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Abstract

Explaining the formation and evolution of galaxies is a fundamental issue in modern astronomy.
Several competing models try to explain how galaxies form and predict the relationship between
galaxies and dark matter. A prominent class of these models are semi-analytic models of
galaxy formation and evolution (SAMs). They combine analytical prescriptions for small-scale
physical e�ects with cosmological simulations of the dark matter. To test these models, their
predictions, in particular for the correlation of dark and visible matter, need to be compared to
observations.

The ideal tool to study the relationship between dark and visible matter is gravitational lensing.
This e�ect describes how matter bends light rays and distorts the images of far-away objects.
By comparing the position of nearby galaxies to this distortion, we can directly measure their
correlation with the (predominantly dark) matter distribution.

In this thesis, we use gravitational lensing to test di�erent models of galaxy formation and
evolution. We concentrate on the correlation of galaxy pairs with the matter �eld. This
correlation can be measured with galaxy-galaxy-galaxy lensing (G3L). Here, the position of
galaxy pairs is correlated to the distortion by the matter �eld. This correlation e�ectively
measures how much more dark matter exists around pairs of galaxies compared to single
galaxies. We investigate how well di�erent models predict this e�ect by comparing them to
observations.

First, we improve the commonly-used estimator for G3L to enhance the precision and accuracy
of the measurement. These improvements include a weighting of galaxy pairs according to their
redshifts, an adaptive binning of the galaxy-galaxy-matter correlation function, and accounting
for the magni�cation of galaxies by the cosmic large-scale-structure. We test the improvements
with realistic simulated data based on theMillennium Run (MR) with the SAM byHenriques et al.
(2015, H15). Our improvements increase the signal-to-noise ratio by 35% on average at angular
scales between 0.′1 and 10′ They also remove the bias of the G3L estimator at angular scales
below 1′, which was originally up to 40%. The signal due to lens magni�cation is approximately
10% of the total signal.

Next, we test the SAMs byH15 and Lagos et al. (2012, L12) by comparing their predictions for G3L
to measurements in the overlap of the Kilo-Degree Survey (KiDS), VISTA Kilodegree Infrared
Galaxy survey (VIKING), and Galaxy And Mass Assembly survey (GAMA) (KV450 × GAMA).
Galaxies into two colour- and �ve stellar-mass samples. We measure G3L for ‘mixed lens pairs’
with galaxies from di�erent samples, as well as for ‘unmixed lens pairs’ with galaxies from the
same sample. Predictions by the H15 SAM for the G3L signal agree with the observations for
all colour-selected samples and all but one stellar-mass-selected sample with 95% con�dence.
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Deviations occur for lenses with stellar masses below 9.5 ℎ−2M� at scales below 0.2 ℎ−1Mpc.
Predictions by the L12 SAM for stellar-mass selected samples and red galaxies are signi�cantly
higher than observed, while the predicted signal for blue galaxy pairs is too low. We conclude
that the L12 SAM predicts more pairs of low stellar mass and red galaxies than the H15 SAM and
the observations, as well as fewer pairs of blue galaxies. This di�erence increases towards the
centre of the galaxies’ host halos. Likely explanations are di�erent treatments of environmental
e�ects by the SAMs and di�erent models of the initial mass function (IMF).

Lastly, we propose an analytical model for G3L. We investigate the impact and physical meaning
of the model parameters and �nd that G3L is sensitive to all but one of them. Then, we
constrain the parameters by �tting the model to the observations in KV450 × GAMA with a
multidimensional optimization routine. The resulting best �t agrees with the measurement at
the 95% con�dence level (CL). The parameter values indicate that red galaxies form in more
massive dark matter halos than blue galaxies and that red and blue galaxies are positively
correlated. We conclude that the halo model can describe G3L.

In conclusion, not all models of galaxy evolution and formation predict the correlation of
galaxy pairs with the matter distribution accurately. The halo model can, despite its simple
assumptions, reproduce the observed G3L with plausible parameters. SAMs, when tuned to the
right parameters for the physical model, accurately predict the observed G3L signal. However,
this is not the case for all SAMs. Consequently, G3L provides a stringent test for models of
galaxy formation and evolution.

vi



Contents

Abstract v

1 Introduction 1

2 Fundamentals of cosmology and gravitational lensing 5
2.1 Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Friedmann equations and the cosmological standard model . . . . . 5
2.1.2 Cosmological structure formation . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Galaxy formation and evolution . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Random �elds, correlation functions and polyspectra . . . . . . . . . 16

2.2 Cosmological simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 𝑁-Body simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Semi-analytic models of galaxy formation and evolution . . . . . . . 23
2.2.3 Hydrodynamical simulations . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Halo model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Dark matter halo pro�le . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Halo mass function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Halo bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.4 Halo occupation distribution . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Gravitational lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1 Lens equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Weak gravitational lensing . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.3 Projected spectra and Limber equation . . . . . . . . . . . . . . . . . 35
2.4.4 Galaxy-galaxy-lensing . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.5 Galaxy-galaxy-galaxy-lensing . . . . . . . . . . . . . . . . . . . . . . 37
2.4.6 Aperture Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.7 Gravitational Lensing in 𝑁-body simulations . . . . . . . . . . . . . 42

3 Improving the precision and accuracy of galaxy-galaxy-galaxy lensing 43
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Redshift weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 New binning scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.3 Conversion into physical units . . . . . . . . . . . . . . . . . . . . . 49
3.2.4 Magni�cation of lens galaxies . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Simulated data based on the Millennium Run . . . . . . . . . . . . . 53

vii



3.3.2 Simple mock data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 E�ect of the new binning scheme . . . . . . . . . . . . . . . . . . . . 56
3.4.2 E�ect of lens magni�cation . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.3 E�ect of redshift weighting . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Testing semi-analytic galaxy models with galaxy-galaxy-galaxy lensing 65
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Estimating the three-point correlation function . . . . . . . . . . . . 66
4.2.2 Computing aperture statistics . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.1 Observational data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Modelling galaxy-galaxy-galaxy lensing with the halo model 81
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Derivation of the halo model for galaxy-galaxy-galaxy-lensing . . . . . . . . 82

5.2.1 Moments of the joint halo occupation distribution . . . . . . . . . . 82
5.2.2 Modelling the galaxy-galaxy-matter bispectrum . . . . . . . . . . . . 85
5.2.3 Projecting the bispectrum and obtaining the aperture statistics . . . 88

5.3 Fitting procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.1 Estimation of best-�tting parameters . . . . . . . . . . . . . . . . . . 88
5.3.2 Estimation of parameter uncertainty . . . . . . . . . . . . . . . . . . 89

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.1 Impact of model parameters . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.2 Results of �tting halo model to observations . . . . . . . . . . . . . . 93

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Conclusion 99
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Bibliography 102

A Appendix to Chapter 3 119
A.1 Calculation of aperture statistics for mock data . . . . . . . . . . . . . . . . . 119
A.2 Computational implementation with graphics processing units . . . . . . . . 123

B Appendix to Chapter 4 125
B.1 Results for aperture statistics in angular units . . . . . . . . . . . . . . . . . 125

viii



C Appendix to Chapter 5 129
C.1 Calculation of galaxy-galaxy-matter bispectrum for galaxies from the same

population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
C.2 Calculation of galaxy-galaxy-matter bispectrum for di�erent galaxy populations 133

List of Figures 137

List of Tables 139

List of Acronyms 141

Acknowledgements 143

ix





Introduction 1
“There is a theory which states that if ever anyone discovers exactly what the Universe is for and

why it is here, it will instantly disappear and be replaced by something even more bizarre and
inexplicable.

There is another theory which states that this has already happened.”

Douglas Adams, The Restaurant at the End of the Universe (Adams, 1981).

We live in a dark universe. According to our best model for the Universe, the so-called ΛCDM
cosmological model, only a small fraction of matter interacts with photons and follows the
standard model of particle physics. This baryonic matter 1, such as stars, gas, or planets is only
a tiny part (≈ 5%) of the total energy-matter content of the Universe. Almost three-quarters
of the energy-matter budget consists of the illusive and hardly understood dark energy, while
most matter is not baryonic but dark and acts only gravitationally

There are several indications for the existence and abundance of dark matter. The �rst evidence
was found in a study of galaxy clusters by Zwicky (1933). He measured the velocities of galaxies
in the Coma cluster and estimated the mass of the cluster from the combined luminosity of the
galaxies. To his surprise, the inferred mass was not enough to explain the high galaxy velocities.
Zwicky concluded that the cluster must contain an additional invisible mass component, which
he called dark matter.

Another sign for dark matter is the observation of galaxy rotation curves by Rubin et al. (1980).
They measured the rotational velocities of stars in spiral galaxies. If the galaxies were composed
only of their visible components, the rotational velocities should decrease with the distance of
the stars from the centres of the galaxies outside the galaxies’ bulges. However, the velocities
stay almost constant up to the outskirts. Consequently, an additional invisible component
contributes signi�cantly to the masses of the galaxies. This component is dark matter.

The �ndings by Zwicky (1933) and Rubin et al. (1980), along with observations of the cosmic
microwave background (CMB) and gravitational lensing, indicate that dark matter makes up
most mass in the Universe. However, our observations are restricted to baryonic matter, in
particular gas and stars. Their distribution and appearance are shaped by dark matter, because
1 We follow here the cosmological convention, that matter consisting of neutrons, protons, and electrons is
‘baryonic’, even though electrons are strictly speaking leptons.
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1 Introduction

the gravitational potentials of dense dark matter halos attract gas and provide the breeding
ground for stars and galaxies. Consequently, many galaxies form in regions with much dark
matter and they interact frequently. These interactions change the gas content and morphology
of the galaxies. Therefore, to explain our observed Universe, we need to understand how dark
matter impacts the formation and evolution of galaxies.

There are several methods to model the formation, evolution and distribution of galaxies.
They can be roughly categorized into purely analytical approaches (e.g. with the halo model;
Cooray and Sheth, 2002), purely numerical approaches (e.g. with hydrodynamical simulations;
Vogelsberger et al., 2020) and semi-analytic models of galaxy formation and evolution (SAMs).
In SAMs, galaxies are inserted and evolved inside dark-matter-only numerical simulations with
phenomenologically motivated analytical models of baryonic physics. A variety of SAMs with
di�ering assumptions has been proposed (e.g., Bower et al., 2006; Guo et al., 2011; Lagos et al.,
2012; Henriques et al., 2015).

We test models for galaxy formation by comparing their prediction to observations. The ideal
tool for such comparisons is gravitational lensing (Bartelmann, 2010). Gravitational lensing
describes how matter distorts the images of far away objects, for instance galaxies. Due to
general relativity (GR), massive objects, such as dark matter halos, warp space-time. Light rays
travelling near these objects are therefore bent, and images get distorted. By measuring the
distortion, we can infer the mass of all matter between us and the light source, most of which
is dark matter. Accordingly, with gravitational lensing, the distribution of dark matter can be
estimated.

One form of gravitational lensing is galaxy-galaxy lensing (GGL). This e�ect causes correlations
between the positions of foreground galaxies and the observed shapes of background galaxies.
Measuring this correlation constrains the amount of matter around the foreground galaxies
and has been used to test SAMs (e.g Saghiha et al., 2017; Renneby et al., 2020), as well as
the halo model (e.g Mandelbaum et al., 2006). However, galaxy formation models can be
better distinguished with galaxy-galaxy-galaxy lensing (G3L; Schneider and Watts, 2005). Here,
observed galaxy shapes are correlated with the position of foreground galaxy pairs instead of
individual galaxies. This measurement reveals how much more dark matter exists on average
around galaxy pairs than around individual galaxies. Galaxy pairs are distributed di�erently
than single galaxies, so galaxy formation models that predict the correct GGL signal do not
necessarily predict the correct G3L signal. Therefore, studying G3L is a notable additional test
for models of galaxy formation and evolution.

In this thesis, we use G3L to constrain and assess di�erent galaxy formation and evolution
models. We aim to answer the question: How well do the di�erent models for galaxy formation,
evolution, and distribution reproduce the observed correlation of dark matter and galaxy pairs? To
answer this question, we consider three interconnected issues.

First, we improve the measurement of G3L. For this, we alter three aspects of the estimator
for the G3L correlation function used in previous studies. We incorporate precise redshift
information on the foreground galaxies, use a new binning scheme, and convert the signal from
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projected to physical scales. Then, we test these improvements on simulated data based on the
Millennium Run (MR; Springel et al., 2005) and the SAM by Henriques et al. (2015).

Second, we test the SAMs by Henriques et al. (2015) and Lagos et al. (2012) by comparing their
G3L predictions to observations. For this, we measure G3L with the improved estimator in the
overlap of Kilo-Degree Survey (KiDS; Kuijken et al., 2015; de Jong et al., 2015), VISTA Kilodegree
Infrared Galaxy survey (VIKING; Edge et al., 2013; Venemans et al., 2015), and Galaxy And
Mass Assembly survey (GAMA; Driver et al., 2009, 2011; Liske et al., 2015). Then, we compare
these observations to the predictions by the SAMs, obtained with the same improved estimator.
By examining the di�erences between the predictions and the observations, we assess the
assumptions of the SAMs.

Third, we determine whether an analytical model can accurately describe G3L. For this, we
extend the halo model by Rödinger (2009) and Martin (2019) to galaxy pairs with galaxies from
di�erent populations. We qualitatively study the impact of its parameters on the predicted G3L
signal. Finally, we determine the best-�tting parameter values for the observation in KiDS,
VIKING, and GAMA.

This thesis is structured as follows.

• In Chapter 2, we review the theoretical foundation important for this work. We brie�y
introduce the cosmological standard model and cosmic structure formation. Then, we
explain the concepts of cosmological simulations and the halo model. We also introduce
the concepts of gravitational lensing, in particular of G3L.

• Chapter 3 describes our improvements to the standard G3L estimator. We show the results
of testing these improvements in mock data and discuss their implications.

• In Chapter 4, we apply the improved estimator to the two SAMs and the observations. We
describe our simulated and observed data sets, as well as our selection for di�erent galaxy
samples. We compare the SAMs predictions to the observations and discuss the accuracy
of the SAMs.

• In Chapter 5, we analytically model the G3L signal. Our model is based on the halo
model and contains several free parameters. We study the impact of these parameters and
discuss their physical meaning. Lastly, we determine their best-�tting values based on the
observed G3L signal.

• Chapter 6 concludes this thesis with a summary of our �ndings and an outlook to future
research.

3





Fundamentals of cosmology and
gravitational lensing

2
In this thesis, we explore the relationship of galaxies and the matter distribution of the Universe
with the gravitational lensing e�ect. This relationship reveals how galaxies form and evolve
inside the dark-matter dominated cosmic large-scale structure (LSS). The formation and evolu-
tion of galaxies depend primarily on three factors: The overall cosmological model describing
the dynamics of the Universe, the formation of the dark-matter LSS, and physical processes
a�ecting only baryons. We need to model all three factors to understand the galaxy-matter
relationship. Therefore, we discuss their principles and current models in this chapter.

In Sect. 2.1 we outline the cosmological standard model, the formation of the LSS and our current
general picture of galaxy formation. We present two approaches to model the connection of
galaxies and dark matter, cosmological simulations in Sect. 2.2 and the halo model in Sect. 2.3.
Finally, we introduce the e�ect with which we constrain these models in Sect. 2.4: Gravitational
lensing, in particular, G3L.

2.1 Cosmology

Cosmology is the research of the origin, evolution and eventual fate of the Universe. Although
this is a daunting task, humans have engaged in it for thousands of years by observing the
skies and forming their models of the Universe. These models were often tightly connected to
religious beliefs and mythology. However, since the last century, cosmology has evolved to a
precise science, founded on astronomical observations and physical theories.

2.1.1 Friedmann equations and the cosmological standard model

Our modern understanding of cosmology relies on the theory of GR by Einstein (1915). The
fundamental principle of GR is that space and time are not a rigid grid of coordinates, but
instead form a topological manifold, distorted by mass and energy. This manifold can transform
and change. Accordingly, the Universe does not need to be static but can expand and shrink
depending on its energy content.
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2 Fundamentals of cosmology and gravitational lensing

At the core of GR are Einstein’s �eld equations,

𝑅𝜇𝜈 −
𝑅

2 𝑔𝜇𝜈 =
8𝜋𝐺
𝑐4

𝑇𝜇𝜈 + Λ𝑔𝜇𝜈 . (2.1)

Here, 𝑅𝜇𝜈 is the Ricci tensor, which describes the curvature of space-time. Its trace is the
Ricci scalar 𝑅. The metric of space-time is 𝑔𝜇𝜈 , while 𝑇𝜇𝜈 is the energy-momentum tensor
describing the energy content of the Universe. The cosmological constant Λ and the Newtonian
gravitational constant𝐺 are two coupling constants. The �eld equations show that the curvature
of space-time, represented by the Ricci tensor, is fundamentally linked to the energy and matter
content, represented by the energy-momentum tensor. Accordingly, the amount and type of
energy in the Universe determines its shape and dynamical evolution.

Solving the �eld equations is, in general, a di�cult task, because they form a set of ten coupled
non-linear di�erential equations. However, in cosmology, we use the cosmological principle,
which signi�cantly reduces the complexity of the problem (Einstein, 1917). It states that the
Universe is spatially isotropic on scales above hundreds of Megaparsecs and that our position
in space is not extraordinary in any way. The second condition implies that the large-scale
Universe is isotropic around any point in space and consequently homogeneous.

Observations of the galaxy distribution or the CMB demonstrated the isotropy of the cosmic
matter distribution (Eisenstein et al., 2011; Planck Collaboration: Aghanim et al., 2019). Homo-
geneity, though, has been notoriously di�cult to test. We cannot probe the entire Universe at a
�xed point in time or check the measurements of observers at other points in space. Nonethe-
less, there is no reason to assume our spatial position is in any way unique. Hence, it appears
reasonable that all observers in the Universe observe the same statistical properties.

Due to the cosmological principle, the space-time of the Universe is described by the Robertson-
Walker metric (Robertson, 1935; Walker, 1937). For this metric, the line element d𝑠, which is the
arc length between two space-time points at (𝑡,𝑤, 𝜃, 𝜙) and (𝑡 + d𝑡 ,𝑤 + d𝑤 , 𝜃 + d𝜃 , 𝜙 + d𝜙) is

d𝑠2 = −𝑐2 d𝑡2 + 𝑎2(𝑡)
[
d𝑤2 + 𝑓 2𝐾 (𝑤)

(
d𝜃2 + sin2(𝜃) d𝜙2

) ]
. (2.2)

Here, 𝑡 is the cosmic time, 𝑤 is the comoving radial distance, 𝜃 and 𝜙 are angular coordinates,
and 𝑓𝐾 (𝑤) is the comoving angular diameter distance, given as

𝑓𝐾 (𝑤) =


1√
𝐾
sin

(√
𝐾 𝑤

)
for 𝐾 > 0

𝑤 for 𝐾 = 0
1√
−𝐾

sinh
(√

−𝐾 𝑤
)

for 𝐾 < 0
. (2.3)

The parameter 𝐾 describes the spatial curvature of the Universe. A positive 𝐾 corresponds to a
positively curved universe, 𝐾 = 0 to �at space and a negative 𝐾 to a negatively curved space.

The line element also includes the scale factor 𝑎(𝑡), which may depend on time 𝑡. This factor
describes the dynamics of the Universe. An increasing 𝑎 corresponds to an expanding Universe,
while a decreasing 𝑎 means that the Universe is shrinking. The scale factor is normalised such
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2.1 Cosmology

that today, at 𝑡0, 𝑎(𝑡0) = 1. With the scale factor each position in space can be assigned not only
the comoving coordinate 𝒘, but also the proper coordinate 𝒓, which is

𝒓 (𝑡) = 𝑎(𝑡) 𝒘 . (2.4)

Inserting the metric from Eq. (2.2) into Eq. (2.1) and using the energy momentum tensor 𝑇𝜇𝜈 of
an ideal �uid with density 𝜌, pressure 𝑝 and four-velocity 𝑢,

𝑇𝜇𝜈 =

(
𝜌 + 𝑝

𝑐2

)
𝑢𝜇 𝑢𝜈 + 𝑝 𝑔𝜇𝜈 , (2.5)

leads to the Friedmann equations for the scale factor 𝑎, which are (Friedmann, 1922)(
¤𝑎
𝑎

)2
=
8𝜋G
3 𝜌 − 𝑘 𝑐2

𝑎2
+ Λ 𝑐2

3 =: 𝐻2(𝑎) , (2.6)

¥𝑎
𝑎
= −4𝜋G3

(
𝜌 + 3 𝑝

𝑐2

)
+ Λ 𝑐2

3 . (2.7)

The Friedmann equations describe the dynamics of the Universe and its expansion history. The
expansion rate 𝐻 = ¤𝑎

𝑎
is the Hubble parameter whose current value is the Hubble constant 𝐻0.

Frequently, one also uses the dimensionless Hubble constant ℎ = 𝐻0/(100 km s−1Mpc−1).

Equations (2.6) and (2.7) are solvable for a given equation of state 𝑤 = 𝑝/(𝜌 𝑐2). The equation of
state varies for di�erent types of energy-matter content in the Universe. For example, radiation
and relativistic particles have 𝑤 = 1

3 , while non-relativistic matter is approximately pressure-
less, so 𝑤 = 0. Consequently, in a �at universe with vanishing Λ containing only radiation,
the scale factor 𝑎 is proportional to 𝑡1/2, while the same Universe containing matter instead
of radiation would have 𝑎 ∝ 𝑡2/3. A universe without matter and a non-zero Λ would expand
exponentially.

The Friedmann equations do not determinewhether 𝑎(𝑡) increases or decreases with 𝑡. Therefore,
the Universe could either expand or shrink. However, cosmologists are certain that the Universe
is expanding, due to a famous discovery by Hubble (1929). He found that the observed frequency
𝜈obs of the light of distant galaxies is redshifted compared to the emitted frequency 𝜈em as

𝜈obs =
𝜈em
1 + 𝑧 , (2.8)

where 𝑧 is the redshift. This redshift occurs, because in an expanding Universe time intervals
between the arrival of two photons increase. This can be shown by considering two photons,
one emitted at 𝑡em and observed at 𝑡obs and the other emitted at 𝑡em + Δ𝑡em and observed at
𝑡obs + Δ𝑡obs. Photons travel on null geodesics with d𝑠 = 0, so with Eq. (2.2),

𝑐 d𝑡 = 𝑎(𝑡) d𝑤 . (2.9)

Therefore,
Δ𝑡em
Δ𝑡obs

=
𝑎(𝑡em)
𝑎(𝑡obs)

. (2.10)
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2 Fundamentals of cosmology and gravitational lensing

So the emitted and observed frequency of the light are

𝜈em
𝜈obs

=
Δ𝑡obs
Δ𝑡em

=
𝑎(𝑡obs)
𝑎(𝑡em)

. (2.11)

As 𝑡obs > 𝑡em, 𝑎 must increase with time to explain the decreasing frequency. This implies
an expanding Universe. With 𝑎(𝑡0) = 1, Eqs. (2.8) and (2.11) lead to the relation between the
redshift 𝑧 and the scale factor,

𝑎(𝑡) = 1
1 + 𝑧(𝑡) . (2.12)

Lemaître (1931) was the �rst to describe the expansion of the Universe as an explanation of
Hubble’s �ndings and a natural implication of GR. He further inferred that the Universe must
have originated from a tiny, dense region, which we now call the Big Bang 1.

Today, the favoured cosmological model is the so-called ΛCDM model. It assumes that the
Universe contains not only baryonic matter but also dark matter. Dark matter is invisible, as it
does not interact with electromagnetic radiation, but is detectable via its gravitational force.
Together, baryonic and dark matter account for the total matter density 𝜌m. The radiation
content adds the density 𝜌r. The ΛCDM model also assumes that the cosmological constant Λ
is non-zero. Using the critical density 𝜌crit, which is

𝜌crit =
3𝐻2

0
8𝜋𝐺 , (2.13)

we de�ne the dimensionless densities

Ωm =
𝜌m
𝜌crit

, (2.14)

Ωr =
𝜌r
𝜌crit

, (2.15)

Ωb =
𝜌b
𝜌crit

, (2.16)

ΩΛ =
Λ 𝑐2

8𝜋𝐺 𝜌crit
, (2.17)

where 𝜌b is the density of baryons. With these de�nitions, Eqs (2.6) and (2.7) can be cast into
the more compact form

𝐻 (𝑎)2 = 𝐻2
0
[
Ωr 𝑎

−4 +Ωm 𝑎
−3 + (1 −Ωr −Ωm −ΩΛ) 𝑎−2 +ΩΛ

]
. (2.18)

Consequently, the density parameters and the Hubble constant fully determine the expansion
history of the Universe. Eq. (2.18) reveals, that the Universe experienced three di�erent ex-
pansion epochs. First, for small 𝑎 at early times, the Universe was dominated by radiation. In
1 Formally, the Big Bang is a point in space-time with in�nite energy density. However, the description of
cosmology with GR breaks down for such small, high-energy systems, so a physical model of the Big Bang
would require a theory of quantum gravity
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2.1 Cosmology

this epoch 𝑎 grew proportional to 𝑡1/2. With growing 𝑎, however, the term proportional to the
matter density Ωm took over, leading to the epoch of matter domination with 𝑎 ∝ 𝑡2/3. The
cross-over between the radiation and matter dominated epoch occured at the matter-radiation
equality at scale factor 𝑎eq. At this scale factor

Ωr 𝑎
−4
eq = Ωm 𝑎

−3
eq . (2.19)

Today,
ΩΛ > Ωm 𝑎

−3 , (2.20)
so the expansion of the Universe is dominated by the cosmological constant and 𝑎 increases
exponentially. The term proportional to 𝑎−2 vanishes, as measurements suggest that Ωr +Ωm +
ΩΛ = 1.

Observations of various cosmological phenomena, such as the spatial galaxy distribution, the
CMB, or distances to supernovae type Ia (SNIa) support the ΛCDM model (Eisenstein et al.,
2011; Planck Collaboration: Aghanim et al., 2019; Riess et al., 2019). In particular, this model
explains the observed accelerated expansion of the Universe (Riess et al., 1998; Perlmutter et al.,
1999). Therefore, it is also frequently referred to as the cosmological standard model.

Even though the ΛCDM model is currently the best-�tting model for a wide range of obser-
vations, the values of its parameters are debated. Measurements of di�erent observables do
not yield the same values. The most prominent example is the so-called 𝐻0 Tension2, which
describes that the Hubble constant measured with SNIa distances in the local Universe is in
tension with the value inferred from the CMB (Verde et al., 2019; Riess, 2019). For instance,
Planck Collaboration: Aghanim et al. (2019) inferred 𝐻0 = (67.4 ± 0.5) km s−1Mpc−1 from the
CMB, while Riess et al. (2019) measured 𝐻0 = (74.03 ± 1.42) km s−1Mpc−1 with SNIa. The
di�erence between these measurements exceeds 4𝜎. A similar tension, although with a lower
signi�cance, has been observed between the normalisation of the matter power spectrum 𝜎8
(see Sect. 2.1.4) in gravitational lensing surveys and CMB measurements (Hildebrandt et al.,
2020; Joudaki et al., 2020). These tensions could indicate that measurements at high redshift
are not directly comparable to measurements at low redshift. A wide range of cosmological
models, which could solve this tension, are currently investigated (see Knox and Millea, 2020,
for a review). Promising approaches are the addition of new relativistic particle species’ (e.g.
Kreisch et al., 2020) or an additional dark energy component in the early Universe before the
release of the CMB (e.g. Poulin et al., 2019; Agrawal et al., 2019).

Here, however, we are not trying to solve this tension. Therefore, we work in the framework
of the ΛCDM model, which is still the best description of our Universe. We adopt the para-
meter values listed in Table 2.1. These parameters were used in the creation of the numerical
simulations that we use in this work, described in Sect. 2.2 and are based on the �rst year meas-
urements by the CMB probe Wilkinson Microwave Anisotropy Probe (WMAP; Spergel et al.,
2003). They di�er from more recent constraints (e.g. Planck Collaboration: Aghanim et al., 2019).
However, we use here weak gravitational lensing, which is most sensitive to the combination
𝑆8 of the matter density Ωm and the normalisation of the matter power spectrum 𝜎8, given by
2 This tension has also been referred to as “Hubble Trouble”, for example by Sokol (2017).
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Table 2.1: Parameters of the ΛCDM model used throughout this work.
Parameter Value

Ωm 0.25
ΩΛ 0.75
Ωb 0.045
H0 73 kms−1Mpc−1

σ8 0.9

𝑆8 = 𝜎8
√︁
Ωm/0.3. This parameter is almost the same in our assumed cosmology and the most

recent Planck measurements; it is 𝑆8,MR = 0.822 for our model and 𝑆8,Planck = 0.825 ± 0.011 in
Planck Collaboration: Aghanim et al. (2019).

With the Robertson-Walker metric, the distance to an object can be expressed. However, in
GR distance measures are not unique. In Euclidean geometry, distance is the length of a line
connecting two simultaneous events. The ambiguity of simultaneity in GR makes the de�nition
of ‘distance’ more complicated. Therefore, di�erent types of ‘distances’ are used in cosmology.

One of these is the radial comoving distance 𝐷com(𝑧1, 𝑧2) between an observer at 𝑧1 and a source
at 𝑧2. This distance remains constant if both the source and the observer move with the Hubble
expansion. It is de�ned as the spatial distance between the world lines of source and observer
on the hypersurface with 𝑡 = 𝑡0 and corresponds to the coordinate distance 𝑤. To calculate it,
we use Eq. 2.9, so

𝐷com(𝑧1, 𝑧2) =
∫ 𝑤(𝑧2)

𝑤(𝑧1)
d𝑤 = 𝑐

∫ 𝑎(𝑧1)

𝑎(𝑧2)

d𝑎
𝑎2 𝐻 (𝑎) . (2.21)

Another distance measure is the proper distance 𝐷prop(𝑧1, 𝑧2). This is the distance travelled by
a photon from the source at 𝑧1 to the observer at 𝑧2 and is given by

𝐷prop(𝑧1, 𝑧2) = 𝑐
∫ 𝑡 (𝑧2)

𝑡 (𝑧1)
d𝑡 = 𝑐

∫ 𝑎(𝑧1)

𝑎(𝑧2)

d𝑎
𝑎 𝐻 (𝑎) . (2.22)

The proper distance changes with the dynamics of the Universe, while the comoving distance is
una�ected. Later, we also use the angular diameter distance 𝐷A. This distance is de�ned such
that the solid angle 𝜔 of an object at redshift 𝑧2 that is observed at redshift 𝑧1 relates to its area
𝐴 by

𝐷A(𝑧1, 𝑧2) =
√︂
𝐴

𝜔
, (2.23)

which is the same relation as in Euclidean geometry. It can be calculated with

𝐷A(𝑧1, 𝑧2) =
𝑎(𝑧1)
𝑎(𝑧2)

𝑓𝐾 (𝐷com(𝑧1, 𝑧2)) . (2.24)
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2.1 Cosmology

Figure 2.1: Map of all galaxies obtained by the Sloan Digital Sky Survey (SDSS). Each point is one galaxy
and the colour correlates to the g− r colour of the galaxies. Image from Blanton and SDSS (2014).

2.1.2 Cosmological structure formation

While the cosmological principle postulates that the Universe is homogeneous on large scales,
this is certainly not true for smaller scales. Galaxies are not distributed homogeneously but
instead assemble, in groups or galaxy clusters. These clusters are also not distributed uniformly
on the sky but form the LSS. Due to its mesh-like appearance, illustrated in Fig. 2.1, with large
voids separated by �laments, this structure is also called the cosmic web.

However, as the CMB is homogeneous with tiny Gaussian temperature variations on the order
of 10−5, the density variations in the early Universe had to be small and Gaussian as well.
The process, by which the initially Gaussian density �eld with small �uctuations evolved into
today’s highly non-Gaussian LSS is the cosmological structure formation.

Structure formation can be summarised as follows. Small initial density �uctuations in the dark
matter distribution grow denser, due to gravitational interaction. These �uctuations collapse
as soon as they reach a threshold density and form dark matter halos. The halos merge to
increasingly more massive halos. Consequently, small halos developed �rst, and the most
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2 Fundamentals of cosmology and gravitational lensing

massive structures in the Universe only arose later. This process is called bottom-up structure
formation (Coles and Lucchin, 2002).

Baryons, such as gas or stars, follow the dark matter distribution, so they are dense in regions
of high dark matter density. When the gas density is large enough, stars are formed. These
stars eventually build galaxies, galaxy groups and galaxy clusters. However, the processes by
which the galaxies form and evolve are complex and more challenging to model than the dark
matter distribution (Cole et al., 2000).

The most promising mechanism to create the initial density �uctuations is cosmological in�ation
(Guth, 1981). This term describes a short time (' 10−32s) at around 10−34s after the Big Bang
during which the Universe expanded by a factor of at least e60 ' 1026. This massive expansion
explains the observed �atness of the Universe and the homogeneity of the CMB. Additionally,
it could in�ate small quantum �uctuations to macroscopic scales, where they caused the initial
density �uctuations (Mukhanov and Chibisov, 1981). However, the precise mechanisms of
in�ation and its end are unclear.

After in�ation, the �uctuations evolved �rst during the radiation-dominated epoch of the
Universe and then during the matter-dominated epoch. We can describe the growth of dark
matter density �uctuations in the matter-dominated epoch with linear perturbation theory (see
e.g. Peebles, 1980). This framework relies on the �uid approximation, which considers dark
matter as a pressure-less �uid with density 𝜌(𝒓, 𝑡) and velocity v(𝒓, 𝑡), as a function of the
proper coordinate 𝒓. Gravity is assumed to be weak and well-described by the Newtonian
framework with the potential Φ and structure formation occurs on length scales much smaller
than the comoving horizon

𝑑H(𝑎) = 𝑐
∫ 𝑎

0

d𝑎′

𝑎′2 𝐻 (𝑎′)
. (2.25)

This assumption is valid as long as we consider the matter-dominated epoch of the Universe.
We use the pressureless hydrodynamical equations (e.g. Coles and Lucchin, 2002),

𝜕𝜌

𝜕𝑡
+ ∇𝑟 · (𝜌v) = 0 , (2.26)

𝜕v
𝜕𝑡

+ (v · ∇𝑟) · v = −∇𝑟Φ , (2.27)

∇2
𝑟Φ = 4𝜋 𝐺 𝜌 − Λ . (2.28)

The �rst equation is the continuity equation of the density �eld, the second is the Euler equation,
which expresses momentum conservation, and the last is the Poisson equation for the gravita-
tional �eld. The density, velocity and gravitational potential can also be expressed in terms of
the comoving coordinate 𝒙 as the comoving density

𝜚(𝒙, 𝑡) = 𝜌 [𝑎(𝑡) 𝒙, 𝑡] =: 𝜚(𝑡) [1 + 𝛿(𝒙, 𝑡)] , (2.29)

the comoving velocity
𝒖(𝒙, 𝑡) = v [𝑎(𝑡) 𝒙, 𝑡] − 𝐻 (𝑡) 𝑎(𝑡) 𝒙 , (2.30)
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and the comoving potential

𝛷(𝒙, 𝑡) = Φ [𝑎(𝑡) 𝒙, 𝑡] + ¥𝑎 𝑎
2 |𝒙 |2 , (2.31)

where we used the mean density 𝜚 and de�ned the density contrast 𝛿. Equations (2.26) - (2.28)
also hold, when we replace 𝜌 with 𝜌, v with 𝐻 (𝑡) 𝑎(𝑡) 𝒙, and Φ with ¥𝑎 𝑎

2 |𝒙 |2. From this follows,
with

∇𝑥 =
1
𝑎
∇𝑟 , (2.32)

that
𝜕𝛿

𝜕𝑡
+ 1
𝑎
∇𝑥 · [(1 + 𝛿) 𝒖] = 0 , (2.33)

𝜕𝒖

𝜕𝑡
+ 𝐻 𝒖 + 1

𝑎
(𝒖 · ∇𝑥) · 𝒖 = − 1

𝑎
∇𝑥𝛷 , (2.34)

∇2
𝑥𝛷 = 4𝜋𝐺𝜚𝛿 . (2.35)

For small perturbations with |𝛿 | � 1 and |𝒖 | � 𝐻 𝒓, we can neglect terms of second or higher
order in 𝛿 and 𝒖, so we obtain the linear, pressureless hydrodynamic equations

𝜕𝛿

𝜕𝑡
+ 1
𝑎
∇𝑥𝒖 = 0 , (2.36)

𝜕𝒖

𝜕𝑡
+ 𝐻 𝒖 = − 1

𝑎
∇𝑥𝛷 , (2.37)

∇2
𝑥𝛷 = 4𝜋𝐺 𝜚 𝛿 , (2.38)

which can be combined to the linear growth equation for the density �uctuations,

𝜕2𝛿

𝜕𝑡2
+ 2 ¤𝑎

𝑎

𝜕𝛿

𝜕𝑡
= 4𝜋 𝐺 𝜚 𝛿 . (2.39)

This equation has two solutions, a growing mode and a decaying mode. Both solutions can be
split into a temporal part (𝐷+(𝑡) and 𝐷−(𝑡), respectively) and a spatial part (Δ+(𝒙) and Δ−(𝒙),
respectively), so Eq. (2.39) is solved by

𝛿(𝒙, 𝑡) = 𝐷+(𝑡) Δ+(𝒙) + 𝐷−(𝑡) Δ−(𝒙) . (2.40)

The decaying mode 𝐷−(𝑡) Δ−(𝒙) decreases with time, so it can be neglected for late-time cosmic
structure formation. Consequently, the linear growth function 𝐷+(𝑡), determines the growth of
structures in the matter-dominated epoch. It is

𝐷+(𝑡) = 𝐷 𝐻 (𝑡)
∫ 𝑎(𝑡)

0
d𝑎′

[
Ωm 𝑎

′−1 +ΩΛ 𝑎
′2 − (Ωm +ΩΛ − 1)

]−3/2 , (2.41)

where the normalisation constant 𝐷 is given by requiring that today at 𝑡0 𝐷+(𝑡0) = 1.

If 𝛿 and 𝒖 are no longer small, the linearisation breaks down. Consequently, the formation of
dark matter halos, which requires 𝛿 � 1, cannot be described in this framework.
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There are several analytical approaches to cosmic structure formation with larger 𝛿 involving the
�uid approximation (Bernardeau et al., 2002). Some of these require a Lagrangian formulation
of the hydrodynamical equations (e.g. Buchert, 1992; Bernardeau and Valageas, 2008), whereas
others employ e�ective �eld theories reminiscent of particle physics (e.g. Carrasco et al., 2014).
However, while these theories were successful at mildly non-linear scales (e.g. Buchert et al.,
1994; Melott et al., 1995; Reid and White, 2011; d’Amico et al., 2020), the �uid approximation is,
strictly speaking, not correct. Dark matter consists of collisionless particles, which only interact
gravitationally. Streams of these particles can intersect and penetrate each other. Therefore,
dark matter cannot form shocks or discontinuities that would arise in a ‘proper’ �uid. At
stream crossings, where particles interact, a single dark matter ‘�uid’ element can have multiple
assigned velocities. Hence, we cannot apply the hydrodynamical equations.

For small densities and low speeds, stream crossings are less likely; therefore, the hydrodynam-
ical equations still hold for small 𝛿. For large 𝛿, though, di�erent approaches are necessary to
model the formation of the LSS. These approaches can be analytical, for example in the form of
the Kinetic Field Theory by Bartelmann et al. (2019) or computational with numerical 𝑁-body
simulations of the dark matter �eld (see Sect. 2.2)3.

