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Abstract
The capacity to generate omics and clinical data in biomedical science is grow-

ing exponentially over the past decades. Additionally, recent advances in com-
putational power and analyzing capabilities have resulted in overwhelmingly
increased interest in the use of big data to solve most problems in biomedical
science. Drug discovery and molecular disease taxonomies are two of the most
pressing challenges in biomedical science that could be solved by the surge of
big data. Hence, there is an urgent need for developing methods that incorporate
biomedical data and prior knowledge for drug development and patient stratifica-
tion in order to achieve the goal of stratified medicine.

In this thesis, we address the aforementioned issues in the context of neurode-
generative diseases. First, we demonstrate a pure knowledge-driven approach
for mechanism-based drug repositioning in Alzheimer’s disease by curating and
analyzing Alzheimer’s disease knowledge assembly. Second, we present PS4DR,
a drug repositioning workflow that is based on the combination of knowledge-
and data-driven approaches. This work combines canonical pathway information
and multi-omics data in order to predict drugs that can alter disease etiology. Fi-
nally, we showcase a hybrid artificial intelligence-based approach to jointly stratify
Alzheimer’s and Parkinson’s disease patients based on the omics data and prior
knowledge of shared molecular mechanisms of the two diseases. The established
patient subgroups are reproducible and can be associated with different clinical
and molecular disease features.

Finally, this thesis attempts to connect the knowledge- and data-driven strat-
egy for solving two very interesting biomedical problems of drug discovery and
patient stratification by using prior knowledge, multi-omics, imaging, and clinical
data. Overall, this work is a step towards achieving a better targeted and thus more
effective therapy in neurology to reach the ultimate goal of precision medicine
concept.
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1 Introduction

The term ’precision medicine’ refers to the customized treatment of an indi-
vidual or a group of patients based on their specific disease characteristics [1]. It
has a few more popular synonyms that are often interchangeably used, such as
personalized medicine, stratified medicine, targeted therapy, or deep phenotyping.
This innovative approach tries to identify subpopulation among the patients by
using advanced biomedical tools and big data analytics to predict the treatment
and prevention strategies that will work best for each patient group. Precision
medicine intends to replace the traditional clinical practice of ’one-size-fits-all’
treatments, with tailored treatments for each patient group based on their unique
biological condition i.e., genetic predisposition, sex, age, ethnicity, lifestyle, envi-
ronment, etc. While the broader concept of precision medicine has been part of
traditional healthcare in many ways, the term itself and its integral concept have
become recently very popular due to its great success in the oncology research
field [2]. However, such a successful implementation of the precision medicine
approach still remains very challenging in complex multifactorial diseases like the
neurodegenerative disease (NDD) research field [3].

Meanwhile, the emergence of ever-growing patient-level big data and the in-
creased application of advanced machine learning (ML) techniques in biomedical
science bring a new momentum in precision medicine in recent years. While pri-
marily large scale multi-omics and clinical data have been fuelling biomedical
research, the recent availability of more patient-level big data like electronic health
records (EHRs) and smart device data gives the real opportunity to revolutionize
the health care system [4]. ML techniques that can integrate such big data are being
successfully incorporated in many sectors of the modern health care system includ-
ing disease diagnosis and prognosis, patient stratification, drug discovery, clinical
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Introduction

Figure 1: Machine learning-based Precision Medicine workflow. Big data in biomedical
science enabling us to implement machine learning-based sophisticated workflows in
precision medicine. This workflow shows how experimental data, clinical data, lifestyle
data, expertly curated knowledge, etc., can be integrated and analyzed by smart machine
learning algorithms to stratify patients in order to achieve the precision medicine goal.
This figure was modified from [7].

trial designs, etc [5]. However, the immense complexities of multifactorial disease
pathologies and thus the inability to decode underlying disease mechanisms limit
the hypothesis-driven analyses of these multimodal data. Consolidated knowledge
about complex disorders like Alzheimer’s disease (AD) and Parkinson’s disease
(PD) captured from scientific literature and public databases can come to rescue
by providing a holistic view of disease biology [6]. Hence, developing advanced
machine learning methods to enable better integration of the domain-specific
knowledge with these multi-modal data is of critical importance in achieving
success in precision medicine. In addition to enabling us to better understand
the complex etiology of multifactorial diseases, such integrative approaches can
help us to facilitate the research on some burning problems of some sub-domains
such as patient stratification, advance clinical trial designs, smart drug discovery
programs, etc., that need to be solved first to advance precision medicine research.
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1.1 Neurodegenerative Diseases

Neurodegenerative disease (NDD) is an umbrella term for a heterogeneous
group of conditions that are characterized by the progressive degeneration of the
structure and function of the brain or peripheral nervous system. Despite extensive
investment and research for unraveling mechanisms of NDDs, the etiology of this
group of diseases remains unelucidated due to their complex multifactorial nature
[8]. Due to the failure of a deep understanding of the disease pathogenicity, there
is no treatment to cure neurodegenerative disorders as of yet. There are only some
FDA approved drugs that can partially alleviate the disease symptoms [9]. The
increase of elderly people in recent years partially contributes to the upsurge of
such age-dependent disorders. The global cost for treatment and care of dementia
is estimated to reach 2 trillion US dollars by 2030, which will have an immense
socio-economic impact as well [10]. Alzheimer’s disease (AD) and Parkinson’s
disease (PD) are the two most common neurodegenerative diseases among the
elderly population [11]. The following sections will focus on introducing these
two neurodegenerative diseases AD and PD.

1.1.1 Alzheimer’s Disease

One of the most common forms of dementia, Alzheimer’s disease (AD) is
characterized by progressive neurodegeneration of the nervous system that slowly
disrupts memory and thinking skills and, eventually, the ability to carry out
simple day to day activities [12]. The neuronal damage in AD initially starts in the
hippocampus, which plays a major role in learning and memory [13]. Amyloid
plaques and neurofibrillary tangles, the two most common hallmarks of AD, are
widely believed to be responsible for such neural damage [14]. They prevent
neurons from properly functioning, restrict the neuronal communications, and
eventually lead neurons to death. Later, the damage reaches the areas in the
cerebral cortex, an area responsible for learning language and social behavior [15].
Eventually, it affects other parts of the brain and over time, the patient gradually
loses his or her ability to live and function without assistance from a caregiver [15,
16].

Even though there exist a lot of hypotheses for the development and progres-
sion of AD, both amyloid plaque accumulation and the presence of neurofibrillary
tangles (NFT) remain the two main hallmarks of AD pathology. According to the
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amyloid hypothesis, abnormal proteolytic processing of the amyloid precursor
protein (APP) by beta-secretase (BACE-1) and gamma-secretase results in the
production and accumulation of neurotoxic amyloid-beta peptide (Aβ42) [17].
However, the tau hypothesis postulates, abnormal phosphorylation of TAU pro-
tein (MAPT) contributes to the formation of hyperphosphorylated tau that leads
to the formation of the neurofibrillary tangles in AD [18]. In addition to these
two leading hypotheses, numerous other physiological mechanisms including
neuroinflammation, oxidative stress, mitochondrial dysfunction, insulin signaling,
etc., are also linked with AD pathogenesis [19]. While a majority of AD cases
can be attributed by the late-onset sporadic form, genetically the disease can be
divided into two main subtypes [20, 21]:

• Familial Alzheimer’s disease (FAD): This particular AD form is related to
the autosomal dominant inheritance of three causative genes, i.e., amyloid
precursor protein (APP) gene, presenilin1 (PSEN1) gene, and presenilin 2
(PSEN2) gene. Even though this group accounts for only 5% of cases, it can
provide significant insights into the pathogenesis of the sporadic case.

• Sporadic Alzheimer’s disease (SAD): Unlike familial AD, both genetic and
environmental factors may play roles in determining the sporadic AD form.
While APOE is considered to be the main responsible gene in sporadic AD,
many other genes, like TREM2, ABCA1, ABCA7, MTHFD1, BIN1, etc. were
reported to be associated with the disease form. The complete etiology of
sporadic AD is not yet well characterized, despite being one of the most
investigated diseases.

While many hypotheses have been formulated based on the known disease
hallmarks and symptoms, very little could be brought to the light about the ac-
tual disease etiology. This knowledge gap about the disease etiology could be
attributed to the failure in developing disease-modifying drugs that alter the pro-
gression [22]. Despite much research being done, there are only four approved
drugs to treat symptoms until now; donepezil, rivastigmine, galantamine, and
memantine. Failure in finding the right treatment starting point or identifying
the right therapeutic targets or establishing precise and accurate clinical method-
ologies are some reasons to be blamed for this setback [22]. Hence, there is an
urgent need for a greater effort, increased funding and a well-planned strategy to
overcome this lacking.
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1.1.2 Parkinson’s Disease

Parkinson’s disease (PD) is the most common movement disorder and the
second most common neurodegenerative disease after AD, which affects nearly
1% of the population above the age of 60. PD is a neurodegenerative disease with
initial clinical manifestations of abnormal motor symptoms that are the result of
the loss of midbrain dopaminergic neurons in the substantia nigra. Resting tremor,
bradykinesia, rigidity, and postural instability are the most common characteris-
tic motor impairments collectively known as parkinsonism that are seen in PD
patients due to the loss of pigmented dopaminergic neurons of the substantia
nigra pars compacta (SNpc). Behavioral and cognitive declines become apparent
gradually with the progression of neuronal loss in the other area of the brain at
an advanced stage. Similar to other neurodegenerative disorders, PD is character-
ized by the presence of intracellular protein aggregates: Lewy bodies and Lewy
neurites. While tau proteins and neurofibrillary tangles present among others,
misfolded α-synuclein is the key component of the Lewy bodies and neurites [23,
24].

Considering the multifaceted nature of PD with a wide range of clinical symp-
toms and pathology, the complete etiology and pathogenesis of PD have yet to be
established. Several pathways, like oxidative stress, mitochondrial dysfunction,
inflammation, and ubiquitin proteasome system (UPS) have been implicated with
the disease pathogenicity. However, the exact etiology is largely not understood
as of now. Hence, there are no treatments available that can fully treat the clinical
syndrome or alter the natural history of PD [25].

While most PD is sporadic in nature, there exists a small number of familial
form that consists of up to 15% of the PD cases.

• Familial Parkinson’s Disease: This PD subtype is caused by a single gene
mutation and at least eight genes responsible for this familial form have been
discovered so far. They include SNCA, PRKN, LRRK2, DJ-1, UCHL1, NR4A2,
GIGYF2 and PINK1. Familial PD patients are quite heterogeneous in nature
with either early or late symptomatic onset, slow or rapid progression, and
autosomal recessive or dominant modes of inheritance [26].

• Sporadic Parkinson’s Disease: Sporadic PD is multifactorial in nature and
a complex interplay between several familial PD linked genes and the en-
vironment play a role to characterize the disease etiology. While this is the
most common form of PD among the population, they are often clinically
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and pathologically quite indistinguishable from the familial cases. Hence,
the biochemical pathways underlying both cases might be shared to some
extent [27].

1.1.3 Crosstalk between Alzheimer’s and Parkinson’s Disease

While small fractions of both AD and PD patients suffer from the familial
variety of the disease with the autosomal dominant pattern of inheritance and
high penetrance, both the diseases appear predominantly in a sporadic fashion.
The clinical manifestations of AD are characterized by dementia and cognitive im-
pairment, while PD patients mainly exhibit motor deficits [11]. However, despite
their diverse clinical and pathological manifestations, AD and PD share a number
of common features and mechanisms in terms of molecular pathogenesis [28]. The
overlaps between AD and PD are reported at various levels including genetics,
cellular mechanisms and biological pathway level based on the evidence obtained
from postmortem studies and experimental models [29]. While the accumulation
of altered protein aggregates is considered to be the most characteristic hallmarks
of AD or PD, other biological events such as mitochondrial dysfunction, oxidative
stress, inflammation are believed to be involved in the disease etiology [30]. More-
over, the involvement of several genes including MAPT, SNCA, TREM2, PON1,
GSTO, NEDD9, etc., in the disease biology of AD and PD show a clear existence of
genetic overlap in these diseases [31, 32].

These extensive crosstalks among biological mechanisms and pathways and
the genetic or molecular factors that trigger these disrupted mechanisms can play
crucial roles to obtain a deeper understanding of the AD and PD pathogenesis. As
a result, it presents a unique opportunity for a joint stratification of AD and PD
patients by using the knowledge of such molecular and mechanistic overlaps be-
tween two diseases and patient-level big data via advanced machine learning and
statistical models. While various omics, clinical and imaging data have been the
main fuel for such patient subgrouping in different diseases in the oncology field,
availability of additional mechanistic knowledge of diseases will have far-reaching
benefits for the successful stratification strategies in multifactorial complex disease
fields like NDDs. Such a joint AD-PD patient subgrouping will be beneficial for
finding similar disease-modifying and therapeutic strategies that will serve the
ultimate goal of precision medicine.
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Figure 2: Shared pathological mechanisms between Alzheimer’s disease (AD) and
Parkinson’s disease (PD). Protein aggregation, neuroinflammation, oxidative stress, mi-
tochondrial dysfunction, and aberrant intracellular signaling are the most prominent
biological processes shared by both AD and PD [30].
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1.2 Knowledge Modeling: an essential tool for transla-

tional research

Biomedical data have been exponentially growing both in volumes and vari-
eties due to the advancement in high throughput data generation technologies [33].
While high throughput sequencing of bulk populations is yet not an old concept,
brand new techniques like single-cell omics sequencing is making it possible to
generate thousands or even millions of measurements concurrently from a single
sample. Moreover, with the widespread availability of patient-level data such as
electronic health records (EHR) data, smart digital device data, imaging data, etc.,
biomedical data growth is even expected to outpace Moore’s law of computational
power increment [34]. Hence, biomedical data fulfills all three requirements of the
big data - volume, velocity, and variety. This enormous big data in the biomedical
field is presenting us the opportunity to explore the biological systems in such
granularity as never seen before. This wave of big data is also generating an
enormous amount of information and knowledge. However, such unprecedented
growth of knowledge and information poses new challenges for systematic analy-
sis and interpretation of the available resources. Formalization and capturing of
the knowledge in a particular domain (i.e., disease) in a computable form, permit
the development of tools for understanding the complexity of the domain.

Knowledge modeling in systems biology is such a tool for mapping and rep-
resenting the existing knowledge about a particular biological domain to enable
novel interpretation of biomedical data [35]. With the formalization of available
knowledge, they help to explain the relevant biological mechanisms and predict
how the system might act when perturbed by therapeutic intervention or other
environmental challenges [36]. Hence, they are the bridge that can fill the gaps
between biomedical research and the translation of these researches into impactful
clinical practices. While many modeling approaches are available to capture bio-
logical knowledge, we will focus on the conceptual modeling for the knowledge
representation as it goes within the scope of this thesis. Unlike mathematical mod-
eling, the conceptual model captures the salient aspects of a biological system to
structure our conceptualizations into the relevant entities and their relationships
to organize biological complexity.

Systems Biology Markup Language (SBML), Biological Pathway Exchange Lan-
guage (BioPAX), and Biological Expression Language (BEL) are the most common
conceptual knowledge formats in the biomedical domain. In the following we will
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briefly discuss these three knowledge formats.

• Systems Biology Markup Language (SBML). Systems Biology Markup Lan-
guage (SBML) is a standard format for representing biochemical reaction
networks. This XML-based format is widely used for storing computational
models of biological processes and making them interoperable. SBML can
be used for the representation of a wide range of biological circumstances,
such as metabolic pathways, gene regulatory networks, cell signaling path-
ways, disease models, etc [37]. SBML can capture quantitative information of
molecular species and their concentrations, interactions among these entities,
and kinetic laws for these reactions. Hence, considering the dynamics of
multiscale interactions of biological systems, SBML models are suitable for
simulations of stochastic kinetic models [38]. It is also worth noting that
instead of trying to be a universal language for quantitative models, SBML
is rather intended for trading the salient features of a sophisticated systems
biology model between different software systems and databases [39].

• Biological Pathways Exchange (BioPAX). Biological Pathway Exchange
(BioPAX) is a standard language to capture and facilitate the exchange of
pathway data from heterogeneous information sources. It uses Web Ontology
Language (OWL) formats to represent biological pathways at the molecular
and cellular level. While the proper utilization of a large amount of data
across different pathway databases is hindered due to their incompatible
storing formats, BioPAX makes it considerably easier to collect, index, in-
terpret and share pathway data. It can capture and index a broad range of
metabolic, signaling, molecular, and gene regulatory networks. BioPAX has
been used in different databases to represent millions of interactions from
thousands of pathways in various organisms in a computable form. Hence,
BioPAX allows information exchange between pathway users, databases and
software tools. However, unlike SBML, BioPAX is not able to capture the
dynamic and quantitative aspects of the biological process [40].

• Biological Expression Language (BEL). Biological Expression Language
(BEL) is a high-level systems biology modeling language that captures causal
and correlative relationships between different biological entities. BEL en-
ables the assembly of scientific findings in the life sciences in a context-
specific manner across multi-scales. It captures the relationships among the
entities in a subject-predicate-object (triple) format (Figure 3). As the object
of a BEL triple can serve as the subject of one or many other triples, a set
of BEL statements can be used to develop a knowledge base or knowledge
assembly in the form of a conceptual graph [41]. This computable knowledge
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Figure 3: A BEL Statement / Triple example. The triple represents that AKT3 kinase
protein decreases the inflammation. ’AKT3’ is a subject, ’decreases’ is a predicate, and
’Inflammation’ is an object. The subject and object can either be a molecular entity, like
genes, proteins, chemicals, or an abstract concept like biological processes, disorders, bio-
chemical reactions, etc. The predicate represents the type of relationship between subject
and object. BEL allows the usage of external namespaces for the formal representation
of the concepts, like the HUGO Gene Nomenclature Committee (HGNC) and Medical
Subject Headings (MeSH) used in this example.

assembly can be subjected to various graph algorithms for visualization and
inference. A simple example of a BEL statement capturing the kinase activity
of AKT3 decreases inflammation in the brain is depicted in Figure 3.

While BioPAX has become the de-facto language to integrate different path-
ways and interaction databases, BEL can serve as a semantic platform for
multi-scale knowledge and data integration [42]. The semantic flexibility in
BEL allows us to capture, integrate and analyze a wide range of mechanistic
details of biological phenomena, i.e., from the molecular to organism scale.
Hence, it makes BEL a perfect candidate for modeling sophisticated biolog-
ical phenomena, like complex disease biology. This detailed capturing of
the interactions between different entities in a biological system allows BEL
to reason over the previously unknown mechanisms and processes. More-
over, different data-driven network analyses algorithms such as RCR [43]
and NPA [44] can be applied to the BEL knowledge assemblies for different
clinical applications.

BEL has been demonstrated as a useful format for building and analyzing
knowledge models in various complex biological conditions in both diseased
and non-diseased conditions [45, 46]. While such knowledge models have
helped to understand how disrupted biology in the normal system leads
to disease conditions, organizing them into respective knowledge graphs
according to their participation in different biological processes is critical for
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understanding the interplay between multiple mechanisms in multifactorial
diseases [6]. However, it remains to be seen if such organized knowledge
graphs can be used to answer some of the burning issues in biomedical
research such as, (i) could these graphs be used to stratify patients to facilitate
precision medicine? and (ii) could these graphs also be targeted by known
or novel drugs?

1.3 Machine Learning

The term machine learning was coined by famous American computer sci-
entist Arthur Samuel in 1959 [47]. Machine learning (ML) is an application of
artificial intelligence (AI) that gives computers the ability to automatically learn
and improve from experience. It is the area of computational science that deals
with analyzing and interpreting patterns and structures in data with the help of
sophisticated statistical and computational algorithms. ML enables the computer
to learn, reason, and make the decision without any human interference. Tom M.
Mitchell provided a more formal definition of machine learning: “A computer
program is said to learn from experience E with respect to some class of tasks
T and performance measure P if its performance at tasks in T, as measured by
P, improves with experience E” [48]. ML has been predominantly incorporated
into our day to day activities such as internet search, traffic prediction, purchase
recommendations, social media services, email spam, and malware filtering, etc.
While ML is already proved to be an indivisible part of modern life, it is starting
to demonstrate its potential in biomedical research recently.

Biomedical science has become extraordinarily data intensive. The availability
of large volumes of high throughput ’-omics’ data that capture large scale biology
such as the genome, proteome, transcriptome, etc., has been a major driving
force in the development of precision medicine. A comparison study of four
major big data domains including genomics, astronomy, YouTube, and Twitter
predicts that genomics alone will equal or surpass the other three domains in
data generation and analysis within the next decade [49]. Moreover, the addition
of personalized clinical data like EHR, imaging, digital device data, etc., with
omics data have dramatically changed the precision medicine research. These
enormous multimodal data enabled us to develop and implement state of the art
machine learning (ML) algorithms based methods. Concurrent advancement of
the biomedical data generation and ML application in this field are starting to
demonstrate that more and more ML applications in the health sector are inevitable.
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Many of these ML-based methods are equipped for multimodal data integration
with existing knowledge which allows capturing complex relationships among the
features within and across multiscale biology. Hence, they can provide a holistic
view of the biological system by enabling better mechanistic insights of diseases
[50]. Altogether, this might lead to the identification of new biomarkers which
might be instrumental for early diagnosis, prognosis, or prediction of the disease.
While machine learning has the potential to impact various domains of biomedical
research, we will discuss some of these fields in this section where ML is already
making impacts.

i. ML in Disease Diagnosis: Among all application fields of ML in clinical prac-
tice, workflows for the disease diagnosis are most likely to have a translational
impact in the near future. Many ML-based approaches that can process vari-
ous data modalities to identify the probable diagnosis are already in action
or currently undergoing regulatory steps toward the market. For example,
Google has developed various ML-based image analyses workflows to help
identify cancerous tumors in different cancer types like lung cancer [51], breast
cancer [52], etc. Both studies implemented state-of-the-art deep learning-based
artificial intelligence algorithms to detect cancerous cells by extracting features
from CT scans and whole slide images. The prediction performances of these
algorithms were on-par with the radiologists with very high AUC. Another
major example includes Stanford’s deep learning algorithm to identify skin
cancer that can perform as good as an expert dermatologist [53]. They have
implemented a single deep convolutional neural networks based algorithm to
classify skin cancer with the AUC of 91% by using pixels from histopathologi-
cal images and disease labels as inputs. There are lots of successful ML-based
studies published recently that are able to diagnose different diseases like, di-
abetic retinopathy [54], breast cancer [55], glaucoma [56], Parkinson’s diseases
[57].

ii. ML in Drug Discovery: While the drug discovery process is highly compli-
cated, time-consuming, expensive and depends on numerous factors, the
application of machine learning algorithms could significantly simplify and
shorten this process. ML algorithms and tools could be used in all stages of
drug discovery and development, from drug compound screening to clinical
trials. Some of the successful applications of ML algorithms in various tasks of
the drug discovery domain include novel targets identification [58], disease-
target association prediction [59], better disease mechanisms understanding
[60], small molecule design and optimization [61], biomarkers development
[62], etc. Inspired by many successful implementations of machine learn-
ing in this field, many of the major pharmaceutical companies are shifting
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their focuses on machine learning-based drug discovery projects [63]. A more
detailed literature review in this field has been presented later in the drug
repositioning section.

iii. ML in Patient Stratification: Patient stratification is the most crucial element
of precision medicine and yet still quite an open research field for machine
learning applications. While we are still dependent on age-old definitions
of diseases and disease subtypes, we can move beyond the observational
correlation between pathological analysis and clinical outcome for disease
classification with the help of current advancement in biomedical data genera-
tion and machine learning algorithms implementation. For example, Coudray
et al. (2018) successfully demonstrated that non-small cell lung cancer (NSLC)
patients can be classified based on histopathology images using a deep con-
volutional neural network [64]. Another similar study by Esteva et al. (2017)
also successfully classified skin cancer using histological images with their
deep learning framework [53]. While these types of phenotype-based disease
classification can be still useful for better therapeutic care, the ultimate goal for
achieving precision medicine is to subgroup disease based on the molecular
characteristics. Ramazzotti and colleagues (2018) presented a novel workflow
to identify molecular subtypes of 36 types of cancer by integrating multi-
omics data via Multikernel Learning [65]. Another prominent example of such
molecular profiling of the disease is the study by Ceccarelli et al. (2016), where
they clustered Glioma patients with an unsupervised random forest method
[66]. A more comprehensive literature review on the application of ML in
patient stratification has been presented in the final section of the introduction.

iv. ML augmented Physician: The true potential of ML in precision medicine has
become more apparent over the past few years by its successful implementa-
tion in various biomedical sectors. However, we still need to be skeptical about
completely relying on ML when it comes to emergency medical decisions
involving patients’ life risk. For example, we can train a model to predict the
risk of emergency hospital admissions based on the patient’s past history in-
cluding various medical and non-medical factors. However, taking a decision
on whether or not to admit the patient solely based on the model’s prediction
could be fatal. Hence, a collaborative system that can harness the full potential
of ML methods to analyze patient data and help the physician to augment
their decision making is more realistic in many health care tasks. Moreover,
such a system can assist physicians by presenting the results of the diagnostic
by using available biomarkers, clinical data, published research, EHRs, smart
device data, etc [67]. For example, Google demonstrated a deep convolutional
neural network-based framework to accurately detect diabetic retinopathy
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in fundus photographs [54]. However, instead of replacing clinicians, such
a workflow is intended to increase clinician’s productivity by reducing the
overall cost of diagnosis by automating time-consuming and low cognitive
value tasks.

