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Kurzfassung
Die vorliegende Dissertation analysiert Determinanten und Konsequenzen der Ent-
scheidungen von Landwirten bezüglich verschiedener Intensivierungsformen, Land-
nutzungen sowie deren temporalen Dynamiken mittels der Erstellung eines zeitlich
und räumlich expliziten Agentenmodells des Kilombero Valley Floodplain (KVF) in
Tansania. Die Dissertation ist in eine Einleitung und vier Hauptkapitel unterteilt.
Letztere beantworten jeweils eine spezifische Forschungsfrage.

Die Einleitung motiviert zunächst die Forschungsfragen und gibt einen kurzen Über-
blick über die Studienregion (KVF) und erläutert die Datenquellen und Erhebungsme-
thoden. Es folgt eine Zusammenfassung der vier Hauptkapitel anhand der spezifischen
Ziele, methodischen Ansätze und Hauptergebnisse sowie der Beiträge zur Litera-
tur. Dies wird durch die Beschreibung der Begrenzung der Analysen sowie einen
Forschungsausblick abgeschlossen.

Das zweite Kapitel stellt einen systematischen Überblick über landnutzungsbasierte
Agentenmodelle dar. Sich am Rahmenkonzept „MRPOTATOEHEAD“ orientierend,
identifiziert der Literaturüberblick alle gemeinsamen Modellkomponenten und de-
ren unterschiedliche Ausprägungen in den spezifischen Modellen. Darüber hinaus
werden die Besonderheiten der Modellen oder Fallstudien diskutiert. Die Ergebnisse
zeigen, dass die Modelle sich hinsichtlich Skalierung, Detailstufe der sozialen- und
biophysikalischen Dimensionen sowie in den angewandten Entscheidungsroutinen
unterscheiden. Die Ausrichtung der Modelle auf die spezifischen Studiengegenden
sowie Agrarnutzungssysteme schränken die allgemeinen Schlußfolgerungen ein.

Das dritte Kapitel konzentriert sich auf die Charakterisierung der Heterogenität
von Landwirten in KVF und beleuchtet die Diversität ihrer Landnutzungs- und
Unterhaltsstrategien mittels einer attributbasierten Typologie. Eine Kombination
von „principal component analysis, hierarchical clustering“ und „K-means clustering“
stellt den methodischen Ansatz zur Umsetzung der Zielsetzung dar. Drei Farmtypen
wurden identifiziert: „Monocrop rice producer“, „Diversifier“ und „Agropastoralist“.
Die Beiträgeg des Kapitels umfassen: 1) die erste umfassende Klassifizierung von
landwirtschaftlichen Haushalten im KVF, 2) die Hervorhebung von aktuellen land-
wirtschaftlichen Praktiken sowie die Generierung von Informationen welche für
farmtypenspezifische Eingriffe benötigt werden und 3) eine quantitativ robustere
sowie konsequentere Methodik zur Konstruktion sowie Validierung von Typologien.
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Die resultierenden Farmtypen können in zukünftiger Forschung als Prototypen und
zur Parametrisierung von Agentenmodellen genutzt werden.

Das vierte Kapitel untersucht die Entscheidungen von Landwirten im Kontext unab-
hängiger Determinanten durch die Betrachtung von vier im Tal genutzten Optionen
(Nutzung von verbessertem Saatgut, Düngung, kleinteilige Bewässerung und schnel-
leren Wiederanbau). Das Kapitel präsentiert einen neuen Modellierungsansatz um
nach Handlungsalternativen differenzierte Erklärungsvariablen sowie deren Wech-
selwirkung zu identifizieren. Hierzu wird eine Kombination aus einem „Baysian
Belief Network“ (BBN), „design of experiments“ sowie multivariaten Regresssions-
bäumen vorgeschlagen. Diese Methode ermittelt strategiespezifische Faktoren. Auch
wenn die Wahl jeder Option durch die Kovariate unterschiedlich beeinflusst wird,
spielen der Zugang zu nicht-landwirtschaftlichem Einkommen, Marktzugang und
die Topographie der Flächen grundlegende Rollen über alle Intensivierungsoptionen
hinweg.

Das fünfte und letzte Kapitel präsentier einen breiten Analyseansatz mit der
Entwicklung eines räumlich und zeitlich expliziten, empirischen Agentenmodells
welches die potentiellen Effekte von Migration und Infrastrukturbildung im KVF
simuliert. Dieses Kapitel basiert auf den drei vorhergehenden. Die Simulati-
onsergebnisse zeigen, dass Intensivierung in der Langzeitbetrachtung limitiert
ist. Bei unkontrollierter Migration reagieren Landwirte eher mit Landexpansion
als mit Intensivierung. Darüber hinaus ist ein zu vernachlässigbarer Effekt von
verbesserter Transportinfrastruktur und der damit zusammenhängenden Reduzierung
von Transportkosten auf Intensivierung und Nutzpflanzenproduktion im Tal zu
verzeichnen.

Schlüsselwörter: Intensivierung, Landnutzung, Subsahara-Afrika, Tansania,
Kilombero-Tal, Agenten-basierte Modellierung, Bayesian Belief Network, Typologie
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Abstract
This thesis intends to examine the determinants and results of farmer’s decisions to
uptake different paths of intensification, land use, and its dynamics over time by
building a spatially and temporally explicit agent-based model in the Kilombero
Valley Floodplain (KVF) in Tanzania. The thesis is structured into an introduction
and four main chapters, each answering a specific research question.

First, the introduction motivates the study and states the research questions. A
brief context of the study site (KVF) and the different data sources and collection
methods is given. Then, the four main chapters are summarized regarding the specific
objectives, the approach and the main results as well as the contributions to the
literature. It concluded with general limitations and outlook.

The second chapter provides a systematic review of agent-based models of land use
in agricultural systems. Guided by the MRPOTATOHEAD framework, the review
identifies the modeling components that appear in all the models and, how they
are represented. Moreover, their peculiarities in the specific model or case study
are discussed. The results show that models are unique in terms of scale, level of
detail in both human and biophysical dimensions and the employed decision-making
routines. Also, models are tailored to a particular study area and farming system
under consideration.The targeted design of the models for specific study-regions and
agricultural land uses restrict the derivation of generalizing conclusions.

The third chapter focuses on the characterization of farmers’ heterogeneity in KVF
and elicits the diversity of their land use and livelihood strategies through an attribute-
based typology. The approach applied to achieve this objective is a combination
of principal component analysis, hierarchical clustering, and K-means clustering.
Three farm types were identified: "Monocrop rice producer", "Diversifier", and
"Agropastoralist". The chapter’s contributions comprise the following: (1) it offers
the first concise classification of farm households in KVF (2) highlights current
agricultural practices and provides vital information needed for targeted interventions
per farm type (3) uses a quantitatively more rigorous and robust way to construct
and validate typologies. The resulting farm types can be used in further research as
a basis for building prototype farms and to parametrize agent-based models.
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The fourth chapter investigates farmers’ choices of intensification strategies alongside
interdependent determinants by focusing on four options (use of improved seed,
fertilizer application, small-scale irrigation and increasing frequency of planting)
practiced in the valley. The chapter proposes a new modeling approach to identify
option-specific determinants and their interdependence by combining a Bayesian
Belief Network (BBN), design of experiments, and multivariate regression trees. The
method has provided us with strategy-specific factors. Although the choice of each
option is affected differently by covariates under consideration, access to non-farm
income, access to market, and topography of the plot play essential roles across
intensification options.

The fifth and final chapter takes a broad-based approach by developing a spa-
tially and temporally explicit empirical agent-based model and simulates the
potential effects of in-migration and infrastructure development in the KVF.
This chapter builds upon the first three chapters. Simulation results show that
intensification is limited in the long run and farmers engage in land expansion
rather than intensification with uncontrolled immigration into the valley. More so,
access to better road infrastructure and corresponding reduction in transport cost
shows a negligible effects on trends of intensification and crop production in the valley.

Keywords: Intensification, landuse, Sub-Sharan Africa, Tanzania, Kilombero
Valley, Agent Based Models, Bayesian Belife Network, Typology
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Chapter 1

Overview of the thesis

1.1 Motivation

Like most sub-Saharan African countries, agriculture is the mainstay of Tanzania
economy. Its role is manifested in several dimensions, including being a source of
food, employment, and export earnings (ERM, 2012).With most of the population
residing in rural areas where poverty and deprivation are widespread , the sector has
sufficient scale and growth linkages to influence economic development and lift the
majority from poverty (Diao, Hazell, & Thurlow, 2010).

In the last two decades, the government of Tanzania has formulated various agricul-
tural policies and plans with different scope and focus towards attaining its long-term
development objectives (Bassi, Casier, Pallaske, Perera, & Uzsoki, 2018). Specifically,
these plans including the "Big result Now"(aimed at socio-economic development
and agricultural expansion), Kilimo Kwanza and Southern Agricultural Growth
Corridor of Tanzania (SACGOT) focusing on agricultural development and food
security, altogether reecho the need for doubling the volume of farm exports and
foreign exchange earnings.

While most of these policies and plans are usually implemented at the national level,
they are targeted towards hotspot areas with high resource availability and potential
for increasing productivity. One such area with a particular interest in agricultural
production and intervention since the colonial era is the Kilombero Valley Floodplain
wetland(KVF) (Sulle, 2020).

KVF is the most extensive low-altitude freshwater wetland in East Africa, covering
approximately 6,300km2 (Dinesen, 2016). Due to its unique biodiversity, ecology,
and international importance, it was designated as a Ramsar site in 2002 (Wilson,
McInnes, Mbaga, & Ouedaogo, 2017). KVF contains almost 75% of the threatened
species of puku antelope, African Elephant, and three endemic birds species, to
mention few (Lyon et al., 2015; Wilson et al., 2017). At the same time, the availability

1



Chapter 1. Overview of the thesis

of fertile soil, supported by the delivery of nutrients from the annual seasonal flooding,
has made the valley conducive to agricultural production and hence a target for
smallholder farmers, commercial estates, and the government (Wilson et al., 2017).
Thus, the valley is a typical example of competing needs that requires reconciliation
between agricultural development and environmental protection (ERM, 2012; Milder,
Buck, & Hart, 2013). Due to population increase, migration, and traditional farming
practices, the valley has witnessed the conversion of the wetland area to agricultural
land on an unprecedented scale (Leemhuis et al., 2017; Msofe et al., 2019).

Smallholder farmers account for the majority of agricultural production and cul-
tivated area in the valley and have thus a unique role to play in the utilization
and management of the wetland ecosystem (Milder, Buck, Hart, Scherr, & Shames,
2013; Mombo, Speelman, Huylenbroeck, Hella, & Moe, 2011). With limited land for
agricultural expansion, the government and non-governmental organizations have
been pushing towards agricultural intensification (Government of Tanzania, 2016).
The efforts are usually targeted by mimicking the "green revolution" experience of
East Asian countries. Interventions including expansion and improvement of an irri-
gation system, development of crop varieties, extension service, improved agricultural
land use plans, and enhancing accessibility to the market are being forwarded to
the Valley (ERM, 2012). Recently through the SACGOT initiative, the GOT has
significantly emphasized the need for agricultural intensification by expanding the
role of multinational companies and creating synergetic relations with smallholders
to increase productivity and commercial production in the Valley (SAGCOT, 2012).

However, these past efforts haven’t provided the required level of agricultural intensi-
fication (both in absolute and relative to other countries) to raise the living standards
of small-scale farmers and increase the countries food self-sufficiency (Government of
Tanzania, 2016). For instance, the analysis based on Agriculture Sample Survey for
the year 2007 (TNBS, 2009) for Kilombero and Ulanga districts indicates that 23
percent of the survey households used improved seed, 35 percent cropped multiple
times a year, 28 percent applied chemical fertilizer, and 3 percent used irrigation.
This low level of intensification in the valley raises a critical question of how small-
holder farmers in floodplain farming systems make intensification decisions and what
socio-economic, biophysical, and institutional factors are important in choosing one
intensification strategy over the other.

2



1.2. Objective and research questions

The analytical framework necessary for such an analysis needs to capture the com-
plexity of the floodplain farming system. This complexity lies in the heterogeneity of
the farmers, the multiple available options and the market landscape , and by the
stochastic nature of the environment with which farmers interact (Nolan, Parker, Van
Kooten, & Berger, 2009; Rindfuss et al., 2008). One of the approaches with proven
capability of capturing the complexity of this coupled human-environment system
is Agent-Based Modeling (ABM) (Entwisle, Malanson, Rindfuss, & Walsh, 2008;
D. Parker, 2003). ABM is used as a computational methodology for formalizing and
analyzing complex social systems on many scales, ranging from small groups of indi-
viduals to organizations and larger systems (Cioffi-revilla, 2011). They model actors’
decisions and interactions in a sequential manner with explicit time-steps. They are
preferable in economics when "the complex relationships between agent heterogeneity,
interactions, and cross-scale feedbacks render traditional equilibrium-based models
analytically intractable" (Nolan et al., 2009, .p 419).

1.2 Objective and research questions

The motivation for this thesis originates from the "GlobE – Wetlands in East Africa"
(FKZ: 031A250A-H) project. The project was funded by the Federal Ministry of
Education and Research of Germany (BMBF). It is one of many projects with
an interdisciplinary approach to tackle the central goal of the National Research
Strategy BioEconomy 2030 (BMBF, 2013), which is to secure the global food supply.
The GlobE – Wetlands project and the participating African and German partners
focused on wetland systems in East Africa (Kenya, Rwanda, Tanzania, Uganda). They
researched the possibilities to reconcile future food production with environmental
protection. As one of the main study sites within the project, the thesis takes the
Kilombero valley as a case study.

The primary objective of this thesis is to examine the determinants and results of
farmer’s decisions to take different paths of intensification and its trend over time
by building a spatially and temporally explicit agent-based model. In achieving our
objective, we put forward four different research questions that contribute to both
conceptual and empirical understanding of intensification and land use in the KVF:

3
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1. Which elements and model components of ABMs are generally required to
appropriately analyze land use and intensification decisions of smallholder
farmers at the landscape scale?

2. What are the main characteristics and current farming practices of smallholder
farmers in Kilombero Valley?

3. How do smallholder farmers make intensification decisions, and what are the
main determinants they consider in their decision?

4. What is the potential effect of immigration and access to road infrastructure
on the state of intensification, land use, and agricultural production in KVF?

1.3 Study site and data

1.3.1 Study site

Location: The valley is positioned at the foot of the Great Escarpment of East
Africa in the southern half of Tanzania, about 300 km from the coast (Kato, 2007;
Nindi, Maliti, Bakari, Kija, & Machoke, 2014) and lies between longitudes 34.563◦

and 37.797◦E and latitudes 7.654◦ and 10.023◦S (See Figure 1.1) (Wilson et al.,
2017). It conversations about 11,600 km 2, with a total length of 250 km and a width
of up to 65 km. The floodplain is surrounded by the Udzungwa mountains in the
northwest and the Mbarika Mountains and Mahenge Highlands in the southwestern
parts (Lyon et al., 2015). The peak elevation drops from more than 1,800 masl
to about 300 masl in a few kilometers. Generally, the floodplain is humid, with
high temperatures ranging from 26◦C to 32◦C. While the relative humidity in the
mountains is between 70 – 87%, the lowlands experience 58 – 85% humidity with
average potential evaporation of 1800 mm (Wilson et al., 2017). KVF is a typical
fertile alluvial floodplain with loamy, clay, clay loamy and sandy soils and is an
essential source of nutrients and sediment (Milder, Buck, & Hart, 2013; Nindi et al.,
2014).

Hydrology: The Kilombero valley forms part of the four principal sub-basins of the
Rufiji River Basin and comprises several rivers and seasonally flooded marshes and
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Figure 1.1: Location of study site

swamps (Dinesen, 2016).The valley receives annual precipitation between 1200 and
1400mm. The rainy season spans between December and April, while the dry season
is between June and September (Wilson et al., 2017). The seasonal change in water
dynamic is vast, and the plains sometimes become inundated during the wet season,
while it dries up during the dry season except for the rivers and river margins as well
as areas with permanent swamps and water bodies (Kato, 2007; Ntongani, Munishi,
More, & Kashaigili, 2014).

Conservation: The KVF is of global, regional and national importance in terms of
ecology and biodiversity. It comprises several conservation areas, including game-
controlled area, Selous Game Reserve, and the Kilombero valley Ramsar site (Dinesen,
2016; Nindi et al., 2014). The valley contains a diverse flora of around 350 plant
species, including endemic and threatened species (ERM, 2012). Since 1956, the
Kilombero floodplain and adjacent woodland areas have been designated as a Game
Controlled Area (GCA) and since 2002 as a Ramsar site (RAMSAR, 2002). Due
to low enforcement of protection zoning (Munishi, Chuwa, Kilungu, Moe, & Temu,
2012), the Kilombero GCA has been managed by the Belgium Tanzania Corporation
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(BTC) and the European Union, in partnership with the SAGCOT (KILORWEMP,
2017). Efforts are underway to redefine the borders of the GCA and create Wildlife
Management Areas (Blache, 2019). These conservation areas in the Kilombero valley
are reserved for tourist hunting and, therefore, not directly used by villagers (Blache,
2019).

Population and livelihood: According to the 2012 National census, the floodplain
is home to more than 673,000 people (TNBS, 2013). The majority of the population
lives in rural areas with low population density. Mang’ ula and Ifakara are the two
most populated Divisions in Kilombero, with a population density of 22 persons/km2.
The high population density in these two towns attributed to the fact that Ifakara is
a district capital and Mang’ ula has a large-scale sugar cane plantation (ERM, 2012).

Immigration into the valley has increased dramatically due to the perceived availabil-
ity of high quality and cheap farmland. Conflicts between pastoralists and farmers
over land use are a chronic and widespread problem, which has resulted in injury
and litigation disputes (MALF, 2015; Nindi et al., 2014).

The KVF has a diverse ethnic profile. Ndamba, Mbunga, and Pogoro are considered
native to the valley and arrived in the early 19th century from Malawi. Other groups
who migrated to the valley include the Sagara (central Tanzania), Hehe (Iringa),
Ndedeule (Zambia), Sukuma (Mwanza), Ngoni (Southern Tanzania), Ngindo (Rufiji),
and Chaga (Kilimanjaro) (ERM, 2012).

Within the floodplain, socio-economic drivers generate many productive activities,
primarily for farming (Kato, 2007; Wilson et al., 2017). Important activities include
agriculture and forestry, urbanization and transport, flood protection, hydropower
production, navigation, and recreation, that all, but in different ways, add pressure to
the floodplain ecosystem (Wilson et al., 2017). And in recent years, a rapid increase
in agricultural land use has been observed (Jones et al., 2012). According to the
2007 Agriculture sample survey, most of the district’s land in Ulanga and Kilombero
was used for the temporary annual crop planted in monoculture with paddy and
maize being the dominant ones. The valley contributed close to 70 percent of the
regional planted area under paddy rice. Notably, livestock production has increased
in the valley since 2006. The natives generally do not keep livestock, and most of

6



1.3. Study site and data

the livestock are owned by either pastoralists or agropastoralists who migrated into
the Valley (ERM, 2012).

1.3.2 Data sources and collection

Both primary and secondary data sources were used to answer research questions
2,3, and 4. The core data source is a detailed household survey in 21 villages
in two districts of the Kilombero Valley, Ulanga and Kilombero. In total, 304
farm households were interviewed to provide information on the farming systems in
terms of resource use and management as well as their relevance for the livelihoods
of the households. The household selection was based on a multi-stage sampling
strategy. First, 11 wards were purposively selected based on the occurrence of
floodplain farming. In the second stage, 21 villages were randomly selected using
probabilities proportional to size within the wards. In the final stage, households
were randomly selected from the list provided by village leaders. A GIS approach
incorporating the land use map from the Global land cover (GLC30 ) (Jun, Ban, &
Li, 2014), the administrative boundaries, and the 2012 census data from the Tanzania
statistics office (TNBS, 2013) was used to estimate the total population size in the
study area. To capture the heterogeneity of the biophysical characteristics of the
study area, geospatial data was collected from different sources and processed. The
primary geospatial data are land use map for 2014 (Leemhuis et al., 2017), Digital
Elevation Model (DEM) at 90m resolution (Jarvis, Hannes, & Andy, 2008) and
proximity raster maps. The DEM was the basis for generating other raster layers,
including the Topographic Wetness Index (TWI) and elevation. We obtained the
administrative ward boundaries from the Kilombero district land and settlement
office. Proximity raster (to road, market, and river) are based on the open-source
database OpenStreetMap (OpenStreetMap Contributors, 2017) and pre-processed
using QGIS (QGIS Development Team, 2020).

In addition to the two core data sources, the 2007/08 Agricultural Sample Census
was used in part of our analysis. The data is a survey of smallholders and large scale
farmers representative at the national level and conducted by the government of
Tanzania through the National Bureau of Statistics (TNBS, 2009). For our analysis,
a subset of 810 smallholder farmers was extracted for Kilombero and Ulanga district.
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1.4 Structure and contributions

Each research question is answered in four self-contained chapters constituting the
main chapters 2 to 5. This section summarizes the main chapters and contributions
of the thesis. For each chapter, I provide the objective, approach, and main findings.
Also, it will highlight how each chapter is related to the subsequent chapters.

1.4.1 Review of Agent-Based Models of land use and intensi-

fication

The second chapter of the thesis provides a systematic review of agent-based models
of land use in agricultural systems. ABMs have become the standard to explore the
dynamics within the farming system at multiple scales. Given their ability to capture
heterogeneity, out-of-equilibrium dynamics, and a dynamic representation of the
environment, the number of studies utilizing ABM has risen in the last two decades.
ABMs have become an accepted method in many disciplines, and their disciplinary
(or at least system-specific) applications have matured considerably. This chapter
aims to provide a systematic review and comparison of ABMs that will allow us to
identify the process and elements that are peculiar to different models and those
that are essential to understanding the dynamics of agricultural land use. Moreover,
the review explores how either explicitly or implicitly intensification decisions are
included in the respective models.

Eight purposively selected models based on the criterion that the primary agent
is a farmer or farm household, and the models are developed and applied in the
time frame of the last two decades are included in the review. Besides, we filtered
out models where either their source code is not available for inspection, or a
comprehensive documentation is missing. MRPOTATOHEAD (Model Representing
Potential Objects That appear in the Ontology of Human Action and Decision)
(D. C. Parker, Brown, Polhill, Deadman, & Manson, 2008) guided our review. The
framework categorizes model elements into six conceptually related dimensions:
information and data, interface to other models, demographics, land-use decision,
land exchange, and model operation.
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Results show that models primarily vary in terms of Information and data requirement,
the interaction between agents and their environment, how the biophysical process is
modeled, land use decisions as well as the software applied. In general, the reviewed
ABMs are developed for purposively selected case study areas and empirically
grounded with data collected through both quantitative and qualitative approaches.
The models reviewed are applied on different scales ranging from village level to
regional or catchment scale, with the largest being MPMAS, which is used for
an area of 3,779km2 and 34,691 farm households in Ghana (Schreinemachers &
Berger, 2011). Out of the eight models we reviewed, CATCHSCAPE (Becu, Perez,
Walker, Barreteau, & Le Page, 2003) is a small-scale ABM applied for a catchment
of 43.6km2with 2,600 agents. ABMs are capable of representing a large number of
agents and spatial extent (up to the national level) with the right computational
resources and complexity (Parry & Bithell, 2012). Our ABM presented in chapter 5
of the thesis, WetABM, goes beyond the scales of the models reviewed. By leveraging
on parallelization (when appropriate) and cloud computing, WetABM models an
area of 5,200 km2 with 38,000-51,000 farmer agents.

Interaction between agents is an integral part of ABMs. The reviewed models vary
with respect to how they captured the interaction between agents and between
agents and the environment. Interaction between agents is modeled through social
networks, spatial neighborhoods, competition for common-pool resources, and input
and output markets. On the other hand, interaction with the environment is modeled
by integrating with biophysical models that capture the environmental change caused
directly or indirectly by the agents’ actions.

Depending on the objective, data availability, and level of complexity, modelers
flexibly design the decision-making routines of the agents. The reviewed studies
use either optimization approaches or rule-based heuristics. Optimization-based
decision-making assumes rational decision-makers and is implemented using math-
ematical programming models or genetic algorithms (Schreinemachers & Berger,
2006). Rule-based heuristics simplifies the decision making by using empirically
derived if-then rules. In recent years, machine learning algorithms are proposed
to represent agent decision making and drive rules for agent behavior (DeAngelis
& Diaz, 2019). Following Sun and Müller (2013) work, we use empirically trained
and validated Bayesian belief networks within WetABM to drive probabilistic agent
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behavior. This would have been analytically and computationally difficult under
other decision-making models, for instance mathematical programming (Britz &
Wieck, 2014).

1.4.2 Characterizing farming system and farmers in Kilo-

mbero Valley Floodplain

A key characteristic of agriculture in sub-Saharan Africa is an enormous heterogeneity
at all levels: countries, subnational regions, villages or communities, individuals
(Dercon & Gollin, 2014).

Similarly, there are many different types of agricultural producers and farm households
in KVF, which relates not only to differences in agro-ecology, market conditions,
legal frameworks or institutional arrangements but also to the way they manage and
allocate household resources (labor, land, fertilizers, machinery, technology, etc.) to
agricultural production (Kato, 2007; Mombo, Speelman, Hella, & Van Huylenbroeck,
2013; Saravia Matus, Cimpoeis, & Ronzon, 2013). Understanding heterogeneity
across farm types through typologies is considered as both a ’requirement’ and a
’tool’ in the analysis of farm-households capacity to increase output and yields in an
environmentally sustainable manner while taking into account economically viable
pathways (Bidogeza, Berentsen, De Graaff, & Oude Lansink, 2009; Gebauer, 1987;
Saravia Matus et al., 2013).

