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Abstract 

 
The holistic understanding of biological phenomena enabled by systems biology forms the basis 

of current research. As opposed to the principle of classical biology where behavior of a 

biological system is explained by studying individual constituents, systems biology evaluates 

many constituents of a system simultaneously to explain how molecular processes influence 

higher level biological phenomena. The integration of knowledge acquired through published 

literature and data generated from direct experimentation is the most important feature of systems 

biology because it facilitates communication between these worlds and overcomes each other’s 

weaknesses. Today, it has profound applications in a wide range of disciplines such as biomarker 

identification, drug discovery, network analyses and disease-mechanism identification. 

In this thesis, using state-of-the-art frameworks and technologies of systems biology, we have 

performed a comparative analysis of disease-specific models to depict mechanism-centric 

comorbid association between Alzheimer’s Disease (AD) and Type 2 Diabetes Mellitus (T2DM). 

We achieved this through two different methodologies where literature-based findings were 

validated with publicly available data and vice-versa. The findings from our first methodology 

illustrate cross-talk between several signaling pathways which eventually manifest characteristic 

features of AD and T2DM. Our findings provide a wider and global overview of previously 

suggested comorbidity between these diseases. Moreover, we have explored putative beneficial 

and harmful effects induced by Metformin, an FDA-approved T2DM drug which is considered a 

candidate repurposing drug for AD. With our second methodology, we have identified four 

pleiotropic genes to be involved in pathophysiological events of both AD and T2DM. 

Interestingly, these genes did not fall into the category of well-known genes of both diseases, 

suggesting a new mechanistic route to the comorbid association. In addition to the work that 



 
 

explores AD-T2DM comorbidity, this thesis also focuses on a work that devises a new algorithm 

to enable quantification of disease mechanisms. The algorithm, named Candidate Mechanism 

Perturbation Algorithm (CMPA), was able to demonstrate that the intensity of impairment of 

causal mechanisms is different across spatial and temporal resolutions. Such an implementation 

opens up the possibility to generate a ranked and prioritized list of disease mechanisms.  

Lastly, this thesis endorses understanding of disease mechanisms and network analysis by 

providing robust and reproducible workflows. The works presented here introduce methodologies 

to bring new insights about comorbid diseases and score disease-associated mechanisms.  
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Chapter 1 

Introduction 

1. Revolutionizing translational research with integrative approaches 

Classical biology, also known as reductionist biology, was the basis for all biological research for 

over two centuries, and is driven by single-molecule experiments and small-scale modeling. It 

has contributed significantly to our understanding of biological systems, via examination of 

properties of individual components of those systems. In fact, the identification of many 

molecules, genes and biological processes is attributable to years of research that followed the 

principles of classical biology [1]. Despite its many contributions, classical biology has not been 

able to adequately describe complex diseases. Classical approaches use observed disease 

phenotype or expert opinions to suggest a hypothesis. The results of this process, however, are 

often misguided, because the hypotheses may reflect unrecognized bias or incomplete insights 

about the relevant disease. Moreover, a number of limitations of classical biology have hindered 

swift progress in the field of molecular biology. First, classical approaches concentrate on 

understanding physiochemical and biological properties of selective molecules. Second, the 

process is not time-efficient and has many assumptions and constraints. Third, it lacks a 

philosophical framework to investigate systems as a whole, that is, the interaction and interplay 

of components that affect behavior of the system. The repeated failure of clinical and drug trials, 

including FDA-approved drugs to treat Alzheimer’s Disease (AD), provides a costly reminder of 

the limitations of classical biology [2]. The case of AD is a particularly stark demonstration of the 

need for non-classical approaches. Over 100 years of research and billions of dollars of 

investment have made seemingly little change to its status as “incurable”. The challenge of 

decoding the true etiology of AD stems from the fact that it is a multi-factorial and complex 
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neurological disorder. Progress in understanding such disorders requires a holistic understanding 

and identification of concurrent cross-talk of its pathological, demographical, epidemiological 

and molecular aspects. Such a perspective is potentially offered by systems biology approaches, 

which bridges the gap between multi-scale biomedical data and knowledge ranging from 

genotype to phenotype in diseases. 

The concept of systems biology was first described in the early 1920s by Ludwig von Bertalanffy 

[3] and in the late 1960s by Mijajlo Mesarovic [4]. However, the real implementation of systems 

biology approaches only became possible with technological advancements and developments of 

the 1990s, and such approaches have since become standard. And within a short span of time, 

systems biology has revolutionized molecular biology and all of its subfields. The integration of 

data-driven and knowledge-driven approaches has been the essence of systems biology. These 

approaches complement each other, and so, their integration facilitates more powerful scientific 

findings and interpretations. While data-driven approaches are capable of generating bias-free 

hypotheses, knowledge-driven approaches provide explanations of molecular interactions and 

downstream molecular events, which data-driven methods cannot. Since the early 1990s, 

especially after the commencement of the Human Genome Project (HGP), there has been a 

dramatic increase in collection of high-throughput omics data including metabolomics, genomics, 

transcriptomics and proteomics [5]. Today, advanced technologies and computer systems 

facilitate the acquisition of heterogeneous, multi-scale and multi-modal data, often referred to as 

“big data”. Concurrently, numerous methodologies and algorithms have been developed for the 

analysis and interpretation of this data. Meanwhile, knowledge-driven approaches have generated 

insight about biological entities and their functions. This knowledge is published as literature, and 

has kept pace with data. However, the process of publishing scientific literature is a slow one, and 

this knowledge is typically an outcome of conventional practices of hypothesis generation. This 
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is vulnerable to the same risk of bias as classical biology. The individual limitations of data- and 

knowledge-driven approaches motivate the need for something that improves them. Interestingly, 

these approaches are complementary, in the sense that each seems to overcome a weakness of the 

other. For instance, data-driven approaches can detect a signal, but not generate insight about its 

functional context. That insight can, however, be provided by the prior knowledge offered by 

knowledge-driven approaches. In this context, a study by Khanna et al. (2018) has generated 

Bayesian Networks (BNs) to uncover dependencies across multi-scale patient level data where 

patients transition from normal state to the state of mild cognitive impairment [6]. The authors 

have used knowledge assembly to reconstruct potential biological mechanisms embedding 

dependent features that influence this transition. Likewise, a finding from knowledge-driven 

approaches requires validation with data. This has been demonstrated in a study that performs a 

comparative analysis of neuro-inflammatory mechanisms in human and mouse. The concordance 

of gene expression patterns between the two species is validated using independent gene 

expression datasets [7].     

This potential to enable interoperability and communication between the worlds of data and 

knowledge marks one of the points of true potential of systems biology. Its holistic approach to 

understanding complex biological systems, modeling metabolic networks, cell signaling networks 

and disease models, is why it forms the foundation of most current research. Moreover, systems 

biology has found application in a wide range of sub-disciplines, such as chemical synthesis [8], 

biomarker identification [9], drug discovery [10], personalized and precision medicine [11], 

immunology and vaccination [12][13], proteome profiling [14][15], in silico simulations with 

cell-free-systems (CFS) [16], network-based analyses [17][18] and disease-mechanism 

identification [19]. Lately, there are even advanced methodologies that have influenced paradigm 

shift in systems biology as progresses have been made beyond data-knowledge integration and 
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interoperability. A hybrid data and knowledge driven framework, namely CLEP, has enabled 

generation of patients which can be further used for clustering and classification [20]. The 

framework uses several machine learning algorithms that allow accurate classification between 

cognitively impaired patients and healthy participants.         

In this thesis, we present novel systems biology approaches in the domains of network-based 

analysis and disease-mechanism identification. In particular, by creating and comparing disease 

specific biological networks, works that identify shared molecular mechanisms of co-occurring 

diseases are demonstrated here. This sort of approach provides mechanistic insights about co-

occurring diseases, which are not possible through classical assessment techniques, as they 

examine diseases from clinical findings and observations. Moreover, although several 

mechanisms are suggested to be involved in underlying disease etiology, it is difficult to identify 

the most crucial and important mechanisms. A strategy to score disease mechanisms will resolve 

this issue. A work describing a new algorithm that assesses intensity of impaired disease 

mechanisms is presented here. In the remainder of this introduction, we will provide a summary 

of the state-of-the-art technology and research in these domains. 
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2. Comorbidity 

The term comorbidity refers to the simultaneous occurrence of two or more medical conditions in 

an individual. It was coined by A.R Feinstein in 1970 and since then it has been considered as a 

separate domain of scientific research in many branches of medicine [21]. Based on the 

association between co-occurring conditions, comorbidity is considered to be either non-

dependent or dependent. Non-dependent comorbidity describes the co-occurrence of conditions 

due to random probability, suggesting no association between the diseases. Dependent 

comorbidity, on the other hand, suggests that the conditions are related in some way or that one 

condition is a risk factor for another condition. As opposed to non-dependent comorbidity, 

conditions exhibiting dependent comorbidity are assumed to share underlying disease pathways 

and mechanisms.  

2.1. Prevalence and causes of comorbidity 

The prevalence of comorbidities varies among patient subpopulations and different families of 

diseases. Irrespective of its type, comorbidity affects mortality, functional status and quality of 

life of patients. Moreover, it influences their prognosis, medication, treatment strategy and 

overall handling [22]. A population-based study of 8000 patients by Roca et al. (2009) showed 

that more than 30% of the patients were diagnosed with coexisting psychiatric disorders [23]. As 

shown in Figure 1, 30.1% of the patients were diagnosed with concurrent mood disorders and 

somatoform disorders. Similarly, 30.6% of patients were diagnosed with mood disorders and 

anxiety disorders. Moreover, a total of 11.5% of the patients were diagnosed with all the 3 

conditions. 
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Figure 1: A Venn diagram depicting proportions of prevalence of comorbid conditions in a 

Spanish population diagnosed with mood disorders, somatoform disorders and anxiety disorders. 

(Source: Roca et al. (2009) [23]) 

 

Likewise, the Alzheimer’s Association (www.alz.org) (Figure 2) has demonstrated that the 

number of dementia patients with additional co-existing medical conditions is more than the 

number of dementia patients with no additional medical condition. The comorbid conditions were 

congestive heart failure, chronic obstructive pulmonary disease, chronic kidney disease, coronary 

artery disease, stroke, diabetes and cancer, and were diagnosed in patients aged 65 years and 

older. The costs of medication and health care service of dementia patients with comorbid 

conditions was reported to be higher than costs for dementia patients with no comorbid condition.   
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Figure 2: Bar plots comparing occurrence of comorbid conditions per 1000 US patients of age 65 

or older diagnosed with and without AD. The purple bars represent patients with AD and yellow 

bars represent patients without AD. This comparison indicates that prevalence of comorbid 

conditions in AD patients is higher than in patients without AD. (Source: www.alz.org) 

 

In another cohort dataset of patients aged 65 or older (i.e., The Health Improvement Network 

(THIN)), 77% of patients with dementia were diagnosed with one or more comorbid conditions 

(Figure 3). Additionally, the number of patients with dementia and co-existing comorbid 

condition(s) was found to be greater than the number of patients with the same comorbid 

condition(s), but without dementia. The most prevalent comorbid conditions were hypertension 

and diabetes, both of which are considered to be a risk factor for dementia.  
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Figure 3: Bar plots comparing occurrence of comorbid conditions in UK patients of age 65 or 

older diagnosed with AD against all patients diagnosed with different diseases. The blue plots 

represent patients with AD and red plots represent entire group of patients with different diseases. 

This comparison indicates that prevalence of comorbid conditions in AD patients is higher when 

compared to all the patients with various diseases. (Source: www.gov.uk) 

 

While a full understanding of the causes of comorbidity is still lacking, a number of 

heterogeneous factors are associated with comorbidity, including demographics, lifestyle, social 

and physical environment and health care. In recent years, there has been growing interest in the 

scientific community as comorbidity (especially dependent type) is speculated to exist at multi-

scale biology of organs, pathways, cellular processes and genetics. Sánchez-Valle et al. (2020) 

report on the findings that comorbid conditions are influenced by the physical closeness of 

organs. In other words, a patient with a disease in the digestive system is more likely to develop 

another disease associated with the digestive system. Through a Disease Molecular Similarity 

Network (DMSN), they identified higher overlap of similarity interactions between diseases of 
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the digestive system, diseases of skin and cancer [24]. A study by Ko et al. (2016) created 

molecular interaction networks by retrieving disease-associated genes and underlying molecular 

pathways from available databases to identify comorbid diseases. The study speculates 

comorbidity between Diabetes Mellitus and Ankylosing spondylitis and other inflammatory 

spondylopathies on the basis of identified common mechanisms such as interleukin-10 receptor 

binding, regulation of immune response and response to insulin [25]. The high prevalence of this 

comorbidity has been reported in a study based on an Asian population [26]. Similarly, by 

identifying a shared mechanism, Hoyt et al. (2018) have attempted to explain previously 

suggested comorbidity between AD and Epilepsy by depicting the putative role of GABA 

receptors and consequent GABAergic pathway as the underlying comorbid etiology [27]. In 

recent years, besides identification of shared genes, biological processes and pathways, the 

influence of genetics has also been assessed in deducing comorbid inferences. Such studies have 

undertaken efforts to identify pleiotropic genes and even their variants associated with 

downstream protein modifications, function and consequent phenotypes that are shared between 

comorbid conditions. In this regard, Tomblin et al. (2012) have suggested involvement of four 

pleiotropic genes (i.e., KIA0319, DRD4, DAT1 and BDNF) in comorbidity between 

Communication Disorder (CD) and Attention Deficit Hyperactivity Disorder (ADHD). While 

procedural learning and declarative learning are cognitive endophenotypes of CD, and executive 

function and procedural learning are of ADHD, the authors rationalize comorbidity between these 

by illustrating deficits in all of these endophenotypes caused by the aforementioned pleiotropic 

genes [28]. Another study by Naz et al. (2017) performed functional assessment of pleiotropic 

variants to explain the possible stress-induced comorbidity between AD and Parkinson’s Disease 

(PD). The study identified the rs1800547 variant in the MAPT gene of AD and PD patients as 
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contributing to the characteristic features of those diseases. In addition, the authors also report 

that the rs393152 variant in CRHR1 adds to the underlying comorbid etiology [29]. 

2.2. Overview of Alzheimer’s Disease 

AD, the most common form of dementia, is a progressive neurodegenerative disease which 

affects the aging population. The disease is characterized by loss of structure and function of 

neurons in the brain, resulting in loss of memory, complications in executive functions, inability 

to communicate properly and perform regular day to day activities. The accumulation of amyloid 

beta peptides and neurofibrillary tangles (NFTs) resulting from abnormally processed APP and 

misfolded MAPT, respectively, are the most remarkable clinical hallmarks of AD [30][31]. The 

hypotheses explaining the exhibition of these hallmarks are widely known as amyloid hypothesis 

and tau hypothesis. In addition to theses, the etiology of AD is associated to other speculations, 

such as decreased acetylcholine synthesis in signal transduction (i.e., cholinergic hypothesis) 

[32], improper functioning of the blood-brain barrier (i.e., neurovascular hypothesis) [33], 

increased inflammatory markers (i.e., inflammation hypothesis) [34], reduced glucose 

metabolism (i.e., glucose hypothesis) [35], and perturbed cellular bio-metals homeostasis [36]. 

