will require multi-science approaches beyond today’s models of 

interdisciplinary research. Novel single-cell technologies often introduced by using cell 

lines or primary cells derived from animal models (Cao et al., 2017; Rosenberg et al., 

2018) are repeatedly not tested for their applicability to human cells and - not 

surprisingly - often do not translate well to human cells under clinical conditions. In this 

respect, the myeloid cell compartment is particularly sensitive to technical procedures 

that can induce cell stress, thereby inducing either activation, cell death, or both (Orr 

et al., 2013; Zhang et al., 2008). 
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The procurement and processing of fragile and precious human tissue samples 

constitute a major challenge in the effort to create comprehensive reference maps of 

all human cells. It is hardly feasible to obtain and process samples from multiple 

tissues in one experiment at one site, which leads to site- or experiment-specific 

technical differences prohibiting direct comparability. However, the integration of 

datasets from separate experiments is imperative for the comparison of human 

myeloid cell subtypes across different tissues. Besides rigorous standardization of 

experimental procedures, sophisticated computational approaches for data integration 

(Butler et al., 2018) are necessary to learn more about differences as well as 

conformities of heterogeneous myeloid cell populations across different tissues. 

When analyzing human samples derived from blood or bronchoalveolar lavage, we 

need to ensure that certain fragile cell types including eosinophils […] are not prone 

to loss by certain scRNA-seq technologies. Indeed, the impact of procurement and 

processing of human samples on data quality and data content is often 

underestimated. For example, while most of the droplet-based technologies perform 

very well with RNA-rich human or murine cell lines, measuring primary cells of the 

myeloid compartment that are easily activated and quickly undergo cell death is a 

much more challenging task. The results obtained by these technologies for these 

primary human cells are clearly inferior; for example, they result in significantly lower 

numbers of genes detected per cell or lower percentages of cells with sufficient 

numbers of genes detected. Therefore, additional methods, such as well-established 

MCFC, need to be included in the analysis of clinical samples to prevent over- or 

underestimation of particular cell types in clinical samples by single-cell genomics 

technologies. 

Also, when using clinically accessible tissues such as peripheral blood, certain aspects 

should be taken into consideration while designing experimental setups, since, for 

example, many studies aiming at identifying the cell population structure in peripheral 

blood use only PBMCs as the starting population. However, this excludes important 

cells of the myeloid compartment involved in many pathological processes. We 

speculate that the analysis of whole blood immune cells is more informative in chronic 

inflammatory diseases compared to focusing only on PBMCs. Furthermore, we will 

also need to learn how to best capture rare immune cell types, as these often are 

critical to certain pathological processes. This area requires substantial attention for 
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future studies in human immunology and in the Human Cell Atlas efforts (Regev et al., 

2017). […] 

Collectively, the revolution in single-cell genomics will bring new findings and medical 

applications to the field of myeloid cell biology, and we expect another decade of 

exciting research and development toward a better understanding of the role of these 

important immune cells in health and disease.” 

 

 

1.5. Analysis of scRNA-seq data 

Since the data generated by scRNA-seq technologies comprise tens of thousands of 

genes in up to millions of cells, it can be categorized as ‘big data’. Consequently, the 

scientific field is confronted with both analytical and computational challenges. This 

chapter is intended to provide an overview of the current analytical tools. 

 

As part of this partly cumulative thesis, this chapter is an extract from the following 

publication (Baßler et al., 2019): 

 

A bioinformatics toolkit for single-cell mRNA-Seq data analysis 

Authors: Kevin Baßler, Patrick Günther, Jonas Schulte-Schrepping, Matthias Becker, 
Paweł Biernat  

Publication details: Published as book chapter in Single Cell Methods: Sequencing 

and Proteomics, Methods in Molecular Biology, vol. 1979; editor: Valentina Proserpio; 

Springer Nature 2019; Chapter 26; https://doi.org/10.1007/978-1-4939-9240-9_26 

Permission for use in the thesis: The permission was granted on 19.07.2019 by Patrick 

J. Marton, Executive Editor, Springer Protocols, Patrick.Marton@Springer.com 

 

To ease the tracking of the self-quotation, the citation is placed in quotation marks and 

the content is written in italics. In addition, shortenings of the original text are indicated 

by [...] and the citation style and title numbering is adapted to the other texts of the 

dissertation. In addition, the term ‘single-cell mRNA-Seq’ is abbreviated as 'scRNA-

seq' for consistency with the other texts. 
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“The first step of every scRNA-Seq experiment is proper study design, which does not 

require sophisticated experimental or informatics skills but is nonetheless presumably 

the most important step. The quality of the resulting data strictly depends on the proper 

planning of the experiment, including the selection of the most suitable technology for 

the biological question of interest as well as an elaborated study design to minimize 

the influence of confounding factors. Once the experiment has been conducted and 

[…] gene expression values have been extracted from the reads and normalized, the 

researcher has the agony of choosing between a plethora of analysis approaches to 

investigate diverse aspects of the single-cell transcriptomes, such as dimensionality 

reduction and clustering to explore cellular heterogeneity or trajectory analysis to 

model differentiation processes. […] Here, we introduce the main steps of a typical 

bioinformatics pipeline for the analysis of scRNA-seq data […]. Since each of these 

steps presents some downsides, we not only introduce algorithms, methods, and tools 

but also critically revise their applicability and limitations. […] 

 

 

1.5.1. Experimental planning 

1.5.1.1. Choosing a scRNA-seq technology 

One of the most important steps toward a successful application of scRNA-seq to a 

biological question is a detailed planning of the experiment. […] 

Following the first description of single-cell mRNA sequencing in 2009 (Tang et al., 

2009), a wide variety of scRNA-seq methods has been proposed. All methods have 

certain advantages, which demand an experimenter to choose a technique that is best 

suited for the biological question in mind. Regarding the gene body coverage of 

scRNA-seq data, two major protocol types have emerged. Full-length methods (e.g., 

SMART-Seq2 (Picelli et al., 2013) and Strt-Seq (Islam et al., 2011)) provide read 

coverage across the complete transcript allowing the investigation of, for example, 

alternative RNA processing. However, most available single-cell protocols (e.g., Drop-

Seq (Macosko et al., 2015), Seq-Well (Gierahn et al., 2017) or sci-RNA-Seq (Cao et 

al., 2017)) sacrifice full-length coverage for the sake of early multiplexing, which 

minimizes the cost. 

Another important consideration during planning of a scRNA-seq experiment is the 

procedure of isolating single cells from a cell mixture. Early isolation protocols focus 
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on manual cell isolation techniques, such as micropipetting or laser capture 

microdissection. While these techniques gain spatial information about selected cells, 

their throughput is very low (Cadwell et al., 2016). Fluorescence-activated cell sorting 

(FACS) is a widely established technique that can be used for isolation of single cells. 

In addition, FACS records the protein expression of a cell, which allows to combine 

the proteome and transcriptome data derived from the same cell. It has been shown 

that this additional layer of information can be very valuable for characterization and 

investigation of cells of interest (Paul et al., 2015). However, the sorting procedure 

exerts stress to the cells in the form of high pressure and shear forces, which can 

change the transcriptome or even force the cells into apoptosis. Recently developed 

droplet-based isolation techniques, such as Drop-Seq (Macosko et al., 2015a) and 

inDrop (Klein et al., 2015), have substantially decreased the cost while increasing the 

throughput. The same holds for cell isolation using microwell plates that allow for easy 

and fast separation of single cells into wells (Fan et al., 2015; Gierahn et al., 2017; 

Goldstein et al., 2017). Remarkably, very recent single-cell technologies do not rely 

on physical isolation/separation of single cells but rather perform each enzymatic step 

of scRNA-seq library preparation inside of a cell using a split-pool barcoding approach 

(Cao et al., 2017). These technologies rely on fixation of the cells, which might not be 

suited for all cell types with the existing protocols […].  

Another important question is the required number of cells that should be covered. 

Again, this is very much dependent on multiple factors, including cost, cell types, 

technology, and biological question. The number of required cells greatly depends on 

the assumed heterogeneity in the cell mixture. Since this is unknown for most of the 

experiments it helps to deploy other available resources (flow cytometry data, etc.), to 

estimate the expected heterogeneity. […] As a rule of thumb, the less complex a 

heterogeneous cell mixture is, the higher the required information depth to detect 

heterogeneity, which can be increased by either increase of analyzed cells or by usage 

of a more sensitive approach (more genes detected). More cells analyzed means 

higher statistical power and lower impact of dropouts. […]” A dropout event occurs 

when a transcript is not detected at all because of technical reasons. That is, some 

zeros in the count table do not mean that the respective gene is not expressed, but 

rather that its transcript was either lost during the library production or because of 

sequencing issues. 
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“1.5.1.2. Reducing batch effects 

Since the starting material of single cells is very low, the generated gene expression 

measurements might be confounded because of differences in RNA extraction, 

enzyme activities, degradation/ fragment length, amplification, and sequencing depth. 

These effects become apparent when looking at batch effects. Batch effects are 

confounding factors, which occur because of, for example, different enzyme lots, and 

differences in personnel or preparation dates. However, batch effects can also occur 

within one experiment. Some of the available experimental protocols for single-cell 

genomics necessitate splitting of cells into different pools/batches during various steps 

of downstream processing. Although these pools are processed simultaneously, 

technical variation introduced due to processing in different batches is hard to avoid. 

A stringent study design may reduce their influence.  

The easiest and most efficient way to account for batch effects is a proper 

experimental setup to begin with. To this end, it is important to balance biological 

conditions among batches to avoid a confounding study design. Ideally, all conditions 

(e.g., patient and control) should be represented and evenly distributed among all 

batches. […] If processing of cells in batches cannot be avoided, it is important to 

include standards to estimate and ideally correct for the batch effects. […] 

Once the optimal technology and strategy have been found to answer the biological 

questions of interest and the respective dataset has been generated by trying to 

reduce the influence of potential batch effects, the actual analysis starts. 

 

 

1.5.2. Computational aspects and challenges 

1.5.2.1. Quality control 

[…] Gene expression data from single cells vary regarding the depth and quality of 

transcriptome information. It is important to account for such differences and it is 

crucial to remove cells from the analysis that are of low quality. Low quality data may 

be caused by a failure to capture a cell, capturing multiple cells, apoptotic cells, 

degrading RNA, low library complexity, or low sequencing depth. Dying cells have 

been shown to be associated with an increased ratio of reads mapping to 
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mitochondrial genes and remaining endogenous genes. It is assumed that the 

membrane of apoptotic cells is leaking so that cytoplasmic RNA gets lost, but the 

mitochondrial RNA is retained causing an overrepresentation of mitochondrial 

transcripts (Ilicic et al., 2016). Since the ratio of mitochondrial genes to endogenous 

genes within a cell is highly dependent on the overall quality and experimental setup, 

the threshold should be determined in consideration of the distribution of this ratio 

among all cells within a dataset. However, usually the ratio is in a range of 5–20%. All 

cells exhibiting an exceptional high ratio should be considered apoptotic and removed 

from further analysis. 

Moreover, cells with only a very low number of identified genes should also be 

removed from the analysis. However, it is important to keep in mind that different cells 

will vary in their number of identified genes, and great care must be taken to not bias 

the analysis by removal of certain cell types with lower intrinsic complexity. 

Gene expression profiles generated from single cells contain a clear majority of zero 

measurements, either representing a failure of mRNA detection or a true missing of 

transcription of a gene. It was shown that variance is highly correlated with the mean 

expression (Grün et al., 2014). It is recommended to remove lowly expressed genes 

to limit their effect on the variance within a dataset. The identification of these genes 

can be performed based on the number of cells that express a certain gene. If a gene 

is expressed in less than 1% of the cells it is unlikely that this gene contributes to the 

overall variability. Since this data quality check is of very high importance, several 

pipelines and tools like Seurat (Butler et al., 2018) […] have been developed. These 

tools suggest filtering low-quality cells by analyzing multiple QC parameters […]. 

 

 

1.5.2.2. Normalization 

An indispensable step for proper scRNA-seq analysis is the normalization of the data 

to make the transcriptome of the cells comparable to each other. Some of the 

normalization tools were initially developed for bulk data but have been successfully 

applied to single-cell data as well. Generally, one has to distinguish between within-

sample normalization, which corrects for gene-specific biases and between-sample 

normalization, which adjusts for distributional differences across cells (e.g., 

read/transcript number). […] 
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A popular normalization method which is commonly applied to single-cell technologies 

with full-transcript coverage (such as SMART-Seq2 (Picelli et al., 2013)) is the TPM 

(transcripts per million kilobase) method. This method is used to normalize for 

differences in sequencing depth across samples (between-sample normalization) and 

is related to the RPM (reads per million) method whose principle is commonly applied 

to single-cell data. However, TPM also considers the gene length (within-sample 

normalization) and thus is very similar to RPKM (reads per million kilobase) and FPKM 

(fragments per kilobase million). However, for the sake of cell-to-cell comparison, TPM 

is more powerful. The main disadvantage of these estimates is that they can be 

dominated by a handful of highly expressed genes, which can bias the downstream 

analysis (Vallejos et al., 2017). […] 

For technologies, which are capturing the 3’-end (e.g., Drop-Seq (Macosko et al., 

2015), Seq-Well (Gierahn et al., 2017) or sci-RNA-Seq (Cao et al., 2017)), another 

type of normalization strategy can be introduced, namely via the usage of UMIs 

(unique molecular identifiers). These sequences barcode individual mRNA molecules 

and hence can be used to account for amplification bias which is a major source of 

technical variation. Because of technical limitations, UMIs are not usable for all single-

cell technologies. […] 

 

 

1.5.2.3. Accounting for other unwanted sources of variation 

Besides the aforementioned technical sources of variation, there are additional factors 

that might contribute substantially to the variability of gene expression. For some 

datasets, cell-to-cell variation can also reflect the cell cycle stage at which a cell was 

captured. In more detail, a proliferating cell upregulates its gene expression and hence 

will contribute more to the read pool in the single-cell library compared to a resting cell. 

Although normalization (RPM, RPKM, FPKM, and TPM) will account for some of this 

variability, it will not be able to remove all of the cell cycle-related variability.  

One possibility to account for cell cycle-related effects is the usage of scLVM (Buettner 

et al., 2015), which builds on a latent-variable model based on Gaussian processes. 

Although scLVM was designed to account for cell cycle-induced variations, it can also 

be used to correct for other sources of variation, which can be modeled by latent 

variables. Inspired by scLVM, Satija and colleagues implemented the modeling of 
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latent variables in their single-cell analysis pipeline Seurat […] and used them to 

account for differences in the alignment rate, expression differences, and 

mitochondrial gene expression. In principle, latent variable models can also be used 

to account for batch effects in datasets […]. 

Batch effects are also a major problem of meta-analysis, when different single-cell 

datasets are combined in one analysis. Butler et al. recently developed an elegant 

method (Butler et al., 2018), which circumvents the limited comparability across 

datasets because of batch effects. This method relies on a strategy that identifies a 

shared structure (common sources of variation) between the different datasets based 

on canonical correlation analysis (CCA) followed by an alignment based on this 

structure. This CCA-based procedure […] was successfully benchmarked in datasets 

confounded by different treatment conditions, technologies, and even species.” 

Recently, an improved and further developed version of the CCA-based method has 

been published, which relies on an ‘anchoring’ strategy for the integration of different 

datasets (Stuart et al., 2019).  

 

 

“1.5.3. Exploring cellular heterogeneity 

1.5.3.1. Dimensionality reduction 

A count table may contain counts for tens of thousands of different genes, more if we 

count different isoforms separately. Because every cell is characterized by a large 

number of values we say that the single-cell data is high-dimensional. This high-

dimensional data often contains redundant information and can be summarized in a 

lower-dimensional space by applying a dimensionality reduction algorithm. The 

dimensionality reduction serve several purposes, firstly, it can be used to summarize 

the data by plotting it in a lower-dimensional space (2 or 3 dimensional). Secondly, the 

dimensionality reduction can be used as a preprocessing step before applying other 

algorithms (like clustering) to improve their efficiency (both computational-wise and by 

removing noise from the data). 

[...] The principal component analysis (PCA) (Pearson, 1901) is a fast and scalable 

algorithm that finds directions in the original space in which the data varies the most. 

These directions (principal components, or PCs) are sorted from the most to the least 

varying. Based on how much variation is captured in each of the PCs, we then specify 
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how many of the PCs we wish to keep and discard the rest. Our data is then projected 

onto the remaining PCs in effect reducing the number of dimensions. Assuming that 

the biologically relevant information is responsible for the most variation in our data, 

by removing low varying components we discard only technical noise. The output of 

the PCA is therefore used as an initial denoising step and the resulting medium-

dimensional data can be further analyzed. […] 

The other goal of dimensionality reduction, visualization, is typically accomplished by 

much more sophisticated algorithms. The PCA is normally insufficient for this purpose, 

unless the data is extremely simple, because PCA is a linear transformation: it only 

shifts, rotates, and scales the original space. If the data […] forms more complex 

structures, PCA alone […] cannot cope with simplifying these structures to present 

them in a two- or three-dimensional plot. Instead, nonlinear dimensionality reduction 

methods have to be applied, of which the most popular one is t-SNE (Maaten and 

Hinton, 2008). T-SNE computes the local relationships between points in the original 

high-dimensional space and places the points in a lower-dimensional space (normally 

two or three dimensional) in such a way as to preserve these local relations. Relying 

only on the local structure of the data allows it to simplify complex structures and lay 

them out in a 2D space in a clear fashion. 

Similar to other algorithms, there is a loss of information after dimensionality reduction, 

and t-SNE is no exception. It sacrifices the global structure of the data to preserve the 

local relationships. In effect, the t-SNE results can be difficult to interpret (Wattenberg 

et al., 2016). For example, if after performing t-SNE the cells are depicted as several 

separate clusters there is no way to tell how these clusters relate to each other in the 

original space. […] The issues with t-SNE are common to other nonlinear 

dimensionality reduction algorithms […]. The danger here is two sided: we can lose 

the biologically relevant information after applying dimensionality reduction, or, 

perhaps even more dangerously, we can overinterpret the results and see structures, 

which are not really there. […] 

Aside from t-SNE other dimensionality-reduction algorithms are being applied to 

single-cell data, often offering better performance or interpretability. […] The recently 

introduced UMAP (Becht et al., 2018; McInnes and Healy, 2018) could be used as a 

more scalable alternative to t-SNE.” UMAP is the abbreviation for "Uniform Multiple 

Approximation and Projection" and describes a method for reducing dimensionality, in 
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which as much of the local and more of the global structure of high-dimensional data 

is retained as in t-SNE. 

 

 

“1.5.3.2. Developmental trajectories 

For an analyst of single-cell data, it is important to keep in mind that not all […] 

algorithms are suitable for any biological problem of interest. For example, if one is 

interested in the transitional states of cells, it is not advisable to use t-SNE […] as 

dimensionality reduction method. […] To enable the inference of dynamic biological 

processes (e.g., cell cycle, cell activation or differentiation), a plethora of different 

approaches have been developed to model such trajectories. The assumption of these 

methods is that the recorded single cells are at different stages of the dynamic process 

and hence the trajectory can be computationally modeled by taking the information of 

all single cells into account. To this end, the cells are ordered along a pseudotime in 

a trajectory, which can have a simple linear shape, but also complex bifurcated 

structures like developmental trees are possible. By building a trajectory, the analyst 

can answer different biological questions, for example, in the context of differentiation 

trajectories, the identification of rare precursor cells, or the stage where a bifurcation 

occurs which means a stage in the pseudotime where cells undergo fate decision and 

branch into distinct differentiation directions. […] 

A recent paper by Saelens et al. comprehensively assessed the performance and 

robustness of different trajectory inference tools (Saelens et al., 2018). Most of the 

evaluated methods worked best for datasets containing topology type they were 

supposed to handle. For example, methods designed for linear trajectory types 

commonly performed best for datasets representing these types of structures. 

Consequently, an analyst needs to know a priori the underlying topological structure 

of the dataset, which is often difficult. Nevertheless, Saelens et al. provide guidance 

in form of a decision tree to help users decide which trajectory inference method is 

most suitable for the dataset of interest. For example, if the trajectory is expected to 

have a linear topology, SCORPIUS (Cannoodt et al., 2016) is the method of choice. 

Moreover, the authors recommend to use reCAT (https://github.com/tinglab/reCAT) 

for cycle topologies, Slingshot (Street et al., 2017) for bifurcated trajectories and 

Monocle DDRTree for complex tree trajectories. In the future, methods will be needed, 
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which are not designed for a specific topology and hence can efficiently model 

biological relevant trajectory without the necessity of a priori knowledge.” An elegant 

alternative approach for trajectory inference has recently been introduced by the 

Kharchenko group (La Manno et al., 2018), based on unspliced and spliced mRNA 

information in single-cell data to model the transcriptional dynamics (RNA velocity) 

that can be used to predict the future state of individual cells in silico. A major drawback 

of trajectory analyses, however, is that current methods have not been developed to 

cope with batch effects, although this will be necessary for future large-scale clinical 

single cell studies. 

 

 

“1.5.3.3. Clustering 

Clustering algorithms serve to label similar cells in preparation for further analysis 

(counting, comparing differentially expressed genes, etc.). The clustering is normally 

performed on a 2D representation of the data, which means that the results rely heavily 

on the dimensionality-reduction algorithm. Clustering based on t-SNE […] result is 

especially dangerous here, as it may result in artificial clusters which are not reflecting 

the complete underlying biology. Therefore, there is a recent trend in single-cell 

analysis to perform clustering on the high- or an intermediate-dimensional data […]. 

Graph-based clustering algorithms like Louvain clustering (Blondel et al., 2008a) 

(implemented in Seurat and scanpy (Wolf et al., 2018)) […] belong to this group. […] 

 

 

1.5.3.4. Identifying subpopulations 

After identifying groups of cells that exhibit a high similarity in their gene expression 

profile, it can often be helpful to link the identity of these clusters to the established 

knowledge of cellular biology. Visualizing the expression of known marker genes in 

the respective clusters of cells in, for example, a violin plot or by color-coding the cells 

in their low-dimensional representation (PCA or t-SNE plot) is a quick and easy way 

to link a priori knowledge to the scRNA-seq data. However, it is important to keep in 

mind that especially lowly expressed genes might be affected by […] technical noise 

[…]. Therefore, rather than evaluating single marker genes, we recommend to use 
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sets of genes, often referred to as cellular gene signatures, to assess the biological 

identity of the clusters. The current knowledge of cell types and their states is limited; 

thus, knowledge-driven classification must necessarily fail for undescribed cell types. 

However, due to its unbiased and encompassing nature, scRNA-seq presents 

unprecedented capabilities to readily identify novel cell types and thus expand the 

knowledge base (Mass et al., 2016). 

One strategy to characterize groups of cells of unknown identity is based on the 

unbiased identification of marker genes specifically expressed in these clusters (often 

determined by differential gene expression analysis). Given such a list of genes, we 

can refer to the literature to further determine the characteristics of cells from this 

cluster. Moreover, the identified marker genes can be used for Gene Ontology 

enrichment analysis (GOEA) or gene set enrichment analysis (GSEA) to test whether 

identified marker genes significantly overlap with gene ontology terms or other gene 

sets […]. This way, we can characterize the new cell type by its function and similarities 

to other cells. […] 

As repeatedly mentioned in the sections above, there is no one-fits-all solution to 

analyze any single-cell data. An analyst is demanded to carefully choose which 

methods and algorithms to use at various steps of analysis. It is very likely that an 

inexperienced user will be quickly overwhelmed. Although some tools have recently 

emerged that offer a guided analysis of data, they will reach the limits of the software’s 

analytical capacities relatively fast. Therefore, we encourage any emerging analyst to 

learn the basics of a programming language, such as R, to open the door to a broader 

understanding of analysis and hence to exhaust the possibilities of scRNA-seq.” In 

that way, the scRNA-seq technology and the analysis of the data generated from it will 

become a routine tool in laboratories and will allow us to expand our fundamental 

understanding of biological processes and the pathophysiology of diseases, such as 

cancer (Suvà and Tirosh, 2019) or chronic diseases, to an unprecedented extent.  

 

 

1.6. Chronic obstructive pulmonary disease 

Because of its central role in human physiology, lung dysfunction is associated with 

the manifestation of severe diseases. From a clinical-diagnostic perspective, a 

distinction is made between obstructive and restrictive (and sometimes 
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neuromuscular) ventilation disorders. Restrictive lung diseases (e.g. idiopathic 

pulmonary fibrosis) are characterized by a limited expansion capacity of the lungs 

during inhalation, while obstructive lung diseases comprise conditions that make it 

difficult to exhale all the air in the lungs, for example due to narrowing (obstruction) of 

the airways. Known examples of obstructive lung diseases are asthma and chronic 

obstructive pulmonary disease (COPD).  

COPD is a progressive lung disease that is expected to become the third leading 

cause of death worldwide within 2020 (https://goldcopd.org/). The global prevalence 

of COPD is 10.1% (Celli and Wedzicha, 2019) and according to The Global Burden of 

Disease Study, it is estimated that 3.2 million deaths worldwide were caused by COPD 

in 2017, a number that is likely much higher because of un-reported cases and which 

is expected to increase to 4.4 million per year by 2040 (Rabe and Watz, 2017; Roth et 

al., 2018). The increase in mortality may be driven by factors such as the increase in 

noxious particles inhaled, e.g. from smoking or air pollution, the ageing of the world 

population, particularly in industrialized countries, and lower mortality from other 

diseases that are now better treatable. China and India account for more than 50% of 

all COPD cases, with the majority of COPD deaths occurring in low and middle-income 

countries (Celli and Wedzicha, 2019). A systematic review of COPD patient data 

collected over a decade in 28 countries showed a higher prevalence of the disease 

among smokers compared to non-smokers, among those who are ≥ 40 years old 

compared to < 40 years, and among men compared to women (Halbert et al., 2006). 

Besides the enormous medical burden, COPD is also associated with a considerable 

economic burden. In the EU, the annual cost of COPD is 38.6 billion euros, or 56% of 

the total annual health budget needed to treat lung diseases 

(https://www.who.int/gard/publications/The_Global_Impact_of_Respiratory_Disease.

pdf).  

This chapter summarizes the clinical aspects of COPD according to the 2020 report 

of the Global Initiative for Chronic Obstructive Lung Disease (GOLD) 

(https://goldcopd.org/) and the current scientific knowledge. 
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1.6.1. Definition of the disease 

COPD is not considered a single disease but a clinical syndrome with structural lung 

abnormalities, impaired lung function, chronic respiratory symptoms or a combination 

of these (Celli and Agustí, 2018). The most common symptoms of COPD are 

shortness of breath (dyspnea), chronic coughing and increased sputum production. In 

addition, many patients also suffer from wheezing and chest tightness, especially 

during physical exertion. Since these symptoms are rather unspecific, they are 

sometimes not sufficiently reported by patients and complicate the diagnosis. A 

particular hallmark of this disease is that the clinically characteristic reduction in airflow 

caused by respiratory and/or parenchymal abnormalities (e.g. emphysema) and the 

associated symptoms are persistent and progressive. The idea that COPD is not a 

single disease is based on the observation that different clinical phenotypes have been 

observed and thus led to various taxonomies that have been proposed in recent 

decades and is still the subject of an ongoing debate (Al-Kassimi and Alhamad, 2013; 

Celli and Agustí, 2018; Makita et al., 2007; Mirza and Benzo, 2017; Pikoula et al., 

2019). One of the most prominent taxonomies of COPD subtypes was first described 

in 1955 by Dornhorst (Dornhorst, 1955), who divided COPD patients into the 

emphysematic type, the so-called ‘pink puffer’, and the chronic bronchitis type, the so-

called ‘blue bloater’ (Filley et al., 1968). Generalized and stereotyped, the latter group 

of patients is mainly defined by overweight people with bluish skin color due to 

shortness of breath and chronic bronchitis, while "pink buffers" breathe fast and suffer 

from shortness of breath and pursed lip breathing, due to emphysema, resulting in 

pink face color. However, this characterization at best describes COPD extrema, while 

most patients in the clinic tend to have a mixed form of chronic bronchitis with 

emphysema formation. Therefore, this taxonomy is no longer used in the clinic. All 

current classifications of COPD phenotypes are solely based on clinical parameters, 

which will be defined in more detail later in the text. 

 

 

1.6.2. Factors contributing to the development and progression of COPD 

The primary and most studied risk factor for the development of COPD is active and 

passive cigarette smoking (Laniado-Laborin, 2009; Putcha et al., 2016; Ramírez-
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Venegas et al., 2014; Yin et al., 2007). However, there are also other risk factors, since 

epidemiological studies show that non-smokers may also develop COPD (Lamprecht 

et al., 2011). For example, occupational exposures, which are inhaled at workspace 

and comprises vapors, gases, dusts and fumes, are another important risk factor of 

COPD. A large study investigating the prevalence of developing COPD among non-

smokers indicated that occupational exposure accounts for more than 30% of COPD 

cases (Hnizdo et al., 2002). Especially in developing countries, another source of 

particulate exposure and thus another risk factor exists, namely from the indoor 

burning of biomass in open fireplaces or poorly functioning stoves (Barnes et al., 

2015). According to WHO, almost 3 billion people worldwide cook and heat with 

kerosene, biomass and coal (https://www.who.int/news-room/fact-

sheets/detail/household-air-pollution-and-health), which leads not only to indoor air 

pollution but also to environmental pollution. However, the impact of outdoor air 

pollution on the development of COPD in adults remains controversial.  

Like many other diseases, the development of COPD is the consequence of a complex 

interplay between environment and genes. Some genetic risk factors have already 

been identified, such as the hereditary deficiency of α1-antitrypsin, an inhibitor of 

serine proteases encoded by the SERPINA1 gene. One of the main functions of α1-

antitrypsin is the protection of the lung from proteolytic damage as a result of 

inflammation, so that a deficiency in this serine protease inhibitor due to gene mutation 

can lead to emphysema formation and the development of COPD (Stoller and 

Aboussouan, 2005). Other genetic mutations that were associated with increased risk 

of COPD, were identified at the gene locus coding for the glutathione-S-transferase 

(Ding et al., 2019), which is important for the detoxification of reactive oxygen species 

(ROS). On the other hand, genetic changes associated with a reduced risk of 

developing COPD have also been found, for example in the genes encoding for matrix 

metalloproteinases (MMPs) (Hunninghake et al., 2009), which degrade extracellular 

matrix proteins and thus contribute to emphysema formation (Churg et al., 2012; 

Kapellos, Bassler et al., 2018). A recent large-scale genome-wide association study 

has identified more than 80 genomic loci associated with an increased risk of 

developing COPD (Sakornsakolpat et al., 2019), but further analyses are needed to 

assess whether the identified loci are actual causative factors of the disease. 