Also, smallholder farmers in KVF are not a uniform group but vary in demographics,
land use, market participation, resource endowment, and psychographic factors. By
combining Principal Component Analysis, Kmeans, and agglomerative hierarchical
clustering, this thesis in chapter 3 identifies three different farm types. The majority
of the farmers in the valley are mono crop rice producers characterized by their
higher levels of land allocation to rice, market participation, and labor use. The
second farm type identified are Diversifiers. Households in this group are similar
to the mono-crop producers but with a significantly larger share of land allocated
to maize and vegetables in addition to rice. Moreover, the share of hired labor is
relatively small because less land is allocated to high labor-intensive crops such as
rice. The third group of farmers identified is Agropastoralists. Household in this
group lives both from crop production and livestock keeping. Furthermore, they also
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own significantly more land and have a higher per capita income. The large farm
size is attributed to their aggressive land clearing strategy in the bottom valley after
migrating to the area (Bamford, Ferrol-Schulte, & Smith, 2010; Mwamfupe, 2015).

The typology was also validated using secondary data obtained from the Agriculture
sample survey of Tanzania (TNBS, 2009). For reproducibility and detailed char-
acteristics of farmers in KVF, this chapter is supplemented by an online appendix
found at https://bsrthyle.github.io/FarmTypolgyV5/. The results from this
chapter contribute to the scant literature on the characterization of farmers in the
floodplain and, in principle, shed light on current agricultural practices and provide
vital information needed by identifying farm development trajectories and target
appropriate interventions per farm type. More so, the typology is used as a basis for
building prototype farms and to parametrize agent-based model in the chapter 4 of
the thesis.

1.4.3 Modeling intensification decision in Kilombero Valley

Floodplain

Chapter 4 explores the intensification decision of smallholder farmers in the Kilombero
valley. By taking four land saving intensification options practiced in the valley: (1)
use of chemical fertilizers, (2) use of improved seed, (3) use of small-scale irrigation
systems, and (4) increasing frequency of planting, the chapter sheds light on how
farm households make their intensification decisions when multiple pathways are
available and highlight the different factors driving these choices.

In addition to providing the first study on agricultural intensification decisions in
KVF, this chapter offers a novel methodological contribution: The use of a Bayesian
Belief Network (BBN) in combination with design of experiments, and multivariate
regression trees the approach takes uncertainty into account and provides a white-box
approach that can be updated by stakeholders when new data is available. This
could not be achieved by the traditional one-dimensional statistical models.

Sensitivity analysis with BBN provides the main determinates of intensification
decision, yet, it is limited when it comes to option-specific determinants. To overcome
this limitation, we contribute to the literature on sensitivity analysis by applying a
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Design of Experiment (DOE) and regression trees, which makes it possible to identify
the relative importance of the determinants for each option under consideration.

Although the choice of each option is affected differently by the covariates under
consideration crop choice, access to non-farm income, access to market, and topogra-
phy of the plot play essential roles across all options. Choosing cropping multiple
times is explained by variation in total labor available during the year, commercial-
ization index, topographic wetness index, income, and distance to the central market.
The variations in the probabilities of fertilizer application are also affected by the
topographic wetness index if the farmer is diversifier, age, commercialization, and
distance to the market. The use of improved seeds is influenced by the share of
non-farm income, age, household size, distance to the market, and farm size. The
probability of using irrigation and fertilizer application is affected by proximity to
the market, farm size, the share of non-farm income, and the topographic wetness
index. The variation in probabilities of use of irrigation is affected by variation
in topographic wetness index, non-farm income, farm size if the farmer is of type
subsistence, and availability of labor.

1.4.4 Immigration, access to infrastructure and intensification

in Kilombero Valley Floodplain

The fifth and final chapter provides the development of an empirical agent-based
model tailored to the socio-economic and biophysical characteristics of the KVF.
Besides, the chapter provides the potential effect of migration and access to road
infrastructure on the dynamics of intensification, land use, and income through
simulation.

By combining the analysis made in the first three chapters of the thesis, this chapter
leverages the information processed in those chapters. The agent-based model called
WetABM is built using modular concepts that capture the different complex and
dynamic systems at play in the valley. In relation to the various agent-based models
reviewed in the first chapter, WetABM has some commonalities and differences.
The main characteristics of WetABM is that it is empirically grounded and as well
spatially and temporarily explicit.
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One of the peculiar characteristics of the model is its large-scale ABM with almost
38 000-51,000 agents. Here, large-scale ABM is associated with high computational
complexity rather than functional complexity. By leveraging on recent advances
in computing (parallel and cloud computing), WetABM captures the full range
of heterogeneity of farmers in Kilombero valley. Moreover, WetABM models the
intensification decision of farmers using empirically trained and validated Bayesian
belief networks similar to the work of Sun and Müller (2013).

Upscaling of sampled data to parametrize agent attributes within ABM is an impor-
tant and challenging task (Smajgl & Barreteau, 2014). Our model provides multiple
approaches (1) using Bayesian sampling, (2) sampling from empirical distributions
fitted for each farm type identified in chapter two of this thesis.

There are multiple Interactions between the farmers through the endogenous output
market, dynamically updating income aspiration and competition for land expansion.
From a technical perspective, WetABM provides a modular design that will have an
advantage for further extension and modification. For example, the land allocation
submodule can be substituted by more complex routines without modifying the rest
of the codebase. Or the scheduling of events can be extended to reactive, and the
time steps can be modified from monthly to yearly with a slight modification. The
details of WetABM are documented on supplementary ODD+D documentation at
https://bsrthyle.github.io/ODD-DforWetABM/. The documentation provides a
thorough model description and implementation.

In-migration to the valley and access to the market is considered one of the main
drivers of land use and intensification. Yet no study captures the potential effect
of these exogenous changes on the state of land use, intensification trends, and
agricultural production. Within WetABM, the two exogenous changes are captured
in a simplified manner. While immigration is considered an annual increase in the
rate of immigration, road improvement is proxied by the reduction of transport costs
to the market. The main finding from the baseline scenario shows that intensification
(proxied by the number of farm households using one or more options) declines
over the long run. However, rice and maize production will increase mainly due to
the rise in land allocation to the two crops and land expansion. With continuous
immigration into the valley resulting in increased population density and keeping the
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current level of protected area management effectiveness, farmers engage more in
inland development than intensification. The crop area increases by 37 % compared
to the baseline, and conversion is mainly concentrated in the Ulanga district, where
the population density is lower than the Kilombero district. However, we also
observe many farm households using improved seed variety, small-scale irrigation,
and multiple crops per season compared to the baseline scenario. Our simulation
result for reducing transportation cost as a surrogate for enhanced road infrastructure
shows a negligible effect on intensification and agricultural production trends.

1.5 Limitation and outlook

The Kilombero valley floodplain is a complex environment both in terms of socio-
economic activity and environmental dynamics. Although we tried to present a
relevant socio-economic study for the area, the following limitations have to be
considered, and further research might provide a more comprehensive insight into
drivers and dynamics of agricultural production and smallholder livelihood in the
valley. One of the main limitations of this study is that it did not capture all the
biophysical elements and processes that are also important for understanding some
of the dynamics in the valley. Especially, flooding patterns and associated risks
will ultimately affect farmers’ land use and intensification decisions. Besides, the
intensification decision taken by the farmer will also have feedback on the quantity
and quality of water resources in the valley. Moreover, our modeling approach doesn’t
take into account weather variation and future climate change scenarios. Future
research is needed to consider more comprehensive feedback between the farmers’
decisions and the biophysical environment. One possible approach is the ongoing
work to integrate the WetABM with SWAT (Soil and water assessment tool) similar
to the work of Daloǧlu et al. (2014).

The second limitation is concerning the market dynamics for input and output. We
have tried to capture the output market for rice and maize through endogenous
price formation. However, the input market is entirely missing. One of the main
difficulties in taking the input market is the informal market structure in the valley.
Mobile input suppliers backed by global multinational companies and government
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involvement in the supply of inputs have made it complex enough to model it within
WetABM and require further study.
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Chapter 2

Review of selected Agent-Based Models of land use applied in

an agricultural system

Abstract: The chapter presents a systemic review of 8 agent-based models to
provide a comprehensive overview and formality of modeling practices and elements
essential to understanding the dynamics of agricultural land use. Guided by a
MRPOTATOHEAD framework, the review makes several inferences concerning the
modeling components that are apparent in all the models, how they are represented,
and their peculiarity to either a specific model or case study. Although almost
all models reviewed tried to capture the underlying biophysical aspect of land
use and farmers decision-making mechanism in an integrated manner, we observe
the difference in terms of data,type of specific biophysical process modeled, the
decision-making algorithm and programming toolkit used.

Keywords: Agent-based model, land use, decision making, agriculture, farming,
MRPOTATOHEAD
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agricultural system

2.1 Introduction

Different uses of land and anthropogenic transformation to meet the ever-increasing
human needs for food and fiber have significant effects on the functioning of the
ecosystem through changes in the carrying capacity and usability of the landscape at
a local as well as at the global level. The globalization, and the further increase of
population, lifestyle changes, progress in technology and infrastructure, and changes in
industrial production patterns have further accelerated land transformation (Hubacek
& Vazquez, 2002). The last century saw land-use change occurring at unprecedented
speed and on a global scale. As argued by Duke and Wu (2014), the current surge in
the rate of land conversion and changes are perhaps among the most prevalent socio-
economic forces affecting ecological and economic systems and human well-being.
Land-use change is a complex process that results from the interaction of decision
making at different scales ranging from the individual farmer who decides on his plot
to a global market that influences the farmer’s decision making (Lambin, Geist, &
Lepers, 2003; Verburg & Lesschen, 2006).

Given the challenges and complexity of balancing the competing needs for land, the
study of land-use and land cover change is of extreme importance for both current
and future discussions on climate change, biodiversity and food security (Lambin &
Geist, 2008; D. Parker, 2003; Verburg, Schot, Dijst, & Veldkamp, 2004). Over the
years, the land-use (LU) research community has made a substantial effort to provide
improved measurement and modeling frameworks to enhance a solid understanding of
both the theoretical and empirical foundation of land-use change (see Agarwal, Green,
Grove, Evans, & Schweik, 2002; Brown, Walker, Manson, & Seto, 2004). However,
the the complexity of causes, processes, and impacts of land change has demanded
researchers to look for models capable of simulating the major socio-economic and
biophysical driving forces in conjunction with interactions on several spatial and
temporal scales (Lambin, Geist, & Rindfuss, 2006).

In recent years, agent-based models (ABM) have emerged as a useful tool for exploring
the dynamics of land-use at multiple scales (Brown et al., 2004). ABM’s can represent
the behavior of human actors more realistically (accounting for bounded rationality,
heterogeneity, interactions, evolutionary learning and out of equilibrium dynamics)
and can combine this with a dynamic representation of the spatial environment
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(Filatova, Verburg, Parker, & Stannard, 2013).

Originating from the fields of Complexity, Chaos, Cybernetics, Cellular Automata,
and Computer science (Heath, Hill, & Ciarallo, 2009; Huigen & Fischer, 2003), ABM
is a computational methodology for formalizing and analyzing complex social systems
on many scales, ranging from small groups of individuals to organizations and larger
systems (Cioffi-revilla, 2011).

When applied to the study of land-use change, ABM usually combines two general
components: First, the cellular component represents the physical landscape in which
agents are situated and interact. Second, an agent-based component representing
the autonomous agents and their land-use decision-making routine (D. Parker,
2003; Schreinemachers & Berger, 2011). Agents interact with each other and their
environment, resulting in emergent (bottom-up) macroscopic properties. Interactions
can be direct, such as communication and physical interaction, or indirect via multiple-
pathway feedbacks and from aggregate outcomes (Cioffi-revilla, 2011; Heckbert,
Baynes, & Reeson, 2010).

By avoiding the top-down approach imposed by conventional mathematical or
econometric models, ABMs have provided modelers with the flexibility to account
for nonlinear dynamics and a non-global equilibrium or disequilibria of the system
under consideration. However, this flexibility and advantage of ABMs also points to
its limitations.With respect to the strand of empirical ABM, the flexibility will leads
to ad hoc modeling practices with modelers trying to replicate reality as much as
possible (Zimmermann, Heckelei, & Domínguez, 2009). Consequently, the diversity
in modeling approaches makes the comparison of generated results over different
ABMs of land-use (ABM-LU) change problematic as the underlying methodological
basis has not been compared in the first place.

Although relatively young compared to other modeling paradigms of land-use change,
recent efforts have contributed to the evolution of ABMs to ease the design and
behavioral analysis as well as to make it handy for policy evaluation as the models
increase in sophistication and ability (Matthews, Gilbert, Roach, Polhill, & Gotts,
2007). To explore the main modeling paradigms and best practices, researchers
have made a series of reviews and comparisons of ABMs. For a general review of
ABM applied for a land-use change please see (Matthews et al., 2007; D. Parker,
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2003; Villamor et al., 2011), and for a comparison of different ABM of land use (see
D. C. Parker, Entwisle, et al., 2008a; Polhill, Parker, Brown, & Grimm, 2008), for
review of their application in urban residential choice (see Huang, Parker, Filatova,
& Sun, 2014), an overview of computational models in agriculture and resource
economics (see Nolan, Parker, Van Kooten, & Berger, 2009).

These prevalent comparisons of ABMs-LU covering diverse systems might also be
owned to the fact that recently agent-based modeling itself has become an accepted
method in many disciplines, and their disciplinary (or at least system-specific)
applications have matured lately. Thus, we are now able to compile information on
empirical ABM-LU , explicitly targeting the agricultural system.

Through reviewing and comparing eight agent-based models of land-use change in
agriculture, we aim to contribute to this growing area of research through a more in-
depth understanding of ABMs of land use by thematically dissecting those processes
commonly implemented in all models, those that are customized to particular case
studies, and that are essential for explaining the land-use change. This aims at
building a knowledge base of agricultural land use ABMs and enabling a better
comparison of results with those generated by traditional agricultural simulation
models. Moreover, highlighting similarities and differences in modeling approaches
can inform future modelers in terms of best practices and can thus contribute to an
increased comparability of results generated by competing ABM-LU.

The work of Nolan et al. (2009) provides a broader overview by comparing different
computational modeling approaches that are applied in agriculture systems (stochastic
and dynamic programming, optimization, and ABMs). However, our work makes an
explicit contribution by solely focusing on the review and comparison of empirical
ABMs of LU in the agriculture system, which is only now becoming a feasible task
due to the recent developments mentioned above.

The scope of our review is deliberately restricted to a particular subset of ABM:
where the models are built for agrarian systems with farmers as the central decision-
making units. Two main reasons are behind this choice of scope for our review.
First, agricultural land-use change is one of the leading forces behind current land
transformation and evolution we observe at a local or global scale. Given the need for
meeting the growing demand for food, understanding land-use change in agricultural
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systems provides significant relevance. Second, as already mentioned above, most
of the land use that is observed on the global scale is the result of interactions–of
individual models of farmers’ decisions at a local or micro level. Furthermore, farmers
are the primary agents who decide (or not), given their knowledge, preferences, or
interactions, to which particular use the land should be allocated. Besides, models
are filtered using criteria that they have to be recent (likely to be used in some form in
the 2000s), be empirical models (uses empirical data), and that the documentation is
easily accessible. The review concentrates on the general semantics and architecture
of the model. However, since most of these models are often applied to different case
studies with or without significant extension, we will highlight the main additions
and applications of the original model.

The remaining part of the chapters proceeds as follows: The second section begins by
laying out existing frameworks for reviewing and comparing ABMs. The third section
is devoted to the review of the models and breaking down their basic structure and
semantics using the MRPOTATOHEAD framework. The fourth section presents
our discussion focusing on the four key themes considered important in designing
empirical ABMs. Finally, the last section concludes this chapter.

2.2 Framework for reviewing ABMs of land-use

In reviewing and comparing ABM of LU, it is prudent to have a framework to guide
us in eliciting the specific elements of commonality and peculiarities among the
models. One of the criticisms stated against ABMs is the lack of rigor and standards
in critical modeling aspects such as model descriptions, calibration of parameters,
and verification (Grimm et al., 2010; D. C. Parker, Brown, Polhill, Deadman, &
Manson, 2008; Polhill et al., 2008). To this end, some scholars have suggested
protocols, ontological structures, and standardization methods for developing models
and comparing agent-based models.

The first framework used to compare ABM models is the ODD protocol (Overview,
Design concepts, and Details) from ecological literature (Grimm et al., 2010). Al-
though, as the name indicated, the ODD protocol is designed explicitly as a model
documentation protocol to communicate the basic structure of the model, its scales,
processes, schedule, and how it was designed, some researchers have used it to
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review and compare ABM models. For example, Polhill et al. (2008) used the ODD
protocol to compare three ABM-LU (FEARLUS and ELMM, SOME, and SLUDGE).
As authors acknowledged, the ODD protocol, which is designed for general model
documentation, falls short in two dimensions as a framework to review ABM of
land-use and land cover change. First, it’s more concerned towards model code
(how entities, processes, and schedules are implemented) rather with conceptual
frameworks. Second, although the ODD protocol is sufficient to communicate the
model structure, it misses a very significant element of ABM domain: the human
decision environment (Grueau, 2013). However, to overcome the latter limitation,
Müller et al. (2013) have extended the ODD protocol to include the human dimension
aspect.

Another framework is MRPOTATOHEAD (Model Representing Potential Objects
That appear in the Ontology of Human Action and Decision) (D. C. Parker, Brown,
et al., 2008). The framework involves the creation of a standard design pattern at
the conceptual level to enable the comparison of agent-based models of LU (Grueau,
2013; D. C. Parker, Brown, et al., 2008).

According to D. C. Parker, Brown, et al. (2008) MRPOTATOHEAD is a conceptual
design framework which segments many of the principal elements generally used in
ABM models into related themes which each model can optionally use and provides a
universal medium for comparison and potential collaboration (D. C. Parker, Entwisle,
et al., 2008a). In the first use of the framework, the authors compared five diverse
ABM-LU models. Given the limitation of ODD for model comparison and our
objective of unveiling commonalities and unique elements across models, we opted
for MRPOTATOHEAD as a guiding framework for our review.
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Figure 2.1: An illustration of MRPOTATOHEAD framework

(Model Representing Potential Objects That appear in the Ontology of
Human Action and Decision) framework. Adapted from (D. C. Parker,

Entwisle, et al., 2008a)

As shown in Figure 2.1, elements appearing in the model are categorized into six
conceptually related dimensions: Information and Data, Demographics, Land-use
decision, Land exchange, Interface to other models, and Model operation.

The Information and data class contain spatial information and data structures
that are included in the model. How is the landscape represented? Is it an empirically
calibrated model or a theoretically abstract model? What type of data structure
is used for landscape representation (raster or vector data)? How is the parcel
structured and its relation to the agent? What data layers, both spatial data layers
and non-spatial network layers, are included? What kind of neighborhood effects are
considered? Did the model include any institutional and political rules and economic
rules and constructs?
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The Demographic class covers the main characteristics and decision-making
mechanisms of the agents in the model. Who is the central decision-making unit
in the model? What kind of decision-making routine and strategy is included in
the model? Which internal characteristics are relevant and considered in the agent
profile? Which aspect of demographic dynamics (in and out-migration, aging, social
structural change, reproduction, and life-cycle dynamics) are considered?

The Land-Use decision class is closely related to household decision-making
class. In addition to the internal structure of the agent, biophysical constraints and
suitability of specific land for the intended use are taken in to account.

The Land Exchange class describes how an agent’s access to land is modeled.
Is there any land market (either endogenous or exogenous market) or externally
induced settlement or institutional structure that determines access to the land?

The Interface to other model class describes the coupling of the agent-based
model with other biophysical or social dynamics model. Since ABMs are appealing
for their ability to integrate the biophysical and human system processes, most ABM
of land-use is coupled with one or more sub-models. How are the models linked
(loose coupling or tight coupling)? What are the intra-feedback and inter feedback
loop between them?

The Model operation class defines the model’s initialization (before running
the simulation) Is it based on empirical data or hypothetical data, and what are
the respective data sources? At which specific time step is the model initialized.
Additionally, this class also contains event scheduling and temporal dynamics of the
model.

2.3 Systemic review of the selected models

the section summarizes the eight models by characterizing them through the six
thematic classes discussed in the previous section. In no way are these models
exhaustive of the available models; instead, they are representative of the different
modeling practices that are followed by agent-based modelers. The eight models
considered for review are LUCITA, MP-MAS, LUDAS, Velbuna, et al., PAMPAS,
SAMBA-GIS, CHANOS, and CATCHSCAPE. As suggested in D. C. Parker, Entwisle,
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et al. (2008b), when the discussion of the class is closely related, then classes are
combined. For example, land-use decision-making class and land exchange class can
be combined under the same section.

2.3.1 LUCITA

LUCITA is an agent-based simulation of land-use change initially developed by Lim,
Deadman, Moran, Brondizio, and McCracken (2002) to explore the effect of different
socio-economic drivers on land-use patterns in a region of the Amazon rain-forest
near Altamira, Brazil. The model has been modified and applied to different case
studies in the same geographic area by (Cabrera, Deadman, & Brondizio, 2010;
Deadman, Robinson, Moran, & Brondizio, 2004).

Information and data class: LUCITA operates on a spatially referenced abstract
raster landscape. Three grids are representing the landscape: land cover, soil quality,
and property parcels (are combinations of cells with an average size of 100 ha). The
cells within the grids represent 1 ha spatial resolution and are geo-referenced with a
common origin. The property parcels are fixed during the simulation run, and each
farmer owns one property.

Interface to other models: The biophysical processes internally computed in the
model. A process-based model governs the impacts of deforestation on soil properties,
the relationship between soil fertility and successful crop yields, and the effect of soil
properties on the rates of natural reforestation. Soil changes through clearing and
burning practices, and soil-depletion and crop-yield prediction are determined by
regression equations derived from another model called KPROG2 (Lim et al., 2002).

Demographic class: Each agent in the model represents a colonist family who
migrates to the region over time. The agents are characterized by the composition of
the family (age, sex, fertility, and mortality rate), available family and male labor
pools, available liquid capital, and the land-use strategies that they are capable of
implementing. The household demographic parameters are randomly assigned to the
agents using normal distributions specific to their particular agent type.

Land use decision and land exchange: In a given year, households make decisions
regarding clearing of land, the burning of deforested area, production of crops, and
the harvest of those crops. These decisions are constrained by the amount of labor
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and capital endowment of the household. Besides, the ability of the farmer to clear
and burn new land is determined by a set of clearing preferences that are exogenously
set by the modeler. Once the household clears the patch of land, he will decide
regarding which crop should be planted based on previous experiences. This decision-
making process is governed by a classifier system. Each agent has eight distinct
land-use strategies, or rules, which are represented by binary strings. Utilizing a
genetic algorithm, these solution chromosomes are competing with one another for
selection. Thus, households decide based on past performance by selecting the most
productive land-use strategies. In the later versions of the model, the decision making
was changed to a simple heuristic or rule-based decision tree (Cabrera et al., 2010;
Deadman et al., 2004) to reduce the complexity attached to the genetic algorithm.
The heuristics follow simple if-then steps, selecting crop choices depending on their
subsistence requirement, soil quality, capital endowment, and available labor.

Model operation class: The original version of the LUCITA (Lim et al., 2002) was
developed using the Swarm simulation system (Minar, Burkhart, Langton, Askenazi,
et al., 1996). However, the later version (Cabrera et al., 2010; Deadman et al., 2004)
is modeled utilizing the RePast Simulation framework (North et al., 2013). Each
run is set up for 30 iterations, such that the first iteration represents 1971 and the
beginning of colonization in the area. Households are allocated to 100-hectare plots
on a grid representing an area of 15 km by 20 km. At each iteration, 50 households
are assigned to the plots.

2.3.2 MPMAS

MPMAS (Mathematical Programming Based Multi-Agent System), developed by
Berger (2001) is an agent-based model for simulating a land-use change in agriculture
and forestry. According to the authors, the main feature of this model is its method-
ological embeddedness in the discipline of agricultural economics as it represents
farmer decision making by whole-farm mathematical programming. MPMAS is a
generic model with a modular architecture that can be easily configured to apply to
various spatial scales, ranging from a village community to a large region within a
country, depending on research interest and data availability. To this end, it has been
applied in several empirical studies across different regions and scales. For instance,
to model the impact of climate change on land-use and farm incomes in the Swabian
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Jura, southwest Germany (Troost & Berger, 2014), adaptation to climate variability
in Ghana (Wossen & Berger, 2015) and Ethiopia (Berger et al., 2015), the impact of
hybrid maize varieties and better access to farm credit on poverty and environmental
sustainability around Lake Victoria, Uganda (Schreinemachers & Berger, 2011).

Information and data class: MPMAS operates on a raster landscape represented
by grid cells of each 0.5 ha. Other spatial information was organized as a layer
storing the location of plots and farmstead and soil property. Farm households are
allowed to own multiple cells (up to five).

Interface to other models: The MPMAS has been integrated with different
biophysical models according to the research interest under investigation usually
through either modules for water flows and soil nutrient changes or at runtime
to an existing external process-based biophysical models using unique interfaces ,
such as MONICA (Latynskiy, Berger, & Troost, 2014), ExpertN (Troost & Berger,
2014), CROPWAT (Wossen & Berger, 2015), Tropical Soil Fertility calculator(TSPS)
(Schreinemachers & Berger, 2011).

Demographic class: MPMAS captures the demographic dynamics of farm agents
by using probabilities to update the fertility, mortality, marriage, and household
composition.

Land-use decision class: Farm household is the central decision-making unit in the
model. Heterogeneity among farm households was captured using the location of the
agents’ farmsteads, the location of their fields, the individual household composition
(age, sex, and labor supply), and available resources such as cash, livestock, tree
orchards, farm equipment, and specific agent characteristics (membership to a
particular group).