AD is presumed to be a genetic disease as mutations in the genes APP, PSEN1, APOE and 

TREM2 are known to increase the risk of developing AD at least threefold [37][38]. Even more, 

the carriers of the APOE ε4 isoform are considered to be the most vulnerable risk group as 

studies have shown this to increase the risk of AD by fifteen times [39]. The other reported risk 

factors in AD are smoking, lifestyle, diet, nutrition and environmental factors [40][41][42]. The 

inefficacy of available drugs targeting these hypotheses suggests that AD is a complex 

neurological disorder and demands more research to identify potential new hypotheses and drug 

targets.  
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2.3. Overview of Type 2 Diabetes Mellitus 

T2DM is a metabolic disorder characterized by inability of cells to effectively utilize insulin 

required for conversion of glucose to glycogen (glycogen synthesis) which thereby increases 

blood glucose levels (hyperglycemia). The prevalence of T2DM is mostly found in the middle-

aged and older population, with about 400 million people affected worldwide [43]. Over the 

years, the understanding of T2DM has changed from being a simple disorder of the pancreas to a 

complex multi-system disorder, with organs such as liver, muscles, kidney, gut and brain known 

to be affected by the disease [44]. The etiology of T2DM is widely attributed to pre-existing 

obesity, lifestyle, medical conditions and genetics. Population based studies have shown that 30-

100% of individuals with obesity developed T2DM [45]. Moreover, individuals with a lifestyle of 

smoking, limited physical activity and consumption of a high sugar diet are more likely to get the 

disease [46][47][48]. Prolonged use of medications such as glucocorticoids, thiazides, 

antipsychotics and statins are also reported to increase the risk of T2DM in several independent 

studies [49][50]. While a few studies investigate a dysfunctional monogenic (i.e., single gene) 

form of T2DM [51], a number of studies suggest that the disease is polygenic in nature. Genome 

Wide Association Studies (GWAS) have identified 86 single nucleotide polymorphisms (SNPs) 

in about 35 genes that contribute to the pathophysiology of T2DM [52][53]. Among these, 

TCF7L2 is the most prominent gene, because it regulates production of glucagon (GCG), a gene 

which enhances insulin secretion. In another GWAS, SNPs were identified in TBC1D4, a gene 

known to enhance insulin-mediated uptake of glucose [54]. The overall population had a tenfold 

increase in risk of developing T2DM, compared to those without this mutation. As compared to 

AD, the etiology of T2DM is well-understood, reflected in the existence of several effective 

therapies to treat the disease.  
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2.4. The comorbid story of AD and T2DM 

The detection of insoluble IAPP, which resembles the toxic amyloid beta peptides of AD, in the 

pancreas of diabetic patients in the late 1980s was one of the first hints that suggested a 

pathological association between AD and T2DM [55]. Since then it has been the focus of massive 

interest in the scientific community to unravel existing links between the neurological disorder 

AD and the metabolic disorder T2DM. Associations between AD and T2DM have now been 

established from different perspectives, such as epidemiology, neuroimaging, shared genetics and 

shared pathophysiology. Several different types of potential associations between AD and T2DM 

have been proposed, with each of which has its own implications for the understanding of the 

diseases. The possible associations include: a generic but close relationship, a co-dependent 

association, that T2DM is a risk factor for AD and most strongly that AD is, in fact, a Type 3 

Diabetes Mellitus (T3DM) [56]. Irrespective of the nature of the association, the findings make it 

clear that the co-occurrence of these diseases is more than just by chance, and they are, in fact, 

comorbid in nature.  

The Rotterdam Study of the 1990s was one of the first epidemiological studies investigating the 

impact of T2DM as a risk factor for AD. It paved the way for many future cohort-based studies 

with the same goal [57]. The study identified T2DM as the strongest risk factor for AD. The 

prevalence of AD in T2DM patients was found to be twice as high as in the control patients. In a 

study by Barbagallo and Dominguez, T2DM patients also had a two-fold risk of developing AD 

compared to healthy controls [58]. Similarly, longitudinal population-based studies have also 

revealed that T2DM patients are at significantly higher risk of developing AD compared to 

individuals without T2DM [59][60]. Likewise, several studies have reported that the APOE ε4 

isoform in T2DM patients increases the risk of AD, compared to non-carriers of APOE ε4 
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isoform [61][62][63]. A study by Li et al. (2015) summarizes seventeen epidemiological studies 

that suggest a comorbid association between AD and T2DM [64].  

The finding that T2DM patients are confronted with cognitive decline as a result of reduced 

hippocampal and whole brain volume implies that it is more than just a metabolic disorder [65]. 

These observations resemble the typical pattern of brain atrophy and consequent impairment of 

cognition evident in AD. In this context, several other neuroimaging studies have reported 

cognitive impairment and its correlation with reduced volumes of gray matter, white matter and 

hippocampus in T2DM patients [66][67]. While epidemiological and neuroimaging studies are 

based on observations and can elucidate on correlations or dependencies between considered 

features of the studies, they are still incapable of giving insights about pathophysiological events 

underlying comorbid conditions. Therefore, it is of utmost importance to understand comorbidity 

at the genetic and molecular levels. This will identify and provide understanding of genetic 

variants, dysfunctional genes, impaired biological processes and pathways involved in comorbid 

conditions. The molecular processes linking AD and T2DM as comorbid conditions are explained 

as follows: 

2.4.1. Insulin signaling  

The prevalence of impaired insulin signaling, a characteristic feature of T2DM, in the brains of 

AD patients is considered to be strong evidence to why AD and T2DM are comorbid. The normal 

regulation of insulin signaling balances glucose metabolism, as insulin increases uptake of 

glucose in fat and muscle cells. However, these cells are incapable of utilizing available insulin in 

T2DM, a condition referred to as insulin resistance. As a consequence, patients experience 

hyperglycemia, abnormally high blood glucose levels. The impairment of insulin signaling which 

leads to insulin resistance and hyperglycemia in T2DM is known to be caused by interference by 

pro-inflammatory cytokines (TNF and interleukins) and abnormal phosphorylation of insulin 
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growth factor receptors. In AD, on the other hand, insulin resistance is directly attributed to 

accumulation of amyloid beta peptides and hyper-phosphorylated MAPT yielding NFTs, both of 

which are clinical hallmarks of AD (Figure 4) [68].  

 

 

Figure 4: Molecular interactions involved in insulin signaling. The interactions on the left 

represent downstream effects of a normally regulated insulin signaling (i.e., insulin sensitive).  

This leads to 1) cell growth and proliferation via activation of ERK and 2) inactivation of GSK3B 

which prevents phosphorylation of MAPT. The interactions on the right represent consequences of 

impaired insulin signaling (i.e., insulin resistance). This impairment, caused by amyloid beta 

peptides, inhibits binding of insulin with its receptors, thereby hindering downstream inactivation 

of GSK3B. This causes hyperphosphorylation of MAPT, which eventually leads to formation of 

neurofibrillary tangles (NFTs). Moreover, cell growth and proliferation is inhibited as a result of 

inhibited ERK. (Source: Chatterjee et al. (2018) [68])   

 

In particular, insulin signaling involves GSK3B, an enzyme whose kinase activity is reckoned to 

be the most deleterious in AD because it actively induces hyper-phosphorylation of MAPT. 

Moreover, several studies have identified defects in insulin signaling as a cause of accumulation 

of amyloid beta peptides. This is explained by observations that NEP and IDE are reduced in 
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impaired insulin signaling, both of which are amyloid beta degrading enzymes [69]. Interestingly, 

amyloid beta peptides are known to interfere with insulin signaling by abnormally 

phosphorylating IRS1 through the JNK pathway [70]. This suggests that there is a feed-forward 

loop where amyloid beta peptides impair insulin signaling, which in turn results in reduced 

clearance of amyloid beta peptides. A review by Chatterjje et al. (2018) provide a critical 

assessment of how T2DM-related pathological traits such as hyperinsulinemia, insulin resistance 

and hyperglycemia influence the presentation of AD-related pathological traits such as deposition 

of amyloid beta-peptides and NFTs [68]. Besides these, the role of insulin in improving memory 

and cognition has been identified through animal and human-based studies [71]. For this reason, 

intranasal insulin has been recommended as a potential therapy for prevention of AD [72].        

2.4.2. Inflammation 

Inflammation has been proposed as a possible mechanistic link between AD and T2DM, based on 

the occurrence of peripheral and neuronal inflammation in T2DM and AD respectively (Figure 5) 

[73]. The review hypothesizes that peripheral inflammation induced T2DM, identified by 

increased levels of inflammation mediators in the vascular system, increases amyloid beta 

peptides in the brain through stimulation of advanced glycation end products (AGEs). The 

amyloid beta peptides then further exacerbated T2DM severity and induced synaptic dysfunction 

in AD. On the other hand, neuronal inflammation, identified by elevated levels of inflammatory 

mediators in the brain, directly induced synaptic dysfunction.        
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Figure 5: A chain of interactions depicting the role of peripheral inflammation in T2DM which 

eventually contributes to synaptic dysfunction in AD. Additionally, the prevalence of neuronal and 

cerebrovascular inflammation can directly influence synaptic dysfunction in AD. (Source: Han et 

al. (2010) [73]) 

 

The previous section about insulin signaling already gives a hint about involvement of 

inflammatory genes in T2DM. In this regard, animal models mimicking T2DM have shown 

increased levels of pro-inflammatory cytokines including TNF, IL1B, IL2 and IL6 [74]. 

Likewise, elevated levels of IL6 and CRP have been reported in human-based studies [75][76]. 

This increase in pro-inflammatory markers is known to be mediated by hyperglycemia induced 

reactive oxygen species [77]. Additionally, hyperglycemia-induced NFKB is reported to trigger 

inflammation and apoptosis in adipose tissue [78]. The inflammation that occurs in T2DM 

promotes upregulation of kinases such as IKBKB and MAPK8, both of which impair insulin 

signaling by abnormally phosphorylating IRS1 at Serine 307 [79]. By contrast, in AD, increased 

levels of inflammatory markers is considered to be an early sign of AD pathogenesis. In this 

regard, the genes A2M, CLU and CD74 were identified by independent studies [80][81]. 

Interestingly, unutilized insulin in cells (i.e., hyperinsulinemia), which is usually associated with 
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T2DM, is reported to increase pro-inflammatory cytokines such as IL1B, IL6 and TNF in AD 

[82]. As a consequence, insulin resistance in the brain takes place as the cytokines phosphorylate 

and activate IRS1. Moreover, these cytokines have also been identified to co-localize with 

amyloid beta peptides in AD, triggering tissue damage and neuronal death [83][84]. In fact, 

inflammation is speculated to be a downstream effect in the amyloid hypothesis, as amyloid beta 

peptides activate microglia which provoke a pro-inflammatory cascade. This results in production 

of cytokines, chemokines and reactive oxygen species, leading to loss of neuronal cells [85][86]. 

Likewise, inflammation has also been associated with the tau hypothesis in AD, from the findings 

that IL1B induces MAPT phosphorylation via MAPK pathway [87]. These lines of evidence 

clearly imply occurrence of inflammation in both T2DM and AD. In addition, it can be inferred 

that inflammation is the link connecting pathophysiological events of T2DM and AD.  

2.4.3. Synaptic dysfunction  

The loss of synapses and neuronal cell death in the cortex and hippocampus is considered to be 

the basis of cognitive decline and memory loss in AD [88][89]. Several studies have held 

amyloid beta peptides responsible for this synaptic dysfunction and cell death [90][91]. The 

accumulated amyloid beta peptides reduce the activity of AMPA and NMDA receptors, thereby 

impairing glutamatergic transmission in signal transduction [92]. Likewise, evidence of 

localization of phosphorylated MAPT in synapses of the brains of AD patients has been reported 

which disrupt the normal interaction between MAPT and FYN required for regulating NMDA 

receptor activity [93]. Moreover, animal studies have shown that abnormal phosphorylation of 

MAPT correlates with decreased levels of synaptic markers such as DLG4, SYN1, GRIN1 and 

GRIA1 implying synaptic dysfunction [94][95]. An independent study by Tackenberg et al. 

(2009) suggests that synaptic dysfunction is mediated by amyloid beta peptides in the early stage 

of AD whereas cell death is induced by abnormal MAPT phosphorylation in late stage AD [96]. 
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On the other hand, patients with T2DM are also known to experience synaptic dysfunction. This 

may be because insulin signaling plays a critical role in synapse formation and neuronal plasticity 

[97][98][99]. The impairment in synaptic transmission has been depicted through a diabetic 

animal-based study where altered AMPA and NMDA receptor activities were observed [100]. In 

another such study, insulin prevented amyloid beta peptide-induced synaptotoxicity and long 

term potentiation (LTP) impairment [101][102]. Furthermore, GABA and glutamate, both of 

which are involved in synaptic transmission, were found to be reduced in hyperglycemic 

environments [103]. In contrast to this finding, transgenic mice in a hypoglycemic environment 

suffered from impaired memory, decreased LTP and cell death. However, this is in concordance 

with the notion that T2DM patients are vulnerable to cognitive decline as a consequence of 

hypoglycemia induced by prescribed drugs [104]. Taken together these findings indicate that 

normal regulation of insulin signaling is crucial for maintaining a healthy cognitive function.                   

2.4.4. Autophagy 

The clearance of misfolded protein aggregates is regulated by a process called autophagy. It 

triggers systematic degradation and recycling of cellular components which, when accumulated, 

induce oxidative stress-induced cell death [105]. In the context of AD, insufficient regulation of 

autophagy is accounted for accumulation of deleterious amyloid beta peptides and NFTs. In 

T2DM, this inhibition of autophagy occurs through insulin resistance-impaired MTOR signaling 

[106][107]. A study by Nixon et al. (2007) has identified formation of immature autophagic 

vacuoles in AD brain biopsies of neocortical regions, suggesting impaired autophagy in AD 

[108]. This loss in autophagic activity is supported by a study which identified reduced activity of 

ATG7 and ATG5, both of which are crucial for regulation of autophagy [103]. Likewise, reduced 

autophagy and increased aggregation of NFTs was observed in a ATG7 knockout mice model, 

suggesting a crucial role of ATG7 in clearance of amyloid beta peptides and NFTs [109]. 
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Similarly, ineffective clearance of amyloid beta peptides in AD is attributed to reduced levels of 

BECN1, which results in insufficient autophagy [110]. By contrast, in T2DM, insulin resistance 

results in oxidative stress, which further damages intracellular organelles such as endoplasmic 

reticulum and mitochondria. Since these organelles are involved in the activation of autophagy, 

degradation and clearance of misfolded proteins around them is affected [111]. Additionally, 

mouse-based studies have shown impairment in glucose intolerance and reduction in insulin 

secretion in environments of suppressed autophagy [112][113]. A rat model mimicking AD and 

T2DM has demonstrated accumulation of polyubiquitinated MAPT in neurons resulting from 

decreased SQSTM1, a protein responsible for degradation of ubiquitinated proteins via 

autophagy. In another similar study, reduced levels of autophagic markers such as ATG7 and 

MAP1LC3B were observed in the cerebral cortex and hippocampus of mice. As a consequence, 

defects in protein clearance and accumulation of autophagosomes were evident [114]. Taken 

together, impaired autophagy seems to be persistent in both AD and T2DM, and hence can be 

considered as a shared molecular process in the comorbid link between the diseases.             

2.4.5. Lipid homeostasis 

APOE is a protein primarily synthesized in the liver and brain, and plays a crucial role in 

transporting cholesterol and regulating lipid homeostasis [115][116][117]. Of all known risk 

factors, the APOE e4 isoform is considered to be the most significant risk factor for early and late 

onset of AD, as it results in a several fold increase in the risk of developing AD [118][119]. It is 

also known to increase accumulation of amyloid beta peptides and impair pathways responsible 

for their clearance [120]. In this regard, an independent study has postulated that lower binding 

affinity of the APOE e4 isoform with amyloid beta peptides could be the reason that clearance of 

amyloid beta peptides is perturbed in AD [121]. Moreover, the isoform carriers are vulnerable to 

oxidative stress and cholinergic dysfunction [122]. Interestingly, the presence of the APOE e4 
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isoform is found to be negatively correlated with IDE, an enzyme capable of degrading amyloid 

beta peptides [123]. In T2DM, on the other hand, hyperglycemia is known to cause dyslipidemia, 

as characterized by low levels of high-density lipid (HDL) cholesterol and high levels of 

triglycerides [124]. The prevalence of dyslipidemia in T2DM is also reported in several other 

studies [125][126]. In T2DM patients with AD and the APOE e4 isoform, reduced HDL 

cholesterol level and increased total cholesterol and triglyceride levels were observed compared 

to other groups, suggesting that the APOE e4 isoform was responsible for elevated blood lipid 

levels [127]. In another study, T2DM patients with the APOE e4 isoform were found to exhibit 

severe AD pathology (i.e., accumulation of neurite plaques and NFTs) when compared to T2DM 

patients without the e4 isoform [128]. To conclude, both AD and T2DM manifest impaired lipid 

homeostasis, and it can thus be considered yet another strong biological link between the 

diseases.   

