
Hyperbolic and dispersive singular
stochastic PDEs

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von
Immanuel Zachhuber

aus
Berlin

Bonn, 4. Juni 2020



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Massimiliano Gubinelli
2. Gutachter Prof. Herbert Koch

Tag der Promotion: 21.09.2020
Erscheinungsjahr: 2021



Deutsche Zusammenfassung
Diese Dissertation befasst sich mit dem Thema der singulären dispersiven stochastischen
partiellen Differentialgleichungen. Genauer gesagt, wird in Kapitel 2, das dem publizierten
Paper [49] im Wesentlichen folgt, zuerst der sogannte “Anderson Hamiltonian” auf sowohl dem 2
als auch dem drei dimensionalen Torus definiert. Formal ist dieser gegeben durch

A := ∆ + ξ,

wobei ξ das räumliche weiße Rauschen ist. Die Hauptschwierigkeit ist die schlechte Regularität
von ξ, nämlich unter −1 in 2 Dimensionen und unter − 3

2 in 3. Um diesen Operator trotzdem als
selbstadjungierten und von oben beschränkten Operator auf L2 definieren zu können, nutzen wir
einen parakontrollierten Ansatz (eingeführt in [45] und zuerst auf ein solches Problem angewandt
in [3]) zusammen mit einer Renormierung, in diesem Kontext heißt das wir müssen eine
“unendliche Konstante” abziehen, um das Definitionsgebiet des Operators A explizit zu
beschreiben als einen Funktionenraum der dicht in L2 ist aber keine glatten Funktionen enthält.
Danach nutzen wir Spektralkalkül und Energiemethoden um für nichtlineare
Schrödingergleichungen wie

i∂tu−Au =− u|u|2 (S)

oder Wellengleichungen

∂2
t u−Au =− u|u|2 (W )

mit geeigneten Anfangsdaten Wohlgestelltheit zu zeigen.
In Kapitel 3(das eng dem Preprint [83] folgt) werden sogenannte Strichartzabschätzungen für den
Anderson Hamiltonian bewiesen, nämlich

‖e−itAu‖L4
t;[0,1]L

4
T2

. ‖u‖Hε
T2

‖e−itAu‖
L

10
3
t:[0,1]L

10
3

T3

. ‖u‖
H

1
2 +ε

T3

,

wobei das zweidimensionale Resultat so stark wie die klassiche Abschätzung [11] für den
Laplaceoperator ist, in drei Dimensionen verliert man im Vergleich eine halbe Ableitung. Die
Methodik basiert einerseits auf der parakontrollierten Beschreibung des Operators aus dem
vorigen Kapitel und andererseits auf [17], dessen semiklassische Strategie Strichartzabschätzungen
zu zeigen hier anwendbar ist. Danach nutzen wir diese Abschätzungen um bessere Resultate für
(S) zu beweisen.
In Kapitel 4, dessen Inhalt noch nirgendwo publiziert oder zur Verfügung gestellt wurde, wird der
variationelle Ansatz für Wellengleichungen aus [72] angepasst um energiesuperkritische Versionen
von (W) zu lösen, das heißt in drei Dimensionen mit Potenzen größer als 5 in der Nichtlinearität.
Die Methode liefert globale Existenz von Lösungen (keine Wohlgestelltheit) und basiert auf der
Idee, dass die Lösung einer nichtlinearen Wellengleichung formal der Grenzwert von einer Folge
von Minimierern von konvexen Raum-Zeit Funktionalen ist.





Acknowledgements

First and foremost I wish to thank my advisor Massimiliano Gubinelli who was both liberal with
his support and supportively liberal. In addition, I thank him for being an eclectic cornucopia of
knowledge which would frequently be paired with sage advice.
My thanks also go out to Herbert Koch. Firstly because none of this would have to come to pass
if he had not assigned me a Master’s thesis about Rough Paths which initially piqued my interest
in the field and secondly because of the enlightening discussions we had during my PhD.
At this stage I want to express my gratitude to the other members of the group, Francesco, Luigi,
Nikolay, Mattia and Lucio (a.k.a. “the twins”) which has luckily been growing steadily after I
spent the early days of my doctorate quasi-nomadically. Not only did they out up with my antics,
including that concert and Silvio (special shout-out to my office mate and longstanding
partner-in-crime Nikolay), we also shared countless discussions ranging from the ridiculous to the
sublime.
Another individual I want to single out is Angelo with whom I traversed the disreputable
establishments of Bonn; a fellow connoisseur of cacophonous concerts; a purveyor of fine whiskies
and trashy 60s pop culture. The former flowed liberally while consuming the latter along with
countless shared interests ranging from Bukowski and Burroughs to Zappa and Zorn.
Further I would like to acknowledge Chiara, who has been more than a little supportive–helping
to keep and me caffeinated and (somewhat) sane– particularly in these past trying months.
Local legends I want to pay homage to: Jan, ferocious warrior and salt-of-the-earth man of action
rolled into one; Martin, Svengali of Scotch and proprietor of Zone, truly the crème de la crème of
dive bars; Andreas for singing in the most infamous local band and resisting the siren song of
international fame.
Let me also mention my fellow “applied” mathematicians, especially the card sharks who
frequently invited me to join their after lunch Schafkopf/Skat rounds. Moreover, I owe a debt of
gratitude to my friends in the “non-applied” Analysis group with whom I share many fond
memories like the times we were in Kopp together.
There are countless other people which I would and should thank in addition. In fact, I have
written truly marvelous acknowledgments but this page is unfortunately too narrow to contain
them all.

III



Hyperbolic and dispersive singular stochastic PDEs

IV Immanuel Zachhuber



Contents

1 Introduction and Preliminaries 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Paracontrolled calculus/Littlewood-Paley theory . . . . . . . . . . . . . . . . 13

2 Semilinear evolution equations for the Anderson Hamiltonian in two and three
dimensions 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 The Anderson Hamiltonian in two and three dimensions . . . . . . . . . . . . . . . . 20

2.2.1 The two dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 The three-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Semilinear evolution equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.1 Linear equations and bounded nonlinearities . . . . . . . . . . . . . . . . . . 49
2.3.2 Nonlinear Schrödinger equations in two dimensions . . . . . . . . . . . . . . . 53
2.3.3 Two and three dimensional cubic wave equations . . . . . . . . . . . . . . . . 62

3 Strichartz estimates and low-regularity solutions to multiplicative stochastic
NLS 74
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 Classical Strichartz estimates on the torus . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3 The Anderson Hamiltonian in 2 and 3 dimensions . . . . . . . . . . . . . . . . . . . . 81

3.3.1 The 2d Anderson Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.2 The 3d Anderson Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 Strichartz estimates for the Anderson Hamiltonian . . . . . . . . . . . . . . . . . . . 89
3.4.1 The 2d case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.4.2 The 3d case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5 Solving stochastic NLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.6 Results for general rough potentials and the whole space . . . . . . . . . . . . . . . 95

4 Variational approach to stochastic wave equations 102
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2 The variational approach to Anderson wave equations . . . . . . . . . . . . . . . . . 106

4.2.1 The approximate energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

V



Hyperbolic and dispersive singular stochastic PDEs

4.2.2 Proving the apriori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.2.3 Passing to the limit and energy inequality . . . . . . . . . . . . . . . . . . . . 115

VI Immanuel Zachhuber



Chapter 1

Introduction and Preliminaries

1.1 Introduction
The topic of singular hyperbolic and dispersive stochastic PDE lies, as the name suggests, at the
confluence of the topics of singular stochastic PDEs and dispersive PDEs. It is a fairly recent with
the papers [47] and [30] perhaps marking the starting point for this particular type of problem,
namely that of analysing dispersive PDEs with an additive or multiplicative stochastic forcing
term, which is so irregular that it becomes classically ill-posed. In the years since, there have been
a multitude of new results about stochastic nonlinear wave(SNLW) [46], [80] [68], stochastic
nonlinear Schrödinger(SNLS) [35], [67] to name but a few. The main challenge of these equations
is the dual difficulty of having severely irregular noise terms(spatial or space-time white noise is
usually the most interesting) on the one hand and the lack of regularising effects coming from the
linear part of the equation on the other hand. In some sense, the study of singular dispersive
SPDEs is philosophically related to the study of dispersive PDEs with low-regularity inital data
pioneered by Bourgain [11] and perhaps, more intimately, the study of dispersive PDEs with
randomised(and rough) initial data, see [13] [12], which has seen a considerable growth in recent
years following [19] and [20].

The field of singular stochastic PDEs (SSPDEs) has seen a meteoric rise in the past couple of
years chiefly due to the emergence of the theories of Regularity Structures of Hairer [54] and
Paracontrolled Distributions due to Gubinelli, Perkowski, and Imkeller [45] (which was later
extended by Bailleul and Bernicot [8]). Alternative approaches include the renormalisation group
approach of Kupiainen [61] and the one by Otto and Weber [69] which is in some sense a hybrid.

In several ways this development can be traced back to the theory Rough Paths due to
Lyons [64](see also [36] for a pedagogical introduction), which provides a pathwise setting of
solving SDEs. The central idea, which also pervades the later theories, is that if one solves an
SDE like

Y (t) = a+
� t

0
f(Y (s))dX(s), (1.1.1)

1
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where a is the initial condition, f is a sufficiently regular function and the driving signal X is a
Brownian motion, the Itô solution map

Φ : (a,X)→ Y

is not continuous in X with respect to the Cα norm with α < 1
2 . However, if one endows the path

X with more information to an object X = (X,X2), called a Rough Path, where X2 contains some
“second-order properties” of the path, then it turns out that the solution map

Ψ : (a, (X,X2))→ Y

is now in fact continuous with respect to the Rough Path topology. Thereafter, one can prove
that Brownian motion, even fractional Brownian Motion with Hurst parameter in the correct
range, has an almost sure lift to the Rough Path space. This allows to solve an SDE like (1.1.1) in
a pathwise sense s.t. the solution depends continuously on the driving signal. There are of course
some caveats, namely that the lift X → X is not unique, which is related to the question of Itô vs
Stratonovich integration, see [36]. The field of Rough Paths is still an active research area, in
particular since it has been shown to have some real world applications, see e.g. [24] for some
applications to machine learning.

An important development to this theory was made by Gubinelli [42] in the form of Controlled
Paths, which is a reformulation as well a generalisation of Lyons’ theory of Rough Paths. The
main difference is instead of the SDE (1.1.1), one considers a more general equation like

Y (t) = a+
� t

0
Z(s)dX(s), (1.1.2)

where X is again the first component of a (fixed) Rough Path (X,X2), the difference being that
now Z is just some path that should locally look like Y in the sense that

(Z(t)− Z(s))− Z ′(s)(Y (t)− Y (s)) = o(|t− s|) for all s < t, (1.1.3)

where Z ′ is sometimes called the Gubinelli derivative and the couple (Z,Z ′) is called a controlled
path w.r.t. Y. Clearly Z = f(Y ), Z ′ = f ′(Y ) for good enough f satisfies (1.1.3) when Y is not too
irregular. Then one solves (1.1.2) for Y in the space of paths controlled by the Rough Path
(X,X2), usually denoted by DX. This is done by rewriting (1.1.2) as a finite difference equation
and invoking the sewing lemma. A few advantages of this approach are firstly that the space DX
of Controlled Paths is actually a Banach space, whereas the space of Rough Paths is not even a
linear space; secondly, the fact that Z does not need to be a function of Y allows to treat other
interesting cases, for example if there is some non-local dependence; thirdly, this theory was used,
employing an infinite dimensional Controlled Path approach, to solve some early examples of
singular SPDEs like Burgers [52], KPZ [53] which were instrumental in the further development.
See [36] for an accessible introduction to the theory.

The paradigm of having, on the one hand, the underlying Rough Path space which contains the
driving signal X with some higher-order information and, on the other hand, the controlled path
space DX as “dual” objects is central to both the theory of Regularity Structures and
Paracontrolled Distributions. In Regularity Structures the Rough Path is replaced by a model and
the Controlled Paths are replaced by modelled distributions. In this theory all the “real” objects,

2 Chapter 1 Immanuel Zachhuber
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i.e. the driving noise and the solution of the equation are replaced by local descriptions thereof,
e.g. a function f : Rd → R is replaced by an object F : Rd × S(Rd)→ R s.t.

Fx(δεx)→ f(x) with x ∈ Rd, (δεx) ⊂ S(Rd) s.t. δεx → δx

as well as a continuity condition of F in the first coordinate. Of course the choice of such an F is
highly non-unique, but it is usually dictated by the singular operations one wants to perform.
Subsequently one has to define the analogues of the necessary operations on such objects, i.e.
multiplication, convolution etc. One then obtains the solution via fixed point in the space of local
descriptions which has to be defined up to high enough precision. Lastly, in order to re-obtain the
“real” object from its local description one has the Reconstruction Theorem which does precisely
that and can be seen as a generalisation of the sewing lemma of the Controlled Path theory.
See [54] or [55] for details.

The theory of Paracontrolled Distributions [45], on the other hand, is based on paraproducts as
introduced by Bony in [10] which have found myriad applications in nonlinear PDEs, see e.g. [5].
The observation is that when considering a rough ODE like (1.1.1) or similarly a PDE like

∂tu−∆u = u · ξ, (1.1.4)

where ξ has regularity worse than −1; The obstruction to solving it is the ill-definedness of the
product which appears. This is because of the well-known result about the product between a
function and a distribution being extendable continuously to the situation where the sum of the
regularities is strictly positive. This should be thought of as being analogous to the condition for
the Young integral to exist namely the maps

Cα × Cβ 3 (u, v)→ u · v and Cγ × Cδ 3 (X,Y )→
� ·

0
X(s)dY (s) (1.1.5)

extend continuously to the cases where α+ β > 0 and γ + δ > 1 respectively. See Chapter 1.2 for
the definition of the Hölder-Besov spaces we use here. The approach of Paracontrolled
Distributions employs the tool of paraproducts to isolate the worst part of the product so as to
treat it appropriately.
It is well known that any distribution can be decomposed via Littlewood-Paley decomposition
into an infinite sum of smooth functions which have almost disjoint Fourier support

u =
∑
i>−1

∆iu ∆−1 ≈ F−1
IB(0,1)F , ∆i ≈ F−1

IB(0,2i+1)\B(0,2i)F ,

with smooth cut-off functions instead of indicator functions to be precise. Then one formally
splits the product in the following way

u · v =
∑

i,j>−1
∆iu∆jv =

∑
i&j

∆iu∆jv +
∑
i∼j

∆iu∆jv +
∑
j&i

∆iu∆jv =: v ≺ u+ v ◦ u+ u ≺ v,

where v ≺ u is called paraproduct and is dominated by the high frequencies of u, whereas u ◦ v is
called resonant product and contains the interaction between the same frequencies of u and v. The
point is that these objects satisfy the following bounds

‖u ≺ v‖Cα+0∧β . ‖u‖Cβ‖v‖Cα for α, β ∈ R
‖u ◦ v‖Cα+β . ‖u‖Cβ‖v‖Cα for α, β ∈ R : α+ β > 0,

Chapter 1 Immanuel Zachhuber 3
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which immediately gives us the aforementioned result about the product in (1.1.5) and tells us
that the paraproduct is always defined and contains the most irregular part of the product. The
resonant product, on the other hand, only makes sense when the sum of the regularities is strictly
positive but then it is regular.

Thus, if one decomposes the product in that way for, say, (1.1.4) one gets

∂tu−∆u = u ≺ ξ + u ◦ ξ + u � ξ,

which has two fundamental problems: firstly the paraproduct u ≺ ξ has very bad regularity (in
fact just worse than −1), which means that u is at best 1− ε for ε > 0. The second problem is
that if u indeed has regularity 1− ε then the resonant product u ◦ ξ is not well-defined. The idea
is then to consider u in such a space that simultaneously mitigates the effect of the irregularity of
ξ and allows the resonant product with ξ to be defined as a continuous operation. The ansatz one
considers is

u = u ≺ (∂t −∆)−1ξ + u], (1.1.6)

where u] is a smoother remainder term. This is motivated by the approximate identity

(∂t −∆)(u ≺ v) ≈ u ≺ (∂t −∆)v,

which is strictly speaking only true if we modify the paraproduct in time, see [45]. This says that
if u satisfies (1.1.6) then the remainder u] satisfies the equation

∂tu
] −∆u] ≈ (u ≺ (∂t −∆)−1ξ) ◦ ξ + u] ◦ ξ + u � ξ,

which implies that u] has better regularity–as it should– given that we are able to make sense of
the term

(u ≺ (∂t −∆)−1ξ) ◦ ξ.

This term is then finally treated by using the commutator lemma, see [45] which says

(f ≺ g) ◦ h ≈ f(g ◦ h) for f ∈ Cα, g ∈ Cβ , h ∈ Cγα ∈ (0, 1), α+ β + γ > 0, β + γ < 0,

which says we are able to close the equation if we can make sense of ((∂t −∆)−1ξ) ◦ ξ. Since this
is not a continuous function of ξ in the range we are interested in, this means we have to include
this object in our data. The couple (ξ, ((∂t −∆)−1ξ) ◦ ξ) is precisely the analogue of the Rough
Path and the model in the Controlled Paths and Regularity Structures theories respectively.

The ansatz (1.1.6) is called paracontrolled ansatz, we say that u is paracontrolled by (∂t −∆)−1ξ,
which is to say that at high frequencies u behaves like (∂t −∆)−1ξ. More generally, one considers

u = u′ ≺ X + u],

where u′ plays the role of the Gubinelli derivative, see (1.1.3). More abstractly, u lives in a space
which is parametrised by the couple (u′, u]) which is analogous to the space of controlled paths
and modelled distributions and one can see (1.1.6) as a “change of unknown” which is continuous
w.r.t. the driving noise and the “new variable” is u] which is a posteriori the correct one to solve
(1.1.4) since its equation is classically solvable if one is given the additional information about the
noise.

4 Chapter 1 Immanuel Zachhuber
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The last issue which appears when one tries to solve (1.1.4) in the relevant case of ξ being the
spatial white noise on the 2- or 3-dimensional torus is that the object ((∂t −∆)−1ξ) ◦ ξ actually
does not exist a.s. but instead only if one “subtracts an infinite constant”. This phenomenon is
known as renormalisation and in this situation means that for a sequence of smooth functions
ξε → ξ there exist diverging constants cε →∞ s.t.

((∂t −∆)−1ξε) ◦ ξε − cε → Ξ2 in C−δ for δ > 0,

for a limit Ξ2 which is independent of the approximating sequence. This leads us to modifying
(1.1.4) to read

∂tu−∆u = u · ξ −∞u, (1.1.7)

which of course has no intrinsic meaning. This is further evidence for the fact that (1.1.7) is the
“wrong” way to write the SPDE and the change of variables to u] leads to the “correct”
formulation of (1.1.7), which is in addition continuous w.r.t. the enhanced noise by construction.
More precisely, on the level of regularised noise one considers the shifted equation

∂tuε −∆uε = uε · ξε − cεuε,

for which we make the “change of unknown”

u]ε = uε − uε ≺ (∂t −∆)−1ξε

which leads for an equation for u]ε of the form

∂tu
]
ε −∆u]ε ≈ uε((∂t −∆)−1ξε ◦ ξε − cε) + u]ε ◦ ξε + uε � ξε, (1.1.8)

where upon inspection one realises that the right hand side is continuous in C−δ as ε→ 0. The
last point is that one needs to “invert” the paracontrolled expansion so as to express u in terms of
u]. This is discussed in some detail in Chapter 2 and for simplicity we say that u = Γu] and
uε = Γεu]ε for invertible transformations Γ,Γε for which Γε → Γ in an appropriate sense. Thus we
can pass to the limit in (1.1.8) and get that u] satisfies

∂tu
] −∆u] ≈ Γu]Ξ2 + u] ◦ ξ + Γu] � ξ, (1.1.9)

which is classically solvable by fixed point assuming that Γ has good properties. Now, the logical
way to make sense of a solution u to (1.1.7) is to say that u = Γu], where u] is the solution to
(1.1.9). This is made rigorous in [49] or Chapter 2.

A wide-ranging generalisation to this “first-order” Paracontrolled Calculus was developed by
Bailleul and Bernicot in [8]. Their theory allows for higher order expansions, meaning that it is
possible to treat a larger class of noises and nonlinearities, as well as being applicable on general
manifolds. This theory is not required for the topics treated in this thesis, although one could
employ it for an alternative construction for the domain of the 3 dimensional Anderson
Hamiltonian from Chapter 3.3.2.
In the years since their introduction, these theories have come to fruition, now being applicable to
very large classes of locally subcritical – meaning that locally the solution is a perturbation of the
solution of a linear problem – semi-linear SSPDEs. Prominent examples include the dynamical
Φ4

3 [54], [22], [65], [44], KPZ [48], Sine Gordon [57] and others including [74], [9], [43] etc.

Chapter 1 Immanuel Zachhuber 5
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Moreover, there have been wide-ranging extensions including quasilinear SSPDEs [37], [40], [7],
SSPDEs on Manifolds [6], with boundary conditions [39] etc. The drawback of all these results is
that they can not be applied to SSPDEs which are not parabolic (or elliptic); There have,
however, been some notable developments in this direction with the papers of Gubinelli, Koch,
and Oh [47] [46] , on the 2- and 3-dimensional stochastic wave equation with additive space-time
white noise being perhaps the most prominent. In particular their work on the 3-dimensional
stochastic wave equation with quadratic nonlinearity – which introduces the concept of
paracontrolled operators and requires some subtle computations with oscillatory integrals –
indicates that some fundamentally new ideas are needed to deal with these types of equations. In
fact, solving the 3-dimensional stochastic wave equation with cubic nonlinearity (which is akin to
Φ4

3) is an intriguing open problem.

The field of dispersive PDEs has a long and illustrious history the recounting of which is beyond
the scope of this thesis; See e.g. [76] and [23] for good textbooks on the topic. Let us instead focus
on the major differences with respect to parabolic/elliptic PDEs and how to nonetheless obtain
results, as this is the crux of the thesis. The primary difference is, of course, that one does not
have smoothing properties of the linear propagator (or less smoothing in the case of the wave
equation). Even the fact that one can solve the linear Schrödinger equation

i∂tu−∆u = 0
u(0) = u0 ∈ L2

is due to the fact that we can define the unitary group e−it∆ which is a bounded operator on L2

that is strongly continuous in t ∈ R, giving a solution via u(t) = e−it∆u0 ∈ CtL2. As an
important generalisation of this, one gets the exact same type result, if one has instead

i∂tu−Au = 0 (1.1.10)
u(0) = u0 ∈ L2,

for any A which is self-adjoint on L2 as a result of Stone’s theorem, see [71, Theorem VIII.7]. This
will be of importance in Chapter 2, since we are able to define the operator

∆ + ξ,

where ξ is a very irregular potential, as a self-adjoint operator. This then directly allows us to
solve the linear equation (1.1.10) in L2, i.e. in a space which is independent of how irregular ξ is
(within reason).

Another crucial concept is that of conserved quantities. The linear Schrödinger equation conserves
e.g. the quantities

m(t) :=
�
|u(t, x)|2dx and E(t) :=

�
|∇u(t, x)|2dx,

i.e. the mass and the energy, meaning that they are constant in time. These are particularly
useful as they provide uniform in time bounds on the H1 norm of the solution in terms of the H1

norm of the initial data. Moreover, there are analogous quantities which are conserved for more

6 Chapter 1 Immanuel Zachhuber
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complicated PDEs, as long as their nonlinearities are of the correct form. A prominent example
which will be of interest to us is the so called cubic nonlinear Schrödinger equation(NLS)

i∂tu−∆u = −u|u|2 (1.1.11)
u(0) = u0,

where we have chosen to only consider the defocussing nonlinearity(the focussing case being the
one where the nonlinearity has the opposite sign). This PDE also has a conserved mass and an
energy, given by

m(t) :=
�
|u(t, x)|2dx and E(t) := 1

2

�
|∇u(t, x)|2 + 1

4 |u(t, x)|4dx,

respectively. Broadly speaking, when one has conserved quantities one can extend a local in time
solution to a global in time one. Another immediate generalisation is that if one considers the
linear PDE (1.1.10) for a general self-adjoint, negative definite operator A one gets the conserved
mass and an energy given by

m(t) :=
�
|u(t, x)|2dx and E(t) := 1

2(u(t, ·), (−A)u(t, ·)),

and for the corresponding cubic-A−NLS

i∂tu−Au = −u|u|2 (1.1.12)
u(0) = u0,

one gets (formally at least)

m(t) :=
�
|u(t, x)|2dx and E(t) := 1

2(u(t, ·), (−A)u(t, ·)) + 1
4 |u(t, x)|4dx

which are also conserved in time. Thus one gets a uniform in time bound for the “square
root”-norm of A i.e.

‖v‖D(√−A) := ‖v‖L2 +
√

(v,−Av),

which is of course just the H1 norm in the case of the Laplacian. Let us mention here that in
many cases one does not have an exact conserved quantity, but only an almost conserved quantity,
meaning broadly that its time derivative is not equal to zero but rather “lower order”, leading to a
bound using Gronwall-type arguments. This is then often still enough to deduce global
well-posedness. The construction of such quantities is the objective of the celebrated I-method,
see [26], [25] etc.

The aforementioned points do not significantly depend on the domain of definition for the
function (self-adjointness of ∆ notwithstanding) and hold in very general settings with few
caveats. However, one is often interested in more subtle questions of solvability, e.g.
well-posedness in low-regularity spaces (local and global), behaviour at criticality,
ill-posedness/blow-up etc. One property of the (linear) Schrödinger equation on the Euclidean
space Rd is dispersion, which is usually motivated by saying that there are cancellations between
“wave packets” of different frequencies. Due to the infinite speed of propagation this is a priori
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something which is particular to the Euclidean space, in other domains/manifolds there can be
non-trivial self-interactions and/or boundary effects. Rather than working with this somewhat
nebulous concept, we are instead interested in so-called Strichartz estimates, which give a
quantitative result due to dispersion. Roughly speaking this type of result says that solutions of
the linear eqaution satisfy additional integrability in space if one gives up integrability in time. If
we consider, for simplicity, the linear Schrödinger equation on R2, one gets the bound

‖e−it∆u0‖L4
t,R

L4
R2

. ‖u0‖L2 ,

in other words, one gains integrability in space while giving up integrability in time, seen by
comparing it to the bound

‖e−it∆u0‖L∞
t,R

L2
R2

. ‖u0‖L2 .

A related result is the inhomogeneous Strichartz estimate∥∥∥∥�
s<t

e−i(t−s)∆F (s)ds
∥∥∥∥
L4
t,R

L4
R2

. ‖F‖
L

4
3
R
L

4
3
R2

,

which is useful when trying to solve e.g. the cubic NLS. Of course analogous results are true for
general exponents in general dimensions, see [76]. The chief reason why these bounds are
(comparatively) easy to obtain on Rd is the presence of a dispersive estimate

‖e−it∆u0‖L∞
Rd

. |t|− d2 ‖u0‖L1
Rd
,

which is simply not true in most other situations. Therefore extensions of these types of results to
other situations, such as tori, see [11], [14], [60], or manifolds [17] are more involved. We
indisciminately call a bound a “Strichartz estimate”, if it is of the form

‖e−it∆u0‖Lp
t∈IL

q . ‖u0‖Hs , (1.1.13)

for some exponents 2 6 p, q 6∞ and s < d
(

1
2 −

1
q

)
, i.e. we allow a loss of derivates so long as the

result is strictly better than what one obtains from the Sobolev embedding. Also, we allow for the
bound to hold only on a finite time interval I ⊂ R, rather than for all times. In Chapter 3 we will
furthermore investigate a bound like (1.1.13) for operators other than the Laplacian. Moreover we
explain in more detail how such bounds lead to local well-posedness in low-regularity regimes. If
one wants to further decrease the regularity one is considering, even more subtle tools such as
multilinear estimates and Fourier restriction spaces are required see e.g. [11] or [82].

Let us also mention at this point that there has been a philosophically somewhat related
development concerning low-regularity well-posedness of dispersive PDE with randomised initial
data. Its study was initiated by Bourgain in the 90s [12], [13] but received more widespread
attention after a series of papers by Burq-Tzvetkov [19,20] about random data supercritical wave
equations, see also the notes [81] and [78] for the analogous result for Schrödinger equations. The
idea, broadly, is that while a (possibly supercritical) PDE might be ill-posed in a space, it might
still be well-posed for “almost every” element of that space meaning that one constructs a
measure with respect to which the set of initial data for which one can solve the PDE has full
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measure. Roughly speaking, one gains integrability from the fact that the random data, in the
form of, say, Gaussian coefficients, have a lot of integrability in the probability space, leading to
improved “randomised” Strichartz estimates. This is related to the construction of invariant and
quasi-invariant measures, which are also active research areas, see e.g. [79] and [51] and the
references therein.

1.1.1 Summary of results
We now give a concise overview of the main results of the thesis. In some cases we will sacrifice
rigour in favour of readability.

Chapter 2

The aim of this chapter, which very closely follows [49], are twofold: The construction of the
continuum Anderson Hamiltonian on the 2- and 3-dimensional torus via Paracontrolled
Distributions and proving well-posedness results for semilinear evolution equations(Schrödinger
and wave) whose linear part is given by the Anderson Hamiltonian.

The continuum Anderson Hamiltonian on the torus Td is the operator formally given by

A = ∆ + ξ, (1.1.14)

where ξ is spatial white noise, which is the Gaussian random field with covariance

E(ξ(f)ξ(g)) = (f, g)L2 for f, g ∈ C∞(T3),

which has regularity ξ ∈ C− d2−(we use this notation to mean ∈ C− d2−ε for any ε > 0). See Chapter
1.2 for the definition of the Besov-Hölder spaces we employ here.

One sees that A can be defined as an operator from Hk → H− d2− for some large enough k,
keeping in mind that the product between an Hr and a Cα function can be defined
unconditionally as long as α+ r > 0. This is, however, not so useful and we aim here to define it
as a self-adjoint operator on L2. This was first achieved by Allez and Chouk in [3] on T2, after
suitably renormalising A, which in this case amounts to “subtracting an infinite constant”. They
are able to construct an explicit domain for this operator using the theory of Paracontrolled
Distributions, introduced in [45]. We look for u ∈ L2 s.t.

∆u+ ξ · u ∈ L2,

and one observes that both terms can not simultaneously be in L2, but rather that there has to be
a cancellation between them. In order to quantify the idea that the worst contribution of the
Laplacian should cancel the worst contribution one is led to an ansatz for u like

u = uξ +H2,

where uξ is chosen in such a way that ∆uξ should cancel the worst part of u · ξ. This is done by
using a paracontrolled ansatz for u and uξ can be chosen(upto higher correction terms) as the
paraproduct

uξ = u ≺ (−∆)−1ξ +H2,

Chapter 1 Immanuel Zachhuber 9



Hyperbolic and dispersive singular stochastic PDEs

which means that ∆uξ cancels u ≺ ξ, which is the most irregular contribution of the product u · ξ.
In order to actually have Au ∈ L2, one needs to make a slightly more subtle ansatz. Moreover,
one needs to control a second-order object related to ξ which makes the renormalisation necessary
(the resonant product ξ ◦ (1−∆)−1ξ can only be made sense of after formally subtracting a
constant). In Chapter 3.3.1 we recall the construction of Allez-Chouk in two dimensions and
prove a couple of novel results about the domain and the form-domain(domain of the square root)
of A as well as some related functional inequalities, self-adjointness, and norm resolvent
convergence of smooth approximations of A to A.

In Chapter 3.3.2 we make a similar construction on T3. This was the first time this operator was
constructed; It was independently studied by Labbé using Regularity Structures in [62]. The
results we obtain are quite analogous to the ones we obtain in the two dimensional case, despite
some increased technicality. Since the noise in this case is in C− 3

2−(whereas in two dimensions it
was C−1−) it turns out that a simple paracontrolled ansatz as in two dimensions is insufficient.
The remedy is to introduce an exponential transform inspired by [30] and [56], which removes the
worst terms and creates some more complicated but more regular terms. The relevant
computation associated to this transform is

∆(eW v) + (eW v) · ξ = eW (∆v + 2∇W · ∇v + |∇W |2v + (∆W )v + vξ),

and one chooses W in order to cancel the most irregular terms in the bracket, i.e. ξ and the worst
part of |∇W |2. After choosing W in such a way, we perform a paracontrolled analysis on the level
of v, which will now be controlled by some higher order expressions of ξ, some of which need to be
renormalised.

Despite requiring this two-step construction, we are still able to prove virtually all the results we
did in the two dimensional setting, i.e. an explicit description/parametrisation of the domain and
the form domain, functional inequalitities, self-adjointness, and norm resolvent convergence.

Using these results, in Chapter 2.3, we turn to well-posedness questions of multiplicative
stochastic PDEs like

i∂tu−∆u = u · ξ − u|u|2on Td (1.1.15)
u(0) = u0,

and

∂2
t u−∆u = u · ξ − u|u|2 on Td (1.1.16)

(u, ∂tu)(0) = (u0, u1),

which we recast as

i∂tu−Hu = −u|u|2on Td (1.1.17)
u(0) = u0,

and

∂2
t u−Hu = −u|u|2on Td (1.1.18)

(u, ∂tu)(0) = (u0, u1),
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respectively, where H denotes the Anderson Hamiltonian shifted by a constant making it
uniformly negative. The natural spaces in which to study (1.1.17) and (1.1.18) are D(H) (the
replacement of H2, so called strong solutions) and D

(√
−H

)
(the replacement of H1, so called

energy solutions). The functional inequalities

‖u‖Lp . ‖u‖D(√−H) for all p ∈ [2,∞),

‖u‖L∞ . ‖u‖D(H)

in two dimensions, together with a Brezis-Gallouet-type inequality(see Lemma 2.2.31) allow us to
prove global well-posedness(GWP) of (1.1.17) in the space D(H), i.e. a solution

u ∈ C([0, T ];D(H)) ∩ C1([0, T ];L2) T > 0,

for u0 ∈ D(H). Using this, we can prove global existence (not well-posedness) of energy solutions,
i.e.

u ∈ C
(

[0, T ];D
(√
−H

))
T > 0

for u0 ∈ D
(√
−H

)
, the name coming from the conserved (positive) energy

E(u) = −1
2(u,Hu) + 1

4

�
|u|4dx.

Similarly, we get GWP for (1.1.18) for both (u, ∂tu) ∈ CtD(H)× CtD
(√
−H

)
and

(u, ∂tu) ∈ CtD
(√
−H

)
× CtL2. In this case the conserved energy is given by

E(u) = 1
2

�
|∂tu|2dx−

1
2(u,Hu) + 1

4

�
|u|4dx.

On T3, we get the same results for (1.1.18), however with a smaller range of powers in the
nonlinearity. For (1.1.17) we get local well-posedness in the space D(H).

Chapter 3

In this chapter, which is based on [83], we pursue further the study of the equation (1.1.17), this
time with some slightly more involved techniques compared to those used the previous chapter,
where we essentially used only the self-adjointness/negativity of the operator H, together with the
Lp bounds and the conservation of energy. Here we try to establish Strichartz estimates for the
Anderson Hamiltonian; the bounds we are able to achieve are

‖e−itH
]

v‖L4
[0,1]L

4
T2

. ‖v‖Hε
T2

for ε > 0, (1.1.19)

and
‖e−itH

]

v‖
L

10
3

[0,1]L
10
3
T3

. ‖v‖
H

1
2 +ε

T3

for ε > 0, (1.1.20)

respectively where H] denotes a suitable transformation of H related to the paracontrolled
expansion. Essentially the idea is that while H acts on paracontrolled functions(which is a
complicated space), while H] acts on the (smooth) remainder of the paracontrolled
functions(which is a simple space). This is possible using the map

Γ : “smooth remainder”→ “paracontrolled function with smooth remainder”
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introduced in [49], see Chapter 2.2, which is invertible and parametrises the domain of H. Thus
we are able to use H], which turns out to be the Laplacian to highest order, instead of H which
corresponds to a “change of unknown” . This change of variables together with the “semiclassical”
approach of Burq, Gerard and Tzvetkov [17] to proving Strichartz estimates–based on the idea
that for an initial datum localised in frequency, upto a short time depending on that frequency
one is morally on the whole space– allow us to prove Strichartz estimates in a perturbative way
for H] using that H] being close to ∆ also gives that e−itH] is close to e−it∆ in some sense.