The interaction between agents and their environment is captured by updating yield
coefficients in a decision matrix. Agent’s decisions affect the environment through
crop choices, investments in infrastructure, and the use of chemical fertilizers. The
feedback between the environment and the agents is captured via crop yield. Agents
also interact with each other through either land or water markets or technology
diffusion.
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Agents make decisions on production, investment, and consumption level by choosing
optimal land-use, and resource allocation given their resource endowment. The
decision-making of individual farm households is modeled by repeatedly solving a
constrained optimization problem wherein they maximize their expected net farm
and non-farm income. For investment decisions, agents maximize their expected
long-term average levels of net farm and non-farm income. Contrary, consumption
decisions are based on optimal short-term levels.

Model operation class: The source code for MPMAS written in the object-oriented
programming language C++. Modular extensions that can be used to link to other
applications. Microsoft Excel is used to store input and output data in the earliest
version. Later versions utilize the relational database format.

2.3.3 LUDAS

LUDAS is an agent-based land-use model developed at the Center for Development
Research (Le, 2005). The model is a coupled human landscape system. The initial
model was applied to an upland watershed in the Aluoi district of the central
coast of Vietnam. Other versions of the model were applied by different authors to
analyze different case studies. GH-LUDAS is one alteration exploring the impact of
population growth, climate change and policy intervention on income and land-use
in the Atkankwidi Catchment of Upper East Ghana (Schindler, 2009), SRL-LUDAS
analyzed land management and vulnerability to natural hazards in Balapitiya and
Maduganga, Sri Lanka (Kaplan, 2011) and LB-LUDAS simulated the temporal and
spatial scale effects of payments for ecosystem services and their tradeoffs in the
Jambi province of Indonesia (Villamor, Le, Djanibekov, van Noordwijk, & Vlek,
2014).

Information and data class: The landscape in LUDAS is represented by a GIS
raster layer. Each cell has a 30m by 30m resolution, containing attributes and
ecological response function or sub-models. The cells store biophysical spatial data
(e.g., terrain condition, land cover, accessibility to rivers/streams) including economic,
spatial variables (proximate distance to roads), and institutional (e.g., owner, village
territory, protection zoning class) variables as well as the history of the cell properties.
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Interface to other models: LUDAS does not directly link to any external bio-
physical model. However, an ecological response mechanism of the landscape is
represented by internal sub-models of agricultural and forest productivity dynamics,
and a cellular automate sub-model of land-cover transition.

Demographic class: A household profile is represented by an array of household
socio-economic variables (e.g., educational status, household size, labor, land en-
dowment, income, etc.) and variables measuring accessibility’s of the household to
specific policies. Household profiles are dynamic over time with different degrees.
Annual income and land endowment change as a result of yearly household land-use
action. Policy-related variables change in response to an exogenous change of policy
variables. Some demographic variables, such as household age, advances regularly
over time, but the household’s ethnicity and size, are stable with small stochastic
variance. The agents are grouped in different classes of a livelihood-based household
typology.

Land-use decision class: The decision-making mechanism is implemented by
a decision-making module. Using the household characteristics, their perceived
landscape organization, and the characteristics of other agents. The decision program
implements reflex and bounded-rational decision-making mechanisms when choosing
either farm location or forest product collection, respectively. It assumes that
household agents behave reactively according to production rules when deciding
where to collect forest products. Moreover, they are assumed to likely select options
returning optimal utility when looking for a location for cultivation. Although the
decision mechanism is the same for all agents, decision outcomes are diverse as the
agent’s profile and event structure of utility functions are individual-specific.

LUDAS captures the interaction between the farmers and their environment through
two different linkages: First, via a tenure relation that regulates access and usage
of their respective land resources. Second, through a perception response loop that
models both physical and information flow between the environment and the farmers.
Farmers perceive the biophysical conditions and potential benefits around them.
Through practicing land-use activities, the household agents modify the structure of
the spatial organization in their environments.

The model also includes externally induced policy influences. The policy interventions
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affect the system through three different paths: 1) through policy-related variables
of household agents, 2) through institutional variables of landscape agents, and 3)
through directly modifying interaction rules. For example, protection zoning modifies
spatial ownership and the perception of the farmers about the spatial organization.

Model operation class: LUDAS is developed in the Netlogo model framework
(Tisue & Wilensky, 2004). The setup of the initial state of the system involves
importing the sampled household data, up-scaling of households, and generating of
managed land parcels. The model runs on an annual basis for 20-30 years.

2.3.4 PAMPAS

PAMPAS has been developed by Bert et al. (2011) to explore land-use and tenure as
well as a structural change of agriculture in Argentina pampas which is one of the
most fertile agricultural regions in the world.

Information and data class: The model operates on an abstract grid. Each grid
cell represents a farm of variable size characterized by size, tenure regime, soil type,
operator, land allocation, and aspiration level (the gross margin the farmer aspires
to achieve from his farm within a specific year). The environment also contains
topographical relations among farmers through Moore neighborhoods, which makes
it spatially explicit.

Interface to other models: PAMPAS is loosely linked with an external crop
growth model called Decision Support System for Agrotechnology Transfer (DSSAT)
to simulate Physical yields for different crop choices. CERES and CROPGRO are
used to simulate maize, wheat and soybean yield as a function of soil type, crop
genetic character, and daily weather.

Demographic class: Farm households or family businesses are the main decision-
making entities in the model. Entities are characterized by an attribute of total
operated farms and area, operational status, working capital, and position in the
social network. In the current version of the model, the dynamics of the life cycle
of a specific individual is not included. Instead, agents exit the farming in case of
illiquidity.
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Land-use decision class: Farmers decide on their land allocation intending to
maintain or increase their working capital or to expand the cropped area. They
adjust their land allocation by comparing their economic achievement with dynami-
cally changing aspiration thresholds. They adjust their aspiration level (AL) every
production cycle depending on their previous satisfaction, on the expected weather
condition, as well as output and input prices. Once they update their AL, they will
decide to either increase their farmland area, to maintain the same land area, to
reduce or even to quit farming. Farmers acquire new land only through renting it
from less satisfied farmers. The land rental market is based on exogenous prices
rather than on endogenously evolving land prices.

Model operation class: PAMPAS is implemented in REPAST (The Recursive
Porous Agent Simulation Toolkit) software framework (North et al., 2013). Before
each run of the simulation, the model is initialized for farmers and their farm from
a relational database and randomly allocates them to the grid. Simulation loops
represent one cropping season (one year) and run for 100 iterations with 1900 being
the starting year.

2.3.5 SAMBA-GIS

SAMBA GIS is a participatory model developed by Castella, Trung, and Boissau
(2005) that combines role-playing games, agent-based modeling, and geographic
information systems. The model was applied to different villages in the mountainous
"Bac Kan" province in Vietnam. The land-use pattern at the district level emerges
from land users interacting at the village level. A typology of villages was created to
capture their diversity and joint trajectories of land-use drivers. Villages vary based
on their accessibility of livelihood options and availability of other sources of income
and specific development projects.

Information and data class: The landscape in SAMBA-GIS is represented as a
grid that can take either an abstract grid or the real landscape through GIS layers
of the villages. A land cover map of 1990 and soil data are the two layers that are
included to initialize the model. Also, each cell of the raster map stores parameters
for yields of cultivated crops, remoteness from a residential area, and suitability of
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the cell for paddy, maize, and upland crops. A single cell represents 1km2equivalent
of the land on the ground.

Demographic and land-use decision class: Small scale subsistence farm house-
holds are the central agents in the model. They are characterized by each household
members’ labor force availability, land-use choices, available capital, and ownership of
livestock. Farmer’s decision to allocate their production factors to different land-use
options is modeled as heuristic behavior. The rules were constructed based on a
participatory role-playing game and a literature survey from the same case study
areas. For instance, the primary assumption of the decision-making process is that
farmers make decisions about their production activity based on their capacity to
secure a minimum rice requirement for their household. It is only after self-sufficiency
is achieved that farmers pursue other livelihood options. The other decision hy-
pothesis is that farmers’ decision making is entirely based on their access to rice
land, not significantly determined by cultural values and ethnic background. The
decision-making routine is universal across households, and heterogeneity emerges as
a result of their profile and access to rice land. Besides, agricultural production and
productivity vary with the soil and topography conditions along with socio-economic
characteristics. Concerning the environment, the cells in the model are transformed
as a result of farmers cropping choices, natural growth dynamics of vegetation, and
livestock grazing.

Model operation class: SAMBA-GIS is implemented in CORMAS (Common pool
Resources and Multi-Agent Systems) modeling platform (Bousquet, Bakam, Proton,
& Le Page, 1998). The model was initialized with secondary data and survey on
population, ethnicity, the number of buffaloes, presence of projects (e.g., reforestation
or development projects), and GIS layers for land use, soils, and accessibility. The
model runs on yearly bases for ten steps (from 1990-2001).

2.3.6 CHANOS

CHANOS is an agroecosystem agent-based model developed by Mialhe, Becu, and
Gunnell (2012) to explore the decision-making process of investor agents and farmer’s
cropping choices and the resulting land-use pattern. The model was applied to the
Pampanga delta in the Philippines, an area dominated by rice and aquaculture.
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Information and data class: CHANOS operates on an abstract raster landscape
with two GIS layers: one for land-use in 1970 and the other for elevation. Each cell
takes the three categories of water bodies, agricultural land, and natural habitat. The
primary function of the water body cells is to transport dissolved salt to other cells,
whereas natural habitat cells store the land cover type and suitability to aquaculture
conversion. The agricultural land represents the farms, each supporting a unique
cropping system (rice, rotation of rice and aquaculture, or aquaculture).

Interface to other models: CHANOS is not linked to an external sub-model.
However, it contains two internal sub models: environmental sub-models which
simulates the annual subsidence of plots by allocating farm salinity as a function of
the farm’s distance from the nearest saltwater and investment sub-model taking into
account investor’s decision process to convert land to farming under the constraint
of no fragmented farm and investor’s capacity.

Demographic and land-use decision class: Farmers and investors are the
two central decision-making units. Investors characterized by their willingness and
capacity to invest have an objective to acquire new land when return to their
investment is positive. A farmer is the other agent who owns a single farm with the
primary objective to attain satisfaction and certainty. The diversity of farmers is
captured based on their attribute and their class of behavior. The attributes include
a cropping system (rice, seasonal rotation of rice and aquaculture, aquaculture),
income, spending satisfaction, uncertainty, and the number of people they know
(a proxy for social capital). Based on objectives and cognitive strategies, three
different agent behaviors were imposed in the model: rational, collective mind, and
bounded rational. Rational agents optimize either their immediate profit (short term
strategy) or gain stability in profit (medium-term strategy). In addition to optimizing
immediate profit, Collective mind agents also have an objective to imitate the same
cropping system as their network peers and neighbors and obey the government
guidelines. The bounded rational agents have three more objectives to the already
mentions ones (maximize profit, gain stability of profit, imitation, obey government
guidelines), they choose the simplest of rice or aquaculture cropping systems, supply
staple foods and secure a stable income. Production levels for each cropping system
were estimated using a linear regression (production level of rice and aquaculture as
dependent variable and salinity levels as independent variables).
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Model operation class: CHANOS is built on Netlogo ABM framework. The
environment was initiated with land use, elevation, and topographic map from 1970.
The farms were initiated based on a survey through an iterative clustering method.
For the current application, the model runs for 40 years starting from 1970, each run
representing one season (the equivalent of six months).

2.3.7 CATCHSCAPE

CATCHSCAPE has been developed by Becu, Perez, Walker, Barreteau, and Le
Page (2003) to explore the impact of upstream water management on the down-
stream farming viability under different irrigation management options in Mae Uam
catchment in northern Thailand.

Information and Data class: CATCHSAPE operates on an abstract grid to
represent the whole catchment of 43.6km2. Different layers at a different level of
organization are included to systematically represent the catchment as realistic as
possible. A combination of information on soil texture, soil depth, and the slope was
represented as land units, while Land Use classified as paddy, Upland, and the forest
is also incorporated as a layer.

Interface to other models: The biophysical dynamics are internally simulated
using a water balance model that provides runoff and water storage as a function of
rainfall and irrigation, a hydraulic model to control water flow and distribution into
canals and plots using river network node.

Demographic and land-use class: Farmer crop choice decision is based on
constrained optimization, where farmers maximize their profit given their constraint
in cash, labor, and water availability. However, the decision of cultivating paddy is
based on heuristics, as the authors argued; rice cultivation is mostly motivated by
social-cultural preference than profit maximization. During the rainy season, farmers
decide on the amount of paddy to produce up to attain their minimum household
consumption, given the availability of cash and labor. During the dry season, they
also decide to allocate part of their labor to an off-farm activity or not, as rice is
mostly cropped during the rainy season. In terms of land-use dynamics, farmers also
have to decide on either to buy a new plot, install irrigation in the rain-fed land
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or to convert forest plots into upland plot depending on investment cost and local
policy control.

Model operation class: CATCHSCAPE is implemented in the CORMAS platform
(Bousquet et al., 1998). Initially, the model runs over ten years, and the scenarios
have been repeated 20 times to estimate the variability of the results. At each time
step, successive phases of parameter update, cropping decision, farming activity,
biophysical dynamics, crop harvesting, irrigation planning, and land dynamics are
implemented.

2.3.8 Velbuna et al.

Valbuena, Verburg, Veldkamp, Bregt, and Ligtenberg (2010) developed a conceptual
agent-based model to explore how the diversity of farmer’s decision making affects
the structure of the landscape at a regional level. The conceptual model is then
applied to a case study in Netherland and Australia.

Information and data class: The model operated on a grid landscape where
parcels (the combinations of one or more cells) are the decision-making units in the
model. Each cell in the grid representing 1 ha has an attribute of field number, field
size, owner, land-use type, production per hectare, distance to the residence, and
suitability for agriculture. While the land-use type and ownership are derived from
a real land-use map and cadastral map respectively, the suitability of the land to
agriculture is estimated based on a logistic regression between the current use of
land for agriculture (dependent variable) and location conditions (soil characteristics
and land consolidation process).

Interface to other models: Although the model captures the biophysical process
through the estimation of land suitability internally, there is no other external model
that is explicitly linked to it.

Demographic and land-use class: The conceptual framework of the model
outlines that farmer’s decision making is affected by both; internal and external
factors. Internal factors are those aspects that are related to a farmer’s willingness
and ability to act. Ability refers to conditioning factors and options farmers have at
some specific point in time. Willingness relates to intentions, values, or preferences for
choosing individual options. Farmer’s decisions are also affected by factors external
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to the farm. The factors can be either compulsory or/and voluntary (government
policies, credit, demand from outside the system).

In order to simplify farmer’s diversity, an agent typology was created based on
their willingness and ability. Five different agent groups were identified in the
region: hobby, conventional, diversifier, expansionist-conventional, and expansionist
diversifier.

Land use decision is based on a probabilistic decision-making process (probabilitly
matrix). The decision processes which can be either discrete or continuous are
similar across farmers but different between different agent types through distinctive
probability assignments. For example, the farm expansion decision is divided into
three different options: buy, keep, or sell land. Given these options under the three
decision-making processes, a probability is assigned to each option to differentiate
between the agent types.

Model operation class: The model is implemented using NetLogo (Tisue &
Wilensky, 2004). Parameterization of agents and their attributes was based on survey
and census data as well as cadastral and land cover maps. The temporal extent
considered was 15 years, where each run represented a single year.

2.4 Discussion

ABMs, like any other model, should be an abstraction of reality that is complex
enough to emulate the essential features of the real-world phenomena, yet simple
enough to be tractable (North et al., 2013; D. Parker, 2003). Based on the reviewed
models several inferences can be made concerning the classes that are apparent in all
the models, how they are represented, and their peculiarity to either a specific model
or case study. Although almost all models reviewed tried to capture the underlying
biophysical process and decision-making mechanism in an integrated manner, we
observe the difference in terms of, information and data requirement, type of specific
biophysical process modeled, the decision-making algorithm and programming toolkit
used.
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2.4.1 Information and data requirement

Due to their complex structure and micro-level processes, empirical grounding of
agent-based model can be data intensive (Smajgl & Barreteau, 2014).

Data for parameterization of the agents and the environment comes from different
sources, including surveys, census, role playing games, focus group discussion and
geographic information systems. Looking at the landscape representation, either
an abstract or empirical raster grid emerges as the most prominent to landscape
representation. Modelers also include different layers of the grid to represent the
environment. Land use and soil grid are the commonly used data layers that provide
not only the information for the agent decision making but also serve as a platform for
the biophysical process modeling. The dominance of raster representation compared
to vector data is attributed to computational efficiency, availability of processed
and ready to use raster layers and their easy integration to widely used software
frameworks (e.g REPASTJ).

Models reviewed here are applied on different scales ranging from village level to
regional or catchment scale. with the most large scale being MPMAS has the largest
(spatial extent and number of agents) application, which is applied for an area of
3,779km2 and 34,691 farm households in Ghana. As the scale of the model increase,
modelers have different options to upscale data from sample to population including
monte-carlo simulation, typology or census. In addition to availability of data and
computational power,the scale of application is, of course, dependent on the objective
of the study and heterogeneity of the agents and the environment.

2.4.2 Modeling the biophysical process

The capability for capturing the biophysical process depends on how insightful and
relevant the key landscape processes are modeled in a spatiotemporally explicit
manner (Villamor et al., 2011). All models under review have represented the
landscape and model some biophysical processes. However, integration can be either
including the biophysical model internally (tight coupling) (LUDAS, Velbunea, et al.;
CHANOS) or the human subsystem can be linked to an external biophysical model
through information sharing(loose coupling)(MPMAS, PAMPAS). The biophysical
process models (hydrological process, the land cover change process, subsidence, or
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soil nutrient dynamics) are specific to the objective of each reviewed models. Process
based crop growth models that simulate potential yields given different determining
factors are the standard external models that are included in the models reviewed
above.

2.4.3 Land use decision making

Since all the models reviewed are purposively are selected based on the criteria of
developed for the agricultural system, farmers are the central decision-making units.
The farmers can be either individual farmers or farm households that make the
day to day decisions of their farm management. A Range of characteristics and
endowments are used to capture the heterogeneity of farmers. By creating a typology,
it is possible to reduce the complexity of a farmer’s decision making, mainly when
the model is applied at a regional scale with limited farm-level data (LUDAS and
Valbuena). Typologies reduce the diversity of farmers and farming strategies through
artificially grouping farmers using some specific criteria.

An important finding of our review is that models are relatively limited in modeling
land exchange between farm households except for MPMAS. As also noted by
D. C. Parker, Brown, et al. (2008); D. C. Parker, Entwisle, et al. (2008b), existing
ABMs do not include an endogenous land market. However, this does not mean that
models must always have a land market. For instance, in most developing countries,
the land is exchanged under imperfect market condition, and access to land can be
based on different institutional settings that are not congruent with dynamics on
open markets.

The decision-making mechanism of the agent can be categorized into two broader
groups; optimization and heuristics. Modelers implemented optimization through,
mathematical programming (MPMAS and CATCHSCAPE) or genetic algorithm
(LUCITA). Heuristic decision making is implemented by simple if-then rules to
mimic the decision-making procedure of the agents. Both approaches have their
advantage and disadvantage. As Schreinemachers and Berger (2011) reasoned,
although intuitive, straightforward and transparent, heuristic modelers face the
problem of lacking information regarding alternatives and the difficulty of coping
with large numbers of rules. On the other hand, optimization has the advantage
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of representing heterogeneity, and a large number of decisions can be incorporated.
However, optimizations are criticized for assuming a fully rational decision maker
implicitly and for the black box character of the algorithms (Cabrera et al., 2010;
Deadman et al., 2004). Interestingly apparent is limited application of statistical
methods to drive empirically based agent behavior.

2.4.4 Modeling framework and software

Different simulation toolkits and software are used to develop agent-based models.
Modelers are flexible in choosing between these toolkits and frameworks, depending
on their capability and functionality they provide. Most of the available tools are
based on object-oriented programming paradigm. The object-oriented paradigm
provides a very suitable medium for the development of agent-based models. In
particular, it provides modularity useful for developing a virtual simulation laboratory.
The models under review in this chapter are implemented on different programming
toolkits (Netlogo, Repast, CORMAS). Framework choices are influenced by the
complexity of the model and programming language experience of the modeler. For a
complete overview and comparison of software, toolkit refer to (Kravari & Bassiliades,
2015).

2.5 Conclusion

ABM is an exciting addition to existing models aiming to understand the dynamics
of agricultural land use through a bottom-up approach. Our review highlights the
flexibility ABM provides modelers to incorporate different processes and elements into
their model depending on their objective, data availability and essential attributes
of their study area. However, caution is advised not to let the flexibility lead to
ad-hoc modeling practices not supported neither by theory or literature. Our review
has also provided a comprehensive overview of modeling techniques and essential
elements. A model aimed at understanding the dynamics of land use and change is
expected to have specific peculiar properties:- spatial explicit, heterogeneous agents,
sensing and prediction, decision-making mechanism, and complex interaction. All
the eight models we reviewed take a spatial distribution of the landscape feature
either through georeferenced raster layer or abstract grid.
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However, all most all models implement random land allocation (plots to farmers)
mechanism. With the increasing availability of spatial data and cadastral maps,
future models can provide a more realistic tenure relation between agents’ resource
endowment and the landscape. Interactions of relatively moderate complexity already
occur in some of the models reviewed above (MPMAS, LUDAS, and PAMPUS), in
which social learning trigger actions, but an extension to modes of social interactions
derived by empirical insights (e.g., social media analysis) or motivated by theory
(e.g., specific network typologies) are still possible using ABM. Given the potential
offered by ABM, increased computing power, and availability of scalable software
frameworks and a new wealth of empirical data regarding eco- and social systems,
future studies may contribute by expanding model elements including empirically
or theoretically motivated interaction typologies, trade-offs between farming and
non-farming activities, disaggregated markets for output and input, endogenous price
formation and even identifying causal relationships. All before mentioned elements
are scant in the current state of ABMs of land-use change as found by this review.
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Chapter 3

Characterizing farmers and farming system in Kilombero

Valley Floodplain, Tanzania†

Abstract: Recognizing the diversity of farmers is crucial for the success of
agricultural, rural, or environmental programs and policies aimed at sustainable use
of natural resources. In this study, based on survey data collected in the Kilombero
Valley Floodplain (KVF) in Tanzania, we design a typology of farmers to describe
the range of farm types and farming systems systematically and to understand
their livelihood and land use behavior. The KVF is the largest, low-altitude,
seasonally-flooded, freshwater wetland in East Africa. Despite its values, KVF is
a very fragile ecosystem threatened by current and future human interventions.
We apply multivariate statistical analysis (a combination of Principal Component
Analysis and Cluster analysis) to identify farm groups that are homogenous within
and heterogeneous between groups. Three farm types were identified: "Monocrop
rice producer", "Diversifier", and "Agropastoralist". Monocrop rice producers are
the dominant farm types accounting for 65 percent of the farm households in the
valley, characterized by more than 80 percent of the land allocated to rice high
and showing strong market participation and high utilization of labor. Diversifiers,
on the other hand, allocate more land to maize, and vegetables. Agropastoralists
account for 7 percent of the surveyed farmers and differ from the other two groups
by on average larger land ownership, a combination of livestock and crop production,
and larger household sizes. This typology represents the diversity of farmers in
KVF concerning their land use and livelihood strategy and will allow to target
policy interventions. Besides, it may also inform further research about the diverse
landscape of floodplain farming through the classification and interpretation of
different socio-economic positions of farm households.

Keywords: Kilombero valley, Tanzania, farmer typology, principal component anal-
ysis,hierarchical clustering,farmer diversity

†This chapter is published in journal of Sustainability as Gebrekidan BH, Heckelei T, Rasch S.
Characterizing Farmers and Farming System in Kilombero Valley Floodplain, Tanzania. Sustain-
ability. 2020; 12(17):7114. https://doi.org/10.3390/su12177114
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Chapter 3. Characterizing farmers and farming system in Kilombero Valley
Floodplain,Tanzania

3.1 Introduction

The Kilombero Valley Floodplain (KVF) in Tanzania is the largest, low-altitude,
seasonally-flooded, freshwater wetland in East Africa. The valley was designated as
a Ramsar site in 2002 due to its international, national and regional importance for a
wide array of ecosystem services: waterflow regulation, fisheries, dry-season grazing,
tourism, and hunting. Besides, it is part of the "Southern Agricultural Growth
Corridor," an area earmarked for future investments in agricultural development
(ERM, 2012; Milder, Buck, & Hart, 2013).

Despite its values, KVF is a very fragile ecosystem threatened by human interven-
tions. Conversion to cropland and excessive exploitation by improperly planned
development activities in the valley is and will continue to have severe, adverse, and
irreversible impacts on its capacity to provide services in the future (ERM, 2012).
In both neighboring districts (Ulanga and Kilombero), population density has been
increasing steadily. As a result, productive agricultural land is scarce, and clearing
wetland vegetation for crop farming is impossible. The problem is further aggravated
by intense competition between smallholder farmers, migrating pastorals, large scale
commercial ventures, governmental and non-governmental conservation groups (Bam-
ford, Ferrol-Schulte, & Smith, 2010; Dinesen, 2016; Kato, 2007; Milder, Buck, & Hart,
2013; Nindi, Maliti, Bakari, Kija, & Machoke, 2014). Many studies have provided
evidence for the perilous situation the smallholders are in, from the degradation of
ecosystems to the fragility of their livelihoods (Kangalawe & Liwenga, 2005; Milder,
Buck, & Hart, 2013; Mombo, Speelman, Kessy, Hella, & Van Huylenbroeck, 2012;
Msofe et al., 2019; Ronald, Dulle, & Honesta, 2014) characterized by persisting food
insecurity and high inequality. The government of Tanzania has recognized the
need for increasing smallholder welfare and achievement of economic growth and
poverty reduction through sustainable intensification pathways (ERM, 2012; Jenkins,
2012; Schnitzer & Azzarri, 2014). Backed by international donors (DFID, USAID,
UNDP, FAO, Norwegian Embassy) and multinational companies (Bayer CropScience,
Monsanto, Syngenta, Yara, Unilever, Nestle, SAB Miller, and others), the government
has shown renewed interest to invest in both large scale and smallholder farmers in
KVF (Martin-Prével, Frédéric, & The Oakland Institute, 2016). Efforts have been
aiming at removing critical obstacles through increasing supply and efficiency of
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input use, training and capacity building, finance, infrastructure, value-chains, and
markets (Jenkins, 2012; Milder, Buck, & Hart, 2013; Milder, Buck, Hart, Scherr, &
Shames, 2013; New Markets Lab & SAGCOT, 2017).