3. Algorithms in network-based analyses 

Biological networks in general can be understood as a collection of inter-connected biological 

entities and can refer to various kinds of networks, such as protein-protein interaction (PPI) 

networks, metabolic networks, genetic interaction networks, cell signaling networks, gene co-

expression networks and BNs. Some of these networks such as PPI and metabolic networks are 

outcomes of systematic mining of published literature. Interactions from such networks are 

further organized and re-arranged to demonstrate regulation of pathways, which eventually form 

the basis of canonical pathway databases such as Kyoto Encyclopedia of Genes and Genomes 

(KEGG) and Reactome [129][130]. The issues of lack of disease-specific knowledge and limited 

coverage of depicted knowledge in these databases have been addressed with disease-specific 

databases and knowledge assemblies such as AlzPathway [131], Parkinson Disease Map [132] 

and NeuroMMsig [133]. The other types of networks are outcomes of analysis of omics data or 
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disease-associated clinical and demographic features. While gene co-expression networks are 

created with co-expressed genes which are inter-connected and clustered together, BNs are 

composed of interconnected nodes representing conditional dependencies between the measured 

features. Variational Autoencoder Modular Bayesian Network (VAMBN) is a good example of 

application of BN networks where the network model precisely reflects expected causal 

relationships in the multi-scale patient level data [134]. Such relationships between the data 

variables are abstract representations of correlated and dependent variables. They bear the 

potential to be rationalized with mechanistic biological interactions allowing cross-talk between 

the data and knowledge world of diseases [6]. In this thesis, we refer to networks as literature-

derived products, prior biological knowledge or knowledge assemblies.  

The interpretation of high-throughput omics data is aided by prior biological knowledge, as it 

provides inference about the activity of relevant biological entities, functional roles and 

downstream pathways. Gene set enrichment analysis (GSEA) is a classical approach where 

differentially expressed genes are mapped to signaling pathways regulated by predefined sets of 

genes. This overlap of differentially expressed genes with predefined sets of genes is assessed 

statistically by calculated confidence scores. Over the years, a number of algorithms have been 

devised to improve the understanding of omics data. One such algorithm is Pathifier [135] which 

takes into account expression profiles of tumor samples to score and identify dysregulated 

pathways from KEGG [129], BioCarta [136] and Pathway Interaction Database (PID) [137]. The 

algorithm, capable of transforming gene-level information into pathway-level information, 

identified CXCR3 mediated signaling and oxidative phosphorylation to be associated with 

survival of patients. However, recent studies have exposed some limitations of canonical 

pathways by identifying discrepancies and inconsistencies concerning their coverage and 

interoperability. An ecosystem, namely ComPath, has performed assessment of gene coverage 
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between KEGG, Reactome and WikiPathways [138] revealing an overlap of just 3800 human 

genes in the databases [139]. Additionally, the number of genes represented in similar pathways 

also varied largely. In this regard, Mubeen et al. (2019) have explored and illustrated the 

differences in the output of enrichment analyses influenced by choice of pathway databases. To 

resolve the issues of information discrepancies and coverage, the authors have merged several 

pathway databases to create an integrative database named as Mpath. The authors report on 

consistent and highly plausible results using Mpath as compared to results from individual 

pathway databases [140].  

The causality (i.e., increment or decrement) in interacting biological entities is an important 

feature of biological networks, because it provides a clue about the direction of information flow 

and helps to distinguish upstream and downstream events. And causality, indeed, is the key 

ingredient for depicting chains of causal events, as it enables transformation of information from 

molecular levels to levels of mechanism. The interpretation of omics data through such causal 

biological networks (also known as HYPs) is called causal reasoning and bears the potential to 

elucidate insights which seemed impractical a few decades ago. A study by Chindelevitch et al. 

(2012) devised a scoring function to prioritize a large number of competing HYPs to identify the 

upstream causes of changes observed in gene expression profiles [141]. The authors were able to 

correctly identify upregulated oncogenes influenced by altered expression of upstream genes. In 

another similar study, individual HYPs representing RB1, MYC, TFRC and FOXO1 activities 

were identified as regulating signaling of AKT1, which is involved in cell proliferation and 

apoptosis [142].  
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Figure 6: A workflow representing steps involved in the RCR algorithm where knowledge 

assembly derived molecular HYPs are mapped with omics data to identify upstream regulators 

that influence the expression of downstream entities. (Source: Catlett et al. (2013) [143]) 

 

Another notable algorithm known as Reverse Causal Reasoning (RCR), developed by Catlett et 

al. (2013), assesses the consistency of gene expression profiles with genes represented in HYPs 

by calculation of concordance and richness scores [143]. The algorithm identified potential 

molecular upstream regulators of observed differential gene expression in three different 

experimental settings. A general strategy of the RCR workflow is illustrated in Figure 6.  
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Figure 7: A schematic illustration of the NPA algorithm where knowledge assembly derived 

molecular HYPs representing molecular mechanisms are mapped with omics data and subjected to 

a scoring function that enables identification of most perturbed HYPs in treatment versus control 

conditions. (Source: Martin et al. (2012) [144])  

 

Lastly, treatment-induced activity changes were quantified using the Network Perturbation 

Amplitude (NPA) algorithm, where causality of a molecular HYP is combined with gene 

expression profile to devise a scoring function [144]. The intensity of perturbation of a HYP as 

indicated by the NPA score allowed quantification of TNF-induced inflammatory signaling, 

suggesting that HYPs representing molecular mechanisms can be quantified. Figure 7 illustrates a 

general workflow of the NPA algorithm.        
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4. Thesis Outline 

This thesis consists of three studies that have used systems biology approaches to address 

scientific issues in the field of neurodegenerative diseases (NDDs). Each of the studies presented 

here forms a bridge between the knowledge and data world of NDDs. Chapter 2 demonstrates a 

broader view about the comorbidity between AD and T2DM. By systematically encoding 

relevant biological information in formal statements, we showcase cross-talk between signaling 

pathways that are crucial for understanding AD-T2DM comorbidity, as their cross-talk gives rise 

to characteristic features of both diseases. Moreover, in this chapter, we use our mechanistic 

rationale to investigate the potential of repurposing an FDA-approved T2DM drug, namely, 

Metformin. In Chapter 3, we present a workflow that brings in the perspective of genetic variants 

in AD-T2DM comorbidity. The study is a purely data-driven approach, in which we perform 

functional assessment of important signals identified from analyses of genetic variants and gene 

expression profiles using knowledge assemblies. In Chapter 4, we discuss an algorithm that is 

able to quantify mechanistic graphs extracted from knowledge assemblies using gene expression 

profiles. We present two use cases, implementing the applying the algorithm to two mechanisms, 

one each for AD and PD. Finally, Chapter 5 summarizes the thesis by discussing limitations, 

outlook and future prospect of this thesis.    
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Chapter 2 

Comorbidity Analysis between Alzheimer’s Disease and Type 2 Diabetes 

Mellitus (T2DM) Based on Shared Pathways and the Role of T2DM Drugs 

Introduction 

The findings from a number of population-based, clinical and pathophysiology studies imply a 

comorbid association between AD and T2DM. From a chronological context, since the onset of 

T2DM takes place much earlier than the onset of AD, T2DM is considered a major risk factor for 

developing AD. Moreover, since the brains of AD patients are known to exhibit typical T2DM 

behavior (i.e., impaired insulin signaling), AD is sometimes referred to as T3DM. This is backed 

by the hypothesis that T2DM, a metabolic disorder in the pancreas, eventually matures in the 

brain as AD [56]. The comorbidity between AD and T2DM brings about some interesting and 

important inferences such as 1) Prevalence of shared molecular processes between the diseases 2) 

Possibility of designing similar treatment strategies 3) Prolonged use of medication for T2DM 

induces AD. In this work, using a systems biology modeling language, Biological Expression 

Language (BEL), mechanistic insights at the molecular level of AD and T2DM are deduced by 

addressing the aforementioned inferences. Furthermore, the modeling approach generates a 

broader view of what is already known about AD and T2DM, by incorporating discrete biological 

information and interactions mentioned in the literature. Lastly, the validation of the 

reconstructed mechanistic model was done through available omics data, namely, gene 

expression profiles, by identifying concordances and contradictions between formalized 

knowledge from the model and patterns in data.           
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Abstract.
Background: Various studies suggest a comorbid association between Alzheimer’s disease (AD) and type 2 diabetes mellitus
(T2DM) indicating that there could be shared underlying pathophysiological mechanisms.
Objective: This study aims to systematically model relevant knowledge at the molecular level to find a mechanistic rationale
explaining the existing comorbid association between AD and T2DM.
Method: We have used a knowledge-based modeling approach to build two network models for AD and T2DM using
Biological Expression Language (BEL), which is capable of capturing and representing causal and correlative relationships
at both molecular and clinical levels from various knowledge resources.
Results: Using comparative analysis, we have identified several putative “shared pathways”. We demonstrate, at a mechanistic
level, how the insulin signaling pathway is related to other significant AD pathways such as the neurotrophin signaling pathway,
PI3K/AKT signaling, MTOR signaling, and MAPK signaling and how these pathways do cross-talk with each other both
in AD and T2DM. In addition, we present a mechanistic hypothesis that explains both favorable and adverse effects of the
anti-diabetic drug metformin in AD.
Conclusion: The two computable models introduced here provide a powerful framework to identify plausible mechanistic
links shared between AD and T2DM and thereby identify targeted pathways for new therapeutics. Our approach can also be
used to provide mechanistic answers to the question of why some T2DM treatments seem to increase the risk of AD.

Keywords: Alzheimer’s disease, comorbidity, disease mechanisms, disease modeling, metformin, OpenBEL, type 2 diabetes
mellitus

INTRODUCTION

Alzheimer’s disease (AD) and type 2 diabetes mel-
litus (T2DM) are prevalent in aging populations. In
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2656; E-mail: martin.hofmann-apitius@scai.fraunhofer.de.

particular, AD confronts us with the challenge of find-
ing early stage diagnostic biomarkers that can be used
for prevention and treatment and may help control
the progression of the disease [1, 2]. In contrast, sev-
eral classes of Food and Drug Administration (FDA)
approved drugs like thiazolidinediones [3], DPP4-
inhibitors [4], and GLP1 receptor agonists [5] are
available for the treatment of T2DM. Despite the fact
that T2DM is a metabolic disorder and AD is a central
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nervous system disease, an increasing number of epi-
demiological studies suggest that there is a significant
comorbid association between T2DM and AD [6, 7].

The comorbid association could be due to shared
pathophysiology processes that are underlying both
diseases [8, 9]. When we try to understand the puta-
tive shared pathophysiology of AD and T2DM, some
important questions need to be addressed. Firstly,
are the current methodologies capable and competent
to provide better understanding of co-morbidity and
their underlying pathophysiology processes? Sec-
ondly, how can we establish a mechanistic link
between two medical conditions confined to spe-
cific regions of the body (brain for AD and liver
for T2DM)? One of the major limitations of the
conventional comorbidity measurement approaches
is that they rely on clinical readouts and the asso-
ciation between these readouts is purely statistical.
In order to establish mechanistic links between
comorbid diseases, we systematically harvested and
modeled relevant information on molecular mecha-
nisms potentially shared by these diseases.

Another notion supporting the concept of shared
mechanisms underlying comorbidity is based on the
observation that the medication used for one dis-
ease could itself be a risk factor for the initiation
or progression of another disease. There are many
case reports about the initiation or modulation of a
disease due to the usage of drugs for another indi-
cation. For example, drug-induced-parkinsonism has
been observed in older patients due to the use of
antipsychotic drugs such as haloperidol (HALDOL),
chlorpromazine (THORAZINE) [10], thioridazine
(MELLARIL) [11], trifluoperazine (STELAZINE)
[12], and fluphenazine (PROLIXIN) [13]. The risk
associated with antipsychotics is often dose depen-
dent and related to dopamine D2 striatal occupancy,
which is linked mechanistically to parkinsonism
[14, 15].

Previous attempts to understand the comorbid
association between AD and T2DM have not con-
sidered the role of dysregulated entities such as
genes/proteins, SNPs, and miRNAs and impaired
biological processes involved in the diseases but
rather have focused on specific biological pathways
of interest. Associations between biological path-
ways and comorbid observations are usually reported
in the form of free text; whereas pathway informa-
tion is commonly represented in various pathway
databases. A context-specific, knowledge-based net-
work modeling approach, however, may provide a
better way to integrate all the scientific knowledge

around comorbid diseases and to identify common
underlying mechanisms. Motivated by the capabil-
ities of the Biological Expression Language (BEL)
[16] to construct cause and effect computable net-
work models, we have therefore generated AD and
T2DM models based on knowledge extracted from
the scientific literature. The resulting mechanistic
network modeling work was driven by two hypothe-
ses: 1) Impaired pathways in T2DM increase the risk
for AD, and 2) T2DM drugs increase the risk of AD.
Using our mechanistic modeling approach, we have
tried to unravel shared pathways possibly perturbed
by a drug prescribed for one of the comorbid diseases
which could be causally involved in the etiology the
other comorbid disease. The models developed here
not only represent a comprehensive view on shared
pathways between the two diseases but also provide
a means to mechanistically differentiate the effects
induced by treatments and explain how it contributes
to comorbidity.

METHODS

Data collection and model building

Firstly, SCAIView [17], a tool that allows seman-
tic search and retrieval of articles, was used to build
well-defined literature corpora. Secondly, all the arti-
cles were manually checked for their relevancy to the
context of diseases. Thirdly, BEL coding experts read
through articles to extract essential lines of evidence;
which were subsequently encoded into BEL state-
ments. We have considered a total of 448 articles,
which were manually converted to BEL statements
to build the AD model. Similarly, a total of 106
articles that explicitly focus on the shared mecha-
nisms of T2DM with AD were considered to build the
T2DM model. We have also extracted relevant infor-
mation from databases after manually checking the
referenced articles. In this way, two comprehensive
systems biology models specific to AD and T2DM
were built from mostly human-based PubMed arti-
cles and available pathway databases like KEGG and
Reactome.

Identification of common pathways between AD
and T2DM

To identify shared pathways, which are enriched
in our models of AD and T2DM, we have performed
gene set enrichment analysis using a functional anno-
tation tool provided by the Database for Annotation,
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Visualization and Integrated Discovery (DAVID)
[18]. The tool enables users to retrieve a wide range of
annotations, mainly GO terms, biological pathways,
protein-protein interactions, and disease associations,
represented by a given list of genes. The signifi-
cance of each resulting annotation is determined by
a p-value calculated by modified Fisher Exact test,
where the smaller the p-value, the more significant
is the output. We deployed the tool to functionally
annotate the list of genes from our models with
biological processes or pathways. Sub-graphs repre-
senting canonical pathways were extracted from the
models and analyzed to identify shared edges and
nodes amongst the enriched pathways.

Investigation of the role of T2DM drugs to AD
pathology

Using SCAIView, we retrieved all drugs mentioned
in the literature for T2DM with the idea in mind to
analyze, whether T2DM drugs have been reported to
cause AD. We found 1,060 entries/drug names from
78,248 documents, which were ranked based on rel-
ative entropy [19]. We further analyzed the role of
top 20 T2DM drugs based on the mechanism derived
from our AD models. The aim of this analysis was
to identify T2DM treatments that could be associated
with the development of AD.

