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Abstract

Optical sensors become increasingly interesting as means to perform automated,
non-invasive and objective monitoring in agriculture, but also have immense po-
tential as tools for research and development. Especially hyperspectral sensors
have proven to extract a multitude of relevant parameters about the interaction
of plants with biotic and abiotic stresses alike through the large amount of pre-
cise information about changes in the plant spectral signature they can detect.
However, despite multiple research studies, there are still areas within the �eld
of hyperspectral imaging which have barely been investigated.

This study focusses on three such areas, the potential of transmission based
hyperspectral imaging for early disease detection and quanti�cation, the early
detection and quanti�cation of disease symptoms on canopy scale in high-
throughput, and the question of data compatibility of hyperspectral data from
di�erent scales.

In order to achieve those goals three barley pathogens � Blumeria graminis f.
sp. hordei, Puccinia hordei and Pyrenophora teres f. teres � were investigated
in leaf scale time-series measurements, during which re�ection and transmission
data was gathered simultaneously through the HyperART setup. The e�ect
of the distinct plant-pathogen interactions of the examined pathogens over the
course of the inoculation were then used to evaluate the possibilities of trans-
mittance hyperspectral images for early disease detection and quanti�cation in
direct comparison to the performance of re�ectance data, giving valuable in-
sights not only into the performance of transmission measurements but also
about the underlying mechanisms through the interpretation of the results from
the di�erent pathogens.

A high-throughput hyperspectral measurement system, which is able to per-
form time-series measurements in the greenhouse under �eld-like conditions on
canopy level while being independent from environmental factors, was devel-
oped during the study. With this system it was possible to accurately detect
powdery mildew symptoms on barley canopies and quantify the disease devel-
opment automatically over the course of 30 days long time-series measurement,
showing the possible advantages of non-invasive and objective measurements for
phenotyping applications. Additionally, it was possible to detect and quantify
necrotic lesions on the most resistant barley cultivar. These necrotic lesions
could be linked via microscopic studies to resistance reactions of the cultivar
upon powdery mildew inoculation, showing the possibilities to precisely track
the progression of resistant plant cultivars on canopy level via automated hy-
perspectral measurement setups.

Through the comparison of the hyperspectral data of time-series measure-
ments investigating the plant-pathogen interactions of barley-powdery mildew,
generated on both leaf and canopy level, through manual examination of the
changes within the plant spectral pro�les and the results of modern data anal-
ysis methods it was possible to con�rm high similarities within both datasets.
These results � and taking into account other recent studies with similar scope
� support that hyperspectral data is comparable across multiple scales. These
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�ndings allow the usage of the wealth of results from scienti�c studies with
hyperspectral imaging for more practical applications on higher scales.
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Kurzfassung

Das Interesse an optischen Sensoren zum automatischen, nicht-invasiven und
objektiven Monitoring im Bereich der Agrarwirtschaft steigt stetig an, wobei
optische Sensoren auch groÿes Potential im Bereich Forschung und Entwicklung
haben. Vor allem hyperspektrale Sensoren haben gezeigt, dass sie viele relevante
Parameter über die Interaktion von P�anzen mit biotischen und abiotischen
Stressfaktoren durch die präzise Messung der spezi�schen Änderungen in den
spektralen Signaturen der P�anzen erkennen können. Dennoch gibt es, trotz
einer Vielzahl an Studien im Bereich optische Sensorik, immer noch Teilbereiche
der hyperspektralen Sensoren die kaum untersucht sind.

In der vorliegenden Studie werden drei solcher Teilbereiche untersucht. Das
Potential von bildgebenden Transmissionsmessungen zur Detektion und Quan-
ti�zierung von P�anzenkrankheiten, Die Frühdetektion und Quanti�zierung von
P�anzenkrankheiten auf Bestandesebene, sowie die Untersuchung der Kom-
patibilität von hyperspektralen Daten welche auf verschiedenen Skalenebenen
aufgenommen wurden.Um diese Ziele zu erreichen werden drei verschiedene
Gerstenpathogene � Blumeria graminis f. sp. hordei, Puccinia hordei und
Pyrenophora teres f. teres � in Zeitreihenmessungen auf Blattebene mittels
des HyperART bei gleichzeitiger Betrachtung von Re�exion und Transmission
untersucht. Durch die Untersuchung der spezi�schen P�anze-Pathogen Inter-
aktionen der drei Pathogene ist es möglich sowohl die Leistung von Transnit-
tanzaufnahmen zur frühen Pathogendetektion und Quanti�zierung im direkten
Vergleich mit Re�ektanzaufnahmen zu evaluieren, als auch Rückschlüsse auf die
den Interaktionen zugrundeliegenden Mechanismen zu gewinnen.

Ein hyperspektralen hochdurchsatz Messsystem, dass Zeitreihen Messungen
im Gewächshaus unter feldähnlichen Bedingungen auf Bestandesebene unab-
hängig von Umgebungsfaktoren durchführen kann wurde innerhalb der Studie
entwickelt. Das System war in der Lage symptome des echten Mehltaus in Ger-
stenbeständen akkurat in frühen Entwicklungsstadien zu detektieren und über
den Messzeitraum von 30 Tagen automatisch die Befallsstärke zu ermitteln.
Dies zeigt die möglichen Vorteile des nicht-invasiven, objektiven Messsystems
für Anwendungen in der Phänotypisierung. Auÿerdem war es ebenfalls möglich
nekrotische Läsionen auf den Blättern des resistentesten Gerstencultivars zu
detektieren und quanti�zieren. Diese Läsionen konnten mittels mikroskopis-
cher Studien als Resistenzreaktionen auf die Inokulation mit echtem Mehltau
identi�ziert werden, was die Möglichkeit erö�net mittels des automatischen,
hyperspektralen Messsystems auch das Auftreten und die Entwicklung von Re-
sistenzreaktionen präzise über den Messzeitraum zu verfolgen.

Durch den Vergleich der Daten aus den hyperspektralen Zeitreihenmessun-
gen, welche die Interaktionen zwischen Gerste und echten Mehltau auf Blatt-
und Bestandesebene dokumentierten, indem die spezi�schen Änderungen der
spektralen Signaturen manuell untersucht wurden und die Ergebnisse der ange-
wandten Datenanalysemethoden war es möglich eine hohe Ähnlichkeit zwischen
den Datensätzen zu bestätigen. Diese Ergebnisse � zusammen mit Ergebnissen
von Studien mit ähnlichem Thema � unterstützen die These, dass hyperspek-
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trale Daten über mehrere Skalenebenen vergleichbar sind. Hierdurch erö�net
sich die Möglichkeit die mannigfaltigen Ergebnisse wissenschaftlicher Studien
im Bereich hyperspektraler Sensoren für praktische Anwendungen in höheren
Skalenebenen zu verwenden.
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1 Introduction

Plant diseases have a considerable impact on crop yield in modern agricul-
ture. Monocultures of highly specialized crops tend to lead to increased spread
of diseases, with the possibility to cause large losses in yield when untreated.
This not only leads to �nancial losses, but also is concerning when taking the
growing world population and the shrinking amount of available farmland into
consideration (Oerke and Dehne 2004). Furthermore, there are numerous plant
pathogens, which produce toxins that pose health risks for livestock and hu-
mans. It has been shown, that even with all tools which are currently available
for plant protection being applied plant diseases still cause a yield loss of up to
30% (Oerke and Dehne 2004).

Chemical plant protection and the breeding of resistant cultivars are two
of the key practices to minimize the occurrence of plant diseases in modern
agriculture (Oerke and Dehne 2004). However, due to developments in recent
years, chemical plant protection has fallen out of favour within the public opin-
ion (Gullino and Kuijpers 1994; Kildea et al. 2017). This � in addition to
the development of resistances in plant pathogens against highly used chemical
treatments through rapid mutation � has caused a high demand for alternative
treatments, such as biological antagonists, new resistant plant cultivars and
improvements in precision farming.

The breeding of new plant cultivars is a lengthy process in which especially
the step of phenotyping of promising genotypes is a time intensive bottleneck,
that requires manual rating by experts (Fiorani and Schurr 2013). A similar
problem presents itself when applying precision agriculture � in order to locate
pathogen infection sides within a �eld in a timely manner a high human e�ort
is required.

Optical sensors can act as a way to drastically reduce the required human
workload in both techniques, while improving the reliability of the processes
due to them being objective and the possibility of automated measurement
procedures (Mahlein 2016). Especially hyperspectral imaging has been shown
as a promising technique, due to the possibility to not only detect biotic and
abiotic stresses, but also di�erentiate between di�erent causes through distinct
changes in the plants spectral pro�les (Delalieux et al. 2009; Mahlein et al.
2010).

Despite multiple studies in laboratories and under �eld conditions showing
the potential of hyperspectral imaging for plant disease detection (see Chapter
1.2.4 for a detailed analysis of applications on di�erent scales) there are two
aspects which are left out of the main scope of investigation and thus chosen as
research topics for this study: The measurement of light which has been trans-
mitted through the plant tissue and the practical application of hyperspectral
measurements on canopy scale.

When light interacts with plant tissue it undergoes three distinct processes �
re�ection, absorption and transmission. Most studies with optical sensors, espe-
cially hyperspectral imaging related, are focussed on portion of the light, which is
re�ected by the plant tissue. The investigation of re�ected light has been shown
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as promising method for the detection of metabolic changes in plant tissue, as a
portion of the light is re�ected within the tissue � thereby transporting informa-
tion about the whole plant (Brakke 1994). Nevertheless, a large portion of the
re�ected light comes from surface re�ection and only contains information of
the plant epidermis cell layers. Transmitted light in comparison has completely
passed all cell layers of the measured plant. Within this study the potential
of the measurement of transmitted light with hyperspectral imaging sensory
is investigated through time series investigations of Hordeum vulgare (Barley)
on leaf scale while being inoculated with three selected pathogens (Blumeria
graminis f. sp. hordei, Puccinia hordei and Pyrenophora teres f. teres) via the
HyperArt setup (Bergsträsser et al. 2015), allowing the simultaneous measure-
ment of re�ected and transmitted light. The unique interactions of the di�erent
pathogens with the host plant (see Chapter 1.1) permit a throughout investiga-
tion into the possibilities of transmittance based measurements for plant disease
detection and disease severity estimation.

While the results of scienti�c studies for disease detection through hyper-
spectral imaging data indicate multiple possibilities for practical application
the technologies are still not commonly applied for non-scienti�c purposes. The
main hindrances are the di�culties to perform hyperspectral imaging measure-
ments under practical conditions in the �eld and in greenhouses due to the
requirements in measurement conditions for precision measurement (see Chap-
ter 1.2.4), as well as the di�culty to transfer the results of laboratory studies
onto scales which are useful for practical applications. Early disease detection
through hyperspectral imaging is commonly achieved in controlled laboratory
environments on leaf scale and below. In order to apply this information, it is
necessary to provide information about the applicability of the results from such
studies on canopy scale. The second part of this study focusses on the creation
of a functional high throughput hyperspectral imaging system, which can be
used for automated plant phenotyping on the canopy scale in �eld-like environ-
ments. The system allows the practical application of hyperspectral imaging
data for an early disease symptom detection and quanti�cation � as well as the
detection of resistance reactions to speci�c pathogens � in an automated, easy
to use setup for resistance breeding. Through a combination of the gathered
data on leaf and canopy scale it is possible to correlate the results and provide
further information about the applicability of studies gathering hyperspectral
data on leaf scale for di�erent scales of application.
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1.1 Hordeum vulgare and selected pathogens as model or-

ganisms for the evaluation of transmitted light in plant

disease detection with optical sensors

Hordeum vulgare (Barley) is one of the oldest cultivated crops in agriculture and
is still cultivated in modern times, being used for brewing and animal feeding
(Zohary and Hopf 2001). A further application is as model plant in scienti�c
studies in which barley excels due to its relatively simple, diploid genome and its
prominence as crop used in agricultural practice (Gobatz et al. 2007, Kleinhofs
et al. 1993). Compared to other cereal crops, such as Triticum vulgare (wheat),
the genome of barley is considerably smaller and allows comparatively simple
generation of near-isogenic lines for scienti�c purposes due to its diploid nature
(Kleinhofs et al. 1993, Schulte et al. 2009, Wicker et al. 2011). For studies
with optical sensors it o�ers the additional advantage that its phenotype and
plant architecture are similar to wheat, which is one of the most important crops
worldwide (Tilman 1999).

Despite the long-term usage of agronomic cultivation strategies, such as the
breeding of resistant plants, there are still a multitude of pathogens, which can
cause signi�cant yield loss after infecting barley plants. Some of the most im-
portant fungal pathogens a�ecting barley production are Blumeria graminis f.
sp. hordei (powdery mildew), Pyrenophora teres f. teres (net blotch), Drech-
slera graminea (stripe disease), Puccinia hordei (leaf rust), Puccinia striiformis
f. sp. hordei (stripe rust) and Rhynchosporium commune (scald) (Walters et
al. 2012). Three of these pathogens � B. graminis f. sp. hordei (Bgh), Puc-
cinia hordei (Ph) and Pyrenophora teres f. teres (Ptt ; anamorph: Drechslera
teres (Dt)) � and their interactions with barley upon disease progression were
investigated within this study, due to the di�erent plant-pathogen interactions
of the fungal pathogens allowing for a close evaluation of transmitted light as
source for disease detection, as well as their importance in modern agriculture.

B. graminis f. sp. hordei, the causative agent of barley powdery mildew, is
an obligate biotrophic fungus. The fungus uses airborne conidia for its asexual
reproduction, which � upon contact with plant tissue � develops a primary germ
tube to anchor itself onto the tissue. Then a secondary germ tube is developed,
which forms an appressorium from which a penetration peg breaks through the
cell wall of the underlying epidermis cells in order to form out the haustorium
� the primary feeding organ of the fungus (Hückelhoven and Panstruga 2011,
Underwood 2012). This process is the only direct interaction of Bgh with its host
plant, as the mycelium of the fungi develops upon the plant surface. This stays
true for the entire lifecycle of Bgh, as conidia and � during sexual reproduction
of the fungi � cleistothecia are developed outside of the plant tissue as well (Fig.
1.1). Thereby, the direct in�uence of powdery mildew infection is restricted
entirely to the leaf surface and epidermis cells. This should make powdery
mildew development relatively easy to be detected by hyperspectral re�ection
measurements, but challenging through the measurement of transmitted light.

P. hordei is an obligate biotrophic fungus, which is the causative agent of
leaf rust (also known as brown rust) in barley plants. Like many rust fungi it
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Figure 1.1: Infection of barley leaf with Blumeria graminis f. sp. hordei. The
conidium (Co) lands on the leaf surface and develops germination tubes (Gt1
and Gt2). The second germination tube develops an appressorium (Ap). A
penetration peg (Pp) is formed and breaks through the cuticula (C) as well as
the cell wall of the underlaying epidermis cell, where a haustorium (Hs) devellops
as primary feeding organ of the fungi. Epiphytic mycelia (Em) are developping
and overgrowing the surface of the plant while conidiophores (Cp) are grown
and produce new conidia. Ep = epidermis, Pm = palisade mesophyll, Sm =
spongy mesophyll, St = stomata, Vb = vascular bundle.
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has a complex life cycle, which includes �ve di�erent types of spores and can
include a secondary host plant on which the fungus survives while its primary
host � barley � is unavailable (Anikster 1982, Lumbroso et al. 1977, Petersen
1974, Voegele 2006). Within the experiments of this study only urediospores
were used. As shown in �gure 1.2, the urediospores develop a germination tube
when they come in contact with barley leaves. Ph, like most rust fungi, enters
the leaf through the stomata when infecting the plant through urediospores by
forming an appressorium once the germ tube reached it. A penetration peg
is formed and used to enter the intercellular space of the barley leaf through
the stomata opening, developing a vesicle, which in turn forms the infection
hyphae that grows through the intercellular space (Anikster et al. 2004, Voegele
2006). Upon contact with mesophyll cells a haustorial mothercell is developed,
which in turn forms out the haustoria as primary feeding organ of the fungi.
During this phase the fungi are developing inside the intercellular space of the
plant without causing notable tissue damage, despite feeding on nutrients from
the host plant. This changes once the fungi develop spores for reproduction
(either asexual with the development of urediospores during the summer, or
sexual through the development of teliospores during autumn), as the spores
are developed in colonies within the intercellular space before they are pushed
out of the leaf tissue, breaking the overlaying epidermis cells in the process
(Voegele 2006, Voegele et al. 2009). These stages make brown rust an excellent
target organism for the evaluation of hyperspectral disease detection in re�ection
and transmission, as the fungus develops within the leaf tissue without causing
tissue damage initially. As the fungus is not developing on the leaf surface a
detection through direct re�ectance is unfeasible, instead light which has been
re�ected through internal scattering and transmitted light should be the key
factors in the detection of fungal tissue and metabolic changes upon plant-
pathogen interaction.

P. teres f. teres, the causative agent of the barley net blotch disease, is a
necrotrophic pathogen. The conidia of the fungus are moving with air currents
and adhere on host plant tissue before developing a germination tube, which in
turn forms an appressorium from which the fungus penetrates the cell wall of
the underlying epidermis cell directly (Liu et al. 2011). The fungus then forms
a primary and secondary vesicle within the epidermis cell while the function
of the infected cell and nearby cells is being disrupted while the mycelium of
the fungus grows into the intercellular space and spreads throughout the leaf
tissue (Fig. 1.3). The mycelium of Ptt � unlike P. teres f. maculata � does
not interact through direct contact with the nearby plant cells, but instead
secretes e�ector candidates which induce cell death within the nearby plant
cells (Liu et al. 2011, 2015). The necrotic fungi can then feed on the disrupted
plant tissue and produce further conidia for asexual reproduction, as well as
teleomorph pseudothecia at the end of the growing season for over seasoning
(Liu et al. 2011). The development of the fungus causes a disruption of plant
tissue through all layers of the leaf tissue, which hyperspectral imaging sensors
should be able to measure equally well from both re�ected and transmitted
light.
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Figure 1.2: Infection of barley leaf with Puccinia hordei. An urediospore (Sp)
lands onto the leaf surface where it forms a germination tube (Gt) and devellops
an appressorium (Ap) over the stomata (St) of the leaf. A Penetration peg (Pp)
enters through the stomata into the intercellular room of the leaf. A vesicle (Vs)
is formed, from which infection hyphae (Ih) spread through the intercellular
space and form haustorial mother cells (Hm), which attach to plant cells and
break the cell wall without damaging the cell membrane to form a haustorium
(Hs) as primary feeding organ of the fungi. Afterwards the fungi forms colonies
(C) were new spores are developed. These break through the epidermis of the
leaf. C = cuticula, Ep = epidermis, Pm = palisade mesophyll, Sm = spongy
mesophyll, Vb = vascular bundle.
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Figure 1.3: Infection of barley leaf with Pyrenophora teres f. teres. A coni-
dium (Co) lands on the leaf surface and forms a germination tube (Gt). An
appressorium is developed, which breaches the cuticular (C) and cell wall of
the epidermis cell with a penetration peg (Pp), where the primary intracellular
vesicle (Vs1) is formed. Shortly after a secondary vesicle (Vs2) devellops in the
epidermis cell while the function of the infected- and nearby cells is disrupted.
A hypha (H) emerges intracellular from the secondary vesicle and breaches into
the intercellular space of the mesophyll, where it grows without making direct
contact with the plant cells. The fungi's hyphae secrete toxins/e�ectors which
lead to cell death, allowing the necrotic fungi to feed onto the tissue. Ep =
epidermis, Pm = palisade mesophyll, Sm = spongy mesophyll, St = stomata,
Vb = vascular bundle.
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The three fungi should serve exceptionally well as model organisms for an
evaluation of transmittance based imaging spectroscopy, as well as the compar-
ison with re�ectance based measurements, due to their unique interactions with
their host plant. Powdery mildew symptoms developing on the leaf surface and
epidermis, while brown rust symptoms develop within the intercellular tissue of
the leaf after initial penetration of the stomata, should give insights about the
possibilities of re�ection and transmission measurements and their ability to de-
tect plant-pathogen interactions on and within the leaf tissue respectively. The
plant cell death through secreted proteins of Ptt a�ects all tissue layers in the
infected area of the leaf for a further comparison of the performance of the two
hyperspectral imaging methods, as well as granting insights about the detection
of necrosis within plants � which is of high interest not only for pathogen detec-
tion, but also for the detection and quanti�cation of plant resistance reactions
through hypersensitive response upon pathogen inoculation.
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1.2 Optical sensors - means to gather objective visual in-

formation within and outside of the human eye's vi-

sual spectrum

Chapter 1.2 has been published:

Thomas S1,2, Kuska MT1, Bohnenkamp D1, Brugger A1, Alisaac E1, Wa-
habzada M3, Behmann J1, Mahlein A-K4 (2017) Bene�ts of hyperspectral imag-
ing for plant disease detection and plant protection � a technical perspective.
Plant Disease and Protection 125, 5. https://doi.org/10.1007/s41348-017-0124-
6.

1INRES-Phytomedizin, University Bonn, Bonn, Germany
2IBG2: Plant Sciences, Forschungszentrum Jülich GMBH, Jülich, Germany
3Bayer AG, Germany
4Institute of Sugar Beet Research (IfZ), Göttingen, Germany

Changes made in the thesis chapter compared to the original publi-

cation:

Chapter 1.2.5 has been rewritten. Furthermore, small changes have been made
to adjust the cross-references of the article to the structure of the thesis. All
changes have been marked by changing the colour of the respective text.

Authors contribution

Stefan Thomas, Anne-Katrin Mahlein, Matheus Thomas Kuska, Jan Behman
and Mirwaes Wahabzada drafted and wrote the manuscript. Elias Alisaac,
David Bohnenkamp, Jan Behman, Anna Brugger and Stefan Thomas designed
�gures and tables with support Anne-Katrin Mahlein.
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Precise evaluation of plant disease incidence and severity, as well as of neg-
ative e�ects on yield quality and quantity is relevant for precision crop pro-
duction and plant phenotyping. Within this context it is important to enable
an accurate and timely assessment of plant disease occurrence and spread for
planning targeted plant protection activities in �eld or greenhouse production
and to forecast temporal and spatial disease spread. Traditional estimation
methods for the detection, quanti�cation and identi�cation of plant diseases
are visual monitoring, as well as microscopic, molecular, serological and mi-
crobiological methods (Bock et al. 2010, Martinelli et al. 2014). However,
there is an increasing amount of non-invasive optical sensors available, which
are able to assess re�ectance properties of plants in di�erent regions of the elec-
tromagnetic spectrum. These sensors can support plant disease detection and
identi�cation in di�erent �elds of application. Innovative sensor technologies
can provide new insights into complex host-pathogen-systems and have the po-
tential to substitute prevalent destructive investigation methods (Mahlein 2016,
Mutka and Bart 2014). Especially precision agriculture and plant phenotyp-
ing for resistance breeding bene�t from this development. Among the di�er-
ent sensor types (thermography, chlorophyll-�uorescence, RGB, multispectral
and hyperspectral), hyperspectral sensors have signi�cant potential and several
advantages for monitoring plant diseases and host-pathogen interaction. Ther-
mography and chlorophyll-�uorescence are able to detect plant stress without
speci�cation of the causal agent. With hyperspectral sensors, it is addition-
ally possible to identify the responsible pathogen/disease (Bravo et al. 2004;
Mahlein et al. 2010; Hillnhütter et al. 2012).

The application of hyperspectral imaging sensors on di�erent scales - from
investigating plant tissue on the tissue scale in laboratories over the individual
plant scale in greenhouses or climate chambers to the canopy scale in �eld
applications - comes with numerous advantages compared to classical visual
monitoring or analytical methods. Unlike molecular or analytical methods, the
process of hyperspectral imaging is non-invasive, thereby enabling researchers
and breeders to perform time series measurements of the sample plants (Berdugo
et al. 2014). This leads to a reduction of required samples and enables multiple
repetitions. Moreover, hyperspectral imaging is an objective method in contrast
to visual rating and can be implemented in automated systems, resulting in a
considerably lowered workload (Walter et al. 2015; Mahlein 2016; Virlet et al.
2016). This leads to a reduction of economic and ecological costs in agricultural
production.

