
Inaugural-Dissertation
zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Landwirtschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn
Institut für Geodäsie und Geoinformation

Robot Navigation Beyond
Planning theShortestPath

von

Lorenzo Nardi
aus

Assisi, Italien

Bonn 2021

Referent:
Prof. Dr. Cyrill Stachniss, University of Bonn, Germany

Korreferent:
Prof. Dr. Luca Iocchi, Sapienza University of Rome, Italy

Tag der mündlichen Prüfung:

6. Juli 2020

Angefertigt mit Genehmigung der Landwirtschaftlichen Fakultät der Universität Bonn

Erklärung der Urheberschaft

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe
Dritter und ohne Benutzung anderer als der angegebenenen Hilfsmittel angefer-
tigt habe; die aus fremdem Quellen direkt oder indirekt übernommenen Gedanken
sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher oder ähn-
licher Form in keiner anderen Prüfungsbehörde vorgelegt und auch noch nicht
veröffentlicht.

Ort, Datum (Unterschrift)

Zusammenfassung

In den letzten zehn Jahren ist die Nachfrage nach autonomen mobilen Robo-
tern kontinuierlich gestiegen. Die Anwendungen reichen von mobilen Ma-
nipulatoren bis hin zu selbstfahrenden Autos. Die Fähigkeit autonom in
komplexen und dynamischen Umgebungen zu navigieren ist Grundvoraus-

setzung für diese Anwendungen. Der Einsatz von Robotern in dynamischen
Umgebungen mit bewegten Objekten wie beispielsweise Personen, erfordert ausser-
dem ein sicheres und angemessenes Navigationsverhalten der autonomen Sys-
teme. Weiterhin sind reale Szenarien typischerweise durch Unsicherheiten in
den Beobachtungen, in der Ausführung von Aktionen und über den Zustand
der Umgebung gekennzeichnet. Traditionelle Ansätze zur autonomen Naviga-
tion basieren meist auf der Berechnung des kürzestens Weges in einer statischen,
geo-metrischen Repräsentation der Umgebung. Planungssysteme, die auf einer
solchen Modellierung für reale Szenen aufsetzen sind oft nicht ausreichend, um
in dynamischen Umgebungen zu operieren und können zu einem suboptimalen
Navigationsverhalten führen.

In dieser Arbeit präsenterien wir eine Reihe von neuen Ansätzen zur au-
tonomen Navigation von mobilen Robotern in realen Szenarien, die über die
Planung des kürzesten Weges hinausgehen. Die vorgestellten Techniken berück-
sichtigen bei der Navigation sowohl dynamische Objekte als auch Unsicherheiten
über den Zustand der Umgebung und nutzen Hintergrundinformationen. Wir
verwenden beispielsweise öffentliche, städtische Karten für eine robuste Naviga-
tion in urbanen Umgebungen und schätzen erwartete Positionsunsicherheiten.
Außerdem nutzen wir bei der Navigation zuvor zurückgelegte Wege, um ein
sicheres und vorhersehbares Verhalten der Roboter in der Zukunft zu erzeugen,
das den Präferenzen des Benutzers folgt. Zusätzlich stellen wir Methoden für
die Navigation in teilweise unbekannten Umgebungen vor. Dabei erzielen wir
durch aktiv erfasste Informationen eine automatisierte, sukzessive Verbesserung
im Navigationsverhalten. Wir nutzen dafür die Beobachtungen des Roboters, um
automatisert neue Pfade zu bestimmen auf denen negative Einflüsse des Gelän-
des geringer sind. Darüber hinaus berücksichtigen wir beobachtete Änderungen
in der Befahrbarkeit um eine vorausschauende Navigation mit geringer Anzahl
unvorhergesehener Hindernisse zu gewährleisten.

v

Abstract

Over the last decade, the demand for autonomous mobile robots has
been growing continuously. Applications range from mobile manipu-
lators operating on factory floors to autonomous cars driving in urban
environments. A common requirement for all these tasks is the capa-

bility to autonomously navigate by making sequences of decisions in environments
that are complex, dynamic, and uncertain. Mobile robots are often deployed in
environments populated by humans or other moving objects and are required
to perform safe and compliant navigation. Furthermore, real-world scenarios are
typically characterized by uncertainty in the robot’s perception, action execution,
and belief about the world. Traditional approaches to robot navigation plan and
follow the shortest path on static geometric representations of the environment.
Such systems are often not adequate to capture the characteristics of real-world
environments and may lead robots to perform behaviors that are sub-optimal in
practice.

In this thesis, we address robot navigation in different real-world scenarios and
investigate a set of approaches that go beyond planning the shortest paths. We
present solutions for robot navigation that are able to take into account and rea-
son about the situation in which the robot navigates, the dynamics populating the
environment, and the uncertainty about the world. We achieve this by exploiting
available background knowledge. For example, we use publicly available maps of
urban environments to planning policies for performing robust navigation on road
networks under position uncertainty. Whereas, we exploit the paths previously
experienced by the robot to generate safe and predictable behaviors that meet the
user’s preferences. We also present solutions for navigating in partially unknown
environments by actively gathering information and by exploiting this knowledge
to automatically improve robot navigation over time. We use the onboard robot
perception during navigation in outdoor environments to automatically discover
paths along which the impact of detrimental factors due to the terrain is lower.
Furthermore, we exploit the observations about the traversability changes in an
environment to plan anticipatory behaviors that lead the robot to encounter a
reduced number of unforeseen obstacles while navigating.

vii

Acknowledgements

My path to the Ph.D. has been very different from the shortest path. I’ve been
wandering around, exploring, and learning a lot throughout this journey. Some-
times, I took longer deviations. But, it is thanks to the many people who helped
and supported me along this path that I could write this thesis.

First, I would like to thank Cyrill Stachniss for being a great supervisor. He
gave me the opportunity and the time to grow and to find my path through
this journey. He has been a brilliant example to follow and to learn from, and I
sincerely appreciate his guidance and support. Thank you, Cyrill.

I want to thank my lab mates and friends who shared joy, pain, fun, frus-
tration, and drinks with me. Thanks to Igor Bogoslavskyi and Ignacio Vizzo for
being the coolest office mates I could have. Thanks to Olga Vysotska for being
there every time I needed support. Thanks to Nived Chebrolu for the interest-
ing and inspiring chats. Thanks to Andres Milioto for being a good friend since
the first day we met. Thanks to Taigo Bonanni, Mathias Hans, Susanne Wen-
zel, Johannes Schneider, Thomas Läbe, Emanuele Palazzolo, Philipp Lottes, Jens
Behley, Ribana Roscher, Robert Schirmer, Christian Merfels, Philippe Giguère,
Xieyuanli Chen, Jan Weyler, Irvin Aloise, Louis Wiesmann, Federico Magistri.
Each of you enriched me and contributed to making this experience unique and
unforgettable. I also would like to thank Birgit Klein for all the help through
the German world and for being always kind and patient with me. Another
thanks goes to Jens for carefully proofreading this thesis, and to Jan and Birgit
for helping me with the Zusammenfassung.

I want to thank my mom and family for their unceasing and unconditional
love. They have been a solid foundation on which I could always rely on, no
matter how far I was. They all contributed to make me the person I am, and I
could not be more grateful to them.

Thanks also to my lifetime friends Leonardo Andreucci, Giorgio D’Antoni,
Daniele Bagarani, Alessio Mellino, Diego Chitarrini, Luca Puggini, Matteo An-
gelini, David Shaholli, Luisa Mari, Chiara Manes for the good time spent together.
Despite the distance, when we are together, it feels like time has not passed.

Finally, I want to thank Elisa Giannantoni for joining me in this adventure.
She always believed in me without ever doubting that I could make it. Thank you

ix

for understanding my ups and downs, my anxiety, the weekends and the evenings
at the office. This journey would have been much harder without having you by
my side.

The work presented in this thesis is partially supported by the European Com-
mission through the RobDREAM project, H2020-ICT-645403-RobDREAM, and
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy, EXC-2070-390732324-PhenoRob.
The financial support of the EC through the RobDREAM project and of the
DFG through the PhenoRob cluster is gratefully acknowledged.

x

Contents

1 Introduction 1
1.1 Main contributions . 4
1.2 Publications . 6

2 Basic techniques 7
2.1 State estimation . 7

2.1.1 Extended Kalman filter 7
2.1.2 Markov localization . 9

2.2 Probabilistic inference . 10
2.2.1 Factor graphs . 10
2.2.2 Gaussian process regression 11

2.3 Path planning . 13
2.3.1 Shortest path planning . 13
2.3.2 Sampling-based planning 15

2.4 Decision-making under uncertainty 17
2.4.1 Markov decision process 17
2.4.2 Partially observable Markov decision process 19

I Navigation exploiting background knowledge 21

3 Navigation under uncertainty exploiting localizability 23
3.1 Navigation on road networks . 25

3.1.1 Robotic platform . 25
3.1.2 Topo-metric maps . 25
3.1.3 Markov localization . 27
3.1.4 MDP planning . 27

3.2 Uncertainty-aware planning on road networks 28
3.2.1 Localizability . 29
3.2.2 Uncertainty-augmented MDP 31

3.2.2.1 Uncertainty-augmented states 31
3.2.2.2 Actions . 32

xi

Contents

3.2.2.3 Transitions under position uncertainty 32
3.2.2.4 Rewards under position uncertainty 36

3.2.3 Solving augmented-MDPs 36
3.2.4 Navigation following augmented-MDP policies 37

3.3 Experimental evaluation . 37
3.3.1 Experimental setup and baseline 38
3.3.2 Situation-aware action selection 38
3.3.3 Uncertainty-aware action selection 40

3.4 Towards real-world environments 43
3.5 Possible extension to navigation with GNSS 44
3.6 Related work . 44
3.7 Conclusion . 47

4 User-preferred navigation exploiting experiences 49
4.1 Navigation on factory floors . 51

4.1.1 RobDREAM use case . 51
4.2 Experience-based navigation following user preferences 52

4.2.1 System overview . 52
4.2.2 Database of experiences 53

4.2.2.1 Attractor-based path representation 54
4.2.2.2 Situation descriptors 55

4.2.3 Experience-based path planning 58
4.2.3.1 Global path planning 60
4.2.3.2 Local path planning 61
4.2.3.3 Collecting examples from user feedback 62
4.2.3.4 Exploring new behaviors 63

4.3 Dynamic obstacle avoidance . 64
4.3.1 GPs for trajectory modeling 64
4.3.2 Detection of future collisions 65
4.3.3 Planning for collision avoidance 67

4.4 Experimental evaluation . 68
4.4.1 Experience-based planning 68

4.4.1.1 Following user’s preferences 68
4.4.1.2 Performance analysis 72

4.4.2 Trajectory prediction . 72
4.4.3 Navigation in simulation 75

4.4.3.1 Static environments 75
4.4.3.2 Dynamic environments 76

4.4.4 Real robot navigation . 78
4.4.4.1 User-preferred behaviors 78
4.4.4.2 Avoiding collision with people 83

xii

Contents

4.5 Related work . 84
4.6 Conclusion . 86

II Navigation with active information gathering 89

5 Improving navigation exploring and modeling different terrains 91
5.1 Modeling phenomena due to terrains 93

5.1.1 Gaussian process model 93
5.2 Actively improving navigation on different terrains 95

5.2.1 Modeling different terrains 96
5.2.1.1 GP mixture model 96
5.2.1.2 Estimating the gating function from observations 98
5.2.1.3 Incorporating aerial image in gating function . . 100

5.2.2 Planning to improve navigation 101
5.2.2.1 Trading off exploration and exploitation 102
5.2.2.2 Actively improving navigation 103
5.2.2.3 Navigation on different terrains over time 105

5.3 Experimental evaluation . 105
5.3.1 Experimental setup . 105
5.3.2 Improving navigation over time 106
5.3.3 Learning an accurate model of the environment 109

5.3.3.1 Using aerial image for improving predictions . . 113
5.4 Related work . 113
5.5 Conclusion . 115

6 Navigation estimating patterns in traversability changes 117
6.1 Navigation with patterns in traversability changes 119

6.1.1 Spatial patterns of change 119
6.1.2 Problem definition and assumptions 119
6.1.3 Modeling patterns of change and predicting traversability 120

6.1.3.1 Independent variables approximation 121
6.1.3.2 Chow-Liu tree approximation 122

6.2 Improving navigation estimating patterns in traversability changes 123
6.2.1 Estimating patterns in traversability changes 124

6.2.1.1 Factor graph model 124
6.2.1.2 Learning factors from observations 125
6.2.1.3 Predicting edge traversability 126

6.2.2 Planning exploiting traversability predictions 126
6.2.2.1 Canadian traveler’s problem 127
6.2.2.2 Information-driven exploration 128

xiii

Contents

6.2.2.3 Exploration-exploitation trade-off 129
6.3 Experimental evaluation . 130

6.3.1 Experimental setup . 130
6.3.2 Predicting edge traversability 131
6.3.3 Navigation exploiting predictions 132
6.3.4 Planning performance comparison 134

6.4 Related work . 135
6.5 Conclusion . 137

7 Conclusion 139
7.1 Short summary of the key contributions 140
7.2 Future work . 141

xiv

Chapter 1

Introduction

Nowadays, autonomous mobile robots are populating the world and
are progressively becoming a part of our daily lives. The capability
to navigate autonomously allows mobile robotic systems to catch on
a wide range of applications both in commercial and in industrial set-

tings. On factory floors, mobile robots are employed to perform tasks such as
mobile manipulation or transportation of materials. Outside factories, mobile
robots have found many applications such as environmental inspection, surveil-
lance, precision agriculture, and many others. In homes, offices, hospitals, and
shopping malls, mobile robots are deployed to perform tasks from vacuuming to
escorting people. Furthermore, mobile robotic technology is guiding the develop-
ment of self-driving cars, which are expected to revolutionize the future of urban
mobility. A fundamental requirement that is common to all these tasks is the
ability of robots to autonomously make sequences of decisions for navigation.

Most robot navigation systems consist of three primary components: map-
ping, localization, and path planning. Mapping allows for building a representa-
tion of the environment where the robot navigates, whereas localization estimates
the position of the robot on this map. Path planning is the problem of deciding
how the robot should move to reach a given goal location. Planning is a cru-
cial component of robot navigation as it defines the robot’s navigation behavior,
including which trajectory it follows and how it reacts to unforeseen obstacles.
Given the current location of the robot provided by the localization system and
a target location, path planning algorithms compute a sequence of poses or ac-
tions in the map of the environment that leads the robot to the goal by avoiding
collisions with obstacles.

Since the development of “Shakey, the robot” in the mid-1960s, the path
planning problem has been widely studied. Traditional planning approaches stem
from the shortest path problem in graph theory. This is the problem of finding
the path between two vertices on a weighted graph along which the sum of the

1

(a) Office populated by dynamic agents. (b) Environment with different terrains.

Figure 1.1: Mobile robots are deployed in many real-world scenarios ranging from dynamic
indoor environments populated by other moving agents (e.g. humans) to outdoor environments
presenting different characteristics for navigation (e.g. roughness).

weights (or costs) is minimal. Many robot navigation systems use shortest path
planning algorithms, such as Dijkstra’s or A∗, on static geometrical representa-
tions of the environment to compute paths that minimize the travel time, the
travel distance, the clearance from the obstacles, or a particular cost function.
Planning the shortest path for robot navigation generates minimum cost paths
by assuming that the environment is stationary and that the world is perfectly
known. Furthermore, it requires an expert to define a specific cost function for
navigation in the environment. These assumptions are acceptable if the robot
navigates in controlled environments, but they may become inadequate to tackle
general real-world scenarios.

Real-world environments are typically complex, dynamic, and uncertain. There-
fore, planning and following the shortest path may result in trajectories that are
far from being optimal in practice. Consider, for example, a mobile robot that
operates in the environments illustrated in Figure 1.1. An indoor environment
populated by dynamic agents or humans like the one shown in Figure 1.1(a)
changes continuously. Thus, following a once-planned shortest path may lead the
robot to encounter blocked passages and unforeseen obstacles, increasing the risk
of collisions. Instead, in an outdoor environment consisting of different terrains
with diverse characteristics as the one illustrated in Figure 1.1(b), planning the
shortest path is not able to capture and incorporate the onboard observations
of the robot during navigation. Thus, it may expose the robot to detrimental
factors such as strong vibrations or high power consumption.

Robot navigation in real-world environments poses several challenges. A robot
navigation system should, first, take into account the changes in the environment
and the different dynamic agents populating it to perform safe behaviors. Second,

2

1. Introduction

Figure 1.2: Overview of the structure of this thesis. It consists of four chapters divided in
two main parts: the first part focuses on navigation exploiting background knowledge, whereas
the second one on navigation integrating active information gathering. The last row shows the
publications related to each chapter.

it should deal with the uncertainty about the environment representation, the
sensor measurements, and the robot’s belief about the world to make appropriate
decisions for navigation. Third, it should be able to automatically adapt the
robot’s behavior to the current situation without requiring an expert to tune its
parameters manually. In this thesis, we focus on robot navigation systems that
aim at solving these challenges by going beyond planning the shortest path on
static representations of the environment.

This thesis consists of two main parts, and an overview of its structure is
illustrated in Figure 1.2. The first part aims at optimizing navigation by using
background information about the environment and the experiences accumulated
by the robot during traversal. We present approaches to robot navigation that
take advantage of this data to reason about the robot’s uncertainty and the
user’s preferences. Our solutions allow robots to navigate safely in uncertain en-
vironments and to perform different behaviors according to the situation and the
dynamics in the scene. The second part aims at improving robot navigation in
partially known environments over time by actively gathering information during
navigation. We present approaches that collect information about the environ-
ment, reason about this knowledge to predict the state of the world at unknown
locations, and exploit the predictions for navigation. Our solutions lead robots to
automatically discover the favorable regions for navigation on different terrains
as well as to navigate safely and efficiently in changing environments.

Throughout this thesis, we address robot navigation in different environments
with diverse robotic platforms that range from a mobile manipulator operating
on a factory floor to a self-driving car driving on a road network. We discuss
the robot navigation problem by focusing on path planning and decision-making
problems while taking into account their relationship with mapping and localiza-
tion. The approaches presented in this thesis contributed to an EU-funded project
and a DFG cluster and have been published and presented at peer-reviewed in-
ternational conferences and journals.

3

1.1. Main contributions

1.1 Main contributions

The main contribution of this thesis is a set of solutions to robot navigation
that leverage information about the environment, the robot’s experiences, and
the observations collected during traversal to make decisions for navigating in
complex, uncertain, and dynamic environments. First, we provide a summary of
the main techniques on which this thesis is based in Chapter 2.

In Part I, we focus on navigation exploiting background knowledge. The first
contribution presented in Chapter 3 is a solution for making decisions to navigate
on a road network by taking into account the uncertainty about the robot’s po-
sition and action execution. We aim at reducing the number of wrong directions
that the robot takes during navigation with large position uncertainty and, thus,
the travel time to its destination. To this end, we consider a compact representa-
tion of the robot’s belief that discretizes the possible degrees of uncertainty. We
propose to exploit a localization prior computed from publicly available maps to
estimate how the belief about the robot’s position will propagate along the road
network. In contrast to most existing methods, our approach generates naviga-
tion policies that enable the robot to make decisions according to the degree of
uncertainty while being computationally tractable.

The second contribution presented in Chapter 4 is a path planning approach
that exploits the previously experienced paths to meet the preferences of a non-
expert user. We propose to extract preferences by allowing the user to demon-
strate desired behaviors or to provide feedback about the previous experiences of
the robot. We store the preferred behaviors and automatically incorporate them
into the planning process for successive tasks. Our approach is able to reproduce
and generalize desirable navigation behaviors depending on the current situation
without requiring experts to hard-code rules or define complex cost functions.
We also incorporate a probabilistic approach for predicting the uncertain trajec-
tories of the moving entities that share the workspace with the robot within this
framework. This approach allows for planning local deviations to safely avoid
dynamic obstacles while still performing foreseeable behaviors.

Part II of this thesis focuses on navigation integrating active information
gathering. The third contribution presented in Chapter 5 is an approach to
navigate in outdoor environments consisting of terrains with diverse unknown
characteristics. We aim at reducing the detrimental phenomena affecting robot
navigation, such as strong vibrations or high power consumption, caused by the
terrain on which the robot navigates. We learn a place-dependent model of
such phenomena by using an aerial image of the environment as a prior and by
incorporating the onboard observations of the robot during traversal. We use this
model to plan paths that trade off the exploration of unknown promising regions

4

1. Introduction

and the exploitation of known areas where the impact of the detrimental factors
on navigation is low. Our approach leads the robot to automatically navigate
along paths where it experiences fewer vibrations or energy consumption over
time.

The fourth contribution presented in Chapter 6 is an approach for generat-
ing strategies to navigate over extended periods of time in indoor environments
subject to changes in the traversability that occur by following patterns. We
aim at increasing the efficiency of the robot’s operations by reducing the number
of unforeseen blocked passages that the robot encounters during navigation. To
achieve this, we incrementally model the traversability changes in the environ-
ment from the robot’s observations during traversal. We use a probabilistic model
that allows for making predictions at currently unobserved locations. We take
the predictions into account to plan paths that trade off the risk to encounter ob-
stacles and the information gain of visiting unknown locations for improving the
model and the subsequent predictions. Our approach leads the robot to encounter
a reduced number of blocked passages and, thus, to navigate along shorter paths
over time than following traditional shortest path methods.

5

1.2. Publications

1.2 Publications
Parts of this thesis have been published in the following papers:

• L. Nardi and C. Stachniss. Experience-Based Path Planning for Mobile
Robots Exploiting User Preferences. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2016

• L. Nardi and C. Stachniss. User Preferred Behaviors for Robot Navigation
Exploiting Previous Experiences. Journal on Robotics and Autonomous
Systems (RAS), 97, 2017

• L. Nardi and C. Stachniss. Towards Uncertainty-Aware Path Planning for
Navigation on Road Networks Using Augmented MDPs. In 10th Work-
shop on Planning, Perception and Navigation for Intelligent Vehicles at the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2018

• L. Nardi and C. Stachniss. Uncertainty-Aware Path Planning for Naviga-
tion on Road Networks Using Augmented MDPs. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2019

• L. Nardi and C. Stachniss. Actively Improving Robot Navigation On
Different Terrains Using Gaussian Process Mixture Models. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2019

• L. Nardi and C. Stachniss. Long-Term Robot Navigation in Indoor Envi-
ronments Estimating Patterns in Traversability Changes. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2020

Additional work not included in this thesis:

• A. Ahmadi, L. Nardi, N. Chebrolu, and C. Stachniss. Visual Servoing-
based Navigation for Monitoring Row-Crop Fields. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2020

• X. Chen, T. Läbe, L. Nardi, J. Behley, and C. Stachniss. Learning an
Overlap-based Observation Model for 3D LiDAR Localization. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2020

6

Chapter 2

Basic techniques

In this chapter, we provide a summary of techniques on which the solutions
presented in this thesis rely. We describe first some basic methods for
state estimation and probabilistic inference. We discuss then different basic
approaches to path planning and decision-making under uncertainty.

2.1 State estimation
State estimation is the problem of estimating the state of a system that is not
directly observable. For robot navigation, a fundamental state estimation prob-
lem is the localization problem that aims at estimating the position of the robot
given a map of the environment from noisy sensor measurements.

2.1.1 Extended Kalman filter
The Kalman filter (KF) [66] is a popular state estimation technique used for filter-
ing and computing predictions. It implements a Bayes filter for linear Gaussian
systems. The KF allows for estimating the internal state of a system that follows
a linear transition and observation model with additive Gaussian noise:

xt = At xt−1 + Bt ut + ϵt, (2.1)
zt = Ct xt + δt, (2.2)

where xt represents the state of the system, ut is the control applied to the system,
and zt the observation at time t; the matrices At, Bt and Ct describe the evolution
of the state, how the control input changes the state, and how the observation is
generated given the state respectively; the random variables ϵt and δt represent
the process and observation noise and are distributed according to a Gaussian
distribution with zero mean and covariance Rt and Qt respectively. Given an
initial Gaussian belief about the state of the system bel(xt−1) = N (µt−1, Σt−1),

7

2.1. State estimation

the control ut, and the sensor’s observation zt, the KF computes a new be-
lief bel(xt) = N (µt, Σt) according to:

µt = Atµt−1 + Bt ut, (2.3)
Σt = AtΣt−1 A⊤

t + Rt, (2.4)
Kt = Σt C⊤

t (CtΣt C⊤
t + Qt)

−1, (2.5)
µt = µt + Kt (zt − Ctµt), (2.6)
Σt = (I − Kt Ct)Σt, (2.7)

where Equation (2.3) and (2.4) define the prediction step of the filter, which esti-
mates the new state of the system based on the transition model; Equation (2.6)
and (2.7) define the update step, which corrects the prediction according to the
observation; the matrix Kt is the so-called Kalman gain and determines the
weight given to the measurement with respect to the predicted estimate.

Most real-world systems are non-linear and the assumptions of linear tran-
sition and observation models of the Kalman filter do not hold. The Extended
Kalman filter (EKF) relaxes the linearity assumption and allows for considering
systems that follow transition and observation models defined as:

xt = g(xt−1, ut) + ϵt, (2.8)
zt = h(xt) + δt, (2.9)

where g and h are non-linear functions. The non-linear functions lead to non-
Gaussian distribution and, thus, the KF is not applicable. The key idea of
the EKF is to locally linearize the functions g and h by using the first order
Taylor expansion. The Taylor expansion offers a linear approximation of the
non-linear functions as:

g(xt−1, ut) ≈ g(µt−1, ut) + Gt (xt−1 − µt−1), (2.10)
h(xt) ≈ h(µt) + Ht (xt − µt), (2.11)

where Gt and Ht are the Jacobians consisting of the partial derivatives:

Gt =
∂g(xt−1, ut)

∂xt−1

, Ht =
∂h(µt)

∂xt
. (2.12)

Given an initial belief bel(xt−1) = N (µt−1, Σt−1), the EKF computes a Gaus-
sian approximation of the true belief bel(xt) ≈ N (µt, Σt) according to:

µt = g(µt−1, ut), (2.13)
Σt = GtΣt−1 G⊤

t + Rt, (2.14)
Kt = Σt H⊤

t (HtΣt H⊤
t + Qt)

−1, (2.15)
µt = µt + Kt (zt − h(µt)), (2.16)
Σt = (I − Kt Ht)Σt. (2.17)

8

2. Basic techniques

Algorithm 1 Discrete Markov localization
1: procedure MarkovLocalization (bel(xt−1), ut, zt, X)
2: for all xt ∈ X do
3: bel(xt)←

∑
xt−1

p(xt | xt−1, ut, zt, X) bel(xt−1) ▷ Prediction step.
4: bel(xt)← η p(zt | xt, X) bel(xt) ▷ Correction step.

return bel(xt)

The EKF is a commonly used technique to perform robot localization. EKF
localization considers a robot that moves according to a motion model defined
similarly as Equation (2.8) and that obtains measurements of the environment
according to an observation function defined similarly as Equation (2.9). It uses
the motion model and the sensor measurements to recursively estimate the pose
of the robot in a map of the environment by representing the belief by its mean
and covariance.

2.1.2 Markov localization

Markov localization [46] implements a Bayes filter for recursively estimating the
position of the robot in a given map. It uses a histogram filter and, therefore, does
not require to restrict the belief to any particular class of distributions. Although
Markov localization is independent from the representation of the state space, we
consider discrete grid-based representations of the environment for localization
throughout this thesis. A common grid-based representation is occupancy grid
maps, which consist of a set of cells that can be free, occupied, or unknown. On
an occupancy grid map X , Markov localization approximates the belief about the
position of the robot by maintaining a collection of discrete probability values:

bel(xt) = {pk,t}, with
∑
k

pk,t = 1, (2.18)

where each probability pk,t corresponds to a cell xk ∈ X and represents the
probability that the robot is located at that cell. Therefore, Markov localization
represents the belief in form of an histogram defined over X .

Given an initial belief about the position of the robot bel(xt−1), the control ut,
the observation zt, and the grid map of the environment X , Markov localization
computes the belief at time t by using the procedure described in Algorithm 1.
For each cell xt ∈ X , it first predicts an estimate bel(xt) by using the robot motion
model (line 3), which specifies the posterior probability on xt of executing the
control ut from xt−1. Then, it corrects the prediction by integrating it over the
observation model (line 4), which depends on the sensors used, and normalizes the
final probabilities using the normalizer η. The result is a new discrete probability

9

2.2. Probabilistic inference

(a) Factor graph. (b) Belief propagation.

Figure 2.1: Example of factor graph, where the circles are the variable nodes and the squares the
factor node, and the message passing procedure of the belief propagation algorithm to perform
inference.

distribution bel(xt) defined as a histogram over X that represents the belief about
the position of the robot at time t.

2.2 Probabilistic inference
Probabilistic inference is one class of state estimation techniques. It uses data
to derive probabilistic models that represent underlying probability distributions
over the state. In this thesis, we use probabilistic inference for modeling and
predicting partially observable phenomena.

2.2.1 Factor graphs

Probabilistic graphical models [74] are models that allow for representing complex
probability densities with a compact graph structure. A factor graph [81] is a
probabilistic graphical model that can be used to represent any general factoriza-
tion of a function. It is structured as a bipartite undirected graph with two kinds
of nodes: the factor nodes and the variable nodes. The variable nodes correspond
to random variables, whereas the factor nodes represent local functions with the
adjacent variable nodes as inputs. A variable node can only be connected to
one or multiple factor nodes but not directly to another variable node. A simple
factor graph is illustrated in Figure 2.1(a) where the blue circles are the variable
nodes and the black squares the factor nodes.

A factor graph allows, in general, for computing a joint distribution over a set
of variables X = {x1, . . . , xn} as the product of factors:

p(x1, . . . , xn) =
∏
s

fs(Xs), (2.19)

10

2. Basic techniques

where a factor fs is a local function of the set of variables Xs ⊆X. For example,
the factor graph in Figure 2.1(a) expresses the factorization:

p(a, b, c) = f1(a) f2(a, b, c) f3(b, c). (2.20)

Probabilistic graphical models allow for performing inference, i.e., estimating
the probability that one or a set of variables takes a certain value. Given the
observed values of some variables of a factor graph, the belief propagation al-
gorithm [131] implements a message passing procedure that exploits the graph
structure to estimate the maximum-a-posteriori configuration and the marginal
posterior distribution of each variable. The message passing procedure of belief
propagation is sketched in Figure 2.1(b). Messages are results of partial compu-
tations. A message µxm→fs from a variable node xm to a factor node fs is the
product of all incoming messages except the message from the receiving factor:

µxm→fs =
∏

fi∈f \{fs}

µfi→xm , (2.21)

where f is the set of factor nodes. Whereas, a message µfs→xn from a factor fs
to a variable node xn is the product of the messages from all other nodes to fs,
marginalized over all variables except the receiving one:

µfs→xn =
∑
Xs

fs(Xs, xn)
∏

xi∈Neig(fs)\{xn}

µxi→fs , (2.22)

where Xs is the set of variables connected to xn via fs and Neig(fs) denotes the
variable nodes that are neighbors of xn. Marginals are computed as the product
of all incoming messages from neighbor factors:

p(xi) =
∏

fj∈Neig(xi)

µfj→xi
. (2.23)

The belief propagation algorithm performs exact inference on tree-structured
graphs without loops, but it is able to approximate inference also in graphs with
loops by applying the same procedure until convergence. Although there is no
guarantee of convergence, loopy belief propagation has been demonstrated to
yield good results in practice for several problems such as visual odometry estima-
tion [94], simultaneous localization and mapping [141], and traffic prediction [52].

2.2.2 Gaussian process regression
A Gaussian process (GP) [142] is a collection of infinitely many random variables
that forms a joint multivariate Gaussian distribution. GPs are often used for
regression to estimate a distribution over all the possible functions that are con-
sistent with a set of observed training data. GP regression does not assume that

11

2.2. Probabilistic inference

−4 −2 0 2 4

−2

0

2

Figure 2.2: Gaussian process posterior computed from observations (blue circles) and functions
sampled accordingly (solid colored lines). The red dotted line is the mean of the predictive
distribution and the gray area represents its 2σ confidence interval.

the data distribution can be defined with a finite set of parameters and, thus, it
is typically referred to as a non-parametric approach.

A GP is defined by a mean function m(x) and a covariance function k(x, x′),
also called kernel, which defines the similarity between data points and encodes
a prior over the model. Given a set of observations y of a function f for the
inputs x, GP regression allows for learning a predictive model of f at the query
inputs x∗ by assuming a joint Gaussian distribution over the samples. Therefore,
we can write the joint distribution of the target values y and the function at the
query inputs f∗ under this prior as:[

y
f∗

]
= N

(
m

(
x
x∗

)
,

[
K(x, x) + ς2nI K(x, x∗)

K(x∗, x) K(x∗, x∗)

])
, (2.24)

where K(·, ·) are matrices constructed using the covariance function and ς2n is the
Gaussian noise variance. The prediction at a test point x∗ ∈ x∗ is computed by
conditioning the prior on the observations y and it is represented by the predictive
mean µ∗ and variance σ2

∗ defined as:

µ∗ = k∗
⊤ KXX

−1 y, (2.25)
σ2
∗ = k(x∗, x∗) − k∗

⊤ KXX k∗, (2.26)

where KXX = K(x,x) + ς2n I represents the covariance between the training data
points, whereas k∗ = k(x∗,x) is the covariance between the test and training data
points.

Figure 2.2 shows an example GP computed from observed data points (blue
circles). The predictive mean is represented by the red dotted line, the grey area
shows the 2 standard deviations range from the mean, and the colored solid lines
are possible functions representing the data points sampled from the GP posterior
distribution.

12

2. Basic techniques

(a) N8-neighborhood
defining edges on a grid.

(b) Dijkstra’s algorithm. (c) A∗ search algorithm.

Figure 2.3: Shortest path planning to navigate from start (red cell) to goal (blue cell) on a grid
map. The resulting path is the black dotted line and the colored cells are the expanded ones
during the search. Images courtesy of A. Patel [130].

A common choice is to assume that the mean function of the GP is zero, i.e.,
m(x) = 0, and to use the squared exponential covariance function:

k(xi, xj) = ς2f · exp
(
−1

2

|xi − xj|2

ℓ2

)
+ δijς

2
n, (2.27)

where θ = {ℓ, ς2f , ς2n} are the so-called hyperparameters, and represent respec-
tively the length scale ℓ, the variance of the output ς2f , and of the noise ς2n.
Typically, the hyperparameters of a GP are learned from the training data by
maximizing the log marginal likelihood:

log p(y | x, θ) = −1

2
y⊤ KXX y − 1

2
log | KXX | −

n

2
log(2π). (2.28)

GP regression is a popular technique also in geostatistics, where it is known
as kriging [107]. Kriging is a spatial interpolation method that is typically used
to perform inference for physical quantities in unobserved locations on two or
three-dimensional input spaces.

2.3 Path planning
Path planning is the problem of finding a route between two points in the
traversable configuration space. For robot navigation, planning defines the trajec-
tory along which the robot should navigate to reach a targeted location without
colliding with obstacles.

