
Approximation Algorithms for
the Traveling Salesman Problem

DISSERTATION

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Xianghui Zhong

aus

Fujian

Bonn 2020

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Stefan Hougardy
2. Gutachter: Prof. Dr. Heiko Röglin
Tag der Promotion: 16.03.2021
Erscheinungsjahr: 2021

Abstract

The traveling salesman problem (TSP) is probably one of the best-studied problems in
discrete optimization. Given a complete weighted graph with n vertices, the task is
to find a tour of minimal length that visits every vertex exactly once. In this thesis
we will focus on two questions regarding the traveling salesman problem: Finding the
approximation ratio of the k-Opt and Lin-Kernighan algorithm and the integrality ratio
of the subtour LP.

The k-Opt and Lin-Kernighan algorithm are two of the most important local search
approaches for the Metric TSP. Both start with an arbitrary tour and make local
improvements in each step to get a shorter tour. In the first part of the thesis we
determine the exact approximation ratio

√
n
2 for the 2-Opt algorithm. Then we show

that for any fixed k ≥ 3 the approximation ratio of the k-Opt algorithm for Metric
TSP is O(k

√
n). Assuming the Erdős girth conjecture, we prove a matching lower bound

of Ω(k
√
n). Unconditionally, we obtain matching bounds for k = 3, 4, 6 and a lower

bound of Ω(n
2

3k−3). Our most general bounds depend on the values of a function from
extremal graph theory and are tight up to a factor logarithmic in the number of vertices
unconditionally. Moreover, all the upper bounds also apply to a parameterized version
of the Lin-Kernighan algorithm with appropriate parameters. Furthermore, we show

that the approximation ratio of k-Opt for Graph TSP is between Ω
(

log(n)
log log(n)

)
and

O

((
log(n)

log log(n)

)log2(9)+ε)
for all ε > 0. If the vertices of the instance can be embedded

into Rd such that the distances arise from the p-norm, we show that the approximation

ratio is Ω
(

log(n)
log log(n)

)
. For the (1,2)-TSP we prove that the exact approximation ratio

of the 3-Opt algorithm is 11
8 . We introduce a modified version of the k-Opt algorithm

for the (1,2)-TSP and show that it has for k = 3 an exact approximation ratio of
4
3 . The k-improv algorithm is the currently best approximation algorithm with respect
to approximation ratio for the (1,2)-TSP. We give a lower bound of 11

10 for the k-
improv algorithm for arbitrarily fixed k. This lower bound also carries over to the k-Opt
algorithm for the (1,2)-TSP.

Another useful tool to approximate the TSP is the subtour LP. Many approximation
algorithms use the optimal solution of the well-known LP relaxation. Although the exact
integrality ratio of the subtour LP is still unknown, it is conjectured to be 4

3 . In the
second part of the thesis we compute the exact integrality ratio for Rectilinear TSP
with up to 10 vertices. Based on the computation results we give lower bounds depending
on the number of vertices for several TSP variants and show that some of them are tight
under certain assumptions. We also investigate the concept of local optimality with
respect to integrality ratio and develop several algorithms to find instances with high
integrality ratio for Euclidean TSP. Moreover, we improve the upper bound on the
integrality ratio for s− t Path TSP to 1.5273.

3

Acknowledgements

I would like to express my gratitude towards everyone who supported me in the past
few years. First and foremost I want to thank both of my advisors Stefan Hougardy
and Heiko Röglin. Whenever I had a problem they were ready to help and give me
valuable advice. Through their joint effort and commitment I was granted funding
for my research. Additionally I would like to acknowledge the support they gave me
throughout my Bachelor and Master studies.

Also it was a pleasure to collaborate with Fabian Zaiser. Moreover, I would like
to thank Fabian Henneke and Yvonne Omlor for reading parts of the thesis. Last
but not least I would like to thank my colleagues with whom I had many discussions
on mathematics and other topics. They made my time as Ph.D. student a lot more
enjoyable.

I was financially supported by the Bonn International Graduate School.

4

Contents

1 Introduction 7
1.1 Previous Work . 8

1.1.1 Approximation Ratio of the k-Opt and Lin-Kernighan Algorithm . 8
1.1.2 Integrality Ratio of the Subtour LP 9

1.2 New Results . 10
1.2.1 Approximation Ratio of the k-Opt and Lin-Kernighan Algorithm . 10
1.2.2 Integrality Ratio of the Subtour LP 12

1.3 Structure of the Thesis . 14
1.4 Prelimilaries . 15

1.4.1 Basic Definitions and Properties 15
1.4.2 Traveling Salesman Problem . 17
1.4.3 k-Opt Algorithm . 17
1.4.4 k-Improv Algorithm . 18
1.4.5 Lin-Kernighan Algorithm . 19
1.4.6 Girth and Ex . 21
1.4.7 Linear Programming . 21
1.4.8 Subtour LP and Integrality Ratio 22
1.4.9 Structure of Euclidean Tours . 23
1.4.10 Karamata’s inequality . 23

2 Approximation Ratio of the k-Opt and Lin-Kernighan Algorithm 24
2.1 Exact Approximation Ratio of 2-Opt for Metric TSP 24

2.1.1 Upper Bound . 24
2.1.2 Lower Bound . 26

2.2 Approximation Ratio of k-Opt and Lin-Kernighan for Metric TSP . . . 28
2.2.1 Lower Bound . 28
2.2.2 Outline of Upper Bound . 30
2.2.3 Upper Bound . 32
2.2.4 Comparing the Lower and Upper Bound 41

2.3 Approximation Ratio of k-Opt for Graph TSP 43
2.3.1 Lower Bound . 43
2.3.2 Outline of Upper Bound . 45
2.3.3 Upper Bound . 47

2.4 Approximation Ratio of k-Opt for Euclidean TSP 51
2.5 Approximation Ratio of k-Opt for (1,2)-TSP 57

2.5.1 Lower Bound on the Approximation Ratio of the 2-Opt Algorithm 57
2.5.2 Approximation Ratio of the 3-Opt Algorithm 59
2.5.3 Approximation Ratio of the 3-Opt++ Algorithm 66
2.5.4 Lower Bound on the Approximation Ratio of the k-Improv and

k-Opt Algorithm . 69
2.6 A Polynomial Time Local Search Algorithm for Graph TSP 73

5

3 Integrality Ratio of the Subtour LP 76
3.1 Construction of Instances with Integrality Ratio Converging to 4

3 76
3.1.1 Construction . 76
3.1.2 Applications . 78

3.2 Computing the Exact Integrality Ratio for Rectilinear TSP 79
3.3 Integrality Ratio for Rectilinear TSP . 80

3.3.1 Structure of the Fractional Tours 81
3.3.2 Structure of the Optimal Tours . 81
3.3.3 The Instance I2i,j,k . 83

3.3.4 Length of the Optimal Tours for I2i,j,k 85

3.3.5 The Integrality Ratio of I2i,j,k . 86
3.4 Integrality Ratio for Metric TSP . 87
3.5 Integrality Ratio for Multidimensional Rectilinear TSP 90
3.6 Local Optimality . 92

3.6.1 A Criterion for Local Optimality 92
3.6.2 Local Optimality for the p-Norm 95
3.6.3 A Local Search Algorithm . 95

3.7 Integrality Ratio for Euclidean TSP . 96
3.7.1 The Ellipse Construction Algorithm 97
3.7.2 Results of the Ellipse Construction Algorithm 101

3.8 Comparing Integrality Ratio . 102
3.9 Hard to Solve Instances . 103
3.10 Integrality Ratio for Metric s− t Path TSP 105

4 Conclusion and Open Problems 109
4.1 Approximation Ratio of the k-Opt and Lin-Kernighan Algorithm 109
4.2 Integrality Ratio of the Subtour LP . 110

Bibliography 110

6

1 Introduction

The traveling salesman problem (TSP) is probably the most well-known problem in
discrete optimization. The problem can be formulated as follows: A salesman in his
home town wants to make a tour visiting a given set of cities and return to his home
town in the end. The question is in which order he should visit them to minimize the
travel distance. The problem has various applications in practice, for example in chip
design or logistics. This thesis addresses two questions about the traveling salesman
problem.

In the most general form the distances between the cities could be arbitrary non-
negative numbers. In practice however certain restrictions to the distance function often
apply. For example the triangle inequality for the distances: If we travel from city A
directly to city C, it cannot be farther than traveling via city B. The TSP variant where
the distances satisfy the triangle inequality is called Metric TSP. Another special case
is when the cities lie in a Euclidean plane and the distance function arises from the
Euclidean distance. This variant is called the Euclidean TSP.

Unfortunately, it is quite hard to find an optimal solution efficiently in general. The
TSP and even the variants above are known to be NP-hard [30, 42, 52, 29]. That
means an efficient algorithm solving this problem would imply an efficient algorithm on
a various number of problems. It is not expected that such an efficient algorithm exists.

In order to speed up the calculation of a good tour in practice, several approximation
algorithms are considered. Instead of computing the optimal solution they calculate a
solution which is at most by some factor larger than the optimal solution. This fac-
tor is also called the approximation ratio of the algorithm. The approximation ratio is
one way to compare approximation algorithms. The previous best approximation algo-
rithm in terms of approximation ratio for Metric TSP was independently developed
by Christofides and Serdjukov with an approximation ratio of 3

2 [18, 59]. Despite huge
efforts this factor could not be improved in 40 years. Recently, the approximation ratio
was improved by Karlin, Klein and Oveis Gharan to 3

2 − ε for some ε > 10−36 [41].
However, the approximation ratio only describes the worst-case behavior but not the

average case behavior or the behavior on real world instances. In fact, in practice other
algorithms are usually easier to implement and have better performance and runtime
[8, 39, 55]. One natural approach is the k-Opt algorithm which is based on local search.
It starts with an arbitrary tour and replaces at most k edges by new edges such that
the resulting tour is shorter. It stops if the procedure cannot be applied anymore. The
behavior of this algorithm was not well understood, not even in the worst case.

One of the best practical heuristics by Lin and Kernighan is based on k-Opt [49]. The
Lin-Kernighan algorithm, like the k-Opt algorithm, modifies the tour locally to obtain
a new tour. Instead of replacing arbitrary k edges with new edges, which results in a
high runtime for large k, it searches for specific changes: Changes, where the edges to be
added and deleted are alternating in a closed walk, a so-called closed alternating walk.
No non-trivial approximation guarantee on this algorithm was known.

Another approach to approximate the TSP is using the so-called subtour linear pro-

7

gram (subtour LP): We introduce for every connection between two cities a variable
whose value indicates if the tour uses this connection or not. If the value is 1, the con-
nection is in the tour, otherwise the value is 0 and the connection is not in the tour.
Certain additional conditions ensure that a valid assignment of the values corresponds
to a tour. If we omit the condition that the value of the variables has to be either 0 or
1 and instead just require it to be between 0 and 1, we get the subtour LP. It turns out
that the subtour LP can be solved in polynomial time. However, the optimal solution
of the subtour LP which we call the optimal fractional tour is not necessarily a tour. It
has more freedom to choose the values of the variables and could be cheaper than the
optimal tour. Thus, it is important to find the maximal ratio of the length of the optimal
tour to that of the optimal fractional tour. This ratio is also called the integrality ratio
of the subtour LP. Its exact value is still unknown, only lower and upper bounds of 4

3
[67] and 3

2 [68] exist, respectively.
The first part of the thesis will focus on the approximation ratio of the k-Opt and the

Lin-Kernighan algorithm on various TSP variants. We give new and improved bounds
on the approximation ratio of the k-Opt algorithm for various TSP variants. This gives
us a good insight into the behavior of the approximation ratio of the k-Opt algorithm.

The second part of the thesis deals with the integrality ratio of the subtour LP. We
will mainly focus on the lower bounds of the integrality ratio. We compute the exact
integrality ratio in the rectilinear case with a small fixed number of vertices. Based on
these results we construct families of instances with a high integrality ratio for various
TSP variants. We show that under certain assumptions some of the instances we describe
maximize the integrality ratio among all instances with the same number of vertices in
the particular TSP variant. We investigate several properties of these instances and
develop algorithms that find instances with high integrality ratio. Moreover, we improve
the upper bound on the integrality ratio for the s− t Path TSP.

This thesis is partially based on work that is published in [36, 70, 71, 72].

1.1 Previous Work

1.1.1 Approximation Ratio of the k-Opt and Lin-Kernighan Algorithm

For the 2-Opt algorithm in the metric case Plesńık showed that there are infinitely many
instances with approximation ratio

√
n
8 , where n is the number of vertices [53]. Chandra,

Karloff and Tovey showed that the approximation ratio of 2-Opt is at most 4
√
n [17].

Levin and Yovel observed that the same proof yields an upper bound of
√

8n [48].
For general k > 2 Chandra, Karloff and Tovey gave a lower bound of 1

4
2k
√
n for Metric

TSP [17], no non-trivial upper bound is known so far.
Apart from the upper bounds for the Metric TSP, which also apply to the special

case of Graph TSP, only a lower bound of 2(1 − 1
n) on the approximation ratio of

the k-Opt algorithm for Graph TSP is known so far: Rosenkrantz, Stearns and Lewis
describe a Metric TSP instance with this ratio that is also a Graph TSP instance
[56].

For the Euclidean TSP Chandra, Karloff and Tovey showed that the approximation

ratio of the 2-Opt algorithm is asymptotically between Ω
(

logn
log log(n)

)
and O(log(n)). The

upper bound was improved by Brodowsky and Hougardy to O
(

log(n)
log log(n)

)
which imply

a tight asymptotic approximation ratio of Θ
(

log(n)
log log(n)

)
for the 2-Opt algorithm [15].

8

The currently best approximation ratio for the (1,2)-TSP is achieved by the k-improv
algorithm by Berman and Karpinski with an approximation ratio of 8

7 [9]. The k-
improv algorithm is an improved version of the k-Opt algorithm that is based on a
local search approach. Adamaszek, Mnich and Paluch proposed another algorithm with
approximation ratio 8

7 [1].
For the (1,2)-TSP it is known that the approximation ratio of the 2-Opt algorithm

is at most 3
2 [43]. It was noted in the same paper that this ratio can be proven to be

tight. However, to our best knowledge, no explicit construction and proof for a lower
bound was given so far.

Since the Lin-Kernighan algorithm uses a superset of the modification rules of the
2-Opt algorithm, the same upper bounds as for 2-Opt also apply. Apart from this, no
other upper bound was known.

Beyond the worst-case analysis there are also results about the average case behavior
of the algorithm. For example the smoothed analysis of the 2-Opt algorithm by Englert,
Röglin and Vöcking [21]. In their model each vertex of the TSP instance is a random
variable distributed in the d dimensional unit cube by a given probability density function
fi : [0, 1]d → [0, φ] bounded from above by a constant 1 ≤ φ <∞ and the distances are
given by the p-norm. They show that in this case the expected approximation ratio is
bounded by O(d

√
φ) for all p. In the model where any instance is given in [0, 1]d and

perturbed by Gaussian noise with standard deviation σ the approximation ratio was
improved to O(log(1

σ)) by Künnemann and Manthey [46].

1.1.2 Integrality Ratio of the Subtour LP

The exact integrality ratio of the subtour LP is still unknown. For the Metric TSP
the currently best lower and upper bounds are 4

3 [67] and 3
2 [68], respectively. For the

Euclidean case the same upper bound applies and Hougardy gave a lower bound of 4
3

[35]. The belief is that the exact integrality ratio is 4
3 , this is also known as the 4

3 -
Conjecture. The conjecture was proven for instances whose optimal fractional solutions
satisfy certain properties [13].

Benoit and Boyd computed the exact integrality ratio for Metric TSP instances
with a small fixed number of vertices [6]. For 6 ≤ n ≤ 10 vertices they determined
these instances with computer assistance and discovered that the instances achieving
the maximum integrality ratio are unique and have certain structures. Later, Boyd and
Elliott-Magwood could further decrease the computation time significantly by exploiting
more structure of the subtour polytope. The computational results could be extended
to n = 12 [14].

Hougardy and Zhong introduced a family of Euclidean TSP instances called the
tetrahedron instances that has a different structure as the instances from [6] with in-
tegrality ratio converging to 4

3 [38]. They also investigate the runtime of the currently
fastest TSP solver Concorde [4] to solve the tetrahedron instances in practice. More
precisely, they compare the runtime of the tetrahedron instances with the family of in-
stances proposed in [35] and instances from the TSPLIB, a library of TSP instances
[54]. It turned out that the tetrahedron instances are significantly harder to solve than
the other instances in practice: Corcorde needs up to 1,000,000 more time to solve the
instances compared to TSPLIB instances of similar size.

Recent research shows that the Metric s− t Path TSP can be approximated within
a factor of 3

2 + ε and 3
2 [61, 69]. Moreover, it was shown that any α-approximation

9

algorithm for the standard TSP problem implies an (α + ε)-approximation algorithm
in the s − t Path TSP version [63]. The best currently known lower bound for the
integrality ratio of the subtour LP for the Metric s − t Path TSP is 3

2 . This value
is achieved by a simple standard example. A recent series of work improves the upper
bound towards the conjectured optimal value of 3

2 .
Hoogeveen adapted Christofides’ algorithm for the standard TSP [18] (which was

independently developed by Serdjukov [59]) to the s − t Path TSP [34]. A parity
correction vector is added to a minimum spanning tree to obtain a tour. This leads
to an integrality ratio of 5

3 for the path version. An, Kleinberg and Shmoys suggested
the best-of-many Christofides’ algorithm for s − t Path TSP [3]. Instead of using
the minimum spanning tree they decompose the optimal LP solution into a convex
combination of spanning trees. Then, they sample the spanning tree according to the
convex combination, add a parity correction vector and output the best result. With this

approach the upper bound on the integrality ratio was improved to 1+
√
5

2 . Sebő improved
and simplified this approach to obtain a ratio of 8

5 [57]. In [64] Vygen chose the convex
combination in a particular way. This idea was further improved by Gottschalk and
Vygen by a generalization of the Gao trees [32]. For an upper bound of 3

2 + 1
34 , Sebő

and Van Zuylen delete the so-called lonely edges of the spanning trees before adding the
parity correction vector based on the underlying idea that the parity correction vector
will likely reconnect the tour. If this is not the case, they add two copies of lonely edges
to reconnect the tour afterwards [58]. The analysis was improved by Traub and Vygen
by choosing the weights of the spanning trees in a non-standard way. This improves the
ratio to 1 + 1

1+4 ln(5
4
)

[62].

1.2 New Results

1.2.1 Approximation Ratio of the k-Opt and Lin-Kernighan Algorithm

For the 2-Opt algorithm we determine in a joint work with Stefan Hougardy and Fabian
Zaiser the exact approximation ratio:

Theorem 1.2.1. The 2-Opt algorithm for Metric TSP instances with n vertices has
approximation ratio

√
n
2 and this result is tight.

For fixed k ≥ 3, we show that the approximation ratio of the k-Opt algorithm is
related to the extremal graph theoretic problem of maximizing the number of edges in
a graph with fixed number of vertices and no short cycles. Let ex(n, 2k) be the largest
number of edges in a graph with n vertices and girth at least 2k, i.e. it contains no cycles
with less than 2k edges. For instances with n vertices we show for Metric TSP that:

Theorem 1.2.2. For all fixed k if ex(n, 2k) ∈ O(nc) for some c > 1, the approximation

ratio of k-Opt for Metric TSP is O(n1−
1
c) where n is the number of vertices.

Theorem 1.2.3. For all fixed k if ex(n, 2k) ∈ Ω(nc) for some c > 1, the approximation

ratio of k-Opt for Metric TSP is Ω(n1−
1
c) where n is the number of vertices.

Using known upper bounds on ex(n, 2k) in [2] we can conclude:

Corollary 1.2.4. The approximation ratio of k-Opt for Metric TSP is in O(k
√
n) for

all fixed k where n is the number of vertices.

10

If we further assume the Erdős girth conjecture [24], i.e. ex(n, 2k) ∈ Θ(n1+
1

k−1), we
have:

Corollary 1.2.5. Assuming the Erdős girth conjecture, the approximation ratio of k-Opt
for Metric TSP is in Ω(k

√
n) for all fixed k where n is the number of vertices.

Using known lower bounds on ex(n, 2k) from [22, 23, 16, 7, 60, 65, 47] we obtain:

Corollary 1.2.6. The approximation ratio of k-Opt for Metric TSP is in Ω(k
√
n) for

k = 3, 4, 6 and in Ω(n
2

3k−4+ε) for all fixed k where ε = 0 if k is even and ε = 1 if k is
odd and n is the number of vertices.

Comparing our upper and lower bounds we obtain:

Theorem 1.2.7. Our most general upper bound of

l∗∑
l=0

4 ex(4(k − 1)d(4k−44k−5)le, 2k)

(4k−44k−5)l

on the approximation ratio of the k-Opt algorithm for Metric TSP is tight up to a fac-
tor of O(log(n)) where n is the number of vertices and l∗ := min{j ∈ N|

∑j
l=0 4 ex(4(k−

1)d(4k−44k−5)le, 2k) ≥ n}.

The upper bounds can be carried over to a parameterized version of the Lin-Kernighan
algorithm we will describe in detail later. In contrast to the original version of the
algorithm proposed by Lin and Kernighan two parameters determine the depth that the
algorithm searches for improvement.

Theorem 1.2.8. The same upper bounds from Theorem 1.2.2 of O(n1−
1
c) if ex(n, 2k) ∈

O(nc) and Theorem 1.2.4 of O(k
√
n) hold for a parameterized version of the Lin-Kernighan

algorithm with appropriate parameters.

Although the Lin-Kernighan algorithm only considers special changes, namely changes
by augmenting a closed alternating walk, we are able to show the same upper bound as
for the general k-Opt algorithm. For the original version of Lin-Kernighan we get an
improved upper bound of O(3

√
n). Our results solve two of the four open questions in

[17], namely:

• Can the upper bounds given in [17] be generalized to the k-Opt algorithm, i.e. for
increasing k the performance guarantee improves?

• Can we show better upper bounds for the Lin-Kernighan algorithm than the upper
bound obtained from the 2-Opt algorithm?

We also bound the approximation ratio of the k-Opt algorithm for Graph TSP.

Theorem 1.2.9. The approximation ratio of the k-Opt algorithm with fixed k ≥ 2 for

Graph TSP is Ω
(

log(n)
log log(n)

)
where n is the number of vertices.

Theorem 1.2.10. The approximation ratio of the 2-Opt algorithm for Graph TSP is

O

((
log(n)

log log(n)

)log2(9)+ε)
for all ε > 0 where n is the number of vertices.

11

2-Opt k-Opt

Metric TSP
√

n
2 Ω(n

2
3k−3) ∩ O(k

√
n)

Graph TSP Ω
(

log(n)
log log(n)

)
∩ O

((
log(n)

log log(n)

)3.17)
Euclidean TSP Θ

(
log(n)

log log(n)

)
[1,2] Ω

(
log(n)

log log(n)

)
∩ O

(
log(n)

log log(n)

)
[2]

(1,2)-TSP 3
2 [3] between 11

10 and 11
8

Table 1.1: The currently best bounds on the approximation ratio of the 2-Opt and k-Opt
algorithm for k > 2. The red results are from this thesis.

Note that the same upper bound also applies to the k-Opt algorithm and the Lin-
Kernighan algorithm since they produce 2-optimal tours. Hence, up to a constant factor
of at most log2(9) in the exponent the k-Opt algorithm does not achieve asymptotically
better performance than the 2-Opt algorithm in contrast to the metric case.

If the vertices of the instance can be embedded into Rd such that the distance function
arises from the p-norm, we show:

Theorem 1.2.11. The approximation ratio of the k-Opt Algorithm for the Rectilin-

ear and Euclidean TSP is Ω
(

logn
log logn

)
where n is the number of vertices.

For the (1,2)-TSP we give a lower bound of 3
2 . A matching upper bound of 3

2 was
given in [43] and it was noted that this bound can be shown to be tight. Nevertheless,
no lower bound was given explicitly. Moreover, we show that the exact approximation
ratio of the 3-Opt algorithm is 11

8 for the (1,2)-TSP.

Theorem 1.2.12. The exact approximation ratio of the 3-Opt algorithm for (1,2)-TSP
is 11

8 .

We introduce the k-Opt++ algorithm, a slightly modified version of the k-Opt al-
gorithm for (1,2)-TSP, and analyze the exact approximation ratio of the 3-Opt++
algorithm.

Theorem 1.2.13. The exact approximation ratio of the 3-Opt++ algorithm for (1,2)-
TSP is 4

3 .

Furthermore, we show a lower bound on the approximation ratio for the k-Opt and
k-improv algorithm.

Theorem 1.2.14. The k-Opt and k-improv algorithm with arbitrary fixed k have an
approximation ratio of at least 11

10 for the (1,2)-TSP.

Moreover, we give a polynomial time local search algorithm for Graph TSP with
constant approximation factor.

1.2.2 Integrality Ratio of the Subtour LP

We describe a procedure to construct families of Euclidean TSP instances whose
integrality ratios converge to 4

3 . These instances can have a different structure than the
known instances from the literature.

12

We use the same approach as Benoit and Boyd to compute the exact integrality ratio
for Rectilinear TSP with 6 ≤ n ≤ 10 vertices. Using the results of the computations
we define the instances I26 , . . . , I

2
10.

Theorem 1.2.15. The instances I2n maximize the integrality ratio for Rectilinear
TSP for n ≤ 10.

The instances I2n show the same structure as the instances maximizing the integrality
ratio in the metric case described in [6]. Based on this we state the following conjecture.

Conjecture 1.2.16. The instances maximizing the integrality ratio among all instances
with a fixed number of vertices have the following structure: An optimal fractional solu-
tion x∗ of the subtour LP satisfies x∗(e) = 1

2 for all edges e of two disjoint triangles and
x∗(e) = 0 or x∗(e) = 1 for all other edges e.

We analyze the structure of I2n and generalize the family of instances to arbitrary
numbers of vertices. We compute the integrality ratio of the family and show that the
integrality ratios of the family converge to 4

3 as n→∞.
Moreover, we also investigate the integrality ratio for Metric TSP and Multidi-

mensional Rectilinear TSP.

Theorem 1.2.17. Assuming Conjecture 1.2.16 the Metric TSP instances given in [6]
maximize the integrality ratio.

For the Multidimensional Rectilinear TSP we define a family of instances (I3n)n∈N
and show

Theorem 1.2.18. Assuming Conjecture 1.2.16 the family of instances I3n maximizes the
integrality ratio for Multidimensional Rectilinear TSP.

We investigate local optima of instances that can be embedded into Rd such that the
distances arise from a totally differentiable norm. Such an instance is a local optimum
if we cannot increase the integrality ratio by moving the vertices slightly. A criterion
is given to detect local optima. Based on that we give a local search algorithm that
computes a local optimum.

For the Euclidean TSP we use the local search algorithm to find instances with high
integrality ratio. The results have similar structures as I2n in the rectilinear case and
the instances from [6] in the metric case. Based on these we give an efficient algorithm
generating instances having this structure. Using this algorithm, we were able to generate
instances with high integrality ratio for Euclidean TSP.

Furthermore, we investigate the runtime of the Concorde TSP solver on slightly mod-
ified I3n. We observe that the runtimes of Concorde for these instances are much higher
than for the hard to solve instances given in [38].

For the Metric s− t Path TSP we improve the previous best upper bound on the
integrality ratio of 1 + 1

1+4 ln(5
4
)
> 1.5283 by Traub and Vygen in [62] to 1.5273.

Theorem 1.2.19. The integrality ratio of the standard LP relaxation for the Metric
s− t Path TSP is at most 1.5273.

13

1.3 Structure of the Thesis

First, we briefly summarize in Section 1.4 the preliminaries we need for this thesis.
In Chapter 2 we consider the k-Opt algorithm on several TSP variants. We want to

bound the approximation ratio in the worst case. We start by determining the exact
approximation ratio of the 2-Opt algorithm in Section 2.1. Then, we improve the existing
lower bound for the Metric TSP by weakening the condition for the construction of
bad instances given in [17]. After that, we show in Section 2.2 the upper bound of the
approximation ratio for Metric TSP. For that we assume that the optimal tour and the
output of the k-Opt or Lin-Kernighan algorithm with the largest approximation ratio
are given. Our aim is to show that the output of the algorithm does not have too many
long edges compared to the optimal tour. To achieve this, we first divide the edges into
length classes, such that the longest edge from each class is at most a constant times
longer than the shortest. Then, we construct with help of the optimal tour a graph
containing at least 1

4 of the edges in a length class. We show that this graph has a
high girth and use results from extremal graph theory to bound the number of its edges,
which implies that the length class does not contain too many edges. In the last section,
we compare the lower and upper bound we got from the previous sections and show
that they differ asymptotically only by a logarithmic factor even if the exact behavior
of ex(n, 2k) is unknown.

Furthermore, we give lower and upper bounds on the approximation ratio of the k-
Opt algorithm for Graph TSP in Section 2.3. For the lower bound we construct an
instance and a k-optimal tour with the appropriate approximation factor again using
results from extremal graph theory. To show the upper bound, starting with a worst-
case instance we iteratively decompose the current graph into smaller graphs with small
diameter and contract these smaller graphs into single vertices. We show that a certain
subset of the vertices, the so-called active vertices, shrinks by a factor exponential in
the approximation ratio after a sufficient number of iterations. Moreover, we show that
after that many iterations we still have at least one active vertex. We conclude that the
number of active vertices and hence the number of vertices in the beginning depends
exponentially on the approximation ratio.

Next, in Section 2.4 we show that if the vertices of the TSP instance can be embed-
ded into Rd such that the distances function arises from the p-norm for some p ≥ 1,

then the approximation ratio of k-Opt is Ω
(

log(n)
log log(n)

)
. In Section 2.5 we give a lower

bound of 3
2 on the approximation ratio of 2-Opt for the (1,2)-TSP and show that the

approximation ratio of the 3-Opt algorithm is 11
8 . We introduce a modified version of

the k-Opt algorithm for (1,2)-TSP and show that its approximation ratio for k = 3
is 4

3 . Moreover, for the (1,2)-TSP we give a lower bound on the k-improv and k-Opt
algorithm for arbitrary fixed k of 11

10 .
At the end of this chapter in Section 2.6 we give a polynomial time local search

algorithm for Graph TSP that has in contrast to the k-Opt algorithm a constant
approximation ratio.

In Chapter 3 we investigate the integrality ratio of the subtour LP. First, we start in
Section 3.1 by describing a procedure of generating families of instances for Euclidean
TSP whose integrality ratios converge to 4

3 . These instances can have a different struc-
ture than the currently known families of instances whose integrality ratios converge to
4
3 . In Section 3.2 we compute the exact integrality ratio for Rectilinear TSP instances
with a small fixed number of vertices. In the following Section 3.3 we generalize the in-

14

stances maximizing the integrality ratio we found in the previous section to arbitrary
numbers of vertices. In Section 3.4 and 3.5 we identify the instances maximizing the
integrality ratio assuming Conjecture 1.2.16 for the Metric and Multidimensional
Rectilinear TSP, respectively.

Then, we give in Section 3.6 a criterion that certifies local optimality with respect to
integrality ratio. Based on this criterion we describe a local search algorithm to find
local optima. In Section 3.7 we give a more efficient algorithm to generate a family
of instances for the Euclidean TSP that was found by the local search algorithm
for small number of vertices and has similar structure to the instances maximizing the
integrality ratio for other TSP variants. We compare the lower bounds we found for
the various TSP variants in Section 3.8. Then, we observe in Section 3.9 that Concorde
needs significantly more running time to solve slightly modified instances we found than
to solve the hard to solve instances from the literature. At the end of the chapter we
improve in Section 3.10 the upper bound on the integrality ratio for the Metric s − t
Path TSP to 1.5273.

Last, in Chapter 4 we give an outlook to the open problems unsolved in this thesis.

1.4 Prelimilaries

In this section we briefly introduce the basic notation, definitions and some previously
known results used in this thesis. For a more detailed description of these topics we refer
to standard textbooks about discrete mathematics and combinatorial optimization, for
example [45].

1.4.1 Basic Definitions and Properties

Graphs and Graph Algorithms

An undirected graph G = (V (G), E(G)) consists of a set of vertices V (G) and a set
of edges E(G) ⊆ {{v, w}|v, w ∈ V (G), v 6= w}. It is called directed if the edge set
instead satisfies E(G) ⊆ {(v, w) ∈ V (G) × V (G)|v 6= w}. The complete graph Kn is
an undirected graph with n vertices and all

(
n
2

)
edges between each pair of vertices. A

graph is called weighted if in addition a weight function c : E(G) → R is given. For
convenience we abbreviate c({u, v}) by c(u, v) for all {u, v} ∈ E(G).

For an edge e = {v, w} or e = (v, w) the vertices v and w are also called the endpoints
of e. For an edge e = (v, w) of a directed graph v and w are called the head and tail
of e, respectively. Two vertices v, w are called adjacent if {v, w} ∈ E(G). A vertex v
is called incident to an edge e if v ∈ e. Two edges are called incident if they share a
common endpoint.

For a set X ⊆ V (G) we define δ(X) := {{v, w} ∈ E(G)|v ∈ X,w 6∈ X} in the
undirected case and δ+(X) := {(v, w) ∈ E(G)|v ∈ X,w 6∈ X}, δ−(X) := {(w, v) ∈
E(G)|v ∈ X,w 6∈ X} in the directed case. If X = {v} contains only one element, we
simply write δ(v), δ+(v), δ−(v). For a vertex v ∈ V (G) the numbers |δ(v)|, |δ+(v)| and
|δ−(v)| are also called the degree, outdegree and indegree of the vertex v, respectively. A
d-regular graph G is an undirected graph with |δ(v)| = d for all v ∈ V (G).

An undirected graph or directed graph with self-loops can contain additional edges
where both endpoints are the same vertex. If we further allow multiple copies of the same
edge, we get a multigraph. Given a directed graph G the underlying undirected graph is a
multigraph with the vertex set V (G) and the edge multiset {{u, v}|(u, v) ∈ E(G)}. The

15

support graph of a weighted graph G is the graph with the same vertex set and whose
edge set consists of the edges with positive weight in G.

A walk in a graph G is a sequence of its vertices v0, v1, . . . , vl such that {vi, vi+1} ∈
E(G) or (vi, vi+1) ∈ E(G) for all i ∈ {0, . . . , l− 1}. A walk is called closed if in addition
v0 = vl. A path is a walk with vi 6= vj for all i 6= j and i, j ∈ {0, . . . , l}. Similarly, a
cycle is a closed walk with vi 6= vj for all i 6= j and i, j ∈ {0, . . . , l−1}. A graph is called
connected if there is a path between every pair of vertices.

A Eulerian walk of a graph G is a closed walk using every edge of G exactly once.
A graph is called Eulerian if it has a Eulerian walk. The following well-known theorem
from Euler characterizes Eulerian graphs:

Theorem 1.4.1 (Euler’s Theorem [25]). A connected undirected graph is Eulerian if
and only if all of its vertices have even degree.

Given a graph G and an even subset of vertices T ⊆ V (G) a T -join J is a set of edges
such that |J ∩ δ(v)| is odd if and only if v ∈ T . Therefore, if T is the set of vertices with
odd degree in a connected graph G we can add J to E(G) to make G Eulerian.

We need the following result on the number of colors to color the edges of a bipartite
graph such that no two incident edges have the same color.

Theorem 1.4.2 (Kőnig [44]). Every bipartite graph with maximal degree ∆ can be ∆-
edge colored such that no two incident edges have the same color.

We can find in polynomial time a negative cycle in a given weighted directed graph
or determine that none exists.

Theorem 1.4.3 (Moore, Bellman, Ford [51, 5, 27]). Given a directed weighted graph
G, the Moore-Bellman-Ford algorithm finds a negative cycle or returns that there is no
negative cycle in O(|V (G)||E(G)|) time.

Asymptotic Notation

Given two real valued functions f, g, we write

f ∈ O(g) if lim sup
x→∞

∣∣∣∣f(x)

g(x)

∣∣∣∣ <∞,
f ∈ Ω(g) if lim inf

x→∞

∣∣∣∣f(x)

g(x)

∣∣∣∣ > 0,

f ∈ Θ(g) if f ∈ O(g) and f ∈ Ω(g).

p-Norm

The p-norm ‖ · ‖p for p ≥ 1 in Rd is defined for all x = (x1, . . . , xd) ∈ Rd by ‖x‖p :=
p

√∑d
i=1|xi|p, where 1

√
z := z. The 1-norm and 2-norm are also called the Manhatten

and Euclidean norm, respectively. For two points x, y ∈ Rd we denote the distance of x
and y according to the p-norm by distp(x, y), i.e. distp(x, y) := ‖x− y‖p.

16

1.4.2 Traveling Salesman Problem

An instance of Metric TSP is given by a complete weighted graph (Kn, c) where the
costs are non-negative and satisfy the triangle inequality: c(x, z) + c(z, y) ≥ c(x, y) for
all x, y, z ∈ V (Kn). A tour is a cycle that visits every vertex exactly once. For a tour
T , let the length of the tour be defined as c(T) :=

∑
e∈T c(e). The task is to find a tour

of minimal length. We fix an orientation of the tour, i.e. we consider the edges of the
tour as directed edges such that the tour is a directed cycle. From now on, let n denote
the number of vertices of the instance.
Graph TSP is a special case of the Metric TSP. Each instance arises from an

unweighted, undirected connected graph G. To construct a TSP instance (Kn, c), we set
V (Kn) = V (G). The cost c(u, v) of the edge connecting any two vertices u, v ∈ V (G) is
given by the length of the shortest u-v-path in G.