Note that our result on T2 is the same as the one for the Laplacian from [11], the one on T3

however loses half a derivative due to the worse regularity of the noise in this setting.

Furthermore, we employ (1.1.19) to show low-regularity local well-posedness of (1.1.17) in Hs for
s ∈

( 1
2 , 1
)
as well as global well-posedness in the energy space, solving a problem which had

remained open in [49] where only global existence was proved.

Chapter 4

This chapter is concerned with solving the PDE

∂2
t u−Hu = −u|u|p−2on T3 (1.1.21)

(u, ∂tu)(0) = (u0, u1),

for general exponents p > 2, including the so-called energy supercritical ones. This nomenclature
refers to the fact that in the energy

E(u) = 1
2

�
|∂tu|2dx−

1
2(u,Hu) + 1

4

�
|u|pdx,

the “potential energy” 1
4
�
|u|pdx is no longer controlled by the “kinetic energy”

1
2
�
|∂tu|2dx− 1

2 (u,Hu) via Sobolev embedding for p > 6. One does not expect well-posedness in
this case, we get global in time existence of solutions in the energy space(we have to assume both
the initial data u0 and the initial velocity u0 to live in the energy space and have Lp integrability,
a somewhat unnatural assumption) using the variational approach to wave equations due to Serra
and Tilli [72, 73].

We use the exponential transformation introduced in Chapter 3.3.2 to transform (1.1.21) from a
PDE on the abstract “energy space” w.r.t. H to a PDE in H1. In this case the formulation is
considerably simpler than the “full” transformed operator H] we consider in Chapter 3 as we do
not need to perform the paracontrolled expansion. Due to this relatively simple transformation,
we are almost able to apply the results from [72,73] directly to this setting; We adapt their
method which requires fairly modest modifications.

The variational approach to wave equations due to Serra and Tilli originates from a conjecture of
de Giorgi [28], which was that the minimisers of the space-time functional

Fε(u) :=
� ∞

0
e−

t
ε

� 1
2 |∂

2
t u|2 + 1

2 |∇u|
2 + 1

p
|u|pdxdt,

which exist and are unique because of its convexity, should converge (in some sense) to a solution
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to the nonlinear wave equation

∂2
t u−∆u = −u|u|p−2

(u, ∂tu)(0) = (u0, u1).

The resolution of this problem was achieved in [72] and considerably generalised in [73] and [77].
As the analysis happens entirely in the time variable, making a modification in only the space
variable(as we consider only spatial noise here) barely interferes with the method.

1.2 Preliminaries
We collect some relevant background material. In some cases there will be some overlap with the
material in the appendices of the papers.

1.2.1 Paracontrolled calculus/Littlewood-Paley theory
We introduce the concept of Bony’s paraproducts and how they behave with respect to Sobolev,
Hölder and general Besov spaces; we also collect some results about products of distributions. We
work primarily on the d−dimensional torus Td := Rd/Zd for d = 2, 3, however all the following
analysis works equally well in any dimension as well as on the Euclidean space Rd. For any
f ∈ S ′(Td), i.e. tempered distributions on Td, the Fourier transform of f is denoted by
f̂ : Zd → C (or Ff) and is defined for k ∈ Zd by

f̂(k) := 〈f, exp(2πi〈k, ·〉) =
�
Td
f(x) exp(−2πi〈k, x〉)dx.

Recall that for any f ∈ L2(Td) and a.e. x ∈ Td, we have

f(x) =
∑
k∈Zd

f̂(k) exp(2πi〈k, x〉). (1.2.1)

We define the Sobolev space Hα(Td) with index α ∈ R as

Hα(Td) := {f ∈ S ′(Td) :
∑
k∈Zd

(1 + |k|2)α |f̂(k)|2 < +∞} .

Before introducing Besov spaces, we recall the definition of Littlewood-Paley blocks. We denote
by χ and ρ two nonnegative smooth and compactly supported radial functions Rd → R such that

1. The support of χ is contained in a ball {x ∈ Rd : |x| ≤ R} and the support of ρ is contained
in an annulus {x ∈ Rd : a ≤ |x| ≤ b};

2. For all ξ ∈ Rd, χ(ξ) +
∑
j≥0 ρ(2−jξ) = 1;

3. For j ≥ 1, χρ(2−j ·) ≡ 0 and ρ(2−i·)ρ(2−j ·) ≡ 0 for |i− j| ≥ 1.
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For the existence of such functions, see e.g. Proposition 2.10 in [5]. The Littlewood-Paley blocks
(∆j)j≥−1 acting on f ∈ S ′(Td) are defined by

F(∆−1f) = χf̂ and for j ≥ 0, F(∆jf) = ρ(2−j .)f̂ .

Note that, for f ∈ S ′(Td), the Littlewood-Paley blocks (∆jf)j≥−1 define smooth functions, as
their Fourier transforms have compact supports. We also set, for f ∈ S ′ and j ≥ 0,

Sjf :=
j−1∑
i=−1

∆if

and note that Sjf converges in the sense of distributions to f as j →∞.
We can now introduce the Besov space with parameters p, q ∈ [1,∞), α ∈ R whose definition is
given by

Bαp,q(Td) :=

u ∈ S ′(Td); ‖u‖Bαp,q =

∑
j≥−1

2jqα‖∆ju‖qLp

1/q

< +∞

 . (1.2.2)

We also define the Besov-Hölder spaces

Cα := Bα∞,∞

which are naturally equipped with the norm ‖f‖Cα := ‖f‖Bα∞,∞ = supj≥−1 2jα‖∆jf‖L∞ . For
α ∈ (0, 1) these spaces coincide with the classical Hölder spaces. See the books [32] and [5] for
more information about these types of spaces.
We can formally decompose the product fg of two distributions f and g as

fg = f ≺ g + f ◦ g + f � g

where

f ≺ g :=
∑
j≥−1

Sj−1f∆jg and f � g :=
∑
j≥−1

Sj−1g∆jf

are usually referred to as the paraproducts whereas

f ◦ g :=
∑
j≥−1

∑
|i−j|≤1

∆if∆jg (1.2.3)

is called the resonant product.
Moreover we will frequently write f 4 g := f ≺ g + f ◦ g and f < g := f � g + f ◦ g as short-hand
notations.
The paraproduct terms are always well defined irrespective of regularities. The resonant product is
a priori only well defined if the sum of regularities is strictly greater than zero. This is reminiscent
of the well known fact that one can not multiply distributions in general. The following result
makes those comments precise and gives simple but extremely vital estimates for paraproducts.
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Lemma 1.2.1 (cf. Theorem 3.17 [66]). Let α, α1, α2 ∈ R and p, p1, p2, q ∈ [1,∞] be such that

α1 6= 0 α = (α1 ∧ 0) + α2 and 1
p

= 1
p1

+ 1
p2
.

Then we have the bound
‖f ≺ g‖Bαp,q . ‖f‖Bα1

p1,∞
‖g‖Bα2

p2,q

and in the case where α1 + α2 > 0 we have the bound

‖f ◦ g‖
B
α1+α2
p,q

. ‖f‖Bα1
p1,∞
‖g‖Bα2

p2,q
.

Primarily the cases p = p2 = q = 2 p1 =∞(Sobolev times Hölder) and p = p1 = p2 = q =∞
(Hölder times Hölder) are of interest to us. In particular, one immediately gets conditions for the
“full” product to be well-defined as a continuous bilinear operator.
The next result is Bernstein’s inequality, which gives quantitative bounds for the differentiability
and integrability for functions with compact support in frequency. Note that for functions which
are spectrally supported in annuli one has two sided bounds but for functions spectrally localised
in balls only one-sided bounds.

Lemma 1.2.2 (Bernstein’s inequality, [45]). Let A be an annulus and B be a ball in Rd. For any
k ∈ N, λ > 0,and 1 ≤ p ≤ q ≤ ∞ we have

1. if u ∈ Lp(Rd) is such that supp(Fu) ⊂ λB then

max
µ∈Nd:|µ|=k

‖∂µu‖Lq .k λk+d( 1
p−

1
q )‖u‖Lp

2. if u ∈ Lp(Rd)is such that supp(Fu) ⊂ λA then

λk‖u‖Lp .k max
µ∈Nd:|µ|=k

‖∂µu‖Lp .

Another useful result is the following embedding result between Besov spaces, which holds on
either Td or Rd.

Lemma 1.2.3 (Besov embedding, [45]). Let α < β ∈ R and p > r ∈ [1,∞] be such that

β = α+ d

(
1
r
− 1
p

)
,

then we have the following bound for q ∈ [1,∞]

‖f‖Bαp,q . ‖f‖Bβr,q .

We also cite the following result, which can be seen as a “first-order Taylor expansion”, saying
that–up to a smoother remainder– the nonlinear composition of a smooth function F with a
function f of limited regularity is given by the paraproduct F ′(f) ≺ f.
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Proposition 1.2.4 (Paralinearisation, [48]). Let α ∈ (0, 1) and F ∈ C2. Then there exists a
locally bounded map RF : Cα → C2α such that

F (f) = F ′(f) ≺ f +RF (f) for all f ∈ Cα.

The next result, which is quite vital to the theory of Paracontrolled Distributions, is a sort of
“commutator” between the paraproduct and the resonant product.

Proposition 1.2.5 (Commutator lemma, [45], [3]). Given α ∈ (0, 1), β, γ ∈ R such that
β + γ < 0 and α+ β + γ > 0, there exists a trilinear operator C with the following bound

‖C(f, g, h)‖Hα+β+γ . ‖f‖Hα‖g‖Cβ‖h‖Cγ

in either the case

a) f ∈ Cα, g ∈ Cβ and h ∈ Cγ or

b) f ∈ Hα, g ∈ Cβ and h ∈ Cγ .

The restriction of C to smooth functions satisfies

C(f, g, h) = (f ≺ g) ◦ h− f(g ◦ h).
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Chapter 2

Semilinear evolution equations for
the Anderson Hamiltonian in two
and three dimensions

2.1 Introduction
The aim of this chapter is to study the following random Cauchy problems

i∂tu = Hu− u|u|2, u(0) = u0 (2.1.1)
∂2
t u = Hu− u3, (u, ∂tu)|t=0 = (u0, u1) (2.1.2)

on the d-dimensional torus Td with d = 2, 3. Here H is formally the Anderson Hamiltonian
H = ∆ + ξ, where ξ is a space white noise and ∆ the Laplacian with periodic boundary conditions.

The presence of white noise makes this kind of problem not well-posed in classical function spaces.
Indeed, it is well known that white noise is almost surely only a distribution of regularity
−d/2− ε in Hölder-Besov spaces, where ε > 0. One difficulty that arises from this is the fact that
the above equations have to be properly renormalized by formally subtracting an infinite constant
in order to obtain well defined limits.

In the parabolic setting there is a, by now, well developed theory of such singular SPDEs, thanks
to Hairer’s invention of the theory of Regularity Structures [54] and the parallel development of
the paracontrolled approach [45] by Gubinelli, Imkeller and Perkowski. The first results for non
parabolic evolution equations have been obtained in [30], where the authors solve the linear and
the cubic nonlinear (with a range of powers) Schrödinger equations with multiplicative noise on
T2 by first applying a transform inspired by [56] and then using mass and energy conservation
along with certain interpolation arguments. The wave equations in d = 2 with polynomial
non-linearities and additive space-time white noise have been considered in [47]. The main
difficulty is that the absence of parabolic regularisation makes the control of the non-linear terms
involving the singular noise contributions non-trivial.
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Here we exploit the insights of [3] in order to identify an appropriately renormalized version of H
as a self-adjoint operator on L2(Td) and use the related spectral decomposition to give a meaning
to the above equations as abstract evolution equations in Hilbert space. Our first contribution is
then the study of the Anderson Hamiltonian on T3 and the derivation of some additional results
when d = 2, for example the characterisation of the “form domain” of the operator (the domain of
the operator

√
−H) and some related functional inequalities which are needed in the abstract

treatment of the evolution equations.

For the sake of completeness, and also to illustrate the proof strategy in the d = 3 case, we pursue
a complete treatment of the d = 2 case showing the self-adjointness of the Hamiltonian and the
convergence of suitable regularised operators in norm resolvent sense. Norm resolvent convergence
is used in the second part to “prepare”suitable initial conditions adapted to prove convergence of
approximations. We mention also the proof of a version of the classical Brezis-Gallouet
inequality [15] for the Anderson Hamiltonian in d = 2. For d = 3 we prove that the Anderson
Hamiltonian satisfies an inequality which is analogous to the classical Agmon’s inequality, see
Lemma 2.2.55. These functional inequalities are instrumental in the second part of this work in
order to control the non-linear terms of the evolution equations.

An interesting byproduct of our approach is an estimate which expresses the fact that the
paraproduct is “almost” adjoint to the resonant product whose definitions we recall in the
Appendix. This implies in particular that the energy norm with respect to the Anderson
Hamiltonian can be estimated from below in a precise way and allows us to characterise (see
Proposition 2.2.23) both the domain and the form domain of H by using certain Sobolev norms.

Section 2.3 is concerned with the solution of the above equations with different regularities of the
initial conditions and with the proof of convergence of solutions of approximate equations where
the noise has been regularised to the singular limit. While the general methodology is the same
adopted in [30], namely the use of conservation laws and functional inequalities to control the
non-linear term, one of the main contributions of this work is to clarify the role of the spectral
theory of the Anderson Hamiltonian and of relative function spaces in the apriori control of the
solutions and in the analysis of the non-linear terms. This simplifies and unifies the analysis of the
d = 2 and d = 3 cases.

Thereafter, having all the necessary Sobolev and Lp-estimates at our disposal along with an
analogue of the Brezis-Gallouet inequality and proper approximation tools, in Section 2.3 we move
on to the study of the nonlinear Schrödinger and wave equations for the Anderson Hamiltonian
(properly shifted for positivity) in dimensions 2 and 3. One important point is that, after having
performed the analysis of the Anderson Hamiltonian using Paracontrolled Distributions(which
involves dealing with the stochastic terms), we are in a position to address the PDE problems by
using classical techniques, which makes the approach somewhat more transparent.

To recap, we study the well-posedness of the PDEs (2.1.1) and (2.1.2) (with a range of powers for
the nonlinearity) with operator domain and finite energy data.

We also work out the convergence of the solutions of regularised equations, obtained by suitable
approximations of the initial data and the Gaussian white noise, to the solutions of the above
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PDEs:

i∂tuε = Hεuε − uε|uε|2, uε(0) = uε0. (2.1.3)
∂2
t uε = Hεuε − u3

ε on Td, (uε, ∂tuε)|t=0 = (uε0, uε1). (2.1.4)

In Theorem 2.3.5, we establish the well-posedness of (2.1.1) with operator domain data in d = 2.
This is achieved, in part, using our version of the Brezis–Gallouet inequality for the Anderson
Hamiltonian. In Theorem 2.3.9 we show that the solutions to the regularised equations, namely to
(2.1.3), converge to that of equation (2.1.1). Observe that, in this context, establishing this
convergence is important as the domain of the Anderson Hamiltonian is contained in H1−

whereas the domain of the approximations lie in H2. So there is a drop in smoothness that needs
to be addressed carefully. Extensions of some of these results to d = 3 and the focusing case are
possible as we prove an analogue of Agmon’s inequality in Lemma 2.2.55 to replace the
Brezis-Gallouet inequality, see Remark 2.3.10.

Since we characterise the energy domain for the Anderson Hamiltonian in Lemma 2.2.23, we can
also make sense of energy solutions for the NLS (2.1.1). In fact, in Theorem 2.3.11, we show the
existence of such solutions. Observe that in this case we were not able to show uniqueness, in fact
one needs Strichartz estimates to get this, see Chapter 3. Furthermore, as in the domain case, we
show in Corollary 2.3.15 the convergence of the regularised solutions.

Being able to characterise the energy domain for the Anderson Hamiltonian both in dimensions 2
and 3 enables us to also treat nonlinear stochastic wave equations in either dimension. In Section
2.3.3, we prove some results regarding the well-posedness of (2.1.2) in 2 and 3 dimensions. In
Theorem 2.3.17, we obtain the well-posedness with initial data/velocity in the domain/energy
domain. Similarly to the Schrödinger case we also show convergence of regularised solutions in
Theorem 2.3.19. We then conclude by stating Theorem 2.3.20, which details the well-posedness
for initial data/velocity in the energy domain and L2 for (2.1.2) and whose proof follows from our
earlier considerations in the same section. By our version of Agmon’s inequality and similar
methods, certain extensions to the different power nonlinearities are possible, see Remark 2.3.21
for a discussion on this.

Although we solve the PDEs with an Anderson Hamiltonian which is properly shifted to result in
a positive operator, this does not cause any weaker results. As known, this shift simply causes a
phase shift (i.e. multiplication by eiCt for some constant C) in the NLS case, which one can
simply rotate back to the solution of the original equation. In the wave case one can simply add a
linear term to the equation to undo it.

In the sequel, we use H for Sobolev spaces, L for Lp-spaces and C for the Besov-Hölder spaces. As
we work either on T2 or T3 and it is very clear in what setting we consider throughout the paper,
we drop the domain parameter i.e. for H2(T3) we simply write H2; We denote the Gaussian white
noise by ξ and enhanced noise by Ξ (see Definition 2.2.3 and Theorem 2.2.33).

We reserve the letter A for the Anderson Hamiltonian and we use the letter H to denote the
operator shifted by a specific constant KΞ, namely H := A−KΞ. We denote by CΞ the constants
depending on certain norms (which will be clear from the context) of the (enhanced) noise. This
constant may change value from line to line. We use the notation X for the enhanced noise space
both in d = 2 and d = 3. We will use the phrase “form domain”(or equivalently energy domain) to
refer to the domain of the operator

√
−H throughout.
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After the completion of the present work we became aware of recent work of C. Labbé [62] where
he constructs the Anderson Hamiltonian in d ≤ 3 with Dirichlet boundary conditions using
regularity structures and produces some results about the law of its eigenvalues.

2.2 The Anderson Hamiltonian in two and three
dimensions

We collect some concepts and definitions that we will use throughout this section. Firstly we
recall the definition of Gaussian white noise on Td.

To get an intuitive description, let ξ̂(k) be i.i.d. centred complex Gaussian random variables with
ξ̂(k) = ξ̂(−k) and covariance

E(ξ̂(k)ξ̂(l)) = δk,l.

Formally the Gaussian white noise on the torus can be thought as the following random series

ξ(x) =
∑
k∈Λ

ξ̂(k)e2πik·x,

where in this section we will respectively take Λ to be Z2 and Z3\{0}. That is, in the 3d case we
simply take out the zero mode for ease of computations.

We also define the regularised spatial white noise as

ξε(x) =
∑
k∈Λ

m(εk)e2πik·xξ̂(k), (2.2.1)

where m is a smooth radial function on R\{0} with compact support such that

lim
x→0

m(x) = 1.

We also recall the Anderson Hamiltonian, which is formally the following operator

A = ∆ + ξ (2.2.2)

where ξ is the Gaussian white noise. As we have articulated in the introduction, this operator can
not be naïvely defined in L2(T2,3) because of the low Hölder regularity of ξ. The Besov-Hölder
regularity of Gaussian white noise on Td is −d2 − δ, that is ξ ∈ C−

d
2−δ almost surely, for any

positive δ > 0 [45].

Therefore, we will consider a renormalisation of this operator in the context of paracontrolled
distributions which is formally

A = ∆ + ξ −∞ (2.2.3)
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and to which we will give meaning as a suitable limit ε→ 0 of the regularised Hamiltonians

Aε = ∆ + ξε − cε, (2.2.4)

for suitably diverging constants cε.

Accordingly, in this section, we define the Anderson Hamiltonian and introduce suitable
regularisations in the setting of paracontrolled distributions in two and three dimensional torus,
respectively in the following subsections. Namely, we construct a suitable (dense) domain for the
operator and then show closedness, symmetry, self-adjointness and norm resolvent convergence (of
the regularised Hamiltonians). At the end of both 2d and 3d cases, we prove certain functional
inequalities which we will use in the PDE part of the paper, namely in Section 2.3.

2.2.1 The two dimensional case
In this part, we work on the 2d torus. We follow the same line of thought as in [3] with important
modifications. In [3] the authors worked in the 2d case but our modifications will enable us to use
similar proofs in Section 2.2.2, namely for the 3d case, and also obtain certain functional
inequalities such as the Brezis-Gallouet inequality for the Anderson Hamiltonian. In this section,
for paraproducts we use the notations “≺” and “�” and for the resonant product we use “◦”;
please see the appendix for precise definitions of the function spaces and concepts from harmonic
analysis that will be used throughout this section.

Enhanced noise, the domain and the Γ-map

In order to introduce the paracontrolled ansatz, which will enable us to define the domain of the
operator, we need the following definition.

Definition 2.2.1. For α ∈ R, we define Eα := Cα × C2α+2 and Xα as the closure of the set
{(η, η ◦ (1−∆)−1η + c) : η ∈ C∞(T2), c ∈ R} w.r.t. the Eα topology, where Cα = Bα∞∞ denotes the
Besov-Hölder space.

We refer to Xα as the space of “enhanced noise”. In some sense one needs to lift the noise into a
larger space which encodes some higher-order properties. It is desirable that this space contains
both smooth approximations to the singular noise as well as the noise itself, whose lift should be
independent of the approximation. This is the content of the following result, which was proved
in [3, Theorem 5.1].

Theorem 2.2.2. For any α < −1 we have

Ξε := (ξε, ξε ◦ (1−∆)−1ξε − cε)→ Ξ = (Ξ1,Ξ2) ∈ Xα, (2.2.5)

where the convergence holds as ε→ 0 in Lp(Ω; Eα) for all p > 1 and almost surely in Eα.
Moreover, the limit is independent of the mollifier and Ξ1 = ξ.

By this result, one can see that

‖ξ‖Cα , ‖Ξ2‖C2α+2 , ‖(1−∆)−1ξ‖Cα+2 <∞ a.s.

by Schauder estimates.
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Before we introduce the domain of the operator, we give some motivation for the enhanced noise
and the ansatz, which will appear in the following definition. Neglecting the invertibility issues(of
the Laplacian) let us formally write the Anderson Hamiltonian (applied to a domain element) as

∆u+ ξu−∞u.

We want to define this expression in L2, where “∞u” will be absorbed to the enhanced noise, as
we will demonstrate below. If we write the product uξ in its paraproduct components we have

uξ = u ≺ ξ + u � ξ + u ◦ ξ.

Recall that the paraproducts are always well defined and have the regularity of their “high” parts.
Namely, in terms of regularity, f ≺ g behaves like g where f only acts as a “modulation” to g in
large scales, as reflected in the paraproduct estimates (see Proposition 2.3.22). But as can already
be seen, the term u ≺ ξ is problematic: it has the same (low) regularity of the white noise, hence
so does ξu.

To get some intuition for the (expected) regularity of u for a domain element, we consider u to
solve the following resolvent equation for some f ∈ L2

∆u+ ξu−∞u = f.

We rewrite it as
u = (−∆)−1(−f + ξu−∞u)

which suggests that u ∈ H−1−δ+2 = H1−δ, where −1− δ comes from the Besov-Hölder regularity
of the white noise.

A reasonable first ansatz for such a u is

u = u ≺ (−∆)−1ξ + u]

for some u] ∈ H2, since the paraproduct term removes the worst contribution of the product uξ.
Then we have (using the notation ≈ to mean equal up to regular terms for clarity)

∆u+ ξu−∞u
= ∆(u ≺ (−∆)−1ξ + u]) + u ≺ ξ + u � ξ + u ◦ ξ −∞u
≈ ∆u] − u ≺ ξ + u ≺ ξ + u � ξ + u ◦ ξ −∞u
= ∆u] − u � ξ + ξ ◦ (u ≺ (−∆)−1ξ + u])−∞u
≈ ∆u] + ξ ◦ u] + (ξ ◦ (−∆)−1ξ −∞)u+ C(u, (−∆)−1ξ, ξ)

where C(u, (−∆)−1ξ, ξ) := ξ ◦ (u ≺ (−∆)−1ξ)− (ξ ◦ (−∆)−1ξ)u is the commutator from
Proposition 2.3.23. As seen, the first term in the ansatz basically lead to the cancellation of the
most irregular term u ≺ ξ. In addition, the singular term ξ ◦ (u ≺ (−∆)−1ξ) is dealt with by using
the commutator C, which has better regularity than the terms separately. We also nicely see the
appearance of the second component of the enhanced noise (ξ ◦ (−∆)−1ξ −∞) in the last step,
which was given in Definition 2.2.1 and Theorem 2.2.2.

So far, although we got rid of the bad term and defined the term u ◦ ξ, this basic ansatz alone
does not define the operator in L2, as an inspection of regularities will reveal according to
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Proposition 2.3.22. But the rest of the reasoning is similar: one identifies the singular (worse than
L2) terms and includes these terms composed with the Green’s operator in the ansatz (as we
denoted by BΞ(u) below in (2.2.6)) which induces further cancellations, similar to the case we
presented above. This way the operator can finally be defined in L2. In conclusion, the ansatz and
the commutator lead to the cancellation of the most singular term and the isolation of the noise
terms which then can be renormalised and defined in the “enhanced noise” space.

We can now recall the following definition which describes the domain of the Anderson
Hamiltonian, first introduced in [3].

Definition 2.2.3. Assume − 4
3 < α < −1 and −α2 < γ ≤ α+ 2. Then we define the space of

functions paracontrolled by the enhanced noise Ξ as follows

DγΞ := {u ∈ Hγ s.t. u = u ≺ X +BΞ(u) + u], for u] ∈ H2} (2.2.6)

where X = (1−∆)−1ξ ∈ Cα+2 and

BΞ(u) := (1−∆)−1(∆u ≺ X + 2∇u ≺ ∇X + ξ ≺ u+ u ≺ Ξ2) ∈ H2γ .

This space is equipped with the scalar product given by, u,w ∈ DγΞ,

〈u,w〉DγΞ := 〈u,w〉Hγ + 〈u], w]〉H2 .

Several remarks are in order.

Remark 2.2.4. For the rest of the paper, we set

D(A) := DγΞ.

This suggestive notation will be justified in Proposition 2.2.23, which yields the equality of
Banach Spaces (D(A), ‖ · ‖D(A)) = (DγΞ, ‖ · ‖DγΞ) where ‖ · ‖D(A) denotes the standard domain (i.e.
graph) norm.

We make the following modification of the above ansatz (2.2.6) to fit our purposes. Assume u is of
the form

u = ∆>N (u ≺ X +BΞ(u)) + u], (2.2.7)
for 2/3 < γ < 1 and ∆>N denotes a frequency cut-off at 2N , more precisely,

∆>Nf := F−1χ|·|>2NFf,

with N ∈ N which will be chosen depending on the (enhanced) noise Ξ. Where, as above, we define

BΞ(u) := (1−∆)−1(∆u ≺ X + 2∇u ≺ ∇X + ξ ≺ u+ u ≺ Ξ2). (2.2.8)

Note that by Schauder estimates we have the following bound for B,

‖BΞ(u)‖Hs .s CΞ‖u‖Hs−γ , s ∈ [0, 2γ].

Recall that CΞ denotes a constant that depends explicitly on the norm of the realization of the
enhanced noise Ξ and may change from line to line.
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Remark 2.2.5. This modification changes the decomposition by a smooth function so it does not
change the space. Strictly speaking, one obtains a different norm depending on N, which is
equivalent to the D(A) norm above. In fact, assume that for a function f and some N ≥ 1 we have

f =f ≺ X +BΞ(f) + f ]1
and
f =∆>N (f ≺ X +BΞ(f)) + f ]2.

Then we readily have the estimate

‖f ]1‖H2 =‖f − f ≺ X +BΞ(f)‖H2

=‖f −∆>N (f ≺ X +BΞ(f))−∆≤N (f ≺ X +BΞ(f))‖H2

≤‖f ]2‖H2 + C(N,Ξ)‖f‖Hγ

and analogously ‖f ]2‖H2 ≤ ‖f ]1‖H2 + C(N,Ξ)‖f‖Hγ . This proves the norm equivalence.

With this modification of the ansatz, we can write u as a function of u]. In order to do so, we
define the following linear map Γ

Γf = ∆>N (Γf ≺ X +BΞ(Γf)) + f,

so that u = Γu]. For N large enough, depending on the realization of Ξ, we can show that this
map exists and has useful bounds.
In fact, observe that the map that sends u to u] is of the form Id− “small” in Hs for s < α+ 2 by
choosing N appropriately. Then it has an inverse on Hs, which we call Γ, which is in particular
injective on H2 and H1 and thus it makes sense to define the space ΓH2 which is by construction
equal to D(A).

Remark 2.2.6. In the following, we will utilize this map Γ to show density of the domain,
symmetry and norm resolvent convergence. The key point is the map Γ can also be defined in the
3d case and be used there in a similar manner, which we will do in the 3d section.

By these considerations we can bound certain Sobolev norms of u by those of u], which is the
content of the following result.

Proposition 2.2.7. We can choose N large enough depending only on CΞ and s so that

‖Γf‖L∞ ≤ 2‖f‖L∞ , (2.2.9)

‖Γf‖Hs ≤ DΞ‖f‖Hs . (2.2.10)
for some constant DΞ for s ∈ [0, γ] and DΞ = 3 for s ∈ [0, γ).

Proof. Let us start with proving the L∞ bound. Choose δ > 0 and let g = Γf , we have

‖BΞ(g)‖Cγ−δ ≤ ‖∆g ≺ X‖Cγ−δ−2 + 2‖∇g ≺ ∇X‖Cγ−δ−2

+ ‖ξ ≺ g‖Cγ−δ−2 + ‖g ≺ Ξ2‖Cγ−δ−2

≤ 3‖g‖C−δ‖X‖Cγ + ‖ξ‖Cγ−2‖g‖C−δ
+ ‖g‖C−δ‖Ξ2‖Cγ−2 . CΞ‖g‖C−δ . CΞ‖g‖L∞
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by paraproduct estimates and the fact that ‖g‖C−δ . ‖g‖L∞ for any small δ > 0. Now we can
write,

‖g‖L∞ ≤ ‖∆>N (Γf ≺ X +BΞ(Γf))‖L∞ + ‖f‖L∞ ≤ 2(δ−γ)N‖g ≺ X +BΞ(g)‖Cγ−δ + ‖f‖L∞

≤ 2(δ−γ)N (‖X‖Cγ−δ + CδCΞ)‖g‖L∞ + ‖f‖L∞ ≤ CδCΞ2(δ−γ)N‖g‖L∞ + ‖f‖L∞
and choose N large enough so that 2CδCΞ2(δ−γ)N ≤ 1 which implies ‖g‖L∞ ≤ 2‖f‖L∞ .

For the Hs bound we can proceed more simply by noting that

‖BΞ(g)‖Hγ ≤ (3‖X‖Cγ + ‖ξ‖Cγ−2 + ‖Ξ2‖Cγ−2)‖g‖L2

and if s ≤ γ we have
‖g‖Hs ≤ CCΞ2(s−γ)N‖g‖L2 + ‖f‖Hs .

If s = 0 we can choose N large enough so that ‖g‖L2 ≤ 2‖f‖L2 and as a consequence we have also

‖g‖Hs ≤ 2CCΞ2(s−γ)N‖f‖L2 + ‖f‖Hs

for all s ≤ γ. If s < γ we can have N large enough (depending on s) so that ‖g‖Hs ≤ 3‖f‖Hs .

Remark 2.2.8. Note that DγΞ is actually independent of γ, since for γ, γ′ ∈ (2/3, 1) we can
compute

‖u‖Hγ . ‖u]‖H2 . ‖u‖Dγ′Ξ
,

and vice versa, so the DγΞ and Dγ
′

Ξ norms are equivalent and we will from now on drop the γ and
write simply DΞ. That is, we have D(A) = DΞ.

As a first step we prove that the domain of A, now defined to be D(A), is dense in L2. Before that
we note the following remark and then a lemma.

Remark 2.2.9. In the sequel, we put

Xε = (1−∆)−1ξε.

and similar to the operator Γ in Lemma 2.2.7 we define Γε as follows

Γεu := ∆>N (Γεu ≺ Xε +BΞε(Γεu)) + u],

where Ξε → Ξ in Xα. Note that we may choose N to be independent of ε.

For the above introduced Γε we prove the following lemma, which will be useful in the sequel.

Lemma 2.2.10. We have that ‖Id− ΓΓ−1
ε ‖Hγ→Hγ → 0.

Proof. For f ∈ Hγ , we can write, by using Proposition 2.2.7

‖f − ΓΓ−1
ε (f)‖Hγ = ‖Γ(f − f ≺ X +BΞ(f))− Γ(f − f ≺ Xε +BΞε(f))‖Hγ

= ‖Γ(f ≺ (Xε −X) +B(Ξε−Ξ)(f))‖Hγ
≤ DΞ‖f‖Hγ‖Ξε − Ξ‖Xα

which shows that ΓΓ−1
ε converges to Id = ΓΓ−1 in operator norm. We even get a Lipschitz

dependence on the noise.
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Corollary 2.2.11. The space D(A), as defined in Definition 2.2.3, is dense in Hγ , therefore
dense in L2.

Proof. For δ > 0 and f ∈ Hγ , we have fδ ∈ H2 s.t. ‖f − fδ‖Hγ < δ and by Lemma 2.2.10, we can
find an ε = ε(δ) s.t.

‖fδ − ΓΓ−1
ε fδ‖Hγ < δ

Since Γ−1
ε fδ ∈ H2 and thus ΓΓ−1

ε fδ ∈ D(A) we are done.

We are now in a position to define the operator A in L2 on its domain D(A).

Definition 2.2.12. We define the operator A : D(A)→ L2 as

Au := ∆u] + u] ◦ ξ +G(u), (2.2.11)

where we have defined

G(u) := ∆≤N (u ≺ ξ + u � ξ + u ≺ Ξ2)
+ ∆>N (−BΞ(u)− u ≺ X + u < Ξ2 + C(u,X, ξ)− (∆≤N (u ≺ X)) ◦ ξ +BΞ(u) ◦ ξ).

Remark 2.2.13. By using the regularities in Definition 2.2.3, one can easily check, through
Proposition 2.3.22, that Au is in fact in L2. Then, in Proposition 2.2.16 and Theorem 2.2.26 we
obtain this operator as a norm resolvent limit of Aε which motivates the informal identity

A = ∆ + ξ −∞.

In the following result, we show that the H2-norm of u] can be bounded above by the (standard)
domain norm of A.

Proposition 2.2.14. There exists a constant CΞ > 0 depending on the enhanced noise such that

‖u]‖H2 ≤ 2‖Au‖L2 + CΞ‖u‖L2 . (2.2.12)

Proof. First, we note that ∆u] ∈ L2 by assumption. For the resonant term we compute

‖u] ◦ ξ‖L2 ≤ ‖(∆≤Mu]) ◦ ξ‖L2 + ‖(∆>Mu
]) ◦ ξ‖L2

≤ CΞ22M‖u]‖L2 + ‖∆>Mu
]‖H1+δ‖ξ‖C−1−2δ (2.2.13)

for δ sufficiently small, giving, for any M ≥ 0,

‖u] ◦ ξ‖L2 .Ξ (22M‖u]‖L2 + 2(δ−1)M‖u]‖H2),

where we have used Bernstein’s inequality (Lemma 2.3.24) and Theorem 2.2.2 for the noise. Using
again Bernstein’s inequality for the low-frequency terms and the paraproduct estimates for the
high-frequency terms, we obtain the bound

‖G(u)‖L2 ≤ CΞ‖u‖Hγ ,
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for γ < 1, where the constant can be chosen as

CΞ = C22N (‖ξ‖Cα + ‖Ξ2‖C2α+2)

with α < −1 as before.