While the above discussions might give the impression that machine learning-
powered precision medicine is just a matter of time to become reality, there are
several challenges that remained to be solved before benefitting from such tools.
Here, we will discuss some of the key challenges in implementing ML-based tools
in precision medicine.

i. Insufficient prediction performance: The descriptive ability of the data with
respect to the clinical endpoint of interest determines the prediction perfor-
mance of the ML model in biomedical research. However, most of the real-
world data are either mostly phenotypic but miss the molecular signatures
that are important for successful model training (e.g., EHRs), or mostly having
interesting molecular patterns but miss the clinical information for successful
interpretation (e.g., genomic variant data). Such data poses big challenges in
the separation of true signals from technical noise in big data analysis [68]. As
a result, many machine learning models in the precision medicine domain
constantly fail to achieve satisfactory predictive power to impress clinicians.
Hence, it is essential to identify and integrate the right data modalities for
any machine learning models that could extract parts of the relevant signal if
not complete. Moreover, some measures like using a sufficiently large patient
cohort, utilizing expert-curated knowledge to identify true biological variation
from noisy data, careful definitions of clinical outcomes in complicated dis-
eases, avoiding selection biases during sample selection, etc., while designing
the study could significantly improve the model’s prediction power.

ii. Insufficient Data: The success of machine learning models, deep learning
models in particular, largely depends on the availability of a huge amount of
training data. Although data generation in biomedical science has become a
lot easier and cheaper than ever, huge chunks of data are still only available
in the oncology and nervous system disease research fields. Moreover, most
of these available data are either not of high quality or lack proper annota-
tions. While increasing the amount of usable and correctly annotated data
is the key to overcome this challenge, there are few algorithmic adaptations
like transfer learning, multiple training runs, surrogate datasets, etc., can be
introduced to handle this issue. The basic assumption of transfer learning is
that predictive features learned in one application domain can also be applied
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to a different, but related application domain. Multiple training runs models
are implemented by training thousands of models simultaneously with differ-
ent learning parameters and ultimately select the highest performing model.
However, such an implementation is computationally very expensive and
time-consuming. Surrogate datasets, on the other hand, represent the noisy
versions of the original dataset for the model’s performance evaluation in the
absence of additional validation data.

iii. Multiple data modalities: Advanced data generation technologies have en-
abled us to produce massive amounts of omics data from various sources like
the genome, transcriptome, proteome, metabolome, etc. While traditionally
these multimodal data have been treated in isolation by most of the machine
learning methods, integrative analysis methods are the true future of precision
medicine research. Various integrative ML algorithms are being implemented
gradually to solve this challenge including combining various data at the
input level, merging extracted features from different data modalities from
independent models, aggregated predictions made by multiple ML models,
etc [69]. However, implementations of new ML algorithms to enable the inte-
gration of new data types remain to be deeply investigated for more robust
clinical outcome predictions. Ultimately, integration of new data modalities
like EHR, smart digital device data, image-derived features with additional
layers of omics data and expert-curated knowledge is essential to get the most
benefit from such integrative approaches.

iv. Interpretability and explanation: While the predictive performance of ML
models is an important criterion to judge how good the model is, the in-
terpretability of such a system’s prediction is far more important in clinical
problems. It is very crucial to understand and explain how these systems
work and make predictions to get clinicians and policymakers on board for
the successful integration of such systems into the health care system. While
ML algorithms are extraordinarily good in detecting complex patterns from
large data to provide accurate predictions, they are not that impressive when it
comes to providing a deeper theoretical, mechanistic, or causal understanding
of the predicted outcomes. The higher the complexity of a model the less
likely for them to be interpretable. Figure 4 demonstrates the classical tradeoff
problem between the model complexity and their interoperability. Although
method development for interpreting ML models is at a relatively early stage,
particularly in biomedical science, ML models are gradually becoming inter-
pretable through the use of different attribution methods. Attribution methods
try to find the relevance or contribution of each feature in a model to make
the prediction. Using prior knowledge of the biological system such as genes,
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Figure 4: Interpretability of machine learning models via model analysis. This chart
demonstrates the model’s interpretability as a spectrum. Complex ML models are at one
side of the spectrum with very low interpretation power. There is a detailed understand-
ing of the exact molecular and pathophysiological mechanisms at the other side of the
spectrum which links a model with a defined clinical endpoint. This figure was adapted
from [71].

proteins, cells, tissues, biological processes, or disease conditions for guiding
the design of ML systems is another approach that can help for the interpre-
tation of a model’s prediction. Yu et al. (2018) explain the potential of such
approaches and label them as “visible approaches” [70]. However, such prior
knowledge is not readily available for most of the disease domains and hence,
will not be effective unless additional efforts are invested.

1.4 Patient Stratification

The term ’patient stratification’ represents the most central aspect of precision
medicine: distinguishing patients into subgroups or strata based on their inher-
ent features. Hence, such strata represent systematic differences in the patient
population. Patient stratification is the first step toward precision medicine, also
known as stratified medicine. While broad-scale features like age, sex, ethnicity,
diet, etc., have been used for defining patients into different treatment groups from
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the dawn of modern clinical practices, use of a wide array of individual data like
molecular, genetic, clinical and further biomarker information has attracted much
attention in this field lately. The rapid advancement in generating high-throughput
omics data for the measurements of such molecular biomarkers, like DNA, RNA,
protein, metabolites, etc., played critical roles to promote patient stratification in
recent clinical studies [72, 73].

Moreover, the emergence of more personalized patient-level ’big data’ like
EHR, imaging, digital device data, etc., has propelled the patient stratification
researches with our increased capacity of rapidly producing, storing and analyzing
such data in the last couple of years [74]. One of the main rationales for the patient
stratification is to identify the group of patients who will have the most effective
responses from a specific treatment. This approach is fundamentally different
from traditional clinical practice based on the idea of ’one-size-fits-all’ treatments.
Technological and analytical advances in biomedical research made it possible
to pursue this most anticipated concept by enabling stratified medicine for the
patients based on their group profiles. Profiling breast cancer patients based on
the presence of human epidermal growth factor receptor (HER)-2 is one of the
successful examples [75]. While HER-2 positive patients showed a more aggressive
form of the disease, clinical trials showed monoclonal antibody trastuzumab is
more effective against the HER-2 positive patients. Another success story is the
prevention of late-stage melanoma progression by the BRAF inhibitor vemurafenib.
A phase III clinical trial showed patients with BRAF V600E mutation have better
responses to vemurafenib treatment [76].

The key motivation for patient stratification is having a much better molecular
and mechanistic understanding of disease to improve therapeutic strategies for
better patient care. In short, with the application of advanced biomedical tools,
such an approach will enable clinicians to predict which treatment and prevention
strategies will work best for a given patient group. The benefits of precision
medicine in the field of healthcare are immense [77, 78]:

• better understanding of the underlying mechanisms of the diseases within
the sub-populations.

• earlier disease detection and possible disease prevention

• ability to predict therapies that will result in higher desirable outcomes

• improved clinical decision making and disease management

• better drug prescription with less predictable side effects
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Figure 5: A schematic representation of the patient stratification concept. Treatments
often fail to achieve the desired outcome in clinical trials due to the presence of unrespon-
sive patient groups in the selected cohort. Statistical or/and machine learning models
that can incorporate a wide range of individual features such as omics data, imaging data,
clinical data, smart device data, etc., in addition to existing knowledge about the diseases
allow clustering patients into separate pools. This stratification enables targeted therapy
of those patient groups, more commonly referred to as precision medicine.
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• well designed clinical trials with the selection of likely responders at baseline

• reduced time, cost, and failure rate of clinical trials due to better patient
cohorts selection

While patient stratification has become a common practice in medical oncology
with many successful clinical implementations, it is yet to mark the footsteps in the
field of multifactorial complex neurodegenerative diseases like AD and PD. The
success stories in oncology could be explained by (i) the presence of extraordinarily
large knowledge bases of cancers built on many decades of research, and (ii)
increased capacity of rapidly producing, storing and analyzing cancer data [79,
80]. While the new data can reveal novel trends in the disease, the presence of
many cancer knowledge bases allow researchers to validate their findings with
existing domain knowledge. Unfortunately, both the data and knowledge bases
in neurodegenerative disease research are less prominent compared to the cancer
field. Therefore, new methods and tools that can utilize both knowledge and data
for patient stratification in neurodegenerative diseases are necessary.

1.5 Machine Learning and Patient Stratification

Machine Learning is becoming the driving force in both pre-clinical and clinical
research over the past few years. It’s potential in precision medicine has become
more apparent mainly because of the many successful implementations of deep
learning algorithms to a variety of biomedical activities including diagnosis, prog-
nosis, disease risk predictions, patient stratifications, etc [5]. The advances of ML
approaches in biomedical research made it possible for meaningful utilization
of the surge of big biomedical data such as omics, EHR, imaging, digital device
data, etc. While proper use of these big data still poses a great challenge to the
community, ML is leading the research with the successful implementations of
various advanced deep learning algorithms. Patient stratification is one of the most
important tasks in the precision medicine field where the successful application of
advanced ML approaches has been demonstrated. Hence, we can move beyond
the classical disease definition system with the help of these advanced machine
learning algorithms which facilitate mechanism-based patient stratifications.

Oncology is the most prolific biomedical research field for the successful
demonstrations of machine learning applications for patient stratification. While
the application of ML in patient stratification is still at the experimental level in
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most disease domains, ML-based cancer patient stratifications have demonstrated
its successful implementations at the clinical level. For instance, Esteva et al. (2017)
developed a deep convolutional neural network (CNN) based method which can
successfully classify skin cancer using histological images. Their method demon-
strated a certified dermatologist level competency in classifying different skin
cancer types [53]. Another CNN based framework, developed by Coudray and col-
leagues (2018), successfully demonstrated that non-small cell lung cancer (NSLC)
patients can be classified based on histopathology images [64]. Their method
can successfully classify adenocarcinoma, squamous cell carcinoma and normal
tissues with the area under the curve (AUC) of 0.97. Sevakula and colleagues
(2018) developed a framework for cancer classification using gene expression
data and a transfer learning technique. They first used stacked autoencoders to
generate common data representations among different cancers and then used
those common features to initialize the parameters of each model for particular
cancer types [81]. Ramazzotti et al. (2018) presented a Multikernel Learning-based
novel workflow to identify molecular subtypes of various types of cancer by in-
tegrating multi-omics data [65]. They successfully demonstrated the potential of
multi-omics data integration and analysis for patient stratification. Ceccarelli et
al. (2016) implemented an unsupervised random forest method to cluster Glioma
patients by using a whole-genome sequencing dataset [66].

On the other hand, successful implementations of patient stratification via
machine learning in other disease domains remained mostly challenging either
due to the complex natures of the multifactorial diseases or due to the availability
of very little data and/or knowledge. Ting et al. (2017) published a very successful
deep learning-based framework for the identification of diabetic retinopathy and
related eye diseases. Their convolutional neural network (CNN) based model
was trained with thousands of retinal images from multiethnic populations with
diabetes and able to identify different eye diseases with very high sensitivity and
specificity [82]. Our own work (De Jong et al. 2019), developed a deep learning-
based framework that can successfully cluster multivariate time series data with
lots of missing values. Their method of a variational autoencoder with recurrence
(VaDER) can successfully stratify AD and PD patients into different subgroups
with clinically relevant feature associations [83]. In another instance, Lopez et al.
(2018) implemented an unsupervised machine learning method to find patient
clusters based on genetic signatures. They successfully demonstrated their frame-
work on the genome-wide association data of 191 multiple sclerosis patients to
cluster them [84]. Tosto et al. (2016) applied k-Means clustering algorithms on
longitudinal assessments and neuropathological data from 3502 AD patients. They
were able to identify distinct subgroups of AD patients with distinct clinical and
neuropathological features [85]. Another similar study by Gamberger et al. (2016)
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used the multi-layer clustering method on both biological and clinical datasets
from Alzheimer’s disease neuroimaging initiative (ADNI) database. Their method
identified three distinct homogenous AD patient clusters with significant dementia
problems [86]. Recently, Zeiberg and colleagues (2019) successfully used simple
logistic regression to stratify patients with higher risks of acute respiratory distress
syndrome (ARDS) by using EHR data [87].

While the above-mentioned studies demonstrate the true potential of data-
driven prediction in patient stratification in different disease domains, most of the
approaches had very little interpretation capabilities about their predictions. This
is due to the inherent nature of the ML model’s black box nature. Since most ML
models capture complex and non-linear correlations between predictor variables
and clinical outcomes, it is often very difficult to explain how they work. However,
it is almost impossible to convince clinicians and policymakers to accept such
black-box models for their decision making. Hence, it is essential to work on
developing more interpretable ML models for the successful adaptation of such
systems in the healthcare system. The integration of prior knowledge is a very
promising approach to interpret ML models in the context of current biomedical
knowledge. Moreover, advances in such integrative ML models can help in the
generation of new hypotheses and understanding the mechanisms underlying
disease conditions. In the following paragraph, we will discuss some of such
integrative studies that incorporated prior knowledge with other data modalities
for their predictions.

Cun and Fröhlich (2012) compared performances of several machine learning
algorithms for patient stratification by using transcriptomics data from six public
breast cancer datasets. They found that the incorporation of prior knowledge from
the pathway and protein-protein interaction databases can greatly enhance the
interpretability of the model predictions [88]. In another big collaborative study,
Costello and colleagues (2014) also compared performances of several ML algo-
rithms to predict therapeutic responses in various breast cancer cell lines using
multi-omics data. They observed all methods that integrated pathway knowledge
had higher prediction performance than other methods [89]. a set of tumor muta-
tion profiles can be stratified into subtypes that are both biologically and clinically
informative. Hofree et al. (2013) demonstrated a network-based stratification of
tumor mutations in three different cancer datasets which are both biologically
and clinically informative. They were able to stratify different tumor subtypes
and associate them into distinct network modules by using somatic tumor mu-
tation data in the context of various human interaction networks [90]. Chang et
al. (2015) proposed another workflow based on a multivariate Cox proportional
hazards regression model to predict different risk groups of lung adenocarcinoma
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patients by using gene expression datasets. Later, they used biological function
or pathway analysis to associate potential biological mechanisms involved with
each risk group [91]. In a recent study, Manica et al. (2019) proposed a pathway-
induced multiple kernel learning (PIMKL) algorithm for the patient stratification
by integrating prior knowledge and multimodal cancer data. They used multiple
interaction-aware kernel functions to integrate molecular interaction networks
and annotated pathways as prior knowledge with multi-omics cancer datasets.
The proposed framework was not only able to successfully classify breast cancer
patients but also provided insights into the molecular mechanisms that underlie
the classification [92].

Although integrative machine learning approaches that can incorporate prior
knowledge with the data for the patient stratification are becoming widespread in
the oncology field as discussed above, such methods are still to be successfully
implemented in the field of neurodegenerative diseases. Such patient stratification
will not only enable us to identify different treatment response groups in these
complex diseases but also help us to identify responsible mechanisms for each
of the subgroups. Finally, such stratifications may also explain the role of vari-
ous common and new biomarkers for both Alzheimer’s and Parkinson’s disease
etiology.

1.6 Drug Repositioning

Drug repositioning is the process of using approved drugs for one indication
to treat a new indication [93]. This practice has become increasingly attractive
since it can bypass many steps of traditional drug discovery as it relies on known
drugs. On the other hand, the classical drug discovery process is complicated, time-
consuming, and very expensive. Despite the continuous efforts from researchers
in academia and pharmaceutical companies, the whole process remains highly
failure-prone. Developing a new prescription drug takes approximately 10 to 15
years and 1.5 billion dollars [94]. Drug repositioning strategy can significantly
reduce the time and effort of the drug development process by bypassing pre-
clinical testing and sometimes even some preliminary phases of clinical trials [95].
Therefore, the drug repositioning process has emerged as a strong alternative to
traditional drug discovery research among pharmaceutical companies [96]. While
113 new drugs and biologics were approved in 2017, 36 previously approved
drugs were repositioned for new indications [97].
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While drug repositioning had mostly relied on serendipitous discoveries in
the past, this domain has started to incorporate systematic approaches based on
computational analyses over the last decades [98]. However, it is only recently
that computational drug repositioning practices have become widespread due to
the increased availability of omics and clinical data. Current computational drug
repositioning methods have evolved to integrate and utilize various multi-omics
data including genetic [99], chemical [100], pharmacological [101], and clinical
[102] data. Additionally, easy access to millions of patient-level data like EHRs,
clinical imaging, smart device data, etc., through big resources and consortiums
like UK biobank [103] and European Medical Information Framework (EMIF) [104]
will have an unprecedented impact on the future computational drug repositioning
research.

Computational drug repositioning methods focus on two main different ori-
entations defined by the information source, namely (i) drug-oriented, where
repositioning strategy begins from the chemical or pharmaceutical perspective,
and (ii) disease-oriented, where repositioning strategy begins from the clinical
perspective of disease or its pathology. Based on these orientations computational
drug repositioning methods can further be categorized into different classes includ-
ing target-based, expression-based, knowledge-based, chemical structure-based,
pathway-based and mechanism of action-based [105]. In the following section,
we will discuss different drug repositioning studies around neurodegenerative
diseases.

One of the very first examples of successful drug repositioning in NDD is the
recommendations of using an epilepsy drug Zonisamide for the treatment of PD
[106]. Murata and colleagues (2001) found that zonisamide can also improve the
symptoms of PD patients while treating an epilepsy patient with PD. However,
recent advances in molecular signature-based drug repositioning techniques that
integrate multi-omics data, enabling successful implementation of such methods
in NDDs as well. Zhang et al. (2016) illustrated a drug repositioning workflow
that integrates multi-omics data (i.e., genomics, epigenomics, proteomics, and
metabolomics) and prior knowledge of disease pathogenesis (PubMed [107] and
OMIM [108]) and drug-target interactions (i.e., DrugBank [109] and Therapeutic
Target Database [110]) from publicly available sources [111]. Their systematic data
mining based workflow was able to identify 18 druggable protein targets in AD.
They further prioritized these anti-AD targets with their ranking algorithms and
identified 7 drugs that can prevent the activities of prioritized anti-AD targets.
Molecular docking based drug repositioning methods are in practice for a while
and hold big potential in NDD drug discovery research. Xie and colleagues (2016)
performed a virtual screening of hundreds of FDA-approved drugs on seven
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known major AD drug targets and shortlisted several drugs that showed extremely
high binding free energies with them [112]. Furthermore, they compared the gene
expression profiles of those identified drugs against the docking result in the
context of associated pathways to predict several FDA-approved drugs including
droperidol, glimepiride, risperidone, etc., as potential multi-target candidates for
the treatment of AD.

While there is a surge of computational drug repositioning approaches of vari-
ous kinds in recent years, the introduction of machine learning-based methods
has the true potential to revolutionize this research domain. For instance, Jamal et
al. (2015) presented a machine learning-based approach that analyzes chemical
descriptors of thousands of striatal-enriched protein tyrosine phosphatase (STEP)
inhibitor compounds for drug candidate predictions in AD via a combination of
machine learning, molecular docking, and molecular dynamics (MD) simulation
approaches [113]. They first prioritize molecules based on their chemical prop-
erties and activities via different machine learning algorithms (i.e., Naive Bayes,
Random Forest, and SVM) and later screened the prioritized compounds by using
molecular docking and MD simulations for gaining better insights of their bind-
ing mechanisms and strength. A study by Romeo-Guitart et al. (2018) proposed
a systems biology and artificial intelligence-based drug discovery framework,
therapeutic performance mapping system (TPMS), to identify neuroprotective
agents by using proteomic data from preclinical models and molecular interaction
database [114]. First, using literature knowledge they built a protein network on
motoneuron root avulsion, and then converted it into topological maps associated
with mathematical equations. Next, they combined the output of the machine
learning model trained with proteomic data from the preclinical models with
the mathematical models. Finally, the mathematical models identified a putative
neuroprotective drug combination of two drugs, Acamprosate and Ribavirin, that
can promote neuroprotection, nerve regeneration and functional recovery. Another
very recent study by Zeng and colleagues (2019) demonstrated a network-based
deep learning framework, deepDR, for in silico drug repositioning by integrating
10 different networks [115]. The deepDR pipeline uses random walk-based net-
work representation to capture network structural information from a complicated
heterogeneous network that was built with 10 different drug-related networks.
Then, they trained a multi-modal deep autoencoder (MDA) model that can learn
compact and low-dimensional features of drugs from the heterogeneous network
to predict new drug-disease associations. Finally, they used these low dimensional
features to train a collective variational autoencoder (cVAE) model to predict
potential associations between drugs and diseases. The deepDR pipeline exhibited
high prediction performance and prioritized a couple of potential repurposed
drugs for AD and PD.
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Although there are several promising drug repositioning approaches available
in the area of NDDs, we still lack any drugs that can ameliorate NDD diseases
(i.e., AD and PD). While multifactorial and complicated disease biologies of AD
and PD make it extremely challenging to find the right target(s) for drug develop-
ment, systematic integration of prior knowledge either in the form of knowledge
assemblies or canonical pathways will give better insights into the pathophysio-
logical conditions to identify drug candidates that tagetes underlying mechanisms.
Hence, advanced machine learning-based drug repositioning approaches that not
only use patient-level multi-omics and clinical data but also incorporate prior
knowledge to enable mechanism oriented drug candidate predictions are required
to overcome this challenge.