RESULTS

Causal and correlative BEL models representing
mechanistic pathways in AD and T2DM

Using a literature mining approach, we selected
448 and 106 articles, which were found to contain
relevant information about AD and T2DM, respec-
tively. The AD BEL model consists of 2,004 nodes
and 4,766 edges representing 3,068 BEL statements.
The nodes consist of 539 proteins, 273 biological
processes, 176 SNPs, 163 complexes, 140 chem-
ical entities, 136 genes, 45 RNAs, 41 miRNAs,
23 pathologies, and 468 other entities representing
translocation, transcription, and degradation pro-
cesses. Similarly, in the context of T2DM, we have
extracted 1,333 BEL statements to build a net-
work comprising of 1,094 nodes and 2,414 edges.
The nodes consist of 183 proteins, 146 biological
processes, 327 SNPs, 48 complexes, 86 chemical
entities, 92 genes, 24 RNAs, 12 miRNAs, 28 patholo-
gies, and 148 other entities representing processes
like translocation, transcription, and degradation.

There are about 31 commonly impaired bio-processes
(mainly: insulin resistance, insulin signaling path-
way, oxidative stress, mitochondrial dysfunction,
degradation of beta cells, neuron apoptosis, etc.),
which are associated with both AD and T2DM.
Likewise, 9 common diseases/pathologies like car-
diovascular disorders, obesity, and amyloidosis were
found to be common to both AD and T2DM models,
which are often co-mentioned with AD and T2DM.

Cross talk between insulin signaling pathway
and other AD specific pathways with respect to
AD and T2DM

In order to identify shared signaling pathways per-
turbed in both AD and T2DM, we have performed
systematic comparisons of the two models based on
gene sets (pathways) derived from the models by
applying the DAVID tool. This analysis allowed us
to prioritize the pathways already enriched in our
models and to further extract shared mechanisms
or sub-networks common to both models. Among
others, we have identified insulin signaling path-
way, neurotrophin signaling pathway, PI3K/AKT
signaling, MTOR signaling, MAPK signaling, and
microglial mediated immune responses as the top-
ranked pathways. We analyzed further how these
specific pathways do cross-talk to each other, poten-
tially contributing to the comorbidity between AD
and T2DM.

As shown in Fig. 1, in normal insulin signaling
pathway, insulin (INS) binds to the insulin recep-
tor (INSR) causing a phosphorylation of INSR,
thereby activating INSR to bind to insulin like growth
factor 1 receptor (IGF1R). This interaction phos-
phorylates IGF1R to further activate insulin receptor
substrate 2 (IRS2) and insulin receptor substrate
4 (IRS4). In AD, IRS2 and IRS4 interact with
protein tyrosine phosphatase, non-receptor type 11
(PTPN11) and phosphoinositide-3-kinase regulatory
subunit 1 (PIK3R1) to activate phosphatidylinositol-
4, 5-bisphosphate 3-kinase catalytic subunit alpha
(PIK3CA) which increase phosphatidylinositol (3,
4, 5)-trisphosphate (PIP3). Similar to these events
in AD, PIP3 activation by insulin receptor sub-
strates through PIK3CA and their receptors has
been observed in T2DM. PIP3 increases apoptosis
by increased phosphorylation of BCL2 associ-
ated agonist of cell death (BAD) and activation
of forkhead box O3 (FOXO3) through AKT ser-
ine/threonine kinase 1 (AKT1) [20]. Furthermore,
AKT1 hyper-activates the mechanistic target of
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Fig. 1. Cross talk between significant pathways in AD and T2DM. The cartoon represents interactions among entities of different signaling
pathways involved in AD and T2DM. Red, orange, and green edges represent AD, T2DM, and normal conditions, respectively. Here, we
depict the role of insulin signaling pathway and involvement of other pathways like PI3K/AKT signaling, MOTR signaling, MAPK signaling,
and Neurotrophin signaling in AD and T2DM which give rise to characteristic features of both the disease.

rapamycin (MTOR) through increased activation of
a Ras homologue enriched in brain (RHEB) by phos-
phorylating the tuberous sclerosis 2 protein (TSC2)
[21]. Inactivation of MTOR promotes autophagy,
thereby regulating the process of removal of amyloid-
� (A�) from the brain [22, 23]. The presence of A�
hinders the activity of brain derived neurotrophic fac-
tor (BDNF), which is known to regulate INS [24]. In
T2DM, hyperactivated MTOR inhibits normal phos-
phorylation of insulin substrates, affecting insulin
sensitivity and thereby increasing insulin resistance,
which in turn leads to apoptosis through upregula-
tion of mitogen-activated protein kinase 8 (MAPK8)
[25]. Likewise, tumor necrosis factor (TNF) in T2DM
is also responsible for abnormal serine phosphory-
lation of insulin substrates [26]. In normal brain,
AKT1 is involved in phosphorylating glycogen syn-
thase kinase 3� (GSK3�), restricting the ability of
GSK3� to further phosphorylate microtubule associ-
ated protein tau (MAPT), which will otherwise lead

to increased deposition of that protein in neurofibril-
lary tangles (NFTs) [27]. Moreover, it also regulates
the intake of glucose by decreasing phosphoryla-
tion of glycogen synthase 1 (GYS1) and glycogen
synthase 2 (GYS2) [28, 29]. We found that AKT1
is consistently downregulated in AD as well as in
T2DM, which supports the fact that glucose levels are
increased in blood, a condition called hyperglycemia
[30]. Hyperglycemia in T2DM increases reactive
oxygen species, thereby becoming detrimental to nor-
mal beta cell function. Similarly in AD, NFTs and
A� increase oxidative stress by producing reactive
oxygen species, leading to activation of microglia
and inflammatory regulators [31, 32]. The increase
in oxidative stress reported in AD, increases levels
of mitogen-activated protein kinase kinase kinase 5
(MAP3K5), which further adds to caspase 3 (CASP3)
activity resulting in apoptosis [33].

To support the above-mentioned pathways and
mechanisms, we analyzed gene expression datasets
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(Supplementary File 1 and 2) to understand the
expression patterns of the entities involved in AD
and T2DM. The expressions of protein kinase AMP-
activated catalytic subunits (PRKAA1 and PRKAA2)
and protein kinase AMP-activated non-catalytic sub-
units (PRKAB2 and PRKAG3), which code for
AMP-activated protein kinase (AMPK) sub-units,
were found to be downregulated in AD, which is
consistent with the above depicted Fig. 1. Similarly,
protein kinase AMP-activated non-catalytic subunit
gamma 1 (PRKAG1) and protein kinase AMP-
activated non-catalytic subunit gamma 2 (PRKAG2),
which also code for AMPK sub-units, were found
to be downregulated in T2DM. Moreover, ser-
ine/threonine kinase 11 (STK11), a protein that
activates AMPK [34], was found to be under-
expressed in both AD and T2DM. Likewise, we
found downregulated signal transducer and activator
of transcription (STAT1 and STAT2), nuclear fac-
tors of activated T-cells (NFATC1, NFATC2, and
NFATC3), and nuclear factor kappa B subunit 1
(NFKB1) to be associated with AD conditions, all
of which are pro-inflammatory regulators associated
with microglia-mediated immune response. Corre-
spondingly, in the context of T2DM, downregulation
of STAT1 and nuclear factor of activated T-cells 4
(NFATC4) were observed. The expressions of neu-
rotrophic receptor tyrosine kinases (NTRK1 and
NTRK2) and neurotrophin 3 (NTF3), which reg-
ulate insulin-signaling pathway, were found to be
down regulated in AD, while only NTRK2 was
downregulated in T2DM. However, we did not
find any significant signals regarding the expres-
sion of glucagon (GCG), solute carrier family 2
member 4 (SLC2A4), peroxisome proliferator acti-
vated receptor gamma (PPARG), and BCL2 family
apoptosis regulator (MCL1) from the data sets we
analyzed. Nevertheless, we could identify certain
SNPs that are associated with T2DM and AD in
patient cohorts through literature. We identified SNP
rs12104705 to be associated with GCG [35], SNP
rs5435 with SLC2A4 [36], and SNPs rs1801282
and rs1805192 with PPARG [37, 38]. These genetic
variants may contribute to the perturbation of nor-
mal functions of these genes/proteins in the disease
state. A dedicated mechanistic analysis and more
independent cohort studies are needed to prove
the functional role of these genetic variants in
causing the comorbidity. One such analysis identify-
ing STK11 genetic variant rs3764640 in regulating
autophagy has been depicted by Kodamullil et al.
[39].

Comorbidity analysis based on use of drugs

Using our in-house text mining tool, SCAIView,
we retrieved FDA-approved drugs from AD and
T2DM to understand the perspective of comorbidity
in the context of drugs. Among the 5 approved AD
drugs, we found that only tacrine has some effects on
T2DM [40, 41]. In contrast, 20 approved T2DM drugs
have already been investigated for repurposing for
AD (Supplementary File 3) targeting mainly PPARG,
AMPK, GCG, and leptin (LEP). In the following sec-
tions, we briefly discuss positive and negative effects
of various drug targets taking into account relevant
studies (mostly human based and few animal based)
and further elaborate on the effects of metformin in
AD.

PPARG functions by regulating SLC2A4, a pro-
tein that plays a vital role in T2DM as it enhances
transportation and absorption of glucose [42]. Since
a type of brain-specific-diabetes is observed in AD
[43], targeting PPARG in AD has been widely con-
sidered. Moreover, PPARG is capable of inhibiting
pro-inflammatory regulators, which are responsible
for microglial activation [44]. The over-activation of
microglia has been shown to lead to deposition of A�
peptides through excess release of inflammatory fac-
tors in AD [45]. The second common target, AMPK,
improves glucose metabolism and insulin sensitiv-
ity in T2DM, a much-needed activity in the normal
brain [46, 47]. For this reason, T2DM drugs targeting
AMPK are considered as repurposing candidates for
AD. The other common targets, GCG and LEP, are
also interesting targets in T2DM. Although they are
not directly involved in the insulin signaling pathway,
they can have an effect on AD pathophysiology mech-
anisms. Inducing glucose lowering effects in T2DM,
GCG is able to improve synaptogenesis and neu-
rogenesis, inhibit depositions of A� and microglial
activation in AD [48]. Likewise, LEP activation has
been shown to reduce enzymatic activity of beta-
secretase 1 (BACE1) and phosphorylation of MAPT
[49].

However, some contradictions reporting the find-
ings that T2DM drugs may increase the risk of
AD keep the chances of repurposing T2DM drugs
at bay. Rosiglitazone, an agonist of PPARG, has a
very low blood-brain barrier penetration [50]. Thus,
induced insulin sensitivity in the brain might not be
good enough to regulate normal insulin signaling.
On the other hand, as it effectively sensitizes periph-
eral tissues to insulin, the levels of blood insulin
are remarkably decreased, thereby reducing insulin
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levels in brain. This is assumed to promote neuronal
insulin resistance over time [51]. Metformin, a T2DM
drug, is known to upregulate expression of BACE1
and increase deposition of A� [52]. Furthermore,
sitagliptin has been reported to increase MAPT phos-
phorylation, eventually leading to NFTs [53]. In this
regard, it can be concluded that T2DM drugs amplify
the risk to develop AD or at least serve as a risk factor
in AD. This highlights the need of shifting research
works from repurposing T2DM drugs in AD to not-
well-known possible influences of T2DM drugs in
developing AD. Above all, it is of utmost importance
to understand the mechanisms modified by T2DM
drugs that will eventually lead to AD.

Identification of the role of metformin in AD
using disease models

To identify the potential role of drugs in caus-
ing or at least modulating the risk of comorbidity
between diseases, we have performed a mechanistic
analysis of the top T2DM drug targets in the con-
text of AD. The search of drugs related to T2DM
using SCAIView indicated that metformin belongs
to the drugs with highest relevance (based on relative
entropy scores) [54]. Metformin is a FDA-approved
biguanide anti-hyperglycemic agent used for the
treatment of T2DM. The mechanism of action of met-
formin is understood to reduce blood glucose levels
by decreasing glucose production in the liver, reduc-
ing intestinal absorption of glucose and improving
insulin sensitivity by increasing uptake and utiliza-
tion of glucose in the peripheral regions of the
body [55]. Modeling the drug-target-pathway con-
text of metformin resulted in a complex pattern: we
were able to explain, at a mechanistic level, the dis-
crepancy of epidemiological observations that are
linked to effects of drug treatment. These mechanistic
explanations are in sharp contradiction to previously
suggested opportunities of repurposing metformin in
AD. We can, however, also reconstruct the most likely
mechanistic explanation for the beneficial effects of
metformin. It remains to be shown, how far genetic
variation (SNPs) and epigenetics effects account for
the differences observed in epidemiological studies.

Putative beneficial effects

Since AD is frequently accompanied by insulin
resistance [56, 57], metformin is sought to improve
insulin sensitivity in AD patients. It is also capa-
ble of inhibiting MAPT phosphorylation through

increased activity of PP2A as evident from a study
from Kickstein et al. [58]. The authors explain this
mechanism by reporting the finding that metformin
in fact interrupts the binding of PP2A with MID1/�4
complex, a protein-protein interaction involved in
degradation of PP2A. Hence, it is likely to prevent
formation of NFTs and reduce progression of AD
[58]. Similarly, it inhibits neuronal damage via upreg-
ulation of glucagon like peptide 1 receptor (GLP1R),
a glucagon receptor [59]. The combined use of met-
formin and INS is reported to reduce the aggregation
of A� [52]. Furthermore, the drug is known to inhibit
the JNK cascade, formation of advanced glycation
end products (AGE) and protect against degrada-
tion of synaptophysin (SYP), a protein involved in
synaptic transmission [60, 61]. In addition, AMPK’s
ability to promote cell survival is surged by met-
formin [62]. Through our gene expression analysis of
mice samples (Supplementary File 1), we observed
that PP2As and AMPKs increased with metformin
treatment while SYP was found to be decreased. A
simple cartoon representation of beneficial effects of
metformin is shown below in Fig. 2.

Putative harmful effects

The following “chain of causation” (Fig. 3) pro-
vides a mechanistic explanation for the observed
harmful effects of metformin. We assume that “mod-
ifiers” (e.g., the genetic makeup of individual or
epigenetic modifications) outside of our models may
contribute to the overall decision making process that
results in either beneficial or harmful effects.

Metformin adds to deposition of A� by increas-
ing transcriptional activity of BACE1 [52]. Picone
et al. [63] report the findings that it contributes
in accumulation of A� through NFKB1 activation
which further upregulates PSEN1 and APP. The
same study reveals that treatment with metformin
increased oxidative stress and mitochondrial dam-
age and decreased expressions of Cytochrome C
(CYCS) and Hexokinase 2 (HK2). As a result of these
effects of metformin, cell death was observed [63].
In addition, it promotes insoluble tau aggregation as
reported by Barini et al. suggesting that it could pos-
sibly increase the risk of tauopathy among metformin
treated diabetic patients [64]. The drug also reduces
activity of vitamin B12 which causes reduced epi-
dermal growth factor (EGF) and increased TNF [65],
the latter of which is often associated with apoptosis
and neuroinflammation. In normal conditions, EGF
has a positive effect on nervous system development
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Fig. 2. Putative beneficial effects. Putative beneficial effects of metformin represented as cartoon diagram: The green edges refer to effects
induced by metformin or events in normal conditions while the red edges indicate events in diseased state. The capability of metformin to
reduce insulin resistance and neuronal damage, promote cell survival and hippocampal neurogenesis and inhibit AGEs, JNK cascade, and
phosphorylation of MAPT provides us with the opportunity to repurpose metformin for AD.

and levels of A Disintegrin And Metalloproteinase
domain-containing protein 10 (ADAM10), a protein
known to reduce A� aggregation [66]. The expression
patterns of the aforementioned genes (Supplementary
File 1) were analyzed to understand their concor-
dances with literature. The upregulated expressions
of BACE1, PSEN1, and APP identified from gene
expression analyses of mice and human samples
are consistent with the literature findings. In con-
trast, expression of EGF in mice was observed to be
downregulated.