2.1.3 Galaxy formation and evolution

Galaxies form inside the densest regions of the dark matter large-scale structure (White and
Rees, 1978). They are therefore often used as ‘tracers’ of the dark matter structure. However,
they are not perfect tracers but rather biased. The galaxy number density contrast 𝛿g. de�ned
as

𝛿g(𝒙, 𝑡) =
𝑛(𝒙, 𝑡)
𝑛̄

− 1 , (2.42)

where 𝑛 is the galaxy number density with mean 𝑛̄, is not equal to the matter density contrast
𝛿. The simplest model for the bias of the galaxy density with respect to the matter distribution
is the linear deterministic model (Kaiser, 1984), where

𝛿g(𝒙, 𝑡) = 𝑏 𝛿(𝒙, 𝑡) , (2.43)

where the bias factor 𝑏 is independent of scale and time. A larger bias factor 𝑏 implies a higher
galaxy number density for a given matter overdensity. The concrete value of the bias factor,
as well as its possible scale- or time dependence, hinges on the evolution and formation of
galaxies. We need to model these processes to understand how galaxies trace the dark matter
distribution.

Even though the contribution of galaxies to the total energy budget of the Universe is tiny,
accurately describing the formation and evolution of galaxies is much more complicated than
3 Burchett et al. (2020) discuss an interesting (and amusing) third approach. They modelled the LSS by simulating
the behaviour of a speci�c type of slime mould. Their virtual slime mould found an optimised network of
connections between the positions of galaxies observed by the SDSS. This network is strikingly similar to the
actual matter distribution. However, further applications of this ‘slime mould approach’ to cosmic structure
formation are unclear.
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of the dark matter structure. Any successful theory of galaxy evolution needs to explain the
diversity of galaxies in terms of their colour, morphology, size and gas content. Galaxies can be
divided roughly into two groups: early-type galaxies, which are typically red ellipticals with
little star-formation and gas, and late-type galaxies, which are bluer spiral galaxies with active
star-formation. Early-type galaxies are predominantly found in denser environments like the
centres of galaxy clusters, while late-types are more often in ‘the �eld’ at regions with lower
density (Kau�mann et al., 2004). To explain these observations, a general picture of galaxy
formation and evolution has emerged, which we describe in the following, based on Mo et al.
(2010).

Galaxies build from hot gas inside dark matter halos. In massive halos, this gas can have
temperatures around 107 K and emit Bremsstrahlung from free electrons. Due to this radiation,
as well as excitation and recombination processes, the gas cools. Its chemical composition
determines its cooling rate. Once the gas is cold, it shrinks and accumulates at the centre of the
halo in a �at disk. There it forms the dense, cold progenitor of the halos central galaxy.

As the gas accretes, pockets of high-density arise. These pockets collapse and form stars. The
star-formation rate (SFR) gives the number of formed stars as a function of the gas density. The
mass distribution of the newly-born stars is prescribed by the initial mass function (IMF). This
function predicts how many stars of each mass form. Since most parameters of a stars’ life,
like luminosity, lifetime, and eventual remnant, are determined by its mass, the IMF is a crucial
component of the galaxy evolution model. Together, the IMF, the SFR and the stellar population
model predict the luminosities and spectra of all stars in a galaxy. The properties of the stars
determine the luminosity and colour of the whole galaxy.

In the model described so far, most of the gas in a halo would eventually turn into stars. However,
this does not agree with observations, that show that only a small fraction of baryons is in
stars (Roberts et al., 1991; Mathews and Brighenti, 2003). Therefore ‘feedback’ processes must
exist, which hinder the gas from cooling and reduce star-formation. Typically, two feedback
processes are dominant: supernovae and Active Galactic Nuclei (AGN). Supernovae expel large
amounts of energy on short time scales. This energy causes shock waves, which heat the gas
and obstruct cooling. AGN are sources of intense radiation, which also heats the surrounding
gas.

Once the galaxy has formed, it undergoes di�erent types of evolutions. First, it evolves chemic-
ally. In general, elements heavier than Helium (referred to as ‘metals’ in astronomy), are almost
not present in the initial gas. They are produced by stars or in supernovae. Therefore their
amount in the interstellar medium (ISM), the metallicity increases with time. The metallicity of
the ISM in�uences the colour and luminosity of the stars forming in it. It also a�ects the cooling
rate and SFR. Therefore the chemical evolution impacts how galaxies appear over time.

Second, galaxies evolve dynamically. Due to their motion through the potential of the halo,
they are a�ected by tidal forces. These forces can remove gas and stars in a process called tidal
stripping. This process changes not only the structure of the galaxies but also its colour, as less
new stars form. The galaxies become redder, as blue stars reach the end of their life earlier.
Galaxies also interact with the hot gas surrounding them. This gas causes a drag force which
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can remove cold gas from the galaxy in a process called ram pressure stripping (Gunn and Gott,
1972). This process also creates more red galaxies with little star-formation. As massive halos
contain more gas, ram pressure stripping could explain why galaxies in denser environments
exhibit less star-formation. However, the precise mechanism is not entirely understood. In
particular, the time scales at which the galaxies lose their gas are unclear. Some models assume
that gas is stripped instantaneously (Kau�mann et al., 1993; Baugh, 2006; Bower et al., 2006;
Lagos et al., 2012), while others argue that a gradual stripping better reproduces the observed
colour distribution of galaxies (Font et al., 2008; Henriques et al., 2015).

Third, galaxies interact with each other. As their dark matter halos merge, several galaxies can
�nd themselves in the same gravitational well. There, they become satellites moving around a
central galaxy in the centre of the well. The satellites interact with each other and the central
galaxy by galaxy harassment or galactic cannibalism.

In galaxy harassment, satellites encounter during their motion in the halo and disrupt each
other. Since their velocities are large, galaxies typically do not merge in these encounters, but
rather lose some of their gas and stars in the process. The tidal forces in these encounters
can also destroy the disks of spiral galaxies (Farouki and Shapiro, 1981). This destruction
causes shock-waves in the galaxies’ remaining gas, which leads to a short period of intense
star-formation, a so-called ‘starburst’. Consequently, harassment has a strong e�ect on the
morphology of galaxies.

Galactic cannibalism refers to the complete merger of two galaxies. Such a merger is unlikely
between two satellites because of their high relative velocities. However, due to dynamical
friction, satellites lose kinetic energy and ‘fall’ into the centre of the halo. There, they merge
with the central galaxy. The merger of satellites explains the observed high masses of central
galaxies in galaxy clusters (De Lucia and Blaizot, 2007).

This general picture of galaxy formation and evolution relies on several mechanisms, whose
details are not fully understood. Observations are needed to constrain these models. One
observable is the relation between the observed galaxy and the underlying matter distribution.
This relation is de�ned, in a mathematical sense, by the correlation functions of the density
�eld 𝛿 and the galaxy number density 𝑛.

2.1.4 Random fields, correlation functions and polyspectra

In cosmology, we are rarely interested in speci�c values of the density contrast 𝛿(𝒙, 𝑡). Instead,
our goal is to give statistical predictions on the density distribution. For this, we consider 𝛿(𝒙, 𝑡)
as random �eld, whose statistical properties we want to explore and model.

Like all other random �elds, the probability distribution 𝑃[𝛿(𝒙1, 𝑡), 𝛿(𝒙2, 𝑡) . . . ] of the density
contrast at time 𝑡 is fully characterized by its moments, the n-point correlation functions 𝜉 (𝑛)
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2.1 Cosmology

given by

𝜉 (𝑛) (𝒙1, . . . , 𝒙𝑛, 𝑡) = 〈𝛿(𝒙1, 𝑡) 𝛿(𝒙2, 𝑡) . . . 𝛿(𝒙𝑛, 𝑡)〉 (2.44)

=

∫
d𝛿(𝒙1, 𝑡) . . . d𝛿(𝒙𝑛, 𝑡) 𝛿(𝒙1, 𝑡) . . . 𝛿(𝒙𝑛, 𝑡) 𝑃[𝛿(𝒙1, 𝑡), 𝛿(𝒙2, 𝑡) . . . ] .

(2.45)

This equation employs an ensemble average, suggesting that we need to average over matter
distributions in multiple, independent realizations of the Universe. However, since we can only
explore the properties of a single universe, we usually assume that the density �eld is ergodic
(Peebles, 1980). Ergodicity implies that ensemble averages can be replaced by spatial averages,
so Eq. (2.45) can be transformed into

𝜉 (𝑛) (𝒙1, . . . , 𝒙𝑛, 𝑡) =
1
𝑉𝑛

∫
𝑉

d3𝑥1· · ·
∫
𝑉

d3𝑥𝑛 𝛿(𝒙1, 𝑡) . . . 𝛿(𝒙𝑛, 𝑡) , (2.46)

where 𝑉 is an arbitrary volume.

The correlation functions are frequently replaced by their Fourier transforms, the polyspectra
𝑃(𝑛) . These are averages of the Fourier transformed density contrast 𝛿(𝒌, 𝑡), which is

𝛿(𝒌, 𝑡) =
∫

d3𝑥 𝛿(𝒙, 𝑡) exp(−i 𝒌 · 𝒙) , (2.47)

where 𝒌 is the comoving wavevector. The polyspectra are given by

(2𝜋)3 𝛿D (𝒌1 + · · · + 𝒌𝑛) 𝑃(𝑛) (𝒌1, . . . , 𝒌𝑛, 𝑡) =
〈
𝛿(𝒌1, 𝑡), . . . , 𝛿(𝒌𝑛, 𝑡)

〉
, (2.48)

with the Dirac delta ‘function’ 𝛿D.

The most studied polyspectra are the matter power spectrum 𝑃(𝒌1, 𝒌2, 𝑡) = 𝑃(2) (𝒌1, 𝒌2, 𝑡), and
bispectrum 𝐵(𝒌1, 𝒌2, 𝒌3, 𝑡) = 𝑃(3) (𝒌1, 𝒌2, 𝒌3, 𝑡). Due to statistical homogeneity and isotropy,
the power spectrum depends only on one, and the bispectrum on three parameters aside from
the cosmic time 𝑡, so we can write them as

𝑃(𝒌,−𝒌, 𝑡) =: 𝑃(𝑘 , 𝑡) , (2.49)
𝐵(𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡) =: 𝐵(𝑘1, 𝑘2, 𝜙, 𝑡) , (2.50)

where 𝑘 is the norm of 𝒌 and 𝜙 is the angle between 𝒌1 and 𝒌2.

Linear perturbation theory predicts the power and bispectrum, given a primordial power
spectrum 𝑃prim(𝑘), which characterizes the initial density �uctuations. For density �uctuations
caused by in�ation, the shape of this power spectrum is a power law, whose exponent is the
scale index 𝑛s,

𝑃prim(𝑘) ∝ 𝑘𝑛s . (2.51)

We choose 𝑛s = 1, which corresponds to the Harrison-Zeldovich spectrum (Harrison, 1970;
Zeldovich, 1972), because this value was used in the MR, the cosmological simulation we use in
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this work and which we describe in Sect. 2.2.1. However, most popular in�ation models predict
a 𝑛s slightly smaller than 1.

From 𝑃prim(𝑘) we can �nd the linear power spectrum 𝑃lin(𝑘 , 𝑡) as

𝑃lin(𝑘 , 𝑡) = 𝐴 𝐷2
+(𝑡) 𝑇2(𝑘) 𝑃prim(𝑘) , (2.52)

where 𝐴 is a normalisation constant, 𝐷+ is the growth function from Eq. (2.41), and 𝑇 is the
transfer function.

The transfer function describes how dark matter density �uctuations at di�erent scales 𝑘
evolved. During the matter-dominated epoch, �uctuations at all scales evolved the same:
They grew proportional to the scale factor 𝑎. However, this was not the case during the
radiation-dominated epoch. During this epoch, �uctuations at large scales without causal
contact evolved proportionally to 𝑎2. Fluctuations at scales smaller than the comoving horizon
𝑑H were suppressed and did not grow at all. This suppression, the so-called Meszaros-E�ect
(Meszaros, 1974), occurs, because the rapid Hubble expansion counteracts the growth of the
�uctuations. Therefore, as soon as 𝑑H becomes larger than a �uctuation, the �uctuation stops
growing until the matter-radiation equality at 𝑎eq. Consequently, the power spectrum 𝑃(𝑘) is
suppressed for 𝑘 ≥ 2𝜋

𝑑H
. The transfer function encodes this scale dependence. Throughout this

work, we use the widely adopted transfer function by Eisenstein and Hu (1998).

The normalisation constant 𝐴 in Eq. (2.52) is obtained by setting the constant 𝜎8. This parameter
describes the variance of matter �uctuations within spheres of comoving radius 8 ℎ−1Mpc. It is
de�ned as

𝜎2
8 =

1
2𝜋2

∫ ∞

0
d𝑘 𝑘2 𝑃(𝑘 , 𝑡0) |𝑊̂ (𝑘 𝑅) |2 , (2.53)

with 𝑅 = 8 ℎ−1Mpc, 𝑡0 being today and the Fourier transform 𝑊̂ of a tophat �lter, given as

𝑊̂ (𝑥) = 3
𝑥2

(sin 𝑥 − 𝑥 cos 𝑥) . (2.54)

We use 𝜎8 = 0.9, which was assumed for the cosmological simulations described in Sect 2.2.1.

The linear bispectrum 𝐵lin can be derived from 𝑃lin following the derivation by Cooray and
Sheth (2002) as

𝐵lin(𝒌1, 𝒌2, 𝒌3, 𝑡) = 2 𝐹 (𝒌1, 𝒌2) 𝑃(𝑘1, 𝑡) 𝑃(𝑘2, 𝑡) (2.55)
+ 2 𝐹 (𝒌1, 𝒌3) 𝑃(𝑘1, 𝑡) 𝑃(𝑘3, 𝑡)
+ 2 𝐹 (𝒌2, 𝒌3) 𝑃(𝑘2, 𝑡) 𝑃(𝑘3, 𝑡) ,

with
𝐹 (𝒌1, 𝒌2) =

5
7 + 2

7
(𝒌1 · 𝒌2)2

𝑘21 𝑘
2
2

+ 1
2
𝒌1 · 𝒌2
𝑘1 𝑘2

(
𝑘1
𝑘2

+ 𝑘2
𝑘1

)
. (2.56)

In principle, the non-zero polyspectra completely describe the density �eld. For a Gaussian
density �eld, all 𝑃(𝑛) with 𝑛 > 2 are given by the power spectrum, so 𝑃(𝑘) captures all
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2.1 Cosmology

Figure 2.2: Power spectrum, measured in the IRAS Point Source Catalog (blue crosses). Also shown are
the predictions of linear and non-linear perturbation theory (dashed red lines) with the cosmological
parameters marked in the figure. From Hamilton and Tegmark (2002).

information of 𝛿. Consequently, the power spectrum is the only relevant quantity for large
scales and early cosmic times, for which linear perturbation theory holds. However, for smaller
scales and at later times, when 𝛿 & 1, the density �eld is no longer Gaussian; therefore,
higher-order polyspectra carry important information on the matter distribution.

The break-down of linear perturbation theory becomes apparent by comparing its prediction for
the matter power spectrum to observations (Fig. 2.2). The linear theory can accurately predict
the power spectrum for 𝑘 < 0.3 ℎMpc−1 4, which we consider the linear regime. For higher 𝑘 ,
the linear theory is no longer accurate. We consider this the non-linear regime.

To study galaxy evolution and formation, more interesting than matter-matter correlations are
correlations of 𝛿 with the galaxy number density 𝑛 or the galaxy number density contrast 𝛿g.
Examples of these galaxy-matter statistics are the two-point galaxy-matter correlation

𝜉gm(𝒙1, 𝒙2, 𝑡) =
〈
𝛿g(𝒙1, 𝑡) 𝛿(𝒙2, 𝑡)

〉
, (2.57)

and the three-point galaxy-galaxy-matter correlation

𝜁ggm(𝒙1, 𝒙2, 𝒙3, 𝑡) =
〈
𝛿g(𝒙1, 𝑡) 𝛿g(𝒙2, 𝑡) 𝛿(𝒙3, 𝑡)

〉
, (2.58)

4 This corresponds roughly to spatial scales above 20 ℎ−1 Mpc.
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2 Fundamentals of cosmology and gravitational lensing

Alternatively, we can consider the related polyspectra, the galaxy-matter power spectrum 𝑃g𝛿,
de�ned by

(2𝜋)3 𝛿D (𝒌1 + 𝒌2) 𝑃g𝛿 (𝑘1, 𝑡) =
〈
𝛿g(𝒌1, 𝑡) 𝛿(𝒌2, 𝑡)

〉
, (2.59)

and the galaxy-galaxy-matter bispectrum 𝐵gg𝛿, de�ned by

(2𝜋)3 𝛿D (𝒌1 + 𝒌2 + 𝒌3) 𝐵gg𝛿 (𝑘1, 𝑘2, 𝜙, 𝑡) =
〈
𝛿g(𝒌1, 𝑡) 𝛿g(𝒌2, 𝑡) 𝛿(𝒌3, 𝑡)

〉
, (2.60)

where 𝛿g(𝒌, 𝑡) is the Fourier transform of 𝛿g(𝒙, 𝑡), and 𝜙 is the angle between 𝒌1 and 𝒌2.

These functions encode information on how galaxies form, evolve and interact inside the dark
matter distribution (Simon, 2005; White et al., 2007). The galaxy-matter correlations are easier
accessible in surveys than matter-matter correlations because the galaxy distribution is a direct
observable. In contrast, we need to infer the dark matter distribution indirectly.

Modelling galaxy-matter correlations, though, is more complicated than matter-matter cor-
relations, for three reasons. First, as discussed in Sect. 2.1.3, galaxy formation occurs inside
dense dark matter halos at scales below a few Megaparsecs, which is in the non-linear regime
(White and Rees, 1978). Accordingly, we cannot use linear perturbation theory to constrain
the matter distribution. Second, galaxies are a�ected by more phenomena than dark matter,
which only interacts gravitationally. These e�ects, such as star-formation, feedback by active
galactic nuclei, and interactions with the intracluster medium, have to be carefully modelled to
obtain accurate predictions for the galaxy-matter correlations (Vogelsberger et al., 2020). Third,
galaxies come in di�erent types, classi�ed according to properties such as colour, SFR, or stellar
mass. These types show separate physical properties and spatial distributions. Consequently,
the galaxy-matter correlations depend sensitively on the studied galaxy population and selection
function (Zehavi et al., 2005).

Nevertheless, theoretical models of galaxy-matter correlations are possible. An analytical way
to derive them is the halo model, which we discuss in Sect. 2.3. They are also predicted by
cosmological simulations, whose fundamental principles we describe in the next section.

2.2 Cosmological simulations

Cosmological simulations distinguish between dark and baryonic matter. The distribution of
dark matter can be modelled accurately with 𝑁-body simulations, which we discuss in the
following section. The evolution of baryons, including galaxies, can be either simulated with
SAMs using the dark matter distribution from an 𝑁-body simulation (see Sect. 2.2.2) or with
hydrodynamic simulations which directly calculate the dynamics of baryons (see Sect. 2.2.3).

2.2.1 𝑵-Body simulations

Dark-matter-only 𝑁-body simulations have been used since the 1970s (e.g. Peebles, 1970; Press
and Schechter, 1974). Since then, increased computational power and improved numerical
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techniques enabled larger simulated volumes and better resolution (Vogelsberger et al., 2020).
Major successes of 𝑁-body simulations were the determination of the halo mass function (HMF),
the dark matter halo pro�le, and the bottom-up structure formation (Sheth and Tormen, 1999;
Navarro et al., 1996; Springel et al., 2005).

𝑁-body simulations use that dark matter acts only gravitationally, and that structure formation
occurs in the weak-�eld limit of GR. They model the dark matter distribution by individual
macroscopic particles behaving according to Newtonian dynamics. These particles are placed
into a cube with �xed comoving side length, in which they evolve due to the gravitational
forces between them. The mass of an individual particle determines the mass resolution of the
simulation.

Linear perturbation theory sets the initial distribution of dark matter particles. The probability
distribution of their density is set to a Gaussian with power spectrum 𝑃lin given in Eq. (2.52) at
high redshift, typically 𝑧 ' 100. The simulation then evolves this initial distribution of particles
and outputs the positions and velocities of these particles at a set of redshifts. These outputs
are also referred to as snapshots.

The force on the 𝑖th particle at proper position 𝒓𝑖 with mass 𝑚𝑖 is given by

𝑭𝑖 = 𝐺
∑︁
𝑗≠𝑖

𝑚𝑖 𝑚 𝑗 (𝒓𝑖 − 𝒓 𝑗 )
|𝒓𝑖 − 𝒓 𝑗 |3

, (2.61)

where the 𝒓 𝑗 are the other positions of the particles. For 𝑁 particles, the computational com-
plexity of calculating the total force on each particle is O

(
𝑁2) .Therefore, several numerical

techniques reduce the complexity, such as the particle-mesh (PM) algorithm (Hockney and
Eastwood, 1981). Here, particles are assigned positions on a regular mesh with approximately
𝑁 cells, so the density distribution is de�ned on the mesh and can be converted to Fourier space
with a Fast Fourier Transform. The Fourier transform Φ̂ of the gravitational potential is then
given by the Fourier transformed Poisson equation

𝑘2 Φ̂(𝒌) = −4𝜋𝐺 𝜌̂(𝒌) . (2.62)

This approach reduces the numerical complexity to O(𝑁 ln 𝑁).

However, the size of the mesh cells limits the spatial resolution of the simulation. Since the
gravitational �eld is smoothed, the simulation is inaccurate at scales below a few mesh cells.
Therefore, PM codes are often supplemented by corrections for nearby particles. The forces of
these particles are summed and added to the contribution of the overall gravitational potential.
Codes with this correction are referred to as particle-particle particle-mesh (P3M) algorithms.

A di�erent approach to reducing the computational complexity of 𝑁-body simulations are tree
codes (Dehnen, 2000). In these codes, particles are grouped according to their position. The
force of distant particles on a particular other particle is approximated by the contribution of a
point mass at the centre of the particle group. In this way, not all particle-particle forces need
to be computed. This method reduces the computational complexity to O(𝑁 ln 𝑁).
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Figure 2.3: Schematic representation of a dark matter halo merger tree. Time increases on the vertical
direction from top to bottom. Each “branch” represents a halo, whose width relates to the halos mass.
From Lacey and Cole (1993)

Additionally, 𝑁-body simulations use a softening length, below which gravitational forces are
reduced. This modi�cation reduces unphysical scattering of nearby particles in the simulation.
The softening length and size of mesh cells determine the spatial resolution of a simulation.

During the evolution, dark-matter particles attract each other and form larger overdensities and
self-bound dark matter halos. These halos merge to increasingly massive halos. Merger trees
(Fig. 2.3) record this halo growth and the formation of each halo from the merger of smaller
parent halos. The merger history determines the distribution of galaxies and other baryons, as
they follow the merging dark matter halos.

To �nd dark matter halos in simulations, two di�erent approaches are possible: friends-of-
friends (FOF)-�nders or spherical-overdensity (SO)-�nders. The SO approach de�nes a halo as
a spherical region whose mean density is at least Δthresh higher than the background density 𝜌
(Press and Schechter, 1974). The number of detected halos depends onΔthresh. OftenΔthresh = 180
is chosen (Lacey and Cole, 1994; Sheth and Tormen, 1999), but other values, for example
Δthresh ∈ [200, 320] by Tinker et al. (2008), have also been used. The number and size of halos
in the simulation is in�uenced by this choice.

SO-�nders detect halos by centring a sphere on a particle and decreasing its radius until the
overdensity inside the sphere exceeds Δthresh. The particles inside are then counted as part of a
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halo and removed. The process is repeated around other particles until all particles belong to
halos. The main drawback of SO-�nders is their assumption of spherical halos. Masses, as well
as the total number of halos, are therefore biased.

FOF-�nders (Davis et al., 1985) account for non-spherical halos by using a di�erent halo de�ni-
tion. They de�ne them as collections of particles, whose separations are smaller than a linking
length 𝑏. The �nder �rst selects a particle P1. It then counts all particles P2 with distances less
than 𝑏 from P1 as part of a halo. Next, all particles, which are less than 𝑏 away from the P2, are
assigned to the same halo. The FOF-�nder repeats this process until no new particles are less
than 𝑏 away from halo members.

The choice of 𝑏 is critical for the shape and number of the detected halos. Commonly, FOF-
�nders assume a linking length between 0.15 𝑛−1/3p and 0.3 𝑛−1/3p , where 𝑛p is the mean number
density of simulated particles (Springel et al., 2005; Jenkins et al., 2001; Davis et al., 1985).

The softening length of an 𝑁-body simulation determines its spatial resolution, while the mass
of its particles limits the mass resolution. Increasing the number of particles while decreasing
their masses leads to higher resolutions but also increases the computational complexity of the
simulation.

The resolution and size of a simulation determine its applications. Simulations with smaller
volumes but higher resolution (e.g. Springel et al., 2008; Stadel et al., 2009) allow studies of
individual dark matter (sub)halos. In contrast, larger simulations (e.g. Springel et al., 2005;
Klypin et al., 2011) are useful to explore the statistical properties of the LSS.

In this work, we use the MR, which is a large-volume 𝑁-body simulation. It was computed
with the GADGET2 code (Springel, 2005). This code uses a mixture of the tree-code and PM
algorithms. The long-range particle interaction is calculated according to the PM approach. In
contrast, the short-range interaction of nearby particles is calculated with a tree-code The MR
has a comoving side length of 500 ℎ−1Mpc and traces 21603 dark matter particles with mass
𝑚 = 8.76 × 108 ℎ−1M�. It assumes the cosmological parameters in Table 2.1 and has a softening
length of 5 ℎ−1 kpc.

2.2.2 Semi-analytic models of galaxy formation and evolution

One approach to simulating the formation and evolution of galaxies is through physically
motivated analytic models for baryonic processes. These models are calibrated by observations,
for instance of the fraction of satellite galaxies per halo, the stellar mass function of galaxies, or
the stellar-mass-to-halo-mass ratio. They are implemented on baryons in dark matter halos
from an 𝑁-body simulation. Combining analytical models and numerical simulations leads to
SAMs (Baugh, 2006; Benson, 2010).

The evolution of galaxies in a SAM follows several steps that mimic the processes in�uencing
real galaxies outlined in Sect. 2.1.3. Initially, each halo in the 𝑁-body simulation receives a
fraction of baryons with mass 𝑚b =

Ωb
Ωm
𝑚, where 𝑚 is the halo mass. 75% of the baryon mass is
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ionised hydrogen and 25% ionised helium, which corresponds to the baryon composition after
the initial nucleosynthesis in the early Universe. These baryons then cool down, according to
an assumed cooling rate model. Cold gas accretes towards the halo centre and forms the central
galaxy of the halo.

In the cold gas, stars are born. The SFR depends on the gas surface mass density according to the
stellar population model of the SAM. The IMF assumed by the SAM gives the mass distribution
of the newly-born stars. After a while, massive stars end their lives in supernovae. These inject
metals and cold gas into the ISM, thereby changing its chemical composition. New stars form
from this enriched ISM.

Galaxies in the SAM also interact with each other and the hot gas surrounding them. To
calculate these interactions, SAMs model tidal and ram pressure stripping, galaxy harassment
and mergers. The models include assumptions on the rate of interactions and the time scales on
which galaxies are entirely stripped of their gas.

The main advantage of SAMs is their modest computational cost. Therefore, these models can
be run on large cosmological volumes, leading to precise predictions of galaxy statistics. Their
�exibility also allows for an exploration of their parameter space with a Monte Carlo Markov
chain (Henriques et al., 2009) or emulators (Bower et al., 2010). Their principal drawback is
that they idealise the thermal and spatial pro�les of baryons, as well as the physical processes.
Some of their assumptions might not be true, so their predictions can be biased. Furthermore, as
they do not include individual baryonic particles, SAMs cannot predict detailed gas and stellar
dynamics.

There exist a variety of SAMs (Bower et al., 2006; Lagos et al., 2012; Guo et al., 2011; Henriques
et al., 2015), based on the same fundamental principles but using di�erent assumptions on the
physical processes. Some of the most important di�erences are the choice of halo �nder in the
underlying 𝑁-body simulation, the de�nition of central and satellite galaxies, the treatment of
star-formation, and environmental interaction. The predictions of SAMs also vary due to the
choice of IMF and stellar population model (Guo et al., 2016).

In this work, we use two di�erent SAMs implemented in the MR. These are the Munich SAM
by Henriques et al. (2015, H15) and the Durham SAM by Lagos et al. (2012, L12). Table 2.2
summarises some of the di�erences between these models. Aside from the choice of IMF and
stellar population model, these are the treatment of satellite galaxies, star-formation and ram
pressure stripping.

In the L12 SAM, satellite galaxies remain satellites unless they merge with a central galaxy. In
the H15 SAM, though, satellite galaxies that have drifted far away from their host halo centres
are reclassi�ed as central galaxies. This e�ect reduces the fraction of satellites in H15 compared
to L12.

The SFR in the L12 SAM is proportional to the cold gas mass of a galaxy. In contrast, in the H15
SAM, stars form only when the gas density exceeds a threshold. Therefore, galaxies with little
gas show more star-formation in the L12 SAM.
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Table 2.2: Di�erences of used SAMs
Property Lagos et al. (2012) Henriques et al. (2015)
IMF Kennicutt (1983) Chabrier (2003)
Stellar Population model Bruzual and Charlot (2003) Maraston (2005)
Evolution of satellites Satellites become centrals

only if they merge with a
central galaxy

Satellites can become
centrals when distant from
their halo center

Star-formation SFR is proportional to total
cold gass mass

star-formation occurs only, if
gas density exceeds
threshold

Environmental processes Instantaneous ram pressure
stripping

Gradual ram pressure
stripping

Environmental e�ects, such as ram pressure stripping, are also treated di�erently between the
SAMs. L12 employs instantaneous ram pressure stripping, which quickly depletes satellites
of their hot gas. This gas depletion rapidly quenches star-formation. H15 uses gradual ram
pressure stripping that removes less of the gas reservoir.

2.2.3 Hydrodynamical simulations

A di�erent approach to describing the evolution of galaxies is using hydrodynamic simulations
(see Vogelsberger et al., 2020, for a review). These simulations directly solve the hydrodynamic
equations for the baryon content of the Universe, simultaneously to evolving the dark matter
distribution with an 𝑁-body simulation. Therefore, they predict the detailed distribution of
gas in and around galaxies. In contrast to SAMs, they can predict gas dynamics and galaxy
interactions.

However, this additional information comes at the cost of high numerical complexity. This
complexity is due to the variety and broad dynamic range of baryonic e�ects. Consequently,
hydrodynamic simulations with large volumes suitable for studies of galaxy statistics have been
available only for the past few years (Dubois et al., 2014; Vogelsberger et al., 2014; Schaye et al.,
2015).

In hydrodynamical simulations, baryons are modelled as inviscid ideal gases with density 𝜌b,
velocity �eld v and pressure 𝑃. Therefore, they follow the hydrodynamical equations

𝜕𝜌b
𝜕𝑡

+ ∇𝑟 · (𝜌bv) = 0 , (2.63)
𝜕v
𝜕𝑡

+ (v · ∇𝑟) · v +
∇𝑟𝑃

𝜌b
= −∇𝑟Φ , (2.64)

∇2
𝑟Φ = 4𝜋 𝐺 (𝜌b + 𝜌cdm) , (2.65)
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where 𝜌cdm is the density of dark matter. These equations correspond to Eqs (2.26) – (2.28)
with an added pressure term in the Euler equation. Several modern hydrodynamic simula-
tions also account for magnetic �elds around baryons by solving instead the equations of
magnetohydrodynamics (see e.g., Bartelmann, 2013).

The simulations are initialised by inserting baryons consisting purely of hydrogen and helium
gas into a simulation box, alongside dark matter particles. Dark matter is treated the same as in
a regular 𝑁-body simulation. Meanwhile, baryons evolve according to the hydrodynamic equa-
tions in (2.63) – (2.65). Once the gas density is high enough, stars are formed, which eventually
create galaxies. In this process, the formation and evolution of galaxies are replicated.

Three di�erent approaches are used to solve the hydrodynamical equations: the Eulerian, the
Lagrangian and the mixed Eulerian-Lagrangian framework. In the Eulerian framework (used
for example in Horizon-AGN, Dubois et al., 2014), the simulation box is divided into a mesh.
The density and velocity of the baryon �uid are calculated discretised for each mesh cell. Since
the dynamical range of cosmological simulations is quite large, a regular mesh would lead
to a too coarse binning in high-density regions in the simulations, while low-density areas
would be covered by too many cells. Therefore, Eulerian simulations usually use adaptive mesh
re�nement algorithms, which create sub-meshes in regions of high density.

In the Lagrangian framework, used for instance, by Evolution and Assembly of GaLaxies and
their Environments (EAGLE; Schaye et al., 2015), the calculation follows individual �uid elements
through space and time. One example of such an approach is smoothed-particle hydrodynamics.
Here, the continuous �uid is approximated by several sampling particles. These individual
particles trace the overall baryon distribution. They are evolved according to equations of
motion derived from the hydrodynamical equations and the gravitational forces between them
and the dark matter �eld.

Mixed Eulerian-Lagrangian approaches combine the two frameworks by using a moving mesh
(Springel, 2010). In this approach, similar to the Lagrangian framework, several sampling
particles are chosen. However, instead of directly tracing the baryon distribution, these particles
are used to de�ne a mesh. This mesh is constructed such that its cells are small in high-density
and large in low-density regions. Similarly to the Eulerian framework, the density and velocity
�eld are discretised on this mesh. However, the sampling points evolve according to the
hydrodynamical equations. Therefore, the mesh also changes, according to the dynamics of the
baryon �uid. The moving-mesh formulation is used, for example, in the IllustrisTNG simulation
(Springel et al., 2018).

Hydrodynamic simulations still require assumptions on several physical processes that occur
on scales below the resolution limit of the simulation. Therefore, sub-resolution models need
to complement them. These models describe, for example, the SFR, phase transitions of the
ISM and the accretion rate of supermassive black holes. They are calibrated by adjusting their
parameters, so that the simulation matches certain key observables, for example, the galaxy
stellar mass function (Vogelsberger et al., 2020).
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2.3 Halo model

The halo model is an analytical approach to model the cosmic galaxy and matter distribution.
It is phenomenologically motivated by the observation that most dark matter concentrates in
dense halos and galaxies form only within these dense regions (White and Rees, 1978). Dark
matter halos form, when the density contrast in a region exceeds the critical value 𝛿c(𝑧). The
region then collapses and virializes to a self-bound halo (Press and Schechter, 1974). After
virialization, the halo reaches the density 𝜌vir = Δ 𝜌, where 𝜌 is the mean density of the Universe.
For a �at ΛCDM universe, the following �tting functions can be used (Bullock et al., 2001):

𝛿c(𝑧) = 1.686
{
1 + 0.0123 log10

[
Ωm (1 + 𝑧)3

]}
, (2.66)

Δ(𝑧) = 178
{
1 + 0.4093

[
(Ω−1

m − 1)1/3
1 + 𝑧

]2.71572}
. (2.67)

The halo model simpli�es the matter distribution by assuming that all of dark matter is part of
halos. The masses of these halos fully determine the physical properties of galaxies residing in
them, including their number, population and spatial distribution.

With this assumption, the halo model gives an analytical framework for the calculation of
galaxy-matter correlation functions. This framework is not limited to the linear regime, but also
extends to highly non-linear scales. Cooray and Sheth (2002) give a review of the halo model in
terms of galaxy-matter statistics.

Even though the halo model neglects environmental in�uences and the halo merger history
on the galaxy distribution, its prediction for the galaxy-galaxy two-point correlation function
agrees well with observations (Zehavi et al., 2011). Its forecast for the matter power spectrum
also agrees with 𝑁-body simulations (Kravtsov et al., 2004; Zheng et al., 2005). Furthermore, the
halo model can model the galaxy-matter power spectrum (Mandelbaum et al., 2006; Clampitt
et al., 2016; Dvornik et al., 2018) and correlations between the matter distribution and the
Sunyaev-Zel’dovich e�ect (Mead et al., 2020). It is therefore reasonable to also model third-order
and higher galaxy-matter correlations with the halo model.

Rödinger (2009) proposed a halo model for higher-order galaxy-matter statistics, including the
second-, third- and fourth-order galaxy-matter correlations. Martin (2019) used this model to
predict the galaxy-galaxy-matter bispectrum. They found the model parameters by �tting it
to observed galaxy-matter two-point correlation functions and then calculated the expected
third-order signal. Their predictions agree well with measurements in Canada-France-Hawaii
Telescope Lensing Survey (CFHTLenS; Heymans et al., 2012). However, their study was limited
to auto-correlations with galaxies from the same population. They could not consider the
galaxy-galaxy-matter cross-correlation, as this correlation depends on the joint distribution of
galaxies from di�erent populations inside a halo. This joint distribution cannot be predicted
from the galaxy-matter two-point correlation.

In Chapter 5, wewill insteadmodel the galaxy-galaxy-matter bispectrum for both auto- and cross-
correlations, based on the approaches by Rödinger (2009) and Martin (2019). For this, we require
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2 Fundamentals of cosmology and gravitational lensing

di�erent ‘ingredients’ of the halo model, which we describe in the following. They are the spatial
dark matter halo pro�le, the HMF, the halo bias and the halo occupation distribution (HOD).

2.3.1 Dark matter halo profile

The halo model assumes that all halos have the same density pro�le 𝜌(𝒓 |𝑚), which depends
only on the separation 𝒓 from the halo centre and the halo mass 𝑚. It can also be expressed in
terms of the normalised halo pro�le 𝑢(𝒓 |𝑚) as

𝜌(𝒓 |𝑚) = 𝑚 𝑢(𝒓 |𝑚) , (2.68)

where ∫
d3𝑟 𝑢(𝒓 |𝑚) = 1 . (2.69)

𝑁-body simulations suggest that most dark matter halos follow the same 𝜌(𝒓 |𝑚), the Navarro-
Frenk-White (NFW) pro�le (Navarro et al., 1996),

𝜌(𝒓 |𝑚) = 𝜌s

[
𝑟

𝑟s

(
1 + 𝑟

𝑟s

)2]−1
, (2.70)

where 𝑟s and 𝜌s are the scale radius and -density, respectively. The total mass of the NFW
pro�le diverges. However, the total halo mass can be replaced by the mass 𝑚200. This is the
mass enclosed by a sphere around the halo center with the radius 𝑟200, inside which the mean
density of the halo is exactly 200 times the mean density of the Universe 5,

𝑚200 =

∫ 𝑟200

0
d𝑟 𝑟2 𝜌(𝑟) = 4𝜋

3 (200 𝜌) 𝑟3200 . (2.71)

For the NFW-pro�le 𝑚200 is The mass 𝑚200 is

𝑚200 =
4𝜋𝜌s
𝑐3

[
ln(1 + 𝑐) − 𝑐

1 + 𝑐

]
𝑟3200 , (2.72)

where 𝑐 = 𝑟200/𝑟s is called concentration parameter.