Finally, despite drug repositioning and precision medicine are two distinct
fields of biomedical research, they share the common goal of developing better
treatment by disentangling underlying disease mechanisms [116]. As precision
medicine focuses on enabling better understanding, characterization, and classi-
fication of disease, drug repositioning can leverage these deeper disease under-
standings to find already approved drugs that can alter the activity of identified
targets or pathophysiological mechanisms[117]. Moreover, with the availability
of ever-expanding patient-level data (i.e., omics and clinical data) and success-
ful demonstration of advanced machine learning approaches in the biomedical
research field, the systematic difference between the underlying workflows of
precision medicine and drug repositioning is narrowing down dramatically. There-
fore, the concepts of precision medicine and drug repurposing could be seen as
two sides of the same coin and needed to be used together in order to get their full
benefit in the healthcare system.

1.7 Problem Statements

This thesis addresses an important aspect of the precision medicine research of
stratifying neurodegenerative disease patients based on molecular and mechanistic
disease signatures. The key contributions of our work are two folds: i) investigating
prior knowledge from AD and PD knowledge assemblies for the mechanism-based
patient taxonomy and drug target identifications, and ii) building a deep learning-
based hybrid machine learning model for the joint stratification of AD and PD
patients. The thesis is structured as follows:

Chapter 2 introduces the domain-specific knowledge assembly building and its
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applications in decoding biologically interesting problems in that domain. We have
curated the Alzheimer’s Disease knowledge assembly [45] to enrich it with drug
interaction information from scientific literature and different chemical interaction
databases (i.e., CTD, TTD, and STITCH). Using this chemically enriched AD
knowledge assembly we identified some crucial mechanisms in AD that could be
targeted by existing drugs in other NDDs. We showed such knowledge assembly
could not only help us to portray how different chemicals interact in the context
of a biological process but also to enable us to identify druggable mechanisms in
NDDs.

Chapter 3 presents PS4DR, a customizable workflow to incorporate prior
knowledge with multi-omics datasets from various public databases to predict
drug repositioning candidates in different diseases. PS4DR integrates high-throughput
omics data (i.e., genomics and transcriptomics) from disease and drug perturba-
tions with the prior knowledge in the form of a pathway knowledge (i.e., KEGG,
Reactome, and Biocarta) to predict approved drugs in new indications. While
two omics data modalities in our workflow help to pinpoint molecular determi-
nants underlying different disease conditions, integrating mechanistic knowledge
from the pathway databases enable us to identify which biological processes are
interrupted in original disease conditions and/or drug perturbed disease condi-
tions. Finally, anticorrelation scores calculated for both drugs and diseases help to
prioritize drug candidates for each disease.

Chapter 4 introduces a hybrid AI approach to cluster AD and PD patients
based on their molecular and mechanistic profiles. We established an unsuper-
vised deep learning clustering approach for the joint stratification of AD and PD
patients based on prior knowledge in the form of our AD and PD knowledge
assemblies. Our workflow demonstrated the use of mechanistic knowledge with
omics data not only successfully stratify complex neurodegenerative diseases (i.e.,
AD and PD) but also can interpret the predicted patient clusters in the context of
current biomedical knowledge. Moreover, underlying mechanisms for each of the
patient clusters contain separate druggable targets that will enable us to pursue
targeted therapy.

Finally, the last chapter of this thesis summarizes the core message of ’mechanism-
based patient stratification and drug repositioning’ and discusses the limitations
and possible future directions of this work.
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2 Using Drugs as Molecular

Probes: A Computational Chemical

Biology Approach in

Neurodegenerative Diseases

Introduction

While data, knowledge, and information in biomedical science are increasing
exponentially over the past decades, our standings of disease biology in mul-
tifactorial and complex non-mendelian diseases remain inexplicable [118]. The
knowledge deficit on the causation of diseases even gets bigger in the area of
neurodegenerative diseases. Such ill knowledge of complex disease etiologies
translates into the lack of effective treatments for most of those diseases despite
gigantic investments of the pharmaceutical companies [22]. This work explored
the potential of knowledge assembly, a consolidated and computable collection of
domain-specific knowledge, in investigating biological phenomena in the context
of neurodegenerative disease. It leverages the semi-automatically curated domain
knowledge around Alzheimer’s disease to predict repositioning candidates by
exploring and analyzing disrupted disease biology in AD.
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Reprinted with permission from "Emon M. A. et al.. (2017) Using drugs as
molecular probes: A computational chemical biology approach in neurodegenera-
tive diseases." Journal of Alzheimer’s Disease 56.2 (2017): 677-686". Copyright ©
Emon M. A. et al., (2017).
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Abstract. Neurodegenerative diseases including Alzheimer’s disease are complex to tackle because of the complexity of the
brain, both in structure and function. Such complexity is reflected by the involvement of various brain regions and multiple
pathways in the etiology of neurodegenerative diseases that render single drug target approaches ineffective. Particularly in
the area of neurodegeneration, attention has been drawn to repurposing existing drugs with proven efficacy and safety profiles.
However, there is a lack of systematic analysis of the brain chemical space to predict the feasibility of repurposing strategies.
Using a mechanism-based, drug-target interaction modeling approach, we have identified promising drug candidates for
repositioning. Mechanistic cause-and-effect models consolidate relevant prior knowledge on drugs, targets, and pathways
from the scientific literature and integrate insights derived from experimental data. We demonstrate the power of this approach
by predicting two repositioning candidates for Alzheimer’s disease and one for amyotrophic lateral sclerosis.

Keywords: Alzheimer disease, amyotrophic lateral sclerosis, biological expression language, disease-drug modeling,
drug repositioning, neurodegenerative diseases

INTRODUCTION

The human brain represents the most complex
biological system, both structurally and function-
ally. Due to the inherent complexity, treating or even
alleviating brain diseases, particularly neurodegener-
ative diseases, is not trivial. Development of drugs
against neurodegenerative diseases has turned out to
be among the greatest challenges in the pharmaceu-
tical industry, as reflected by the high attrition rates
and withdrawal of high profiled pharmaceutical com-
panies from research on relevant indication areas [1].
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A recent survey of success rates of drugs in clinical
phases between 2003 and 2011 demonstrates that the
likelihood of approval for drug candidates in the cat-
egory of neurodegenerative diseases was only 9.8%,
mainly limited by efficacy issues [2]. In fact, older
empirical drug discovery methods are ignorant of
mechanisms of actions and modern target-based drug
discovery strategies follow a reductionist approach
that excessively focuses on drug-receptor interactions
and pharmacodynamics/pharmacokinetic properties
of the candidate molecule. Both approaches do not
consider the complex interplay of various biological
entities across multiple biological scales and largely
ignore the concept of polypharmacology [3].

Although new postgenomic technologies have pro-
duced a considerable amount of data at the molecular
level, there has been little progress in inferring disease
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mechanisms from these data. To overcome this
hurdle, computational modeling methods, particu-
larly model-driven systems analysis approaches, have
opened up the opportunity to interpret biological
datasets in a mechanistic context. Most of the rel-
evant published studies, particularly in the data-rich
field of cancer research, have used such methods to
model the mechanism drug response around one or
two signaling pathways using quantitative data and
very limited amount of prior knowledge from litera-
ture [4, 5]. However, in a data-scarce field of research
such as neurodegenerative diseases, aggregation of
prior knowledge plays a key role in unraveling the
puzzle of mechanisms underlying disease. This strat-
egy leads to a second category of methods that aim
at complementary integration of prior knowledge
and experimental data to increase the interpreta-
tion power. Biological Expression Language (BEL)
(http://www.openbel.org) is a comparably new and
state-of-the-art mechanistic modeling syntax that
offers a method to combine literature-derived ‘cause-
and-effect’ relationships and data-driven results into
a consolidated causal network model, which is
amenable to further analysis for mechanistic biologi-
cal interpretation. We have recently demonstrated the
benefit of BEL modeling approaches in the area of
neurodegenerative diseases by differential analysis of
the mechanisms of Alzheimer’s disease (AD) [7].

For example, in the context of AD where most
likely multiple mechanisms contribute to its pathol-
ogy, systematic approaches such as a BEL-based
mechanism-of-action discovery method instead of
conventional drug-target-centric methods are more
likely to deliver new, promising drug candidates.
BEL-based modeling can help to repurpose other,
already approved drugs with polypharmacological
properties from other indications, as many of the
drug targets are functionally pleiotropic and involved
in multiple diseases. Drug repositioning, defined
as the process of identifying and developing new
indications for existing drugs, is also known as
“drug redirecting”, “drug repurposing”, or “drug
reprofiling” [8]. Off label use of Food and Drug
Administration (FDA) approved drugs are very popu-
lar in many disease treatments; for instance, 50–75%
of prescribed drug therapies for cancer are counted
for off label uses [9]. One of the well-known exam-
ples for drug repositioning is sildenafil (Viagra),
which is used in erectile dysfunction, but was ini-
tially developed to treat angina [10]. Another benefit
of drug repositioning is that it offers very low risk, as
repositioning candidates have already passed through

several stages of clinical development. Therefore,
repositioning can offer a better risk-versus-reward
trade-off compared with other strategies in drug
development.

Motivated by the capabilities that come with the
cause-and-effect modeling approach, we have devel-
oped a causal model of drug-target interactions in
the context of NDD. We demonstrate how scattered
information existing in the scientific literature can
be mechanistically linked to support the detection of
putative drug action mechanisms in a defined disease
context.

METHODS

Construction of drug-target interaction model
around NDD

Using SCAIView (http://academia.scaiview.
com/), our literature mining environment [11], we
retrieved NDD related drugs based on PubMed
abstracts with the query ([MeSH Disease: “Neu-
rodegenerative Diseases”]) AND [Drug Names].
Next, we extracted related mechanistic informa-
tion of all the drugs that reached clinical trials
for NDDs using simple queries with the defined
disease context (NDD) and specific drug names.
For example, ([MeSH Disease: “Neurodegenerative
Diseases”]) AND [Drug Names: “Donepezil”]
has been performed to extract all PubMed articles
containing information related to the mode-of-action
of donepezil in the NDD context. We manually
extracted causal information from these articles
and coded into a BEL model. Then, we integrated
this model with our in-house AD model [7], to
achieve greater disease biology context for the
analysis. In order to enrich this primary model by
additional interactions for NDD related drugs, we
extracted all interactions related to these drugs such
as drug-drug interactions, target-target interactions,
and drug-target interactions that occur within the
brain from different drug interactions databases
including Comparative Toxicogenomics Database
(http://ctdbase.org/), Therapeutic Target Database
(http://bidd.nus.edu.sg/group/cjttd/), DrugBank
(http://www.drugbank.ca/), and STITCH database
(http://stitch.embl.de/). The purpose of this enrich-
ment was to integrate the biology context around
drug targets, in particular those causal relationships
that can be used to describe the physiological
mode-of-action of a drug-target combination.
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Model analysis and visualization

We used DAVID (http://david.abcc.ncifcrf.gov), a
tool widely used for gene set enrichment analysis,
to find the most significant pathways and biological
processes associated to the drug targets in our model.
The Cytoscape software was used for subnetwork
extraction and visualization [12].

Target similarity approach

Using the query ([MeSH Disease: “Neurodegener-
ative Diseases”]) AND [Drug names] in SCAIView,
PubMed abstracts were searched for all drugs men-
tioned in the context of neurodegenerative diseases.
Targets of all NDD drugs were systematically com-
pared against targets of five approved drugs for AD,
and ranked based on the number of shared targets.
Hence, NDD drugs having the highest number of
shared targets with approved AD drugs were consid-
ered for further analysis in the context of AD. Only
those targets having direct interactions are considered
for this approach to avoid redundancy. Drugs from
these lists were then spotted in the AD-specific BEL-
based model for the prediction of similarity of their
mechanism of action with five approved AD drugs.

RESULTS

Analysis of NDD-specific cause-and-effect model

The retrieved mechanistic information from the
text mining tool SCAIView was manually inspected
and filtered for relevant information. Both litera-
ture and data driven information were encoded into
the NDD-specific BEL model and this model con-
tains 9645 nodes and 26,660 edges including 7,215
genes/proteins, 442 biological processes, 101 dis-
ease concepts, and 1,081 chemical entities, coded
into 34,403 BEL statements (Fig. 1). This model
is comprised of several types of interactions such
as drug-target interactions, drug-disease interactions,
target-target interactions, target-pathway interac-
tions, and drug-pathway interactions represented by
mainly ‘increases’, or ‘decreases’ types of relation-
ships in BEL.

GSEA for this model resulted in a list of signifi-
cant pathways, in which Alzheimer’s disease pathway
was on top of the list, followed by the Amyotrophic
Lateral Sclerosis (ALS) pathway (Table 1). Two ‘tar-
get sets’ associated with these two pathways were

selected from the model for further analyses with
the intention of the identification of potential drug
repurposing candidates from the model.

Model-based mechanistic analysis of drug
repositioning candidates

We systematically analyzed our model in order to
detect the mechanism of action of the drugs in the
context of their causal relationships with the avail-
able targets, pathways, and biological processes in
the NDD-specific mechanistic model. This sort of
analysis helps to find possible interaction similarities
between drugs of one indication to other indications
within the disease context. In this study, we were able
to predict three candidate drugs for drug repurposing
by using our enriched NDD-specific BEL model:

Donepezil as potential repurposing candidate
for ALS

Functional analysis of genes/proteins in our model
revealed the “ALS disease pathway” as the putative
shared pathway with AD, suggestive of evidence to
explore the possibility of repositioning drugs between
these two diseases. Further analysis of the ALS path-
way sub-network based on our model led to the
identification of the AD approved drug donepezil
as a potential candidate for repositioning. Donepezil
affects 26 proteins in the ALS mechanistic pathway
sub-network in our model.

Mutant SOD1 protein is believed to be a key player
in the pathology of ALS, which disturbs the normal
physiological conditions and initiates a number of
pathways that ultimately lead to the disease condition
[13]. Our mechanistic analysis reveals that donepezil
can prevent effects of mutant SOD1 by interfering
the activities of many proteins that are altered by
this mutation under ALS conditions. Mutant SOD1
protein in ALS mainly exerts its effect by three
mechanisms that ultimately lead to neuronal cell
death. Firstly, mutant SOD1 can exert its effect by
stimulating pro-apoptotic proteins BAD and BAX
and inhibiting the activity of anti-apoptotic proteins
BCL2 and BCL2L1, which leads to an increase in
cytochrome C (CYCS) release from the mitochon-
dria [14, 15]. The activation of BAD and BAX can
be also be achieved by recruiting TP53 proteins via
mutant SOD1 [16]. The released CYCS interacts and
forms a complex with APAF1 in the presence of ATP
and activates the key player of the cell death CASP9,
which subsequently activates CASP3 and initiates
cell death [17]. Secondly, mutant SOD1 can initiate
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Fig. 1. AD-specific BEL model enriched with drug-target interactions. The extract represents various interaction types for Riluzole such as
drug-protein, drug-bioprocess, and drug-pathology interactions encoded into the BEL model.

Table 1
Top Pathways from the gene set enrichment analysis (GESA)

Pathway Names Count p-value Bonferroni FDR

Alzheimer’s disease 30 2.02E–29 2.43E–27 2.32E–26
Amyotrophic lateral sclerosis (ALS) 24 7.85E–18 9.41E–16 9.01E–15
Pathways in cancer 50 1.98E–14 2.37E–12 2.27E–11
Prostate cancer 26 4.82E–14 5.78E–12 5.53E–11
MAPK signaling pathway 39 1.20E–10 1.43E–08 1.37E–07
Neurotrophin signaling pathway 26 1.46E–10 1.75E–08 1.67E–07
Bladder cancer 16 1.52E–10 1.83E–08 1.75E–07
Calcium signaling pathway 31 1.55E–10 1.86E–08 1.78E–07
Pancreatic cancer 20 2.04E–10 2.44E–08 2.34E–07
Toll-like receptor signaling pathway 23 4.13E–10 4.96E–08 4.75E–07

oxidative stress via P38 signaling pathway, which in
turn inhibits EAAT2, a regulator of the glutamate con-
centration [18]. The inhibition of EAAT2 produces

excess glutamate in synapses, which overstimulate
glutamate receptors and initiate high calcium influx
in the cytosol and produce reactive oxygen species



M.A.E.K. Emon et al. / Drug Repositioning by Knowledge Driven Model 681

Fig. 2. Model-based prediction of donepezil’s mode-of-action in the context of the ALS Pathway. The figure illustrates how donepezil
modifies the ALS shared pathway. Red lines represent perturbations in disease condition and green lines indicate normal physiological
processes, while blue lines indicate drug effects on targets. Arrows represent increased activities of entities while T lines stand for decreased
activities of entities and dotted lines represent intermediate interactions.

(ROS), which will ultimately activate CASP9 [19]. In
the third pathway, mutant SOD1 inhibits the activity
of XIAP, which regulates CASP9 in normal condi-
tion, ultimately leading to activation of CASP9 and
CASP3 and initiating neuronal death [20].

According to our model, donepezil can interact
with several significant targets in each of these three
routes of the ALS pathway. Donepezil can increase
the activity of BCL2, BCL2L1, and XIAP, which are
inhibited by mutant SOD1 in ALS. It is also able
to reduce the level of Ca2+ and ROS production in
oxidative stress and to inhibit the activation of CASP9
and CASP3 too (Fig. 2).

Epidemiological evidences suggest that early
treatment of donepezil in mild cognitive impair-
ment plays a neuroprotective role by preventing
neuronal cell death in the hippocampus, hence,
reduces the likelihood of disease progression to AD
[21, 22]. Interestingly, cognitive dysfunction and

inflammation in ALS are broadly associated with
morphological changes in the hippocampal region
due to excessive neuronal cell death [23–25]. There-
fore, based on mechanistic analysis of our model
along with the evidences presented; we can hypothe-
size that donepezil may be a promising repurposing
candidate for treating ALS and absolutely worthy of
further investigations.

Riluzole as potential repurposing candidate
for AD

Being motivated by the donepezil reposition
prospect for ALS, we investigated the likelihood of
repurposing any ALS drugs for AD with the help of
our model. Using our literature-mining environment
SCAIView, we found riluzole as the most prominent
and effective drug for ALS treatment until now, which
helps to prolong the survival of ALS patients. There-
fore, we inspected all interactions related to riluzole
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Fig. 3. Schematic representation of Riluzole mechanism of action and its neuroprotective Effect in the context of AD. Blue lines here
represent only the alternative effect of riluzole on these pathways. Purple boxes represent the direct protein target and green nodes represent
channels and receptors, which can be targeted by riluzole. Yellow nodes represent targeted ions/chemicals and red nodes represent biological
processes.

in our model to investigate its potential influences on
the AD pathology. Interestingly, our model was able
to bring together some mechanisms of actions of rilu-
zole, which interfere with some crucial mechanisms
of AD etiology as described below (Fig. 3).

Riluzole is usually known to prolong life longevity
of ALS patients by inhibiting Ca2+ and Na+ channel
activities and increasing K+ channel activity, which
result in decreased glutamate release in the cell [26].
Decreased glutamate concentration contributes to
TNF inactivation, which leads to inhibition of inflam-
matory processes in the brain. The model predicts that
riluzole can be beneficial in AD by interfering with
a number of mechanistic routes in AD pathology, as
follows: in addition to glutamate release inhibition,
riluzole can stop neuronal excitotoxicity by inhibiting
NMDA and Kainate binding to the NMDA receptor.
Riluzole can impede oxidative stress by inhibiting
lipid peroxidation via blocking PLA2 activity. Rilu-
zole can also suppress VEGFA and PRKC activities,
which are found to be upregulated in AD [27, 28]
and believed to be involved in tau phosphorylation
[29, 30]. Moreover, riluzole can inhibit pro-apoptotic
CASP3 and stimulate anti-apoptotic BCL2 protein
to prevent apoptosis [31]. Excessive N-methyl-D-
aspartate (NMDA) receptor activation is believed to
mediate calcium-dependent glutamate excitotoxicity

in different neurodegenerative disorders like AD
[32]. Our mechanistic model predicts that glutamate
release inhibitor riluzole can provide further ther-
apeutic benefits in AD when used in combination
with memantine, the first-in-class approved drug for
AD, by modifying excess transmission of synap-
tic glutamate. Additionally, an ongoing clinical trial
NCT01703117, where riluzole is being tested for
treating mild stage AD patients, provides further sup-
porting evidence for the mechanism hypothesis we
present here. Therefore, we feel encouraged to spec-
ulate that riluzole might have therapeutic benefits
for AD.

Identification of potential drugs for AD
by a target similarity approach

The mechanistic prediction capability of our model
inspired us to pursue this slightly different approach
for exploring the repositioning potential of drugs
present in our model. Analysis for finding common
targets between NDD drugs in our model and 5
approved AD drugs identified resveratrol and sim-
vastatin, as drugs that share the highest number of
targets with approved AD drugs. Interestingly, these
two drugs are already being proposed or investigated
for their therapeutics effects in AD (Supplementary
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Fig. 4. Distribution of common targets between cyclosporine and
five AD approved drugs. The pie chart shows the number of targets
that cyclosporine shares with 5 different approved AD drugs.

Table 1), which points to the legitimacy of our
approach to find drugs that can be used for similar
therapeutic approaches based on their target similar-
ity. To this end, we have selected another top-ranked
drug “cyclosporine”, from our target similarity list,
for further mechanistic analysis.

Cyclosporine mode-of-action analysis
in the context of AD

Cyclosporine is a drug against rheumatoid arthritis
and has common targets with all five AD approved
drugs (Fig. 4), but has not been previously considered
for its potential effects in AD.

Instead of being an immunosuppressive agent, the
NDD-specific BEL model predicts that cyclosporine
can exert neuroprotective effects in various alterna-
tive ways. Cyclosporine mainly inhibits immuno-
competent lymphocytes (T1 helper cells) in a specific
and reversible manner so that T1H cells decrease IL2
and IFNG production and release, which leads to
suppression of the immune system response partially
(Fig. 5).

According to the model prediction in Fig. 5,
cyclosporine can also repress the apoptosis of neu-
ronal cells by inhibiting Cyclophilin D, a member
of mitochondrial permeability transition complex
(MPTP) [33]. Cyclophilin D inhibition results in
regulation of the MPTP complex and decreased
Cytochrome C (CYCS) release from mitochondria
[34, 35]. This inhibition of CYCS prevents CASP9
and CASP3 mediated apoptotic cell death [20]. The
apoptosis inhibition through prevention of CYCS
release is also facilitated by the inhibitory effects
of cyclosporine on the anti-apoptotic protein BCL2,

pro-apoptotic BAD, BAX, and also AKT [36, 37].
Cyclosporine activity inhibits BAX and BAD via
stimulation of AKT activity [38], which in turn
inhibits GSK3� that phosphorylates and activates
BAX [39]. It also inhibits calcineurin, which results in
repression of inflammation [40] and down-regulation
of ACHE and BCHE, potentially via increasing AKT
activity [41, 42], while AKT degeneration leads
to increased ACHE and BCHE levels in AD [32].
There is also evidence that cyclosporine decreases
ABCB1 and ABCC2 activity [38, 43], which has been
reported to increase amyloid-� (A�) accumulation in
the brain of AD patients [44].