DISCUSSION

A large number of epidemiological, preclinical,
and pathophysiology studies indicate that AD and
T2DM share cellular and molecular mechanisms.
The classical approaches in measuring comorbid-
ity that are based on clinical readouts, patient data,
and electronic health records cannot reason over the
dysfunctional molecular activity or the impaired bio-
logical pathway involved in the diseased state. On the
contrary, deciphering comorbidity at a mechanistic
level could well explain the outcomes of clini-
cal readouts and patient examinations establishing

a link between proteomic/genomic and phenotypic
aspects of diseases. However, in this study we do
not attempt to cover this proposal. Since there are
no established studies aimed at explaining comor-
bidity based on shared mechanisms, we believe that
understanding the co-morbid mechanisms between
complex diseases can be dealt with systems biology
approaches like integrative modeling. We followed a
knowledge-driven modeling approach, which served
as a rationale to infer the mechanistic background
of comorbidity association between AD and T2DM.
Modeling using BEL bears a high “explanatory”
potential; although we do not necessarily discover
new knowledge, we bring information into context
and are able to reconstruct mechanisms. As we
are aware of the publication bias, we have there-
fore done model-validation through available data
(gene expression profiles) as the key to identify
contradictions or concordances between formalized
knowledge and patterns in data.

The synopsis of mechanisms relevant for T2DM
and AD reveals that there is crosstalk among impor-
tant pathways that play either a role in T2DM or
AD and are thus candidates for shared pathways
possibly involved in the observed comorbidity. The
results of this study demonstrate that encoding rel-
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Fig. 3. Putative harmful effects. Harmful effects of metformin represented as cartoon diagram: The red edges represent effects of metformin or
events observed in diseased state while the green edges refer to events in normal conditions. Metformin’s use has been reported to contribute to
characteristic features of AD such as apoptosis, neuroinflammation, neurofibrillary tangle formation, and aggregated amyloid-� questioning
the suggested opportunities seen in metformin as a repurposible drug.

evant knowledge into causal relationship models
confers enhanced interpretation power that is well-
suited for comorbidity analysis. Our results provide
additional support to previously suggested comor-
bid associations between AD and T2DM. We have
shown at a mechanistic level how entities involved
in insulin signaling, PI3K/AKT signaling, MTOR
signaling, neurotrophin signaling, and microglial-
mediated immune responses interact and potentially
contribute to the manifestation of characteristic fea-
tures of both AD and T2DM. Since there are a few
inconsistencies in the gene expression data (both
humans and mice) to support the key interactions
depicted in this paper, integration of genetic variants
into the models may add to the explanatory power
of the models and support the notion of candidate
comorbid mechanisms. Furthermore, depicting the
AD features induced by metformin, we hypothesize

that drug treatment itself could contribute to the
comorbidity between AD and T2DM. A study aimed
at understanding the progression of AD by comparing
metformin-treated-T2DM patients with other T2DM
patients treated with other drugs is needed to validate
the effect. This emphasizes the need to reconsider
the prescription of drugs if there is any evidence of
comorbid disease associated with any drug.

It is clear from this work that BEL based network
modeling approaches bear great potential to help us
to identify shared mechanisms between two diseases.
However, as new knowledge is being generated and
communicated all the time, we need a continuous
update of the models in order to unravel new mech-
anisms and to take into account additional factors
that may contribute to comorbidity. Additionally, as
complex diseases like AD as well as T2DM progress
with time, there is also a need to integrate the time
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dependent cascade of events, which is not currently
dealt with by BEL modeling. Our hope is that this sort
of analysis will allow us to identify new drug repur-
posing candidates based on the common mechanism
between diseases. Based on our analysis, we see a
need to re-evaluate the role of existing drugs because
besides having positive effects against a particular
disease, they might also be involved in progression
of another disease. What needs to be addressed in
the future is the definition of the role of genetic
variants and epigenetic modifications in order to gen-
erate a comprehensive picture of the mechanisms
underlying comorbidity of diseases together with the
time dependences. Given the identification of candi-
date mechanisms for comorbidity between AD and
T2DM, we propose additional experiments around
these pathways to find common targets between AD
and T2DM, which could pave way for new therapeu-
tic developments that take shared mechanisms into
account.
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Summary 

The basis of this work is systematic harvesting of relevant biological information from previously 

published research, encoded in BEL, to create disease-specific knowledge assemblies. By 

comparing and analyzing interactions and events of AD and T2DM, our work provides a broad 

and detailed mechanistic overview of comorbidity between the two diseases. For instance, we 

have been able to depict chains of causal molecular interactions that are involved in perturbing 

insulin signaling, which eventually give rise to AD phenotypes, in particular, formation of 

amyloid beta peptides and NFTs. Our work establishes a comorbid link between AD and T2DM 

at a more granular level because we have demonstrated functional roles of molecular entities 

which are often missing in previously published studies. Furthermore, our analysis has identified 

cross-talk among several signaling pathways such as insulin signaling, neurotrophin signaling, 

PI3K/AKT signaling, MTOR signaling and MAPK signaling, all of which are involved in the 

pathogenesis of AD and T2DM. Moreover, impairment in signaling pathways induced by altered 

activity of genes/proteins was rationalized by over- or under-expressed genes/proteins observed 

in omics data.  

In addition to this, we have explored putative beneficial and harmful effects of Metformin, an 

FDA approved T2DM drug, in AD. Our analysis illustrates that, despite Metformin’s capacity to 

alleviate AD-related dysfunctional activities, such as impaired synaptic transmission and 

neuronal damage, it can exacerbate the accumulation of amyloid beta peptides by increasing 

expression of BACE1 and PSEN1 and can promote neuroinflammation and oxidative stress. 

These findings call into question the potential for repurposing Metformin for therapeutic use in 

AD, described in previous studies. Furthermore, we hypothesize that Metformin could contribute 

to the comorbidity between AD and T2DM by illustrating AD-related events induced by 

Metformin.  
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Chapter 3 

Data-driven modeling of knowledge assemblies in understanding comorbidity 

between Type 2 Diabetes Mellitus and Alzheimer’s Disease  

Introduction 

In chapter 2, we presented a work that established comorbidity between AD and T2DM using 

published literature. However, the issue of literature bias, a consequence of recurrently 

investigated biological entities of known functions, is also inherited in the knowledge assemblies. 

For example, because APP and APOE are the focus of so much research in AD, a knowledge 

assembly for AD is likely to contain an over-representation of interactions involving these genes. 

This suggests that although literature-based modeling approaches enable the assembly of 

previously reported findings, insights thus generated have a certain degree of publication bias. In 

this chapter, using genomic data and omics data as the driving forces of our study, we conducted 

a publication-bias-free analysis in understanding comorbidity between AD and T2DM. Firstly, 

genomic data for were collected from curated databases such as GWAS catalog [145], GWAS 

central [146], dbSNP [147] and DisGeNET [148]. These were subjected to linkage disequilibrium 

(LD) analysis to identify additional genetic variants that have non-random association with 

variants initially collected. Secondly, after identifying shared variants between AD and T2DM, 

we prioritized the variants using PolyPhen-2 [149] and RegulomeDB [150]. Using the 

corresponding genes of the variants, we built a knowledge assembly representing their functional 

roles at molecular levels. Thirdly, analyzing omics data from Gene Expression Omnibus (GEO), 

we performed a differential gene expression meta-analysis to identify coherently perturbed genes 

in AD and T2DM. Lastly, we mapped these genes to our knowledge assembly to unravel their 

pleiotropic roles as a comorbid link between AD and T2DM.            
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INTRODUCTION 28

In recent years, comorbidities are inspected with a 29

different perspective. The new route in understand- 30

ing possible comorbidities has changed from classical 31

approaches that use magnitude, severity, patterns, and 32

burden to comparing disease associated events, path- 33

ways, and maps [1, 2]. By establishing comorbid 34
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associations from assessment scores of these aspects,35

classical approaches fail to explain the biology under-36

lying diseases. Hence, biological entities such as37

genes, proteins, and miRNAs and their involvement38

in biological processes and pathways have been stud-39

ied to unravel insights about comorbidity.40

The possible association between type 2 diabetes41

mellitus (T2DM) and Alzheimer’s disease (AD) has42

enticed significant interest from the scientific com-43

munity since the identification of typical events of44

T2DM in AD and vice-versa. For instance, the brains45

of AD patients are reported to exhibit T2DM-related46

mechanisms including impaired insulin signaling,47

insulin resistance, and impaired glucose metabolism48

[3]. Moreover, hyperphosphorylated microtubule49

associated protein tau (MAPT) leading to formation50

of neurofibrillary tangles (NFTs), one of the hall-51

marks of AD, is a consequence of abnormal glycogen52

synthase kinase 3 beta activity in the insulin signal-53

ing pathway [4]. On the other hand, the presence of54

abnormally processed islet amyloid polypeptide in55

pancreas of T2DM patients mimics amyloid-� pro-56

tein precursor (A�PP)-derived deleterious amyloid-�57

(A�) in AD brains [5]. In addition to these, the comor-58

bid link between T2DM and AD has been established59

through several studies reporting shared biological60

processes such as oxidative stress, mitochondrial dys-61

function, inflammation, and advanced glycation end62

products [6].63

While most of the speculations are based on indi-64

vidual experiments, studies, or review articles, the65

putative mechanisms explaining the comorbidity are66

still unknown. To address this issue, disease-specific67

knowledge assemblies are created by systematic68

retrieval of biological information from literature and69

compared for identifying shared pathophysiological70

mechanisms. In this regard, Kodamullil et al. (2015)71

have undertaken a systems biology approach to cre-72

ate cause-and-effect models and proposed single73

nucleotide polymorphism (SNP)-based mechanisms74

as the link between the diseases. This is one of the75

first and few studies that mechanistically depicts and76

compares disease etiologies [7]. A broader scenario77

representing mechanistic crosstalk between several78

pathways such as insulin signaling, neurotrophin79

signaling, inflammatory regulators, and MTOR sig-80

naling in AD and T2DM was demonstrated in our81

previous work [8]. Interestingly, we have also sug-82

gested that metformin, an FDA approved T2DM drug,83

could be one of the risk factors for developing AD in84

old age of the diabetic patients. Through this study,85

the consideration of metformin in drug repositioning86

in AD has been questioned by depicting the role of 87

metformin in contributing to augment characteristic 88

features of AD such as neuroinflammation, forma- 89

tion of A�, and NFTs. Therefore, the hypothesis of 90

drug-induced comorbidity cannot be ruled out. In 91

this context, prolonged use of anti-psychotic drugs 92

has been previously reported to induce symptoms of 93

Parkinson’s disease (PD) [9–11]. The authors have 94

rationalized this assumption by identifying blocked 95

dopamine receptors and calcium channels by the 96

drugs, both of which are impaired in PD. However, 97

the postulation about this aspect of drugs in inducing 98

a disease as a side-effect is still at its infancy. 99

The prevalence of study bias, which eventually 100

leads to literature bias, is due to the fact that proteins 101

with known biomedical functions and associated sig- 102

naling pathways are studied recurrently [12, 13]. And 103

because knowledge assemblies massively depend on 104

literature resource, they inherit pre-existing bias. 105

Therefore, chances are higher that literature aided 106

inferences could represent biased knowledge. Tak- 107

ing this into consideration, Naz et al. (2017) have 108

analyzed genomic data and performed functional 109

assessment of prioritized SNPs using literature to 110

depict stress-induced comorbid association in AD 111

and PD [14]. This approach not only eliminates 112

biasedness of over-representation of well-known bio- 113

logical entities and processes, but also identifies new 114

genes and associated events which can serve as puta- 115

tive drug targets and drugable mechanisms. In this 116

study, we have implemented a similar strategy in deci- 117

phering the comorbid link between T2DM and AD. 118

The genomic data (i.e., SNPs) for AD and T2DM 119

were fetched from curated public databases and sub- 120

jected to linkage disequilibrium (LD) analysis. After 121

filtering for shared SNPs in both diseases and priori- 122

tizing them based on their relevance to the diseases, 123

we constructed cause-and-effect computable, net- 124

work models using Biological Expression Language 125

(BEL) [15]. The language enables conversion of 126

unstructured textual information from literature into 127

structured computer-readable triples (i.e., subject- 128

predicate-object). The parsing and compilation of 129

several triples after syntactic and semantic validation 130

generates network models, which are also known as 131

knowledge assemblies. Next, we added the dimension 132

of high-throughput data as the driving force of our 133

analysis by mapping differentially expressed genes 134

to our knowledge assemblies. Finally, a mechanistic 135

graph tailored by analysis of genomic and transcrip- 136

tomic data was created from the knowledge assembly 137

to explain the comorbid link between T2DM and AD. 138
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Fig. 1. A schematic representation of the implemented workflow: The steps involved are 1) collection of genomic and gene expression data
from open and freely accessible databases; 2) analysis of data using available tools and packages; and 3) construction of literature derived
knowledge assembly and comorbid interpretation.

MATERIALS AND METHODS139

Firstly, a knowledge assembly embedding prior-140

itized SNP was created from the literature. To this141

knowledge assembly, we mapped expression pro-142

files from our gene expression analysis. Finally,143

we filtered the knowledge assembly with those144

genes which were consistently perturbed. The over-145

all methodology implemented in this study can146

be divided into 1) data collection, 2) data anal-147

ysis, and 3) interpretation. Firstly, we collected148

SNPs and gene expression (GE) datasets for AD149

and T2DM from freely accessible public databases150

(i.e., GWAS Catalog [16], GWAS Central [17],151

dbSNP [18], and DisGeNET [19]). Secondly, for152

SNP data, we conducted LD analysis followed by153

identification of shared SNPs and their prioritiza-154

tion using Polyphen-2 [20] and RegulomeDB [21].155

Likewise, for GE datasets, we performed differen-156

tial GE analysis followed by meta-analysis of AD157

and T2DM datasets. Lastly, we built a literature-158

derived knowledge assembly representing the results159

of the SNP analysis and mapped expression pro-160

files of genes from the meta-analysis. A schematic161

diagram illustrating the methodology is shown in162

Fig. 1 and described in detail in the following163

sections.164

Retrieval of AD and T2DM SNPs from curated 165

SNP databases 166

We retrieved a total of 1,130, 1,516, 1,420, 167

and 1,062 SNPs associated to AD from GWAS 168

Catalog, GWAS Central, dbSNP, and DisGeNET, 169

respectively. Similarly, we extracted 1,791, 1,069, 170

1,865, and 1,522 SNPs associated to T2DM from 171

GWAS Catalog, GWAS Central, dbSNP, and Dis- 172

GeNET, respectively. To ensure the accuracy of 173

our search, we queried dbSNP, GWAS central, 174

and DisGeNET with corresponding Medical Subject 175

Headings (MeSH) identifiers of AD (i.e., D000544) 176

and T2DM (i.e., D003924). Likewise, we used Exper- 177

imental Ontology Factor (EFO) identifiers of AD 178

(i.e., EFO 0000249) and T2DM (i.e., EFO 0001360) 179

for GWAS Catalog. 180

Linkage disequilibrium analysis and SNP 181

prioritization 182

Using a total of 5,128 and 6,247 SNPs associ- 183

ated to AD and T2DM, respectively, we performed 184

a LD analysis using the R-package haploR [22]. The 185

function queryHaploreg was used with the default r2
186

threshold of 0.8 to perform the analysis. This yielded 187

77,486 SNPs in AD and 130,807 SNPs in T2DM. Out 188
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of these, 3,572 SNPs were shared between the dis-189