By using these, for the H2 bound, we compute

‖∆u]‖L2 ≤ ‖Au‖L2 + ‖u] ◦ ξ‖L2 + ‖G(u)‖L2 .

Now, as above we have
‖u] ◦ ξ‖L2 .Ξ (22M‖u]‖L2 + 2γM‖u]‖H2)

and
‖G(u)‖L2 .Ξ ‖u‖Hγ .Ξ ‖u]‖Hγ .Ξ ‖∆>Mu

]‖Hγ + ‖∆≤Mu]‖Hγ (2.2.14)
and using again Bernstein’s inequality for the low-frequency part we get

‖G(u)‖L2 . CΞ(22M‖u‖L2 + 2−γM‖u]‖H2)

where we have used the straightforward bound ‖u]‖L2 ≤ CΞ‖u‖L2 . Finally, choosing M large
enough (depending on Ξ), we obtain

‖u]‖H2 ≤ 2‖Au‖L2 + CΞ‖u‖L2 .

Hence the result.

Density, symmetry, self-adjointness and convergence

In the following, we show that A is a closed and symmetric operator on D(A). We first establish
closedness.

Proposition 2.2.15. We have that A is a closed operator on its dense domain D(A).

Proof. Assume (un) ⊂ D(A) is a sequence s.t.

un → u in L2

and
Aun → g in L2

for some g ∈ L2. Then u]n := Γ−1un forms a Cauchy sequence in H2 and thus converges to a limit
that we call w]. Moreover Γw] = u, so u ∈ D(A). Thus

‖Au− g‖L2 ≤ ‖Au−Aun‖L2 + ‖Aun − g‖L2

≤ ‖w] − u]n‖H2 + CΞ‖u− un‖L2 + ‖Aun − g‖L2

where the second step comes from the proof of Proposition 2.2.14, see also Proposition 2.2.23.
Since both terms on the right-hand side tend to zero as n→∞ we get Au = g, namely that A is
closed.
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Now, we are also ready to show the norm convergence of the approximating operators.

Proposition 2.2.16. Let u] ∈ H2, u = Γu] and uε = Γεu]. We have that

‖Au−Aεuε‖L2 .Ξ ‖Ξε − Ξ‖Xα‖u]‖H2 . (2.2.15)

Consequently, this implies that
‖AΓ−AεΓε‖H2→L2 → 0. (2.2.16)

That is to say, AεΓε → AΓ in norm.

Proof. By using the formula (2.2.11), we observe that all terms in Au−Aεuε are bilinear. For the
upper bound, by addition and subtraction of cross terms, one obtains terms of the form

‖Ξε − Ξ‖Xα‖u]‖H2 + ‖uε − u‖Hγ‖Ξ‖Xα . (2.2.17)

Now, recall that u = Γu], uε = Γεu]. Then we obtain terms of the form

‖Ξε − Ξ‖Xα‖u]‖H2 + ‖Γε − Γ‖H2→Hγ‖u]‖H2‖Ξ‖Xα . (2.2.18)

By using Lemma 2.2.10 and the estimate in its proof, the result (2.2.15) is now immediate.

After this we immediately obtain the symmetry of the operator.

Corollary 2.2.17. Let u, v ∈ D(A) and uε, vε ∈ H2 be as in Proposition 2.2.16. Then we obtain

〈uε, Aεvε〉 = 〈Aεuε, vε〉 → 〈Au, v〉 = 〈u,Av〉. (2.2.19)

Consequently, we have that A is a symmetric operator on its dense domain D(A).

Proof. This directly follows from Proposition 2.2.16. Using the symmetry of Aε implies the
symmetry of A through the equalities

〈u,Av〉 = lim
ε→0
〈uε, Aεvε〉 = lim

ε→0
〈Aεuε, vε〉 = 〈Au, v〉.

Hence, the result.

The next result shows that the quadratic form given by −A is, through addition of a constant,
bounded from below by the H1 norm of u]. We will later use this estimate to bound certain
norms by a (conserved) energy when dealing with the NLS and the nonlinear wave equations.

Proposition 2.2.18. There exists a constant CΞ > 0 such that

1
2 〈∇u

],∇u]〉 ≤ −〈u,Au〉+ CΞ‖u‖2L2 . (2.2.20)
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Proof. Expanding the Ansatz and integrating by parts we get

〈u,Au〉 =〈u,∆u]〉+ 〈u, u] ◦ ξ〉+ 〈u,G(u)〉
=〈∆>N (u ≺ X),∆u]〉+ 〈u],∆u]〉+ 〈u, u] ◦ ξ〉+ 〈u,G(u)〉+ 〈∆>NBΞ(u),∆u]〉
=− 〈∆>N (u ≺ ξ), u]〉+ 〈∆>N (u ≺ X), u]〉 − 〈∇u],∇u]〉+ 〈u, u] ◦ ξ〉

+ 〈u,G(u)〉+ 〈∆>N (∆u ≺ X), u]〉+ 2〈∆>N (∇u ≺ ∇X), u]〉+ 〈∆>NBΞ(u),∆u]〉
=D(u, ξ,∆>Nu

])− 〈∇u],∇u]〉+ 〈u, (∆≤Nu]) ◦ ξ〉+ 〈∆>N (u ≺ X), u]〉
+ 〈u,G(u)〉+ 〈∆>N (∆u ≺ X), u]〉+ 2〈∆>N (∇u ≺ ∇X), u]〉+ 〈∆>NBΞ(u),∆u]〉

where
D(u, ξ,∆>Nu

]) := 〈u, (∆>Nu
]) ◦ ξ〉 − 〈u ≺ ξ,∆>Nu

]〉.

Now fix a sufficiently small δ > 0, then we bound

|〈u, (∆≤Nu]) ◦ ξ〉| . 22(1+2δ)N‖ξ‖C−1−δ‖u]‖L2‖u‖L2 . CΞ22(1+2δ)N‖u‖2L2

since from the ansatz we readily have ‖u]‖L2 ≤ CΞ‖u‖L2 . Moreover

|〈u,G(u)〉| .Ξ ‖u‖2L2 + ‖u]‖2H1−δ

|〈∆u ≺ X,u]〉|+ |〈∇u ≺ ∇X,u]〉| . ‖u‖H1−δ‖X‖C1−δ‖u]‖H2δ ≤ CΞ‖u]‖2H1−δ

|〈∆>NBΞ(u),∆u]〉| = |〈∆>N∆BΞ(u), u]〉| ≤ ‖BΞ(u)‖H2−2δ‖u]‖H2δ ≤ CΞ‖u]‖2H1−δ

and similarly we bound the term 〈∆>N (u ≺ X), u]〉. By the proof of Proposition 2.3.26, we have
also

|D(u, ξ,∆>Nu
])| . ‖ξ‖C−1−δ‖u‖H(1+δ)/2‖∆>Nu

]‖H(1+δ)/2 . CΞ‖u]‖2H1−δ

Using that

‖u]‖2H1−δ . ‖∆>Mu
]‖2H1−δ + ‖∆≤Mu]‖2H1−δ . 22M(1−δ)‖u‖L2 + 2−2δM‖u]‖2H1

and choosing M large enough we can obtain that

1
2 〈∇u

],∇u]〉 ≤ −〈u,Au〉+ CΞ‖u‖2L2 .

Remark 2.2.19. One can check that the preceding analysis is valid as well for the approximate
Hamiltonians Aε, given by (2.2.4), simply by replacing the noise Ξ by its regularisation Ξε.
Moreover, since all the constants we obtain are polynomials in the Xα norm of the noise, one sees
that they can be chosen to hold uniformly in ε, since ‖Ξε‖Xα ≤ ‖Ξ‖Xα . In particular, the result in
Proposition 2.2.18 is true for Aε and Ξε for the same constant CΞ.

Now we are in a position to define the form domain of the operator. We first shift the operators A
and Aε by a constant to obtain a positive operator.
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Proposition 2.2.20. There exists a constant KΞ which is independent of ε s.t.

(KΞ −A)−1 : L2 → D(H) (2.2.21)
(KΞ −Aε)−1 : L2 → H2 (2.2.22)

are bounded.

Proof. We will prove the statement for A using a generalization of Lax-Milgram, see [4]. The
proof for Aε follows the same lines with the same constant KΞ, in virtue of Remark 2.2.19.

Fix the constant KΞ > CΞ > 0 (CΞ as in (2.2.20)) such that

‖u‖2L2 < 〈−(A−KΞ)u, u〉 ∀u ∈ D(A),

which is possible by Proposition 2.2.18.

Define the bilinear map

B : D(A)× L2 → R
B(u, v) := 〈−(A−KΞ)u, v〉,

then B is continuous, namely

|B(u, v)| . ‖u‖D(A)‖v‖L2 , ∀u ∈ D(A), v ∈ L2,

and it is weakly coercive i.e.

‖u‖D(A) = ‖ − (A−KΞ)u‖L2 = sup
‖v‖L2=1

〈−(A−KΞ)u, v〉 for any u ∈ D(A).

The last property to check is that for any 0 6= v ∈ L2,

sup
‖u‖D(A)=1

|B(u, v)| > 0.

Assume for the sake of contradiction that there is a 0 6= v ∈ L2 s.t.

|B(u, v)| = 0, ∀u ∈ D(A),

This means that
〈u, v〉D(A),D(A)∗ = 0 for all u ∈ D(A),

i.e. v = 0 in D(A)∗. But since D(A) is dense in L2, this implies v = 0 in L2 which is a
contradiction. Then the Babuska-Lax-Milgram Theorem says that for any f ∈ (L2)∗ = L2 there
exists a unique uf ∈ D(A) with

B(uf , v) = 〈f, v〉 for all v ∈ L2

with the bound ‖uf‖D(A) . ‖f‖L2 . In other words

(−A+KΞ)−1 : L2 → D(A)

is bounded.
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Definition 2.2.21. We define the following shifted operators

Hε := Aε −KΞ

H := A−KΞ.

We are now in a position to use the above estimates to give a characterisation of the domain and
the form domain of H in terms of standard Sobolev norms of u]. Firstly, we define the form
domain.

Definition 2.2.22. The form domain of H, that we denote as D(
√
−H), is defined as the closure

of the domain under the following norm

‖u‖D(
√
−H) :=

√
〈u,−Hu〉.

Proposition 2.2.23.

1. Γu] ∈ D(H)⇔ u] ∈ H2, where Γ is the map from Proposition 2.2.7. More precisely, on D(H)
we have the following norm equivalence

‖u]‖H2 . ‖HΓu]‖L2 . ‖u]‖H2. (2.2.23)

2. Γu] ∈ D(
√
−H)⇔ u] ∈ H1, where the form domain of −H is given by the closure of D(H)

under the norm
‖Γu]‖D(

√
−H) :=

√
〈Γu],−HΓu]〉. (2.2.24)

We will see in the following that the operator −H is self-adjoint and positive, so this is in fact
a norm. Then the precise statement is that on D(H) the following norm equivalence holds

‖u]‖H1 . ‖Γu]‖D(
√
−H) . ‖u

]‖H1 ,

and hence the closures with respect to the two norms coincide.

Proof. 1. The first inequality in (2.2.23) follows directly from (2.2.12) and the second by first
expanding using (2.2.11) and then estimating as in the proof of Theorem 2.2.14.

2. In (2.2.24), the first inequality follows directly from the Proposition 2.2.18. For the second
term, one plugs in the definition (2.2.11) and then the only non-trivial term is 〈u] ◦ ξ, u]〉.
For this term, we also have

|〈u] ◦ ξ, u]〉| ≤ CΞ‖u]‖2H1

by similar arguments as in the proof of Proposition 2.2.18.

In order to show self-adjointness we would like to use the following result.

Proposition 2.2.24. [70, X.1] A closed symmetric operator on a Hilbert space H is self-adjoint
if it has at least one real number in its resolvent set.
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Now, we can show self-adjointness.

Lemma 2.2.25. The operators H : D(H)→ L2 and Hε : H2 → L2 from Definition 2.2.21 are
self-adjoint.

Proof. This follows from Proposition 2.2.24. Observe that Proposition 2.2.20 implies KΞ is in the
resolvent of A and Aε. The result follows.

Now, in Theorem 2.2.26, we prove the norm resolvent convergence of the operators Hε to H. This
result was obtained in [3, Lemma 4.15] but we give a simplified proof in our framework which can
also be applied in the 3d case mutatis mutandis.

Theorem 2.2.26. We have

‖H−1 −H−1
ε ‖L2→Hγ . ‖Ξ− Ξε‖Xα

In other words Hε converges to H in the norm resolvent sense.

Proof. Recall that Γ : H2 → D(H) and Γε : H2 → H2 in which case we have Γ−1 : D(H)→ H2

and Γ−1
ε : H2 → H2 . Recall that in Proposition 2.2.16 we obtained

‖HεΓε −HΓ‖H2→L2 . ‖Ξ− Ξε‖Xα

This implies the bound on the resolvents

‖Γ−1
ε H−1

ε − Γ−1H−1‖L2→H2 . ‖Ξ− Ξε‖Xα

To conclude, by using Proposition 2.2.7 we can write the estimate

‖H−1 −H−1
ε ‖L2→Hγ . ‖Γ−1H−1 − Γ−1H−1

ε ‖L2→Hγ

. ‖Γ−1H−1 − Γ−1
ε H−1

ε ‖L2→Hγ + ‖(Γ−1
ε − Γ−1)H−1

ε ‖L2→Hγ

. ‖Ξ− Ξε‖Xα

Hence, the result.

We recall a fundamental result about the functional calculus of self-adjoint operators applied to
our situation.

Corollary 2.2.27 (cfr. [71], VIII.20). For any bounded continuous function f : [0,∞)→ C we get

f(Hε)g → f(H)g in L2

for any g ∈ L2 i.e. strong operator convergence.
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Functional inequalities

In this section, we obtain certain inequalities for the Anderson Hamiltonian which will be crucial
when we study related PDEs.

The first one is an Lp-embedding result.

Lemma 2.2.28 (Lp estimates). For u ∈ D(
√
−H) and p ∈ [1,∞) we have

‖u‖Lp .Ξ ‖u‖D(
√
−H). (2.2.25)

Moreover, for v ∈ D(
√
−Hε) = H1, we have

‖v‖Lp .Ξ ‖v‖D(
√
−Hε), (2.2.26)

the point being that the constant may be chosen uniformly in ε.

Proof. For p <∞ and δ(p) > 0 small enough we have by Sobolev embedding and Propositions
2.2.7 and 2.2.23

‖u‖Lp . ‖u‖H1−δ . ‖u]‖H1−δ . ‖u]‖H1 .Ξ ‖
√
−Hu‖L2 .Ξ ‖u‖D(

√
−H).

and by Remark 2.2.19, the same computation works for the second inequality with constants
independent of ε.

In light of Proposition 2.2.23, the following result is an analogue of the embedding H2 ⊂ L∞ in 2d.

Lemma 2.2.29. For u ∈ D(H) we have

‖u‖L∞ .Ξ ‖Hu‖L2 .

Moreover, for any α < 1 one has
‖u‖Cα .Ξ ‖Hu‖L2 .

Proof. By using the Sobolev to Hölder embedding H2 ⊂ Cα and Propositions 2.2.7 and 2.2.23 we
have the following chain of inequalities:

‖u‖Cα .Ξ ‖u]‖Cα .Ξ ‖u]‖H2 .Ξ ‖Hu‖L2 ,

using that the L∞ bound is simply the case α = 0.
Hence, the result.

In addition to the above result, we can also prove an inequality that, in some sense, interpolates
the L∞-norm between the energy norm and the logarithm of the domain norm. Namely, we prove
a version of Brezis-Gallouet inequality for the Anderson Hamiltonian. We first recall below the
original version of the inequality.

Theorem 2.2.30. [15] Let Ω be a domain in R2 with smooth boundary. Then, for v ∈ H2(Ω) we
have

‖v‖L∞ ≤ C
(

1 +
√

1 + log(1 + ‖v‖H2)
)
.

for every v that satisfies ‖v‖H1(Ω) ≤ 1.
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Our version for the Anderson Hamiltonian is as follows.

Theorem 2.2.31. For v ∈ D(H) we have

‖v‖L∞ .Ξ ‖v‖D(
√
−H)

(
1 +

√
1 + log(1 +

‖v‖D(H)

‖v‖D(
√
−H)

)
)
.

As a corollary, we obtain, for v ∈ D(Hε) = H2,

‖v‖L∞ .Ξ ‖
√
−Hεv‖L2

(
1 +

√
1 + log(1 + ‖Hεv‖L2

‖
√
−Hεv‖L2

)
)
,

where the constant depends on the limiting noise Ξ and can be chosen independently of ε.

Proof. After fixing v ∈ H2 with ‖v‖H1 ≤ 1 we start by observing that for any M > 0,which will be
fixed later, we have

‖v‖L∞ ≤ ‖∆≤Mv‖L∞ + ‖∆>Mv‖L∞ .
By Bernstein’s inequalities, Lemma 2.3.24 (in d = 2), we can bound

‖∆≤Mv‖L∞ ≤
M−1∑
i=0
‖∆iv‖L∞ + ‖∆−1v‖L∞ .

M−1∑
i=0

2i‖∆iv‖L2 + 1

.
M−1∑
i=0
‖∆iv‖H1 + 1 .

(
M−1∑
i=0

1
) 1

2

‖v‖H1 + 1 .M
1
2 + 1

On the other hand, one can use the embedding H 3
2 ↪→ L∞ we have

‖∆>Mv‖L∞ . ‖∆>Mv‖H 3
2
. 2−M2 ‖v‖H2

so
‖v‖L∞ . 1 +M

1
2 + 2−M2 ‖v‖H2 .

Now we choose M s.t.
2−M2 =

√
1 + log(1 + ‖v‖H2)

1 + ‖v‖H2

since the fraction is clearly less than one this is in fact possible. This leads us to a bound like

M . log(1 + ‖v‖H2)

and thus we can conclude

‖v‖L∞ . 1 +
√

1 + log(1 + ‖v‖H2).

By using this and Propositions 2.2.18, and 2.2.7, we obtain

‖v‖L∞ .Ξ ‖v]‖L∞ .Ξ ‖v]‖H1

(
1 +

√
1 + log(1 + ‖v

]‖H2

‖v]‖H1
)
)

.Ξ ‖v‖D(
√
−H)

(
1 +

√
1 + log(1 +

‖v‖D(H)

‖v‖D(
√
−H)

)
)

34 Chapter 2 Immanuel Zachhuber



Hyperbolic and dispersive singular stochastic PDEs

By Remark 2.2.19, the same estimates as for D(H) are also true for D(Hε), in particular the
estimates in Proposition 2.2.18 hold with constants independent of ε.

2.2.2 The three-dimensional case
In this section we study the Anderson Hamiltonian in 3d. As in the 2d case we will perform a
paracontrolled analysis of the Anderson Hamiltonian, however this case is more technical since the
noise term has the lower Hölder regularity of C−3/2−. This means a paracontrolled ansatz as in
the 2-d case is insufficient. We follow a two step procedure for defining the operator. As a first
step, similarly to [30], we perform an exponential transformation depending on the noise and as a
second step we make an ansatz for the transformed operator using Paracontrolled Distributions.

Enhanced noise in 3d

Recall that in the 2d case we needed to define the space of enhanced noise (see Def. 2.2.1), namely
Xα, for the renormalisation. In this section we define the analogue of this space in the 3d case.

The following results prove that X = (−∆)−1ξ can be lifted to an element Ξ in the space Xα of
enhanced distributions such that all the stochastic terms we will need for the ansatz in the next
section exist with correct regularities. In sequel, we construct the enhanced white noise space in
3d and prove related approximation results. In particular, we show that the lifts Ξε (of the
regularised noise ξε) converge to an element– which we denote by Ξ– in Xα.

Definition 2.2.32. For 0 < α < 1
2 , we define the space Xα to be the closure of the set{(

φ, φa , φ , φ , φb ,∇φ ◦ ∇φ
)

: (a, b) ∈ R2, φ ∈ C2(T3)
}

with respect to the Cα(T3)× C2α(T3)× Cα+1(T3)× Cα+1(T3)× C4α(T3)× C2α−1(T3) norm. Here,
we defined

φa := (1−∆)−1(|∇φ|2 − a)

φ := 2(1−∆)−1(∇φ · ∇φa )

φ := (1−∆)−1(∇φ · ∇φ )
φb := (1−∆)−1(|∇φa |2 − b).

Theorem 2.2.33. For ξε given by (2.2.1) we define

Xε = (−∆)−1ξε

Xε = (1−∆)−1(|∇Xε|2 − c1ε)

Xε = 2(1−∆)−1(∇Xε · ∇Xε )

Xε = (1−∆)−1(∇Xε · ∇Xε )
Xε = (1−∆)−1(|∇Xε |2 − c2ε),
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where the cε are diverging constants which can be chosen as

c1ε =
∑

k∈Z3\{0}

|m(εk)|2
|k|2

∼ 1
ε

c2ε =
∑

k1,k2 6=0
|m(εk1)|2|m(εk2)|2 |k1 · k2|

|k1 − k2|2|k1|4|k2|2
∼
(

log 1
ε

)2
.

Then the sequence Ξε ∈ Xα, given by

Ξε := (Xε, Xε , Xε , Xε , Xε ,∇Xε ◦ ∇Xε )

converges a.s. to a unique limit Ξ ∈ Xα , given by

Ξ := (X,X ,X ,X ,X ,∇X ◦ ∇X ), (2.2.27)

where

X = (−∆)−1ξ

X = (1−∆)−1(: |∇X| :2)

X = 2(1−∆)−1(∇X · ∇X )

X = (1−∆)−1(∇X · ∇X )
X = (1−∆)−1(: |∇X | :2).

Proof. We omit the proof, which goes in a similar way to Theorem 7.11 in [21] (see also Chapter 9
of [48]). Note that their estimates are for the parabolic case, but by using the resolvent identity

� ∞
0

e−tet∆dt = (1−∆)−1,

one can easily adapt their computations to our setting, essentially by multiplying by e−t and
integrating over t. This, in particular, implies that the diverging constants are the same. Note
that the last term in our enhanced noise (2.2.27) is slightly different from the one in [21]. However
one can easily show that the most singular part of ∇X ◦ ∇X is given by ∇X ◦ ∇(1−∆)−1∇X,
which is the term from [21]. In fact, we have

∇X ◦ ∇X =∇X ◦ ∇(1−∆)−1
(
∇X ≺ ∇X +∇X ≺ ∇X +∇X ◦ ∇X

)
=∇X ◦ (1−∆)−1

(
∇
(
∇X ≺ ∇X +∇X ◦ ∇X

)
+∇2X ≺ ∇X

)
+∇X ◦ (1−∆)−1

(
∇X ≺ ∇2X

)
,

where first expression makes sense assuming the correct regularity for the other stochastic terms.
For the second term, we apply the commutator Lemma 2.3.28 (or more precisely its Hölder
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version) and Proposition 2.3.23. We compute

∇X ◦ (1−∆)−1
(
∇X ≺ ∇2X

)
= ∇X ◦

(
∇X ≺ (1−∆)−1∇2X +R

(
∇X ,∇2X

))
= ∇X (∇X ◦ ∇(1−∆)−1∇X) + C

(
∇X , (1−∆)−1∇2X,∇X

)
+∇X ◦R

(
∇X ,∇2X

)
.

This proves that ∇X ◦ ∇(1−∆)−1∇X ∈ C2α−1 which in turn implies that ∇X ◦ ∇X ∈ C2α−1.
Thus our result follows from Theorem 7.11 in [21].
See also Theorems 9.1 and 9.3 in [48] where a similar renormalization was performed with 1d
space-time white noise which has the same regularity as 3d spatial white noise.

Lemma 2.2.34. Let α,X,X ,X ,Xε, Xε , Xε be as above, then
eX ∈ Cα, eX ∈ C2α, eX ∈ Cα+1 and

eXε → eX in Cα

eXε → eX in C2α

eXε → eX in Cα+1.

Proof. We prove the result for X, the others are proved in the same way. Since α > 0, we use the
equivalent classical Hölder norms on Cα. One easily sees that the spaces Cα are Banach Algebras,
so eX =

∑
n≥0

1
n!X

n ∈ Cα and since Xε → X in Cα, we can estimate

‖eX − eXε‖Cα ≤ ‖eX‖Cα‖1− eXε−X‖Cα = ‖eX‖Cα

∥∥∥∥∥∥
∑
n≥1

1
n! (Xε −X)n

∥∥∥∥∥∥
Cα

≤ ‖eX‖Cα(e‖Xε−X‖Cα − 1),

and conclude that eXε → eX in Cα.

Lemma 2.2.35. For α,X,X as above, W := X +X +X and

Z = (1−∆)−1
(∣∣∣∇X ∣∣∣2 + 2∇X · ∇X −X −X

)
+X + 2X .

we have
∇eX · ∇eX ∈ Cα−1,

which implies that e2W (1−∆)Z ∈ Cα−1.

Proof. We use paralinearisation, see Lemma 2.3.25, to rewrite

eX = eX ≺ X + g]

eX = eX ≺ X + f ],
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where g] ∈ C2α and f ] ∈ C2α+1. Thus,
∇eX = (∇eX) ≺ X + eX ≺ ∇X +∇g]

and

∇eX =
(
∇eX

)
≺ X + eX ≺ ∇X +∇f ].

Note that the only problematic term in the product is

(eX ≺ ∇X)(eX ≺ ∇X ). (2.2.28)
More precisely, we only have to make sense of the resonant product in (2.2.28) since the
paraproducts are always defined. We compute

(eX ≺ ∇X) ◦
(
eX ≺ ∇X

)
=eX

(
∇X ◦ (eX ≺ ∇X)

)
+ C

(
eX ,∇X , (eX ≺ ∇X)

)
=eX+X

(
∇X ◦ ∇X

)
+ eX C

(
eX ,∇X,∇X

)
+ C

(
eX ,∇X , (eX ≺ ∇X)

)
.

Now, since ∇X ◦ ∇X is assumed to be in C2α−1, the above resonant product is also in C2α−1.

This finishes the proof that ∇eX ·∇eX ∈ Cα−1. Moreover, by reinserting the definitions we obtain
e2W (1−∆)Z

= e2X+2X +2X
(

:
∣∣∣∇X ∣∣∣2 : +

∣∣∣∇X ∣∣∣2 + 2∇X · ∇X + 2∇X · ∇X −X −X
)

= e2X+2X +2X
(

:
∣∣∣∇X ∣∣∣2 : +

∣∣∣∇X ∣∣∣2 + 2∇X · ∇X −X −X
)

+ 1
2e

2X ∇
(
e2X)∇(e2X

)
by using the previous computations and the fact that all the terms in the first bracket have
regularity at least 2α− 1. We can finally conclude that

‖e2W (1−∆)Z‖Cα−1 . ‖e2W ‖Cα‖Ξ‖Xα .

The domain, the Γ-map and the definition of the 3-d Hamiltonian

In this section, building on our work in Section 2.2.2, we perform the renormalisation of the
Anderson Hamiltonian in 3d. Recall the following quantities we introduced and justified in
Section 2.2.2.

X = (−∆)−1ξ(x) ∈ C1/2−

X = (1−∆)−1 : |∇X|2 :∈ C1− X = 2(1−∆)−1
(
∇X · ∇X

)
∈ C3/2−

X = (1−∆)−1
(
∇X · ∇X

)
∈ C3/2− X = (1−∆)−1 :

∣∣∣∇X ∣∣∣2 :∈ C2−.
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In the following, we first motivate the ansatz via formal calculations and then conclude rigorously
in Definition 2.2.37.

Initially we make the following ansatz for the domain of the Hamiltonian

u = eX+X +X u[,

where the form of u[ will be specified later. We begin by computing

∆u+ uξ =eX+X +X
(

∆
(
X +X +X

)
u[ +

∣∣∣∇(X +X +X
)∣∣∣2 u[

+ ∆u[ + 2∇
(
X +X +X

)
∇u[ + u[ξ

)
=eX+X +X

(
∆u[ +

(
|∇X|2− : |∇X|2 : +

∣∣∣∇X ∣∣∣2 +
∣∣∣∇X ∣∣∣2

+ 2∇X · ∇X + 2∇X · ∇X −X −X
)
u[ + 2∇

(
X +X +X

)
· ∇u[

)
.

Note that the regularity of X is too low for the term
∣∣∇X ∣∣2 to be defined so we have to replace

it by by its Wick ordered version, also note the appearing difference |∇X|2− : |∇X|2 : . Here one
sees the two divergences that arise, since we formally have

: |∇X|2 : = |∇X|2 −∞, :
∣∣∣∇X ∣∣∣2 :=

∣∣∣∇X ∣∣∣2 −∞.
However, this notation is somewhat misleading since the rate of divergence is different in both
cases, recall the constants cε1 and cε2 from Theorem 2.2.33. This again suggests that, as in 2d, the
renormalised Hamiltonian can be formally written in the suggestive form

A = ∆ + ξ −∞.

We set
Au = A(eWu[) = eW (∆u[ + 2(1−∆)W̃ · ∇u[ + (1−∆)Zu[), (2.2.29)

for functions u[ for which this expression makes sense, for brevity we have set

W = X +X +X

W̃ = (1−∆)−1∇W

Z = (1−∆)−1
(∣∣∣∇X ∣∣∣2 + 2∇X · ∇X −X −X

)
+X + 2X .

As we have seen in Section 2.2.2, these stochastic terms have the following regularities

X,W ∈ C1/2−, X ∈ C1−, X ,X , W̃ , Z ∈ C3/2− and X ∈ C2−.

This suggests to make a paracontrolled ansatz for u[ in terms of Z and W̃ since the products
appearing are classically ill-defined. In fact, we make the following ansatz

u[ = u[ ≺ Z +∇u[ ≺ W̃ +BΞ(u[) + u], (2.2.30)
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with u] ∈ H2 and for a correction term that we denote by BΞ(u[). Into the correction term we
will absorb the terms which have regularity not worse than H2−. Similarly to the 2d case, we will
introduce a frequency cut-off that will allow us to write u[ as a function of u] but, in order not to
overburden the notation, we will omit this for the time being.

For the remainder of this section, we define

L := (1−∆) and L−1 = (1−∆)−1.

Note that the ansatz (2.2.30) directly implies u[ ∈ H3/2− by the paraproduct estimates in Lemma
2.3.22.

We want to determine the form of the corrector term BΞ(u[) in (2.2.30). We first compute

∆u[ =∆u[ ≺ Z + 2∇u[ ≺ ∇Z + u[ ≺ ∆Z +∇∆u[ ≺ W̃ + 2∇2u[ ≺ ∇W̃

+∇u[ ≺ ∆W̃ + ∆BΞ + ∆u]

=∆u[ ≺ Z + 2∇u[ ≺ ∇Z − u[ ≺ (LZ − Z) +∇∆u[ ≺ W̃ + 2∇2u[ ≺ ∇W̃

−∇u[ ≺ (LW̃ − W̃ )− LBΞ(u[)−BΞ(u[) + ∆u].

By using the paraproduct decomposition, we obtain

∆u[ + 2LW̃ · ∇u[ + LZu[ = ∆u] + G̃(u[) + 2LW̃ ◦ ∇u[ + LZ ◦ u[, (2.2.31)

where we have defined

G̃(u[) :=∆u[ ≺ Z + 2∇u[ ≺ ∇Z + u[ ≺ Z +∇∆u[ ≺ W̃ + 2∇2u[ ≺ ∇W̃ +∇u[ ≺ W̃
− LBΞ(u[)−BΞ(u[) + 2LW̃ ≺ ∇u[ + LZ ≺ u[.

These are the “non-problematic” terms that can also be absorbed into BΞ. We still have to take
care of the resonant product LW̃ ◦ ∇u[, which is not a priori defined and the other resonant
product which is actually defined as is, but we shall see at a later time that it is necessary to
decompose it further. To be precise, we insert the ansatz and use Proposition 2.3.23

LW̃ ◦ ∇u[ =LW̃ ◦ (∇u[ ≺ Z + u[ ≺ ∇Z +∇2u[ ≺ W̃ +∇u[ ≺ ∇W̃ +∇BΞ(u[) +∇u])
=∇u[(LW̃ ◦ Z) + C(∇u[, Z, LW̃ ) + u[(LW̃ ◦ ∇Z) + C(u[,∇Z,LW̃ )

+ LW̃ ◦ (∇2u[ ≺ W̃ ) +∇u[(LW̃ ◦ ∇W̃ )
+ C(∇u[,∇W̃ , LW̃ ) + LW̃ ◦ (∇BΞ(u[) +∇u]).

In section 2.2.2 we have seen that the following stochastic terms can be defined and have regularity

LW̃ ◦ Z ∈ C1−

LW̃ ◦ ∇Z ∈ C0−

LW̃ ◦ ∇W̃ ∈ C0−.
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We furthermore expand the products appearing above as

LW̃ ◦ ∇u[

= ∇u[ ≺ (LW̃ ◦ Z) +∇u[ < (LW̃ ◦ Z) + C(∇u[, Z, LW̃ ) + u[ ≺ (LW̃ ◦ ∇Z)
+ u[ < (LW̃ ◦ ∇Z) + C(u[,∇Z,LW̃ ) + LW̃ ◦ (∇2u[ ≺ W̃ ) +∇u[ ≺ (LW̃ ◦ ∇W̃ )
+∇u[ < (LW̃ ◦ ∇W̃ ) + C(∇u[,∇W̃ , LW̃ ) + LW̃ ◦ (∇BΞ(u[) +∇u]).

For the other resonant product in (2.2.31), we do the same and get

LZ ◦ u[ =u[ ≺ (LZ ◦ Z) + u[ < (LZ ◦ Z) + C(u[, Z, LZ) +∇u[ ≺ (LZ ◦ W̃ )
+∇u[ < (LZ ◦ W̃ ) + C(∇u[, W̃ , LZ) + LZ ◦ (BΞ(u[) + u]).

Now we are in a position to give the precise definition of the correction term; we put

BΞ(u[) := L−1
[
∆u[ ≺ Z + 2∇u[ ≺ ∇Z + u[ ≺ Z +∇∆u[ ≺ W̃ + 2∇2u[ ≺ ∇W̃

−∇u[ ≺ W̃ + 2LW̃ ≺ ∇u[ + LZ ≺ u[

+ 2∇u[ ≺ (LW̃ ◦ Z) + 2∇u[ � (LW̃ ◦ Z)
+ 2u[ ≺ (LW̃ ◦ ∇Z) + 2u[ � (LW̃ ◦ ∇Z) + 2∇u[ ≺ (LW̃ ◦ ∇W̃ )
+ 2∇u[ � (LW̃ ◦ ∇W̃ ) + u[ ≺ (LZ ◦ Z) + u[ � (LZ ◦ Z)

+ ∇u[ ≺ (LZ ◦ W̃ ) +∇u[ � (LZ ◦ W̃ )
]
.

(2.2.32)

Using again the paraproduct estimates from Lemma 2.3.22, one sees that the terms in the
brackets are at least of regularity H0−, which implies BΞ(u[) ∈ H2−. We make this precise in the
following result.

Lemma 2.2.36. Let BΞ be defined as above, then we have the following bounds for σ < 2 and
ε > 0

1. ‖BΞ(v)‖Hσ ≤ CΞ‖v‖Hσ−1/2+ε

2. ‖BΞ(v)‖Cσ ≤ CΞ‖v‖Cσ−1/2 ,

where for the the constant we can choose CΞ = C‖Ξ‖Xσ−3/2 , see Definition 2.2.32 for the precise
definition of the norm and C > 0 is an independent constant.

Proof. This follows from the paraproduct estimates, Lemma 2.3.22, for the first case. The second
case works precisely in the same way using the paraproduct estimates for Besov-Hölder spaces and
Schauder estimates, see e.g. [45].