The concentration parameter 𝑐 depends on the halo redshift and mass, as well as the underlying
cosmology and details of the non-linear structure formation. Several models for 𝑐(𝑚, 𝑧) have
been proposed (Dolag et al., 2004). We use the formula obtained in 𝑁-body simulations by
Bullock et al. (2001) for a ΛCDM universe,

𝑐(𝑚, 𝑧) = 𝑐0
1 + 𝑧

( 𝑚
𝑚★

)−𝛼
, (2.73)

5 In their original derivation Navarro et al. (1996) de�ned 𝑚200 as region, whose density is 200 times the critical
density 𝜌crit, given in Eq. (2.13). However, the �tting function for the concentration by Bullock et al. (2001) was
found for 𝑚200 in terms of the mean density 𝜌. Therefore, we use this de�nition in terms of the mean density.
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with 𝑐0 = 9 and 𝛼 = 0.13. The mass 𝑚★ is the mass enclosed by a sphere of radius 𝑟★,

𝑚★ =
4𝜋
3 𝑟3★ , (2.74)

where 𝑟★ is the scale at which the standard deviation of density �uctuations is equal to the
critical density 𝛿cr. It is given by

𝜎2(𝑚★) :=
∫

d3𝑘 𝑃(𝑘) 𝑊̂2(𝑟★ 𝑘) = 𝛿2c , (2.75)

where 𝑊̂ is the Fourier transformed tophat �lter given in Eq. (2.54).

The Fourier transform of the NFW pro�le, a useful quantity for the calculation of polyspectra,
is (Scoccimarro et al., 2001),

𝜌̂(𝑘 |𝑚) = 𝑚 𝑢(𝑘 |𝑚) (2.76)

= 𝑚 𝑓 (𝑐)
{
sin

(
𝑘𝑟200
𝑐

) [
Si

(
𝑘𝑟200(1 + 𝑐)

𝑐

)
− Si

(
𝑘𝑟200
𝑐

)]
+ cos

(
𝑘𝑟200
𝑐

) [
Ci

(
𝑘𝑟200(1 + 𝑐)

𝑐

)
− Ci

(
𝑘𝑟200
𝑐

)]
(2.77)

− sin(𝑘𝑟200)
𝑘𝑟200

𝑐

1 + 𝑐

}
,

with
𝑓 (𝑐) =

[
ln(1 + 𝑐) − 𝑐

1 + 𝑐

]−1
, (2.78)

and

Si(𝑥) =
∫ 𝑥

0
d𝑦 sin(𝑦)

𝑦
, (2.79)

Ci(𝑥) = −
∫ ∞

𝑥

d𝑦 cos(𝑦)
𝑦

. (2.80)

2.3.2 Halo mass function

The HMF 𝑛(𝑚) d𝑚 describes the comoving number density of dark matter halos with mass
between𝑚 and𝑚+d𝑚. It depends not only on cosmic structure formation, but is also a sensitive
probe of cosmology (e.g Eke et al., 1996; Vikhlinin et al., 2009).

Press and Schechter (1974) derived the �rst analytical model for the HMF under the assumption
that dark matter halos collapse spherically. They further assumed that the spatial volume �lled
with halos of mass 𝑚 is proportional to the probability of the initial matter �eld to exceed
the critical density contrast in a sphere with radius 𝑟 = (3𝑚/4𝜋𝜌)1/3. Their HMF, including a
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manually inserted factor of two to account for the cloud-in-cloud problem (Bond et al., 1991),
is

𝑛(𝑚) d𝑚 =
1

√
2𝜋

𝜌

𝑚2 𝜈 exp
(
−𝜈

2

2

)
d ln 𝜈
d ln𝑚 d𝑚 , (2.81)

with 𝜈 = 𝛿c/𝜎(𝑚) and the 𝜎(𝑚) de�ned in Eq. (2.75).

However, 𝑁-body simulations show that the Press-Schechter HMF cannot fully describe the halo
distribution, as dark matter halos generally collapse ellipsoidally and not spherically. Therefore,
Sheth and Tormen (1999) proposed the �tting formula

𝑛(𝑚) d𝑚 =

√︂
2
𝜋
𝐴

[
1 + 1

(𝑞 𝜈)2𝑝

√︂
(𝑞 𝜈)2
2𝜋 exp

(
− (𝑞 𝜈)2

2

)]
𝜌

𝑚2
d ln 𝜈
d ln𝑚 d𝑚 , (2.82)

with 𝐴 = 0.322, 𝑝 = 0.3, and 𝑞 = 0.707 found in 𝑁-body simulations. In contrast to the Press-
Schechter formalism, this function also accounts for the collapse of non-spherical halos (Sheth
et al., 2001). We use this HMF throughout the work.

Other 𝑁-body simulations yielded slightly di�erent �tting formulas for the HMF (Jenkins et al.,
2001; Tinker et al., 2008). However, the variations between the HMFs are small and mainly
relevant for very high halo masses.

2.3.3 Halo bias

The polyspectra of dark matter halos are in general di�erent from those of the overall dark
matter distribution since halos only form if the initial density �uctuations in a region exceeded
𝛿c. The di�erence in the density contrast 𝛿H of halos to the overall density contrast 𝛿 can be
modelled with the bias terms 𝑏 (𝑛) (𝑚, 𝑧) (Mo et al., 1997),

𝛿H(𝒙, 𝑡 |𝑚) = 𝑏1(𝑚, 𝑧𝑡) 𝛿(𝒙, 𝑡) +
1
2 𝑏2(𝑚, 𝑧𝑡) 𝛿

2(𝒙, 𝑡) + 1
6 𝑏3(𝑚, 𝑧𝑡) 𝛿

3(𝒙, 𝑡) + . . . , (2.83)

where 𝑧𝑡 is the redshift at cosmic time 𝑡. Here, we only take into account the �rst-order bias,
which can be approximated with

𝑏1(𝑚, 𝑧) = 1 + 𝑞 𝜈
2(𝑧) − 2
𝛿c(𝑧)

+ 2𝑝
1 + 𝑞𝑝 𝜈2𝑝 (𝑧)

1
𝛿c(𝑧)

, (2.84)

with 𝑞 = 0.707 and 𝑝 = 0.3 for a Sheth-Tormen HMF (Scoccimarro et al., 2001). With this bias,
the halo power spectrum is

𝑃H(𝒌,−𝒌, 𝑡 |𝑚1,𝑚2) = 𝑏1(𝑚1, 𝑧𝑡) 𝑏1(𝑚2, 𝑧𝑡) 𝑃lin(𝑘 , 𝑡) , (2.85)

where 𝑃lin is the linear matter power spectrum, given by Eq. (2.51). The halo bispectrum is

𝐵H(𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡 |𝑚1,𝑚2,𝑚3) = 𝑏1(𝑚1, 𝑧𝑡) 𝑏1(𝑚2, 𝑧𝑡) 𝑏1(𝑚3, 𝑧𝑡) 𝐵lin(𝑘1, 𝑘2, 𝜙, 𝑡) , (2.86)

where 𝜙 is the angle between 𝒌1 and 𝒌2, and 𝐵lin is the linear matter bispectrum, given by
Eq. (2.53).
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2.3.4 Halo occupation distribution

To predict the galaxy-matter correlation, the halo model requires two assumptions on the galaxy
distribution: the spatial galaxy distribution inside a halo 𝑛(𝒙 |𝑚) = 𝑛̄ 𝑢g(𝒙 |𝑚) and the HOD
𝑁 (𝑚) which is the number of galaxies 𝑁 in a halo with mass 𝑚.

Often, it is assumed that the spatial galaxy distribution follows the halo density pro�le. We also
assume that both galaxies and dark matter follow NFW pro�les. However, we allow the galaxy
distribution to have a di�erent concentration 𝑐g than the dark matter distribution. For this, we
introduce the parameter 𝑓 = 𝑐g

𝑐
, where 𝑐 is the dark matter concentration. So, if 𝑢 is an NFW

pro�le with concentration 𝑐, 𝑢g is an NFW pro�le with concentration 𝑐g = 𝑓 𝑐. If 𝑓 = 1, the
galaxy distribution follows the matter distribution exactly.

Modelling the HOD is slightly more complicated. For the calculation of two- and three-point
galaxy-matter statistics, we need models for the mean halo occupation number 〈𝑁 |𝑚〉 and
the mean number of galaxy pairs 〈𝑁 (𝑁 − 1) |𝑚〉 per halo mass 𝑚. If we calculate the galaxy-
galaxy-matter bispectrum for galaxies from di�erent populations 1 and 2, we further need the
correlation 〈𝑁1 𝑁2 |𝑚〉 of their HODs 𝑁1(𝑚) and 𝑁2(𝑚).

Using these assumptions, together with the other ingredients of the halo model, we can model
the correlation functions of the galaxy and matter distribution. In particular, we can model
the galaxy-galaxy-matter correlation function, as we show in Chapter 5. These correlation
functions can be projected and transformed to observables from gravitational lensing, which is
one of the best methods to explore the connection of baryonic and dark matter. We explain this
method in the following section.

2.4 Gravitational lensing

Gravitational lensing is the method-of-choice to explore the matter distribution of the Universe,
as its e�ects are well-understood, and it acts both on baryonic and dark matter. It describes that,
as a consequence of GR, large masses warp space-time and thereby bend light rays similarly to
optical lenses (Einstein, 1936). Accordingly, images of distant objects appear distorted.

Dyson et al. (1920) made the �rst detection of the gravitational lensing e�ect. Their expedition
observed the apparent positions of stars in the Hyades cluster during the solar eclipse of 1919
and compared them to the position of the stars at night. The positions shifted during the solar
eclipse because the Sun acted as a gravitational lens and its mass bent the light rays from the
stars. The measured shift in the position of the stars was consistent with the predictions by GR
and increased scienti�c and public support for Einstein’s theory immensely.

Today, gravitational lensing is mostly observed by measuring the distortion of galaxy shapes by
thematter content of the Universe, as �rst proposed by Zwicky (1937a,b). This measurement is an
ideal tool for constraining the distribution of dark matter as well as galaxy-matter-correlations.
A recent review of gravitational lensing can be found in Bartelmann (2010).
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Figure 2.4: Sketch of a gravitational lensing system. The distances 𝐷s, 𝐷d, and 𝐷ds are the angular
diameter distances to the source, to the lens, and from the lens to source, respectively. From Bartelmann
and Schneider (2001).

2.4.1 Lens equation

We consider gravitational lensing in the weak-�eld limit of GR, with the lensing systems
embedded in Minkowskian space-time. For this, we assume that the lenses gravitational
potential Φ, its typical scales 𝐿 and intrinsic velocity v are all small, so,

|Φ| � 𝑐2 , 𝐿 � 𝑐

𝐻0
, |v| � 𝑐 . (2.87)

Figure 2.4 shows a schematic sketch of a gravitational lens system. Light from a background
object, the source, is bent by the gravitational potential of a foreground object, the lens. This
de�ection shifts the apparent position of the source. Using the distances and angles de�ned in
Fig. 2.4 and the assumption that the gravitational potential of the lens lies on a single plane,

𝜷 = 𝜽 − 𝐷ds
𝐷s

𝜶̂ =: 𝜽 − 𝜶 , (2.88)

where we de�ned the reduced de�ection angle 𝜶. The reduced de�ection angle depends on the
surface mass density Σ of the lens,

Σ(𝜽) =
∫

d𝑟3 𝜌(𝒓) , (2.89)

with 𝒓 = 𝑟3 (𝜽 , 1). With this surface mass density, we can de�ne the lensing potential Ψ,

Ψ(𝜽) = 4𝐺
𝑐2

𝐷d 𝐷ds
𝐷s

∫
d2𝜃′ Σ(𝜽′) ln( |𝜽 − 𝜽′|) . (2.90)
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The reduced de�ection angle 𝛼 is the gradient of this potential, so 𝜷 is related to the lensing
potential by

𝜷 = 𝜽 − ∇Ψ . (2.91)

Taking the gradient of Eq. (2.91) and linearizing it, leads to

𝜕𝑗 𝛽𝑖 = 𝛿𝑖 𝑗 − 𝜕𝑖𝜕𝑗Ψ =: 𝐴𝑖 𝑗 , (2.92)

where 𝐴 is the Jacobian of the lensing potential. It is given by

𝐴(𝜽) =
(
1 − 𝜕2

𝑖
Ψ −𝜕𝑖𝜕𝑗Ψ

−𝜕𝑖𝜕𝑗Ψ 1 + 𝜕2
𝑗
Ψ

)
=:

(
1 − 𝜅 − 𝛾1 −𝛾2

−𝛾2 1 − 𝜅 + 𝛾1

)
, (2.93)

with the convergence 𝜅 and the complex shear 𝛾c = 𝛾1 + i 𝛾2.

The shear is often more conveniently expressed with respect to a given orientation 𝜙. The
rotated shear 𝛾(𝝑; 𝜙) is de�ned as

𝛾(𝝑; 𝜙) = −e−2i𝜙 𝛾c(𝝑) =: 𝛾t(𝝑; 𝜙) + i 𝛾×(𝝑; 𝜙) , (2.94)

where 𝛾t is the tangential shear and 𝛾× is the cross shear.

The convergence is a normalised version of the surface mass density,

𝜅(𝜽) = 4𝜋 𝐺
𝑐2

𝐷d 𝐷ds
𝐷s

Σ(𝜽) =: Σ−1
crit(𝑧d, 𝑧s) Σ(𝜽) , (2.95)

where Σcrit is the critical surface mass density6 and 𝑧d and 𝑧s are the redshifts of the lens and
source respectively.

Shear and convergence are related to the reduced shear 𝑔,

𝑔 =
𝛾c

1 + 𝜅 =
𝛾1 + i 𝛾2
1 + 𝜅 . (2.96)

Since 𝜅 and 𝛾c are both derivatives of the lensing potential, their Fourier transforms 𝜅(ℓ) and
𝛾c(ℓ) can be transformed into each other, using the Kaiser-Squires relation (Kaiser and Squires,
1993)

𝛾c(ℓ) = e2i 𝜙ℓ 𝜅(ℓ) , (2.97)

where 𝜙ℓ is the polar angle of ℓ.

6 This critical surface mass density is not the comoving critical surface mass density Σcrit, com, de�ned by

Σ−1
crit,com (𝑧d, 𝑧s) =

4𝜋 𝐺
𝑐2

𝐷A (𝑧d, 𝑧s) 𝐷A (𝑧d)
(1 + 𝑧d) 𝐷A (𝑧s)

,

and used in some gravitational lensing studies. Appendix C in Dvornik et al. (2018) discusses the implications of
di�erent de�nitions of the critical surface mass density.
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Aside from the distortion of the source shape, gravitational lensing also magni�es images. This
magni�cation 𝜇 a�ects the observed �ux 𝑠 of a source �ux 𝑠0 as

𝑠 = 𝜇 𝑠0 , (2.98)

and is given as
𝜇 =

1
(1 − 𝜅)2 − |𝛾c |2

. (2.99)

Magni�cation by gravitational lenses can be used as a ‘natural telescope’ as it enables the
observation of faint sources, which would be undetectable otherwise (see e.g. Richard et al.,
2011; Schmidt et al., 2017). It also a�ects the observed number density of galaxies and therefore
impacts measurements of GGL (see Sect. 2.4.4) and other weak gravitational lensing e�ects. We
study its e�ect on G3L in Chapter 3.

2.4.2 Weak gravitational lensing

Equation (2.88) can be used in two di�erent regimes. For 𝜅 & 1, we are in the strong lensing
regime, where source galaxy shapes are strongly distorted. Strongly lensed sources appear as
arcs, complete rings, or even multiple images. However, for this work, we are concerned with
weak lensing, where 𝜅 � 1 (see Bartelmann and Schneider, 2001, for a review). Weak lensing
distorts galaxy shapes only slightly. Consequently, the images of weakly lensed galaxies look
far less impressive for the casual observer than of strongly lensed galaxies. The shape distortion
due to weak lensing is usually smaller than the intrinsic scatter of galaxy shapes, so it is not
noticeable by observing individual galaxies. However, there are many more weakly lensed
galaxies than strongly lensed sources. Therefore, weak lensing is ideal for measurements of the
statistics of the matter distribution, while strong lensing gives mainly information on speci�c
high-density objects such as galaxy clusters.

To �rst order, weak gravitational lensing only changes the apparent position and ellipticity of a
source galaxy. The ellipticity of a galaxy with semi-major and semi-minor axes 𝑎 and 𝑏 is

𝜖 =
𝑎 − 𝑏
𝑎 + 𝑏 e

2i𝜙 , (2.100)

where 𝜙 is the angle between the galaxies semi-major axis and the 𝑥-axis of the coordinate
frame. Due to weak lensing, the observed ellipticity is composed of the intrinsic ellipticity 𝜖int
and the reduced shear 𝑔,

𝜖 =
𝜖int + 𝑔

1 + 𝑔∗ 𝜖int
, (2.101)

where the asterisk denotes complex conjugation. In the weak lensing regime 𝑔 ' 𝛾c, so we can
in principle estimate the shear directly from the observed ellipticity.

However, for weak lensing, the shear is usually small compared to the intrinsic ellipticity of
a galaxy. Moreover, as the intrinsic ellipticity is unknown, we cannot estimate the shear for
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2.4 Gravitational lensing

any single galaxy. Therefore, instead of measuring the shear from a single galaxy, we average
over the observed ellipticities of many sources. If the intrinsic ellipticities of the sources are
uncorrelated to the shear, the average observed ellipticity is

〈𝜖〉 = 〈𝜖int〉 + 〈𝑔〉 ' 〈𝜖int〉 + 〈𝛾c〉 . (2.102)

The �rst term vanishes, if galaxies are randomly orientated and have uncorrelated ellipticities,
so we can �nd the shear with

〈𝛾c〉 ' 〈𝜖〉 . (2.103)

The ellipticities of source galaxies are accordingly unbiased estimators of 𝛾c.

2.4.3 Projected spectra and Limber equation

In lensing, all observables are projections on the sky. The de�ection angle alone only constrains
the surface mass density and cannot directly yield the three-dimensional matter distribution.
The three-dimensional density contrast 𝛿 is related to the lensing convergence by projecting it
along the comoving distance 𝑤 with

𝜅(𝜽) =
3𝐻2

0 Ωm

2𝑐2

∫ ∞

0
d𝑤 𝑞(𝑤) 𝑓𝐾 (𝑤)

𝛿[®x(𝜽 ,𝑤), 𝑡𝑤]
𝑎(𝑤) , (2.104)

where 𝑓𝐾 is de�ned by Eq. (2.3), 𝑡𝑤 is the cosmic time at comoving distance 𝑤, 𝒙(𝜽 ,𝑤) =

( 𝑓𝐾 (𝑤) 𝜽 ,𝑤) and
𝑞(𝑤) =

∫ ∞

𝑤

d𝑤′ 𝑝s(𝑤′) 𝑓𝐾 (𝑤
′ − 𝑤)

𝑓𝐾 (𝑤′) , (2.105)

with the distribution 𝑝s of sources with comoving distance. With this relation for 𝜅, we can
infer the projected matter power spetrum 𝑃𝜅𝜅 (ℓ) which is de�ned by

(2𝜋)3 𝛿D(ℓ1 + ℓ2)𝑃𝜅𝜅 (ℓ1) = 〈𝜅(ℓ1) 𝜅(ℓ2)〉 , (2.106)

where 𝜅 is the Fourier transform of 𝜅. This projected power spectrum can be derived from the
three-dimensional power spectrum 𝑃(𝑘 , 𝑡).

In general, this would require decomposing 𝜅 into spherical harmonics and evaluating the
correlation between density �uctuations at di�erent cosmic times. However, under two as-
sumptions, the Limber approximation (Kaiser, 1992) can be used. These assumptions are, �rst,
that the sky can be approximated by a plane (�at-sky-approximation), and second, that 𝑞(𝑤)
varies little over the coherence length of the described structures. These assumptions hold if the
angular scales on which 𝑃𝜅𝜅 is evaluated are small, and the 𝑞 are not too narrow. For example,
Simon (2007) found, that for broad 𝑞, the Limber approximation is accurate at the 10% level for
scales less than a few degrees. With these assumptions, the projected matter power spectrum is
Universe is

𝑃𝜅𝜅 (ℓ) =
9𝐻4

0 Ω
2
m

4𝑐4

∫
d𝑤 𝑞2(𝑤)

𝑎(𝑤) 𝑃(ℓ/ 𝑓𝐾 (𝑤), 𝑡𝑤) . (2.107)
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We also de�ne the projected galaxy number density 𝑁 (𝜽), which is related to the three-
dimensional number density 𝑛[𝒙(𝜽 ,𝑤), 𝑡𝑤] at comoving distance 𝑤 by the selection function
𝜈(𝑤),

𝑁 (𝜽) =
∫

d𝑤 𝜈(𝑤) 𝑛[𝒙(𝜽 ,𝑤), 𝑡𝑤] . (2.108)

The selection function gives the fraction of galaxies at comoving distance 𝑤 included in the
galaxy sample. For a �ux-limited sample, this corresponds to the fraction of galaxies brighter
than the magnitude limit. The selection function 𝜈(𝑤) is related to the distribution 𝑝(𝑤) of the
galaxies with comoving distance, according to (Schneider, 2005)

𝜈(𝑤) = 𝑝(𝑤)
∫
d2𝜃 𝑁 (𝜽)∫

d2𝜃 𝑛[𝒙(𝜽 ,𝑤), 𝑡𝑤]
. (2.109)

With 𝑁 (𝜽), we can de�ne the galaxy convergence 𝜅g as

𝜅g(𝜽) =
𝑁 (𝜽)
𝑁̄

− 1 , (2.110)

where 𝑁 is the mean projected galaxy number density. The galaxy convergence determines the
projected galaxy-matter power spectrum 𝑃g𝜅 , de�ned as

(2𝜋)3 𝛿D (ℓ1 + ℓ2) 𝑃g𝜅 (ℓ1) =
〈
𝜅(ℓ1) 𝜅g(ℓ2)

〉
, (2.111)

and the projected galaxy-galaxy-matter bispectrum 𝐵gg𝜅 , de�ned as

(2𝜋)3 𝛿D (ℓ1 + ℓ2 + ℓ3) 𝐵gg𝜅 (ℓ1, ℓ2, 𝜙) =
〈
𝜅(ℓ1) 𝜅g(ℓ2) 𝜅g(ℓ3)

〉
. (2.112)

These can be derived from their three-dimensional counterparts in a similar way as the projected
matter power spectrum. Under the same assumptions as for the Limber approximation, that is a
�at sky and a slowly varying 𝜈(𝑤), they are (Schneider and Watts, 2005)

𝑃g𝜅 (ℓ) =
3𝐻2

0 Ωm

2𝑐2

∫
d𝑤 𝑞(𝑤) 𝑝(𝑤)

𝑤 𝑎(𝑤) 𝑃g𝛿 (ℓ/ 𝑓𝐾 (𝑤), 𝑡𝑤) , (2.113)

𝐵gg𝜅 (ℓ1, ℓ2, 𝜙) =
3𝐻2

0 Ωm

2𝑐2

∫
d𝑤 𝑞(𝑤) 𝑝2(𝑤)

𝑤3 𝑎(𝑤) 𝐵gg𝛿 (ℓ1/ 𝑓𝐾 (𝑤), ℓ2/ 𝑓𝐾 (𝑤), 𝜙, 𝑡𝑤) . (2.114)

2.4.4 Galaxy-galaxy-lensing

Weak gravitational lensing is an excellent tool to measure the galaxy-matter correlations. To
estimate the galaxy-matter power spectrum 𝑃g𝛿 (𝑘), the method-of-choice is GGL. For GGL,
we measure the ellipticity of background source galaxies and their angular separation from
foreground lens galaxies. Then, we average the ellipticities of all sources with separation 𝝑 to a
lens to �nd an estimate of

〈𝛾t〉 (𝝑) =
1
𝑁̄

〈𝑁 (𝜽) 𝛾t(𝜽 + 𝝑; 𝜙)〉 , (2.115)
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2.4 Gravitational lensing

where 𝜙 is the polar angle of 𝝑. This quantity is related to the projected galaxy-matter power
spectrum 𝑃g𝜅 by

〈𝛾t〉 (𝝑) =
∫ d2𝑙

(2𝜋)2 ei𝝑·ℓ e2i(𝜙𝑙−𝜙) 𝑃g𝜅 (ℓ) , (2.116)

where 𝜙𝑙 is the polar angle of ℓ.

GGL is an established tool to constrain the galaxy-matter power spectrum (Mandelbaum et al.,
2005, 2006), parameters of the halo model (Dvornik et al., 2018), or SAMs (Saghiha et al., 2017;
Renneby et al., 2020). It can also be combined with other probes to constrain cosmological
parameters (Abbott et al., 2018; van Uitert et al., 2018). However, higher-order statistics, such as
the galaxy-galaxy-matter bispectrum are not accessible to GGL.

Magni�cation due to gravitational lensing a�ects GGL. In particular, due to lensing by the
LSS, the number density of observed lens galaxies is a�ected. As detailed by Bartelmann and
Schneider (2001), the number density of observed lens galaxies at angular position 𝝑 and redshift
𝑧 is changed from the intrinsic number density 𝑛0(𝝑, 𝑧) to

𝑛(𝝑, 𝑧) = 𝑛0(𝝑, 𝑧) + 2 [𝛼(𝑧) − 1] 𝑛̄(𝑧) 𝜅(𝝑, 𝑧) , (2.117)

where 𝜅(𝝑, 𝑧) is the convergence caused by all matter in front of redshift 𝑧, and 𝛼(𝑧) is the
negative slope of the luminosity function Φ(𝑆, 𝑧) at the �ux limit 𝑆lim of lens galaxies. We
de�ne 𝛼 by

𝛼 = −
d log10Φ
d log10 𝑆

����
𝑆=𝑆lim

. (2.118)

This change in number density correlates with the shear of source galaxies and therefore causes
an additional signal to 〈𝛾t〉. This e�ect, while often overlooked, has a signi�cant impact on
observed shear pro�les, the overall GGL-signal and halo mass estimates (Simon et al., 2008;
Unruh et al., 2019, 2020). In Chapter 3, we study how magni�cation of lens galaxies impacts
observations of the galaxy-galaxy-matter bispectrum.

2.4.5 Galaxy-galaxy-galaxy-lensing

We can study the galaxy-galaxy-matter bispectrum with G3L (Schneider and Watts, 2005).
This e�ect includes the lensing of source galaxies by lens galaxy pairs, which determines the
lens-lens-shear correlation. Unlike GGL or galaxy clustering, G3L depends on the galaxy-
matter three-point correlation and the HOD of galaxy pairs. In principle, it also depends on
the ellipticity of dark matter halos as well as misalignments between the galaxy and matter
distribution because the galaxy pair orientation introduces a preferred direction.

The lens-lens-shear correlation was measured for lens pairs separated by several Mpc to detect
inter-cluster �laments (Mead et al., 2010; Clampitt et al., 2016; Epps and Hudson, 2017; Xia
et al., 2020). However, for the assessment of SAMs, it is more suitable to study the correlation
at smaller, sub-Mpc scales. At these scales, the G3L signal is more sensitive to the small-scale
physics that vary between di�erent SAMs, because it depends primarily on galaxy pairs with
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2 Fundamentals of cosmology and gravitational lensing

Figure 2.5: Geometry of a G3L system with one source and two lens galaxies. Adapted from Schneider
and Watts (2005).

galaxies in the same dark matter halo. For lens pairs with galaxies of similar stellar mass or
colour, the small-scale lens-lens-shear correlation was determined by Simon et al. (2008) in
the Red-sequence Cluster Survey (RCS; Gladders and Yee, 2005) and Simon et al. (2013) in the
CFHTLenS. The G3L measured in CFHTLenS was compared to predictions by multiple SAMs
implemented in the MR by Saghiha et al. (2017) and Simon et al. (2019). They demonstrated
that G3L is more e�ective in evaluating SAMs than GGL and that the H15 SAM agreed with
the observations in CFHTLenS, while the L12 SAM predicts too large G3L signals.

For this work, we are concerned with the lensing of single sources around pairs of lens galaxies.
Figure 2.5 depicts the corresponding geometric con�guration of lens and source galaxies. The
main observable of this type of G3L is the correlation function G̃, de�ned as

G̃(𝝑1,𝝑2) =
1
𝑁

2

〈
𝑁 (𝜽 + 𝝑1) 𝑁 (𝜽 + 𝝑2) 𝛾(𝜽 ;

𝜑1 + 𝜑2
2 )

〉
, (2.119)

or G, which is
G(𝝑1,𝝑2) =

〈
𝜅g(𝜽 + 𝝑1) 𝜅g(𝜽 + 𝝑2) 𝛾(𝜽 ;

𝜑1 + 𝜑2
2 )

〉
. (2.120)

The two correlation functions are linked by

G(𝝑1,𝝑2) =G̃(𝝑1,𝝑2) −
1
𝑁

〈𝑁 (𝜽 + 𝝑1)𝛾t(𝜽 ; 𝜑1)〉 e−i𝜙 −
1
𝑁

〈𝑁 (𝜽 + 𝝑1)𝛾t(𝜽 ; 𝜑2)〉 ei𝜙 (2.121)

=G̃(𝝑1,𝝑2) − 〈𝛾t〉 (𝝑1)e−i𝜙 − 〈𝛾t〉 (𝝑2)ei𝜙 , (2.122)

38



2.4 Gravitational lensing

so G̃ contains terms arising from GGL, while G is only the third-order correlation due to G3L.
The correlation functions are related to the projected galaxy-galaxy-matter bispectrum by

G(𝝑1,𝝑2) =
∫ d2ℓ1

(2𝜋)2
∫ d2ℓ2

(2𝜋)2 e−i(ℓ1·𝝑1+ℓ2·𝝑2) 1
|ℓ1 + ℓ2 |2

(
ℓ1 ei𝜙1 + ℓ2 ei𝜙2

)2
𝐵gg𝜅 (ℓ1, ℓ2, 𝜙ℓ) ,

(2.123)
where 𝜙ℓ is the angle between ℓ1 and ℓ2.

Due to statistical homogeneity and isotropy, G̃ andG only depend on the lens-source separations
𝜗1 and 𝜗2 and the angle 𝜙 between 𝝑1 and 𝝑2. Consequently, we write

G̃(𝝑1,𝝑2) =: G̃(𝜗1, 𝜗2, 𝜙) , (2.124)
G(𝝑1,𝝑2) =: G(𝜗1, 𝜗2, 𝜙) . (2.125)

Simon et al. (2008) showed how to estimate G̃(𝜗1, 𝜗2, 𝜙) by averaging the ellipticities of source
galaxies over all lens-lens-source triplets, where 𝜗1 (𝜗2) is the separation between the �rst
(second) lens and the source. Their estimator of G̃ in a bin 𝐵 of 𝜗1, 𝜗2 and 𝜙 for 𝑁s source, and
𝑁d lens galaxies is

G̃est(𝐵) = −
∑𝑁d
𝑖, 𝑗=1

∑𝑁s
𝑘=1 𝑤𝑘 𝜖𝑘 e

−i(𝜑𝑖𝑘+𝜑 𝑗𝑘 )
[
1 + 𝜔( |𝜽𝑖 − 𝜽 𝑗 |)

]
Δ𝑖 𝑗 𝑘 (𝐵)∑𝑁d

𝑖, 𝑗=1
∑𝑁s
𝑘
𝑤𝑘 Δ𝑖 𝑗 𝑘 (𝐵)

(2.126)

=: −
∑
𝑖, 𝑗 ,𝑘 𝑤𝑘 𝜖𝑘 e−i(𝜑𝑖𝑘+𝜑 𝑗𝑘 )

[
1 + 𝜔( |𝜽𝑖 − 𝜽 𝑗 |)

]
Δ𝑖 𝑗 𝑘 (𝐵)∑

𝑖, 𝑗 ,𝑘 𝑤𝑘 Δ𝑖 𝑗 𝑘 (𝐵)
, (2.127)

with

Δ𝑖 𝑗 𝑘 (𝐵) =
{
1 for

(
|𝜽 𝑘 − 𝜽𝑖 |, |𝜽 𝑘 − 𝜽 𝑗 |, 𝜙𝑖 𝑗 𝑘

)
∈ 𝐵

0 otherwise
. (2.128)

The angle 𝜑𝑖𝑘 (𝜑 𝑗 𝑘 ) is the polar angle of 𝜽 𝑘 − 𝜽𝑖 (𝜽 𝑘 − 𝜽 𝑗 ) and 𝜙𝑖 𝑗 𝑘 is the opening angle between
𝜽 𝑘 − 𝜽𝑖 and 𝜽 𝑘 − 𝜽 𝑗 . The 𝑤𝑘 are the weights of the measured ellipticities. Source galaxies with
more precise shape measurements receive a higher ellipticity weight 𝑤𝑘 . The weight, therefore,
increases the contribution of source galaxies with more precise shapes to the estimator. For
the simulated shear data in Chapters 3 and 4, we set the weights to 𝑤𝑘 = 1 for all sources. This
estimator also includes the angular two-point correlation function 𝜔, which takes account of the
clustering of lens galaxies. The two-point correlation can be estimated with the Landy-Szalay
estimator (Landy and Szalay, 1993),

𝜔(𝜃) = 𝑁2
r 𝐷𝐷 (𝜃)
𝑁2
d 𝑅𝑅(𝜃)

− 2 𝑁r 𝐷𝑅(𝜃)
𝑁d 𝑅𝑅(𝜃)

+ 1 . (2.129)

Here, 𝐷𝐷 (𝜃) is the paircount of lens galaxies, 𝑅𝑅(𝜃) is the paircount of randoms, which are
unclustered galaxies, and 𝐷𝑅(𝜃) is the cross paircount of lenses and randoms at separation 𝜃.
The total numbers of lenses and randoms are denoted by 𝑁d and 𝑁r.
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2 Fundamentals of cosmology and gravitational lensing

This estimator does not take into account redshift information on the galaxies. Therefore,
lens-lens-source triplets with lenses separated along the line-of-sight have the same weight in
the estimator as triplets whose lens galaxies are physically close. These separated lens pairs
decrease the signal-to-noise ratio (S/N), as shown by Simon et al. (2019). We, therefore, propose
a new estimator that uses lens redshift information to improve the S/N in Chapter 3.

2.4.6 Aperture Statistics

Both the GGL and the G3L correlation functions can be converted to aperture statistics, �rst
introduced by Schneider et al. (1998). These are expectation values of products of the aperture
mass M𝜃 (𝝑) and the aperture number count N𝜃 (𝝑), which are de�ned as

M𝜃 (𝝑) =
∫

d2𝜗′𝑈𝜃 ( |𝝑 − 𝝑′|) 𝜅(𝝑′) , (2.130)

and
N𝜃 (𝝑) =

1
𝑁

∫
d2𝜗′𝑈𝜃 ( |𝝑 − 𝝑′|) 𝑁 (𝝑′) , (2.131)

with the �lter function𝑈𝜃 with aperture scale radius 𝜃,

𝑈𝜃 (𝜗) =
1
𝜃2
𝑢

(
𝜗

𝜃

)
. (2.132)

As long as this �lter function is compensated, that is
∫
d𝜗 𝜗𝑈𝜃 (𝜗) = 0, the aperture mass can

be easily calculated from the tangential shear 𝛾t. For this, a new �lter 𝑄𝜃 is derived from 𝑈𝜃
as

𝑄𝜃 (𝜗) =
2
𝜗2

∫ 𝜗

0
d𝜗′ 𝜗′𝑈𝜃 (𝜗′) −𝑈𝜃 (𝜗) . (2.133)

With this �lter, the aperture mass is

M𝜃 (𝝑) =
∫

d2𝜗′𝑄𝜃 ( |𝝑 − 𝝑′|) 𝛾t(𝝑′) . (2.134)

Analogous toM, we de�ne the B-mode of the aperture mass as

M⊥,𝜃 (𝝑) =
∫

d2𝜗′𝑄𝜃 ( |𝝑 − 𝝑′|) 𝛾×(𝝑′) , (2.135)

with the cross shear 𝛾×. Aperture statistics involving M⊥ should vanish, as the shear is caused
by a scalar gravitational potential. Non-vanishing B-modes are an indicator of additional e�ects,
such as systematic errors in the analysis, clustering of sources (Schneider et al., 2002) or intrinsic
alignments (Heymans et al., 2006).

For GGL, the relevant aperture statistics is 〈NM〉 (𝜃1, 𝜃2), given as

〈NM〉 (𝜃1, 𝜃2) =
〈
N𝜃1 (𝝑1) M𝜃2 (𝝑2)

〉
(2.136)

=
1
𝑁

∫
d2𝜗1

∫
d2𝜗2𝑈𝜃1 (𝝑1)𝑈𝜃2 (𝝑2) 〈𝑁 (𝝑1) 𝜅(𝝑2)〉 , (2.137)
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while for G3L the relevant aperture statistics is 〈NNM〉,

〈NNM〉 (𝜃1, 𝜃2, 𝜃3) (2.138)
=

〈
N𝜃1 (𝝑1) N𝜃2 (𝝑2) M𝜃3 (𝝑3)

〉
=

1
𝑁

2

∫
d2𝜗1

∫
d2𝜗2

∫
d2𝜗3𝑈𝜃1 (𝝑1)𝑈𝜃2 (𝝑2)𝑈𝜃3 (𝝑3) 〈𝑁 (𝝑1) 𝑁 (𝝑2) 𝜅(𝝑3)〉 . (2.139)

The aperture statistics can be easier related to the projected galaxy-matter polyspectra than the
direct GGL and G3L correlation functions. For GGL,

〈NM〉 (𝜃1, 𝜃2) =
∫ d2ℓ

(2𝜋)2𝑈̂𝜃1 (ℓ) 𝑈̂𝜃2 (ℓ) 𝑃g𝜅 (ℓ) , (2.140)

and for G3L

〈NNM〉 (𝜃1, 𝜃2) =
∫ d2ℓ1

(2𝜋)2
∫ d2ℓ2

(2𝜋)2𝑈̂𝜃1 (ℓ1) 𝑈̂𝜃2 (ℓ2) 𝑈̂𝜃3 ( |ℓ1 + ℓ2 |)𝐵gg𝜅 (ℓ1, ℓ2, 𝜙) , (2.141)

where 𝑈̂𝜃 is the Fourier transform of𝑈𝜃 .

Throughout this work, we use an exponential �lter function,

𝑢(𝑥) = 1
2𝜋

(
1 − 𝑥

2

2

)
exp

(
−𝑥

2

2

)
. (2.142)

For this choice, the correlation function G̃ can be connected to 〈NNM〉 with an analytical
expression,

〈NNM〉 (𝜃1, 𝜃2, 𝜃3) + i 〈NNM⊥〉 (𝜃1, 𝜃2, 𝜃3) (2.143)

=

∫ ∞

0
d𝜗1 𝜗1

∫ ∞

0
d𝜗2 𝜗2

∫ 2𝜋

0
d𝜙 G̃(𝜗1, 𝜗2, 𝜙) ANNM (𝜗1, 𝜗2, 𝜙 | 𝜃1, 𝜃2, 𝜃3) ,

with the kernel function ANNM (𝜗1, 𝜗2, 𝜙 | 𝜃1, 𝜃2, 𝜃3) given in the appendix of Schneider and
Watts (2005). We measure aperture statistics only for equal scale radii 𝜃1 = 𝜃2 = 𝜃3. Therefore,
we use the abbreviations

〈NNM〉 (𝜃) := 〈NNM〉 (𝜃, 𝜃, 𝜃) , (2.144)

and
ANNM (𝜗1, 𝜗2, 𝜙 | 𝜃) := ANNM (𝜗1, 𝜗2, 𝜙 | 𝜃1, 𝜃2, 𝜃3) . (2.145)

The aperture statistics can be used to constrain the galaxy bias factor, discussed in Sect. 2.1.3 (e.g
Schneider and Watts, 2005). For two galaxy populations with linear deterministic bias factors
𝑏1 and 𝑏2 and aperture number counts N1 and N2, this simple model predicts for the aperture
statistics

〈N1N2M〉 ∝ 𝑏1 𝑏2 . (2.146)
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From this follows that

𝑅(𝜃) := 〈N1N2M〉 (𝜃)√︁
〈N1N1M〉 (𝜃) 〈N2N2M〉 (𝜃)

=
𝑏1 𝑏2√︃
𝑏21 𝑏

2
2

= 1 . (2.147)

In Chapter 4, we measure 𝑅 in the observation and simulation to assess the assumption of linear
deterministic bias.

