
SIMILARITIES AND REPRESENTATIONS
OF GRAPH STRUCTURES

dissertation
zur

erlangung des doktorgrades (dr. rer. nat.)
der

mathematisch-naturwissenschaftlichen fakultät
der

rheinischen friedrich-wilhelms-universität bonn

von

ANTON TSITSULIN
aus

moskau, russland

bonn, 2020

Erster Gutachter: Prof. Dr. Emmanuel Müller
Zweite Gutachterin: Prof. Dr. Petra Mutzel
Fachnahes Mitglied: Prof. Dr. Heiko Röglin
Fachfremdes Mitglied: Prof. Dr. Ribana Roscher

Tag der mündlichen Prüfung: 29.04.2021
Erscheinungsjahr: 2021

Angefertigt mit Genehmigung
der Mathematisch-Naturwissenscha�lichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

η δε γνώσις αγάπη γίνεται
St. Gregory Nyssen

ABSTRACT

Graphs are a natural representation for diverse systems ranging from social
networks to theWeb andbrain structure. Evenwhen data is not interconnected
explicitly, it is o�en convenient to convert it into a graph for further analysis.
Many tasks involving graphs, such as link prediction, community detection,
and classi�cation, rely on various de�nitions of similarities between nodes in
graphs or graphs as a whole. However, such similarities are mostly implicit,
meaning that objects are not represented by a feature vector in some space. In
contrast, modern machine learning methods require explicit representations
of objects in the Euclidean space. To leverage machine learning powers on
graph data, we must �nd suitable explicit representations of graphs.

�is thesis develops e�cient algorithms for obtaining expressive, explicit
representations of graph-structured data. We focus on the scalability of the
algorithms, as they must have an ability to process Web-sized graphs to be
relevant for practice. Local graph algorithms have that ability; we introduce
scalable local algorithms for representing nodes, edges, and whole graphs as
vectors in the Euclidean space. Studying representations through the lens of
the underlying similarity allows us to elucidate previous work and introduce
extremely desirable properties to our proposed models. Notably, we introduce
the �rst anytime and the �rst local algorithms for representing graphs’ nodes.
For the case ofwhole graphs,we propose the �rst representation that empowers
multi-scale comparison of graphs and a method for its local approximation.
We verify experimentally that our methods do not sacri�ce the expressivity of
representations for algorithms’ scalability. We introduce novel applications of
graph analysis and use our methods on massive graphs with billions of nodes.

vii

CONTENTS

1 Introduction and�esis Overview 1
1.1 Overview and Contributions 3

2 Background and Notation 7
2.1 Notation and Common Symbols 7
2.2 Graphs . 8
2.3 Matrix Decompositions . 11
2.4 Neural Networks . 12

I Similarities and Representations of Nodes 15

3 Introduction and RelatedWork 17
3.1 Related Work . 18

4 Vertex Similarity Embeddings 25
4.1 A Versatile Node Embedding 27
4.2 Experiments . 34
4.3 Summary . 44

5 Anytime Node Embeddings 45
5.1 Preliminaries . 46
5.2 Anytime node embeddings 48
5.3 Experiments . 52
5.4 Summary . 60

6 Local Node Representations 61
6.1 Problem Statement . 62
6.2 Method . 64
6.3 Experiments . 69
6.4 Summary . 76

viii

contents ix

7 Node Representations for Clustering 83
7.1 Preliminaries . 84
7.2 Method . 87
7.3 Experiments . 89
7.4 Summary . 97

II Similarities and Representations of Graphs 99

8 Introduction and RelatedWork 101
8.1 Related Work . 102

9 Spectral Graph Similarity 105
9.1 Problem Statement . 106
9.2 Network Laplacian Spectral Descriptor 108
9.3 Experiments . 114
9.4 Summary . 122

10 Learning a Spectral Graph Similarity 123
10.1 Learned Spectral Representations 125
10.2 Experiments . 128
10.3 Summary . 131

11 E�cient Approximation of Spectral Graph Representations 133
11.1 Preliminaries . 134
11.2 Stochastic Lanczos Quadrature 136
11.3 Experiments . 144
11.4 Summary . 150

12 Spectral Graph Similarities for Comparing Distributions 151
12.1 Related Work . 152
12.2 Intrinsic Multi-Scale Distance 154
12.3 Experiments . 158
12.4 Summary . 165

x contents

III Summary 167

13 Summary and Future Work 169
13.1 Future Work . 171

LIST OF FIGURES

2.1 A simple graph. 8

2.2 A directed graph with a sink node v. 8

2.3 A weighted graph; edge thickness represents its weight. 8

2.4 A graph with two clusters. Its cut is shown in gray. 12

2.5 Information �ow of a two-layer gcn. Hidden representations
are �rst updated from the green nodes to the red ones; then, red
nodes are used to compute the representation of the central node. 13

3.1 A claw graph. 19

3.2 Example of node2vec’s second-order random walks. Here, we
walked from node u to v. 22

3.3 A star graph. 22

4.1 �ree node properties are highlighted on the same graph. Can a
single model capture these properties? 26

4.2 An example similarity matrix and its reconstructions by verse
and svd. Karate club graph [Zac77]; we set dimensionality d = 4

for both methods. 27

4.3 Ranking performance in terms of ndcg for reconstructing ppr
similarity, averaged across nodes in a graph. 31

4.4 Classi�cation performance for (a) di�erent dimensionality and
(b) ppr damping factor �). 42

4.5 Scalability of di�erent methods. 43

4.6 Visualization of a subset of nodes from CoCit graph with selected
conferences: vldb, icde, kdd, www, and NeurIPS.
Note that the number of nodes per class is the same for all con-
ferences. 44

xi

xii list of figures

5.1 Work�ow: frede iteratively samples transformed ppr rows,
periodically compresses the derived sketch and derives singular
values by svd, and returns an embedding with error guarantees
at any time. 51

5.2 Covariance error vs. dimensionality d; frede approaches svd,
which yields optimal covariance error. 55

5.3 Classi�cation performance of sketching algorithms on ppi data
wrt. number of walks to compute ppr. 55

5.4 Classi�cation performance of frede with varying percentage
of the graph as input on three datasets. 58

6.1 Required (a) running time and (b) memory consumption to gen-
erate a node embedding (d=512) based on the edge count of each
graph (|E|), with the best line �t. Our method is over 9,000 times
faster than the next fastest baseline (FastRP) and uses over 8,000
times less memory than the next most memory-e�cient baseline
(verse), in the largest graph that these baseline methods can
process. 73

6.2 �e impact of the choice of � on the quality of the resulting em-
bedding (through the Micro-F1 score), average running time and
peak memory increase for the YouTube dataset. 74

6.3 CoCit visualization via umap (d=512). Research areas (ml,
dm, db, ir). 75

7.1 Optimization progress of MinCut and dmon on Cora dataset.
MinCut optimizes the regularizer, while dmon minimizes its
main objective. 88

7.2 Illustration of synthetic data. (a) 4-cluster graph adjacencymatrix.
(b) Covariance matrix of “matched” features: features that are
clustered according to the graph clusters. (c) Covariance matrix
of “nested” features: features that are clustered by incomplete
nesting of the graph clusters. (d) Covariance matrix of “grouped”
features: features that are clustered by incomplete grouping of the
graph clusters. 92

list of figures xiii

7.3 Synthetic results on the adc-sbm model with 6 di�erent scenar-
ios described in Table 7.3. We observe that dmon signi�cantly
outperforms other neural graph pooling method baselines. . . . 94

7.4 Synthetic results on the adc-sbm model with 6 di�erent sce-
narios described in Table 7.3. We observe that dmon leverages
information from both graph structure and node attributes. . . . 94

9.1 Taylor expansion for netlsd approximation: (a) Relative ap-
proximation error of normalized ℎt for Erdős–Rényi random
graphs, varying time scale t, and (b) the heat trace approximation
by two Taylor terms and 100 eigenvalues on a random sbm graph. 110

9.2 �e diagonal ofHt at di�erent scales on the Karate club graph; at
a large scale, the �eld re�ects node centrality. 112

9.3 Visualization of the diagonal in the heat kernel matrixHt for the
pointed vertex at scale t = 0.3. 112

9.4 Relative error in spectrum computation of ℎ(G), averaged across
2085 graphs. 113

9.5 Two most dissimilar graphs by ℎ(G)∕ℎ(K̄) across all small-size
graphs in datasets used. Communities are colored. 121

9.6 Time to compute 300 eigenvalues on both ends of the spectrum
and the approximation of ℎ(G). 121

10.1 Di�erent regions of the spectrum have a di�erent impact on the
classi�er co-trained with the sgrG . �e color map shows the
gradient magnitude of the classi�er output with respect to the
input spectrum visualized in increasing order from le� to right,
averaged on 600 graphs. Top: sbm; bottom: Erdős–Rényi. 125

10.2 Relative L1 error in neural representation as a function of a num-
ber of computed eigenvalues. 127

11.1 Errors (solid) and error bounds (dotted) for the approximation
of matrix exponential action with varying temperature t. 141

xiv list of figures

11.2 Trace estimation errors (solid) and errorbounds (dotted) for: (le�)
the number of Lanczos steps m with �xed number of random
vectors nv = 100; (right) the number of random vectors nv in
Hutchinson estimator with �xed number of Lanczos stepsm =

10. Lines correspond to varying temperature t. 142

11.3 Variance of the trace estimate 142

11.4 slaq o�ers over 200× reduction in average error for vnge over
techniques proposed in [CWLR19] and over 30× improvement
over the linear approximation from Chapter 9. 146

11.5 slaq o�ers 22× reduction in average error for netlsd over
linear approximation and 250× over Taylor expansion. 146

11.6 Number of nodes and edges of random Erdős–Rényi graphs does
not a�ect slaq’s approximation accuracy. 146

11.7 slaq approximation of netlsd and vnge forWikipedia
graphs across time. Changes that are not explained by local edge
di�erences highlighted in gray. 147

11.8 Parameter sensitivity of slaq in terms of approximating netlsd
with (a) di�erent number of starting vectors nv and (b) di�erent
number of Lanczos steps s. Error averaged across 73 graphs from
the Network Repository. 148

12.1 Two distributions having the same �rst 3 moments, meaning fid
and kid scores are close to 0. 151

12.2 (a) imd distances between language pairs forunalignedWikipedia
word embeddings; (b) distances from the simple EnglishWikipedia
visualized for imd, fid, and kid; (c) pairwise fid distances;
(d) pairwise kid distances. We consider 16 languages: Polish,
Russian, Greek, Hungarian, Turkish, Arabic, Hebrew, English,
Simple English, Swedish, German, Spanish, Dutch, Portugese,
Vietnamese, and Waray-Waray. 159

12.3 Comparison of imd and pip loss on word embeddings of dif-
ferent dimension. Note how imd detects subtle changes in the
dimensionality. 160

list of figures xv

12.4 Training progression in terms of accuracy (dotted) and imd
(solid) on cifar-10 and cifar-100 datasets for vgg-16 and
ResNet-20, with respect to vgg-16. 161

12.5 Values of imd across convolutional layers of the vgg-16 network
on cifar-10 and cifar-100 datasets. 161

12.6 fid, kid and imd on the cifar-10 dataset with Gaussian blur. 162
12.7 Plotting the normalizedheat trace allows interpretation ofmedium-

and global-scale structure of datasets. 164
12.8 Stability and scalability experiment: (le�) stability of fid, kid

and imd wrt. sample size on cifar-10 and cifar-100 dataset;
(right) scalability of fid, kid and imd wrt. sample size on a
synthetic dataset. 165

LIST OF TABLES

1.1 An overview of the thesis contributions. 3

2.1 Common symbols and notation. 7

4.1 Comparison ofneural embeddingmethods in terms of the bounded
degree (Ok̄) and worst-case (O) time and space complexity, as-
suming sparse graphs. 32

4.2 Dataset characteristics: number of vertices |V|, number of edges
|E|; number of node labels |ℒ|; average node degree; modularity
Q [New06b]; density de�ned as |E|∕

(
|V|

2

)
. 35

4.3 Vector operators used for link-prediction task for each u, v ∈ V

and corresponding embeddings a, b ∈ ℝd. 37
4.4 Link prediction results on the CoAuthor coauthorship graph. Best

results per method are underlined. 37
4.5 Link prediction results on theVK coauthorship graph. Best results

per method are underlined. 38
4.6 Multi-class classi�cation results in CoCit dataset. 39
4.7 Multi-class classi�cation results in VK dataset. 39
4.8 Multi-label classi�cation results in YouTube dataset. 39
4.9 Multi-class classi�cation results in Orkut dataset. 39
4.10 Node clustering results in terms of nmi. 40
4.11 Node clustering results in terms of modularity. 41
4.12 Graph reconstruction % for all datasets. 41

5.1 Dataset characteristics: number of vertices |V|, number of edges
|E|; number of node labels |ℒ|; average node degree; density
de�ned as |E|∕

(
|V|

2

)
. 53

5.2 Micro-F1 classi�cation, ppi data. 56
5.3 Micro-F1 classi�cation, pos data. 56
5.4 Micro-F1 classi�cation, BlogCat data. 56
5.5 Micro-F1 classi�cation, CoCit data. 57

xvi

list of tables xvii

5.6 Micro-F1 classi�cation, Flickr data. 57

5.7 Micro-F1 classi�cation, YouTube data. 57

5.8 Link prediction accuracy, CoAuthor data. 58

5.9 Link prediction accuracy, VK data. 58

6.1 Dataset attributes: size of the vertex set |V|, edge set |E|, labeled
vertices |S|. 71

6.2 Average Micro-F1 classi�cation scores and con�dence intervals. . 74

6.3 Average roc auc scores and con�dence intervals for the link
prediction task. 75

6.4 Classi�cation micro and macro F1-scores for ppi. 77

6.5 Classi�cation micro and macro F1-scores for BlogCat. 78

6.6 Classi�cation micro and macro F1-scores for CoCit. 79

6.7 Classi�cation micro and macro F1-scores for Flickr. 80

6.8 Classi�cation micro and macro F1-scores for YouTube. 81

6.9 Temporal link-prediction roc auc scores for CoAuthor. For
each method, we highlight the aggregation function that consis-
tently performs good on all datasets. 82

7.1 Comparison of MinCutPool with using only its orthogonality
regularization in terms of graph conductance C, modularity Q,
and nmi with ground-truth labels. 88

7.2 Dataset statistics. 89

7.3 Synthetic adc-sbm benchmark scenarios. 93

7.4 Results on four datasets from [SNB+08] in terms of graph con-
ductance C, modularity Q, nmi with ground-truth labels, and
pairwise F1 measure. We group the methods into three categories:
baselines using only one aspect of data, neural representation
learning, and neural graph pooling methods. We highlight best
neural method performance. 95

xviii list of tables

7.5 Results on four datasets from [SMBG18] in terms of graph con-
ductance C, modularity Q, nmi with ground-truth labels, and
pairwise F1 measure. We group the methods into three categories:
baselines using only one aspect of data, neural representation
learning, and neural graph pooling methods. We highlight best
neural method performance. 96

9.1 Dataset properties. 114
9.2 Classi�cation roc auc in detecting whether a graph is real. . . 116
9.3 Accuracy in 1-nn classi�cation. 116
9.4 Accuracy of 1-nn classi�cation on Reddit-L. 118
9.5 Accuracy in detecting graphs with communities. 119
9.6 Accuracy in detecting graphs with communities, Poisson distri-

bution of graph size. 119
9.7 Accuracy in detecting graphs with communities, Uniform distri-

bution of graph size. 120

10.1 Dataset characteristics: number of graphs |G|, number of labels
|L|, avg. number of vertices |V|, avg. number of edges |E|, avg.
global clustering coe�cient CC. 128

10.2 Graph classi�cation accuracy on biochemical (top) and social
(bottom) graph collections. Best results with representations are
highlighted. 129

10.3 Normalized mutual information of clustering on representations.
Higher numbers indicate better performance. Best results on each
dataset are highlighted in green. 130

10.4 Runtime for the creation of a (dis-)similarity matrix across all
graphs from the Reddit-5k dataset evaluated on a single core.
Representation computation time for sgr is indicated in two
components, spectrum computation + neural network inference.
On the datasets, last two rows combined yield total time taken. . 131

11.1 Characteristics of large graphs used in this work: number of ver-
tices |V|, number of edges |E|; average node degree; density de-
�ned as |E|∕

(
|V|

2

)
. 145

list of tables xix

11.2 Characteristics of dynamic graphs: total number of vertices |V|,
total number of edges |E|; number of timestamps |T|; average
incoming edges per timestamp |E|∕|T|. 145

11.3 Properties of the graph classi�cation datasets used: number of
graphs |G|; number of labels |Y|; minimum, average, and maxi-
mum number of nodes in graph collection. 145

11.4 1-Nearest neighbor graph classi�cation performance on 4 datasets
with vnge and netlsd. Exact computation results are in bold.
Approximations that are close to or better than the exact metric
computation are highlighted in green. 148

11.5 Running time (in seconds) of di�erent approximation techniques
and slaq for vnge on large graphs. 148

12.1 imd agrees with fid and kid across varying datasets for gan
evaluation. 163

1INTRODUCTION AND THESIS OVERVIEW

Ever-increasing capabilities of information processing systems
open the possibility to collect and analyze vast amounts of complex
data, allowing for better-informed decision making. Traditionally,

experts analyze the collected data via the Knowledge discovery in databases
(kdd) process [HPK01] that proposes tomine data1 for knowledge that can 1. In the kdd process,

data mining is the process
of extracting interesting
patterns from data.

empower human decision making. Alternatively, mining and expert decision
making can be merged into a single machine learning model to make accurate
decisions faster.

Both the human-in-the-loop kdd process and end-to-end machine learn-
ing require a suitable representation of data to work e�ectively. In the �eld of
datamining,manual feature engineering allows constructing a view of data that
allows human experts to analyze it. Conversely, machine learning approaches
try to forgo manual feature engineering, which is considered painstakingly
di�cult, in favor of data-driven representation learning, which leverages the
hidden symmetries and similarities in data. Learning useful representations
is o�en harder than engineering them—the e�orts shi� to the engineering of
inductive biases [Mit80] of machine learning models.

�ese two approaches to feature creation inform and advance each other:
for example, it is sometimes possible to construct an optimal solution to a
learning problem manually. We can then devise approximation algorithms
with better algorithmic properties than their learning-based counterparts.
Likewise, learning methods bene�t from incorporating domain knowledge.

From all the means of representing complex interconnected data, graphs
have a unique appeal of the apparent simplicity of their parts—a�er all, they
are merely sets of nodes and edges—and the richness of the information
they can model. Graphs provide a powerful abstraction for modeling various
types of relations between objects in physical, biological, and social systems.
Sometimes, data has a graph structure naturally2; other times, it is convenient 2. For example, the social

network of Facebook is a
natural graph.to convert the data to a graph to explore its intrinsic structure.

1

2 introduction and thesis overview

�ebene�ts of having the data as a graph aremanyfold; for example,we can
quickly access the local neighborhood of each point. Local graph algorithms
provide major e�ciency improvements over their global counterparts [Lin87].
�e local graph modeling paradigm is one of the few that allows building
algorithms that process billions of data points. In contrast, it is notably hard
to develop local algorithms for dealing with tabular data, as there is no natural
de�nition of points’ local neighborhood.

Graphs also provide us with a natural way of thinking about theirmulti-
scale structure ranging from the microscopic ego-network structure of nodes
to mesoscopic clusters3 to the overall macroscopic connectivity patterns. Di-3. Clusters in graphs are

also called communities. verse applications require analyzing graphs on di�erent structural scales.
While a sociologist classi�es friends of a person into social circles—a purely
local task, a biologist studies global activity patterns in brain networks. �ere-
fore, scale-adaptive methods—ones that can focus the analysis on various
structural scales—are o�entimes desirable for real-world applications. It is
crucial to distinguish e�cient local methods from the myopic single-scale
local graph analysis. �e very best local algorithms can provide a global view
of the graph.

Low-dimensional features are essential for taming high-dimensional graph-
shaped data. However, expressive representations of graphs and their parts are
hard to come by, and scalable algorithms are even rarer, meaning it is hard to
analyze large real-world graphs. Furthermore, existing solutions dismiss the
multi-scale nature of graph data, while diverse applications of graph-based
analysis require versatile algorithms for creating representations. Another
plague of modern representation learning methods is a lack of any theoretical
guarantees on the convergence or the solution they produce.

�is dissertation focuses on the scalable and principled algorithms for
constructing versatile multi-scale representations of graphs. In particular, we
focus on low-dimensional node- and graph-level representations suitable for
machine learning pipelines and interpretable human decisions. We provide
the theoretical foundations, error analysis of our algorithms, and provably
scalable methods that e�ciently exploit the sparsity and locality of graph data.

overview and contributions 3

1.1 OVERVIEW AND CONTRIBUTIONS

�is thesis is organized into two main parts: Part I focuses on node-level
representations, while Part II discusses graph-level ones. Here we present
an overview of major contributions and the general structure of the thesis.
Table 1.1 presents a bird’s-eye view of our contributions. We group them into
three categories for the challenges we address: (i) expressivity of our methods
for solving tasks from di�erent domains, (ii) theoretical foundations and
guarantees that ensure excellent performance of ourmethods in all conditions,
and (iii) scalability that allows applying our methods to any existing graph.

challenge

modality Expressivity �eory Scalability

Nodes Chapters 4, 7 Chapters 5, 6 Chapter 6
Graphs Chapters 9, 10 Chapters 9, 11, 12 Chapter 11

Table 1.1: An overview of
the thesis contributions.

1.1.1 part i: representations and similarities of nodes

In the �rst part of this thesis, we study versatile methods for constructing
representations of graphs’ nodes in an unsupervised fashion. We begin by
introducing the problem and discussing the related work in Chapter 3. As our
�rst contribution, we introduce our neural network-basedmethod, verse, in
Chapter 4. In contrast to existing approaches, verse allows the analyst to use
any similarity measure between nodes to learn node representations tailored
to the particular task. For similarity measures amenable to sampling, we
introduce an e�cient learning procedure linear in the number of nodes in the
input graph, superseding state-of-the-art methods in space and time e�ciency.
Furthermore, we provide additional analysis of heuristic solutions from the
previous work and show that the similarity used there implicitly corresponds
closely to the well-studied PageRank similarity measure [PBMW99].

While verse is able to capture diverse similarities empirically, it does
not have guarantees on the correctness of the �nal solution. Moreover, it lacks
any guarantees on the representations during the learning process: ultimately,
we do not know when the representations are good enough. To address this
problem, as our second contribution, in Chapter 5, we introduce frede, an

4 introduction and thesis overview

anytime4 algorithm for creating node embeddings with error guarantees. As4. Anytime algorithm re-
turns a valid solution even
when interrupted [Zil96]. its core component, covariance sketching, approximates only the relevant

part of the solution, frede is a step forward from the matrix factorization
algorithms [QDM+18]. In contrast, frede provides its error guarantees at
every execution step. By being frugal about its computations, frede obtains
a valid embedding from only seeing a subset of nodes. Experimentally, frede
only needs to process a small fraction of nodes to produce an embedding
comparable with state-of-the-art methods.

In frede, the �nal representation of the node algorithmically depends on
other nodes’ representations, hindering the method’s scalability. To overcome
this limitation, we introduce SnapEmbed, the �rst local node embedding
algorithm, in Chapter 6. We build on the theoretical foundations of frede
to bridge structural and positional node embeddings. In SnapEmbed, the
representation of a node depends solely on the local neighborhood structure,
allowing e�cient distributed computation. �is property allows us to apply
SnapEmbed on graphs of unprecedented size. A us patent application was
�led based on the approach.

None of the described methods can work on graphs where nodes have
attributes attached to them. We address this issue in Chapter 7, where we
leverage the machinery of GraphNeural Networks (gnn) to introduce dmon,
a method that learns node representations by clustering attributed graphs. Un-
like reconstruction-based neural network architectures, dmon uses a novel
clustering objective tailored to real-world graphs.�is objective allows dmon
to scale linearly with the number of edges in a graph. We experimentally
con�rm its superior performance on a wide range of real and synthetic data.

1.1.2 part ii: representations and similarities of graphs

In the second part of this dissertation, we focus on compact representations
of graphs’ structure. We provide the necessary background and discuss the
related work in Chapter 8. As our �rst contribution, in Chapter 9, we intro-
duce netlsd, a geometric graph representation that is able to capture the
multi-scale structure of graphs. First of its kind, netlsd lower-bounds the
spectral Gromov–Wasserstein distance without prior graph alignment. We
propose an e�ective approximation technique to use netlsd for graphs with

overview and contributions 5

millions of nodes. We show that netlsd is competitive with state-of-the-art
representations in several tasks, including graph classi�cation.

�ere is no one-size-�ts-all solution for graph representations, just as
for representation learning in general [Wol96]—some tasks are inherently
more local or more global. To address this issue, in Chapter 10, we introduce
sgr, the �rst self-supervised5 learning approach for creating tailored graph 5. Self-supervised methods

learn unsupervised repre-
sentations using supervised
tasks with arti�cial labels.

representations. We propose two tasks for self-supervised learning of graph
representations: learning to predict a synthetic graph model and learning to
predict local clustering coe�cients of graphs. By learning to solve synthetic
tasks, sgr adapts the representations to emphasize features that transfer
to real-world tasks. In the experimental evaluations, sgr yields consistent
improvements over its non-learned counterparts.

While the approximation technique we introduce in Chapter 9 yields
consistent performance improvements over the naı̈ve computation, graphs
with billions of nodes and edges are still out of reach. To push the scalability
limits, Chapter 11 introduces slaq, a technique for approximating several
spectral measures, including netlsd. On a diverse set of real-world graphs,
slaq outperforms existing techniques by two orders of magnitude on average
in approximation quality while being comparable time-wise. With slaq, we
scale graph comparison to the most massive graphs, processing graphs with
billions of nodes and edges on a single machine in a matter of hours.

In Chapter 12, we study the comparison of unaligned distributions as an
application of the proposed representation-based graph similarity. Comparing
samples from unknown underlying distributions is a common problem for
the �eld of generative models [Bor19]. We study intrinsic6 geometry of the 6. Intrinsic properties of

surfaces are those that are
independent of the surface
embedding.

data via its graph representation, and propose imd, an intrinsic multi-scale
distance between samples that could even be lying in spaces of di�erent di-
mensionality. We demonstrate several applications where imd is competitive
with methods leveraging extrinsic geometry of the data, and several with data
lying in di�erent spaces, where imd provides unique insights.

1.1.3 part iii: summary

We conclude this dissertation by summarizing our core contributions and
discussing the open challenges in the area of graph representations.

2BACKGROUND AND NOTATION

In this chapter, we establish the notions and de�nitions that are used in this
dissertation and review the necessary background. �ere are many di�erent
views on graphs, and this section re�ects that—we draw inspiration frommany
di�erent �elds, including numerical linear algebra, di�erential geometry, and
machine learning.

2.1 NOTATION AND COMMON SYMBOLS

�roughout the work,we use bold capital lettersA,B, C,… formatrices, lower-
case bold letters for vectors a, b, c, … , calligraphic lettersℳ,N for manifolds,
and lowercasea, b, c, … for scalars and functions. Some of the notable symbols
and exceptions to these rules are presented in Table 2.1 below.

Symbol Description

V a set of nodes, |V| = n

E a set of edges, E ⊆ (V × V), |E| = m

G a graph G = (V, E)

G a collection of graphs {G0,⋯ , Gn}

N(v) the set of neighbors of the node v,N(v) = {{u, v} ∈ E}

deg(v) the degree of the node v, deg(v) = |N(v)|

I an identity matrix, Iii = 1

A an n × n adjacency matrix, Aij ∈ ℝ

D an n × n degree matrix,Dii =
∑

j
Aij

L an n × n Laplacian matrix, L = D − A

L an n × n normalized Laplacian matrix,L = D
−1∕2LD

−1∕2

AT a transpose of a matrix A, AT

ij
= Aji

tr(A) trace of a matrix A, tr(A) =
∑

i
Aii

M = U�VT singular value decomposition of a matrixM
M = Q�QT eigendecomposition of a symmetric matrixM
�i eigenvalues

Table 2.1: Common
symbols and notation.

7

8 background and notation

2.2 GRAPHS

We begin with a de�nition of a simple1 graph, followed by a short discussion1. An old-fashioned
term for simple graphs
is a line graph [HN53]. about di�erent types of graphs. �en, we review the properties and results

used in the dissertation later on.

De�nition 1. A simple graph G is given by its node set V and edge set E of
unordered pairs of nodes E ⊆ V2 ⧵ ∆V ,

where V2 = V × V is the Cartesian product of V with itself and ∆V is the
diagonal subset of V (the set of pairs {v, v} ∈ V2). We o�en refer to the size
of graphs in terms of their total number of nodes |V| = n and edges |E| = m.
Nodes in graphs are alternatively called vertices; edges are sometimes referred
to as links. Figure 2.1 presents an example of a simple graph.Figure 2.1: A simple graph.

v

Figure 2.2: A directed
graph with a sink node v.

A directed graph is then one where the edge set consists of ordered pairs
of nodes. Many models that work perfectly well on simple graphs break on
directed graphs because of the existence of sink nodes (illustrated in Figure 2.2).
If we model the propagation of information on a directed graph, sink nodes
endlessly amass it, causing numerical problems.

Figure 2.3: A weighted
graph; edge thickness
represents its weight.

When edges represent a non-binary relation, e.g., the number of messages
between people in a social network, it is convenient to model them as edge
weightswuv∀(u, v) ∈ E. Graphs with weights associated with edges are called
weighted graphs (Figure 2.3). It is easier to adapt models designed for simple
graphs to the case when weights are non-negative: wuv∈ ℝ+.

2.2.1 matrices associated with graphs

We can use adjacency matrices to model simple, directed, and weighted graphs.
Given any sort of graph, we call two vertices u, v adjacent if the edge set E
contains the pair {u, v}. For an ordering of vertices (v1, … , vn), an adjacency
matrixA of a graph is a squaren×nmatrix whose elementsAij are 1 if the edge
{vi, vj} exists in E and 0 otherwise. For weighted graphs, the convention is
thatAij equals the weightwvivj

of the edge. Adjacency matrices for undirected
graphs are symmetric, and their diagonal is always zero.

Importantly for both storage and computation, the adjacency matrix is
sparse, meaning there are far more zeros than ones. Storage-wise, we may
only store the positions and values of the nonzero elements. �e bene�ts of

graphs 9

sparse representations are best seen in large graphs since the number of edges
per node typically does not grow with the size of the graph. For example,
one could only add 5,000 friends in the Facebook social network, while a
median person is acquainted with mere 550 people [DGM+11]. For all of the
estimated n = 3 billion people using Facebook, dense representation of the
adjacency matrix would require n2 bits or approximately 106 gigabytes, and
only2 64 ∗ 550n + n bits (assuming 8-byte integers to index the nodes) or 2. Assuming Facebook

users befriend their every
acquaintance.far more manageable 13 terabytes in the sparse format. Even more e�cient

compression schemes [BV04, CKL+09] leverage structural irregularities of
graphs to achieve the compression level of a single byte per edge.

Computationally, zeros are neutral elements for addition and absorbing
elements for multiplication, meaning that adding or multiplying sparse matri-
ces is much faster than their dense counterparts. �e most common opera-
tions for matrix-based analysis of graphs are matrix-vector and matrix-matrix
multiplications. Sparse matrix-vector multiplication (SpMV) requires O(m)
operations in the worst case. Multiplying a sparse n × n matrix by a dense
n × k matrix takes O(mk) operations. As for the sparse-to-sparse multiplica-
tion (SpGEMM), the complexity for square matrices withm1 andm2 nonzero
elements is O(m1m2) average- and O(m1n) worst-case; e�cient algorithms
are an active research direction.

In the thesis, we extensively use a class of matrices called graph Laplacians.
Below, we de�ne two common graph Laplacians for undirected graphs. We
refer to [HAL07] for an extensive introduction to the topic.

De�nition 2 ([HAL07]). Given two Hilbert spacesℋ(V) andℋ(E) and the
di�erence operator d∶ ℋ(V) → ℋ(E), the graph Laplacian � ∶ ℋ(V) →

ℋ(V) is de�ned as � = d∗d.

�e di�erence operator is essentially the gradient of a scalar function f on
a graph; there are two popular choices. By setting (df)(Euv) = f(v)−f(u)we
get the combinatorial Laplacian. �is formulation does not consider that real-
world graphs have an uneven degree distribution [FFF99]. We can normalize
the functions by the degrees of nodes (df)(Euv) =

f(v)
√
deg(v)

−
f(u)

√
deg(u)

, and
get the Normalized Laplacian. Both Laplacians can also be represented as
positive semide�nite matrices: L = D − A for the combinatorial Laplacian
andL = D

−1∕2LD
−1∕2 = I − D

−1∕2AD
−1∕2 for the normalized one.

10 background and notation

Several results tie combinatorial insights about graphs to the algebraic
properties of their Laplacians. For example, the number of the connected
components in a graph equals the multiplicity of the eigenvalue 0; the �rst
nonzero eigenvalue3 provides insights into the clusterability of graphs [Abb18].3. Also called Fiedler

eigenvalue or the alge-
braic connectivity [Fie73]. �ere are many more similarly exciting results; overall, the study of graphs

through the lens of matrix analysis is a potent research direction.

2.2.2 pagerank

One of the most common tasks in graphs analysis is to determine which nodes
are important.�is importance of a node is called node centrality, �rst studied
in sociology [Fre78]. Besides social sciences, node ranking �nds numerous
applications in bioinformatics and Web search.

�e PageRank system [PBMW99] developed for the Google™ search is
the most widely known approach to ranking in graphs. PageRank provides a
concise mathematical formulation for a simple idea—important nodes link to
other important nodes. If we denote the importance of the node v as sv, then
we can naturally de�ne the importance as

sv =
∑

{u,v}∈E

su

deg(v)
. (2.1)

In the matrix form, we would try to solve D−1ATs = s, where D−1AT

is a column-stochastic matrix called the transition matrix. Each column of
that matrix contains the probabilities of picking outgoing edges of a node
randomly. Unfortunately, this formulation may not yield a unique solution.

PageRank �xes the issue by introducing a preference vector v and a tele-
portation probability �. �e preference vector de�nes a distribution4 over the4. Meaning 1Tv = 1.

nodes that the random surfer can teleport to with the probability �5. Intu-

5. Commonly, � = 0.15.
Whether there exists a
principled way to pick
� is an open question.

itively, the surfer now has a chance to teleport to a position speci�ed by the
preference vector without considering the graph structure. For ranking all
nodes in a graph, it makes sense to set v = 1∕n for all nodes to be equiprobable.
�is subtle change immediately �xes the indeterminism, and leads to the
famous PageRank formulation:

(1 − �)Ps − �v = s. (2.2)

matrix decompositions 11

�is equation provides us with an e�ective iterative way of computing
PageRank: iteratively set si = (1 − �)Psi−1 − �v starting from s0 = 1∕n. �is
algorithm corresponds to the power iteration solution of the eigensystem
de�ned in Equation 2.2. It converges linearly with the rate 1 − �.

An important variation of PageRank is its local version called personalized
PageRank (ppr). Instead of setting the teleportation vector v to be equal for all
nodes, we can personalize it to some node v by setting v to 0 in all positions
except being 1 at v6. �en, by applying Equation 2.2 to our personalized v we 6. �is vector is also called

a one-hot encoding of v.get the importance of other nodes from the v’s perspective (alternatively, ppr
is a measure of similarity between nodes). Notably, ppr is local—it can be well
approximated using only its local neighborhood [ACL07].

2.3 MATRIX DECOMPOSITIONS

As we have seen in the previous sections, matrices provide a solid foundation
for analyzing graphs. Decomposition methods seek to break down a matrix
into a product of matrices structured in some particular way. In the analysis
of graphs, singular value decomposition (svd) and eigendecomposition are
the most prominent ones.

Singular value decomposition exists for any real matrix; it decomposes any
matrixM = U�VT into a product of two orthogonal7 matricesU andV, and 7. MeaningUUT = I and

U−1 = UT.a diagonal matrix � containing the singular values ofM. �is decomposition
is special for many reasons; for example, it provides an easy way to obtain
the best possible rank-k approximation of any matrix by simply selecting the
�rst k columns ofU and V, and �rst k values from �. Elements of �, namely
�0, … , �n, o�er a way to quantify the “approximability” of a matrix:

min
Ak

‖A − Ak‖2 = �k+1, min
Ak

‖A − Ak‖F =

√

�2
k+1

+⋯+ �2
n
, (2.3)

where Ak is any rank-k real matrix. While it takes a long O(n3) time to com-
pute svd of a square dense matrix, there are several randomized algorithms
approximating the �rst k columns ofU in almost-linear time [HMT11,MM15].

Eigendecomposition is of paramount importance for the graph analysis.
Spectral graph theory studies properties of graphs expressed by their eigenval-
ues and eigenvectors; we refer to [Chu97] for an extensive treatment.

12 background and notation

All real symmetric matrices are amenable to an eigendecomposition88. �is is the reason why
undirected graphs are

preferred by people who
enjoy linear algebra.

M = Q�Q−1 into a product of an orthogonal matrixQ and a diagonal matrix
� containing the eigenvalues � ofM. �e eigenvalues alone contain a lot of
information about the structure of graphs. In the second part of this thesis, we
explore the eigenvalue-based graph descriptors and showcase their usefulness.
One of the peculiar properties of the eigendecomposition is that it allows us
to e�ortlessly compute matrix functions: f(M) = Qf(�)Q−1.

Figure 2.4: A graph
with two clusters. Its
cut is shown in gray.

Some of the most exciting results in spectral graph theory are connected
with the problem of graph clustering. Intuitively, the task is to group nodes
such that the nodes in the same group are better connected to ones inside the
group than to the ones outside; Figure 2.4 provides an example. �e second
eigenvalue of Laplacian matrices of graphs is directly related to the visibility of
clusters [VL07]. A simple algorithm to partition a graph into 2 subsets works
as follows: �rst, compute the second eigenvector of the graph; then, assign
all vertices with the positive eigenvector value to one class. �is algorithm
produces an optimal solution for several cut-based9 metrics [SM00].9. A cut is number

of edges that we cut
with the partition.

2.4 NEURAL NETWORKS

Recent advances in neural architecture engineering10 coupled with the drastic10. Alternative viewpoint
is that the key to suc-

cess was in engineering
structural inductive biases.

increase in the computational capabilities of massively parallel co-processors
opened a possibility to train large models on convenience hardware. Most
prominent in the �elds of computer vision and natural language processing
(nlp), deep neural networks (dnns) dramatically improved the state-of-the-
art performance on several problems in these �elds and changed the way we
approach problems. �is thesis did not elude the overwhelming popularity of
dnns—Chapters 4, 7, and 10 introduce neural network-based models.

For the purposes of this thesis, we can think about dnns as compositions
of linear functions f(⋅) and element-wise non-linear transformations �(⋅).
�ese functions (also called layers) iteratively modify hidden representations
hl of data to continuously adapt them to the task. In the most simple case of
the multi-layer perceptron (mlp) [Ros58], the function f(⋅) is de�ned as

f(hl) = Wlhl−1 + bl, (2.4)

neural networks 13

whereW is the weight matrix and b is called the bias vector. A pair of the
weight matrix and the bias vector constitute the set of learnable parameters
Θ for the layer. In modern mlps, the non-linearity function of choice is
the recti�ed linear unit (relu) function �(h) = max(0, h). To train neural
networks, today’s consensus is to use backpropagation [Wer82] and variants
of stochastic gradient descent optimization [KB14].

Even simple neural network architectures like two-layer mlps trained
with backpropagation are invaluable for learning representations of words
and phrases in nlp [MSC+13, BGJM17]. Some architectures are intimately
related to matrix factorization—[LG14] proved that svd provides an optimal
solution to the learning problem of such networks. Such neural networks
have been successfully adapted to the graph domain [PARS14]. We will review
prior and concurrent work on node embeddings in Part I of this thesis.

2.4.1 graph neural networks

When graphs have additional node-level features attached to them, we can
think about the graph structure as the computational graph, meaning that
hidden representations are propagated across edges in a graph [GMS05].
Graph neural networks (gnns) formalize this intuition into a powerful class of
models that leverage the sparsity of graphs to provide state-of-the-art results
on several tasks on attributed graphs. �ere are two perspectives on gnns:
message-passing [BHB+18] and convolutional [BZSL14, BBL+17] one.

hl
hl−1

hl−2

Figure 2.5: Information
flow of a two-layer GCN.
Hidden representations
are first updated from
the green nodes to the
red ones; then, red nodes
are used to compute the
representation of the
central node.

�emost popular gnn model is the graph convolutional network (gcn)
architecture [KW17] due to its simplicity and speed. Figure 2.5 illustrates the
process: representations of nodes are continuously updated to a function of
the representations of their neighbors. More formally, the gcn update rule11

11. We separately add the
representation of the node
itself, known as the skip
connection in the neural
network literature.

is written as follows:

hlv = �
⎛

⎜

⎝

Wl

self
hl−1v +Wl

neigℎ

∑

u∈N(v)

hl−1u + bl
⎞

⎟

⎠

. (2.5)

In contrast to deep convolutional neural networks for images [HZRS16],
gcns are rather shallow—for most applications, just two layers are enough.
For additional reading on gnns and overview of recent architectures, we
recommend the following review articles [BBL+17, BHB+18, CAEHP+20].

PART I

SIMILARITIES AND REPRESENTATIONS
OF NODES

3INTRODUCTION AND RELATED WORK

Node-centric tasks, such as node classi�cation, community de-
tection, and link prediction,1 play a central role in graph analysis. 1. Link prediction problem

is a node recommendation
problem in disguise.Node representations, or node embeddings,2 allow us to replace

2. Graph embeddings is
another term used in the
literature; we do not use
this term to avoid confu-
sion with representations
of whole graphs.

sophisticated algorithms developed for each of these tasks with simple algo-
rithms developed for analyzing tabular data without signi�cant loss in quality.
For example, we could employ a basic logistic regression [PARS14] for node
classi�cation instead of an advanced label propagation approach [MP07] and a
simple dense region search [HAMH16] insteadof complexheuristics [AMF10].
�is part of the dissertation devotes itself to the design of versatile algorithms
that compute expressive representations of nodes in graphs e�ciently.

No one-size-�ts-all embedding algorithm is possible, as there is a wide
range of tasks3. �erefore, users of embedding algorithms (graph analysts) 3. �is statement is also

known as a “no free lunch”
theorem [Wol96].must have an option to control the inner workings of embedding algorithms.

Chapter 4 proposes verse, our uni�ed framework for neural embedding
algorithms that interprets their objectives as optimization for di�erent node
similarity distributions. We show how complexly parameterized competitors
can be interpreted in purely graph mining terms. We propose a scalable
optimization procedure that reduces the previous work’s complexity while
outperforming competing methods in several tasks.

Learning representations through neural networks lacks clear goalposts
in optimization—we do not know when to stop the learning and use the em-
beddings. Moreover, learning-based approaches are relatively slow—it takes
at least a day to learn node embeddings of a 10 million node graph on a single
server. Random access patterns prohibit e�cient distributed optimization
when the graph is large. To alleviate the scalability problems of neural embed-
dings, we study learning-free algorithms that aim to solve verse’s objective.
Chapters 5 and 6 present two orthogonal attacks on the problem: frede,
introduced in Chapter 5, generates provably correct embeddings from the
perspective of a subset of nodes; SnapEmbed, in Chapter 6, produces a valid
embedding for any node without using representations of other nodes.

17

18 introduction and related work

Last, we consider the unsupervised node embedding problem in attributed
graphs, where nodes have rich information associated with them. In such net-
works, methods relying solely on graph structure perform poorly. We propose
dmon, an unsupervised gnn training method that learns representations
by clustering graphs. Traditionally, unsupervised deep learning architectures
learn by either reconstructing the input [Bal87, HZ94] ormaximizing entropy-
related objectives [Lin88, MM90, HFLM+19]. In contrast, dmon optimizes
a novel unsupervised objective based on spectral modularity maximization.
We show that clusters obtained by dmon are comparable with ones obtained
by simply clustering the graph structure. However, the clusters obtained by
dmon are consistent with the graph structure and node attributes and thus
are much better at predicting the ground-truth labels.

�e following four chapters in this part are based on work as cited below:

• Chapter 4 “Vertex Similarity Embeddings” extends [TMKM18].

• Chapter 5 “Anytime Node Embeddings” extends [TMM+20b].

• Chapter 6 “Local Node Embeddings” extends [PTdA+20].

• Chapter 7 “Deep Modularity Networks” extends [TPPM20].

We now proceed with an overview of the related work relevant to all chapters.

3.1 RELATED WORK

Since graphs model various real-world systems, the problem of embedding
graphs’ nodes in a lower-dimensional space has been historically tackled in
many sub-disciplines of computer science, mathematics, and social science.
We distinguish �ve categories of the relatedwork: (i) graph theory and random
embeddings with distortion guarantees; (ii) two- or three-dimensional graph
drawing approaches; (iii) works on inferring social positions in computational
social science; (iv) non-linear dimensionality reduction algorithms, and (v)
modern graph mining methods. We give an overview of each �eld below; the
contributions of this dissertation are mostly in the graph mining category.

related work 19

3.1.1 graph theory and randomized algorithms

�e�rst non-constructive embedding of a graphwas studiedbyErdős [EHT65].
Erdős proposed the de�nition of a graph dimension to be the smallest d such
that every edge has length 1 inℝd. In such form, the dimensionality is related
to the chromatic number of a graph: dimG = 2�(G). However, not all graphs
are embeddable under such a strict notion. An example of a non-embeddable
graph is a claw, shown in Figure 3.1. Figure 3.1: A claw graph.

�us, it is more practical to study low-dimensional embeddings with some
distortion. For a mappingℱ between �nite metric spaces V1, V2 with metrics
d1, d2, distortion is de�ned as

max
u,v

d2(ℱ(u), ℱ(v))

d1(u, v)

/

min
u,v

d2(ℱ(u), ℱ(v))

d1(u, v)
.