Finally we collect everything in the following rigorous definition which describes the domain of the
Anderson Hamiltonian.

Definition 2.2.37. Let W, W̃ , Z be as above. Then, for 1 < γ < 3/2, we define the space

Wγ
Ξ := eWUγΞ := eW {u[ ∈ Hγ s.t. u[ = u[ ≺ Z +∇u[ ≺ W̃ +BΞ(u[) + u], for u] ∈ H2},
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where BΞ(u[) is as in (2.2.32).We furthermore equip the space with the scalar product given by,
for u,w ∈ Wγ

Ξ,
〈u,w〉Wγ

Ξ
:= 〈u[, w[〉Hγ + 〈u], w]〉H2 .

Given u = eWu[ ∈ Wγ
Ξ we define the renormalised Anderson Hamiltonian acting on u in the

following way

Au = eW (∆u] + LZ ◦ u] + 2LW̃ ◦ ∇u] +G(u[)), (2.2.33)

where

G(u[) :=BΞ(u[) + 2∇u[ ◦ (LW̃ ◦ Z) + 2C(∇u[, Z, LW̃ ) + u[ ◦ (LW̃ ◦ ∇Z)
+ C(u[,∇Z,LW̃ ) + 2LW̃ ◦ (∇2u[ ≺ W̃ )
+ 2∇u[ ◦ (LW̃ ◦ ∇W̃ ) + 2C(∇u[,∇W̃ , LW̃ ) + 2LW̃ ◦ ∇BΞ(u[)

and C denotes the commutator from Proposition 2.3.23. Note that this definition is equivalent to
(2.2.29) by construction.

After this definition, some remarks are in order.

Remark 2.2.38. In view of (2.2.29), for regularised white noise ξε, we set

Aεu := eWε(∆u[ + 2(1−∆)W̃ε · ∇u[ + (1−∆)Zεu[) (2.2.34)
= ∆u+ ξεu− (c1ε + c2ε)u, (2.2.35)

where we have defined

Wε =Xε +Xε +Xε

Xε =(−∆)−1ξε

Xε =(1−∆)−1(|∇Xε|2 − c1ε)

Xε =2(1−∆)−1
(
∇Xε · ∇Xε

)
W̃ε =(1−∆)−1∇Wε

Zε =(1−∆)−1
(
|∇Xε |2 − c2ε + |∇Xε |2 + 2∇Xε · ∇Xε + 2∇Xε · ∇Xε −Xε −Xε

)
and

u[ :=e−Wεu.

Recall that the renormalisation constants, from Theorem 2.2.33, are

c1ε = O(ε−1) and c2ε = O(log ε).

Observe that this now makes the constant cε in (2.2.4) precise as cε = c1ε + c2ε.

Remark 2.2.39. As in the 2d case, the space Wγ
Ξ is actually independent of γ and we will denote

it simply by WΞ. Moreover, one can introduce a Fourier cut-off ∆>N at level 2N and write

u[ = ∆>N (u[ ≺ Z +∇u[ ≺ W̃ +BΞ(u[)) + u]. (2.2.36)

This again does not change the space, see Remark 2.2.5 for the analogous argument in 2d.
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We set up some suggestive notation in the following remark, namely that WΞ will turn out to be
the domain of A.

Remark 2.2.40. Similarly to Remark 2.2.4, we introduce the notation

D(A) :=WΞ

which will be justified later.

We can furthermore introduce the 3d-version of the Γ-map; we use the same notation since there
is never any danger of mistaking the two. We define the linear map Γ as

Γf = ∆>N (Γf ≺ Z +∇(Γf) ≺ W̃ +BΞ(Γf)) + f, (2.2.37)

i.e. the inverse of the modified paracontrolled ansatz. This allows us to write u[ = Γu]. Similarly
to the 2d case, for N large enough depending on the Xα norm of Ξ, we can show this map exists
and has useful bounds and obtain the following generalisation of Proposition 2.2.7 to 3d.

Proposition 2.2.41. We can choose N large enough depending only on Ξ and s so that

‖Γf‖L∞ ≤ 2‖f‖L∞ , (2.2.38)

‖Γf‖Hs ≤ 2‖f‖Hs , (2.2.39)

for s ∈
[
0, 3

2
)
.

Proof. With slight modifications, the proof is basically the same as in the 2d case, namely
Propostion 2.2.7. For (2.2.38), choose again a small δ > 0, then

‖Γf‖L∞ ≤ ‖f‖L∞ + ‖∆>N (Γf ≺ Z +∇(Γf) ≺ W̃ +BΞ(Γf))‖Cδ
≤ ‖f‖L∞ + 2−δN‖Γf ≺ Z +∇(Γf) ≺ W̃ +BΞ(Γf)‖C2δ

and
‖Γf ≺ Z‖C2δ . ‖Γf‖C−δ‖Z‖C3δ . CΞ‖Γf‖L∞

‖∇Γf ≺ W̃‖C2δ . ‖∇(Γf)‖C−1−δ‖W̃‖C1+3δ . CΞ‖Γf‖L∞
‖BΞ(Γf)‖C2δ . CΞ‖Γf‖C2δ−1/2 . CΞ‖Γf‖L∞,

which allows us to conclude by choosing N large enough depending on the norm of the enhanced
noise Ξ. The proof of the Sobolev case is similar.

Remark 2.2.42. Analogously to Remark 2.2.9, we define Γε, using the approximations in
Theorem 3.6.5.

By using the map Γ we can obtain an analysis very similar to the 2d case. To begin with, we state
the following result about the convergence in norm of the Γε to Γ and conclude this section.

Lemma 2.2.43. Let γ be as in Definition 2.2.37. We have that ‖id− ΓΓ−1
ε ‖Hγ→Hγ → 0.

Proof. The proof is very similar to that of Lemma 2.2.10.
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Density, symmetry and self-adjointness

Firstly, we prove the density of the domain of A, as stated in Definition 2.2.37.

Proposition 2.2.44. Let β < 1/2, then the space WΞ, as introduced in Definition 2.2.37 is dense
in Hβ and thus dense in L2.

Proof. For an element g ∈ Hβ we first approximate it by

eW e−Wεg,

next we approximate e−Wεg by an H2 function fδ s.t. ‖e−Wεg − fδ‖Hβ < δ. Lastly we
approximate fδ by

ΓΓ−1
ε fδ,

which is close to fδ in Hβ . Hence, for arbitrary g ∈ Hβ we can construct the element eWΓΓ−1
ε fδ

which is close to g in Hβ .

The following is an analogue of Theorem 2.2.14 for the 3d Hamiltonian.

Theorem 2.2.45. The renormalised Anderson Hamiltonian A : D(A)→ L2 is a bounded operator
and we get the following H2 bound for u]

‖u]‖H2 . ‖e−WAu‖L2 + CΞ‖u[‖L2 . (2.2.40)

Similarly we get the bound
‖Au‖L2 . CΞ(‖u]‖H2 + ‖u‖L2).

Proof. By the definition of A we have

e−WAu = ∆u] + LZ ◦ u] + 2LW̃ ◦ ∇u] +G(u[),

then we estimate

‖LZ ◦ u]‖L2 . ‖Z‖C3/2−δ‖u]‖H1/2+2δ ≤ Cε,δCΞ‖u[‖L2 + ε‖u]‖H2

and
‖LW̃ ◦ ∇u]‖L2 . ‖W̃‖C3/2−δ‖u]‖H3/2+2δ ≤ Cε,δCΞ‖u[‖L2 + ε‖u]‖H2

for any ε > 0 using Young’s inequality, Sobolev interpolation, and the straightforward bound
‖u]‖L2 ≤ CΞ‖u[‖L2. Moreover we bound G(u[) via

‖G(u[)‖L2 ≤ CΞ‖u[‖H1+δ ≤ Cε,δCΞ‖u[‖L2 + ε‖u]‖H2 ,

where the first estimate follows from the paraproduct estimates, Proposition 2.3.22, and the
commutator bounds (Proposition 2.3.23). This allows us to conclude

‖Au‖L2 = ‖eW e−WAu‖L2 ≤ ‖eW ‖L∞‖e−WAu‖L2 ≤ CΞ(‖u]‖H2 + ‖u[‖L2), (2.2.41)
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and, in a similar manner,

‖u]‖H2 ≤ ‖e−WAu‖L2 + ‖LZ ◦ u] + 2LW̃ ◦ ∇u]‖L2

≤ ‖e−WAu‖L2 + CΞ‖u[‖L2 + 1
2‖u

]‖H2 ,

using the above bounds.

Proposition 2.2.46. We have that A is a closed operator over its dense domain D(A).

Proof. For un ∈ D(A), suppose that

un → u

Aun → g.

Then, by (2.2.40), we have that u]n is a Cauchy sequence and ‖w − u]n‖H2 → 0 for some w. We
observe that then u = eWΓw, that is u ∈ D(A). After that, writing the same estimate in the end
of the proof of Proposition 2.2.15 concludes the proof, this time utilising (2.2.41) instead.

For the domain what we know is D(A) ⊂ eWHγ . But in the sequel we will need a precise
approximation by smooth elements in H2.

Proposition 2.2.47. For every u ∈ D(A) there exists uε ∈ H2 such that

‖u[ − u[ε‖Hγ + ‖u] − u]ε‖H2 → 0

as ε→ 0. For u, v ∈ D(A), with approximations uε, vε as above, we obtain

〈Aεuε, vε〉 → 〈Au, v〉.

Consequently, A is a closed symmetric operator.

Proof. The proof is similar to that of 2d case, this time using Proposition 2.2.41. In this case, for
u] = u]ε ∈ H2, we take u[ε = Γεu] and uε = eWεΓεu] for the approximations. We omit the
details.

Before we introduce the resolvent and the form domain we need the following result.

Proposition 2.2.48. Let W be as above, then there exists a constant CΞ > 0 such that

‖∇u[‖2L2 . ‖e−2W ‖L∞(−〈u,Au〉+ CΞ‖u‖L2),

where u = eWu[ ∈ D(A).

Proof. Using (2.2.29), we write

〈u,Au〉 = 〈e2Wu[,∆u[ + 2∇u[∇W + LZu[〉
= −〈e2W∇u[,∇u[〉+ 〈e2Wu[, LZu[〉,
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where the gradient term disappeared because we integrated by parts. Thus

‖∇u[‖2L2 ≤ ‖e−2W ‖L∞‖eW∇u[‖2L2

= ‖e−2W ‖L∞(〈e2Wu[, LZu[〉 − 〈u,Au〉)
≤ ‖e−2W ‖L∞(‖u[‖H1/2+ε‖e2WLZu[‖H−1/2−ε − 〈u,Au〉)
≤ ‖e−2W ‖L∞(‖u[‖2H1/2+ε‖e2WLZ‖C−1/2−ε − 〈u,Au〉)
≤ ‖e−2W ‖L∞(CΞ‖e2W ‖C1/2−ε‖u[‖2H1/2+ε − 〈u,Au〉),

where we have used Lemma 2.2.35. Using again Sobolev interpolation and Young’s inequality we
can conclude by choosing ε > 0 small enough and pick a proper constant CΞ > 0 for the
conclusion.

After this, we are ready to conclude the self-adjointness of the operator.

Theorem 2.2.49. The operator A with domain D(A) is self-adjoint.

Proof. Choosing CΞ > 0 (using Proposition 2.2.48) large enough, we again want to prove that

(CΞ −A)−1 : D(A)→ L2 is bounded .

This can be done in precisely the same way as the 2d case, similar to the proof of Proposition
2.2.20, by applying again the Babuska-Lax-Milgram theorem to the the bilinear map

B : D(A)× L2 → R
B(u, v) := 〈(CΞ −A)u, v〉.

Afterwards, one concludes self-adjointness by using Proposition 2.2.24.

Observe that the Proposition 2.2.48 implies the positivity of the form for CΞ −A. Accordingly, we
introduce the shifted operators.

Definition 2.2.50. For a constant KΞ > CΞ, where CΞ is as in the proof of Theorem 2.2.49, we
define the following shifted operators

Hε := Aε −KΞ

H := A−KΞ

where in the future the constant KΞ may be updated to be larger, if needed.

Now we define the form domain.

Definition 2.2.51. From Proposition 2.2.41 recall that u = eWΓu]. We define the form domain
of H, denoted by D(

√
−H), as the closure of the domain under the following norm

‖u‖D(
√
−H) :=

√
〈u,−Hu〉.

We furthermore have the following classification for the domain and the form domain of H; this is
the 3d version of Proposition 2.2.23.
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Proposition 2.2.52. We have the following characterisation for the domain and the form
domain:

1. Γu] ∈ e−WD(H)⇔ u] ∈ H2. More precisely, on D(H) = eWUΞ we have the following norm
equivalence

‖u]‖H2 .Ξ ‖HΓu]‖L2 .Ξ ‖u]‖H2.

2. u ∈ D(
√
−H)⇔ e−Wu ∈ H1. Then the precise statement is that on D(H) the following norm

equivalence holds
‖e−Wu‖H1 .Ξ ‖u‖√−H .Ξ ‖e−Wu‖H1 ,

and hence the closures with respect to the two norms coincide.

Proof. This follows from Theorem 2.2.45 and Proposition 2.2.48 similarly to the proof of
Proposition 2.2.23.

Norm resolvent convergence

In this section, we address the resolvent convergence results for the regularised operators as
introduced in Remark 2.2.38 and Definition 2.2.50. We first address the norm convergence of
approximating Hamiltonians composed with the Γ-maps.

Proposition 2.2.53. Let u] ∈ H2, u = eWΓu], u[ε = Γεu] and uε = eWεu[ε. We have that

‖Hu−Hεuε‖L2 .Ξ ‖Ξε − Ξ‖Xα‖u]‖H2 . (2.2.42)

Consequently, this implies that

‖HeWΓ−Hεe
WεΓε‖H2→L2 → 0. (2.2.43)

That is to say, Hεe
WεΓε → HeWΓ in norm.

Proof. The proof is similar to that of Proposition 2.2.15. This time one uses the formula (2.2.33)
and then proceeds in the same way by using Lemma 2.2.43 instead. Hence, the result.

In the following results, using the techniques we have used in the 2d part, we address the notions
of strong resolvent and norm resolvent convergence.

Theorem 2.2.54. Let β be as defined in Proposition 2.2.44. Then, we have

‖H−1 −H−1
ε ‖L2→Hβ .Ξ ‖Ξ− Ξε‖Xα

for ε > 0. In particular Hε converges to H in the norm resolvent sense.

Proof. This proof is similar to that of Theorem 2.2.26. We only mention the points where it
differs.

By Proposition 2.2.53 we have that

‖Hεe
WεΓεu] −HeWΓu]‖H2→L2 .Ξ ‖Ξ− Ξε‖Xα‖u]‖H2
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This implies
‖Γ−1

ε e−WεH−1
ε − Γ−1e−WH−1‖L2→H2 .Ξ ‖Ξ− Ξε‖Xα .

By using the same tricks as in the proof of Theorem 2.2.26, this time using Proposition 2.2.41 and
Lemma 2.2.43, one obtains

‖e−WεH−1
ε − e−WH−1‖L2→Hβ .Ξ ‖Ξ− Ξε‖Xα .

We can write the estimate

‖e(W−Wε)H−1
ε −H−1‖L2→Hβ = ‖eW (e−WεH−1

ε − e−WH−1)‖L2→Hβ

≤ ‖eW ‖Hβ→Hβ‖e−WεH−1
ε − e−WH−1‖L2→Hβ .

which allows us to conclude.

Lastly, we give a version of Agmon’s inequality which can be seen as a 3d analogue of Theorem
2.2.31.

Lemma 2.2.55. For u ∈ D(H) and D(Hε) respectively, we have the following L∞ bounds

‖u‖L∞ .Ξ ‖Hu‖1/2L2 ‖
√
−Hu‖1/2L2

‖u‖L∞ .Ξ ‖Hεu‖1/2L2 ‖
√
−Hεu‖1/2L2 .

Let us mention again, that the point of the latter bound is that the bound is independent of ε.

Proof. The classical version of Agmon’s inequality [1] gives the bound

‖v‖L∞ . ‖v‖1/2H1 ‖v‖1/2H2 .

Now we compute

‖u‖L∞ ≤ ‖eW ‖L∞‖Γu]‖L∞ .Ξ ‖u]‖L∞ .Ξ ‖u]‖1/2H1 ‖u]‖1/2H2

.Ξ ‖Hu‖1/2L2 ‖
√
−Hu‖1/2L2 ,

where we have used Propositions 2.2.41 and 2.2.52 in addition to Agmon’s inequality and the
straightforward bound ‖u]‖H1 .Ξ ‖u[‖H1 . The second inequality follows by the same argument
noting that the constant is independent of ε.

2.3 Semilinear evolution equations
To recall, in the previous section we have introduced the operators H and Hε (Definitions 2.2.21
and 2.2.50 respectively) along with their domains D(H),D(Hε) = H2 (Remarks 2.2.4 and 2.2.40
respectively) and energy domains D(

√
−H),D(

√
Hε) = H1 (Definitions 2.2.22 and 2.2.51

respectively). We have also studied their resolvents and the norm resolvent convergence of
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regularised operators (Theorems 2.2.26 and 2.2.54 respectively). Furthermore we have obtained
some functional inequalities which will be useful in the present section.

In this part we utilise this preceding analysis in the study of some semilinear PDEs, more
precisely nonlinear Schrödinger and wave-type equations with the linear part given by the 2-d and
3-d Anderson Hamiltonian. As a preliminary, we derive and record some simple results for the
corresponding linear equations as well as for PDEs with sufficiently nice nonlinearities.

2.3.1 Linear equations and bounded nonlinearities
In this section, before proceeding with the nonlinear PDEs, we first give some straightforward
results about the linear evolution and PDEs with bounded/Lipschitz nonlinearities. We also
obtain convergence of the solutions to the regularised equations in an appropriate sense.

Abstract Cauchy theory for the linear and bounded nonlinear equations

We want to apply Theorem 3.3.1 from Cazenave [23]. This proves global well-posedness of

i∂tu = Qu+ g(u)
u(0) = u0 ∈ D(Q)

in the strong sense, meaning u ∈ C(R;D(Q)) ∩ C1(R;X), for a sufficiently nice nonlinearity g and
Q self-adjoint on some Hilbert space X.

Theorem 2.3.1. Consider the abstract Cauchy problem{
i∂tu = Qu+ g(u)
u(0) = u0

(2.3.1)

where Q is a self-adjoint operator on a Hilbert space X. Then we have the following two results for
Schrödinger and wave equations respectively.

1. Assume (Qu, u) ≤ 0 for u ∈ D(Q) and g : X → X is Lipschitz on bounded sets as well as
(g(x), ix)X = 0 for all x ∈ X and g = G′ where G ∈ C1(D(

√
−Q)). Concretely, if we fix

Q = H, X = L2(Td) d = 2, 3 u0 ∈ D(H)and g(u) := KΞu+ uϕ′(|u|2) where ϕ ∈ C2
b we get a

unique global strong solution of (2.3.1)

u ∈ C([0,∞);D(H)) ∩ C1([0,∞);L2).

We can also relax this slightly if we ask for u0 ∈ D(
√
−H). We get a unique global energy

solution
u ∈ C([0,∞);D(

√
−H)) ∩ C1([0,∞);D∗(

√
−H)).

In both cases conservation of mass and energy holds for all times.

2. For the wave equation, with d = 2, 3, we set

Q = i

(
0 I

H 0

)
, D(Q) = D(H)⊕D(

√
−H)

X = (L2(Td))2, g(u) =
(

0
−KΞu

)
.
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Then the abstract linear wave equation

i
d
dt

(
u
∂tu

)
=i
(

0 I

−H 0

)(
u
∂tu

)
+
(

0
−KΞu

)
(

u
∂tu

)
t=0

=
(
u0
u1

)
has a unique global strong solution (u, ∂tu) ∈ C([0,∞);D(H))× C1([0,∞);L2) i.e.
u ∈ C([0,∞);D(H)) ∩ C1([0,∞);D(

√
−H)) ∩ C2([0,∞);L2) and energy conservation holds.

Proof. 1. The properties of the Hamiltonian have already been verified, it remains to check that
the nonlinearity g satisfies all the conditions. We claim that

g(v) = G′(v) with G(v) =
�
KΞ

2 |v|
2 + 1

2

�
ϕ(|v|2) ∈ C1(D(

√
−H);R).

Moreover g : L2 → L2 is locally Lipschitz and 〈g(u), iu〉 = 0 for u ∈ L2.

By construction we have

〈g(u), iu〉 = Re i
�
KΞ|u|2 + |u|2ϕ′(|u|2) = 0.

Next we show the differentiability of G. Let u, v ∈ D(
√
−H), then

G(u)−G(v)−G′(v)(u− v)

=
�
KΞ

2 |u|
2 + 1

2

�
ϕ(|u|2)−

�
KΞ

2 |v|
2 − 1

2

�
ϕ(|v|2)− (g(v), u− v)

=
�
KΞ

2 |u− v|
2 + 1

2

�
f(u)− f(v)− f ′(v)(u− v)

| . . . | ≤ (KΞ + ‖ϕ‖C2
b
)‖u− v‖2L2

≤ (KΞ + ‖ϕ‖C2
b
)‖u− v‖2D(

√
−H),

with f(u) := ϕ(|u|2). This proves the differentiability. Lastly we prove the L2 local Lipschitz
property of g. Fix v ∈ L2 and u ∈ BM (v), for some M > 0. Then

‖g(u)− g(v)‖L2 ≤ KΞ‖u− v‖L2 + ‖uϕ′(|u|2)− vϕ′(|v|2)‖L2

≤ KΞ‖u− v‖L2 + ‖ϕ′‖∞‖u− v‖L2 + ‖v‖L2‖ϕ′(|u|2)− ϕ′(|v|2)‖L2

≤ KΞ‖u− v‖L2 + ‖ϕ′‖∞‖u− v‖L2 + ‖v‖L2‖ϕ′′‖∞‖u− v‖L2

hence g is locally Lipschitz as a map from L2 to L2.

2. See [70, Chapter X.13].

50 Chapter 2 Immanuel Zachhuber



Hyperbolic and dispersive singular stochastic PDEs

The linear multiplicative Schrödinger equation

In this part, we discuss the solution to the linear Schrödinger equation

i∂tu = Hu on T
d, (2.3.2)

with initial data in the domain of H. A simple but important observation is that the Schrödinger
equation conserves the L2 norm. Also observe that ∂tu formally satisfies

i∂t∂tu = H(∂tu),

so it solves the same equation and in particular we have that ‖∂tu(t)‖L2 is conserved and that

‖Hu‖L2 = ‖∂tu(t)‖L2 = ‖∂tu(0)‖L2 = ‖Hu(0)‖L2 ,

which we will assume to be finite. This gives us quite a natural condition that the initial data
should satisfy. Therefore we will assume u0 ∈ D(H) which implies ‖Hu0‖L2 <∞ by Theorem
2.2.14 . To make this precise, we write

u(t) = e−itHu0

d

dt
u(t) = −ie−itHHu0∥∥∥∥ ddtu(t)
∥∥∥∥
L2

= ‖Hu0‖L2 = ‖Hu(t)‖L2 .

So ‖∂tu(t)‖L2 is conserved for for the solution u as above. For the regularised equation, the
unique solution is given by

uε(t) = e−itHεuε0 ∈ H2,

where uε0 ∈ H2 is the regularised initial datum. If we choose the regularisation

uε0 :=H−1
ε Hu0 ∈ H2,

then we have Hεu
ε
0 = Hu0 and we readily get uε0 → u0 in L2 by norm resolvent convergence,

namely Theorem 2.2.26. By [71, Theorem VIII.21], e−itHε → e−itH strongly for any time t, which
implies

e−itHεuε0 →e−itHu0

and
e−itHεHεu

ε
0 →e−itHHu0

in L2 for any t ∈ R.

We summarize these results in the following theorem

Theorem 2.3.2. Let T > 0, u0 ∈ D(H). Then there exists a unique solution
u ∈ C([0, T ];D(H)) ∩ C1([0, T ];L2) to the equation{

i∂tu = Hu
u(0, ·) = u0

on [0, T ]×Td.
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Moreover, this agrees with the L2−limit of the solutions uε ∈ C([0, T ];H2) ∩ C1([0, T ];L2) to{
i∂tuε = Hεuε
u(0, ·) = uε0

on [0, T ]×Td,

with the regularised data given as
uε0 := H−1

ε Hu0 ∈ H2.

One also obtains the convergence of ∂tuε and Hεuε to ∂tu and Hεu in L2.

Remark 2.3.3. One could also get global well-posedness for the equation with initial data in
D(
√
−H) or in L2. Moreover, one could treat a bounded nonlinearity as above.

The linear multiplicative wave equation

Similarly to the Schrödinger case, we now consider the linear wave equation

∂2
t u = Hu

with initial data (u0, u1) ∈ D(H)×D(
√
−H). For the regularised equation

∂2
t uε = Hεuε

(uε, ∂tuε)|t=0 = (uε0, uε1) ∈ H2 ×H1

the solution is given by(
uε
∂tuε

)
= eitQε

(
uε0
uε1

)
=
(

cos(t
√
−Hε)uε0

sin(t
√
−Hε)√
−Hε

uε1

)
, where Qε = i

(
0 I

−Hε 0

)
.

and the sin, cos objects are defined via functional calculus. We again choose the same
approximation for u0 as in the Schrödinger case

uε0 := (−Hε)−1(−H)u0 ∈ H2

uε1 := (
√
−Hε)−1√−Hu1 ∈ H1

for initial data (u0, u1) ∈ D(H)×D(
√
−H). Then we again have

uε0 → u0 in L2

Hεu
ε
0 → Hu0 in L2.

For the initial velocity, we also have
uε1 → u1 in L2.

Then for any time t we get as in the Schrödinger case(
uε(t)
∂tuε(t)

)
= eitQε

(
uε0
uε1

)
→ eitQ

(
u0
u1

)
=
(

cos(t
√
−H)u0

sin(t
√
−H)√
−H u1

)
in L2

and
d
dt

(
uε(t)
∂tuε(t)

)
= iteitQεQε

(
uε0
uε1

)
→ iteitQQ

(
u0
u1

)
in L2.
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Moreover, we have that the convergence of the energies, namely

Eε(t) :=
〈(

uε(t)
∂tuε(t)

)
,

(
−Hε 0

0 I

)(
uε(t)
∂tuε(t)

)〉
→
〈(

u(t)
∂tu(t)

)
,

(
−H 0

0 I

)(
u(t)
∂tu(t)

)〉
= E(t)

for any time t and thus in particular the energy conservation passes to the limit. We record these
observations in the following theorem.

Theorem 2.3.4. Let T > 0 and (u0, u1) ∈ D(H)×D(
√
−H). Then there exists a unique solution

(u, ∂tu) ∈ C([0, T ];D(H)×D(
√
−H)) ∩ C1([0, T ];D(

√
−H)× L2) to the equation

∂2
t u = Hu in (0, T )×Td

(u, ∂tu)|t=0 = (u0, u1)

moreover it is equal to the L∞((0, T );L2(Td)× L2(Td)) limit of the approximate solutions
(uε, ∂tuε) to

∂2
t uε = Hεuε in (0, T )×Td

(uε, ∂tuε)|t=0 = (uε0, uε1),

and moreover we have the following convergence at any fixed time t

uε(t)→ u(t) in L2

Hεuε(t)→ Hu(t) in L2√
−Hε∂tuε(t)→

√
−H∂tu(t) in L2

∂2
t uε(t)→ ∂2

t u(t) in L2

with (uε0, uε1) as above. Also, the energies converge and are conserved in time.

Proof. The computations above prove that the L2 limit of the solutions we obtain is equal to the
solution of the abstract Cauchy problem in Theorem 2.3.1 for all times. Hence, the two are
equal.

2.3.2 Nonlinear Schrödinger equations in two dimensions
In this section we are interested in solving the following defocussing cubic Schrödinger-type
equation

i∂tu = Hu− u|u|2, (2.3.3)

with domain and energy space data.

Recall that for the operator H we have

〈u,−Hu〉 ≥ 0 for all u ∈ D(H).
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We consider the mild formulation of (2.3.3)

u(t) = e−itHu0 + i

� t

0
ei(s−t)Hu(s)|u(s)|2ds (2.3.4)

Furthermore, we introduce the energy for u as

E(u)(t) := −1
2 〈u(t), Hu(t)〉+ 1

4

�
|u(t)|4. (2.3.5)

Using the equation one sees that the energy is formally conserved in time.

Solutions with initial condition in D(H)

In this section we assume u0 ∈ D(H). This is similar in spirit to the global strong well-posedness
of the classical cubic NLS with initial data in H2, which was solved in [15]. We obtain global in
time strong solutions in our setting, which is the best one can hope for in view of the classical
result. We regularise the initial data in the following way

uε0 = H−1
ε Hu0 ∈ D(Hε)

so that by the norm resolvent convergence of Hε to H (see Theorem 2.2.26) we have

lim
ε→0

uε0 = u0 ∈ L2

Hεu
ε
0 = Hu0 ∈ L2.

Note that D(Hε) = H2 so there exists global solutions uε ∈ C([0, T ],D(Hε)) ∩ C1([0, T ], L2).
While this follows as in [15], it is also an immediate consequence of the following result which says
that for the operators Hε and H we obtain global in time strong solutions of the associated cubic
NLS on T2.

Theorem 2.3.5. For an arbitrary time T > 0, there exist unique solutions
uε ∈ C([0, T ];H2) ∩ C1([0, T ];L2) and u ∈ C([0, T ];D(H)) ∩ C1([0, T ];L2) to

uε(t) = e−itHεuε0 + i

� t

0
e−isHεuε|uε|2(t− s)ds, (2.3.6)

and

u(t) = e−itHu0 + i

� t

0
e−isHu|u|2(t− s)ds (2.3.7)

respectively, with initial data uε0 ∈ H2 and u0 ∈ D(H).

Before we prove the theorem, we need the following technical lemmas which will be used
throughout the proof. The first one is a logarithmic Gronwall lemma.

Lemma 2.3.6. Let C2, logC1 ≥ 1 and θ(t) ≥ 1 satisfy

θ(t) ≤ C1 + C2

� t

0
θ(s) log(1 + θ(s))ds = h(t).

Then we have
h(t) ≤ exp(log h(0)eC2t)− 1.
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Proof. We have that h is a subsolution of the equation

∂th(t) = C2θ(t) log(1 + θ(t)) ≤ C2(h(t) + 1) log(h(t) + 1).

So taking ρ(t) to be a solution of ∂tρ(t) = C2(ρ(t) + 1) log(ρ(t) + 1), ρ(0) = h(0), we have
ρ(t) ≥ h(t). Indeed ρ(0) = h(0) and whenever we have ρ(t) = h(t) then

∂t(ρ(t)− h(t)) ≥ C2(ρ(t) + 1) log(ρ(t) + 1)− C2(h(t) + 1) log(h(t) + 1) = 0.

Observe moreover that

∂t log(ρ(t) + 1) = C2 log(ρ(t) + 1)⇒ log(ρ(t) + 1) = (log h(0))eC2t.

Lemma 2.3.7. For v ∈ C([0, T ];H2) ∩ C1([0, T ];L2), f(v)(t) = |v(t)|2v(t) is C1 as a map from
[0, T ] to L2. The same is true for v ∈ C([0, T ];D(H)) ∩ C1([0, T ];L2).

Proof. We write

|v(t+ h)|2v(t+ h)− |v(t)|2v(t)
h

and add and subtract the term v2(t+ h)v̄(t) which yields

v̄(t+ h)(v(t+ h))v(t+ h)− v2(t+ h)v̄(t) + v2(t+ h)v̄(t)− v̄(t)v(t)v(t)
h

.

This can be rearranged as

v2(t+ h) v̄(t+ h)− v̄(t)
h

+ (v̄(t)(v(t+ h) + v(t))) v(t+ h)− v(t))
h

where all the terms converge individually in L2 as h→ 0. Indeed, one can easily check that the
multiplication map (f, g)→ f · g defines a continuous map H2 × L2 → L2. This follows from the
embedding H2 ↪→ L∞ in 2d. Since, by Lemma 2.2.29, we also have the embedding D(H) ↪→ L∞,
the same holds in this case.

Proof of Theorem 2.3.5. This is a fixed point argument which is essentially the same in both cases
so we only treat one of them. For fixed u0 ∈ D(H), we define the operator

Φ(u)(t) := e−itHu0 + i

� t

0
e−isHu|u|2(t− s)ds

and claim that is in fact a contraction on X = C([0, TE ];D(H)) ∩ C1([0, TE ];L2), where the time
TE > 0 depends on the initial data and the energy, which is conserved. This will allow us to
obtain a global in time solution.

We bound, for ‖u‖X ≤M with M chosen below, using Theorem 2.2.31
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‖∂tΦ(u)‖L2(t) ≤‖Hu0‖L2 +
� t

0
‖∂t(u|u|2)(s)‖L2 ds +C‖u0‖3L6

≤‖Hu0‖L2 +
� t

0
‖∂tu(s)‖L2‖u(s)‖2L∞ ds +C‖u0‖3L6

≤‖Hu0‖L2 +
� t

0
CME(u)(s)(1 + log(M + 1)) ds +C‖u0‖3L6 ≤

M

2

for t ≤ TE small enough such that

� TE

0
CME(u)(s)(1 + log(M + 1)) ds ≤ M

2 − (‖Hu0‖L2 + C‖u0‖3L6)

and M such that M
2 − (‖Hu0‖L2 + C‖u0‖3L6) > 0.

Analogously, we compute

‖HΦ(u)‖L2(t) ≤‖Hu0‖L2 + ‖
� t

0

d
ds (eisH)|u|2u(t− s)ds‖L2

≤‖Hu0‖L2 +
� t

0
CME(u)(s)(1 + log(M + 1)) ds +C‖u0‖3L6 ≤

M

2 ,

since we can integrate by parts in the integral. Furthermore, Stone’s theorem [71, Theorem
VIII.7] implies the time regularity of Φ(u). For the contraction property, we need to estimate

∂tΦ(u)(t)− ∂tΦ(v)(t) =
� t

0
e−isH∂t(u|u|2 − v|v|2)(t− s) ds .

We obtain, by using Theorem 2.2.31 and Lemma 2.2.29,

‖∂tΦ(u)(t)− ∂tΦ(v)(t)‖L2 ≤

≤3
� t

0
‖u(s)‖2L∞‖∂tu− ∂tv‖L∞L2 + ‖∂tv‖L∞L2‖Hu−Hv‖L∞L2(‖u(s)‖L∞ + ‖v(s)‖L∞) ds

≤3‖u− v‖X
� t

0
E(u)(s)(1 + log(1 +M)) +M

√
(1 + log(M + 1))(E1/2(u)(s) + E1/2(v)(s)) ds

<‖u− v‖X

for t ≤ TE by possibly making TE smaller depending on E(u). This gives us short time
wellposedness, but since the time span depends only on the energy and the initial data, this can
be iterated to yield a global strong solution. In fact, the only thing that is left to show is that
‖Hu(TE)‖L2 can be bounded by ‖Hu0‖L2 , i.e. a priori bounds. This allows us to choose a global
M and then also a fixed time span TE which immediately implies a global solution. For the
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solution that exists up to time TE , we have the estimate

‖Hu(TE)‖L2 . ‖Hu0‖L2 + ‖u0‖3L6 +
� TE

0
‖∂tu(|u|2)(s)‖L2ds

. ‖Hu0‖L2 + ‖u0‖3L6 +
� TE

0
‖∂tu(s)‖L2‖u(s)‖2L∞ds

. ‖Hu0‖L2 + ‖u0‖3L6 +
� TE

0
(‖Hu(s)‖L2

+ E3/2(u0))E(u0)(1 + log(1 + ‖Hu(s)‖L2))ds,

where we have used again Theorem 2.2.31 and the fact that one can estimate ‖∂tu‖L2 by ‖Hu‖L2

using the equation. Now, we can conclude by using Lemma 2.3.6. This gives us a bound, by
possibly taking larger constants, of the form

‖Hu(TE)‖L2 . CΞE
3/2(u0) + exp(ecE(u0)T log[CΞE

3/2(u0) + ‖Hu0‖L2)− 1, (2.3.8)

where T is the maximum time of existence. Hence M , and therefore TE , can be chosen globally
which means that we can solve the cubic NLS on the whole interval [0, T ] by iterating. The proof
for the regularised Hamiltonian follows the same lines with the crucial note that the inequality
constant in Theorem 2.2.31 does not blow up, namely the constant does not depend on ε but only
on Ξ.