2.4.7 Gravitational Lensing in 𝑵-body simulations

To study gravitational lensing with 𝑁-body simulations, the three-dimensional density con-
trast 𝛿, which is given by these simulations, needs to be converted to the two-dimensional
convergence 𝜅. To obtain 𝜅, one uses ray-tracing algorithms. There exist a variety of di�erent
ray-tracing methods, some of which were reviewed and compared by Hilbert et al. (2020).

These algorithms are usually applied to a simulation after it was fully calculated, that is in ‘post-
processing’. This approach makes it easier to change source redshifts or observer orientations,
as the simulation only needs to run once. However, the number of simulational snapshots
limits the accuracy of the resulting convergence maps. If only a small number of snapshots are
available, the convergence is averaged over a larger time interval, so the resulting maps can
be biased. There are also approaches to compute the convergence ‘on the �y’ that is together
with the full particle distribution, (e.g. Barreira et al., 2016), but these are computationally more
expensive.

Post-processing ray-tracing algorithms all operate similarly. First, these algorithms project the
matter in each snapshot, either on lens planes perpendicular to the line-of-sight (Hilbert et al.,
2009; Giocoli et al., 2016) or on spheres centred on the observer (Fosalba et al., 2008; Fabbian
et al., 2018). Then, light rays are traced backwards from the observer to the source plane. At
each lens plane/sphere, the de�ection angle of the rays is calculated from the lensing potential
of all matter at the plane/sphere. Adding up the de�ections of all planes up to the source plane
gives the total de�ection angle due to the matter distribution. The gradient of this de�ection
angle corresponds to the lensing Jacobian in Eq. (2.92). The Jacobian can be converted to maps
of the shear 𝛾 and convergence 𝜅.

While di�erent ray-tracing algorithms di�er in details, such as the choice of the projection
method, Hilbert et al. (2020) found that the predicted convergence maps agree in general very
well. Di�erences exist mainly in the predicted mean convergence. However, this quantity is not
directly observable in weak lensing measurements, as the shear does not depend on it. After
normalising the convergence maps of di�erent ray-tracing algorithms, di�erences are only
of the order of a few percents. Consequently, the choice of the ray-tracing algorithm is not
particularly critical for the comparison of simulations to observations. We use the ray-tracing
algorithm by Hilbert et al. (2009) on the MR to study G3L in the following chapters.
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Improving the precision and
accuracy of galaxy-galaxy-galaxy
lensing

3
This chapter is based on Linke et al. (2020a), published in Astronomy & Astrophys-
ics.

In this chapter, we discuss how to improve measurements of G3L by increasing both the accuracy
and precision of the measured aperture statistics. These improvements use precise redshift
estimates for the lens galaxies, as well as an adaptive binning scheme for the estimation of the
three-point correlation function G̃. We motivate our improvements in Sect. 3.1, and explain
their application in Sect. 3.2. We apply the improved and original measurement schemes to
two di�erent types of catalogues described in Sect. 3.3, one based on simple, but unrealistic
assumptions on the galaxy distribution and one based on the SAM by H15, implemented in the
MR. The resulting aperture statistics are presented in Sect. 3.4 and discussed in Sect. 3.5.

3.1 Motivation

As explained in Sect. 2.4.4, G3L is a sensitive probe of galaxy formation. However, previous
measurements of this e�ect used only photometric data without precise redshift estimates.
Consequently, pairs of physically close lens galaxies, which are highly correlated, had the same
weight as galaxy pairs separated along the line of sight with little to no correlation. These
separated galaxies decrease the signal and lower the S/N.

Additionally, G3L is a�ected by the magni�cation of lens galaxies caused by the LSS in front
of the lenses. This magni�cation a�ects the number density of lens galaxies in a survey.
Because source galaxies are also lensed by the LSS, the shear of sources correlates with the
lens magni�cation, and an additional correlation signal arises. This signal has not yet been
quanti�ed for G3L, but was found to a�ect GGL by up to 5 % in CFHTLenS (Simon and Hilbert,
2018).

Consequently, we introduce three improvements to the G3L estimator used by Simon et al.
(2008, 2013) and given in Eq. (2.126). These are (i) weighting the lens galaxy pairs according to
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their redshift di�erence, (ii) using a new, adaptive binning method for the correlation function
to reduce biases, and (iii) estimating the magni�cation bias with lens galaxies separated along
the line of sight. We also show how to measure correlation in terms of physical instead of
angular separation and weigh it by the critical surface mass density Σcrit, as is typical for GGL
(e.g. Mandelbaum et al., 2006). Thereby, the signal no longer depends on the redshift distribution
of source galaxies. The next section describes these improvements in detail. To test their
e�ect, we apply the new estimator to simple mock data, for which we can directly calculate
the expected aperture statistics, and to simulated data based on the MR (Springel et al., 2005)
with the SAM by H15. We compare the resulting aperture statistics to those obtained with the
original estimator.

3.2 Methods

3.2.1 Redshift weighting

To reduce the signal degradation by uncorrelated lens pairs, we de�ne a redshift-weighted
correlation function G̃𝑍 , for which lens pairs are weighted according to their redshift di�erence
𝛿𝑧. To this end, we introduce the redshift-weighting function 𝑍 (𝛿𝑧), for which we choose a
Gaussian,

𝑍 (𝛿𝑧) = exp
(
− 𝛿𝑧

2

2𝜎2
𝑍

)
. (3.1)

The width 𝜎𝑍 is a free parameter that should correspond to the typical redshift di�erence of
correlated lens pairs. The weighting function is normalised such that it is unity if the galaxies
have the same redshift. Averaging over the tangential ellipticities of lens-lens-source triplets
weighted with 𝑍 leads to an estimate of∫

d𝑧1
∫
d𝑧2 𝜈𝑍 (𝑧1) 𝜈𝑍 (𝑧2) 𝑍 (Δ𝑧12) 〈𝑛(𝝑1 + 𝜽 , 𝑧1) 𝑛(𝝑2 + 𝜽 , 𝑧2) 𝛾t(𝝑3 + 𝜽)〉∫
d𝑧1

∫
d𝑧2 𝜈𝑍 (𝑧1) 𝜈𝑍 (𝑧2) 𝑍 (Δ𝑧12) 〈𝑛(𝝑1 + 𝜽 , 𝑧1) 𝑛(𝝑2 + 𝜽 , 𝑧2)〉

(3.2)

=: G̃𝑍 (𝜗1, 𝜗2, 𝜙)
1 + 𝜔𝑍 ( |𝝑1 − 𝝑2 |)

,

where 𝑛(𝝑, 𝑧) is the number density of lens galaxies at angular position 𝝑 and redshift 𝑧,
Δ𝑧12 = 𝑧1 − 𝑧2, and 𝜈𝑍 (𝑧) is the lens selection function per redshift 𝑧. The selection function is
de�ned by

𝜈𝑍 (𝑧) = 𝑝(𝑧)
∫
d2𝜃 𝑁 (𝜽)∫
d2𝜃 𝑛(𝜽 , 𝑧)

, (3.3)

with the lens redshift distribution 𝑝(𝑧). Equation (3.2) de�nes the redshift-weighted correlation
function G̃𝑍 and uses the redshift-weighted two-point angular correlation function 𝜔𝑍 . We
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estimate G̃𝑍 with

G̃𝑍 ,est(𝐵) = −
∑
𝑖 𝑗 𝑘 𝑤𝑘 𝜖𝑘 e−i(𝜑𝑖𝑘+𝜑 𝑗𝑘 )

[
1 + 𝜔𝑍

(
|𝜽𝑖 − 𝜽 𝑗 |

) ]
𝑍 (Δ𝑧𝑖 𝑗 ) Δ𝑖 𝑗 𝑘 (𝐵)∑

𝑖 𝑗 𝑘 𝑤𝑘 𝑍 (Δ𝑧𝑖 𝑗 ) Δ𝑖 𝑗 𝑘 (𝐵)
. (3.4)

To estimate the redshift-weighted two-point correlation 𝜔𝑍 , we use the 𝑁r randoms, located at
𝜽′𝑖 , the 𝑁d lenses at the positions 𝜽𝑖 , and the estimator

𝜔𝑍 (𝜃) =
𝑁2
r 𝐷𝐷𝑍 (𝜃)
𝑁2
d 𝑅𝑅𝑍 (𝜃)

− 2𝑁r 𝐷𝑅𝑍 (𝜃)
𝑁d 𝑅𝑅𝑍 (𝜃)

+ 1 , (3.5)

with the modi�ed pair-counts

𝐷𝐷𝑍 (𝜃) =
𝑁d∑︁
𝑖=1

𝑁d∑︁
𝑗=1

ΘH
(
𝜃 + Δ𝜃/2 − |𝜽𝑖 − 𝜽 𝑗 |

)
ΘH

(
−𝜃 + Δ𝜃/2 + |𝜽𝑖 − 𝜽 𝑗 |

)
𝑍 (Δ𝑧𝑖 𝑗 ) , (3.6)

𝑅𝑅𝑍 (𝜃) =
𝑁r∑︁
𝑖=1

𝑁r∑︁
𝑗=1

ΘH
(
𝜃 + Δ𝜃/2 − |𝜽𝑖 − 𝜽 𝑗 |

)
ΘH

(
−𝜃 + Δ𝜃/2 + |𝜽′𝑖 − 𝜽′𝑗 |

)
𝑍 (Δ𝑧𝑖 𝑗 ) , (3.7)

and

𝐷𝑅𝑍 (𝜃) =
𝑁d∑︁
𝑖=1

𝑁r∑︁
𝑗=1

ΘH
(
𝜃 + Δ𝜃/2 − |𝜽′𝑖 − 𝜽′𝑗 |

)
ΘH

(
−𝜃 + Δ𝜃/2 + |𝜽′𝑖 − 𝜽′𝑗 |

)
𝑍 (Δ𝑧𝑖 𝑗 ) . (3.8)

Here, ΘH is the Heaviside step function and Δ𝜃 is the bin size for which 𝜔𝑍 is estimated. For
𝑍 ≡ 1, this estimator reduces to the standard Landy-Szalay estimator in Eq. (2.129).

The aperture statistics from the redshift-weighted correlation function G̃𝑍 are expected to have
a higher S/N than the aperture statistics from the original G̃. This expected improvement can
be estimated with simpli�ed assumptions. For this, we assume that the 𝑁tot lens-lens-source
triplets can be split into 𝑁true physical triplets, each carrying the signal 𝑠, and 𝑁tot − 𝑁true
triplets carrying no signal. We further assume that all triplets carry the same uncorrelated noise
𝑛. Then, the measured total signal 𝑆, noise 𝑁 and S/N are

𝑆 =
𝑁true
𝑁tot

𝑠, 𝑁 =
1

√
𝑁tot

𝑛, and 𝑆/𝑁 =
𝑁true√
𝑁tot

𝑠

𝑛
. (3.9)

With redshift weighting we decrease the e�ective number of triplets from 𝑁tot to 𝑁̃tot, while
retaining the same number of physical triplets 𝑁true. The signal 𝑆̃, the noise 𝑁̃ and the new S/N
𝑆̃/𝑁̃ are then

𝑆̃ =
𝑁true

𝑁̃tot
𝑠, 𝑁̃ =

1√︁
𝑁̃tot

𝑛, and 𝑆̃/𝑁̃ =
𝑁true√︁
𝑁̃tot

𝑠

𝑛
. (3.10)

Consequently, redshift weighting increases the noise by a factor of (𝑁tot/𝑁̃tot)
1/2. Nonetheless,

the S/N improves by (𝑁tot/𝑁̃tot)
1/2 because the signal increases by 𝑁tot/𝑁̃tot. Accordingly, we

expect the S/N to increase approximately by the square root of the signal increase.
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The critical parameter for the redshift weighting is the width 𝜎𝑧 of the weighting function.
For our application on the observational and simulated data described in Sect. 3.3, we choose
𝜎𝑧 = 0.01. Because there is no clear division between lens pairs that carry signal and those
that do not, the choice of this parameter needs to remain somewhat arbitrary. However, three
arguments motivate our choice.

The �rst argument considers the galaxy correlation length. Farrow et al. (2015) measured the
two-point correlation function of galaxies in GAMA and found correlation lengths between
3.28 ± 0.42 ℎ−1Mpc and 38.17 ± 0.47 ℎ−1Mpc, depending on the stellar masses of the galaxies.
Zehavi et al. (2011) measured the same function in the SDSS and found similar correlation
lengths between 4.2 ℎ−1Mpc and 10.5 ℎ−1Mpc. These correlation lengths correspond to redshift
di�erences between 0.001 and 0.005 at the median redshift of GAMA of 𝑧 = 0.21. We assume
that galaxies separated by more than twice the correlation length are only weakly correlated.
Therefore our choice of 𝜎𝑧 = 0.01 seems appropriate.

The second argument relates to the distribution of lens galaxy pairs with their redshift di�erence.
The blue histogram in Fig. 3.1 shows the number of galaxy pairs per redshift di�erence 𝛿𝑧 with
�xed angular separation between 4.′5 and 5.′5 in our lens sample from the MR (see Sect. 3.3). This
distribution has a prominent peak for small 𝛿𝑧 and a broad background distribution. Thus, most
galaxy pairs that appear close on the sky are also close in redshift space. These physical pairs
make up the peak. However, the background distribution shows that there are also many galaxy
pairs with small angular separation whose redshift di�erence is large. The optimal redshift
weighting function should preserve pairs inside the peak but suppress the background.

The other histograms in Fig. 3.1 show di�erent weighted distributions, where the number of
galaxy pairs is multiplied by the redshift-weighting function from Eq. (3.1). These distributions
correspond to the e�ective number of galaxy pairs per redshift di�erence bin considered for
the improved G̃ estimator. Here, the e�ect of di�erent 𝜎𝑧 is visible. The weighting preserves
the peak when we use 𝜎𝑧 = 0.1 and 0.05. However, a high percentage of the background is
still present in the weighted distribution. Weighting with 𝜎𝑧 = 0.005 and 𝜎𝑧 = 0.001 removes
the background but also suppresses parts of the peak. A middle ground is found for 𝜎𝑧 = 0.01.
Here, the tails of the peak still contribute, whereas most of the background galaxy pairs are
suppressed. Consequently, we adopt this value for the measurement of G̃ and subsequently
〈NNM〉.

The third argument for our choice of 𝜎𝑧 considers the peculiar velocities of galaxies in clusters,
which can cause redshift di�erences of correlated galaxy pairs inside the same halo. The
weighting function 𝑍 needs to be broad enough to avoid discarding galaxy pairs whose redshift
di�erences are induced simply by their peculiar motion. Velocities of galaxies inside halos can
reach up to 1000 km s−1, leading to redshift di�erences of up to 0.006. This value is a lower
bound for 𝜎𝑧, therefore choosing 𝜎𝑧 = 0.01 appears valid.
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Figure 3.1:Weighted number of lens galaxy pairs in our sample from the MR with fixed angular separation
between 4.′5 and 5.′5 per redshift di�erence between the pairs. Di�erent colours indicate di�erent widths
of the Gaussian weighting function. The blue histogram shows the unweighed distribution, and the green
histogram shows the distribution with the weighting chosen for the G3L measurements.

3.2.2 New binning scheme

In previous work (Simon et al., 2008, 2013), G̃ was measured on a regular grid with logarithmic
spacing in the lens-source separations 𝜗1 and 𝜗2 and linear spacing in the opening angle 𝜙. The
aperture statistics were then calculated by summing over this grid.

However, in this approach, the estimator for G̃ is unde�ned in any bin without triplets. Previous
works set G̃ to zero in these empty bins. As a result, 〈NNM〉, which is obtained by integrating
over the estimated G̃, was underestimated (Simon et al., 2008). This bias occurs for both small
and large scales: At small scales, the bins for 𝜗1 and 𝜗2 are tiny because of the logarithmic
binning. Therefore, many of them remain empty. At large scales, some bins are automatically
empty because the opening angle 𝜙 cannot assume all values between 0 and 2𝜋 if 𝜗1 or 𝜗2 are
larger than the side length of the �eld of view.

The bin sizes and the number of lens-lens-source triplets a�ect the severity of the bias. If the
bins are smaller, more of them are empty, and the bias increases. If the number of triplets
increases, there are fewer empty bins and the bias decreases.

To account for this e�ect, we introduce an adaptive binning scheme, illustrated in Fig. 3.2. In
this new scheme, we de�ne bins such that they contain at least one triplet, and therefore the
estimator for G̃ is always well de�ned. For this, G̃ is �rst estimated on a regular grid, together
with the average side lengths of the triplets in each bin. Then, in all bins with at least one
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Figure 3.2: Illustration of the old (1) and new (2) binning scheme for the calculation of G̃. In the old
binning scheme, G̃ was calculated directly from the lens-lens-source triplets inside a given bin. In the
new binning scheme, at first, we calculate the average of the lens-lens-source triplets in a bin. We use
these averages as seeds for a Voronoi tessellation of the parameter space. Then, we consider each
Voronoi cell as a new bin for which we estimate G̃. We obtain the aperture statistics by integrating over
the new bins. We show only two dimensions here, but for the measurement, we also tesselated the third
parameter φ.
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triplets, the measured G̃ is associated with the average 𝜗1, 𝜗2 and 𝜙 of the corresponding bin.
We use the averages of the triplets in �lled bins as seeds to divide the parameter space by a
Voronoi tessellation, using the library voro++ by Rycroft (2009). We consider each Voronoi
cell as a new bin for G̃ . These bins, by de�nition, contain at least one triplet. We obtain the
aperture statistics by integrating over the 𝑁bin new bins, using the numerical approximation of
Eq. (2.143),

〈NNM〉 (𝜃) + i 〈NNM⊥〉 (𝜃) =
𝑁bin∑︁
𝑖=1
𝑉 (𝐵𝑖) G̃est(𝐵𝑖) 𝐴NNM (𝐵𝑖 |𝜃) , (3.11)

where 𝐵𝑖 is the 𝑖th bin, 𝑉 (𝐵𝑖) is the volume of this bin, and 𝐴NNM (𝐵𝑖 |𝜃) is the kernel function
of Eq. (2.143) evaluated at the seed of 𝐵𝑖 . We estimate G̃ on a grid with 128 × 128 × 128 bins
with 𝜗1 and 𝜗2 between 0.′15 and 320′ for the data based on the MR (see Sect. 3.3.1) and between
0.′15 and 200′ for the simple mock data (see Sect. 3.3.2). The tessellation reduces the number of
bins by approximately 3 % in both cases.

3.2.3 Conversion into physical units

With the lens redshifts 𝑧1 and 𝑧2, we can transform the projected angular separation vectors 𝝑1
and 𝝑2 into physical separations 𝒓1 and 𝒓2 on a plane midway between the two lenses, using

𝒓1,2 = 𝐷A (0, 𝑧12) 𝝑1,2 =: 𝐷12 𝝑1,2 , (3.12)

with the angular diameter distance 𝐷A(𝑧𝑎 , 𝑧𝑏) between redshifts 𝑧𝑎 and 𝑧𝑏 and the average lens
redshift 𝑧12 = (𝑧1 + 𝑧2)/2.

The correlation function G̃𝑍 can therefore be estimated in physical scales in the bin 𝐵 of 𝑟1, 𝑟2
and 𝜙 as

G̃𝑍 ,est(𝐵) = −
∑
𝑖 𝑗 𝑘 𝑤𝑘 𝜖𝑘 e−i(𝜑𝑖𝑘+𝜑 𝑗𝑘 )

[
1 + 𝜔

(
|𝜽𝑖 − 𝜽 𝑗 |

) ]
𝑍 (Δ𝑧𝑖 𝑗 )Δph

𝑖 𝑗 𝑘
(𝐵)∑

𝑖 𝑗 𝑘 𝑤𝑘 𝑍 (Δ𝑧𝑖 𝑗 ) Δ
ph
𝑖 𝑗 𝑘

(𝐵)
, (3.13)

with

Δ
ph
𝑖 𝑗 𝑘

(𝐵) =
{
1 for

(
𝐷𝐴 (0, 𝑧𝑖 𝑗 ) |𝜽 𝑘 − 𝜽𝑖 |,𝐷𝐴 (0, 𝑧𝑖 𝑗 ) |𝜽 𝑘 − 𝜽 𝑗 |, 𝜙𝑖 𝑗 𝑘

)
∈ 𝐵

0 otherwise
, (3.14)

This G̃𝑍 still depends on the redshift distribution of sources because the gravitational shear 𝛾t
depends on the lensing e�ciency, which in turn depends on the distances between observer and
source and lens and source. To compare the measurements of di�erent surveys with varying
source redshift distributions, it is therefore useful to correlate the galaxy number density not
with the tangential shear 𝛾t, but instead with the projected excess mass density ΔΣ, given by

ΔΣ(𝜽 , 𝑧d, 𝑧s) =


𝛾t(𝜽)
Σ−1
crit(𝑧d, 𝑧s)

for 𝑧d < 𝑧s

0 else
, (3.15)
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with Σ−1
crit de�ned in Eq. (2.95). Thus, we are interested in the correlation function G̃phys, de�ned

by

G̃phys(𝒓1, 𝒓2) =
[∫ ∞

0
d𝑧1

∫ ∞

0
d𝑧2 𝜈𝑍 (𝑧1) 𝜈𝑍 (𝑧2) 𝑍 (Δ𝑧12) 𝑛̄(𝑧1) 𝑛̄(𝑧2)

]−1
(3.16)

×
∫

d𝑧1
∫

d𝑧2 𝜈𝑍 (𝑧1) 𝜈𝑍 (𝑧2) 𝑍 (Δ𝑧12)

×
〈
𝑛
(
𝜽 + 𝐷−1

12 𝒓1, 𝑧1
)
𝑛
(
𝜽 + 𝐷−1

12 𝒓2, 𝑧2
)
ΔΣ(𝜽 , 𝑧12)

〉
=: G̃phys(𝑟1, 𝑟2, 𝜙) . (3.17)

To estimate this quantity with a maximum likelihood estimator, we need to multiply the weight
𝑤𝑘 of each source galaxy with Σ−2

crit (Sheldon et al., 2004). This leads to the estimator

G̃est,phys(𝐵) =

∑
𝑖 𝑗 𝑘

𝑤𝑘 𝜖𝑘 e−i(𝜑𝑖𝑘+𝜑 𝑗𝑘 )
[
1 + 𝜔

(
|𝜽𝑖 − 𝜽 𝑗 |

) ]
𝑍 (Δ𝑧𝑖 𝑗 ) Σ−1

crit(𝑧𝑖 𝑗 , 𝑧𝑘 ) Δ
ph
𝑖 𝑗 𝑘

(𝐵)∑
𝑖 𝑗 𝑘

𝑤𝑘 Σ
−2
crit(𝑧𝑖 𝑗 , 𝑧𝑘 ) 𝑍 (Δ𝑧𝑖 𝑗 ) Δ

ph
𝑖 𝑗 𝑘

(𝐵)
. (3.18)

This estimator requires a precise knowledge of the source redshifts. For the application to
real data, however, only photometric redshift estimates are often available for source galaxies.
Therefore, we do not use the exact Σ−1

crit for each triplet, but instead Σ̄−1
crit, which is averaged over

the source distribution 𝑝s(𝑧s) as

Σ̄−1
crit(𝑧d) =

∫
d𝑧s 𝑝s(𝑧s) Σ−1

crit(𝑧d, 𝑧s) . (3.19)

Consequently, we estimate G̃phys with

G̃est,phys(𝐵) = −

∑
𝑖 𝑗 𝑘

𝑤𝑘 𝜖𝑘 e−i(𝜑𝑖𝑘+𝜑 𝑗𝑘 )
[
1 + 𝜔

(
|𝜽𝑖 − 𝜽 𝑗 |

) ]
𝑍 (Δ𝑧𝑖 𝑗 ) Σ̄−1

crit(𝑧𝑖 𝑗 ) Δ
ph
𝑖 𝑗 𝑘

(𝐵)∑
𝑖 𝑗 𝑘

𝑤𝑘 Σ̄
−2
crit(𝑧𝑖 𝑗 ) 𝑍 (Δ𝑧𝑖 𝑗 ) Δ

ph
𝑖 𝑗 𝑘

(𝐵)
. (3.20)

We convert this three-point correlation function into physical aperture statistics with

〈NNM〉phys (𝑅) + i 〈NNM⊥〉phys (𝑅)

=

∫ ∞

0
d𝑟1

∫ ∞

0
d𝑟2

∫ 2𝜋

0
d𝜙 𝑟1 𝑟2 G̃phys(𝑟1, 𝑟2, 𝜙) (3.21)

× ANNM
(
𝐷−1

12 𝑟1,𝐷−1
12 𝑟2, 𝜙 | 𝐷−1

12 𝑅
)
.

These aperture statistics are in units of mass over area.

3.2.4 Magnification of lens galaxies

Magni�cation of lens galaxies by the LSS a�ects G3L because the apparent magnitude and
number density of lenses is changed (see Sect. 2.4.4).
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Using Eq. (2.117), the correlation function G̃𝑍 with the e�ect of lens magni�cation is

G̃𝑍 (𝜗1, 𝜗2, 𝜙) = (3.22)∫
d𝑧1

∫
d𝑧2 𝑍 (𝑧1 − 𝑧2)

×
{

1
𝑛̄(𝑧1) 𝑛̄(𝑧2)

〈𝑛0(𝝑1 + 𝜽 , 𝑧1) 𝑛0(𝝑2 + 𝜽 , 𝑧2) 𝛾t(𝜽)〉

+2[𝛼(𝑧2) − 1]
𝑛̄(𝑧1)

〈𝑛0(𝝑1 + 𝜽 , 𝑧1) 𝜅(𝝑2 + 𝜽 , 𝑧2) 𝛾t(𝜽)〉

+2[𝛼(𝑧1) − 1]
𝑛̄(𝑧2)

〈𝜅(𝝑1 + 𝜽 , 𝑧1) 𝑛0(𝝑2 + 𝜽 , 𝑧2) 𝛾t(𝜽)〉

+ 4[𝛼(𝑧1) − 1] [𝛼(𝑧2) − 1] 〈𝜅(𝝑1 + 𝜽 , 𝑧1) 𝜅(𝝑2 + 𝜽 , 𝑧2) 𝛾t(𝜽)〉
}
.

With the intrinsic aperture number count

N0,𝜃 (𝝑, 𝑧) =
1
𝑛̄(𝑧)

∫
d2𝜗′ 𝑈𝜃 ( |𝝑 − 𝝑′|) 𝑛0

(
𝝑′, 𝑧

)
, (3.23)

andM𝜃 as de�ned in Eq. (2.134), the aperture statistics are

〈NNM〉 (𝜃) =
∫

d𝑧1
∫

d𝑧2 𝑍 (𝑧1 − 𝑧2) (3.24)

×
{〈
N0,𝜃 (𝝑, 𝑧1) N0,𝜃 (𝝑, 𝑧2) M𝜃 (𝝑)

〉
+2[𝛼(𝑧2) − 1]

〈
N0,𝜃 (𝝑, 𝑧1) M𝜃 (𝝑, 𝑧2) M𝜃 (𝝑)

〉
+2[𝛼(𝑧1) − 1]

〈
M𝜃 (𝝑, 𝑧1) N0,𝜃 (𝝑, 𝑧2) M𝜃 (𝝑)

〉
+ 4[𝛼(𝑧1) − 1] [𝛼(𝑧2) − 1] 〈M𝜃 (𝝑, 𝑧1) M𝜃 (𝝑, 𝑧2) M𝜃 (𝝑)〉

}
.

Thus, the measured aperture statistics do not only include the intrinsic �rst term, but three
additional terms that are due to lens magni�cation. These lens magni�cation terms, however,
can be measured using as redshift-weighting function 𝑍 not a Gaussian, but a step function,

𝑍 (𝑧1 − 𝑧2) = ΘH(𝑧2 − 𝑧1 − Δ𝑧) . (3.25)

This means that only lens pairs with a redshift di�erence larger than Δ𝑧 and 𝑧2 > 𝑧1 are counted
in the estimator in Eq. (3.4). As explained in Sect. 3.2.1, we expect lens pairs with redshift
di�erences larger than 0.01 to be intrinsically uncorrelated. When we choose Δ𝑧 = 0.01, the
�rst term in Eq. (3.24), which contains only the correlation of intrinsic number densities, should
vanish. The measured 〈NNM〉 is then purely the correlation due to the lens magni�cation.
We measure this 〈NNM〉 with the estimator in Eq. (3.4), using the step function weighting. If
this signal is then subtracted from the measured 〈NNM〉 of all lenses, we obtain the intrinsic
aperture statistics.
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3 Improving the precision and accuracy of galaxy-galaxy-galaxy lensing

We tested our approach on simulated data from the MR, for which both the number density and
convergence are available at di�erent redshift planes. Hence, we can also use another approach
to measure the terms due to lens magni�cation. In this approach we use the relation of the
observed aperture number count N𝜃 to the intrinsic aperture number count N0,𝜃 and aperture
mass M𝜃 through

N𝜃 (𝝑, 𝑧) =
1
𝑛̄(𝑧)

∫
d2𝜗′ 𝑈𝜃 (𝝑 − 𝝑′|) 𝑛

(
𝝑′, 𝑧

)
(3.26)

= N0,𝜃 (𝝑, 𝑧) + 2 [𝛼(𝑧) − 1] M𝜃 (𝝑, 𝑧) . (3.27)

Consequently, Eq. (3.24) with the step function weighting in Eq. (3.25) leads to

〈NNM〉 (𝜃) (3.28)

=

∫ 𝑧max

0
d𝑧1

∫ 𝑧max

𝑧1+Δ𝑧
d𝑧2

{〈
N0,𝜃 (𝝑, 𝑧1) N0,𝜃 (𝝑, 𝑧2) M𝜃 (𝝑)

〉
+2 [𝛼(𝑧2) − 1] 〈N𝜃 (𝝑, 𝑧1) M𝜃 (𝝑, 𝑧2) M𝜃 (𝝑)〉
+2 [𝛼(𝑧1) − 1] 〈M𝜃 (𝝑, 𝑧1) N𝜃 (𝝑, 𝑧2) M𝜃 (𝝑)〉
−4 [𝛼(𝑧1) − 1] [𝛼(𝑧2) − 1] 〈M𝜃 (𝝑, 𝑧1) M𝜃 (𝝑, 𝑧2) M𝜃 (𝝑)〉} ,

where the terms due to lens magni�cation are given by the observed instead of by the intrinsic
aperture number count. For a numerical evaluation, the integrals can be converted into sums
over 𝑀 redshift slices, so

〈NNM〉 (𝜃)

=

𝑀∑︁
𝑖=0

𝑀∑︁
𝑗=𝑖+1

Δ𝑧𝑖 Δ𝑧 𝑗
{〈
N0,𝜃 (𝝑, 𝑧𝑖) N0,𝜃 (𝝑, 𝑧 𝑗 ) M𝜃 (𝝑)

〉
(3.29)

+2 [𝛼(𝑧 𝑗 ) − 1]
〈
N𝜃 (𝝑, 𝑧𝑖) M𝜃 (𝝑, 𝑧 𝑗 ) M𝜃 (𝝑)

〉
+2 [𝛼(𝑧𝑖) − 1]

〈
M𝜃 (𝝑, 𝑧𝑖) N𝜃 (𝝑, 𝑧 𝑗 ) M𝜃 (𝝑)

〉
−4 [𝛼(𝑧𝑖) − 1] [𝛼(𝑧 𝑗 ) − 1]

〈
M𝜃 (𝝑, 𝑧𝑖)M𝜃 (𝝑, 𝑧 𝑗 ) M𝜃 (𝝑)

〉}
=:

𝑀∑︁
𝑖=0

𝑀∑︁
𝑗=𝑖+1

Δ𝑧𝑖 Δ𝑧 𝑗
〈
N0,𝜃 (𝝑, 𝑧𝑖) N0,𝜃 (𝝑, 𝑧 𝑗 ) M𝜃 (𝝑)

〉
(3.30)

+ 𝐿NMM (𝜃) + 𝐿MNM (𝜃) + 𝐿MMM (𝜃) .

Using Eq. (3.30), we measure the lens magni�cation terms 𝐿MMM , 𝐿MNM and 𝐿NMM directly
in the simulated data based on the MR for 𝑧 𝑗 < 0.5 and 𝑧𝑖 < 𝑧 𝑗 .

For this, we �rst convolve the number density and convergence maps at each redshift plane
with the �lter function 𝑈𝜃 to obtain N𝜃 (𝝑, 𝑧𝑖) and M𝜃 (𝝑, 𝑧 𝑗 ). We then multiply the aper-
ture statistics for each combination of 𝑧𝑖 and 𝑧 𝑗 and spatially average the products to obtain〈
N𝜃 (𝝑, 𝑧𝑖) M𝜃 (𝝑, 𝑧 𝑗 ) M𝜃 (𝝑)

〉
and

〈
M𝜃 (𝝑, 𝑧𝑖) M𝜃 (𝝑, 𝑧 𝑗 ) M𝜃 (𝝑)

〉
. These averages are then
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3.3 Data

Table 3.1: Slopes α of the luminosity function at di�erent redshifts z in the MR. The limiting magnitude
of galaxies is rlim = 19.8mag.
z 0.46 0.41 0.36 0.32 0.28 0.24 0.21 0.17 0.14 0.12 0.06 0.04
α 2.51 2.38 2.01 1.80 1.36 1.15 0.91 0.78 0.49 0.48 0.47 0.17

multiplied by the appropriate 𝛼 and summed over. We repeat this procedure for di�erent
aperture scale radii 𝜃 between 0.′5 and 8′.

For this calculation, the slope 𝛼(𝑧) of the lens luminosity function needs to be known. To
obtain 𝛼(𝑧), we extract the luminosity function Φ(𝑆, 𝑧) at each redshift plane of the MR, with
𝑆 measured in the 𝑟-band �lter. We then �t a power law to Φ(𝑆, 𝑧) in the proximity of the
limiting �ux. This �ux is given in our case by the limiting 𝑟-band magnitude, chosen to be
𝑟lim = 19.8mag. The slopes for each redshift 𝑧 are the 𝛼(𝑧) given in Table 3.1.

3.3 Data

3.3.1 Simulated data based on the Millennium Run

We tested our new estimator with simulated data sets from the MR, which we described in
Sect. 2.2.1. Using the multiple-lens-plane ray-tracing algorithm by Hilbert et al. (2009), we
created maps of the complex gravitational shear 𝛾 caused by the matter distribution for a set
of source redshift planes. For each redshift, 64 maps of 𝛾 on a regular mesh with 40962 pixels,
corresponding to 4 × 4 deg2, were obtained. We combined the shear of nine di�erent redshifts
between 𝑧 = 0.5082 and 𝑧 = 1.1734 by summing 𝛾 weighted by an assumed source redshift
distribution 𝑝s(𝑧). This redshift distribution, shown in Fig. 3.3, was modelled after the redshift
distribution of galaxies in KiDS (Wright et al., 2019; Hildebrandt et al., 2020). To mimic the shape
noise in observational data, we added a random number drawn from a Gaussian probability
distribution with standard deviation 0.3 to both shear components at each pixel. With this
procedure, we obtain 64 maps of mock source galaxies.

Lens galaxies in the simulation were created by using the SAM by H15 (see Sect. 2.2.2). It is
one of various SAMs that have been implemented on the MR (see e.g. Guo et al., 2011; Bower
et al., 2006), but as Saghiha et al. (2017) have shown, this model agrees particularly well with
measurements of GGL and G3L in CFHTLenS. To simulate the selection function of observations,
we applied a redshift and �ux limit on our lens samples. We used lenses with 𝑧 ≤ 0.5 and SDSS
𝑟-band magnitude brighter than 19.8 mag. With these limits, we obtained a number density of
lenses of 0.282 arcmin−2.

To mitigate possible biases induced by uneven galaxy pair numbers and matter distributions
between the 64 lens galaxy maps, we subtracted the lensing signal around random points. This
procedure is similar to methods for GGL (Singh et al., 2017, e.g.,). There, the shear around
random positions is measured and subtracted from the original measurement. However, for
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Figure 3.3: Assumed source redshift distribution. This distribution is used to weigh the shear maps at
di�erent redshifts in the MR. It is modelled after the redshift distribution of galaxies in Hildebrandt et al.
(2020).

G3L, this task is in general more di�cult because it requires a catalogue of unclustered galaxy
pairs. Creating such a catalogue is in general non-trivial because the number of galaxy pairs
depends on the selection function of individual galaxies in the survey. Nevertheless, we created
a map of unclustered galaxies, similar to GGL, for each simulated lens map by distributing the
same number of galaxies as on the lens map at random points on a 4× 4 deg2 area. We measured
the correlation function G̃ for each of these random maps. Afterwards, we subtracted it from
the correlation function measured for the actual lens map.

The total number of triplets to consider for our measurement of G̃𝑍 and G̃phys is 5 × 1012.
This makes the evaluation of the sums in Eq. (3.4) and Eq. (3.20) computationally involved.
Because of this computational complexity, computation of third-order correlation functions
usually involves some approximation. One such approximation are kd-Tree codes (Simon et al.,
2013), which average galaxy triplets with similar 𝜗1, 𝜗2 and 𝜙. However, we implemented the
estimator brute force and calculated it with a graphics processing unit (GPU). This approach
has two advantages compared to the usual methods. First, it is exact, even at the smallest
scales. Second, due to the highly parallelised execution on a GPU, which allows for several
thousand simultaneous calculations, the computing time is drastically reduced. In our case, the
computational time to process the MR decreased from 200 hours with a kd-Tree code executed
on 8 CPU cores to just 9 hours with the brute-force code on a single GPU. Details for our
computational implementation are given in Appendix A.2.

The covariance matrices of the measured 〈NNM〉 and 〈NNM〉phys were computed with
jackkni�ng. For this, we assumed that each of the 64 �elds is an independent realisation and
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combined these �elds to a total 〈NNM〉 (𝜃) and 64 jackknife samples 〈NNM〉𝑘 (𝜃), where
all but the 𝑘th tile were combined. The covariance matrix is then

𝐶 (𝜃𝑖 , 𝜃 𝑗 ) (3.31)

=
64

64 − 1

64∑︁
𝑘=1

[
〈NNM〉𝑘 (𝜃𝑖) − 〈NNM〉𝑘 (𝜃𝑖)

] [
〈NNM〉𝑘 (𝜃 𝑗 ) − 〈NNM〉𝑘 (𝜃 𝑗 )

]
,

where 〈NNM〉𝑘 (𝜃𝑖) is the average of all 〈NNM〉𝑘 (𝜃𝑖). The statistical uncertainty of the
aperture statistics 〈NNM〉 (𝜃𝑖) is 𝜎𝑖 =

√︁
𝐶 (𝜃𝑖 , 𝜃𝑖). We de�ne the S/N at each scale radius 𝜃𝑖

as
𝑆/𝑁 (𝜃𝑖) =

〈NNM〉 (𝜃𝑖)
𝜎𝑖

. (3.32)

3.3.2 Simple mock data

Some of our tests also employed simple mock data. These were chosen such that it was easy to
create them and to calculate their expected aperture statistics theoretically. For this, we used
the following assumptions:

A. All matter and galaxies are distributed inside 𝐻 halos over an area 𝐴.

B. All halos are situated on the same lens plane.

C. All halos have the same axisymmetric convergence pro�le 𝜅(𝝑) = 𝐾 𝑢(𝜗) and the same
number of galaxies 𝑁gal, with

∫
d𝜗 𝜗 𝑢(𝜗) = 1

D. There is no galaxy bias, so the discrete galaxy distribution follows the matter distribution
up to Poisson shot-noise.