2.3.1 Shortest path planning
Motion planning algorithms for robot navigation have been widely studied [92].
The most common planners are the shortest path planning algorithms. These

13

2.3. Path planning

Algorithm 2 Dijkstra’s path finding algorithm
1: procedure Dijkstra (xstart, xgoal, X)
2: for each x ∈ X do
3: gcost(x)←∞ ▷ Initialize data structures.
4: parent(x)← ∅
5: Q.Add(X , gcost)
6: gcost(xstart)← 0

7: while ¬ IsEmpty(Q) do
8: x← Pop(Q) ▷ Node with minimum gcost.
9: if IsGoal(x, xgoal) then

10: path← ReconstructPath(x, parent) ▷ Backtrack path.
11: for each xneig ∈ neig(x) do
12: tmp_gcost← gcost(xneig) ▷ Tentative new gcost.
13: if tmp_gcost < gcost(xneig) then
14: parent(xneig)← x ▷ Update parent.
15: gcost(xneig)← tmp_gcost ▷ Update gcost.

algorithms stem from the shortest path problem in graph theory. This is the
problem of finding the route between two nodes of a weighted graph such that
the sum of the weights along the edges is minimized.

The shortest path algorithms are commonly used to find paths for robot nav-
igation on static geometrical representation of the environment, such as a topo-
logical graph or a 2D occupancy grid map. Occupancy grid maps can be seen as
graphs in which each cell has edges connecting it to its neighbors, as illustrated
in Figure 2.3(a). Graph-based shortest path algorithms allow for formulating
path planning as an explicit cost minimization problem and to compute paths
that minimize travel distance, travel time, or any defined cost to navigate between
two locations.

The most popular shortest path algorithm is the Dijkstra’s algorithm [35],
which is described in Algorithm 2. The algorithm maintains in a priority queue Q
a set of candidate nodes sorted according to the cost of the path from the start
to the node itself, referred to as gcost. At each step of the search, it selects
the node x that minimizes the gcost(x) (line 8). If it is the goal, the path
is retrieved by recursively backtracking the parent nodes of the goal up to the
start (line 10). Otherwise, it attempts to update the gcost for the neighbors of
the current node (line 12). If the current node leads to a smaller gcost, it updates
its cost and parent node (line 14). The search terminates when the goal has been
reached or all of the nodes have been examined. If all edges have positive costs,
Dijkstra’s algorithm is guaranteed to find the shortest (or minimum cost) path.

14

2. Basic techniques

(a) RRT extending branch. (b) RRT search tree.

Figure 2.4: RRT planning and its branch extension procedure to explore the configuration space
from the start position after a few iterations. Images courtesy of S. LaValle and J. Kuffner [91].

The A∗ search is a popular algorithm that has been developed by Nilsson for
“Shakey the robot” [123], which implements an informed search to speed up the
planning process. A∗ search follows the same procedure as Dijkstra’s but selects
nodes by using a best-first strategy. It selects the node to expand from the set
of candidate nodes based on an evaluation function feval(x) which estimates the
cheapest path to the goal through the node x:

feval(x) = gcost(x) + hcost(x), (2.29)

where gcost(x) is the cost of the path from start to x and hcost(x) is a heuristic
function which estimates the cost from x to the goal node. The heuristic function
informs the search by injecting domain knowledge. Selecting the node with the
lowest feval allows for expanding first the more promising nodes and, therefore,
to reach earlier the goal node.

A heuristic function is admissible if it never overestimates the true cost.
Therefore, the following condition must hold ∀x:

hcost(x) ≤ gcost(x). (2.30)

If the heuristic is admissible, A∗ search is complete and provides optimal
paths. The closer the heuristic approximates the true cost, the more efficient is
the search. If the heuristic is set to zero, A∗ is equivalent to Dijkstra’s algorithm.
Figure 2.3 illustrates the cells expanded by Dijkstra’s and A∗ for a simple path
planning task. As can be seen, A∗ typically requires to expand substantially fewer
cells than Dijkstra’s to find the optimal path.

2.3.2 Sampling-based planning
Sampling-based planning is a class of algorithms that allows for computing paths
without an explicit representation of the configuration space. Rather than consid-
ering a map of the environment where cells are free or occupied, these algorithms

15

2.3. Path planning

Algorithm 3 Rapidly exploring random trees planning
1: procedure RRT (xstart, xgoal, δx, max_iter)
2: G← xstart ▷ Initialize search tree.
3: repeat
4: xrand ← SampleConfig()
5: xnear ← GetNearestVertex(G, xrand) ▷ Extending branch.
6: xnew ← GetCandidateVertex(xrand, xnear, δx)
7: if IsValid(xnear, xnew) then
8: G← AddVertex(xnew) ▷ Update tree.
9: G← AddEdge(xnear, xnew)

10: i← i+ 1

11: until HasReached(G, xgoal) ∨ i > max_iter ▷ Termination conditions.

rely on a collision detection module that checks whether a location belongs to the
free configuration space or not. Given a start and goal location, sampling-based
planning algorithms sample states in the configuration space and connect them
locally in order to find a collision-free path.

One of the most popular sampling-based planning algorithms is the rapidly
exploring random trees algorithm or RRT. The idea of RRT is to incremen-
tally expand a search tree from an initial configuration by randomly sampling
the configuration space. The RRT algorithm is described in Algorithm 3. The
search starts by initializing a tree G rooted in the start configuration (line 2).
RRT iteratively explores the configuration space by randomly sampling a con-
figuration xrand (line 4) and extending the tree towards this state. The branch
extension procedure is illustrated in Figure 2.4(a). It queries the tree for the
closest vertex to xrand (line 5), xnear, and selects the configuration xnew that
lies along the line connecting the two vertices at a fixed maximum distance δx
from xnear (line 6). The collision detector checks whether the edge between xnew
and xnear is collision-free and, if this is the case, RRT adds the new vertex xnew
and the corresponding edge to the search tree G (line 8). Figure 2.4(b) shows the
search tree of RRT after few iterations. The search terminates when the goal con-
figuration xgoal has been reached or a maximum number of iterations max_iter
has been performed. A common method to speed-up the search and find a path
to the goal is to use a sampling strategy that either randomly samples states from
the configuration space or selects the goal with a fixed probability [93].

An efficient variant of RRT is bi-directional RRT. It grows two search trees
one rooted in the start and one in the goal configuration. At every iteration,
one tree attempts to extend towards the newest vertex of the other tree. The
search terminates when the trees are connected and a valid path from start to
the goal has been found. Bi-directional RRT is typically faster RRT as it gives

16

2. Basic techniques

less importance to exploring the configuration space but biases the tree extension
to connect the start to the goal configuration.

Sampling-based planning is generally more efficient than shortest path ap-
proaches to find valid paths as it does not explore every possible configuration
but approximates the search by performing sampling in the configuration space.
Another advantage of these approaches is that they do not require to explicitly
construct the configuration space and, thus, maintain an efficient representation
for planning even in high dimensional spaces. However, RRT typically does not
provide optimal paths and is only probabilistic complete, which means that a
solution will be provided, if it exists, given an infinite number of iterations.

2.4 Decision-making under uncertainty
Traditional path planning algorithms as the ones described in the previous sec-
tion assume known environments, full observability, and a deterministic world.
However, in the real world, the robot’s belief about the environment, its percep-
tion and its action execution are uncertain. Therefore, the capability to make
decisions under uncertainty is crucial for realizing robust robot navigation.

2.4.1 Markov decision process

Markov decision process or MDP [139] is a discrete stochastic process for modeling
sequential decision problems. MDPs allow for modeling problems in which the
state that characterizes the problem is always known and fully observable but
the outcome of the agent’s decisions is non-deterministic and is described by a
probability distribution over the successor states. MDPs rely on the Markov
assumption: the different outcomes of an action do not depend on the full history
of the agent’s decisions but only on the current state, which is assumed to capture
all of the relevant information to make decisions.

Formally, a Markov decision process is a 4-tuple ⟨S, A, T , R⟩ where S is
a finite set of states, A is a finite set of actions, T defines a transition model
between states, and R represents the immediate reward for each transition. At
each time step t, the process is in a state st ∈ S that represents the world, and the
agent has to decide which action at ∈ A to take. The transition model T (s, a, s′)
specifies the probability of success of the agent to move to a state s′ by executing
an action a from the state s. Thus, the next state depends only on the current
state and on the action taken. For every new state reached by the agent, it
receives a reward defined by the reward function R(s, a, s′). The reward can be
positive or negative but must be bounded. The decision-making scheme of MDPs
is illustrated in Figure 2.5(a).

17

2.4. Decision-making under uncertainty

(a) MDP. (b) POMDP.

Figure 2.5: Decision-making scheme of fully observable and partially observable Markov decision
process. In MDPs the state is always known while, in POMDPs, it only noisy observations of
it can be obtained.

Given an MDP, the objective is to find a strategy to make decisions in the
world that maximizes the rewards. The solution cannot be a sequence of actions
as for path planning because the non-deterministic outcome of the actions may
lead the agent in any state different from the goal. Therefore, the solution of an
MDP is a policy that specifies which action to take in each of the states of the
world. The optimal policy π∗ is the one that chooses at each state the action that
maximizes the expected utility of the subsequent states:

π∗(s) = argmax
a

∑
s′
T (s, a, s′)U(s′), (2.31)

where the expected utility U(s) for a state s is the discounted sum of the rewards
obtained by executing the policy π:

U(s) = E

[
∞∑
t=0

γtR(st, a, st+1) | π(st) = a, s0 = s
]
, (2.32)

where γ ∈ [0, 1] is called the discount factor and describes the preference for
immediate rewards over future rewards.

The most popular algorithms to compute optimal solutions for MDPs are
value iteration and policy iteration. Value iteration [8] computes the utility of
each state by iteratively using the Bellman equation:

U(s) = max
a

∑
s′
T (s, a, s′) [R(s, a, s′) + γU(s′)] , (2.33)

until the utilities converge. It then uses the computed utilities to select an optimal
action in each state. Policy iteration [60], instead, starts from a random policy and
iteratively computes the utility of each state for the current policy and calculates
a new policy based on the computed utilities until convergence. Policy iteration
requires fewer iterations that value iteration to converge and, therefore, it is often
faster to find an optimal policy.

18

2. Basic techniques

2.4.2 Partially observable Markov decision process
MDPs assume that the environment is fully observable. However, for many prob-
lems such as robot navigation the state of the world is not perfectly known. For
example, the localization approaches introduced in Section 2.1 do not provide a
deterministic state but estimate the position of the robot by computing a prob-
ability distribution over the state space. Partially observable Markov decision
process [4], or POMDPs, formalize decision-making problems in which the en-
vironment is not directly observable but measurements of it can be obtained.
POMDPs assume that the system dynamics are determined by an MDP but al-
low for modeling problems in which the state is uncertain due to noisy partial
observations as well as the actions.

A partially observable Markov decision process is a 6-tuple ⟨S,A, T ,R,O,Ω⟩
where S, A, T , R are respectively the set of states, actions, the transition and
the reward functions as in an MDP, O is the set of observations, and Ω specifies
the probability to make an observation in a given state. At each time step t,
the agent maintains a belief over the states S that summarizes its experience.
According to the current belief bel(st), the agent decides which action at to take.
The state of the world is not fully observable but the effects of the action on the
world are captured by an observation ot+1 ∈ O. The agent uses a state estimator
to update the belief state bel(st+1) by considering the last action at, the current
observation ot+1, and the previous belief bel(st) as:

bel(st+1) = η Ω(st+1, ot+1)
∑
s

T (st, at, st+1) bel(st), (2.34)

where η is a normalizing constant. The decision-making scheme of POMDPs is
illustrated in Figure 2.5(b).

In POMDPs, the agent has to make decisions based on beliefs. Each belief
is a probability distribution over the states and, thus, the belief state space is
continuous. This makes POMDPs in general computationally complex and hard
to solve. POMDPs have been demonstrated to be PSPACE-complete [128] and,
thus, are intractable for most of large real-world problems. In Chapter 3, we will
focus on a tailored approximation of POMDPs that allows for planning for robot
navigation in real-world scenarios.

19

Part I

Navigation exploiting
background knowledge

21

Chapter 3

Navigation under uncertainty
exploiting localizability

Although most robots use probabilistic algorithms to solve state es-
timation problems such as localization or mapping, planning systems
often compute paths and make decisions by assuming that the world
is fully known and, therefore, ignore uncertainty. Uncertainty, how-

ever, matters for planning in real-world environments, but considering it often
leads to computationally expensive algorithms.

In practice, many planning approaches, such as traditional shortest path plan-
ners, compute paths by ignoring the uncertainty about the robot’s position pro-
vided by the localization system. Ignoring the position uncertainty during plan-
ning may be acceptable if the robot is precisely localized but it can lead to
sub-optimal navigation decisions if the uncertainty is large.

Consider, for example, a mobile robot navigating on a road network that
encounters the situation depicted in Figure 3.1. The robot is following the short-
est path to the goal (solid blue), and the current belief about its position is
represented by the black shaded area (the darker, the more likely). This belief
indicates that the robot could be in the proximity of intersection A or B. These
intersections present surroundings with a similar structure, as illustrated on the
right side of Figure 3.1. Thus, a localization system based on range sensors might
not be able to disambiguate them. Planning algorithms that ignore the position
uncertainty typically assume that the robot is at the most likely position that,
in this example, is intersection B. Therefore, under this assumption, the robot
should turn to the right (dotted orange path) in order to reach the goal along
the shortest path. However, if the robot is in reality at intersection A (less likely,
but possible), turning right would lead it to a long detour (dash-dotted red path)
and, thus, to follow a trajectory that is very different from the planned shortest
path.

23

A

B

C

goal

C

B

A

start

Figure 3.1: Robot navigation on a road network under large position uncertainty. The black
shaded area is the belief about the position of the robot (the darker, the more likely). The blue
path is the shortest path to the goal. A,B,C are the road intersections that are shown in detail
on the right side of the figure. The paths from each intersection are colored respectively in red,
orange, and green. The black arrows indicate the roads’ directions.

In this chapter, we investigate the problem of planning paths by taking into
account the uncertainty in the robot’s belief about the world, in its perception,
and action execution. Uncertainty-aware plans reduce the risk of making wrong
turns when the uncertainty is large. For example, in the situation of Figure 3.1,
the robot could navigate towards intersection C, which has a distinctive sur-
rounding and, thus, is a place where the robot is expected to localize better.
At C, it can safely turn right towards the goal, thus avoiding the risk of taking
longer detours (dashed green path). We introduce in this chapter an approach
that reasons about the uncertainty and computes this type of plans.

A general formalization for incorporating uncertainty in the planning problem
is the partially observable Markov decision process (POMDP), see Section 2.4.2
for a brief description. POMDPs, however, lead typically to algorithms that are
computationally intractable for most real-world applications. We investigate an
approximation of POMDPs that is able to take into account the uncertainty while
being computationally efficient. We propose the use of an uncertainty-augmented
Markov decision process that models the uncertainty as part of the state to ap-
proximate the underlying POMDP. We furthermore employ a localization prior
called localizability to estimate how the uncertainty propagates along the road
network. Solving this process yields navigation policies that allow robots to make

24

3. Navigation under uncertainty exploiting localizability

decisions according to the degree of uncertainty. Following these policies reduces
the number of mistakes that the robot makes during navigation with large posi-
tion uncertainty and, thus, the expected travel time to the goal.

3.1 Navigation on road networks
In this chapter, we focus on uncertainty-aware path planning for robots navigating
on road networks. Navigation in urban environments has received substantial
attention in the robotics community. Over the past decades, several robotic
systems for urban navigation have been developed such as Obelix [89], Boss [166],
or the Autonomous City Explorer [95]. This trend recently increased even more
with the growing interest in self-driving cars.

In the following, we introduce the target robotic platform, the environment
representation, and the localization system that we consider throughout this chap-
ter to navigate in urban environments. Furthermore, we describe a baseline ap-
proach to plan minimum travel distance routes on road networks ignoring the
uncertainty about the position of the robot.

3.1.1 Robotic platform
Our target robotic platform is a wheeled mobile robot such as a self-driving car
that navigates in an urban environment by driving along roads and following
their directions. Our robot is equipped with a 360° 2D LiDAR sensor and has
also access to the readings of the wheel odometry.

3.1.2 Topo-metric maps
Navigation in urban environments requires an appropriate representation of the
environment. While several probabilistic approaches for robot localization rely
on occupancy grid maps, topology graphs are an effective representation for plan-
ning. We combine these two representations and represent the environment using
a topo-metric map, similar to hierarchical maps [75].

Publicly available map services, such as Google Maps1 and OpenStreetMap2,
offer an informative representation of most of the urban environments including
metric and topological information. We define our environment representation by
extracting information about buildings as well as roads and their directions from
OpenStreetMap, see for example Figure 3.2(a). We store this information in a
2D grid map X in which each cell contains information about its traversability,

1http://maps.google.com
2http://openstreetmap.org

25

3.1. Navigation on road networks

(a) OpenStreetMap representation.

(b) Traversability grid map X .

(c) Road network topology G.

Figure 3.2: Our topo-metric representation of the environment combining a grid map X and
a topological graph G extracted from OpenStreetMap (a). In (b), the traversable roads are in
white, blue refers to non-traversable areas and buildings are in dark blue. In (c), the orange
arrows are the roads E and the red dots are their intersections V .

26

3. Navigation under uncertainty exploiting localizability

as the one illustrated in Figure 3.2(b). As our robot can move only along roads,
the traversable area corresponds to the the roads, which are represented as the
white cells in Figure 3.2(b). Each traversable cell additionally contains a set
of links to the neighboring cells where the robot can move to. Our robot uses
such a grid map representation for localization. In addition, we consider a more
abstract representation of the environment for planning routes. We define a
topological graph G = (V , E) defined over the discretized metric space X , see
for example Figure 3.2(c). In G, the vertices V correspond to the cells in X
where two or more roads intersect. The vertices V are connected with oriented
edges E that represent the roads and are oriented according to their directions.
Therefore, one edge in G corresponds to a sequence of traversable cells in X .

3.1.3 Markov localization
We estimate the robot position in X by using a localization system based on
Markov localization [46] which relies on the onboard LiDAR and the wheel odom-
etry readings. As the robot moves and acquires a new measurement from the
LiDAR, the localization system uses this measurement and the odometry read-
ings to compute a new estimate of the robot’s position. The Markov localization
algorithm is described in Section 2.1.2. The main difference to most Markov lo-
calization systems is that, as we assume the robot to move only along roads, we
consider as possible robot locations only the cells of the grid map X along the
roads and not the whole 2D plane.

Note that other approaches for state estimation such as particle filter could
be used in the navigation system presented in this chapter without loss of gen-
erality. We refer to Markov localization because it is the most general approach
for probabilistic estimation of the robot position.

3.1.4 MDP planning
Given our topological representation of the environment G, we can compute the
route that leads the robot to the goal along the shortest path by formalizing
the planning problem as a Markov decision process, or MDP [139]. We shortly
defined MDPs in Section 2.4.1. We can find a policy to reach a desired location
by defining an MDP as the 4-tupleMDP = ⟨ SMDP,AMDP, TMDP,RMDP ⟩, where
the states are the road intersections:

SMDP = V . (3.1)

The actions correspond to the directions of the roads E connecting the in-
tersections. We assume that every intersection is a junction of up to 4 roads

27

3.2. Uncertainty-aware planning on road networks

corresponding to the cardinal directions. Therefore, the set of action is:

AMDP = {↑, ↓, ←, →}. (3.2)

If needed, more actions can be added trivially.
The transition function allows for transitions from v to v′ with v, v′ ∈ SMDP

only if a road exists between them in the direction defined by a ∈ AMDP:

TMDP(v′, a, v) =


1 , if ∃ e ∈ E | e connects v to v′

along direction a,
0 , otherwise.

(3.3)

The rewards correspond to the negative length of the roads:

RMDP(v, a, v′) =



rgoal − ℓ(v, a,v′) , if ∃ e ∈ E | e connects v to v′

along direction a and v′ is the goal,
−ℓ(v, a,v′) , if ∃ e ∈ E | e connects v to v′

along direction a,
rnoroad , otherwise,

(3.4)

where ℓ(v, a,v′) indicates the length of the road from v to v′ corresponding to
action a, rgoal ≥ 0 is a constant positive reward assigned to the transitions to
the goal, whereas rnoroad ≪ 0 is a negative constant penalty factor assigned if no
transition from v to v′ along the direction defined by a is possible.

Solving this MDP generates a navigation policy that leads the robot to the
goal along the shortest path or, equivalently assuming unary constant velocity,
minimum travel time. However, MDPs assume full observability of the state and,
thus, that the position of the robot is always known. This is often not the case in
robot navigation as most localization systems, including the one adopted in this
chapter, provide a probability distribution over the map to describe the position
of the robot and not a unique location. Therefore, following an MDP policy in
situations with large position uncertainty, the robot may assume to be at the
wrong intersection and take a sub-optimal action that results in a longer route
to reach the goal.

3.2 Uncertainty-aware planning on road
networks

The main contribution of this chapter is a novel approach to planning uncertainty-
aware routes on road networks. We propose to improve decision-making at in-
tersections by integrating into the planning process the uncertainty about the

28

3. Navigation under uncertainty exploiting localizability

(a) Uninformative location. (b) Informative location.

Figure 3.3: Informativeness of the observations to localize the robot. The buildings’ footprints
are in blue and the roads are the orange lines. The robot observation at x is in red, the
measurement translated along the road to x′ is in gray, whereas the error between the translated
measurement and the map is represented by the black arrows.

position of the robot provided by the localization system. We use an augmented-
MDP [146] to efficiently approximate a POMDP by formulating it as an MDP
over a discretized belief space. We achieve this by modeling the uncertainty about
the position of the robot as a part of the state of the augmented-MDP. In this
way, we explicitly consider the state uncertainty while maintaining computational
tractability. We define the transition function of an uncertainty-augmented MDP
by employing a localization prior to estimate how the belief about the robot’s po-
sition propagates along the road network.

Our planning approach is able to (ii) take explicitly into account the posi-
tion uncertainty of the robot to select different actions according to the degree
of uncertainty; (i) reduce the number of mistakes that the robot makes during
navigation with large position uncertainty; (iii) lead the robot to navigate along
routes that, in complex situations, are on average shorter than following a shortest
path policy operating under uncertainty but ignoring it.

3.2.1 Localizability

In order to explicitly consider the position uncertainty in the planning process,
we need to estimate how the belief about the robot’s position propagates upon
driving along a road and reaching a certain location before moving there. Open-
StreetMap provides information about the environment such as the buildings’
footprints and the traversable areas. We can exploit this information to estimate
in advance how laser scans fired from the robot’s LiDAR at a given location
will affect localization. A measurement is informative for localizing the robot

29

3.2. Uncertainty-aware planning on road networks

Figure 3.4: Localizability map Z of the environment illustrated in Figure 3.2. The darker the
pixels along the roads, the smaller is the localizability covariance.

if the scans hit the buildings and the observed structure is distinctive, see for
example Figure 3.3(b). Whereas, at locations that are too far from buildings or
where buildings form a ’corridor’ along the road, measurements are not distinctive
enough to provide accurate localization, see for example Figure 3.3(a).

Using the information extracted from OpenStreetMap and the sensor model
of the LiDAR, we compute a localization prior, called localizability, using the
method proposed by Vysotska and Stachniss [169]. This approach estimates how
well the robot is expected to localize in a given location based on the capability
of the LiDAR measurements to match the footprint of the buildings. To this
end, we simulate at each traversable location x ∈ X a virtual laser scan by
ray-casting the map. We translate and rotate the virtual measurement along
the roads in the local neighborhood and estimate the error between the scan
and the map. Considering the decay in the observation likelihood, we compute
a covariance matrix ΣZ,x that estimates how well a scan fired at a position x
matches the map under position uncertainty. At informative locations where
the surrounding environment has a distinctive structure, the resulting covariance
is small. Whereas, the covariance is large at locations where the surrounding
environment is not informative or ambiguous. For example, in Figure 3.3(a), the
measurement at position x (red dotted lines) is not informative because, applying
a small translation along the road to the measurement to x′ (grey dotted lines),
the translated measurement explains the surrounding as well as the original one.
In Figure 3.3(b), the measurement at position x (red dotted lines) is informative
because translating the measurement to x′, the likelihood of the measurement
decreases substantially.

We compute such localization prior for each traversable cell in X offline before
starting to navigate and we refer to the resulting representation as to the local-

30

3. Navigation under uncertainty exploiting localizability

izability map Z. An example of localizability map is illustrated in Figure 3.4,
where the darker the intensity of a cell, the smaller is the maximum eigenvalue
of the covariance matrix and, thus, the better the robot is expected to localize.

3.2.2 Uncertainty-augmented MDP
We plan uncertainty-aware routes on road networks by designing an augmented-
MDP in which we augment the conventional MDP states with the robot’s position
uncertainty. Due to the augmented state representation, the transition function
and the reward function become more complex than in conventional MDPs. In
their final formulation, augmented-MDPs have an analogous representation as
MDPs, except for a larger number of states. Therefore, augmented-MDPs can be
solved by using the same efficient algorithms as for MDPs. In the following, we
define the set of states, the set of actions, the transition function, and the reward
function that characterize our uncertainty-augmented MDP for planning routes
on road networks.

3.2.2.1 Uncertainty-augmented states

We define the state space of our augmented-MDP by augmenting the states of
the MDP formulation in Section 3.1.4, SMDP, with a representation of the uncer-
tainty about the robot’s position. Different statistics can be used to represent
uncertainty such as the entropy or the covariance matrix.

In general, the more compact a representation, the more efficient is the plan-
ner. Although our localization system can potentially generate any kind of belief,
we assume that during planning, we can approximate the belief about the posi-
tion of the robot by a Gaussian distribution with isotropic covariance. This is
clearly an approximation, but common planners consider an even stronger as-
sumption by approximating the belief with its expected value and, thus, ignoring
the uncertainty at all. A similar representation of the uncertainty has been used
by Bopardikar et al. [20] as a bound for a state estimator under intermittent
sensing. We fully represent a Gaussian distribution with isotropic covariance de-
scribing the belief about the position of the robot by its expected position and
the variance. This representation augments the MDP state space by considering
only one additional dimension and keeps the state space compact, thus avoid-
ing an explosion in complexity for planning. In contrast to that, for example,
considering a 2D Gaussian with a general covariance matrix would require three
additional dimensions.

Therefore, we define the set of augmented states as:

SAMDP = {(v0, σ
2
0), (v0, σ

2
1), (v0, σ

2
2), . . . , (vi, σ2

j), (vi, σ2
j+1), . . . }, (3.5)

with vi ∈ V and σ2
j ∈W ,

31

3.2. Uncertainty-aware planning on road networks

Figure 3.5: Uncertainty-augmented state s = (v, σ2) ∈ SAMDP, where v ∈ V is a road inter-
section and σ2 ∈W defines the associated isotropic covariance. The variance is illustrated by
the 2σ circle in red. The probability distribution is represented by the black shaded area such
that the darker the more likely.

where V is the set of road intersections andW is a set of variances that discretizes
the possible degrees of uncertainty. We can define W by choosing different ranges
and discretization degrees depending on the environment and on the desired pre-
cision. Each augmented state s corresponds to the normal distribution N (v, Σ),
with Σ =

[
σ2 0
0 σ2

]
. An example of uncertainty-augmented state is illustrated

in Figure 3.5. We refer to an augmented-state s ∈ SAMDP defined over the discrete
space X as the probability mass function p(x | s) with x ∈ X or, equivalently,
p(x | N (v,Σ)).

3.2.2.2 Actions

Augmenting the state representation with the robot’s position uncertainty does
not change the actions that the robot can execute. Therefore, the set of actions
of our uncertainty-augmented MDP corresponds to the possible directions at a
road intersection, identically to the MDP case:

AAMDP = AMDP = {↑, ↓, ←, →}. (3.6)

3.2.2.3 Transitions under position uncertainty

As our augmented-MDP states represent probability distributions, the transition
function is more complex to define compared to standard MDPs. The augmented-
MDP transition function TAMDP(s, a, s′) takes as input an augmented state s and
an action a ∈ AAMDP and maps it to a probability distribution of possible end
augmented states s′, with s, s′ ∈ SAMDP,. Therefore, it defines a probability
distribution over probability distributions. We compute TAMDP in three steps:

32

3. Navigation under uncertainty exploiting localizability

1. We compute the posterior from an intersection p(x | v, a), with x ∈ X ,
v ∈ V , that is posterior probability about the robot’s position given that
it executes a from v and navigates up to the next intersection without
considering any uncertainty in the input position.

2. We compute the posterior from an augmented state p(x | s, a), in which the
belief about the input position of the robot is represented by the augmented
state s, by integrating the posteriors from all possible input intersections.

3. We map the posterior from a state into our augmented-MDP state repre-
sentation to define the augmented state transition T (s, a, s′).

Posterior from an intersection We compute first the posterior probability
about the position of the robot p(x | s, a) over X upon taking action a at inter-
section v without considering any uncertainty in the input position. To this end,
we simulate the robot taking a at v and moving along the corresponding road
according to:

st = g(st−1,ut) + ϵt, with ϵt ∼ N (0, Rt), (3.7)

where g is a linearizable function that defines the dynamics of the robot, ut is
the one-step control corresponding to the action a, and Rt is the motion noise.
We assume that the belief about the position of the robot while navigating along
the road can be approximated by a Gaussian distribution. In this way, we can
estimate the new belief after a simulated movement by using the prediction step
of the Extended Kalman Filter (EKF):

p(xt | xt−1,ut) ≈ N (µ̂t, Σ̂t), (3.8)
with µ̂t = g(µt−1, ut) (3.9)

Σ̂t = GtΣt−1 G⊤
t + Rt (3.10)

where Gt is the Jacobian of g. For further details about the EKF, refer to Sec-
tion 2.1.1.

As we are simulating robot navigation along the roads, we do not have ac-
tual measurements to correct the predictions as in the typical EKF procedure.
However, the localizability information offers an estimate of how informative a
measurement in a certain location would be to localize the robot. Therefore, we
estimate how the position uncertainty propagates along the road by combining the
covariance from the EKF prediction Σ̂t with the localizability covariance Σµ̂t,Z

computed at the expected position µ̂t ∈ X :

p(xt | xt−1, ut, Z) = N (µt, Σt), (3.11)
with µt = µ̂t, (3.12)

Σt = (Σ̂
−1

t +Σ−1
µ̂t,Z)

−1, (3.13)

33

3.2. Uncertainty-aware planning on road networks

Figure 3.6: Posterior from intersection vi to taking action a =→∈ AAMDP to the intersec-
tions vj , vk, vl represented in the grid map X underlying the road graph G. The red dots
denote the intersections V and the blue ellipses the estimated uncertainty Σ·|ia upon reaching
the corresponding intersection.

where the localizability imposes a bound to the uncertainty of the EKF prediction
step that will otherwise grow infinite independently from the environment. We
recursively apply this procedure to compute the posterior probability about the
position of the robot while navigating along a road. For example, in Figure 3.6, we
estimate the posterior belief about the robot’s position of taking action a =→
from intersection vi to vj as the Gaussian distribution N (vj,Σj|ia) computed
by recursively applying Equation (3.11) along the cells of X belonging to the
corresponding road.

We explicitly model the possibility that the robot misses an intersection and
ends up in a successive one while navigating with large position uncertainty. For
example, in Figure 3.6, while navigating from vi towards vj, the robot could miss
to detect vj and continue navigating along the road ending up in vk or in vl. We
compute the probability that the robot detects vj such that the smaller is the
uncertainty Σj|ia upon reaching vj, the higher is the probability to detect it:

pdetect(vj | vi, a) = p
(
x = vj | N (vj,Σj|ia)

)
, (3.14)

where p(x = vj | ·) refers to a probability mass function defined over X .
We compute the posterior probability about the robot position p(x | v, a) of

taking action a at intersection v and navigating along the corresponding road up
to the next detected intersection by considering the probability to end up in each
of the reachable intersections:

p(x | v, a) =
|J |∑
j=1

N (vj,Σj|ia) pdetect(vj | v, a)
j−1∏
k=1

(1− pdetect(vk | v, a)), (3.15)

where J is the ordered set of subsequent intersections that the robot may reach
by missing a previous intersection along the road. The probability that the robot

34

3. Navigation under uncertainty exploiting localizability

ends up in each of the J intersections decays according to the probability that a
previous one has been detected. If no road exists for executing a at intersection v,
we set the posterior to be equal to the input intersection v. Therefore, computing
the posterior from an intersection with Equation (3.15) results in a mixture of
Gaussian distributions.

Posterior from an augmented state We introduce uncertainty in the input
position by considering that the initial belief about the position of the robot is
represented by an augmented state s ∈ SAMDP. As the input position is described
by a probability distribution, the posterior of taking an action should represent all
of the possible transitions that might occur. Therefore, we compute the posterior
probability about the robot’s position of executing a from s by integrating all of
the possible posteriors from intersections according to the belief represented by s:

p(x | s, a) = η

|V |∑
i=1

p(x = vi | s) p(x | vi, a), (3.16)

where η is a normalization term.

Augmented state transitions Given the posterior from an augmented state,
we need to find a correspondence to the augmented states to define the augmented
state transitions, i.e., the probability to make a transition from one augmented
state to another. We compute this correspondence by using the Bhattacharyya
distance [16]. This distance is used in the context of image processing for example
to perform feature rejection [30] or to estimate the classification error for feature
extraction [26]. Given two distributions p and q defined over the same domain, for
example X , the Bhattacharyya distance between the two distributions is defined
as:

dXBhatt(p, q) = − ln
(∑

x∈X

√
p(x) q(x)

)
. (3.17)

The Bhattacharyya distance is not a true metric as it does not satisfy the
triangle inequality. However, we prefer it over other approaches such as Kullback-
Leibler divergence [87] as it is a symmetric distance.

We define the augmented state transition TAMDP(s, a, s′), with s, s′ ∈ SAMDP,
according to the Bhattacharyya distance over X between the posterior from s,
p(x | s, a), and the probability distribution represented by s′:

h(s, a, s′) = dXBhatt (p(x | s, a), p(x | s′)) , (3.18)

and by transforming the distance into the probability space using the softmax
function:

TAMDP(s, a, s′) =
e−h(s,a, s

′)∑
si∈SAMDP

e−h(s,a, si)
. (3.19)

35

3.2. Uncertainty-aware planning on road networks

Figure 3.7: We compute the augmented state transition from s to s′, TAMDP(s, a, s′),
with s, s′ ∈ SAMDP, according to the Bhattacharyya distance over X between the posterior
from s, p(x | s, a) with x ∈ X and the belief represented by s′.

An illustrative example to compute the augmented state transition from an
augmented state posterior is depicted in Figure 3.7.

3.2.2.4 Rewards under position uncertainty

We define the augmented-MDP reward function such that the resulting policy
leads the robot to the goal by minimizing the expected travel time (or equivalently
the travel distance) while taking into account the uncertainty of the transitions
to reduce the risk to go for a long detour during navigation with large position
uncertainty. To this end, the rewards should reflect the position uncertainty
of the beliefs represented by the input and end augmented states. Therefore, we
define the reward of taking action a from an augmented state s to the next one s′,
with s, s′ ∈ SAMDP, as:

RAMDP(s′, a, s) =
|V |∑
i=1

p(x = vi | s)
|V |∑
j=1

p(x = vj | s′)RMDP(vi, a,vj). (3.20)

whereRMDP are the rewards of the MDP formulation based on road length. In our
uncertainty-augmented MDP, we weight these rewards according to distributions
defined by s and s′.