Remark 2.3.8. One sees from the proof that the same remains true for NLS with lower power
nonlinearity, i.e.

i∂tu = Hu− u|u|p−1,

with p ∈ (1, 3). The result will also remain true in the focussing case under some suitable
smallness conditions on u0.

We will moreover prove that the approximate solutions uε, which are strong solutions of

i∂tuε = Hεuε − uε|uε|2, (2.3.9)
uε(0) = uε0 ∈ D(Hε) = H2.

converge to the solution u of the limiting problem. We prove the following result.

Theorem 2.3.9. Let u0 ∈ D(H) and T > 0 be an arbitrary time. Solutions to the regularised
equations with initial data uε0 := (−Hε)−1(−H)u0 ∈ H2, (the unique global strong solutions uε of
(2.3.9)) converges to the unique global strong solutions u ∈ C([0, T ];D(H)) ∩ C1([0, T ];L2) of

i∂tu = Hu− |u|2u,
u(0) = u0,

which is obtained in Theorem 2.3.5. In fact, we get the following convergence results

uε(t)→ u(t) in L2

Hεuε(t)→ Hu(t) in L2

∂tuε(t)→ ∂tu(t) in L2

for all t ∈ [0, T ].
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Proof. We know that the uε satisfy the mild formulation

uε(t) = e−itHεuε0 + i

� t

0
e−i(t−s)Hεuε(s)|uε(s)|2ds

and u satisfies
u(t) = e−itHu0 + i

� t

0
e−i(t−s)Hu(s)|u(s)|2ds.

We compute

Hu(t)−Hεuε(t) =

=(e−itH − e−itHε)Hu0 +
� t

0
e−i(t−s)H∂s(u|u|2(s))ds−

� t

0
e−i(t−s)Hε∂s(uε|uε|2(s))ds

+ u|u|2(t)− uε|uε|2(t)

=(e−itH − e−itHε)Hu0 +
� t

0
(e−i(t−s)H − e−i(t−s)Hε)∂s(u|u|2(s))ds

−
� t

0
e−i(t−s)Hε(∂s(uε|uε|2(s))− ∂s(u|u|2(s)))ds

+
� t

0
∂s(u|u|2(s))− ∂s(uε|uε|2(s))ds+ u0|u0|2 − uε0|uε0|2.

Therefore, we have

‖Hu(t)−Hεuε(t)‖L2 .‖(e−itH − e−itHε)Hu0‖L2 + ‖u0|u0|2 − uε0|uε0|2‖L2

+
� t

0
‖(e−i(t−s)H − e−i(t−s)Hε)∂s(u|u|2(s))‖L2ds

+
� t

0
‖∂s(u|u|2(s))− ∂s(uε|uε|2(s))‖L2ds,

where the first three terms converge to zero by norm resolvent convergence and Theorem VIII.21
in [71]. For the last term we can bound similarly to the proof of Theorem 2.3.5,

� t

0
‖∂s(u|u|2(s))− ∂s(uε|uε|2(s))‖L2ds

.
� t

0
‖∂su(s)− ∂suε(s)‖L2(‖u‖2L∞L∞ + ‖uε‖2L∞L∞)

+ ‖u(s)− uε(s)‖L∞‖∂tu‖L∞L2(‖u‖L∞L∞ + ‖uε‖L∞L∞)ds

.C(T, u0,Ξ)
� t

0
‖∂su(s)− ∂suε(s)‖L2 + ‖Hu(s)−Hεuε(s)‖L2

+ ‖u(s)− uε(s)‖L2ds+ C(T, u0,Ξ)‖Ξ− Ξε‖Xα ,

where we have used the a priori bounds obtained in the proof of Theorem 2.3.5 and the bound

‖u(s)− uε(s)‖L∞ .Ξ ‖u](s)− u]ε(s)‖H2

.Ξ ‖Hu(s)−Hεuε(s)‖L2 + ‖u(s)− uε(s)‖L2 + C(T, u0)‖Ξ− Ξε‖Xα
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which can be proved in the same way as Theorem 2.2.14, using Proposition 2.2.7 and the
embedding H2 ↪→ L∞.
Similarly we can bound (by O(ε) we denote terms that converge to zero as ε→ 0)

‖∂tu(t)− ∂tuε(t)‖L2

.‖(e−itH − e−itHε)Hu0‖L2 + ‖e−itHu0|u0|2 − e−itHεuε0|uε0|2‖L2

+
∣∣∣∣∣∣∣∣� t

0
e−isH∂t(u|u|2(t− s))ds−

� t

0
e−isHε∂t(uε|uε|2(t− s))ds

∣∣∣∣∣∣∣∣
L2

.O(ε) + C(T, u0,Ξ)
� t

0
‖∂su(s)− ∂suε(s)‖L2

+ ‖Hu(s)−Hεuε(s)‖L2 + ‖u(s)− uε(s)‖L2ds

and we have

‖u(t)− uε(t)‖L2

. ‖e−itHu0 − e−itHεuε0‖L2 +
∣∣∣∣∣∣∣∣� t

0
e−i(t−s)H(u|u|2(s))ds−

� t

0
e−i(t−s)Hε(uε|uε|2(s))ds

∣∣∣∣∣∣∣∣
L2

. O(ε) + C(T, u0,Ξ)
� t

0
‖u(s)− uε(s)‖L2ds.

Thus, for φε(t) := ‖u(t)− uε(t)‖L2 + ‖∂tu(t)− ∂tuε(t)‖L2 + ‖Hu(t)−Hεuε(t)‖L2 we have

φε(t) . O(ε) +
� t

0
φε(s)ds

and by Gronwall we can conclude that φε(t)→ 0 for all t as ε→ 0.

This finishes the proof.

Remark 2.3.10. Observe that the above also works in three dimensions. The only difference
being that one uses Lemma 2.2.55 instead of Theorem 2.2.31. But note that this gives only local
in time strong solutions and as in Theorem 2.3.9 we also obtain the convergence of solutions to
the approximated PDEs. This is due to the fact that, unlike the 2d case, one uses a polynomial
type Gronwall [31], as opposed to a logarithmic Gronwall, which leads to an estimate that blows
up in finite time. In fact, this can be formulated as a blow up alternative (with respect to the
L∞-norm) similarly to the classical case of H2-solutions [23].

Energy solutions

In this section we solve (2.3.3) in the energy space. For the global well-posedness of (standard)
cubic NLS on the 2d torus see [11]. Note that the result we get here is somewhat weaker, since we
obtain only existence and partial regularity in time. This is as good as what one would get in the
classical case without the use of Strichartz estimates, see [17] and references therein for further
information. This issue is addressed in Chapter 3 where Strichartz estimates are proved and
applied to well-posedness in different low-regularity regimes which include energy solutions in 2
dimensions.
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In this section we denote the dual of D(
√
−H) by D(

√
−H)∗; We naturally have

D(
√
−H) ⊆ L2 ⊆ D(

√
−H)∗.

Theorem 2.3.11. For u0 ∈ D(
√
−H), the equation (2.3.3) has a solution u such that

u ∈ C1/2([0, T ];L2) ∩ C([0, T ];D(
√
−H)).

For the initial datum u0, we construct the following approximation

uε0 := (1 + ε
√
−H)−1u0 ∈ D(H).

Note that by continuous functional calculus the operator (
√
−H)−1 : L2 → D(

√
−H) is bounded

and we have uε0 → u0 in D(
√
−H).

Lemma 2.3.12. For u0, u
ε
0 as above, we have the following convergence of energies.

E(uε0) := −1
2 〈u

ε
0, Hu

ε
0〉+ 1

4

�
|uε0|4 → −

1
2 〈u0, Hu0〉+ 1

4

�
|u0|4 = E(u0)

Proof. By the above observation the first terms converge. For the L4 terms, we can conclude
using Lemma 2.2.28 and the D(

√
−H) convergence.

Consider the nonlinear Schrödinger equation

i∂tuε = Huε − uε|uε|2 (2.3.10)
uε(0) = uε0 ∈ D(H).

As we have seen in section 2.3.2, there exists a unique solution uε to this equation in
C([0, T ];D(H)) ∩ C1([0, T ];L2) which conserves the energy

E(uε(0)) = E(uε(t)) = −1
2 〈uε(t), Huε(t)〉+ 1

4‖uε(t)‖
4
L4 .

Lemma 2.3.13 (A priori bounds). For solutions uε to (2.3.10), we have the following uniform
bounds.

‖uε‖L∞L2 . ‖u0‖L2

‖
√
−Huε‖L∞L2 . E1/2(u0)

‖(
√
−H)−1∂tuε‖L∞L2 .Ξ E

1/2(u0) + E3/2(u0)

Proof. Since we have conservation of mass and energy, the first and second follow directly, using
also Lemma 2.3.12 and the positivity of the energy. For the third bound, we use the equation and
the fact that

‖uε‖3L6 .Ξ E
3/2(u0),

which follows from Lemma 2.2.28.
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Lemma 2.3.14 (Compactness). Given uε as above, we can extract a subsequence uεn and obtain
a limit u ∈ L∞([0, T ];D(

√
−H)) s.t.

uεn(t)→ u(t) in L2 (2.3.11)
√
−Huεn(t)→

√
−Hu(t) in L2 (2.3.12)

for all times t ∈ [0, T ].

Proof. By weak compactness in the Hilbert space D(
√
−H) we obtain a subsequence uεn and a

limit u s.t.

uεn(t)→ u(t) in L2,

uεn(t) ⇀ u(t) in D(
√
−H),

for a dense set of times and using the third a priori bound from Lemma 2.3.13 we can extend this
to all times t ∈ [0, T ]. In particular get the L∞ bound in time. Lastly, we can use the convergence
of energies to deduce the convergence of the D(

√
−H) norms of uε and thus conclude that in fact

strong convergence holds.

Now we can conclude this section by proving Theorem 2.3.11.

Proof of Theorem 2.3.11. We prove that the limit we obtain in the previous lemma solves the
mild formulation of (2.3.3). We have by construction that the uε solves

uε(t) = e−itHuε0 + i

� t

0
ei(s−t)Huε(s)|uε(s)|2ds

for all t ∈ [0, T ]. Now we can prove that this converges in L2 as ε→ 0 for all times. The first term
converges precisely as in the linear case from section 2.3.1. For the nonlinear term the
convergence follows from the fact that uε(t)→ u(t) strongly in L6 for all times. This is due to the
fact that the embedding D(

√
−H) ↪→ H1−δ is continuous and the embedding H1−δ ↪→ L6 is

compact (in fact this is true for any Lp with p <∞).

For continuity in D(
√
−H), we simply observe

‖
√
−Hu(t)−

√
−Hu(s)‖L2 ≤ ‖

√
−Hu(t)−

√
−Huεn(t)‖L2 + ‖

√
−Huεn(t)−

√
−Huεn(s)‖L2

+ ‖
√
−Huεn(s)−

√
−Hu(s)‖L2 .

By using Lemma 2.3.14, for a given δ > 0 we can choose N large such that

sup
τ
‖
√
−Hu(τ)−

√
−HuεN (τ)‖L2 < δ/3

for this chosen N we can choose κ > 0 such that; |t− s| < κ implies

‖
√
−HuεN (t)−

√
−HuεN (s)‖L2 < δ/3.
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That is, we have found a κ > 0 for arbitrary δ > 0. Hence, the continuity.

Next, we prove the time regularity. By using Lemma 2.3.13 we can write

‖u(t)− u(s)‖2L2 ≤ ‖
√
−H(u(t)− u(s))‖L2‖(

√
−H)−1(u(t)− u(s))‖L2

.

∣∣∣∣∣∣∣∣� t

s

(
√
−H)−1∂tu(τ)dτ

∣∣∣∣∣∣∣∣
L2

. |t− s|.

So we can conclude that u ∈ C1/2([0, T ], L2) ∩ C([0, T ];D(
√
−H)).

In the following corollary, we show that a solution can be obtained by solving the approximating
PDEs.

Corollary 2.3.15. Consider the following PDE

i∂tuε = Hεuε − uε|uε|2

with initial data uε0 = H−1
ε H(1− ε

√
−H)−1u0, where u0 ∈ D(

√
−H) and 0 < ε < 1. There exists a

subsequence εn such that uεn → u and
√
−Hεnuεn →

√
−Hu in L2. In addition, u solves (2.3.3).

Proof. Consider the initial data uε,δ0 = H−1
ε H(1− δ

√
−H)−1u0. Then, by Theorem 2.3.9, taking

ε→ 0 we obtain uδ ∈ D(H) which solves the equation

i∂tuδ = Huδ − uδ|uδ|2

with initial data uδ0 = (1− δ
√
−H)−1u0 ∈ D(H). For this solution, we also have√

−Hεnuεn,δ →
√
−Huδ in L2 and in particular uεn,δ → uδ. Now, as in Theorem 2.3.11, we take

δ → 0 and obtain an energy solution to (2.3.3). Taking a diagonal sequence yields the stated
result.

In the following remarks, we compare those results with the ones in domain case.

Remark 2.3.16. Note that the solution we obtain is not necessarily unique, as opposed to the
solution with initial data in D(H), however see Chapter 3.

2.3.3 Two and three dimensional cubic wave equations
In this section we consider the cubic wave equations

∂2
t u =Hu− u3 on Td (2.3.13)

(u, ∂tu)|t=0 =(u0, u1),

in two and three dimensions simultaneously.

We are interested in the case
(u0, u1) ∈ D(H)×D(

√
−H).

However as we shall see, in a similar way we can also treat the case

(u0, u1) ∈ D(
√
−H)× L2.
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We refer to [76] and [33] for classical results about well-posedness of semilinear wave equations.
We obtain global strong well-posedness for a range of exponents including the standard case
p = 3, which we will consider in detail for simplicity. Also in 3d, the range of exponents which are
covered by our methods is as good as what one can achieve in the classical case with similar
methods.

We fix an approximating sequence (uε0, uε1) ∈ H2 ×H1 such that

Hεu
ε
0 → Hu0 in L2,

(uε1, Hεu
ε
1)→ (u1, Hu1).

To be precise, we may choose

uε0 := H−1
ε Hu0

uε1 := (
√
−Hε)−1√−Hu1.

We will– as in the NLS case– prove that the solution to (2.3.13) is given by the limit of the
solutions of regularised equations (for d = 2, 3)

∂2
t uε =Hεuε − u3

ε on Td (2.3.14)
(uε, ∂tuε)|t=0 =(uε0, uε1),

in an appropriate sense.

We begin by proving global strong well-posedness of (2.3.13) and (2.3.14) by a fixed point
argument as in Section 2.3.2.

Theorem 2.3.17. For (u0, u1) ∈ D(H)×D(
√
−H) and (uε0, uε1) ∈ H2 ×H1, there exist unique

global in time solutions u ∈ C([0, T ];D(H)) ∩ C1([0, T ];D(
√
−H)) ∩ C2([0, T ];L2) and

uε ∈ C([0, T ];H2) ∩ C1([0, T ];H1) ∩ C2([0, T ];L2) satisfying

u(t) = cos
(
t
√
−H

)
u0 +

sin
(
t
√
−H

)
√
−H

u1 +
� t

0

sin
(
(t− s)

√
−H

)
√
−H

u3(s) ds

and

uε(t) = cos
(
t
√
−Hε

)
uε0 +

sin
(
t
√
−Hε

)
√
−Hε

uε1 +
� t

0

sin
(
(t− s)

√
−Hε

)
√
−Hε

u3
ε(s) ds

respectively.

Before we come to the proof, we prove some auxiliary lemmas. We define the conserved energies
for (2.3.13) and (2.3.14) respectively as

E(u) := 1
2 〈∂tu, ∂tu〉 −

1
2 〈u,Hu〉+ 1

4

�
|u|4,

and
E(uε) := 1

2 〈∂tuε, ∂tuε〉 −
1
2 〈uε, Hεuε〉+ 1

4

�
|uε|4.
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Also, we introduce the almost conserved energies for the time derivatives

Ẽ(∂tu) = 1
2 〈∂

2
t u, ∂

2
t u〉 −

1
2 〈∂tu,H∂tu〉+ 3

2

�
|u|2|∂tu|2,

and
Ẽ(∂tuε) = 1

2 〈∂
2
t uε, ∂

2
t uε〉 −

1
2 〈∂tuε, Hε∂tuε〉+ 3

2

�
|uε|2|∂tuε|2.

We clarify what we mean by almost conserved in the following lemma.

Lemma 2.3.18. Let u ∈ C([0, T ];D(H)) ∩ C1([0, T ];D(
√
−H)) ∩ C2([0, T ];L2) and

uε ∈ C([0, T ];H2) ∩ C1([0, T ];H1) ∩ C2([0, T ];L2) be solutions of (2.3.13) and (2.3.14)
respectively. Then the energies Ẽ(∂tu) and Ẽ(∂tuε) satisfy the following bounds

Ẽ(∂tu)(t) . exp(tCẼ(u1))E(u0),
Ẽ(∂tuε)(t) . exp(tCẼ(uε1))E(uε0),

for some universal constant C > 0.

Proof. We give the proof only for the regularised case. The other case can be done analogously by
replacing H2 by D(H) and H1 by

√
−H.

First note that ∂tuε solves the equation

∂2
t ∂tuε = Hε∂tuε − 3∂tuεu2

ε in C([0, T ];H−1).

Then one can formally compute

d
dt Ẽ(∂tuε)(t) = 〈∂2

t u, ∂
3
t uε −Hε∂tuε + 3∂tuεu2

ε〉+ 3
�
uε∂tuε|∂tuε|2

= 3
�
uε∂tuε|∂tuε|2.

and conclude by Gronwall. However, since Ẽ(∂tuε) is not C1 in time, this is not justified. But one
can argue that this computation is true in the integrated version. We claim that we get the
following weak differentiability, for any φ ∈ Cc([0,∞))

�

R

φ′(t)Ẽ(∂tuε)(t) dt = −3
�

R

φ(t)
�
uε∂tuε|∂tuε|2(t) dt +Ẽ(∂tuε(0))φ(0). (2.3.15)

Moreover, this also holds in the integrated form

Ẽ(∂tuε)(t) = Ẽ(∂tuε)(0) + 3
� t

0
uε∂tuε|∂tuε|2(s) ds, (2.3.16)

for any t ∈ [0, T ]. We prove this by a spectral approximation. For, consider (en)n∈Z3 ∈ H2 an
orthonormal eigenbasis of Hε with eigenvalues {λn} and set

uNε (t, x) :=
∑
|n|≤N

(uε(t, ·), en)en(x).
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Then one has

∂kt u
N
ε → ∂kt uε in C([0, T ];H2−k)

for 0 ≤ k ≤ 3, which in turn implies that

E(uNε )→ E(uε) and Ẽ(∂tuNε )→ Ẽ(∂tuε).

One also directly deduces

∂3
t u

N
ε = Hεu

N
ε − 3

∑
|n|≤N

(∂tuεu2
ε(t), en)en(x).

Thus, we have
�

R

φ′(t)Ẽ(∂tuNε )(t) dt =−
�

R

φ(t) d
dt Ẽ(∂tuNε )(t) dt +Ẽ(∂tuε(0))φ(0)

=−
�

R

φ(t)
(
(∂2
t u

N
ε , ∂

3
t u

N
ε )(t)− (∂2

t u
N
ε , Hε∂tu

N
ε )(t)

+3
(
∂2
t u

N
ε , ∂tu

N
ε (uNε )2) (t) + 3(∂tuNε , (∂tuNε )uNε )(t)

)
dt (2.3.17)

+ Ẽ(∂tuε(0))φ(0)

=−
�

R

φ(t)[3(∂2
t u

N
ε , ∂tu

N
ε (uNε )2 −

∑
|n|≤N

(∂tuεu2
ε, en)en(x))(t)

+ 3(∂tuNε , (∂tuNε )2uNε )(t)] dt +Ẽ(∂tuε(0))φ(0). (2.3.18)

Now we have

∂tu
N
ε (uNε )2 → ∂tuε(uε)2 in L2

and∑
|n|≤N

(∂tuεu2
ε, en)en(x) → ∂tuε(uε)2 in L2.

Therefore, we see that for N →∞ (2.3.18) converges to (2.3.15). To prove (2.3.16), it suffices to
take a sequence φn in (2.3.15) that converges to the characteristic function χ[0,t] monotonically.
We can thus compute

Ẽ(∂tuε)(t) ≤Ẽ(uε1) + 3
� t

0

�
|uε(s)||∂tuε(s)||∂tuε|2(s) ds

≤Ẽ(uε1) + 3
� t

0
‖∂tuε‖L2‖uε‖L6‖∂tuε‖2L6(s) ds

≤Ẽ(uε1) + 3CE(uε0)
� t

0
Ẽ(∂tuε)(s) ds,
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where we have used the bounds

‖∂tuε‖2L2 ≤ E(uε), ‖uε‖2L6 .Ξ E(uε), ‖∂tuε‖2L6 .Ξ Ẽ(∂tuε).

From this, we conclude by using Gronwall.

Proof of Theorem 2.3.17. This is similar to the NLS case (Section 2.3.2), except that the time TE
is going to depend on the conserved energy E(u) and the almost conserved energy Ẽ(∂tu). We
again give the proof only for the D(H) case, as the H2 case can be proved in a similar way.
We claim that for (u0, u1) ∈ D(H)×D

(√
−H

)
there exists a unique fixed point of

Φ(u)(t) = cos
(
t
√
−H

)
u0 +

sin
(
t
√
−H

)
√
−H

u1 +
� t

0

sin
(
(t− s)

√
−H

)
√
−H

u3(s) ds

in X = C([0, T ];D(H)) ∩ C1 ([0, T ];D
(√
−H

))
∩ C2([0, T ];L2).

For the contraction property, we compute the following, for ‖u‖X ≤M with M > 0 fixed later,

‖HΦ(u)(t)−HΦ(v)(t)‖L2 =

=‖
� t

0

√
−H sin((t− s)

√
−H)(u3(s)− v3(s)) ds ‖L2

=‖
� t

0
∂s(cos((t− s)

√
−H))(u3(s)− v3(s)) ds ‖L2

=‖
� t

0
cos((t− s)

√
−H)∂s(u3(s)− v3(s)) ds +v3(t)− u3(t)‖L2

≤2
� t

0
‖∂t(u3 − v3)(s)‖L2

≤6
� t

0
‖∂tu− ∂tv‖L∞[0,T ]L

6‖u‖2L6(s) + ‖∂tv‖L∞[0,T ]L
4‖u− v‖L∞[0,T ]L

∞(‖u‖L4(s) + ‖v‖L4(s)) ds

≤C‖u− v‖X
� t

0
(E(u)(s) +ME1/2(u)(s) +ME1/2(v)(s)) ds

<
1
3‖u− v‖X

for small enough time depending on the energy and M . Here we have used the bounds
‖∂tu‖L6 .

∥∥√−H∂tu∥∥L2 and ‖u‖L4 . E1/2(u). For the other terms, we similarly compute

∥∥∥√−H∂tΦ(u)(t)−
√
−H∂tΦ(v)(t)

∥∥∥
L2
≤2

� t

0
‖∂t(u3 − v3)(s)‖L2

<
1
3‖u− v‖X

and

‖∂2
t Φ(u)(t)− ∂2

t Φ(v)(t)‖L2 <
1
3‖u− v‖X .
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Lastly, we argue that Φ maps a ball to itself. Let ‖u‖X ≤M for M specified below, then we have

‖HΦ(u)(t)‖L2 .‖Hu0‖L2 + ‖
√
−Hu1‖L2 +

� t

0
‖∂tu‖L6(s)‖u‖2L6(s) ds

.‖Hu0‖L2 + ‖
√
−Hu1‖L2 +

� t

0
Ẽ1/2(∂tu)(s)E(u)(s) ds

≤M3
for large M depending on the data and t ≤ TE , small depending on E(u) and Ẽ(∂tu).
Analogously, we also have

‖∂2
t Φ(u)‖L∞[0,T ]L

2 ≤ M

3 and
∥∥∥√−H∂tΦ(u)

∥∥∥
L∞[0,T ]L

2
≤ M

3 .

Moreover, the time regularity is again a consequence of Stone’s Theorem. Thus there exists a
unique strong solution up to the time TE that depends on (almost) conserved quantities and we
can conclude that this yields a strong solution up to any time. More precisely, we get a priori
estimates that allow us to choose a globally valid M > 0 and then iterate the solution map to
obtain a solution up to any given time T > 0.
Assuming we have a solution on the interval [0, TE ], then we can estimate similarly to above as,

‖Hu(TE)‖L2 .‖Hu0‖L2 + ‖
√
−Hu1‖L2 +

� TE

0
Ẽ1/2(∂tu)(s)E(u)(s) ds

.‖Hu0‖L2 + ‖
√
−Hu1‖L2 + T exp(CTẼ(u1))E3/2(u0)

and also similarly for ‖
√
−H∂tu(TE)‖L2 . Thus we can choose M globally and solve on the interval

[TE , 2TE ] and so on.

From the above considerations, we obtain a priori bounds for the quantities
‖uε‖L∞[0,T ]L

2 , ‖Hεuε‖L∞[0,T ]L
2 and sup

t∈[0,T ]
(∂tuε, Hε∂tuε),

independently of ε. By the same arguments, as in the previous sections, we can also prove
convergence of the approximate solutions.

Theorem 2.3.19. Assume we are in the above setting, i.e. we have unique global strong solutions
to (2.3.13) and (2.3.14) and the initial data are given by (u0, u1) ∈ D(H)×D(

√
−H) and

uε0 := H−1
ε Hu0

uε1 := (
√
−Hε)−1√−Hu1.

Then the solutions uε converge to u in the following way

uε(t)→ u(t) in L2

Hεuε(t)→ Hu(t) in L2√
−Hε∂tuε(t)→

√
−H∂tu(t) in L2

∂2
t uε(t)→ ∂2

t u(t) in L2
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for all t ∈ [0, T ].

Proof. The proof is similar to that of Theorem 2.3.9. Since we have strong convergence for the
initial data, together with the fact that sin(t

√
−Hε)√
−Hε

→ sin(t
√
−H)√
−H strongly, we can compute for any

fixed time t ∈ [0, T ] using the mild formulation for u and uε

‖Hu(t)−Hεuε(t)‖L2

.O(ε) +
� t

0
‖∂s(u3)(s)− ∂s(u3

ε)(s)‖L2ds

.O(ε) +
� t

0
‖∂su(s)− ∂suε(s)‖L6‖u‖2L∞[0,T ]L

6

+ ‖u(s)− uε(s)‖L6(‖u‖L∞[0,T ]L
6 + ‖uε‖L∞[0,T ]L

6)‖∂tuε‖L∞L6ds

.O(ε) + C(T, u0, u1)
� t

0
‖
√
−H∂su(s)−

√
−Hε∂suε(s)‖L2 + ‖Hu(s)−Hεuε(s)‖L2ds.

Here, we have used the a priori bounds obtained in Theorem 2.3.17 and the estimate

‖∂tu(s)− ∂tuε(s)‖L6 .Ξ ‖∂tu](s)− ∂tu]ε(s)‖H1

.Ξ ‖
√
−H∂tu(s)−

√
−Hε∂tuε(s)‖L2 + C(u0, u1, T )‖Ξ− Ξε‖Xα ,

where the first estimate follows by Sobolev embedding and Proposition 2.2.7 and 2.2.41. The
second one can be proved analogously to Proposition 2.2.18 and 2.2.48 for 2 and 3d respectively.
In a similar manner, we have the bound

‖u(s)− uε(s)‖L6 .Ξ ‖Hu(s)−Hεuε(s)‖L2 + C(u0, u1, T )‖Ξ− Ξε‖Xα .

Analogously we can also write

‖
√
−H∂tu(t)−

√
−Hε∂tuε(t)‖L2 .O(ε) + C(T, u0, u1)

� t

0
‖
√
−H∂su(s)−

√
−Hε∂suε(s)‖L2

+ ‖Hu(s)−Hεuε(s)‖L2ds,

‖∂2
t u(t)− ∂2

t uε(t)‖L2 .O(ε) + C(T, u0, u1)
� t

0
‖
√
−H∂su(s)−

√
−Hε∂suε(s)‖L2

+ ‖Hu(s)−Hεuε(s)‖L2ds

‖u(t)− uε(t)‖L2 .O(ε) + C(T, u0, u1)
� t

0
‖Hu(s)−Hεuε(s)‖L2ds.

Thus, by defining

φε(t) := ‖Hu(t)−Hεuε(t)‖L2 + ‖
√
−H∂tu(t)−

√
−Hε∂tuε(t)‖L2

+ ‖∂2
t u(t)− ∂2

t uε(t)‖L2 + ‖u(t)− uε(t)‖L2 ,

we can rewrite the above estimates as

φε(t) ≤ O(ε) + C(T, u0, u1)
� t

0
φε(s)ds
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and conclude by Gronwall that φε(t)→ 0 as ε→ 0 for all t ∈ [0, T ].
Hence, the result.

Lastly, we state the analogous result for the energy space, i.e. with data (u0, u1) ∈ D(
√
−H)×L2.

In a nutshell, one can repeat the above arguments. For global well-posedness, one can use a fixed
point argument in the space C([0, T ];D(

√
−H)) ∩ C1([0, T ];L2) ∩ C2([0, T ];D(

√
−H)∗) together

with energy conservation and convergence can also be proved as above. We omit the proofs.

Theorem 2.3.20. Let (u0, u1) ∈ D(
√
−H)× L2 and T > 0, then (2.3.13) has a unique solution

u ∈ C([0, T ];D(
√
−H)) ∩ C1([0, T ];L2) ∩ C2([0, T ];D(

√
−H)∗). Moreover, (2.3.14) has a unique

solution uε ∈ C([0, T ];H1) ∩ C1([0, T ];L2) ∩ C2([0, T ];H−1) with initial data (uε0, u1) ∈ H1 × L2,
where uε0 := (−Hε)−1/2(−H)1/2u0 and the following convergence holds

uε(t)→ u(t) in L2√
−Hεuε(t)→

√
−Hu(t) in L2

∂tuε(t)→ ∂tu(t) in L2

for all t ∈ [0, T ].

Remark 2.3.21. The same result is also true in 2d for any power p ∈ (1,∞) both for the domain
and energy space case. In 3d, our proof for global wellposedness also works for powers up to 5 in
the domain case using an analogue of Agmon’s inequality, which we included for completeness as
Lemma 2.2.55. See also Chapter 4 for the a treatment of energy supercritical powers.

Paracontrolled distributions and function spaces
We recall the definitions of Bony paraproducts, Besov and Sobolev spaces and collect some results
about products of distributions. We work on the d-dimensional torus Td := Rd/Zd for d = 2, 3.
For any f in the space S ′(Td) of tempered distributions on Td, the Fourier transform of f will be
denoted by f̂ : Zd → C (or sometimes Ff) and is defined for k ∈ Zd by

f̂(k) := 〈f, exp(2πi〈k, ·〉) =
�
Td
f(x) exp(−2πi〈k, x〉)dx.

Recall that for any f ∈ L2(Td) and a.e. x ∈ Td, we have

f(x) =
∑
k∈Zd

f̂(k) exp(2πi〈k, x〉). (2.3.19)

The Sobolev space Hα(Td) with index α ∈ R is defined as

Hα(Td) := {f ∈ S ′(Td;R) :
∑
k∈Zd

(1 + |k|2)α |f̂(k)|2 < +∞} .

Before introducing Besov spaces, we recall the definition of Littlewood-Paley blocks. We denote
by χ and ρ two nonnegative smooth and compactly supported radial functions Rd → R such that
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1. The support of χ is contained in a ball {x ∈ Rd : |x| ≤ R} and the support of ρ is contained
in an annulus {x ∈ Rd : a ≤ |x| ≤ b};

2. For all ξ ∈ Rd, χ(ξ) +
∑
j≥0 ρ(2−jξ) = 1;

3. For j ≥ 1, χρ(2−j ·) ≡ 0 and ρ(2−i·)ρ(2−j ·) ≡ 0 for |i− j| ≥ 1.

The Littlewood-Paley blocks (∆j)j≥−1 acting on f ∈ S ′(Td) are defined by

F(∆−1f) = χf̂ and for j ≥ 0, F(∆jf) = ρ(2−j .)f̂ .

Note that, for f ∈ S ′(Td), the Littlewood-Paley blocks (∆jf)j≥−1 define smooth functions, as
their Fourier transforms have compact supports. We also set, for f ∈ S ′ and j ≥ 0,

Sjf :=
j−1∑
i=−1

∆if

and note that Sjf converges in the sense of distributions to f as j →∞.
The Besov space with parameters p, q ∈ [1,∞), α ∈ R can now be defined as

Bαp,q(Td) :=

u ∈ S ′(Td); ‖u‖Bαp,q =

∑
j≥−1

2jqα‖∆ju‖qLp

1/q

< +∞

 . (2.3.20)

We also define the Besov-Hölder spaces

Cα := Bα∞,∞

which are naturally equipped with the norm ‖f‖Cα := ‖f‖Bα∞,∞ = supj≥−1 2jα‖∆jf‖L∞ . For
α ∈ (0, 1) these spaces coincide with the classical Hölder spaces.
We can formally decompose the product fg of two distributions f and g as

fg = f ≺ g + f ◦ g + f � g

where

f ≺ g :=
∑
j≥−1

j−2∑
i=−1

∆if∆jg and f � g :=
∑
j≥−1

j−2∑
i=−1

∆ig∆jf

are usually referred to as the paraproducts whereas

f ◦ g :=
∑
j≥−1

∑
|i−j|≤1

∆if∆jg (2.3.21)

is called the resonant product.
Moreover, we define the notations f 4 g := f ≺ g + f ◦ g and f < g := f � g + f ◦ g.
The paraproduct terms are always well defined irrespective of regularities. The resonant product is
a priori only well defined if the sum of regularities is strictly greater than zero. This is reminiscent
of the well known fact that one can not multiply distributions in general. The following result
makes those comments precise and gives simple but extremely vital estimates for paraproducts.
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Proposition 2.3.22 (Bony estimates, [3]). Let α, β ∈ R. We have the following bounds:

1. If f ∈ L2 and g ∈ Cβ, then

‖f ≺ g‖Hβ−δ ≤ Cδ,β‖f‖L2‖g‖Cβ for all δ > 0.

2. if f ∈ Hα and g ∈ L∞ then

‖f � g‖Hα ≤ Cα,β‖f‖Hα‖g‖Cβ .

3. If α < 0, f ∈ Hα and g ∈ Cβ, then

‖f ≺ g‖Hα+β ≤ Cα,β‖f‖Hα‖g‖Cβ .

4. If g ∈ Cβ and f ∈ Hα for β < 0 then

‖f � g‖Hα+β ≤ Cα,β‖f‖Hα‖g‖Cβ

5. If α+ β > 0 and f ∈ Hα and g ∈ Cβ, then

||f ◦ g‖Hα+β ≤ Cα,β‖f‖Hα‖g‖Cβ .

where Cα,β is a finite positive constant.

Proposition 2.3.23. Given α ∈ (0, 1), β, γ ∈ R such that β + γ < 0 and α+ β + γ > 0, there
exists a trilinear operator C with the following bound

‖C(f, g, h)‖Hα+β+γ . ‖f‖Hα‖g‖Cβ‖h‖Cγ

for all f ∈ Hα, g ∈ Cβ and h ∈ Cγ .

