
Global Timing Optimization
in Chip Design

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Vorgelegt von

Siad Daboul

aus

Lippstadt

Bonn, Januar 2021

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Erstgutachter: Herr Professor Dr. Stephan Held
Zweitgutachter: Herr Professor Dr. Jens Vygen

Tag der Promotion: 19. März 2021
Erscheinungsjahr: 2021

Acknowledgements

Throughout the writing of this work, I have received a large amount of support
and assistance by many people. First and foremost, I would like to thank my
supervisors Professor Dr. Stephan Held and Professor Dr. Jens Vygen for their
support, feedback, ideas and collaboration on many aspects of this thesis.

The working conditions at the Institute for Discrete Mathematics are ex-
cellent. I want to thank especially Prof. Dr. Bernhard Korte for creating this
environment and for establishing the cooperation with IBM more than 30 years
ago. This partnership has provided a lot of benefits for both sides and will
hopefully do so for many years to come.

I am grateful to my colleagues Tilmann Bihler, Dr. Ulrich Brenner, Josefine
Foos, Dr. Anna Hermann, Dr. Dirk Müller, Bento Natura, Stefan Rabenstein,
Benjamin Rockel, Dr. Daniel Rotter, Pietro Saccardi, Dr. Rudolf Scheifele, Dr.
Ulrike Schorr and Dr. Jannik Silvanus. Discussing some difficult problem or
just meeting up for a coffee was always a pleasure. I want to thank Benjamin
Rockel and Dr. Daniel Rotter in particular for proofreading a preliminary
version of this work and for providing valuable comments and remarks.

Furthermore, I would like to express my gratitude to several current and
former IBM employees for providing help and sharing their knowledge. In par-
ticular William Dougherty, Harald Folberth, Michael Kazda, Lakshmi Reddy,
Gregory Schaeffer, Friedrich Schroeder, Alex Suess and Cindy Washburn.

Lastly, I thank my family for their encouragement and support in the time of
working on this thesis.

Contents

1 Introduction 1

2 Preliminaries 7
2.1 Timing Analysis . 9
2.2 The Linear Timing Model . 10
2.3 Elmore Delay . 11
2.4 Higher Order Delay Models . 12
2.5 Power Analysis . 13
2.6 Timing Metrics . 14
2.7 An Overview . 16

3 Interconnect Optimization 19
3.1 Previous Work . 20
3.2 Global Routing . 21
3.3 Min-Max Resource Sharing . 23
3.4 Topology Generation . 32
3.5 Buffering . 34

4 Time-Cost Tradeoff Problems in Chip Design 37
4.1 Previous Work . 38
4.2 Problem Formulation . 39
4.3 Vt Optimization Algorithm . 40
4.4 Variants and Implementation 46
4.5 Experimental Results . 49

5 Theoretic Bounds for Time-Cost Tradeoff Problems 57
5.1 Previous Work . 58
5.2 Results and Outline . 59
5.3 The Vertex Cover LP . 60
5.4 Rounding Fractional Vertex Covers in d-Partite Hypergraphs . 65
5.5 Inapproximability . 75
5.6 Reducing Vertex Deletion to Constant Depth 79
5.7 Variants of the Time-Cost Tradeoff Problem 83

i

ii Contents

5.8 The Power Recovery Problem 87

6 Gate Sizing 89
6.1 Previous Work . 90
6.2 Gate Sizing as a Resource Sharing Problem 91
6.3 Comparison to the Projected Subgradient Method 99

7 BonnRouteBuffer 105
7.1 Previous Work . 106
7.2 Problem Formulation . 108
7.3 An Oracle for the Cost-Based Buffered Steiner Tree Problem . . 112
7.4 Improvements . 120
7.5 Comparison to Rotter . 126
7.6 Global Interconnect Optimization Flow 128
7.7 Experimental results . 129

8 Summary 133

Bibliography 135

Notation 149

Chapter 1

Introduction

During the design of a computer chip, numerous objectives compete against
each other. First and foremost, we have the specified clock frequency. The
chip only works correctly if implicit interconnect delay bounds are met. Other
objectives include the minimization of wiring space usage, power consumption
and placement space usage. Individual objectives are often contrary, for example
fast realizations of combinatorial cells are available with the drawback of a
substantial power consumption. Solving these tradeoff problems is the main
topic of this thesis.

On a fundamental level, a computer chip consists of transistors. These tiny
devices allow a current to flow depending on the voltage at their gate contact.
By adjusting transistor materials in the manufacturing process, switching
voltages (Vt) of combinatorial cells can be greatly improved at the cost of
increased power consumption. The individual transistors only implement a
simple Boolean function, but when connected to each other in the right way
they realize a complex circuit. Modern chips have many wiring layers with
various options to select wire widths and spacings. These choices heavily
influence resource consumption and signal delays. Figure 1.1 shows the metal
stack of a chip in the 10nm technology node. Higher layers have a significantly
larger cross-section for individual wiring segments. This corresponds to a lower
electrical resistance and, thus, reduced signal delays. However, due to large
spacings only few wires can be packed on upper layers. Hence, individual nets
compete for limited routing resources. The main goal of the design process is to
reach the specified timing constraints while not overusing any of the available
resources.

The availability of extremely thick wiring layers and fast transistors allows
most signal constraints to be met at the cost of high resource usage. We
can also see timing constraints as an available resource which is overused if
the constraints are violated. Therefore, the design process is inherently a
resource-sharing problem, in which the available resources are distributed to
meet timing constraints. An essential objective of this problem is to find a

1

2 Chapter 1. Introduction

M0
M1

M2
M4

M6

M8

M10

M3
M5

M7

M9

Figure 1.1: A cross section of the metal stack in the Intel 10nm
technology node. Annotations on the left and right side name
the routing layers. Layers ending in an odd digit are vertical,
i.e., the routing preference direction is orthogonal to the cross
section. Layers ending in even digits are horizontal. One can see
that the individual layers have highly asymmetric routing space
consumption characteristics. Image from: Intel, [Aut+17].

solution that does not overuse any resource. If such a solution does not exist
the maximum overuse should be minimized. In contemporary industrial design
flows, this problem has often been solved heuristically, for example by starting
with a solution of low resource usage and to rely on postoptimization to resolve
timing problems [Li+12].

For the case of interconnect optimization, an example of this approach is
depicted in Figure 1.2. Here, we show the resource usage, as indicated by
the wiring length (Wl) and the routing space consumption (visualized by the
edge colors), compared to the achieved timing. As timing constraints usually
cannot be satisfied in early design phases, the infeasibility is given by the
worst slack (Ws). The worst slack measures the maximum time by which
a signal misses its required time of arrival. As it depends only on a single
failing signal path it can be easily affected by perturbations of the netlist.
Therefore, we also compute the total negative slack (Tns), which does not
only measure the worst path but sums the slacks of a larger set of timing
endpoints. Negative values of Ws and Tns indicate that signals arrive too
late. The timing-unaware solution, which only aims to minimize the routing
resource usage, obtains a good wiring length but significantly violates the
timing constraints. Therefore, heuristic postoptimizations lead to a suboptimal

3

Global interconnect optimization

Congestion-unaware Timing-unaware

Congestion-unaware+Postopmization

Figure 1.2: An example of four different design flows. The
respective images highlight the routing resource usage of the
computed interconnect. A red or purple color indicates infeasible
resource usage. If resource capacity constraints are ignored, the
computed result is not feasible, as can be seen in the top left
picture. If timing constraints are ignored, the chip has a poor
design frequency as indicated in the top right. A classic approach
postoptimizes this solution, resulting in the solution shown in the
bottom left. A new approach, combining timing constraints and
resource usage minimization is shown in the bottom right.

solution at significantly increased resource usage and a large wiring length.
In this thesis, we aim at solving the interconnect optimization problem

comprehensively. By balancing global timing, routing, placement, and power
constraints in a global model, we obtain solutions which outperform the classic
approach in both resource usage and timing quality.

An important special case of the resource sharing problem arises when we
only have two resources: timing and cost. Consider the problem of selecting
a solution in a discrete set of delay/cost alternatives for the vertices of an
acyclic directed graph. If both delay and cost functions are separable, this
is the well-known discrete time-cost tradeoff problem. Due to its numerous
applications, it was already considered in the context of planning and scheduling
more than 60 years ago [KW59]. However, on the positive side not much is
known. In practice this problem is mostly solved by heuristics.

Our main contributions are as follows. For the time-cost tradeoff problem in
chip design, we present a new implementation of a primal-dual Vt optimization
algorithm. Instead of requiring separable delay constraints as in previous
approaches, it only has mild assumptions on the delay model. The new

4 Chapter 1. Introduction

assumptions mostly hold in practice, even when computing non-linear delays
with an industrial sign-off timer. This approach allows us to achieve leakage
reductions of up to 8% on netlists that were pre-optimized by one of the
most successful algorithms for gate sizing and Vt assignment [RSR16a]. Our
algorithm simultaneously computes an a posteriori lower bound which shows
that we solve some of the instances almost optimally. After global routing the
reduction grows up to 34% without changing any footprints.

The Vt assignment problem with separable delays directly corresponds to
the discrete time-cost tradeoff problem in directed graphs. If d is the maximum
number of vertices in any path, our practical algorithm yields a d approximation.
Previously, Svensson [Sve12] showed that for general instances with unbounded
values of d no constant factor approximation exists if we assume P 6= NP and
the Unique Games Conjecture holds. The latter conjecture was proposed by
Khot in 2002 [Kho02]. Since then, many strong inapproximability results have
been found under this conjecture. For example, it implies that vertex cover is
NP hard to approximate up to a factor 2 − ε [KR08]. Therefore, the simple
greedy algorithm is essentially best possible.

For the discrete time-cost tradeoff problem, we devise an improved algorithm
with a guarantee of d

2 . We achieve this by reformulating the problem to a vertex
cover problem in d-partite hypergraphs. For this more general problem, the
approximation ratio of our new algorithm is slightly better than d

2 , which
is asymptotically best possible under the Unique Games Conjecture and
P 6= NP. We also study the inapproximability of the time-cost tradeoff
problem and show that no better approximation ratio than d+2

4 is possible,
again assuming the Unique Games Conjecture and P 6= NP. Therefore, we
settle the approximability of this problem up to a factor of less than 2.

We then focus on the gate sizing problem. It is similar to the time-cost
tradeoff problem but optimizes a more involved timing function, which is
not linear but only posynomial. Schorr [Sch15] presented a resource-sharing
formulation for the gate sizing problem in her dissertation. We give a new
runtime analysis for the resource sharing algorithm applied to gatesizing,
resolving small inaccuracies in the previous proof. Furthermore, Schorr [Sch15]
compared the subgradient method to the resource sharing algorithm. We
extend her analysis for the case where an additional power constraint is added
to the problem. Our findings indicate that a power constraint significantly
improves the subgradient method. However, even with the new model the
resource sharing algorithm converges faster.

Besides, we present a practical implementation of the resource sharing
algorithm for gate sizing with heuristic modifications. We compare our new
implementation with the state-of-the-art algorithm of Reimann et al. [RSR16a].
On all designs our algorithm obtains similar or better power savings while

5

drastically reducing runtime. On the larger testcases the speedup is between a
factor of 6 and 10.

Finally, we consider the buffering problem. In this problem the interconnect
for all nets should be computed. Simultaneously, repeating gates need to be
inserted to strengthen electrical signals. We build on the resource sharing
formulation for this problem given by Rotter [Rot17]. On the theoretic side,
we modify the model by using a path based formulation for timing proposed
by Hähnle [Häh15]. This simplifies the implementation and does not lead to
worse results as our experiments show. We also point out that the problem
formulation of Rotter relied on a rough subdivision of the chip to select buffer
positions. In practice this could lead to high movements in the subsequent
legalization step. We change the problem formulation to account for this and
present a practical algorithm to obtain solutions which can be easily legalized.

Rotter gave a first implementation of his algorithm, but acknowledged that it
still had several shortcomings which prevented its application in practice [Rot17].
The new implementation is now robust enough to be used in an industrial
environment. It resolves all major issues of the previous implementation and
subsequently outperforms a state-of-the-art design flow in almost all metrics,
including netlength, power, congestion and timing. We also implement speedups
that reduce the runtime by up to 70%.

Our ambition is to solve the resource sharing problems globally instead of
relying on local optimization. All three described algorithms are now integrated
in the design flow of our industrial partner IBM where they replaced their
previous counterparts. Therefore, the new optimization flow now uses a uniform
objective which encompasses all important design aspects.

This thesis is structured as follows. In Chapter 2 we give an overview of
the chip design process and describe how the timing of a chip is modeled. The
design process step in which Steiner trees are packed in a grid graph to find an
interconnect solution obeying routing capacities is called Global Routing. As
this step is of major importance for obtaining an algorithm that optimizes both
timing and resource usage, we dedicate a separate chapter to it: Chapter 3.

In Chapter 4 and 5 we show how to solve the time-cost tradeoff problem in
theory and practice. The following Chapter 6 discusses the gate sizing problem.
The final Chapter 7 is dedicated to BonnRouteBuffer.

Chapter 2

Preliminaries

The mathematical problems discussed in this thesis arise in the context of chip
design. We will use this chapter to familiarize the reader with fundamental
concepts of the aforementioned design process. To this end, we assume
fundamental graph theoretic notions as introduced in the book of Korte and
Vygen [KV11]. For a comprehensive overview on the topic, we also recommend
the habilitation thesis by Vygen [Vyg01] or the dissertation of Held [Hel08].

In a computer chip, information is transmitted by electrical signals. These
can be separated into data and clock signals, of which this thesis only considers
data signals. Unlike clock signals, which are cyclic signals used to control the
chip, data signals are generally the result of some Boolean computation. A data
signal starts in either a primary input or a register, traverses combinatorial
gates and ends in a primary output or a register. This gives rise to the fine
timing graph, a non-empty directed acyclic graph D = (V,E). The vertices
correspond to pins. More formally, we have V (D) = Pg ∪̇ Pinp ∪̇ Pout . The sets
Pinp and Pout correspond to starting points and endpoints of signals respectively.
As described earlier, these pins are precisely given by register inputs or outputs
and primary inputs or outputs. The remaining pins Pg are given by pins of
combinatorial gates. The timing graph of a circuit is sketched in Figure 2.2.
An edge in the timing graph is present if and only if a signal passes along the
corresponding pins.

At every point in time, the electrical signal can be measured and corresponds
to a certain voltage between 0 and Vdd . Here, Vdd is the operating voltage of
the chip. Technically, it is possible that a chip has multiple voltage domains
with different values of Vdd .

When the signal passes through the chip, the exact characteristics of the
signal propagation are given by solutions to differential equations. Unfortu-
nately, for the general case no closed form of these solutions is known. As
solving differential equations is a costly operation, approximations are used. If
the signal at a pin changes, its voltage either transitions from 0 to Vdd or vice
versa. Therefore, we distinguish between rising and falling signals. A sample

7

8 Chapter 2. Preliminaries

10 %

50 %

90 %
Vdd

f−1(0.1) at f−1(0.9)

slew

t

Figure 2.1: A sample voltage curve f(t) of a rising signal. The
slew is the time the signal takes to rise from 1

10Vdd to 9
10Vdd and

the arrival time at is the time the signal takes to rise from the
ground voltage to 1

2Vdd .

voltage curve of a rising signal is given in Figure 2.1. We define the time of
arrival corresponding to the signal as the point in time in which the voltage
surpasses 1

2Vdd . The slew of the signal is the timespan in which the signal rises
from 1

10Vdd to 9
10Vdd . Usually, not only constraints on the time of arrival of a

signal are imposed, but also bounds on the slew have to be obeyed.
Before we describe the static timing analysis, a model to obtain signal delays

for every logic path, we quickly describe the pins of combinatorial cells Pg.
These vertices Pg ⊂ V in the timing graph correspond to input and output pins
of a collection of gates G, which are implementations of Boolean functions. An
illustration of a simple timing graph with the corresponding gates is given in
Figure 2.2. Instead of building every gate separately on a transistor level, these
gates are typically selected from a technology-dependent library of books B.
This library contains a set of pre-designed layouts for at least a complete set of
logical functions such that every Boolean function can be expressed. The books
may differ in their size, number of transistors and threshold voltages (Vt level),
which influence the timing characteristics of the gate. An implementation that
uses a larger number of transistors may be faster at the cost of more placement
usage and power consumption. Again, we encounter a resource sharing problem
that consists of selecting the right implementations such that timing constraints
can be met while minimizing resource consumption.

2.1. Timing Analysis 9

Primary input

Primate output

Gate edges

Figure 2.2: An example of a timing graph. Blue gates indicate
how the graph arises from the underlying chip.

An assignment of all gates to books β : G → B is called technology
mapping. If the assignment differs from the initial solution only in the size of
the book and its threshold voltage (i.e., a gate is mapped to a possibly different
implementation of the same logical function), we call β a cell selection. Even
when only optimizing threshold voltages of the gates, finding a cell selection
that minimizes power consumption is a difficult problem as we will see in
Chapter 5. If we fix the technology mapping, we can assign every edge in the
timing graph (v, w) ∈ E(D) some delay value delayv,w(β) ≥ 0. For gate edges
this value may be part of the library, but the delay of a gate edge usually does
not only depend on the book of the corresponding gate, but also on that of
adjacent ones.

2.1 Timing Analysis

If we fix the technology mapping β and delay values of every edge, we can
use static timing analysis to compute the time it takes for a signal to traverse
the timing graph. To this end, we assume that for all input ports p ∈ Pinp

fixed arrival times at(p) ∈ R are known. These represent the time at which the
signal arrives at these inputs. Similarly, the output ports p ∈ Pout have required
arrival times rat(p), which represent the latest acceptable time at which the
signal may arrive at these ports. For an inclusion-wise maximal path P ∈ P in
the timing graph, we can define its delay by

delay(P) =
∑

(v,w)∈E(P)
delayv,w(β).

It is easy to see that the timing constraints are satisfied, if and only if
delay(P) ≤ rat(t) − at(s) for every s-t path P in the timing graph. At first,

10 Chapter 2. Preliminaries

this description seems to be impractical due to the exponential size of |P|, but
we may always sample a violated path in polynomial time. Indeed, we will see
in Section 3.3.3 that this formulation can be very useful.

One way to turn the path formulation into polynomial constraints is given
by introducing arrival times. As the timing graph is acyclic, we can propagate
the arrival times in topological order by setting

at(w) := max
(v,w)∈E(D)

at(v) + delayv,w(β).

Analogously we can propagate required arrival times in reverse topological
order by setting

rat(v) := min
(v,w)∈E(D)

rat(w)− delayv,w(β).

Comparing the arrival times with the required arrival times shows us if the chip
meets the timing requirements. For this, we define the slack of a pin p ∈ V (D)
as

slack(p) := rat(p)− at(p).

A major goal of timing optimization is to find a technology mapping that
guarantees slack(p) ≥ 0 for all pins p ∈ V (D).

2.2 The Linear Timing Model

The delay of a wire segment increases roughly quadratically with its length.
Thus, in particular on low layers, delays can quickly become prohibitive. In
contrast, an optimally buffered point-to-point connection has roughly linear
delay. A buffer is a gate which reinforces the electrical signal by repeating it. It
can either implement the identity function or invert the electrical signals. An
even number of inverting buffers can be used to ensure logical correctness of
the chip. In early design stages, before buffers have been inserted, one usually
linearizes delays.

In the linear timing model, all net edges (p, q) ∈ E(D) have a specific fixed
delay

delayp,q(β) = dedge
p,q .

Note that the delay does not depend on the technology mapping β. For a gate
edge (v, w) ∈ E(D) of some gate g ∈ G we have

delayv,w(β) = dgate
β(g).

In particular, the delay of the gate g does not depend on the mapping β(g′) for

2.3. Elmore Delay 11

Figure 2.3: Transformation of a gate and a wire into an RC
circuit.

g 6= g′ ∈ G.

2.3 Elmore Delay

After buffer insertion a linear delay model is too optimistic. A pin of high
capacitance has to be connected large gates in order to reach a reasonable
timing. The Elmore delay model [Elm48] is significantly more accurate than
the linear model but is still simple enough to be computed efficiently. It has the
useful property that it is pessimistic, i.e., the real delay is never underestimated.
Therefore, a solution that satisfied all timing constraints under Elmore delay is
also feasible under more accurate models. However, it may use an excessive
amount of inverters and too many routing resources.

Elmore delay is an RC delay model, it assumes that the interconnect is
given by a network of resistors and capacitors. An approach by Fishburn et
al. [FD85] transforms books and wiring segments into such a network. Here, a
book b ∈ B is characterized by four values: a size xb, a base resistance r̂b, a
base pin capacity ĉb and a base power factor αb. For a given b ∈ B we now
replace every input pin with a capacitor of a grounded capacity xbĉb and an
ideal power source. We connect the power source to the output pin by a resistor
of resistance r̂b

xb
. The power consumption of the book is given by αbxb. To

model wires we use a base resistance r̂w and a base capacitance ĉw. We insert
a capacitor of capacity ĉw

2 before and after the resistor of resistance r̂w. This
transformation is illustrated in Figure 2.3.

We can now explain how the Elmore delay of an edge in the timing graph
can be computed. For a gate edge (v, w) ∈ E(D) of a gate g ∈ G we set

delay(v, w) = r̂g
xg

downcap(w).

Here, downcap(w) computes the downstream capacitance of the pin w, this
is the sum of all wire capacitances ĉw of the Steiner tree connecting w to
downstream gates and all input pin capacitances xg′ ĉg′ of these connected gates.
For an edge (p, q) this Steiner tree represents the wiring that connects the
vertices δ+

D(p) ∪ {p}. We can give it a natural orientation by directing the

12 Chapter 2. Preliminaries

R1 R2 Rn

CnC1 C2

Figure 2.4: The shielding issue. The effective capacitance
measured at the first resistor may be significantly smaller than∑n
i=1Ci.

edges from the logical source to the sinks. Therefore, it can be interpreted as
a directed arborescence Y p. Let Y [p, q] denote the unique p− q path in that
arborescence. We can now set

delay(p, q) =
∑

e=(v,w)∈E(Y [p,q])
r̂e

(
ĉe
2 + downcap(w)

)
.

In this formula downcap(w) is the sum of all wire and pin capacitances of the
sub-arborescence rooted at w ∈ V (Y p). With a discrete library the sizes xg are
usually fixed, sometimes we relax the problem and allow the size to be within
a specified region lg ≤ xg ≤ ug.

We see that the delay of a path P can be written as

d(P) =
K∑
k=1

ck
∏
g∈G

xbg,k
g

where ck > 0, bg,k ∈ {−1, 0, 1}. Functions of this form (even for general bg,k ∈ R)
are called posynomial. Posynomial functions can be turned into convex functions
by a simple variable transformation [HH16].

2.4 Higher Order Delay Models

While the Elmore delay model can be computed efficiently, it is too inaccurate
to be used in late stages of the design process. One reason is that it often
significantly overestimates capacitances. A worst-case example is given by a
path of n resistors of resistance R1, . . . , Rn where after every resistor i we insert
an antenna of capacity Ci. This instance is depicted in Figure 2.4. According
to the Elmore delay, we have a delay of R1

∑n
i=1Ci at the first resistor. In

reality, the downstream resistors shield away a major part of the capacitance
that is near the end of the path.

2.5. Power Analysis 13

The effective capacitance ∑n
i=1C

effective
i is the real capacitance visible at the

first resistor (subtracting the capacitance that is shielded away by downstream
resistors). More accurate delay models like RICE [RP94] approximately solve
differential equations to determine these effective capacitance values. Current-
based models as described by Croix et al. [CW03] are slightly less accurate but
much faster and, therefore, commonly used.

2.5 Power Analysis

While power was mostly a secondary objective in older technologies, it is
becoming increasingly important as transistor sizes shrink. Modern chips have
a huge power dissipation, which can even become the limiting design bottleneck.

The power consumption Ptotal depends on the technology mapping β : G → B
and on the interconnect. A part of this power consumption is a permanent
leakage, which always occurs when the chip is powered on and is constant
over time. We denote this by the static power Pstatic. The second part is the
dynamic power Pdynamic. In our model the dynamic power consumption only
occurs when the transistors switch and depends on the switching frequency
χg which can also depend on the specific usage of the chip. In addition to the
selection of gates, nets that switch frequently should be as short as possible
to minimize power dissipation. For simplicity, one usually assumes that these
power functions are separable and can be computed by

Pstatic(β) =
∑
g∈G

static power(β(g)),

Pdynamic(β) =
∑
g∈G

dynamic power(β(g)).

There are also other kinds of dynamic power, for example dynamic leakage. In
practice, tight slew bounds make sure that our model is reasonably accurate.
The interested reader is referred to the book chapter by Held and Hu for more
details [HH16].

In the model by Fishburn et al. [FD85] a given gate g ∈ G is assumed to have
a continuous size xg ∈ [L,U] such that its input capacitance is given by ĉgxg.
As explained previously, gates may also have different threshold voltages Vt.
This can be achieved by using different substrates for manufacturing transistors.
A lower threshold voltage increases the static power consumption and lowers
the threshold at which the transistor can switch its state, lowering the delay.
As there is usually a small discrete set of possible threshold voltages, we also
speak of Vt levels.

A typical assumption is that the static power consumption of a gate is

14 Chapter 2. Preliminaries

1
4

16
64

256
1,024
4,096

1 2 4 8 16 32 64 128
Area

low Vtmedium Vthigh Vt

St
at

ic
Po

we
r

Figure 2.5: The cell library for an inverter as given in the ISPD
2013 contest. The axes are plotted logarithmically. The three
different colors indicate different threshold voltages. High Vt
corresponds to the slowest implementation of a fixed size, while
low Vt is the fastest one.

proportional to the size of the gate and exponential in the Vt level of the gate.
In contrast, the dynamic power consumption does not depend on the Vt level,
which means that if for a given gate g ∈ G the switching activity χg is high it
can be preferable to accelerate it by lowering the Vt level instead of increasing
the size.

An example of a cell library is given in the ISPD 2013 contest for gate-sizing
[Ozd+13]. Here, we have |Xg| = 10 and for each of these sizes there are 3
possible Vt levels which gives us 30 possible implementations for the gate g.
The library for an inverter is visualized in Figure 2.5.

2.6 Timing Metrics

In the previous sections, we explained how the timing of a chip can be modeled
by introducing the timing graph and propagating arrival times. However, early
in the design process not all timing constraints can be met. Instead of simply
checking for feasibility, we try to find objective functions that can drive our
optimization routines and penalize timing fails.

These metrics will allow us to compare different solutions, which do not
completely meet all timing constraints. A different application is to use the
timing metrics directly within optimization routines. A simple example is an
algorithm by Kahng et al. [Kah+13] which counts the number of failing paths
passing through a gate.

2.6. Timing Metrics 15

We can evaluate the timing of the chip whenever we have delays available for
all edges in the timing graph. This motivates the following definition. A timing
solution is a tuple (D, d, T), where D is a timing graph, d : E → R≥0 is a delay
function and T ≥ 0 is a deadline. In chip design T roughly corresponds to the
cycle time at which the chip operates. A path P in the timing graph meets its
timing constraints when the sum of its edge delays d(P) := ∑

e∈E(P) d(e) does
not exceed T . Note that we can always assume that our delay constraints are
encoded by such a deadline by inserting a super-source and a super-sink with
arcs that correspond to the arrival times at the source pins and the required
arrival times at the sink pins.

A timing metric is a map τ : (D, d, T) 7→ τ(D, d, T) ∈ R that assigns every
timing solution a real number that should correspond to the timing feasibility
of the instance. If D and T are fixed, we write τ(d) for τ(D, d, T).

We will now give an overview of the most relevant timing metrics that are
used in chip design. The most common is the worst slack timing metric

Ws(d) := min
P∈P

min
{
T − d(P), 0

}
.

The most important property of the worst slack metric is that it is non-
negative if and only if all timing constraints are met.

To define more advanced timing metrics we will introduce a couple of
additional definitions. Recall that in the timing graph Pinp ⊂ V (D) are precisely
the vertices without incoming edges, and Pout ⊂ V (D) the vertices without
outgoing edges. For a fixed v ∈ V (D) we define the longest path through v

by Pmax(v) = argmaxP∈P,v∈V (D)d(P) and similarly for an edge e ∈ E(D) we
define Pmax(e) = argmaxP∈P,e∈E(P)d(P). In case of a tie we choose the path
lexicographically minimal with respect to some fixed order on the edges. Note
that Pmax can be evaluated in linear time by traversing the graph in topological
and reverse topological order.

We can now define the total negative slack (also called “figure of merit” or
“sum of negative slacks”) timing metric. It is defined as

Tns(d) :=
∑

v∈Pout

min
{
T − d(Pmax(v, d)), 0

}
.

One can easily see that Tns ≤Ws.
A timing metric that was proposed by Reimann et al. [RSR16b],

which we name “true total negative slack”, is defined as follows: Let Q =
∪e∈E(D)Pmax(e, d). Note that we may have |Q| < |E(D)|.

TTns(d) :=
∑
P∈Q

min
{
T − d(P), 0

}
.

16 Chapter 2. Preliminaries

The TTns can also be computed by traversing D in reverse topological
order and for fixed v ∈ V (D) summing up the longest paths through every but
the most critical edge in δ−(v), where ties are broken arbitrarily. This yields
a number ρ(v) ∈ R. One can see that TTns(d) = Tns(d) + ∑

v∈V ρ(v). In
particular we have TTns(d) ≤ Tns(d).

A natural extension would be to sum up the slack of all paths. Namely we
could compute the path total negative slack as follows

PTns(d) :=
∑
P∈P

min
{
T − d(P), 0

}
.

It turns out that there is a problem with this approach. It is easy to see by
shifting the deadline by 1 that computing PTns would also allow us to compute
the negative number of violated paths:

Npath(d) := −|{P ∈ P : d(P) > T}|.

However, this is a hard problem as shown by Mihalák et al. [MSW14]:

Theorem 2.1. (Mihalák et al.) [MSW14] Given an acyclic digraph G = (V,E)
and two vertices s, t ∈ V (G), and some L ∈ R then it is #P-complete to count
the number of s-t paths of length at most L.

Here #P is a class of NP-hard counting problems (as these do not have a
certificate of polynomial size). A trivial modification to the given reduction
from the partition problem shows that unless P=NP there is no polynomial
algorithm to compute PTns or Npath. We remark that there is a polynomial
algorithm to approximate Npath, however its runtime of O(mn3ε−1 log n) does
not seem practical [MSW14].

We end this section with the remark that a method was proposed by
Kong [Kon02] to estimate the number of violated paths. It works by counting
the number of all paths in a graph, which arises from the timing graph by
deleting edges (p, q) if either slack(p) ≥ 0 or slack(q) ≥ 0. This can be
achieved by propagating the number of paths through a pin in both forward
and backward topological order and by multiplying these values. However, this
is not equivalent to computing Npath. A counterexample was given by Daboul
[Dab15].

2.7 An Overview
Before we analyze some mathematical problems arising in the design process, it
is helpful to roughly understand the physical design flow. As an input the flow
starts with a pre-optimized logic description of the chip. Corresponding logic

2.7. An Overview 17

Clock Insertion

Global Buffering

Optimization

Global Routing & Optimization

Detailed Routing & Optimization

Buffered Global Routing Problem
Chapter 7

Gate Sizing Problem
Chapter 6

Vt Optimization Problem
Chapter 4 & 5

Figure 2.6: An excerpt of an industrial design flow proposed by
Li et al. [Li+12]. On the right a list of mathematical problems
discussed in this thesis is shown. Each problem is connected to
its corresponding design steps.

gates are subsequently placed onto the chip area in the global placement step
and optimized. An extended overview on a modern design flow was given by
[Li+12]. A final step of the flow is to compute a detailed routing, which consists
of wires connecting all gates on a chip. In addition to being overlap free, various
other technological constraints have to be met. As it is infeasible to optimize
at this level of accuracy, earlier steps of the flow use simple approximations
that should make sure that a later detailed routing can still be found.

One way to ensure that enough wiring space is available to find a detailed
routing is to coarsify the chip and to add capacity constraints on the estimated
wiring in this simplified graph. The arising multicommodity flow formulation
was first considered by [SK87] and the corresponding process of computing
rough outlines for the later detailed wiring is called global routing.

In the clock network synthesis step thousands of clock trees have to be
inserted. As the step can be very disruptive for the timing and wiring space
usage of the chip, it is usually performed early in the design flow [Li+12]. For
optimization before this step, the effects on the final result at the end of the
flow can be marginal. Therefore, we will not focus much on the steps that
precede clock network synthesis. Instead, our primary focus will be the global
buffering step and subsequent optimization steps with and without a global
routing.

A sketch of the design flow is given in Figure 2.6. In Chapter 7 we will
discuss an algorithm for the global buffering problem. Our implementation of
the resource sharing algorithm for gate sizing described in Chapter 6 is applied
in the subsequent optimization step. After global routes have been computed,
disruptive optimizations like gate sizing and buffering should be avoided. As Vt

18 Chapter 2. Preliminaries

changes often leave gate footprints unchanged and do not require movements,
the Vt optimization problem is well suited for applications after a global or even
detailed routing. We will discuss it in Chapter 4 and 5. In the next chapter we
familiarize the reader with the global routing problem and the resource sharing
problem.

Chapter 3

Interconnect Optimization

This thesis deals with different resource sharing problems that occur in the
chip design process. One fundamental resource is wiring space. To understand
how we solve the overall problem of distributing routing and timing resources
to individual connections, we first have to explain how this problem is to be
solved if only a single resource, namely wiring space, is to be optimized.

The wiring on a chip is structured in routing layers, these have a preference
direction that either allows vertical or horizontal wiring. The set of feasible
wiring segments gives rise to the so-called track graph. This graph has an edge
for every possible wiring segment that adheres to the preference direction of
the particular layer. Vertical wire segments which allow switching between
adjacent layers are called vias. Maximal subgraphs of wiring on a chip are
named routes. Every route connects a logical source to a set of sinks. These
pins connected by a route are called a net and denoted as N ∈ N . The set of
all nets N is the netlist.

To ensure correct function, all wire segments have to be disjointly packed
onto the chip while obeying various technology dependent spacing constraints.
Optimizing a chip on this level of accuracy does not seem to be feasible
with current technology and algorithms. Therefore, one usually relaxes the
disjointness constraints. Instead, we coarsen the track graph into a grid graph
and introduce capacity constraints on the edges. This process is illustrated in
Figure 3.1.

In this thesis we will not consider detailed routing problems. Instead, we will
always use the simplifying assumption that interconnects are computed in the
global routing graph. However, especially for buffer insertion, we may compute
routes that already connect to the specified metal shapes corresponding to a
given net. For computing the routing space consumption, the route is then
first projected into the global routing graph.

The global routing problem consists of finding a feasible fractional Steiner
tree packing in this grid graph. Approximation algorithms for fractional
multicommodity flows can be used to solve this problem and were already used

19

20 Chapter 3. Interconnect Optimization

in chip design over 30 years ago [SK87].
Since its initial formulation, many new constraints have been introduced to

the global routing problem. Modern algorithms do not only solve a packing
problem, but also optimize timing and perform simultaneous buffer insertion
or placement optimization.

3.1 Previous Work
As one of the most fundamental problems in chip design, the global routing
problem has received a significant amount of attention in the past. The
multicommodity flow formulation [SK87; CC91] has been extended to integrate
net delay bounds and buffer insertion by [Alb+02], who presented a fully
polynomial approximation scheme (FPTAS) for two-terminal nets.

A state-of-the-art algorithm for the classic global routing problem without
timing constraints was given by Müller, Radke and Vygen [MRV11]. Their
algorithm is based on a special multiplicative Lagrangean multiplier framework,
called resource sharing.

Based on this algorithm Saccardi and Hähnle presented a novel approach
which works with a rhomboidal subdivision of the chip [HS19]. By a structure
theorem this allows them to compute global routes with a pin-level accuracy.
This significantly improves the correlation with a later detailed routing.

Giving an exhaustive overview on previous global routing approaches would
exceed the scope of this thesis. Many recent algorithms used in contests or
during industrial design flows belong to a class of rip up and reroute heuristics.
They often work on a 2d model of the routing graph and iteratively rewire
the nets to reduce overuse of routing edges. Heuristically updating a cost
function can work well in practice, but lacks a provable performance guarantee.
Some notable examples are NTHU-Route [Cha+10], FastRoute [YYC09] and
BoxRouter [Cho+09]. A different notable approach uses an integer program
formulation for the global routing problem. The GRIP algorithm [WDL11]
solves the overall integer program by solving smaller subinstances with a
price-and-branch heuristic.

Integrating timing constraints into global routing has a rich history. First
approaches by Huang et al. [Hua+93] used delay bounds to reject Steiner trees
which do not meet these allocated budgets. This approach was later refined
by Hong et al. [Hon+97] to path-based delay bounds. These approaches have
several serious drawbacks. By seeing delay bounds as a hard constraint rather
than a flexible resource, timing has to be significantly relaxed to prevent a
couple of failing paths from dominating the overall solution. This weakness
was first addressed by Vygen [Vyg04], who showed how to implement net based
delay bounds into the resource sharing framework. The drawback is that only

3.2. Global Routing 21

a subset of the timing constraints are considered.
More recently, Held, Müller, Rotter, Scheifele, Traub, and Vygen [Hel+17]

showed how to integrate global static timing constraints into the resource sharing
framework. This is the first solution which does not have the aforementioned
problems of using fixed delay budgets or only considering a subset of the timing
constraints. An alternative way of integrating path based timing constraints
was given by Hähnle [Häh15].

Rotter [Rot17] presented a resource sharing formulation that combines
routing and buffer insertion. He also implemented a heuristic oracle function
that allowed him to obtain first promising results on practical instances.
However, compared to the previous state-of-the-art design flow some metrics
were still inferior. In Chapter 7 we will present a refined implementation which
removes remaining drawbacks and significantly improves the design flow.

The algorithm of Rotter still used the classic routing graph description of
[SK87; CC91] but heuristically connects global routes to pin positions before
buffer insertion. It seems tempting to combine ideas of Rotter with the work
of Saccardi and Hähnle [HS19] in the future to directly compute global routes
with pin-level accuracy.

Previous approaches usually follow up a timing-unaware global routing step
with a successive layer assignment and buffering step. An example is given by
the CATALYST algorithm [WA04], which was the previous default method in
the PDS-Turbo design flow [Li+12] used by IBM.

We will give a more detailed overview about previous work on the buffering
problem in Chapter 7.

3.2 Global Routing
For our applications, we will assume that the chip has a rectangular outline
and a set of wiring layers. Let the chip image be defined as I = �×{0, . . . , Z},
where � = [0, w]× [0, h] is the area of the chip and Z is the number of routing
layers. Layer ‘0’ corresponds to the placement area �× {0}. All repeaters and
gates are inserted on this layer and the routing space has to be accessed by
using vias.

Before we consider the step of buffer insertion, we will first explain how
the global routes can be computed. Therefore, assume for the moment that
all gates are part of the input and only a global routing should be computed
for the nets. In addition to the global routing graph, we are given a set T of
wire types. In conjunction with an axis-parallel line segment I ⊂ I, a wire type
τ ∈ T determines a space consumption, as well as electrical resistance and
capacitance of the metal shape pair (I, τ). In practice, not all wire types can be
used on every routing layer. This can be modeled by assigning the combination

22 Chapter 3. Interconnect Optimization

Figure 3.1: An illustration of the track graph and the corre-
sponding global routing graph. On the left side, the track graph is
shown. The edges of the track graph correspond to possible wiring
segments on the chip. The right side shows a possible global
routing graph. Instead of computing disjoint wiring segments, the
global routing graph can be used to assign the individual nets to
certain routing corridors. These only obey a capacity constraint
on the total use of a global routing edge, which should assert
that in the end a feasible solution can still be found. The vertical
distance between two adjacent layers was artificially increased for
better visibility.

an infinite resistance and capacitance.
Each net N ∈ N consists of a source pin s ∈ �× {0, . . . , Z} and a set of

sink pins T ⊂ �× {0, . . . , Z}. In particular for non-linear timing models, the
order in which sinks are connected to the root is essential.