Other special cases of the TSP are the Rectilinear TSP and the Euclidean TSP.
In these cases the vertices of the instances can be embedded into R2 such that the
distances are induced by the Manhattan and Euclidean norm, respectively. Instead of
embedding the vertices into R2 we can also consider instances that can be embedded
into the general space Rd to get the multidimensional variant of these problems.

For the (1,2)-TSP the distances between the cities are restricted to be equal to 1 or
2. Note that this variant of the TSP is metric since three edges of length 1 or 2 always
satisfy the triangle inequality.

The s − t Path TSP is a generalization of the TSP where two vertices s and t are
specified and the task is to find a shortest path starting in s and ending in t visiting all
other vertices exactly once. If s is equal to t, then we have the standard TSP.

An algorithm A for the traveling salesman problem has approximation ratio α(n) ≥ 1 if
for every TSP instance with n vertices it finds a tour that is at most α(n) times as long as
a shortest tour and this ratio is achieved by an instance for every n. Note that we require
here the sharpness of the approximation ratio deviating from the standard definition
in the literature to express the approximation ratio in terms of the Landau symbols.
Nevertheless, the results also hold for the standard definition with more complicated
notation.

1.4.3 k-Opt Algorithm

A k-move replaces at most k edges of a given tour by other edges to obtain a new tour.
It is called improving if the resulting tour is shorter than the original one. A tour is
called k-optimal if there is no improving k-move (Algorithm 1).

Algorithm 1 k-Opt Algorithm

Input: Instance of TSP (Kn, c)
Output: Tour T

1: Start with an arbitrary tour T
2: while ∃ improving k-move for T do
3: Perform an improving k-move on T

4: return T

For the 2-Opt algorithm recall the following well-known fact: Given a tour T with a
fixed orientation, it stays connected if we replace two edges of T by the edge connecting

17

their heads and the edge connecting their tails, i.e. if we replace edges (a, b), (c, d) ∈ T
by (a, c) and (b, d).

1.4.4 k-Improv Algorithm

In this section we describe the k-improv algorithm, which is an improved version of the
k-Opt algorithm for the (1,2)-TSP introduced by Berman and Karpinski in [9]. In the
same paper it was shown that this algorithm has an approximation ratio of 8

7 for k = 15
which is the currently best approximation ratio for the (1,2)-TSP.

A 2-matching is the union of disjoint paths and cycles. A k-improv-move deletes and
adds in total at most k edges of a 2-matching to obtain a new 2-matching. Note that in
contrast to a k-move the number of removed and added edges do not have to be equal.
A k-improv-move is called improving if the result T̃ ′ after performing the k-improv-move
on T̃ satisfies the following conditions:

1. T̃ ′ only contains edges with cost 1.

2. One of the following properties hold:

• T̃ ′ contains less connected components than T̃ .

• T̃ ′ contains the same number of connected components as T̃ , but more cycles
than T̃ .

• T̃ ′ contains the same number of connected components and cycles as T̃ , but
less singletons, i.e. vertices with degree 0, than T̃ .

The algorithm is also a local search algorithm. It starts with an arbitrary tour and
removes all edges with cost 2 to obtain a 2-matching consisting of edges with cost 1.
During each iteration of the algorithm we perform an improving k-improv-move. Note
that this way we maintain a 2-matching in every iteration. We call a 2-matching k-
improv-optimal if there are no improving k-improv-moves. If this is the case, we remove
an arbitrary edge from every cycle in T̃ and after that connect the paths in T̃ arbitrarily
to a tour T (Algorithm 2).

Algorithm 2 k-Improv Algorithm

Input: Instance of (1,2)-TSP (Kn, c)
Output: Tour T

1: Start with an arbitrary tour T
2: Let T̃ be the 2-matching we obtain by removing all edges of cost 2 from T
3: while ∃ improving k-improv-move for T̃ do
4: Perform an improving k-improv-move on T̃

5: Remove an arbitrary edge from each cycle in T̃
6: Connect the paths in T̃ arbitrarily to a tour T
7: return T

We note that the k-improv algorithm for fixed k runs in polynomial time as shown in
[9]. Moreover, by the procedure of the algorithm we can see a correspondence between
2-matchings consisting of edges with cost 1 and tours: The corresponding 2-matching
of a tour T is obtained by removing all edges with cost 2. The set of corresponding
tours of a 2-matching is obtained by removing an arbitrary edge from each cycle of the
2-matching and connect the paths arbitrarily to a tour.

18

1.4.5 Lin-Kernighan Algorithm

We use a parameterized version of the Lin-Kernighan algorithm described in Section 21.3
of [45] for the analysis. In this version two parameters p1 and p2 specify the depth the
algorithm is searching for improvement.

An alternating walk of a tour T is a walk where exactly one of two consecutive edges is
in T . An edge of the alternating walk is called tour edge if it is contained in T , otherwise
it is called non-tour edge. A closed alternating walk and alternating cycle are alternating
walks whose edges form a closed walk and cycle, respectively. The symmetrical difference
of two sets A and B is the set A4B := (A ∪ B)\(A ∩ B). When we augment T by an
augmenting cycle C we get the result T4C. Moreover, C is called improving if T4C
is a shorter tour than T . By (x1, x2, . . . , xj) := ∪j−1i=1 (xi, xi+1) we denote the walk that
visits the vertices x1, x2 . . . , xj in this order. We define the gain g of an alternating walk
starting with a tour edge by

g((x0, x1, . . . , x2m)) :=

m−1∑
i=0

c(x2i, x2i+1)− c(x2i+1, x2i+2).

An alternating walk (x0, x1, . . . , x2m) is proper if it starts with a tour edge and
g((x0, x1, . . . , x2i)) > 0 for all i ≤ m.

The following theorem by Lin and Kernighan allows performance improvements of the
Lin-Kernighan algorithm by only looking for proper alternating walks without changing
the quality of the result.

Theorem 1.4.4 ([49]). For every improving closed alternating walk P there exists a
proper closed alternating walk Q with E(P) = E(Q).

Now, we state the generalized version of the Lin-Kernighan algorithm with parameters
p1 and p2 (Algorithm 3):

• The algorithm starts with an arbitrary tour and searches for an improving closed
alternating walk in every iteration by a depth-first search.

• At depth zero the list of candidate vertices consists of all vertices of the instance.

• At each depth it chooses a vertex from the list of candidate vertices, computes the
list of candidate vertices for the next depth and increases the depth.

• The list of candidate vertices consists of all vertices forming with the vertices
already chosen in previous iterations an alternating walk starting with a tour edge
and having a positive gain.

• At each depth it checks if connecting the endpoints of the alternating walk results
in an improving closed alternating walk.

• When the depth is higher than p2 and even we further require the vertices of the
candidate vertices list satisfying the following condition: After choosing any vertex
from the candidate vertices list in the next iteration and connecting the endpoints
of the resulting alternating walk, we get an improving closed alternating walk.

• When no candidates are available at depth i anymore, it backtracks to the depth
min{p1, i− 1} and chooses the next candidate at that depth.

19

• It terminates if no improving closed alternating walk is found. Otherwise, it im-
proves the current tour by augmenting the improving closed alternating walk with
the highest gain it found and repeats the process.

Algorithm 3 Lin-Kernighan Algorithm

Input: Instance of TSP (Kn, c), Parameters p1, p2 ∈ N
Output: Tour T

1: Start with an arbitrary tour T
2: Set X0 := V (Kn), i := 0 and g∗ := 0
3: while i ≥ 0 do
4: if Xi = ∅ then
5: if g∗ > 0 then
6: Set T := T4P ∗
7: Set X0 := V (Kn), i := 0 and g∗ := 0
8: else
9: Set i := min{i− 1, p1}

10: else
11: Choose xi ∈ Xi, set Xi := Xi\{xi}
12: Set P := (x0, x1, . . . , xi)
13: if i is odd then
14: if i ≥ 3, T4(P ∪ (xi, x0)) is a tour, g(P ∪ (xi, x0)) > g∗ then
15: Set P ∗ := P ∪ (xi, x0) and g∗ := g(P ∗)

16: Set Xi+1 := {x ∈ V (Kn)\{x0, xi} : {x, x0} 6∈ T ∪ P, T4(P ∪
(xi, x, x0)) is a tour, g(P ∪ (xi, x)) > g∗}

17: if i is even then
18: if i ≤ p2 then
19: Set Xi+1 := {x ∈ V (Kn) : {xi, x} ∈ T\P}
20: else
21: Set Xi+1 := {x ∈ V (Kn) : {xi, x} ∈ T\P, {x, x0} 6∈ T ∪ P, T4(P ∪

(xi, x, x0)) is a tour}
22: i := i+ 1

23: return T

In the original paper Lin and Kernighan described the algorithm with fixed parameters
p1 = 5, p2 = 2.

Definition 1.4.5. We call the Lin-Kernighan algorithm with parameter p1 = 2k − 1
and p2 = 2k − 4 the k-Lin-Kernighan algorithm. A tour is k-Lin-Kernighan optimal if
it is the output of the k-Lin-Kernighan algorithm for some initial tour.

Note that the original version of the Lin-Kernighan algorithm is the 3-Lin-Kernighan
algorithm. By the description of the algorithm it is easy to see that all local changes of
the Lin-Kernighan algorithm are augmentations of an improving closed alternating walk
and:

Lemma 1.4.6. The length of any improving alternating cycle in a k-Lin-Kernighan
optimal tour is at least 2k + 1.

Obviously, this property also holds for the output of the Lin-Kernighan algorithm with
parameters p1 ≥ 2k − 1, p2 ≥ 2k − 4 and our results carry over in this case.

20

1.4.6 Girth and Ex

Definition 1.4.7. The girth of a graph is the length of the shortest cycle contained in
the graph if it contains a cycle and infinity otherwise. Let ex(n, 2k) be the maximal
number of edges in a graph with n vertices and girth at least 2k. Moreover, define
ex−1(m, 2k) as the minimal number of vertices of a graph with m edges and girth at
least 2k.

There are previous results in the extremal graph theory on the behavior of the function
ex(n, 2k).

Theorem 1.4.8 ([2]). We have

ex(n, 2k) <
1

21+
1

k−1

n1+
1

k−1 +
1

2
n.

Theorem 1.4.9 ([47]). We have

ex(n, 2k) = Ω(n1+
2

3k−6+ε),

where k ≥ 3 is fixed, ε = 0 if k is even, ε = 1 if k is odd and n→∞.

Theorem 1.4.10 (Polarity Graph in [22, 23, 16]; Construction by Benson and by Sin-
gleton [7, 60]; Construction by Benson and by Wenger [7, 65]). For k = 3, 4, 6 we have

ex(n, 2k) = Ω(n1+
1

k−1).

Theorem 1.4.11 (Theorem 1.4’ in Section III of [11]). Let δ, g ≥ 3 and

m ≥ (δ − 1)g−1 − 1

δ − 2

be integers. Then, there exists a δ-regular graph with 2m vertices and girth at least g.

1.4.7 Linear Programming

A linear program (LP) is given by a matrix A ∈ Rm×n and vectors b ∈ Rm, c ∈ Rn. The
task is to find a vector x ∈ Rn maximizing c>x such that Ax ≤ b, decide that no such
x exists or decide that for all α ∈ R there is such a x with c>x > α. The corresponding
dual program is given by minimizing y>b such that y>A = c>, y ≥ 0 for some y ∈ Rm.
The original LP is also called the primal LP. If we further require x to be integral we
get an integer program.

An important result shows the relation between the optimal primal and dual solutions:

Theorem 1.4.12 (Complementary Slackness). Let a primal dual LP pair {max c>x :
Ax ≤ b} and {min y>b : y>A = c>, y ≥ 0} with feasible solutions x and y be given. The
following statements are equivalent:

• x and y are optimal solutions

• c>x = y>b

• y>(b−Ax) = 0.

21

1.4.8 Subtour LP and Integrality Ratio

One of the most common linear relaxation of the TSP is the subtour LP [19]. For a
given TSP instance (Kn, c) the subtour LP is given by:

min
∑

e∈E(Kn)

c(e)xe∑
e∈δ(v)

xe = 2 for all v ∈ V (Kn) (1.1)

∑
e∈E(δ(X))

xe ≥ 2 for all ∅ ⊂ X ⊂ V (Kn). (1.2)

0 ≤ xe ≤ 1 for all e ∈ E(Kn)

The constraints (1.1) are called the degree constraints and the constraints (1.2) are
called the subtour elimination constraints. Although this LP has an exponential number
of constraints it can be solved in polynomial time by the ellipsoid method since the
separation problem can be solved efficiently [33]. A solution to the subtour LP is also
called a fractional tour.

Cunningham [50], Goemans and Bertsimas [31] showed that in the metric case the
optimal solution does not change if we omit the degree constraints, i.e. the optimal
solutions of the following LP is equal to the optimal solutions of the subtour LP:

min
∑

e∈E(Kn)

c(e)xe∑
e∈E(δ(X))

xe ≥ 2 for all ∅ ⊂ X ⊂ V (Kn)

0 ≤ xe ≤ 1 for all e ∈ E(Kn)

This above LP is an LP relaxation for the 2-Edge Connected Spanning Subgraph
problem where the task is to find a 2-edge connected spanning subgraph of a given graph.

Theorem 1.4.13 (Cunningham [50], Goemans and Bertsimas [31]). If the costs satisfy
the triangle inequality, the optimal solutions of the 2-Edge Connected Spanning
Subgraph LP is the same as that of the subtour LP.

The subtour LP can be modified to apply for the s− t Path TSP.

min
∑

e∈E(Kn)

c(e)xe∑
e∈δ(v)

xe = 2 for all v ∈ V (Kn)\{s, t}

∑
e∈δ(v)

xe = 1 for all v ∈ {s, t}

∑
e∈δ(X)

xe ≥ 2 for all ∅ ⊂ X ⊆ V (Kn)\{s, t}

∑
e∈δ(X)

xe ≥ 1 for all {s} ⊆ X ⊆ V (Kn)\{t}

xe ≥ 0 for all e ∈ E(Kn).

22

Let OPT (I) and OPTLP (I) be the values of the optimal integral solution and optimal

fractional solution of an instance I, then the integrality ratio of I is defined as OPT (I)
OPTLP (I)

.
The integrality ratio of the LP is the supremum of the ratio between the value of the
optimal integral solution and that of the optimal fractional solution, i.e. supI

OPT (I)
OPTLP (I)

.

Let |I| be the number of vertices of the instance I. The integrality ratio of instances

with n vertices is defined as sup|I|=n
OPT (I)
OPTLP (I)

.

1.4.9 Structure of Euclidean Tours

A well-known result about optimal tours for Euclidean TSP is that they do not inter-
sect themself unless all vertices lie on a line.

Lemma 1.4.14 (Flood 1956 [26]). Unless all vertices lie on one line, an optimal tour
of a Euclidean TSP instance is a simple polygon.

An important consequence of Lemma 1.4.14 is the following result:

Lemma 1.4.15 ([20], page 142). An optimal tour of a Euclidean TSP instance visits
the vertices on the boundary of the convex hull of all vertices in their cyclic order.

1.4.10 Karamata’s inequality

Definition 1.4.16. A sequence of real numbers x1, . . . , xn majorizes another sequence
y1, . . . , yn if

x1 ≥ x2 · · · ≥ xn
y1 ≥ y2 · · · ≥ yn

j∑
i=1

xi ≥
j∑
i=1

yi ∀j < n

n∑
i=1

xi =
n∑
i=1

yi.

Theorem 1.4.17 (Karamata’s inequality [40]). Let I be an interval of real numbers and
f : I → R be a convex function. Moreover, let x1, . . . , xn and y1, . . . , yn be sequences of
numbers in I such that (x1, . . . , xn) majorizes (y1, . . . , yn). Then

n∑
i=1

f(xi) ≥
n∑
i=1

f(yi).

23

2 Approximation Ratio of the k-Opt and
Lin-Kernighan Algorithm

2.1 Exact Approximation Ratio of 2-Opt for Metric TSP

In this section we show that the exact approximation ratio of the 2-Opt algorithm for
Metric TSP is

√
n
2 by improving the existing upper and lower bound. This section is

based on joint work with Stefan Hougardy and Fabian Zaiser, which appeared in [36].
In Fabian Zaiser’s master’s thesis supervised by Stefan Hougardy the same lower bound
was developed for n = 2k2 for k a power of 2. I modified the instance and removed the
condition that k needs to be a power of 2. Moreover, I developed the matching upper
bound for the approximation ratio.

2.1.1 Upper Bound

Chandra, Karloff, and Tovey [17] proved in 1999 that the 2-Opt algorithm has an ap-
proximation ratio of 4

√
n for Metric TSP. In 2013, Levin and Yovel [48] observed that

their proof yields the upper bound 2
√

2n. Here we present a new proof which improves
this bound by a factor of 4:

Theorem 2.1.1. The approximation ratio of the 2-Opt algorithm on Metric TSP is
at most

√
n
2 .

Proof. Let G = (V (G), E(G)) with c : E(G)→ R≥0 and |V (G)| = n be a Metric TSP
instance and let T be an optimal tour. We may assume that T has length 1. We fix an
orientation of the tour T and choose two vertices p, q ∈ V (G) arbitrarily. For each vertex
v ∈ V (G), let ip(v) be the length taken mod 1 of the unique shortest directed p-v path
starting in p and using only edges of T . By our assumption, we have ip : V (G)→ [0, 1)
and we define iq similarly. For the following, it helps to think of [0, 1) as the circle with
circumference 1 and of ip as an embedding of the optimal tour into this circle such that
the arc distance of two consecutive vertices on the circle is the length of the edge between
them.

Define the following metric d on the interval [0, 1), interpreted as a circle: d(x, y) is
the length of the shorter of the two arcs between x and y on the circle, i.e., d(x, y) :=
min{|x− y|, 1−|x− y|}. For any points x, y, z ∈ [0, 1) we have d(x, y) + d(y, z) ≥ d(x, z)
since combining the two shortest arcs between x, y and y, z and deleting the overlap
results in an arc between x, z.

Let T ′ be a 2-optimal tour. As usual, we assume that it is directed. Now, consider for
each edge (u, v) of T ′ the set

Sp,q(u, v) = {(x, y) ∈ [0, 1)× [0, 1) | d(x, ip(u)) + d(y, iq(v)) < c(u, v)},

as shown in Figure 2.1. We claim that all these sets are pairwise disjoint for distinct
edges (u1, v1), (u2, v2) ∈ E(T ′). Suppose that Sp,q(u1, v1) and Sp,q(u2, v2) intersect in

24

0
0

1

1

ip(u)ip(a)

iq(v)

iq(b)
Sp,q(a, b)

Sp,q(u, v)

c(u, v)

c(u, v)

Figure 2.1: The sets Sp,q(a, b) (red) and Sp,q(u, v) (green) assigned to the edges (a, b)
and (u, v) of a 2-optimal tour. The sets are taken modulo the unit square
and thus may consist of up to four parts.

(x, y). Then, by the triangle inequality for c and d, we have

c(u1, u2) + c(v1, v2) ≤ d(ip(u1), ip(u2)) + d(iq(v1), iq(v2))

≤ d(ip(u1), x) + d(x, ip(u2)) + d(iq(v1), y) + d(y, iq(v2))

< c(u1, v1) + c(u2, v2).

This contradicts the 2-optimality of T ′. Hence, all these sets Sp,q(u, v) are disjoint.
Next, we want to show that the area of each set is independent of the choice of p

and q. Let p′ and q′ be a different choice. Note that for all vertices u, we have ip′(u) =
ip′(p)+ip(u) mod 1. In particular, we find d(x, ip(u)) = d(x+ip′(p) mod 1, ip′(u)) because
both points are shifted by ip′(p) on the circle [0, 1). By the definition of Sp,q(u, v), this
means that the map

t : [0, 1)× [0, 1)→ [0, 1)× [0, 1)

(x, y) 7→ (x+ ip′(p) mod 1, y)

bijectively sends Sp,q(u, v) to Sp′,q(u, v). In other words, we obtain Sp′,q(u, v) from
Sp,q(u, v) by cutting the unit square vertically at 1− ip′(p) = ip(p

′) into two rectangles
and reassembling them, as described by the following two translations:

t1 : [0, ip(p
′))× [0, 1)→ [ip′(p), 1)× [0, 1)

(x, y) 7→ (x+ ip′(p), y)

t2 : [ip(p
′), 1)× [0, 1)→ [0, ip(p

′))× [0, 1)

(x, y) 7→ (x− ip(p′), y)

25

Since they have disjoint domains and disjoint images, their union t = t1∪t2 is a bijection
[0, 1)× [0, 1)→ [0, 1)× [0, 1); sends Sp,q(u, v) bijectively to Sp′,q(u, v); and preserves the
area of this set because it consists of translations. Analogously, we can cut the square
horizontally at iq(q

′) to obtain Sp′,q′(u, v) from Sp′,q(u, v), again preserving its area. We
conclude that the area of Sp,q(u, v) is independent of the choice of p and q.

Now, we want to show that the area of Sp,q(u, v) is 2c(u, v)2 for any edge (u, v) ∈ E(T ′).
By the previous paragraph, we can choose p = u and q = v. Then Su,v(u, v) = {(x, y) ∈
[0, 1) × [0, 1) | d(x, 0) + d(y, 0) < c(u, v)}. This set consists of four congruent isosceles
right-angled triangles whose legs have length c(u, v). Note that they do not overlap
because the metric property ensures c(u, v) ≤ 1

2 . Hence we have: area(Sp,q(u, v)) =

4 · c(u,v)
2

2 = 2c(u, v)2.
Since the sets Sp,q(u, v) for (u, v) ∈ E(T ′) are pairwise disjoint, their combined area

cannot exceed that of the unit square:

2
∑

e∈E(T ′)

c(e)2 =
∑

(u,v)∈E(T ′)

area(Sp,q(u, v)) ≤ area([0, 1)× [0, 1)) = 1.

Then the inequality of arithmetic and quadratic means implies∑
e∈E(T ′) c(e)

n
≤

√∑
e∈E(T ′) c(e)

2

n
≤ 1√

2n
.

Hence, the length of the 2-optimal tour T ′ satisfies
∑

e∈E(T ′) c(e) ≤
√

n
2 .

2.1.2 Lower Bound

To prove a lower bound α on the approximation ratio of the 2-Opt algorithm for the
Metric TSP, one has to show that for infinitely many n, there exists a Metric TSP
instance with n cities that contains a 2-optimal tour which is α times longer than a
shortest tour.

In 1999, Chandra, Karloff, and Tovey [17] provided such a construction for all n of
the form 4 · k2 for positive integers k, which shows a lower bound of 1

4

√
n. Several years

earlier, Plesńık [53] had given another construction without explicitly stating a lower
bound. It turns out that his construction yields a lower bound of 1√

8

√
n and works for

all n of the form 8 · k2 − 8 · k + 3 for positive integers k.
The following result improves Plesńık’s lower bound by a factor of 2, and yields the

tight result stated in Theorem 1.2.1.

Theorem 2.1.2. The approximation ratio of the 2-Opt algorithm on the Metric TSP
is at least

√
n
2 .

Proof. Let G be a complete graph on n := 2·k2 nodes with vertex set V (G) := {vi,j | 1 ≤
i, j ≤ k}∪{wi,j | 1 ≤ i, j ≤ k}. For each i with 1 ≤ i ≤ k, we call Vi := {vi,j | 1 ≤ j ≤ k}
and Wi := {wi,j | 1 ≤ j ≤ k} a section of V (G) and the v-vertices and w-vertices the
two halves of V (G).

26

v1,1

w1,1

v2,1

w2,1

v3,1

w3,1

v4,1

w4,1

v1,2

w1,2

v2,2

w2,2

v3,2

w3,2

v4,2

w4,2

v1,3

w1,3

v2,3

w2,3

v3,3

w3,3

v4,3

w4,3

v1,4

w1,4

v2,4

w2,4

v3,4

w3,4

v4,4

w4,4

T

v1,1

w1,1

v2,1

w1,2

v3,1

w1,3

v4,1

w1,4

v1,2

w2,1

v2,2

w2,2

v3,2

w2,3

v4,2

w2,4

v1,3

w3,1

v2,3

w3,2

v3,3

w3,3

v4,3

w3,4

v1,4

w4,1

v2,4

w4,2

v3,4

w4,3

v4,4

w4,4

T ′

Figure 2.2: The optimal tour T (left) and the 2-optimal tour T ′ (right) for k = 4. Note
that the w-vertices on the right are mirrored at the diagonal compared to
the w-vertices on the left. Thus, on the left, vertices within the sections Vi
and Wi are in a row. On the right, the vertices in the sections Vi are in a
row while the vertices in a section Wi are within a column. The colored bars
contain the vertices belonging to the same section.

We define a distance function c : E(G)→ R≥0 as follows:

c(vi,j , wi′,j′) = 1 for all 1 ≤ i, i′, j, j′ ≤ k

c(vi,j , vi′,j′) =

{
0 i = i′

2 i 6= i′
for all 1 ≤ j, j′ ≤ k

c(wi,j , wi′,j′) =

{
0 i = i′

2 i 6= i′
for all 1 ≤ j, j′ ≤ k

It is not hard to see that the function c satisfies the triangle inequality: Let u, v, w
be any three vertices in V (G). We want to show that c(u,w) ≤ c(u, v) + c(v, w). As c
takes only the values 0, 1, 2, this is obvious if c(u, v) ≥ 1 and c(v, w) ≥ 1. Otherwise,
without loss of generality, we may assume that c(u, v) = 0. i.e., u and v are in the same
section of V (G). But then the definition of c implies c(u,w) = c(v, w) and the triangle
inequality is satisfied. Therefore, the graph G with cost function c is a Metric TSP
instance.

In the following, we will construct two special tours in G, which are depicted in
Figure 2.2. Let T be the tour consisting of the edges

T := {(vi,j , vi,j+1) | 1 ≤ i ≤ k, 1 ≤ j < k} ∪
{(wi,j , wi,j+1) | 1 ≤ i ≤ k, 1 ≤ j < k} ∪
{(vi,k, wi,1) | 1 ≤ i ≤ k} ∪
{(wi,k, vi+1,1) | 1 ≤ i < k} ∪
{(wk,k, v1,1)}.

27

The edges in the first two sets have length 0; the 2k edges in the other three sets have
length 1. Therefore, we have c(T) = 2k. This tour is optimal because any tour has to
visit all 2k sections of V (G) and the distance of two vertices from different sections is at
least 1.

Next we consider the tour T ′ with

T ′ := {(vi,j , wj,i) | 1 ≤ i, j ≤ k} ∪
{(wj,i, vi,j+1) | 1 ≤ i ≤ k, 1 ≤ j < k} ∪
{(wk,i, vi+1,1) | 1 ≤ i < k} ∪
{(wk,k, v1,1)}.

Each edge of T ′ has length 1. Thus we have c(T ′) = 2k2. We claim that the tour T ′ is
2-optimal. Assume by contradiction that T ′ is not 2-optimal. Consider a pair of edges
(a, b), (x, y) that allows an improving 2-change to (a, x), (b, y). Hence c(a, x) + c(b, y) <
c(a, b) + c(x, y) = 2 and one of c(a, x) or c(b, y) must be zero. This means a and x
or b and y must be in the same section. But since a and b are in opposite halves of
V (G) (just like x and y), this means that a and x are in one half of V (G) and b and y
in the other. Hence c(a, x), c(b, y) ∈ {0, 2}. For an improving 2-change, we must have
c(a, x) = c(b, y) = 0. This implies that a and x lie in the same section of V (G) and b and
y lie in the same section of V (G). Thus there must exist indices i and j with 1 ≤ i, j ≤ k
such that a, x ∈ Vi and b, y ∈ Wj or such that a, x ∈ Wi and b, y ∈ Vj . This implies
that there must exist two different edges from Vi to Wj or from Wi to Vj . However, this
is a contradiction as by definition of T ′, for any pair i, j with 1 ≤ i, j ≤ k, there exists
exactly one edge directed from Vi to Wj (namely the edge (vi,j , wj,i)) and exactly one
edge directed from Wj to Vi. This proves the 2-optimality of T ′.

Combining the above findings we get

c(T ′)

c(T)
=

2k2

2k
= k =

√
2k2

2
=

√
n

2
.

2.2 Approximation Ratio of k-Opt and Lin-Kernighan for
Metric TSP

In this section we investigate the approximation ratio of the k-Opt and Lin-Kernighan
algorithm for Metric TSP. We show that assuming the Erdős girth conjecture the
approximation ratio of the k-Opt algorithm is in Θ(k

√
n). More generally, we prove an

upper bound on the approximation ratio that is tight up to a factor of O(log(n)) and
depends on functions from extremal graph theory. The upper bounds can be carried over
to a parameterized version of the Lin-Kernighan algorithm for appropriate parameters.
This section is based on the work that appeared in [70, 71].

2.2.1 Lower Bound

In this section, we improve the lower bound of the k-Opt algorithm using the following
theorem.

28

Theorem 2.2.1 (Lemma 3.6 in [17]). Suppose there exists a Eulerian unweighted graph
Gk,n,m with n vertices and m edges, having girth at least 2k. Then, there is a Metric

TSP instance with m vertices and a k-optimal tour T such that c(T)
c(T ∗) ≥

m
2n , where T ∗ is

the optimal tour of the instance.

For the previous lower bound the theorem was applied to regular Eulerian graphs
with high girth. Instead, we show that for every graph there is a Eulerian subgraph
with similar edge vertex ratio and apply the theorem to the Eulerian subgraphs of dense
graphs with high girth to get the new bound. Before we start, we make the following
observation.

Lemma 2.2.2. The approximation ratio of the k-Opt algorithm for Metric TSP in-
stances with n vertices is monotonically increasing in n.

Proof. Given an instance I we can increase the number of vertices of I without decreasing
the approximation ratio by constructing an instance I ′ as follows: Make a copy v′ of an
arbitrary vertex v and set the costs c(v, v′) := 0, c(v′, w) := c(v, w) ∀w 6= v. It is easy
to see that I ′ still satisfies the triangle inequality. To prove that the approximation ratio
does not decrease we need to show that the optimal tour of I is at least as long as that
of I ′ and the longest k-optimal tour of I ′ is at least as long as that of I. To show this,
observe that we can transform a tour of I to a tour of I ′ by visiting v′ directly after
visiting v and leaving the order of the other vertices unchanged. The transformed tour
has the same cost as the old tour. Given the optimal tour of I, the above transformation
gives us a tour of I ′ with the same cost. Thus, the optimal tour of I is at least as long
as that of I ′.

Let T be a k-optimal tour of I. It remains to show that the transformed tour T ′ is still
k-optimal. Assume that there is an improving k-move, apply it on T ′ to get T ′2. If the
edge {v, v′} is contained in T ′2, we can contract the vertices v and v′ and deleting the self-
loop at v to get a shorter tour of I than T . Observe that this tour arises by performing
the same k-move on T , contradicting the k-optimality of T . So assume that {v, v′} is
not contained in T ′2. When we contract the vertices v and v′ from T ′2 we get a connected
Eulerian graph T2, where the degree of v is four and the degree of every other vertex is
two. Hence, I contains at least two vertices. Now, start at an arbitrary vertex other than
v and traverse the graph on a Eulerian walk. Let {a1, v}, {v, a2}, {b1, v}, {v, b2} be the
order the edges incident to v are traversed. Since there are exactly two edges incident to
v in T , T contains either at most one edge in {a1, v}, {v, a2} or {b1, v}, {v, b2}. W.l.o.g.
let T contain at most one edge of {a1, v} and {v, a2}. We get a tour of I with less or
equal length than T by shortcutting {a1, v} and {v, a2} to {a1, a2} in T2. To obtain this
tour from T , we deleted and add the same edges as the improving k-move for T ′ except:
Instead of deleting {v, v′} we delete the edges T ∩{{a1, v}, {v, a2}}, which is at most one
edge. Instead of adding {{a1, v}, {v, a2}}\T , which is at least one edge, we add the edge
{a1, a2}. Hence, this tour arises from T by performing a k-move, again contradicting
the k-optimality of T . Therefore, the longest k-optimal tour of I ′ is at least as long as
that of I.

Lemma 2.2.3. For every graph G there exists a Eulerian subgraph G′ such that |E(G′)|
|V (G′)| ≥

|E(G)|+1
|V (G)| − 1.

Proof. We construct a new graph by deleting cycles successively from G and adding
them to an empty graph G0 with V (G0) = V (G) until there are no cycles left. After the

29

deletion of cycles, the remaining graph will be a forest with at most |V (G)| − 1 edges.
Hence, we added at least |E(G)| − |V (G)| + 1 edges to G0. Let S1, S2 . . . , Su be the
connected components of G0. We have

u∑
i=1

|V (Si)|
|V (G)|

|E(Si)|
|V (Si)|

=
u∑
i=1

|E(Si)|
|V (G)|

≥ |E(G)| − |V (G)|+ 1

|V (G)|
=
|E(G)|+ 1

|V (G)|
− 1.

Since
∑u

i=1
|V (Si)|
|V (G)| = 1, there has to be a connected component Si with |E(Si)|

|V (Si)| ≥
|E(G)|+1
|V (G)| − 1. Moreover, by construction, Si is Eulerian and we can set G′ := Si.

Theorem 2.2.4. The approximation ratio of k-Opt is Ω
(

n
ex−1(n,2k)

)
for Metric TSP

where n is the number of vertices.

Proof. Take a graph G with girth 2k, ex−1(n, 2k) vertices and n edges. By Lemma 2.2.3

there is a Eulerian subgraph G′ with |E(G′)|
|V (G′)| ≥

n+1
ex−1(n,2k)

− 1. Clearly, this subgraph

has girth at least 2k. By Theorem 2.2.1 we can construct an instance with |E(G′)| ≤
n vertices and an approximation ratio of Ω

(
n+1

ex−1(n,2k)
− 1
)

= Ω
(

n
ex−1(n,2k)

)
since by

Theorem 1.4.9 limn→∞
n

ex−1(n,2k)
= ∞. The statement follows from the fact that the

approximation ratio is monotonically increasing by Lemma 2.2.2.

Theorem 2.2.5. If ex(n, 2k) ∈ Ω(nc) for some c > 0, then the approximation ratio of

k-Opt is Ω(n1−
1
c) for Metric TSP where n is the number of vertices.

Proof. If ex(n, 2k) ∈ Ω(nc), then ex−1(n, 2k) ∈ O(n
1
c) and by Theorem 2.2.4 we can

construct an instance with approximation ratio Ω
(
n

n
1
c

)
= Ω(n1−

1
c).

Together with Theorem 1.4.9 and 1.4.10, we conclude:

Corollary 2.2.6. For Metric TSP the approximation ratio of k-Opt is Ω(k
√
n) for

k = 3, 4, 6 and Ω(n
2

3k−4+ε) for all other k where ε = 0 if k is even and ε = 1 if k is odd
and n is the number of vertices.

2.2.2 Outline of Upper Bound

In this subsection we briefly summarize the ideas for the analysis of the upper bound
for the Metric TSP given by Theorem 1.2.2.

For a fixed k assume that an instance is given with a k-optimal tour T . We fix an
orientation of T and assume w.l.o.g. that the length of the optimal tour is 1. To bound
the approximation ratio it is enough to bound the length of T . Our general strategy is
to construct an auxiliary graph depending on T and bound its girth. More precisely, we
show that if this graph has a short cycle this would imply the existence of an improving
k-move contradicting the k-optimality of T . Moreover, the auxiliary graph contains
many long edges of T so the bound on its girth also bounds the number of long edges in
the tour and hence the approximation ratio.

Let the graph G consist of the vertices of the instance and the edges of T , i.e. G :=
(V (Kn), T). We first divide the edges of T in length classes such that the lth length
class consists of the edges with length between cl+1 and cl for some constant c < 1, we
call these edges l-long. For each l ∈ N0 we want to get an upper bound on the number
of l-long edges that depends on the number of vertices.

30

If we performed the complete analysis on G, we would get a bad bound on the number
of l-long edges since G contains too many vertices. To strengthen the result we first
construct an auxiliary graph containing all l-long edges for some fixed l but fewer vertices
and bound the number of l-long edges in that graph: We partition V (G) into classes
with help of the optimal tour such that in each class any two vertices have small distance
to each other. We contract the vertices in each class to one vertex and delete self-loops
to get the multigraph Gl1. We can partition V (G) in such a way that Gl1 contains all the
l-long edges. Note we did not delete parallel edges in Gl1 and hence every edge in Gl1
has a unique preimage in G.

Unfortunately, we cannot directly bound the girth of Gl1 since the existence of a short
cycle would not necessarily imply an improving k-move for T . For that we need a
property of the cycles in the graph: The common vertex of consecutive edges in any
cycle has to be head of both or tail of both edges according to the orientation of T .
Therefore, we construct the auxiliary graph Gl2 from Gl1 as follows: We start with Gl2 as
a copy of Gl1 and color the vertices of Gl2 red and blue. We only consider l-long edges
in Gl2 from a red vertex to a blue vertex according to the orientation of T and delete all
other edges. We can show that the coloring can be done in such a way that at least 1

4
of the l-long edges remain in Gl2.

We claim that the underlying undirected graph of Gl2 has girth at least 2k. Note that
by construction the graph is bipartite and hence all cycles have even length. Assume
that there is a cycle C with 2h < 2k edges. We call the preimage of the edges of C in G
the C-edges. Our aim is to construct a tour T ′ with the assistance of C that arises from
T by an improving k-move.