The restriction of C to the smooth functions satisfies

C(f, g, h) = (f ≺ g) ◦ h− f(g ◦ h).

Proof. This is a restatement of the commutator lemma in [3], and the proof follows along the
same lines.

Lemma 2.3.24 (Bernstein’s inequality, [45]). Let A be an annulus and B be a ball. For any
k ∈ N, λ > 0,and 1 ≤ p ≤ q ≤ ∞ we have

1. if u ∈ Lp(Rd) is such that supp(Fu) ⊂ λB then

max
µ∈Nd:|µ|=k

‖∂µu‖Lq .k λk+d( 1
p−

1
q )‖u‖Lp

2. if u ∈ Lp(Rd)is such that supp(Fu) ⊂ λA then

λk‖u‖Lp .k max
µ∈Nd:|µ|=k

‖∂µu‖Lp .

Proposition 2.3.25 (Paralinearisation, [48]). Let α ∈ (0, 1) and F ∈ C2. Then there exists a
locally bounded map RF : Cα → C2α such that

F (f) = F ′(f) ≺ f +RF (f) for all f ∈ Cα.
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Lemma 2.3.26. Let α, β, γ ∈ R with α+ β < 0, α+ β + γ ≥ 0, and f ∈ Hα, g ∈ Cβ , h ∈ Hγ , then
there exists a map D(f, g, h) with the following bound

|D(f, g, h)| . ‖g‖Cβ‖f‖Hα‖h‖Hγ . (2.3.22)

Moreover the restriction of D(f, g, h) to smooth functions f, g, h is as follows:

D(f, g, h) = 〈f, h ◦ g〉 − 〈f ≺ g, h〉.

Proof. We define

D(f, g, h) :=

 ∑
i≥k−1,|j−k|≤L

−
∑

i∼k,1<|j−k|≤L

 〈∆if,∆jh∆kg〉.

So we get, for some δ > 0,

|D(f, g, h)| .
∑

i&k,j∼k

|〈∆if,∆jh∆kg〉|

≤
∑

i&k,j∼k

‖∆if‖L2‖∆jh‖L2‖∆kg‖L∞

≤ ‖g‖C−1−δ

∑
i&k,j∼k

2k(1+δ)‖∆if‖L2‖∆jh‖L2

≤ ‖g‖C−1−δ‖f‖H(1+δ)/2‖h‖H(1+δ)/2

and this argument can be adapted to show (2.3.22) by simply observing
1 ≤ 2k(β+α+γ) = 2kβ2k(α+γ), since β + α+ γ ≥ 0 . Moreover, for smooth functions f, g, h; we can
compute

〈f, h ◦ g〉 − 〈f ≺ g, h〉 =
∑

i,|j−k|≤1

〈∆if,∆jh∆kg〉 −
∑

i<k−1,j
〈∆if∆kg,∆jh〉

=

 ∑
i,|j−k|≤1

−
∑

i<k−1,|j−k|≤L

 〈∆if∆kg,∆jh〉

=

 ∑
i,|j−k|≤L

−
∑

i<k−1,|j−k|≤L

−
∑

i,1<|j−k|≤L

 〈∆if,∆jh∆kg〉

=

 ∑
i≥k−1,|j−k|≤L

−
∑

i,1<|j−k|≤L

 〈∆if,∆jh∆kg〉

=

 ∑
i≥k−1,|j−k|≤L

−
∑

i∼k,1<|j−k|≤L

 〈∆if,∆jh∆kg〉 = D(f, g, h).

Hence the result.
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Remark 2.3.27. Proposition 2.3.26 says that the paraproduct is almost the adjoint of the
resonant product, meaning up to a more regular remainder term as is often the case in
paradifferential calculus.

Lemma 2.3.28. Let f ∈ Hα, g ∈ Cβ , with α ∈ (0, 1), β ∈ R, there exists a bilinear map R(f, g)
that satisfies the following bound

‖R(f, g)‖Hα+β+2 . ‖f‖Hα‖g‖Cβ ,

and restricts to smooth functions as

R(f, g) = (1−∆)−1(f ≺ g)− f ≺ (1−∆)−1g.

Proof. The proof is basically a straightforward modification of the proof of [3, Proposition A.2],
which has almost the same statement.
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Chapter 3

Strichartz estimates and
low-regularity solutions to
multiplicative stochastic NLS

3.1 Introduction
This chapter is devoted to proving Strichartz estimates and low-regularity well-posedness of
defocussing cubic NLS(nonlinear Schrödinger equations) with very rough potentials ξ, so

i∂tu−∆u = u · ξ − u|u|2on Td (3.1.1)
u(0) = u0, (3.1.2)

where Td = Rd/Zd is the d−dimensional torus. Many results still hold true in the whole space, see
the discussion in section 3.6, but our chief interest is the case where ξ is spatial white noise, which
is a distribution whose regularity is only C− d2−ε for ε > 0, see Definition 3.6.1 for the precise
definition of white noise and the appendix for a reminder of the definition of the Hölder-Besov
spaces Cα.

In the case of the white noise potential there turns out to be a peculiarity in the form of
renormalisation, which means that in order to make sense of (3.1.2) one is required to shift by an
infinite correction term, formally “∞ · u”. This is reminiscent of the theory of singular SPDEs
which has seen a rapid growth in recent years following the introduction of the theory of
Regularity Structures by Hairer [54] and the theory of Paracontrolled Distributions by Gubinelli,
Perkowski, and Imkeller [45].

The approach we follow in this paper is to put the potential ξ into the definition of the operator,
i.e. we try to define the operator

∆ + ξ

as a self-adjoint and semi-bounded operator on L2(Td). This was first done by Allez and Chouk
in [3], where the operator together with its domain were constructed in 2d with the white noise

74



Hyperbolic and dispersive singular stochastic PDEs

potential–hereafter called the Anderson Hamiltonian–using Paracontrolled Distributions. A
similar approach was used in [49] to construct the operator and its domain in 3d with an eye also
on solving PDEs like (3.1.2). In Section 3.3 we recall the main ideas of [49] since the results are
integral to the current work. The domain of the Anderson Hamiltonian was also constructed by
Labbé using Regularity Structures [62].

The equation (3.1.2) with white noise potential in 2d was solved, but not shown to be well-posed,
by Debussche and Weber [30] and on the whole space with a smaller power in the nonlinearity by
Debussche and Martin in [29]. In [49] global well-posedness(GWP) was proved in the domain of
the Anderson Hamiltonian in 2d, whereas in 3d one gets a blow-up alternative when starting in
the domain analogously to the case of classical H2 solutions in [23]. Furthermore, in [49] global
existence in the energy space in 2d was shown, but not well-posedness. Achieving GWP for energy
solutions to (3.1.2) is one of the results of this paper.

The (nonlinear) Schrödinger equation (3.1.2) with a potential has certain physical interpretations,
see [38] and the references therein. In this paper we are able to treat a large class of subcritical
potentials and all results are continuous w.r.t. the potential in the “correct” topology, see Section
3.6 for a discussion; Since the chief application is the white noise potential this aspect is not
always emphasised. Some potentials of interest are actually critical in the sense of scaling, like the
Dirac Delta in 2d (see the monograph [2]) or the potential | · |−2 treated in [18]. Our method does
not apply in these cases, but in the aforementioned examples the analysis depends in a crucial
way on the structure of the potential. We stress here that our method relies only on the (Besov)
regularity of the potential and possibly some related objects and does not depend on its sign,
radial symmetry, homogeneity etc.

Stochastic NLS of the form (3.1.2) but with different noises(e.g. white in time coloured in space)
have also been considered, see [27], [16], [34] to name but a few. Other stochastic dispersive PDEs
which have been studied in recent years include stochastic NLS with additive space-time
noise [67], [35] and nonlinear stochastic wave equations with additive space-time noise in [47]
and [46]. Let us also mention [41], where the theory of Rough Paths–the precursor to both
Regularity Structures and Paracontrolled Distributions–is used to solve the deterministic
low-regularity KdV equation and which showcases nicely how tools from singular SPDEs can be
applied to non-stochastic PDE problems.

We state the main (shortened) results of the paper relating to the multiplicative stochastic NLS.
H“=”∆ + ξ −∞ is the Anderson Hamiltonian whose exact definition and properties are recalled
in Section 3.3.

Theorem 3.1.1. [2d Anderson Strichartz Estimates]Let r > 4, then we have for any δ > 0

‖e−itHu‖Lr
t;[0,1]L

r
T2

. ‖u‖
H

1− 4
r

+δ

T2

(3.1.3)

Theorem 3.1.2. [2d low regularity local well-posedness] The PDE

(i∂t −H)u = −u|u|2on T2

u(0) = u0

is locally well-posed(LWP) in Hsfor s ∈
( 1

2 , 1
)
.

Chapter 3 Immanuel Zachhuber 75



Hyperbolic and dispersive singular stochastic PDEs

Theorem 3.1.3. /Corollary [2d GWP for energy solutions] The PDE

(i∂t −H)u = −u|u|2on T2

u(0) = u0

is globally well-posed(GWP) in the energy space, D
(√
−H

)
, whose definition is recalled in Section

3.3.1.

Theorem 3.1.4. [3d Anderson Strichartz Estimates] Let d = 3 and r > 10
3 , then for any δ > 0 we

have
‖e−itH

]

u]‖Lr
t;[0,1]L

r
T3

. ‖u]‖
H

2− 5
r

+δ

T3

,

where H] is the transformation of the operator H introduced in Section 3.3.2.

The paper is organised as follows: In Section 3.2 we recall the well-known Strichartz estimates on
the whole space and how their counterparts on the torus differ. Section 3.3 is meant to
recapitulate the construction of the Anderson Hamiltonian and its domain following [49]. In
Section 3.4 we prove the Strichartz estimates for the Anderson Hamiltonian in 2- and
3-dimensions, i.e. Theorems 3.1.1 and 3.1.4. Then in Section 3.5 we utilise these bounds to solve
the multiplicative stochastic NLS. Lastly we outline in Section 3.6 how the results can
straightforwardly be adapted to other potentials.

Notations and conventions

The spaces we work in are Lp-spaces, for p ∈ [1,∞], meaning the usual p-integrable Lebesgue
functions; Hα,Wα,p spaces, with α ∈ R, p ∈ [1,∞] the usual Sobolev potential spaces with
Hα = Wα,2; and Bsr,q, the Besov spaces, whose definition is recalled in the appendix and which
cover Hα and Cα–so called Hölder-Besov spaces–as special cases.

Also we write
‖f‖XΩ := ‖f‖X(Ω)and ‖f(t)‖Xt;Ω := ‖f‖X(Ω),

where X is a function space and Ω is the domain, the relevant cases being Ω ∈ {Rd,Td, [0, T ]} for
T > 0 and d = 1, 2, 3.

We write, as is quite common,
a . b

to mean a 6 Cb for a constant C > 0 independent of a, b and their arguments. Also we write

a ∼ b⇔ a . b and b . a.

For the sake of brevity we also allow every constant to depend exponentially on the relevant
noise norm ‖Ξ‖, see Section 3.6 for the exact definition of the norms; This can be written
schematically as

.⇔.Ξ,

this comes with the tacit understanding that everything is continuous with respect to this norm,
see Section 3.6 for a discussion on this. Another convention is that if we write something like

‖F (u)‖X . ‖u‖Hα+ε for ε > 0,

we of course mean
‖F (u)‖X 6 Cε‖u‖Hα+ε with Cε →∞ as ε→ 0.

76 Chapter 3 Immanuel Zachhuber



Hyperbolic and dispersive singular stochastic PDEs

3.2 Classical Strichartz estimates on the torus
We start by recalling the well-known Strichartz estimates for Schrödinger equations on Rd.

Theorem 3.2.1. [ [76];Theorem 2.3]Let d > 1 and (p, q) be a Strichartz pair, i.e.

2
p

+ d

q
= d

2and (d, p, q) 6= (2, 2,∞),

we also take (r′, s′) to be a dual Strichartz pair, which means that they are Hölder duals of a
Strichartz pair (r, s), explicitly

2
r′

+ d

s′
= d+ 4

2 ,

then the following are true

i. ‖eit∆u‖Lp
t;RL

q

Rd
. ‖u‖L2

Rd
“homogeneous Strichartz estimate”

ii.
∥∥�

R e
−it∆F (t)dt

∥∥
L2

Rd
. ‖F‖Lr′R Ls′Rd

“dual homogeneous Strichartz estimate”

iii.
∥∥∥�t′<t ei(t−t′)∆F (t′)dt′

∥∥∥
Lp
t;RL

q

Rd

. ‖F‖Lr′R Ls′Rd
“inhomogeneous Strichartz estimates”.

Next we cite some classical Strichartz estimates on the torus and how they differ from those on
the whole space. Moreover we sketch how they allow to solve NLS in spaces below H d

2 +ε,which is
an algebra.

The first results we state are the Strichartz estimates proved by Burq-Gerard-Tzvetkov in [17].
They hold on general manifolds, i.e. not only the torus. The results are not optimal for the torus
but we nonetheless cite them because the methods we use are strongly inspired by this paper.

Theorem 3.2.2. [Strichartz estimates on compact manifolds, [17] Theorem 1] Let

2
p

+ d

q
= d

2 .

We have on the finite time interval [0, 1]

‖e−it∆u‖Lp
t;[0,1]L

q . ‖u‖
H

1
p

and ∥∥∥∥� t

0
e−i(t−s)∆f(s)ds

∥∥∥∥
Lp
t;[0,1]L

q

.
� 1

0
‖f(s)‖

H
1
p
ds.

Note that, as opposed to the whole space, we have a loss of 1
p derivatives. The next result is the

“state of the art” for Strichartz estimates on the torus due to Bourgain and Demeter in [14] which
were refined in [60] by Killip and Visan whose version we cite because it is more amenable to our
situation. With this result we are able to reduce the loss of derivative to be arbitrarily small. The
result is stated for functions which are localised in frequency but the corresponding Sobolev
bound is immediate.
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Theorem 3.2.3. [Improved Strichartz, Theorem 1.2 [60], [14]]Let d > 1 and p > 2(d+2)
d , then, for

any ε > 0 we have
‖e−it∆P6Nf‖Lp

t;[0,1]L
p

Td
. N

d
2−

d+2
p +ε‖f‖L2

Td
.

For d = 2 this means p > 4 and for d = 3 p > 10
3 .

For future reference we state the above result for short times that may depend on the localised
frequency. We write for a function h defined on the torus the short-hand notation

hN := P6Nh, where P6N := F−1I.NF .

Proposition 3.2.4. [Strichartz for short times]

Assume, as above, that f is defined on the interval [0, 1]. Let N > 0 an integer and IN = [t0, t1] a
subinterval of [0, 1] of length ∼ 1

N , p >
2(d+2)
d and ε > 0, then

‖e−it∆uN‖Lp
t;IN

Lp
Td

. N
d
2−

d+2
p −

1
p+ε‖uN‖L2

Td

and ∥∥∥∥� t

t0

e−i(t−s)∆fN (s)ds
∥∥∥∥
Lp
t;IN

Lp
Td

. N
d
2−

d+2
p −

1
p+ε

�
IN

‖fN (s)‖L2
Td
ds

. N
d
2−

d+2
p −

1
p−1+ε‖fN‖L∞

IN
L2

Td
.

Proof. We prove the first inequality, the second one follows from the first in the usual way. For
definiteness we set

Ii :=
[
i

N
,
i+ 1
N

]
and uN :=

∑
|n|6N

λne
2πin·x.

The first thing we show is, setting en(x) := e2πin·x,

‖e−it∆λnen‖Lp
t;Ij

Lp
Td

= ‖e−it∆λnen‖Lp
t;Ik

Lp
Td

for all 0 6 j, k 6 N − 1 and n ∈ Z2, (3.2.1)

since then we have for any j and n

N‖e−it∆λnen‖pLp
t;Ij

Lp
Td

=
N∑
k=1
‖e−it∆λnen‖pLp

t;Ik
Lp

Td

= ‖e−it∆λnen‖pLp
t;[0,1]L

p

Td

. N
dp
2 −d−2+pε‖λnen‖pL2

Td
,

having used the Strichartz estimate from Theorem 3.2.3 in the last step.
We proceed to prove (3.2.1) for 0 = j < k w.l.o.g. Then for t ∈ I0 = [0, 1

N ] we have

e−it∆λnen = λne
i(2πn)2t+2πin·x =: gn(t, x)
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and for t ∈ Ik =
[
k
N ,

k+1
N

]
we have

e−it∆λnen = e−i(t−
k
N )∆e−i

k
N ∆λnen

= e−i(t−
k
N )∆λne

2πin·(x+(2π)2 k
N n)

= gn(t− k

N
, x+ (2π)2 k

N
n),

so we have

‖gn(t− k

N
, ·+ (2π)2 k

N
n)‖Lp

Td
= ‖gn(t− k

N
, ·)‖Lp

Td

by a change of variables and periodicity. Further, we have

‖gn(t− k

N
, ·+ (2π)2 k

N
n)‖p

Lp
t;Ik

Lp
Td

= ‖gn(t− k

N
)‖p
Lp
t;Ik

Lp
Td

=
� k+1

N

k
N

‖gn(t− k

N
)‖p
Lp

Td
dt

=
� 1

N

0
‖gn(s)‖p

Lp
Td
ds

= ‖e−it∆uN‖pLp
t;[0, 1

N
]
Lp

Td
,

which means we have showed the bound

‖e−it∆λnen‖Lp
t;Ij

Lp
Td

. N−
1
pN

d
2−

d+2
p +ε‖λnen‖L2

Td
.

We proceed to sum over the frequencies 6 N . To do so we first recall the square function estimate

‖g‖Lp ∼ ‖‖∆jg‖l2
j
‖Lp ,

see e.g. [32] and then we start by bounding

‖
∑
|n|6N

e−it∆λnen‖2Lp
Td
∼ ‖

∑
|n|6N

|e−it∆λnen|2‖
L
p
2
Td

.
∑
|n|6N

‖e−it∆λnen‖2Lp
Td

having used the square function bound and the triangle inequality. Next we take the L p
2 norm in
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time over the interval Ij

‖
∑
|n|6N

e−it∆λnen‖2Lp
t;Ij

Lp
Td

= ‖‖
∑
|n|6N

e−it∆λnen‖2Lp
Td
‖
L
p
2
Ij

. ‖
∑
|n|6N

‖e−it∆λnen‖2Lp
Td
‖
L
p
2
Ij

.
∑
|n|6N

‖e−it∆λnen‖2Lp
t;Ij

Lp
Td

. N−
2
pNd− 2(d+2)

p +2ε
∑
|n|6N

‖λnen‖2L2
Td

= N−
2
pNd− 2(d+2)

p +2ε‖
∑
|n|6N

λnen‖2L2
Td

in other words
‖e−it∆uN‖Lp

t;IN
Lp

Td
. N−

1
pN

d
2−

(d+2)
p +ε‖uN‖L2

Td

as claimed.

Furthermore, we give a quick sketch about why these kinds of estimates are needed for NLS on
the torus.

Take for simplicity the cubic NLS on the two-dimensional torus.

i∂tu−∆u = −u|u|2 on T2

u(0) = u0.

The Duhamel formula reads

u(t) = e−it∆u0 + i

� t

0
e−i(t−s)∆|u|2u(s)ds. (3.2.2)

Since for u0 ∈ Hσ with σ ∈ R we have

e−it∆u0 ∈ CtHσ

it is natural to try to solve (3.2.2) in a space like CtHσ for, say, σ > 0. Now, since the unitary
group e−it∆ has no smoothing properties, the “best” possible way to bound the nonlinear
expression in (3.2.2) is∥∥∥∥� t

0
e−i(t−s)∆|u|2u(s)ds

∥∥∥∥
Ct;[0,T ]HσT2

.
� T

0
‖|u|2u(s)‖Hσ

T2
ds (3.2.3)

.
� T

0
‖u(s)‖2L∞

T2
‖u(s)‖Hσ

T2
ds, (3.2.4)

where the second inequality follows from the “tame” estimate (see Lemma 3.6.14). In the case
that σ > d

2 (= 1 in 2d) the L∞ norm is controlled by the Hσ norm so it is easy to close the fixed
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point argument. But even in the case of H1, which is natural as it is the “energy space”, one is
not able to close the contraction argument without additional input.

The key observation to make – and to see where the Strichartz estimates enter – is that in (3.2.4)
we can apply Hölder’s inequality in time to obtain

� T

0
‖u(s)‖2L∞

T2
‖u(s)‖Hσ

T2
ds . ‖u‖2Lp[0,T ]L

∞
T2
‖u‖Lq[0,T ]H

σ
T2

for 2
p

+ 1
q

= 1

and note that we need not control the L∞t L∞x norm of the solution but it suffices to control the
LptL

∞
x norm for some suitable 2 6 p <∞.

So, if we were able to control the LptL∞x norm of the right-hand side of (3.2.2) by the CHσ norm
of u we would be able to get a local-in-time contraction. Of course, bounding the L∞ norm
directly is hopeless but recall the Sobolev embedding in d−dimensions

W
d
q+ε,q ↪→ L∞ for any q ∈ (1,∞) and ε > 0.

This is the stage where the Strichartz estimates come in, since, for example by Theorem 3.2.2, one
gets the bound

‖e−it∆u0‖Lp
t;[0,T ]L

∞
T2

. ‖e−it∆u0‖
Lp
t;[0,T ]W

2
q

+ε,q

T2

.T ‖u0‖
H

1
p

+ 2
q

+ε

T2

for the linear evolution where (p, q) is a Strichartz pair. Note that by choosing ε small we get
1
p

+ 2
q

+ ε =
(

2
p

+ 2
q

)
− 1
p

+ ε = 1− 1
p

+ ε < 1

so this is strictly better than what we would get from estimating the L∞ norm by the H1+ε norm.

For the nonlinear term we get similarly (assuming for simplicity T ≤ 1)∥∥∥∥� t

0
e−i(t−s)∆|u|2u(s)ds

∥∥∥∥
Lp
t;[0,T ]L

∞
T2

.

∥∥∥∥� t

0
e−i(t−s)∆|u|2u(s)ds

∥∥∥∥
Lp
t;[0,T ]W

2
q

+ε,q

T2

.
� T

0
‖|u|2u(s)‖ds

H
1
p

+ 2
q

+ε

T2

. T‖u‖3L∞[0,T ]H
σ̃
T2

where 1
p + 2

q + ε < σ̃ < 1 can be computed explicitly using the fractional Leibniz rule, see Lemma
3.6.13.

Clearly these bounds can be sharpened in different ways but the important thing is that
Strichartz estimates lead to local-in-time well-posedess for some range of σ 6 1.

3.3 The Anderson Hamiltonian in 2 and 3 dimensions
The main aim of this work is to establish Strichartz estimates for the Anderson Hamiltonian
which is formally given on the 2-/3-dimensional torus by

H“=”∆ + ξ −∞,
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where ξ = ξ(x) is spatial white noise, see Definition 3.6.1. This operator was initially studied by
Allez-Chouk in [3] and later by Gubinelli,Ugurcan and the author in [49] using the theory of
Paracontrolled Distributions which was introduced in [45]. The operator was also studied by
Labbé in [62] using the theory of Regularity Structures introduced in [54]. Naïvely one might think
that it is simply a suitably well-behaved perturbation of the Laplacian in which case Theorem 6
in [17] would more or less directly apply. However, it was shown that the domain of H in both 2d
and 3d can be explicitly determined and one even has

D(H) ∩H2 = {0},

so it is tricky to directly compare the operators H and ∆.

3.3.1 The 2d Anderson Hamiltonian
We briefly recall some of the main ideas from [49] in the 2d setting. An observation made in [3]
was that a function u is in the domain of H if

u− (u ≺ (1−∆)−1ξ +BΞ(u)) ∈ H2, (3.3.1)

see the appendix for the definition and properties of paraproducts. By the paraproduct
estimates(Lemma 3.6.8) and the regularity of the noise, the term u ≺ (1−∆)−1ξ is no better than
H1−ε. The “lower order” correction term BΞ is also worse than H2 (in fact it is H2−ε). This for
example rules out that u is regular, rather it fixes its regularity at H1−ε; See Definition 3.6.2 for
the exact definition of the enhanced noise Ξ.

One of the chief innovations in [49] as opposed to [3] was to observe that the statement (3.3.1) is
equivalent to

u− P>N (u ≺ (1−∆)−1ξ +BΞ(u)) ∈ H2,

where P>N = F−1I>NF , for any N > 0 and subsequently choosing N large enough depending on
the Xα norm of Ξ (see Definition 3.6.2) one can show that the map

Φ(u) := u− P>N(Ξ)(u ≺ (1−∆)−1ξ +BΞ(u))
D(H) 7→ H2

which sends a paracontrolled function to its remainder admits an inverse which we call Γ; We also
rename Φ as Γ−1. In the following we use the short-hand notation

u = Γu] = P>N(Ξ)(Γu] ≺ (1−∆)−1ξ +BΞ(Γu])) + u], (3.3.2)

where the term BΞ is explicitly given by

BΞ(u) := (1−∆)−1(∆u ≺ X + 2∇u ≺ ∇X + ξ ≺ u− u ≺ Ξ2),

where
X = (1−∆)−1ξ and Ξ2 is the second component of Ξ.

Consistently with our convention, we write N instead of N(Ξ) in the sequel. Moreover, in the new
coordinates, u], the operator H is given by

HΓu] =∆u] + u] ◦ ξ + P6N (Γu] ≺ ξ + Γu] � ξ)
+ P>N (−BΞ(Γu])− Γu] ≺ X + Γu] � Ξ2 + C(Γu], X, ξ) +BΞ(Γu]) ◦ ξ). (3.3.3)
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It is also natural to consider the operator H conjugated by Γ, i.e.

H] := Γ−1HΓ, (3.3.4)

which can be expressed as

H] =HΓu] − P>N (HΓu] ≺ X +BΞ(HΓu]))
=∆u] + u] ◦ ξ + P6N (Γu] ≺ ξ + Γu] � ξ)− P>N (HΓu] ≺ X +BΞ(HΓu]))

+ P>N (−BΞ(Γu])− Γu] ≺ X + Γu] � Ξ2 + C(Γu], X, ξ) +BΞ(Γu]) ◦ ξ) (3.3.5)

We remark that while H was shown to be self-adjoint on L2, the conjugated operator H] is not
and in particular the map Γ is not unitary.

We now quote some results from [49]; We tacitly assume −H to be positive as opposed to just
being semi-bounded, this can be achieved by adding a finite Ξ-dependent constant.

Theorem 3.3.1. [Proposition 2.27, Lemma 2.33, Lemma 2.34 [49]] We have, writing again
u = Γu],

i. ‖Hu‖L2
T2
∼ ‖u]‖H2

T2

ii.
∥∥√−Hu∥∥

L2
T2

= (−(u,Hu)L2
T2

) 1
2 ∼ ‖u]‖H1

T2

iii. D(H) ↪→ L∞ and D
(√
−H

)
↪→ Lp for any p <∞.

The following proposition quantifies the idea that the transformed operator H] is a lower-order
perturbation of the Laplacian.

Proposition 3.3.2. Take u] ∈ H2, then the following holds for any s, ε > 0 s.t. 1 + s+ ε ≤ 2

‖(H] −∆)u]‖Hs
T2

. ‖u]‖H1+s+ε
T2

.

Proof. This essentially follows by noting that in terms of regularity the worst terms to bound in
(3.3.5) are u] ◦ ξ and HΓu] ≺ X which are bounded by(see Lemma 3.6.8)

‖u] ◦ ξ‖Hs
T2

. ‖u]‖H1+s+ε
T2

‖ξ‖C−1−ε
T2

and
‖HΓu] ≺ X‖Hs

T2
. ‖∆u]‖H−1+s+ε

T2
‖X‖C1−ε

T2

respectively.
The other terms are bounded similarly by Hs norms of u] with s < 1 multiplied by Hölder norms
of objects related to ξ which appear in the Xα-norm, see Definition 3.6.2.

We collect all relevant results about the map Γ.

Lemma 3.3.3. The map Γ is bounded with a bounded inverse in the following situations(recall
that we think of α as −1− δ for small δ.)
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i. Γ : Hs → Hs for any s ∈ [0, α+ 2);

ii. Γ : Lp → Lp for any p ∈ [2,∞];

iii. Γ : W s,p →W s,p for any s ∈ [0, α+ 2) and p ∈ [2,∞);

iv. Γ : H1 → D
(√
−H

)
;

v. Γ : H2 → D(H).

Proof. Everything but (ii) and (iii) was proved in Section 2.1.1 of [49]. The cases p = 2,∞ of (ii)
were also already proved. For a different p we note that the result follows by interpolation.
Lastly, (iii) can be proved by using the embeddings

Bsp,2 ↪→W s,p ↪→ Bsp,p,

see e.g. [32] together with the Besov embedding Lemma 3.6.11 and the paraproduct estimates for
Besov spaces, Lemma 3.6.8. In fact, we may bound

‖Γf‖W s,p

T2
≤ ‖f‖W s,p

T2
+ ‖(Γ− 1)f‖W s,p

T2

. ‖f‖W s,p

T2
+ ‖(Γ− 1)f‖Bsp,2(T2)

. ‖f‖W s,p

T2
+ ‖f‖Bs−εp,2 (T2)

. ‖f‖W s,p

T2
+ ‖f‖Bsp,p(T2)

. ‖f‖W s,p

T2
.

Lastly we prove a statement about the “sharpened” group, which is the transformation of the
unitary group e−itH

e−itH
]

:= Γ−1e−itHΓ.

It is clear that one has the bounds

‖e−itHu‖L2
T2

. ‖u‖L2
T2

‖e−itHu‖D(H) . ‖u‖D(H).

We briefly show the analogous results for the transformed group.

Lemma 3.3.4. For s ∈ [0, 2] we get the following at any time t ∈ R

‖e−itH
]

u]‖Hs
T2

. ‖u]‖Hs
T2
.

Proof. The case s = 0 follows since both Γ and Γ−1 are bounded on L2. The case s = 2 can be
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proved using Lemma 3.3.3. In fact

‖e−itH
]

u]‖H2
T2

= ‖Γ−1e−itHΓu]‖H2
T2

. ‖He−itHΓu]‖L2
T2

∼ ‖e−itHHΓu]‖L2
T2

. ‖HΓu]‖L2
T2

. ‖u]‖H2
T2

The case s ∈ (0, 2) is proved by interpolation.

3.3.2 The 3d Anderson Hamiltonian
We recall the main results about the Anderson Hamiltonian in 3d, which are analogous to– yet
slightly more technical than– the 2d case. For definiteness we fix an enhanced white noise Ξ ∈ Hα
for α = 1

2 − ε for small ε > 0; see Definition 3.6.4 and Theorem 3.6.5 where the definition of the
“noise space” is recalled and the fact that almost every realisation of white noise has a lift in it.

The main difference with respect to the 2d case is that due to the higher irregularity of the noise
in 3d (in fact C− 3

2−ε for any ε > 0), a simple paracontrolled ansatz does not suffice. Instead, we
first make an exponential transformation as in [56] to remove the most irregular terms. This leads
to some lower-order terms involving gradients and we subsequently perform a paracontrolled
ansatz. As opposed to the 2d case, where there were only two noise terms, in this case there are
more. We give a formal argument, which was made rigorous in [49].

Since this section gives only a formal justification, we use notations like C1− to mean Cσ for any
σ < 1 etc. We start with ξ ∈ C− 3

2− and assume that the following objects exist:

X = (−∆)−1ξ ∈ C 1
2− X = (1−∆)−1 : |∇X|2 :∈ C1−

X = 2(1−∆)−1
(
∇X · ∇X

)
∈ C 3

2− X = (1−∆)−1
(
∇X · ∇X

)
∈ C 3

2−

and X = (1−∆)−1 :
∣∣∣∇X ∣∣∣2 :∈ C2−,

where the “Wick squares” should be thought of as

: |∇X|2 : = |∇X|2 −∞
:
∣∣∇X ∣∣2 : =

∣∣∇X ∣∣2 −∞, (3.3.6)

see [59] for background information about these objects.

We make the following auxiliary ansatz for the domain of the Hamiltonian which removes the
three most singular terms

u = eX+X +X u[;
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where the form of u[ will be specified later. We begin by computing

∆u+ uξ =eX+X +X
(

∆
(
X +X +X

)
u[ +

∣∣∣∇(X +X +X
)∣∣∣2 u[+

+ ∆u[ + 2∇
(
X +X +X

)
∇u[ + u[ξ

)
=eX+X +X

(
∆u[ +

(
|∇X|2− : |∇X|2 : +

∣∣∣∇X ∣∣∣2 +
∣∣∣∇X ∣∣∣2

+ 2∇X · ∇X + 2∇X · ∇X −X −X
)
u[ + 2∇

(
X +X +X

)
· ∇u[

)
,

note that the regularity of X is too low for the term
∣∣∇X ∣∣2 to be defined so we have to replace

it by by its Wick ordered version, also note the appearing difference |∇X|2− : |∇X|2 : . Here one
sees the two divergences that arise in the definition of H, since their difference is exactly the
infinite correction term in (3.3.6).

So we can summarise the above by saying that for

W := X +X +X ,

we “almost” can define the operator ∆ + ξ −∞ on functions of the form eWu[. In fact

Hu := H(eWu[) := eW (∆u[ + 2(1−∆)W̃ · ∇u[ + (1−∆)Zu[), (3.3.7)

makes sense for u[ in, say, H2, where we have defined

W̃ = (1−∆)−1∇W

Z = (1−∆)−1
(∣∣∣∇X ∣∣∣2 + 2∇X · ∇X −X −X

)
+X + 2X

and the regularities are

X,W ∈ C 1
2−, X ∈ C1−, X ,X , W̃ , Z ∈ C 3

2−, andX ∈ C2−.

The problem with (3.3.7) is of course that the right hand side will not be in L2, since both the
noise terms have negative regularity, so for any u[ ∈ H2 we have

∆u[ ∈ L2

2(1−∆)W̃ · ∇u[, (1−∆)Zu[ ∈ H− 1
2−.

The remedy is once again a paracontrolled ansatz, this time of the form

u[ = u[ ≺ Z +∇u[ ≺ W̃ +BΞ(u[) + u],

with u] ∈ H2 and the correction term BΞ(u[) ∈ H2− defined below.

We cite the rigorous definition of the operator and its domain; we use the short-hand notation

L := (1−∆) and L−1 := (1−∆)−1.
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Definition 3.3.5. Let W, W̃ , Z be as above. Then, for 0 < γ < 3
2 , we define the space

Wγ
Ξ := eWUγΞ := eW

{
u[ ∈ Hγ : u[ = u[ ≺ Z +∇u[ ≺ W̃ +BΞ(u[) + u] with u] ∈ H2

}
,

where BΞ(u[)is given as

BΞ(u[) := L−1(∆u[ ≺ Z + 2∇u[ ≺ ∇Z + u[ ≺ Z +∇∆u[ ≺ W̃ + 2∇2u[ ≺ ∇W̃ −∇u[ ≺ W̃+
+2LW̃ ≺ ∇u[ + LZ ≺ u[ + 2∇u[ ≺ (LW̃ ◦ Z) + 2∇u[ � (LW̃ ◦ Z)+
+2u[ ≺ (LW̃ ◦ ∇Z) + 2u[ � (LW̃ ◦ ∇Z) + 2∇u[ ≺ (LW̃ ◦ ∇W̃ )+
+2∇u[ � (LW̃ ◦ ∇W̃ ) + u[ ≺ (LZ ◦ Z) + u[ � (LZ ◦ Z)+
+∇u[ ≺ (LZ ◦ W̃ ) +∇u[ � (LZ ◦ W̃ )

)
.