A popular solution is an orthogonal projection into a random d-dimen-
sional subspace [JL84] (we use formulation of [LV99]):

Lemma 1 (Johnson–Lindenstrauss lemma [JL84]). For every 0 < � < 1, every
n-point set S ⊂ ℝn can be mapped intoℝd, d < 60 ln n∕�2, with distortion 1 + �.

A more balanced trade-o� is due to Bourgain’s theorem:

Ceorem 1 (Bourgain’s theorem [Bou85, LLR95]). Every metric space with n
elements can be embedded in an O(log n)-dimensional Euclidean space with
O(log n) distortion.

Linial, London, and Rabinovitch [LLR95] provide an algorithmic construc-
tion of such embedding with applications to several graph problems. However,
practical applications of these constructions for graph mining have been lack-
ing for 25 years. In themeanwhile, randomized algorithms became an essential
tool for numerical linear algebra [Woo14] and data mining [IM98, Ach03].

3.1.2 computational social science

Quantitative social science research on social networks [Mor34] introduced
nodes’ structural positions independently from the mainstream graph theory
research. Sorokin [Sor27] introduced the concept of social mobility as a latent
space with social hierarchies and roles. Eloquently, he postulates that “to
�nd a position of a man or a social phenomenon in social space means to
de�ne his or its relations to other men or other social phenomena chosen as a

20 introduction and related work

‘points of reference’.”�e concept is an extension of Durkheim’s représentations
collectives [Dur12]—ideas and values irreducible to individual constituents
but de�ned socially.

Computationally, however, explicit de�nitions of social spaces were not
proposeduntil almost 50 years later. Burt [Bur76] �rst introduced the notion to
computational social science, de�ning the social position as a cluster to which
a node belongs in a hierarchically clustered network.�e cluster-based notion
of the social spaces prevailed (see a review of di�erent methods [Fau88]) until
the introduction of the latent space approaches [HRH02]. Such approaches
used Markov Chain Monte Carlo (mcmc) to infer latent positions of nodes
that best explain observed social relations. �ese methods are limited to tiny
networks, as they rely on unstable mcmc estimation.

3.1.3 non-linear dimensionality reduction

Perhaps the most popular node embedding application is in non-linear di-
mensionality reduction, where they got traction for approximating arbitrary
complex surfaces. �e three most popular algorithms, Isomap [TDSL00], lo-
cally-linear embedding (lle) [RS00], and Laplacian eigenmaps [BN01], con-
struct a k-nearest neighbor graph and then compute the nodes’ embeddings
in that graph.

Unlike Isomap, lle, and Laplacian eigenmaps solve sparse eigenproblems
and thus are e�cient: they are the �rst sub-quadratic node embedding al-
gorithms. �ey achieve scalability by leveraging fast numerical eigensolvers
for sparse matrices [Saa92, GVL12]. To the best of our knowledge, these algo-
rithms were not applied for graph mining.

3.1.4 graph drawing

Graph drawing is a special case of embedding into two-dimensional Euclidean
space for visualization. Methods for general graph drawing are typically heuris-
tics based on iterative optimization of force-directed layouts of nodes [Ead84].
�e force calculation is possible in O(n log n) time due to the Barnes-Hut
algorithm [BH86]. A review of modern so�ware for graph drawing can be
found in [JM12]. We can also visualize a graph by projecting node embeddings
in two dimensions—this is an exciting research direction for massive graphs.

related work 21

3.1.5 graph mining

Tang and Liu [TL09a] introduced explicit node representations to the �eld of
graphmining.�e proposal is to decompose themodularity4 matrix [New06a] 4. Modularity is a measure

of quality for node
clustering [New06b].to extract community-like vectors of memberships for nodes. Speci�cally,

embeddings are obtained as the top-k eigenvectors of the modularity matrix.
�e computations are fast due to the sparse-plus-low-rank structure of the
modularity matrix.

In follow-up work [TL09b], the scalability problem is tackled via the mod-
i�ed k-means algorithm [Llo82] applied to the adjacency matrix’s edges. �e
memory cost of the representation is O(m) instead of O(kn) as we only keep
the nearest cluster centroid in memory. �e representations of nodes are a
vector of distances of all edges to their nearest clusters. Embedding vectors are
therefore very sparse (average sparsity is less than 1% across datasets). Sparsity
is both the curse and the blessing of this method—while thememory footprint
of sparse representations is lower than for the dense ones, the downstream
models are not well equipped for dealing with sparse data. For example, lo-
gistic regression would create a dense projection vector for each embedding
dimension, resulting in larger models that are prone to over�tting.

Ahmed et al. [ASN+13] study large-scale regularized factorization of the
adjacencymatrix.�e objective in this work is close to the eigendecomposition
with a di�erent term to prevent degenerate solutions. �e paper investigates
the scalability in the distributed setting and applies several heuristics to achieve
good performance, scaling linearly to graphs with hundreds of millions of
nodes. Nevertheless, embeddings of nodes produced only from the adjacency
matrix fail to capture su�cient semantic information [PARS14].

3.1.5.1 neural node embeddings

DeepWalk [PARS14] is the �rst neural network-basedmethod for node embed-
ding. It adapts the widely successful word2vec [MSC+13] architecture to deal
with graph data. Word2vec builds word embeddings by training a single-layer
neural network to guess the word’s contextual neighbors in a text. DeepWalk
makes a simple yet powerful analogy: it treats nodes in short random walks
as words in a natural language. It generates a “corpus” of short random walks;
all nodes that co-occur in random walks within a speci�c window form a

22 introduction and related work

node’s context. DeepWalk’s representations maximize the posterior probabil-
ity of observing a neighboring vertex in a random walk. To maximize that
probability e�ciently, DeepWalk uses hierarchical so�max approximation: it
constructs a Hu�man tree of nodes based on their frequency of appearance.
�is way, each learning epoch takesO(n log n) time. DeepWalk works well in
practice; however, it is unclear how its parameters (window size and the length
of random walks) relate to the graph structure. We discuss several attempts to
introduce graph structure to the neural algorithms in the following.

�e �rst, line [TQW+15], simpli�es DeepWalk’s algorithm by getting rid
of random walks altogether. Instead of generating walks, line samples edges
from a graph, which is more e�cient. Importantly for the method’s scalability,
line chooses to use the negative sampling approximation of so�max,bringing
the epoch complexity toO(m). Embeddings produced by line are of slightly
worse quality than DeepWalk’s.

u v s

t

1∕p

1∕q

1

Figure 3.2: Example of
node2vec’s second-order
random walks. Here, we

walked from node u to v.

A method rivaling DeepWalk in popularity5, node2vec introduces two

5. Which we can only
explain by its catchy name.

additional parameters to the random walk generation of DeepWalk. �ese
two parameters, named p and q, control the second-order Markov process
behavior of the random walk. Parameters p and q determine the random
walker’s probabilities (weights) to return to the previously visited node as 1∕p;
1 if there is an edge between the previously visited node and the proposed
one, and 1∕q otherwise. We illustrate this confusing behavior in Figure 3.2. In
the original paper, breadth-�rst search and depth-�rst search are used as a
motivation for introducing the additional complexity to DeepWalk. We note
that this is impossible to emulate depth-�rst search using random walks with
limited memory.

Figure 3.3: A star graph.

While node2vec claims to be a scalable method, the method’s compu-
tational complexity regresses to O(n2) due to a sophisticated random walk
generation process.�e original paper incorrectly claims it to be dependent on
the average degree O(nm∕n). It is easy to see that star-like graphs (Figure 3.3)
are a counterexample to that statement. Moreover, nodes in graphs with high
degrees introduce a complexity factor of deg(v)2 on average. High compu-
tational complexity makes node2vec inapplicable to large scale-free graphs
common in real-world scenarios.

related work 23

3.1.5.2 matrix factorization embeddings

Neural embeddings were the �rst to attain excellent performance in many
classi�cation tasks. However, their objective functions do not provide clear
guidance on when the embedding is ready to use. It is thus desirable to have a
clearly de�ned optimum and algorithms for attaining it. Matrix factorization
algorithms provide just that.

GraRep [CLX15] repeats Levy and Goldberg’s analysis of word2vec [LG14]
for graphs. �is paper proved that DeepWalk implicitly factorizes a log-trans-
formed transition probability matrix, summed over the window size. �e
optimum for a �xed window size is given by svd; GraRep �nds several such
optima and concatenates the embeddings. Since the transition probability
matrix is dense, svd’s complexity is O(n3), unsuitable for large graphs. Nev-
ertheless, this method started an investigation in matrix factorization for the
purpose of node embedding.

�e �rst scalable method, hope, utilizes generalized svd to generate
an embedding of nodes. �is method achieves scalability by factorizing an
implicit matrixM = M−1

a M
−1

b
, whereMa andMb are sparse. �is formu-

lation supports two standard node similarity de�nitions: Katz [Kat53] and
personalized PageRank [PBMW99]. �e decomposition itself is fast; how-
ever, the similarity matrix formulation’s lack of nonlinearity means that the
embeddings are signi�cantly worse in downstream task performance.

Another approach based on the eigendecomposition is taken by arope
[ZCW+18]. It is based on the fact that any matrix function f(M) can be
decomposed as f(M) = Qf(�)Q−1. �e suggestion is to take the best rank-k
decomposition of the adjacency matrix and use it to approximate Katz node
similarity. �e method su�ers from the same problem as hope: the lack of
nonlinearity limits the expressiveness of the method.

NetMF [QDM+18] extends GraRep’s analysis to node2vec and line. �e
proposed algorithm is very similar to GraRep: we compute the log-trans-
formed transition probabilitymatrix ofDeepWalk and apply svd to it. Overall
time complexity is againO(n3), unsuitable for large graphs. In follow-up work,
NetSMF [QDM+19], authors propose to decompose a spectrally sparsi�ed
version of the DeepWalk matrix. Satisfactory performance is not possible with
sparse enough matrices, leaving the method out of practical considerations.

24 introduction and related work

3.1.5.3 sketching-based embeddings

Sketching is an invaluable tool for creating approximate algorithms and per-
forming approximate linear algebra calculations [Woo14]. Sketching algo-
rithms relax the optimality constraints of the linear algebra solutions to a
probabilistic guarantee that holds with high probability. Random projection
methods from Section 3.1.1 are examples of sketching building blocks.

RandNE [ZCL+18] proposes to use an orthogonalized random matrix to
iteratively project the adjacency matrix of the graph onto the new embed-
ding. �en, the �nal embedding is a weighted sum of several (4 in the paper)
projection steps; the weights are to be optimized via cross-validation on a
downstream task. �is method scales to graphs with billions of nodes; the
dominating factor in the method’s complexity is the orthogonalization of the
projection matrix.�e requirement to optimize the weights in the sum defeats
the purpose of fully unsupervised embedding.

FastRP [CST+19] replaces the random projection matrix of RandNE with
another variant from [Ach03]. �is replacement and the introduction of the
degree normalization allow FastRP to forgo orthogonalization. Similarly to
RandNE, the weights of the projection steps are tuned to achieve the best
performance in some downstream tasks. Again, this supervised parameter
tuning defeats the in purely unsupervised applications.

In another vein,NodeSketch produces embeddings by iteratively sketching
the Jaccard similarity [Jac01] of the modi�ed adjacency matrix (with added
self-loops). Similarly to the other methods, the �nal embedding matrix is
a weighted sum of the sketching matrices in di�erent steps. Yet again, the
parameter tuning is supervised.

4VERTEX SIMILARITY EMBEDDINGS

Embedding aweb-scale information network into a low-dimensional
vector space facilitates tasks such as link prediction, classi�cation, and
visualization. Past research has addressed the problem of extracting

such embeddings by adopting methods from nlp to graphs, without de�ning
a comprehensible graph-related objective. Nevertheless, as we show, the past
works’ objectives implicitly utilize similarity measures among graph nodes.

We carry the similarity velleity of previous works to its logical conclu-
sion. In this chapter, we propose VERtex Similarity Embeddings (verse),
a simple, versatile, and memory-e�cient method that derives node embed-
dings explicitly preserving the distributions of a selected vertex-to-vertex
similarity measure. At its core, verse stands between complex deep learning
approaches [CLX16, WCZ16] and the direct decomposition of the similarity
matrix [TL09a, CLX15]. Our method learns such embeddings by training a
simple, yet expressive, single-layer neural network. We conduct an extensive
experimental study and demonstrate that verse, instantiated with diverse
similarity measures, outperforms state-of-the-art methods in major data min-
ing tasks and supersedes them in time and space e�ciency.

We argue that features extracted by a more versatile similarity notion than
that of a local neighborhood [PARS14, TQW+15] would achieve the �exibility
to solve diverse data mining tasks in a large variety of graphs. Figure 4.1 makes
a case for such a versatile similarity notion by exposing three distinct kinds of
similarity on a graph: community structure guides community detection tasks,
roles are typically used in classi�cation, while structural equivalence de�nes
peer correspondences in knowledge graphs. As real-world tasks rely on a mix
of such properties, a versatile feature learning algorithm should be capable of
capturing all such similarities.

�anks to its ability to choose any appropriate similarity measure for the
task at hand, verse adjusts to that task without needing to change its core.
�ereby, it fully integrates representation learning with feature engineering:

25

26 vertex similarity embeddings

(a) Community structure (b) Roles (c) Structural equivalence

Figure 4.1: Three node
properties are high-
lighted on the same

graph. Can a single model
capture these properties?

any similarity measure, including those developed in feature engineering,
can be used as input to verse. For the sake of illustration, we instantiate
our generic methodology using three popular similarity measures, namely
Personalized PageRank (ppr) [PBMW99], SimRank [JW02], and adjacency
similarity. We also show that versatility does not imply a new burden to
the user, merely substituting hyperparameter tuning with similarity measure
tuning: using ppr as a default choice for the similarity measure leads to good
performance in nearly all tasks and networks we examine.

We summarize our contributions as follows:

• We propose a versatile framework for node embeddings that explicitly
learns the distribution of any vertex similarity measure for graph nodes.

• We devise an e�cient algorithm that minimizes the divergence from
real to reconstructed similarity distributions.

• We interpret previous node embeddings through our novel similarity
framework’s lens and instantiate verse with personalized PageRank,
SimRank, and Adjacency similarity.

• In a thorough experimental evaluation, we show that verse outper-
forms the state-of-the-art approaches in various graph mining tasks in
quality while being more e�cient in terms of time and space.

a versatile node embedding 27

4.1 A VERSATILE NODE EMBEDDING

In the following, we denote the representation as a n × d matrix W; the
embedding of a node v is the row Wv,⋅ in the matrix; we denote it as Wv

for compactness. Our embeddings re�ect vertex similarity distributions for
some given graph: simG∶ V × V → ℝ for every node v ∈ V. As such, we
require that the similarities from any vertex v to all other vertices simG(v, ⋅)

are amenable to be interpreted as a distribution with
∑

u∈V
simG(v, u) = 1

for all v ∈ V. We aim to deviseW by a scalable method that requires neither
the V × V stochastic similarity matrix nor its explicit materialization.

�e corresponding node-to-node similarity in the embedded space is
simE∶ V × V → ℝ. As an optimization objective, we aim to minimize the
Kullback-Leibler (kl) divergence from the given similarity distribution simG

to that of simE in the embedded space:

∑

v∈V

KL (simG(v, ⋅) || simE(v, ⋅)) (4.1)

We illustrate the usefulness of this objective using a small similaritymatrix.
Figure 4.2 shows (a) the Personalized PageRankmatrix, (b) the reconstruction
of the same matrix by verse, and (c) the reconstruction of the same matrix
using svd. It is visible that the nonlinear minimization of kl-divergence
between distributions preservesmost of the information in the originalmatrix,
while the linear svd-based reconstruction fails to di�erentiate some nodes.

(a) Similarity (b) verse (c) svd

Figure 4.2: An example
similarity matrix and
its reconstructions by
VERSE and SVD. Karate
club graph [Zac77]; we
set dimensionality d = 4

for both methods.

28 vertex similarity embeddings

4.1.1 verse embedding model

We de�ne the unnormalized distance between two nodes u, v in the embed-
ding space as the dot product of their embeddingsWu ⋅ W

T
v . �e similarity

distribution in the embedded space is then normalized with so�max:

simE(v, ⋅) =
exp(WvW

T)
∑n

i=1
exp (Wv ⋅ Wi)

(4.2)

By Equation 4.1, we should minimize the kl-divergence from simG to
simE ; omitting parts dependent on simG only, this objective is equivalent to
minimizing the cross-entropy loss function [GBC16]:

ℒ = −
∑

v∈V

simG(v, ⋅) log (simE (v, ⋅)) (4.3)

We can accommodate this objective by stochastic gradient descent, which
allows updating the model on each node singularly. However, a näıve version
of gradient descent would require the full materialization of simE and simG .
Even in case simG is easy to compute on the �y, such as the adjacency matrix,
the so�max in Equation 4.2 has to be normalized over all nodes in the graph.

We use Noise Contrastive Estimation (nce) [GH10, MT12], which allows
us to learn a model that provably converges to its objective (see [GH12], �eo-
rem 2). �is objective trains a binary classi�er to distinguish between node
samples coming from the empirical similarity distribution simG and those
generated by a noise distribution Q over the nodes. Consider an auxiliary
random variable D for node classi�cation, such that D = 1 for a node drawn
from the empirical distribution and D = 0 for a sample drawn from the noise
distribution. Given a node u drawn from some distribution P and a node
v drawn from the distribution of simG (u, ⋅), we draw s ≪ n nodes ṽ from
Q(u) and use logistic regression to minimize the negative log-likelihood:

ℒNCE =
∑

u∼P
v∼simG(u,⋅)

[
log PrW(D = 1|simE(u, v))+

sEṽ∼Q(u) log PrW(D = 0|simE(u, ṽ))
]
,

(4.4)

a versatile node embedding 29

where PrW is computed from W as a sigmoid �(x) = (1 + e−x)−1 of the
dot product between vectorsWu andWv, while we compute simE (u, ⋅) with-
out the normalization of Equation 4.2. As the number of noise samples s
increases, the nce derivative provably converges to the gradient of cross-en-
tropy [MT12]; thus, by virtue of nce’s asymptotic convergence guarantees, we
are in e�ect minimizing the kl-divergence from simG . �eoretical guarantees
of nce depend on s, yet small values work well in practice [MT12]. In our
experiments, we use s = 3. �ese convergence guarantees of nce are not
a�ected by choice of distributionsP andQ (see [GH12], Corollary 5); however,
its performance is empirically dependent on Q [LA17].

4.1.2 instantiations of verse

While verse can be used with any similarity function, we choose to instanti-
ate ourmodel to widely used similarities simG , namely personalized PageRank,
Adjacency Similarity, and SimRank.

Personalized PageRank [PBMW99] is a common similarity measure among
nodes, practically used for many graph mining tasks [GL16, LZ11].

De�nition 3. Given a starting node distribution s, damping factor �, and the
normalized adjacency matrixA, the personalized PageRank vector �s is de�ned
by the recursive equation:

�s = �s + (1 − �)�ssA

�e stationary distribution of a random walk with restart with probability
� converges to ppr [PBMW99]. �us, a sample from simG(v, ⋅) is the last
node in a single random walk from node v. �e damping factor � controls the
average size of the explored neighborhood. In Section 4.1.5 we show that � is
tightly coupled with the window size parameterw of DeepWalk and node2vec.

Adjacency similarity is a straightforward similarity measure; this similarity
corresponds to the line-1 model and takes into account only the immediate
neighbors of each node. More formally, given the out degree Out(u) of node
u

30 vertex similarity embeddings

sim
ADJ

G (u, v) =

⎧

⎨

⎩

1∕Out(u) if (u, v) ∈ E

0 otherwise
(4.5)

We experimentally demonstrate that verse model is e�ective even in
preserving the adjacency matrix of the graph.

SimRank [JW02] is a measure of structural relatedness between two nodes,
based on the assumption that two nodes are similar if they are connected to
other similar nodes; SimRank is de�ned recursively as follows:

sim
SR

G (u, v) =
C

|||I(u)
|||
|||I(v)

|||

|I(u)|∑

i=1

|I(v)|∑

j=1

sim
SR

G (Ii(u), Ij(v)), (4.6)

where I(v) denotes the set of in-neighbors of node v, and C is a number
between 0 and 1 that geometrically discounts the importance of farther nodes.
SimRank is a recursive procedure that involves computationally expensive
operations: the straightforward method has the complexity of O(n4).

We can approximate SimRank up to a multiplicative factor dependent on
C through random walks [JFW17]. �ey compute a SimRank approximation
through two reversed random walks with restart where the damping factor
� is set to � =

√
C. A reversed random walk traverses any edge (u, v) in the

opposite direction (v, u). Since we are only interested in the distribution of
each simSR

G (v, ⋅), we ignore the multiplicative factor in the approximation that
has little impact on our task.

4.1.3 verse algorithm

Algorithm 1 presents the overall �ow of verse. Given a graph, a similarity
function simG , and the embedding space dimensionality d, we initialize the
output embedding matrixW to N(0,

1

d
). �en, we optimize our objective

(Equation 4.4) by gradient descent using the nce objective. To do so, we
repeatedly sample a node from the positive distribution P, sample the simG

(e.g. pick a neighboring node), and draw s negative examples. �e � in Line 13
represents the sigmoid function � = (1 + e−x)−1, and � the learning rate. We
choose P and Q to be distributed uniformly by U(1, n).

a versatile node embedding 31

Algorithm 1 verse
1: function verse(G, simG, d)
2: W ←N

(
0, d−1

)
⊳ WithW ∈ ℝn×d

3: repeat
4: u ∼ P ⊳ Sample a node
5: v ∼ simG(u) ⊳ Sample positive example
6: Wu,Wv ← update(u, v, 1)

7: for i ← 1… s do
8: ṽ ∼ Q(u) ⊳ Sample negative example
9: Wu,Wṽ ← update(u, ṽ, 0)

10: until converged
11: returnW
12: function update(u, v, D) ⊳ Logistic gradient update
13: g ← (D − �(Wu ⋅ Wv)) ∗ �

14: Wu ← g ∗ Wv

15: Wv ← g ∗ Wu

As a strong baseline for applications handling smaller graphs, we also
consider an exhaustive variant of verse, which computes full similarity
distribution vectors per node instead of performing nce-based sampling. We
name this variant fverse and include it in our experimental study.

Figure 4.3 presents our measures on the ability to reconstruct a similarity
matrix for (i) verse using nce; (ii) verse using Negative Sampling (ns)
(also used in node2vec); and (ii) the exhaustive fverse variant. We observe
that, while nce approaches the exhaustive method in terms of matching the
ground truth top-100most similar nodes, ns fails to deliver the same quality.

20 40 60 80 100

0.4

0.6

0.8

1

k

n
d
cg

@
k

full verse ns, s = 3

nce, s = 3 nce, s = 100

Figure 4.3: Ranking
performance in terms of
NDCG for reconstructing
PPR similarity, averaged
across nodes in a graph.

32 vertex similarity embeddings

Time Space
method Ok̄ O Ok̄ O

DeepWalk dn log n dn log n m m

GraRep tn3 tn3 n2 n2

line dsn dsn m m

node2vec dsn + k3 dsn + n3 k2n + k3 n3

hope d2m d2m m m

fverse dn2 dn2 n2 n2

verse dsn dsn m m

Table 4.1: Comparison
of neural embedding

methods in terms of the
bounded degree (Ok̄)

and worst-case (O) time
and space complexity,

assuming sparse graphs.

4.1.4 complexity comparison

Table 4.1 presents the worst-case analysis for bounded degree graphs (Ok̄)
and worst-case (O) time and space complexity of verse, along with those of
methods in previous works; d is the embedding dimensionality, n the number
of nodes,m the number of edges, k is the maximum degree (in the bounded-
degree case), s the number of negative samples used, and t the number of
iterations in GraRep. Methods that rely on fast sampling (verse and line)
require time linear in n and space linear inm in the worst case. DeepWalk re-
quiresO(n log n) time due to its use of hierarchical so�max. Node2vec stores
the neighbors-of-a-neighbor, incurring a cubic cost in terms of the maximum
node degree. �us, verse comes at the low end of complexities compared to
previous work on node embeddings. Remarkably, even the computationally
expensive fverse a�ords complexity comparable to some previous works.

4.1.5 similarity notions in previous approaches

We provide additional theoretical considerations of verse compared to
line, DeepWalk, and node2vec, and demonstrate how our general model
subsumes and extends previous research in versatility and scalability.

DeepWalk and node2vec inherit the sample generation from word2vec.
We derive a relationship between the window size w of that strategy and the
damping factor � of Personalized PageRank.

Lemma 2. Let Xr be the random variable representing the length of a random
walk r sampled with parameter w by word2vec. �en, for any 0 < j ≤ w,

Pr(Xr = j) =
2

w(w + 1)
(w − j + 1). (4.7)

a versatile node embedding 33

Proof. For each node v ∈ V, word2vec strategy samples two random walks of
length w starting from v ∈ V. �ese two random walks represent the context
of v, where v is the central node of a walk of length 2w + 1. �e model is
then trained on increasing context size up to w. �erefore, the number of
nodes sampled for each random walk amount to

∑w

i=1
i =

w(w+1)

2
. A node at

distance 0 < j ≤ w is sampled (w − j + 1) times; thus, the �nal probability
is 2

w(w+1)
(w − j + 1).

Personalized PageRank provides the maximum likelihood estimation for
the distribution in Equation 4.7 for � =

w−2

w+1
. �en, w = 10 corresponds

to � = 0.72, which is close to the standard � = 0.8, proved e�ective in
practice [BP98]. On the other hand, � = 0.95, which, for example, achieves
the best performance on a task in Section 4.2.2, corresponds to w = 59. Such
large w prohibitively increases the computation time.

line introduces the concept of �rst- and second-order proximities to
model complex node relationships. As we discussed, in verse, �rst-order
proximity corresponds to the dot-product among the similarity vectors in the
embedding space:

simE(u, v) = Wu ⋅ Wv

On the other hand, second-order proximity corresponds to letting verse
learn one more matrixW′, so as to model asymmetric similarities of nodes
in the embedding space. We do that by de�ning simE asymmetrically, using
bothW andW′:

simE(u, v) = Wu ⋅ W
′
v

�e intuition behind second-order proximity is the same as that of Sim-
Rank: similar nodes have similar neighborhoods. Every previous method,
except for line-1, used second-order proximities, due to the word2vec inter-
pretation of embeddings borrowed by DeepWalk and node2vec. In our model,
second-order proximities can be encoded by adding an additional matrix; we
empirically evaluate their e�ectiveness in Section 4.2.

34 vertex similarity embeddings

4.2 EXPERIMENTS

We evaluate verse against several state-of-the-art node embedding algo-
rithms. For repeatability purposes, we provide all data sets and the C++ source
code for verse1, DeepWalk2 and node2vec3. We run the experiments on an1. https://github.com/

xgfs/verse

2. https://github.com/
xgfs/deepwalk-c

3. https://github.com/
xgfs/node2vec-c

Amazon AWS c4.8 instance with 60GB RAM. Each method is assessed on the
best possible parameters, with early termination of the computation in case
no result is returned within one day. We provide the following state-of-the-art
node embedding methods for comparison:

• DeepWalk [PARS14]: �is approach learns an embedding by sampling
random walks from each node, applying word2vec-based learning on those
walks. We use the default parameters described in the paper, i.e., walk length
t = 80, number of walks per node
 = 80, and window size w = 10.

• line [TQW+15]: �is approach learns a d-dimensional embedding in two
steps, both using adjacency similarity. First, it learns d∕2 dimensions using
�rst-order proximity; then, it learns another d∕2 features using second-order
proximity. Last, the two halves are normalized and concatenated. We obtained
a copy of the code4 and run experiments with total T = 1010 samples and4. https://github.com/

tangjianpku/LINE
s = 5 negative samples, as described in the paper.

• GraRep [CLX15]:�ismethod factorizes the full adjacency similaritymatrix
using svd, multiplies the matrix by itself, and repeats the process t times. �e
�nal embedding is obtained by concatenating the steps. We use t = 4 and 32
dimensions for each svd round; thus, the �nal embedding has d = 128.

• hope [OCP+16]: �is method is a revised Singular Value Decomposition
restricted to sparse similaritymatrices. We report the results obtained running
hope with the default parameters, i.e, Katz similarity (an extension of Katz
centrality [Kat53]) as the similarity measure and � inversely proportional to
the spectral radius. Since Katz similarity does not converge on directed graphs
with sink nodes, we used Personalized PageRank with � = 0.85 for the CoCit
dataset.

• node2vec [GL16]:�is is a hyperparameter-supervised approach that extends
DeepWalk by adding two parameters, p and q, so as to control DeepWalk’s

https://github.com/xgfs/verse
https://github.com/xgfs/verse
https://github.com/xgfs/deepwalk-c
https://github.com/xgfs/deepwalk-c
https://github.com/xgfs/node2vec-c
https://github.com/xgfs/node2vec-c
https://github.com/tangjianpku/LINE
https://github.com/tangjianpku/LINE

experiments 35

Size Statistics

dataset |V| |E| |ℒ| Avg. deg. Q Density

BlogCat 10k 334k 39 64.8 0.24 6.3 ×10−3
CoCit 44k 195k 15 8.86 0.72 2.0 ×10−4
CoAuthor 52k 178k — 6.94 0.84 1.3 ×10−4
VK 79k 2.7M 2 34.1 0.47 8.7 ×10−4
YouTube 1.1M 3M 47 5.25 0.71 9.2 ×10−6
Orkut 3.1M 234M 50 70 0.68 2.4 ×10−5

Table 4.2: Dataset char-
acteristics: number of
vertices |V|, number of
edges |E|; number of
node labels |ℒ|; average
node degree; modularity
Q [New06b]; density
defined as |E|∕

(
|V|

2

)
.

random walk sampling. �e special case with parameters p = 1, q = 1 corre-
sponds to DeepWalk; yet, sometimes node2vec shows worse performance than
DeepWalk in our evaluation, due to the fact it uses negative sampling, while
DeepWalk uses hierarchical so�max. We �ne-tuned the hyperparameters p
and q on each dataset and task. Moreover, we used a large training data to
fairly compare to DeepWalk, i.e., walk length l = 80, number of walks per
node r = 80, and window size w = 10.

In addition to the node embedding methods described above, we imple-
mented the following baselines:

• Heuristics for link prediction: we train a logistic regression model on a set
of common node-speci�c features, namely node degree, number of common
neighbors, Adamic-Adar, Jaccard coe�cient, preferential attachment, and
resource allocation index [LZ11, LLC10].

• Louvain community detection [BGLL08]: We employ a standard partition
method for community detection as a baseline for graph clustering, reporting
the best partition in terms of modularity [New06b].

In line with previous research [PARS14, TQW+15, GL16] we set the em-
bedding dimensionality d to 128.�e learning procedure (Algorithm 1, Line 3)
is run 105 times for verse and 250 times for fverse; the di�erence in the
setting is motivated by the number of model updates which isO(n) in verse
and O(n2) in fverse.

36 vertex similarity embeddings

We use LIBLINEAR [FCH+08] to perform logistic regression with default
parameter settings. Unlike previous work [PARS14, TQW+15, GL16] we em-
ploy a stricter assumption for multi-label node classi�cation: the number of
correct classes is not known a priori, but found through the Label Powerset
multi-label classi�cation approach [TK06]. �is makes the results incompati-
ble with themainstream literature [PARS14, GL16]; in the subsequent chapters,
we switch to the evaluation protocols standard to the literature.

For link prediction and multi-label classi�cation, we evaluated each in-
dividual embedding 10 times in order to reduce the noise introduced by the
classi�er. Unless otherwise stated, we run each experiment 10 times, and re-
port the average value among the runs. �roughout our experimental study,
we use the above parameters as default, unless indicated otherwise.

We test our methods on six real datasets and report in Table 4.2.

• BlogCat [ZL09] is a network of social interactions among bloggers in the
BlogCat website. Node labels represent blog topics provided by authors.

• Microso� Academic Graph [mag16] is a network of academic papers, ci-
tations, authors, and a�liations fromMicroso� Academic website released
for the KDD-2016 cup. It contains 150 million papers up to February 2016
spanning various disciplines from math to biology. We extracted two separate
subgraphs from the original network, using 15 conferences in data mining,
databases, and machine learning. �e �rst, CoAuthor, is a co-authorship net-
work among authors. �e second, CoCit, is a network of papers citing other
papers; labels represent conferences in which papers were published.

• VK is a Russian all-encompassing social network. We extracted two snap-
shots of the network in November 2016 and May 2017 to obtain information
about link appearance. We use the gender of the user for classi�cation and
country for clustering.

• YouTube [TL09b] is a network of social interactions among users of the
YouTube video platform. �e labels represent video genres.

• Orkut [YL15] is a network of social interactions among users of the Orkut
social network platform.�e labels represent communities of users. We ex-
tracted the 50 biggest communities and use them as labels for classi�cation.

experiments 37

Operator Result

Average (a + b)∕2

Concat [a1, … , ad, b1, … , bd]

Hadamard [a1 ∗ b1, … , ad ∗ bd]

Weighted L1 [|a1 − b1|, … , |ad − bd|]

Weighted L2 [(a1 − b1)
2
, … , (ad − bd)

2
]

Table 4.3: Vector op-
erators used for link-
prediction task for each
u, v ∈ V and corre-
sponding embeddings
a, b ∈ ℝd .

�e default form of verse runs Personalized PageRank with � = 0.85.
For the sake of fairness, we design a hyperparameter-supervised variant of
verse, by analogy to the hyperparameter-tuned variant of DeepWalk intro-
duced by node2vec [GL16]. �is variant, hsverse, selects the best similar-
ity with cross-validation across two proximity orders (as discussed in Sec-
tion 4.1.5) and three similarities (Section 4.1.2)with�∈{0.45, 0.55, 0.65, 0.75, 0.85, 0.95}
for simPPR

G and C ∈ {0.15, 0.25, 0.35, 0.45, 0.55, 0.65} for simSR

G .

method Average Concat Hadamard L1 L2
fverse 80.06 79.69 86.71 84.49 84.97
verse 79.16 78.79 85.69 71.93 72.11
DeepWalk 68.43 68.06 66.54 79.06 78.11
GraRep 74.87 74.91 82.24 80.03 80.05
line 77.49 77.39 77.73 70.55 71.83
hope 74.90 74.83 74.81 74.34 74.81
hsverse 79.52 79.10 86.15 76.45 76.72
node2vec 77.07 76.67 79.42 81.25 80.85
Feature Eng. 77.53

Table 4.4: Link prediction
results on the CoAuthor
coauthorship graph. Best
results per method are
underlined.

4.2.1 link prediction

Link prediction is the task of anticipating the appearance of a link between
two nodes in a network. Conventional measures for link prediction include
Adamic-Adar, Preferential attachment,Katz, and Jaccard coe�cient.We train a
Logistic regression classi�er on edge-wise features obtained with the methods
shown in Table 4.3. For instance, for a pair of nodes u, v, the Concat operator
returns a vector as the sequential concatenation of the embeddings f(u)
and f(v). On the CoAuthor data, we predict new links for 2015 and 2016

38 vertex similarity embeddings

co-authorships, using the network until 2014 for training; on VK, we predict
whether a new friendship link appears between November 2016 and May
2017, using 50% of the new links for training and 50% for testing. We train
the binary classi�er by sampling non-existing edges as negative examples.
Tables 4.4 and 4.5 report the attained accuracy. As a baseline, we use a logistic
regression classi�er trained on the respective data sets’ features.

method Average Concat Hadamard L1 L2
fverse 74.94 74.81 80.77 78.49 79.13
verse 73.78 73.66 79.71 74.11 74.56
DeepWalk 70.05 69.92 69.79 78.38 77.37
line 75.17 75.13 72.54 63.77 64.47
hope 71.89 71.90 70.22 71.22 70.63
hsverse 74.14 74.02 80.26 73.04 73.53
node2vec 71.29 71.22 72.43 78.38 78.66
Feature Eng. 78.84

Table 4.5: Link pre-
diction results on

the VK coauthorship
graph. Best results per
method are underlined.

verse with Hadamard product of vectors is consistently the best edge
representation. We attribute this quality to the explicit reconstruction we
achieve using noise contrastive estimation. verse consistently outperforms
the baseline in the tested datasets. Besides, the hyperparameter-supervised
hsverse variant outruns node2vec on all datasets.

4.2.2 node classification

We now conduct an extensive evaluation on classi�cation and report results
for all the methods, where possible, with the CoCit, VK, YouTube, and Orkut
graphs. Node classi�cation aims to predict the correct node labels in a graph,
as described previously in this section.

We evaluate accuracy by the Micro-F1 andMacro-F1 percentage measures.
We report only Macro-F1, since we experience similar behaviors with Micro-
F1. For each dataset we conduct multiple experiments, selecting a random
sample of nodes for training and leaving the remaining nodes for testing.
�e results for four datasets, shown in Tables 4.6–4.9, exhibit similar trends:
verse yields predictions comparable or superior to those of the other contes-
tants, while it scales to large networks such as Orkut. As an exception, line

experiments 39

labelled nodes, %
method 1% 3% 5% 7% 9%
fverse 27.52 29.83 31.01 31.68 32.24
verse 27.32 29.42 30.67 31.32 31.83
DeepWalk 26.81 29.27 30.37 31.04 31.43
GraRep 27.68 29.21 30.24 30.23 30.79
line 23.68 26.90 27.89 28.49 28.80
hope 22.81 26.63 27.59 28.19 28.58
hsverse 27.46 29.45 30.67 31.38 31.92
node2vec 27.45 29.66 30.82 31.54 32.04

Table 4.6: Multi-class
classification results in
CoCit dataset.

labelled nodes, %
method 1% 3% 5% 7% 9%
fverse 58.32 61.01 61.74 62.26 62.50
verse 57.89 60.53 61.43 61.86 62.13
DeepWalk 58.22 60.93 61.79 62.17 62.49
line 60.39 62.83 63.58 64.01 64.23
hope 54.88 56.65 57.04 57.40 57.68
hsverse 58.87 61.67 62.50 62.97 63.16
node2vec 58.85 61.79 62.62 63.04 63.30

Table 4.7: Multi-class
classification results in
VK dataset.

labelled nodes, %
method 1% 3% 5% 7% 9%
verse 17.92 22.26 24.07 25.07 25.99
DeepWalk 18.16 21.55 22.89 23.64 24.54
line 13.71 17.36 18.69 19.84 20.64
hope 9.22 13.80 15.09 16.18 16.78
hsverse 18.16 22.84 25.40 27.38 29.09

Table 4.8: Multi-label
classification results in
YouTube dataset.

labelled nodes, %
method 1% 3% 5% 7% 9%
verse 25.16 28.22 29.60 31.46 32.63
DeepWalk 24.21 27.99 29.63 30.60 31.27
line 26.79 30.89 32.34 32.92 33.65
hsverse 27.73 30.70 32.73 34.00 35.20

Table 4.9: Multi-class
classification results in
Orkut dataset.

40 vertex similarity embeddings

outperforms verse in VK, where the gender of users is better captured using
the direct neighborhood. �e hyperparameter-supervised variant, hsverse,
is on a par with node2vec in terms of quality on CoCit and VK; on the largest
datasets YouTube and Orkut, hsverse keeps outperforming unsupervised
alternatives, while node2vec depletes the memory.

4.2.3 node clustering

Graph clustering detects groups of nodes with similar characteristics [New06b,
BGLL08]. We assess the embedding methods, using the k-means algorithm
with k-means++ initialization [AV07] to cluster the embedded points in a
d-dimensional space. Table 4.10 reports the Normalized Mutual Information
(NMI) with respect to the original label distribution. On CoAuthor, verse
has comparable performance with DeepWalk; yet on VK, verse outperforms
all other methods.

We also assess node embeddings on their ability to capture the graph
community structure. We apply k-means with di�erent k values between 2
and 50 and select the best modularity [New06b] score. Table 4.11 presents our
results, along with the modularity obtained by the Louvain method, the state-
of-the-art modularity maximization algorithm [BGLL08]. verse variants
produce results almost equal to those of Louvain, outperforming previous
methods, while the three methods that could manage the Orkut data perform
similarly.

method CoCit VK
fverse 33.22 9.24
verse 32.93 7.62
DeepWalk 34.33 7.59
line 18.79 7.49
GraRep 27.43 —
hope 19.05 6.47
hsverse 33.24 8.77
node2vec 32.84 8.05
Louvain 30.73 4.54

Table 4.10: Node
clustering results
in terms of NMI.

experiments 41

method CoCit CoAuthor VK YouTube Orkut
fverse 70.12 80.95 44.59 — —
verse 69.43 79.25 45.78 67.63 42.64
DeepWalk 70.04 73.83 43.30 58.08 44.66
line 60.02 71.58 39.65 63.40 42.59
GraRep 67.61 77.40 — — —
hope 42.45 69.57 21.70 37.94 —
hsverse 69.81 79.31 45.84 69.13 —
node2vec 70.06 75.78 44.27 — —
Louvain 72.05 84.29 46.60 71.06 —

Table 4.11: Node cluster-
ing results in terms of
modularity.

4.2.4 graph reconstruction

Good node embeddings should preserve the graph structure in the embedding
space. We evaluate the performance of our method on reconstructing the
graph’s adjacency matrix. Since each adjacent node should be close in the
embedding space, we �rst sort any node other than the one considered by
decreasing cosine distance among the vectors. A�erwards, we take a number
of nodes equal to the actual degree of the node in the graph and connect to
the considered node to create the graph structure.

Table 4.12 reports the relative accuracy measured as the number of correct
nodes in the neighborhood of a node in the embedding space. Again, verse
performs comparably well; its exhaustive variant, fverse, which harnesses
the full similarity does even better; however, the top performer is hsverse,
which achieves the obtained result when instantiated to the Adjacency Simi-
larity. �is result is unsurprising, given that the adjacency similarity measure
tailors hsverse for the task of graph reconstruction.

method CoCit CoAuthor VK YouTube Orkut
fverse 88.96 98.20 66.45 — —
verse 58.73 74.30 50.18 28.64 18.39
DeepWalk 51.54 68.44 43.04 32.21 19.75
line 23.32 62.01 42.80 17.76 10.82
GraRep 67.61 77.40 — — —
hope 25.88 49.70 12.01 33.42 —
hsverse 97.53 98.91 78.38 38.34 28.81
node2vec 66.35 72.70 53.70 — —

Table 4.12: Graph re-
construction % for all
datasets.

42 vertex similarity embeddings

2 4 8 16 32 64 128 256 5121024
0

0.1

0.2

0.3

0.4

d

M
ic
ro
-F
1

fverse
verse

(a) Dimensionality d

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

�

M
ic
ro
-F
1

fverse
verse

(b) PPR damping factor �

Figure 4.4: Classification
performance for (a) dif-

ferent dimensionality and
(b) PPR damping factor �).

4.2.5 parameter sensitivity

We also evaluate the sensitivity of verse to the parameter choice. Figure 4.4
depicts node classi�cation performance in terms of Micro-F1 on the BlogCat
dataset, with 10% of nodes labeled.

�e dimensionality d determines the size of the embedding, and hence
the possibility to compute more �ne-grained representations. �e perfor-
mance grows linearly as the number of dimensions approaches 128, while
with larger d we observe no further improvement. Sampled verse instead,
performs comparably better than fverse in low dimensional spaces, but
degrades as d becomes larger than 128; this behavior re�ects a characteristic
of node sampling that tends to preserve similarities of close neighborhoods
in low-dimensional embeddings, while the verse leverages the entire graph
structure for larger dimensionality

�e last parameter we study is the damping factor � which amounts to
the inverse of the probability of restarting random walks from the initial
node. As shown in Figure 4.4, the quality of classi�cation accuracy is quite
robust with respect to � for both verse and fverse, only compromised
by extreme values. An � value close to 0 reduces ppr to an exploration of the
immediate neighborhood of the node. On the other hand, a value close to 1
amounts to regular PageRank, deeming all nodes as equally important. �is
result vindicates our work and distinguishes it from previous methods based
on local neighborhood expansion.

experiments 43

104 105 106
102

103

104

nodes

se
co
nd

s

fverse
verse
DeepWalk
node2vec
line-2

Figure 4.5: Scalability of
different methods.

4.2.6 scalability

We now present runtime results on synthetic graphs of growing size, generated
by the Watts Strogatz model [WS98], setting verse against scalable methods
with C++ implementations, namely DeepWalk, line, and node2vec. For each
method, we report the total wall-clock time, with graph loading and necessary
preprocessing steps included. We used line-2 time for fair comparison. As
Figure 4.5 shows, verse is comfortably themost e�cient and scalablemethod,
processing 106 nodes in about 3 hours, while DeepWalk and line take from
6 to 15 hours.

4.2.7 visualization

Last, we show how di�erent embeddings are visualized on a plane. We apply
t-sne [vH08] with default parameters to each embedding for a subset of 1500
nodes from theCoCit dataset, equally distributed in 5 classes (i.e., conferences);
we set the density areas for each class by Kernel Density Estimation. Figure 4.6
depicts the result. produces well separated clusters with low noise, even �nding
distinctions among papers of the same community, namely icde () and
vldb ().

44 vertex similarity embeddings

Figure 4.6: Visualization
of a subset of nodes

from CoCit graph with
selected conferences:

VLDB, ICDE, KDD,
WWW, and NeurIPS.

Note that the number
of nodes per class is the
same for all conferences.

4.3 SUMMARY

We introduced a new perspective on node embeddings: to be expressive,
a node embedding should capture some similarity measure among nodes.
Armed with this perspective, we developed a scalable embedding algorithm,
verse. In a departure from previous works in the area, verse aims to
reconstruct the distribution of any chosen similarity measure for each graph
node. �ereby, verse brings in its scope a global view of the graph, while
substantially reducing the number of parameters required for training. verse
attains linear time complexity, hence it scales to large real graphs, while it
only requires space to store the graph. Besides, we have shed light on some
previous works on node embeddings, looking at them and interpreting them
through the prism of vertex similarity.