1.2.1 Basic principle of hyperspectral sensors

The basic principle of hyperspectral sensors is comparable to the principle be-
hind RGB cameras. Both systems measure the amount of light reaching the
sensor and store the information. Unlike RGB cameras, which measure three
bands of the visual part of the electromagnetic spectrum (red, green and blue
light) a hyperspectral sensor measures up to several hundred bands of the elec-
tromagnetic spectrum in the wavelength range of the sensor. Each of these
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spectral bands measures only a few nanometers of the electromagnetic spectrum,
leading to a high spectral resolution for the hyperspectral sensor. Thereby each
pixel in a hyperspectral image obtains a distinct set of information about the
re�ectance (or the transmittance) at each spectral band. The sum of these in-
formation is called a spectral signature (or spectral pro�le), which is measured
by non-imaging hyperspectral sensors without further spatial information (Fig.
4.3). Imaging hyperspectral sensors measure the spectral bands for each pixel
of the created image, thereby combining spectral and spatial resolutions. Each
pixel of the image thereby has its own spectral signature, including re�ectance
values for all spectral bands measured by the hyperspectral sensor. From a dif-
ferent perspective, the resulting image is a hyperspectral data cube, containing
two dimensions of spatial information and additionally one dimension of spectral
information (Fig. 1.5; Jensen 2006). Besides assessing the visible part of the
electromagnetic spectrum (400 � 700 nm), many hyperspectral sensors are also
able to measure the near infrared (700 � 1000 nm) and short wave infrared (1000
� 2500 nm) part of the electromagnetic spectrum. Because of this procedure,
high amounts of spectral data are collected with each hyperspectral image, mak-
ing it di�cult to extract relevant information from the images. This leads to
the requirement of advanced data analysis methods in order to work e�ciently
with hyperspectral sensors (see Chapter 1.2.5; Behmann et al. 2015a).

1.2.2 Bene�ts of hyperspectral sensors for plant pathology, pheno-

typing and precision farming

There has been a long history of using spectroscopic methods for plant re-
search. In laboratories, the analysis of natural compounds, cells, nucleic acid
and metabolic processes based on their optical properties is an established stan-
dard procedure. The analyses of metabolites are made with photometrical appli-
cations after speci�c extraction and isolation procedures (Carocho and Ferreira
2013). The destructive nature of these methods prevents further investigation of
the individual samples and makes time-series measurements impossible. Hyper-
spectral imaging sensors utilize a similar measuring principle (the absorption
features and optical properties of biochemical compounds) to assess di�erent
plant parameters non-invasively over time (Berdugo et al. 2013; 2014).

Hyperspectral data can be linked to physiological processes in plants. Spe-
ci�c characterizations of the hyperspectral re�ectance pattern were evaluated
and validated by destructive methods e.g. determination of photo pigments
(Zhao et al. 2016). This biological interpretation of hyperspectral re�ectance
can be achieved during plant-pathogen interactions, which in�uence the plant
physiology, structure and water content. The spectral in�uence of fungal pathogens
depends on the interaction type and way of nutrition (biotrophic, hemi-biotrophic,
necrotrophic), growth type, pigmentation, developmental stage and disease sever-
ity. Changes in the photosynthesis apparatus during pathogen infection are
indicated in wavelengths from 500 to 680 nm (Fig. 4.3). Pathogens, in�uenc-
ing the cellular structure of plants have a high in�uence in the near infrared
wavelengths (700 � 1000 nm; Fig. 4.3). Changes in plant water content by
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Figure 1.4: Spectral signatures of healthy barley leaves (green) and diseased
barley leaves with net blotch (yellow), brown rust (brown) and powdery mildew
(blue) respectively at 10 days after inoculation (dai). Sensors: �PS V10E�
(400 � 1000 nm) and �SWIR� (1000 � 2500 nm) push broom scanners (Specim,
Oulo, Finnland). All measurements were performed with the HyperART setup
according to Thomas et al. (2017). VIS = Visual -, NIR = Near infrared -,
SWIR = Short wave infrared part of the electromagnetic spectrum.
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Figure 1.5: Various types of sensor systems for spectroscopic image acquisi-
tion. Push broom scanner (blue), whisk broom scanner (red), �lter-based sensor
(green) and non-imaging sensor (yellow). The measurement principle of each
sensor type is illustrated at the hyperspectral data cube in the center.
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necrotrophic pathogen caused necrosis e.g. are indicated by an increased re-
�ectance intensity of speci�c water absorption bands in the short wave infrared
at 1400 and 1930 nm (Fig. 4.3). These examples show that changes in plant
physiology during pathogen attack can be linked to hyperspectral data by as-
signing speci�c changes of plant re�ectance pattern during pathogenesis with
known physiological processes. A correlation between hyperspectral re�ectance
signatures and metabolites during plant-pathogen interaction would improve the
physiological analysis. Functional links of cellular processes to hyperspectral re-
�ectance patterns will allow a deep phenotyping of the genotype and might
improve existing crop physiological modelling (Yin et al. 2004).

In an agricultural context - such as plant breeding and precision farming - it
is of high importance to determine changes in factors like the nutrient content,
biomass or a disease infection. These parameters are commonly investigated
either by visual rating, a time-consuming process which requires experts and
is subjective, or by destructive investigations on laboratory scale as described
earlier. In addition to afore mentioned bene�ts of hyperspectral imaging (non-
invasive, objective, repeatable), hyperspectral sensors can be applied directly in
greenhouses and �elds, avoiding the step of extracting and transporting samples
for analysis into a laboratory.

It could be shown, that metabolic changes in plants during pathogen attack
can be detected by hyperspectral imaging (Arens et al. 2016), with di�er-
ent pathogens leading to characteristic changes in the plants re�ectance pro�le
(Mahlein et al. 2012; Fig. 4.3). Thereby it is possible to detect and iden-
tify disease outbreaks and dynamics through hyperspectral imaging on di�erent
scales (Bravo et al. 2004; Huang et al. 2007). This enables a timely detection
of speci�c diseases and an early application of disease speci�c countermeasures
in precision farming. Furthermore, the possibility of automated disease sever-
ity detection through hyperspectral imaging in combination with data analysis
methods could be used to improve phenotyping applications (Kuska et al. 2015;
Thomas et al. 2017).

While this review focusses on the usage of hyperspectral sensors for disease
detection it should be mentioned brie�y that other important parameters for
plant health, such as abiotic stress and soil properties can be assessed as well. It
could be shown that hyperspectral investigations of plants can detect multiple
abiotic stress factors, such as drought stress or nitrogen de�ciency (Asner et al.
2004; Vigneau et al. 2011), thereby allowing farmers to react by adjusting water
and nutrient distribution during growing seasons. Hyperspectral sensors can
also be used to gather non-plant speci�c information, like di�erences in the soil
quality and create soil maps (Demattê et al. 2001; Ben-Dor et al. 2009; Hbirkou
et al. 2012). These maps can be used to plan ideal nutrient supplementation
for di�erent parts of the �eld according to the determined soil parameters.

In general, measurement methods, such as RGB, hyperspectral, lasers, etc.,
which provide the possibility for time series imaging, are suited to keep track
of the plant biomass on the �eld. The plant growth rate and an estimation
of the expected yield can be deduced from hyperspectral imaging data. This
information can be applied to assess di�erences in the biomass and to adjust the
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amount of pesticides required, depending on the crop stand density (Tackenberg
et al. 2016).

1.2.3 Technical aspects of hyperspectral sensor systems

In this chapter the di�erent types of hyperspectral sensors, as well as possible
platforms for hyperspectral sensor systems, are explained in detail. The choice
of sensor type and platform have a strong impact on the possible applications, as
these components de�ne the possible measurement scale, the spatial resolution
and the throughput of the hyperspectral sensor system. Detailed information
about these parameters and their importance for di�erent applications in plant
disease detection are provided in Chapter 1.2.4.

Hyperspectral sensor types Di�erent kinds of hyperspectral sensors, based
on di�erent measurement principles, are available. Each method implies distinct
advantages and disadvantages in certain hyperspectral sensor setups. It is pos-
sible to distinguish four basic types of hyperspectral sensors: (I) whisk broom,
(II) push broom, (III) �lter-based sensors - which are all imaging sensors - and
(IV) non-imaging sensors (Fig. 1.5; Jensen 2006).

Non-imaging hyperspectral sensors measure the mean spectral re�ectance,
averaged on their area of view without spatial information. Basically, they are
measuring the integral of a certain area with the full spectral pro�le, depending
on their sensor range. The size of the assessed area is characterized by the
focal lens, the viewing angle and the distance from the target (Fig. 1.5). Since
early plant disease symptoms appear often in sizes below 1 mm, the detection
sensitivity can be limited by non-imaging sensors, averaging signals of both
healthy and diseased tissue in the measurement area (Mahlein et al. 2012).

Hyperspectral imaging sensors (hyperspectral cameras) have to capture the
one-dimensional spectral information in addition to the two-dimensional spa-
tial information of an image. The available illumination sensor arrays can only
detect two dimensions of information though. Push broom and whisk broom
scanners solve this discrepancy by simultaneously capturing the spectral infor-
mation of a line or point on the measured object respectively. To compose the
hyperspectral image, the object of interest is scanned through movement or
rotation (Fig. 1.5). Both principles provide excellent spatial and spectral reso-
lutions compared to other hyperspectral imaging sensors. However, this causes
relatively long image acquisition times, depending on the size of the measured
area, limiting the application of the sensor types to motionless objects.

Filter based sensors are another type of hyperspectral imaging sensors. They
work similar to push and whisk broom sensors, with the notable di�erence
that they measure the entire spatial image per spectral band at once. Filters,
which allow only light of a speci�c wavelength to pass through, are interchanged
rapidly during the image acquisition, allowing the hyperspectral information to
be gathered over the two-dimensional image (Fig. 1.5). This system requires
no movement of the sensor or the target during image acquisition. Thereby, the
image acquisition time mostly depends on the exposure time and is in general
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faster when compared to push- or whisk broom scanners. If the object is moving,
this measuring principle can lead to inconsistent spectra as the single bands are
observed at di�erent points in time.

Recently hyperspectral/multispectral snapshot sensors have been introduced,
which use the mosaic principle of common RGB cameras. Snapshot cameras pro-
vide a signi�cantly higher image recording speed then traditional hyperspectral
sensors. However, they have a signi�cantly lower spatial resolution of the hyper-
spectral image when compared with hyperspectral scanners (Aasen et al. 2015).
Nevertheless, the quick recording time and possibility to create hyperspectral
image sequences in rapid succession make snapshot cameras very interesting
for application under di�cult environmental conditions (see Chapter 1.2.4) and
UAV applications.

Platforms for hyperspectral sensor systems Hyperspectral sensors gen-
erally require to be installed on di�erent platforms to form functioning mea-
surement systems. Some examples for sensor platforms, sorted by altitude, are
handheld sensors, rail systems, vehicle and tractor mounted systems, low alti-
tude UAVs, as well as airplane and satellite mounted hyperspectral sensors.

If non-imaging hyperspectral data is su�cient, a variety of handheld sen-
sors is available (Fig. 1.5). These allow for quick assessment of plants under
greenhouse and �eld conditions. However, non-imaging systems provide the
mean value over the measured area, resulting in a lower spatial resolution than
imaging sensors at comparable distances (Huang and Apan 2006; Cao et al.
2013). Handheld non-imaging sensors are often used for hyperspectral scien-
ti�c �eld projects, which investigate plant-pathogen dynamics, as they allow
high throughput measurements and don't require a sophisticated measurement
platform.

Until now, hyperspectral imaging sensors are too complex to be used as
handheld devices. They require precisely steered line stages or mirror systems
to provide accurate results. Additionally, the sensors should be kept stable dur-
ing image acquisition, a process which can take up to several minutes depending
on the spatial resolution and measured area. Thereby platform (stationary, rail
system and vehicle based) mounted imaging hyperspectral sensors are used for
observations on leaf, single plant and canopy scale, both under �eld conditions
and in the greenhouse (Vigneau et al. 2011; Deery et al. 2014; Pinto et al. 2016).
Such systems combine a high spatial resolution with the possibility for autom-
atization and a reasonably high throughput. Because of these properties sensor
based measurement systems are best suited for large scale approaches in plant
disease detection and resistance phenotyping, which require a high measure-
ment throughput and the option to perform fully automated and standardized
measurement series (Virlet et al. 2017 ).

UAV based hyperspectral sensors can be used for monitoring �elds and plots
on the canopy scale, but in general lack the necessary spatial resolution for
the detection of early plant disease symptoms or single plant analysis and are
restricted by short �ight times (Aasen et al. 2015). UAV´s have shown to be
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a promising platform for multispectral and thermal sensors though, allowing
evaluation of parameters such as drought stress, heat stress, nutrient content,
plant biomass, yield and biotic stress under �eld conditions (Sankaran et al.
2015). It can be expected that with improvements in both hyperspectral sensors
and UAV´s they will play a key role as platforms for �eld phenotyping and plant
disease detection in the near future.

For large scale analysis of vegetation dynamics, it is also possible to mount
hyperspectral sensors on zeppelins, airplanes and satellites. While hyperspectral
sensors were originally mounted on satellites and airplanes for remote sensing or
military applications, these setups are generally not able to generate a su�cient
spatial resolution for the detection of plant diseases at an early stage (Mahlein
2016).

1.2.4 From the laboratory to the �eld: scales for hyperspectral ap-

plications and the tradeo� between spatial resolution and mea-

surement throughput

When using hyperspectral imaging it has to be decided �rst on which scale
the measurements should be performed. In this review, the scales tissue, leaf,
single plant and canopy are in the focus. These scales are suited for investigat-
ing metabolic changes during plant pathogen interaction (tissue and leaf scale),
resistance phenotyping, disease detection (leaf, single plant and canopy scale),
disease distribution and patterns (canopy scale; Fig. 1.6). Tissue and leaf scale
experiments are commonly performed in the laboratory in the context of ba-
sic research and to a certain amount for plant phenotyping, while leaf, single
plant and canopy scale measurements in greenhouses and �elds are required
for more practical applications such as phenotyping or precision farming. The
tissue scale can only be achieved by the usage of sophisticated hyperspectral
microscope systems. It allows the observation of fungal spores or plant cells
during early interactions and infection. Leaf scale measurements allow high res-
olution assessment of single parts of a plant (leaves, ears, stem, and roots) and
are suited to observe speci�c changes in spectral characteristics of plants during
pathogenesis. These measurements can be performed in the laboratory, green-
house or even on the �eld. Laboratories provide the most stable environmental
conditions for hyperspectral experiments, without risk of changing environmen-
tal factors, such as light intensity and direction, in�uencing the results. Single
plant and canopy measurements can be performed in laboratories, greenhouses
and the �eld. Hereby �elds allow large scale applications, while investigations
in greenhouses combine a controllable environment and the possibility for high
throughput experiments.

The decision which measurement scale is required for an application is mostly
dependent on the desired spatial resolution and measurement throughput. Spa-
tial resolution and throughput are in an inverted relationship for hyperspectral
measurements, with tissue scale having the highest resolution of being able to
monitor subtle processes and small structures, but having a very low throughput.
Meanwhile, canopy scale measurements in the �eld have low resolutions with
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pixel sizes of up to several meters, but provide increasingly high throughputs.
The need for high throughput is especially prominent for practical applications
on greenhouse and �eld scale, such as plant breeding or non-invasive disease
detection (Deery et al. 2014; Mahlein 2016).

Multiple studies using hyperspectral imaging stated, that high spatial res-
olution is crucial to avoid mixed spectral signals (Bravo et al. 2003; West et
al. 2010; Mahlein et al. 2012). These investigations focused on fungal-plant
disease detection in the �eld (Bravo et al. 2003; West et al. 2010) and in the
laboratory (Mahlein et al. 2012). In these studies, it was possible to detect
and di�erentiate plant diseases, in some cases in early stages before they were
visible for the human eye (Table 1; Rumpf et al. 2010). The importance of
the spatial resolution was shown by small-scale investigations of Mahlein et al.
(2012) for the detection and identi�cation of Cercospora leaf spot, sugar beet
rust and powdery mildew on sugar beet. It could be shown, that di�erences in
the re�ectance signatures of healthy and diseased tissue were decreased in lower
spatial resolutions. The increasing number of pixels with mixed information
could be identi�ed as cause for this development. Thereby it is of high impor-
tance in hyperspectral investigations, to select a su�cient spatial resolution.

Nevertheless, disease speci�c hyperspectral signatures seem to be transfer-
able on di�erent scales. This enables the transfer of results from experiments
with high resolution data and highly controlled environmental conditions in lab-
oratories to other scales. Subtle processes, e.g. plant-pathogen interactions, can
be closely observed on tissue and leaf scales, allowing a detailed understanding
of the metabolic and structural changes during the infection. This knowledge
can then be applied to �nd corresponding changes in spectral patterns on plant
and canopy scale during practical applications in greenhouses and �elds. Such
a combination of di�erent methods could increase the possibilities for pathogen
detection and phenotyping applications in the near future.

The importance of light and environmental conditions in hyperspec-

tral imaging

In order to achieve reliable results with hyperspectral sensors it is necessary
to consider the environmental conditions and the technical setup during the
measurement.

Under controlled conditions of a laboratory setup the prominent factor,
which has to be closely monitored, are the light conditions during the mea-
surements. Due to the requirement of a reference measurement with a material,
which possesses known re�ection (and possibly transmission) properties in order
to normalize the images, it is important to have stable light conditions during
the process. Moreover, most light sources do not provide illumination over a
broad spectrum of wavelengths, resulting in the demand for specialized light
sources.

Companies and researchers designed multiple solutions to provide su�cient
light conditions for hyperspectral imaging. The commonly used arti�cial light
source is a tungsten halogen lamp with di�erent modi�cations e.g. mirrors,
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Figure 1.6: Vision of a multi-scale model integrating observations of the plant-
pathogen interaction from the microscope up to airborne imaging. Such model
derives a scale independent representation using physical models and machine
learning methods and is able to analyze data from all scales supported by the
wide data-base of observations.
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Table 1: Overview of plant pathosystems and plant diseases assessed by hyperspectral imaging.
n.i. indicates a non-investigated aspect, * indicates nematodes.

Host-Pathogen-System Scale Detection Early Detection Quanti�cation Reference
Apple - Venturia inaequalis Leaf " n.i. " Delalieux et al. (2009)

Barley - Blumeria graminis f.sp. hordei Tissue " " n.i. Kuska et al. (2015)

Barley - Blumeria graminis f.sp. hordei Leaf " " " Thomas et al. (2017)

Barley - Blumeria graminis f.sp. hordei,
Puccinia hordei, Pyrenophora teres Leaf " " n.i. Wahabzada et al. (2015)

Celery - Sclerotinia sclerotiorum Canopy " n.i. n.i. Huang & Apan (2007)

Cucumber - CMV, CGMMV,
Sphaerotheca fuliginea Leaf " n.i. " Berdugo et al. (2014)

Sugar beet - Cercospora beticola Leaf " n.i. " Bergsträsser et al. (2015)

Sugar beet - Cercospora beticola Tissue " n.i. " Leucker et al. (2016a, 2017)

Sugar beet - Cercospora beticola,
Erysiphe betae, Uromyces betae Leaf " " n.i. Rumpf et al. (2010)

Sugar beet - Cercospora beticola,
Erysiphe betae, Uromyces betae Leaf " " " Mahlein et al. (2010, 2012)

Sugar beet - Heterodera schachtii*,
Rhizoctonia solani Canopy " n.i. " Hillnhütter et al. (2011, 2012)

Oilseed rape - Alternaria spp. Leaf " n.i. " Baranowski et al. (2015)

Wheat - Blumeria graminis f. sp. tritici Canopy " n.i. " Cao et al. (2013)

Wheat - Fusarium spp. Ear " " " Bauriegel et al. (2011a)

Wheat - Puccinia striiformis Canopy " n.i. " Bravo et al. (2003)

Wheat - Puccinia striiformis Canopy " n.i. n.i. Bravo et al. (2004)

Wheat - Puccinia striiformis Canopy " n.i. " Huang et al. (2007)

Wheat - Puccinia striiformis Canopy " " n.i. Moshou et al. (2005)

Wheat - Puccinia striiformis,
Puccinia graminis, Puccinia triticina Leaf " n.i. n.i. Devadas et al. (2009)
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(hemi-) spherical di�users, �lters, optical �bers and conductors (Baranowski
et al. 2015; Behmann et al. 2015b; Yeh et al. 2016; Thomas et al. 2017).
The emitted light has a spectrum from 380 � 2500 nm with a peak at 900
nm and is in�uenced by the energy source and working temperature (Elvidge
et al. 2010). Further light sources: mercury or metal halide lamps; which
have smaller emitted wavelength ranges with peaks, typically at 365, 405, 436,
546 and 579 nm (Elvidge et al. 2010). For this reason, they are suitable as
calibration light sources for sensors or confocal applications. All these common
light sources share the disadvantage of heat development, which may have an
in�uence on plant samples and the sensor sensibility over the course of the
measurement period. It is possible to eliminate heat related discrepancies for
studies in control environment through the use of halogen lamps in combination
with non-absorbing �bers to redirect the light, increasing the distance between
the heat generating light source and the samples. Supplemental Light-emitted
diodes (LEDs) can be used to provide additional light in wavelength areas where
halogen lamps and hyperspectral sensors have low light emitting / detection
performance. This leads to an improved signal-to-noise ratio (Mahlein et al.
2015). LEDs do not cause heat buildup, due to passive cooling when installed
on heat conductors, e.g. aluminum. However, LEDs have only small peaks at
discrete wavelengths in the electromagnetic spectrum. In order to achieve an
equal illumination over the measured spectrum with LEDs, a complex setup of
di�erent LEDs is required for hyperspectral measurements. A prototype version
of a LED illuminated multispectral sensor system was developed by Grieve et al.
(2015), using LEDs with �ve di�erent emitted wavelength peaks. The system
showed comparable quality in plant disease detection to a common hyperspectral
system. Hyperspectral imaging is indispensable in the development of such low-
cost sensors, as the high spectral resolution of hyperspectral sensors enables
the identi�cation and characterization of disease speci�c spectra. These spectra
can then be used to develop an according low-cost multispectral sensor for the
detection of speci�c diseases on the target plant.

In greenhouse and �eld applications, light conditions are more complex com-
pared to laboratory setups. Sunlight proves to be an excellent light source for
hyperspectral imaging, covering a broad spectrum of wavebands. The main
problem results in the inability to control changes in the light intensity, usually
caused through clouds covering the sun at varying degrees. A change in light
intensity during the time between measuring the reference and the sample will
result in measurement inaccuracies (Damm et al. 2015; Pinto et al. 2016). This
becomes a problem due to the required image acquisition time of whisk broom,
push broom and �lter based hyperspectral imaging sensors, which is often up to
several minutes per image. Therefore, it could be recommended to additionally
measure the light intensity over the measured spectrum during hyperspectral
image acquisitions under natural light conditions. This technique allows to cal-
culate the di�erences in the illumination levels and integrate these data in the
normalization of the image.

The possible measurement windows under natural light conditions are fur-
ther restricted by the fact, that the angle between incoming light, plant and
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hyperspectral sensor has an in�uence on the received spectral signature of the
sample plant (Milton et al. 2009; Vigneau et al. 2011; Behmann et al. 2015b;
Pinto et al. 2016). This in�uence depends on the time of the day and thereby on
the individual movement of the sun over the course of the day and by the time
within the year. The complex relations between the angle of the sun, plant sur-
faces and sensors are described through the bidirectional re�ectance-distribution
function (Milton et al. 2009; Cao et al. 2013). Due to the complex architecture
of plants it is di�cult to eliminate these factors in the normalization of the im-
age. Thus, it is recommended to perform time series measurements at the same
time each day to avoid inaccuracies between di�erent measurement dates due
to changes in the bidirectional re�ectance-distribution function (Milton et al.
2009; Cao et al. 2013). Within this context, PROSAIL (PROSPECT optical
leaves properties model and SAIL canopy bidirectional re�ectance model) is an
approach to deal with these issues by providing a model to describe spectral
and directional variation in canopy re�ectance (Jacquemound et al. 2009). The
above described di�culties make it challenging to perform time-series-, or �on
demand� measurements with hyperspectral sensors under natural light condi-
tions. A di�erent strategy, which is applicable on the vehicle or platform scale,
is to block out the natural light through shading cabins and use arti�cial light
sources for illumination. This creates controlled light conditions and allows
measurement independent of the above-mentioned factors, but increases the
complexity of the hyperspectral sensor system (Delalieux et al. 2008; Rodionov
et al. 2015).

For �eld applications, wind and rain are further environmental factors, which
have in�uence on the hyperspectral measurements. Wind as example does not
in�uence the image acquisition by itself, but often causes the sample plants to
move slightly during the measurement process. Due to the nature of the hyper-
spectral imaging sensors, this results in heavy distortions in the hyperspectral
image (Pinto et al. 2016). The continued development of more advanced snap-
shot based hyperspectral sensors and thereby reduced image acquisition time
could minimize the in�uence of changing environmental conditions in the fu-
ture.

When changing from leaf scale to canopy scale in order to increase the mea-
surement throughput, direct light causes further di�culties. The angles and
shadowing of the di�erent leaves in the architecture of the measured plants also
a�ect the intensity of light being re�ected. This leads to large discrepancies
of the illumination levels for di�erent leaves at canopy level and increases the
challenge in analyzing the gathered data (Behmann et al. 2015b).