However, there are many different types of farm households in KVF, which differ in
terms of the available natural resource base, the dominant pattern of farm activities,
household livelihoods and the way they allocate household resources (labor, land,
fertilizers, machinery, technology, etc.) to agricultural production (Kato, 2007;
Mombo, Speelman, Hella, & Van Huylenbroeck, 2013; Saravia Matus, Cimpoeis, &
Ronzon, 2013). Diversity among farmer households in terms of resource endowment,
land size, and household characteristics will have an implication on how they will
respond and benefit from policies and investments.

Such diversity among farmers, has received increased interest from the public and pri-
vate sector in recent years. The latter especially became aware of Sub-Saharan Africa
(SSA), where the majority of the population is rural, and agriculture is considered
the engine of growth. Generally, SSA’s farming systems are highly heterogeneous and
are driven by a complex set of socio-economic and biophysical factors (AGRA, 2013,
2017; Dixon, Gulliver, Gibbon, & Hall, 2001). Such heterogeneity has important
policy implications as Garrity, Dixon, and Boffa (2012, .p 51) argues that, "the
diversity of farming systems in Africa is greater than in any other part of the world.
. . and generic policy assessments related to resource management or production
are usually inappropriate and are often downright misleading." Yet, initial efforts
to understand the diversity of farmers in the SSA are based on distinct points of
polarization, including crop production vs. livestock breeding, food crops vs. cash
crops, subsistence farming vs. market-oriented (Saravia Matus et al., 2013) rather
than on more contextualized typologies. As a result, international development
programs and national policymakers have struggled to "reconcile their recognition
of heterogeneity and complex systems, with the reductionist inclinations that come
with a focus on large scale, or even on global priorities" (Whitfield, Dixon, Mulenga,
& Ngoma, 2015, .p 6). This struggle can possibly be resolved by adding more
contextualized types from case study research to the empirical wealth on farmer
diversity upon which more profound and largescale generalizations can be built in
the future.
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The case is not different in KVF, where blanket policies and interventions are
implemented. For example, Osabuohien, Efobi, Herrmann, and Gitau (2019) reported
that a Large-Scale Agricultural Investment (LSAI) scheme, as promoted by the
SACGOT initiative, exhibits a negative association with the welfare of female-
headed households, and they recommend specific targeting of potential beneficiaries.
Similarly, Herrmann (2017) denotes considerable heterogeneity among households in
terms of benefits from the effect of out-grower schemes under SAGCOT. Land rich
outgrowers benefit more than land-poor ones, and farmers under sugarcane outgrower
schemes are benefiting more than those under rice outgrower schemes. Moreover,
land poor and landless households are more benefiting from wage employment rather
than from outgrower projects. A case study from a program initiated by Kilombero
Plantation Limited (KPL) and "Feed the Future Tanzania NAFAKA" on Sustainable
Rice Intensification (SRI) also shows that farm households with higher labor supply
were able to increase their income due to the implementation of SRI (Nakano, Tanaka,
& Otsuka, 2018).

To this end, understanding farmer diversity through typologies is now considered as
a ’requirement’ and a ’tool’ in the analysis of farm households capacity to increase
output and yields in an environmentally sustainable manner while taking into account
economically viable pathways (Bidogeza, Berentsen, De Graaff, & Oude Lansink, 2009;
Gebauer, 1987; Saravia Matus et al., 2013). Generating a typology means "reducing
the assumed or known variety of different types of farm households concerning their
sources of livelihood and their ’socio-economic status’ into a reasonably small number
of groups which — in some respect — can be treated as a unit" (Gebauer, 1987, .p
262-263).

There is a vast number of studies conducted to characterize farmers through ty-
pologies. The aims of these studies vary which also determine the type of the
methodological approach, the variable selection, and the characterization of the
identified groups. Typologies are constructed to generally understand the farming
systems (Guiomar et al., 2018; Köbrich, Rehman, & Khan, 2003), explore land use
and intensification(Bidogeza et al., 2009; Goswami, Chatterjee, & Prasad, 2014;
Kuivanen, Michalscheck, et al., 2016; Takeshima et al., 2013; Valbuena, Verburg, &
Bregt, 2008), technology adoption(Berre et al., 2017), livelihood strategy (Kuivanen,
Alvarez, et al., 2016; Pacini et al., 2014; Pienaar & Traub, 2015; Tittonell et al., 2010),
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vulnerability to climate change and environmental assessment (Andersen, Elbersen,
Godeschalk, & Verhoog, 2007; Daloglu, Nassauer, Riolo, & Scavia, 2014; Hazeu et
al., 2011; Nin-Pratt, ElDidi, & Breisinger, 2018; Shukla, Agarwal, Sachdeva, Kurths,
& Joshi, 2019). Although there are attempts to provide an international typology of
farmers (see Saravia Matus et al., 2013), it is often constructed for a specific case
study site (country or region). Wezel et al. (2014) and Therond, Duru, Roger-Estrade,
and Richard (2017) provide a comprehensive review of the development of farming
system typologies, illustrate those that include environmental aspects, and consider
their broader setting.

In this paper, we develop a typology of farmers in KVF that captures their het-
erogeneity and elicit the diversity of farm-households that might be expected to
exhibit different land-use behavior and livelihood strategies. By combining Prin-
cipal Component Analysis (PCA) and Clustering (Alvarez, Paas, Descheemaeker,
Tittonell, & Groot, 2014; Hansen & Jaumard, 1997; Husson, Le, & Pages, 2017), we
classify farm households into homogenous groups facing similar constraints, incen-
tives, and other exogenous factors. The reasons why the characterization of farm
households through a robust typology in KVF stands appealing are threefold: (1)
Despite the aforementioned renewed interest for agricultural intensification in KVF
by the government, there is no concise classification scheme (except the smallholder
farmer vs. large-scale commercial ventures narrative) that would form the basis to
understanding how different farm households are likely to respond to changes in
policy and environment. (2) The different types of farm households identified also
shed light on current agricultural practices and provide vital information needed
for targeted interventions per farm type (Alvarez et al., 2018; Saravia Matus et al.,
2013).(3) The resulting farm types can be subsequently used in further research as a
basis for building prototype farms (Alvarez et al., 2018) as case study objects and to
parametrize agent-based models, similar to those of Daloglu et al. (2014); Q. B. Le,
Park, and Vlek (2010); Valbuena et al. (2008); Villamor et al. (2011). Besides, our
paper provides two methodological contributions. First, we use a combination of
Hierarchical clustering and K-means clustering to elicit better and robust clusters
(Husson et al., 2017). This will avoid the problem of local minima associated with
K-means clustering. Second, based on independent data, we validate the stability
of the groups we identified. Thus, we contribute methodologically by outlining a
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quantitively more rigorous way to construct typologies.

The remaining part of the chapter is structured as follows. The next section introduces
the study site, data, and variable selection, and the methodological approach used
in the construction of farm typologies. Section 3 presents the results, discussion, a
validation exercise and policy implications. The final section concludes the chapter.

3.2 Material and method

3.2.1 Data and variable selection

The data used in the current study was collected using a household survey in 21
villages in two districts of the Kilombero Valley, Ulanga and Kilombero. In total,
304 farm households were interviewed using a structured questionnaire with an
extensive set of questions that were selected to discover the farming system in terms
of resources, land use, and sources of livelihoods. The selection of households to
be interviewed was based on a multi-stage sampling strategy. In the first stage, 12
wards were purposively selected based on the occurrence of floodplain farming. In
the second stage, 21 villages were randomly selected within the wards. In the final
stage, households were randomly selected from the list provided by each village’s
leader. The number of interviewees per village ranges from 5 in smaller villages to
15 in the biggest. A GIS coverage incorporating the land use map form GLC30 (Jun,
Ban, & Li, 2014), the administrative boundary and the 2012 census data (National
Bureau of Statistics, 2013) from the Tanzania statistics office was used to estimate
the boundaries and total population size in the study area. From the sample survey,
we selected those variables considered most relevant to explain the livelihood strategy
and land use of farmers in KVF. Using the Sustainable Livelihood framework (Ian
Scoones, 1998), we selected 12 variables (that can be mapped into human, physical,
natural, and financial capital) considered to shape people’s livelihood strategies.
Besides, we added three variables for farmer’s land use decision and crop choices
(percentage of the total cultivated land allocated for rice, maize, and vegetables).
The descriptive statistics of the key variables used for the typology are presented in
Table 3.1.
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Variable Description Unit Mean
(SD) CV

Age The age of the household
head

years 46.53
(12.92) 0.28

Household size Number of individuals in
the household

number 5.12
(2.15) 0.42

Share of rice
Percentage of the total
cultivated land allocated
to rice

% 78.77
(23.93) 0.3

Share of maize
Percentage of the total
cultivated land allocated
to maize

% 13.92
(21.19) 1.52

Farm size The size of farm land
owned

ha 2.61
(2.78) 1.06

TLU Total Tropical livestock
unit

TLU 1.46
(6.56) 4.49

Percent hired Share of labor hired % 37.25
(33.21) 0.89

Commercialization in-
dex

An index of commercial-
ization

index 47.05
(24.8) 0.53

Expenditure on Agro-
inputs

Overall input intensity
(Fertilizer, seed and
agro-chemicals) (ha−1)

TSh 64984.41
(349645.18) 5.38

Distance river Distance from plot to the
nearest river

km 2.61
(3.68) 1.41

Off Farm income Percentage of Income
from non-farm sources % 9.78

(21.74) 2.22

Share of Vegetable
Percentage of the total
cultivated land allocated
to vegetables

% 3.8
(11.92) 3.14

Per capita income Per capita income per
year

TSh (000) 516.37
(1124.84) 2.18

Total labor person
days

Total labor use in the
farm (ha−1)

Man-days 317.36
(337.07) 1.06

Years of schooling Total number of years in
school

years 6.37
(2.56) 0.4

Note: SD=Standard Deviation; CV = Coefficient of Variation;TSh=Tanzanian shilling;
ha−1 = per hectare; n=300

Table 3.1: Descriptive statistics for the variables included in typology
constructions

59



Chapter 3. Characterizing farmers and farming system in Kilombero Valley
Floodplain,Tanzania

3.2.2 Methods of typology construction

There are two broader strands of methodologies that can be used to construct a
typology. The first category comprises qualitative constructions of typologies, also
known as subjective methods of classification (Köbrich et al., 2003). They rely
on literature and on the knowledge and judgment of the researcher in interpreting
patterns to define the specific partition of different groups (Iraizoz, Gorton, &
Davidova, 2007; Pienaar & Traub, 2015; Saravia Matus et al., 2013). Although they
are more descriptive than explanatory (Köbrich et al., 2003), qualitative methods
provide a fast determination of relevant farm types based on a small number of
characteristics. Examples of studies in this category include (Andersen et al.,
2007; Daloglu et al., 2014; Schmitzberger et al., 2005; Valbuena et al., 2008). The
most notable statistical approaches applied include Principle Component Analysis
(PCA), Multi-dimensional Scaling (MDS), Multiple-Correspondence Analysis (MCA),
and Factor Analysis for dimension reduction and Hierarchical or Non-Hierarchical
Clustering. Some of the studies that apply a quantitative approach include (Köbrich
et al., 2003; Takeshima, 2016; Takeshima & Edeh, 2013). The most notable statistical
approaches applied include Principle Component Analysis (PCA), Multi-dimensional
Scaling (MDS), Multiple-Correspondence Analysis (MCA), and Factor Analysis for
dimension reduction and Hierarchical or Non-Hierarchical Clustering. Some of the
studies that apply a quantitative approach include (Bidogeza et al., 2009; Goswami
et al., 2014; Iraizoz et al., 2007; Kuivanen, Michalscheck, et al., 2016; Nin-Pratt et
al., 2018; Pacini et al., 2014; Pienaar & Traub, 2015; Singh, Dorward, & Osbahr,
2016; Takeshima, 2016; Tittonell et al., 2010). (Alvarez et al., 2014; Kuivanen,
Michalscheck, et al., 2016; Lacoste, Lawes, Ducourtieux, & Flower, 2018) on the
other hand, provide a comparison and discuss the complementarity of quantitative and
qualitative approaches. A multivariate approach that combines Principal Component
Analysis (PCA) and both hierarchical and partitioning clustering is used in this study.
PCA is a multivariate statistical technique that linearly transforms a large number
of independent variables into smaller, conceptually more coherent set of variables
called principal components (Dunteman, 1989). Components account for decreasing
proportions of the total variance of the original variables. The first component being
the best linear combination of variables that accounts for the highest share of the
variance in the data than any other linear combination. And the second component
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is then the second-best linear combination of variables from the residual variance
subject to the constraint that its orthogonal to the first component. The process
continues to extract components until all of the variances are accounted for (Hair,
Black, Babin, Anderson, & Tatham, 2014).

Performing PCA involves several steps. (1) we check the validity of our sample data
for PCA using Bartlett’s test of sphericity to test the statistical significance that the
correlation matrix has significant correlations among at least some of the variables
(Hair et al., 2014). (2) variables are then standardized (converted to z scores) to
avoid an inappropriately strong influence of variables with large variance (Husson et
al., 2017). (3) The next specifies similarities between two different observations using
Euclidean distance(Husson et al., 2017).(4) Using the commonly employed latent root
criterion(Kaiser’s-Guttman Rule), we extract components having eigenvalues greater
than 1 (Dunteman, 1989; Hair et al., 2014). We use the PCA to separate signal and
noise in the original dataset. Maintaining the extracted components representing
the essential information and applying the clustering on the PCA without the noise
leads to a stable and more precise cluster (Husson, Josse, & Pages, 2010).

In order to support the aim of combining strong heterogeneity between the types
while showing homogeneity within a group, we perform the cluster analysis on the
retained components from the PCA. Cluster analysis, also called Q analysis, typology
construction, unsupervised pattern recognition, or numerical taxonomy, is a group
of multivariate techniques whose primary purpose is to segment objects based on
the characteristics they possess (Everitt, Landau, Leese, & Stahl, 2011; Hair et al.,
2014). The two most commonly used clustering methods are Hierarchical Clustering
and Partitioning. Hierarchical Clustering consists of a series of partitions which
proceed either by a series of successive subdivisions (Divisive hierarchical method)
or mergers of observations into groups (Agglomerative hierarchical approach). The
agglomerative hierarchical approach starts with as many clusters as observations. In
each subsequent step, the two most similar clusters are combined to build a new
aggregate cluster (Hair et al., 2014). A divisive hierarchical method, on the other
hand, starts with an initial single group of observations and successively dividing
into sub-groups such that objects in one group are dissimilar to objects in the other
group (Hair et al., 2014; Härdle & Simar, 2013). In contrast to hierarchical methods,
partitioning clustering does not involve the treelike construction process. Instead,
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they work by portioning the data into a user-specified number of clusters and then
iteratively reassigning observations to clusters until some numerical criterion is met
(Everitt et al., 2011; Hair et al., 2014; Husson et al., 2017).

In this study, we combined Agglomerative Hierarchical Clustering and K-means
Clustering. The rationale for combining the two methods is discussed in detail
in (Hair et al., 2014; Husson et al., 2010, 2017). The Agglomerative Hierarchical
Clustering is used to select the number of clusters and profile cluster centers using
Ward’s minimum-variance method. This method allows us to decompose the total
inertia (total variance) in between and within-group variance. The total inertia can
be decomposed (Husson et al., 2010, p.4):

K∑
k=1

Q∑
q=1

Iq∑
i=1

(xiqk − xk)2 =
K∑
k=1

Q∑
q=1

Iq(xqk − xk)2 +
K∑
k=1

Q∑
q=1

Iq∑
i=1

(xiqk − xqk)2 (3.1)

with xiqk the value of the variable k for the individual i of the cluster q, xqk the mean
of the variable k for cluster q, xk the overall mean of variable k and Iq the number
of individuals in cluster q.

A division into N clusters is made when the increase of between-inertia between N - 1
and N clusters is much higher than the one between N and N + 1 clusters. In the next
step K-means clustering is performed, using the seed points and number of clusters
from the hierarchical tree to provide more accurate and improved cluster memberships.
Both the PCA and clustering methods are implemented using FactoMineR: A Package
for Multivariate Analysis (S. Le, Josse, & Husson, 2008) and Factoextra: Extract
and Visualize the Results of Multivariate Data Analyses (Kassambara & Mundt,
2016) in R statistical software (R Core Team, 2018).

3.3 Result and discussion

Based on the methodology outlined in section 2, cluster analysis on the principal
components was performed to understand the diversity of farm households in KVF
based on their livelihood strategy and land use. In the following section, a descriptive
analysis of the variables in the cluster analysis is presented.
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3.3.1 Descriptive statistics

The average household size in our sample was 5 (SD=2.15, n=300) with a minimum
of 2 members and a maximum of 11 members. Forty-four percent of respondents
have a family size of fewer than four members, which can be considered as a small
family. Furthermore, 41% are medium-sized with 5-8 numbers of members. 12% of
households in the sample are extended families, with more than eight members. Most
of the households in the surveyed villages obtain their livelihood from agriculture.
Crop production, mainly rice and maize, are the essential crops both for home
consumption and income generation. Some households also integrate crop production
with livestock rearing. Although income from farming is the dominant livelihood
strategy for the majority of the farmers, 26% of the households have received some
form of non-farm income, accounting for close to 10% of their total annual income.
The most common sources for non-farm income in the area include remittances,
rental of land, brick selling, and small business shops. The amount of land to which
a household has access and the terms on which it utilizes that land are factors
that influence its decisions on how to use the land resources to earn a livelihood.
The average farm size in the valley is 2.6 hectares (sd= 2.8). Farmers typically
own multiple parcels, with 62% of them holding two or more parcels. Usually, one
large parcel is located in the seasonally flooded area which is used for rice and
maize production and the smaller plots are often in proximity of the homesteads.
Households plant some vegetables for home consumption on the latter.

Paddy rice is the dominant crop cultivated in the area, usually prioritized both for
its local consumption and income-generating potential. On average, farmers allocate
80% of their land for rice production, 13% to maize. And some farmers also produce
vegetables, cassava, and other permanent crops and fruits. Farmers market different
proportions of their crops for cash. The survey result shows that, on average, 60% of
the rice and maize cultivated is sold for cash and that the remaining 40% is retained
for home consumption. Farmer commercialization index, which is a composite index
of farmer’s total crop sales to total crop cultivation, is 46% in the valley. The
marketing channel is characterized by a large number of small traders operating
between the farmer and the rice mills or maize market located in Ifakara (the district
market center). The local traders buy small quantities directly from farmers and
transport them to mills where it is milled and the rice sold to inter-regional traders,
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local retailers or directly to consumers.

Having sufficient labor is a key factor for the livelihood of households in the valley.
Labor is provided either by household members or hired from the local labor pool.
The result shows that hiring and exchanging labor occur frequently in the area. 94%
of surveyed households have hired laborers to help with different stages of cultivation,
the majority being hired during land preparation and cultivation stages. On average,
63% of the total man-day is provided by family labor, and the remaining 37% is
from hired labor.

3.3.2 Principal component analysis

Once the variables are standardized, and outliers are identified and removed, we
checked the validity of our sample data for PCA using Bartlett’s test of sphericity.
The significant value of the test [Chi-Square= 1060.663, p=0.0] shows that the
correlation matrix has significant correlations among at least some of the variables
(Hair et al., 2014) and we can proceed to PCA.

In total, 15 variables were included in the PCA, and based on the latent root criterion
(eigenvalue greater than 1), we extracted six components as input for the cluster
analysis (Table 3.2). The six components together account for 66.56% of the total
variance in the original data set. Table 3.2 also shows the correlation between the
variables and each component. The bold values identify the top three strongly
correlated variables with the respective PC. The first component (PC1) accounts for
16% of the variance, and it is positively correlated with farm household size, farm size
in ha, and tropical livestock unit owned by the household. Hence, the PC1 represents
the resource endowment of the household. The second component, which accounts for
14.4% of the total variance, is positively correlated with the share of land allocated
to rice and the size of the farm owned by the household. Also, it is negatively
correlated with the share of land allocated to maize and vegetables. Generally, the
second component represents the land use decision of the farm household. PC3
explains 11.23% of the variance, and it is strongly correlated with per capita income,
percentage of income from non-farm activity, and percent of labor hired. Hence,
PC3 represents the financial capital of the farm household. PC4, on the other
hand, explains 9.17% of the variance in the original data, and it is correlated with
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total expenditure on agrochemical inputs, access to the river, and the percentage of
land allocated to vegetables. PC5 and PC6 account for 8.5% and 7.2% of the total
variance, respectively. While PC5 is highly correlated with age of the household
head, years of schooling, and share of land allocated for vegetables, PC6 is associated
with per capita income, market participation, and distance from the river. These six
components were used in subsequent cluster analysis.
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Variables
Correlation between a variable & a principal component

PC1 PC2 PC3 PC4 PC5 PC6

Age of household head 0.4087 0.0818 -0.2588 0.0385 -0.6458 -0.1076

Household size 0.5634 0.3491 0.0777 0.1578 0.2715 -0.1077

Share of land allocated to rice -0.4839 0.7854 -0.3324 0.016 0.0316 0.0328

Share of land allocated to maize 0.5246 -0.6634 0.2328 -0.2004 0.2237 0.1673

Farm size owned in Ha 0.5328 0.432 0.4265 0.0602 0.1217 -0.1854

Tropical livestock unit 0.5591 0.3199 0.0082 0.29 0.3321 0.0207

Share of hired labor -0.4772 0.1536 0.4861 0.054 -0.1049 -0.2018

Commercialization index -0.4606 -0.1168 0.0823 0.3672 0.2311 -0.3844

Total expenditure in agro-inputs (000 Tsh) -0.2082 0.0056 0.2158 0.628 0.0495 0.2937

Distance from the nearest river in Km 0.0882 -0.0691 0.1854 0.5091 -0.0691 0.4159

Share of Off farm income -0.1143 0.1656 0.4908 -0.2506 -0.2908 0.2696

Share of land allocated to vegetables -0.0153 -0.3791 0.3349 0.4172 -0.394 -0.3816

Income per capita -0.078 0.2869 0.5297 -0.1394 -0.1602 0.4079

Total labor person days per year -0.3336 -0.2853 -0.4229 0.1884 0.1535 0.3579

Years of schooling -0.4332 -0.1294 0.4455 -0.2871 0.3907 -0.1092

Eigenvalues 2.23 2.01 1.57 1.28 1.19 1.02

Cumulative explained variance 16 30.33 41.56 50.72 59.27 66.56

Table 3.2: Six principal components with loading, eigenvalues and cumulative explained variance
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3.3.3 Cluster analysis

Using the hierarchical and k-means clustering, a three-cluster solution was obtained.
Figure 3.1 provides the tree-based representation of the observation, also known as a
dendrogram. Moreover, partitioning in three clusters is represented on the scatter plot
produced by the first two principal components, and the dots (representing farmers)
are colored according to their cluster group (Figure 3.2). The cluster dendrogram
shows explicitly three different farm groups identified by the cluster analysis. Table
3.3 presents the variables that discriminate each cluster group.

Figure 3.1: Dendrogram of three farm types in KVF

Note: The cluster dendrogram is the standard ways of representing
the hierarchical relations and allocation of samples in to groups. The
cluster is based on agglomerative hierarchical clustering with Euclidean
distance as the similarity measure and Ward’s linkage strategy(n=

300)

67



Chapter 3. Characterizing farmers and farming system in Kilombero Valley
Floodplain,Tanzania

Figure 3.2: Distribution of the farmer household in three groups
projected on the one and two dimensional plane.

Note:Principal component 1 and 2 are the first two components from
PCA that captures 30.33% of the variation.
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Cluster I account for 68.4% of the farm households in KVF. Share of rice, share of
hired labor and the household commercialization index are significantly and positively
associated with the first cluster. Given the importance of these variables, we labeled
the first cluster as "Monocrop rice producers" (MCRPs), with almost 92 percent
of their land allocated to rice (compared to 79% for all farmers). Considering the
main crop, they tend to have a larger share of hired labor and higher input intensity.
Almost 50 percent of their rice harvests are sold to the market to cover the costs
of inputs and basic household needs. In terms of livelihood, they are dependent on
farm income without livestock integration. They own less land with an average of
1.97 hectares compared to an average of 2.5 hectares in the study site. Although
there is limited off-farm income opportunity, monocrop rice producers also receive
income from non-farming activities.

Cluster II accounts for 25.2 % of the sampled farm households. Share of land
allocated to maize, rice, and vegetables as well as share or hired labor are most
significantly associated with cluster two. Hence, we labeled the second cluster of
farmers as "Diversifiers." Diversifiers are different from the other two groups, mainly
in terms of their land-use decision. Although the highest share of land is allocated
to rice (47%), they also produce maize (40%) and vegetables (10 %). Households
in this group mainly rely on family labor, with only 24 % of the labor provided by
wage labor.

