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Summary

This thesis is about the relationship between vertex algebras and Costello-
Gwilliam factorization algebras, two mathematical approaches to chiral con-
formal field theory. Many vertex algebras have already been constructed. Some
of these are known to arise from holomorphic factorization algebras on the plane
of complex numbers. We prove that every Z-graded vertex algebra arises from
such a factorization algebra.

First, we show that a Z-graded vertex algebra is the same thing as a ge-
ometric vertex algebra. Geometric vertex algebras serve as an intermediary
between Z-graded vertex algebras and factorization algebras. Our factorization
algebras take values in the symmetric monoidal category of complete bornolog-
ical vector spaces. We describe how to obtain geometric vertex algebras from
certain prefactorization algebras with values in the symmetric monoidal category
of complete bornological vector spaces. Second, we attach a prefactorization al-
gebra FV to every geometric vertex algebra V and show that the geometric
vertex algebra associated with FV is isomorphic to V. Third, we prove that FV
is in fact a factorization algebra.
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1 Introduction

Vertex algebras and factorization algebras are two approaches to chiral confor-
mal field theory. Chiral conformal field theory is a version of quantum field
theory in which holomorphic functions of a single complex variable feature most
prominently, as opposed to functions of several real variables. The subject of
vertex algebras is well-developed. Some, but not all, aspects of it have been
reformulated in terms of the geometry of C, the plane of complex numbers, or
other Riemann surfaces. Factorization algebras as developed by Costello and
Gwilliam [2] are a more general approach to quantum field theory which applies
to all kinds of geometries, including higher dimensional manifolds. This thesis
compares vertex algebras and factorization algebras on C.

Many models of chiral conformal field theory have been constructed as ver-
tex algebras. Some of these have been constructed as factorization algebras,
too. Costello and Gwilliam describe a procedure to obtain vertex algebras from
suitable factorization algebras on C. I provide a one-sided inverse to this pro-
cedure.

Theorem. If V is a vertex algebra, then there is a factorization algebra FV
on C whose associated vertex algebra is isomorphic to V.

In particular, every vertex algebra arises from a factorization algebra. This
was known for the universal affine vertex algebras [2] and the Virasoro vertex
algebra [19], but not, for example, for the simple affine vertex algebras, the
irreducible quotients of the universal affine vertex algebras.

This construction of a factorization algebra starting from a vertex algebra
was suggested to the author by André Henriques who was inspired by work of
Huang. In [12, 13], Huang studies locally convex completions of the underlying
vector space of a vertex algebra V. These locally convex completions are algebras
over the E2-operad of little discs and their multiplication maps are related to
the vertex operators of V.

A factorization algebra F on C assigns a vector space F (U) to every open
subset U ⊆ C and extension maps F (U)→ F (V ) for inclusions U ⊆ V of open
subsets. These extension maps assemble into a precosheaf. It is part of the
definition of a factorization algebra that this precosheaf is a cosheaf for certain
open covers called Weiss covers. Furthermore, a factorization algebra on C has
isomorphisms

F (U)⊗ F (V ) ∼= F (U t V )

for U, V disjoint open subsets of C. So far, we have described factorization alge-
bras on C with values in the symmetric monoidal category of vector spaces. We
have found it convenient to consider factorization algebras with values in the
symmetric monoidal category of complete bornological vector spaces with the
symmetric monoidal product given by the completed tensor product of bornolog-
ical spaces.

Let g be a finite-dimensional Lie algebra over C and κ a symmetric in-
variant form on g. If Vg,κ denotes the corresponding universal affine vertex
algebra, it is not known if FVg,κ is isomorphic to the universal affine factor-
ization algebra Fg,κ from [2], called the Kac-Moody factorization algebra there
and denoted Fκ. These factorization algebras take values in the category of
chain complexes of differentiable vector spaces. However, on open subsets of C,
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as opposed to arbitrary Riemann surfaces, Fκ is concentrated in degree zero by
the arguments of [2]. We conjecture that FVg,κ ∼= Fg,κ as prefactorization al-
gebras of differentiable chain complexes. Alternatively, we may form the zeroth
homology of their construction as a complete bornological space and hope for an
isomorphism of factorization algebras with values in the category of bornological
spaces.

We now summarize the contents of this document’s sections. The introduc-
tion of each section contains further remarks on other people’s related work.

In Section 2, we recall the definitions of Z-graded vertex algebras and geo-
metric vertex algebras. Given a Z-graded vector space, the set of vertex algebra
structures on it is in bijection with the set of geometric vertex algebra struc-
tures. This bijection summarizes a number of basic facts about vertex algebras.
Geometric vertex algebras are more similar to factorization algebras than vertex
algebras, and our construction of a factorization algebra from a vertex algebra
is phrased entirely in terms of its geometric vertex algebra.