3.2.3 Solving augmented-MDPs
By solving the augmented-MDP defined above, we obtain a policy to reach the
goal that tells the robot the optimal action to take at each intersection of the road
network. We look for the optimal policy that selects the actions that maximize
the expected rewards of the subsequent states in an infinite time horizon.

36

3. Navigation under uncertainty exploiting localizability

Although an augmented-MDP requires more states and more complex models,
its formulation is analogous to a conventional MDP. Therefore, we can compute
the optimal policy π∗ by using the same tools as for MDPs. We compute π∗

by using the policy iteration algorithm [60]. Policy iteration has a polynomial
bound in the number of states and actions to solve MDPs with fixed discounted
rewards [100], but often it is much more efficient in practice.

Solving augmented-MDPs has the same complexity as MDPs but requires a
larger number of states, | SAMDP |= | V | · |W |. On the contrary, POMDPs are
PSPACE-complete [128]. Therefore, augmented-MDPs approximate POMDPs
with a practically and theoretically more efficient algorithm.

3.2.4 Navigation following augmented-MDP policies

During robot navigation, the localization system computes continuously a be-
lief bel(x) over X about the position of the robot as described in Section 3.1.3.
When the robot detects to be at a road intersection, it has to take an action to
decide in which direction to navigate. In order to take actions according to the
optimal policy π∗ computed by solving our augmented-MDP, we need to deter-
mine in which uncertainty-augmented state the robot is. We assume the robot to
be in the augmented state s ∈ SAMDP that presents the minimum Bhattacharyya
distance from bel(x) over X :

sbel = argmin
s∈SAMDP

dXBhatt (bel(x), p(x | s)) . (3.21)

Thus, the robot takes the action corresponding to following the optimal policy
from this state:

a∗ = π∗(sbel), with a∗ ∈ AAMDP, (3.22)

and keeps navigating along the selected road until it detects the next intersection.

3.3 Experimental evaluation
In this section, we evaluate our planning approach that explicitly takes the un-
certainty about the position of the robot into account for robot navigation on
road networks. Our experiments are designed to show the capabilities of our
approach to (i) make effective decisions based on the position uncertainty during
navigation, the environment, and the goal location; (ii) lead to routes that are
on average shorter than a shortest path policy operating under uncertainty but
ignoring it; (iii) outperform policies that always take the safest actions.

37

3.3. Experimental evaluation

3.3.1 Experimental setup and baseline
All experiments presented here are conducted in a simulated environment contain-
ing buildings and road information extracted from OpenStreetMap. The robot
navigates along the roads and uses the buildings to simulate LiDAR measure-
ments as well as to compute the localizability map as described in Section 3.2.1.
The scans and the odometry are affected by random sensor noise. The localiza-
tion system implements Markov localization as described in Section 3.1.3. The
navigation actions at the intersections are non-deterministic, and the probability
of missing an intersection is proportional to the uncertainty about the position of
the robot. Our approach and the two baseline methods use the same simulator
and localization system.

For comparisons, we consider a shortest path policy similar to the one de-
scribed in Section 3.1.4. It assumes the robot to be located at the most likely
position given the belief provided by the localization system and selects the ac-
tions to execute, similarly to the shortest path planners described in Section 2.3.1.
We compare our approach also against a safest path policy that considers the lo-
calizability information to minimize the expected uncertainty and, thus, selects
always safe actions. For illustration purposes, consider again the motivation ex-
ample illustrated in Figure 3.1. As the most likely position of the robot is B,
the shortest path policy would take a right turn to reach the goal (dotted orange
path), ignoring the risk of taking a long detour (dash-dotted red path). The
safest path policy instead, recognizing that A and B are not distinctive enough,
leads the robot to C and makes there a safe right turn to reach the goal (dashed
green path), independently from whether the robot is precisely localized or the
uncertainty about its position is large.

3.3.2 Situation-aware action selection
The first experiment is designed to show that our approach is able to minimize the
travel time to reach the goal while reducing the risk to go through long detours
by making appropriate decisions according to the situation and the position un-
certainty. We consider the environment depicted in Figure 3.8 and assume that
the robot goes for a long detour if it navigates towards intersection O,M, or N.
According to the localizability information Z, the robot is expected to localize
well along some roads such as JK,KC, but finds little structure to localize in
others like AB,BC and navigating along them cause a growth in the position un-
certainty. Given the initial belief that the robot is at A, B, I, or J (green circle),
we show that our approach is able to adapt the action selection depending on the
situation. To this end, we sample the initial state with uniform probability and
consider, in turn, two different goal locations.

38

3. Navigation under uncertainty exploiting localizability

Figure 3.8: Environment considered in the situation-aware action selection experiment discussed
in Section 3.3.2. The intersections are the red dots denoted by letters, the roads are the orange
arrows, and the buildings are colored in blue. The localizability Z along roads is represented
such that the darker, the better the expected localization. The initial belief about the position
of the robot is a uniform distribution over the intersections A, B, I, J highlighted in green.

100

200

300

400

T
im

e
[s

]

Shortest path

Safest path

Our approach

(a) Goal in F.

100

200

300

400

T
im

e
[s

]

Shortest path

Safest path

Our approach

(b) Goal in G.

100

200

300

400

T
im

e
[s

]

Shortest path

Safest path

Our approach

Figure 3.9: Mean and standard deviation of the time that the robot takes to travel to the
different goals in the environment illustrated in Figure 3.8.

39

3.3. Experimental evaluation

First, we set F as the goal location. The shortest path policy navigates right-
wards to reach the goal quickly. Whereas, the safest path policy seeks to go
through JK where the robot is expected to localize better. The policy generated
by our approach follows a similar strategy as the shortest path. In fact, although
the robot cannot localize perfectly along AE, it is expected to re-localize along EF
and, thus, to reach safely the goal without the risk to taking a longer route even
by following a greedy plan. Figure 3.9(a) shows the average travel time of the
three policies. Our approach presents the same performance as the shortest path
and outperforms the safest path policy.

The situation changes if we set G as the goal. The safest path policy seeks
again to go through JK to reduce the uncertainty and take the correct turn at D.
Whereas, the shortest path policy leads the robot rightwards to quickly reach D
and make there a turn to the goal. However, navigating along AD, the uncer-
tainty grows and so the probability that the robot takes the wrong turn or misses
intersection D. For this reason, the shortest path policy leads the robot to the
goal G in the 60% of the cases and, in the 40% of the cases, to detours at O or N.
This behavior results overall into sub-optimal performance, see Figure 3.9(b). As
reaching D with large uncertainty may cause the robot to make mistakes and go
through long detours, our planner seeks to reduce the uncertainty before making
the turn. Thus, in this case, our policy behaves similarly to the safest path policy
leading the robot along JK before turning towards the goal at D and outperforms
the shortest path policy.

This experiment showcases the ability of our planner to adapt to the situation
and the actual uncertainty by picking the best of both the shortest and the safest
path worlds.

3.3.3 Uncertainty-aware action selection
The second experiment is designed to illustrate the ability of our approach to
deal with different degrees of uncertainty and, also in more complex scenarios, to
computes policies that are on average shorter than the ones provided by a planner
that ignores the actual uncertainty of the robot during navigation. To this end,
we consider a robot that navigates in the environment depicted in Figure 3.10.
The robot starts from A, B, or C with different initial position uncertainties and
should reach to the goal G.

For shortest path planning algorithms, this is a trivial problem and the short-
est path to the goal can be easily found: navigate upwards and make a right turn
to the goal at E. If the robot is accurately localized, following this path leads it
quickly and safely to the goal. However, as there is little structure in the envi-
ronment to localize along AE, the position uncertainty upon reaching E grows.
Reaching E with large uncertainty increases the probability of mismatching the

40

3. Navigation under uncertainty exploiting localizability

Figure 3.10: Environment considered in the uncertainty-aware action selection experiment dis-
cussed in Section 3.3.3. Same notation as in Figure 3.8.

intersections D and E. Thus, the situations in which the expected robot’s position
is at E while it is actually at D are more likely. In this case, the shortest path
policy makes the robot turning right leading it to a long detour through L. Large
uncertainty may also cause that the robot misses intersection E or F leading also
to detours. For example, if the robot believes to be at F but its actual position
is at H, following the shortest path policy, it will make a left turn to S, so that
it can reach the goal G by moving through T and E. However, turning left takes
the robot to a long detour through P instead. Therefore, as soon as the uncer-
tainty about the robot’s position grows, following a greedy strategy increases the
probability to take wrong turns and detouring.

The safest path policy seeks to make safe turns at intersections in which
the robot is expected to localize well, for example, at the end of the roads or
where the localizability is good. Therefore, to reach the goal, it leads the robot
upwards to H, and makes a safe right turn towards I reducing the risk to mismatch
intersections. From I, it moves the robot rightwards to J, turns to K and, finally,
to the goal G. Making a turn to the goal at K is considered as a safe decision
as the robot is expected to localize very well there. However, the safest path
policy always makes safe decisions considering how well the robot is expected to
localize but ignores the actual position uncertainty during navigation. Therefore,
it often follows an overly conservative and longer strategy to reach the goal also

41

3.3. Experimental evaluation

0 5 10 15 20 25 30 35 40 45 50

Uncertainty σ [m]

200

300

T
im

e
[s

]

Shortest path

Safest path

Our approach

(a) Start in A.

0 5 10 15 20 25 30 35 40 45 50

Uncertainty σ [m]

200

300

T
im

e
[s

]

Shortest path

Safest path

Our approach

(b) Start in B.

0 5 10 15 20 25 30 35 40 45 50

Uncertainty σ [m]

200

300

T
im

e
[s

]

Shortest path

Safest path

Our approach

(c) Start in C.

Figure 3.11: Average travel time to reach the goal G starting from A, B, and C with different
levels of uncertainty σ in the environment illustrated in Figure 3.10.

42

3. Navigation under uncertainty exploiting localizability

in situations in which the uncertainty is small.
Our approach, in contrast, makes decisions by explicitly considering the be-

lief about the position of the robot provided by the localization system during
navigation. It selects actions depending on the degree of uncertainty and, thus,
leads the robot to the goal by trading off safety and travel time.

The performance of the three policies is illustrated in Figure 3.11. We con-
sidered 18 different levels of uncertainty with σ ranging from 1 to 50 meters and
performed 200 runs for each initial location and degree of uncertainty. The safest
path policy presents on average similar travel time when varying the initial po-
sition uncertainty. The shortest path policy shows short travel time when the
uncertainty is small but, when the uncertainty grows, it takes on average longer
than the safest path to reach the goal. Our approach follows a strategy similar
to the shortest path policy when the uncertainty is small and thus mistakes are
unlikely. However, in tricky situations, when the uncertainty becomes large, our
approach makes decisions similar to the safest path policy, thereby taking safer
actions to avoid making mistakes and ending up in long detours.

This experiment shows that our approach is able to take the appropriate
navigation action according to the degree of uncertainty of the robot during
navigation, overall outperforming the shortest and safest path policies.

3.4 Towards real-world environments
Although our approach for planning routes considering position uncertainty is
more efficient than solving a POMDP, the complexity to compute a policy at
city-scale for a real-world environment, where the number of roads and intersec-
tions is large, is still high. To the best of our knowledge, currently there exist no
approaches which take the position uncertainty explicitly into account that can
plan paths at city-scale. Our approach can be seen as a step in this direction.
We compute navigation policies offline and, once one is available, it can be ex-
ecuted online by the robot in constant time, without requiring to re-plan. The
localizability is also expensive to compute but it has to be computed only once
for each environment. Furthermore, we believe that planning under uncertainty
is more relevant in practice at a local scale where mistakes at intersections can
lead to detours that have a significant impact on the route followed by the robot.
Therefore, planning at a city-scale can be more effective by combining, in a hier-
archical manner, our approach with a higher level planner that plans paths in a
coarse representation, and uses our policy in at a finer level to make appropriate,
uncertainty-aware, local decisions where they have the highest impact.

To sum up, even though our evaluation only considers simulated environ-
ments, the approach discussed in this chapter takes a step towards planning

43

3.5. Possible extension to navigation with GNSS

under position uncertainty for robot navigation.

3.5 Possible extension to navigation with
GNSS

Throughout this chapter, we considered a mobile robot that localizes itself using
a 360° 2D LiDAR sensor. However, our planning approach can also be applied
similarly to robots that rely on different sensors for localization. Consider for
example a robot the localizes itself by using a global navigation satellite sys-
tem (GNSS). The GNSS signal might be temporarily unavailable because the
robot is in a tunnel or in a so-called urban canyon, i.e., roads with tall buildings
on both sides creating a canyon-like environment. In these cases, the position
uncertainty increases and following the shortest path policy may lead to taking
wrong turns and going through long detours. Prior information about the local-
ization accuracy for a GNSS in an urban environment can be computed from the
buildings’ elevation map. Zimmerman et al. [178] compute obstruction adaptive
elevation masks for identifying the influence of signal diffraction, NLOS recep-
tion and signal distortions, and, thus, improving the positioning of high-precision
GNSS. We can use this prior similarly to the localizability information to esti-
mate the propagation of the belief about the robot’s position in the road network.
In this way, we can compute an augmented-MDP policy that takes into account
the localization uncertainty for GNSS-based navigation by using the procedure
described in Section 3.2.2.

3.6 Related work
Although the interest in planning under uncertainty is increasing more and more,
most robots still rely on some variant of A∗ to navigate. Several urban naviga-
tion robots such as Obelix [89] or the Autonomous City Explorer [95] plan paths
by using A∗ on metric or topo-metric maps. Zahn and Noon [176] provide an
extensive evaluation of the traditional shortest path algorithms for pathfinding
on real road networks.

The approach presented in this chapter relies on a topo-metric representa-
tion of the environment. Topo-metric maps are an effective representation for
planning and localization in urban environments characterized by road networks.
Kuipers and Byun [85] introduce a topological map representation where nodes
correspond to places and edges to actions for moving between places that con-
tain local information for navigation. Konolige et al. [75] present an approach to
building hybrid maps that combine occupancy grid maps and topological graphs

44

3. Navigation under uncertainty exploiting localizability

in a hierarchical manner. Thrun [162] uses artificial neural networks to build grid
maps and generates topological maps on top by splitting the metric map into
coherent regions. Publicly available map services, such as OpenStreetMap and
Google Maps, offer free topo-metric maps of most cities. Such map representa-
tions have been used in several robotic systems for path planning, localization,
and mapping [44, 56, 169]. We built our environment representation by extracting
information from OpenStreetMap.

The Markov decision process allows for optimally solving planning problems
in which the state is fully observable but the actions are noisy, see Section 2.4.1.
There are many well-studied algorithms to solve MDPs such as value iteration [8]
and policy iteration [60]. If the state is not observable, the problem turns into a
POMDP, see Section 2.4.2. However, the computational complexity of POMDPs
is often too high to provide useful results for real-world problems [128]. There
exist many approaches to approximate POMDPs. The POMCP [151] allows for
online POMDP planning by using an algorithm based on the Monte Carlo tree
search which samples the successive states and runs simulations to estimate the
potential reward. The DESPOT [152] is based on a similar idea but focuses the
search on a set of randomly sampled scenarios. Luo et al. [101] use DESPOT for
planing controls for autonomously driving a vehicle among pedestrians by taking
into account the uncertainty in pedestrian intentions. Although these approaches
do not require solving the full POMDP, they demand significant resources and are
effective for planning with short time horizons. In contrast to that, our approach
computes global navigation policies that allow the robot to make decisions with
an infinite time horizon for reaching the goal.

Roy [145] introduced the augmented Markov decision process to approximate
the state space of a POMDP. Augmented-MDPs define MDPs over belief states
similarly to Belief MDPs [65]. The belief state representation allows for cast-
ing POMDPs into MDPs with fully observable states that can be solved by us-
ing the tools of the MDP world. Augmented-MDPs compress the belief space
into a compact representation which allows for solving the problem efficiently.
Augmented-MDPs have been used in different contexts: Roy et al. [146] gener-
ate robust trajectories for indoor navigation that minimize the likelihood that
the robot becomes lost; Hornung et al. [59] plan velocity commands for a mobile
robot that minimize the motion blur of its camera; whereas, Kawano [68] controls
under-actuated blimps under the effects of wind disturbance. In this chapter, we
used augmented-MDPs to plan routes on road networks that take into account
the uncertainty about the position of the robot to reduce the risk to take a wrong
turn and go through a long detour.

Approaches that incorporate the uncertainty into the planning process are
usually referred to as planning in belief space. The belief roadmap [138] is a

45

3.6. Related work

variant of the probabilistic roadmap algorithm that plans in belief space for lin-
ear Gaussian systems by using a factored form of the covariance matrix. Platt
et al. [136] assume maximum likelihood observations and use linear quadratic
regulation to generate policies. The LQG-MP [13] uses a linear-quadratic con-
troller to estimate a priori the robot’s belief along the paths assuming Gaussian
uncertainty and, accordingly, selects the best candidate path. These approaches
compute a path offline assuming a priori maximum likelihood observations, but
they do not consider the sensor or process noise while the robot executes it. Van
den Berg et al. [14] overcome this assumption by taking as input a feasible trajec-
tory and improving it by computing a locally-optimal POMDP control policy that
assumes Gaussian beliefs. Bry and Roy [22] propose to improve a nominal trajec-
tory by constructing incrementally a graph of trajectories through the belief space
using RRT*. The FIRM [1, 2] generalizes probabilistic roadmaps over the belief
space and assigns a unique belief to each node taking all possible future observa-
tions into account, thus breaking the “curse of history” of POMDPs. However,
this approach does not consider the possibility that the robot reaches a node with
different beliefs. In contrast to that, our approach generates offline a policy that
deals with different degrees of uncertainty and selects online the optimal action
given the current belief of the robot. Bopardikar et al. [20] consider a compact
representation of the robot’s belief based on the expected maximum eigenvalue
of the covariance and demonstrate that using this representation there exists a
bound on the performance of a state estimator under intermittent sensing. We
use a similar approximation to represent the robot’s position uncertainty. Such
a compact representation allows us to plan efficiently even in large environments
and, thus, to take a step towards real-world applications.

Other related approaches for planning in the belief space are in the context of
simultaneous localization and mapping (SLAM). Indelman et al. [61] perform ex-
ploration in an unknown environment while maintaining localization uncertainty
within given bounds. To this end, they model the joint probability distribution
over the robot state and the environment to predict the outcome of possible deci-
sions. Valencia et al. [167] use SLAM pose graphs as belief roadmaps for planning
paths with the lowest accumulated robot pose uncertainty. Fermin-Leon et al. [43]
plan on pose graphs paths that minimize the expected uncertainty at the goal by
considering the probability of re-localization at every step of the trajectory.

In this chapter, we estimated how the robot’s belief propagates along the road
network by combining the EKF-style prediction step and a localization prior. We
compute the localizability along the roads by using the method proposed by
Vysotska and Stachniss [169]. This approach was developed to support active
localization using OpenStreetMap data. Roy et al. [146] proposed one of the first
approaches for modeling the information content of each point in the map to nav-

46

3. Navigation under uncertainty exploiting localizability

igate a robot by reducing localization uncertainty. Bengtsson and Baerveldt [9]
calculate the covariance of the position estimate by building a local geometric
map from a scan and matching simulated scans from the surrounding positions
to score scan positions for mapping and localization. Schirmer et al. [148] use
this approach to define a heuristic for planning paths in the belief space that
maximizes the safety of a robotic lawn-mower.

3.7 Conclusion
In this chapter, we presented a novel approach for efficient path planning under
position uncertainty on road networks. We formulate this problem as an aug-
mented MDP that incorporates the robot’s position uncertainty into the state
space. This formulation allows for solving the planning problem by using the
MDP tools without requiring to solve a full POMDP. We define the transition
function of the augmented-MDP by estimating how the robot’s belief propagates
along the road network by using a localization prior to bound the growth in the
predicted uncertainty. During navigation, we match the belief about the position
of the robot provided by the localization system with our augmented state rep-
resentation and select accordingly the optimal action to execute by taking into
account the degree of uncertainty.

The key advantage of our approach is that it makes navigation decisions adap-
tively and adjusts to the current task, configuration, and uncertainty. Taking
into account this information, it can trade off safety and travel time to reach the
goal. The experiments illustrate that, if the robot’s position uncertainty is small,
our approach performs similarly to the shortest path policy and outperforms the
safest path policy that always selects the action that reduces the uncertainty.
Whereas, when the uncertainty is large and the risk of making sub-optimal de-
cisions grows, our approach outperforms the shortest path policy by taking safe
decisions that reduce the risk of taking wrong turns and going for long detours.
Therefore, our approach is able to perform robust navigation under uncertainty
on road networks by picking the best for the shortest and the safest path worlds.

47

Chapter 4

User-preferred navigation
exploiting experiences

In real-world environments, robots perform different tasks and encounter a
large variety of scenes during navigation. Therefore, it is fundamental for
autonomous robots to be able to navigate by adapting their behaviors to suit
the situation. In the previous chapter, we discussed how robots can take into

account uncertainty to decide which action to execute in a given situation and,
thus, perform robust navigation. Other essential aspects that should be taken
into account to navigate in a certain scenario are the criteria imposed by the user,
the task, the environment, and the other agents operating in it. For example, in
many environments such as factory floors, users require robots to follow specific
behaviors during traversal. Furthermore, in environments populated by other
moving entities such as humans or other vehicles, robots are required to navigate
in a compliant manner by following safe and foreseeable behaviors.

In this chapter, we investigate the problem of robot navigation by following
the user’s preferences on robot behaviors according to the task, the environment,
and the local scene that the robot encounters while navigating. Many approaches
attempt to define formal rules and preferences for navigation, for example, Kirby
et al. [70]. However, formalizing preferences can be difficult, and hard-coded
rules are often complex to maintain and update. Furthermore, hard-coded rules
may interfere and increase the complexity of switching between preferences or
between different users. In the same way, specifying mathematical cost functions
to define behaviors as, for example, Haigh et al. [55] can be complex and usually
requires experts to define such costs. In our work, we aim at implicitly extracting
information about the user’s preferences from the previous experiences of the
robot and at incorporating this knowledge for planning new trajectories.

We introduce a robot navigation system that captures the user’s preferences
by allowing the user to demonstrate desired behaviors to the robot or to provide

49

Figure 4.1: A KUKA KMR iiwa mobile manipulator deployed on a factory floor where it shares
the workspace with human operators as in the use case envisioned by the RobDREAM project.
Image courtesy of KUKA Roboter AG.

feedback about its experiences. This is generally more convenient than hard-
coding preferences as even non-expert users can easily teach behaviors to the
robot from demonstration, for example, by joysticking it along desired routes
in the environment. We store the user’s favorite behaviors into a database of
experiences and reuse them to guide the planning process for a new but simi-
lar navigation task. Several motion planning systems have been developed to
reuse previously experienced paths, for example, Berenson et al. [12]. Most of
these approaches focus on speeding up the planning process rather than imple-
menting specific robot behaviors. Teach-and-repeat approaches, such as Sprunk
et al. [154], allow robots to precisely repeat trajectories. However, it is typically
hard to generalize taught trajectories to different situations and to reproduce
them if the environment changes.

We consider a planning approach that is able to compute paths that repro-
duce and generalize previous successful experiences of the robot, thus meeting the
preferences of the user. Our approach generates trajectories by incorporating the
user-preferred paths in a sampling-based planning system. In this way, it main-
tains the flexibility of a general planner and allows for reproducing experiences
even when changes occur in the environment. We employ this approach both
for planning global paths from start to goal locations of the environment and for
planning local deviations to avoid obstacles. For dynamic obstacle avoidance, we
combine our planning approach with a probabilistic model for estimating their
trajectories. This model makes predictions by taking the uncertainty of the obsta-
cle motion into account. Following our approach, robots can accomplish safe and
predictable navigation behaviors that meet the user’s preferences by reproducing
his preferred experiences in similar situations.

50

4. User-preferred navigation exploiting experiences

4.1 Navigation on factory floors
Nowadays, the use of robotic systems in manufacturing industries is widespread.
Traditional industrial robots are manipulators employed to perform specific tasks
at fixed locations. Recently, the demand for flexible robotic solutions that are able
to perform different tasks at different locations has grown. These tasks include
mobile manipulation as well as navigation to transport materials and tools from
one location to another. To operate on factory floors, mobile robots are usually
requested to fulfill some requirements such as navigating in restricted areas of
the environment or following definite patterns during navigation. Furthermore,
when robots operate in environments shared with human workers or forklifts, the
reproducibility and the predictability of the navigation behaviors become essential
to avoid collisions without limiting the flexibility of the robot operation.

This demand has led to several EU-funded projects on the matter. The work
presented in this chapter has been developed in the context of the H2020 project
RobDREAM1. This project focuses on automatically adapting and improving
over time the capabilities of a mobile manipulator working on a factory floor
by processing its previous experiences without requiring an expert to tune and
optimize its parameters.

4.1.1 RobDREAM use case

Throughout this chapter, we consider a use case that stems from the RobDREAM
project to explain and motivate our work: a non-expert operator requests a mobile
robot to perform multiple navigation tasks on a factory floor while expecting the
robot to behave according to his preferences. We assume that both the robot and
the operator know the map of the environment. The operator asks the robot to
perform a navigation task by specifying the start and goal poses. In this scenario,
the robot may encounter other moving entities such as human workers, forklifts,
other robots, etc. during navigation.

The navigation system presented in this chapter enables the robot to accom-
plish the required navigation tasks by adapting its navigation behaviors according
to the user’s preferences. To achieve this, we give the possibility to the operator
to express preferences on the behaviors experienced by the robot by rating them
as good or bad, for example by using a simple GUI in which the user can also
replay the robot’s behaviors. The operator can also demonstrate good behaviors
to the robot by joysticking the platform along the desired trajectories. We store
the good experiences into a database that grows over time. Our system exploits
such a database of experiences to capture and reproduce the preferences of the

1http://robdream.eu/

51

4.2. Experience-based navigation following user preferences

Figure 4.2: Overview of our experience-based robot navigation system. It consists of three main
components: a database containing the good paths experienced by the robot, a planner that
exploits these experiences for computing new paths, and a collision avoidance module to avoid
dynamic obstacles during navigation.

user for planning paths to perform new tasks.

4.2 Experience-based navigation following user
preferences

The main contribution of this chapter is a novel robot navigation system that
allows for easily instructing robots to follow preferred navigation behaviors. It
extracts the user’s preferences from the previous experiences of the robot and
incorporates them into a path planning algorithm. Our approach allows the
robot to: (i) perform navigation behaviors that meet the preferences of the user
by reusing the previous experiences of the robot; (ii) reproduce and generalize
behaviors over different environments and situations; (iii) perform predictable
behaviors providing similar solutions for similar situations; and (iv) navigate in
environments populated by other moving objects while still accomplishing fore-
seeable behaviors.

4.2.1 System overview
Our robot navigation system consists of three main components and an overview
is illustrated in Figure 4.2. The remainder of this section briefly introduces these
components, which we will describe in detail in the subsequent sections.

52

4. User-preferred navigation exploiting experiences

Database of experiences We consider a database to store the paths expe-
rienced by the robot that have been positively evaluated by the user. Once a
new task is assigned to the robot, it retrieves from the database the experience
matching the current situation and exploits it for planning a new path.

Experience-based planning Our planning algorithm computes paths by guid-
ing the search to prefer trajectories that match the robot’s experiences and thus,
leads the robot to reproduce previous successful behaviors. Whereas, when no
suitable experience is available, it is able to explore the configuration space.

Dynamic obstacle avoidance If the robot detects a dynamic obstacle dur-
ing navigation, we use a probabilistic approach to predict its trajectory and the
experience-based planner to generate a local deviation that avoids the obstacle
while performing a foreseeable behavior.

Our system realizes robot navigation both at the global and the local levels.
The global level computes a path from the start to the goal pose in the static
map of the environment. At the global level, our system can exploit the previ-
ous experiences of the robot in an environment to perform new similar tasks in
the same environment, but it does not generalize the exploitation of experiences
across different environments. The local level handles collision avoidance with
unforeseen obstacles by planning local deviations from the global path. It relies
only on the local situation and is largely independent of the map. Therefore, our
system can generalize local experiences across different scenes and environments.

4.2.2 Database of experiences

We store the paths experienced by the robot that the user evaluates positively
into a database that we call the database of experiences. When the user requires
the robot to perform a new task, we search the database of experiences and
retrieve a path experienced in a similar situation. We use this path to generate
a new trajectory that reproduces the previous experience and, thus, meets the
user’s preferences. To this end, we introduce a path representation that allows
for compactly storing the experiences of the robot while capturing the geometric
structure of the paths for reproducing them. We also define a situation descriptor
that determines a similarity relationship among navigation tasks and, thus, allows
for selecting the previous experiences matching the current task. We define a
different path representation and situation descriptor at global and local levels
to capture better their functions and properties.

53

4.2. Experience-based navigation following user preferences

4.2.2.1 Attractor-based path representation

We use a path representation that effectively stores and retrieves previously ex-
perienced paths. We represent a path P as the set of poses:

P ≈ A = {xstart, a1, . . . , an, xgoal}, (4.1)

where xstart and xgoal are the start and goal poses and a1, . . . , an are the poses
along the path that allow for capturing its geometric structure. We call these
poses attractors, recalling the concept introduced by Jiang and Kallmann [64].
In Section 4.2.3, we will describe how our experience-based planning algorithm
takes advantage of this representation for generating new paths.

Our planning algorithm computes and represents paths as dense sequences
of poses in the configuration space. From this representation, we compute the
attractors of a path by iteratively considering a window of path points. We
initialize the window with the first two path points. If a line fits through the
points in the window, we insert the successive point in the window. Otherwise,
we identify the last inserted point as a candidate attractor and check whether a
straight motion from the previous attractor is valid and collision-free. If this is the
case, we include the candidate attractor to the list of attractors and reinitialize
the window. Otherwise, we select the previous point in the path as a candidate
attractor and perform a new check. We iterate this procedure until all path
points are processed. The result is a compact ordered list of poses describing the
structure of the path.

Global and local levels of our system rely on different assumptions, so it is
necessary to define a different way to store and to reuse the attractors. We
maintain the experiences in two distinct databases to which we refer to as DG for
the global paths and as DL for the local ones.

Global experiences do not generalize across different environments. Therefore,
we represent the attractors of global paths as:

aGi = (xi, yi, θi), (4.2)

where (xi, yi, θi) are the coordinates of the attractor in the map frame. For the
same reason, we maintain a distinct database of global paths for each environ-
ment.

Instead, we aim at generalizing local experiences across different scenes. There-
fore, the path representation at the local level should not depend on the envi-
ronment and be translation and rotation invariant. To this end, we apply a
coordinate transformation to the attractors that makes them independent from
the map frame and that can be inverted in new situations. We introduce a local
coordinate system based on the local situation and the corresponding obstacle,

54

4. User-preferred navigation exploiting experiences

Figure 4.3: Our attractor representation of a local path P ≈ {xstart, a1, a2, a3, xgoal}. The
green dotted curve is the original path executed to avoid the obstacle O. We represent a local
attractor ai using the coordinates (δ, ϕ, γ).

as illustrated in Figure 4.3. We represent the attractors of the local paths in the
polar coordinate system that has the pole in the center of the obstacle O and the
orientation of the vector υ⃗ ′, which connects the start to the goal pose. In this
frame, we can identify unambiguously a local attractor with as:

ãLi = (ρi, ϕi, γi), (4.3)

where ρ is the distance of the attractor to O, ϕ and γ are the angles that the
line passing by O and the center of the robot R form respectively with υ⃗ and
the robot axis. This representation relies only on local information and, thus,
allows for transferring experiences across different environments. To exploit an
experienced local path for a new task, we transform the local attractors in the
map frame of the current environment and use them to guide the new plan.

To further generalize experiences over obstacles of different shape and size, we
replace ρ with δ, which is the distance of the attractor from the obstacle surface
along ρ. Representing local attractors as

aLi = (δi, ϕi, γi) (4.4)

allows for reusing an experienced local behavior even in the cases in which the
obstacle encountered by the robot has different dimension, while keeping a safe
distance from it.

4.2.2.2 Situation descriptors

To reproduce previous successful behaviors, it is fundamental to identify which
experience fits a new situation. We compare navigation tasks using situation

55

4.2. Experience-based navigation following user preferences

Figure 4.4: Local situation descriptor for avoiding the obstacle O defined by the local start (dark
blue) and goal (light blue) in the local attractor representation, the extent of the obstacle (yel-
low) and of free space around it (red).

descriptors. A situation descriptor is a feature vector that describes the task
and the scene in which the robot performs it. For each experienced path, we
compute the corresponding situation descriptor and store it into the database of
experiences together with the attractors. We measure the similarity between two
tasks by computing the sum of the Euclidean distances of the attributes of their
situation descriptors.

As stated by Jetchev et al. [62], the ability to generalize experiences to new
tasks depends on the description of the situation. Therefore, as for the path
representation, we specify two distinct situation descriptors to describe global
and local tasks that fit the objectives and the assumptions considered at each
level. We define the situation descriptor for global experiences as the vector
composed by the start and goal poses of the task expressed in the map frame.
Given the task to navigate from xstart = (xs, ys, θs) to xgoal = (xg, yg, θg), the
corresponding situation descriptor is:

dG = [xs, ys, θs, xg, yg, θg]. (4.5)

This definition of descriptor fits the requirements at global level: it allows for
multiple queries in one environment and provides no information across different
environments. Jiang and Kallmann [64] show that such descriptors are effective
in practice for matching situations in static environments.

Combining this definition of situation descriptor with the representation of
paths as attractors, we can consider at the global level every sub-path as a distinct
example. We store each attractor individually in the database of experiences with
a reference to the path it belongs to. Given a new task, we search the database
for the pair of robot poses {xi, xj} such that xi and xj belong to the same path P

56

4. User-preferred navigation exploiting experiences

and the sum of the distances to the start and goal configurations of the new task
is the smallest. In this way, a new plan can be guided by any of the sub-paths
of P .

At the local level, we want to generalize experiences across different environ-
ments and obstacles. To this end, we define a situation descriptor that relies only
on local information, as illustrated in Figure 4.4. First, similarly, as for the global
level, we consider the start and goal pose of the local task expressed in the local
coordinates introduced in Section 4.2.2.1 as attributes of the descriptor:

dLtask = [ρs, ϕs, γs, ρg, ϕg, γg], (4.6)

where we consider the coordinates defined in Equation (4.3) as ρ is straightforward
to compute and δ does not provide any further information to describe the task.
This descriptor represents the task with respect to the obstacle, but provides no
information about the obstacle itself and the space around it. The geometry of
the obstacle and the space around it are fundamental to plan a local deviation.
Therefore, we consider two additional components. The first one describes the
shape and dimension of the obstacle by computing the extent of the obstacle from
its center O in the 8 directions defined by the υ⃗ axis, each rotated by 45 degrees,
as illustrated in Figure 4.4:

dLobstacle = [e1, e2, e3, e4, e5, e6, e7, e8]. (4.7)

This component favors the robot to accomplish similar behaviors at obstacles
with similar shapes and dimensions. Such obstacles are likely to correspond to
similar objects and the user may want the robot to accomplish a specific behavior
to avoid a certain class of objects. For example, to avoid moving or potentially
moving obstacles the user may prefer a behavior that does not cross their front
or their way. The second additional component describes the extent of free space
from the obstacle surface to the next obstacle along the same directions considered
in dLobstacle:

dLfreespace = [f1, f2, f3, f4, f5, f6, f7, f8], (4.8)

see Figure 4.4 for an illustration. The geometry around an obstacle is a good
indicator for deciding on which side of the obstacle the robot should pass to
avoid it. Therefore, considering this component will favor paths in the same
homotopy for scenes presenting similar geometry around the obstacle.