A topology for a net N is an arborescence A rooted in s, such that T is
the set of leaves. We require that the root has exactly one successor and all
inner vertices have outdegree at most 2. This degree constraint is only for
convenience, as we can always reduce degrees by introducing additional vertices
to the arborescence.

An (embedded) Steiner tree for a net N is a topology A together with a map
into the chip image p : V (A) → I. p has to satisfy p(s) = s, p(t) = t for the
source s and any sink t ∈ T . We further require that the image (p(v), p(w)) for
edges (v, w) ∈ E(A) are either of length 0 or axis-parallel routing stick figures,
i.e., they have to correspond to an edge in the global routing graph.

With these definitions we can define a first version of the Global Routing
problem, by looking for an (embedded) Steiner tree for every net N ∈ N , such

3.3. Min-Max Resource Sharing 23

that overall capacity bounds are obeyed. When it is clear from the context
that we describe an embedded Steiner tree in the chip image, we sometimes
omit “embedded” and simply write Steiner tree to simplify notation.

Problem 1: Traditional Global Routing Problem
Input: The global routing graph G, edge lengths l : E(G)→ R≥0, a netlist N ,

wire types T and a routing space oracle usg : E(G)× T → R≥0.
Task: Compute Steiner trees (AN , p) for all N ∈ N with p(V (AN)) ⊆ E(G)

with wire type assignments τe ∈ T for all e ∈ E(AN). For a global routing
edge {i, j} ∈ E(G) let QN

i,j := {(v, w) ∈ E(AN)|(p(v), p(w)) = (i, j)} be
the edges mapped to it by AN . The Steiner trees have to obey capacity
constraints

∑
N∈N

∑
e∈QN

i,j

usg(p(e), τe) ≤ 1 for all {i, j} ∈ E(G).

The objective is to minimize netlength: ∑N∈N l(E(AN)).

The main goal of this Chapter is to first introduce the min-max resource
sharing problem, which allows us to solve the fractional relaxation of the
traditional global routing problem up to the Steiner ratio. Finally, we will
focus on the more general problem of simultaneous routing and buffering.

3.3 Min-Max Resource Sharing

We follow the definitions introduced in [MRV11] and use the following problem
formulation.

Problem 2: Min-Max Resource Sharing Problem
Input: A finite set R of resources, a finite set C of customers. For every

customer c ∈ C a convex set Bc. For all customer resource pairs (c, r) ∈
C ×R a convex usage function usgc,r : Bc → R≥0.

Task: Compute a vector of solutions b = (bc)c∈C, such that bc ∈ Bc for all
c ∈ C. The objective is to minimize the maximum resource consumption

λ(b) = max
r∈R

∑
c∈C

usgc,r(b(c)).

The intuition behind this definition is that a set of limited resources is to be
distributed to the customers. A solution b ∈ Bc decides how much of a given
resource the customer uses. In our applications the sets Bc, which are also

24 Chapter 3. Interconnect Optimization

called blocks, will always be compact. Therefore, the optimum solution is well
defined. The sets of possible solutions Bc for a customer can be exponentially
or even infinitely large; therefore they may only be given implicitly.

To be able to solve the resource sharing problem, we assume that oracle
functions are given. For a customer c ∈ C an oracle function fc : RR≥0 → Bc

is an approximate minimizer of the weighted resource minimization problem.
Formally, we assume that there is a constant σ ≥ 1, such that

y>fc(y) ≤ σ inf
b∈Bc

∑
r∈R

yrusgc,r(b) for all y ∈ RR≥0.

This generalization of the multicommodity flow problem allows us to see the
fractional relaxation of the traditional global routing problem from a different
perspective. We consider the nets N =: C as customers of a resource sharing
problem. The feasible solutions are given by the convex hull of all feasible
Steiner trees for the net. We introduce a resource for every edge in the global
routing graph and a netlength resource; thus R = E(G) ∪ {netlength}.

The usage function usgN,e specifies how much the wiring segments of a
Steiner tree AN with given wire code assignment consume from the global
routing edge e ∈ E(G) relative to its capacity. By performing a binary search,
we may assume that we know the best possible netlength in form of a budget.
This directly corresponds to a resource which measures how much the budget
is violated. In the next section, we will give an outline of an algorithm that can
solve the resource sharing problem if appropriate oracle functions are known.

Due to its general formulation, the resource sharing problem is well suited
for its application in chip design. Numerous objectives can be encoded by
defining appropriate resources. By focusing on relative resource consumptions
it also provides a natural way to compare design objectives that have different
units.

3.3.1 The Resource Sharing Algorithm

In this section we will describe the algorithm of Müller, Radke, Vygen [MRV11]
to solve the aforementioned resource sharing problem. To this end, assume that
we are given an instance of the resource sharing problem and oracle functions
for each customer. The main idea is to use a multiplicative update scheme
which will generate the costs to use in our oracle function. The pseudocode of
it is given as Algorithm 3.1.

The most important step of the algorithm is the exponential price update
price(r) ← eγξusgc,r(b) · price(r). Rip up and reroute heuristics for the global
routing problem usually use similar exponential price updates to avoid overuse
of routing edges. However, the algorithm shows that this price update can

3.3. Min-Max Resource Sharing 25

Algorithm 3.1: Resource Sharing Algorithm by [MRV11].
Input: An instance of the (fractional) min-max resource sharing

problem. Oracle functions fc for all c ∈ C. γ > 0, t ∈ N.
Output: A solution xc = ∑

b∈Bc
xc,bb for all c ∈ C.

1 for r ∈ R, c ∈ C, b ∈ Bc do
2 price(r)← 1, Xc ← 0, xc,b ← 0 . Initialization step
3 for p = 1 . . . t do
4 for c ∈ C s.t. Xc < p do
5 b← fc(price)
6 ξ ← min{p−Xc,min{1/usgc,r(b) : usgc,r(b) > 0, r ∈ R}}
7 xc,b ← xc,b + ξ,Xc ← Xc + ξ
8 for r ∈ R do
9 price(r)← eγξusgc,r(b)price(r) . Exponential price update

10 for c ∈ C, b ∈ Bc do
11 xc,b ← xc,b/t . Scale the solution by 1/t

be done in a way that provably converges. A main result of [MRV11] is the
following theorem.

Theorem 3.1 (Müller, Radke, Vygen [MRV11]). For any ω > 0, Algorithm 3.1
can be used to compute a solution to the min-max resource sharing problem with
approximation ratio σ(1+ω) in runtime O(θ(|C|+|R|) log |R|(log log |R|+ω−2)).
As above σ is the approximation guarantee of the oracle functions and θ the
time to evaluate an oracle function.

Let λ? denote the optimum maximum resource usage of the given instance.
In practice, we usually have 1

2 ≤ λ? ≤ 2, as otherwise the instance is
either easy to solve or completely infeasible. If we use this assumption, the
analysis of the resource sharing algorithm yields a slightly better runtime of
O(θ(|C|+ |R|) log |R|ω−2). The main problem with this is that the runtime is
still linear in the number of resources |R|. In Section 3.3.3 we will encounter
a resource sharing problem with an exponential number of resources. An
important indicator to estimate the hardness of a resource sharing problem is
the problem width. It is defined to be the worst possible overuse of a resource.
More precisely

Λ =
∑
c∈C

max{1, sup
r∈R,b∈Bc

usgc,r(b)}.

For the traditional global routing problem, it is reasonable to assume that
Λ = O(|N |), as a single net certainly can be accommodated in any global
routing edge. Müller, Radke and Vygen give the following useful bound, that
allows problem formulations with exponentially many resources.

26 Chapter 3. Interconnect Optimization

Theorem 3.2 (Müller, Radke, Vygen [MRV11]). Let 0 < δ, δ′ < 1. Given an
instance of the min-max resource sharing problem with λ? ≤ 1, we can compute
a (σ(1 + δ) + δ′

λ?) approximation in time O(σθ log |R|Λ(δδ′)−1).

The above algorithm can be used to solve the fractional min-max resource
sharing problem. For the classic global routing problem, this yields a convex
combination of Steiner trees for each net. As the discrete variant of the global
routing contains the edge disjoint Steiner tree packing problem in grid graphs,
we cannot hope for good algorithms to solve it. However, Müller Radke and
Vygen show that rounding every net to a solution randomly, depending on its
weight in the convex combination, yields a good solution. More formally, they
show the following theorem.

Theorem 3.3 (Müller, Radke, Vygen [MRV11]). Consider values xc,b computed
by Algorithm 3.1. After scaling, we have ∑

b∈Bc
xc,b = 1. If we randomly

round the solution by choosing solution b with probability xc,b, we obtain
solutions b̂c for all c ∈ C. Let λ = maxr∈R

∑
c∈C

∑
b∈Bc

xc,busgc,r(b). Let
λ̂ = maxr∈R

∑
c∈C usgc,r(b̂c). For r ∈ R let ρr := max{usgc,r(b)/λ|b ∈ Bc, c ∈

C, xc,b > 0} and δ > 0. Then λ̂ < λ(1 + δ) with probability at least 1 −∑
r∈R e

−h(δ)/pr , where h(δ) := (1 + δ) ln(1 + δ)− δ.

This step is also called randomized rounding. In practice, it often leads
to a good solution, which can be further refined by post-optimization. In the
following sections, we will show how timing can be modeled within the resource
sharing framework.

Depending on the resources in the problem formulation an oracle as used
by the resource sharing algorithm may have different forms. For the timing
constrained global routing problem we will discuss the oracle in Section 3.4.
For the variant of simultaneous buffer insertion the oracle will be explained in
Section 3.5.

3.3.2 Arrival Time Customers

In this section we will present an approach by Held, Müller, Rotter, Scheifele,
Traub, and Vygen [Hel+17] which extends the classic global routing resource
sharing formulation to incorporate timing constraints. Let D be the timing
graph as defined in Chapter 1. As before, we assume that input ports p ∈ Pinp

with arrival times at(p) ∈ R are given. Similarly, the output ports p ∈ Pout

have required arrival times rat(p) and timing may be propagated by at(w) =
max(v,w)∈E(G) at(v)+delayv,w and rat(v) := min(v,w)∈E(G) rat(w)−delayv,w. Our
goal is to add resources and customers such that the resource usage is ≤ 1 if
and only if all timing constraints are satisfied.

3.3. Min-Max Resource Sharing 27

v

we = (v, w)

b(N)

amax(w)amin(v)

usgv,e(a(v)) usgN,e(b(N)) usgw,e(a(w))

Figure 3.2: A visualization of the resource usage associated to
a computed interconnect solution b(N) and the choice of arrival
times on the start and endpoints. By assigning a later arrival
time to w we could free up usage of the resource and compensate
for a slow solution b(N). However, we simultaneously increase
the usage of succeeding edge delay resources.

As a first step, we compute intervals of possible arrival times for all pins of
the timing graph. These are given by lower and upper bounds dlb : E(D)→ R≥0,
dub : E(D) → R≥0, such that 0 < dlb(e) ≤ delaye(b(N)) ≤ dub. Here,
delaye(b(N)) denotes the delay along timing edge e ∈ E(D) for a given Steiner
tree b(N) of a net N ∈ N . In practice, we can use the fastest possible wire type
and the best possible routing layers to compute lower bounds on the delay. As
we usually do not allow arbitrary detours, upper bounds on the delay can be
derived. The practical performance can be significantly improved if these lower
and upper bounds are close and several ways exist to further improve them.
We will not discuss the details in this thesis but refer the interested reader
to [Hel+17]. By propagating these lower and upper bounds, we can compute
intervals Bv = [amin(v), amax(v)], for all v ∈ V (D). Every feasible solution
for all nets b(N) ∈ BN will correspond to choices for arrival times a(v) ∈ Bv.
Note that for input ports p ∈ Pinp we always have amin(p) = amax(p) = at(p).
Similarly, output ports p ∈ Pout satisfy amin(p) = amax(p) = rat(p). We extend
the resource sharing formulation of the classic global routing problem by adding
arrival time customers for every vertex in the timing graph, i.e., C = N ∪V (D).
The corresponding block of a customer v ∈ V (D) is given by Bv. We extend the
set of resources by adding a delay resource for every edge in the timing graph,
i.e., R = E(G) ∪ E(D) ∪ {netlength}. It remains to define the corresponding
usage functions of a timing edge e = (v, w) ∈ e(D). The resource will be used
by the nets N ∈ N and the arrival time customers v, w ∈ V (D). Finally, we

28 Chapter 3. Interconnect Optimization

define the following usage functions:

usgv,e(a(v)) := a(v)− amin(v)
amax(w)− amin(v)

usgN,e(b(N)) := delaye(b(N))
amax(w)− amin(v)

usgw,e(a(w)) := amax(w)− a(w)
amax(w)− amin(v) .

The construction is visualized in Figure 3.2. We will now argue why this usage
functions correctly translates timing constraints into resource consumption.
All timing constraints can be met if and only if for all v ∈ V (D), one can find
arrival times a(v) ∈ [amin(v), amax(v)], such that a(v)+delaye(b(N)) ≤ a(w) for
all e = (v, w) ∈ E(D). Recall that we fix the arrival time intervals for primary
inputs and outputs. Fix an arbitrary edge e = (v, w) ∈ E(D). The usage of the
corresponding edge delay resource is satisfied if and only if the following holds.

usgv,e(a(v)) + usgN,e(b(N)) + usgw,e(a(w)) ≤ 1

⇔ a(v)− amin(v)
amax(w)− amin(v) + delaye(b(N))

amax(w)− amin(v) + amax(w)− a(w)
amax(w)− amin(v) ≤ 1

⇔ usgv,e(a(v)) + delaye(b(N)) ≤ a(w)

This proves that the construction indeed works and a solution which does not
overuse any delay resource corresponds to obeying global timing constraints. It
is left to explain how these arrival times can be computed during the resource
sharing algorithm, i.e., to give oracle functions. For this, notice that the
weighted usage function

∑
e∈E(D)

price(e) · usgv,e(a(v))

is a separable function which is linear in a(v). Therefore, a minimizer can be
found by evaluating it at the interval borders {amin(v), amax(v)}. This approach
is not very stable and arrival times can oscillate a lot. To improve stability and
the rate of convergence, [Hel+17] propose to update the solution of arrival time
customers more often. This does not affect the convergence guarantee of the
overall resource sharing algorithm and can be done efficiently as [Hel+17] show.
For the details of this update, we refer the reader to [Hel+17]. We will now
show an alternate way of modeling timing resources in the resource sharing
framework.

3.3. Min-Max Resource Sharing 29

I1

I2

I3

I4Z

(I1, Z, I3)

(I1, Z, I4)

(I2, Z, I3)

(I2, Z, I4)

Paths Resource usage

Figure 3.3: An illustration of timing path resources. The
sample chip has 4 timing paths, each of which corresponds to an
individual resource. The net customers which contain a given
edge in a timing path will consume from the associated path
resource.

3.3.3 Timing Path Resources

A natural way to model timing is to add an individual constraint for every
path P ∈ P(D) in the timing graph D. Here, P(D) denotes the set of all
inclusion-wise maximal paths in D. This directly corresponds to a resource
sharing formulation, in which we introduce an additional resource for every
such path. In the classic global routing problem, the resource set would be then
given by R = E(G) ∪ P(D) ∪ {netlength}. For an s-t path P in the timing
graph, let e ∈ E(P) be an edge corresponding to net N ∈ N , the usage of this
path resource by net customer N is simply given by

usgN,P (b(N)) = delaye(b(N))
rat(t)− at(s) .

It is clear that in this way global timing constraints can be represented. However,
at first this formulation does not look like it leads to a polynomial time algorithm.
As shown in Theorem 3.2 the resource sharing algorithm can be analyzed in a
way such that the dependency on the amount of resources is only logarithmic.
It remains to show that we can compute timing prices for an edge in the timing
graph, i.e., price(e) for e ∈ E(D) in polynomial time. For convenience, we
define ωe := price(e). Using the special structure of the resource sharing prices,
Hähnle [Häh15] proved the following theorem. It shows that computing the
prices only takes linear time.

Theorem 3.4. (Hähnle [Häh15; Dab+18a]) The edge weights ωe for e ∈ E(D)
can be computed in each iteration of the resource sharing algorithm in time
O(|E(D)|+ |V (D)|).

30 Chapter 3. Interconnect Optimization

Algorithm 3.2: Path Resource Timing Weights
Input: A timing graph D. Cumulative usages ye for e ∈ E(D). γ > 0.
Output: Edge weights ωe for e ∈ E(D).

1 for v ∈ Pinp, w ∈ Pout do
2 ωP[Pinp,v] = 1← 1, ωP[w,Pout] ← 1 . Initialization step

3 for v ∈ V (D) in topological order do
4 ωP[Pinp,v] =

∑
(u,v)∈E

(
eγ·y(u,v) · ωP[Pinp,u]

)
5 for v ∈ V (D) in reverse topological order do
6 ωP[v,Pout] =

∑
(v,w)∈E

(
eγ·y(v,w) · ωP[w,Pout]

)
7 for e = (v, w) ∈ E(D) do
8 ωe = exp(γ · ye) · ωP[Pinp,v] · ωP[w,Pout] . Compute we
9 return (ωe)e∈E(D)

Proof By the definition of the resource sharing algorithm, we have

ωe = eγξûsgc,e .

Here, ûsgc,e should denote the sum of all usages of timing edge e ∈ E(D) of
previously computed solution vectors by the resource sharing algorithm. To
ease notation, we write ye := ξûsgc,e. For a path, the total usage is then given
as yP := ∑

e∈E(P) ye. We conclude that

ωe =
∑

P∈P:e∈E(P)
exp(γ · yP)

=
∑

P∈P[Pinp,v]

∑
Q∈P[w,Pout]

exp

γ · ∑
f∈P∪Q∪{e}

yf



= exp(γ · ye) ·

 ∑
P∈P[Pinp,v]

exp

γ ·∑
f∈P

yf




︸ ︷︷ ︸
=: ωP[Pinp,v]

·

 ∑
Q∈P[w,Pout]

exp

γ ·∑
f∈Q

yf




︸ ︷︷ ︸
=: ωP[w,Pout]

= exp(γ · ye) · ωP[Pinp,v] · ωP[w,Pout] ,

where P[Pinp,v] denotes the set of all paths from an input vertex to v and
P[v,Pout] denotes the set of all paths from v to an output vertex. All variables

3.3. Min-Max Resource Sharing 31

ωP[Pinp,v] , ωP[v,Pout] (v ∈ V (D)) can be computed in linear time by traversing
D once in topological and once in reverse topological order. A possible
implementation is presented as Algorithm 3.2.

�

3.3.4 A first comparison
In the last two sections, we presented two ways to model timing in the resource
sharing framework. The obvious question is which of the solutions should be
preferred.

A general answer is unlikely to exist. However each formulation has its
down and upsides. Timing path resources are very natural and easy to explain.
They can also have a simpler implementation as they don’t require to propagate
arrival time bounds and no further oracle problem has to be solved. On top of
that all timing paths are simultaneously represented. This avoids situations
where a single failing path worsens unrelated nets with the same endpoint.
Arrival time customers do not yield a stable result without iterating their oracle,
in contrast path resources work with the natural implementation.

Depending on the problem width, the theoretic runtime when using path
resources may be worse. However, even if the problem width is unbounded, a
different polynomial analysis can be made for path resources [Häh15]. For some
algorithms, explicit arrival times may be needed. While it is also possible with
the path resources to propagate fractional arrival times, these values are already
available when using arrival time customers. In fact, their update mechanism
may yield more stable arrival times that could improve the performance of an
algorithm which relies on them.

As a first implementation we recommend timing path resources, due to
their ease of implementation and the upsides pointed out above. For a detailed
analysis, both variants should be tried. In Chapter 7 we will compare both
possibilities for BonnRouteBuffer.

32 Chapter 3. Interconnect Optimization

3.4 Topology Generation
Consider the sub-problem of finding a solution for single nets that minimizes
the weighted resource usage. The resource sharing algorithm requires that this
subproblem can at least be approximated. In practice, it is possible to find
Steiner trees which are only a few percent away from the optimum length.

For the moment we assume that edge costs c : E(G)→ R≥0 for the global
routing graph are known. Later, we will obtain these costs by applying the
resource sharing algorithm. Together with the edge cost function, the global
routing graph induces a metric space (V (G), dist). By approximating the
corresponding Steiner Tree problem, we could route a single net in a way that
approximately minimizes the weighted cost of the used edges. We will augment
this problem, by also considering a rough estimate of the arising delays. More
formally, we define the topology generation problem as follows.

Problem 3: Topology Generation Problem
Input: A metric space (M, dist), a net N with pin positions p : N → M , a

source s ∈ N . Delay budgets rat : N\{s} → R≥0.
Task: Compute a topology for N , i.e., an arborescence A rooted in s, such

that T is the set of leaves. The root has exactly one successor in A and all
inner vertices have outdegree exactly 2. A mapping p′ : N →M , such that
p′(q) = p(q) for q ∈ N , such that

delay(s, q) ≤ rat(q) for q ∈ N\{s}.

Here, let Y [s, q] be the unique s− q path in A for q ∈ N . Then, the delay
is defined as

delay(s, q) := C
∑

(v,w)∈Y [s,q]
dist(p′(v), p′(w)).

Here C > 0 is a technology-dependent delay constant. The objective, which
we minimize, is ∑

(v,w)∈E(A)
dist(p′(v), p′(w)).

We also call the pair (A, p′) a placed topology. Held and Rotter [HR13] give
a bicriteria approximation algorithm, which has the following guarantee.

Theorem 3.5 (Held and Rotter [HR13]). Let (M, dist) be a metric space, N a
net with pin positions p : N →M , and s ∈ N a source. Let rat : N\{s} → R≥0

be such that a solution achieving those delay budgets exists. Let A0, p0 be an
initial placed topology. For each ε > 0 we can compute a placed topology (A, p′),

3.4. Topology Generation 33

such that
delay(s, q) ≤ (1 + ε)rat(q) for q ∈ N\{s}.

and

∑
(v,w)∈E(A)

dist(p′(v), p′(w)) ≤
(

1 + 2
ε

) ∑
(v,w)∈E(A)

dist(p0(v), p0(w)).

The algorithm runs in time O(|N | log |N |+ ψ(A0)), where ψ(A0) is the time to
evaluate dist for all e ∈ E(A0) and dist(s, q) for all q ∈ N .

If the initial topology A0, p0 is a spanning tree, the above result also follows
from a theorem of Khuller et al. [KRY95]. However, Held and Rotter further
generalized the problem by showing that their algorithm yields a similar bound
for a different delay function proposed by Bartoschek et al. [Bar+10], which has
an additional penalty term for bifurcations. In practice this leads to solutions
in which most terminals have lower depths in the topology.

The main idea of the algorithm is to traverse the initial topology A0, p0 and
to disconnect a partial tree if the delay constraints would be violated. In a
second step, these disconnected subtrees are reconnected to the source with
low delay.

For solving the oracle problem of timing-constrained global routing, we
would have to optimize congestion and timing costs that do not depend on
each other. In this case “dist” and “delay” are independent and we have to
optimize a function of the form

∑
(v,w)∈E(A)

dist(p(v), p(w)) +
∑
t∈N

λtdelay(s, t).

Unfortunately, this problem is very difficult. Chuzhoy et al. [Chu+08] show
that if it can be approximated within o(log log |N |), then every problem in NP
can be solved in time O(nlog log logn). Therefore, efficient algorithms that are
provably good in theory and practice are unlike to exist. As a workaround,
algorithms like the previously mentioned Bicriteria by Held and Rotter can be
applied heuristically to find reasonable solutions in practice.

If the delay model is allowed to have bifurcation penalties, even stronger
inapproximability results are known. By a result of Hähnle and Rotter [Rot17],
there is no O(|N |1−β) for any β > 0 unless P=NP.

An important special case arises when delay and congestion cost are linearly
dependent and we have criticalities for all terminals and no bifurcation penalties
are present. For this setting the currently best algorithm is due to Held and
Khazraei [HK20]. It achieves a 2.39 approximation.

34 Chapter 3. Interconnect Optimization

source

sinks+ -

-

-

Figure 3.4: An illustration of the buffered global routing oracle
problem. Given a net and prices for delay, congestion, power and
placement, we are looking for a buffered Steiner tree of minimum
cost. The bottom left sink has positive polarity, while the other
sinks have negative polarity.

3.5 Buffering

Rotter [Rot17] extended the resource sharing formulation of the timing-
constrained global routing problem to also include the buffer insertion step. In
this section we will present a first look at the oracle problem he considered.

First, we will define the problem formally. Let L be a finite set of inverters
and buffers. Inverters will switch the electrical polarity of a signal while buffers
do not alter it. We assume that for every net N ∈ N with source s ∈ N , sink
polarities pol : N{s} → {+,−} are given. A buffer solution has to insert an
odd number of inverters on the s-t path for t ∈ N if and only if pol(t) = −.

For buffering, placement space has to be considered as a new important
resource. Rotter simply interpreted buffers as points. However, to make sure
that enough space is available to accommodate the buffering solution after
legalizing the placement by removing overlap he assumed that a set of placement
bins B is given. A natural way to obtain placement bins is to add a bin for
every global routing tile v ∈ V (G). The usage of these bins corresponds to the
bounding box size of the placed repeaters. While it works for the majority of
nets, this model is not very accurate and can lead to large movements in the
legalization step. We will discuss ways to improve it in Chapter 7.

The problem of computing buffered interconnect for all nets can be seen as a
resource sharing problem as before. The corresponding oracle problem consists
of buffering and routing a single net. As depicted in Figure 3.4 topology and
buffering can significantly influence the usage of various resources.

3.5. Buffering 35

Problem 4: Buffered Global Routing Oracle Problem
Input: A global routing graph G, a net N ∈ N with source s ∈ N , a repeater

library L, wire types T , sink polarities pol : N{s} → {+,−}. The following
cost functions.

• Congestion costs ccong : I × I → R≥0.

• Delay costs cdelay : N → R≥0.

• Placement costs cplace : I → R≥0.

• A power consumption cost cpower ∈ R≥0.

Task: Compute a Steiner tree (A, p) for all N ∈ N with wire type assignments
τe ∈ T for all e ∈ E(A), buffer assignments b : V (A)→ L ∪ {∅}.

The objective is to minimize:
∑

(v,w)∈E(A)
ccong(p(v), p(w))usg(p(v), p(w), τ) +

∑
t∈N

cdelay(t)delayA,p,b,τ (s, t)+∑
v∈V (A)

cplace(p(v))size(b(v)) + cpower
∑

v∈V (A)
powerA,p(b(v))

Here, usg(p(v), p(w), τ) denotes the amount of wiring space the global
routing edge {p(v), p(w)} consumes from the corresponding edge resource,
given wire type assignments τ . size(b(v)) denotes the bounding box size of
an inverter b ∈ L. The function powerA,p,τ (b(v)) computes the total power
of an inverter b(v), which also depends on the downstream capacitance and
the fixed net switching frequency. Finally, delayA,p,b,τ (s, t) is the Elmore
delay on the s-t path.

The solution has to insert an odd number of inverters on the s-t path
for t ∈ N , if and only if pol(t) = −.

We cannot hope to solve the buffered global routing oracle problem for
general fanouts. Even if we do not allow buffering, i.e., L = ∅ and under the
simplifying assumption that delays are linear, the problem remains difficult.
As this generalizes the problem given in Section 3.4, we can apply the result
of Chuzhoy et al. [Chu+08] to see that a o(log log |N |) approximation implies
that every problem in NP can be solved in time O(nlog log logn). However, if
we assume that the Steiner tree (A, p) and its wire type assignment τ are
fixed, and we only look for the assignment of buffers b : V (A) → L ∪ {∅},
the problem can be solved via dynamic programming. As described by Van
Ginneken [Van90] one can proceed from the sinks in a bottom-up fashion and
prune dominated candidates. Bartoschek et al. [Bar+09] show that even local
topology changes can be allowed, improving compared to algorithms which
do not alter the input tree. We will extend an algorithm of Rotter [Rot17]

36 Chapter 3. Interconnect Optimization

to solve the oracle problem heuristically in Chapter 7. The main idea is to
proceed in multiple stages. First, Rotter computes a 2d topology with small
linear delay, which is subsequently embedded into the routing graph and then
buffered. It is expected that this approach will fail for a small fraction of the
nets. If blockages are present on the chip, approaches which first compute the
topology and then buffer can lead to infeasible solutions. Rotter addresses this
problem by applying a slower multi-label algorithm implementation by Natura
[Nat17], which simultaneously buffers and routes the most difficult nets. It is
significantly slower compared to the multi-stage approach, but necessary to
avoid electrical violations.

Chapter 4

Time-Cost Tradeoff Problems in Chip Design

In the last chapter, we presented multiple resource sharing problems that occur
in chip design. In the next two chapters, we will focus on a minimal but very
important resource sharing problem in the design process. It arises when only
two types of resources, namely timing resources and a single cost resource
are considered. Most parts of this chapter have been published in [Dab+18b],
which is joint work with Stephan Held, Jens Vygen and Sonja Wittke.

Let d be an upper bound on the number of gates on any path in the
timing graph. Previously, Wittke [Wit11] devised a d approximation for the Vt
optimization problem by using the primal-dual Bar-Yehuda and Even [BE81]
algorithm. In her problem formulation and her practical implementation she
required a separable delay function, i.e., no interaction between gates on a path
is allowed.

Our main contributions in this chapter are as follows. We present a new
implementation and proof for the Bar-Yehuda and Even algorithm [BE81]
applied to Vt optimization. Unlike previous work by Wittke [Wit11], neither
our proof nor the new implementation requires a separable delay function.
Instead, we show that two mild assumptions are sufficient which mostly hold for
non-linear delay models used in practice. Our refined implementation is built
directly around an industrial sign-off timer. Even when applied after one of
the most successful algorithms for gate sizing and Vt assignment [RSR16a] we
observe large leakage reductions of up to 8%. After global routing the reduction
grows up to 34% without changing any footprints. Our algorithm is extended to
also compute lower bounds which prove that we solve several instances almost
optimally and others much better than the worst case guarantee.

On a small level, all combinatorial cells used on a chip consist of transistors.
Modern CPUs usually contain more than 109 of these tiny devices. Every
transistor has three important electrical contacts. When the voltage measured
between gate and drain contact surpasses a certain level Vt > 0, a current may
flow from the source to the drain. This voltage Vt is also called threshold voltage.
For a transistor, multiple possible realizations with different threshold voltages

37

38 Chapter 4. Time-Cost Tradeoff Problems in Chip Design

n+

p

Source Gate Drain

n+

Figure 4.1: A cross-sectional view of a field-effect transistor. If
the voltage between gate and drain is sufficiently high, a current
may flow from source to drain. By changing the substrate used
in manufacturing, delay properties can be changed at the cost of
power consumption.

are available. However, there is a tradeoff between performance and power
consumption. As different Vt levels require a separate manufacturing process,
only a small amount of 2–4 alternative Vt levels is used. In Section 2.5 we saw
that while the size of a gate which has an approximately linear influence on
the power, the static power consumption usually depends exponentially on the
used Vt level of a gate. The large differences in the leakage power consumption
of the individual threshold implementations and the discrete nature of the
problem make this task very challenging in theory and practice.

4.1 Previous Work

Previous approaches to threshold voltage (Vt) optimization are often combined
with simultaneous sizing as in recent sensitivity-based [Hu+12; Kah+13] or
Lagrangian relaxation approaches [Fla+14; RSR16a], among which [Fla+14]
reported the best results on the ISPD 2012 and 2013 gate sizing contest
benchmarks. Its integration into an industrial design environment [RSR15;
RSR16a] also achieved substantial power reductions on industrial designs.
However, threshold voltage optimization finds its individual application in
post-routing power reduction [Abr+11; RS12]. Most modern cell libraries offer
different Vt choices with the same footprint. Thus, the voltage threshold of a
gate can be changed without requiring routing changes.

Shah et al. [Sha+05] propose a continuous formulation for simultaneous
gate sizing and Vt assignment, in which the Vt levels are always snapping to
integral values. However, the relaxation is not convex and is not known to be
efficiently solvable with any useful approximation guarantee.

4.2. Problem Formulation 39

vertices in Pinp

vertices in Pout

edges

Figure 4.2: An example of a time-cost tradeoff instance in the
timing graph. Edges sets Eg are depicted in the same color for
g ∈ G.

Liu and Hu [LH10] combine Lagrangian relaxation with dynamic program-
ming for rounding to a discrete solution, resolving inconsistencies due to
reconvergent paths heuristically. This approach was later refined in by Ozdal,
Burns, and Hu[OBH12].

Algorithms for pure threshold voltage optimization include the conjugate
gradient method applied to a certain continuous problem relaxation [Abr+11]
or greedy algorithms [RS12].

The problem of choosing a Vt level for each gate while satisfying the timing
constraints is similar to the discrete time-cost tradeoff (TCT) problem in
directed graphs. Here, we are given an acyclic digraph where every vertex has
a set of possible execution times with associated costs. The task is to choose a
realization for every vertex such that the maximum execution time of a path
respects some delay bound and the total cost is minimized. We will not go into
more details here, as an extended analysis of this problem is presented in the
next chapter.

The remainder of this chapter is organized as follows. In Section 4.2, we
give a formal problem definition. Then in Section 4.3, we present the new
approximation algorithm together with an example and a theoretical quality
analysis. In Section 4.4, we shortly present further variants of the problem
and algorithm, and a four-step flow for Vt assignment. Finally, we present
experimental results in Section 4.5.

4.2 Problem Formulation

As explained in Chapter 2, we assume that the timing can be modeled as
a directed acyclic graph D = (V,E) (the timing graph), a set of gates G,
and a set of Vt levels {1, . . . , z}. As before, we call vertices v ∈ V without
entering edges input vertices v ∈ Pinp; analogously we define output vertices

40 Chapter 4. Time-Cost Tradeoff Problems in Chip Design

Pout. Each gate g ∈ G is represented in D by a subset Eg of edges of D where
Eg ∩Eg′ = ∅ for any pair of different gates g, g′ ∈ G. A sample timing graph is
shown in Figure 4.2. For easier notation we assume that every gate has some
implementation for each Vt level in {1, . . . , z}. Here, 1 is the fastest Vt level
(lowest Vt) and z the slowest one (highest Vt).

A Vt assignment is a map ϕ : G → {1, . . . , z}. We denote the assignment
that maps every gate to the fastest implementation by 1. The delay of a timing
edge e ∈ E(D) depends on the assignment ϕ and is denoted by dϕ : E → R≥0.
For a path P in D we define dϕ(P) = ∑

e∈E(P) dϕ(e). The power of a gate is
given by a function power(g, i), where i ∈ {1, . . . , z} specifies the chosen Vt
level.

For a path P , its delay bound T , and assignment ϕ, the slack of a path P is
defined by slack(P, ϕ) = T −dϕ(P). For pins v ∈ V and edges e ∈ E we denote
by slack(v, ϕ) and slack(e, ϕ) the minimum slack of a path that contains v and
e, respectively. With this definition, the total negative slack (TNS) defined in
Section 2.6 can be written as

TNS(ϕ) =
∑

v∈Pout

min{0, slack(v, ϕ)}.

We consider the following Vt optimization problem:

minimize
∑
g∈G

power(g, ϕ(g))

subject to ϕ : G → {1, . . . , z} (4.1)
TNS(ϕ) = TNS(1).

We will also discuss some variants of this problem in Section 4.4.

4.3 Vt Optimization Algorithm

To devise an approximation algorithm, we make the following observation. In
chip design, there is usually an upper bound d ∈ N on the amount of gates in
any path. This is due to a target frequency which cannot be reached if too
many gates are used.

We will now describe our proposed Vt optimization algorithm (Algo-
rithm 4.1). We start by assigning every gate g ∈ G to the highest available Vt
level ϕ(g) = z. Over the course of the algorithm we will maintain a reduced
cost function cg which is guiding the optimization globally. Initially, cg is given
by the additional cost needed to accelerate gate g to the next lower Vt level

cg = power(g, z − 1)− power(g, z).

4.3. Vt Optimization Algorithm 41

Algorithm 4.1: Vt Optimization Algorithm
1 for g ∈ G do
2 ϕ(g)← z . initially use slowest Vt
3 cg ← power(g, z − 1)− power(g, z) . reduced costs
4 while ∃v ∈ Pout : slack(v, ϕ) < min{0, slack(v,1)} do
5 P ← most critical path ending in v w.r.t. ϕ
6 G(P)← gates on timing path P
7 g∗ ← argming∈GP

cg . cheapest g w.r.t. cg
8 γ ← cg∗
9 for g ∈ G(P) do

10 cg ← cg − γ . reduce cg for gates on P

11 ϕ(g∗)← ϕ(g∗)− 1 . accelerate g∗
12 if ϕ(g∗) > 1 then
13 cg∗ ← power(g∗, ϕ(g∗)− 1)− power(g∗, ϕ(g∗))
14 . re-initialize cg∗
15 else
16 cg∗ ←∞

17 return ϕ

Then we proceed to iteratively accelerate a path P that violates the timing
constraints. We do this by accelerating the cheapest gate g∗ on P with respect
to the reduced cost function cg. Note that this accelerates all paths through g,
not only P . We then reduce the values cg for every gate on P by exactly cg∗ .
This process is iterated until the timing constraints are met.

Note that our particular reduced cost update is important for achieving
globally good solutions. If a gate occurs frequently on some violated path P , it
becomes more attractive to be accelerated due to its lowered cost. The cost
update is a core ingredient for proving the approximation guarantee of our
algorithm in Section 4.3.2, and also needed for good practical results as the
following example demonstrates.

4.3.1 Example

Consider the instance in Figure 4.3, where an inverter drives K � 1 other
inverters (the instance can be easily adjusted to avoid high fanouts using a
higher depth). If the deadline is T = 3 and the inverters have either delay 1 or
2 with an acceleration cost of 1, the optimum is given by only accelerating the
driving inverter.

Already for d = 2 a simple greedy approach that sorts all acceleration
possibilities of the gates by the gain ∆delay

∆power and iteratively accelerates a gate
that minimizes this (negative) ratio, e.g. a discrete variant of the TILOS

42 Chapter 4. Time-Cost Tradeoff Problems in Chip Design

..
.

T = 3

(d1, d2) = (1, 2)

Figure 4.3: An example where a greedy algorithm might speed
up all K gates on the right, while our primal-dual algorithm
chooses the left gate and at most one gate from the right side.
(see Section 4.3.1)

algorithm [FD85], does not achieve a constant approximation guarantee. It may
instead choose to accelerate all K inverters instead (in fact it will always do so
if we reduce their acceleration cost by some small constant ε > 0). Similarly,
always choosing the cheapest gate on a critical path (without our reduced cost
update) will lead to the same behaviour.

Our primal-dual algorithm might also start accelerating one of the inverters
on the right. However, this reduces the cost of the driving inverter on the
common path to 0 (or ε). This one will, thus, be the cheapest choice in the
next iteration, and our algorithm will accelerate at most two inverters in total.

4.3.2 Algorithm Analysis

Before we analyse the algorithm, we point out the theoretic connection to
the set cover problem. In the set cover problem we are given a set system
S = {S1, . . . , Sr} where ∪ri=1Si =: U and a cost function cost : S → R≥0. We
are then looking for a subset S ′ ⊆ S such that ∪S∈S′S = U and ∑S∈S′ cost(S)
is minimized.

If we assume that our instance has only two Vt levels, that is z = 2, we can
formulate it as a set cover problem in the following way. We call a set of gates
G ⊆ G critical if in every timing feasible solution at least one gate in G has
the lower Vt level. Let P denote the set of all paths from an input vertex to an
output vertex. For a path P ∈ P we denote by G(P) the gates that have some
edge on P . Our universe will then be U = {G ⊆ G(P) : P ∈ P , G is critical}.
For every gate g ∈ G we define Sg = {G ⊆ G : g ∈ G,G ∈ U}.

It is easy to see that for a set X ⊆ G we have ∪g∈XSg = U if and only if
accelerating the gates in X yields a timing feasible solution. In the special
case z = 2, Algorithm 4.1 is an adaptation of the primal-dual algorithm of
Bar-Yehuda and Even [BE81] for the set cover problem. The algorithm has an
approximation guarantee of maxu∈U |{S ∈ S : u ∈ S} ≤ maxP∈P |G(P)|. We
will now give an elementary proof of this bound for arbitrary z.