For every common vertex w of two consecutive edges e1, e2 of C in Gl2 we consider the
preimage e−11 , e−12 of e1, e2 in G. Then there have to be endpoints u ∈ e−11 and v ∈ e−12

such that the images of u and v after the contraction in Gl2 are both w. We will call
the edge {u, v} a short edge. In fact since both endpoints of a short edge are mapped
to the same vertex in Gl1 after the contraction and we contracted vertices that have a
small distance to each other, they are indeed short. Furthermore, we can show that the
total length of all the short edges is shorter than that of any single C-edge. The number
of the short edges is equal to the number of C-edges which is 2h. Now, observe that the
cycle C defines an alternating cycle in G in a natural way: Let the preimages of C in G
be the tour edges and that of the short edges be the non-tour edges.

To construct a new tour T ′ from T we start by augmenting the alternating cycle.
Afterward, the tour may split into at most 2h connected components. A key property is
that the coloring of the vertices in Gl2 ensures that every connected component contains
at least two short edges. Since there are 2h short edges, we know that after the aug-
mentation we actually get at most h connected components. To reconnect and retain
the degree condition we add twice a set L of at most h−1 different C-edges, i.e. in total
at most 2h − 2 edges. In the end we shortcut to the new tour T ′ in a particular way
without decreasing |T ∩ T ′|.

Note that the number of the C-edges in the original tour T is 2h, thus T ′ contains at
least 2 fewer C-edges than T . The additional short edges that T ′ contains are cheap,
therefore T ′ is cheaper than T . Moreover, T ′ arises from T by replacing at most 2h−|L|
C-edges since we deleted the C-edges and added twice the set L consisting of C-edges.
Therefore, we know that T ′ arises from T by a 2h− |L| ≤ 2h-move. By the k-optimality
of T we have 2h > k or 2h ≥ k+ 1. This already gives us a lower bound of k+ 1 for the
girth of the graph Gl2 as C contains 2h edges.

31

In the next step we use the previous result to show that there is actually a cheaper
tour T ′ that arises by an h + 1-move. This implies that h + 1 > k or 2h ≥ 2k, i.e.
the girth of Gl2 is at least 2k. As we have seen above the number of edges we have
to replace to obtain T ′ from T depends on |L|, the number of C-edges T ′ contains.
Therefore, we modify T ′ iteratively such that the number of C-edges in T ′ increases by
1 after every iteration while still maintaining the property that T ′ is cheaper than T .
We stop when the number of C-edges in T ′ is h− 1 as then T ′ would arise from T by a
2h− (h− 1) = h+ 1-move.

To achieve this we start with the constructed tour T ′ and iteratively perform 2-moves
that are not necessarily improving but add one more C-edge to T ′. In every iteration
we consider C-edges e not in the current tour T ′. We can show that there is an edge in
T ′\T incident to each of the endpoints of e. Let the two edges be f1 and f2. We want
to replace f1 and f2 in T ′ by e1 and the edge connecting the endpoints of f1 and f2 not
incident to e. To ensure the connectivity after the 2-move we need to find edges e such
that the corresponding edges f1, f2 fulfill the following condition: Either both heads or
both tails of f1 and f2 have to be endpoints of e. It turns out that we can find such
edges e in enough iterations to construct T ′ with the desired properties.

In the end we notice that a lower bound on the girth of Gl2 gives us an upper bound
on the number of edges in Gl2 by previous results on extremal graph theory. This implies
an upper bound on the number of l-long edges as Gl2 contains at least 1

4 of the l-long
edges in T . That gives us an upper bound on the length of T and thus also an upper
bound on the approximation ratio as we assumed that the optimal tour has length 1.

2.2.3 Upper Bound

In this section we give an upper bound on the approximation ratio of the k-Opt and
k-Lin-Kernighan algorithm. We bound the length of any k-optimal or k-Lin-Kernighan
optimal tour T compared to the optimal tour. To show the bound we first divide the
edges of T in classes such that the length of two edges in the same class differ by at most
a constant factor. For each of these classes we construct with the help of the optimal
tour a graph containing at least 1

4 of the edges in the class and show that this graph has
a high girth. Thus, we can use results from extremal graph theory to bound the number
of edges in the length class.

Fix a k > 2 and assume that a worst-case instance with n vertices is given. Let T be
a k-optimal or k-Lin-Kernighan optimal tour of this instance. We fix an orientation of
the optimal tour and T . Moreover, let w.l.o.g. the length of the optimal tour be 1. We
divide the edges of T into length classes.

Definition 2.2.7. An edge e is l-long if (4k−54k−4)l+1 < c(e) ≤ (4k−54k−4)l. Let {ql}l∈N0 be the
sequence of the number of l-long edges in T .

Note that the shortest path between every pair of vertices has length at most 1
2 since

the optimal tour has length 1. Thus, by the triangle inequality every edge with positive
length in T has length at most 1

2 and is l-long for exactly one l. For every l we want
to bound the number of l-long edges. Let us consider from now on a fixed l. In the
following we define three auxiliary graphs we need for the analysis and show some useful
properties of them. Our general aim is to show that the girth of an auxiliary graph
containing many l-long edges is high since otherwise there would exist an improving k-
move contradicting the assumption. This would imply a bound on the number of l-long
edges depending on the number of vertices.

32

Definition 2.2.8. We view the optimal tour as a circle with circumference 1. Let the
vertices of the instance lie on that circle in the order of the oriented tour where the arc
distance of two consecutive vertices is the length of the edge between them. Divide the
optimal tour circle into 4(k− 1)d(4k−44k−5)le consecutive arcs of length 1

4(k−1)d(4k−4
4k−5

)le . Two

vertices are called near to each other if they lie on the same arc.

Definition 2.2.9. Let the directed graph G := (V (Kn), T) consist of the vertices of the
instance and the oriented edges of T (an example is shown in Figure 2.3, the colors of the
edges will be explained later). The directed multigraph Gl1 arises from G by contracting
all vertices near each other to a vertex and deleting self-loops (Figure 2.4).

Note that Gl1 may contain parallel edges. By construction Gl1 contains fewer vertices
than G and we will later show that the definition of near ensures that Gl1 contains all the
l-long edges. Thus, an upper bound on the girth of Gl1 would give a better upper bound
on the number of l-long edges than a bound on the girth of G. Unfortunately, we can
not bound the girth of Gl1 since the existence of a short cycle in Gl1 would not necessarily
lead to an improving k-move. For that we need the property that the common vertex of
consecutive edges of a cycle in the graph is head of both or tail of both edges according
to the orientation of T . To ensure this, we further modify in the next step Gl1 to the
graph Gl2.

Lemma 2.2.10. There exists a coloring of the vertices of Gl1 with two colors such that
at least 1

4 of the l-long edges in Gl1 go from a red vertex to a blue vertex according to the
fixed orientation of T .

Proof. The proof is similar to the standard proof that a maximal cut of a graph contains
at least 1

2 of the edges (see for example Theorem 5.3 in [66]).
By coloring the vertices uniformly at random each l-long edge has a probability of 1

4
of going from a red vertex to a blue vertex. Hence, the expected number of l-long edges
satisfying this condition is 1

4 of the original number. This implies that there is a coloring
where at least 1

4 of the l-long edges satisfies the condition.

Definition 2.2.11. We obtain the directed multigraph Gl2 by coloring the vertices of
Gl1 red and blue according to Lemma 2.2.10 and deleting all edges that are not l-long
edges from a red vertex to a blue vertex according to the fixed orientation of T (Figure
2.5, the colors of the edges will be explained later).

Now, we claim that the underlying undirected graph of Gl2 has girth at least 2k. In
particular, it is a simple graph. Assume the contrary, then there has to be a cycle C
with 2h < 2k edges since Gl2 is bipartite by construction. We call the preimages in G of
the edges in C the C-edges. Note that the preimages are unique since we do not delete
parallel edges after the contraction.

Definition 2.2.12. Let the connecting paths be the connected components of the graph
(V (Kn), T\C), i.e. the paths in T between consecutive heads and tails of C-edges (the
colored edges in Figure 2.3 and 2.5). Define head and tail of a path p as the head of the
last edge and the tail of the first edge of p according to the orientation of T , respectively.
The head and tail of a connecting path are also called the endpoints of the connecting
path.

Note that the number of connecting paths is equal to that of C-edges which is 2h.

33

Lemma 2.2.13. The two endpoints of a connected path are not near each other. In
particular, every connected path contains at least one edge.

Proof. Observe that the head and tail of a connecting path is a tail and head of a C-edge,
respectively. Hence, the corresponding vertices of the heads and tails of the connecting
paths in Gl2 are colored red and blue, respectively. Therefore, the two endpoints are
not near each other. Since the relation near is reflexive, we can conclude that every
connecting path contains at least one edge.

Figure 2.3: An example instance with a
k-optimal tour, i.e. the di-
rected graph G. The blue
and red edges are the C-
edges and connecting path
edges that arise from the
chosen cycle in Gl2 in Figure
2.5, respectively.

Figure 2.4: The directed multigraph
Gl1: We contracted vertices
that lie near each other in
the optimal tour. Note
that the optimal tour is not
drawn here, so it is not clear
from the figure which ver-
tices to contract.

Definition 2.2.14. For any two endpoints v1, v2 of C-edges in G which are near each
other we call the edge {v1, v2} a short edge.

Lemma 2.2.15. There are exactly 2h short edges forming an alternating cycle with the
C-edges. Moreover, every short edge connects either two heads or two tails of connecting
paths.

Proof. For any endpoint of a C-edge in G there is exactly one other endpoint of a C-edge
which is near to it since the C-edges in G are the preimage of a cycle in Gl2. By definition
every near pair of such endpoints is connected by a short edge and no other short edges
exist. Note that there are 2h C-edges, so we get 2h short edges which form a set of
alternating cycles with the C-edges. Using the fact again that after the contraction we
get a single cycle C in Gl2 we see that the C-edges form with the short edges a single
alternating cycle. Since the vertices of C are colored either red or blue in Gl2, the short
edges connect two heads or two tails of C-edges and hence also two heads or two tails
of connecting paths.

34

Figure 2.5: The directed multigraph
Gl2: Coloring the vertices
and only considering the l-
long edges from red to blue.
In this example the up-
per left edge is not l-long
and hence not drawn. The
blue edges form the undi-
rected cycle C, the red edges
are the remaining edges of
the connecting paths corre-
sponding to this cycle.

Figure 2.6: The graph Gl,C3 : The green
edges are the short edges,
the red edges are the con-
necting paths.

Definition 2.2.16. We construct the graph Gl,C3 as follows: The vertex set of Gl,C3 is
that of G and the edge set consists of the connecting paths and the short edges (Figure
2.6).

Lemma 2.2.17. E(Gl,C3) is the union of at most h disjoint cycles.

Proof. By the definition of connecting path every endpoint of a connecting path is an
endpoint of a C-edge and vice versa. By Lemma 2.2.15 every endpoint of a C-edge
is an endpoint of a short edge and vice versa. Hence, every vertex in G is either an
endpoint of a connecting path and a short edge or none of them. Thus, the edges of Gl,C3
form disjoint cycles. Note that every connected component in Gl,C3 contains at least two
connecting paths since the two endpoints of a connecting path are not near each other
by Lemma 2.2.13 and hence they cannot be connected by a short edge. Thus, there are
at most h connected components.

Before we start with the actual analysis we show that the total length of all short
edges is smaller than that of any C-edge.

Lemma 2.2.18. Let S be the set of short edges. We have

∑
e∈S

c(e) ≤ 1

2

(
4k − 5

4k − 4

)l
.

Proof. By Lemma 2.2.15 there are 2h ≤ 2(k − 1) short edges. Each of them connects
two vertices which are near each other. By the triangle inequality, each of the short

35

edges has length at most 1
4(k−1)d(4k−4

4k−5
)le . Hence the total length of short edges is at most

2h 1
4(k−1)d(4k−4

4k−5
)le ≤ 2(k − 1) 1

4(k−1)(4k−4
4k−5

)l
= 1

2(4k−54k−4)l.

Lemma 2.2.19. Let S be the set of short edges, B1 and B2 be sets of C-edges with
|B1| < |B2| ≤ 2h, then ∑

e∈B1

c(e) +
∑
e∈S

c(e) ≤
∑
e∈B2

c(e).

Proof. Let l1 := |B1|, l2 := |B2|. We have

l1 + 1
2

l1 + 1
=

2l1 + 1

2l1 + 2
≤ 2 · (2h− 1) + 1

2 · (2h− 1) + 2
≤ 4h− 1

4h
≤ 4(k − 1)− 1

4(k − 1)
=

4k − 5

4k − 4
.

Combined with Lemma 2.2.18 and the fact that C-edges are edges of Gl2 and hence l-long
we get

∑
e∈B1

c(e) +
∑
e∈S

c(e) ≤ l1
(

4k − 5

4k − 4

)l
+

1

2

(
4k − 5

4k − 4

)l
=

(
l1 +

1

2

)(
4k − 5

4k − 4

)l
≤ (l1 + 1)

(
4k − 5

4k − 4

)l+1

≤ l2
(

4k − 5

4k − 4

)l+1

<
∑
e∈B2

c(e).

Now, we show that the existence of C implies that there is an improving k-move
or improving alternating cycle of length at most 2k contradicting the k-optimality or
k-Lin-Kernighan optimality of T .

Lemma 2.2.20. There is a tour T ′ containing the connecting paths, u− 1 C-edges and
at least 2h− 2u+ 2 short edges, where u is the number of connected components of Gl,C3 .
Moreover, T4T ′ is an alternating cycle of T .

Proof. We construct such a tour T ′. Start with a graph G′ with the same vertex set and
edge set as Gl,C3 . First, add a set of C-edges to E(G′) that makes the graph connected.
This is possible since T consists of the C-edges and connecting paths and is connected.
We call these C-edges the fixed C-edges. Next, add another copy of the fixed C-edges
(they do not belong to the fixed C-edges, Figure 2.7). We will call the connecting path
edges and the fixed C-edges the fixed edges. Since every vertex of G′ is incident to at
least one connecting path edge, G′ is by construction connected.

We can decompose E(G′) into cycles: for every connected component in Gl,C3 we get
a cycle by Lemma 2.2.17 and for every fixed C-edge and the copy of it a cycle with
two edges. Moreover, every vertex b with degree greater two has degree four and is the
intersection point of two cycles C1 and C2. Note that there are two fixed edges incident
to b, a connecting path edge and a fixed C-edge, one lying on C1 and the other on C2.
This implies that there are also two non-fixed edges incident to b, one lying on C1 and
the other on C2, we call this property the transverse property. Now, we can iteratively
shortcut E(G′) to a tour: In every step we shortcut two cycles intersecting at vertex
b to one cycle by shortcutting the two non-fixed edges {a, b} and {b, c} to {a, c} and

36

Figure 2.7: Sketch for Lemma 2.2.20. The red curves represent the connecting paths.
The green edges are the short edges, the blue edges are the fixed C-edges
and the yellow edges are the copies of the fixed C-edges. The tour T ′ results
from shortcutting the green and yellow edges while leaving the other edges
fixed.

decrease the number of vertices with degree greater two. Note that each shortcut does
not affect the transverse property at other intersection points. When this procedure is
not possible anymore, every vertex has degree two and since G′ was connected we get a
tour that contains all the fixed edges.

The final tour contains by construction u− 1 fixed C-edges. Moreover, to connect the
2h connecting paths T ′ contains besides of the u− 1 fixed C-edges and shortcuts of the
u− 1 copies of them also 2h− 2u+ 2 short edges.

It remains to prove that T4T ′ is an alternating cycle. By Lemma 2.2.15 we know
that T4E(Gl,C3) is an alternating cycle. Note that the C-edges are the tour edges in
this cycle. By adding two copies of the fixed C-edges we need to add a copy of them
instead of deleting a copy of them to obtain E(G′). Hence, we change the fixed C-edges
from tour to non-tour edges in the alternating cycle. After that, the alternating cycle
does not have to be alternating anymore. When we shortcut the Eulerian walk to a
tour we shortcut short edges and copies of fixed C-edges, thus consecutive non-tour
edges to a non-tour edge. Assume that after the shortcutting step there are still two
consecutive non-tour edges. Consider the common vertex v of these two edges. Note
that every vertex of the alternating cycle is an endpoint of a connecting path that is not
contained as a tour edge in the cycle. Hence the degree of v in T ′ has to be at least
three, contradicting the definition of tour. Therefore, in the end the cycle is alternating
again.

Remark 2.2.21. The last lemma already gives us a bound on the girth of Gl2: The length

37

of T ′ can be bounded by the length of the connecting paths plus 2(u− 1) < 2h C-edges
and all short edges. Thus, by Lemma 2.2.19 T ′ is shorter than T . The alternating
cycle T4T ′ consists of 2h− (u− 1) ≤ 2h tour edges, which are the C-edges we remove.
If 2h ≤ k, this would contradict the k-optimality or k-Lin-Kernighan optimality of T ,
hence Gl2 has girth at least k + 1.

Next, we use T ′ to get an improved result: Gl2 has girth at least 2k.

Definition 2.2.22. Given a tour T ′ containing the connecting paths. An ambivalent
2-move replaces two non-connecting path edges of T ′ to obtain a new tour containing
at least one more C-edge.

Definition 2.2.23. Fix an orientation of T ′, we call a connecting path p wrongly oriented
if the orientation of p in T ′ is opposite to the orientation in T . Otherwise, it is called
correctly oriented.

e1

e2

f1 f2

Figure 2.8: Sketch for Lemma 2.2.24. The drawn orientation is that of T ′. The red
curves represent oppositely oriented connecting paths connected by a C-
edge e1. The green edges f1 and f2 are the non-connecting path edges of T ′

incident to e1. The edge e2 connects the other two endpoints of f1 and f2
not incident to e1.

Lemma 2.2.24. If a tour T ′ contains a short edge and all connecting paths, then there
is an ambivalent 2-move that increases the length of the tour by at most two C-edges.

Proof. By Lemma 2.2.15 every short edge e always connects either two heads or two
tails of connecting paths. If in addition e ∈ T ′, one of them is correctly oriented and the
other one is wrongly oriented. Thus, as long as there is a short edge in T ′, there has to
be at least one correctly oriented and one wrongly oriented connecting path. In this case
there has to be a C-edge e1 connecting two oppositely oriented connecting paths since
the C-edges connect the connecting paths to the tour T . By definition every C-edge
connects a head and a tail of two connecting paths. If e1 ∈ T ′, the incident connecting
paths would be both correctly or both wrongly oriented. Thus, e1 is not contained in T ′.
Let the two non-connecting path edges in T ′ that share an endpoint with e1 be f1 and
f2. Since the two connecting paths are oppositely oriented, either both tails of f1 and
f2 according to the orientation of T ′ are endpoints of e1 or both heads. Assume w.l.o.g.
that they share their tails with e1, let e2 be the edge connecting the heads of f1 and f2
(Figure 2.8). Now, we can make a 2-move replacing f1, f2 by e1 and e2 to obtain a new
tour with the additional C-edge e1. The tour stays connected since e1 and e2 connect
the tails and heads of f1 and f2, respectively. By Lemma 2.2.13 every connecting path
contains at least one edge, hence there are no two adjacent C-edges. Thus, f1 and f2
are not C-edges and the new tour contains at least one more C-edge.

38

Moreover, by the triangle inequality we have c(e2) ≤ c(f1) + c(e1) + c(f2) and thus
each of the 2-moves increases the length of the tour by at most two C-edges.

Lemma 2.2.25. The given tour vertex T is not h+ 1-optimal and h+ 1-Lin-Kernighan
optimal.

Proof. Let u be the number of connected components of Gl,C3 . By Lemma 2.2.20, we
can construct a tour T ′ using the connecting paths, u− 1 C-edges and 2h− 2u+ 2 short
edges. We modify T ′ iteratively. In every iteration fix an orientation of T ′. If T ′ contains
a short edge, we perform an ambivalent 2-move by Lemma 2.2.24. Note that there are
2h− 2u+ 2 short edges in the beginning and with each of these 2-moves, we replaced at
most two short edges. Therefore, we can perform by Lemma 2.2.17 h−u ≥ 0 iterations.
After that, we get a tour with h−1 C-edges and all connecting paths. Thus, the resulting
tour arises by an h+ 1-move from T . In the beginning the length of T ′ can be bounded
by the length of the connecting paths, 2(u − 1) C-edges and copies of C-edges and the
short edges. In every iteration the cost increases by at most two C-edges. Hence, in the
end the cost of T ′ is bounded from above by the cost of the connecting paths, 2h − 2
C-edges and the cost of the short edges. By Lemma 2.2.19 T ′ is shorter than T which
contains 2h C-edges.

It remains to show that the h + 1-move can be performed by augmenting a closed
alternating walk. We prove by induction over the iterations that T4T ′ is an alternating
cycle. In the beginning, by Lemma 2.2.20 T4T ′ is an alternating cycle of T . Assume
that T4T ′ is an alternating cycle in the beginning of an iteration. Let f1 and f2 be
replaced by e1 and e2 during the iteration, where e1 is a C-edge. Note that f1, e1 and
f2 share endpoints on the alternating cycle. Moreover, a cycle visits every vertex by
definition at most once, hence f1, e1 and f2 are consecutive edges of it. With the 2-move
we shortcut the three consecutive non-tour, tour and non-tour edges of the cycle by the
non-tour edge e2, hence it remains an alternating cycle. This completes the proof.

Since h < k, this is a contradiction to the assumption that T is k-optimal or k-Lin-
Kernighan optimal. Hence, such a cycle C with less than 2k edges cannot exist and this
gives us a bound on the number of l-long edges:

Corollary 2.2.26. We have ql ≤ 4 ex(4(k − 1)d(4k−44k−5)le, 2k) where ql is the number of
l-long edges in T .

Proof. By definition, G contains ql l-long edges. By the triangle inequality, any two
vertices which are near each other have distance at most 1

4(k−1)d(4k−4
4k−5

)le ≤
1

4(k−1)(4k−4
4k−5

)l
=

(4k−5
4k−4

)l

4(k−1) which is shorter than the length of any l-long edge. Hence, Gl1 has also ql l-long

edges. Since we have chosen a coloring according to Lemma 2.2.10, Gl2 has at least 1
4ql

edges. By the k-optimality or k-Lin-Kernighan optimality and Lemma 2.2.25, Gl2 has
girth at least 2k and thus at most ex(|V (Gl2)|, 2k) ≤ ex(4(k − 1)d(4k−44k−5)le, 2k) edges.

Therefore, ql ≤ 4 ex(4(k − 1)d(4k−44k−5)le, 2k).

Lemma 2.2.27. If the number of l-long edges ql ≤ f(l) for some function f and all l
and l∗ := min{j ∈ N|

∑j
l=0 f(l) ≥ n}, then

c(T) ≤
l∗∑
l=0

f(l)

(
4k − 5

4k − 4

)l
.

39

Proof. By the definition of l-long edges, we have

c(T) ≤
∞∑
l=0

ql

(
4k − 5

4k − 4

)l
.

Since every edge with positive cost is l-long for some l, we have
∑∞

l=0 ql ≤ n. Moreover,
(4k−54k−4)l is monotonically decreasing in l, hence the right hand side is maximized if ql is
maximal for small l. Thus, we get an upper bound by assuming that ql = f(l) for l ≤ l∗
and ql = 0 for l > l∗, where l∗ := min{j ∈ N|

∑j
l=0 f(l) ≥ n}.

Corollary 2.2.28. For l∗ := min{j ∈ N|
∑j

l=0 4 ex(4(k − 1)d(4k−44k−5)le, 2k) ≥ n} we have

c(T) ≤
l∗∑
l=0

4 ex(4(k − 1)d(4k−44k−5)le, 2k)

(4k−44k−5)l
.

Proof. By Corollary 2.2.26 and Lemma 2.2.27, we get an upper bound by assuming
ql = 4 ex(4(k − 1)d(4k−44k−5)le, 2k) for l ≤ l∗ and ql = 0 else.

Theorem 2.2.29. If ex(x, 2k) ∈ O(xc) for some c > 1, the approximation ratio of the

k-Opt and k-Lin-Kernighan algorithm are O(n1−
1
c) for Metric TSP where n is the

number of vertices.

Proof. Let d be a constant such that ex(x, 2k) ≤ dxc. By Corollary 2.2.26, we have

ql ≤ 4 ex(4(k− 1)d(4k−44k−5)le, 2k) ≤ 4d

(
8(k − 1)

(
4k−4
4k−5

)l)c
. By Lemma 2.2.27, we get an

upper bound by assuming that ql = 4d

(
8(k − 1)

(
4k−4
4k−5

)l)c
for l ≤ l∗ and ql = 0 for

l > l∗, where l∗ := min{j ∈ N|
∑j

l=0 4d

(
8(k − 1)

(
4k−4
4k−5

)l)c
≥ n}. Hence

c(T) ≤
l∗∑
l=0

ql

(
4k − 5

4k − 4

)l
≤

l∗∑
l=0

4d

(
8(k − 1)

(
4k−4
4k−5

)l)c
(4k−44k−5)l

≤ 4d (8(k − 1))c
l∗∑
l=0

(
4k − 4

4k − 5

)(c−1)l
= 4d (8(k − 1))c

(
4k−4
4k−5

)(c−1)(l∗+1)
− 1(

4k−4
4k−5

)(c−1)
− 1

.

By definition,

l∗−1∑
l=0

ql =
l∗−1∑
l=0

4d

(
8(k − 1)

(
4k − 4

4k − 5

)l)c
= 4d (8(k − 1))c

(
4k−4
4k−5

)cl∗
− 1(

4k−4
4k−5

)c
− 1

< n.

40

Thus,
(
4k−4
4k−5

)cl∗
<

((4k−4
4k−5)

c−1)n
4d(8(k−1))c + 1 and we get

c(T) ≤ 4d (8(k − 1))c

(
4k−4
4k−5

)(c−1)(l∗+1)
− 1(

4k−4
4k−5

)(c−1)
− 1

=
4d (8(k − 1))c(
4k−4
4k−5

)(c−1)
− 1

(4k − 4

4k − 5

)(c−1)
((

4k − 4

4k − 5

)cl∗) c−1
c

− 1

<
4d (8(k − 1))c(
4k−4
4k−5

)(c−1)
− 1

(4k − 4

4k − 5

)(c−1)

((

4k−4
4k−5

)c
− 1
)
n

4d (8(k − 1))c
+ 1

c−1
c

− 1

 ∈ O(n1−
1
c).

Since we assumed that the length of the optimal tour is 1, we get the result.

Combined with Theorem 1.4.8 we conclude:

Corollary 2.2.30. The approximation ratios of the k-Opt and k-Lin-Kernighan algo-
rithm are O(k

√
n) for Metric TSP where n is the number of vertices.

Remark 2.2.31. When we do not consider k as a constant the above analysis gives us an
upper bound of O(k k

√
n).

2.2.4 Comparing the Lower and Upper Bound

In this section we compare the lower and upper bound we got from the previous sections
for the k-Opt algorithm. From Corollary 2.2.6 and Corollary 2.2.30 we can directly
conclude that

Theorem 2.2.32. The approximation ratio of the k-Opt algorithm is Θ(k
√
n) for k =

3, 4, 6 where n is the number of vertices.

Now, we want to compare the bounds for other values of k where the exact behavior
of ex(n, 2k) is still unknown.

Lemma 2.2.33. For all x ≥ 2 we have ex(2x, 2k) ≤ 6 ex(x, 2k).

Proof. The proof is similar to the standard proof that the maximal cut of a graph
contains at least 1

2 of the edges (see for example Theorem 5.3 in [66])
Take a graph with 2x vertices and ex(2x, 2k) edges and color randomly half of the

vertices in red and the other half in blue. For each edge the probability is x−1
2x−1 that

the endpoints are colored in the same color. So the expected number of edges which
endpoints are colored in the same color is x−1

2x−1 ex(2x, 2k) ≥ 1
3 ex(2x, 2k). Hence, it is

possible to color them in a way such that 1
3 ex(2x, 2k) of the edges have endpoints colored

in the same color. Note that the subgraphs on the red and blue vertices have girth at
least 2k, hence the total number of edges in both subgraphs is at most 2 ex(x, 2k). Thus
2 ex(x, 2k) ≥ 1

3 ex(2x, 2k).

Lemma 2.2.34. For real numbers p1, . . . , pn with 0 ≤ pj ≤ 1 for all j ∈ {1, . . . , n}
and

∑n
j=1 pj = 1 there exists an instance with n vertices and an approximation ratio of

k-Opt of Ω
(∑n

j=1 pj
j

ex−1(j,2k)

)
.

41

Proof. By Theorem 2.2.4, there exists for any 1 ≤ j ≤ n an instance Ij with at most n

vertices and approximation ratio Ω
(

j
ex−1(j,2k)

)
. We can extend the number of vertices

of these instances to n as described in Lemma 2.2.2. Now, construct a random instance
which is equal to Ij with probability pj for all j ∈ {1, . . . , n}. This instance has the

expected approximation ratio of Ω
(∑n

j=1 pj
j

ex−1(j,2k)

)
. Hence, there is a deterministic

instance with an approximation ratio of this value.

Theorem 2.2.35. The upper bound from Corollary 2.2.28 on the approximation ratio
of k-Opt

l∗∑
l=0

4 ex(4(k − 1)d(4k−44k−5)le, 2k)

(4k−44k−5)l
,

where l∗ := min{j ∈ N|
∑j

l=0 4 ex(4(k − 1)d(4k−44k−5)le, 2k) ≥ n} and n is the number of
vertices, is tight up to a factor of O(log(n)).

Proof. By Corollary 2.2.28 and Lemma 2.2.33, we get an upper bound for the approxi-
mation ratio of the k-Opt algorithm of

l∗∑
l=0

4 ex(4(k − 1)d(4k−44k−5)le, 2k)

(4k−44k−5)l

≤
l∗−1∑
l=0

4 ex(4(k − 1)d(4k−44k−5)le, 2k)

(4k−44k−5)l
+

4 ex(4(k − 1)d(4k−44k−5)ed(4k−44k−5)l
∗−1e, 2k)

(4k−44k−5)l∗

≤
l∗−1∑
l=0

4 ex(4(k − 1)d(4k−44k−5)le, 2k)

(4k−44k−5)l
+

24 ex(4(k − 1)d(4k−44k−5)l
∗−1e, 2k)

(4k−44k−5)l∗

≤28

l∗−1∑
l=0

ex(4(k − 1)d(4k−44k−5)le, 2k)

(4k−44k−5)l
.

By the definition of l∗, we have ex(4(k − 1)d(4k−44k−5)le) < n for all l < l∗. Hence, by
Lemma 2.2.34 we get a lower bound of

Ω

(
1

l∗ − 1

l∗−1∑
l=0

ex(4(k − 1)d(4k−44k−5)le, 2k)

4(k − 1)d(4k−44k−5)le

)
.

The upper and lower bound differ by a factor of Θ(l∗). By Lemma 1.4.9, there is a
constant C such that

n >
l∗−1∑
l=0

ex

(
4(k − 1)

⌈(
4k − 4

4k − 5

)l⌉
, 2k

)
≥

l∗−1∑
l=0

C

(
4(k − 1)

⌈(
4k − 4

4k − 5

)l⌉)1+ 2
3k−5

≥ C(4(k − 1))1+
2

3k−5

l∗−1∑
l=0

(
4k − 4

4k − 5

)l(1+ 2
3k−5

)

= C(4(k − 1))1+
2

3k−5

(
4k−4
4k−5

)l∗(1+ 2
3k−5

)
− 1(

4k−4
4k−5

)(1+ 2
3k−5

)
− 1

.

Thus, l∗ ∈ Θ(log(n)) and the upper bound is tight up to a factor of O(log(n)).

42

2.3 Approximation Ratio of k-Opt for Graph TSP

In this section we investigate the approximation ratio of the k-Opt algorithm for Graph
TSP. We show that the k-Opt algorithm has an approximation ratio asymptotically

between Ω
(

log(n)
log log(n)

)
and O

((
log(n)

log log(n)

)log2(9)+ε)
for all ε > 0. This section is based

on work appeared in [70, 71].

2.3.1 Lower Bound

In this section we show a lower bound of Ω
(

log(n)
log log(n)

)
on the approximation ratio of

the k-Opt algorithm for Graph TSP. For all positive integers f we first construct an
instance with at most 4(2f)2kf vertices and a k-optimal tour T with an approximation
ratio of at least f

4 .

For the construction, note that we have (2f−1)2kf−1−1
2f−2 ≤ (2f)2kf , hence by Lemma

1.4.11 there exists a 2f -regular graph with girth at least 2kf and 2(2f)2kf vertices. Let
G be a connected component of this graph. By construction, we know that G is Eulerian.
Now, we construct a k-optimal tour T of a graph similar to G.

Definition 2.3.1. Let W = (v0, v1, . . . , v|E(G)|−1) be a Eulerian walk of G. Traverse
through G according to W starting at v0 and mark every fth vertex both in G and in
W . Whenever we would mark an already marked vertex v in G, we add a new copy v′

of v adjacent exactly to the neighbors of v and mark v′ instead. Moreover, we replace
this occurrence of v in W by v′ and mark v′. Let G′ be the graph containing G and
all the copies of the vertices we made. After the traversal of W , we mark for every
unmarked vertex in G′ one arbitrary occurrence of it in W . The tour T consists of the
edges connecting consecutive marked vertices in W .

We only need the property that every vertex of G′ is marked somewhere in W , hence it
does not matter which occurrence we mark in W for the unmarked vertices in G′. Note
that the number of edges in W is f |V (G)| since G is 2f regular. Hence, we added at most
|V (G)| − 1 copies of vertices to G to obtain G′. Therefore, we have |V (G′)| < 2|V (G)|.
Next, we show that T is a tour with length f |V (G)| and it is k-optimal to conclude the
lower bound on the approximation ratio.

Lemma 2.3.2. T , as defined in Definition 2.3.1, is a tour of G′ with length f |V (G)|.

Proof. By construction, we marked every vertex of G′ exactly once. Hence, T visits
every vertex of G′ exactly once and is a tour. It remains to show that the length of T
is f |V (G)|. For that, we show that every edge of T has the same length as the shorter
of the two walks in W between the two consecutive marked endpoints. This implies the
statement since W consists of |E(G)| = f |V (G)| edges. First, note that two consecutive
marked vertices of W have distance at most f in G′ since we marked every fth vertex at
the beginning of the construction and two consecutive vertices of the Eulerian walk are
connected by an edge in G′. Now, assume that the distance of two consecutive marked
vertices u and v is not equal to the length of the shorter walk between these vertices in
W . Then, the walk between u and v in W is not the shortest path between them. Hence,
there are at least two distinct walks in G′ between u and v that are together shorter
than 2f . Now, transfer the two walks to G by mapping the copies of the vertices to the
original vertex. The transferred u-v walk in W uses every edge at most once since W is

43

an Eulerian walk of G. Thus, there has to be an edge of the transferred u-v walk that
does not occur in the transferred shortest u-v path, otherwise the transferred shortest
path between u and v cannot be shorter. Hence, the union of the two has to contain at
least one cycle with length less than 2f contradicting the girth of the graph G.

Lemma 2.3.3. The tour T , as defined in Definition 2.3.1, is k-optimal.

Proof. This proof is similar to the proof of Theorem 3.5 in [17].
Assume that there is an improving k-move. Then, this k-move can be decomposed

into alternating cycles. Since the k-move is improving, at least one alternating cycle has
positive gain. Choose such a cycle C, it consists of at most k tour edges. Note that
by construction all tour edges of the cycle have length at most f , so the total length
of the tour edges is at most kf . Since C has positive gain, the non-tour edges have a
total length of less than kf . Recall that we showed in the proof of Lemma 2.3.2 that
the shorter of the two walks in W between consecutive marked vertices is a shortest
path between them. Now, consider for all tour edges in C the corresponding walk in
W between the endpoints and also call these edges in the walk tour edges. Similarly,
consider for all non-tour edges the shortest path in G′ and also call them non-tour edges.
The union of these edges gives a closed walk of length less than 2kf in G′. We map the
closed walk to G by mapping the copies of a vertex to the original vertex. Note that
every tour edge occurs at most once in this closed walk since W is a Eulerian walk of
G. Thus, there has to be a tour edge that does not occur a second time as a non-tour
edge, otherwise the cost of the non-tour edges is not strictly less than that of the tour
edges. Hence, the closed walk contains a cycle with length less than 2kf contradicting
the girth of G.

Lemma 2.3.4. For all positive integers f there exists an instance of Graph TSP with
at most 4(2f)2kf vertices and approximation ratio of at least f

4 for the k-Opt algorithm.

Proof. By construction (Definition 2.3.1), G′ has at most 2|V (G)| ≤ 4(2f)2kf vertices
and by Lemma 2.3.2 and 2.3.3 T is a k-optimal tour of G′ with length f |V (G)|. By the
double tree algorithm (see for example [45]), we can bound the length of the optimal
tour by twice the cost of the minimum spanning tree. In the special case of Graph TSP
this is at most 2(|V (G′)| − 1) < 2(2|V (G)| − 1) < 4|V (G)| since the minimum spanning
tree consist only of edges of cost 1. Hence, the approximation ratio is at least f

4 .

Lemma 2.3.5. For all positive integers f and n ≥ 4(2f)2kf there exists an instance
of Graph TSP with n vertices and approximation ratio of at least f

8 for the k-Opt
algorithm.

Proof. Let G′ and T be constructed as above. For nonnegative integers a, b we construct
a graph G′a,b from G′. Choose an arbitrary vertex v ∈ V (G′) and let G′1, . . . , G

′
a be

a copies of G′ and v1 . . . , va be the corresponding vertices of v in these copies. Let
V (G′a,b) be of the union of the vertices in V (G′i) and b extra vertices va+1, . . . , va+b
and E(G′a,b) be the union of the edges in E(G′i) together with the edges {vi, vi+1} for
i ∈ {1, . . . , a + b − 1}. We call the edges of the form {vi, vi+1} the connecting edges.
Consider the tour T for each of the graphs G′1, . . . , G

′
a. Assemble the tours together with

two copies of the connecting edges and shortcut to a tour for G′a,b. The length of the
tour is a|V (G)|f + 2(a+ b− 1).