For the usage of hyperspectral imaging on UAVs or even larger scales, en-
vironmental e�ects, especially movement of plants, and the complexity of the
plant architecture are less important, as one pixel of the image tends to repre-
sent several leaves or even plants due to the low spatial resolution (Nevalainen et
al. 2017; Sankaran et al. 2015). Nevertheless, the general problem with changes
in light intensity during the measurements stays relevant.
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Applications and limitations of hyperspectral sensors on di�erent

scales

Innovative technologies from robotics, new sensors and imaging technologies
allow for a wide range of applications, from laboratory research to screening
systems on the �eld scale (Fig. 1.6; Fiorani and Schurr 2013; Granier and Ville
2014). Currently, di�erent measurement systems, as well as automated pheno-
typing platforms are available. The di�erent types of sensors and measurement
scales were brie�y described earlier in this review (Fig. 1.5). At this point the
review tries to give a more detailed overview on each scale, focusing on the use
of scale speci�c parameters and relevant applications for plant disease detec-
tion. Furthermore, research articles, which applied hyperspectral imaging on
di�erent scales, will be critically evaluated in order to give an indicator about
scale speci�c applications. The selected articles have a thematic focus on the
observation of plant-pathogen interaction and disease detection (Table 1).

Tissue scale � hyperspectral microscopy and assessment of subcel-

lular processes Hyperspectral imaging systems on the tissue scale provide
controlled measurement conditions and work with high spatial resolutions, en-
abling the observation of small scale processes, for example disease resistance
reactions on plant leaves (Kuska et al. 2015; Leucker et al. 2016a; 2017). The
analysis of individual plant-pathogen interactions using hyperspectral imaging
on the tissue scale enables the characterization of even subcellular processes in
space and time. This could be used in the future to establish the link between
phenomic data and known parameters from ´omic and physiological studies,
which is highly demanded (Groÿkinsky et al. 2015; Mahlein 2016; Simko et
al. 2017). A relation of hyperspectral data to gene expressions, protein activ-
ity, physiological processes and histological changes will improve our knowledge
on a plant's phenotype and is fundamental for plant resistance breeding. The
disadvantage of microscopic measurement setups on the tissue scale is a low
throughput of probe samples over time.

Kuska et al. (2015) established a hyperspectral imaging microscope setup
with a spatial resolution of up to 7.5 µm per pixel. This setup allows small-
scale image analysis and has been used for plant disease detection and disease
speci�c resistance characterization (Kuska et al. 2015; Leucker et al. 2016a,
2017). Early spectral changes on powdery mildew diseased barley were shown
by microscopic hyperspectral studies before symptoms became visible for the
human eye (Kuska et al. 2015). Furthermore, the pathogenesis of powdery
mildew on barley could be described, including evidence of spectral properties
of race and non-race speci�c resistances (Kuska et al. 2015; Kuska et al. 2017).
Leucker et al. (2016a; 2017) performed detailed investigations of pathogenesis
of Cercospora leaf spot on sugar beet through hyperspectral microscopy. The
results of these measurements could be used to evaluate the sporulation density
of the fungus on di�erent host genotypes (Leucker et al. 2017). These �ndings
show tissue scale measurements as a valuable tool to observe and estimate the
spread of pathogenic fungal species over multiple generations depending on their
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interaction with the host plants. Moreover, Leucker et al. (2016a) were able
to identify di�erent sugar beet genotypes through the application of a spectral
angle mapper algorithm, used commonly in remote sensing, on the disease symp-
toms of the investigated plants. Previous studies on leaf scale showed similar
hyperspectral characteristics for Cercospora leaf spot on sugar beet (Mahlein et
al. 2012). The hyperspectral signature patterns were similar, but showed slight
di�erences in the blue and green range of the re�ectance intensity. These di�er-
ences were dependent on the development stage of the leaf spots (Mahlein et al.
2012) and the disease susceptibility of di�erent sugar beet genotypes (Leucker
et al. 2016a; Leucker et al. 2017).

Leaf scale � high resolution evaluation of processes during pathogen-

esis under highly controlled conditions It is possible to measure multiple
leaves with laboratory based hyperspectral measurement setups. Depending on
the setup, re�ection and transmission measurement on leaf scale are possible
(Bergsträsser et al. 2015; Kim et al. 2015; Thomas et al. 2017). While the
resolution is su�cient to detect changes in the plant metabolism and struc-
ture before they are visible by the human eye, they allow a higher throughput
compared to microscopic systems on tissue scale. In general, leaf scale based se-
tups are most suited for basic research to discover changes during speci�c stress
responses under highly controlled conditions in the laboratory.

Delalieux et al. (2009) used non-imaging hyperspectral sensors to detect
apple scab on apple tree leaves, Mahlein et al. (2010) used performed similar
non-imaging hyperspectral measurements to detect three di�erent diseases of
sugar beet leaves (Cercospora leaf spot, powdery mildew and sugar beet rust).
Both research groups performed time series experiments from shortly after the
inoculation up to points were symptoms were visible with the naked eye. De-
spite the used non-imaging sensors and their �eld of view averaging over an
area of 10 mm it was possible to not only detect the diseases on the leaves, but
also to trace the di�erences in the spectral signatures of di�erent diseases with
increasing disease severity. Each disease showed a distinct spectral signature,
allowing a distinction between di�erent diseases based on spectral vegetation in-
dices (SVIs). These observations match the results of Hillnhütter et al. (2012),
where symptoms on sugar beet leaves caused by Heterodera schachtii and Rhi-
zoctonia caused root rot could be accurately detected with di�erent vegetation
indices. Rumpf et al. (2010) used vegetation indices and classi�cation through
the Support Vector Machines algorithm to detect and distinguish three di�er-
ent diseases on sugar beets (Cercospora leaf spot, sugar beet rust and powdery
mildew) automatically, based on training datasets. In this study, a detection
and identi�cation of the diseases before symptoms were visible was achieved.
Bergsträsser et al. (2015) could demonstrate that the combined hyperspectral
imaging measurement of re�ection and transmission allows for an increased ac-
curacy when detecting Cercospora leaf spot disease on sugar beet leaves. The
experiments of Thomas et al. (2017) were not able to con�rm an increased
detection accuracy of combined re�ection and transmission measurements for

24



powdery mildew detection on barley plants. Although, it could be shown that
high resolution hyperspectral re�ection images on leaf level allow a detection of
powdery mildew up to two days before visible symptoms appear. Additionally,
it could be demonstrated that transmission based imaging performs equally to
re�ectance based imaging when detecting spontaneous necrosis on resistant bar-
ley plants. The combination of re�ection and transmission imaging allowed for
a clearer distinction between late powdery mildew symptoms and small necrotic
spots on barley leaves. From the results of the two above-mentioned studies it
can be theorized, that the value of transmission imaging is depending on the
interaction and invasiveness of the investigated pathogen. The results of Bau-
riegel et al. (2011a) suggest, that hyperspectral imaging can be used to identify
diseases on other plant parts then the leaves as well. In their study, wheat ears,
which were inoculated with Fusarium head blight, were investigated through
hyperspectral imaging and �uorescence measurement in a time series experi-
ment. It was possible to determine infected ears as early as seven days after
inoculation through hyperspectral imaging. Wahabzada et al. (2015a) applied
advanced data analysis methods on hyperspectral time series image datasets
of barley plants, which were inoculated with powdery mildew, brown rust and
net blotch. It was possible to di�erentiate between the symptoms of the three
pathogens and to create time line based maps for an illustration of spectral key
moments of the three pathogens during the pathogenesis on barley plants. These
�ndings could be correlated with the pathogen speci�c biological processes over
the course of the infection. Thereby it is possible to get an overview about the
disease speci�c changes in the plants metabolism at given time points during
the pathogenesis.

Single plant and canopy scales � high throughput disease detection for

phenotyping and precision farming Despite providing the lowest spatial
resolutions of the measurement scales, high throughput experiments in green-
houses and �elds have shown to be promising tools for studying plant-pathogen
interactions. Through the use of modern hyperspectral line scanner sensors and
a viewing distance of 30 to 100 cm the spatial resolution is su�cient to detect
biotic and abiotic stresses on single plants in early stages (Vigneau et al. 2011).
This measurement scale still allows for a high throughput. Thereby greenhouse
and �eld based approaches allow a rapid assessment of multiple plants on leaf
or canopy scale, which cannot be matched in laboratories due to special restric-
tions. Additionally, greenhouses and �elds provide environmental conditions,
which are similar to those of actual farming or crop breeding procedures.

Moshou et al. (2005) applied hyperspectral imaging sensors and multispec-
tral �uorescence measurement to detect yellow rust infection in winter wheat
under �eld conditions with ambient light. They managed to develop a method,
based on three spectral bands of the hyperspectral images, to classify diseased
tissue with an error rate of only 11.3%. Through combination of the hyperspec-
tral and �uorescence measurement data with advanced data analysis they were
able to reduce the classi�cation error to 1%, showing the possible application of
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non-invasive, multisensory platforms for real-time phenotyping.
Huang et al. (2007) investigated yellow rust on winter wheat by means of

airborne hyperspectral re�ection image acquisition. Despite a low spatial reso-
lution with pixel size of 1x1 m the results of the study show a strong negative
correlation of the Photochemical re�ectance index, a vegetation index based
on two wavelengths (531 and 570 nm), and the disease severity after visual
rating of r²>0.90. It was possible to identify areas with high disease pressure
in the observed �eld as well. Hillnhütter et al. (2011) made airborne hyper-
spectral imaging measurements of sugar beet plants to detect symptoms caused
by Heterodera schachtii infestation and of Rhizoctonia caused root rot, which
were compared with georeferenced control data from ground based monitoring.
Despite the two hyperspectral sensors, which were used for airborne data acqui-
sition in this study, having a spatial resolution of 1.5 m and 2 m respectively
it was possible to detect and quantify both pathogens with airborne measure-
ments, based on the close correlation between disease severity and pathogen
infestation. While early detection of pathogens before visible symptoms appear
is not possible for current airborne hyperspectral imaging systems due to limita-
tions in the spatial resolution, the results of these studies are good examples for
possible uses in containing disease outbreaks by identi�cation of the areas with
initial symptoms to prevent the disease from spreading over the entire �eld.

While this review focuses on disease detection, hyperspectral imaging has
potential to detect other parameters, which in�uence the plant health, reliably
on di�erent scales. Mirik et al. (2006) investigated changes in the spectral
re�ectance of wheat plants during greenbug infection on canopy scale in both
greenhouses and �elds. They were able to determine characteristic changes in
the spectral signatures of the wheat plants during greenbug infection. Multiple
tested spectral indices showed high correlation with greenbug damaged wheat
as well, allowing an easy detection of greenbug infection on wheat canopies
through hyperspectral imaging. Hyperspectral imaging found use as well to
detect abiotic stress factors, such as drought stress (Winterhalter et al. 2011),
or estimate plant biomass directly in the �eld (Montes et al. 2011).

1.2.5 Advanced data analysis: from hyperspectral data to informa-

tion on plant health

The three-dimensional nature of hyperspectral datacubes makes manual pro-
cessing of the high density information within hyperspectral imaging data not
feasible for modern applications. This leads to the application of modern data
analysis methods to extract relevant information from the large number of highly
correlated features. Hereby the application in plant disease detection is linked to
scale-dependent features on speci�c bands, preventing established data analysis
techniques on single bands. Furthermore, hyperspectral datasets of time-series
measurements to detect biotic and abiotic stresses generates large amounts of
high-dimensional data (up to terabytes scale within high-throughput settings)
(Furbank and Tester 2011, Mahlein 2016. Wahabzada et al. 2016, Thomas et
al. 2018).
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Figure 1.7: Powdery mildew infested canopy of barley cultivar Grace. Powdery
mildew infestation can be observed in the pseudo RGB image (left). After
application of Simplex Volume Maximization, a false color image (right) was
created based on the abundance level of one archetype with high relevance
for powdery mildew symptoms. Hyperspectral imaging was performed under
greenhouse conditions with arti�cial light sources (di�use light; Specim V10
hyperspectral sensor).

Despite this challenges it was possible to adopt e�cient data analysis meth-
ods, which have been established for image analysis within the remote sensing
community(Fig. 1.7; Moshou et al. 2005, Plaza et al. 2009, Ustin and Gamon
2010, Rumpf et al. 2010, Behmann et al. 2014, Wahabzada et al. 2015a). A
main goal is the dimensionality reduction of the hyperspectral data in order to
enable an easy to interpret visualization of the results, which allows researchers
with di�erent backgrounds su�cient access to the results to combine their ex-
pertise for plant phenotyping. Common methods range from relatively simple
spectral vegetation indices which work by manually selecting the most rele-
vant bands in the dataset to investigate the required parameters of the dataset,
to advanced machine learning approaches (reviewed by Behmann et al. 2015a).
Machine learning approaches are generally di�erentiated into supervised and un-
supervised methods, depending on the requirement of annotated training data.

Spectral vegetation indices Spectral vegetation indices (SVIs) are an estab-
lished method in remote sensing to relate plant-physiological parameters with
airborne hyperspectral data (Jensen 2006, Govender et al. 2009). In general
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principle SVIs are created by researchers who select speci�c bands to a single
index that correlates with speci�c changes in the plants physiological state and
metabolism. Over the years an immense variety of SVIs for di�erent applica-
tions has been developed within numerous studies. One of � if not the � most
common SVI is the Normalized Di�erence Vegetation Index (NDVI) (Rouse et
al. 1974). It is related to biomass and plant vitality by correlating with the
greenness of measured plants and used in remote sensing to di�erentiate vege-
tation and soil (Bravo et al. 2003), but also applied in plant stress detection.
Devades et al. (2009) did investigate ten di�erent vegetation indices in order
to separate yellow rust, stem rust and leaf rust. While no single SVI was ideal
for the separation it could be shown, that a series of multiple SVIs was able to
identify speci�c rust types reliably. Finding new SVIs has become a challenging
process, due to the increasing complexity of possible candidates. Through the
usage of �lter algorithms to identify relevant bands within the given dataset
in order to perform an in-depth evaluation with a reduced computational load
allowed Mahlein et al. (2013) to establish scale-speci�c indices for the detection
and identi�cation of sugar beet diseases.

While speci�c spectral vegetation indices have sharp limitations in their
application to speci�c stress factors they o�er the advantage of only considering
few, distinct wavelengths in the analysis. This leads to low computational load
when SVIs are applied to large datasets, but also has the risk of the SVIs giving
misleading results when the dataset includes new factors, such as new stress
factors or di�ering environmental conditions.

Supervised methods Supervised data analysis models classify each data-
point within a given scope � the can be applied on image or pixel level � based
on a given set of training data for the separate classes. For the detection of plant
stress, the pixel based approach is generally used and assigns each pixel within
the hyperspectral image to one of the provided classes, such as �healthy� or
�disease symptom�. Another possible application is the use of regression models,
which � contrary to classi�cation � derive continuous predictions (Bishop 2006).

The spectral angle mapper (SAM) is a commonly used supervised data anal-
ysis method, which assigns pixel into classes based on the cosine range in the
feature space relative to the training data (Kruse et al. 1993). The advantage
of cosine distance as base for the classi�cation is that it removes scale di�er-
ences, thereby compensating for factors � such as varying illumination intensity.
Spectral angle mapper was used by Mahlein et al. (2012) to detect and localise
di�erent sugar beet leaf diseases. Hillnhütter et al. (2011, 2012) used SAM to
identify Rhizoctonia-caused root rot and Heterodera schachtii infection. Li et al.
(2014) could detect Citrus canker through the application of SAM on airborne
measurements. Bauriegel et al. (2011a) successfully detected Fusarium head
blight on wheat ears.

Partial-Least Squares Regression is another common method for hyperspec-
tral image analysis and well suited for cases where large numbers of highly
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correlated bands are found within the dataset. Zhao et al. (2016) quanti�ed
the progressing degradation of chlorophyll and carotenoids on plants infected
with angular leaf spot disease, visualizing the spatial distribution through the
application of Partial-Least Squares Regression on hyperspectral images of the
plants.

Support vector machine (SVM) is based on the principle of empirical risk
minimization, allowing it to reliably separate datapoints in high-dimensional
datasets into di�erent classes with comparatively low amounts of training data
(Cortes and Vapnik 1995). AVM has been shown to perform exceptionally well
for remote sensing applications (Melgani and Bruzzone 2004). Rump et al.
(2010) was able to apply SVM on close range measurements of foliar diseases,
showing that the classi�cation with SVM could identify disease e�ects before
they became visible to the human eye.

Probabilistic topic models are a variant of classi�cation, which uses not only
single classes but small numbers of topics. Thereby, they are highly e�cient
in identifying hidden topics in large datasets, such as document selections, al-
lowing the organisation of large datasets (Blei 2012). Wahabzada et al. (2012,
2016) applied this method on hyperspectral datasets by viewing hyperspectral
images as �documents� and spectral signatures as �words�, allowing a repre-
sentation of relevant data (plant stress, healthy tissue) as pairs of wavelength x
re�ectance pairs. This approach proved to be successful to detect drought stress
(Wahabzada et al. 2012) and di�erent barley foliar diseases (Wahabzada et al.
2016).

Unsupervised methods Unsupervised methods o�er the advantage of not
requiring labelled training data in order to separate pixels of given images within
a dataset into di�erent classes. As the generation of training data often requires
manual input and training datasets are only fully applicable to data which were
measured under similar conditions and contain similar measurement targets,
the use of unsupervised data analysis methods is desirable for practical use
and the processing of multiple datasets with varying parameters. Unlike super-
vised methods however, unsupervised methods do not operate on the baseline
of training data when it comes to determining classes. This can lead to signif-
icant di�culties for disease detection in early stages when other factors within
the images lead to higher variability within the dataset then the di�erences of
healthy plant tissue and symptomatic tissue. Data clustering through unsuper-
vised methods is thereby often applied as a preprocessing step in order to derive
a more comprehensible interpretation of a dataset with reduced variables, which
can then be interpreted through the operator.

An example for an unsupervised data analysis method is the principal com-
ponent analysis (PCA), which sorts data based on their variability within given
datasets, thereby reducing the variance and lowering the dimension of the
dataset (Bishop 2006). Thomas et al. (2017) detected and quanti�ed pow-
dery mildew symptoms on re�ectance and transmittance hyperspectral images
of barley leaves through the application of PCA on the respective datasets.
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They were able to derive the respective changes through the correlation with
the �rst and second principal component, as within the highly controlled labo-
ratory setup the di�erences between healthy and symptomatic plant tissue were
the factors with the most variance within the dataset. The above example shows
the application of PCA onto a relatively simple dataset. Within more complex
datasets the inert di�culties when working with PCA become apparent, as the
principal components do not directly correlate with the physical reality within a
given dataset. Instead, abstract features based solely on variance are extracted,
which can make a correlation of PCA results with the desired factors within the
images di�cult (Mahoney and Drineas 2009).

Simplex volume maximisation (SiVM) is a data-driven approach, which ex-
tracts interpretable data from the given datasets (Thurau et al. 2012). It has
the advantage that it doesn't rely on abstract features � like the PCA � but
instead uses the spectral signatures as archetypes to generate a new interpre-
tation of the data with reduced dimensionality. This allows SiVM to represent
large hyperspectral datasets in reduced dimensionality while still presenting the
data based on real data points, allowing for an easier interpretation. Kersting
et al. (2012a) showed that the impact of extreme signatures within SiVM can
be quanti�ed through the application of probabilistic interference. This tech-
nique was successfully applied by Whabazada et al. (2015a) and Kuska et al.
(2015) to extract disease signatures of di�erent plant diseases, as well as com-
puting the footprints of plants over the time based on time-series hyperspectral
images (Kersting et al. 2012b, Römer et al. 2012, Wahabzada et al. 2015a).
An example of SiVM being applied on a hyperspectral image of barley plants
with powdery mildew symptoms is shown in �gure 1.7. The pseudo RGB rep-
resentation of the hyperspectral image (left) allows the user to determine the
presence of powdery mildew symptoms with the naked eye, but a determination
of the disease severity requires expert knowledge. The representation of a SiVM
archetype with high relevance for powdery mildew symptoms (right) meanwhile
highlights areas with powdery mildew symptoms and can be used to quantify
the amount of pixels showing symptomatic tissue based on the abundance val-
ues per pixel for the selected archetype. Thereby, it is possible to perform an
automated and objective assessment of disease severity.

Perspectives in data analysis Modern data analysis methods have great
potential for extracting relevant and easy to interpret information out of hyper-
spectral datasets. However, it has been shown that this is a challenging process,
which increases in di�culty the more variance is present within given datasets.
While hyperspectral data under stable conditions can be transformed into the
required classes � such as healthy and symptomatic tissue in plant disease de-
tection � with relatively low di�culty this task becomes increasingly complex
the more non experiment speci�c variance is added in the dataset. This can be
the case through inert variance of datacubes through factors like environmental
conditions or plant architecture on canopy scale, as well as factors which be-
come relevant within the entirely of an investigated set of datacubes � such as
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di�erences in respective images of time series measurements or measurements
on multiple scales.

In order to keep up with the rapidly developing sensor technologies and
future applications it is important to expand and evolve the scope of current data
analysis as well. One factor which is so far often overlooked is taking the given
spatial information within a hyperspectral datacube into account (Behmann et
al. 2015). Referencing the given changes in the spectral pro�les of selected pixels
with their location within an image by patch-based feature descriptors or texture
�lters has potential to di�erentiate if these changes are relevant for the current
application and thereby increase accuracy of the data analysis. The correlation
of 3D models of plant canopies with hyperspectral datacubes could be used to
negate the variance which is introduced through the plant architecture within
canopy images (Roscher et al. 2016). This process has the potential to increase
cross scale compatibility of data analysis methods drastically.

The inclusion of multi-scale data is an important aspect for the generation
of future prediction models within plant management. The combination of data
from di�erent sensors and scales in order to increase the amount of information
gathered in order to increase accuracy. Environmental data and general data
about plant growth and nutrient gradients within the soil can be gathered from
UAV and satellite based sensors, whereas close range sensors on ground based
vehicles can give high resolution hyperspectral images for early disease detection,
which can be correlated with disease speci�c spectral signatures from fungi under
the microscope as shown in Bohnenkamp et al. (2018) (Fig. 1.6).

Such powerful models include vast amounts of data, which are not feasible
to be annotated manually. Thereby, unsupervised or semi-supervised methods
will become increasingly important in the future. In recent years deep learning
has shown to outperform other data analysis methods when it comes to the
application on such di�cult tasks (LeChun et al. 2015). Based on neural net-
works deep learning uses huge nets of billions of neurons to bene�t from large
amounts of training data. While used extensively for multiple applications they
have not yet been applied to the detection of plant diseases in hyperspectral
imaging. Using these approaches has a high potential for the detection of new
plant-pathogen interactions in early development stages, as they do not rely on
input from the user � which requires the user to be able to recognise relevant
areas within the datacube � but obtain this information based on the raw data
itself.

1.2.6 Conclusion and prospect

It has been shown that hyperspectral imaging can be performed on di�erent
scales, from the tissue level to the canopy level. This o�ers several new ap-
plications for plant phenotyping and precision agriculture. Nevertheless, the
scalability between hyperspectral close-range-, greenhouse-, �eld- and remote
imaging has to be investigated in more detail in future research. From the
technical side, a calibration of camera systems and di�erent kind of measuring
setups is essential for a precise mapping of spectral information (Behmann et al.
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2015b). The 3D structure of the object of interest in�uences the information in
hyperspectral data as well. Thus, optical sensing bene�ts from combined hyper-
spectral and 3D measuring approaches (Wahabzada et al. 2015b; Behmann et
al. 2016; Roscher et al. 2016). Another important factor in�uencing the infor-
mation content of hyperspectral images, is the spatial resolution and the number
of mixed pixels. This parameter strongly depends on the distance between the
sensor and the object; thus, airborne or space-borne, far-range systems have
lower spatial resolution compared to near-range or microscopic systems. Sen-
sors with a spatial resolution of about 1 m are hardly suitable for the detection
of single symptoms or diseased leaves and plants; here proximal sensor platforms
are preferable (Oerke et al. 2014). The spatial resolution has a strong in�uence
on the detection of plant diseases or plant�pathogen interactions (Mahlein et al.
2012). Increasing the distance between sensor and plant is challenging for the
speci�city and sensitivity. Nevertheless, identi�ed characteristic hyperspectral
signatures seem to be transferable on di�erent scales. This enables a new ap-
proach for basic research in the laboratory and in the greenhouse to analyze the
plant phenotype and genotype under di�erent conditions and transferring this
knowledge to remote sensing methods. Future research also has to consider im-
proved sensor platforms and vehicles for �eld and high-throughput applications
more intensively (Polder et al. 2014; Sankaran et al. 2015; Walter et al. 2015;
Virlet et al. 2017). It is expected that new developments in the �eld of robotics
will speed up this process.
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2 Objectives of this thesis

The overall aims of this study were: (1) To evaluate transmission-based hyper-
spectral imaging and compare it with re�ection-based imaging for the detection
and quanti�cation of plant disease symptoms on leaf scale. (2) The development
of high-throughput � canopy scale � measurement systems to promote hyper-
spectral applications in agricultural practice and explore early disease detection
on canopy scale. (3) To investigate the compatibility of hyperspectral data from
di�erent scales.