The resulting local descriptor is:

dL = [dLtask, dLobstacle, dLfreespace], (4.9)

and it allows for comparing local tasks across different situations, obstacles and
environments. We combine different measures of similarity to keep the local de-
scriptor as general as possible. Nevertheless, each component can be parametrized

57

4.2. Experience-based navigation following user preferences

Algorithm 4 Experience-based navigation to follow user’s preferences
1: procedure ExperienceBasedNavigation (xstart, xgoal, DG,X , DL)
2: PG ← PlanGlobalPath (xstart, xgoal, DG,X), X
3: Pactual ← PG

4: while xi ∈ Pactual ̸= xgoal do
5: O,Pinvalid = {xj, ..., xk} ← CheckPath (xi, xgoal, Pactual)

6: if Pinvalid ̸= ∅ then
7: PL ← PlanLocalPath (xj−1, xk+1, O, DL, X)
8: Pactual ← UpdatePath (Pactual, PL)
9: NavigateTo(xi)

10: i← i+ 1

11: DG,X , DL ← CollectExperiences (xstart, xgoal, Pactual, PG, DG,X , DL)

to obtain a descriptor biased towards a specific aspect of a local task, for example,
to favor similar behaviors to avoid similar obstacles.

4.2.3 Experience-based path planning
We introduce a path planning algorithm that exploits the robot’s previous ex-
periences to generate paths for new tasks. Our algorithm takes advantage of
the notions of situation descriptors to identify similar tasks and of attractors to
represent the corresponding experienced paths. As an example to illustrate our
algorithm, consider the use case introduced in Section 4.1.1 and assume that the
operator requires the robot to perform the task illustrated in Figure 4.5: nav-
igate from xstart to xgoal in a known environment where the robot has already
successfully performed several tasks (dotted lines).

The main procedure of our system is illustrated in Algorithm 4. It takes as
input the map of the environment X , the database of global paths experienced
in X , DG,X , the database of local paths DL, the start xstart, and the goal xgoal

pose. First, we compute a path from start to goal in X (line 2). Once a path is
available, the robot starts navigating along it. At each step of the path, we check
the remaining poses for invalid configurations (line 5). If an unforeseen obstacle
blocks the path (line 6), we plan a local deviation that enables the robot to avoid
the obstacle (line 7). Therefore, we update the path with the local deviation
(line 8) and the robot can safely navigate towards the next path pose (line 9). We
repeat this procedure until the robot reaches the goal. Once the robot completes
the task, we ask the user to provide feedback about the robot’s behaviors and
store the behaviors evaluated positively into the database of experiences (line 11).
In the following, we describe in detail how the local and global planning work
and how we collect the user feedback.

58

4. User-preferred navigation exploiting experiences

(a) New task and previously experienced paths in the environment (dotted lines). The
green path is the one that best fits the current task.

(b) Global planning guided by the attractors of a similar experience.

(c) Local planning guided by the attractors of a similar experience.

Figure 4.5: Our planning approach exploits similar experienced paths at global and local level
to perform a new navigation task.

59

4.2. Experience-based navigation following user preferences

Algorithm 5 Experience-based global path planning
1: function PlanGlobalPath (xstart, xgoal, DG,X , X)
2: dG ← ComputeGlobalDescriptor (xstart, xgoal)

3: dGexp ← GetSimilarExperience (dG, DG,X)
4: if IsEmpty (dGexp) then
5: PG ← Bi-RRT (xstart, xgoal, uniform_sampling, X)
6: else
7: AG ← RetrieveAttractors (dGexp, DG,X)
8: PG ← Bi-RRT (xstart, xgoal, guided_sampling, AG, X)
9: return PG

4.2.3.1 Global path planning

The PlanGlobalPath function illustrated in Algorithm 5 implements the nav-
igation at global level of our system. Given the task to navigate from xstart

to xgoal and the static map of the environment X , the global planner computes a
path from xstart to xgoal in X . To this end, we first compute the global situation
descriptor dG corresponding to the current task (line 2), as described in Sec-
tion 4.2.2.2. We compare the descriptor dG with the ones stored in DG,X to
search for a previous experience performed in a similar situation (line 3). If no
similar experience is available, we plan a new path from scratch using standard
bi-directional RRT (Bi-RRT) [84] (line 5). Bi-RRT is a sampling-based planning
algorithm that searches for a valid path by sampling poses with a uniform prob-
ability distribution over the configuration space. See Section 2.3.2 for further
details.

Otherwise, if the robot experienced successfully a similar task as in the situa-
tion illustrated in Figure 4.5(a) (green dotted line), we retrieve its attractors AG

(line 7) and use them to compute a new path (line 8). To achieve this, we bias the
search of Bi-RRT to follow the previous experience by using the attractors AG

to guide the sampling process. We search for a path by iteratively sampling one
of the attractors ai ∈ AG in an ordered fashion. For the tree rooted in the start
pose, we select the attractors from the start location to the goal location. For
the tree rooted in the goal, in the opposite order. As a search tree reaches an
attractor ai, we expand the tree towards the next one ai+1.

If the environment changed with respect to when the robot performed the
selected previous experience, one or more attractors might not be reachable. In
this case, we sample a new pose according to a dynamically-updated isotropic
Gaussian distribution centered in the unreachable attractor and with covariance
growing proportionally to the number of non-valid states sampled around it. We
repeat this procedure until we sample a valid state or we reach a maximum

60

4. User-preferred navigation exploiting experiences

Algorithm 6 Experience-based local path planning
1: function PlanLocalPath (xstart, xgoal, O, DL, X)
2: dL ← ComputeLocalDescriptor (xstart, xgoal, O)
3: dLexp ← GetSimilarExperience (dL, DL)
4: if IsEmpty (dLexp) then
5: PL ← Bi-RRT (xstart, xgoal, uniform_sampling, X)
6: else
7: AL ← RetrieveAttractors (dLexp, DL)
8: aLX ← ToMapFrame (AL, O, X)
9: PL ← Bi-RRT (xstart, xgoal, guided_sampling, aLX , X)

10: return PL

number of iterations. In the latter case, the search continues by sampling poses
uniformly in the configuration space in the same way as standard Bi-RRT.

If our planner can successfully find a path by following a previous experience,
the new path reproduces its structure and, thus, meets the user’s preferences,
as shown in Figure 4.5(b). Otherwise, if no similar experience is available, our
planner is still able to generate a path to the goal from scratch. Another ad-
vantage of our approach is that, when a previous experience guides the planning
process, the planning time decreases dramatically. We will illustrate this result
in Section 4.4.1.

4.2.3.2 Local path planning

The PlanLocalPath function implements the local re-planning procedure of
our system and it is described in Algorithm 6. We trigger this function if the robot
encounters an unforeseen obstacle while following the global path. It considers the
blocking obstacle O to compute the descriptor of the local situation dL (line 2), as
described in Section 4.2.2.2. We use the descriptor to query the database of local
paths dL for a similar experience (line 3). The planning scheme at the local level
reproduces the one at the global level. If no similar previous experience is available
to be exploited, we search a new local path using standard Bi-RRT (line 5).
Otherwise, we retrieve the attractors AL corresponding to the previous similar
experience (line 7) and transform them into the current situation (line 8) to guide
the sampling process of the planning algorithm (line 9). If an experience guides
successfully the planning process, the resulting path reproduces the previous local
behavior in the new situation, thus meeting the user’s preferences.

In the example shown in Figure 4.5(c), an obstacle blocks the path and the
robot needs to plan a deviation. Along its path, the robot has already successfully
avoided an obstacle in a locally similar situation. Therefore, we transform the

61

4.2. Experience-based navigation following user preferences

Algorithm 7 Collecting examples from user feedback
1: function CollectExperiences (xstart, xgoal, Pactual, PG, DG,X , DL, X)
2: feedbackG ← GetFeedback (PG)
3: if IsGoodBehavior (feedbackG) then
4: dG ← ComputeGlobalDescriptor (xstart, xgoal)

5: AG ← ComputeAttractors (PG)
6: StoreExperience (dG, AG, DG,X)
7: deviations← GetDeviations (Pactual, PG)
8: for each {O, PL} in deviations do
9: feedbackL ← GetFeedback (O, PL)

10: if IsGoodBehavior (feedbackL) then
11: dL ← ComputeLocalDescriptor (xstart, xgoal, O)
12: AL

X ← ComputeAttractors (PL)
13: AL ← ToLocalFrame (aLX , O)
14: StoreExperience (dL, AL, DL)

attractors of that experience to the new situation and use them to compute the
new plan. As a result, the robot avoids the new obstacle by performing a behavior
similar to the previously experienced one.

4.2.3.3 Collecting examples from user feedback

The CollectExperiences function (Algorithm 7) enables the user to rate
the experienced robot’s behaviors and to collect his favorite experiences. To
achieve this, we ask first the user to provide feedback for the executed global
path (line 3). If the user rates the path positively, we compute the corresponding
descriptor (line 4) and attractors (line 5), and store them into the database of
global experiences DG,X (line 6). Considering the deviations from the global path
generated by local re-planning (line 7), the user can also provide feedback for the
robot’s local behaviors (line 10). If the user evaluates a local behavior as good,
we compute the corresponding local descriptor (line 11) and attractors (line 12)
as for the global path. At local level, we transform the attractors into the local
coordinate frame introduced in Section 4.2.2.1 (line 13) before storing them into
the database of local experiences DL (line 14). The experiences stored in this
process are then made available to guide the planning process for the subsequent
tasks.

Our system does not require any initial data to work. Without examples, our
approach automatically falls back to Bi-RRT performance. We build the database
of experiences by storing good behaviors online, while the robot performs its
tasks. The larger the number of feedbacks provided by the user, the better the

62

4. User-preferred navigation exploiting experiences

Figure 4.6: Exploration by relaxing the attractors of the experience illustrated in Figure 4.5(b).

system fits his preferences. If the environment changes so that some experiences
cannot be exploited anymore, we remove them from the database. In this way,
we only keep track of experiences that are still valid and bound the growth of the
database. Furthermore, if required, we can easily define distinct databases for
different users such that each database contains only the preferences of a specific
user.

4.2.3.4 Exploring new behaviors

Our planning approach biases the search for a new path to be as close as possible
to a similar previous experience. This allows for reproducing behaviors and gen-
erating paths that are predictable and meet the preferences of the user. It comes,
however, at the cost of exploring only a limited portion of the configuration space
if a similar path exists.

In case the user desires to explore new behaviors, we give the possibility to
switch to an exploration mode. Two options are available to explore the space.
The first one is the full exploration mode. It does not consider any previous
experience but plans new paths using standard Bi-RRT that probabilistically
covers the whole configuration space. The second one, which we call attractor
relaxation, relaxes the constraints imposed by the attractors by increasing the
covariance around one, some, or all attractors during the sampling process in
planning. Attractor relaxation does not explore the whole configuration space but
allows the user to find an optimal behavior according to his preferences starting
from an experienced path. An example in which we relaxed all of the attractors of
an experienced path is illustrated in Figure 4.6. The user can evaluate such paths
in simulation and, once a path satisfies his preferences, we replace the experience
in the database with the new path.

63

4.3. Dynamic obstacle avoidance

Figure 4.7: RobotR navigates along the blue dotted path and observes another agentH moving
along the red path.

4.3 Dynamic obstacle avoidance
In the scenario described in Section 4.1.1, the robot operates in environments
where it shares the workspace with other moving entities. Therefore, to navigate
in such environments, it should be able to avoid collisions with dynamic obstacles.
We aim at achieving this by performing safe and predictable behaviors while still
reproducing behaviors that meet user’s preferences.

Consider for example the situation depicted in Figure 4.7 in which the robotR
initially navigates along the blue dotted path. At the same time, another agent H
is moving nearby. To ensure that H will not block the robot’s path, we first need
to check whether a collision between the two agents may occur. We know the
robot’s path and its motion model so we can easily compute its future poses.
However, an entity moving on a factory floor can be a human operator, another
robot, a forklift, etc. Thus, we cannot make any specific assumptions about the
trajectory and motion model of H.

As the future motion of the other agent presents high uncertainty, we employ
a probabilistic approach to predict its trajectory from the observations of the
robot. Given the prediction of the agent’s trajectory, we introduce a strategy
that uses our experience-based planning approach to plan safe local deviations
for avoiding dynamic obstacles while meeting the user’s preferences. To perform
planning efficiently, we do not take time information explicitly into account but
replace the notion of time by introducing spatial constraints.

4.3.1 GPs for trajectory modeling

Wemodel the trajectories of the dynamic agents that share the workspace with the
robot from the robot’s observations by relying on a Gaussian process model [142].
We employ a pair of GPs which takes as input the time t = 1, 2, 3, . . . , T and

64

4. User-preferred navigation exploiting experiences

provides as output the trajectory increments along the x and y directions in the
environment:

∆xt = xt − xt−1, (4.10)
∆yt = yt − yt−1. (4.11)

This representation assumes that the movements along x and y are inde-
pendent. However, as the noise along x and y is correlated, correlation is also
induced in the posterior processes. For both GPs, we consider a mean function
to be zero. This assumption allows for reducing the number of hyperparameters
that characterize our model and it is reasonable assumption as the GPs represent
functions of increments. We employ as a covariance function the sum of a Matérn
kernel [106] with ν = 5/2 and a noise kernel:

k(x, x′) = ςf

(
1 +

√
5 (x− x′)

ℓ
+

5 (x− x′)2

3ℓ2

)
exp

(
−
√
5 (x− x′)

ℓ

)
+ ς2n δ(x− x′),

(4.12)

where the hyperparameters are the length scale ℓ, the expected variance of the
output ςf and the noise term ςn. The Matérn kernel includes a large class of
kernels and it is often used in real-world applications because of its flexibility.
We preferred it over the squared-exponential kernel as the latter assumes high
smoothness of the function, which usually does not hold for noisy observations of
real trajectories.

We train the hyperparameters of the GPs by maximizing the log marginal
likelihood given the robot’s observations during navigation. GPs are in general
more flexible estimators than, for example, an EKF for which an explicit motion
model needs to be defined, see Section 2.2.2 for further details. Therefore, we
can exploit general information about moving entities without the need to train
parameters of an explicit parametric motion model. As a result, the trajectory
model improves over time as the robot performs more experiences and encounters
more obstacles.

4.3.2 Detection of future collisions
We use this GP model of trajectories to predict the future poses of an agent mov-
ing in the surroundings of the robot from its observed positions. In the example
in Figure 4.8(a), we predict the future trajectory of the agent H within a time
horizon T . GP models provide the expected positions and the variance of the
predictions. The red dotted line represents the predicted mean trajectory. We
visualize the predicted 2σ confidence intervals in x, y coordinates as a contin-
uous sequence of ellipsoids, which we call uncertainty areas. In the figure, the

65

4.3. Dynamic obstacle avoidance

(a) Collision detection at time t′ by integrating the robot’s footprints over
the other agent’s predicted uncertainty areas.

(b) Planning a local deviation considering as obstacle the gray region de-
fined by the uncertainty areas for t′ ≤ t ≤ T .

(c) Deviation update to smoothly converge to the original path.

Figure 4.8: Planning local deviations to avoid a collision with a dynamic obstacle in the situation
illustrated in Figure 4.7.

66

4. User-preferred navigation exploiting experiences

red ellipsoids represent the uncertainty areas generated by the prediction of H’s
trajectory.

To determine whether a collision may occur, we integrate the future footprints
of the robot over the uncertainty areas of the trajectory of the other agent corre-
sponding in time. If there is a significant probability that the robot and the agent
are in the same area at the same time, we detect a future collision. This approach
is equivalent to checking whether the future footprints of the robot overlap with
the corresponding uncertainty areas of the agent. For example, in Figure 4.8(a),
we detected a future collision at time t′.

4.3.3 Planning for collision avoidance
If a future collision has been detected, the robot needs to plan a local deviation
from the global path for avoiding the moving agent and reaching the goal safely.
Many path planning algorithms compute local deviations by explicitly taking into
account time information, for example, the Timed Elastic Band [69]. However,
considering a time dimension in the state space causes the planning process to
become more complex and the planning time to increase. The growth in the
planning time may result in slow reactions of the robot in the presence of an
unforeseen obstacle and, in the worst case, in a collision.

We introduce a strategy for planning local deviations that does not require
to explicitly incorporate the time dimension in the planning process. We use the
uncertainty areas of the agent’s trajectory to replace the notion of time with spa-
tial constraints. We define an artificial obstacle that is centered in the center of
the uncertainty area corresponding to the time of the detected future collision t′
and that extends over the area delimited by the union of the uncertainty areas
for t, t′ ≤ t ≤ T , as illustrated in Figure 4.8(b). We exploit such an obstacle for
planning a local deviation as described in Section 4.2.3.2. Therefore, if a similar
experience is available, we transform its attractors into the current situation and
use them to guide the planning process. The resulting local deviation avoids the
uncertainty areas corresponding to time t′ ≤ t ≤ T , see the blue dotted line
in Figure 4.8(b) as an illustration. This may seem like a conservative strategy,
however, it ensures safety in the time horizon T . Note that, following our def-
inition, the artificial obstacle expands in the direction in which the other agent
is moving. Thus, the re-planning favors local deviations passing on the opposite
side.

Every time the robot makes a new observation of the agent’s trajectory, we
update the prediction and, accordingly, the artificial obstacle. If the obstacle
changes, we compute a new local deviation by guiding the planning process with,
if possible, the same experience. Using the same experience ensures that the robot
does not continuously attempt to execute different conflicting behaviors. As time

67

4.4. Experimental evaluation

goes by, the uncertainty of the agent’s trajectory prediction at t′ decreases and the
corresponding uncertainty area becomes smaller, see for example Figure 4.8(c).
Accordingly, also the deviation from the global path decreases. Following this
obstacle avoidance strategy, the robot smoothly converges as soon as possible to
follow the original global path.

It is straightforward to apply the same strategy to avoid static obstacles. If
an obstacle is not moving, the predicted mean is always equal to the current pose
and the variance is zero. Therefore, we can exploit indistinctly local experiences
to avoid static and dynamic obstacles.

Using our experience-based planning algorithm for computing local deviations
that reproduce preferred behaviors for obstacle avoidance has also the advantage
of making the robot’s behavior foreseeable. Predictability increases safety as
the agents sharing the workspace with the robot can easily predict the robot’s
behavior in certain situations and behave accordingly.

4.4 Experimental evaluation
In this experimental evaluation, we illustrate and discuss the capabilities and
performance of our navigation system to: (i) generate navigation behaviors that
meet the user’s preferences by exploiting the robot’s previous experiences; (ii) re-
produce and generalize behaviors over different environments and situations; (iii)
perform predictable behaviors providing similar solutions for similar situations;
(iv) avoid dynamic obstacles while still accomplishing foreseeable behaviors.

We evaluate our experience-based planning algorithm in Section 4.4.1. Sec-
tion 4.4.2 focuses on our trajectory prediction model. We test our navigation
system in simulation in Section 4.4.3 and we present some tasks performed run-
ning our system on a real KUKA Youbot mobile robot in Section 4.4.4.

4.4.1 Experience-based planning
In the first set of experiments, we aim at evaluating the capabilities of our
experience-based planning approach. Throughout this section, we consider the
scenario of the use case introduced in Section 4.1.1 and use the implementation
of Bi-RRT available in Open Motion Planning Library [159] as a baseline.

4.4.1.1 Following user’s preferences

To show the ability of our planner to reproduce previous experiences for meeting
the user’s preferences, we assume that a user requires the robot to perform the
10 navigation tasks represented in Figure 4.9. These tasks are similar in a global
sense, i.e., they have nearby start and goal poses. Figure 4.9(a) shows the paths

68

4. User-preferred navigation exploiting experiences

(a) Paths generated by using Bi-RRT.

(b) Paths generated by using our approach given the green path as example.

(c) Area covered by a circular robot to navigate along the paths generated by Bi-RRT
(red) and by our approach (blue).

Figure 4.9: Planning global paths for a set of similar navigation tasks.

69

4.4. Experimental evaluation

(a) Paths generated by using Bi-RRT.

(b) Paths generated by using our approach given the green path as example.

D

E

(c) Paths generated by using our approach given the green path in Figure 4.10(b) as
example.

Figure 4.10: Planning local deviations to avoid unforeseen obstacles.

70

4. User-preferred navigation exploiting experiences

generated by Bi-RRT for these tasks. Due to the random nature of Bi-RRT,
they reveal substantial differences from each other: some pass by the top central
room, whereas others pass by the bottom central room. Thus, the user can make
only limited predictions about the resulting paths for similar tasks. Furthermore,
using such a planning algorithm the user cannot express any preference about
where and how the robot should navigate.

Assume that the user prefers that the robot navigates passing by the cen-
tral top room to perform these tasks. Our system enables the user to express
this preference by evaluating positively or demonstrating the green path in Fig-
ure 4.9(b). Using this path as an example, our planner generates for the same
tasks of Figure 4.9(a) the blue paths in the figure. These paths reproduce the
behavior of the example and, thus, meet the user’s preferences. Furthermore,
using the same example, our planner generates similar solutions for similar tasks
and, thus, makes the robot’s behaviors predictable.

Our planner generates paths with such properties also for planning local de-
viations. Assume that the robot is following the orange path in Figure 4.10(a).
Along the path, the robot encounters two unforeseen static obstacles A and C
that block the path at two different locations. The robot needs to re-plan to avoid
the obstacles and to reach its final goal. In Figure 4.10(a), we planned a local
deviation 10 times for each obstacle using Bi-RRT. The resulting paths cause
the robot to behave differently for distinct runs of the same task. Our planner
prevents this result and it furtherly enables the user to express preferences about
the robot’s behaviors.

Assume that the user rates the green path in Figure 4.10(b) as a good example
to avoid obstacle A. Our planning algorithm generates the blue paths exploiting
this example path. These paths allow the robot to successfully avoid obstacle A
reproducing the example and meeting the user’s preferences. As the local situ-
ation at obstacle C is similar to the one at obstacle A, our planner transforms
the experience at obstacle A into the new situation and generates deviations to
avoid obstacle C that reproduce the previous behavior. Therefore, our system
can reproduce behaviors and user’s preferences across similar local situations.

This property holds also across different environments. Consider the scenario
illustrated in Figure 4.10(c) where the orange path is blocked by two obstacles.
The situation at obstacle D is similar to the one for which the user provided
an example. Thus, our system generates paths that avoid the new obstacle by
reproducing the experience in the new situation. Whereas, the local situation at
obstacle E is different from the ones experienced so far and, thus, the example
cannot be exploited. In this case, our planner generates new paths from scratch
in the same way as standard Bi-RRT.

71

4.4. Experimental evaluation

4.4.1.2 Performance analysis

To illustrate the performance of our planning approach, we considered 20 sets
of 10 similar global navigation tasks and 20 sets of 10 similar local tasks. First,
we plan for these tasks by using Bi-RRT and then by using our planner with 10,
20, 50, 100, and 200 examples randomly selected among the ones generated by
Bi-RRT. We run this procedure 10 times for a total of 20,000 planning instances.
We consider three measures to evaluate the performance of the planners: the time
required for planning, the number of sampled states during the planning process,
and the area of the environment covered by a circular robot to perform a set of
similar tasks. The latter gives a measure of the similarity of the paths followed by
the robot to perform similar tasks. The smaller the total area covered, the more
similar are the paths. Figure 4.9(c) illustrates an example of the area covered by
a robot when using Bi-RRT (red) and our planning approach (blue).

We illustrate the performance of each planning algorithm at global and local
levels in Figure 4.11. The first chart shows the average time required for planning.
When only a few examples are available, our system already outperforms Bi-
RRT. The planning time decreases with increasing the number of examples up to
approximately the 50% in the local case and the 60% in the global case. When
the number of examples becomes large, the planning time tends to marginally
increase due to the time needed to query the database of experiences.

The second chart of Figure 4.11 shows the average number of states sampled
during planning. If a similar experience is available, our planner tends to sample
the corresponding attractors instead of attempting to explore the whole configu-
ration space as Bi-RRT. Thus, the larger the number of examples, the smaller is
the number of sampled states during planning.

In the third chart, we compare the average percentage of the area of the envi-
ronment covered by a circular robot to perform a set of similar tasks. Even with a
few examples, the area covered by our system is approximately 25% smaller than
by using Bi-RRT at the global level and 35% at the local level. The results at the
local level are explained by the ability of our approach to generalize experiences
across different obstacles and situations. When the number of examples available
for each task increases, the covered area grows accordingly as the database of
experiences contains one distinct example for each navigation task.

4.4.2 Trajectory prediction

The second set of experiments aims at evaluating our approach to predict the
trajectory of moving objects. Our objective is to demonstrate that, within a short
time horizon, our approach provides good predictions and that the uncertainty
areas capture well the uncertainty of the motion. To this end, we recorded the

72

4. User-preferred navigation exploiting experiences

Bi-RRT 10 20 50 100 200

Number of examples

0

10

20

30

P
la

nn
in

g
ti

m
e

[m
s]

Global

Local

Bi-RRT 10 20 50 100 200

Number of examples

0

10

20

30

40

S
am

pl
ed

st
at

es
[#

]

Global

Local

Bi-RRT 10 20 50 100 200

Number of examples

0

5

10

15

20

A
re

a
co

ve
re

d
[%

]

Global

Local

Figure 4.11: Performance comparison for planning using Bi-RRT and our approach with 10,
20, 50, 100 and 200 examples in the database of experiences.

73

4.4. Experimental evaluation

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

A
vg

.
R

M
S

er
ro

r
[m

]

Constant-velocity

Our approach

(a) Average RMS error of the prediction.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Time [s]

0.00

0.25

0.50

0.75

1.00

T
ra

je
ct

or
y

in
un

ce
rt

ai
nt

y
ar

ea
[%

]

(b) Percentage of the actual trajectory lying in the uncertainty areas.

Figure 4.12: Performance of our GP-based trajectory prediction model to predict the future
trajectory of different people walking in a real-world scenario compared to a linear constant-
velocity model.

trajectories of six people walking in our lab for approximately 120 s each by mean
of a motion capture system. We considered 30 s of the trajectory of each person to
train the hyperparameters of our model. We used the resulting model to predict
the future trajectory of the remaining data within the next 5 s every 0.25 s for a
total of approximately 2500 predictions.

The performance of our trajectory prediction approach is illustrated in Fig-
ure 4.12. We compare our approach with the trajectory predicted by a linear
constant-velocity model. The first graph shows the root mean square error of
the mean trajectory predicted by our approach with respect to the time of the
prediction. Our approach always outperforms the linear model and presents half
of the error for predictions up to 3 s. The second graph illustrates in percentage
the number of times that the actual trajectory passes on to the corresponding un-
certainty area. The percentage is above 90% for predictions up to 3 s. Afterward,
it decreases linearly and, at 5 s in the future, the real trajectory is in the corre-

74

4. User-preferred navigation exploiting experiences

0

10

20

P
at

h
le

ng
th

[m
]

0.0

0.5

C
le

ar
an

ce
[m

]

0.0

0.5

1.0

A
re

a
co

ve
re

d
[%

]

Bi-RRT

Navfn

Our approach

Figure 4.13: Performance of the different robot navigation systems in static simulated environ-
ments.

sponding uncertainty area around 30% of the cases. This outcome is partially
due to the zero mean assumption made for the Gaussian processes in our model.
It means in practice that, for long predicted time, the increments ∆x and ∆y

will tend to zero. We contrast this effect by continuously updating the trajectory
prediction and re-planning local deviations while avoiding an obstacle. Still, our
approach provides good results for short-time predictions and 3 s is typically a
reasonable time to react and avoid a collision with an obstacle moving in an in-
door environment. In the next section, we will show that our approach to predict
trajectories works well to safely avoiding dynamic obstacles also in practice.

4.4.3 Navigation in simulation
In this experiment, we aim at illustrating and discussing the performance of our
navigation system by comparing it to other common approaches. We want to
show especially the capability of our system to generate similar robot behaviors
for similar tasks. We implemented our system by using C++ and ROS and tested
it using the V-REP robot simulator. We considered a simulated KUKA Youbot
mobile robot, equivalent to the one used for real-world experiments in the next
section, and required it to perform multiple navigation tasks in different simulated
indoor environments.

4.4.3.1 Static environments

First, we evaluate the performance of our robot navigation system at the global
level. To this end, we require the robot to perform 10 sets of 10 similar navigation
tasks in different static environments. To evaluate our approach, we include in
the database of global paths one example per set randomly generated using Bi-
RRT, so that our system has some experiences available to exploit while planning.

75

4.4. Experimental evaluation

We compare the performance of our system with using standard Bi-RRT and the
Navfn planner by ROS as planning algorithms. The Navfn implements a shortest
path planner based on Dijkstra’s algorithm and it is currently the most commonly
used approach in ROS to plan paths for robot navigation. We implement Bi-RRT
by using our system without providing any example. We analyze three measures
to evaluate their performance: length of the executed path, average clearance
from the obstacles during navigation, and area covered by the robot to perform
a set of similar tasks.

The results of our experiments are illustrated in Figure 4.13. As expected,
the Navfn generates in average the shortest paths, whereas Bi-RRT presents large
clearance. Using our approach, the performance depends strongly on the example
exploited by the planning algorithm. A first indicator that our approach provides
similar solutions for similar tasks is that it presents the lowest standard deviation
both for path length and clearance. To further support this, our system covers
almost half of the area covered by using Bi-RRT. The Navfn also covers a small
area as it attempts to minimize the path length and, by doing this, the paths for
similar tasks tend to pass by the same locations. However, it does not allow for
easily expressing any preference about which these locations should be.

4.4.3.2 Dynamic environments

We introduce moving obstacles in the simulated environments to evaluate our
navigation system at the local level. We defined six situations that differ for:
navigation task, obstacle’s velocity, trajectory, and type of collision that could
occur (frontal, lateral, etc.). We compared our system to a reactive approach as
Dynamic Window Approach (DWA) [45], an approach that considers explicitly
time as Timed Elastic Bands (TEB) [69], and our system with no examples that
is equivalent to Bi-RRT. We used the available ROS implementation of DWA
and TEB. For simplicity, we provided only two local examples to our system:
one avoiding the obstacle on the left side and one on the right side. We fixed the
global path and performed each task 20 times for every navigation algorithm. We
considered five measures to evaluate their performance: length of the executed
path, deviation from the global path, execution time, clearance from the obstacles,
and area covered to perform one task multiple times.

The performance of the different algorithms for this experiment is illustrated
in Figure 4.14. Our system leads the robot to navigate along the path with the
shortest travel distance on average. The reason for this result is that our approach
continuously updates the local path while avoiding an obstacle and, thus, the
robot goes back as soon as possible to the global path. This is also revealed
by the chart representing the deviation from the global path: our approach is
the one that leads to the smallest deviation. Bi-RRT also provides good results

76

4. User-preferred navigation exploiting experiences

0

5

10

P
at

h
le

ng
th

[m
]

0.0

0.1

0.2

0.3

D
ev

ia
ti

on
[m

]

0

20

40

E
xe

cu
ti

on
ti

m
e

[s
]

0.00

0.25

0.50

0.75

C
le

ar
an

ce
[m

]

0

1

2

3

A
re

a
co

ve
re

d
[%

]

DWA

TEB

Bi-RRT

Our approach

Figure 4.14: Performance of the different robot navigation systems in simulated environments
populated by dynamic objects.

Re-planning
frequency

[Hz]

Obstacle velocity [m/s]

0.4 0.8 1.0

coll. fail. coll. fail. coll. fail.

DWA 20.0 0.0 0.0 0.38 0.05 0.25 0.0
TEB 5.0 0.0 0.0 0.01 0.0 0.15 0.03
Bi-RRT 20.0 0.0 0.0 0.0 0.0 0.01 0.0
Our approach 20.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4.1: Statistics of the dynamic obstacle avoidance experiments.

77

4.4. Experimental evaluation

on average as it is implemented within our navigation system, but it presents
a large standard deviation due to its random nature. The performance for the
execution time reproduces the ones for the path length except for DWA which
typically requires a longer time to reach the final orientation. The last chart
shows that our system allows the robot to cover the smallest area to perform
the navigation tasks 20 times. This result demonstrates the capability of our
approach to generating similar behaviors for similar situations also at the local
level.

Table 4.1 reports for each algorithm the re-planning frequency, the collision,
and failure rates to avoid obstacles with different velocities that we experienced
in our experiments. A collision (labeled as “coll.”) occurs if the robot collides
with an obstacle but it is then able to reach the goal. A failure (labeled as “fail.”)
takes place if the robot is not able to reach the goal within a certain amount
of time. As TEB computes optimal trajectories taking explicitly into account
the time dimension, it re-plans at a lower frequency than the other approaches.
This is reflected in collision and failure rates: when the obstacle is fast, TEB
does not always react fast enough to avoid it. Even if it can re-plan at 20 Hz,
DWA may also lead the robot to collisions and failures when the obstacle velocity
increases. Our system is, in general, safer. If no example is available (labeled
as “Bi-RRT”), it caused collisions only in one case. This episode is due to the
random nature of Bi-RRT that for obstacle avoidance may generate completely
different local behaviors for successive planning instances. In this case, the robot
oscillates and wastes time to react to the obstacle thus causing, in the worst
case, a collision. Instead, when the planning process of our system is guided by
a previous local example(labeled as “Our approach”), the robot experienced no
collisions or failures.

4.4.4 Real robot navigation
The next set of experiments is designed to show that our approach works effec-
tively on real robot navigation in the physical world. The robotic platform used
in these experiments is the KUKA Youbot illustrated in Figure 4.15, which is
an omnidirectional mobile robot that we equipped with two Hokuyo laser range
finders placed at two opposite corners so to have 360° measurements. Using these
sensors, the robot localizes itself in a previously built map of the environment by
means of a Monte Carlo localization algorithm.

4.4.4.1 User-preferred behaviors

We aim at showing that our system allows the user to easily lead the robot to
perform behaviors that may be hard to encode in typical navigation systems. To

78

4. User-preferred navigation exploiting experiences

Figure 4.15: Our KUKA Youbot mobile robot equipped with two laser range finders.

this end, we defined three simple navigation tasks that a user may require the
robot to perform by following his preferences.

The first task is illustrated in Figure 4.16(a) and consists of navigating from
one side to the other of a hallway. We assume that the user wants the robot to
accomplish this task by keeping on the right side of the hallway. If no example is
available, the robot navigates straight to the goal (red paths). So, we joysticked
the robot along the green path, which passes on the right side of the hallway, and
stored it as an example into the database of experiences. By exploiting such an
example, our system can lead the robot to navigate from one side to the other of
the hallway by keeping on the right (blue paths).

The second task is illustrated in Figure 4.16(b). In this case, we imagine that
the user wants the robot to navigate through the hallway without obstructing
the open passage. Without any example, the robot follows a straight line to the
goal (red path) with the risk to block the passage. As we demonstrate the green
example path, which circumvents the passage, the robot navigates along the blue
path to reach the other side of the hallway, thus meeting the user’s preferences.