Our thorough experimental study shows that, even instantiated with ppr
as a default similarity notion, verse consistently outperforms state-of-the-
art approaches for node embeddings in a plethora of graph tasks, while a
hyperparameter-supervised variant does even better. �us, we have provided
strong evidence that embeddings genuinely based on vertex similarity address
graph mining challenges better than others.

5ANYTIME NODE EMBEDDINGS

Quality guarantees of neural node embedding algorithms are prac-
tically non-existent. Matrix factorization algorithms ameliorate this
problem; yet, it is challenging to balance the space complexity and
quality of an embedding. To date, no node embedding work com-

bines (i) linear space complexity, (ii) a nonlinear transform as its basis, and (iii)
nontrivial quality guarantees. �is chapter introduces FREquent Directions
Embedding (frede), an algorithm based on matrix sketching that combines
those three desiderata. Starting out from the observation that embedding
methods aim to preserve the covariance among the rows of a similarity matrix,
frede iteratively improves on quality while individually processing rows
of a nonlinearly transformed ppr similarity matrix derived and provides, at
any iteration, column-covariance approximation guarantees in due course
almost indistinguishable from those of the optimal approximation by svd.
Our experimental evaluation on variably sized networks shows that frede
performs almost as well as svd and competitively against state-of-the-art
embedding methods in diverse graph mining tasks, even when it is based on
as little as 10% of node similarities.

We observe that factorization-based embeddings e�ectively strive to pre-
serve the covariance of a similarity matrix, and that a few nodes acting as
oracles approximate the distances among all nodes with guarantees [TZ05].
Given these observations, we adapt a covariance-preserving matrix sketching
algorithm, Frequent Directions (fd) [Lib13, GLPW16], to produce a node em-
bedding by factorizing, on a per-row basis, a ppr-like node similarity matrix
derived by interpreting verse as matrix factorization. Uniquely, frede can
be distributed, as it inherits themergeability property of fd: two embeddings
can be computed independently on di�erent node sets and merged to a sin-
gle embedding, with quality guarantees that hold anytime [Zil96], even a�er
accessing a subset of similarity matrix rows.

We summarize our contributions as follows:

45

46 anytime node embeddings

1. We interpret a state-of-the-art node embedding method, verse, as
factorizing a transformed ppr similarity matrix;

2. We propose frede, an anytime node embedding algorithm that min-
imizes covariance error on that ppr -like matrix via sketching, with
space complexity linear in the number of nodes and time linear in the
number of processed rows;

3. In a thorough experimental evaluation, we con�rm that frede is
competitive against the state of the art and scales to large networks.

5.1 PRELIMINARIES

Our work builds on the know-how of matrix sketching to derive scalable,
anytime node embeddings for practical data science tasks. Here, we review
the fundamentals of matrix sketching.

An alternative to svd, matrix sketching, �nds a low-dimensional matrix,
or a sketch,W ∈ ℝd×t of amatrixM ∈ ℝs×t (s elements, t features) that retains
most of the information in M without striving for matrix reconstruction.
Sketching methods operate in streaming fashion, guaranteeing quality when
rows arrive one a�er another. A popular sketch objective [BMD09, BDMI11,
Lib13, Woo14] is to preserve the column covarianceMTM ofM, i.e., minimize
covariance error:

De�nition 4 (Covariance error). �e column covariance error is the normalized
di�erence between the covariance matrices:

cek(M,W) =
‖MTM−WTW‖2

‖M − [M]k‖
2
F

≥
‖MTM−WTW‖2

‖M‖2
F

= ce(M,W)

�e covariance error accounts for variance loss in each dimension. �e
correct k for the best rank k approximation [M]k is not known and o�en
requires grid search. Hence, we use the lower bound ce(M,W) in lieu of
cek(M,W). When minimizing reconstruction error by svd, with [M]k =

UkΣkV
T

k
, wemay also optimal covariance error, which depends on the singular

value decay ofM, by settingW = ΣkV
T

k
. Since svd is o�en computationally

heavy, sketching algorithms typically provide error guarantees on ce by row-
wise processing ofM.

preliminaries 47

A desirable sketch property ismergeability:

De�nition 5 (Mergeability). A sketching algorithm sketch is mergeable if
there exists an algorithm merge that, applied on the d × t sketches,W1 =

sketch(M1) andW2 = sketch(M2), of two s∕2 × t matrices,M1,M2, with
ce(M1,W1) ≤ � and ce(M2,W2) ≤ �, produces a d × t sketchW of the con-
catenatedmatrixM = [M1;M2],W = merge(W1,W2) = sketch(M), that
preserves the covariance error bound �, i.e., ce(M,W) ≤ �.

We now discuss some representative sketching algorithms.

Hashing. We construct a 2-universal hash function ℎ ∶ [s] → [d] and a
4-universal hash function g ∶ [s] → {−1,+1}. Starting with a zero-valued
sketch matrixW, each rowMi is added to the ℎ(i)-th sketch matrix row with
sign g(i):Wℎ(i) = g(i) ∗ Mi, with complexity linear in matrix size, O(st).
In practice, random assignment of rows is used instead of a hash function.
Setting d = O(t

2
∕�2), hashing achieves ce ≤ � [Woo14]. �is sketch is trivially

mergeable: merge(W1,W2) = W1 +W2.

Random Projections are a fundamental data analysis tool [Woo14]. Bout-
sidis et al. [BDMI11] propose a row-streaming matrix sketching algorithm
that randomly combines rows of the input matrix. In matrix form, M̃ = RM,
where the elementsRij of thed×smatrixR are uniformly from {−1∕

√
d, 1∕

√
d}.

For each rowMi, the algorithm samples a random vector ri ∈ ℝd with en-
tries in {−1∕

√
d, 1∕

√
d} and updatesW =W+ riM

T

i
. �is sketch achieves

ce ≤ � with d = O(t∕�2), with practical performance exceeding the guaran-
tee [LHC06], and is mergeable with merge(W1,W2) = W1 +W2.

Sampling. �e Column Subset Selection Problem (CSSP) [BMD09] is to
select a small column subset of an entire matrix. In the row-update model, a
solution is found by sampling scaled rowsMi∕

√
dpi with probability pi =

‖Mi‖
2∕‖M‖2

F
. While the norm ‖M‖2

F
is usually unknown in advance, the

method can work with d reservoir samplers, where d is the sketch size. �is
sketch achieves ce ≤ � with d = O(t∕�2), yet the cost of maintaining reser-
voir samples is non-negligible. �e sketch is mergeable if we use distributed
reservoir sampling.

48 anytime node embeddings

Frequent Directions [Lib13] is the current state of the art in sketching, ex-
tends the Misra-Gries algorithm [MG82] from frequent items to matrices and
outperforms other methods [CW13, BMD09, BDMI11] in quality. �is algo-
rithm sketches a matrix by iteratively �lling the sketch with incoming rows,
performing svd on the sketch when it cannot hold more rows, and shrinking
the accumulated vectors with a low-rank svd approximation.�e complexity
is O(dts), due to s∕d iterations of computing the O(d2t) svd decomposition
of a 2d × tmatrixW with d ≪ t. �is sketch achieves ce≤� when d = O(t∕�)

and is mergeable with

merge(W1,W2) = FD(concatenate(W1,W2)). (5.1)

�e table below lists the embedding dimension d required to attain error
bound ce ≤ � ≤ 1 for di�erent algorithms.

Algorithm Hashing RP Sampling FD

Dimension d O(t2∕�2) O(t∕�2) O(t∕�2) O(t∕�)

We observe that, by putting the node similarity matrix S in the role of
the sketched matrixM, we can e�ectively turn a sketching technique to an
embedding method. Indeed, recent work [ZCL+18] has adapted a sketching
algorithm [Vem05, BDMI11] to node embeddings, yet forfeited1 its error guar-1. In our experiments, we

use a variant of [ZCL+18]
with error guarantees
as a simple baseline.

antees. We apply the know-how of state-of-the-art matrix sketching to serve
node embedding purposes, leading to anytime node embeddings with error
guarantees.

5.2 ANYTIME NODE EMBEDDINGS

We observe that svd-based node embeddings, such as hope and NetMF,
use only one of the two matrices svd produces,U orV. For example, NetMF
returns W = U∶d

√
�
∶d
, with � truncated to d singular values. �erefore,

such methods cannot reconstruct matrix S; svd products U and � may
only reconstruct the row covariance matrix SST = U�2UT, as WWT =

U�2UT, whereW = U�; thus, such methods are better understood as ones

anytime node embeddings 49

implicitly minimizing the covariance error, rather than the reconstruction
error [QDM+18], in relation to a similarity matrix among graph nodes.

Serendipitously, sketching algorithms aim to reconstruct the column co-
variance STS = V�2VT. Given this relationship, we apply a state-of-the-art
matrix sketching algorithm in lieu of svd to construct a node embedding
in anytime fashion, by row updates of any partially materializable similarity
matrix S. Unfortunately, the matrix form of DeepWalk cannot be partially
materialized. Next, we propose a partially materializable matrix based on
ppr, inspired from the verse similarity-based embeddings. As we show
in the experiments, this choice attains good quality and time performance.
However, our method carries no prejudice with regard to the partially mate-
rializable matrix used; other choices are possible, such as, for example, the
Node-Reweighted PageRank (NRP) [YSX+20]. Our aim is to illustrate the
advantageous application of sketching for embedding purposes, while our
framework supports any way of deriving the primary input matrix.

5.2.1 a row-wise computable similarity matrix

�e �rst neural similarity-based embedding method that does not require
the entire matrix as input is verse, as it allows for e�cient row-wise com-
putation; in its default version, it uses the ppr similarity measure. To com-
pute PPRi, we leverage the fact that the probability distribution of a ran-
dom walk with restart converges to PPRi vector [PBMW99, BCG10]. Follow-
ing [LG14, CLX15, QDM+18] we show that, under mild assumptions, verse
with ppr similarity virtually factorizes the log(PPR)matrix up to an additive
constant.

Ceorem 2. LetX be the matrix of verse embeddings. If the terms zij = xT
i
x
j

are independent, then verse factorizes the matrix Y = log(PPR) + log n −

log b = XXT.

Proof. Consider the verse objective function for the uniform sampling
distribution and PPR similarity:

ℒ =

n∑

i=1

n∑

j=1

[
PPRij log �(x

T

i
x
j
) + bEj′∼Qi log �(−x

T

i
x
j′
)
]
,

50 anytime node embeddings

where �(x) = (1 + e−x)−1 is the sigmoid, Qi is the noise sample distribution,
and b the number of noise samples. Since PPR is right-stochastic and Qi is
uniform, i.e., Pr(Qi = j) =

1

n
, we can separate the two terms as follows:

ℒ =

n∑

i=1

n∑

j=1

PPRij log �(x
T

i
x
j
) +

b

n

n∑

i=1

n∑

j′=1

log �(−xT
i
x
j′
).

An individual loss term for vertices i and j is:

ℒij = PPRij log �(x
T

i
x
j
) +

b

n
log �(−xT

i
x
j
).

We substitute zij = xT
i
x
j
, use our independence assumption, and solve

for)ℒij

)zij

= PPRij�(−zij) −
b

n
�(zij) = 0 to get zij = log

n⋅PPRij

b
, hence XXT =

log(PPR) + log n − log b = Y.

Even though this solution is algebraically impossible, as it implies approx-
imating a non-symmetric matrix by a symmetric one, it provides a useful
matrix whose covariance we can sketch.

5.2.2 frede algorithm

Since the matrix Y = XXT has equal row and column ranks, we rewrite the
decomposition commutatively, as Y = log(PPR) + log n − log b = XTX. We
keep the bias parameter b equal to 1, as in NetMF, and apply fd to obtain
a d × n sketch-based embeddingW by processing rows of Y. Algorithm 2
presents the details of frede and Figure 5.1 shows its work�ow; it computes
rows of the PPR matrix, and hence of the transformedY, by sampling, applies
the svd-based fd sketching process periodicallywith eachd rows it processes
(Lines 8–12), and returns embeddings with guarantees at any time (Lines 14–
15). We keep track of singular values in �̂ alongside the sketch so as to avoid
performing svd upon a request for output; as in [QDM+18], we multiply by
√
�̂ at output time (Line 15), whereas a covariance-oriented sketcher would

use �̂. �e time to process all n nodes with O(n∕d) svd iterations costing
O(d2n) is O(dn2).

Sketch-based embeddings inherit the covariance error bounds of sketching
(Section 5.1), which hold anytime, even a�er processing only an arbitrary
subset of rows.�us, frede embeddings inherit the anytime error guarantees

anytime node embeddings 51

Insert PPR(v, ⋅) intoW

v

CompressW, update �̂

,
anytime

Figure 5.1: Workflow:
FREDE iteratively sam-
ples transformed PPR
rows, periodically com-
presses the derived
sketch and derives sin-
gular values by SVD, and
returns an embedding
with error guarantees at
any time.

of Frequent Directions, which are valid a�er materializing only part of the
similarity matrix, and superior to those of other sketch-based embeddings; it
achieves ce ≤ � on the submatrix S[s] built from any size-s subset of processed
rows (nodes) when d = O(n∕�) [GLPW16], independently of s. In Section 5.3.8
we show that frede outperforms other sketch-based embeddings in anytime
node classi�cation.

Algorithm 2 frede
1: function FREDE(G, n, d)
2: W← zeros(2d, n) ⊳ all zeros matrixW ∈ R2d×n

3: Σ̂ ← I(2d) ⊳ diagonal identity matrix Σ̂ ∈ R2d×2d

4: for v ∈ V do
5: x ← PersonalizedPageRank(v)

6: y ← log x + log n ⊳ PPR-like similarity row
7: Insert y into the last zero valued row ofW
8: if W has no zero valued rows then
9: U, Σ, V⊤ ← SVD(Σ̂W), � ← Σd,d

10: Σ̂∶d ←

√

max(Σ2
∶d
− �2Id, 0) ⊳ set dth row of Σ̂ to 0

11: Σ̂d∶ ← Id ⊳ set last d entries of Σ̂ to 1
12: W∶d ← V⊤

∶d
,Wd∶ ← 0d×n ⊳ zero last d rows ofW

13: return Σ̂,W∶d

14: function GetEmbedding(k ≤ d) ⊳ Anytime
15: return

√
Σ̂W∶k ⊳ �rst k rows

5.2.3 parallelization and distribution

�e steps of Algorithm 2 may be easily parallelized. In particular, Line 5 could
employ approximate ppr [YJK18, YSX+20], and Line 9 e�cient svd calcu-
lations [HILG09]. Such speedups trade quality for scalability. Furthermore,

52 anytime node embeddings

frede can be e�ciently distributed across machines for the sake of scala-
bility, with very small communication overhead and preserving its quality
guarantees. �is appealing characteristic, unique among related works on em-
beddings, follows from the mergeability property that frede inherits from
Frequent Directions. In each machinem, we may create a partial embedding
matrixW based on the subset of the nodes available tom, and then merge

partial embeddings from t servers, i.e., iteratively sketch their concatenations
by Equation 5.1 in a hierarchical fashion, incurring a log

2
t time complexity

factor.

5.3 EXPERIMENTS

�e primary advantage of frede is its anytime character, i.e., its ability to
derive embeddings by processing only a fraction of similarity matrix rows. On
that front, it may only be compared against other sketch-based embeddings.
Here, we also compare frede on qualitative performance in data science
tasks against other node embeddings to corroborate its practical impact.

5.3.1 compared methods

Aswehave established that nonlinear embeddings outperform linear-transform-
based ones in the previous chapter, we evaluate frede against three repre-
sentative state-of-the-art node embeddings based on nonlinear transforms,
the classic DeepWalk, neural verse, and factorization-based NetMF, three
sketching baselines, and exact matrix factorization by svd:

• DeepWalk [PARS14] learns an embedding by sampling �xed-length ran-
dom walks from each node and applying word2vec-based learning on those
walks; despite intensive research on node embeddings, DeepWalk remains
competitive when used with time-tested default parameters [TMKM18]: walk
length t=80, number of walks per node
=80, and window size T=10; we
use these values.

• verse trains a single-layer neural network to learn the ppr similarity
measure via sampling, with default parameters � = 0.85 and nsamples =

106.

experiments 53

Size Statistics

dataset |V| |E| |ℒ| Avg. deg. Density

ppi 4k 77k 50 19.9 5.1 ×10−3
pos 5k 185k 40 38.7 8.1 ×10−3
BlogCat 10k 334k 39 64.8 6.3 ×10−3
CoCit 44k 195k 15 8.9 2.0 ×10−4
CoAuthor 52k 178k — 6.9 1.3 ×10−4
VK 79k 3M — 34.1 8.7 ×10−4
Flickr 80k 12M 195 146.5 1.8 ×10−3
YouTube 1.1M 3M 47 5.2 9.2 ×10−6

Table 5.1: Dataset char-
acteristics: number of
vertices |V|, number of
edges |E|; number of
node labels |ℒ|; average
node degree; density
defined as |E|∕

(
|V|

2

)
.

• NetMF [QDM+18] performs svd on the closed-form DeepWalk matrix.
We use the optimal method, NetMF-small; as it is not scalable, we evaluate it
on our three smallest datasets, using the same parameters as in DeepWalk, and
bias b = 1 as in the original paper; NetMF su�ces for a quality comparison
with NetSMF [QDM+19], as the former represents the full version of the latter.

Sketching baselines. We additionally compare with Hashing, Random Pro-
jections and Sampling, three high-performance baseline sketching methods
(Section 5.1), computing the sketch and �ltering singular value as in frede.
Our Random Projections baseline is a re�ned variant of [ZCL+18], substitut-
ing a crude higher-order matrix approximation with the row-update random
projections sketching algorithm applied on the transformed ppr matrix.

On the three smallest datasets, we are able to compare against the exact
svd decomposition of the nonlinearly transformed ppr matrix Y with the
same parameters as in frede.

5.3.2 parameter settings

We set embedding dimension d = 128 unless indicated otherwise. For svd,
we use the gesdd routine in the Intel MKL library. For classi�cation we use
LIBLINEAR [FCH+08]. We repeat each experiment 10 times and evaluate
each embedding 10 times.

5.3.3 datasets

We experiment on 8 publicly available real datasets:

54 anytime node embeddings

• ppi [SBR+06, GL16]: a protein-protein interaction dataset, where labels
represent hallmark gene sets of speci�c biological states.

• pos [Mah11, GL16]: a word co-occurrence network built fromWikipedia
data. Labels tag parts of speech induced by Stanford NLP parser.

• BlogCat [ZL09, TL09b]: a social network of bloggers from the blogcatalog
website. Labels represent self-identi�ed topics of blogs.

• CoCit [mag16, TMKM18]: a paper citation graph generated from the Mi-
croso� Academic graph, featuring papers published in 15 major data mining
conferences. We use conference identi�ers as labels.

• CoAuthor [mag16, TMKM18]: a coauthorsip graph generated from the
Microso� Academic graph. We use snapshots from 2014 and 2016 for link
prediction.

• VK [TMKM18]: a Russian all-encompassing social network. Labels repre-
sent user genders. We use snapshots from November 2016 and May 2017 for
link prediction.

• Flickr [ZL09, TL09b]: a photo-sharing social network, where labels repre-
sent user interests, and edges messages between users.

• YouTube [ZL09, TL09b]: a video-based social network; labels indicate genre
interests.

Table 5.1 summarizes the data characteristics. All algorithms are imple-
mented in Python2 and ran on a 2×20-core Intel E5-2698 v4 cpu machine2. Code in the supplemen-

tary material; we will open-
source the code on GitHub. with 384GB ram and a 64GB memory constraint.

5.3.4 sketching quality

As a preliminary test, we assess our choice of sketching backbone against
other sketching algorithms and the optimal rank-k covariance approximation
obtained by svd on the full similarity matrix, S̃TS̃ = Vd�

2

d
VT

d
. Figure 5.2

reports the covariance error ce on ppi data, vs. the dimensionality d. We
are able to outperform the other sketching algorithms by at least 2 orders of
magnitude and, as d grows, it converges to the optimal svd solution. �is

experiments 55

101 102 103

10−6

10−3

100

d

c
e

Covariance error

frede svd Sampling
Rand. Proj. Hashing

Figure 5.2: Covariance
error vs. dimensionality d;
FREDE approaches SVD,
which yields optimal
covariance error.

result recon�rms that the advantages of fd versus other sketching methods
transfer well to the domain of node embeddings. For the sake of completeness,
we keep comparing to other sketching methods in the rest of our study, as
performance may vary depending on the downstream data science task.

103 104 105 106

0.1

0.15

0.2

0.25

Number of random walks

M
ic
ro
-F
1

frede Sampling
Rand. proj. Hashing
svd

Figure 5.3: Classification
performance of sketching
algorithms on PPI data
wrt. number of walks to
compute PPR.

5.3.5 ppr approximation

Figure 5.3 shows the performance of sketching algorithms on a node classi-
�cation task (predicting correct labels) vs. the number of random walks for
ppr approximation. As we can see, frede consistently outperforms sketch-
ing baselines and reaches the exact-ppr solution with 106 walks. �is result
indicates that we can achieve performance obtained using the exact ppr val-
ues in downstream tasks even without computing such ppr values with high
precision.

56 anytime node embeddings

labelled nodes, %
method 10% 30% 50% 70% 90%
DeepWalk 16.33 19.74 21.34 22.39 23.38
NetMF 18.58 22.01 23.87 24.65 25.30
verse 16.45 19.89 21.64 23.08 23.84
frede 19.56 23.11 24.38 25.11 25.52
svd 18.31 22.12 23.66 25.03 25.78
Rand. Proj. 16.80 19.99 21.45 22.38 23.14
Sampling 16.25 19.55 20.93 21.85 22.68
Hashing 16.73 19.97 21.51 22.43 23.44

Table 5.2: Micro-F1
classification, PPI data.

labelled nodes, %
method 10% 30% 50% 70% 90%
DeepWalk 43.42 47.12 48.96 49.86 50.18
NetMF 43.42 46.98 48.52 49.23 49.72
verse 40.80 44.70 46.60 47.65 48.24
frede 46.59 49.23 50.45 51.02 51.30
svd 44.69 48.86 50.57 51.53 52.20
Rand. Proj. 40.24 43.87 45.65 46.43 47.18
Sampling 40.35 43.80 45.39 46.30 46.69
Hashing 40.17 43.88 45.44 46.35 46.79

Table 5.3: Micro-F1
classification, POS data.

labelled nodes, %
method 10% 30% 50% 70% 90%
DeepWalk 36.22 39.84 41.22 42.06 42.53
NetMF 36.62 39.80 41.05 41.70 42.17
verse 35.82 40.06 41.63 42.63 43.14
frede 35.69 38.88 39.98 40.54 40.75
svd 37.60 40.99 42.10 42.66 43.47
Rand. Proj. 30.82 34.43 35.81 36.52 37.16
Sampling 29.44 32.32 33.41 34.04 34.29
Hashing 30.81 34.36 35.82 36.65 37.28

Table 5.4: Micro-F1 clas-
sification, BlogCat data.

experiments 57

labelled nodes, %
method 1% 3% 5% 7% 9%
DeepWalk 37.22 40.34 41.72 42.59 43.16
verse 38.95 41.20 42.55 43.41 44.01
frede 42.46 44.56 45.39 45.84 46.17
Rand. Proj. 40.89 42.63 43.63 44.32 44.78
Sampling 40.84 42.97 43.93 44.49 44.91
Hashing 40.86 42.66 43.65 44.29 44.83

Table 5.5: Micro-F1
classification, CoCit data.

labelled nodes, %
method 1% 3% 5% 7% 9%
DeepWalk 32.39 36.02 37.41 38.15 38.70
verse 30.08 34.22 36.06 37.11 37.83
frede 30.90 32.98 33.86 34.48 34.88
Rand. Proj. 28.92 32.21 33.82 34.76 35.49
Sampling 28.46 30.97 32.08 32.75 33.24
Hashing 29.07 32.23 33.77 34.75 35.48

Table 5.6: Micro-F1
classification, Flickr data.

labelled nodes, %
method 1% 3% 5% 7% 9%
DeepWalk 37.96 40.54 41.75 42.60 43.37
verse 38.04 40.50 41.72 42.59 43.33
frede 34.51 37.37 38.78 39.40 39.95
Rand. Proj. 33.88 36.10 37.23 37.94 38.38
Sampling 33.97 35.66 36.37 37.19 37.71
Hashing 32.64 35.64 36.92 37.46 38.13

Table 5.7: Micro-F1
classification, YouTube
data.

5.3.6 node classification

Tables 5.2–5.7 report classi�cation results in terms of theMicro-F1measure as it
is common in the literature [PARS14, TQW+15]; Macro-F1 results were similar.
�e experiment features svd where it runs within 64GB. For each dataset, we
repeat the experiment 10 times and report the average. Surprisingly, on ppi
and pos, frede outperforms its exact counterpart, svd, and consistently
supersedes its sketching counterparts across all datasets.

58 anytime node embeddings

0 20 40 60 80 100
0.2

0.22

0.24

% of nodes visited

M
ic
ro
-F
1

ppi

0 2 4 6 8 10
0.25

0.3

0.35

% of nodes visited

Flickr

0 20 40 60 80 100
0.3

0.35

0.4

% of nodes visited

M
ic
ro
-F
1

BlogCat

0 20 40 60 80 100

0

100

200

300

400

% of nodes visited

tim
e,
s

BlogCat time

frede Rand. Proj. Sampling
Hashing svd verse

Figure 5.4: Classification
performance of FREDE

with varying percent-
age of the graph as

input on three datasets.

method Average Concat Hadamard L1 L2
DeepWalk 68.97 68.43 66.61 78.80 77.89
verse 79.62 79.25 86.27 75.15 75.32
frede 81.28 80.95 86.83 81.70 82.37
Rand. Proj. 80.81 80.54 86.73 80.79 81.42
Sampling 80.98 80.74 86.45 79.53 79.51
Hashling 80.84 80.48 86.66 80.59 81.33
Baseline 77.53

Table 5.8: Link prediction
accuracy, CoAuthor data.

method Average Concat Hadamard L1 L2
DeepWalk 69.98 69.83 69.56 78.42 77.42
verse 74.56 74.42 80.94 77.16 77.47
frede 74.68 74.59 77.63 74.25 73.60
Rand. Proj. 74.41 74.27 77.01 74.33 74.56
Sampling 74.38 74.27 76.82 72.26 71.95
Hashing 74.36 74.27 76.86 74.30 74.56
Baseline 78.84

Table 5.9: Link predic-
tion accuracy, VK data.

experiments 59

5.3.7 link prediction

Link prediction is the task of predicting the appearance of a link between
pairs of nodes in a graph. Tables 5.8 and 5.9 report link prediction accuracy
(predicting the appearance of a link) on CoCit and VK by a logistic regression
classi�er on edge features. As a baseline, we use common link prediction
features (node degree, number of common neighbors, Adamic-Adar index,
Jaccard coe�cient, and preferential attachment). We represent absent links
in the training data by negative sampling, and use 50% of links for training
and the remaining 50% for testing. We observe that frede outperforms all
methods on CoCit, and all sketching baselines on VK. Surprisingly, sketching
baselines perform better than state-of-the-art node embeddings on CoCit.

5.3.8 anytime classification

We study anytime operation (Section 5.2.2) on node classi�cation using 50%
of nodes for training and processing ppr rows in random order. Figure 5.4
presents results for ppr-based methods on three datasets. We observe that
frede outperforms both verse and svd on ppi, as in Table 5.2, a�er
processing only 10% of similarities; its downstream performance grows with
the number of nodes visited on all datasets, while that of other sketching
baselines drops on ppi data; frede also performs competitively on Flickr
(we examine up to 10% of nodes, as Random Projections was ine�cient; svd
did not run within 64GB) and BlogCat, as in Tables 5.4 and 5.6. �e rightmost
plot in Figure 5.4 shows runtime on BlogCat; remarkably, while sketchers’
runtime grows linearly, those of one-o� methods stand apart. �ese results
also illustrate that embedding merging preserves the downstream embedding
quality; as Equation 5.1 shows,merging two embeddings amounts to sketching
their concatenation; therefore, the sketch operation Algorithm 2 periodically
performs with each new d similarity matrix rows it processes can also be
viewed as a merge operation.

60 anytime node embeddings

5.4 SUMMARY

We observed that, since node embeddings aim to preserve similarity ma-
trix covariance, row-wise sketching techniques are naturally suited to that
end. We applied a state-of-the-art sketcher, Frequent Directions, on a matrix-
factorization interpretation of a state-of-the-art nonlinear-transform embed-
ding, verse, to cra� frede: a linear-space node embedding that allows
for scalable data science operations on graph data, as well as for anytime and
distributed computation with error guarantees. Besides its anytime character,
frede achieves almost as low covariance error as the exact svd solution and
stands its ground against previous node embeddings even a�er processing
as little as 10% of similarity matrix rows; therefore, it promises signi�cant
practical impact.

6LOCAL NODE REPRESENTATIONS

This chapter introduces SnapEmbed, an e�cient method for generat-
ing single-node representations using local PageRank computations.
We theoretically prove that our approach produces representations

that are globally consistent in sublinear time. We demonstrate this empirically
via extensive experiments on real-world datasets with over a billion edges. Our
experiments con�rm that SnapEmbed requires drastically less compute time
(over 9,000 times faster) and less memory (by over 8,000 times) to produce
a single node’s embedding than traditional methods, including DeepWalk,
node2vec, verse, and FastRP. We also show that our method produces high-
quality representations, demonstrating results that meet or exceed the state of
the art for unsupervised representation learning on node classi�cation and
link prediction tasks.

Node embedding models typically assume that the graph �ts in memory
[PARS14] and require representations for all nodes to be generated. However,
in many real-world applications, it is o�en the case that graph data is large
but also scarcely annotated. For example, the Friendster social graph [YL15]
has only 30% nodes assigned to a community, from its total 65M entries. At
the same time, many applications of graph embeddings such as classifying
a data item only require one current representation for the item itself, and
eventually representations of labeled nodes. �erefore, computing a full graph
embedding is at worst infeasible and at best ine�cient.

�ese observations motivate the problem which we study in this chapter—
the Local Node Embedding problem. In this setting, we restrict the embedding
for a node to only local structural information and prohibit access to other
nodes’ representations in the graph or reliance on a trained global model state.
We also require that a local method needs to produce embeddings consistent
with all other node’s representations, so �nal representations can be used in
the same downstream tasks that graph embeddings have proved adept at in
the past. While this model may seem excessively restrictive, we will show that
adhering to these limitations can produce very fruitful results. We show that

61

62 local node representations

this setting is feasible. Our solution can generate embeddings for nodes in
massive graphs in an incredibly quick and memory-e�cient manner; they are
competitive with state-of-the-art methods.

In this work, we introduce SnapEmbed, an e�cient method to generate
local node embeddings on the �y in sublinear time which are globally consis-
tent. Built on previous works linking embedding learning methods to large
similarity matrices factorization [TMM+20b, QDM+18], our method lever-
ages a high-order ranking matrix based on ppr as foundations on which local
node embeddings are computed with local hashing [WDL+09]. We o�er the-
oretical guarantees on the locality of the computation, as well as the proof
of the global consistency of the generated embeddings. We show empirically
that our method is able to produce high-quality representations on par with
state-of-the-art methods, with e�ciency several orders of magnitude better in
clock time and memory consumption: running 9,000 times faster and using
8,000 times less memory on the largest graphs that contenders can process.

6.1 PROBLEM STATEMENT

We consider the problem of embedding a single node in a graph quickly. More
formally, we consider what we term the lne problem: given a graph G and
any node v, return a globally consistent structural representation for v using
only local information around v, in time sublinear to the size of the graph.

A solution to the lne problem should possess two following properties:

1. Locality. �e embeddings for a node are computed locally, i.e. the em-
bedding for a node can be produced using only local information and in
time independent of the total graph size.
2. Global Consistency. A local method must produce embeddings that are
globally consistent (i.e. able to relate each embedding to each other, s.t.
distances in the space preserve proximity).

While many node embedding approaches have been proposed [CPARS18],
to the best of our knowledge we are the �rst to examine the local embedding
problem. Furthermore, no existing methods for positional representations of
nodes meet these requirements.

problem statement 63

Locality. Node embedding methods that rely on information aggregated
from local subgraphs (e.g., sampled by a random walk), such as DeepWalk,
node2vec, or verse, do not meet our locality requirement. Speci�cally, they
also require the representations of all the nodes around them, resulting in a
dependency on information from all nodes in the graph (in addition to space
complexity O(nd) where d is the embedding dimension) to compute a single
representation. Classical random-projection based methods also require ac-
cess to the full adjacency matrix in order to compute the higher-order ranking
matrix. We brie�y remark that even methods capable of local attributed sub-
graph embedding (such as GCN or DGI) also do not meet this de�nition of
locality, as they require a global training phase to calibrate their graph pooling
functions.

Global Consistency. �is property allows embeddings produced by local
node embedding to be used together, perhaps as features in a model. While
existing methods for node embeddings are global ones that implicitly have
global consistency, this property is not trivial for a local method to achieve.
One exciting implication of a local method that is globally consistent is that
it can wait to compute a representation until it is actually required for a task.
For example, in a production system, one might only produce representations
for immediate classi�cation when they are requested.

We propose our approach satisfying these properties in Section 6.2, and
experimentally illustrate the satis�ed properties in Section 6.3.

64 local node representations

6.2 METHOD

Here we outline our proposed approach for local node embedding. We begin
by discussing the connection between a recent embedding approach and
matrix factorization.�en, using this analysis, we propose a global embedding
method based on a random projection of the ppr matrix. We note that this
approach has a tantalizing property—it can be decomposed into entirely local
operations per node. With this observation in hand, we present our solution,
SnapEmbed. Finally, we analyze the algorithmic complexity of our approach,
showing that it is both a local algorithm (which runs in time sublinear to the
size of G) and that the local representations are globally consistent.

6.2.1 global embedding using ppr

Our node embedding algorithm from Chapter 4, verse, proposes to learn
node embeddings using a neural network that encodes their Personalized
PageRank similarity. �e verse objective function, in the form of Noise
Contrastive Estimation [GH10], is:

ℒ =

n∑

i=1

n∑

j=1

[
PPRij log �

(
xT
i
x
j

)
+ bEj′∼U log �

(
−xT

i
x
j′

)]
, (6.1)

where PPR is the ppr matrix, � is the sigmoid function, b is the number of
negative samples, and U is a uniform noise distribution from which negative
samples are drawn. Like many SkipGram [MSC+13]-style methods, we can
then show that this learning process can be linked to matrix factorization, and
get the following lemma (proved in the previous Chapter):

Lemma 3. VERSE implicitly factorizes the matrix log(PPR) + log n − log b

into XXT, where n is the number of nodes and b is the number of samples.

6.2.1.1 hashing for graph embedding

Lemma 3 provides an incentive to �nd an e�cient alternative to factorize the
large similaritymatrixM = log(PPR)+log n−log b. We turn our attention to
random-projection based methods, as previous work [ZCL+18, CST+19] has
established this dimensionality-reduction technique as being highly e�ective
for scalable graph embedding. Our choice of projection requires two important
properties: (i) providing an unbiased estimator for the inner-product, and (ii)

method 65

requiring less than O(n)memory. �e �rst property is essential to ensure we
have a good sketch ofM for the embedding, while the second one keeps our
complexity per node sublinear.

In order to meet both requirements, we propose to use the hash ker-
nel [WDL+09] to project ppr. In short, given two global hash functions
ℎd ∶ ℕ → {0, ..., d − 1} and ℎsgn ∶ ℕ → {−1, 1} sampled from univer-
sal hash families Ud and U−1,1 respectively, the hashing kernel Hℎd,ℎsgn

∶

ℝn → ℝd applied to an input vector X yields h = Hℎd,ℎsgn
(X) where hi =

∑

k
xkℎsgn(k)I[ℎd(k) = i].
We note that althoughHℎd,ℎsgn

is proposed for vectors, it can be trivially
extended to matrixM when applied to each row vector of that matrix, e.g.,
by de�ningHℎd,ℎsgn

(M)i,∶ ≡ Hℎd,ℎsgn
(Mi,∶). Also, as a random projection, the

operatorHℎd,ℎsgn
(⋅) ∈ {−1, 0, 1}n×d is sparse with n non-zero entries, exactly

one per each row.

Lemma 4 (restated from [WDL+09]). �e hash kernel is unbiased:

Eℎd∼Ud ,ℎsgn∼U−1,1

[
Hℎd,ℎsgn

(x)⊤Hℎd,ℎsgn
(x)

]
= x⊤x

Lemma 5. �e space complexity ofHℎd,ℎsgn
is O(1) and:

Eℎd∼Ud ,ℎsgn∼U−1,1

[
Hℎd,ℎsgn

(M)Hℎd,ℎsgn
(M)T

]
= MMT

Proof. We note that the space complexity required to store a hash function
from a universal family is O(1). Indeed, one can choose and universal hash
family such that its elements are uniquely determined by a �xed choice of
keys. As an example, the multiplication hash function ([CLRS09]) ℎA(x) =
⌈n(xA mod 1))⌉ requires constant memory to store the key A ∈ (0, 1).

In order to prove the projection provides unbiased dot-products, consid-
ering the expectation per entry, we have:

Eℎd∼Ud ,ℎsgn∼U−1,1 [
(
Hℎd,ℎsgn

(M)Hℎd,ℎsgn
(M)⊤

)

i,j
]

=Eℎd∼Ud ,ℎsgn∼U−1,1

[(
Hℎd,ℎsgn

(Mi)Hℎd,ℎsgn
(Mj)

⊤
)]

=MiM
⊤

j
From Lemma 4

=
(
MM⊤

)

i,j
,

which holds for all i, j pairs.

66 local node representations

Algorithm 3 Global Node Embedding using Personalized PageRank
Input: graph G, dimension d, ppr precision �, hash functions ℎd, ℎsgn
Output: embedding matrixW

1: function GraphEmbed(G, d, �, �, ℎd, ℎsgn)
2: PPR ← CreatePPRMatrix(G, �, �)

3: W = 0n×d
4: for �i in PPR do
5: for rj in �i do
6: Wi,ℎd(j)

+= ℎsgn(j) × max(log(rj ∗ n), 0)

7: returnW

Our algorithm for global node embedding is presented in Algorithm 3. It
involves �rst computing the ppr matrix PPR (Line 2) with a generic approach
(CreatePPRMatrix), which takes a graph and �, the desired precision of
the approximation. We note that any of the many proposed approaches for
computing such a matrix (e.g., [JW03, ACL07, LBGS14]) can be used for this
calculation. As the pprmatrix could be dense, the same could be said about the
implicit matrixM. We enforce sparsity by applying themax operator, though
we note that for high enough � this has no e�ect. Also, from the implicit
target matrix we remove the constant log b. In lines (4-6) we use the provided
hash function to accumulate each value inside the corresponding embedding
dimension.

We note that interestingly, the projection operation uses only information
from each node’s individual ppr vector �i to compute its representation. In
the following section, we will show that local calculation of the ppr can be
utilized to develop an entirely local algorithm for node embedding.

6.2.2 local node embedding via snapembed

Having a local projection method, all that we require is a procedure that can
calculate the ppr vector for a node in time sublinear to the size of the graph.
Speci�cally, for SnapEmbedwe propose that the CreatePPRMatrix operation
consists of invoking the SparsePPR routine from Andersen et al. [ACL07]
once for each node i. �is routine is an entirely local algorithm for e�ciently
constructing �i, the ppr vector for node i , which o�ers strong guarantees.
We derive the following lemma from [ACL07]:

method 67

Algorithm 4 SparsePPR cf. [ACL07]
Input: node v, graph G, precision �, return probability �
Output: Embedding vector �

1: function SparsePPR(v, G, �, �)
2: r ← 0n (sparse), � ← 0n (sparse)

3: r[v] = 1

4: while ∃ w ∈ G, r[w] > � × deg(w) do
5: r̂ ← r[w]

6: �[w] ← �[w] + �r̂

7: r[w] ←
(1−�)r̂

2

8: r[u] ← r[u] +
(1−�)r̂

2 deg(w)
, ∀(w, u) ∈ G

9: return �

Ceorem 3 (restated from [ACL07]). �e SparsePPR(v, G, �, �) (4) algorithm
has the following properties. For any starting vector v, any constant � ∈ (0, 1],
and any constant � ∈ (0, 1], the algorithm computes an �-approximate ppr
vector p. Furthermore, the support of p satis�es vol(Supp(p)) ≤ O (1∕(1−�)�),
and the running time of the algorithm is O(1∕��).

Lemma 6 (ref. Lemma 5). �e SnapEmbed(v, G, d, �, �) algorithm computes
the local embedding of a node v by exploring at most O (1∕(1−�)�) nodes in the
neighborhood of v.

Proof. First recall that the only operation that explores the graph in SnapEmbed
is SparsePPR, which explores a node w in the graph if and only if a neighbor
of w has a positive score and so it is part of the support of �. Furthermore, at
the beginning of the algorithm, only v is active and executes a push operation.
�en, every node explored by the algorithm is connected to v via a path com-
posed only by the nodes with � score larger than 0. So its distance from v is
bounded by the support of the � vector that is O (1∕(1−�)�), cf. �eorem 3.

SnapEmbed, our algorithm for local node embedding, is presented in
Algorithm 5. As we will show, it is a self-contained solution for the local
node embedding problem that can generate embeddings for individual nodes
extremely e�ciently. Notably, per Lemma 6, the local area around v explored
by SnapEmbed is independent of n. �erefore the algorithm is strictly local.

68 local node representations

Algorithm 5 SnapEmbed
Input: node v, graph G, dimension d, ppr precision �, ppr parameter �,

hash functions ℎd, ℎsgn
Output: embedding vectorw

1: function SnapEmbed(v, G, d, �, �, ℎd, ℎsgn)
2: �v ← SparsePPR(v, G, �, �)

3: w ← 0d
4: for rj in �v do
5: wℎd(j)

+= ℎsgn(j) × max(log(rj ∗ n), 0)

6: returnw

6.2.2.1 analysis

In this subsection, we prove some basic properties of our proposed approach.
We �rst show that the run time of our algorithm is local and independent of n,
the number of nodes in the graph. Also, we show that our local computations
are globally consistent, i.e. the embedding of a node v is the same indepen-
dently if we compute it locally or if we recompute the embeddings for all nodes
in the graph at the same time. Note that we focus on bounding the running
time to compute the embedding for a single node in the graph. Nonetheless,
the global complexity to compute all the embeddings can be obtained by
multiplying our bound by n, although it is not the focused contribution of
our approach. Following from [ACL07], we state the next lemma:

Ceorem 4. �e SnapEmbed algorithm has time complexity O (d + 1∕�(1−�)�).

Proof. �e �rst step of the SnapEmbed is computing the approximate ppr
vector. As noted in �eorem 3, this can be done in time O (1∕��). We now
analyze the second part of our algorithm, projecting the sparse ppr vector
into the embedding space. For each non-zero entry rj of the ppr vector �, we
compute hash functions ℎd(j), ℎsgn(j) andmax(log(rj ∗ n), 0) in O(1) time.
�e total number of iterations is equal to the support size of �, i.e.O (1∕(1−�)�).

Finally, we note that our algorithm always generates a dense embedding,
handling this variable in O(d) time complexity. However, in practice this
term is negligible as 1∕e >> d. Summing up the aforementioned bounds
we get the total running time of our algorithm: O (d + 1∕�� + 1∕(1−�)�) =

O (d + 1∕�(1−�)�).

experiments 69

Outside of the embedding size d, both the time and space complexity of
our algorithm depend only on the approximation factor � and the decay factor
�. Both are independent of n, the size of the graph, and m, the size of the
edge set. Notably, if O (1∕�(1−�)�) ∈ o(n), as commonly happen in real world
applications, our algorithm has sublinear time w.r.t. the graph size.

Now we turn our attention to the consistency in our algorithm, by show-
ing that for a node v the embeddings computed by SnapEmbed(v, G, d, �, �)
and GraphEmbed(G, d, �, �) are identical. We denote the graph embedding
computed by GraphEmbed(G, d, �, �) for node v by GraphEmbed(G, d, �, �)v,
and we have the following statement about global consistency:

Ceorem 5. SnapEmbed(v, G, d, �, �) output equals GraphEmbed(G, d, �, �)v.

Proof. We begin by noting that for a �xed parameterization, the SparsePPR
routine will compute a unique vector for a given node. Analyzing now the
Wv,j entry of the embedding generated by GraphEmbed(G, d, �, �), we have:

Wv,j =
∑

rk∈�v

ℎsgn(k) × max(log(rk ∗ n), 0)I[ℎd(k) = j]

�e entire computation is deterministic and directly dependent only on the
hash functions of choice and the indexing of the graph. By �xing the two
hash functions ℎd and ℎsgn, we also have that Wv,j = wv

j
where wv =

SnapEmbed(v, G, d, �), ∀v ∈ [0..n − 1], j ∈ [0..d − 1].

6.3 EXPERIMENTS

In the light of the theoretical guarantees about the proposed method, we
perform extended experiments in order to verify our two main hypotheses:

1. H1. Computing local node-embedding is more e�cient, both memory
and time wise, than generating a global embedding.
2. H2. �e local representations are consistent and of high-quality, being
competitive with or surpassing state-of-the-art methods on several tasks.
We assess H1 in Section 6.3.2, in which we measure the e�ciency of gen-

erating a single node embedding for each method. �en in Section 6.3.3
we validate H2 by comparing our method against the baselines on multiple
datasets using tasks of node classi�cation, link prediction and visualization.

70 local node representations

6.3.1 experimental settings and datasets

To ensure a relevant and fair evaluation, we compare our method against
multiple strong baselines, including DeepWalk [PARS14], node2vec [GL16],
verse [TMKM18], and FastRP [CST+19]. Each method was run on a virtual
machine hosted on the Google Cloud Platform, with a 2.3GHz 16-core cpu
and 128GB of ram.We ran all baselines on 128 and 512 embedding dimensions.
As we expect our method to perform better as we increase the projection size,
we performed an auxiliary test with embedding size 2048 for SnapEmbed.
We also make the observation that learning-based methods generally do not
scale well with an increase of the embedding space. �e following are the
description and individual parameterization for each method.