Given u ∈ Wγ
Ξ we define the renormalised Anderson Hamiltonian acting on u in the following way

Hu := eW (∆u] + LZ ◦ u] + LW̃ ◦ ∇u] +G(u[)), (3.3.8)

where

G(u[) :=BΞ(u[) + 2∇u[ ◦ (LW̃ ◦ Z) + 2C(∇u[, Z, LW̃ ) + u[ ◦ (LW̃ ◦ ∇Z)+
+C(u[,∇Z,LW̃ ) + 2LW̃ ◦ (∇2u[ ≺ W̃ ) + 2∇u[ ◦ (LW̃ ◦ ∇W̃ )+
+2C(∇u[,∇W̃ , LW̃ ) + 2LW̃ ◦ ∇BΞ(u[)

and C denotes the commutator from Proposition 3.6.12. Note that this definition is equivalent to
(3.3.7) by construction, we have merely defined u[ in the proper way.

Remark 3.3.6. As was seen in [49], the space Wγ
Ξ = eWUγΞ does not really depend on γ in the

sense that if one equips the space UγΞ with the norm

‖(u[, u])‖UγΞ := ‖u[‖Hγ
T3

+ ‖u]‖H2
T3
,

then these norms are equivalent for different values of γ. This is because the paracontrolled
relation enforces a certain regularity, i.e. if

v = v ≺ Y + v],

for v] ∈ H2 and Y ∈ Cα, α > 0, then v ∈ Hα but not better.

As in 2d, we introduce a Fourier cut-off and obtain the map Γ given by

Γf = ∆>N (Γf ≺ Z +∇(Γf) ≺ W̃ +BΞ(Γf)) + f, (3.3.9)

choosing N large enough depending on the norm of Ξ. This again allows us to write u = eWΓu].
It is straightforward to adapt the above definition of H to involve the Fourier cut-off but we do
not spell this out as the only thing we care about is the fact that

HeWΓu] = eW (∆u] + LW̃ ◦ ∇u] + l.o.t.)

We collect the results about Γ, this is analogous to Lemma 3.3.3.
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Lemma 3.3.7. We can choose N large enough depending only on Ξ and s so that we have

‖Γf‖L∞
T3

. ‖f‖L∞
T3

(3.3.10)

‖Γf‖Hs
T3

. ‖f‖Hs
T3

(3.3.11)

for s ∈
[
0, 3

2
)
.

‖Γf‖W s,p

T3
. ‖f‖W s,p

T3
(3.3.12)

for s ∈
[
0, 3

2
)
and 2 6 p <∞.

In all cases Γ is invertible with a bounded inverse.

Proof. (3.3.10) and (3.3.11) were proved in Proposition 2.46 in [49], (3.3.12) can be proved as in
the 2d case, see Lemma 3.3.3.

We cite the main result about the domain; We again shift the operator by a constant depending
on the norm of Ξ to make it non-positive, see Definition 2.55 in [49].

Lemma 3.3.8. For the operator H the following holds

i. Γu] ∈ e−WD(H)⇔ u] ∈ H2, more precisely on D(H) =Wγ
Ξ = eWUγΞ we have the following

norm equivalence
‖u]‖H2

T3
∼ ‖HΓu]‖L2

T3
;

ii. u ∈ D
(√
−H

)
⇔ e−Wu ∈ H1,

where the form domain of H is given by the closure of D(H) under the norm

‖u‖D(
√
−H) :=

√
−(u,Hu)L2

T3
.

Then the precise statement is that on D(H) the following norm equivalence holds

‖e−Wu‖H1
T3
∼ ‖u‖D(

√
−H)

and hence the closures with respect to the two norms coincide.

Now the only part we truly need is that the transformed operator, the analogue of (3.3.4), is

H] := Γ−1e−WHeWΓ

and that it is “close” to the Laplacian in the sense that

H]u] = ∆u] + LW̃ ◦ ∇u] + l.o.t.

In fact, we have the following result.

Proposition 3.3.9. For u] ∈ H2, we have the following bounds for s, ε > 0 s.t. 3
2 + s+ ε ≤ 2

i. ‖(H] −∆)u]‖Hs
T3

. ‖u]‖
H

3
2 +s+ε

T3
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ii. For s ∈ [0, 2] we get the following at any time t ∈ R

‖Γ−1e−W e−itHeWΓu]‖Hs
T3

. ‖u]‖Hs
T3

Proof. (i) essentially follows by noting that in terms of regularity the worst terms to bound are
LW̃ ◦ ∇u] and ∇(e−WHeWΓu]) ≺ W̃ which are bounded like

‖LW̃ ◦ ∇u]‖Hs
T3

. ‖∇u]‖
H

1
2 +s+ε

T3

‖LW̃‖
C
− 1

2−ε

T3

. ‖u]‖
H

3
2 +s+ε

T3

and
‖∇(e−WHeWΓu]) ≺ W̃‖Hs

T3
. ‖∇∆u]‖

H
− 3

2 +s+ε

T3

‖W̃‖
C

3
2−ε

T3

. ‖u]‖
H

3
2 +s+ε

T3

,

respectively.
(ii) For s = 0 it follows directly by the properties of Γ and eW . For s = 2 we can, using (i) and
Lemma 3.3.8 , compute

‖Γ−1e−W e−itHeWΓu]‖H2
T3

. ‖Γ−1e−WHe−itHeWΓu]‖L2
T3

. ‖HeWΓu]‖L2
T3

. ‖u]‖H2
T3
.

The case s ∈ (0, 2) follows again by interpolation as in the 2d case.

3.4 Strichartz estimates for the Anderson Hamiltonian
3.4.1 The 2d case
In this section we prove Theorems 3.1.1, 3.1.2, and 3.1.3.

Proposition 3.4.1. We have the following identity for a regular function, say u] ∈ H2, and at
any time t ∈ R:

(e−itH
]

− e−it∆)u] = i

� t

0
e−i(t−s)∆((H] −∆)(e−isH

]

u]))ds, (3.4.1)

moreover, fixing some t0 ∈ R, we get a related result

(e−i(t−t0)H] − e−i(t−t0)∆)u] = i

� t

t0

e−i(t−s)∆((H] −∆)(e−i(s−t0)H]u]))ds, (3.4.2)

where we recall, from Proposition 3.3.2, that there is a cancellation between H] and the Laplacian.
Moreover, on the interval [0, T ] with T 6 1, we have for any small δ > 0 the bounds

‖(e−itH
]

− e−it∆)u]‖L∞
t;[0,T ]H

σ
T2

. T‖u]‖Hσ+1+δ
T2

(3.4.3)

and

‖(e−i(t−t0)H] − e−i(t−t0)∆)u]‖L∞
t;[t0,t1]H

σ
T2

. |t1 − t0|‖u]‖Hσ+1+δ
T2

(3.4.4)
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for σ ∈ [0, 1− δ).

Also, for r > 4 we have

‖(e−itH
]

− e−it∆)u]‖Lr
t;[0,T ]W

σ,r

T2
.

� T

0
‖e−i(s−t0)H]u]‖

H
σ+2− 4

r
+δ

T2

(3.4.5)

. T‖u]‖
H
σ+2− 4

r
+δ

T2

(3.4.6)

and

‖(e−i(t−t0)H] − e−i(t−t0)∆)u]‖Lr
t;[t0,t1]W

σ,r

T2
.

� t1

t0

‖e−i(s−t0)H]u]‖
H
σ+2− 4

r
+δ

T2

(3.4.7)

. |t1 − t0|‖u]‖
H
σ+2− 4

r
+δ

T2

(3.4.8)

for σ ≥ 0 s.t. σ + 2− 4
r + δ ≤ 2.

Proof. To prove (3.4.1), note that the l.h.s. solves a PDE. Set v]1(t) = e−it∆u], v]2(t) = e−itH
]

u]

and v] = v]1 − v
]
2. Then

(i∂t −∆)v]1 = 0
v]1(0) = u]

(i∂t −∆)v]2 = (H] −∆)v]2
v]2(0) = u]

(i∂t −∆)v] = −(H] −∆)v]2
v](0) = 0

From this we deduce that the mild formulation for v] reads

v](t) = i

� t

0
e−i(t−s)∆((H] −∆)(v]2))(s)ds

which is (3.4.1). To prove (3.4.2), we proceed as above, with the difference that we replace t by
t− t0 and do a change of variables in the integral.
The bound (3.4.3) is clear using Lemma 3.3.4 and (3.4.4) is analogous. For the bound (3.4.6), we
apply first (3.4.1) then we use the inhomogeneous Strichartz estimate from Theorem 3.2.3 to the
right hand side and then Proposition 3.3.2 to bound the term inside the integral. Subsequently,
(3.4.6) follows by applying Lemma 3.3.4 and noting that the integrand does not depend on s any
more.
The bound (3.4.8) follows in the same way by using (3.4.2) instead of(3.4.1).

Now we are able to combine the above results to get the first new result.

Theorem 3.4.2. [2-D Anderson Strichartz] Let r > 4, σ ≥ 0, δ > 0 s.t. σ + 1− 4
r + δ < 1.Then

we have on a finite time interval [0, T ], T 6 1 the following bound

‖e−itH
]

u]‖Lr
t;[0,T ]W

σ,r

T2
. ‖u]‖

H
σ+1− 4

r
+δ

T2

(3.4.9)
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and

∥∥∥∥� t

0
e−i(t−s)H

]

f ](s)ds
∥∥∥∥
Lr
t;[0,T ]W

σ,r

T2

.
� T

0
‖f ](s)‖

H
σ+1− 4

r
+δ

T2

ds (3.4.10)

Proof. We start by proving (3.4.9) with σ = 0. By Proposition 3.4.1 and the Strichartz estimates
in Theorem 3.2.3 we can write, setting u]N = P6Nu

], I := [t0, t1] a subinterval of length ∼ 1
N and

δ > 0

P6Ne
−itH]u]N = P6Ne

−i(t−t0)H]e−it0H
]

u]N

= e−i(t−t0)∆P6Ne
−it0H]u]N + P6N (e−i(t−t0)H] − e−i(t−t0)∆)e−it0H

]

u]N

= e−i(t−t0)∆P6Ne
−it0H]u]N + i

� t

t0

P6Ne
−i(t−s)∆(H] −∆)(e−i(s−t0)H]u]N )ds.

First we decompose the time interval into slices ∪jIj = [0, T ] with |Ij | ∼ 1
N

‖P≤Ne−itH
]

u]N‖
r
Lr
t;[0,T ]L

r
T2

=
∑

Ij=[tj0,t
j
1]

‖P≤Ne−itH
]

u]N‖
r
Lr
t;Ij

Lr
T2

.
∑

Ij=[tj0,t
j
1]

‖e−it∆P≤Ne−it
j
0H

]

u]N‖
r
Lr
t;Ij

Lr
T2

+ ‖P≤N (e−i(t−t
j
0)H] − e−i(t−t

j
0)∆)e−it

j
0H

]

u]N‖
r
Lr
t;Ij

Lr
T2

.
∑

Ij=[tj0,t
j
1]

N−1‖e−it
j
0H

]

u]N‖
r

H
1− 4

r
+δ

T2

+ (?)

.
∑

Ij=[tj0,t
j
1]

N−1‖u]N‖
r

H
1− 4

r
+δ

T2

+ (?)

. ‖u]N‖
r

H
1− 4

r
+δ

T2

+
∑

Ij=[tj0,t
j
1]

(?).

Here we have used (3.4.2) in each subinterval and applied the triangle inequality from the first to
the second line. In the next step we have used the short-time bound from Proposition 3.2.4 and
lastly Lemma 3.3.4 and the fact that there are ∼ N summands allow us to conclude.
Next we treat the perturbative part.
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‖P≤N (e−i(t−t0)H] − e−i(t−t0)∆)e−it0H
]

u]N‖
r
Lr
t;Ij

Lr
T2

=
∥∥∥∥∥
� t

tj0

e−i(t−s)∆P≤N (H] −∆)(e−i(s−t
j
0)H]u]N )ds

∥∥∥∥∥
r

Lr
t;IL

r
T2

.

(�
Ij

N−
1
rN1− 4

r+δ‖P≤N (H] −∆)(e−i(s−t
j
0)H]u]N )‖L2

T2
ds

)r

. N−1+r−4+rδ

(�
Ij

‖e−i(s−t
j
0)H]u]N‖H1+δ

T2

)r

. N−1+r−4+rδ

(�
Ij

‖u]N‖H1+δ
T2
ds

)r
. N−1‖u]N‖

r

H
1− 4

r
+2δ

T2

,

having used the second bound in 3.2.4 to get to the second line and thereafter Proposition 3.3.2,
Lemma 3.3.4 and Bernstein’s inequality, Lemma 3.6.10.
Thus we can conclude

‖P≤Ne−itH
]

u]N‖Lrt;[0,T ]L
r
T2

. ‖u]‖r
H

1− 4
r

+2δ

T2

for any δ > 0, which directly implies the result. The case σ > 0 is analogous.
The second Strichartz estimate (3.4.10) follows from the first in the usual way.

Remark 3.4.3. Our estimates are as good as those for the Laplacian, up to a loss of δ derivatives.

3.4.2 The 3d case
It turns out that, due to the most part to the lower regularity of the noise, we lose half a
derivative in the Strichartz estimates of the Anderson Hamiltonian compared to those of the
Laplacian. This means that we actually–as opposed to the 2d case–need the full power of the
improved Strichartz estimates, from Theorem 3.2.3. Recall that in three dimensions the
transformation is a bit more complicated, namely

u = eWu[ = eWΓu],

where W ∈ C 1
2−ε is a stochastic term and Γ is analogous to the map from the 2d case. The

important thing is that

H]u] := Γ−1e−WHeWΓu] = ∆u] + 2∇u] ◦ LW̃ + l.o.t.

where LW̃ ∈ C− 1
2−ε. If we repeat the proof of Theorem 3.4.2 we obtain.

Theorem 3.4.4. Let d = 3 and p > 10
3 , and T 6 1 then for any ε > 0, σ ∈ [0, 5

p − ε], we have

‖e−itH
]

u]‖Lp[0,T ]W
σ,p

T3
. ‖u]‖

H
σ+2− 5

p
+ε

T3
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Proof. Again we consider σ = 0 and we consider a frequency localised u]N := P6Nu
] and

subintervals Ij = [tj0, t
j
1] of length ∼ 1

N . We again have the representation for t ∈ Ij

P≤Ne
−itH]u]N = e−i(t−t

j
0)∆P≤Ne

−it0H]u]N + i

� t

tj0

e−i(t−s)∆P≤N (H] −∆)(e−i(s−t
j
0)H]u]N )ds

which leads us, using Proposition 3.3.9 (instead of Proposition 3.3.2 and Lemma 3.3.4 in the 2d
case) and Proposition 3.2.4, to the bound

‖P≤Ne−itH
]

u]N‖
p
Lp
t;[0,T ]L

p

T3
=

∑
Ij=[tj0,t

j
1]

‖P≤Ne−itH
]

u]N‖
p
Lp
t;Ij

Lp
T3

.
∑

Ij=[tj0,t
j
1]

‖P≤Ne−it∆e−it
j
0H

]

u]N‖
p
Lp
t;Ij

Lp
T3

+ ‖P≤N (e−i(t−t
j
0)H] − e−i(t−t

j
0)∆)e−it

j
0H

]

u]N‖
p
Lp
t;Ij

Lp
T3

.
∑

Ij=[tj0,t
j
1]

N−1‖P≤Ne−it
j
0H

]

u]N‖
p

H
3
2−

5
p

+δ

T3

+N−1

(�
Ij

‖(H] −∆)(e−i(s−t
j
0)H]u]N )‖

H
3
2−

5
p

+δ

T3

)p

.
∑

Ij=[tj0,t
j
1]

N−1‖u]N‖
p

H
3
2−

5
p

+δ

T3

+N−1‖u]N‖
p

H
2− 5

p
+δ

T3

. ‖u]N‖
p

H
2− 5

p
+δ

T3

,

which is completely analogous to the 2 dimensional case; The case σ > 0 then follows as above by
applying Lemma 3.3.4.

3.5 Solving stochastic NLS
We turn our attention to “low-regularity” solutions to the stochastic NLS

(i∂t −H)u = −u|u|2 on T2 (3.5.1)
u(0) = u0,

which is formally
(i∂t −∆)u = u · ξ +∞u− u|u|2.

In [49] this PDE was studied in the “high regularity” regime, meaning u0 ∈ D(H) or D
(√
−H

)
.

Now we employ the Strichartz estimates to solve it in spaces with less regularity. In particular
now we solve it in a space that does not depend on the realisation of the noise ξ.

Theorem 3.5.1. [LWP below energy space] Take s ∈
( 1

2 , 1
)
. Then (3.5.1) is LWP in Hs.

Proof. The mild formulation is

u(t) = e−itHu0 + i

� t

0
e−i(t−τ)Hu|u|2(τ)dτ,
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by applying Γ−1 to both sides and renaming Γ−1u(0) = u](0) this becomes

u](t) = e−itH
]

u]0 + i

� t

0
e−i(t−τ)H]Γ−1((Γu])|Γu]|2)(τ)dτ.

We want to show that this equation has a solution for a short time by setting up a fixed point
argument in the space

C[0,T ]Hs ∩ L4
[0,T ]W

σ,4

where σ is chosen s.t.
Wσ,4 ↪→ L∞

i.e. σ > 1
2 , we fix σ = 1

2 + δ for definiteness. Also we fix s = σ + δ = 1
2 + 2δ.

Thus we may bound, using our new Strichartz estimates (also the “tame” estimates– see Lemma
3.6.14– which say that Hs ∩ L∞is an algebra),

‖u]‖L4
[0,T ]W

σ,4
T2

. ‖u]0‖HsT2
+
� T

0
‖Γ−1(Γu]|Γu]|2)(τ)‖Hσ+δ

T2
dτ

. ‖u]0‖HsT2
+
� T

0
‖Γu]|Γu]|2(τ)‖Hs

T2
dτ

. ‖u]0‖HsT2
+
� T

0
‖Γu](τ)‖2L∞

T2
‖Γu](τ)‖Hs

T2
dτ

. ‖u]0‖HsT2
+ ‖u]‖2L4

[0,T ]L
∞
T2
‖u]‖L2

[0,T ]H
s
T2

. ‖u]0‖HsT2
+ T

1
2 ‖u]‖2

L4
[0,T ]W

σ,4
T2
‖u]‖L∞[0,T ]H

s
T2
.

For the other term we bound

‖u]‖L∞[0,T ]H
s
T2

. ‖u]0‖HsT2
+
� T

0
‖Γ−1(Γu]|Γu]|2)(τ)‖Hs

T2
dτ

. ‖u]0‖HsT2
+ T

1
2 ‖u]‖2Lp[0,T ]W

σ,p

T2
‖u]‖L∞[0,T ]H

s
T2
.

From here we can get a contraction for small times in the usual way.

Thus we solve the sharpened equation and by applying Γ we get a solution to the original
equation.

Remark 3.5.2. This result is analogous to Proposition 3.1 in [17] and we get the same range of
regularities despite the presence of the noise. Note however that the classical cubic NLS is
well-posed on the torus in two dimensions for any s > 0, see [11], but in this case one needs some
multilinear bounds and Fourier restriction spaces. It is not clear at this moment if such a result
can be proved in the current setting.

Remark 3.5.3. The fact that s < 1 as opposed to s > 1 makes the bound for the term Γ−1(u|u|2)
easier since the paraproducts and other correction terms are actually more regular than u and u].
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Theorem 3.5.4. [GWP in the energy space] The PDE

(i∂t −H)u = −u|u|2

u(0) = u0 ∈ D
(√
−H

)
is GWP.

Proof. In Section 3.2.2 of [49], global in time existence was proved by approximation. Moreover,
we can use the fact that D

(√
−H

)
↪→ H1−δ and applying the previous result we can conclude

(local in time) uniqueness. Lastly, to get the continuous dependence on the inital data, we can
interpolate between H1−δ and D(H) = ΓH2.

We conclude this section by noting that it seems plausible to get a result for the Anderson NLS in
the three dimensional case, we have decided to postpone this for future work. The difficulty in
that case, as opposed to the two dimensional case, is that–on the one hand– one has a loss of more
than 1

2 derivatives in the Strichartz estimate and–on the other hand– as one sees in the Duhamel
formula

u](t) = e−itH
]

u]0 + i

� t

0
e−i(t−s)H

]

Γ−1(e2W |Γu]|2Γu])(s)ds, (3.5.2)

the nonlinearity contains the term e2W , which has strictly less than 1
2 derivative.

3.6 Results for general rough potentials and the whole
space

While we have thus far focussed on the case of white noise potential in 2- and 3-d, our results are
applicable to a much larger class of rough potentials. For the sake of completeness we quickly
recall the definition of spatial white noise on the torus here.

Definition 3.6.1. [Spatial white noise on Td, Definition 2.1 in [49]] The Gaussian white noise ξ
is a family of centered Gaussian random variables {ξ(ϕ), ϕ ∈ L2(Td)}, whose covariance is given
by E(ξ(ϕ)ξ(ψ)) = (ϕ,ψ)L2(Td).

More explicitly, set (ξ̂(k))k∈Zd to be i.i.d centred complex Gaussian random variables such that
ξ̂(k) = ξ̂(−k) and with covariance E(ξ̂(k)ξ̂(l)) = δ(k − l). Then the Gaussian white noise on Td is
given as the following random series

ξ(x) =
∑
k∈Zd

ξ̂(k)e2πik·x,

of course with the understanding that, despite the notation, ξ can not be evaluated point-wise.
Note that in the 3d case we actually remove the zero-mode as it simplifies some computations; so
the definition we use in Section 3.3.2 is actually

ξ(x) =
∑

k∈Z3\{0}

ξ̂(k)e2πik·x.
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We recall the two dimensional “noise space” with respect to which everything is continuous.

Definition 3.6.2. [2d noise space] For α ∈ R,we define the spaces

Eα := Cα × C2α+2and

Gα as the closure of {(ξ, ξ ◦ (1−∆)−1ξ + c) : ξ ∈ C∞(T2), c ∈ R} w.r.t. the Eαtopology,

where Cα = Bα∞∞ denotes the usual Besov-Hölder space.

The next result tells us that the 2d spatial white noise does in fact a.s. have a lift in Gα.

Theorem 3.6.3. [ [3], Theorem 5.1 ] For any α < −1, the spatial white noise ξ lies in Cα and
the following convergence holds for the enhanced white noise.

Ξε := (ξε, ξε ◦ (1−∆)−1ξε + cε)→ Ξ ∈ Gα,

where the convergence holds as ε→ 0 in Lp(Ω; Eα) for all p > 1and almost surely in Eα and the
limit is independent of the mollifier. However, the renormalisation constant, which can be chosen
as

cε :=
∑
k∈Z2

|θ(ε|k|)|2
1 + |k|2 ∼ log

(
1
ε

)
,

depends on the choice of mollifier. Note that our regularised spatial white noise is given by

ξε(x) =
∑
k∈Z2

θ(ε|k|)e2πik·xξ̂(k)

where ξ̂(k)are i.i.d. complex Gaussians with ξ̂(k) = ξ̂(−k) and with covariance

E[ξ̂(k)ξ̂(l)] = δ(k − l)

and θ is a smooth function on R\{0} with compact support such that lim
x→0

θ(x) = 1.

Next we recall the definition of the “noise space” in three dimensions.

Definition 3.6.4. [3d noise space] Let 0 < α < 1
2 , then we define the space T α to be the closure

of the set {(
φ, φa , φ , φ , φb ,∇φ ◦ ∇φ

)
: (a, b) ∈ R2, φ ∈ C2(T3)

}
with respect to the Cα(T3)× C2α(T3)× Cα+1(T3)× Cα+1(T3)× C4α(T3)× C2α−1(T3) norm. Here
we defined

φa := (1−∆)−1(|∇φ|2 − a)

φ := 2(1−∆)−1
(
∇φ · ∇φa

)
φ := (1−∆)−1

(
∇φ · ∇φ

)
φb := (1−∆)−1

( ∣∣∣∇φa ∣∣∣2 − b) .
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And also the corresponding result for the lift of the 3d spatial white noise.

Theorem 3.6.5. [ [49],Theorem 2.38 ] For ξε given by

ξε(x) =
∑

k∈Z3\{0}

m(εk)ξ̂(k)e2πik·x, (3.6.1)

where m is a radial, compactly supported function with m(0) = 1 and we define

Xε = (−∆)−1ξε

Xε = (1−∆)−1(|∇Xε|2 − c1ε)

Xε = 2(1−∆)−1
(
∇Xε · ∇Xε

)
Xε = (1−∆)−1

(
∇Xε∇Xε

)
Xε = (1−∆)−1

( ∣∣∣∇Xε

∣∣∣2 − c2ε) ,
where the cεare diverging constants which can be chosen as

c1ε =
∑

k∈Z3\{0}

|m(εk)|2
|k|2

∼ 1
ε
and c2ε =

∑
k1,k2 6=0

|m(εk1)|2|m(εk2)|2 |k1 · k2|
|k1 − k2|2|k1|4|k2|2

∼
(

log 1
ε

)2
.

Then the sequence Ξε ∈ T α given by

Ξε :=
(
Xε, Xε , Xε , Xε , Xε ,∇Xε ◦ ∇Xε

)
converges a.s. to a unique limit Ξ ∈ T α which is given by

Ξ :=
(
X,X ,X ,X ,X ,∇X ◦ ∇X

)
,

where

X = (−∆)−1ξ

X = (1−∆)−1(: |∇X| :2)

X = 2(1−∆)−1
(
∇X · ∇X

)
X = (1−∆)−1

(
∇X · ∇X

)
X = (1−∆)−1

(
:
∣∣∣∇X ∣∣∣ :2

)
.

For potentials better than C−1 everything works unconditionally, meaning that such potentials
have unique canonical lifts inside our “noise spaces”, whereas if one wants rougher potentials it is
necessary to ensure the existence of certain nonlinear expressions of them. We state the “general”
version of the theorems so as to highlight the fact that we do not use any property of white noise
other than that it has a lift in the correct “noise space”. We omit the proofs since they can be
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carried over verbatim. We further remark on the fact that paraproducts and all related operations
are equally well defined on the whole space and Definitions 3.6.2 and 3.6.4 clearly still make sense
if one replaces Td by Rd.

For brevity we write
Yd ∈ {Td,Rd} with d ∈ {2, 3},

in the remainder of the section.

Theorem 3.6.6. [Results for general potentials]

i. For d = 2, and − 4
3 < α < −1 the maps

Ξ 7→ (−HΞ)−1and Ξ 7→ ΓΞ

are locally Lipschitz as maps from Gα → L(L2(Y2);Hα+2−ε(Y2)) for any ε > 0, where ΓΞ is
defined as in (3.3.2) and HΞ is defined as in (3.3.3). Moreover, we get the following
homogeneous Strichartz estimate for T 6 1

‖Γ−1
Ξ e−itHΞΓΞv‖L4

t;[0,T ]L
4
Y2

. ‖v‖H−1−α+δ
Y2

,

for any δ > 0. In addition, this bound is locally Lipschitz in Ξ w.r.t. Gαand we get LWP of
the PDE

i∂tu = HΞu− u|u|2 on Y2

u(0) = u0

on Hs with s ∈
(
−α− 1

2 , 1
)
.

ii. For d = 3 and 0 < α < 1
2 the maps

Ξ 7→ (−HΞ)−1and Ξ 7→ ΓΞ

are locally Lipschitz as maps from T α → L(L2(Y3);Hα−ε(Y3)) for any ε > 0,where HΞ is
defined as in Definition 3.3.5 and ΓΞ as in (3.3.9). Moreover, we get the following
homogeneous Strichartz estimate for T 6 1

‖Γ−1
Ξ e−(Ξ1+Ξ2+Ξ3)e−itHΞe(Ξ1+Ξ2+Ξ3)ΓΞv‖

L
10
3
t;[0,T ]L

10
3

Y3

. ‖v‖H1−α+ε
Y3

,

for any ε > 0.

Remark 3.6.7. The result on the whole space does not apply to the white noise potential, since it
is only in a weighted Besov space, see [44]. However, one can split the white noise into an
irregular but small part and a regular but large part, as was done in [44]

ξ = ξ< + ξ>, ξ< ∈ L∞〈·〉σ , ξ> ∈ C
− d2−

for some σ > 0 and then the results will apply to the potential ξ>, whose lift can be constructed
analogously.
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Paracontrolled Distributions etc.
We collect some elementary results about paraproducts, see [45], [3], [5] for more details. For the
most part we work on the d−dimensional torus

Td = Rd/Zd for d = 2, 3.

However, to emphasise the fact that most things work equally well on the whole space, see Section
3.6, we write Yd ∈ {Td,Rd}. The Sobolev space Hα(Yd) with index α ∈ R is defined as

Hα(Yd) :=
{
u ∈ S ′(Yd) :

∥∥(1−∆)α2 u
∥∥
L2 <∞

}
.

Next, we recall the definition of Littlewood-Paley blocks. We denote by χ and ρ two non-negative
smooth and compactly supported radial functions Rd → C such that

i. The support of χ is contained in a ball and the support of ρ is contained in an annulus
{x ∈ Rd : a 6 |x| 6 b};

ii. For all ξ ∈ Rd, χ(ξ) +
∑
j>0

ρ(2−jξ) = 1;

iii. For j > 1, χ(·)ρ(2−j ·) = 0 and ρ(2−j ·)ρ(2−i·) = 0 for |i− j| > 1.

The Littlewood-Paley blocks (∆j)j>−1 associated to f ∈ S ′(Yd) are defined by

∆−1f := F−1χFf and ∆jf := F−1ρ(2−j ·)Ff for j > 0.

We also set, for f ∈ S ′(Yd) and j > 0

Sjf :=
j−1∑
i=−1

∆if.

Then the Besov space with parameters p, q ∈ [1,∞], α ∈ R can now be defined as

Bαp,q(Yd) := {u ∈ S ′(Yd) : ‖u‖Bαp,q <∞},

where the norm is defined as

‖u‖Bαp,q :=

∑
k>−1

(2αk‖∆ju‖Lp)q
 1

q

,

with the obvious modification for q =∞. We also define the Besov-Hölder spaces

Cα := Bα∞∞.

Using this notation, we can formally decompose the product f · g of two distributions f and g as

f · g = f ≺ g + f ◦ g + f � g,

where
f ≺ g :=

∑
j>−1

Sj−1f∆jg and f � g :=
∑
j>−1

∆jfSj−1g
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are referred to as the paraproducts, whereas

f ◦ g :=
∑
j>−1

∑
|i−j|61

∆if∆jg

is called the resonant product. An important point is that the paraproduct terms are always well
defined whatever the regularity of f and g. The resonant product, on the other hand, is a priori
only well defined if the sum of their regularities is positive. We collect some results.

Lemma 3.6.8. [cf.Theorem 3.17 [66]]Let α, α1, α2 ∈ R and p, p1, p2, q ∈ [1,∞] be such that

α1 6= 0 α = (α1 ∧ 0) + α2 and 1
p

= 1
p1

+ 1
p2
.

Then we have the bound
‖f ≺ g‖Bαp,q . ‖f‖Bα1

p1,∞
‖g‖Bα2

p2,q

and in the case where α1 + α2 > 0 we have the bound

‖f ◦ g‖
B
α1+α2
p,q

. ‖f‖Bα1
p1,∞
‖g‖Bα2

p2,q
.

Remark 3.6.9. For the majority of the paper we care only about the case where p = p2 = q = 2
and p1 =∞.

We frequently make liberal use of Bernstein’s inequality, so for the sake of completeness we state
it here.

Lemma 3.6.10. [Bernstein’s inequality] Let A be an annulus and B be a ball. For any
k ∈ N, λ > 0,and 1 6 p 6 q 6∞ we have

1. if u ∈ Lp(Rd)is such that supp(Fu) ⊂ λB then

max
µ∈Nd:|µ|=k

‖∂µu‖Lq .k λk+d( 1
p−

1
q )‖u‖Lp

2. if u ∈ Lp(Rd)is such that supp(Fu) ⊂ λA then

λk‖u‖Lp .k max
µ∈Nd:|µ|=k

‖∂µu‖Lp .

Lemma 3.6.11. [Besov embedding] Let α < β ∈ R and p > r ∈ [1,∞] be such that

β = α+ d

(
1
r
− 1
p

)
,

then we have the following bound for q ∈ [1,∞]

‖f‖Bαp,q(Yd) . ‖f‖Bβr,q(Yd).
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Proposition 3.6.12. [Commutator Lemma, Proposition 4.3 in [3]]
Given α ∈ (0, 1), β, γ ∈ R such that β + γ < 0 and α+ β + γ > 0, the following trilinear operator
C defined for any smooth functions f, g, h by

C(f, g, h) := (f ≺ g) ◦ h− f(g ◦ h)

can be extended continuously to the product space Hα × Cβ × Cγ . Moreover, we have the following
bound

||C(f, g, h)||Hα+β+γ−δ . ||f ||Hα ||g||Cβ ||h||Cγ

for all f ∈ Hα, g ∈ Cβ and h ∈ Cγ , and every δ > 0.

Lemma 3.6.13. [Fractional Leibniz, [50]] Let 1 < p <∞ and p1, p2, p
′
1, p
′
2 such that

1
p1

+ 1
p2

= 1
p′1

+ 1
p′2

= 1
p
.

Then for any s, α > 0 there exists a constant s.t.

‖〈∇〉s(fg)‖Lp 6 C‖〈∇〉s+αf‖Lp2 ‖∇−αg‖Lp1 + C‖〈∇〉−αf‖
L
p′2
‖∇s+αg‖

L
p′1
.

Lemma 3.6.14. [Tame estimate,Corollary 2.86 in [5]] For any s > 0 and (p, q) ∈ [1,∞]2, the
space Bsp,r ∩ L∞ is an algebra and the bound

‖u · v‖Bsp,q . ‖u‖Bsp,q‖v‖L∞ + ‖u‖L∞‖v‖Bsp,q

holds.
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Chapter 4

Variational approach to stochastic
wave equations

4.1 Introduction
In Chapter 2 we have seen how to solve the stochastic PDE

∂2
t u−Hu = −u|u|p−2 on R+ × Td (4.1.1)

(u, ∂tu)|t=0 = (u0, u1),

in different situations, where H ≈ ∆ + ξ is the Anderson Hamiltonian, ξ being spatial white noise,
which was introduced and discussed in detail in Chapter 2, see also [3] where H was first
introduced in two dimensions.

In fact, for dimensions d = 2, 3, we focussed on proving well-posedness for (4.1.1) on the one hand
in the strong regime, by which we mean initial data (u0, u1) ∈ D(H)×D

(√
−H

)
and solutions

(u, ∂tu) ∈ CtD(H)×CtD
(√
−H

)
, and on the other hand in the energy regime, by which we mean

initial data (u0, u1) ∈ D
(√
−H

)
× L2 and solutions (u, ∂tu) ∈ CtD

(√
−H

)
× CtL2. We primarily

analysed the cubic case, i.e. p = 4, but the same analysis works for any energy subcritical power.

The motivation for this terminology comes from the energy which is conserved by (4.1.1) given by

E(u) := 1
2

�
Td
|∂tu|2dx−

1
2(u,Hu) + 1

p

�
Td
|u|pdx.

In Chapter 2.2 we have seen that the same Sobolev embedding is true for D
(√
−H

)
as for H1, i.e.

D
(√
−H

)
↪→ Lq for q ∈

[
2, 2d
d− 2

]
or q ∈ [2,∞) for d = 2.

Energy supercritical refers to powers s.t. the potential energy, i.e. 1
p

�
Td |u|

pdx, is not controlled
by the kinetic energy i.e. 1

2
�
Td |∂tu|

2dx− 1
2 (u,Hu). In other words if p > 2d

d−2 . Accordingly,
energy subcritical refers to the case p < 2d

d−2 and energy critical is the case of equality.
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Now we turn our attention to the problem of solving energy supercritical problems in d = 3 in the
energy regime. In two dimensions all powers are energy subcritical, so we will only work in three
dimensions. We refer to [58] for some well- /ill-posedness results concerning energy super-critical
wave equations.
We briefly recall the definition of the energy domain of H in three dimensions which is
considerably more simple than that of the domain which is rather cumbersome. We are somewhat
formal, see Chapter 2.2.2 for the rigorous treatment. We have ξ ∈ C− 3

2− as well as the following
objects:

X = (−∆)−1ξ ∈ C 1
2− X = (1−∆)−1 : |∇X|2 :∈ C1− X = 2(1−∆)−1

(
∇X · ∇X

)
∈ C 3

2−

and X = (1−∆)−1
(
∇X · ∇X

)
∈ C 3

2− X = (1−∆)−1 :
∣∣∣∇X ∣∣∣2 :∈ C2−.