4.3. Vt Optimization Algorithm 43

To prove quality guarantees of our new algorithm, we make two mild
assumptions:

A1 Lowering the voltage threshold of a gate does not increase the delay of any
edge in E.

A2 The delay dϕ(P) of a path P can only be reduced by lowering ϕ(g) for a
gate g ∈ G(P).

The first assumption is usually fulfilled if the input pin capacitances of a gate
g do not depend on its voltage threshold ϕ(g). The second assumption would
follow from the first assumption in a path-based timing analysis. In any case,
deviations from these assumptions in practice are usually small. We can prove
the following worst-case guarantee.

Theorem 4.1. Assume that A1 and A2 hold. Algorithm 4.1 returns a feasible
solution ϕ̄ to Problem (4.1).

The power increase over the cheapest possible solution, choosing z every-
where, is at most d times greater than the power increase of an optimum solution
ϕ∗: ∑

g∈G

(
power(g, ϕ̄(g))− power(g, z)

)
≤ d

∑
g∈G

(
power(g, ϕ∗(g))− power(g, z)

)
,

where d is the maximum number of gates on any path in the timing graph D.
The algorithm can be implemented to run in time O(z|G|θ), where θ is the

running time for identifying and traversing a critical path.

Proof Obviously, the algorithm stops only when ϕ is a feasible solution. It
stops after at most (z − 1)|G| iterations of the while loop, proving the total
running time bound.

Let U := {(P, ϕ) : P is a path from v ∈ Pinp to w ∈ Pout with slack(P, ϕ) <
min{0, slack(w,1)}} be the set of pairs with path P and Vt assignment ϕ for
which P is too slow. Suppose we add y(P, ϕ) := 0 for all (P, ϕ) ∈ U in the
initialization (before line 4), and y(P, ϕ) := γ before line 11 of the algorithm
(for the current values of P , ϕ, and γ). These numbers are needed only for the
following analysis.

For any gate g ∈ G and any i ∈ {2, . . . , z} we have, while ϕ(g) = i, the
invariant

cg +
∑

(P,ϕ̂)∈U :g∈G(P),ϕ̂(g)=i
y(P, ϕ̂) = power(g, i− 1)− power(g, i). (4.2)

Moreover, we have cg ≥ 0 at any stage, and cg = 0 when g = g∗ is accelerated
in Line 11. Let ϕ̄ denote the output of the algorithm. At termination, we have

44 Chapter 4. Time-Cost Tradeoff Problems in Chip Design

for g ∈ G with ϕ̄(g) < i the property
∑

(P,ϕ̂)∈U :g∈G(P),ϕ̂(g)=i
y(P, ϕ̂) = power(g, i− 1)− power(g, i). (4.3)

Let ϕ∗ be an optimum solution. By definition, and by assumptions A1 and
A2, for every (P, ϕ̂) ∈ U there exists a g ∈ G(P) with

ϕ∗(g) < ϕ̂(g). (4.4)

Using equations (4.2), (4.3) and (4.4) we conclude:
∑
g∈G

(
power(g, ϕ̄(g))− power(g, z)

)

=
∑
g∈G

z∑
i=ϕ̄(g)+1

(
power(g, i− 1)− power(g, i)

)
(4.3)=

∑
g∈G

z∑
i=ϕ̄(g)+1

∑
(P,ϕ̂)∈U :g∈G(P),ϕ̂(g)=i

y(P, ϕ̂)

=
∑
g∈G

∑
(P,ϕ̂)∈U :g∈G(P),ϕ̂(g)>ϕ̄(g)

y(P, ϕ̂)

(4.5)
≤

∑
(P,ϕ̂)∈U

y(P, ϕ̂) |G(P)|

(4.6)
≤ d

∑
(P,ϕ̂)∈U

y(P, ϕ̂)

(4.4)
≤ d

∑
(P,ϕ̂)∈U

y(P, ϕ̂) |{g ∈ G(P) : ϕ∗(g) < ϕ̂(g)}|

= d
∑
g∈G

∑
(P,ϕ̂)∈U :g∈G(P),ϕ∗(g)<ϕ̂(g)

y(P, ϕ̂)

= d
∑
g∈G

z∑
i=ϕ∗(g)+1

∑
(P,ϕ̂)∈U :g∈G(P),ϕ̂(g)=i

y(P, ϕ̂)

(4.2)
≤ d

∑
g∈G

z∑
i=ϕ∗(g)+1

(
power(g, i− 1)− power(g, i)

)
= d

∑
g∈G

(
power(g, ϕ∗(g))− power(g, z)

)
.

In (4.5) we use that the contribution to y of an element (P, ϕ̂) ∈ U can be
counted at most once for every gate g ∈ G(P), which are |G(P)| many. For
(4.6) note that every path contains at most d gates. �

The theorem obviously implies the following bound on the total power
consumption.

4.3. Vt Optimization Algorithm 45

Corollary 4.2. Assume that A1 and A2 hold. The solution ϕ̄ of Algorithm 4.1
exceeds the power of an optimum solution ϕ∗ by at most a factor d:

∑
g∈G

power(g, ϕ̄(g)) ≤ d
∑
g∈G

power(g, ϕ∗(g)),

where k is the maximum number of gates on any path in G.

Note that in our setting the number of gates on a longest path is a small
constant compared to the total number of gates. The running time θ is usually
linear in |E|, but Algorithm 4.1 can as well be used with a path-based timing
analysis. See also Sections 4.4.6 and 4.5.1 for practical running time reductions.

Algorithm 4.1 also provides a lower bound on the optimum power consump-
tion. As we will see this bound is much tighter than k in practice (cf. Section
4.5).

Corollary 4.3. Assume that A1 and A2 hold. Let ϕ∗ be an optimum solution.
Let y(P, ϕ) be defined as in the proof of Theorem 4.1. At any point of
Algorithm 4.1 we have

∑
g∈G

power(g, ϕ∗(g)) ≥
∑

(P,ϕ)∈U
y(P, ϕ) +

∑
g∈G

power(g, z).

Proof This is part of the inequality chain (in particular the last two inequali-
ties) in the proof of Theorem 4.1. �

The lower bound can easily be computed by summing up the reduced costs
of all accelerated gates and adding the high VT power. As the y values are
non-decreasing over the course of the algorithm, they determine a lower bound
at every intermediate step.

Note that our algorithm guarantees a close to optimum solution for low
power designs with small depth.

Consider an instance with small d, where the optimum solution ϕ∗ uses
only slightly more power than the solution ϕz, which assigns every gate to the
slowest available realization.

More precisely, assume
∑
g∈G

power(g, ϕ∗(g)) ≤ (1 + ε)
∑
g∈G

power(g, ϕz(g))

for some ε > 0. By considering a modified instance where ϕz has cost 0 one
can easily see that our algorithm will return a solution ϕ̄ such that

∑
g∈G

power(g, ϕ̄(g)) ≤ (1 + dε)
∑
g∈G

power(g, ϕz(g)).

46 Chapter 4. Time-Cost Tradeoff Problems in Chip Design

The approximation ratio that we obtain is therefore given by

ρ ≤ 1 + dε

1 + ε
.

If we have d = 10 and there is an optimum solution that uses 1% more power
than ϕz, i.e. ε = 0.01 we are guaranteed to obtain a 1.1

1.01 ≈ 1.089 approximation.
We point out that the primal-dual cost update is essential to obtain a good

approximation guarantee. Other algorithms that greedily accelerate the critical
path do usually not give any guarantee. In the example in Section 4.3.1, our
algorithm accelerates at most k = 2 inverters, as Theorem 4.1 guarantees.

4.3.3 Sharpness Of The Analysis

It can be seen that our analysis in Theorem 4.1 is tight. Indeed, suppose we
have an inverter chain of d + 1 gates with cycle time T = 1, where all gates
have delay 0 for low Vt and power 0 for high Vt, the first gate has power 1 + ε

for low Vt, and delay 1 for high Vt, and the other gates have power 1 for low Vt
and delay 1

d
for high Vt. The algorithm will put all but the first gate on low Vt

and spend power d, while the optimum with power 1 + ε is exactly the opposite.
However, the cell library assumed in this example has unrealistically varying
delay power tradeoffs for the different gates.

4.4 Variants and Implementation
In the following, we discuss several enhancements to improve the applicability
on industrial designs.

4.4.1 Handling Critical Subpaths

Algorithm 4.1 finds a solution that maximizes the TNS while approximating
the minimum power consumption. Assume we are given an instance with
two inverter chains of length 1 and one inverter chain of length 3 that all
share a common output vertex t ∈ Pout. If we have a cycle time of T = 1
and all inverters have fast delay 1 and slow delay 2, the optimum solution
will completely accelerate the long path with three inverters as the optimum
attainable TNS is -2. This instance is depicted in Figure 4.4. Note that the
critical inverters on the short paths are not accelerated, even though doing so
would remove the timing violation on the corresponding paths.

This shows that one should consider a more accurate timing metric than
TNS. Reimann et al. suggested to use the so-called TTNS (true TNS) to evaluate
the timing on less critical subpaths [RSR16b]. The TTNS is maximized if every

4.4. Variants and Implementation 47

T = 1(de1, de2) = (1, 2)

Figure 4.4: Situation in which some paths are not optimized
due to a hopeless path. All gates have a fast delay of de1 = 1 and
a slow delay of de2 = 2.

path with negative slack is as fast as possible. Further details on the TTNS
are explained in Chapter 2.6.

Our algorithm can be extended to find a solution with TTNS(ϕ) = TTNS(1)
by changing the condition of the while loop in line 4 to look for an edge e ∈ E
for which slack(e, ϕ) < min{0, slack(e,1)} and selecting a most critical path
through that edge in line 5. It is straightforward to prove that this is also a
k-approximation in terms of a cheapest solution in which every negative path is
as fast as possible. We can also stop once TTNS(ϕ) ≥ Θ for a given threshold
Θ ≤ TTNS(1). In our experiments, we chose Θ as the TTNS of the initial
solution, for which we want to improve the leakage power.

4.4.2 Power Recovery

Once Algorithm 4.1 terminates some gates can usually be decelerated again
without introducing timing violations. For example, a fanout inverter on the
right side in Figure 4.3 can be decelerated after the driving inverter on the left
has been accelerated. For the Bar-Yehuda and Even algorithm the so-called
reverse delete step [GW96] serves this purpose. In this post-processing routine
the gates are considered in the reverse order in which they were accelerated by
the algorithm and decelerated if this does not introduce any timing violation.

Alternatively, it is also tempting to decelerate gates in non-increasing order
of their static leakage. As this order experimentally led to better leakage
reductions, we incorporated it to post-process the result of Algorithm 4.1.

In contrast to the greedy approaches described in Section 4.3.1, Algorithm
4.1 together with the recovery step solves the instance in Figure 4.3 optimally.

4.4.3 Breaking Ties

By A1 we assume that lowering the voltage threshold does not increase the
delay of any edge. We verify this by measuring the slack gain after every
acceleration and rejecting the change if the path slack degraded. This hardly
ever occurs but we also use the slack change to break ties if there are multiple

48 Chapter 4. Time-Cost Tradeoff Problems in Chip Design

gates with the same reduced cost. To avoid excessive runtime increases we
configure the signoff timer to only update delays and slacks locally for these
slack change evaluations.

4.4.4 Slew Violation Removal

Extensive Vt optimization may lead to violations of slew limits at some sink
pins. We neglect these violations during the course of Algorithm 4.1 and the
power recovery step in the previous section.

However, at the very end we eliminate slew limit violations by lowering Vt
levels or, only if the footprint does not need to be preserved, by changing gate
sizes. In our experiments, this affects a negligible fraction of the gates.

4.4.5 Preprocessing

In practice, instances often contain hopeless paths where all gates have to be
assigned to the lowest Vt level. We can significantly speed up our algorithm by
identifying and accelerating these paths in a preprocessing step.

For the TTNS optimization we set all gates to the fastest alternative and
fix this lowest Vt level for all gates whose slack is still negative. It is easy to
see that such gates need to be set to the fastest alternative in every feasible
solution.

For the case of maximizing the TNS this approach can pre-assign more
gates to low Vt than necessary. For instance in Figure 4.4, the upper two gates
do not influence the TNS. In this case we can only fix gates whose deceleration
would decrease the TNS. We can identify these gates by propagating slack
deltas in reverse topological order.

4.4.6 Disjoint Paths for Running Time Reduction

We can obtain a significant practical speedup by considering not only a single
most critical path but a set of gate-disjoint critical paths independently. In
every iteration we compute a set of disjoint violated Pinp-Pout-paths and for
each of these paths we accelerate exactly one gate with the minimum reduced
cost. This reduces the number of iterations and the number of global timing
updates before collecting the path(s), leading to a significant running time
reduction.

We collect these paths by traversing the timing graph in reverse topological
order while blocking gates that already occur in some path. Note that the
bound in Theorem 4.1 still holds, because in the proof we do not use that
Algorithm 4.1 selects a most critical path. It is sufficient to pick any violated
path.

4.5. Experimental Results 49

However as we will see later (Section 4.5), in practice the leakage might
degrade a little when using too many paths simultaneously. Thus, we only
select a fraction of the most critical paths. To this end we use a sliding slack
window that selects a subset of the timing endpoints. Initially, we select all
timing endpoints which are within r := 1 ps from the global worst slack.

To always select a good portion of failing paths, we adjust the window as
follows. If we selected less than α·|G′|

1000 paths in an iteration, where G ′ ⊆ G is the
set of gates with negative slack at the start of the algorithm and α > 0 is a
parameter, we increase r ← 1.15r. Otherwise, we set r ← 1.15−1r. Due to the
multiplicative update of r the slack window will quickly be large enough to
select a sufficient amount of paths. Therefore the exact choice of r or the search
factor of 1.15 do not play a large role with respect to the measured runtime.

For our experiments we used α = 1 unless stated otherwise. In Section 4.5.1
we analyse the dependency on α experimentally.

4.4.7 Overall Vt Assignment Flow

Sometimes we do not want to obtain the best possible TTNS. Instead, the goal
is to achieve the quality of the initial solution ϕI using less power. In any case
we always maximize the worst slack and the TNS. This can be achieved by
multiple calls to slight variants of Algorithm 4.1, which are described in our
overall optimization flow in Algorithm 4.2.

Algorithm 4.2: Optimization Flow
1 Run Algorithm 4.1 until the TNS is maximized.
2 Run the variant of Algorithm 4.1 described in Section 4.4.1, but

without initialization (lines 1–3 of Algorithm 4.1), and stop as soon as
TTNS(ϕ) ≥ TTNS(ϕI). If after accelerating a gate the initial leakage
power ∑g∈G power(g, ϕI(g) is exceeded we stop the algorithm.

3 Power recovery (Section 4.4.2).
4 Slew violations removal (Section 4.4.4), and (when sizing is allowed)

placement legalization.

4.5 Experimental Results

We evaluated our implementation of Algorithms 4.1 and 4.2 on the industrial
22nm microprocessor instances that were also used in [RSR16a]. For these
instances, we can use one of the most successful algorithms by Reimann et al.
[RSR16a] for initial gate sizing and Vt assignment, and measure the additional
leakage power reduction achieved by our algorithm.

50 Chapter 4. Time-Cost Tradeoff Problems in Chip Design

Our implementation is integrated into the IBM microprocessor design flow.
For every instance z = 3 Vt levels were available. We used the sign-off timing
engine EinsTimer for all timing calculations inside our algorithm and for the
numbers in the tables. Wire delays were estimated using the MAISE delay
model [LF08], which is the default in the design environment. Here we apply
our algorithm on a highly optimized netlist. First, we use the gate sizing
algorithm by Reimann et al. [RSR16a] to reduce the static power consumption
by up to 10% and the total power by up to 8.3%. Then, we are able to obtain
additional static power reductions of up to 8% by using our algorithm. The
experiments were performed on a cluster of Linux servers with Intel Xeon CPUs
with clock frequencies between 2.6 and 3.4 GHz.

Unfortunately, only the instances from [RSR16a] at the beginning of the
physical design flow were available to us, but not the final gate sizing instances
used in [RSR16a]. Thus, we reran the physical design flow, which is the reason
why our numbers slightly deviate from [RSR16a]. Note that Reiman et al.
[RSR16a] also reran the whole flow compared to their previous work [RSR15].

We also report the lower bound P lb
static on the minimum leakage for TNS

maximization, which is computed according to Corollary 4.3. Algorithm 4.2
stops once the initial leakage power or TTNS are reached, way before the
TTNS is maximized. At this point the bound induced by the y-variables is
not valid for the current TTNS, but only for the maximum TTNS. Thus, we
always report the valid bound for TNS maximization.

We ran three variants of our algorithm. We disabled the preprocessing step
as we stop the optimization as soon as the initial power is exceeded, which is
not possible when a preprocessing is used. The results are given in Table 4.2.
The rows of Table 4.2 refer to the following experiments/flows:

• Initial: An unrouted industrial instance after placement, and full timing
optimization including a net-based layer, wiring width, and spacing
assignment. Wires are estimated as short Steiner trees on the respective
layers assuming the assigned width and spacing. The snapshot is the
result of an industrial design flow.

• Lagrange [RSR16a]: We use the implementation of the gate sizing and Vt
assignment algorithm by Reimann et al. [RSR16a], which is integrated into
the industrial design environment. Note that [RSR16a] is an industrial
adaption of [Fla+14], the winner of the ISPD’13 contest. We observe
similar power improvements and running times as the original paper
[RSR16a]. While they report a running time of about 13 hours for the
largest instance uP 10 with 126k gates we measured around 11.5 hours
[RSR16a].

• Alg. 4.2 TNS-opt: We apply our optimization flow (Algorithm 4.2) on

4.5. Experimental Results 51

the result of the Lagrange flow but omit the second step which optimizes
the TTNS. The purpose of this step is primarily to serve for comparison
with the lower leakage bound P lb

static.

• Alg. 4.2: We apply our optimization flow (Algorithm 4.2) on the result
of the Lagrange flow.

• Alg. 4.2 post-GR: We apply our optimization flow (Algorithm 4.2) on the
result of the Lagrange flow followed by an industrial timing-driven global
routing. Here, gate sizing is forbidden for slew recovery to preserve gate
footprints.

The columns show:

• the instance names,

• the particular flow,

• the number of gates |G|,

• the maximum number d of gates on a signal path,

• the worst slack WS,

• the total negative endpoint slack TNS,

• the true total negative slack TTNS [RSR16b],

• the leakage power consumption P apx
static before power recovery,

• the leakage power P recov
static after power recovery and the leakage power

P fixup
static after violation fixup,

• its relative difference to the Lagrange flow in percent ∆P fixup
static,

• the lower bound P lb
static for TNS optimization according to Corollary 4.3,

• the ratio between the lower bound and the given solution,

• the total power consumption Ptotal,

• its relative difference to the Lagrange flow in percent ∆Ptotal and

• the running time of the Vt assignment or gate sizing algorithm respectively.

Slew limit violations were negligible at the end of each flow.
Algorithm 4.2 without global routing shows significant reductions of the

leakage power compared to the result of “Lagrange”. On uP 14 the reduction
is 8.7%. Here we are provably less than 4% away from the optimum solution.

52 Chapter 4. Time-Cost Tradeoff Problems in Chip Design

100

101

102

103

104

105

−1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

nu
m

be
ro

fe
nd

po
in

ts

∆slack

100

101

102

103

104

105

−1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(ps)

Figure 4.5: A histogram of the 75787 endpoint slack differences
for all instances combined, considering only infeasible endpoints.
Scale is logarithmic.

Algorithm 4.2 maximizes the TNS, which, thus, is never worse than the TNS
of “Lagrange” and in most cases it yields a better TNS. For the three instances
uP 02, uP 05, and uP 12, the power limit was reached in Step 2. The subsequent
power recovery pushed the leakage power below the limit.

The effect of the power recovery is usually small, but on some instances
as uP 01 it can save up to 2% of power in the post-GR mode. Similarly the
increase of power by the violation fix up is not significant as only few violations
are introduced to begin with. For cap violations there were at most 2 additional
cap violations on a single instance and in total there is 1 cap violation less after
violation fixup.

We point out that in every run the TNS was maximized by our algorithm.
To verify this we analyzed the change of endpoint slacks on the 75787 endpoints
of all instances uP 01-uP 14 between the end of Algorithm 4.2 and the reference
algorithm [RSR16a] for which either of the algorithms did not meet the
slack target. Due to slight timing degradations by the power recovery, the
worst degradation at a single pin which we measured was -0.79ps. The best
improvement of a pin was 14.3ps. The average improvement is 0.12ps, and the
total improvement across all instances is 9.2ns. A histogram of the endpoint
slacks can be found in Figure 4.5.

By degrading the TTNS a major leakage reduction is possible as e.g. instance
uP 13 shows where the TNS-opt flow reduces the leakage by 28%. The worst
approximation guarantee we obtain is 3.54 on instance uP 11. In any case the
computed guarantee is significantly better than k which ranges from 13 to 50.

When used after timing-aware global routing, the leakage reduction by
Algorithm 4.2 is even more significant. Algorithm 4.2, which does not require
any re-routes, reduces the leakage power by up to 34%. The reason is that the

4.5. Experimental Results 53

Instance with 110k gates

α 0.1 0.25 0.5 0.75 1.0 2.0

Iterations 15929 6226 3180 2174 1669 952
Runtime [h:m] 2:13 1:09 0:47 0:41 0:37 0:30
Leakage [µW] 40.73 40.72 40.68 40.68 40.63 40.77

Instance with 1500k gates

α 0.1 0.25 0.5 0.75 1.0 2.0

Iterations 14974 5948 3119 2187 1637 1112
Runtime [h:m] 16:15 11:31 6:34 6:15 5:27 4:53
Leakage [µW] 361.40 361.47 361.75 361.74 362.17 362.49

Table 4.1: Running times and total leakages on two designs
depending on α, i.e. the number of selected paths.

timing-aware global wires mostly result in faster signal delays and the design
flow uses slightly pessimistic delay estimates before global routing. Thus, the
TNS and TTNS after global routing improve compared to the Steiner estimates
with layer assignment. This becomes also noticeable in the mostly reduced
lower bounds on the leakage power. However, some wire delays and sometimes
even the WS degrade after global routing, e.g. on uP 01 and uP 11.

4.5.1 Running Time Evaluation
In addition to the results in Table 4.2 we also tried to analyse the scalability
and running time efficiency of our algorithm. To do this we measured the
running time on two larger designs, a large one with 1.5 million gates and a
moderate instance with 110k gates. To investigate the scaling of the algorithm
we disabled any preprocessing. As indicated in Section 4.4.6 the number of
paths that is selected in every iteration has a big impact on the total running
time. Therefore, we tried various different values for the parameter α introduced
in Section 4.4.6.

For the larger instance approximately 1 million acceleration operations were
performed in order to reach a timing feasible solution. A naive implementation
of our algorithm would thus perform 1 million iterations, each of which requires
a full timing analysis of the instance.

In practice the situation looks much better. Indeed, we can accelerate about
1000 paths independently on this instance as can be seen in Table 4.1. Note
that even if the number of iterations is about inversely proportional to α the
running time doesn’t fully scale as we evaluate slack changes as described in

54 Chapter 4. Time-Cost Tradeoff Problems in Chip Design

Section 4.4.3.
As bigger instances usually allow more paths to be collected, the number of

iterations is almost constant, implying an almost linear practical running time
of our algorithm. If α is too large, we obtain slightly worse results, thus our
default choice of α = 1.

With preprocessing and α = 1 these two instances run in 0:20 and 2:31
hours respectively.

4.5. Experimental Results 55

Instance Flow |G| d WS TNS TTNS P apx
static P

recov
static P fixup

static ∆P 2
static P

lb
static Pstatic

P lb
static

Ptotal ∆Ptotal Time
[ps] [ns] [ns] [µW] [µW] [µW] [µW] [µW] [h:m:s]

uP 01 Initial 99k 28 -69.5 -101.4 -602.6 81.7 +13.2% 95.1 +11.2%
Lagrange [RSR16a] -69.5 -96.4 -590.5 72.2 21.2 3.40 85.5 6:27:19
Alg. 4.2 TNS-opt -69.5 -94.8 -894.5 56.3 56.3 56.4 -21.8% 21.2 2.66 69.8 -18.4% 49:05
Alg. 4.2 -69.5 -95.1 -590.5 71.2 70.3 70.5 -2.4% 21.2 3.32 83.8 -2.0% 1:00:46
Alg. 4.2 post-GR -69.9 -78.2 -448.6 66.0 64.7 64.9 -10.1% 20.7 3.06 78.2 -8.6% 51:14

uP 02 Initial 10k 50 -156.9 -1.9 -10.0 1.2 +6.8% 2.4 +4.4%
Lagrange [RSR16a] -157.0 -1.9 -10.8 1.1 0.9 1.25 2.3 45:16
Alg. 4.2 TNS-opt -157.0 -1.8 -18.4 1.1 1.1 1.1 -6.1% 0.9 1.18 2.3 -3.0% 0:49
Alg. 4.2 -157.0 -1.8 -11.6 1.1 1.1 1.1 -1.0% 0.9 1.24 2.3 -0.5% 1:15
Alg. 4.2 post-GR -154.6 -1.9 -9.8 1.1 1.1 1.1 -0.9% 0.9 1.24 2.3 -1.0% 0:45

uP 03 Initial 9k 22 7.0 -0.0 -0.0 2.7 +2.0% 52.7 +0.7%
Lagrange [RSR16a] 7.0 -0.0 -0.0 2.7 1.7 1.54 52.4 57:52
Alg. 4.2 TNS-opt 7.0 -0.0 -0.0 2.5 2.5 2.5 -5.5% 1.7 1.46 52.3 -0.2% 4:32
Alg. 4.2 7.0 -0.0 -0.0 2.5 2.5 2.5 -5.1% 1.7 1.46 52.3 -0.2% 4:23
Alg. 4.2 post-GR 7.0 -0.0 -0.0 2.3 2.2 2.3 -15.4% 1.7 1.30 51.4 -1.9% 4:02

uP 04 Initial 7k 25 -11.2 -0.7 -0.7 1.6 +0.3% 2.9 +0.3%
Lagrange [RSR16a] -11.2 -0.7 -0.7 1.6 1.6 1.01 2.9 31:18
Alg. 4.2 TNS-opt -11.2 -0.7 -0.7 1.6 1.6 1.6 -0.1% 1.6 1.01 2.9 -0.0% 0:08
Alg. 4.2 -11.2 -0.7 -0.7 1.6 1.6 1.6 -0.1% 1.6 1.01 2.9 -0.0% 0:08
Alg. 4.2 post-GR -5.5 -0.4 -0.4 1.6 1.6 1.6 -0.2% 1.6 1.01 2.9 -0.6% 0:06

uP 05 Initial 16k 22 -76.6 -36.6 -64.0 20.3 +2.8% 67.3 +1.0%
Lagrange [RSR16a] -76.6 -36.8 -64.2 19.7 9.3 2.12 66.6 31:20
Alg. 4.2 TNS-opt -76.6 -36.7 -72.3 18.9 18.9 18.9 -4.0% 9.3 2.03 65.8 -1.2% 10:03
Alg. 4.2 -76.6 -36.7 -64.5 19.7 19.7 19.7 -0.2% 9.3 2.11 66.6 -0.1% 10:18
Alg. 4.2 post-GR -69.5 -27.3 -46.9 18.0 18.0 18.0 -8.8% 9.0 1.93 63.4 -4.8% 7:09

uP 06 Initial 77k 29 -108.9 -15.9 -25.6 35.7 +5.4% 147.6 +1.3%
Lagrange [RSR16a] -108.9 -14.5 -24.0 33.9 23.5 1.44 145.8 3:20:22
Alg. 4.2 TNS-opt -108.9 -13.3 -26.5 31.9 31.9 32.2 -5.0% 23.5 1.37 144.1 -1.2% 25:04
Alg. 4.2 -108.9 -13.3 -23.9 32.2 32.1 32.5 -4.2% 23.5 1.38 144.3 -1.0% 24:52
Alg. 4.2 post-GR -107.7 -9.8 -15.2 28.2 28.1 28.3 -16.4% 22.3 1.21 140.2 -3.9% 17:10

uP 07 Initial 72k 25 -33.9 -38.6 -231.6 60.8 +9.1% 73.2 +7.5%
Lagrange [RSR16a] -33.9 -39.2 -229.2 55.7 19.0 2.93 68.1 4:34:21
Alg. 4.2 TNS-opt -33.9 -36.6 -343.3 47.8 47.7 47.9 -14.1% 19.0 2.52 60.2 -11.5% 46:30
Alg. 4.2 -33.9 -36.7 -228.6 54.5 53.9 54.1 -3.0% 19.0 2.85 66.4 -2.4% 51:00
Alg. 4.2 post-GR -32.4 -28.6 -153.0 49.7 49.1 49.2 -11.6% 18.4 2.59 61.6 -9.5% 44:02

uP 08 Initial 18k 28 -72.6 -35.1 -176.4 16.8 +8.1% 85.9 +2.7%
Lagrange [RSR16a] -72.6 -34.5 -176.8 15.5 6.1 2.53 83.7 1:13:35
Alg. 4.2 TNS-opt -72.6 -34.5 -248.8 11.8 11.8 11.8 -23.8% 6.1 1.93 79.9 -4.5% 11:04
Alg. 4.2 -72.6 -34.5 -176.4 14.7 14.6 14.7 -5.6% 6.1 2.39 82.7 -1.1% 13:50
Alg. 4.2 post-GR -66.6 -26.7 -124.0 13.8 13.7 13.7 -11.7% 6.1 2.24 80.7 -3.5% 12:01

uP 09 Initial 18k 22 -23.2 -8.8 -36.2 14.5 +10.3% 47.8 +3.2%
Lagrange [RSR16a] -22.7 -8.6 -37.1 13.1 5.8 2.26 46.3 1:15:09
Alg. 4.2 TNS-opt -22.7 -8.2 -54.1 11.4 11.4 11.4 -13.0% 5.8 1.97 44.6 -3.7% 10:02
Alg. 4.2 -22.7 -8.2 -36.8 12.7 12.6 12.7 -3.6% 5.8 2.18 45.9 -1.0% 10:54
Alg. 4.2 post-GR -22.4 -6.6 -24.2 11.6 11.5 11.6 -11.8% 5.6 1.99 44.5 -3.9% 9:33

uP 10 Initial 126k 23 -43.8 -76.0 -342.6 91.6 +17.0% 395.2 +5.3%
Lagrange [RSR16a] -39.9 -80.5 -395.3 78.3 25.8 3.04 375.2 9:14:53
Alg. 4.2 TNS-opt -40.0 -73.9 -531.1 67.0 67.0 67.2 -14.2% 25.8 2.61 364.0 -3.0% 1:45:27
Alg. 4.2 -39.9 -74.0 -392.8 73.5 73.2 73.4 -6.3% 25.8 2.85 370.3 -1.3% 1:55:15
Alg. 4.2 post-GR -31.4 -30.8 -119.0 52.1 51.5 51.7 -34.0% 25.9 2.01 343.1 -8.6% 1:47:15

uP 11 Initial 25k 38 -140.7 -167.2 -886.7 39.7 +6.4% 61.6 +4.0%
Lagrange [RSR16a] -140.3 -165.2 -878.4 37.3 10.1 3.67 59.2 1:36:54
Alg. 4.2 TNS-opt -140.3 -165.4 -990.7 27.0 27.0 27.0 -27.5% 10.1 2.66 48.9 -17.4% 12:07
Alg. 4.2 -140.3 -165.1 -877.8 35.9 35.9 36.0 -3.6% 10.1 3.54 57.8 -2.2% 15:42
Alg. 4.2 post-GR -142.6 -157.8 -826.6 35.5 35.5 35.6 -4.6% 9.9 3.50 57.4 -2.9% 13:18

uP 12 Initial 18k 38 -417.8 -342.0 -696.1 5.1 +5.7% 25.5 +1.9%
Lagrange [RSR16a] -417.8 -342.5 -699.4 4.8 3.7 1.30 25.0 1:10:42
Alg. 4.2 TNS-opt -417.8 -340.5 -753.7 4.5 4.5 4.6 -4.9% 3.7 1.23 24.8 -1.0% 3:43
Alg. 4.2 -417.8 -340.5 -712.3 4.8 4.8 4.8 -0.2% 3.7 1.29 25.0 -0.0% 4:19
Alg. 4.2 post-GR -416.2 -332.9 -682.8 4.8 4.8 4.8 -0.3% 3.7 1.29 24.9 -0.3% 2:35

uP 13 Initial 20k 17 -47.6 -20.8 -103.4 19.6 +6.8% 80.2 +1.9%
Lagrange [RSR16a] -47.6 -20.6 -103.6 18.4 6.5 2.85 78.7 1:08:54
Alg. 4.2 TNS-opt -47.6 -20.4 -152.7 13.2 13.2 13.2 -28.1% 6.5 2.05 73.5 -6.6% 8:09
Alg. 4.2 -47.6 -20.5 -103.3 18.3 18.1 18.1 -1.5% 6.5 2.81 78.4 -0.4% 10:28
Alg. 4.2 post-GR -42.9 -17.9 -88.8 17.2 17.1 17.1 -6.9% 6.3 2.65 77.2 -1.9% 8:42

uP 14 Initial 13k 13 -54.8 -5.1 -9.2 8.2 +0.1% 17.9 +0.0%
Lagrange [RSR16a] -54.8 -5.1 -9.2 8.2 7.3 1.13 17.9 23:16
Alg. 4.2 TNS-opt -54.8 -5.1 -9.2 7.5 7.5 7.5 -8.7% 7.3 1.03 17.2 -4.0% 0:32
Alg. 4.2 -54.8 -5.1 -9.2 7.5 7.5 7.5 -8.7% 7.3 1.03 17.2 -4.0% 0:32
Alg. 4.2 post-GR -54.7 -5.0 -9.0 7.4 7.4 7.5 -8.9% 7.2 1.03 17.2 -4.1% 0:33

Table 4.2: Results on 22nm microprocessor instances. Alg. 4.2
runs as a postprocessing of the Lagrange [RSR16a] algorithm.

Chapter 5

Theoretic Bounds for Time-Cost Tradeoff
Problems

In the last chapter, we described a practical algorithm for the Vt assignment
problem. Its counterpart in combinatorial graph theory is the discrete time-cost
tradeoff (TCT) problem. Here, we are given a set of jobs V and a partial
order (V,≺). Every job has a set of possible execution times which may differ
in their cost. The problem is to assign an execution time for every job such
that a global deadline is met while minimizing the cost. Equivalently, such an
instance can be seen as a directed graph. In this chapter we will analyze the
approximability of this problem. Parts of this chapter have been previously
published in [DHV20]. The results are joint work with Stephan Held and
Jens Vygen, with the exception of Section 5.7 and 5.8 where we study further
variants of the time-cost tradeoff problem.

The depth of an instance is the number of jobs in a longest chain and is
denoted by d. In the last chapter we showed a practical d approximation. In
this chapter we observe that the problem can be regarded as a special case of
finding a minimum-weight vertex cover in a d-partite hypergraph. Next, we
study the natural LP relaxation which can be solved in polynomial time for
fixed d and — for time-cost tradeoff instances — up to an arbitrarily small
error in general.

Based on prior work of Lovász [Lov75] and of Aharoni, Holzman and Kriv-
elevich [AHK96], we describe a deterministic algorithm with an approximation
ratio slightly less than d

2 for minimum-weight vertex cover in d-partite hy-
pergraphs for fixed d and given d-partition. This is tight and also yields a
d
2 -approximation algorithm for general time-cost tradeoff instances.

Note that in the classic description we assume that the execution times are
separable and depend on at most a single job. Our algorithm from Chapter 4
did not need this assumption. Therefore, it is likely hard to beat in practice,
even though only providing a worse theoretic bound. In fact, our lower bounds
from Chapter 4 already proved that we compute much better solutions than

57

58 Chapter 5. Theoretic Bounds for Time-Cost Tradeoff Problems

the guarantee of d and even d
2 .

We also study the inapproximability and show that no better approximation
ratio than d+2

4 is possible, assuming the Unique Games Conjecture and P 6= NP.
This strengthens a result of Svensson [Sve12], who showed that under the same
assumptions no constant-factor approximation algorithm exists for general time-
cost tradeoff instances (of unbounded depth). Previously, only APX-hardness
was known for bounded depth.

At the end of the chapter, we will analyze some slight variations of the classic
time-cost tradeoff problem. First, we consider the power recovery problem in
which we aim to find a cheapest solution that is still feasible. Then we analyze
a variant in which timing constraints are moved to the objective function.

5.1 Previous Work

The (deadline version of the discrete) time-cost tradeoff problem was introduced
in the context of project planning and scheduling more than 60 years ago [KW59].
An instance of the time-cost tradeoff problem consists of a finite set V of jobs, a
partial order (V,≺), a deadline T > 0, and for every job v a finite nonempty set
Sv ⊆ R2

≥0 of time/cost pairs. An element (t, c) ∈ Sv corresponds to a possible
choice of performing job v with delay t and cost c. The task is to choose a
pair (tv, cv) ∈ Sv for each v ∈ V such that ∑v∈P tv ≤ T for every chain P

(equivalently: the jobs can be scheduled within a time interval of length T ,
respecting the precedence constraints), and the goal is to minimize ∑v∈V cv.

The partial order can be described by an acyclic digraph G = (V,E), where
(v, w) ∈ E if and only if v ≺ w. Every chain of jobs corresponds to a path in
G, and vice versa.

De et al. [De+97] proved that this problem is strongly NP-hard. Indeed,
there is an approximation-preserving reduction from vertex cover [GW04],
which implies that, unless P = NP, there is no 1.3606-approximation algorithm
[DS05]. Assuming the Unique Games Conjecture and P 6= NP, Svensson [Sve12]
could show that no constant-factor approximation algorithm exists.

Even though the time-cost tradeoff has been extensively studied due to its
numerous practical applications, only few positive results about approximation
algorithms are known. Skutella [Sku98] described an algorithm that works
if all delays are natural numbers in the range {0, . . . , l} and returns an l-
approximation. If one is willing to relax the deadline, one can use Skutella’s
bicriteria approximation algorithm [Sku98]. For a fixed parameter 0 < µ < 1, it
computes a solution in polynomial time such that the optimum cost is exceeded
by a factor of at most 1

1−µ and the deadline T is exceeded by a factor of at
most 1

µ
. Unfortunately, for many applications, including VLSI design, relaxing

the deadline is out of the question.

5.2. Results and Outline 59

The instances of the time-cost tradeoff problem that arise in the context of
VLSI design usually have a constant upper bound d on the number of vertices
on any path [Dab+18b]. This is due to a given target frequency of the chip,
which can only be achieved if the logic depth is bounded. For this important
special case, we will describe better approximation algorithms.

The special case d = 2 reduces to weighted bipartite matching and can thus
be solved optimally in polynomial time. However, already the case d = 3 is
APX-hard. This was observed by Děıneko and Woeginger [DG01] who devised
an approximation-preserving reduction from vertex cover in cubic graphs (which
is known to be APX-hard [AK00]).

On the other hand, it is easy to obtain a d-approximation algorithm: either
by applying the Bar-Yehuda–Even algorithm for set covering [BE81; Dab+18b]
or (for fixed d) by simple LP rounding.

As we will observe in Section 5.3, the time-cost tradeoff problem with
depth d can be viewed as a special case of finding a minimum-weight vertex
cover in a d-partite hypergraph. Lovász [Lov75] studied the unweighted case
and proved that the natural LP has integrality gap d

2 . Aharoni, Holzman and
Krivelevich [AHK96] showed this ratio for more general unweighted hypergraphs
by randomly rounding a given LP solution. Gutswami, Sachdeva and Saket
[GSS00] proved that approximating the vertex cover problem in d-partite
hypergraphs with a better ratio than d

2 − 1 + 1
2d is NP-hard, and better than d

2
is NP-hard if the Unique Games Conjecture holds.