In the third task, illustrated in Figure 4.16(c), we required the robot to nav-
igate from one side to the other of a table by avoiding to pass under it. If no
example is provided, the robot navigates along the red path which passes under
the table, as only the legs of the table are marked as obstacles in the map. When
the green path becomes available as an example, the robot executes the blue path
which passes on the left of the table to reach the opposite side (blue path).

Although the tasks and requirements that we considered in this experiment
are very simple, designing a cost function or a rule-based logic that implements
these behaviors and integrating it in a standard planner such as A∗ may be very
complex. In contrast to that, our approach allows for easily incorporating such
preferences in the robot’s behaviors.

79

4.4. Experimental evaluation

(a) Navigation in a hallway keeping on the right.

(b) Navigation in a hallway without obstructing the passage.

(c) Navigation avoiding to pass under the table.

Figure 4.16: Examples of user-preferred behaviors for navigation in real world.

80

4. User-preferred navigation exploiting experiences

(a) Robot navigates along the planned path.

(b) Human walking nearby the robot.

(c) Future collision detection and planning local deviation to
avoid the obstacle.

(d) Deviation update (I).

81

4.4. Experimental evaluation

(e) Deviation update (II).

(f) Deviation update (III).

(g) Deviation update and convergence to the original path.

(h) Robot resumes navigation along the original path.

Figure 4.17: Robot navigates along a given path avoiding a human blocking its way.

82

4. User-preferred navigation exploiting experiences

Figure 4.18: Trajectories of robot (blue) and human (red) for similar situations in which the
robot avoids collisions with the human with our navigation system.

4.4.4.2 Avoiding collision with people

We furthermore tested the capabilities of our system to avoid walking people who
may block the robot’s path. We designed different setups in our lab in which the
robot and a human could move through, and used a motion capture system to
observe their trajectories.

Figure 4.17 illustrates an example in which our experience-based navigation
system allows the robot to avoid a human crossing its way. Initially, the robot
navigates along the blue dotted path, see Figure 4.17(a). The yellow line shows
the actual trajectory followed by the robot. In Figure 4.17(b), a human walks
into the scene. The observations of his trajectory are depicted in red, while the
orange dotted line represents the predicted mean of his future trajectory. Our
system detects a future collision in Figure 4.17(c) and generates the gray artificial
obstacle from the uncertainty areas of the predictions. The robot plans the green
local deviation, which avoids the obstacle by exploiting a previous experience.
As the robot collects more and more observations of the human’s trajectory,
our system updates the local deviation according to the trajectory prediction,
see Figure 4.17(d-f). When the human does not block the original path anymore,
our system leads the robot back to following the original global path, as shown
in Figure 4.17(g). In Figure 4.17(h), the robot gets back to the global path and
continues its navigation along it.

We repeated the same situation 10 times. The trajectories of the robot and
the human recorded by the motion capture system are illustrated in Figure 4.18.
The figure reveals once again the capability of our system to lead the robot to
perform similar behaviors in similar situations.

83

4.5. Related work

4.5 Related work

The navigation system presented in this chapter implements a framework that
allows for easily incorporating the preferences of non-expert users into the navi-
gation behaviors of a mobile robot.

In the literature, there exist several different approaches that define prefer-
ences and behaviors for robot navigation. Some approaches achieve this by defin-
ing cost functions over the environment. For example, Haigh and Veloso [55]
propose to learn a situation-dependent cost function and to use these costs for
planning. Other approaches define preferences as a set of rules or constraints.
Kirby et al. [70] formulate human social conventions, such as personal space and
tending to one side of hallways, as constraints for robot navigation and plan
robot’s behaviors by solving constraint optimization problems. Whereas, Car-
lucci et al. [23, 114] introduce a framework for explicitly representing norms to
plan and execute socially acceptable behaviors. These approaches typically re-
quire an expert to define and maintain complex costs, constraints, and norms. In
contrast to that, our approach allows for easily incorporating the preferences of a
non-expert user by collecting his feedback about the robot’s experiences and by
reproducing the preferred behaviors in similar navigation tasks.

A general framework for automatic reasoning based on previous experiences
is the case-based reasoning. In case-based reasoning, experiences are stored as
cases and used to suggest solutions to new problems. In the context of robotics,
Likhachev et al. [97] uses this approach to select a set of parameters that actively
determine the behavior of the robot; Meriçli et al. [110] adopt it for mobile push-
manipulation tasks; whereas, Ros et al. [143] use it for action selection in the
robot soccer domain.

Teach-and-repeat approaches allow for reproducing previously taught experi-
ences. Sprunk et al. [154] reproduce trajectories with high accuracy by matching
laser scans. Furgale et al. [51] propose a vision-based approach based on topolog-
ically connected sub-maps. Furgale et al. [50] extend standard teach-and-repeat
by adding a local motion planner to account for dynamic environments. Perea
Ström et al. [132] use a similar approach for guiding a robot home in case the
mapping system fails during an exploration mission. Mazuran et al. [108] opti-
mize the demonstrated trajectories within constraints defined according to the
user’s preferences. In contrast to teach-and-repeat, we incorporate the previous
experiences in a new flexible motion planning process. In this way, our approach
can reproduce experienced paths even when changes occur in the environment
and generalize local behaviors over different situations and environments.

Sampling-based planning algorithms are a class of commonly used planners
for robot navigation which includes Rapidly-exploring random tree (RRT) [91]

84

4. User-preferred navigation exploiting experiences

and its variants such as RRT-Connect [84] and RRT∗ [67]. These approaches are
fast to discover the connectivity of the configuration space but it is difficult to
predict the outcoming paths due to their random nature. A short description of
sampling-based planning is provided in Section 2.3.2. Many planning approaches
proposed to refine the RRT search by biasing the sampling process. For example,
Bruce and Veloso [21] extend traditional RRT to reuse cached plans and bias
the sampling process towards their way-points. Zucker et al. [179] adapt the
sampling process by taking into account the features of the configuration space.
Jiang and Kallmann [64] introduce the Attractor Guided Planner, a planning
algorithm that stores every successful path and biases the sampling for a new
plan to reproduce the structure of an experienced path according to a similarity
function. Our planning approach is based on a bi-directional variant of RRT that
reuses and generalizes the idea of experience-guided sampling to plan paths for
robot navigation.

There exist several motion planning approaches that take advantage of previ-
ous experiences to speed up the planning time for finding paths in high-dimensional
configuration spaces. Fraichard and Delsart [34] deform previous trajectories in
the configuration-time space to fit new situations. Phillips et al. [135] build a
graph of experiences and exploit it for performing repetitive tasks. The Light-
ning framework [12] repairs previously generated trajectories to fit new planning
problems. Coleman et al. [29] extend this idea by storing generated paths in a
sparse road-map. We store the previous successful robot’s behaviors and exploit
them in the subsequent planning processes to generate trajectories that reproduce
the user’s preferences.

Our approach stores the user-preferred robot’s behaviors in a database of
experiences by considering a path representation that allows for effectively repro-
ducing behaviors and a situation descriptor to identify the previous paths that fit
new situations. Jetchev and Toussaint [62] learn a mapping between situations
and trajectories and use a descriptor of the situation to transfer and optimize a
previous trajectory in a new situation. They also extend this work by using a
voxel-grid representation of the environment to generalize trajectories to a wider
range of situations [63].

Our navigation system allows the robot to navigate in dynamic environments
and to reproduce user-preferred behaviors for avoiding collisions with moving
obstacles. There exist several different approaches to dynamic obstacle avoidance.
Many of them rely on reactive strategies such as Dynamic Window Approach [45].
It repeatedly selects a velocity yielding to a safe trajectory within a short time
interval. Elastic Bands [140] combines a reactive strategy with global planning to
avoid obstacles. Rösmann et al. [144] and successively Keller et al. [69] extend this
approach to consider explicitly time information for optimal trajectory planning.

85

4.6. Conclusion

These approaches enable robots to avoid dynamic obstacles but do not allow
for expressing preferences about their behaviors. Furthermore, our experimental
evaluation reveals that our approach is safer than the other tested methods to
avoid collisions with dynamic obstacles.

Another approach to performing compliant robot navigation in populated
environments is to explicitly model human motion. Kruse et al. [80] conduct a
survey about human-aware navigation. Ziebart et al. [177] learn a cost function
of features to predict people’s trajectories and plan paths that avoid hindrances.
Bennewitz et al. [10] learn collections of trajectories that characterize typical
human motion patterns. Kuderer et al. [83] as well as Kretzschmar et al. [79]
model cooperative navigation behaviors of humans to let the robot interact with
people in a socially compliant way. Pfeiffer et al. [134] propose a navigation
model trained on human-human interaction. In the scenario that we consider in
this chapter, the robot shares the workspace with different moving objects such
as human workers, other robots, or forklifts. Thus, we model the trajectory of the
other agents by using a probabilistic approach based on Gaussian processes [142]
that does not require to make any specific assumption about the motion model
and the trajectories of the obstacles.

GPs have been already successfully employed to model the trajectories of mov-
ing objects. Trautman et al. [163] introduce Interacting Gaussian processes for
navigating through dense human crowds. Such representation describes a proba-
bilistic interaction between multiple navigating entities to accomplish cooperative
collision avoidance. Fulgenzi et al. [49] use GPs to model typical obstacle trajec-
tories and planned with a variant of RRT that explicitly considers the probability
of collision. Whereas, Ellis et al. [38] show that GPs allow for explicitly capturing
the uncertainty of the human motion.

4.6 Conclusion
The goal of the work presented in this chapter is to build a non-rigid robot nav-
igation system that incorporates the user’s preferences, and that can be easily
adopted by non-expert users. Following the user’s preferences is especially im-
portant in environments such as factory floors where the operator often requires
a robot to be predictable and to follow specific patterns for navigation. We
presented a system that allows the robot to perform navigation behaviors that
meet the user’s preferences by exploiting its previous experiences. Preferences
are implicitly extracted through simple demonstration and feedback about the
robot’s behaviors compared to writing complex code. We store the preferred be-
haviors experienced by the robot over time in a database of experiences. Our
experience-based planning algorithm computes paths that reproduce and gener-

86

4. User-preferred navigation exploiting experiences

alize these experiences over situations and environments. This approach leads
the robot to accomplish similar behaviors for similar tasks according to the user’s
preferences. Our navigation system is able to apply the same planning scheme
both for planning global paths and for computing local deviations to avoid ob-
stacles. We also define a dynamic obstacle avoidance strategy that combines our
experience-based planner with a probabilistic model to predict the trajectories
of other moving agents. This approach allows for planning safe and predictable
deviations to avoid unforeseen obstacles.

We implemented and evaluated our robot navigation system over an extensive
set of experiments comparing it with different approaches commonly employed
on mobile robotic systems. We performed tests both in simulation and on an
actual mobile robot operating in the real world. The experiments suggest that our
system is able to reproduce previous behaviors for robot navigation, thus meeting
user’s preferences both at global and local levels. Furthermore, it allows the
user to easily incorporate commonly demanded robot’s behaviors in the planning
process that may be hard to encode in typical navigation systems.

87

Part II

Navigation with active
information gathering

89

Chapter 5

Improving navigation exploring
and modeling different terrains

The solutions presented in the first part of this thesis take advantage of
the available background information about the environment and the
robot’s experiences to optimize navigation. However, most robots op-
erating in real-world environments have only partial knowledge about

the world. One approach to discover relevant information for navigation is to ac-
tively collect informative observations while navigating. The second part of this
thesis focuses on solutions that integrate active information gathering to improve
robot navigation in an environment over time.

Most robot navigation systems, including the ones presented in Part I, rely on
known static representations of the environment such as occupancy grid maps or
topological maps for planning paths and navigating to targeted locations. Such
maps represent the geometry and the connectivity of the environment but do not
capture many other factors that might affect the quality of robot navigation. One
of the factors that affect navigation the most is the surface on which the robot
drives. This factor becomes especially critical for robots operating in outdoor
environments where there exists a variety of terrains characterized by different
degrees of roughness and irregularities.

Over the last decade, mobile robots have found many applications in outdoor
environments, for example for environmental inspection and surveillance [17, 102,
161], precision agriculture [3, 24, 41, 96], urban navigation [56, 89, 95, 166], and
many others. Robots that navigate in the outdoors are exposed to detrimental
factors due to the terrains that may cause many undesirable phenomena such as
strong vibrations or high power consumption. Therefore, the choice of the terrain
on which the robot should move and, thus, of the specific path that it should
follow have a significant impact on the way it navigates. Consider, for example,
the scenario depicted in Figure 5.1. The red path leads the robot from the start

91

40

50

60

70

80

D
is

ta
nc

e
[m

]

0

100

200

300

400

V
ib

ra
ti

on
[m
/s

2
]

1.50

1.55

1.60

E
ne

rg
y

[W
h

]

Figure 5.1: Robot navigation to reach a goal location following three different paths on di-
verse terrains (left), and the travel distance, the amplitude of the vibrations and the energy
consumption that the robot experiences to navigate along these paths (right).

to the goal location along the shortest path. Although this path minimizes the
travel distance, it might not be the best path to follow as it goes on gravel, which
causes the robot to suffer strong vibrations during traversal, as shown on the right
of Figure 5.1. Strong vibrations can be problematic for the robot’s perception
capabilities. They may cause blurred camera images [171] and noisy inertial
measurement unit (IMU) data [40] that may affect localization. Furthermore,
excessive vibrations might damage or affect the durability of the robot hardware.
Another aspect of navigation that is strongly affected by the nature of the terrain
is power consumption. This factor becomes particularly critical when deploying
the robot over long periods of time or distance [126, 7]. Despite the short travel
distance, following the red path, the robot consumes a similar amount of energy as
following longer paths. For example, the green path in Figure 5.1, which follows
on a paved road, offers significantly lower vibrations than following the red one
while requiring a similar energy expenditure. In comparison, the blue path, which
follows on a paved and a dirt road, requires less energy while offering a balanced
experience in terms of traveled distance and vibrations. Therefore, depending
on the task and on the environment, it is important to take these factors into
account to achieve the desired navigation behaviors.

In this chapter, we investigate the problem of actively improving robot naviga-
tion by planning paths that aim at reducing detrimental factors such as vibrations

92

5. Improving navigation exploring and modeling different terrains

or energy consumption during traversal. One approach to achieve this is to as-
sociate a cost to these factors and to plan paths that minimize the cost to reach
the goal. However, in reality, vibrations and energy consumption of navigating
in an environment are unknown a priori. But, these quantities can be observed
by the robot during navigation, e.g., by an IMU or an energy monitor. There
exist several approaches that classify the terrain types from online perception and
arbitrarily assign high costs to uneven grounds, for example, Wurm et al. [174].
However, such approaches might not always reflect adequately the physical quan-
tities that the robot actually experiences while navigating. On the contrary,
we aim at continuously learning and improving a place-dependent model of the
detrimental phenomena from the robot’s observations. We exploit this model for
planning paths that trade off the exploration of unknown promising regions and
the exploitation of known areas where the impact of the detrimental factors on
navigation is low. Following our approach, the robot experiences reduced vibra-
tion intensities and energy expenditure and, thus, improves its navigation over
time.

5.1 Modeling phenomena due to terrains
During navigation, the robot observes many phenomena that affect the naviga-
tion and that depend on the terrain on which it navigates, which is unknown
a priori to the robot. To plan and navigate along paths on which the effect of
detrimental factors is limited, we need to estimate their impact on navigation
over the whole environment. To this end, we can learn a place-dependent model
of a specific physical quantity over the environment from the robot’s observations
during navigation. We use this model to make predictions about the intensity of
the modeled phenomena at unvisited locations and to plan paths along which its
impact on navigation is reduced.

5.1.1 Gaussian process model
An effective method for modeling spatial processes from observations, such as a
place-dependent cost function, is GP regression [142]. This is the same technique
that we used in Chapter 4 for modeling dynamic obstacles and their occupancy
over time.

Given a set of observations z of a physical quantity f observed at the loca-
tions X, GP regression allows for learning a predictive model of f at the unvisited
location x∗ as:

µ∗ = k∗
⊤ KXX

−1 z, (5.1)
σ2
∗ = k(x∗,x∗) − k∗

⊤ KXX k∗, (5.2)

93

5.1. Modeling phenomena due to terrains

0 10 20 30 40 50

Distance [cm]

0

2

4

6

8

10

V
ib

ra
ti

on
[m
/s

2
]

Pavement Gravel

(a) Observed vibration intensities.

0 10 20 30 40 50

Distance [cm]

0

2

4

6

8

10

V
ib

ra
ti

on
[m
/s

2
]

Pavement Gravel

(b) Single GP model.

0 10 20 30 40 50

Distance [cm]

0

2

4

6

8

10

V
ib

ra
ti

on
[m
/s

2
]

Pavement

Gravel

(c) One GP model for each terrain.

Figure 5.2: Observed vibration intensities during robot navigation on two different terrains (a)
and GP models of the vibration intensity in the environment(b)(c). The circles are the ob-
served vibrations, the dotted lines are the mean prediction, the shaded areas correspond to the
2σ confidence bound of the prediction. The blue-red gradient shows the terrain on which the
robot navigates.

94

5. Improving navigation exploring and modeling different terrains

where KXX = K(X, X) + ς2n I, k∗ = k(x∗, X), and k(·, ·) is the covariance func-
tion. The predictive distribution of the quantity at x∗ is N (µ∗, σ

2
∗). For a short

summary on GP regression, see Section 2.2.2.
Using this predictive model, we can model the vibration intensities due to the

terrain experienced by the robot during navigation in an environment. Consider
the example illustrated in Figure 5.2 in which, for simplicity, a robot navigates
in a 1D environment. The robot moves at first on pavement and then on gravel
observing different vibration intensities (white circles). Given the observed inten-
sities and the corresponding locations, GP regression can learn a predictive model
of the vibrations over the environment by using Equation (5.1). The resulting GP
is illustrated in Figure 5.2(b) where the black dotted line is the predicted mean
and the gray area represents the 2σ confidence bound of the predictions. The
GP tries to learn a single characteristic that fits all of the observations. However,
while navigating on pavement and gravel, the robot experiences vibration inten-
sities characterized by quite different modes. This results in a little informative
model that smooths out the peaks and the signal trends, and that, thus, might
not capture the reality well. If, for example, a peak corresponds to a stone or a
hole in the ground, a smooth GP model may cause the robot to navigate through
that location again.

For comparison, consider Figure 5.2(c) where we use an independent GP
model for each terrain on which the robot navigates. Each model represents
only the vibrations on one terrain but they are more accurate and informative
than the single-GP model learned in Figure 5.2(b). This indicates that learn-
ing a GP with a single characteristic would be sufficient for modeling a physical
quantity over an environment characterized by a unique uniform terrain, but it
hardly fits situations in which the robot navigates in outdoor environments that
are likely to be populated by terrains with different properties.

5.2 Actively improving navigation on different
terrains

The main contribution of this work is a novel approach to improve robot naviga-
tion on different terrains over time from the experiences of the robot. We propose
to use a Gaussian process mixture model for learning a probabilistic model of the
intensity of phenomena such as vibrations or energy consumption. We further-
more leverage an aerial image of the environment for modeling predictions on
different terrains, without requiring training data or an explicit terrain classifier.
We exploit this GP model to plan paths that aim at reducing the detrimental
factors that affect navigation while taking into account the model’s uncertainty

95

5.2. Actively improving navigation on different terrains

in order to achieve an exploration-exploitation trade-off.
In sum, our approach is able to (i) learn an accurate place-dependent proba-

bilistic model of a specific phenomenon that affects navigation on different terrains
from the onboard observations of the robot during traversal; (ii) use such a model
to plan paths that reduce over time the impact of this phenomenon; (iii) exploit
an image prior to improve the model accuracy while requiring a smaller number
of observations.

5.2.1 Modeling different terrains

We propose to model the intensity of a particular phenomenon that the robot
experiences during navigation on different terrains using a mixture of Gaussian
processes [164]. Furthermore, we use an aerial image of the environment such as
the satellite images available in Google Earth1 as a prior to quickly learn an ac-
curate model that accounts for both spatial proximity and appearance similarity,
without requiring the robot to visit every location in the environment.

5.2.1.1 GP mixture model

A GP mixture model, first introduced by Tresp [164], is a sum of m Gaus-
sian processes, GP1, . . . , GPm, weighted according to a so-called gating func-
tion ϕ = {ϕ1, . . . , ϕm}. The gating function assigns to each data point the
probability that it is associated with each component of the mixture. Given the
query input x∗, the gating function ϕi(x∗) represents the probability that x∗ be-
longs to the model specified by GPi. Therefore, the predictive distribution at x∗

is given by N (µmix∗, σ
2
mix∗) such that:

µmix∗ =
m∑
i=1

ϕi(x∗)µi∗, (5.3)

σ2
mix∗ =

m∑
i=1

ϕi(x∗)
(
σ2
i ∗ + (µi∗ − µmix∗)

2
)
, (5.4)

where N (µi∗, σ
2
i ∗) indicates the predictive distribution of the GPi component

at x∗. We compute the predictive mean µi∗ and variance σ2
i ∗ for each component

using GP regression. We incorporate the probability that each data point belongs
to the i-th component of the mixture by defining the term KXX in Equation (5.1)
for the i-th component as:

Ki
XX = K(X,X) + Ψi, (5.5)

1http://earth.google.com

96

5. Improving navigation exploring and modeling different terrains

0 10 20 30 40 50

Distance [cm]

0

2

4

6

8

10

V
ib

ra
ti

on
[m
/s

2
]

Pavement Gravel

Figure 5.3: GP mixture model of the vibration intensities on two different terrains. It uses two
GP models and a deterministic gating function defined according to the terrain on which the
robot navigates.

where Ψi is a diagonal matrix such that for all training inputs xj ∈ X:

Ψi
jj =

ς2n
ϕi(xj)

. (5.6)

Using a mixture of GPs allows for computing a more accurate model of the vi-
bration amplitudes on different terrains than using a single-GP model. Consider
the example introduced in Section 5.1.1 where the robot experiences vibrations
presenting different characteristics. Given the observed vibration intensities, we
can learn a GP mixture model by considering the two GP models trained inde-
pendently on the two different terrains, as illustrated in Figure 5.2(c). We define
a deterministic gating function according to the ground on which the robot nav-
igates and compute a mixture of the two GPs using Equation (5.3).

The resulting predictive model is illustrated in Figure 5.3. As the GP mixture
model can learn multiple characteristics, this model is able to capture the trends
of the vibration intensities on the different terrains without smoothing out the
peaks. Such a model allows also for providing better predictions in the regions
where the robot has not collected observations: the predicted mean intensity of
vibrations is lower on pavement than on gravel. Therefore, using a mixture of
GPs improves the accuracy and the expressiveness of the model.

Using a GP mixture model brings advantages also in the computation com-
plexity. Learning a single GP presents a complexity of O(N3), where N is the
number of observations, as it requires to invert the matrix KXX. A GP mixture
model instead presents only cubic computation in the number of data associated
with each component Q, with Q ≤ N .

97

5.2. Actively improving navigation on different terrains

5.2.1.2 Estimating the gating function from observations

In this chapter, we assume that the robot has initially no information about the
terrain on which it navigates. This is in practice the case for several robotic
applications. Therefore, in general, no gating function for the mixture model
is available a priori. One approach to compute the gating function is to train
a classifier that determines the type of terrain on which the robot navigates
as, for example, Murphy et al. [112]. However, this approach would require to
define a priori a set of terrain types and training data for each of the selected
types but also a descriptive input representation of the environment to classify
unvisited locations. Another limitation of such an approach is that defining a
gating function based purely on the terrain type does not allow for modeling
regions with the same terrain type but showing different conditions differently.
For example, in the same environment, the surface of one lawn could be hard
because it is exposed to the sun, while another one being muddy because it is in
the shadow most of the time. A classifier would assign to these regions the same
labels but, in practice, they will have a very different impact on the navigation
of the robot.

Instead of learning an explicit terrain classifier, we propose to compute the
gating function directly from the robot’s observations during navigation. We
achieve this by using the procedure illustrated in Figure 5.4. First, given the
observations zvisited collected by the robot at the visited locations Xvisited while
navigating in the environment X , we group the observations into clusters. We
perform clustering by using the mean-shift clustering algorithm [48]. The advan-
tage of using the mean-shift algorithm is that it neither requires prior knowledge
of the number of clusters nor imposes constraints on their shape. It computes m
cluster centroids by iteratively shifting the mean in the direction that maximizes
the density of each cluster.

Given the cluster centroids {c1, . . . cm}, we define a gating function ϕ over
the robot observations by computing the probability that a data point {x, z},
with x ∈ Xvisited and z ∈ zvisited, belongs to the cluster ci as:

ϕi(x) =
exp (∥z − ci∥)∑m
j=1 exp(∥z − cj∥)

. (5.7)

We use the probability of each observed data point to belong to each of the
clusters to compute the gating function over the whole environment. To achieve
this, we train a classifier to predict the gating ϕ for the non-visited locations.
We use m binary classifiers in which the inputs are the visited locations Xvisited

and the targets for the i-th component are the probabilities ϕi(Xvisited). For
classification, we adopt simple binary discriminative GP classifiers but, in general,
the use of other classifiers is also possible. GP classifiers perform classification

98

5. Improving navigation exploring and modeling different terrains

Figure 5.4: Overview of our procedure to compute the gating function of the GP mixture model
for modeling different terrains.

99

5.2. Actively improving navigation on different terrains

(a) Google Earth satellite image. (b) Aerial image taken from an UAV.

Figure 5.5: Examples of aerial images of the environment that we incorporate as prior to speed
up the learning process of the gating function.

by ‘squashing’ the output of GP regression into a class probability using the
logistic function. Normalizing the output of these classifiers, we compute for
each location a probability distribution over the environment X to belong to
each of the clusters. We use the resulting probabilities as the gating function for
our GP mixture model.

5.2.1.3 Incorporating aerial image in gating function

The procedure described in the previous section computes a gating function over
the whole environment from the robot’s observations by exploiting spatial in-
formation deriving from the location coordinates where the observations were
collected. However, using only spatial information may require the robot to
visit the whole environment for learning an accurate gating function. Even little
additional information can help to speed up the learning process of the gating
function.

One possible prior information is that terrains with similar visual appearances
are likely to affect robot navigation similarly. We propose to incorporate this prior
in the gating function by using an aerial image of the environment, for example, a
satellite image available from Google Earth data or an aerial image captured by a
unmanned aerial vehicle (UAV), as the ones illustrated in Figure 5.5. We assume
to know the correspondence between the locations of the environment and the
pixels in the aerial image. This is possible, for example, by using geo-referenced
images. We incorporate this prior information for learning the gating function by
considering as input to the classifiers introduced in the previous section both the
coordinates of the visited locations Xvisited and a set of features associated to the
corresponding pixels in the aerial image I. In this work, we simply consider the

100

5. Improving navigation exploring and modeling different terrains

RGB color space as a feature vector but, in general, we could consider any feature
or color space that can be computed for each location in the image. Therefore, we
consider as input to the m GP classifiers, which determine the gating function, a
vector of features for each data point defined as:

fX ,I(x) = [x, I(x)] (5.8)
= [x, y, r(x), g(x), b(x)] , (5.9)

where (x, y) are the coordinates of the location x in the environment, and r, g, b
are the color channels of the image. The resulting vector of features consists
of different types of quantities. Therefore, we employ an automatic-relevance-
determination squared-exponential covariance function [121]. Automatic rele-
vance determination kernels allow for considering different kinds of features by
implicitly determining the importance of each dimension and by multiplying to-
gether kernels defined on each individual input in the training process.

Incorporating the aerial image for computing the gating function allows us
to make predictions and, thus, to learn a model based not only on the spatial
proximity but that takes into account also the appearance of each location. This
improves the information value content of the model, especially in regions that
have not been visited yet, thus reducing the need to explore the whole environ-
ment to obtain an accurate model.

5.2.2 Planning to improve navigation

For actively improving robot navigation, we aim at exploiting the model intro-
duced in Section 5.2.1 for planning paths that reduce the impact of a specific
detrimental phenomenon on navigation over time. To this end, we consider a
function that maps the intensity of this phenomenon to costs and plan paths
that aim at minimizing these costs. We define this correspondence using an iden-
tity function but, in general, any other function could be considered, also as a
combination of multiple factors.

When the robot starts to navigate in a new environment, no information
about the factors affecting the navigation is available and, thus, our predictive
model presents large uncertainty everywhere. Therefore, in the initial runs, the
robot should explore the regions with large uncertainty and collect informative
observations for improving the model. The larger the number of observations,
the more accurate will be the model and, thus, the more the robot can navigate
through areas where the impact of detrimental factors is likely to be low. We
achieve this behavior by designing a tailored cost function and by computing
paths that minimize it.

101

5.2. Actively improving navigation on different terrains

min cost

Lower confidence bound

min cost

R
ec

ti
fie

d
co

st

ReLU

Softplus

Figure 5.6: ReLU vs. softplus function to rectify the lower confidence bound of the predictive
distribution.

5.2.2.1 Trading off exploration and exploitation

We formulate path planning as an explicit cost minimization problem and solve
it by using a generic graph search algorithm. To this end, we consider a grid map
representation of the environment X and a corresponding discretization of our
model. In this representation, we compute a path to the goal by selecting at each
iteration of the search the node that minimizes the cost of the path from the start
to the node itself. This can be achieved, for example, by using Dijkstra’s or A∗

algorithms. See Section 2.3.1 for further details about graph search algorithms
for planning.

We exploit the probabilistic nature of our predictive model to design a gcost
function that trades off the exploration of promising non-visited regions and the
exploitation of known low-cost areas. We define the gcost at location x based on
the lower confidence bound of the predictive distribution provided by our model
at x, N (µ, σ2):

gcost(x) = gcost(x′) + ∥x− x′∥ · softplus (µ − λσ) , (5.10)

where x′ is the previous location from which we expand the search, λ > 0 defines
the range of the confidence bound, and the softplus function [37] is a rectifier.

Planning a path according to Equation (5.10) minimizes at the same time
the lower confidence bound of the predictions, (µ − λσ), and the travel distance
with the term ∥x− x′∥. The lower confidence bound provides a natural trade-
off between exploration and exploitation [31]. The term µ is small at locations
with low-mean prediction, thus favoring low-cost paths. Whereas, the term σ

represents the possible improvement of the prediction and favors paths through
locations with large uncertainty that could lead to the goal through a lower-cost
path.

The lower confidence bound may, in general, assume negative values. In
this case, minimizing Equation (5.10) may result in paths that lead the robot

102

5. Improving navigation exploring and modeling different terrains

Algorithm 8 Actively improving navigation on different terrains
1: procedure ActiveNavigationOnDifferentTerrains (X , I)
2: µX , σ

2
X ← InitializeModel()

3: Xvisited, zvisited ← ∅
4: for each {xstart, xgoal} do
5: Xpath ← PlanPath(xstart, xgoal, X , µX , σ

2
X)

6: zpath ← FollowPath(Xpath)

7: Xvisited, zvisited ← Xvisited, zvisited ∪ Xpath, zpath

8: c1:m ← ClusterDataPoints(Xvisited, zvisited)

9: for each ci do
10: ϕi(Xvisited)← ComputeGatingDataPoints(zvisited, ci)

11: ϕi(X)← ComputeGatingFunction(Xvisited, ϕi(Xvisited), X , I)
12: µi,σ

2
i ← TrainGP(Xvisited, zvisited, ϕi(X))

13: µX ,σ
2
X ← ComputeGPMixtureModel(µ1:m, σ

2
1:m, ϕ)

to explore the whole environment rather than to reach the goal as required. A
simple idea to overcome this issue is to use a rectified linear unit (ReLU) as a
rectifier. It ensures that the costs are always positive:

ReLU(x) = max(min_cost, x−min_cost), (5.11)

where min_cost is the minimum allowed cost
However, using ReLU may cause that the well-known low-cost locations have

the same gcost as locations with very large uncertainty. Instead, we prefer that
the robot navigates through regions that are known to be low-cost over the very
uncertain ones. Therefore, we employ as rectifier the softplus function that is a
smooth approximation of ReLU defined as:

softplus(x) = log(1 + exp(x−min_cost)) + min_cost. (5.12)

Using the softplus rectifier determines that the robot prefers low-mean and
low-uncertainty areas over the medium-mean high-uncertainty ones, and, in turn,
prefers these areas over the medium-mean low-uncertainty ones. The softplus and
the ReLU functions are illustrated in Figure 5.6.

5.2.2.2 Actively improving navigation

The main procedure of our approach for actively improving robot navigation by
exploring and modeling the different terrains which characterize the environment
is illustrated in Figure 5.7 and described in Algorithm 8. Our approach requires
as input the grid map X and an aerial image I of the environment. We initialize

103

5.2. Actively improving navigation on different terrains

Figure 5.7: Workflow for actively improving robot navigation by exploring and modeling the
different terrains in the environment. Given a new task, our planner computes a path using
the current model. During navigation, the robot collects observations and updates the gating
function and the model accordingly for the next tasks.

our probabilistic model uniformly with the same mean value and large uncertainty
over the whole environment (line 2).

For each navigation task that the robot is required to perform, we consider
the current model of the environment, denoted as µX , σ

2
X , and plan a path using

the approach described in Section 5.2.2.1 (line 5). The robot navigates by follow-
ing the planned path to the goal (line 6) and collecting the observations zpath at
the visited locations Xpath during traversal. We update the set of observed data
points, {Xvisited, zvisited}, with the observations collected during the last naviga-
tion task (line 7). Given all robot’s observations collected so far, zvisited, we run
the procedure described in Section 5.2.1.2. Thus, we cluster the data points using
the mean-shift algorithm (line 8). For each cluster centroid ci, we compute the
probability that an observation is associated to it using Equation (5.7) (line 10).
Using these probabilities, we compute the gating for the i-th component over the
whole environment X (line 11), as described in Section 5.2.1.3. Given the gating
function ϕi(X), we learn the corresponding model using GP regression and Equa-
tion (5.5) (line 12). Once we computed all of the GP models corresponding to the
clusters, we combine the models of each component using Equation (5.3) (line 13)
to obtain an updated GP mixture model that includes the robot’s observations
during the last navigation task.

Figure 5.7 illustrates the workflow of our approach. It highlights how we con-
tinuously refine the model of a specific quantity over the environment and exploit
the updated model for improving the paths along which the robot navigates over
time.

104

5. Improving navigation exploring and modeling different terrains

5.2.2.3 Navigation on different terrains over time

The procedure illustrated in the previous section leads to a navigation behavior
that, initially, when no information about the environment is available and the
predictive uncertainty of the model is large, aims at exploring the environment.
Initially, in the cost function for path planning in Equation (5.10), the uncertainty
term σ is more prominent than the mean predicted cost µ, which provides little
information. Thus, our planning algorithm generates a path that allows the robot
to collect observations at informative locations. At the same time, it minimizes
the travel distance to the goal so to avoid that the robot goes for long exploratory
detours. As the robot collects more and more observations, the uncertainty σ

decreases and the mean predicted cost µ becomes more significant. At this point,
our planning algorithm generates paths that guide the robot to prefer low-cost
short-distance paths over collecting new observations at unknown less-promising
locations. Following this strategy, after a number of navigation tasks, the robot
will navigate along paths where the impact of the modeled detrimental factor is
low, thus improving robot navigation.