• DeepWalk [PARS14]: Constructs node-contexts from random-walks
and learns representations by increasing the nodes co-occurrence likeli-
hood by modeling the posterior distribution with hierarchical so�max.
We set the number of walks per node and their length to 80, and context
window size to 10.

• node2vec [GL16]: Samples random paths in the graph similar to Deep-
Walk, while adding two parameters, p and q, controlling the behavior
of the walk. Estimates the likelihood through negative sampling. We set
again the number of walks per node and their length to 80, window size
to 10, and the number of negative samples to 5 per node and p = q = 1.

• verse [TMKM18]: Minimizes objective through gradient descent, by
sampling nodes from ppr random walks and negative samples from
a noise distribution. We train it over 105 epochs and set the stopping
probability to 0.15.

• FastRP [CST+19]: Computes a high-order similarity matrix as a linear
combination of multiple-steps transitions matrices and projects it into
an embedding space through a sparse random matrix. We �x the linear
coe�cients to [0, 0, 1, 6] and the normalization parameter −0.65.

• SnapEmbed (this chapter): Approximate per-node ppr vectors with
the damping factor � and precision �, which are projected into the

experiments 71

embedding space using two hash functions. In all our experiments, we
set � = 0.15 and � > 1

n
, where n is the number of nodes in the graph.

SnapEmbed Instantiation. As presented in Section 6.2, our implementation
of the presented method relies on the choice of ppr approximation used. For
instant single-node embeddings,we use the highly e�cient PushFlow [ACL07]
approximation that enables us to dynamically load into memory at most
2∕(1−�)� nodes from the full graph to compute a single ppr vector �. �is is
achieved by storing graphs in binarized compressed sparse row format that
allows selective reads for nodes of interest. In the special case when a full
graph embedding is requested, we have the freedom to approximate the ppr
in a distributed manner (we omit this from runtime analysis, as we had no
distributed implementations for the baselines, but we note our local method
is trivially parallelizable).

Dataset |V| |E| |S| Source

ppi 3.8k 38k 3.8k [SBR+06]
BlogCat 10k 334k 10k [TL10]
CoCit 44k 195k 44k [mag16]
CoAuthor 52k 356k — [mag16]
Flickr 81k 5.9M 81k [TL10]
YouTube 1.1M 3.0M 32k [TL10]
Amazon2M 2.4M 62M — [CLS+19]
Orkut 3.0M 117M 110k [YL15]
Friendster 66M 1806M — [YL15]

Table 6.1: Dataset at-
tributes: size of the
vertex set |V|, edge set
|E|, labeled vertices |S|.

Datasets. We perform our evaluations on 10 datasets, as presented in Table
6.1. Note that on YouTube and Orkut the number of labeled nodes is much
smaller than the total. We observe this behavior in several real-world appli-
cation scenarios, where our method shines the most. �e graph datasets we
used in our experiments are as follows:

• ppi [SBR+06]: Subgraph of the protein-protein interaction for Homo
Sapiens species and ground-truth labels represented by biological states.
Data originally processed by [GL16].

72 local node representations

• BlogCat [TL10]: Network of social interactions between bloggers. Au-
thors specify categories for their blog, which we use as labels.

• Microso� Academic Graph [mag16]: Collection of scienti�c papers, au-
thors, journals and conferences. Two distinct subgraphs were originally
processed by [TMKM18], based on co-authorship (CoAuthor) and co-
citations (CoCit) relations. For the latter one, labels are represented by
the unique conference where the paper was published.

• Flickr [TL10]: Contact network of users within 195 randomly sampled
interest groups.

• YouTube [TL10] Social network of users on the video-sharing plat-
form. Labels are represented by groups of interests with at least 500
subscribers.

• Amazon2m [CLS+19]: Network of products where edges are represented
by co-purchased relations.

• Orkut [YL15]: Social network where users can create and join groups,
used at ground-truth labels. We followed the approach of [TMKM18]
and selected only the top 50 largest groups.

• Friendster [YL15]: Social networkwhere users can form friendships with
each other. It also allows users to form a group which other members
can then join.

6.3.2 performance characteristics

Running time. For each method we report the mean total wallclock time
required to generate an embedding (d = 512) for a node in each dataset
(including graph loading, embedding writing, and any pre-processing). For
SnapEmbed, given the method’s locality property, the experiments were re-
peated 1,000 times per dataset (on random nodes); other methods were run
�ve times per dataset. Detailed results can be found in the supplementary
material. As Figure 6.1(a) shows, SnapEmbed is the most e�cient and scalable
method on a per-node basis, drastically outperforming all the other methods.
Compared to the next fastest baseline (FastRP) we are over 9,000 times faster
in the largest graph both methods can process.

experiments 73

105 106 107 108 109

10−2

10−1

100

101

102

103

104

105

106

107

> 9000×

log(|E|)

Ti
m
e,
lo
g(
se
co
nd

s)

(a) Running Time

105 106 107 108 109

10−1

100

101

102

103

104

105

106

107

108

> 8000×

log(|E|))

M
em

or
y,
lo
g(
M
B)

(b) Memory Usage

SnapEmbed DeepWalk node2vec verse FastRP
Figure 6.1: Required
(a) running time and (b)
memory consumption to
generate a node embed-
ding (d=512) based on the
edge count of each graph
(|E|), with the best line
fit. Our method is over
9,000 times faster than
the next fastest base-
line (FastRP) and uses
over 8,000 times less
memory than the next
most memory-efficient
baseline (VERSE), in the
largest graph that these
baseline methods can
process.

Memory Consumption. For each method we also report the total memory
consumption [Wol] required to generate an embedding (d=512) for a node in
the given dataset. For SnapEmbed, given the method’s locality property, the
experiments were repeated 1,000 times per dataset with the mean memory
consumption reported; other methods were run once. As Figure 6.1(b) shows,
SnapEmbed is the most scalable method on a per-node basis having been able
to run in all datasets using negligible memory compared to the other methods.
Compared to the next most memory-e�cient baseline (verse) we are over
8,000 times better in the largest graph both methods can process.

�e results of running time and memory analysis con�rm hypothesis H1
and show that SnapEmbed has a signi�cant speed and space advantage versus
the baselines.�e relative speedup continues to grow as the size of the datasets
increase. On a dataset with over 1 billion edges (Friendster), we can compute
an embedding in 80ms—fast enough for a real-time application!

6.3.3 embedding quality

Node Classi�cation. �is task measures the semantic information in the em-
beddings by training a classi�er on a small fraction of labeled representations.
For each method, we perform three di�erent random splits of the data. We
use a logistic regression classi�er from sklearn [PVG+11], except for the case
of multi-label classi�cation where we use a one-vs-rest ensemble to rank and

74 local node representations

Method ppi BlogCat CoCit Flickr YouTube Orkut

DeepWalk 16.08 ±

0.64
32.48 ±

0.35
37.44 ±

0.67
31.22 ±

0.38
38.69 ±

1.17
87.67 ±

0.23

node2vec 15.03 ±

3.18
33.67 ±

0.93
38.35 ±

1.75
29.80 ±

0.67
36.02 ±

2.01
dnc

verse 12.59 ±

2.54
24.64 ±

0.85
38.22 ±

1.34
25.22 ±

0.20
36.74 ±

1.05
81.52 ±

1.11

FastRP 15.74 ±

2.19
33.54 ±

0.96
26.03 ±

2.10
29.85 ±

0.26
22.83 ±

0.41
dnc

SnapEmbed 17.67 ±

1.22
33.36 ±

0.67
39.95 ±

0.67
30.43 ±

0.79
40.04 ±

0.97
76.83 ±

1.16

Table 6.2: Average Micro-
F1 classification scores

and confidence intervals.

10−610−510−410−310−210−1

25

30

35

40

log(�)

M
ic
ro
-F
1

(a) Micro F1 Score

10−610−510−410−310−210−1

10−1
100
101
102
103
104
105

log(�)

Lo
g
(s
)

(b) Running Time (s)

10−610−510−410−310−210−1

10−1

100

101

102

103

104

105

log(�)

Lo
g
(M

B)

(c) Peak Memory (MB)

SnapEmbed (ours) DeepWalk
node2vec verse FastRP

Figure 6.2: The impact
of the choice of � on the

quality of the resulting
embedding (through the
Micro-F1 score), average

running time and peak
memory increase for
the YouTube dataset.

select the top-k labels (assuming k is known) following [PARS14]. To simulate
the sparsity of labels in the real world, we train on 10% of the available labels
for ppi and BlogCat and only 1% for the rest of them.

In Table 6.2 we report the mean Micro-F1 scores with their respective
con�dence intervals. For each dataset, we performWelch’s t-test between our
method and the best performing contender. We observe that SnapEmbed is
remarkably good on the node classi�cation, despite its several approximations
and locality restriction. Speci�cally, on four out of �ve datasets, no other
method is statistically signi�cant above ours, and three of these (ppi, CoCit
and YouTube) we achieve the best classi�cation results.

In Figure 6.2, we study how our hyperparameter, the ppr approximation
error �, in�uences both the classi�cation performance, running time, and
memory consumption.�ere is a general sweet spot (around � = 10−5) across
datasets where SnapEmbed outperforms competing methods while being
orders of magnitude faster.

experiments 75

Method CoAuthor BlogCat YouTube Amazon2m

DeepWalk 88.43 ± 1.08 91.41 ± 0.67 82.17 ± 1.02 98.79 ± 0.41

node2vec 86.09 ± 0.85 92.18 ± 0.12 81.27 ± 1.58 dnc
verse 92.75 ± 0.73 93.42 ± 0.35 80.03 ± 0.99 99.67 ± 0.18

FastRP 82.19 ± 2.22 88.68 ± 0.70 76.30 ± 1.46 92.12 ± 0.61

SnapEmbed 90.44 ± 0.48 92.74 ± 0.60 82.89 ± 0.83 99.15 ± 0.18

Table 6.3: Average ROC-
AUC scores and confi-
dence intervals for the
link prediction task.

(a) DeepWalk (b) verse (c) FastRP (d) SnapEmbed

Figure 6.3: CoCit visual-
ization via UMAP (d=512).
Research areas (ML,
DM, DB, IR).

Link prediction. We conduct link prediction experiments to assess the ca-
pability of the produced representations to model hidden connections in the
graph. For the dataset which has temporal information (CoAuthor), we select
data until 2014 as training data, and split co-authorship links between 2015-
2016 in two balanced partitions that we use as validation and test. For the
other datasets, we uniformly sample 80% of the available edges as training (to
learn embeddings on), and use the rest for validation (10%) and testing (10%).
Over repeated runs, we vary the splits. More details about the experimental
design are available in the supplementary material. We report results for each
method in Table 6.3, which shows average ROC-AUC and con�dence intervals
for each method. Across the datasets, our proposed method beats all baselines
except verse, however, we do achieve the best performance on YouTube
by a statistically signi�cant margin. We report additional results for node
classi�cation (Tables 6.4–6.8) and link prediction (Table 6.9) at the end of this
chapter.

Visualization. Figure 6.3 presents multiple umap [MHSG18] projections
on the CoCit dataset, where we grouped together similar conferences. We
note that our sublinear approach is especially well suited to visualizing graph
data, as visualization algorithms only require a small subset of points (typically
downsampling to only thousands) to generate a visualization for datasets.

76 local node representations

�e experimental analysis of node classi�cation, link prediction, and visu-
alization show that despite relying on two di�erent approximations (ppr &
hashing), SnapEmbed is able to very quickly produce representations which
meet or exceed the state of the art in unsupervised representation learning
for graph structure, con�rming hypothesis H2. We remark that interestingly
SnapEmbed seems slightly better at node classi�cations than link prediction.
We suspect that the randomization may e�ectively act as a regularization
which is more useful on classi�cation.

6.4 SUMMARY

�is chapter has twomain contributions: (i) introducing and formally de�ning
the Local Node Embedding problem and (ii) presenting SnapEmbed, a highly
e�cient method that selectively embeds nodes using only local information,
e�ectively solving the aforementioned problem. As existing graph embedding
methods require accessing the global graph structure at least once during
the representation generating process, the novelty brought by SnapEmbed
is especially impactful in real-world scenarios where graphs outgrow the
capabilities of a single machine, and annotated data is scarce or expensive to
produce. Embedding selectively only the critical subset of nodes for a task
makes more applications feasible in practice and reduces the costs for others.

Furthermore, we show theoretically that ourmethod embeds a single node
in space and time sublinear to the size of the graph. We also empirically prove
that SnapEmbed is capable of surpassing state-of-the-artmethods, while being
many orders of magnitude faster than them—our experiments show that we
are over 9,000 times faster on large datasets and on a graph over 1 billion
edges we can compute a representation in 80ms.

summary 77

Labeled Nodes

1.00% 5.00% 9.00%

Method d Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 128 15.72 ± 1.75 12.56 ± 1.84 21.34 ± 1.20 18.59 ± 1.40 24.44 ± 0.32 20.36 ± 2.74

512 16.08 ± 0.64 12.89 ± 1.66 19.90 ± 1.02 18.08 ± 1.11 21.51 ± 5.75 20.36 ± 5.05

node2vec 128 15.65 ± 1.46 12.07 ± 1.23 20.97 ± 1.26 17.86 ± 0.85 23.99 ± 5.84 19.05 ± 2.25

512 15.03 ± 3.18 12.19 ± 2.34 21.04 ± 1.90 18.11 ± 2.13 22.02 ± 1.14 18.18 ± 3.47

verse 128 14.41 ± 1.40 11.56 ± 1.37 19.63 ± 1.08 16.95 ± 1.61 22.01 ± 2.66 18.71 ± 0.61

512 12.59 ± 2.54 9.54 ± 2.22 13.62 ± 0.88 11.67 ± 0.85 16.00 ± 0.26 13.66 ± 0.53

FastRP 128 11.73 ± 2.37 7.24 ± 1.49 16.76 ± 0.70 11.03 ± 1.05 19.45 ± 3.10 11.70 ± 2.98

512 15.74 ± 2.19 11.11 ± 1.20 21.19 ± 2.25 15.72 ± 1.37 21.52 ± 5.31 16.63 ± 1.87

SnapEmbed
128 15.88 ± 1.36 11.67 ± 1.09 20.51 ± 0.70 16.89 ± 0.93 21.82 ± 2.47 17.49 ± 2.36

512 17.67 ± 1.22 13.04 ± 1.06 23.50 ± 0.97 19.84 ± 1.34 25.36 ± 2.32 21.21 ± 2.92

2048 18.77 ± 1.22 13.76 ± 1.41 24.30 ± 0.67 20.44 ± 0.85 25.85 ± 2.91 22.03 ± 3.84

Table 6.4: Classification
micro and macro F1-
scores for PPI.

78 local node representations

Labeled Nodes

10.00% 50.00% 90.00%

Method d Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 128 36.05 ± 0.85 20.91 ± 0.79 41.07 ± 1.05 26.85 ± 0.96 42.69 ± 1.49 28.87 ± 4.61

512 32.48 ± 0.35 18.69 ± 1.17 37.88 ± 0.61 25.38 ± 0.85 40.14 ± 4.03 26.11 ± 6.42

node2vec 128 33.63 ± 0.96 15.28 ± 0.99 37.18 ± 0.82 20.02 ± 0.44 38.34 ± 3.62 21.26 ± 1.37

512 33.67 ± 0.93 16.24 ± 1.11 37.42 ± 1.40 21.43 ± 0.73 38.98 ± 4.70 21.94 ± 1.49

verse 128 32.57 ± 0.96 18.67 ± 1.46 38.66 ± 0.88 25.0 ± 1.37 39.47 ± 1.34 26.64 ± 1.08

512 24.64 ± 0.85 12.33 ± 1.58 29.27 ± 0.41 18.48 ± 0.88 33.18 ± 2.51 21.11 ± 2.60

FastRP 128 28.68 ± 0.35 12.74 ± 1.23 31.22 ± 1.34 14.78 ± 0.53 31.61 ± 1.90 15.34 ± 3.27

512 33.54 ± 0.96 17.83 ± 1.90 36.94 ± 1.08 21.49 ± 0.38 37.62 ± 2.66 22.26 ± 2.98

SnapEmbed
128 27.99 ± 1.20 13.72 ± 1.49 32.40 ± 1.23 18.77 ± 1.40 33.40 ± 2.95 19.94 ± 3.30

512 33.36 ± 1.11 17.37 ± 1.61 37.76 ± 1.37 23.79 ± 1.61 39.33 ± 3.45 26.14 ± 3.07

2048 36.05 ± 1.66 19.01 ± 1.93 41.42 ± 1.49 27.16 ± 1.96 42.46 ± 4.35 29.00 ± 3.94

Table 6.5: Classification
micro and macro F1-

scores for BlogCat.

summary 79

Labeled Nodes

1.00% 5.00% 9.00%

Method d Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 128 36.51 ± 0.85 27.54 ± 1.26 41.52 ± 0.03 29.85 ± 1.31 43.21 ± 0.61 30.31 ± 0.50

512 37.44 ± 0.67 26.57 ± 0.76 39.41 ± 1.11 29.92 ± 0.79 40.95 ± 0.82 31.48 ± 0.91

node2vec 128 37.55 ± 0.99 26.38 ± 0.88 42.92 ± 0.55 31.12 ± 0.41 43.94 ± 0.61 32.03 ± 0.20

512 38.35 ± 1.75 27.71 ± 1.17 42.53 ± 0.26 31.05 ± 0.50 43.99 ± 0.32 32.14 ± 0.38

verse 128 38.52 ± 0.47 28.17 ± 1.20 41.68 ± 0.96 31.14 ± 0.26 43.47 ± 0.26 32.22 ± 0.53

512 38.22 ± 1.34 27.42 ± 0.91 38.03 ± 0.58 29.50 ± 0.88 38.88 ± 0.61 31.04 ± 0.82

FastRP 128 15.97 ± 0.55 4.18 ± 0.29 16.74 ± 0.64 4.31 ± 0.47 16.62 ± 0.35 4.17 ± 0.29

512 18.88 ± 1.28 6.63 ± 0.47 26.82 ± 1.23 9.17 ± 0.26 27.91 ± 0.99 8.79 ± 0.38

SnapEmbed
128 38.19 ± 1.07 25.29 ± 1.14 41.23 ± 0.49 27.92 ± 0.63 42.48 ± 0.42 28.44 ± 0.72

512 39.95 ± 0.67 27.64 ± 1.22 43.01 ± 0.51 30.61 ± 0.51 44.05 ± 0.35 31.50 ± 0.63

2048 40.49 ± 1.06 28.86 ± 0.81 43.79 ± 0.46 31.69 ± 0.55 44.85 ± 0.46 32.76 ± 0.41

Table 6.6: Classification
micro and macro F1-
scores for CoCit.

80 local node representations

Labeled Nodes

1.00% 5.00% 9.00%

Method d Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 128 32.55 ± 0.91 13.81 ± 1.72 37.44 ± 0.44 22.58 ± 0.53 38.78 ± 0.23 24.75 ± 0.58

512 31.22 ± 0.38 13.42 ± 1.23 35.67 ± 0.38 22.72 ± 1.52 37.25 ± 0.09 25.74 ± 0.58

node2vec 128 29.27 ± 0.96 6.40 ± 0.50 34.12 ± 0.47 12.82 ± 0.88 35.15 ± 0.03 14.89 ± 0.47

512 29.80 ± 0.67 7.14 ± 0.20 34.40 ± 0.26 13.50 ± 0.20 35.39 ± 0.06 15.58 ± 0.58

verse 128 28.04 ± 1.84 10.52 ± 2.37 33.52 ± 0.12 19.12 ± 0.41 35.38 ± 0.41 22.31 ± 0.93

512 25.22 ± 0.20 7.20 ± 1.28 28.25 ± 0.29 14.17 ± 1.02 29.65 ± 0.32 17.09 ± 0.29

FastRP 128 28.20 ± 0.53 9.39 ± 1.61 30.43 ± 0.15 13.82 ± 0.61 30.65 ± 0.29 14.51 ± 0.38

512 29.85 ± 0.26 12.28 ± 2.72 33.64 ± 0.58 18.94 ± 1.28 34.88 ± 0.58 21.44 ± 1.23

SnapEmbed
128 27.41 ± 0.90 9.14 ± 0.56 31.84 ± 0.25 14.90 ± 0.55 33.14 ± 0.33 17.27 ± 0.65

512 30.43 ± 0.79 10.78 ± 1.20 34.00 ± 0.25 18.36 ± 0.51 35.37 ± 0.25 21.26 ± 0.48

2048 31.89 ± 0.62 11.15 ± 1.02 35.94 ± 0.23 19.38 ± 0.85 37.21 ± 0.18 23.02 ± 0.56

Table 6.7: Classification
micro and macro

F1-scores for Flickr.

summary 81

Labeled Nodes

1.00% 5.00% 9.00%

Method d Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 128 37.53 ± 1.40 29.04 ± 3.77 41.64 ± 0.15 34.45 ± 0.70 42.97 ± 0.29 35.62 ± 0.93

512 38.69 ± 1.17 31.11 ± 1.08 40.26 ± 0.38 35.09 ± 0.26 40.74 ± 0.06 36.14 ± 0.23

verse 128 37.13 ± 0.41 28.54 ± 2.39 39.74 ± 0.32 33.87 ± 0.67 41.70 ± 0.38 35.04 ± 0.41

512 36.74 ± 1.05 27.16 ± 0.15 37.47 ± 1.37 32.40 ± 0.91 37.64 ± 0.67 33.00 ± 0.35

node2vec 128 34.64 ± 2.63 25.35 ± 3.83 40.62 ± 1.02 33.26 ± 0.20 42.65 ± 0.70 35.73 ± 0.32

512 36.02 ± 2.01 25.03 ± 2.89 39.64 ± 0.44 33.78 ± 0.38 40.47 ± 0.85 35.01 ± 1.08

FastRP 128 23.61 ± 1.61 6.24 ± 0.61 24.16 ± 0.96 6.64 ± 1.64 24.50 ± 0.29 7.09 ± 0.35

512 22.83 ± 0.41 7.21 ± 0.20 23.43 ± 0.55 8.77 ± 0.82 23.76 ± 0.64 9.56 ± 0.91

SnapEmbed
128 37.89 ± 1.02 26.27 ± 1.36 40.90 ± 0.53 31.57 ± 0.86 41.78 ± 0.37 32.73 ± 0.51

512 40.04 ± 0.97 27.52 ± 1.60 43.31 ± 0.41 33.98 ± 0.81 44.00 ± 0.42 35.56 ± 0.69

2048 40.91 ± 0.86 28.34 ± 1.43 44.82 ± 0.49 35.16 ± 1.02 45.67 ± 0.32 36.90 ± 0.69

Table 6.8: Classification
micro and macro F1-
scores for YouTube.

82 local node representations

Aggregation Function

Method d hadamard cosine L1 L2 average

DeepWalk 128 75.59 ± 0.88 83.5 ± 0.12 86.99 ± 0.09 87.21 ± 0.73 73.64 ± 1.72

512 78.42 ± 0.53 82.05 ± 1.20 87.85 ± 0.29 88.43 ± 1.08 79.56 ± 0.70

node2vec 128 80.18 ± 0.67 54.59 ± 0.88 70.14 ± 1.31 70.32 ± 0.58 79.07 ± 0.53

512 86.09 ± 0.85 42.99 ± 1.66 72.41 ± 1.84 72.70 ± 1.43 84.00 ± 0.38

verse 128 93.16 ± 0.44 90.85 ± 0.20 79.24 ± 1.49 80.27 ± 0.41 86.50 ± 0.47

512 92.75 ± 0.73 90.33 ± 0.20 72.58 ± 1.17 73.82 ± 1.49 86.69 ± 1.02

FastRP 128 60.23 ± 1.78 65.08 ± 0.93 78.51 ± 0.64 77.66 ± 0.23 57.69 ± 1.90

512 61.16 ± 1.75 70.12 ± 0.38 82.19 ± 2.22 78.51 ± 1.99 63.87 ± 1.49

SnapEmbed
128 89.41 ± 0.67 89.15 ± 0.63 66.19 ± 1.92 66.78 ± 1.90 83.22 ± 0.86

512 90.44 ± 0.48 90.60 ± 0.55 76.50 ± 1.44 75.76 ± 1.41 85.64 ± 0.67

2048 89.45 ± 0.62 90.84 ± 0.44 88.42 ± 0.48 84.83 ± 0.67 87.67 ± 1.07

Table 6.9: Temporal link-
prediction ROC-AUC
scores for CoAuthor.

For each method, we
highlight the aggre-

gation function that
consistently performs

good on all datasets.

7NODE REPRESENTATIONS FOR CLUSTERING

Graph NeuralNetworks (gnns) have achieved state-of-the-art results
on many graph analysis tasks such as node classi�cation and link
prediction. However, important unsupervised problems on graphs,
such as graph clustering, have proved more resistant to advances in

GNNs. Graph clustering has the same overall goal as node pooling in gnns—
does this mean that gnn pooling methods cluster graphs well and extract
expressive node representations?

Surprisingly, the answer is no—current gnn pooling methods o�en fail
to recover the cluster structure in cases where simple baselines, such as k-
means applied on learned representations, work well. We investigate further
by carefully designing experiments to study di�erent signal-to-noise scenarios
in the graph structure and attribute data. To address these methods’ poor
performance in clustering, we introduce DeepModularity Networks (dmon),
an unsupervised pooling method inspired by the modularity measure of clus-
tering quality, and show how it tackles recovery of the challenging clustering
structure of real-world graphs. Similarly, on real-world data, we show that
dmon produces high-quality clusters that correlate strongly with ground
truth labels, achieving state-of-the-art results with over 40% improvement
over other pooling methods across di�erent metrics.

Most existing work on gnns to leverage higher-order structure does not
directly address node partitioning or the estimation of clusters within the
computational graph. Furthermore, most works explore these mechanisms
only within a semi-supervised or supervised framework, ignoring the fact that
unsupervised graph clustering is o�en an extremely useful end-goal in itself—
whether for data exploration [PA18], visualization [CDART12, CZQ+08], ge-
nomic feature discovery [CAT16], anomaly detection [PA16], or for many
other use-cases discussed, e.g., in [FH16]. Additionally, many of the existing
unsupervised structure-aware methods have undesirable properties, such as
relying on a multi-step optimization process that does not allow to optimize
the objective via gradient descent end-to-end [PAISM14].

83

84 node representations for clustering

In this work, we take an ab initio approach to the clustering problem in
the gnn domain, bridging the gap between traditional graph clustering objec-
tives and deep neural networks. We start by drawing a connection between
graph pooling, which was typically studied in the literature as a regularizer
for supervised GNN architectures, and fully unsupervised clustering.

Speci�cally, we contribute:

• An unsupervised clustering module for gnns, dmon, that allows op-
timization of cluster assignments in an end-to-end di�erentiable way
with strong empirical performance.

• An empirical study of the performance of various models on synthetic
attributed graphs, illustrating the problems with existing work and how
dmon allows for improved model performance in those regimes.

• �orough experimental evaluation on real-world data, showing that
many pooling methods poorly re�ect hierarchical structures and are
not able to make use of either graph structure and node attributes nor
leverage joint information.

7.1 PRELIMINARIES

We introduce the necessary background for dmon, starting with the problem
formulation, reviewing common graph clustering objectives and how they
can be made di�erentiable.

We are interested in measuring the quality of graph partitioning function
ℱ ∶ V ↦ {1,… , k} that splits the set of nodes V into k partitions Vi =

{vj, ℱ(vj) = i}. In contrast to standard graph clustering, we are also provided
with node attributes X ∈ ℝn×s.

7.1.1 graph clustering quality functions

As classical clustering objectives are discrete and therefore unsuitable for
gradient-based optimization, dmon and the few prior works depend on
spectral approximations. To contextualize and motivate our contributions,
we review two families of clustering quality functions amenable to spectral
optimization, and review some of their shortcomings.

preliminaries 85

Cut-based metrics. In his seminal work [Fie73], Fiedler suggested that the
second eigenvector of a graph Laplacian produces a graph cut minimal in
terms of the weight of the edges. �is plain notion of cut degenerates on real-
world graphs, as it does not require partitions to be balanced in terms of size. It
is possible to get normalized partitions with the use of ratio cut [WC89],which
normalizes the cut by the product of the number of nodes in two partitions,
or normalized cut [SM00], which uses the total edge volume of the partition
as normalization.

In real networks, however, there is evidence against the existence of good
cuts [LLDM08] in ground-truth communities. �is can be explained by the
fact that a single node implicitly participates inmanydi�erent clusters [ELPL17],
e.g., a person in a social network is simultaneously connected with family and
work friends, forcing the algorithm to merge these communities together.

Recently, MinCutPool [BGA20] adapted the notion of the normalized cut
to use as a regularizer for pooling. While MinCutPool’s objective should, theo-
retically, be suitable for clustering nodes in graphs, we show that MinCutPool
does not optimize its own objective function, using synthetic and real-world
experiments.

Modularity. �emodularity [New06b] objective approaches the same prob-
lem from a statistical perspective, incorporating a null model to quantify the
deviation of the clustering from what would be observed in expectation under
a random graph. In a fully random graph with given degrees, nodes u and
v with degrees du and dv are connected with probability dudv∕2m. Modularity
measures the divergence between the intra-cluster edges from the expected:

Q =
1

2m

∑

ij

[Aij −
didj

2m
] �(ci, cj), (7.1)

where �(ci, cj) = 1 if i and j are in the same cluster and 0 otherwise. NoteQ ∈

(−1∕2; 1] (it is 0 when there is no correlation of clusters with edge density), but
it is not necessarily maximized at 1, and is only comparable across graphs with
the same degree distribution.While problemswith themodularitymetric have
been identi�ed [GDMC10], it remains one of the most commonly-used and
eminently useful graph clustering metrics in the scienti�c literature [FH16].

86 node representations for clustering

7.1.2 spectral modularity maximization

Maximizing the modularity is proven to be np-hard [BDG+06], however,
a spectral relaxation of the problem can be solved e�ciently [New06a]. Let
C ∈ 0, 1

n×k be the cluster assignment matrix and d be the degree vector. �en,
using themodularity matrix B = A −

dd⊤

2m
, the modularity Q is de�ned as:

Q =
1

2m
tr(C⊤BC) (7.2)

RelaxingC ∈ ℝn×k, the optimalCmaximizingQ is the top-k eigenvectors
of the modularity matrix B. While B is dense, iterative eigenvalue solvers can
take advantage of the fact that B is a sum of a sparse A and rank-one matrix
−
dd⊤

2m
, meaning that the product Bx can be computed e�ciently:

Bx = Ax −
d⊤xd

2m

and optimized e�ciently with iterative methods such as power iteration or
the Lanczos algorithm. One can then obtain clusters by means of spectral
bisection [New06a] with iterative re�nement akin to Kernighan-Lin algo-
rithm [KL70]. However, these formulations operate entirely on the graph
structure, and it is non-trivial to adapt them to work with attributed graphs.

7.1.3 graph neural networks

Graph Neural Networks are a �exible class of models that perform nonlin-
ear feature aggregation with respect to graph structure. For the purposes of
this work, we consider transductive gnns that output a single embedding
per node. Graph convolutional networks (gcns) [KW17] are simple yet e�ec-
tive [SMBG18] message-passing networks that �t our criteria. Let X0 ∈ ℝn×s

be the initial node features and Ã = D
−
1

2AD
−
1

2 be the normalized adjacency
matrix, the output of t-th layer Xt+1 is

Xt+1 = SeLU(ÃXtW+XWskip) (7.3)

We make two changes to the classic gcn architecture: �rst, we remove
the self-loop creation and instead use anWskip ∈ ℝs×s trainable skip con-
nection, and, second, we replace relu nonlinearity with its self-normalized
counterpart [KUMH17] for better convergence.

method 87

7.2 METHOD

In this section, we present dmon, our method for attributed graph clustering
with graph neural networks. Inspired by the modularity quality function and
its spectral optimization, we propose a fully di�erentiable unsupervised clus-
tering objective which optimizes so� cluster assignments using a null model
to control for inhomogeneities in the graph. We then discuss the challenge of
regularizing cluster assignments, and present collapse regularization that is
e�ective at preventing trivial solutions without compromising optimization
of the objective.

7.2.1 dmon: deep modularity networks

�e challenge of gnn clustering with the modularity objective boils down to
de�ning an architecture and the optimization procedure of the cluster assign-
ment matrix C. In dmon, we propose to obtain C via the output of a so�max
function, which allows the (so�) cluster assignment to be di�erentiable. �e
input to the cluster assignment can be any di�erentiable message passing func-
tion, but here we speci�cally consider the case where a graph convolutional
network is used to obtain so� clusters for each node as follows:

C = sof tmax(GCN(Ã, X)), (7.4)

where gcn is a (possibly) multi-layer convolutional network operating on an
normalized adjacency matrix Ã = D

−
1

2 (A)D
−
1

2 .
We then propose to optimize this assignment with the following objective,

which combines insights from spectral modularity maximization (7.2) with a
novel regularization to prevent trivial solutions to the optimization problem:

ℒdmon = −
1

2m
tr(C⊤BC)

⏟⎴⎴⎴⏟⎴⎴⎴⏟
modularity

+

√
k

n

‖‖‖‖‖‖‖‖‖

∑

i

C⊤
i

‖‖‖‖‖‖‖‖‖F

− 1

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
collapse regularization

, (7.5)

where ‖⋅‖F is the Frobenius norm. We decompose the computation of
tr(C⊤BC) as a sum of sparse matrix-matrix multiplication and rank-one de-
gree normalization tr(C⊤AC−C⊤d⊤dC).�is allows us to e�ciently optimize
dmon parameters in the sparse regime.

88 node representations for clustering

0 50 100 150 200
epoch

dmon

Objective Regularizer

0 50 100 150 200

not improving

epoch

MinCutPool

Figure 7.1: Optimization
progress of MinCut
and DMoN on Cora

dataset. MinCut opti-
mizes the regularizer,

while DMoN minimizes
its main objective.

Cora Citeseer
graph labels graph labels

method C ↓ Q ↑ NMI↑ C ↓ Q ↑ NMI↑

MinCut 23.3 70.3 35.8 14.1 78.9 25.9
Ortho 28.0 65.6 38.4 18.4 74.5 26.1

Coauthor cs Coauthor phy
graph labels graph labels

C ↓ Q ↑ NMI↑ C ↓ Q ↑ NMI↑

MinCut 22.7 70.5 64.6 27.8 64.3 48.3
Ortho 27.8 65.7 64.6 33.0 59.5 44.7

Table 7.1: Comparison of
MinCutPool with using

only its orthogonality
regularization in terms

of graph conductance C,
modularity Q, and NMI

with ground-truth labels.

7.2.2 collapse regularization

Without additional constraints on the assignment matrix C, spectral cluster-
ing for both min-cut and modularity objectives has spurious local minima:
assigning all nodes to the same cluster produces a trivial locally optimal solu-
tion that traps gradient-based optimization methods. MinCutPool addresses
this problem by adapting spectral orthogonality constraint in the form of
so�-orthogonality regularization ‖‖‖‖C

⊤C − I
‖‖‖‖F

[BCW18]. We notice that this
term is overly restrictive when combined with so�max class assignment –
intuitively, when the value range of C is restricted toℝ ∩ [0, 1], optimization
of the so�-orthogonality regularizer dominates the loss.

We illustrate this problem in Figure 7.1, which depicts the progress of
optimization for bothmethods in terms of theirmain objective and regularizer
term over the course of 200 epochs on Cora dataset. �e so� orthogonality
regularization term dominates the optimization for MinCutPool, such that
the cut objective becomes worse than random over the course of training.

experiments 89

dataset Nodes Edges Features Classes

Cora 2708 5278 1433 7
Citeseer 3327 4614 3703 6
Pubmed 19717 44325 500 3
Amazon pc 13752 143604 767 10
Amazon Photo 7650 71831 745 8
Coauthor cs 18333 81894 6805 15
Coauthor phy 34493 247962 8415 5

Table 7.2: Dataset statis-
tics.

We experimentally verify that the MinCut clustering objective is a prover-
bial ��h wheel for MinCutPooling optimization. Table 7.1 presents the di�er-
ence in performance of the optimization of full MinCutPool objective and
simple feature orthogonalization (Ortho in the table). On 3 out of 4 datasets,
orthogonality achieves better label correlation than joint optimization. Regu-
larization dominates the method’s performance.

With dmon, we �x this problem by proposing a relaxed notion of collapse
regularization that prevents the trivial partition while not dominating the
optimization of the main objective. �e regularizer is a Frobenius norm of the
(so�) cluster membership counts, normalized to the range [0, 1]. It gets the
value of 0when cluster sizes are perfectly balanced, and 1 in the case all clusters
collapse to one. We also improve the training by applying dropout [SHK+14]
to gnn representations before the so�max, preventing the gradient descent
from getting stuck in the local optima of the highly non-convex objective
function.

7.3 EXPERIMENTS

In this section, we describe empirical experiments—involving both synthetic
and real-world data—on dmon and baseline methods, to test robustness and
performance against both graph clustering and label alignment metrics. We
use open-source graph simulation tools, publicly-available datasets, and we
release the implementation of dmon at this url1. 1. https://github.

com/google-research/

google-research/

tree/master/graph\.

embedding/dmon
Datasets. We use 7 real-world datasets for assessing model quality. Cora,
Citeseer, and Pubmed [SNB+08] are citation networks; nodes represent papers

https://github.com/google-research/google-research/tree/master/graph_embedding/dmon
https://github.com/google-research/google-research/tree/master/graph_embedding/dmon
https://github.com/google-research/google-research/tree/master/graph_embedding/dmon
https://github.com/google-research/google-research/tree/master/graph_embedding/dmon
https://github.com/google-research/google-research/tree/master/graph_embedding/dmon

90 node representations for clustering

connected by citation edges; features are bag-of-word abstracts, and labels
represent paper topics. Amazon pc and Amazon Photo [SMBG18] are subsets
of the Amazon co-purchase graph for the computers and photo sections of
the website, where nodes represent goods with edges between ones frequently
purchased together; node features are bag-of-word reviews, and class labels
are product category. Coauthor cs and Coauthor phy [SMBG18] are co-
authorship networks basedon theMicroso�AcademicGraph for the computer
science and physics �elds respectively; nodes are authors, which are connected
by an edge if they co-authored a paper together; node features are a collection
of paper keywords for author’s papers; class labels indicate most common
�elds of study.

Baselines. As we study how to leverage the information from both the graph
and attributes, we employ two baselines that employ either strictly graph or
attribute information. We give a brief description of the baselines used below:
• k-means(features) is our baseline that only considers the feature data. We
use the local Lloyd algorithm [Llo82] with the k-means++ seeding strat-
egy [AV07].
• sbm [Pei14b] is a baseline that only relies on the graph structure. We
estimate a constrained stochastic block model with given k, the maximum
number of clusters.
• k-means(DeepWalk, features) [PARS14] represents a näıve strategy of con-
catenating node attributes to learned node embeddings of the graph without
attributes.
• k-means(dgi) [VFH+19] demonstrates the need for joint learning of clus-
ters and representations. We learn unsupervised node representations of the
attributed graph with DGI and run k-means on the resulting representations.
• Di�Pool(graph, features) [YYM+18] is an early graph pooling method.
• MinCutPool(graph, features) [BGA20] is a deep pooling method that or-
thogonalizes the cluster representations (cf. Section 7.4 for discussion).
• Ortho(graph, features) [BGA20] is a variant of MinCutPool that only does
the cluster orthogonalization without any graph-related objective.

Metrics. Wemeasure both the graph-based metrics of clustering and label
correlation to study the clustering performance of attributed graphs both in

experiments 91

terms of graph and attribute structure. For experiments on real-world data, we
measure both (1) standard graph-based clustering metrics, and (2) correlation
to ground-truth node labels. Our graph-based metrics are average cluster
conductance (as per de�nition from [YL15]) and graph modularity [New06b].
Our label-based metrics are normalized mutual information (nmi) between
the cluster assignments and labels and pairwise F1 score between all node
pairs and their associated cluster pairs. For experiments on synthetic data, we
report only the nmi against the (simulated) cluster labels. Where possible,
we normalize all metrics by multiplying them by 100 for readability and ease
of comparison.

Parameter settings. We run both synthetic and real-world experiments for
10 times and average results across runs. All models were implemented in
Tensor�ow 2 and trained on cpus. We �x the architecture for all gnns (in-
cluding dmon) have one hidden layer—with 512 neurons for real-world data
experiments, and 64 neurons for experiments with smaller synthetic graphs.
We set the maximum number of clusters to 16 for all datasets and methods.

7.3.1 simulation experiments on stochastic block model
with features

To explore the robustness and sensitivity of dmon and baselines to variance
in the graph and node features, we conduct a study on synthetic graphs us-
ing an attributed, degree-corrected stochastic block model (adc-sbm). �e
sbm [SN97] plants a partition of clusters (“blocks”) in a graph, and generates
edges via a distribution conditional on that partition.�ismodel has been used
extensively to benchmark graph clustering methods [FH16], and has recently
been used for experiments on state-of-the-art supervised gnns [DJL+20]. In
our version of themodel, node features are also generated, using amultivariate
mixture model, with the mixture memberships having some association (or
de-association) with the cluster memberships. We proceed to describe the
graph generation and feature generation components of our model.

Graph generation. We�x a numberof nodesn anda numberof clustersk, and
choose node cluster memberships uniformly-at-random. De�ne the matrix
Dk×k whereDij is the expected number of edges between nodes in clusters i

92 node representations for clustering

(a) Adjacency (b) Matched feature clusters

(c) Nested feature clusters (d) Grouped feature clusters

Figure 7.2: Illustration
of synthetic data. (a) 4-

cluster graph adjacency
matrix. (b) Covariance

matrix of “matched” fea-
tures: features that are
clustered according to
the graph clusters. (c)
Covariance matrix of

“nested” features: fea-
tures that are clustered
by incomplete nesting

of the graph clusters. (d)
Covariance matrix of

“grouped” features: fea-
tures that are clustered
by incomplete grouping

of the graph clusters.

and j. We determineD by �xing (1) the expected average degree of the nodes
d ∈ {1, n}, and (2) the expected average sub-degree dout ≤ d of a node to any
cluster other than its own. Note that the di�erence din − dout, where din ∶=
d − dout, controls the spectral detectability of the clusters [NN12]. Finally, we
generate a power-law vector �, where �i is proportional to i’s expected degree.
We use the generated memberships and the generated parametersD and � as
inputs to the degree-corrected sbm from the graph-tool [Pei14b] package.

Feature generation. We generate feature memberships from kf cluster labels.
For graph clustering gnns that operate both on edges and node features, it is
important to examine performance on datawhere feature clusters diverge from
the graph clusters: thus potentially kf ≠ k. We examine cases where feature
memberships match, group, or nest the graph memberships, as illustrated
in Figure 7.2. With feature memberships in-hand, we generate k zero-mean
feature cluster centers from a s-multivariate normal with covariance matrix
�2c ⋅ Is×s. �en, for feature cluster i ≤ kf, we generate its features from a s-
multivariate normal with covariance matrix �2 ⋅ Is×s. �e ratio �2c∕�2 controls
the expected value of the between/within sum-of-squares of the clusters.

experiments 93

Scenario Parameter Description

1 dout ∈ [2.0, 5.0] Increase graph clustermixing signal. Higher
= weaker clusters.

2 �c ∈ [10−2, 101] Increase feature cluster center variance.
Higher = stronger clusters.

3 �c ∈ [10−2, 101] Increase feature cluster center variance,
with nested feature clusters.

4 �c ∈ [10−2, 101] Increase feature cluster center variance,
with grouped feature clusters.

5 d ∈ [22, 27] Increase average node degree in a graph.
Higher = clearer graph signal.

6 dmax ∈ [22, 210] Increase the degree power lawupper-bound.
Higher = more extreme power law.

Table 7.3: Synthetic
ADC-SBM benchmark
scenarios.

�e above paragraphs describe a single generation of our synthetic bench-
mark model, the adc-sbm. To study model robustness, we de�ne “default”
adc-sbm parameters, and explore model parameters in a range around the
defaults. We con�gure our default model as follows: we generate graphs with
n = 1, 000 nodes grouped in k = 4 clusters, and s = 32-dimensional features
grouped in kf = 4matching feature clusters with � = 1 intra-cluster center
variance and �c = 3 cluster center variance. We mimic real-world graphs’
degree distribution with d = 20 average degree and dout = 2 average inter-
cluster degree with power law parameters dmin = 2, dmax = 4, � = 2. In total,
we consider 6 di�erent scenarios, as described in Table 7.3.

Results. We split the presentation of results for pooling methods (Figure 7.3)
and other baselines (Figure 7.4) for ease of understanding. Overall, dmon
demonstrates overwhelming superiority over all baselines, with the most
signi�cant improvements over other poolingmethods. MinCut pooling su�ers
from the presence of even the weak noise in the graph (Scenario 1) or in the
features (Scenario 2). Moreover, it is susceptible to both nested and grouped
features (Scenarios 3 and 4), while dmon and Di�Pool are less sensitive to
these variations. We notice how both Di�Pool andMinCutPool are dependent
on the sparsity level and degree homogeneity of the graph—Di�Pool performs
better denser graphs while MinCutPool shows the opposite picture.

94 node representations for clustering

1 2 3 4 5
0
20
40
60
80
100

detectability
limit

dout

n
m
i×
1
0
0

Scenario 1
dmon Di�Pool MinCut

10−2 10−1 100 101
�c

Scenario 2

10−2 10−1 100 101
�c

Scenario 3

10−2 10−1 100 101
0
20
40
60
80
100

�c

n
m
i×
1
0
0

Scenario 4

23 25 27

d

Scenario 5

23 25 27 29

dmax

Scenario 6

Figure 7.3: Synthetic
results on the ADC-
SBM model with 6

different scenarios de-
scribed in Table 7.3. We
observe that DMoN sig-

nificantly outperforms
other neural graph pool-

ing method baselines.

1 2 3 4 5
0
20
40
60
80
100

detectability
limit

dout

n
m
i×
1
0
0

Scenario 1

dmon sbm k-means(dgi)
k-means(dw) k-means(feat.)