5.2 Results and Outline
In the following sections, we first reduce the time-cost tradeoff problem with
depth d to finding a minimum-weight vertex cover in a d-partite hypergraph.
Then we simplify and derandomize the algorithm of Lovász [Lov75] and Aharoni
et al. [AHK96] and show that it works for general nonnegative weights. This
yields a simple deterministic d

2 -approximation algorithm for minimum-weight
vertex cover in d-partite hypergraphs for fixed d and given d-partition. To
obtain a d

2 -approximation algorithm for the time-cost tradeoff problem, we
need a slightly stronger bound because the vertex cover LP can only be solved
approximately (unless d is fixed). This will imply our main approximation:

Theorem 5.1. There is a polynomial-time d
2 -approximation algorithm for the

time-cost tradeoff problem, where d denotes the depth of the instance.

The algorithm is based on rounding an approximate solution to the vertex
cover LP. The basic idea is quite simple: we partition the jobs into levels and
carefully choose an individual threshold for every level, then we accelerate all
jobs for which the LP solution is above the threshold of its level. We get a

60 Chapter 5. Theoretic Bounds for Time-Cost Tradeoff Problems

solution that costs less than d
2 times the LP value. Since the integrality gap is

d
2 [Lov75; AHK96] (even for time-cost tradeoff instances; see Section 5.3), this
ratio is tight.

The results by [GSS00] suggest that this approximation guarantee is essen-
tially best possible for general instances of the vertex cover problem in d-partite
hypergraphs. Still, better algorithms might exist for special cases such as the
time-cost tradeoff problem.

Finally, we show that much better approximation algorithms are unlikely
to exist even for time-cost tradeoff instances. More precisely, we prove:

Theorem 5.2. Let d ∈ N with d ≥ 2 and ρ < d+2
4 be constants. Assuming

the Unique Games Conjecture and P 6= NP, there is no polynomial-time ρ-
approximation algorithm for time-cost tradeoff instances with depth d.

This gives strong evidence that our approximation algorithm is best possible
up to a factor of 2. To obtain our inapproximability result, we leverage
Svensson’s theorem on the hardness of vertex deletion to destroy long paths in
an acyclic digraph [Sve12] and strengthen it to instances of bounded depth by
a novel compression technique.

Section 5.3 introduces the vertex cover LP and explains why the time-cost
tradeoff problem with depth d can be viewed as a special case of finding a
minimum-weight vertex cover in a d-partite hypergraph.

In Section 5.4 we describe our approximation algorithm, which rounds a
solution to this LP. Then, in Sections 5.5 and 5.6 we prove our inapproximability
result.

5.3 The Vertex Cover LP
Let us define the depth of an instance of the time-cost tradeoff problem to be
the number of jobs in the longest chain in (V,≺), or equivalently the number
of vertices in the longest path in the associated acyclic digraph G = (V,E).
We write n = |V | and the depth will be denoted by d throughout this chapter.

First, we note that one can restrict attention to instances with a simple
structure, where every job has only two alternatives and the task is to decide
which jobs to accelerate. This has been observed already by Skutella [Sku98].
The following definition describes the structure that we will work with.

Definition 5.3. An instance I of the time-cost tradeoff problem is called
normalized if for each job v ∈ V the set of time/cost pairs is of the form
Sv = {(0, c), (t, 0)} for some c, t ∈ R+ ∪ {∞}.

In a normalized instance, every job has only two possible ways of being
executed. The slow execution is free and the fast execution has a delay of

5.3. The Vertex Cover LP 61

zero. Therefore, the time-cost tradeoff problem is equivalent to finding a subset
F ⊆ V of jobs that are to be executed fast. The objective is to minimize the
total cost of jobs in F . Note that for notational convenience we allow one of
the alternatives to have infinite delay or cost, but of course such an alternative
can never be chosen in a feasible solution of finite cost, and it could be as well
excluded.

We call two instances I and I ′ of the time-cost tradeoff problem equivalent
if any feasible solution to I can be transformed in polynomial time to a feasible
solution to I ′ with the same cost and vice-versa. We include a proof of Skutella’s
observation for sake of completeness.

Proposition 5.4 (Skutella [Sku98]). For any instance I of the time-cost
tradeoff problem one can construct an equivalent normalized instance I ′ of the
same depth in polynomial time.

Proof Let v be a job of instance I with Sv = {(t1, c1), . . . , (tr, cr)}. By sorting
and removing dominated pairs, we may assume t1 < . . . < tr and c1 > . . . > cr.

To construct I ′, we replace v by r + 1 copies v0, v1, . . . , vr of v, each with
the same predecessors and successors. We define Svi

:= {(0, ci− ci+1), (ti+1, 0)},
where c0 :=∞, cr+1 := 0, and tr+1 :=∞.

As the slow alternatives of the copies vi have increasing delay in i, an
optimum solution always sets consecutive jobs vj, vj+1, . . . vr to the fast solution.
As the last slow solution has infinite delay and the first one has infinite cost,
1 ≤ j ≤ r. Then the total cost at v is given by ∑r

i=j(ci − ci+1) = cj − cr+1 = cj .
As accelerated jobs have delay 0, the longest path through a copy of v is
determined by vj−1, which has delay tj.

Note that it is easy to convert the corresponding solutions of both instances
into each other in polynomial time. �

The structure of only allowing two execution times per job gives rise to a
useful property, as we will now see. As noted above, for a normalized instance I
the solutions correspond to subsets of jobs F ⊆ V to be accelerated. Consider
the clutter C of inclusion-wise minimal feasible solutions to I. Denote by
B = bl(C) the blocker of C, i.e., the clutter over the same ground set V whose
members are minimal subsets of jobs that have nonempty intersection with
every element of C.

Let T > 0 be the deadline of our normalized time-cost tradeoff instance
and tv denote the slow delay of executing job v ∈ V . By the properties of a
normalized instance, the elements of B are the minimal chains P ⊆ V with∑
v∈P tv > T . The well-known fact that bl(bl(C)) = C [EF70; Isb58] immediately

implies the next proposition, which also follows from an elementary calculation.

62 Chapter 5. Theoretic Bounds for Time-Cost Tradeoff Problems

Proposition 5.5. A set F ⊆ V is a feasible solution to a normalized instance
I of the time-cost tradeoff problem if and only if P ∩ F 6= ∅ for all P ∈ B. �

Therefore, our problem is to find a minimum-weight vertex cover in the hy-
pergraph (V,B). If our time-cost tradeoff instance has depth d, this hypergraph
is d-partite and a d-partition can be computed easily:

Proposition 5.6. Given a time-cost tradeoff instance with depth d, we can
partition the set of jobs in polynomial time into sets V1, . . . , Vd (called layers)
such that v ≺ w implies that v ∈ Vi and w ∈ Vj for some i < j. Then,
|P ∩ Vi| ≤ 1 for all P ∈ B and i = 1, . . . , d.

Proof Such a partition can be found by constructing the acyclic digraph G =
(V,E) with (v, w) ∈ E if and only if v ≺ w and setting Vi := {v ∈ V : l(v) = i},
where l(v) denotes the maximum number of vertices in any path in G that
ends in v. �

This also leads to a simple description as an integer linear program. The
feasible solutions correspond to the vectors x ∈ {0, 1}V with ∑v∈P xv ≥ 1 for
all P ∈ B. We consider the following linear programming relaxation, which we
call the vertex cover LP:

minimize:
∑
v∈V

cv · xv

subject to:
∑
v∈P

xv ≥ 1 for all P ∈ B

xv ≥ 0 for all v ∈ V.

(5.1)

Let LP denote the value of this linear program for a given instance. Unless
P=NP, one cannot solve this linear program exactly in polynomial time:

Proposition 5.7. If the vertex cover LP (5.1) can be solved in polynomial
time for normalized time-cost tradeoff instances, then P = NP.

Proof By the equivalence of optimization and separation [GLS81], it suffices
to show that the separation problem is NP-hard. In fact, we show that
deciding whether a given vector x is infeasible for a given instance is NP-
complete. To this end, we transform the Partition problem, which is well
known to be NP-complete: given a list a1, . . . , an of positive integers, is there a
subset I ⊆ {1, . . . , n} with ∑i∈I ai = ∑

i/∈I ai? Given an instance a1, . . . , an of
Partition, construct a time-cost tradeoff instance with 2n jobs vij (i = 1, . . . , n,
j = 0, 1), where vij ≺ vi′j′ whenever i < i′. The fast execution time is 0 for all
jobs, and the slow execution time is also 0 for vi0 but ai for vi1. The deadline

5.3. The Vertex Cover LP 63

is T := A−1
2 , where A = ∑n

i=1 ai. Let xvi0 := 0 and xvi1 := 2ai

A+1 . Then x is
a feasible solution to the LP if for all subsets I ⊆ {1, . . . , n} ∑i∈I ai ≤ T or∑
i∈I xvi1 ≥ 1, which means ∑i∈I ai ≤ A−1

2 or ∑i∈I ai ≥ A+1
2 , or equivalently∑

i∈I ai 6= A
2 . �

However, we can solve the LP up to an arbitrarily small error; in fact, there
is a fully polynomial approximation scheme (as essentially shown by [KK82]):

Proposition 5.8. For normalized instances of the time-cost tradeoff problem
with bounded depth, the vertex cover LP (5.1) can be solved in polynomial time.
For general normalized instances and any given ε > 0, a feasible solution of
cost at most (1 + ε)LP can be found in time bounded by a polynomial in n and
1
ε
.

Proof If the depth is bounded by a constant d, the number of constraints
is bounded by the polynomial |V |d, so the first statement follows from any
polynomial-time linear programming algorithm.

Otherwise, we solve the LP up to a factor 1 + ε for any given 0 < ε ≤ 1 as
follows. Implement an approximate separation oracle by first rounding up the
components of a given vector x to integer multiples of ε

2d and then applying
dynamic programming to check whether ∑v∈P

ε
2dd

2dxv

ε
e ≥ 1 for all P ∈ B. This

requires O(dn2

ε
) time.

Run the ellipsoid method with this oracle. It computes an optimum solution
x to a relaxed linear program, hence with cost at most LP. Moreover, (1 + ε)x
is a feasible solution to the original LP (5.1) because for every P ∈ B we have
ε
2 +∑v∈P xv ≥

∑
v∈P

(
xv+ ε

2d

)
≥ 1, implying (1+ε)∑v∈P xv ≥ (1+ε)(1− ε

2) ≥ 1.
�

We remark that the d-partite hypergraph vertex cover instances given by
[AHK96] can be also considered as normalized instances of the time-cost tradeoff
problem; see Figure 5.1. This shows that the integrality gap of LP (5.1) is at
least d

2 .

Theorem 5.9 ([AHK96]). Let d ≥ 2. For instances with depth d, the integrality
gap of the linear program (5.1) is at least d

2 .

Proof Consider an acyclic digraph with n = d(k + 1) vertices V = {(i, j)|i =
1, . . . , d, j = 0, . . . , k} for odd k ∈ N. We add edges between (i, j) and (i′, j′)
whenever i′ = i+ 1. The slow variant of job (i, j) takes duration j without any
cost. By paying a cost of 1 the duration drops to 0. Let the deadline be given
by T = dk

2 . The instance for d = 3 is depicted in Figure 5.1.

64 Chapter 5. Theoretic Bounds for Time-Cost Tradeoff Problems

...

...

...

(1, k) (2, k) (3, k)

(3, 1)(2, 1)(1, 1)

(1, 0) (2, 0) (3, 0)

Figure 5.1: The structure of the time-cost tradeoff instance
attaining an asymptotic gap of d/2 (here, d = 3). Figure reprinted
from our publication [DHV20].

Consider the fractional solution of assigning vertex (i, j) a value of x(i,j) = j
T

.
The cost of this solution is given by

cfrac =
∑

(i,j)∈V
x(i,j) =

∑
(i,j)∈V

j

T
= d

T

k∑
j=0

j = dk(k + 1)
2T = k + 1.

We need to show that the fractional solution satisfies all constraints.
Consider a violated path P = (1, j1), . . . , (d, jd). By construction the value
x(i,j) = j

T
corresponds exactly to the ratio between the delay of (i, j) and the

deadline. Therefore, P has a total x value of ≥ 1 if and only if the path has a
total delay of ≥ T .

Fix any integral solution. Let τi be the number of vertices in Vi =
{(i, 0), . . . , (i, k)} that the solution accelerates. Thus, the total cost of the
solution is cint = ∑d

i=1 τi. Clearly, the delay of the slowest job in level i in the
integral solution is at least k − τi. As the levels Vi and Vi+1 are completely
connected for any i = 1, . . . , d− 1, we can conclude that

d∑
i=1

(k − τi) ≤ T and hence
d∑
i=1

τi ≥ dk − T = dk

2 .

We can thus bound the integrality gap by

cint

cfrac
≥ dk/2
k + 1 −−−→k→∞

d

2 .

5.4. Rounding Fractional Vertex Covers in d-Partite Hypergraphs 65

�

Since |P | ≤ d for all P ∈ B, the Bar-Yehuda–Even algorithm [BE81] can be
used to find an integral solution to the time-cost tradeoff instance of cost at
most d · LP, in fact we proved this in the last chapter.

In the following we will improve on this. From now on, we assume that
we are given a d-partition of a hypergraph and an LP solution; for time-cost
tradeoff instances we get this from Propositions 5.6 and 5.8.

5.4 Rounding Fractional Vertex Covers in d-
Partite Hypergraphs

In this and the following section, we show how to round a fractional vertex cover
in a d-partite hypergraph with given d-partition. Together with the results
of the previous section, this yields an approximation algorithm for time-cost
tradeoff instances and will prove Theorem 5.1.

We will first start with an algorithm that only achieves a guarantee of
d
2 + (dd2e −

d
2)1

d
≤ dd+1

2 e. It is still interesting as its analysis will reveal several
properties of the vertex cover LP. In the next section we will show an improved
algorithm, which is even slightly better than d

2 .
For our analysis, we will also need to consider the dual linear program of

the vertex cover LP 5.1:

maximize:
∑
P∈B

yP

subject to:
∑

P∈B:v∈P
yP ≤ cv, v ∈ V

yP ≥ 0, P ∈ B.

(5.2)

For any instance of the d-partite hypergraph vertex cover problem, we are
given a partition of the vertex set V1, . . . , Vq, such that |P ∩ Vi| ≤ 1 for any
hyperedge P ∈ B. We call Vj a layer of G. For instances of the time-cost
tradeoff problem we explained how to obtain such a partition in Proposition
5.6.

For our algorithm, we need the following important observation, which is
due to linear program duality.

Lemma 5.10. Let (x∗v)v∈V be an optimum solution to the primal linear program
(5.1) of cost LP. Let Vi be a layer in the d-partite hypergraph. Then, we have∑

v∈Vi:x∗v>0 cv ≤ LP.

66 Chapter 5. Theoretic Bounds for Time-Cost Tradeoff Problems

Proof Let (yP)P be a corresponding dual solution. By complementary slack-
ness we have

∑
v∈V :x∗v>0

cv =
∑

v∈V :x∗v>0

∑
P∈B:v∈P

yP . (5.3)

Clearly every hyperedge P ∈ B has at most one vertex in Vi, therefore we have
∑

v∈Vi:x∗v>0

∑
P∈B:v∈P

yP ≤
∑
P∈B

yP .

Putting everything together we see that
∑

v∈Vi:x∗v>0
cv ≤

∑
P∈B

yP = LP.

Here the last equality follows from linear program duality. �

Corollary 5.11. Let (x∗v)v be an optimum solution to the primal linear program
(5.1) of cost LP. Then, ∑v∈V :x∗v>0 cv ≤ d · LP.

Proof We apply Lemma 5.10 to each layer and obtain:

∑
v∈V :x∗v>0

cv =
d∑
i=1

∑
v∈Vi:x∗v>0

cv ≤ d · LP.

�

The statement of this Corollary was also observed previously by Klein and
Wexler [KW16]. Because of its simplicity we present their proof here.

Lemma 5.12 ([KW16]). Let (x∗v)v be an optimum solution to the primal linear
program (5.1) of cost LP. Also assume that cv = 1 for all v ∈ V . Then,∑
v∈V :x∗v>0 x

∗
v ≥ 1

d
· LP.

Proof By contradiction, suppose that the average of nonzero x∗v variables is
below 1

d
. Let ε = minx∗v>0 x

∗
v. If ε ≥ 1

d
we obtain a contradiction. Otherwise,

construct a solution by setting h = ε
(
ε− 1

d

)−1
and x′v = x∗v − h(x∗v − 1

d
). It is

easy to see, that x′v ≥ 0 for all v ∈ V . Note that h < 0.
Let {v1, . . . , vd} ∈ B be a hyperedge. As x∗v is feasible we have ∑d

i=1 x
∗
vi
≥ 1.

Equivalently we observe ∑d
i=1(x∗vi

− 1
d
) ≥ 0. Therefore,

d∑
i=1

x′vi
=

d∑
i=1

x∗vi
− h

d∑
i=1

(
x∗vi
− 1
d

)
≥ 1.

It follows that x′v is feasible.

5.4. Rounding Fractional Vertex Covers in d-Partite Hypergraphs 67

Note, that by our assumption ∑
v∈V

(
x∗v − 1

d

)
< 0. As h is negative the

total cost of the new solution has decreased, which is a contradiction to the
optimality of (x∗v)v∈V .

�

Our next goal is to devise a d
2 + (dd2e −

d
2)1

d
approximation algorithm.

5.4.1 A d
2 + (dd2e −

d
2)1
d approximation

In this section we will improve the simple d approximation of the previous
chapter to a d

2 + (dd2e −
d
2)1

d
approximation. To obtain our guarantee, we first

show how to eliminate vertices with large value.

Lemma 5.13. Let d be a constant and α ≥ d
2 . Assume that we can solve the

linear program (5.1) and that there is a polynomial-time algorithm A for the
vertex cover problem for ≤ d partite hypergraphs, which computes a solution
of cost at most α · LP whenever x∗v < 2

d
for all v ∈ V in an optimum solution

of the linear program (5.1). Then there is an α-approximation algorithm for
general instances.

Proof The algorithm works as follows. Given an instance I with ≤ d paritions
of the vertex set, first solve the LP (5.1) to obtain an optimum solution x∗

(cf. Proposition 5.8). If x∗v < 2
d

for all v ∈ V , apply A and output the result.
Otherwise let v0 ∈ V with x∗v0 ≥

2
d
. Let I ′ be the instance where xv0 = 1 is

fixed to be in the vertex cover. Recursively solve I ′ and output the result,
appending v0.

The algorithm terminates because the amount of unfixed vertices strictly
decreases in every iteration. It is also obvious that the output is a feasible
solution. We show that it yields an α-approximation by induction on the
amount of unfixed vertices. The case when we call A directly is trivial.

Let LP and LP′ denote the values of the linear program for the instance I
and I ′, respectively. We have LP′ ≤ LP− cv0 · x∗v0 . By induction our algorithm
computes a solution to I ′ of cost at most α · LP′; finally it accelerates v0 to
obtain an overall solution of cost at most

αLP′ + cv0

≤ α
(
LP− cv0 · x∗v0

)
+ cv0

= αLP +
(
1− αx∗v0

)
cv0 (5.4)

≤ αLP,

where we used x∗v0 ≥
2
d
≥ 1

α
in the last inequality. �

68 Chapter 5. Theoretic Bounds for Time-Cost Tradeoff Problems

Lemma 5.13 shows that we may assume that all vertices have small value in
the LP solution. Then all elements of B contain vertices of nonzero LP value
in many levels (more than d

2). Therefore choosing dd2e levels and returning
vertices positive LP value in these levels yields a feasible solution, which is not
too expensive by Lemma 5.10.

For odd d we can design a slightly improved algorithm:

Theorem 5.14. Let d be a constant. Assume we can solve the linear program
(5.1) in polynomial time. There is a polynomial time algorithm which, for any
instance of the d-partite hypergraph vertex cover problem with given partition,
computes a solution of cost at most d

2 + (dd2e −
d
2)1

d
times the optimum value of

the linear program (5.1).

Proof By Lemma 5.13 we can assume that we have an optimum solution
(x∗v)v∈V to the linear program (5.1) with the property x∗v < 2

d
for all v ∈ V .

First, consider the case of even d, we have to show a d
2 approximation

guarantee.
Due to Corollary 5.11 we have ∑v∈V :x∗v>0 cv ≤ d · LP. Now consider some

hyperedge P ∈ B. The number of vertices v ∈ P with x∗v > 0 is more than d
2 ,

so

|{v ∈ P : x∗v > 0}|+ d

2 > d ≥ |P |.

This shows that choosing all vertices v with x∗v > 0 in d
2 of the levels

V1, . . . , Vd yields a solution that covers at least one vertex of every hyperedge.
This is equivalent to being a feasible solution to the covering problem. By
Lemma 5.10 the total cost is at most d

2LP. Note that the choice of the levels
was arbitrary.

Now assume that d ≥ 3 is odd. We have to present a d
2 + 1

2d approximation.
First, choose a level Vj such that ∑v∈Vj

cvx
∗
v is maximum. Now we “buy this

level”. More precisely we set x′v := dxve for v ∈ Vj and x′v = xv for v ∈ V \ Vj.
By Lemma 5.10 we pay at most LP for this.

Let LP′ be the cost of an optimum solution to this modified linear program
where we fixed all variables for v ∈ Vj to x′v. By the choice of j,

LP′ ≤
(

1− 1
d

)
LP = d− 1

d
LP.

We now proceed with the remaining d− 1 layers as above, obtaining a solution
of d−1

2 LP′. If we add what we paid for layer Vj, we get an overall solution of
total cost

LP + d− 1
2 LP′

5.4. Rounding Fractional Vertex Covers in d-Partite Hypergraphs 69

≤ LP + d− 1
2 · d− 1

d
LP

= d2 + 1
2d LP =

(
d

2 + 1
2d

)
LP.

�

5.4.2 An improved rounding algorithm
We will now improve the guarantee of the rounding algorithm from d

2 +(dd2e−
d
2)1

d

to d
2 . A further advantage of the algorithm is, that we will not need to solve the

LP again and do not even need an explicit list of the edge set of the hypergraph.
This is interesting if d is not constant, as there can be exponentially many
hyperedges. The algorithm only requires the vertex set, a d-partition, and a
feasible solution to the LP (a fractional vertex cover). For normalized instances
of the time-cost tradeoff problem such a fractional vertex cover can be obtained
as in Proposition 5.8, and a d-partition by Proposition 5.6.

Our algorithm is based on two previous works for the unweighted d-partite
hypergraph vertex cover problem. For rounding a given fractional solution,
Lovász [Lov75] obtained a deterministic polynomial-time (d2 + ε)-approximation
algorithm for any ε > 0. Let us quickly sketch his idea.

First, Lovász constructs a family of matrices Ad,w = (aij)i=1,...,d,j=0,...,w, with
the property that:

• each row of Ad,w is a permutation of {0, . . . , w}

• the sum of each column is at most ≤ ddw2 e.

Now, for a fractional solution x to the d-partite hypergraph vertex cover
problem, a (large) constant C is chosen, such that xvC ∈ N. The idea is
to set w = b2(C − 1)/dc. Then, for every j ∈ {0, . . . , w} we may obtain a
feasible cover for every j = 0, . . . , w by rounding all xv for v ∈ Vi to 1 if and
only if xvC > aij (where V1, . . . , Vd is the given d-partition of our hypergraph).
A simple analysis shows that returning the cheapest such cover is a d

2
C
C−1

approximation, which converges to d
2 for C →∞.

Based on this, Aharoni, Holzman and Krivelevich [AHK96] described
a randomized recursive algorithm that works in more general unweighted
hypergraphs. We simplify their algorithm for d-partite hypergraphs, which
will allow us to obtain a deterministic polynomial-time algorithm that also
works for the weighted problem and always computes a d

2 -approximation. At
the end of this section, we will slightly improve on this guarantee in order to
compensate for an only approximate LP solution.

We will first describe the algorithm in the even simpler randomized form;
then we will derandomize it. Like Lovász, our algorithm computes a threshold

70 Chapter 5. Theoretic Bounds for Time-Cost Tradeoff Problems

x
2
9

1
9

2
9

3
9

4
9

y
0

Figure 5.2: Selecting a pair (x, y) by uniformly sampling a point
in the yellow area gives an example of how to choose random
numbers x, y (and z = 1 − x − y) as in Lemma 5.15. Figure
reprinted from our publication [DHV20].

for each layer to determine whether a variable xv is rounded up or down. To
compute the random thresholds, and to allow efficient derandomization later,
we will use a probability distribution with the following properties.

Lemma 5.15. There is a probability distribution that selects x ∈ [0, 2
9], y ∈

[2
9 ,

4
9], z ∈ [4

9 ,
6
9], such that x+ y + z = 1 and x, y, z are uniformly distributed in

their respective intervals.

Proof Generate three random numbers in base 3, a = 0.a1a2a3, . . ., b =
0.b1b2b3, . . ., c = 0.c1c2c3, . . ., by randomly sampling digits {ai, bi, ci} = {0, 1, 2}
(that is, we select a random permutation of {0, 1, 2} to be the i-th digit of the
three numbers). Let x′ be the smallest number, y′ the second smallest, and z′

the largest number of a, b, c. It is easy to see, that x′ ∈ [0, 1
3], y′ ∈ [1

3 ,
2
3] and

z′ ∈ [2
3 , 1]. Also by construction x′+y′+z′ = 3

2 . Setting x = 2
3x
′, y = 2

3y
′, z = 2

3z
′

yields the desired result. �

We remark that for implementing an algorithm that samples from this
distribution, a different construction is more suitable. For example, one may
start by selecting x ∈ [0, 2

9] randomly, and then use a case distinction as
illustrated in Figure 5.2 to select y randomly in a suitable subset of [2

9 ,
4
9].

Finally, we may set z = 1− x− y. It is easy to verify that this also achieves
the claimed properties.

For our proof we will need to slightly generalize this distribution to an
arbitrary number of elements.

5.4. Rounding Fractional Vertex Covers in d-Partite Hypergraphs 71

Lemma 5.16. For any d ≥ 2, there is a probability distribution that selects
a1, . . . , ad, such that ∑d

i=1 ai = 1 and ai is uniformly distributed in [2(i−1)
d2 , 2i

d2].
For any i, j such that |i− j| ≥ 3, the random variables corresponding to ai and
aj are independent.

Proof For d = 2 we can just choose a1 uniformly in [0, 1
2] and set a2 = 1− a1.

The case d = 3 follows from Lemma 5.15. In general, note that the sum of
the expectations of the ai is ∑d

i=1
2i−1
d2 = 1. Hence we can partition 1, . . . , d

into groups of two or three and apply the above with appropriate scaling and
shifting.

More precisely, if d is odd, we choose x, y, z according to Lemma 5.15 and
set a1 = 9x

d2 , a2 = 9y
d2 , and a3 = 9z

d2 . Then the remaining number of indices
is even, and we group them into pairs; for indices i and i + 1 we choose ai
uniformly in [2(i−1)

d2 , 2i
d2] and set ai+1 := 4i

d2 − ai. �

Theorem 5.17. Let x be a fractional vertex cover in a d-partite hypergraph with
given d-partition. There is a randomized linear-time algorithm that computes
an integral solution x̄ of expected cost E[∑v∈V cv · x̄v] ≤ d

2
∑
v∈V cv · xv.

Proof Let V1, . . . , Vd be the given d-partition of our hypergraph (V,B), so
|P ∩ Vi| = 1 for all i = 1, . . . , d and every hyperedge P ∈ B. We write l(v) = i

if v ∈ Vi and call Vi a layer of the given hypergraph.
Now consider the following randomized algorithm, which is also illustrated

in Figure 5.3: Choose a random permutation σ : {1, . . . , d} → {1, . . . , d}
and choose random numbers ai uniformly distributed in

[
2(σ(i)−1)

d2 , 2σ(i)
d2

]
for

i = 1, . . . , d such that ∑d
i=1 ai = 1, as constructed in Lemma 5.16. Then, for

all v ∈ V , set x̄v := 1 if xv ≥ al(v) and x̄v := 0 if xv < al(v).
To show that x̄ is a feasible solution, observe that any hyperedge P ∈ B

has ∑v∈P xv ≥ 1 = ∑d
i=1 ai ≥

∑
v∈P al(v) and hence xv ≥ al(v) for some v ∈ P .

It is also easy to see that the probability that x̄v is set to 1 is exactly
min{1, d2xv}. Indeed, if xv ≥ 2

d
, we surely set x̄v = 1. Otherwise, xv ∈[

2(j−1)
d2 , 2j

d2

]
for some j ∈ {1, . . . , d}; then we set x̄v = 1 if and only if σ(l(v)) < j

or (σ(l(v)) = j and al(v) ≤ xv), which happens with probability j−1
d

+ 1
d
(xv −

2(j−1)
d2)d2

2 = d
2xv.

Hence, the expected cost E[∑v∈V cv · x̄v] is at most d
2
∑
v∈V cv · xv. �

Now we derandomize this algorithm and show how to implement it in
polynomial time.

Theorem 5.18. Let x be a fractional vertex cover in a d-partite hypergraph
with given d-partition. There is a deterministic algorithm that computes an
integral solution x̄ of cost ∑v∈V cv · x̄v ≤ d

2
∑
v∈V cv · xv in time O(n3).

72 Chapter 5. Theoretic Bounds for Time-Cost Tradeoff Problems

a1

a2

a3 a4

a5
s1

s4
s3

s2
s5

2
5

0

1

V1 V2 V3 V4 V5

σ(i)

1i 2 3 4 5

3 5 2 1 4

Figure 5.3: A sketch of thresholds a1, . . . , a5 chosen by our
randomized algorithm in Theorem 5.17 for the case d = 5.
The circles represent vertices in the hypergraph, drawn by their
position in the partition and the value of their corresponding
variable in the LP. Suppose the permutation (σ(1), . . . , σ(5)) =
(3, 5, 2, 1, 4) is chosen. Then the thresholds ai are randomly
chosen in the light blue intervals

[
2(σ(i)−1)

d2 , 2σ(i)
d2

]
; moreover, the

thresholds a1, a3, a4 are chosen independently of the thresholds
a2, a5, as indicated by their color. The points above the thresholds
are filled; these variables are rounded up to 1, while the empty
circles represent variables that are rounded down to 0. Finally,
the figure also shows “slack” values s1, . . . , s5, telling how much
each threshold could be lowered without changing the solution
returned by our algorithm. These will play a key role to improve
the approximation guarantee in Theorem 5.19. Figure reprinted
from our publication [DHV20].

Proof For a fixed value σ(i) = j and a random choice of ai ∈
[

2(j−1)
d2 , 2j

d2

]
we

have the expected cost

E
[
x̄v | σ(i) = j

]
=


0, if xv < 2(j−1)

d2

xv − 2(j−1)
d2 · d2

2 , if xv ∈
[

2(j−1)
d2 , 2j

d2

]
1 if xv > 2j

d2

Let ρ(i, j) := ∑
v∈Vi

cv ·E
[
x̄v | σ(i) = j

]
be the total expected cost of layer i

if we assign σ(i) = j in the random permutation. We compute a permutation σ

5.4. Rounding Fractional Vertex Covers in d-Partite Hypergraphs 73

that minimizes the total expected cost ∑d
i=1 ρ(i, σ(i)); this is a minimum-cost

perfect matching problem in a complete bipartite graph with d + d vertices.
Hence this step can be implemented with a running time of O(d3) [EK72;
Tom71].

Therefore, we may now assume that the permutation σ is fixed. The
probability distribution described in Lemma 5.16 chooses the values ai for
i ∈ {1, . . . , d} independently for groups of two or three layers, with fixed sum
SI := ∑

i∈I ai for each such group I. Setting a′i = max{xv : v ∈ Vi, xv < ai},
we see that the result in group I depends only on the numbers a′i (i ∈ I)
and that there are less than n3 possibilities. Among all choices of the a′i
(i ∈ I) with ∑i∈I a

′
i < SI , we can thus choose an optimum one (with minimum∑

i∈I
∑
v∈Vi:xv>a′i

cv) in O(n3) time. �

It is easy to improve the running time in Theorem 5.18 to O(d3 + n2/d2),
but this is not important since already for time-cost tradeoff instances solving
the LP dominates the overall running time of our approximation algorithm.

Since the vertex cover LP can be solved only approximately (Proposition 5.8),
this would only yield an approximation ratio of d

2 + ε for the time-cost tradeoff
problem (unless d is fixed). In order to obtain a true d

2 -approximation algorithm
(and thus prove Theorem 5.1), we need a slightly stronger bound, which we
derive next. Figure 5.1 shows that the integrality gap is at least d

2 − O(d
n
),

In the following we will match this lower bound. Again, we first describe an
improved randomized algorithm and then derandomize it.

Theorem 5.19. Let d ≥ 4. Let x be a fractional vertex cover in a d-
partite hypergraph with given d-partition. There is a randomized linear-time
algorithm that computes an integral solution x̄ of expected cost ∑v∈V cv · x̄v ≤
(d2 −

d
64n)∑v∈V cv · xv.

Proof First we choose the permutation σ and thresholds a1, . . . , ad with∑d
i=1 ai = 1 randomly as above such that the thresholds are independent

except within groups of two or three. For i ∈ {1, . . . , d} denote the slack of
level i by si := min{1

d
, ai, ai − max{xv : v ∈ Vi, xv < ai}}. Lowering the

threshold ai by less than si would yield the same solution x̄. The reason for
cutting off the slack at 1

d
will become clear only below.

Next we randomly select one level λ ∈ {1, . . . , d}. Let Λ be the correspond-
ing group (cf. Lemma 5.16), i.e., λ ∈ Λ ⊆ {1, . . . , d}, |Λ| ≤ 3, and ai is inde-
pendent of aλ whenever i /∈ Λ. Now raise the threshold aλ to a′λ = aλ +∑

i/∈Λ si.
Set a′i = ai for i ∈ {1, . . . , d} \ {λ}.

As before, for all v ∈ V , set x̄v := 1 if xv ≥ a′l(v) and x̄v := 0 if xv < a′l(v).
We first observe that x̄ is feasible. Indeed, if there were any hyperedge P ∈ B
with xv < a′l(v) for all v ∈ P , we would get 1 ≤ ∑

v∈P xv <
∑
v∈P :l(v)/∈Λ(al(v) −

74 Chapter 5. Theoretic Bounds for Time-Cost Tradeoff Problems

sl(v)) + ∑
v∈P :l(v)∈Λ a

′
λ ≤

∑
i/∈Λ(ai − si) + ∑

i∈Λ\{λ} ai + a′λ = ∑d
i=1 ai = 1, a

contradiction.
We now bound the expected cost of x̄. Let v ∈ V . With probability d−1

d

we have l(v) 6= λ and, conditioned on this, an expectation E
[
x̄v | λ 6= l(v)

]
=

d
2 min{xv, 2

d
} ≤ d

2xv as before. Now we condition on l(v) = λ and in addition, for
any S with 0 ≤ S ≤ d−2

d
, on ∑i/∈Λ si = S; note that aλ is independent of S. The

probability that x̄v is set to 1 is d
2 max{0, min{xv−S, 2

d
}} ≤ xv

2
d

+S ≤
d
2(1−S)xv

in this case. In the last inequality we used S ≤ d−2
d

, and this was the reason to
cut off the slacks. In total we have for all v ∈ V :

E[x̄v] = d− 1
d
· E[x̄v | λ 6= l(v)]

+ 1
d
·
∫ d−2

d

0
P

∑
i/∈Λ

si = S | λ = l(v)
 · E

x̄v | λ = l(v),
∑
i/∈Λ

si = S

 dS

≤ d− 1
d
· d2xv + 1

d
·
∫ d−2

d

0
P

∑
i/∈Λ

si = S | λ = l(v)
 · d2(1− S)xv dS

≤ d

2

1− 1
d

∫ d−2
d

0
P

∑
i/∈Λ

si = S | λ = l(v)
 · S dS

 · xv
= d

2

(
1− 1

d
· E
[
S | λ = l(v)

])
xv.

Let Λ[v] be the the set Λ in the event λ = l(v). We estimate

E
[
S | λ = l(v)

]
=

∑
i/∈Λ(v)

E[si] ≥
∑
i/∈Λ(v)

1
d(ni + 1) ≥

(d− 3)2

d(n+ d) ≥
d

32n.

Here ni = |Vi|, and the first inequality holds because E[si] is maximal if
{xv : v ∈ Vi} = { 2j

d(ni+1) : j = 1, . . . , ni}. We conclude E
[∑

v∈V cv · x̄v
]
≤

(d2 −
d

64n)∑v∈V cv · xv. �

Let us now derandomize this algorithm. This is easier than before because
we can afford to lose a little again.

Theorem 5.20. Let d ≥ 4. Let x be a fractional vertex cover in a d-partite
hypergraph with given d-partition. There is a deterministic algorithm that
computes an integral solution x̄ of cost ∑v∈V cv · x̄v ≤ (d2 −

d
65n)∑v∈V cv · xv in

runtime O(n3d).

Proof We will argue that we can approximately compute the best possi-
ble choice for values ai where i ∈ {1, . . . , d}, such that ∑d

j=1 aj ≤ 1 and∑d
j=1

∑
v∈Vj ,xv≥aj

cv is minimized. As our randomized algorithm computes a

5.5. Inapproximability 75

solution of this form, the optimum solution to this problem cannot exceed the
expected cost of the randomized solution.

Fix some ε′ > 0. Let ψ = ε′

n
(d2 −

d
64n)∑v∈V cv · xv. By scaling the costs we

can assume that ψ ≥ 1. We define rounded costs c′v =
⌊
cv

ψ

⌋
for v ∈ V . Now,

iterating increasingly on values i = 1, . . . , d and for every α ∈ {0, . . . ,
⌈

2n
ε′

⌉
}

we store the solution of objective ∑i
j=1

∑
v∈Vj ,xv≥aj

c′v at most α minimizing∑i
j=1 aj . With dynamic programming, this can be done in time O(dn2ε′−1). At

the end we look up the cheapest computed solution with ∑d
j=1 aj ≤ 1.

It remains to analyze the cost of this solution. Let c∗ = (d2−
d

64n)∑v∈V cv ·xv
be the upper bound on the expected cost of the solution by our randomized
algorithm. Let COST’ denote the cost of the solution computed by our
dynamic program with respect to the cost function c′v · ψ for v ∈ V , i.e.
COST’ = ∑d

j=1
∑
v∈Vj ,xv≥aj

ψc′v. As the process of rounding only decreased
costs, we have COST’ ≤ c∗. Note, that for all v ∈ V we have

cv − ψc′v = cv − ψ
⌊
cv
ψ

⌋
≤ cv − ψ

(
cv
ψ
− 1

)
= ψ ≤ ε′

n
c∗.

Let COST denote the cost of the solution computed by our dynamic program
with respect to the original cost function cv for v ∈ V , i.e. COST =∑d
j=1

∑
v∈Vj ,xv≥aj

cv.
By the above computation we have COST ≤ COST’ + n · ε′

n
c∗ ≤ (1 + ε′)c∗.

Putting everything together we obtain a solution x̄v of cost ∑v∈V cv · x̄v ≤
(1 + ε′)(d2 −

d
64n)∑v∈V cv · xv. By letting ε′ = 1

65·32n = 1
2080n we obtain a solution

of cost at most (d2 −
d

65n)∑v∈V cv · xv.
�

As explained above, together with Propositions 5.6 and 5.8 (with ε = 1
65n),

Theorem 5.20 implies Theorem 5.1.

5.5 Inapproximability

Gutswami, Sachdeva and Saket [GSS00] proved that approximating the vertex
cover problem in d-partite hypergraphs with a better ratio than d

2 is NP-hard
under the Unique Games Conjecture. We show that even for the special case
of time-cost tradeoff instances, the problem is hard to approximate by a factor
of d+2

4 .
Let us briefly sketch a technique of [GSS00] and explain why it does not

serve our purpose. Let d ≥ k ≥ 2 be integers. One can reduce the vertex
cover problem in k-uniform hypergraphs, i.e., for hypergraphs H = (U, F)
such that |e| = k for all e ∈ F , to the d-partite case. The idea is to take d
disjoint copies of the vertex set U as the vertex set of a new hypergraph G.