Another risk factor, which is determined by the inherent characteristics of an individual, 

is ageing, as there is growing evidence of a close association between ageing and 
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COPD, as reflected in the abovementioned increasing prevalence of COPD in elderly 

people (Brandsma et al., 2017). Although normal physiological aging of the lungs is 

already characterized by tissue changes, the so-called ‘senile emphysema’ (Mercado 

et al., 2015), it is not known whether healthy aging over time leads in general to COPD. 

However, since COPD can also manifest already in middle-aged people, the 

anatomical changes and cellular hallmarks in the lungs are described as ‘accelerated 

lung aging’ (Mercado et al., 2015).  

Interestingly, processes in the earliest phases of life can also determine whether there 

is an increased risk of developing COPD. Thus, any factors influencing lung growth 

and development in the time of gestation until childhood are associated with an 

increased risk of COPD. For example, a meta-analysis study found a positive 

association between birthweight and later lung function (Lawlor et al., 2005), which 

was confirmed by another study (Cai et al., 2016). Importantly, reduced lung function 

established during childhood could be a contributing factor in up to 50% of people, 

who develop COPD (Lange et al., 2015).  

A factor that contributes to reduced lung function at various stages of life is airway 

hyper-reactivity, such as asthma. The European Community Respiratory Health 

Survey identified airway hyper-reactivity as the second most important risk factor for 

developing COPD (approx. 16% of COPD cases) directly after smoking and identified 

respiratory infections as another important denominator (De Marco et al., 2011).  

 

 

1.6.3. Pathophysiology and diagnosis 

Pathological changes in the lungs of COPD patients affect the airways, the 

parenchyma and the pulmonary blood vessels and are caused by chronic inflammation 

and associated structural changes (including emphysema formation) of the lung (Hogg 

and Timens, 2009). These structural changes increase with the severity of the disease 

and are currently not reversible.  

Overall, the pathological changes in the lung of COPD patients lead to an airflow 

limitation during expiration, which can be measured clinically with spirometry and is 

currently the only empirical measure for diagnosis. Some of the standard diagnostic 

parameters obtained by spirometry comprise the volume of air that can be forcibly 

exhaled after maximal inspiration (referred to as forced vital capacity, FVC) and the 
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volume that can be forcibly exhaled within one second (referred to as forced expiratory 

volume in one second, FEV1). The division of these two values (FEV1/FVC) is known 

as Tiffeneau-Pinelli index or FEV1 %, in which a value of < 0.7 indicates an obstructive 

airflow limitation (Lange et al., 2016). As mentioned above, COPD is persistent, which 

means that it can be distinguished from asthma, which is largely reversible after 

administration of bronchodilators. Therefore, spirometry is performed at least twice, 

once without and once with administration of a bronchodilator. A Tiffeneau-Pinelli 

index of the latter being below 0.7 is an indication of persistent airflow limitation and 

thus of COPD (Vestbo et al., 2013). However, the Tiffeneau-Pinelli index also has 

some limitations, e.g. it overestimates the presence of COPD in older patients (Lange 

et al., 2016). Therefore, the Tiffenau-Pinelli index of a patient is set in relation to the 

average Tiffenau-Pinelli index in the population of similar age, sex, race, and body 

weight, resulting in the so-called FEV1% predicted (Pellegrino et al., 2005). 

Interestingly, it was found that the correlation between spirometry measure and the 

actual symptoms and associated health status of the patient is very weak (Jones, 

2009). This is very interesting, because the health status of a patient is a better 

predictor for mortality than, for example, FEV1 (Jones, 2009). For the assessment of 

symptoms, a questionnaire, such as the COPD Assessment Test (CAT) (Jones et al., 

2009), is used, which is answered by COPD patients. The CAT questionnaire includes 

questions such as the frequency of coughing or the severity of breathlessness after 

exertion, and is scored from 0 to 5 by patients, whereby 5 represents severe 

symptoms. In addition to spirometric and symptomatic evaluation, the diagnosis of 

COPD also includes an assessment of the risk of exacerbation. An exacerbation is 

defined as a rapid worsening of the respiratory symptoms, which requires additional 

therapy with possible hospitalization. It is mainly caused by acute infections with 

viruses and bacteria of the respiratory tract that can trigger an increase of the chronic 

inflammation of the lung, which is associated with a substantial mortality risk 

(Wedzicha and Seemungal, 2007). According to recommendations of the 2020 report 

of the Global Initiative for Chronic Obstructive Lung Disease (GOLD) 

(https://goldcopd.org/), the diagnosis and stratification of COPD should include 

spirometry, symptom evaluation and assessment of exacerbation (Figure 5). Overall, 

COPD is identified with a post-bronchodilatory Tiffenau-Pinelli index below 0.7, 

classified (GOLD grades) by the severity of airflow limitation based on the FEV1% 
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predicted value and sub-classified according to the severity of symptoms and the risk 

of exacerbation (ABCD assessment). 

 

 

1.6.4. Pathogenesis 

The pathogenesis of COPD is complex with numerous co-existing mechanisms and 

factors (Agustí and Faner, 2018; Agustí and Hogg, 2019), including increased 

apoptosis (Voelkel et al., 2004), failure of lung tissue maintenance (Tuder et al., 2006), 

protease/antiprotease imbalance (Abboud and Vimalanathan, 2008; Pandey et al., 

2017), cellular senescence (Houssaini et al., 2018) and immunosenescence (Barnes, 

2017). Moreover, there is increasing evidence that oxidative stress and the associated 

oxidative tissue damage is an important and predisposing factor in the development 

of COPD (Bowler et al., 2004; Domej et al., 2014; Kirkham and Barnes, 2013; 

McGuinness and Sapey, 2017). Oxidative stress is characterized by elevated ROS 

levels, which can cause damage to lipids, proteins and DNA and can be either derived 

from extrinsic, mainly from cigarette smoke, or from endogenous sources, such as 

from dysfunctional mitochondria (Wiegman et al., 2015) or activated inflammatory cells 

Figure 5. Current guidelines for diagnosis of COPD, classification by grade (GOLD1-2) and 
assessment of the severity of symptoms and the risk of exacerbation (ABCD assessment) 
(acc. to recommendations of the 2020 report of the Global Initiative for Chronic Obstructive 
Lung Disease (GOLD)) 
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(Rahman, 2005). However, the central factor and thus the determining mechanism of 

COPD pathogenesis is the chronic inflammation of the lung tissue (Barnes et al., 

2015).  

 

 

1.6.5. Immune cells in COPD 

COPD is associated with enhanced recruitment, infiltration and activation of immune 

cells in the lung tissue (Ni and Dong, 2018). For example, altered cell numbers in 

COPD have been described for CD8+ T cells (O’Shaughnessy et al., 1997) and innate 

lymphoid cells (ILCs) (De Grove et al., 2016). However, especially neutrophils and 

macrophages were found to be increased in COPD and thus gained much attention in 

recent years (Barnes, 2019). The inhalation of cigarette smoke or other irritants leads 

to the activation of airway epithelial cells and AMs, which in turn release, for example, 

the chemokine IL-8 that binds to CXCR2 expressed on neutrophils (Barnes, 2008). 

Neutrophils are the first-line defense of innate immunity and perform their functions by 

releasing ROS and proteases such as neutrophil elastase and cathepsin, which exert 

an antibacterial function (Hoenderdos and Condliffe, 2013a). However, the inherent 

function of these cells might contribute to a pronounced oxidative stress and 

protease/antiprotease imbalance during the chronic infiltration of the lung with 

neutrophils, leading to the progression of COPD. Thus, it was shown that the number 

of neutrophils in the lungs of patients could serve as a predictor of COPD 

exacerbations (Kinose et al., 2016). In addition, a previous study used the neutrophil 

to lymphocyte ratio in peripheral blood as further predictor of exacerbation (Lee et al., 

2016). However, the efficacy and robustness of neutrophils as a biomarker needs to 

be evaluated in larger studies in the future. Interestingly, despite the central role in 

innate immunity and increased numbers in the lungs of COPD patients, therapeutic 

strategies targeting neutrophils, including CXCR2 antagonists, have not been clinically 

effective (Barnes, 2013), indicating that a better understanding of potential neutrophil 

subtypes and of the general immune response that orchestrates COPD is still needed.  

Another type of granulocyte, namely eosinophils, has also become the focus of many 

studies in recent years (Saha and Brightling, 2006; Tashkin and Wechsler, 2018). In 

the past, it was assumed that elevated eosinophils were more characteristic of asthma, 

while COPD is a disease characterized by neutrophils (Barnes, 2008). However, 
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studies have shown that an increased number of eosinophils can also be detected in 

the lungs of COPD patients (Berg and Wright, 2016; Saha and Brightling, 2006). 

Moreover, clinical observations suggested that COPD patients with eosinophilia in 

sputum or blood react better to inhaled corticosteroids, a treatment that otherwise 

seems to be ineffective in COPD (Agusti et al., 2018). Thus, eosinophils as biomarker 

for the prediction of corticosteroid therapy efficacy is now even included in the 

recommendations of the 2020 report of the Global Initiative for Chronic Obstructive 

Lung Disease (GOLD) (https://goldcopd.org/).  

Although the inflammation underlying COPD is complex and involves a plethora of 

different immune cells, it is now recognized that especially AMs play a central role in 

the pathogenesis of COPD. The current knowledge about these cells in the context of 

COPD is discussed in the next section. 

 

 

1.6.6. Alveolar macrophages as orchestrators of COPD 

As the lungs need to adapt to ever-changing environmental challenges, so do the AMs 

constantly adapt to satisfy the needs of the tissue and thus ensure lung maintenance. 

For example, the O2 partial pressure in the alveolar space can exhibit strong 

fluctuations, so that hypoxia of some parts of the lung is a quite common situation 

even under healthy conditions (Hussell and Bell, 2014), which in AMs requires a high 

degree of diversification to enable quick adaptation.  

Interestingly, this remarkable diversity of AM responses, and the cellular and immune 

effects mediated by them, can in principle explain most of the known features of COPD 

(Barnes, 2004). For example, some studies reported that, upon COPD, AMs transform 

their rather quiescent phenotype into an activated/pro-inflammatory one by producing 

more cytokines (such as TNF-α) (Mukhopadhyay et al., 2006) and chemokines (such 

as IL-8) (Barnes, 2004), which lead to the recruitment of other immune cells and thus 

contribute to the inflammatory profile in COPD (Kapellos, Bassler et al., 2018). 

However, interestingly, the expression of TGF-β, which is also a known key 

homeostatic molecule of the lung (Garbi and Lambrecht, 2017), is also upregulated in 

COPD (Barnes, 2004), indicating either a mixed phenotype of AMs in COPD or AM 

subtypes with different immunophenotypes. The COPD-dependent functional change 

in AMs is also reflected in the pronounced upregulation of secreted extra cellular 
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matrix-degrading enzymes such as MMPs and cathepsins (Barnes, 2004; Kapellos, 

Bassler et al., 2018; Russell et al., 2002), which contribute to a protease/antiprotease 

imbalance and hence to tissue damage. Another mechanism by which AMs switch 

from lung tissue preserving to tissue destroying function is through the production of 

ROS. Upon activation, macrophages typically produce ROS to kill bacteria and other 

invading microorganisms, however, in COPD, AM-mediated ROS production seems 

to be deregulated and causes oxidative stress in the lung tissue (Kirkham and Barnes, 

2013). A possible mechanism of increased endogenous ROS production in COPD is 

associated with mitochondrial dysfunction (Boukhenouna et al., 2018). A recent study 

associated this mitochondrial dysfunction in AMs of COPD patients with a reduced 

phagocytosis capacity of these cells due to an impaired mitochondrial membrane 

potential causing a deficit of the energy required for proper phagocytosis (Belchamber 

et al., 2019). In the context of tissue homeostasis and immune surveillance, 

phagocytosis of pathogens and debris, as well as the clearance of accumulating 

apoptotic cells via efferocytosis plays a central role in AMs (Vandivier et al., 2006). 

Interestingly, a reduction of phagocytosis and efferocytosis, is a well-known feature of 

AMs from COPD patients (Kapellos, Bassler et al., 2018) and some scientists consider 

them to be the key components in the development of exacerbations (Han et al., 2017; 

Hurst et al., 2010; Jubrail et al., 2017).  

Several of the more recent scientific efforts focus on the metabolic state of lung cells, 

including AMs, in COPD (Chen et al., 2019). Although some interesting observations 

have already been made in this area, such as the systemic increase in cholesterol 

levels in COPD patients (Zafirova-Ivanovska et al., 2016), further analysis is needed 

to determine the metabolic state in COPD, especially in AMs, which are responsible 

for surfactant homeostasis.  

Since many of the described defects and deregulation in AMs can also lead to cell 

death, there seems to be a discrepancy regarding the observed upregulation in 

macrophage numbers in COPD lungs (Barnes, 2019). A hypothesis for the increase 

in AMs is an elevated self-replenishment of macrophages by proliferation (Barnes, 

2004), but proof for this is still pending. Another potential source for AMs are circulating 

monocytes, which infiltrate the lung and differentiate into macrophages. Indeed, 

mouse models have shown that circulating monocytes can readily differentiate to AMs 

in vivo (Landsman and Jung, 2007). In addition, a mouse smoke model, mimicking 

COPD, showed that infiltrating monocytes not only give rise to AMs but may also be 
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responsible for the observed upregulation of TNF-α and MMPs in COPD patients 

(Pérez-Rial et al., 2013). The idea of an involvement of systemically circulating cells 

to COPD pathogenesis is also in agreement with the hypothesis that COPD might be 

the pulmonary manifestation of a chronic systemic inflammation (Fabbri and Rabe, 

2007). 

Taken together, the overall phenotype of AMs in COPD is altered, and AMs appear to 

loose full functionality. Although AMs clearly play a key role in COPD, no detailed 

definition of potential subtypes or analysis of potential different functions has been 

performed so far. In principle, the investigation of AMs is straightforward, as the cells 

are obtained from bronchoalveolar lavage fluid (BALF), which is obtained during 

bronchoscopy of the lung, and isolation requires neither enzymatic digestion nor 

longer incubation periods, which can lead to changes in the phenotype and function 

of the cells (Garbi and Lambrecht, 2017).  

 

 

1.6.7. Therapy 

There is currently no effective therapy available to cure COPD, but there are measures 

that can help alleviate the symptoms. Among the most effective therapies is to support 

patients in smoking cessation, which can substantially reduce COPD-associated 

mortality (Tashkin, 2015). In addition, according to the 2020 report of the Global 

Initiative for Chronic Obstructive Lung Disease (GOLD) (https://goldcopd.org/), the 

most commonly used pharmacological therapies focus on relieving symptoms and 

comprise the administration of both long-acting muscarinic antagonists (LAMAs) and 

long-acting β2 agonists (LABAs) or a combination of both. In patients with recurrent 

exacerbations or severe dyspnea, triple therapy with inhaled corticosteroids (ICS) is 

also frequently used. However, the general efficacy of corticosteroids in COPD 

patients is rather low. Therefore, novel anti-inflammatory therapies are currently 

tested, including broad-spectrum anti-inflammatory treatments (such as 

phosphodiesterase-4 inhibitors), cytokine and chemokine inhibitors (such as anti-TNF 

and anti-CXCR2), anti-proteases, antioxidants, kinase-inhibitors (such as 

phosphatidylinositol-kinase inhibitors), or drugs aiming to reverse corticosteroid 

resistance (Barnes, 2013). In addition, there are non-pharmacological treatment 

strategies applied including oxygen therapy and ventilatory support or even surgical 
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interventions aimed at reducing lung volume to reduce hyperinflation due to the 

emphysematous tissue and thus improving the work of the remaining lung.  

Nevertheless, there is an urgent need to develop therapies that reduce the progression 

of the disease, exacerbations, and comorbidities of COPD. However, currently no safe 

and effective treatments are available for the underlying chronic inflammation. It is 

therefore crucial to understand how the immune cells involved are linked to identify 

which of these cells and mediators are the most promising therapeutic targets. 
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2. Aim of the study 
Due to its global spread and the high medical and financial burden without effective 

and safe available therapies, COPD represents a yet unmet challenge for modern 

society. An important and necessary step towards a better understanding of the 

disease is to increase the resolution during the analysis. The current knowledge is 

mainly based on information obtained at population level but not at the level of single 

cells. In recent years, the cellular components of the human lung in health and disease 

have been the target of an increasing number of studies, although so far, no study has 

focused on COPD. For example, scRNA-seq was used for the description of the 

parenchymal cell composition in the lung (Madissoon et al., 2020; Travaglini et al., 

2019; Vieira Braga et al., 2019), the identification of novel cell types such as pulmonary 

ionocytes (Montoro et al., 2018; Plasschaert et al., 2018), the identification of ectopic 

and aberrant lung resident cell populations in idiopathic pulmonary fibrosis (Adams et 

al., 2019; Morse et al., 2019; Reyfman et al., 2019) or the investigation of the cellular 

contribution in lung cancer (Lambrechts et al., 2018; Lavin et al., 2017; Song et al., 

2019; Zilionis et al., 2019). In addition, scRNA-seq was also used to investigate the 

COVID-19 disease (Liao et al., 2020; Ziegler et al., 2020). These studies in humans 

have been accompanied by scRNA-seq studies describing the cellular compositions 

in murine lung under homeostatic as well as stress conditions (Angelidis et al., 2019; 

Aran et al., 2019; McQuattie-Pimentel et al., 2019; Schyns et al., 2019; Strunz et al., 

2019), and during development (Cohen et al., 2018; Guo et al., 2019). Together, these 

studies illustrate the enormous breadth of scRNA-seq technologies to describe the 

cellular composition of the lung and identify deviations from homeostasis in diseased 

organ tissues. 

Encouraged by these seminal studies, we aimed to apply scRNA-seq on BALF 

samples obtained from both control donors and patient with an early-grade COPD 

(GOLD grade 2). At this early grade of COPD, disease progression is moderate and 

may therefore be a better stage of the disease for pharmacological intervention. We 

hypothesize that the high-resolution information obtained by scRNA-seq not only 

allows the characterization of the immune landscape in the alveolar space, but also 

contributes to a better understanding of the cellular and molecular factors involved in 

COPD pathogenesis.  
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To achieve this aim, we first needed to identify a clinically applicable scRNA-seq 

technology, develop a reliable cell-type annotation method and pursue a robust 

strategy for the identification of differentially expressed (DE) genes. Furthermore, the 

generation of a comprehensive understanding of the cells and mechanisms underlying 

COPD requires the construction of cell-to-cell interaction networks, the modelling of 

the metabolic landscape in AMs and the prediction of AM replenishment in COPD. The 

latter requires the generation of scRNA-seq data from blood of matching donors. 

Finally, the results obtained need to be validated experimentally, e.g. using flow 

cytometry. 
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3. Material and Methods 
Table 1: Resource table (common laboratory materials (e.g. PBS) are not listed) 

Reagent or resource Source Identifier 
Antibodies 

PE-Cy7 anti-human CD45 Biolegend Cat#304016; RRID: 
AB_314404 

PE anti-human CD66b Biolegend Cat#305106; RRID: 
AB_2077857 

APC-Cy7 anti-human CD3 Biolegend Cat#300470; RRID: 
AB_2629689 

APC-Cy7 anti-human CD19 Biolegend Cat#302258; RRID: 
AB_2629691 

APC-Cy7 anti-human CD56 Biolegend Cat#362554; RRID: 
AB_2572105 

APC anti-human HLA-A,B,C Biolegend Cat#311414; RRID: 
AB_493135 

APC anti-human HLA-DR,DP,DQ Biolegend Cat#361704; RRID: 
AB_2563169 

AF647 anti-human HLA-DR Biolegend Cat#307622; RRID: 
AB_493177 

APC anti-human CD74 Biolegend Cat#326812; RRID: 
AB_2564389 

BV711 anit-human CD45 Biolegend Cat#304050; RRID: 
AB_2563466 

APC anti-human CD19 Biolegend Cat#302212; RRID: 
AB_314242 

APC-Cy7 anti-human CD14 Biolegend Cat#325620; RRID: 
AB_830693 

BV605 anti-human CD16 Biolegend Cat#302039; RRID: 
AB_2561354 

PerCP/Cy5.5 anti-human HLA-DR Biolegend Cat#307630; RRID: 
AB_893567 

PE/Dazzle anti-human CD203c Biolegend Cat#324623; RRID: 
AB_2566234 

PE/Cy7 anti-human Siglec-8 Biolegend Cat#347112; RRID: 
AB_2629720 

AF700 anti-human FcεRIα Biolegend Cat#334630; RRID: 
AB_2571902 

FITC anti-human CD66b Biolegend Cat#305104; RRID: 
AB_314496 

FITC anti-human CD11c Biolegend Cat#301604; RRID: 
AB_314174 

PE-Cy7 anti-human CD3 Biolegend Cat#300420; RRID: 
AB_439781 

PerCP/Cy5.5 anti-human CD4 Biolegend Cat#300530; RRID: 
AB_893322 

PerCP/Cy5.5 anti-human CD4 Biolegend Cat#344730; RRID: 
AB_2564510 

APC anti-human CRTH2 Biolegend Cat#350110; RRID: 
AB_11203707 

AF647 anti-human CD3 BD Cat#557706; RRID: 
AB_396815 

AF647 anti-human CD56 BD Cat#557711; RRID: 
AB_396820 
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BV421 anti-human CD117 BD Cat#562434; RRID: 
AB_11154222 

FITC anti-human CD33 BD Cat#555626; RRID: 
AB_395992 

FITC anti-human CD123 BD Cat#558663; RRID: 
AB_1645485 

BV510 anti-human CD56 BD Cat#563041; RRID: 
AB_2732786 

PE anti-human CD127 BD Cat#557938; RRID: 
AB_2296056 

FITC anti-human CD14 BD Cat#130-110-520; 
RRID: AB_2655053 

Bacterial strain  

Escherichia coli BL21 (DE3) Merck 
 

genotype: fhuA2 
[lon] ompT gal (λ 
DE3) [dcm] ∆hsdS λ 
DE3 = λ sBamHIo 
∆EcoRI-B 
int::(lacI::PlacUV5::T
7 gene1) i21 ∆nin5; 
Cat#69450 

Biological samples 

BALF University Hospital 
Bonn 

N/A 
 

venipuncture blood University Hospital 
Bonn 

N/A 

Chemicals and recombinant proteins 

CFSE eBioscience Cat#65-0850 
Chitosan Sigma Cat#C3646 
Chitin Resin NEB Cat#S6651L 
Recombinant human CCL3 R&D Cat#279-LD-010 
Rotenone Sigma Cat#R8875-1G 
Oligomycin Sigma Cat#75351-5MG 
FCCP Sigma Cat#C2920-10MG 
Antimycin A Sigma Cat#A8674-25MG 
Crystal violet solution Sigma Cat#V5265 

Cholesterol-d6 Avanti Cat#700172 

CL(56:0) Avanti Cat#710332 

LPC(17:1) Avanti Cat#855677 

Ceramide(17:0) Avanti Cat#860517 

SM(17:0) Avanti Cat#860585 

GlcCer(12:0) Avanti Cat#860543 

GM3(18:0-d3) Matreya Cat#2052 

PG(28:0) Sigma Cat#P6412 

LPA(17:0) Avanti Cat#857127 

LPE(17:1) Avanti Cat#856707 

PA(31:1) in-house synthesis 
(Christoph Thiele) 

N/A 

PC(31:1) in-house synthesis 
(Christoph Thiele) 

N/A 

PE(31:1) in-house synthesis 
(Christoph Thiele) 

N/A 

PI(34:0) in-house synthesis 
(Christoph Thiele) 

N/A 
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PS(31:1) in-house synthesis 
(Christoph Thiele) 

N/A 

TG(47:1) in-house synthesis 
(Christoph Thiele) 

N/A 

CE(17:1) in-house synthesis 
(Christoph Thiele) 

N/A 

MAG(17:1) in-house synthesis 
(Christoph Thiele) 

N/A 

DG(31:1) in-house synthesis 
(Christoph Thiele) 

N/A 

Acyl-Carn(15:0) in-house synthesis 
(Christoph Thiele) 

N/A 

Critical commercial assays and kits 

CD45 Microbeads, human Miltenyi Biotec Cat#130-045-801 

StraightFrom™ Whole Blood CD66b MicroBeads, 
human 

Miltenyi Biotec Cat#130-104-913 

Whole Blood Column Kit Miltenyi Biotec Cat#130-093-545 

MACS Separation Columns LS Miltenyi Biotec Cat#130-042-401 

MidiMACS Starting Kit (LS) Miltenyi Biotec Cat#130-042-301 

APC Annexin V Biolegend Cat#640920 

FcR Blocking Reagent, human Miltenyi Biotec Cat#130-059-901 

LIVE/DEAD Fixable Yellow Dead Cell Stain Kit Invitrogen Cat#L34967 

LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit Invitrogen Cat#L34975 

MinElute PCR Purification Kit Qiagen Cat#28004 

Chromium™ Single Cell 3’ Library and Gel Bead Kit v2 10x Genomics Cat#120267 

Chromium™ Single Cell A Chip Kit, 16 rxns 10x Genomics Cat#1000009 

Chromium™ i7 Multiplex Kit, 96 rxns 10x Genomics Cat#120262 

Quick Start™ Bradford 1x Dye Reagent Bio-Rad Cat#500-0205 

Seahorse XF RPMI Medium pH 7.4  Agilent  Cat#103576-100 
Seahorse XF96 Cell Culture Microplates Agilent Cat#101085-004 
Seahorse XFe96 FluxPak Agilent Cat#102416-100 
TapeStation HS D5000 Reagents (Sample Buffer & 
Ladder) 

Agilent Cat#5067-5593 

High Sensitivity D5000 ScreenTape Agilent Cat#5067-5592 

NEBNext High-Fidelity 2x PCR Master Mix NEB Cat#M0541L 

Nextera XT DNA Library Preparation Kit (96 samples) Illumina Cat#FC-131-1096 

2x Kapa Hifi HotStart Readymix Kapa Biosystems Cat#KK-2602 

NextSeq® 500/550 High Output Kit v2.1 (75 cycles) Illumina Cat#20030410 

NextSeq PhiX Control Kit Illumina Cat#FC-110-3002 

NxGenTM RNase Inhibitor Lucigen Cat#F83923-1 

Exonuclease I NEB Cat#M0293S 

Maxima H Minus Reverse Transcriptase Thermo Fisher Cat#EPO0753 

dNTP NEB Cat#N04465 

Oligonucleotides 

Tn5ME-B Oligo: 5`-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3` 

IDT custom 

Tn5MErev Oligo: 5`-[phos]CTGTCTCTTATACACATCT-3` IDT custom 
TSO primer IDT custom 
P5-SMART-PCR primer IDT custom 
barcoded primer IDT custom 
N70X Oligo Illumina custom 
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SMART PCR primer Eurofins Scientific Cat#74998995 

Recombinant DNA 

plasmid: pTXB1 NEB Cat#N6707S 

Software and algorithms 

Agilent Seahorse Wave Software  Agilent  RRID: SCR_014526 
biomaRt Durinck et al., 2009 RRID: SCR_002987 
flowCore Ellis et al., 2019 RRID: SCR_002205 
limma Ritchie et al., 2015 RRID: SCR_010943 
scran Lun et al., 2016 RRID: SCR_016944 
GSVA Hänzelmann et al., 

2013 
https://bioconductor.
org/packages/releas
e/bioc/html/GSVA.ht
ml 

AUCell Aibar et al., 2017 https://bioconductor.
org/packages/releas
e/bioc/html/AUCell.ht
ml 

Seurat Butler et al., 2018 RRID: SCR_007322 
umap McInnes et al., 2018 https://cran.r-

project.org/web/pack
ages/umap/index.ht
ml 

pheatmap author: Raivo Kolde RRID: SCR_016418 
factoextra authors: Alboukadel 

Kassambara and 
Fabian Mundt 

RRID: SCR_016692 

wordcloud author: Ian Fellows https://cran.r-
project.org/web/pack
ages/wordcloud/inde
x.html 

UpSetR Conway et al., 2017 https://cran.r-
project.org/web/pack
ages/UpSetR/index.
html 

ggraph author: Thomas Lin 
Pedersen 

https://cran.r-
project.org/web/pack
ages/ggraph/index.ht
ml 

ggplot2 Wickham, 2016 RRID: SCR_014601 
Monocle Trapnell et al., 2014 https://www.biocond

uctor.org/packages/r
elease/bioc/html/mo
nocle.html 

g:Profiler Raudvere et al., 2019 RRID: SCR_006809 
R statistical programming R Core Team RRID: SCR_001905 
RStudio RStudio, Inc. RRID: SCR_000432 
CIBERSORT Newman et al., 2015 RRID: SCR_016955 
DoubletFinder McGinnis et al., 2019 https://github.com/ch

ris-mcginnis-
ucsf/DoubletFinder 

SingleR Aran et al., 2019 https://github.com/dv
iraran/SingleR 

dropSeqPipe author: Patrick Rölli https://github.com/H
oohm/dropSeqPipe 

Rphenograph Levine et al., 2015 RRID: SCR_016919 
STAR Dobin et al., 2013 RRID: SCR_015899 
RSEM Li and Dewey, 2011 RRID: SCR_013027 
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NIPY NIPY community RRID: SCR_002489 
nichenetr Browaeys et al., 2019 https://github.com/sa

eyslab/nichenetr 
Scanpy Wolf et al., 2018 RRID:SCR_018139 
scIB not published yet https://github.com/th

eislab/scib 
scVelo Bergen et al., 2019 https://github.com/th

eislab/scvelo 
Compass Wagner et al., 2020 https://github.com/Y

osefLab/Compass 
VISION DeTomaso et al., 2019 https://github.com/Y

osefLab/VISION 
scikit-learn sckit-learn community RRID: SCR_002577 
LipidXplorer Herzog et al., 2012 https://wiki.mpi-

cbg.de/lipidx/LipidXp
lorer_Installation 

CellPhoneDB Efremova et al., 2020 RRID: SCR_017054 
bcl2fastq2 Illumina RRID: SCR_015058 
Cytoscape Shannon et al., 2003 RRID:SCR_003032 
iRegulon Janky et al., 2014 http://iregulon.aertsla

b.org/ 
ImageJ Schneider et al., 2012 RRID: SCR_003070 
FlowJo Tree Star Inc. RRID: SCR_008520 