Next, we show that this tour is still k-optimal. For every tour and non-tour edge
in the k-move we replace it by the corresponding walk according to W possibly with

44

connecting edges and the shortest path, respectively. We also call these edges tour and
non-tour edges, respectively. The union of these edges is a closed walk. Next, we claim
that it is not possible that a connecting edge {vi, vi+1} occurs more often as a tour edge
than as a non-tour edge. Assume the contrary, since the edges of the k-move have to
cross the cut between vi and vi+1 even times, it has to contain {vi, vi+1} twice as tour
edge but not as non-tour edge. But then after performing the k-move the tour is not
connected between vi and vi+1 anymore. Hence, the total cost of non-tour connecting
edges is less or equal to that of the tour connecting edges. Moreover, the alternating
cycle splits into a union of cycles such that each of them only uses edges in one copy G′j
of G′ for some j ∈ {1, . . . , a} or connecting edges. Thus, there is a cycle with positive
gain shorter than 2kf in some G′j . We get a contradiction by transforming this cycle to
G similar as in the proof of Lemma 2.3.3 contradicting its girth.

We choose a, b such that a|V (G′)|+ b = n, a ≥ 1 and 0 ≤ b < |V (G′)| since |V (G′)| <
2|V (G)| ≤ 4(2f)2kf ≤ n. In this case G′a,b has n vertices and the approximation ratio is
at least

a|V (G)|f + 2(a+ b− 1)

2(a|V (G′)|+ b)
>

1
2a|V (G′)|f + 2(a+ b− 1)

2(a|V (G′)|+ b)
>

a|V (G′)|f
4(a|V (G′)|+ |V (G′)|)

=
af

4(a+ 1)
≥ f

8
.

Corollary 2.3.6. The approximation ratio of k-Opt for Graph TSP is Ω
(

log(n)
log log(n)

)
where n is the number of vertices.

Proof. For all positive integers f and n with 4(2f)2kf ≤ n < 4(2(f + 1))2k(f+1) we
get an instance with n vertices and approximation ratio at least f

8 by Lemma 2.3.5.
Let g−1 be the inverse function of g(x) := 4(2x)2kx for x > 0. Then, by monotonicity
f ≤ g−1(n) < f + 1. Hence, f ∈ Θ(g−1(n)). Moreover, we have g(x) = 4(2x)2kx ≤
(2kx)2kx =: g1(x). The inverse function of g1(x) is g−11 (x) = log(x)

2kW (log(x)) , where W is

the Lambert W function. Thus, g−1(n) ∈ Ω
(

log(n)
2kW (log(n))

)
= Ω

(
log(n)

log log(n)

)
. Therefore,

f ∈ Ω
(

log(n)
log log(n)

)
and we have an instance with n vertices and approximation ratio

Ω
(

log(n)
log log(n)

)
.

2.3.2 Outline of Upper Bound

This subsection comprises a sketch of the proof of Theorem 1.2.10. Assume that an
instance of Graph TSP (Kn, c) is given where c arises from the unweighted graph G.
Let a 2-optimal tour T be given for the instance and fix an orientation.

First, note that every edge with length l corresponds to shortest paths with l edges
in G between the endpoints of the edges. Now, if the corresponding shortest paths of
two edges share a common directed edge, we see that there is an improving 2-move
contradicting the assumed 2-optimality of T (Figure 2.9). Hence, the directed edges of
the corresponding shortest paths are disjoint. Note that the optimal tour contains n
edges and hence has length at least n. Thus, if the approximation ratio is high, we must
have many edges in the union of the shortest paths corresponding to the edges in T and
hence also in G. The main challenge now is to exploit this fact in a good way since

45

a simple bound of n(n − 1) on the number of directed edges in G would only give an
upper bound of O(n) on the approximation ratio, which is worse than the upper bound
of O(

√
n) for Metric TSP.

Figure 2.9: The solid and dashed edges are shortest paths that correspond to two edges in
T . If they share a directed edge, there exists an improving 2-move replacing
these two edges. The cost of the new edges is bounded by the number of the
red edges which is less than the total cost of the two original edges.

To get a better result we use the same idea from the analysis of the upper bound
for Metric TSP: We contract vertices and get a graph with fewer vertices and many
edges. Instead of contracting once, we iteratively partition the vertices into sets and
contract each set to a single vertex to get a new graph. (We note that we actually just
contract the vertices and construct the edges of the new graph in a slightly different
way. But let us assume for simplicity that the edges of the new graph are images of
the contraction of edges in the old graph.) Starting with G in every iteration we ideally
want to partition the vertices of the current graph into sets, contract each set to a vertex
and delete self-loops such that:

1. The number of vertices decreases much faster than the number of edges.

2. The subgraphs induced by the sets we contract have small diameter.

The first condition ensures that we get a better bound after every iteration. The second
condition builds the connection between the approximation ratio and the number of
edges in the contracted graph: It ensures that if the shortest paths corresponding to two
edges of T share a directed edge in the contracted graph, then they are also not far away
in G, so there is an improving 2-move replacing these two edges. This means that a high
approximation ratio would imply a high number of edges in the contracted graph.

Unfortunately, it is not easy to ensure both conditions at the same time even if we
know that the graph has many edges as the edges are not equally distributed in the
graph. There might be many vertices with very small degree. If we contract them while
still ensuring that the subgraphs have small diameter, the number of vertices cannot
decrease fast enough. Therefore, we consider a subset of vertices we call active vertices
and only require that the number of active vertices decreases fast. If an active vertex
has small degree, we will not contract it and consider it as inactive in future iterations.
Initially, all vertices are active and we use the following theorem to find a good partition
of the active vertices.

Theorem 2.3.7 (Theorem 6 in [28]). Given ε > 0 every graph G on n vertices can be
edge partitioned E = E0 ∪E1 ∪ · · · ∪El such that |E0| ≤ εn2, l ≤ 16ε−1 and for 1 ≤ i ≤ l
the diameter of Ei is at most 4.

46

In every iteration we apply the theorem to the subgraph induced by the currently
active vertices. The vertices only incident to edges in E0 become inactive after this
iteration. For each of the sets E1, . . . , El we contract the vertices incident to an edge in
the set to a single vertex. These are the active vertices in the next iteration. By choosing
ε appropriately, we can ensure that the number of vertices decreases significantly and
the number of vertices that become inactive in every iteration is small.

After a fixed number of iterations, we have at least one edge and one active vertex
remaining. Since the number of active vertices decreased much faster than the edges, we
can conclude that G only contains few edges compared to the number of vertices. This
implies a bound on the approximation ratio.

2.3.3 Upper Bound

In this section we show an upper bound of O

((
log(n)

log log(n)

)log2(9)+ε)
for all ε > 0 on the

approximation ratio for the 2-Opt algorithm for Graph TSP instances. This implies the
same upper bound also for the general k-Opt and Lin-Kernighan algorithm since they
also produce 2-optimal tours. To show the bound, we assume that a worst-case instance
together with a 2-optimal tour is given and bound the length of the tour compared to
the length of the optimal tour. Starting with the given instance we iteratively contract
a subset of vertices. We show that the cardinality of a subset of the vertices, the so
called active vertices, decreases by a factor exponential in the approximation factor
after a certain number of iterations. In the end we know that by construction at least
one active vertex is remaining. Hence, we can bound the approximation ratio by the
number of active vertices at the beginning which is upper bounded by the total number
of vertices.

Let an instance (Kn, c) of Graph TSP and a graph G = (V (Kn), E(G)) be given
such that c(u, v) is the shortest distance between u and v in G. Moreover, let T be a

2-optimal TSP tour of this instance. Fix an orientation of T and define f :=
∑
e∈T c(e)
n .

Note that f does not have to be an integer. We may assume that f > 1 since otherwise
T has length n and is optimal.

Definition 2.3.8. For every edge (u, v) ∈ T fix a shortest path between u and v in G.
We call (u′, v′) a subedge of (u, v) ∈ T if u′ and v′ lie on the fixed shortest path between
u and v in G and c(u, u′) < c(u, v′).

Definition 2.3.9. Fix some 0 < ε < 1 and set s := n(f ε − 1) > 0. Starting with G0 we
construct iteratively directed multigraphs Gi+1 from Gi:

• Let V (G0) := V (G), we call all vertices of G0 active. Moreover, let p0(v) := v for
all v ∈ V (G).

• To construct E(Gi) for all i ≥ 0 let li := 9i. We start with E(Gi) = ∅. For every
subedge (u′, v′) of (u, v) ∈ T with c(u′, v′) = li and such that li divides c(u, u′) we
add the edge (pi(u

′), pi(v
′)) to Gi (Figure 2.10).

• To construct V (Gi+1) from Gi consider the underlying undirected graph of Gi and
delete parallel edges. We call the resulting graph G′i. The set of active vertices in
G′i is the same as in Gi.

47

• Take an edge partition Ei0, . . . , E
i
l of the subgraph induced by the active vertices

in G′i such that εi := s
8n2
i 2
i , |E0| ≤ εin

2
i , l ≤ 16

εi
and the diameter of Eij is at most

4 for all j > 0. By Lemma 2.3.7, such a decomposition exists.

• Define iteratively the sets V i
1 , . . . , V

i
l as follows: V i

j := {v ∈ V (Gi)|∃e ∈ Eij , v ∈
e}\

(
V i
1 ∪ · · · ∪ V i

j−1

)
.

• We contract the vertices in each of the sets V i
j to a single vertex, which together

with the vertices in V (Gi)\
(
V i
1 ∪ · · · ∪ V i

l

)
form the vertex set of Gi+1.

• We call the contracted vertices of V i
1 , . . . , V

i
l the active vertices of Gi+1, all other

vertices of Gi+1 are called inactive.

• Note that if a vertex is inactive in Gi it is also inactive in Gi+1. Let Xi :=
V (Gi)\

(
X1 ∪ · · · ∪Xi−1 ∪ V i

1 ∪ · · · ∪ V i
l

)
be the set of vertices that become inac-

tive the first time in Gi+1 (Figure 2.11).

• Let pi+1(v) ∈ V (Gi+1) for all v ∈ V (G) be the image of pi(v) in Gi+1.

Figure 2.10: Construction of E(Gi): The black edges symbolize the fixed shortest path
in G between endpoints of an edge e ∈ T . For illustrative purposes we
choose li = 3. The red edges illustrate the edges we would add between the
corresponding endpoints in Gi.

In the following we will show that Gi is a simple directed graph and give a lower bound
on the number of edges of Gi depending on the constant ε we fixed above.

Lemma 2.3.10. If pi(u) = pi(v), then c(u, v) < li for all u, v ∈ V (G).

Proof. We prove this statement by induction on i. For i = 0 the two vertices u and v
have to be identical, hence c(u, v) = 0 < 1 = l0. Now, consider the case i > 0. By
construction, either pi−1(u) = pi−1(v) or pi−1(u), pi−1(v) ∈ V i−1

j for some j > 0. In the
first case we can simply apply the induction hypothesis. In the second case recall that
by construction the diameter of Ei−1j is at most 4. Hence, there exists a path of length
at most 4 in Gi−1 connecting pi−1(u) and pi−1(v). W.l.o.g. assume the worst case that
the path has length 4. Let (pi−1(xj), pi−1(yj)) ∈ E(Gi−1) for j ∈ {1, 2, 3, 4} such that
pi−1(yj) = pi−1(xj+1) for j ∈ {1, 2, 3}, pi−1(x1) = pi−1(u) and pi−1(y4) = pi−1(v), i.e.
(pi−1(xj), pi−1(yj)) are the edges of the path (Figure 2.12). We can use the induction
hypothesis five times to bound the distance:

c(u, v) ≤ c(u, x1) +
4∑
j=1

c(xj , yj) +
3∑
j=1

c(yj , xj+1) + c(y4, v) < 9li = 9i+1 = li+1

Lemma 2.3.11. If there are two subedges (a′, b′) and (u′, v′) of different edges (a, b) and
(u, v) in T with c(a′, b′) + c(u′, v′) > c(a′, u′) + c(b′, v′), then T is not 2-optimal.

48

V i
1

V i
2

V i
3

Xi

Xi−1

Xi−2

f1

Figure 2.11: Construction of V (Gi+1): The orange and black vertices are the active and
inactive vertices in Gi, respectively. The yellow, blue, green and red edges
are the edges of Ei0, E

i
1, E

i
2 and Ei3, respectively. The black edges have at

least an inactive vertex in Gi as endpoint and are hence unassigned. Each
of the sets V i

1 , V i
2 and V i

3 will be contracted to a single vertex in Gi+1, they
will be the active vertices of Gi+1.

Proof. We have by the triangle inequality

c(a, b) + c(u, v) = c(a, a′) + c(a′, b′) + c(b′, b) + c(u, u′) + c(u′, v′) + c(v′, v)

> c(a, a′) + c(a′, u′) + c(u′, u) + c(b, b′) + c(b′, v′) + c(v′, v)

≥ c(a, u) + c(b, v).

Hence, replacing (a, b) and (u, v) by (a, u) and (b, v) is an improving 2-move.

Lemma 2.3.12. Gi is a simple directed graph with at least s edges for all i ≤ log9(f
1−ε).

Proof. Assume that there are parallel edges (pi(a
′), pi(b

′)) and (pi(u
′), pi(v

′)), where
pi(a

′) = pi(u
′) and pi(b

′) = pi(v
′) for some a′, b′, u′, v′ ∈ V (G). Then, by Lemma 2.3.10

c(a′, u′) + c(b′, v′) < li + li = c(a′, b′) + c(u′, v′). If (a′, b′) and (u′, v′) are subedges
of different edges, there is an improving 2-move by Lemma 2.3.11 contradicting the 2-
optimality of T . Otherwise, assume that (a′, b′) and (u′, v′) are subedges of an edge
e ∈ T . By construction, we can w.l.o.g. assume that a′, b′, u′, v′ lie in this order on the
fixed shortest path between the endpoints of e according to the orientation of T (with
possibly b′ = u′). We have

c(a′, v′) ≤ c(a′, u′) + c(u′, v′) ≤ c(a′, u′) + c(b′, v′) < c(a′, b′) + c(u′, v′) ≤ c(a′, v′).

Contradiction.
Assume that there is a self-loop (pi(u), pi(u

′)) with pi(u) = pi(u
′) for some u, u′ ∈

V (G). By Lemma 2.3.10, we have c(u, u′) < li = c(u, u′), contradiction.

49

x2
y2 x3 y3 x4

y4x1

y1

u v

Figure 2.12: Sketch for the proof ofnumber Lemma 2.3.10.

Note that every edge e ∈ T produces at least b c(e)li c edges in Gi. Hence, Gi has in

total at least
∑

e∈T b
c(e)
li
c ≥

∑
e∈T (c(e)li −1) = n(fli −1) edges. For i ≤ log9(f

1−ε) we have

li ≤ 9log9(f
1−ε) = f1−ε. Therefore, we have at least n(fli − 1) ≥ n(f ε − 1) = s edges.

Let ni be the number of active vertices and mi be the number of edges where both
endpoints are active vertices in Gi. Our next aim is to get a lower bound on mi and an
upper bound on ni.

Lemma 2.3.13. We have mi ≥ s
2i

for i ≤ log9(f
1−ε).

Proof. Let δj(v) for v ∈ V (Gj) be the sum of the indegree and outdegree of v in Gj .
Similarly, let δ′j(v) for v ∈ V (G′j) be the degree of v in G′j . Since by Lemma 2.3.7

|Ej0| ≤ εjn
2
j = s

8·2j , we know that
∑

x∈Xj δ
′
j(x) ≤ s

4·2j . By Lemma 2.3.12, we know that
Gj is a simple directed graph, hence we delete at most one parallel edge between every
pair of vertices while constructing the graph G′j . This gives us

∑
x∈Xj δj(x) ≤ s

2·2j for
all j < i. Note that vertices x ∈ Xj will not be contracted in future iterations and hence
x ∈ V (Gi) for all j < i. Moreover, li is divisible by lj for all j < i. Thus, by construction
δi(x) ≤ δj(x) for all x ∈ Xj with j < i and hence

∑
x∈Xj δi(x) ≤

∑
x∈Xj δj(x) ≤ s

2·2j .

By Lemma 2.3.12, we have s ≤ |E(Gi)| ≤
∑i−1

j=0

∑
x∈Xj δi(x) +mi. Therefore,

mi ≥ s−
i−1∑
j=0

∑
x∈Xj

δi(x) ≥ s−
i−1∑
j=0

s

2j+1
=

s

2i
.

Lemma 2.3.14. There is a constant d > 0 such that ni ≤ n

(d(fε−1))2i−1
.

Proof. By Lemma 2.3.7, we can bound the number of active vertices by ni+1 ≤ 16 1
εi

=
16·8·2i·n2

i
s =

2i+7n2
i

s . Now, we show by induction that ni ≤ n2i22
i+3−i−8

s2i−1
. For n = 0 we have

n0 = n = n2022
3−8

s20−1
. Moreover,

ni+1 ≤
2i+7n2i
s

≤ 2i+7

s
· n

2i+1
22
i+4−2i−16

s2i+1−2 =
n2

i+1
22
i+4−(i+1)−8

s2i+1−1 .

Hence,

ni ≤
n2

i
22
i+3−i−8

s2i−1
=

n2
i
22
i+3−i−8

(n(f ε − 1))2i−1
≤ n22

i+3−8

(f ε − 1)2i−1
=

n

(1
28

(f ε − 1))2i−1
.

50

Lemma 2.3.15. If (c1f)c2f
c3 ≤ n for constants c1, c2, c3 > 0, then f ∈ O

((
log(n)

log log(n)

) 1
c3

)
.

Proof. We can w.l.o.g. assume that c1 ≤ 1 since c1 > 1 reduces to the case c1 = 1
by f c2f

c3 < (c1f)c2f
c3 ≤ n. Set f1 := (c1f)c3 and c4 := c3

c2
. Then, n ≥ (c1f)c2f

c3 =

f

c2

c
c3
1 c3

f1

1 ≥ f
c2
c3
f1

1 . Hence, ff11 ≤ nc4 . The inverse function of xx is log(x)
W (log(x)) , where W is

the Lambert W function with W (x) ∈ Θ(log(x)). Thus

f1 ∈ O
(

log(nc4)

log log(nc4)

)
= O

(
log(n)

log(c4) + log log(n)

)
= O

(
log(n)

log log(n)

)
.

Therefore, f = 1
c1

(f1)
1
c3 ∈ O

((
log(n)

log log(n)

) 1
c3

)
.

Theorem 2.3.16. The approximation ratio of the 2-Opt algorithm for Graph TSP is

O

((
log(n)

log log(n)

)log2(9)+ε′)
for all ε′ > 0 where n is the number of vertices.

Proof. By the definition of f , we have
∑

e∈T c(e) = nf . The cost of the optimal tour is
at least n since it consists of n edges. Hence, the approximation ratio is at most f and
it is enough to get an upper bound on f .

Consider the graph Gblog9(f1−ε)c. On the one hand, by Lemma 2.3.13 mblog9(f1−ε)c ≥
s

2blog9(f
1−ε)c = n(fε−1)

2blog9(f
1−ε)c > 0 and hence nblog9(f1−ε)c ≥ 1. On the other hand, we have

by Lemma 2.3.14 nblog9(f1−ε)c ≤
n

(d(fε−1))2blog9(f
1−ε)c−1

for some constant d. Thus, for all

f ≥ 2
1
ε there exists a constant d1 such that

n ≥ (d(f ε − 1))2
blog9(f

1−ε)c−1 ≥ (d1f
ε)2

(1−ε) log9(f)−2 = (d1f
ε)2

(1−ε) log2(f)
log2(9)

−2

= (d1f
ε)f

1−ε
log2(9)

− 2
log2(f) .

For a given ε′ > 0 we can choose constants ε, d2 such that for all f ≥ d2 we have 1−ε
log2(9)

−
2

log2(f)
≥ 1

log2(9)+ε
′ . By Lemma 2.3.15, we conclude f ∈ O

((
log(n)

log log(n)

)log2(9)+ε′)
.

2.4 Approximation Ratio of k-Opt for Euclidean TSP

In this section we modify the instances given in [17] which show an asymptotic lower

bound of log(n)
log log(n) for the 2-Opt algorithm. The new instances give the same asymptotic

lower bound on the approximation ratio for the k-Opt algorithm as for the 2-Opt algo-
rithm. As a generalization the lower bound not only works for the Euclidean TSP but
for all TSP instances where the distances arise from the p-norm for some p ≥ 1. Together
with the known matching upper from [15] this implies that the k-Opt algorithm has an

asymptotic approximation ratio of Θ
(

log(n)
log log(n)

)
for Euclidean TSP. From now on, let

us consider the k-Opt algorithm with the p-norm for some fixed k, p with k ≥ 2 and
p ≥ 1.

For every odd q ∈ N we construct an instance Iq with

n := 2

q∑
i=0

(q(p+1)i + 1) + q(p+1)q − 1 + 2

q−1∑
i=0

(q(p+1)(q−i)−1 − 1)

51

vertices (Figure 2.13). Note that n ∈ Θ
(
q(p+1)q

)
and hence q ∈ Θ

(
logn
W (n)

)
= Θ

(
logn

log logn

)
where W is the Lambert W function.

For the construction of Iq first define q + 1 lines (li)i∈{0,...,q} parallel to the x-axis,

where li satisfies the function y =
∑i−1

s=0 q
(p+1)(q−s)−1. We will call li the ith layer.

The instance consists of four sets of vertices: V1, V2, V3 and V4. For V1 we place
q(p+1)q

q(p+1)(q−i) +1 = q(p+1)i+1 equidistant vertices on the ith layer li between the x-coordinate

0 and q(p+1)q such that the distance between consecutive vertices is q(p+1)(q−i). Note that
the coordinates of these vertices are independent of the p-norm since the vertices lie on
a line parallel to the x-axis.

The vertices in V2 are copies of V1 shifted to the right by 2q(p+1)q, i.e. every vertex in
V1 with coordinates (e, f) corresponds to a vertex in V2 with coordinates (e+2q(p+1)q, f).

Now, we fill the gaps in the topmost layer. V3 consists of q(p+1)q − 1 vertices dividing
the line segment between (q(p+1)q,

∑q−1
s=0 q

(p+1)(q−s)−1) and (2q(p+1)q,
∑q−1

s=0 q
(p+1)(q−s)−1)

into q(p+1)q equidistant parts such that the distance between consecutive vertices is 1.
Define the vertical line segments (hi)0≤i<q parallel to the y-axis with y-coordinate

between
∑i−1

s=0 q
(p+1)(q−s)−1 and

∑i
s=0 q

(p+1)(q−s)−1 as follows: If i is even, it is the line
segment with the x-coordinate 0, otherwise it is the line segment with the x-coordinate
q(p+1)q.

Similarly, define the shifted vertical line segments (h′s)0≤s<q parallel to the y-axis with
y-coordinate between

∑i−1
s=0 q

(p+1)(q−s)−1 and
∑i

s=0 q
(p+1)(q−s)−1 as follows: If i is even,

it is the line segment with the x-coordinate 3q(p+1)q, otherwise it is the line segment
with the x-coordinate 2q(p+1)q.

Finally, the set V4 consists of the following vertices: For each i we place q(p+1)(q−i)−1−1
equidistant vertices on hi and h′i such that the distance between two consecutive vertices
is 1.

The coordinates of the vertices of the instance Iq are given explicitly by:

V1 :=
⋃

0≤i≤q,0≤j≤q(p+1)i

(jq(p+1)(q−i),
i−1∑
s=0

q(p+1)(q−s)−1)

V2 :=
⋃

0≤i≤q,0≤j≤q(p+1)i

(jq(p+1)(q−i) + 2q(p+1)q,

i−1∑
s=0

q(p+1)(q−s)−1)

V3 :=
⋃

1≤j≤q(p+1)q−1

(q(p+1)q + j,

q−1∑
s=0

q(p+1)(q−s)−1)

V4 :=
⋃

0≤i≤q−1,i even,
1≤j≤q(p+1)(q−i)−1−1

(0, j +
i−1∑
s=0

q(p+1)(q−s)−1) ∪ (3q(p+1)q, j +
i−1∑
s=0

q(p+1)(q−s)−1)

⋃
0≤i≤q−1,i odd,

1≤j≤q(p+1)(q−i)−1−1

(q(p+1)q, j +
i−1∑
s=0

q(p+1)(q−s)−1) ∪ (2q(p+1)q, j +
i−1∑
s=0

q(p+1)(q−s)−1)

Let V (Iq) := V1 ∪ V2 ∪ V3 ∪ V4. Note that |V1| = |V2| =
∑q

i=0(q
(p+1)i + 1), |V3| =

52

Figure 2.13: The constructed instance Iq for q = 2, p = 1 and the tour T . The vertices
in V1, V2, V3 lie on the horizontal lines l0, l1, l2 and l3 where l0 is the bot-
tommost line. The vertices in V4 lie on the vertical line segments hi and
h′i.

q(p+1)q − 1 and |V4| = 2
∑q−1

i=0 (q(p+1)(q−i)−1 − 1). Hence,

|V1|+ |V2|+ |V3|+ |V4| = 2

q∑
i=0

(q(p+1)i + 1) + q(p+1)q − 1 + 2

q−1∑
i=0

(q(p+1)(q−i)−1 − 1) = n.

Define the tour T as shown in Figure 2.13 by connecting consecutive equidistant
vertices in V1, V2, V3 and V4. More formally, define

E1 :=
⋃

0≤i≤q,0≤j≤q(p+1)i−1

{(jq(p+1)(q−i),

i−1∑
s=0

q(p+1)(q−s)−1), ((j + 1)q(p+1)(q−i),

i−1∑
s=0

q(p+1)(q−s)−1)}

E2 :=
⋃

0≤i≤q,0≤j≤q(p+1)i−1

{(jq(p+1)(q−i) + 2q(p+1)q,
i−1∑
s=0

q(p+1)(q−s)−1),

((j + 1)q(p+1)(q−i) + 2q(p+1)q,
i−1∑
s=0

q(p+1)(q−s)−1)}

E3 :=
⋃

0≤j≤q(p+1)q−1

{(q(p+1)q + j,

q−1∑
s=0

q(p+1)(q−s)−1), (q(p+1)q + j + 1,

q−1∑
s=0

q(p+1)(q−s)−1)}

E4 :=
⋃

0≤i≤q−1,i even,
0≤j≤q(p+1)(q−i)−1−1

{(0, j +
i−1∑
s=0

q(p+1)(q−s)−1), (0, j + 1 +
i−1∑
s=0

q(p+1)(q−s)−1)}

∪ {(3q(p+1)q, j +

i−1∑
s=0

q(p+1)(q−s)−1), (3q(p+1)q, j + 1 +

i−1∑
s=0

q(p+1)(q−s)−1)}

⋃
0≤i≤q−1,i odd,

0≤j≤q(p+1)(q−i)−1−1

{(q(p+1)q, j +

i−1∑
s=0

q(p+1)(q−s)−1), (q(p+1)q, j + 1 +

i−1∑
s=0

q(p+1)(q−s)−1)}

∪ {(2q(p+1)q, j +

i−1∑
s=0

q(p+1)(q−s)−1), (2q(p+1)q, j + 1 +

i−1∑
s=0

q(p+1)(q−s)−1)}

E5 :={(q(p+1)q, 0), (2q(p+1)q, 0)}

Now, let T := E1 ∪E2 ∪E3 ∪E4 ∪E5. Note that since q+ 1 is even, T is indeed a tour.
Let T ∗ be an optimal tour of the instance I. Next, we bound the length of T and T ∗.

53

Lemma 2.4.1. The length of the tour T as defined above for the instance Iq is at least
q · q(p+1)q.

Proof. The proof is similar to the proof of Claim 4.5 in [17].
Consider only the horizontal edges connecting consecutive vertices of V1, i.e. the edge set
E1. On each of the q+ 1 layers these edges form line segments each with length q(p+1)q.
Hence, we can bound the length of the tour by (q + 1) · q(p+1)q > q · q(p+1)q.

Lemma 2.4.2. The length of the optimal tour T ∗ for the instance Iq is at most 14q(p+1)q.

Proof. The proof is similar to the proof of Claim 4.4 in [17].
We bound the length of the optimal tour by twice the length of a spanning tree. For
any vertex in V1 ∪ V2 not on the topmost layer lq consider the vertical line segment to
the next higher layer. Since the distance between consecutive vertices on li+1 is divisible
by the distance of vertices on li, every vertex not on lp is connected this way with a
vertex on the next higher layer. For all i it is easy to see that hi and h′i and hence the
vertices of V4 lie on these vertical line segments. There are 2

(
q(p+1)i + 1

)
vertices on li

and each of the connection edges to li+1 has length q(p+1)(q−i)−1. Thus, these edges have
a total length of 2

∑q−1
i=0 q

(p+1)(q−i)−1 (q(p+1)i + 1
)
. We get a spanning tree by adding

edges connecting consecutive vertices on lp on which the vertices of V3 lies. These edges
form a line segment with length 3q(p+1)q. Altogether, the total length of the spanning
tree is:

3q(p+1)q + 2

q−1∑
i=0

q(p+1)(q−i)−1
(
q(p+1)i + 1

)
= 3q(p+1)q + 2

q−1∑
i=0

(
q(p+1)q−1 + q(p+1)(q−i)−1

)
≤3q(p+1)q + 4q(p+1)q = 7q(p+1)q.

The length of the optimal tour can now be bounded by twice the cost of this spanning
tree.

Combining both lemmas we can already see that the ratio between the length of T and

the optimal tour is at least q·q(p+1)q

14q(p+1)q = q
14 and recall that q ∈ Θ

(
log(n)

log log(n)

)
. It remains

to show that the tour T for the instance Iq is k-optimal for q large enough. For that we
first show some auxiliary lemmas.

Definition 2.4.3. The bounding box of a set of points P is the smallest axis-parallel
rectangle containing all points in P .

Lemma 2.4.4. Let P be a polygon such that the bounding box of P has the side length dx
and dy in x and y direction, respectively. Then, the perimeter of P is at least 2 p

√
dpx + dpy

where the distances are induced by the p-norm.

Proof. For each side of the bounding box mark a vertex of P that lies on that side.
Note that a vertex may be marked multiple times for different sides. For every other
unmarked vertex we can shortcut the two adjacent edges to get a new polygon without
increasing the perimeter and changing the bounding box. In the end we end up with
a polygon that has at most 4 sides. We can further assume that the polygon is simple
since otherwise we can perform a 2-move to remove the crossing edges without increasing
the length of the perimeter and changing the bounding box. Therefore, we may assume
that P consists of the vertices a, b, c, d lying on the top, left, right, bottom side of the

54

bounding square, respectively. Note that these vertices may coincide in case that P
contains less than four edges. We reflect the vertex d by the left and right side of the
bounding box to obtain e and f , respectively. Then, we reflect f by the top side of the
bounding box to obtain g (Figure 2.14). By symmetry and the triangle inequality, the
perimeter of P is at least.

‖a− b‖p + ‖a− c‖p + ‖b− d‖p + ‖c− d‖p
=‖a− b‖p + ‖a− c‖p + ‖b− e‖p + ‖c− f‖p
≥‖a− e‖p + ‖a− f‖p = ‖a− e‖p + ‖a− g‖p ≥ ‖e− g‖p

Let a′, b′, c′, d′, e′, f ′ and g′ be the projections of a, b, c, d, e, f and g to the x-axis, respec-
tively. Again by symmetry we have

‖e′ − g′‖p = ‖e′ − a′‖p + ‖a′ − g′‖p = ‖e′ − b′‖p + ‖b′ − a′‖p + ‖a′ − f ′‖p
= ‖d′ − b′‖p + ‖b′ − a′‖p + ‖a′ − c′‖p + ‖c′ − f ′‖p
= ‖d′ − b′‖p + ‖b′ − a′‖p + ‖a′ − c′‖p + ‖c′ − d′‖p = 2dx

Together with a similar calculation with the projections of the vertices to the y-axis we
can conclude that the bounding box of {e, g} has side length 2dx and 2dy. Therefore,
we have ‖e− g‖p = p

√
(2dx)p + (2dy)p = 2 p

√
dpx + dpy which completes the proof.

d

b

a

c

e f

g

Figure 2.14: Sketch for Lemma 2.4.4

Lemma 2.4.5. There is a q̄ such that for all q ≥ q̄ and 0 ≤ a, b ≤ k we have

p

√
(aq(p+1)(q−s))p + qp((p+1)(q−s)−1) > aq(p+1)(q−s) + bq(p+1)(q−s−1).

Proof. We have for q large enough(
p

√
(aq(p+1)(q−s))p + qp((p+1)(q−s)−1)

)p
− (aq(p+1)(q−s) + bq(p+1)(q−s−1))p

=(aq(p+1)(q−s))p + qp((p+1)(q−s)−1) − (aq(p+1)(q−s) + bq(p+1)(q−s−1))p

=qp((p+1)(q−s)−1) −O(q(p+1)(q−s)(p−1)q(p+1)(q−s−1))

=qp((p+1)(q−s)−1) −O(q(p+1)(q−s)p−(p+1)) > 0.

The statement follows from the fact that the power function is monotonically increasing.

55

Next, we show that the tour T is indeed k-optimal for q large enough.

Lemma 2.4.6. There exists a q̄ such that for all q ≥ q̄ the tour T for the constructed
instance Iq is k-optimal.

Proof. Assume that T is not k-optimal. Then there is a closed alternating walk C with
at most k tour edges and positive gain. We distinguish two cases:

Case 1: C visits vertices from at least two layers.
Assume that ls is the layer C visits with the smallest index s. Moreover, let C
contain exactly a tour edges with both endpoints lying on ls. By construction, we
can bound the length of the tour edges in C from above by aq(p+1)(q−s) + (k −
a)q(p+1)(q−s−1). By assumption, the bounding box of C has side length at least
aq(p+1)(q−s) in x-direction. Since C contains at least vertices from two layers, its
bounding box has side length at least the distance between ls and ls+1 which is
q(p+1)(q−s)−1 in y-direction. By Lemma 2.4.4 viewing C as a polygon, the edges of C
have total length at least 2 p

√
(aq(p+1)(q−s))p + qp((p+1)(q−s)−1). Hence, the length of

the non-tour edges is at least 2 p
√

(aq(p+1)(q−s))p + qp((p+1)(q−s)−1)− (aq(p+1)(q−s) +
(k − a)q(p+1)(q−s−1)) and by Lemma 2.4.5 the total gain of C has to be negative
for q large enough, contradiction.

Case 2: C visits vertices from at most one layer.
Let S = {e1, . . . , el} be the set of edges in C with both endpoints lying on the same
layer. Moreover, let the endpoints of ei have the coordinates (xi, yi) and (x′i, y

′
i)

and w.l.o.g. assume that xi < x′i. Since C is a closed walk, it intersects the vertical
line x = c for all c ∈ R an even number of times. This means that for xi < c < x′i
the vertical line x = c intersects C in a set of edges Jc with |Jc| ≥ 2. Furthermore,
Jc contains besides of ei only non-tour edges since otherwise C would visit at last
two layers. By construction, Jc contains the same edges for all xi < c < x′i since
otherwise C would visit more than one layer. Therefore, we can assign every edge
ei in S to an arbitrary non-tour edge fi in Jc for some xi < c < x′i. Note that a
non-tour edge may be assigned multiple tour edges in S. We mark all edges in S
and the corresponding edges they are assigned to.

We claim that the length of the marked non-tour edges is at least as long as the
marked tour edges. To see this we assign the length of edges ei ∈ S to that part
of fi that the vertical line x = c intersects for values of c satisfying xi < c < x′i
(Figure 2.15). We call that part of the edge f ′i . Note that f ′i and f ′j are disjoint for
i 6= j since the interior of ei and ej have disjoint x-coordinates. Let di be the length
of the projection of f ′i to the y-axis. As p

√
dpi + (x′i − xi)p ≥ p

√
(x′i − xi)p = x′i−xi

the length of f ′i is shorter than that of ei. This proves the claim.

Since we marked one non-tour edge for every tour edge in S, there are at least as
many unmarked non-tour edges as unmarked tour edges. Note that the length of
each of the unmarked non-tour edges is at least 1 and that of each of the unmarked
tour edges is exactly 1. Therefore, the total length of the unmarked non-tour edges
is larger than or equal the length of the unmarked tour edges. Combining with the
results for the marked edges we see that C cannot have positive gain, contradiction.

56

Figure 2.15: Sketch for Case 2 in the proof of Lemma 2.4.6: The solid edges are the tour
edges and the dotted edges are the non-tour edges of C. The set S consists
of the red and blue solid edges. The red and blue tour edges are assigned
to the red and blue dotted parts, respectively.

Theorem 2.4.7. The approximation ratio of the k-Opt algorithm for instances whose

distances arise from the p-norm is Ω
(

log(n)
log log(n)

)
where n is the number of vertices.

Proof. By Lemma 2.4.6 there is a q such that the tour T for the instance Iq is k-optimal.
By Lemma 2.4.1 and 2.4.2 the tour T has length at least q · q(p+1)q while the optimal
tour T ∗ for Iq has length at most 14q(p+1)q. Therefore, the approximation ratio is at

least q·q(p+1)q

14q(p+1)q = q
14 . Recall that n ∈ Θ

(
q(p+1)q

)
and hence q ∈ Θ

(
logn

log logn

)
.

In particular, for p = 2 we get the result for the Euclidean TSP.

Corollary 2.4.8. The approximation ratio of the k-Opt algorithm for Euclidean TSP

instances is Ω
(

log(n)
log log(n)

)
where n is the number of vertices.