76 Chapter 5. Theoretic Bounds for Time-Cost Tradeoff Problems

For every hyperedge e ∈ F , the hypergraph G contains all hyperedges e′ that
contain exactly one copy of every vertex in e and at most one vertex of any
of the d copies of U . Clearly this hypergraph G is d-partite. It is easy to see
that any optimal solution in G must contain either no or at least d − k + 1
of the copies of a vertex and there is always a vertex cover of size dOPT,
where OPT denotes the size of an optimum vertex cover in H. By a result of
Khot and Regev [KR08], the vertex cover problem in k-uniform hypergraphs
is NP-hard to approximate with a factor of k − ε under the Unique Games
Conjecture. Therefore, for any d ≥ 4, by letting k = dd+1

2 e, it is easy to see
that we obtain a d-partite hypergraph vertex-cover instance, which does not
admit a d

4 -approximation. However, G does certainly not represent a time-cost
tradeoff instance.

In this and the next section, we will show Theorem 5.2, which is our main
inapproximability result. Insetad of starting from k-uniform hypergraphs, we
devise a reduction from the vertex deletion problem in acyclic digraphs, which
Svensson [Sve12] called DVD. Let k be a positive integer; then DVD(k) is
defined as follows: given an acyclic digraph, compute a minimum-cardinality
set of vertices whose deletion destroys all paths with k vertices.

We remark that an undirected version of this problem has been called
k-path vertex cover [Bre+11] or vertex cover Pk [TZ11]. Both the DVD(k) and
the k-path vertex cover problem are interesting on their own and have direct
applications in chip design or network construction [Ach+12; PRS94].

The DVD(k) problem is easily seen to admit a k-approximation algorithm:

Lemma 5.21. For all k ≥ 1, DVD(k) admits a k-approximation algorithm.

Proof Find a maximal set of vertex-disjoint paths, each with k vertices, and
take the set of all their vertices. �

Svensson proved that anything better than this simple approximation
algorithm would solve the unique games problem:

Theorem 5.22 ([Sve12]). Assuming the Unique Games Conjecture, for any
integer r ≥ 2 and arbitrary constant ε > 0 the following problem is NP-hard:
Given a directly acyclic graph G = (V,E), distinguish between the following
cases:

• Completeness: There are disjoint subsets V1, . . . , Vr ⊂ V satisfying
|Vi| ≥ 1−ε

r
|V | and every subgraph induced by all but one of these subsets

has no path of ≥ r vertices.

• Soundness: Every induced subgraph of ε|V | vertices has a path of ≥ |V |1−ε
vertices.

5.5. Inapproximability 77

This implies the following Lemma.

Lemma 5.23. Let k ∈ N with k ≥ 2 and ρ < k be constants. Let OPT denote
the size of an optimum solution for a given DVD(k) instance. Assuming the
Unique Games Conjecture it is NP-hard to compute a number l ∈ R+ such that
l ≤ OPT ≤ ρl.

Proof Assume by contradiction that we can compute a ρ = k−γ approximation
for some γ > 0. Take an NP-hard instance of Theorem 5.22 with r = k and ε

small enough, such that |V |1−ε ≥ k. (We can assume that |V | has at least an
arbitrary minimum size as smaller instances can be decided by enumeration).
Also, choose ε small enough, such that (1− ε)/(1

r
+ ε) ≥ r− γ. This is possible

as limε→0(1− ε)/(1
r

+ ε) = r.
If we are in the Soundness case, every subgraph G[Y] with |Y | ≤ ε|V | has

a path of |V |1−ε ≥ k vertices. Therefore, the optimum solution for our vertex
deletion problem on the same underlying graph has cost OPT ≥ (1− ε)|V |.

For the Completeness case, we can find disjoint sets V1, . . . , Vr ⊂ V such
that G[(V1 ∪ . . . ∪ Vr)\Vi] has no path of r = k vertices and |Vi| ≥ 1−ε

r
|V | for

all i. Note that for Vε := V \(V1 ∪ . . . , Vr) we have

|Vε| = |V | −
r∑
i=1
|Vi| ≤ |V | −

r∑
i=1

1− ε
r
|V | = ε|V |.

Therefore, the set X = V1 ∪ Vε satisfies |X| ≤ 1−ε
r
|V | + ε|V | and G[V \X] =

G[(V1 ∪ . . . ∪ Vr)\V1] has no path of r = k vertices. This means that there is a
solution to the vertex deletion problem of cost OPT ≤ (1

r
+ ε)|V |.

However as (1− ε)/(1
r

+ ε) ≥ r−γ = k−γ we can distinguish Completeness
and Soundness. �

This Lemma is the starting point of our proof. Svensson [Sve12] already
observed that DVD(k) can be regarded as a special case of the time-cost tradeoff
problem. Note that this does not imply Theorem 5.2 because the hard instances
of DVD(k) constructed in the proof of Theorem 5.23 have unbounded depth
even for fixed k. Recall that the depth of an acyclic digraph is the number of
vertices in a longest path. The following is a variant (and slight strengthening)
of Svensson’s observation.

Lemma 5.24. Any instance of DVD(k) (for any k) can be transformed in
linear time to an equivalent instance of the time-cost tradeoff problem, with the
same depth and the same optimum value.

Proof Let G = (V,E) be an instance of DVD(k), an acyclic digraph, say
of depth d. Let l(v) ∈ {1, . . . , d} for v ∈ V such that l(v) < l(w) for all

78 Chapter 5. Theoretic Bounds for Time-Cost Tradeoff Problems

a,1

a

b

d e

1

2

3

a,2

a,3

b,2

b,3

c,2

c,3

d,1

d,2

d,3

e,1

e,2

e,3

TCT

c

l(v DVD(k)

(

b,1 c,11

2

3

Figure 5.4: The transformation of Lemma 5.24. An instance
of DVD(k) is transformed into an equivalent instance of the
time-cost tradeoff problem. Jobs with fixed execution time are
depicted as blue squares. Figure reprinted from our publication
[DHV20].

(v, w) ∈ E. Let J := {(v, i) : v ∈ V, i ∈ {1, . . . , d}} be the set of jobs of our
time-cost tradeoff instance. Job (v, i) must precede job (w, j) if (v = w and
i < j) or ((v, w) ∈ E and l(v) ≤ i < j). Let ≺ be the transitive closure of
these precedence constraints. For v ∈ V , the job (v, l(v)) is called variable and
has a fast execution time 0 at cost 1 and a slow execution time d+ 1 at cost
0. All other jobs are fixed; they have a fixed execution time d at cost 0. The
deadline is d2 + k − 1. A sketch of this construction is given in Figure 5.4.

We claim that any set of variable jobs whose acceleration constitutes a
feasible solution of this time-cost tradeoff instance corresponds to a set of
vertices whose deletion destroys all paths in G with k vertices, and vice versa.
Indeed, the total delay of a chain in the time-cost tradeoff instance is at most
(d − 1)(d + 1) unless the chain contains a job in each level and contains no
variable job that is accelerated, in which case the total delay is d2 + j, where
j is the number of variable jobs in the chain. These chains with total delay
d2 + j correspond to the paths with j vertices in G. �

Therefore a hardness result for DVD(k) for bounded depth instances
transfers to a hardness result for the time-cost tradeoff problem with bounded
depth. We will show the following strengthening of Theorem 5.23:

5.6. Reducing Vertex Deletion to Constant Depth 79

Theorem 5.25. Let k, d ∈ N with 2 ≤ k ≤ d and ρ < k(d+1−k)
d

be constants.
Let OPT denote the size of an optimum solution for a given DVD(k) instance.
Assuming the Unique Games Conjecture it is NP-hard to compute a number
l ∈ R+ such that l ≤ OPT ≤ ρl.

It is easy to see that Theorem 5.25 and Lemma 5.24 imply Theorem 5.2.
Indeed, let d ∈ N with d ≥ 2 and ρ < d+2

4 , and suppose that a ρ-approximation
algorithm A exists for time-cost tradeoff instances of depth d. Let k := dd+1

2 e
and consider an instance of DVD(k) with depth d. Transform this instance to
an equivalent time-cost tradeoff instance by Lemma 5.24 and apply algorithm
A. This constitutes a ρ-approximation algorithm for DVD(k) with depth d.
Since ρ < d+2

4 ≤
k(d+1−k)

d
, Theorem 5.25 then implies that the Unique Games

Conjecture is false or P = NP.1

It remains to prove Theorem 5.25, which will be the subject of the next
section.

5.6 Reducing Vertex Deletion to Constant
Depth

In this section we prove Theorem 5.25. The idea is to reduce the depth of a
digraph by transforming it to another digraph with small depth but related
vertex deletion number. Let k, d ∈ N with 2 ≤ k ≤ d, and let G be a digraph.
We construct an acyclic digraph Gd of depth at most d by taking the tensor
product with the acyclic tournament on d vertices: Gd = (V d, Ed), where
V d = V × {1, . . . , d} and Ed = {((v, i), (w, j)) : (v, w) ∈ E and i < j}. It is
obvious that Gd has depth d. An example of this construction is depicted in
Figure 5.5. Here is our key lemma:

Lemma 5.26. Let G be an acyclic directed graph and k, d ∈ N with 2 ≤ k ≤ d.
If we denote by OPT(G, k) the minimum number of vertices of G hitting all
paths with k vertices, then

(d+ 1− k) ·OPT(G, k) ≤ OPT(Gd, k) ≤ d ·OPT(G, k). (5.5)

Lemma 5.26, together with Theorem 5.23, immediately implies Theorem
5.25: assuming a ρ-approximation algorithm for DVD(k) instances with depth
d, with ρ < k(d+1−k)

d
, we can compute OPT(G, k) up to a factor less than k for

1In fact, this proof shows that the threshold in Theorem 5.2 can be taken 1
4d larger for odd

d; e.g., there is no ρ-approximation algorithm for ρ < 4
3 for d = 3.

80 Chapter 5. Theoretic Bounds for Time-Cost Tradeoff Problems

v

v

w

w

x

x

y

y

v w x y

v w x y1

2

3

4

v w x y

Figure 5.5: A directed path P4 and the graph tensor product
with the acyclic tournament on 4 vertices. The colored vertices
show a solution to the vertex deletion problems with k = 2.
Figure reprinted from our publication [DHV20].

any digraph G. By Theorem 5.23, this would contradict the Unique Games
Conjecture or P 6= NP.

Before we prove Lemma 5.26, let us give two examples which show that the
bounds in (5.5) are sharp for all d and k, for infinitely many acyclic digraphs.

For the lower bound, consider the acyclic tournament Dn on the vertices
1, . . . , n. Obviously, OPT(Dn, k) = n − k + 1. Moreover, OPT(Dd

n, k) ≤
(d+ 1− k)(n− k+ 1) because {(i, j) : i = 1, . . . , n− k+ 1, j = 1, . . . , d+ 1− k}
is a feasible solution for DVD(Dd

n, k).
For the upper bound, consider the directed path Pn on the vertices 1, . . . , n,

where n = (r + 1)k − 1 for some r ∈ N. Obviously OPT(Pn, k) = r

because {k, 2k, . . . , rk} is a feasible solution. To show OPT(P d
n , k) ≥ rd, we

find rd vertex-disjoint paths in P d
n , each with k vertices: for i = 1, . . . , r

and j = 1, . . . , d, the vertex set of the (di − d + j)-th path arises from
{(ki, j), (ki + 1, j + 1), . . . , (ki + k − 1, j + k − 1)} by replacing (s, d + t)
by (s− k + t, t) for all s, t ≥ 1. See Figure 5.6.

We remark that the left inequality in (5.5) holds also for general (not
necessarily acyclic) digraphs. However, for general digraphs it may be that
OPT(Gd, k) > d ·OPT(G, k).

Finally, we prove Lemma 5.26.

Proof (Lemma 5.26) Let G be an acyclic digraph. The upper bound of (5.5)
is trivial: for any set W ⊆ V that hits all k-vertex paths in G we can take
X := W × {1, . . . , d} to obtain a solution to the DVD(k) instance Gd.

5.6. Reducing Vertex Deletion to Constant Depth 81













  

  1

2

3

4

  









 

 

 









 

 

 









5 





























Figure 5.6: Construction of rd vertex-disjoint paths, each with
k vertices, in P d

(r+1)k−1 for r = 3, d = 5, and k = 3. The edge sets
corresponding to paths are highlighted in red. Figure reprinted
from our publication [DHV20].

To show the lower bound, we fix a minimal solution X to the DVD(k)
instance Gd. Let Q be a path in Gd with at most k vertices. We write
start(Q) = i if Q begins in a vertex (v, i). We define Q as the set of paths in
Gd with exactly k vertices. For Q ∈ Q let lasthit(Q) denote the last vertex of
Q that belongs to X. For x ∈ X we define

ϕ(x) := max{start(Q) : Q ∈ Q, lasthit(Q) = x}.

Note that this is well-defined due to the minimality of X, and 1 ≤ ϕ(x) ≤
d+ 1− k for all x ∈ X.

We will show that for j = 1, . . . , d+ 1− k,

Sj := {v ∈ V : (v, i) ∈ X and ϕ((v, i)) = j for some i ∈ {1, . . . , d}}

hits all k-vertex paths in G. This shows the lower bound in (5.5) because then
OPT(G, k) ≤ mind+1−k

j=1 |Sj| ≤ |X|
d+1−k .

Let P be a path in G with k vertices v1, . . . , vk in this order. Consider d
“diagonal” copies D1, . . . , Dd of (suffixes of) P in Gd: the path Di consists of
the vertices (vs, s+ i− k), . . . , (vk, i), where s = max{1, k + 1− i}. Note that
the paths D1, . . . , Dk−1 have fewer than k vertices.

We show that for each j = 1, . . . , d+ 1− k, at least one of these diagonal
paths contains a vertex x ∈ X with ϕ(x) = j. This implies that Sj ∩ P 6= ∅
and concludes the proof.

First, Dd contains a vertex in x ∈ X with ϕ(x) = d + 1 − k, namely
lasthit(Dd). Now we show for i = 1, . . . , d− 1 and j = 1, . . . , d− k:

82 Chapter 5. Theoretic Bounds for Time-Cost Tradeoff Problems

D

Di

i+1

j+1

j

Q

Q′

x′

x

Figure 5.7: A visualization of the proof idea of the central
Claim in the proof of Lemma 5.26. The Claim asserts that if Di+1
contains a vertex x ∈ X with ϕ(x) = j + 1, then Di contains
a vertex x′ ∈ X with ϕ(x′) ≥ j. The upper diagonal Di+1 is
colored in light green, the lower diagonal Di is depicted in dark
green. We start by selecting a path Q with lasthit(Q) ∈ Di+1
and start(Q) = j + 1. This path is depicted on the left; the
vertex x = lasthit(Q) is highlighted in red. We construct a path
Q′ (shown on the right) such that x′ = lasthit(Q′) ∈ Di and
start(Q′) = start(Q)− 1. This path Q′ results from appending
the end of path Q to an appropriate subpath of the next lower
diagonal Di. Figure reprinted from our publication [DHV20].

Claim: If Di+1 contains a vertex x ∈ X with ϕ(x) = j + 1, then Di contains a
vertex x′ ∈ X with ϕ(x′) ≥ j.

This Claim implies the theorem because D1 consists of a single vertex (vk, 1),
and if it belongs to X, then ϕ((vk, 1)) = 1.

To prove the Claim (see Figure 5.7 for an illustration), let x = (vh, l(x)) ∈
X ∩ Di+1 and ϕ(x) ≥ j + 1, and let x be the last such vertex on Di+1.
We have ϕ(x) ≥ start(Di+1) for otherwise we have start(Di+1) > 1, so Di+1

contains k vertices and we should have chosen x = lasthit(Di+1); note that
ϕ(lasthit(Di+1)) ≥ start(Di+1).

5.7. Variants of the Time-Cost Tradeoff Problem 83

Let Q ∈ Q be a path attaining the maximum in the definition of ϕ(x). So
start(Q) = ϕ(x) and lasthit(Q) = x. Suppose x is the p-th vertex of Q; note
that

p ≤ 1 + l(x)− ϕ(x) (5.6)

because Q starts on level ϕ(x), rises at least one level with every vertex, and
reaches level l(x) at its p-th vertex.

Now consider the following path Q′. It begins with part of the diagonal
Di, namely (vh+1−p, l(x)− p), . . . , (vh, l(x)− 1), and continues with the k − p
vertices from the part of Q after x. Note that by (5.6)

l(x)− p ≥ ϕ(x)− 1 ≥ max{j, start(Di+1)− 1} ≥ max{1, start(Di)},

so Q′ is well-defined.
The second part of Q′ does not contain any vertex from X because

lasthit(Q) = x. Hence x′ := lasthit(Q′) is in the diagonal part of Q′, i.e.,
in Di. By definition, ϕ(x′) ≥ start(Q′) = l(x)− p ≥ j. �

5.7 Variants of the Time-Cost Tradeoff Prob-
lem

Instead of obeying a strict delay bound in the time-cost tradeoff problem, one
can introduce penalties α, β ≥ 0 and to look for a solution which minimizes
the weighted sum of penalizing the longest path by α and the total size by β.
This problem formulation can arise for example in global technology mapping.
More formally, consider the following problem definition.

Problem 5: (α, β)-delay penalty time-cost tradeoff problem
Input: An acyclic graph G = (V,E), edge delays de ∈ R≥0 for e ∈ E.

For every v ∈ V (G) a set of alternative vertex delays Av =
{(dv,1, cv,1), . . . , (dv,ve)}.

Task: Compute a map π : V → N such that for every v ∈
V (G) : π(v) ∈ {1, . . . , kv}. The cost we want to minimize is
αmaxP∈P

(∑
v∈V (P) dv,π(v) +∑

e∈E(P) de
)

+ β
∑
v∈V (G) cv,π(v). Here, P de-

notes the set of inclusion-wise maximal paths in G.

On the positive side, we will present an approximation algorithm for the
problem.

Theorem 5.27. For every ε > 0 there is a polynomial 2 + ε approximation for
the (α, β)-delay penalty time-cost tradeoff problem.

84 Chapter 5. Theoretic Bounds for Time-Cost Tradeoff Problems

Proof We will use the following result by Skutella [Sku98]: For every µ ∈ (0, 1)
there is a bicriteria approximation algorithm Aµ for the regular time-cost
tradeoff problem that returns a solution which exceeds the deadline by at most
1
µ

and the cost of the optimum solution by at most 1
1−µ .

Note that the original proof by Skutella used a slightly different problem
formulation in which we choose different realization for edges instead of vertices.
However, the simple proof of the bicriteria algorithm can easily be adapted
for the vertex variant. Indeed we simply have to solve the linear relaxation of
the problem and round up all vertex variables of lp value at least 1− µ and
otherwise round down. This clearly increases the cost at most by a factor of

1
1−µ and the delay of any vertex and thereby any path by at most 1

µ
.

Let D↓ be the delay of the solution where every vertex is set to the slowest
available variant, and D↑ the delay of the solution where every vertex is fast.
Note that log(D↓/D↑) is polynomial in the size of the input. Similarly let C↓
be the cheapest and C↑ the most expensive solution.

Our algorithm will try all possible deadlines Dh = D↑ · (1 + ε)h, h ∈ N
such that Dh ≤ (1 + ε)D↓ and return the best encountered solution. And for
every Dh iterate over all possible costs Cj = C↓ · (1 + ε)j, j ∈ N such that
Cj ≤ (1 + ε)C↑.

Note that we can enumerate these pairs in O(log(D↓/D↑) log(C↑/C↓)/ε2).
Assume that the optimum solution to our problem is given by OPT =

αD? + βC?. Here D? is the deadline and C? the total cost. Eventually we
will try some deadline budget pair (Di, Cj) such that Di ∈ [D?, (1 + ε)D?] and
Cj ∈ [C?, (1 + ε)C?]. For ease of notation, we write D̂ = Di, Ĉ = Cj.

Consider the instance of the TCT problem with deadline D̂. As D̂ ≥ D?

we know that OPTTCT ≤ C? ≤ Ĉ. If we can find a solution to the (α, β)-delay
penalty time-cost tradeoff problem with cost CA ≤ 2(αD̂ + βĈ) we are done
as (αD̂ + βĈ) ≤ (α(1 + ε)D? + β(1 + ε)C?) = (1 + ε)OPT.

We further simplify notation by α̂ := αD̂, β̂ := βĈ. Let γ̂ =
√
α̂ · β̂ be

the geometric mean of α̂ and β̂. By basic properties of the geometric mean
min(α̂, β̂) ≤ γ̂ ≤ α̂ + β̂ ≤ max(α̂, β̂).

We define
µ = α̂

α̂ + γ̂
.

Therefore we have
1− µ = γ̂

α̂ + γ̂
.

Obviously, 0 < µ < 1 and therefore we may apply the bicriteria algorithm
by Skutella. This yields a solution that may exceed the deadline D̂ by at
most 1

µ
and the optimum cost OPTTCT by at most 1

1−µ . This corresponds to a
solution of total cost:

5.7. Variants of the Time-Cost Tradeoff Problem 85

CA =α 1
µ
D̂ + β

1
1− µOPTTCT ≤ α̂

1
µ

+ β
1

1− µĈ = α̂
1
µ

+ β̂
1

1− µ =

=α̂ + γ̂ + β̂
α̂ + γ̂

γ̂
=

(α̂ + γ̂)
(
β̂ + γ̂

)
γ̂

=

(
α̂ +

√
α̂β̂
)(
β̂ +

√
α̂β̂
)

√
α̂β̂

=


√
α̂β̂

β̂
+ 1

(β̂ +
√
α̂β̂

)
=
√
α̂β̂ + α̂ + β̂ +

√
α̂β̂ = α̂ + β̂ + 2

√
α̂β̂

We are now able to bound the approximation ratio

CA

αD̂ + βĈ
≤
α̂ + β̂ + 2

√
α̂β̂

α̂ + β̂
= 1 +

2
√
α̂β̂

α̂ + β̂
≤ 2.

Here the last inequality is the inequality of arithmetic and geometric means
x+y

2 ≥
√
xy for x, y ≥ 0. �

Now we want to show a lower bound for the approximability of the problem.

Theorem 5.28. There is some ρ > 0 such that there is no 1 +ρ approximation
for the (1, 1)-delay penalty time-cost tradeoff problem unless P=NP.

Proof We closely follow a hardness proof for the discrete time-cost tradeoff
problem by Děıneko et al.[DG01]. The reduction goes from the vertex cover
problem in cubic graphs which is APX hard as shown by Alimonti et al.[AK00].

Assume that G = (V,E) is some 3-regular undirected graph; our task is
to find a vertex cover in G. We may assume without loss of generality that
G is connected as we can solve the vertex cover problem for the connected
components separately. We can further assume that |V (G)| ≥ 5 as we can solve
small instances by enumeration. By applying the theorem of Brooks [Bro41], we
see that G has a three-coloring which can be computed in polynomial time. Let
V = X∪̇Y ∪̇Z be a partition of the vertex set induced by this three-coloring.

We construct an instance G′ of the restricted discrete time-cost tradeoff
problem as follows: We set V (G′) = X ∪ Y ′ ∪ Z, where

Y ′ = {y1, y2, y3 : y ∈ Y } = Y 1 ∪̇ Y 2 ∪̇ Y 3.

The vertices x ∈ X have two alternatives Ax = {(2, 0), (0, 1)}. Similarly,
we introduce alternatives Az = {(2, 0), (0, 1)} for all z ∈ Z and for vertices
y2 ∈ Y 2 we also add alternatives Ay2 = {(2, 0), (0, 1)}. Vertices y1, y3 ∈ Y 1, Y 3

have a fixed delay of 0. Now we add edges e = (y1, y2) and edges e = (y2, y3),
both with fixed delay 1.

86 Chapter 5. Theoretic Bounds for Time-Cost Tradeoff Problems

x

y1

y2

y3

z

(2, 0)

(0, 1)

(1, 0) (1, 0) (2, 0)

(0, 1)

(2, 0)

(0, 1)
(0, 0) (0, 0)

(1, 0)

Figure 5.8: An excerpt of the constructed graph G′. Dashed
edges are inserted if the corresponding edge is in E(G). The
descriptions indicate available delay cost pairs.

For every edge {x, y} ∈ E(G) we add an edge (x, y2) with delay 0. Similarly
we add an edge (y2, z) with delay 0 for every edge {y, z} ∈ E(G). For every
edge {x, z} ∈ E(G) we add an edge (x, z) with delay 1 to G′. This completes
the construction of G′, in summary we have:

E(G′) = {(y1, y2), (y2, y3) : y ∈ Y } ∪ {(x, y2) : {x, y} ∈ E(G)}∪
∪{(y2, z) : {y, z} ∈ E(G)} ∪ {(x, z) : {x, z} ∈ E(G)}.

An illustration of the constructed graph is given in Figure 5.8.
Assume that we have a vertex cover W of size k in G. We claim that

we find a feasible solution for the instance of the time-cost tradeoff problem
arising from G′, where D = 4 with the cost k. We set all vertices of the form
EW = {x : x ∈ W ∩ X} ∪ {y2 : y ∈ W ∩ Y } ∪ {z : z ∈ W ∩ Z} to the fast
alternative. Clearly, the cost of this solution will be k.

Assume that there is a path P in G′ with longer delay than 4. There are
only 4 possibilities for such a path:

1. A path of the form (x, y2), (y2, y3), where both x and y2 use the slow
alternative. In this case neither x nor y are in W but there is an edge
{x, y} ∈ E(G). Therefore W was not a vertex cover, contradicting our
assumption.

2. The other three cases are analogous.

This shows that every vertex cover of size k yields a feasible solution of the
time-cost tradeoff instance G′ with deadline 4 of cost k.

We will now describe our instance of the (1, 1)-delay penalty time-cost
tradeoff problem that corresponds to this vertex cover problem. First note
that there is a simple polynomial 2-approximation for the vertex cover problem.
Therefore we can compute some ρ ∈ N such that the optimum solution has
cost OPT ∈ [ρ2 , ρ].

5.8. The Power Recovery Problem 87

We change the edge costs such that adding a vertex into the cover incurs a
cost of 3

4ρ instead of 1. Therefore we may assume OPT ∈ [3
8 ,

3
4] for the vertex

cover instance.
By this transformation we may assume that every solution to the (1, 1)-

DPTCT problem respects the deadline, as otherwise the cost is CA ≥ α · 5 =
5 > 4 + 3

4 which is the cost of our 2-approximation that has a deadline of 4.
Assume that we have a λ > 1 approximation for the (1, 1)-DPTCT problem.

We see that:

CA
OPT = 4 + ϕ · γ

4 + γ
≤ λ

(⇔) ϕ ≤ λ(4 + γ)− 4
γ

.

As we have
∂

∂γ

λ(4 + γ)− 4
γ

= 4− 4λ
γ2 < 0,

we can conclude that the function is maximal if γ = 3
8 . Therefore,

ϕ ≤ 1
3(35λ− 32).

As limλ→1
1
3(35λ− 32) = 1, this would imply that we may approximate the

vertex cover problem in cubic graphs arbitrary well which implies P=NP. �

Note that by scaling all costs and delays we may always assume that α = β = 1.
If there is a further bound on the range of possible costs and delays better
approximation algorithms may be possible.

5.8 The Power Recovery Problem
In practice, we observe that in approximative solutions for the time-cost tradeoff
problem a substantial number of vertices that are accelerated by the algorithm
can be discarded from the final solution without destroying feasibility. Of
course, one could do this greedily or use the reverse order in which the vertices
were accelerated, but this does not approximate the best possible choice of
edges to be deleted from the solution.

Indeed, there is a simple d
2 approximation algorithm for this problem as we

will now show.

Theorem 5.29. Let
(
G = (V,E), (cv)v∈V , (d1

v, d
2
v)v∈V

)
be an instance of the

discrete time-cost tradeoff problem and Y ⊆ V a feasible solution. Then there

88 Chapter 5. Theoretic Bounds for Time-Cost Tradeoff Problems

is a polynomial time algorithm that finds a set X ⊆ Y such that Y \X is still
feasible and d

2c(X) ≥ c(X∗), where X∗ denotes the optimum solution.

Proof As before we partition the set of vertices V into sets V1, . . . , Vd by setting
Vi := {v ∈ V : depth(w) = i − 1} where depth(v) denotes the (unweighted)
maximum length of any path ending in v. If we can show that for any pair Vi, Vj
we can find the set Z ⊆ (Vi ∪ Vj) such that UY \Z = ∅ and c(Z) is maximal, we
are done by simply returning the best of those sets.

To show this note that any path P ∈ P can contain at most one vertex
from Vi and one from Vj. Let us call these two vertices vi ∈ Vi and vj ∈ Vj (if
they exist). Now it may happen that we may not add vi and vj simultaneously
to Z. In this case we call vi and vj conflicting. The problem is now equivalent
to finding a maximum set (w.r.t. the weight function c(e)) of pairwise non-
conflicting vertices Z ⊆ Vi ∪ Vj.

This is equivalent to finding a maximum weight independent set in the
undirected bipartite graph with vertex set Vi ∪ Vj and edge set {{vi, vj} :
vi and vj are conflicting}}. This clearly can be done in polynomial time by
solving a flow problem. �

The inapproximability of this problem is still open. At first glance the
problem looks as difficult as the time-cost tradeoff problem, but our inap-
proximability proof cannot easily be adapted. If we assume that we have
a 2 approximation for the recovery problem, it is still not easy to separate
completeness and soundness. After our transformation, which reduces the
problem to constant depth, approximately 1

2 |V | vertices can be always set to
the slow alternative in both cases (soundness and completeness). Analyzing
the inapproximability is an interesting problem for future research.

Chapter 6

Gate Sizing

In the previous chapters, we considered the problem of threshold voltage
optimization. For gates used on a chip not only threshold voltages can be
adjusted, but also different implementations with varying transistor areas are
available. Compared to Vt optimization, one major difficulty occurs when
transistor areas are modified. Due to capacitance changes, also gates in the
neighborhood are affected by resizing operations. Consider a gate g ∈ G and
its predecessors Vpred(g) in the timing graph. This situation is illustrated in
Figure 6.1. When we increase the size of g, also the downstream capacitance
of predecessor gates will increase. Using Elmore delay, we observe that this
incurs an additional delay at these gates. This chapter is based on [Dab+18a],
which is joint work with Nicolai Hähnle, Stephan Held, and Ulrike Schorr.

Our main contributions in this chapter are as follows. First, we present a
new runtime analysis for the resource sharing formulation for gate sizing by
Schorr [Sch15]. Thereby we resolve small inaccuracies in the proof of Schorr
[Sch15], in particular concerning the outer binary search for the optimum power
budget. By separating all needed assumptions from the proof, we allow our
analysis to be easily applied to different delay models and objective functions
by checking a list of prerequisites. Then, we extend the analysis of Schorr
[Sch15] between the projected subgradient method and the resource sharing
algorithm for gate sizing. We point out that an additional power constraint
significantly improves the subgradient method. In earlier work by Langkau
[Lan00] and Szegedy [Sze05] a separate power constraint was omitted in the
problem formulation.

Finally, we present a practical implementation of the resource sharing
algorithm for gate sizing with heuristic modifications. Previously, Flach et al.
computed the best solutions on many instances of the ISPD 2013 benchmark
set [Fla+14]. This algorithm was adapted for the use on industrial instances
by Reimann et al. [RSR16a]. We compare our new implementation with
their state-of-the-art algorithm on the same instances used in their publication.
On all designs our algorithm obtains similar or better power savings while

89

90 Chapter 6. Gate Sizing

drastically reducing the runtime. The overall runtime is now fast enough to
allow the algorithm to be used in practice. Due to the large power savings, it
was quickly enabled in the default design flow by our industrial partner IBM.

6.1 Previous Work
Due to the strong interdependency of multiple gates, the gate sizing problem
seems very difficult. However, while the number of possible Vt levels is usually
a small constant (2-3), up to 10 or more sizes can be available for every gate.
This justifies the relaxation to consider fractional gate sizes x ∈ [l, u] for gates
g ∈ G. We will additionally assume that the delay functions are convexifiable.
It is well known that for RC delay models this is the case after a variable
transformation [FD85].

For solving the gate sizing problem, a large variety of approaches was
proposed. Some examples are linear programming [CK05], network flows
[RD13], delay or slew budgeting [Ngu+03; Hel09], sensitivity-based heuristics
[Hu+12; Kah+13], interior point methods [Sap+93; Boy+05], or Lagrangian
relaxation [CCW99; TS02; WDZ07; OBH12; Fla+14]. A survey can be found
in [HH16].

Under our assumptions the gate sizing problem can be solved close to
optimality, e.g. by the projected subgradient method applied to the Lagrangian
dual function [CCW99], or with interior point methods [Sap+93; Boy+05].
However, for large instance sizes interior point methods become impracticable
as each iteration has a super-quadratic running time [TS02; BJ08]. In contrast,
each iteration of the projected subgradient method solves a Lagrangian sub-
problem in near-linear time [CW01], but without good bounds on the number
of subgradient steps.

Langkau presented a gate sizing algorithm based on the projected subgradi-
ent method [Lan00]. This approach was later extended by Szegedy [Sze05]. In
both cases the idea is to solve the Lagrangian subproblem by a local refinement
step. It was already observed by Chu and Wong [CW01] that such a local
greedy solves the Lagrangian subproblem for RC delay models. The conver-
gence rate bounds were further improved by both Langkau and Szegedy [Lan00;
Sze05]. However, in their approach no separate power constraint was added to
the problem formulation. In this chapter we will give evidence that adding a
separate power budget and the corresponding constraints to the optimization
problem will lead to superior results for both feasible and infeasible designs.

Schorr [Sch15] formulated the gate sizing problem in the resource sharing
framework and compared it to the subgradient method. Overall, she observed
improved convergence for the resource sharing based approach and divergence
for the subgradient method. We rule out some inaccuracies in the runtime

6.2. Gate Sizing as a Resource Sharing Problem 91

g

Vpred(g) Vsibl(g) Vsucc(g)

Figure 6.1: A gate g and the timing subgraph in its region.
Sizing up gate g will increase the downstream capacitance of its
predecessor gates in Vpred(g) and increase their corresponding
delays. If slews are also considered, even the sibling gates can be
affected by this change. Figure reprinted from our publication
[Dab+18a] (© 2018 IEEE).

analysis and give a proof that handles the general case in which the optimum
power consumption is not known in advance.

6.2 Gate Sizing as a Resource Sharing Prob-
lem

We use the resource sharing formulation for gate sizing by Schorr [Sch15].
We denote the set of gates with G and the set of feasible cell vectors with
X = (Xg)g∈G, where Xg is the set of alternative cell types for gate g ∈ G. For
simplicity, we assume that minXg = l and maxXg = u for all gates g ∈ G. A
solution x ∈ X specifies a cell type xg ∈ Xg for every gate g ∈ G.

Furthermore, we assume that timing constraints are modeled by a timing
graph D and delay functions delaye : X → R≥0 for all edges e ∈ E that specify
the delay delaye(x) of e given a solution x. More details can be found in
Chapter 2.1.

We assume that for each gate g ∈ G there is a function powerg : Xg → R≥0

specifying the power consumption for choosing a specific cell type for g. The
total power consumption is simply the sum of the gate power values. The cell
selection problem can then be formulated as follows:

minimize power(x) :=
∑
g∈G

powerg(xg) (6.1)

92 Chapter 6. Gate Sizing

subject to av + delaye(x) ≤ aw ∀ e = (v, w) ∈ E(D)
av ≥ 0 ∀ v ∈ Pinp

av ≤ T ∀ v ∈ Pout

x ∈ X,

where powerg(xg) denotes the power consumption of cell type xg, av the arrival
time at v ∈ V , and T the desired clock cycle time. We make the simplifying
assumption that all signals start at time 0 and all required arrival times equal
a unique clock cycle time T .

An equivalent formulation forces each path delay to be bounded by T . To
this end, let P denote the set of (inclusion-wise) maximal paths in D, i.e. the
set of paths between a signal start and end point. Then (6.1) is equivalent to

minimize power(x) :=
∑
g∈G

powerg(xg) (6.2)

subject to
∑

e∈E(P)
delaye(x) ≤ T ∀ P ∈ P

x ∈ X,

where E(P) ⊆ E denotes the set of timing graph edges in path P . At a
first glance, the path formulation (6.2) appears inferior due to the possibly
exponential number of paths and, thus, constraints. However, as we saw in
Theorem 3.4, even an exponential amount of path resources can be handled in
polynomial time in the resource sharing framework.

We use the resource sharing formulation for gate sizing by Schorr [Sch15].
Namely, we use the timing path resources explained in Section 3.3.3. In addition,
we add a single power resource. In total, the set of resources is thus given
by R = P ∪ {power}. To define the power resource usage, we will assume
that some power budget B ∈ R is known. It can be computed by an outer
binary search on the best possible value. This leads to the following feasibility
problem.

power(x) ≤ B,∑
e∈E(P)

delaye(x) ≤ T ∀ P ∈ P ,

x ∈ X.

(6.3)

Due to the interdependency of the gates, we only add a single customer
C = {C}. Usage functions of power and path resources are defined by the
respective power consumption and path delay of a given solution. The downside
of this fomulation is that the oracle problem will require to find a solution for
all gates simultaneously.

An oracle function for the gate customer computes for given resource weights

6.2. Gate Sizing as a Resource Sharing Problem 93

ω ∈ RR feasible sizes x for all gates such that the weighted resource usage

ωpower
power(x)

B
+
∑
P∈P

ωP

∑
e∈E(P) delaye(x)

T
(6.4)

is minimized up to a factor of σ > 1. With implicit edge weights

ωe :=
∑

P∈P: e∈E(P)
ωP , (6.5)

the sum (6.4) can be rewritten as

ωpower
power(x)

B
+
∑
e∈E

ωe
delaye(x)

T
. (6.6)

Note that the weights (ωe)e∈E fulfill the flow conservation rule ∑e∈δ−(v) ωe =∑
e∈δ+(v) ωe because they are derived from the path weights. As an interesting

side effect, the Karush-Kuhn-Tucker (KKT) conditions are fulfilled by (ωe)e∈E
without requiring an extra projection step as in the Lagrangian relaxation based
algorithm described in [CCW99]. However, the resource sharing algorithm for
gate sizing does not depend on the KKT conditions.

To satisfy all prerequisites for the resource sharing algorithm, we define a
set of technical constraints.

A1 X = [l, u]G, where l, u ∈ R>0 and 1 ≤ l ≤ u, where umax := max{ug : g ∈
G} is a small constant compared to the netlist size.

A2 For all e ∈ E, the function delaye(x) is convex and for all g ∈ G powerg(x)
is convex and nondecreasing.

A3 power(u)/power(l) ≤ Û ,

A4 the gradient ∇power(x) = ∇∑g∈G powerg(xg) is Lipschitz continuous with
bound KP ,

A5 the gradient ∇∑e∈E delaye(x) is Lipschitz continuous with bound KD, and

A6 minx∈X,e∈E delaye(x) ≥ dmin > 0 (dmin ∈ R),

where Û ,KP and KD are technology-specific constants independent of the
netlist. Note that A3 and A4 hold for prevalent linear power functions with
KP = maxg∈G,x∈Xg powerg(x) and Û ≤ umax. Schorr [Sch15] shows that A5
holds for the RC-delay model if the fan-in and fan-out of each gate is bounded
by a constant. As we only use the gate sizing algorithm for buffered netlists,
this assumption is met for our application. Finally, A6 usually holds because a
gate of interest will at least drive the input pin capacitance of another gate.

By leveraging Theorem 3.2 one can show the following theorem.

94 Chapter 6. Gate Sizing

Theorem 6.1 ([Dab+18a]). Assuming A1–A6, ε > 0, and that the gate
sizing problem has a feasible solution, we can compute a gate sizing so-
lution that minimizes the optimum power up to a factor of (1 + ε) and
violates any delay constraint by at most a factor of (1 + ε) in time
O
(
u2

maxK̂ · Tgrad · Λ · Û · ε−3 log |P| log log Û
ε

)
.