10−2 10−1 100 101
�c

Scenario 2

10−2 10−1 100 101
�c

Scenario 3

10−2 10−1 100 101
0
20
40
60
80
100

�c

n
m
i×
1
0
0

Scenario 4

23 25 27
d

Scenario 5

23 25 27 29
dmax

Scenario 6

Figure 7.4: Synthetic
results on the ADC-SBM

model with 6 different
scenarios described
in Table 7.3. We ob-

serve that DMoN lever-
ages information from

both graph structure
and node attributes.

experiments 95

Cora Citeseer Pubmed
graph labels graph labels graph labels

method C ↓ Q ↑ nmi↑ F1↑ C ↓ Q ↑ nmi↑ F1↑ C ↓ Q ↑ nmi↑ F1↑

k-m(feat) 61.7 19.8 18.5 27.0 60.5 30.3 24.5 29.2 55.8 33.4 19.4 24.4
sbm 15.4 77.3 36.2 30.2 14.2 78.1 15.3 19.1 39.0 53.5 16.4 16.7

k-m(dw) 62.1 30.7 24.3 24.8 68.1 24.3 27.6 24.8 16.6 75.3 22.9 17.2
k-m(dgi) 28.0 64.0 52.7 40.1 17.5 73.7 40.4 39.4 82.9 9.6 22.0 26.4

Di�Pool 26.1 66.3 32.9 34.4 26.0 63.4 20.0 23.5 32.9 56.8 20.2 26.3
MinCut 23.3 70.3 35.8 25.0 14.1 78.9 25.9 20.1 29.6 63.1 25.4 15.8
Ortho 28.0 65.6 38.4 26.6 18.4 74.5 26.1 20.5 57.8 32.9 20.3 13.9

dmon 12.2 76.5 48.8 48.8 5.1 79.3 33.7 43.2 17.7 65.4 29.8 33.9

Table 7.4: Results on four
datasets from [SNB+08]
in terms of graph conduc-
tance C, modularity Q,
NMI with ground-truth
labels, and pairwise F1
measure. We group the
methods into three cat-
egories: baselines using
only one aspect of data,
neural representation
learning, and neural
graph pooling methods.
We highlight best neural
method performance.

To better understand the limits of the task, we study the performance of
our baselines and report the results on Figure 7.4. In particular our interest
lies in the performance of the sbm and pure k-means over features, as these
two baselines depict the performance possible when utilizing only one aspect
of the data. Scenario 1 shows that dmon can e�ectively leverage the feature
signal to obtain outstanding clustering performance even when the graph
structure is close to random, far beyond the spectral detectability threshold
(pictured in gray). Scenario 2 demonstrates that even in the presence of a weak
feature signal dmon outperforms stochastic sbm minimization. We also
notice that while the k-means(dgi) baseline o�ers some improvements over
using features or the graph structure alone, it never surpasses the strongest
signal provider in the graph, never being better than the best one between
k-means(features) and sbm. K-means applied over the extracted DeepWalk
representations are also almost never stronger than the community detection
using direct sbm likelihood optimization.

7.3.2 real-world data

We now move on to studies on real-world networks, featuring dmon and
7 baselines on 7 di�erent datasets. dmon achieves better clustering perfor-
mance than its neural counterparts on every single dataset and metric besides
losing twice to DGI+k-means on Cora and Citeseer in terms of nmi. Com-
pared to sbm, a method that exclusively optimizes modularity, we are able to

96 node representations for clustering

Amazon pc Amazon Photo Coauthor cs Coauthor phy
graph labels graph labels graph labels graph labels

method C ↓ Q ↑ nmi↑ F1↑ C ↓ Q ↑ nmi↑ F1↑ C ↓ Q ↑ nmi↑ F1↑ C ↓ Q ↑ nmi↑ F1↑

k-m(feat) 84.5 5.4 21.1 19.2 79.6 10.5 28.8 19.5 49.1 23.1 35.7 39.4 57.0 19.4 30.6 42.9
SBM 31.0 60.8 48.4 34.6 18.6 72.7 59.3 47.4 20.3 72.7 58.0 47.7 25.9 66.9 45.4 30.4

k-m(DW) 67.6 11.8 38.2 22.7 60.6 22.9 49.4 33.8 33.1 59.4 72.7 61.2 44.7 47.0 43.5 24.3
k-m(DGI) 61.9 22.8 22.6 15.0 51.5 35.1 33.4 23.6 35.1 57.8 64.6 51.9 38.6 51.2 51.0 30.6

Di�Pool 35.6 30.4 22.1 38.3 26.5 46.8 35.9 41.8 33.6 59.3 41.6 34.4 23.6 53.8 28.7 23.6
MinCut — — — — — — — — 22.7 70.5 64.6 47.8 27.8 64.3 48.3 24.9
Ortho — — — — — — — — 27.8 65.7 64.6 46.1 33.0 59.5 44.7 23.7

dmon 18.0 59.0 49.3 45.4 12.7 70.1 63.3 61.0 17.5 72.4 69.1 59.8 18.8 65.8 51.9 37.0

Table 7.5: Results on four
datasets from [SMBG18]

in terms of graph conduc-
tance C, modularity Q,

NMI with ground-truth
labels, and pairwise F1

measure. We group the
methods into three cat-
egories: baselines using
only one aspect of data,

neural representation
learning, and neural

graph pooling methods.
We highlight best neural

method performance.

stay within 3% in terms of modularity, while simultaneously clustering the
features. Surprisingly, on Citeseer and Pubmed we achieve better modular-
ity than the method optimizing it directly—we attribute that to very high
correlation between the graph structure and the features.

Compared to other pooling methods, dmon improves by over 40% in
conductance,modularity and nmi on average. In particular, Di�Pool achieves
overall poor performance across metrics due to its quadratic reconstruction
term that does not scale well with graph sparsity (cf. Scenario 5). MinCut
pooling performs better, but only manages to match the performance of non-
pooling neural representation learning methods on one dataset in terms of
ground-truth label nmi. On Amazon pc and Amazon Photo both MinCut-
Pool and its orthogonality-only version failed to converge, even with tuning
the parameters. We attribute that to the extremely uneven structure of these
graphs, as popular products are co-purchased with a lot of other items, so
the e�ects discussed in [ELPL17, LLDM08] are prohibiting good cuts. �is
corresponds to high values of d ad dmax in our synthetic scenarios 5 and 6.
We also highlight that we beat MinCutPool in terms of conductance (average
graph cut) on all datasets, even though it attempts to optimize for this metric.

Overall, dmon demonstrates excellent performance on both graph clus-
tering and label correlation, successfully leveraging both graph and attribute
information. Both synthetic and real-world experiments prove that dmon is
vastly superior to its counterparts in attributed graph clustering.

summary 97

7.4 SUMMARY

In this chapter, we study gnn pooling through the lens of attributed graph clus-
tering. We introduce Deep Modularity Networks (dmon), an unsupervised
objective and realize it with a gnn which can recover high quality clusters.
We compare against challenging baselines that optimize structure (sbm), fea-
tures (k-means), or both (dgi+k-means), in addition to a recently proposed
state-of-the-art pooling method (MinCutPool).

We explore the limits of gnn clustering methods in terms of both graph
and feature signals using synthetic data, where we see that dmon better
leverages structure and attributes than all existing methods. In extensive
experiments on real datasets we show that the clusters found by dmon are
more likely to correspond to ground truth labels, and have better properties
as illustrated by clustering metrics (e.g. conductance or modularity). We hope
that this work will further advancements in unsupervised learning for gnns
as well as attributed graph clustering, allowing further advances in graph
learning.

PART I I

SIMILARITIES AND REPRESENTATIONS
OF GRAPHS

8INTRODUCTION AND RELATED WORK

Representing graphs as low-dimensional vectors in Euclidean
space allows us to compare their connectivity structure e�ciently.
Such comparisons facilitate the analysis of graph collections, for

example, graph classi�cation in protein molecule databases or social contact
networks. Traditionally, distances between graphs require computationally
expensive pairwise comparisons [GXTL10, KJM20]. Moreover, comparing
graphs is o�en focused on local sub-structures and disregards a more global,
bird’s-eye view of graphs. �is part of the dissertation is devoted to e�cient
algorithms for computingmulti-scale representations of graphs.

Chapter 9 introduces our core proposal of this part of the dissertation:
netlsd, a graph representation method that captures graphs’ multi-scale
structure. Our method is a considerable advancement over the näıve compu-
tation of graph statistics that provide no guarantees on the actual distance
between graphs. Instead, netlsd lower-bounds the Gromov–Wasserstein
distance between graphs. We also derive normalization methods to make
netlsd size-invariant, comparing the structure of graphs of entirely di�erent
sizes. E�ciency-wise, we propose an approximation algorithm that allows
netlsd to compare graphs with millions of nodes and edges.

While netlsd captures both local and global information about graphs,
it does not tailor the representations to the task at hand. �e problem is
that many collections of graphs are small; thus, any su�ciently powerful
learning algorithm would over�t on that data. Nevertheless, the analyst might
know whether they are interested in local or global properties of graphs in
that collection. �erefore, Chapter 10 proposes sgr, a self-supervised1 neural 1. Self-supervised training

is solving supervised tasks
with arti�cial labels created
in an unsupervised way.

network built on top of netlsd that is trained to solve two tasks: one local
and one global to learn tailored representations of graphs.

While netlsd scales to graphs with millions of nodes, some practical
applications necessitate processing even larger graphs. Chapter 11 proposes
slaq, a method for approximating netlsd and the Estrada index [Est00],
signi�cantly improving the accuracy and speed. We observe several orders

101

102 introduction and related work

of magnitude improvement in approximation accuracy of the method while
scaling to graphs with billions of nodes. We also derive theoretical bounds on
our methods’ approximation error.

Chapter 12 describes an application of the fast netlsd computation in
machine learning. We use netlsd to capture the intrinsic2 geometry of data.2. Properties of sur-

faces that are indepen-
dent of the embedding

are called intrinsic.
Focus on the intrinsic geometry of data allows us to study data embedded in
spaces of di�erent dimensionality such as representations of images produced
by di�erent layers of neural networks. We also apply our measure to the
evaluation of generative models and comparison of language structures.

�e following four chapters in this part are based on work as cited below:

• Chapter 9 “Spectral Graph Similarity” extends [TMK+18b].

• Chapter 10 “Learning a Spectral Graph Similarity” extends [TMK+18a].

• Chapter 11 “E�cient Approximation of Spectral Graph Representations”
extends [TMP20].

• Chapter 12 “Spectral Graph Similarities for Comparing Distributions”
extends [TMM+20a].

We now proceed with an overview of the related work relevant to all chapters.

8.1 RELATED WORK

We group the related work into three categories: (i) direct comparison meth-
ods; (ii) graph kernels, and (iii) feature-based representations. We give an
overview of each category below; this dissertation contributes to the feature-
based representation �eld.

8.1.1 direct comparison methods

Graph edit distance (ged) [SF83] is the minimal number of edit operations
needed to transform one graph into another; unfortunately, its calculation
is np-hard [GJ02] and even hard to approximate (apx-hard) [Lin94], as it
implies determining a correspondence among the compared graphs’ nodes, a
computationally hard task to begin with. While ged admits heuristic approx-
imation [RB09, FSF+15] and indexing schemes [ZTW+09, ZQYC12, LZ17],

related work 103

it is not applicable for generic comparison among large graph collections.
Besides, ged treats all edit operations as equal, without discerning the extent
to which they may alter the graph topology. �us, even if the computational
obstacles were surmounted, ged would still be unsatisfactory as a measure
for multi-scale and di�erent-size graph comparisons.

Some application-speci�c techniques (e.g., anomaly detection in time-
evolving graphs) assume given correspondence between nodes to alleviate
the computational burden [KVF13, PDGM10]. Such methods are limited to
their speci�c application scenarios.

8.1.2 graph kernels

Graph kernels [KJM20] are similarity functions among graphs, which typically
perform an implicit transformation of graph structure to compare two graphs.
For example, the Shortest-path kernel [BK05] compares the lengths of all
shortest paths between vertices in two graphs. Typically, kernel methods
perform implicit computations to compute the distance between two graphs
without relying on explicit representations. �erefore, their computation time
is at least quadratic3 to the number of graphs and requires expensive on- 3. For explicit representa-

tions, approximate nearest
neighbor search alleviates
the problem of pairwise
comparisons.

demand computations at comparison time.
Graphlet kernels [SB09] propose to count the number of {3, 4}-sized sub-

graphs (motifs) in a graph and use these counts as features. �is kernel’s
complexity is exponential to the size of mined subgraphs, while the resulting
vectors’ high dimensionality prohibits their usage as feature vectors.

Weisfeiler–Lehman [SSL+11] kernels propose to aggregate discrete infor-
mation on nodes via the analog of the color re�nement heuristic for isomor-
phism testing. In the absence of node features, node degrees are commonly
used as a replacement. �is kernel operates in the number of edges in a graph,
but it is only available when the features are discrete. An extension to continu-
ous attributes via hashing was proposed in [MKKM16].

�e Multi-scale Laplacian Graph kernel (mlg) [KP16] is particularly
relevant for this thesis since it is the �rst to consider multi-scale comparisons
of graphs. �is kernel models the propagation of information across edges.
It iteratively sums information resulting in increasingly global comparisons.
However, it has complexity cubic in the number of eigenvalues employed.

104 introduction and related work

8.1.3 feature-based representations

Representation-based methods generate a one-o� graph feature vector, based
on statistical properties, and use it in subsequent inter-graph comparisons.
Preliminary works in this area [BBGO11, BKERF13, BBK+16] handcra� fea-
tures by aggregating local graph properties such as a node’s and its neighbors’
degrees. Such representations are easy to compute yet focus on local charac-
teristics and are oblivious to global features.

NetSimile is the �rstmethod to examine size-independent graph similarity.
�e proposed way is crude—the method computes and aggregates statistics
of nodes and their ego-networks4. Despite the simplicity, the approach is4. An ego-network of

a node is a subgraph
with all its neighbors. reasonably e�ective and scales linearly to the number of edges in graphs.

However, it does not consider any global information about the graph.
Family of Spectral Distances (fgsd) [VZ17] produces a high-dimensional

sparse representation as a histogram on the dense biharmonic graph ker-
nel; however, fgsd does not capture multi-scale graph features, and it does
not allow comparing graphs of di�erent sizes. Further, it is inapplicable to
reasonably large graphs due to its quadratic time complexity.

9SPECTRAL GRAPH SIMILARITY

Graph comparison is ubiquitous in graph mining and analytics.
However, it is a hard task in terms of the employed similarity
measure’s expressiveness and computational e�ciency. Arguably,
an ideal means for graph comparison should ful�ll the following

desiderata: �rst, it should be indi�erent to the order of the nodes; we call this
property permutation-invariance. Second, it would enable graph comparisons
both at a local level (expressing, e.g., atomic bond di�erences among chemical
compounds) and at the global level (capturing, e.g., the di�erent topologies
of social networks); we call this facility scale-adaptivity. �ird, it would detect
structural similarity regardless of network magnitude (discerning, e.g., the
similarity of two criminal networks of di�erent sizes); we call this aptitude size-
invariance. Unfortunately, no existing means for graph comparison satis�es
all three of these requirements.

Apart from these qualitative requirements, a viable means for graph com-
parison should be e�ciently computable. Graph analytics tasks o�en require
pairwise graph comparisons within a large collection of graphs, hence should
be ideally done in constant time, a�er preprocessing. Unfortunately, exist-
ing methods fare even worse in this respect. A popular distance measure
among graphs, graph edit distance (ged) [SF83] is np-hard and apx-hard
to compute [Lin94]; intensive research e�orts in ged-based graph compari-
son [ZTW+09, ZZL+15, YWCW15, GH16, LZ17] have not escaped this reality.
Similarly, graph kernel methods [KJM20] lack an explicit graph representation
and they do not scale well either.

�is chapter develops a permutation- and size-invariant, scale-adaptive,
and scalable method for graph comparison. We propose an expressive graph
representation, netlsd, grounded on spectral graph theory, that allows for
constant-time similarity computations at several scales; netlsd extracts com-
pact graph signatures based on the heat or wave kernel of the Laplacian, which
inherit the formal invariance properties of the Laplacian spectrum.

105

106 spectral graph similarity

9.1 PROBLEM STATEMENT

A representation is a function � ∶ G → ℝd from any graph G in a collection
of graphs G to a d-dimensional real-vector; we denote j-th element of the
representation as �j(G). A representation-based distance is a function d� ∶
ℝd ×ℝd → ℝ+

0
on the representations of two graphs G1, G2 ∈ G that returns

a positive real number. We aim to devise a representation-based distance that
works independently of graph size.

9.1.1 expressive graph comparison

Our distance should support data mining tasks, such as clustering, classi-
�cation, and distance-based anomaly detection. �erefore, we require our
distance to be a pseudometric; namely, it should ful�ll the following properties:

• Symmetry, for any G1, G2 ∈ G:
d�(�(G1), �(G2)) = d�(�(G2), �(G1))

• Triangle inequality, for any G1, G2, G3 ∈ G:
d�(�(G1), �(G3)) ≤ d�(�(G1), �(G2)) + d�(�(G2), �(G3))

�ese properties characterize a large family of distances, yet do not re-
�ect their expressiveness. We require expressive distances to be permutation-
invariant, scale-adaptive, and size-invariant.

Permutation-invariance implies that if two graphs’ structure are the same
(i.e., if the two graphs are isomorphic) the distance of their representations is
zero. A graph G1 = (V1, E1) is isomorphic to another graph G2 = (V2, E2),
or G1 ≃ G2, if there exists a bijective function � ∶ V1 → V2 such that
(�(u), �(v)) ∈ E2 for every (u, v) ∈ E1.

Property 1 (Permutation-invariance). A distance d� on representation � is
permutation-invariant i�:

∀G1, G2, G1 ≃ G2 ⇒ d�(�(G1), �(G2)) = 0

problem statement 107

Scale-adaptivity implies that a representation accounts for both local (edge
and node) and global (community) graph features. A global feature cannot be
captured by any combination of features on nodes at distance r < D(G) − 1,
whereD(G) is the diameter (longest shortest-path length) of G. Let the set
of all subgraphs of G be �(G) = {g \sqsubset G ∶ D(g) < D(G)}. We de�ne scale-
adaptivity as the property of a representation � having at least one local feature
(i.e., derived only from information encoded in subgraphs �(G)), and at least
one global feature (i.e., derived by strictly more than the information encoded
in any �(G)). Using local features only, a similarity measure would deem two
graphs sharing local patterns to have near-zero distance although their global
properties (such a page-rank features) may di�er, and, in reverse, relying on
global features only would miss local structures (such as edge distributions).
We aim for a representation adaptive to both local and global structures on
demand.

Property 2 (Scale-adaptivity). A representation� is scale-adaptive i� it contains
both local features �i and global features �j:

• Local Feature: ∀G ∃f(⋅) ∶ �i = f(�(G))

• Global Feature: ∀G ∄f(⋅) ∶ �j = f(�(G))

Size-invariance is the capacity to discern that two graphs represent the same
phenomenon at di�erent magnitudes (e.g., two criminal circles of similar
structures but di�erent sizes should have near-zero distance). We can think of
a graph as a representation of a metric space1 with a small intrinsic dimension. 1. It is sometimes conve-

nient to think about the
underlying manifold a
graph is sampled from.

We would then like to abstract away the particular way of sampling that space.
Size-invariance postulates that if two graphs originate from the sampling of
the same domainℳ, they should be deemed similar.

Property 3 (Size-invariance). A size-invariant distance d� ful�lls:

∀ℳ ∶ G1, G2 sampled fromℳ ⇒ d�(�(G1), �(G2)) = 0

An expressive means of graph comparison should employ a representation
ful�lling the above properties. In the following, we present netlsd, a graph
representation that allows for easy and expressive graph comparison.

108 spectral graph similarity

9.2 NETWORK LAPLACIAN SPECTRAL DESCRIPTOR

De�ning a representation ful�lling the requirements of permutation-, scale-,
size- invariance, and e�ciency is challenging; in general, complex structures
are hard to compare. Hence, we transfer the problem to the spectral domain.
A useful metaphor is heating the graph’s nodes and observing heat di�usion
as time passes. Another useful metaphor is a system of masses corresponding
to the graph’s nodes and springs corresponding to its edges. �e propagation
of mechanical waves through the graph is another way to capture its struc-
tural invariants. In both cases, the overall process describes the graph in a
permutation-invariant manner and embodies more global information as
time elapses. Our representation employs a trace signature of heat di�usion
or wave propagation process over time. We compare two graphs via the L2
distance among trace signatures sampled at selected time scales.

9.2.1 spectra as representations

�e set of eigenvalues {�1, … , �n} of graph’s Laplacian matrix2 is called the2. For both unnormalized
and normalized Laplacians. spectrum of a graph. �e normalized Laplacian L = I − D−1∕2AD−1∕2, as

opposed to the unnormalized version L = D − A, has its spectrum bounded
by 0 ≤ �i ≤ 2.

Belkin and Niyogi [BN07] showed that eigenvectors of the normalized
Laplacian of a point cloud graph converge to the eigenfunction of the Laplace-
Beltrami operator [Ber12] on the underlying Riemannianmanifold. In general,
the normalized Laplacian has more attractive theoretical properties than its
unnormalized counterpart [VLBB08].

�e Laplacian spectrum encodes important graph properties, such as
the normalized cut size [SM00] used in spectral clustering. Likewise, the
normalized Laplacian spectrum can determine whether a graph is bipartite,
but not the number of its edges [Chu97]. Rather than using the Laplacian
spectrum per se, we consider an associated heat di�usion process on the
graph, to obtain a more expressive representation, in a manner reminiscent
of random walk models [Chu07].

�e heat equation associated with the Laplacian is

)ut

)t
= −Lut, (9.1)

network laplacian spectral descriptor 109

where ut are scalar values on vertices representing the heat of each vertex at
time t. �e solution to the heat equation provides the heat at each vertex at
time t, when the initial heat u0 is initialized with a �xed value on one of the
vertices. Its closed-form solution is given by the n × n heat kernelmatrix:

Ht = e−tL =

n∑

j=1

e−t�j�j�
T

j
, (9.2)

where (Ht)ij represents the amount of heat transferred from vertex vi to
vertex vj at time t. We can also compute the heat kernel matrix directly by
exponentiating the Laplacian eigenspectrum [Chu97]:

Ht = �e−t��T (9.3)

As the heat kernel involves pairs of nodes, it is not directly usable to
compare graphs. We rather consider the heat trace at time t:

ℎt = tr(Ht) =
∑

j

e−t�j . (9.4)

�en our netlsd representation consists of a heat trace signature of graph
G, i.e., a collection of heat traces at di�erent time scales, ℎ(G) = {ℎt}t>0.

Alternative signatures. �e heat kernel can be viewed as a family of low-pass
�lters, F(�) = e−�t, parameterized by the scale parameter t, hence it contains
low frequency (i.e., large-scale) information at every scale. Other kernels
emphasize di�erent frequencies. For example, the wave equation,

)2ut

)t2
= −Lut, (9.5)

which describes the amplitude ut of a wave propagating in a medium, has,
in its turn, a solution given by the wave kernel:3 3. Note that this equation

features the complex
exponential.

Wt = e−itL =

n∑

j=1

e−it�j�j�
T

j
(9.6)

and a corresponding wave trace signature with t ∈ [0, 2�):

wt = tr(Wt) =
∑

j

e−it�j . (9.7)

110 spectral graph similarity

10−2 10−1 100

10−11

10−9

10−7

10−5

10−3

10−1

t

Av
g.
er
ro
r

1 Taylor term
2 Taylor terms

(a) Taylor expansion

10−2 10−1 100 101 102

0

1,000

2,000

3,000

4,000

t

ℎ
t

True ℎt
Taylor + 100 eig.

(b) Taylor expansion + 100 eigenvalues.

Figure 9.1: Taylor ex-
pansion for NetLSD

approximation: (a) Rel-
ative approximation

error of normalized ℎt
for Erdős–Rényi random

graphs, varying time
scale t, and (b) the heat
trace approximation by

two Taylor terms and
100 eigenvalues on a

random SBM graph.

9.2.2 scaling to large graphs

�e full eigendecomposition of the LaplacianL = ���T takes O(n3) time
and Θ(n2)memory. �is allows to compute signatures of graphs with over a
thousand nodes in less than a second on commodity hardware, yet renders
direct computation impossible for larger graphs.�us,we need to approximate
heat trace signatures. We propose two di�erent methods to that end.

Our�rst proposal is to use a Taylor expansion; while thismathematical tool
provides a dubious approximation of a matrix exponential, as its convergence
rate depends on the largest eigenvalue [MVL03], it is useful on small time
scales t, and allows for an inexpensive computation of its �rst two terms,

ℎt =

∞∑

k=0

tr((−tL)
k
)

k!
≈ n − t tr(L) +

t2

2
tr(L2). (9.8)

�ese �rst two terms are easily computed, even for very large graphs, as
tr(L) = n and tr

(
L2

)
=

∑

ij
Lij

2 since ℒ is self-adjoint. �is provides a
principled way to compare two graphs locally in O(m).

Figure 9.1a depicts the error in approximating the normalized heat trace
by a Taylor expansion for random graphs of varying sizes; this error is indepen-
dent of graph size, and stays lowuntil time scale 1. At larger time scales, the in�u-
ence of high frequencies (i.e., the higher part of the spectrum) on the heat trace
decreases. �us, one can approximate the heat trace signature using the lower
part of the eigenspectrum, as in shape analysis [SOG09, VBCG10, BB11, LB14].
�us, we may apply the low-order Taylor expansion for small t and the trun-

network laplacian spectral descriptor 111

cated spectrum approximation for large t. However, this approach misses out
on the medium scale, as Figure 9.1b illustrates. Besides, this approximation
technique does not allow us to compare graphs of di�erent sizes, since the
spectrum discretization ratio is not normalized across the networks.

We conclude that the Taylor expansion is useful on very large graphs, on
which eigendecomposition is prohibitive. For manageable graph sizes, we
adopt a more accurate strategy [MVL03] based on approximating the eigen-
value growth rate, as in [VBCG10]: we compute k eigenvalues on both ends
of the spectrum, and interpolate a linear growth of the interloping eigenval-
ues. �is strategy assumes that on the medium scale the manifold de�ning
the graph is two-dimensional, as Weyl’s law of asymptotic eigenvalue growth
suggests [Wey11]. Since we only need to compute extreme eigenvalues, we
use the block Krylov-Schur implementation in SLEPc [HRV05]. Graph Lapla-
cians always have a zero eigenvalue with eigenspace dimension equal to the
number of connected components; we de�ate the search space for the eigen-
solver thanks to this property. In our experimental study, we employ this
interpolation technique; In Section 9.3.1, we evaluate its approximation quality.

9.2.3 properties of the heat trace

We now discuss how the heat trace signature achieves our target properties.

Permutation-invariance. �e permutation invariance of ℎ(G) follows from
the properties of the spectrum: isomorphic graphs are isospectral, hence their
respective heat trace signatures are equal.

Scale-adaptivity. �e heat kernel can be seen as continuous-time random
walk propagation, and its diagonal (also referred to as the autodi�usivity
function or the heat kernel signature) can be seen as a continuous-time Page-
Rank [Chu07]. Figure 9.2 shows the heat kernel signature with small (a),
medium (b), and large (c) t; with large t, the heat tends to focus on central
nodes.

As t approaches zero, the Taylor expansion yieldsHt ≃ I − tL, mean-
ing the heat kernel depicts local connectivity. On the other hand, for large t,
Ht ≃ I − e−�2t�2�2

T, where �2 is the Fiedler vector used in spectral graph
clustering [SM00], as it encodes global connectivity. �us, the heat kernel

112 spectral graph similarity

(a) Small t (0.5) (b) Medium t (4.5) (c) Large t (55,555)

Figure 9.2: The diagonal
of Ht at different scales

on the Karate club graph;
at a large scale, the field
reflects node centrality.

Figure 9.3: Visualization
of the diagonal in the
heat kernel matrix Ht

for the pointed ver-
tex at scale t = 0.3.

localizes around its diagonal, and the degree of localization depends on the
scale t; it can thereby be tuned to produce both local and global features.

Figure 9.3 illustrates heat kernel locality, focusing on a single row ofHt

corresponding to the node marked with a red arrow; the kernel is localized in
the region marked with a dotted line.

Size-invariance. While the normalized Laplacian alleviates the problem of
di�erent edge densities [Chu97], the Taylor expansion in Equation 9.8 mani-
fests that ℎ(G) contains information about the number of nodes. Fortunately,
we can employ neutral graphs for normalization, namely the empty and the
complete graph with n nodes. Eigenvalues of the normalized Laplacian of an
empty graph K̄n of size n are all zero; for a complete graph Kn, they are given
by a vector of one zero and n − 1 ones. �us, the heat traces of these graphs
are analytically computed as:

ℎt(K̄n) =
1

n

ℎt(Kn) = 1 + (n − 1)e−t,

and their wave traces are:

wt(K̄n) =
1

n

wt(Kn) = 1 + (n − 1) cos(t).

network laplacian spectral descriptor 113

100 200 300 400 500
10−3

10−2

10−1

100

k

‖
ℎ
(G
)−
ℎ
k
(G
)‖
2

‖
ℎ
(G
)‖
2

Bottom k, linear growth
Top and bottom k∕2, linear growth

(a) Error vs. k

10−2 10−1 100 101 102
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

t

‖
ℎ
(G
)−
ℎ
k
(G
)‖
2

‖
ℎ
(G
)‖
2

Bottom 300, linear growth
Top and bottom 150, linear growth

(b) Error vs. t

Figure 9.4: Relative error
in spectrum computation
of ℎ(G), averaged across
2085 graphs.

Either option can be used to normalize the heat or wave trace signatures.
Such normalization can be interpreted as a modi�cation of the corresponding
di�usivity tensor (for the heat trace) or the elasticity tensor (for the wave
trace). We provide more details in Section 9.3.

9.2.4 connection to computational geometry

Mémoli [Mém11] suggests a spectral de�nition of the Gromov–Wasserstein
distance between Riemannian manifolds based on matching the heat kernels
at all scales. �e cost of matching a pair of points (x, x′) on manifoldℳ to a
pair of points (y, y′) on manifoldN at scale t is given by

Γ(x, y, x′, y′, t) = |Hℳ
t (x, x

′) − HN
t (y, y

′)|.

�e distance between the manifolds is then de�ned in terms of the in�mal
measure coupling:

d(ℳ,N) = inf
�
sup
t>0

e−2(t+t
−1) ‖Γ‖L2(�×�),

where the in�mum is sought over all measures onℳ ×N marginalizing
to the standard measures on ℳ andN. Mémoli [Mém11] shows that this
distance can be lower bounded by

d(ℳ,N) ≥ sup
t>0

e−2(t+t
−1) |ℎℳt − ℎNt |.

114 spectral graph similarity

vertices |V|

dataset |G| |Y| min. avg. max.

Mutag 188 2 10 17.93 28
ptc 344 2 2 25.56 109
Proteins 1113 2 4 39.06 620
nci1 4110 2 3 29.87 111
nci109 4127 2 4 29.68 111
Enzymes 600 6 2 32.63 126
d&d 1178 2 30 284.3 5748

Collab 5000 3 32 74.49 492
imdb-b 1000 2 12 19.77 136
imdb-m 1500 3 7 13.00 89
Reddit-S 9543 2 100 337.8 999
Reddit-M 2000 2 6 429.6 3782
Reddit-X 2085 — 1001 1447.2 5242
Reddit-L 291 2 4445 97491 1632141

Table 9.1: Dataset
properties.

In other words, the lower bound is the scaled L∞ distance between the
heat trace signatures ℎ(ℳ) and ℎ(N).

We e�ectively adopt this resultmutatis mutandis to graphs, substituting
the Laplace–Beltrami operator of the manifold with the normalized graph
Laplacian; we then sample the heat trace signature at a �nite number of scales,
rendering it a versatile vector representation of a graph, as other works pro-
duce vector representations of graph vertices [RSF17, TMKM18]. �is lower
bound implies that, if the distance between heat trace signatures is su�ciently
large, the compared graphs cannot be similar. Unlike the spectral Gromov–
Wasserstein distance, distances between heat trace signatures are easily index-
able; thus, the derived bound allows for e�ciently pruning of dissimilar graphs
while working with the index alone, as with any lower-bounding scheme for
high-dimensional search [TYSK09, KK11].

9.3 EXPERIMENTS

We evaluate4 netlsd against NetSimile [BKERF13] and fgsd [VZ17]. We4. Source code and
data are available at
https://github.

com/xgfs/NetLSD

run the experiments on a 20-core Intel Xeon cpu E5-2640v4, 3.20GHz ma-

https://github.com/xgfs/NetLSD
https://github.com/xgfs/NetLSD

experiments 115

chine with 256GB ram. Each method is assessed on the best parameters
through cross-validation. We require each method to complete within one
day, or else an early termination is issued. We used graph-tool [Pei14b] for
graph manipulation and synthetic graph generation.

We compare to the following comparison methods:
NetSimile [BKERF13] is a representation using handcra�ed features ob-

tained by aggregating statistics on nodes and edges (e.g., average degree, stan-
dard deviation of the degree of the neighbors). For each graph, the resulting
representation has 35 dimensions. As recommended in [BKERF13], we use
the Canberra5 distance for comparison. 5. https://en.

wikipedia.org/wiki/

Canberra\.distancefgsd [VZ17] is a method that computes histograms on the biharmonic
kernel of the graph. Such histograms typically bear large dimensionality
(≥50.000) using the recommended bin-width 0.0001.

Parameter settings. Unless otherwise stated, we repeat each experiment 100
times and report the average across all trials. We instantiate netlsd with
both heat ℎ(G) and wave w(G) trace signature described in Section 9.2.1.
In addition, we evaluate our normalized versions: the normalization with
the empty graph ℎ(G)∕ℎ(K̄), w(G)∕w(K̄) and the normalization with the
complete graph ℎ(G)∕ℎ(K),w(G)∕w(K). To build netlsd signature vectors,
we need to sample a number of traces, i.e., values of t. A�er experimentation,
we settled for 250 values evenly spaced on the logarithmic scale in the range
[10−2, 102]; we attested this to be a good choice in terms of the quality-size
tradeo�, hence use these settings in all experiments, with both heat and wave
signatures. With small graphs, we employ the full eigendecomposition to
produce the trace for each t value. With the larger Reddit-L graph, we use
300 eigenvalues, 150 from each side of the eigenspectrum, by default, unless
indicated otherwise; we validate these choices in Section 9.3.1 (cf. Figure 9.4).

https://en.wikipedia.org/wiki/Canberra_distance
https://en.wikipedia.org/wiki/Canberra_distance
https://en.wikipedia.org/wiki/Canberra_distance

116 spectral graph similarity

dataset ℎ(G) ℎ(G)∕ℎ(K̄) ℎ(G)∕ℎ(K) w(G) w(G)∕w(K̄) w(G)∕w(K) fgsd NetSimile

Mutag 76.03 79.12 78.22 78.18 79.72 79.38 77.79 77.11
ptc 56.41 62.53 63.11 58.55 64.28 60.46 54.75 62.12
Proteins 91.81 94.90 95.31 93.04 89.00 91.27 60.11 85.73
nci1 69.74 74.55 69.89 70.54 74.14 70.90 64.08 58.58
nci109 68.60 73.76 69.48 70.75 73.96 70.67 64.28 58.76
Enzymes 92.51 95.20 95.70 94.03 90.77 90.10 53.93 87.38

Collab 59.82 65.85 69.74 69.01 70.35 71.89 55.18 54.43
imdb-b 67.18 70.58 69.22 75.26 75.54 74.13 56.23 54.44
imdb-m 74.45 75.51 75.54 77.99 78.68 76.97 56.31 48.06

Table 9.2: Classification
ROC AUC in detecting
whether a graph is real.

dataset ℎ(G) ℎ(G)∕ℎ(K̄) ℎ(G)∕ℎ(K) w(G) w(G)∕w(K̄) w(G)∕w(K) fgsd NetSimile

Mutag 86.47 85.32 84.66 83.35 81.72 82.22 84.90 84.09
ptc 55.30 52.76 51.16 54.97 54.53 53.40 60.28 61.26
Proteins 64.89 65.73 65.36 66.80 65.58 62.27 65.30 62.45
nci1 66.49 67.44 64.82 70.78 67.67 62.19 75.77 66.56
nci109 65.89 66.93 64.78 69.32 67.08 63.53 74.59 65.72
Enzymes 31.99 33.31 37.19 40.41 35.78 28.75 41.58 33.23
d&d 69.86 68.38 67.09 68.77 65.39 65.12 70.47 64.89

Collab 68.00 69.42 69.70 75.77 77.24 67.37 73.96 73.10
imdb-b 68.04 70.17 69.45 68.63 69.33 61.67 69.54 69.20
imdb-m 40.51 40.34 40.10 42.66 42.00 39.71 41.14 40.97
Reddit-M 43.12 40.62 39.08 41.49 38.65 41.24 41.61 41.32
Reddit-S 83.67 81.77 83.73 84.49 70.47 79.46 88.95 89.65

Table 9.3: Accuracy
in 1-NN classification.

Datasets. We use six graph collections from bioinformatics [YV15] and three
social networks. Collab, and imdb-(b/m) graph collections are obtained by
sampling neighborhoods of nodes in a collaboration and movie network, re-
spectively. Reddit-S, Reddit-M, and Reddit-L are selected among small (at
most 1000 nodes), medium (at most 4000 nodes) and large (> 4000 nodes)
subreddits6, respectively. We report their main characteristics in Table 9.1:6. https://dynamics.

cs.washington.

edu/data.html number of graphs |G|, number of labels for classi�cation |Y|, minimum, av-
erage, and maximum number of vertices.

https://dynamics.cs.washington.edu/data.html
https://dynamics.cs.washington.edu/data.html
https://dynamics.cs.washington.edu/data.html

experiments 117

9.3.1 approximation quality

First, we study the quality of the approximation technique of Section 9.2.2.
Figure 9.4 reports relative error results in terms of deviation from the exact
version, averaged over 2085 Reddit-X graphs. Speci�cally, Figure 9.4a shows
the quality of the approximation varying the number of eigenvalues k, using
only the k-smallest (blue line) and the k∕2-smallest and k∕2-largest eigen-
values (green line). Using eigenvalues from the two ends of the spectrum
achieves consistently better performance. Figure 9.4b shows the impact of
t in the approximation. �e prediction is easier at large t, as the spectrum
converges to the constant value 1; at medium t values, the approximation is
harder. Still, the use of the lowest and largest eigenvalues delivers almost an
order of magnitude higher accuracy than using only one side of the spectrum,
vindicating our choice of approximation.

9.3.2 identifying real-world networks

We devise a binary classi�cation task of detecting whether a graph is real
or synthetic. Such tasks are critical in anomaly detection and detecting bots
and trolls in social networks. To render the task challenging enough, rather
than generating purely random graphs (which are easy to detect), we produce
synthetic graphs by rewiring real ones while preserving their degree distribu-
tion, using 10 iterations of shu�ing all their edges via Metropolis-Hastings
sampling [Pei14a]. We consider a label indicating whether the graph has been
rewired. We label 80% of the dataset and test 20%, predicting a graph’s label as
that of its Nearest Neighbor (1-nn) by each similarity measure, and report the
average across 100 trials. Table 9.2 shows our results, in terms of roc auc, for
all datasets and measures. �ese results con�rm the e�ectiveness of netlsd.

9.3.3 graph classification

We now assess netlsd on a traditional task of 1-nn graph classi�cation,
using labels as provided in the datasets and splitting training and testing as in
the previous experiments. Table 9.3 reports the quality in terms of roc auc,
averaged over 1000 trials. Again, netlsd is on a par with other methods.

118 spectral graph similarity

k

Method 100 200 300

ℎ(G) 68.91 68.89 68.01
ℎ(G)∕ℎ(K̄) 62.69 61.74 61.88
ℎ(G)∕ℎ(K) 70.11 69.40 70.88
w(G) 71.27 69.93 68.93
w(G)∕w(K̄) 64.79 65.81 65.90
w(G)∕w(K) 64.51 69.49 72.64

Table 9.4: Accuracy
of 1-NN classifica-

tion on Reddit-L.

We additionally report in Table 9.4 the quality results for the largest dataset
at our disposal (Reddit-L). NetSimile and fgsd cannot scale to such large
graphs and therefore we do not report on them; on the other hand, netlsd
processes graphs with millions of nodes and attains good overall quality.

9.3.4 discerning community structures

Communities are sets of vertices sharing common characteristics in terms
of connectivity and attributes. Community detection [KG14, SM00] is one of
the prototypical, yet only partially solved, tasks. An expressive graph distance
should distinguish graphs with community structure from those without.

To evaluate the expressiveness of netlsd in terms of communities, we de-
vise a graph classi�cation experiment: We generate some graphs with commu-
nity structure and some without, and the classi�er’s task is to predict whether
test set graphs have community structure. We employ a simple 1-nn classi�er,
as our goal is to test the representation’s expressiveness rather than the perfor-
mance of the classi�er. We generate 1000 random graphs with Poisson degree
distribution P(�) with mean degree � = 10 and �xed size. �en, we sample
another 1000 graphs from the stochastic block model (sbm) [KN11] with
10 communities, following the same degree distribution. �e sbm produces
graphs with clear community structure as opposed to random ones. We use
80% of the dataset for training, and 20% for testing, repeat the experiment with
di�erent training and testing sets, and report the average across trials. Table 9.5
reports the average quality for discerning sbm graphs by 1-nn classi�cation
in terms of roc auc, as we vary the graph size in (64,128,256,512,1024). We
observe that netlsd signi�cantly outperforms the competitors and improves

experiments 119

Number of nodes n

Method 64 128 256 512 1024

ℎ(G) 57.40 68.37 77.42 82.83 84.63
ℎ(G)∕ℎ(K̄) 57.42 68.40 77.41 82.84 84.63
ℎ(G)∕ℎ(K) 56.71 67.96 77.50 83.31 85.12

w(G) 57.47 66.97 73.95 78.43 80.26
w(G)∕w(K̄) 57.44 66.98 73.96 78.43 80.25
w(G)∕w(K) 56.75 66.26 73.06 77.05 78.76

fgsd 58.00 55.73 55.46 53.43 51.57
NetSimile 65.73 61.31 61.51 61.86 61.58

Table 9.5: Accuracy in
detecting graphs with
communities.

n ∼ P(�)

Method 64 128 256 512 1024

ℎ(G) 54.39 59.01 60.82 57.99 53.80
ℎ(G)∕ℎ(K̄) 54.53 62.27 70.83 76.45 78.40
ℎ(G)∕ℎ(K) 54.37 60.93 66.86 68.24 65.23

w(G) 56.23 63.77 69.57 71.66 70.34
w(G)∕w(K̄) 55.51 63.85 72.12 77.59 79.39
w(G)∕w(K) 56.69 64.92 71.81 75.91 77.50

fgsd 55.44 54.99 53.86 52.74 50.92
NetSimile 59.55 56.57 59.41 66.23 60.58

Table 9.6: Accuracy in
detecting graphs with
communities, Poisson
distribution of graph size.

in quality on larger graphs. While discriminating very small communities
is intuitively harder than distinguishing large ones, the performance of both
fgsd andNetSimile drops with increasing size, suggesting that thesemethods
only capture local, small-scale variations. �is result veri�es the capacity of
netlsd to capture global and local characteristics.

In the second experiment we evaluate the size-invariance of netlsd:
the task is to discriminate �xed-size communities in graphs of increasing
size. �erefore, we sample the number of nodes n from a Poisson distribution
P(� = n) with variance �, and then generate a network with n nodes. Again,
we repeat the process 1000 times with purely random generated graphs and
1000 with random graphs with community structure, and perform classi�-

120 spectral graph similarity

n ∼ U(10, �)

Method 64 128 256 512 1024

ℎ(G) 51.16 51.98 51.62 51.05 50.08
ℎ(G)∕ℎ(K̄) 51.19 53.36 56.63 59.10 59.71
ℎ(G)∕ℎ(K) 51.69 53.67 55.43 55.29 53.43

w(G) 52.38 55.89 59.81 61.18 59.13
w(G)∕w(K̄) 51.61 54.67 57.83 60.06 61.01
w(G)∕w(K) 52.63 57.48 62.85 67.95 71.19

fgsd 57.92 55.62 54.94 52.74 52.15
NetSimile 63.63 58.31 55.75 54.34 53.11

Table 9.7: Accuracy in
detecting graphs with
communities, Uniform

distribution of graph size.

cation as before. Table 9.6 reports the results, for increasing �. Once again,
netlsd outperforms the competitors.�is result con�rms that the normaliza-
tion proposed in Section 9.2.3 is e�ective in detecting community structures in
graphs of di�erent size. Table 9.6 also indicates that, while both normalizations
are similarly e�ective with the wave kernel, the complete-graph normalization
produces worse, yet competitive, results with the heat kernel.

Last, we assess the size-invariance of netlsd in a tough regime: discrim-
inating communities in graphs with a number of nodes chosen uniformly at
random. We sample the number of nodes n from the uniform distribution
U(10, �); other experimental settings remain the same. Table 9.7 reports the
results with growing �. We observe that netlsd outperforms the competitors
once again, yet the results suggest that this task is more challenging. Complete-
graph normalization for the wave kernel and empty-graph normalization
for the heat kernel perform best. We conclude that, for fully size-agnostic
comparisons, normalization should be chosen carefully.

9.3.5 case study

Here, we visualize the discovery potential of netlsd as a similarity measure.
We run a furthest pair query on all graphs in our collection bar those in the
Reddit-L dataset, which are harder to visualize readably; thereby, we discover
the two graphs of lowest similarity, using the normalized heat kernel. Figure 9.5
shows those two graphs: a protein interaction network from the d&d dataset
and an enzyme’s tertiary structure from the Enzymes dataset.�ese two graphs

experiments 121

(a) Protein network. |V| = 190, |E| = 744,D = 9. (b) Enzyme. |V| = 125, |E| = 141,D = 32.