Simultaneous re�ectance and transmittance hyperspectral datasets of time-
series measurements from di�erent pathogens were performed with the Hyper-
ART system in order to evaluate the e�ciency of re�ectance and transmittance
data for early pathogen detection and quanti�cation on leaf level. Addition-
ally, a high-throughput hyperspectral measurement system and measurement
protocol for the rapid measurement of crop plants under �eld-like conditions
in Mini-Plots within the greenhouse were developed. The data of re�ectance
and transmittance were processed and correlated on leaf level, which allowed a
detailed evaluation of the performance of transmission based measurements for
the detection and quanti�cation of barley diseases with di�erent plant-pathogen
interactions � permitting greater insight into this relatively unknown research
area. Furthermore, the direct comparison between datasets of powdery mildew
infected barley plants on leaf scale under laboratory conditions and canopy scale
under greenhouse conditions allowed a direct estimation of hyperspectral data
compatibility on di�erent scales.

The main objectives were to:

� Design of a measurement setup to acquire hyperspectral datasets for re-
�ection and transmission based images of di�erent diseases to record the
changes to the plants spectral signatures during their respective plant-
pathogen interactions (Chapter 3).

� Determine suitable means of data analysis for both re�ectance and trans-
mittance hyperspectral images of the di�erent barley diseases (Chapter
3).

� Compare the performance of re�ectance and transmittance data for the
early detection and quanti�cation of the examined diseases (Chapter 3).

� Develop a high-throughput measurement system for disease detection on
crop plants on canopy scale under greenhouse conditions (Chapter 4).

� Establish a measurement protocol for the canopy based measurement un-
der greenhouse conditions that permits high-throughput time-series mea-
surements without being in�uenced by environmental conditions (Chapter
4).
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� Find a suitable data analysis pipeline for early disease detection of canopy
scale hyperspectral images, which is robust enough to work despite the
increased data complexity (Chapter 4).

� Compare the results of manual investigation of spectral signatures and
data analysis procedures on leaf and canopy scale in order to evaluate
data cross-scale compatibility (Chapter 3 and 4).
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3 Evaluation and possible uses of combined re-

�ectance and transmittance measurement on

leaf scale

3.1 Powdery mildew development on inoculated barley

leaves

Chapter 3.1 has been published:

Thomas S1, Wahabzada M1, Kuska M1, Rascher U2, Mahlein A-K1 (2017)
Observation of plant-pathogen interaction by simultaneous hyperspectral imag-
ing re�ection and transmission measurements. Functional Plant Biology 44(1),
23-34.https://doi.org/10.1071/FP16127

1INRES-Phytomedizin, University Bonn, Bonn, Germany
2IBG2: Plant Sciences, Forschungszentrum Jülich GMBH, Jülich, Germany

Changes made in the thesis chapter compared to the original publi-

cation:

Figures have been slightly optically improved, without changing their content.
Abbreviations have been adapted in order to provide a united layout over the
course of the thesis.

Authors contribution

Stefan Thomas, Anne-Katrin Mahlein, and Uwe Rascher designed the study and
drafted the manuscript. Stefan Thomas, Matheus Kuska, Mirwaes Wahabzada,
Anne-Katrin Mahlein, and Uwe Rascher interpreted the experiments. Stefan
Thomas mody�ed the HyperArt measurement setup, performed the experiments
within the study and carried out manual and statistical analysis. Stefan Thomas
and Mirwaes Wahabzada performed the data mining methods for automated
hyperspectral data analysis.
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3.1.1 Abstract

Hyperspectral imaging sensors are valuable tools for plant disease detection and
plant phenotyping. Re�ectance properties are in�uenced by plant pathogens
and resistance responses, but changes of transmission characteristics of plants
are less described. In this study we used simultaneously recorded re�ectance
and transmittance imaging data of resistant and susceptible barley genotypes
that were inoculated with Blumeria graminis f. sp. hordei to evaluate the added
value of imaging transmission, re�ection and absorption for characterisation of
disease development. These datasets were statistically analysed using principal
component analysis, and compared with visual and molecular disease estima-
tion. Re�ection measurement performed signi�cantly better for early detection
of powdery mildew infection, colonies could be detected 2 days before symptoms
became visible in RGB images. Transmission data could be used to detect pow-
dery mildew 2 days after symptoms becoming visible in re�ection based RGB
images. Additionally distinct transmission changes occurred at 580�650 nm for
pixels containing disease symptoms. It could be shown that the additional infor-
mation of the transmission data allows for a clearer spatial di�erentiation and
localisation between powdery mildew symptoms and necrotic tissue on the leaf
then purely re�ectance based data. Thus the information of both measurement
approaches are complementary: re�ectance based measurements facilitate an
early detection, and transmission measurements provide additional information
to better understand and quantify the complex spatio-temporal dynamics of
plant-pathogen interactions.

3.1.2 Introduction

When light interacts with a plant it comes to a distinct set of physical processes,
namely re�ection, transmission and absorption. A part of the incoming light is
re�ected from the surface of the plant and after internal backscattering, some
light is absorbed by plant tissue and another part of the light is transmitted
through the plant tissue (Vogelmann 1993). In addition, there is internal scat-
tering of the re�ected and transmitted light involved while it interfuses the plant
tissue. The portion of incoming light that is re�ected, transmitted or absorbed
varies with the wavelength of the incoming light and depends on the structural
and chemical composition of a plant (Knipling 1970; Woolley 1971). This means
that together, the structure of the leaf surface and the composition of the plant
tissue produce a characteristic spectral pro�le (Vogelmann and Gorton 2014).
Plant pigments, such as chlorophyll, carotenoids or anthocyanins, have well
known absorption patterns in the visible range of the electromagnetic spectrum
(Blackburn 2007). When a plant is subjected to stress, such as pathogen attack,
metabolic processes and the cellular structure of a plant change. This leads to
an altered spectral pro�le of the plant and provides a possibility to detect plant
diseases through observation of the plants spectral characteristics (Bock et al.
2010; Mahlein et al. 2012).

Measuring the re�ectance of plant material with hyperspectral sensors has
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already been shown to be an e�ective tool to detect stress in plants (Carter
and Knapp 2001; Rascher et al. 2011;Yuan et al. 2014). Furthermore, multiple
studies have demonstrated that it is possible to identify speci�c plant diseases
through hyperspectral re�ectance measurement (Zhang et al. 2002; Mahlein
et al. 2010; Hillnhütter et al. 2012). Pathogen-speci�c changes in the plant's
spectral pro�le could be observed on the respective model plants. Mahlein
et al. (2010) were able to identify three di�erent fungal diseases (Cercospora
leaf spot, powdery mildew and rust) on sugar beet through a combination of
di�erent spectral vegetation indices. Following investigations established disease
speci�c vegetation indices for disease detection based on hyperspectral imaging
(Mahlein et al. 2013). This enabled a classi�cation of sugar beet leaf infections
with an accuracy of over 90%. Zhang et al. (2002) showed that late blight
in tomatoes could be readily detected through principal component analysis
(PCA) and cluster analysis, whereby the disease symptoms correlated with the
second principal component (PC). An important task is the characterisation
of disease susceptibility or resistance reactions through sensor observations of
plant-pathogen interactions on di�erent plant genotypes (Kuska et al. 2015;
Leucker et al. 2016a, 2016b; Mahlein 2016). Di�erent resistance mechanisms
of barley (Hordeum vulgare L.) against powdery mildew (caused by Blumeria
graminis f. sp. hordei ; Bgh) are well known, and work over several biochemical
pathways. The resistance mildew locus o (mlo) confers resistance through fast
papillae formation, which inhibit the Bgh conidium to penetrate the epidermal
cell (Jørgensen 1977; Bhat et al. 2005). In contrast, Mla gene-based resistance
induces a hypersensitive reaction in epidermal cells, which are penetrated by
Bgh (Jørgensen and Wolfe 1994; Wei et al. 2002; Hückelhoven and Panstruga
2011).

Spectral observations of plant�pathogen interaction are performed through
hyperspectral sensors that measure re�ectance signatures of plants. In this
case, both imaging and non-imaging sensors are available (West et al. 2003;
Sankaran et al. 2010; Mahlein 2016). Hyperspectral imaging sensors provide
a spectral pro�le for each pixel of the measured image in three-dimensional
hyperspectral data cubes. Technical solutions for re�ection and transmission
with non-imaging hyperspectral sensors are well established. Those sensors use
spot measurements from both sides of a certain area simultaneously. However,
this method is not applicable for current hyperspectral imaging sensors and has
the disadvantage that only a small area of the leaf can be assessed (Bergsträsser
et al. 2015). Through the development of the HyperART measurement setup by
Bergsträsser et al. (2015), simultaneous hyperspectral imaging measurements
of re�ection and transmission are possible. This is an advantageous progress for
a detailed, non-invasive and objective assessment of di�erent plant genotypes
and plant�pathogen interactions in breeding processes, which aim to establish
pathogen resistant varieties. In theory, the addition of new information gathered
by transmission measurements could increase the precision of re�ection based
measurements.

Although hyperspectral measurement of re�ected light has been investigated
in multiple studies, few studies are available on the possible use of transmitted
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light for the identi�cation and determination of abiotic and biotic plant stress
(Bergsträsser et al. 2015; Kim et al. 2015). The measurement of transmission
shows a reduced noise ratio compared with the re�ection measurement in the
approach by Bergsträsser et al. (2015). In that study investigating Cercospora
leaf spot disease on sugar beet plants, a combination of re�ectance and trans-
mittance data turned out to be best suited for di�erentiating between infected
and healthy leaf tissue. Re�ected light is mainly in�uenced by the upper epi-
dermis of a leaf, the strength of the e�ect is depending on the re�ected lights
wavelength. Meanwhile, transmitted light has interacted with the whole-leaf
tissue, giving integrated information across all cell layers of the leaf. Thus it
can be expected that re�ectance and transmittance data have complementary
information. This leads to the hypothesis that a combination of re�ection and
transmission measurements can provide a more precise model for identifying
plant pathogens and for evaluating di�erent genotypes.

The aim of the present study was to investigate the potential of transmis-
sion measurements to analyse plant�pathogen interactions. The study was per-
formed with the model system barley (Hordeum vulgare L.) � powdery mildew
(caused by Bgh) in order to evaluate if simultaneous re�ection and transmission
measurement provides an improvement for the detection and identi�cation of
biochemical and structural changes during pathogenesis. Powdery mildew infec-
tion starts on the leaf surface then later a�ects the whole-leaf tissue, thus is well
suited for the evaluation of re�ectance and transmittance based measurements.
The development of Bgh on a susceptible barley wild type and a mlo3 -based re-
sistant genotype was investigated through time-series measurements. A dataset
for both re�ectance and transmittance information was generated using the Hy-
perART hyperspectral imaging setup, which uses a mirror system to allow si-
multaneous measurement of re�ection and transmission in wavelengths between
400 and 2500 nm (Bergsträsser et al. 2015). The additional bene�t of trans-
mission measurements was investigated and evaluated based on this exhaustive
dataset using further statistical analysis by PCA.

3.1.3 Material and Methods

Plant cultivation and pathogen material

Hordeum vulgare L. cv. Ingrid wild type (WT; susceptible) and the correspond-
ing near-isogenic line M.C. 20 (including mlo3 gene based resistance; further
referred to as mlo3, or resistant genotype) were used for the experiments (Hinze
et al. 1991). The plants were grown in TEKU VQB 7 × 7 × 8 cm pots (Pöppel-
mann) and �lled with commercial substrate (Klasmann-Deilmann GmbH) under
greenhouse conditions at 23/20°C (day/night) 60% RH and daylight period of
16 h. At growth stage 12 according to BBCH scale (Hack et al. 1992) fungicide
Vegas (active agent 53.1 g L�1 cy�ufenamid, BASF) was applied to keep control
plants healthy. For measurements plants were relocated in the laboratory with
a daylight period of 16 h and 22/20C (day/night), where the second leaf of each
plant was �xed within a custom plastic frame. Six plants per genotype were
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inoculated with Bgh isolate K1 (Hinze et al. 1991) while six control plants per
genotype remained untreated. The inoculation was performed through gently
shaking Bgh isolate K1 infected plants over the plants.

Re�ection and transmission hyperspectral imaging measurement

Simultaneous measurements of re�ection and transmission of individual leaves
were performed with the HyperART spectral imaging system (Bergsträsser et
al. 2015; patent no.: DE 102 012 005 477). A detailed description of the mea-
surement setup is published in work by Bergsträsser et al. (2015; see Fig. 1 in
the referenced article for technical drawing).The system was modi�ed to achieve
better image quality for barley leaves. Brie�y, the distance between camera and
mirror setup was set to 600 mm in order to improve the spatial resolution of
the pictures, achieving a pixel size of 0.19 mm. All leaves were measured in
a time series experiment from 1 day before inoculation (dbi) to 11 days af-
ter inoculation (dai) in the visible range (VIS) and in the near infrared (NIR)
range (400�1000 nm). For each measurement a 99% re�ectance white standard
(Spectralon Labsphere Inc.) and a white di�user lambertian transmission foil
(Zenith Polymer ~50% transmission, SphereOptics GmbH) was acquired, before
measuring the leaf sample. These measurements served as white references for
re�ection and transmission images for the image normalisation (Bergsträsser et
al. 2015). Wavelength-dependent di�erences in the percentage of the re�ected
and transmitted light of the two white references were taken into consideration
during the normalisation process. With each measurement a dark current im-
age of the internal camera noise was measured by closing an internal camera
shutter. An example of spectral pro�les for re�ection and transmission and the
according hyperspectral images of healthy barley leaves in RGB bands is shown
in Fig. 3.1. Through this setup it is possible to observe the full spectrum of
incoming light interacting with the leaf in form of re�ection, transmission and
absorption.

Data analysis of the hyperspectral images

The re�ectance and transmittance of the images was calculated relative to the
respective white reference standard with ENVI 5.1 + IDL 8.3 (ITT Visual In-
formation Solutions). The normalised images were smoothened using the Sav-
itzkyGolay �lter (Savitzky and Golay 1964) in order to reduce noise in the
hyperspectral images. As the images had a high noise in the extremes of the
measured range only data from 450�1000 nm was analysed. The background
was masked out and pixels containing the leaves were manually extracted for
both, test and control plants, leading to ~1000�8000 pixels per leaf used in
statistical analysis. All signatures/vectors were normalised to have the unit Eu-
clidian norm, being treated as points on a high dimensional unit sphere (Dhillon
and Modha 2001; Leucker et al. 2016b). This allows to capture the vectors di-
rection while mitigating e�ects of varying re�ectance values and allowing for
more robust data clustering. The motivation behind this was to reduce a high,
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Figure 3.1: (a) Spectral signatures of re�ectance and transmittance of a healthy
leaf of barley cv. Leibniz plants, data are expressed as relative values. (b)
Hyperspectral image of barley. The HyperART setup (patent no.: DE 102 012
005 477) allows one hyperspectral camera to gather re�ection and transmission
data of a sample at the same time as the camera view is split between the
according mirrors. The interaction of all parameters (re�ection, transmission,
absorption) between incoming light and plant tissue can be observed.
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Table 2: Percentage of explained variance of principal component (PC) eigen-
vectors for the PC analysis for susceptible wild type (WT) and resistant mlo3
genotypes

PC 1 PC 2 PC 3
WT re�ectance 86 6 3
WT transmittance 76 7 2
mlo3 re�ectance 77 5 3
mlo3 transmittance 77 7 2

non-biologic variance in the re�ectance data.
For further interpretation PCA was performed. PCA is a statistical method

in which the data is transformed via the introduction of new axes along the
greatest variance in the data (Wold et al. 1987). It is an unsupervised method
that is often used for exploratory data analyses and tasks, such as data com-
pression, noise and redundancy removal. In order to perform PCA, the spectral
data cubes of all samples from a genotype were transformed into dense wave-
length pixel matrixes and fused. PCA was implemented per genotype on the
entire matrix, containing signatures of control and inoculated plants. The �rst
three principal components (PCs) with the largest eigenvalues were selected for
further analysis (Table 2).

All performed experiments, described in the material and methods, were
repeated twice, using di�erent datasets for the PCA in order to con�rm the
results.

Disease severity estimation

The disease severity of the test plants was estimated based on the hyperspectral
re�ectance images. In the PCA each pixel of the image is assigned a speci�c
value in the PC, this value is similar for pixels in the same class. Based on the
results of the PCA the values of healthy and inoculated pixels were assessed
and a threshold was set to decide which pixel represent powdery mildew in-
fected tissue. The percentage of pixels with powdery mildew infection was then
calculated automatically.

Furthermore the percentage of powdery mildew DNA compared with total
DNA of the barley leaves was measured through quantitative real time PCR
(qPCR). The result was compared with the PCA based estimation of the same
leaves. As the qPCR is a destructive method the comparison was handled as
separate experiment with 18 leaves in total investigated (six leaves each at the
time points 3, 6 and 9 dai). The leaves were measured with the HyperArt system
according to the measurement protocol described above. Immediately after mea-
surement the measured part of the leaf was removed and stored at -80°C for DNA
extraction. DNA extraction of the leaves was performed with the DNeasy Plant
Mini Kit (Qiagen) according to the manufacturer's instructions. The DNA of a
known amount of powdery mildew spores was extracted with the same protocol
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Table 3: PCR primers and probe for quantitative real-time PCR of powdery
mildew gdp gene

Designation Sequence
Powdery mildew gdp forward primer 5´-tgcctgtaatcaagtaacaacg-3´
Powdery mildew gdp reverse primer 5´-tgaggaaagaggggaagaag-3´
Powdery mildew gdp qPCR probe 5´-agattcagcaaccccaccatccgttat-3´

to serve as reference for the following qPCR. The qPCr was performed using the
StepOnePlus TM RealTime PCR System (ThermoFisher Scienti�c) and Taq-
Man Universal PCR Master Mix (Applied Biosystems). The target DNA was an
87 base pairs area of the powdery mildew speci�c glyceraldehyde-3-phospahte
dehydrogenase (gdp) gene (Christiansen et al. 1997). Speci�c information on
primers and qPCR probe are provided in Table 3.

Microscopic investigation

Leaf tissue samples for histological analysis were prepared from non-infected and
Bgh infected Ingrid WT plants 6 dai, as well as non-inoculated mlo3 plants with
necrotic spots. Specimens were �xed with 8% paraformaldehyde and 8% glu-
taralaldehyde in 0.2 M sodium cacodylate bu�er (pH 7.3) under vacuum for 4 h
at room temperature. Samples were washed for 20 min within cacodylate bu�er.
The washing step was repeated three times before the samples were dehydrated
in a graded ethanol series and embedded in London Resin White medium. The
embedded samples were semi-thin sectioned on an ultra-microtome (Reichert
Ultracut E, Leica Microsystems) and stained with 1% toluidine blue. Stained
samples were observed using a Leitz DMR 6000b photomicroscope. Images
were recorded with a digital camera (JVC, Ky-F75U) by using the Discus 4.6
(Technical O�ce Hilgers) software.

3.1.4 Results

Re�ectance and transmittance pro�les of susceptible and resistant

genotypes

The �rst visible symptoms of powdery mildew developed 6 dai. From that day
until 11 dai typical powdery mildew symptoms appeared on all inoculated leaves
of the susceptible Ingrid WT genotype. However, as indicated in Fig. 3.2, the
disease severity di�ered between the investigated individual leaves, ranging from
~10 to 80% at individual days. The observed variance in disease severity between
di�erent leaves is a natural e�ect when inoculating by shaking infected plants
over the sample leaves. Due to air movements di�erent amounts of spores will
come into contact with the leaves, this e�ect is similar to powdery mildew infec-
tion under �eld conditions. Neither the inoculated plants of the mlo3 genotype
nor the control plants of both genotypes showed any powdery mildew symptoms.

The PCA based estimation of disease severity shows a correlation of over
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0.72 with the qPCR based measurement of the powdery mildew DNA (Fig. 3.3).
Total values di�er in the case of strong powdery mildew infestation. However,
this was expected, as the powdery mildew is only present in the epidermis layer
of the leaf, which is measured by hyperspectral imaging. Meanwhile the qPCR
measures the total amount of DNA of the leaf, including lower layers of the leaf,
which are free of powdery mildew infection.

Fig. 3.4 displays the mean values of all inoculated leaves from susceptible
Ingrid WT per day showed only minor changes over the course of the experi-
ment. However, when the standard deviation (std) is taken into account, distinct
changes in the re�ectance spectral signature become visible during pathogenesis
(Fig. 3.4). The powdery mildew infestation lead to a characteristic raise in the
spectral re�ection signature, which is prominent in the range between 550 and
680 nm. Spectral signatures of the transmission showed less prominent changes
(Fig. 3.4). Of those, the most noticeable e�ect was a slight raise of the spectral
signature in the range from 580 to 650 nm during the later pathogenesis, when
larger symptoms had developed (8�10 dai). It is noteworthy that in both cases
the std indicates the greatest variability of the data in the near infrared from
780 to 950 nm. The resistant mlo3 genotype and the non-inoculated control
plants of both genotypes showed the highest variability in the near infrared
range of the spectrum, which was present consistently throughout all measure-
ments during the experiment (Fig. 3.4). The re�ectance and transmittance
pro�les of the resistant mlo3 genotype did not change over the course of the
experiment (Fig. 3.4). Thereby maintaining typical spectral pro�les for barley
leaves (Fig. 3.1) over the course of the experiment, which was also observed for
the control plants.

Analysis of powdery mildew in early stages through PCA

The �rst analysis of the hyperspectral datasets via mean values and standard
deviations showed that the variance in the dataset is the most reliable factor for
disease detection. Thus PCA analysis was performed in order to get a better
representation of the biological variance. The eigenvalue of the PCs showed that
the �rst and second PC were suitable for further investigation, while eigenvalues
of higher PCs tended towards zero.

The �rst PC had a strong correlation with the re�ection- and transmission-
wavebands from 550 to 700 nm of the spectral signature, which was related to
powdery mildew symptom development (Fig. 3.5a). The comparison of the
RGB image and the false colour image, representing the values of the �rst PC
per pixel, illustrated that the �rst PC is highly correlated with disease symptoms
on barley leaves whereas the leaf structure showed no correlation (Fig. 3.5b).

The second and third PCs were di�cult to interpret as they correlated posi-
tively and negatively over several wavelengths of the spectral pro�le (Fig. 3.5a).
The second PC, when compared with the RGB image of the same leaf area, cor-
relates strongly with the structure of the represented leaf (Fig. 3.5b). However,
it also exhibits correlation with disease symptoms during the later stages of the
disease progression, whereas the third PC with its strong correlation in the NIR
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Figure 3.2: (a) Disease severity expressed as percent diseased leaf area for each
barley leaf of susceptible line Ingrid wild type (WT) over the course of the
experiment. Disease severity was estimated through the values of the second
principal component in the statistical analysis of the re�ection data, were every
pixel with values over a threshold of 0.04 was classi�ed as disease symptom. (b)
RGB images of a healthy control leaf and a powdery mildew inoculated leaf (no.
3) at 3, 6 and 9 days after inoculation.
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Figure 3.3: Comparison of powdery mildew infection rating based on quan-
titative real time PCR and principal component analysis. Di�erences in total
amounts registered can be explained due to the di�erent measurement principles
(PCR measuring the total amount of plant DNA of the entire leaf; hyperspectral
imaging measuring only the surface layer, where powdery mildew is present).
The two measurement methods show a correlation of 0.72. (n = 18, measuring
period: 3, 6 and 9 days after inoculation).
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Figure 3.4: Mean spectral signatures for all measured leaves from barley cv.
Ingrid plants, inoculated with Blumeria graminis f. sp. hordei. Re�ectance and
transmittance, data are shown as relative values. Grey areas represent the std
of the mean values (n = 6).
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range of the spectrum indicated no visible correlation with disease symptoms.
These results con�rmed the earlier �ndings, that high variance in the std for
the range of the spectral signature between 780 and 950 nm was not related to
an infection with powdery mildew.

When interpreting the correlation of PCs to speci�c wavelengths in the
dataset it is important to understand that there is no �xed, maximum value
for the correlations. In the case of analysing the PCs of a hyperspectral im-
age the maxima is in general de�ned by the highest value (both positive and
negative) available in the PC, which is linked to a speci�c wavelength range.
These, for each PC speci�c, internal maxima allow an estimation which wave-
length ranges from the hyperspectral image are relevant for the variance being
explained in the a�liated principal component.

In order to investigate the importance of the �rst two PCs the pixels of the
timeline were plotted into a two dimensional grid according to their value in the
PCs, with the PCs functioning as respective x- and y-axes. These scatter plots
coincide with the observations from the false colour images. For the susceptible
Ingrid WT the second PC had only slight disease speci�c changes over time, as
the values showed minor di�erences between inoculated and control plants for
both re�ection and transmission measurement (Fig. 3.6). However, a distinct
rise for inoculated plants occurred in the �rst PC from 6 dai onwards compared
with data of control plants. The development from 6 dai onwards coincide
with the progression of powdery mildew symptoms (Fig. 3.6). The data of the
transmission measurement of the Ingrid WT line did not allow a clear correlation
to disease speci�c changes for both the �rst and second PC, even at 10 dai the
values for inoculated and control plants were not signi�cantly di�erent (Fig.
3.6).