E. Halo centres are distributed randomly within 𝐴.

With these assumptions and the calculations in App. A.1, the theoretical expectation for the
aperture statistics using the exponential �lter function in Eq. (2.142) is

〈NNM〉 (𝜃1, 𝜃2, 𝜃3)

=
2𝜋 𝐴 𝐾
𝐻

∫ ∞

0
d𝜗 𝜗

3∏
𝑖=1

∫ ∞

0
d𝑦𝑖

𝑦𝑖 𝑢(𝑦𝑖)
𝜃2
𝑖

exp
[
− (𝑦𝑖 − 𝜗)2

2𝜃2
𝑖

]
(3.33)

×
[(
1 −

𝑦2
𝑖
+ 𝜗2

2𝜃2
𝑖

)
𝑓0

(
𝑦𝑖 𝜗

𝜃2
𝑖

)
+ 𝑦𝑖𝜗
𝜃2
𝑖

𝑓1

(
𝑦𝑖 𝜗

𝜃2
𝑖

)]
,

with 𝑓𝑛 (𝑥) = 𝐼𝑛 (𝑥) e−𝑥 and the modi�ed Bessel functions of the �rst kind 𝐼𝑛 (𝑥). We evaluated
the integrals numerically with a Monte Carlo integration using the monte-vegas-routine
of the GNU Scienti�c Library (GSL) (Gough, 2009).
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We used the Brainerd-Blandford-Smail (BBS) pro�le (Brainerd et al., 1996) as halo convergence
pro�le 𝜅(𝝑), which is

𝜅(𝝑) = 𝐾

2𝜋 𝜗 𝜃s

(
1 − 𝜗√︁

𝜗2 + 𝜃2s

)
. (3.34)

The BBS pro�le corresponds to a singular isothermal sphere (SIS) for 𝜗 much smaller than the
scale radius 𝜃𝑠 that smoothly drops outside the sphere. In contrast to the SIS pro�le, it has a
�nite total mass. We chose 𝐾 = 1 arcmin2 and 𝜃s = 5′.

We created mock lens galaxies following assumptions A to E in a circular area with a radius of
700′. We distributed the lens galaxies in 2170 halos with 200 galaxies each. These numbers were
chosen such that the average number density of lens galaxies was 𝑁d = 0.287 arcmin−2, the lens
number density in our lens sample from the MR. We distributed 3 × 106 source galaxies, whose
shear we computed from the halo convergence pro�les, in the central 750 × 750 arcmin2 area.
We only considered lens-lens-source triplets in this area to ensure that the shear of each source
was a�ected by halos from all directions. No shape noise was added to the shears because our
aim was not to create a realistic simulation, but only a simple test case. Because G̃ is linear in
the ellipticities, any shape noise would not bias its estimate and only lead to a larger uncertainty
of the measurement. We cut the central area into quadratic tiles with a side length of 150′, so
that �nally 25 maps of source and lens galaxies were used.

3.4 Results

3.4.1 E�ect of the new binning scheme

Before measuring the aperture statistics in the data based on the MR, we estimated the e�ect
of the new binning scheme by measuring the aperture statistics for equal-scale radii 𝜃 in the
simple mock data, described in Sect 3.3.2. Figure 3.4 presents the aperture statistics measured in
this mock data. The theoretically expected 〈NNM〉 follows a power law for scale radii below
2′ and steepens for larger scales. The 〈NNM〉 measured with the old and the new binning
scheme show the same steepening for 𝜃 larger than 2′. However, the slope of the 〈NNM〉
measured with the old binning scheme is considerably shallower for scales between 0.′1 and 0.′6
than the one measured with the new binning scheme. We con�rm that the measurement with
the new binning scheme agrees with the theoretical expectation within its statistical uncertainty.
This agreement of the measured aperture statistics with the theoretical prediction validates our
code for estimating G̃ and for converting G̃ to 〈NNM〉.

To quantify the e�ect of the new binning scheme, Fig. 3.5 shows the di�erence of the measured
〈NNM〉 to the theoretical prediction for both binning schemes, normalised by the theoretical
prediction. The 〈NNM〉 from the old method has no bias at scales between 1′ and 5′. However,
it underestimates 〈NNM〉 both above and below these scales. At large scales, this bias grows
to 10 % at 𝜃 = 10′, whereas at small scales, the bias increases with decreasing scale to 40 %
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Figure 3.4: Aperture statistics measured in the simple mock data with the old binning scheme (blue
dots) and the new binning scheme (red crosses), as well as the theoretical expectation (black line) given
by Eq. (3.33). The upper plot shows the E mode 〈NNM〉, and the lower plot shows the ratio of the B
mode 〈NNM⊥〉 and the E mode. Uncertainties are the statistical error estimated with jackknifing.

at 𝜃 = 0.′1. The new binning scheme does not show this behaviour. Instead, the bias of the
〈NNM〉 measured with the new method is consistent with zero at all considered scales.

3.4.2 E�ect of lens magnification

As outlined in Sect. 3.2.4, the redshift weighting enables us to measure the impact of lens
magni�cation on G3L. We estimated this e�ect in the data based on the MR with the two
di�erent methods outlined in Sect 3.2.4. In the following, the terms “�rst” and “second” lens
plane refer to the redshift plane in which the lens galaxy lies closer to the observer and closer
to the source, respectively.

The result for the �rst method, using the step function weighting in the estimation of G̃𝑍 , is
shown in Figs. 3.6 and 3.7 for 〈NNM〉 and 〈NNM〉phys, respectively. The �gures show the
aperture statistics measured for lens pairs with redshift di�erences larger than 0.01. If there were
no lens magni�cation, this signal should vanish. The �gures also show the aperture statistics
measured with all lens pairs, as well as the intrinsic aperture statistics. These were“corrected”
for the e�ect of lens magni�cation by subtracting the signal of physically distant lens pairs
from the total measured aperture statistics.

For both 〈NNM〉 and 〈NNM〉phys, the signal of physically separated lens pairs is non-zero.
We attribute this signal to the three magni�cation terms in Eq. (3.24). For 〈NNM〉 this signal
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Figure 3.5: Fractional di�erence of the measured 〈NNM〉 relative to the theoretical prediction in the
simple mock data. Blue dots show the measurement with the old binning scheme; red crosses show the
measurement with the new binning scheme.

is approximately 10 % of the signal of all lens pairs. For 〈NNM〉phys, the magni�cation leads to
a slightly weaker additional signal at scales below 0.1ℎ−1 Mpc and approximately 10 % at larger
scales.

At angular scales smaller than 0.′2, the signal due to lens magni�cation for 〈NNM〉 decreases.
This decrease is probably due to smoothing in the simulation, which is no longer accurate
at these small angular scales. Smoothing �attens the centre of halo convergence pro�les in
the simulation. If we measure the aperture statistics at scale radii smaller than the smoothing
lengths, the �attening leads to a lower measured signal.

To verify that the signal for separated lens pairs is related to lens magni�cation, Fig. 3.8 shows
the magni�cation terms estimated with the second method from Sect. 3.2.4. For comparison,
the �gure also shows the measured 〈NNM〉 from the �rst method.

The �gure shows that 𝐿NMM (𝜃), which is due to the correlation of the number density of
galaxies at smaller redshift to the convergence measured at higher redshifts, is the dominating
term. It is higher than 𝐿MMM and 𝐿MNM by three orders of magnitude. Furthermore, the
correlation of three convergence maps 𝐿MMM , and the foreground convergence to background
galaxies 𝐿MNM are almost identical. Consequently, the total lens magni�cation signal is
approximately 𝐿NMM .

This �nding implies that the lens magni�cation signal is driven mainly by the correlation of
matter and the galaxy distribution at the �rst lens plane. This matter a�ects the convergence at
the second lens and the source plane and thereby causes a signi�cant 𝐿NMM . Neither 𝐿MNM
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Figure 3.6: E�ect of lens magnification on aperture statistics in the data based on the MR. The green
dash-dotted line shows the signal measured for lens pairs with redshift di�erences larger than 0.01,
which corresponds to the magnification terms in Eq. (3.24). The solid blue line is the aperture statistics for
all lens pairs. The red dashed line is the intrinsic signal corrected for lens magnification by subtracting
the signal of separated lens pairs. Shaded regions are the 1σ uncertainties from jackknifing.

Figure 3.7: Same as Fig. 3.6, but for physical aperture statistics.
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Figure 3.8: Individual lens magnification terms in the MR. Green stars depict the term due to the
correlation between the convergence maps at the two lens planes and the source plane. Red dots are the
term due to correlation of the galaxy number density at the first lens plane to the convergence maps at
the second lens and the source plane. Brown crosses are the term due to correlation of the convergence
maps at the first lens and the source plane to the galaxy number density at the second lens plane. The
blue line is the measured 〈NNM〉 for separated lens pairs, which should correspond to the total lens
magnification signal.
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nor 𝐿MMM depend on the correlation between matter and galaxies at the same plane. Instead,
they are mainly due to the LSS in front of the �rst lens plane. This LSS in�uences N𝜃 andM𝜃

at the lens planes and the source plane and thereby induces the non-zero 𝐿MNM and 𝐿MMM .
However, as shown in Fig. 3.8, this e�ect is secondary. The LSS in front of the lenses does not
have a strong e�ect on the overall signal.

The total lens magni�cation signal is of the same order of magnitude as the 〈NNM〉 measured
with separated lens pairs. At scales above 1′ , it indeed agrees with the measured 〈NNM〉 for
separated lens pairs within its statistical uncertainty. At smaller scales, the di�erence between
the two quantities is still smaller than twice the statistical uncertainty. According to Eq. (3.28),
the intrinsic aperture statistics are〈

N0,𝜃 (𝝑, 𝑧1) N0,𝜃 (𝝑, 𝑧2) M𝜃 (𝝑)
〉

(3.35)
= 〈NNM〉 (𝜃) − 𝐿NMM (𝜃) − 𝐿MNM (𝜃) − 𝐿MMM (𝜃) ,

where 〈NNM〉 are the measured aperture statistics for separated lens pairs. Therefore, the
intrinsic aperture statistics for separated lens pairs vanishes, as expected.

3.4.3 E�ect of redshift weighting

We show the results for 〈NNM〉 for the data based on the MR with and without redshift
weighting in Fig. 3.9a. The measured 〈NNM⊥〉 is consistent with zero, both with and without
redshift weighting. This result signi�es that no indication of parity violation exists in the
simulation.

Redshift-weighting increases the S/N, (indicated by the decreasing error region in Fig. 3.9a).
Simultaneously, themeasured 〈NNM〉 increases by a factor of approximately two. This increase
occurs because redshift weighting is assumed to increase both signal and S/N, as discussed in
Sect. 3.2.1. The lower plot in Fig. 3.9a shows the S/N of 〈NNM〉 with and without redshift
weighting. Redshift weighting increases the S/N on all scales. On average, the S/N of 〈NNM〉
with redshift weighting is 1.35 times the S/N of 〈NNM〉 without redshift weighting.

The measured physical aperture statistics 〈NNM〉phys are displayed in Fig. 3.9b. Again, the B
mode is consistent with zero at all scales. Redshift weighting increases the signal by a factor of
two, similar to the increase of 〈NNM〉, whereas the error region decreases. The increase of the
S/N of 〈NNM〉phys, shown in the lower plot of Fig. 3.9b, is at the same level as for 〈NNM〉.
On average, the S/N increases by 34 %. In Fig. 3.9 the S/N of 〈NNM〉phys is higher than the
S/N of 〈NNM〉, both with and without redshift weighting.

3.5 Discussion

We proposed three improvements to the measurement of the G3L signal: Using a redshift
weighting of lens galaxies to improve the precision, removing biases on the estimator with a
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Figure 3.9: Aperture statistics measured in the mock data based on the MR, in (a) with angular and in
(b) with physical units. The upper plots show the E modes 〈NNM〉 and 〈NNM〉phys, and the middle
plot shows the ratio of the B modes 〈NNM⊥〉 and 〈NNM⊥〉phys to 〈NNM〉 and 〈NNM〉phys. The
lower plots give the S/N of 〈NNM〉 and 〈NNM〉phys. The red dashed line depicts 〈NNM〉 taken with
a redshift weighting function with width σz = 0.01. Shaded regions show the 1σ uncertainties from
jackknifing. The blue solid line denotes the measurements without redshift weighting.
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new binning scheme, and accounting for the impact of lens magni�cation. Furthermore, we
showed how to measure the G3L signal in physical units.

The e�ect of the improved binning scheme becomes apparent when comparing our results for
the simple mock data with the theoretical expectation. The original binning causes discrepancies
between the theoretical expectation and the measurement for aperture scale radii below 1′ and
above 5′. The aperture statistics measured with the improved binning agree with the expectation
at all scales. At 𝜃 = 0.′1, the original binning underestimates 〈NNM〉 by 40%, whereas the
result of the new binning scheme agrees with the theoretical expectation. Thus, our newmethod
extends the reliability of the measurement, due to the tessellation.

The signal due to the magni�cation of lens galaxies is approximately 10 % of the total G3L
signal. Theoretical modelling of the G3L signal, therefore, needs to account for it. Previous
studies (Simon et al., 2008, 2013) neglected lens magni�cation. Nonetheless, even though it has
a signi�cant e�ect on the measured G3L signal, the conclusions of Saghiha et al. (2017) are not
impaired because the observational data and the simulations both included lens magni�cation.

We also demonstrated how to correct for the e�ect of lens magni�cation. The additional signal
due to this e�ect can be measured by considering only lens pairs su�ciently far separated along
the line of sight. The resulting signal matches the expectation for lens magni�cation from the
convergence and number density maps at di�erent redshift slices. We, therefore, conclude that
we can measure the lens magni�cation signal with physically separated lens pairs without any
inherent correlation.

We found that the dominating e�ect is the correlation of galaxies at the �rst lens plane with
the convergence at the second lens and the source plane. In contrast, the other terms are three
orders of magnitude smaller. This �nding explains why we measure a signi�cant signal due to
lens magni�cation, even though previous studies (e.g. Simon et al., 2013) expected that this e�ect
is negligible. These evaluations considered only the 〈MMM〉 term, which is indeed much
smaller than any 〈NNM〉 signal. However, as we have shown here, it is not the dominant term
for lens magni�cation.

The magni�cation signal is mainly due to the correlation of galaxies with the matter at the �rst
lens plane, which in�uences the convergence at the second lens and the source plane. Matter
in front of both lenses also contributes to the magni�cation signal. However, its measured
contribution is minor. The e�ect of foreground matter might be more substantial for lens
samples at higher redshifts because our lens sample has a low median redshift of 0.2.

Using redshift weighting, we increased the S/N of both 〈NNM〉 and 〈NNM〉phys by approx-
imately 35 % between 0.′1 and 10′ and 0.1ℎ−1Mpc and 2ℎ−1Mpc. Simultaneously, the signal was
increased by a factor of approximately two. This meets our expectation that the signal increases
by the square of the increase in S/N.

Our choice of 𝜎𝑧 was motivated by the correlation length between galaxies, the redshift distri-
bution of galaxy pairs, and the typical peculiar velocities of galaxies in clusters. Choosing a
di�erent 𝜎𝑧 will lead to a di�erent measured signal and increase in S/N. However, 𝜎𝑧 does not
a�ect the interpretation of the aperture statistics as long as the theoretical modelling uses the
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same 𝜎𝑧. Moreover, for each survey, we can assume di�erent values of 𝜎𝑧, and choose the one
that provides the highest S/N.

For the redshift-weighting scheme in the MR, we could use the true redshifts for all lens galaxies.
However, precise redshifts are generally not available for observations. We expect that redshift
weighting is most useful for data sets that include spectroscopic redshifts. Nevertheless, redshift
weighting with a broad weighting function might be possible for lens galaxies with photometric
redshift estimates. The uncertainties of spectroscopic redshifts are much smaller than of those
photometric redshifts so a narrow weighting function can be used.

At �rst glance, the measurement of the aperture statistics in physical units 〈NNM〉phys does
not appear to provide additional information to the aperture statistics in angular units. However,
in contrast to 〈NNM〉, 〈NNM〉phys is independent of the source redshift distribution. Direct
comparisons of 〈NNM〉phys between surveys with di�erent galaxy distributions are possible.
Furthermore, the S/N of 〈NNM〉phys is slightly higher than for 〈NNM〉, independent of the
redshift weighting. 〈NNM〉phys is more precise because its estimator weighs triplets according
to their lensing e�ciency.

We only applied our improvements on the lens-lens-shear correlation function and the aperture
statistics 〈NNM〉 here. However, measurements of the lens-shear-shear correlation and
〈N MM〉 can also use the new binning scheme. We expect that this might extend the accuracy
of measurement of this aperture statistics to scales below 1′, which were not taken into account
in previous measurements (Simon et al., 2013). The transformation into physical units can also
be applied to 〈N MM〉.
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Testing semi-analytic galaxy models
with galaxy-galaxy-galaxy lensing

4
This chapter is based on Linke et al. (2020), published in Astronomy&Astrophysics.

In this chapter, we use the improved estimator presented in the last chapter and apply it to
galaxy surveys. We compare these measurements to the predictions by two di�erent SAMs.
This comparison allows us to evaluate the SAMs and discuss their assumptions on baryonic
physics. Wemotivate ourmeasurement set-up in the Sect. 4.1. Sect. 4.2 describes the details of the
application of the G3L estimator and the uncertainty estimation. We introduce our observational
and simulated data sets in Sect. 4.3 The aperture statistics measured in the observation and
predicted by the SAMs are presented in Sect. 4.4 and discussed in Sect. 4.5.

4.1 Motivation

In the previous chapter, we demonstrated that the S/N of G3L measurements could be improved
substantially by weighting each lens galaxy pair according to the line-of-sight separation
between its galaxies to reduce the impact of chance pairs. In this chapter, we use this improved
estimator to test the H15 and the L12 SAMs with state-of-the-art observational data, consisting
of the photometric KiDS and VIKING, and the spectroscopic GAMA. We use the shapes of
galaxies observed by KiDS as shear estimates, while GAMA provides lens galaxies with precise
spectroscopic redshifts. These spectroscopic redshifts allow us to employ the redshift weighting
(see Sect. 3.2.1). Furthermore, we extend the angular range at which we measure the G3L signal
to lower scales with the adaptive binning scheme for the G3L three-point correlation function
proposed in Sect. 3.2.2. Thereby, we can assess the SAMs deeper inside dark-matter halos.

As of now, the lens-lens-shear correlation has only been measured for lens pairs with galaxies
from the same colour or stellar-mass sample (unmixed lens pairs) and not for lens pairs with
galaxies from di�erent samples (mixed lens pairs). However, comparing the measurements
for G3L with mixed pairs is a compelling new test of SAMs, because this signal depends on
the correlation of di�erent galaxy populations inside halos. For example, the G3L signal for
mixed pairs is higher for fully correlated galaxy populations than for uncorrelated populations,
while the GGL signal stays the same. Therefore, we can assess the predictions of SAMs for the
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correlation between di�erent galaxy populations with the G3L of mixed lens pairs. Accordingly,
we measure not only the G3L signal for lens pairs from the same population but also the signal
for mixed lens pairs, with galaxies from di�erent colour- or stellar-mass samples.

4.2 Methods

4.2.1 Estimating the three-point correlation function

For measuring G̃𝑍 and G̃phys, we use the estimators from Eqs (3.4) and (3.20). However, as we
are also considering lens pairs with galaxies from di�erent populations, we use a generalization
of Eq. (3.5) to obtain the lens two-point correlation function 𝜔𝑍 , which is (Szapudi and Szalay,
1998)

𝜔𝑍 (𝜃) =
𝑁r1 𝑁r2
𝑁d1 𝑁d2

𝐷1𝐷2𝑍 (𝜃)
𝑅1𝑅2𝑍 (𝜃)

−
𝑁r1
𝑁d1

𝐷1𝑅2𝑍 (𝜃)
𝑅1𝑅2𝑍 (𝜃)

−
𝑁r2
𝑁d2

𝐷2𝑅1𝑍 (𝜃)
𝑅1𝑅2𝑍 (𝜃)

+ 1 . (4.1)

for two di�erent observed lens samples with 𝑁d1 and 𝑁d2 galaxies and two random samples.
These random samples contain 𝑁r1 and 𝑁r2 unclustered galaxies following the same selection
function as the observed galaxies.

The 𝐷1𝐷2𝑍 , 𝐷1𝑅2𝑍 , 𝐷2𝑅1𝑍 , and 𝑅1𝑅2𝑍 are the pair counts of observed and random galaxies.
For two equal lens samples and 𝐷𝐷 = 𝐷1𝐷2, 𝐷𝑅 = 𝐷1𝑅2 = 𝐷2𝑅1, and 𝑅𝑅 = 𝑅1𝑅2, the
estimator in Eq. (4.1) reduces to the usual Landy-Szalay estimator in Eq. (3.5). Again, we use
redshift-weighted pair counts to account for the stronger clustering of true lens pairs due to the
redshift weighting function 𝑍 . These are de�ned in Eqs (3.6) and (3.8).

Following the reasoning in Sect. 3.2.1, we choose a Gaussian weighting function,

𝑍 (Δ𝑧12) = exp
(
−
Δ𝑧212
2𝜎2

𝑧

)
, (4.2)

with width 𝜎𝑧 = 0.01. Choosing a di�erent 𝜎𝑧 in�uences the magnitude of the measured
aperture statistics as well as the S/N of the measurement. Nonetheless, as long as the same
width is chosen for the observation and the simulation, their G3L signals can be compared.

We measure G̃𝑍 and G̃phys initially for 128 × 128 × 128 bins, which are linearly spaced along 𝜙
and logarithmically spaced along 𝜗1,2 and 𝑟1,2. For G̃𝑍 , the 𝜗1,2 are between 0.′15 and 200′ for the
observed and between 0.′15 and 320′ for the simulated data. For G̃phys, we choose 𝑟1,2 between
0.02Mpc and 40Mpc. We then apply the adaptive binning scheme of Sect. 3.2.2, by which the
parameter space is tessellated to remove bins for which no galaxy triplet is in the data.

The correlation function is measured individually for 24 tiles of the observational data of size
2.5° × 3° and 64 �elds-of-view of the MR of size 4° × 4°, leading to estimates G̃𝑖

𝑍 ,est and G̃𝑖est, phys
for each tile and �eld-of-view, respectively. The division into small patches allows us to project
the observational measurements to Cartesian coordinates and to estimate the uncertainty of
the measurement with jackknife resampling. For each data set, the individual estimates are

66



4.2 Methods

combined to form the total correlation functions. This combination takes the form of a weighted
average over all tiles, so the angular correlation function G̃𝑍 is estimated by

G̃𝑍 ,est(𝐵) =
∑𝑁
𝑖=1 G̃𝑖𝑍 ,est(𝐵)𝑊

𝑖 (𝐵)∑𝑁
𝑖=1𝑊

𝑖 (𝐵)
, (4.3)

and the physical correlation function G̃phys by

G̃est, phys(𝐵) =
∑𝑁
𝑖=1 G̃𝑖est, phys(𝐵)𝑊

𝑖
phys(𝐵)∑𝑁

𝑖=1𝑊
𝑖
phys(𝐵)

, (4.4)

where𝑊 𝑖 (𝐵) and𝑊 𝑖
phys(𝐵) are the angular and physical weights of tile 𝑖 in bin 𝐵. These weights

are the sum over the weights of each triple in the respective tile and bin. The weight of the
triplet with lenses 𝑖 and 𝑗 and source 𝑘 consists of the measurement weight 𝑤k, the redshift
weight 𝑍 (Δ𝑧𝑖 𝑗 ), and, for the physical correlation function, the inverse square of the average
critical surface mass density Σ̄−2

crit at the center between the lenses. The total weights of each
tile are therefore

𝑊 𝑖 (𝐵) =
∑︁
𝑖 𝑗 𝑘

𝑤𝑘 𝑍 (Δ𝑧𝑖 𝑗 ) Δ𝑖 𝑗 𝑘 (𝐵) , (4.5)

and
𝑊 𝑖

phys(𝐵) =
∑︁
𝑖 𝑗 𝑘

𝑤𝑘 Σ̄
−2
crit(𝑧𝑖 𝑗 ) 𝑍 (Δ𝑧𝑖 𝑗 ) Δ

phys
𝑖 𝑗 𝑘

(𝐵) . (4.6)

4.2.2 Computing aperture statistics

To compute 〈NNM〉 and 〈NNM〉phys, we integrate over G̃𝑍 using Eq. (2.143) and (3.21). We
numerically approximate the integrals by summing over all 𝑁bins of G̃𝑍 after tessellation with

〈NNM〉 (𝜃) (4.7)

= Re[
𝑁bin∑︁
𝑖=1
𝑉 (𝐵𝑖) G̃𝑍 ,est(𝐵𝑖) A𝑁𝑁𝑀 (𝐵𝑖 | 𝜃)] ,

and

〈NNM〉phys (𝑟) + i 〈NNM⊥〉phys (𝑟) (4.8)

=

𝑁bin∑︁
𝑖=1
𝑉 (𝐵𝑖) G̃est, phys(𝐵𝑖) A𝑁𝑁𝑀 (𝐵𝑖 | 𝑟) .

Here, 𝐵𝑖 is the 𝑖th bin, which has the volume𝑉 (𝐵𝑖), andANNM is the kernel function evaluated
at the tessellation seed of bin 𝐵𝑖 .

We estimate the statistical uncertainty of the aperture statistics in the observational data
with jackknife resampling. For this, we assume that the 24 tiles are statistically independent.
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Although this assumption is not correct for noise due to sample variance, we expect our noise
to be dominated by shape noise which is independent for each tile. In the jackknife resampling,
we combine the G̃𝑖

𝑍
of all 𝑁 tiles to the total G̃𝑍 . Additionally, we create 𝑁 jackknife samples by

combining all but one tile. The aperture statistics 〈NNM〉 (𝜃) are calculated for the total G̃𝑍 ,
as well as for each of the 𝑁 jackknife samples to get 𝑁 〈NNM〉𝑘 (𝜃). The covariance matrix 𝐶̃
of 〈NNM〉 (𝜃) is then estimated with Eq. (3.31) as 𝐶̃𝑖 𝑗 = 𝐶 (𝜃𝑖 , 𝜃 𝑗 ).

As discussed by Hartlap et al. (2007) and Anderson (2003), the inverse of this estimate of the
covariance matrix is not an unbiased estimate of the inverse covariance matrix. Following their
suggestion, we instead estimate the inverse covariance matrix with

𝐶−1
𝑖 𝑗 =

𝑁 − 𝑝 − 2
𝑁 − 1

(
𝐶̃𝑖 𝑗

)−1
, (4.9)

where 𝑝 is the number of data points. This gives an unbiased estimate of the inverse covariance
matrix if the realisations are statistically independent and have Gaussian errors.

With this estimate of the inverse covariance matrix, we calculate the S/N of our observational
measurement with

𝑆/𝑁 =

[
𝑝∑︁

𝑖, 𝑗=1
〈NNM〉 (𝜃𝑖) 𝐶−1

𝑖 𝑗 〈NNM〉 (𝜃 𝑗 )
]1/2

. (4.10)

We also use 𝐶−1
𝑖 𝑗

to perform a 𝜒2-test, evaluating the agreement of the observational measure-
ment 〈NNM〉obs with the SAMs prediction 〈NNM〉sim. For this, we calculate the reduced
𝜒2redu as

𝜒2redu =
1
𝑝

𝑝∑︁
𝑖, 𝑗=1

(〈NNM〉obs (𝜃𝑖) − 〈NNM〉sim (𝜃𝑖)) (4.11)

× 𝐶−1
𝑖 𝑗

(
〈NNM〉obs (𝜃 𝑗 ) − 〈NNM〉sim (𝜃 𝑗 )

)
.

4.3 Data

4.3.1 Observational data

Our observational data is overlap of the KiDS, VIKING, and GAMA (KV450 × GAMA). This
overlap encompasses approximately 180 deg2, divided into the three patches G9, G12 and G15,
each with dimensions of 12 × 5 deg2.

VIKING (Edge et al., 2013; Venemans et al., 2015) is a photometric survey in �ve near-infrared
bands, conducted at the Visible and Infrared Survey Telescope for Astronomy (VISTA) telescope
in Paranal, Chile and covering approximately 1350 deg2. It covers the same area as KiDS (Kuijken
et al., 2015; de Jong et al., 2015), an optical photometric survey conducted with the OmegaCAM at
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the Very Large Telescope (VLT) Survey Telescope. The data of KiDS and VIKINGwere combined
to form the KV450 data set, which we use in the following. This data set described in detail in
Wright et al. (2019). KV450 has the same footprint as the third data release of KiDS (de Jong et al.,
2017) and was processed by the same data reduction pipelines, described in detail in Hildebrandt
et al. (2017). Data are processed by THELI (Erben et al., 2005; Schirmer, 2013) and Astro-WISE
(de Jong et al., 2015). Shears are measured with lens�t (Miller et al., 2013; Kannawadi et al.,
2019). Photometric redshifts are obtained from PSF-matched photometry (Wright et al., 2019)
and calibrated using external overlapping spectroscopic surveys (Hildebrandt et al., 2020).

We use the galaxies observed by KV450 with photometric redshift between 0.5 and 1.2 as source
galaxies. We exclude galaxies with a photometric redshift less than 0.5 because most of them
are in front of our lens galaxies and therefore dilute and bias the lensing signal. The averaged
inverse critical surface mass density Σ̄−1

crit is calculated as described in Sect. 4.2 by using the
weighted direct calibration redshift distributions (DIR distributions) of the KV450 galaxies as the
source distribution. These DIR distributions were obtained with in-depth spectroscopic surveys
overlapping with KiDS and VIKING. The spectroscopic redshift distributions from these surveys
were weighted according to the photometric data in KV450 to estimate the redshift distribution
of KV450 galaxies. Hildebrandt et al. (2017, 2020) describe details of this procedure. We neglect
the uncertainties on the redshift distribution and the multiplicative bias of the shear estimate.
However, as these uncertainties are small, we do not expect them to impact our conclusions.

GAMA (Driver et al., 2009, 2011; Liske et al., 2015) is a spectroscopic survey carried out at the
Anglo Australian Telescope with the AAOmega spectrograph. We use the Data Management
Unit (DMU) distanceFramesv14, which contains positions and spectroscopic redshifts 𝑧 of galaxies
with a Petrosian observer-frame 𝑟-band magnitude brighter than 19.8 mag. The spectroscopic
redshifts were �ow-corrected to account for the proper motion of the MilkyWay. This correction
used the model by Tonry et al. (2000) and the procedure described in Baldry et al. (2012). We
include all galaxies with a spectroscopic redshift lower than 0.5 and redshift quality �ag N_Q≥3.
For the calculation of the angular two-point correlation function of lenses, we use randoms from
the DMU randomsv02 (Farrow et al., 2015), which incorporates the galaxy selection function of
GAMA while maintaining an unclustered galaxy distribution. From the GAMA galaxies, we
select lens samples according to their colour and stellar mass. Restframe photometry and stellar
masses were obtained from the DMU stellarMassesLambdarv20. An overview of our samples is
given in Table 4.1.

We select a ‘red’ and ‘blue’ lens sample, de�ned according to the galaxies’ rest-frame (𝑔 − 𝑟)0
colour. We use the colour cut by Farrow et al. (2015), according to which a galaxy is red if its
rest-frame colour (𝑔 − 𝑟)0 and its absolute Petrosian magnitude 𝑀𝑟 in the 𝑟-band ful�l

(𝑔 − 𝑟)0 + 0.03 (𝑀𝑟 − 5 log10 ℎ + 20.6) > 0.6135 . (4.12)

Otherwise, the galaxy is considered blue. We chose this colour cut so that approximately equal
numbers of red and blue galaxies (93 524 red and 93 702 blue galaxies). Using a hard colour
cut does not automatically produce two physically distinct galaxy populations (Taylor et al.,
2015). However, as we apply the same cuts in the observational and simulated data, we expect
to obtain comparable ‘red’ and ‘blue’ galaxy samples.
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Table 4.1: Selection criteria for lens samples and number density N of selected galaxies per sample.
Lenses are selected either according to their stellar mass M∗ or to their rest-frame (g− r)0 colour and
absolute r-band magnitude Mr and need to have r < 19.8mag.
Sample Selection Criterion N, GAMA

arcmin−2
N, H15
arcmin−2

N, L12
arcmin−2

red (g− r)0 +
0.03 (Mr − 5 log10 h 20.6)> 0.6135

0.143 0.140 0.152

blue (g− r)0 +
0.03 (Mr − 5 log10 h 20.6)≤ 0.6135

0.144 0.142 0.139

m1 8.5 < log10(M∗M−1
� h−2)≤ 9.5 0.037 0.040 0.059

m2 9.5 < log10(M∗M−1
� h−2)≤ 10 0.058 0.059 0.064

m3 10 < log10(M∗M−1
� h−2)≤ 10.5 0.099 0.096 0.095

m4 10.5 < log10(M∗M−1
� h−2)≤ 11 0.080 0.076 0.058

m5 11 < log10(M∗M−1
� h−2)≤ 11.5 0.014 0.011 0.009

Absolute magnitudes and rest-frame colours of the GAMA galaxies were obtained by Wright
et al. (2016) using matched aperture photometry and the LAMBDAR code. These magnitudes
were aperture corrected, using

𝑀𝑟 ,tot = 𝑀𝑟 ,meas − 2.5 log10 𝑓 + 5 log10 ℎ , (4.13)

where 𝑓 is the �ux scale, which is the ratio between the measured 𝑟-band �ux and the total
𝑟-band �ux inferred from �tting a Sérsic-pro�le to the galaxies photometry.

We de�ne �ve stellar mass bins with the same cuts as Farrow et al. (2015), with 𝑀∗ between
108.5 ℎ−2M� and 1011.5 ℎ−2M�. The stellar masses of GAMA galaxies were obtained by Wright
et al. (2017), assuming the IMF by Chabrier (2003), stellar population synthesis according to
Bruzual and Charlot (2003), and dust extinction according to Calzetti et al. (2000).

The estimator for G̃𝑍 and G̃phys are de�ned in terms of Cartesian coordinates. Therefore, we
project the right ascension 𝛼 and the declination 𝛿 of the galaxies onto a tangential plane on
the sky. For this, we divide the source and the lens galaxy catalogues into 24 tiles with a size of
2.5× 3 deg2, which are also used for the jackknife resampling. We use the tile centres (𝛼0, 𝛿0) as
projection points and �nd the Cartesian coordinates (𝑥, 𝑦) with the orthographic projection

𝑥 = cos(𝛿) sin(𝛼 − 𝛼0) , (4.14)
𝑦 = cos(𝛿0) sin(𝛿) − sin(𝛿0) cos(𝛿) cos(𝛼 − 𝛼0) . (4.15)

4.3.2 Simulated data

We compare the results for the aperture statistics in KV450 × GAMA to measurements in the
MR (see Sect. 2.2.1) with two di�erent SAMs.
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We use the same simulated shear maps as in the last chapter, whose creation we described in
Sect. 3.3.1. These shear maps have the same source galaxy distribution as the observational
data. However, here, we do not add any shape noise.

We obtain simulated lens galaxies from two SAMs implemented in the MR, the SAM by H15
and the SAM by L12 (see Sect. 2.2.2). The principal di�erences between these SAMs are listed
in Table 2.2. These are primarily the choice of IMF and stellar population model. Furthermore,
the magnitudes of the H15 SAM are given in AB-magnitudes, whereas the magnitudes of the
L12 SAM are originally in the Vega magnitude system. We convert the Vega magnitudes to the
AB-system with the conversion suggested by Blanton and Roweis (2007),

𝑔AB = 𝑔Vega − 0.08 , (4.16)
𝑟AB = 𝑟Vega + 0.16 . (4.17)

The lens galaxies are selected in the same way as the lenses in GAMA. We use all galaxies with
redshifts less than 0.5 and brighter than 𝑟 = 19.8mag, which is the limiting magnitude of GAMA.
With this criterion, we aim to mimic the selection function of GAMA galaxies and expect to
obtain samples of similar lenses as in the observation. Systematic errors in the galaxy �uxes, for
example, due to the dust modelling, of either GAMA or the SAM galaxies could invalidate this
expectation, as we would sample di�erent galaxies. However, as shown in Fig. 4.1, the redshift
distribution of selected simulated and observed lens galaxies agree well. This likely would not
be the case if there were fundamental di�erences in the selection function for simulated and
observed galaxies. The number density of simulated lenses 0.282 arcmin−2 for the H15 SAM
and 0.291 arcmin−2 for the L12 SAM, which are both close to the GAMA number density of
0.287 arcmin−2. Consequently, we expect the lens samples in the simulated and observational
data to be comparable.

We split the simulated lens galaxies into colour and stellar-mass samples by applying the same
cuts as to the GAMA galaxies (Table 4.1). Figures 4.2 and 4.3 show the colour- and stellar mass
distribution of observed and simulated galaxies. The colour distributions of GAMA and SAM
galaxies have similar modes, however, the blue mode of the L12 SAM is more concentrated. The
H15 SAM also predicts stellar mass distributions similar to the observation, while the L12 SAM
predicts more galaxies with stellar masses below 9.5 × 1010M� and fewer galaxies with stellar
masses above 11 × 1010M�.

4.4 Results

In this section, we present our results for the physical aperture statistics 〈NNM〉phys, de�ned
in Eq. (3.21). The measured angular aperture statistics 〈NNM〉, which exhibit similar trends,
are given in Appendix B.1.

The upper plot of Fig. 4.4 presents 〈NNM〉phys for red-red, red-blue, and blue-blue lens pairs.
For the observed and both simulated data sets, the signal for red-red lens pairs is larger than
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4 Testing semi-analytic galaxy models with galaxy-galaxy-galaxy lensing

Figure 4.1: Number density per redshift bin of GAMA (solid blue), H15 galaxies (dashed red), and L12
galaxies (dotted green) for the limiting magnitude of r < 19.8. The bin size is ∆z = 0.01.
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Figure 4.2: Number density per colour bin of GAMA (solid blue), H15 (dashed red), and L12 galaxies
(dotted green) for the limiting magnitude of r < 19.8. The bin size is ∆(g0 − r0)= 0.01.
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Figure 4.3:Number density per stellar mass bin of GAMA (solid blue), H15 (dashed red), and L12 galaxies
(dotted green) for the limiting magnitude of r < 19.8. The bin size is ∆ log

(
M∗ M−1

� h−2
)
= 0.15.

for red-blue and blue-blue lens pairs. Consequently, the linear deterministic bias model of
Eq. (2.42) suggests that the bias factor 𝑏red of red galaxies is larger than the bias factor 𝑏blue of
blue galaxies.

The linear deterministic bias model predicts that the aperture statistics for mixed red-blue lens
pairs are the geometric mean of the aperture statistics for red-red and blue-blue lens pairs (see
Eq. 2.147). To test this prediction, we show 𝑅 in the lower plot of Fig. 4.4. For the observed
galaxies, 𝑅 is consistent with unity, supporting the linear deterministic bias model. However,
for scales below 0.2 ℎ−1Mpc, the noise of the observed 𝑅 is more than three times larger than 𝑅
itself, which inhibits any meaningful deductions on the bias model at small scales. For the H15
model, the prediction by the linear bias model is ful�lled , while for the L12 model 𝑅 is slightly
larger than unity at scales below 0.2 ℎ−1Mpc.