We will now show how to derive it. By setting λpower = ωpower/B and
λe = ωe/T , we can rewrite (6.4) as a Lagrange function similar to [CCW99;
TS08] with weighted power:

L(λ, x) := λpowerpower(x) +
∑
e∈E

λedelaye(x). (6.7)

For the RC-delay model, the Lagrange function can be minimized in
polynomial time with a greedy algorithm as proposed in Chu and Wong [CW01].
Under certain assumptions, a solution x ∈ X with |(x∗i − xi)/x∗i | ≤ ε for all
i = 1, . . . , n can be computed in O(n log(1/ε)) time for ε > 0. However, in our
context we are interested in an approximation guarantee on the value of (6.7),
whose scale depends on the exponentially growing weights.

Theorem 6.2. Assume that A1–A6 hold and let Tgrad be the time that is needed
to compute the gradient ∇L(λ, x), which we also assume to dominate the time it
takes for changing x in gradient direction. Let further K̂ := max

(
KP

power(l) ,
KD

dmin

)
.

Then there exists an oracle for the gate customer that computes for ω ∈ RR≥0

and σ > 1 a solution x ∈ X in time O
(
TgradK̂

u2
max
σ−1

)
such that the weighted

resource usage (6.6) of the gate customer is minimized up to a factor of σ.

Proof To simplify notation, we consider the minimization of the transformed
weighted resource usage L(λ, x) in (6.7) instead of (6.6). For fixed resource
weights λ its gradient ∇L(λ, x) is Lipschitz continuous in x by A4 and A5:

lip(λ) := max
x,y∈X

∥∥∥∇L(λ, x)−∇L(λ, y)
∥∥∥
∞

‖x− y‖∞
≤ λpowerKP + max

e∈E
λeKD.

We apply the well-known conditional gradient method of Frank and Wolfe
[FW56] to L(λ, x). Starting with an initial solution x(0) ∈ X, in each iteration
k of this descent method a minimizer s := arg miny∈X〈y,∇L(λ, x(k))〉 of the
linear approximation at x(k) is computed and a step from x(k) towards s is
performed: x(k+1) := x(k) + θ(k)(s− x(k)) with step size θ(k) = 2

k+2 . The linear
minimization subproblem can be solved in linear time: For each entry sg (g ∈ G)

6.2. Gate Sizing as a Resource Sharing Problem 95

we set

sg =


lg if ∇L(λ, x(k))g > 0
ug if ∇L(λ, x(k))g < 0
x(k)
g otherwise.

Let diamX := maxx,y∈X‖x− y‖∞ ≤ umax be the diameter of X that is
bounded by umax by A1, and let opt(λ) = minx∈X L(λ, x) be the minimum
resource consumption for weights λ. The convergence analysis of the conditional
gradient (see for example Jaggi [Jag13]) yields that after k ≥ 1 iterations

L(λ, x(k))− opt(λ) ≤ 2 lip(λ)
k + 2 diam

2
X .

It follows that a solution x with L(λ, x)− opt(λ) ≤ σ − 1 can be computed in
O
(
lip(λ)u2

max
σ−1

)
iterations.

Now let lbopt be a lower bound on opt(λ). We run the conditional gradient
method up to accuracy (σ−1) · lbopt such that L(λ, x) ≤ opt(λ)+(σ−1) · lbopt ≤
σ · opt(λ) as desired.

It remains to find a good lower bound lbopt to prove the desired total running
time. In particular, we are interested in a running time that is independent of
the weights λ (and hence independent of ω). We can bound

lbopt ≥ max
{
λpower · power(l),max

e∈E
λe · dmin

}
.

This implies a bound for lip(λ)/lbopt:

lip(λ)/lbopt = λpowerKP + maxe∈E λeKD

lbopt

≤ λpowerKP

λpowerpower(l)
+ maxe∈E λeKD

maxe∈E λedmin

= KP

power(l) + KD

dmin
≤ 2K̂.

Thus, It takes O
(
lip(λ)u2

max
(σ−1)·lbopt

)
= O

(
K̂ u2

max
σ−1

)
iterations and O

(
TgradK̂

u2
max
σ−1

)
time

to achieve an σ-approximate solution. �

The running time depends on the problem width Λ, which is defined as
the maximum ratio by which a single customer can overuse a resource in any

96 Chapter 6. Gate Sizing

solution compared to the optimum:

Λ := max
1, sup

{
(usgc(xc))r

λ∗
: r ∈ R, c ∈ C, xc ∈ Xc

}. (6.8)

We will use Theorem 3.2 to analyze the runtime of the resource sharing
algorithm for gate sizing. As it was defined several chapters ago, we repeat its
statement.

Theorem 3.2 (Müller, Radke, and Vygen [MRV11], Lemma 7). Let 0 < δ, δ′ <

1. Given an instance of the min-max resource sharing problem with λ∗ ≤ 1, we
can compute a

(
σ(1 + δ) + δ′

λ∗

)
-approximate solution using O(Λ(δδ′)−1σ log |R|)

calls to an σ-approximate oracle function.

Algorithm 6.1 is the resource sharing algorithm from [MRV11] with one
minor modification. The original algorithm in [MRV11] has a mechanism to
repeat oracle calls for a single customer if the usage of a resource exceeds one.
This mechanism is important if many customers are present. In our case, we
have only a single customer and can simplify the algorithm by setting the
iteration count I to the worst case number of iterations from [MRV11] right
away, i.e. choosing

I = O(Λ(δδ′)−1σ log |R|).

and γ = δ
3σ as in [MRV11].

As |R| = |P| + 1, we obtain the following guarantee for the continuous
relaxation of the gate sizing problem:

Lemma 6.3. Assuming A1–A6, given a power budget B ∈ R≥0, and 0 < ε < 1,
we can decide whether λ∗ ≤ (1 + ε) or λ∗ > 1 using Algorithm 6.1 in time
O
(
u2

maxK̂ · Tgrad · Λ · Û · ε−3 log |P|
)
.

Proof By A3, we have λ∗ ≥ power(l)/power(u) ≥ Û−1. We apply Theorem 3.2
with δ = ε/4, σ = 1 + δ and δ′ = δ/Û . If λ∗ ≤ 1, we obtain a solution with
maximum resource usage at most

(
(1 + ε/4)2 + ε/4

)
≤ (1 + ε). Otherwise, if

the maximum resource usage of the solution is greater than (1 + ε), we can
conclude λ∗ > 1. By our choice of σ, δ, and δ′, Theorem 3.2, and Theorem 6.2,
the running time is O

(
u2

maxK̂·Tgrad

ε
· Λ · Û

ε2
log |P|

)
. �

Finally, we apply binary search on B to minimize the total power.

Theorem 6.4. Assuming A1–A6, ε > 0, and that the gate sizing problem (6.2)
has a feasible solution, we can compute a gate sizing solution that minimizes the
optimum power up to a factor of (1 + ε) and violates any delay constraint by at
most a factor of (1 + ε) in time O

(
u2

maxK̂ · Tgrad · Λ · Û · ε−3 log |P| log log Û
ε

)
.

6.2. Gate Sizing as a Resource Sharing Problem 97

Proof Let ε′ = ε/4. We perform binary search among the budgets Bi :=
power(l) · (1 + ε′)i for i = 0, . . . , imax, where imax = min{i ∈ N0 : power(l) · (1 +
ε′)i ≥ power(u)} = O(log Û

ε′
). For every tested budget Bi, we call Algorithm 6.1

with accuracy ε′ to decide whether Bi is feasible up to a factor (1 + ε′), i.e. the
maximum resource usage and λ∗ do not exceed (1 + ε′) or infeasible, i.e. the
maximum resource usage exceeds (1 + ε′) and, thus, λ∗ > 1.

As the instance is feasible the binary search will identify a locally smallest
index i0 ∈ N0 such that we find a solution with maximum usage 1 + ε′ for the
instance with budget Bi0 .

Let B? be the optimum budget. For all Bi ≥ B? by Lemma 6.3, Al-
gorithm 6.1 returns a solution in which the maximum timing violation is
1 + ε′ ≤ 1 + ε. Therefore, Bi0 ≤ (1 + ε′) ·B? and the total power consumption
is bounded by (1 + ε/4)Bi0 ≤ (1 + ε/4)2B? ≤ (1 + ε)B?. The binary search
examines O(log log Û

ε
) budgets, and by Lemma 6.3 the total running time is

O
(
u2

maxK̂ · Tgrad · Λ · Û · ε−3 log |P| log log Û
ε

)
. �

Similarly, we could perform a search on T to minimize the feasible cycle
time, or two searches for minimizing the cycle time and then also the power.

If ΛÛ ≥ |E| holds, we can use a different running time analysis by [Häh15]
and obtain the following alternative result for Lemma 6.3.

Lemma 6.5. Assuming A1–A6 and given a power budget budgetpower ∈ R ≥ 0,
0 < ε < 1, we can decide whether λ∗ ≤ (1 + ε) or λ∗ > 1 using Algorithm 6.1
in time O

(
u2

maxK̂ · Tgrad · |E|ε−3 log |P|
)
.

Combined with binary search, this yields a total running time of

O

u2
maxK̂ · Tgrad · |E|ε−3 log |P| log log Û

ε

.
The cardinality |P| appears only logarithmically, thus as a rough estimate

we can derive a linear bound

log |P| ≤ log 2|V | = O(|V |).

Moreover, under the assumptions of Lemma 6.3, the running time is provably
polynomial. Filtering out the technology-dependent constants umax, K̂, Û and
Λ the running time in Theorem 6.4 is essentially

O
(
Tgrad
ε3
|V | log 1

ε

)
.

For the special case of gate sizing, the resource sharing algorithm can be
simplified to Algorithm 6.1. As there is only a single customer, we do not have

98 Chapter 6. Gate Sizing

to solve certain customers multiple time per phase but only maintain a global
phase counter.

Algorithm 6.1: Resource sharing algorithm for gate sizing
Input: An instance of the gate sizing problem, a power budget B,

SizingOracle(ω) for the gate customer, γ > 0, I ∈ N.
Output: Convex combination of gate sizes x ∈ conv(X).

1 x← 0, Ξ← 0;
2 ye ← 0 for all e ∈ E, ypower ← 0;
3 for i = 1, . . . , I do
4 ωpower ← eγ·ypower ;
5 ωE ←EdgeWeights(yE, γ); (Algorithm 3.2)
6 x′ ← SizingOracle(ω);
7 ξ ← min

{
B

power(x′) ,
T

||delay(x′)||∞

}
;

8 if ξ ≥ 1 then return x′;
9 ye ← ye + ξ delaye(x′)

T
for all e ∈ E;

10 ypower ← ypower + ξ
power(x′)

B
;

11 x← x+ ξ · x′;
12 Ξ← Ξ + ξ;
13 return 1

Ξx;
Algorithm reprinted from our publication [Dab+18a] (© 2018 IEEE).

The weights ωpower and ωe in Equation 6.6 can be seen as Lagrange
multipliers. In fact, Schorr observed that heuristic modifications to the
Lagrangian multipliers in the subgradient method often lead to similar update
rules as used in the resource sharing algorithm [Sch15].

In practice, optimizing weighted pin slacks instead of timing edge delays
often significantly improves the convergence speed. A detailed evaluation of
this was given by Schorr [Sch15]. Therefore, we optimize the following heuristic
objective when solving the discrete gate sizing problem in practice.

ωpower
power(x′g)

B
−

∑
v∈Nb(g)

ωv
slackx′(v)

T
. (6.9)

In the heuristic objective function we make use of pin weights ωv for
v ∈ V (D). They can be obtained by

ωv := ωP[Pinp,v] · ωP[v,Pout] = max


∑

e∈δ+(v)
ωe,

∑
e∈δ−(v)

ωe

, (6.10)

where ωP[Pinp,v] · ωP[v,Pout] is defined in the proof of Lemma 3.4.
Algorithm 6.2 summarizes the heuristic local search oracle in the resource

6.3. Comparison to the Projected Subgradient Method 99

Algorithm 6.2: Local search oracle with pin weights
Input: A timing graph D. Cumulative usages ye for e ∈ E(D). γ > 0.
Output: A new cell selection x′g ∈ X.

1 x′ ← x for g ∈ G do
2 Update slacks for all v ∈ Nb(g) with global slew and delay

propagation.
3 Choose x′g s.t. (6.9) is minimized with slew and delay propagation

restricted to the region around g.
4 return x’

Algorithm reprinted from our publication [Dab+18a] (© 2018 IEEE).

sharing algorithm which we use in practice.

6.3 Comparison to the Projected Subgradient
Method

We also implemented the projected subgradient method (core implementation
by [Sch15]) to allow comparison with the resource sharing algorithm. It is built
around the same oracle (Algorithm 6.2) which enables us to directly compare
the different weight update schemes. In this particular comparison, the oracle
locally minimizes the original objective from (6.6) instead of (6.9) for both the
subgradient method and the resource sharing algorithm as required by theory.

To get a fair comparison between the two methods, we omitted heuristic
modifications of the subgradient method except for those necessary to implement
a discrete cell selection oracle.

For the subgradient method, it is difficult to determine initial multipliers
and step lengths that work well for a broad range of instances, despite many
improvements [TS02; WDZ07]. We simply initialize each multiplier (λe)e∈E(G)

with a small percentage of the absolute negative slack of e. The Lagrange
multipliers are updated by the local edge slack as in [CCW99] and projected to
the nonnegative flow space with the heuristic from [TS02]. Schorr conducted
experiments in which she projected the multipliers exactly by solving the arising
quadratic minimum cost flow problems. However, she observed that the results
and convergence behavior did not improve significantly [Sch15].

We implemented a variant of the subrgradient method suggested by Jiang
et al. [JJC99], which solves the feasibility problem (6.3) and maintains a power
multiplier λP . This has the advantage that on infeasible designs, where edge
delay multipliers grow to infinity, the objective is not dominated by the delay
multipliers.

We tested several step size rules and found best results when using the step

100 Chapter 6. Gate Sizing

size 1/
√
i in the i-th subgradient iteration, which guarantees convergence.

−320

−300

−280

−260

−240

−220

−200

−180

−160

−140

0 5 10 15 20 25

W
S

in
p
s

Iteration

−1600

−1500

−1400

−1300

−1200

−1100

−1000

0 5 10 15 20 25

T
N

S
in

n
s

Iteration

65

70

75

80

85

90

95

0 5 10 15 20 25

St
at

ic
po

w
er

in
m
W

Iteration

−40

−35

−30

−25

−20

−15

−10

−5

0

0 5 10 15 20 25

W
S

in
p
s

Iteration

−20

−15

−10

−5

0

0 5 10 15 20 25

T
N

S
in

n
s

Iteration

20.5

21

21.5

22

22.5

23

0 5 10 15 20 25

St
at

ic
po

w
er

in
m
W

Iteration

power Subgradient

Infeasible Cycle Time Feasible Cycle Time

Subgradient
Resource Sharing

Figure 6.2: Convergence of resource sharing algorithm vs.
subgradient method. Figure reprinted from our publication
[Dab+18a] (© 2018 IEEE).

On the left side of Figure 6.2, we compare our new resource sharing algorithm
(squares) with the regular projected subgradient method [CCW99] (diamonds)

6.3. Comparison to the Projected Subgradient Method 101

and with the power-constrained subgradient method [JJC99] (circles) on an
industrial instance with infeasible timing constraints. On the right side, we
compare the same methods on the same instance but with a relaxed feasible
cycle time. The figures show the development of the worst slack WS, the total
negative slack TNS and static power consumption after each of 25 iterations.

On the infeasible instance, both subgradient methods show bouncing WS and
TNS. For the regular variant, the power consumption increases as multipliers
go to infinity. The power-constrained subgradient method lets the power
consumption decrease from iteration 5 on, as the power multiplier grows, too.
The resource sharing algorithm shows a stable convergence in all metrics,
yielding significantly better WS and TNS.
On the feasible instance, all methods converge to feasible solutions. Again, the
resource sharing algorithm exhibits a much faster convergence and a better
power consumption after 25 iterations.

Compared to the experiments by [Sch15] we see the importance of adding a
separate power resource. Both for feasible and infeasible designs the subgradient
method performs significantly better when this additional constraint is added.

6.3.1 Results on industrial instances

The experiments on industrial 22nm instances were conducted on a heteroge-
neous cluster with Intel Xeon CPUs with clock frequencies between 2.6 and 3.5
GHz. For each instance, all experiments were carried out on the same server.
We ran our algorithm with six threads. We compared our approach (RS) with
the Lagrangian relaxation (LR) algorithm by [RSR16a], which runs sequentially
and which was integrated into the IBM design environment by the authors of
[RSR16a].

We ran physical design with the same instances as [RSR16a]. As [RSR16a],
we used the result of the current IBM design flow just before detailed routing
as input to our cell selection experiments. Thus, the input to cell selection
differs slightly to the input in [RSR16a], which, in turn, differs to the one in
[RSR16a], all caused by minor changes of the flow. However, within our new
experiments the input to our RS algorithm and to the LR algorithm coincide.

On these instances the primary purpose of cell selection is to reduce the
power consumption while maintaining the timing metrics. Instead of optimizing
the power budget B via binary search, we initialize B as 80% of the initial
power consumption. Then, after each iteration of Algorithm 6.1, we increment
(decrement) B by the factor 1.15 (1.15−1) if the TTNS decreased (increased)
by more than 5% compared to the previous iteration. On top of that we use a
further heuristic modification. In lines 4,5 of Algorithm 6.1, we replace γ by
γ/i. This pays respect to the fact that we aim to find a good integral solution

102 Chapter 6. Gate Sizing

Instance |G| Λt Λp Flow WS TNS TTNS vslew vload Pstatic Ptotal ∆Ptotal twall
[ps] [ns] [ns] [µW] [µW] [h:m:s]

ibm16uP 01 99k 16 10 Industrial -69.5 -101.4 -602.6 11 0 81.7 95.1
LR [RSR16a] -69.6 -94.7 -583.4 5 1 65.7 79.0 -16.9% 11:25:03

RS -69.4 -103.2 -582.1 3 0 65.7 79.0 -16.9% 57:16
ibm16uP 02 10k 11 14 Industrial -156.9 -1.9 -10.0 0 5 1.2 2.5

LR [RSR16a] -156.9 -1.9 -10.0 0 3 1.2 2.4 -2.1% 1:47:53
RS -156.7 -1.9 -10.2 0 0 1.2 2.4 -1.4% 24:06

ibm16uP 03 9k 8 7 Industrial 7.0 -0.0 -0.0 0 2 2.7 52.5
LR [RSR16a] 7.0 -0.0 -0.0 0 2 2.7 52.4 -0.1% 1:19:29

RS 7.0 -0.0 -0.0 0 2 2.7 52.7 +0.5% 22:13
ibm16uP 04 7k 14 9 Industrial -11.2 -0.7 -0.7 0 0 1.6 2.9

LR [RSR16a] -11.2 -0.7 -0.7 0 0 1.6 2.9 +0.7% 58:32
RS -11.1 -0.7 -0.7 0 0 1.6 2.9 -0.5% 15:22

ibm16uP 05 16k 9 4 Industrial -76.6 -36.6 -64.0 91 2 20.3 67.4
LR [RSR16a] -76.5 -37.1 -64.5 40 2 18.0 64.8 -3.8% 53:13

RS -76.3 -36.6 -64.0 42 1 16.7 63.2 -6.3% 20:19
ibm16uP 06 77k 13 6 Industrial -108.9 -15.9 -25.6 20 381 35.7 147.6

LR [RSR16a] -108.9 -14.6 -24.5 14 381 33.5 145.3 -1.5% 3:13:37
RS -108.9 -13.7 -21.0 10 381 33.9 145.8 -1.3% 38:13

ibm16uP 07 72k 14 9 Industrial -33.9 -38.6 -231.6 9 4 60.8 73.2
LR [RSR16a] -33.9 -38.7 -235.0 2 2 53.2 65.6 -10.4% 7:55:57

RS -33.3 -38.2 -221.3 3 5 53.2 65.6 -10.3% 47:45
ibm16uP 08 18k 11 4 Industrial -72.6 -35.1 -176.4 64 4 16.8 85.6

LR [RSR16a] -72.6 -35.0 -176.3 40 4 16.7 85.4 -0.3% 2:20:00
RS -72.6 -35.4 -175.3 40 2 12.0 79.7 -6.9% 17:19

ibm16uP 09 18k 11 6 Industrial -23.2 -8.8 -36.2 3 1 14.5 47.6
LR [RSR16a] -22.8 -8.7 -37.0 1 0 12.3 45.2 -5.0% 2:06:49

RS -22.6 -9.3 -36.4 1 1 12.4 45.4 -4.7% 17:47
ibm16uP 10 126k 14 6 Industrial -43.8 -76.0 -342.6 67 7 91.6 397.1

LR [RSR16a] -41.0 -84.2 -401.8 48 7 74.7 371.5 -6.5% 9:05:31
RS -38.9 -78.8 -346.9 31 2 65.1 365.3 -8.0% 1:22:58

ibm16uP 11 25k 16 5 Industrial -140.7 -167.2 -886.7 19 27 39.7 61.6
LR [RSR16a] -140.4 -164.1 -881.8 20 28 36.7 58.7 -4.7% 2:27:04

RS -140.4 -164.2 -842.2 20 21 34.5 56.5 -8.4% 19:30
ibm16uP 12 18k 16 4 Industrial -417.8 -342.0 -696.1 12 3 5.1 25.4

LR [RSR16a] -417.8 -333.7 -680.6 12 3 4.8 25.0 -1.8% 2:46:08
RS -417.7 -333.6 -675.6 12 0 5.3 25.5 +0.2% 18:36

ibm16uP 13 20k 11 4 Industrial -47.6 -20.8 -103.4 1 2 19.6 80.2
LR [RSR16a] -47.4 -20.3 -103.0 0 2 18.2 78.6 -2.0% 1:21:09

RS -47.3 -20.1 -101.0 0 2 15.4 75.8 -5.5% 21:35
ibm16uP 14 13k 7 2 Industrial -54.8 -5.1 -9.2 1 4 8.2 17.9

LR [RSR16a] -54.8 -5.1 -9.2 1 4 8.2 17.9 -0.1% 39:34
RS -54.3 -5.1 -9.2 1 4 8.2 17.9 +0.0% 13:04

Table 6.1: Results on IBM 22 nm server instances. Table
reprinted from our publication [Dab+18a] (© 2018 IEEE).

and further improves the experimental convergence speed.
In every iteration of the algorithm we invoke the local search oracle exactly

once. In global routing one usually chooses γ depending on the amount of
iterations. [MRV11] obtain good solutions with γ = 125

#iterations . As we only
perform four iterations we use a large value of γ = 80.

Table 6.1 shows the results. The instance names and their sizes are given in

6.3. Comparison to the Projected Subgradient Method 103

the first two columns. For each instance, we computed upper bounds Λt and Λp

for the maximum usage of a timing or power resource by any feasible solution,
respectively. To this end, we compute a minimum power solution l̄ satisfying
all capacity constraints but ignoring delay constraints. For Λt, we then assert
at each sink pin of a net the highest possible pin capacity to get upper bounds
for the delays. Then Λt is the quotient of the maximum path delay and T .
Furthermore, Λp = power(ū)/power(l̄), where ū is a solution using lowest Vt
levels and largest sizes everywhere. It follows that Λ ≤ max{Λt,Λp}.

For every instance three solutions are analyzed. The solution that is given by
the industrial flow is named Industrial, the solution computed by the Lagrangian
relaxation algorithm of [RSR16a] is named LR and the solution computed by
our resource sharing algorithm is called RS. For each of those runs we measured
the worst slack (WS), the total negative slack (TNS) and the true total negative
slack (TTNS) which were introduced in Section 7.2. The electrical violations
are shown in terms of the number of slew violations (vslew) and load violations
(vload). For the power consumption we distinguish between the static power
usage Pstatic and the total power usage Ptotal = Pstatic + Pdynamic. The testbed
contains a high variety in terms of the leakage/dynamic power ratio. ∆Ptotal

denotes the change in total power. Running times twall are given in the last
column.

The timing metrics are measured just before detailed routing. All numbers
refer to results after subsequent placement legalization. The power reductions
and running times that we measured for LR are comparable to those in
[RSR16a].

Throughout the testbed our algorithm obtains a comparable or a better
total power reduction. On instance ibm16uP 08 we are able to reduce the
power by 6.9% while the reference algorithm only reduces the total power by
0.3%. The running time is greatly reduced. On the largest instance ibm16uP 10
with 126k gates the resource sharing approach takes about 83 minutes. The
reference algorithm does not only take more than 6 times the running time
but also greatly worsens the TNS and TTNS while it obtains a worse power
reduction.

Chapter 7

BonnRouteBuffer

We have now seen how to solve time-cost tradeoff and gate sizing problems. The
global interconnect optimization problem is much more general. It consists of
computing buffered routes for all nets. While time-cost tradeoff and gate sizing
mostly affect power consumption and timing, the interconnect optimization
step impacts the chip performance, routability, power consumption, netlength
and various other resouces. Parts of this chapter have been previously published
in [Dab+19]. The results are joint work with Stephan Held, Bento Natura and
Daniel Rotter.

BonnRouteBuffer has been in development for many years. Rotter
[Rot17] described the resource sharing formulation for buffering in his disser-
tation. He also gave a first implementation to solve it. A significant part of
this code was written by him between 2014 and 2017. Next to Rotter, several
more people have been involved. The used arrival time customers were initially
implemented by Traub [Tra15] and later refined by Rotter and Scheifele. The
multilabel algorithm, which finds better solutions for critical nets at the cost
of higher runtime, was implemented by Natura under the supervision of Rotter
[Nat17]. At the end of 2017, Rotter already obtained promising results but
the implementation was not ready for industrial use. On some instances many
electrical slew violations were left or the solution consumed a lot of additional
power. The path search implementation was not entirely correct which could
lead to unsatisfactory routes. Due to an overly simplistic placement model, the
legalization step after buffer insertion could lead to large timing degradations.
Finally, the runtime was inadequate for applications in an industrial design
flow.

In this chapter, we present a refined implementation of BonnRoute-
Buffer. We start by modifying the theoretic model of Rotter in two ways.
First, we use timing path resources introduced by Hähnle [Häh15]. This greatly
simplifies the reproducibility. Previously, arrival time customers were used
which need several non-trivial adjustments to the outer resource sharing al-
gorithm and the arrival time intervals to perform well [Tra15; Hel+17]. Our

105

106 Chapter 7. BonnRouteBuffer

experiments indicate an equal solution quality with the new simplified model.
Second, we remove an inaccuracy in Rotters model by explicitly adding further
placement constraints. Instead of simple tile area capacities, we analyze the
particular shape of the buffers and derive restrictions that allow us to prevent
large displacements in the legalization step.

In addition to the model changes, we present a refined implementation with
various enhancements and fixes. We also devise a design flow which includes
an initial gate sizing step and a global wire based gate sizing. As a result our
refined implementation now decisively outperforms a state-of-the-art design
flow in almost all metrics including netlength, power, congestion and timing.
We describe a set of speedup techniques that allow us to obtain the new results
in up to 70% less runtime.

The new implementation is now the primary buffering algorithm used by
our industrial partner IBM. Thereby, demonstrating how a mathematical sound
formulation can outperform elaborate heuristics.

The remainder of this chapter is structured as follows. After discussing
previous work in Section 7.1, we present our problem formulation in Section
7.2. The algorithm for the oracle problem is discussed in Section 7.3. Our
practical improvements of the previous implementation are listed in Section
7.4. We compare our speedups to the implementation of Rotter in Section 7.5.
Our new optimization flow is presented in Section 7.6. Finally, our practical
results when using the new implementation in an industrial design flow are
given in Section 7.7.

7.1 Previous Work
Modern chips exhibit metal stacks with many different pitches and various
options to select wire widths and spacings. The corresponding signal speeds
may differ by up to a factor of 10 or more. The variance in the optimum
repeater spacing is even higher. Consequently, buffering cannot be done
without specifying the wire structure.

Furthermore, all nets compete for the limited routing resources, particularly
on high layers, and for the limited placement space, especially around placement
blockages and buffer bays. For the overall chip performance, it is essential to
balance these resources between all the interconnects.

Most approaches insert repeaters on a net-by-net basis with fixed sink
delay bounds and limited interaction with global routing, e.g. buffering a given
topology [Van90; LCT96; LZS12].

Rotter proposed a resource sharing formulation for global interconnect opti-
mization, balancing global timing, routing, placement, and power constraints
[Rot17]. The core of the algorithm is an oracle function that, given a net

7.1. Previous Work 107

and Lagrangean resource prices for routing, timing, placement, and power,
computes a buffered global route approximately minimizing the total cost. This
subproblem is the cost-based buffered Steiner tree problem. If this step can be
solved with an approximation guarantee, the resource sharing algorithm leads
to a provably good global solution in a polynomial number of oracle calls. For a
constant fanout, this can be achieved by combining ideas from [Alb+02; HL03].
However, for general fanout, it is unlikely that algorithms with a practical
performance guarantee exist. As many nets only have a small number of termi-
nals, exponential algorithms may be used to solve these instances optimally.
A notable approach has been given by Rockel [Roc18] who explains how the
Dijkstra-Steiner [HSV17] algorithm by Hougardy, Silvanus and Vygen, which
was initially formulated for the shortest Steiner tree problem, can be extended
to solve the cost-based buffered Steiner tree problem.

The algorithm of Rotter solves the oracle problem by first computing a
geometric 2D topology. Then, it embeds the topology into the 3D global
routing graph, also selecting wire width and spacing w.r.t. a linearized model
of delay, power, and repeater space. Finally, it inserts repeaters, recycling the
global routes as much as possible and possibly cloning them to save repeaters.
For individual instances, where this approach fails, Rotter performs a more
elaborate embedding inspired by ideas of [HL03] that embeds and buffers
simultaneously. It was implemented by Natura [Nat17] under the supervision
of Rotter [Rot17].

To reduce the problem complexity, most previous algorithms for buffer
insertion separate interconnect optimization into 1) topology generation and 2)
repeater insertion.

Many algorithms for topology generation fall into two categories: Prim-
Dijkstra heuristics [Alp+95; Alp+18] and bicriteria approximation [HR13;
CY19]. Sometimes topology enumeration is combined with a fast exact Steiner
vertex embedding [HR18] or even buffering [HL03].

Maßberg [Maß15] considered the problem of finding positions for Steiner
nodes in a fixed topology such that length is minimized while delay bounds
are obeyed. He described a polynomial algorithm that applies dynamic
programming to scaled instances. Rockel [HR18] observed that a linear program
formulation of this problem is the dual of a min-cost flow problem. In practice
this new approach is significantly faster.

Bartoschek, Held, Maßberg, Rautenbach and Vygen [Bar+10] proposed
a new delay model for the repeater tree construction problem that includes
bifucation penalties and thus leads to topologies with reduced depth.

Algorithms for repeater insertion and wire width optimization have their
foundation in dynamic programming by [Van90] with improvements by [LCT96;
HL03; Li+08; LZS12] to name a few. Recently, the pFOM was proposed as an

108 Chapter 7. BonnRouteBuffer

source

sinks+ -

-

-

Figure 7.1: An important subproblem during buffering: Given
polarities (blue=positive and magenta=negative) and electrical
properties we need to compute a buffered 3D Steiner tree in a
grid graph. There are two possible solutions on the right.

optimization metric [Hu+18].
Bartoschek, Held, Rautenbach and Vygen [Bar+09] presented an improved

dynamic program called FastBuffering which allows topology changes to save
inverters.

Timing-driven layer assignment has often been proposed as a standalone
algorithm, e.g. by [Wei+13] or recently by [Liu+18] to transform a 2D into a
3D global routing.

The classic multicommodity flow formulation for global routing [SK87] has
been extended to integrate net delay bounds and buffer insertion by [Alb+02],
who presented a fully polynomial approximation scheme (FPTAS) for two-
terminal nets. An extensive overview on previous work to solve the global
routing problem was given in Chapter 3.1.

7.2 Problem Formulation

We will quickly review the most important notions from Chapter 3 to present
the problem formulation. Let N be the set of nets of a placed circuit that are
to be synthesized. As before, I is the chip image and � the chip area. Routing
and placement congestion is modeled using a global routing graph G with zmax

layers and a partition B of the placement area into bins.
Furthermore, there is a finite repeater library L of inverters and buffers

and a set T of wire types. In conjunction with an axis-parallel line segment
I ⊂ I, a wire type τ ∈ T determines a space consumption, as well as electrical
resistance and capacitance of the (metal shape) pair (I, τ).

Each net N ∈ N consists of a source pin s ∈ �× {1, . . . , zmax} and a set
of sink pins T ⊂ �× {1, . . . , zmax} with sink polarities pol : T → {+,−} and
positions p̂ : T ∪ {s} → V (G).

Recall the following important definitions from Chapter 3.2. A topology
for a net N is an arborescence A rooted in s, such that T is the set of leaves.

7.2. Problem Formulation 109

We require that the root has exactly one successor and all inner vertices have
outdegree at most 2. A Steiner tree for a net N is a topology A together with
a map into the chip image p : V (A)→ I. p has to satisfy p(s) = s, p(t) = t for
the source s and any sink t ∈ T . We further require that the image (p(v), p(w))
for edges (v, w) ∈ E(A) are either of length 0 or axis-parallel routing stick
figures, i.e. they have to correspond to an edge in the global routing graph.

We call a tuple (A, p, ϕ, b) buffered Steiner tree for N if (A, p) is a Steiner
tree for N . Each edge e ∈ E(A) is assigned a wire type ϕ(e) ∈ T . Finally,
b : V (A)→ L∪{∅} assigns Steiner vertices to a repeater, or to ∅ if no repeater
should be placed. Here, wires are connecting to the centers of inserted repeaters
disregarding the actual pin shapes. For any sink t ∈ T , the parity of inverting
repeaters on the s-t path in A must match pol(t). An instance with both
polarities and two possible solutions is shown in Figure 7.1.

We assume that we are given functions that, given a global routing edge
e ∈ E(G) and a pair (I, τ) where I ⊂ I is an axis-parallel segment and τ ∈ T ,
returns the fraction of the global routing capacity of e that is used by (I, τ).
Similarly, there is a function that for bin β ∈ B and a pair (p, ι), where
p ∈ � × {0} is a placement position and ι ∈ L, returns the fraction of the
placement capacity of β that is used by ι, when placed at p.

Moreover, we are given functions cap and res that return the capacitance
cap(I, τ) and resistance res(I, τ) of a certain wire (I, τ). Both are assumed to
grow linearly in the length of the segment I.

Given switching frequencies (ηN)N∈N , power values power(ι, η) for ev-
ery repeater ι ∈ L and switching frequency η, and a solution vector
(AN , pN , ϕN , bN)N∈N , we can compute the total power consumption with an
appropriate scale factor c2p ∈ R as

∑
N∈N

 ∑
e∈E(AN)

ηN · c2p · cap(pN(e), ϕN(e)) +
∑

v∈V (A)
power(b(v), ηN)

. (7.1)

Timing constraints are modeled by a timing graph D as described in Section
2, except that it reflects buffer insertion. The vertex set V (D) consists of
the sink pins in the unbuffered netlist plus all primary inputs. In order to
use use sink pins consistently, we may consider a virtual buffer driving each
primary input pin p. This is a standard procedure as also input pins have
to be driven by some predecessor. Then, we would add the input to this
buffer to V (D), instead of p. There is an edge (p, q) ∈ E(D) if p is an input
of the gate that drives the net N ∈ N with q ∈ N\{p}. The delay of an
edge in the timing graph depends on the buffered global route for N and the
source gate of N . The timing constraints are fulfilled if for every endpoint
v ∈ {u ∈ V (D) : outdegree(u) = 0}, the maximum delay of a path in D ending

110 Chapter 7. BonnRouteBuffer

in v is within a delay bound rat(v) that is part of the input.
For delays, we assume that gate delays are approximated by two non-

decreasing functions depending on load capacitance and input slew, one for
the delay, the other for the output slew. We model the interconnect timing by
Elmore delay [Elm48].

The timing-aware global routing and buffering problem consists of computing
a buffered Steiner tree for every net, such that no global routing edge and no
placement bin is overused while meeting all timing constraints and minimizing
the power consumption.

7.2.1 Customers and Resources for Interconnect Opti-
mization

We now specify all the customers and resources that we use to model the global
interconnect optimization problem. We roughly follow Rotter [Rot17].

For the global routing constraints, we follow [MRV11]. There is a customer
for every N ∈ N and BN is the set of buffered global routing solutions for N .
There is a resource for every edge of the global routing graph e ∈ E(G). The
usage function usgN,e specifies how much the wiring segments of a buffered
global route b(N) consume from e relative to its capacity.

Similarly, for placement constraints we add a resource for every placement
bin β ∈ B. Again, the usage function usgN,β specifies how much the repeaters
from a buffered global route b(N) consume from β relative to its capacity.
The free area of β is given by its area minus the area of blockages, e.g. fixed
macros. The resource usage of a repeater ι ∈ L corresponds to its area relative
to the free area of the bin it is assigned to. Furthermore, the area of all
non-repeating standard cells contributes to a fixed usage of the placement bins.
Note that while we assign repeaters to a single bin, a non-repeating standard
cell contributes fractionally to all bins it covers proportional to the overlap.
This resource alone is not enough to avoid large displacements when legalizing.
We further introduce an oracle ζ : L×I → {0, 1}. For a given buffer l ∈ L and
a position p ∈ I in the chip image, ζ(l, p) = 1 if and only if l can be placed at
position p. We will describe this oracle in detail in Section 7.4.3.

We consider standard cells as usage because this makes it easier to set
a congestion target for the bins so that subsequent placement legalization
succeeds without large movements when legalizing repeaters and non-repeaters
simultaneously.

For the timing constraints, we follow the approach depicted in Section 3.3.3.
We add a resource for each path P in the timing graph D to R. Of course,
we will only use these paths P implicitly, as |P| may be exponential in the size
of the input.

7.2. Problem Formulation 111

In the following, we will assume that the delay of an edge in the timing
graph only depends on our solution for the net that is modeled by that edge.
Apart from slew effects which we will only model heuristically, this is mostly
true in practice.

To model our objective of power minimization, we need to guess the optimum
power consumption and add that as a constraint/resource {power}, which must
not be exceeded by the power consumption in (7.1). Formally, we could conduct
an optimum guess by binary search. However, we will simply make an initial
guess on the optimum power and then slightly relax/tighten it after each
iteration if the overall over usage increases/decreases. Netlength and via count
are treated in a similar way in [MRV11].

Note that the resource sharing model is quite flexible and allows to add
further resources and customers, e.g. one could have separate resources for
static and dynamic power and the netlength or via count.

The resource sharing algorithm maintains prices pricer for all resources
r ∈ R = E(G) ∪B ∪ P ∪ {power}.

For the timing paths P ∈ P the prices are only stored implicitly. As shown
by Hähnle in Theorem 3.4 we can still compute edge prices for all edges in the
timing graph e ∈ E(D).

We still need to provide oracle functions for the net customers. For this,
we have to solve the cost-based buffered Steiner tree problem. Here, for a net
N ∈ N , the problem is to compute a buffered global routing A approximately
minimizing

min
∑
r∈R

pricer · usgN,r(A). (7.2)

We will present our oracle in Section 7.3. The resource sharing model usually

(a) Step 1:
Computing a

topology
of small linear delay.

(b) Step 2: 2D projection of
embedding

the topology of Step 1 into the
3D global routing graph.

(c) Step 3: Buffering the route.
Colors show placement

congestion. The leftmost
repeater is a buffer.

Figure 7.2: The three-stage routing & buffering process.

requires that all customer solutions can be computed independently and the
resource prices guide the inter-dependencies. In our context, this assumption is
violated because the slews at the sinks of a buffered Steiner tree influence the

112 Chapter 7. BonnRouteBuffer

delays in the next stage. We use an approach by Rotter [Rot17] that mitigates
this problem as follows. In the first iteration, we assume a default slew at all
gate inputs. Whenever a new solution for a net has been computed, the slews
at its sinks, i.e. the gate inputs of the next stage, are updated. To this end,
it might seem favorable to process the nets in topological order of the timing
graph. However, as this limits effective parallelization, we instead process the
nets roughly by the size of their bounding-box.