eases. Next, depending on whether the SNPs occur in190

coding or non-coding region of the gene, we used two191

databases to functionally annotate these shared SNPs.192

The impact of the SNPs located in the coding region193

and the resulting amino acid mutation along with the194

prediction, either benign or possibly damaging, was195

assessed using Polyphen-2. Likewise, the assessment196

of the SNPs in the regulatory region (non-coding)197

was performed using the function queryRegulome198

from R-package haploR. Subsequently, we prior-199

itized them using RegulomeDB scores based on200

current ENCODE releases, Chromatin States from201

the Roadmap Epigenome Consortium as well as202

updates to DNase footprinting, Position Weight203

Matrix for TF binding, and DNA Methylation, and204

ENSEMBL SNP’s functional consequences [21, 23].205

Literature corpus and cause-and-effect model206

using Biological Expression Language207

The functional annotation of SNPs using208

Polyphen-2 and RegulomeDB helps in prioritization209

of SNPs. Nonetheless, these databases lack their210

putative roles in a disease context. In this study,211

we aimed at depicting mechanistic causal graphs212

embedding prioritized SNPs and their corresponding213

genes. This was achieved by building a comprehen-214

sive knowledge assembly using MEDLINE as the215

source of literature. The MeSH terms “Alzheimer216

Disease” and “Diabetes Mellitus, Type 2” were217

used to query PubMed (Date:02-12-2019) to create218

separate literature corpus of both diseases. The total219

number of articles for AD and T2DM were 90,215220

and 127,020, respectively. Furthermore, through221

text mining, we created literature corpora that only222

contained shared SNPs and genes from LD analysis.223

The new corpus corresponding to AD and T2DM224

had a total of 14,293 and 9,032 articles, respectively.225

Next, we used BEL to capture causal and correlative226

relationships between the entities from the corpora.227

The language serves as an efficient platform to create228

computable knowledge assemblies by compiling229

relationships which are formulated in the form of230

triples. The conversion of regular text to BEL was231

assisted by BELIEF, a semi-automatic workflow to232

systematically extract BEL relationships from the233

corpus [24]. The outputs of the BELIEF workflow234

were manually curated to ensure high quality of the235

BEL relationships and then compiled using PyBEL236

for visualization [25].237

Meta-analysis of gene expression datasets 238

In this study, our objective is to perform func- 239

tional assessment of shared SNPs between AD and 240

T2DM with the help of literature derived knowl- 241

edge assemblies. In the Introduction section, we have 242

already mentioned the possible bias that results from 243

a purely literature-based construction of knowledge 244

assemblies. Therefore, in order to tackle this issue, 245

we mapped and investigated genes with consistent 246

patterns of perturbed expressions to the knowledge 247

assembly as such genes are more likely to be impor- 248

tant in disease pathophysiology. A total of 14 GE 249

datasets, 7 each for AD and T2DM, were selected 250

from GEO (Gene Expression Omnibus). The selec- 251

tion of the datasets was done based on the criterion 252

that the samples must be from humans (i.e., patients) 253

diagnosed with AD or T2DM. Moreover, we did not 254

consider datasets that used cell lines, induced medi- 255

cal conditions, animal models and modified genes or 256

environments for expression analysis. The datasets 257

were analyzed with GEO2R tool to identify differen- 258

tially expressed genes in both diseases [26]. However, 259

because expression patterns of the same disease are 260

inconsistent and non-reproducible [27, 28], we per- 261

formed a meta-analysis of the AD and T2DM GE 262

datasets independently. This was achieved by using 263

MetaVolcanoR, an R package with an algorithm based 264

on voting approach and p-values of differentially 265

expressed genes [29]. This allowed us to identify con- 266

sistent patterns of perturbed gene expression across 267

all the datasets. A brief description of each of the 268

datasets is provided in Supplementary File 1. 269

RESULTS 270

Linkage disequilibrium analysis 271

The distribution analysis of 3,572 shared SNPs 272

revealed that chromosome 1 had the highest num- 273

ber of SNPs, i.e., 495, followed by chromosome 17 274

(295 SNPs) and chromosome 8 (289 SNPs). The 275

distribution of SNPs over all the chromosomes is 276

shown in Supplementary File 2. The shared SNPs 277

were mapped to 236 genes and the top 5 genes with 278

the highest number of SNPS were lipoprotein lipase 279

(LPL) (CHR 8, 153 SNPs), ubiquitin conjugating 280

enzyme E2 D3 (UBE2D3) (CHR 4, 128 SNPs), leptin 281

receptor (LEPR) (CHR 1, 116 SNPs), FTO alpha- 282

ketoglutarate dependent dioxygenase (FTO) (CHR 283

16, 94 SNPs), and EF-hand calcium binding domain 284
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5 (EFCAB5) (CHR 17, 86 SNPs). The full list of285

number of SNPs per each gene is provided in Sup-286

plementary File 3.287

Assessment of SNPs with Polyphen-2 and288

RegulomeDB289

A total of 64 SNPs, mapped to 50 genes, were290

identified by Polyphen-2 to be responsible for amino291

acid substitutions in their corresponding proteins. Out292

of these, 50 mutations were predicted to be benign293

while the remaining 14 mutations were predicted294

to be possibly damaging. Interestingly, mutations in295

the few well-characterized genes in AD and T2DM296

such as apolipoprotein E (APOE), brain derived297

neurotrophic factor (BDNF), and insulin receptor298

substrate 1 (IRS1) were classified as “possibly dam-299

aging”. The full list of Polyphen-2 output is provided300

in Supplementary File 4. Likewise, a total of 127301

SNPs, mapped to 52 genes, were identified by Reg-302

ulomeDB to be located in the functional region of303

their corresponding genes. This was indicated by the304

scores ranging between 1a and 1f. Genes such as305

APOE, translocase of outer mitochondrial membrane306

40 (TOMM40), and interleukin 6 (IL6) were among307

the examples for the genes that were mapped to the308

127 SNPs. The full list of RegulomeDB output is309

provided in Supplementary File 5.310

Results from meta-analysis of GE datasets311

The meta-analysis of AD datasets showed 206312

genes to exhibit consistent patterns of perturbed313

expression, where 49 genes were underexpressed and314

157 genes were overexpressed. Similarly, in T2DM,315

a total of 142 genes regulated persistently, with 13316

genes showing downregulation and 129 genes that317

were consistently upregulated. Out of these, 3 genes,318

i.e., interferon gamma inducible protein 16 (IFI16),319

syntrophin beta 2 (SNTB2), and laminin subunit320

alpha 4 (LAMA4) were found to be overexpressed321

in meta-analyses of AD and T2DM. The full list322

of differentially expressed genes and plots showing323

expression patterns of each datasets are provided in324

Supplementary Files 6 and 7, respectively. The imple-325

mentation of GE meta-analysis after differential GE326

analysis is justified by our findings that the number of327

coherently perturbed genes reduced with increasing328

number of GE datasets. This implies the ability of GE329

meta-analysis to yield robustness and convergence of330

expression patterns.331

Comorbidity in AD and T2DM explained by 332

mechanistic BEL graphs 333

The knowledge assemblies representing AD and 334

T2DM were combined to investigate the role of 335

shared SNPs and their corresponding genes along 336

with consistently perturbed genes from our meta- 337

analyses. The merged network had a total of 692 338

nodes and 1,793 edges. The top 5 biological processes 339

based on highest degree of node centrality were 340

insulin resistance, inflammatory response, aggrega- 341

tion of A�, apoptotic process, and oxidative stress. 342

Similarly, cystatin C (CST3), BDNF, peroxisome pro- 343

liferator activated receptor gamma (PPARG), MAPT, 344

and LEPR were the top 5 genes in the network. We 345

mapped persistently perturbed genes from the meta- 346

analyses to the network and used them as driving 347

force of our comorbid analysis. The rationale support- 348

ing this implementation are 1) abnormal expression 349

of genes and their activities mutilate biological pro- 350

cesses and pathways and thus are responsible for 351

manifesting disease characteristics, and 2) it over- 352

comes the risk of representing biased knowledge. A 353

mechanistic graph embedding corresponding genes 354

of our SNP analysis and abnormally expressed genes 355

is shown in Fig. 2 It had a total of 41 nodes and 356

45 edges and comprised of 4 genes (i.e., cholinergic 357

receptor nicotinic alpha 3 subunit (CHRNA3) (CHR 358

15, 6 SNPs), catechol-O-methyltransferase (COMT) 359

(CHR 22, 4 SNPs), nuclear receptor subfamily 1 360

group H member 3 (NR1H3) (CHR 11, 13 SNPs), and 361

transforming growth factor beta 1 (TGFB1) (CHR 19, 362

4 SNPs) sharing 27 SNPs between AD and T2DM. 363

As shown in Fig. 2, COMT is known to influ- 364

ence synaptic plasticity and dopamine metabolism, 365

both of which are associated with cognition. In 366

this context, two point mutations (i.e., Val108Met 367

and rs4680 –> Val158Met) in this gene were iden- 368

tified to be predictors of cognition scores in AD 369

patients through independent studies [30, 31]. Inter- 370

estingly, the latter mutation along with rs4646312 in 371

COMT has been associated with T2DM [32]. Also, 372

the 900delC variant form in COMT correlates to 373

chronic renal insufficiency in T2DM [33]. Along 374

the same lines, C47T variant in superoxide dismu- 375

tase 2 (SOD2) is associated with cognition [34]. 376

Likewise, ATP binding cassette subfamily G mem- 377

ber 1 (ABCG1), which is upregulated by NR1H3 378

[35], has been linked with T2DM because of its 379

involvement in obesity and lipid metabolism [36, 380

37]. In AD, ABCG1 is reported to inhibit the 381

process of formation of A� through inhibition of 382
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Fig. 2. Mechanistic comorbid association: The cartoon diagram represents causal interactions between entities and events led by prioritized
SNPs, their corresponding genes and consistently dysregulated genes. Genes such as COMT, MMP9, ABCG1, and SOD2 were identified to
contribute to biological processes such as oxidative stress, apoptosis and cognition, all of which are associated with T2DM and AD. Since
the onset of T2DM takes place earlier than AD, this diagram is inclined toward AD-related phenomena (i.e., NFT aggregation, synaptic
plasticity, etc.) which are influenced by downstream T2DM-related genes.

presenilin 1 (PSEN1) [38]. The amyloid hypoth-383

esis in AD considers PSEN1 as one of the two384

important enzymes that is responsible for abnormal385

cleaving of A�PP [39], the other being beta-secretase386

1 (BACE1) [40]. The accumulated A� leading to387

production of reactive oxygen species (ROS) which388

further increases oxidative stress to consequently389

trigger apoptosis is well understood through sev-390

eral studies in AD [41, 42]. Similarly, transcription391

factor 7 like 2 (TCF7L2)-activated Wnt signaling392

has been reported to generate ROS and impair glu-393

cose homeostasis [43]. The excess of ROS thus394

produced is detrimental as it results in insulin resis-395

tance [44]. Moreover, another study has identified396

dysfunctional cathepsin D (CTSD) to increase both397

insulin resistance and apoptosis [45, 46]. In addi-398

tion, SOD2 induced oxidative stress [47], TNFRSF1A399

associated via death domain (TRADD) activated400

Tnf signaling, and cyclin dependent kinase inhibitor401

1A (CDKN1A) activated mitogen-activated protein402

kinase 9 (MAPK9) [48], mitogen-activated protein403

kinase kinase kinase 5 (MAP3K5), and Fas cell404

surface death receptor (FAS) also lead to apopto-405

sis [49]. In contrast, the suppression of apoptosis406

takes place through CHRNA3 [50] and TGFB1 acti- 407

vated BCL2 apoptosis regulator (BCL2) [51]. The 408

identification of two SNPs (i.e., rs1801270 and 409

rs1059234) in CDKN1A positively correlated with 410

NFT aggregation in AD patients [49]. The bind- 411

ing of protein tyrosine phosphatase non-receptor 412

type 11 (PTPN11) and MAPT promotes neurogen- 413

esis by activating nerve growth factor [52]. Besides, 414

matrix metallopeptidase 9 (MMP9) is also suggested 415

to play a part in neurogenesis and other biological 416

processes such as hypertension, demyelination, and 417

inflammatory response [53, 54]. Lastly, triggering 418

receptor expressed on myeloid cells 2 (TREM2) activ- 419

ity is found to influence inflammatory and immune 420

response [55]. 421

DISCUSSION 422

In this study, we formulated an integrative 423

approach of combining data and knowledge to 424

unravel new insights about the possible association 425

between AD and T2DM. Our data-driven mod- 426

eling of knowledge assemblies represents highly 427
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specialized knowledge on comorbidities. While most428

of the data analytics workflow end up in gene set429

enrichment analysis, our approach has opened up a430

new avenue of mechanism-centric interpretation of431

data. We have used two different data modalities432

to guide the extraction process of relevant litera-433

ture knowledge. Firstly, we identified shared SNPs434

between AD and T2DM from curated resources and435

built a knowledge assembly around prioritized SNPs436

and their corresponding genes. Although literature437

can also be used as a source of SNP information,438

it is important to note that we have considered only439

curated databases for retrieval of SNPs. This decision440

can be explained by the fact that curated databases441

ensure association between a SNP and a disease442

with a given statistical significance (i.e., p-value).443

Unlike curated databases, some SNPs mentioned in444

the literature might not have any association with445

a disease because the statistical power of associa-446

tion is below par [56–59]. Therefore, by including447

such SNPs, we would be adding possible false pos-448

itives in our analysis and, thus, diminishing the449

quality of the results. Secondly, as we are aware450

of the literature bias in knowledge assemblies, we451

identified consistently perturbed genes by conduct-452

ing a GE meta-analysis and used these signals to453

mechanistically link AD and T2DM. Our results illus-454

trate that genes such as COMT, MMP9, SOD2, and455

ABCG1, which do not belong to the realm of well-456

known genes in AD and T2DM, are involved in457

important biological processes of both diseases. This458

suggests dysfunctional activities of these genes could459

be the bridge between these diseases. Moreover, our460

findings endorse and strengthen the proposition of461

AD and T2DM comorbidity suggested by epidemio-462

logical, preclinical, and pathophysiology studies by463

identifying novel genes.464

The genetic variants of AD and T2DM amassed in465

our study are readily explorable and bear the poten-466

tial to yield new insights. For instance, genomic467

loci dependent SNPs can be functionally assessed468

to uncover their roles in the underlying comorbid469

mechanisms. This would enable identification of470

“genomic hotspots” that are closely associated to AD471

and T2DM. However, this study does not address472

this aspect due to time constraints and it is out-of-473

scope of our objectives. Also, we have not considered474

the role of epigenetic modifications in the comorbid475

association between AD and T2DM. Nonetheless,476

our knowledge assemblies can be used as the start-477

ing point for assimilating epigenetic modifications478

concerning AD and T2DM.479
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F, Centeno E, Sanz F, Furlong LI (2019) The DisGeNET566

knowledge platform for disease genomics: 2019 update.567

Nucleic Acids Res 48, D845-D855.568

[20] Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasi-569

mova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A570

method and server for predicting damaging missense muta-571

tions. Nat Methods 7, 248-249.572

[21] Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA,573

Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S,574

Cherry JM, Snyder M (2012) Annotation of functional vari-575

ation in personal genomes using RegulomeDB. Genome Res576

22, 1790-1797.577

[22] Zhbannikov IY, Arbeev K, Ukraintseva S, Yashin AI (2017)578

haploR: An R package for querying web-based annotation579

tools. F1000Res 6, 97.580

[23] Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley581

S, Fernandez Banet J, Billis K, Garcı́a Girón C, Hourlier T,582
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Petrovič D, Petrovič MG (2019) Vascular endothelial 717

growth factor (VEGF)-related polymorphisms rs10738760 718

and rs6921438 are not risk factors for proliferative diabetic 719

retinopathy (PDR) in patients with type 2 diabetes mellitus 720

(T2DM). Bosn J Basic Med Sci 19, 94. 721
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Summary 

In this work, we have devised a reproducible data-and-knowledge integration framework to 

identify pleiotropic genes and their roles in AD and T2DM. By identifying important shared 

genetic variants in AD and T2DM, followed by meta-analysis of omics data, we have performed 

a systematic functional assessment of these signals using a literature-derived knowledge 

assembly. This design overcomes the issue of publication bias because the frequency of recurrent 

studies does not influence the outcome of the data analysis. In other words, this study is purely 

guided by findings from analyses of data, while we have made use of literature to illustrate the 

functional roles of prioritized entities in AD-T2DM comorbidity. In doing so, we were able to 

prioritize four genes (i.e., COMT, MMP9, SOD2 and ABCG1) which were pleiotropic in nature. 