Other 

AMPure XP beads Beckman Coulter Cat#A63881 
LifterSlip™ Electron Microscopy 

Science 
Cat#72186-60 

Polycarbonate (PCTE) membrane filters, 0.01 MICRON, 
62MM X 22MM 

Sterlitech Cat#PCT00162X221
00 

mRNA Capture beads Chemgenes Cat#MACOSKO-
2011-10 

Dow SYLGARD™ 184 Silicone Encapsulant Clear 0.5kg 
kit 

Dow 184 SIL ELAST KIT 
0.5KG 

Transwell polycarbonate membrane cell culture inserts Corning Cat#3422 
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Table 2: Clinical information of donors included in this study  

 

grade group

Control 1 healthy ♂ 27 N/A current smoker N/A N/A N/A N/A

Control 2 healthy ♀ 27 N/A never-smoker N/A N/A N/A N/A

Control 3 chronic cough ♂ 60 29 ex-smoker 107 120 88.04 87

Control 4 chronic cough ♀ 68 27 never-smoker 99 98 85.34 101

Control 5 chronic cough ♀ 56 23 never-smoker 81 92 99 121

Control 6 chronic cough ♀ 49 23 never-smoker 107 111 82.04 139

Control 7 chronic cough ♂ 58 22 never-smoker 119 132 82.93 130

Control 8 chronic cough ♀ 55 21 never-smoker 101 88 76.79 109

Control 9 chronic cough ♂ 60 29 never-smoker 91 99 81.07 101

Control 10 chronic cough ♂ 53 30 never-smoker 107 111 82.03 109

Control 11 chronic cough ♀ 60 30 never-smoker 98 90 82 126

Control 12 chronic cough ♀ 58 23 never-smoker 106 102 84 129

Control 13 chronic cough ♂ 58 33 ex-smoker 92 96 84 116

Control 14 chronic cough ♀ 45 26 never-smoker 89 82 82.16 143

Control 15 chronic cough ♂ 48 30 never-smoker 89 94 86.29 126

Control 16 chronic cough ♀ 25 20 never-smoker 66 68 92.73 31

Control 17 chronic cough ♂ 77 32 never-smoker 78 81 80.15 86

Control 18 chronic cough ♂ 78 25 ex-smoker 89 91 75.65 140

Control 19 chronic cough ♀ 66 24 N/A 92 86 71.98 100

Control 20 chronic cough ♂ 78 26 ex-smoker 75 88 87.69 109

Control 21 chronic cough ♂ 28 24 never-smoker 98 96 84.7 152

Control 22 chronic cough ♂ 52 24 never-smoker 69 76 89.81 116

Control 23 chronic cough lung cancer ♂ 78 28 never-smoker 91 102 81.82 79

Control 24 chronic cough ♀ 25 20 never-smoker 97 87 79.47 131

Control 25 chronic cough ♀ 41 27 never-smoker 73 61 74.53 132

Control 26 chronic cough ♂ 40 27 never-smoker 86 80 77.13 165

Patient 1 COPD chronic bronchitis embolism 2 B ♂ 64 30 ex-smoker 53 57 68.15 156

Patient 2 CPFE fibrosis + COPD ♂ 80 26 ex-smoker 66 69 73.9 139

Patient 3 COPD chronic bronchitis 2 B ♂ 59 36 ex-smoker 81 68 67.35 89

Patient 4 COPD emphysema 2 B ♂ 68 34 ex-smoker 83 76 68.26 112

Patient 5 COPD chronic bronchitis 2 D ♀ 46 38 current smoker 68 53 69 117

Patient 6 COPD chronic bronchitis lung cancer 2 B ♀ 66 20 current smoker 78 67 66.66 151

Patient 7 COPD chronic bronchitis 2 D ♂ 54 26 current smoker 79 70 68.7 169

Patient 8 COPD chronic bronchitis 2 D ♀ 53 28 ex-smoker 92 73 57.87 183

Patient 9 COPD emphysema lung cancer 2 B ♂ 74 22 current smoker 63 59 64.34 162

Patient 10 COPD emphysema 2 D ♂ 55 34 current smoker 76 54 57.27 212

Patient 11 COPD chronic bronchitis lung cancer 3 B ♂ 70 25 ex-smoker 58 46 60 73

Patient 12 COPD chronic bronchitis 2 B ♂ 64 36 ex-smoker 74 66 70 100

Patient 13 COPD chronic bronchitis 2 B ♀ 57 19 current smoker 92 73 57 206

Patient 14 COPD chronic bronchitis 2 B ♂ 58 24 current smoker 85 67 61.98 143

Patient 15 COPD chronic bronchitis 2 B ♂ 63 24 current smoker 65 78 59.1 225

Patient 16 COPD chronic bronchitis 4 D ♀ 65 23 current smoker 60 36 58.22 225

Patient 17 COPD chronic bronchitis 3 D ♀ 82 24 current smoker 58 39 50.69 258

Patient 18 COPD chronic bronchitis 3 D ♀ 60 21 ex-smoker 74 33 39.79 262

Patient 19 COPD chronic bronchitis 3 D ♀ 74 22 current smoker 47 43 40 N/A

Patient 20 COPD chronic bronchitis 3 D ♂ 68 31 ex-smoker 62 39 48.21 175

Patient 21 COPD chronic bronchitis 2 D ♂ 79 29 current smoker 58 51 67.38 145

Patient 22 COPD chronic bronchitis 2 C ♂ 70 29 ex-smoker 66 51 58.46 153

Patient 23 COPD chronic bronchitis 3 D ♂ 56 34 ex-smoker 49 38 62.73 219

Patient 24 COPD chronic bronchitis 2 C ♂ 60 25 ex-smoker 107 79 58.71 162

Patient 25 COPD emphysema 2 D ♀ 66 27 ex-smoker 81 54 55.64 189

RVage BMI smok. history FVC (%) FEV1 (%) FEV1/FVC (%)identifier diagnosis phenotype
add. lung
 disease

COPD
sex
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Table 3: Medications from donors included in this study  
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Control 4 + + + +
Control 5

Control 6
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Control 14

Control 15 + +
Control 16 +
Control 17 + + + + + + + + + + +
Control 18 + + + + + + + +
Control 19 + + + +
Control 20 + + +
Control 21 +
Control 22 + +
Control 23 + + + + + + + +
Control 24 + + + +
Control 25 +
Control 26 + +
Patient 1 + + + + + + + + + +
Patient 2 + + + + + +
Patient 3 + + + +
Patient 4 + + + + +
Patient 5 + + + + + + + + + + +
Patient 6 + + + + +
Patient 7 + + + + +
Patient 8 + + + + + + +
Patient 9 + + + + + + +
Patient 10 + + + + + + +
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Patient 15 + +
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Table 4: Overview of donors used for scRNA-seq and validation experiments (donors used 
solely for MCFC are not listed) 

   

BALF blood BALF blood

Control 1 + +
Control 2 + +
Control 3 + + + +
Control 4 + +
Control 5 + +
Control 6 + + +
Control 7 + + + +
Control 8 + + +
Control 9 + + +
Control 10 + + +
Control 11 +
Control 12 + + +
Control 13 + +
Control 14 +
Control 15 +
Control 16 +
Control 17 +
Control 18 +
Control 19 +
Control 20 + +
Control 21 +
Control 22 +
Control 23 +
Control 24 +
Control 25 +
Control 26 +
Patient 1 + +
Patient 2 + +
Patient 3 + + + +
Patient 4 + + +
Patient 5 + + +
Patient 6 + + + +
Patient 7 + + + +
Patient 8 + + +
Patient 9 + + +
Patient 10 + + + +
Patient 11 +
Patient 12 + +
Patient 13 +
Patient 14 +
Patient 15 + +
Patient 16 +
Patient 17 + +
Patient 18 +
Patient 19 +
Patient 20 +
Patient 21 +
Patient 22 +
Patient 23 +
Patient 24 +
Patient 25 +

Seahorse migration assay
10x Seq-Well

identifier lipidomics phenotyping Olink
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3.1. Human specimens 

Human studies were approved by the ethics committees of the University of Bonn and 

University hospital Bonn (local ethics vote 076/16). All patients provided written 

informed consent according to the Declaration of Helsinki before specimens were 

collected. Each individual included in this study was diagnosed and the disease stage 

was stratified according to the recommendations of the global initiative for chronic 

obstructive lung disease (GOLD) (COPD recommendations, 2020), with a ratio of post-

bronchodilator (salbutamol 400 µg) forced expiratory volume in 1 s (FEV1) to forced 

vital capacity (FVC) of less than 0.7, and moderate airflow limitation (50% <= FEV1 < 

80%). For scRNA-seq, the eligible patients were aged 40 years or older and were 

either current or ex-smokers. Since COPD has recently been suggested to be a clinical 

syndrome rather than a single disease (Agustí and Hogg, 2019), we anticipated that 

despite the focus on GOLD 2 patients, the current study should include a spectrum of 

COPD patients (Table 2-4). For example, the generated dataset comprised COPD 

GOLD 2 patients with different emphysema proportions, exacerbation histories and 

even a patient suffering from combined pulmonary fibrosis and emphysema (CPFE). 

The latter patient was admitted based on an external diagnosis of COPD that was later 

diagnosed as CPFE. This disease type was first described by Cottin et al. (Cottin et 

al., 2005) and is defined radiologically by the presence of classical features of 

emphysema in the upper lobes and pulmonary fibrosis in the lower lobes and 

subnormal lung volumes and severe reduction of CO transfer. Irrespective of the 

expected heterogeneity within the COPD GOLD 2 patient cohort, stringent exclusion 

criteria for the current study were a primary diagnosis of asthma with a physician-

judged need for oral corticosteroid therapy, clinically significant cardiovascular 

disorders or laboratory abnormalities and unstable concurrent disease (e.g. 

exacerbation of disease) that could have affected safety (as judged by the 

investigator). Individuals suffering from chronic cough without any signs of severe lung 

pathophysiology or subnormal lung functions served as control donors. 

 

 

3.2. Isolation of cells from BALF 

Human BALF was obtained from patients with or without COPD via bronchoscopy (at 

the University hospital Bonn). BALF was performed according to the official American 
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Thoracic Society guideline for interstitial lung disease patients to ensure highest 

quality of biospecimen material (Meyer et al., 2012). According to these guidelines, we 

excluded more than half of the clinical samples from further analyses because either 

the volume of saline solution recovered compared to the amount previously injected 

into the lungs during bronchoscopy was too low, or blood contamination or increased 

upper respiratory secretion was present. Each of these factors has an influence on the 

differential cell count of BALF samples and would have therefore had a negative effect 

on the analysis results. BALF samples fulfilling the quality criteria were once washed 

with PBS supplemented with 1 mM EDTA followed by washing with PBS 

supplemented with 2% fetal calf serum (FCS) and 1 mM EDTA. Throughout the 

isolation process, the samples were kept at 4°C and centrifugation steps performed at 

300 g for 10 min. To exclude any macroscopic non-cellular particles and non-immune 

cells from further analyses, immune cells were enriched with MACS columns by using 

CD45 microbeads according to manufacturer’s instructions. 

 

 

3.3. Isolation of PBMC and blood granulocytes  

For the assessment of relationship analysis of the myeloid cell compartment in BALF 

with cells from the systemic circulation, we obtained venipuncture blood on the day of 

bronchoscopy. PBMC were obtained by Pancoll density centrifugation (at 20°C and 

700 g for 25min with centrifugation break was turned off) of the peripheral blood. After 

harvesting PBMC from the interphase, all further steps were conducted at 4°C. 

Granulocytes were recovered from the granulocyte/erythrocyte fraction using cold 

ACK (ammonium chloride potassium) lysing buffer (1.5M NH4Cl, 0.1M KHCO3 and 

1mM EDTA in H2O with pH 7.4 at 8°C) to lyse erythrocytes, followed by a washing 

step with PBS supplemented with 2% FCS and 1 mM EDTA. All centrifugation steps 

required for granulocyte isolation were performed with max. 300 g for 10 min. To 

assess the granulocyte fraction in further analyses (particularly in scRNA-seq 

experiments), it was mixed with the PBMC fraction in the ratio PBMC:granulocytes = 

2:1. Finally, the PBMC/ granulocyte mix was stained with CD45 microbeads for 15 min 

in order to use a magnetic field in the cell loading of Seq-Well arrays (see below). This 

artificial ratio allowed to assess the granulocytes in addition to the PBMCs without 
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sequencing the majority of blood immune cells being granulocytes allowing sufficient 

granularity in the PBMC fraction.  

 

 

3.4 Flow cytometric data generation 

Cells were resuspended in PBS supplemented with 2% FCS and 1 mM EDTA for 

surface marker staining (Table 5). To distinguish live from dead cells, the cells were 

incubated with LIVE/DEAD Fixable Dead Cell Stain Kit (1:1000) at room temperature 

for 15 min protected from light. After washing, human FcR blocking reagent was 

included to reduce unspecific staining (incubation on ice for 15 min). Next, surface 

antibodies were added and after 30 min incubation at 4ºC in the dark, cells were 

washed and analyzed either on BD FACSAria III (Becton Dickinson) for acquisition 

and sorting or on BD FACSCanto II (Becton Dickinson) for acquisition only (Table 5). 

Fluorescence-minus-one (FMO) controls were prepared for non-lineage markers.  

 

 

3.5. Flow cytometric data analysis 

Preliminary data analysis was performed using FlowJo software (version 10). The 

package ‘flowCore’ (version 1.46.2, Ellis et al., 2019) was used to import the 

compensated data into R. For dimensionality reduction with UMAP implementation in 

R (version 0.2.1.0, McInnes et al., 2018), fluorescence parameters were transformed 

with logicleTransform (Becht et al., 2019; Parks et al., 2006). Subsequent clustering 

of the dataset was performed with the PhenoGraph algorithm implemented in the 

‘Rphenograph’ package (version 0.99.1, Levine et al., 2015) by setting the number of 

nearest neighbors to 25. Based on marker detection, the major cell types in the BALF 

were defined as macrophages (Lin- (including CD3, CD19 and CD56) CD66b- HLA-

DR+ autofluorescence+), monocytes/DCs (Lin- CD66b- autofluorescence- HLA-DR+ and 

either  

CD14+, CD16+ or CD14+ CD16+), granulocytes (Lin- HLA-DRlow autofluorescencelow 

CD66b+ and either CD16- Siglec-8+, CD16+ Siglec-8+ and CD16+ Siglec-8-) and T 

cells/NK cells including a small fraction of B cells (autofluorescence- CD14- CD66b- 

Lin+ and further resolved using the lymphoid panel (Table 5)). 
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Table 5: Overview of used FACS panels  

 

 

 

In blood, the major cell types were defined as monocytes/DCs (CD3- CD19- CD56- 

CD66b- HLA-DR+ and either CD14+, CD16+ or CD14+ CD16+), T cells/NK cells (CD14- 

CD33- CD66b- CD11c- CD123- CD19- and either CD3+ CD4+, CD3+ CD8+ or CD56+), 

usage antigen/ detection target conjugate system

LIVE/DEAD Fixable Yellow Dead Cell Stain Kit -

CD45 BV711

CD3 AF647

CD19 APC

CD56 AF647

CD14 APC-Cy7

CD16 BV605

HLA-DR PerCP/Cy5.5

CD66b PE

CD203c PE/Dazzle

Siglec-8 PE/Cy7

CD117 BV421

FcεRIα AF700

LIVE/DEAD Fixable Yellow Dead Cell Stain Kit -

CD45 BV711

CD14 FITC

CD33 FITC

CD66b FITC

CD11c FITC

CD123 FITC

CD3 PE-Cy7

CD4 PerCP/Cy5.5

CD8 BV650

CD56 BV510

CD127 PE

CRTH2 APC

CD117 BV421

CD16 BV605

LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit -

CD45 PE-Cy7

CD66b PE

CD3 APC-Cy7

CD19 APC-Cy7

CD56 APC-Cy7

HLA-A,B,C APC

HLA-DR,DP,DQ APC

HLA-DR AF647

CD74 APC

Annexin V APC

myeloid cell phenotyping

lymphoid cell phenotyping

Differential marker 
detection

BD FACSAria III

BD FACSCanto II
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granulocytes (CD3- CD19- CD56- HLA-DRlow CD66b+ CD16+ and either CD16- Siglec-

8+, CD16+ Siglec-8+ and CD16+ Siglec-8-) and B cells (CD14- CD33- CD66b- CD11c- 

CD123- CD3- CD56- CD19+). According to these marker combinations, the identified 

clusters were annotated. To unify and simplify the analysis across multiple datasets, 

an annotated dataset was defined as the reference and the other flow cytometry 

datasets were projected onto its UMAP coordinates using the ‘umap’ object of the 

reference dataset and the logicle transformed flow cytometry data of the second 

dataset as input for the predict function in R. In addition, the same function was also 

used to predict the clusters of the remaining datasets with respect to the reference 

dataset. This step, together with the visualization of detected markers, made it 

possible to assess both the accuracy of the projection method and the cell-type 

annotation of the projected datasets. 

We performed differential marker intensity measurements across individuals based on 

the Cohen’s d definition of effect size as follows:  

 

This procedure was followed since we observed strong variability in autofluorescence 

intensities of macrophages among donors, despite strictest standard operating 

procedure (SOP) compliance and the use of SOPs for application settings (BD 

Biosciences, 2012) during flow cytometry to minimize potential biases that can occur 

during sample-to-sample flow cytometry comparisons. 

3.6. MitoStress assay on Seahorse 

For the analysis of the metabolic state of donor-derived alveolar macrophages (AMs), 

freshly obtained BALF was centrifuged for 10 min at 300 g. Cell pellet was then 

washed carefully in PBS (supplemented with 0.02% EDTA) and finally resuspended 

in MACS buffer. Cell suspension was then stained for 15 min with CD66b microbeads 

and depleted from granulocytes according to manufacturer instructions. Granulocyte-

depleted cell suspension was counted and seeded in Seahorse XF RPMI medium 

(supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, 10 mM glucose, 

adjusted to pH 7.4 prior to the assay) at a concentration of 200,000 cell per well; for 

each sample 2 to 4 technical replicates were performed. Cells were then incubated for 

30 min in a 37°C incubator, washed two times with pre-warmed Seahorse XF RPMI 
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medium to remove all non-adherent cells and loaded onto the Seahorse XFe96 

Analyzer (Agilent). After 3 cycles of baseline measurement, whereby one cycle is 

defined as 3 min of initial mixing and 3 min measurement, the cells were subsequently 

injected with Oligomycin (1:1000), FCCP (1:500) and finally a combination of 

Antimycin A and Rotenone (both 1:2000). Following each injection, oxygen 

consumption rate (OCR) was measured for 3 cycles.  

After the assay, the relative cellular number was determined via crystal violet staining. 

Shortly, cells were fixed with 4% PFA for 5 min at room temperature and stained for 

30 min with crystal violet (0.05% in H2O). After two washes with H2O the staining was 

air dried and the formed crystals were dissolved in 200 µL of methanol. Absorbance 

at 590 nm was measured and used to normalize the Seahorse assay within the Wave 

software (Agilent). The normalized data were finally exported, further analyzed and 

visualized in R, with values adjusted to the measured baseline (baseline-corrected). 

 

 

3.7. Migration Assay 

Remark: The migration assay was led and conducted by Wataru Fujii. 

Migration was analyzed in 24 well transwell plate containing a 8 µm polycarbonate 

membrane. FACS sorted AMs were suspended in 300 µL starvation medium (RPMI 

1640 medium supplemented with 0.5% FCS and 1% penicillin/streptomycin) and 

50,000 AMs were seeded in each upper well, while the lower chamber was filled with 

700 µL starvation medium only. After an incubation of 1 h in a 37°C incubator, the 

medium in the upper chamber was exchanged with 300 µL fresh starvation medium 

and the medium in the lower chamber with 700 µL starvation medium supplemented 

with 100 ng/mL recombinant human CCL3. The seeded AMs were incubated at 37°C 

overnight. Next, cells on the upper filter surface were removed with a cotton swab. 

Transmigrated cells on lower filter surface were incubated with 2 µM CFSE in 700 μL 

PBS for 10 min in a 37°C incubator. The transwell inserts were then transferred into 

wells containing 700 µL RPMI 1640 medium supplemented with 10% FCS and 1% 

penicillin/streptomycin and incubated for 10 min in a 37°C incubator. Finally, transwell 

inserts were washed with PBS and imaging of cells was performed using an inverted 

fluorescent microscope (Nikon) with a 10-fold objective and GFP filter. The number of 

migrated cells was quantified using ImageJ (version 2, Schneider et al., 2012). 
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3.8. Measurement of proteins in BALF 

After isolation of cells (see above), the supernatant of BALF samples of both COPD 

patients and controls were collected and frozen at −80 °C before proteomics 

measurement. Protein levels from cell-free BALF samples were determined using the 

INFLAMMATION panel from Olink Proteomics, a commercial multiplex immunoassay 

for high-throughput detection of 92 inflammation-related protein biomarkers. The 

obtained normalized results were further analyzed in R, whereby proteins were kept 

for visualization that showed a statistically significant difference (Wilcoxon rank sum 

test-based p-value < 0.1) between COPD and control samples.  

 

 

3.9. Lipidomics of macrophages in BALF 

Remark: The spectrometric measurement of lipid species was conducted by Christoph 

Thiele. 

AMs were sorted, washed with PBS and with 150 mM ammonium acetate in a glass 

tube, pelleted (300 g with slow brake), and frozen at -80°C until analysis. To the pellet, 

500 µL of extraction mix (CHCl3/MeOH 1/5 containing internal standards: 210 pmol 

PE(31:1), 396 pmol PC(31:1), 98 pmol PS(31:1), 84 pmol PI(34:0), 56 pmol PA(31:1), 

51 pmol PG (28:0), 28 pmol CL(56:0), 39 pmol LPA (17:0), 35 pmol LPC(17:1), 38 

pmol LPE (17:1), 32 pmol Cer(17:0), 99 pmol SM(17:0),55 pmol GlcCer(12:0), 14 pmol 

GM3 (18:0-D3), 359 pmol TG(47:1), 111 pmol CE(17:1), 64 pmol DG(31:1), 103 pmol 

MG(17:1), 724 pmol Chol(d6), 45 pmol Car(15:0)) were added and each sample 

sonicated for 2 min followed by centrifugation at 20,000 g for 2 min. The supernatant 

was collected into a new tube and 200 µL chloroform and 800 µL 1% AcOH in H2O 

were added. The sample was then briefly shaken and spun for 2 min at 20,000 g for 2 

min. 200 µL chloroform and 800 µL 1% AcOH in H2O were added to the supernatant, 

briefly shaken and spun for 2 min at 20,000 g. The lower phase was transferred into a 

new tube and evaporated in a speed vac (45°C, 10 min). Spray buffer (500 µL of 8/5/1 

2-propanol/MeOH/H2O, 10 mM ammonium acetate) was added, sonicated for 5 min 

and infused at 10 µL/min into a Thermo Q Exactive Plus spectrometer (Thermo Fisher 
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Scientific) equipped with the HESI II ion source for shotgun lipidomics. MS1 spectra 

(res. 280000) were recorded in 100 m/z windows from 200 – 1200 m/z (pos.) and 200 

– 1700 m/z (neg.) followed by recording MS/MS spectra (res. 70000) by data 

independent acquisition in 1 m/z windows from 200 – 1200 (pos.) and 200 – 1700 

(neg.) m/z.  

Raw files were converted to mzml files and imported into and analyzed by LipidXplorer 

(version 1.2.8, Herzog et al., 2012) software using custom mfql files to identify sample 

lipids and internal standards. For further data processing, absolute amounts were 

calculated using the internal standard intensities followed by normalization of the 

identified lipids on total lipid content. Lipid class sums were calculated for each donor 

and log2-transformed. Differential lipid classes were calculated between COPD GOLD 

2 vs control samples using the ‘limma’ package (version 3.42.2, Ritchie et al., 2015) 

under consideration of ‘date of sampling’.  

 

 

3.10. Nanodroplet-based scRNA-seq  

For comparison of nanodroplet-based scRNA-seq with array-based scRNA-seq (Seq-

Well technology, see below), cell preparations derived from three blood and three 

BALF donors were split in half to be further processed with the two different scRNA-

seq technologies by two teams simultaneously. For each donor, 10,000 BALF or 

blood-derived cells were loaded onto the Chromium™ Controller instrument (10x 

Genomics) using the Chromium™ Single Cell A Chip Kit together with the Chromium™ 

Gel Bead Kit v2 following the manufacturer’s recommendations. Libraries were 

prepared using Chromium™ Single Cell 3’ Library Kit v2 according to manufacturer’s 

recommendations and sequenced paired-end as followed: Read 1 26 cycles, i7 index 

8 cycles and Read 2 56 cycles on a NextSeq500 instrument (Illumina) using High 

Output v2.1 chemistry. Single-cell data was demultiplexed and converted into fastq 

format using bcl2fastq2 (v2.20).  
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3.11. Preparation of Seq-Well arrays 

Seq-Well arrays were prepared as described by Gierahn et al. (Gierahn et al., 2017). 

Briefly, Sylgard base and crosslinker were mixed at 10:1 ratio for 10 min, placed under 

vacuum pressure for 15 min to remove air bubbles and were next poured for a 2 h 

incubation at 70oC into a wafer with a mounted 86,000 well pattern-holding microscope 

slide. The arrays were then removed from the molds, excess silicone was cut off with 

a blade and were prepared for the functionalization process. This protocol adds 

chemical moieties to the surface of the arrays which facilitate the sealing of a semi-

permeable polycarbonate membrane and the interchange of lysis and RNA 

hybridization buffers. Arrays were rinsed with EtOH, plasma treated for 10 min and 

successively submerged in APTES (0.05% APTES in 95% EtOH), acetone and PDITC 

buffers (0.2% PDITC, 10% pyridine, 90% DMF). Upon further washes with acetone, 

the arrays were spun and dried at 70oC for 2 h. Among the most critical steps in the 

protocol was the incubation of the arrays with 0.2% chitosan solution (pH=6.3) at 37oC 

for 1.5 h, after which an overnight incubation in PGA buffer (20 µg/mL polyglutamic 

acid, 2 M NaCl, 100 mM sodium carbonate (pH=10)) at room temperature under 

vacuum pressure followed. Finally, the arrays were removed from the vacuum and 

were rotated for 3 h at room temperature and subsequently moved to 4oC for at least 

24 h before use. 

 

 

3.12. Preparation of Seq-Well libraries and sequencing 

Remark: The synthesis of in-house Tn5 was conducted by Ines Kaltheuner under the 

supervision of Matthias Geyer. 

Apart from a few adjustments, which are listed in the following, will be listed, the Seq-

Well libraries were generated as recently described by Gierahn et al. (Gierahn et al., 

2017). After loading of the functionalized arrays with mRNA capture beads, 20,000 

CD45+ cells were applied that were previously coated with CD45+ magnetic beads 

(see above) and suspended in RPMI 1640 medium supplemented with 10% FCS. 

During the incubation time of 10 min, the loaded arrays were placed on a strong 

magnetic plate to support the settling of the cells via a magnetic field. After repetitive 

washing with PBS and soaking with RPMI 1640 medium, the arrays were sealed using 

polycarbonate membranes that were 7 min treated with air plasma under mild vacuum 
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(Diener electronic). Following a 30 min incubation time in a 37°C cell culture incubator, 

the arrays were incubated in lysis buffer (5M guanidine thiocyanate, 1mM EDTA, 0.5% 

Sarkosyl and 1% β-mercaptoethanol in H2O) for 20 min and then placed in 

hybridization buffer (2M NaCl, 3mM MgCl2 and 0.5% Tween-20 in PBS) for 40 min. 

Next, the mRNA capture beads were washed from the arrays and collected using 

washing buffer (2M NaCl, 3mM MgCl2 and 20mM Tris-HCl pH 8.0 in H2O). The reverse 

transcription was performed on the bead pellet using a Maxima Reverse Transcriptase 

reaction (Maxima RT buffer, 4% Ficoll PM-400, 1mM dNTPs, 1U/µL RNase inhibitor, 

2.5 µM template switch oligonucleotide (TSO) primer and 10U/µL Maxima Reverse 

Transcriptase in H2O) for 30 min at room temperature followed by 90 min incubation 

at 52°C with end-over-end rotation. The reaction was stopped by washing the beads 

with TE buffer (10mM Tris-HCl pH 8.0 and 1mM EDTA in H2O) supplemented with 

0.1% Tween-20 (TE-TW) and TE buffer supplemented with 0.5% SDS (TE-SDS). After 

a washing step in 10mM TrisHCl pH 8.0, excess primers were digested in an 

exonuclease reaction (ExoI buffer and 1U/µL ExoI in H2O) for 50 min at 37°C with end-

over-end rotation and washed in TE-TW and TE-SDS. Beads were resuspended in 

500 µL H2O and counted with a Fuchs-Rosenthal cytometer in bead counting solution 

(10% PEG, 2.5 M NaCl). Pools of 5,000 beads (10 µL) were then added to 40 µL PCR 

reactions (2X KAPA HiFi Hotstart Readymix and 25 µM SMART PCR primer in H2O) 

for the amplification of reverse transcribed cDNA libraries (95°C for 3 min, 4 cycles of 

98°C for 20 s, 65°C for 45 s, 72°C for 3 min, 12 cycles of 98°C for 20 s, 67°C for 20 s, 

72°C for 3 min and final extension of 72°C for 5 min). After PCR, 16,000-20,000 beads 

were combined (thereafter referred to as ‘pools’) and further processed. The pools 

were cleaned with 0.6x volumetric ratio AMPure XP beads (5 min incubation with 

beads, followed by 3 min on the magnet, two washes with 80% EtOH, 5 min dry-out, 

elution with 13 µL H2O for 3 min, followed by 2 min on the magnet for collection of the 

eluent) and the library integrity was assessed using a High Sensitivity D5000 assay 

for the Tapestation 4200 (Agilent).  

To reduce library costs, we produced homemade Tn5 transposase according to (Picelli 

et al., 2014b). Briefly, the Tn5 coding sequence (tnpA gene from Escherichia coli, 

Uniprot accession number: Q46731, residues 1-476) was purchased as a synthesized 

gene containing the mutations E54K and L372P for hyperactivation of the enzyme. 