In Section 3, we define holomorphic prefactorization algebras taking val-
ues in the category of complete bornological vector spaces. To do so, we first
summarize various basic facts about complete bornological vector spaces. We
then describe the constructions F and V going between geometric vertex al-
gebras and holomorphic prefactorization algebras with discrete weight spaces
and meromorphic operator product expansion. We check that FV is in fact
such a prefactorization algebra and that VFV ∼= V for every geometric vertex
algebra V.

In Section 4, we recall the definition of a factorization algebra and prove
that FV is a factorization algebra.
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Moduli Spaces, and I would like to thank MPIM and its wonderful staff. I
thank my friends and family, and in particular my parents, for their support
and encouragement.
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2 Geometric Vertex Algebras

A theorem of Huang in [11] establishes the equivalence of vertex operator alge-
bras and geometric vertex operator algebras. We give a self-contained account
of this theorem in the simplified setting of vertex algebras and geometric vertex
algebras, that is, without the infinitesimal conformal symmetries given by the
Virasoro algebra. Geometric vertex algebras are equivalent to Z-graded vertex
algebras.

Theorem 2.0.1. The set of Z-graded vertex algebra structures on a fixed Z-
graded vector space is in natural bijection with the set of geometric vertex algebra
structures.

Both geometric vertex algebras and Z-graded vertex algebras have an un-
derlying Z-graded vector space V over C. In a geometric vertex algebra, the
multiplication maps µ takes elements a1, . . . , an ∈ V placed at pairwise distinct
point z1, . . . , zn ∈ C, and the product µ(a)(z) is an element of V :=

∏
k∈Z Vk

which contains V as a subspace.

Related work. The meaning of the above theorem is very close to that of
Theorem 2.12 in Runkel’s lecture notes [17]. The holomorphic integral scale
covariant field theories of [17] have essentially the same data as geometric vertex
algebras. The axioms only differ in the kind of convergence in the infinite
sum in the associativity property. The definition of geometric vertex algebras
in this article uses locally normal convergence in its associativity axiom, as
opposed to pointwise convergence as in [17], seen to imply pointwise absolute
convergence there. We show that the geometric vertex algebra constructed
from a Z-graded vertex algebra always has locally normal convergence in its
associativity property.

The analogous theorem of Huang is Theorem 5.4.5 in [11]. Costello and
Gwilliam construct Z-graded vertex algebras from certain holomorphic factor-
ization algebras on C. Our treatment of obtaining a vertex algebra from a
geometric vertex algebra is modeled on their work, geometric vertex algebras
serve as an intermediary between vertex algebras and factorization algebras.
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2.1 Definitions and the Bijection

Unless stated otherwise, all vector spaces are over the field C of complex num-
bers. Geometric vertex algebras have an n-ary operation parametrized by dis-
tinct points in C. Let z = (z1, . . . , zn) ∈ Cn \∆ where

∆ = ∆n = {(z1, . . . , zn) ∈ Cn | zi = zj for some i, j ∈ {1, . . . , j} with i 6= j} .

for every natural number n ≥ 0, we write ∆ instead of ∆n when n is appar-
ent from the context. The result of the multiplying a1, . . . , an at z is an ele-
ment µ(a1, z1, . . . , an, zn) of V :=

∏
k∈Z Vk and not necessarily its subspace V,

and depends on holomorphically on z ∈ Cn \ ∆. Thus, in order to formulate
associativity, we evaluate the multiplication map on infinitely many elements
of V, the projections to Vk for k ∈ Z of the intermediate result, and then re-
assemble the result of multiplying with some additional elements by using an
infinite sum. Before giving the definition of a geometric vertex algebra, we ex-
plain the relevant notions of holomorphicity and convergence. Both are based
on considering finite-dimensional subspaces of the Vk for all k ∈ Z, a reflection
of the rather algebraic nature of vertex algebras.

Definition 2.1.1. Let U ⊆ Cn and X be a vector space. A map f : U → X
is holomorphic if f is locally a holomorphic function with values in a finite-
dimensional subspace X. This means that every point p ∈ U has an open neigh-
borhood V together with a finite-dimensional subspace Y ⊆ X with f(V ) ⊆ Y
and f |V : V → Y holomorphic. If V is a Z-graded vector space, then O(U ;V)
denotes the vector space of V-valued functions on U each of whose components
is holomorphic.

The condition that f |V be holomorphic is independent of the choice of Y . It
can be shown that f(U) ⊆ Y for all Y as above if U is connected. In particular,
a holomorphic function on a connected set like Cn \∆n globally takes values in
some finite-dimensional subspace.