The involvement of these genes in both AD and T2DM-related events suggests that downstream 

effects of these genes could be the mechanistic bridge between the diseases. Interestingly, 

although these genes are not widely associated with AD and T2DM, we were able to 

demonstrate, with the help of a mechanism-centric interpretation, that dysfunctional activities of 

these genes are crucial for AD-T2DM comorbidity.    
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Chapter 4 

Quantifying mechanisms in neurodegenerative diseases (NDDs) using 

candidate mechanism perturbation amplitude (CMPA) algorithm 

Introduction 

The clinical readouts of progressive disorders such as AD and PD are observed to follow a 

common pattern of either increment or decrement over time. For instance, the levels of 

cerebrospinal fluid (CSF) biomarkers such as amyloid beta peptides, phosphorylated MAPT and 

Lewy bodies increase as the disease progresses from early to mild and from mild to late stage. 

Similarly, brain volumes of patients as measured by MRI scans show that the volumes decrease 

(i.e. brain atrophy) with increasing AD severity. The occurrence of these events is attributed to 

dysregulated activities of genes, caused by their abnormal expressions. The interactions of such 

genes trigger a cascade of events impairing downstream signaling pathways. The impaired 

signaling pathways involved in a disease event are referred to as a disease mechanism. Although 

several NDD-specific mechanisms have been formulated through Alzpathway [131], PD maps 

[132] and NeuroMMSig [133], it remains an open question whether mechanisms behave 

differently in different stages of the disease, in the way that clinical readouts do. In this chapter, 

we introduce a novel algorithm to address this question. The Candidate Mechanism Perturbation 

Amplitude (CMPA) algorithm enables the quantification of disease mechanisms using gene 

expression profiles. To our knowledge, our methodology is the first to quantify disease 

mechanisms at spatial and temporal resolution. As a case study, we applied the algorithm to two 

mechanisms, one each for AD and PD. Our findings demonstrate that mechanisms can be 

quantified and that they regulate with different intensities across brain regions and stages of 

disease, as influenced by differentially expressed genes participating in the corresponding 

mechanism.  
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Abstract

Background: Literature derived knowledge assemblies have been used as an effective way of representing biological
phenomenon and understanding disease etiology in systems biology. These include canonical pathway databases
such as KEGG, Reactome and WikiPathways and disease specific network inventories such as causal biological networks
database, PD map and NeuroMMSig. The represented knowledge in these resources delineates qualitative information
focusing mainly on the causal relationships between biological entities. Genes, the major constituents of knowledge
representations, tend to express differentially in different conditions such as cell types, brain regions and disease stages.
A classical approach of interpreting a knowledge assembly is to explore gene expression patterns of the individual
genes. However, an approach that enables quantification of the overall impact of differentially expressed genes in the
corresponding network is still lacking.

Results: Using the concept of heat diffusion, we have devised an algorithm that is able to calculate the magnitude of
regulation of a biological network using expression datasets. We have demonstrated that molecular mechanisms specific
to Alzheimer (AD) and Parkinson Disease (PD) regulate with different intensities across spatial and temporal resolutions.
Our approach depicts that the mitochondrial dysfunction in PD is severe in cortex and advanced stages of PD patients.
Similarly, we have shown that the intensity of aggregation of neurofibrillary tangles (NFTs) in AD increases as the disease
progresses. This finding is in concordance with previous studies that explain the burden of NFTs in stages of AD.

Conclusions: This study is one of the first attempts that enable quantification of mechanisms represented as biological
networks. We have been able to quantify the magnitude of regulation of a biological network and illustrate that the
magnitudes are different across spatial and temporal resolution.

Keywords: Alzheimer’s disease, Parkinson’s disease, Mitochondrial dysfunction, Aggregation of neurofibrillary tangles,
OpenBEL

Background
In recent years, systems biology approaches have played
a pivotal role in the integration of multi-scale and multi-
modal aspects of diseases. Knowledge assembly, one of
the key outcomes of systems biology, connects entities
such as genes, proteins, chemicals, miRNAs, genetic and

epigenetic variants, biological processes, and phenotypes
of a disease. These are represented as a set of biological
networks with edges defining the types of relationships
between the entities. Pathway databases such as KEGG
[1], Reactome [2], and WikiPathways [3] have under-
taken massive efforts of extracting and encoding bio-
logical information from the published literature to
graphically depict complex biological networks as path-
ways. They serve as a repository of protein-protein inter-
actions (PPIs), metabolic pathways, signal transduction
pathways, cell-cell signaling pathways, and other cellular
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processes. They have been regarded as comprehensive
knowledge assemblies for functional interpretation of
genomics and provide information about characteristics,
progression and aetiology of a disease. A total of 521,
2176, and 2677 pathways are represented in KEGG,
Reactome, and WikiPathways respectively. These data-
bases provide pathways in standard formats (e.g., Sys-
tems Biology Markup Language (SBML) [4] and
Biological Pathway Exchange (BioPAX) [5]), enabling
easy exchange of data and implementation into algo-
rithms for visualization, simulation and analysis [6].
However, pathway databases do have some limitations.

Firstly, they lack context specific representation of know-
ledge when it comes to disease specificity. Pathways are
generalized representations of established cascade of
events within a specific pathway boundary. For example,
the insulin signaling pathway in KEGG draws from experi-
mental evidence from different diseases including diabetes
[7], cancer [8], and hamartoma syndrome [9]. Moreover,
pathways are abstractions that have been delineated arbi-
trarily and do not necessarily represent pathophysiology
processes (e.g., the crosstalk between insulin signaling
pathway and neurotrophin signaling pathway) [10]. Sec-
ondly, the spectrum of biological information captured by
pathways is limited. They are mostly populated with
proteins, making them uni-modal content wise. They
completely lack representation of biomarkers, genetic vari-
ations, epigenetics (genetic modifications), neuroimaging,
and clinical features. For example, the Parkinson’s disease
(PD) network in KEGG does not include many significant
entities which play a crucial role in PD, such as the methy-
lation of KCNH1 [11], the rs393152 variant in CRHR1
[12], and S87 SNCA phosphorylation [13]. Moreover, the
fact that the map has been developed by retrieving infor-
mation from 20 scientific articles (with the latest citation
from 2013) infers that it is not up-to-date and incomplete
[14]. Lastly, pathways are neither species, tissue, nor cell
type specific. The representations in pathway databases
are derived from various organisms (e.g., human, mouse,
rat, and drosophila) where each species is indicated by
differently colored nodes. However, interactions at the
molecular level in a pathway can differ in these conditions.
A study by Seok et al. (2013) reported on poor recapitula-
tion of genomic responses of human inflammatory
diseases in mouse models [15]. Warren et al. (2015) re-
confirmed essential differences between these two species
at the molecular level by showing that mouse models
mimicked only 12% of the genes dysregulated in human
conditions [16]. These studies clearly suggest that entities
involved in pathways can be specific to species, tissue, cell
types, and especially diseases.
Lately, there have been a few independent studies sug-

gesting that a disease-specific mechanism differ from the
canonically represented pathways in KEGG or Reactome.

Kodamullil et al. (2015) have illustrated two different
mechanisms on how the neurotrophin signaling pathway
is regulated under normal conditions and AD [17]. Fur-
thermore, Karki et al. (2017) have mechanistically repre-
sented the crosstalk between the insulin signaling
pathway and neurotrophin signaling pathway, explaining
the underlying comorbid association between AD and
Type 2 Diabetes Mellitus (T2DM) [10]. Disease specific
knowledge representations have improved significantly
over the years due to the advancement in resources,
frameworks and aforementioned limitations in the path-
way databases. Several frameworks such as SMBL, Gene-
Mania, Malacards, and OpenBEL, developed with either
pathway-centric or integrated molecular network or
knowledge graph approaches, are capable of representing
knowledge at extent of their own features and advan-
tages [18]. Nevertheless, these frameworks share the
drawback of lacking a strategy to rank and prioritize
pathways and mechanisms (i.e., knowledge sub-graphs)
with the existing pathway databases. The selection of im-
portant individual graphs is often influenced by litera-
ture bias or expert’s opinion. A scoring schema that
takes in to account measurable biological entities will
enable researchers to overcome any biases and identify
important mechanisms involved in a disease.
Several algorithms have been proposed to use pathway

databases to assist in the interpretation of high-
throughput -omics data. Drier et al. (2013) introduced
the Pathifier algorithm to score dysregulated pathways
in tumor samples [19]. While it is able to transform gene
level information to pathway level information, it does
not take into account the polarity of relationships (i.e.
increase or decrease) between the genes involved. Catlett
et al. (2013) devised Reverse Causal Reasoning (RCR), a
reverse engineering method to detect mechanistic hypoth-
eses from molecular profiling data that generates and
scores hypothesis networks (HYPs) i.e., literature-derived
causal networks consisting of an upstream node and its
first downstream neighbors [20]. Similarly, Martin et al.
(2014) proposed the Network Perturbation Amplitude
(NPA) algorithm to assess HYPs using high-throughput
measurement data and demonstrated its ability to quantify
TNF-induced perturbation of inflammatory signaling [21].
Although the RCR and NPA algorithms consider both the
expression levels of genes and the relationship types be-
tween genes in a network, they have the following
limitations: 1) the applications are restricted to interpret
treatment-induced and dose-dependent changes in activ-
ity, 2) the size of the network is too small as it only ac-
counts for the first neighbors and 3) the interlink between
HYPs (i.e. one HYP being regulator of another HYP) is
not considered.
Molecular mechanisms associated with a disease are

often complex; they contain cascade of events regulated
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by biomolecules which collectively influence biological
processes and signaling pathways. Therefore, considering
disease mechanisms we should be able to quantify them
beyond HYPs or a network with few levels of neighbors
(i.e. first and second neighbors). In fact, several cross-
linked HYPs can form a basis for larger networks repre-
senting models of pathological events or disease mecha-
nisms. Therefore, it is of the utmost importance to
extend interplays between entities from HYPs to bio-
logical process, biological process to pathways, and path-
ways to mechanisms. Additionally, as genes tend to
express differentially in different bodily regions or stages
of a disease, the mechanisms in which they participate
can be upregulated or downregulated by combined effect
of the differentially expressed entities. To address these
limitations, we have developed an extension to the NPA
algorithm which is able to quantify mechanisms by scor-
ing all of their constituent entities. As a case study, we
ran the algorithm over two mechanisms (i.e. mitochon-
drial dysfunction in PD and aggregation of neurofibril-
lary tangles (NFTs) in AD) after mapping with gene
expression datasets. The main objective of the study is
to find out if mechanisms are regulated with different in-
tensities as a consequence of differentially expressed
genes at several resolutions.

Results
In this study, we have deployed the CMPA algorithm on
two mechanisms, one each from PD and AD. This has
allowed us to quantify perturbed mechanisms and show
that the amplitude of the perturbations are affected by
the differentially expressed genes. Moreover, the algo-
rithm is able to handle mechanistic information at
spatial and temporal resolution.

Mitochondrial dysfunction in PD
The CMPA analysis of mitochondrial dysfunction in dif-
ferent age-groups of PD patients depicts that the mech-
anism is perturbed the most in age-group 40–50 when
compared to other age-groups (Fig. 1a). The magnitude
of perturbation calculated as CMPA score is 4.8. Sup-
porting this result, Lesage et al. (2016) implicate the role
of mitochondrial dysfunction in the early onset of PD.
Similarly, Fig. 1b shows the highest perturbation of
mitochondrial dysfunction in Braak 5–6 stage of PD pa-
tients with CMPA score of 4.9. In contrast, Braak Stages
1–2 and 3–4 show less perturbation or no perturbation
with CMPA scores of 0.93 and 0.08, respectively. A
study by Hattingen et al. (2009) supports the role of
mitochondrial dysfunction in both early and advanced
stages of PD. This shows that our results (Fig. 1a and b)

Fig. 1 Mechanisms perturb with different intensities: a, b and c show the amplitude of mitochondrial dysfunction in PD across age-groups, PD
stages and brain regions respectively. The CMPA scores observed to be high in age-group 40–50, Braak Stage 5–6 and cortex of PD patients.
Similarly, d shows the perturbation of aggregation of NFTs in AD across different stages of AD. The CMPA scores are observed to be directly
proportional with stages of AD
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are in concordance with other independent studies per-
formed at the patient level. Interestingly, it can be seen
in Fig. 1a and b that the amplitude of perturbation is
low in age-group 50–60, 60–70, and Braak Stage 3–4.
The rationale for these observations may be due to im-
munity triggered recovery or/and effect of drug used for
treatment of PD. The inefficacy of both the immune sys-
tem and the drug might be the reason for increased
mitochondrial dysfunction in Braak 5–6 Stage of PD.
Furthermore, Fig. 1c illustrates that the degree of per-
turbation of mitochondrial function varies across brain
regions of PD patients. With CMPA score of 3.3, cortex
is the region of the brain with the highest mitochondrial
dysfunction. The magnitude of dysfunctions in other
brain regions such as the cerebellum, medulla and stri-
atum are minimal in comparison [22]. In this context,
several animal and human based studies have previously
confirmed prevalence of mitochondrial dysfunction in
cortex [23–25].

Aggregation of NFTs in AD
The CMPA scores calculated for different stages of AD
as shown in Fig. 1d suggests that the intensity with
which aggregation of NFTs is regulated depends upon
the stage of AD. The CMPA scores of incipient, moder-
ate and severe AD are 3.6, 8.2 and 16.5 respectively. It
can be clearly observed that the CMPA scores are dir-
ectly correlated with the stages of AD. This comprehen-
sively alienates with the findings of increased NFT
burden with the progression of AD as reported by sev-
eral studies [26–28].

Discussion
As the NeuroMMSig server embeds numerous molecu-
lar signatures implicated in AD and PD, it provides us
the opportunity to extend the CMPA analysis beyond
the two mechanisms we have undertaken in this study.
An extensive implementation of the CMPA algorithm
on NeuroMMsig based mechanisms will enable us to
rank mechanisms based on the CMPA scores. By scoring
mechanisms on several resolutions, we may be able to
prioritize the targetable mechanisms and thereby decide
on the best suited medicine. For example, the CMPA
score of 0.08 for mitochondrial dysfunction in a PD pa-
tient of Braak Stage 3–4 suggests reduced perturbation
of the mechanism. Hence, targeting dysfunctional mito-
chondrial activity for patients with Braak 3–4 stage of
PD might not be as important as it is for Braak 5–6
stage of PD. This sort of approach defies any literature
bias, where one mechanism can be overly represented in
a knowledge network because of the high density of
supporting publications.

CMPA scores are mechanism specific
It has been observed that the CMPA scores are unique
for all the gene expression datasets used in this study.
Therefore, for each sub-groups of these datasets we have
essentially been able to show that mechanisms are regu-
lated with different magnitudes. The one sample t-test
for GSE57475’s age-group 40–50 in PD rejected the null
hypothesis with a p-value < 2.2e-16 and t-statistic of −
166. The mean of 10,000 CMPA scores was 0.19 as com-
pared to the actual CMPA score of 4.8. Similarly, the
null hypothesis for GSE28146’s moderate sub-group of
AD was also rejected as the mean of CMPA scores and
actual CMPA score were 1.77 and 8.2 respectively.
Therefore, the alternative hypothesis i.e., true mean is
not equal to 8.2 was favored with a p-value < 2.2e-16
and t-statistic of − 67.19. These results suggest that the
CMPA score obtained from the real gene expression
values is unique to a mechanism and is highly unlikely
to occur just by chance.