The SAMs give di�erent predictions for the aperture statistics. While the 〈NNM〉phys of the
H15 SAM agrees well with the observations, the signals for red-red and blue-blue lens pairs
of the L12 model di�er markedly. The L12 SAM predicts much larger aperture statistics for
red-red pairs than the observation and signi�cantly smaller aperture statistics for blue-blue
pairs. For red-blue pairs, the signal from the L12 SAM is similar to the observed one at small
scales, but too high for 𝑟 > 0.3 ℎ−1Mpc .

The di�erence between the SAMs is also visible in Table 4.2, whose upper part shows the 𝜒2redu
values for the di�erent colour-selected lens pairs. We consider here 𝑝 = 12 data points and
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Figure 4.4: Upper panel: 〈NNM〉phys for colour-selected lens samples of the H15 galaxies (solid lines),
L12 galaxies (dashed lines) and KV450 × GAMA (points). The signal is shown for red-red lens pairs
(red lines and filled circles), red-blue lens pairs (purple lines and crosses), and blue-blue lens pairs
(blue lines and squares). Error bars on the observational measurements are the standard deviation from
jackknifing. Lower panel: Ratio statistics R as given by Eq. (2.147) for the red and blue lens samples of
KV450 × GAMA (points), the H15 SAM (solid line) and the L12 SAM (dashed line).
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Table 4.2: The reduced χ2
redu of 〈NNM〉phys for the H15 and L12 SAMs. Samples are selected according

to Table 4.1. Bold values indicate a tension at the 95% confidence level (CL).
lens pairs χ2

redu for H15 χ2
redu for L12

red – red 1.08 55.12
red – blue 0.95 3.13
blue – blue 1.10 2.19
m1 – m1 1.44 32.72
m1 – m2 1.75 42.96
m1 – m3 1.54 46.83
m1 – m4 2.84 45.33
m1 – m5 1.75 64.22
m2 – m2 1.58 16.04
m2 – m3 0.80 17.11
m2 – m4 0.97 10.04
m2 – m5 0.85 47.10
m3 – m3 1.31 51.21
m3 – m4 1.17 41.01
m3 – m5 1.10 8.60
m4 – m4 1.62 2.56
m4 – m5 0.97 8.54
m5 – m5 0.73 6.93

de�ne a tension between observation and simulation at the 95% CL if 𝜒2redu > 1.75. For the H15
SAM, 𝜒2redu is smaller than this threshold for red-red, red-blue, and blue-blue lens pairs, so there
is no tension between the observation and this model. The 𝜒2redu for the L12 SAM, though, are
notably higher than the threshold. Consequently, the predictions by the L12 SAM do not agree
with the observations for these.

Figure 4.5 shows the measured 〈NNM〉phys for lenses split by their stellar mass. The amplitude
of the aperture statistics increases with the stellar mass of galaxies in a pair. Consequently,
the bias factor increases with stellar mass. This trend exists for observed and both kinds of
simulated lenses. Nevertheless, the predictions of the SAMs di�er notably, with the aperture
statistics obtained from the L12 SAM being substantially higher than those from the H15 SAM.
The L12 SAM also deviates strongly from the observational measurements in KV450×GAMA,
that agree better with the H15 SAM. The deviation of the L12 SAM from the observations is
strongest for lenses with 𝑀∗ ≤ 109.5 ℎ−2M� and decreases for larger stellar masses.

To quantify the deviation, we list the 𝜒2redu of the aperture statistics measured in the H15 and L12
SAM in the lower part of Table 4.3. Again, a 𝜒2redu > 1.75 indicates a tension at the 95% CL. The
L12 SAM disagrees with the observation for all lens samples. The 𝜒2redu of the H15 SAM, though,
are smaller than 1.75 for all but one correlation. The only tension exists for the correlation of
lenses from stellar-mass samples m1 and m4, driven by di�erences at 𝑟 . 0.2 ℎ−1Mpc, where
the H15 SAM underestimates 〈NNM〉phys.
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Figure 4.5: 〈NNM〉phys for stellar mass-selected lens samples in the MR with the H15 SAM (solid blue
lines), the L12 SAM (dashed grey lines), and in GAMA with KV450 sources (pink points), using the
mass bins defined in Table 4.1. Plots on the diagonal show the signal for unmixed lens pairs, while the
other plots show the signal for mixed lens pairs. Error bars are the standard deviation from jackknife
resampling.
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Table 4.3: S/N of observed aperture statistics for the E-mode in the middle column and the B-mode in
the right column. Samples are selected according to Table 4.1. B-mode is consistent with zero.

lens pairs S/N of 〈NNM〉phys S/N of 〈NNM⊥〉phys
red – red 7.3 1.7
red – blue 5.1 1.4
blue – blue 4.7 0.6
m1 – m1 3.9 1.7
m1 – m2 4.1 1.4
m1 – m3 3.7 0.7
m1 – m4 5.6 0.8
m1 – m5 9.2 0.7
m2 – m2 8.6 1.2
m2 – m3 3.3 1.8
m2 – m4 5.3 1.5
m2 – m5 3.4 0.9
m3 – m3 4.7 0.8
m3 – m4 5.7 0.9
m3 – m5 6.2 1.3
m4 – m4 7.1 0.7
m4 – m5 9.8 1.1
m5 – m5 9.1 0.4

Finally, we test for systematic e�ects by considering the B-mode 〈NNM⊥〉phys. Table 4.3 com-
pares the S/Ns, de�ned by Eq. (4.10), of 〈NNM〉phys with those of the B-modes 〈NNM⊥〉phys
for all observed lens pairs. The S/Ns of 〈NNM⊥〉phys are considerably smaller than the S/Ns of
the 〈NNM〉phys, and they are consistent with a vanishing B-mode.

4.5 Discussion

We evaluated the SAM by H15 and the SAM by L12 by comparing their G3L predictions to
measurements with KiDS, VIKING and GAMA. For this, we applied the improved estimator for
the G3L three-point correlation function by L20 and measured aperture statistics for mixed and
unmixed lens galaxy pairs from colour- or stellar-mass-selected lens samples.

Our measurements show a higher S/N than previous studies of G3L, due to the use of the
improved estimator for G3L, proposed in Chapter 3 and new data. We also extended the
considered scales. Thereby, we could probe the predictions of the SAMs well inside of dark
matter halos at lengths below 1 ℎ−1Mpc. These ranges are particularly interesting for testing
galaxy formation models because the principal variations between di�erent SAMs are the
assumptions on phenomena, whose e�ects are most substantial at small scales, such as star-
formation, stellar and AGN feedback and environmental processes (Guo et al., 2016).
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The aperture statistics are larger for red-red lens pairs than for red-blue or blue-blue lens pairs,
which indicates that red galaxies have higher bias factors than blue galaxies. We also found that
the bias factor increases with stellar mass. These results support the general expectation that
redder and more massive galaxies have higher bias factors, as con�rmed by multiple studies
(e.g. Zehavi et al., 2002; Sheldon et al., 2004; Simon and Hilbert, 2018; Saghiha et al., 2017).

The predictions by the H15 SAM for aperture statistics of colour-selected lens samples agree
with the observations at the 95% CL. The signal predicted by the L12 SAM, though, deviates
signi�cantly from the observed G3L signal, being too high for red-red and red-blue, and too
low for blue-blue pairs.

This deviation could be due to an overproduction of red galaxies in massive halos by the L12
SAM. As shown byWatts and Schneider (2005), the G3L signal increases if more lens pairs reside
in massive halos, so the relatively high 〈NNM〉phys indicates that in the L12 SAM massive
halos contain too many pairs of red galaxies. This interpretation is supported by studies by
Baldry et al. (2006) of the Bower et al. (2006) SAM, on which the L12 SAM is based. They
compared the fraction of red galaxies in the SAM with observations by the SDSS and found that
the SAM predicts too many red galaxies, especially in regions of high surface mass density.

Font et al. (2008) accredited the overproduction of red satellite galaxies to excessive tidal
interactions and ram pressure stripping in the L12 SAM. This process decreases the amount of
gas in satellite galaxies inside halos and thereby inhibits their star-formation. Consequently,
the stripped galaxies become redder, so the fraction of red galaxies increases, while the number
of blue galaxies decreases. This e�ect could explain the low aperture statistics for blue-blue
lens pairs in the Lagos et al. (2012) SAM, as fewer blue galaxies remain inside massive halos.

The aperture statistics for the stellar-mass-selected samples measured in the observation agree
with the H15 SAM at the 95% CL except for one sample. This �nding is consistent with the
conclusion by Saghiha et al. (2017), although their study was limited to angular scales between
1′ and 10′, did not consider mixed lens pairs and had a lower S/N due to the e�ect of chance
lens pairs.

The H15 SAM agrees with the observations at the 95% CL for all but the correlation of m1
and m4 lens galaxies. This di�erence is driven mainly by a low signal by the SAM at scales
below 0.2 ℎ−1Mpc. At these scales, the SAM also gives lower predictions for 〈NNM〉 than
the observations for m1-m2, m1-m3, and m2-m2 lens pairs. This trend could indicate that the
SAM underpredicts G3L at small scales for low stellar masses. A possible reason is the limited
resolution of the MR. The MRs softening length is 5 ℎ−1kpc, so its spatial resolution is in the
order of tens of kpc (Vogelsberger et al., 2020). Therefore, the limited resolution might cause the
di�erence between the aperture statistics in the H15 SAM and the observation at small scales.

The L12 SAM disagrees with the observations for all considered stellar-mass samples at the 95%
CL, and its predicted signal is signi�cantly larger. The tension increases for lenses with lower
stellar mass and is more prominent at smaller scales.

This tension might be due to inaccurate stellar masses of the simulated lens galaxies. If the SAM
assigns too low stellar masses, galaxies from a higher stellar mass bin are incorrectly assigned to
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a lower mass bin, for example into m2 instead of m3. The SAM then overestimates the aperture
statistics, because the bias factors of galaxies with larger stellar masses are higher. The choice
of IMF could cause di�erent stellar-mass assignments by the SAMs. While the H15 SAM used
the same IMF (Chabrier, 2003) as assumed for the stellar masses of GAMA galaxies, the L12
SAM assumes the IMF by Kennicutt (1983). Therefore, the stellar masses of the observation and
the L12 might be inconsistent with each other.

Another cause for the tension of the L12 SAM with the observation could be an overproduction
of satellite galaxies inside massive halos. This interpretation agrees with Saghiha et al. (2017),
who found that the satellite fraction and mean halo masses for the L12 SAM is higher than
for the H15 SAM. The tension between the L12 SAM and the observation increases for lower
stellar masses and smaller scales, indicating that especially galaxies with low stellar mass are
overproduced by the SAM and that their fraction rises closer to the centre of their dark matter
halo. An excess of galaxies with small stellar masses would be consistent with excessive galaxy
interactions inside halos. This �nding, therefore, �ts with the interpretation of the high G3L
signal for red-red lens pairs in the SAM as caused by excessive ram pressure stripping.

We presented the �rst measurements of G3L for mixed lens pairs and used the aperture statistics
for red-blue lens pairs to test the linear deterministic bias model. This bias model predicts that
the aperture statistics for mixed lens pairs is the geometric mean of the signals for equal lens
pairs. Our observational measurements are consistent with this prediction, although the signal
is too noisy at scales below 0.2 ℎ−1Mpc for meaningful constraints on the bias model.

The aperture statistics for mixed lens pairs are also useful for constraining the correlations of
di�erent galaxy populations inside the same dark matter halos. For example, the measured
aperture statistics for red-blue lens pairs indicate that lens galaxies of di�erent samples co-
populate the same halos, as the signal would decrease at sub-Mpc scales due to a vanishing
1-halo term. Modelling of mixed-pair G3L in the context of the halo model will provide further
insights into the correlation of galaxy populations inside halos. In contrast, GGL, which is only
sensitive to the mean number of lenses inside halos and hence blind to the way mixed lens pairs
populate halos, cannot yield the same information.

A compelling future study would be investigating whether full hydrodynamical simulations
predict G3L with the same accuracy as the H15 SAM. Such a study would complement previous
comparisons of GGL in hydrodynamical simulations to observations, for example by Velliscig
et al. (2017) for the EAGLE simulation to KiDS and GAMA data, or Gouin et al. (2019) for the
Horizon-AGN simulation to CFHTLenS and the Baryon Oscillation Spectroscopic Survey (BOSS).
While these studies concluded that the GGL predictions of these simulations agree with the
observations, the same is not necessarily true for G3L, which depends on the correlation of
matter and galaxy pairs.
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Modelling galaxy-galaxy-galaxy
lensing with the halo model

5
In this chapter, we present an analytical model for G3L. We then extract the best-�tting
parameters of the G3L model from the observations in KV450 × GAMA described in the last
chapter. In Sect. 5.1, we explain our motivation for developing a G3L model based on the halo
model. We derive our model in Sect. 5.2. Sect. 5.3 outlines how we obtain the best-�tting model
parameters for the observations in KV450 × GAMA. We explore the sensitivity of G3L to the
model parameters in Sect. 5.4.1 and present our results for the best �tting values in Sect. 5.4.2.
A discussion of our model and the parameter values found follows in Sect. 5.5.

5.1 Motivation

After improving the estimator for G3L in Chapter 3 and measuring it with high precision in
Chapter 4, we are now interested in theoretically modelling the e�ect. We propose an analytic
model based on the halo model (Cooray and Sheth, 2002; Zheng et al., 2005, 2007), whose
ingredients we presented in Sect. 2.3. Analytically describing G3L has two purposes. First,
successful modelling of G3L would support the halo model as an accurate description of the LSS.
Consequently, the assumptions of the halo model would be su�cient for three-point statistics of
the galaxy and matter correlations. Second, with an analytical model, we can determine the free
parameters of the halo model with G3L measurements. Therefore, G3L could complement other
observables such as GGL or galaxy clustering when constraining the halo model parameters.

The halo model is a useful tool for describing galaxy-matter correlations since it is valid in the
non-linear regime, �exible enough to represent a range of observables and computationally
simple enough to be quickly calculated. It has been applied to model galaxy clustering (Simon
et al., 2009), GGL (Mandelbaum et al., 2006), as well as the Sunyaev-Zel’dovich e�ect (Mead
et al., 2020). Rödinger (2009) and Martin (2019) adopted it also to G3L and modelled the galaxy-
galaxy-matter bispectrum and 〈NNM〉 for unmixed lens pairs with galaxies from a single
population.

We build on their work and propose a model for G3L which can describe the e�ect both for
unmixed and mixed lens pairs. Our model includes several free parameters, which control
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the spatial distribution of galaxies, their HODs, and the cross-correlation of di�erent popula-
tions. We analyze the impact of the parameters on the predicted G3L signal by varying them.
Afterwards, we use a multidimensional optimization routine to extract the best-�tting model
parameters for the observations in the KV450 × GAMA for red and blue galaxies.

5.2 Derivation of the halo model for
galaxy-galaxy-galaxy-lensing

To model the G3L aperture statistics, we use a three-step approach. First, we model the �rst
and second moments of the HODs of galaxies from two di�erent populations. These moments
give the expected numbers of each galaxy population in a halo of a given mass. Second, we use
the HODs to calculate the three-dimensional galaxy-galaxy-matter bispectrum 𝐵gg𝛿. Third, we
project this bispectrum to the two-dimensional bispectrum 𝐵gg𝜅 with the Limber equation and
convert it to the aperture statistics 〈NNM〉 by convolving it with the suitable �lter function.

The derivation in this section is valid for lens galaxies from two populations 𝑎 and 𝑏 de�ned by
any arbitrary galaxy property, such as stellar mass, SFR, or colour. In Sect. 5.3, we identify 𝑎
with ‘red’ and 𝑏 with ‘blue’, to extract the best-�tting model for the observations. However, the
model proposed in this section is fully general.

5.2.1 Moments of the joint halo occupation distribution

As outlined in Sect. 2.3.4, the halo model depends on the expected number of galaxies in a halo
of given mass, 〈𝑁 |𝑚〉. A useful approach to model the number of galaxies per halo is splitting
their distribution into centrals and satellites (Kravtsov et al., 2004), each with their own expected
number per halo, such that

〈𝑁 |𝑚〉 =
〈
𝑁cen |𝑚

〉
+

〈
𝑁sat |𝑚

〉
. (5.1)

Each halo hosts at most one central galaxy situated at the halo centre and can contain several
satellite galaxies, distributed with the halo galaxy pro�le 𝑢g.

Since we want to model G3L both for mixed and unmixed lens pairs, we need to model the
following moments of the joint halo occupation distribution (JHOD) of population 𝑎 and 𝑏
galaxies, using 𝑝 ∈ {𝑎, 𝑏}:

• The expected number
〈
𝑁

(𝑝)
cen |𝑚

〉
of central galaxies for each population,

• The expected number
〈
𝑁

(𝑝)
sat |𝑚

〉
of satellite galaxies for each population,

• The expected number
〈
𝑁

(𝑝)
sat

(
𝑁

(𝑝)
sat − 1

)
|𝑚

〉
of satellite galaxy pairs,
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• The correlation
〈
𝑁

(𝑝)
cen 𝑁

(𝑝)
sat |𝑚

〉
of central galaxies with satellite galaxies of the same

population,

• The correlation
〈
𝑁

(𝑎)
cen 𝑁

(𝑏)
cen |𝑚

〉
of central galaxies from di�erent populations,

• The correlation
〈
𝑁

(𝑎)
sat 𝑁

(𝑏)
sat |𝑚

〉
of satellite galaxies from di�erent populations,

• The correlation
〈
𝑁

(𝑎)
cen 𝑁

(𝑏)
sat |𝑚

〉
of satellite galaxies with central galaxies from di�erent

populations.

The number 𝑁 (𝑝)
cen of central galaxies depends sensitively on the halo mass. For small halo masses

no galaxy formation occurs, so 𝑁 (𝑝)
cen = 0. Halos with masses above a certain threshold, though,

will contain central galaxies. Following Martin (2019), we assume

〈
𝑁

(𝑝)
cen |𝑚

〉
=
𝛼(𝑝)

2

1 + erf


log(𝑚) − log

(
𝑀

(𝑝)
th

)
𝜎 (𝑝)


 , (5.2)

with the free parameters 𝛼(𝑝) , 𝑀 (𝑝)
th , and 𝜎 (𝑝) . The parameter 𝛼(𝑝) gives the fraction of massive

halos (𝑚 � 𝑀th) with a central galaxy of population 𝑝. The mass 𝑀th is the halo mass at which
a fraction of 𝛼(𝑝)/2 halos have a central galaxy of population 𝑝. The parameter 𝜎 (𝑝) determines
the steepness of

〈
𝑁
𝑝
cen |𝑚

〉
. If 𝜎 (𝑝) is small, the transition from

〈
𝑁

(𝑝) |𝑚
cen

〉
= 0 to

〈
𝑁

(𝑝) |𝑚
cen

〉
= 𝛼(𝑝)

occurs quickly, whereas the transition is smoother for larger 𝜎 (𝑝) .

The number 𝑁 (𝑝)
sat of satellite galaxies is also zero for small halo masses, but follows a power

law at higher halo masses. We assume therefore, with the free parameters 𝑀′(𝑝) and 𝛽(𝑝) ,

〈
𝑁

(𝑝)
sat |𝑚

〉
=

1 + erf


log(𝑚) − log

(
𝑀

(𝑝)
th

)
𝜎 (𝑝)




( 𝑚

𝑀′(𝑝)

) 𝛽 (𝑝)
. (5.3)

Figure 5.1 shows the expected number of satellite and central galaxies per halo mass with
these models and the �ducial parameters in Table 5.1. For low-mass halos, the total number of
galaxies is strongly in�uenced by the central galaxy distribution. Satellite galaxies predominate
in massive halos.

The central galaxies are de�ned such that there can be either one or zero centrals of each
population in a halo. Therefore, 〈

𝑁
(𝑝)
cen

(
𝑁

(𝑝)
cen − 1

)
|𝑚

〉
= 0 , (5.4)

and 〈
𝑁

(𝑎)
cen 𝑁

(𝑏)
cen |𝑚

〉
= 0 . (5.5)
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Figure 5.1: Halo occupation distribution for fiducial parameters in Table 5.1. The solid black line shows
the total galaxy number per halo, the dashed red line shows the fraction of halos with central galaxies,
and the dotted blue line shows the number of satellite galaxies per halo.

We assume that satellite galaxies are distributed Poissonian, following Kravtsov et al. (2004).
Therefore, 〈

𝑁
(𝑝)
sat

(
𝑁

(𝑝)
sat − 1

)
|𝑚

〉
=

〈
𝑁

(𝑝)
sat |𝑚

〉2
. (5.6)

Furthermore, we assume that the distributions of centrals and satellites are independent, so〈
𝑁

(𝑎)
cen 𝑁

(𝑏)
sat |𝑚

〉
=

〈
𝑁

(𝑎)
cen |𝑚

〉 〈
𝑁

(𝑏)
sat |𝑚

〉
, (5.7)

and 〈
𝑁

(𝑝)
cen 𝑁

(𝑝)
sat |𝑚

〉
=

〈
𝑁

(𝑝)
cen |𝑚

〉 〈
𝑁

(𝑝)
sat |𝑚

〉
. (5.8)

Finally, we require the correlation of satellite galaxies from di�erent populations. For this, we
introduce the cross-correlation parameter 𝑟 with〈

𝑁
(𝑎)
sat 𝑁

(𝑏)
sat |𝑚

〉
=

〈
𝑁

(𝑎)
sat

〉 〈
𝑁

(𝑏)
sat

〉
+ 𝑟 𝜎(𝑁 (𝑎)

sat |𝑚) 𝜎(𝑁
(𝑏)
sat |𝑚) , (5.9)

where 𝜎2(𝑁 (𝑝)
sat |𝑚) =

〈
𝑁

(𝑝)
sat

(
𝑁

(𝑝)
sat − 1

)
|𝑚

〉
. The parameter 𝑟 is negative, if 𝑎 and 𝑏 galaxies

are anticorrelated, zero, if 𝑎 and 𝑏 galaxies are independent, and positive, if the galaxies are
positively correlated.

With these moments of the HODs, along with the NFW-pro�le for the dark matter distribution
(Sect. 2.3.1), the Sheth-Tormen HMF (Sect. 2.3.2) and the linear halo bias (Sect. 2.3.3), the model
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Table 5.1: Fiducial values and priors of the halo model parameters, motivated by Clampitt et al. (2017).
Parameter Fiducial Value Prior Range

α(p) 0.225 [0,0.45]
σ(p) 0.255 [0.01,0.5]
Mth

(p) 2×1012 M� [0.1,50]×1012 M�
β(p) 1 [0.6,1.4]
M′(p) 8×1013 M� [3,20]×1013 M�
f (p) 1 [0,2]
r 1 [-1,1]

is speci�ed and predicts the galaxy-matter two and three point statistics. This model has �ve
free parameters per galaxy population and an additional parameter 𝑟 constraining the cross-
correlation of the two populations. Additionally, as explained in Sect. 2.3.4, we adopt the free
parameters 𝑓 (𝑎) and 𝑓 (𝑏) , which control the concentration of the spatial galaxy distribution with
respect to the dark matter pro�le in a halo. Therefore, galaxies of population 𝑝 are distributed
with an NFW pro�le of concentration 𝑓 (𝑝) 𝑐. We collect these parameters in the parameter
vector 𝒑, de�ned as

𝒑T =

(
𝛼(𝑎) 𝜎 (𝑎) 𝑀

(𝑎)
th 𝛽(𝑎) 𝑓 (𝑎) 𝛼(𝑏) 𝜎 (𝑏) 𝑀

(𝑏)
th 𝛽(𝑏) 𝑓 (𝑏) 𝑟

)
. (5.10)

We use priors and �ducial values on 𝒑 motivated by Clampitt et al. (2017) and given in
Table 5.1.

5.2.2 Modelling the galaxy-galaxy-matter bispectrum

In the halo model the cosmic density �eld consists of 𝐻 halos with masses {𝑚1, . . . ,𝑚𝐻} at
positions {𝒙1, . . . , 𝒙𝐻}. With the normalized density pro�le 𝑢 de�ned in Sect. 2.3.1, the total
density is

𝜌(𝒙, 𝑡) =
𝐻∑︁
𝑖=1

𝑚𝑖 𝑢(𝒙 − 𝒙𝑖 |𝑚𝑖) . (5.11)

The Fourier transform of the density is therefore

𝜌̂(𝒌, 𝑡) =
𝐻∑︁
𝑖=1

𝑚𝑖

𝜌
𝑢(𝒌 |𝑚𝑖) exp(−i𝒌 · 𝒙𝑖) . (5.12)

Galaxies are treated as point particles. Each satellite galaxy belongs to a halo centred at 𝒙𝑖 and
is at separation Δ𝒙𝑖 𝑗 to the halo centre, while centrals are exactly at the centre. The number
density of population 𝑝 galaxies is therefore

𝑛𝑝 (𝒙, 𝑡) =
𝐻∑︁
𝑖=1


𝑁

(𝑝)
sat,𝑖∑︁
𝑗=1

𝛿D(𝒙 − 𝒙𝑖 − Δ𝒙𝑖 𝑗 ) + 𝑁 (𝑝)
cen,𝑖 𝛿D(𝒙 − 𝒙𝑖)

 , (5.13)
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where 𝑁 (𝑝)
sat,𝑖 is the number of population 𝑝 satellite galaxies and 𝑁 (𝑝)

cen,𝑖 is the number of popula-
tion 𝑝 central galaxies in halo 𝑖. The Fourier transform of the number density is

𝑛̂𝑝 (𝒌, 𝑡) =
𝐻∑︁
𝑖=1


𝑁

(𝑝)
sat,𝑖∑︁
𝑗=1

exp
[
−i𝒌 · (𝒙𝑖 + Δ𝒙𝑖 𝑗 ) + 𝑁 (𝑝)

cen,𝑖 exp(−i𝒌 · 𝒙𝑖)
] . (5.14)

The galaxy-galaxy-matter bispectrum can now be inferred, using

(2𝜋)3𝐵𝑝1 𝑝2gg𝛿 (𝒌1, 𝒌2, 𝒌3, 𝑡)𝛿D(𝒌1 + 𝒌2 + 𝒌3) =
1

𝑛̄𝑝1 𝑛̄𝑝2

〈
𝑛̂𝑝1 (𝒌1, 𝑡) 𝑛̂𝑝2 (𝒌2, 𝑡) 𝛿(𝒌3, 𝑡)

〉
(5.15)

=
1

𝑛̄𝑝1 𝑛̄𝑝2 𝜌

〈
𝑛̂𝑝1 (𝒌1, 𝑡) 𝑛̂𝑝2 (𝒌2, 𝑡) 𝜌̂(𝒌3, 𝑡)

〉
,

where 𝑝1, 𝑝2 ∈ {𝑎, 𝑏} and 𝑛𝑝 is the number density of population 𝑝 galaxies. The bispectrum
can be divided into three terms, the 1-halo term 𝐵1−h

gg𝛿 (𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡), the 2-halo term
𝐵2−h
gg𝛿 (𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡), and the 3-halo term 𝐵3−h

gg𝛿 (𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡),

𝐵gg𝛿 (𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡) = 𝐵1−h
gg𝛿 (𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡) + 𝐵2−h

gg𝛿 (𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡) (5.16)
+ 𝐵3−h

gg𝛿 (𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡) .

The 1-halo term contains the correlation of galaxies and matter in the same halo. The 2-halo
term is caused by galaxies in one halo correlated with matter in a di�erent halo, as well as
galaxies and matter in one halo correlated with galaxies in a di�erent halo. Correlations between
matter and galaxies in three di�erent halos cause the 3-halo term. For galaxies from the same
population with number density 𝑛̄, we �nd with the derivation in Appendix C.1,

𝐵1−h
gg𝛿 (𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡)

=
1
𝜌 𝑛̄2

∫
d𝑚 𝑛(𝑚) 𝑚 𝑢(−𝒌1 − 𝒌2 |𝑚)

{ 〈
𝑁cen(𝑁cen − 1) |𝑚

〉
(5.17)

+
〈
𝑁cen 𝑁sat

〉 [
𝑢g(𝒌1 |𝑚) + 𝑢g(𝒌2 |𝑚)

]
+

〈
𝑁sat(𝑁sat − 1) |𝑚

〉
𝑢g(𝒌1 |𝑚) 𝑢g(𝒌2 |𝑚)

}
,

𝐵2−h
gg𝛿 (𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡)

=
1
𝜌 𝑛̄2

∫
d𝑚1

∫
d𝑚2 𝑛(𝑚1) 𝑛(𝑚2) (5.18)

×
{[
𝑚1 𝑢(−𝒌1 − 𝒌2 |𝑚1) 𝑃H(𝒌2,−𝒌2, 𝑡 |𝑚1,𝑚2) + 𝑚2 𝑢(−𝒌1 − 𝒌2 |𝑚2) 𝑃H(𝒌1,−𝒌1, 𝑡 |𝑚1,𝑚2)

]
×

[〈
𝑁cen |𝑚1

〉
+

〈
𝑁sat |𝑚1

〉
𝑢g(𝒌1 |𝑚1)

] [〈
𝑁cen |𝑚2

〉
+

〈
𝑁sat |𝑚2

〉
𝑢g(𝒌2 |𝑚2)

]
+ 𝑚2 𝑢(−𝒌1 − 𝒌2 |𝑚2) 𝑃H(−𝒌1 − 𝒌2,+𝒌1 + 𝒌2, 𝑡 |𝑚1,𝑚2)

×
[〈
𝑁cen(𝑁cen − 1) |𝑚1

〉
+

〈
𝑁cen 𝑁sat |𝑚1

〉 (
𝑢g(𝒌1 |𝑚1) + 𝑢g(𝒌2 |𝑚1)

)
+

〈
𝑁sat(𝑁sat − 1) |𝑚1

〉
𝑢g(𝒌1 |𝑚1) 𝑢g(𝒌2 |𝑚2)

] }
,
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and

𝐵3−h
gg𝛿 (𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡)

=
1
𝜌 𝑛̄2

∫
d𝑚1

∫
d𝑚2

∫
d𝑚3 𝑛(𝑚1) 𝑛(𝑚2) 𝑛(𝑚3) 𝑚3 𝑢(−𝒌1 − 𝒌2 |𝑚3) (5.19)

× 𝐵H(𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡)
[〈
𝑁cen |𝑚1

〉
+

〈
𝑁sat |𝑚1

〉
𝑢g(𝒌1 |𝑚1)

]
×

[〈
𝑁cen |𝑚2

〉
+

〈
𝑁sat |𝑚2

〉
𝑢g(𝒌2 |𝑚2)

]
.

Here 𝑛(𝑚) is the HMF in Eq. (2.82) and 𝑢 is the Fourier transform of the NFW pro�le in Eq. (2.76).
The 𝑃H and 𝐵H are the halo power- and bispectrum, which can be approximated with Eq. (2.85)
and Eq. (2.86).

For two di�erent galaxy populations 𝑎 and 𝑏, the calculation in Appendix C.2 leads to

𝐵1−h
gg𝛿 (𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡)

=
1

𝜌 𝑛̄𝑎 𝑛̄𝑏

∫
d𝑚 𝑛(𝑚) 𝑚 𝑢(−𝒌1 − 𝒌2 |𝑚) (5.20)

×
[〈
𝑁

(𝑎)
cen 𝑁

(𝑏)
cen |𝑚

〉
+

〈
𝑁

(𝑎)
cen 𝑁

(𝑏)
sat

〉
𝑢
(𝑏)
g (𝒌2 |𝑚) +

〈
𝑁

(𝑏)
cen 𝑁

(𝑎)
sat

〉
𝑢
(𝑎)
g (𝒌1 |𝑚)

+
〈
𝑁

(𝑎)
sat 𝑁

(𝑏)
sat |𝑚

〉
𝑢
(𝑎)
g (𝒌1 |𝑚) 𝑢(𝑏)g (𝒌2 |𝑚)

]
,

𝐵2−h
gg𝛿 (𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡)

=
1

𝜌 𝑛̄𝑎 𝑛̄𝑏

∫
d𝑚1

∫
d𝑚2 𝑛(𝑚1) 𝑛(𝑚2) (5.21)

×
{[
𝑚1 𝑢(−𝒌1 − 𝒌2 |𝑚1) 𝑃H(𝒌2,−𝒌2, 𝑡 |𝑚1,𝑚2) + 𝑚2 𝑢(−𝒌1 − 𝒌2 |𝑚2) 𝑃H(𝒌1,−𝒌1, 𝑡 |𝑚1,𝑚2)

]
×

[〈
𝑁

(𝑎)
cen |𝑚1

〉
+

〈
𝑁

(𝑎)
sat |𝑚1

〉
𝑢
(𝑎)
g (𝒌1 |𝑚1)

] [〈
𝑁

(𝑏)
cen |𝑚2

〉
+

〈
𝑁

(𝑏)
sat |𝑚2

〉
𝑢
(𝑏)
g (𝒌2 |𝑚2)

]
+ 𝑚2 𝑢(−𝒌1 − 𝒌2 |𝑚2) 𝑃H(−𝒌1 − 𝒌2, 𝒌1 + 𝒌2, 𝑡 |𝑚1,𝑚2)

×
[〈
𝑁

(𝑎)
cen 𝑁

(𝑏)
cen |𝑚1

〉
+

〈
𝑁

(𝑎)
cen 𝑁

(𝑏)
sat |𝑚1

〉
𝑢
(𝑏)
g (𝒌2 |𝑚1) +

〈
𝑁

(𝑏)
cen 𝑁

(𝑎)
sat |𝑚1

〉
𝑢
(𝑎)
g (𝒌1 |𝑚1)

+
〈
𝑁

(𝑎)
sat 𝑁

(𝑏)
sat |𝑚1

〉
𝑢
(𝑎)
g (𝒌1 |𝑚1) 𝑢(𝑏)g (𝒌2 |𝑚2)

] }
,

and

𝐵3−h
gg𝛿 (𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡)

=
1

𝜌 𝑛̄𝑎 𝑛̄𝑏

∫
d𝑚1

∫
d𝑚2

∫
d𝑚3 𝑛(𝑚1) 𝑛(𝑚2) 𝑛(𝑚3) 𝑚3 𝑢(−𝒌1 − 𝒌2 |𝑚3) (5.22)

× 𝐵H(𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡)
[〈
𝑁

(𝑎)
cen |𝑚1

〉
+

〈
𝑁

(𝑎)
sat |𝑚1

〉
𝑢
(𝑎)
g (𝒌1 |𝑚1)

]
×

[〈
𝑁

(𝑏)
cen |𝑚2

〉
+

〈
𝑁

(𝑏)
sat |𝑚2

〉
𝑢
(𝑏)
g (𝒌2 |𝑚2)

]
.

With the assumptions on the moments of the HOD outlined in Sect. 5.4.1 the galaxy-matter
bispectrum is fully speci�ed.
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5.2.3 Projecting the bispectrum and obtaining the aperture statistics

To obtain 𝐵gg𝜅 , we use the Limber approximation in Eq. (2.114). The projected bispectrum
depends on the distribution of lens and source galaxies with co-moving distance 𝑤. We use
the redshift distribution of KiDS galaxies, shown in Fig. 3.3, as source distribution and the
distribution of GAMA galaxies, shown in Fig. 4.1, as lens distribution. To convert these redshift
distributions 𝑝𝑧 (𝑧) to the distributions with co-moving distance, we use

𝑝(𝑤) d𝑤 = 𝑝𝑧 (𝑧) d𝑧 ⇒ 𝑝(𝑤) = 𝑝𝑧 (𝑧)
(
d𝑤
d𝑧

)−1
(5.23)

From the projected bispectrum, we obtain 〈NNM〉 with Eq. (2.141).

The computation of the aperture statistics with the halo model is computationally involved. Any
calculation of 〈NNM〉 requires the evaluation of at least one mass integral, one integral along
the line-of-sight, and three integrals over the parameters of the projected bispectrum. To speed-
up the computation, we use the processing power of a GPU to evaluate the integrals. We compute
the aperture statistics with Monte-Carlo integration, with several thousand simultaneous
function evaluations on the GPU. This method enables a quick computation of the model
(approximately 1 minute for 30 values of 〈NNM〉).

5.3 Fitting procedure

5.3.1 Estimation of best-fitting parameters

We constrain the parameters of the G3L halo model by �tting it to observations. For this, we use
the KV450 × GAMA data described in Sect. 4.3.1. We again divide the lens galaxies into ‘red’
and ‘blue’ with the criterion in Eq. (4.12). However, we do not use the measurements described
in Sect. 4.4 but rather estimate G̃ without redshift weighting with Eq. (2.126). We choose this
approach because the assumptions for the Limber approximation break down if lens galaxy
pairs are redshift weighted. In particular, the assumption that the lens redshift distribution
varies only slowly is no longer true. The other improvements of the G3L estimator detailed in
Sect. 3.2, such as the adaptive binning scheme and the calculation on a GPU, are still employed.
The covariance matrix 𝐶 is estimated as in Sect. 4.2 with Eq. (3.31).
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5.3 Fitting procedure

Wemeasure 〈NNM〉 for 30 scale radii 𝜃 between 0.′1 and 20′ for red-red, red-blue and blue-blue
lens pairs. These measurements are summarized to the data vector 𝒅, given as

𝒅 =

©­­­­­­­­­­­­­­­«

〈NNM〉red−red (𝜃1)
...

〈NNM〉red−red (𝜃30)
〈NNM〉blue−blue (𝜃1)

...
〈NNM〉blue−blue (𝜃30)
〈NNM〉red−blue (𝜃1)

...
〈NNM〉red−blue (𝜃30)

ª®®®®®®®®®®®®®®®¬

. (5.24)

Analogously, we de�ne the model vector 𝒎( 𝒑) for each parameter set 𝒑 as composed of the halo
model predictions 〈NNM〉model for the aperture statistics of red-red, blue-blue, and red-blue
galaxy pairs,

𝒎 =

©­­­­­­­­­­­­­­­­«

〈NNM〉model
red−red (𝜃1 | 𝒑)...

〈NNM〉model
red−red (𝜃30 | 𝒑)

〈NNM〉model
blue−blue (𝜃1 | 𝒑)...

〈NNM〉model
blue−blue (𝜃30 | 𝒑)

〈NNM〉model
red−blue (𝜃1 | 𝒑)...

〈NNM〉model
red−blue (𝜃30)

ª®®®®®®®®®®®®®®®®¬

. (5.25)

To �nd the optimal parameters 𝒑opt of the halo model, we apply a 𝜒2-minimization. We �nd
𝒑opt by minimizing

𝜒2( 𝒑) = [𝒅 − 𝒎( 𝒑)]T 𝐶−1 [𝒅 − 𝒎( 𝒑)] , (5.26)
where𝐶−1 is the inverse covariance matrix of the observations de�ned by Eq. (4.9). We minimize
𝜒2 with the Nelder-Mead algorithm (Nelder and Mead, 1965) as implemented in the GSL (Gough,
2009). To avoid local minima, the algorithm is restarted multiple times at di�erent, randomly
chosen, initial parameter values. Evaluations of 𝜒2 are performed on a GPU for computational
speed.