Overhangs with the restriction sites XbaI and SpeI were used for cloning into pTXB1 

vector, generating a Tn5-Intein-CBD fusion construct. The Tn5 coding sequence was 
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validated by Sanger sequencing. Next, the pTXB1-Tn5-Mxe-CBD plasmid was 

transformed into the E.coli strain BL21. Cells were grown in LB media supplemented 

with ampicillin at 37°C to an OD600 0.8. The temperature was then lowered to 10°C 

and protein expression was induced by addition of 0.25 mM IPTG. After incubation at 

23°C for 4 h cells were harvested by centrifugation at 15,000 rpm on a JA 25.50 rotor 

(Beckman) for 20 min at 10°C. The cell pellet was resuspended in running buffer (20 

mM Hepes-KOH, 0.8 M NaCl, 1 mM EDTA, 10% glycerol, 0.2% Triton-X 100) 

supplemented with 1 mM PMSF and disrupted by sonication. After centrifugation of 

cell debris at 15,000 rpm on a JA 25.50 rotor (Beckman) for 30 min at 10°C, residual 

nucleic acid contaminations from E.coli were precipitated by dropwise addition of 

polyethyleneimine pH 7.5 to a final concentration of 0.3%. The lysate was cleared by 

centrifugation at 12,000 rpm on a JA 25.50 rotor (Beckman) for 10 min at 4°C. Chitin 

resin (10 mL) was equilibrated with running buffer and then incubated with the 

prepared lysate for 1 h at 4°C. Beads were washed with 10 column volumes of running 

buffer. For elution by self-cleavage via the intein-tag, the Tn5-loaded resin was 

incubated overnight at 4°C in 3 mL elution buffer (20 mM Hepes-KOH, 0.8 M NaCl, 1 

mM EDTA, 10% glycerol, 0.2% Triton-X 100, 100 mM DTT), followed by dialysis at 

4°C overnight in dialysis buffer (100 mM Hepes-KOH, 0.2 M NaCl, 0.2 mM EDTA, 2 

mM DTT, 0.2% Triton-X 100, 20% glycerol). The protein concentration was determined 

using Bradford Assay. Glycerol was added to a final concentration of 50% to the 

protein sample. 

To load Tn5 with linker oligonucleotides (Tn5ME-B/Tn5MErev (Tn5ME-B: 5`- 

TCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3`; Tn5MErev: 5`-

[phos]CTGTCTCTTATACACATCT-3`;)), single-stranded oligonucleotides were mixed 

in a 1:1 ratio. For pre-annealing, 2 µL of the oligonucleotide solution was mixed with 8 

µL of H2O and incubated in a thermocycler (95°C for 3 min, 70°C for 3 min and 45 

cycles of temperature reduction (-1°C per 30 s)). The annealed oligonucleotides (0.25 

vol.) were added to 0.1 vol. Tn5 solution and supplemented with •0.4 vol. glycerol 

(100%), 0.12 vol. dialysis buffer and 0.13 vol. H2O. After incubation for 60 min at room 

temperature, the protein was stored at -20°C. 

The cDNA libraries (1 ng) were tagmented with the prepared single-loaded Tn5 

transposase in TAPS-DMF buffer (50mM TAPS-NaOH (pH 8.5), 25mM MgCl2, 50% 

DMF in H2O) for 10 min at 55°C and the tagmented products were cleaned with the 
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MinElute PCR kit following the manufacturer’s instructions. Finally, a master mix was 

prepared (2X NEBNext High Fidelity PCR Master Mix, 2.5 µM barcoded index primer, 

2.5 µM P5-SMART-PCR primer) and added to the samples to attach the Illumina 

indices to the tagmented products in a PCR reaction (72°C for 5 min, 98°C for 30 s, 

15 cycles of 98°C for 10 s, 63°C for 30 s, 72°C for 1 min). The pools were cleaned 

with 0.8 x volumetric ratio AMPure XP beads, were run with a High Sensitivity 

DNA5000 assay on a Tapestation 4200 (Agilent), and quantified using the Qubit high-

sensitivity dsDNA assay. Seq-Well libraries were equimolarly pooled and clustered at 

1.4pM concentration with 10% PhiX using High Output v2.1 chemistry on a 

NextSeq500 system. Sequencing was performed paired-end as followed: custom 

Drop-Seq Read 1 primer for 21 cycles, 8 cycles for the i7 index and 61 cycles for Read 

2. Single-cell data were demultiplexed using bcl2fastq2 (v2.20).  

 

 

 

 

Figure 6. Percentage of overlapping cell barcodes across generated Seq-Well libraries. 
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3.13. Processing of scRNA-seq raw data 

For preprocessing, the generated fastq files from both Chromium™ and Seq-Well 

were loaded into a data pre-processing pipeline (version 0.31, available at 

https://github.com/Hoohm/dropSeqPipe) that relies on Drop-seq tools provided by the 

McCarroll lab (Macosko et al., 2015b). STAR alignment within the pipeline was 

performed using the human GENCODE reference genome and transcriptome hg38 

release 27 (Harrow et al., 2012). The resulting datasets were imported into R for further 

analyses. Interestingly, a remarkably high number of overlapping cell barcode 

sequences were detectable across pools (Figure 6) of the same sample. Further 

investigations showed that almost all overlapping cell barcodes started with the 

sequence 5'-ATGGGG-3'. It is important to note that some TSO primer used in the 

current study was based on the Smart Seq2 protocol (Picelli et al., 2014c), which 

means that two bases near the 3' end of the TSO primer sequence differed from the 

TSO primers used in the original Seq-Well protocol. Consequently, the final PCR 

during the generation of Seq-Well libraries led to the amplification of tagmentation 

fragments that did not contain cell barcode information (Figure 7). The primer 

annealing in this step also resulted in the first five bases in this erroneous cell barcode 

being 5'-ATGGG-3'. To account for this artefact, all putative cells containing cell 

barcodes, starting with either the sequence 5'-ATGGG-3' or 5'-GGG-3', and 

additionally cell barcodes with a Hamming-distance of 1 to 5'-ATGGG-3' were 

excluded. This greatly reduced the number of overlapping cell barcode sequences in 

the Seq-Well dataset (Figure 6).  

Next, datasets were examined for content of mitochondrial ribosomal transcripts. For 

further downstream analyses, the highly abundant mitochondrial transcripts MT-RNR1 

and MT-RNR2 were excluded. The resulting datasets were then imported into the R 

package ‘Seurat’ (v.3.0.0, Butler et al., 2018) for downstream analyses. 
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3.14. Quality control of scRNA-seq data 

We defined cells and genes to be included for further analyses by the following criteria 

for each donor separately: (1) Only genes that were found in at least 3 cells were kept; 

(2) To retain granulocytes that contain only very limited number of transcripts, a 

relatively low threshold of 100 expressed genes was used to keep cells for further 

analyses; (3) With regard to the rate of endogenous-to-mitochondrial counts per cell, 

blood cells with a rate > 5% and lavage cells with a rate >10% were excluded. For the 

comparison of scRNA-seq methods for clinical applications, these quality control filters 

resulted in a Chromium™ dataset of 13,909 cells (BALF = 7,960 cells; blood = 5,949 

cells) across 22,701 genes and a Seq-Well dataset comprised of 34,622 cells (BALF 

= 20,106 cells; blood = 14,516 cells) across 21,644 genes. For the integrated analysis 

of Seq-Well data from COPD GOLD 2 patients and control donors, we obtained a Seq-

Well dataset of 60,925 lavage cells across 25,348 genes and 54,569 blood cells 

across 23,056 genes (Table 6+7).  

 

 

 

Figure 7. Artifacts in Seq-Well libraries (e.g. overlapping cell barcodes as shown in Figure 6) 
introduced by different TSO primers. 
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Table 6: Cell numbers per annotated BALF cell type according to the four-step cell-type 
annotation approach 
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Airway epithelial cell 287 38 3 6 14 23 12 16 75 8 0 80 0 8 4

cDC1 255 9 12 117 2 10 5 13 16 54 1 1 12 3 0 0

cDC2 223 5 18 50 6 18 2 27 15 36 4 2 26 9 4 1

ILC 46 1 2 18 9 1 9 0 6 0 0 0 0 0 0

pDC 97 6 0 36 1 1 1 17 0 17 1 1 6 10 0 0

Macrophage 0 common Macrophage 14098 634 1426 2681 777 585 771 783 2213 953 1431 243 506 416 257 422

Macrophage 1 intermediate Macrophage 8990 525 691 1657 399 390 160 385 2872 669 397 123 294 73 191 164

Macrophage 2 PPBP+ Macrophage 6816 92 29 87 133 2 4 375 5809 22 34 124 52 7 0 46

Macrophage 3 C1Q+ Macrophage 4290 162 499 924 275 185 107 308 665 334 228 129 150 124 86 114

Macrophage 4 senescent Macrophage 4288 300 298 313 439 183 162 319 908 221 278 315 207 77 100 168

Macrophage 5 monocyte-like Macrophage 3797 131 326 734 128 125 70 366 574 480 253 64 300 77 86 83

Macrophage 6 HLA-DR+ Macrophage 2128 62 196 421 165 66 19 111 816 41 106 60 39 3 8 15

Macrophage 7 IFIT+ Macrophage 1331 40 74 396 116 21 32 96 357 64 28 31 33 20 6 17

Macrophage 8 proliferating Macrophage 1051 34 33 108 29 19 40 72 376 78 123 14 78 15 14 18

Macrophage 9 HLA-DQ+ Macrophage 958 12 132 331 35 49 17 18 231 16 56 24 21 2 3 11

Macrophage 10 Monocyte 463 37 21 75 10 50 19 38 22 38 20 9 105 9 4 6

Macrophage 11 ILC-like Macrophage 372 11 22 174 11 2 1 12 122 5 5 3 3 0 0 1

Macrophage 12 Macrophage/ erythrocyte 208 43 26 10 6 0 2 82 5 3 4 13 0 4 0 10

Mast cell 264 18 2 15 1 13 0 102 12 51 10 12 6 11 5 6

Neutrophil 1 284 9 5 11 16 10 5 117 0 58 5 1 22 8 1 16

Neutrophil 2 477 22 13 3 23 43 24 95 18 79 10 3 71 28 8 37

Neutrophil 3 471 13 11 18 33 45 21 106 13 104 34 10 23 21 6 13

Eosinophil 752 58 16 164 0 28 3 203 0 147 9 14 27 64 12 7

T cell 1 1964 38 66 779 115 148 35 172 8 217 6 41 118 136 82 3

T cell 2 1509 64 100 425 99 111 74 112 54 176 22 48 70 86 56 12

T cell 3 285 13 6 84 13 25 6 27 0 43 0 9 29 19 11 0

mixed cells 5221 128 307 1958 118 200 139 311 800 322 281 18 250 135 140 114

control cell numbers COPD  cell numbers
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Table 7: Cell numbers per annotated blood cell type according to the four-step cell-type 
annotation approach 
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activated T cell/ NK cell 3177 393 214 295 102 608 403 130 151 342 539

proliferating T cell/ NK cell 45 1 7 3 2 4 11 7 4 1 5

CD4+ T cell 2750 219 296 354 119 220 290 211 423 186 432

CD8+ T cell 3915 186 407 270 109 842 649 453 375 214 410

NK cell 1197 70 101 308 55 104 122 63 84 96 194

DC 232 29 27 24 18 11 40 21 23 10 29

pDC 109 12 10 35 10 12 4 2 12 2 10

B cell 1244 86 105 241 30 216 128 15 112 85 226

Plasma cell 133 1 0 1 1 3 10 4 3 16 94

Eosinophil 282 8 21 34 13 15 58 43 21 14 55

immature Neutrophil 172 16 8 18 8 15 28 5 3 20 51

Neutrophil 1 5126 794 229 455 113 468 803 53 122 904 1185

Neutrophil 2 5618 725 102 358 98 1325 901 46 88 929 1046

Neutrophil 3 2733 562 88 168 63 230 162 216 43 745 456

Neutrophil 4 1570 154 31 55 30 137 167 31 38 413 514

Neutrophil 5 1211 185 26 88 21 116 244 10 26 203 292

Neutrophil 6 1202 179 27 85 21 194 136 20 19 238 283

Neutrophil 7 1176 133 34 65 15 114 141 13 13 315 333

Neutrophil 8 598 67 14 31 7 67 107 16 11 58 220

CD14+  Monocyte classical Monocyte 6871 604 417 830 208 757 698 157 395 451 2354

CD14+  CD16+ Monocyte intermediate Monocyte 1417 169 98 119 61 184 213 75 74 183 241

CD16+  Monocyte non-classical Monocyte 1154 63 81 63 26 92 103 56 32 44 594

IFIT+ Monocyte 252 30 13 21 10 20 41 15 12 1 89

Erythrocyte 815 144 14 87 68 312 50 2 14 11 113

Megakaryocyte 246 62 5 25 4 26 23 17 6 43 35

mixed cell 3255 556 145 355 64 447 245 251 153 101 938

ribosomal-high mixed cell 6588 1106 323 944 340 2649 274 124 287 15 526

Doublet 1481 107 50 260 68 268 172 28 28 14 486

control cell numbers COPD cell numbers
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3.15. Dataset integration and dimensionality reduction of scRNA-

seq data 

If not stated otherwise, all following steps were conducted using the single-cell 

analysis pipeline Seurat. To account for variations in sequencing depth across cells, 

we applied a log-normalization strategy using CPM-normalization with a scale factor 

of 10,000. Next, the genes with the highest cell-to-cell variability in the dataset were 

determined by calculating the top 2,000 most variable genes by selecting the 'vst' 

method of the 'FindVariableFeatures' function in Seurat. For the comparison of 

scRNA-seq methods, the variable genes were determined separately for each 

technology, while for the integrated analysis of Seq-Well data from COPD GOLD 2 

patients and control donors, variable genes were calculated separately for each donor.  

To analyze the data without having any influence of batch effects resulting from either 

different donors or technologies, an integration approach based on ‘anchors’ across 

batches (Stuart et al., 2019) was used to harmonize and integrate the different 

datasets by using the Seurat implementation with the default settings. After linear 

transformation of the remaining genes (scaling) to ensure homoscedasticity, the 

dimensionality of the data was reduced to 30 principal components (PCs) that was 

used as input for UMAP representation.  

Next, doublet cells were identified utilizing the R package ‘DoubletFinder’ (version 

2.0.2, McGinnis et al., 2019) by using the first 30 principal components of the non-

integrated datasets, assuming a doublet formation rate of 10% and leaving all other 

parameters unaltered. The alleged duplicate cells were not removed from the dataset, 

but accumulations of these cells were highlighted and named accordingly. This 

procedure revealed, for example, that none of the identified AM clusters was defined 

by doublet cells. 

 

 

3.16. Cell-type annotation based on reference transcriptomic 

datasets  

Remark: The implementation of SingelR in Python and the development of GenExPro 

were realized in cooperation with the Comma Soft AG. 
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For the comparison of the datasets generated by the two different scRNA-seq 

technologies (see above), we developed a slightly modified Python implementation of 

SingleR (Aran et al., 2019) (commit a4afed8, https://github.com/dviraran/SingleR). 

The SingleR method iteratively computes the bivariate correlation between the 

respective cluster expression vector and each reference gene expression vector 

based on a set of differentially expressed (DE) genes. In each iteration, every cell type 

in the reference dataset is assigned a score based on this bivariate correlation. The 

cell type with the lowest score is dropped and the DE genes among the remaining cell 

types are computed and, based on these genes, the bivariate correlations are 

computed again. This procedure thereby iteratively reduces the number of cell types 

until only one best fitting cell type is retained. We reimplemented the SingleR 

functionality to assign cell types per cluster in Python to use in our framework and in 

addition to the original algorithm, we included a threshold for the bivariate correlation 

score based on tests with randomized reference data. This made it possible to label 

cell clusters as "unknown" if the bivariate correlation score of the best fitting reference 

cell type was below 0.1 and thus no cell type could be assigned. As a reference for 

SingleR, we used data from both Blueprint+ENCODE (Dunham et al., 2012; 

Stunnenberg et al., 2016) and the Human Primary Cell Atlas (HPCA) (Mabbott et al., 

2013). In addition to the implementation of the SingleR algorithm in Python, we also 

modified the reference datasets by reducing the reference to immune cells and lung 

tissue cells. Furthermore, based on the experimental setting of the reference dataset, 

we adapted some cell labels, e.g. the neutrophils were divided into mature, immature 

and inflammatory neutrophils, whereas the original annotation had designated all 

these cells as neutrophils. 

As another cell annotation approach, we developed the tool GenExPro (Gene 

Expression Profiler) that will be published elsewhere in detail. Similar to the 

implemented SingleR method, the basic idea of GenExPro is to compare the mean 

vector of gene expressions from a cluster of cells in the single-cell dataset to the 

expression profiles of a reference dataset of expression profiles with annotated cell 

types. Briefly, the GenExPro method fits a multiple linear regression for each cluster 

expression vector. The covariates in this regression are the reference expression 

vectors for each cell type that were obtained from the CIBERSORT algorithm 

(Newman et al., 2015). The more similar the cluster expression vector is to one of the 

reference expression vectors, the higher the regression coefficient for the respective 
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reference vector. If the highest regression vector is positive and above an uncorrected 

significance threshold of α = 0.05, the cluster is assigned the respective cell-type label 

of this reference cell type, otherwise, the cluster is labeled "Unassigned". 

Technologically, we used the OLS (Ordinary least squares) regression model 

implemented in NIPY (version 0.4.2, https://github.com/nipy/nipy) to calculate the 

regression coefficients. As reference data, we used the leukocyte expression dataset 

LM22 (Newman et al., 2015). Similar to the SingleR references, the LM22 dataset was 

slightly modified, e.g. by subdividing neutrophils according to their activation state. We 

calculated the reference expression vectors by running CIBERSORT (version 1.06) 

on the modified LM22 dataset, leaving the default settings unchanged and setting the 

option "Filter non-hematopoietic genes from the signature matrix during construction". 

The obtained signature genes (derived from the calculated support vectors) were 

almost completely (>99 %; data not shown) contained in the signature genes of the 

original CIBERSORT publication (Newman et al., 2015). 

Although both SingleR and GenExPro can be applied also to vectors of single-cell 

expressions, we applied it to the mean of expression vectors within a cluster for more 

robust results. Since both GenExPro and the modified SingleR are Python 

implementations, we performed clustering using the Louvain-clustering (Blondel et al., 

2008) function of Scanpy (Wolf et al., 2018) by setting the number of neighbors to 24 

and leaving the remaining parameters unaltered.  

To assess the uncertainty of the annotation results, we added bootstrapping to 

GenExPro and SingleR. The basic principle of bootstrapping is to create an artificial 

dataset by sampling subjects, in our case cells, with replacement such that in the 

resulting artificial dataset some cells will be excluded, whereas others will be included 

more than once. The analyses are then repeated on multiple of these artificial datasets 

resulting in somewhat different results. For robust and certain patterns, different 

bootstrapped datasets generate similar results, while for random fluctuations different 

bootstraps result in highly different outcomes. Here, we conducted all cell typing 

analyses using 100 bootstrapped datasets. 
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3.17. Four-step strategy of cell-type annotation 

For the cell-type annotation of the integrated 61K lavage and the 55K blood dataset 

we used a four-step strategy to annotate cells as well as to identify and finally remove 

cells of inferior quality (Table 6+7). The steps of the strategy include cell-type 

annotation, clustering and marker gene identification and the corresponding analytical 

details are described in the following three sections. 

 

 

3.18. Consolidation of cell-type annotation using machine learning 

Remark: The machine learning-based cell-type annotation was realized in cooperation 

with the Comma Soft AG. 

To aggregate and consolidate the initial cell-type annotation, we trained a Gradient 

Boosting Classifier on the combined data of all datasets to classify each cell into a cell 

type. Gradient Boosting is a machine learning technique that combines multiple 

classification trees in order to assign an input to different classes. This method is highly 

flexible and robust in the classification task and has high predictive power. We used 

an implementation of the Gradient Boosting algorithm from scikit-learn (version 0.19.1, 

Pedregosa et al., 2012), the leading machine learning library for Python. For training 

the model, we used the raw gene expression matrix of each cell as input feature for 

the classification. We additionally extracted features from the data such as the type of 

tissue, the number of genes per cell, counts per cell, and the percentage of 

mitochondrial gene expression per cell. The training target of this model were the three 

cell-type labels from GenExPro and SingleR (Blueprint+Encode and HPCA). For this, 

we triplicated the data such that each cell with its feature vector was included three 

times, each with one label of the three cell-type annotations. Our aim was to apply the 

classifier to all cells in our data. However, as no distinct training data was available, 

we conducted a 3-fold cross-validation. In this procedure, two random thirds of a 

dataset were used as training data, and the model assigned cell type names to the 

remaining cells. Importantly, a cell with all three cell-type labels was only assigned 

either to the test or the training dataset. A major advantage of this machine learning 

method is that the classifier learns the specific expression profile of cell types and can 

take any cell-type annotation as input, independent of techniques such as bulk RNA-

seq or microarray used as initial cell-type annotation reference. In addition, we were 
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able to apply the classifier at the single-cell level instead of the cluster mean 

expression level and thus achieved a higher resolution to exploit the full potential of 

scRNA-seq. This also allowed us to detect cell types with very low frequency in 

individual patients. Normally, these cells might end up in larger clusters with a different 

cell type and are therefore not detected. For all these reasons, this machine learning-

based cell-type annotation is unbiased, reliable, reproducible and scalable. 

 

 

3.19. Clustering of the integrated scRNA-seq datasets 

The cellular heterogeneity of the integrated datasets was determined using a shared 

nearest neighbor (SNN)-graph based clustering algorithm implemented in the Seurat 

pipeline. For both the BALF and the blood data, we used the first 30 principle 

components as input and set the resolution to 0.7 and 0.6, respectively. The default 

setting for number of neighbors were used (k=20). 

 

 

3.20. Marker gene identification of scRNA-seq data 

DE genes between identified cell types/clusters (referred to as marker genes) were 

defined using a Wilcoxon rank sum test for differential gene expression implemented 

in Seurat. The significance threshold for marker genes were set to an adjusted p-value 

smaller than 0.001 and the logarithmic fold change cutoff to at least 0.4. In addition, 

the detected marker genes should have been expressed in at least 50% of the cells 

within the respective cell types/clusters. Visualization of the obtained marker genes 

were mainly done using Seurat functions, such as dot plot representation of cell types-

/cluster-specific marker gene expression or heat map representation of marker genes 

across single cells. A more global overview of the expression profiles was obtained by 

calculating the mean expression values of marker genes per clusters, followed by 

scaling and centering of these values and representing them in a heatmap graph using 

the R package ‘pheatmap’ (version 1.0.12, https://CRAN.R-

project.org/package=pheatmap), in which the genes were clustered according to the 

‘ward.D’ agglomeration method.  
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3.21. ‘Gene set distance’ analysis of annotated cell types (GO-

shuffling) 

Remark: This approach was developed together with Stefanie Warnat-Herresthal. 

Gene set annotations were downloaded from the Molecular Signatures Database v7.0 

(MSigDB) and comprised gene sets from the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (Kanehisa, 2019) database, the Pathway Interaction Database 

(PID) (Schaefer et al., 2009), the Reactome Pathway database (Fabregat et al., 2018), 

Hallmark gene sets (Liberzon et al., 2015), BioCarta Pathways (Nishimura, 2001) and 

Gene Ontology (GO) (Ashburner et al., 2000; Carbon et al., 2019). In addition, we 

retrieved gene sets from WikiPathways (Slenter et al., 2018). This search strategy 

resulted in a list of 12,755 gene sets, each containing a unique gene set term and a 

set of associated gene symbols.  

As input, normalized scRNA-seq data was used, in which the cells were annotated 

according to the four-step cell-type annotation approach described above. Cell types 

containing at least 10 cells for each patient were retained and genes expressed in less 

than 5% of the cells in the respective cell type were excluded.  

For each of the 12,755 gene sets, the “gene set distance” was calculated as follows 

for each cell type: Gene sets were taken into account that were present with a 

minimum of 3 genes. For each gene set, the Euclidean distance between all donors 

was calculated using the get_dist function from the R package ‘factoextra’ (version 

1.0.5). Next, the mean distance of COPD patients, the mean distance of controls and 

the overall mean distance was calculated. The “gene set distance” was then defined 

as the overall mean distance divided by the mean distance of COPD patients plus the 

mean distance of control patients.  

𝑔𝑒𝑛𝑒 𝑠𝑒𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ൌ  
𝑑𝑖𝑠𝑡௢௩௘௥௔௟௟

𝑑𝑖𝑠𝑡஼ை௉஽ ൅ 𝑑𝑖𝑠𝑡஼்ோ௅
 

This metric allows to determine for which gene set the quotient takes a value close to 

or greater than 1, which means that the distance within the groups (COPD (distCOPD) 

or control (distCTRL)) is smaller than the overall distance (distoverall) and consequently 

the distance is mainly defined by the difference between the groups. Since the 

Euclidean distance metric is prone to be affected by outliers in higher dimensions, we 

also tested this approach by using the Manhattan distance and got comparable results. 
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For each cell type, we ranked the gene sets by their gene set distance. Visualization 

of the most frequent terms contained in the upper percentile of the predicted gene sets 

in the AM clusters was performed using the R package ‘wordcloud’ (version 2.6), in 

which filler and connective words were excluded. Alternatively, the gene sets in the 

upper percentile were filtered for association with ‘NOTCH’, ‘lipidomics’, or ‘immune 

system’, whereby the latter was visualized in a bar plot showing the proportion of 

‘immune system’-related gene sets among all gene sets found in the upper percentile. 

 

 

3.22. Modeling of metabolic pathways based on scRNA-seq data 

The metabolic landscape of AMs was modelled using the Compass method (version 

0.9.5, Wagner et al., 2020; Wang et al., 2020) by leaving the standard settings 

unaltered (model: RECON2 (Thiele et al., 2013); lambda: 0; media: media1, which 

represents a rich extracellular medium as defined in the Compass manuscript). As 

input, we simplified the single-cell data of the AMs by using the ‘applyMicroClustering’ 

function of the R package ‘VISION’ (version 2.1.0, DeTomaso et al., 2019), resulting 

in approximately 20 microclusters per patient. Next, we applied Compass to the 

microclusters for each donor separately. The output tables representing Compass 

scores for single reactions and synthesis of single metabolites of the individual donors 

were imported into R. They were concatenated and finally transformed as described 

in the Compass manuscript, except for disabling the division into meta-reactions. In 

detail, the concatenated output table x was first negatively log-transformed (y = -

log(1+x)), the global minimum value of table y was subtracted from the values (z = y - 

min(y)) and the resulting table z was then used for further analysis. To determine which 

reactions and metabolites are significantly different between control donors and COPD 

patients, with the differences being reproducible in the COPD population, we 

performed Wilcoxon rank sum tests on Compass scores. We firstly computed the 

Wilcoxon p-value for every patient separately against all controls, took the median of 

these p-values, and kept reactions/metabolites for which -log10(median p-value) ≥ 2.5. 

We derived a second list of reactions and metabolites by similarly comparing control 

donors separately against all patients. The reactions and metabolites that have 

significant differences are the union of these two lists. Next, we excluded reactions 

with the lowest confidence score in the metabolic reconstruction (Thiele and Palsson, 
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2010), i.e., we discarded reactions with a confidence score of 1 and kept confidence 

scores of 2-4 (as well as 0 which is reserved for unannotated confidence). We also 

excluded metabolites that localize to cellular compartments other than the cytoplasm 

[c], extracellular space [e] or mitochondria [m]. Finally, the remaining reactions and 

metabolites were annotated using the Virtual Metabolic Human (VMH) database 

(Noronha et al., 2019) and visualized in a heat map.  

 

 

3.23. Cell cycle state analysis of scRNA-Seq data 

To categorize the cells within the AM clusters into the respective cell cycle states, we 

applied the ‘CellCycleScoring’ function of Seurat and substantiated the results using 

the ‘cyclone’ function (Scialdone et al., 2015) implemented in the R package ‘scran’ 

(version 1.10.2, Lun et al., 2016). 

 

 

3.24. Gene set variation analysis 

To predict the functions of the AM states, we performed gene set variation analysis 

(GSVA) (Hänzelmann et al., 2013a) by using the R package ‘GSVA’ (version 1.30.0) 

and defining ‘Poisson’ for the non-parametric estimation of the cumulative distribution 

function of expression levels across donors. For the GSVA input expression table, we 

calculated the sum of the expression of normalized scRNA-seq data for each patient 

in any AM states. As gene sets we used the gene set collection described in the 

section ‘GO-shuffling’ and additionally included the 'ImmuneSigDB' collection of 

MsigDB, whereby this collection was reduced to gene sets that had one of the following 

terms in the gene set description: 'Mono', 'Macro', 'MDC', 'MDM', 'Dend' and 'DC'. This 

resulted in 14,160 gene sets. Similar to GO-shuffling, we filtered this collection for 

gene sets that were present with a minimum of 3 genes in a respective AM state. We 

applied an additional filter step to increase the stringency of the analysis. Therefore, 

we retained only gene sets in which the sum of the genes contained in the set were 

expressed in more than 30% of an AM state. The GSVA results per donor were 

combined for the respective AM state using a Borda rank and the top 250 ranked gene 
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sets per subtype were visualized in an UpSet plot using the R package ‘UpSetR’ 

(version 1.3.3, Conway et al., 2017)). 

 

 

3.25. AUCell for gene set enrichment analysis 

Enrichment of gene sets was performed using the ‘AUCell’ method (Aibar et al., 2017) 

implemented in the package (version 1.4.1) in R. We set the threshold for the 

calculation of the area under the curve (AUC) to the top 3% of the ranked genes and 

normalized the maximum possible AUC to 1. The resulting AUC values were 

subsequently visualized in a violin plot. This approach was used, for example, in 

Figure 32 to assess the enrichment of monocyte-derived macrophage signature 

genes provided by Wohnhaas (unpublished results). This signature was obtained from 

scRNA-seq data of monocyte-derived macrophages that were identified in BALF of a 

murine 12-week smoke model. Human orthologues (obtained from BioMart (version 

2.42.0, Durinck et al., 2005)) of the murine marker genes were used for the enrichment 

analysis. In a similar way, we also performed the enrichment of monocyte-derived 

macrophage signatures obtained by Jaitin et al. (Jaitin et al., 2019) and Kim et al. (Kim 

et al., 2018). 

 

 

3.26. Distribution-free DE analysis across patient groups 

Remark: This approach was conceived by Jan Hasenauer and realized by Erika 

Dudkin. 

To analyze the differences between patient and control cohort we developed a 

distribution-free test, which preserves patient and cell information. In contrast to 

available methods, it avoids the use of mini-bulk, the pooling of cells from different 

patients, and distribution assumptions. As input, we use the afore-computed cell 

cluster information and the normalized single-cell data.  

For each AM cluster a differential expression between patient and control cohort was 

performed. Therefore, individuals not possessing cells in a cluster – which happened 

in a few cases – and genes expressed in less than 10% of cells were disregarded for 

the analysis of this cluster. For each gene, the differences between all possible pairs 
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of patients and controls was assessed using the nonparametric Wilcoxon rank sum 

test. The Wilcoxon rank sum test does not rely on a specific distribution assumption. 