Further support for this hypothesis was provided
by a number of patents that explain the putative
mechanisms we reconstructed for the potential role
of cyclosporine in AD. The claims sections of these
patents state clearly, that apart from immunosuppres-
sive activity, cyclosporines could also be effective to
improve disease condition by interfering cyclophilins
activity and A� accumulation. According to US
Patents US6583265 and US7538084, cyclosporines
can have therapeutic effect in AD by inhibiting the
catalytic activity of cyclophilins. A European Patent,
EP1893226, recommends the use of cyclosporine
to treat AD by preventing A� accumulation in the
brain in addition to their cyclophilin inhibition activ-
ity. Therefore, cyclosporine can be proposed as a
multipotent therapeutic agent for AD treatment and
this hypothesis bears potential for further clinical
investigation.

DISCUSSION

Structural and functional complexity of the human
brain has posed serious challenges to the develop-
ment of novel therapeutics against neurodegenerative
diseases. Capturing this complexity across different
molecular entity types and various biological scales
can be assisted by computational systems modeling
approaches that aim at linking molecular mecha-
nisms to clinical phenotypes. Particularly, in complex
diseases like AD, integrating all the entities and bio-
processes involved in the disease into consolidated,
cause-and-effect models bears some potential to shed
light on interdependent processes and pathways that
remain unnoticed in the shadow of disease complex-
ity otherwise. In fact, representing a priori relevant
knowledge in the form of causal relationship mod-
els confers enhanced interpretation power that is well
suited to back up experimental data and generate new
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Fig. 5. Neuroprotective effects of cyclosporine in the context of AD. This cartoon demonstrates the mode of action of cyclosporine explicitly.
The blue lines here represent the alternative effect of cyclosporine on these different pathways. Cyclosporine mainly inhibits T helper cells
to suppress the immune system. Cyclosporine found to affect neuronal cell death by inhibiting cyclophilin D that prevents the cytochrome
C release and CASP9, CASP3 activation. Cyclosporine can also down regulate ACHE and BCHE which can provide improved cholinergic
function. Moreover, cyclosporine might be useful to prevent amyloid beta accumulation by preventing ABCC2 and ABCB1 proteins.

testable hypotheses. Once such mechanistic, context-
sensitive models are available, the molecular space
can be enriched for chemical entities to facilitate pre-
diction of mode-of-action for drugs and biomarkers.

As demonstrated in this work, disease-specific
mechanistic models that are enriched with chemical
entities can be used not only to explain the physio-
logical action mode of approved drugs or candidate
drugs, but also to explore the multi-targeting nature of
potent compounds and predict the suitability of exist-
ing drugs for repurposing in another indication area as
well. Based on their role in our cause-and-effect drug-
target network, two FDA approved drugs, riluzole and
cyclosporine, may be repurposing candidates for AD.
Another FDA approved drug, donepezil, could be a
potential repurposing candidate for ALS. Although
our inferences are based upon the aggregated a priori
knowledge consolidated in BEL models, further func-
tional or translational validation can be provided by
integration of experimental data such as gene expres-
sion values. Cross-validation of our models with the
signature-based results of Siavelis et al. [14] indi-
cates that rilozule and cyclosporine belong to PKC
and GSK3 inhibitor classes of repurposing candidates
for AD.

Our approach of using drugs as molecular
probes supports the notion that integration of
literature-driven information into a formalized model
can be instrumental for prediction, analysis, and

interpretation of possible biological mechanisms
underlying a disease process. Using this approach, we
could demonstrate that potential new roles of existing
approved drugs can be predicted based on a mean-
ingful functional context. Nevertheless, BEL based
mechanistic models, of course, cannot be considered
as a replacement for any structure-activity relation-
ship (SAR) model based drug discovery approach. On
the contrary, the BEL model presented here merely
provides a common platform to put drug-target infor-
mation into a functional, mechanistic context that
focuses on causes and effects and allows for predic-
tion of the repurposing potential of drugs.

It should be noted here, however, that computa-
tional models like the ones presented in this study
assist hypothesis generation and candidate prioritiza-
tion. Indeed, these models are merely precursors to
clinical and laboratory research findings so that pre-
dicted candidates enriched with supporting evidence
should be ultimately confirmed by experimental and
clinical studies. But such prioritized candidates at this
stage can guide future validation efforts in experimen-
tal research settings with lower decision-making and
investment risk.

CONCLUSION

Failure of conventional drug discovery and devel-
opment approaches to deliver new drugs for complex
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disease like, AD or ALS, has proven that the “one
size fits all” paradigm can no longer hold true for
chronic and complex idiopathic diseases, particularly
in the area of neurodegenerative diseases. This is
because of the inherent multitargeting nature of ther-
apeutic agents that modify often unknown pathways
with unwanted effects. However, this property can be
used positively for repositioning of already approved
drugs if the mechanism of action for these drugs
can be shown in the context of other diseases. Thus,
consolidating the mechanistic information within
causal computational models lends support to sci-
entists and decision makers to substantiate their
hypotheses based on collective information from both
knowledge- and data-driven approaches. It is fore-
seen that, with the consistent growth of published
knowledge and advent of big data, such mechanistic
models will play an increasingly important role in the
future generation of drug discovery and repurposing
pipelines.
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Chapter 2

Conclusions

This study showed the integration of drug interaction information to the AD
knowledge assembly helped to enhance the understanding of the mechanism of
actions of those drugs in the context of AD disease biology. This new incorporation
enabled AD knowledge assembly to link thousands of drug-target information
with various multi-scale AD biomarker knowledge (i.e., from the molecular level
to tissue or organ level) and thus made it more comprehensive for the holistic view
of disease biology. Hence, it created the opportunity for the researchers to look into
those drugs from the disease biology perspective instead of investigating them
only at target levels. As a result, it allows us to go beyond the target-based drug
repositioning to predict drugs that focus rather on whole disrupted disease biology.
Later, the network analysis of this enriched AD knowledge assembly enabled us
to identify several disrupted mechanisms in AD and predicted several drugs that
could modify the actions of several targets in those identified mechanisms. Looking
forward, the semi-automatic curation workflow developed during the course
of this study has the potential to serve as a guideline to enrich the knowledge
assemblies by using BEL as a medium for knowledge capturing and representation.
Finally, this work has demonstrated that a knowledge assembly is a useful tool
for the mechanism-based drug repositioning in the context of NDDs, while the
benefit of such a workflow could be translated to any other diseases.
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3 PS4DR: A multimodal workflow

for identification and prioritization of

drugs based on pathway signatures

Introduction

Traditional drug development remains a low yielding ‘hit and miss’ approach,
despite the endless efforts from the researchers and colossal investments of phar-
maceutical companies. Drug repositioning, on the other hand, has emerged as a
more suitable alternative due to its flexibility of bypassing many steps in tradi-
tional drug discovery and thus reduced cost [96]. Moreover, increased availability
of advanced computational methods and big scale multi-omics data in biology en-
couraged the widespread adoption of computational drug repositioning strategies.
However, there is an urgency for more systematic approaches for drug reposi-
tioning that can integrate multi-omics data with mechanistic information from
prior knowledge. Such methods will not only be able to predict repositioning
candidates based on the patterns observed from omics data but also be able to
provide a better understanding of the drug’s mechanism of action in the disease
context. To address this challenge, we demonstrate PS4DR, a flexible drug reposi-
tioning workflow based on the incorporation of pathway information, genomics,
and transcriptomics data.
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Abstract

Background: During the last decade, there has been a surge towards computational
drug repositioning owing to constantly increasing -omics data in the biomedical
research field. While numerous existing methods focus on the integration of
heterogeneous data to propose candidate drugs, it is still challenging to substantiate
their results with mechanistic insights of these candidate drugs. Therefore, there is a
need for more innovative and efficient methods which can enable better integration
of data and knowledge for drug repositioning.

Results: Here, we present a customizable workflow (PS4DR) which not only
integrates high-throughput data such as genome-wide association study (GWAS)
data and gene expression signatures from disease and drug perturbations but also
takes pathway knowledge into consideration to predict drug candidates for
repositioning. We have collected and integrated publicly available GWAS data and
gene expression signatures for several diseases and hundreds of FDA-approved
drugs or those under clinical trial in this study. Additionally, different pathway
databases were used for mechanistic knowledge integration in the workflow. Using
this systematic consolidation of data and knowledge, the workflow computes
pathway signatures that assist in the prediction of new indications for approved and
investigational drugs.

Conclusion: We showcase PS4DR with applications demonstrating how this tool can
be used for repositioning and identifying new drugs as well as proposing drugs that
can simulate disease dysregulations. We were able to validate our workflow by
demonstrating its capability to predict FDA-approved drugs for their known
indications for several diseases. Further, PS4DR returned many potential drug
candidates for repositioning that were backed up by epidemiological evidence
extracted from scientific literature. Source code is freely available at https://github.
com/ps4dr/ps4dr.
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Background
De novo drug discovery remains a time-consuming, costly, and failure-prone process,

despite advances in high-throughput data generation techniques and analytical ap-

proaches. On average, it takes approximately 10 to 15 years and 1.5 billion dollars to

bring a drug to market [1]. While traditional drug discovery research is able to propose

numerous candidate drugs, the majority of them fail in clinical trials due to lack of effi-

cacy or undesired effects in these trials [2]. Therefore, drug repositioning has emerged

as an alternative in drug discovery research [3] that hinges on identifying new indica-

tions for investigational or approved drugs in order to reduce the time and cost of pre-

clinical development and primary stages of clinical trials.

Computational drug repositioning methods have recently become popular due to the

increased availability of drug-related -omics data through sources like CMap (Connect-

ivity Map [4]) and LINCS (Library of Integrated Network-Based Cellular Signatures [5])

(see Tanoli et al. [6] for a review on databases and methods). In recent years, they have

evolved to accommodate and utilize novel high-throughput data such as genetic [7],

chemical [8], pharmacological [9], and clinical [10]. Computational drug repositioning

methods can be categorized as (i) drug-based, where knowledge comes from the chem-

ical or pharmaceutical perspective, or (ii) disease-based, where the strategy focuses on

different aspects of the disease, such as symptomatology or pathology [11]. Following,

we outline methods from both categories that involve the usage of transcriptomics and

GWAS data for drug repositioning purposes.

Transcriptomics data has historically been used to unravel the molecular mechanisms

of complex diseases [12–14]. Accordingly, numerous drug repositioning approaches

have relied on contrast experiments of transcriptomics readouts such as disease sam-

ples, drug perturbed cells and animal models to identify drugs that revert the signature

of the disease and eventually its pathogenic phenotype to ultimately predict new indica-

tions for existing drugs [4, 15, 16]. To facilitate novel approaches that could systematic-

ally exploit this concept, Lamb et al. [4] developed a comprehensive catalog of small

molecule perturbed gene expression signatures called CMap. They demonstrated that

gene expression signatures can be used to identify drugs with shared mechanisms of ac-

tion (MoAs), discover unknown MoAs of drugs, and propose potential new therapeu-

tics. Furthermore, a variant of the CMap method was later used by Sirota et al. [16] to

compare disease gene signatures against drug-induced gene expression signatures to

score each drug-disease pair based on their similarity profile for drug repositioning.

However, the high dimensionality of gene expression signatures has motivated the

use of network-based analysis to assist in the interpretation of biological processes

which are perturbed by a given drug. Not only are these analyses instrumental in deter-

mining relevant molecular signatures as markers of phenotypes but also in garnering

novel mechanistic insights into various biological functions and disease. For example,

Iorio et al. [15] used Gene Set Enrichment Analysis (GSEA [17]) to build a drug simi-

larity network from the distances of the GSEA scores for each drug pair in order to in-

vestigate the biological processes enriched in a set of drug subnetworks to identify

compounds with similar MoAs. Suthram et al. [18] integrated disease gene expression

signatures with large scale protein-protein interaction networks to identify disease simi-

larities. They discovered a set of common pathways and processes which were dysregu-

lated in most of the investigated diseases and that could be targeted by the drugs
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indicated for other diseases. Keiser et al. [19] showed that drug-target interaction net-

works could be used to predict off-targets for known drugs by comparing the similarity

of the ligands that bind to the corresponding targets.

Single nucleotide polymorphisms (SNPs) have gained attention in biomedical re-

search due to the impact of genetic variations in numerous complex diseases. Although

the majority of SNPs do not have an effect on the phenotypic outcome, some might be

directly involved in disease etiology by affecting the associated gene’s function depend-

ing on their occurrence in the genomic loci. Therefore, identifying disease-associated

SNPs via genetic studies (e.g., GWAS) and targeting the corresponding genes has be-

come a common practice for generating hypotheses to investigate molecular mecha-

nisms of disease. Accordingly, new methods are being developed to incorporate GWAS

knowledge in the drug repositioning domain. For instance, Sanseau et al. [7] collected

disease-associated genes from the GWAS Catalog [20] and evaluated whether these

genes were targeted by drugs. In their post hoc analysis, they observed that these genes

were more likely to be a drug target than housekeeping genes. They mapped GWAS

genes to the genes which were targeted by drugs listed in the pharmaprojects database

(http://www.pharmaprojects.com/) and later proposed that drugs with indications dif-

ferent from the GWAS traits could be of potential drug repositioning interest. In an-

other instance, Lencz and Malhotra [21] used the results from large scale GWAS

conducted by the Psychiatric Genomics Consortium–Schizophrenia Workgroup (PGC–

SCZ) [22] to predict drug repositioning candidates in schizophrenia. First, they identi-

fied the overlap between the known drug targets from Rask-Andersen et al. [23] and

potential schizophrenia candidate genes from GWAS. Next, they characterized the

MoA of drugs targeting the overlapped genes to propose drugs for schizophrenia treat-

ment. Further, Zhang et al. [24] illustrated another strategy to use GWAS data for pri-

oritizing candidate genes from the GWAS identified loci for drug repositioning. They

prioritized genes by scoring them with seven criteria such as cis-eQTL, text mining,

and functional enrichment to propose new targets for colorectal cancer drug

treatments.

While studies have leveraged transcriptomics and genetics data for prioritizing drug

repositioning candidates independently, recent approaches have started to utilize them

in combination with other data types. So et al. [25] proposed a framework for drug re-

positioning by combining GWAS-imputed transcriptome signatures and drug-induced

changes in gene expression (CMap) in the field of psychiatric disorders. They imputed

gene expression signatures from GWAS summary statistics instead of using expression

data from microarray or RNA-sequencing studies and compared them with drug-

induced expression changes. Zhang et al. [26] demonstrated another drug repositioning

workflow by mining -omics data such as GWAS, proteomics, and metabolomics from

publicly available sources to find diabetic risk proteins and then filtered them to drug-

gable targets. They further analyzed the pathogenicity of these prioritized targets and

found several drugs for these targets that have the potential for diabetic treatments.

Later, Ferrero and Agarwal [27] presented a systematic approach which integrated

GWAS data and gene expression signatures from diseases and drugs perturbation to

generate drug repositioning hypotheses. They demonstrated that (i) GWAS-associated

genes in disease are more likely to be differentially expressed in the same disease, and

(ii) drug perturbed genes in disease are enriched for GWAS-associated genes in the
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same disease. They eventually proposed statistically significant drug-disease pairs from

the latter analysis could be used for drug repositioning.

Above we surveyed the state-of-the-art in silico strategies for drug repositioning by

using transcriptomics and GWAS data. However, there is a lack of systematic ap-

proaches that can integrate mechanistic knowledge from pathways with data from mul-

tiple modalities to ultimately provide a better understanding of the drug’s mechanism

of action in the disease context. Therefore, we introduce PS4DR, a multimodal and in-

tegrative workflow that uses multiple data modalities (i.e., GWAS and transcriptomics)

together with pathway knowledge to predict approved drugs in new indications. Finally,

we show that our workflow is able to identify FDA-approved drugs for their known in-

dications and predict new indications for existing drugs using publicly available

datasets.

Results
We developed PS4DR, an automated workflow that enables the integration of multi-

modal datasets together with pathway information from different canonical pathway

databases to predict drug repositioning candidates in different diseases (Fig. 1). We

showcase PS4DR using real-world gene expression signatures (i.e., Open Targets [28]

and LINCS) and GWAS data (i.e., GWASdb [29], GWAS Catalog [20], GRASP [30],

and PheWAS [31]). First, the workflow filters disease and drug transcriptomics (i.e.,

gene expression signatures) with the help of GWAS data. The next step involves calcu-

lating pathway signatures for diseases and drugs via pathway enrichment analysis with

the filtered dataset. Finally, PS4DR performs an anti-correlation analysis by calculating

correlation scores between the pathway signatures of drugs and diseases to prioritize

drugs for each disease. Below, we show the utility of the workflow with three applica-

tions on how this tool can serve to i) identify drug repositioning candidates, ii)

prioritize drug combinations, and iii) propose drugs that simulate disease

dysregulations.

Identifying drug repositioning candidates

As a first application, we explored the list of 26 diseases for which our workflow pre-

dicted drug repositioning candidates. While our workflow predicted plenty of drug can-

didates, we considered two criteria to prioritize predicted drugs. First, we prioritized all

drugs in each disease based on their negative correlation scores. However, a drug could

have a negative correlation score by only reverting a minority of the pathways dysregu-

lated in the disease. Therefore, we also consider the relative number of the dysregulated

pathways reverted by a drug for the prioritization process. While this prioritization ap-

proach facilitated narrowing down the candidate lists, we are aware that each of the

drugs exhibiting negative correlation scores might have the potential to revert the dis-

ease condition even if they alter very few dysregulated pathways.

The distribution and Q-Q plots for the majority of the diseases that output drug pre-

dictions demonstrate that the correlation scores follow a normal distribution (Add-

itional file: Fig. S1 and Fig. S2). Hence, we applied an arbitrary threshold to the

correlation score to prioritize the proposed candidate drugs in each disease. We would

like to point out that we used the same threshold for all diseases since we are exploring
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multiple indications; however, this threshold could be selected individually for each dis-

ease based on their underlying correlation score distributions. The applied threshold

discarded drugs with a correlation score greater than − 0.4 or drugs which did not

cover more than 50% of the affected pathways in the disease. This filtering step,

intended to reduce the number of hits and facilitate the manual investigation of the re-

sults, returned a list of predicted drug candidates for 19 diseases (Additional file 1:

Table S1). We further investigated the proposed drugs for five conditions to see

whether PS4DR was able to identify FDA-approved drugs for their known indications

and predict new indications for existing drugs in the prioritized list.

First, we focused on the predicted drug list for melanoma. We searched DrugBank

[32] and scientific literature to collect evidence for the proposed drugs and summarized

our findings in Table 1. Seven of nine predicted drugs are either already being used as

cancer drugs or currently being studied in different clinical trials. This motivates fur-

ther investigation of these drugs as repositioning candidates for the treatment of

melanoma.

The topmost drug in our predicted shortlist, Crizotinib, a non-small cell lung cancer

(NSCLC) drug, has been reported for its positive effect on melanoma by two studies

[33, 34]. While Surriga et al. [33] suggested that Crizotinib could be used in adjuvant

therapy for uveal melanoma due to its c-Met activity inhibition, recent research

Fig. 1 An overview of the PS4DR workflow. The workflow requires three different datasets as inputs, (i)
disease perturbed gene expression signatures, (ii) genome-wide association study (GWAS) data, and (iii)
drug perturbed gene expression signatures. The first and optional part of the workflow involves different
filtering steps based on gene set intersection operations that enable the identification of genes in the gene
expression signatures that have also been identified in a GWAS of the studied disease. To retain the
maximum flexibility in the workflow, users can decide which of the filtering steps they wish to apply, if any.
The next step uses the transcriptomics datasets, filtered or not, to conduct pathway enrichment analysis
and evaluate the direction of perturbation for each affected pathway in a particular disease context. While
the dotted lines in the figure represent all possible combinations of the filtering steps that can be applied
and lead to the pathway enrichment step, solid lines show the option we chose to demonstrate the
workflow. Finally, the last step uses the correlation of the pathway scores calculated by the previous step to
prioritize drugs that are predicted to invert the pathway signatures observed in a given disease context
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reported strong kinase fusion association with different melanoma subtypes [35] and

encouraged the testing of kinase fusion inhibitor Crizotinib for melanoma treatment

[34]. The third drug, Sepantronium, a selective small-molecule survivin suppressant,

was reported to reduce the accumulation of survivin in G2/M mitotic arrest and induce

apoptosis in human malignant melanoma cells in combination therapy with docetaxel

[36, 37]. The following drug in Table 1, Bortezomib, is an approved drug for multiple

myeloma that was suggested as a treatment for melanoma in combination therapy with

temozolomide due to its ability to induce apoptosis and autophagic formation in hu-

man melanoma tumors [38, 39]. Another FDA approved drug Olaparib (for breast and

pancreatic carcinoma), was also found to be effective against melanoma by inhibiting

repair of single-strand DNA breaks in different combination therapies [40, 41].

The last two approved drugs in the list (i.e., Tivozanib for renal cell carcinoma and

Belinostat for peripheral T-cell lymphoma) have been positively associated with a better

response in melanoma [42, 43]. Moreover, another mTOR inhibitor drug, Vistusertib

(AZD-2014), currently in phase II clinical trial for meningioma, was reported to have a

positive impact by mTORC1/2 inhibition of the resistance to MAPK pathway inhibitors

in melanomas with high oxidative phosphorylation [44, 45]. Interestingly, we also have

two drugs, Olmesartan, for hypertension, and Fluspirilene, for schizophrenia, from very

different therapeutic areas in our shortlist. While no reports of their potential role in

melanoma treatment have been found yet, numerous studies have suggested their ap-

plicability in different cancer treatments [46–49].

We have found three drugs in breast carcinoma (Additional file 1: Table S1). The first

drug, AT-7519, a selective inhibitor of specific Cyclin-Dependent Kinases (CDKs), is

under investigation for the treatment of leukemia, lymphoma, myelodysplastic syn-

drome, and solid tumors [32]. This is in concordance with the study by Yu et al. [50]

describing how a subgroup of breast cancer patients benefited from the treatment of

Table 1 Drug repositioning candidates for Melanoma. Drugs showing a negative correlation score
less than or equal to − 0.40 and affecting more than 50% of the dysregulated pathways in
melanoma. The last column outlines the current uses of the given drug in other conditions
according to DrugBank and scientific literature

Drug DrugBank
ID

Correlation
Score

Affected
Pathways
(%)

Description

Crizotinib DB08865 −0.64 74.07 Used for the treatment of locally advanced or
metastatic non-small cell lung cancer (NSCLC).

Olmesartan DB00275 −0.85 55.56 Used for the treatment of hypertension.

Sepantronium – −0.21 74.07 Clinical trials in advanced non-small-cell lung cancer.

Bortezomib DB00188 −0.52 62.96 Used for the treatment of multiple myeloma.

Fluspirilene DB04842 −0.5 55.56 Used for the treatment of schizophrenia.

Vistusertib DB11925 −0.44 66.67 Under investigation for the treatment of Advanced
Gastric Adenocarcinoma.

Olaparib DB09074 −0.44 66.67 A poly (ADP-ribose) polymerase (PARP) inhibitor
indicated for the treatment of Ovarian and Breast
Cancer.

Tivozanib DB11800 −0.44 66.67 Used in trials for the treatment of solid tumors, Ovarian
Cancer, Glioblastoma, Prostate Cancer among others.