Furthermore we set

W := X +X +X ∈ C 1
2−

W̃ := (1−∆)−1∇W ∈ C 3
2−

Z :=
∣∣∣∇X ∣∣∣2 + 2∇X · ∇X + 2∇X · ∇X −X −X + (1−∆)(X + 2X ) ∈ C− 1

2−

Z ′ := (1−∆)−1Z +KΞ,

where we have added constant KΞ which may depend on the norm of the enhanced noise Ξ. This
is done as in Chapter 2.2 so as to make the operator −H uniformly positive. We can then define
the action of H on a function of the form eW v with v ∈ H2 as

H(eW v) := eW (∆v + 2∇W · ∇v + Z ′v). (4.1.2)

Moreover, we can write down the associated quadratic form which has a particularly nice form
(compared to the description of the domain)

− (eW v,H(eW v)) =
�
T3
e2W |∇v|2dx− (v2, e2WZ ′), (4.1.3)

which makes sense for v ∈ H1, see Proposition 2.2.48.

If we look for solutions to (4.1.1) of the form u = eW v, the new equation for v reads

eW∂2
t v −H(eW v) = −e(p−1)W v(p−1) (4.1.4)

(v, ∂tv)|t=0 = (e−Wu0, e
−Wu1) =: (v0, v1).

The actual form of the equation we will use henceforth is

e2W∂2
t v − eWH(eW v) = −epW v(p−1) (4.1.5)

(v, ∂tv)|t=0 = (v0, v1),

which is of course simply the previous one multiplied by eW . This formulation has a few
advantages, namely the operator eWHeW is self-adjoint, while HeW is not, further it has the weak
formulation� ∞

0
(∂teW v, ∂teWϕ)+(HeW v, eWϕ)− (e(p−1)W v(p−1), eWϕ)dt = 0 for ϕ ∈ C∞c (R+;T3), (4.1.6)
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which is equivalent to the weak formulation for (4.1.1) if we undo the transformation.

We will now sketch the variational approach to solving nonlinear wave equations due to Serra-Tilli
after a conjecture of de Giorgi. To that purpose, we take for simplicity the usual defocussing
nonlinear wave equation

∂2
tw −∆w =− w|w|p−2 on R× Rd

(w, ∂tw)|t=0 =(w0, w1) ∈ (H1 ∩ Lp)2.

Then the observation made by de Giorgi was that, at least formally, the solution w is the limit of
the sequence wε of minimisers of space-time functionals

Fε(w) :=
� ∞

0
e−

t
ε

� (
ε2

2 |∂
2
tw|2 + 1

2 |∇w|
2 + 1

p
|w|p

)
dxdt. (4.1.7)

In fact, one readily checks that the minimisers wε of Fε (which exist and are unique by the direct
method of the Calculus of Variations) solve the Euler-Lagrange equation

ε2∂4
twε − 2ε∂3

twε + ∂2
twε −∆wε + wp−1

ε = 0. (4.1.8)

Moreover, the way to ensure initial data (wε, ∂twε)|t=0 = (w0, w1), is that one puts these as
“boundary conditions” on the set of functions with respect to which one is minimising (this
condition is closed and convex), see Remark 2.1 in [72], where also the somewhat unnatural
assumptions on the initial velocity is discussed.

The approach of Serra-Tilli then allows us to pass to the limit in the PDE (4.1.8) after taking
subsequences, using compactness which one gains after obtaining uniform in ε bounds from the
minimising functional Fε. The method relies heavily on deriving a quantity called the approximate
energy, which is a time-averaged version of the conserved energy of the usual wave equation and is
close to it for small ε. This approximate energy turns out to be decreasing in time, which is quite
crucial to the argument.
In fact they get a result of the following form.

Theorem 4.1.1. [Theorem 1.1 from [72]] For p > 2 and ε > 0 let vε denote the unique minimiser
of the strictly convex functional Fε defined as in (4.1.7) under the boundary conditions

(w, ∂tw)|t=0 = (w0, w1) ∈ (H1 ∩ Lp)× (H1 ∩ Lp).

Then the following statements hold

a) Estimates: There exists a constant C = C(w0, w1, p, d) s.t. for every ε ∈ (0, 1)
� T

0

�
(|∇vε|2 + |vε|p)dxdt 6 CT ∀T > ε,

�
|∂tvε(t, x)|2dx 6 C,

�
|vε(t, x)|2dx 6 C(1 + t2) ∀t > 0

and for every function h ∈ H1 ∩ Lp∣∣∣∣� ∂2
t vε(t, x)h(x)dx

∣∣∣∣ 6 C(‖h‖Lp + ‖∇h‖L2) for a.e. t > 0.
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b) Convergence: Every sequence vεi(with εi ↓ 0) admits a subsequence that converges strongly in
Lq((0, T )×A) for any T > 0 any bounded open set A ⊂ Rd (with q ∈ [2, p) if p > 2 and q = 2
if p = 2) almost everywhere on R+ × Rd and weakly in H1((0, T )× Rd) for any T > 0 to a
function w such that

w ∈ L∞(R+;Lp), ∇w ∈ L∞(R+;L2)
∂tw ∈ L∞(R+;L2), w ∈ L∞((0, T );H1) ∀T > 0,

which solves the PDE

∂2
tw −∆w = −|w|p−2w

(w, ∂tw)|t=0 = (w0, w1)

weakly.

c) Energy inequality: Letting

E(t) :=
� 1

2 |w
′(t, x)|2 + 1

2 |∇w(t, x)|2 + 1
p
|w(t, x)|pdx

we get that the solution w satisfies the energy inequality

E(t) 6 E(0) =
� 1

2 |w1(x)|2 + 1
2 |∇w0(x)|2 + 1

p
|w0(x)|pdx for a.e.t > 0.

Remark 4.1.2. We make a few comments about this result and its scope. The first thing to note
is that one only gets existence of global energy solutions; One has to assume more regularity for
the initial velocity (i.e. H1) than one usually would; Although stated on the whole Euclidean
space, the result can be extended to the periodic setting or the setting of a bounded set with
boundary conditions.
Their method works as well for more general hyperbolic PDEs like

∂2
tw = −∇W(w) (4.1.9)

for some (fairly general) functional W either on the whole space or the torus, moreover one may
add dissipative terms as well, see [73]. Note that this vast generalisation is possible due to the fact
that the entire analysis happens in the time-direction, while the space-direction is never touched.

In Section 4.2 we recall their approach since our PDE does not fall into their framework, but we
need to modify it slightly. See also [77] for an extension of the theory to include forcing terms in
the equation which are (locally) in L2

tL
2
x.

Remark 4.1.3. As was remarked on in [72], one can obtain the existence of solutions to wave
equations with general power nonlinearities by other means, see e.g. [75], [63]. More precisely,
Theorem 4.1.1 can be alternatively proved using finite dimensional approximation, apriori
estimates and compactness. Similarly one could obtain a result like Theorem 4.2.1 by first proving
global existence for the equation with regularised noise, i.e. by replacing the Anderson
Hamiltonian by a regularised version of the form (see Chapter 2)

Hε = ∆ + ξε − cε
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and regularising the initial data similarly to Theorem 2.3.20, i.e. solving the (classical) PDE

∂2
t uε −∆uε − ξεuε + cεuε = −uε|uε|p−2

(uε, ∂tuε)|t=0 = (uε0, uε1)

by compactness methods. Subsequently one can take a suitable sequence of regular initial data such
that the energies converge and extract converging subsequences s.t.

uε(t)→ u(t) in L2√
−Hεuε ↪→

√
−Hu

uε(t) ↪→ u(t) in Lp

for some limit function u. We do not spell out all the details here, but simply mention that the
approach we present here is not the only or, for that matter, shortest way, but rather a “proof of
concept”of applying the variational method of Serra and Tilli to the singular stochastic setting. In
future works we plan to pursue this avenue of research further and hopefully apply the method to
more complicated equations.

4.2 The variational approach to Anderson wave equations
In this section we adopt the same convention for constants as in Chapter 3, namely that every
constant may depend on the enhanced noise Ξ, i.e.

.⇔.Ξ

The most straightforward approach would be to simply try to apply the general theory from [73]
to (4.1.9) with the functional

W(w) := −1
2(w,Hw) + 1

p

�
T3
|w|pdx (4.2.1)

and accordingly

Fε(w) :=
� ∞

0
e−

t
ε

�
T3

ε2

2 |∂
2
tw|2dxdt+

� ∞
0

e−
t
εW(w(t))dt.

This almost works, the problem being that the assumption that the domain of W (which is given
by D

(√
−H

)
) contains smooth functions is not satisfied. This is in principle not an

insurmountable problem, however it does cause some awkwardness when deriving the
Euler-Lagrange equations. So, instead of pursuing this path, we will instead perform the “change
of variables” w = eW v in (4.2), where W is defined in (4.1.2). This leads us to a new functional

Gε(v) := Fε(eW v) :=
� ∞

0
e−

t
ε

�
T3

(
ε2

2 e
2W |∂2

t v|2 + 1
2e

2W |∇v|2 + 1
p
epW |v|p

)
− 1

2(v2, e2WZ ′).

(4.2.2)
Now we have a functional (namely W(eW v)) whose domain is H1 and which is coercive(even
strictly convex if we recall the computation from Chapter 2.2.2 and the fact that we have shifted
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Z ′ by a constant depending on the noise) but the leading term, i.e. the one with |∂2
t v|2 contains

the function e2W so this is also not a direct corollary of the Serra-Tilli result from [73]. We shall
see that since e2W is an L∞ function which is time-independent, uniformly positive and bounded
trivially via

0 < e−2‖W‖∞ 6 e2W 6 e2‖W‖∞ <∞,
this should not cause major problems. We will recall the method of Serra and Tilli and make the
appropriate modifications needed wherever necessary.

The theorem we wish to prove in the end is as follows.

Theorem 4.2.1. For p > 2 and ε > 0 let vε denote the unique minimiser of the strictly convex
functional Gε defined in (4.2.2) under the boundary conditions

(v, ∂tv)|t=0 = (e−Wu0, e
−Wu1) =: (v0, v1) ∈ (H1 ∩ Lp(T3))2.

Then the following statements hold

a) Estimates: There exists a constant C = C(v0, v1, p,Ξ) s.t. for every ε ∈ (0, 1)
� T

0

�
T3

(|∇vε|2 + |vε|p)dxdt 6 CT ∀T > ε, (4.2.3)

�
T3
|∂tvε(t, x)|2dx 6 C,

�
T3
|vε(t, x)|2dx 6 C(1 + t2) ∀t > 0 (4.2.4)

and for every function h ∈ H1 ∩ Lp(T3)∣∣∣∣�
T3
e2W (x)∂2

t vε(t, x)h(x)dx
∣∣∣∣ 6 C(‖h‖Lp + ‖∇h‖L2) for a.e. t > 0. (4.2.5)

b) Convergence: Every sequence vεi(with εi ↓ 0) admits a subsequence that converges strongly in
Lq((0, T )× T3) for any T > 0 (with q ∈ [2, p) if p > 2 and q = 2 if p = 2) almost everywhere
on R+ × T3 and weakly in H1((0, T )× T3) for any T > 0 to a function v such that

v ∈ L∞(R+;Lp), ∇v ∈ L∞(R+;L2) (4.2.6)
∂tv ∈ L∞(R+;L2), v ∈ L∞((0, T );H1) ∀T > 0, (4.2.7)

which solves the PDE

e2W∂2
t v − eWH(eW v) = −epW v|v|(p−2) (4.2.8)

(v, ∂tv)|t=0 = (e−Wu0, e
−Wu1) =: (v0, v1).

c) Energy inequality: Letting

E(t) :=
�
T3

1
2e

2W (x)|∂tv(t, x)|2 + 1
p
epW (x)|v(t, x)|pdx− 1

2(eW v,H(eW v)) (4.2.9)

we get that the solution w satisfies the energy inequality which holds for a.e. t > 0

E(t) 6 E(0) =
�
T3

1
2e

2W (x)|v1(t, x)|2 + 1
p
epW (x)|v0(x)|pdx− 1

2(eW v0, H(eW v0)). (4.2.10)
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Following the general approach of [73], we write (by a slight abuse of notation)

W(v) :=− 1
2(eW v,HeW v) + 1

p

�
T3
epW |v|pdx (4.2.11)

=
�
T3

1
2e

2W |∇v|2 + 1
p
epW |v|p − 1

2(v2, e2WZ ′). (4.2.12)

We readily check that we get the following kind of bound

‖∇W(v)‖(H1∩Lp)∗ . 1 + (W(v)) 1
2 for any v ∈ H1 ∩ Lp (4.2.13)

and consequently also a linear bound

‖∇W(v)‖(H1∩Lp)∗ . 1 + (W(v)) (4.2.14)

and “Lipschitz continuity along rays” in the sense that one has

sup
[a,a+b]

W . 1 +W(a) + ‖b‖2H1∩Lp for any a, b ∈ H1 ∩ Lp

and
sup

[a,a+b]
||∇W||(H1∩Lp)∗ . 1 +W(a) + ‖b‖2H1∩Lp for any a, b ∈ H1 ∩ Lp

where [a, a+ b] denotes all functions f s.t. there exists λ ∈ [0, 1] with f = a+ λb. This then gives
us by the mean value theorem for δ > 0∣∣∣∣W(a+ δb)−W(a)

δ

∣∣∣∣ . ‖b‖H1∩Lp sup
[a,a+δb]

||∇W||(H1∩Lp)∗

. ‖b‖H1∩Lp(1 +W(a) + δ2‖b‖2H1∩Lp)

in particular this implies

W(a+ δb) 6W(a) + CΞδ‖b‖H1∩Lp(1 +W(a) + δ2‖b‖2H1∩Lp). (4.2.15)

Next, we introduce the simpler time-rescaled functional Jε given by

Jε(u) :=
� ∞

0
e−t

�
T3

1
2ε2 e

2W (x)|∂2
t u(t, x)|2dx+W(u(t))dt, (4.2.16)

which is equivalent to Gε in the sense that

Gε(v) = εJε(u) for u(t, x) = v(εt, x). (4.2.17)

The boundary conditions are scaled in the following way

u(0) = v0 and ∂tu(0) = εv1 (4.2.18)

and the existence of minimisers to Jε is clearly equivalent to the existence of minimisers to Gε.
We have the following first bound.

108 Chapter 4 Immanuel Zachhuber



Hyperbolic and dispersive singular stochastic PDEs

Lemma 4.2.2 (cf Lemma 3.1 [73]). For ε ∈ (0, 1) and v0, v1 ∈ H1 ∩ Lp the functional Jε defined
in (4.2.16) has a unique minimiser uε ∈ H2

loc(R+;L2) under the boundary conditions (4.2.18)
which satisfies the bound

Jε(uε) 6W(v0) + Cε . 1 (4.2.19)

Proof. This is identical to the proof of Lemma 3.1 in [73]. One observes that the function
ψ(t, x) := v0(x) + εtv1(x) is an admissable competitor in the minimisation class of Jε for which
∂2
t ψ ≡ 0 and in order to bound W(ψ) one uses (4.2.15). We omit the details.

Next we introduce some further notation

Wε(t) := Wε(uε(t, ·))

Dε(t) := 1
2ε2

�
T3
e2W |∂2

t uε|2dx

Lε(t) := Dε(t) +Wε(t)

Kε(t) := 1
2ε2

�
T3
e2W |∂tuε|2dx,

where one may think of Lε as being the Lagrangian and Kε the kinetic energy.

One gets Kε ∈W 1,1(0, T ) with

K ′ε(t) = 1
ε2

�
T3
e2W∂tuε∂

2
t uε

from Lemma 4.2.4 below which is analogous to Lemma 3.4 in [73]. The proof relies on a simple
inequality which we cite here for the sake of completeness.

Lemma 4.2.3. [ [72] Lemma 2.3 ] Let v ∈ H1
loc(R+;L2), then

� ∞
0

�
e−t|v(t, x)|2dxdt 6 2

�
|v(0, x)|2dx+ 4

� ∞
0

�
e−t|∂tv(t, x)|2dx.

Lemma 4.2.4. The minimisers uε satisfy
� ∞

0
e−tDε(t)dt =

� ∞
0

e−t
1

2ε2

�
T3
e2W |∂2

t uε|2dx . 1 (4.2.20)
� ∞

0
e−tKε(t)dt =

� ∞
0

e−t
1

2ε2

�
T3
e2W |∂tuε|2dx . 1 (4.2.21)

Proof. This is again completely analogous to Lemma 3.4 in [73]; The first bound follows from the
bound on Jε, while the second follows from the first together with Lemma 4.2.3.

4.2.1 The approximate energy
We introduce the following time averaging operator for positive measurable functions
f : R+ → [0,∞]

Af(s) :=
� ∞
s

e−(t−s)f(t)dt s > 0 (4.2.22)
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and note that Af is always defined–albeit possibly infinite– and in the case

Af(0) =
� ∞

0
e−tf(t)dt <∞

it is absolutely continuous with derivative given by

(Af)′ = Af − f. (4.2.23)

It turns out to be very convenient to also consider the twice iterated time average operator, i.e.
A2, which is explicitly given by

A2f(s) =
� ∞
s

e−(t−s)(t− s)f(t)dt.

With this notation in hand we will now introduce a fundamental quantity, namely the approximate
energy which contains a time-average of W, which can be seen as the “potential energy”.

Definition 4.2.5. Let uε be the minimiser of Jε. Then the approximate energy is the function

Eε := Kε +A2Wε

or more concretely
Eε(s) = Kε(s) +

� ∞
s

e−(t−s)(t− s)W(uε(t))dt.

Remark 4.2.6. The name approximate energy is justified by recalling that if one undoes the time
rescaling, one gets

Eε

(s
ε

)
=

�
e2W |∂tvε(s)|2 +

� ∞
s

e−ε(t−s)ε2(t− s)W(vε(t))dt,

where vε(s) = uε
(
s
ε

)
is the minimiser of Gε. Now e−ε(t−s)ε2(t− s) is a probability kernel on the

set t > s concentrating around s for small ε. Thus one can see that Eε
(
s
ε

)
reasonably

approximates the “real” energy E(s). This approximation means that we get around ever having to
directly take a time derivative of Wε.

Moreover, we observe that we have have

AWε(0) 6 ALε(0) = Jε(uε) . 1, (4.2.24)

so AWε is well-defined, however we still have to determine whether A2Wε is.

In fact, we will show not only that Eε is finite but also that it is decreasing which is the crucial
point that then allows us to conclude. The next result is almost verbatim Proposition 4.4
from [73], however we restate it and its proof nonetheless since this is really the crux of the
method.

Proposition 4.2.7. Let uε be a minimiser of Jε. For every g ∈ C2(R+) s.t. g(0) = 0 and g(t)is
constant for large t we have

� ∞
0

e−s(g′(s)− g(s))Lε(s)ds−
� ∞

0
e−s(4Dε(s)g′(s) +K ′ε(s)g′′(s))ds = g′(0)R(uε), (4.2.25)
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where
R(uε) := −ε

� ∞
0

e−ss〈∇W(uε(s)), w1〉ds,

which satisfies the bound
|R(uε)| 6 Cε. (4.2.26)

Proof. We introduce for δ with |δ| � 1 the function

ϕ(t) := t− δg(t)

for g as above. This is a C2 diffeomorphism of R+, we also denote by ψ its inverse

ψ(s) = ϕ−1(s).

Consider the test function
U(t) := uε(ϕ(t)) + tδεg′(0)w1

which satisfies the boundary conditions

U(0) = w0 and U ′(0) = εw1.

Moreover, we have

U ′(t) = u′ε(ϕ(t))ϕ′(t) + δεg′(0)w1

U ′′(t) = u′′ε (ϕ(t))|ϕ′(t)|2 + u′ε(ϕ(t))ϕ′′(t)

and hence

Jε(U) =
� ∞

0
e−t

(
1

2ε2

∥∥eWu′′ε (ϕ(t))|ϕ′(t)|2 + eWu′ε (ϕ (t))ϕ′′(t)
∥∥2
L2 +W(uε(ϕ(t)) + tδεg′(0)w1)

)
dt.

Note that for δ = 0 Jε(U)|δ=0 = Jε(uε).

We change variables in the integral above via t = ψ(s) i.e. s = ϕ(t) and get

Jε(U) =
� ∞

0
ψ′(s)e−ψ(s)

( 1
2ε2

∥∥e2Wu′′ε (s)|ϕ′(ψ(s))|2 + e2Wu′ε(s)ϕ′′(ψ(s))
∥∥2
L2

+W(uε(s) + ψ(s)δεg′(0)w1)
)
ds. (4.2.27)

As in the paper we note e−ψ(s) 6 eδ‖g‖∞e−s to argue the finiteness of the expression.

We use the Lipschitz bound for W in (4.2.15) to get

W(uε(s) + ψ(s)δεg′(0)w1) 6 C(1 +W(uε(s)) + ψ(s)2)

This implies the finiteness of the above integral expression and thus it is an admissable
“competitor” for the minimisation of Jε. The minimality of uε thus implies

d

dδ
Jε(U)|δ=0 = 0.
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In order to compute this, we first note

d

dδ
(ψ′(s)e−ψ(s))|δ=0 = g(s)e−s − g′(s)e−s

and
d

dδ
|ϕ′(ψ(s))|2|δ=0 = −2g′(s), d

dδ
ϕ′′(ψ(s))|δ=0 = −g′′(s).

We denote by Θ the function inside the large bracket in (4.2.27) and note

Θ(s)|δ=0 = 1
2ε2 ‖e

Wu′′ε (s)‖2L2 +Wε(s) = Lε(s)

and moreover
d

dδ
Θ(s)|δ=0 = − 1

ε2 〈u
′′
ε (s)eW , 2eWu′′ε (s)g′(s) + eWu′ε(s)g′′(s)〉+ εg′(0)s〈∇W(uε(s)), w1〉

= −4Dε(s)g′(s)−K ′ε(s)g′′(s) + εg′(0)s〈∇W(uε(s)), w1〉

combining these two identities we obtain

0 = d

dδ
(ψ′(s)e−ψ(s)Θ(s))|δ=0

= e−s(g′(s)− g(s))Lε(s)− e−s(4Dε(s)g′(s) +K ′ε(s)g′′(s)) + e−s(εg′(0)s〈∇W(uε(s)), w1〉)

which yields (4.2.25) after integrating in s. Lastly we need to prove the bounds for the remainder.
It remains to show the bound (4.2.26); we compute∣∣∣∣� ∞

0
e−ss〈∇W(uε(s)), w1〉ds

∣∣∣∣ . ‖w1‖H1∩Lp

� ∞
0

e−ss‖∇W(uε(s))‖(H1∩Lp)∗

.
� ∞

0
e−ss

(
1 + (W(uε(s)))

1
2

)
. 1 +

� ∞
0

e−ss2ds+
� ∞

0
e−sW(uε(s))ds

. 1 + Jε(uε)

. 1

where we have used (4.2.14) and (4.2.19). We can thus conclude |R(uε)| . ε.

This finishes the proof.

By monotone approximation the same result is also true for g ∈ C1,1(not necessarily bounded).
This is proved in Corollary 4.5 in [73] whose proof we omit. By inserting the special case g(t) = t
this then yields the identity

A2Lε(0) + 4ADε(0) = ALε(0)−R(uε). (4.2.28)

Similarly, for almost every T > 0, one obtains(see Corollary 4.7 in [73])

A2Lε(T )−ALε(T ) +K ′ε(T ) = −4ADε(T ) (4.2.29)
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whose proof we also omit since it is a relatively straightforward approximation argument.

Finally, one can conclude that the approximate energy Eε is decreasing in time. Recalling the
definition

Eε := Kε +A2Wε,

we note that, using (4.2.28) and (4.2.24), we get

Eε(0) = 1
2

�
e2W |v1|2 +

� ∞
0

e−ssW(uε(s))ds

6 C‖v1‖L2 +A2Lε(0)
= C‖v1‖L2 − 4ADε(0) +ALε(0)−R(uε)
. ‖v1‖L2 +ALε(0)−R(uε)
. ‖v1‖L2 +ALε(0) + Cε

. ‖v1‖L2 + Jε(uε) + Cε

. ‖v1‖L2 +W(v0) + Cε.

This finally justifies why Eε is well-defined. Furthermore, the next result gives us that it is even
decreasing in time.

Theorem 4.2.8. The following is true for all T > 0

E′ε(T ) 6 0

and further
Eε(T ) . ‖v1‖L2 +W(v0) + ε. (4.2.30)

Proof. The second bound follows from the first together with the preceding computation. To
prove the first, we compute

E′ε = K ′ε −AWε +A2Wε

using (4.2.23). Next, recalling that Wε = Lε −Dε and using (4.2.29) we deduce

E′ε(T ) = −3ADε(T )−A2Dε(T ) 6 0.

4.2.2 Proving the apriori estimates
Now we proceed to show the bounds (4.2.3),(4.2.4),(4.2.5) from Theorem 4.2.1.

Firstly we rescale in time, using the relation (4.2.17) between vε and uε to obtain

1
2

�
T3
|∂tvε(t, x)|2dx .

1
2

�
T3
e2W (x)|∂tvε(t, x)|2dx = Kε

(
t

ε

)
. 1,

where the last bound follows from the approximate energy bound from Theorem 4.2.8. This shows
the first part of (4.2.4), the second bound in (4.2.4) follows readily from the first using fact that in
particular w0 ∈ L2.
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To get the bound (4.2.3), we first recall that
� T

0

�
|∇vε(t, x)|2 + |vε(t, x)|pdxdt =

� T
ε

0
ε

�
|∇uε(t, x)|2 + |uε(t, x)|pdxdt

.
� T

ε

0
εW(uε(t))dt (4.2.31)

then we distinguish two cases: ε 6 T 6 2ε and T > 2ε. In the first case we bound

e−2
� T

ε

0
W(uε(t))dt 6

� 2

0
e−tW(uε(t))dt 6

� 2

0
e−tLε(t)dt 6 Jε(uε) . 1.

For the second case we split the integral

� T
ε

0
=

� 2

0
+
bTε c−2∑
i=1

� i+2

i+1
+
� T

ε

bTε c
,

where we of course bound the first integral as in the first case. For the remaining terms we
proceed as follows

e−2
� i+2

i+1
Wε(t)dt 6

� i+2

i+1
(t− i)e−(t−i)Wε(t)dt 6 A2Wε(i) 6 Eε(i) . 1 (4.2.32)

and in the same way for the last summand. Finally we can conclude (4.2.3) from (4.2.31), since
there are ∼ T

ε summands.

We furthermore note that (4.2.32) combined with (4.2.13) gives us the following bound
� t+1

t

‖∇W(uε(s))‖2(H1∩Lp)∗ds . 1 ∀t > 0, (4.2.33)

which we will employ in proving the next lemma, which is essentially Lemma 5.1 in [73].

Lemma 4.2.9 (Euler-Lagrange equations). Suppose that η(t, x) = ϕ(t)h(x) with
ϕ ∈ C1,1(R+), ϕ(0) = ϕ′(0) = 0 and h ∈ H1 ∩ Lp. Then

� ∞
0

e−t
(

1
ε2 (e2W∂2

t uε(t), ∂2
t η(t)) + (∇W(uε(t)), η(t))

)
dt = 0. (4.2.34)

The same conclusion holds true for test functions η ∈ C∞c .

Proof. The Euler-Lagrange equation (4.2.34) is formally obtained by asking f ′(0) = 0 for the
function f(δ) := Jε(uε + δη). So one needs to justify pulling the derivative into the integral. In
fact, using (4.2.33) one can conclude that

d

dδ
W(uε(t) + δη(t))|δ=0 = (∇W(uε(t)), η(t)) = ϕ(t)(∇W(uε(t)), h)

multiplied by e−t is integrable in time. The case of general η follows by density, see [73] for
details.
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Now we come to the proof of (4.2.5). In fact this bound comes from the following representation
formula for ∂2

t uε (actually for e2W∂2
t uε), namely

1
ε2 (e2W∂2

t uε(T ), h) = −A2(∇W(uε(·)), h)(T ) for a.e. T > 0,∀h ∈ H1 ∩ Lp. (4.2.35)

This can be proved by applying (4.2.34) with η(t, x) = gδ(t)h(x) with gδ s.t.
∂2
t gδ(t) = δ−1χ(T,T+δ)(t) and gδ → (t− T )+. In fact, inserting this into (4.2.34) and multiplying

both sides by eT gives

eT

ε2δ

� T+δ

T

e−t(∂2
t uε(t), h)dt = −

� ∞
T

e−(t−T )gδ(t)(∇W(uε(t)), h)dt.

We can thus conclude (4.2.35) for a.e. T > 0 after taking δ ↓ 0.

Finally, we can use (4.2.35) to prove (4.2.5). Using the bound

|(∇W(uε(t)), h)| 6 ‖∇W(uε(t))‖(H1∩Lp)∗‖h‖H1∩Lp . ‖h‖H1∩Lp(1 +W(uε(t)))

as well as recalling A2Wε 6 Eε . 1 we have

|A2(∇W(uε(·)), h)(T )| 6 A2|(∇W(uε(·)), h)|(T ) . ‖h‖H1∩Lp ,

which allows us to conclude (4.2.5).

4.2.3 Passing to the limit and energy inequality
In this section we conclude the proof of Theorem 4.2.1 by passing to the limit and proving
(4.2.6),(4.2.7) and (4.2.8) as well as the energy inequality (4.2.10).

In the following we will extract subsequences via compactness but, as is commonly done, we will
not relabel them, in fact we just write wε for all the subsequences for the sake of brevity.

Firstly we use (4.2.3) and (4.2.4) to deduce the uniform bounds for any T ≥ 0

‖vε‖2H1((0,T );L2)∩L2((0,T );H1)
=

� T

0
‖∂tvε(t)‖2L2 + ‖∇vε(t)‖2L2 + ‖vε(t)‖2L2dt 6 C(T ),

and

‖vε‖pLp((0,T );T3) =
� T

0
||vε(t)||pLpdt 6 C(T ),

i.e. equiboundedness in H1
loc(R+;L2(T3)) ∩ L2

loc(R+;H1(T3)) ∩ Lploc(R+;Lp(T3)). This allows us
to extract a subsequence and a limit s.t. for any T > 0

vε ⇀ v in H1((0, T );L2(T3)) ∩ L2((0, T );H1(T3)) (4.2.36)
vε ⇀ v in Lp((0, T );T3) (4.2.37)
vε → v in Lq((0, T );T3) for any q ∈ [2, p). (4.2.38)

Note that in the last one we have strong convergence since by the compact embedding H1 ↪→ L2

we get strong convergence in L2((0, T );T3) and interpolating this with the Lp bound, we can
deduce strong convergence in Lq((0, T );T3).
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Now we note that from the uniform bounds in (4.2.4) and (4.2.5) we get for the limit

∂tv ∈ L∞(R+;L2) and e2W∂2
t v ∈ L∞(R+; (H1 ∩ Lp)∗). (4.2.39)

In order to confirm that the limit satisfies the correct initial conditions, we firstly note that the
condition v(0) = vε(0) = v0 follows from (4.2.36). Moreover, the bounds (4.2.4) and (4.2.5)
together with the embedding L2 ↪→ (H1 ∩ Lp)∗ allow us to get a uniform bound

‖e2W∂tvε‖W 1,∞(R+;(H1∩Lp)∗) . 1.

This allows us to conclude that

e2W∂tv(0) = e2W∂tvε(0) = e2W v1

as elements in (H1 ∩ Lp)∗.

Next, we show that our limit v actually solves the correct equation, i.e. (4.2.8). Note that the vε
satisfy the Euler-Lagrange equations (4.2.34) which are –slightly rewritten–

−
� ∞

0

�
e2W∂tvε∂t

(
e−

t
ε ∂2
t η
)
dxdt+

� ∞
0

�
e−

t
ε e2W (∇vε · ∇η − vεηZ ′ + |vε|p−2vεη) = 0.

Now we choose η(t, x) = e−
t
εϕ(t, x) for any ϕ ∈ C∞c which yields

−
� ∞

0

�
e2W∂tvε∂t(ε2∂2

t ϕ+ ε∂tϕ+ ϕ)dxdt+
� ∞

0

�
e2W (∇vε · ∇ϕ− vεϕZ ′ + |vε|p−2vεϕ) = 0.

Now we are able to pass to the limit in this formulation, using the fact that

∂tvε ⇀ ∂tv in L2
loc(R+;L2)

∇vε ⇀ ∇v in L2
loc(R+;L2)

vε → v in L2
loc

(
R+;H 3

4

)
vε → v in Lp−1

loc (R+;Lp−1).

The limiting equation is thus

−
� ∞

0

�
e2W∂tv∂tϕdxdt+

� ∞
0

�
e2W (∇v · ∇ϕ− vϕZ ′) + epW |v|p−2vϕ = 0.

which is the weak formulation of (4.2.8) i.e. (4.1.6).

Lastly we prove the energy inequality (4.2.10) as in [73]. This follows from the following lemma.

Lemma 4.2.10 (Lemma 6.1 from [73]). Let l(t),m(t) be nonnegative functions in L1
loc s.t.

A2l(t) 6 m(t) for a.e. t > 0,

then for δ ∈ (0, 1), a > 0 we have(� δa

0
se−sds

)� T+a

T+δa
l(t)dt 6

� T+a

T

m(t)dt ∀T > 0.
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We want to apply Lemma 4.2.10 with l(t) =Wε(t) and

m(t) = −Kε(t) + C(‖v1‖L2 +W(v0) + ε),

where C is the constant from (4.2.30). This is allowed in light of (4.2.30) and by recalling the
definition

Eε = Kε +A2Wε.

Thus we have
Y (δa)

� T+a

T+δa
Wε(t)dt 6 −

� T+a

T

Kε(t)dt+ aCE(0) + aCε,

for all T > 0, δ ∈ (0, 1) and a > 0, where we have defined Y (s) :=
� s

0 te
−tdt. Now we rescale, i.e.

make the re-substitution u(t, x) = v(εt, x), which leads to

Y

(
δa

ε

) � T+a

T+δa
W(vε(t))dt+

� T+a

T

1
2‖e

W∂tvε‖2L2dt 6 aCE(0) + aCε

after having also replaced T by T
ε and a by a

ε . Now we can take ε→ 0 in this bound, using that
Y
(
δa
ε

)
→ 1 and lower-semicontinuity/Fatou to obtain

� T+a

T+δa
W(v(t))dt+

� T+a

T

1
2‖e

W∂tv‖2L2dt 6 aCE(0),

next we take δ → 0, divide both sides by a and take a→ 0 to finally obtain

W(v(T )) + 1
2‖e

W∂tv(T )‖2L2 6 E(0),

which is precisely (4.2.10).

This concludes the proof of Theorem 4.2.1.

We have thus constructed solutions to the energy supercritical stochastic wave equation (4.1.1).
With the same method we are able to prove that for solutions uδ to the Wave equation with a
smooth approximation to the Anderson Hamiltonian, as in (2.2.35)

∂2
t uδ − (∆ + ξδ − cδ) = −uδ|uδ|p − 2 on R+ × T3 (4.2.40)

(uδ, ∂tuδ)|t=0 = (uδ0, uδ1) = (eWδv0, e
Wδv1),

exist globally for (v0, v1) ∈ (H1 ∩ Lp)2. Moreover, there exists a subsequence which converges to a
solution to (4.1.1) with initial data

((u0, u1) = (eW v0, e
W v1)).
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