Values of the �rst PC per pixel were applied to hyperspectral re�ection and
transmission images and illustrated as false colour image of the leaves in order
to con�rm the precision of statistical analysis for detecting disease symptoms
on the leaves (Fig. 3.7). Areas with correlating values in the �rst PC matched
with symptomatic tissue from the application of the �rst PC on the re�ectance
images, as well as with RGB re�ectance images. Meanwhile RGB transmittance
images did not allow a clear identi�cation of powdery mildew pustules. The
�rst PC applied on the re�ection dataset displayed areas with powdery mildew
infection already 4 dai, before the �rst visible symptoms appeared. The �rst
PC from the transmission dataset indicated of powdery mildew infection at 6
dai when �rst symptoms were visible in the re�ectance RGB image (Fig. 3.7).

The values of each pixel in the �rst and second PC for the resistant mlo3
genotype were very similar to the control plants of the Ingrid WT line. However,
in the later days of the experiment (6�10 dai) some pixels exhibited a similar
development in the values of the �rst two PCs as the pixels of powdery mildew
infected tissue of the Ingrid WT line (Fig. 3.6). This trend can be explained
by natural necrosis which occurred during later days of the experiment for the
plants of the mlo3 genotype (Fig. 3.8). The development of necrotic spots
was visible in both, re�ection and transmission based datasets. This distinct
change in the �rst two PCs for pixels of necrotic tissue for both re�ection and
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Figure 3.5: (a) The �rst three principal components (PCs) derived through
principal component analysis of the combined mean values for all days from
Blumeria graminis f. sp. hordei inoculated and non-inoculated Ingrid wild-
type leaves. (b) Representation of the �rst three principal components as false
colour picture in comparison with a pseudo RGB image. The pseudo RGB
image was created from the hyperspectral image, using wavelengths parameters
646, 556 and 456 nm as RGB representation.

transmission images from 6 dai onwards was also noticeable in the scatter plots
(Fig. 3.6). The second PC showed only minor di�erences over the course of
the experiment, alike the observations in the dataset of the Ingrid WT line.
The slight change in pixel values in the second PC, which represent necrotic
tissue on leaves, was inverted when comparing results from the re�ection and
transmission based datasets.

3.1.5 Discussion

The results of this study demonstrate that data gathered by transmission mea-
surement show changes in the hyperspectral pro�le of barley leaves with develop-
ing powdery mildew symptoms and provide additional information to re�ection
based measurements.

Evaluation of transmission based hyperspectral imaging

Hyperspectral transmission imaging has been recently applied for the detection
of pertroph pathogens, but so far not for biotrophic pathogens like powdery
mildew. Imaging transmission measurement demonstrated to be a promising
tool to detect Cercospora beticola infestation on sugar beet leaves (Bergsträsser
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Figure 3.6: Scatterplots of the �rst and second principal component (PC) values
for each pixel from susceptible wild type (WT) and resistant mlo3 barley leaves
in re�ection and transmission. Each circle represents a pixel of the images from
all measured barley leaves and it's scoring according to �rst and second PC of
the PC analysis.
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Figure 3.7: Re�ection and transmission images of an Ingrid wild type leaf inocu-
lated with Blumeria graminis f. sp. hordei over time. The pseudo RGB images
are compared with false colour images, which represent the value of each pixel
in the �rst principal component (PC) of the PC analysis. The pseudo RGB
image was created from the hyperspectral image, using wavelengths parameters
646, 556 and 456 nm as RGB representation. Abbreviation: dai, days after
inoculation.
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Figure 3.8: RGB images and thin sections of healthy, necrotic and powdery
mildew infested barley leaves. The healthy leaves showed a typical cell layer for
barley, in the necrotic leaves the cells had collapsed or were deformed through
all layers of the leaf (sections crossways, 200×). Powdery mildew symptoms
only showed changes in the epidermis cells, were the fungus develops haustoria
while lower cell layers remain una�ected (section lengthways, 200×).

51



et al. 2015). These workers were able to make predictions about progressed
disease symptoms, in�uencing a combined re�ectance and transmittance pro�le
of the measured plants. In their study a combination of both datasets outper-
formed analyses based on single datasets derived from re�ection or transmis-
sion measurement. This coincides with the results of the present study, which
shows the advantage of re�ection measurement in early detection of powdery
mildew. Transmission measurement allows for a sensitive discrimination of pow-
dery mildew symptoms and spontaneous necrosis, which is known to develop in
the mlo genotypes (Jørgensen 1977).

Bergsträsser et al. (2015) suggested that transmission measurements are
equally sensitive for stress detection compared with re�ection based measure-
ment. The results of this study for powdery mildew infestation coincide only par-
tially with their observations, as re�ection based analysis could detect powdery
mildew symptoms 2 days earlier then analysis based on transmission datasets.
This can be explained as Bergsträsser et al. (2015) were measuring Cercospora
leaf spot symptoms, which appear as necrotic lesions on the infested leaf (Mahlein
et al. 2012; Leucker et al. 2016a, 2016b). In contrast, powdery mildew symp-
toms develop as small, localised pustules on the leaves and the fungi only pen-
etrates the epidermis cells (Bhat et al. 2005; Dean et al. 2012; Fig. 3.8). For a
detection of spontaneous necrosis the re�ection and transmission datasets per-
formed both equally e�cient in this study. Unlike the biotrophic pathogen Bgh
spontaneous necrosis causes tissue damage through all layers of the leaf, similar
to Cercospora leaf spot symptoms.

It has been shown in several studies that light undergoes scattering, inside
the leaf. This is caused by organelles and intercellular air spaces (Vogelmann
1989). This di�use scattering of the light inside the leaf tissue is bene�cial
for the plant as light reaching the leaf surface is often re�ected back into the
leaf, providing increased light for the photosynthesis (Brakke 1994). Light from
healthy areas next to small symptoms, which are present at the epidermis layer
only, are thereby scattered di�usely while being transmitted through the cell
layers of the leaf after passing the symptomatic cell layer. This could provide
an explanation for the reduced e�ciency of transmission measurement for the
detection of biotroph pathogens. In the case of symptoms that develop in all cell
layers of the leaves, such as necrotic lesions, the e�ect of scattered light would
not be noticeable. When light is being scattered into the symptomatic area the
spectral pro�le of the light would be a�ected through the symptomatic tissue.
Based on the present results and discussion, transmission measurement is more
advantageous for detection of necrotic pathogens, which a�ect all cell layers of
a symptomatic area.

Early powdery mildew detection through hyperspectral imaging

Minor changes of re�ectance mean values over the course of powdery mildew
development (Fig. 3.4) emphasise the importance of imaging measurement over
non-imaging area measurement. Especially for pathogens with small, discrete
symptoms, detection through imaging methods is more accurate compared with
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non-imaging sensors. In this case the signal consists to a certain amount of
healthy tissue (Mahlein et al. 2012). With the use of PCA as data analysis
method it was possible to detect powdery mildew infection at a stage where the
symptom size is similar to the spatial resolution of the sensor (Fig. 3.7). Pow-
dery mildew symptoms could be identi�ed through false colour pictures of values
of the �rst PC, already at 4 dai, this is 2 days before symptoms became visible
on the RGB pictures. This is in accordance with results reported by Kuska
et al. (2015) who showed that it is possible to use microscopic hyperspectral
imaging to detect powdery mildew before the appearance of visible symptoms.
The results of the present study show that this can also be achieved on the leaf
scale in combination with advanced data analysis.

Hyperspectral data management and analysis

The large amount of available data for each pixel of a hyperspectral image makes
manual analysis only e�cient on small samples of the data. Thus e�cient data
analysis methods are required (Bauckhage and Kersting 2013; Behmann et al.
2015a; Singh et al. 2016). Earlier studies have shown that the use of disease-
speci�c indices is suitable (Mahlein et al. 2013); however, as indices are based on
only few wavebands, relevant information from the hyperspectral image might
be neglected. In order to utilise all available information within a dataset, data
mining approaches are preferable (Wahabzada et al. 2015a; Wahabzada et al.
2016).

A �rst investigation of mean values and standard deviations provides an easy
to interpret estimation of the dataset. However, with the use of mean values
the advantages of imaging spectroscopy are not applicable. Pathogen-induced
stresses usually manifest as small areas around the initial sides of pathogen
infestation on the leaves. Therefore the applied data analysis method needs to
emphasise the di�erences between the symptom speci�c spectral pro�le and the
spectral pro�le speci�c for the healthy plant. Principal component analysis, is
an excellent method for detecting the variance in a given dataset (Wold et al.
1987). It further has the advantage that it is able to work over large datasets
with reasonable e�ciency. Previous studies have already proven PCA to be an
e�cient tool for evaluating hyperspectral datasets (Rascher et al. 2007; Suzuki
et al. 2008; Bauriegel et al. 2011b; Behmann et al. 2015a) as it extracts
relevant components of the large amount of present hyperspectral data (Hamid
Muhammed and Larsolle 2003; Rascher et al. 2007). Besides PCA there are
multiple other methods available, which are based on sophisticated machine
learning methods (Behmann et al. 2015a). For application in plant phenotyping
and early disease detection machine learning methods are especially interesting,
as it is possible to train the method on a set of training data. This training can
happen both unsupervised or supervised by a researcher and allows to analyse
plant response to biotic or abiotic stress (Behmann et al. 2015a). This aspect,
and a further analysis of the re�ectance and transmittance dataset of barley will
be the subject of future research.

The present study shows that PCA permits early disease detection and has
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potential to be performed semi-automated, but there is still a problem in that
the derived PCs are di�cult to interpret. Nevertheless, a more comprehensive
view on plant physiology during pathogenesis could be approached by combining
information from di�erent kind of sensors (Berdugo et al. 2014). As mentioned
recently by Sankaran et al. (2012), the accuracy and sensitivity depend strongly
on type of data and their quality. For future experiments more advanced data
analysis methods, such as simplex volume maximisation (SIVM) should be con-
sidered (Thurau et al. 2012). SIVM represents the data as only few extreme
data points facilitating the interpretability and further processing. In this con-
text, SIVM has shown to work well for the analysis of barley plants under biotic
(Wahabzada et al. 2015a) and abiotic stresses (Kersting et al. 2012a; Römer et
al. 2012).

Hyperspectral imaging as phenotyping tool

Hyperspectral imaging can be used to non-invasively access a multitude of phys-
iologic and structural changes in plants (Fiorani et al. 2012). One interesting
trait for phenotyping is pathogen resistance (Furbank and Tester 2011; Mahlein
2016). Recent studies have shown that resistance reactions can be monitored
with hyperspectral re�ectance imaging under a su�ciently high spatial resolu-
tion (Kuska et al. 2015; Leucker et al. 2016a, 2016b).

The results of the present study indicate there is considerable potential for
screening di�erent plant genotypes for pathogen resistance. Through the re-
�ection based time series measurements powdery mildew symptoms could be
detected in early stages. It was possible to evaluate the disease severity per
infested leaf over the course of the experiment. The PCA based estimation of
disease severity was then compared in a di�erent experiment with the measure-
ment of powdery mildew DNA in infected leaves. Despite the di�erences in total
amount of powdery mildew detected based on leaf material, the two methods
showed a high level of correlation. As both measurement methods are not ex-
pected to be 100% accurate the correlation of over 0.72 indicates the possible
uses of PCA based disease severity estimation for disease severity. This method
has the advantage of being non-destructive and objective compared with the
more commonly-used techniques of molecular based analysis and manual rating.
PCA is an unsupervised method for data analysis, so improves the throughput
of a possible screening process. With automatic hyperspectral measuring plat-
forms for greenhouse and �eld applications and in combination with easier to
interpret, unsupervised data analyses, non-invasive and objective screening for
di�erent pathogen susceptibility could be achieved in high throughput (Mahlein
2016).

3.1.6 Conclusion

Re�ection and transmission based imaging spectroscopy clearly yield comple-
mentary data. Re�ectance data clearly outperforms the transmission based
early detection of the biotrophic pathogen Bgh. In contrast, transmission based
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data give additional and complementary data also from the plant�pathogen in-
teraction in deeper cell layers. Thus, this study shows there is potential to use
transmission measurement as a tool for a comprehensive view on plant physiol-
ogy during pathogenesis, which will support future phenotyping processes.
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3.2 Net blotch and brown rust development on inoculated

barley leaves
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3.2.1 Abstract

While re�ection based measurements of plant-pathogen interactions with hyper-
spectral imaging sensors are already covered in multiple scienti�c studies there
are only a few studies available which examine the possibilities of transmission
based measurements, despite the advantage of transmitted light having passed
through every cell layer of the measured plant tissue.

Previous studies which investigated the performance of transmission imaging
data compared with re�ection based data for disease detection showed incon-
sistent results. Thomas et al. (2017) found that transmittance based imaging
performed poorly at powdery mildew symptom detection at barley leaves, while
Bergsträsser et al. (2015) showed that transmittance based imaging performed
similar to re�ectance based imaging for the detection of Cercospora leaf spot
symptoms. In the current study the hypothesis that the disparity between the
results of Bergsträsser et al. (2015) and Thomas et al. (2017) might be corre-
lated with the di�erent interactions of the respective pathogens with the host
plants and the way light interacts with plant tissue while passing through it is
explored. Two additional pathogens � Pyrenophora teres f. teres and Puccinia
hordei, the causative agent of net blotch and brown rust in barley respectively �
have been investigated with focus on detection and quanti�cation of symptoms
upon barley leaves. The resulting datasets of hyperspectral imaging time-series
measurements of barley leaves inoculated with the respective pathogens were
analysed in dept through application of multiple data analysis methods (support
vector machines; principal component analysis with following distance classi�er;
spectral decomposition) in order to compare the performance of re�ectance and
transmittance datasets, as well as the di�erent data analysis methods, for the
detection of disease symptoms.

The results of this study allow new insights into the nature of transmis-
sion based hyperspectral imaging and its application range. The transmittance
datasets of time-series for both diseases in this study outperform the transmit-
tance based powdery mildew detection in Thomas et al. (2017), while showing
similar results to Bergsträsser et al. (2015) � which investigated Cercospora leaf
spot disease. From these �ndings it can be concluded that transmittance im-
ages are more suited to the detection of plant-pathogen interactions within the
deeper cell layers of the plant, while being outperformed by re�ectance images
when it comes to early disease detection or the detection of pathogens which
interact mainly with the epidermis layer of the host plant. The performance
di�erences between the di�erent data analysis methods for the speci�c diseases
in re�ection and transmission images indicate that the selection of the most
suited data analysis method for speci�c tasks is important to obtain optimal
results.

3.2.2 Introduction

Thomas et al. (2017) performed a measurement of combined re�ection and
transmission with focus on plant-pathogen interaction with hyperspectral imag-
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ing sensors. The authors investigated barley leaves, which were inoculated with
conidia of Blumeria graminis f. sp. hordei, the causative agent of powdery
mildew, with the HyperArt measurement setup (Bergsträsser et al. 2015) for si-
multaneous measurement of re�ection and transmission. The results of the study
showed, that it is possible to detect powdery mildew infection of barley leaves
on leaf level two days before symptoms are visible on RGB images through au-
tomatically analysed re�ection based hyperspectral data. Furthermore, it could
be shown, that the combination of re�ection and transmission data was advan-
tageous to distinguish late powdery mildew symptom and spontaneous necrosis
of resistant barley leaves. However, the results of the study did show that trans-
mission based detection of powdery mildew symptoms was not possible before
symptoms on the leaves were already visible for two days with re�ection based
RGB imagery. These results stood in contrast to the study of Bergsträsser et al.
(2015), which performed single measurements of visible symptoms of Cercospora
beticola infection on sugar beet leaves. Within the study of Bergsträsser et al.
it was shown, that re�ection and transmission based data performed equally for
the detection of disease symptoms. Thomas et al. (2017) theorised, that this
could be explained based on the di�erent interaction of the two pathogens with
the plant tissue. While powdery mildew symptoms develop as small pustules on
the leaf surface with the fungi only penetrating the epidermis cells of the plant
(Bhat et al. 2005; Dean et al. 2012), Cercospora leaf spot symptoms appear as
necrotic lesions on the leaves once the fungi switches to its necrotic phase after
penetrating the leaf tissue through the stomata and spreading intercellularly
(Steinkamp et al. 1979; Rangel et al. 2020). In this article further studies into
the matter and principle of transmission measurement via optical sensors are
presented in order to con�rm the theory of Thomas et al. (2017).

Light interacts with plant leaves in a complex matter. Upon reaching the
plant surface (cuticula and epidermis) a signi�cant portion of the light is directly
re�ected and can be measured, providing information about the plant surface
it interacted with (Fig. 3.9). The portion of the light which is neither re�ected
or absorbed by the plants surface enters the plant tissue, where it is scattered
di�usely as it interacts with organelles and intercellular air spaces (Vogelmann
et al. 1989). During the passing of the plant tissue a small amount of light is
re�ected back to the upper surface, the majority of light travels through the
plants mesophyll layer and the lower epidermis of the leaf. Upon reaching the
surface-air border the majority of the di�usely scattered light is re�ected back
into the plant, with only a small portion is being transmitted through the leaf
as it arrives at the surface-air border in the right angle (Fig. 3.9; Brakke et
al. 2004). The light, which was re�ected is scattered di�usely once more as
it travels back through the plant tissue layers up to the surface-air border of
the upper epidermis, where a small portion is being transmitted and measured
together with the surface re�ection by re�ection based imaging methods, while
the larger portion of the light is re�ected back into the leaf tissue again (Fig.
3.9). This complex process allows the plant to maximize the usage of incom-
ing light for photosynthesis (Brake et al. 2004). These processes provide the
reason why it is possible to detect metabolic changes in plants with re�ection
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based measurement. The Study of Nansen (2018) did also show that hyperspec-
tral measurements have a signi�cant penetration of measured objects. Their
study showed that di�erent backgrounds can have signi�cant in�uence on leaf
measurements � especially with multiple layers of leaves being measured.

These factors have to be kept in mind when performing transmission based
hyperspectral measurements of pathogens. Due to the di�use scattering of light
inside the leaf and the light passing the leaf multiple times it can be challenging
to detect pathogens, which interact mostly with the leaf surface. As demon-
strated in �gure 3.10, incoming light which interacts with pathogen structures
at the plant surface (or the epidermis) can be readily detected due to the direct
re�ection of light at the structures surface � combined with internal re�ection
� through re�ection based approaches. As the light becomes di�usely scattered
while passing the plant tissue it mixes with light scattered from nearby entry
points and by the time the light is detected as transmission after exiting the
leaf a combined signal of light, which interacted with the pathogen on the plant
surface, and light, which did interact solely with health plant tissue, is measured
(Fig. 3.10). Thereby, the physical basics of the way plant tissue interacts with
incoming light explain why it requires a larger area of pathogen structures cov-
ered surface to be detected in transmission based approaches versus re�ection
based approaches. Consequently, pathogen symptoms interacting with deeper
tissue layers of plant leaves, causing necrosis, changes in plant pigmentation, or
plant metabolism should be detected through transmission measurements with
an increased performance as internal light scattering has a reduced e�ect on
such occurrences.

This study aims to provide insight into the matter through practical ex-
periments. The data of Thomas et al. (2017) show the results for tissue with
powdery mildew infection, acting on the plant surface and within epidermis cells
(Fig. 3.11a). In the current study additional measurements of barley leaves with
the HyperArt setup have been performed while selecting pathogens, which in-
teract with deeper layers of the plant tissue, under similar conditions and as
time-series.

P. hordei, the causative agent of brown rust, is a biotrophic pathogen, which
enters infected barley leaves through the stomata (Fig. 3.11b; Voegele 2006).
Once inside the plant mesophyll the fungi grows, forming intercellular haustoria
to feed upon the plant before �nally forming colonies, which break through the
epidermis to release new spores (Fig. 3.11b; Voegele 2006).

Pyrenophora teres f. teres (anamorph: Drechslera teres), the causative agent
of net blotch, is a necrotrophic pathogen. It penetrates directly through the cu-
ticula, cell wall and cell membrane of the host plants epidermis cells, were it
forms a primary and secondary intracellular vesicle (Fig. 3.11c; Liu et al. 2011).
When the secondary vesicle is formed, the host epidermis cell � as well as nearby
epidermis cells � are functionally disrupted. A hypha forms intracellular from
the secondary vesicle and breaks into the intercellular space of the mesophyll,
where it secretes toxins/e�ectors which lead to the disruption of nearby meso-
phyll cells to provide the necrotrophic fungi with nutrients (Fig. 3.11c; Liu et
al. 2011).
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Figure 3.9: Pathway of light when interacting with a plant leaf. Upon reaching
the plant's surface a portion of the light is re�ected back from the cuticula
(C) and epidermis (Ep), while the rest of the light enters the plant tissue in
a di�usely scattered manner (L1, blue cone). The light crosses both palisade-
(Pm) and spongy mesophyll (Sm) - being partially absorbed and scattered back
to the leaf surface as indirect re�ection - before reaching the epidermis and
cuticula un the bottom of the leaf. Here a portion of the light is transmitted,
thereby exiting the leaf as transmitted light (L1, blue arrows), while the rest is
being re�ected at the leaf surface-air border and traverses the mesophyll tissue
again while being di�usely scattered (L2, orange cones). Upon reaching the
epidermis and cuticula of the top of the leaf a portion of L2 is transmitted
as indirect re�ection and would be measured with the light coming from the
surface re�ection, while the rest is re�ected from the leaf surface-air border to
continue its path through the leaf (L3, yellow cones). St = stomata, Vb =
vascular bundle.



Figure 3.10: In�uence of di�use light scattering inside plant leaf tissue for trans-
mission based measurement of pathogens which interact with the leaf surface
and epidermis (Ep). Incoming light is colliding with the cuticula (C) and epider-
mis of the leaf, where a portion of the light is being directly re�ected (R). This
leads to a direct interaction of the re�ected light with pathogens that grow on
the leaf surface, resulting in a signi�cant in�uence on the re�ected lights wave-
length. However, the portion of the light which is being transmitted through the
leaf is being di�usely scattered (L1, L2, L3). This leads to a signi�cant overlap
of light, which did not come in contact with the pathogen, when exciting the
leaf tissue as transmitted light (L1+L2+L3). Pm = palisade mesophyll, Sm =
spongy mesophyll, St = stomata, Vb = vascular bundle.
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Figure 3.11: Interactions of the pathogens Blumeria graminis f. sp. hordei (a),
Puccinia hordei (b) and Pyrenophora teres f. teres (c) with barley leaves. C =
cuticula, Ep = epidermis, Pm = palisade mesophyll, Sm = spongy mesophyll,
St = stomata, Vb = vascular bundle, Co = conidia, Gt = germination tube,
Ap = appressorium, Pp = penetration peg, Hs = haustorium, Em = epiphytic
mycelia, Cp = conidiophores, Sp = Spore, Vs = vesicle, Ih = infection hypha,
Hm = haustorial mother cell, C = colony, H = hyphae.



The two pathogens interact in a di�erent way compared to B. graminis
f. sp. hordei. The development of P. hordei is relatively subtle at �rst �
before the plant tissue gets disrupted through the fungi breaking through the
epidermis. Its growth within the mesophyll should allow for increased detection
with transmission based imaging, due to a reduced e�ect of the light scattering
at pathogenic structures deeper within the leaf tissue. P. teres f. teres �nally
causes rapid cell death, which should result in similar results as the measurement
of spontaneous necrosis in the study of Thomas et al. (2017) and should be
comparable with the characteristic necrotic lesions in the center of C. beticola
symptoms, which were investigated by Bergsträsser et al. (2015).

The gathered datasets of re�ection- and transmission-based leaf images with
developing net blotch and brown rust symptoms respectively were analysed
with three di�erent data analysis algorithms � Support Vector Machines (SVM,
Cortes and Vapnik 1995), Spectral Decomposition (SD, Keshava and Mustard
2002) and a combination of principal component analysis (PCA) with follow-
ing Distance Classi�er (DC, Mahalanobis et al. 1996). The SVM represents a
supervised approach of data analysis, in which a set of generated training data
is used as basis for classi�cation. The SD is an unsupervised method, which
generates classes bases on distinct datapoints within the analyzed dataset. The
combination of PCA and DC �nally represents a mixed approach of reducing
data dimensionality with the unsupervised PCA and sorting the resulting cor-
relation of pixels with the principal components into pre-generated classes with
the supervised DC. This approach should allow for a comparison of data analy-
sis methods with each other, as well as with disease severity estimation through
manual rating (MR).