Belinostat DB05015 −0.43 55.56 Used for the treatment of patients with relapsed or
refractory peripheral T-cell lymphoma (PTCL).
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CDK4 kinase inhibitors. The next drug, Omacetaxine Mepesuccinate, used for chronic

myeloid leukemia, is in a clinical trial (NCT01844869) for treating advanced solid tu-

mors (i.e., breast, lung, colorectal and melanoma). Finally, Rigosertib has shown potent

antitumor activity in various preclinical models such as breast cancer and pancreatic

cancer xenografts and is currently under clinical trial [51].

Similarly, we found that six out of eight drugs proposed for pancreatic carcinoma are

either already being used in different cancers or have been suggested in the literature,

as we discuss below (Additional file 1: Table S1). The first drug, Fenofibrate, an antili-

pemic agent, was reported to inhibit pancreatic cancer cell proliferation via activation

of p53 mediated by upregulation of MEG3 [52]. The next drug, Menadione, was found

to induce reactive oxygen species to promote apoptosis via redox cycling in pancreatic

cells [53, 54]. Fluoxetine, originally an antidepressant agent, was also reported to work

as a chemosensitizer and acts with other cancer drugs to overcome multidrug resist-

ance in cancer cells [55]. An investigational cancer drug, Tosedostat, was found to be

well-tolerated and clinically active against pancreatic ductal adenocarcinoma patients in

phase I/II clinical trial ([56]; NCT02352831). Another drug, AZD-6482, a selective

PI3Kβ inhibitor, could be useful in pancreatic cancer treatment because of its apoptotic

effect in cancer cell lines [57]. Praziquantel was reported to inhibit cancer cell growth

when used synergistically with paclitaxel via downregulating the expression of X-linked

inhibitor of apoptosis protein (XIAP) [58].

While our workflow showed very promising results in cancer, we wanted to explore

the results in complex disorders with no available treatments, such as Alzheimer’s dis-

ease (AD) and multiple sclerosis (MS). In the case of AD, the workflow provided four-

teen shortlisted candidates (Table 2). The top drug on the list is Sirolimus (rapamycin),

an immunosuppressant, already proposed for the treatment of AD by different studies

[59–61]. It has been suggested that the therapeutic effect of this drug is due to the re-

duction of amyloid-beta levels caused by its inhibition of the mTOR signaling pathway

Table 2 Drug repositioning candidates for Alzheimer’s disease (AD). Drugs showing a negative
correlation score less than or equal to −0.40 and affecting more than 50% of the dysregulated
pathways in AD

Drug DrugBank ID Correlation Score Affected Pathways (%)

Sirolimus (Rapamycin) DB00877 −0.69 66.67

Pevonedistat DB11759 −0.66 60.61

Nilotinib DB04868 −0.64 60.61

Terfenadine DB00342 −0.57 57.58

Doxylamine Succinate DB00366 −0.57 54.55

Halcinonide DB06786 −0.57 51.52

Promazine Hydrochloride DB00420 −0.53 66.67

Mosapride DB11675 −0.45 60.61

Pimozide DB01100 −0.45 57.58

Ritanserin DB12693 −0.45 57.58

Betamethasone DB00443 −0.44 66.67

Cinacalcet Hydrochloride DB01012 −0.43 72.73

Methapyrilene Hydrochloride DB04819 −0.43 72.73

Trametinib DB08911 −0.40 60.61
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[61]. Another compound, Pimozide, an antipsychotic agent, was recently suggested as a

potential AD therapeutic which was reported to reduce toxic forms of tau protein by

enhanced autophagy activity via AMPK-ULK1 axis stimulation [62]. Interestingly, we

have two cancer drugs, Pevonedistat and Nilotinib, which could have potentially posi-

tive effects on AD treatment ([63–65]; NCT02947893). Pevonedistat, a neddylation in-

hibitor, could prevent neuronal damage and ameliorates cognitive deficits by

preventing NRF2 protein degradation via inhibiting neddylation [63, 65]. Nilotinib, a

tyrosine kinase inhibitor, has also been found to be very promising to delay the pro-

gression of AD by enhanced amyloid-beta clearance ([64]; NCT02947893).

Animal studies have demonstrated that the blockade of muscarinic receptors results

in increased levels of acetylcholine and improve cognition [66]. Therefore, another pro-

posed drug, Terfenadine which is a muscarinic receptor antagonist and has not yet

been linked to AD, could be a potential repositioning candidate. Similarly, several 5-

HT6R antagonists have advanced to different phases of clinical trials ([67];

NCT02258152; NCT02580305) as treatments for AD. The results also suggest another

drug in the list, Ritanserin, that has not been directly indicated for AD. The high score

proposed by our workflow to this serotonin receptor antagonist may be explained by its

regulation of the neuronal cholinergic and glutamatergic pathways, both dysregulated

in AD. Furthermore, there is increasing evidence showing that neuroinflammation sig-

nificantly contributes to AD pathogenesis [68, 69]. Hence, it is not surprising to find

two anti-inflammatory agents in our list (i.e., Betamethasone and Halcinonide) that

could be worth investigating as potential repositioning drugs. Finally, Doxylamine Suc-

cinate, a neurotransmitter agent and histamine antagonist, is also a promising candidate

since the beneficial effects of histamine antagonists in AD have been reported in mul-

tiple studies [70–72].

Finally, we investigated the top ranked drugs proposed by PS4DR for multiple scler-

osis (MS). Ranked at the top of the list, PS4DR successfully recovered methylpredniso-

lone, a corticosteroid with anti-inflammatory action prescribed to treat acute

exacerbations in patients with MS [73] (Additional File 1: Table S1).

Prioritizing drug combinations

Although we have illustrated that our workflow is able to identify candidate compounds

for drug repositioning, combining multiple drugs can provide more benefits since the

number of affected pathways can be increased by taking advantage of their synergistic

effects. Therefore, we applied our workflow to all drug pair combinations in all diseases

in order to identify therapies that could have a greater effect than single-drug treat-

ments. For this application, we exclusively considered combinations of two drugs for

two reasons: i) application of multiple drugs is usually counterproductive since it in-

creases the number of side effects and ii) calculation time increases exponentially with

an increasing number of drugs.

We investigated the predictions of our workflow in breast cancer to verify if we have

more drugs with a good negative correlation score and affected pathways (%). While we

had three drugs from our single-drug prediction approach, we were able to retrieve 489

drug pairs from the drug combination approach with the same thresholds. To facilitate

manual investigation, we increased our threshold of correlation score to less than or
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equal to − 0.50 and affected pathways greater than or equal to 80% and were still able

to retrieve 34 drug pairs (Additional file 1: Table S2). Here, all 19 new drugs in these

34 pairs are partnered with one of the top two drugs, AT-7519 or Omacetaxine Mepe-

succinate, from the single-drug approach. Fourteen of the new drugs have partnered

with both AT-7519 or Omacetaxine Mepesuccinate. While we have found literature

evidence for the beneficial role of seven of these new drugs in the treatment of breast

cancer, another six drugs are reported to have positive effects in other solid tumor

based cancer treatment as described below. The third drug from the single-drug ap-

proach, Rigosertib, which was reported to have antitumor activity in breast cancer cell

lines [51], has partnered with both AT-7519 or Omacetaxine Mepesuccinate. BGJ-398,

a fibroblast growth factor receptor inhibitor in the list, significantly prevented the out-

growth of tumor organoids in metastatic breast cancers [74]. An approved cancer drug,

Erlotinib Hydrochloride, epidermal growth factor receptor inhibitor, has shown a very

positive response rate when treated combinedly with Capecitabine and Docetaxel in ad-

vanced breast cancer patients [75]. Another drug Selumetinib, a tyrosine kinase inhibi-

tor, is currently being tested in several clinical trials (i.e., NCT03162627;

NCT03742102; NCT02503358) for different cancer types, including breast cancer.

TAK-715 is a p38 MAP kinase inhibitor in the list that cross-reacts with casein kinase

ɛ (CKIɛ). Since CKIɛ mutations have been linked with the proliferation of different

breast cancer cell lines, this drug could be explored to repurpose it for breast cancer

treatment [76]. Another investigated drug, Tivantinib, has also shown positive effect on

breast cancer model by reducing the metastasis via c-MET inhibition [77]. Megestrol

Acetate, a progesterone receptor agonist, is under various clinical trials either alone or

in combination with other cancer drugs for breast cancer treatment (i.e.,

NCT03306472 and NCT03024580).

AZD-1775, a drug that inhibits the G2–M cell-cycle checkpoint gatekeeper WEE1

kinase, has been used in multiple trials studying the treatment of lymphoma, ovarian

cancer, and adult glioblastoma [32, 78]. Another drug, Axitinib, a selective vascular

endothelial growth factor receptor (VEGFR) inhibitor, is under investigation in different

clinical trials for various cancer types (i.e., NCT02129647; NCT03494816;

NCT03472560). Moreover, four other drugs i,e., BMS-777607, PF-04217903, R-406,

and Isotretinoin are reported to have positive effects in different solid tumor cancer

types in different studies [32, 79–81].

Proposing drugs that simulate disease pathway signatures

While we have initially focused on the drugs with the most negative correlation scores,

we also anticipated a potential utility for drugs showing positive correlations. Well-

characterized drugs with high positive correlation scores can provide information about

how pathways or targets could be implicated in the molecular basis of the disease.

Hence, as an extended application, the workflow may be used additionally as a

prioritization tool to identify drugs that could be potentially employed to generate in-

vitro or in-vivo models. By investigating the correlation scores (Fig. 2), researchers can

readily identify drugs that could be used for this purpose. Our workflow predicted in-

duction of disease pathway signatures for Pevonedistat in diabetes mellitus, Alvocidib

in Crohn’s disease, and Entinostat and panobinostat in systemic lupus erythematosus

Emon et al. BMC Bioinformatics          (2020) 21:231 Page 9 of 21



(SLE) through very high positive correlation scores in addition to their broad coverage

of affecting disease pathways. We see the need for further investigations of all the drugs

with both high positive correlation scores and a high percentage of affected pathways

for their use in potential disease model development.

Discussion
Numerous innovative and interesting methods are constantly being developed to ex-

ploit high-throughput biological data in drug discovery research. However, there is still

an urgent need for reproducible approaches which could systematically combine mech-

anistic knowledge with high-throughput data for drug repositioning purposes. In this

work, we propose PS4DR, a drug repositioning workflow that combines data- and

knowledge-driven information for predicting novel indications for prescribed drugs.

We demonstrate the workflow using publicly available databases for disease and drug

-omics data and employing pathway knowledge from various canonical pathway data-

bases. The results show how PS4DR provides a comprehensive overview of the targeted

pathways by drug or drug combinations and how this information can be useful to

identify drug repositioning candidates. Finally, we validated the results of the workflow

with epidemiological evidence extracted from the scientific literature to demonstrate

that the workflow also prioritizes already approved drugs for numerous conditions.

However, our work is not without limitations, which we plan to address in future re-

search. The connection between drug perturbed gene expression signatures, GWAS

data, and disease-specific gene expression signatures is based on statistics derived from

gene overlap. While the two latter datasets are disease-specific, drug-derived informa-

tion is not contextualized. The linkage across the datasets could be more informative if

Fig. 2 Combined scatter plots of the drug’s correlation scores against affected pathways (%) in each
disease. The relative number of target pathways affected by the drug in the disease context is plotted
along the x-axis and correlation scores on the y-axis. Drugs in the top-right corner of the plot might be
interesting for developing in vitro disease models since this group of drugs shows positive correlation
scores, covering a broad range of the affected pathways. The circles represent drugs and the color coding
indicates their respective disease indication, as shown at the bottom
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there would be datasets available with drug perturbed gene expression signatures from

disease models. Moreover, using advanced techniques such as deep learning [82] or

network-based [83] methods to bridge different data modalities by inferring the associ-

ation between heterogeneous features (i.e., genes, diseases) could also be viable alterna-

tive approaches to contextualize the data. Additionally, our workflow is limited to the

availability of summarized disease- and drug- perturbed gene expression signatures. Fi-

nally, we would like to mention that the drug combination strategy approach is agnos-

tic to other important processes such as kinetics, whether target genes are expressed in

the tissue and whether the proposed drugs can be delivered to the tissue.

Although we applied the workflow to 43 diseases and 547 FDA approved and 126 in-

vestigational drugs (clinical trial phase I-III), the flexible design of the workflow allows

for it to be run using any disease or drug for which GWAS and transcriptomics data is

available. Similarly, other pathway databases could be used in the pathway enrichment

step instead of the ones we are proposing. Therefore, we plan to use other datasets in

the future such as DSigDB for drug-induced gene expression [84] as well as other path-

way databases such as WikiPathways [85]. We also anticipate that incorporating new

data modalities such as proteomics and eQTLs could be another prospect for enhance-

ment of the workflow. While we have not considered drug side effects in our current

work, integrating side effect information in a future extension could lead to better pre-

dictions. Moreover, we purposely restricted our analysis to exclusively approved drugs

and those under clinical trial since our study was focused on finding repositioning drug

candidates. However, the presented workflow could be applied to all LINCS drug per-

turbed gene expression signatures for drug discovery purposes. Running the workflow

with novel datasets not only will provide new insights on candidate drugs but also allow

to evaluate the reproducibility of the findings presented in this work.

Conclusions
Here, we have presented PS4DR, a reproducible drug repositioning workflow that ex-

ploits multimodal datasets to predict drug candidates with the help of pathway know-

ledge. We have demonstrated how integrating pathway knowledge with transcriptomics

and GWAS data can elucidate a drug’s mode of action in a disease condition as well as

identify potential new applications for a drug. Our workflow predicted numerous drug

candidates for several diseases which were validated with epidemiological evidence ex-

tracted from the literature and clinical trials. In addition, the modular design of the

workflow enables investigators to choose any dataset from proprietary or public data-

bases which suit their experimental needs. While the increased amount and dimension-

ality of personalized health data are improving health care, we hope our systematic

approach to integrate contextual knowledge with data will pave the way towards

mechanism-based drug repositioning in precision medicine research.

Methods
Previous work from Ferrero and Agarwal [27] demonstrated that genes associated with

a disease have a tendency to be differentially expressed both in a disease and drug con-

text. Following their hypothesis, we propose a new workflow, PS4DR, that can exploit

transcriptomics and GWAS data together with pathway knowledge to predict the drugs

that best revert the pathway dysregulations observed in a given pathophysiological
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context. We compared the results generated using the PS4DR workflow with the drug-

disease associations presented by Ferrero and Agarwal [27]. These results can be found

in Additional file 1: Text Section 3.

In the following subsections, we describe our modular and flexible workflow (Fig. 1).

We begin by introducing the different data modalities (e.g., GWAS, gene expression

signatures, etc.) and the resources used in the workflow in the application scenario,

followed by the data preprocessing steps. Finally, we discuss in detail the different com-

ponents of the workflow, its implementation, and how it can be adapted to other soft-

ware tools.

Data modalities

PS4DR uses two different data modalities: GWAS and transcriptomics data. This sec-

tion describes the datasets used for each modality for the case scenario. While we used

various publicly available datasets as described below, users can use any other public or

proprietary datasets of their preference in the workflow.

GWAS data

We have collected genetic association data from different publicly available GWAS

datasets (i.e., GWASdb, GWAS catalog, GRASP, and PheWAS). We integrated these

datasets by using the Systematic Target OPportunity assessment by Genetic Association

Predictions (STOPGAP) [86] analysis pipeline that enables merging different GWAS

datasets and calculating their linkage disequilibrium (LD) to capture a wider spectrum

of relevant genetic signals. While STOPGAP offers already processed datasets, we have

used the pipeline in our workflow to process the most recent datasets from the above-

mentioned sources. All the data processed with STOPGAP were downloaded on 2nd

March 2019.

Gene expression data

We have used two different sources i.e., (i) LINCS and (ii) Open Targets to collect gene

expression datasets for drug perturbations and diseases in our workflow, respectively.

The LINCS dataset is a collection of gene expression signatures obtained by exposing

cells to a wide variety of known and novel perturbing agents following the L1000 assay.

This dataset was retrieved from the Harmonizome database [87] since it provides an

already processed version of the original datasets with more convenient attribute tables

that define significant associations between genes and attributes such as cell lines,

drugs, and dose information. Furthermore, we made use of Open Targets, a platform

that brings together multiple data types by comprehensive and robust data integration

from many public databases. It has been widely used for investigations on target identi-

fication and prioritization. We have retrieved gene expression signatures data for differ-

ent diseases using the Open Target’s RESTful API on the 5th of March, 2019. Finally,

to demonstrate the scalability of PS4DR, we provide the source code to run the work-

flow with CREEDS [88], an analogous dataset to the two used as case scenarios in the

manuscript (https://github.com/ps4dr/ps4dr/tree/master/data/creeds).
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Data preprocessing

Since the workflow utilizes a large number of datasets coming from multiple resources

in the two data modalities (i.e., genome-wide association data and gene expression sig-

natures) used in the workflow, a series of preprocessing steps were required to

harmonize the data to make them interoperable (Fig. 3).

We harmonized Medical Subject Headings (MeSH) [89] concepts used in

GWAS studies to facilitate interoperability with the DEG data from Open Tar-

gets that exclusively uses the Experimental Factor Ontology (EFO [90]) to cata-

log disorders. Similarly, we used Ensembl identifiers as the overarching

nomenclature that harmonizes all different gene identifiers (e.g., HGNC, Entrez

Gene, etc.) in the multiple datasets. The mappings from MeSH to EFO terms

were performed using the EFO ontology (version: 2.105). The conversion from

different gene identifiers to Ensembl IDs was conducted with the Ensembl

release 97 with the biomaRt R package [91]. Finally, LINCS compound identi-

fiers were mapped to PubChem compound identifiers using the mapping table

provided by the Ma’ayan Laboratory (http://amp.pharm.mssm.edu/static/hdfs/har

monizome/data/lincscmapchemical/gene_attribute_edges.txt.gz) and then from

PubChem compound identifiers to ChEMBL identifiers using UniChem’s RESTful

API [92].

These preprocessing steps enabled us to retrieve a total of 174,648 associations

between 17,959 genes in 613 diseases from GWAS data. We have used EFO identi-

fiers of these 616 diseases to retrieve their corresponding gene expression signa-

tures in Open Targets using its API. Finally, DEG signatures were fetched for 183

diseases with 259,594 associations between 23,998 genes. Moreover, we also re-

trieved 17,074 associations between 1060 diseases and 2103 drugs from Open Tar-

gets which were at least in clinical trial phase I. Finally, we obtained 1,427,757

associations between 8107 genes and 2700 perturbing agents from the LINCS

dataset.

Fig. 3 Data preprocessing workflow. This workflow describes the preprocessing of gene expression
signatures (left side) and GWAS data (right side) to make them interoperable, as well as the primary and
final outcome after the preprocessing. Preprocessing steps include multiple intermediary mappings to get
common identifiers for Genes (ENSEMBL identifiers), chemicals (ChEMBL identifiers) and diseases
(EFO identifiers)
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Filtering via gene set enrichment

The PS4DR workflow contains a series of optional filtering steps that enable identifying

the genes in the transcriptomics data that have also been reported in GWAS for the

same disease. While this step adds the disease context [27] to the gene expression sig-

natures, we leave the possibility for users to omit this step and directly proceed to the

pathway enrichment analysis step. Following, we describe each of the filtering steps that

are based on calculating the significance of the overlap between the gene sets of the

transcriptomics and GWAS data using Fisher’s Exact test.

Disease gene expression signatures and GWAS data

This filtering step is based on calculating the significance of the overlap between gene

sets from disease gene expression signatures and GWAS data for each disease pair

using Fisher’s Exact test. To adjust for multiple testing, p-values were corrected with

the Benjamini-Hochberg correction [93], and gene sets with a corrected p-value above

0.05 were removed. We obtained 26,214 significantly overlapped disease pair gene sets

among all the diseases, while 43 of these gene sets originated from the same diseases.

These are the ‘disease-specific gene sets’ from 43 diseases, which are both genetically

associated and differentially expressed in the same disease. As previously reported by

Ferrero and Agarwal [27], we also observed gene sets from GWAS and transcriptomics

data of the same disease are more likely to show a significant overlap compared to gene

sets from different diseases (Additional file 1: Fig. S3).

Drug gene expression signatures and GWAS data

Using the same strategy as the previous step, we filtered drug perturbed gene expres-

sion signatures using GWAS data to retain significantly overlapped gene sets. Here, a

more stringently adjusted p-value threshold of less than or equal to 1e− 10 was used to

limit the false positive associations since the drug perturbed data do not have any direct

disease context. However, we used additional drug-disease associations retrieved from

Open Targets to give disease context, to an extent, to the drug perturbed gene expres-

sion signatures. Finally, we obtained 22,551 significantly overlapped gene sets which are

genetically associated with a particular disease and also differentially expressed by drug

perturbations in the same disease context.

Disease gene expression signatures, drug gene expression signatures, and GWAS data

The final step involves further filtering of the resulting gene sets of the two previ-

ous filtering steps by applying the same strategy. The aim of this final filtering step

is to retrieve drug perturbed differentially expressed gene sets in a disease which

are also genetically associated with that same disease. In our case scenario, we ob-

tained 14,631 unique drug-disease pairs with significant gene sets (q-value > 0.05)

from all possible drug-disease pairs (total number of pairs). These two gene sets

(i.e., disease-specific and drug-specific gene sets) will be used in the next step for

each disease to identify the drugs that revert the signatures observed in the disease

condition.
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Pathway enrichment analysis

We next use pathway enrichment analysis in each disease to calculate the sign of path-

way dysregulation (i.e., up- or down-regulation) in both of the input datasets (i.e.,

disease-specific gene sets and drug-specific gene sets) using one or multiple pathway

databases of reference. By running pathway enrichment analysis, we obtain two vectors,

one for each input dataset, indicating the sign of dysregulation for each pathway (i.e.,

up- or down-regulated and no change). Here, it is important to note that pathway en-

richment acts as a dimensionality reduction technique by narrowing down the genetic

space (on the scale of thousands) to the pathway space (on the scale of hundreds)

(Additional file 1: Text Section 4). Although numerous pathway enrichment methods

can be applied to the workflow (e.g., GSEA, Signaling Pathway Impact Analysis (SPIA)

[94]), the method applied must ultimately provide the sign of pathway dysregulation

since this information will be used in the following step for drug prioritization.

Here, we demonstrate the workflow using one of the most popular topology-based

enrichment methods, SPIA, on three pathway databases (i.e., KEGG [95]; Reactome

[96]; and Biocarta [97]). Since SPIA requires the pathway input files in a specific binary

matrix format, we have used two different tools to prepare pathway datasets for SPIA

input. The SPIA package already provides a function to prepare the pathway input file

for KEGG’s KGML files. Therefore, we have downloaded the latest KGML files from

KEGG’s ftp site on 27 June 2019 and used the SPIA function ‘makeSPIAdata’ to convert

them to the SPIA required input format. However, this function only works with the

KGML file format, which is a modified XML used by KEGG. Therefore, we used graph-

ite (v 1.30.0 - release 2019-04-17) [98] to create additional pathway input files for SPIA

calculations. First, we retrieved the Reactome and Biocarta pathway files by using the

graphite function ‘pathways’ and then we prepared SPIA input files of these two data-

bases by using another function, ‘prepareSPIA’. Both these data sets were time-stamped

with 2019-04-17. However, as previously mentioned, the workflow could be adapted to

employ other pathway enrichment analysis methods such as GSEA (Additional file 1:

Text Section 2). First, we performed SPIA on 43 ‘disease-specific gene sets’ in order to

evaluate signed pathway dysregulation in a disease context. Next, we conducted SPIA

for ‘drug-specific gene sets in disease’ which gives signed pathway dysregulation for all

available approved drugs and those under clinical trial in each of 43 diseases. Moreover,

to evaluate whether SPIA results can be statistically significant, we performed SPIA

with the simulated pathways created using the genes from KEGG, Reactome, and Bio-

carta. The results of SPIA from these randomly simulated pathway constructs rarely

yielded significant up- or down-regulated pathways for any of the diseases we tested;

thus, this confirms that true pathways are biologically meaningful (Fig. 4).