2.5 Approximation Ratio of k-Opt for (1,2)-TSP

In this section we investigate the approximation ratio of the k-Opt algorithm for the
(1,2)-TSP. First, we give a lower bound for the approximation ratio of the 2-Opt al-
gorithm of 3

2 . Then, we show that the approximation ratio of the 3-Opt algorithm is
11
8 . We introduce the k-Opt++ algorithm, a slightly modified version of the k-Opt al-

gorithm, for the (1,2)-TSP. We prove that the approximation ratio of the 3-Opt++
algorithm is 4

3 . Moreover, we show that the k-Opt and k-improv algorithm have at least
an approximation ratio of 11

10 for all fixed k.

2.5.1 Lower Bound on the Approximation Ratio of the 2-Opt Algorithm

In this subsection we give a lower bound of 3
2 on the approximation ratio of the 2-Opt

algorithm for (1,2)-TSP. Note that in [43] a matching upper bound of 3
2 was given

and it was noted that this bound can be proven to be tight. Nevertheless, an explicit
construction for the lower bound was not given. The construction is based on the
construction for a lower bound of 2

(
1− 1

n

)
on the approximation ratio of the k-Opt

algorithm for Metric TSP in [56].
We construct an instance with n vertices {v1, . . . , vn} and a 2-optimal tour T . For the

instance set the cost of the edges of {{vi, vi+2}|i ∈ {1, . . . , n−2}, i odd}∪{{vi, vi+1}|i ∈
{1, . . . , n−1}} and {vn, v1} to 1 and the cost of all other edges to 2. The tour T consists
of the edges {v1, v2}, {vn−1, vn} and {{vi, vi+2}|i ∈ {1, . . . , n− 2}} (Figure 2.16).

The number of edges with cost 2 in T is bn−22 c. Thus, T has total length n+ bn−22 c.
The optimal tour for this instance has length n since the tour visiting v1, v2, . . . , vn in

57

v5 v4

v3

v2

v1v8

v7

v6

Figure 2.16: The constructed tour for n = 8. The black and red edges have cost 1 and
2, respectively. T is the straight tour, the optimal tour is dotted.

this order has length n and is hence optimal. Therefore, the approximation ratio is at

least limn→∞
n+bn−2

2
c

n = 3
2 . It remains to show that T is indeed 2-optimal for large n.

Lemma 2.5.1. The tour T constructed above is 2-optimal for n ≥ 7.

Proof. Assume that there exists an improving 2-move. Then, this 2-move replaces at
least an edge of length two. Fix an orientation of T such that the tour edge (v2, v4) is
oriented this way. It is easy to see that all edges with cost two of the form (vi, vi+2) with
i even are oriented this way while for i odd the edges are oriented as (vi+2, vi).

Assume that the improving 2-move replaces two edges of cost two. Then, these edges
have by the definition of T the form (vi, vi+2) and (vj , vj+2) for even i, j ∈ {2, . . . , n −
2}, i 6= j. According to the fixed orientation the 2-move replaces (vi, vi+2) and (vj , vj+2)
by {vi, vj} and {vi+2, vj+2}. Since i 6= j both even, the edges {vi, vj} and {vi+2, vj+2}
both have cost two. Thus, this 2-move is not improving contradicting the assumption.

It remains the case that the improving 2-move replaces an edge (vi, vl) of cost 1 and
an edge (vj , vj+2) of cost 2. Then the new edges {vi, vj} and {vl, vj+2} both must have
length 1. We distinguish two cases: either l = i − 2 with i odd or {vi, vl} = {vh, vh+1}
for some h ∈ {1, . . . , n} where vn+1 := v1. In the first case the difference of the indices of
at least one of the new edges {vi, vj} or {vi−2, vj+2} has to be at least three. Hence, at
least one new edge has cost 2, contradicting the assumption that we have an improving
2-move. In the second case note that the vertices of the edges {vh, vh+1} and {vj , vj+2}
are disjoint, otherwise we do not get a tour after the 2-move. Hence, the difference of
the indices of at least one new edge has to be at least three and the total cost of the
new edges cannot be 2.

Theorem 2.5.2. The approximation ratio of the 2-Opt algorithm for (1,2)-TSP is at
least 3

2 .

58

Proof. We have constructed an instance with a tour T which is by Lemma 2.5.1 2-
optimal. Recall that the length of T is n + bn−22 c while the length of the optimal tour

is n. Hence, the approximation ratio is at least limn→∞
n+bn−2

2
c

n = 3
2 .

2.5.2 Approximation Ratio of the 3-Opt Algorithm

In this subsection we show that the exact approximation ratio of the 3-Opt algorithm is
11
8 .

Lower Bound on the Approximation Ratio of the 3-Opt Algorithm

We construct for all integer s ≥ 3 an instance Is with the vertices {v0, . . . , v8s−1} together
with a tour T . We show that for all even s ≥ 12 the construced tour T for the instance
Is is 3-optimal. Moreover, the ratio of its length and that of the optimal tour is at least
11s
8s+4 .

For simplicity we consider from now on all indicies modulo 8s for some fixed s.
Set the cost of the edges {{v8h, v8h+1}, {v8h+1, v8h+2}, {v8h+2, v8h+3}, {v8h+3, v8h+4},
{v8h+4, v8h+5}, {v8h+2, v8h+5}, {v8h+2, v8(h+1)+5}, {v8h+3, v8h}, {v8h+3, v8(h−1)},
{v8h+4, v8h+6}, {v8h+4, v8(h+1)+6}, {v8h+7, v8(h+1)+1}, {v8h+7, v8(h+2)+1}|h ∈ Z} to 1 and
the cost of all other edges to 2 (Figure 2.17).

The tour T consists of the edges {{vi, vi+1}|i ∈ Z}. From the construction it is easy
to see that the cost of the tour T is 11s. Next, we bound the length of the optimal tour.

Figure 2.17: The instance I3 where the black edges have cost 1. Due to clarity, not all
edges with cost 1 are drawn. The drawn pattern of edges with cost 1 repeats
periodically. The tour T connects adjacent vertices on the circle.

Lemma 2.5.3. The optimal tour T ∗ for Is has length at most 8s+ 4.

Proof. Note that the four sets

{{v8h+2, v8h+5}, {v8h+2, v8(h+1)+5}|h ∈ Z}, {{v8h+3, v8h}, {v8h+3, v8(h−1)}|h ∈ Z},
{{v8h+4, v8h+6}, {v8h+4, v8(h+1)+6}|h ∈ Z}, {{v8h+7, v8(h+1)+1}, {v8h+7, v8(h+2)+1}|h ∈ Z}

59

form four vertex disjoint cycles with edges of cost 1 whose union visits every vertex
exactly once. We can construct a tour of cost at most 8s+4 for the instance by removing
an arbitrary edge from each cycle and connect the four paths arbitrarily to a tour.

To show the 3-optimality of T we could make a big case distinction. But instead, we
use the next Lemma that allows us to perform a computer-assisted proof.

Definition 2.5.4. A family of instances (I ′s)s∈N for (1,2)-TSP is called regular, if the
following conditions are satisfied:

• There is an l ∈ N such that the vertices of I ′s can be labeled by v0, . . . , vls−1. In the
following we consider the indicies modulo ls. We partition the vertices in segments
such that each segment consists of the vertices {vhl, . . . , v(h+1)l−1} for some h ∈ Z.

• The edge {vi, vj} has cost 1 if and only if {vi+l, vj+l} has cost 1.

• If vi does not lie in the same segment as any of vj , vj−l and vj+l, then the edge
{vi, vj} has cost 2.

Lemma 2.5.5. For a regular family of (1, 2)-TSP instances (I ′s)s∈N we have if I ′2k is
k-optimal then I ′s is also k-optimal for all s ≥ 2k.

Proof. Assume that there is an improving k-move for some I ′s with s ≥ 2k. We show
that there is an improving k-move for I ′2k. Assume that the k-move removes the edges
e1, . . . , ek which lie on T in this cyclic order. If there is an i ∈ {1, . . . , k} such that
between ei and ei+1 lie more than two complete segments where ek+1 := e1, then we can
map this k-move to I ′s−1 by removing one of these segments. More precisely, we map
e1, . . . , ek to I ′s−1 without changing their positions in the segments and the distances
between the edges ej and ej+1 for all j ∈ {1, . . . , k}\{i}. The distance between ei and
ei+1 is by the length of a segment, i.e. by l, shorter as in I ′s. After removing e1, . . . , ek
the new k-move for I ′s−1 connects the same endpoints of e1, . . . , ek as the original k-move
for I ′s. By the regular property, the cost of the edges we add and remove by the two
k-moves are the same. Repeat this procedure and stop if we have a k-move for I ′2k. If
no such modifications are possible, there is at most one complete segment between ej
and ej+1 for all j ∈ {1, . . . , k}, therefore the instance has at most 2k segments. Hence,
in the end we get an improving k-move for I ′2k.

Lemma 2.5.6. The constructed tour T is 3-optimal for Is with s even and s ≥ 12.

Proof. For l = 8 the instances Is are not regular but satisfy the first two conditions of
regularity by construction. The third condition is violated since there are for example
edges {v8h+7, v8(h+2)+1} of cost 1 whose endpoints are up to 2 segments apart. We can
construct the instance I ′s := I2s and choose l = 16 to get a regular family of instances
since the third condition is also satisfied. Therefore, it is enough to check that I ′6 = I12
is 3-optimal. We checked this using a self-written computer program that generates all
possible 3-moves for the instance and observed that none of them is improving.

Theorem 2.5.7. The approximation ratio of the 3-Opt algorithm for (1,2)-TSP is at
least 11

8 .

Proof. By Lemma 2.5.6, the constructed tour T is 3-optimal for Is with s even and
s ≥ 12. By construction, it has length 11s and by Lemma 2.5.3 the length of the
optimal tour is at most 8s+ 4. Thus, the approximation ratio is at least 11s

8s+4 →
11
8 for

s→∞.

60

Upper Bound on the Approximation Ratio of the 3-Opt Algorithm

For the upper bound assume that an instance with a 3-optimal tour T is given. Let T ∗

be a fixed optimal tour of the instance. Our general strategy is like [10] to distribute
counters to the vertices such that on the one hand if there are many edges of cost 2 in
T , many counters are distributed. On the other hand, for many counters we need many
edges of length 1 to avoid creating an improving 3-move. This way, we get a lower bound
on the fraction of the edges with length 1 in T and this implies an upper bound on the
approximation ratio.

Let the 1-paths be the connected components we obtain after deleting all edges with
cost 2 in T . We call the vertices with degree 1 in a 1-path the endpoints of the 1-path.
We distribute counters as follows: For 1-paths of length 0 consisting of the vertex v
we distribute two counters on the vertex w if {v, w} ∈ T ∗, c(v, w) = 1. We call these
counters good. For every 1-path of length greater than 0 we distribute a counter on w if
v is an endpoint of the 1-path and {v, w} ∈ T ∗, c(v, w) = 1. These counters are called
bad.

Next, we show some properties of T we need for the analysis.

Lemma 2.5.8. Let p, q be the endpoints of different 1-paths of a 3-optimal tour T , then
c(p, q) = 2.

Proof. Assume there is an edge {p, q} connecting two endpoints p, q of different 1-paths
with c(p, q) = 1 we show that there is an improving 3-move. Let {p, q} be incident to
the two edges {p, u} and {q, v} with cost 2 in T . We perform first a 2-move replacing
the edges {p, u} and {q, v} by {p, q} and {u, v}. Then, the cost decreases since c(p, u) +
c(q, v) = 4 > 1 + 2 ≥ c(p, q) + c(u, v). Hence, if afterward the tour stays connected
we have found an improving 2-move. It remains the case that the tour splits into two
connected components. Since {p, q} does not connect two endpoints of a single 1-path,
there has to be an edge {a, b} of cost 2 in the connected component containing p and q
(Figure 2.18). We perform a 2-move replacing {u, v} and {a, b} by {a, u} and {b, v} to
get a connected tour again. Note that in total we performed a single 3-move since we
added {u, v} and removed it again. In the end the total cost decreased compared to the
initial tour T since

c(p, u) + c(q, v) + c(a, b) = 2 + 2 + 2 > 1 + 2 + 2 ≥ c(p, q) + c(a, u) + c(b, v).

This is a contradiction to the 3-optimality of T .

Corollary 2.5.9. The endpoints p and q of a 1-path of T can only have counters dis-
tributed by the edge {p, q}. In particular, each of them can have at most one bad counter.

Proof. For any other endpoint r by Lemma 2.5.8 we have c(p, r) = c(q, r) = 2. Therefore,
these edges cannot assign a counter to p or q.

Lemma 2.5.10. There are no vertices p, q, u, v, a, b such that {p, u}, {q, v}, {a, b} ∈ T ,
c(p, u) = c(q, v) = 2, c(a, u) = c(b, v) = 1 and p, q, a, b lie on the same side of {u, v}
(Figure 2.18).

Proof. Like in the proof of Lemma 2.5.8 we can replace the edges {p, u}, {q, v} and {a, b}
by {p, q}, {a, u} and {b, v}. The cost of the tour decreases since in this case we have

c(p, u) + c(q, v) + c(a, b) ≥ 2 + 2 + 1 > 2 + 1 + 1 ≥ c(p, q) + c(a, u) + c(b, v).

61

v q

b

ap

u

Figure 2.18: Sketch for Lemma 2.5.8 and Lemma 2.5.10. The tour T consists of the
solid edges and the cost of each red edge is 2. In Lemma 2.5.8 we have in
addition c(a, b) = 2 and c(p, q) = 1, while in Lemma 2.5.10 we have instead
c(a, u) = c(b, v) = 1. In both cases we replace the edges {p, u}, {q, v} and
{a, b} by {p, q}, {a, u} and {b, v}.

Lemma 2.5.11. If the vertices r and t have good counters, then {r, t} 6∈ T . Moreover,
if there is a vertex s with {r, s}, {s, t} ∈ T , then s does not have a counter.

Proof. For the first statement assume the contrary, then there are two 1-paths of length
0 consisting of the vertices u and v such that c(r, u) = c(t, v) = 1, respectively. Since u
and v are 1-paths of length 0 we can choose a = r, b = t and appropriate neighbors p
and q to contradict Lemma 2.5.10.

Similarly, for the second statement assume there are such vertices r, s, t. Then, there
is an endpoint w of a 1-path with c(w, s) = 1 and a vertex z with {z, w} ∈ T and
c(z, w) = 2. Now, z lies either on the same side of {w, s} as r or t. Depending on this
we get a contradiction to Lemma 2.5.10 for a = s, b = t or a = r, b = s.

Lemma 2.5.12. Let p, q be the endpoints of a 1-path containing w with c(w, q) = 1. If
w has a good counter, then p, q do not have counters.

Proof. Assume the contrary, by Corollary 2.5.9 the counters of p and q are distributed
by the edge {p, q} and we must have c(p, q) = 1. Let the good counter of w be originated
from the 1-path of length 0 consisting of the vertex u. Moreover, let w.l.o.g. v1 be the
vertex adjacent to u in T with c(v1, u) = 2 and lying on the same side of {u,w} as p
and let r be the vertex with {q, r} ∈ T and c(q, r) = 2 (Figure 2.19). Then, we can
replace the edges {v1, u}, {p, w} and {q, r} by {v1, r}, {u,w} and {p, q}. The cost of T
decreases since

c(v1, u) + c(p, w) + c(q, r) = 2 + 1 + 2 > 2 + 1 + 1 ≥ c(v1, r) + c(u,w) + c(p, q).

This is a contradiction to the 3-optimality.

62

w q

r

v2

u

v1

p

Figure 2.19: Sketch for Lemma 2.5.12 and Lemma 2.5.19. The solid edges are the edges
of the tour T and the red edges have cost 2. In Lemma 2.5.12 we re-
place the edges {v1, u}, {p, w} and {q, r} by {v1, r}, {u,w} and {p, q}. In
Lemma 2.5.19 the edges {u, v2} and {p, w} are replaced by {v2, p} and
{u,w}.

Before we bound the number of counters, we summarize the properties we showed
about counters.

Corollary 2.5.13. The following properties hold:

1. Every vertex has two slots where a slot can be empty or contain two good counters
or one bad counter.

2. If the vertices a and c both have good counters, then {a, c} 6∈ T . Moreover, if there
is a vertex b such that {a, b}, {b, c} ∈ T , then b does not have counters.

3. The endpoint of a 1-path of length 0 does not have counters. Each endpoint of all
other 1-paths can only have at most one bad counter and no good counters.

4. If the endpoint p of a 1-path has a counter, then w does not have a good counter
if {w, p} ∈ T and c(w, p) = 1.

5. The total number of bad counters is less or equal to four times the number of
1-paths of length greater than 0.

Proof. The first property is due to the fact that every vertex is incident to at most two
edges of cost 1 in the optimal tour and every such edge can distribute two good counters
or one bad counter. The second, third and fourth property follow from Lemma 2.5.11,
Corollary 2.5.9 and Lemma 2.5.12, respectively. The fifth property follows from the fact
that the bad counters are distributed by the endpoints of 1-paths with length greater
than 0 and each such endpoint distributes at most two bad counters.

Lemma 2.5.14. Every 3-optimal tour T has at most 12
5 h counters, where h is the

number of edges with cost 1 in T .

63

Proof. Assume the contrary that there is an instance together with a tour T with more
than 12

5 h counters, where h is the number of edges with cost 1 in T . Take such an instance
and tour T with h minimal. We want to get a contradiction only using the properties
in Corollary 2.5.13. More precisely, we discard any other properties of counters that are
implied by the 3-optimality of T and assume that the counters are distributed arbitrarily
on the vertices of T such that the properties in Corollary 2.5.13 are satisfied.

First, note that if a vertex v has two good counters, then we may assume that it has
four good counters instead of exactly two good counters or two good counters and one
bad counter. It is easy to check that this assumption does not decrease the number of
counters or contradict Corollary 2.5.13 since v already had a good counter.

Next, we exclude the case that there are two vertices a and c on the same 1-path with
good counters such there is a vertex b with {a, b}, {b, c} ∈ T . In this case by property
2 in Corollary 2.5.13 the vertex b does not have a counter. Let u be the neighbor of a
in T other than b. We remove the vertices a and b from the instance, remove the edges
{u, a}, {a, b} and {b, c} and add the edge {u, c} to T and set its cost to 1. By property
3 in Corollary 2.5.13, u belongs to the same 1-path as a in the original tour, hence the
new tour does not contradict property 3. This also implies that the number of edges
with cost 1 decreased by 2 while the number of counters decreased by 4. Moreover, we
did not introduce new bad counters or new vertices neighboring to a vertex with a good
counter. Hence, the new tour does not contradict Corollary 2.5.13. Let the number of
counters before the modification be s. Since the edges {u, a}, {a, b} and {b, c} all had
cost 1 in the old tour we have h−2 ≥ 1. We conclude that the ratio s

h does not decrease
as

s

h
>

12

5
> 2⇒ 2s > 4h⇒ s− 4

h− 2
>
s

h
>

12

5
.

This contradicts that we chose a tour T with more than 12
5 h counters and h minimal.

Thus, the distance of two vertices a and c on the same 1-path each having good counters
is at least 3.

We define for i ∈ N>0

bi := 4 · i
3
− 2, gi := 4 · i

3
for i ≡ 0 mod 3

bi := 4 · i− 1

3
+ 2, gi := 4 · i− 1

3
for i ≡ 1 mod 3

bi := 4 · i− 2

3
, gi := 4 · i+ 1

3
for i ≡ 2 mod 3.

Since the distance of two vertices on a 1-path each having good counters is at least 3 and
the endpoints of the 1-path do not contain good counters, the number of good counters
on a 1-path with i edges is at most gi. To maximize the number of counters, we have
to maximize the number of vertices with good counters, since every vertex can contain
at most four good counters or two bad counters. For i ≡ 0 mod 3 and i ≡ 2 mod 3 we
can either have no counters on the endpoints of the 1-path and gi good counters and at
most bi bad counters or one bad counter on each of the endpoints but by property 4 in
Corollary 2.5.13 only gi − 4 good counters and at most bi + 2 additional bad counters.
The total number of counters is the same but the first case has the advantage that we
have fewer bad counters and the total number of bad counters is bounded by property
5 in Corollary 2.5.13. For i ≡ 1 mod 3 each endpoint of the 1-path can contain a
bad counter such that in total we have gi good counters and at most bi bad counters.

64

Therefore, we may assume for all i that a 1-path with i edges has gi good counters and
at most bi bad counters for all i ∈ Ni>0. Every 1-path of length 0 does not contain
counters by property 3 in Corollary 2.5.13.

Consider the following LP:

max
∑
i∈N

gixi+z

s.t.
∑
i∈N

ixi =h

z −
∑
i∈N

bixi ≤0

z − 4
∑
i∈N

xi ≤0

xi ≥0 ∀i ∈ N>0

This LP gives an upper bound on the number of counters in a tour with h edges of cost
1. The variable xi counts the number of 1-paths with i edges. Each of these 1-paths
have gi good counters and at most bi bad counters. The variable z is equal to the total
number of bad counters. The first equation ensures that the total number of edges with
cost 1 is h while the second inequality bounds the number of bad counters by the sum of
the upper bounds of bad counters on each 1-path. The third inequality ensures that the
number of bad counters is at most four times the number of 1-paths with length greater
than 0 since every such 1-path distributes at most 4 bad counters.

Note that by the first equation for any fixed h only a finite number of xi are nonzero.
Now, consider the dual LP:

min y1h

s.t. iy1 − biy2 − 4y3 ≥gi ∀i ∈ N>0

y2 + y3 ≥1

y2, y3 ≥0.

We show that y1 = 12
5 , y2 = 4

5 and y3 = 1
5 is a feasible dual solution with value 12

5 h.
Therefore, by weak duality we get 12

5 h as upper bound on the primal LP. Obviously, we
have y2 + y3 = 1 and y2, y3 ≥ 0. Moreover, we can check the first inequality:

i · 12

5
−
(

4 · i
3
− 2

)
· 4

5
− 4 · 1

5
= 4 · i

3
+

4

5
> 4 · i

3
for i ≡ 0 mod 3

i · 12

5
−
(

4 · i− 1

3
+ 2

)
· 4

5
− 4 · 1

5
= 4 · i− 1

3
for i ≡ 1 mod 3

i · 12

5
− 4 · i− 2

3
· 4

5
− 4 · 1

5
= 4 · i+ 1

3
for i ≡ 2 mod 3.

Thus, the first inequality is also satisfied and we get the upper bound of 12
5 h on the

number of counters.

Lemma 2.5.15. Let the number of counters in the tour T be at most d · h where d is
a constant and h is the number of edges with cost 1 in T . Then, the ratio between the
length of T and that of the optimal tour is at most 1 + d

4+d .

65

Proof. Let l and f be the number of edges with cost 2 in T and the optimal tour, respec-
tively. If the optimal tour consists only of edges with cost 1, every 1-path distributes
four counters: For every 1-path of length 0 the unique endpoint is incident to two edges
of length 1 in the optimal tour and distributes four good counters. Every endpoint of the
other 1-paths is incident to two edges of length 1 in the optimal tour and distributes two
bad counters. Every edge of cost 2 in the optimal tour decreases the number of counters
distributed by at most 4. Note that the number of 1-paths is equal to the number of
edges with cost 2 which is l. Therefore, the l 1-paths distribute at least 4l− 4f counters
and we conclude dh ≥ 4l − 4f or h ≥ 1

d4(l − f). Note that the length of the tour T is
h + 2l, while that of the optimal tour T ∗ is n + f = h + l + f . Therefore, we get the
upper bound on the ratio of

c(T)

c(T ∗)
=

h+ 2l

h+ l + f
= 1 +

l − f
h+ l + f

≤ 1 +
l − f

1
d4(l − f) + l + f

= 1 +
l − f

4+d
d l − 4−d

d f

≤ 1 +
l − f

4+d
d l − 4+d

d f
= 1 +

d

4 + d
.

Theorem 2.5.16. The approximation ratio of the 3-Opt algorithm for (1,2)-TSP is at
most 11

8 .

Proof. By Lemma 2.5.14, there are at most 12
5 h counters in T where h is the number of

edges with cost 1 in T . By Lemma 2.5.15, the approximation ratio is at most 1+
12
5

4+ 12
5

=

11
8 .

2.5.3 Approximation Ratio of the 3-Opt++ Algorithm

In the last subsection we showed that the approximation ratio of the 3-Opt algorithm
is 11

8 . The 1-paths with length 0 play a central role in the analysis. Every endpoint of
such a 1-path distribute at most four good counters instead of two bad counters and
increase the approximation ratio. We introduce the k-Opt++ algorithm by adapting
a concept from the k-improv algorithm. The k-Opt++ algorithm does not only search
for improving k-moves but also k-moves that decrease the number of 1-paths of length
0 without increasing the cost of the tour. We show that the 3-Opt++ algorithm has a
better approximation ratio of 4

3 than 3-Opt.

The k-Opt++ algorithm

We first describe the k-Opt++ algorithm. An improving k-Opt++-move is a k-move
that is either improving or does not change the cost of the tour but decreases the number
of 1-paths of length 0 of the tour. A tour is called k-Opt++-optimal if there does not
exist an improving k-Opt++-move. Like the k-Opt algorithm the k-Opt++ algorithm
starts with an arbitrary tour T and performs improving k-Opt++ moves until T is
k-Opt++-optimal (Algorithm 4).

Obviously, every k-Opt++-optimal tour is also k-optimal. Moreover, every iteration
of the k-Opt++ algorithm can also be performed in polynomial time since the number
of k-moves is polynomially bounded. Thus, the algorithm also terminates in polynomial
time since the length of the initial tour is bounded by 2n and every step improves the
length of the tour by at least 1 or decreases the number of 1-paths with length 0 by 1.

66

Algorithm 4 k-Opt++ Algorithm

Input: Instance of TSP (Kn, c)
Output: Tour T

1: Start with an arbitrary tour T
2: while ∃ improving k-Opt++-move for T do
3: Perform an improving k-Opt++-move on T

4: return T

Lower Bound on the Approximation Ratio of the 3-Opt++ Algorithm

For every natural number s ≥ 2 we construct an instance Is with the vertices {v0, . . . , v6s−1}
and approximation ratio 4

3 . For simplicity we consider the indicies modulo 6s. Set the
cost of the edges {{v6h, v6h+1}, {v6h+2, v6h+3}, {v6h+3, v6h+4}, {v6h+4, v6h+5}, {v6h, v6h+3},
{v6h+2, v6h+5}, {v6h+4, v6(h+1)+1}|h ∈ Z} to 1 and the cost of all other edges to 2.

The tour T consists of the edges {{vi, vi+1}|i ∈ Z}. The optimal tour T ∗ consists of
the edges {{v2h+1, v2h}, {v2h, v2h+3}|h ∈ Z} (Figure 2.20). It is easy to check that T ∗

consists only of edges with cost 1 and is hence optimal.

v2 v3

v4

v5

v6

v7

v8v9

v10

v11

v0

v1

Figure 2.20: The constructed tour for s = 2. The black and red edges have cost 1 and
2, respectively. T is the straight tour, the optimal tour T ∗ is dotted.

From the construction it is easy to see that the cost of the tour T is 8s while that of
the optimal tour is 6s.

Lemma 2.5.17. For Is with s ≥ 6 the tour T constructed above is 3-Opt++-optimal .

Proof. Since the constructed instances (Is)n∈N do not contain 1-paths of length 0, the
tour T is 3-Opt++-optimal if and only if T is 3-optimal. By construction, the constructed
family of instance (Is)s∈N is regular. Hence, by Lemma 2.5.5 it is enough to check that
I6 is 3-optimal. We checked this using a self-written computer program that generates
all possible 3-moves for the instance and observed that none of them is improving.

67

Theorem 2.5.18. The approximation ratio of the 3-Opt++ algorithm for (1,2)-TSP
is at least 4

3 .

Proof. By Lemma 2.5.17, the tour T for Is with s ≥ 6 is 3-Opt++-optimal. Moreover,
we know that the length of T is 8s and that of the optimal tour T ∗ is 6s. Therefore, we
get an approximation ratio of 8s

6s = 4
3 .

Upper Bound on the Approximation Ratio of the 3-Opt++ Algorithm

For the upper bound assume that an instance with a 3-Opt++-optimal tour T is given.
Let the counters be distributed as in the analysis of the upper bound of the 3-Opt
algorithm. Since every 3-Opt++-optimal tour is also 3-optimal, we can apply the results
from the upper bound of the 3-Opt algorithm.

Lemma 2.5.19. Every 1-path in a 3-Opt++-optimal tour T having a good counter has
exactly two edges.

Proof. Let the good counter be assigned to the vertex w from the 1-path of length 0
consisting of the vertex u which is incident to the edges {v1, u} and {u, v2} of cost 2 in
T . Then {u,w} has cost 1 and assume that w is not the internal vertex of a 1-path of
length 2. By Lemma 2.5.8 w cannot be an endpoint of a 1-path. Hence, there is an edge
{p, w} ∈ T , c(p, w) = 1 such that p is not endpoint of a 1-path. W.l.o.g. assume that p
lies on the same side of {u,w} as v1 (Figure 2.19). Now, we can replace the edges {u, v2}
and {p, w} by {v2, p} and {u,w}. As

c(u, v2) + c(p, w) = 2 + 1 ≥ c(v2, p) + c(u,w),

after the 2-move the cost of T does not increase. Moreover, we have one 1-path of length
0 less than before, namely u. Since p is not endpoint of a 1-path we did not create new
1-paths of length 0, contradicting the 3-Opt++-optimality of T .

Lemma 2.5.20. Every 1-path with x edges in a 3-Opt++-optimal tour T has at most
2x counters.

Proof. For x = 0 the 1-path consists of one vertex and by Corollary 2.5.9 it cannot have
any counters. For x ≥ 1 every 1-path with x edges has two endpoints and x− 1 internal
vertices. If the 1-path does not have a good counter, then each of the inner vertices
has two incident edges in the optimal tour and can have at most two bad counters. By
Corollary 2.5.9 the two endpoints can each have at most one counter. Therefore, the
1-path can have in total at most 2x counters. For the case that the 1-path does have
a good counter by Lemma 2.5.19 the 1-path must have exactly two edges and there are
at most 2 · 2 = 4 good counters on the internal vertex. Moreover, by Lemma 2.5.12 the
endpoints of this 1-path cannot have any counters. Thus, this 1-path can have at most
4 counters.

Theorem 2.5.21. The approximation ratio of the 3-Opt++ algorithm for (1,2)-TSP
is at most 4

3 .

Proof. By Lemma 2.5.20, we distributed at most 2h counters where h is the number of
edges with cost 1 in T . Hence, by Lemma 2.5.15 the approximation ratio is at most
1 + 2

4+2 = 4
3 .

68

2.5.4 Lower Bound on the Approximation Ratio of the k-Improv and k-Opt
Algorithm

In this subsection we show that the approximation ratio of the k-improv algorithm is at
least 11

10 for arbitrary fixed k. For given fixed k ≥ 2 and ε > 0, we construct a k-improv-
optimal instance Ik,ε with approximation ratio at least 11

10 − ε. Moreover, we show that
every corresponding tour of a 2k-improv-optimal 2-matching is also k-optimal. Thus,
this lower bound on the approximation ratio also carries over to the k-Opt algorithm.

We first construct some auxiliary graphs before the construction of the instance. Let
S be a graph with 10 vertices w0, . . . , w9 and the edges {w0, w1}, {w0, w4}, {w2, w3},
{w3, w4}, {w5, w9}, {w5, w6}, {w6, w7} and {w8, w9} (Figure 2.21).

w0 w8w1 w2 w3 w4 w5 w6 w7 w9

Figure 2.21: The graph S consists of 10 vertices and the drawn edges.

By Lemma 1.4.11, for g := max{2k + 1, 1
11

11−10ε
−1} and 2s′ ≥ 3g−1 − 1 there exists a

4-regular graph G0 with 2s′ vertices and girth at least g. Construct a 4-regular bipartite
graph G1 from G0 with s := 4s′ vertices and girth at least g as follows: Add two copies
u and u′ of every vertex u ∈ V (G0) to the vertex set V (G1). Then, add edges {u, v′}
and {u′, v} to E(G1) for every edge {u, v} ∈ E(G0). By construction, G1 is bipartite
and still 4-regular. Moreover, it still has girth at least g since every cycle in G1 can be
mapped to a closed walk of the same length in G0 by mapping the copies of the vertices
to the original vertex.

Since G1 is bipartite and 4-regular, we can color by Theorem 1.4.2 the edges of G1

with four colors such that no two incident edges have the same color. Now, we color
every vertex with degree one of the graph S, namely w1, w2, w7 and w8, with one of
the four colors such that each color is used once. Next, we want to construct a graph
GS with the vertex set {v0, . . . , v10s−1}. For simplicity we consider in the following all
indices modulo 10s. For the construction we replace every vertex of G1 by a copy of S
such that the vertices w0, . . . , w9 of each copy of S is mapped to v10h, . . . , v10h+9 in this
order for some h ∈ Z. For every edge {u, v} ∈ E(G1) we connect the two vertices with
the color of {u, v} in the corresponding copies of S (Figure 2.22 and Figure 2.23). The
4-edge coloring and 4-regularity ensures that this procedure is well defined and every
vertex of GS has degree 2.

Figure 2.22: A part of a graph G1 from which we will construct a part of the graph GS .
The edges of the 4-regular graph are colored with four colors.

The vertex set of the instance Ik,ε is V (GS). The set of edges of Ik,ε with cost 1 is the
union of E(GS) with the edges {{v10h+4, v10h+5}|h ∈ Z}. All other edges have cost 2.

The tour T consists of the edges {{vi, vi+1}|i ∈ Z}. It has cost 11s since all of its edges
except {{v10h+9, v10h+10}|h ∈ Z} have cost 1. Let T̃ be the corresponding 2-matching we

69

Figure 2.23: A part of the graph GS we constructed from the part of G1 shown in
Figure 2.22. For its construction replace every vertex of G1 with a copy of
S. Color the vertices with degree 1 in S by the four colors. For every edge
in G1 connect the vertices with the color of the edge in the corresponding
copies of S in GS .

get by removing all edges with degree 2 in T . Next, we show that T̃ is k-improv-optimal.

Lemma 2.5.22. The corresponding 2-matching T̃ to the tour T constructed above for
the instance Ik,ε is k-improv-optimal.

Proof. Assume that there is an improving k-improv-move for T̃ and T̃ ′ is the result
after performing it. Consider T̃ ′4T̃ , it can be decomposed into edge-disjoint alternating
cycles and paths. We choose such a decomposition that contains a minimal number of
alternating paths, i.e. we cannot merge two alternating paths to a longer alternating
path. We distinguish four types of alternating cycles and paths:

1. Alternating cycles.

2. Alternating paths starting and ending with non-tour edges.

3. Alternating paths starting and ending with exactly one tour edge and one non-tour
edge.

4. Alternating paths starting and ending with tour edges.

First, we show that there are no alternating cycles. Assume that there is an alternating
cycle. Note that the tour edges of T̃ do not connect two copies of S. Therefore, if there
is a cycle visiting at least two copies of S, its non-tour edges have to form a cycle in G1.
Since G1 has girth at least g it has to contain at least g > k non-tour edges, contradiction.
Now, assume that the cycle only visits one copy of S. Since we chose a decomposition
of alternating paths and cycles that is edge-disjoint and every edge is contained in T̃ at
most once, we cannot add an edge that is already in T̃ in an alternating path or cycle.
As the edges {w0, w4} and {w5, w9} are the only edges with cost 1 in S that are not
contained in T̃ , they have to be the non-tour edges of the alternating cycle. But then
the edge {w0, w9} is not in T̃ and cannot be a tour edge, contradiction.

With the same argument as above we can show that any augmenting path does not
visit any copy of S twice. We will need this property later.

Alternating paths starting and ending with non-tour edges increase the number of
edges in the 2-matching by one. Moreover, to maintain the property that every vertex
in T̃ ′ has degree 1 or 2, they have to start and end at a vertex with degree 1 in T , i.e.
in w0 or w9 in a copy of S. Since the decomposition we chose is edge-disjoint, there is
only one possibility for such a path, namely the path (w0, w4, w5, w9) in one copy of S.
Note that each of such paths produces two cycles in that copy of S by adding the edges
{w0, w4} and {w5, w9}. We call alternating paths of this type cycle-creating.

70

Starting with T̃ we augment all cycle-creating alternating paths. They create 2q cycles
in q copies of S where q is the number of these paths. We will call these copies of S
cycle-containing.

Alternating paths that start and end with exactly one tour edge and one non-tour
edge do not change the number of edges in the 2-matching. Note that there are only
four possibilities for such alternating paths, namely such visiting the following vertices
of a single copy of S: (w0, w4, w5); (w0, w4, w3); (w9, w5, w4) and (w9, w5, w6). Note
that each of the possibilities adds either {w0, w4} or {w5, w9}. Thus, the copy of S
visited by such a path is not cycle-containing since the decomposition to alternating
paths is edge-disjoint. Hence, these alternating paths do not remove any cycle created
by cycle-creating paths.

Last, alternating paths starting and ending with tour edges decrease the number of
edges in the 2-matching by one. As the alternating paths of the previous type do not
remove cycles, either these paths remove a cycle created by the cycle-creating alternating
paths or the cycle remains in T̃ ′. The alternating paths of this type are called cycle-
removing.