3.2.3 Material and Methods

Plant cultivation and pathogen material

Hordeum vulgare L. cv. Ingrid wild type (Hinze et al. 1991) plants were grown
in TEKU VQB 7x7x8 cm pots (Pöppelmann, Lohne, Germany) and �lled with
commercial substrate (Klasmann-Deilmann GmbH, Geeste, Germany) inside a
climate chamber at 20/20 °C (day/night) 60% relative humidity (RH) and day
light period of 16 h. At growth stage 12 according to BBCH scale (Hack et al.
1992) the plants were inoculated with the respective pathogens and placed in
high humidity environment (>90%) and indirect lighting conditions for two days
to maximize chance of infection before the second leaf of each plant was �xed
within a custom plastic frame. 12 plants were used as healthy control, being
inoculated with water, 12 plants were inoculated with a spore suspension (60000
spores/ml) of P. hordei (stored �eld isolate from the area near Bonn) and 12
plants were inoculated with a spore suspension (5000 spores/ml) of P. teres f.
teres from gathered leaves around the area of Bonn. Of the 12 plants which were
inoculated with P. teres f. teres spores six plants had parts of highly infected
leaves placed upon their leaves in order to increase the chance of infection. The
inoculations were performed by spraying the spore suspensions equally over the
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to be inoculated plant leaves.

Hyperspectral imaging measurement

The HyperArt system was used to measure re�ection and transmission of the
plants simoultanously during the experiment (Bergsträsser et al. 2015; Thomas
et al. 2017; Patent nr: DE102012005477). The system was modi�ed accord-
ing to Thomas et al. (2017). All leaves were measured in the visible and near
infrared areas of the electromagnetic spectrum (400 � 1050 nm) in a daily time-
series measurement from 3 days after inoculation (dai) to 9 dai. Measurements
at earlier times were not possible, due to the requirement of the fungi to have
high humility for infection of barley leaves. For each measurement a 99% re-
�ectance white standard (Spectralon, Labsphere Inc., North Dutton, NH, USA)
and a white di�user lambertian transmission foil (Zenith Polymer® ≈ 50%
transmission, SphereOptics GmbH, Uhldingen, Germany) was acquired, before
measuring the leaf sample. These measurements served as white references for
re�ection and transmission images for the image normalization (Bergsträsser et
al. 2015). Wavelength dependent di�erences in the percentage of the re�ected
and transmitted light of the two white references were taken into consideration
during the normalization process. With each measurement a dark current im-
age of the internal camera noise was measured by closing an internal camera
shutter.

Data analysis

The re�ectance and transmittance of the images was calculated by normalising
the acquired images over the according white references, serving as standards
with known re�ection/transmission values, with ENVI 5.1 + IDL 8.3 (ITT Vi-
sual Information Solutions, Boulder, CO, USA). The normalized images were
smoothened through the application of the Savitzky-Golay �lter (Salitzky and
Golay 1964) to eliminate noise within the hyperspectral datasets for further
analysis. Background masking and separating the hyperspectral images to sin-
gle leaves was performed through an automated algorithm, were the transmis-
sion images required manual extraction due to their spectral properties being
indistinguishable at places were parts of the frame were covering the plants in
order to hold them in place. Due to signi�cant noise within the data at the
extremes of the sensor range the analyzed spectral range was reduced to 450 �
1000 nm.

In order to prepare the dataset for analysis of its variance with principal
component analysis (PCA) all spectral signatures were normalized into the unit
Euclidian norm to eliminate the in�uence of non-biologic variance to the mea-
surement. Thereby the signatures/vectors are treated as points on a high dimen-
sional unit sphere (Dhillon and Modha 2001; Leucker et al. 2016b), capturing
the vectors direction while reducing the variance in the dataset. After these
preparations the PCA was performed. PCA is a statistical method which in-
troduced a new axis along the greatest variance into the dataset, thereby trans-
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forming it based onto the variance and reducing the data complexity (Wold et
al. 1987). The PCAs were performed over the healthy control leaves and the
respective inoculated leaves within the dataset, including both re�ection and
transmission-based images. A supervised classi�cation in order to determine
disease symptoms on the leaves was performed through the application of the
Distance classi�er algorithm on the results of the PCA. The DC uses a set of
training data in order to classify every pixel of the image based on its distance
in the Euclidian space from known classes.

An independent analysis of the data was performed by applying a non-linear
support vector machines algorithm on the normalized dataset, which was used
for the PCA with following DC. The applied SVM used radial basis function as
kernel function to determine linear discriminant functions.

The DC and SVM were both trained with a set of labelled training data,
which was generated by an expert, using control- and inoculated leaf images
of healthy and inoculated leaves at 7 dai from rust and net blotch datasets in
order to classify both early and late stages of disease symptoms. The manually
annotated data was ordered into classes and used as reference within the above
classi�cations.

Finally, unsupervised spectral decomposition � based on the mixed pixel ap-
proach � was used in order to analyze the datasets. Spectral decomposition
factorizes the matrix, which is made up of the to be analyzed hyperspectral
dataset, into a canonical form, representing it in terms of its eigenvalues and
eigenvectors. This algorithm was applied unsupervised, with the program se-
lecting mixed pixels of the image in order to determine the eigenvalues. The
abundance of these eigenvalues within the dataset was then calculated to give
out both an abundance map with abundance per pixel, as well as a classi�cation
of the image over the generated classes.

All data analysis was performed with the FluxTrainerPro 2.6.2.0 Software
(LuxFlux, Reutlingen, Germany).

Leaves were manually rated by an expert at the end of the experiment 9 dai.
The manual rating was performed with a Pseudo RGB image as basis with the
goal to label healthy and infected leaf tissue. Unlike the generated training data,
each pixel of the images was sorted into the classes healthy and symptom during
this rating in order to compare disease severity visible by eye with the results
of the di�erent data analysis methods. Pixels that showed clearly identi�able
disease Symptoms with the bare eye were labelled as Symptom, while other
pixels were labelled as healthy.

The results of the manual rating were used as ground truth for post classi�-
cation of the data through confusion matrices of the classi�cation results from
the di�erent data analysis methods on both re�ection and transmission datasets.
Confusion matrices were computed via a C++ program.

65



Table 4: Disease severity calculation of net blotch and brown rust inoculated
leaves at 9 days after inoculation with di�erent data analysis algorithms and
comparison to manual rating.
DC = Distance Classi�er, SVM = Support Vector Machines, SD = Spectral
Decomposition, r = re�ectance, t = transmittance.

Net blotch r. Net blotch t. Brown rust r. Brown rust t.
Manual Rating 0.72% 0.69% 15.25% 5.04%

SVM 1.04% 1.05% 35.92% 11.72%
DC 2.4% 11.18% 37.9% 20.75%
SD 1.12% 0.98% 27.35% 13.98%

3.2.4 Results

Manual assessment of the gathered datasets

The water-inoculated control plants did not show any development of disease
symptoms of either net blotch or brown rust over the course of the experiment.

Of the plants which were inoculated with P. teres f. teres spores and infected
leaf parts only the 6 plants which were treated with direct contact to infected
leaf parts during inoculation developed net blotch symptoms, while the 6 plants
treated with spore suspension showed no development of disease symptoms over
the course of the experiment. First symptoms of the net blotch disease became
visible at 5 dai both in re�ection- and transmission-based images and slowly
progressed until the last measurements were taken at 9 dai (Fig. 3.12). During
this time the symptoms developed from the initially infected areas of the host
plants leaves, which had direct contact with infected leaf parts during inocula-
tion. Throughout the symptom development the net blotch symptoms proved
to be equally visible in re�ection and transmission images, showing similar leaf
discoloration and symptom area (Fig. 3.12). During manual rating of the dis-
ease severity at 9 dai the re�ection and transmission data were rated with 0.72
and 0.69 percent of the leaf area showing symptomatic tissue respectively (Table
4).

The plants which were inoculated with P. hordei (Ph) spore suspension
developed without exception brown rust symptoms over the course of the ex-
periment. First disease symptoms became visible at 5 dai in the re�ection-based
images and 6 dai in the transmission-based images � with the symptoms being
easier to distinguish in the re�ection-based data (Fig. 3.13). Symptoms devel-
oped over the entire leaf area, starting with discrete, small chlorotic spots at the
initial infection sites. Typical yellow, chlorotic areas were forming on the leaves
at 5 dai and growing, with brown spore colonies breaking through the epidermis
and becoming visible from 7 dai until the end of the experiment � this process
could be clearly observed in the re�ection-based images (Fig. 3.13). Meanwhile,
in the transmission-based images this process could only be observed as a slight
darkening of the symptomatic leaf areas, which became visible at 6 dai, and
the development of brown spots in the middle of the described darkened areas,
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Figure 3.12: Re�ection and transmission images of an Ingrid wild type leaf,
inoculated with Pyrenophora teres f. teres over the course of the experiment.
The Pseudo RGB images are compared with false colour images, representing
the classes healthy (green colours) symptom (red) and artefact (black) of the
respective data analysis methods. RGB = Pseudo RGB, SVM = Support Vector
Machines, DC = Distance Classi�er, SD = Spectral Decomposition.
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starting at 7 dai (Fig. 3.13). During manual rating of disease severity � based on
re�ection and transmission datasets � 15.25 and 5.04 percent of the leaf tissue
was rated as symptomatic tissue respectively (Table 4).

Analysis of the respective re�ection- and transmission-based data

through three distinctive data analysis methods

The datasets for the investigated pathogens � for both re�ectance and trans-
mittance data � were analysed with the three distinct data analysis methods
(SVM, DC, SD) described above.

The leaf images of the control plants were classi�ed as healthy tissue for both
re�ectance and transmittance with the exception of <0.1% of the pixels, which
were classi�ed as disease symptoms for SVM and SD classi�cation. The falsely
classi�ed pixels were located either at the edge of the leaves or in the areas were
the frame was covering parts of the leaves during measurement (Fig. 3.14).
Thereby, containing mixed information of the respective re�ected/transmitted
light of both the measured leaf and the black background/frame. The DC
algorithm � based on the results of the previously performed PCA � performed
noticeably worse, having overall the highest tendency to falsely classify pixels
in the above-mentioned areas with up to 0.3% of pixels being falsely classi�ed
as symptoms. The DC classi�cation also was unable to di�erentiate between
symptoms and the leaf vein in the transmission-based images of the net blotch
dataset, causing pixels of the leaf veins to be classi�ed as disease symptom,
increasing the falsely classi�ed pixels up to 10% in this speci�c case (Fig. 3.14).

Both DC and SD algorithms were able to detect net blotch symptoms within
the re�ectance images of the Dt inoculated leaves at 4 dai � one day before the
symptoms were visible with the human eye � and able to track the development
of the symptoms during the following measurement days, whereby the DC did
show a clearer detection of early symptoms but was also more prone to misclas-
sify pixels containing healthy tissue as symptoms (Fig. 3.12). For transmission-
based images the algorithms were able to detect �rst net blotch symptoms at 5
dai, showing a slightly reduced performance in early disease detection compared
to re�ectance-based data (Fig. 3.12). The SVM based classi�cation performed
notably worse for early detection in re�ection-based images. Despite using the
same training data set as the DC �rst symptoms were only detected at 7 dai.
Meanwhile, the transmittance images allowed a detection of the symptoms at 5
dai, performing similar to the other two algorithms (Fig. 3.12).

At 9 dai, the �nal measurement day for the experiment, net blotch symptoms
could be classi�ed by all three data analysis methods in both re�ectance and
transmittance images, correlating with the results of manual labelling of disease
symptoms � both in disease severity (Table 4) and location of disease symptoms
on the leaf (Fig. 3.14). A notable exception being the DC algorithm for the
transmission-based image, as the above-mentioned classi�cation error of the leaf
vein persists, causing a disparity of about 10% in disease severity compared to
manual rating results and other methods.

When looking in more detail at the classi�cation of the speci�c pixels within
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Figure 3.13: Re�ection and transmission images of an Ingrid wild type leaf,
inoculated with Puccinia hordei over the course of the experiment. The Pseudo
RGB images are compared with false colour images, representing the classes
healthy (green colours) and symptom (yellow and red colours) of the respective
data analysis methods. RGB = Pseudo RGB, SVM = Support Vector Machines,
DC = Distance Classi�er, SD = Spectral Decomposition.
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Figure 3.14: Re�ection and transmission image of an Ingrid wild type leaf, inoc-
ulated with Pyrenophora teres f. teres at 9 days after inoculation. The Pseudo
RGB images are compared with false colour images, representing the classes
healthy (green colours), symptom (red) and artefact (black) of the respective
data analysis methods, as well as with the results of manual rating of the image
by an expert. RGB = Pseudo RGB, SVM = Support Vector Machines, DC =
Distance Classi�er, SD = Spectral Decomposition, MR = Manual Rating.
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Table 5: Results of confusion matrix on images classi�ed with manual rating
compared to the applied data analysis methods for net blotch and brown rust
infected leaves at 9 days after inoculation. DC = Distance Classi�er, SVM =
Support Vector Machines, SD = Spectral Decomposition.

Net blotch Brown rust
Manual rating Manual rating

Healthy Symptom Healthy Symptom

R
e�
ec
ti
on

SVM
Healthy 99.6% 0.4% 74.2% 25.8%
Symptom 10.4% 89.6% 3% 97%

DC
Healthy 98.3% 1.7% 69.6% 30.4%
Symptom 0% 100% 13.7% 86.3%

SD
Healthy 99.4% 0.6% 83.5% 16.5%
Symptom 15.5% 84.5% 11.7% 88.3%

T
ra
ns
m
is
si
on SVM

Healthy 99.5% 0.5% 92.2% 7.8%
Symptom 21.6% 78.4% 14% 86%

DC
Healthy 89.4% 10.6% 84.1% 15.9%
Symptom 2.1% 97.9% 4.5% 95.5%

SD
Healthy 99.5% 0.5% 90.2% 9.8%
Symptom 29.9% 70.1% 7.7% 92.3%

the images through the application of confusion matrices with the manual rating
serving as the ground truth for the di�erent classi�cation results, it shows that
all three algorithms have a high accuracy for the correct classi�cation of healthy
tissue and symptoms within the re�ection data (89.6% for SVM and 84.5% for
SD), with the DC algorithm outperforming the other two for disease detection
(100%; Table 5). Within the transmission dataset the accuracy of all three
algorithms is reduced (78.4% for SVM, 70.1% for SD and 97.9% for DC), with
DC showing an uncharacteristically high error margin for misclassi�cation of
healthy tissue (10.6%) due to the misclassi�cation of pixels showing the leaf
vein as symptoms (Table 5).

Within the brown rust dataset, the SVM classi�ed �rst pixels in re�ectance
images as disease symptoms at 4 dai, one day before the disease became visible
with the human eye, and classi�es symptomatic leaf areas correctly over the
course of the experiment (Fig. 3.13). In the transmission-based images the SVM
only detects disease symptoms at 6 dai. Due to high di�culties in di�erentiating
early disease symptoms and healthy tissue it was however necessary to create
multiple classes of healthy leaf tissue within the training data for both SVM
and DC. This explains the early misclassi�cation of pixels showing healthy leaf
tissue as disease symptoms at 4 dai for the DC (Fig. 3.13). As shown in
�gure 3.13 the DC classi�cation increases in accuracy over the course of the
experiment, correlating signi�cantly better with the results of the other data
analysis methods at 8 and 9 dai. When applied to the transmittance images the
DC does not have these issues, accurately detecting disease symptoms from 6 dai
onwards like the SVM. The transmission-based dataset could be classi�ed with
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only a single class for healthy tissue, showing a more uniform spectral signature
over the leaf area when compared with the re�ectance dataset. Disease symptom
detection with the SD classi�ed �rst disease symptoms at 5 dai and 6 dai for
re�ectance and transmittance images respectively and shows accurate detection
over the course of the experiment (Fig. 3.13).

Comparison of the classi�cation results for all data analysis algorithms with
manual rating at 9 dai shows signi�cantly higher disease severity ratings for both
re�ectance and transmittance datasets (Table 4), while the spatial distribution
of symptomatic pixels within the images matches for data analysis methods and
manual rating (Fig. 3.15).

The post classi�cation results of the respective confusion matrices show that
the selected algorithms are able to accurately detect disease symptoms, which
were labelled in the manual rating, in both re�ection (97% for SVM, 86.3% for
DC, 88.3% for SD) and transmission (86% for SVM, 95.5% for DC, 92.3% for
SD) data (Table 5). The detection accuracy of the SVM for re�ectance images
being signi�cantly higher than other algorithms. Both DC and SD have a higher
accuracy for transmittance image symptom detection, while the accuracy of the
SVM decreases when compared with the results of re�ection data. All algorithms
classi�ed a high percentage of pixels which did not show clearly visible disease
symptoms � and where thereby market as healthy tissue in the manual rating �
as symptoms (25.8% for SVM, 30.4% for DC, 16.5% for SD) for the re�ectance
images, while the results of the transmittance images show a lower error margin
(Table 5).

3.2.5 Discussion

The results of this study show di�erences within the e�ciency of transmission-
based measurement approaches, depending on the way pathogens interact with
the host plant. Combined with the results of Thomas et al. (2017) this allows
the estimation of cases in which the addition of transmission-based approaches
would be bene�cial for increased accuracy in disease detection.

Evaluation of transmission-based imaging data for disease detection

The theory postulated by Thomas et al. (2017) that light scattering within the
leaf in�uences the disease detection through transmittance images and thereby
the interactions of pathogens with the host plant play an important role in
detection speed and accuracy is supported by the results of the current study.

It could be shown that net blotch symptoms are detected with no signi�cant
di�erences in disease severity at later stages. This was true for both manual
rating of re�ectance and transmittance images, as well as classi�cation results
with SVM and SD (Table 4). The combination of PCA and DC did classify a
signi�cantly higher number of pixels in the transmittance data as diseased, this
can be explained due to the inability of the algorithm to discern pixels showing
the leaf veins from pixels with disease symptoms (Table 5). Figure 3.16 shows,
that the majority of pixels which were classi�ed as showing symptoms in the
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Figure 3.15: Re�ection and transmission image of an Ingrid wild type leaf,
inoculated with Puccinia hordei at 9 days after inoculation. The Pseudo RGB
images are compared with false colour images, representing the classes healthy
(green colours) and symptom (yellow and red colours) of the respective data
analysis methods, as well as with the results of manual rating of the image by
an expert. RGB = Pseudo RGB, SVM = Support Vector Machines, DC =
Distance Classi�er, SD = Spectral Decomposition, MR = Manual Rating.
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transmission images of the DC results while being labelled as healthy in the MR
align with the leaf vein placement on barley leaves. These results coincide with
the �ndings of Bergsträsser et al. (2015), which investigated the advantages
of combined re�ectance and transmittance measurements for disease severity
estimation on developed Cercospora leaf spot symptoms. Like the net blotch
disease, which was investigated in this study, Cercospora leaf spot disease also
causes necrotic lesions on infected sugar beet leaves (Mahlein et al. 2012, Leuker
et al. 2016). The results of both studies also correlate with �ndings of Thomas
et al. (2017) that transmission-based images allowed for precise detection of
spontaneous necrosis on leaves.

In contrast the estimation of disease severity of brown rust on barley leaves
within this study showed, that the estimates based on transmittance images
were signi�cantly lower compared to re�ectance image-based estimates (Table
4). The algorithms did each classify a signi�cant number of pixels, which could
not be labelled as symptomatic during the MR, into the symptoms group for
both re�ectance and transmittance images (Table 5). The location of these pix-
els shows, that they are mostly located at the outer edges of areas which were
labelled as symptoms through MR, hinting at the possibility to detect brown
rust infection before visible symptoms appear at a given location (Fig. 3.17).
Despite the success of the algorithms for disease detection it showed that the
estimated disease severity in transmission based images was signi�cantly lower
than re�ection based images, with MR and SVM showing the highest discrep-
ancy of about 66% between the results � ~15% and ~35% disease severity for
re�ectance and ~5% and ~11% for transmittance respectively (Table 4). Vis-
ibility of brown rust symptoms with the human eye within the transmittance
images was mostly limited to areas were spore colonies had formed and broken
through the leaf epidermis, with chlorotic lesions from prior rust development
being barely visible only once larger areas were infected. Nevertheless, the
detection of brown rust symptoms was more accurate and could be earlier de-
tected within transmission-based data then the powdery mildew symptoms in
the study of Thomas et al. (2017), with all used algorithms being able to detect
disease symptoms one day after they became visible within the re�ectance im-
ages (Fig. 3.13) compared to two days for powdery mildew in the previous study
(see Thomas et al 2017, �gure 3.7). These �ndings support the theory that the
more intrusive interaction of brown rust with the host plant (Fig. 3.11) � pen-
etrating into deeper tissue layers of the leaf � results in an increased detection
possibility through transmittance images.

Early disease detection through transmission

It has been shown by multiple studies that hyperspectral re�ectance imaging
sensors are able to detect disease symptoms before symptoms are visible with
the human eye (Kuska et al. 2015, Thomas et al. 2017, Behman et al. 2018).
So far this could not be shown for images based on transmission, as studies
with time-series measurements that compare the performance of re�ectance and
transmittance hyperspectral images for early plant disease detection are, to the
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Figure 3.16: False colour visual representation of confusion matrix results on
net blotch infected leaves at 9 days after inoculation for re�ection and transmis-
sion images. The images show the comparison of the respective data analysis
method classi�cation outcome compared to manual rating. Green and red pix-
els representing healthy and symptom classi�cation which showed no di�erence
for manual rating and classi�cation. Light blue coloured pixels represent pix-
els which were classi�ed as symptoms in the data analysis and healthy in the
manual rating. Dark blue coloured pixels respectively represent pixels that were
labelled as symptoms in the manual rating and classi�ed as healthy through the
data analysis. SVM = Support Vector Machines, DC = Distance Classi�er, SD
= Spectral Decomposition.
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Figure 3.17: False colour visual representation of confusion matrix results on
brown rust infected leaves at 9 days after inoculation for re�ection and trans-
mission images. The images show the comparison of the respective data analysis
method classi�cation outcome compared to manual rating. Green and red pix-
els representing healthy and symptom classi�cation which showed no di�erence
for manual rating and classi�cation. Light blue coloured pixels represent pix-
els which were classi�ed as symptoms in the data analysis and healthy in the
manual rating. Dark blue coloured pixels respectively represent pixels that were
labelled as symptoms in the manual rating and classi�ed as healthy through the
data analysis. SVM = Support Vector Machines, DC = Distance Classi�er, SD
= Spectral Decomposition.
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knowledge of the authors, not available � besides Thomas et al (2017). Within
the study of Thomas et al. (2017) powdery mildew infection could be detected
based on transmittance images at 6 dai, two days after detection was possible
through the re�ectance images and at a point when the disease symptoms were
already visible by eye in re�ection-based RGB images.

In the current study both net blotch and brown rust symptoms in transmit-
tance images could be detected one to two days after detection was possible in
re�ectance images for all applied data analysis methods � with the notable ex-
ception of net blotch symptom detection through SVM, which can be explained
as the SVM failed to detect symptoms in the re�ection-based dataset before
7 dai while the two other algorithms managed to detect at 4 dai. While this
exception shows that under certain circumstances it is possible to achieve earlier
disease symptom detection through transmission-based images it would be more
suited to use an algorithm that performs better for the detection of net blotch
symptoms as the symptoms were visible by eye at 5 dai.

From the results of these studies it can be concluded that transmission-based
measurements are not well suited for early disease detection, even from highly
invasive pathogens. A possible explanation would be that pathogens like net
blotch spread from their entry point at the leaf surface (Fig. 3.10), which might
cause changes within the plants spectral signature to be detected in re�ectance
images while the internal light scattering inside the leaves prevents detection
of these early plant/pathogen interactions through transmission-based imaging
(Fig. 3.11).

Comparison of data analysis methods for disease detection and disease

severity estimation within this study

Three di�erent data analysis methods have been used in this study and were
compared to MR of the RGB images in order to verify the results of the exper-
iments. In comparison with the MR every algorithm achieved a higher disease
severity estimation for both net blotch (Fig. 3.14) and brown rust (Fig. 3.15)
symptoms (Table 4). These results, while promising, are posing the question if
the classi�cations of the di�erent algorithms are correct, or misclassifying pixels
showing healthy tissue as symptomatic. In order to clarify this issue, the results
of each algorithm were investigated twofold. First the classi�cation results of
images early in the time-series were compared with pseudo RGB images from
later stages for both net blotch (Fig. 3.12) and brown rust (Fig. 3.13) datasets.
As the leaves were �xed during the entire timeframe of the measurements it was
possible to compare the placement of pixels within di�erent visibility stages.
Furthermore, the results of the post classi�cation through confusion matrices
with the MR as ground truth were visualized for both net blotch (Fig. 3.16)
and brown rust (Fig. 3.17) images at 9 dai. These visualizations show, that the
vast majority of the pixels which were classi�ed as showing symptoms through
the data analysis are grouped around clusters of pixels that were labelled as
symptomatic in the MR. It was expected that the di�erent data analysis meth-
ods are able to classify pixels without symptoms being visible to the human
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eye, as it is one of the main interests in analysing hyperspectral imaging data
to detect disease symptoms before they are visible by the human eye in RGB
images (Behman et al. 2018).