Drug prioritization: correlation score

The final part of the workflow uses the results of pathway enrichment methods to

prioritize drugs based on how well they can counteract the overall pathway signatures

on each disease. First, only the statistically significant pathways (q-value < 0.05) which

are up- or down-regulated in drug and diseases contexts are considered. Next, to facili-

tate calculating the correlation scores, each affected pathway is assigned with + 1 or − 1

depending on whether it is up- or down-regulated, respectively. Finally, Pearson’s
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correlation coefficient is calculated using the drug pathway signature vectors against

the disease pathway signature vectors. This step results in a list of 26 diseases, while

some of the diseases did not have any drugs with a correlation score as the standard

deviation was zero for both vectors. Alternatively, Levenshtein distance [99] was also

used to calculate the dissimilarity score between the drug and disease pathway signa-

ture vectors. We selected arbitrary thresholds for correlation scores (i.e., less than or

equal to − 0.4) and affected pathways (i.e., greater than or equal to 50%) to reduce the

Fig. 4 Distributions of the p-values resulting from SPIA true and simulated pathways represented as violin
plots for a) KEGG, b) Reactome, and c) Biocarta pathway databases. Mann-Whitney U test confirmed that
the distributions are significantly different for all three pathway databases (KEGG: p-value = 8.26e-102,

Reactome: p-value = 3.05e− 114, Biocarta: p-value = 8.01e− 09). These results demonstrate that while true
pathways yield meaningful results (i.e., lower p-values), simulated pathways are rarely significantly enriched

Fig. 5 ROC curve of PS4DR predicted drugs. ROC curve with 95% confidence interval obtained using
existing clinical trials for predicted drugs as positive labels and correlation scores as the ranking metric
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number of drug candidates in each disease for further manual investigation. However,

users can decide the threshold according to their preferences. As a validation step, we

generated the ROC curve (Fig. 5) for the predicted drug-disease associations by using

the correlation scores as predictors and their available clinical trial evidence as labels.

The resulting AUC of 0.69 demonstrates that PS4DR can prioritize several drugs for

given diseases that are already on clinical trials. While we achieved a slightly higher

AUC-ROC than Ferrero et al. (AUC-ROC = 0.64), we must note some subtle methodo-

logical differences. First, we used a dataset that is 2 years newer than Ferrero et al.

(2019 versus 2017). Second, we used anti-correlation scores as the predictor instead of

adjusted p-values from Fisher’s test for significantly overlapped genesets. Third, we

used the same methodology to calculate the AUC, but because of our prioritization,

had a smaller number of drug-disease pairs. This was reflected in our wider confidence

intervals (0.59–0.82).

Software and code

R 3.5.1 was used for all data processing and analysis. All code is publicly available at

https://github.com/ps4dr/ps4dr under the Apache 2.0 License. Dependencies of the

modules used by the workflow and their specific versions are outlined in the repository.

Furthermore, we packaged the workflow into a single shell script that can run all the

steps with a single command, thus, enabling the reproducibility of the results in the fu-

ture. Finally, the README file includes an introduction and a tutorial on how to use

PS4DR and how to add or modify modules within the workflow.
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Chapter 3

Conclusions

We have presented PS4DR, a flexible workflow that explores the feasibility of
multi-omics data integration with prior knowledge for mechanism-based drug
repositioning. PS4DR was shown to be capable of incorporating pathway knowl-
edge different canonical pathway databases (i.e., KEGG, Reactome, and Biocarta)
with genomics and transcriptomics data from several diseases and drug pertur-
bations to predict approved drugs for several new indications. The workflow
demonstrated how omics data and pathway knowledge can complement each
other to illustrate a drug’s mode of action on the altered biological process of the
disease and prioritize the drug candidates based on their impact on combined
disease etiology. While PS4DR showcased its ability in mechanism-based drug
repositioning with publicly available omics datasets, it can serve as a genomic
and transcriptome data harmonization workflow to make them interoperable with
each other and enable users to work with any new disease or drug datasets of their
interests. Finally, the success of this approach has emphasized the importance of
prior knowledge in deducting the data-driven anomaly in the area of biomedical
research.
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4 Clustering of Alzheimer’s and

Parkinson’s Disease Based on Genetic

Burden of Shared Molecular

Mechanisms

Introduction

Precision medicine intends to disengage the disease into distinct molecular
subgroups that could be targeted individually by separate treatment. Despite the
unprecedented growth in biomedical big data, the vision of precision medicine
remains highly ambitious in the field of neurodegenerative diseases. While poor
disease understanding due to the multifaceted complexity of NDDs leads to the
failure of numerous clinical trials and a waste of billions of dollars, a systematic
approach to characterize these diseases on a molecular basis could increase the
chances of successful treatments. Hence, there is an unmet need for developing
tools for mechanism-based stratification of NDD patients based on their shared dis-
ease mechanisms. Looking forward to the future, such methods could enable the
customized treatments for each patient subgroup based on their unique biological
phenomena (i.e., genetic architecture, transcription profile, proteomic measure-
ments, molecular mechanisms, etc). We introduce an artificial intelligence-based
workflow to integrate prior mechanistic knowledge of diseases with patient-level
data for the joint stratification of AD and PD patients.
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One of the visions of precision medicine has been to re‑define disease taxonomies based on molecular 
characteristics rather than on phenotypic evidence. However, achieving this goal is highly challenging, 
specifically in neurology. Our contribution is a machine‑learning based joint molecular subtyping 
of Alzheimer’s (AD) and Parkinson’s Disease (PD), based on the genetic burden of 15 molecular 
mechanisms comprising 27 proteins (e.g. APOE) that have been described in both diseases. We 
demonstrate that our joint AD/PD clustering using a combination of sparse autoencoders and sparse 
non‑negative matrix factorization is reproducible and can be associated with significant differences 
of AD and PD patient subgroups on a clinical, pathophysiological and molecular level. Hence, clusters 
are disease‑associated. To our knowledge this work is the first demonstration of a mechanism based 
stratification in the field of neurodegenerative diseases. Overall, we thus see this work as an important 
step towards a molecular mechanism‑based taxonomy of neurological disorders, which could help in 
developing better targeted therapies in the future by going beyond classical phenotype based disease 
definitions.
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Many neurological disorders are highly multifaceted, heterogeneous and difficult to treat. The high percentages 
of clinical trial failures in Alzheimer’s Disease (AD) exemplify the unmet clinical need in the field: While Open 
Targets today lists 140 compounds that have been tested in clinical studies so  far1, there are currently only 4 
approved ones for symptomatic treatment on the  market2. The majority of clinical trial failures in neurology (like 
in other disease areas) can be attributed to a lack of efficacy, and one of the contributing factors is the selection 
of the wrong target  population3.

Precision medicine brings the hope of disentangling diseases into separate molecular subgroups, which could 
be therapeutically targeted more specifically, hence increasing the chances of successful treatment. Moreover, 
these molecular subtypes may be associated with particular mechanisms, which might allow the identification of 
novel treatment opportunities. The far-reaching vision is an entirely molecular defined taxonomy of neurological 
disorders, which should be seen in contrast to the traditional and purely phenotypic way, in which neurological 
diseases have been defined since the nineteenth  century4,5.

The AETIONOMY project funded within the Innovative Medicines Initiative (IMI) of the European Union 
has taken a step into this direction (www.aetio nomy.eu). While focusing on Alzheimer’s and Parkinson’s Disease 
(PD) as important examples, the goal of AETIONOMY was to identify and validate molecular characteristics that 
could help to stratify AD and PD into more homogeneous patient subgroups. Both neurodegenerative diseases 
share common properties, such as  neuroinflammation6, aberrant miRNA  expression7, and protein  misfolding8. 
Accordingly, it has been suspected for a long time that, despite largely non-overlapping causal genetic vari-
ants in genome-wide association studies (GWAS), similarities may be expected at the functional or molecular 
mechanism  level9–11. Hence, some authors have suggested to focus the analysis on functional categories rather 
than on individual genetic  variants10.

The existence of commonly impaired biological processes or mechanisms is also potentially attractive from a 
therapeutic point of view, since it might open the perspective for a more causal disease treatment. However, the 
question arises, how homogenous AD and PD patient groups might be with respect to those shared mechanisms, 
i.e. whether there exist subgroups.

In this work, we explored the genetic burden by single nucleotide polymorphisms (SNPs) on genes that in 
the literature have been described to play a role in both diseases. We found that, based on aggregate SNP burden 
scores of common molecular mechanisms in AD and PD, unsupervised machine learning methods can identify 
distinct and reproducible joint subgroups. We show that these clusters can be associated with distinct clinical, 
pathophysiological and molecular features on a biological-processes and pathway level, and we investigate the 
potential clinical utility of these differences by prioritizing drug targets for specific patient subgroups. Altogether, 
this work shows the possibility of effectively using knowledge about disease mechanisms in combination with 
modern machine learning techniques to unravel molecular subtypes of AD and PD, which may in the future 
aid the development of better targeted therapies by contributing to a molecular mechanism-based definition of 
neurodegenerative diseases.

Results
Strategy for identifying mechanism based AD/PD subtypes. Before going into more detail, we 
briefly outline our general approach for identifying subtypes of sporadic AD and PD idiopathic patients (Fig. 1): 
Following Tan et al.12 it is largely driven by the idea of a genetic sub-classification followed by a clinical, imaging 
based and biological characterization of patients in each cluster to test disease relevance.

Genetic commonalities between AD and PD can only be expected at the biological function level. Hence, the 
starting point of our work was a comprehensive mapping of the molecular disease landscape of AD and PD based 
on the scientific literature (see “Methods” section). The result was a set of 15 molecular mechanisms comprising 
27 proteins that have been implicated in both diseases (Fig. 2). We mapped 148 SNPs to these genes based on 
proximity as well as eQTL analysis, see details in Supplements. Using ADNI and PPMI as discovery cohorts (see 
descriptions in “Methods” section), we calculated for each of the 15 molecular mechanism an aggregate burden 
score via sparse autoencoders and then used sparse non-negative matrix factorization to identify 4 distinct patient 
subgroups in AD and PD, see “Methods” section. These subgroups were found independently in both diseases 
as well as in a merger of ADNI and PPMI patients (Fig. 3A–C).

As a next step, we validated the existence of the identified mixed AD/PD subgroups with the help of dis-
ease patients in our integrated AETIONOMY AD and PD cohorts (see description in “Methods” section and 
Fig. 3D–F). Finally, we tested the disease relevance of the patient subgroups by statistically analyzing the dif-
ferences of clinical and brain imaging related features as well as transcriptome and methylome profiles in AD 
and PD patients. Following this high-level overview about our strategy, we will now describe each of the main 
analysis steps in more detail.
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Figure 1.  Strategy for identifying AD + PD subtypes.

Figure 2.  Common AD/PD disease mechanisms, see also https ://clus2 bio.scai.fraun hofer .de/mecha nisms .
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Mechanism burden scores allow for reproducible subtyping of AD and PD patients. Using the 
data of 148 SNPs mapping to 15 common AD/PD disease mechanisms in 486 AD and 358 PD patients within 
our discovery cohorts, we developed an unsupervised machine learning approach to discover subgroups (see 
details in “Methods” section and Supplementary Text p. 13). This approach consisted of two basic steps: (i) 
sparse autoencoding of the SNPs mapping to each of the 15 mechanisms, resulting into a profile of genetic 
burden scores; (ii) consensus sparse non-negative matrix factorization to cluster patients and for identifying 
most discriminative mechanisms. Our method resulted in 4 subgroups in ADNI, PPMI as well as in a merger 
of ADNI and PPMI patients that were statistically stable and better discriminated than expected by pure chance 
(Fig. 3A-C, Tables S2–S4); details are described in the “Methods” section and in the Supplementary Text (p. 28). 
Interestingly, clusters found in the merged AD/PD cohort were all composed of a mixture of AD and PD patients 
(Figure S22). They were not identical to the ones identified in each disease individually, but showed a highly 
significant overlap in both cases (p < 1E−16, χ2-test). That means our clustering suggests the existence of certain 
commonalities between AD and PD patients on the level of SNP burden on specific mechanisms. We will discuss 
the question of disease relevance later.

Due to the particular properties of our employed clustering approach, each of the clusters can be linked back 
to a particular set of disease mechanisms (Figure S21, Table S1 and https ://clus2 bio.scai.fraun hofer .de/mecha 
nisms  for an interactive view): Cluster 1 reflects the genetic burden on AKT1. AKT1 phosphorylation regulates 
multiple signaling cascades that are of relevance in both AD and  PD13–15.

Cluster 2 is—among other features—strongly associated with the genetic burden on IL1B, NLRP3,  TP5316–19. 
Activation of IL1B by NLRP3 and TP53 play a role in the response of the immune system. Neuroinflammation 
is a common feature of AD and  PD6.

One of the features of cluster 3 is the genetic burden on MTHFR, which is implicated in hydrogen peroxide 
and homocysteine regulation as well as cell death and oxidative  stress20, Genetic variants may contribute to the 
risk of  PD21 and late-onset of  AD22,23.

Cluster 4 reflects the genetic burden on MAPK9, which is implicated in multiple signaling cascades in both 
 diseases24,25.

Again, these are only examples of representative mechanisms for each cluster. A complete overview can be 
found in Table S1 and under https ://clus2 bio.scai.fraun hofer .de/mecha nisms .

Our next steps particularly focused on the validation of the existence of the joint AD/PD subgroups. For 
this purpose, we made use of a merger of our integrated AETIONOMY AD and PD validation cohorts, and we 
asked two essential questions:

Figure 3.  Identification of mechanism-induced subtypes in AD and PD: (A) Consensus clustering of ADNI AD 
patients (consensus matrix). (B) Consensus clustering of PPMI PD patients (consensus matrix). (C) Consensus 
clustering of merged ADNI + PPMI (consensus matrix). (D) Consensus clustering of merged validation data 
(integrated AETIONOMY AD + PD, consensus matrix). (E) Prediction performance of a classifier that allows 
assigning each patient in a validation cohort to a cluster in the discovery cohort. (F) Coherence of joint AD + PD 
clustering with validation cohort: Shown is the in-group proportion measure and its p-value according to a 
permutation test.
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1. Does an independent clustering of patients in the validation data re-suggest the same number of clusters?
2. Given the panel of 148 SNPs, can we put patients from our validation cohorts into the same clusters that we 

had previously identified based on our discovery cohorts, and is the correspondingly induced stratification 
of patients in the validation cohorts coherent with the clustering of patients in the discovery data?

To answer the first question, we re-ran our developed unsupervised machine learning approach (consisting of 
sparse autoencoding of each of the 15 molecular mechanisms followed by consensus sparse non-negative matrix 
factorization), which again supported the existence of 4 clusters composed of mixture of AD and PD patients in 
the merged validation data (Fig. 3D, Table S5, Figure S23).

To answer question two, we first developed a predictive machine learning algorithm, which allowed us to 
assign any patient in a validation cohort to one of the established clusters (see “Methods” section). Cross-vali-
dation based evaluation of the prediction performance of this classifier was conducted and indicated a decent 
area under receiver operator characteristic curve (AUC) of ~ 70% that was significantly higher than chance level 
(Fig. 3E), i.e. clusters were predictable.

Secondly, we measured the coherence of the predicted stratification of patients in our validation cohorts with 
the one identified in our discovery cohorts. This was done by counting the fraction of patients in the validation 
cohort whose closest patient in the discovery cohort had the same label, yielding the In-Group Proportion (IGP) 
measure suggested by Kapp and  Tibshirani26, see “Methods” section for details. Accordingly, we could verify a 
high and statistically significant agreement of clusters predicted for patients in the validation data with those in 
the merged discovery cohort (Fig. 3F). Overall, we thus concluded that our discovered joint stratification of AD 
and PD patients was reproducible.

Comparison of clinical outcome measures between clusters. Our next steps focused on the ques-
tion whether our identified patient clusters were disease associated or just reflecting general genetic differences 
in the population. For this purpose, we used clinical, imaging, transcriptome and methylome data.

We first investigated differences in clinical outcome measures of AD and PD patients across clusters. This 
was done separately on the basis of each of the individual study used in this paper (AD: ADNI, ROSMAP; PD: 
PPMI, AETIONOMY PD, ICEBERG, DIGPD), because available clinical data differs between studies (Tables 1, 
2), and differences in inclusion/exclusion criteria may bias a combined analysis: Despite the fact that all patients 
had a time till initial diagnosis of at most 2 years there were significant differences of baseline UPDRS scores 
between PD studies (p < 1E-9 for MDS-UPDRS I, p = 0.02 for MDS-UPDRS II, p < 1E-5 for MDS-UPDRS III off 
treatment score; Kruskal–Wallis test), and in all cases UPDRS total (sum of MDS-UPDRS I + II + III off treat-
ment scores) in PPMI and DIGPD were lower than in AETIONOMY PD and ICEBERG (median UPDRS total 
in PPMI: 30, DIGPD: 33, AETIONOMY PD: 42, ICEBERG: 47). Similarly, AD cohorts differed significantly by 
age (p < 2E−16, one-way ANOVA), level of education (p < 0.01, Kruskal–Wallis test) and MMSE baseline scores 
(p < 1E−10, Kruskal–Wallis test).

Based on these observations we focused on a statistical analysis within each of the AD and PD cohorts sepa-
rately. Notably, IDIBAPS was excluded at this point due to the very small sample size (only 29 cases). Summary 
statistics of major demographic and clinical baseline variables of all clusters in AD and PD can be found in 
Tables S7 and S8. Within ADNI we compared multiple cognitive assessment scores (CDRSB, ADAS11, ADAS13, 
MMSE, MOCA, FAQ, RAVLT, and LDELTOTAL) at the visit of first dementia diagnosis (n = 486 patients) across 

Table 1.  Demographic and clinical variable summary of AD discovery (ADNI) and validation (ROSMAP and 
IDIBAPS) cohorts. The data shows only clinically diagnosed sporadic AD cases. The Table shows the median of 
each variable and the inter-quartile range (IQR) in brackets.

Cohort Age Gender (m/f) Education MMSE CDRSB ADAS11 ADAS13
RAVLT 
immediate

RAVLT 
learning

ADNI 75.55 (9.6) 288/198 16 (5) 24(3) 4.5 (2) 17 (8.33) 27.67 (10) 23 (9) 2 (2)

ROSMAP 87.98 (6.19) 52/142 16 (5) NA NA NA NA NA NA

IDIBAPS 62.42 (9.75) 15/28 12 (9) 18 (7.5) NA NA NA NA NA

Table 2.  Demographic and clinical variable summary of PD discovery (PPMI) and validation (AETIONOMY 
PD, DIGIPD, ICEBERG) cohorts. The data shows only de novo diagnosed idiopathic PD cases. The Table 
shows the median of each variable and the inter-quartile range (IQR) in brackets.

Cohort Age
Gender 
(m/f) UPDRS1 UPDRS2 UPDRS3 off UPDRS3 on MOCA

HADS 
anxiety

Schwab-
England

PPMI 62.5 (14.14) 238/120 5 (5) 5 (6) 19 (11.75) NA 28 (3) NA NA

AETION-
OMY PD 64 (11.25) 59/29 7 (6.75) 7 (8.75) 28 (17) 0 (0) 27 (4) 5 (5) 2 (0)

DIGPD 61 (12) 100/73 7 (6) 5 (5) 21 (11) 0 (0) NA 6 (4) 2 (1)

ICEBERG 67 (16.5) 30/12 10 (4) 7 (6) 29.5 (11.5) 0 (0) 27 (3) 7 (3) 2 (0)



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19097  | https://doi.org/10.1038/s41598-020-76200-4

www.nature.com/scientificreports/

clusters. The provided cognitive tests cover different aspects, such as global cognitive impairment (ADAS11, 
ADAS13, MMSE, MOCA), logical memory (LDELTOTAL), verbal episodic memory (RAVLT) and activities 
of daily living (FAQ). For more detailed information about the composition of individual cognition scores we 
refer to the  literature27–32. Notably, cluster labels were based on the clustering of the merged ADNI + PPMI and 
ROSMAP + AETIONOMY PD + ICEBERG + DIGPD cohorts, respectively. Statistical significances were corrected 
for multiple confounding factors, such as age, gender, time until diagnosis, ethnicity and the use of L-DOPA (the 
latter for PD patients). Multiple testing correction was applied via the method by Benjamini and  Hochberg33. 
Details about the statistical analysis are described in the “Methods” section part of this paper.

According to our analysis, no statistically significant differences of cognitive assessment scores could be found 
between clusters in AD patients at study baseline (although we notably did observe weakly significant results 
for working memory cognition assessments in ROSMAP patients). However, as indicated in Fig. 4A–D, PD 
patients in AETIONOMY PD and ICEBERG demonstrated significant pairwise differences between clusters with 
respect to several clinical baseline scores, namely MDS-UPDRS I (non-motor aspects of daily living; ICEBERG, 
AETIONOMY PD), HADS anxiety score (ICEBERG), MDS-UPDRS III (motor examination) on treatment 
scores (ICEBERG) and Schwab-England Scale (difficulties with activities of daily living; AETIONOMY PD). No 
significant results were found in PPMI and DIGPD.

In addition to this analysis of baseline variables we also conducted an analysis of follow-up longitudinal data, 
which was available in ADNI (AD) and PPMI (PD) cohorts. This analysis showed significant differences of the 
progression of MDS-UPDRS III (motor examination) scores across patient subtypes in PPMI. In ADNI we found 
significant differences in the progression of global cognitive impairment (ADAS11, ADAS13, CDRSB, MMSE) 
and verbal episodic memory (RAVLT; see Tables S12, S13).

In summary, clusters are associated with significant differences of clinical disease symptoms and symptom 
progression of AD and PD patients.

Association with brain imaging derived features in AD and PD. In ADNI, AD patients demon-
strated highly significant pairwise differences when comparing 193 intracranial volume normalized subcortical 

Figure 4.  Examples of significant differences between clusters with respect to clinical baseline features 
in PD patients after correction for confounding effects (see “Methods” section). (A) MDS-UPDRS I score 
(AETIONOMY PD); (B) MDS-UPDRS III on treatment score (ICEBERG); (C) HADS anxiety score 
(ICEBERG); (D) Schwab-England Scale in % (AETIONOMY PD). The Figures shows statistical distributions as 
violin plots (i.e. boxplots plus kernel density estimates), and individual data points are shown as superimposed 
dots.
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brain structures of those patients which had a recent AD diagnosis at study baseline (n = 209) and correcting 
statistical differences for the confounding effects of age and sex. We found significant differences in several 
brain regions, such as the calcarine sulcus, the cuneus gyrus and the medial occipitotemporal gyrus (Table S14, 
Fig. 5A–C).

In PPMI, pairwise differences between the clusters were significant for in presynaptic dopaminergic imaging 
(DaTSCAN) were identified in caudate and putamen (Table S16, Fig. 5D–F). Also, the dopamine receptor density 
ratio of caudate versus putamen differed significantly between clusters.