This is beneficial as the distribution of single-cell expressions is often skewed or shows 

multiple modes. Furthermore, scRNA-seq data are characterized by multiple zero 

counts, which the Wilcoxon rank sum test takes into account. To assess the 

differences between patient groups, the median Wilcoxon score of the pair-wise tests 

was used considered as test statistic. This test statistic can be negative, describing 

here an overexpression of a gene in the patient cohort, and positive, relating here to 

an overexpression of a gene in the control cohort.  

To assess if the observed value of the test statistic was significant, the probability of 

observing an equally or more extreme value of the test statistic under the null 

hypothesis was evaluated. The null hypothesis was that there is no difference between 

the two groups. The exact null distribution was evaluated with the permutation test, 

taking all possible permutations into account. A permutation is a rearrangement of 

patients into the opposing group, which conserves the group sizes. For all possible 

permutations the afore-described test statistic – the median Wilcoxon score – was 

evaluated. The distribution of the test statistic over all permutations provided the null 

distribution, since reshuffling of patients should not be significant under the null 

hypothesis. The p-value for the observed group assignment was then the fraction of 

permutations that led to an equal or more extreme value of the test statistic than the 

value of the test statistic of the observed patient arrangement. 

 

 

3.27. Application of the novel DE analysis approach and GSEA 

DE analysis was performed for all AM clusters and the results are provided in Table 

S4. For the classification of genes being significantly DE, a test statistic cutoff of 0.75 

was chosen. Additionally, for each AM cluster, the DE genes were sorted ascendingly 

according to their p-values and the 300 top ranked genes were chosen. The 

visualization of which DE genes are found and shared in which AM clusters was 

performed using the UpSetR package in R.  

Gene set enrichment analysis (GSEA) was performed to identify shared common 

biological functions by groups of DE genes. The web-tool ‘g:Profiler’ (version 

e98_eg45_p14_ce5b097, Reimand et al., 2007) was used to perform the functional 
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profiling of the DE genes of interest (genes fulfilling the cutoff criteria for DE genes in 

>2 AM clusters). As multiple-testing correction method, g:Profiler’s in-house g:SCS 

algorithm was chosen, which corrects for multiple tests that are dependent on each 

other, which holds true for the hierarchically arranged GO terms. The analysis was 

done using the Gene Ontology (Ashburner et al., 2000; Carbon et al., 2019) database 

as well as biological pathway databases, like KEGG (Kanehisa, 2019), Reactome 

(Fabregat et al., 2018) and WikiPathways (Slenter et al., 2018).  

 

 

3.28. Transcription factor prediction using iRegulon 

The Cytoscape (version v3.7.1, Shannon et al., 2003) plug-in iRegulon (version 1.3, 

Janky et al., 2014) uses a large motif-database, consisting of up to ten thousand 

position weight matrices collected from various species, to predict the transcription 

factors (TFs) upstream of an input gene set. In the present study, we predicted the 

upstream regulators of calculated DE genes within an AM state between COPD 

patients and control donors. We restricted the prediction to AM states with a minimum 

of 30 DE genes. The genomic regions for TF-motif search was limited to 10kbp around 

the respective transcriptional start sites. For each AM state, we predicted TFs 

upstream of its DE-genes by using the default settings of iRegulon. The predicted TFs 

were visualized in an UpSet plot. The orthologous expression of a selection of the 

predicted TFs was further investigated in a mouse lung cell dataset (Angelidis et al., 

2019) . 

 

3.29. Cell-to-cell communication 

Remark: This analysis part was conducted in cooperation with Nico Reusch and 

Patrick Günther. 

Potential cell-cell-interactions were inferred using ‘CellPhoneDB’ (version 2.1.1, 

Efremova et al., 2019; Vento-Tormo et al., 2018). As input, we used the normalized 

gene expression matrix of control and COPD patients that was filtered separately for 

cell types, which were defined by the four-step cell-type annotation approach and 

identified in at least three patients of any group (COPD or control) and contained ≥ 10 

cells per patient. Genes were filtered for being expressed in ≥ 5% of a respective cell 
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type. To run CellPhoneDB, the following parameters were set: --iterations=1,000 --

pvalue=0.1 --result-precision=10. 

In order to visualize the cell-cell communication, we filtered for significant interactions 

(adjusted (Holm) p-value < 0.05) and summarized the interactions per cell-type pair. 

Network visualizations was done with the ‘ggraph’ package (version 1.0.2) setting the 

layout to “fr”. Next, sender and receiver interactions were split and the difference of 

significant interactions between COPD and control was depicted as a heat map. To 

visualize single receptor-ligand pairs, we filtered for group-specific interactions (-

log10(p-value) > 1) and visualized the resulting interactions for control and COPD. 

To evaluate the downstream transcriptomic changes caused by cell-cell-interactions, 

we applied ‘NicheNet’ (version 0.1.0, Bonnardel et al., 2019; Browaeys et al., 2019). 

As the CellPhoneDB analysis revealed a central role of the mono-like macrophages in 

the cellular communication in BALF, we focused on these cells for the subsequent 

analysis. As the model in NicheNet is based on a different collection of databases than 

CellPhoneDB, we defined potential sender cell-receiver cell interactions independent 

of CellPhoneDB. As potential ligands, we accepted all genes that were expressed in 

>5% of any cell type within the COPD group and which matched at least one receptor 

from the genes expressed in > 5% of the mono-like macrophages in the COPD group. 

As input genes to infer the ligand activity score from, we defined all DE genes with a 

median Wilcoxon score < (-0.75) and p value of the median Wilcox score <0.05. As 

background genes, we defined all genes that are not DE in mono-like macrophages 

and expressed in > 5% of mono-like macrophages. For ligand prioritization, we 

selected the top 20 genes with the highest PCC or AUPR resulting in 26 top ligands. 

To not miss out any cell type-specific cell-cell-interaction, we additionally used every 

cell type separately as sender cell and chose the top 7 genes according to the PCC 

and added these to the top ligands resulting in 32 top genes.  

The expression of these ligands for each cell type was visualized in a heat map scaled 

by each gene. The genes and cell types were sorted by hierarchical clustering. This 

way, each gene could be assigned one main sender cell. The target genes of all top 

ligands were visualized in a heat map with their regulatory potential score for each 

ligand and their mean expression in every patient (scaled by gene and sorted by 

hierarchical clustering of the patients). The genes were manually assigned to 

corresponding pathways. The connection of ligands and target genes was additionally 

displayed in a circos plot connecting all ligands with target genes for which any 
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connection was defined in the ligand-target matrix. To further decipher the exact 

connection between the ligand and the target genes, we visualized the transcriptional 

network based on which NicheNet associated the target genes with TGFB1 in a 

network with free topology. This network was subdivided into receptors for TGFB1, 

transcriptional regulators between TGFB1 and the target genes. The connections were 

subdivided into signaling (which does not induce a direct transcriptional change) and 

transcriptional regulation.  

 

 

3.30. Monocyte-to-macrophage trajectory analysis 

Remark: This analysis part was conducted in cooperation with Malte Lücken under the 

supervision of Fabian J. Theis. 

To generate a joint embedding of BAL and blood samples, the data were jointly pre-

processed using ‘Scanpy’ (version 1.4.3 commit 0075c62, Wolf et al., 2018) on 

AnnData (version 0.6.22.post2 commit 72c2bde). In concordance with previous 

analysis, cells from BALF were filtered out if the fraction of mitochondrial reads 

exceeded 0.1, and a threshold of 0.05 was used for blood samples. Genes that were 

expressed in fewer than 200 cells were also filtered out. Following previously 

published best-practices (Luecken and Theis, 2019) we used scran normalization via 

the computeSumFactors function on the joint object. Spliced and unspliced counts 

were mapped to this object using scVelo (version 0.1.24 commit e45a65a, Bergen et 

al., 2019). Quality control for spliced and unspliced counts was performed by removing 

cells with fewer than 20 spliced and/or 10 unspliced counts. Subsequent normalization 

by total counts and log-transformation was performed via the filter_and_normalize 

function from scVelo. Subsetting to only relevant monocyte and macrophage 

populations from blood and BAL datasets (Figure 35A) resulted in a dataset of 57,280 

cells and 11,530 genes. 

The joint embedding of BAL and blood cells was generated by taking the top 4000 

highly variable genes (HVGs) that were shared by most batches. This was done using 

the hvg_batch function from the single-cell data integration benchmarking package 

‘scIB’ (https://github.com/theislab/scib; published separately). This function computes 

the top 4000 HVGs per batch (here: donor) using Scanpy’s highly_variable_genes 

function with method cell_ranger and ranks these by the number of batches these 
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genes are highly variable in, and by their mean dispersion over all batches. In this list, 

the top 4000 genes are selected. On this gene set, we computed the top 50 principle 

components and used Euclidean distance on these to compute a kNN graph with a 

k=15. ‘UMAP’ (version 0.3.9, McInnes et al., 2018) was used to visualize the results. 

Due to an observed batch effect when performing RNA velocity analysis across 

patients, we ran scVelo per patient and aggregated the individual patient velocities to 

create a joint velocity embedding. For each donor spliced and unspliced counts were 

smoothed using the moments function, velocity genes were selected by a stringent log 

likelihood threshold of 0.1 (between 45 and 172 genes per donor), and the dynamical 

scVelo model was fit. The resulting inferred single-cell velocities were projected onto 

the joint UMAP computed from all donors by running velocity_graph on the 

concatenated object.  

Furthermore, partition-based graph abstraction (‘PAGA’, Wolf et al., 2019) was used 

to assess the connectivity of cell identity clusters that were suggested to show 

transitions by RNA velocity. To robustly assess the connectivity of cell identity clusters 

across donors, we performed PAGA analysis per donor. We computed a kNN graph 

with Scanpy’s neighbors function (k=15) per donor using the joint PCA embedding 

across donors and ran the paga function on this graph. We used the resulting PAGA 

connectivities as a statistical test of kNN-graph connectivity between clusters. The 

median of PAGA connectivities over all donors with both blood and BAL samples was 

used as a PAGA distance metric. 

 

 

3.31. Trajectory analysis of murine tissue monocyte differentiation 

Remark: The experimental part was conducted by Andreas Schlitzer and the scRNA-

seq libraries were generated in Singapore at the A*STAR Immunology Network. 

MDPs and cMoPs were isolated from the bone marrow and Ly6c+ monocytes were 

isolated from bone marrow, peripheral blood, lung, skin and intestine of mice. Full-

length single-cell transcriptome data of these cells were generated using the C1 

system (Fluidigm) followed by sequencing. The fastq files were aligned using STAR 

(version 2.5.1b) and quantified using RSEM (version 1.2.28) by using the mouse 

reference genome (mm10) that was used in the original Drop-Seq publication 

(Macosko et al., 2015b) and which is accessible via the GEO identification number 
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GSE63472. Genes, whose name began with 'GM' and was followed by a number, 

contributed to the instability in the subsequent analyses (data not shown) and were 

therefore removed from the trajectory construction together with the ribosomal genes. 

Cells were retained if more than 75% of the expressed genes were not mitochondrial 

and the respective cell expressed more than 1,000 genes. After this filtering step, 

mitochondrial genes were also excluded from further analyses, which resulted in a 

dataset comprising 16,433 genes across 323 cells. The cell-cycle states of the cell 

populations were determined using the cyclone’ function of the scran package. 

Afterwards, cellular trajectories were derived using Monocle 2 (version 2.8.0, Qiu et 

al., 2017a, 2017b; Trapnell et al., 2014), whereby the TPM data were computational 

converted into quasi-transcript counts using Census (Qiu et al., 2017b). Subsequently, 

the Monocle object was generated by setting the expected data distribution parameter 

to negative binomial. Next, genes for building the trajectory were determined by using 

a slightly modified version of the dbFeature strategy that is described in the Monocle 

tutorial (http://cole-trapnell-lab.github.io/monocle-release/docs/#constructing-single-

cell-trajectories). Briefly, the genes, which defined the highest variance in the dataset 

and were therefore included in the top PCs, were determined not only for a single 

'num_cells_expressed' value, but for a series of values between 5 and 12. For each 

value, the top 100 genes for the first three PCs were determined, combined, and the 

100 most frequent genes were identified by Borda rank. We excluded PC1 according 

to the recommendation of the Monocle developers, who claimed that this PC is often 

driven by technical artifacts. This approach resulted in 189 genes that was used as 

input for the ‘setOrderingFilter’ function of Monocle, followed by dimensionality 

reduction to three dimensions using the ‘DDRTree’ method. The trajectory 

construction revealed at least 6 cell states/branches, but to enable a possible 

investigation of early and late cell differentiation, we further separated the skin and 

intestinal states into two sub-states. DE genes between the identified cellular states 

were calculated using the Monocle function ‘differentialGeneTest’ and further filtered 

for genes, which were expressed in more than 50% of the cells in the respective state, 

had a maximal expression of larger than 10, and exhibited a q-value < 0.01.  

 

 



3. Material and Methods 

83 
 

3.32. Data visualization 

In general, Seurat and the ggplot2 package (version 3.1.0, Wickham, 2016) was used 

to generate figures. For the monocyte-to-macrophage analysis Scanpy, UMAP and 

scVelo packages were used to generate figures. 

 

 

3.33. Statistical analysis 

If not otherwise stated, the statistical evaluation was carried out in relation to the total 

sample size n. A t-test was used for n ≤ 10, otherwise a Wilcoxon rank-sum test was 

used. 
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4. Results 
4.1. Using MCFC to profile human BALF immune cells 

4.1.1. Characterization of the general immune landscape in the alveolar 
space 

BALF is a biospecimen, which is used in the clinics for the diagnosis of various lung 

diseases and in the scientific world for the examination of e.g. immune cells. BALF 

provides information about the processes in the lumen of the distal airways and in 

particular of the alveolar space. In order to gain a general overview of the composition 

of immune cells in the alveolar space, we first designed an MCFC panel, which 

enabled us to identify both myeloid cells (monocytes, alveolar macrophages, DCs, 

mast cells, neutrophils, and eosinophils) and lymphoid cells (T cells, B cells, NK cells 

and ILCs) (Table 5, Material and Methods). We also included markers for basophils, 

but none of the samples analyzed showed a definite population. To ensure that the 

MCFC analysis results are not skewed by low quality BALF samples, we defined strict 

quality criteria (Meyer et al., 2012), which led to the inclusion of 29 control donors and 

17 COPD GOLD grade 2 patients. A classical gating strategy (Figure 8A) of the MCFC 

data showed that most cells in the alveolar space were mainly HLA-DR+, CD14low and 

highly autofluorescent cells, which - based on prior knowledge (Bharat et al., 2016; 

van Haarst et al., 1994; Vermaelen and Pauwels, 2004) - defined these cells as AMs. 

In addition to AMs, granulocytes (mainly neutrophils), monocytes, DCs, NK cells, T 

cells, and a few B cells and ILCs were detected, which thus together form the immune 

compartment in the alveolar space.  

Since the classical gating strategy can be very cumbersome and the designed panels 

defined a high-dimensional space, we attempted a more convenient and unbiased way 

for MFCF data analysis by using UMAP to reduce the dimensionality of the flow 

cytometry data. As input for the UMAP calculation, we focused on CD45+ cells and the 

resulting structures within the UMAP plot (Figure 8B and C) showed a high degree of 

conformance to the gates defined in the classical analysis approach (Figure 8A), 

indicating that UMAP- 
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based analysis of MCFC provides a fast, robust, and unbiased alternative for MCFC 

data analysis.  

 

 

4.1.2. Increased numbers of neutrophils in the alveolar space of COPD 
patients 

Next, we sought to determine whether there is an alteration in the relative population 

sizes of the identified immune cell types in BALF of COPD patients. For this purpose, 

we quantified the relative frequencies of immune cells for the COPD and control 

samples based on MCFC analysis (Figure 9). Our data revealed that the most 

significant change in cell type frequencies between COPD and control occurred in 

neutrophils (Figure 9A), which is one of the most common cell types in the alveolar 

space. In addition, there was a clear trend towards an increase in the relative cell 

numbers of eosinophils and AMs in COPD patients. In the lymphoid space, the 

strongest, although not significant, difference was found for the ILC population, which 

again showed a trend towards an increased cell number in COPD patients (Figure 

9B). 

Taken together, the AM population in the alveolar space represents the most abundant 

cell type in both COPD patients and control donors, whereby the largest relative 

change in the cell population in COPD was found in the neutrophil population.  

Although MCFC was sufficient to describe the major cell types and disease-related 

changes in the population, it lacked the resolution to identify cellular subtypes that 

might be the actual underlying denominators of COPD pathogenesis. 

 

  

Figure 8. Analysis of MCFC data of BALF immune cells 

(A) Gating strategy to identify major immune cells in the alveolar space. (B+C) UMAP 
representation of CD45+ Lin- cells. Coloring according to the gates in (A). 
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4.2. Assessment of scRNA-seq technologies for the investigation of 

BALF cells 

4.2.1. Defining a ground truth about the distribution of cell types using 
MCFC 

For an unbiased and in-depth characterization of the immune landscape in the alveolar 

space, we aimed for applying scRNA-seq (Figure 10A). However, the available 

scRNA-seq methods differ in terms of throughput and information content (Ding et al., 

2020). In addition, some technologies even have a bias towards the cell types they 

detect, which can be particularly detrimental when investigating disease-associated 

specimens, as important cell types can get lost. Therefore, a suitable scRNA-seq 

method for use on clinically relevant biospecimens has to fulfil a series of criteria, 

including: 1) capture of the major cell types, 2) adequate scalability, and 3) sufficient 

feature recognition.  

Before we evaluated scRNA-seq technologies for BALF cells, we defined a ground 

truth about the major cell types present in BALF samples by performing MCFC on the 

same samples that were used for scRNA-seq in the later steps (Figure 10A). As 

mentioned above, the analysis of BALF MCFC data can be performed using a UMAP-

based approach, since the resulting structures resemble the classical gating strategies 

(Figure 10B and C). Based on this finding, we developed an analysis strategy that is 

basically relying on the MCFC analysis of a single sample, whose results can then be 

transferred to the remaining samples (Figure 10B).  In particular, we first defined a 

sample as a reference case on which the two-dimensional UMAP topology of the cell 

space was predicted, followed by a clustering of the cells (Figure 10B). Next, the 

identified clusters  

Figure 9. Quantification of the relative population sizes of BALF immune cells based on MCFC 
data 

Population sizes are represented as cell type frequencies calculated per donor and visualized 
in box plots (in total: control n = 29, COPD n = 17). (A) Relative population sizes of myeloid 
cells. (B) Relative population sizes of lymphoid cells. 
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were assigned to cell types based on the fluorescence intensities of the respective 

proteins (Figure 10B). Finally, the remaining samples were projected onto the UMAP 

plot of the reference case. In order to verify the validity of the projection, we checked 

whether cells with comparable fluorescence intensities were projected in a 

topologically similar way (Figure 10C). In addition, clusters for the remaining samples 

were predicted based on the reference case and their topological distribution was 

again evaluated (Figure 10B+D).  

Applying this novel MCFC analysis strategy to BALF samples revealed that AMs, 

granulocytes, monocytes, DCs, NK cells, T cells and a few B cells define the immune 

compartment in the alveolar space, with AMs and neutrophils being the most abundant 

cell types (Figure 10B-E). These results are in accordance with the results from the 

classical gating strategy described in Figure 8 and 9. We also applied this analysis 

strategy to immune cells of the blood (Figure 10D+F), where neutrophils were found 

to be the second most common cell type. However, this does not reflect the 

physiological distribution of the cell types, as during isolation the blood granulocytes 

were mixed with the remaining PBMCs in a 1:2 ratio (Material and Methods).  

 

 

4.2.2. Comparison of scRNA-seq technologies 

Some of the identified cell types in the alveolar space, especially granulocytes, do not 

withstand cryopreservation (Boonlayangoor et al., 1980), which is why we decided to 

Figure 10. Using MCFC to generate a ground truth for comparing scRNA-seq technologies  

(A) Schema describing the workflow of the comparison. (B) Workflow of MCFC analysis with 
data obtained from different patients, starting with the UMAP representation of a compensated 
reference sample, through clustering of the data and annotation of the clusters based on the 
protein fluorescence intensities (top panel). The other samples are then projected onto the 
UMAP of the reference sample and the accuracy of the projection is evaluated by predicting 
and comparing clusters (bottom panel). This workflow is exemplarily shown for the myeloid 
compartment in BALF. (C) Feature-plot representation of fluorescence intensities measured by 
MCFC. This information formed the basis for the assignment of clusters to cell types. (D) 
Application of the MCFC analysis described in (B) to the myeloid compartment in blood and the 
lymphoid compartment in BALF and blood. (E+F) UMAP representation of MCFC data obtained 
from BALF (E) and blood (F) immune cells. The relative proportion of cell types identified in the 
three donor samples displayed as boxplots. These values served a ground truth for later 
scRNA-seq technology comparisons.  
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conduct the COPD study on freshly isolated BALF and blood samples. For the 

determination of a suitable scRNA-seq technology, we compared Chromium (10x 

Genomics; Zheng et al., 2017) with the Seq-Well method (Gierahn et al., 2017). We 

applied CD45+ immune cells derived from the same samples that were used for MCFC 

(Figure 10), which resulted in a scRNA-seq dataset comprising 48,531 cells (28,066 

BALF cells and 20,465 blood cells). In a first comparative evaluation step, we 

investigated standard quality parameters of scRNA Seq datasets, which revealed a 

slightly higher rate of uniquely aligned reads (Figure 11A) and a tendency towards the 

detection of more cells (Figure 11B) in the Seq-Well method, whereas the Chromium 

technology exhibited a substantially higher rate of reads/cell (Figure 11C), 

transcripts/cell (Figure 11D), genes/cell (Figure 11E), but also of mitochondrial genes 

(Figure 11F).  
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Next, we investigated which cell types can be detected by the respective single cell 

technologies. For this purpose, we integrated the scRNA-seq data of all samples using 

an anchor-based strategy (Stuart et al., 2019) and visualized them via UMAP (Figure 

12A). The dimensional reduction revealed that some BALF cells were found in UMAP 

regions, which are mainly defined by immune cells derived from blood. However, the 

majority of immune cells in BALF did not show topological overlap with blood cells. 

The annotation of the individual cells using the SingleR method (Aran et al., 2019) and 

the Human Primary Cell Atlas (HPCA) (Mabbott et al., 2013) as reference dataset 

identified the cells found exclusively in BALF as macrophages with some 

contaminating CD45+ respiratory epithelial cells (Figure 12B). Overall, the cell-type 

annotation showed that we could identify all major immune cell types defined by MCFC 

(Figure 10E) also by scRNA-seq (Figure 12B). To assess how the cell-type detection 

behaved across the used scRNA-seq technologies, we determined the cell-type 

distribution for the droplet- and well-based scRNA-seq methods independently. 

Remarkably, based on the cell-type annotation, it became evident that the entire 

granulocyte population was almost completely lost in the scRNA-seq data obtained 

using the Chromium technology (Figure 12C). This finding was corroborated by the 

UMAP topologies, where the granulocyte-defined region (Figure 12B) was almost 

completely unoccupied in the Chromium-derived scRNA-seq data (Figure 12D).  

Since the observation of reduced granulocyte numbers in the Chromium technology 

is mainly based on the cell-type annotation by a single method, we wanted to assess 

the robustness of the findings by additional cell-type annotation approaches. 

Therefore, we used the Blueprint (Stunnenberg et al., 2016) and ENCODE (Dunham 

et al., 2012) datasets as reference for SingleR. As a complementary approach, we 

aimed at annotating cells using gene signatures of an immune cell dataset (LM22) that 

have been described to robustly differentiate immune cell types (Newman et al., 2015). 

To enable  

Figure 11. Comparison of Seq-Well and 10x Chromium (v2) in terms of detected information at 
cell level 

(A) Alignment and quantification statistics. (B) Number of cells that exhibited at least 100 
expressed genes. (C-F) scRNA-seq library statistics represented as split violin plots.  
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Figure 12. Comparison of Seq-Well and 10x Chromium (v2) on cell-type level 

(A) UMAP representation of integrated blood and BALF data from different patients and the two 
scRNA-seq technologies. (B) Cell annotation based on the SingleR method with the HPCA 
dataset as reference (SingleR (HPCA)). Accumulation of cells with the same identity were 
highlighted with colored background and labeled accordingly. (C) Stacked bar plots of the 
relative cell-type proportions for MCFC, which served as ground truth, and cell-type proportions, 
as predicted by SingleR (HPCA), of the two scRNA-seq technologies. (D) UMAP representation 
of integrated data split by the two scRNA-seq technologies. The borders represent the areas of 
cell accumulation with the same identity as defined in (B). 
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annotation of single cells based on predefined gene signatures, we developed 

GenExPro, which uses a linear regression approach for cell annotation (Material and 

Methods). Importantly, the underlying reference datasets for the three cell-type 

annotation approaches (SingleR (HPCA), SingleR (Blueprint+ENCODE), and 

GenExPro (LM22)) collectively comprised a comprehensive collection of the immune 

cells present in lung tissue and blood (Figure 13A). However, not all immune cell types 

were included in all datasets, and in addition, some reference datasets were derived 

from microarrays, while others were derived from RNA-Seq experiments (Figure 13A). 

Nevertheless, the comparison of the results of cell-type annotation derived with the 

three approaches showed that there is a general, albeit not complete, concordance 

for the cell-types included in all reference datasets (Figure 13B). While cell type 

annotation approaches showed slight differences, all indicated the almost complete 

absence of granulocytes in scRNA-seq data generated with the Chromium technology 

(Figure 13C). In addition, the cell-type annotation approaches also showed that the 

Seq-Well technology is prone to the reduction of B cell numbers and a shift in the blood 

population distribution, however, it closely resembled the MCFC-based ground truth 

of the most abundant cell types in BALF samples (Figure 12C and 13C).  

Taken together, the comparison of the scRNA-seq technologies showed that the 

Chromium technology can generally provide more information per cell (indicated e.g. 

by the genes/cell statistics), but is inferior in the detection of one of the major cell types 

in BALF. For the latter reason, Seq-well is the preferred choice for the determination 

and characterization of immune cells in BALF and hence was used in the further COPD 

study. 

 

 

4.3. Robust classification of immune cell types in the human alveolar 

space 

4.3.1. Cell-type annotation using machine learning-based strategy 

For in-depth investigation of COPD-associated cellular and molecular patterns, we 

generated a second, larger Seq-Well based scRNA-seq dataset from BALF samples  



4. Results 

96 
 

 

 

derived from a cohort of nine patients with early-stage COPD (GOLD 2) and six control 

donors (Table 2). In the first step of the analysis, we aimed to robustly assign the cells 

to the respective cell types. However, as outlined above, the different cell-type 

annotation approaches tested and the underlying reference files showed some 

differences (Figure 13A and B), which made it difficult to decide on a particular cell 

annotation strategy. Therefore, instead of focusing on a single cell annotation 

approach and reference dataset, we aimed to combine the results of all three 

Figure 13. Confirmation of differences on cell-type level between Seq-Well and 10x Chromium 
(v2) using different references and cell type annotation approaches  

(A) Overview of the cell types contained in the reference files used for cell-type annotation. The 
orange color indicates that the respective cell type is included in the reference file. (B) Confusion 
plots showing the concordance between the respective cell-type annotations across the different 
annotation methods. Only cell types that can be found in all reference files as shown in (A) are 
displayed. (C) Stacked bar plots of the relative cell-type proportions for MCFC, which served as 
ground truth, and cell type-proportions of the two scRNA-seq technologies, as predicted by 
SingleR with the Blueprint + ENCODE dataset as reference and the novel cell-type annotation 
method GenExPro. 
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annotation approaches (SingleR (HPCA), SingleR (Blueprint+ENCODE) and 

GenExPro (LM22)) to obtain the best possible cell type assignment. For this purpose, 

we developed a machine learning-based strategy to aggregate and consolidate the 

results of the three-cell type annotation approach and to assign the most likely cell 

type to each cell in the dataset (Figure 14A). To assess the validity of this cell type 

annotation based on machine learning, we used a benchmarking dataset generated 

by extracting cells with unequivocal expression of known cell type-specific markers 

from a scRNA-seq blood dataset (Figure 14B). Neither one of the SingleR annotations 

nor GenExPro was able to correctly annotate all cells within the benchmarking dataset 

(Figure 14C), since none of the underlying reference datasets included all major 

immune cell types present in the blood (Figure 13A). In contrast, the machine 

learning-based cell annotation was successful in aggregating the annotation results 

and thus resolving the different immune cell types (Figure 14C). 

 

 

4.3.2. Development of a four-step strategy for robust cell-type annotation 

Next, we applied the machine learning-based cell-type annotation approach to the 

integrated BALF dataset, which led to the identification of all major immune cell types 

(Figure 15A) that were also found by MCFC (Figure 8+9). Importantly, cells assigned 

to the same cell types accumulated in certain UMAP areas (Figure 15A). These areas 

were also defined by cell clustering as distinct clusters and overall the dataset could 

be partitioned into 18 main clusters. (Figure 15B). To further investigate the 

concordance between the machine learning-based cell-type annotation and cell 

clustering, we defined marker genes for each main cluster (Figure 15C, heatmap). In 

addition, we determined which cell type occurred most frequently per main cluster 

according to the machine learning-based annotation (Figure 15D and Figure 15C, 

bottom annotation). As exemplified for main cluster 13 (Figure 15B), we found a 

strong concordance between the calculated marker genes and the predicted most 

frequent cell type, since the cells  
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Figure 14. Generation and benchmarking of a machine learning-based cell-type annotation 

(A) Scheme of a gradient boosted decision tree-based machine learning-approach for cell-type 
annotation. (B) Generation of a ‘clean’ Seq-Well dataset for benchmarking the machine 
learning-based cell-type annotation by selecting cells from a blood dataset (patient 6 acc. to 
Table 2) that expressed unique markers of a certain cell type. The selected cells, which are 
combined in a benchmarking dataset, are marked by the dashed rectangles with a reddish back- 
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within this cluster expressed the neutrophil markers IL8, FCGR3B and CXCR2 and 

most of the cells within the clusters were also annotated as neutrophils (Figure 

15C+D). However, we also found some cells that were annotated e.g. as neutrophils 

by the machine learning-based approach, but scattered away from the other 

neutrophils and thus fell into non-neutrophil clusters (Figure 15E). Therefore, we 

further investigated the neutrophil-containing main cluster 13, where it became evident 

that although most cells were predicted by the classifier as neutrophils, a few cells 

were classified as eosinophils, T cells or macrophages (Figure 15F). Interestingly, the 

latter cells also formed distinct subclusters within cluster 13 (Figure 15G), in which 

they also expressed known markers for the predicted cell types (macrophage = 

MARCO, eosinophils = CLC, T cells = CD3D) (Figure 15H). However, they also 

expressed typical neutrophil markers (Figure 15I), suggesting these cells (hereinafter 

referred to as "mixed cells") could either be putative cell doublets, whereby 

corresponding tools did not identify these cells as doublets (data not shown), or could 

represent cells of low quality and were therefore excluded from further analysis. The 

remaining cells within main cluster 13 were analyzed in more detail by calculating 

marker genes of the three subclusters, which were referred to as ‘neutrophil clusters’ 

(Figure 15K). Intriguingly, cells within neutrophil cluster 2 expressed CD63 (Figure 

15K), which has been previously linked to airway neutrophils in cystic fibrosis 

(Tirouvanziam et al., 2008). Moreover, the same cluster showed increased expression 

of activation markers, such as CD69, FCER1G and GBP1 (Figure 15K), which is 

consistent with the machine learning-based cell annotation, which assigned almost 

half of the cells within this cluster to inflammatory neutrophils (Figure 15J).  