Figure 9.5: Two most
dissimilar graphs by
ℎ(G)∕ℎ(K̄) across all
small-size graphs in
datasets used. Communi-
ties are colored.

104 105 106

101

102

103

n

tim
e
(s
)

Figure 9.6: Time to com-
pute 300 eigenvalues
on both ends of the
spectrum and the approx-
imation of ℎ(G).

are conspicuously di�erent across multiple scales, from local patterns to global
structure. �e interaction network in Figure 9.5a is a small-world graph with
a large clustering coe�cient (0.425) and small diameter (D = 9), whereas the
tertiary structure in Figure 9.5b is a connected collection of long paths with a
negligible clustering coe�cient (0.006) and large (D = 32) diameter.

9.3.6 scalability

Last, we corroborate the scalability of netlsd. Figure 9.6 shows the time to
compute 300 eigenvalues for the approximation of ℎ(G) on graphs of increas-
ing size from the Reddit-X dataset. Our method computes the similarity on
graphs of one million (106) nodes in only 16 minutes, while previous methods
could not complete the process within one day.�is result illustrates the �tness
of netlsd as a scalable comparison method among real-size graphs.

122 spectral graph similarity

9.4 SUMMARY

We proposed netlsd, a representation for graph comparison relying neither
on graph alignment operations, nor on computationally-demanding kernel
computations. netlsd is a multi-scale heat trace signature of a graph Lapla-
cian spectrum, which lower-bounds the Gromov–Wasserstein distance as it
incorporates heat traces covering all scales. We derived a novel approximation
of heat traces, rendering netlsd e�ciently computable, and a normaliza-
tion scheme, rendering it size-invariant. To our knowledge, this is the �rst
graph representation that achieves these properties and allows for compar-
isons at multiple scales. Our experiments show that netlsd outperforms
NetSimile and fgsd, two state-of-the-art representation-based methods for
graph comparison, on a variety of graph collections.

10LEARNING A SPECTRAL GRAPH SIMILARITY

Learning representations allows us to tailor them to the task at hand.
Unfortunately,most real-world graph collections are small or do not
contain labels, making task-speci�c learning unattainable. �us, the

question arises: can a graph representation, tailored for a particular purpose,
be learned independently of the particular data set? We answer this question
positively: we develop sgr, the �rst, to our knowledge, method that learns
graph representations via pre-training on surrogate tasks using synthetic data.
Grounded in spectral graph analysis, sgr seamlessly learns both global and
local graph properties. In extensive experiments, we show how our approach
works on unprecedentedly large graph collections, facilitates representation
learning across various analytical tasks and application domains, and performs
competitively without retraining.

A multitude of application domains from natural sciences to sociology
takes di�erent perspectives on graph collections. For example, on a small scale,
molecules are modeled by atoms and their atomic bonds as nodes and edges in
large graph collections. While on a larger scale, social network collections are
analyzed by their community structures within the networks. Analytical tasks
run on such collections to classify, for instance,which drugs can be used for the
treatment of a disease or how molecules cluster together in functional groups.
To fully discern a graph’s properties, representation for such analysis requires
amulti-scale view of a graph adapted to the task at hand. Representations have
incorporated properties ranging from local (e.g., atomic bonds) to global (e.g.,
community structures). Nevertheless, works to date are agnostic as to which
features are most suitable for a particular task.

Supervised neural approaches for graph representation [AT16, NAK16,
BBL+17] attain excellent performance, and can be seen as the “full” tuning of
the representation. However, such neural methods are applicable to particular
datasets only, as they require labels to be available; besides, they fail to scale
to graphs of a few thousands of nodes requiring signi�cant computational
resources to be trained.

123

124 learning a spectral graph similarity

�is chapter introduces spectral graph representations (sgr), a method
for learning graph representations that is at the same time e�cient and cus-
tomizable to multiple scales, analytical tasks, and datasets. We leverage graphs’
Laplacian spectrum to learn a mapping from a collection of graphs to their
vector representation by training a single-layer neural network on global struc-
ture recognition and another one on local structures. �e global-structure
network learns to distinguish synthetic graphs with community structure
(i.e., sampled from a stochastic block model [KN11]) from random graphs by
the Erdős–Rényi model. Similarly, the local-structure perceptron is trained
to predict the local clustering coe�cient [AdM06] of a node. Moreover, we
combine local and global representations to provide even more expressive rep-
resentations. sgr representation is self-learning in the sense that it requires
no real training data. We conduct an experimental study with several real
datasets, using the ensuing graph signature representations on tasks such as
graph classi�cation by logistic regression. �e results attest to the superiority
of our approach on both classi�cation and clustering tasks with real data.

We summarize the contributions of this chapter as follows:

• We propose sgr, the �rstmethod to pretrain representations that works
for sparse, variable-size, large graphs.

• We build a model that incorporates arbitrary surrogate tasks, and show
its ability to learn local and global information.

• We run extensive experiments on several real datasets of variable size
and obtain performance comparable to or better than computationally
demanding state-of-the-art methods.

learned spectral representations 125

Figure 10.1: Different
regions of the spectrum
have a different impact
on the classifier co-
trained with the SGRG .
The color map shows
the gradient magnitude
of the classifier output
with respect to the input
spectrum visualized in
increasing order from
left to right, averaged on
600 graphs. Top: SBM;
bottom: Erdős-Rényi.

10.1 LEARNED SPECTRAL REPRESENTATIONS

We conceive of the heat traces as a nonlinear transformation of the graph spec-
trum of the form

∑

k
ft(�k) with ft(�) = e−t�. Sampling the time parameter

on some grid {t1, … , td} yields the following d-dimensional representation:

� = (
∑

k

ft1(�k), … ,
∑

k

ftN(�k)) .

We propose to extend this view to a more general parametric family of
spectrum transformations. Given a graph G with n vertices, we �rst compute
its spectrum or a part thereof {�k}, and interpolate it producing �(x) on the
interval [0, 1] such that �(k∕n) = �k. �e spectrum is then sampled on a
�xed grid (x1, … , xk) with k points, producing an k-dimensional vector �̃
with the entries �̃k = �(xk). Note that �̃ is insensitive to a graph’s size and
invariant to the ordering of its vertices.

�e interpolated and sampled spectrum �̃ undergoes next a parametric
non-linear transformation implemented as a single-layered perceptron,

� = (W�̃ + b),

whereW is an d×M weight matrix, b is a d-dimensional bias vector, and is
an element-wise selu non-linearity [KUMH17].�e resultingd-dimensional
spectral graph representation (sgr) is parameterized by � = (W, b).

We propose two distinct regimes to train this representation. To obtain
a representation capturing predominantly the global structure of the graph
(manifested in the lower part of the spectrum), we co-train � jointly with
a binary classi�er attempting to distinguish between Erdős-Rényi random
graphs and stochastic block model [KN11] graphs of various degrees and
sizes, which have very di�erent community structures. �e binary classi�er is
embodied as a single linear layer on top of the output of � followed by so�max,
and is trained using the regular cross-entropy loss.

On the other hand, to train a representation sensitive to local features
(manifested predominantly in the higher part of the spectrum), we co-train �

126 learning a spectral graph similarity

jointly with a regressor attempting to estimate the p-ring clustering coe�cient
of a graph [AdM06], sensitive to small-scale edge variations.

We de�ne local p-ring clustering coe�cient of a node i in a graph G as

C
p

i
=

|{(j, k) ∶ j, k ∈ N(i), dG′
i
(j, k) = p}|

deg(i)(deg(i) − 1)
,

where N(i) denotes the 1-ring of the vertex i and deg(i) = |N(i)| its
cardinality, G′

i
\sqsubset G is the subgraph of G with the vertex i removed, and

dG′
i
(j, k) stands for the graph distance between vertices j and k in G′.

�e local clustering coe�cient is then averaged over all vertices of degree
d, and then further averaged, with proper normalization, over all degrees,
yielding the global p-ring clustering coe�cient

Cp(G) =
1

∆(G)

∆(G)∑

d=1

1

|{i ∶ deg(i) = d}|

∑

i∶deg(i)=d

C
p

i
,

where ∆(G) = max
i
deg(i) denotes the maximum degree of G. �e com-

putation of Cp(G) takes O
(
n ∗ ⟨deg⟩2+p

)
where ⟨deg⟩ is the average degree

of the graph.

We implement the regressor as a linear layer on top of � and train it with
the l2 loss on vectors of the form (C1(G), … , C5(G)), where the G’s are, as
in the global case, Erdős-Rényi random graphs and stochastic block model
(sbm) graphs of varying degrees and sizes.

In both cases, the classi�er and the regressor are tossed away, leaving an
appropriately trained graph representation. �is approach is inspired by the
versatility of image embeddings obtained from deep neural networks trained
on visual recognition tasks. We henceforth denote the representation trained
on the global task as sgrG , while sgrLdenotes its local-task counterpart. Last,
we also combine the loss of local and global tasks in order to learn sgrL+G , a
joint local-global representation. We emphasize that the performance in any
surrogate task is inconsequential to our method; we use such tasks merely to
train the representation.

learned spectral representations 127

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

k

Re
la
tiv

e
L
1
er
ro
rf
or

sg
rG

Figure 10.2: Relative L1
error in neural represen-
tation as a function of
a number of computed
eigenvalues.

10.1.1 graph generation

As discussed, the surrogate tasks used in sgr require synthetic graphs that
mimic those encountered in the real tasks. We generate graphs sampling
from the Poisson degree distribution with 1–100 communities at di�erent
signal-to-noise ratios. For sbm with r communities, the signal-to-noise ratio
snr [DKMZ11, Abb18] is

snr =
(a − b)2

r (a + (r − 1) b)
,

where a and b are intra- and inter-community probabilities, respectively.
When snr > 1 (Kesten–Stigum threshold), community detection (i.e., weak
recovery) works e�ortlessly [Abb18]. �us, we focus the training on hard,
more informative instances with snr ≈ 1.

10.1.2 efficient computation

Full eigendecomposition takesO(n3) time andO(n2) space. While for graphs
with ∆(G) ≪ n the sparse structure of the Laplacian allows to reduce the
complexity toO(n2), it is still prohibitive for large graphs. Instead, we compute
k ≪ n top and bottom eigenvalues, and use interpolation in between. �is
reduces complexity to O(n2k) in the general case and to O(nk) in the case of
bounded degree graphs. Figure 10.2 illustrates the stability of sgrGin terms
of the number of eigenvalues.

128 learning a spectral graph similarity

Dataset statistics Avg. graph statistics
dataset |G| |L| |V| |E| CC

d&d 1178 2 284.32 715.66 0.4574
Enzymes 600 6 32.63 62.14 0.4454
Mutag 188 2 17.93 19.79 0
Mutagenicity 4337 2 30.32 30.77 0
nci1 4110 2 29.87 32.30 0
nci109 4127 2 29.68 32.13 0
Proteins 1113 2 39.06 72.82 0.2895
ptc-fr 351 2 14.56 15.00 0
ptc-mr 344 2 14.29 14.69 0
Collab 5000 3 74.49 2457.50 0.9885
imdb-b 1000 2 19.77 96.53 0.6661
imdb-m 1500 3 13.00 65.94 0.9091
Reddit-B 2000 2 429.63 497.75 0.0038
Reddit-5k 4999 5 508.52 594.87 0.0010
Reddit-12k 11929 11 391.41 456.89 0.0031

Table 10.1: Dataset
characteristics: number

of graphs |G|, number of
labels |L|, avg. number of
vertices |V|, avg. number

of edges |E|, avg. global
clustering coefficient CC.

10.2 EXPERIMENTS

We evaluate sgr on classi�cation and clustering tasks on a variety of real
graph collections. We compare against state-of-the-art kernels and graph
representation methods, in terms of accuracy and running time.

Experimental setup. We ran experiments on a 20-core Intel Xeon cpu E5-
2640v4, 3.20GHz machine with 256GB ram. Unless otherwise stated, we
repeat each experiment 100 times and report the average across all trials. We
interpolate the spectrum of the normalized Laplacian of each graph in the
collection through cubic-spline; then, we return 256 values uniformly sampled
in the interpolated spectrum.�is interpolated spectrum is the input of the
single-layer perceptrons that learn the global and the local representations. As
we discussed, the global-structure representation (sgrG) is the single-layer
perceptron trained to distinguish graphs with community structures sampled
from stochastic blockmodel from randomErdős–Rényi graphs,while the local-
structure perceptron (sgrL) is trained to recognize small-scale variations on
edges by predicting the value of the local clustering coe�cient [AdM06].

experiments 129

Kernels Fixed Representations Self-learned Representations
dataset wl mlg Λ NetSimile fgsd netlsd sgrL sgrG sgrL+G

d&d 68.27 >1D 64.54 70.02 64.88 75.93 76.22 76.12 76.42
Enzymes 25.11 31.40 25.28 28.06 28.85 25.76 30.02 33.67 35.67
Mutag 81.16 86.54 82.07 83.66 85.23 87.46 86.78 86.97 85.71
Mutagenicity 74.54 76.88 62.51 69.37 74.59 61.39 68.75 69.39 69.21
nci1 72.26 77.01 66.82 62.07 72.87 69.26 69.44 69.71 69.62
nci109 72.01 76.07 64.30 61.54 71.90 67.83 67.88 67.82 68.13
Proteins 72.33 73.10 72.18 70.59 63.27 75.11 72.18 73.83 73.20
ptc-fr 65.14 65.56 64.90 66.02 61.42 65.62 62.02 63.36 61.41
ptc-mr 56.79 59.85 57.02 56.85 54.29 59.35 57.67 56.17 56.71
Collab 78.52 >1D 66.15 74.26 70.66 68.83 72.90 71.98 72.58
imdb-b 72.26 59.18 63.16 70.96 69.20 68.23 68.18 70.38 69.36
imdb-m 50.75 34.31 41.14 46.80 48.88 45.84 47.02 47.97 47.74
Reddit-B 71.97 >1D 76.25 86.84 87.12 78.84 87.18 87.45 87.76
Reddit-5k 48.57 >1D 48.02 44.96 48.51 53.99 53.38 53.22 53.41
Reddit-12k 36.11 >1D 34.89 55.12 33.23 35.27 40.34 41.24 40.63

Table 10.2: Graph clas-
sification accuracy on
biochemical (top) and
social (bottom) graph
collections. Best results
with representations are
highlighted.

We compare sgr against popular graph kernel methods: the Weisfeiler–
Lehman kernel (wl) and the state-of-the-art Multiscale Laplacian Graph ker-
nel (mlg) [KP16], using default parameters: height ℎ = 4 for wl kernel and

 = 0.01, � = 0.1, radius = 1, levels = 2 for mlg kernel. We also compare
sgr against NetSimile [BKERF13], fgsd [VZ17], and netlsd [TMK+18b]
graph representations. NetSimile constructs features by aggregating statis-
tics on nodes and edges. For fgsd, which computes histograms on the bi-
harmonic kernel of the graph, we use the bin width 0.0001, as described
in [VZ17]. For netlsd, we evaluate all proposed kernel variants using cross-
validation and pick the best performing one. We additionally report the
results of a naı̈ve baseline spectral representation (Λ) that represents the
graphs with a 256-dimensional vector sampled uniformly from a cubic spline-
interpolated [Die95] spectrum of the normalized Laplacian, which corre-
sponds to sgr without learning.

Datasets. We use 15 graph collections from the standard benchmark for
Graph Kernels [KKM+16]. Such collections describe either social interactions
(e.g., Reddit-B from messages in the Reddit platform) or biological connec-
tions (e.g., protein-protein interactions in Proteins). Table 10.1 shows the main
data characteristics. �e number of graphs in each collection varies from 188

130 learning a spectral graph similarity

Fixed representations Self-learned representations
dataset NetSimile FGSD Λ netlsd sgrL sgrG

d&d 4.72 13.56 6.50 15.18 9.14 6.06
Enzymes 8.61 9.43 10.68 13.72 10.16 9.59
Mutag 40.65 26.56 24.34 34.13 28.61 21.05
Mutagenicity 7.82 3.54 2.99 3.57 3.79 2.54
nci1 3.34 3.99 4.69 6.02 4.69 4.89
nci109 3.29 4.04 4.52 5.55 5.03 3.82
Proteins 5.51 6.87 11.53 13.74 12.23 8.68
ptc-fr 4.72 4.46 3.73 3.90 4.58 4.14
ptc-mr 4.64 5.50 4.96 5.27 5.56 4.93
Collab 22.71 18.62 19.28 18.46 20.08 18.76
imdb-b 13.20 10.81 6.69 9.14 7.58 5.95
imdb-m 7.20 6.92 4.92 5.70 4.94 4.69
Reddit-B 15.15 7.76 9.82 18.10 11.05 8.13
Reddit-5k 16.02 4.29 10.47 17.14 9.51 9.85
Reddit-12k 15.63 5.24 11.40 15.30 11.16 13.28

Table 10.3: Normalized
mutual information

of clustering on rep-
resentations. Higher

numbers indicate bet-
ter performance. Best

results on each dataset
are highlighted in green.

(Mutag) to 12k (Reddit-M-12k), while the average graph size varies from 13

(imdb-b) to 508 (Reddit-5k). Networks in the standard benchmark datasets
have very skewed clustering coe�cient distribution (CC). Last, note that sgr
ignores any edge and node labels.

10.2.1 classification

In our classi�cation experiment, on each of the datasets we randomly select
80% of the data for training, and 20% for testing. We train an svm using Lib-
SVM [CL11] with default parameter C=1 and graph kernels. For all graph rep-
resentations, including sgrLand sgrG , we train a logistic regression classi�er
with default C=1 and L2 regularization, using LIBLINEAR solver [FCH+08].
Table 10.2 reports the classi�cation accuracy averaged over 100 runs.

Our method attains good quality in almost all datasets except for nci1,
nci109, and Proteins, for which fgsd stands out. Due to the small average
graph size and density of these datasets, the task becomes harder for our
approach that relies on local and global graph structures. At the same time,
while state-of-the-art kernels (mlg) outperform sgr on some datasets, they
fail to deliver results on medium and large collections in less than one day.

summary 131

Kernels Fixed Representations Self-learned Repr.
dataset sp wl mlg NetSimile fgsd Λ sgrL sgrG
Training — — — — — — 2h 8h
Representation — — — 1.2h 7h 4m 4m + 1s 4m + 1s
Similarity >1D 35m >1D 0.3s 8m 1.5s 1.5s 1.5s

Table 10.4: Runtime
for the creation of a
(dis-)similarity matrix
across all graphs from
the Reddit-5k dataset
evaluated on a single
core. Representation
computation time for
SGR is indicated in two
components, spectrum
computation + neural
network inference. On
the datasets, last two
rows combined yield
total time taken.

10.2.2 clustering

Here, we evaluate the performance of scalable methods, i.e., �xed represen-
tations and sgr, on the task of clustering graphs by class. We run k-means
clustering on the representations and measure the Normalized Mutual Infor-
mation (NMI), reported in Table 10.3. Overall, sgr outperforms previous
graph representations on biological datasets. Further, when it comes to social
graphs, sgr matches the performance of techniques based on hand-cra�ed
features (NetSimile), which are tailored to such datasets.

10.2.3 scalability and time

Last, we report, in Table 10.4, the time for the neural network training (where
applicable), computing representations (where applicable) and computing the
square similarity matrices among 5000 graphs on the REDDIT-M-5k dataset,
for all competing methods. Notably, sgr is about 20 times faster than the
fastest competing method (NetSimile).

10.3 SUMMARY

We introduced sgr, a lightweight and concise graph representation that is
self-learned via a single-layer perceptron over a collection of synthetically gen-
erated graphs. In particular, sgr learns sets of parameters encoding global and
local graph properties as nonlinear transformations of the graphs’ Laplacian
spectra; thus, it can adapt to a multitude of analytical tasks and application do-
mains. �rough extensive experimentation, we established that sgr achieves
accuracy matching (or negligibly below) that of the most computationally
demanding kernel methods on graph classi�cation and clustering, while vastly
surpassing them in speed.

11EFFICIENT APPROXIMATION OF
SPECTRAL GRAPH REPRESENTATIONS

Spectral analysis provides quintessential tools for studying the
graphs’ multi-scale structure and is a well-suited foundation for
reasoning about di�erences between graphs. In practice, however,

spectral methods’ applicability is o�en limited by the scalability of eigende-
composition itself: it takes cubic time to compute graphs’ eigenvalues and
eigenvectors. Several graph comparisonmethods such as von Neumann graph
entropy (vnge) [BGS06, CWLR19] and netlsd, introduced in Chapter 9,
require only information derived from a graph’s eigenvalues—not the full de-
composition. Although they depend on less information, such metrics’ näıve
computation is just as expensive as a full eigendecomposition. In order to
scale to large graphs, these methods resort to low-order (two terms) Taylor ex-
pansion having loose bounds and poor empirical approximation performance.
�ere has been no discussion of approximation accuracy or experiments on
how it a�ects performance on downstream tasks.

In this chapter, we propose slaq, an e�cient and e�ective approxima-
tion technique for computing spectral distances between graphs with billions
of nodes and edges. By leveraging recent advances in numerical linear al-
gebra [UCS17], we achieve state-of-the-art approximation accuracy in time
linear in the number of graphs’ edges. We derive the corresponding error
bounds and demonstrate that accurate computation is possible in time linear
in the number of graphs’ edges. In a thorough experimental evaluation, we
show that slaq outperforms existing methods, o�entimes by several orders
of magnitude in approximation accuracy, and maintains comparable perfor-
mance, allowing us to compare million-scale graphs in a matter of minutes
on a single machine.

133

134 approximating spectral graph representations

We summarize the contributions of this chapter as follows:

• We introduce slaq, an e�cient approximation technique for two spec-
tral graph distances, vnge and netlsd.

• We derive corresponding approximation error bounds and experimen-
tally observe an average reduction in the approximation error of 30×–
200× over a diverse set of real-world graphs.

• We demonstrate that faithful approximation is necessary for accurate
graph comparison and current approximation techniques are un�t for
accurate yet fast approximation.

• We show that accurate computation of vnge and netlsd is possible
for a graph with billions of nodes and edges on a single machine in less
than an hour.

11.1 PRELIMINARIES

We review the de�nition of vnge and two techniques for approximating
spectral representations introduced in [CWLR19] and Chapter 9. We note
that although netlsd and vnge operate on di�erent Laplacian matrices,
for convenience’s sake we will refer to the spectrum of both matrices as �i.

11.1 .1 von neumann graph entropy

In the Standard Quantum Mechanics model, the state of a quantum mechani-
cal system associated with the n-dimensional Hilbert space is identi�ed with
a n × n positive semide�nite, trace-one, Hermitian density matrix. Von Neu-
mann entropy [VN32] is a quantitative measure of mixedness of this density
matrix, and is de�ned as follows:

De�nition 6. Von Neumann Entropyℋ is de�ned asℋ = −
∑

i
�i ln �i. It is

completely determined by the spectrum.

By convention, 0 log 0 = 0. Braunstein et al. [BGS06] reinterprets the graph
Laplacian matrix L as a quantum mechanical system and introduces von
Neumann graph entropy (vnge) by scaling the graph Laplacian L by its trace
to get the density matrix P =

1

tr(L)
L. Scaling the Laplacian does not a�ect

preliminaries 135

the shape of its spectrum, as each eigenvalue is simply multiplied by 1∕tr(L).
�is measure is related to the centralization of graphs [SCD18], however, its
general structural interpretation is unknownmainly due to the lack of accurate
scalable approximation [HEHW12, MRT18].

11.1.2 approximation methods

Both vnge and netlsd can be represented as a function tr f(�) of the
Laplacian eigenvalues. A näıve approach would be to compute the exact eigen-
values and compute that function as

∑

i
f(�i), however, as we mentioned

before, the computational complexity of full eigendecomposition is O(n3),
which is infeasible for large n.

Below we review approximation techniques that have been proposed in
the literature [HEHW12, CWLR19, TMK+18b]. We empirically evaluate their
approximation performance in Section 11.3.1.

11.1.3 taylor expansion

A natural impulse for dealing with complexmatrix functions is to approximate
the function with the �rst few terms of its Taylor expansion. Even though it is
known that Taylor expansion provides an unreliable approximation of matrix
functions [MVL03], both netlsd and vnge make use of this approximation,
as the �rst two Taylor terms can be computed in O(m).

�e expansion of netlsd depends on the parameter t, and its approxi-
mation is reasonable for only small values of t:

ℎt =
∑

i

e−t�i =

∞∑

k=0

tr((−tL)
k
)

k!
≈ n − t tr(L) +

t2

2
trL2. (11.1)

�e expansion used for vnge is slightly di�erent [CWLR19, MRT18]:

ℋ =
∑

i

�i ln �i ≈ 1 −
1

tr(L)2
(tr(L) + 2 tr(L2)). (11.2)

�ese �rst two terms are easily computed,even for very large graphs, as tr(ℒ) =
n and tr

(
ℒ2

)
=

∑

ij
ℒij

2 sinceℒ is self-adjoint, and the error rate of the Taylor
expansion of the matrix exponential depends on the largest eigenvalue of the
matrix [MVL03].

136 approximating spectral graph representations

Chen et al. [CWLR19] introduce two approximation algorithms for vnge
based on a two-term Taylor expansion, finger-ℋ and finger-ℋ̂:

Q = 1 −
1

tr(L)2
(tr(D)2 + 2 tr(L2))

finger-ℋ = −Q ln (
2max D

tr(L)2
) , finger-ℋ̂ = −Q ln (�max)

11.1.4 spectral interpolation

We conclude by noting that the Taylor expansion is useful on very large graphs,
on which computing any part of the spectrum is prohibitive. For manageable
graph sizes, netlsd adopts a more accurate strategy based on approximating
the eigenvalue growth rate, adapted from [VBCG10]. It takes O(km + k2n)

to compute k extremal eigenvalues of a graph [GM09], thus it is possible to
compute k eigenvalues on both ends of the spectrum, and interpolate a linear
growth of the interior eigenvalues.

It is easy to see that the worst-case scenario is the graph with exactly k
isolated nodes and a fully connected component having n−k nodes, meaning
�∶k = 0 and �k∶ = 2. �en, absolute error in the approximation of ℎt becomes
‖‖‖‖‖
n − 2k −

∑n−2k

i=0

2(i−k)

n−2k

‖‖‖‖‖
. �is bound is very loose; we further verify that the

approximation accuracy of the linear interpolation strategy is poor in the
Section 11.3.1 and that it does not scale to very large graphs in the Section 11.3.5.

11.2 STOCHASTIC LANCZOS QUADRATURE

As noted above, the main approximation techniques that have been proposed
for vnge and netlsd have limited guarantees on their approximation qual-
ity, and these weak guarantees have not been fully explored in the literature.
In this section, we address these de�ciencies and propose our method for
improved approximation of spectral distances between graphs.

11.2.1 trace function estimation

Setting aside computational infeasibility of the näıve eigenvalues calculation,
loose Taylor expansion error bounds and linear interpolation heuristics, we
attain theoretically guaranteed accuracy and speed by means of stochastic
Lanczos quadrature (slq) [UCS17].

stochastic lanczos quadrature 137

In trace estimation problems for large and implicit matrices, the standard
choice is a Hutchinson estimator [Hut89], which we apply (we denote both
Laplacians as L in this section for brevity) in our setting for the trace of matrix
exponential f(L) = exp(−tL) or the matrix logarithm f(L) = −L logL:

tr(f(L)) = Ep(v)(v
Tf(L)v) ≈

n

nv

nv∑

i=1

vT
i
f(L)vi, (11.3)

where vi are nv random vectors drawn from a distribution p(v) with zero
mean and unit variance. Practical choices for p(v) include Rademacher or
standard normal distributions, with the di�erence being in the variance or
number of random vectors [AT11].

To approximate the bilinear form vT
i
f(L)vi in Eq. (11.3) with a symmetric

real-valued matrix L, we apply the Lanczos Quadrature [GM09], which uses
the Lanczos algorithm to provide orthonormal polynomials for the Gauss
quadrature. In other words, we �rst take an eigendecomposition L = ���T,
then cast the outcome to a Riemann–Stieltjes integral and �nally apply the
m-point Gauss quadrature rule:

vT
i
f(L)vi = vT

i
Φf(�)ΦTvi =

n∑

j=1

f(�j)�
2

j

= ∫

b

a

f(t)d�(t) ≈

m∑

k=1

!kf(�k),

where �j = [ΦTvi]j and �(t) is a piecewise constant measure function:

�(t) =

⎧
⎪

⎨
⎪

⎩

0, if t < a = �n
∑i

j=1
�2
j
, if �i ≤ t < �i−1

∑n

j=1
�2
j
, if b = �1 ≤ t

and �k, !k are the nodes and weights of the quadrature. We obtain the pairs of
!k, �k with the s-step Lanczos algorithm [GM09], which we describe below
succinctly.

�e s-step Lanczos algorithm computes an orthonormal basis for the
Krylov subspaceK spanning vectors {q0, Lq0, … , Ls−1q0},with the symmetric

138 approximating spectral graph representations

Algorithm 6 slaq algorithm
1: function SLaQ LSD(G, s, nv)
2: L ← Laplacian(G)

3: descriptor ← slq(L, s, nv, exp(x))
4: return descriptor
5: function SLaQ VNGE(G, s, nv)
6: P ← DensityMatrix(G)

7: descriptor ← slq(P, s, nv, x ln(x))
8: return descriptor
9: function slq(L, s, nv, fun)
10: T = lanczos(L, s, nv) ⊳ T ∈ Rnv×m×m

11: �,U ← eigh(T)

12: return 1

nv

nv∑

i

(s∑

k

(fun(�i
k
)[ui

k,0
]2)

)

matrix L and an arbitrary starting unit-vector q0. �e output of the algorithm
is an n × s matrix Q = [q0, q1, … , qs−1] with orthonormal columns and an
s × s tridiagonal symmetric matrix T, such that QTLQ = T, notice that due
to this relation each qi vector is given as a polynomial in L applied to the
initial vector q0: qi = pi(L)q0. Since T is a tridiagonal matrix, the three-term
recurrence relation exists between the consequent polynomials pi. We can
now use the Gauss rule with points equal to the eigenvalues of T, �k, and
weights set to the squared �rst components of its normalized eigenvectors, �2

k
,

respectively (see [GW69, Wil62, GM09]). Now, setting q0 = vi, the estimate
for the quadratic form becomes:

vT
i
f(L)vi ≈

s−1∑

k=0

�2
k
f(�k), (11.4)

�k = U0,k = eT
1
uk, �k = �k,k T = U�UT (11.5)

Applying (11.4) over nv random vectors in the Hutchinson trace estima-
tor (11.3) yields the slq estimate:

tr(f(L)) ≈
n

nv

nv−1∑

i=0

(

s−1∑

k=0

(
�i
k

)2
f
(
�i
k

)
) = Γ. (11.6)

stochastic lanczos quadrature 139

We derive error bounds for the estimator based on the Lanczos approx-
imation of the matrix exponential, and show that even a few Lanczos steps,
i.e., s = 10, are su�cient for an accurate approximation of the quadratic form.
However, the trace estimation error is theoretically dominated by the error of
the Hutchinson estimator, e.g. for Gaussian p(v) the bound on the number
of samples to guarantee that the probability of the relative error exceeding �
is at most � is 8�−2 ln(2∕�) [RKA15]. Although, in practice, we observe per-
formance much better than the bound suggests. Hutchinson error implies
nearing accuracy roughly 10−2 with nv ≥ 10k random vectors, however, with
as much as nv = 100 the error is already 10−3. �us, we use default values of
s = 10 and nv = 100 in all experiments in Section 11.3.

We summarize the overall slaq method in Algorithm 6.

11.2.2 trace estimation error bounds

We �rst rewrite quadratic form under summation in the trace approximation
to a convenient form,

vTf(L)v ≈

m∑

k=0

�2
k
f(�k) =

m∑

k=0

[eT
1
uk]

2f(�k) =

eT
1
Uf(Λ)UTe1 = eT

1
f(T)e1.

(11.7)

Since the Krylov subspaceKs(L, v) is built on top of vector v with Q as
an orthogonal basis ofKs(L, v), i.e. q0 = v and v ⟂ qi for i ∈ (1, … , s − 1),
the following holds:

vTf(L)v ≈ vTQf(T)e1 = eT
1
f(T)e1. (11.8)

�us, the error in quadratic form estimate vTf(L)v is exactly the error of
Lanczos approximation f(L)v ≈ Qf(T)e1. To obtain the error bounds, we
adapt �eorem 2 in [HL97], which we recite below.

Ceorem 6. Let L be a real symmetric positive semi-de�nite matrix with eigen-
values in the interval [0, 4�]. �en the error in the s-step Lanczos approximation
of exp−tL v, i.e. �s = ‖ exp−tL v − Qs exp

−tTs e1‖, is bounded in the following
ways:

140 approximating spectral graph representations

�s ≤

⎧

⎨

⎩

10e−s
2∕(5�t), if

√
4�t ≤ s ≤ 2�t

10(�t)−1e−�t
(
e�t

s

)s
, if s ≥ 2�t

(11.9)

Since v is a unit vector, thanks to the Cauchy–Bunyakovsky–Schwarz
inequality, we can upper-bound the error of the quadratic form approximation
by the error of the exp−tL v approximation, i.e.,

|vTf(L)v − eT
1
Uf(Λ)UTe1| ≤ ‖ exp−tL v − Qs exp

−tTs e1‖ = �s

.
Following the argumentation in [UCS17], we obtain a condition on the

number of Lanczos steps s by setting �s ≤
�

2
fmin(�), where fmin(�) is the min-

imum value of f on [�min, �max]. We now derive the absolute error between
the Hutchinson estimate of Equation 11.3 and the slq of Equation 11.6:

|||||
trnv(f(L)) − Γ

|||||
=

n

nv

|||||||||

nv∑

i=1

vT
i
f(L)vi −

nv∑

i=1

eT
1
f(T(i))e1

|||||||||

≤
n

nv

nv∑

i=1

|||||||||

vT
i
f(L)vi − e

T
1
f(T(i))e1

|||||||||

≤
n

nv

nv∑

i=1

�s = n�s,

where T(i) is the tridiagonal matrix obtained with Lanczos algorithm with
starting vector vi.

|||||
trnv f(L) − Γ

|||||
≤ n�s ≤

n�

2
fmin(�) ≤

�

2
tr(f(L)) (11.10)

Finally, we formulate slq as an (�, �) estimator,

stochastic lanczos quadrature 141

5 10 15 20
10−19

10−15

10−11

10−7

10−3

1

Number of Lanczos steps, s

M
at
ve
c
ap
pr
ox
im

at
io
n
er
ro
r,
� m

t = 0.1 t = 5.05 t = 10.0

t = 2.575 t = 7.525

Figure 11.1: Errors (solid)
and error bounds (dotted)
for the approximation of
matrix exponential action
with varying temperature
t.

1 − � ≤ Pr [
|||||
tr(f(L)) − trnv(f(L))

|||||
≤
�

2

|||||
tr(f(L))

|||||
]

≤ Pr [
|||||
tr(f(L)) − trnv(f(L))

|||||
+

|||||
trnv(f(L)) − Γ

|||||
≤
�

2

|||||
tr(f(L))

|||||
+
�

2

|||||
tr(f(L))

|||||
]

≤ Pr [
|||||
tr(f(L)) − Γ

|||||
≤ �

|||||
tr(f(L))

|||||
],

For the normalizedLaplacianL, theminimumeigenvalue is 0 andfmin(0) =
exp(0) = 1, hence �s ≤

�

2
, and the eigenvalue interval has � = 0.5. We can

thus derive the appropriate number of Lanczos stepsm to achieve error �,

� ≤

⎧

⎨

⎩

20e−s
2∕(2.5t), if

√
2t ≤ s ≤ t

40t−1e−0.5t
(
0.5et

s

)s
, if s ≥ t

(11.11)

Figure 11.1 shows the tightness of the bound for the approximation of the
matrix exponential action on vector v, �s = ‖ exp(−tL) − Qs exp(−tTs)e1‖.
We can see that for most of the temperatures t, very few Lanczos steps s

142 approximating spectral graph representations

5 10 15 20

10−8

10−6

10−4

10−2

100

1

Number of Lanczos steps, s

Re
la
tiv

e
tr
ac
e
ap
pr
ox
im

at
io
n
er
ro
r,
�

102 103 104

Number of random vectors, nv

t = 0.1 t = 1 t = 2 t = 10 boundFigure 11.2: Trace esti-
mation errors (solid) and

error bounds (dotted)
for: (left) the number of

Lanczos steps m with
fixed number of random
vectors nv = 100; (right)
the number of random
vectors nv in Hutchin-

son estimator with fixed
number of Lanczos steps
m = 10. Lines correspond
to varying temperature t.

10−1 100 101

10−4

10−3

10−2

10−1

Temperature, t

St
an
da
rd

va
ria

tio
n,
�

original SLQ
SLQ w/ variance reduction

Figure 11.3: Variance
of the trace estimate

stochastic lanczos quadrature 143

are su�cient, i.e. we can set s = 10. However, the error from the Hutchin-
son estimator dominates the overall error. Figure 11.2 shows the error of
trace estimation does not change with s and for t = 0.1 is around 10−3. In
case of a Rademacher p(v), the bound on the number of random samples is
nv ≥

6

�2
log(2∕�) [RKA15]. Employing 10k vectors results in the error bound

of roughly 10−2. In practice, we observe the performance much better than
given by the bound, see Figure 11.2. Analogous error estimates for the von
Neumann entropy remain an open problem in numerical linear algebra.

One particular bene�t of small s value is thatwe do not have to worry about
the orthogonality loss in the Lanczos algorithm which o�en undermines its
convergence [GVL12]. Since we do only a few Lanczos iterations, the rounding
errors hardly accumulate causing little burden in terms of orthogonality loss
between the basis vectors of the Krylov subspace.

11.2.3 variance reduction

We reduce the variance of the randomized estimator through control variates.
�e idea is to use Taylor expansion to substitute a part of the trace estimate
with its easily computed precise value,

tr(exp(−tL)) = slq
[
exp(−tL) − (I − tL +

t2L2

2
)
]
+ tr(I − tL +

t2L2

2
)

= slq
[
exp(−tL) − (I − tL +

t2L2

2
)
]
+ n + tr(−tL) +

t2‖L‖2
F

2

= slq
[
exp(−tL)

]
+ slq

[
tL

]
− slq

[t2L2

2
)
]
− tn +

t2‖L‖2
F

2
,

where we use the fact that ‖L‖F =
√
tr(LTL) and that the trace of normalized

Laplacian is equal to n. It does reduce the variance of the trace estimate for
smaller temperatures t ≤ 1.

To obtain this advantage over the whole range of t, we utilize the following
variance reduction form:

tr(exp(−tL)) = slq
[
exp(−tL) − (I − �tL)

]
+ n(1 − �t), (11.12)

where there exists an alpha that is optimal for every t, namely setting � =

1∕ exp(t). We can see the variance reduction that comes from this procedure
in the Figure 11.3.

144 approximating spectral graph representations

11.3 EXPERIMENTS

We evaluate slaq against all approximation methods proposed in [CWLR19]
and Chapter 9, in addition to the exact computation of the spectrum (where
allowed by the graph size).We perform our experiments on theGoogle Cloud’s
c2-standard-60 virtual machine with 60 cores and 240GB RAM, averaging
10 times unless stated otherwise.We use LAPACK [ABB+99] for linear algebra
operations. We open-source the implementation1.1. github.com/google-

research/google-

research/tree/master/

graph\.embedding/slaq Parameter settings. Unless otherwise mentioned, we evaluate slaq using
nv = 100 starting vectors and s = 10 Lanczos iterations. We provide an
additional experimental investigation into parameter settings of slaq in
Section 11.3.4. For the linear approximation of [TMK+18b], we use the default
(k = 300) eigenvalues from each end of the spectrum, following the notation
of the original paper. Taylor series-based approximation techniques do not
depend on any additional parameters.

Datasets. We use four types of graph collections to measure the e�ciency
and e�ectiveness of slaq. First, we consider the accuracy of the method
compared to other approximation techniques on the two subsets of graphs:
synthetically generated Erdős–Rényi graphs and 73 graphs from the Network
Repository2 [RA15] with a number of nodes from 2500 up to 25000. In total,2. networkrepository.

com we use 27 biological, 12 interaction, 10 technological networks, 5 small web
graphs, and 19 uncategorized networks (mostly, optimization problem graphs).

We follow up with large graphs to test the ability of slaq to e�ciently
compute descriptors of Web-scale graphs. For that, we use �ve datasets3:3. All but ClueWeb09

are from SNAP network
collection, available at
snap.stanford.edu • dblp [YL15] is a co-authorship network from a major online computer

science bibliography.

• Orkut [YL15] was an online social network.

• LiveJournal [YL15] is an online blogging community where users can
form friendships with each other.

• Friendster [YL15] was an online social network.

• ClueWeb09 [CCS09, RA15] is a web crawl from 2009.

github.com/google-research/google-research/tree/master/graph_embedding/slaq
github.com/google-research/google-research/tree/master/graph_embedding/slaq
github.com/google-research/google-research/tree/master/graph_embedding/slaq
github.com/google-research/google-research/tree/master/graph_embedding/slaq
networkrepository.com
networkrepository.com
snap.stanford.edu

experiments 145

Size Statistics

dataset |V| |E| Avg. deg. Density

dblp 317k 1.05M 6.62 2.08 ×10−5
Orkut 3.07M 117.2M 76.28 2.48 ×10−5
LiveJournal 4M 34.7M 17.35 4.34 ×10−6
Friendster 65.6M 1.8B 55.06 8.39 ×10−7
ClueWeb09 4.8B 7.81B 3.27 6.83 ×10−10

Table 11.1: Characteristics
of large graphs used in
this work: number of
vertices |V|, number of
edges |E|; average node
degree; density defined
as |E|∕

(
|V|

2

)
.

Size Temporal statistics

dataset |V| |E| |T| |ℰ|∕|T|

Wiki-nl 1M 20M 95 148337
Wiki-pl 1M 25M 95 182959
Wiki-it 1.2M 35M 95 250633
Wiki-de 2.1M 86M 95 553257

Table 11.2: Characteristics
of dynamic graphs: to-
tal number of vertices
|V|, total number of
edges |E|; number of
timestamps |T|; aver-
age incoming edges per
timestamp |E|∕|T|.

Vertices |V|

dataset |G| |Y| Min. Avg. Max.

d&d 1178 2 30 284.32 5748
Collab 5000 3 32 74.49 492
Reddit-5k 4999 5 22 508.52 3648
Reddit-12k 22939 11 2 391.41 3782

Table 11.3: Properties of
the graph classification
datasets used: number
of graphs |G|; number
of labels |Y|; minimum,
average, and maximum
number of nodes in
graph collection.

Next, we investigate bene�ts of using slaq on dynamic Wikipedia link
datasets in 4 di�erent languages: Dutch (nl), Polish (pl), Italian (it), German
(de). We obtained datasets from [CCS09]4 and generated |T| snapshots for 4. We used preprocessed

version from KONECT
repository, available at
konect.uni-

koblenz.de/networks/

every month in the original dataset.
Last, we verify that slaq’s improvements in approximation performance

enhance downstream task performance. We use three social network datasets
and one from the �eld of bioinformatics5:

5. We obtained them
at the graph kernel
benchmark collec-
tion, available at ls11-
www.cs.tu-dortmund.

de/staff/morris/

graphkerneldatasets

• d&d [DD03, SSL+11, KKM+16] is a dataset of protein structures. Each
protein is represented by a graph of amino acids that are connected by an edge
if they are less than 6 Ångstroms apart. �e prediction task is to classify the
protein structures into enzymes and non-enzymes.

konect.uni-koblenz.de/networks/
konect.uni-koblenz.de/networks/
ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

146 approximating spectral graph representations

10−5

10−3

10−1

Graph id

v
n
g
e
re
l.
er
ro
r

slaq Linear finger-ℋ̂ finger-ℋFigure 11.4: SLaQ offers
over 200× reduction in
average error for VNGE

over techniques pro-
posed in [CWLR19] and
over 30× improvement
over the linear approxi-
mation from Chapter 9.

10−5

10−3

10−1

Graph idn
et

ls
d
re
l.
er
ro
r slaq Linear TaylorFigure 11.5: SLaQ of-

fers 22× reduction
in average error for

NetLSD over linear ap-
proximation and 250×
over Taylor expansion.

10−3 10−2 10−1

10−4

10−2

100

Graph density m∕n(n−1)

v
n
g
e
re
l.
er
ro
r

a

slaq Linear Taylor

0.2 0.4 0.6 0.8 1

⋅104Num. of nodes n
b

Figure 11.6: Number of
nodes and edges of ran-

dom Erdős–Rényi graphs
does not affect SLaQ’s

approximation accuracy.

• Collab [YV15, LKF05,KKM+16] is a collection of collaboration ego-networks
of di�erent researchers derived in [YV15] from three datasets introduced
in [LKF05]. �e task is to determine whether the ego-collaboration graph of
a researcher belongs to High Energy, Condensed Matter or Astrophysics �eld.

• Reddit-5k and Reddit-12k [YV15, KKM+16] are two datasets derived from
Reddit, an online aggregation and discussion website. Discussions on Reddit
are organized into di�erent subcommunities; the task is to determine the
community given the structure of the discussion graph.

experiments 147

0 20 40 60 80 100
0

0.2
0.4
0.6
0.8
1

nl

netlsd vnge Added |E| Removed |E|

0 20 40 60 80 100
pl

0 20 40 60 80 100
0

0.2
0.4
0.6
0.8
1

it
0 20 40 60 80 100

de

Figure 11.7: SLaQ ap-
proximation of
NetLSD and VNGE
for Wikipedia graphs
across time. Changes
that are not explained
by local edge differences
highlighted in gray.

11.3.1 approximation accuracy

Weproceedwith evaluation of slaq capacity to approximatematrix functions
for graph comparison. We compute full spectrum of 73 small graphs and
true values of netlsd and vnge and report the relative l2 approximation
error with respect to the true graph descriptor. Figure 11.4 demonstrates that
slaq o�ers over 200× reduction in the average relative error for vnge over
finger techniques [CWLR19] and over 30× improvements over the linear
interpolation technique from Chapter 9. Figure 11.5 shows that slaq o�ers a
250× reduction over the Taylor expansion and over 22× improvement over
the linear interpolation [TMK+18b].