Altogether, we concluded that our genetically derived clusters are associated with significant pathophysi-
ological differences in the brain.

Association with A‑β , transcriptome and methylome changes. Interestingly, the CSF protein A-β 
showed significant pairwise concentration differences between all clusters in PPMI PD patients (Table S16), but 
not in ADNI AD subjects. However, there was only weakly significant difference in MOCA cognitive assessment 
scores across clusters (p = 0.1) and no correlation of A-β levels with MOCA (p = 0.53, Kendall’s tau: 0.03). This is 
in agreement with Melzer et al.34, who reported no association of amyloid-beta deposits with cognitive decline 
in PD patients.

We further explored changes in transcriptome and methylome of ROSMAP AD patients on the level of Gene 
Ontology (GO)  terms35 and KEGG  pathways36 via Gene Set Enrichment Analysis (GSEA)37. This analysis was 
chosen due to the low sample size, and it can only reveal broad trends in the data, namely statistical enrichment 
of GO terms and pathway at the beginning or end of a fold change ranked list of genes. We here report findings 
of GO terms and KEGG pathways that were statistically enriched within one particular patient subtype, but not 
in others compared to cognitively normal controls. Enrichment  maps38 were used to provide a condensed view 
on biological processes and pathways that were particularly altered within one specific cluster (Figure S25–S41). 
Enrichment maps represent semantic similarities between GO terms (shown as nodes) via edges, and group GO 
terms together based on the hierarchical relationship between them. More results (including comparisons of one 
specific cluster to all others) can be found under https ://clus2 bio.scai.fraun hofer .de).

According to the highly condensed view of enrichment maps, for example, cluster 1 in AD specifically shows 
changes in the meiotic cycle compared to healthy donors (Figure S26). In fact, aberrant re-entry of neurons into 
the cell cycle has long been seen as one of the hallmarks of  AD39,40. Cluster 2 shows transcriptome changes in 
microtubule-based processes (Figure S27). Indeed, the tau protein, which under healthy conditions stabilizes 
microtubule, in AD patients aggregates into insoluble filaments in the brain that represent one of the hallmarks of 
the  disease41. Specific features of cluster 3 are gene expression changes of processes related to the termination of 

Figure 5.  Example of significant differences between clusters with respect to brain imaging derived features at 
study baseline/time of first disease diagnosis (see “Methods” section). (A) left calcarine sulcus in AD patients; 
(B) left cuneus gyrus in AD patients; (C) volume of right medial occipitotemporal gyrus in AD patients; (D) 
DaTSCAN left Putamen—ratio to age expected value in healthy controls; (E) DaTSCAN Count Density Ratio: 
Caudate/Putamen; (F) DaTSCAN Count Density Ratio (CL): Caudate contralateral/Putamen contralateral. The 
Figures shows statistical distributions as violin plots (i.e. boxplots plus kernel density estimates), and individual 
data points are shown as superimposed dots.
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protein translation (Figure S28). Reduced global translation rates (and RNA levels) have been observed previously 
in AD  patients42. Alteration of apoptosis related pathways is one of the features specific for cluster 4 (Figure S29), 
which is well known in the context of  AD43. In addition, patients in this cluster show DNA methylation changes 
in growth factor beta receptors (Figure S35), which has been reported to promote AD  pathology44. More results 
can be found in the Supplements.

PPMI transcriptome and methylome data has a larger sample size, but the main limitation is the fact that 
measurements have been derived from blood and thus only indirectly mirror the pathological processes in the 
brain. Accordingly, we here again decided to only focus on GSEA results comparing PD patients in each of the 
clusters against healthy controls (S30–S32; S37–S41). For example, cluster 1 shows specific methylome changes 
in the JAK-STAT signaling pathway. Inhibition of this pathway has been suggested as a therapy against  PD45. 
Cluster 2 shows methylome changes of microtubule cytoskeleton organization. Tau deposition and filament 
assembly is one of the hallmarks of  PD46. Assembly of misfolded proteins in PD yields activation of adaptive 
immune  response47. According, transcriptional changes can be observed in cluster 2 as well. Cluster 3 demon-
strates methylome changes of lipoprotein metabolism, which has recently been found altered in  PD48. Cluster 4 
shows transcriptional changes in protein ubiquitination, which has been suggested to also play a role in idiopathic 
forms of  PD49,50. In addition, methylome changes of several metabolic processes were observed, which is in agree-
ment with recent findings that view PD as a disorder of the cell  metabolism51. Again, more results (including 
enrichment maps for GO terms) can be found in the Supplements and under https ://clus2 bio.scai.fraun hofer .de.

Altogether, our examples suggest that—despite the obvious limitations of the employed molecular data—each 
of the four clusters can be associated with biological processes that are solely enriched in one cluster and that 
are well known in the context of both diseases. Epigenetic changes were observed to a much higher extent in 
PD than in AD.

Molecular differences between clusters can be linked to known disease mechanisms. We next 
explored GO terms (biological processes) and KEGG pathways that were enriched in the difference between one 
cluster to all others. In other words, we looked into differential expression and differential methylation between 
cluster 1 and all others, cluster 2 and all others, and so on. For each of these comparisons a larger number of bio-
logical processes and pathways could be identified in both AD and PD (Tables S18, S20, S22, S24). In agreement 
to the findings in the last Section, significant differences between clusters in methylation could only be found in 
PD patients, but not in AD. Transcriptome differences between clusters were observed in both diseases.

We further explored the link between differences at the transcriptome and methylome level among clusters 
and known disease mechanisms in AD and PD. More specifically, we mapped our initially identified 15 common 
AD/PD disease mechanisms to disease specific mechanisms defined in the NeuroMMSig  database52. That means, 
each of the common AD/PD mechanisms used in our clustering was identified with a certain NeuroMMSig 
gene set, if it was contained in that gene set. We found at least one NeuroMMSig gene set for each of the 15 
mechanisms. Since each NeuroMMSig gene set equals a subgraph in one of our literature derived AD and PD 
disease maps (see “Methods” section), we could then systematically conduct graph mining. More specifically, 
we looked for shortest paths linking NeuroMMSig gene sets with biological processes and pathways identified 
in our omics data analysis. Shortest path calculations considered the causal direction of edges (marking e.g. a 
phosphorylation event) whenever possible. Due to the large number of results (over 600), we decided to imple-
ment an interactive web application for exploration (https ://clus2 bio.scai.fraun hofer .de/bioma rkers ). The web 
application also provides pointers to the scientific literature supporting each of the edges.

In the following, we highlight only selected examples (Fig. 6): As explained previously, cluster 1 is strongly 
associated with the genetic burden on AKT signaling. At the transcriptional level we observed significant down-
regulation of genes in the cell cycle process in AD patients (adj. p value 0.03). Both can be linked together, as 
shown in Fig. 6A. AKT signaling influences acetylcholinesterase (AChE), which is thought to play a role in 
apoptotic  processes53 and amyloid-beta  formation54. Amyloid-beta increases NAE1 via  APP55 and influences 
the entire cell cycle  process56.

In cluster 2, for PD patients we observed differential methylation of genes involved in processes related to 
microtubule cytoskeleton organization (adj. p value < 0.001). Cluster 2 is—among others—associated with the 
genetic burden on TP53. As shown in Fig. 6B there is indeed a causal chain between TP53 and microtubule 
cytoskeleton organization. Elevated TP53 levels have been found to induce apoptosis and inflammation in  PD57. 
Apoptotic processes yield a translocation of UTRN from the cytosol to mitochondria and subsequently increases 
cytochrome  C58 and alpha-syn59, which itself is involved in microtubule cytoskeleton  organization60.

In cluster 3, for AD patients we observed significant transcriptional downregulation of genes involved in 
“long term synaptic depression” (adj. p value 0.02). Cluster 3 is at the same time associated to the genetic burden 
on APOE. The connection between both is highlighted in Fig. 6C. For example, APOE has been suggested to 
increase insulin  resistance61, which yields synaptic depression of neurons and thus suggests the perception of 
AD as a “type 3 diabetes”62.

Once again, these are only examples and further results can be explored via our web application.

Potential implications for drug development. Our previous results indicate that our AD/PD cluster-
ing can be associated with molecular and pathophysiological differences between patient subgroups. To better 
understand the potential utility of these patient subgroups for improving future AD and PD therapy, we con-
ducted a target prioritization of all 27 genes involved into the 15 mechanisms that we had previously used in 
conjunction with SNP data to identify cluster patients. Target prioritization was done via Open  Targets1, which 
uses genetic evidence as well as literature mining to assign a confidence score to each protein as a potential drug 
target. In addition, tractability by small molecules and antibodies was considered. Figures S41, S42 highlight that 
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in both diseases several potential targets could be identified via Open Targets. In addition, some of these targets 
could be clearly associated to one specific cluster (Table S1): In AD genes CDK5, GSK3B are strongly associated 
to cluster 2 (Table S1). APOE, PICALM, TOMM40, MTHFR and CD33 are linked to cluster 3. Further potential 
targets include SNCA, IL6 and CYCS, which are more strongly associated with clusters 2 and 3 than to the rest.

In PD, only SNCA, MAPT and APOE were identified as potential targets (Figure S42). MAPT is strongly 
associated with cluster 2 and APOE to cluster 3 (Table S1).

Altogether this analysis shows that our patient subtypes might be used to inform better targeted therapeutic 
strategies in AD and PD in the future.

Conclusion
Precision medicine offers the hope of delivering the right treatment to the right patient, based on individual 
characteristics rather than population averages for these characteristics. Precision medicine is only an emerg-
ing reality at this moment, and moving closer to this vision will require non-trivial efforts in data mining and 
machine learning based on the entirety of available patient  data63. Specifically, in neurology, this is extremely 
challenging, because on the one hand diseases are often highly multifaceted and on the other hand deep molecu-
lar multi-omics data (as frequently employed in cancer research) are difficult or even impossible to obtain for 
obvious reasons. Accordingly, in this work we started with an intensive literature mining effort, which mapped 
out the current mechanistic understanding of AD and PD pathologies and allowed us to identify shared molecular 
mechanisms. These shared molecular mechanisms were used as a starting point for developing a joint molecular 
subgrouping of AD and PD. More specifically, we used state-of-the-art unsupervised machine learning techniques 
to identify four mixed AD + PD patient clusters based on SNP burden scores of common AD/PD mechanisms. 
Importantly, the resultant disease subtypes manifest as mixtures of different mechanisms rather than being 
instances of single ones.

We validated the existence of patient clusters based on combined genotypes of 561 patients from AETION-
OMY PD, ICEBERG, DIGPD, ROSMAP and IDIBAPS studies. Moreover, we conducted an in-depth analysis of 
clinical, imaging and molecular differences between patient clusters in both diseases. Our work demonstrated 
that SNP burden on mechanism level can be used to subdivide AD as well as PD patients jointly, and that clusters 
are associated with clinical, pathophysiological (specifically visible in brain imaging) and molecular differences 
between patients. We investigated the potential clinical utility of these differences by prioritizing drug targets 
for specific patient subgroups.

Overall, one should see our approach as complementary to the multitude of existing work that focuses on 
separate subgrouping of AD and PD based on polygenic risk  scores64, CSF, blood and imaging  biomarkers65–67, 
or based on clinical outcome  measures68,69. We see the main distinction of our approach in a better understand-
ing of the stratification potential of common AD and PD disease mechanisms, including the implications for 
future drug development.

Figure 6.  Examples of GO terms (biological processes) found significantly enriched in gene expression and/
or methylome changes of one cluster compared to all others (yellow) together with their connections to 
genes playing a role in common AD/PD disease mechanisms (red): (A) Connection between AKT signaling 
(feature of cluster 1) and cell cycle in AD; (B) connection between TP53 (features of cluster 2) and microtubule 
cytoskeleton organization in PD; (C) connection between APOE4 (feature of cluster 3) and long term synaptic 
depression in AD. Intermediate signaling proteins are shown in blue. For more examples visit https ://clus2 bio.
scai.fraun hofer .de/bioma rkers .
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Of course, our work is not without limitations: These can largely be associated to the limited availability of 
transcriptome and methylome data (with matched SNP genotypes from the same patient) in only two studies 
(ROSMAP and PPMI) and with relatively low sample sizes in ROSMAP. Moreover, clinical differences between 
cohorts imposed non-trivial challenges for reaching coherent conclusions regarding the clinical differences 
between patient subgroups. We thus see a need to more systematically replicate observational clinical studies 
in the neurology field. At the same time, such studies should preferably be longitudinal and collect multi-omics 
data from the same patient in a more systematic way than currently done in ROSMAP and PPMI. Such data 
should then be used to re-validate the findings presented here, specifically in terms of molecular differences 
between patient subgroups.

Altogether, we see our work as a step towards realizing the far-reaching vision of a completely molecular based 
definition of human disease, as formulated by Kola and  Bell4 and Strafella et al.5. As pointed out before, we see 
the potential impact of such an effort in the development of better targeted and thus hopefully more efficacious 
therapies in AD and PD in the future.

Materials and methods
Overview about used data. Studies used for discovery. ADNI. Data were obtained from the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) database (www.adni.loni.usc.edu). The longitudinal observation 
study includes—among others—486 subjects, which were diagnosed with mild sporadic AD during the study. 
206 patients had a recent clinical AD diagnosis at study baseline. Data from ADNI subjects includes SNP based 
genotype (two different Illumina chip platforms), APOE4 status, CSF biomarkers, volume measurements of 
seven brain regions as well as different clinical and neuropsychological test results. In addition to the 7 brain 
volume measurements provided in the original ADNIMERGE dataset we calculated 193 subcortical brain region 
volumes from raw images, using the parcellation by Destrieux et al.70, see details in Supplements. An overview 
about key demographic and clinical features of this study can be found in Table 1.

PPMI. The Parkinson’s Progression Markers Initiative (PPMI) (www.ppmi-info.org/data) consists of multiple 
cohorts from a network of clinical sites with the aim to identify and verify progression markers in PD. It is 
a longitudinal observation study with data collected using standardized  protocols71. PPMI comprises of eight 
cohorts with different clinical and genetic characteristics. Here we used data of 358 de novo diagnosed idi-
opathic PD patients and 198 healthy controls. All PD patients were initially untreated and diagnosed with the 
disease for two years or less. The dataset contains information about patient demographics, patient PD history, 
DaTSCAN imaging, non-motor symptoms, CSF biomarkers (A-β , α-synuclein, dopamine, phospho-tau, total 
tau) and UPDRS scores. Genotype was available via whole genome sequencing data. In addition, whole blood 
transcriptome and methylome data was available for n = 306 and n = 277 of the same patients, respectively. The 
number of healthy controls with available gene expression and DNA methylation data was n = 151 and n = 112. 
An overview about key demographic and clinical features of this study can be found in Table 2.

Studies used for validation. Integrated AETIONOMY AD. Validation data comprised 237 clinically diag-
nosed sporadic AD cases with available genotype from  ROSMAP72 (n = 194) and 21 additional cases with avail-
able genotype from IDIBAPS taken from the AETIONOMY biomarker verification  study73. We call the union of 
these 258 AD patients integrated AETIONOMY AD in the following. The data included:

• clinical characteristics: e.g. post-mortem diagnosis, age at death, gender
• genome-wide transcriptome (n = 56 AD cases with jointly available genotype and n = 50 cognitively normal 

controls) and methylome data (n = 53 AD cases with jointly available genotype and n = 34 cognitively normal 
controls) from post-mortem brain tissue (ROSMAP)

An overview about key demographic and clinical features of this study can be found in Table 1.

Integrated AETIONOMY PD. Validation data comprised idiopathic PD cases with available genotype that 
were diagnosed with PD for 2 years or less (in agreement to PPMI). 173 out of the 303 cases stem from DIGPD 
(NCT01564992)74, 42 from ICEBERG (NCT02305147) and 88 were taken from study that is henceforth referred 
to as AETIONOMY  PD75. We call the union of the 303 idiopathic PD patients integrated AETIONOMY PD in the 
following. The datasets are cross-sectional and include typical clinical outcome variables, such as MDS-UPDRS, 
Hoehn and Yahr stage, cognitive assessment scores (MMSE, MOCA), Epworth sleepiness scale (ESS), REM sleep 
behavior disorder (RBD), Hospital anxiety, and depression scale (HADS). An overview about key demographic 
and clinical features of this study can be found in Table 2.

Identification of common molecular mechanisms. Common molecular mechanisms between AD 
and PD were identified with the help of a systematic literature mining approach with post-hoc manual curation. 
More specifically, the text mining engine  SCAIView76 was used to construct cause-effect relationships between 
molecules, pathways, biological processes and imaging features in both, AD and PD, see Domingo-Fernandez 
et al. and Kodamullil et al. for  details52,77 for details. After manual curation, two computable disease maps, one 
for AD and one PD were created. Finally, we have also made them interactively usable via a dedicated web appli-
cation (https ://neuro mmsig .scai.fraun hofer .de/).

Calculation of the intersection of cause-effect relationships described in the AD and PD disease maps resulted 
into 27 genes grouped into 15 cause-effect relationship sub-graphs, called mechanisms from now on (see Fig. 2 
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and https ://clus2 bio.scai.fraun hofer .de/mecha nisms  for an interactive view). While some of these mechanisms 
describe only posttranslational modifications of a single protein, others reflect more complex protein–protein 
interactions and signaling cascades (Table S1). Key proteins described in both diseases include e.g. APOE, TAU, 
SNCA and TOMM40. These proteins are involved into several known disease relevant processes that we have 
made computationally accessible via our earlier developed NeuroMMSig  database52.

We mapped 148 genetic variants (SNPs) measured in ADNI1, ADNI2/GO as well as PPMI to the 27 com-
mon AD/PD disease genes via a combination of two strategies: a) proximity (using a 10 kbp window size); and 
b) eQTL mapping, see details in Supplements on page 2.

Calculation of SNP burden on molecular mechanism level. SNP data is inherently extremely sparse, 
i.e. even “common” genetic variants are comparably seldom in the data. This imposes a major challenge for any 
clustering algorithm, because the distance between two arbitrary SNP profiles based on the usual 0, 1, 2 encod-
ing then becomes almost identical. That means clustering of raw SNP profiles is prone to become statistically 
unstable and noisy. To account for this fact, we embedded the 148 SNP profiles of AD and PD patients into a 
lower dimensional latent space while taking into account the grouping of SNPs according to 15 molecular cause-
effect relationship subgraphs (aka molecular mechanisms) defined in the last section. We aimed for making this 
embedding non-linear to capture SNP-SNP interactions. Very recently, autoencoder networks (a specific deep 
learning technique) have been proposed for that  purpose78,79. Autoencoders allow for learning a non-linear and 
low dimensional representation of SNP data for each patient, i.e. in essence a SNP burden score per mechanism 
(see Supplements for details). Based on the SNP burden scores a grouping of AD and PD patients can be estab-
lished via clustering. Details will be explained later.

To maximize the chance for a later interpretation of the clustering and to avoid an imbalance due to differ-
ences in the number of mapped SNPs, we learned (sparse) autoencoder based SNP burden scores for each of 
the 15 mechanisms. That means we ended up with a 15 dimensional vector of genetic burden scores for each 
patient. Each of these 15 scores can be interpreted in terms of the relative contribution of each SNP to the overall 
score learned by the autoencoder network (Figures S2–S16). Details about the training procedure for our sparse 
autoencoder networks are described in the Supplementary Material on page 13.

Unsupervised machine learning for patient (Bi‑)clustering. Based on the 15 dimensional SNP bur-
den profile of each patient derived from SNP data we clustered patients. We here relied on sparse non-negative 
matrix factorization (sNMF). Briefly, sNMF factorizes a patients times mechanisms matrix X into a product of 
two non-negative matrices W and H , where W represents a sparse mapping of mechanisms to clusters and H a 
soft assignment of patients to  clusters80,81. That means, for each patient cluster it is possible to identify the most 
influencing mechanisms (see Supplements for details). Hence, sNMF effectively yields a bi-clustering. The entire 
(bi-)clustering procedure is in practice is an iterative process that is dependent on the initialization of both 
matrices and should thus be repeated a number of times (here: 50) to yield a consensus. This consensus was used 
for further analysis.

The number of clusters k corresponds to the number of columns of matrix W  and the number of rows of 
matrix H . We chose k based on inspection of three statistical criteria (proportion of ambiguously clustered pairs, 
silhouette index, cophenetic correlation) and in comparison to a randomly permuted cluster  assignment82–84. We 
then decided for the minimal number of clusters k yielding the most stable clustering solution (lowest proportion 
of ambiguously clustered pairs) that was at the same time exhibiting a significantly larger silhouette index and 
cophenetic correlation than expected by chance. Details are explained and shown in Supplements on page 28.

Validation of patient subtypes via independent studies. Figure 7 gives an overview of our overall 
validation strategy, which consists of two parts: In the first part we re-clustered patients in our merged AD/PD 
validation cohort using the same workflow that we had established for our discovery cohort, which re-confirmed 
the possible existence of 4 clusters in AD and PD (Table S5).

In the second part of our validation, we followed the idea of assigning patients in an independent study to the 
pre-existing clusters discovered in ADNI and PPMI and then measuring the degree of coherence between the 
cluster assignments and originally discovered groups. For this purpose, we here adopted an approach proposed in 
Kapp and  Tibshirani26: Following that approach we first developed a supervised machine learning classifier on the 
basis of the SNP data of patients in ADNI and PPMI. This allowed us to predict for any patient in an independ-
ent validation cohort the membership to a cluster in the discovery cohort based on the 148 SNP panel described 
above. We used an l1 penalized logistic regression (i.e. LASSO) as a classification algorithm, and we evaluated 
the prediction performance of this classifier via a conventional 10 times repeated tenfold cross-validation pro-
cedure. That means we subsequently left out 1/10 of our discovery data for testing the classifier and only trained 
on the remaining 9/10 of the data. Autoencoder training and l1 penalty hyper-parameter optimization was done 
within the cross-validation loop to prevent overoptimism. The corresponding cross-validated multi-class AUC 
of 70% is shown in Fig. 3E.

After classifier development, we were able to assign patients from independent studies to the clusters dis-
covered in our discovery cohort (ADNI + PPMI). The in-group proportion measure (IGP) proposed by Kapp 
and Tibshirani then measured the proportion of patients in the validation study, whose nearest neighbors in the 
discovery cohort had the same cluster label. An IGP closer to 1 indicates a stronger coherence of the statistical 
distribution of data in the validation cohort with the clustering of the discovery cohort. An IGP closer to zero 
indicates disagreement.

To further assess the statistical significance of observed IGP values we performed a permutation test, in which 
we randomly permuted the cluster assignment of patients and re-calculated the IGP. This was done for 1000 
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times. None of the randomly permuted cluster assignments exceeded the IGP of the original clustering, i.e. our 
obtained results were highly significant.

It is worthwhile mentioning that we also re-calculated the IGP for our integrated AETIONOMY AD and 
PD cohorts separately to exclude that the observed high coherence was only true for one of the two diseases. 
Figures S23, S24 clearly demonstrate that no corresponding biases could be observed, i.e. IGP values were in a 
comparable range.