5.3 Experimental evaluation
The aim of this experimental evaluation is to analyze our approach for actively
improving robot navigation by learning a model of the phenomena affecting nav-
igation from robot’s observations and planning paths that minimize their impact
over time. Our experiments are designed to show the capabilities of our approach,
which are: (i) planning paths that reduce over time the impact of detrimental
factors during navigation, (ii) learning an accurate place-dependent model for
navigation on different terrains, (iii) improving the predictions of the modeled
quantity by using an aerial image of the environment. We implemented our
approach and thoroughly tested it using real-world data.

5.3.1 Experimental setup
The experiments we present in this paper use real-world data recorded by our
Clearpath Husky mobile robot illustrated in Figure 5.8(a). This robot is designed
for outdoor navigation and can drive even on rough terrains. We consider as
input to our navigation system the occupancy grid map and an aerial image of
the environment that we captured using a UAV. We establish a correspondence
between the locations in the grid map and the aerial image to learn a model
of the environment that takes into account both the spatial proximity of the
observations and the appearance of the locations. We achieve this by placing an
AprilTag marker [125] of top of the robot and by continuously tracking its position

105

5.3. Experimental evaluation

(a) Frontal view. (b) View from the UAV.

Figure 5.8: Our Clearpath Husky robotic platform that we used to conduct the experiments in
real outdoor environments.

in the camera image of the UAV which was flying over the environment during
the experiments. See an illustration of the experimental setup in Figure 5.8(b).

In our evaluation, we consider the vibrations intensity or energy consump-
tion as the factors that we aim at reducing to improve robot navigation. We
estimate the intensity of the onboard vibrations by using an XSens MTi-30 IMU
installed on the front side of the robot and measuring the acceleration along the
z-axis, similarly to Wurm et al. [174]. Whereas, we measure the amount of en-
ergy consumption during navigation from the data provided by the motor drivers.
For evaluation, we drove the robot with a constant cruise velocity through three
different environments consisting of different terrains including lawn, gravel, dirt,
concrete, pavement, etc. We collected the robot’s onboard observations during
traversal and built the ground truth models for vibrations and energy consump-
tion. We built the ground truth models by using an average filter to assign an
intensity value to each location in the model that corresponds to a cell of the
grid map of the environment. In our experiments, the ground truth models are
unknown to the robot and no information about vibrations and energy consump-
tion is available a priori. The robot can, however, collect noisy observations in
the locations that it visits during navigation.

5.3.2 Improving navigation over time
We designed the first experiment to illustrate that our approach is able to improve
robot navigation by reducing the detrimental factors that the robot experience
during traversal over time. To this end, we consider two scenarios in the real-world
environment shown in Figure 5.9(a). In the first scenario, we aim at minimizing

106

5. Improving navigation exploring and modeling different terrains

(a) Theoretical optimal paths vs. our approach.

0 5 10 15 20 25

Number of runs

125

175

225

275

325

375

V
ib

ra
ti

on
[m
/s

2
]

Theoretical optimum

Shortest path

Our appr. with ReLU

Our approach

(b) Experienced vibrations intensity.

0 5 10 15 20 25

Number of runs

1.575

1.580

1.585

1.590

M
ot

or
en

er
gy

[W
h

]

Theoretical optimum

Shortest path

Our appr. with ReLU

Our approach

(c) Experienced energy consumption.

Figure 5.9: Results of our approach improving robot navigation over time. (a) The theoretical
optimal paths (dotted lines) and the paths computed by our approach after 25 runs (solid lines)
minimizing vibrations (red) and energy consumption (blue). The vibrations intensity (b) and
the energy consumption (c) experienced by the robot during navigation in the 25 runs following
the different planning approaches.

107

5.3. Experimental evaluation

the intensity of the robot’s vibrations, whereas, in the second one, the amount of
energy it consumes.

For each scenario, we required the robot to navigate from a start to a goal
location 25 times. For comparison, we consider a shortest path planner that
computes paths by using the A∗ search algorithm and minimizes the travel dis-
tance while ignoring the vibrations and energy consumption. We also compare
our planning approach that employs a softplus rectifier in the gcost function with
our approach but employing ReLU as a rectifier, as discussed in Section 5.2.2.1.
Furthermore, we compare these approaches with the theoretical optimal path
computed using the ground truth values for the vibrations intensity and energy
consumption in the environment that are unknown in practice to the robot.

The vibrations intensity and the energy consumption that the robot experi-
ences during traversal over time by following each of the planning approaches are
illustrated in Figure 5.9(b) and Figure 5.9(c) respectively. These plots reveal that
the shortest path planner, which ignores the robot’s observations during traver-
sal, computes at every run the same path without showing any improvement over
time. Since no information about vibrations and energy consumption is initially
available, our approach plans at first paths analogously to the shortest path. In
the initial runs, our approach leads the robot to collect observations at different
regions of the environment and, after 3-4 runs, it already computes paths along
which the robot suffers a dramatically reduced intensity of vibrations and energy
consumption. After 25 runs, our approach converges and it is able to drive the
robot along paths in which it experiences similar vibrations intensity or energy
consumption as if it would follow the theoretical optimal path. Instead, following
our approach but using the ReLU rectifier, the robot keeps exploring new regions
of the environment rather than exploiting the known low-cost areas. Therefore,
our approach takes longer using the ReLU rectifier than using the softplus rectifier
to converge to a path along which the robot experiences low-intensity vibrations
or energy consumption.

The paths computed by our approach after 25 runs are illustrated in Fig-
ure 5.9(a). The path that minimizes the intensity of the onboard vibrations
follows on the paved road (solid dark red). Whereas, the path that minimizes
the energy consumption follows on a paved road and on dirt (solid dark blue).
Figure 5.9(a) shows also that our approach leads the robot to navigate along
similar trajectories and on similar terrains as following the theoretical optimal
paths (dotted curves).

This experiment showcases the ability of our approach to improving robot
navigation by reducing over time the impact of the detrimental factors that the
robot experiences during traversal and by leading it to navigate along trajectories
similar to the theoretical optimal paths.

108

5. Improving navigation exploring and modeling different terrains

(a) Site 1. (b) Site 2.

Figure 5.10: The environments and the navigation tasks considered for the experiments on
learning an accurate model of the environment described in Section 5.3.3.

5.3.3 Learning an accurate model of the environment

The second experiment aims at showing that our approach is able to learn a
model that provides accurate predictions about the intensity of the phenomena
affecting robot navigation on different terrains. To illustrate this, we consider the
two environments depicted in Figure 5.10 where we require the robot to navigate
through the locations A, B, C, D as shown in the figure. We aim at using our
approach to perform these navigation tasks while reducing over time the intensity
of the vibrations that the robot experiences during traversal. We also compare
our approach, which incorporates an aerial image in a GP mixture model, with
two methods that use the same planning algorithm but different approaches to
model the vibration intensities in the environment. The first one uses a single
GP similar to the approach described in Section 5.1.1, which we denote as Single
GP. The second one models the environment by using a mixture of GPs but it
does not consider the aerial image of the environment. We refer to this approach
as GP mixture. Also in this experiment, we evaluate our approach with respect
to the theoretical optimal path computed using the ground truth data of the
vibration intensities in the environment.

The vibration intensities experienced over time by the robot in the two en-
vironments following the different approaches are illustrated in Figure 5.11. Our
approach is able to quickly learn accurate models of the environments by combin-
ing spatial proximity and visual appearance information. Such models lead the
robot to experience significantly lower vibrations already after few runs in both
environments. After 25 runs, following our approach, the robot is able to follow

109

5.3. Experimental evaluation

0 5 10 15 20 25

Number of runs

0

25

50

75

100

125

150

175

V
ib

ra
ti

on
[m
/s

2
]

Theoretical optimum

Single GP

GP mixture

Our approach

(a) Site 1.

0 5 10 15 20 25

Number of runs

0

50

100

150

200

250

300

V
ib

ra
ti

on
[m
/s

2
]

Theoretical optimum

Single GP

GP mixture

Our approach

(b) Site 2.

Figure 5.11: Difference of the vibrations intensity experienced by the robot during navigation
in the sites illustrated in Figure 5.10 following different approaches to model the environment
from the theoretical optimum.

a path along which it experiences similar vibrations as following the theoretical
optimal path. In comparison, using a single GP model, the robot stops the ex-
ploration phase earlier. The robot converges to navigate along a path that causes
lower vibration intensities than in the initial run when no information about the
environment is available but still significantly more than by following our ap-
proach. Using a GP mixture model, the robot shows better performance than
using a single GP in the long run but it takes longer than our approach to finding
a low-cost path. The reason for this is that, without taking into account the
aerial image of the environment, it relies only on spatial proximity information to
make predictions about the intensity of the vibrations at non-visited locations.

The models of vibration intensities in the two environments learned by our
approach after 25 runs are illustrated in Figure 5.12. We compare these models
with the ground truth values depicted in Figure 5.12(a) and built as described

110

5. Improving navigation exploring and modeling different terrains

(a) True vibration intensities.

(b) Predictive mean of the vibration intensities.

(c) Predictive variance of the vibration intensities.

Figure 5.12: The true vibration intensity models, and the mean and the variance predictions
provided by our approach from robot’s observations after 25 runs in the two scenarios illustrated
in Figure 5.10.

111

5.3. Experimental evaluation

RMS error Mahal. dist. RMS error Mahal. dist.

Single GP 16.15 265.84 15.364 316.28
GP mixture 9.29 132.52 9.43 150.24
Our approach 4.96 79.17 6.91 151.42

Site 1 Site 2

Table 5.1: Accuracy of the estimated vibration intensity models resulting from the experiment
in Section 5.3.3 and illustrated in Figure 5.12(b) and Figure 5.12(c) with respect to the true
models illustrated in Figure 5.12(a).

in Section 5.3.1, which are in practice not known to the robot. The predictive
mean of our model in Figure 5.12(b) reveals similar values to the ground truth
over most of the environment. In particular, we obtain very accurate models
at regions with low-intensity vibrations as the robot prefers those regions for
navigation and, therefore, traverses them multiple times. The variance of the
predictions is illustrated in Figure 5.12(c) and is mainly low. This indicates that
our approach can make reliable predictions over the whole environment. Our
model presents a higher variance at borders between different terrains. This can
be explained by the fact that, in these regions, the robot observes very different
vibrations in adjacent locations.

In Table 5.1, we provide a comparison of the accuracy of the models of the
vibration intensity obtained using the different approaches after 25 runs. We
compare the root-mean-square (RMS) error of the mean prediction and the Ma-
halanobis distance between the predictive distributions and the ground truth
intensity computed as:

dMahal =

√√√√ N∑
i

(zi − µi)

σ2
i

, (5.13)

where zi is the ground truth value and N (µi, σi) is the corresponding predictive
distribution of the model.

In Site 1, our approach presents the lowest root-mean-square error and Ma-
halanobis distance which is more than three times lower than by using a single
GP model. In Site 2, our approach presents a similar Mahalanobis distance as
the GP mixture model, but a significantly lower error.

This experiment illustrates the capability of our approach to learn an accurate
representation of the detrimental factors that characterize the environment from
the robot’s observations during navigation and to make effective predictions at
non-visited locations.

112

5. Improving navigation exploring and modeling different terrains

5.3.3.1 Using aerial image for improving predictions

Our approach is able to quickly learn a model of a specific physical quantity
experienced by the robot during navigation thanks to the use of an unlabeled,
easy to obtain, aerial image of the environment. Using an aerial image of the
environment as a prior allows for learning a more accurate model while visiting
a smaller number of locations than not using it. Table 5.1 illustrates that our
approach that uses an aerial image as a prior shows better or similar performance
than the GP mixture model. However, our approach obtains this performance by
visiting around 20% less of the locations. Using an aerial image of the environment
helps to identify the promising regions of the environment for navigation, and so to
find a low-cost path. For example, a few observations of low-intensity vibrations
on a paved road permit to predict low-intensity vibrations in areas with similar
appearances. Another advantage of using an aerial image is that borders between
different terrains are typically well defined in images. This makes easier to learn
a gating function that is sharp at borders and, thus, more accurate models.

5.4 Related work
In outdoor environments, the terrain may cause undesired effects on robot navi-
gation such as strong vibrations or high energy consumption. Many robot navi-
gation systems such as Obelix [89] navigate outdoors by planning paths using A∗

and by trying to locally avoid rough terrains. There exist several approaches that
achieve this by classifying the terrain on which the robot navigates to determine
the traversable areas of the environment. For example, Wolf et al. [173] use a
laser range finders to classify traversable regions based on the roughness of the
terrain. Similarly, Suger et al. [160] classify the terrain type using a 3D-LiDAR
and determine non-traversable regions accordingly. Whereas, Berczi et al. [11]
use a stereo camera to learn the terrain assessment from human demonstration.
Such approaches require to define a priori the types of terrain to classify and
demand training data for each terrain type. Other approaches propose to use
self-supervised learning techniques. Wurm et al. [174] train a self-supervised
classifier to identify and avoid vegetated areas by using an IMU to capture the
onboard vibrations caused by the terrain. Similarly, Mou and Kleiner [111] clas-
sify terrains for online adapting robot velocities by combining vision and laser
readings. Otsu et al. [127] combine co- and self-training approaches to classify
terrains for planetary exploration rovers using onboard imagery and vibration
data. Giguere and Dudek [53] propose an unsupervised approach to identify ter-
rains using the readings from accelerometers, gyroscopes, and encoders. Both
supervised and unsupervised approaches identify the terrain types and use this
knowledge to make decisions for navigation. This is often achieved by assign-

113

5.4. Related work

ing a cost for navigating on each specific terrain, e.g., moving on grass is more
costly than on asphalt. However, these costs are artificially defined by the user
and, thus, might not adequately represent the physical quantities that the robot
experiences while navigating. In contrast to that, the solution presented in this
chapter learns a place-dependent model of the detrimental quantities that affect
robot navigation directly from the robot’s observations during traversal.

One common approach to learn spatial processes from observation is Gaus-
sian processes regression [142]. In the context of robotics, GP regression has
been used for modeling many different phenomena and physical quantities in the
environment. For example, Lang et al. [90] use GPs to model the 3D struc-
ture of the terrain from the readings of a 3D-LiDAR, while DGPOM [124, 149]
builds a spatio-temporal model of the dynamic areas in the environment from
laser scans. Tresp [164] introduces an approach for modeling general conditional
probability densities by mixing GPs. GP mixture models allow for learning even
more complex phenomena that present multiple different characteristics. Stach-
niss et al. [158] model gas distributions by using a mixture of GPs which allows for
accurately representing the smooth background signal and the areas with patches
of high concentrations. Similarly, we employ a mixture of GPs to model the phys-
ical phenomena affecting robot navigation that present different characteristics
on diverse terrains.

GP models allow for easily incorporating additional prior information. For ex-
ample, Cunningham et al. [33] model the slippage for slip prediction of planetary
rovers by using GP models and incorporating the geometry of visually classified
terrain types. A common source to obtain prior knowledge for environmental
modeling are satellite and aerial images that, in the last years, became more and
more accessible, for example from Google Earth. Murphy et al. [112] estimate the
traversal costs in outdoor environments by classifying the terrains from overhead
imagery and by using GP models to combine spatial information with the classi-
fication probability. Silver et al. [150] incorporate similar aerial terrain data with
human expert’s demonstrations in an imitation learning framework for outdoor
navigation. Our approach incorporates information from an aerial image of the
environment for learning an accurate GP mixture model without requiring any
explicit terrain classifier. We also exploit this information for quickly discovering
promising regions of the environment for navigation.

GP models offer an attractive representation for many robotic applications.
For example, Fentanes et al. [41] use a GP for modeling the soil compaction in
fields and exploit this representation to guide the exploration of the environment
with an agricultural mobile robot. A popular application for GP models is for
environmental monitoring. In this context, Krause et al. [78] propose a method
to optimize the placement of the sensors in the environment that maximizes the

114

5. Improving navigation exploring and modeling different terrains

mutual information on a GP model. Binney et al. [17] extend this approach to
planning paths for a mobile robot to monitor spatio-temporal phenomena such
as measuring wireless signal strength on a lake. Ma et al. [102] use a similar
approach to select regions where to collect observations for performing persistent
ocean monitoring tasks. We use a GP model to plan paths that aim at reducing
the impact of undesired effects on robot navigation while exploring unknown
promising areas.

To build an accurate model of the physical quantities affecting navigation,
we collect observations in different regions of the environment. The problem of
selecting informative regions to observe for modeling the environment has been
studied in the context of active perception [6] and autonomous exploration [172].
Wang et al. [170] investigate an active sensing approach that decides where the
robot should direct its data collection in indoor environments and that adjusts
the navigation strategy based on the previously collected data. Whereas, Gird-
har et al. [54] propose to explore the environment by using spatio-temporal topic
modeling techniques to learn a model of their environment and to identify inter-
esting, information-rich locations to visit.

Given a GP model of the quantities that affect robot navigation, our approach
generates paths that trade off the exploration of unknown promising regions and
the exploitation of the known areas where the cost for navigation is low. Viseras
et al. [168] address the problem of planning paths that trade off exploration-
exploitation by using a sampling-based algorithm based on the mean entropy
that maximizes information gathering while minimizing the path cost. Marchant
and Ramos [105] instead use Bayesian optimization to plan continuous informa-
tive paths that deal with the exploration-exploitation trade-off by maximizing
the upper confidence bound. A similar planning approach has been proposed
by Souza et al. [153] for planning paths that collect data about the roughness
of the terrain while minimizing the robot’s vibrations. The GP-UCB [155] algo-
rithm formalizes a utility function based on the upper confidence bound for GP
optimization. Tan et al. [161] adopt such a utility function to plan paths that
adapt the exploration-exploitation trade-off for bathymetry monitoring. We use
a similar concept of confidence bounds to plan paths that trade off exploration
and exploitation. However, we guide the robot early towards the goal through
low-cost paths without requiring it to explore the whole environment.

5.5 Conclusion
In this chapter, we presented a novel approach to actively improve robot naviga-
tion on different terrains. We improve navigation by leading the robot to navigate
through paths along which the impact of the detrimental factors affecting navi-

115

5.5. Conclusion

gation, such as vibrations or energy consumption, is reduced over time. To this
end, we build a place-dependent probabilistic model of these quantities directly
from the robot’s onboard observations during traversal without requiring any ini-
tial training data or explicit terrain classifier. We learn this model by using a
Gaussian mixture model that incorporates an aerial image of the environment.
It makes predictions of the specific physical quantities at unvisited locations by
using spatial proximity and appearance similarity information. We use this pre-
dictive model to plan paths that deal with the exploration-exploitation trade-off,
and that quickly lead the robot to navigate through low-cost paths. In contrast
to the approaches presented in Part I, the robot actively plans to explore the
environment for collecting observations at promising locations while, at the same
time, attempting to reach the goal by navigating along low-cost paths.

We implemented and evaluated our approach on different real-world outdoor
environments. The experiments suggest that we are able to learn models that
provide accurate predictions about the intensity of a quantity affecting navigation
in the environment and to exploit these models for planning paths that lead the
robot to navigate experiencing lower intensity vibrations or energy consumption
over time.

116

Chapter 6

Navigation estimating patterns in
traversability changes

Mobile robots operating in the real world are often employed in dy-
namic environments that change over time and where other moving
agents operate. In the solutions presented in the previous chapters
of this thesis, we investigated navigation problems in which the

environment is unknown or uncertain, but we assumed it to be mainly static.
However, in reality, most environments are subject to continuous changes that
affect the connectivity of the configuration space. In these environments, relying
on statics maps for path planning can become inadequate to navigate efficiently.

Over the last decade, many mobile robots have been deployed in indoor en-
vironments such as offices, hospitals, and shopping malls where they share the
workspace with other dynamic agents and/or humans. The presence of other
dynamic agents may lead to changes in the environment. For example, while a
robot is operating, another agent could close a door or block an aisles potentially
affecting the trajectory along which the robot navigates. If the robot encounters
an unforeseen obstacle along its path, traditional approaches to robot navigation,
for example, Fox et al. [45] and many others, perform reactive strategies to avoid
the obstacle. Extensions of such mainly static planners predict the short-term
motion of obstacles and plan a local deviation for avoiding collisions [116, 88, 156]
similarly to the approach described in Chapter 4. If no local deviation can be
found, the robot attempts to generate a new path to the goal from scratch. These
approaches have been demonstrated to be effective for tackling unexpected and
unpredictable obstacles but have no memory about previously experienced situ-
ations. Thus, when encountering the same situation multiple times, the robot is
not able to exploit previous experiences and may perform every time the same
sub-optimal behavior.

In indoor environments, there are many changes in the traversability that

117

(a) Working state. (b) Coffee break.

Figure 6.1: Traversability change patterns on the topological map of an office. The red circles
are the nodes and the blue solid lines are the traversable connections among them.

are correlated or happen following certain patterns. For example, a number of
doors in an environment could be frequently open or closed at the same time.
In the environment illustrated in Figure 6.1(a), the offices’ doors are typically
open (green) while people are working. Whereas, if the kitchen is open, it is likely
that people are enjoying a coffee and so that the offices’ doors are closed (red),
see Figure 6.1(b). Similar to that, in a warehouse, two operators could repeatedly
work at the same time at shelves containing similar items but located at different
locations blocking simultaneously the passage through the corresponding aisles.
When deploying a robot in such environments over a longer period of time, it can
observe these patterns and exploit this knowledge to avoid encountering obstacles
along its paths, thus improving the efficiency of its operations.

In this chapter, we investigate the problem of robot navigation over longer
periods of time in dynamic indoor environments where changes occur following
certain patterns. We address this problem by learning patterns in the traversabil-
ity changes and by exploiting this knowledge to realize anticipatory strategies that
reduce the risk of encountering blocked passages during navigation. We achieve
this by incrementally modeling the patterns of change in the traversability from
the robot’s observations during traversal. Our traversability model enhances a
topological map like the one illustrated in Figure 6.1, where the nodes are the
locations of interest and the edges are the traversable passages between these
locations. We use such a model to make predictions about the traversability at
unknown locations in the environment, and we incorporate the predictions into

118

6. Navigation estimating patterns in traversability changes

a path planning system. Our planning algorithm accounts for the uncertainty of
the predictions to plan paths that trade off the risk to encounter an unforeseen
obstacle blocking the robot and the information gain of visiting different locations
to improve the model. Over time, our approach leads the robot to encounter a
reduced number of blocked passages and, thus, to navigate along paths that are
shorter than following greedy-reactive strategies on average.

6.1 Navigation with patterns in traversability
changes

In this chapter, we consider a robot that navigates over extended periods of time
in an indoor environment where the traversability changes according to certain
patterns. We aim at modeling these patterns and at exploiting this knowledge to
plan strategies for accomplishing safe and efficient robot navigation.

6.1.1 Spatial patterns of change
In an environment, patterns in traversability changes are typically either tem-
poral or spatial. Temporal patterns of change include all those changes that
happen periodically in time. For example, in an office environment, the office
doors are likely to be closed every night. Temporal patterns of change have been
investigated by Fentanes et al. [42] that exploit this knowledge to make decisions
for robot navigation. The robot navigates along specific routes based on the
time of the day to reduce the number of times in which the robot encounters a
blocked passage and requires to plan a new path to the goal. In contrast to that,
spatial patterns in traversability changes are those changes that happen contem-
poraneously in different locations of the environment. For example, in our office
environment, if the Professor is away and his office door is closed, it is very likely
that also Ph.D. students’ offices are closed, no matter what is the time. In this
chapter, we focus on capturing and modeling spatial patterns of change in the
environment without taking into account their periodicity.

6.1.2 Problem definition and assumptions
We assume that, when the robot starts to navigate in an environment, the pat-
terns of change in the traversability are completely unknown. This assumption
holds typically true in practice. However, during navigation, the robot can ob-
serve which passages are frequently blocked at the same time and incrementally
model their traversability patterns. We achieve this by considering a topologi-
cal map of the environment G = (V , E), where E are the edges representing

119

6.1. Navigation with patterns in traversability changes

possible passages and V are the set of vertices representing locations connected
through the passages. An example topology is illustrated in Figure 6.1, where
the red circles are the vertices V and the blue lines their connecting edges E.

We refer to each navigation task performed by the robot as a run. At every
run, the traversability of the environment may change, for example, because of
the activity of other dynamic agents operating in the environment. We represent
the traversability of an edge ei at a run t as the binary random variable eti that
is 0 if the edge is blocked or it is 1 if the edge is free. We refer to the state
of all the edges of the topology during run t as the environment configuration
Et = {et1, . . . , et|E|}.

In this chapter, we make the following key assumption:

1. when the robot starts a new run, it has no knowledge about the current
environment configuration except from its previous observations;

2. during each run, the environment configuration does not change. This
means that we account only for the low-frequency dynamic changes in the
environment;

3. the environment configuration is independent of the temporal order of the
runs, i.e., the configuration at run t has the same degree of dependence to
the configuration at run t+ 1 than to the one at t+ k, with |k| > 1;

4. the robot observes the traversability of an edge when reaching one of the
vertices v ∈ V which the edge connects to. The traversability detector
allows for observing all the adjacent edges to v.

6.1.3 Modeling patterns of change and predicting
traversability

To make informed decisions for navigation in changing environments, we aim at
learning a model of the patterns of change to predict the traversability at unknown
locations. We use the robot’s observations during traversal to incrementally learn
a probabilistic model that captures the correlation among the edge traversability
and that exploits this correlation to make predictions during navigation.

During navigation at run t, the environment presents a configuration Et of
which the robot typically only observes a subset of edges Zt ⊆ Et. To make
informed decisions for navigation, we aim at predicting the current environment
configuration Et and, in particular, the traversability of the unobserved edges U t,
with Et = Zt ∪ U t. We formulate this problem as the problem of estimating
the probability of the unobserved edges U t to be traversable conditioned on the

120

6. Navigation estimating patterns in traversability changes

(a) Example topology. (b) Factor graph joint probability.

Figure 6.2: Example of topology (a), where the red circles are the nodes and the blue lines
are the edges, and the graphical model of the joint probability distribution over the topology
edges (b). The topology edges correspond to the nodes of the graphical model.

partial observation of the environment configuration Zt:

p(U t | Zt) =
p(U t, Zt)

p(Zt)
, (6.1)

= η p(Et), Et = Zt ∪U t (6.2)

where η is a normalizer given the current observations Zt and p(Et) is the joint
probability distribution over the traversability of the edges in the environment.

The distribution p(Et) defines a probability function over the space of possi-
ble configurations. It captures the correlation among the traversability of edges
and, thus, its knowledge is essential to make predictions about the environment
configuration. In general, p(Et) is a distribution without a special structure and
the space required to represent it is exponential in the number of edges |E|.
Therefore, representing the joint distribution over the edges becomes quickly in-
tractable. A graphical model representation of the full joint probability of the
simple example topology in Figure 6.2(a) is illustrated in Figure 6.2(b), where
the model nodes are the topology edges and the factor Ψabcd defines a probability
over all the possible combinations of values of a, b, c, and d.

There exist different approaches to compute a tractable approximation of the
joint probability distribution. We discuss two common approximations in the
following.

6.1.3.1 Independent variables approximation

The simplest approach to approximate the joint probability distribution over the
edges is to consider each topology edge to be independent of all others. Under

121

6.1. Navigation with patterns in traversability changes

(a) Independent variables approxi-
mation.

(b) Chow-Liu tree approximation.

Figure 6.3: Possible approximations of the joint probability distribution in Figure 6.2(b) over
the edges of the topology in Figure 6.2(a).

this assumption, we would approximate the joint distribution as:

p(Et) ≈
|E|∏
i

p(eti). (6.3)

The graphical model corresponding to this approximation for the example
topology in Figure 6.2(a) is illustrated in Figure 6.3(a). This representation is
efficient to compute and to store. However, considering edges independent of
each other does not allow for learning the correlation among them and, thus, for
capturing and predicting the spatial patterns of change in the environment.

6.1.3.2 Chow-Liu tree approximation

A more advanced approach to approximate the joint probability distribution is
the Chow-Liu tree approximation. Chow and Liu [27] introduce a polynomial-
time algorithm to approximate the joint probability that has been successfully
used in the context of SLAM [32]. The Chow-Liu tree approximation is obtained
by considering the mutual information graph between the random variables. This
is a complete graph where each edge has a weight equals to the mutual informa-
tion between the variables which it connects to. Chow-Liu algorithm computes
the maximum spanning tree over the mutual information graph to select the
tree-structured Bayesian network that presents the minimum Kullback-Leibler
divergence to the original distribution. A Bayesian network [147] is a proba-
bilistic graphical model that represents a set of variables and their conditional
dependencies via a directed acyclic graph. The tree representation implies that
each variable is conditioned on at most one other variable. Therefore, we can

122

6. Navigation estimating patterns in traversability changes

approximate the joint probability distribution over the edges of a topology as:

p(Et) ≈ p(etroot)

|E|∏
i

p(eti | parent(eti)), (6.4)

where etroot is the root of the tree and parent(·) indicates the parent edge in the
tree-structured Bayesian network. The Bayesian network of a possible Chow-
Liu tree approximation for the example topology in Figure 6.2(a) is depicted
in Figure 6.3(b).

The Chow-Liu tree approximation is attractive as it only requires space qua-
dratic in the number of variables and is able to capture some of the correlation
between edges. Yet, this approximation requires an amount of training data and
performing offline computation to obtain the Bayesian network representation.
In contrast to that, we aim at learning a model online and incrementally without
any initial prior knowledge or training data. Using the Chow-Liu tree approx-
imation to this end would require to compute the mutual information graph,
the maximum spanning tree, and the parameters of the corresponding Bayesian
network for each new robot observation. The robot, however, observes the envi-
ronment continuously and it is not feasible to compute online an updated model
of the edge traversability to make predictions for navigation. Furthermore, in a
single run, the robot might observe only a subset of the edges of the topology. If
this is the case, it is non-trivial to update the conditional probability tables of the
Bayesian network using partial observations. We consider instead an approxima-
tion based on a flexible probabilistic graphical model that allows for efficiently
updating the model by incorporating incrementally the new partial observations
acquired by the robot.

6.2 Improving navigation estimating patterns
in traversability changes

The main contribution of this chapter is a novel framework for robot navigation
that is capable of capturing spatial patterns of change in an environment and ex-
ploiting this knowledge to plan informed strategies in partially unknown configu-
rations. We achieve this by considering a topological map of the environment and
incrementally learning a probabilistic model of the patterns in the traversability
of the edges from the robot’s observations during traversal. This model exploits
the correlation among the traversability of the edges to make predictions about
the configuration of the environment. We exploit the predicted configurations to
plan navigation strategies that account both for the risk to encounter a blocked
passage and, at the same time, for the information gain of making observations

123

6.2. Improving navigation estimating patterns in traversability changes

Figure 6.4: Our factor graph model to approximate the joint probability distribution in Fig-
ure 6.2(b) over the edges of the topology in Figure 6.2(a).

that improve the model. As a result of that, our approach is able to (i) learn
incrementally a model of the patterns of change in the environment traversability
from robot’s observations; (ii) make predictions about the traversability at un-
observed locations; (iii) plan paths that exploit the predictions to make informed
decisions for navigation and, thus, to navigate efficiently in the environment.

6.2.1 Estimating patterns in traversability changes
To make predictions about the traversability in the environment from the robot’s
observations, we aim at learning a model that approximates the joint probability
distribution over the edges in Equation (6.2). We require this model to (i) have
a tractable representation for real-world indoor environments, (ii) capture the
correlation between the traversability changes, and (iii) incorporate incremental
and partial observations.

6.2.1.1 Factor graph model

To define a tractable representation of the joint probability distribution over
the environment configurations that still captures dependency patterns well, we
propose to model and predict the traversability changes in an environment by
using a factor graph representation. A factor graph [81] is a probabilistic graphical
model that allows for representing a general factorization of a function. A short
introduction to factor graphs is provided in Section 2.2.1.

We define a factor graph model in which the variable nodes correspond to the
edges E of the topology. As the correlation among the edges is unknown a priori,
we consider a factor graph with a general structure that consists of one unary
factor node for each edge and one binary factor node for each pair of topology
edges. Considering such factors, we are assuming that we can approximate the

124

6. Navigation estimating patterns in traversability changes

joint distribution over the edges as:

p(Et) ≈ pϕψ(E
t) = η

∏
i

ϕi
∏
j

ψij, (6.5)

where ϕi(·) and ψij(·) represent respectively the unary and binary factors of the
graph, and η is a normalizer. An example of such factor graph model for the
example topology in Figure 6.2(a) is illustrated in Figure 6.4.

This factor graph representation allows for approximating the probability over
the environment configuration by capturing some of the correlation between the
edge traversability while storing only |E|(|E| − 1)/2 + |E| low-dimensional fac-
tors. Therefore, our model requires only quadratic space in the number of edges,
i.e., O(|E|2), rather than exponential as in the case of the full joint probability
distribution.

6.2.1.2 Learning factors from observations

Given our factor graph representation, we need to define the factors ϕ and ψ such
that the model corresponds to the robot’s observations collected in the previous
runs and we can efficiently update the model in an incremental manner as the
robot acquires new observations.

The belief propagation algorithm [131] allows for performing inference on
factor graphs. We use the belief propagation algorithm to make predictions from
current data (see Section 6.2.1.3) but also to estimate the model parameters from
the robot’s observations. Furtlehner et al. [52] introduce an approach to estimate
the factor nodes from the marginal probabilities by using the fixed points of belief
propagation. We use this approach to define the unary factors and binary factors
of our factor graph model as:

ϕi = p(ei), (6.6)

ψij =
p(ei, ej)
p(ei) p(ej)

, (6.7)

where p(ei) and p(ei, ej) are respectively the unary and binary joint probabil-
ities of the edges to be traversable or blocked. Note that Equation (6.7) has
an analogy with the mutual information between ei and ej that is non-zero
for p(ei, ej) ̸= p(ei) p(ej). This analogy provides an intuition that such definition
of the factors allows for modeling the correlation between edges. This definition of
factor nodes allows for computing the approximated joint probability distribution
in Equation (6.5) as:

pϕψ(E
t) = η

|E|∏
i

p(ei)
|E|∏
j

p(ei, ej)
p(ei) p(ej)

. (6.8)

125

6.2. Improving navigation estimating patterns in traversability changes

We compute the unary and binary joint probabilities, p(ei) and p(ei, ej), from
the robot’s observations in the previous runs Z1:t-1. We achieve this by maintain-
ing a counter of the number of observed occurrences of each unary and binary
configurations. To prevent probabilities to take the extreme values of 0 or 1
on a single observation, we initialize them with a uniform prior by assigning to
each configuration an equal positive number of occurrences. After each run, we
update the counters based on the robot’s observations and recompute the prob-
abilities. Dealing with unary and binary joint probabilities allows us to update
only the probabilities corresponding to the edges observed at each run. Using this
procedure, we can incrementally and efficiently compute the model’s parameters
from the robot’s observations. The other key advantage of this procedure is that
it allows for easily incorporating partial observations of the environment. For
instance, in the example illustrated in Figure 6.2(a), if the robot observes the
edges a and b but not c and d, we update p(a), p(b) and p(a, b), but not p(a, c)
and p(b, d).

6.2.1.3 Predicting edge traversability

The factor graph model described above allows us to maintain a tractable approx-
imation of the joint probability distribution over the edges, but it also provides us
a tool to make predictions about the traversability of currently unknown edges.
The belief propagation algorithm allows for computing the maximum a posteri-
ori configuration and for estimating the marginal probability of each edge to be
traversable.