We also compare how the approximation accuracy changes for netlsd
on the random Erdős–Rényi graphs. We generate random graphs of size 1000
with varying graph density (number of expected edges) p and random graphs
of size 100–10000 with the average degree m∕n = 10. We report the results in
Figure 11.6. We observe that slaq’s approximation accuracy is stable across
the graph size both in terms of the number of the nodes and graph density.

11.3.2 benefits of non-local approximation

We verify that our method has a global view of the graph, i.e. is not dominated
by only local information. In order to do that, we compute netlsd and vnge
for monthly snapshots of dynamic Wikipedia link datasets from January 2003

148 approximating spectral graph representations

101 102 103

10−3.2

10−3

10−2.8

Number of random vectors nv

n
et

ls
d
re
l.
er
ro
r

a

101 102
10−4

10−3

10−2

Number of Lanczos steps s
b

Figure 11.8: Parameter
sensitivity of SLaQ in

terms of approximating
NetLSD with (a) differ-
ent number of starting

vectors nv and (b) differ-
ent number of Lanczos
steps s. Error averaged
across 73 graphs from

the Network Repository.

vnge netlsd
dataset finger-ℋ finger-ℋ̂ Linear slaq Exact Taylor Linear slaq Exact
d&d 63.01 66.38 68.13 65.53 66.40 67.01 67.98 66.77 67.24
Collab 64.95 65.10 55.90 49.04 58.03 61.81 65.17 58.76 63.48
Reddit-5k 30.87 29.85 31.31 31.77 31.43 33.67 32.01 35.48 35.63
Reddit-12k 16.53 16.20 17.18 17.04 16.79 22.67 21.30 25.31 25.52

Table 11.4: 1-Nearest
neighbor graph classifi-
cation performance on
4 datasets with VNGE

and NetLSD. Exact com-
putation results are in
bold. Approximations

that are close to or
better than the exact

metric computation are
highlighted in green.

to December 2010 (a total of |T| = 96 snapshots) and report their change as
well as the number of edges added/removed each month.

We plot the proportion of cumulative edge additions/deletions and dis-
tances between descriptor pairs of snapshots (0, i), where i ∈ 1, … , |T|. Fig-
ure 11.7 reports the distance values for each language as well as the relative
number of incoming and outgoing edges per snapshot. We mark examples of
anomalous spikes in netlsd and vnge that can not be explained simply by
the edge additions and deletions. In these cases, simple approximations like
the 2-term Taylor expansion would fail to capture such changes.

dataset finger-ℋ finger-ℋ̂ Linear slaq

dblp 0.06 0.65 394 28.4
Orkut 1.68 70 8863 899
LiveJournal 0.97 15.6 4727 476
Friendster 1.67 71 oom 900
ClueWeb09 902 oom oom 3447

Table 11.5: Running
time (in seconds) of

different approximation
techniques and SLaQ for

VNGE on large graphs.

experiments 149

11.3.3 graph classification performance

We test ourmethod in the superviseddownstream task,by classifying graphs in
binary and multi-class settings. We compute netlsd and vnge descriptors
for each of the graphs and use them as feature vectors in classi�cation. Since
these graph classi�cation datasets allow direct calculation of the descriptor
(maximum number of nodes reported in Table 11.3 is 5748), we can analyze
how approximation a�ects the downstream accuracy.

We use a non-parametric 1-nearest neighbor classi�cation algorithm and
repeat the classi�cation using 80/20 training/testing split 1000 times to mini-
mize the biases introduced by the random splitting and the learning algorithm.
We report the classi�cation accuracy in Table 11.4.

Surprisingly, on two datasets, d&d and Collab, the classi�cation accuracy
is actually better for the low-accuracy approximation. We believe that this
relates to the issues with these datasets pointed out by [SW19, CW19]: simple
local graph features achieve almost state-of-the-art performance [ARPZ19].
However, for the Reddit datasets the improvement given by more accurate
approximation is as expected due to the task being more sensitive to global
structural information rather than simple node-level statistics.

11.3.4 parameter sensitivity

We investigate the approximation accuracy of slaq with respect to its hyper-
parameters: number of random starting vectors nv and the number of Lanczos
iterations s. Recall that the error bounds in Section 11.2.2 tell us that there
are two sources of error in slaq: one of the Monte Carlo estimation of the
quadratic form and one of the Lanczos process. We measure the relative error
ratio on the same 73 medium-sized graphs used in Section 11.3.1 with respect
to the number of random starting vectors nv and the number of Lanczos
iterations s and report the results in Figure 11.8.

As expected, given enough stating random vectors slaq only needs a
few Lanczos iterations; the default setting of s = 10 gives an average error
of 6.7 × 10−4. As for the number of random vectors nv, we do observe that
increasing the number improves performance, but the improvement given by
increasing nv is much slower.

150 approximating spectral graph representations

11.3.5 scalability

Wemeasure the runtime of all approximation techniques on huge graphs with
millions of nodes and billions of edges and show that slaq is able to process
very large graphs on a single machine within reasonable time while o�ering
orders of magnitude better approximation, as measured in Section 11.3.1. We
only report the results for vnge, as the results for netlsd for Linear inter-
polation and slaq approximation are similar to vnge counterparts, while
Taylor approximation works in the same time as finger-ℋ.

As finger-ℋ only sums the weights of graphs’ edges, it serves as a
baseline on how much time it takes to scan the edges of a graph. A more
useful comparison is finger-ℋ̂, as it re�ects the time to compute a single
eigenvalue of a graph. We approximate the whole spectrum at the cost of
increased time complexity, however, the largest dataset with almost 5 billion
nodes is processed in less than an hour.

11.4 SUMMARY

We propose slaq, an approximation technique for fast computation of spec-
tral graph distances, vnge and netlsd, leveraging state-of-the-art linear
algebra methods. We show that faithful approximation of the graph distance
is critical for good downstream task performance and those approximation
methods previously introduced in the literature do not o�er good approxima-
tion quality. slaq improves approximation errors of such baseline solutions
by at least an order of magnitude averaged across 73 real-world graphs. As
slaq’s computation is linear in the number of edges of graphs, the scalability
of our method is on par with approximation techniques introduced for vnge
and netlsd. To our knowledge, this is the �rst work that allows accurate
comparison of billion-size graphs on a single machine in less than an hour.

12SPECTRAL GRAPH SIMILARITIES
FOR COMPARING DISTRIBUTIONS

Ability to represent and compare machine learning models is
crucial to quantify subtle model changes, evaluate generative mod-
els, and gather insights on neural network architectures. Existing

techniques for comparing data distributions focus on global data properties
such as mean and covariance; in that sense, they are extrinsic and uni-scale.
We use netlsd to develop a �rst-of-its-kind intrinsic andmulti-scalemethod
for characterizing and comparing data manifolds. In a thorough experimen-
tal study, we demonstrate that our method e�ectively discerns the structure
of data manifolds even on unaligned data of di�erent dimensionality and
showcase its e�cacy in evaluating the quality of generative models.

�e geometric properties of neural networks provide insights about their
internals [MRB18, WHG+18] and help researchers in the design of more ro-
bust models [ACB17, BSAG18]. Generative models are a natural example of
the need for geometric comparison of distributions. As generative models
aim to reproduce the true data distribution ℙd using the model distribution
ℙg(z; Θ), more delicate evaluation procedures are needed. O�entimes, we
wish to compare data lying in entirely di�erent spaces, such as tracking model
evolution or comparing models with di�erent representation spaces.

Figure 12.1: Two distri-
butions having the same
first 3 moments, meaning
FID and KID scores are
close to 0.

151

152 spectral graph similarities for comparing distributions

In order to evaluate the performance of generativemodels, several extrinsic
evaluation measures were proposed in previous research, most notably the
Fréchet [HRU+17] and Kernel [BSAG18] Inception Distances (fid and kid).
Such measures only re�ect the �rst two or three moments of distributions,
meaning they can be insensitive to global structural problems. We showcase
this inadvertence in Figure 12.1: here, fid and kid are insensitive to the data
distribution’s global structure. Besides, as fid and kid are based only on
extrinsic properties they are unable to compare unaligned data manifolds.

In this chapter, we start from the observation that models capturing the
multi-scalenature of the datamanifold by utilizing higher distributionmoment
matching, such as mmd-gan [LCC+17] and sphere-gan [PK19], perform
consistently better than their single-scale counterparts. On the other hand,
using extrinsic information can be misleading, as it is dependent on factors
external to the data, such as representation. To address this drawback, we
propose imd, an Intrinsic Multi-scale Distance (imd), that is able to compare
distributions using only intrinsic information about the data, and provide an
e�cient approximation thereof that renders computational complexity nearly
linear. We demonstrate that imd e�ectively quanti�es the di�erence in data
distributions in three distinct application scenarios: comparing word vectors
in languages with unaligned vocabularies, tracking dynamics of intermediate
neural network representations, and evaluating generative models.

12.1 RELATED WORK

Geometric techniques enhance unsupervised and semi-supervised learning,
generative and discriminative models [BN01, ACB17, Mém11]. We outline the
applications of the proposed manifold comparison technique and highlight
the geometric intuition along the way.

12.1.1 generative model evaluation

Past research has explored many di�erent directions for the evaluation of
generative models. Setting aside models that ignore the true data distribution,
such as the Inception Score [SGZ+16] and gilbo [AF18], we discuss the
most relevant geometric ideas below; we refer the reader to [Bor19] for a
comprehensive survey.

related work 153

Critic model-basedmetrics. Classi�er two-sample tests [LPO17] aim to assess
whether two samples came from the same distribution using an auxiliary clas-
si�er. �e idea is similar to the gan discriminator network [GPAM+14]: if a
model distinguishes between samples from the model and the data distribu-
tions, these distributions are not entirely similar. �e convergence process of
some gan discriminators [ACB17, BSAG18] informs a family of critic-based
metrics. Still, training a separate critic model is o�en computationally pro-
hibitive and requires careful speci�cation. Besides, if the critic model is a
neural network, the metric lacks interpretability and training stability.

Advanced gan models such asWasserstein, mmd, Sobolev and Spherical
gans impose di�erent constraints on the function class so as to stabilize train-
ing [ACB17,MLS+18, PK19]. Higher-ordermomentmatching [BSAG18, PK19]
enhances performance, enabling gans to capture multi-scale data properties,
while multi-scale noise ameliorates gan convergence problems [JF19]. Still,
no feasible multi-scale gan evaluation metric has been proposed to date.

Positional distribution comparison. In certain settings, it is acceptable to
assign zero probabilitymass to the real data points [OBO+18]. In e�ect,metrics
that estimate a distribution’s location and dispersion provide useful input for
generative model evaluations. For instance, the Fréchet Inception Distance
(fid) [HRU+17] computes the Wasserstein-2 (i.e., Fréchet) distance between
distributions approximated with Gaussians, using only the estimated mean
and covariance matrices; the Kernel Inception Distance (kid) [BSAG18]
computes a polynomial kernel k(x, y) = (

1

d
x⊤y + 1)3 and measures the

associated Kernel MaximumMean Discrepancy (kernel mmd). Unlike fid,
kid has an unbiased estimator [GBR+12, BSAG18]. However, even while such
methods, may be computationally inexpensive, they only provide a limited
view on distributions from a geometric viewpoint.

Intrinsic geometric measures. �e Geometry Score [KO18] characterizes dis-
tributions in terms of their estimated persistent homology, which roughly
corresponds to the number of holes in a manifold. Still, the Geometry Score
assesses distributions merely in terms of their global geometry. In this work,
we aim to provide amulti-scale geometric assessment.

154 spectral graph similarities for comparing distributions

12.1.2 similarities of neural network representations

Learning how representations evolve during training or across initializations
provides a pathway to the interpretability of neural networks [RGYSD17].
Still, state-of-the-art methods for comparing representations of neural net-
works [KNLH19, MRB18, WHG+18] consider only linear projections. �e
intrinsic nature of imd renders it appropriate for the task of comparing neu-
ral network representations, which can only rely on intrinsic information.

Pairwise Inner Product (pip) loss [YS18], an unnormalized covariance
error between sets, was introduced as a dissimilarity metric between word2vec
embedding spaces with a common vocabulary. We show in Section 12.3.2 how
imd is applicable to this comparison task too.

12.2 INTRINSIC MULTI-SCALE DISTANCE

At the core of deep learning lies the manifold hypothesis, which states that
high-dimensional data, such as images or text, lie on a low-dimensional mani-
fold [NM10, BN01, BN07]. We aim to provide a theoretically motivated com-
parison of data manifolds based on rich intrinsic information. Our target
measure should have the following properties:

• intrinsic—invariant to isometric transformations of the manifold, e.g.
translations or rotations.

• multi-scale—it captures both local and global information.

We expose ourmethod starting outwith heat kernels,which admit a notion
of manifold metric and can be used to lower-bound the distance between
manifolds.

12.2.1 heat kernels on manifolds and graphs

Based on the heat equation, the heat kernel captures all the information about a
manifold’s intrinsic geometry [SOG09]. Given the Laplace–Beltrami operator
(lbo) ∆X on a manifoldX, the heat equation is)u

)t
= ∆Xu for u ∶ ℝ+×X →

ℝ+. A smooth function u is a fundamental solution of the heat equation at
point x ∈ X if u satis�es both the heat equation and the Dirac condition

intrinsic multi-scale distance 155

u(t, x′) → �(x′−x) as t → 0+. We assume the Dirichlet boundary condition
u(t, x) = 0 for all t and x ∈)X. �e heat kernel kX∶ X×X× ℝ+→ ℝ+

0
is

the unique solution of the heat equation; while heat kernels can be de�ned on
hyperbolic spaces and other exotic geometries, we restrict our exposition to
Euclidean spacesX = ℝd, on which the heat kernel is de�ned as:

kℝd(x, x′, t) =
1

(4�t)d∕2
exp (−

‖x − x′‖2

4t
) (12.1)

For a compactX including submanifolds of ℝd, the heat kernel admits
the expansion kX(x, x′, t) =

∑∞

i=0
e−�it�i(x)�i(x

′), where �i and �i are the
i-th eigenvalue and eigenvector of ∆X . For t ≃ 0+, according to Varadhan’s
lemma, the heat kernel approximates geodesic distances. Importantly for our
purposes, the Heat kernel ismulti-scale: for a local domainD with Dirichlet
condition, the localized heat kernel kD(x, x′, t) is a good approximation of
kX(x, x

′, t) if either (i)D is arbitrarily small and t is small enough, or (ii) t is
for arbitrarily large andD is big enough. Formally,

De�nition 7 (Multi-scale property [Gri06, SOG09]). (i) For any smooth and
relatively compact domain D ⊆ X, limt→0 kD(x, x

′, t) = limt→0 kX(x, x
′, t)

(ii) For any t ∈ ℝ+ and any x, x′ ∈ D1 localized heat kernel kD1
(x, x′, t) ≤

kD2
(x, x′, t) if D1 ⊆ D2. Moreover, if {Dn} is an expanding and exhaust-

ing sequence
⋃∞

i=1
Di = X and Di−1 ⊆ Di, then limi→∞ kDi

(x, x′, t) =

limt→0 kX(x, x
′, t) for any t.

A useful invariant of the heat kernel is the heat kernel trace hktX ∶ X×
ℝ+

0
→ ℝ+

0
, de�ned by a diagonal restriction as hktX(t) = ∫

X
kX(x, x, t)dx =

∑∞

i=0
e−�it or, in the discrete case, hktL(t) = tr(Ht) =

∑

i
e−t�i . Heat kernels

traces have been successfully applied to the analysis of 3D shapes [SOG09]
and graphs (Chapter 9). �e heat kernel trace contains all the information
in the graph’s spectrum, both local and global, as the eigenvalues �i can be
inferred therefrom [Mém11, Remark 4.8]. For example, if there are c connected
components in the graph, then limt→∞ hktL(t) = c.

12.2.2 convergence to the laplace-beltrami operator

Heat kernels are de�ned for graphs in terms of their Laplacian matrices. An
important property of graphLaplacians is that it is possible to construct a graph

156 spectral graph similarities for comparing distributions

among points sampled from a manifoldX such that the spectral properties of
its Laplacian resemble those of the Laplace–Beltrami operator onX. Belkin
and Niyogi [BN01] proposed such a construction, the point cloud Laplacian,
which is used for dimensionality reduction in a technique called Laplacian
eigenmaps. Convergence to the lbo has been proven for various de�nitions of
the graph Laplacian, including the one we use [BN07, HAL07, CL06, THJ10].
We recite the convergence results for the point cloud Laplacian from [BN07]:

Ceorem 7. Let �tn
n,i

and�tn
n,i

be the ith eigenvalue and eigenvector, respectively, of
the point cloud Laplacian Ltn ; let �i and �i be the ith eigenvalue and eigenvector
of the lbo ∆. �en, there exists tn → 0 such that

lim
n→∞

�
tn

n,i
= �i

lim
n→∞

‖‖‖‖�
tn

n,i
− �i

‖‖‖‖2
= 0

Still, the point cloud Laplacian involves the creation of an O(n2)matrix;
for the sake of scalability, we use the k-nearest-neighbors (knn) graph by or-
construction (i.e., based on bidirectional knn relationships among points),
whose Laplacian converges to the lbo for data with su�ciently high intrinsic
dimension [THJ10]. As for the choice of k, a random geometric knn graph
is connected when k ≥ log n∕log 7 ≈ 0.5139 log n [BBSW05]; k = 5 yields
connected graphs for all sample sizes we tested.

12.2.3 spectral gromov–wasserstein distance

Even while it is a multi-scale metric onmanifolds, the heat kernel can be spec-
trally approximated by �nite graphs constructed from points sampled from
these manifolds. In order to construct a metric betweenmanifolds, [Mém11]
suggests an optimal-transport-theory-based “meta-distance”: a spectral de�-
nition of the Gromov–Wasserstein distance between Riemannian manifolds
based on matching the heat kernels at all scales. �e cost of matching a pair
of points (x, x′) on manifoldℳ to a pair of points (y, y′) on manifoldN at
scale t is given by their heat kernels kℳ , kN :

Γ(x, y, x′, y′, t) = |||kℳ(x, x
′, t) − kN(y, y

′, t)||| .

�e distance between the manifolds is then de�ned in terms of the in�mal
measure coupling

intrinsic multi-scale distance 157

dGW(ℳ,N) = inf
�
sup
t>0

e−2(t+t
−1) ‖Γ‖L2(�×�),

where the in�mum is sought over all measures � onℳ ×N marginalizing to
the standardmeasures onℳ andN. For �nite spaces,� is a doubly-stochastic
matrix. �is distance is lower-bounded [Mém11] in terms of the respective
heat kernel traces as:

dGW(ℳ,N) ≥ sup
t>0

e−2(t+t
−1) |||hktℳ(t) − hktN(t)

||| . (12.2)

�is lower bound is the scaled L∞ distance between the heat trace sig-
natures hktℳ and hktN . �e scaling factor e−2(t+t−1) favors medium-scale
di�erences, meaning that this lower bound is not sensitive to local perturba-
tions. �e maximum of the scaling factor occurs at t = 1, and more than
1 − 10−8 of the function mass lies between t = 0.1 and t = 10.

12.2.4 putting imd together

We employ the heretofore described advances in di�erential geometry and
numerical linear algebra to create imd (Multi-Scale Intrinsic Distance), a fast,
intrinsic method to lower-bound the spectral Gromov-Wasserstein distance
between manifolds. We use slaq from Chapter 11 to approximate the heat
trace.

Algorithm 7 imd algorithm.
function imd desc(X)

G ← kNN(X)

L ← Laplacian(G)

return Γ = slq(L, s, nv)

function imd dist(X,Y)
hktX ← imd desc(X)

hktY ← imd desc(Y)

return sup e−2(t+t−1)|hktX − hktY|

We describe the overall computation of imd in Algorithm 7. Given data
samples inℝd, we build a knn graphG byOR-construction such that its Lapla-
cian spectrum approximates the one of the Laplace-Beltrami operator of the

158 spectral graph similarities for comparing distributions

underlying manifold [THJ10], and then compute hktG(t) =
∑

i
e−�it ≈ Γ. We

compare heat traces in the spirit of Equation (12.2), i.e., ||||hktG1(t) − hktG2(t)
||||

for t ∈ (0.1, 10) sampled from a logarithmically spaced grid.
Constructing exact knn graphs is an O(dn2) operation; however, ap-

proximation algorithms take near-linear time O(dn1+!) [DML11, ABF19]. In
practice, with approximate knn graph construction [DML11], computational
time is low while result variance is similar to the exact case. �e s-step Lanc-
zos algorithm on a sparse n × n knn Laplacian L with one starting vector
has O(ksn) complexity, where kn is the number of nonzero elements in L.
�e symmetric tridiagonal matrix eigendecomposition incurs an additional
O(s log s) [CR13]. We apply this algorithm over nv starting vectors, yielding
a complexity of O(nv(s log s + ksn)), with constant k = 5 and s = 10 by
default. In e�ect, imd’s time complexity stands between those of two com-
mon gan evaluation methods: kid, which is O(dn2) and fid, which is
O(d3+dn). �e time complexity of Geometry Score is unspeci�ed in [KO18],
yet in Section 12.3.6 we show that its runtime grows exponentially in sample
size.

12.3 EXPERIMENTS

We evaluate imd on the ability to compare intermediate representations of
machine learning models. For instance, in a recommender system we could
detect whether a problem is related to the representation or the classi�er in
the end of a pipeline. In this section, we show the e�ectiveness of our intrinsic
measure on multiple tasks and show how our intrinsic distance can provide
insights beyond previously proposed extrinsic measures.

Summary of experiments. We examine the ability of imd1 to measure several1. Our code is available
open-source: https:

//github.com/xgfs/imd. aspects of di�erence among datamanifolds. We �rst consider a task from unsu-
pervised machine translation with unaligned word embeddings and show that
imd captures correlations among language kinship (a�nity or genealogical
relationships). Second, we showcase how imd handles data coming from data
sources of unequal dimensionalities. �ird, we study how imd highlights dif-
ferences among image data representations across initializations and through
the training process of neural networks.

https://github.com/xgfs/imd
https://github.com/xgfs/imd

experiments 159

pl ru el hu tr ar he en

sim
ple s

v de es nl pt viwa
r

pl
ru
el
hu
tr
ar
he
en

simple
sv
de
es
nl
pt
vi

war

a

0

50

100

150

sv

sim
ple e

s pt de nl ru pl tr el huwa
r ar he vi

0

5

10

1

Simple English

C
ha
ng
e
w
rt
.S
im

pl
e

b

imd
fid
kid

pl ru el hu tr ar he en

sim
ple s

v de es nl pt viwa
r

pl
ru
el
hu
tr
ar
he
en

simple
sv
de
es
nl
pt
vi

war

c

0

200

400

600

pl ru el hu tr ar he en

sim
ple s

v de es nl pt viwa
r

pl
ru
el
hu
tr
ar
he
en

simple
sv
de
es
nl
pt
vi

war

d

0

0.2

0.4

Figure 12.2: (a) IMD
distances between lan-
guage pairs for unaligned
Wikipedia word em-
beddings; (b) distances
from the simple English
Wikipedia visualized for
IMD, FID, and KID; (c)
pairwise FID distances;
(d) pairwise KID dis-
tances. We consider 16
languages: Polish, Rus-
sian, Greek, Hungarian,
Turkish, Arabic, Hebrew,
English, Simple English,
Swedish, German, Span-
ish, Dutch, Portugese,
Vietnamese, and Waray-
Waray.

12.3.1 comparing unaligned language manifolds

�e problem of unaligned representations is particularly severe in the domain
of natural language processing as the vocabulary is rarely comparable across
di�erent languages or even di�erent documents. We employ imd to measure
the relative closeness of pairs of languages based on the word embeddings
with di�erent vocabularies. Figure 12.2 (a) shows a heatmap of pairwise imd
scores. imd detects similar languages (Slavic, Semitic, Romanic, etc.) despite
the lack of ground truth vocabulary alignment. We use gensim [ŘS10] to learn
word vectors on the latest Wikipedia corpus snapshot on 16 languages: Polish,
Russian, Greek, Hungarian, Turkish, Arabic, Hebrew, English, Simple English,
Swedish, German, Spanish, Dutch, Portuguese, Vietnamese, andWaray-Waray.
We then compute fid, kid, and imd scores on all the pairs, in totalwe average
100 runs.

160 spectral graph similarities for comparing distributions

4 8 16 32 64 128 256 512

4
8
16
32
64
128
256
512

imd

0

250

4 8 16 32 64 128 256 512

4
8
16
32
64
128
256
512

pip

0

1
⋅10−6

Figure 12.3: Comparison
of IMD and PIP loss

on word embeddings
of different dimen-

sion. Note how IMD
detects subtle changes

in the dimensionality.

Figure 12.2 (b,c) shows the matrix of distances for fid and kid aligned
and colored in the same way as Figure 12.2 (a). We observe fid and kid can
not �nd meaningful structure in the data in the same way as imd as they rely
on extrinsic data properties.

12.3.2 optimizing dimensionality of word embeddings

Comparing data having di�erent dimensionality is cumbersome, even when
representations are aligned. We juxtapose imd by pip loss [YS18] which
allows the comparison of aligned representations for word embeddings. To
this end, we measure imd distance between English word embeddings of
varying dimensions. Figure 12.3 shows the heatmap of the scores between
sets of word vectors of di�erent dimensionalities. Closer dimensionalities
have lower distance scores for both metrics. However, imd better highlights
gradual change of the size of word vectors, e.g., word vectors of size 4 and 8
are clearly closer to each other than embeddings of size 4 and 16 in terms of
imd, which is not true for pip.

12.3.3 tracking the evolution of image manifolds

Next, we employ imd to inspect the internal dynamics of neural networks. We
investigate the stability of output layer manifolds across random initializations.
We train 10 instances of the vgg-16 [SZ15] network using di�erent weight
initializations on the cifar-10 and cifar-100 datasets. We compare the
average imd scores across representations in each network layer relative to
the last layer. As Figure 12.5 (le�) shows, for both cifar-10 and cifar-100,

experiments 161

5 10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

80

Epoch no.

im
d
re
la
tiv

e
to

th
e
la
st
la
ye
r

c ifar-10, vgg-16
cifar-100, vgg-16
cifar-10, ResNet-20
cifar-100, ResNet-20

A
cc
ur
ac
y

A
cc
ur
ac
y

Figure 12.4: Training
progression in terms of
accuracy (dotted) and
IMD (solid) on CIFAR-10
and CIFAR-100 datasets
for VGG-16 and ResNet-
20, with respect to
VGG-16.

0 2 4 6 8 10 12 14
0

200

400

600

Convolutional layer no.

im
d
re
la
tiv

e
to

th
e
la
st
la
ye
r

c ifar-10, vgg-16
cifar-100, vgg-16

Figure 12.5: Values of
IMD across convolutional
layers of the VGG-16
network on CIFAR-10
and CIFAR-100 datasets.

the convolutional layers exhibit similar behavior; As imd shows, consequent
layers do not monotonically contribute to the separation of image representa-
tions, but start to do so a�er initial feature extraction stage comprised of 4
convolutional blocks.initializations indicates stability in the network structure.

We now examine the last network layers during training with di�erent
initializations. Figure 12.4 plots the vgg-16 validation errors and imd scores
relative to the �nal layer representations of two pretrained networks, vgg-16
itself with last layer dimension d = 512 and ResNet-20 with d = 64 and ∼50
times less parameters. We observe that even in such unaligned spaces, imd

162 spectral graph similarities for comparing distributions

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

cifar-100

mnist

Gaussian blur level �

M
et
ric

re
la
tiv

e
to

m
n
is
t

imd
fid
kid

Figure 12.6: FID,
KID and IMD on the

CIFAR-10 dataset
with Gaussian blur.

correctly identi�es the convergence point of the networks. Surprisingly, we
�nd that, in terms of imd, vgg-16 representations progress towards not only
the vgg-16 �nal layer, but the ResNet-20 �nal layer representation as well;
this result suggests that these networks of distinct architectures share similar
�nal structures.

12.3.4 evaluating generative models

We now move on to apply imd to evaluation of generative models. First, we
evaluate the sensitivity of imd, fid, and kid to simple image transforma-
tions as a proxy to more intricate artifacts of modern generative models. We
progressively blur images from the cifar-10 training set, and measure the
distance to the original data manifold, averaging outcomes over 100 subsam-
ples of 10k images each. To enable comparison across methods, we normalize
each distance measure such that the distance between cifar-10 and mnist
is 1. Figure 12.6 reports the results at di�erent levels � of Gaussian blur. We
additionally report the normalized distance to the cifar-100 training set
(dashed lines).

We observe that fid and kid quickly dri� away from the original dis-
tribution and match mnist, a dataset of a completely di�erent nature. Con-
trariwise, imd is more robust to noise and follows the datasets structure, as

experiments 163

the relationships between objects remain mostly una�ected on low blur levels.
Moreover, with both fid and kid, low noise (� = 1) applied to cifar-10
su�ces to exceed the distance of cifar-100, which is similar to cifar-10.
imd is much more robust, exceeding that distance only with � = 2.

mnist Fashionmnist cifar10 CelebA
Metric wgan wgan-gp wgan wgan-gp wgan wgan-gp wgan wgan-gp
imd 57.74 ±

0.47
10.77 ±
0.42

118.14 ±
0.52

13.45 ±
0.54

18.10 ±
0.36

10.84 ±
0.42

10.11 ±
0.33

2.84 ±
0.31

kid ×103 47.26 ±
0.07

5.53 ±
0.03

119.93 ±
0.14

25.49 ±
0.07

93.89 ±
0.09

59.59 ±
0.09

217.28 ±
0.14

92.71 ±
0.08

fid 31.75 ±
0.07

8.95 ±
0.03

152.44 ±
0.12

35.31 ±
0.07

101.43 ±
0.09

80.65 ±
0.09

205.63 ±
0.09

85.55 ±
0.08

Table 12.1: IMD agrees
with KID and FID across
varying datasets for GAN
evaluation.

Next, we turn our attention to the sample-based evaluation of generative
models. We then train the wgan [ACB17] and wgan-gp [GAA+17] models
on four datasets: mnist, Fashionmnist, cifar-10 and CelebA. We sample
10k samples, Y, from each gan. We then uniformly subsample 10k images
from the corresponding original dataset, X, and compute the imd, kid and
fid scores between X and Y. Table 12.1 reports the average measure and its
99% con�dence interval across 100 runs. imd, as well as both fid and kid,
re�ect the fact that wgan-gp is a more expressive model.

12.3.5 interpreting imd

To understand how imd operates, we investigate the behavior of heat kernel
traces of di�erent datasets that are normalized by a null model. [TMK+18b]
proposed a normalization by the heat kernel trace of an empty graph, which
amounts to taking the average, rather than the sum, of the original heat kernel
diagonal. However, this normalization is not an appropriate null model as it
ignores graph connectivity. We propose a heat kernel normalization by the
expected heat kernel of an Erdős–Rényi graph. For the purpose of normalizing
imd, we need to approximate that graph’s eigenvalues. It was proved [CO07]
that �1 ≤ 1− cd̄

−1∕2 ≤ �2 ≤ �n ≤ 1+ cd̄
−1∕2 for the core of the graph for some

constant c. We have empirically found that c = 2 provides a tight approxi-
mation for random graphs. �at coincides with the analysis of [CLV04], who
proved that �n = (1 + o(1))2d̄

−1∕2 if dmin ≫
√
d̄ log

3
n even though in our

164 spectral graph similarities for comparing distributions

100 101 102
10−1

100

101

102

103

t

h
k
t G

w
ith

er
no

rm
al
iz
at
io
n

mnist Fashionmnist cifar-10 cifar-100 CelebAFigure 12.7: Plotting the
normalized heat trace

allows interpretation of
medium- and global-scale

structure of datasets.

case dmin = d̄ = k. We thus estimate the spectrum of a random Erdős–Rényi
graph as growing linearly between �1 = 1 − 2d̄

−1∕2 and �n = 1 + 2d̄
−1∕2, which

corresponds to the underlying manifold being two-dimensional [Wey11].
Figure 12.7 depicts the obtained normalized hktg for all datasets we work

with. We average results over 100 subsamples of 10k images each. For t = 10,
i.e., at a medium scale, CelebA is most di�erent from the random graph, while
for large-scale t values, which capture global community structure, dhktg(t)

dt

re�ects the approximate number of clusters in the data. Surprisingly, cifar-
10 comes close to cifar-10 for large t values; we have found that this is
due to the fact that the pre-trained Inception network does not separate the
cifar-100 data classes well enough. We conclude that the heat kernel trace
is interpretable if we normalize it with an appropriate null model.

12.3.6 verifying stability and scalability of imd

In addition to the complexity analysis in Section 12.2.4, we assess the scaling
and sample stability of imd. Since imd, like fid, is a lower bound to an
optimal transport-based metric, we cannot hope for an unbiased estimator.
However, we empirically verify, in Figure 12.8 (le�), that imd does not diverge
too much with increased sample size. Most remarkably, we observe that imd
with approximate knn [DML11] does not induce additional variance, while it
diverges slightly from the exact version as the number of samples grows.

summary 165

103 104
0.5

1

1.5

2

2.5

5 ⋅ 104

Number of samples

M
et
ric

re
la
tiv

e
to
1
0
4
sa
m
pl
es

103.5 104

101

102

103

104

5 ⋅ 104

Number of samples
Ex

ec
ut
io
n
tim

e,
se
co
nd

s

imd (exact) imd (approx.) fid kid gs Figure 12.8: Stability and
scalability experiment:
(left) stability of FID, KID
and IMD wrt. sample
size on CIFAR-10 and
CIFAR-100 dataset; (right)
scalability of FID, KID
and IMD wrt. sample size
on synthetic datasets.

In terms of scalability, Figure 12.8 (right) shows that the theoretical com-
plexity is supported in practice. Using approximate knn, we break the O(n2)
performance of kid. �e time complexity of fid appears constant, as its
runtime is dominated by the O(d3)matrix square root operation. Geometry
Score fails to perform scalably, as its runtime grows exponentially. Due to this
prohibitive computational cost, we eschew other comparisons with it. Fur-
thermore, as imd distance is computed through a low-dimensional heat trace
representation of the manifold, we can store HKT for future comparisons,
thereby enhancing performance in the case of many-to-many comparisons.

12.4 SUMMARY

We introduced imd, a geometry-grounded, �rst-of-its-kind intrinsic multi-
scale method for comparing unaligned manifolds, which we approximate
e�ciently with guarantees, utilizing the Stochastic Lanczos Quadrature. We
have shown the expressiveness of imd in quantifying the change of data rep-
resentations in NLP and image processing, evaluating generative models, and
in the study of neural network representations. Since imd allows comparing
diverse manifolds, its applicability is not limited to the tasks we have evaluated,
while it paves the way to the development of even more expressive techniques
founded on geometric insights.

PART I I I

SUMMARY

13SUMMARY AND FUTURE WORK

This thesis proposes novelmethods for representing graph-structured
data in the form suitable for most machine learning algorithms. We
analyzed representations of nodes in Part I and graphs in Part II. We

introduced several expressive algorithms for each of these data modalities
and then proposed local, scalable versions of these algorithms. �is section
summarizes our main research achievements and presents an outlook on
future research directions.

�e �rst part of this thesis introduces fourmethods for representing nodes
as vectors. �is part’s primary contribution is proposing expressive families
of scalable models. Our neural network-based approach, verse, decouples
the choice of vertex similarity and the optimization model. Besides excellent
performance that has been independently veri�ed [CLX19, KAS19, MLDB20],
verse provides a uni�ed framework for learning from vertex similarities,
allowing us to analyze existing algorithms. Our framework in�uenced sev-
eral investigation lines, particularly in building scalable node embedding
systems [YW19, ZXTQ19], improving graph learning [KWG19], and provid-
ing better models for other types of graphs [SDT19, PLVT+20].

Despite its empirical success, verse does not have any quality or conver-
gence guarantees—this warranted further investigation. We study verse’s
optimal solution and propose frede, an anytime algorithm that addresses a
major weakness of verse: the lack of quality guarantees. We are the �rst to
show how to build a valid graph embedding using only a subset of nodes as
reference points. We observe comparable or better quality than other methods
while processing only 10% of the nodes.

Notwithstanding, the e�ciency of frede is not enough formost extreme1 1. In terms of the volume
and velocity of data.graphmining applications.Wenotice that downstream tasks routinely use only

a small part of node embeddings in many real-world application scenarios.
�erefore, graph embedding algorithms that can only embed all nodes at
once are wasting precious compute and storage capabilities. We take the
locality observation in frede to its logical conclusion and propose a �rst

169

170 summary and future work

local node embedding algorithm, SnapEmbed. It can create representations
for a single node without peeking at other nodes’ embeddings. We prove that
such independent actions prognosticatively align to paint an accurate picture
of every node in a graph. Since SnapEmbed is a local algorithm, computations
can be easily distributed, allowing to embed massive graphs in record time.

None of the methods introduced above deal with attributed graphs. We
correct this malentendu with the help of dmon. We depart from the con-
trastive approaches for training graph neural networks and propose the �rst
clustering-based objective for training gnns. We continue to focus on scalabil-
ity, achieving training and inference time linear in the number of graphs’ edges.
Besides best-in-class scalability, dmon achieves 30–40% improvements in
clustering performance over competing approaches.

Part II of this thesis is dedicated to vector representations of whole graphs.
�is part’s core contribution is the proposal of multi-scale representations in
Chapter 9. We translate geometric ideas to the graphs’ language and propose
the �rst spectral representation of graphs with distance guarantees, netlsd.
We show that no other scalable distance is able to capture the multi-scale
structure of graphs as completely as netlsd and propose an approximation
technique to scale the computation to graphs with millions of nodes. Our
measure has been applied to hyperparameter optimization of graph-based
machine learning algorithms [TMC+19] and graph coarsening [JLJ20].

While netlsd has exciting theoretical guarantees, it is rigid in its choice
of the scale it captures—essentially, it is a collection of low-pass �lters of the
spectrum. We leverage a self-supervised neural network, sgr, to adapt the
�lters of netlsd on generated data. We are the �rst to propose the tasks
for the self-supervision of graph representations. We demonstrate that sgr
shows consistent improvements over its non-learned counterparts.

Scalability is an overarching topic of this thesis. We adapt state-of-the-
art linear algebra techniques and introduce slaq, a way of approximating
several spectral descriptors, including netlsd. We derive the error bounds
and show that slaq outperforms existing techniques by up to two orders
of magnitude on average in approximation quality while being comparable
time-wise. �us, slaq allows netlsd to become the �rst graph comparison
processing billion-scale graphs without relying on node correspondence.

future work 171

Last, we study the comparison of unaligned distributions as an application
of netlsd’s fast computation. We propose imd, a distance between samples
from unaligned distributions that leverages the intrinsic geometry of data.
Since the underlying geometry of data is well approximated by graphs con-
structed from it, imd is competitive with methods leveraging data’s extrinsic
geometry and provides a unique outlook when the extrinsic information is
not reliable. We apply imd to study various neural networks’ inner structures,
including ones for learning neural representations of words.

We began the �rst part by modeling graphs with neural networks and
�nished the second one by analyzing the graph structure of neural networks.
Our long-term plan is to continue the development of the foundations of
graph mining and connect it further with the �eld of machine learning. We
outline some of the research directions below.

13.1 FUTURE WORK

13.1.1 application outreach

First and foremost, it is important to expand the use of graph analysis tech-
niques in various application domains. �ere are fascinating opportunities to
apply graph mining systems in chemical and biological modeling, security,
�nancial systems, and many other �elds. Problems in these �elds possess
unique challenges and constraints, and require close collaboration with re-
searchers and practitioners. We �rmly believe that collaborations across �elds
will bring many advances to the �eld of graph mining.

Some of the most exciting applications of graph mining withinmachine
learning lie in the privacy-preserving machine learning. For example, feder-
ated learning algorithms operate acrossmultiple decentralized devices holding
local data samples, without exchanging them. SnapEmbed is our step towards
user-centric graph computations that give us the bene�ts of sophisticated ma-
chine learning models without compromising user privacy. We foresee graph
research to bring invaluable insights on organizational patterns of distributed
privacy-aware models.

172 summary and future work

13.1.2 further research directions

�ere are several research directions that we �nd particularly exciting. Perhaps,
the elephant in the room is that we do not know how to build a graph from
data. We do know how to approximate shapes or surfaces with graphs, but we
know almost nothing about how to construct graphs that facilitate learning
from data. Additionally, the common assumption that the graph is the ground
truth is routinely broken in practice. �erefore, methods that question the
nature of each edge should have an edge in practical applications.

�ere are always more graph types coming from various application do-
mains. For example, models for graphs with heterogeneous information on
nodes and edges require careful speci�cation to leverage both the graph and
attribute structure. Attributes are extremely common in some applications
in chemistry and biology. �ey pose further challenges: what if the data is
not aligned to the graph structure at all? what if the graph and the data give
completely di�erent signals? An additional challenge is missing data—is there
a graph-aware imputation method that can deal with that? Challenging com-
mon modeling assumptions is a crucial research direction.

Even in simple graphs, di�erent analysis modalities await their meth-
ods. For example, Chapter 4 introduces methods for producing embeddings
of edges from representations of nodes. However, is this method optimal?
Wouldn’t a method specializing in edge representations produce better ones?
Representations of subgraphs is an analogue of this problem from Part II. Can
we represent subgraphs quicker than treating them as a separate graph?�ese
are questions waiting for a satisfactory answer.

Better models of graphs allow us to intimately study the behaviors of our
models in controlled scenarios. For example, we provide additional insights
on our techniques from Chapters 7 and 9 via generating graphs. Expressive
graphs distance measures inform a new generation of graph generators. Using
them, we can study even more realistic properties of real-world graphs and
improve the design of learning algorithms.

To summarize, graphs have numerous impactful applications and fascinat-
ing research directions. We proposed expressive, scalable models for creating
both node and graph representations and evaluated them theoretically and
experimentally. We hope that advances in the �eld will be societally bene�cial.

BIBLIOGRAPHY

[ABB+99] Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford, Jack Don-
garra, JeremyDuCroz,AnneGreenbaum, SvenHammarling,AlanMcKenney,
and D Sorensen. LAPACK Users’ guide. SIAM, 1999. Cited on page 144.

[Abb18] Emmanuel Abbe. Community detection and stochastic block models: Recent
developments. JMLR, 2018. Cited on pages 10 and 127.

[ABF19] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. ANN-
benchmarks: A benchmarking tool for approximate nearest neighbor algo-
rithms. Information Systems, 2019. Cited on page 158.

[ACB17] Mart́ın Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative
adversarial networks. In ICML, 2017. Cited on pages 151, 152, 153, and 163.

[Ach03] Dimitris Achlioptas. Database-friendly random projections: Johnson-
lindenstrauss with binary coins. Journal of computer and System Sciences,
66(4):671–687, 2003. Cited on pages 19 and 24.

[ACL07] Reid Andersen, Fan Chung, and Kevin Lang. Using pagerank to locally
partition a graph. Internet Mathematics, 4(1):35–64, 2007. Cited on pages 11,
66, 67, 68, and 71.

[AdM06] Alexandre H Abdo and APS de Moura. Clustering as a measure of the local
topology of networks. arXiv preprint physics/0605235, 2006. Cited on pages 124,
126, and 128.

[AF18] Alexander A. Alemi and Ian Fischer. GILBO: One metric to measure them
all. In NeurIPS, 2018. Cited on page 152.

[AMF10] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. Oddball: Spotting
anomalies in weighted graphs. In PAKDD, pages 410–421, 2010. Cited on
page 17.

[ARPZ19] Rami Al-Rfou, Bryan Perozzi, and Dustin Zelle. DDGK: Learning graph
representations for deep divergence graph kernels. InWWW, 2019. Cited on
page 149.

[ASN+13] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski,
and Alexander J Smola. Distributed large-scale natural graph factorization.
InWWW. ACM, 2013. Cited on page 21.

[AT11] Haim Avron and Sivan Toledo. Randomized algorithms for estimating the
trace of an implicit symmetric positive semi-de�nite matrix. Journal of the
ACM (JACM), 2011. Cited on page 137.

[AT16] James Atwood and Don Towsley. Di�usion-convolutional neural networks.
In NIPS, pages 1993–2001, 2016. Cited on page 123.

[AV07] David Arthur and Sergei Vassilvitskii. k-means++: �e advantages of careful
seeding. In SIAM, pages 1027–1035, 2007. Cited on pages 40 and 90.

[Bal87] Dana H Ballard. Modular learning in neural networks. In AAAI, 1987. Cited
on page 18.

[BB11] Michael M Bronstein and Alexander M Bronstein. Shape recognition with
spectral distances. TPAMI, 2011. Cited on page 110.

173

174 bibliography

[BBGO11] Alexander M Bronstein, Michael M Bronstein, Leonidas J Guibas, and Maks
Ovsjanikov. Shape google: Geometric words and expressions for invariant
shape retrieval. TOG, 30(1):1, 2011. Cited on page 104.

[BBK+16] Stephen Bonner, John Brennan, Ibad Kureshi, G�eodoropoulos, and ASMc-
Gough. E�cient comparison of massive graphs through the use of graph
�ngerprints. In Twel�hWorkshop onMining and Learning with Graphs (MLG)
Workshop at KDD’16, 2016. Cited on page 104.

[BBL+17] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre
Vandergheynst. Geometric deep learning: going beyond euclidean data. IEEE
Signal Processing Magazine, 34(4):18–42, 2017. Cited on pages 13 and 123.

[BBSW05] Paul Balister, Béla Bollobás, Amites Sarkar, and Mark Walters. Connectivity
of random k-nearest-neighbour graphs. Advances in Applied Probability, 2005.
Cited on page 156.

[BCG10] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast incremental
and personalized PageRank. PVLDB, 4(3):173–184, 2010. Cited on page 49.