Conclusions
In this study, we have demonstrated that blending com-
putable knowledge and data in a given disease context
provides us with new options for inference. Although
strategies to integrate knowledge driven and data driven
approaches already exist, our work deals with two new
aspects: Firstly, we have been able to quantify candidate
mechanisms underlying diseases. This is novel when
compared to previous studies because we claim that
our work is one of the first attempts to score complex
biological networks that explain disease etiology. The
causal relationship in OpenBEL, which forms the basis
of making the OpenBEL knowledgebase computable, is
the key in devising the CMPA algorithm. Without the
information on the causality of the interacting bio-
logical entities, measuring the amplitude of a regulated
mechanism is not possible. Secondly, we could demon-
strate that differentially expressed genes regulate their
corresponding mechanisms with different intensities.
The differences in regulation intensities of mechanisms
in temporal and spatial resolution have been reported
through our study for the very first time. Based on the
CMPA algorithm applied on 3 selected GE datasets, we
observed that PD patients of Braak Stage 5–6, the age-
group 40–50 and the cortex region of the brain have
high magnitudes of mechanism perturbation. Similarly,
we found out that the magnitudes of perturbation of
aggregation of NFTs in AD increase with the progres-
sion of AD. From our results, we can conclude that the
classical approach of associating mechanisms to pro-
gressive disorders can be improved by quantifying and
prioritizing specifics such as disease stages, patient
groups and brain regions.
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Methods
Construction of mechanistic NDD knowledgebase
The unstructured textual information containing cause-
and-effect or correlative relationships from literature spe-
cific to AD and PD were encoded as triples (i.e. subject-
predicate-object) using OpenBEL. Furthermore, the triples
are enriched with meta-annotations such as cell type, spe-
cies, anatomy and stage of the disease. With additional cur-
ation efforts, each triple was assigned to a particular
mechanistic sub-graph as described by Domingo-Fernandez
et al. (2017) [29]. The resulting sub-graph contains several
inter-connected triples depicting a disease mechanism. A
total of 124 and 65 molecular mechanisms specific to AD
and PD respectively are integrated in NeuroMMSig. For
our analysis, we have taken into consideration the mecha-
nisms depicting aggregation of neurofibrillary tangles
(NFTs) in AD and mitochondrial dysfunction in PD. The
mitochondrial dysfunction in PD is considered as one of
the most important mechanisms associated with the PD
etiology. Moreover, the AETIONOMY project (www.
imi.europa.eu/projects-results/project-factsheets/aetion-
omy) has selected this mechanism for its intensive re-
search. Similarly, the aggregation of NFTs in AD is a
well-known AD phenotype and regarded as an import-
ant hypothesis in AD etiology. After filtering the mech-
anisms for causal relationships manually and using a
threshold of five nearest neighbors as network size, the
mechanism representing aggregation of NFTs in AD
had a total of 31 nodes and 57 edges while the mito-
chondrial dysfunction in PD had 35 nodes and 54 edges
(Additional file 1).

Selection of datasets as a scoring input
This study aims to quantify the intensity of perturbed
mechanisms associated with diseases as the consequence
of differentially expressed genes. Therefore, the candidate
mechanism perturbation amplitude (CMPA) algorithm re-
duces the existing caveat of mere mechanism-disease as-
sociations by showing that mechanisms regulate with
different intensities across spatial and temporal dimen-
sions. Gene expression datasets from GEO (Gene Expres-
sion Omnibus) were selected such that the expression
profiles could be categorized based on spatial dimensions
(i.e., brain regions), temporal dynamics (i.e., age groups)
or stages of the disease. These datasets were analyzed
using GEO2R from GEO. A brief description of each of
the datasets is given below:

I. GSE49036 - Samples from Substantia nigra of
different Braak Stages PD patients

II. GSE57475 - Blood transcripts of PD patients of 4
different age groups

III. GSE28894 - Samples from cerebellum, medulla,
cortex, and striatum of PD patients

IV. GSE28146 - Samples from Hippocampus of
different stages of AD patients

Implementation of candidate mechanism perturbation
amplitude (CMPA) algorithm
The strategy involved in this study is to integrate know-
ledge driven approaches and data driven approaches to
score biological networks. Here, we have used gene ex-
pression profiles mapped to NeuroMMSig based causal
networks to calculate the extent of perturbation of
mechanism associated with AD and PD. A total of 3
datasets (i.e., GSE49036, GSE57475 and GSE28894) were
mapped to the causal network representing mitochon-
drial dysfunction in PD while GSE28146 was mapped to
the network representing aggregation of NFTs in AD.
The causality between biological entities captured in
BEL is one of the special features of BEL which many of
the pathway representations are void of. Without the in-
formation about causal edges in disease networks, devis-
ing a scoring algorithm is not possible.

Scoring function
The expression profiles (i.e., log fold change values) are
assigned as weights to the genes involved in a mechanism.
The directionality of edges is taken from the mechanistic
causal network as + 1 for increase and − 1 for decrease. A
scoring function implemented in Python uses the weights
and directionality of edges to quantify the amplitude of
dysregulated mechanisms. A positive score implies that a
particular mechanism for a given dataset is upregulated
(i.e., perturbed) due to the interplay of involved down-
stream entities. Likewise, a negative score indicates that
the mechanism is downregulated while a score of zero
suggests no change in the mechanism.

Perturbation amplitude
The amplitude of perturbation is calculated for the cen-
tral node (most upstream node) in the network to which
several downstream nodes are connected. These down-
stream nodes can be either direct or indirect neighbors
of the central node. Moreover, a downstream node can
be a child node for other upstream nodes. Figure 2 illus-
trates a general cause-and-effect mechanism where
downstream nodes converge to the centrally located
node (node X, highlighted in red). The final score of the
central node is calculated by enumerating the effect of
differentially expressed downstream nodes on a particu-
lar mechanism context (in this case, the central node
and the scored downstream nodes).
After this, the nodes outgoing from the central node

were not considered (filtered and removed) as the cen-
tral node mostly connects only either to another hub of
the knowledgebase (in our case: Parkinson Disease) or to
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another central node (which can be another mechanism)
and need not be scored.
The following pseudocode implemented in python was

used to calculate the perturbation (CMPA) scores.

� Identify and create a list of hubs (H) in the network
i.e. a node with several incoming and outgoing edges

� For each hub in H
� If hub has incoming edges from another hub

from the list H
� Skip

� If hub has no incoming edges from another hub
from list H
� Calculate Impact Factor (IF)

IF = hubWeight +
PN

i¼1 Si:βi
where,
Si = Sign of the edge (+ 1 for increase, − 1 for
decrease)
ßi = Log2 fold change value
N = number of incoming nodes

� Remove hub from H
� Calculate CMPA score

� CMPA score =
PM

j¼1 IFi

Where,
M = number of hubs

The CMPA algorithm is devised such that it is able to
quantify the overall effect of differentially expressed

entities involved in a cause-and-effect model of a disease
mechanism. The algorithm functions on a simple logic
that downstream nodes pass their values to the con-
nected upstream nodes. For example, the value of H is
passed to X through H – G – D – X (Fig. 1). In doing
so, it is assured that G gets a value from H before G
passes its value to D. The nodes G and D are hub nodes
in the network because they have incoming and out-
going edges. For each hub node in the network, a score
called Impact Factor (IF) is calculated. The sum of all
the IFs, represented as CMPA score, quantify the ampli-
tude of perturbation of a mechanism.

Statistical assessment of CMPA scores The CMPA
scores generated by the CMPA algorithm are expected
to be unique for each gene expression dataset. This is
because of the distinct property of each gene responding
differently to different conditions. However, a CMPA
score can be considered absurd if it remains unchanged
after random sampling of genes and their expressions. In
the case differences in CMPA scores are observed be-
tween CMPA analyses performed with actual gene ex-
pressions and randomized gene expressions, it can be
concluded that the CMPA score is specific to a mechan-
ism and represents the true magnitude of its perturbation.
This was assessed by first performing a permutation
(number of permutations = 10,000) where each gene was
assigned a random gene expression value from the pool of

Fig. 2 A general biological network: A schematic representation of a mechanism where several upstream nodes (either genes/proteins or
biological processes) converge to a centrally located node X (highlighted in red)
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real gene expression values. Afterwards, the CMPA algo-
rithm was implemented to each of the permuted samples.
Lastly, one sample Student’s t-test was conducted with the
null hypothesis that the mean of 10,000 CMPA scores is
equal to the actual CMPA score. If the resulting p-value is
below the threshold of 0.05, then the null hypothesis is
rejected in favor of the alternative hypothesis.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-019-3101-1.

Additional file 1: Figure S1. Mitochondrial dysfunction in PD manifests
as a consequence of increased oxidative stress and endoplasmic
reticulum stress and decreased regulation of mitophagy. Figure S2. The
aggregation of NFTs in AD is triggered by the insulin receptor signaling
pathway and several genes that destabilize MAPT activity.
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Summary 

With our methodology of integrating omics data with knowledge assembly-derived mechanisms, 

we have successfully scored and quantified disease mechanisms. Our approach thus provides 

causal explanations, rather than mere association, for the relationships between mechanisms and 

diseases. Our finding that the CMPA scores for aggregation of NFTs positively correlates with 

stages of AD is in concordance with reports from previous studies reporting increased levels of 

NFTs with progression of AD. This proof of concept of our methodology justifies its 

implementation to several other mechanisms to generate a ranked list of important mechanisms. 

Similarly, we were also able to demonstrate in a PD mechanism, namely, mitochondrial 

dysfunction, that the intensity of its regulation varies in different regions of the brain. We 

identified that the intensity of regulation is highest in the cortex, which was also supported by 

findings from previous studies.  

The causality of the interacting entities in the depicted mechanism forms the basis of the CMPA 

algorithm because it adheres to the principle of heat-diffusion such that the effects of 

differentially expressed genes are inherited by downstream biological processes which eventually 

lead to a disease mechanism. To the question whether CMPA scores are specific to a given 

mechanism, we were able to clarify the doubt by performing one sample t-test. We compared the 

mean of 10,000 randomly generated CMPA scores with the actual CMPA score. The alternative 

hypothesis (i.e., true mean is not equal to actual CMPA score) was favored with a statistically 

significant confidence (p-value < 0.005).                

To sum up, our work has demonstrated that disease mechanisms can be quantified using omics 

data. Furthermore, we have also illustrated that the intensities of regulation of mechanisms 1) 

vary in disease stages and brain regions and 2) are directly influenced by expression patterns of 

corresponding genes that regulate the mechanism.  
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Chapter 5 

Conclusion and Outlook 

The principles of systems biology enhance the principles of classical biology, because systems 

biology invokes the need of achieving a holistic view of a system, as influenced by its 

components, in order to understand the behavior of the system. This has enabled us to create 

models that mimic biological systems and find out how information from granular level of 

genetic variants propagates to the higher levels of phenotypes and disease mechanisms. 

Furthermore, it has facilitated smooth communication between the ever-growing knowledge and 

data worlds. In fact, these domains are integral and complementary to each other. Despite the 

philosophical differences between classical and systems biology, the latter should not be seen as a 

replacement for the former. Rather, classical biology has evolved to produce systems biology, 

facilitated by advances in data collection and analysis and knowledge production. This thesis 

implements state-of-the-art technologies of systems biology to shed light on AD-T2DM 

comorbidity and formulate a new algorithm to quantify disease mechanisms.     

In Chapter 2 and 3, we used two different methodologies to elucidate on the comorbid link 

between AD and T2DM as indicated by epidemiological, clinical and pathophysiological studies. 

In Chapter 2, we systematically retrieved relevant biological information about AD and T2DM 

from literature to create disease-specific knowledge assemblies. The molecular interactions and 

their downstream causal effects were structured as a mechanistic graph to explain how salient 

features of AD and T2DM unfold. Although previously published researches have already 

attempted to explain AD-T2DM comorbidity, the events associated with comorbidity were rather 

discrete and lacked mechanistic insights. Therefore, in this study, we have assimilated such 

important events, enriched them and provided an overview of comorbidity between AD and 

T2DM. We admit that the results in this work do reflect some degree of publication bias because 
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our approach in understanding comorbidity is based on literature-derived knowledge assemblies. 

Nonetheless, this work has identified previously unrecognized cross-talk between several signal 

pathways that are involved in AD and T2DM pathogenesis. The concordance of our findings 

derived from the knowledge assemblies were assessed by independently analyzed omics data. 

Moreover, in this work, we have discussed the putative harmful effects induced by Metformin, 

hypothesizing that Metformin is one of the risk factors in the comorbid link between AD and 

T2DM. In Chapter 3, we implemented a reverse workflow, using data as the prime impetus of the 

study. This allowed us to perform a publication-bias-free analysis, an issue we discussed above. 

From our results, we could identify novel pleiotropic genes and their genetic variants whose 

dysfunctional activities were implicated in the pathogenesis of AD and T2DM and the 

comorbidity between the diseases. Starting from collection of all reported deleterious genetic 

variants of AD and T2DM, we implemented a series of analyses, such as LD analysis and SNP 

prioritization, to identify important shared SNPs. To this end, we integrated an independent meta-

analysis of omics data followed by functional contextualization of important genes through 

creation of knowledge assemblies. We believe our work is reproducible and the workflow can be 

readily used to study other comorbid conditions.  

The previous attempts to score signaling pathways were bolstered by the implementation of the 

CMPA algorithm as discussed in Chapter 4. In this work, we were able, for the first time, to 

demonstrate that disease mechanisms regulate with different intensities as a consequence of 

differentially expressed genes. In other words, we were able to quantify and compare the severity 

of impairment of mechanisms across temporal and spatial resolution. This suggests the potential 

application of the CMPA algorithm for the purpose of generating a ranked list of most perturbed 

mechanisms. This will eventually empower us to classify important disease associated 
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mechanisms and rationalize on whether mechanisms embedding well-known genes of diseases 

truly represent disease etiologies.        

The works described in Chapter 2 and 4 have contributed significantly to AETIONOMY 

(www.aetionomy.eu), a project aimed at deciphering a mechanism-based taxonomy of AD and 

PD. The published stories of these chapters are smaller instances of the knowledge assemblies 

mentioned in this thesis. In fact, the knowledge assemblies created for the studies contained in 

this thesis form the basis of a mechanism-enrichment server called NeuroMMSig [133] where 

interactions from the knowledge assemblies were systematically arranged and clustered into 

individual disease mechanisms. The work described in Chapter 3 is one of the first published 

research works in COMMITMENT (www.gesundheitsforschung-bmbf.de/commitment), an 

ongoing project aimed at improving treatment of patients with comorbidities. Using the workflow 

of this work, we aim to study comorbidity between Schizophrenia and Bipolar Disorder in the 

near future.  

The forging of disease-specific knowledge assemblies is the most important contribution of this 

thesis. However, the coverage and content of our knowledge assemblies fail to keep up with the 

massively growing literature. One of the major limitations of our knowledge assemblies lies in 

the number of publications that are incorporated into them. When compared to the total number 

of published articles for each of the diseases studied in this thesis, we have been able to include 

just a handful of articles, suggesting that our knowledge assemblies are not complete. This is 

mainly because the knowledge assemblies are created solely through manual curation.  

Automated workflows should be developed to accelerate the entire process. Nonetheless, we are 

convinced that our curation work is of the highest quality and represents multi-modal aspects of 

diseases ranging from the genomic to the phenotypic level.             
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This thesis work illustrates the power of systems biology, by successfully integrating data and 

knowledge driven approaches. By leveraging these, we have broadened and brought in new 

insights to what was previously known about the comorbid link between AD and T2DM. 

Moreover, we have also demonstrated the possibility of quantifying mechanisms which can be 

useful in identifying important mechanisms in a given state of a disease. 
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