These results showed that the proposed cell annotation using the machine learning-

based strategy can reliably identify the cell types in BALF. However, the power of this  

ground. (C) UMAP representation of the benchmarking dataset (acc. to (B)) and coloring of the 
cells according to the cell annotation methods. The ground truth is derived based on the unique 
cell-type marker gene expression in (B). Accumulation of cells that are annotated by the 
respective annotation methods, but show a deviation in the annotation with respect to the 
ground truth, are marked with an arrow. 
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method is even enhanced in combination with cell clustering, as this not only allows 

cells to be annotated, but also enables cells with inferior or ambiguous information 

(here: ‘mixed cells’) to be identified and excluded from further analysis. For this reason, 

we wanted to extend the described analysis steps to all cell types in BALF and 

therefore developed a four-step cell-annotation approach (Figure 16) comprising 1) 

the application of the newly generated machine learning-based classifier, 2) cell 

clustering, followed by 3) a manual classifier-to-cluster comparison and 4) cluster-level 

marker gene analysis including cleanup. The steps 1-3 were already carried out in this 

analysis (Figure 15A-D), so that only the fourth step was missing, which had to be 

performed separately for each cell type/cluster. 

Figure 15. Machine learning-based cell type annotation of BALF immune cells 

(A) UMAP representation of integrated BALF data obtained from different COPD patients 
and control donors. Coloring according to the machine learning-based cell-type annotation. 
(B) UMAP representation of integrated BALF data with coloring according to identified main 
clusters. (C) Heat map of the calculated marker genes per main cluster with a bar chart 
representation of the relative cell-type proportions at the top. The marker gene expression 
per cluster is represented as a z-transformed value (across all clusters). Rows of the heat 
map are sorted by hierarchical clustering. At the bottom of the plot, the main cell type 
according to the machine learning-based cell-type annotation is displayed, which is 
contained in the respective main cluster (acc. to (D)). (D) Bar plot displaying the two most 
common cell types for each main cluster according to machine learning-based cell-type 
annotation, in color-coded form (acc. to (A)). In addition, the most frequently occurring cell 
type is written above the respective cluster together with its relative frequency. (E) UMAP 
representation of the integrated dataset with the coloring of different neutrophil states as 
predicted by the machine learning-based cell-type annotation. Non-neutrophils are colored 
light gray. (F) UMAP representation of cells contained in main cluster 13 (acc. to (B)). 
Coloring according to the machine learning-based cell-type annotation. Accumulation of cells 
with the same identity were highlighted with colored background and labeled accordingly. 
(G) UMAP representation and clustering of the cells contained in main cluster 13. (H) Feature 
plots showing the expression of cell type-specific markers (FCGR3B = neutrophils; MARCO 
= macrophages; CLC = eosinophils; CD3D = T cells). (I) Expression of known neutrophil-
associated genes represented in a dot plot. Main clusters are shown, with the main cluster 
13 subdivided into the neutrophil clusters 0-4 (acc. to (G)). (J) Bar chart showing the 
proportions of different neutrophil states in the neutrophil clusters 0-2 (acc. to (G)) according 
to the machine learning-based cell-type annotation. (K) Heat map of markers genes for 
neutrophil clusters 0-2, which were predicted to contain mainly neutrophils according to the 
machine learning-based cell-type annotation (acc. to. (F)). Rows of the heat map are sorted 
by hierarchical clustering. 
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4.3.3. Application of the four-step cell-type annotation approach to the DC 
space 

To further underpin the power and robustness of the four-step cell-type annotation 

approach, we applied the strategy to the main clusters 10 and 11 (Figure 15B) that 

were associated with DCs. Again, we found an aggregation of ‘mixed cells’ (DC-cluster 

0 = macrophage-associated, DC cluster 1 = monocyte-/MDC-associated) (Figure 

17A), which were also identified by cell clustering (Figure 17B). The remaining cells, 

which were annotated as DCs by the machine learning-based strategy, formed distinct 

clusters (called ‘DC clusters’) that expressed marker genes for different DC subtypes 

(FCER1A and CD1C = cDC2; CADM1 and CLEC9A = cDC1; JCHAIN = pDC) (Figure 

17A-C). Indeed, marker gene calculation revealed that the DC clusters represented 

cDC1, cDC2, and pDCs, respectively (Figure 17D). However, we also found one 

cluster (DC cluster 5) that showed expression of IL7R and CCL22 (Figure 17D) but 

not CD3D (Figure 17C), which identified these cells most likely as rare ILCs 

Figure 16. Strategy of the four-step cell annotation approach 

Schematic workflow of the four-step annotation approach, including machine learning-based 
cell-type annotation, clustering, assignment and subsequent confirmation of a cluster to a cell 
type according to the machine learning-based cell-type annotation, and identification of 
‘contaminating’ cells (referred to as ‘mixed cells’). 



4. Results 

103 
 

contaminating the DC population, further illustrating the power of our four-step cell-

type annotation approach to even identify rare cell types. 

 

 

4.3.4. Extending the four-step cell-type annotation approach to all cells in 
BALF 

 

 

 

Figure 17. Application of the four-step cell annotation approach to the DC compartment in 
BALF 

(A) UMAP representation of cells contained in main clusters 10 and 11 (acc. to Figure 15B). 
Coloring according to the machine learning-based cell-type annotation. Accumulation of cells 
with the same identity were highlighted with colored background and labeled accordingly. (B) 
UMAP representation and clustering of the cells contained in main clusters 10 and 11. (C) 
Feature plots showing the expression of cell type-specific markers (CCL2 and FCN1 = 
monocytes; MARCO = macrophages; CD3D = T cells; FCER1A, JCHAIN, CD1C, CADM1 and 
CLEC9A = DCs and DC subtypes). (D) Heat map of markers genes for DC clusters 1, 2, 4, and 
5 (acc. to (B)), which were predicted to contain mainly DCs according to the machine learning-
based cell-type annotation (acc. to. (A)). Rows of the heat map are sorted by hierarchical 
clustering. 
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Finally, we applied the annotation approach to all 18 main clusters in the integrated 

BALF dataset, which led to a detailed resolution of the immune landscape in the 

alveolar space (Figure 18). In line with the MCFC analysis of the BALF cells (Figure 

8+9), we found that AMs constituted the most abundant immune cell population and 

together with monocytes, DCs, mast cells, T cells, eosinophils and neutrophils, they 

form the major immune cell types in the alveolar space (bar plot in Figure 15C, 

Figure 18, and Table 6).  

Collectively, our four-step cell-type annotation approach allowed us to robustly 

annotate the BALF cells in the scRNA-seq dataset, remove cells with ambiguous 

information content (about 9% were assigned as "mixed cells" and thus removed from 

further analyses) and led to the joint identification of cellular subpopulations and rare 

cell types in the 15 patients. Thus, the robust cell annotation presented here 

constituted an essential and integral step for further analyses with the aim to answer 

COPD-related questions. 

 

 

 

Figure 18. Identified BALF cell-types according to the four-step cell annotation approach 
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4.4. Modelling of metabolic alterations in AMs of COPD patients 

4.4.1. COPD-mediated changes related to cellular functions  

Both MCFC and scRNA-seq data analysis identified the AM compartment as being by 

far the largest cell population in the alveolar space, which is why we aimed to study 

these cells in more detail in the context of COPD. Therefore, we focused on the main 

cluster 0 – 9 (Figure 15B) and following the four-step cell-type annotation approach 

described above, we identified 13 subclusters (hereinafter referred to as ‘AM clusters’), 

(Figure 19A) of which one was clearly a monocyte cluster (Figure 19B) 

(corresponding to main cluster 9 (Figure 15B)). Before we defined cluster-specific 

changes between COPD patients and control donors, we searched for changes 

associated with cellular functions that were carried by multiple AM clusters. For this 

purpose, we developed the so-called ‘GO-shuffling’ approach. The basic idea of this 

approach is to identify functional gene sets, such as those based on gene ontology 

(GO) or pathway annotations, which explain the strongest separation of COPD 

patients from controls in the Euclidean space (Figure 19C). To obtain a better 

overview about the GO-shuffling results of the AM clusters, we visualized the 

functional terms within the upper percentile of the functional gene sets with the highest 

potential to separate COPD patients from control donors in a wordcloud (Figure 19D). 

Interestingly, ‘metabolic’-associated terms were strongest enriched in the wordcloud 

along with other terms such as ‘protein’, ‘activation’, ‘morphogenesis’, or ‘chemotaxis’, 

but also ‘NOTCH’ signaling (Figure 19D). A heat map representation of the genes 

contained in the NOTCH-associated gene sets confirmed that, for example, the 

expression profiles of metalloproteases of the ADAM family (ADAM17 and ADAM9) 

and the components of the γ-secretase complex (APH1B, APH1A, PSEN1, PSENEN, 

and NCSTN) are able to separate COPD patients from control donors (Figure 19E).  

 

 

4.4.2. Modelling of deregulated metabolism in AMs of COPD patients 

Especially striking in the GO-shuffling analysis was that many of the terms, which most 

strongly separated COPD patients from controls, were associated with metabolism  
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(Figure 19D). To assess the possibility for deregulated metabolic pathways in COPD 

patients, we utilized the recently published Compass algorithm (Wagner et al., 2020; 

Wang et al., 2020), by which we comprehensively modelled the metabolic differences 

between COPD and control AMs by means of the transcriptome (Figure 20). When 

grouping the signaling pathways and metabolites found as DE into metabolic 

categories, it became apparent that most differences were found mainly in the amino 

acid- and lipid-associated metabolism (Figure 20, pie chart), with an overall higher 

predicted metabolic activity in the COPD patients (Figure 20, heat map). Especially 

the predicted deregulation in lipid metabolism is of great interest considering the 

essential function of AMs in surfactant homeostasis. Among the differential lipid-

associated metabolites and reactions, phosphorylation of inositol was most prominent, 

but we also found differential metabolites and reactions indicating increased transport 

(monoacylglycerol), synthesis (phospholipids and cholesterol) and degradation (β-

oxidation) of lipids in COPD AMs. 

 

 

4.4.3. Altered lipid metabolism in AMs of COPD patients 

To evaluate the reliability of the Compass based prediction, we extracted the part of 

the phospholipid metabolism from the KEGG database (Figure 21A, pathway 

scheme) which, according to the Compass results, had a higher predicted metabolic 

activity in COPD than in the controls and therefore the expression of the underlying 

Figure 19. Identification of COPD-associated changes in AMs using GO-shuffling 

A) UMAP representation and clustering of cells contained in main clusters 0-9, which are 
annotated as monocytes or macrophages (acc. to Figure 15B). (B) UMAP representation of 
cells contained in main clusters 0-9. Coloring according to the machine learning-based cell-
type annotation. (C) Schematic workflow of the GO-shuffling approach. (D) Word cloud of the 
most common words in the top predicted terms of the GO-shuffling approach across all AM 
clusters. (E) Heat map of NOTCH-signaling associated genes predicted by the GO-shuffling 
approach. The mean gene expression per donor is represented as a z-transformed value 
(across all donors). Columns and rows of the heat map are sorted by hierarchical clustering. 
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enzymes should be upregulated (Figure 20). Interestingly, we did not detect increased 

mean expression,  

 

 

  

Figure 20. Modelling of metabolic changes in AMs of COPD patients using Compass 

Compass results of the modelled metabolic landscape in AMs. The Venn diagram summarizes 
and categorizes the predicted metabolites and pathways that are significantly different between 
COPD and control. Heat map shows the predicted pathways and metabolites associated with 
lipid metabolism, antioxidants and energy metabolism. Recon2-ID (Thiele et al., 2013) of 
metabolites is shown in black and reactions in red. Columns and rows of the heat map are 
sorted by hierarchical clustering. 
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but remarkably, we found that more AMs in COPD express the genes encoding the 

enzymes involved in the predicted part of the phospholipid pathway (Figure 21A, 

violin plots), confirming the higher mean metabolic activity in COPD patients as 

indicated by Compass. Moreover, we found additional evidence of COPD-mediated 

alterations in lipid metabolism when visualizing the expression of genes found in lipid-

associated gene sets contained in the upper percentile of the functional gene sets with 

the highest separation potential according to GO-shuffling (Figure 21B). Intriguingly, 

among these genes we found several that encoded for receptors of cholesterol uptake 

(CD36, LDLR, MSR1, and TREM2) and for proteins involved in cholesterol ester 

synthesis (ACAT1/2 and SOAT1) which mediates cholesterol storage, but also genes 

that encoded cholesterol ester hydrolases (LIPA and NCEH1) (Figure 21B). These 

findings are in agreement with the Compass-predicted upregulation of mevalonate in 

COPD patients (Figure 20), which is one of the key metabolites in the synthesis of 

isoprenoids, to which cholesterol belongs. To gain a better understanding of whether 

and how the expression of genes encoding essential enzymes of the cholesterol 

metabolism in the identified AM cluster (Figure 21C) differed between COPD and 

controls, we visualized their respective median expressions (Figure 21D). While the 

smaller clusters (cluster 9 – 12, Table 6) showed hardly any differences, we detected 

a higher expression of cholesterol-associated genes in cells of COPD patients in most 

of the larger clusters (cluster 0 – 8). However, we also found a few exceptions, such 

as the cholesterol acyltransferase ACAT2, whose gene expression was 

downregulated in clusters 5, 6, and 8 in COPD, but showed either no or an 

upregulation in the other clusters (Figure 21D).  

Next, we assessed the validity of the in silico predicted alterations in lipid metabolism 

of COPD patients by isolating AMs from COPD GOLD 2 patients and control donors 

and using them as input for an in-depth lipidomics analysis, which comprised the 

detection of 229 lipid species belonging to 16 different lipid classes. We observed a 

clear trend towards higher levels of the monoacylglycerol class in COPD patients 

(Figure 21E), but the biggest difference in lipid classes between COPD and control 

samples was found in cholesteryl ester, which was significantly higher in COPD AMs 

than in controls (Figure 21F). The detected accumulation of cholesterol within AMs is 

reminiscent of the pulmonary foam cell-like phenotypes of AMs reported for other lung 

diseases, such as  
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lipoid pneumonia (Collins et al., 1995) or vaping-related lung injury (Maddock et al., 

2019). These phenotypes are characterized by the cells being predominantly 

cholesterol-laden. In pulmonary alveolar proteinosis (PAP), increased cholesterol/lipid 

accumulation within AMs can be mediated by defective GM-CSF signaling and, as a 

consequence, reduced PPARG and cholesterol transporter (ABCG1) expression (De 

Aguiar Vallim et al., 2017; Sallese et al., 2017; Trapnell et al., 2019). However, this 

mechanism is unlikely in COPD AMs since we did not observe clear downregulation 

of either PPARG (Figure 21B) or ABCG1 (Figure 21D).  

Taken together, we found metabolic changes in the AMs of COPD, which is partially 

characterized by an accumulation of cholesteryl ester in the diseased cells. 

 

 

Figure 21. Characterization of altered lipid metabolism in AMs of COPD patients 

(A) Scheme of the part of the phospholipid metabolism containing signaling pathways and 
metabolites for which Compass predicted a difference between COPD and control. Pathways 
and metabolites predicted by Compass are highlighted with a gray background. Enzymes 
involved in metabolism are abbreviated with a number that identifies them in the table on the 
left. Violin plots in the table are displaying the gene expression of the respective enzymes. 
The plots show the expression across the donors, whereby the donors were downsampled 
to the same number of cells, followed by downsampling to the same number of cells between 
COPD and control. The plots display cells with an expression > 0. The areas of the violin plot 
are scaled proportionally to the number of observations. (B) Heat map of lipid metabolism-
associated genes predicted by the GO-shuffling approach. The mean gene expression per 
donor is represented as a z-transformed value (across all donors). Columns and rows of the 
heat map are sorted by hierarchical clustering. Names of selected genes are depicted at the 
bottom of the plot. (C) Schema of the key steps in cholesterol metabolism and storage. 
Metabolites predicted by Compass are highlighted with a gray background. Enzymes 
involved in metabolism are abbreviated with a number that identifies them also in (D). (D) 
Heat map representation of cholesterol metabolism-associated genes (acc. to (C)) across the 
identified AM clusters (acc. to Figure 19A). Depicted is the group median (group = COPD or 
control) of the z-transformed mean expression data per donor and AM cluster across all AM 
clusters. Columns and rows of the heat map are sorted by hierarchical clustering. (E) Stacked 
bar plot displaying the mean proportions (represented in mol permille) of lipid classes 
obtained by lipidomics analysis (control n = 4, COPD n = 6). (F) Box plot of cholesteryl ester 
proportions (acc. to (E)) with the representation of individual donors. 
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4.5. Identification of AM cluster-level differences using a novel DE 

analysis approach 

4.5.1. Characterization of identified AM clusters 

To gain a better understanding about the functionalities of the identified AM clusters 

(Figure 19A and 22A), we calculated the respective marker genes (Figure 22B). 

Collectively, all AM clusters clearly belonged to the macrophage cell lineage as 

defined by the expression of typical signature genes (MSR1, MRC1, MARCO) with the 

exception of cluster 10, which, as mentioned above, represented monocytes (Figure 

19B). In addition to the macrophage signature, cluster 8 was also characterized by 

proliferation-associated genes (MKI67, TOP2A, and NUSAP1) as well as by increased 

expression of histones (HIST1H4C and HIST1H1D) (Figure 22B). Furthermore, the 

majority of the cells within cluster 8 could be assigned to the G2/M cell cycle phase 

(Figure 22C), strongly supporting that this cluster represented proliferating AMs. 

Clusters 9 and 6 were highly enriched for the expression of MHC class II molecules, 

namely HLA-DQ and HLA-DR respectively, while cluster 12 carried hemoglobin genes 

(HBA2, HBA1, and HBB) either due to engulfed erythrocytes, transcriptional mixture 

of erythrocytes and AMs or induction of hemoglobin genes in macrophages (Liu et al., 

1999). We also examined whether the AM clusters were formed uniformly by all donors 

or whether a cluster was defined by the overrepresentation of an individual donor 

(Figure 22D). Exclusively for cluster 12 (MФ/erythrocyte), 2 and 11, we found a donor 

effect, with the latter being characterized by the expression of the T cell-associated 

genes CD2 and CCL5, which led us to label this cluster as ‘ILC-like’ macrophages. 

Interestingly, cluster 5 exhibited relatively strong expression of the monocyte-

associated genes VCAN and S100A8 together with the monocyte attractant CCL2 and 

the late monocyte-to-macrophage differentiation marker CHIT1 and was therefore 

defined as ‘mono-like’ macrophages. This cluster also shared some markers with 

cluster 7, which was additionally high in interferon-response genes (IFIT1 and IFIT2), 

and cluster 3 that showed increased expression of complement components (C1QA-

C) and α1-antitrypsin (SERPINA1). The remaining cluster 4 contained a relatively 

large number of specific marker genes, but it was not possible to  
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draw conclusions about the functionality of the cluster based on these genes (marked 

by '?' in Figure 22B). 

 

 

Figure 22. Characterization of identified AM clusters 

A) UMAP representation and clustering of cells contained in main clusters 0-9, which are 
annotated as monocytes or macrophages (acc. to Figure 15B). (B) Heat map of calculated 
marker genes per AM cluster (acc. to (A)). The marker gene expression is represented as a z-
transformed value across all AM clusters. On the left side of the heat map, conserved 
macrophage markers are depicted. Columns and rows of the heat map are sorted by 
hierarchical clustering. Suggested nomenclature for each AM cluster is depicted at the bottom 
of the plot. (C) Bar plot representation of the proportion of cells in the respective cell cycle 
states per AM cluster. (D) Stacked bar plot showing the proportion of individual donors in each 
AM cluster. 
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4.5.2. Prediction of the functionalities of AM clusters 

To shed further light on the potential functions of the identified AM clusters, we 

performed a gene set variation analysis (GSVA) (Hänzelmann et al., 2013) based on 

pseudo bulk samples per cluster and donor generated from scRNA-seq data (Figure 

23A) and visualized the identified terms in an UpSet plot (Conway et al., 2017) (Figure 

23B). This type of visualization provided the advantage of determining which cellular 

processes and functions were shared by the clusters and which were cluster-specific. 

Among the shared terms, we found enrichment of ‘antigen presentation’, ‘endocytosis’, 

‘oxidative phosphorylation’ and ‘β-oxidation’, which represented some of the major 

cellular functions of macrophages in the alveolar space. Intriguingly, the cells of cluster 

4, whose potential functionalities were difficult to identify on the basis of marker gene 

inspection (Figure 23B), showed a specific enrichment of the mTOR pathway, which 

was recently associated with the induction of cellular senescence in non-immune cells 

of the lung (Barnes, 2017; Houssaini et al., 2018). To determine whether cluster 4 cells 

are in a cellular senescent state, we performed an enrichment analysis on AMs using 

senescence-associated gene sets (Figure 23C). Indeed, we found an enrichment of 

cell ageing and mitochondrial genes in cluster 4, but without an enrichment of 

apoptosis and WNT signaling genes, which made a potential senescent state of the 

cells likely. Moreover, cluster 4 showed also a specific downregulation of genes 

described as downregulated in aged immune cells (IMM-AGE signature (Alpert et al., 

2019)), which supported the characterization of cluster 4 as senescent AMs. 

Taken together, the combination of marker gene inspection and GSVA enabled the 

characterization of the AM cluster, with the more functional-/marker-based labeling of 

the clusters being hereinafter referred to as ‘AM states’ (Figure 23D). 

 

 

4.5.3. Novel DE analysis approach revealed major changes in most AM 
clusters of COPD patients 

As the next layer of analysis to determine differences caused by COPD, we examined 

each identified AM cluster for statistically significant differences in the transcriptome  
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Figure 23. Association of AM clusters with functional terms 

(A) Schematic workflow to predict the cellular functions of each AM cluster based on GSVA. 
(B) UpSet plot of the GSVA results (acc. to (A)). Terms of cellular functions found in the same 
clusters are grouped into bins and the size of the bins is represented as a bar plot on the right, 
with bins containing more than 25 terms (dashed line) colored red. On the left side, dots 
indicate which clusters contain and share the binned terms. Frequently occurring terms of 
cellular functions within the bins containing more than 25 terms are shown. (C) Violin plots 
displaying enrichment of different gene sets across clusters based on ‘Area Under the Curve’ 
(AUC). (D) UMAP representation of integrated macrophages and monocytes with coloring 
according to identified clusters (acc. to Figure 22A). The clusters are labeled based on 
information from marker genes (acc. to Figure 22B) and functional association (acc. to (B+C)).  
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between COPD and controls. The structure and characteristics of the dataset, on 

which the present COPD study is based, represent a form that is currently being 

increasingly generated in the scRNA-seq field, especially in studies to answer clinically 

relevant questions, namely a dataset with replicated multiple conditions. To meet the 

needs of the analysis of such scRNA seq data, we developed a DE-analysis approach 

based on the Wilcoxon rank sum test between COPD and control cells in combination 

with a robustness measure using permutation tests, which also considers possible 

individual donor effects (Figure 24A). The application of the novel DE analysis 

approach and the visualization of genes, which showed a statistically significant 

difference, in an UpSet plot indicated that the majority of DE genes were cluster-

specific (Figure 24B). However, since the selection of DE genes is based on strong 

statistical differences and excludes transcriptional tendencies, we next investigated 

whether we could confirm cluster-specific differences in a heatmap plot showing the 

relative difference between controls and COPD per AM cluster (Figure 24C). This kind 

of data representation revealed that the putative cluster-specific DE genes also 

exhibited differences with similar directions between COPD and controls in other AM 

clusters. In addition, by focusing on DE genes found to be statistically significant in 

only a single cluster (Figure 24B) and plotting the corresponding calculated Wilcoxon 

scores for all AM clusters, it became evident that the direction of the scores was the 

same in all clusters, mainly towards increased expression in COPD (Figure 24D). 

Therefore, although the DE analysis revealed in which AM clusters the greatest 

difference between COPD and control for a given gene was found, this difference was 

not necessarily cluster-specific because the same direction of the difference could also 

been observed in several other clusters. To evaluate the validity of our novel DE 

analysis approach, we selected two genes (ITIH5, COLEC12) characterized by a 

particularly high Wilcoxon score in a single AM cluster (Figure 24D) and visualized 

their mean expression across all clusters (Figure 24E). The visualization confirmed 

that the difference between COPD and control for the selected genes was most 

pronounced in the AM clusters, which also exhibited the highest Wilcoxon score, thus 

confirming the reliability of our DE analysis approach.  

After confirmation of the validity of the DE analysis approach and identification of 

conserved directions in the transcriptional differences between COPD and controls, 

we  
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next examined the DE results. Interestingly, among the DE genes, we identified 

NOTCH-associated genes such as YY1 and the metalloendopeptidases ADAM9, 

ADAM10 and ADAM17 (Figure 24C). Moreover, in accordance with the Compass 

analysis, lipid metabolism-associated genes (e.g. CD36, COLEC12, SOAT1, and 

PPARG) were upregulated in COPD, which was also true for genes associated with 

oxidative phosphorylation (e.g. COA13, MT-CO2, MT-ND2, and MT-ATP6) (Figure 

24C-E). We also found an increased expression of the surface molecule CD163, which 

has been previously described in the context of AMs in COPD by 

immunohistochemistry (Kaku et al., 2014; Kunz et al., 2011).  

Finally, in order to put the DE genes, which showed a strong difference in several AM 

clusters and thus are likely representatives of strong changes in the AM population, 

into a more functional context, we performed a gene set enrichment analysis (GSEA) 

on genes found as DE in at least three AM clusters (Figure 24B). This analysis 

revealed an enrichment of terms related to focal adhesion and immune response such 

as antigen processing and presentation (Figure 24F). 

Figure 24. Distribution-free DE-gene analysis of identified AM clusters 

(A) Schematic workflow of the distribution-free permutation test-based DE analysis approach. 
(B) UpSet plot of calculated DE genes across AM clusters. DE genes found in the same AM 
clusters are binned and the size of the bins is represented as a bar chart. At the bottom, dots 
indicate which AM clusters contained and shared these DE genes. (C) Heat map 
representation of the union of all DE genes found in the AM cluster. Depicted is the group 
median (group = COPD or control) of the z-transformed mean expression data per donor and 
AM cluster across all AM clusters, and the names of some selected DE genes are shown on 
the right side of the plot. Columns and rows of the heat map are sorted by hierarchical 
clustering. (D) Dot plot for the assessment of the AM cluster specificity of DE genes. DE 
genes found in only one cluster according to UpSet plot in (B) are depicted on the x-axis and 
the respective Wilcoxon scores for each AM cluster on the y-axis. Dots of DE genes are 
highlighted (green = up in control; orange = up in COPD) and the respective gene name is 
shown if the p-value for the significance test of the DE gene in the respective AM cluster is < 
0.01 and its Wilcoxon score has a difference of ≥ 2 to the median Wilcoxon score of the 
remaining AM clusters. In addition, DE genes with the highest Wilcoxon score in the same 
AM cluster are binned. The corresponding AM cluster number is shown at the bottom of the 
plot and dashed lines separate the bins. (E) Lollipop plot of two selected DE genes from (D). 
(F) Selected functional gene sets from GSEA based on DE genes that reach the defined 
significance cutoffs in more than two AM clusters (acc. to (B)).  
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Collectively, we were able to characterize the identified AM clusters, which showed 

that this cell population exhibits high transcriptional plasticity. Furthermore, DE 

analysis showed that the majority of transcriptional differences are attributable to 

increased expression in COPD. In addition, we found that for the majority of the 

identified DE genes, the direction of the difference between COPD and control AMs 

was shared across several clusters, indicating a global and similar impact of the 

disease on different AM states in the alveolar space.  

 

 

4.6. Validation of in silico findings 

4.6.1. Reduced MHC I expression on the surface of AMs from COPD 
patients 

Since the DE analysis with subsequent GSEA indicated an enrichment of focal 

adhesion and antigen presentation in AMs (Figure 24F), we further investigated the 

underlying DE genes. First, we visualized the expression of antigen presentation-

associated DE genes, which showed again that the majority of genes were higher 

expressed in COPD, except for the human leukocyte antigen (HLA) genes HLA-E and 

HLA-DRB1, and the HLA-associated genes B2M and CD74, which exhibited higher 

expression in control samples (Figure 15A). To assess whether the altered expression 

could also be observed in other HLA genes, we comprehensively evaluated the 

expression profiles of MHC II and I cell surface receptors of AMs. The most abundant 

HLA gene in the dataset was the MHC II-encoding HLA-DRA gene (Figure 25B). 

Moreover, among the top expressed HLA genes, we found further genes of the MHC 

II class (HLA-DRB1, HLA-DRB5, HLA-DPA1, HLA-DPB1 and HLA-DQB1) together 

with MHC I-encoding genes (HLA-A, HLA-B, HLA-C and HLA-E). Intriguingly, when 

plotting the expression of these genes for control and COPD samples separately 

(Figure 25C+D), we found that the HLA genes were consistently downregulated in the 

COPD samples, with the only exception of HLA-DRA and HLA-DRB5, which showed 

no difference in expression (Figure 25D). To assess whether the  
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Figure 25. Alteration of MHC expression in AMs of COPD patients 

(A) Heat map of DE genes, which according to GSEA are enriched in the GO term ‘antigen 
processing and presentation of exogenous peptide antigen’ (acc. to Figure 24F). The mean 
gene expression per donor is represented as a z-transformed value (across all donors). Rows 
of the heat map are sorted by hierarchical clustering. (B) Bar plots showing the mean 
expression of various MHC genes in complete AM dataset. (C+D) Violin plots of MHC I (C) 
and MHC II (D) gene expression in AMs based on scRNA-seq data. The plots show the 
expression across the donors, whereby the donors were downsampled to the same number  
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observed differences between COPD and controls at the transcriptional level were 

also translated to the protein level, we isolated AMs from additional patients and 

measured protein levels of MHC class I (HLA-A/-B/-C) (Figure 25E) and class II (HLA-

DR) (Figure 25F). In accordance with the transcriptome data, MHC class I was 

significantly reduced on the surface of AMs from COPD patients, while MHC class II 

molecules showed no clear difference (Figure 25E+F). As mentioned above, we have 

also observed transcriptional downregulation of CD74, which has an ambivalent 

function. Intracellularly, it serves as an invariant chain to support the loading of MHC 

class II molecules, but CD74, which is expressed on the cell surface, acts as an 

important receptor to trigger immune-regulatory responses. Interestingly, we observed 

a significant decrease in cell surface expression of CD74 on AMs of COPD patients 

(Figure 25G).  