Cluster III comprises 6.4 % of the farm households. The third cluster is strongly
associated with farm size, TLU, Household size, and per capita income. Given
the mix of farming and livestock keeping, we labeled it as "Agropastoralists." The
Agropastoralists own relatively more land and TLU, have larger household sizes, and
earn larger per capita income relative to their peers in the valley. Moreover, they are
characterized by lower market participation (crop) and lower labor person-days per
year per hectare. Agropastoralists are recently migrated farmers from other parts of
the country who have cleared new land for cultivation of crops and livestock keeping.
One possible explanation for the lower market participation (commercialization index
of 31 compared to the overall average 47) is the large household size, which might
require them to keep a significant portion of their output for home consumption.

Figure 3.3 provides the box plots for the characterization of the three farm groups. To
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test if there is a significant difference between the groups, a pairwise mean comparison
is conducted. As shown in the plots, there is a significant difference between the
Agropastoralist and Diversifier types in terms of Farm size (3.3A), land allocated
to crops (3.3 B,C&D), household size (3.3 F), TLU (3.3 H) and per capita income
(3.3 J). Similarly, the result show significant difference between Agropastoralists
and MCRP in terms of Farm size (3.3A), land allocated to crops (3.3 B,C&D),
commercialization index (3.3 E), household size (3.3 F), share of hired labor (3.3
G), TLU (3.3 H) and per capita income (3.3 J). Looking at the difference between
MCRP and diversifiers, there is a significant difference between the two farm groups
in Farm size (3.3A), land allocated to crops (3.3 B,C&D), commercialization index
(3.3 E),the share of hired labor (3.3 G) and age of the household head (3.3 I).
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Figure 3.3: Box plots of farmer characterization in KVF by main
variables.

Note: The horizontal lines between the box plots shows if there is significant
differences in mean of a particular variable between groups (pairwise mean
comparison) at different significant levels [ns : p > 0.05][∗ : p <= 0.05][∗∗ :
p <= 0.01][∗ ∗ ∗ : p <= 0.001][∗ ∗ ∗∗ : p <= 0.0001]. Kruskal-Wallis test
is a non-parametric test to compare samples from two or more groups of

independent observations, p < 0.05 is considered as significant
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3.3.4 Validation of Typology

In order to check the validity and stability of the clusters identified above, we conduct
a validation exercise using the 2007 Agriculture sample survey (ASS) of Tanzania
(TNBS, 2009). The data contains 810 observations across 54 villages in Kilombero
and Ulanga districts. The selection of the variables and algorithms are the same
as in the above analysis 1. The typology from the new data set also reveals the
same pattern as the one we found from our survey. The same number of clusters
are identified, and the main variables that discriminate the clusters are the same
Figure 3.5. Besides, the typology from the 2007 agricultural sample survey also
shows other interesting differences between farm types. For example, the distance of
the main farmer field from the river is significantly higher for Diversifiers relative to
their peers of Monocrop rice producers and Agropastoralists. This might explain
why diversifiers can allocate a relatively larger share of land to maize.

1However, the ASS data misses two important variables, Per capita income and amount of
labour used in crop production
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Figure 3.4: Dendrogram of three farm types in KVF (Validation
data)

Note:The cluster is based on agglomerative hierarchical clustering with
Euclidean distance as the similarity measure and Ward’s linkage strategy.
The validation is based on a data from Agriculture Sample Survey (2007)

(TNBS, 2009) (n= 800)

3.3.5 Policy implications

Effective development strategies and policies seeking to harmonize future food pro-
duction and environmental sustainability in KVF should be systematically targeted
and thus need to take into consideration the challenges and opportunities associated
with different farm types. The current agricultural policy of Tanzania is addressed in
several government strategies and policy documents, including the Agriculture Sector
Development Programme-II (ASDS-II), KILIMO KWANZA Resolve, the Tanzania
Food Security Investment Plan and the Southern Agriculture Growth Corridor of
Tanzania (SAGCOT) (ERM, 2012).
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ASDS-II and SAGCOT are two agricultural programs with direct implications for
KVF. Although the two policy interventions represent different priorities (smallholder
farmers and large scale commercial ventures, respectively), both policies envision
to increase agricultural production and reduce rural poverty through training and
information on agricultural technology by extension services, building infrastructure
including small-scale irrigation, road and warehouses, and integration of smallholder
farmers into value chains (URT, 2013).

To date, these policies have tended to ignore the diversity of smallholder farmers,
their needs, and constraints (KILORWEMP, 2017; NRGF, 2017; Wineman, Jayne,
Isinika Modamba, & Kray, 2020). Effective development strategies and plans seeking
to harmonize future food production and environmental sustainability in KVF should
be systematically targeted and thus need to take into consideration the challenges and
opportunities associated with different farm types. The variety of farm households
identified through our typology can form a basis for prioritizing existing policies
and for targeting future intervention to a specific farming system. For instance,
the ASDS-II has vowed to increase access to agricultural mechanization services,
including tractors, power tillers, weeder, and harvesters, etc., in collaboration with
the private sector (URT, 2013, p.71). The monocrop rice producer could benefit from
such interventions that prioritize access to labor-saving technologies and innovations,
as they use significantly more family and wage labor for land preparation, weeding,
and harvesting of rice. Although the adoption of more diverse cropping systems
depends fundamentally on the hydrological regime of a particular farm, Monocrop
rice producers and Agropastoralists could benefit from policies and interventions
targeting transition towards agroecology through temporal and spatial diversification
of cropping practices (rotation, multiple cropping, and intercropping) accompanied
by water management practices. This will help them to spread production and
income risk over a broader range of crops and to reduce vulnerability to exogenous
shocks. Both Monocrop rice producers and Diversifiers earn their income mainly
from a single source (crop production). Thus, they could also benefit from efforts
towards income diversification into non and off-farm activities and from increased
credit access for investing in diversified production systems. Since all the farmers
still use traditional farming practices, they could benefit from access to low cost,
environmentally friendly, and improved farming technologies as envisioned in both
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ASDS-II and SAGCOT (ERM, 2012; URT, 2016). That will allow them to increase
their productivity, which might in turn reduce the speed and scale of the current
transformation of natural ecosystems into agricultural production. Finally, the
Agropastoralist have not been actively engaged in the current policy landscape (URT,
2011) and they require additional attention. Poor infrastructure and insecurity
increase the costs and risks of commercialization for Agropastoralists located in
remote areas. They are less able to respond to terms of trade and sell less of their
surplus production. Interventions through road infrastructure (especially between
the isolated settlements and the main road) as envisioned in SAGCOT (AgDevCo
& Prorustica, 2011, p. 19) might benefit Agropastoralists. As conflicts between
the Agropastoralist and the crop farmers are increasing in recent years (Bergius,
Benjaminsen, Maganga, & Buhaug, 2020), sustainable rangeland management that
ensures mobility and connectivity to key natural resources and takes in to account
the carrying capacity of the floodplain (as foreseen in ASDS-II (URT, 2016, p.21 ))
might benefit both the farmers and the environment.

3.4 Conclusion

In this study, we attempted the first classification and characterization of farm house-
holds in KVF using cross-sectional data collected in 2015. By combining principal
component analysis, hierarchical clustering, and K-means clustering, we segment
farmers by a purely data-driven approach into groups exhibiting similarity within and
differences between them based on their livelihood and land use. Moreover, we pro-
vide an inductive generalization (Gebauer, 1987) through a concise characterization
of the groups and assign appropriate meanings to them.

Our result shows an easily comprehensible typology with three representative farm
types that capture the main aspects of the heterogeneity. The majority of the farmers
in the valley are Monocrop rice producers who are characterized by their higher
land allocation to rice, market participation, and labor use. The second farm type
identified is called Diversifier. Households in this group are similar to the Monocrop
rice producers in some respect but show a significant difference in terms of using
relevant acreage for maize and vegetables in addition to rice. More so, the share of
hired labor is relatively small, due to less emphasis on labor-intensive rice production.
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The third group of farmers is identified as Agropastoralists. Households in this
group pursue their livelihood by combining crop production with livestock keeping.
Furthermore, they also own significantly more land and have a higher per capita
income. Our validation based on a completely independent dataset shows a similar
classification and characterization of farmers, which indicates that a combination of
PCA, hierarchical, and K-means clustering provides stable clusters. Understanding
the diversity of farmers in KVF is essential for any effort geared towards increasing
production and reduction of poverty in the region. Recognition of this diversity
may avoid a lack of success and unintended consequences of policy measures caused
by ignoring the specific constraints and circumstances of each farm type. Besides,
the farm typology will help us to define particular agent types and to appropriately
parameterize behavioral models for future research of land use and intensification in
KVF.
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Cluster
Mean

Overall
Mean

Cluster
SD

Overall
SD P.value

Cluster I [ MCRPs] [68.4%]
Share of land allocated to
rice 91.47 79.18 11.02 23.91 0.00

Percent of labor hired 43.41 36.80 33.66 33.13 0.00
Commercialization index 49.87 47.05 23.45 24.75 0.00
Total labor person-days
(ha−1year−1) 322.11 297.39 259.15 241.17 0.01

Total expenditure on
Agro-inputs (000 Tsh)
(ha−1)

36.358 29.998 92.565 79.086 0.05

Household size 4.81 5.05 1.64 1.98 0.00
Share of land allocated to
vegetables 1.42 3.53 5.22 11.51 0.00

Farm size in Ha 1.97 2.37 1.51 2.17 0.00
TLU 0.23 0.68 0.67 2.24 0.00
Share of land allocated to
maize 3.41 13.85 7.41 21.37 0.00

Cluster II [Diversifier] [25.2%]
Share of land allocated to
maize 39.66 13.85 24.43 21.37 0.00

Share of land allocated to
vegetables 9.98 3.53 19.84 11.51 0.00

Percent of labor Hired 24.41 36.80 27.43 33.13 0.00
Share of land allocated to rice 47.00 79.18 19.87 23.91 0.00
Cluster III [Agropastoralist] [6.4%]
TLU 7.07 0.68 5.36 2.24 0.00
Farm size in Ha 7.67 2.37 3.06 2.17 0.00
Household size 8.44 5.05 2.22 1.98 0.00
Share of land allocated to maize 23.99 13.85 17.67 21.37 0.04
Total labor person-days
(ha−1year−1) 151.53 297.39 121.15 241.17 0.01

Years of schooling 4.89 6.44 3.45 2.47 0.01
Commercialization index 31.09 47.05 23.95 24.75 0.00
Percent of labor hired 14.81 36.80 22.86 33.13 0.00

Table 3.3: Cluster description by main discriminatory variables
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3.A.2 Box Plot of Validation cluster

Figure 3.5: Box plots of main variables by farm type from the
validation study.

Note: Based on the 2007 Agricultural Sample Census (TNBS, 2009).
[n=800]
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Chapter 4

Modeling farmers intensification decisions with a Bayesian

Belief Network: The case of the Kilombero Floodplain in

Tanzania†

Abstract: Kilombero Valley floodplain in Tanzania is one of the leading agriculture
hotspot areas in Africa with significant interest from government and donors.
Small-holder farmers in the valley are under continuous pressure to intensify their
agriculture production and intensification is often considered as a rule rather
than an option. Nevertheless, it remains below what is possible. Our objective
in this chapter is to investigate farmers’ choices of intensification and their
interdependent determinants by focusing on four options practiced in the valley.
We propose a new modeling approach to identify option-specific determinants and
their interdependence by combining a Bayesian Belief Network (BBN), design of
experiments, and multivariate regression trees. Our approach complements, existing
lower dimension statistical models by taking uncertainty into account and by
providing an easily updatable "white box" model structure. The BBN is constructed
and calibrated using survey data from 304 farm households. Results show that
choices of intensification options are driven by crop choices, access to market as well
as capital and plot characteristics. Our novel approach of combining a data-driven
Bayesian Belief Network (BBN) with regression trees identifies factors determining
farmers’ prioritization of one strategy over the other.

Keywords: Intensification, BBN, Agriculture, Tanzania, Kilombero Valley, Regres-
sion Tree, design of experiment

†This chapter is submitted to Agricultural Economics journal as Gebrekidan, BH., T. Heckelei
and S. Rasch : Modeling Farmers Intensification Decisions with a Bayesian Belief Network: The
case of the Kilombero Floodplain in Tanzania
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4.1 Introduction

Achieving food security while promoting sustainable development is at the top of
priorities for governments in Africa. Agriculture offers a significant potential for
poverty reduction and inclusive growth particularly with almost 60 percent of the
population depending on it and by being the primary source of income for 90% of
the rural population (AFDB, 2015; Diao, Hazell, & Thurlow, 2010; Kanu, Salami, &
Numasawa, 2014; World Bank, 2007). Governments, donors, and private enterprises
recognize the importance of increasing the productivity of the sector. Yet, the sector
has remained stagnant and in need of modernization and intensification with the yield
gap for cereals being wide compared to other regions (Jayne, Mather, & Mghenyi,
2010; Johansson & Abdi, 2019; Van Ittersum et al., 2016).

Tanzania is quite a typical case. The agricultural sector is the backbone of the
country’s economy and a key driver for rural development. The sector continues to
employ around 80 percent of the total workforce and provides livelihoods to more
than 70 percent of the population; it contributes to approximately 95 percent of the
national food requirements (Mwimo et al., 2016). Besides, the sector contributes
28 percent of the gross domestic product and accounts for about 27 percent of
export earnings (Milder, Buck, Hart, Scherr, & Shames, 2013; Mwimo et al., 2016;
USAID, 2019; WFP, 2019). However, the sector remains subsistence mostly, with
population growth surpassing production growth, food self-sufficiency declining, and
malnutrition remaining high (WFP, 2019).

The government pursues a policy of increasing domestic agricultural production-
driven either by a shift to large scale commercial farms or by improved productivity
of smallholders through providing opportunity and access to resources (Coulson,
2015; URT, 2013). The government has sought to align these goals through different
policy statements and national visions, including Kilimo Kwanza (Agriculture First),
the Southern Agricultural Growth Corridor of Tanzania (SAGCOT), and Big Results
Now (Coulson, 2015).

One focal area for the government in its bid to transform the country into a sustainable
food basket is the wetland of the Kilombero Valley Floodplain. The low altitude
plain with alluvial deposits has a productive natural resource base with fertile land,
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reliable water availability, and extensive pastures (Bamford, Ferrol-Schulte, & Smith,
2010; Nindi, Maliti, Bakari, Kija, & Machoke, 2014). In the past, smallholders in the
floodplain have enjoyed abundant land to increase their agricultural production by
bringing new wetland areas and marginal lands under cultivation (see Figure 4.1 )
(Leemhuis et al., 2017; Msofe et al., 2019).

Figure 4.1: LULC maps of the Kilombero floodplain for 1990 (a),
2004 (b) and 2016 (c)

(Leemhuis et al., 2017, p.8)

However, this type of land-use change is associated with various negative environ-
mental consequences, such as loss of habitat as well as of above and underground
biodiversity (Jones et al., 2012). More so, increased immigration and population
growth brought the expansion of agricultural land to its limit, and agricultural intensi-
fication has become the rule rather than an option (Binswanger-Mkhize & Savastano,
2017; Kajisa, 2016; Otsuka & Place, 2013). Hence, backed by the broader community
of non-government organizations and private multinational companies, the govern-
ment has been promoting the use of optimized/high-quality inputs, adoption of new
technologies or mechanization and value-chain development as a means to increase
productivity and closing yield gaps for generating sustainable and inclusive growth
(Agra, 2016; Binswanger-Mkhize & Savastano, 2017; Otsuka & Larson, 2016b). The
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potential for yield increase in the Kilombero Valley Floodplain is evident from the
current average rice and maize yield of farmers in the valley being 1.2 tons per hectare,
with more than 50 percent of farmers generating less than 1 ton per ha (Figure
4.2). Which is also substantially lower than 10 to 11 tons per hectare of potential
attainable yield under improved management practices and input-intensive rice and
production systems in Tanzania (Nakano, Tanaka, & Otsuka, 2018; Senthilkumar,
Tesha, Mghase, & Rodenburg, 2018).

Figure 4.2: Empirical cumulative distribution of rice & maize yields
in the KVF

While efforts are underway to accelerate and intensify production through increased
uptake of improved technologies and greater use of inputs, adoption of these options
by smallholder farmers have been disappointing so far (although increasing gradually)
(Sheahan & Barrett, 2014). Feder, Just, and Zilberman (1985) and Foster and
Rosenzweig (2010) reviewed the vast amount of literature on the adoption of different
technologies in developing countries. A sub-strand of this literature body deals
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with farmers’ intensification decisions and factors driving relevant technology choices
(Abay et al., 2016; Erenstein, 2006; Headey, Dereje, & Taffesse, 2014; Holloway
& Lapar, 2007; Howley, O. Donoghue, & Heanue, 2012; Kassie, Teklewold, Jaleta,
Marenya, & Erenstein, 2015; Okike et al., 2001; Schelhas, 1996; Shriar, 2000, 2001;
Wainaina, Tongruksawattana, & Qaim, 2016).

It is apparent from these sources that the choices farmers make are not simple
reflexive responses to external drivers, but are instead the result of complex decision
making. Farmers decide by conditioning on socio-economic characteristics of the farm
households, infrastructure, and existing institutions as well as of the agro-ecological
context (Wainaina et al., 2016). However, neither the current state of agricultural
intensification nor context or locally specific factors determining farmers’ choices of
particular intensification options are known for KVF (Milder, Buck, & Hart, 2013;
Milder, Buck, Hart, Scherr, & Shames, 2013; Nakano, Kajisa, & Otsuka, 2016).

It is in this light that further analysis of the determinants of farmers’ decisions to
uptake different paths of intensification and land management practices is required.
As noted by Vanlauwe, Coyne, et al. (2014); Vanlauwe, Van Asten, and Blomme
(2014), pathways towards intensification in Africa will require a broad-based approach
considering a diversity of pathways adapted to local agro-ecological conditions, crop
choice and cropping patterns, the farmer’s ability and willingness to invest, and
specific to institutional settings. Recent studies have also shown farmers’ perceived
constraints and that benefits play significant roles in their decision to adopt a
particular option (Alomia-Hinojosa et al., 2018; Ntshangase, Muroyiwa, & Sibanda,
2018; Yamano, Rajendran, & Malabayabas, 2015). Thus, it is integral to uncover
factors that drive farmers’ prioritization of options and their perceived constraints.
The analysis of pathway-specific and locally relevant determinants of intensification
in KVF might allow institutions to draft future policies that will increase productivity
through ecologically sustainable and pro-poor pathways.

The chapter offers two novel contributions to the existing literature. First, we
investigate how farm households make their intensification decisions when multiple
pathways are available and highlight the different factors driving these choices in the
context of a sensitive ecological landscape with high yield potential. Here, we focus
on four land-saving intensification options practiced in the valley: (1) use of chemical
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fertilizers, (2) use of improved seed, (3) use of small-scale irrigation systems, and (4)
increasing frequency of planting. Second, we propose using a Bayesian belief network
(BBN) as an analytical tool alternative to existing, typically lower-dimensional models
(e.g., logit and probit models, decision tree). BBNs have the advantage of explicitly
accounting for uncertainty and allow integrating a wide range of input data, including
expert knowledge. They are easily adaptable in terms of structure and dependencies
between different influencing factors (Korb & Nicholson, 2010; Sun & Müller, 2013).
More so, an integral part of our approach is to exemplify how a combination of BBN,
design of experiments, and regression trees are used to identify strategy-specific
determinants.

The organization of the chapter is as follows. After providing a brief overview of
the motivation for the methodological approach in section 2, section 3 introduces
the study site along with data and variable selection. Section 4 briefly explains the
empirical model. Section 5 will present the results and discussion of intensification
strategy choices, and section 6 concludes the chapter.

4.2 The motivation of the methodological approach

Different modeling tools have been proposed to understand individual decision making
concerning intensification options. The first type models the intensification decision
as a binary choice problem of adopting a single intensification option or not. Prevalent
approaches include probit models (Abay et al., 2016), logistic regression models
(Erenstein, 2006; Okike et al., 2001; Perz, 2003) and decision trees (Gladwin, 1989)
to mention a few (see (Besley & Case, 1993) for review of modeling farmer adoption
decision). The second branch of models recognize the choice of intensification decisions
as a process involving the joint application of multiple practices, or they consider the
option as one potential strategy out of many that can be modeled by multivariate
models including multinomial probit (MNP) (Dorfman, 1996; Kassie et al., 2015;
Wainaina et al., 2016) or multinomial logit selection (MNLS) models (Kassie et al.,
2018; Khonje, Manda, Mkandawire, Tufa, & Alene, 2018; Teklewold, Kassie, Shiferaw,
& Köhlin, 2013). We propose a Bayesian Belief Network (BBN) as an alternative
tool to model the multivariate setting. BBN, also known as Bayesian Net, Causal
Probabilistic Network, Bayesian Network, or simply Belief Network, is a probabilistic
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graphical modeling tool that allows for knowledge representation and support for
reasoning under uncertainty (Kjaerulff & Madsen, 2012; Korb & Nicholson, 2010;
Pearl, 2009). Like other graphical models, the nodes represent stochastic variables
and the arcs direct dependencies based on process understanding, statistical, or other
types of associations between the linked variables (Chen & Pollino, 2010). More
formally, the Bayesian network can be described as Directed Acyclic Graph (DAG)
which defines a factorization of a joint probability distribution over the variables,
where the directed links of the DAG give the factorization. Specifically, for a DAG,
G = (V,E), where V denotes a set of nodes and E a set of directed links (or edges)
between pairs of the nodes, a joint probability distribution, P (XV ), over the set of
(typically discrete) variables Xv indexed by V can be factorized as

P (XV ) =
∏
vεV

P (Xv|Xpa(v)) (4.1)

where Xpa(v) is a set of parent nodes for variable Xv, for each node v an element of
V (Kjaerulff & Madsen, 2012).

BBN uses Bayes theorem and probability calculus to represent a causal linkage
between two connected stochastic variables. For instance X → Y, where X directly
influences Y, we need to drive the posterior probability distribution P (X|Y = y) using
the prior distribution P (X) and the conditional probability distribution P (Y |X).

In addition to jointly considering multiple pathways of intensification choices, three
further advantages of BBN’s motivate this methodological choice:

(a) given our limited understanding regarding farmer’s decision-making process
and the relevance of random events, we opted to use probability theory to
deal with uncertainty explicitly. The Bayesian approach to uncertainty ensures
that the system as a whole remains consistent and offers a direct way to
apply the model to data (Koski & Noble, 2011). As BBNs are joint probability
distributions, uncertainty is propagated through the model and presented in the
final results. Contrary to deterministic models, the probabilistic representation
of knowledge in BBN prevents overconfidence in the strength of responses
obtained by simulating changes in one or more variables of interest (Uusitalo,
2013).
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(b) Unlike other ’black box’ models, BBN provides generality and formalism of
displaying relationships clearly and intuitively (Daly, Shen, & Aitken, 2011;
Margaritis, 2003) as well as making them amenable to analysis and modification
by experts and stakeholders (Sun & Müller, 2013; Uusitalo, 2013). If data
exists, they are also able to incorporate qualitative beliefs and attitudes of
stakeholders along with quantitative data.

(c) BBNs are easily updated as more data become available.

BBNs emerged from artificial intelligence and are widely used in diverse domains,
including medicine, environmental modeling, natural resources management, and
forecasting (Daly et al., 2011; Korb & Nicholson, 2010; Uusitalo, 2013). There are only
a few BBN applications to farm management (see Drury, Valverde-Rebaza, Moura, &
de Andrade Lopes, 2017) for a review of BBN applications in agriculture). Cain (2001)
uses a BBN to explore the determinants of crop yield, and similarly, Prishchepov,
Ponkina, Sun, and Müller (2019) used a BBN to examine the determinants of wheat
yields in Siberia. (Sun & Müller, 2013) choose a BBN for modeling the binary choice
of participating in a scheme with payments for ecosystem services and combine it with
opinion dynamics in an agent-based modeling framework to simulate land conversion
patterns. In a similar work, Frayer, Sun, Müller, Munroe, and Xu (2014) developed
a BBN to analyze drivers of the decision to plant trees on former cropland. Aalders
(2008) and Celio and Grêt-Regamey (2016) built a BBN to incorporate farmers’
choices of different land-use options. Rasmussen et al. (2016) developed a large scale
BBN tool for risk management in EU agriculture using Farmers Agricultural Data
Network data (FADN). Pope and Gimblett (2017) used BBN in combination with
agent-based modeling to explore the different ranching strategies farmers choose
under varying environmental conditions. To the best of our knowledge, there is no
other study applying a BBN to model farmers’ adoption of intensification options.

4.3 Context and data

4.3.1 Study site

This study was conducted in the Kilombero Valley Floodplain (KVF), Tanzania.
The low altitude plain with alluvial deposits has a productive natural resource base
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with fertile land, reliable water availability, and extensive pastures (Bamford et al.,
2010; Nindi et al., 2014). Located in the Ulanga and Kilombero districts in southern
Tanzania, it forms one of the four principal sub-basins of the Rufiji River Basin. It
comprises several rivers and seasonally flooded marshes and swamps (Dinesen, 2016).
The seasonal change in water levels is substantial, and the plains are fully inundated
during the wet season, while the water fully retracts to rivers and river margins
as well as areas with permanent swamps and water bodies (Kato, 2007; Ntongani,
Munishi, More, & Kashaigili, 2014).

The Valley lies at the foot of the Great Escarpment of East Africa in the southern
half of Tanzania, about 300 km from the coast (Kato, 2007; Nindi et al., 2014). It
covers an area of about 11,6002, with a total length of 250 km and a width of up to
65 km. The altitude within the valley is about 300m above sea level. Generally, the
floodplain is humid with high temperatures ranging from 26◦C to 32◦C. While the
relative humidity in the mountains is between 70 – 87%, the lowlands experience 58
– 85% humidity with average potential evaporation of 1800 mm (Msofe et al., 2019;
Wilson, Mcinnes, Mbaga, & Ouedraogo, 2017). The KVF is a typical, fertile alluvial
floodplain with loamy, clay, clay loamy, and sandy soils and is an essential source
of nutrients and sediment (Milder, Buck, & Hart, 2013; Nindi et al., 2014). The
KVF also offers considerable ecological value as it comprises the Kilombero Game
Controlled Area with approximately 70002 and the Kilombero valley Ramsar site,
which covers 7,9762 Dinesen (2016); Nindi et al. (2014).