7.3 An Oracle for the Cost-Based Buffered
Steiner Tree Problem

Solving or even approximating the cost-based buffered Steiner tree problem is
a notoriously hard problem in theory and in practice. Nevertheless, we need
to tackle large instances with hundreds, thousands, or even millions of nets
efficiently. To this end, we use the algorithm by Rotter [Rot17] which proceeds
in three stages.

First, we compute a timing-aware Steiner topology/arborescence in the
Manhattan plane (Section 7.3.1). Then, we embed this topology into the 3D
global routing graph with respect to the objective (7.2), but using a linear
model for placement, delay, and power usages (Section 7.3.2). Finally, we use
dynamic programming for repeater insertion into the 3D Steiner tree, allowing
to change the topology locally to save repeaters (Section 7.3.3). The three
stages are visualized in Figure 7.2.

To estimate the effect of buffering in the first two stages, we customize the
linear delay routing oracle of [Hel+17]. To this end, we linearize the delay,
power, and placement usage functions. As proposed by [Bar+09] we compute,
for each wire type τ ∈ T and routing layer l ∈ {1, . . . , zmax} a fastest buffering
of an infinite line on layer l with wire type τ , choosing the best uniform repeater
type ι ∈ L and spacing repeaters uniformly. Similarly, we compute a most
power efficient buffering allowing a 30% delay increase compared to the fastest
buffering.

The fast buffered line determines a delay and placement usage per unit
length, while we use the power-efficient buffered line to extract a static and
dynamic power consumption per unit length. For a given N ∈ N , we use the
given switching frequency ηN to obtain a total power per unit length. The
reason for using different buffered lines for delay and power is that in general
different layer and wire trait pairs are best for delay minimization and power
optimization. If the delay prices dominate the power price, the fastest layers
and wire traits should be favored, and vice versa. It is straight forward to
derive corresponding linear resource usage functions using the original resource

7.3. An Oracle for the Cost-Based Buffered Steiner Tree Problem 113

capacities.
Unlike the first two stages, we consider Elmore delay, including slew

propagation during buffer insertion, the discrete placement space usage and
the primary power consumption function (7.1). However, we use the stationary
slew of the fastest buffered line as an estimated input slew for newly inserted
repeaters during buffer insertion.

As an alternative for Stage 2, we use a buffered embedding algorithm for
simultaneous embedding and repeater insertion (Section 7.3.4) on difficult
instances which was implemented by Natura [Nat17] under the supervision of
Rotter [Rot17].

7.3.1 Stage 1: Topology Generation

For the topologies, we use a linear delay model. The previous implementation
by Rotter [Rot17] proceeded as follows.

First, arrival times which were obtained by using arrival time customers
were converted to heuristic delay bounds for all sinks. Then, the bicriteria
algorithm of Held and Rotter was applied [HR13]. Given length bounds for
each source-sink path and an ε > 0, it computes a Steiner arborescence that
exceeds these bounds by at most a factor (1 + ε) and whose length is within a
factor

(
2 +

⌈
log
(

2
ε

)⌉)
· 3

2 of the length of a minimum Steiner tree. The length
bounds are derived from the difference of the current arrival times at sinks
and driver inputs, assuming the fastest layer and wire type combination for
translating delay into distance. The value ε ∈ [0.1, 0.2] was chosen depending
on the timing prices of the particular net.

Instead of relying on arrival times to guide the topology generation, it seems
to be closer to theory if edge prices are directly optimized. To this end, we
changed the topology generation to an implementation by Foos [Foo20] of the
algorithm by Held and Khazraei [HK20]. As input, the new algorithm uses
timing prices that were computed by the resource sharing algorithm. Currently,
the edge weights are set heuristically to obtain similar netlengths as by the
previous approach.

Furthermore, we employ a post-optimization recently proposed by [HR18].
The Steiner arborescence computed by the topology generation algorithm is
partitioned into sub-arborescences with up to 9 leaves, which are restructured
optimally via branch-&-bound.

7.3.2 Stage 2: Topology Embedding

In Stage 2, we embed the topology from Stage 1 into the global routing graph
and also select a wire type for every edge. We use the method proposed by

114 Chapter 7. BonnRouteBuffer

[Hel+17], including their heuristic speed-up technique. However, we modify
the cost function to reflect power and repeater space.

Formally, we embed the topology into the graph

G′ := (V (G), {{x, y}τ | {x, y} ∈ E(G), τ ∈ T }),

that contains a copy of each edge for all wiretypes τ ∈ T .
As in [Hel+17], we traverse the topology in a bottom-up fashion (from

sinks to source). For each Steiner vertex u, it simultaneously embeds the two
outgoing edges (u, v) and (u,w) for which the endpoints are already embedded
at xv, xw ∈ V (G′) and Xu ⊂ V (G′) is the set of vertices in G′ covering u.

Now it computes shortest path labels for the xv-Xu-path (similarly for the
xw-Xu-path) in G′ w.r.t. the following cost for e ∈ E(G) and τ ∈ T

c′(e, τ) = croute(e, τ) + cplace(e, τ) + cdelay(e, τ) + cpower(e, τ).

Here, croute(e, τ) = pricee·usge(τ) is the routing congestion cost, cdelay(e, τ) =
pricev · lin delay(e, τ), where pricev is the sum of delay prices to the sinks of
the sub-arborescence rooted at v and lin usg(e, τ) is the linearized delay usage.
Then, cpower(e, τ) = pricepower · lin usgpower(e, τ) is the linearized power cost.

The most delicate modification concerns the approximation for the placement
cost of repeaters that still need to be inserted. For an edge (e, τ), we estimate
the average placement cost by its average linearized tile cost

cest
place(e, τ) = 1

2
∑
x∈e

priceβx
· lin usgβx

(e, τ).

Finally, we set

cplace(e, τ) = α ·min
(
cest

place(e, τ), croute(e, τ)
)
, (7.3)

where α is a constant parameter that weighs this rough approximation of the
placement cost. Note that for some bins β ∈ B, we may have lin usgβ ≡ ∞.
Therefore, we cut off cplace(e, τ) at croute(e, τ) to avoid that the placement cost
dominates the overall objective. For our experiments, we used α = 0.05.

The position of u is given by the point in Xu where the two paths first meet.
As in [Hel+17], we continue labeling a few further vertices, even after both
path searches have reached Xu, to find a possibly better location of the Steiner
vertex u estimating the upstream cost to its parent with a future cost estimate.

The embedded topology consists of global wires reaching from tile center to
tile center. In particular, it does not directly connect to the given pins. This is
too inaccurate for repeater insertion, unless a very small tile size is used. Thus,
we post-process the routes before buffering. To achieve this, we first complete

7.3. An Oracle for the Cost-Based Buffered Steiner Tree Problem 115

Figure 7.3: Before the global route is used for buffering, we
connect to local pinshapes and postoptimize. Vertices that are
considered for buffer placement are marked in blue.

the route by connecting all pins to the global route. Then, we use an algorithm
of [Kie16] to move all Steiner-segments for minimum total wire length without
introducing additional tile-crossings (see Figure 7.3). Thereby, segments are
subdivided such that no segment crosses a tile border. Of course two segments
may join at a tile border. Besides, we add additional nodes at the start and
the end of each passed placement blockage.

7.3.3 Stage 3: Repeater Insertion

Finally, we need to determine where to insert repeaters into the global routes.
We combine ideas of dynamic programming for cost minimization [LCT96] and
the fast buffering algorithm by [Bar+09], which saves repeaters by postponing
the insertion of a repeater when two branches of different polarity are merged,
introducing parallel wires. An example of this local topology change is depicted
in Figure 7.2(c), where cheaper repeater positions are found by deviating
from the initial topology. However, the “fast” running time of [Bar+09] is
heavily relying on a uniform routing and placement cost structure on each
segment chain. As the cost structure of the routing and placement resources is
inhomogeneous, we use dynamic programming with bounded effort similar to
[LCT96] to insert repeaters along paths.

So-called clusters representing buffered sub-arborescences are propagated
from the sinks to the source. A cluster may be partitioned into two subtrees,
one with positive and one with negative polarity. This allows to temporarily
propagate unmerged sinks of different polarity. Thereby, the input topology
is modified to save inverters at the expense of routing. The resource sharing
weights are useful to decide whether to perform such a restructuring. Formally,
we use labels that represent a buffered subtree. With each label l we store

• cap(l): The load capacitance of the given label up to the next (repeater)

116 Chapter 7. BonnRouteBuffer

sink.

• cost(l): The total routing, placement, power, and delay cost of the subtree
solution represented by l.

• slewtarget(l): The maximum slew such that the estimated input slews at
the next (repeater) sinks are met.

• inverters(l): The number of inverters inserted in the current subtree.

• sinks(l): A set of pins corresponding to original sinks of the net or input
pins of inserted repeaters.

• node(l): The current node in the route graph.

• pos(l): The current position in the chip area.

• pol(l): The polarity ‘+’ or ‘-’ at the current position.

Now a cluster consists of a label pair p = (l, l′) where pol(l) = ‘+’ and
pol(l′) = ‘-’. If sinks(l) 6= ∅ and sinks(l′) = ∅, we have a label pair of
‘ident type’. Otherwise, if sinks(l) = ∅ and sinks(l′) 6= ∅, we have a label pair
of ‘invert type’. If both sinks(l) 6= ∅ and sinks(l′) 6= ∅, the label pair is of
‘parallel type’, which corresponds to the aforementioned possibility to deviate
from the input topology and to propagate a set of unmerged sinks with different
polarities upstream. In this case, we will have node(l) = node(l′).

For a cluster p = (l, l′), we can again define a cost by cost(p) = cost(l) +
cost(l′), where we have cost(l) = 0 if sinks(l) = ∅. Analogously we can define
cap(p) = cap(l) + cap(l′).

At the net sinks the clusters are initialized canonically with a single label.
The only non-canonical choice concerns the slewtarget, which is set to the slew
of the last iteration. The algorithm uses three main operations. The most
basic is the ‘move step’ where a cluster is moved along a topology edge. This
is where multiple clusters are propagated. Two clusters at the same position
can be combined in the ‘merge step’. Finally, when we arrive at the source, we
have a ‘connect source’ step.

The repeater insertion obeys further constraints such as capacitance and
slew limits. We never place a repeater into a bin with zero placement capacity
and lexicographically minimize 1) capacitance violations, 2) slew violations and
3) the resource sharing cost.

When inserting a repeater, we subdivide the global wire at the given
position and insert stacked vias to reach the layers of input and output pin of
the repeater. In general, the vias will not physically connect to the pin shapes,
but the center of the repeater. Sometimes, two consecutive repeaters may be

7.3. An Oracle for the Cost-Based Buffered Steiner Tree Problem 117

inserted at the same position, leaving subdivided global wires of length zero.
The label capacitance is set to the input pin capacitance of the repeater and
the slew target to the estimated input slew for the given layer and wire type.
Furthermore, the label cost is increased by the resulting placement cost, power
cost, and delay through the repeater.

In general, propagating all clusters would lead to an exponential number
of labels. We avoid this by pruning the amount of labels at a given position.
First, whenever a repeater is inserted into a cluster of parallel type, we enforce
its resolution into either indent or invert type. Thus, no particular pruning is
needed for clusters of the parallel type.

For non-parallel clusters, we prune by a relaxed dominance check. If we
have two non-parallel clusters p, p′ at the same position, with the same sink sets
and polarity, and ε1, ε2 ≥ 0, p almost dominates p′ if cap(p) ≤ (1 + ε1)cap(p′),
slewtarget(p) ≥ (1− ε1)slewtarget(p′), and log(cost(p)) ≤ (1 + ε2) log(cost(p′)).
We apply the logarithm to the cost, because it depends exponentially on the
usage. If ε1 = ε2 = 0, we have proper dominance. We use ε1 = 0.05 and
ε2 = 0.1, without sacrificing the quality significantly.

Furthermore, similar to [LCT96], for each non-parallel cluster type, we
subdivide the range of feasible load capacitances into buckets, keeping only the
cheapest solution per bucket.

The cheapest solution sometimes has many small repeaters, which are more
sensitive to placement legalization in the very end. Thus, we perform one
more heuristic pruning. First, we keep only solutions that have no electrical
violations and are within a factor of 10 of the minimum cost cluster. Note
that a factor of 10 is not much, as prices increase multiplicatively. Then, we
remove solutions with more than b1.05n+1c repeaters, where n is the minimum
repeater count among all clusters (buffers are counted twice). Finally, we prune
each bucket to a single solution. If this approach would lead to an empty
bucket, we keep the cheapest solution in that bucket (i.e. if all solutions have
electrical violations).

We found that using 15 buckets yields a good tradeoff between quality and
runtime. Thereby, we obtain a guaranteed polynomial runtime for the buffering
step.

Move Step

The move step is the most elementary operation in which we propagate clusters
bottom-up along the global wires, which are subdivided at tile/bin borders
after the post-processing shown in Figure 7.3. In our case, the tile size is well
below the optimum repeater spacing, otherwise, a more frequent subdivision
could be used. For a cluster p = (l, l′), we generate clusters at the next segment

118 Chapter 7. BonnRouteBuffer

position as follows.
First, we generate a label that represents the possibility not to insert

any repeater. The slew target of the label is reduced according to the slew
degradation on the wire segment. When moving a parallel cluster, we duplicate
the global route segment and increase the cost accordingly. If p is of parallel
type, we also propagate labels for the option to resolve the parallel segment, i.e.
inserting an inverter to equalize polarities. Then, we consider the possibility to
insert a repeater for each non-empty label in p. The position of this repeater is
not bound to the above segmentation, e.g. at a bin border. Instead, we move the
repeaters as far as possible to the beginning of the segment without exceeding
the current slew target using binary search. Here, we use the estimated input
slew at the repeater input.

Merge Step

The merge step merges cluster candidates from two emanating branches. First,
to bound the running time, we prune all except for the cheapest cluster inside
each merge branch, adding to the cost a penalty term for inserting a cheapest
repeater to drive the current capacitance. Then, we enumerate all possibilities
to insert up to two repeaters into the two branch clusters. If a repeater is
inserted into a cluster, we require that only one polarity remains and also
enumerate all possibilities to drive the merged result with one or two repeaters.

The merging results in at most one parallel cluster, and sets of non-parallel
clusters that are pruned as described before.

Connect Source Step

Once the cluster propagation reaches the source, we consider the possibility
to insert a final repeater for polarity correction or capacitance reduction, and
choose the cheapest resulting solution. As at this time the complete tree has
been built, we can evaluate the objective function correctly with estimated
input slews.

7.3.4 Stage 3 (Alternative): Buffered Embedding

For most nets, the 3 stage approach gives good results. However, the embedding
in Section 7.3.2 has only a rough measure of the placement and delay cost.
In particular, in the presence of large placement blockages, the subsequent
repeater insertion might not be able to avoid placement congestion, substantial
delays or even capacitance and slew violations.

Figure 7.4 shows an example where the embedding algorithm from Sec-
tion 7.3.3 might have chosen the path in the middle picture due to slightly

7.3. An Oracle for the Cost-Based Buffered Steiner Tree Problem 119

Figure 7.4: The buffered embedding considers placement con-
gestion on tiles before routing over a blockage.

Figure 7.5: The buffered embedding (right) uses higher layers
as lower layers would lead to slew violations.

lower routing prices, forcing a repeater insertion into the overfull bin at the
left border of the blockage. If routing congestion permits, we would prefer the
solution in the right where an under-occupied placement bin can be used. Also,
the placement blockages might only be crossed on high layers to meet slew
limits, while the algorithm in Section 7.3.2 might choose low layers as shown in
Figure 7.5.

For such cases, we employ a more elaborate embedding algorithm that
inserts repeaters during the embedding similar to the S-Tree algorithm [HL03].
It was implemented by Natura [Nat17] under the supervision of Rotter [Rot17].
In the following we explain how this multilabel algorithm works. At its core,
there is a more runtime intensive embedding process, that already considers
effects of placing repeaters while embedding the topology into the routing graph.
We capture potential slew and capacitance violations during the embedding
process to further facilitate the concluding repeater insertion step described in
Section 7.3.3.

As in Section 7.3.2, we proceed bottom-up and embed sibling paths pairwise.
Instead of the linearized cost function, we already insert repeaters during the
shortest path searches using the method as in Section 7.3.3. This allows us to
evaluate the objective function accurately.

As the embedding is still undetermined, we create labels at substantially
more vertices in the global routing graph compared to buffering a fixed
embedding as in Section 7.3.3. Thus, we reduce the effort for buffering
substantially, as follows. We suppress parallel clusters and the binary search

120 Chapter 7. BonnRouteBuffer

during the move step. Furthermore, we keep at most 5 clusters per vertex
instead of 15 per cluster modes and vertex.

The time complexity of the buffered embedding algorithm allows only its
selective usage. For each net, we first compute a solution with the embedding
from Section 7.3.2 and repeater insertion from Section 7.3.3. If this violates
slew limits by more than 5%, we embed it again with the buffered embedding
algorithm. Finally, we re-buffer the solution by using the approach from
Section 7.3.3.

7.4 Improvements

In this section, we list the major changes made to the code since its initial
implementation by Rotter [Rot17].

We will distinguish between two types of code changes. On the one hand
we have runtime improvements, which speed up some computations but do not
change the result. On the other hand we have quality improvements which aim
at improving the results.

7.4.1 Runtime Improvements

Unfortunately, the implementation by Rotter used a future cost function, which
was not always a lower bound. While this still yields acceptable timing and
congestion, it can lead to undesired behavior as zig-zag routes and is therefore
out of the question. In all tests performed in this thesis, the incorrect future
cost was disabled and only simple estimates (for example, a geometric lower
bound), which are guaranteed to be correct, were used.

Dominated Label Cache

We maintain a cache. Every time a new label is created for inserting a repeater,
for given current values round cap(cap(l)), round slew(slewtarget(l)), we check
if it was dominated. Here the round cap and round slew divide the reasonable
range for caps and slews into 128 buckets.

If a certain repeater is detected to be dominated exceedingly often (in 90%
of the cases) and at least a minimum amount of total labels have been cached
for this cap and slew bucket, we will exclude it from the labeling process.

In practice this allows us to dynamically exclude all repeaters which are
not suitable for driving a given capacity. It will also remove repeaters from
the labeling process, which are dominated by other choices in the library. In
practice we did not observe any change in quality of the results, but obtain a
large speedup.

7.4. Improvements 121

Label Storage Data Type

The old code maintained a linear vector to store the labels at every vertex of
the tree to be buffered. After every label insertion this vector was sorted to
improve the performance of dominance checks.

To overcome the overhead of constant sorting, we keep the labels sorted by
inserting them into a red–black tree [Bay72]. We use the implementation of
the C++ STL, which needs O(log n) runtime for an insertion operation. This
is faster than the previous code both in theory and practice, especially since
we allow more labels compared to the old implementation.

Geometric Future Cost Cache

For computing geometric future costs, one has to iterate over possible layers
and take via delays into account. As via delays are relatively small, in most
cases the lower bound consists of going to the topmost layer and traversing the
distance with the fastest available wire type.

To do this lookup as fast as possible, we introduce a separate cache for every
pair (l1, l2) of start and goal layers. If this pair is fixed, the optimum layer only
depends on the geometric distance of the two points (ignoring vertical layers).
Within the cache we occasionally sort the delay and via combinations such that
branch mispredictions are minimized.

7.4.2 Quality Improvements

Compared to the implementation by Rotter, we incorporated multiple changes
aiming at improved solution quality. Besides many fixes and small improve-
ments, we will focus on fundamental changes.

Bounding the Number of Inverters

Previously, the number of inverters was not considered and only the solution
cost was optimized. However, we noticed that in many cases the high prices
would lead to extra inverters with little benefit. In fact, using an excessive
number of gates usually leads to worse solutions, as legalization effects are not
fully visible during buffer insertion. To prevent this, we now store the amount
of inverters as a property in the labels. All steps are adapted in a way, such
that the cheapest solution which does not use an excessive number of inverters
is found.

122 Chapter 7. BonnRouteBuffer

Amount of Labels

The implementation by Rotter only kept 5 labels while propagating in the move
step. One label was chosen to have a small capacitance, a different label was
chosen with a capacitance that does not exceed the capacitance of an optimally
buffered chain, the last 3 labels were selected as the cheapest ones with higher
capacitance.

We greatly increase the number of labels kept by subdividing the set of
feasible capacitances into 15 buckets. For each of the buckets we keep the
cheapest label, which does not use an excessive amount of inverters. This comes
at the cost of some runtime, but leads to better buffer solutions. By previous
runtime optimizations (in particular the label storage data type), the overhead
of this change is acceptable.

Placement Aware Route Computation

The previous implementation did not take placement into account at all while
computing the routes to be buffered. On some designs, this could lead to
a significant number of avoidable multilabel computations. The new code
introduces a modified cost function described above in Equation 7.3. This leads
to routes which roughly consider expected costs of inverter insertion and avoid
long segments on blockages.

7.4.3 A placement feasibility oracle
Simply considering tile space usages is not sufficient to always obtain legalizable
solutions. Consider the situation depicted in Figure 7.7. Here, we are unable
to find a legal place for a larger inverter, which spans two circuit rows, due to
the blockade structure. Of course such a situation has to be prevented.

To legally place a cell, two constraints have to be satisfied. The obvious
one consists of avoiding overlaps with other cells or blockages. In addition,
some cells have a grid constraint. It is given by a tuple (a, b) ∈ Γ, where Γ
denotes the set of all grid constraints. Such a pair (a, b) indicates that the top
left corner of the cell may only be placed into circuit row i ∈ N if

i mod a = b.

In other words, the remainder when dividing i by a has to be b. On our practical
instances, there are only two types of grid constraints. Some cells can be placed
into every row while others can be placed into every second row.

We will now describe our approach to prevent situations as the one in Figure
7.7. Consider a fixed grid constraint (a, b) ∈ Γ. By rounding all blockages
to align to the grid induced by the pair (a, b) we are able to find solutions

7.4. Improvements 123

Figure 7.6: Cell movement when legalizing a large design after
buffer insertion with an algorithm by Brenner [Bre12]. Lines and
colors indicate cell movement. Green and blue corresponds to
small movement. Orange and red indicated larger movements.

124 Chapter 7. BonnRouteBuffer

Figure 7.7: A situation that may occur if only area constraints
are imposed on the buffering solution. The red cell is to be
legalized. While there is a large amount of unused space, no
feasible location exists due to the structure of the pre-placed
cells.

which automatically satisfy the grid constraint. This operation is illustrated in
Figure 7.8. To obtain a legalizable solution, we will first subdivide the chip
area into a coarse set. In practice choosing an uniform grid of 256 horizontal
and 256 vertical points yields a reasonable tradeoff between runtime, memory
and accuracy. Let coarsify(�) denote this subdivision of � into 2562 points.
For every point P ∈ coarsify(�) and grid constraint γ ∈ Γ, we will compute a
value lw(P, γ) which is the maximum width of a cell with grid constraint γ that
can be legalized in the neighborhood of P . We will now describe our approach
to prevent situations like the one in Figure 7.7.

We roughly proceed as follows. In the first step of Algorithm 7.1 we will
round all blockages to a given grid constraint. Then, we compute a stripe-
decomposition of the remaining free space. This step is illustrated in Figure
7.9. Finally, we check all points P ∈ coarsify(�) and store the maximum width
of a stripe intersecting a rectangle around P . For fast intersection checks, we
use a quad tree that contains the corresponding rectangles [FB74].

The old implementation only relied on area capacities. This could lead to
very large movements when legalizing some cells. After our adjustments the
designs can usually be legalized without any problems. Figure 7.6 shows an
excerpt of a larger design when applying a legalization algorithm by Brenner
[Bre12] to the output our buffering flow. The spacing map is also used in the

7.4. Improvements 125

Figure 7.8: Consider the problem of finding a feasible placement
position for the green cell. Assuming that the cell can be placed
into every odd row, i.e. Γ = {(2, 1)}, we can also simply look
for an overlap avoiding position in a modified instance. The new
instance is constructed by rounding all blockages to align with the
respective grid constraint of our cell. The orange areas indicate
new blockage outlines after this rounding step.

Figure 7.9: A decomposition of the available whitespace on the
chip area into stripes.

126 Chapter 7. BonnRouteBuffer

Algorithm 7.1: Spacing Map Computation
Input: A set of blockages and grid constraints Γ.
Output: Local spacings lw(P, ρ), for all γ ∈ Γ, P ∈ coarsify(�)

1 Collect all blockages Blockages, filling small gaps.
2 for each grid constraint γ = (a, b) ∈ Γ do
3 Round all blockages to align with γ, obtain Blockages′
4 Compute a horizontally maximal stripe-decomposition of the

whitespace �\Blockages′
5 Insert �\Blockages′ into a quad tree QTree
6 for each point P in a coarse grid of the chip area do
7 Let R be a rectangle [−L,L]2 + P (minkowski sum)
8 Look up all stripes S intersecting R in QTree
9 Let w be the maximum width of a stripe in S

10 Store lw(P, γ) := w

multilabel algorithm which computes the buffered embedding for difficult nets.

7.5 Comparison to Rotter
We evaluated our speedups of Section 7.4.1 by comparing the modified code
with the original implementation by Rotter. Both code variants run without
the infeasible future cost and only use geometric lower bounds. The results are
presented in table 7.1. Compared to Rotter we achieve large speedups on all
instances. The largest instance Ibm 14nm 07 previously took more than 24h
with 16 threads. Using a larger number of threads it can now be solved in only
3.5 hours.

The timing achieved with the new code is equivalent or better. Other
metrics were omitted, as these did not significantly deviate between the two
runs. On the larger testcases the step of embedding the topologies is a major
bottleneck for both the old and the new code. This is due to the fact that
buffering a given topology scales roughly linearly in the input tree, while the
embedding step scales approximately quadratically in the side length of the
chip.

All runs were performed on an identical machine with two Intel E5-2699 v4
CPUs, each of which offers 22 cores. Hyperthreading was disabled.

7.5.1 Comparison of Path Resources to Arrival Time
Customers

As we saw in Section 3.3.2 and 3.3.3, there are two different approaches to
model timing constraints in the resource sharing framework. While arrival time

7.5. Comparison to Rotter 127

Instance Branch #Gates Ws Tns twall
total

[ps] [ns] [h:m:s]

Ibm 14nm 01 Rotter 16k -80.0 -22.1 7:49
New 16k -70.0 -22.3 2:19 -70.4%

Ibm 14nm 02 Rotter 69k -127.4 -178.3 59:38
New 69k -122.6 -171.6 26:20 -55.8%

Ibm 14nm 03 Rotter 183k -366.4 -947.0 3:00:38
New 182k -365.5 -873.8 1:44:13 -42.3%

Ibm 14nm 04 Rotter 53k -174.9 -231.5 46:27
New 53k -178.3 -229.7 17:51 -61.6%

Ibm 14nm 05 Rotter 43k -161.6 -34.8 21:56
New 42k -162.9 -33.4 7:49 -64.4%

Ibm 14nm 06 Rotter 153k -187.2 -342.6 1:30:59
New 153k -181.0 -341.9 35:36 -60.9%

Ibm 14nm 07? Rotter 1770k -1330.2 -26575.1 11:28:20
New 1659k -444.5 -10390.6 3:25:21 -70.1%

?With 44 threads, all other runs with 16 threads. Old runtime with 16 threads > 24h.

Table 7.1: Runtime comparison on 14nm microprocessor designs
provided by IBM.

customers only introduce a polynomial amount of additional resources, timing
path resources seem to convey more information and are easier to implement.

The initial implementation by Rotter [Rot17] relied on arrival time customers.
For this, Rotter extended an implementation of the arrival time customers by
Traub [Tra15]. The bicriteria algorithm used for topology generation required
explicit arrival time values which are not available when using timing path
resources.

We also integrated timing path resources into BonnRouteBuffer using an
implementation by Foos [Foo20] of the topology generation algorithm by Held
and Khazraei [HK20] with further improvements. Sink prices are given by the
resource sharing costs of all timing path resources to a given sink. Edge costs
were heuristically scaled by a uniform constant to obtain similar netlengths
as for the bicriteria algorithm. This still leaves room for future improvement.
A more sophisticated solution which dynamically chooses the netlength cost
dependent on the individual nets would be superior.

To evaluate timing path resources, we used the most recent version of
BonnRouteBuffer and switched between arrival time customers and timing
path resources.

The results are shown in Table 7.2. We distinguish between three different
flows. First, an industrial flow without BonnRouteBuffer is given as a reference
(No Brb). Then, we compare the previous topology generation with arrival

128 Chapter 7. BonnRouteBuffer

time customers to the new implementation using timing path resources and cost-
based topologies. Timing, power, congestion and netlength are each measured
at the end of overall flow.

The results do not show a clear winner and are very similar. However, we
remark that our implementation of the timing path resources is significantly
simpler than the arrival time customers which use sophisticated bounds and
mechanisms to relax constraints. Therefore, the timing path resources should
possibly be preferred. With some tuning it may be possible to outperform the
initial arrival time customer based topology.

Instance Run Ws Tns Pstatic ∆Pstatic Ptotal ∆Ptotal Gates Wace4 Netl
[ps] [ps] [mW] [mW]

Ibm 7nm 01 No Brb -295 -60378 3.6 116.7 119614 86.62 100%
Brb Atc -289 -59794 3.6 +0.6% 117.1 +0.3% 122424 85.63 97.7%
Brb Tpr -301 -60671 3.6 +0.6% 116.8 +0.1% 122134 85.36 97.1%

Ibm 7nm 02 No Brb -40 -32052 16.9 92.6 44190 87.62 100%
Brb Atc -40 -30438 16.7 -1.3% 91.5 -1.2% 43244 87.81 99.0%
Brb Tpr -36 -30498 16.6 -1.9% 90.8 -1.9% 42756 87.63 98.8%

Ibm 7nm 03 No Brb -107 -803058 36.0 124.7 116219 81.63 100%
Brb Atc -110 -782491 32.8 -8.9% 121.6 -2.5% 118601 82.77 98.3%
Brb Tpr -106 -776328 34.0 -5.6% 122.8 -1.5% 119499 83.23 98.2%

Ibm 7nm 04 No Brb -114 -62496 17.3 65.0 60427 80.75 100%
Brb Atc -111 -56241 16.9 -2.3% 64.5 -0.6% 60399 84.24 98.7%
Brb Tpr -114 -57672 17.0 -1.8% 64.6 -0.5% 60617 84.03 98.8%

Ibm 7nm 05 No Brb -83 -71505 25.1 41.5 142972 90.70 100%
Brb Atc -81 -55439 23.4 -6.4% 40.0 -3.8% 143016 91.30 97.5%
Brb Tpr -81 -55404 23.4 -6.5% 40.0 -3.8% 143527 90.99 97.5%

Ibm 7nm 06 No Brb -42 -18024 10.8 150.2 55359 96.73 100%
Brb Atc -37 -14404 9.7 -10.4% 145.2 -3.4% 53611 94.39 94.4%
Brb Tpr -38 -14029 9.5 -12.5% 144.2 -4.0% 53009 94.38 94.6%

Ibm 7nm 07 No Brb -52 -1290 8.4 158.1 110893 93.67 100%
Brb Atc -52 -1147 7.9 -6.1% 156.4 -1.1% 111374 92.56 97.3%
Brb Tpr -51 -1120 7.9 -5.4% 156.2 -1.2% 110664 93.22 97.0%

Ibm 7nm 08 No Brb -62 -1361 8.3 192.3 120022 91.73 100%
Brb Atc -64 -1524 8.2 -1.7% 190.7 -0.8% 119211 91.60 96.9%
Brb Tpr -63 -1420 8.1 -3.2% 191.0 -0.6% 118514 91.57 97.1%

Table 7.2: Experimental results comparing arrival time cus-
tomers to timing path resources on recent 7nm microprocessor
designs.

7.6 Global Interconnect Optimization Flow
Our global interconnect optimization algorithm does not size the driver gates of
the nets. However, reasonable initial gate sizes are important to avoid electrical
violations and reduce the number of needed repeaters. To obtain good initial
sizes, we run our algorithm twice.

First, in Steps 1-3 of Algorithm 7.2, we use a quick variant of our buffering
algorithm using only 5 resource sharing iterations. Then, we perform global gate

7.7. Experimental results 129

sizing [Dab+18a], followed by the main repeater insertion (step 4 of Algorithm
7.2) using 25 resource sharing iterations. Afterwards, we perform gate sizing
[Dab+18a] again to reduce the total gate area and, thus, the cell movement
during legalization.

Finally, in Steps 6-8 we convert the global routes into net-based layer
assignments. The only reason for this phase is that the IBM design flow
[Li+12], which is the basis for our experiments, relies heavily on net-based
layer-assignments.

Algorithm 7.2: Overall buffering flow
Input: An unbuffered netlist.
Output: A buffered netlist with a global routing.
Phase 1: Initial sizing

1 5 iterations routing&buffering+gate sizing on global wires.
2 Rip out all inverters.
3 Legalize placement, discard layer-assignment.

Phase 2: Buffering
4 25 iterations of routing&buffering.
5 Gate sizing on global wires, then delete wires & legalize.

Phase 3: PostOpt
6 Compute a net-based layer-assignment.
7 Fix electrical violations & legalize placement.
8 Final layer-assignment based gate-sizing.

7.7 Experimental results
The global interconnect optimization algorithm is implemented in C++. Our
new flow in Section 7.6 was integrated into the IBM design flow that is based
on [Li+12]. We replaced the existing global buffering step. The global buffering
step in [Li+12] is followed by refining the signal delays by gate sizing, Vt-
optimization, buffering single nets, layer assignment, moving single gates, local
logic restructuring, etc., which we did not modify.

The existing global buffering algorithm in [Li+12] first computes a timing-
aware layer assignment [Wei+13] and a timing-unaware global routing respecting
the layer assignment[MRV11]. Then, it uses the global wires to guide the buffer
insertion based on dynamic programming [LCT96; LZS12]. Finally, it calls the
same global gate sizing algorithm [Dab+18a].

For placement bins, we set the capacity to 85% of the remaining space after
subtracting placement blockages to facilitate placement legalization.

All runs were allowed 16 threads scheduled on a heterogeneous Intel Xeon
cluster with clock frequencies between 2.6 and 2.9 GHz. The measured running

130 Chapter 7. BonnRouteBuffer

times still show a tendency but are not entirely comparable. As input, we used
ten current mircoprocessor units in 7nm technology.

We compare the existing flow and our new flow once at the end of the global
buffering step and at the end of the overall flow, just before detailed routing.
The results were provided by IBM and make use of a slightly older version of
the code, which does not yet support timing path resources and still uses the
old topology generation code.

For the final comparison, we use an industrial signoff timer with the RICE
[RP94] delay model. The timing directly after buffering is measured using
Elmore delays. Our results are presented in Table 7.3. The first two columns
show the name of the instance and the type of the run, followed by the number
of gates |G|. The Ws columns correspond to the slack of the most critical path.
The total negative slack ‘Tns’ is given by the sum of all negative endpoint
slacks, and the power and its difference to the reference in columns Pwr and
∆ Pwr.

Congestion is measured using the Ace4 number [Wei+14]. For 0 < x ≤ 100,
[Wei+14] define Ace(x) to be the average congestion (in percent) of the x

percent most congested edges in the global routing graph. The Ace4 metric is
then defined by

Ace4(x) = 1
4
(
Ace(0.5) + Ace(1) + Ace(2) + Ace(5)

)
.

Ace4 < 93 indicates routability while designs with Ace4 > 95 can hardly be
routed or cannot be routed at all.

The number of slew violations is given in the vslw columns and the load
violations in the vld columns. Finally, columns labeled Netl show the global
routing netlength in percentage of the reference run. It is measured with the
identical timing-unaware global router. Columns labeled Time report the
running times for global buffering or the overall flow.

The reference algorithm inserts repeaters economically into a global routing
that was minimizing the netlength. As we consider timing directly, the number
of inserted repeaters, congestion, and the global routing netlength of our
algorithm is worse directly after the buffering step. However, the default design
flow has to work harder in the subsequent refinement. At the end of the
flow, the global routing netlength is significantly improved by our approach,
on average by 2.6%. Electrical violations are generally low. On P 02 our
algorithm fails to resolve 109 load violations, which can mostly be fixed in the
refinement. The slew violations on that instance are reduced from 1486 to 611.
For this violation critical design, our multilabel algorithm was used in roughly
0.5% of the oracle calls.

For the routability at the end of the flow, our algorithm shows mostly

7.7.
Experim

entalresults
131

After global buffering End of flow

Inst. Run |G| Ws Tns Pwr ∆Pwr Ace4 vslw vld Netl Time |G| Ws Tns Pwr ∆Pwr Ace4 vslw vld Netl Time
[ps] [ps] [mW] [h:m] [ps] [ps] [mW] [h:m]

P 01 Ref. 252k -124 -19287 9.9 92.5 127 0 100.0% 0:29 221k -5 -20 9.8 89.3 34 0 100.0% 6:35
Alg. 7.2 268k -8 -326 9.6 -2.9% 94.5 98 0 100.7% 4:16 225k -2 -6 9.6 -1.8% 89.9 24 0 98.0% 10:06

P 02 Ref. 109k -241 -441679 35.3 93.5 1486 2 100.0% 0:12 103k -87 -178101 37.3 86.8 138 7 100.0% 3:55
Alg. 7.2 108k -169 -490888 31.8 -10.1% 92.8 611 109 97.1% 1:15 104k -84 -166529 37.2 -0.1% 84.5 119 21 98.0% 4:43

P 03 Ref. 190k -235 -532411 109.3 95.8 423 0 100.0% 0:24 202k -49 -53351 127.9 89.6 103 0 100.0% 5:51
Alg. 7.2 198k -407 -498348 110.2 +0.9% 90.7 427 0 99.8% 2:28 202k -59 -45562 126.8 -0.9% 88.6 135 0 98.9% 7:51

P 04 Ref. 84k -96 -58640 4.3 90.0 381 0 100.0% 0:09 78k -24 -6374 4.2 82.2 116 0 100.0% 2:44
Alg. 7.2 96k -62 -16227 4.2 -2.1% 91.0 209 0 100.8% 1:18 80k -24 -5748 4.2 -0.2% 84.4 97 0 99.6% 4:00

P 05 Ref. 168k -307 -1358333 33.8 94.9 435 0 100.0% 0:23 177k -66 -301398 36.0 100.0 109 0 100.0% 5:07
Alg. 7.2 170k -205 -968919 31.8 -6.0% 96.2 407 0 100.3% 2:28 176k -65 -247912 35.8 -0.5% 99.1 88 0 94.0% 6:44

P 06 Ref. 18k -213 -54509 1.2 93.0 201 1 100.0% 0:04 21k -123 -29098 1.3 90.8 40 5 100.0% 3:00
Alg. 7.2 20k -211 -53114 1.2 +2.6% 90.9 162 1 102.7% 0:20 21k -125 -29064 1.3 +0.0% 89.1 37 4 98.9% 3:18

P 07 Ref. 150k -196 -488710 31.3 93.5 513 1 100.0% 0:25 156k -45 -119088 32.7 94.5 31 11 100.0% 5:18
Alg. 7.2 149k -147 -394686 30.2 -3.4% 93.0 250 4 105.4% 2:12 156k -36 -88526 32.8 +0.3% 93.3 22 1 97.3% 6:15

P 08 Ref. 125k -236 -333837 31.3 92.7 467 2 100.0% 0:11 129k -54 -23782 32.1 93.1 82 10 100.0% 5:11
Alg. 7.2 127k -152 -189023 29.8 -4.8% 94.6 183 0 101.4% 1:51 128k -55 -20763 32.0 -0.5% 93.3 62 6 97.2% 7:04

P 09 Ref. 268k -347 -1178450 96.0 110.2 461 0 100.0% 0:47 263k -98 -312661 100.6 100.1 144 0 100.0% 7:51
Alg. 7.2 261k -257 -897348 91.7 -4.5% 96.2 489 1 105.1% 4:55 265k -85 -221758 100.2 -0.4% 96.3 144 1 95.0% 11:59

P 10 Ref. 182k -181 -404592 85.5 101.0 230 2 100.0% 0:21 162k -77 -60628 93.4 91.0 13 2 100.0% 6:57
Alg. 7.2 173k -239 -366890 83.4 -2.4% 101.2 186 2 102.9% 1:58 160k -72 -46405 91.3 -2.2% 90.6 13 3 96.7% 8:33

Table 7.3: Experimental results on recent 7nm microprocessor designs provided by IBM.