[BCW18] Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from
orthogonality regularizations in training deep cnns? In NIPS, 2018. Cited on
page 88.

[BDG+06] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoefer,
Zoran Nikoloski, and Dorothea Wagner. Maximizing modularity is hard.
arXiv preprint physics/0608255, 2006. Cited on page 86.

[BDMI11] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near optimal
column-based matrix reconstruction. FOCS, pages 305–314, 2011. Cited on
pages 46, 47, and 48.

[Ber12] Marcel Berger. A panoramic view of Riemannian geometry. Springer Science
& Business Media, 2012. Cited on page 108.

[BGA20] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clus-
tering with graph neural networks for graph pooling. In ICML, 2020. Cited
on pages 85 and 90.

[BGJM17] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. En-
riching word vectors with subword information. ACL, 2017. Cited on page 13.

[BGLL08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of statisti-
cal mechanics: theory and experiment, (10), 2008. Cited on pages 35 and 40.

[BGS06] Samuel L Braunstein, Sibasish Ghosh, and Simone Severini. �e laplacian of
a graph as a density matrix: a basic combinatorial approach to separability of
mixed states. Annals of Combinatorics, pages 291–317, 2006. Cited on pages 133
and 134.

[BH86] Josh Barnes and Piet Hut. A hierarchical O(N log N) force-calculation algo-
rithm. Nature, 1986. Cited on page 20.

[BHB+18] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo,
Adam Santoro, Ryan Faulkner, et al. Relational inductive biases, deep learning,
and graph networks. arXiv preprint arXiv:1806.01261, 2018. Cited on page 13.

bibliography 175

[BK05] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on
graphs. In Data Mining, Fi�h IEEE International Conference on, pages 8–pp.
IEEE, 2005. Cited on page 103.

[BKERF13] Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos.
Network similarity via multiple social theories. InASONAM, pages 1439–1440,
2013. Cited on pages 104, 114, 115, and 129.

[BMD09] Christos Boutsidis, Michael W. Mahoney, and Petros Drineas. An improved
approximation algorithm for the column subset selection problem. In SODA,
2009. Cited on pages 46, 47, and 48.

[BN01] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral tech-
niques for embedding and clustering. In NIPS, pages 585–591, 2001. Cited on
pages 20, 152, 154, and 156.

[BN07] Mikhail Belkin and Partha Niyogi. Convergence of laplacian eigenmaps. In
NIPS, pages 129–136, 2007. Cited on pages 108, 154, and 156.

[Bor19] Ali Borji. Pros and cons of gan evaluation measures. Computer Vision and
Image Understanding, 179:41–65, 2019. Cited on pages 5 and 152.

[Bou85] Jean Bourgain. On lipschitz embedding of �nite metric spaces in hilbert space.
Israel Journal of Mathematics, 1985. Cited on page 19.

[BP98] Sergey Brin and Lawrence Page. �e anatomy of a large-scale hypertextual
web search engine. Computer Networks and ISDN Systems, pages 107 – 117,
1998. Cited on page 33.

[BSAG18] Miko�laj Bińkowski, Dougal J Sutherland, Michael Arbel, and Arthur Gret-
ton. Demystifying MMD gans. In ICLR, 2018. Cited on pages 151, 152, and 153.

[Bur76] Ronald S Burt. Positions in networks. Social forces, 1976. Cited on page 20.
[BV04] Paolo Boldi and Sebastiano Vigna. �e webgraph framework i: compression

techniques. InWWW, 2004. Cited on page 9.
[BZSL14] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral

networks and locally connected networks on graphs. In ICLR, 2014. Cited on
page 13.

[CAEHP+20] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin
Murphy. Machine learning on graphs: Amodel and comprehensive taxonomy.
arXiv preprint arXiv:2005.03675, 2020. Cited on page 13.

[CAT16] Irineo Cabreros, Emmanuel Abbe, and Aristotelis Tsirigos. Detecting commu-
nity structures in hi-c genomic data. In 2016AnnualConference on Information
Science and Systems (CISS), pages 584–589. IEEE, 2016. Cited on page 83.

[CCS09] Charles L Clarke, Nick Craswell, and Ian Soboro�. Overview of the TREC
2009 web track. Technical report, DTIC Document, 2009. Cited on pages 144
and 145.

[CDART12] Stéphan Clémençon, Hector De Arazoza, Fabrice Rossi, and Viet Chi Tran.
Hierarchical clustering for graph visualization. arXiv preprint arXiv:1210.5693,
2012. Cited on page 83.

[Chu97] Fan Chung. Spectral graph theory. Number 92. American Mathematical Soc.,
1997. Cited on pages 11, 108, 109, and 112.

176 bibliography

[Chu07] Fan Chung. �e heat kernel as the pagerank of a graph. Proceedings of the
National Academy of Sciences, 104(50):19735–19740, 2007. Cited on pages 108
and 111.

[CKL+09] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher,
Alessandro Panconesi, and Prabhakar Raghavan. On compressing social
networks. In KDD, 2009. Cited on page 9.

[CL06] Ronald R Coifman and Stéphane Lafon. Di�usion maps. Applied and compu-
tational harmonic analysis, 2006. Cited on page 156.

[CL11] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector
machines. TIST, 2(3):27, 2011. Cited on page 130.

[CLRS09] �omas H Cormen, Charles E Leiserson, Ronald L Rivest, and Cli�ord Stein.
Introduction to algorithms. MIT press, 2009. Cited on page 65.

[CLS+19] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui
Hsieh. Cluster-GCN: An e�cient algorithm for training deep and large graph
convolutional networks. In KDD, 2019. Cited on pages 71 and 72.

[CLV04] Fan Chung, Linyuan Lu, and Van Vu. �e spectra of random graphs with
given expected degrees. Internet Mathematics, 2004. Cited on page 163.

[CLX15] Shaosheng Cao, Wei Lu, and Qiongkai Xu. GraRep: Learning graph repre-
sentations with global structural information. In CIKM, pages 891–900, 2015.
Cited on pages 23, 25, 34, and 49.

[CLX16] Shaosheng Cao,Wei Lu, and Qiongkai Xu. Deep neural networks for learning
graph representations. In AAAI, pages 1145–1152, 2016. Cited on page 25.

[CLX19] Ren-Meng Cao, Si-Yuan Liu, and Xiao-Ke Xu. Network embedding for link
prediction: �e pitfall and improvement. Chaos: An Interdisciplinary Journal
of Nonlinear Science, 2019. Cited on page 169.

[CO07] Amin Coja-Oghlan. On the laplacian eigenvalues of g(n, p). Combinatorics,
Probability and Computing, 2007. Cited on page 163.

[CPARS18] Haochen Chen, Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. A tutorial
on network embeddings. arXiv preprint arXiv:1808.02590, 2018. Cited on
page 62.

[CR13] Ed S. Coakley and Vladimir Rokhlin. A fast divide-and-conquer algorithm
for computing the spectra of real symmetric tridiagonal matrices. Applied and
Computational Harmonic Analysis, 34(3):379 – 414, 2013. Cited on page 158.

[CST+19] Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven
Skiena. Fast and accurate network embeddings via very sparse random projec-
tion. In Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, pages 399–408, 2019. Cited on pages 24, 64,
and 70.

[CW13] Kenneth L. Clarkson and David P. Woodru�. Low rank approximation and
regression in input sparsity time. In STOC, 2013. Cited on page 48.

[CW19] Chen Cai and Yusu Wang. A simple yet e�ective baseline for non-attribute
graph classi�cation. In ICLR, RLGM workshop, 2019. Cited on page 149.

[CWLR19] Pin-YuChen,LingfeiWu,Sijia Liu, and IndikaRajapakse. Fast incremental von
neumann graph entropy computation: �eory, algorithm, and applications.
In ICML, 2019. Cited on pages xiv, 133, 134, 135, 136, 144, 146, and 147.

bibliography 177

[CZQ+08] Weiwei Cui, Hong Zhou, Huamin Qu, Pak Chung Wong, and Xiaoming Li.
Geometry-based edge clustering for graph visualization. IEEE Transactions
on Visualization and Computer Graphics, 14(6):1277–1284, 2008. Cited on
page 83.

[DD03] Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from
non-enzymes without alignments. Journal of molecular biology, pages 771–783,
2003. Cited on page 145.

[DGM+11] �omas A DiPrete, Andrew Gelman, Tyler McCormick, Julien Teitler, and
Tian Zheng. Segregation in social networks based on acquaintanceship and
trust. American journal of sociology, 2011. Cited on page 9.

[Die95] Paul Dierckx. Curve and surface �tting with splines. Oxford University Press,
1995. Cited on page 129.

[DJL+20] Vijay Prakash Dwivedi, Chaitanya K Joshi, �omas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking graph neural networks. arXiv preprint
arXiv:2003.00982, 2020. Cited on page 91.

[DKMZ11] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová.
Asymptotic analysis of the stochastic block model for modular networks and
its algorithmic applications. Physical Review E, 84(6):066106, 2011. Cited on
page 127.

[DML11] Wei Dong, Charikar Moses, and Kai Li. E�cient k-nearest neighbor graph
construction for generic similarity measures. In WWW, 2011. Cited on
pages 158 and 164.

[Dur12] Émile Durkheim. Les formes élémentaires de la vie religieuse: le système
totémique en Australie. Alcan, 1912. Cited on page 20.

[Ead84] Peter Eades. A heuristic for graph drawing. Congressus numerantium, 1984.
Cited on page 20.

[EHT65] Paul Erdős, Frank Harary, and William T Tutte. On the dimension of a graph.
1965. Cited on page 19.

[ELPL17] Alessandro Epasto, Silvio Lattanzi, and Renato Paes Leme. Ego-splitting
framework: From non-overlapping to overlapping clusters. In KDD, 2017.
Cited on pages 85 and 96.

[Est00] Ernesto Estrada. Characterization of 3dmolecular structure. Chemical Physics
Letters, pages 713–718, 2000. Cited on page 101.

[Fau88] Katherine Faust. Comparison of methods for positional analysis: Structural
and general equivalences. Social networks, 1988. Cited on page 20.

[FCH+08] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-RuiWang, and Chih-Jen
Lin. Liblinear: A library for large linear classi�cation. JMLR, 9(Aug):1871–1874,
2008. Cited on pages 36, 53, and 130.

[FFF99] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law
relationships of the internet topology. InACM SIGCOMM review, 1999. Cited
on page 9.

[FH16] Santo Fortunato and Darko Hric. Community detection in networks: A user
guide. Physics reports, 2016. Cited on pages 83, 85, and 91.

[Fie73] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovakmathematical
journal, 1973. Cited on pages 10 and 85.

178 bibliography

[Fre78] Linton C Freeman. Centrality in social networks conceptual clari�cation.
Social networks, 1978. Cited on page 10.

[FSF+15] Andreas Fischer, Ching Y Suen, Volkmar Frinken, Kaspar Riesen, and Horst
Bunke. Approximation of graph edit distance based on hausdor� matching.
Pattern Recognition, 48(2):331–343, 2015. Cited on page 102.

[GAA+17] Ishaan Gulrajani, Faruk Ahmed, Mart́ın Arjovsky, Vincent Dumoulin, and
Aaron C. Courville. Improved training of wasserstein GANs. In NIPS, 2017.
Cited on page 163.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
Press, 2016. Cited on page 28.

[GBR+12] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf,
andAlexander J. Smola. A kernel two-sample test. Journal ofMachine Learning
Research, 2012. Cited on page 153.

[GDMC10] Benjamin H Good, Yves-Alexandre De Montjoye, and Aaron Clauset. Perfor-
mance of modularity maximization in practical contexts. Physical Review E,
81(4):046106, 2010. Cited on page 85.

[GH10] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A
new estimation principle for unnormalized statistical models. In AISTATS,
pages 297–304, 2010. Cited on pages 28 and 64.

[GH12] Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of
unnormalized statistical models, with applications to natural image statistics.
JMLR, 13:307–361, 2012. Cited on pages 28 and 29.

[GH16] Karam Gouda and Mosab Hassaan. Csi ged: An e�cient approach for graph
edit similarity computation. In ICDE, pages 265–276, 2016. Cited on page 105.

[GJ02] Michael R Garey and David S Johnson. Computers and intractability, vol-
ume 29. wh freeman New York, 2002. Cited on page 102.

[GL16] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for
networks. In KDD, 2016. Cited on pages 29, 34, 35, 36, 37, 54, 70, and 71.

[GLPW16] MinaGhashami,EdoLiberty, Je�M. Phillips, andDavid P.Woodru�. Frequent
directions : Simple and deterministic matrix sketching. SIAM J. Comput.,
45:1762–1792, 2016. Cited on pages 45 and 51.

[GM09] Gene H Golub and Gérard Meurant. Matrices, moments and quadrature with
applications. Princeton University Press, 2009. Cited on pages 136, 137, and 138.

[GMS05] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for
learning in graph domains. In IJCNN, 2005. Cited on page 13.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. In NIPS, pages 2672–2680, 2014. Cited on page 153.

[Gri06] Alexander Grigor’yan. Heat kernels on weighted manifolds and applications.
In Contemp. Math., pages 93–191. AMS, 2006. Cited on page 155.

[GVL12] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU
Press, 2012. Cited on pages 20 and 143.

[GW69] Gene H Golub and John H Welsch. Calculation of gauss quadrature rules.
Mathematics of computation, 1969. Cited on page 138.

bibliography 179

[GXTL10] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit
distance. Pattern Analysis and applications, 2010. Cited on page 101.

[HAL07] Matthias Hein, Jean-Yves Audibert, andUlrike von Luxburg. Graph laplacians
and their convergence on random neighborhood graphs. JMLR, 2007. Cited
on pages 9 and 156.

[HAMH16] Renjun Hu, Charu C Aggarwal, Shuai Ma, and Jinpeng Huai. An embedding
approach to anomaly detection. In ICDE. IEEE, 2016. Cited on page 17.

[HEHW12] LinHan,Francisco Escolano,EdwinRHancock, andRichardCWilson. Graph
characterizations from von Neumann entropy. Pattern Recognition Letters,
pages 1958–1967, 2012. Cited on page 135.

[HFLM+19] RDevonHjelm,Alex Fedorov, Samuel Lavoie-Marchildon,KaranGrewal, Phil
Bachman, AdamTrischler, and Yoshua Bengio. Learning deep representations
by mutual information estimation and maximization. In ICLR, 2019. Cited
on page 18.

[HILG09] Michael P Holmes, Jr Isbell, Charles Lee, and Alexander G Gray. Quic-svd:
Fast svd using cosine trees. In NIPS, pages 673–680, 2009. Cited on page 51.

[HL97] Marlis Hochbruck and Christian Lubich. On krylov subspace approximations
to the matrix exponential operator. SIAM Journal on Numerical Analysis, 1997.
Cited on page 139.

[HMT11] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding struc-
ture with randomness: Probabilistic algorithms for constructing approximate
matrix decompositions. SIAM review, 2011. Cited on page 11.

[HN53] Frank Harary and Robert Z Norman. Graph theory as a mathematical model
in social science. University of Michigan, Institute for Social Research, 1953.
Cited on page 8.

[HPK01] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and
techniques. Elsevier, 2001. Cited on page 1.

[HRH02] Peter D Ho�, Adrian E Ra�ery, and Mark S Handcock. Latent space ap-
proaches to social network analysis. Journal of the american statistical associa-
tion, 2002. Cited on page 20.

[HRU+17] Martin Heusel, Hubert Ramsauer, �omas Unterthiner, Bernhard Nessler,
and Sepp Hochreiter. GANs trained by a two time-scale update rule converge
to a local nash equilibrium. In NIPS, 2017. Cited on pages 152 and 153.

[HRV05] Vicente Hernandez, Jose E. Roman, and Vicente Vidal. SLEPc: A scalable and
�exible toolkit for the solution of eigenvalue problems. ACM Trans. Math.
So�ware, 31(3):351–362, 2005. Cited on page 111.

[Hut89] MF Hutchinson. A stochastic estimator of the trace of the in�uence matrix
for laplacian smoothing splines. Communications in Statistics-Simulation and
Computation, 18(3):1059–1076, 1989. Cited on page 137.

[HZ94] Geo�rey EHinton andRichard S Zemel. Autoencoders,minimumdescription
length and Helmholtz free energy. In NIPS, 1994. Cited on page 18.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In CVPR, 2016. Cited on page 13.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In STOC, 1998. Cited on page 19.

180 bibliography

[Jac01] Paul Jaccard. Étude comparative de la distribution �orale dans une portion
des alpes et des jura. Bull. Soc. Vaudoise Sci. Nat., 37:547–579, 1901. Cited on
page 24.

[JF19] Simon Jenni and Paolo Favaro. On stabilizing generative adversarial training
with noise. In CVPR, 2019. Cited on page 153.

[JFW17] Minhao Jiang, Ada Wai-Chee Fu, and Raymond Chi-Wing Wong. Reads: a
random walk approach for e�cient and accurate dynamic simrank. VLDB,
10(9):937–948, 2017. Cited on page 30.

[JL84] WilliamB Johnson and JoramLindenstrauss. Extensions of lipschitzmappings
into a hilbert space. Contemporary mathematics, 26(189-206):1, 1984. Cited
on page 19.

[JLJ20] Yu Jin, Andreas Loukas, and Joseph JaJa. Graph coarsening with preserved
spectral properties. In AISTATS, 2020. Cited on page 170.

[JM12] Michael Jünger and Petra Mutzel. Graph drawing so�ware. Springer Science
& Business Media, 2012. Cited on page 20.

[JW02] Glen Jeh and Jennifer Widom. Simrank: a measure of structural-context
similarity. In KDD, pages 538–543, 2002. Cited on pages 26 and 30.

[JW03] Glen Jeh and Jennifer Widom. Scaling personalized web search. InWWW,
2003. Cited on page 66.

[KAS19] MeghaKhosla,AvishekAnand, andVinay Setty. A comprehensive comparison
of unsupervised network representation learning methods. arXiv preprint
arXiv:1903.07902, 2019. Cited on page 169.

[Kat53] Leo Katz. A new status index derived from sociometric analysis. Psychome-
trika, 18(1):39–43, 1953. Cited on pages 23 and 34.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014. Cited on page 13.

[KG14] Kyle Kloster and David F Gleich. Heat kernel based community detection. In
KDD, 2014. Cited on page 118.

[KJM20] Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on
graph kernels. Applied Network Science, 2020. Cited on pages 101, 103, and 105.

[KK11] Shrikant Kashyap and Panagiotis Karras. Scalable kNN search on vertically
stored time series. In KDD, pages 1334–1342, 2011. Cited on page 114.

[KKM+16] Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and
Marion Neumann. Benchmark data sets for graph kernels, 2016. http:

//graphkernels.cs.tu-dortmund.de. Cited on pages 129, 145, and 146.
[KL70] Brian W Kernighan and Shen Lin. An e�cient heuristic procedure for parti-

tioning graphs. �e Bell system technical journal, 1970. Cited on page 86.
[KN11] Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community

structure in networks. Physical review E, 83, 2011. Cited on pages 118, 124,
and 125.

[KNLH19] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geo�rey Hinton.
Similarity of neural network representations revisited. In ICML, 2019. Cited
on page 154.

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de

bibliography 181

[KO18] Valentin Khrulkov and Ivan V. Oseledets. Geometry score: A method for
comparing generative adversarial networks. In ICML, 2018. Cited on pages 153
and 158.

[KP16] Risi Kondor and Horace Pan. �e multiscale laplacian graph kernel. In NIPS,
pages 2990–2998, 2016. Cited on pages 103 and 129.

[KUMH17] Günter Klambauer,�omas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
Self-normalizing neural networks. In NIPS, 2017. Cited on pages 86 and 125.

[KVF13] Danai Koutra, Joshua T Vogelstein, and Christos Faloutsos. Deltacon: A
principled massive-graph similarity function. In SDM, pages 162–170, 2013.
Cited on page 103.

[KW17] �omas N Kipf and Max Welling. Semi-supervised classi�cation with graph
convolutional networks. In ICLR, 2017. Cited on pages 13 and 86.

[KWG19] Johannes Klicpera, StefanWeißenberger, and Stephan Günnemann. Di�usion
improves graph learning. In NeurIPS, 2019. Cited on page 169.

[LA17] Matthieu Labeau and Alexandre Allauzen. An experimental analysis of noise-
contrastive estimation: the noise distribution matters. EACL, 2017. Cited on
page 29.

[LB14] Roee Litman and Alexander M. Bronstein. Learning spectral descriptors for
deformable shape correspondence. IEEE Trans. Pattern Anal. Mach. Intell.,
36(1):171–180, 2014. Cited on page 110.

[LBGS14] Peter A Lofgren, Siddhartha Banerjee, Ashish Goel, and C Seshadhri. Fast-
ppr: Scaling personalized pagerank estimation for large graphs. In KDD, 2014.
Cited on page 66.

[LCC+17] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás
Póczos. MMD GAN: Towards deeper understanding of moment matching
network. In NIPS, 2017. Cited on page 152.

[LG14] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix
factorization. In NIPS, 2014. Cited on pages 13, 23, and 49.

[LHC06] Ping Li, Trevor J. Hastie, and Kenneth Ward Church. Very sparse random
projections. In KDD, 2006. Cited on page 47.

[Lib13] Edo Liberty. Simple and deterministic matrix sketching. In KDD, 2013. Cited
on pages 45, 46, and 48.

[Lin87] Nathan Linial. Distributive graph algorithms global solutions from local data.
In 28th Annual Symposium on Foundations of Computer Science, pages 331–335.
IEEE, 1987. Cited on page 2.

[Lin88] R. Linsker. Self-organization in a perceptual network. IEEE Computer, 21:105–
117, 1988. Cited on page 18.

[Lin94] Chih-Long Lin. Hardness of approximating graph transformation problem.
In ISAAC, pages 74–82, 1994. Cited on pages 102 and 105.

[LKF05] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time:
densi�cation laws, shrinking diameters and possible explanations. In KDD,
2005. Cited on page 146.

[LLC10] Ryan N Lichtenwalter, Jake T Lussier, and Nitesh V Chawla. New perspectives
and methods in link prediction. In KDD, pages 243–252, 2010. Cited on
page 35.

182 bibliography

[LLDM08] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael WMahoney.
Statistical properties of community structure in large social and information
networks. InWWW, 2008. Cited on pages 85 and 96.

[Llo82] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on infor-
mation theory, 1982. Cited on pages 21 and 90.

[LLR95] Nathan Linial, Eran London, and Yuri Rabinovich. �e geometry of graphs
and some of its algorithmic applications. Combinatorica, 1995. Cited on
page 19.

[LPO17] David Lopez-Paz and Maxime Oquab. Revisiting classi�er two-sample tests.
In ICLR, 2017. Cited on page 153.

[LV99] László Lovász andKatalin Vesztergombi. Geometric representations of graphs.
Paul Erdős and his Mathematics, 1999. Cited on page 19.

[LZ11] Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey.
Physica A: Statistical Mechanics and its Applications, 390(6):1150–1170, 2011.
Cited on pages 29 and 35.

[LZ17] Yongjiang Liang and Peixiang Zhao. Similarity search in graph databases: A
multi-layered indexing approach. In ICDE, pages 783–794, 2017. Cited on
pages 102 and 105.

[mag16] Microso� academic graph (mag) - kkd cup 2016. https://www.kdd.org/
kdd-cup/view/kdd-cup-2016/Data, 2016. Cited on pages 36, 54, 71,
and 72.

[Mah11] Matt Mahoney. Large text compression benchmark. http://www.

mattmahoney.net/text/text.html, 2011. Cited on page 54.
[Mém11] Facundo Mémoli. A spectral notion of gromov–wasserstein distance and

related methods. Applied and Computational Harmonic Analysis, 30(3):363–
401, 2011. Cited on pages 113, 152, 155, 156, and 157.

[MG82] Jayaved Misra and David Gries. Finding repeated elements. Science of Com-
puter Programming, 1982. Cited on page 48.

[MHSG18] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. Umap:
Uniform manifold approximation and projection. Journal of Open Source
So�ware, 2018. Cited on page 75.

[Mit80] TomMMitchell. �e need for biases in learning generalizations. 1980. Cited
on page 1.

[MKKM16] ChristopherMorris,NilsMKriege,Kristian Kersting, and PetraMutzel. Faster
kernels for graphs with continuous attributes via hashing. In ICDM, 2016.
Cited on page 103.

[MLDB20] Alexandru Cristian Mara, Jefrey Lij�jt, and Tijl De Bie. Benchmarking net-
work embedding models for link prediction: are we making progress? In
DSAA, 2020. Cited on page 169.

[MLS+18] Youssef Mroueh, Chun-Liang Li, Tom Sercu, Anant Raj, and Yu Cheng.
Sobolev GAN. In ICLR, 2018. Cited on page 153.

[MM90] David JC MacKay and Kenneth D Miller. Analysis of Linsker’s simulations of
Hebbian rules. In NIPS, 1990. Cited on page 18.

https://www.kdd.org/kdd-cup/view/kdd-cup-2016/Data
https://www.kdd.org/kdd-cup/view/kdd-cup-2016/Data
http://www. mattmahoney.net/text/text.html
http://www. mattmahoney.net/text/text.html

bibliography 183

[MM15] CameronMusco and ChristopherMusco. Randomized block krylov methods
for stronger and faster approximate value decomposition. InNIPS, 2015. Cited
on page 11.

[Mor34] Jacob Levy Moreno. Who shall survive?: A new approach to the problem of
human interrelations. 1934. Cited on page 19.

[MP07] Sofus A Macskassy and Foster Provost. Classi�cation in networked data: A
toolkit and a univariate case study. JMLR, 2007. Cited on page 17.

[MRB18] Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational
similarity in neural networks with canonical correlation. In NeurIPS, 2018.
Cited on pages 151 and 154.

[MRT18] Giorgia Minello, Luca Rossi, and Andrea Torsello. On the von Neumann
entropy of graphs. Journal of Complex Networks, 2018. Cited on page 135.

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Je�rey
Dean. Distributed representations of words and phrases and their composi-
tionality. In NIPS, 2013. Cited on pages 13, 21, and 64.

[MT12] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training
neural probabilistic language models. In ICML, pages 1751–1758, 2012. Cited
on pages 28 and 29.

[MVL03] Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the
exponential of a matrix, twenty-�ve years later. SIAM review, 45(1):3–49, 2003.
Cited on pages 110, 111, and 135.

[NAK16] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning con-
volutional neural networks for graphs. In ICML, 2016. Cited on page 123.

[New06a] Mark EJ Newman. Finding community structure in networks using the
eigenvectors of matrices. Physical review E, 2006. Cited on pages 21 and 86.

[New06b] Mark EJ Newman. Modularity and community structure in networks. PNAS,
pages 8577–8582, 2006. Cited on pages xvi, 21, 35, 40, 85, and 91.

[NM10] Hariharan Narayanan and Sanjoy Mitter. Sample complexity of testing the
manifold hypothesis. In NIPS, 2010. Cited on page 154.

[NN12] Raj RaoNadakuditi andMark EJNewman. Graph spectra and the detectability
of community structure in networks. Physical review letters, 2012. Cited on
page 92.

[OBO+18] Augustus Odena, Jacob Buckman, Catherine Olsson, Tom B. Brown, Christo-
pher Olah, Colin A. Ra�el, and Ian J. Goodfellow. Is generator conditioning
causally related to GAN performance? In ICML, 2018. Cited on page 153.

[OCP+16] MingdongOu, Peng Cui, Jian Pei, Ziwei Zhang, andWenwu Zhu. Asymmetric
transitivity preserving graph embedding. In KDD, 2016. Cited on page 34.

[PA16] Bryan Perozzi and Leman Akoglu. Scalable anomaly ranking of attributed
neighborhoods. In SDM, 2016. Cited on page 83.

[PA18] Bryan Perozzi and Leman Akoglu. Discovering communities and anomalies
in attributed graphs: Interactive visual exploration and summarization. ACM
TKDE, 12(2), 2018. Cited on page 83.

[PAISM14] Bryan Perozzi, Leman Akoglu, Patricia Iglesias Sánchez, and Emmanuel
Müller. Focused clustering and outlier detection in large attributed graphs.
In KDD, 2014. Cited on page 83.

184 bibliography

[PARS14] Bryan Perozzi, Rami Al-Rfou’, and Steven Skiena. Deepwalk: online learning
of social representations. In KDD, 2014. Cited on pages 13, 17, 21, 25, 34, 35, 36,
52, 57, 61, 70, 74, and 90.

[PBMW99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. �e
pagerank citation ranking: bringing order to the web. 1999. Cited on pages 3,
10, 23, 26, 29, and 49.

[PDGM10] Panagiotis Papadimitriou, Ali Dasdan, andHector Garcia-Molina. Web graph
similarity for anomaly detection. Journal of Internet Services and Applications,
pages 19–30, 2010. Cited on page 103.

[Pei14a] Tiago P Peixoto. E�cient monte carlo and greedy heuristic for the inference
of stochastic block models. Physical Review E, 2014. Cited on page 117.

[Pei14b] Tiago P. Peixoto. �e graph-tool python library. �gshare, 2014. Cited on
pages 90, 92, and 115.

[PK19] Sung Woo Park and Junseok Kwon. Sphere generative adversarial network
based on geometric moment matching. In CVPR, 2019. Cited on pages 152
and 153.

[PLVT+20] Léo Pio-Lopez,Alberto Valdeolivas, Laurent Tichit, ÉlisabethRemy, andAnäıs
Baudot. MultiVERSE: a multiplex and multiplex-heterogeneous network em-
bedding approach. arXiv preprint arXiv:2008.10085, 2020. Cited on page 169.

[PTdA+20] Ştefan Postăvaru, Anton Tsitsulin, Filipe Miguel Gonçalves de Almeida, Ying-
tao Tian, Silvio Lattanzi, and Bryan Perozzi. InstantEmbedding: E�cient
local node representations. arXiv preprint arXiv:2010.06992, 2020. Cited on
page 18.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. �irion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. JMLR, 2011. Cited on page 73.

[QDM+18] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang.
Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE,
and node2vec. InWSDM, 2018. Cited on pages 4, 23, 49, 50, 53, and 62.

[QDM+19] JiezhongQiu,YuxiaoDong,HaoMa, Jian Li,ChiWang,KuansanWang, and Jie
Tang. Netsmf: Large-scale network embedding as sparse matrix factorization.
InWWW, 2019. Cited on pages 23 and 53.

[RA15] Ryan A. Rossi and Nesreen K. Ahmed. �e network data repository with
interactive graph analytics and visualization. InAAAI, 2015. Cited on page 144.

[RB09] Kaspar Riesen and Horst Bunke. Approximate graph edit distance compu-
tation by means of bipartite graph matching. Image and Vision computing,
27(7):950–959, 2009. Cited on page 102.

[RGYSD17] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein.
SVCCA: Singular vector canonical correlation analysis for deep learning dy-
namics and interpretability. In NIPS, 2017. Cited on page 154.

[RKA15] Farbod Roosta-Khorasani and Uri Ascher. Improved bounds on sample size
for implicit matrix trace estimators. Foundations of Computational Mathemat-
ics, 2015. Cited on pages 139 and 143.

bibliography 185

[Ros58] Frank Rosenblatt. �e perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 1958. Cited on
page 12.

[RS00] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by
locally linear embedding. Science, 2000. Cited on page 20.

[ŘS10] Radim Řehůřek and Petr Sojka. So�ware Framework for TopicModelling with
Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks, 2010. Cited on page 159.

[RSF17] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec:
Learning node representations from structural identity. In KDD, 2017. Cited
on page 114.

[Saa92] Youcef Saad. Numerical methods for large eigenvalue problems. Manchester
University Press, 1992. Cited on page 20.

[SB09] Nino Shervashidze and Karsten M Borgwardt. Fast subtree kernels on graphs.
In NIPS, 2009. Cited on page 103.

[SBR+06] Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton
Breitkreutz, and Mike Tyers. BioGRID: a general repository for interaction
datasets. Nucleic Acids Research, 2006. Cited on pages 54 and 71.

[SCD18] David E Simmons, Justin P Coon, and Animesh Datta. �e von Neumann
�eil index: characterizing graph centralization using the vonNeumann index.
Journal of Complex Networks, 2018. Cited on page 135.

[SDT19] Hooman Peiro Sajjad, Andrew Docherty, and Yuriy Tyshetskiy. E�cient rep-
resentation learning using random walks for dynamic graphs. arXiv preprint
arXiv:1901.01346, 2019. Cited on page 169.

[SF83] Alberto Sanfeliu and King-Sun Fu. A distance measure between attributed
relational graphs for pattern recognition. IEEE Trans. Systems, Man, and
Cybernetics, 13(3):353–362, 1983. Cited on pages 102 and 105.

[SGZ+16] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, and Xi Chen. Improved techniques for training GANs. In NIPS,
2016. Cited on page 152.

[SHK+14] Nitish Srivastava,Geo�reyHinton,AlexKrizhevsky, Ilya Sutskever, andRuslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from
over�tting. JMLR, 2014. Cited on page 89.

[SM00] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.
PAMI, 2000. Cited on pages 12, 85, 108, 111, and 118.

[SMBG18] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868, 2018. Cited on pages xviii, 86, 90, and 96.

[SN97] Tom AB Snijders and Krzysztof Nowicki. Estimation and prediction for
stochastic blockmodels for graphs with latent block structure. Journal of
classi�cation, 1997. Cited on page 91.

[SNB+08] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher,
and Tina Eliassi-Rad. Collective classi�cation in network data. AI magazine,
2008. Cited on pages xvii, 89, and 95.

186 bibliography

[SOG09] Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise and provably
informative multi-scale signature based on heat di�usion. In Computer graph-
ics forum, volume 28, pages 1383–1392. Wiley Online Library, 2009. Cited on
pages 110, 154, and 155.

[Sor27] Pitirim Aleksandrovich Sorokin. Social mobility. Harper & Row, 1927. Cited
on page 19.

[SSL+11] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M Borgwardt. Weisfeiler-lehman graph kernels. Journal of Ma-
chine Learning Research, 12(Sep):2539–2561, 2011. Cited on pages 103 and 145.

[SW19] Till Schulz and Pascal Welke. On the necessity of graph kernel baselines. In
ECML-PKDD, GEM workshop, 2019. Cited on page 149.

[SZ15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. CoRR, abs/1409.1556, 2015. Cited on
page 160.

[TDSL00] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 2000. Cited on
page 20.

[THJ10] Daniel Ting, Ling Huang, andMichael Jordan. An analysis of the convergence
of graph laplacians. In ICML, 2010. Cited on pages 156 and 158.

[TK06] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classi�cation: An
overview. IJDWM, 3(3), 2006. Cited on page 36.

[TL09a] Lei Tang and Huan Liu. Relational learning via latent social dimensions. In
KDD, pages 817–826, 2009. Cited on pages 21 and 25.

[TL09b] Lei Tang and Huan Liu. Scalable learning of collective behavior based on
sparse social dimensions. In CIKM, 2009. Cited on pages 21, 36, and 54.

[TL10] Lei Tang and Huan Liu. Social dimension approach to classi�cation in large-
scale networks. 2010. Cited on pages 71 and 72.

[TMC+19] Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, and Wenwu Zhu. AutoNE: Hyperpa-
rameter optimization for massive network embedding. In KDD, 2019. Cited
on page 170.

[TMK+18a] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alex Bronstein, and Em-
manuel Müller. SGR: Self-supervised spectral graph representation learning.
arXiv preprint arXiv:1811.06237, 2018. Cited on page 102.

[TMK+18b] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alexander M. Bronstein,
and Emmanuel Müller. NetLSD: Hearing the shape of a graph. In KDD, 2018.
Cited on pages 102, 129, 135, 144, 147, and 163.

[TMKM18] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller.
VERSE: Versatile graph embeddings from similarity measures. In WWW,
2018. Cited on pages 18, 52, 54, 70, 72, and 114.

[TMM+20a] Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Alex
Bronstein, Ivan Oseledets, and Emmanuel Müller. �e shape of data: Intrinsic
distance for data distributions. In ICLR, 2020. Cited on page 102.

[TMM+20b] Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Ivan
Oseledets, and Emmanuel Müller. Frede: Linear-space anytime graph embed-
dings. arXiv preprint arXiv:2006.04746, 2020. Cited on pages 18 and 62.

bibliography 187

[TMP20] Anton Tsitsulin, Marina Munkhoeva, and Bryan Perozzi. Just SLaQ when you
approximate: Accurate spectral distances for web-scale graphs. arXiv preprint
arXiv:2003.01282, 2020. Cited on page 102.

[TPPM20] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and EmmanuelMüller. Graph
clustering with graph neural networks. arXiv preprint arXiv:2006.16904, 2020.
Cited on page 18.

[TQW+15] Jian Tang, Meng Qu, MingzheWang, Ming Zhang, Jun Yan, and QiaozhuMei.
LINE: Large-scale information network embedding. InWWW, 2015. Cited
on pages 22, 25, 34, 35, 36, and 57.

[TYSK09] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. Quality and e�ciency in
high dimensional nearest neighbor search. In SIGMOD, pages 563–576, 2009.
Cited on page 114.

[TZ05] Mikkel �orup and Uri Zwick. Approximate distance oracles. JACM, 52(1):1–
24, 2005. Cited on page 45.

[UCS17] Shashanka Ubaru, Jie Chen, and Yousef Saad. Fast estimation of tr(f(a))
via stochastic lanczos quadrature. SIAM Journal on Matrix Analysis and
Applications, 2017. Cited on pages 133, 136, and 140.

[VBCG10] Amir Vaxman, Mirela Ben-Chen, and Craig Gotsman. A multi-resolution
approach to heat kernels on discrete surfaces. In TOG, volume 29, page 121,
2010. Cited on pages 110, 111, and 136.

[Vem05] Santosh S Vempala. �e random projection method. American Math. Soc.,
2005. Cited on page 48.

[VFH+19] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua
Bengio, and R Devon Hjelm. Deep graph infomax. In ICLR, 2019. Cited on
page 90.

[vH08] L.J.P. van der Maaten and G.E. Hinton. Visualizing high-dimensional data
using t-SNE. JMLR, 2008. Cited on page 43.

[VL07] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
pages 395–416, 2007. Cited on page 12.

[VLBB08] Ulrike Von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of
spectral clustering. �e Annals of Statistics, pages 555–586, 2008. Cited on
page 108.

[VN32] John Von Neumann. Mathematische grundlagen der quantenmechanik.
Springer-Verlag, 1932. Cited on page 134.

[VZ17] Saurabh Verma and Zhi-Li Zhang. Hunt for the unique, stable, sparse and fast
feature learning on graphs. In NIPS, pages 87–97, 2017. Cited on pages 104,
114, 115, and 129.

[WC89] Yen-Chuen Wei and Chung-Kuan Cheng. Towards e�cient hierarchical de-
signs by ratio cut partitioning. In IEEE International Conference on Computer-
Aided Design. IEEE, 1989. Cited on page 85.

[WCZ16] DaixinWang,PengCui, andWenwuZhu. Structural deep network embedding.
In KDD, pages 1225–1234, 2016. Cited on page 25.

[WDL+09] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh
Attenberg. Feature hashing for large scale multitask learning. In ICML, 2009.
Cited on pages 62 and 65.

188 bibliography

[Wer82] Paul J Werbos. Applications of advances in nonlinear sensitivity analysis. In
System modeling and optimization. Springer, 1982. Cited on page 13.

[Wey11] Hermann Weyl. Über die asymptotische verteilung der eigenwerte.
Nachrichten von der Gesellscha� der Wissenscha�en zu Göttingen, 1911. Cited
on pages 111 and 164.

[WHG+18] Liwei Wang, Lunjia Hu, Jiayuan Gu, Zhiqiang Hu, Yue Wu, Kun He, and John
Hopcro�. Towards understanding learning representations: To what extent
do di�erent neural networks learn the same representation. In NeurIPS, 2018.
Cited on pages 151 and 154.

[Wil62] Herbert SWilf. Mathematics for the physical sciences. 1962. Cited on page 138.
[Wol] Milian Wol�. A heap memory pro�ler for linux, 2018. https://github.

com/KDE/heaptrack. Cited on page 73.
[Wol96] David H Wolpert. �e lack of a priori distinctions between learning algo-

rithms. Neural computation, 1996. Cited on pages 5 and 17.
[Woo14] David PWoodru�. Sketching as a tool for numerical linear algebra.�eoretical

Computer Science, 2014. Cited on pages 19, 24, 46, and 47.
[WS98] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’

networks. Nature, 393:440–442, 1998. Cited on page 43.
[YJK18] Minji Yoon, Jinhong Jung, and U Kang. Tpa: Fast, scalable, and accurate

method for approximate random walk with restart on billion scale graphs. In
ICDE, pages 1132–1143. IEEE, 2018. Cited on page 51.

[YL15] Jaewon Yang and Jure Leskovec. De�ning and evaluating network communi-
ties based on ground-truth. Knowledge and Information Systems, 2015. Cited
on pages 36, 61, 71, 72, 91, and 144.

[YS18] Zi Yin and Yuanyuan Shen. On the dimensionality of word embedding. In
NeurIPS, 2018. Cited on pages 154 and 160.

[YSX+20] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, and Sourav S. Bhowmick.
Homogeneous network embedding for massive graphs via reweighted per-
sonalized pagerank. PVLDB, 13(5):670–683, 2020. Cited on pages 49 and 51.

[YV15] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In KDD, pages
1365–1374, 2015. Cited on pages 116 and 146.

[YW19] Yuan Yin and Zhewei Wei. Scalable graph embeddings via sparse transpose
proximities. In KDD, 2019. Cited on page 169.

[YWCW15] Ye Yuan, GuorenWang, Lei Chen, and HaixunWang. Graph similarity search
on large uncertain graph databases. �e VLDB Journal, 24(2):271–296, 2015.
Cited on page 105.

[YYM+18] Zhitao Ying, Jiaxuan You, ChristopherMorris, Xiang Ren,Will Hamilton, and
Jure Leskovec. Hierarchical graph representation learning with di�erentiable
pooling. In NeurIPS, 2018. Cited on page 90.

[Zac77] Wayne W Zachary. An information �ow model for con�ict and �ssion in
small groups. Journal of anthropological research, 33(4):452–473, 1977. Cited
on pages xi and 27.

[ZCL+18] Ziwei Zhang, Peng Cui, Haoyang Li, Xiao Wang, andWenwu Zhu. Billion-
scale network embedding with iterative random projection. In ICDM, pages
787–796, 2018. Cited on pages 24, 48, 53, and 64.

https://github.com/KDE/heaptrack
https://github.com/KDE/heaptrack

bibliography 189

[ZCW+18] Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao, and Wenwu Zhu.
Arbitrary-order proximity preserved network embedding. In KDD, 2018.
Cited on page 23.

[Zil96] Shlomo Zilberstein. Using anytime algorithms in intelligent systems. AI
Magazine, 17(3):73–83, 1996. Cited on pages 4 and 45.

[ZL09] R. Zafarani and H. Liu. Social computing data repository at ASU, 2009. Cited
on pages 36 and 54.

[ZQYC12] Yuanyuan Zhu, Lu Qin, Je�rey Xu Yu, andHong Cheng. Finding top-k similar
graphs in graph databases. In EDBT, pages 456–467, 2012. Cited on page 102.

[ZTW+09] Zhiping Zeng, Anthony K. H. Tung, Jianyong Wang, Jianhua Feng, and Lizhu
Zhou. Comparing stars: On approximating graph edit distance. PVLDB,
2(1):25–36, 2009. Cited on pages 102 and 105.

[ZXTQ19] Zhaocheng Zhu, Shizhen Xu, Jian Tang, and Meng Qu. Graphvite: A high-
performance CPU–GPU hybrid system for node embedding. InWWW, 2019.
Cited on page 169.

[ZZL+15] WeiguoZheng,Lei Zou,Xiang Lian,DongWang, andDongyan Zhao. E�cient
graph similarity search over large graph databases. TKDE, 27(4):964–978,
2015. Cited on page 105.

PUBLICATIONS

1. Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller.
VERSE: Versatile Graph Embeddings from Similarity Measures. WWW, 2018.

2. Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alex Bronstein, and
Emmanuel Müller. NetLSD: Hearing the Shape of a Graph. KDD, 2018.

3. Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alex Bronstein, and
Emmanuel Müller. Spectral Graph Complexity.WWW companion, 2019.

4. Anton Tsitsulin, DavideMottin, Panagiotis Karras, Alex Bronstein, and Em-
manuel Müller. SGR: Self-Supervised Spectral Graph Representation Learning.
CoRR abs/1811.06237, 2018.

5. Anton Tsitsulin, Marina Munkhoeva, and Bryan Perozzi. Just SLaQWhen
You Approximate: Accurate Spectral Distances for Web-Scale Graphs.WWW,
2020.

6. Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras,
Alex Bronstein, Ivan Oseledets, and Emmanuel Müller. �e Shape of Data:
Intrinsic Distance for Data Distributions. ICLR, 2020.

7. Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras,
Ivan Oseledets, and Emmanuel Müller. FREDE: Anytime Graph Embeddings.
VLDB, 2021.

8. Ştefan Postăvaru, Anton Tsitsulin, Filipe Miguel Gonçalves de Almeida,
Yingtao Tian, Silvio Lattanzi, and Bryan Perozzi. InstantEmbedding: E�cient
Local Graph Representation. CoRR abs/2010.06992, 2020.

9. Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller.
Graph Clustering with Graph Neural Networks. CoRR abs/2006.16904, 2020.

	Contents
	1 Introduction and Thesis Overview
	2 Background and Notation
	I Similarities and Representations of Nodes
	3 Introduction and Related Work
	4 Vertex Similarity Embeddings
	5 Anytime Node Embeddings
	6 Local Node Representations
	7 Node Representations for Clustering

	II Similarities and Representations of Graphs
	8 Introduction and Related Work
	9 Spectral Graph Similarity
	10 Learning a Spectral Graph Similarity
	11 Efficient Approximation of Spectral Graph Representations
	12 Spectral Graph Similarities for Comparing Distributions

	III Summary
	13 Summary and Future Work