Statistical analysis of clusters. Clinical data. Clinically observed differences between patient sub-
groups might be impaired by multiple confounding factors. To identify these confounders, we initially per-
formed a stepwise multinomial logistic regression (R-package “nnet”) with the cluster indicator as response and 
several potential confounders as predictors. This approach was chosen to account for the fact that many clinical 
variables show a highly skewed distribution. Considered confounders included:

• baseline diagnosis (ADNI),
• age (all),
• gender (all),
• marriage status (ADNI),
• education level (ADNI, ROSMAP, AETIONOMY PD),
• sub-study (ADNI1, ADNI2, ADNIGO, ADNI3; ROS, MAP),
• duration of the disease since the first diagnosis (PPMI, AETIONOMY PD, DIGPD, ICEBERG, ROSMAP),
• smoking history (AETIONOMY PD)
• coffee and alcohol consumption (AETIONOMY PD)
• ethnicity, including Spanish origin (PPMI, AETIONOMY PD, ICEBERG, DIGPD, ROSMAP), and
• prior neurological drug treatment (ROSMAP, PPMI, AETIONOMY PD, ICEBERG, DIGPD), including 

L-DOPA for PD (PPMI, AETIONOMY PD, ICEBERG, DIGPD).

The Akaike Information Criterion (AIC) was used for model selection, resulting in an “optimal” confounder 
set. It is worthwhile mentioning that none of the considered confounders demonstrated univariately significant 
association to cluster membership in any dataset according to a likelihood ratio test against the null model.

To determine the influence of clinical outcome measures (e.g. UPDRS3) in a second step we fitted a multi-
nomial logistic regression model that included in addition to the selected confounders exactly one of the clini-
cal variables of interest. In other words, there was a separate multinomial logistic regression for each clinical 
outcome measure. We then used a likelihood ratio test (Analysis of Deviance/type III ANOVA) to estimate 
the significance of the influence of the clinical variable of interest while correcting for confounders. In case of 
nominal significance (p < 0.05) we conducted a post-hoc analysis of pairwise differences between clusters using a 
Wald test. Due to multiple pairwise comparisons and the existence of several clinical variables of interest within 
each study, we jointly corrected P-values resulting from all statistical tests for multiple testing. This was done via 
Benjamini and Hochberg’s  method33. Corresponding results are shown in Tables S9–S11.

Figure 7.  Strategy for validating genetically defined patient clusters.
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Statistical analysis of longitudinal clinical data from ADNI and PPMI studies was performed via a general-
ized linear mixed model (R-package “lme4”) between each pair of clusters. For this purpose, we subtracted 
from each clinical outcome score its baseline value and divided by the standard deviation of the outcome score 
at baseline, resulting into a patient specific progression score. Two alternative approaches to model time were 
considered, namely either as a numerical value or as a categorical factor. Model selection via the AIC was used 
to choose among these alternatives. Notably, we also included an interaction effect between cluster and time to 
model potentially existing time inhomogeneous effects (none of them being significant, though). Furthermore, 
we included a random intercept for each patient. Akin to the situation for the baseline data we performed a 
stepwise regression to initially select an “optimal” confounder set. Afterwards, a type III ANOVA was conducted 
to estimate the significance of a given clinical outcome. P-values of pairwise differences between clusters were 
corrected for multiple testing correction in the same way as described before. Results of the clinical time series 
analysis are shown in Tables S12–S13.

Brain imaging. Statistical analysis of features derived from MRI imaging in ADNI and DaTSCAN in PPMI 
in principle followed the same approach as those derived from for clinical data at baseline. The only difference 
was that for analysis of MRI imaging derive features we always used age and sex as confounders, and no further 
confounders were considered. Results of the statistical analysis are shown in Tables S14–S15. For ADNI we used 
two types of imaging data:

1. 7 precalculated brain volume measurements available in the ADNIMERGE package. We used always data 
from that visit, at which the first dementia diagnosis had been given.

2. 193 subcortical brain volumes calculated from Distrieux’s parcellation approach, see details in Supplements.

All brain volume measurements were divided by intercranial volumes for normalization purposes before 
statistical analysis.

CSF biomarkers. CSF biomarkers were analyzed in the same way as clinical variables. Results are shown in 
Table S16. For ADNI AD patients we used always data from that visit, at which the first dementia diagnosis had 
been given.

Omics data. Analysis of transcriptomics (ROSMAP, PPMI), methylomics (ROSMAP, PPMI) data followed 
common practice in bioinformatics. Details are explained in the Supplements of this paper. Confounder analysis 
was done akin to clinical data. Accordingly, no confounders were identified in ROSMAP. However, initial quality 
control suggested a batch effect between the ROS and MAP sub-studies in DNA methylation data, which we cor-
rected via  ComBat85. In PPMI we used gender (RNAseq) and age (DNA methylation) as confounders. Complete 
analysis results are available under https ://clus2 bio.scai.fraun hofer .de/.

Analysis tools. We used bcftools (version 1.8) and PLINK (version 1.90b4.1) for SNP recoding from whole 
genome sequencing and genotyping data respectively.

R 3.5.1 was used for all data analyses purpose. R-package h2o (cluster version 3.26.0.2) was used for the 
autoencoder model training and logistic regression. We have used R-package NMF (version 0.21.0) for clustering. 
R-package biomart (version 2.36.1) was used for gene annotation. R-package SNPlocs.Hsapiens.dbSNP.20120608 
(version 0.99.11) was used to map genomic coordinates to rsIDs. We have used R-package ggplot2 (version 3.0.0) 
for producing all the analysis plots in addition to inbuilt tool provided by R-package NMF package (version 
0.21.0) for clustering and visualizations.
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Chapter 4

Conclusions

In this work, we developed a novel unsupervised machine learning-based
approach that could integrate the mechanistic information from knowledge as-
semblies with patient-level omics data for the molecular mechanism-based stratifi-
cation of AD and PD patients. While the establishment of such patient stratifica-
tion remains one of the biggest challenges in the field of NDD pathophysiology,
our work demonstrates a robust patient stratification strategies that can also be
reproducible in completely independent study cohorts. Moreover, significant asso-
ciations between different clinical and molecular disease biomarkers (i.e., clinical,
imaging, transcriptomics, and methylomics) and the predicted patient subgroups
show the clinical relevance of our clustering strategy. To our knowledge, this work
is the first successful demonstration of mechanism-based patient stratification
in the area of neurodegenerative disease. Further, in developing the clustering
workflow, we have tackled a critical bioinformatic problem of reducing the ge-
nomic data dimensionality by aggregating the SNPs information into the singular
mechanism scores. Looking ahead in the future, this work would facilitate the
practice of stratified medicine in the NDD field by enabling us to target distinct
pathophysiological mechanisms underlying various patient subgroups.

87





5 Conclusion and outlook

Given the advances in big data technologies in biology and ever-increasing
computational power, the biomedical research field has been constantly grow-
ing at an unprecedented rate compared to any other research domain over the
past decades [33, 119]. While a surge in multi-modal and multi-scale data (e.g.,
omics, imaging, EHRs, smart device data) has granted access to explore many
uncharted territories in biology, the successful integration of artificial intelligence
in biomedical science will serve as a powerful tool to achieve that goal. These
significant advancements have raised provocative questions like, do we still need
hypothesis-driven scientific inquiry, or can we engage in scientific inquiry without
any prior beliefs, and be free from established ways of thinking or doing to explore
a limitless number of possibilities [120]? However, in practice, all this big data
represents highly selected phenomena of the real-world due to sampling bias and
tends to exclude the majority of biological work [121]. As a result, data-driven
anomalies can be understood only by contrast or the presence of prior assump-
tions. Hence, both knowledge- and data-driven approaches are fundamental parts
of an interactive cycle of knowledge acquisition and complement each other in the
new scientific quest [122].

The present work is a systematic attempt to bridge prior knowledge in the
NDD domain (i.e., AD and PD) with patient-level omics and clinical data in
order to seek answers for two pressing issues in the biomedical science: i) can we
leverage prior knowledge to stratify AD and PD patients by integrating omics and
clinical data, and if yes, ii) can we target the mechanisms underlying the patient
subgroups for stratified medicine development? However, the practice of patient
stratification and stratified medicine in the context of NDD is relatively new and
more challenging compared to the oncology domain due to their multifactorial
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nature and poor understanding of the disease etiology [18]. Hence, establishing
a successful patient stratification strategy in the field of NDD could end the
long-standing drought in drug development in this domain by enabling us to
specifically target responsible mechanisms that define each of the subgroups.

First, this thesis addressed one of the fundamental topics in bioinformatics by
demonstrating the necessity of having organized domain knowledge in the field of
NDDs in order to increase the understanding and interpretation capability of bio-
logical systems. The enrichment of AD knowledge assembly with drug interaction
information showed organized and computable knowledge can indeed explain
various biological phenomena in complex disorders like AD and that explanatory
power can further be used to propose mechanism-based drug repositioning can-
didates. We have addressed another essential problem of data integration with
knowledge for explaining the anomalies or trends seen in biological data. While
resources like the connectivity map and LINCS have been available to researchers
for some time, there have been a lack of drug repositioning workflows that could
systematically substantiate their results with mechanistic insights on these can-
didate drugs. The PS4DR workflow has shown how domain-specific pathway
knowledge can play a crucial role in the interpretation of large biological datasets
(i.e., genome and transcriptome data) and the prediction of drugs based on how
they counteract disrupted biological processes in different disorders. Finally, while
lack of subtype and tissue-specific data is a massive problem in most NDDs due to
the high degree of cellular heterogeneity and post-mortem sample collection diffi-
culties [123], our AD and PD clustering workflow demonstrated that having prior
knowledge can help to effectively interpret non-tissue-specific data. The workflow
successfully integrated mechanistic information from knowledge assemblies with
patient-level omics data for mechanism-based patient stratification in the area of
neurodegenerative diseases.

In addressing all the challenges described, several new algorithmic approaches
had to be developed in the course of this thesis. While developing PS4DR, we have
established a robust and flexible workflow to harmonize genome-wide association
study (GWAS) and transcriptome data in order to make them interoperable with
each other. This workflow can enable users to use any new public or proprietary
genetic and transcriptomic datasets of their interest to analyze for drug reposi-
tioning in any diseases without requiring any substantial data integration efforts.
During the AD and PD patient clustering pipeline development, we have solved a
very important issue of reducing data dimensionality of large scale, patient-level
omics data. We have developed a novel workflow to reduce hundreds to thou-
sands of SNPs into a single score (i.e., mechanism scores) via combining prior
knowledge with deep sparse autoencoder algorithms. While we have showcased
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the workflow with SNPs data, it has the ability to reduce data dimensionality with
any type of omics (i.e., genomics, transcriptomics, methylomics, proteomics, and
metabolomics) data without requiring any changes in the workflow. In addition
to its ability to integrate new data dimensionalities, the workflow is also well
equipped to deal with data in massive amounts by enabling parallel computing
for multiple model training in computer clusters. Most importantly, in the spirit
of open and reproducible science, all the resources, scripts and pipelines that
have been developed in the course of this thesis are made publicly available via
online web tools and GitHub repositories in order to enable other researchers to
reproduce our works and conduct their own investigations.

However, despite its successful implementation and promising results, our
work is not without limitations. The knowledge assemblies might sometimes
represent highly selected information due to a publication bias in the field of
biomedical research [124]. For instance, information on the ‘role of insulin signaling
in AD’ in our knowledge assembly will not be as rich as the information of amyloid
or tau hypotheses due to the large publication turnout gap between these topics.
This could lead to a critical problem in hypothesis-driven analyses of the data due
to knowledge imbalances among different subdomains while interpreting data
anomalies. Another pitfall is the lack of availability of different data modalities
across different study cohorts. While we used transcriptome and methylome data
for the validation of our AD-PD patient stratification work, we could find these
two data modalities in only two out of our five validation cohorts. We also had
similar issues with regard to a lack of common data modalities (i.e., genetic and
transcriptomic data) for the same diseases. As a consequence, we were able to
implement the PS4DR workflow for only 43 diseases that had both these data
modalities.

While this thesis represents only the work that has been published in peer-
reviewed journals, the impact of the work goes far beyond that. The chemically
enriched AD knowledge assembly has contributed significantly to pave the way
for the Human Brain Pharmacome project 1 and is now being enhanced with quan-
titative chemical information in order to propose repurposing candidates based
on chemical determinants (e.g., molecular weight, structure, IC50) in addition to
considering their mechanistic interpretations. Furthermore, the prioritized mecha-
nisms and proposed drugs will be tested experimentally in-situ and in-vitro within
the project context. PS4DR is a flexible drug repositioning workflow that presents
a great opportunity to integrate any new disease, drug, or pathway dataset. One
immediate future effort would be replacing canonical pathway information with

1https://pharmacome.scai.fraunhofer.de/
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our NeuroMMSig mechanism enrichment server [6] to get pathophysiological
mechanistic insights of various NDDs. Such integration will improve mechanistic
drug repositioning by enabling data interpretation with respect to disease-specific
biology over canonical pathways.

Finally, this thesis work has successfully established mechanism-based AD
and PD stratification and demonstrated the implication of such taxonomy in
therapeutic target identification to some extent. While our work represents one
of the main outcomes of the AETIONOMY project 2, more systematic effort is
required to enable us to take full advantage of stratified medicine. One future
direction would be using drug perturbed gene expression data (i.e., LINCS dataset)
to train a separate autoencoder model to integrate with our knowledge assemblies.
Combining this new drug response model with the existing SNPs data model
will not only allow us to systematically investigate all mechanisms responsible
for those patient groups, but will also help us to identify drugs that work best on
different subgroups. This work can also serve as a good starting point for further
omics (i.e., transcriptome, methylome, proteome, and metabolome) and clinical
(i.e., imaging, EHRs, and smart device data) data integration for the development
of predictive machine learning models for more robust patient stratification. Other
deep learning algorithms, like the convolutional neural network (CNN), deep
belief network (DBN), Restricted Boltzmann machine (RBM), etc., are also worth
exploring to identify the top-performing model. Looking ahead in the future,
translation of this work into clinical practice would set the stage for bringing the
precision medicine concept into reality.

2https://www.aetionomy.eu/
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Mitelpunkt, N. Lavrač. Homogeneous clusters of Alzheimer’s disease patient population.

2016.

[87] D. Zeiberg, T. Prahlad, B. K. Nallamothu, T. J. Iwashyna, J. Wiens, M. W. Sjod-

ing. Machine learning for patient risk stratification for acute respiratory distress

syndrome. en. PLoS One Mar. 2019, 14 (3), e0214465.

[88] Y. Cun, H. Fröhlich. Prognostic gene signatures for patient stratification in breast cancer

- accuracy, stability and interpretability of gene selection approaches using prior knowledge

on protein-protein interactions. 2012.

[89] J. C. Costello, L. M. Heiser, E. Georgii, M. Gönen, M. P. Menden, N. J. Wang, M.

Bansal, M. Ammad-ud din, P. Hintsanen, S. A. Khan, J.-P. Mpindi, O. Kallioniemi,

A. Honkela, T. Aittokallio, K. Wennerberg, NCI DREAM Community, J. J. Collins,

D. Gallahan, D. Singer, J. Saez-Rodriguez, S. Kaski, J. W. Gray, G. Stolovitzky. A

community effort to assess and improve drug sensitivity prediction algorithms. en.

Nat. Biotechnol. Dec. 2014, 32 (12), 1202–1212.

[90] M. Hofree, J. P. Shen, H. Carter, A. Gross, T. Ideker. Network-based stratification

of tumor mutations. en. Nat. Methods Nov. 2013, 10 (11), 1108–1115.

[91] Y.-H. Chang, C.-M. Chen, H.-Y. Chen, P.-C. Yang. Pathway-based gene signatures

predicting clinical outcome of lung adenocarcinoma. en. Sci. Rep. June 2015, 5,

10979.

[92] M. Manica, J. Cadow, R. Mathis, M. Rodríguez Martínez. PIMKL: Pathway-Induced

Multiple Kernel Learning. en. NPJ Syst Biol Appl Mar. 2019, 5, 8.

[93] S. H. Sleigh, C. L. Barton. Repurposing Strategies for Therapeutics. 2010.

[94] M. Dickson, J. P. Gagnon. The cost of new drug discovery and development. en.

Discov. Med. June 2004, 4 (22), 172–179.

[95] T. T. Ashburn, K. B. Thor. Drug repositioning: identifying and developing new

uses for existing drugs. en. Nat. Rev. Drug Discov. Aug. 2004, 3 (8), 673–683.

[96] J. Li, S. Zheng, B. Chen, A. J. Butte, S. J. Swamidass, Z. Lu. A survey of current

trends in computational drug repositioning. Brief. Bioinform. Jan. 2016, 17 (1), 2–12.

[97] A. I. Graul, P Pina, M Stringer. The years new drugs biologics 2017: Part I. 2018.

104



BIBLIOGRAPHY

[98] P. Sanseau, J. Koehler. Editorial: Computational methods for drug repurposing.

Brief. Bioinform. July 2011, 12 (4), 301–302.

[99] P. Sanseau, P. Agarwal, M. R. Barnes, T. Pastinen, J Brent Richards, L. R. Cardon,

V. Mooser. Use of genome-wide association studies for drug repositioning. en. Nat.

Biotechnol. Apr. 2012, 30 (4), 317–320.

[100] H. Luo, J. Chen, L. Shi, M. Mikailov, H. Zhu, K. Wang, L. He, L. Yang. DRAR-CPI:

a server for identifying drug repositioning potential and adverse drug reactions

via the chemical–protein interactome. Nucleic Acids Res. July 2011, 39 (suppl_2),

W492–W498.

[101] H. S. Lee, T. Bae, J.-H. Lee, D. G. Kim, Y. S. Oh, Y. Jang, J.-T. Kim, J.-J. Lee, A.

Innocenti, C. T. Supuran, L. Chen, K. Rho, S. Kim. Rational drug repositioning

guided by an integrated pharmacological network of protein, disease and drug. en.

BMC Syst. Biol. July 2012, 6 (1), 1–10.

[102] L. Yang, P. Agarwal. Systematic Drug Repositioning Based on Clinical Side-Effects.

PLoS One Dec. 2011, 6 (12), e28025.

[103] UK Biobank. https://www.ukbiobank.ac.uk/. Accessed: 2020-3-21.

[104] EMIF. http://www.emif.eu/. Accessed: 2020-3-21.

[105] J. T. Dudley, T. Deshpande, A. J. Butte. Exploiting drug–disease relationships for

computational drug repositioning. Brief. Bioinform. July 2011, 12 (4), 303–311.

[106] Zonisamide has beneficial effects on Parkinson’s disease patients. Neurosci. Res.

Dec. 2001, 41 (4), 397–399.

[107] pubmeddev. Home - PubMed - NCBI. https://www.ncbi.nlm.nih.gov/pubmed/.

Accessed: 2020-3-22.

[108] OMIM - Online Mendelian Inheritance in Man. https://omim.org/. Accessed:

2020-3-22.

[109] DrugBank. https://www.drugbank.ca/. Accessed: 2020-3-22.

[110] Therapeutic Target Database (TTD). http://db.idrblab.net/ttd/. Accessed: 2020-

3-22.

[111] M. Zhang, G. Schmitt-Ulms, C. Sato, Z. Xi, Y. Zhang, Y. Zhou, P. St George-Hyslop,

E. Rogaeva. Drug Repositioning for Alzheimer’s Disease Based on Systematic

‘omics’ Data Mining. PLoS One Dec. 2016, 11 (12), e0168812.

105

https://www.ukbiobank.ac.uk/
http://www.emif.eu/
https://www.ncbi.nlm.nih.gov/pubmed/
https://omim.org/
https://www.drugbank.ca/
http://db.idrblab.net/ttd/


BIBLIOGRAPHY

[112] H. Xie, H. Wen, M. Qin, J. Xia, D. Zhang, L. Liu, B. Liu, Q. Liu, Q. Jin, X. Chen. In

silico drug repositioning for the treatment of Alzheimer’s disease using molecular docking

and gene expression data. 2016.

[113] S. Jamal, S. Goyal, A. Shanker, A. Grover. Checking the STEP-Associated Traffick-

ing and Internalization of Glutamate Receptors for Reduced Cognitive Deficits: A

Machine Learning Approach-Based Cheminformatics Study and Its Application

for Drug Repurposing. en. PLoS One June 2015, 10 (6), e0129370.

[114] D. Romeo-Guitart, J. Forés, M. Herrando-Grabulosa, R. Valls, T. Leiva-Rodríguez,

E. Galea, F. González-Pérez, X. Navarro, V. Petegnief, A. Bosch, M. Coma, J. M.

Mas, C. Casas. Neuroprotective Drug for Nerve Trauma Revealed Using Artificial

Intelligence. en. Sci. Rep. Jan. 2018, 8 (1), 1879.

[115] X. Zeng, S. Zhu, X. Liu, Y. Zhou, R. Nussinov, F. Cheng. deepDR: a network-based

deep learning approach to in silico drug repositioning. en. Bioinformatics Dec. 2019,

35 (24), 5191–5198.

[116] Y. Y. Li, S. J. M. Jones. Drug repositioning for personalized medicine. 2012.

[117] A. Talevi, C. L. Bellera. Challenges and opportunities with drug repurposing:

finding strategies to find alternative uses of therapeutics. en. Expert Opin. Drug

Discov. Apr. 2020, 15 (4), 397–401.

[118] Complex Diseases: Research and Applications | Learn Science at Scitable. https://

www . nature . com / scitable / topicpage / complex - diseases - research - and -

applications-748/. Accessed: 2020-3-24.

[119] SJR Subject Bubble Chart. https://www.scimagojr.com/mapgen.php?maptype=bc&

country=US. Accessed: 2020-3-22.

[120] WIRED Staff. The End of Theory: The Data Deluge Makes the Scientific Method Obsolete.

https://www.wired.com/2008/06/pb-theory/. Accessed: 2020-3-23. June 2008.

[121] S. Leonelli. What Difference Does Quantity Make? On the Epistemology of Big

Data in Biology. en. Big Data Soc June 2014, 1 (1).

[122] F. Mazzocchi. Could Big Data be the end of theory in science? A few remarks on the

epistemology of data-driven science. en. EMBO Rep. Oct. 2015, 16 (10), 1250–1255.

106

https://www.nature.com/scitable/topicpage/complex-diseases-research-and-applications-748/
https://www.nature.com/scitable/topicpage/complex-diseases-research-and-applications-748/
https://www.nature.com/scitable/topicpage/complex-diseases-research-and-applications-748/
https://www.scimagojr.com/mapgen.php?maptype=bc&country=US
https://www.scimagojr.com/mapgen.php?maptype=bc&country=US
https://www.wired.com/2008/06/pb-theory/


BIBLIOGRAPHY

[123] D. G. Hernandez, M. A. Nalls, M. Moore, S. Chong, A. Dillman, D. Trabzuni, J. R.

Gibbs, M. Ryten, S. Arepalli, M. E. Weale, A. B. Zonderman, J. Troncoso, R. O’Brien,

R. Walker, C. Smith, S. Bandinelli, B. J. Traynor, J. Hardy, A. B. Singleton, M. R.

Cookson. Integration of GWAS SNPs and tissue specific expression profiling reveal

discrete eQTLs for human traits in blood and brain. en. Neurobiol. Dis. July 2012,

47 (1), 20–28.

[124] T. Wilholt. Bias and values in scientific research. 2009.

107


	Introduction
	Using Drugs as Molecular Probes: A Computational Chemical Biology Approach in Neurodegenerative Diseases
	PS4DR: A multimodal workflow for identification and prioritization of drugs based on pathway signatures
	Clustering of Alzheimer’s and Parkinson’s Disease Based on Genetic Burden of Shared Molecular Mechanisms
	Conclusion and outlook