132 Chapter 7. BonnRouteBuffer

better results on routing critical instances (Ace4 ≥ 93). On P 09 the Ace4 is
improved from 100.1 to 96.3, which brings the design from being unroutable to
possibly being routable.

Despite inserting more gates and increasing the netlength, our algorithm
improves the power consumption and the Tns directly after global buffering.
The timing improvements are persistent at the end of the flow, on P 05,
P 07, P 09 and P 10 drastically. On P 01 we can almost satisfy all timing
constraints after buffering while the reference flow has a Tns of -19287 ps.

The running time of our global interconnect optimization increases compared
to the reference flow. However, our algorithm scales well using more CPU cores,
routing nets within each iteration in parallel. With 44 cores we still observed
near-optimum scaling on large instances. Further speed-ups are still possible by
refining our implementation. Finally, the refinement flow after global buffering
has not been adjusted to the improved starting solution yet.

Overall, our industrial partner IBM was extremely satisfied with the
improvements obtained by the algorithm. Especially the netlength savings
were surprising as previously even a reduction by 1% was considered a major
improvement. Usually, changes that are made early in the flow only have mild
implications on the final results. However, as we demonstrated above our new
buffering solutions significantly improves many metrics of the final result. As
a consequence the new algorithm was quickly adapted to be the new default
buffering tool.

Chapter 8

Summary

Resource sharing problems are ubiquitous in the chip design process. In this
thesis, we considered three such problems in detail: The time-cost tradeoff
problem, the gate sizing problem and the buffered, timing-constrained global
routing problem. In each of these, timing constraints have to be met while
minimizing the use of other resources like power, netlength or edge congestion.

For the time-cost tradeoff problem, we presented a primal-dual Vt optimiza-
tion algorithm with a provable performance guarantee. Our implementation
does not require a separable delay function. In practice, it achieved leakage
reductions of up to 8% on netlists that were pre-optimized by one of the most
successful algorithms for gate sizing and Vt assignment [RSR16a]. When applied
after global routing, the savings were even larger. On top of the approximation
guarantee, we computed a posteriori lower bounds which show that we solve
several instances almost optimally.

Besides the practical algorithm, we also considered the theoretic time-cost
tradeoff problem in directed acyclic graphs of bounded depth d. Previously,
a simple d approximation was known [Dab+18b]. First, we presented a
d
2 +(dd2e−

d
2)1

d
algorithm. We then note that the problem can be seen as a vertex

cover problem in d-partite hypergraphs. This implies a d
2 + ε approximation

for any ε > 0 by a result of Lovász [Lov75]. We improve this further, by
presenting a randomized algorithm of guarantee slightly better than d

2 . It also
approximates the d-partite hypergraph vertex cover problem, where it best
possible (up to o(1) terms) under the Unique Games Conjecture and P 6= NP.

From a negative side, previously only APX-hardness was known for the
special case of bounded depth. We improve this lower bound to d+2

4 , again
assuming the Unique Games Conjecture and P 6= NP. Thereby, we settle the
approximability of the problem up to a factor of less than 2.

Next, we considered the gate sizing problem, which adds a further difficulty
of interdependent delays. To solve it, we used the resource sharing formulation
by Schorr [Sch15]. Our new analysis of the resource sharing algorithm applied
to gate sizing rules out previous inaccuracies and can be easily adapted to

133

134 Chapter 8. Summary

further delay models. We presented a new practical implementation of the
resource sharing algorithm for gate sizing with heuristic modifications and
compared it to the state-of-the-art algorithm of Reimann et al. [RSR16a].
On all designs our algorithm obtains similar or better power savings while
significantly reducing runtime up to a factor of 10.

Finally, we presented BonnRouteBuffer. Rotter explained how to
heuristically solve the problem of computing buffered global routes for all nets
with a single resource sharing formulation [Rot17]. We extended and simplified
his model. First, we used timing path resources which were first described by
Hähnle [Häh15] to allow an easier implementation. Our experiments indicate
that this does not affect the overall solution quality. Next, we pointed out that
simply using area based resources to attain placement feasibility is insufficient
and adjusted the theoretic model accordingly.

Rotter presented a first proof-of-concept implementation of his algorithm
[Rot17]. However, overall his practical results were not yet completely convinc-
ing. Next to improved placement constraints we applied several new ideas to
obtain better solutions. As a result, the algorithm now decisively outperforms
a state-of-the-art design flow in almost all metrics, including netlength, power,
congestion and timing. We also drastically improve the performance, obtaining
runtime reductions up to 70%.

All three described algorithms are now in use by our industrial partner IBM,
they significantly reshaped the optimization methodology used in the design
flow. While the previous algorithms mostly relied on local optimization, our
new flow is driven by global problem formulations which take all major design
objectives into account.

Bibliography

[Abr+11] H. Abrishami, J. Lou, J. Qin, J. Froessl, and M. Pedram. “Post
sign-off leakage power optimization”. In: Proceedings of the 48th
Design Automation Conference. DAC (San Diego, California,
USA). 2011, pp. 453–458 (cit. on pp. 38, 39).

[Ach+12] H. Acharya, T. Choi, R. Bazzi, and M. Gouda. “The K-observer
problem in computer networks”. In: Networking Science 1 (2012),
pp. 15–22 (cit. on p. 76).

[AHK96] R. Aharoni, R. Holzman, and M. Krivelevich. “On a theorem of
Lovász on covers in r-partite hypergraphs”. In: Combinatorica
16.2 (1996), pp. 149–174 (cit. on pp. 57, 59, 60, 63, 69).

[AK00] P. Alimonti and V. Kann. “Some APX-completeness results for
cubic graphs”. In: Theoretical Computer Science 237.1-2 (2000),
pp. 123–134 (cit. on pp. 59, 85).

[Alb+02] C. Albrecht, A. B. Khang, I. Mandoiu, and A. Zelikovsky. “Floor-
plan Evaluation with Timing-Driven Global Wireplanning, Pin
Assignment and Buffer/Wire Sizing”. In: Proceedings of the 7th
Asia and South Pacific Design Automation Conference. ASP-DAC
(Bangalore, India). 2002, pp. 580–588 (cit. on pp. 20, 107, 108).

[Alp+18] C. Alpert, W.-K. Chow, K. Han, A. Kahng, Z. Li, D. Liu, and S.
Venkatesh. “Prim-Dijkstra Revisited: Achieving Superior Timing-
driven Routing Trees”. In: Proceedings of the 2018 International
Symposium on Physical Design. ISPD (Monterey, California, USA).
2018, pp. 10–17 (cit. on p. 107).

[Alp+95] C. Alpert, H. J.H., A. Kahng, and D. Karger. “Prim-Dijkstra
tradeoffs for improved performance-driven routing tree design”.
In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 14.7 (1995), pp. 890–896 (cit. on p. 107).

[Aut+17] C. Auth, A. Aliyarukunju, M. Asoro, D. Bergstrom, V. Bhagwat,
J. Birdsall, N. Bisnik, M. Buehler, V. Chikarmane, G. Ding, Q.
Fu, H. Gomez, W. Han, D. Hanken, M. Haran, M. Hattendorf,
R. Heussner, H. Hiramatsu, B. Ho, S. Jaloviar, I. Jin, S. Joshi,

135

136 Bibliography

S. Kirby, S. Kosaraju, H. Kothari, G. Leatherman, K. Lee, J.
Leib, A. Madhavan, K. Marla, H. Meyer, T. Mule, C. Parker,
S. Parthasarathy, C. Pelto, L. Pipes, I. Post, M. Prince, A.
Rahman, S. Rajamani, A. Saha, J. D. Santos, M. Sharma, V.
Sharma, J. Shin, P. Sinha, P. Smith, M. Sprinkle, A. Amour,
C. Staus, R. Suri, D. Towner, A. Tripathi, A. Tura, C. Ward,
and A. Yeoh. “A 10nm high performance and low-power CMOS
technology featuring 3rd generation FinFET transistors, Self-
Aligned Quad Patterning, contact over active gate and cobalt
local interconnects”. In: Proceedings of the International Electron
Devices Meeting (San Francisco, California, USA). 2017, pp. 673–
676 (cit. on p. 2).

[Bar+09] C. Bartoschek, S. Held, D. Rautenbach, and J. Vygen. “Fast
Buffering for Optimizing Worst Slack and Resource Consumption
in Repeater Trees”. In: Proceedings of the 2009 International
Symposium on Physical Design. ISPD (San Diego, California,
USA). 2009, pp. 43–50 (cit. on pp. 35, 108, 112, 115).

[Bar+10] C. Bartoschek, S. Held, J. Maßberg, D. Rautenbach, and J.
Vygen. “The repeater tree construction problem”. In: Information
Processing Letters 110.24 (2010), pp. 1079–1083 (cit. on pp. 33,
107).

[Bay72] R. Bayer. “Symmetric binary B-Trees: Data structure and mainte-
nance algorithms”. In: Acta Informatica 1.4 (1972), pp. 290–306
(cit. on p. 121).

[BE81] R. Bar-Yehuda and S. Even. “A linear-time approximation al-
gorithm for the weighted vertex cover problem”. In: Theoretical
Computer Science 2.2 (1981), pp. 198–203 (cit. on pp. 37, 42, 59,
65).

[BJ08] S. Boyd and S. Joshi. “An efficient method for large-scale gate
sizing”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 55.9 (2008), pp. 2760–2773 (cit.
on p. 90).

[Boy+05] S. Boyd, S. Kim, D. Patil, and M. Horowitz. “Digital circuit
optimization via geometric programming”. In: Operations Research
53.6 (2005), pp. 899–932 (cit. on p. 90).

[Bre+11] B. Brešar, F. Kardoš, J. Katrenič, and G. Semanǐsin. “Minimum
k-path vertex cover”. In: Discrete Applied Mathematics 159.12
(2011), pp. 1189–1195 (cit. on p. 76).

Bibliography 137

[Bre12] U. Brenner. “VLSI legalization with minimum perturbation by
iterative augmentation”. In: Proceedings of the 2012 Conference
on Design, Automation and Test in Europe. DATE (Dresden,
Germany). 2012, pp. 1385–1390 (cit. on pp. 123, 124).

[Bro41] R. Brooks. “On colouring the nodes of a network”. In: Mathe-
matical Proceedings of the Cambridge Philosophical Society 37.2
(1941), pp. 194–197 (cit. on p. 85).

[CC91] R. C. Carden and C.-K. Cheng. “A global router using an efficient
approximate multicommodity multiterminal flow algorithm”. In:
Proceedings of the 28th Design Automation Conference. DAC (San
Francisco, California, USA). 1991, pp. 316–321 (cit. on pp. 20,
21).

[CCW99] C. Chen, C. Chu, and D. Wong. “Fast and exact simultaneous gate
and wire sizing by Lagrangian relaxation”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems
18.7 (1999), pp. 1014–1025 (cit. on pp. 90, 93, 94, 99, 100).

[Cha+10] Y.-J. Chang, Y.-T. Lee, J.-R. Gao, P.-C. Wu, and T.-C. Wang.
“NTHU-Route 2.0: A Robust Global Router for Modern Designs”.
In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 29.12 (2010), pp. 1931–1944 (cit. on p. 20).

[Cho+09] M. Cho, K. Lu, K. Yuan, and D. Z. Pan. “BoxRouter 2.0: A
Hybrid and Robust Global Router with Layer Assignment for
Routability”. In: ACM Trans. Des. Autom. Electron. Syst. 14.2
(2009), Art. No. 32 (cit. on p. 20).

[Chu+08] J. Chuzhoy, A. Gupta, J. Naor, and A. Sinha. “On the approx-
imability of some network design problems”. In: Transactions on
Algorithms 4.2 (2008), Art. No. 23 (cit. on pp. 33, 35).

[CK05] D. Chinnery and K. Keutzer. “Linear Programming for Sizing, Vth
and Vdd Assignment”. In: Proceedings of the 2005 International
Symposium on Low Power Electronics and Design. ISLPED (San
Diego, California, USA). 2005, pp. 149–154 (cit. on p. 90).

[CW01] C. Chu and D. Wong. “VLSI Circuit Performance Optimization
by Geometric Programming”. In: Annals of Operations Research
105.1-4 (2001), pp. 37–60 (cit. on pp. 90, 94).

[CW03] J. Croix and D. Wong. “Blade and razor: cell and interconnect
delay analysis using current-based models”. In: Proceedings of the
40th Design Automation Conference. DAC (Anaheim, California,
USA). 2003, pp. 386–389 (cit. on p. 13).

138 Bibliography

[CY19] G. Chen and E. Young. “SALT: Provably Good Routing Topology
by a Novel Steiner Shallow-Light Tree Algorithm”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems (2019). Early Access (cit. on p. 107).

[Dab+18a] S. Daboul, N. Hähnle, S. Held, and U. Schorr. “Provably Fast and
Near-Optimum Gate Sizing”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 37.12 (2018). DOI:
10.1109/TCAD.2018.2801231, © 2018 IEEE, pp. 3163–3176 (cit.
on pp. 29, 89, 91, 94, 98–100, 102, 129).

[Dab+18b] S. Daboul, S. Held, J. Vygen, and S. Wittke. “An approximation
algorithm for threshold voltage optimization”. In: ACM Trans-
actions on Design Automation of Electronic Systems 23.6 (2018).
Art. No. 68, DOI: https://doi.org/10.1145/3232538 (cit. on pp. 37,
59, 133).

[Dab+19] S. Daboul, S. Held, B. Natura, and D. Rotter. “Global Intercon-
nect Optimization”. In: IEEE/ACM International Conference on
Computer-Aided Design. ICCAD (Westminster, Colorado, USA).
DOI: 10.1109/ICCAD45719.2019.8942155. 2019, Art. No. 1C.3,
pp. 1-8 (cit. on p. 105).

[Dab15] S. Daboul. “Algorithms for the gate sizing and Vt assignment
problem”. Master’s thesis. University of Bonn, 2015 (cit. on p. 16).

[De+97] P. De, E. Dunne, J. Ghosh, and C. Wells. “Complexity of the
discrete time-cost tradeoff problem for project networks”. In:
Operations Research 45.2 (1997), pp. 302–306 (cit. on p. 58).

[DG01] V. Děıneko and W. G.J. “Hardness of approximation of the discrete
time-cost tradeoff problem”. In: Operations Research Letters 29.5
(2001), pp. 207–210 (cit. on pp. 59, 85).

[DHV20] S. Daboul, S. Held, and J. Vygen. “Approximating the discrete
time-cost tradeoff problem with bounded depth”. arXiv 2011.02446.
2020 (cit. on pp. 57, 64, 70, 72, 78, 80–82).

[DS05] I. Dinur and S. Safra. “On the hardness of approximating mini-
mum vertex cover”. In: The Annals of Mathematics 162.1 (2005),
pp. 439–485 (cit. on p. 58).

[EF70] J. Edmonds and D. Fulkerson. “Bottleneck extrema”. In: Journal
of Combinatorial Theory 8.3 (1970), pp. 299–306 (cit. on p. 61).

[EK72] J. Edmonds and R. M. Karp. “Theoretical Improvements in
Algorithmic Efficiency for Network Flow Problems”. In: Journal
of the ACM (JACM) 19.2 (1972), pp. 248–264 (cit. on p. 73).

Bibliography 139

[Elm48] W. C. Elmore. “The transient response of damped linear networks
with particular regard to wide-band amplifiers”. In: Journal of
Applied Physics 19.1 (1948), pp. 55–64 (cit. on pp. 11, 110).

[FB74] R. A. Finkel and J. L. Bentley. “Quad trees a data structure
for retrieval on composite keys”. In: Acta Informatica 4.1 (1974),
pp. 1–9 (cit. on p. 124).

[FD85] J. Fishburn and A. Dunlop. “Tilos: a posynomial programming
approach to transistor sizing”. In: ICCAD (Santa Clara, California,
USA). 1985, pp. 326–328 (cit. on pp. 11, 13, 42, 90).

[Fla+14] G. Flach, T. Reimann, G. Posser, M. Johann, and R. Reis. “Ef-
fective Method for Simultaneous Gate Sizing and Vt Assign-
ment Using Lagrangian Relaxation”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 33.4
(2014), pp. 546–557 (cit. on pp. 38, 50, 89, 90).

[Foo20] J. Foos. “Algorithms for buffered global routing”. Master’s thesis.
University of Bonn, 2020 (cit. on pp. 113, 127).

[FW56] M. Frank and P. Wolfe. “An algorithm for quadratic programming”.
In: Naval Research Logistics Quarterly 3.1-2 (1956), pp. 95–110
(cit. on p. 94).

[GLS81] M. Grötschel, L. Lovász, and A. Schrijver. “The ellipsoid method
and its consequences in combinatorial optimization”. In: Combi-
natorica 1 (1981), pp. 169–197 (cit. on p. 62).

[GSS00] V. Guruswami, S. Sachdeva, and R. Saket. “Inapproximability of
minimum vertex cover on k-uniform k-partite hypergraphs”. In:
SIAM Journal on Discrete Mathematics 29.1 (2000), pp. 36–58
(cit. on pp. 59, 60, 75).

[GW04] A. Grigoriev and G. Woeginger. “Project scheduling with irregular
costs: complexity, approximability, and algorithms”. In: Acta
Informatica 41.2 (2004), pp. 83–97 (cit. on p. 58).

[GW96] M. Goemans and D. Williamson. “The primal-dual method for
approximation algorithms and its application to network design
problems”. In: Approximation Algorithms for NP-Hard Problems.
Ed. by D. Hochbaum. 1996, pp. 144–191 (cit. on p. 47).

[Häh15] N. Hähnle. Time-cost tradeoff and Steiner tree packing with multi-
plicative weights. Technical Report no. 1511115. Research Institute
for Discrete Mathematics, University of Bonn, 2015 (cit. on pp. 5,
21, 29, 31, 97, 105, 134).

140 Bibliography

[Hel+17] S. Held, S. Müller, D. Rotter, R. Scheifele, V. Traub, and J. Vygen.
“Global Routing with Timing Constraints”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems
37.2 (2017), pp. 406–419 (cit. on pp. 21, 26–28, 105, 112, 114).

[Hel08] S. Held. “Timing closure in chip design”. Dissertation. University
of Bonn, 2008 (cit. on p. 7).

[Hel09] S. Held. “Gate Sizing for Large Cell-Based Desings”. In: Proceed-
ings of the 2009 Conference on Design, Automation and Test in
Europe. DATE (Nice, France). 2009, pp. 827–832 (cit. on p. 90).

[HH16] S. Held and J. Hu. “Gate Sizing”. In: Electronic Design Automa-
tion for Integrated Circuits Handbook, Second Edition. Ed. by L.
Scheffer, L. Lavagno, G. Martin, and I. Markov. 2016, Chapter 33
(cit. on pp. 12, 13, 90).

[HK20] S. Held and A. Khazraei. “An Improved Approximation Algorithm
for the Uniform Cost-Distance Steiner Tree Problem”. In: WAOA:
International Workshop on Approximation and Online Algorithms
(Online). 2020 (cit. on pp. 33, 113, 127).

[HL03] M. Hrkić and J. Lillis. “Buffer tree synthesis with consideration
of temporal locality, sink polarity requirements, solution cost,
congestion, and blockages”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 22.4 (2003),
pp. 481–491 (cit. on pp. 107, 119).

[Hon+97] X.-L. Hong, T. Xue, J. Huang, C.-K. Cheng, and E. S. Kuh.
“TIGER: an efficient timing-driven global router for gate array and
standard cell layout design”. In: vol. 16. 11. 1997, pp. 1323–1331
(cit. on p. 20).

[HR13] S. Held and D. Rotter. “Shallow Light Steiner Arborescences with
Vertex Delays”. In: Proceedings of the 16th International Confer-
ence on Integer Programming and Combinatorial Optimization.
IPCO (Valparáıso, Chile). 2013, pp. 996–1025 (cit. on pp. 32, 107,
113).

[HR18] S. Held and B. Rockel. “Exact Algorithms for Delay-Bounded
Steiner Arborescences”. In: Proceedings of the 55th Design Au-
tomation Conference. DAC (San Francisco, California, USA). 2018,
Art. No. 44 (cit. on pp. 107, 113).

[HS19] N. Hähnle and P. Saccardi. “Global Routing on Rhomboidal
Tiles”. In: IEEE/ACM International Conference on Computer-
Aided Design. ICCAD (Westminster, Colorado, USA). 2019, Art.
No. 10C.1 (cit. on pp. 20, 21).

Bibliography 141

[HSV17] S. Hougardy, J. Silvanus, and J. Vygen. “Faster min-max resource
sharing in theory and practice”. In: Mathematical Programming
Computation 9.7 (2017), pp. 135–202 (cit. on p. 107).

[Hu+12] J. Hu, A. Kahng, S. Kang, M.-C. Kim, and I. Markov. “Sensitivity-
Guided Metaheuristics for Accurate Discrete Gate Sizing”. In:
Proceedings of the 2012 International Conference on Computer-
Aided Design. ICCAD (San Jose, California, USA). 2012, pp. 233–
239 (cit. on pp. 38, 90).

[Hu+18] J. Hu, Y. Zhou, Y. Wei, S. Quay, L. Reddy, G. Téllez, and G.-J.
Nam. “Interconnect Optimization Considering Multiple Critical
Paths”. In: Proceedings of the 2018 International Symposium on
Physical Design. ISPD (Monterey, California, USA). 2018, pp. 132–
138 (cit. on p. 108).

[Hua+93] J. Huang, X.-L. Hong, C.-K. Cheng, and E. S. Kuh. “An efficient
timing-driven global routing algorithm”. In: Proceedings of the
30th Design Automation Conference. DAC (Anaheim, California,
USA). 1993, pp. 596–600 (cit. on p. 20).

[Isb58] J. Isbell. “A class of simple games”. In: Duke Mathematical Journal
25.3 (1958), pp. 423–439 (cit. on p. 61).

[Jag13] M. Jaggi. “Revisiting Frank-Wolfe: Projection-Free Sparse Convex
Optimization”. In: Proceedings of the 30th International Confer-
ence on Machine Learning. Ed. by S. Dasgupta and D. McAllester.
Vol. 28. 1. 2013, pp. 427–435 (cit. on p. 95).

[JJC99] H. Jiang, J. Jou, and Y. Chang. “Noise-Constrained Performance
Optimization, by Simultaneous Gate and Wire Sizing Based
on Lagrangian Relaxation”. In: Proceedings of the 36th Design
Automation Conference. DAC (New Orleans, Louisiana, USA).
1999, pp. 90–95 (cit. on pp. 99, 101).

[Kah+13] A. Kahng, S. Kang, H. Lee, I. Markov, and P. Thapar. “High-
performance gate sizing with a signoff timer”. In: Proceedings of
the 2013 International Conference on Computer-Aided Design.
ICCAD (San Jose, California, USA). 2013, pp. 450–457 (cit. on
pp. 14, 38, 90).

[Kho02] S. Khot. “On the power of unique 2-prover 1-round games”. In:
(2002), pp. 767–775 (cit. on p. 4).

[Kie16] A. Kiefner. “Minimizing path lengths in rectilinear Steiner mini-
mum trees with fixed topology”. In: Operations Research Letters
44.6 (2016), pp. 835–838 (cit. on p. 115).

142 Bibliography

[KK82] N. Karmarkar and R. Karp. “An efficient approximation scheme
for the one-dimensional bin-packing problem”. In: Proceedings of
the 23rd Annual Symposium on Foundations of Computer Science.
FOCS (Chicago, Illinois, USA). 1982, pp. 312–320 (cit. on p. 63).

[Kon02] T. Kong. “A novel net weighting algorithm for timing-driven
placement”. In: ICCAD (San Jose, California, USA). 2002, pp. 172–
176 (cit. on p. 16).

[KR08] S. Khot and O. Regev. “Vertex cover might be hard to approximate
to within 2-epsilon”. In: Journal of Computer and System Sciences
74.3 (2008), pp. 335–349 (cit. on pp. 4, 76).

[KRY95] S. Khuller, B. Raghavachari, and N. Young. “Balancing minimum
spanning trees and shortest-path trees”. In: Algorithmica 14 (1995),
pp. 305–321 (cit. on p. 33).

[KV11] B. H. Korte and J. Vygen. Combinatorial Optimization: Theory
and Algorithms (Algorithms and Combinatorics). Springer, 5th ed.
2011. 660 pp. (cit. on pp. 7, 149).

[KW16] N. Klein and T. Wexler. “On the Approximability of DAG Edge
Deletion”. Manuscript. 2016 (cit. on p. 66).

[KW59] J. Kelley and M. Walker. “Critical-Path Planning and Scheduling”.
In: Papers Presented at the December 1-3, 1959, Eastern Joint
IRE-AIEE-ACM Computer Conference (Boston, Massachusetts,
USA). 1959, pp. 160–173 (cit. on pp. 3, 58).

[Lan00] K. Langkau. “Gate Sizing in VLSI Design”. Diploma thesis (in
German). University of Bonn, 2000 (cit. on pp. 89, 90).

[LCT96] J. Lillis, C. Cheng, and L. T.T.Y. “Optimal Wire Sizing and
Buffer Insertion for Low Power and a Generalized Delay Model”.
In: Journal of Solid-State Circuits 31.3 (1996), pp. 436–447 (cit. on
pp. 106, 107, 115, 117, 129).

[LF08] F. Liu and P. Feldmann. “MAISE: An Interconnect Simulation
Engine for Timing and Noise Analysis”. In: 9th International
Symposium on Quality of Electronic Design. ISQED (San Jose,
California, USA). 2008, pp. 621–626 (cit. on p. 50).

[LH10] Y. Liu and J. Hu. “A new algorithm for simultaneous gate sizing
and threshold voltage assignment”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 29.2
(2010), pp. 223–234 (cit. on p. 39).

Bibliography 143

[Li+08] Z. Li, C. J. Alpert, S. Hu, T. Muhmud, S. T. Quay, and P. G.
Villarrubia. “Fast interconnect synthesis with layer assignment”.
In: Proceedings of the 2008 International Symposium on Physical
Design. ISPD (Portland, Oregon, USA). 2008, pp. 71–77 (cit. on
p. 107).

[Li+12] Z. Li, C. Alpert, G.-J. Nam, C. Sze, N. Viswanathan, and N. Zhou.
“Guiding a physical design closure system to produce easier-to-
route designs with more predictable timing”. In: Proceedings of
the 49th Design Automation Conference. DAC (San Francisco,
California, USA). 2012, pp. 465–470 (cit. on pp. 2, 17, 21, 129).

[Liu+18] D. Liu, B. Yu, S. Chowdhury, and D. Pan. “TILA-S: Timing-
driven incremental layer assignment avoiding slew violations”.
In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 37.1 (2018), pp. 231–244 (cit. on p. 108).

[Lov75] L. Lovász. “On minmax theorems of combinatorics”. Doctoral
Thesis (in Hungarian). Bolyai Institute, József Attila University,
1975 (cit. on pp. 57, 59, 60, 69, 133).

[LZS12] Z. Li, Y. Zhou, and W. Shi. “O(mn) Time Algorithm for Optimal
Buffer Insertion of Nets With m Sinks”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 31.3
(2012), pp. 437–441 (cit. on pp. 106, 107, 129).

[Maß15] J. Maßberg. “The Rectilinear Steiner Tree Problem with Given
Topology and Length Restrictions”. In: Computing and Combina-
torics. 2015, pp. 445–456 (cit. on p. 107).

[MRV11] D. Müller, K. Radke, and J. Vygen. “Faster min-max resource
sharing in theory and practice”. In: Mathematical Programming
Computation 3.1 (2011), pp. 1–35 (cit. on pp. 20, 23–26, 96, 102,
110, 111, 129).

[MSW14] M. Mihalák, R. Srámek, and P. Widmayer. “Approximately count-
ing approximately shortest paths in directed acyclic graphs”. In:
Theory of Computing Systems 58.1 (2014), pp. 1–15 (cit. on p. 16).

[Nat17] B. Natura. “Algorithms for Routing and Buffer Insertion”. Master
Thesis. University of Bonn, 2017 (cit. on pp. 36, 105, 107, 113,
119).

[Ngu+03] D. Nguyen, A. Davare, M. Orshansky, D. Chinnery, B. Thompson,
and K. Keutzer. “Minimization of Dynamic and Static Power
through Joint Assignment of Threshold, Voltages and Sizing Op-
timization”. In: Proceedings of the 2003 International Symposium

144 Bibliography

on Low Power Electronics and Design. ISLPED (Seoul, South
Korea). 2003, pp. 158–163 (cit. on p. 90).

[OBH12] M. Ozdal, S. Burns, and J. Hu. “Algorithms for Gate Sizing
and Device Parameter Selection for High-Performance Designs”.
In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 31.10 (2012), pp. 1558–1571 (cit. on pp. 39,
90).

[Ozd+13] M. Ozdal, C. Amin, A. Ayupov, S. M. Burns, G. R. Wilke, and C.
Zhuo. “An Improved Benchmark Suite for the ISPD-2013 Discrete
Cell Sizing Contest”. In: Proceedings of the 2013 International
Symposium on Physical Design. ISPD (Stateline, Nevada, USA).
2013, pp. 168–170 (cit. on p. 14).

[PRS94] D. Paik, S. Reddy, and S. Sahni. “Deleting vertices to bound path
length”. In: Transactions on Computers 43.9 (1994), pp. 1091–
1096 (cit. on p. 76).

[RD13] H. Ren and S. Dutt. “Fast and Near-Optimal Timing-Driven Cell
Sizing under Cell Area and, Leakage Power Constraints Using a
Simplified Discrete Network Flow Algorithm”. In: VLSI Design
(2013) (cit. on p. 90).

[Roc18] B. Rockel. “Exact Algorithms for Interconnect Optimization”.
Master’s thesis. University of Bonn, 2018 (cit. on p. 107).

[Rot17] D. Rotter. “Timing-Constrained Global Routing with Buffered
Steiner Trees”. Dissertation. University of Bonn, 2017 (cit. on
pp. 5, 21, 33–35, 105–107, 110, 112, 113, 119, 120, 127, 134).

[RP94] C. Ratzlaff and L. Pillage. “RICE: Rapid Interconnect Circuit
Evaluation Using Asymptotic Waveform Evaluation”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems 13.6 (1994), pp. 736–776 (cit. on pp. 13, 130).

[RS12] M. Rahman and C. Sechen. “Post-Synthesis Leakage Power Min-
imization”. In: Proceedings of the 2012 Conference on Design,
Automation and Test in Europe. DATE (Dresden, Germany). 2012,
pp. 99–104 (cit. on pp. 38, 39).

[RSR15] T. Reimann, C. Sze, and R. Reis. “Gate sizing and threshold volt-
age assignment for high performance microprocessor designs”. In:
Proceedings of the 20th Asia and South Pacific Design Automation
Conference. ASP-DAC (Chiba/Tokyo, Japan). 2015, pp. 214–219
(cit. on pp. 38, 50).

Bibliography 145

[RSR16a] T. Reimann, C. Sze, and R. Reis. “Cell selection for high-
performance designs in an industrial design flow”. In: Proceedings
of the 2016 International Symposium on Physical Design. ISPD
(Santa Rosa, California, USA). 2016, pp. 65–72 (cit. on pp. 4, 37,
38, 49, 50, 52, 55, 89, 101–103, 133, 134).

[RSR16b] T. Reimann, C. C. Sze, and R. Reis. “Challenges of cell selection
algorithms in industrial high performance microprocessor designs”.
In: Integration 52 (2016), pp. 347–354 (cit. on pp. 15, 46, 51).

[Sap+93] S. Sapatnekar, V. Rao, P. Vaidya, and S.-M. Kang. “An Exact
Solution to the Transistor Sizing Problem for CMOS Circuits Using
Convex Programming”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 12.11 (1993),
pp. 1621–1634 (cit. on p. 90).

[Sch15] U. Schorr. “Algorithms for gate sizing in VLSI design”. PhD thesis.
University of Bonn, 2015 (cit. on pp. 4, 89–93, 98, 99, 101, 133).

[Sha+05] S. Shah, A. Srivastava, D. Sharma, D. Sylvester, D. Blaauw,
and V. Zolotov. “Discrete vt assignment and gate sizing using
a self-snapping continuous formulation”. In: ICCAD (San Jose,
California, USA). 2005, pp. 705–712 (cit. on p. 38).

[SK87] E. Shragowitz and S. Keel. “A global router based on a multicom-
modity flow model”. In: Integration. the VLSI Journal 5.1 (1987),
pp. 3–16 (cit. on pp. 17, 20, 21, 108).

[Sku98] M. Skutella. “Approximation algorithms for the discrete time-cost
tradeoff problem”. In: Mathematics of Operations Research 23.4
(1998), pp. 909–929 (cit. on pp. 58, 60, 61, 84).

[Sve12] O. Svensson. “Hardness of Vertex Deletion and Project Schedul-
ing”. In: Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques. Ed. by A. Gupta, K. Jansen,
J. Rolim, and R. Servedio. 2012, pp. 301–312 (cit. on pp. 4, 58,
60, 76, 77).

[Sze05] C. Szegedy. “Some Applications of the weighted combinatorial,
Laplacian”. PhD thesis. University of Bonn, 2005 (cit. on pp. 89,
90).

[Tom71] N. Tomizawa. “On some techniques useful for solution of trans-
portation network problems”. In: Networks. An International
Journal 1.2 (1971), pp. 173–194 (cit. on p. 73).

146 Bibliography

[Tra15] V. Traub. “Global Routing mit Delay-Beschränkungen”. Bache-
lor’s thesis (in German). University of Bonn, 2015 (cit. on pp. 105,
127).

[TS02] H. Tennakoon and C. Sechen. “Gate Sizing Using Lagrangian
Relaxation Combined with a Fast Gradient-Based, Pre-Processing
Step”. In: ICCAD (San Jose, California, USA). 2002, pp. 395–402
(cit. on pp. 90, 99).

[TS08] H. Tennakoon and C. Sechen. “Nonconvex Gate Delay Modeling
and Delay Optimization”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 27.9 (2008),
pp. 1583–1594 (cit. on p. 94).

[TZ11] J. Tu and W. Zhou. “A primal-dual approximation algorithm for
the vertex cover P3 problem”. In: Theoretical Computer Science
412.50 (2011), pp. 7044–7048 (cit. on p. 76).

[Van90] L. Van Ginneken. “Buffer Placement in Distributed RC-Tree
Networks for Minimal Elmore Delay”. In: Proceedings of the 1990
International Symposium on Circuits and Systems. ISCAS (New
Orleans, Louisiana, USA). 1990, pp. 865–868 (cit. on pp. 35, 106,
107).

[Vyg01] J. Vygen. “Theory of VLSI Layout”. Habilitation thesis. University
of Bonn, 2001 (cit. on p. 7).

[Vyg04] J. Vygen. “Near-Optimum Global Routing with Coupling, Delay
Bounds, and Power Consumption”. In: Proceedings of the 10th
International Conference on Integer Programming and Combinato-
rial Optimization. IPCO (New York, NY, USA). 2004, pp. 308–324
(cit. on p. 20).

[WA04] Z. L. Weiping Shi and C. J. Alpert. “Complexity analysis and
speedup techniques for optimal buffer insertion with minimum
cost”. In: Proceedings of the 9th Asia and South Pacific Design
Automation Conference. ASP-DAC (Yokohama, Japan). 2004,
pp. 609–614 (cit. on p. 21).

[WDL11] T. Wu, A. Davoodi, and J. T. Linderoth. “GRIP: Global Routing
via Integer Programming”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 30.1 (2011),
pp. 72–84 (cit. on p. 20).

[WDZ07] J. Wang, D. Das, and H. Zhou. “Gate Sizing by Lagrangian
Relaxation Revisited”. In: ICCAD (San Jose, California, USA).
2007, pp. 111–118 (cit. on pp. 90, 99).

Bibliography 147

[Wei+13] Y. Wei, Z. Li, C. Sze, S. Hu, C. Alpert, and S. S.S. “CATALYST:
planning layer directives for effective design closure”. In: Proceed-
ings of the 2013 Conference on Design, Automation and Test in
Europe. DATE (Grenoble, France). 2013, pp. 1873–1878 (cit. on
pp. 108, 129).

[Wei+14] Y. Wei, C. Sze, N. Viswanathan, Z. Li, C. Alpert, L. Reddy, A.
Huber, G. Téllez, D. Keller, and S. a. Sapatnekar. “Techniques
for scalable and effective routability evaluation”. In: ACM Trans-
actions on Design Automation of Electronic Systems 19.2 (2014),
Art. No. 17 (cit. on p. 130).

[Wit11] S. Wittke. “Diskrete time-cost tradeoff Probleme”. Bachelor’s
thesis. University of Bonn, 2011 (cit. on p. 37).

[YYC09] Yue Xu, Yanheng Zhang, and Chris Chu. “FastRoute 4.0: Global
router with efficient via minimization”. In: 2009 Asia and South
Pacific Design Automation Conference. 2009, pp. 576–581 (cit. on
p. 20).

Notation

D The timing graph, a directed graph representing the signal
propagation in a chip.

Ws The worst slack, measures the maximum timing violation on a
chip. See Section 2.6.

Tns,TTns The (true) total negative slack. See Section 2.6.
Pinp Set of input ports in the timing graph. See Section 2.1.
Pout Set of output ports in the timing graph. See Section 2.1.
at(p) Arrival time of an input pin p ∈ Pinp. See Section 2.1.
rat(p) Required arrival time of an output pin p ∈ Pout. See Section

2.1.
N Set of nets. See Section 3.2.
T The main cycle time of a chip. Usually used as an upper

bound on the maximum allowable signal path delay.
P The set of paths in a graph.
B A power budget.
d An upper bound on the depth of a graph. For hypergraphs the

maximum size of a hyperedge.
R Set of resources in the min-max resource sharing problem. See

Section 3.3.
C Set of customers in the min-max resource sharing problem. See

Section 3.3.
I The chip image. Defined as I = �× {0, . . . , Z}, where � is

the chip area and Z the amount of layers. See Section 3.2.
T The set of wire types. See Section 3.2.
δ−(v) Set of entering edges of node v in a directed graph [KV11,

Chapter 2.1].
δ+(v) Set of leaving edges of node v in a directed graph [KV11,

Chapter 2.1].
δ(v) Set of incident edges of node v in an undirected graph [KV11,

Chapter 2.1].
E(G) Edges of graph G [KV11, Chapter 2.1].
V(G) Vertices of graph G [KV11, Chapter 2.1].

149

	Introduction
	Preliminaries
	Timing Analysis
	The Linear Timing Model
	Elmore Delay
	Higher Order Delay Models
	Power Analysis
	Timing Metrics
	An Overview

	Interconnect Optimization
	Previous Work
	Global Routing
	Min-Max Resource Sharing
	Topology Generation
	Buffering

	Time-Cost Tradeoff Problems in Chip Design
	Previous Work
	Problem Formulation
	Vt Optimization Algorithm
	Variants and Implementation
	Experimental Results

	Theoretic Bounds for Time-Cost Tradeoff Problems
	Previous Work
	Results and Outline
	The Vertex Cover LP
	Rounding Fractional Vertex Covers in d-Partite Hypergraphs
	Inapproximability
	Reducing Vertex Deletion to Constant Depth
	Variants of the Time-Cost Tradeoff Problem
	The Power Recovery Problem

	Gate Sizing
	Previous Work
	Gate Sizing as a Resource Sharing Problem
	Comparison to the Projected Subgradient Method

	BonnRouteBuffer
	Previous Work
	Problem Formulation
	An Oracle for the Cost-Based Buffered Steiner Tree Problem
	Improvements
	Comparison to Rotter
	Global Interconnect Optimization Flow
	Experimental results

	Summary
	Bibliography
	Notation