 

 

4.6.2. COPD-associated decrease in migration of AMs towards CCL3 

Next, we plotted DE genes associated with focal adhesion according to GSEA (Figure 

24F). The DE genes associated with focal adhesion and that were elevated in COPD, 

included cell adhesion molecules (e.g. ITGB1 or ALCAM) and cytoskeleton organizing 

molecules (e.g. PARVG or ARPC2/5) (Figure 26A), pointing towards either increased 

motility, or increased local adhesion strength of these cells. To assess the migratory 

and  

of cells, followed by downsampling to the same number of cells between COPD and control. 
The plots display cells with an expression > 0. (E) Fluorescence intensity histograms on the 
left showing representative samples of flow cytometric analysis of HLA-A/-B/-C expression 
on the cell surface of isolated AMs (FMO = fluorescence minus one). On the right side, box 
plots of the calculated effect sizes of HLA-A/-B/-C expression in COPD and control with the 
representation of individual donors (control n = 8, COPD n = 5). (F) Fluorescence intensity 
histograms on the left showing representative samples of flow cytometric analysis of HLA-
DR expression on the cell surface of isolated AMs. On the right side, box plots of the 
calculated effect sizes of HLA-DR expression in COPD and control with representation of 
individual donors (control n = 6, COPD n = 4). (G) Box plots of the calculated effect sizes of 
CD74 expression in COPD and control with representation of individual donors (control n = 
7, COPD n = 3). 



4. Results 

122 
 

 

Figure 26. Reduced migration of AMs from COPD patients towards CCL3 

(A) Heat map of DE genes, which according to GSEA are enriched in the GO term associated 
with focal adhesion (acc. to Figure 24F). The mean gene expression per donor is represented 
as a z-transformed value (across all donors). Rows of the heat map are sorted by hierarchical 
clustering. (B) Heat map representation of proteins detected in BALF with a p-value < 0.1 
according to the Wilcoxon rank sum test between COPD patients and control donors (control 
n = 11, COPD n = 12). The mean protein expression (identified by Olink Proteomics) per donor 
is represented as a z-transformed value (across all donors). Columns of the heat map are 
sorted by hierarchical clustering. (C) Heat map representing the BALF cell type-dependent 
expression of genes whose protein counterparts were found in BALF (acc. to (B)). If the 
corresponding protein is upregulated in the control group, the mean gene expression was 
calculated across the control donors and represented as a z-transformed value (across all 
control donors) (top panel). Similarly, mean expression was calculated only in COPD patients 
when the corresponding protein is upregulated in COPD (bottom panel). (D) Quantification of 
the migratory capability of AMs towards CCL3 displayed in a box plot with the representation 
of individual donors (control n = 4, COPD n = 4). 
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chemotactic ability of AMs, we first aimed to select a chemokine gradient that most 

closely reflected the situation in the alveolar space. For this purpose, we examined 

BALF for cytokines and chemokines and found a significantly elevated protein 

concentrations of chemotactic factors that recruit neutrophils (IL8) and eosinophils 

(CCL11) in COPD patients (Figure 26B). This is in accordance with our MCFC-based 

quantification of immune cells in the alveolar space of COPD patients and control 

donors, which revealed a significant increase of neutrophils and a tendency towards 

elevated eosinophil numbers in COPD patients (Figure 9). Our BALF screen also 

revealed a COPD-associated elevation of the CCL3 level (Figure 26B), which is a 

known chemokine involved in motility and migration of macrophages (Opalek et al., 

2007). As indicated by scRNA-seq, CCL3 can be derived from numerous cell types in 

the alveolar space of COPD patients, especially from neutrophils, but also from T cells, 

IFIT+ and mono-like macrophages (Figure 26C). However, despite the increase of 

CCL3 in BALF, the intrinsic property of AMs from COPD patients was an overall 

reduced migratory response towards CCL3 (Figure 26D), possibly due to increased 

adhesive properties. 

 

 

4.6.3. Increased proton leakage of mitochondria in AMs of COPD 
patients 

Along with DE genes associated with antigen presentation and cell adhesion, we also 

found a significantly increased expression of mitochondrial genes in COPD AMs 

(Figure 24C). Given that we have already excluded cells from further analysis that 

possessed a high relative mitochondrial gene proportion, indicating apoptotic cells 

(Material and Methods), the upregulation of mitochondrial genes in the remaining 

AMs could be an indication of a process that may not be directly related to apoptosis. 

Thus, the increased mitochondrial gene expression might represent a cellular 

adaptation to elevated metabolic activity as indicated by the Compass analysis 

(Figure 20). In addition, it has been described that smoke exposure can lead to 

increased mitochondrial dysfunction in cells and thus to increased production of ROS 

(Hoffmann et al., 2013). Since the main cause of COPD in industrialized countries is 

cigarette abuse and the observed upregulation of mitochondrial genes could indicate 
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a compensation mechanism for mitochondrial dysfunction, we investigated the 

mitochondrial functionality of AMs in more detail by using the Seahorse technology 

(Figure 27A). Indeed, we identified increased baseline respiration in AMs of COPD 

patients (Figure 27B+C), which reflects an elevated energy demand. We also found 

a significant increase in proton leakage in AMs of COPD patients, which is indicative 

for increased ROS production in COPD (Boukhenouna et al., 2018; Cheng et al., 2017; 

McGuinness and Sapey, 2017) and mitochondrial dysfunction (Eapen et al., 2019; 

Hoffmann et al., 2019; Ng Kee Kwong et al., 2017).  

Taken together, these validation studies verified the results obtained from scRNA-seq 

data. In detail, we confirmed a decreased expression of MHC I cell surface receptors, 

a reduced migratory ability and an increased mitochondrial dysfunction in AMs of 

COPD patients. Together with the aforementioned results, a picture of a profound 

metabolic and functional alteration of AMs in COPD patients emerges. 
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4.7. DE-gene regulation by complex cell-to-cell communication 

networks 

4.7.1. Prediction of TFs regulating the expression of DE genes 

After identification and characterization of transcriptional changes mediated by COPD, 

the next step was to understand the regulation of the identified DE genes in AMs. For 

this purpose, we focused on AM states with a minimum of 30 DE genes between 

COPD patients and control donors and predicted potential upstream transcriptional 

regulators of the DE genes. To determine which predictions were shared by several 

AM subtypes, we visualized TFs found in at least three AM states in an UpSet plot 

(Figure 28A). This representation of the data revealed that only a single TF was 

shared among all AM states, namely YY1 that is an important modulator of NOTCH 

signaling (Liao et al., 2007; Yeh et al., 2003). The importance of the NOTCH signaling 

in the regulation of DE genes was further supported by the identification of the TFs 

HES1 and HEY1, which are known to be induced by NOTCH signaling and whose co-

regulation was predicted only in mono-like and C1Q+ macrophages. In addition to 

NOTCH signaling, we also found transcriptional regulators associated with WNT 

signaling (e.g. TCF3/4, MYC, and NFATC1/3), TNF/ NF-κB signaling (e.g. CEBPB and 

REL) and TGFβ signaling (e.g. TFE3 and MYOD1), as well as TFs involved in the 

regulation of the circadian rhythm (e.g. BHLHE40/41, CLOCK, and  

Figure 27. Mitochondrial alterations in AMs from COPD patients 

(A) Schema of the time-dependent course of the oxygen consumption rate (OCR) and the 
inferred mitochondrial parameters based on the injection of different compounds (shown at the 
top of the plot). (B) Evaluation of mitochondrial function via the time-dependent course of the 
oxygen consumption rate (OCR) in AMs, using baseline-corrected values. Error bars indicate 
the standard deviations derived from the measurements of several donors (control n = 2, 
COPD n = 3). Dashed arrows represent the injection of various compounds (shown at the top 
of the plot) used to assess different aspects of mitochondrial function (acc. to (A)). (C) Bar 
plots showing quantifications of different aspects of mitochondrial function inferred from the 
OCR measurement in (B). 
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TIMELESS). Importantly, some predicted TFs are known to be not associated with a 

single signaling pathway, but rather represent a connecting point of several pathways, 

such as MYC, which plays a central role in WNT, NOTCH and TGFβ signaling and 

has therefore been predicted in almost all AM states. Next, we investigated whether a 

selection of the predicted TFs are expressed at all in lung macrophages. Since many 

TFs are rather lowly expressed and thus often not sufficiently detected by some 

scRNA-seq technologies, we examined the expression in an additional dataset 

obtained from aged mouse lungs (Angelidis et al., 2019b). Many of the predicted TFs 

are indeed expressed in lung macrophages, including Bhlhe40/41, Cebpb, Yy1, Hes1, 

Tcf4, Myc, Nfatc1, and Tfe3 (Figure 28B). 

 

 

4.7.2. Construction of cell-to-cell communication networks of BALF cells 

Since the induction and regulation of specific signaling pathways is always dependent 

on the microenvironment and the associated intercellular communication, we next 

investigated cell-cell interactions between immune cells in the alveolar space. 

Therefore, we applied a recently introduced model for cell-to-cell communication 

based on known receptor-ligand interactions (CellPhoneDB (Efremova et al., 2019, 

2020; Vento-Tormo et al., 2018)). The network construction of the identified cell-to-cell 

interactions from control samples revealed that mono-like and C1Q+ macrophages 

were the major hubs within the network (Figure 29A, left network). Upon COPD, the 

overall cell-to-cell communication was strongly increased (Figure 29A, right 

network). To determine differences between the control and COPD network, we 

visualized variations in connectivity in a heat map, which showed that in COPD the 

Figure 28. Prediction of TFs upstream of DE-genes in AMs 

(A) UpSet plot of predicted transcriptional regulators of DE genes. Dots indicate which clusters 
contain and share predicted transcriptional regulators. The names of selected regulators are 
shown on the bottom of the plot with the font color indicating the association with NOTCH, 
WNT, TGF-β, TNF or circadian rhythm signaling. (B) Dot plot representation of the expression 
of selected TFs (acc. to (A)) in lung-derived cells from mice (Angelidis et al., 2019). The 
macrophage populations are highlighted with a pale red background. 
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highest overall increase in cell-to-cell interactions was found in mono-like, C1Q+, and 

IFIT+ macrophages (Figure 29B). Next, we focused our analyses on one of the hub 

cell-types within the networks, namely mono-like macrophages. Among the predicted 

mono-like macrophage interactions that possessed a clear difference between COPD 

and control, we identified several receptor-ligand pairs associated with the TNF 

superfamily (Figure 29C). Furthermore, we found an increased likelihood of 

interaction between the ligand TGFB1 and the receptor TGFBR1 in COPD. Taken 

together, the cell-to-cell interaction network construction revealed a strong increase in 

the communication of immune cells in the alveolar space in COPD, with mono-like and 

C1Q+ macrophages being the most strongly connected cell types. In addition, we 

found that many predicted receptor-ligand interactions, which were found exclusively 

in COPD, were associated with TNF signaling.  

 

 

4.7.3. Modeling of intracellular regulation of DE genes in mono-like 
macrophages 

While CellPhoneDB predicts potential receptor-ligand interactions based on their 

expression on sender and receiver cells, it does not model the downstream 

transcriptional effects of these interactions. Thus, to enable the integration of 

downstream effects in our analysis, we applied the NicheNet algorithm (Bonnardel et 

al., 2019; Browaeys et al., 2019) and focused the analysis again on mono-like 

macrophages. In a first step, we identified ligands, whose ligand activities could best 

define the DE genes in mono-like macrophages (Figure 30A). Importantly, among the 

top-ranked ligands, we again found TGFB1. To facilitate the downstream interpretation 

of the DE genes, which might be regulated by the predicted upstream ligands, we 

grouped them according to the cellular processes in which they are involved including 

lipid metabolism, immune system process, cell adhesion, and differentiation (Figure 

30A, bottom panel). Notably, some of these DE genes were also associated with cell 

signaling pathways containing TFs that were predicted as potential upstream 

transcriptional regulators (Figure 28), such as NOTCH signaling (RBPJ and ADAM9) 

and circadian rhythm (BHLHE40/41). Next, the linkage  
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Figure 29. Construction of cell-to-cell communication networks of BALF immune cells 

(A) Network representation of predicted cell-to-cell interactions derived from CellPhoneDB. 
The names of the three most interconntected cell types are displayed. (B) Heat map 
representing differences in the cell-to-cell connections between the networks in (A). Columns 
and rows of the heat map are sorted by hierarchical clustering. (C) Dot plot representation of 
mono-like macrophage-dependent ligand-receptor interactions predicted by CellPhoneDB that 
show significant enrichment (represented by the p-value) of the interacting pair in the 
interacting cell types either in COPD or in the control. Depicted are only selected interactions. 
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between target genes and the predicted upstream ligands were visualized in a Circos 

plot, revealing the highly complex and strongly interwoven nature of the cell-to-cell 

communication network for DE gene regulation (Figure 30B). In addition, the Circos 

plot representation also provided an overview of the potential sender cells of the 

predicted ligands. Thus, mast cells and the macrophage population were found to be 

the primary sender cells of TGFB1. This became even more evident when the mean 

expression of the predicted ligands per cell type and condition (COPD and control) 

was plotted, which showed that especially mono-like and C1Q+ macrophages together 

with mast cells expressed TGFB1, whereby the respective mean expressions were 

elevated in COPD (Figure 30C). To investigate whether this observed increase of 

TGFB1 expression in COPD patients was also translated to an elevated protein level, 

we examined the BALF of COPD patients and control donors for the latency-

associated peptide TGF-β1 (LAP TGF-β1), which served as a surrogate for the TGF-

β1 protein level. Although not significant, we detected a clear tendency towards 

increased LAP TGF-β1 levels in COPD (Figure 30D). Next, we further characterized 

the TGFB1-mediated regulation of identified DE genes by inferring signaling paths 

between TGFB1 and its predicted target genes. The nodes in the constructed paths 

were colored according to the expression fold change (FC) between COPD and 

control, whereby, among the transcriptional regulators found to be upregulated in 

COPD, we identified the classical TGF-β signaling mediator SMAD4 (Figure 30E). In 

addition, we also found some TFs that were already predicted as potential upstream 

transcriptional regulators of DE genes in AMs (Figure 28), which showed increased 

FCs in this analysis and thus indicated an up-regulation in COPD. Among these TFs 

were e.g. EP300 and MYC, which are not only involved in TGFβ but also in other 

signaling pathways, which in turn illustrated again the complex and interconnected 

DE-gene regulation in mono-like macrophages. 

In summary, within a highly complex network of DE-gene regulation , we predicted 

TGF-β signaling as a prominent regulator in mono-like macrophages but also other 

pathways including NOTCH signaling.  
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4.8. Supply of the AM pool by blood monocytes 

4.8.1. Identification of COPD-associated changes in cell-type proportions 

To determine the difference between COPD and controls not only at the gene level, 

but also to investigate a possible redistribution in the population sizes of immune cells 

in the alveolar space upon disease, we next visualized the relative proportions of the 

identified immune cell types and subtypes (Figure 31). Among the AM states, which 

showed the largest population difference between COPD and controls, we found 

proliferating and mono-like macrophages as increased in COPD while common and 

HLA-DQ+ macrophages were decreased (Figure 31A). Intriguingly, together with T 

cell 3 (Figure 31C), the proliferating and mono-like macrophages were also the 

populations that  

 

Figure 30. Investigating cell-to-cell interactions to infer important signaling pathways in AMs 

The focus of this analysis is on mono-like macrophages. (A) The top heat map represents the 
NicheNet analysis showing the potential of predicted upstream ligands (on the y-axis) to 
regulate downstream targets derived from DE genes (on the x-axis). The ligand activity score 
is depicted as the color-coded area under the precision recall curve (AUPR) on the right side 
of the plot. The ligands were grouped and ordered based on the cell types from which they are 
most likely expressed (acc. to (C)). The mean gene expression of the target genes across 
donors is shown in the lower heat map. The mean gene expression per donor is represented 
as a z-transformed value (across all donors). Rows of the heat map are sorted by hierarchical 
clustering. Target genes are ordered and grouped according to cellular functions and signaling 
pathways, as illustrated at the bottom of the plot. (B) Circle plot showing possible regulatory 
connections between the ligands expressed on different sender cells (acc. to (C)) and the 
downstream target genes. Target genes are ordered according to (A) as indicated by the 
numbering. (C) Heat map representation of the mean expression of predicted upstream ligands 
(acc. to (A)) in controls and COPD patients across cell types in BALF. Columns and rows are 
sorted by hierarchical clustering. (D) Box plot of the measured protein expression (by Olink 
Proteomics) in BALF of LAP TGF-β1 in COPD and control with representation of individual 
donors (control n = 11, COPD n = 12). (E) Representation of inferred ligand-to-target signaling 
path for TGF-β1 derived from the NicheNet analysis (targets: acc. to (A)). Coloring of nodes 
according to the mean expression fold change between mono-like macrophages from COPD 
and control. 
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showed the most significant increase in the relative proportion size of all immune cells 

of the alveolar space in COPD. Of the remaining cells, we found a tendency towards 

an  

increased number of mast cells and pDCs in COPD patients; a trend that was also 

followed by neutrophils (Figure 31B).  

Taken together, the strongest increase in the population size of immune cells derived 

from BALF was found in the T cell 3, proliferating macrophage, and mono-like 

macrophage populations.  

 

 

4.8.2. Identification of AM states with enrichment of monocyte-derived 
macrophage signatures 

As described above, mono-like macrophages expressed transcriptional markers 

reminiscent of monocytes (Figure 22B) and were increased in the relative population 

size upon COPD (Figure 31A). In addition, some of the identified pathways regulating 

the DE genes in this AM state (e.g. TGF-β and NOTCH signaling) (Figure 30) are 

known orchestrators of cell differentiation. These aspects are particularly interesting 

in the context of tissue macrophage replenishment that has been linked to the 

proliferation of tissue-resident cells (Hashimoto et al., 2013) but also influx and 

subsequent differentiation of monocyte-derived cells from the circulation (Guilliams 

and Scott, 2017). Therefore, we next investigated whether the mono-like AM state 

might represent an early stage of monocyte-to-macrophage differentiation. For this 

purpose, we used a gene signature of murine monocyte-derived macrophages (MDM) 

from the lungs of smoke-exposed mice (Wohnhaas et al., unpublished data) and 

assessed the enrichment of orthologous genes in the identified human AM states 

Figure 31. Quantification of the relative population sizes of BALF immune cells based on 
scRNA-seq data 

Population sizes are represented as cell type frequencies calculated per donor and visualized 
in box plots. (A) Relative population sizes of AM subtypes. (B) Relative population sizes of 
BALF myeloid cells other than AMs. (C) Relative population sizes of BALF lymphoid cells.  
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(Figure 32). The strongest enrichment of the MDM signature was found in mono-like 

and C1Q+ AMs. As an additional gene signature, we used orthologous genes derived 

from murine lipid-associated macrophages (LAM), which were detected in human 

adipose tissue and were shown to be monocyte-derived by lineage tracing (Jaitin et 

al., 2019). We again found the strongest enrichment in mono-like and C1Q+ AMs. The 

same was also true for orthologous genes derived from Trem2+ foam cells of 

atherosclerotic plaques in mice (Kim et al., 2018), which were found by Lin et al. to 

originate from monocytes (Lin et al., 2019), supporting the hypothesis that mono-like 

and C1Q+ macrophages are actually derived from monocytes.  

 

 

 

   

Figure 32. Enrichment of monocyte-derived macrophage signatures in AMs 

Violin plots displaying enrichment of human orthologues of several murine 
monocyte-derived macrophage gene signatures across AM states in COPD 
and control based on ‘Area Under the Curve’ (AUC). 
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4.8.3. Generating a blood scRNA-seq dataset 

The most likely source of monocytes that give rise to AMs are blood monocytes. 

Therefore, we performed scRNA seq of blood immune cells (n = 54,569 cells) from 

donors from whom we also obtained scRNA seq data of BALF cells (Table 2). Similar 

to the analysis of immune cells in the alveolar space (Figure 15), we annotated the 

cells according to the four-step cell-type annotation strategy (Figure 16), starting from 

the identification of main clusters (Figure 33A) and the assignment of the cells to the 

cell types using the machine learning-based cell-type annotation (Figure 33B). Next, 

we defined marker genes for the identified main clusters and determined which cell 

type occurred most frequently per main cluster according to the machine learning-

based annotation (Figure 33C). Interestingly, main clusters 2, 6, and 13 were 

annotated as ‘Progenitor leukocytes’. Further characterization of these clusters 

according to step four of the annotation approach (Figure 16) revealed that these 

clusters mainly consisted of cells with high ribosomal gene content. However, cluster 

6 was additionally characterized by the expression of the T-cell markers IL7R, CD3D 

and CD3G, but also by NK-cell markers (e.g. NKG7 and KLRG1), suggesting that this 

cluster rather contains T and NK cells that represented an activated phenotype 

reflected by the upregulation of ribosomal genes. In contrast, cluster 13 contained 

erythrocytes, as indicated by the expression of hemoglobin genes (e.g. HBA1, HBA2, 

and HBB), whereas cluster 2 did not carry specific markers but was located in between 

several cell types (Figure 33A+B), which is why we annotated them as 'ribosomal-

high mixed cells'.  

The extension of the in-depth analysis to all identified main clusters according to the 

four-step cell-type annotation strategy led to a high-resolution annotation of the 

immune cells in the blood (Figure 33D).  

 

 

4.8.4. Characterization of neutrophil subtypes in the blood 

The analysis of scRNA-sq data identified monocytes, T cells, B cells, eosinophils and 

neutrophils as the main cell types in the blood, with the latter being characterized by 

high heterogeneity as indicated by cell clustering (Figure 33A and Figure 34A). Since 

the MCFC analysis showed a significant increase of neutrophils in the alveolar space  
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of COPD patients (Figure 9A) and a clear description of the neutrophil subtypes in the 

blood is still pending, we used the in-depth analysis of the neutrophil clusters 

according to the four-step cell-type annotation strategy as an opportunity to further 

characterize these blood cells. In total, we found 12 neutrophil clusters, whereby cells 

within neutrophil cluster 9 expressed markers of platelets (e.g. TUBB1) and were thus 

identified as megakaryocytes/ platelets (Figure 34B). Interestingly, neutrophil cluster 

2 showed no specific marker expression, while most other neutrophil clusters were 

characterized by only a few markers, such as neutrophil cluster 5, whose cells 

specifically expressed APOBEC3A and APOBEC3B. In contrast, neutrophil cluster 4 

showed expression of genes associated with the IL-1 signaling pathway (TNFAIP6 

and IL1RN), while cluster 6 was associated with IL-4/IL-13 signaling (IL13RA1). In 

addition, cluster 6 shared the expression of the chemokine IL8 (CXCL8), with the 

neutrophil cluster 0 and 7. However, the latter had a clear donor bias, which also held 

true for neutrophil cluster 11 (Figure 34C). Neutrophil cluster 10 carried the largest 

number of specific markers, which comprised lysosomal maturation genes (GRN) and 

genes encoding proteins contained in neutrophil granules (LTF, BPI and DEFA3). 

Moreover, this cluster shared some marker genes with neutrophil cluster 1, including 

the matrix metalloprotease MMP9. Interestingly, according to the machine learning-

based cell-type annotation, the neutrophil cluster 10 cells were assigned to immature 

neutrophils, while cluster 3 was annotated as mature neutrophils although its cells 

expressed the granulocyte maturation marker CSF3R, indicating an additional function 

of this receptor in mature neutrophils. Finally, the neutrophil cluster 8 (corresponded 

Figure 33. Four-step cell-type annotation of blood immune cells 

(A) UMAP representation of integrated blood data obtained from different COPD patients and 
control donors. Coloring according to identified main clusters. (B) UMAP representation of 
integrated blood data with coloring according to the machine learning-based cell-type 
annotation. (C) Heat map of the calculated marker genes per main cluster. The marker gene 
expression per cluster is represented as a z-transformed value (across all clusters). Rows of 
the heat map are sorted by hierarchical clustering. At the top of the plot, additional information 
on main clusters revealed by a combination of marker gene inspection and sub-clustering of 
cell types according to the four-step cell type annotation strategy (Figure 16). At the bottom 
of the plot, the main cell type of the respective main cluster (acc. to the machine learning-
based cell-type annotation) is displayed. (D) Identified blood cell-types according to the four-
step cell-type annotation approach. 
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to neutrophil 9 according to the four-step cell annotation) was characterized by high 

expression of interferon-associated genes (IFIT1-3). In addition, it was found that this 

cluster, together with the neutrophil cluster 3 (corresponded to neutrophil 4 according 

to the four-step cell annotation) and plasma cells, had the strongest tendency towards 

elevated relative cell numbers among all blood cells in COPD (Figure 34D). 

 

 

4.8.5. Modelling the trajectory of blood monocytes into the alveolar space 

The motivation for generating scRNA-seq blood data was to model and study the 

potential of blood monocytes to replenish AMs. Based on the four-step cell-type 

annotation strategy, we identified in our blood data the three known monocyte 

populations comprising classical monocytes (CD14+ monocytes), intermediate 

monocytes (CD14+CD16+ monocytes) and non-classical monocytes (CD16+ 

monocytes) along with a small monocyte population that expressed high numbers of 

interferon-associated genes (IFIT+ monocytes) (Figure 33D). To evaluate a potential 

link between blood monocyte populations and alveolar space-derived monocytes and 

macrophages, we next modelled the possible trajectories of these cells by calculating 

the RNA velocities (Bergen et al., 2019; La Manno et al., 2018), which is a measure 

of expression dynamics in scRNA-seq data inferred from unspliced and spliced 

mRNAs detected by scRNA-seq technologies such as Seq-Well. However, current 

methods of RNA velocity analysis do not take into account potential batches within the 

dataset, and in addition, current integration methods have not yet been evaluated for 

use in RNA velocity analysis. Therefore, we used a strategy of combining the blood 

and BALF data while simultaneously considering donor batches by performing joint 

embedding based on highly variable genes shared by all patients (Figure 35A). While 

this approach allowed the combination of blood and BALF data and at the same time 

avoided potential over-fitting with current integration methods, we observed a reduced 

resolution of the defined AM states. Thus, we simplified the annotation by combining 
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transcriptional similar AMs (Figure 35A, dendrogram and combined labels), 

resulting in an annotation that could well describe the structure of AMs in the 

embedded dataset (Figure 35B, heatmaps). Projection of the main average vector 

flow visualized by RNA-velocity streamlines calculated by the scVelo method (Bergen 

et al., 2019) onto the embedded data in a batch-corrected manner revealed a clear 

motion of blood monocytes towards the AMs (Figure 35B), further supporting 

circulating monocytes as precursors of AMs in the alveolar space. Since RNA velocity 

visualization on the UMAP did not provide sufficient resolution to reveal a clear link 

between individual AM states and blood monocyte populations, we calculated a 

higher-order representation using partition-based graph abstraction analysis (PAGA) 

(Wolf et al., 2019) (Figure 35C, network). As expected, the alveolar immune cells 

with the strongest connections to blood monocytes were alveolar space-derived 

monocytes. To evaluate the connectivity of the network more precisely, we next used 

the connectivity matrix of PAGA as a test statistic to assess whether two cell types 

from BAL and blood were connected more than expected at random. The monocytes 

within the alveolar space served as positive controls indicating very high relationships. 

However, importantly, among the AM states, monocyte-like macrophages possessed 

the highest test scores indicating the strongest connections to blood monocytes, with 

CD16+ monocytes as the top-predicted connection partner in the blood (Figure 35C, 

table). 

In summary, the generated models suggested that blood monocytes represented the 

precursor pool of monocyte-like macrophages in the alveolar space.  

 

Figure 34. Investigation of the blood neutrophil heterogeneity 

(A) UMAP representation and clustering of cells found in main clusters 0, 7, 9, 11, 12, and 16 
of the blood dataset (acc. to Figure 33A), which were annotated as neutrophil-containing 
clusters. In addition to the cluster numbers, the labels of the neutrophil clusters, as used in 
Figure 33D, are also displayed. (B) Heat map of calculated marker genes per neutrophil 
cluster (acc. to (A)). The marker gene expression is represented as a z-transformed value 
across all neutrophil clusters. Columns and rows of the heat map are sorted by hierarchical 
clustering. (C) Stacked bar plot showing the proportion of individual donors in each neutrophil 
cluster. (D) Box plots showing the frequencies of blood cell types, with the strongest 
difference in relative population size between COPD and control. 
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4.8.6. Transcriptional alterations of blood monocytes from COPD 
patients 

After identifying blood monocytes as a potential source of AM replenishment, we next 

investigated whether the COPD-associated transcriptional changes observed in AMs 

were restricted to cells within the lung or whether we could observe changes also in 

the blood. For this purpose, we again applied the GO-shuffling analysis, which showed 

that among the top genesets with the highest ability to separate control donors from 

COPD patients, CD16+ monocytes contained the most immune-related terms (Figure 

36A). Intriguingly, some of these genesets were associated with cellular extravasation 

and leukocyte adhesion to vascular endothelial cells, which was also reflected by the 

heat map representation of the expressed genes within the identified genesets, which 

revealed upregulation of integrins (ITGB1, ITGB2, ITGA4 and ITGAL) in COPD 

(Figure 36B).  