5.3.2 Estimation of parameter uncertainty

To estimate the uncertainties on the best-�tting halo parameters 𝒑opt, we estimate the parameter
covariance 𝐶p,

𝐶p =

∫
d13𝑝 ( 𝒑 − 𝒑opt) ( 𝒑 − 𝒑opt)T post ( 𝒑 |𝒅) , (5.27)
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5 Modelling galaxy-galaxy-galaxy lensing with the halo model

with the posterior distribution post ( 𝒑 |𝒅), which gives the probability of the parameters 𝒑 given
the data 𝒅. Following Bayes theorem, the posterior can be expressed as

post ( 𝒑 |𝒅) ∝ L(𝒅 | 𝒑) P( 𝒑) , (5.28)
where P( 𝒑) is the prior on the parameters and L(𝒅 | 𝒑) is the likelihood of the data given the
parameters 𝒑. Assuming that the likelihood L is Gaussian in the data, it is

L(𝒅 | 𝒑) = exp
{
−12 [𝒅 − 𝒎( 𝒑)]T 𝐶−1 [𝒅 − 𝒎( 𝒑)]

}
= exp

[
−12 𝜒

2( 𝒑)
]
, (5.29)

with the covariance matrix 𝐶 of the data and 𝜒 as de�ned in Eq. (5.26).

In principle, 𝐶p could be estimated by drawing 𝑁p parameter sets 𝒑̃𝑖 from the posterior and
estimating

𝐶p =
1

𝑁p − 1

𝑁p∑︁
𝑖=0

( 𝒑̃𝑖 − 𝒑opt) ( 𝒑̃𝑖 − 𝒑opt)T . (5.30)

However, this would require many, computationally expensive, evaluations of the posterior.
Therefore, we instead use importance sampling. For this, we �nd a distribution 𝑞( 𝒑 |𝒅) which
is similar to post ( 𝒑 |𝒅). Then, we draw 𝑁p parameter sets 𝒑𝑖 from 𝑞 and assign them weights
𝑤( 𝒑𝑖 |𝒅), which are

𝑤( 𝒑𝑖 |𝒅) =
post ( 𝒑𝑖 |𝒅)
𝑞( 𝒑𝑖 |𝒅)

. (5.31)

The parameter covariance matrix is then estimated with

𝐶p =
1

𝑁p − 1

𝑁p∑︁
𝑖=0

𝑤2( 𝒑𝑖 |𝒅) ( 𝒑𝑖 − 𝒑opt) ( 𝒑𝑖 − 𝒑opt)T . (5.32)

The uncertainty 𝜎𝑖 of parameter 𝑝𝑖 is then given by

𝜎𝑖 =

√︃
𝐶p𝑖𝑖 . (5.33)

We �nd the importance sampling function 𝑞 by approximating the likelihood L(𝒅 | 𝒑) in the
proximity of the optimal parameters 𝒑opt with a Gaussian L̃(𝒅 | 𝒑),

L̃(𝒅 | 𝒑) ' exp
[
−12

(
𝒑 − 𝒑opt

)T
F ( 𝒑opt)

(
𝒑 − 𝒑opt

)]
. (5.34)

The matrix F is the Fisher information matrix, which is de�ned as

F𝑖 𝑗 ( 𝒑) =
𝜕𝒎( 𝒑)
𝜕𝑝𝑖

𝐶−1 𝜕𝒎( 𝒑)
𝜕𝑝 𝑗

. (5.35)

With this approximated likelihood, a good choice for 𝑞 is
𝑞( 𝒑 |𝒅) = L̃(𝒅 | 𝒑) P( 𝒑) , (5.36)

so the weights 𝑤 are

𝑤( 𝒑𝑖 |𝒅) =
L(𝒅 | 𝒑𝑖)
L̃(𝒅 | 𝒑𝑖)

= exp
[
−12 𝜒

2( 𝒑) + 1
2

(
𝒑 − 𝒑opt

)T
F ( 𝒑opt)

(
𝒑 − 𝒑opt

)]
. (5.37)
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5.4 Results

5.4 Results

5.4.1 Impact of model parameters

Before �tting the halo model for G3L to the observations, we qualitatively study the impact
of the halo model parameters on the G3L signal. For this, we set each parameter inside the
prior range to three di�erent values, while keeping the other parameters �xed to their �ducial
values.

Figure 5.2 shows the predicted 〈NNM〉 for unmixed lens pairs, when varying the parameters by
±25%. All parameters impact the 1- and 2-halo term, except for 𝜎 (see Fig. 5.2a). This parameter
has no noticeable e�ect on the aperture statistics and can consequently not be constrained
with G3L measurements. The 3-halo term is only weakly a�ected by all parameters and fully
independent of 𝜎 and 𝑓 .

The slope 𝛽 of the satellite galaxy distribution has the largest e�ect on 〈NNM〉 (see Fig. 5.2b).
Larger 𝛽 increase the signal, especially the 1-halo term, on scales above 0.′2. This behaviour is
expected, as larger 𝛽 lead to more satellite galaxies in massive halos. Therefore, the correlation
between satellite galaxies, which impacts the 1- and 2-halo terms, increases on scales above 0.′2.
The 3-halo term is less sensitive to 𝛽 because this term does not depend on the correlation of
galaxies in the same halo. Therefore, the total aperture statistics at large scales are the same for
all values of 𝛽.

The mass scale 𝑀′ of satellite galaxies also impacts the 1- and 2-halo terms the strongest (see
Fig. 5.2e). These terms increase at all scales for decreasing 𝑀′, with the strongest increase on
scales between 1′ and 10′. This increase with decreasing 𝑀′ occurs, because halos contain more
satellite galaxies if the mass scale is lower. Therefore, the correlation of satellite galaxies as well
as the correlation of central galaxies with satellites increases.

The parameters 𝛼 and 𝑀th, which determine the central galaxy distribution, a�ect the signal
almost equally with the largest e�ect on scales between 1′ and 5′ (see Figs. 5.2d and 5.2c). A
decrease of 𝛼, as well as an increase of 𝑀th lead to a smaller 〈NNM〉. This is because both a
smaller 𝛼 and a higher 𝑀th lead to more halos containing only satellite galaxies. Consequently,
the correlation between satellite galaxies increases, which causes larger 1- and 2-halo terms of
〈NNM〉.

The concentration of the galaxy distribution per halo also a�ects the aperture statistics (see
Fig. 5.2f). 〈NNM〉 increases on scales below 2′ for galaxy pro�les more concentrated than
the matter distribution ( 𝑓 > 1). The aperture statistics decrease for 𝑓 < 1. This behaviour is
expected as a more concentrated galaxy pro�le leads to more galaxies in the dense inner regions
of the halo. Therefore, the galaxy-matter three-point correlation function increases at small
scales. The concentration a�ects only the 1- and 2-halo term because it is only relevant when
correlating the galaxy and matter distribution in the same halo. Consequently, the three-halo
term, which considers only galaxies and matter from di�erent halos, is independent of 𝑓 .
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5 Modelling galaxy-galaxy-galaxy lensing with the halo model

(a) Impact of σ (b) Impact of β

(c) Impact of Mth (d) Impact of α

(e) Impact of M′ (f) Impact of f

Figure 5.2: Impact of halo model parameters on 〈NNM〉 for unmixed lens pairs. In each subfigure,
one parameter is varied by adding/subtracting 25% of its fiducial value from Table 5.1, while keeping
all other parameters fixed. Solid lines indicate the total 〈NNM〉, while dashed lines show the 1-halo,
dotted lines the 2-halo, and dash-dotted lines the 3-halo term.
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5.4 Results

To estimate the sensitivity of G3L to the cross-correlation of lens populations, we show in
Fig. 5.3 the predicted 〈NNM〉 for two di�erent lens populations which are fully correlated
(𝑟 = 1), not correlated (𝑟 = 0) or anticorrelated (𝑟 = −1). We have set one parameter for each
population to a value either higher or lower than the �ducial one while keeping the other
parameters to the �ducial model. For comparison, we also show the auto-correlation signal for
both populations.

The �gure shows that the 〈NNM〉 for independent populations is at the geometric mean of
the auto-correlations. This �nding is independent of which parameter we vary between the
populations. Consequently, for 𝑟 = 0, the halo model prediction coincides with those of a linear
deterministic galaxy bias (see Sect. 2.4.4 and Sect. 4.4).

Furthermore, the aperture statistics for 𝑟 = −1, 0, and 1 coincide at large scales but di�er below
that for all parameters. The signal for anti-correlated lens populations is consistently smaller
than for uncorrelated and positively correlated lenses. The amount of variation between the
〈NNM〉 is almost independent of the varied parameter and is detectable even for di�erent
𝜎.

A more detailed look at Fig. 5.3 reveals that 𝑟 impacts small, but not large scales because it
primarily a�ects the 1-halo term. The 2-halo term is less dependent on 𝑟 , and the 3-halo term is
entirely independent of it. This observation is not surprising, as the 3-halo term only depends
on galaxies from di�erent halos and is therefore not sensitive to the correlation of galaxies in
the same halo. For the same reason, the 2-halo term is less a�ected than the 1-halo term.

Another reason for the stronger dependence of 〈NNM〉 on 𝑟 at smaller scales is that smaller
halos with lower masses dominate these scales. Therefore, the ratio 𝜎sat/〈𝑁sat |𝑚〉 is large and
the term proportional to 𝑟 in Eq. (5.9) contributes signi�cantly. At larger scales, the 1-halo term
is dominated by halos with larger masses and higher

〈
𝑁sat |𝑚

〉
. Therefore, the correlation term

loses importance, which explains why the 1-halo terms for di�erent values of 𝑟 converge for
large scales.

5.4.2 Results of fitting halo model to observations

Next, we give the results of �tting our halo model to the observations in the KV450 × GAMA
data. Figure 5.4 shows the measured G3L aperture statistics. The measurement has a lower S/N
than the measurement in Sect. 4.4 because we did not weigh lens galaxy pairs according to their
redshift di�erences. Consequently, the signal is lower by a factor of approximately 2, while the
noise is lower by only 40%, compared to Fig. B.1. Nevertheless, a clear, non-zero signal can be
detected, in particular for the red-red lens pairs in Fig. 5.4a.

The best �t of our halo model is also shown in Fig. 5.4, together with its decomposition into
the 1-, 2-, and 3-halo terms. In all three cases, the �t agrees well with the measurement. For
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(a) Impact of σ (b) Impact of β

(c) Impact of Mth (d) Impact of α

(e) Impact of M′ (f) Impact of f

Figure 5.3: Impact of halo model parameters on 〈NNM〉 for mixed lens pairs. In each subfigure, one
parameter is varied, while keeping the others at the fiducial values from Table 5.1. Lenses are either
correlated (r = 1, green lines), uncorrelated (r = 0, blue lines) or anti-correlated (r = −1, red lines). Also
shown are the auto-correlations in grey. Solid lines indicate the total aperture statistics, dashed lines
the 1-halo, dotted lines the 2-halo, and dash-dotted lines the 3-halo term.
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5.4 Results

(a) Red-red lens pairs (b) Blue-blue lens pairs

(c) Red-blue lens pairs

Figure 5.4: G3L measurement in KV450 × GAMA (points) and best fitting halo model (lines). Solid lines
indicate the total aperture statistics, dashed lines the 1-halo, dotted lines the 2-halo, and dash-dotted
lines the 3-halo term of the fit. 5.4a shows the result for red-red galaxy pairs, 5.4b shows the result for
blue-blue galaxy pairs, and 5.4c shows the result for red-blue mixed pairs.
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Table 5.2: Best fitting values for halo model parameters for KV450 × GAMA.
Parameter Best fitting value Parameter Best fitting value

α(red) 0.389±0.057 α(blue) 0.138±0.032
σ(red) 0.24± 0.31 σ(blue) 0.25±0.33
Mth

(red) (1.66±0.59)×1012 M� Mth
(blue) (1.25±0.64)×1011 M�

β(red) 0.85±0.18 β(blue) 0.51±0.15
M′(red) (3.50±0.63)×1013 M� M′(blue) (1.82±0.73)×1014 M�
f (red) 1.35±0.52 f (blue) 0.83±0.32
r 0.88±0.47

this �t, the 𝜒2, as de�ned by Eq. (5.26) is 𝜒2 = 61.5859. Since the �t has 90 − 13 = 77 degrees of
freedom, the reduced 𝜒2 is

𝜒2redu =
𝜒2

d.o.f = 0.799 . (5.38)

This indicates that the best-�t halo model agrees with the measurement at the 95% CL.

The aperture statistics for red-red lenses are dominated by the 1-halo term in the whole range
from [0.′1 : 20′]. For blue-blue lens pairs, though, the signal is dominated by the 3-halo term for
𝜃 > 3.′7. For mixed lens pairs, the 3-halo term dominates for 𝜃 > 10′.

The best-�tting parameter values are shown in Table 5.2. They indicate that red and blue
galaxies need to be described by di�erent HODs, as 𝑀 (red)

th and 𝑀 (blue)
th , 𝑀′(red) and 𝑀′(blue) ,

as well as 𝛽(red) and 𝛽(blue) di�er signi�cantly. The threshold halo mass for red galaxies is
𝑀

(red)
th = (1.66 ± 0.59) × 1012M�, while for blue galaxies 𝑀 (blue)

th = (1.24 ± 0.64) × 1011M�.
Consequently, halos need to be ten times as massive to host red than blue galaxies. However,
because 𝑀′(red) < 𝑀′(blue) and 𝛽(red) > 𝛽(blue) , as soon as the mass of a halo exceeds the
threshold for red galaxies, it contains more red than blue galaxies.

The spatial distribution of galaxies inside a halo is consistent with unity for both red and
blue galaxies, which indicates that their distribution follows the dark matter density pro�le.
The parameter 𝑓 (red) for red galaxies is larger than for blue galaxies, but this di�erence is not
signi�cant.

We �nd that the cross-correlation of red and blue galaxies is positive (𝑟 = 0.88 ± 0.47). Con-
sequently, red and blue galaxies are positively correlated.

As expected, we could not constrain the parameter 𝜎 with G3L. The 1𝜎 interval for this
parameter corresponds to the whole prior range, both for red and blue galaxies.

5.5 Discussion

In this chapter, we proposed a theoretical model for G3L both by mixed and unmixed lens
pairs, based on the halo model. Our model can predict the expected G3L signal, given the
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5.5 Discussion

moments of the HODs of the lens galaxy populations and their correlation. It is valid for lens
populations de�ned by any galaxy property, such as stellar mass, SFR, or colour. In our analysis,
we concentrate on galaxy samples divided according to their colour in ‘red’ and ‘blue’ galaxies.

We qualitatively studied the impact of the halo model parameters. The G3L signal is sensitive
to all parameters except for the steepness 𝜎 of the central galaxy HOD. Consequently, G3L
cannot constrain 𝜎. This �nding agrees with Martin (2019), who came to a similar conclusion.
Future studies could dispense with this parameter altogether and model

〈
𝑁cen |𝑚

〉
with a step

function.

Furthermore, we found that varying the concentration of the spatial galaxy distribution has
only a small e�ect, predominantly at small scales. Consequently, the assumption in Martin
(2019) and Rödinger (2009) that the galaxy distribution perfectly traces dark matter should not
be critical to their analysis.

TheG3L signal depends stronger on the distribution of satellite galaxies than centrals. The reason
for this behaviour is that satellite galaxies are more numerous and are primarily responsible for
G3L, in particular, the 1- and 2-halo term.

The cross-correlation of satellite galaxies primarily a�ects the 1-halo term at small scales,
because the correlations of galaxies inside low mass halos dominate these scales. Low-mass
halos have fewer satellite galaxies than high mass halos, so the cross-correlations of satellite
populations have a more notable e�ect. As expected, the 2-halo term depends only weakly, and
the 3-halo term not at all, on the correlation of galaxy populations in the same halo.

We obtained the best-�tting parameter values for the KV450 × GAMA measurements of G3L
with a multidimensional optimization. We simultaneously �t the signal for mixed red-blue lens
pairs and unmixed red-red and blue-blue lens pairs. Our best �t agrees with the measurements
at the 95% CL. Thus, the halo model can explain the observed signal.

The threshold halo mass𝑀th to contain galaxies is larger for red than for blue galaxies. Therefore
red galaxies populate more massive halos than blue galaxies. If the halo mass exceeds 𝑀th, red
galaxies are more numerous than blue galaxies. This observation �ts the general expectation
that red galaxies dominate dense dark matter environments. In contrast, blue galaxies are
predominantly ‘�eld galaxies’ in smaller mass halos (see Sect. 2.1.3). Similar conclusions are
drawn by Martin (2019) and Simon et al. (2009).

The tendency of red galaxies to cluster in denser environments also explains why the 1-halo
term of red-red lens pairs stretches to larger scales than for blue-blue lens pairs. Red galaxies
exist in more massive and therefore larger halos than blue galaxies. So, pairs of red galaxies in
the same halo can have wider separations than pairs of blue galaxies. Accordingly, the 1-halo
term extends to larger scales for red-red lens pairs than for blue-blue lens pairs. Mixed red-blue
pairs exist in intermediate halos, which are large enough to have red galaxies but small enough
to contain a signi�cant fraction of blue galaxies. Consequently, the ’cross-over’ between the
domination of the 1-halo and the 3-halo term occurs at larger scales than for blue-blue lens
pairs.
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Surprisingly, the sum of the fraction of central galaxies 𝛼(red) and 𝛼(blue) is less than unity,
𝛼(red) + 𝛼(blue) = 0.53± 0.34. This indicates that some halos have neither a red nor a blue central
galaxy, which contradicts our expectation that all halos have a central galaxy. To validate
this unexpected �nding, additional studies of the central galaxy population, for example with
simulated galaxy catalogues, need to be conducted. Nevertheless, it �ts the results by Martin
(2019), who �tted a similar halo model to the GGL in CFHTLenS. The sum of their 𝛼 values for
early- and late-type-galaxies is also signi�cantly smaller than unity.

Even though the best-�tting parameter values agree with the trends in previous works, the
measurements could be improved in two ways. First, the uncertainties of the G3L observation
could be reduced with the lens pair redshift weighting discussed in Sect. 3.2.1. Themeasurements
in Sect. 4.4 which include the redshift weighting show a 40% higher S/N and could therefore
better constrain the halo model parameters. However, this would require abandoning the Limber
approximation in Eq. (2.114), because it is no longer valid. Accordingly, computing the model
would become more complex.

Second, parameter degeneracies could be broken by modelling other observables, such as the
mean galaxy number, the GGL signal or the galaxy clustering correlation function. Observations
of other three-point statistics, such as 〈NMM〉, 〈MMM〉, or 〈NNN〉, could also help in this
aspect.

There are also limitations to the proposed model. One is the assumption that the number of
satellite galaxies follows a Poissonian. Even though this assumption agrees with simulations by
Kravtsov et al. (2004), recent studies found that the satellite number might be super-Poissonian
(Dvornik et al., 2018; Gruen et al., 2018). Additional parameters could be inserted into the model
to describe a super-Poissonian satellite distribution.

Another limitation of the proposed halo model is its treatment of halos itself. We chose halos
to be spherical and without any substructure. A more realistic halo model would incorporate
both the ellipticity of halos and the possibility of subhalos. In particular, ellipticity might be
studied with G3L, as the axis connecting the lens galaxies introduces a preferred direction. This
direction can act as a reference frame for the halo elongation. Accordingly, further studies of
the correlation of halo ellipticity and G3L would be interesting.

Furthermore, the halo model ignores all dependence of the halo properties on its environment
and assembly history. However, simulations (Gao andWhite, 2007; Mao et al., 2018) showed that
the so-called assembly bias due to these in�uences might play an important role. Incorporating
it into the halo model is di�cult, as the fundamental assumption of independent dark matter
halos has to be questioned.

Nevertheless, the agreement of our best-�tting model with the measurements shows that the
halo model can describe G3L. This conclusion is sustained by the observation in Martin (2019)
that the halo model can predict the G3L signal of unmixed lens pairs. Our extended model can
also represent G3L with mixed lens pairs. Concludingly, despite its simple assumptions, the
halo model provides valid predictions for galaxy-matter correlations.
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Conclusion 6
“I may not have gone where I intended to go, but I think I have ended up where I needed to be.”

– Douglas Adams, The long dark tea-time of the soul (Adams, 1990).

In this thesis, we explored di�erent models of galaxy formation and evolution by studying their
prediction for G3L. For this, we improved the measurement scheme for G3L, compared the
predictions of SAMs with observations and presented a theoretical model for G3L based on the
halo model. In this �nal chapter, we summarize our results and conclusions before giving a
short outlook to the future of G3L and galaxy models

6.1 Summary

Our �rst step to answering the overall question were several improvements to the estimator of
the G3L correlation function G̃, whichwe proposed and tested in Chapter 3. These improvements
entailed

• adaptive binning of G̃, designed to remove biases at small scales,

• weighing lens galaxy pairs according to the redshift di�erence between their members to
enhance the S/N,

• and accounting for biases due to magni�cation of lens galaxies by the matter distribution
between them and the observer.

We tested these improvements on mock galaxy catalogues and shear maps. The �rst improve-
ment, the adaptive binning scheme, was tested by applying the original and improved estimator
to simplemock data, for whichwe could estimate the G3L signal analytically. Then, we compared
the results of both estimators to the analytical expectation. The second and third improvement
were tested on more realistic data from the MR with galaxies from the SAM by Henriques et al.
(2015). We selected these realistic mock data such that the redshift distributions of lens- and
source galaxies were similar to galaxies in KV450 × GAMA.

Our results from these tests were the following:
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6 Conclusion

• The adaptive binning scheme signi�cantly improves the accuracy of the measured G3L
aperture statistics at small scales. For scales below 1′, the estimate with the original
estimator deviates by several percent from the analytical expectation and is 40% too low
for 𝜃 = 0.′1. The result with the new estimator agrees with the analytical aperture statistics
in the whole considered range from 0.′1 to 20′. Therefore, adaptive binning successfully
removes small-scale biasing, which impeded previous measurements of G3L (Simon et al.,
2008, 2013).

• Weighing lens pairs according to the redshift di�erence between the galaxies lessens the
impact of uncorrelated pairs and signi�cantly improves the S/N. In our test, the S/N of
the aperture statistics between 0.′1 and 10′ increased by approximately 35%. Consequently,
redshift weighting enhances G3L measurements.

• Magni�cation of lens galaxies plays a signi�cant role in G3L. This e�ect is primarily due
to matter at the plane of the �rst lens galaxy (closer to the observer). This matter magni�es
galaxies at the plane of the second lens galaxy and a�ects the observed shear of sources. It,
therefore, changes the aperture number countN2 at the second lens plane and the aperture
massM. If the matter at the �rst lens plane is correlated to the aperture number countN1
at the �rst lens plane, the G3L aperture statistics 〈NNM〉 get an additional component
due to the magni�cation. In our simulated data, this additional signal is roughly 10% of
the signal without magni�cation. Magni�cation by matter between the observer and the
�rst lens plane or between the second lens plane and the source is negligible for G3L.

After improving the estimator for G3L, we used the new measurement method to test the
predictions by two SAMs in Chapter 4. We measured the G3L signal in galaxy catalogues based
on the SAMs by Henriques et al. (2015, H15) and Lagos et al. (2012, L12) and compared the result
to observations in KV450 × GAMA. For a more detailed analysis, we divided the lens galaxies
into two colour- and �ve stellar mass-selected samples and measured the G3L signal separately
for each of these samples. In this measurement, we considered both unmixed lens pairs, with
two galaxies from the same sample and mixed lens pairs with galaxies from di�erent samples.
For the latter G3L has not been measured before.

In these measurements, we found the following:

• The L12 SAM does not agree with the observations, regardless of whether we select
lenses by colour or stellar mass. For lens pairs with two blue galaxies, the L12 SAM
underpredicts the signal. At the same time, it overpredicts G3L for pairs with at least one
red galaxy. This deviation could be due to an overproduction of red galaxies by strong
environmental e�ects. Excessive tidal interaction could cause galaxies to lose their gas
and stop star-formation too quickly. Therefore, they appear redder than they would in a
more realistic scenario. This �nding agrees with previous studies (Baldry et al., 2006; Font
et al., 2008) of the L12 SAM and its predecessor by Bower et al. (2006).

• For stellar mass-selected lens galaxies, the L12 SAM predicts a too high G3L signal. This
overprediction could be due to the chosen IMF or too many satellite galaxies. A high
satellite fraction formassive halos could be due to strong environmental e�ects or excessive
galaxy interactions.
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6.2 Outlook

• The H15 agrees well with the observed G3L signal. This �nding is consistent with the
previous study by Saghiha et al. (2017). We conclude that the H15 SAM describes galaxy
formation and evolution accurately.

• The G3L of mixed lens pairs with one red and one blue galaxy is consistent with a linear
deterministic model for the galaxy bias. In this bias model, we would expect the G3L of
mixed pairs to be at the geometric mean of the G3L signals for red-red and blue-blue lens
pairs. This expectation is met, both in the observation and the H15 SAM for scales above
0.2 ℎ−1Mpc.

Finally, in Chapter 5, we presented an analytical model for G3L based on the halo model. We
qualitatively studied the e�ect of di�erent parameters on the predicted G3L aperture statistics
and obtained the best-�tting parameter values for KV450 × GAMA. We found:

• The cross-correlation of satellite galaxies a�ects mainly the 1-halo term at small scales.
At small scales, lower mass halos dominate the signal. These lower mass halos contain
fewer galaxies in total, so the correlation of satellites has a bigger e�ect.

• The best-�tting halo model agrees with the measurement in KV450 × GAMA at the 95%
CL. The parameter values indicate that red galaxies form in more massive halos than blue
galaxies and that these two populations are positively correlated.

In conclusion, we can now answer the question posed in the introduction: How well do the
di�erent models for galaxy formation, evolution and distribution reproduce the observed correlation
of dark matter and galaxy pairs? We �nd that not all galaxy models accurately predict the
correlation of matter and galaxy pairs. SAMs, when tuned to the right level of galaxy interaction
and star formation (like the H15 SAM), can agree very well with observations of G3L. However,
this is not automatically the case for every SAM, as demonstrated by the failure of the L12 SAM
to match observations. A careful setting of models for baryon physics is required to predict the
correlation of the galaxy and matter distributions correctly. Analytical models based on the
halo model can, despite its simple assumptions, reproduce the observed G3L, with plausible
values for its parameters, a notable success for the halo model.

6.2 Outlook

Higher-order statistics are complicated. They take longer to compute and measure than two-
point correlations, and the signal-to-noise ratio is worse. Moreover, modelling higher-order
statistics requires more terms with higher-dimensional integrations. However, we have shown
how to remedy some of these di�culties. The S/N improves with an appropriate weighting
of galaxies, and the computational time reduces with highly parallelized routines on GPUs.
Modelling, while still complicated, is possible with the halo model. Therefore, we should not
be scared of third-order correlations and continue measuring its properties to test models of
galaxy evolution, as well as cosmological models.
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6 Conclusion

G3L is especially interesting in light of upcoming stage IV 1 surveys such as Euclid (Laureijs
et al., 2011) or the Legacy Survey of Space and Time (LSST; Ivezić et al., 2019)2. These surveys
will observe large areas of the sky with extraordinary resolution. Euclid, a space telescope
expected to launch in late 2022, will observe an area of approximately 15 000 deg2 over six
years. LSST is a ground-based survey, which will be conducted at the Vera C. Rubin observatory
in northern Chile with �rst light expected in 2022. It will cover approximately 18 000 deg2.
Both surveys aim at observing 30 galaxies per arcmin2, so due to their unprecedented size and
resolution, shapes and positions of billions of galaxies will be available. Applying our estimators
to these data sets will lead to precise measurements of G3L.

These precise measurements are essential for another exciting development: the progress of
cosmological simulations. Cosmological structure formation is simulated in increasingly larger
and better resolved 𝑁-body simulations, such as the Euclid �agship simulation (Potter et al.,
2017) or the ‘Last Journey’ simulation (Heitmann et al., 2020). Both of these have boxes with
side lengths larger than 5 Gpc while retaining a mass resolution of approximately 109M�. These
dark-matter-only simulations will be populated with billions of galaxies according to SAMs
so that they can predict G3L with high statistical precision. These predictions can then be
compared to the measurements of the stage IV surveys.

G3L measurements can also be compared to full hydrodynamical simulations, like IllustrisTNG
(Springel et al., 2018), EAGLE (Schaye et al., 2015), or Horizon-AGN (Dubois et al., 2014). These
simulations represent a di�erent approach to galaxy formation than SAMs, as they directly solve
the hydrodynamical equations for baryonic gases. Therefore, it would be interesting to test
whether their predictions for G3L are as accurate as of the SAMs. However, hydrodynamical
simulations are more complex than dark-matter-only simulations. Accordingly, they have
smaller box sizes with less galaxies. Larger simulations might become achievable with new
numerical techniques, so estimates of G3L may be possible soon.

New G3L measurements and predictions by large cosmological simulations, will allow us to
constrain galaxy formation models with increasing precision. Deviations between the simula-
tions and measurements indicate problems with current models for small-scale baryonic e�ects.
Agreement shows that the models are ‘on the right track’. With more precise observations,
increasingly stringent tests of existing galaxy formation models can be performed, and better
models developed. Thus, comparing predictions and measurements of galaxy-matter statistics
will lead to a full understanding of galaxies and, ultimately, our Universe.

1 The ‘Dark Energy Task Force Report’ by Albrecht et al. (2006) classi�es present and planned cosmological
surveys into four di�erent stages, with stage I being small surveys already completed at the time of the report
and stage IV being the largest surveys planned. KiDS is a stage II survey.

2 Formerly known as Large Synoptic Space Telescope.
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Appendix to Chapter 3 A
A.1 Calculation of aperture statistics for mock data

Averages in the halo model are given by

〈 𝑓 〉 =
∫

d𝑚1 . . . d𝑚𝐻 𝑃m(𝑚1, . . . ,𝑚𝐻)︸               ︷︷               ︸
Probability that haloes
have masses 𝑚1,...,𝑚2

(A.1)

×
∫

d3𝑥1 . . . d3𝑥𝐻 𝑃h(𝒙1, . . . , 𝒙𝐻 | 𝑚1, . . . ,𝑚𝐻)︸                                ︷︷                                ︸
Probability that halo centres are at 𝒙1,...,𝒙𝐻

×
∫

d3Δ𝒙11· · ·
∫

d3Δ𝒙𝐻𝑁gal

𝑃gal(Δ𝒙11, . . . ,Δ𝒙𝐻𝑁gal | 𝒙1, . . . , 𝒙𝐻 ,𝑚1, . . . ,𝑚𝐻)︸                                                            ︷︷                                                            ︸
Probability that galaxies are at Δ𝒙11,...,Δ𝒙𝐻𝑁gal

if the halos are at 𝝑1,...,𝝑𝐻

𝑓 .

Using assumption B in Sect. 3.3.2, we can reduce this integration to two spatial dimensions and
use the projected halo centres 𝝑𝑖 and the projected separation Δ𝝑𝑖 𝑗 of the 𝑗 th galaxy to the 𝑖th
halo centre instead of 𝒙𝑖 and Δ𝒙𝑖 𝑗 . Furthermore, due to assumption C, the mass integrals are
trivial. Assumption D leads to

𝑃gal(Δ𝜗11, . . . ,Δ𝜗𝐻𝑁gal | 𝝑1, . . . ,𝝑𝐻 ,𝑚1, . . . ,𝑚𝐻) (A.2)
= 𝑢(Δ𝜗11) . . . 𝑢(Δ𝜗𝐻𝑁gal) .

Assumption E means that

𝑃h(𝝑1, . . . ,𝝑𝐻) =
{
𝐴−𝐻 for (𝝑1, . . . ,𝝑𝐻) ∈ 𝐴
0 else

, (A.3)
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so that the average of a quantity is given by

〈 𝑓 〉 = 𝐴−𝐻
∫
𝐴

d2𝜗1 . . . d2𝜗𝐻 (A.4)

×
∫

d2Δ𝜗11 . . . d2Δ𝜗𝐻𝑁gal 𝑢1(Δ𝜗11) . . . 𝑢𝐻 (Δ𝜗𝐻𝑁gal) 𝑓 .

Consequently, the correlation function 〈𝑁 (𝜽1) 𝑁 (𝜽2) 𝜅(𝜽3)〉 of the galaxy number density 𝑁 (𝜽)
and the projected matter density 𝜅 is

〈𝑁 (𝜽1) 𝑁 (𝜽2) 𝜅(𝜽3)〉 (A.5)

= 𝐴−𝐻
∫
𝐴

d2𝜗1 . . . d2𝜗𝐻

×
∫

d2Δ𝜗11 . . . d2Δ𝜗𝐻𝑁gal 𝑢1(Δ𝜗11) . . . 𝑢𝐻 (Δ𝜗𝐻𝑁gal)

× 𝑁 (𝜽1) 𝑁 (𝜽2) 𝜅(𝜽3) .

The matter density 𝜅 is the sum of the convergence pro�les of all halos,

𝜅(𝜽) = 𝐾
𝐻∑︁
𝑖=1

𝑢 ( |𝜽 − 𝝑𝑖 |) . (A.6)

We treat galaxies as discrete objects, therefore their number density is

𝑁 (𝜽) =
𝐻∑︁
𝑖=1

𝑁gal∑︁
𝑗=1
𝛿D(𝜽 − 𝝑𝑖 − Δ𝝑𝑖 𝑗 ) . (A.7)

Inserting Eq. (A.6) and Eq. (A.7) into Eq. (A.5) leads to

〈𝑁 (𝜽1) 𝑁 (𝜽2) 𝜅(𝜽3)〉 (A.8)

= 𝐴−𝐻 𝐾

∫
𝐴

d2𝜗1 . . . d2𝜗𝐻

×
∫

d2Δ𝜗11 . . . d2Δ𝜗𝐻𝑁gal 𝑢1(Δ𝜗11) . . . 𝑢𝐻 (Δ𝜗𝐻𝑁gal)

×
𝐻∑︁
𝑖=1

𝐻∑︁
𝑗=1

𝐻∑︁
𝑘=1

𝑢( |𝜽1 − 𝝑𝑖 |)
𝑁gal∑︁
𝑙=1

𝛿D(𝜽2 − 𝝑 𝑗 − Δ𝝑 𝑗 𝑙)

×
𝑁gal∑︁
𝑚=1

𝛿D(𝜽3 − 𝝑𝑘 − Δ𝝑𝑘𝑚) .
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The delta ‘functions’ reduce the integrals, therefore the expression simpli�es to

〈𝑁 (𝜽1) 𝑁 (𝜽2) 𝜅(𝜽3)〉

= 𝐴−𝐻 𝐾

∫
𝐴

d2𝜗1 . . . d2𝜗𝐻 (A.9)

𝐻∑︁
𝑖=1

𝐻∑︁
𝑗=1

𝐻∑︁
𝑘=1

𝑁gal∑︁
𝑙=1

𝑁gal∑︁
𝑚=1

𝑢( |𝜽1 − 𝝑𝑖 |) 𝑢( |𝜽2 − 𝝑 𝑗 |) 𝑢( |𝜽3 − 𝝑𝑘 |)

= 𝐴−𝐻 𝐾 𝑁2
gal

∫
𝐴

d2𝜗1 . . . d2𝜗𝐻 (A.10)

𝐻∑︁
𝑖=1

𝐻∑︁
𝑗=1

𝐻∑︁
𝑘=1

𝑢( |𝜽1 − 𝝑𝑖 |) 𝑢( |𝜽2 − 𝝑 𝑗 |) 𝑢( |𝜽3 − 𝝑𝑘 |).

We can split this triple sum into a one-halo term with 𝑖 = 𝑗 = 𝑘 , three two-halo terms with
𝑖 = 𝑗 ≠ 𝑘 , 𝑖 = 𝑘 ≠ 𝑘 and 𝑗 = 𝑘 ≠ 𝑖, and a three-halo term with 𝑖 ≠ 𝑗 ≠ 𝑘 . When we use∫
𝐴
d2𝜗 = 𝐴 and

∫
d2𝜗 𝑢(𝜗) = 1, this leads to

〈𝑁 (𝜽1) 𝑁 (𝜽2) 𝜅(𝜽3)〉

= 𝐴−𝐻 𝐾 𝑁2
gal

𝐻∑︁
𝑖=1

𝐴𝐻−1 (A.11)

×
∫

d2𝜗 𝑢 ( |𝜽1 − 𝝑 |) 𝑢 ( |𝜽2 − 𝝑 |) 𝑢 ( |𝜽3 − 𝝑 |)

+ 𝐴−𝐻 𝐾 𝑁2
gal

𝐻∑︁
𝑖=1

∑︁
𝑗≠𝑖

𝐴𝐻−2
∫

d2𝜗 𝑢 |𝜽1 − 𝝑 |) 𝑢 ( |𝜽3 − 𝝑 |)

+ 𝐴−𝐻 𝐾 𝑁2
gal

𝐻∑︁
𝑖=1

∑︁
𝑗≠𝑖

𝐴𝐻−2
∫

d2𝜗 𝑢 |𝜽1 − 𝝑 |) 𝑢 ( |𝜽2 − 𝝑 |)

+ 𝐴−𝐻 𝐾 𝑁2
gal

𝐻∑︁
𝑖=1

∑︁
𝑗≠𝑖

𝐴𝐻−2
∫

d2𝜗 𝑢 |𝜽2 − 𝝑 |) 𝑢 ( |𝜽3 − 𝝑 |)

+ 𝐴−𝐻 𝐾 𝑁2
gal

𝐻∑︁
𝑖=1

∑︁
𝑗≠𝑖

∑︁
𝑘≠𝑖,𝑘≠ 𝑗

𝐴𝐻−3
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=
𝐻 𝐾 𝑁2

gal

𝐴

∫
d2𝜗 𝑢 ( |𝝑1 − 𝝑 |) 𝑢 ( |𝝑2 − 𝝑 |) 𝑢 ( |𝝑3 − 𝝑 |) (A.12)

+
𝐻 (𝐻 − 1) 𝐾 𝑁2

gal

𝐴2

∫
d2𝜗 𝑢𝑖 |𝝑1 − 𝝑 |) 𝑢𝑖 ( |𝝑3 − 𝝑 |)

+
𝐻 (𝐻 − 1) 𝐾 𝑁2

gal

𝐴2

∫
d2𝜗 𝑢 ( |𝝑1 − 𝝑 |) 𝑢 ( |𝝑2 − 𝝑 |)

+
𝐻 (𝐻 − 1) 𝐾 𝑁2

gal

𝐴2

∫
d2𝜗 𝑢 ( |𝝑2 − 𝝑 |) 𝑢 ( |𝝑3 − 𝝑 |)

+
𝐻 (𝐻 − 1) (𝐻 − 2) 𝐾 𝑁2

gal

𝐴3
.

From this, we can infer 〈NNM〉 with Eq. (2.138). Because the �lter function𝑈𝜃 is compensated,
the integrals over constant terms vanish and only the �rst term in the sum remains. Therefore,
with he exponential �lter function from Eq. (2.142) and 𝑁 = 𝐻 𝑁gal/𝐴, Eq. (2.138) leads to

〈NNM〉 (𝜃1, 𝜃2, 𝜃3)

=
𝐴 𝐾

𝐻 (2𝜋)3
∫ ∞

0
d2𝜗

3∏
𝑖=1

1
𝜃2
𝑖

(A.13)

×
∫

d2𝜗𝑖 𝑢 ( |𝝑𝑖 − 𝝑 |)
(
1 −

𝜗2
𝑖

2𝜃2
𝑖

)
exp

(
−
𝜗2
𝑖

2𝜃2
𝑖

)
=

𝐴 𝐾

𝐻 (2𝜋)2
∫ ∞

0
d2𝜗

3∏
𝑖=1

1
𝜃2
𝑖

∫ 2𝜋

0
d𝜙𝑖

∫ ∞

0
d𝑦𝑖 𝑦𝑖 𝑢(𝑦𝑖) (A.14)

× exp
(
−
𝑦2
𝑖
+ 𝜗2

2𝜃2
𝑖

) (
1 −

𝑦2
𝑖
+ 𝜗2

2𝜃2
𝑖

− 𝑦𝑖 𝜗 cos(𝜙𝑖)
𝜃2
𝑖

)
.