As one of Africa’s most extensive wetlands, the Kilombero Valley has a long history of
productive activities, primarily farming (International Water Management Institute
(IWMI), 2014; Kato, 2007). The floodplain contributes substantially to the livelihood
of more than 500 thousand people living there (National Bureau of Statistics, 2013)
by providing crops, fish, drinking water, forest products, and fuelwood (Mombo,
Speelman, Huylenbroeck, Hella, & Moe, 2011). In recent years a rapid increase in
agricultural land use has been observed Jones et al. (2012). Immigration into the
valley has increased dramatically due to the perceived availability of high quality
and cheap farmland. Conflicts between pastoralists and farmers over land use are a
chronic and widespread problem, which has resulted in injury and litigation disputes
(Dinesen, 2016; MALF, 2015; Nindi et al., 2014).
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4.3.2 Data

The core data source for our analysis is a household survey in 21 villages in two dis-
tricts of the Kilombero Valley, Ulanga and Kilombero. In total, 304 farm households
were interviewed to provide information on the farming systems in terms of resource
use and management as well as their relevance for the livelihoods of the households.
The household selection was based on a multi-stage sampling strategy. First, 11
wards were purposively selected based on the occurrence of floodplain farming. In
the second stage, 21 villages were randomly selected using probability to population
size within the wards. In the final stage, households were randomly selected from the
list provided by village leaders. A GIS approach incorporating the land use map form
GLC30 (Jun, Ban, & Li, 2014), the administrative boundary, and the 2012 census
data from the Tanzania statistics office was used to estimate the boundaries and
total population size in the study area. To drive the biophysical characteristics of
farmer plots (slope, elevation, roughness), we used a Digital Elevation Model(DEM)
at 90m resolution from SRTM (Jarvis, Nelson, & Guevara, 2008).

4.3.3 Variable selection

Generally, factors influencing the choice of intensification strategy can be grouped
into three broad categories. Those are 1) socio-economic characteristics of the farm
households, 2) infrastructure and institutional factors, and 3) the agro-ecological
context of the farm (Wainaina et al., 2016). Studies often find that household
resource endowments in terms of labor, land and capital, risk behavior and social
capital affect the choice of a particular strategy (Erenstein, 2006; Feder et al., 1985;
Ghadim, Pannell, & Burton, 2005; Okike et al., 2001). For example, increasing the
frequency of cropping is often constrained by the availability of labor. Human capital
gained through education, training, and experience influences the choices farmers
to make (Kijima, 2016; Wainaina et al., 2016). Infrastructure and institutions like
distance to nearest markets or access to credit and agricultural extension are shown
to matter in many empirical studies (Feder et al., 1985; Kassie et al., 2018, 2015;
Teklewold et al., 2013). Finally, biophysical characteristics of the farm plots such as
slope, hydrological regime, soil characteristics affect the choice of one strategy over
another (Khonje et al., 2018; Nkonya, Schroeder, & Norman, 1997; Sirén, 2007).
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To avoid unnecessary model complexity, we use a data mining technique to select
variables that are most important in explaining variation in choice of intensification.
In the first step, we created a binary variable encoding a farmer as either an
intensifier (if the farmer adopted at least one option) or a non-intensifier. Then
we run a random forest algorithm between the binary choice variable and a range
of explanatory variables using Scikit-learn (machine learning library in python)
(Pedregosa et al., 2011). Random forest algorithms have recently become popular in
variable selection. Please see (Genuer, Poggi, & Tuleau-Malot, 2015; J. Rogers &
Gunn, 2006; J. D. Rogers & Gunn, 2005; Sandri & Zuccolotto, 2006) for details of
their use and application in variable selection.

Our variable of interest (target node), intensification, is treated as a discrete node
that contains four intensification options (use of improved seed variety, small scale
irrigation, fertilizer application, and multiseason farming) and all possible combi-
nations of these strategy bundles. Also, a state which captures the absence of an
intensification strategy is included. Since only five strategy sets were observed in
our data set, the unobserved strategy combinations are represented by one state
called others. Here, we can take advantage of BBNs ability to update the conditional
probabilities once new data become available.

We used per capita income as a surrogate for a resource endowment and availability
of capital. It comprises income from Agriculture (farming and fishing), income from
off-farm activities, income from land rental, and from brick making. We also include
farmer type to represent the farming system followed by a particular household. The
farm type variable is a typology constructed through a combination of principal
component analysis and hierarchical clustering in order to stratify farmers into
clusters that are homogeneous according to their livelihood and land use (Husson, Lê,
& Pagès, 2017). In order to capture the quality and hydrological characteristics of
the farm, we generated a topographic wetness index using a digital elevation model
of our study area (slope and upslope contributing area). The index provides an
indication of the relative wetness within the catchment and is highly correlated with
soil moisture and ground level water (Sörensen, Zinko, & Seibert, 2006). Expected
prices will affect crop choices and expected income. We included prices received
by the household for rice and maize (which is dependent on the distance from the
market) as expected prices for the two crops. Due to a lack of past price data,
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here we assume farmers expect what they received during the planting period. Our
distance variable measures the distance from the farm to the nearest big market in
km. Measuring the distance from the farm rather than from homestead takes in to
account the access and cost of transport from snd to the farm. While homesteads
are clustered around the single main road, farms which are located bottom valley
are quite far from homesteads.

Although BBNs are generally capable of handling continuous nodes, we followed a
common practice of discretizing all continuous variables into smaller classes to reduce
the complexity and high computational requirement of training the BBN (Frayer
et al., 2014; Sun & Müller, 2013). There are several ways to discretize continuous
variables. We partition our continuous variables using a heuristic method called
‘equal frequencies’ where the variable is transformed to K equal lengths or width
(Clarke & Barton, 2000; Nojavan A., Qian, & Stow, 2017).

Table 4.1 presents the descriptive statistics of our target node and 15 evidence nodes
that are included in the final network. Regarding the target node (intensification
choice), around 62% of our sample households did not intensify their production,
whereas 38% of the households have adopted one or more of the intensification
options. 12% of farmers have used improved seed varieties, 8% are planting in both
short and long rainy season, 7% use chemical fertilizers, 6.73% use irrigation, and
chemical fertilizer combined, while only 3.7% use irrigation. Rice is the dominant
crop planted by farmers in our survey. Around 42% of the farmers’ plant rice as
a mono-crop, and 27% produce rice in combination with maize, and 7.7% produce
vegetables in addition to that. The majority of households are small scale mono-crop
producers (60%), 30% are small scale farmers that diversify in terms of their land
use, and 10% represent large scale agopastoralists who practice crop production and
livestock keeping. 70% of the farmers own less than 3 hectares of cropland and 18%
between 3 and 6 hectares. Around 12 % own more than 6 hectares. We can also
see from the table that farmers generally participate in the output market, 41% of
the farmers marketed between 30 and 60% of their output to the market and 34%
sold more than 60 percent of their production. Only 33 percent of our sampled
households have access to credit, and on average non-farm income accounts 8 percent
of the total income. Households are, on average, 22 km from the nearest big market
located in the town of Ifakara. The average household size for the entire sample was
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5 (SD=2.18), with a minimum of 2 members and a maximum of 11 members. 44% of
respondents have a family size of fewer than four members, which can be considered
as a small family. And 41% are medium-sized with 5-8 members. 12% of households
in the sample are extended families, with more than eight members.
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Variable Unit Mean
(SD)

1 Age of the Household Head Year 46.41
(12.82)

2 Household Size Number 5.13
(2.18)

3 Farm Size Hectares 2.64
(2.83)

4 Share of Hired Labor Percent 36.41
(32.98)

5 Commercialization Index Percent 46.87
(24.99)

6 Total Labor Man-Days(Ha−1) 321.94
(343.58)

7 Share of Non-farm Income Percent 8.1
(18.37)

8 Topographic Wetness Index Index 20.73
(4.49)

9 Distance to the nearest big Market Km 22.1
(16.44)

10 Maize Price (Tsh)(kg−1) 382.01
(425.44)

11 Rice Price (Tsh)(kg−1) 1232.38
(260.49)

12 Income 000’ (Tsh) 501.58
(1048.67)

Categorical Variables Frequency (%)

13

Intensification options
1. Apply Fertilizer
2. Apply Improved Seed
3. Crop Multiple Times
4. None
5. Use Irrigation
6. Use Irrigation + Fertilizer Application

21 (7.1%)
35 (11.8%)
24 (8.1%)
186 (62.6%)
11 (3.7%)
20 (6.7%)

14

Farm Type
1. Agro-Pastoralist
2. Diversifier
3. Mono-Crop Rice Producers

21 (7.1%)
81 (27.3%)
195 (65.7%)

15
Credit Access
1. No
2. Yes

199 (67.0%)
98 (33.0%)

16

Crop Choice
1. Maize
2. Rice
3. Rice + Maize
4. Rice + Maize + Vegetables
5. Vegetables + Rice

5 (1.7%)
148 (49.8%)
100 (33.7%)
20 (6.7%)
22 (7.4%)

Table 4.1: Descriptive statistics for the variables included in the
final network
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4.4 Methodology to empirically specify, validate and

interpret the BBN

Once variables are selected, the empirical BBN can now be specified, validated, and
interpreted. Figure 4.3 presents the workflow. The specification or learning of a BBN
involves two steps, structure (1) and parameter (2) learning, which correspond to
model selection and parameter estimation in classic statistical models, respectively
(Koller & Friedman, 2009; Nagarajan, Scutari, & Lèbre, 2013). The learning is
followed by k-fold stratified cross-validation (3) and a sensitivity analysis allowing
to interpret the final specification of the BBN (4). In the following section, we will
highlight each step-in detail.
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Figure 4.3: Workflow of BBN modelling, DOE & Regression Tree

4.4.1 Structure learning

There are generally two different approaches to build the structure of a BBN. The
structure can be learned through knowledge engineering from experts, literature, and
theory or learned from empirical data. In this study, we use the data-based approach.
However, following Sun and Müller (2013), we augmented the empirical approach
with theory and plausibility, as explained further below.

The empirical approach of learning a BBN involves finding dependencies between
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variables that result in a distribution as close as possible to the observed data in the
probability space. For a detailed explanation of algorithms learning the structure of
a Bayesian network from data (see Koller & Friedman, 2009; Nielsen, Keil, & Zeller,
2013).

There exist two general classes of algorithms for learning the structure of a Bayesian
network from a data:

Constraint-based structure learning: The approaches view a Bayesian structure
learning network as a representation of interdependencies. Based on statistical
tests (such as chi-squared or mutual information), the approach chooses conditional
dependence and independence and uses these relationships as constraints to construct
a BBN (Koller & Friedman, 2009; Neapolitan, 2010). Algorithms under this category
include ‘inductive causation,’ ‘grow-shrink,’ and ‘incremental association.’

Score-based structure learning: This is an optimization-based search that treats a
Bayesian network analogous to specifying a statistical model. It produces potential
candidates of Bayesian networks, calculates a score for each candidate, and returns a
candidate with the highest score (Kjaerulff & Madsen, 2012; Nielsen et al., 2013).

For our study, we adopted a Tree-Augmented Naive (TAN) Bayesian network, which
is a variant of score-based structure learning (Friedman et al., 1997). It relaxes
the naive Bayes attribute independence assumption by imposing constraints on
the network structure and chooses the tree that maximizes the likelihood of the
training data (Koller & Friedman, 2009; NorsysSoftwareCorp, 2016; Zheng & Webb,
2010). According to Friedman et al. (1997), learning the structure of a network using
TAN embodies a good trade-off between quality of estimation and computational
complexity. Once the structure of the network is constructed with TAN, we iteratively
modify the structure based on theoretical knowledge, as suggested by (Frayer et
al., 2014; Neapolitan, 2010; Prishchepov et al., 2019; Sun & Müller, 2013). During
this process, the direction of some of the links is reversed (for example, the link
from prices to distance to market was changed from distance to market to prices),
and structure learning is repeated with the newly constrained link there after. The
structure was developed with Netica (5.4) (NorsysSoftwareCorp, 2016) 1.

1Netica provides a number of simplifying tasks for the modeler including a high visual capability
to display the network and advanced algorithms to learn the structure and parameters of the
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4.4.2 Parameter learning

As for the structure learning of BBN, there are also several alternative ways of
parameter learning, i.e., generating estimates for the Conditional Probability Tables
(CPTs). In this study, the probabilities were derived from the survey data using a
maximum likelihood procedure. We opted for learning the CPTs from data to reduce
the number of conditional probability entries required from experts or literature
and also to learn objective rather than subjective probabilities. There are three
commonly used algorithms to solve the underlying maximum likelihood problem:
Count learning, expectation-maximization (EM), and gradient descent (Frank, 2015;
NorsysSoftwareCorp, 2016). Although we explored all the three algorithms, our final
network is based on EM learning as it converges more robustly and provides better
calibration to our data.

4.4.3 Validation of the BBN

Validating the BBN is vital to ensure the quality of the model. There are several ways
to check the validity of the constructed BBN, both quantitatively and qualitatively.
Qualitative ones check the validity using an expert opinion (Celio & Grêt-Regamey,
2016; Frank, 2015). Quantitative validation uses a test data set not employed in
parameter learning to check the quality of predictions of the target variable. We
validate our BBN using a quantitative validation technique. We perform five-fold
cross-validation by partitioning our data into five disjoint subsets followed by an
iterative validation for the five sets using confusion matrix metrics. To take the
unbalanced nature of our target node into account and to ensure that all the states
are equally represented in the split, we use the stratified cross-validation tool from
Caret (Classification And Regression Training) (Kuhn, 2008).

4.4.4 Sensitivity analysis

We use sensitivity analysis to measure changes in the probabilities of the target node
with changes in states of one of the input nodes (Pollino, Woodberry, Nicholson,

network. Using the Java API for the construction of BBNs provides an advantage in terms of
transparency, reproducibility and easy integration with other modeling tools of interest as it resulted
in Java source code. The full documentation and Java code, Python code for Regression tree and
the data are stored in Github (https://bsrthyle.github.io/RepoForBBNpaper/)
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Korb, & Hart, 2007). The sensitivity analysis serves to identify the significant
and informative variables that affect the choice of intensification options (Sun &
Müller, 2013). Since the input nodes required for the sensitivity analysis contain
discrete values, the Entropy Reduction (Mutual Information) method is used here to
determine the sensitivity of the BBN model’s output to variations in a particular
input parameter. The entropy reduction method computes the expected reduction
in entropy of the target node (i.e., the increase of information) due to findings at
another child node. It is calculated as (Marcot, Steventon, Sutherland, & McCann,
2006; NorsysSoftwareCorp, 2016; Pearl, 1988):

I = H(Q)−H(Q|F ) =
∑
q

∑
f

P (q, f) log2 [P (q, f ]

P (q)P (f)
(4.2)

where H(Q) and H(Q|F ) are the entropy of Q before and after any new findings
respectively.

4.4.5 Meta-modelling

Although the sensitivity analysis provides insight regarding the importance of influ-
encing factors for the choice of an intensification strategy, it does not tell us how the
probability of each strategy is influenced by the factors included in our model. To
deliver such information, we introduce a new approach of global sensitivity analysis
combining a BBN simulation based on the Design of Experiment (DEO) with a
meta-modeling approach. To generate sample configurations of the evidence nodes,
we utilize Nearly Orthogonal Latin Hypercube sampling (NOLH) to draw from the
probability distributions at the evidence nodes (Sanchez, 2005). We provide the
drawn values to the network as evidence, and we record the probabilities of each
strategy for each sample point. To summarize the effect of the different nodes on the
variation of the probabilities of each strategy, we followed a meta-modeling approach
by applying a regression tree for each of the options (Coutts & Yokomizo, 2014).
The advantages of the regression tree are the incorporation of non-linear interactions,
the minimal assumptions about the structure of the data needed, their robustness to
outliers, and the implicit handling of variable selection (Coutts & Yokomizo, 2014;
Kuhn & Johnson, 2013). Besides, it provides an analogy for natural rule induction
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from the results. The regression trees were implemented using Scikit-learn (machine
learning tool in python) (Pedregosa et al., 2011).

4.5 Result and discussion

Figure 4.4 presents the final learned Bayesian belief network determining intensi-
fication decisions in KVF. The structure of the network highlights some essential
relations between variables conditioned on the choice of intensification strategy. By
construction (TAN structure learning algorithms), all variables are associated with
the choice of intensification strategy. Also, some of the input nodes are correlated.
For example, the age of the household head is correlated with farmers’ commercial-
ization index, access to credit, and crop choices. The share of hired labor is also
associated with the size of cropland and household size. The topographic wetness
index of the plot is mainly affecting the crop choices of the farmer.

Moreover, the distance from the nearest big market directly influences the expected
prices of rice and maize and the amount of output sold to the market. The size
of cultivated land is directly associated with a share of hired labor and total labor
use in man-days. Another association exists between per capita income, market
participation, the percentage of hired labor, and access to a non-farm source of
income.

The BBN also shows the posterior probabilities learned from the data using the EM
algorithm. The values of the probabilities are in line with the data, which shows
that the parameter learning algorithm can learn the underlying joint distribution
and conditional probability tables given the network structure. However, to fully
assess the quality of both structure and parameter learning, we also conducted a
fivefold stratified cross-validation (see model validation section above). The resulting
confusion matrix from the five cross-validations resulted in an average error rate of
45% with incorrectly predicting the choice of intensification strategy.

Figure 4.5 presents the results obtained from the sensitivity analysis. The figure
compares the contribution of each variable to the total expected entropy reduction
of our target node ChoiceOfIntensificationStrategy. A closer inspection of Figure 4.5
indicates that crop choices have the most considerable influence on the choice of
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ageOfTheHouseholdHead
between 24And35
between 35and45
between 45And55
Above 55

16.4
32.4
27.6
23.5

45.8 ± 11

FarmerType
Subsistence
Diversifier
AgroPastoralist

61.4
29.2
9.42

SizeOfCropLand
LessThan 3Ha
Between 3And6Ha
Between 6And9Ha
MoreThan 9Ha

70.7
17.4
6.75
5.16

3.14 ± 3.5

CropChoice
RiceAndMaize
RiceMaizeAndVegit
Rice
VegitAndMaize
VegitAndRice
Maize
Vegitables

27.4
7.63
42.7
4.10
10.0
4.12
4.06

ShareOfHiredLabour
LessThan 10Percent
Between 10And60Percent
Above 60Percent

37.1
33.7
29.1

37 ± 32

SizeOfHousehold
LessThan4 
Between 4And7
MoreThan 7

22.5
57.3
20.1

5.53 ± 2.3

ChoiceOfIntensificationStrategy
None
CropMultipleTimes
ApplyFertilizer
ApplyImprovedSeed
UseIrrigationAndFertilizerApplication
UseIrrigation
Other

62.5
7.85
7.17
11.9
6.83
3.75
 0 +

1.04 ± 1.5

creditaccess
No
Yes

66.6
33.4

ExpectedPriceOfRice
None
Low
Medium
High

2.05
1.02
90.8
6.14

1250 ± 270

CommercializationIndex
LessThan 30Percent
Between 30And60Percent
MoreThan 60Percent

24.1
42.0
33.9

49.7 ± 27

DistanceToBigMarket
LessThan15Km
Between15And30Km
Above30Km

33.4
33.1
33.4

23.5 ± 17

PercentOfNonFarmIncome
None
LessThan30Perc
MoreThan30Perc

72.7
16.7
10.6

8.96 ± 20

LabourInManDays
lessThan 120
Between 120And220
Between 220And400
MoreThan 400

23.8
26.8
24.3
25.1

532 ± 700

TopgraphicWetnessIndex
Between14And18
Between18And23
Between23And32

34.5
32.1
33.4

21.3 ± 5.1

ExpectedPriceOfMaize
None
Low
Medium
High

52.6
24.2
23.2
0 +

322 ± 410

PerCapitaIncome('000)
0 to 160
160 to 280
280 to 600
>= 600

26.6
25.2
24.5
23.8

365 ± 270

Figure 4.4: A BBN of intensification decision in KVF

Note: In order to reduce the complexity of the CPT and easy learning of the parameters, the links leave the
target node rather than pointing to it. This is ok as BBN uses Bayesian inference to make prediction or

diagnostics (NorsysSoftwareCorp, 2016)
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intensification strategy with a 5.87% reduction in entropy, followed by the distance
from the nearest market with a 3.8% variance reduction. Also, per capita income, the
share of income from the non-farm activity, age, farmer type, the percentage of hired
labor and topographic wetness index, size of cropland, and household size influence
the variation in the choice of intensification strategy. All other variables show less
than a 1% reduction in entropy. Given that rice is the main crop produced in the
area, the variations in crop choice are more or less dependent on the mixed cropping
of rice with maize and vegetable. Per capita income is a surrogate for farmer’s
endowment and their ability to invest additional resources required for adopting new
strategies.

Figure 4.5: Sensitivity analysis of intensification decision

Distance from the farm to the nearest market and commercialization also have a
strong influence on the choice of the intensification strategy. This is in line with
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Erenstein (2006), who found that access to the market has an effect on both access
to key input and output markets and thereby significantly affects intensification.
Although the availability of family and hired labor is considered a crucial determinant
of intensification choice (Lee, 2005; Wainaina et al., 2016), the sensitivity analysis
shows only a moderate influence in our case.

A subsequent global sensitivity and meta-modeling analysis uncover factors leading
to the choice of a particular intensification strategy. A general finding from the meta-
modeling analysis is that each option is influenced differently by the determinants.
Although the variations in the probabilities of options are affected by a common set
of variables, the magnitude and order of the effects are different across the given
option. Figure 4.6 shows a variable importance plot for the regression trees for
each intensification strategy. The variable importance is calculated based on the
(normalized) total reduction of the residual sum of squares (RSS) brought by a
specific variable. A large value indicates a vital predictor (James, Witten, Hastie, &
Tibshirani, 2013).

More so, the feature importance from the regression tree reveals that the variation
in probabilities of choosing cropping multiple times is captured by variation in total
labor available during the year, commercialization index, topographic wetness index,
income, and distance to the central market. The variations in the probabilities
of fertilizer application are only affected by the topographic wetness index if the
farmer is diversifier, age, commercialization, and distance to the market. The use
of improved seeds is influenced by the share of non-farm income, age, household
size, distance to the market, and farm size. The probability of using irrigation and
fertilizer application is affected by proximity to the market, farm size, the share of
non-farm income, and topographic wetness index. The variation in probabilities
of use of irrigation is affected by variation in topographic wetness index, non-farm
income, farm size if the farmer is of type subsistence, and availability of labor.

The regression trees allow us to see how specific attributes of farmers contribute
to the probability of choosing a particular strategy. Table 4.2 presents the ranges
of variable values, which lead to the highest and lowest probability of selecting a
specific option. We opted to present those extreme cases in order to draw a picture
of variable importance and critical thresholds. A complete representation of the
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regression tree for each option is provided in appendex 4.9,4.8,4.11,4.12,4.10.

Figure 4.6: Variable importance for intensification decisions

Note: The data underlining the regression trees are based on posterior
probabilities from BBN using 257 sample points generated through
NOLH design that captured the structure of the conditional distribution

between determinants.