Given the observations obtained during the current run Zt, we predict the
traversability of the unobserved edges U t by fixing the observed edges to the
observed values in the factor graph and by performing approximate loopy belief
propagation. This procedure allows for estimating p(U t | Zt) and, thus, to
compute a belief about the current environment configuration.

6.2.2 Planning exploiting traversability predictions
Given the predictions about the current environment configuration, we can exploit
this knowledge to make informed decisions for navigation. We aim at planning
non-myopic strategies that allow the robot to perform anticipatory behaviors so
that it encounters a reduced number of unforeseen obstacles over time and, thus,
navigates along shorter paths in the long run.

To achieve this, we need to define a path planning algorithm that presents
two main characteristics. First, it should explore the belief space of the possible
configurations to select short paths to the goal while taking into account the
uncertainty of the predictions. Second, as we have no initial knowledge about

126

6. Navigation estimating patterns in traversability changes

the environment configurations, it should lead the robot to make informative
observations that improve the model of the edge traversability and, thus, the
predictions in the subsequent runs.

6.2.2.1 Canadian traveler’s problem

Our planning problem reveals similarities to the so-called stochastic Canadian
traveler’s problem (CTP) [129]. In contrast to the traveling salesman problem,
the CTP describes a traveler who seeks to find the shortest path to a goal loca-
tion in a road network where a subset of roads is not traversable. Initially, the
agent does not know which roads are traversable but it knows the probability
of each road to be blocked. The agent observes the actual traversability of the
roads only while navigating through the network. Finding an optimal solution
for the CTP is PSPACE-complete [47], thus it is intractable for any real-world
application. However, there exist different approaches to compute approximate
solutions. Eyerich et al. [39] proposed a Monte Carlo search algorithm based on
the Upper Confidence tree algorithm [71] called CTP-UCT. It allows for com-
puting approximate solutions for CTPs by taking the uncertainty of the current
belief about the environment into account.

Given the current belief about the environment configuration, CTP-UCT it-
eratively performs a sequence of rollouts. A rollout consists of randomly sampling
a configuration of the environment according to the current belief and of simu-
lating the agent navigation based on this configuration. During the rollouts, it
assumes that the agent has no knowledge about the sampled configuration but it
can acquire observations during traversal as if traversing the actual road network.
In each rollout, CTP-UCT selects locations for navigation by preferring the ones
that led to the goal through short paths and have been selected less often in
the previous rollouts. To this end, at each step of the rollouts, it considers a
state s composed by the agent’s current location, the set of known traversable
and blocked edges, and the set of unknown edges. Let ρi = {s0, s1, . . . , si}
be the current sequence of states at the k-th rollout, CTP-UCT selects the next
state si+1 that maximizes the UCT formula:

si+1 = argmax
s

B

√
logRk-1(ρi)

Rk-1(ρi+1)
− length(si, s)− Ck-1(ρi+1), (6.9)

where

• ρi+1 = {ρi, si+1} is the new sequence of states upon selecting s′,

• B > 0 is a parameter that balances exploration and exploitation,

• length(si, si+1) is the travel distance from si to si+1,

127

6.2. Improving navigation estimating patterns in traversability changes

• Rk-1(ρi) indicates the number of rollouts among the previous k− 1 rollouts
that start with sequence ρi,

• Ck-1(ρi) indicates the average travel distance of the previous k− 1 rollouts
that start with sequence ρi to reach the goal.

After performing a number of rollouts, CTP-UCT selects the path P to the
goal that minimizes:

cost CTP-UCT (P) = length(P), (6.10)

where length(P) is the average distance traveled to the goal during the rollouts
by following P .

The main difference between the CTP and our problem definition is that
we assume the robot to traverse the environment several times with different
configurations and that no informative prior probabilities are initially provided
about the environment configurations. Therefore, the robot should plan policies
that guide it along short paths but, at the same time, it should collect information
for improving the prediction model. Hence, we aim at making decisions that trade
off the exploitation of the predictions and the exploration of the environment.

Although CTP-UCT relies on an exploration-exploitation trade-off to search
in the belief space, it makes decisions according to Equation (6.10), which mini-
mizes the estimated average distance to the goal, and, thus, follows an optimistic-
greedy criterion. We introduce an approach that trades off exploration and ex-
ploitation in the locations actually visited by the robot. To achieve this, we
extend the CTP-UCT cost function to select paths so that, in the initial runs,
the robot collects information about the traversability in the environment for
improving the model and the predictions in the subsequent runs.

6.2.2.2 Information-driven exploration

In many robotic applications that aim at exploring or monitoring the environ-
ment, the exploration is guided by the mutual information [78]. The mutual
information [104] also called expected information gain, quantifies the amount of
information obtained about one random variable by observing another random
variable. The mutual information between two discrete random variables a and b
is defined as:

I(a, b) = H(a)−H(a | b), (6.11)

=
∑

a∈a, b∈b
p(a, b) log p(a, b)

p(a) p(b)
, (6.12)

128

6. Navigation estimating patterns in traversability changes

where H(·) and H(· | ·) are the entropy and the conditional entropy that are
defined respectively as:

H(a) = −
∑
a∈a

p(a) log p(a), (6.13)

H(a | b) = −
∑

a∈a, b∈b
p(a, b) log p(a, b)

p(b)
. (6.14)

A common approach to collect information about the environment is to make
observations at locations that maximize the mutual information about the non-
observed regions, for example, Krause et al. [77]. We use a similar approach in
our problem to bias the robot to make informative observations for improving
the edge traversability model. Given the current set of unobserved edges U t, we
select the path P that maximizes the information gain:

P = argmax
P⊆E

I(P , U t) = H(P)−H(P | U t), (6.15)

where P is the set of edges along the path P .
Computing the entropy over the edges P requires the knowledge of their joint

probability distribution. However, our factor graph model does not provide direct
access to these probabilities. Therefore, we propose to approximate the mutual
information I(P , U t) with the sum over the pairwise mutual information between
the edges along P and the unobserved ones U t:

I(P , U t) ≈ Î(P , U t) =
∑
u∈U t

max
p∈P
I(p, u), (6.16)

where I(p, u) is computed using Equation (6.12). This approximation requires
only unary and binary joint probabilities that are directly available from our
factor graph model. Furthermore, we make sure that the mutual information for
the same edge is not counted multiple times by considering the maximum mutual
information for each unobserved edge u.

6.2.2.3 Exploration-exploitation trade-off

Given a prediction about the current configuration of the environment provided
by our edge traversability model, we compute a policy to navigate to the goal
which aims at minimizing the travel distance while exploring the environment
configurations in the initial runs. To achieve this, we perform a sequence of
rollouts based on the belief space defined by the prediction. We select successors
as in the original CTP-UCT to estimate the travel distance to reach the goal in
the partially observed environment. Given the outcomes of the rollouts, we select

129

6.3. Experimental evaluation

paths according to a cost function which combines the information gain of the
path and the estimated travel distance to reach the goal:

cost OUR(P) = length(P)− γ#runs
[
ζ Î(P , U t)

]
, (6.17)

where P are the edges along the path P , length(P) is the average travel distance
to reach the goal following P in the rollouts, γ ∈ [0, 1] is a parameter that controls
the exploration term, ζ is a constant that normalizes the mutual information with
respect to the travel distance, and Î is the approximated mutual information
computed using Equation (6.16).

The exploratory behavior of the robot is determined by the parameter γ that
decays exponentially with the number of runs performed by the robot. This
parameter can be interpreted similarly as the discount rate of rewards used in
Markov decision processes described in Section 2.4.1. Initially, when few observa-
tions are available, γ leads the robot to favor exploratory behaviors for improving
the model of the edge traversability. As the robot performs a number of runs
and acquires several observations of the environment, the model and its ability
to make predictions improve and the exploration behavior becomes less and less
prominent. When the learning process of the model converges, our problem be-
comes similar to a CTP in which the traversability of the edges is correlated. At
this point, the exploratory term in Equation (6.17) is weighted low and, thus, the
cost function becomes similar to the original CTP-UCT.

6.3 Experimental evaluation
Our experiments are designed to illustrate that our approach is able to (i) model
and make predictions about the traversability changes in the environment from
the robot’s incremental observations; (ii) plan paths that exploit the predictions
to make informed decisions for navigation; (iii) navigate along paths that are on
average shorter than following greedy shortest path strategies.

6.3.1 Experimental setup
In our experiments, we consider different topologies defined over real-world en-
vironments such as the one illustrated in Figure 6.5, which depicts a topological
map overlaying the grid map of our office. There exist many approaches to build
topological maps of the environment, for example, Kuipers et al. [86]. On these
topologies, we simulate patterns in the traversability changes. To this end, we
first randomly sample M independent template configurations for each environ-
ment. Then, we generate a set of N, N ≫ M , environment configurations by
sampling uniformly one of the M templates and applying random noise on edge
traversability.

130

6. Navigation estimating patterns in traversability changes

Figure 6.5: A topological map overlaying the grid map of our office used in our experiments.
The topology nodes are locations of interest denoted by blue circles, whereas the red lines
indicate the traversable passages among the nodes which are the topology edges.

6.3.2 Predicting edge traversability

We designed the first experiment to show the capabilities of our approach to model
the traversability changes in the environment and to make predictions about the
environment configurations. In this experiment, we consider a relatively small
topology composed by 9 nodes and 13 edges and assume that the robot observes
at each run the whole environment. These assumptions allow for computing the
full joint distribution over the edge traversability despite its exponential space
complexity and to use it for comparison. We additionally compare our approach
with a model that assumes each edge to be independent of all others, as the one
discussed in Section 6.1.3.1. To investigate the performance of our approach,
we consider two different cases: one in which the environment configurations are
highly correlated and one in which the correlation is low.

We compare the capabilities of each model to predict the edge traversabil-
ity for 10000 partial configurations after 10, 100, 1000, and 10000 observations.
In Figure 6.6, we illustrate the RMS error of the predictions to the true con-
figurations for the three approaches. The solid lines indicate the results for the
case in which the environment configurations are highly correlated, whereas the
dotted lines denote the case in which the correlation is low. In cases in which
the configurations are highly correlated, our approach (blue) is able to provide
good predictions already after a few observations. The predictions improve in-
crementally as the robot collects more observations, similarly as if using the full
joint probability distribution (green). Instead, assuming the edges to be indepen-
dent (red), we cannot capture the correlation between edges and leads to worse
predictions. In cases in which the configurations have low correlation, all of the
three approaches provide similar predictions. Therefore, also in situations with

131

6.3. Experimental evaluation

10 100 1000 10000

Number of observations

0.1

0.2

0.3

A
vg

.
R

M
S

er
ro

r

Full joint (exp. complexity)

Independent variables

Our approach

Configurations
with low
correlation

Configurations
with high
correlation

Figure 6.6: Average RMS error of the predictions for low and high correlated environment
configurations using different models.

low correlation, our approach shows a similar behavior as the full joint probabil-
ity distribution and does not reveal worse performance than the model assuming
independence among edges.

In sum, the first experiment shows that our approach is able to make accurate
predictions of the edges traversability which are in line with the ones considering
the full joint probability. It also shows that, as expected, the predictions improve
incrementally with the number of robot’s observations.

6.3.3 Navigation exploiting predictions
The second experiment is designed to show that our approach is able to exploit
the predictions of the environment configurations to plan informed strategies that
lead the robot to navigate along shorter paths over time. In this experiment, we
consider the four different environments described in Table 6.1: three offices of
different dimensions, including the one illustrated in Figure 6.5, and one hospi-
tal where we sampled different patterns of change in the edge traversability. To
evaluate the improvement over time, we repeat a fixed sequence of 25 navigation
tasks and environment configurations for a total of 500 runs in each environment.
At every run, the environment configuration can be different and the robot has no
initial knowledge about it but from its previous observations. We compare our
approach to an optimistic shortest path policy referred to as SPO. This strat-
egy plans paths by using A∗ and assumes that every edge of the environment is
traversable unless the robot observes the opposite and re-plans. The SPO does
not take into account the predictions of the environment configuration and, thus,
independently from the number of runs, makes the same decisions as if navigating
in the environment for the very first time. For comparison, we also consider the
theoretical optimal path computed in the ground truth environment configura-

132

6. Navigation estimating patterns in traversability changes

0 50 100 150 200 250 300 350 400 450 500

Number of runs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
vg

.
no

rm
al

iz
ed

tr
av

el
di

st
an

ce

Small office

Medium office

Large office

Hospital
Theoretical optimum

SPO

Figure 6.7: Average distance traveled by the robot following our approach in the environments
described in Table 6.1 over the number of runs. We normalized the travel distance between the
theoretical optimum (black dashed line) and the SPO solution (black dash-dotted line). As can
be seen, as new observations of the environment get incorporated into our model, our approach
is able to lead the robot to navigate along shorter paths. After 500 runs, the robot follows
paths that are on average about 30% shorter than following a greedy shortest path strategy.

Environment Dimensions Nodes Edges

Small office 25 × 20 m 16 18
Medium office 30 × 30 m 20 30
Large office 50 × 30 m 18 37
Hospital 125 × 35 m 40 55

Table 6.1: Description of the environments considered in our experimental evaluation.

tion, which is in practice unknown to the robot. In our approach, we perform
50 rollouts per decision and set the parameter that regulates the exploratory term
of the cost function in Equation (6.17) to γ = 0.95.

The performance of our approach over the number of runs in the four environ-
ments is illustrated in Figure 6.7. We evaluate the average difference in the travel
distance to the theoretical optimum with ground truth knowledge available (0.0)
normalized with respect to the SPO solution (1.0), which leads the robot greedily
towards the goal. Initially, when the robot collected little information about the
environment, the predictions of the edge traversability are weak. Thus, follow-
ing our approach, the robot performs similarly as by following SPO. After 100
runs, the robot starts discovering patterns in the traversability changes. Thus,
the predictions improve and our approach is able to plan paths that lead the
robot to the goal along shorter paths. Over time, when the robot collects more
and more observations about the environment, the learning process of the edge
traversability model converges. After 500 runs, the robot navigates along paths

133

6.3. Experimental evaluation

SPO SPD CTP-UCT Our approach

0.6

0.7

0.8

0.9

1.0

A
vg

.
no

rm
al

iz
ed

tr
av

el
di

st
an

ce

50 runs

250 runs

500 runs

Figure 6.8: Average distance traveled by the robot following different planning approaches in
the environments described in Table 6.1 over the number of runs. As can be seen, our approach
presents a larger improvement over time and, after 500 runs leads the robot to navigate along
shorter paths than following other approaches. The CTP-UCT and the SPD use our factor
graph model for computing the predictions.

that are on average about 30% shorter than following an optimistic shortest path
strategy.

This experiment showcases the ability of our approach to exploit the predic-
tions of the edge traversability to lead the robot to navigate along shorter paths
as new robot’s observations about the environment get incorporated into our
system.

6.3.4 Planning performance comparison
Besides the baselines discussed in the previous section, we compare the perfor-
mance of our approach to other planning approaches. For comparison, we consider
the original CTP-UCT [39] that searches for the shortest path in the predicted be-
lief without explicitly exploring the environment, as described in Section 6.2.2.1.
We compare our approach also to a strategy inspired by Lim et al. [99] referred
to as the determinized shortest path or SPD. The SPD considers a most likely
assumption on the belief about the edge traversability and plans the shortest
path using A∗ on the determinized environment configuration. When the robot
makes an observation incompatible with the current determinized configuration,
the SPD computes a new prediction and re-plans.

It is important to note that both the CTP-UCT and the SPD do not pro-
vide an approach to model and make predictions of the edge traversability in the
environment but assume that the belief is provided as prior information. There-
fore, in this comparison, we consider the predictions provided by our factor graph
model also for these approaches. Otherwise, no comparison would be possible.

We illustrate in Figure 6.8 the performance of the algorithms and their abil-

134

6. Navigation estimating patterns in traversability changes

ity to exploit the predictions for navigating along short paths. We evaluate the
average distance traveled by the robot following each of the approaches after 50,
250, and 500 runs for navigating in the environments introduced in the previous
section. The SPO (orange) reveals a constant trend over time as it does not take
the predictions into account. Considering the predictions of the edge traversabil-
ity, the SPD (green) leads the robot to navigate along shorter paths over time.
However, the determinization of the predicted configurations is a strong assump-
tion that may cause the robot to follow paths that are distant from the optimal
ones. The CTP-UCT (red) considers a weaker approximation of the belief about
the environment configuration by performing rollouts which allow for taking into
account the uncertainty of the predictions. Thus, it can make more informed
decisions than SPD and leads the robot to follow shorter paths over time. Our
approach (blue) extends the CTP-UCT by considering an exploratory term that
allows the robot to collect informative observations. It explicitly explores the
environment in the initial runs thus improving the model and the predictions of
the traversability of the edges. The exploratory behavior leads initially the robot
to slightly longer travel distances than the CTP-UCT. But, in the long run, it
allows the robot to navigate along even shorter paths.

6.4 Related work
This work focuses on robot navigation over extended periods of time in envi-
ronments where the traversability changes by following patterns. Traditional
approaches to robot navigation follow the shortest path to the goal and execute
reactive strategies if the robot encounters an unforeseen obstacle along it, for ex-
ample, Fox et al. [45]. Algorithms such as Lifelong A∗ [73] and D* Lite [72] allow
for fast re-planning to react to unforeseen obstacles. More advanced approaches
predict the short-term motion of obstacles and plan local deviation for collision
avoidance [88, 156]. These approaches are effective to tackle unexpected and un-
predictable obstacles but may lead the robot to perform the same sub-optimal
behavior again and again in environments with recurrent patterns of change.

Del Duchetto et al. [36] introduce an incremental learning by demonstration
approach to autonomously detect and recover from navigation failures and, thus,
to avoid making the same mistake again and again. Fremen [76] enhances a
topological map with a spectral model that allows for predicting the traversability
of the edges as a function of the time of day. Fentanes et al. [42] use this model
for planning paths that take into account the temporal periodicity of changes in
the environment. This approach is similar to the one described in this chapter
but, in contrast to that, we focus on capturing the spatial correlation among
the changes in the environment instead of taking explicitly into account the time

135

6.4. Related work

information.
Our approach models the traversability patterns from incremental robot’s ob-

servations during traversal and exploits this knowledge for navigation. Several
approaches have been proposed to model changing environments for robot navi-
gation. For example, Stachniss and Burgard [157] map the typical configurations
of low-dynamic areas of the environment for improving localization. Conditional
transition maps [82] offer a grid-based representation for learning the motion
patterns of the objects in the environment. Whereas, dynamic Gaussian pro-
cess occupancy maps [124] map long-term dynamics with a spatially-continuous
representation that provides occupancy estimates.

We capture the traversability patterns in the environment by employing a
model that approximates the joint probability over the traversability of all edges
in the environment. As discussed in Section 6.1.3, working with the full joint
probability is unfeasible in most real-world applications as it requires exponen-
tial space in the number of variables. In the context of SLAM, FAB-MAP [32]
approximates the joint probability distribution over a set of visual features by
using the Chow-Liu tree approximation [27]. We consider instead an approxi-
mation based on a factor graph [81] with a fixed but flexible structure described
in detail in Section 6.2.1.1. We define the model’s parameters according to the
approach proposed by Furtlehner et al. [52] in the context of traffic prediction
from a probe vehicle. This approach is based on the correspondence between the
fixed points of the Belief Propagation algorithm used for inference and the sta-
ble points of the Bethe free energy [175]. Our representation approximates the
joint probability over the edge traversability in the environment with a model
that captures the spatial correlation while allowing for incrementally learning the
model’s parameters from the robot’s observations.

Given a prediction about the traversability of an environment, we plan a path
to the goal that exploits the prediction to make informed decisions for navigation.
Planning paths in the belief space defined by the predictions can be formulated
as a partially observable Markov decision process [5]. However, POMDPs are
in practice intractable for real-world environments [128]. The Reactive Planning
Problem [103, 165] plans policies that guarantee the robot to reach the goal in
uncertain environments. Bhattacharya et al. [15] maximize the probability of
reaching the goal by seeking the most persistent homology for the given probabil-
ity map. Murphy et al. [113] samples the edge costs from a probabilistic costmap,
generates a list of paths using A∗ and selects the most frequent path. RAG
search [28] plans risk-aware paths in a graph where the edge costs are unknown
by trading off exploration and exploitation. Pereira et al. [133] build risk-maps
from historical data and use them to find minimum risk paths for autonomous
underwater vehicles.

136

6. Navigation estimating patterns in traversability changes

Our planning problem presents a similar formulation to the Canadian trav-
eler’s problem [129]. Here, an agent aims at traveling along the shortest path
in a road network where some roads, unknown to the agent, are blocked. Lim
et al. [99] extend the CTP introducing a Bayesian variant in which where the
road states may be correlated. The main difference of the problem presented in
this chapter to the CTP is that, in our formulation, no probability over the edges
is known a priori. However, the robot navigates in the environment several times
and, thus, can build a model of the edge traversability from its observations over
time. The CTP and its variants are typically computationally intractable for
real-world applications. Nikolova and Karger [122] approximate the CTP by con-
sidering graphs that consist only of disjoint paths. Eyerich et al. [39] introduce
the CTP-UCT that is a Monte Carlo search algorithm for computing policies in a
CTP by taking the uncertainty of the predictions into account. Bnaya et al. [19]
extend this approach to a variant of the CTP where a number of agents need
to travel to the same goal. Our planning approach that extends the CTP-UCT
by computing paths that aim at collecting information about the environment to
improve the edge traversability model while minimizing the travel distance.

Planning to collect informative observations about the environment is often
referred to as informative path planning. Informative planning is widely used
in robotic applications such as exploration and environmental monitoring. For
example, Popovic et al. [137] use informative planning for active classification
with UAVs in the context of precision agriculture, while Hollinger et al. [57]
for active underwater inspection. A common approach to plan informative paths
proposed by Krause et al. [77, 109] is to maximize the mutual information between
the visited and the unknown locations. Many planning algorithms have been
proposed for computing paths that maximize the information gain. For example,
Binney et al. [18] use a branch and bound method for informative path planning,
whereas Holliger et al. [58] use a sampling-based planning approach similar to
the ones described in Section 2.3.2. Lim et al. [98] introduce an adaptive variant
of informative path planning where the robot chooses the next sensing location
conditioned on all information acquired so far. Our planning approach uses the
mutual information to implement a navigation strategy that trades off exploration
and exploitation, similarly to the system presented in Chapter 5. Following this
approach, the robot can reduce the risk of encountering unforeseen obstacles along
its path and, thus, navigates along shorter paths over time.

6.5 Conclusion
In this last technical chapter of the thesis, we formulated the problem of a
robot navigating over extended periods of time in environments where changes

137

6.5. Conclusion

in traversability are correlated or occur according to patterns. We presented an
approach to solving such a problem by modeling these patterns and exploiting
this knowledge for navigation. We consider a topological map of the environ-
ment and learn incrementally a model of the traversability of the edges from the
robot’s observations during navigation. We introduce a probabilistic model based
on a factor graph representation that allows for modeling the correlation between
traversability changes in the environment while being tractable for real-world-
scale topologies. We use this model to make predictions about the traversability
of unobserved regions of the environment. We exploit these predictions to make
informed decisions for robot navigation. To this end, we employ a path planning
approach that searches the shortest path to the goal in the belief space defined
by the predictions. We combine this approach with an exploratory behavior that
allows the robot to collect informative observations about the environment for
improving the traversability model and, thus, the predictions in the subsequent
runs.

The experiments suggest that our approach is able to learn spatial patterns
of changes in an environment and to provide more and more accurate predictions
of the unobserved edges with a larger number of observations. Furthermore,
we show that exploiting the predictions we can plan paths that lead the robot
along trajectories that are on average shorter than following a myopic optimistic
shortest path approach.

Although our approach presents a higher complexity in comparison to tradi-
tional planning systems, in environments where the traversability changes follow-
ing certain patterns, it has the potential to lead robots to automatically navigate
along shorter paths over time, thus increasing the efficiency of their operations.

138

Chapter 7

Conclusion

Autonomous mobile robots are nowadays deployed to perform a vari-
ety of tasks in different environments, from mobile manipulation on
factory floors to self-driving taxis. In such real-world scenarios, robots
are frequently required to navigate in complex, dynamic, and uncer-

tain environments. When operating in these environments, traditional robot
navigation systems, which plan and follow the shortest paths computed on static
maps, may lead the robot to perform sub-optimal behaviors in practice.

In this thesis, we investigated four distinct problems that address robot nav-
igation in diverse real-world scenarios. We presented different approaches to
making decisions for navigation in such environments that go beyond planning
the shortest path. We proposed solutions to deal with and reason about the
several sources of uncertainty characterizing navigation in the real world. We
took into account the uncertainty in the robot’s belief about the world, its ac-
tion execution, and sensor measurements to make decisions for navigation. We
addressed navigation in partially observed environments by making predictions
at unknown locations and planning in the belief space defined by the predictions.
We additionally investigated solutions that allow robots to tackle continuously
changing and highly dynamic scenarios by performing safe and predictable be-
haviors for avoiding collisions. We presented approaches to automatically adapt
and improve the robot’s behaviors according to the user’s preferences, the degree
of uncertainty, and the estimated characteristics or configurations of the envi-
ronments. We achieve this by exploiting background information that is either
available a priori, such as satellite images and publicly available maps of the en-
vironment, or collected by the robot during navigation, for example, experienced
paths. We also proposed approaches to actively gather relevant information for
improving navigation over time, such as the observations about the configuration
of the environment or the onboard perception of the robot in different regions.

139

7.1. Short summary of the key contributions

7.1 Short summary of the key contributions

The key contributions of this thesis are novel solutions to perform robot navi-
gation in complex, dynamic, and uncertain environments. We summarize these
contributions in the following.

The first contribution of this thesis is a solution for making decisions to nav-
igate on a road network under large position uncertainty. We build a stochastic
process that takes explicitly into account the uncertainty about the robot’s ac-
tions and position while being computationally tractable. We use a localization
prior to estimate how the robot’s belief propagates into the network and make
safe decisions accordingly. Following this approach, the robot is able to select
actions based on the degree of uncertainty and, thus, to reduce the number of
mistakes it makes when navigating with large position uncertainty.

The second contribution is a solution to generate behaviors that meet the
user’s preferences for navigating on factory floors. We collect the user’s pref-
erences about the robot’s experiences and reuse the favorite paths to guide
the planning process in new but similar situations. We also incorporate an
uncertainty-aware trajectory predictor for avoiding unforeseen dynamic obstacles
in this framework. Our approach allows the robot to perform safe and predictable
paths by reproducing and generalizing preferred behaviors without requiring ex-
perts to define norms or tune its parameters.

The third contribution of this thesis is an approach to automatically reduce
the detrimental factors due to the terrains that affect navigation in unknown
outdoor environments. We use robot’s onboard observations during navigation
and an aerial image of the environment to learn a probabilistic model of these
factors. We exploit this model to plan paths that trade off the exploration of
unknown promising regions and the exploitation of known low-cost areas. Our
approach leads the robot to navigate along paths following on terrains on which
it experiences reduced vibration intensities or power consumption over time.

The fourth contribution is a solution to navigation over extended periods of
time in environments where the traversability changes following patterns. We use
the robot’s observations during traversal to incrementally model these patterns
and to predict the traversability in unobserved regions. We exploit the predictions
to plan paths that minimize the travel distance while maximizing the information
gain of visiting unknown locations. Following our approach, the robot is able to
follow paths along which it encounters a reduced number of blocked passages and,
thus, to navigate along shorter paths over time.

140

7. Conclusion

7.2 Future work
The work and the promising results presented in this thesis open different direc-
tions for future research.

An interesting direction for future work would be to investigate different rep-
resentations of the uncertainty that are compact, informative, and tractable for
planning. In this thesis, we have recourse often to Gaussian assumptions and
approximations. However, these representations may be inadequate to describe
and model well complex phenomena. Whereas, more involved models require a
larger representation space and, thus, may dramatically increase the complexity
of the planning problem. One possible idea to investigate is to learn embed-
dings of distributions that preserve the statistical features by using data-driven
approaches.

We investigated approaches to improve navigation in a specific environment
where the robot navigates over extended periods of time by meeting the user’s
preferences, by discovering low-cost regions, or by avoiding blocked passages. One
interesting direction is to investigate approaches that transfer the models and the
preferences learned in one environment to new similar environments.

Another interesting future work would be to investigate a unique general rep-
resentation for planning that allows for taking into account seamlessly different
sources of uncertainty, exploiting prior information, and actively gather new in-
formation when needed.

We presented solutions for making decisions in unknown and uncertain en-
vironments. We achieve this by explicitly modeling the observations collected
during navigation, making predictions at unobserved regions, and planning paths
in the belief space defined by the predictions. A different approach for solving
this kind of problems that would be interesting to investigate is reinforcement
learning. Reinforcement learning is a framework that formulates these problems
as a unique control process and solves them by generating policies that maximize
a reward function over time.

An interesting extension of the work presented in this thesis is to use similar
solutions for multi-robot navigation systems. Multi-robot systems have the ca-
pability to parallelize information gathering and to synthesize observations from
all robots. Therefore, using such systems could speed-up the exploration of the
environment and, accordingly, the improvement of the robots’ navigation behav-
ior.

141

Bibliography

[1] A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato. FIRM: Feed-
back Controller-based Information-state RoadMap–A Framework for Mo-
tion Planning Under Uncertainty. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2011.

[2] A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato. FIRM: Sampling-
based Feedback Motion Planning Under Motion Uncertainty and Imperfect
Measurements. Intl. Journal of Robotics Research (IJRR), 33(2):268–304,
2014.

[3] A. Ahmadi, L. Nardi, N. Chebrolu, and C. Stachniss. Visual Servoing-
based Navigation for Monitoring Row-Crop Fields. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2020.

[4] K. J. Astrom. Optimal Control of Markov Processes with Incomplete State
Information. Journal of Mathematical Analysis and Applications, 10(1):174–
205, 1965.

[5] H. Bai, D. Hsu, and W.S. Lee. Integrated Perception and Planning in
the Continuous Space: A POMDP Approach. Intl. Journal of Robotics
Research (IJRR), 33(9):1288–1302, 2014.

[6] Ruzena Bajcsy. Active Perception. Proceedings of the IEEE, 76(8):966–
1005, 1988.

[7] O. Bartlett, C. Gurau, L. Marchegiani, and I. Posner. Enabling Intelligent
Energy Management for Robots Using Publicly Available Maps. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2016.

[8] R. Bellman. A Markovian Decision Process. Journal of Mathematics and
Mechanics, pages 679–684, 1957.

[9] O. Bengtsson and A. Baerveldt. Robot Localization Based on Scan-
Matching – Estimating the Covariance Matrix for the IDC Algorithm. Jour-
nal on Robotics and Autonomous Systems (RAS), 44(1):29–40, 2003.

143

Bibliography

[10] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun. Learning Motion
Patterns of People for Compliant Robot Motion. Intl. Journal of Robotics
Research (IJRR), 24(1):31–48, 2005.

[11] L. Berczi, I. Posner, and T. Barfoot. Learning to Assess Terrain from
Human Demonstration Using an Introspective Gaussian-Process Classifier.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2015.

[12] D. Berenson, P. Abbeel, and K. Goldberg. A Robot Path Planning Frame-
work that Learns from Experience. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), pages 3671–3678, 2012.

[13] J. Van Den Berg, P. Abbeel, and K. Goldberg. LQG-MP: Optimized Path
Planning for Robots with Motion Uncertainty and Imperfect State Infor-
mation. Intl. Journal of Robotics Research (IJRR), 30(7):895–913, 2011.

[14] J. Van Den Berg, S. Patil, and R. Alterovitz. Motion Planning Under Uncer-
tainty Using Iterative Local Optimization in Belief Space. Intl. Journal of
Robotics Research (IJRR), 31(11):1263–1278, 2012.

[15] S. Bhattacharya, R. Ghrist, and V. Kumar. Persistent Homology for Path
Planning in Uncertain Environments. IEEE Trans. on Robotics (TRO),
31(3):578–590, 2015.

[16] A. Bhattacharyya. On a Measure of Divergence Between Two Statistical
Populations Defined by Their Probability Distributions. Bull. Calcutta
Math. Soc., 35:99–109, 1943.

[17] J. Binney, A. Krause, and G. Sukhatme. Optimizing Waypoints for Mon-
itoring Spatiotemporal Phenomena. Intl. Journal of Robotics Research
(IJRR), 32(8):873–888, 2013.

[18] J. Binney and G. Sukhatme. Branch and Bound for Informative Path
Planning. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), pages 2147–2154, 2012.

[19] Z. Bnaya, A. Felner, D. Fried, O. Maksin, and S.E. Shimony. Repeated-task
Canadian traveler problem. In Proc. of the Intl. Symposium on Combina-
torial Search (SoCS), 2011.

[20] S. Bopardikar, B. Englot, and A. Speranzon. Robust Belief Roadmap:
Planning under Uncertain and Intermittent Sensing. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2014.

144

Bibliography

[21] J. Bruce and M. Veloso. Real-Time Randomized Path Planning for Robot
Navigation. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), volume 3, pages 2383–2388, 2002.

[22] A. Bry and N. Roy. Rapidly-exploring Random Belief Trees for Motion
Planning Under Uncertainty. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), pages 723–730, 2011.

[23] F.M. Carlucci, L. Nardi, L. Iocchi, and D. Nardi. Explicit Representation
of Social Norms for Social Robots. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), pages 4191–4196, 2015.

[24] N. Chebrolu, P. Lottes, T. Laebe, and C. Stachniss. Robot Localization
Based on Aerial Images for Precision Agriculture Tasks in Crop Fields. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2019.

[25] X. Chen, T. Läbe, L. Nardi, J. Behley, and C. Stachniss. Learning an
Overlap-based Observation Model for 3D LiDAR Localization. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2020.

[26] E. Choi and C. Lee. Feature Extraction based on the Bhattacharyya Dis-
tance. Pattern Recognition, 36(8):1703–1709, 2003.

[27] C. Chow and C. Liu. Approximating Discrete Probability Distributions
with Dependence Trees. IEEE Trans. on Information Theory, 14(3):462–
467, 1968.

[28] J.J. Chung, A. Smith, R. Skeele, and G. Hollinger. Risk-aware Graph Search
with Dynamic Edge Cost Discovery. Intl. Journal of Robotics Research
(IJRR), 2018.

[29] D. Coleman, I.A. Sucan, M. Moll, K. Okada, and N. Correll. Experience-
Based Planning with Sparse Roadmap Spanners. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2015.

[30] G. Coleman and H. Andrews. Image Segmentation by Clustering. Proceed-
ings of the IEEE, 67(5):773–785, 1979.

[31] D. Cox and S. John. A Statistical Method for Global Optimization. In
Proc. of the IEEE Intl. Conf. on Systems, Man, and Cybernetics (SMC),
1992.

[32] M. Cummins and P. Newman. FAB-MAP: Probabilistic Localization and
Mapping in the Space of Appearance. Intl. Journal of Robotics Research
(IJRR), 27(6):647–665, 2008.

145

Bibliography

[33] C. Cunningham, M. Ono, I. Nesnas, J. Yen, and W. Whittaker. Locally-
Adaptive Slip Prediction for Planetary Rovers Using Gaussian Processes.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2017.