Among the data analysis methods, the combination of PCA and DC showed
the highest estimations of disease severity, but is also the method that has been
shown to be most prone to mistakenly classify healthy tissue as symptoms for
net blotch (transmission, Fig. 3.16) and brown rust (re�ection, Fig. 3.17). In
these cases, the SVM was able to clearly di�erentiate between disease symp-
toms and healthy tissue, while being trained on the same set of training data.
The SVM as a supervised method performed well for both early detection and
disease severity estimation, with the notable exception of net blotch re�ectance
images (Fig. 3.12). The unsupervised SD performed well in all cases, being able
to detect symptoms as early as the supervised methods � with the exception of
brown rust re�ectance, where the SVM was able to detect symptoms one day
prior to other methods (Fig. 3.13) � and was overall the least prone to misclas-
si�cation. SD has the added advantage, that the unsupervised algorithm does
not require training data in order to function and did classify disease symptoms
and healthy tissue while generating fewer classes then the supervised methods
required. However, the SD had in all cases the lowest disease severity estimates
when compared with other algorithms, but still outperformed MR (Table 4).

For all algorithms it is di�cult to determine which one showed the best re-
sults. As the MR labelled only pixels which clearly show disease symptoms as
symptomatic it is not surprising that the algorithms outperform the MR for
disease detection, as the identi�cation of pixels at high zoom factors is challeng-
ing for the human eye. While the DC showed the highest sensitivity for disease
detection it is also the one most likely to misclassify healthy tissue as symp-
tomatic. Meanwhile the SVM and SD performed slightly worse in symptom
detection but had more robust results regarding misclassi�cation of pixels. The
di�ering results of the data analysis methods suggest that it is advantageous
for researchers to use multiple algorithms to analyse experimental datasets and
select the one which gives the most reliable results for the intended purposes of
the study.

3.2.6 Conclusion

The postulated theory that the nature of the plant-pathogen interaction dur-
ing pathogen infection is related to the possibility to detect disease symptoms
through transmission-based imaging is being supported by the results of this
study. Thereby, the use of transmission measurement is most suited for invasive
pathogens, which cause tissue damage in deeper layers of the leaf, or in order
to separate stress factors which show a high similarity within the changes to
the spectral signature of re�ectance data. Transmission-based measurements
seem to be outperformed by re�ection-based measurements in general when it
comes to early disease detection. The di�ering results of the utilized data anal-
ysis methods within this study highlights the importance of selecting the most
suitable analysis method for given experiments.
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4.1 Abstract

Introduction: Phenotyping is a bottleneck for the development of new plant
cultivars. This study introduces a new hyperspectral phenotyping system, which
combines the high throughput of canopy scale measurements with the advan-
tages of high spatial resolution and a controlled measurement environment. Fur-
thermore, the measured barley canopies were grown in large containers (called
Mini-Plots), which allow plants to develop �eld-like phenotypes in greenhouse
experiments, without being hindered by pot size.
Results: Six barley cultivars have been investigated via hyperspectral imag-
ing up to 30 days after inoculation with powdery mildew. With a high spatial
resolution and stable measurement conditions, it was possible to automatically
quantify powdery mildew symptoms through a combination of Simplex Volume
Maximization and Support Vector Machines. Detection was feasible as soon
as the �rst symptoms were visible for the human eye during manual rating.
An accurate assessment of the disease severity for all cultivars at each measure-
ment day over the course of the experiment was realized. Furthermore, powdery
mildew resistance based necrosis of one cultivar was detected as well.
Conclusion: The hyperspectral phenotyping system combines the advantages
of �eld based canopy level measurement systems (high throughput, automatiza-
tion, low manual workload) with those of laboratory based leaf level measure-
ment systems (high spatial resolution, controlled environment, stable conditions
for time series measurements). This allows an accurate and objective disease
severity assessment without the need for trained experts, who perform visual
rating, as well as detection of disease symptoms in early stages. Therefore, it is
a promising tool for plant resistance breeding.

4.2 Introduction

Phenotyping is a necessary and time intensive step in the process of breeding
disease resistant crops (Lobet 2017, Shakoor et al. 2017, Tardieu et al. 2017).
Visual rating by humans, the common non-destructive method of crop phe-
notyping, has the disadvantage of being a time-consuming, subjective process,
which requires experts or trained personnel. The application of optical sensors
is a promising approach to overcome the drawbacks of manual visual rating,
as � with an adequate analysis algorithm � it is objective and can be auto-
mated, while allowing non-invasive measurements directly in greenhouses and
�elds (Mutka and Bart 2014, Walter et al. 2015, Mahlein 2016).

Hyperspectral imaging (HSI) combines these advantages with ability to de-
rive information about a large number of plant traits. Hyperspectral sensors
have already been shown to be successfully integrated into automated measure-
ment systems in greenhouses and �elds (Humplík et al. 2015, Virlet et al. 2017).
Hyperspectral sensors capture the re�ectance characteristics of object in large
number of wavelength bands. Similar to RGB cameras, they measure the light
which is re�ected at the measurement target, but they are sensitive in a larger
area of the electromagnetic spectrum (Jensen 2006). As a result, hyperspectral
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imaging cameras measure so called hyperspectral datacubes, which show the
spatial dimensions of the acquired image and additionally a spectral dimension
with the re�ectance values per wavelength (Jensen 2006). Hyperspectral imag-
ing has been applied in multiple studies for biotic and abiotic stress detection
in plants (Bravo et al. 2004, Hillnhütter et al. 2012, Wahabzada et al. 2012,
Thomas et al. 2017), as well as pathogen resistance assessment (Kuska et al.
2015, Leuker et al. 2015a).

However, experiments which are focused on disease detection at the earliest
stages in pathogenesis are mostly performed as basic research in the laboratory
on leaf scale. In contrast, �eld studies tend to focus on the detection of diseases
at later stages of pathogenesis. In less controlled environments, environmental
factors prove to be challenging for accurate hyperspectral measurements. As a
result, detecting small symptoms at early stages of pathogen infection is more
challenging. Changing light conditions during the measurements are the major
environmental factor, reducing the data quality. Other factors, such as wind
and rain, play a minor role (Behmann et al. 2015b, Damm et al. 2016, Pinto
et al. 2016). As hyperspectral cameras with the highest spatial and spectral
resolutions available to date tend to be push/whisk broom scanners, the process
of image acquisition takes a certain amount of time (Jensen 2006). During
this process, the measurement accuracy is dependent on stable environmental
conditions. Furthermore, the angle between incoming light, plant and sensor
has in�uence on the measurement results (Vigneau et al. 2011, Behmann et al.
2015a).

These problems multiply, when plant canopies are measured instead of leaves.
In a dense canopy, the di�erent leaves have individual angles to the light source
and hyperspectral sensor. Furthermore, leaves are on di�erent layers in the
canopy. This leads to varying distances between measured leaves, sensor and
illumination. Main e�ects are that leaves are less illuminated due to shadowing
of the upper canopy layers and multiple scattering at surrounding leaves occurs
(Behmann et al. 2015b, Sandmeier et al. 1998).

Common high throughput �eld hyperspectral measurement experiments are
barely in�uenced by these factors, as they are either performed airborne or
with non-imaging sensors, averaging the e�ects of canopy diversity over mul-
tiple leaves/plants (Hillnhütter et al. 2011, Cao et al. 2013). Although those
procedures have shown to be successful in �eld monitoring and assessment of
disease spread, they lack the spatial resolution to accurately rate the disease
severity in early phases of infection and pathogenesis on plants.

Currently available hyperspectral measurement systems focus either on high
measurement throughput like canopy measurements on the �eld with little re-
gard to changes in the environmental factors (Bai et al. 2016, Virlet et al. 2017),
or on plant/leaf level measurements under highly controlled environmental con-
ditions with low throughput (Mahlein et al. 2012, Kuska et al. 2017, Thomas
et al. 2017). Both approaches are well suited for their �elds of application.

However, the hyperspectral measurement system, which is introduced in this
study, o�ers a new scale, speci�cally for phenotyping applications in resistance
breeding. As it will be shown in this article, the di�erent light conditions in
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plant canopies prove to be challenging for modern data analysis approaches even
under nearly ideal measurement conditions. The proposed measurement system
combines the high throughput of canopy based measurements in �elds with the
controlled measurement environment of laboratory setups in order to achieve
stable data acquisition over the whole time course of disease development.

A greenhouse based phenotyping system, which is based on hyperspectral
imaging, has been developed. The system works by growing plants in larger
containers (Mini-Plots), which create a �eld like situation. Each Mini-Plot
provides enough space in area and soil depth to grow a canopy consisting of 360
barley plants in similar density as they would be grown in the �eld. A soil depth
of 61 cm allows a more natural development of the plants root systems when
compared to commonly used pots. The combination of these factors allows for
phenotyping experiments in greenhouses under conditions that resemble those
of actual �eld experiments. The location of the measurement system inside a
greenhouse has the innate advantage, that the environmental conditions during
the experiment can be controlled at any time. Thereby, the system combines
the advantages of phenotyping test plots in the �eld with the possibility of
reliable measurements on a daily basis. This circumvents the problem of plants,
which have been grown in pots in the greenhouse, showing di�erent phenotypes
compared to being grown under �eld conditions, due to stable environmental
conditions and limited root development (Poorter et al. 2012).

Halogen lamps, equipped with di�usors, are implemented in the measure-
ment system, providing stable and di�use light conditions for the hyperspec-
tral camera. A transportable curtain is attached to exclude natural light, that
may interfere with the measurement process. The system can perform auto-
mated measurements, allowing for a relatively high measurement throughput
with minimal human e�ort. These factors summarize to the system being a
valuable middle ground between �eld measurements under natural conditions,
and low throughput measurements in highly controlled environments. The com-
bination of tightly controlled environment and high measurement throughput
with hyperspectral imaging shows the high potential of the presented system
for phenotyping applications in resistance breeding.

To the author's knowledge only two comparable systems exist at the time
of this publication. Joalland et al. (2017) designed a microplot based system,
where the response of sugar beet plants to Heterodera schachtii inoculation
was evaluated with di�erent measurement methods. The microplots, containing
three sugar beet plants per plot, were covered with a mobile dark box with a
halogen lamp to provide equal light conditions before the average spectrum of
the plants was collected with a non-imaging spectrometer. Busemeyer et al.
(2013) introduced the �eld based measurement system BreedVision, which can
be moved over small plots and perform measurements with multiple sensors. A
cover for the whole system provides shading and avoids direct solar radiation
in�uencing the measurements. The system includes a hyperspectral imaging
system to measure plant moisture and nitrogen content, which works with a
spatial resolution of 3x5 mm. Compared to these systems, the Mini-Plot based
system presented in this study features a reduced canopy e�ect through di�use
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light conditions and a higher spatial resolution, which is important for the early
detection of disease symptoms.

The system was tested by evaluating six barley cultivars with di�erent dis-
ease susceptibility to powdery mildew. Over the course of the experiment, it
could be shown that the gathered hyperspectral data allows an early detection
of powdery mildew infection, as well as an accurate estimation of the disease
severity for each barley cultivar per measurement day. The estimated values
from the hyperspectral data analysis was consistent with the results of visual
rating for each cultivar. Furthermore, it was possible to show the spatial distri-
bution and spread of the pathogen over the barley plots during the time of the
measurements.

4.3 Materials and Methods

Mini-Plot phenotyping greenhouse

The hyperspectral measurements in this study have been performed in the `Mini-
Plot' facility at Campus Klein-Altendorf of Bonn University, which was devel-
oped by the Forschungszentrum Jülich. The facility consists of a large enclosed
greenhouse compartment and a fenced-in outside area, where 120 large planting
containers, so called Mini-Plots, can be placed. 90 Mini-Plots can be placed
inside the greenhouse, while another 30 can be placed in the outside area (Fig.
4.1 a, b). The experiments of this study were performed solely on Mini-Plots in-
side the greenhouse to be weather independent during the measurement series.
An automated sensor positioning system facilitates the precise and robotized
positioning of a sensor platform (Fig. 4.1). This allows for the cultivation of
relevant crop species in small canopies, while above-ground plant traits can au-
tomatically be measured by a modular sensor positioning system, which can be
equipped with a portfolio of phenotyping sensors (Fig. 4.1).

Each Mini-Plot is a commercial 535 liter plastic container (inside size 111
x 71 x 61 cm; AUER Packaging, Belgium), that can be �lled with local soil or
other desired substrates, according to the goal of the experiments. An auto-
mated drip irrigation system is attached to each Mini-Plot allowing individual
computer-controlled watering. Drainage is enabled by a loose gravel �lling at the
bottom and a valve in each container, the excess water can be quanti�ed on re-
quest. Additionally, multiple environmental sensors are placed in the Mini-Plot
area to monitor the environmental conditions and potential gradients; monitor-
ing includes irradiance, air temperature and humidity, as well as soil moisture
and temperature. A weather station (Vaisala) is located in the fenced-in area
outside the greenhouse to monitor weather conditions and to avoid outside mea-
surements during bad weather conditions.

The automatic positioning system was developed by the Forschungszentrum
Jülich in cooperation with Otte Metallbau GmbH & Co Kg (Harkebrügge, Ger-
many) in partnership with Atlantique Automatisierungstechnik GmbH (Ihlow,
Germany). A stable and motorized x, y, z rail based traversing unit is installed
in the greenhouse and the outside area. This traversing unit moves a universal
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Figure 4.1: Phenotyping greenhouse in Campus Klein-Altendorf with Mini-Plot
facility, interior (A) and exterior (B) compartments. Schematic representation
of the hyperspectral phenotyping system (C). The rail system of the Mini-Plot
facility in combination with di�use arti�cial light sources and a curtain allows
for automatic measurement approaches under highly controlled environmental
conditions. The combination of Specim V10E hyperspectral imaging (HSI) sen-
sor and mirror based scanner system enables fast, high-resolution measurements
of the entire Mini-Plot.
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base plate, on which various sensors of up to 50 kg can be attached. The base-
plate is moved 2 meters above the containers (2.8 meters above ground) and can
be positioned with an accuracy of 2 cm using �xed positioning elements at the
x and y axis. The universal baseplate (including sensors) can be lowered in z
direction to facilitate close range measurements; technically the base plate can
be lowered by 1 meter, i.e. bringing sensors in proximity to the plant canopy.

The system is controlled by an in-house developed application based on Lab-
VIEW (National Instruments, USA). Measurements can be scheduled through-
out the day, triggering di�erent sensors. The base functions of the system
(movement of the traversing unit, switching of the watering valves) are con-
trolled by the Programmable Logic Controller (PLC). These functions can be
controlled by the user directly as well. In the automated mode, the communi-
cation between the PLC (Siemens, Germany) of the system and the sequence
control application (LabVIEW) is facilitated using an OPC server (LabVIEW).
The sequence application is commanding the measurement routine, which has
been programmed by the user. Within a schedule �le, the time when a sensor is
triggered, the position/plot and the distance to the container can be con�gured.
It is possible to measure each plot with separate sensors during a single mea-
surement sequence. The acquired data is stored on the acquisition computer
located at sensor platform and transferred daily to the server.

Plant materials and pathogens

Six barley cultivars with di�erent susceptibility to Blumeria graminis f. sp.
hordei (Bgh), based on assessment of the o�cial German cultivar list (Descrip-
tive Variety List; Bundessortenamt, Hanover, Germany), were used in the ex-
periments. The used cultivars are (respective disease susceptibility rating in
bracelets): Tocada (7; KWS Lochow GmbH, Bergen, Norway), Grace (7; Ack-
ermann Saatzucht GmbH & Co. KG, Irlbach, Germany), Milford (4; Saatzucht
Josef Breun GmbH & Co. KG, Herzogenaurach, Germany), Gesine (4; NORD-
SAAT Saatzuchtgesellschaft, Halberstadt OT Langenstein, Germany), Eileen
(2; KWS Lochow GmbH) and Irina (2; KWS Lochow GmbH). Each cultivar
was sown into two Mini-Plots, with 360 seeds per Mini-Plot to simulate barley
growth under �eld conditions. The distribution of the cultivars in the phenotyp-
ing greenhouse was randomized to avoid location a�ects. Directly after sowing,
Plantosan fertilizer (20% N, 10% P2O5, 15% K2O, 6% MgO, 2% S, Wilhelm
Haug GmbH &Co. KG, Germany) was applied according to the manufacturer's
description to each Mini-Plot. The experiment was performed from 16. 09.
2016 � 02. 12. 2016, with low air temperatures in the greenhouse, following the
procedure established in the preliminary experiment from 09. 11. 2015 � 18 .01.
2016. The barley cultivars were cultivated for four weeks until su�cient surface
cover to perform the experiments was reached. Mini-Plots, which showed devel-
opment of powdery mildew symptoms prior to inoculation, were treated with
sulfur (fungicide Kumulus containing 800g/kg sulfur, BASF, Germany) to pre-
vent further symptom development. Symptomatic leaves were removed from the
respective Mini-Plots and sulfur was washed o� multiple times before inocula-
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tion. Two days before inoculation with Bgh, half of the Mini-Plots were treated
with the fungicide Vegas (containing 53.1 g/l cy�ufenamid, BASF, Germany),
to serve as negative control for the experiment. The other half of the Mini-Plots
were inoculated with conidia of Bgh �eld isolate from Bonn by shaking heavily
infested plants above the Mini-Plots.

Manual rating of disease development per barley cultivar

Both control and inoculated Mini-Plots of each barley cultivar were visually
assessed on every measurement day. Plant and plant disease development were
assessed and documented with RGB images. RGB images were taken from above
the Mini-Plot � to achieve the same viewing angle as the hyperspectral imaging
sensor. Furthermore, close up RGB images of areas with disease symptoms or
other anomalies � like necrotic lesions at resistant cultivars � were acquired.

At the last measurement day (30 dai) a visual rating of the inoculated Mini-
Plots from each barley cultivar was performed (Moll et al. 2009). Three classes
of disease severity were de�ned: Low (up to 5% of the plot showing powdery
mildew symptoms), moderate (5% to 20% of the plot showing powdery mildew
symptoms) and severe (over 20% of the plot showing powdery mildew symp-
toms) disease severity.

Hyperspectral imaging measurement on canopy scale

The hyperspectral re�ectance measurements were performed with a Specim
V10E hyperspectral push broom sensor (Spectral Imaging Ltd., Oulu, Finland),
which was mounted on the rail system based sensor platform in the phenotyping
greenhouse (Fig. 4.1). The Specim V10E sensor provides hyperspectral image
acquisition in the visual (400 � 700 nm) and near infrared (700 � 1000 nm) region
of the electromagnetic spectrum with a spectral resolution of approximately 2.8
nm. During the measurements, a spatial resolution of 0.3 mm was obtained in
a measurement distance of 80 cm. A mirror scanner (Spectral Imaging Ltd.,
Oulu, Finland) was used to change the �eld of view of the push broom sensor
in order to acquire two dimensional images.

Additionally, 6 halogen lamps (POWLI010 Halogen Floodlight 150 Watt;
Varo, Belgium) were symmetrically distributed on the sensor platform to achieve
homogenous lighting conditions (Fig. 4.1c). The glass cover of each halogen
lamp was replaced by a frosted, highly heat resistant glass cover to di�use light.
Ambient natural light was excluded by the use of a light-proof white curtain
covering both the sensor platform and the measured Mini-Plot (Fig. 4.1c). The
curtain also provides additional scattering of the light from the halogen lamps,
leading to a more homogenous illumination of the measurement samples.

All Mini-Plots were measured in a time-series experiment from 1 dai (days
after inoculation) to 30 dai. For each measurement, a barium sulfate 99% re-
�ectance white reference bar (Spectral Imaging Ltd., Oulu, Finland) was mea-
sured before the measurement of plant canopy, providing known illumination
intensity values for image normalization. After each measurement (both white
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reference and plant canopy), a dark current measurement of the internal cam-
era noise was performed with the same exposure time as the previous image,
respectively, eliminating inaccuracies during image normalization.

An additional measurement with identical observation parameters as de-
scribed above was performed two hours before the inoculation of the plants
with powdery mildew, in order to ensure that the fungicide treatment of the
plants had no e�ects on the spectral signatures. The con�rmatory results were
in accordance with previous experiments (Thomas et al. 2017). Due to the lack
of a pathogen, the data has not been included in the analyzed time series.

Analysis of the hyperspectral dataset

ENVI 5.1 + IDL 8.3 (ITT Visual Information Solutions) was used to normal-
ize the hyperspectral images against the known values of the white reference
standard, while subtracting the dark currents of both images. The normalized
images were further smoothed by the application of the Savitzky-Golay �lter
(Savitzki and Golay 1964) to the spectral domain, in order to reduce noise in
the spectral pro�les of the images. Areas of the images which were not covered
by plants, as well as areas with extremely low light intensity in the lower canopy
were masked during the preprocessing of the images. Furthermore, all images
were cropped to the designated measurement area of the experiment.

Simplex Volume Maximization (SiVM) was then applied on all preprocessed
images. SiVM is an unsupervised data analysis method, which selects extreme
hyperspectral signatures of the dataset as archetypes for a re-parameterization
of the whole dataset (Fig. 4.2) (Kersting et al. 2012a). The application of
SiVM leads to a reduction in size of the dataset and a pre-classi�cation of the
data based on the abundance level of each generated archetype (Kersting et al.
2012a). In this study, the SiVM algorithm was performed with 25 archetypes
for the entire dataset of hyperspectral images, including control and inoculated
images of each barley cultivar. Thereby, the size of the dataset was reduced to
~27% of the original size. The matrix factorization toolbox PYMF 0.3 (Thu-
rau et al. 2012, Python matrix factorization module 2017) was used for this
approach.

The SiVM transformed dataset was then classi�ed into healthy tissue, disease
symptoms and background by a non-linear Support Vector Machine algorithm
(SVM) (Cortes and Vapnik 1995). The applied SVM uses radial basis func-
tion as kernel function to determine non-linear discriminant functions. As a
supervised method, it is based on training data, i.e. manually selected samples
as examples for each class, which were selected for each class by an expert at
an unmistakable development state. The required hyperparameters were de-
termined using a cross-validation based grid optimization. LIBSVM 3.21 was
used (Chang and Lin 2012). Training data for the SVM classi�cation was se-
lected and annotated � based on a combination of pseudo RGB representation
and spectral information of the hyperspectral dataset � by an expert. The in-
oculated Mini-Plot of barley cultivar Tocada at 22 dai was chosen to collect
training data, due to its representative powdery mildew symptoms in di�erent

87



Figure 4.2: Spectral signatures and abundance maps of healthy plant tissue
and powdery mildew symptoms (mean values of 50 pixels, each). The spectral
signatures (left) represent the mean re�ectance of the pixels over the spectral
measurement area of the sensor. The abundance map (right) shows the repre-
sentation of the same mean values based on the abundance of the pixels with
the 25 archetypes, which were selected during the transformation of the dataset
with the Simplex Volume Maximization. Archetypes with high correlation to
healthy or symptomatic tissue are shown separately, each archetype is a real
spectral signature from the original hyperspectral dataset (colors of archetype
spectral signatures represent the color of the corresponding pixels, which would
be visible to the human eye). Pm = Powdery mildew.

development stages and canopy layers. After manual selection of pixels with
disease symptoms and healthy tissue in the di�erent canopy layers, the gath-
ered data was used as reference for the above described SVM classi�cation. In
order to access the accuracy of the resulting SVM classi�cation the image of the
inoculated Mini-Plot of barley cultivar Grace at 22 dai was manually annotated
as described above. The manual annotation was compared with the automatic
annotation of the SVM classi�cation result for that image, showing the accu-
racy of the automated data analysis over di�erent cultivars despite the limited
training data.
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4.4 Results and discussion

Visual observations and manual assessment of the spectral dataset

Both control and inoculated plants developed slower than usual over the course
of the experiment and did not produce ears. This was expected due to low
temperatures in the greenhouse compared to the usual growth temperatures for
summer barley. The slower development of the barley plants and the powdery
mildew symptoms enabled long term measurements of the disease progression.
Thereby, it was possible to con�rm the performance of the non-invasive measure-
ment setup over a prolonged period of time. No plant damage except the e�ects
of the powdery mildew infestation could be detected during the measurement
period of 30 days.