We construct an auxiliary multigraph GP with q vertices. Each of its vertices corre-
sponds to one cycle-containing copy of S in GS . For every cycle-removing alternating
path p we construct a path p′ in GP we call the S-path of p as follows: The vertices of
p′ are the vertices in GP corresponding to the copies of S visited by p. The edges of p′

connect the vertices in the order in which the corresponding copies of S are visited by
p (Figure 2.24). Note that p′ may consist of only one vertex or the empty set. Since
we showed that every alternating path visits any copy of S at most once, p′ is indeed a
path without self-loops. The edge multiset E(GP) consists of the disjoint union of all
S-paths.

Figure 2.24: The construction of the S-paths. Let p be a cycle-removing alternating
path in GS . Left: The edges of p in G1 after contracting the copies of S
and removing self-loops. The red vertices are cycle-containing. Right: the
corresponding S-path p′ in GP of p. It visits the red vertices in the same
order as p in G1.

If GP contains a cycle, the cycle corresponds to a closed walk in G1 by considering for
every edge in the cycle the corresponding S-path p′ it belongs to and the corresponding
subpath in p. The length of this closed walk is bounded by the number of edges in the
cycle-removing alternating paths, which is at most 2k. As g > 2k and G1 has girth at
least g we get a contradiction. Hence, GP is acyclic and in particular a simple graph.

71

Note that if a cycle-removing alternating path visits vertices from {w0, w1, w2, w3, w4}
and {w5, w6, w7, w8, w9} in a copy of S without leaving the copy, it has to add the edges
{w0, w4} or {w5, w9} since the decomposition is edge-disjoint. In this case this copy of S
is not cycle-containing again by the edge-disjoint property of the decomposition. Thus,
every vertex of an S-path can remove at most one cycle. Therefore, every cycle-removing
alternating path with h edges can remove at most h+ 1 cycles.

Since T̃ does not contain singletons, either T̃ ′ contains less connected components than
T̃ or the same number but more cycles. In both cases T̃ ′ contains more edges than T̃ .
Recall that a cycle-creating and cycle-removing alternating path increases and decreases
the number of tour edges by one, respectively. Thus, there are at most r ≤ q − 1 cycle-
removing alternating paths. Note that GP can have in total at most q − 1 edges since
it is a simple acyclic graph with q vertices. Thus, by definition also the union of the
S-paths contain at most q − 1 edges. We conclude that at most r + (q − 1) cycles can
be removed and at least 2q− r− (q− 1) = q+ 1− r cycles are remaining. Therefore, T̃ ′

must contain at least q+ 1− r more edges than T̃ to maintain at least the same number
of connected components as T̃ ′. Since T̃ ′ contains q − r more edges than T̃ , we have
q − r ≥ q + 1− r, which is a contradiction.

Next, we show that if we start the k-improv algorithm with T , then it computes a
tour with the same cost as T .

Lemma 2.5.23. If the k-improv algorithm starts with the tour T constructed above, it
outputs a tour with the same cost as T .

Proof. The k-improv algorithm first computes the corresponding 2-matching T̃ from
T . By Lemma 2.5.22 T̃ is k-improv-optimal, hence the algorithm cannot make any
improvements. Therefore, it computes a tour corresponding to T̃ and outputs it. Thus,
it is enough to show that every tour corresponding to the k-improv-optimal 2-matching
T̃ has the same cost as T . Since T̃ arises from removing all edges of cost 2 from T
any tour corresponding to T̃ has at most the cost of T . Assume that there is a tour
corresponding to T̃ with less cost than T . Then, there is at least one edge connecting
two vertices in T̃ with degree 1. Adding this edge to T̃ would reduce the number of
connected components, contradiction to the k-improv-optimality of T̃ .

Now, we need an upper bound on the length of the optimal tour before we can conclude
the lower bound on the approximation ratio.

Lemma 2.5.24. The optimal tour T ∗ of the instance Ik,ε has at most cost 10s+ 10s
g .

Proof. Note that the edges in GS form disjoint cycles since the degree of every vertex is
exactly 2. Moreover, every cycle in GS corresponds to a closed walk in G1 if we contract
the copies of S. Since the girth of the graph G1 is at least g and S is acyclic, the girth
of GS is also at least g. Thus, each of the disjoint cycles in GS has at least g edges.
We can get a tour by removing an arbitrary edge from each cycle and arbitrarily add
edges to complete the paths to a tour. Recall that all edges in GS have cost 1. Hence,
we introduced at most one edge with cost 2 for every g − 1 edges with cost 1 and the
constructed tour has at most length |V (GS)|+ |V (GS)|

g = 10s+ 10s
g .

Theorem 2.5.25. The approximation ratio of the k-improv algorithm with arbitrarily
fixed k for (1,2)-TSP is at least 11

10 .

72

Proof. The constructed tour T has length 11s and by Lemma 2.5.23 the k-improv algo-
rithm outputs a tour of this length if starting with T . The optimal tour T ∗ has cost at
most 10s+ 10s

g by Lemma 2.5.24. Recall that for any fixed ε > 0 we chose g ≥ 1
11

11−10ε
−1

which implies 11
10 ·

1
1+ 1

g

≥ 11
10 − ε. Hence, for every ε > 0 there exists an instance with

approximation ratio at least

c(T)

c(T ∗)
=

11s

10s+ 10s
g

=
11s

10s(1 + 1
g)

=
11

10
· 1

1 + 1
g

≥ 11

10
− ε.

In the end we show that we can carry over the result to the k-Opt algorithm.

Lemma 2.5.26. The constructed tour T above for the instance I2k,ε is k-optimal.

Proof. Assume that there is an improving k-move after which augmentation we get a
shorter tour T ′. Let T̃ ′ be the corresponding 2-matching we obtain by removing all
edges with cost 2 from T ′. Then, T̃ ′ must contain less connected component than T̃ and
we can perform a 2k-improv-move to obtain T̃ ′ from T̃ . This is a contradiction to the
2k-improv-optimality of T̃ by Lemma 2.5.22.

Remark 2.5.27. The fact that we need a 2k-improv-optimal (instead of a k-improv-
optimal) 2-matching to ensure that every corresponding tour is k-optimal is caused by
the different definitions of the two algorithms. In contrast to a k-move where at most k
edges can be removed and added a k-improv-move is defined such that at most k edges
can be removed and added in total.

Theorem 2.5.28. The approximation ratio of the k-Opt algorithm with arbitrarily fixed
k for (1,2)-TSP is at least 11

10 .

Proof. For all given k and ε > 0 we can construct a tour T for the instance I2k,ε with
length 11s. By Lemma 2.5.26, the tour T is k-optimal and by Lemma 2.5.24 the optimal
tour has cost at most 10s + 10s

g . By a similar calculation as in Theorem 2.5.25, we get

the result that the approximation ratio is at least 11
10 − ε.

2.6 A Polynomial Time Local Search Algorithm for Graph TSP

In Section 2.3 we showed that the k-Opt algorithm does not have a constant approxima-
tion ratio in the graphic case for any fixed k. Nevertheless, it can be modified to achieve
a constant approximation ratio. In this section we present a polynomial time local search
algorithm for Graph TSP we call the incomplete n-Opt algorithm. In contrast to the
k-Opt algorithm, this algorithm considers alternating cycles of arbitrary length but only
these having a large gain. As we will show later it has a constant approximation ratio
of 5.

Definition 2.6.1. Given a tour T in G we construct a directed weighted auxiliary graph
GT . Start with an empty graph GT , for every vertex v ∈ V (G) add two vertices v and
v′ to V (GT). For every edge {u, v} ∈ T add the edges (u, v′) and (v, u′) to E(GT) with
cost −c(u, v). For any pair of distinct vertices u, v ∈ V (G) we add the edges (u′, v) and
(v′, u) with cost c(u, v) + 2 to E(GT).

73

The next observation is crucial for the algorithm.

Lemma 2.6.2. Every cycle in GT can be transformed into a closed alternating walk in
G and every closed alternating walk in G can be transformed into a closed walk in GT .

Proof. By the construction of GT , we can transform edges of a cycle C in GT to a
closed alternating walk in G as follows: Map every edge of the form (u, v′) ∈ C with
u, v ∈ V (G) to the tour edge {u, v} ∈ T and every edge of the form (u′, v) to the non-tour
edge {u, v}. By construction, the graph GT is bipartite, hence C contains alternately
edges of both forms. Therefore, the transformed cycle is indeed a closed alternating
walk. The transformation can also be done in the other direction.

Our algorithm starts, as the k-Opt and Lin-Kernighan algorithm, with an arbitrary
tour T and decreases the cost of it in every iteration. More precisely, in every iteration
we perform the following steps:

• Search for a negative cycle C with the Moore-Bellman-Ford algorithm in GT .

• If no such cycle is found, output T and terminate.

• Else transform C into a closed alternating walk C ′ in G.

• Modify T by augmenting the closed alternating walk C ′.

• If T is not connected after the augmentation step, we compute a minimum spanning
tree in a graph where the connected components of T are contracted and add two
copies of the spanning tree to T .

• Shortcut T to a tour.

Algorithm 5 Incomplete n-Opt Algorithm

Input: Instance of Graph TSP
Output: Tour T

1: Start with an arbitrary tour T
2: while there is a negative cycle C in GT do
3: Let C ′ be the corresponding closed alternating walk of C in G
4: T := T4C ′
5: if T is not connected then
6: Contract the connected components of T in a copy G′ of G
7: Compute a minimum spanning tree S of G′

8: Add two copies of S to T
9: Shortcut T to a tour

10: return T

The last steps of the algorithm ensure that after every iteration the algorithm main-
tains a tour and hence it returns a tour when it terminates.

Lemma 2.6.3. The cost of the tour decreases after every iteration of the incomplete n-
Opt algorithm. Moreover, when the algorithm terminates, every closed alternating walk
with h tour edges has at most gain 2h.

74

Proof. Assume that the cycle C we found in GT has 2h edges and total cost −g < 0.
Then, by the definition of GT the transformed closed alternating walk C ′ in G has gain
g+2h and h tour edges. After the augmentation of C ′, the tour has at most h connected
components. Hence, we need to add at most 2(h − 1) edges of cost 1 in the next step
to make the graph connected again. Thus, the difference between the old tour and the
modified tour is at least g + 2h− 2(h− 1) = g + 2 > 0.

To show the second statement assume that there is a closed alternating walk with h
tour edges and gain greater than 2h. By construction, this corresponds to a union of
cycles in GT with total cost less than 0. In this case there has to be a cycle with negative
cost in GT that the Moore-Bellman-Ford algorithm would have found. This means that
the algorithm would not terminate.

Lemma 2.6.4. The incomplete n-Opt algorithm terminates in polynomial time.

Proof. The Moore-Bellman-Ford algorithm runs in O(|V (GT)||E(GT)|) = O(n3) time.
Moreover, the minimum spanning tree can also be computed in polynomial time. Hence,
every iteration of the algorithm can be performed in polynomial time. Initially, the cost
of the tour is at most n(n − 1) since the longest distance in G is at most n − 1. In
every step, the cost decreases by at least 1. Hence, after at most n(n− 1) iterations the
algorithm has to terminate.

Lemma 2.6.5. The approximation ratio of the incomplete n-Opt algorithm is at most
5.

Proof. Consider the output of the algorithm. We know that we can augment a union of
closed alternating walks to obtain the optimal tour. Since the degree of every vertex in
a tour is 2, every vertex is incident to at most two tour edges and two non-tour edges.
Thus, these closed walks have at most 2n tour edges in total. By Lemma 2.6.3, the total
gain of these closed walks is at most 4n. Since the optimal tour consists of at least n
edges, it has length at least n. This implies that the approximation ratio is at most
5.

75

3 Integrality Ratio of the Subtour LP

3.1 Construction of Instances with Integrality Ratio
Converging to 4

3

In this section we describe a procedure to construct families of instances whose integrality
ratios converge to 4

3 . The instances created this way can have a completely different
structure than the known instances from the literature.

3.1.1 Construction

We choose a planar embedding of a 2-edge-connected graph G in R2. For all k ∈ N
choose a Euclidean TSP instances Gk consisting of the embedded vertices of G and
a set of vertices vw1, vw2, . . . , vwlk in this order subdividing the line segment vw for
every edge {v, w} ∈ E(G). Note that the number of subdividing vertices lk may differ
for different edges of G. We call the pairs of vertices of the form vwi, vwi+1 and the
pairs v, vw1 and vwlk , w consecutive vertices. Let δk be the greatest distance between
two consecutive vertices in Gk. We further require that the instances Gk satisfy the
condition limk→∞ δk = 0.

Let T ∗k and x∗k be an optimal tour and optimal fractional tour for Gk, respectively.
Moreover, let J be an optimal T -join of the vertices with odd degree in G.

Lemma 3.1.1. For the optimal fractional tour x∗k of the instance Gk we have c(x∗k) ≤
c(E(G)) for all k.

Proof. Set x(e) = 1 for all edges e connecting two consecutive vertices and x(e) = 0 for
all other edges e. This is a solution to the LP relaxation of the 2-Edge Connected
Spanning Subgraph LP: After the subdivision, the graph stays 2-connected, hence
each cut goes through at least two edges and has x-value at least 2. The cost of this
solution is exactly the cost of E(G). By Theorem 1.4.13, this is also an upper bound for
the optimal solution of the subtour LP.

Lemma 3.1.2. For the optimal tour T ∗k of the instance Gk we have limk→∞ c(T
∗
k) ≥

c(E(G)) + c(J).

Proof. For ε1 > 0 we construct a new instance Gk,ε1 from Gk by deleting all subdividing
vertices with distance less than ε1 to any vertex v ∈ G. Let Uk,ε1 be the set of edges
connecting two consecutive vertices of Gk where at least one vertex is deleted in Gk,ε1 .
For a vertex p ∈ V (Gk,ε1) and an edge e ∈ E(G) we say that p lies on e if p ∈ e or p is
a vertex subdividing e.

Let ε2 be the shortest distance of two vertices p, q ∈ E(Gk,ε1) that do not lie on
a common edge e ∈ E(G) and α := min {u,w},{w,v}∈E(G)

{u,w}6={w,v}
∠uwv be the smallest angle

between two different edges with a common vertex in E(G). We claim that for ε1
fixed we have lim infk→∞ ε2 > 0. Since the embedding is planar, we have α > 0

76

and lim infk→∞ dist2(p, q) > 0 if p and q lie on different edges of G not incident to
each other. Now, let p and q lie on two different edges {u,w}, {w, v} ∈ E(G) with
a common vertex, respectively. If ∠uvw > π

2 , then dist2(p, q) ≥ ε1. Else, for p
fixed the distance dist2(p, q) is minimized if pq is perpendicular to wv. Thus, we have
dist2(p, q) ≥ dist2(p, w) sin(∠uwv) ≥ ε1 sin(α) > 0 which proves the claim.

Now, consider the subset of edges Sk,ε1 of an optimal tour T ∗k,ε1 of Gk,ε1 consisting
of edges not connecting two vertices lying on the same edge. Recall that by definition
every edge in Sk,ε1 has length at least ε2 > 0. Now, if |Sk,ε1 | >

c(E(G))+c(J)
ε2

, we have
c(T ∗k) ≥ c(T ∗k,ε1) > c(E(G)) + c(J) since the vertices of Gk,ε1 is a subset of that of Gk. It

remains the case that |Sk,ε1 | ≤
c(E(G))+c(J)

ε2
. Note that by Lemma 1.4.14 the optimal tour

is a simple polygon. Thus, the edges in T ∗k,ε1\Sk,ε1 are connecting consecutive vertices
and we have

c(T ∗k,ε1\Sk,ε1) = c(E(Gk,ε1) ∩ Tk,ε1) = c(E(Gk,ε1))− c(E(Gk,ε1)\Tk,ε1)

≥ c(E(Gk,ε1))− |Sk,ε1 |δk = c(E(G))− |Sk,ε1 |δk − c(Uk,ε1)

≥ c(E(G))− |Sk,ε1 |δk − 2|E(G)|(ε1 + δk)

since c(Uk,ε1) ≤ 2|E(G)|(ε1 + δk). Furthermore, the edges in Sk,ε1 are a T -join for the
vertices with odd degree in (V (Gk,ε1), T ∗k,ε1\Sk,ε1). Therefore, Sk,ε1 ∪ (E(Gk,ε1)\Tk,ε1) ∪
Uk,ε1 is a T -join for the vertices with odd degree in Gk as E(Gk) = (T ∗k,ε1\Sk,ε1) ∪
(E(Gk,ε1)\Tk,ε1) ∪ Uk,ε1 . Since G has the same set of vertices with odd degree as Gk,
this is also a T -join for the vertices with odd degrees in G. Thus,

c(Sk,ε1) ≥ c(J)− c(E(Gk,ε1)\Tk,ε1)− c(Uk,ε1) ≥ c(J)− |Sk,ε1 |δk − 2|E(G)|(ε1 + δk).

Altogether, for the total length of the tour we have:

lim
k→∞

c(T ∗k) ≥ lim
ε1→0

lim
k→∞

c(T ∗k,ε1) = lim
ε1→0

lim
k→∞

c(T ∗k,ε1\Sk,ε1) + c(Sk,ε1)

≥ lim
ε1→0

lim
k→∞

c(E(G))− |Sk,ε1 |δk − 2|E(G)|(ε1 + δk)

+ c(J)− |Sk,ε1 |δk − 2|E(G)|(ε1 + δk)

≥ lim
ε1→0

lim
k→∞

c(E(G))− 2
c(E(G)) + c(J)

ε2
δk − 4|E(G)|(ε1 + δk) + c(J)

= lim
ε1→0

c(E(G))− 4|E(G)|ε1 + c(J) = c(E(G)) + c(J).

Hence, we conclude:

Theorem 3.1.3. The integrality ratios of the family of instances Gk converge as k →∞
to at least c(E(G))+c(J)

c(E(G)) , where J is the cost of the optimal T -join of the vertices with odd
degree in G.

Remark 3.1.4. It is not possible to construct instances with higher integrality ratio than
4
3 using this procedure. Let a planar embedding of a 2-connected graph G be given.

Consider the vector y ∈ RE(G) with y(e) = 1
3 for every e ∈ E(G). Since the graph is

2-edge-connected, every cut S that intersets an odd number of edges intersects E(G)
at least three times. Hence, for every odd cut S the total y-value of δ(S) is at least

3 · 13 = 1. Therefore, y lies in the T -join polytope and has cost c(E(G))
3 . Thus, we have

c(J) ≤ c(E(G))
3 . A similar construction of a vector in the T -join polytope was already

used in [50].

In the next section we will see concrete examples of Gk whose integrality ratios con-
verge to 4

3 .

77

M

B

C

A

Figure 3.1: The tetrahedron instance: The graph G is a complete graph consisting of
the vertices A,B,C,M . In the figure the edges are subdivided equidistantly
by ak = 6 and bk = 5 vertices, respectively.

3.1.2 Applications

Now, we apply the results of the last section to construct families of instances whose
integrality ratios converge to 4

3 .
The tetrahedron instances were already introduced in [38]. It consists of the vertices

A,B,C forming an equilateral triangle with the center M . The sides of the triangle
AB,BC,CA and the segments MA,MB,MC are subdivided equidistantly by ak and
bk equidistant vertices, respectively (Figure 3.1). Moreover, we have ak, bk → ∞ as
k → ∞. We can apply Theorem 3.1.3 to get another proof of Theorem 3.19 in [38],
that the integrality ratio of this family converges to 4

3 as k → ∞: We take a complete
graph K4 and embed it to the Euclidean plane such that the vertices coincide with the
vertices A,B,C,M of the instance. Now, every vertex has an odd degree in G. Hence,
a T -join has to correct the parity of every vertex and the cost of the T -join is at least
dist(A,B) + dist(C,M) which is by symmetry c(E(G))

3 .
Another example are the hexagon instances. In contrast to the tetrahedron instances

we do not uniquely define the graph G we subdivide. We only require that the vertices
of G form small regular hexagons that tesselate a subset of R2 (Figure 3.2). Every vertex
of G not lying on the border of the tesselation has odd degree. Thus, every T -join is
incident to each of these vertices. The cost of each path in the T -join can be bounded
by the shortest distance between two distinct vertices, which is a side length of the
hexagons. Hence, if we tesselate a subset of R2 where the number of vertices on the
border is small compared to the total number of vertices, the cost of the T -join is at
least roughly c(E(G))

3 . We can take growing tesselations and subdivide the edges to get
instances with integrality ratio converging to 4

3 .

78

Figure 3.2: A possible graph G for the hexagon instances. One possible construction of
the instances Gk is to subdivide every edge by k equidistant vertices.

3.2 Computing the Exact Integrality Ratio for Rectilinear TSP

In this section we compute the exact integrality ratio for Rectilinear TSP instances
with a small fixed number of vertices. For that we used Sylvia Boyd’s list of the extremal
points of the subtour polytope published on her homepage [12]. This approach was
already used to compute the exact integrality ratio of Metric TSP instances with
6 ≤ n ≤ 12 [6, 14].

Let T be the set of all tours for the vertex set V (Kn). Given an extremal point x of
the subtour polytope we solve the corresponding program given by

max f (3.1)∑
{u,v}∈T

|ux − vx|+ |uy − vy| ≥ f for all T ∈ T (3.2)

∑
u,v∈Kn

(|ux − vx|+ |uy − vy|) · x({u, v}) ≤ 1 (3.3)

ux, uy, f ∈ R for all u ∈ V (Kn) (3.4)

The variables ux and uy for all u ∈ V (Kn) represent the x- and y-coordinate of the
vertex u and f represents the integrality ratio of the instance.

On the one hand, each of the programs gives a lower bound for the integrality ratio
since condition (3.2) ensures that the length of the optimal tour is at least f and condition
(3.3) ensures that the cost of the optimal fractional tour is at most 1. Therefore, their
ratio is at least f . On the other hand, the maximum value of the programs for all
extremal points x of the subtour LP is the maximum achievable integrality ratio, since
the instance achieving the maximal integrality ratio can be scaled such that the optimal
fractional tour has length 1. Thus, the largest f of all programs corresponding to all
extremal points with a fixed number of vertices is the exact integrality ratio.

For performance reasons we added the constraints 0 ≤ f ≤ 2 and 0 ≤ ux, uy ≤ 1.
This can be done without loss of generality since by Wolsey’s analysis f lies between 1

79

and 3
2 [68]. Moreover, every instance with a fractional tour of cost at most 1 fits into

the unit square since the fractional tour intersects every cut at least twice. Therefore,
by translating this instance we can assume that it lies in the unit square.

Note that it is known that for n ≤ 5 every optimal fractional tour is also integral and
thus the integrality ratio is 1. For 6 ≤ n ≤ 10 vertices and every extremal point x of
the subtour polytope the corresponding program has been solved using Gurobi 8.11. It
took about a month of computation time to solve all 461 programs for the case n = 10
with an Intel i5-4670. On the same machine a month of computation time was not
sufficient to solve a single program for n = 11.

The resulting instances are shown in Figure 3.3. They have a similar structure as the
instances maximizing the integrality ratio in the metric case. Their explicit coordinates
will be given in Subsection 3.3.3 where we generalize these instances to higher n.

n = 6, ratio=18
17 n = 7, ratio=13

12 n = 8, ratio=34
31

n = 9, ratio=31
28 n = 10, ratio=28

25

Figure 3.3: Instances with n vertices maximizing the integrality ratio for Rectilinear
TSP.

We see that vertices are not distributed equally on the three lines as in the metric case.
Here we get a higher integrality ratio if the number of vertices is higher on the center
line. In the following sections we will investigate this phenomenon and other structural
properties of this family of instances.

3.3 Integrality Ratio for Rectilinear TSP

In this section we construct a family of Rectilinear TSP instances with similar struc-
ture and properties as the results of the computations from Section 3.2 and analyze their
integrality ratio.

80

3.3.1 Structure of the Fractional Tours

The optimal fractional tours of the instances maximizing the integrality ratio found in
Section 3.2 have the same form. In this section we describe and extend it to higher
number of vertices.

Note that every fractional tour x can be interpreted as a weighted complete graph
where the vertex set consists of the vertices of the instance and the weight of the edge
e is equal to x(e). We define the weighted graphs xi,j,k for nonnegative integers i, j, k as
follows: The vertex set V (xi,j,k) := {X0, . . . , Xi+1, Y0, . . . , Yj+1, Z0, . . . , Zk+1} consists
of i+j+k+6 vertices. We set the weight of the edges {Xr, Xr+1}, {Ys, Ys+1}, {Zt, Zt+1}
for all r ∈ {0, . . . , i}, s ∈ {0, . . . , j}, t ∈ {0, . . . , k} to 1. Moreover, we set the weight of
the edges {X0, Y0}, {X0, Z0}, {Y0, Z0}, {Xi+1, Yj+1}, {Xi+1, Zk+1} and {Yj+1, Zk+1} to
1
2 . All other edges have weight 0 (Figure 3.4, the instance I2,2,1 will be defined later).

The optimal fractional tours of the instances maximizing the integrality ratio found
in Section 3.2 are isomorphic to xi,j,k for some i, j, k.

Y2Y1

Z1

X0 X3

Y3

Z2Z0

Y0

X1 X2

Figure 3.4: The instance I2,2,1 with optimal fractional tour x2,2,1. The straight and
dashed edges have weights 1 and 1

2 in x2,2,1, respectively.

3.3.2 Structure of the Optimal Tours

In this subsection we describe the structure of the optimal tours of the instances max-
imizing the integrality ratio computed in Section 3.2 which is the motivation for the
construction of the generalized instances I2i,j,k in the next subsection.

A pseudo-tour of a TSP instance is a closed walk that visits every vertex at least once.
We first define a set of pseudo-tours T which is the union of three sets of pseudo-tours
T ↑, T ◦, T ↓ and the pseudo-tours T↖, T↗, T←, T→, T↙, T↘.

Let T ↑ := {T ↑0 , . . . , T
↑
k } be a set of pseudo-tours where the pseudo-tour T ↑l for some

0 ≤ l ≤ k consists of (Figure 3.5):

81

• two copies of the edges {Zs, Zs+1} for all 0 ≤ s ≤ k, s 6= l

• a copy of the edges {Ys, Ys+1} for all 0 ≤ s ≤ j

• a copy of the edges {Xs, Xs+1} for all 0 ≤ s ≤ i

• a copy of the edges {Z0, Y0}, {Z0, X0}, {Zk+1, Yj+1} and {Zk+1, Xi+1}

Y2Y1

Z1

X0 X2

Y3

Z2Z0

Y0

X1

Figure 3.5: The pseudo-tour T ↑0 .

Y2Y1

Z1

X0 X2

Y3

Z2Z0

Y0

X1

Figure 3.6: The pseudo-tour T ◦0 .

Y2Y1

Z1

X0 X2

Y3

Z2Z0

Y0

X1

Figure 3.7: The pseudo-tour T↖.

Y2Y1

Z1

X0 X2

Y3

Z2Z0

Y0

X1

Figure 3.8: The pseudo-tour T←.

We also define the sets of pseudo-tours T ◦ := {T ◦0 , . . . , T ◦j } and T ↓ := {T ↓0 , . . . , T
↓
i }.

Each of the tours T ◦l (Figure 3.6) and T ↓l are defined similarly: Instead of {Zs, Zs+1} we
take two copies of the edges {Ys, Ys+1} and {Xs, Xs+1} except {Yl, Yl+1} and {Xl, Xl+1},
respectively.

The tour T↖ consists of (Figure 3.7):

82

• two copies of the edges {Zs, Zs+1} for all 0 ≤ s ≤ k

• a copy of the edges {Ys, Ys+1} for all 0 ≤ s ≤ j

• a copy of the edges {Xs, Xs+1} for all 0 ≤ s ≤ i

• a copy of the edges {Z0, Y0}, {Z0, X0} and {Yj+1, Xi+1}

The pseudo-tour T↗ is defined similarly. Instead of the edges {Z0, Y0}, {Z0, X0} and
{Yj+1, Xi+1} it consists of the edges {Zk+1, Yj+1}, {Zk+1, Xi+1} and {Y0, X0}. We also
define the pseudo-tours T← (Figure 3.8), T→, T↙, T↘ similarly where we double the
edges {Ys, Ys+1} or {Xs, Xs+1} instead of {Zs, Zs+1}.

We observe that the optimal tours of the instances maximizing the integrality ratio
for 6 ≤ n ≤ 10 computed in Section 3.2 are the non-intersecting shortcuts of the pseudo-
tours in T. In the next subsection the instances I2i,j,k are constructed such that the
vertices lie on three lines, are symmetric and the optimal tours are the non-intersection
shortcuts of pseudo-tours in T. Similar properties also hold for other variants of the
TSP. For example, the shortcuts of the pseudo-tours in T are the optimal tours of the
instances maximizing the integrality ratio in the metric case for 6 ≤ n ≤ 12 given in [6].

3.3.3 The Instance I2i,j,k

We define an embedding of xi,j,k in R2 (Figure 3.4) as follows: The vertices {X0, . . . , Xi+1},
{Y0, . . . , Yj+1} and {Z0, . . . , Zk+1} lie on the three parallel lines l1, l2 and l3, respectively.
The line l2 lies between l1 and l3 in the plane. Moreover, l1, l2 and l2, l3 have distances

b1 := 1
2 + j+1

j+3

(
1

k+1 −
1
2

)
and b2 := 1

2 + j+1
j+3

(
1
i+1 −

1
2

)
to each other, respectively. The

vertices X0, Xi+1, Z0 and Zk+1 form an axis-parallel rectangle with side lengths 1 and

1+ j+1
j+3

(
1
i+1 + 1

k+1 − 1
)

. Let Y ′l and Z ′l be the orthogonal projection of Yl and Zl to the

line X0Xi+1, respectively. We call a sequence of points v1, . . . , vs an equidistant progres-
sion if dist1(vl, vl+1) = dist1(v1, v2) for all 1 ≤ l ≤ s−1. Then X0, Y

′
0 , Y

′
1 , . . . , Y

′
j+1, Xi+1

and Y ′0 , X1, X2, . . . , Xi, Y
′
j+1 and Y ′0 , Z

′
1, Z

′
2, . . . , Z

′
k, Y

′
j+1 are three equidistant progres-

sions.
Note that this embedding also defines a Rectilinear TSP instance we call I2i,j,k.

The explicit coordinates of the vertices are given by:

X0 = (0, 0)

Xi+1 = (1, 0)

Z0 =

(
0, 1 +

j + 1

j + 3

(
1

i+ 1
+

1

k + 1
− 1

))
Zk+1 =

(
1, 1 +

j + 1

j + 3

(
1

i+ 1
+

1

k + 1
− 1

))
Xs =

(
s · j + 1

j + 3
· 1

i+ 1
+

1

j + 3
, 0

)
∀1 ≤ s ≤ i,

Ys =

(
(s+ 1)

j + 3
,
1

2
+
j + 1

j + 3

(
1

k + 1
− 1

2

))
∀0 ≤ s ≤ j + 1,

Zs =

(
s · j + 1

j + 3
· 1

k + 1
+

1

j + 3
, 1 +

j + 1

j + 3

(
1

i+ 1
+

1

k + 1
− 1

))
∀1 ≤ s ≤ k.

83

n Instance Opt. frac. tour Integrality ratio

6 I0,0,0 x0,0,0
18
17 ≈ 1.059

7 I0,1,0 x0,1,0
13
12 ≈ 1.083

8 I0,1,1 x0,1,1
34
31 ≈ 1.097

9 I0,2,1 x0,2,1
31
28 ≈ 1.107

10 I1,2,1 x1,2,1
28
25 = 1.120

Table 3.1: The instances maximizing the integrality ratio computed in Section 3.2 with
their corresponding fractional optimal tours and integrality ratios.

We call the vertices X0, . . . , Xi+1, Z0, . . . , Zk+1 the outer vertices and Y0, . . . , Yj+1 the
inner vertices.

Revising the instances that maximize the integrality ratio from Section 3.2 we see that
they can be transformed to I2i,j,k for some i, j and k by scaling, rotating and translating.
Moreover, their optimal fractional tours are isomorphic to xi,j,k and their optimal tours
are the non-intersecting shortcuts of the pseudo-tours in T (Figure 3.9). The values of
i, j, k and the corresponding integrality ratios are listed in Table 3.1.

Y2Y1

Z1

X0 X2

Y3

Z2Z0

Y0

X1

The non-intersecting short-
cut of T ↑1 for I1,2,1.

Y2Y1

Z1

X0 X2

Y3

Z2Z0

Y0

X1

A non-intersecting shortcut
of T ◦2 for I1,2,1. All shortcuts
of T ◦2 are non-intersecting.

Y2Y1

Z1

X0 X2

Y3

Z2Z0

Y0

X1

A non-intersecting shortcut
of T← for I1,2,1. All
shortcuts of T← are non-
intersecting.

Figure 3.9: Some of the non-intersecting shortcuts of pseudo-tours in T.

We observe that for I2i,j,k there is a unique non-intersecting shortcut of pseudo-tours in

T ↑ and T ↓ while all shortcuts of pseudo-tours in T ◦, T←, T→ are non-intersecting. More-
over, the non-intersecting shortcuts of T↖, T↗, T↙ and T↘ are also non-intersecting
shortcuts of T← and T→. Hence, the set of optimal tours are the non-intersecting short-
cuts of T ↑, T ↓ and all shortcuts of T ◦, T←, T→.

For n fixed let the instance I2n := I2i∗,j∗,k∗ maximize the integrality ratio among all
instances Ii,j,k with i+ j + k + 6 = n.

84

3.3.4 Length of the Optimal Tours for I2i,j,k

In this subsection we determine the length of the optimal tours for I2i,j,k. This will
be used to compute lower bounds on the integrality ratio of the instances in the next
subsection.

A subpath of an oriented tour consists of vertices v1, . . . , vl, such that vi+1 is visited
by the tour immediately after vi for all i = 1, . . . , l − 1. A subpath of a tour starting
and ending at outer vertices and containing no other outer vertex is called a trip if it
contains at least one inner vertex.

By Lemma 1.4.15, we know that each optimal tour of I2i,j,k can be decomposed into a
set of trips and a set of edges connecting consecutive outer vertices such that all inner
vertices are contained in some trip and two different trips intersect in at most one outer
vertex.

Lemma 3.3.1. The length of the optimal tour for I2i,j,k is 4 + 2b1 + 2b2 − 2
j+3 .

Proof. Assume that we have given an optimal tour. Since all inner vertices lie on a line,
every trip visits a set of consecutive inner vertices. We start with a cycle visiting the
outer vertices in cyclic order. This cycle has length

dist1(X0, Xi+1) + dist1(Xi+1, Zk+1) + dist1(Z0, Zk+1) + dist1(X0, Z0) = 2 + 2b1 + 2b2

Now, we successively replace an edge between two consecutive outer vertices by a trip
until every inner vertex is visited and we get the given optimal tour.

If we replace {Zr, Zr+1} for some 1 ≤ r ≤ k − 1 by a trip visiting the inner vertices
Ys, Ys+1, . . . , Yt, the cost of the cycle increases by at least

dist1(Zr, Ys) + dist1(Ys, Yt) + dist1(Yt, Zr+1)− dist1(Zr, Zr+1)

≥2 dist1(Ys, Yt)− 2 dist1(Zr, Zr+1) + 2b2

=2 dist1(Ys, Yt)− 2 · j + 1

j + 3
· 1

k + 1
+ 1 +

j + 1

j + 3

(
2

k + 1
− 1

)
= 2 dist1(Ys, Yt) +

2

j + 3

Similarly, the cost increases by at least the same amount when we replace {Xr, Xr+1}
for some 1 ≤ r ≤ k − 1 by a trip.

In the case where we replace {Z0, Z1} by a trip visiting the inner vertices Ys, Ys+1, . . . , Yt
let Y ′0 be the orthogonal projection of Y0 to the line Z0Zk+1. The cost of the cycle in-
creases by at least

dist1(Z0, Ys) + dist1(Ys, Yt) + dist1(Yt, Z1)− dist1(Z0, Z1)

≥2 dist1(Ys, Yt)− 2 dist1(Y
′
0 , Z1) + 2b2

=2 dist1(Ys, Yt)− 2 · j + 1

j + 3
· 1

k + 1
+ 1 +

j + 1

j + 3

(
2

k + 1
− 1

)
= 2 dist1(Ys, Yt) +

2

j + 3

Similarly, the cost increases by at least the same amount when we replace one of the
edges {Zk, Zk+1}, {X0, X1} or {Xi, Xi+1} by a trip.

If we replace {X0, Z0} by a trip visiting the vertices Ys, Ys+1, . . . , Yt, the cost of the

85

cycle increases by at least:

dist1(X0, Ys) + dist1(Ys, Yt) + dist1(Yt, Z0)− dist1(X0, Z0)

= dist1(X0, Yt) + dist1(Z0, Yt)− dist1(X0, Z0)

=(t+ 1)
1

j + 3
+ b1 + (t+ 1)

1

j + 3
+ b2 − (b1 + b2) = 2(t+ 1)

1

j + 3

≥2 dist(Ys, Yt) +
2

j + 3

Similarly, we get the same value when we replace {Xi+1, Zk+1} by a trip. Assume that
the optimal tour has exactly w trips t1, . . . , tw. Since all the inner vertices are visited
by the w trips, all except w− 1 edges of the form {Ys, Ys+1} for 0 ≤ s ≤ j are contained
in the trips. Hence the total length of the optimal tour is at least:

2 + 2b1 + 2b2 + 2 dist(Y0, Yj+1)− (w − 1) · 2 · 1

j + 3
+ w

2

j + 3

=2 + 2b1 + 2b2 + 2− 4

j + 3
+

2

j + 3
= 4 + 2b1 + 2b2 −

2

j + 3

In fact a straightforward calculation shows that all non-intersecting shortcuts of T are
optimal tours. For example the non-intersecting shortcut of the tour T← has length:

dist1(X0, Yj+1) + dist1(Y0, Yj+1) + dist1(Y0, Z0) + dist1(Z0, Zk+1) + dist1(Zk+1, Xi+1)

+ dist1(Xi+1, X0) = (b1 + 1− 1

j + 3
) + (1− 2 · 1

j + 3
) + (b2 +

1

j + 3
) + 1 + (b1 + b2) + 1

=4 + 2b1 + 2b2 −
2

j + 3

Hence, the lower bound on the length of the optimal tour is tight.