A farm household with the highest probability of cropping multiple seasons is
characterized by fields located in relatively wetter areas (higher than 18.9 TWI),
relatively far from the market (more than 44km), and is selling between 36 to 66
percent of her output. Contrary, a farm with the lowest probability of cropping
multiseason is located in a relatively drier area (below 18.9 wetness index), sells
between 0% and 66% of crop output, is located in a distance less than 44 km from
the market, has below 615 labor man-days and higher income (above 228,824 Tsh).
Households with the highest probability of adopting improved seed, are characterized
by less than five household members , which is located more than 23 km away from
the biggest market and cultivates more than 10 ha. A farm household with the
lowest probability of adopting improved seed variety has more than five household
members, a household head younger than 51 years, sells less than 72 % of his crop
output, and owns more than 9 ha of land.
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As expected, farm households with the highest probability of using small scale
irrigation are characterized by available labor of more than 110 man-days. They
are not mono crop rice producers and have a topographic wetness index of less
than 28. On the other hand, farm households with the lowest probability of using
small scale irrigation are characterized by the availability of more than 110 labor
man-days, are non-mono-crop rice producer, have a TWI of less than 28.7, receiving
less than 31 percent of income from non-farm sources and a household size greater
than 5. Farm households with farm size greater than 3.56 hectares and a TWI of less
than 17.425 will have a 27 percent probability of using fertilizer(highest probability).
Furthermore, those who cultivate less than 3.56 ha and are located less than 35 km
from the market will have the lowest probability (7 percent) of using fertilizer. Farm
households with the highest probability (22 percent) to combine small-scale irrigation
with fertilizer application receive more than 38% of non-farm income, have a farm
size greater than 7 hectares, and are located less than 22 km from the market.
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Cropping multiple times

High Probability = 0.338 Low Probability = 0.107

Topographic wetness index >18.9 Topographic wetness index >18.9
Commercialization Index <66.6% Commercialization Index <66.6%
Distance from market >44 km Distance from market 5 44 km
Commercialization Index <36.14% Total labor (man days) 5 615

Income (‘000 Tsh) >228

Improved seed

High Probability = 0.282 Low Probability = 0.051

Household size <5 Household size >4
Distance to the market >=23 km Age of household head 5 51 years
Farm size >10 ha Commercialization Index <72 %

Farm size >9 ha

Small-scale irrigation

High Probability = 0.058 Low Probability = 0.008

Labor in Man-days >110 Labor in Man-days >110
Farm Type 6= Mono-crop rice producer Farm Type 6= Mono-crop rice producer
Topographic wetness index >28.78 Topographic wetness index <28.78

Share of non-farm income <30 %
Household size >5

Fertilizer Application

High Probability = 0.276 Low Probability = 0.051

Farm size >5 ha Farm size 5 5 ha
Topographic wetness index <28 Distance to the market 5 35 km

Irrigation and fertilizer

High Probability= 0.223 Low Probability = 0.0228

Share of non -farm income >38.13% Share of non -farm income 5 38.13%
Farm size >7.4 ha Topographic wetness index <28
Distance to the market >22 km Farm Type 6= diversifier

Share of non-farm income >30 %

Table 4.2: Factors discriminating highest & lowest probability of
choosing a specific intensification option

Finally, we also qualitatively examined the perceived constraints of intensification
by farmers in the valley. Figure 4.7 presents the main constraints reported by the
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farmers for each option. Regarding improved seed adoption, almost half of the
farmers reported high market demand for traditional variety as the main reason
for not using improved seed. Farmers also reported high prices (20.7 %), lack of
financial capital (15.4%), high transaction cost (9.47%), and uncertainty of quality
(5.33%) as the main reason for not using improved seed varieties. Reported reasons
for not cropping multiple seasons include erratic rainfall (51.1%) and labor shortage
(36.2%). The majority of the farmers reported a high price of fertilizer as the primary
constraint for adoption. The main reasons for not using fertilizer are the high cost of
fertilizers (54.8%) and the belief that their soil is fertile (38.7%). Lack of irrigation
tools (49.1%), limited access to water (25.7%), enough water on the plot (21.6 %),
and labor shortage (3.59 %) are reported as the main reason for not using irrigation.
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Figure 4.7: Perceived constrain for specific intensification option

4.6 Conclusion

Increasing population pressure, efforts to protect the fragile wetland biome and the
need to raise food production will stimulate smallholder farmers in the KVF to shift
from expansion of land to intensification through the adoption of land-saving options.
Although the adoption of these options has been increasing gradually (Otsuka &
Larson, 2016a), they are still relatively small in number, and there is significant room
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for intensification by smallholders in the valley. We presented a systematic analysis
designed to explore the different factors that affect the choice of intensification strategy
in the KVF by considering a diversity of options that are used in floodplain production
systems. Our data-driven BBN enables us to represent complex interactions and
dependencies between different factors and intensification strategy choices while
taking uncertainties into account. Through our augmented sensitivity analysis, we
elucidated the individual determinants of choices for improved seed variety, fertilizer
application, small scale irrigation, and of increasing the frequency of cropping in
KVF. We included different covariates capturing plot and household characteristics,
access to market, and agro-ecological conditions. Our novel approach of combining
a data-driven Bayesian Belief Network (BBN) with regression trees has provided
us with strategy specific factors. Although the choice of each option is affected
differently by covariates under consideration, access to non-farm income, access to
market, and topography of the plot play essential roles across options.

Smallholder farmers who did not adopt any of the intensification options, despite
their willingness to increase their yield, have expressed different reasons. The main
reason for not cropping multiseason is insufficient rain or lacking access to water and
labor shortage. Higher fertilizer prices and higher consumer demand for traditional
seedlings are reported as the main reasons for not using fertilizer and improved
seed, respectively — access to river network and tools for irrigation limits farmers to
irrigate their plot. There are some limitations to our study, and one should interpret
our findings in light of these limitations. They arise from a limited dataset for
training and validation of our BBN. Also, combinations of intensification options are
rarely observed in our sample. Farmers might have other options that they uptake,
which are not considered in our study. The BBN presented in this study is static and
does not take dynamics into account. To this end, a further study is envisioned that
combines the BBN with a spatially explicit agent-based model (ABM) that considers
the heterogeneity of the farmers, their interaction among themselves and with the
floodplain. Combining BBN with an ABM reduces the computational challenges
of ABMs by providing probabilistic agent rules. Representing BBN nodes as state
variables in the ABM will provide temporal dynamics to the BBN approach (Kocabas
& Dragicevic, 2013; Sun & Müller, 2013). Since the project under which this study
is conducted is still ongoing, we will update the BBN when more data is available
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and also verify it with stockholders in the valley.
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4.A Appendix

4.A.1 Regression trees for each intensification option
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Figure 4.8: Regression tree for fertilizer application

Figure 4.9: Regression tree for crop multiple times
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Figure 4.10: Regression tree for improved Seed
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Figure 4.11: Regression tree for irrigation and fertilizer
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Figure 4.12: Regression tree for irrigation Use
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Chapter 5

Migration, access to infrastructure and the pattern of land use

and intensification in Kilombero Valley: An Agent-Based

Modeling approach

Abstract: The Kilombero valley has undergone considerable change over time, and
it presumed to continue even at a faster rate. Both global and proximate drivers are
pushing the changes observed in the valley. Two of the main driving forces that are
evident are the rise of the population through migration into the valley and the
government’s drive for intensification through establishing both physical and institu-
tional infrastructure. This chapter aims to simulate the effect of a sustained increase
in migration and access to better road infrastructure by building a spatially and
temporally explicit agent-based model. The design of the ABM called "WetABM" is
an approach to integrate the socio-economic and bio-physical elements of the KVF
to examine the effects of the two exogenous changes on the dynamics of intensifi-
cation, land use, and agricultural production dynamics. Three different scenarios
"business as usual", "in-migration", and "improved road infrastructure" are discussed.

Keywords: Intensification, ABM, Kilombero valley, land use, crop production,
im-migration, road infrastructure
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Chapter 5. Migration, access to infrastructure and the pattern of land use and
intensification in Kilombero Valley: An Agent-Based Modeling approach

5.1 Introduction

Floodplain wetlands have been used for agriculture for millennia and have "nurtured
the development of many important cultures around the world" (Villar, 2014, .p 2).
They are one of the most productive natural resources upon which rural economies
depend, providing food and energy, medicine, building material, and dry season
grazing (Rebelo, McCartney, & Finlayson, 2010). Due to their immense potential and
diverse ecosystem services it provides, wetlands have been under pressure, and their
drainage and reclamation for agriculture have become more widespread (Everard &
Wood, 2017; Villar, 2014; Wood & van Halsema, 2008).

The pressure on wetlands arises both from local and macro drivers operating at
different scales towards exploitation and degradation. Through the application of
the drivers, pressures, state changes, impacts and responses (DPSIR) framework to
90 cases drawn from around the world Wood and van Halsema (2008) have identified
in-migration, land shortage, government policy and plans to improve the national
food security and local market are some of the many drivers of wetland degradation.
As shown in Figure 5.1, these drivers will exert pressure on the functioning of the
ecosystem through intensification and expansion of agriculture to the floodplains or
wetlands.

Although both intensification and expansion of agriculture are considered as pressure
to the Wetland, the development of agriculture through drainage of wetlands has
a significant impact on both the ecosystem and the well-being of the community
(Everard & Wood, 2017; Wood & van Halsema, 2008). On the other hand, intensifi-
cation had the potential to reduce the expansion of agriculture to the wetlands by
increasing output per unit area. As opined by the influential Millennium Ecosystem
Assessment (2005, p. 66) report: "The expansion of agriculture will continue to be a
major driver of wetland loss. In regions where agricultural expansion continues to be
a large threat to wetlands, the development, assessment, and diffusion of technologies
that could increase the production of food per unit area sustainably, without harmful
trade-offs related to excessive consumption of water or use of nutrients or pesticides,
would significantly lessen pressure on wetlands".

The case is not different in the Kilombero valley floodplain wetland in Tanzania.
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As one of Africa’s most extensive freshwater wetlands, the KVF is facing pressure
both from Macro and local drivers (Sulle, 2020). Although these drivers prevail
and interact at different hierarchical scales, two macro drivers are evident in KVF;
Economic development and in-migration, which are directly associated with the
perceived availability of land, government policy, a local institution, and market
(ERM, 2012; KILORWEMP, 2017; Msofe et al., 2019).

Being the hotspot for agricultural production and conservation, the KVF is subject
to intervention from government and non-governmental organizations (Bergius, 2014;
Sulle, 2020). For instance, the planned growth corridor (SACGOT) includes KVF as
one of the clusters to boost agricultural production by linking farmers to the market
and supply chain. More so, both the state and non-state actors with interest in
the valley have pledged to boost the infrastructure and accessibility of the valley
(ERM, 2012). The recently completed "Magufuli bridge" on the Kilombero river that
connects Ulanga, Malinyi, and Kilombero districts and the ongoing rehabilitation
of Ifakara -Kidatu road are examples of such road infrastructure investments in the
valley.

On the other hand, the perceived availability of abundant land has also attracted a
significant number of immigrants from arid and semi-arid areas of the country into the
valley. The valley has a long history of in-migration starting from colonial agricultural
programs, which encouraged tsetse fly-infested areas to be converted to cropland
(Blache, 2019). The post-independence resettlement policy of Ujamaa Vijijini also
contributed to state lead migration to the valley (Bergius, Benjaminsen, Maganga,
& Buhaug, 2020). And the expansion of conservation areas across Tanzania has
also lead migrants to look for productive land in sparsely populated area, including
Kilombero valley (Salerno, Mwalyoyo, Caro, Fitzherbert, & Mulder, 2017).

The extent of immigration to the KVF can also be seen from the current population
composition in the valley. The result from our survey shows out 447 randomly selected
households; almost 60 percent of the families identify themselves as a migrant to the
valley. Households started to migrate to the valley from 1950, with the majority
arriving in early 2000. Eighty percent of the migrated households also mention
agriculture as the main reason for their decision to migrate. Ndamba, Mbunga,
and Pogoro are generally considered as the natives of the valley. Barbaigs had
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Figure 5.1: DPSIR model of wetland and agriculture interaction

Modified based on Wood and van Halsema (2008)
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mainly come from Manyara, Dodoma, Mbeya, and Songea Regions; Maasai from
Mbeya, Iringa and Arusha Regions, and Sukumas from Shinyanga, Mwanza, Tabora,
Sumbawanga, and Mbeya Regions (ERM, 2012; KILORWEMP, 2017).

Figure 5.2: Households year of migration to KVF

With loess smoothed trendline

Immigration is frequently associated with localized population growth and leads
to increasing unsustainable land use practice, and expansion into marginal lands
(Hunter & Nawrotzki, 2016; Reardon, Barrett, Kelly, & Savadogo, 1999). As generally
observed by Geist and Lambin (2001, p. 63): ". . . population-driven expansion of
permanently cropped land, more cases of subsistence farming in Africa tend to be
driven by in-migration and local population growth than cases in other regions."

This is also evident in that the most recent residents of the valley tend to live further
from the villages, often on land that is officially gazetted as a protected area. Migrant
families have been generally found to be the primary cause of cropland conversion,
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especially in the wetland edges(Bamford, Ferrol-Schulte, & Smith, 2010). However,
as the number of migrants increases, the area of land available for clearing has also
diminished significantly in recent years, and the carrying capacity of the valley has
reached its limit(ERM, 2012). This even the cause of the recent increase in conflict
and litigation between farmers, the migrants, and the government.

The increase in population density, coupled with the government’s effort to boost
production in the valley, will have the potential to transform the intensification
status and thereby the aggregate production system in the valley (Otsuka & Place,
2013; Smith et al., 2010; Vanlauwe et al., 2014).

Although several studies acknowledge the complex and dynamic drivers and changes
taking place in the valley, the potential effect of such trends and interactions are under-
researched. Hence, there is a clear need for a study that explores the relationship
between migration, better access to the market, land use, and intensification for KVF.
This chapter examines the potential effect of immigration and access to infrastructure
on the dynamics of intensification, land use, and crop production in KVF. Such
exogenous activities exert pressure on this complex environment. Their aggregate
effect on the population and the landscape varies with the pressure’s intensity, spatial,
and temporal scale. The study of any impact of the management and intervention
requires an in-depth understanding of the interplay between the intervention and
the structure, function, and resilience of the floodplain at a different scale.

To this end, we built an agent-based model called WetABM that captures these
complex relationships between immigration, land use, intensification, and market.
The WetABM is a spatially and temporally explicit model for KVF, which is param-
eterized with empirical data collected through a survey and geospatial data.

The chapter is structured as follows. The next section provides the specific elements
and structure of the WetABM model using ODD+D protocol. The third section
describes our scenarios in relation to the model elements. The fourth section will
provide the result and discussion of our simulation exercise. The last part will
conclude the chapter.
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5.2 WetABM: ODD+D protocol

In this section, we will briefly explain the details and principal components of
WetABM: An agent-based model of land use and intensification in Kilombero Valley
using the ODD+D protocol. A more detailed description of the model and its
parameters are provided in a separate document 1. Here we will concentrate on the
principal elements and migration sub-component of the Model.

5.2.1 Overview

5.2.1.1 Purpose

WetABM is designed to investigate the impact of alternative policy intervention and
exogenous factors on the changing land use and farmer’s adoption of intensification
options intended to increase the production and income of farm households. It
aims to depict as realistically as possible around 38 000 farms within the KVF in
all their heterogeneity in terms of production structure, farm as well as modes of
social behavior. WetABM can be used to estimate the repercussions of internal and
external exogenous influences, and the effects of the heterogeneous site conditions
specific to KVF on income trends, structural change, and land management.

5.2.1.2 Entities, state variables, and scales

There are different types of entities in the model. A farm household is a primary
agent being composed of household members modeled individually. Agents interact
via the spatial landscape consisting of Region, Ward, Parcel, and Land Cell and
via the Market. Figure 5.3 shows the UML representation of the main agents with
WetABM.

Individual Agents (IA): Individual agents in the model are a rather simplistic
representation of a single individual represented by their age, gender, and if she is a
household head and household id. Individual decision making is not considered.

1The full ODD is available at https://bsrthyle.github.io/ODD-DforWetABM/. The detailed
ODD+D contains, in addition, the parameters and the regression coefficients for the production
function and the spatial input data

143

https://bsrthyle.github.io/ODD-DforWetABM/


Chapter 5. Migration, access to infrastructure and the pattern of land use and
intensification in Kilombero Valley: An Agent-Based Modeling approach

Farmer Agents(FA): The farmer agent (FA) is an aggregation of individual agents.
Being the primary agent in the model, FA is characterized by several static and dy-
namic attributes and decision-making routines. Main attributes include age, gender,
location of homestead within a spatial landscape, farmer type, plots, commercial-
ization index, income, minimum food requirement, expenditure, savings, dynamic
income aspiration threshold, a memory of past expected and realized prices, available
labor, proximity to market, proximity to the road and average proximity from their
homestead to farm plots. FA are aggregated in a hierarchy of three organizational
levels for analytical purposes of simulation results: farmer agent, group of farmers
(Mono crop rice producers, diversifier and agropastoralists) 2 and population.

Land Cell (LC): is the smallest spatial scale of the biophysical space. It represented
by grid cells of each 1 ha (100m by 100m). Its characterized by several features
relevant to the model. Each attribute is organized as a spatial raster layer storing the
location of plots and homestead, current land use (both aggregate and crop), distance
from the edge of the Wetland, distance from the river, topographic wetness index,
slope, elevation, and ownership layers. The primary state variable of the LCA is the
Topographic wetness index (TWI). TWI is an index derived from surface elevation
data (DEM) and estimates the relative wetness within a catchment (Nystrom &
Burns, 2011). It approximates the spatial soil moisture patterns and distribution of
groundwater levels (Qin et al., 2011; Sörensen, Zinko, & Seibert, 2006). The measure
is widely used in many applications, including precision agriculture (Qin et al., 2011).
It is defined as

TWI = ln(
α

tan β
) (5.1)

Where TWI is the topographic wetness index, ln is the natural logarithm, ∝ is the
upslope contributing area per unit of contour length, in meters, tan β is the local
slope.

Parcel Agent(PA) is an abstract representation of a farm. A collection of plots for a
single farmer agent forms parcel. The attributes of the parcel agents are merely an
aggregation of the plots it contains.

2See Chapter 3 three of the dissertation for details of farmer groups and their characteristics,
and for the empirical characterization and the methodology see https://bsrthyle.github.io/
FarmTypolgyV5/
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Ward Agent (WA) is the third hierarchical scale in the landscape representation. It
represents the official administrative organization of the valley. There are 11 Ward
agents, each representing their official administrative counterparts. It is represented
by many aggregations from plots, parcels, and farmer agents. More so, they are
represented by the cost of transportation from the centers of the ward to the major
market in the region, the annual average price for maize and rice, total output for
rice and maize, income distribution,

Region Agent (RA) encapsulates all the wards and different aggregate attributes
from the ward’s agents. Thus, overall patterns of the entire landscape are the result
of the aggregated and accumulated impacts. As the spatial system is self-organized,
emergence properties may be observed.

Market Agent (MA) is structurally different from the other agents in the model.
MA is an abstract market that coordinates demand and supply of rice and maize in
the region. It does have only one purpose to collect the supply of rice and maize
from all the wards and provide endogenous market prices( details are in the market
submodule section).
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Figure 5.3: UML representation of agents in WetABM

5.2.1.3 Process overview and scheduling

The diagram in Figure 5.4 gives the process overview of the model. In the current
version, each simulation run represents one year and involves the following primary
sequential scheduling for farmer agents:-

Ô Evaluate their objective and decide whether to change their land management
behavior or exit farming (farmers exit farming based on two conditions:

Ô when their objective is not satisfied for five consecutive years and when the
age of household head is greater than 70 with no heir in the household)

Ô Form price expectation for rice and maize

Ô Evaluate crops to plant and intensification strategy using BBN
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Ô update the attributes of their farm plot if there is a change in land management

Ô Evaluate their annual yield using a production function depending on their
production factors and the topography of their farm

Ô Decide on their market participation (exogenous in this version of the model,
the proportion of output sold in the market varies by farm types)

Ô The sold output is collected from the farmer and sent to the market agent, and
actual prices will be updated then

Ô Farmers evaluate their farm accounting and financial indicators such as income,
saving, consumption

Figure 5.4: Process overview for WetABM
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5.2.2 Design concepts

5.2.2.1 Theoretical and empirical background

WetABM is built based on the general conceptual framework of the coupled human-
environment system (An, 2012; Murray-Rust et al., 2011; Turner et al., 2003). Land
use and intensification is an emergent property that evolves from the interactions
among various components of the entire humanenvironment system, which themselves
feedback to influence the subsequent development of those interactions (Lambin,
Geist, & Lepers, 2003; Le, Park, & Vlek, 2010). According to Parker (2003), by
definition, emergence phenomena cannot be reduced to the system’s parts: the
whole is more than the sum of its parts because of interactions among the parts,
and they are directly related to the nested hierarchies and interdependence that
characterize the complex system. At the lower scale of the system’s constituent units
(e.g., household and land plot), many small changes in land allocation and localized
changes are the results of multiple decisions made by agents, who act under certain
specific conditions, anticipate future outcomes of their decisions, and adapt their
behavior to changes in their external and internal conditions (Lambin et al., 2003).
Temporal accumulations of these short term changes and spatial aggregations of
these localized changes generate continuously emergent patterns of both land use
at the landscape scale and socio economic dynamics at the population scale (e.g.,
Ward) (Le et al., 2010).

In this context, WetABM combines the socio-economic and biophysical aspects of
the KVF in a single coherent modeling approach. In the current version of the model,
the biophysical system is roughly modeled. It only embodies a static representation
of the topographic feature of the valley. Details of the relation between the two
systems are presented in the subsequent sections.

To empirically parametrize different components of the model both primary and
secondary data, was collected. The core data source is a household survey in 21
villages in two districts of the KVF, Ulanga, and Kilombero. In total, 304 farm house-
holds were interviewed to provide information on the farming systems,intensification
choices, resource use and management as well as their relevance for the livelihoods
of the households.
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The household selection was based on a multi-stage sampling strategy. First, 11
wards were purposively selected based on the occurrence of floodplain farming. In
the second stage, 21 villages were randomly selected using probability to population
size within the wards. In the final stage, households were randomly selected from
the list provided by village leaders.

The core geospatial data for WetABM are land use map for 2014, Digital Elevation
Model (DEM) at 90m resolution and proximity raster maps. The DEM was the
basis for generating other raster layers, including the Topographic wetness index and
elevation. Administrative ward boundaries were obtained from the Kilombero district
land and settlement office. Proximity raster (to road, market, and river) are based
on the open-source database OpenStreetMap. The location of homestead areas is
also obtained from OpenStreetMap and pre-processed using QGIS (see initialization
section below for details). All the data used for parameterization of WetABM are
documented with the source code on a private repository on GitHub 3.

5.2.2.2 Individual decision making

FA make several sequential decisions during a specific simulation period. The primary
decision-making model is an intensification decision. After evaluating their objective
and if the intensification decision is triggered, FA decide on which intensification
option to choose based on the information they have at hand and on their previous
experiences. The choice of intensification option is determined by a probabilistic
rule using the Bayesian belief network. The details of the Bayesian belief network in
terms of the state variables, structure, and parameter learning are provided in the
third chapter of this thesis. Figure 5.5 shows the BBN used within WetABM.

FA do not explicitly optimize and use rule-based criteria to evaluate their decision.
There are two main such criteria (1) if the household can provide the minimum
food requirement for all the household members (2) the relative position of the farm
households in terms of income compared to his peers in a particular ward. If the per
capita income is in the bottom 25 percent of the cumulative distribution of income
in the ward (see intensification and crop choice decision submodel).

3https://bsrthyle.github.io/WetABMv1.0/
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Crop Choice
RiceAndMaize
RiceMaizeAndVegit
Rice
VegitAndMaize
VegitAndRice
Maize
Vegitables

14.7
10.2
33.0
9.62
13.1
9.71
9.63

FarmerType
Subsistence
Diversifier
AgroPastoralist

52.8
35.4
11.9

2.12 ± 0.32

Expected Price of Rice
0 to 1100
1100 to 1138.29
1138.29 to 1144.3
1144.3 to 1232.26
1232.26 to 1403.92
1403.92 to 1466.67
1466.67 to 1860
>= 1860

8.14
10.5
9.49
18.3
33.2
6.10
8.14
6.10

1270 ± 330

TopgraphicWetnessIndex
0 to 16.2
16.2 to 17.1
17.1 to 17.6
17.6 to 18.2
18.2 to 18.8
18.8 to 19.6
19.6 to 23.9
23.9 to 25.5
25.5 to 26.9
>= 26.9

8.14
11.5
10.8
9.83
8.81
10.8
9.49
10.8
9.83
9.83

20 ± 5.3

DistanceTo Big Market
0 to 3.1
3.1 to 6
6 to 12.5
12.5 to 15
15 to 18.2
18.2 to 23
23 to 30
30 to 40
40 to 43
43 to 64
>= 64

9.49
9.83
11.9
8.81
10.2
10.8
9.83
9.15
10.2
9.83
 0 +

22.1 ± 16

CommercializationIndex
0 to 5
5 to 23
23 to 34
34 to 44
44 to 50
50 to 56
56 to 62
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10.5
10.2
11.1
7.50
11.8
9.18
9.01
10.0
10.6
10.2

46.6 ± 26

Expected Price of Maize
0 to 414.286
414.286 to 805.689
805.689 to 861.111
861.111 to 940
940 to 1100
1100 to 1200
>= 1200

52.5
16.9
7.12
10.8
7.12
5.42
 0 +

504 ± 350

Percent Of Non Farm Income
0
0 to 10
10 to 21
21 to 38
38 to 92
92 to 100

72.9
7.46
5.76
7.12
6.78
 0 +

7.77 ± 18

Labour In Man Days
0 to 70
70 to 106
106 to 140
140 to 170
170 to 220
220 to 270
270 to 360
360 to 440
440 to 670
>= 670

9.56
10.9
9.75
9.49
11.2
9.90
9.34
10.0
9.07
10.8

290 ± 230

Share Of Hired Labour
0 to 0.24
0.24 to 1.5
1.5 to 5
5 to 17
17 to 30
30 to 50
50 to 60
60 to 72
72 to 83
83 to 100

10.4
10.6
11.0
9.57
9.13
12.3
8.32
8.84
10.0
9.80

35.7 ± 32

Size Of Household
1 to 2
2
2 to 4
4
4 to 6
6
6 to 8
8
8 to 11
>= 11

1.36
5.76
15.9
21.4
17.6
18.0
7.80
5.08
3.05
4.07

5.18 ± 2.4

Age of HH head
15 to 31
31 to 35
35 to 38
38 to 40
40 to 43
43 to 46
46 to 49
49 to 53
53 to 60
60 to 65
>= 65

9.15
7.12
10.2
7.46
10.5
7.12
10.2
10.8
9.15
6.78
11.5

46.2 ± 13

Size Of CropLand
0 to 1
1 to 2
2 to 3
3 to 4
4 to 5
5 to 6
6 to 8
8 to 10
>= 10

20.9
30.8
17.1
7.55
7.16
2.79
4.66
3.67
5.43

2.99 ± 2.8

ChoiceOfIntensificationStrategy
None
CropMultipleTimes
ApplyFertilizer
ApplyImprovedSeed
UseIrrigationAndFertilizerApplication
UseIrrigation

62.4
8.14
7.12
11.9
6.78
3.73

1.04 ± 1.5

perCapitaIncome
0 to 70
70 to 120
120 to 180
180 to 220
220 to 280
280 to 350
350 to 490
490 to 670
670 to 900
900 to 1500
1500 to 2000
>= 2000

10.2
10.5
10.2
8.81
10.8
9.83
9.83
10.2
8.47
8.81
0.68
1.69

427 ± 430

creditaccess
No
Yes

66.8
33.2

Figure 5.5: A Bayesian belief network of intensification decision in KVF

Note: The BBN used within WetABM is slightly modified from the one presented the fourth chapter. Here
the state intervales are increased to the point where its not computationally expensive.
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Besides, the intensification decision, FA form price expectation, choose crops to
plant, decide on land expansion, labor allocation, and on exiting farming. Figure 5.6
shows the UML representation of the decision models within WetABM.The submodel
section provides the details of these decision-making routines.
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Figure 5.6: UML representation of the decision module in WetABM
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5.2.2.3 Learning

In the current version of the model, there is no learning mechanism for the agents.