[34] V. Delsart and T. Fraichard. Navigating Dynamic Environments with Tra-
jectory Deformation. Journal of Computing and Information Technology,
17(1):27–36, 2009.

[35] E. Dijkstra. A Note on Two Problems in Connexion with Graphs. Nu-
merische Mathematik, 1(1):269–271, 1959.

[36] F. Del Duchetto, A. Kucukyilmaz, L. Iocchi, and M. Hanheide. Do Not
Make the Same Mistakes Again and Again: Learning Local Recovery Poli-
cies for Navigation from Human Demonstrations. IEEE Robotics and Au-
tomation Letters (RA-L), 3(4):4084–4091, 2018.

[37] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia. Incorporating
Second-Order Functional Knowledge for Better Option Pricing. In Proc. of
the Advances in Neural Information Processing Systems (NIPS), 2001.

[38] D. Ellis, E. Sommerlade, and I. Reid. Modelling Pedestrian Trajectory
Patterns with Gaussian Processes. In Proc. of the Intl. Conf. on Computer
Vision (ICCV) Workshops, pages 1229–1234, 2009.

[39] P. Eyerich, T. Keller, and M. Helmert. High-quality Policies for the Cana-
dian Traveler’s Problem. In Proc. of the Conf. on Advancements of Artificial
Intelligence (AAAI), 2010.

[40] J. Farrell. GNSS Aided Navigation & Tracking: Inertially Augmented Or
Autonomous. American Literary Press Baltimore, MD, 2007.

[41] J.P. Fentanes, I. Gould, T. Duckett, S. Pearson, and G. Cielniak. 3-D Soil
Compaction Mapping Through Kriging-Based Exploration With a Mobile
Robot. IEEE Robotics and Automation Letters (RA-L), 3(4):3066–3072,
2018.

[42] J.P. Fentanes, B. Lacerda, T. Krajník, N. Hawes, and M. Hanheide. Now
or later? Predicting and Maximising Success of Navigation Actions from
Long-Term Experience. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), pages 1112–1117, 2015.

[43] L. Fermin-Leon, J. Neira, and J. A. Castellanos. Path Planning in
Graph SLAM Using Expected Uncertainty. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), pages 4594–4601,
2016.

146

Bibliography

[44] G. Floros, B. van der Zander, and B Leibe. Openstreetslam: Global Vehicle
Localization using Openstreetmaps. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2013.

[45] D. Fox, W. Burgard, and S. Thrun. The Dynamic Window Approach to
Collision Avoidance. IEEE Journal of Robotics and Automation, 4(1):23–33,
1997.

[46] D. Fox, W. Burgard, and S. Thrun. Active Markov Localization for Mobile
Robots. Journal on Robotics and Autonomous Systems (RAS), 25(3-4):195–
207, 1998.

[47] D. Fried, S. Shimony, A. Benbassat, and C. Wenner. Complexity of Cana-
dian Traveler Problem Variants. Theoretical Computer Science, 487:1–16,
2013.

[48] K. Fukunaga and L. Hostetler. The Estimation of the Gradient of a Den-
sity Function, With Applications in Pattern Recognition. IEEE Trans. on
Information Theory, 21(1):32–40, 1975.

[49] C. Fulgenzi, C. Tay, A. Spalanzani, and C. Laugier. Probabilistic Naviga-
tion in Dynamic Environment Using Rapidly-exploring Random Trees and
Gaussian Processes. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), pages 1056–1062, 2008.

[50] P. Furgale, P. Krüsi, F. Pomerleau, U. Schwesinger, F. Colas, and R. Sieg-
wart. There and Back Again–Dealing with Highly-dynamic Scenes and
Long-term Change during Topological/Metric Route Following. In Work-
shop on Modelling, Estimation, Perception, and Control of All Terrain
Mobile Robots, 2014.

[51] P.T. Furgale and T.D. Barfoot. Visual Teach and Repeat for Long-range
Rover Autonomy. Journal of Field Robotics (JFR), 27:534–560, 2010.

[52] C. Furtlehner, J.M. Lasgouttes, and D. de La Fortelle. A Belief Propagation
Approach to Traffic Prediction using Probe Vehicles. In IEEE Trans. on
Intelligent Transportation Systems (ITS), 2007.

[53] P. Giguere and G. Dudek. Clustering Sensor Data for Autonomous Terrain
Identification using Time-dependency. Autonomous Robots, 26(2-3):171–
186, 2009.

[54] Y. Girdhar and G. Dudek. Modeling Curiosity in a Mobile Robot for
Long-term Autonomous Exploration and Monitoring. Autonomous Robots,
40(7):1267–1278, 2016.

147

Bibliography

[55] K. Haigh and M. Veloso. Learning Situation-dependent Costs: Improving
Planning from Probabilistic Robot Execution. Journal on Robotics and
Autonomous Systems (RAS), 29(2-3):145–174, 1999.

[56] M. Hentschel and B. Wagner. Autonomous Robot Navigation based on
Openstreetmap Geodata. In IEEE Trans. on Intelligent Transportation
Systems (ITS), 2010.

[57] G. Hollinger, B. Englot, F. Hover, U. Mitra, and G. Sukhatme. Active Plan-
ning for Underwater Inspection and the Benefit of Adaptivity. Intl. Jour-
nal of Robotics Research (IJRR), 32(1):3–18, 2013.

[58] G. Hollinger and G. Sukhatme. Sampling-based Motion Planning for
Robotic Information Gathering. In Proc. of Robotics: Science and Sys-
tems (RSS), volume 3, 2013.

[59] A. Hornung, H. Strasdat, M. Bennewitz, and W. Burgard. Learning Ef-
ficient Policies for Vision-based Navigation. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2009.

[60] R. Howard. Dynamic Programming and Markov Processes. MIT Press,
1964.

[61] V. Indelman, L. Carlone, and F. Dellaert. Planning in the Continuous
Domain: A Generalized Belief Space Approach for Autonomous Navigation
in Unknown Environments. Intl. Journal of Robotics Research (IJRR),
34(7):849–882, 2015.

[62] N. Jetchev and M. Toussaint. Trajectory Prediction: Learning to Map
Situations to Robot Trajectories. In Proc. of the Intl. Conf. on Machine
Learning (ICML), pages 449–456, 2009.

[63] N. Jetchev and M. Toussaint. Trajectory Prediction in Cluttered Voxel
Environments. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), pages 2523–2528, 2010.

[64] X. Jiang and M. Kallmann. Learning Humanoid Reaching Tasks in Dy-
namic Environments. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), pages 1148–1153, 2007.

[65] L. Kaelbling, M. Littman, and A. Cassandra. Planning and Acting in Par-
tially Observable Stochastic Domains. Artificial Intelligence, 101(1-2):99–
134, 1998.

148

Bibliography

[66] R.E. Kalman. A New Approach to Linear Filtering and Prediction Prob-
lems. Transactions of the ASME – Journal of Basic Engineering, 82:35–45,
1960.

[67] S. Karaman and E. Frazzoli. Sampling-based Algorithms for Optimal Mo-
tion Planning. Intl. Journal of Robotics Research (IJRR), 30(7):846–894,
2011.

[68] H. Kawano. Study of Path Planning Method for Under-actuated Blimp-type
UAV in Stochastic Wind Disturbance via Augmented-MDP. In Proc. of
the IEEE/ASME Intl. Conf. on Advanced Intelligent Mechatronics (AIM),
2011.

[69] M. Keller, F. Hoffmann, C. Hass, T. Bertram, and A. Seewald. Planning of
Optimal Collision Avoidance Trajectories with Timed Elastic Bands. IFAC
Proceedings Volumes, 47(3):9822–9827, 2014.

[70] R. Kirby, R. Simmons, and J. Forlizzi. Companion: A Constraint-
optimizing Method for Person-acceptable Navigation. In Proc. of the IEEE
Intl. Symp. on Robot and Human Interactive Communication (RO-MAN),
pages 607–612, 2009.

[71] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo Planning. In
Proc. of the Europ. Conf. on Machine Learning (ECML), pages 282–293,
2006.

[72] S. Koenig and M. Likhachev. Fast Replanning for Navigation in Unknown
Terrain. IEEE Trans. on Robotics (TRO), 21(3):354–363, 2005.

[73] S. Koenig, M. Likhachev, and D. Furcy. Lifelong Planning A*. Artificial
Intelligence, 155(1-2):93–146, 2004.

[74] D. Koller, N. Friedman, and F. Bach. Probabilistic Graphical Models: Prin-
ciples and Techniques. MIT press, 2009.

[75] K. Konolige, E. Marder-Eppstein, and B. Marthi. Navigation in Hybrid
Metric-topological Maps. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2011.

[76] T. Krajník, J.P. Fentanes, J.M. Santos, and T. Duckett. Fremen: Frequency
Map Enhancement for Long-Term Mobile Robot Autonomy in Changing
Environments. IEEE Trans. on Robotics (TRO), 33(4):964–977, 2017.

[77] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimal Sen-
sor Placements: Maximizing Information while Minimizing Communication

149

Bibliography

Cost. In Proc. of the Intl. Conf. on Information Processing in Sensor Net-
works, pages 2–10, 2006.

[78] A. Krause, A. Singh, and C. Guestrin. Near-Optimal Sensor Placements in
Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies.
Journal of Machine Learning Research, 9:235–284, 2008.

[79] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard. Socially Compliant
Mobile Robot Navigation via Inverse Reinforcement Learning. Intl. Jour-
nal of Robotics Research (IJRR), 2016.

[80] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch. Human-aware Robot
Navigation: A Survey. Journal on Robotics and Autonomous Systems
(RAS), 61(12):1726–1743, 2013.

[81] F. Kschischang, B. Frey, and H.A. Loeliger. Factor Graphs and the Sum-
Product Algorithm. IEEE Trans. on Information Theory, 47(2):498–519,
2001.

[82] T. Kucner, J. Saarinen, M. Magnusson, and A. Lilienthal. Conditional
Transition Maps: Learning Motion Patterns in Dynamic Environments.
In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), pages 1196–1201, 2013.

[83] M. Kuderer, H. Kretzschmar, and W. Burgard. Teaching Mobile Robots
to Cooperatively Navigate in Populated Environments. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pages
3138–3143, 2013.

[84] J. Kuffner and S. LaValle. RRT-Connect: An Efficient Approach to Single-
query Path Planning. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), volume 2, pages 995–1001, 2000.

[85] B. Kuipers and Y. Byun. A Robust, Qualitative Method for Robot Spatial
Learning. In Proc. of the Conf. on Advancements of Artificial Intelligence
(AAAI), 1988.

[86] B. Kuipers, J. Modayil, P. Beeson, M. MacMahon, and F. Savelli. Local
Metrical and Global Topological Maps in the Hybrid Spatial Semantic Hier-
archy. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
volume 5, pages 4845–4851, 2004.

[87] S. Kullback and R. Leibler. On Information and Sufficiency. Annals of
Mathematical Statistics, 22(1):79–86, 1951.

150

Bibliography

[88] R. Kümmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard. A
Navigation System for Robots Operating in Crowded Urban Environments.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2013.

[89] R. Kümmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard. Au-
tonomous Robot Navigation in Highly Populated Pedestrian Zones. Journal
of Field Robotics (JFR), 2014.

[90] T. Lang, C. Plagemann, and W. Burgard. Adaptive Non-Stationary Kernel
Regression for Terrain Modeling. In Proc. of Robotics: Science and Systems
(RSS), 2007.

[91] S. LaValle. Rapidly-exploring Random Trees: A New Tool for Path Plan-
ning. Technical report, 1998.

[92] S. LaValle. Motion Planning. IEEE Robotics and Automation Magazine
(RAM), 18(2):108–118, 2011.

[93] S. LaValle and J. Kuffner. Rapidly-exploring Random Trees: Progress and
Prospects. Technical report, 2000.

[94] A. Levin and R. Szeliski. Visual Odometry and Map Correlation. In Proc. of
the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
volume 1, 2004.

[95] G. Lidoris, F. Rohrmuller, D. Wollherr, and M. Buss. The Autonomous City
Explorer (ACE) project – Mobile Robot Navigation in Highly Populated
Urban Environments. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2009.

[96] F. Liebisch, J. Pfeifer, R. Khanna, P. Lottes, C. Stachniss, T. Falck,
S. Sander, R. Siegwart, A. Walter, and E. Galceran. Flourish – A Robotic
Approach for Automation in Crop Management. In In Proc. of the Work-
shop für Computer-Bildanalyse und unbemannte autonom fliegende Systeme
in der Landwirtschaft, 2016.

[97] M. Likhachev and R. Arkin. Spatio-temporal Case-based Reasoning for
Behavioral Selection. In Proc. of the IEEE Intl. Conf. on Robotics & Au-
tomation (ICRA), volume 2, pages 1627–1634, 2001.

[98] Z.W. Lim, D. Hsu, and W.S. Lee. Adaptive Informative Path Planning in
Metric Spaces. Intl. Journal of Robotics Research (IJRR), 35(5):585–598,
2016.

151

Bibliography

[99] Z.W. Lim, D. Hsu, W.S. Lee, andW. Sun. Shortest Path under Uncertainty:
Exploration versus Exploitation. In Proc. of the Conf. on Uncertainty in
Artificial Intelligence (UAI), 2017.

[100] M. Littman, T. Dean, and L Kaelbling. On the Complexity of Solving
Markov Decision Problems. In Proc. of the Conf. on Uncertainty in Artificial
Intelligence (UAI), pages 394–402, 1995.

[101] Y. Luo, P. Cai, A. Bera, D. Hsu, W.S. Lee, and D. Manocha. PORCA:
Modeling and Planning for Autonomous Driving among many Pedestrians.
IEEE Robotics and Automation Letters (RA-L), 3(4):3418–3425, 2018.

[102] K. Ma, L. Liu, and G. Sukhatme. Informative Planning and Online Learn-
ing with Sparse Gaussian Processes. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2017.

[103] R. MacDonald and S. Smith. Active Sensing for Motion Planning in Un-
certain Environments via Mutual Information Policies. Intl. Journal of
Robotics Research (IJRR), 38(2-3):146–161, 2019.

[104] D. MacKay. Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, 2004.

[105] R. Marchant and F. Ramos. Bayesian Optimisation for Informative Con-
tinuous Path Planning. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2014.

[106] B. Matérn. Spatial Variation, volume 36. Springer Science & Business
Media, 2013.

[107] G. Matheron. Principles of Geostatistics. Economic Geology, 58(8):1246–
1266, 1963.

[108] M. Mazuran, C. Sprunk, W. Burgard, and G.D. Tipaldi. LexTOR: Lexico-
graphic Teach Optimize and Repeat Based on User Preferences. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), Seattle, 2015.

[109] A. Meliou, A. Krause, C. Guestrin, and J. Hellerstein. Nonmyopic Infor-
mative Path Planning in Spatio-temporal Models. In Proc. of the Conf. on
Advancements of Artificial Intelligence (AAAI), volume 10, pages 16–7,
2007.

[110] T. Meriçli, M. Veloso, and H. L. Akın. A Case-Based Approach to Mobile
Push-Manipulation. Journal of Intelligent and Robotic Systems (JIRS),
80(1):189–203, 2015.

152

Bibliography

[111] W. Mou and A. Kleiner. Online Learning Terrain Classification for Adaptive
Velocity Control. In Proc. of the IEEE Conf. on Safety, Security, and
Rescue Robotics (SSRR), pages 1–7, 2010.

[112] E. Murphy and P. Newman. Planning Most-Likely Paths from Overhead
Imagery. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2010.

[113] L. Murphy and P. Newman. Risky Planning on Probabilistic Costmaps for
Path Planning in Outdoor Environments. IEEE Trans. on Robotics and
Automation, 29(2):445–457, 2013.

[114] L. Nardi and L. Iocchi. Representation and Execution of Social Plans
through Human-Robot Collaboration. In International Conference on So-
cial Robotics, pages 266–275, 2014.

[115] L. Nardi and C. Stachniss. Experience-Based Path Planning for Mo-
bile Robots Exploiting User Preferences. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2016.

[116] L. Nardi and C. Stachniss. User Preferred Behaviors for Robot Navigation
Exploiting Previous Experiences. Journal on Robotics and Autonomous
Systems (RAS), 97, 2017.

[117] L. Nardi and C. Stachniss. Towards Uncertainty-Aware Path Planning for
Navigation on Road Networks Using Augmented MDPs. In 10th Work-
shop on Planning, Perception and Navigation for Intelligent Vehicles at the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2018.

[118] L. Nardi and C. Stachniss. Actively Improving Robot Navigation On
Different Terrains Using Gaussian Process Mixture Models. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2019.

[119] L. Nardi and C. Stachniss. Uncertainty-Aware Path Planning for Naviga-
tion on Road Networks Using Augmented MDPs. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2019.

[120] L. Nardi and C. Stachniss. Long-Term Robot Navigation in Indoor Envi-
ronments Estimating Patterns in Traversability Changes. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2020.

[121] R.M. Neal. Bayesian Learning for Neural Networks, volume 118. 2012.

[122] E. Nikolova and D.R. Karger. Route Planning under Uncertainty: The
Canadian Traveller Problem. In Proc. of the Conf. on Advancements of
Artificial Intelligence (AAAI), pages 969–974, 2008.

153

Bibliography

[123] N. Nilsson. Shakey the Robot. Technical report, SRI International, 1984.

[124] S. O’Callaghan and F. Ramos. Gaussian Process Occupancy Maps for
Dynamic Environments. In Proc. of the Intl. Sym. on Experimental Robotics
(ISER), pages 791–805, 2016.

[125] E. Olson. AprilTag: A Robust and Flexible Visual Fiducial System. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2011.

[126] P. Ondrúška, C. Gurău, L. Marchegiani, C. Tong, and I. Posner. Sched-
uled Perception for Energy-Efficient Path Following. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2015.

[127] K. Otsu, M. Ono, T. Fuchs, I. Baldwin, and T. Kubota. Autonomous
Terrain Classification with Co-and Self-training Approach. IEEE Robotics
and Automation Letters (RA-L), 1(2):814–819, 2016.

[128] C. Papadimitriou and J. Tsitsiklis. The Complexity of Markov Decision
Processes. Mathematics of Operations Research, 12(3):441–450, 1987.

[129] C. Papadimitriou and M. Yannakakis. Shortest Paths Without a Map.
Theoretical Computer Science, 84(1):127–150, 1991.

[130] A. Patel. http://theory.stanford.edu/~amitp/GameProgramming.

[131] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Elsevier, 2014.

[132] D. Perea-Ström, I. Bogoslavskyi, and C. Stachniss. Robust Exploration and
Homing for Autonomous Robots. In Journal on Robotics and Autonomous
Systems (RAS), 2016.

[133] A. Pereira, J. Binney, B. Jones, M. Ragan, and G. Sukhatme. Toward Risk
Aware Mission Planning for Autonomous Underwater Vehicles. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pages
3147–3153, 2011.

[134] M. Pfeiffer, U. Schwesinger, H. Sommer, E. Galceran, and R. Siegwart. Pre-
dicting Actions to Act Predictably: Cooperative Partial Motion Planning
with Maximum Entropy Models. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), pages 2096–2101, 2016.

[135] M. Phillips, B. Cohen, S. Chitta, and M. Likhachev. E-Graphs: Bootstrap-
ping Planning with Experience Graphs. In Proc. of Robotics: Science and
Systems (RSS), 2012.

154

Bibliography

[136] R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Perez. Belief Space Plan-
ning Assuming Maximum Likelihood Observations. In Proc. of Robotics:
Science and Systems (RSS), 2010.

[137] M. Popovic, G. Hitz, J. Nieto, I. Sa, R. Siegwart, and E. Galceran. Online
Informative Path Planning for Active Classification Using UAVs. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2017.

[138] S. Prentice and N. Roy. The Belief Roadmap: Efficient Planning in Belief
Space by Factoring the Covariance. Intl. Journal of Robotics Research
(IJRR), 28(11-12):1448–1465, 2009.

[139] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, 1994.

[140] S. Quinlan and O. Khatib. Elastic Bands: Connecting Path Planning
and Control. In Proc. of the IEEE Intl. Conf. on Robotics & Automa-
tion (ICRA), pages 802–807, 1993.

[141] A. Ranganathan, M. Kaess, and F. Dellaert. Loopy SAM. In Proc. of the
Intl. Conf. on Artificial Intelligence (IJCAI), 2007.

[142] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[143] R. Ros, R. L. De Màntaras, J. L. Arcos, and M. Veloso. Team Playing
Behavior in Robot Soccer: A Case-based Reasoning Approach. In Proc. of
the Intl. Conf. on Case-Based Reasoning, pages 46–60, 2007.

[144] C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram. Tra-
jectory Modification Considering Dynamic Constraints of Autonomous
Robots. In Proc. of German Conf. on Robotics (ROBOTIK), pages 1–6,
2012.

[145] N. Roy. Finding Approximate POMDP solutions Through Belief Compres-
sion. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 2003.

[146] N. Roy and S. Thrun. Coastal Navigation with Mobile Robots. In Proc. of
the Advances in Neural Information Processing Systems (NIPS), volume 12,
pages 1043–1049, 1999.

[147] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Malaysia, Pearson Education Limited, 2016.

155

Bibliography

[148] R. Schirmer, P. Biber, and C. Stachniss. Efficient Path Planning in Be-
lief Space for Safe Navigation. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2017.

[149] R. Senanayake, S. O’Callaghan, and F. Ramos. Learning Highly Dynamic
Environments with Stochastic Variational Inference. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2017.

[150] D. Silver, A. Bagnell, and A. Stentz. High Performance Outdoor Navigation
from Overhead Data Using Imitation Learning. Proc. of Robotics: Science
and Systems (RSS), 2008.

[151] D. Silver and J. Veness. Monte-Carlo Planning in Large POMDPs. In
Proc. of the Advances in Neural Information Processing Systems (NIPS),
2010.

[152] A. Somani, N. Ye, D. Hsu, and W. S. Lee. DESPOT: Online POMDP Plan-
ning with Regularization. In Proc. of the Advances in Neural Information
Processing Systems (NIPS), 2013.

[153] J. R. Souza, R. Marchant, L. Ott, D. F. Wolf, and F. Ramos. Bayesian
Optimisation for Active Perception and Smooth Navigation. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2014.

[154] C. Sprunk, G. D. Tipaldi, A. Cherubini, and W. Burgard. Lidar-based
Teach-and-repeat of Mobile Robot Trajectories. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), pages 3144–3149,
2013.

[155] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian Process Op-
timization in the Bandit Setting: No Regret and Experimental Design. In
Proc. of the Intl. Conf. on Machine Learning (ICML), 2010.

[156] C. Stachniss and W. Burgard. An Integrated Approach to Goal-directed
Obstacle Avoidance under Dynamic Constraints for Dynamic Environ-
ments. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), pages 508–513, 2002.

[157] C. Stachniss and W. Burgard. Mobile Robot Mapping and Localization in
Non-Static Environments. In Proc. of the National Conference on Artificial
Intelligence (AAAI), pages 1324–1329, 2005.

[158] C. Stachniss, C. Plagemann, and A.J. Lilienthal. Gas Distribution Modeling
using Sparse Gaussian Process Mixtures. Autonomous Robots, 26:187ff,
2009.

156

Bibliography

[159] I. Şucan, M. Moll, and L. Kavraki. The Open Motion Planning Library.
IEEE Robotics and Automation Magazine (RAM), 19(4):72–82, 2012.

[160] B. Suger, B. Steder, and W. Burgard. Terrain-Adaptive Obstacle Detection.
In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2016.

[161] Y.T. Tan, A. Kunapareddy, and M. Kobilarov. Gaussian Process Adaptive
Sampling using the Cross-Entropy Method for Environmental Sensing and
Monitoring. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2018.

[162] S. Thrun. Learning Metric-Topological Maps for Indoor Mobile Robot Nav-
igation. Artificial Intelligence, 99(1):21–71, 1998.

[163] P. Trautman, J. Ma, R. Murray, and A. Krause. Robot Navigation in
Dense Human Crowds: The Case for Cooperation. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), pages 2153–2160, 2013.

[164] V. Tresp. Mixtures of Gaussian Processes. In Proc. of the Advances in
Neural Information Processing Systems (NIPS), 2001.

[165] F. Tsang, R. Macdonald, and S. Smith. Learning Motion Planning Policies
in Uncertain Environments through Repeated Task Executions. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2019.

[166] C. Urmson, J. Anhalt, A. Bagnell, C. Baker, R. Bittner, M.N. Clark,
J. Dolan, D. Duggins, T. Galatali, Chris C. Geyer, et al. Autonomous
Driving in Urban Environments: Boss and the Urban Challenge. Journal
of Field Robotics (JFR), 25(8):425–466, 2008.

[167] R. Valencia and J. Andrade-Cetto. Path Planning in Belief Space with
Pose SLAM. In Mapping, Planning and Exploration with Pose SLAM,
pages 53–87. Springer, 2018.

[168] A. Viseras, D. Shutin, and L. Merino. Online Information Gathering Using
Sampling-based Planners and GPs: an Information Theoretic Approach.
In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2017.

[169] O. Vysotska and C. Stachniss. Improving SLAM by Exploiting Build-
ing Information from Publicly Available Maps and Localization Priors.
Photogrammetrie – Fernerkundung – Geoinformation (PFG), 85(1):53–65,
2017.

157

Bibliography

[170] R. Wang, M. Veloso, and S. Seshan. Active Sensing Data Collection with
Autonomous Mobile Robots. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), 2016.

[171] S. Weiss, M. Achtelik, S. Lynen, M. Chli, and R. Siegwart. Real-Time
Onboard Visual-Inertial State Estimation and Self-Calibration of MAVs in
Unknown Environments. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2012.

[172] P. Whaite and F. Ferrie. Autonomous Exploration: Driven by Uncertainty.
IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI),
19(3):193–205, 1997.

[173] D. Wolf, G. Sukhatme, D. Fox, and W. Burgard. Autonomous Terrain
Mapping and Classification Using Hidden Markov Models. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2005.

[174] K.M. Wurm, R. Kümmerle, C. Stachniss, and W. Burgard. Improving
Robot Navigation in Structured Outdoor Environments by Identifying Veg-
etation from Laser Data. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2009.

[175] J. Yedidia, W. Freeman, and Y. Weiss. Generalized Belief Propagation. In
Proc. of the Advances in Neural Information Processing Systems (NIPS),
2001.

[176] B. Zhan and C. Noon. Shortest Path Algorithms: An Evaluation Using
Real Road Networks. Transportation Science, 32(1):65–73, 1998.

[177] B. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, A. Bagnell,
M. Hebert, A. Dey, and S. Srinivasa. Planning-based Prediction for Pedes-
trians. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), pages 3931–3936, 2009.

[178] F. Zimmermann, C. Eling, and H. Kuhlmann. Empirical Assessment of
Obstruction Adaptive Elevation Masks to Mitigate Site-dependent Effects.
GPS Solutions, 21(4):1695–1706, 2017.

[179] M. Zucker, J. Kuffner, and A. Bagnell. Adaptive Workspace Biasing for
Sampling-based Planners. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), pages 3757–3762, 2008.

158

List of Figures

1.1 Examples of real-world scenarios where mobile robots are deployed. 2
1.2 Overview of the structure of this thesis. 3

2.1 Example of factor graph, where the circles are the variable nodes
and the squares the factor node, and the message passing proce-
dure of the belief propagation algorithm to perform inference. . . 10

2.2 Gaussian process posterior computed from observations and func-
tions sampled accordingly. 12

2.3 Shortest path planning on a grid map. 13
2.4 RRT planning and its branch extension procedure to explore the

configuration space from the start position after a few iterations. . 15
2.5 Decision-making scheme of fully observable and partially observ-

able Markov decision process. 18

3.1 Robot navigation on a road network under large position uncertainty. 24
3.2 Our topo-metric representation of the environment combining a

grid map and a topological graph extracted from OpenStreetMap. 26
3.3 Informativeness of the observations to localize the robot. 29
3.4 Localizability map of the environment illustrated in Figure 3.2. . 30
3.5 Uncertainty-augmented state. 32
3.6 Posterior from an intersection. 34
3.7 Computing augmented state transitions. 36
3.8 Environment considered in the situation-aware action selection ex-

periment. 39
3.9 Mean and standard deviation of the that the robot takes to travel

to the goal in the environment illustrated in Figure 3.8. 39
3.10 Environment considered in the uncertainty-aware action selection

experiment. 41
3.11 Average travel time to reach the goal starting with different levels

of uncertainty in the environment illustrated in Figure 3.10. . . . 42

159

List of Figures

4.1 A KUKA KMR iiwa mobile manipulator deployed on a factory
floor where it shares the workspace with human operators. 50

4.2 Overview of our experience-based robot navigation system. 52
4.3 Our attractor representation of a local path. 55
4.4 Local situation descriptor. 56
4.5 Our planning approach exploits similar experienced paths at global

and local level to perform a new navigation task. 59
4.6 Exploration by relaxing the attractors of the experience illustrated

in Figure 4.5(b). 63
4.7 Robot navigates along the blue dotted path and observes another

agent moving along the red path. 64
4.8 Planning local deviations to avoid a collision with a dynamic ob-

stacle. 66
4.9 Planning global paths for a set of similar navigation tasks. 69
4.10 Planning local deviations to avoid unforeseen obstacles. 70
4.11 Performance comparison for planning using Bi-RRT and our ap-

proach. 73
4.12 Performance of our GP-based trajectory prediction model to pre-

dict the future trajectory of different people walking in a real-world
scenario compared to a linear constant-velocity model. 74

4.13 Performance of the different robot navigation systems in static
simulated environments. 75

4.14 Performance of the different robot navigation systems in simulated
environments populated by dynamic objects. 77

4.15 Our KUKA Youbot mobile robot equipped with two laser range
finders. 79

4.16 Examples of user-preferred behaviors for navigation in real world. 80
4.17 Robot navigates along a given path avoiding a human blocking its

way. 82
4.18 Trajectories of robot and human for similar situations in which the

robot avoids collisions with the human with our navigation system. 83

5.1 Robot navigation to reach a goal location following three different
paths on diverse terrains. 92

5.2 Modeling vibration intensities during robot navigation on two different
terrains. 94

5.3 GP mixture model of the vibration intensities on two different
terrains. 97

5.4 Overview of our procedure to compute the gating function of the
GP mixture model for modeling different terrains. 99

160

List of Figures

5.5 Examples of aerial images of the environment that we incorporate
as prior to speed up the learning process of the gating function. . 100

5.6 ReLU vs. softplus function to rectify the lower confidence bound
of the predictive distribution. 102

5.7 Workflow for actively improving robot navigation by exploring and
modeling the different terrains in the environment. 104

5.8 Our Clearpath Husky robotic platform that we used to conduct
the experiments in real outdoor environments. 106

5.9 Results of our approach improving robot navigation over time. . . 107
5.10 The environments and the navigation tasks considered for the ex-

periments on learning an accurate model of the environment. . . . 109
5.11 Difference of the vibrations intensity experienced by the robot dur-

ing navigation following different approaches to model the environ-
ment from the theoretical optimum. 110

5.12 The true vibration intensity models, and the mean and the vari-
ance predictions provided by our approach from robot’s observa-
tions after 25 runs. 111

6.1 Traversability change patterns on the topological map of an office. 118
6.2 Example topology and the graphical model of the joint probability

distribution over the edges. 121
6.3 Possible approximations of the joint probability distribution. . . . 122
6.4 Our factor graph model to approximate the joint probability dis-

tribution. 124
6.5 A topological map overlaying the grid map of our office used in

our experiments. 131
6.6 Average RMS error of the predictions for low and high correlated

environment configurations using different models. 132
6.7 Average distance traveled by the robot following our approach over

the number of runs. 133
6.8 Average distance traveled by the robot following different planning

approaches. 134

161

List of Tables

4.1 Statistics of the dynamic obstacle avoidance experiments. 77

5.1 Accuracy of the estimated vibration intensity models. 112

6.1 Description of the environments considered in our experimental
evaluation. 133

List of Algorithms

1 Discrete Markov localization . 9
2 Dijkstra’s path finding algorithm 14
3 Rapidly exploring random trees planning 16
4 Experience-based navigation to follow user’s preferences 58
5 Experience-based global path planning 60
6 Experience-based local path planning 61
7 Collecting examples from user feedback 62
8 Actively improving navigation on different terrains 103

163

	Introduction
	Main contributions
	Publications

	Basic techniques
	State estimation
	Extended Kalman filter
	Markov localization

	Probabilistic inference
	Factor graphs
	Gaussian process regression

	Path planning
	Shortest path planning
	Sampling-based planning

	Decision-making under uncertainty
	Markov decision process
	Partially observable Markov decision process

	I Navigation exploiting background knowledge
	Navigation under uncertainty exploiting localizability
	Navigation on road networks
	Robotic platform
	Topo-metric maps
	Markov localization
	MDP planning

	Uncertainty-aware planning on road networks
	Localizability
	Uncertainty-augmented MDP
	Uncertainty-augmented states
	Actions
	Transitions under position uncertainty
	Rewards under position uncertainty

	Solving augmented-MDPs
	Navigation following augmented-MDP policies

	Experimental evaluation
	Experimental setup and baseline
	Situation-aware action selection
	Uncertainty-aware action selection

	Towards real-world environments
	Possible extension to navigation with GNSS
	Related work
	Conclusion

	User-preferred navigation exploiting experiences
	Navigation on factory floors
	RobDREAM use case

	Experience-based navigation following user preferences
	System overview
	Database of experiences
	Attractor-based path representation
	Situation descriptors

	Experience-based path planning
	Global path planning
	Local path planning
	Collecting examples from user feedback
	Exploring new behaviors

	Dynamic obstacle avoidance
	GPs for trajectory modeling
	Detection of future collisions
	Planning for collision avoidance

	Experimental evaluation
	Experience-based planning
	Following user's preferences
	Performance analysis

	Trajectory prediction
	Navigation in simulation
	Static environments
	Dynamic environments

	Real robot navigation
	User-preferred behaviors
	Avoiding collision with people

	Related work
	Conclusion

	II Navigation with active information gathering
	Improving navigation exploring and modeling different terrains
	Modeling phenomena due to terrains
	Gaussian process model

	Actively improving navigation on different terrains
	Modeling different terrains
	GP mixture model
	Estimating the gating function from observations
	Incorporating aerial image in gating function

	Planning to improve navigation
	Trading off exploration and exploitation
	Actively improving navigation
	Navigation on different terrains over time

	Experimental evaluation
	Experimental setup
	Improving navigation over time
	Learning an accurate model of the environment
	Using aerial image for improving predictions

	Related work
	Conclusion

	Navigation estimating patterns in traversability changes
	Navigation with patterns in traversability changes
	Spatial patterns of change
	Problem definition and assumptions
	Modeling patterns of change and predicting traversability
	Independent variables approximation
	Chow-Liu tree approximation

	Improving navigation estimating patterns in traversability changes
	Estimating patterns in traversability changes
	Factor graph model
	Learning factors from observations
	Predicting edge traversability

	Planning exploiting traversability predictions
	Canadian traveler's problem
	Information-driven exploration
	Exploration-exploitation trade-off

	Experimental evaluation
	Experimental setup
	Predicting edge traversability
	Navigation exploiting predictions
	Planning performance comparison

	Related work
	Conclusion

	Conclusion
	Short summary of the key contributions
	Future work