3.3.5 The Integrality Ratio of I2i,j,k

In this section we investigate the integrality ratio of I2i,j,k. Recall that I2n is defined as
the instance of the form Ii,j,k with n vertices and maximal integrality ratio.

Theorem 3.3.2. The integrality ratio of I2i,j,k is at least 1 + 1

3+2
(

5
j+1

+ 1
k+1

+ 1
i+1

) . In

particular, the integrality ratios of instances I2n converge to 4
3 as n→∞.

Proof. The cost of the optimal fractional tour of Ii,j,k is at most the cost of xi,j,k which
is

dist1(X0, Xi+1) + dist1(Y0, Yj+1) + dist1(Z0, Zk+1) +
1

2
dist1(X0, Y0) +

1

2
dist1(X0, Z0)

+
1

2
dist1(Y0, Z0) +

1

2
dist1(Xi+1, Yj+1) +

1

2
dist1(Xi+1, Zk+1) +

1

2
dist1(Yj+1, Zk+1)

=3 + 2b1 + 2b2.

By Lemma 3.3.1, the cost of the optimal tour of Ii,j,k is 4 + 2b1 + 2b2 − 2
j+3 . Hence, the

86

integrality ratio is at least

4 + 2b1 + 2b2 − 2
j+3

3 + 2b1 + 2b2
= 1 +

1− 2
j+3

3 + 2b1 + 2b2

=1 +
1− 2

j+3

3 + 1 + j+1
j+3

(
2

k+1 − 1
)

+ 1 + j+1
j+3

(
2
i+1 − 1

)
=1 +

j + 3− 2

5(j + 3) + (j + 1)
(

2
k+1 + 2

i+1 − 2
) = 1 +

j + 1

3j + 13 + (j + 1)
(

2
k+1 + 2

i+1

)
=1 +

1

3 + 2
(

5
j+1 + 1

k+1 + 1
i+1

)
To get the highest integrality ratio of the instances I2i,j,k we have to find mini,j,k

5
j+1 +

1
i+1 + 1

k+1 where i+ j + k = n− 6 is fixed.
We get the following estimate by the Cauchy-Schwarz inequality:(

5

j + 1
+

1

i+ 1
+

1

k + 1

)
(n− 3) =

(
5

j + 1
+

1

i+ 1
+

1

k + 1

)
(j + 1 + i+ 1 + k + 1)

≥ (
√

5 +
√

1 +
√

1)2 = (
√

5 + 2)2

With equality if and only if 5
(j+1)2

= 1
(i+1)2

= 1
(k+1)2

. In this case the actual integrality
ratio is

1 +
1

3 + 2 (
√
5+2)2

n−3

∈ 4

3
−Θ(n−1)

We see that this expression converges to 4
3 as n → ∞. However, the optimal values

of i, j and k we chose above do not have to be integral. So in order to conclude that
the actual integrality ratios of the instance I2n = I2i,j,k for the best choice of i, j, k also

converge to 4
3 we need to show that the optimal integral values of i, j, k achieve a similar

integrality ratio. Let i′, j′ and k′ be real numbers satisfy 5
(j′)2 = 1

(i′)2 = 1
(k′+1)2

and

i′ + j′ + k′ = n − 6. With the restriction that i, j and k are integers we can choose
i = bi′c, j = bj′c and k = dk′e or k = dk′e+ 1 such that i+ j + k = i′ + j′ + k′ = n− 6.
In this case we have by a similar application of the Cauchy-Schwarz inequality as above:

1 +
1

3 + 2
(

5
j+1 + 1

k+1 + 1
i+1

) ≥ 1 +
1

3 + 2
(

5
j′ + 1

k′+1 + 1
i′

) = 1 +
1

3 + 2 (
√
5+2)2

n−5

∈ 4

3
−Θ(n−1).

3.4 Integrality Ratio for Metric TSP

In this section we give an upper bound on the integrality ratio for Metric TSP instances
whose optimal fractional tour is isomorphic to xi,j,k for some i, j, k with i+j+k+6 = n.
This implies that, assuming Conjecture 1.2.16, the Metric TSP instances described
in [6] maximize the integrality ratio. Note that in [13] it was already shown that these
instances have integrality ratios that are upper bounded by 4

3 . We start by defining
coefficients for the pseudo-tours in T.

87

Definition 3.4.1. We define the real coefficients

λ↑ :=
1

|T ↑|
· 1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

λ◦ :=
1

|T ◦|
· 1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

λ↓ :=
1

|T ↓|
· 1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

λ↖ := λ↗ :=
1

k+1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

λ← := λ→ :=

1
j+1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

λ↙ := λ↘ :=
1
i+1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

.

Lemma 3.4.2. The integrality ratio of Metric TSP instances whose optimal fractional
tour isomorphic to xi,j,k is at most 1 + 1

3+2(1
i+1

+ 1
j+1

+ 1
k+1

)
.

Proof. For a pseudo-tour T let χT be the vector such that χT (e) is the number of
occurrence of e in T for all e ∈ E(Kn). In order to show the statement, we show that∑
T∈T ↑

λ↑χT +
∑
T∈T ◦

λ◦χT +
∑
T∈T ↓

λ↓χT + λ↖χT
↖

+ λ↗χT
↗

+ λ←χT
←

+ λ→χT→ + λ↙χT
↙

+λ↘χT
↘

=

(
1 +

1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

)
xi,j,k.

This implies the Lemma since∑
T∈T ↑

λ↑ +
∑
T∈T ◦

λ◦ +
∑
T∈T ↓

λ↓ + λ↖ + λ↗ + λ← + λ→ + λ↙ + λ↘

=3 · 1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

+ 2 ·
1

k+1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

+ 2 ·
1
j+1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

+ 2 ·
1
i+1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

= 1.

Consider the edge {Zl, Zl+1} for some 0 ≤ l ≤ k. It is contained in every pseudo-tour of
T ◦, T ↓, T←, T→, T↙, T↘ once and in each of T↖, T↗ twice. In the pseudo-tours of T ↑

88

it is contained twice except of the tour T ↑l where it is not contained. Hence,∑
T∈T ↑

λ↑χT ({Zl, Zl+1}) +
∑
T∈T ◦

λ◦χT ({Zl, Zl+1}) +
∑
T∈T ↓

λ↓χT ({Zl, Zl+1})

+λ↖χT
↖

({Zl, Zl+1}) + λ↗χT
↗

({Zl, Zl+1}) + λ←χT
←

({Zl, Zl+1})

+λ→χT→({Zl, Zl+1}) + λ↙χT
↙

({Zl, Zl+1}) + λ↘χT
↘

({Zl, Zl+1})

=2λ↑ − 2

|T ↑|
λ↑ + λ◦ + λ↓ + 2λ↖ + 2λ↗ + λ← + λ→ + λ↙ + λ↘

=4 · 1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

− 2

k + 1
· 1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

+ 4 ·
1

k+1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

+ 2 ·
1
j+1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

+ 2 ·
1
i+1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

=4 · 1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

+ 2 ·
1

k+1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

+ 2 ·
1
j+1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

+ 2 ·
1
i+1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

=1 +
1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

=

(
1 +

1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

)
xi,j,k({Zl, Zl+1}).

Next, consider the edge {Z0, Y0}. It is contained in the pseudo-tours of T ↑, T ◦, T↖, T←, T↘

once and not contained in the pseudo-tours of T ↓, T↗, T→, T↙. Hence,∑
T∈T ↑

λ↑χT ({Z0, Y0}) +
∑
T∈T ◦

λ◦χT ({Z0, Y0}) +
∑
T∈T ↓

λ↓χT ({Z0, Y0})

+λ↖χT
↖

({Z0, Y0}) + λ↗χT
↗

({Z0, Y0}) + λ←χT
←

({Z0, Y0})

+λ→χT→({Z0, Y0}) + λ↙χT
↙

({Z0, Y0}) + λ↘χT
↘

({Z0, Y0})
=λ↑ + λ◦ + λ↖ + λ← + λ↘

=2 · 1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

+
1

k+1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

+

1
j+1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

+
1
i+1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

=
1

2

(
1 +

1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

)
=

(
1 +

1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

)
xi,j,k({Z0, Y0}).

The statement can be shown for all other edges of xi,j,k analogously to one of the two
cases above.

Remark 3.4.3. Theorem 4.1 in [6] shows that the upper bound in Lemma 3.4.2 is tight, i.e.
there is actually an instance where the integrality ratio is equal to 1+ 1

3+2(1
i+1

+ 1
j+1

+ 1
k+1

)
.

89

Theorem 3.4.4. The integrality ratio of Metric TSP instances whose optimal frac-
tional tour is isomorphic to xi,j,k with i+ j + k + 6 = n is at most

1 + 1
3+ 18

n−3

if n ≡ 0 mod 3

1 + 1
3+2(6

n−4
+ 3
n−1

)
if n ≡ 1 mod 3

1 + 1
3+2(3

n−5
+ 6
n−2

)
if n ≡ 2 mod 3.

Proof. In order to maximize the integrality ratio, we need to find i, j, k with i+j+k+6 =
n that minimize 1

i+1 + 1
j+1 + 1

k+1 . Since the function f(x) = 1
x is convex, we can use

Jensen’s inequality to see that the integrality ratio is maximized for i+1 = j+1 = k+1 if
n is divisible by 3. For n ≡ 1 mod 3 and n ≡ 2 mod 3 we use the Karamata’s inequality
(Theorem 1.4.17) to find the best values of i, j and k. For n ≡ 1 mod 3 it is maximized
for i + 1 = j + 1 = k since this triple is been majorized by all other integer triples.
Similarly, for n ≡ 2 mod 3 the integrality ratio is maximized for i+ 1 = j = k.

Remark 3.4.5. Conjecture 4.1 in [6] states the given bounds in Theorem 3.4.4 hold for
arbitrary Metric TSP instances with n vertices and is tight. Thus, Conjecture 1.2.16
would imply Conjecture 4.1 in [6].

3.5 Integrality Ratio for Multidimensional Rectilinear TSP

In this section we show that there are Rectilinear TSP instances in R3 that have the
same integrality ratio as the upper bounds given in Theorem 3.4.4 for the Metric TSP.
Hence, assuming Conjecture 1.2.16 the exact integrality ratio for Multidimensional
Rectilinear TSP is the same as in the metric case. Since the instances in R3 can be
embedded into Rd for d ≥ 3, the statement also holds for these spaces.

We start by constructing an instance I3i,j,k with the vertex set of xi,j,k. The co-

ordinates of the vertices are given by Xs = (0, 0, s
i+1), Ys = (1

i+1 + 1
j+1 , 0,

s
j+1) and

Zs = (1
i+1 ,

1
k+1 ,

s
k+1). The vertices form a prism in the three dimensional space where

the triangle X0, Y0, Z0 lies in the plane z = 0 and the triangle Xi+1, Yj+1, Zk+1 lies in the
plane z = 1. The sequences of vertices X0, . . . , Xi+1 and Y0, . . . , Yj+1 and Z0, . . . , Zk+1

are equidistant progressions such that each sequence lies on one of three parallel lines.
We can check that dist1(Xl, Xl+1) = 1

i+1 , dist1(Yl, Yl+1) = 1
j+1 and dist1(Zl, Zl+1) =

1
k+1 . Moreover, dist1(X0, Y0) = 1

i+1 + 1
j+1 , dist1(Y0, Z0) = 1

j+1 + 1
k+1 and dist1(X0, Z0) =

1
i+1 + 1

k+1 . The same distances also hold for the triangle Xi+1, Yj+1, Zk+1. Note these
distances are the same as the corresponding distances of the Metric TSP instances
Benoit and Boyd described in [6]. Nevertheless, it is not clear that they have the same
integraltiy ratio, since the remaining distances are given by the 1-norm instead of the
metric closure of the weighted graph.

For all fixed n let the instance I3n := I3i∗,j∗,k∗ be the instance that maximizes the

integrality ratio among the instances I3i,j,k with i + j + k + 6 = n. Next, we determine

the length of the optimal tours of I3i,j,k.

Lemma 3.5.1. Every optimal tour of I3i,j,k has at least length 4 + 2
i+1 + 2

j+1 + 2
k+1 .

Proof. Assume that we have given an optimal tour T . We call an edge vertical if it
is parallel to the z-axis, otherwise it is called non-vertical. A vertical edge is called

90

base edge if it connects two consecutive vertices {Xs, Xs+1}, {Ys, Ys+1} or {Zs, Zs+1}.
We may assume that all vertical edges are base edges, otherwise we can replace them
by a set of base edges to get a pseudo-tour with equal length. We call all base edges
which are not in T gaps. Furthermore, we add auxiliary vertices X−1 = (0, 0,− 1

i+1),

Xi+2 = (0, 0, i+2
i+1), Y−1 = (1

i+1 + 1
j+1 , 0,−

1
j+1), Yj+2 = (1

i+1 + 1
j+1 , 0,

j+2
j+1) and Z−1 =

(1
i+1 ,

1
k+1 ,−

1
k+1), Zk+2 = (1

i+1 ,
1

k+1 ,
k+2
k+1) such that the sequences X−1, X0, . . . , Xi+2

and Y−1, Y0, . . . , Yj+2 and Z−1, Z0, . . . , Zk+2 are equidistant progressions. We call the
edges {X−1, X0}, {Xi+1, Xi+2}, {Y−1, Y0}, {Yj+1, Yj+2}, {Z−1, Z0} and {Zk+1, Zk+2}
the auxiliary gaps.

Next, we assign the non-vertical edges in T to the gaps such that every non-vertical
edge is assigned to two gaps incident to the edge on different lines, every non-auxiliary
gap is assigned to two non-vertical edges and every auxiliary gap is assigned to one non-
vertical edge. We do this as follows: For any endpoint of a non-vertical edge that is only
incident to one gap we assign this edge to that gap. For any endpoint of a non-vertical
edge incident to two gaps there has to be another non-vertical edge incident to that
endpoint. We arbitrarily assign one of the edges to a gap and the other to the other
gap. Note that since every gap has two endpoints we assigned two non-vertical edges to
it this way. Moreover, every auxiliary gap has only one endpoint which is vertex of xi,j,k
and hence it is assigned to one non-vertical edge.

Since we use the Manhattan norm, we can replace every edge e ∈ T by three edges we
call the subedges of e without changing the length of the tour such that they are parallel
to the x-, y- and z-axis, respectively. After the replacement, we also call the subedges
parallel to the z-axis vertical. Next, we replace all non-vertical subedges originated from
a non-vertical edges of T by the two gaps it is assigned to and get a multiset of edges
T ′. We claim that T ′ has the same length as T . To see this assume that the non-vertical
edge {Xl, Ys} is in T and note that the non-vertical subedges of it have total length
dist1(X0, Y0) = 1

i+1 + 1
j+1 . Assume that we assigned this edge to the gaps {Xl, Xl+1}

and {Ys, Ys+1}. Then, these two edges we add have also total length 1
i+1 + 1

j+1 . Similar

statements hold for the non-vertical edges of the form {Xl, Zs} and {Yl, Zs}. Hence, T ′

has the same length as T .
Now, for a ∈ R consider the intersection of the plane z = a with T ′. We claim that

it intersects T ′ at least four times for all 0 ≤ a ≤ 1. The plane intersects each of the
segments X0Xi+1, Y0Yj+1 and Z0Zk+1 at a base edge or a gap. If it intersects at least
one gap, the statement is true since every non-auxiliary gap was assigned to two non-
vertical edges and we filled the gap by two edges. Otherwise, the plane intersects three
base edges of T . Since the pseudo-tour T intersects a plane an even number of times,
it has to intersect at least 4 times. Thus, it also intersects T ′ at least 4 times since we
only replaced the non-vertical subedges. This shows the claim and implies that the part
of the edges in T ′ with z-coordinate between 0 and 1 has length at least 4.

Moreover, we added an edge in T ′ to every auxiliary gap. Since the interior of the
auxiliary gaps does not have z-coordinates between 0 and 1, this increases the lower
bound of the length of T ′ by 2

i+1 + 2
j+1 + 2

k+1 . Therefore, the total length of T ′ and thus

also that of T is at least 4 + 2
i+1 + 2

j+1 + 2
k+1 .

Corollary 3.5.2. The integrality ratio of I3i,j,k is at least 1 + 1
3+2(1

i+1
+ 1
j+1

+ 1
k+1

)
.

Proof. By Lemma 3.5.1, the length of every tour is at least 4 + 2
i+1 + 2

j+1 + 2
k+1 . The

91

length of the fractional tour xi,j,k is

dist1(X0, Xi+1) + dist1(Y0, Yj+1) + dist1(Z0, Zk+1) +
1

2
dist1(X0, Y0) +

1

2
dist1(X0, Z0)

+
1

2
dist1(Y0, Z0) +

1

2
dist1(Xi+1, Yj+1) +

1

2
dist1(Xi+1, Zk+1) +

1

2
dist1(Yj+1, Zk+1)

=3 +
2

i+ 1
+

2

j + 1
+

2

k + 1
.

Hence, the integrality ratio is at least

4 + 2
i+1 + 2

j+1 + 2
k+1

3 + 2
i+1 + 2

j+1 + 2
k+1

= 1 +
1

3 + 2(1
i+1 + 1

j+1 + 1
k+1)

.

Corollary 3.5.3. The instance I3i,j,k has the same or higher integrality ratio as any
Metric TSP instance whose optimal fractional solution is isomorphic to xi,j,k.

Proof. By Lemma 3.5.1, any Metric TSP instance with xi,j,k as the optimal fractional
tour has at most integrality ratio 1 + 1

3+2(1
i+1

+ 1
j+1

+ 1
k+1

)
. The instance I3i,j,k has at least

the same integrality ratio by Corollary 3.5.2.

Remark 3.5.4. Corollary 3.5.2 implies an alternative proof of the following statement:
There exists a Metric TSP instance with i + j + k + 6 vertices having an integrality
ratio of 1 + 1

3+2(1
i+1

+ 1
j+1

+ 1
k+1

)
. This is a direct consequence of Lemma 4.1 in [6] and

Lemma 4.2 in [6] and the key ingredient of Theorem 4.1 in [6].

3.6 Local Optimality

In this section we consider TSP instances with n vertices that can be embedded into Rd
such that the distances arise from a norm which is totally differentiable in every non-zero
point. An instance is called locally optimal if its integrality ratio cannot be increased by
making small changes to its embedded vertices. We describe a criterion to check if an
instance is locally optimal and develop an algorithm that finds locally optimal instances.

3.6.1 A Criterion for Local Optimality

Assume that we have given a norm ‖ ·‖ in Rd which is totally differentiable in every non-
zero point. Let a TSP instance (Kn, c) be given where the vertices can be embedded into
Rd as the vertex set v = {v1, . . . , vn} with v1, . . . , vn ∈ Rd such that the cost function c
arises from v and the given norm in Rd. Since the instance is completely characterized
by the embedded vertex set v, we will simply call this instance v. W.l.o.g. assume that
no two vertices of the instance coincide, i.e. vi 6= vj for i 6= j. We can interpret the
vertex set v as a point in Rnd since each of the n vertices is a point in Rd. For another
point w ∈ Rnd and λ ∈ R we define a new instance v + λw where we add and multiply
the coordinates of the vertices coordinate-wise. Moreover, let T be the set of optimal
tours and X be the set of optimal fractional tours for v.

92

Definition 3.6.1. For a given tour T and fractional tour x and instance y ∈ Rnd let
lT , lx : Rnd → R be defined as follows: lT (y) and lx(y) denote the length of T and
cost of x for the instance y, respectively. Moreover, let rT,x : Rnd → R be defined

as rT,x(y) := lT (y)
lx(y)

, the ratio of the length of T and the cost of x for the instance v.
Furthermore, let ry be the integrality ratio of the instance y.

Now, we can define local optimality for a TSP instance.

Definition 3.6.2. The instance v is called locally optimal if there does not exist w ∈ Rnd
such that lim infε→0

rv+εw−rv
ε > 0.

Lemma 3.6.3. The instance v is locally optimal if and only if for some x ∈ X there
does not exist w ∈ Rnd such that ∂wrT,x(v) > 0 for all T ∈ T.

Proof. Since the length of the tour and fractional tour is continuous in v and the number
of tours and fractional tours is finite, given w for small enough ε the optimal tour of the
instance v+ εw is still in T and the optimal fractional tour is still in X. Hence, the new
integrality ratio is

rv+εw =
minT∈T lT (v + εw)

minx∈X lx(v + εw)
= max

x∈X
min
T∈T

lT (v + εw)

lx(v + εw)
= max

x∈X
min
T∈T

rT,x(v + εw).

Note that since the given norm is differentiable the functions lT , lx and rT,x are also
differentiable. Moreover, we have by definition rv = rT,x(v) for all T ∈ T and x ∈ X.

Therefore, lim infε→0
rv+εw−rv

ε > 0 if and only if we have limε→0
rT,x(v+εw)−rT,x(v)

ε =
∂wrT,x(v) > 0 for some x ∈ X and all T ∈ T.

For a tour T and a fractional tour x let δT (vi) and δx(vi) denote the set of vertices
incident to vi in T and the support graph of x, respectively.

Lemma 3.6.4. We have

∂wlT (v) =
1

2

∑
i∈{1,...,n}

∑
vj∈δT (vi)

∂w‖vj − vi‖

∂wlx(v) =
1

2

∑
i∈{1,...,n}

∑
vj∈δx(vi)

x({vi, vj})∂w‖vj − vi‖.

Proof. Note that the length of the tour and fractional tour can be expressed as

lT (v) =
1

2

∑
i∈{1,...,n}

∑
vj∈δT (vi)

‖vj − vi‖

lx(v) =
1

2

∑
i∈{1,...,n}

∑
vj∈δx(vi)

x({vi, vj})‖vj − vi‖.

The statement follows from the fact that the derivative is linear.

Definition 3.6.5. Define the function gT,x,v : Rnd → R as gT,x,v(y) := lT (y)− rvlx(y).

Lemma 3.6.6. The instance v is locally optimal if and only if for some x ∈ X there
does not exist w ∈ Rnd such that ∂wgT,x,v(v) > 0 for all T ∈ T.

93

Proof. By Lemma 3.6.3 v is locally optimal if and only if for some x ∈ X there does not
exist w ∈ Rnd such that ∂wrT,x(v) > 0 for all T ∈ T. We have:

∂wrT,x(v) = ∂w
lT (v)

lx(v)
=

(∂wlT (v))lx(v)− lT (v)(∂wlx(v))

lx(v)2
.

Hence

∂wrT,x(v) > 0⇔ (∂wlT (v))lx(v)− lT (v)(∂wlx(v))

lx(v)2
> 0

⇔ (∂wlT (v))lx(v)− lT (v)(∂wlx(v)) > 0

⇔ ∂wlT (v)− lT (v)

lx(v)
∂wlx(v) > 0

⇔ ∂w(lT (v)− rvlx(v)) > 0

⇔ ∂wgT,x,v(v) > 0.

Lemma 3.6.7. The instance v is locally optimal if and only if for some x ∈ X there
does not exist w ∈ Rnd such that 〈w,∇gT,x,v(v)〉 > 0 for all T ∈ T.

Proof. Recall that we assumed that the norm is totally differentiable for p > 1 in any
non-zero point. Therefore, for w ∈ Rnd we have ∂wgT,x,v(v) = 〈w,∇gT,x,v(v)〉. The
statement follows from Lemma 3.6.6.

Theorem 3.6.8. The instance v is locally optimal if and only if for some x ∈ X there
exist {λT ≥ 0}T∈T not all zero such that

∑
T∈T λT∇gT,x,v(v) = ~0 where ~0 is the vector

consisting of zeros.

Proof. Consider the following LP:

min 0

s.t. 〈w,∇gT,x,v(v)〉 ≥0 ∀T ∈ T (3.5)

and its dual LP

max 0

s.t.
∑
T∈T

λT∇gT,x,v(v) =~0

λT ≥0 ∀T ∈ T

Note that all feasible solutions are optimal and both systems are feasible since we can set
all variables equal to zero. By Lemma 3.6.7, the instance v is not locally optimal if and
only if the primal has a solution where all inequalities are not tight. By complementary
slackness, the dual has in this case only solutions where all λT are zero. Moreover, if
the dual has a solution where λT 6= 0 for some T ∈ T, by complementary slackness the
corresponding inequality of the primal is tight for any primal solution.

94

3.6.2 Local Optimality for the p-Norm

In this subsection we apply the criterion from the last subsection to the p-norm for p > 1
explicitly, i.e. we choose ‖ · ‖ = ‖ · ‖p. Note that the p-norm is differentiable in every
non-zero point for p > 1 and hence satisfies the condition for the criterion.

Using a straightforward calculation with the chain rule we get for every unit vector
e ∈ Rnd:

∂e‖vi − vj‖p = sgn(〈vi − vj , e〉)
|〈vi − vj , e〉|p−1

‖vi − vj‖p−1p

where

sgn(x) :=

1 if x ≥ 0

0 if x = 0

−1 else

is the sign function of x.
Thus, we have:

∂elT (v) =
1

2

∑
i∈{1,...,n}

∑
q∈δT (vi)

sgn(〈vi − q, e〉)
|〈vi − q, e〉|p−1

‖vi − q‖p−1

∂elx(v) =
1

2

∑
i∈{1,...,n}

∑
q∈δx(vi)

x({vi, q}) sgn(〈vi − q, e〉)
|〈vi − q, e〉|p−1

‖vi − q‖p−1

With this we can compute ∇gT,x,v as ∇gT,x,v = ∇lT + gv∇lx.

Remark 3.6.9. The above criterion can also be applied in the case of the 1-norm in
restricted form. The 1-norm is totally differentiable for every instance where no two
vertices have equal coordinates at the same position, i.e. in the two-dimensional case
no two vertices have the same x- or y-coordinate. Hence, the criterion can be applied
in these cases. For instances where there exist multiple vertices with equal coordinates
at the same position we can treat these coordinates as one variable. In this case it is
differentiable again and the criterion can be applied. Note that if the criterion is applied
that way it does not necessarily detect all instances that are not locally optimal.

3.6.3 A Local Search Algorithm

In this subsection we develop a local search algorithm that finds a local optimal solution
with respect to the integrality ratio.

Note that for instances that are not locally optimal the LP (3.5) has a solution where
all inequalities are not tight. Therefore, we can solve a slightly modified LP that gives
a direction vector that can be added to the instance to improve the integrality ratio.

We start by generating random instances until we get an instance v with integrality
ratio by a given constant greater than 1. In every iteration we solve the following LP
and try to improve the current integrality ratio:

max δ

s.t. 〈w,∇gT,x,v(v)〉 ≥δ ∀T ∈ T (3.6)

−1 ≤ wi ≤1 ∀i ∈ {1, . . . , nd}

95

If the objective value δ is greater than zero, w corresponds to a solution of LP (3.5)
where all inequalities are not tight. Note that we added bounds for wi to ensure that the
LP is bounded. Given an optimal solution w of the LP we use binary search to determine
the maximal η such that v + ηw has higher integrality ratio than v. We maintain a list
T of optimal or near-optimal tours. In each iteration we include the current optimal
tour T ∗ to T and delete the tours that are by more than a given constant longer than
T ∗. In contrast to the optimal tours we only store one current optimal fractional tour
since in practice the local optima has usually many optimal tours but a unique optimal
fractional tour (Algorithm 6).

Algorithm 6 Local Search Algorithm for Integrality Ratio

Input: Number of vertices n, accuracy parameters ε0, ε1, ε2, ε3 > 0
Output: Locally optimal instance v

1: do
2: Generate a random instance v with n vertices
3: while integrality ratio of v is smaller than 1 + ε0
4: Compute an optimal tour T ∗ and an optimal fractional tour x∗ of v
5: Let T := {T ∗}
6: while LP (3.6) has a solution w with objective value > ε1 do
7: Find by binary search η maximal such that g(v + ηw) > g(v)
8: if η < ε2 then
9: break

10: Let v := v + ηw
11: Compute an optimal tour T ∗ and an optimal fractional tour x∗ of v
12: Set T := T ∪ {T ∗}
13: Delete all tours in T that is at least ε3 longer than T ∗

14: return v

3.7 Integrality Ratio for Euclidean TSP

In this section, we investigate the integrality ratio of Euclidean TSP. Using the local
search algorithm described in Section 3.6.3 we can find local optima with respect to
the integrality ratio for Euclidean TSP instances. Unfortunately, there are many such
local optima. This means that we had to restart the algorithm several times with a small
random modification of the last local optimum to get good results. The instances we
found in the end with the highest integrality ratio seem to have the following structural
properties that share similarities with the instances maximizing the integrality ratio in
the rectilinear and metric case:

Observation 3.7.1. We observe the following properties for the instances with the high-
est integrality ratio for Euclidean TSP found by the local search algorithm:

1. The optimal fractional solution is isomorphic to xi,j,k for some i, j, k.

2. The non-intersecting shortcuts of the pseudo-tours in T are optimal tours (Figure
3.9).

If the optimal fractional solution is isomorphic to xi,j,i for some i, j, we further obtain
the following properties:

96

n = 8 n = 11

Figure 3.12: The instances with the highest integrality ratio for n = 8, 11 found by the
local search algorithm. Their optimal fractional tours are isomorphic to
x1,1,0 and x2,2,1, respectively. The integrality ratios of these instances are
approximately 1.0435 and 1.0789, respectively. The best integrality ratios
found by the ellipse generation algorithm are approximately 1.0413 and
1.0784 achieved by instances which optimal fractional tour are isomorphic
to x1,0,1 and x1,3,1, respectively.

3. The instance can be rotated and shifted such that it is symmetric to the x- and
y-axis and the inner vertices lie on the x-axis.

4. The outer vertices lie on an ellipse with foci on the x-axis.

In the following we will refer to these properties by property 1, 2, 3 and 4. Using them
we develop an efficient algorithm that constructs instances with high integrality ratio.

3.7.1 The Ellipse Construction Algorithm

In this subsection we describe an algorithm we call the ellipse generation algorithm that
efficiently generates instances satisfying Observation 3.7.1.

In the following we assume that i = k to use the additional properties 3 and 4 for
an efficient algorithm to construct instances that match these patterns. This lets us
construct instances with a larger number of vertices since due to the high number of
local optima it is quite time consuming to use the local search method to generate good
instances. The instances generated by the new efficient algorithm have for all tested
n high integrality ratio. Like in the rectilinear case there are values of n where the
optimal fractional solution is isomorphic to xi,j,i+1 for some i, j, for example n = 8, 11
(Figure 3.12). Nevertheless, we ignore these cases since these instances are less symmetric
and we do not understand their structure well.

By property 1, we may assume that the optimal fractional tour is isomorphic to
xi,j,i with some fixed i, j. By symmetry, we can w.l.o.g. assume that the vertices

97

Z0
Zi+1

X0 Xi+1

Y2Y1Y0 Yj+1

Figure 3.13: Construction of Yh+1 for h+ 1 = 2. The edges shown are that of T←4T ◦h .
The condition diffInnerh = 0 gives that the length of the red edges is equal
to that of the black edges.

X0, Xi+1, Z0, Zi+1 have the coordinates (−b,−1), (b,−1), (−b, 1), (b, 1) for some b > 0,
respectively. The explicit value of b will be chosen later in the procedure. In the fol-
lowing we assume that an explicit value of b is given and describe how to determine the
coordinates of the inner and outer vertices.

Inner Vertices

We first compute the coordinates of the inner vertices. By property 3, we know that the
inner vertices lie on the x-axis and are symmetric to (0, 0). We first set the coordinates
of Y0 to (−f, 0) where f is a parameter to be determined later. With a given value for f
the coordinates of Yh+1 for increasing h can be iteratively determined as follows: Assume
we already know the coordinates of Yh. Consider the difference of arbitrary shortcuts of
the pseudo-tours T← and T ◦h (by symmetry all shortcuts have the same length) which is

diffInnerh := dist2(X0, Yj+1) + dist2(Xi+1, Zi+1) + dist2(Yh, Yh+1)− dist2(X0, Yh)

−dist2(Yh+1, Zi+1)− dist2(Xi+1, Yj+1)

(Figure 3.13). Since the coordinates of X0, Xi+1, Zi+1, Yh and Yj+1 are already known,
this is equivalent to diffInnerh := dist2(Yh, Yh+1)−dist2(Yh+1, Zi+1)+c for some constant
c. Since Yh+1 lies on the x-axis right of Yh and left of Zi+1 the condition diffInnerh = 0
from property 2 determines the position of Yh+1 uniquely as diffInnerh is monotonic
increasing in the x-coordinate of Yh+1. By symmetry, this also determines the position
of Yj+1−(h+1).

For odd j we further know that the coordinate of Y j+1
2

is by symmetry (0, 0). There-

fore, we need to find f such that diffInner j−1
2

= 0. Similarly, for even j the coordinate of

Y j
2
+1 is determined by symmetry and we need to find f such that diffInner j

2
= 0. Now,

we could try every value of f up to a certain accuracy. To speed up the calculation, we
make the following observation:

Observation 3.7.2. The x-coordinate of Yl for a fixed l with 1 ≤ l ≤ j determined by
the procedure above is monotonically decreasing in f .

This observation can be shown using induction and monotonicity arguments. Hence,
we can use binary search to find the correct f such that the inner vertices are symmetric
to the y-axis (Algorithm 7).

98

Algorithm 7 Inner Vertices Algorithm

Input: i, j, b, accuracy ε
Output: Coordinates of the inner vertices Y0, . . . , Yj+1

1: if j is odd then:
2: Set the coordinates of the vertex Y j+1

2
:= (0, 0)

3: Binary search for f such that the inner vertices satisfy Observation 3.7.1:
4: for each value f we evaluate do
5: Set the coordinates of Y0 := (−f, 0) and Yj+1 := (f, 0)
6: for h from 0 to b j2c − 1 do
7: Determine the coordinates of Yh+1

8: Set by symmetry the coordinates of Yj+1−(h+1)

9: if |diffInnerb j
2
c| < ε then

10: return coordinates of Y0, . . . , Yj+1

11: else
12: Increase or decrease f depending on the sign of diffInnerb j

2
c and repeat

Outer Vertices

The outer vertices are harder to compute since they are not uniquely determined by b
in contrast to the inner vertices. By property 4, we know that X0, Xi+1, Z0 and Zi+1

and the other outer vertices lie on an ellipse. Unfortunately, five vertices are needed
to determine an ellipse, therefore we need one more parameter. By property 3, the
coordinate of the foci of the ellipse have the form (−e, 0) and (e, 0). We will take the
value of e as an additional parameter.

Using the ellipse we make the observation that the coordinate of the other outer
vertices are uniquely determined. We iteratively construct the coordinates of Zh+1 for
increasing h. Assume that the coordinates of Zh are already known. Consider the
difference of the length of any non-intersecting shortcuts of T← and T ↑h (by symmetry
all of the non-intersecting shortcuts have the same length). It is equal to

diffOuterh := dist2(X0, Y0) + dist2(Z0, Yj+1)− dist2(X0, Z0)− dist2(Zh, Y0)

−dist2(Zh+1, Yj+1) + dist2(Zh, Zh+1).

Moreover, we know the coordinates of X0, Z0, Zh, Y0 and Yj+1. By property 2 we have
diffOuterh = 0 and therefore dist2(Zh, Zh+1)−dist2(Zh+1, Yj+1)+c = 0 for some constant
c. This equation describes a hyperbola with foci Zh and Yj+1. It intersects the ellipse
twice, once on each side of the line ZhYj+1 (Figure 3.14). Thus, we can determine Zh+1

as the intersection of the hyperbola with the ellipse that lies on the same side as Zi+1.
By symmetry, the coordinates of Zi+1−(h+1), Xh+1, Xi+1−(h+1) are determined by that

of Zh+1. For odd i by symmetry the coordinate of the vertex Z i+1
2

has x-coordinate 0

and has positive y-coordinate. Since the vertex lies on the ellipse, its coordinates are
uniquely determined. Therefore, we want to choose e such that diffOuter i−1

2
= 0. For

even i the coordinates of Z i
2
+1 are determined by symmetry and we want to choose e such

that diffOuter i
2

= 0. It remains to determine the value(s) of e such that the condition

above is satisfied. We could simply try every value of e up to a certain accuracy. To
speed up the process, we make the following observations:

99

Zi+1

Xi+1

Z0

X0

Y1Y0

Z1
Z2

Figure 3.14: Construction of Zh+1 with h + 1 = 2 and j = 0 as the intersection of the
ellipse with the hyperbola.

Observation 3.7.3. The x-coordinate of Zb i
2
c determined by the procedure above is

monotonically increasing in e.

Observation 3.7.4. diffOuterb i
2
c is monotonically decreasing in e if the vertex Zb i

2
c

constructed by the procedure above has negative x-coordinate.

Using Observation 3.7.3 and 3.7.4 we can speed up the process of finding the correct
value of e by using binary search on e (Algorithm 8).