5.2.2.4 Individual sensing

Farm household agents are assumed to have access to all their attributes and
biophysical characteristics of all the plots they make decisions for.

5.2.2.5 Individual prediction

Farmers have different expectation formation heuristics for crop prices by using
their past price memory. Furthermore, use these forecasts for their production and
adoption decisions. FA also predicts their vectors of probability for each crop they
plan to plant and which intensification options they plan to adopt.

5.2.2.6 Interaction

WetABM captures multi-scale interactions within and between different entities of
the model. Interactions represented in the model are household-to-household and
household-to-environment interactions. A household-household interaction repre-
sents the indirect interaction between different households via markets through the
endogenous formation of prices. Household agents also interact with the environment
itself when they engage in farming. Households can change the states of the land as
they convert it from one land use and land cover to another.

5.2.2.7 Collectives

In the current version of the model, there is no collective for the agents in WetABM.

5.2.2.8 Heterogeneity

Within the model, households are heterogeneous in their attributes, livelihood choices,
and characteristics of their farm. Besides, some FA are heterogeneous on some of the
state variables depending on their farm type. FA belongs to one of the three farm
types defined during the initialization. The type they belong to affect some of the
state variables, including Off-farm income, access to credit, and commercialization
index. In the current version of the model, farm types are imposed during the
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initialization, and FA does not change their type during the simulation period. In the
later versions, it possible to allow livelihood transition between farm types depending
on their characteristics, at least between diversifier and mono-crop rice producers.

5.2.2.9 Stochasticity

The model has stochasticity built in several ways. The choice of intensification
strategy is stochastic, as the farmers are most likely to select an option with a certain
conditional probability. However, as the farmers are not modeled as purely rational
decision-makers, the highest-ranking strategy is not always chosen. Moreover, to
better represent the decision environment, the BBN is fully stochastic to represent
the uncertainty and variability observed in nature. Moreover, crop output for rice and
maize are stochastic as they vary between the prediction interval from the regression
model (see the crop yield sub module section below).

5.2.2.10 Observation

Different farm and landscape related indicators are observed at the end of the
simulation. These include household and regional indicators (income, agricultural
production, number of farmers adopting specific intensification strategy at ward and
regional level). Additionally, landscape-related indicators are tracked (maps for land
use and application of intensification strategy). WetABM displays several simulated
data panels of the Graphical User interface (GUI). The GUI displays different types
of statistical outputs at runtime, including a spatially explicit map.

5.2.3 Details

5.2.3.1 Implementation Details

WetABM is written in java using the Repast Simphony framework (North et al.,
2013). Repast provides a tool kit that is advanced and flexible and has the advantage
of all the tools and packages provided by java. The Bayesian network is similarly
written in Java using a commercial library called NETICA (NorsysSoftwareCorp,
2016). Netica provides the Java API for learning the structure and parameters of
BBN and also provide efficient algorithms for inferences. The data for initialization is
provided through a cloud-based relational database PostgreSQL hosted on Amazon
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Web Services (AWS). The relational database management has the advantage of
being robust, fast, and provides easy accessibility.

Given a relatively large number of agents (38,000), high-resolution landscape rep-
resentation (1 ha) for an area of 5,200km2 , and agent-specific Bayesian inference,
WetABM is computationally expensive. To increase the computational efficiency of
the model run, WetABM leverages on a parallel feature introduced in java 1.8.

Also, simulation runs were performed in parallel on high computational power
computers hosted on the Google Cloud Platform (GCP), and local personal computer.

Once the model is initialized, and experiments are conducted, the results are analyzed
using an open-source software R through direct linking WetABM and R and R-
markdown (R Core Team, 2018). Analyzing the results through R and Markdown
provides us with more flexibility, transparency, and reproducible outputs from the
model. The code for WetABM is under version control on a private repository in
Github.

5.2.3.2 Initialization

The model initialization of WetABM involves several steps before the model is ready
for simulation and experimental analysis. There are three sub-modules for the
initialization of the model (Figure 5.7).

The Agent initialization module creates the farmer and individual agents using the
number of farmer households and household sizes defined for each ward. WetABM
provides multiple options to upscale and generates farmer attributes from a sample.
(1) Sampling based on the empirical distribution of the attributes from the survey
(Berger & Schreinemachers, 2005). To capture the correlation between attributes,
empirical distribution is fitted for each farm type we identified. Then, the sample is
drawn from the distributions for the total number of actual farm households in each
ward. (2) Attributes of agents can also be created using a Bayesian belief network
sampling (specifically forward sampling) to upscale the sampled household data. The
Bayesian belief network sampling will allow as to generate the synthetic data based
on the marginal distribution and the conditional dependence of the variables (Young,
Graham, & Penny, 2009).
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Land space initialization, on the other hand, creates the virtual landscape of the model.
A grid-based representation of the KVF is created using raster data from different
sources. The landscape is represented by 100m by 100m (1 hectare) resolution, and
each cell is representing an object in Object-Oriented Programming language that
stores different states of the landscape. The main attribute is a current land use
state of the cell, which is initialized based on the land use map created using Landsat
satellite images Leemhuis et al. (2017). Besides, the cell also contains attributes
or states for distance from the nearest river, distance from the road and market,
topographic wetness index, and the code of the ward the cell belongs. Each attribute
was created based on the pre-processing of the vector data (rasterization and changing
the resolution of the raster data) in QGIS (see Figure 10; Figure 11; Figure 12;
Figure 13; Figure 16; Figure 14; Figure 15 in WetABM online documentation) .
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Figure 5.7: UML representation of Initalization in WetABM

The land allocation module creates the relationship between the farm agent and the
landscape through “land tenure” relation. Since cadastral maps and farm boundaries
are not available for the study region, a simple neighborhood-based allocation
algorithm was created. The land allocation algorithm works in the following sequence
of routine:

Ô Randomly choose homestead

- Each ward contains plots that are designated as built-up areas or "Village
land". The areas are classified based on OpenStreetMap village center areas
and GPS points collected during the household survey.
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Ô Choose plot with the boundaries of the ward

- Once the farmer agent chooses his homesteads, he will choose the first farm
plot within the boundaries of his ward given the plot is not occupied and the
current land use is cropland

Ô If a land size is greater than one, allocate plot in the neighborhood of the first
plot

- Assign ownership of the cell to the farmer through ID

Ô One the plot allocation is completed, a relationship between the plots and the
FA is created through ownership and tenure.

Figure 5.8: Sequence diagram of land allocation algorithm

5.2.4 Sub Models

5.2.4.1 Household dynamics

The household dynamics model controls the FA and household demographics.. In
every simulation period, age progresses for the head and the individual household
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members. Depending on the probability of birth, a new individual agent will be
created and added to the household, which in turn will increase the household size
and the adult equivalent of the household. Similarly, depending on the probability of
death, each individual has the probability of dying. In the case of the death of the
head, the household will have a new head selected from its members provided that
there is a hire. Once aging and the dynamics are calculated, the model will update
the adult equivalent for the household. An adult equivalent is calculated based on
the OECD scale (Haughton & Khandker, 2009).

AE = 1 + 0.7(Nadults − 1) + 0.5Nchildren (5.2)

where AE is adult equivalent,Nadultsis the number of individuals between the age
of 15 − 65 and Nchildren is between the age of 0 − 15. Within WetABM, the adult
equivalent is essential for calculating minimum food requirement and amount of
labor availability.

5.2.4.2 Land expansion

Farm agent also has the probability of expanding their land by clearing new land
within the boundaries of their respective ward. The result from our household survey
shows that 8 percent of the households have cleared new land with an average of
5 hectares. Clearing new land also depends on the protection effectiveness of a
particular land cell. The probability of protection is assumed to have only two values:
There are protected areas that are adequately protected, for example, the Udzungwa
mountains and the river banks. On the other hand, the Ramser site has only 39
percent of being protected effectivelly (Munishi, Chuwa, Kilungu, Moe, & Temu,
2012).

5.2.4.3 Exit decision

FA will exit farming as a result of two conditions. First, if the age of the HH head is
more than 70 years, and there is no hire in the household, then the household will
exit farming, and its parcel will be unoccupied. Second, if FA is not able to satisfy
the minimum food requirement of its members for three consecutive years, then the
FA will exit farming.
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5.2.4.4 Labor allocation decision

The labor allocation submodule is responsible for monitoring the total amount of
labor availability both from family and hired labor and allocating to crop production.
The amount of family labor supply per man-days is modeled as a linear function
of the adult equivalent of the FA. Each adult equivalent is assumed to provide 47
man-days per year. The share of hired labor is a constant variable that varies between
farm types. Here we make a strong assumption that hired labor is a variable when
needed. However, our observation in the KVF was that there is enough labor during
the land preparation and harvesting periods due to high seasonal migration to the
region.

5.2.4.5 Price expectation

Farm agents follow different expectations heuristics which consider both the expecta-
tion pet and the effective realization of the actual price pt−1. The expected prices are
used for crop choice and intensification decision during the planning period. And
actual prices are calculated at the end of the production activity based on total
production of rice and maize and commercialization activity. Within WetABM the
expected price in period t+ 1 can be determined based on the following three expec-
tation heuristics developed by (Brock & Hommes, 1997; Caiani, Russo, Palestrini, &
Gallegati, 2016, p.17-18)

1. Adaptive Heuristic
pet+1 = pt−1 + ω(pt−1 − pet ) (5.3)

If ω = 1, the equation will give us the “naïve” expectation pet+1 = pt−1 where
agents expectation is equal to the previous realized price.

2. Trend-Following Heuristic

pet+1 = pt−1 + γ(pt−1 − pt−2) (5.4)

With γ > 1, the higher γ, the stronger the impact on the trends on an
expectation
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3. Anchoring and Adjustment Heuristic

pet+1 = 0.5 ∗ (pf + pt−1) + (pt−1 − pt−2) (5.5)

Where pf the fundamental level of price used as an anchor. In WetABM, it
defined as the average of past realization of prices.

pf =
1

t

t−1∑
i=0

Pi (5.6)

5.2.4.6 Intensification and crop choice decision

The module represents the mechanisms of the crop choice process and choice of
intensification option of the farm household agent. Farm agents use the Bayesian
belief network to decide on the type of crops to plant for a specific plot and period.
The BBN acts as an internal decision-making routine encapsulated into the blueprints
of the agent. In other words, farmers use the BBN as a mental model to make
inferences about which crop to plant and which intensification option to choose
conditioned on their characteristics, characteristics of their plot, and the market
prices of each crop. The crop choice routine is formally expressed as:

[PA(c|X1...Xi)]cεC (5.7)

Acceptance of c∗ =

{
true, if µ[0, 1] ≤ Pa(c)

false, otherwise
(5.8)

And the intensification routine is formally expressed as:

[PA(s|X1...Xi)]sεS (5.9)

Acceptance of s∗ =

{
true, if µ[0, 1] ≤ Pa(s)

false, otherwise
(5.10)

where µ [0, 1] is a random number from a uniform distribution
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For each farm agent, the BBN returns a vector of probability for each option. Based
on these conditional probabilities, a strategy is chosen that satisfies the above random
choice condition.

However, contrary to the crop choice sub-module where farm agents make crop choices
every production year, intensification decision is triggered by different conditions.
There are two primary intensification triggering mechanisms in WetABM: first, the
farm agent will consider to intensify his production if the income from the last
production period was not sufficient to meet the minimum food requirement of
the household. The second triggering mechanism, on the other hand, uses the
relative position of the farm households in terms of income compared to his peers
in a particular ward. If his income is in the bottom 25 percent of the cumulative
distribution of income in the ward, then the agent will consider intensifying his
production. As a result, WetABM contains an implicit dynamic aspiration of farm
households.

5.2.4.7 Crop yield

The A crop yield sub-model is a module for performing the dynamics of Crop yield
in response to variations in natural conditions and management practice. Following
(Le et al., 2010) and (Julia Schindler, 2010), WetABM uses a production function
approach to estimate the yield of a particular crop given the factors of production
and characteristics of the farm plots. A quadratic production function is empirically
estimated for rice and maize outside of the WetABM, and the parameters protocol
in the crop yield sub-model. Yield for rice and maize for each agent is given by

YAC = α +
∑
i

βixi +
∑
i

∑
j

δijxixj (5.11)

Where y is YAc is the yield for agent A crop c, βi and δij and xi are

- Land size (ha)

- Capital (Tsh)

- TWI (index)

- Labor (man-days)
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Figure 5.9: Illustration of Bayesian inference within WetABM
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- Fertilizer application (yes=1, No=0)

- Irrigation application (yes=1, No=0)

- Multi-Season farming (yes=1, No=0)

- Improved seed (yes=1, No=0)

In addition, the yield is stochastic for each agent where the estimates yield varies
within the prediction interval

ŷac ± t(α/2,n−p) ×
√
MSE + (se(ŷac))2 (5.12)

Where ŷac is predicted output for crop c and agent a and
√
MSE + (se(ŷac))

2 is
the standard error of prediction and t(∝

2
,n−p) is “t-multiplier” with n− p degrees of

freedom.

5.2.4.8 Market

WetABM also has a virtual market agent that coordinates output transactions
between farmers and the outside world. In the present version, only the output
market component is modeled. The market agent is spatially fixed at the biggest
market in the region and collects Rice and maize output from farmers and provides
disaggregated prices based on distance and transaction costs at the ward level.
Following Happe, Balmann, and Kellermann (2004) and Kruseman (2000), the
market determines the price of rice and maize for a particular production period
using neither fully elastic nor fully static demand (endogenous price formation).
Aggregate price for crop c at time t is given by the equation:

PC,t = PC,0 .τ−(t+1)
c .

(∑
AQAC,t∑
A ZA

)−θc
(5.13)

where Pc,0 is price at the initialization for crop C,τc controls for price trend overtime,
θc is inverse demand elasticity for crop C

Once the aggregate prices are estimated in the central market, the virtual agent
then allocates a heterogeneous price for each ward, depending on the distance and
transportation cost between the ward centers and the central market. Although
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prices are heterogeneous among the wards, farm agents with in the same wards will
receive the same farm get price.

5.2.4.9 Income accounting

The income accounting model contains different routines that calculate the financial
status of the household. The following HH balances are calculated by income
accounting submodel. Total revenue is the amount of rice or maize sold to the market
multiplied by the market price. Total farm income is the difference between total
revenue and total agricultural expenditure. Agriculture expenditure contains overhead
cost, cost of hired labor, cost of Intensification (if adopted) and transportation cost
from the parcel to the homestead.

Total household income is calculated as the sum of agriculture income and non-farm
income. Non-farm income is a parameter that varies between farm types.

Total household saving is calculated as the difference between total income and
household expenditure. Household expenditure is composed of food and basic needs
expenditure that depends on the adult equivalent of the household.

5.2.4.10 Migration

Within WetABM, the immigration module controls the exogenous increase of agropas-
toralists to the valley. Here we assume that the agent has decided to migrate to the
valley, and we do not explicitly consider his/her decision to migrate. As outlined
earlier, mainly agropastoralists are migrating into the valley. They model adds new
agropastoralists in every period depending on the migration rate being an exogenous
parameter. The migrating agent will first scoop across wards for potential migration
areas depending on population density, potentially available land, and the proportion
of agropastoralist within the ward.

Once he decides on the ward to which he will migrate, he will look for land to clear,
and if successful, he will clear land depending on a pre-determined farm size for that
particular agent. Similar to the initialization, the attributes of migrating farmers are
created based on the empirical distribution of agropastoralist farmers. The size of
land to be cleared is rather an aspiration of the migrating farmer, and it is not based
on the availability of land. In order to capture the complex interplay of land tenure
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and conservation in the valley, each plot land has a probability of being protected
and enforcement of protection. One particular characteristic of the Kilombero valley
in terms of the protected area is the variation in the enforcement of protection zones.
Some of the protected areas are relatively highly protected either due to biophysical
constraints (Uduzungua Mountain and the river banks) or based on the priority
given to areas by the government and conservation groups. For example, the source
of income for the regional and national government in the Selous game reserve area
is highly protected compared to the neighboring Ramser site and Kilombero Game
controlled area. Hence the highly protected area is masked out from land conversion,
and the remaining protected areas will have a constant probability of 39% of being
protected (Munishi et al., 2012).

Besides, there is a competition between the native farmers who decide to expand
their land and the migrant farmers for a specific plot. Assuming the native farmers
having an advantage in terms of better information on the availability of land within
his ward, he will have the priority of getting the land in case both farmers planned
to clear the same plot of land.

5.3 Validation and verification of WetABM

Before presenting model results, we will briefly describe our approach to verification
and validation of the WetABM. Verification is the process of "determining that a
computational software implementation correctly represents a model of a process"
(Ormerod & Rosewell, 2009, .p 131). Validation, on the other hand, is the process of
"assessing the degree to which a computer model is an accurate representation of the
real world from the perspective of the model’s intended applications" (Ormerod &
Rosewell, 2009, .p 131).

Validation and verification of ABM is often challenging, especially when data is
limited to perform result validation through comparison of outputs of a simulation
run against the real world (Olsen & Raunak, 2016).

Three different approaches were used in terms of verification and validation. The first
approach was to validate the critical component of the model, the Bayesian belief
network, using a cross-validation technique (refer to the third part of the dissertation
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for more details); besides, we validated the agent typology based on secondary data.
This is very important as it determines key parameters and attributes that are used
to initialize the agents within the model.

The second approach is related to the verification of the models. With such a
large-scale nature of the WetABM, software implementations are prone to errors
and its easy to overlook coding mistakes. In building WetABM, we followed a step
by step upscaling approach (Figure 5.10). A smaller prototype model with random
parameters and the landscape was built in the first step. In the next step, we built
an empirical ABM for one particular ward with all the details, except the market
interaction, we planned for WetABM. Once we are confident the Ward model was
performing as intended, we upscaled the software implementation to the other ten
wards, and the market interaction was implemented thereafter. Our third attempt at
verification was code walkthrough, debugging, and unit testing. When appropriate,
we used unit testing within the java framework to test if methods are performing
correctly under different plausible conditions.
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Figure 5.10: Upscaling steps in building verified WetABM
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5.4 Scenarios

BAU The business-as-usual (BAU) scenario is simulated to estimate projected base-
line changes in the Kilombero basin. This scenario assumes a continuation of
historical population growth and land conversion for agriculture. It implements all
aforementioned submodels of household dynamics, crop choice, and intensification
decisions

Road Infrastructure (RI)

Without going into the details of the effect of road infrastructure on the functioning
of the agriculture sector, we assume the planned construction and rehabilitation
of existing road network will reduce 20 percent of the baseline transportation cost
for output into the market. In other words, under the RI scenario, we assume the
difference between the farm get price and the aggregate price at the central market
will reduce by 20 percent.

Immigration (IM) There is no official number of immigrants in the valley. This
is due to the problematic relation between the village offices and the majority of
immigrants not being officially registered in the village when they arrive. From
our survey and field visit, it is evident that migration rates are not linear, and the
number of migrants varies between years. Social networks play a significant role in
pulling family members and relatives after the first migrant is settled into the valley.
The immigration scenario simulates a potential 3 percent increase in the number of
households due to immigration. Two different aspects differentiate between localized
population growth and migration in the model:

1) Compared to localized population growth, immigration leads to an increase in
agropastoralists. Furthermore, (2) in the valley, migration is associated with land
expansion to marginal lands rather than buying existing farmland.
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5.5 Result and discussion

Next, we present the results of our simulation experiment using the aforementioned
scenarios by looking at the effect on the pattern of intensification, agricultural
production, and land use. To take the uncertainties associated with random numbers
into account, we ran a set of 30 simulations for each scenario, and the results presented
is the smoothed mean trend of these model runs. Each iteration step represents one
year, and the model runs for a total of 25 years.

Under the "baseline scenario," farm households conduct their annual production
routine by starting to form price expectations, cropping, and intensification decision,
production, and market participation. The state variables under the baseline sce-
nario are household composition (both household size and age of members), labor
availability, household food requirement, expected prices for rice and maize, and per
capita income. Figure 5.11 presents trends in agricultural output and land use over a
period of 25 years. Under the BAU scenario, aggregate rice output increases by 14%
and reached 378, 000 metric tones over the simulation period (Figure 5.11b). On the
other hand, the total maize output also increased by 22% percent to 72 000 tones
(Figure 5.11d). The increase in the production for both crops is attributed to more
land allocated to the crops. The land area allocated for rice increased significantly
to 106,044 ha, which is an increase from 42% to 56% of the total cropland in the
base year. The total hectares of land allocated to maize also increased steadily to
22,269 ha, which rise from 9 % to 12% of the total cropland in the base year. The
additional cropland allocated to the two crops is the result of land expansion by
farmers and reallocation from land to other crops.

Looking at the trend of intensification measured by the number of farm households
using one or more of the four intensification options, the result shows a mixed
trend. While a number of improved seed and irrigation users stabilizes after the 5th
simulation year (Figure 5.12a and Figure 5.12b), the trend for fertilizer users and
farmers with multi-season farming decline over time. One possible explanation for
the trend is that previous year per capita income is affecting the adoption of the
intensification choice and farm households might be in a income trap where they can
not get enough per capita income to jump from one income state to the next. Thus
not enough capital is available for adopting one of the options.
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Under the migration scenario, new farm households are introduced in each simulation
period which increases the number of farm households by 3% percent annually. As
expected, the total output for rice and maize rises over time, and the increase is
higher than under the baseline scenario (Figure 5.13a and Figure 5.13c). The increase
in aggregate output is attributed to both an additional cropland area that is brought
to cultivation by the new farm households and an increase in land area allocation
for the two crops. Since all migrating farmers are assumed to be agropastoralists
who are characterized by large farm sizes, the total new cropland in the study area
increased by 37% at the end of the simulation period. One of the interesting results
under the migration scenario is the total ha of land allocated to maize also increases
relatively higher than under the baseline scenario.

Figure 5.14 shows the trend in intensification over the simulation period under the
immigration scenario. Although the number of households applying fertilizer shows
the same declining trend as the BAU scenario over time, the number of households
using improved seed variety (Figure 5.14a) and crop multiple times(Figure 5.14b)
indicates an increasing trend over time. After an initial decline in the number of
households who use small scale irrigation(Figure 5.14c), the number of adopters stays
stable and constant of the 10th simulation period.

Under the road infrastructure scenario, we assume rehabilitation of rural road from
the central market to the ward centers reduces the transportation cost, which will
have a direct effect on the price difference between the primary market and farm
get prices. The result from our simulation shows there is no significant effect on
both production and intensification trend (Figure 5.15). While total rice production
remains similar to the BAU scenario, the total maize production is higher under the
RI scenario. When it comes to the trend of intensification, it remains the same as
the BAU scenario with a small variation for a number of improved seed users and the
number of fertilizer users. One plausible explanation for the negligible effect of the
RI scenario is the reduction in transport cost didn’t introduce a significant decrease
in price differences between the ward and the central market. Hence no change in
their crop production and intensification decision.
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Figure 5.11: Crop production under baseline scenario
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Figure 5.12: Number of Households by intensification option under the base line scenario

173



C
hapter

5.
M
igration,access

to
infrastructure

and
the

pattern
ofland

use
and

intensification
in

K
ilom

bero
V
alley:

A
n
A
gent-B

ased
M
odeling

approach

(a) Total regional rice output in 1000 metric tone (b) Total area of land in hectares allocated to rice

(c) Total regional maize output in 1000 metric tones (d) Total area of land in hectares allocated to maize

Figure 5.13: Crop production under baseline and in-migration scenario
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(c) Number of households using small scale irrigation (d) Number of households using fertilizer

Figure 5.14: Number of Households by intensification option under the in-migration scenario
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Figure 5.15: Crop production under baseline and road infrastructure scenario
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(a) Number of households with improved seed users (b) Number of households using small scale irrigation

(c) Number of households cropping multiple seasons during the year (d) Number of households using fertilizer

Figure 5.16: Number of Households by intensification option under the road infrastructure scenario
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5.6 Conclusion

Our objective in this chapter was to examine the potential effect of sustained
immigration and better access to the market on trends of intensification, land
use, and agricultural production in KVF. We presented a newly built large scale
empirical agent-based model (WetABM) that captured 38,000 - 51,000 farmer agents
in all their heterogeneity and a detailed representation of the floodplain landscape.
Our modeling approach complements the ongoing efforts in agent-based modeling
with respect to scale, alternative modeling of decision making, rigorous empirical
foundation, and integration of reach geospatial data. Although the full WetABM
was not validated with empirical data (the challenge common to similar ABMs ), we
have followed multiple procedures to validate and verify different components and
software implementation of the model.

Four different scenarios were simulated using the model developed. The baseline
scenario shows that with the current production system, the overall intensification
(measured by the number of households using one of the four intensification options)
will not pick up but will decline in the long runThe production of rice and maize
will increase mainly due to an increase in land allocation to the two crops and land
expansion.

With a sustained increase of immigration into the valley resulting in increased
population density and the current level of protection of wildlife corridors, farmers
engage more in land expansion than in intensification. However, we observe a higher
number of farm households using improved seed variety, small scale irrigation, and
crops multiple seasons compared to the baseline scenario. The use of these three
intensification options also stable over the simulation period.

Our simulation result for a reduction in transportation cost as a surrogate for improved
road infrastructure shows a negligible effect on both intensification and agricultural
production trends. Here we note that the results should be interpreted in reference to
our modeling approach and the parameters. Under the baseline scenario, the average
transportation cost parameter was 50 Tsh/kg/km(0.02€ /kg/km) . Reducing the
transportation cost by 20 percent might not have been significant enough for the
farmers to change their crop choice and intensification decision. However this will also
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require further explorations through sensitivity analysis and different transportation
cost for different seasons.
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