The plants in the control Mini-Plots showed no signs of powdery mildew
infection from 1 to 24 dai. Starting at 26 dai, the control plants of the suscep-
tible cultivars Milford, Grace and Tocada showed �rst signs of powdery mildew
symptoms at the edges of the Mini-Plot. Meanwhile, the inoculated plants of
the cultivars Milford, Tocada and Grace showed sporadic symptoms from 12
dai on the edges of the Mini-Plot and �rst symptoms of strong powdery mildew
infection in the measurement area at 14 dai (Table 6). At 18 dai, moderate
infection in early stages could be observed at inoculated Mini-Plots of culti-
vars Milford, Tocada and Grace, which did increase up to 30 dai. The cultivars
Tocada and Grace showed moderate powdery mildew symptoms (Table 6). How-
ever, cultivar Milford showed the highest disease severity (severe), despite being
listed with moderate susceptibility in the o�cial German cultivar list. Cultivar
Eileen showed few visible symptoms at 14 dai, while having a low susceptibil-
ity for powdery mildew infection (Table 6). Cultivar Eileen, unlike the three
aforementioned cultivars, showed no signi�cant development of powdery mildew
symptoms over the course of the experiment. Despite being listed as moderately
susceptible to powdery mildew, cultivar Gesine showed no symptoms until 22
dai (Table 6). From this point on, the disease severity steadily increased until
the end of the measurements at 30 dai. Some necrotic lesions became visible
on the plants, starting at 14 dai. The cultivar Irina showed no signs of pow-
dery mildew infection over the course of the experiment. Severe necrotic lesions
over the leaves were visible, starting at 14 dai (Table 6). Overall, the di�erent
cultivars showed powdery mildew development and disease severity according
to their general rating. Only the cultivars Gesine and Milford interacted di�er-
ent than expected from their assessed susceptibility. Gesine showed a surpris-
ingly high resistance against powdery mildew, with a notable delay in symptom
development compared to other susceptible cultivars. Meanwhile, Milford, de-
spite being listed moderately susceptible, showed the strongest disease severity
and symptom development of all cultivars. These results were coherent for the
Mini-Plot experiment, as well as preliminary experiments in the greenhouse the
Mini-Plot facility and microscopic analysis. The explanation is most likely the
speci�c interaction of the cultivars with the used Bgh isolate.

Average spectra of pixels with powdery mildew symptoms and healthy tissue
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were extracted, unveiling the characteristic changes in the plants spectral sig-
nature upon powdery mildew infection when comparing pixels in corresponding
canopy layers. Pixels in di�erent canopy layers showed di�erences in the inten-
sity of their spectral signatures over all measured wavelengths, as changes in the
intensity of the incoming light and shadows have a strong e�ect on the data. The
spectral signature of infected leaves shows mostly a general increase in intensity,
with a pronounced increase of re�ection at 650-700 nm (Fig. 4.3). Both pixels
with powdery mildew symptoms and healthy tissue have the highest variety for
di�erent canopy layers in the near infrared area between 750 and 1000 nm (Fig.
4.3). The observed variance in the near infrared area of the spectral pro�les can
be explained by the high sensitivity of near infrared re�ection measurements to
distance and angle of the target. Thomas et al. (2017) showed, that even slight
changes of leaf angles in framed leaves lead to high variances in the near infrared
part of the spectrum. In the case of canopy measurements, the di�erences in leaf
angle and distance to the camera are greatly increased. The distance and angle
of the white reference � serving as standard value for 100% light re�ectance �
is �xed during the measurement. This leads to an increase in the calculated
re�ectance in the near infrared area of the spectrum if leaves are closer to the
sensor than the white reference. These e�ects were not corrected in this study,
as the study focuses on relative detection of powdery mildew symptoms, rather
than their spectral characterization. The changes in the spectral pro�le of the
pixels with disease symptoms are typical for powdery mildew infestation, due
to the symptoms are visible as a layer of white mycelia on the leaf with minimal
in�uence on the leaf structure (Thomas et al. 2017). Thereby, it proved to be
di�cult to distinguish spectral signatures of symptomatic and healthy areas,
which are located in di�erent layers of the canopy and thereby show di�erences
in the intensity of the re�ected light. (Fig. 4.3).

Hyperspectral images acquired under arti�cial light conditions showed to be
superior to images acquired under natural light conditions. The di�use light of
constant intensity did reduce the e�ects of the canopy structure on the hyper-
spectral signatures considerably and increased the overall image quality. The
image quality, with di�use light conditions and a spatial resolution of 0.3 mm,
was su�cient to distinguish symptoms at 12 dai, when they were �rst visible
with the human eye. These results show the importance of controlled envi-
ronmental conditions. It was possible to perform stable measurement series
over prolonged time periods with comparable results. Additionally, distinct ad-
vantages of equally distributed and di�use lights for an improved measurement
quality on the canopy scale could be observed. The results of this study strongly
suggest a notable increase in measurement accuracy under di�use light condi-
tions through a reduced impact of the canopy architecture on the light intensity
di�erences of the individual canopy layers. Furthermore, the measurement sys-
tem of this study o�ers a high spatial resolution (0.3 x 0.3 mm pixel size) when
compared with similar phenotyping systems in the �eld (Busemeyer et al. (2013)
with 3 x 5 mm pixel size) and more comparable to leaf scale laboratory setups
(Mahlein et al. 2012, Behmann et al. 2015b, Thomas et al. 2017).
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Table 6: Manual rating of disease progression per barley cultivar over the course
of the experiment (2016; - = no symptoms appeared). *according to rating of
the o�cial German cultivar list.

Barley Cultivar Disease susceptability*
First symptoms Relative disease Necrotic lesions

(dai) severity at 30 dai visible (dai)
Tocada 7 14 Moderate -
Grace 7 14 Moderate -
Milford 4 14 Severe -
Gesine 4 22 Low 14
Eileen 2 14 Low -
Irina 2 - - 14

Figure 4.3: Spectral signatures of mean values from 30 pixels on canopy levels,
di�ering in distance to the sensor and illumination system, for both healthy and
symptomatic tissue.
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Analysis of the acquired hyperspectral data through SVM

Due to the high data variability across the di�erent layers of the canopy and
the extensive amount of the gathered hyperspectral dataset, it was necessary
to perform advanced data analysis methods. The application of SiVM signi�-
cantly reduced the size of the data (from 234 GB to 62 GB) and pre-classi�ed
the dataset based on existing, extreme spectral signatures. This approach did
increase both speed and accuracy of the SVM based classi�cation. Due to the
nature of hyperspectral imaging, techniques for data size reduction are an impor-
tant part of a functional phenotyping system. When taking into consideration
that each image can easily reach the size of several gigabytes, large scale pheno-
typing experiments are not only requiring a lot of storage space, but also require
modern data analysis methods, which tend to be time consuming (Behmann et
al. 2015a). SiVM has the advantage that the structure of the data is not lost,
as each spectrum is classi�ed based on existing data instead of abstract vari-
ables (Wahabzada et al. 2015a). This allows for a simpli�ed representation
with increased separability of the acquired data and a considerable reduction
in processing time using the SiVM processed dataset in further data analysis
methods.

It was possible to separate pixels showing healthy tissue, powdery mildew
symptoms and background into di�erent classes through the combined classi�-
cation with SiVM and SVM. Classi�cation of the control Mini-Plots showed less
than 2% of the pixels in the images being classi�ed as diseased for all cultivars
whereas up to 31% of the pixels are predicted as infected for the inoculated
plots (Fig. 4.4). Meanwhile, the automatic disease severity estimation of the
infected plants of all cultivars in the Mini-Plots, based on the SVM results, show
matching results to the visual observations of the disease progression per cul-
tivar at 30 dai (Fig. 4.4). Furthermore, the progression of the disease severity
can be accurately tracked across every measurement date during the experi-
ment. Validation of the SVM classi�cation data was based on its application
and comparison with a manually labelled hold-out dataset. The dataset was
derived from images of the inoculated Mini-Plot of cultivar Grace at 22 dai
to verify cross cultivar accuracy. The results show an accuracy of 94.83% for
the automatic SVM classi�cation. The results of this study show that the pro-
posed hyperspectral phenotyping system is able to accurately assess the disease
severity of each cultivar. Additionally, it is possible to monitor the exact pro-
gression of the disease symptoms for each plot at any time during the time series
measurement. Combined with the high throughput of the canopy level measure-
ments, the system allows for a quick and objective estimation of barley cultivar
susceptibility to powdery mildew. In this study, a high potential of the system
to be used for fully automated measurements in the future has been con�rmed.

The results of the SVM classi�cation can also be visualized on the pixel
scale for each hyperspectral image of the cultivars over the course of the ex-
periment, providing spatial information about disease outbreak and spread over
the course of the experiment (Fig. 4.5). In Figure 4.5, the disease progression
of the two cultivars with the highest disease severity (Milford and Tocada) is
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shown. The di�erences in disease patterns for the cultivars from the �rst visual
symptoms at 14 dai up to the �nal stages of powdery mildew infestation can be
readily assessed and analyzed for phenotyping purposes. Furthermore, the SVM
classi�cation is able to detect �rst disease symptoms at 12 dai, when they �rst
appeared at the Tocada and Milford cultivars. Due to the similarities of pow-
dery mildew symptoms and healthy tissue with specular re�ections, it is di�cult
to detect such early symptoms without misclassi�cations. However, such �rst
symptoms contribute only to a small degree to the proportional disease severity
estimation. A speci�c and quantitative evaluation of the early detection was
beyond the scope of the experiment and was not speci�cally regarded in the
analysis. Unlike the results of Thomas et al. (2017), which detected powdery
mildew on barley at leaf scale under laboratory conditions, it was not possible to
detect infestation before visible symptoms appeared in the current study. This
can be explained as a manual annotation of training data was required due to
the SVM classi�er. As it was impossible to acquire training data from pixels
with powdery mildew infestation before they became visible to the human eye,
the SVM algorithm could not be trained to search for these e�ects. Kuska et al.
(2015) were able to select powdery mildew infected areas before visible symp-
toms appeared. However, this was possible due to tracing position on the leaf
from later stages in the experiment, when symptoms have become visible. Due
to the leaf movement in the partially opened greenhouse, this technique could
not be transferred to the current study. Nevertheless, the results show, that
powdery mildew symptoms at early stages can be detected in the canopy with
the current setup, providing valuable information for resistance breeding.

Automated assessment of necrosis due to resistance against powdery

mildew of cultivar Irina

Necrotic spots on the leaves of barley cultivar Irina could be spotted in the
canopy at 14 dai. Microscopic analysis could identify papillae formation which
prevents cell wall penetration of powdery mildew haustoria, as well as hyper-
sensitive response (HR) as response to successful penetration of epidermis cells.
Due to the intensity of necrotic lesions on the inoculated plants, it was possi-
ble to create training data, based on the plants in the inoculated Mini-Plot of
cultivar Irina at 14 dai and perform SVM classi�cation for healthy tissue and
tissue with necrotic lesions. As shown in Figure 4.6, it was possible to di�er-
entiate inoculated and control plants of cultivar Irina, based on the increase of
necrotic lesions in response to powdery mildew inoculation. The training of the
SVM classi�cation had to be performed with a small number of samples, which
could be identi�ed by the authors due to large amounts of necrotic cells creating
visible discolorations on the plant leaves. Nevertheless, these observations are
promising for the application of the proposed hyperspectral phenotyping system
for the direct detection of resistance reactions in plants as response to pathogen
attack. For such experiments, it is possible to reduce the distance between cam-
era and plants inside the Mini-Plots. This would lead to the required higher
spatial resolution at the cost of a reduced measurement throughput and more
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Figure 4.4: Disease severity of the di�erent barley cultivars over the course
of the experiment. The disease severity was estimated based on percentage
of pixel, which were classi�ed as containing powdery mildew symptoms after
Simplex Volume Maximization (SiVM) and following supervised classi�cation
by Support Vector Machines (SVM).
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Figure 4.5: Spatial distribution of powdery mildew infestation development over
the course of the experiment for highly susceptible cultivars Milford and Tocada
through pseudo RGB images and false color images of Support Vector Machines
(SVM) classi�cation (green = healthy tissue, red = powdery mildew symptoms,
blue = background).
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Figure 4.6: Classi�cation of healthy tissue and tissue expressing necrotic lesions
as response to powdery mildew infection at the resistant barley cultivar Irina
two days after inoculation. False color pictures show the spatial distribution of
necrotic lesions over the Mini-Plots of both control and inoculated plants. Ad-
ditionally, the percentage of total pixels in the image being classi�ed as showing
tissue with HR for both plots is shown as bar diagram. The inoculated plot
shows a signi�cantly increased number of pixels, which are classi�ed as express-
ing necrotic lesions.

extreme observation geometries. By the development of modern, more compact
hyperspectral cameras, the measurement setup can be further simpli�ed in the
future (Behmann et al. 2018).

4.5 Conclusion

The proposed hyperspectral phenotyping system was designed to enable the ac-
curate measurements of basic research leaf level hyperspectral experiments, usu-
ally performed under controlled conditions in the laboratory, at a high through-
put with environmental conditions as close to the �eld as possible. The con-
ducted study shows that, despite the intrinsic di�culties of performing mea-
surements on canopy scale, the system is able to detect disease symptoms at
early stages and allow detailed assessment of disease severity and progression
over extended periods of time. The achieved results are objectively derived
and the measurement process is non-invasive, allowing for repeated measure-
ments without interference with the plants development. Moreover, it was also
possible to detect powdery mildew resistance induced necrosis for one of the
resistant cultivars, which is a valuable addition for applications in resistance
breeding programs. The use of modern data analysis methods enabled auto-
matic extraction of the results and it was possible to analyze the entire dataset,
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containing over 234 GB of information, by creating a set of training data from
a single hyperspectral image. The proposed hyperspectral measurement system
improves e�ciency and accuracy of phenotyping procedures and would be a
valuable addition in plant resistance breeding programs.
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5 Summary and outlook

Three main topics have been set for investigation during this thesis. The eval-
uation of transmission based imaging, both compared and combined with the
already well investigated re�ection based imaging on leaf scale under labora-
tory conditions; the practical application of optical sensors for high-throughput
early disease detection and quanti�cation on canopy scale under greenhouse
conditions. As well as the investigation of comparability of optical sensor data
gathered on di�erent scales and measurement conditions for plant disease de-
tection.

5.1 Evaluation of transmission based imaging with hyper-

spectral sensors

The evaluation of transmittance data for plant disease detection � especially
within early stages of disease development � was a major focus within this
thesis. Building on the promising results of Bergsträsser et al. (2015), in which
an increased accuracy for the detection of Cercospora leaf spot symptoms on
sugar beet leaves through a combination of re�ection and transmission based
data from measurements with hyperspectral sensors was reported, the current
thesis has focussed on further examining the possibilities of transmission based
measurements � compared to and combined with re�ection based data.

Three barley pathogens, which interact di�erently with the plant tissue dur-
ing disease development (Blumeria graminis f. sp. hordei, Puccinia hordei and
Pyrenophora teres f. teres) have been selected in order to investigate the pos-
sibilities of both re�ection and transmission based data in combination with
advanced data analysis methods for early disease detection and quanti�cation
within the speci�c plant-pathogen interactions between barley and the chosen
pathogens (See Chapter 1.1).

Over the course of the experiments it could be demonstrated, that dis-
ease symptoms of all three pathogens could be eventually detected by both
re�ectance and transmittance data of the measured leaves. However, as this
study � unlike Bergsträsser et al. (2015) � focussed speci�cally on early dis-
ease detection by means of performing daily time-series measurements over the
course of disease development, it could be shown that re�ection based datasets
outperformed transmission based datasets for early disease detection.

The detection of powdery mildew symptoms showed the greatest disparity
during the experiments, with principle component analysis classi�cation based
on re�ectance data being able to detect powdery mildew symptoms two days
before the symptoms were visible with the naked eye � at which point they
were also detected based on transmittance data (see Chapter 3.1). Brown rust
symptoms could be detected one day before they were visible with the naked
eye through the use of support vector machines classi�cation or respectively at
the same time through the application of spectral decomposition on re�ectance
data (see Chapter 3.2). Meanwhile both algorithms were able to classify disease
symptoms only one day after they were visible when applied to the transmittance
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dataset. Net blotch symptom detection was possible one day before visible
symptoms appeared for both re�ection and transmission based measurements
through the application of a distance classi�er on the results of a previously
performed PCA, it also showed the highest misclassi�cation of the dataset as
it was not possible to distinguish between net blotch symptoms and the leaf
vein in the transmittance images (see Chapter 3.2). A notable exception is the
classi�cation of net blotch symptoms through SVM, as the transmission based
approach actually was able to detect disease symptoms one day before the SVM
based on the re�ectance dataset. However, it has to be noted that this detection
was still one day after symptoms became visible with the naked eye.

In all examined cases re�ectance based approaches outperformed transmit-
tance approaches for early disease detection � with the notable exception men-
tioned above, which does not support the validity of transmittance imaging for
early disease detection however, as alternative data analysis methods performed
signi�cantly better for net blotch detection.

These results are most likely related to the optical properties of plant leaves,
which cause light to spread di�usely when passing through the leaf tissue in
order to maximise light availability for energy generation through photosynthe-
sis (see Chapter 3). Especially in the early stages of disease progression light
that passed through the symptomatic tissue is spread di�usely during its path
through the plant tissue. Additionally, light that interacted with leaf areas next
to the symptomatic tissue, which are not yet directly in�uenced through de-
veloping disease symptoms, is equally spread and mixes with the light which
interacted directly with the symptomatic leaf tissue. Thereby, the light which is
detected through transmission imaging becomes diluted with light that spread
from healthy leaf areas at the edges of symptomatic tissue areas within the leaf.
This e�ect is barely noticeable once disease symptoms have developed to a suf-
�cient size, as shown by the measurements of Bergsträsser et al. (2015) and the
measurements of late stage disease development within the current study. It
could be shown to cause a signi�cant reduction in transmittance based disease
detection in early stages for all pathogens which were investigated within this
study.

Furthermore, this e�ect was most prominent for the detection of plant dis-
eases which interact mostly with the upper epidermis layers of the leaf, such
as powdery mildew, while being the least relevant at the detection of necrotic
pathogens (net blotch) and spontaneous necrosis of leaf tissue. These results
support the theory that the internal light spreading inside the leaf tissue is
the cause for the reduced e�ciency in hyperspectral transmission imaging, as
changes which are just at the leaf surface would be more prominently a�ected
by light spreading then changes that are present deeper within the tissue layers
of the leaf.

The combination of these issues and the additional challenges to the mea-
surement process during hyperspectral imaging of transmitted light in plants
make the application of transmittance datasets for pathogen detection in the
near future unlikely. Especially the performance of transmission based mea-
surements on canopy layer for practical applications without the possibility to
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�xate leaves for precise measurement angles are challenging prospects for future
applications. Nevertheless, it could be shown that transmittance data in combi-
nation with re�ectance data can provide a more detailed approach for especially
the di�erentiation of diseases and other stress factors from each other. These
results show potential of transmission based imaging, especially combined with
simultaneous re�ection based imaging, for the di�erentiation of causative agents
which are highly similar within re�ectance data � as well as the detailed inves-
tigation of plant metabolic processes and their changes during plant-pathogen
interaction.

5.2 High-throughput early disease detection on canopy

scale for application in resistance breeding

A main goal of the thesis was the establishment of hyperspectral sensor systems
that can be applied in practical applications, such as phenotyping procedures
during plant resistance breeding. While hyperspectral imaging experiments have
shown to be successful in pathogen detection in scienti�c studies, they are rarely
applied outside of the scienti�c scope. One di�culty being the transition from
highly experimental setups under speci�c conditions to practical applied sys-
tems. Another di�culty is the comparatively low throughput of scienti�c mea-
surements. Finally, most studied about early disease detection are performed
on leaf scale, which is not feasible for economic application in agriculture.

In order to remedy these factors a high throughput hyperspectral imaging
measurement setup was assembled, which allows rapid measurements of plants
on canopy scale (see Chapter 4). The measured mini-plots in which the plants
grow furthermore provide similar �eld-like conditions for the investigated plants,
promoting the expression of phenotypes similar to those in �eld trials. The en-
vironmental conditions during measurements of the plants are highly controlled,
despite the plants growing in a greenhouse environment or outdoors � causing no
interference with plant development outside of the comparably short measure-
ment windows. This allows multiple measurements of di�erent plots over long
time periods under highly similar conditions, not only minimizing adjustment
time of measurement parameters between measurements but also removing the
in�uence of environmental conditions to both measurement results and ability
to perform the actual measurements.

Within the study time-series measurements of six di�erent barley cultivars
with varying susceptibility to powdery mildew were performed over a time span
of about one month. During these measurements it was possible to detect �rst
plant disease symptoms through a combination of hyperspectral re�ectance data
and supervised data analysis through a combination of simplex volume maxi-
mization and support vector machine at the same day as they became visible
with the naked eye, while requiring only a limited set of training data from a
single cultivar, which allowed accurate disease detection in all cultivars. Hereby
the transition from leaf to canopy level showed a signi�cant impact compared
with the earlier measurements within this thesis (see Chapter 3.1). Cross scat-
tering of light and especially the di�erences in the intensity of re�ected light
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depending on the plant architecture proved to be challenging for data analysis
approaches, with SVM as supervised approach having the advantage that rele-
vant di�erences between healthy and symptomatic tissue being separated from
the generally high data variance through the given training data. A disadvan-
tage of the supervised method was the comparatively late disease detection at
the time the �rst symptoms became visible to the human eye, while leaf based
measurements of powdery mildew inoculated plants under laboratory conditions
were able to detect powdery mildew infection two days before visible symptoms
appeared with unsupervised data analysis methods (See Chapter 3.1). This
disparity can be explained through the inability to select areas with developing
powdery mildew symptoms before they became visible to the human eye in the
canopy level measurements as the leaves did naturally move between measure-
ments times, preventing an exact localisation of areas which would be showing
symptoms later during the time-series. Despite these additional challenges, it
was possible to automatically access the disease severity of all cultivars at every
measurement timepoint automatically. These results showed a high correlation
with manual rating of the plants.

The resistant barley cultivar Irina showed necrotic lesions after inoculation
with B. graminis f. sp. hordei spores, but no development of powdery mildew
symptoms. Microscopic analysis showed both papillae formation and hypersen-
sitive reaction upon inoculation with spores of the Bgh isolate within the study,
linking the observed necrotic lesions to plant resistance reaction against pow-
dery mildew. The combination of SiVM and SVM � as described above � was
also able to detect and quantify the appearance of necrotic lesions within the
cultivar Irina, based on a separate set of training data, as well as di�erentiat-
ing the necrotic lesions from powdery mildew symptoms. These results show,
that detection and quanti�cation of both disease symptoms and resistance reac-
tions is possible on canopy level under greenhouse conditions in high-throughput
measurements within the described setup.

The developed system proved to be an e�cient tool for plant phenotyping
and has the potential to reduce the required manual labour within plant breeding
phenotyping through automatization while simultaneously providing objective
data about disease severity and resistance reactions. Despite the challenges of
close-range canopy measurements, the results could be gathered with minimal
requirements for training data and showed to be consistent for the di�erent
cultivars, successfully applying the results of previous laboratory studies on
a scale which is relevant for practical application with su�cient measurement
throughput. Thereby, the proposed system shows the potential for the future
application of hyperspectral imaging in both breeding and agricultural practice.

5.3 Cross-scale hyperspectral data compatibility

The compatibility of hyperspectral data � which has been generated on di�erent
measurement scales � is an important factor for the application of the available
results from numerous research studies within the �eld in agricultural practice.

Within this study powdery mildew symptoms were investigated on leaf scale
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within a highly controlled laboratory environment (see Chapter 3.1), as well as
on canopy scale within a greenhouse environment (see Chapter 4). It could be
shown, that while the changes in environmental conditions and additional factors
of canopy measurements � such as plant architecture, di�erent light intensities
in the canopy layers, light scattering within the canopy � have signi�cant im-
pact on the data analysis requirements, the changes in the spectral signatures
of the plants during plant-pathogen interaction remain the same for both leaf
and canopy scale. Comparing these spectral signatures over disease progression
with those reported in the study of Kuska et al. (2015), which investigated
the plant-pathogen interaction of barley with powdery mildew on a microscopic
scale, it can be seen that the changes within the spectral pro�les during dis-
ease development are comparable, despite the detection accuracy being reduced
due to changes in the spatial resolution of the measurements when upscaling.
These results are further supported by a study of Bohnenkamp et al. (2019a),
which di�erentiated between brown rust and yellow rust on wheat leaves with
hyperspectral data of rust spores as basis of classi�cation. Bohnenkamp et al.
(2019b) performed comparative measurements on leaf scale in the laboratory, as
well as ground canopy and UAV scale in the �eld and were able to compare the
gathered datasets the detection and quanti�cation of yellow rust. Within their
study a notable e�ect of the plant architecture and cross scattering of light is
con�rmed to introduce challenges for the canopy based measurements within the
�eld, coinciding with the observations within the current study. While multiple
studies about plant pathogen detection on di�erent scales exist (see Chapter
1.2), the studies of Bohnenkamp et al. (2019a, b) � as well as the current study
(see Chapters 3.1 and 4) in combination with Kuska et al. (2015) � show direct
compatibility of hyperspectral datasets from the same disease in di�erent scales.

The results of the current study support the thesis that the results of studies
using hyperspectral data can be applied to di�erent scales and environments,
permitting practice oriented projects to make use of the wealth of available
research data from scienti�c studies. However, it has been shown that increasing
the scale from leaf to canopy adds multiple new factors within the dataset, which
have to be considered during data analysis. Thereby it is especially important
to modify analysis procedures of gathered hyperspectral data to �t the current
task.
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