Our next step was to investigate whether the identified DE genes in AMs from COPD 

patients were already altered in blood monocytes (Figure 36C). Clearly, in blood 

monocytes derived from COPD patients, we detected a strong enrichment of DE 

genes found as upregulated in COPD AMs, while blood monocytes of controls showed 

an enrichment of downregulated genes (Figure 36C). Interestingly, we observed the 

strongest enrichments of DE genes, which were found as upregulated in COPD, in 

CD14+CD16+ and CD16+ monocytes. In addition, visualization of MHC I, MHC II and 

mitochondrial genes, which were found to be transcriptionally different between COPD  

Figure 35. Modelling of differentiation trajectories between blood monocytes and AMs 

(A) UMAP of embedded macrophages/monocytes from BALF and blood monocytes with 
coloring according to the cell types derived from the combined labels. The dendrogram on the 
right side illustrates the transcriptional relationship between the macrophage subtypes and 
shows how several subtypes were summarized in the combined labels. (B) UMAP of 
embedded macrophages/monocytes from BALF and blood monocytes. Inferred main average 
vector flow is indicated by velocity streamlines that are projected as vectors. The heat maps 
at the bottom indicate locations of the main cell types (acc. to the combined labels from (A)) in 
the UMAP. (C) PAGA graph derived from embedded BALF and blood data (acc. to (B)). The 
weight of an edge, which reflects a statistical measure of connectivity, is represented as the 
edge width. The table below summarizes the results of the PAGA connectivity calculation, 
where a value of 1 indicates a strong connection and 0 indicates a weak connection between 
two cell types. 



4. Results 

144 
 

 



4. Results 

145 
 

 

and control AMs (Figure 24-26), confirmed that blood monocytes at least show 

tendencies for similar transcriptional differences (Figure 36D). 

Taken together, the investigation of transcriptional changes in blood monocytes 

revealed changes similar to AMs, suggesting a systemic component of COPD that 

leads to transcriptional changes in circulating immune cells such as monocytes. 

 

 

4.9. Identification of monocyte progenitor cells in murine lungs 

The observation of similar COPD-associated transcriptional changes in monocytes 

and AMs raises the question of how chronic inflammation of the lung can become 

systemic. To gain a better overview at which point of the monocytes lifecycle the 

transcriptional changes might occur, we investigated scRNA-seq data obtained from 

mouse monocyte progenitors and ly6c+ monocytes (murine counterpart of human 

CD14+ monocytes) isolated from different tissues (bone marrow, blood, lung, intestine, 

and skin) (Figure 37A). When analyzing the cell cycle states of the isolated cell 

populations, it became evident that the cells isolated from the bone marrow had a 

relative high percentage of cells in pro-mitotic phases (S, G2 or M phase), whereas 

monocytes isolated from tissues were exclusively non-proliferative (G1 phase) (Figure 

37B). Intriguingly,  the only exception to this observation were some monocytes 

isolated from mouse lungs, which were also in mitotic phases. Next, we constructed 

Figure 36. Assessment of immune-related alterations in blood monocytes from COPD patients 

(A) Bar plot showing for blood immune cell types the proportion of predicted immune-related 
GO terms within the upper percentile of GO terms with the highest ability to separate COPD 
patients from control donors according to GO-shuffling. A selection of immune-related GO 
terms found in CD16+ monocytes is depicted in the box at the top. (B) Heat map of immune 
system-associated genes in CD16+ monocytes predicted by the GO-shuffling approach. The 
mean gene expression per donor is represented as a z-transformed value (across all donors). 
Columns and rows of the heat map are sorted by hierarchical clustering. (C) Violin plots 
displaying enrichment of AM-related DE genes (acc. to Figure 24B+C) in blood monocytes 
based on the ‘Area Under the Curve’ (AUC). (D) Violin plots of the expression of genes, found 
as DE in AMs, in blood monocytes based on scRNA-seq data. The plots show the expression 
across the donors, whereby the donors were downsampled to the same number of cells, 
followed by downsampling to the same number of cells between COPD and control. The plots 
display cells with an expression > 0. 
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the developmental pathway of monocytes using Monocle (Trapnell et al., 2014), which 

showed that the trajectory was characterized by several branches, with MDPs being 

the starting point of monocyte development, while skin monocytes lined up at the other 

extreme (Figure 37C). In total, we were able to identify 8 cellular states, which were 

mainly defined by the branches. For example, cellular state 1 included MDPs and 

cMoPs, where it was remarkable that there was a considerable gap between these 

two populations within the trajectory. Interestingly, skin and intestinal monocytes were 

enriched in one or two branches, while lung monocytes, together with blood and BM 

monocytes, could not be assigned to a specific branch, but rather represented a 

connection between different branches. Importantly, we also found some lung 

monocytes that aligned with cMoPs in cell state 1, which was striking because cells 

within this cell state carried clear precursor cell markers such as Cd34, Kit, Myb, and 

Myc (Figure 37D). Indeed, when plotting the lung monocytes aligning with cMoPs, we 

found a strong enrichment of Cd34 and Kit, indicating that the lung contains monocyte 

progenitor cells (Figure 37E).  

Based on these findings, it is possible that the identified extramedullary pool of 

monocyte progenitor cells directly at the lung is altered during COPD pathogenesis 

leading to the maturation of monocytes with transcriptional changes. 
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Figure 37. Identification of monocyte progenitors in murine lungs 

(A) Schematic representation of the mouse tissues from which monocytes and monocyte 
precursors (MDPs and cMoPs) were isolated and subsequently used for scRNA-seq. (B) Bar 
plot representation of the proportion of cells in the respective cell cycle states per isolated 
precursor and monocyte population. (C) Differentiation trajectory of monocytes constructed by 
Monocle (Trapnell et al., 2014). Top panel shows the second and third component of the 
trajectory, whereas bottom panel shows the first and second component. Cell coloring on the left 
side according to the isolated precursor and monocyte populations. Cell coloring on the right side 
corresponding to identified cell states, which are mainly determined by branching points. A zoom 
into an area containing both cMoPs and lung monocytes is shown in the box at the bottom of the 
plot. (D) Expression of genes found as being DE along the pseudotime of the constructed 
differentiation trajectory (acc. to (C)). The cells were ordered along the pseudotime and the y-
axis represents the expression of each gene as bars, whereby each bar represents an individual 
cell. Coloring of the bars corresponding to the identified cell states (acc. to (C)). (E) Expression 
of the cumulative expression of the precursor-associated genes Kit and Cd34 in cMoPs and lung 
monocytes. Cells were ordered along the pseudotime.  
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5. Discussion 

COPD is a lung disease with a high global spread, increasing incidence, prevalence, 

morbidity and mortality, mainly due to rising air pollution and high smoking rates 

worldwide (Rabe and Watz, 2017). However, the cellular and molecular mechanisms 

underlying the pathophysiology of this disease are poorly understood (Rabe and Watz, 

2017), thus leading to a lack of effective therapies (Barnes et al., 2015). In the present 

study, we investigated the immune system in the alveolar space and the blood of 

COPD patients using high-resolution single-cell technologies. We focused on patients 

who were diagnosed with an early stage of the disease (GOLD 2) because it was 

hypothesized that pharmacological interventions at earlier stages have the highest 

chance of beneficial clinical outcomes. (Sun and Zhou, 2019). To enable the best 

possible characterization of COPD-associated changes, we used a scRNA-seq 

technology capable of detecting the major immune cell types in alveolar space and 

blood, and developed or adapted advanced computational approaches including cell-

type classification based on machine learning, prediction of metabolic changes, 

identification of differently expressed genes and functionalities, and modeling of cell 

trajectories within a patient cohort. These approaches revealed in AMs of COPD 

patients: alterations in lipid metabolism, reduced expression of MHC class I molecules, 

and potential TGF-β involvement in DE-gene regulation. In addition, we found that 

proliferating and mono-like macrophages were elevated in COPD, with evidence that 

the latter were derived from blood monocytes. Finally, we investigated the 

development of monocytes isolated from different tissues of mice, which showed that 

a fraction of the monocytes from the lung showed progenitor signatures. 

 

 

5.1. Comparison of the Chromium and Seq-Well technology  

To obtain the best possible representation of the immune compartment in the alveolar 

space on the transcriptional level, we evaluated two different scRNA-seq technologies, 

namely the array-based Seq-Well technology (Gierahn et al., 2017) and the widely 

used 10x Chromium (v2), which is a droplet-based method (Zheng et al., 2017). In 

accordance with the statistics of our data, a recently performed systematic comparison 
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of different scRNA-seq methods (Ding et al., 2020) revealed that, among all high-

throughput technologies, 10x Chromium (v2) detected the most UMIs and genes per 

cell and took the least time for library generation. In contrast, the Seq-Well technology 

detected fewer UMIs and genes, but also had by far the lower costs per cell. Moreover, 

an advantage of the Seq-well technology is that the cells are exposed to less stress 

during loading of the arrays (Gierahn et al., 2017) compared to the shear forces 

experienced when loading onto the microfluidic instrument of the 10x Chromium 

technology. Interestingly, considering the MCFC data, we found that Seq-Well reliably 

detected the major cell types in the alveolar space, while 10x Chromium (v2) 

performed inferiorly in detecting granulocytes. This finding is consistent with the 

observations of Travaglini et al., who claimed that neutrophils in the lungs cannot be 

detected with 10x Chromium (Travaglini et al., 2019). On the other hand, one of the 

first published high-throughput scRNA-seq datasets of human lungs was also 

generated by the Chromium technology (v2) and reported on neutrophil populations 

(Vieira Braga et al., 2019). However, these neutrophils were annotated based on the 

expression of genes such as FCN1, VCAN and S100A8, which we found to define 

monocytes rather than neutrophils, suggesting that the putative neutrophils were 

incorrectly annotated. On the other hand, several scRNA-seq papers reported on 

neutrophils in mouse using 10 Chromium (v2) (Park et al., 2018; Ponzetta et al., 2019; 

Vafadarnejad et al., 2019; Xie et al., 2019). This apparent discrepancy could be 

explained by the fact that the granulocyte compartment between mice and humans 

differs substantially, which is reflected, for example, in the percentage of neutrophils 

in the blood, which is 50-70% in humans but only 10-25% in mice (Mestas and Hughes, 

2004). In addition, human neutrophils are a rich source of defensins, whereas 

defensins are not expressed by neutrophils in mice (Eisenhauer and Lehrer, 1992). It 

is therefore likely that the content or activity of RNAses in the granules of neutrophils 

also differs between the two species, which in turn might lead to the different efficiency 

in scRNA-seq profiling of human or murine neutrophils. In fact, the recently published 

10x Chromium (v3) technology showed a higher sensitivity in transcript detection 

compared to its predecessor (Ding et al., 2020b), which, according to the 

manufacturer, was achieved by changing the chemistry of the reactions that probably 

also includes a higher content of RNases in the enzyme mix. Indeed, newer attempts 

using 10x Chromium (v3) for BALF samples suggest that human neutrophils can be 
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detected (Liao et al., 2020), but it remains unclear, whether all granulocytes were truly 

captured in this study.  

 

 

5.2. Neutrophil compartment resolved by Seq-Well 

The apparent inability to detect granulocytes with 10x Chromium (v2) is extremely 

problematic in the study of COPD as our MCFC analysis clearly showed that 

neutrophils are the only cell type in which the relative cell number in the BALF of COPD 

patients is significantly increased, and the importance of neutrophils in this disease 

has been reported in several studies before (Barnes, 2019; Hoenderdos and Condliffe, 

2013; Kinose et al., 2016; Lee et al., 2016; Noguera et al., 2001). In contrast, we 

reliably detected granulocytes with Seq-Well, which revealed that especially in the 

blood the neutrophil population is characterized by an unprecedented high 

heterogeneity. For example, we discovered immature neutrophils, which we have also 

recently detected in increased numbers in COVID-19 patients with severe disease 

course, indicating emergency myelopoiesis (unpublished data). However, in the blood 

of non-exacerbating COPD patients we found no change in the cell numbers of 

immature neutrophils compared to controls, but in contrast, we observed an increase 

in a population of neutrophils associated with an interferon-associated gene program. 

The interferon signature in neutrophils was recently linked to activation of these cells 

(Rocha et al., 2015) and was associated with elevated ROS production (Wright et al., 

2008). Moreover, type I interferon-signaling pathways are found to be associated with 

neutrophil-extracellular trap (NET) formation (Pylaeva et al., 2016), which is in 

agreement with the detected enrichment of NETs in neutrophils from COPD patients 

(Uddin et al., 2019). Interestingly, NETs can readily form a platform for thrombus 

formation (de Bont et al., 2019), which is especially important in the context of 

thromboembolism, which is a major threat to patients during acute exacerbations 

(Ambrosetti et al., 2003), where it is likely that the production of type I interferon is 

increased in response to an elevated viral burden. To better understand this potential 

relationship, it is important to study neutrophils associated with an interferon-

associated gene program during exacerbations in future scRNA-seq studies. In the 

present study, we found that the identified neutrophil populations in the lung were 
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associated with the expression of genes for antigen presentation (e.g. CD74, HLA-

DRB1, HLA-DPB1, HAL-DRA), which is particularly interesting in the context of 

increased neutrophil numbers in the BALF of COPD patients and the observed 

downregulation of molecules for antigen presentation in AMs. This observation is in 

agreement with the emerging body of evidence that neutrophils can acquire the 

function of antigen-presenting cells under pathological conditions (Lin and Loré, 2017). 

However, the importance of antigen-presenting neutrophils in the pathophysiology of 

COPD remains elusive.  

 

 

5.3. Addressing analytical challenges in scRNA-seq data of COPD 

patients 

To investigate, for example, the neutrophils in detail, the first step of the analysis was 

to identify the cells belonging to the respective cell types. This cell-type annotation 

step is of particular importance when it is intended to answer clinically relevant 

questions using scRNA-seq data, since contamination of a cell population by 

incorrectly annotated cells would make downstream analysis difficult or even mislead 

the results. However, the correct annotation of cell types is still a major problem in the 

field of scRNA-seq analysis (Abdelaal et al., 2019). To overcome this analytical 

limitation, several methods based on machine learning have recently been developed 

that were successfully used for annotating cells (Alquicira-Hernandez et al., 2019; Hou 

et al., 2019; Lopez et al., 2018; Song et al., 2019). Surprisingly, a comparison showed 

that the different machine learning methods hardly represented a qualitative 

difference, because most of them performed similarly well (Abdelaal et al., 2019; 

Köhler et al., 2019). Still, a major problem in cell-type classification is the access to 

well curated and reliably annotated training data. To address these limitations, we 

combined several methods based on different reference datasets to obtain multiple 

cell-type labels per cell. These multi-labeled cells were then used in a cross-validation 

approach to train a gradient boosting classifier to predict the most likely cell type for 

each cell. During the analysis of the present study, the idea of combining the results 

of several cell labels in a single annotation was also addressed by other groups and 

is, for example, provided in the latest SingleR version (Aran et al., 2019). However, as 
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with all classification methods, the classification accuracy of current cell-type 

annotation methods is hardly 100%, especially when it is based on complex, sparse 

and noisy data such as those obtained by scRNA-seq. Therefore, the incorrectly 

classified cells could still tamper with subsequent analysis results. In the present study, 

we circumvent these limitations by using a simple four-step cell-type annotation 

approach, in which the classification results are combined with unsupervised 

clustering of scRNA-seq data. It is important to note that clustering of data is also an 

area that is heavily debated and continuously leads to new and improved methods, 

some of which are particularly well suited to certain types of scRNA-seq data (Kiselev 

et al., 2019). Moreover, especially in the case of poorly defined biospecimens, such 

as BALF, it is difficult to decide at what point a cluster actually represents a new cell 

type or only a cellular state (Kiselev et al., 2019). However, in combination with 

machine learning-based cell-type classification, also known as supervised clustering 

(Lee and Hemberg, 2019), this uncertainty can be overcome and simultaneously, as 

done in this study, misclassified cells can be identified and excluded from further 

analysis.  

Another remaining challenge in the scRNA-seq field is the identification of DE genes 

within a cohort setting, here COPD and controls, with multiple biological samples 

(patients) per group. Comparisons of current DE-Gene calculation tools showed that 

methods specifically designed for scRNA-seq data do not show significantly better 

performance compared to methods designed for bulk RNA-seq data (Wang et al., 

2019). Therefore, many current methods are based on the generation of "mini-bulk" 

gene expression values for defined clusters of cells, which are then used to compare 

two groups, e.g. COPD and controls. Although this approach is computationally 

straightforward and thus offers a fast runtime, a major disadvantage of these methods 

is the loss of the single-cell gene information. Moreover, it is difficult to determine 

appropriate significance levels for these methods because there are several sources 

of variability between biological samples that are difficult to emulate in silico when 

working with ‘mini-bulks’. To address these limitations, we developed a novel DE-

analysis approach that considered the influence of individual biological samples, 

exploited the information of single cells, but avoided assumptions about data 

distribution and determined the significance of the observed effects using a 

permutation test. Such tests require large parameter spaces and were therefore not 

considered in previous benchmark studies for comparisons with multiple samples 
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(Crowell et al., 2019). However, the sufficiently large number of biological samples 

(patients) included in our study enabled and facilitated the use of such a method 

(Ernst, 2004).  

 

 

5.4. Cholesteryl ester accumulation in AMs of COPD patients 

By applying the aforementioned computational innovations, we were able to resolve 

the transcriptional heterogeneity of the AM population, which constituted the most 

prominent cell type in the alveolar space. It is important to note that the term 'alveolar 

macrophage' is a generic term, because although bronchoalveolar lavage mainly 

includes the collection of cells from the alveolar space, it also collects some cells from 

the bronchioles (Heron et al., 2012). However, for the sake of simplicity, the 

macrophage compartment of BALF is collectively referred to as AMs in the present 

study. The transcriptional analysis revealed an altered lipid metabolism in AMs of 

COPD patients with COPD GOLD grade 2, which was particularly characterized by an 

increased accumulation of cholesteryl ester. As already outlined in the introduction, all 

tissue macrophages possess ‘accessory’ functions by which they support the 

parenchymal cells (Okabe and Medzhitov, 2016). In the case of AMs, this ‘accessory’ 

function includes surfactant homeostasis in the lung (Remmerie and Scott, 2018), 

which is why these cells are highly associated with lipid metabolism. A malfunction of 

lipid metabolism in AMs is associated with the clinical manifestation of PAP, in which 

the accumulation of cholesterol leads to a morphological change of AMs, whereby the 

macrophages become foam cell-like (Sallese et al., 2017). These pulmonary foam 

cells were also detected in other chronic lung diseases (Basset-Léobon et al., 2009) 

and recent studies found also a link between lipid accumulation in lung macrophages 

and smoking (Morissette et al., 2015; Wilson et al., 2011). Although, as already 

outlined above, the molecular pathways might be different compared to PAP, the 

described accumulation of cholesteryl ester in AMs indicates increased pulmonary 

foam cell formation also in COPD patients. A recently performed genome-wide 

association study identified mutations in a gene associated with the high-density 

lipoprotein (HDL) complex, which transports cholesterol in the blood, and found clear 

correlation between high HDL levels, lower Tiffeneau-Pinelli index, and more 
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extensive emphysema formation among COPD patients (Burkart et al., 2014). In 

contrast, other studies claimed that rather the low-density lipoprotein (LDL) complex 

in the blood of COPD patients is elevated (Krakhmalova and Hetman, 2013; Zafirova-

Ivanovska et al., 2016). Nevertheless, all studies together point towards an increase 

in cholesterol transport in COPD and thus indicate a higher systemic cholesterol level. 

However, it is not yet known whether this increase in cholesterol is also one of the 

driving forces for the formation of pulmonary foam cells. Cholesterol accumulation and 

foam cell formation are also a hallmark of macrophages in atherosclerosis, and 

interestingly, antiatherosclerotic treatment with statins also showed positive effects in 

patients suffering from both atherosclerosis and COPD, with a reduction in COPD-

associated exacerbations and mortality (Ingebrigtsen et al., 2015). This observation is 

particularly interesting since atherosclerosis is a common comorbidity in COPD 

(Sevenoaks and Stockley, 2006). Therefore, it is important to assess in future projects 

whether the well-studied molecular pathways underlying foam cell formation in 

atherosclerotic plaques could also explain the observed alterations in alveolar 

macrophages upon COPD. 

 

 

5.5. Alveolar macrophage replenishment by blood monocytes 

Another aspect that COPD and atherosclerosis have in common is the increased 

recruitment of monocytes to the site of inflammation. A recently proposed model 

(Guilliams and Scott, 2017) suggested that under homeostatic conditions the 

population of tissue-resident macrophages is maintained by self-renewal via 

proliferation, while the recruitment of monocytes from the circulation is rather limited 

(Scott et al., 2016). However, during inflammation, the pool of self-renewing 

macrophages in tissue is additionally supported by a substantial proportion of blood-

derived monocytes to maintain the tissue macrophage population (Hashimoto et al., 

2013b). In accordance with this model, we still detected local proliferation of a small 

fraction of AMs in COPD, but additionally, we found evidence of AM replenishment by 

blood-derived monocytes. More specifically, mono-like and C1Q+ AMs showed a 

strong enrichment of monocyte-derived macrophage signatures, and RNA velocity-

based analysis supported a differentiation process between blood monocytes, 
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especially the CD16+ subset, and the mono-like macrophages. These findings are 

supported by a recently published study demonstrating that mouse CD16+ blood 

monocytes can effectively differentiate into lung macrophages (Schyns et al., 2019). 

Another line of evidence comes from murine smoking models illustrating that Cx3cr1+ 

macrophages expand in response to cigarette smoke (Lee et al., 2012) and exhibit a 

profibrotic function (Aran et al., 2019). Cx3cr1+ cells are also found in atherosclerosis 

and have been shown to be associated in mice with Ly6C- monocytes, the murine 

counterpart of the human CD16+ monocytes (Moore et al., 2013), which makes it 

possible that the Cx3cr1+ macrophages in the lung also have a similar association. 

Interestingly, COPD patients with a α1-antitrypsin deficiency showed a strong 

decrease in the CD16+ monocyte pool compared to the CD14+ monocytes in the blood, 

but further analyses are needed to determine whether this reduction is associated with 

an increased migration of these cells into the lungs. (Stolk et al., 2019).  

 

 

5.6. Identified deregulated paths and their potential associations 

Our scRNA-seq analysis of mono-like macrophages identified increased NOTCH, 

WNT, TGF-β and TNF signaling in COPD, which again indicated increased 

differentiation of monocytes in AMs, as this process has been recently associated with 

TGF-β (Yu et al., 2017) and NOTCH signaling (Bonnardel et al., 2019). Elevated 

NOTCH signaling has already been observed in alveolar epithelial cells of patients 

with chronic respiratory diseases such as pulmonary fibrosis (Reyfman et al., 2019), 

whereas WNT signaling in human epithelial cells of COPD patients are rather 

downregulated, which is associated with a decrease in their repair capacity (Skronska-

Wasek et al., 2017). In macrophages, the importance of NOTCH signaling in COPD 

pathogenesis was especially recognized in the context of the NOTCH ligand DNER, 

for which SNPs were found that were correlated with a higher risk of developing COPD 

(Busch et al., 2017; Hancock et al., 2012). Moreover, DNER induces IFN-γ production 

in both cigarette-exposed animals and COPD patients (Ballester-López et al., 2019) 

and could thus contribute to the inflammatory process in the lungs of COPD patients 

and the destruction of lung tissue. The upstream ligand of another predicted pathway, 

namely TGF-β, has also been described in the context of COPD. Some studies 
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reported on higher expression of this cytokine in diseased airway epithelial cells (de 

Boer et al., 1998), which supports our observed tendency for elevated protein 

detection of LAP TGF-β1 in the alveolar space. Furthermore, our analysis at the single 

cell level revealed that in the alveolar space some immune cells, namely mast cells, 

mono-like and C1Q+ macrophages, might also contribute to the increased expression 

levels of TGF-β. Importantly, TGF-β is a heavily debated molecule in the COPD field, 

and a recently published study reported on the overall downregulation of TGF-β in 

different lung segments of COPD patients (Di Stefano et al., 2018). However, the 

authors of this study also discussed their results in the context of previous publications 

and suggested that the different antibodies that were used and that have varying 

specificity in the detection of TGF-β could explain the discrepancies. Nevertheless, 

when considering the supposedly conflicting reports on downregulation of TGF-β 

expression in COPD lungs, the predicted TGF-β signaling could also be explained by 

an induction of TGF-β signaling already in blood monocytes that later differentiate into 

mono-like macrophages. Indeed, TGF-β levels in the blood of COPD patients are 

significantly elevated compared to healthy controls (Mak et al., 2009). The signaling 

of TGF-β was recently found to crosstalk with NOTCH and WNT pathways in non-

small cell lung cancer (Li et al., 2011; Ohnuki et al., 2014), however, this has not yet 

been reported in the context of COPD.  

 

 

5.7. Aged immune cells in COPD 

Some of the pathways predicted to regulate DE genes in mono-like macrophages 

might also be involved in the induction of immunosenescence in COPD. For example, 

NOTCH, WNT and TNF signaling can induce mTOR signaling (Chan et al., 2007; 

Saxton and Sabatini, 2017), which was recently associated with cellular senescence 

in lung cells (Houssaini et al., 2018). As older people have a higher prevalence of 

developing COPD (Halbert et al., 2006), cellular aging, which in turn is associated with 

senescence, could also be a hallmark of the disease (Barnes, 2017). Features of 

cellular senescence include an increase in the number of mitochondria and 

mitochondrial dysfunction, which is characterized by increased proton leakage and an 

associated elevation in ROS production (Gorgoulis et al., 2019; Korolchuk et al., 
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2017). Oxidative stress due to increased ROS production is known in COPD, and there 

is in fact evidence that this is partly attributable to mitochondrial dysfunction (Bowler 

et al., 2004; L et al., 2012; McGuinness and Sapey, 2017; Ryter et al., 2018). In line 

with cellular senescence, we found an increased expression of mitochondrial genes 

and proton leakage in the mitochondria of AMs in COPD patients. Additionally, the 

observed reduction in the chemotactic capacity of AMs in COPD might also be a result 

of cellular aging (Oishi and Manabe, 2016; Shaw et al., 2013; Solana et al., 2012). 

However, dysregulation of macrophage chemotaxis has also been described as a 

consequence of smoking (Berg et al., 2016) and in lung cancer (Lemarie et al., 1984). 

Reduced migration capacity of AMs can have deleterious consequences for the 

alveoli, as it impairs the efficient removal of pollutants from the alveolar space, which 

in turn can lead to cell death of alveolar cells and the induction of inflammation. In 

addition, the clearance of the alveolar space is further deteriorated due to the reduced 

phagocytosis ability of AMs in COPD (Taylor et al., 2010).  

 

 

5.8. Reduced MHC expression and potential link to monocyte 

progenitor pool in the lung 

In the present study, we could also identify another layer of macrophage dysfunction 

in COPD, namely a significant downregulation of molecules associated with antigen 

presentation, especially MHC class I. This finding is in accordance with previous 

studies that linked the downregulation of surface MHC class I in COPD to impaired 

immunoproteasome activity (Hodge et al., 2011; Kammerl et al., 2016). Depending on 

the magnitude, downregulation of MHC class I molecules on the surface of cells can 

trigger NK-dependent killing, but it has been shown that immunosenescent cells can 

escape this fate by surface expression of the non-classical MHC class I molecule HLA-

E (Pereira et al., 2019). In the present study, although reduced compared to controls, 

we found HLA-E expression in all AM states of COPD patients. However, the 

decreased MHC I expression poses a critical functional problem, as it makes AMs less 

efficient in inducing an antiviral immune response, which may explain the high 

susceptibility of COPD patients to viral infections, one of the major causes of the 

disease's exacerbations (Woodhead et al., 2005). Importantly, the reduction in MHC 
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expression was not restricted to the alveolar space but was also observed on 

circulating blood monocytes, which underlines the systemic character of COPD 

(Agusti, 2005; Agusti and Soriano, 2008; Fabbri and Rabe, 2007). However, the 

question arises as to where and how the blood monocytes experience a COPD-

dependent change. Numerous studies have reported on elevated blood plasma levels 

of pro-inflammatory cytokines, including TNFα, IL-6, IL-8 and C-reactive protein in 

stable COPD patients, but especially under exacerbations (Gan et al., 2004; Wei et 

al., 2015; Zhang and Bai, 2017). Interestingly, some of these cytokines can directly 

affect hematopoietic stem cells in the bone marrow (Kovtonyuk et al., 2016) and thus 

may lead to disease-related changes in immune cells in chronic situations (Pietras, 

2017). Alternatively, the monocytes could also be altered during their transit through 

the pulmonary circulation (Agusti and Soriano, 2008). However, we propose also a 

third possibility how blood monocytes experience transcriptional changes similar to 

what we have found in macrophages of the alveolar space. We discovered that a 

population of monocytes isolated from mouse lungs expressed genes that are actually 

found in precursor cells. Interestingly, Lefrançais et al. recently also described that the 

lung contains a reservoir of hematopoietic progenitors that contribute up to 50% of the 

total platelet production in adult mice (Lefrançais et al., 2017). Moreover, the authors 

showed that these progenitor cells have at least the capability to differentiate also in 

granulocytes and lymphocytes. Our scRNA seq data analysis now provides evidence 

that monocyte precursors can be found in the lungs of mice as well and that blood 

monocytes can thus be produced by pulmonary extramedullary hematopoiesis. 

Assuming that precursor monocytes also exist in human lungs, it is very likely that they 

are exposed to the same pathogenic influences, such as cigarette smoke, which 

promote the pathogenesis of COPD. A recent study has shown that changes in airway 

stem cells indeed play a role in COPD (Rao et al., 2020). However, future studies are 

needed to investigate whether such disease-promoting alterations can also be found 

in the pulmonary monocyte progenitor pool. 
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5.9. Future perspectives 

Collectively, this study provides a framework for a better understanding of the 

pathophysiology of COPD at the systemic level, by providing single-cell information on 

immune cells in two major compartments, the alveolar space and peripheral blood. It 

is important to emphasize that one of the main limitations of this study is that the 

analysis did not include lung epithelial cells. Many studies have shown that changes 

in epithelial cells are an important denominator in the pathogenesis and 

pathophysiology of COPD (Mostafaei et al., 2018; Rao et al., 2020; Yoshida et al., 

2019). Therefore, in future work this dataset must be extended by the integration with 

all lung parenchyma cells. Subsequently, further levels of information need to be 

obtained, such as the study of COPD-dependent changes in different lung segments 

using spatial transcriptomic or imaging data (Berglund et al., 2018; Nichterwitz et al., 

2016; Ståhl et al., 2016; Thrane et al., 2018). The investigation of the epigenetics of 

individual cells will also become an important component in the future (multimodal 

single cell information (Li et al., 2019)). In addition, the temporal component must also 

be taken into account by examining the cells of COPD patients longitudinally over a 

longer period of time, whereby it will be important to also include acute phases of 

exacerbations. The patient cohort must also be greatly enlarged in order to capture 

the complete heterogeneity of this complex disease. Basically, the future must be to 

study the disease by trying to create a COPD cell atlas, similar to what is already being 

done for healthy lung tissue in the HCA consortium (Schiller et al., 2019). This type of 

research will not only define the future of COPD, but for all complex chronic and acute 

diseases. 
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