Algorithm 8 Outer Vertices Algorithm

Input: i, j, b, coordinates for the vertices Y0, Yj+1, accuracy ε
Output: Coordinates for the vertices X1, . . . , Xi, Z1, . . . , Zi

1: Binary search for e such that the outer vertices are symmetric to the y-axis:
2: for each e we evaluate do
3: if i is odd then
4: Set X i+1

2
and Z i+1

2
to the intersections of x = 0 with the ellipse through X0

with foci (−e, 0) and (e, 0)

5: for h from 0 to b i2c − 1 do
6: Compute the position of Zh+1 as the intersection of the hyperbola

diffOuterh = 0 and the ellipse through the outer vertices with foci (−e, 0) and (e, 0)
7: Set the position of Zi+1−(h+1), Xh+1, Xi+1−(h+1) by symmetry

8: if Zb i
2
c has non-negative x-coordinate then

9: Decrease e and repeat

10: if |diffOuterb i
2
c| < ε then

11: return the coordinates of X1, . . . , Xi, Z1, . . . , Zi
12: else
13: Increase or decrease e depending on the sign of diffOuterb i

2
c and repeat

100

Best Value for b

Let us denote the integrality ratio of the instance constructed by the inner and outer
vertices algorithm with b as given parameter by ratio(b). Note that ratio(b) is not defined
for every b: If b is too small or too large, there is no e such that the outer vertices can be
constructed satisfying the properties 2 and 3. In this case the outer vertices algorithm
fails to find suitable coordinates for the outer vertices. To find the instance with maximal
integrality ratio by this construction we need to determine the value of b that maximizes
ratio(b). We make the following observation that helps us to do this efficiently:

Observation 3.7.5. The function ratio(b) is a concave function in b.

Therefore, we can efficiently minimize a concave function to find the b maximizing
ratio(b) instead of using brute force. Given a constructed instance with a fixed b the
properties 1 and 2 allow us to speed up the computation of the integrality ratio: Instead
of computing an optimal fractional tour and an optimal tour we can just compute the
cost of xi,j,i and the length of any non-intersecting shortcut of a pseudo-tour in T.
All in all, the above considerations result in the following algorithm we call the ellipse
construction algorithm:

Algorithm 9 Euclidean TSP Ellipse Construction Algorithm

Input: i, j, accuracy ε
Output: Euclidean TSP instance

1: Optimize over a concave function to find b that maximizes ratio(b):
2: for each b we evaluate do
3: Use the inner vertices algorithm to compute the inner vertices
4: Use the outer vertices algorithm to compute the outer vertices
5: Compute the length of any non-intersecting shortcut of a pseudo-tour in T
6: Compute the cost of the fractional tour xi,j,i
7: Divide the two values to get the integrality ratio assuming properties 1 and 2.

3.7.2 Results of the Ellipse Construction Algorithm

In this subsection we describe the instances found by the ellipse construction algorithm.
For ε = 10−9 and every 6 ≤ n ≤ 199, xi,j,i with i + j + i + 6 = n we executed the
algorithm and took the best result for every n. The actual integrality ratio of the
resulting instances have been computed using the Concorde TSP solver for 6 ≤ n ≤ 109
vertices. The computation time was too high for the remaining instances, see Section
3.9 for more details on this phenomenon. Up to this point we could verify that property
2 of Observation 3.7.1 holds, i.e. the non-intersecting shortcuts of the pseudo-tours in
T are optimal tours. For higher number of vertices the integrality ratio was computed
assuming property 2. Some of the instances the ellipse construction algorithm generated
are shown in Figure 3.15.

As in the rectilinear case we also see that vertices are not distributed equally. For
large n there are more inner than outer vertices. This unequal distribution occurs first
at n = 18 where we have 5+5 outer and 8 inner vertices. Moreover, for small n the
ellipse is nearly a circle and becomes flatter for increasing n.

101

n = 6, i = 0, j = 0,
ratio ≈ 1.0238

n = 9, i = 1, j = 1,
ratio ≈ 1.060

n = 18, i = 3, j = 6,
ratio ≈ 1.1319

n = 50, i = 13, j = 18,
ratio ≈ 1.2263

n = 100, i = 27, j = 40,
ratio ≈ 1.2695

n = 199, i = 54, j = 85,
ratio ≈ 1.2970

Figure 3.15: Instances with n vertices constructed by the ellipse construction algorithm.

3.8 Comparing Integrality Ratio

In this section we compare the lower bounds on the integrality ratio we found in the
previous sections for the TSP variants to each other and to the instances from the
literature.

In the previous sections we showed lower bounds on the integrality ratio of 1 +
1

3+2
(

5
j+1

+ 1
i+1

+ 1
k+1

) and 1 + 1

3+2
(

1
i+1

+ 1
j+1

+ 1
k+1

) for the Rectilinear and Multidimen-

sional Rectilinear / Metric TSP, respectively. As the deviation converges to 0
for n → ∞, we discard in this subsection for simplicity the integrality constraints of
i, j and k. In this case the bounds for the Rectilinear TSP and Multidimensional
Rectilinear/ Metric TSP are 1 + 1

3+
2(
√
5+2)2

n−3

and 1 + 1
3+ 18

n−3

, respectively. As we can

see, both values converge to 4
3 as n→∞. By a straightforward calculation, we get

1 +
1

3 + 2(
√
5+2)2

n−3

= 1 +
1 + 2

3 ·
(
√
5+2)2

n−3

3 + 2(
√
5+2)2

n−3

−
2
3 ·

(
√
5+2)2

n−3

3 + 2(
√
5+2)2

n−3

=
4

3
−

2
3
(
√
5+2)2

n−3

3 + 2(
√
5+2)2

n−3

=
4

3
−

2
3(
√

5 + 2)2

3(n− 3) + 2(
√

5 + 2)2
.

102

Similarly, we get 1 + 1
3+ 18

n−3

= 4
3 −

6
3(n−3)+18 . Hence, there are constants c1, c2 such

that the lower bounds for the Rectilinear and Multdimensonal Rectilinear /

Metric TSP are 4
3−

2
9
(
√
5+2)2

n+c1
≈ 4

3−
3.988
n+c1

and 4
3−

2
n+c2

, respectively. Since the additive

constants c1, c2 are neglectable as n→∞, we see that the latter converges to 4
3 roughly

twice as fast as the former.
The tetrahedron instances for Euclidean TSP in [38] have an integrality ratio be-

tween
4n+ 4n√

3
−69

3n+ 3n√
3

and
4n+ 4n√

3
−17

3n+ 3n√
3
−33 . These bounds are too inaccurate to directly compare

the rate of convergence. Figure 3.16 shows the integrality ratio which was explicitly
computed in [37]. Note that for each fixed number of vertices the tetrahedron instances
depend on two parameters and they were chosen in [37] to maximize the runtime of
Concorde instead of the integrality ratio.

Unfortunately, we do not have a formula for the integrality ratio of the Euclidean
instances found by the ellipse construction algorithm. So we cannot directly compare
their rate of convergence but only the explicitly computed integrality ratios. Figure 3.16
shows the integrality ratio of the various instances described in the previous sections.
Note that for the constructed Euclidean instances the integrality ratio was computed
for 6 ≤ n ≤ 109 vertices by Concorde. For instances with 110 ≤ n ≤ 199 vertices the
runtime of Concorde was too high to verify the integrality ratio, see Section 3.9 for more
details on this phenomenon. For these cases we rely on property 2 of Observation 3.7.1
and assume the non-intersecting shortcuts of the pseudo-tours in T are optimal tours.
This property holds for the instances with 6 ≤ n ≤ 109 vertices. As we can see from
the plot, the integrality ratios of the constructed instances are higher than these of the
tetrahedron instances. For this data they converge roughly two and four times slower
than the rectilinear and metric instances, respectively.

3.9 Hard to Solve Instances

In this section we investigate the runtime of Concorde for the instances I3i,i−1,i+1, I
3
i,i−1,i+2

and I3i,i−1,i+3. The runtime of Concorde for solving these instances is much higher than
for the known tetrahedron instances from [38].

First, we observe that symmetry seems to affect the computational results a lot. The
instance I310,10,10 can be solved by Concorde in less than a second. A small modification of

the distribution of vertices on the three lines increases the runtime significantly: I310,9,11
needs more than 1000 seconds to solve on the same hardware.

In the following we tested the runtime of the following instances: For n = 3(i + 2),
n = 3(i + 2) + 1 and n = 3(i + 2) + 2 we solved the instances I3i,i−1,i+1, I

3
i,i−1,i+2 and

I3i,i−1,i+3 with seed 1 by Concorde, respectively. The distances were multiplied by 1000
and rounded down to the nearest integer. Corcorde-03.12.19 was compiled with gcc

4.8.5 and using CPlex 12.04 as LP solver. We used a single core of an AMD EPYC 7601

processor for every run. The resulting runtimes are shown in Figure 3.17.
Using least-square fit regression of the logarithmic runtime we get the following expo-

nential regression for the runtime

0.144 · 1.304n.

Since 1.3043 > 2.2, the estimated computation time more than doubles whenever n
increases by 3. Based on this estimate an instance with 100 vertices would need more

103

0 25 50 75 100 125 150 175 200

1.05

1.10

1.15

1.20

1.25

1.30

Figure 3.16: The integrality ratio for the TSP variants. The black, red and blue dots
correspond to the lower bounds on the integrality ratio of the Multidimen-
sional Rectilinear TSP/Metric TSP from [6], Rectilinear TSP
and Euclidean TSP, respectively. The integrality ratio of the Euclidean
TSP instances with 110 ≤ n ≤ 199 vertices are computed assuming prop-
erty 2 of Observation 3.7.1. The green dots correspond to the integrality
ratio of the tetrahedron instances from [38].

than 1500 years. This runtime is much higher compared to the tetrahedron instances
from [38]. For 52 vertices the runtime for the tetrahedron instances is about 10 seconds
compared to over 2 days for the tested instances. It should be noted that the calculations
in [38] were performed by a different processor which is about 20% faster. Nevertheless,
comparing with the regression function 0.480 · 1.0724n for the tetrahedron instances we
see that the exponential basis is much greater. This implies that the growth of runtime
is also much faster.

The instances I2n seem to have similar runtimes as the instances tested above. The
runtime was a bit higher if the numbers of vertices in the outer two lines are not equal.
It was not obvious which distribution of vertices maximizes the runtime.

In contrast the metric instances described in [6] with n = 36 can be solved by Concorde

in a few seconds compared to more than half an hour for I310,9,11 with the same number of
vertices. Although the runtime seems to be exponential also in this case, modifying the
number of vertices on the three lines still does not give similar high runtimes. The same
holds for the Euclidean instances constructed by the ellipse construction algorithm.

Note that the results of Section 3.5 can be easily extended to determine the structure of
the optimal tours of the instances I3i,i−1,i+1, I

3
i,i−1,i+2 and I3i,i−1,i+3. Using this knowledge

the optimal tour can be computed in linear time.

104

20 30 40 50 60
Number of vertices

101

102

103

104

105

106
Co

m
pu

ta
tio

n
tim

e
in
 se

co
nd

s

Figure 3.17: The Concorde runtime for the instances I3i,i−1,i+1, I
3
i,i−1,i+2 and I3i,i−1,i+3 in

seconds. The red function is the least-square fit regression of the logarithmic
runtime.

3.10 Integrality Ratio for Metric s− t Path TSP

This section is based on [72]. We show the improved upper bound on the integrality
ratio for Metric s− t Path TSP of 1.5273. For this we use a theorem from [62]:

Theorem 3.10.1 (Theorem 5 in [62]). Let h : [0, 1] → [0, 1] be an integrable function
with ∫ 1

z
max{0, h(σ)− 1 + zh(σ)}dσ +

∫ z

0
(h(σ)− 1− zh(σ))dσ ≤ 0 (3.7)

for all z ∈ [0, 1]. Then, the best-of-many Christofides’ algorithm with lonely edge deletion
[58] computes a solution of cost at most ρ∗c(x∗), where

ρ∗ = 1 +
1

1 +
∫ 1
0 h(σ)dσ

.

Traub and Vygen applied Theorem 3.10.1 for h(σ) := 4
4+σ . We define our choice of h

as follows:

Definition 3.10.2. h is a step function taking the value α := 0.971239 in [0, x) and the
value β := 0.873362 in [x, 1] where x := 0.236901 (Figure 3.18), i.e.

h(σ) =

{
0.971239 if σ ∈ [0, 0.236901)

0.873362 otherwise.

In order to apply Theorem 3.10.1 we need to show that the condition (3.7) is satisfied.

105

0.0 0.2 0.4 0.6 0.8 1.0
σ

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

h(
σ)

Figure 3.18: The black function shows our choice of h, the red function that chosen by
Traub and Vygen in [62].

Lemma 3.10.3. Our choice of h satisfies the condition of Theorem 3.10.1.

Proof. Since by definition h(σ) > 0 for all σ ∈ [0, 1], we have h(σ)−1 + zh(σ) < 0 if and
only if z < 1

h(σ) − 1. For our choice of h we have that h(σ) can only take two values: α

and β. Note that 0 < 1
α − 1 < 0.03 and 0.145 < 1

β − 1 < 0.146. Thus, we can distinguish

four cases: z ∈ [0, 1α − 1), z ∈ [1α − 1, 1β − 1), z ∈ [1β − 1, x) and z ∈ [x, 1].

The first case is trivial, since for z ∈ [0, 1α − 1) we have:∫ 1

z
max{0, h(σ)− 1 + zh(σ)}dσ +

∫ z

0
(h(σ)− 1− zh(σ))dσ

=

∫ z

0
((1− z)h(σ)− 1)dσ ≤

∫ z

0
0dσ = 0.

For z ∈ [1α − 1, 1β − 1) we have:∫ 1

z
max{0, h(σ)− 1 + zh(σ)}dσ +

∫ z

0
(h(σ)− 1− zh(σ))dσ

=

∫ x

z
(α− 1 + zα)dσ + z(α− 1− zα) = (x− z)(α− 1 + zα) + z(α− 1− zα)

=xα− x+ xαz − 2αz2.

Similarly, for z ∈ [1β − 1, x) we have:∫ 1

z
max{0, h(σ)− 1 + zh(σ)}dσ +

∫ z

0
(h(σ)− 1− zh(σ))dσ

=

∫ x

z
(α− 1 + zα)dσ +

∫ 1

x
(β − 1 + zβ)dσ + z(α− 1− zα)

=(x− z)(α− 1 + zα) + (1− x)(β − 1 + zβ) + z(α− 1− zα)

=xα− 1 + (1− x)β + (xα+ (1− x)β)z − 2αz2.

106

Finally, for z ∈ [x, 1] we have:∫ 1

z
max{0, h(σ)− 1 + zh(σ)}dσ +

∫ z

0
(h(σ)− 1− zh(σ))dσ

=

∫ 1

z
(β − 1 + zβ)dσ +

∫ x

0
(α− 1− zα)dσ +

∫ z

x
(β − 1− zβ)dσ

=(1− z)(β − 1 + zβ) + x(α− 1− zα) + (z − x)(β − 1− zβ)

=xα− 1 + (1− x)β + (−xα+ (x+ 1)β)z − 2βz2.

Hence, it is enough to show that for all z ∈ R we have:

xα− x+ xαz − 2αz2 ≤ 0

xα− 1 + (1− x)β + (xα+ (1− x)β)z − 2αz2 ≤ 0

xα− 1 + (1− x)β + (−xα+ (x+ 1)β)z − 2βz2 ≤ 0.

The left hand sides are quadratic functions in z. Note that the leading coefficient is
negative in all three cases. Hence, the inequalities hold if and only if the discriminants
of the three quadratic functions are non-positive, that is:

(xα)2 + 8α(xα− x) ≤ 0 (3.8)

(xα+ (1− x)β)2 + 8α(xα− 1 + (1− x)β) ≤ 0 (3.9)

(−xα+ (x+ 1)β)2 + 8β(xα− 1 + (1− x)β) ≤ 0. (3.10)

We can check these inequalities for our choice of x, α, β:

(xα)2 + 8α(xα− x) < −1.17266 · 10−7 < 0

(xα+ (1− x)β)2 + 8α(xα− 1 + (1− x)β) < −3.5346 · 10−6 < 0

(−xα+ (x+ 1)β)2 + 8β(xα− 1 + (1− x)β) < −3.00596 · 10−6 < 0.

Theorem 3.10.4. The integrality ratio of the standard LP relaxation for the Metric
s− t Path TSP is at most 1.5273.

Proof. By Lemma 3.10.3, our choice of h satisfies the condition of Theorem 3.10.1.
Hence, we can apply Theorem 3.10.1 to get an upper bound on the integrality ratio of

ρ∗ := 1 +
1

1 +
∫ 1
0 h(σ)dσ

= 1 +
1

1 + xα+ (1− x)β
< 1.5273.

Remark 3.10.5. The values for α, β and x we chose are approximate values of a solution
for the system of equations we get by replacing the less-than-or-equal sign in (3.8), (3.9)
and (3.10) by an equal sign. More precise values would probably lead to a better upper
bound. Using a computer algebra system, we can solve that system of equations to get
the exact values:

107

α :=
1

48

(
34 +

73
3
√
−377 + 18i

√
762

+
3

√
−377 + 18i

√
762

)
β :=

2

3

(
−45 + 172α− 128α2

)
x := 8(

1

α
− 1),

where the roots are principal roots and i is the imaginary unit. By definition, it is clear
that the inequalities (3.8), (3.9) and (3.10) are fulfilled by this choice of values. This
would lead to an upper bound on the integrality ratio of

−30(377i+ 18
√
762) + (−377 + 18i

√
762)

2
3 (−249i+ 28

√
762) + (−377 + 18i

√
762)

1
3 (−3975i+ 206

√
762)

4((−377 + 18i
√
762)

2
3 (−44i+ 7

√
762)− 16(377i+ 18

√
762) + (−377 + 18i

√
762)

1
3 (−1088i+ 47

√
762))

< 1.5273.

Remark 3.10.6. As already pointed out in [62] numerical computations indicate that the
best choice of h gives an upper bound on the integrality ratio of approximately 1.5273.
Hence, this suggests that our choice of h is near-optimal.

108

4 Conclusion and Open Problems

In this section we briefly summarize the results in this thesis and give an outlook to
open problems. Instead of stating all open problems related to the TSP we will focus
here on those closely related to the content of this thesis.

4.1 Approximation Ratio of the k-Opt and Lin-Kernighan
Algorithm

For the 2-Opt algorithm the question of finding the exact approximation ratio was solved
for Metric TSP. Moreover, we have shown that the approximation ratio of the k-Opt

algorithm is between Ω(n
2

3k−3) and O (k
√
n) for the Metric TSP. If the Erdős girth

conjecture holds, the upper bound would be tight. We do not expect that significant
improvements can be made to close the gap without further understanding the behavior
of ex(n, 2k).

Conjecture 4.1.1. The approximation ratio of the k-Opt algorithm for the Metric
TSP is Θ (k

√
n) where n is the number of vertices.

Another open problem is finding lower bounds for the k-Lin-Kernighan algorithm.
In contrast to the k-Opt algorithm the k-Lin-Kernighan algorithm considers changes
involving an arbitrary number of edges. Hence, the key difficulty is that in this case it is
not enough to construct an instance and argue that there are no improving alternating
cycles up to a certain length.

Question 4.1.2. Is the approximation ratio of the k-Lin-Kernighan algorithm asymp-
totically better than that of the k-Opt algorithm?

For the Graph TSP we showed that the approximation ratio of the k-Opt algorithm

is between Ω
(

log(n)
log log(n)

)
and O

((
log(n)

log log(n)

)3.17)
. For the upper bound we only analyzed

the 2-Opt algorithm and carried the results over to the k-Opt and Lin-Kernighan algo-
rithm as they also produce 2-optimal tours. It might be possible to analyze in a more
complicated way the general k-Opt algorithm for the Graph TSP by using the same
techniques and improve the approximation ratio for k > 2. However, we conjecture that

the lower bound of Ω
(

log(n)
log log(n)

)
is already tight for the 2-Opt algorithm. A refinement

of our analysis or new techniques is needed to directly show this result.

Conjecture 4.1.3. The approximation ratio of the 2-Opt algorithm for the Graph

TSP is Θ
(

log(n)
log log(n)

)
where n is the number of vertices.

We showed that the approximation ratio of the k-Opt algorithm for the Euclidean

TSP is Ω
(

log(n)
log log(n)

)
which matches with the known upper bound and is asymptotically

tight.

109

Although the approximation ratio of the k-Opt algorithm for the Graph TSP is not
constant in the worst case, we were able to give a polynomial local search algorithm for
the Graph TSP with constant approximation ratio. A natural question is if such an
algorithm also exists for the Metric TSP and how good it would perform in practice.

Question 4.1.4. Is there a local search algorithm for the Metric TSP with constant
approximation ratio that needs polynomial time for every iteration?

Another interesting question is the approximation ratio of the k-Opt and k-improv
algorithm for the (1,2)-TSP. The approximation ratio of the 3-Opt algorithm is 11

8 and
we introduced the 3-Opt++ algorithm for the (1,2)-TSP with an approximation ratio
of 4

3 . We have shown a lower bound of 1.1 on the approximation ratio of the k-Opt
and k-improv algorithm for any fixed k. The current best upper bound is 8

7 by Berman
and Karpinski for the k-improv algorithm with k = 15. This is also the currently best
approximation ratio for the (1,2)-TSP. It is expected that this upper bound can be
further improved.

Question 4.1.5. What is the approximation ratio of the k-Opt and k-improv algorithm
with k > 3 for the (1,2)-TSP?

4.2 Integrality Ratio of the Subtour LP

We have found Rectilinear TSP instances (I2n)n∈N with high integrality ratio and
shown certain properties of them. Assuming Conjecture 1.2.16 we were able to show
that certain families of instances in the multidimensional rectilinear and metric case
are the instances maximizing the integrality ratio. We conjecture that the families of
instances (I2n)n∈N and (I3n)n∈N maximize the integrality ratio.

Conjecture 4.2.1. The families of instances (I2n)n∈N and (I3n)n∈N maximize the in-
tegrality ratio for the Rectilinear TSP and the Multidimensional Rectilinear
TSP.

Note that this would also imply the 4
3 -Conjecture in the rectilinear and multidimen-

sional rectilinear case as we have shown that the integrality ratios of I2n and I3n converge
to 4

3 . By a local search algorithm, we found locally optimal instances with high integral-
ity ratio for Euclidean TSP. We observe that these instances share similar structures
as the instances with a small number of vertices maximizing the integrality ratio in the
metric and rectilinear case. However, it is not clear if they maximize the integrality ratio
and if so why they are embedded that way and have these observed properties.

Question 4.2.2. What are the instances maximizing the integrality ratio among all
instances with a fixed number of vertices for Euclidean TSP?

We can further investigate locally optimal instances with other norms in arbitrary
dimension with the local search algorithm we described.

Question 4.2.3. How is the structure of instances with high integrality ratio found by
the local search algorithm using the p-norm in Rd?

We improved the integrality ratio for the Metric s − t Path TSP to 1.5273. The
conjectured optimum in this case is 1.5. Since the choice of the auxiliary function h is
already near-optimal, a new approach is needed to show this result.

Conjecture 4.2.4. The integrality ratio of the standard LP relaxation for the Metric
s− t Path TSP is 1.5.

110

Bibliography

[1] Anna Adamaszek, Matthias Mnich, and Katarzyna Paluch. New approximation al-
gorithms for (1, 2)-TSP. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel
Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Re-
public, volume 107 of LIPIcs, pages 9:1–9:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018.

[2] Noga Alon, Shlomo Hoory, and Nathan Linial. The Moore bound for irregular
graphs. Graphs and Combinatorics, 18(1):53–57, Mar 2002.

[3] Hyung-Chan An, Robert Kleinberg, and David B Shmoys. Improving Christofides’
algorithm for the s-t path TSP. Journal of the ACM (JACM), 62(5):1–28, 2015.

[4] David Applegate, Robert Bixby, Vasek Chvátal, and William Cook. Concorde-
03.12.19, 2003 (last accessed March 19, 2020). http://www.math.uwaterloo.ca/

tsp/concorde/downloads/downloads.htm.

[5] Richard Bellman. On a routing problem. Quarterly of applied mathematics,
16(1):87–90, 1958.

[6] Genevieve Benoit and Sylvia Boyd. Finding the exact integrality gap for small
traveling salesman problems. Mathematics of Operations Research, 33(4):921–931,
2008.

[7] Clark T. Benson. Minimal regular graphs of girths eight and twelve. Canadian
Journal of Mathematics, 18:1091–1094, 1966.

[8] Jon J. Bentley. Fast algorithms for geometric traveling salesman problems. ORSA
Journal on computing, 4(4):387–411, 1992.

[9] Piotr Berman and Marek Karpinski. 8/7-approximation algorithm for (1,2)-TSP.
Electron. Colloquium Comput. Complex., (069), 2005.

[10] Piotr Berman and Marek Karpinski. 8/7-approximation algorithm for (1, 2)-TSP.
In Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algo-
rithm, pages 641–648. Society for Industrial and Applied Mathematics, 2006.

[11] Béla Bollobás. Extremal graph theory. Courier Corporation, 2004.

[12] Sylvia Boyd. Vertices of the Subtour Elimination Polytope, 2010 (accessed March 19,
2020). http://www.site.uottawa.ca/~sylvia/subtourvertices/index.htm.

[13] Sylvia Boyd and Robert Carr. Finding low cost TSP and 2-matching solutions using
certain half-integer subtour vertices. Discrete Optimization, 8(4):525 – 539, 2011.

111

http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm
http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm
http://www.site.uottawa.ca/~sylvia/subtourvertices/index.htm

[14] Sylvia Boyd and Paul Elliott-Magwood. Structure of the Extreme Points of the
Subtour Elimination Polytope of the STSP. In RIMS Kôkyûroku Bessatsu B23,
pages 33–47, 2010.

[15] Ulrich A. Brodowsky and Stefan Hougardy. The approximation ratio of the 2-opt
heuristic for the euclidean traveling salesman problem. CoRR, abs/2010.02583,
2020.

[16] William G. Brown. On graphs that do not contain a thomsen graph. Canadian
Mathematical Bulletin, 9(3):281–285, 1966.

[17] Barun Chandra, Howard Karloff, and Craig Tovey. New results on the old k-
opt algorithm for the traveling salesman problem. SIAM Journal on Computing,
28(6):1998–2029, 1999.

[18] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling sales-
man problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management
Sciences Research Group, 1976.

[19] George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale
traveling-salesman problem. Journal of the operations research society of America,
2(4):393–410, 1954.

[20] Vladimir G. Deineko, René van Dal, and Günter Rote. The Convex-Hull-and-Line
Traveling Salesman Problem: A Solvable Case. Information Processing Letters,
pages 141–148, 1994.

[21] Matthias Englert, Heiko Röglin, and Berthold Vöcking. Worst case and probabilistic
analysis of the 2-opt algorithm for the TSP. Algorithmica, 68(1):190–264, Jan 2014.

[22] Paul Erdős and Alfréd Rényi. On a problem of graph theory. Magyar Tudományos
Akadémia Math. Kuató Int. Közl., 7:623–641, 1962.

[23] Paul Erdős, Alfréd Rényi, and Vera T. Sós. On a problem of graph theory. Studia
Scientiarum Mathematicarum Hungarica, 1:215–235, 1966.

[24] Paul Erdős. Extremal problems in graph theory. In Proc. Symp. Theory of Graphs
and its Applications, pages 29–36, 1963.

[25] Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii
academiae scientiarum Petropolitanae, pages 128–140, 1741.

[26] Merrill M Flood. The traveling-salesman problem. Operations research, 4(1):61–75,
1956.

[27] Lester R Ford Jr. Network flow theory. Technical report, Rand Corp Santa Monica
Ca, 1956.

[28] Jacob Fox and Benny Sudakov. Decompositions into subgraphs of small diameter.
Combinatorics, Probability and Computing, 19(5-6):753–774, 2010.

[29] M. R. Garey, R. L. Graham, and D. S. Johnson. Some NP-complete geometric
problems. In Proceedings of the Eighth Annual ACM Symposium on Theory of
Computing, STOC ’76, pages 10–22, New York, NY, USA, 1976. ACM.

112

[30] Michael R Garey and David S Johnson. Computers and intractability, volume 174.
freeman San Francisco, 1979.

[31] Michel X Goemans and Dimitris J Bertsimas. Survivable networks, linear pro-
gramming relaxations and the parsimonious property. Mathematical Programming,
60(1-3):145–166, 1993.

[32] Corinna Gottschalk and Jens Vygen. Better s–t-tours by Gao trees. Mathematical
Programming, 172(1-2):191–207, 2018.

[33] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method
and its consequences in combinatorial optimization. Combinatorica, 1(2):169–197,
1981.

[34] JA Hoogeveen. Analysis of Christofides’ heuristic: Some paths are more difficult
than cycles. Operations Research Letters, 10(5):291–295, 1991.

[35] Stefan Hougardy. On the integrality ratio of the subtour lp for euclidean TSP.
Operations Research Letters 42, pages 495–499, 2014.

[36] Stefan Hougardy, Fabian Zaiser, and Xianghui Zhong. The approximation ratio of
the 2-opt heuristic for the metric traveling salesman problem. Operations Research
Letters, 48(4):401 – 404, 2020.

[37] Stefan Hougardy and Xianghui Zhong. Hard to Solve Instances of the Euclidean
Traveling Salesman Problem, 2018 (accessed October 06, 2020). http://www.or.

uni-bonn.de/%7Ehougardy/HardTSPInstances.html.

[38] Stefan Hougardy and Xianghui Zhong. Hard to solve instances of the euclidean
traveling salesman problem. Mathematical Programming Computation, 2020.

[39] David S. Johnson. Local optimization and the traveling salesman problem. In
International colloquium on automata, languages, and programming, pages 446–461.
Springer, 1990.

[40] Jovan Karamata. Sur une inégalité relative aux fonctions convexes. Publications de
l’Institut Mathématique, 1(1):145–147, 1932.

[41] Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved
approximation algorithm for metric TSP. CoRR, abs/2007.01409, 2020.

[42] Richard M. Karp. Reducibility among combinatorial problems in: Raymond E.
Miller, James W. Thatcher (Eds.), Complexity of Computer Computations. Plenum
Press, New York, 1972.

[43] Sanjeev Khanna, Rajeev Motwani, Madhu Sudan, and Umesh Vazirani. On syntac-
tic versus computational views of approximability. SIAM Journal on Computing,
28(1):164–191, 1998.

[44] Dénes Kőnig. Über Graphen und ihre Anwendung auf Determinantentheorie und
Mengenlehre. Mathematische Annalen, 77(4):453–465, 1916.

[45] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algo-
rithms. Springer Publishing Company, Incorporated, 6th edition, 2018.

113

http://www.or.uni-bonn.de/%7Ehougardy/HardTSPInstances.html
http://www.or.uni-bonn.de/%7Ehougardy/HardTSPInstances.html

[46] Marvin Künnemann and Bodo Manthey. Towards understanding the smoothed ap-
proximation ratio of the 2-opt heuristic. In International Colloquium on Automata,
Languages, and Programming, pages 859–871. Springer, 2015.

[47] Felix Lazebnik, Vasiliy A. Ustimenko, and Andrew J. Woldar. A new series of dense
graphs of high girth. Bulletin of the American mathematical society, 32(1):73–79,
1995.

[48] Asaf Levin and Uri Yovel. Nonoblivious 2-opt heuristics for the traveling salesman
problem. Networks, 62(3):201–219, 2013.

[49] Shen Lin and Brian W. Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations research, 21(2):498–516, 1973.

[50] Clyde L Monma, Beth Spellman Munson, and William R Pulleyblank. Minimum-
weight two-connected spanning networks. Mathematical Programming, 46(1-3):153–
171, 1990.

[51] Edward F Moore. The shortest path through a maze. In Proc. Int. Symp. Switching
Theory, 1959, pages 285–292, 1959.

[52] Christos H. Papadimitriou. The Euclidean traveling salesman problem is NP -
complete. Theoret. Comput. Sci., 4(3):237–244, 1977.

[53] Ján Plesńık. Bad examples of the metric traveling salesman problem for the 2-
change heuristic. Acta Mathematica Universitatis Comenianae, 55:203–207, 1986.

[54] Gerhard Reinelt. TSPLIB—a traveling salesman problem library. ORSA journal
on computing, 3(4):376–384, 1991.

[55] Gerhard Reinelt. The traveling salesman: computational solutions for TSP appli-
cations. Springer-Verlag, 1994.

[56] Daniel J Rosenkrantz, Richard E Stearns, and Philip M Lewis, II. An analysis of
several heuristics for the traveling salesman problem. SIAM journal on computing,
6(3):563–581, 1977.

[57] András Sebő. Eight-fifth approximation for the path TSP. In International Con-
ference on Integer Programming and Combinatorial Optimization, pages 362–374.
Springer, 2013.

[58] András Sebő and Anke Van Zuylen. The salesman’s improved paths through forests.
Journal of the ACM (JACM), 66(4):1–16, 2019.

[59] A. I. Serdjukov. Some extremal bypasses in graphs [in Russian]. Upravlyaemye
Sistemy, 17:76–79, 1978.

[60] Robert Singleton. On minimal graphs of maximum even girth. Journal of Combi-
natorial Theory, 1(3):306 – 332, 1966.

[61] Vera Traub and Jens Vygen. Approaching 3/2 for the s-t-path TSP. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1854–1864. SIAM, 2018.

114

[62] Vera Traub and Jens Vygen. An improved upper bound on the integrality ratio for
the s–t-path TSP. Operations Research Letters, 47(3):225–228, 2019.

[63] Vera Traub, Jens Vygen, and Rico Zenklusen. Reducing path TSP to TSP. In Kon-
stantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and
Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages
14–27. ACM, 2020.

[64] Jens Vygen. Reassembling trees for the traveling salesman. SIAM Journal on
Discrete Mathematics, 30(2):875–894, 2016.

[65] Rephael Wenger. Extremal graphs with no C4’s, C6’s, or C10’s. Journal of Com-
binatorial Theory, Series B, 52(1):113–116, 1991.

[66] David P. Williamson and David B. Shmoys. The Design of Approximation Algo-
rithms. Cambridge University Press, New York, NY, USA, 1st edition, 2011.

[67] David Paul Williamson. Analysis of the Held-Karp heuristic for the traveling sales-
man problem (Master’s Thesis). Massachusets Institute of Technology, 1990.

[68] Laurence A Wolsey. Heuristic analysis, linear programming and branch and bound.
In Combinatorial Optimization II, pages 121–134. Springer, 1980.

[69] Rico Zenklusen. A 1.5-approximation for path TSP. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1539–1549. SIAM,
2019.

[70] Xianghui Zhong. On the Approximation Ratio of the k-Opt and Lin-Kernighan
Algorithm for Metric and Graph TSP. In Fabrizio Grandoni, Grzegorz Herman,
and Peter Sanders, editors, 28th Annual European Symposium on Algorithms (ESA
2020), volume 173 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 83:1–83:13, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik.

[71] Xianghui Zhong. On the approximation ratio of the k-opt and Lin-Kernighan algo-
rithm for metric and graph TSP. CoRR, abs/1909.12755, 2020.

[72] Xianghui Zhong. Slightly improved upper bound on the integrality ratio for the s-t
path TSP. Operations Research Letters, 48(5):627 – 629, 2020.

115

	Introduction
	Previous Work
	Approximation Ratio of the k-Opt and Lin-Kernighan Algorithm
	Integrality Ratio of the Subtour LP

	New Results
	Approximation Ratio of the k-Opt and Lin-Kernighan Algorithm
	Integrality Ratio of the Subtour LP

	Structure of the Thesis
	Prelimilaries
	Basic Definitions and Properties
	Traveling Salesman Problem
	k-Opt Algorithm
	k-Improv Algorithm
	Lin-Kernighan Algorithm
	Girth and Ex
	Linear Programming
	Subtour LP and Integrality Ratio
	Structure of Euclidean Tours
	Karamata's inequality

	Approximation Ratio of the k-Opt and Lin-Kernighan Algorithm
	Exact Approximation Ratio of 2-Opt for Metric TSP
	Upper Bound
	Lower Bound

	Approximation Ratio of k-Opt and Lin-Kernighan for Metric TSP
	Lower Bound
	Outline of Upper Bound
	Upper Bound
	Comparing the Lower and Upper Bound

	Approximation Ratio of k-Opt for Graph TSP
	Lower Bound
	Outline of Upper Bound
	Upper Bound

	Approximation Ratio of k-Opt for Euclidean TSP
	Approximation Ratio of k-Opt for (1,2)-TSP
	Lower Bound on the Approximation Ratio of the 2-Opt Algorithm
	Approximation Ratio of the 3-Opt Algorithm
	Approximation Ratio of the 3-Opt++ Algorithm
	Lower Bound on the Approximation Ratio of the k-Improv and k-Opt Algorithm

	A Polynomial Time Local Search Algorithm for Graph TSP

	Integrality Ratio of the Subtour LP
	Construction of Instances with Integrality Ratio Converging to 43
	Construction
	Applications

	Computing the Exact Integrality Ratio for Rectilinear TSP
	Integrality Ratio for Rectilinear TSP
	Structure of the Fractional Tours
	Structure of the Optimal Tours
	The Instance I2i,j,k
	Length of the Optimal Tours for Ii,j,k2
	The Integrality Ratio of Ii,j,k2

	Integrality Ratio for Metric TSP
	Integrality Ratio for Multidimensional Rectilinear TSP
	Local Optimality
	A Criterion for Local Optimality
	Local Optimality for the p-Norm
	A Local Search Algorithm

	Integrality Ratio for Euclidean TSP
	The Ellipse Construction Algorithm
	Results of the Ellipse Construction Algorithm

	Comparing Integrality Ratio
	Hard to Solve Instances
	Integrality Ratio for Metric s-t Path TSP

	Conclusion and Open Problems
	Approximation Ratio of the k-Opt and Lin-Kernighan Algorithm
	Integrality Ratio of the Subtour LP

	Bibliography