We can now use that ∫ 2𝜋

0
d𝑥 cos(𝑥) exp(−𝑎 cos(𝑥)) = −2𝜋 𝐼1(𝑎) , (A.15)∫ 2𝜋

0
d𝑥 exp(−𝑎 cos(𝑥)) = 2𝜋 𝐼0(𝑎) , (A.16)

with the modi�ed Bessel functions of the �rst kind 𝐼𝑛. We also introduce the scaled Bessel
functions 𝑓𝑛 (𝑥) = 𝐼𝑛 (𝑥) exp(−𝑥), so that the aperture statistics are �nally

〈NNM〉 (𝜃1, 𝜃2, 𝜃3) (A.17)

=
2𝜋 𝐴 𝐾
𝐻

∫ ∞

0
d𝜗 𝜗

3∏
𝑖=1

∫ ∞

0
d𝑦𝑖

𝑦𝑖 𝑢(𝑦𝑖)
𝜃2
𝑖

exp
[
− (𝑦𝑖 − 𝜗)2

2𝜃2
𝑖

]
×

[(
1 −

𝑦2
𝑖
+ 𝜗2

2𝜃2
𝑖

)
𝑓0

(
𝑦𝑖 𝜗

𝜃2
𝑖

)
+ 𝑦𝑖𝜗
𝜃2
𝑖

𝑓1

(
𝑦𝑖 𝜗

𝜃2
𝑖

)]
.
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A.2 Computational implementation with graphics
processing units

Our estimates of G̃ are computed by calculating the sums in Eqs. (2.126), (3.4) and (3.20) brute-
force on a GPU. Our algorithm (see Algorithm 1) for the estimation of G̃ works similar to the
procedures proposed by Bard et al. (2013) for the calculation of the galaxy two-point correlation
and by Cárdenas-Montes et al. (2014) for the calculation of the galaxy two- and three-point
function and the shear-shear correlation. It can be used for calculating the correlation between
lenses from the same and di�erent samples.

Algorithm 1 Algorithm for computing G̃
Read in lens and source galaxy positions and source ellipticities into main memory (RAM)
Copy galaxy positions and ellipticities from RAM to the GPU
Initialize container for G̃ with 𝑁bins bins on RAM
Initialize container for G̃ with 𝑁bins bins on GPU
Initialize 𝑁th threads on GPU
In each thread 𝑖 do

for all sources 𝑗 with 𝑗 ∈ [𝑖, 𝑖 + 𝑁th, 𝑖 + 2𝑁th, . . . , 𝑁𝑠] do
for all lenses do

for all lenses do
Get index of G̃ bin for this galaxy triplet
Add contribution of this triplet to G̃ on GPU

end for
end for

end for
end thread
Copy G̃ from GPU to RAM
Write G̃ to �le

This algorithm is implemented in CUDA 10 using double �oating-point precision. For the
calculation, we used an NVIDIA RTX 2080 Ti GPU, which has CUDA capability 7.5 and 4352
cores. Data were read from and written to ASCII �les on an SSD hard drive, enabling fast data
transfer.
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Appendix to Chapter 4 B
B.1 Results for aperture statistics in angular units

For completeness, we show here our results for the angular aperture statistics 〈NNM〉, for
colour-selected lens samples (Fig. B.1) and stellar-mass-selected lens samples (Fig. B.2). The
〈NNM〉 exhibit similar trends to the 〈NNM〉phys (see Sect 4.4). In particular, 〈NNM〉 also
increases with the lenses stellar masses and is larger for red-red than for red-blue or blue-blue
lens galaxies. Furthermore, the predictions by the H15 SAM agrees well with the observed
〈NNM〉, while the L12 SAM expects too large aperture statistics, especially for low stellar-mass
galaxies.

The agreement of the H15 SAM and the discrepancy of the L12 SAM with the observations is
supported by the 𝜒2redu of the SAMs predictions for 〈NNM〉, presented in Table B.1. The H15
SAM disagrees with the observations only for the correlation of m1 and m4 galaxies at the 95%
CL, while the L12 SAM is in tension with the observation for all samples.

Note, that while the measurements of 〈NNM〉 do not depend on the choice of cosmology, they
change with the lens redshift distribution. Comparing 〈NNM〉 measured in di�erent observa-
tional surveys requires, therefore, careful consideration of the survey’s selection functions.
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100 101
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(
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H15, red-red
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H15, blue-blue

L12, red-red
L12, red-blue
L12, blue-blue

KV450 x GAMA, red-red
KV450 x GAMA, red-blue
KV450 x GAMA, blue-blue

Figure B.1: 〈NNM〉 for colour-selected lens samples of the H15 galaxies (solid lines), L12 galaxies
(dashed lines) and KV450 × GAMA (points). The signal is shown for red-red lens pairs (red lines and
filled circles), red-blue lens pairs (purple lines and crosses), and blue-blue lens pairs (blue lines and
squares). Error bars on the observational measurements are the standard deviation from jackknifing.

Table B.1: χ2
redu of 〈NNM〉 for H15 and L12 SAMs. Bold values indicate a tension at the 95% CL.

lens pairs χ2
redu for H15 χ2

redu for L12
red – red 1.33 32.4
red – blue 0.39 1.92
blue – blue 0.85 2.31
m1 – m1 0.95 27.0
m1 – m2 0.81 28.9
m1 – m3 1.27 50.3
m1 – m4 3.69 22.13
m1 – m5 1.18 5.29
m2 – m2 1.29 10.28
m2 – m3 0.74 17.13
m2 – m4 0.45 7.90
m2 – m5 1.37 21.66
m3 – m3 0.40 60.61
m3 – m4 0.56 18.57
m3 – m5 0.90 27.14
m4 – m4 0.66 3.15
m4 – m5 1.36 11.43
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Figure B.2: Angular aperture statistics for stellar mass-selected lens samples in the MR with the H15
SAM (solid blue lines), the L12 SAM (dashed grey lines), and in GAMA with KV450 sources (pink points),
using the mass bins defined in Table 4.1. Plots on the diagonal show the signal for unmixed lens pairs,
while the other plots show the signal for mixed lens pairs. Error bars are the standard deviation from
jackknife resampling.
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Appendix to Chapter 5 C
C.1 Calculation of galaxy-galaxy-matter bispectrum for

galaxies from the same population

Averages in the halo model are calculated by averaging over the probability distributions of the
halos masses, positions, galaxy numbers and galaxy positions. Since we distinguish between
central and satellite galaxies, separate averages are needed for these two galaxy types. So, the
average of an arbitrary quantity 𝑓 is

〈 𝑓 〉 =
∫

d𝑚1 . . . d𝑚𝐻 𝑃m(𝑚1, . . . ,𝑚𝐻)︸               ︷︷               ︸
Probability that haloes
have masses 𝑚1,...,𝑚2

(C.1)

×
∫

d𝑁cen,1 . . . d𝑁cen,𝐻

∫
d𝑁sat,1 . . . d𝑁sat,𝐻

× 𝑃𝑁 (𝑁cen,1 𝑁sat,1 |𝑚1) . . . 𝑃𝑁 (𝑁cen,𝐻 𝑁sat,𝐻 |𝑚𝐻)︸                                                        ︷︷                                                        ︸
Probability that halo 𝑖 has 𝑁cen,𝑖 centrals and 𝑁sat,𝑖 satellites

×
∫

d3𝑥1 . . . d3𝑥𝐻 𝑃c(𝒙1, . . . , 𝒙𝐻 | 𝑚1, . . . ,𝑚𝐻)︸                                ︷︷                                ︸
Probability that halo centres are at 𝒙1,...,𝒙𝐻

×
∫

d3Δ𝒙11· · ·
∫

d3Δ𝒙𝐻𝑁sat,𝐻
𝑃gal(Δ𝒙11, . . . ,Δ𝒙𝐻𝑁sat,𝐻

| 𝑚1, . . . ,𝑚𝐻)︸                                              ︷︷                                              ︸
Probability that satellites are at Δ𝒙11,...,Δ𝒙𝐻𝑁sat,𝐻

𝑓 .

The probability 𝑃m is a product of the HMF,

𝑃m(𝑚1 . . . 𝑚𝐻) = 𝑛̄−𝐻H 𝑛(𝑚1) . . . 𝑛(𝑚𝐻) , (C.2)

where 𝑛̄H = 𝐻/𝑉 is the halo number density. The probability 𝑃gal is a product of the spatial
distributions of satellites in each halo,

𝑃gal(Δ𝒙11, . . . ,Δ𝒙𝐻𝑁sat,𝐻
|𝑚1, . . . ,𝑚𝐻) = 𝑢g(𝒙11 |𝑚1) . . . 𝑢g(Δ𝒙𝐻𝑁sat,𝐻

|𝑚𝐻) . (C.3)
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Using Eqs (5.12), (5.2.2), and (5.15), the bispectrum 𝐵gg𝛿 is given by

(2𝜋)3 𝛿D(𝒌1 + 𝒌2 + 𝒌3) 𝐵gg𝛿 (𝒌1, 𝒌2, 𝒌3, 𝑡)

=
1

𝑛̄𝐻H 𝜌 𝑛̄
2

∫
d𝑚1 . . . d𝑚𝐻 𝑛(𝑚1) . . . 𝑛(𝑚𝐻) (C.4)

×
∫

d𝑁cen,1 . . . d𝑁cen,𝐻

∫
d𝑁sat,1 . . . d𝑁sat,𝐻 𝑃𝑁 (𝑁cen,1 𝑁sat,1 |𝑚1) . . . 𝑃𝑁 (𝑁cen,𝐻 𝑁sat,𝐻 |𝑚𝐻)

×
∫

d3𝑥1 . . . d3𝑥𝐻 𝑃c(𝒙1, . . . , 𝒙𝐻 | 𝑚1, . . . ,𝑚𝐻)

×
∫

d3Δ𝒙11 . . . d3Δ𝒙𝐻𝑁sat,𝐻
𝑢g(Δ𝒙11 |𝑚1) . . . 𝑢g(Δ𝒙𝐻𝑁sat,𝐻

|𝑚𝐻)

×
𝐻∑︁
𝑖=0

𝐻∑︁
𝑗=0

𝐻∑︁
𝑘=0

𝑚𝑘 𝑢(𝒌3 |𝑚𝑘 )

×
exp(−i 𝒌1 · 𝒙𝑖) +

𝑁sat,𝑖∑︁
𝑙=1

exp(−i 𝒌1 · 𝒙𝑖 − i 𝒌1 · Δ𝒙𝑖𝑙)


×
exp

(
−i 𝒌2 · 𝒙 𝑗

)
+
𝑁sat, 𝑗∑︁
𝑚=1

exp
(
−i 𝒌2 · 𝒙 𝑗 − i 𝒌2 · Δ𝒙 𝑗𝑚

) .

We split up the triple sum over 𝑖, 𝑗 and 𝑘 into three separate terms: the 1-halo term 𝐵1−h
gg𝛿 with

𝑖 = 𝑗 = 𝑘 , the 2-halo term 𝐵2−h
gg𝛿 with 𝑖 = 𝑗 ≠ 𝑘 , 𝑖 = 𝑘 ≠ 𝑗 , and 𝑗 = 𝑘 ≠ 𝑖, and the 3-halo term

𝐵3−h
gg𝛿 with 𝑖 ≠ 𝑗 ≠ 𝑘 .

The 1-halo term is given by

(2𝜋)3 𝛿D(𝒌1 + 𝒌2 + 𝒌3) 𝐵1−h
gg𝛿 (𝒌1, 𝒌2, 𝒌3, 𝑡)

=
1

𝑛̄H 𝜌 𝑛̄2

𝐻∑︁
𝑖=1

∫
d𝑚𝑖 𝑛(𝑚𝑖)

∫
d𝑁cen,𝑖

∫
d𝑁sat,𝑖 𝑃𝑁 (𝑁cen,𝑖 , 𝑁sat,𝑖 |𝑚𝑖) 𝑚𝑖 𝑢(𝒌3 |𝑚𝑖) (C.5)

×
∫

d3𝑥1 . . . d3𝑥𝐻 𝑃c(𝒙1, . . . , 𝒙𝐻 | 𝑚1, . . . ,𝑚𝐻) exp
[
− i (𝒌1 + 𝒌2 + 𝒌3) · 𝒙𝑖

]
×

{
𝑁cen,𝑖 (𝑁cen,𝑖 − 1) + 𝑁cen,𝑖 𝑁sat,𝑖

[
𝑢g(𝒌1 |𝑚𝑖) + 𝑢g(𝒌2 |𝑚𝑖)

]
+ 𝑁sat,𝑖 (𝑁sat,𝑖 − 1) 𝑢g(𝒌1 |𝑚𝑖) 𝑢g(𝒌2 |𝑚𝑖)

}
(C.6)

= (2𝜋)3 𝛿D(𝒌1 + 𝒌2 + 𝒌3)
1
𝜌 𝑛̄2

∫
d𝑚 𝑛(𝑚) 𝑚 𝑢(𝒌3 |𝑚) (C.7)

×
{ 〈
𝑁cen(𝑁cen − 1) |𝑚

〉
+

〈
𝑁cen 𝑁sat

〉 [
𝑢g(𝒌1 |𝑚) + 𝑢g(𝒌2 |𝑚)

]
+

〈
𝑁sat(𝑁sat − 1) |𝑚

〉
𝑢g(𝒌1 |𝑚) 𝑢g(𝒌2 |𝑚)

}
, (C.8)
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where we used that∫
𝑉

d3𝑥1 . . . d3𝑥𝐻 𝑃c(𝒙1, . . . , 𝒙𝐻 | 𝑚1, . . . ,𝑚𝐻) exp
[
− i (𝒌1 + 𝒌2 + 𝒌3) · 𝒙𝑖

]
=
𝑉𝐻−1

𝑉𝐻

∫
𝑉

d3𝑥𝑖
1
𝑉

exp
[
− i (𝒌1 + 𝒌2 + 𝒌3) · 𝒙𝑖

]
(C.9)

=
1
𝑉

(2𝜋)3 𝛿D(𝒌1 + 𝒌2 + 𝒌3) . (C.10)

The 2-halo term is given by

(2𝜋)3 𝛿D(𝒌1 + 𝒌2 + 𝒌3) 𝐵2−h
gg𝛿 (𝒌1, 𝒌2, 𝒌3, 𝑡)

=
1

𝑛̄2H 𝜌 𝑛̄
2

𝐻∑︁
𝑖=1

∑︁
𝑗≠𝑖

∫
d𝑚𝑖

∫
d𝑚 𝑗 𝑛(𝑚𝑖) 𝑛(𝑚 𝑗 ) (C.11)

×
∫

d𝑁cen,𝑖

∫
d𝑁sat,𝑖 𝑃𝑁 (𝑁cen,𝑖 , 𝑁sat,𝑖 |𝑚𝑖)

∫
d𝑁cen, 𝑗

∫
d𝑁sat, 𝑗 𝑃𝑁 (𝑁cen, 𝑗 , 𝑁sat, 𝑗 |𝑚 𝑗 )

×
∫

d3𝑥1 . . . d3𝑥𝐻 𝑃c(𝒙1, . . . , 𝒙𝐻 | 𝑚1, . . . ,𝑚𝐻)

×
{
𝑚𝑖 𝑢(𝒌3 |𝑚𝑖) exp

[
−i (𝒌1 + 𝒌3) · 𝒙𝑖 − i 𝒌2 · 𝒙 𝑗

]
×

[
𝑁cen,𝑖 + 𝑁sat,𝑖 𝑢g(𝒌1 |𝑚𝑖)

] [
𝑁cen, 𝑗 + 𝑁sat, 𝑗 𝑢g(𝒌2 |𝑚 𝑗 )

]
+ 𝑚 𝑗 𝑢(𝒌3 |𝑚 𝑗 ) exp

[
−i (𝒌2 + 𝒌3) · 𝒙 𝑗 − i 𝒌1 · 𝒙𝑖

]
×

[
𝑁cen,𝑖 + 𝑁sat,𝑖 𝑢g(𝒌1 |𝑚𝑖)

] [
𝑁cen, 𝑗 + 𝑁sat, 𝑗 𝑢g(𝒌2 |𝑚 𝑗 )

]
+ 𝑚 𝑗 𝑢(𝒌3 |𝑚 𝑗 ) exp

[
−i (𝒌1 + 𝒌2) · 𝒙𝑖 − i 𝒌3 · 𝒙 𝑗

]
×

[
𝑁cen,𝑖 (𝑁cen,𝑖 − 1) + 𝑁cen,𝑖 𝑁sat,𝑖

(
𝑢g(𝒌1 |𝑚𝑖) + 𝑢g(𝒌2 |𝑚𝑖)

)
+ 𝑁sat,𝑖 (𝑁sat,𝑖 − 1)𝑢g(𝒌1 |𝑚𝑖)𝑢g(𝒌2 |𝑚𝑖)

]}
= (2𝜋)3 𝛿D(𝒌1 + 𝒌2 + 𝒌3)

1
𝜌 𝑛̄2

∫
d𝑚1

∫
d𝑚2 𝑛(𝑚1) 𝑛(𝑚2) (C.12)

×
{
[𝑚1 𝑢(𝒌3 |𝑚1) 𝑃H(𝒌2,−𝒌2 |𝑚1,𝑚2) + 𝑚2 𝑢(𝒌3 |𝑚2) 𝑃H(𝒌1,−𝒌1 |𝑚1,𝑚2)]

×
[〈
𝑁cen |𝑚1

〉
+

〈
𝑁sat |𝑚1

〉
𝑢g(𝒌1 |𝑚1)

] [〈
𝑁cen |𝑚2

〉
+

〈
𝑁sat |𝑚2

〉
𝑢g(𝒌2 |𝑚2)

]
+ 𝑚2 𝑢(𝒌3 |𝑚2) 𝑃H(𝒌3,−𝒌3 |𝑚1,𝑚2)
×

[〈
𝑁cen(𝑁cen − 1) |𝑚1

〉
+

〈
𝑁cen 𝑁sat |𝑚1

〉 (
𝑢g(𝒌1 |𝑚1) + 𝑢g(𝒌2 |𝑚1)

)
+

〈
𝑁sat(𝑁sat − 1) |𝑚1

〉
𝑢g(𝒌1 |𝑚1) 𝑢g(𝒌2 |𝑚2)

] }
,
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where 𝑃H is the halo power spectrum. Here we used∫
𝑉

d3𝑥1 . . . d3𝑥𝐻 𝑃c(𝒙1, . . . , 𝒙𝐻 | 𝑚1, . . . ,𝑚𝐻) exp
[
−i 𝒌1 𝒙𝑖 − i 𝒌2 · 𝒙 𝑗

]
=
𝑉𝐻−2

𝑉𝐻

∫
𝑉

d3𝑥𝑖
∫
𝑉

d3𝑥 𝑗
1
𝑉2

[
1 + 𝜉H(𝒙𝑖 , 𝒙 𝑗 )

]
exp

[
−i 𝒌1 𝒙𝑖 − i 𝒌2 · 𝒙 𝑗

]
(C.13)

=
1
𝑉2

[
(2𝜋)6 𝛿D(𝒌1) 𝛿D(𝒌2) + (2𝜋)3 𝛿D(𝒌1 + 𝒌2) 𝑃H(𝒌1, 𝒌2, 𝑡)

]
, (C.14)

with the halo two-point correlation function 𝜉H. The terms proportional to 𝛿D(𝒌) can be ignored,
as the bispectrum only depends on the terms proportional to 𝛿D(𝒌1 + 𝒌2 + 𝒌3).

The 3-halo term is given by

(2𝜋)3 𝛿D(𝒌1 + 𝒌2 + 𝒌3) 𝐵3−h
gg𝛿 (𝒌1, 𝒌2, 𝒌3, 𝑡)

=
1

𝑛̄2H 𝜌 𝑛̄
2

𝐻∑︁
𝑖=1

∑︁
𝑗≠𝑖

∑︁
𝑘≠𝑖, 𝑗

∫
d𝑚𝑖

∫
d𝑚 𝑗

∫
d𝑚𝑘 𝑛(𝑚𝑖) 𝑛(𝑚 𝑗 ) 𝑛(𝑚𝑘 ) (C.15)

×
∫

d𝑁cen,𝑖

∫
d𝑁sat,𝑖 𝑃𝑁 (𝑁cen,𝑖 , 𝑁sat,𝑖 |𝑚𝑖)

∫
d𝑁cen, 𝑗

∫
d𝑁sat, 𝑗 𝑃𝑁 (𝑁cen, 𝑗 , 𝑁sat, 𝑗 |𝑚 𝑗 )

×
∫

d3𝑥1 . . . d3𝑥𝐻 𝑃c(𝒙1, . . . , 𝒙𝐻 | 𝑚1, . . . ,𝑚𝐻)

× 𝑚𝑘 𝑢(𝒌3 |𝑚𝑘 ) exp
[
−i 𝒌1 · 𝒙𝑖 − i 𝒌2 · 𝒙 𝑗 − i 𝒌3 · 𝒙𝑘

]
×

[
𝑁cen,𝑖 + 𝑁sat,𝑖 𝑢g(𝒌1 |𝑚𝑖)

] [
𝑁cen, 𝑗 + 𝑁sat, 𝑗 𝑢g(𝒌2 |𝑚 𝑗 )

]
= (2𝜋)3 𝛿D(𝒌1 + 𝒌2 + 𝒌3)

1
𝜌 𝑛̄2

∫
d𝑚1

∫
d𝑚2

∫
d𝑚3 𝑛(𝑚1) 𝑛(𝑚2) 𝑛(𝑚3) 𝑚3 𝑢(𝒌3 |𝑚3)

(C.16)
× 𝐵H(𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡)

[〈
𝑁cen |𝑚1

〉
+

〈
𝑁sat |𝑚1

〉
𝑢g(𝒌1 |𝑚1)

]
×

[〈
𝑁cen |𝑚2

〉
+

〈
𝑁sat |𝑚2

〉
𝑢g(𝒌2 |𝑚2)

]
.

Here we used∫
𝑉

d3𝑥1 . . . d3𝑥𝐻 𝑃c(𝒙1, . . . , 𝒙𝐻 | 𝑚1, . . . ,𝑚𝐻) exp
[
−i 𝒌1 𝒙𝑖 − i 𝒌2 · 𝒙 𝑗 − i 𝒌3 · 𝒙𝑘

]
=
𝑉𝐻−3

𝑉𝐻

∫
𝑉

d3𝑥𝑖
∫
𝑉

d3𝑥 𝑗
∫
𝑉

d3𝑥𝑘
1
𝑉3

[
1 + 𝜉H(𝒙𝑖 , 𝒙 𝑗 ) + 𝜉H(𝒙𝑖 , 𝒙𝑘 ) + 𝜉H(𝒙 𝑗 , 𝒙𝑘 ) + 𝜁H(𝒙𝑖 , 𝒙 𝑗 , 𝒙𝑘 )

]
(C.17)

× exp
[
−i 𝒌1 𝒙𝑖 − i 𝒌2 · 𝒙 𝑗 − 𝐼 𝒌3

]
=

1
𝑉3

[
(2𝜋)9 𝛿D(𝒌1) 𝛿D(𝒌2) 𝛿D(𝒌3) + (2𝜋)6 𝛿D(𝒌3) 𝛿D(𝒌1 + 𝒌2) 𝑃H(𝒌1, 𝒌2, 𝑡) (C.18)

+ (2𝜋)6 𝛿D(𝒌2) 𝛿D(𝒌1 + 𝒌3) 𝑃H(𝒌1, 𝒌3, 𝑡) + (2𝜋)6 𝛿D(𝒌1) 𝛿D(𝒌2 + 𝒌3) 𝑃H(𝒌2, 𝒌3, 𝑡)
+ (2𝜋)3 𝛿D(𝒌1 + 𝒌2 + 𝒌3) 𝐵H(𝒌1, 𝒌2, 𝒌3, 𝑡)

]
,

with the halo three-point correlation function 𝜁H.
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C.2 Calculation of galaxy-galaxy-matter bispectrum for
di�erent galaxy populations

For two di�erent galaxy populations Eq. (C.1) needs to be extended to include averages over
central and satellite galaxies from populations 𝑎 and 𝑏. Therefore the average of an arbitrary
quantity 𝑓 is

〈 𝑓 〉 =
∫

d𝑚1 . . . d𝑚𝐻 𝑃m(𝑚1, . . . ,𝑚𝐻) (C.19)

×
∫

d𝑁 (𝑎)
cen,1 . . . d𝑁

(𝑎)
cen,𝐻

∫
d𝑁 (𝑎)

sat,1 . . . d𝑁
(𝑎)
sat,𝐻

×
∫

d𝑁 (𝑏)
cen,1 . . . d𝑁

(𝑏)
cen,𝐻

∫
d𝑁 (𝑏)

sat,1 . . . d𝑁
(𝑏)
sat,𝐻

× 𝑃𝑁 (𝑁 (𝑎)
cen,1 𝑁

(𝑎)
sat,1 𝑁

(𝑏)
cen,1 𝑁

(𝑏)
sat,1 |𝑚1) . . . 𝑃𝑁 (𝑁 (𝑎)

cen,𝐻 𝑁
(𝑎)
sat,𝐻 𝑁

(𝑏)
cen,𝐻 𝑁

(𝑏)
sat,𝐻 |𝑚𝐻)︸                                                                                          ︷︷                                                                                          ︸

Probability that halo 𝑖 has 𝑁 (𝑎)
cen,𝑖 centrals and 𝑁

(𝑎)
sat,𝑖 satellites of population 𝑎

and 𝑁 (𝑏)
cen,𝑖 centrals and 𝑁

(𝑏)
sat,𝑖 satellites of population 𝑏

×
∫

d3𝑥1 . . . d3𝑥𝐻 𝑃c(𝒙1, . . . , 𝒙𝐻 | 𝑚1, . . . ,𝑚𝐻)

×
∫

d3Δ𝒙 (𝑎)11 · · ·
∫

d3Δ𝒙 (𝑎)
𝐻𝑁

(𝑎)
sat,𝐻

∫
d3Δ𝒙 (𝑏)11 · · ·

∫
d3Δ𝒙 (𝑏)

𝐻𝑁
(𝑏)
sat,𝐻

× 𝑃gal(Δ𝒙 (𝑎)11 , . . . ,Δ𝒙
(𝑎)
𝐻𝑁

(𝑎)
sat,𝐻

,Δ𝒙 (𝑏)11 , . . . ,Δ𝒙
(𝑏)
𝐻𝑁

(𝑏)
sat,𝐻

| 𝑚1, . . . ,𝑚𝐻)︸                                                                            ︷︷                                                                            ︸
Probability that population 𝑎 satellites are at Δ𝒙 (𝑎)

11 , . . . ,Δ𝒙 (𝑎)
𝐻𝑁

(𝑎)
sat,𝐻

and population 𝑏 satellites are at Δ𝒙 (𝑏)
11 , . . . ,Δ𝒙 (𝑏)

𝐻𝑁
(𝑏)
sat,𝐻

𝑓 .
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Again we split the triple sum into a 1-halo, 2-halo, and 3-halo term. The 1-halo term is given
by

(2𝜋)3 𝛿D(𝒌1 + 𝒌2 + 𝒌3) 𝐵1−h
gg𝛿 (𝒌1, 𝒌2, 𝒌3, 𝑡)

=
1

𝑛̄H 𝜌 𝑛̄𝑎 𝑛̄𝑏

𝐻∑︁
𝑖=1

∫
d𝑚𝑖 𝑛(𝑚𝑖) (C.20)

×
∫

d𝑁 (𝑎)
cen,𝑖

∫
d𝑁 (𝑎)

sat,𝑖

∫
d𝑁 (𝑏)

cen,𝑖

∫
d𝑁 (𝑏)

sat,𝑖 𝑃𝑁 (𝑁
(𝑎)
cen,𝑖 , 𝑁

(𝑎)
sat,𝑖 , 𝑁

(𝑏)
cen,𝑖 , 𝑁

(𝑏)
sat,𝑖 |𝑚𝑖)

×
∫

d3𝑥1 . . . d3𝑥𝐻 𝑃c(𝒙1, . . . , 𝒙𝐻 | 𝑚1, . . . ,𝑚𝐻) exp
[
− i (𝒌1 + 𝒌2 + 𝒌3) · 𝒙𝑖

]
𝑚𝑖 𝑢(𝒌3 |𝑚𝑖)

×
[
𝑁

(𝑎)
cen,𝑖 𝑁

(𝑏)
cen,𝑖 + 𝑁

(𝑎)
cen,𝑖 𝑁

(𝑏)
sat,𝑖 𝑢

(𝑏)
g (𝒌2 |𝑚𝑖)

+𝑁 (𝑏)
cen,𝑖 𝑁

(𝑎)
sat,𝑖 𝑢

(𝑎)
g (𝒌1 |𝑚𝑖) + 𝑁 (𝑎)

sat,𝑖 𝑁
(𝑏)
sat,𝑖 𝑢

(𝑎)
g (𝒌1 |𝑚𝑖) 𝑢(𝑏)g (𝒌2 |𝑚𝑖)

]
= (2𝜋)3 𝛿D(𝒌1 + 𝒌2 + 𝒌3)

1
𝜌 𝑛̄𝑎 𝑛̄𝑏

∫
d𝑚 𝑛(𝑚) 𝑚 𝑢(𝒌3 |𝑚) (C.21)

×
[〈
𝑁

(𝑎)
cen 𝑁

(𝑏)
cen |𝑚

〉
+

〈
𝑁

(𝑎)
cen 𝑁

(𝑏)
sat

〉
𝑢
(𝑏)
g (𝒌2 |𝑚) +

〈
𝑁

(𝑏)
cen 𝑁

(𝑎)
sat

〉
𝑢
(𝑎)
g (𝒌1 |𝑚)

+
〈
𝑁

(𝑎)
sat 𝑁

(𝑏)
sat |𝑚

〉
𝑢
(𝑎)
g (𝒌1 |𝑚) 𝑢(𝑏)g (𝒌2 |𝑚)

]
,
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C.2 Calculation of galaxy-galaxy-matter bispectrum for di�erent galaxy populations

The 2-halo term is given by

(2𝜋)3 𝛿D(𝒌1 + 𝒌2 + 𝒌3) 𝐵2−h
gg𝛿 (𝒌1, 𝒌2, 𝒌3, 𝑡)

=
1

𝑛̄2H 𝜌 𝑛̄𝑎 𝑛̄𝑏

𝐻∑︁
𝑖=1

∑︁
𝑗≠𝑖

∫
d𝑚𝑖

∫
d𝑚 𝑗 𝑛(𝑚𝑖) 𝑛(𝑚 𝑗 ) (C.22)

×
∫

d𝑁 (𝑎)
cen,𝑖

∫
d𝑁 (𝑎)

sat,𝑖

∫
d𝑁 (𝑏)

cen,𝑖

∫
d𝑁 (𝑏)

sat,𝑖

×
∫

d𝑁 (𝑎)
cen, 𝑗

∫
d𝑁 (𝑎)

sat, 𝑗

∫
d𝑁 (𝑏)

cen, 𝑗

∫
d𝑁 (𝑏)

sat, 𝑗

× 𝑃𝑁 (𝑁 (𝑎)
cen,𝑖 , 𝑁

(𝑎)
sat,𝑖 𝑁

(𝑏)
cen,𝑖 , 𝑁

(𝑏)
sat,𝑖 |𝑚𝑖) 𝑃𝑁 (𝑁

(𝑎)
cen, 𝑗 , 𝑁

(𝑎)
sat, 𝑗 𝑁

(𝑏)
cen, 𝑗 , 𝑁

(𝑏)
sat, 𝑗 |𝑚 𝑗 )

×
∫

d3𝑥1 . . . d3𝑥𝐻 𝑃c(𝒙1, . . . , 𝒙𝐻 | 𝑚1, . . . ,𝑚𝐻) exp [−i (𝒌1 + 𝒌2 + 𝒌3) · 𝒙𝑖]

×
{
𝑚𝑖 𝑢(𝒌3 |𝑚𝑖) exp

[
−i (𝒌1 + 𝒌3) · 𝒙𝑖 − i 𝒌2 · 𝒙 𝑗

]
×

[
𝑁

(𝑎)
cen,𝑖 + 𝑁

(𝑎)
sat,𝑖 𝑢

(𝑎)
g (𝒌1 |𝑚𝑖)

] [
𝑁

(𝑏)
cen, 𝑗 + 𝑁

(𝑏)
sat, 𝑗 𝑢

(𝑏)
g (𝒌2 |𝑚 𝑗 )

]
+ 𝑚 𝑗 𝑢(𝒌3 |𝑚 𝑗 ) exp

[
−i (𝒌2 + 𝒌3) · 𝒙 𝑗 − i 𝒌1 · 𝒙𝑖

]
×

[
𝑁

(𝑎)
cen,𝑖 + 𝑁

(𝑎)
sat,𝑖 𝑢

(𝑎)
g (𝒌1 |𝑚𝑖)

] [
𝑁

(𝑏)
cen, 𝑗 + 𝑁

(𝑏)
sat, 𝑗 𝑢

(𝑏)
g (𝒌2 |𝑚 𝑗 )

]
+ 𝑚 𝑗 𝑢(𝒌3 |𝑚 𝑗 ) exp

[
−i (𝒌1 + 𝒌2) · 𝒙𝑖 − i 𝒌3 · 𝒙 𝑗

]
×

[
𝑁

(𝑎)
cen,𝑖 𝑁

(𝑏)
cen,𝑖 + 𝑁

(𝑎)
cen,𝑖 𝑁

(𝑏)
sat,𝑖 𝑢

(𝑏)
g (𝒌2 |𝑚𝑖) + 𝑁 (𝑏)

cen,𝑖 𝑁
(𝑎)
sat,𝑖 𝑢

(𝑎)
g (𝒌1 |𝑚𝑖)

+𝑁 (𝑎)
sat,𝑖 𝑁

(𝑏)
sat,𝑖 𝑢

(𝑎)
g (𝒌1 |𝑚𝑖)𝑢(𝑏)g (𝒌2 |𝑚𝑖)

] }
= (2𝜋)3 𝛿D(𝒌1 + 𝒌2 + 𝒌3)

1
𝜌 𝑛̄𝑎 𝑛̄𝑏

∫
d𝑚1

∫
d𝑚2 𝑛(𝑚1) 𝑛(𝑚2) (C.23)

×
{
[𝑚1 𝑢(𝒌3 |𝑚1) 𝑃H(𝒌2,−𝒌2 |𝑚1,𝑚2) + 𝑚2 𝑢(𝒌3 |𝑚2) 𝑃H(𝒌1,−𝒌1 |𝑚1,𝑚2)]

×
[〈
𝑁

(𝑎)
cen |𝑚1

〉
+

〈
𝑁

(𝑎)
sat |𝑚1

〉
𝑢
(𝑎)
g (𝒌1 |𝑚1)

] [〈
𝑁

(𝑏)
cen |𝑚2

〉
+

〈
𝑁

(𝑏)
sat |𝑚2

〉
𝑢
(𝑏)
g (𝒌2 |𝑚2)

]
+ 𝑚2 𝑢(𝒌3 |𝑚2) 𝑃H(𝒌3,−𝒌3 |𝑚1,𝑚2)

×
[〈
𝑁

(𝑎)
cen 𝑁

(𝑏)
cen |𝑚1

〉
+

〈
𝑁

(𝑎)
cen 𝑁

(𝑏)
sat |𝑚1

〉
𝑢
(𝑏)
g (𝒌2 |𝑚1)

+
〈
𝑁

(𝑏)
cen 𝑁

(𝑎)
sat |𝑚1

〉
𝑢
(𝑎)
g (𝒌1 |𝑚1) +

〈
𝑁

(𝑎)
sat 𝑁

(𝑏)
sat |𝑚1

〉
𝑢
(𝑎)
g (𝒌1 |𝑚1) 𝑢(𝑏)g (𝒌2 |𝑚2)

] }
.
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C Appendix to Chapter 5

The 3-halo term is given by

(2𝜋)3 𝛿D(𝒌1 + 𝒌2 + 𝒌3) 𝐵3−h
gg𝛿 (𝒌1, 𝒌2, 𝒌3, 𝑡)

=
1

𝑛̄2H 𝜌 𝑛̄𝑎 𝑛̄𝑏

𝐻∑︁
𝑖=1

∑︁
𝑗≠𝑖

∑︁
𝑘≠𝑖, 𝑗

∫
d𝑚𝑖

∫
d𝑚 𝑗

∫
d𝑚𝑘 𝑛(𝑚𝑖) 𝑛(𝑚 𝑗 ) 𝑛(𝑚𝑘 ) (C.24)

×
∫

d𝑁 (𝑎)
cen,𝑖

∫
d𝑁 (𝑎)

sat,𝑖

∫
d𝑁 (𝑏)

cen,𝑖

∫
d𝑁 (𝑏)

sat,𝑖

×
∫

d𝑁 (𝑎)
cen, 𝑗

∫
d𝑁 (𝑎)

sat, 𝑗

∫
d𝑁 (𝑏)

cen, 𝑗

∫
d𝑁 (𝑏)

sat, 𝑗

× 𝑃𝑁 (𝑁 (𝑎)
cen,𝑖 , 𝑁

(𝑎)
sat,𝑖 𝑁

(𝑏)
cen,𝑖 , 𝑁

(𝑏)
sat,𝑖 |𝑚𝑖) 𝑃𝑁 (𝑁

(𝑎)
cen, 𝑗 , 𝑁

(𝑎)
sat, 𝑗 𝑁

(𝑏)
cen, 𝑗 , 𝑁

(𝑏)
sat, 𝑗 |𝑚 𝑗 )

×
∫

d3𝑥1 . . . d3𝑥𝐻 𝑃c(𝒙1, . . . , 𝒙𝐻 | 𝑚1, . . . ,𝑚𝐻) exp [−i (𝒌1 + 𝒌2 + 𝒌3) · 𝒙𝑖]

× 𝑚𝑘 𝑢(𝒌3 |𝑚𝑘 ) exp
[
−i 𝒌1 · 𝒙𝑖 − i 𝒌2 · 𝒙 𝑗 − i 𝒌3 · 𝒙𝑘

]
×

[
𝑁

(𝑎)
cen,𝑖 + 𝑁

(𝑎)
sat,𝑖 𝑢

(𝑎)
g (𝒌1 |𝑚𝑖)

] [
𝑁

(𝑏)
cen, 𝑗 + 𝑁

(𝑏)
sat, 𝑗 𝑢

(𝑏)
g (𝒌2 |𝑚 𝑗 )

]
= (2𝜋)3 𝛿D(𝒌1 + 𝒌2 + 𝒌3)

1
𝜌 𝑛̄𝑎 𝑛̄𝑏

∫
d𝑚1

∫
d𝑚2 (C.25)

×
∫

d𝑚3 𝑛(𝑚1) 𝑛(𝑚2) 𝑛(𝑚3) 𝑚3 𝑢(𝒌3 |𝑚3)

× 𝐵H(𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡)
[〈
𝑁

(𝑎)
cen |𝑚1

〉
+

〈
𝑁

(𝑎)
sat |𝑚1

〉
𝑢
(𝑎)
g (𝒌1 |𝑚1)

]
×

[〈
𝑁

(𝑏)
cen |𝑚2

〉
+

〈
𝑁

(𝑏)
sat |𝑚2

〉
𝑢
(𝑏)
g (𝒌2 |𝑚2)

]
.
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