For the associativity axiom of a geometric vertex algebra, we recall that a
series

∑
i∈I fi of holomorphic functions on an open U ⊆ Cn with values in a

finite-dimensional normed space is called normal if
∑
i∈I ||fi|| < ∞ where || ||

is the supremum norm. Such a series is called locally normal if every point in
the domain has an open neighborhood V s. t.

∑
i∈I fi|V is normal, equivalently

if
∑
i∈I ||fi||K < ∞ for each compact subset K of the domain. The notions

of normal and locally normal series are the same for every norm. Therefore, it
makes sense to say that a series of holomorphic functions with values in a vector
space X is locally normal:

Definition 2.1.2. Let U ⊆ Cn and X be a vector space. A series
∑
i∈I fi

of holomorphic X-valued functions on an open U ⊆ Cn locally normal if, for
every p ∈ U , there is an open neighborhood V of p and a finite-dimensional
subspace Y s. t. f(V ) ⊆ Y and

∑
i ||fi|V || < ∞, where the supremum norm is

defined with respect to a norm on Y .

Definition 2.1.3. A geometric vertex algebra consists of:

• A Z-graded vector space V =
⊕

k∈Z Vk over C.
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• Linear maps µ : V⊗n → O(Cn \∆;V) for n ≥ 0 where V =
∏
k∈Z Vk. For

all n, we write

µ(a)(z) = µ(a, z) = µ(a1, z1, . . . , an, zn)

for the value of the function corresponding to a = a1 ⊗ . . . ⊗ an ∈ V⊗n
at z ∈ Cn \∆.

The axioms of a geometric vertex algebra are:

• (permutation invariance)

µ(aσ, zσ) = µ(a, z)

for a ∈ Vn, z ∈ Cn \∆ and every permutation σ ∈ Σn.

• (insertion at zero)

µ(a, 0) = a

for all a ∈ V, where a is viewed as element of V via the embedding

V =
⊕
n

Vn ↪→
∏
n

Vn = V .

• (associativity) For k ∈ Z let

pk : V → Vk

denote the projection. For all a1, . . . , am ∈ V, b1, . . . , bn ∈ V and z ∈
Cm+1 \∆, w ∈ Cn \∆ with maxi |wi| < min1≤j≤m |zj−zm+1| we demand
that the sum∑

k∈Z

µ(a1, z1, . . . , am, zm, pkµ(b1, w1, . . . , bn, wn), zm+1) (1)

converge in the sense that, for each l ∈ Z, the components of the sum-
mands form a locally normal sum of Vl-valued functions on Cn \∆. This
limit defines the left hand side of the equality

µ(a1, z1, . . . , am, zm, µ(b1, w1, . . . , bn, wn), zm+1)

= µ(a1, z1, . . . , am, zm, b1, w1 + zm+1, . . . , bn, wn + zm+1) (2)

which we require to hold. Here m ≥ 0 and n ≥ 0.

• (C×-equivariance) For all z ∈ C×, a1, . . . an ∈ V and w ∈ Cn \∆

z.µ(a1, w1, . . . , an, wn) = µ(z.a1, zw1, . . . , z.an, zwn)

where z ∈ C× acts on V and V via multiplication by zl on Vl for all l ∈ Z.

• (meromorphicity) For all a, b ∈ V, there exists an N s. t. the func-
tion zNµ(a, z, b, 0) of z ∈ C \ {0} extends holomorphically to z ∈ C.
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In the associativity axiom of a geometric vertex algebra, the condition that

max
i
|wi| < min

1≤j≤m
|zj − zm+1|

is equivalent to saying that all wj + zm+1, j = 1, . . . , n, are contained in the
largest open ball around zm+1 not containing any of the zi for i = 1, . . . ,m.

By permutation invariance the multiplication µ only depends on the set

{(a1, z1), . . . , (am, zm)}

for a1, . . . , am ∈ V and z ∈ Cm \ ∆. The image µ(∅) of 1 ∈ C under the
multiplication map

C = V⊗0 → O(pt;V) ∼= V

for n = 0 is called the vacuum vector |0〉 of V, or unit. It is actually an element
of V0 ⊆ V because it is invariant under the action of C×. The case n = 0 of the
associativity axiom implies that

µ(a1, z1, . . . , am, zm, |0〉, zm+1) = µ(a1, z1, . . . , am, zm)

for a1, . . . , am ∈ V and z ∈ Cm+1 \∆.

The next proposition says that the action of C× on V extends to an action
of the group C× n C of affine transformations of C on the subspace

Vbb = {x ∈ V | ∃C ∈ Z ∀k < C : xk = 0}

of bounded below vectors. More generally, when constructing geometric vertex
algebras from vertex algebras, we will show that µ(a1, z1, . . . , am, zm) vanishes
in sufficiently low degree, i. e., is an element of Vbb. We do not need the next
proposition to obtain a vertex algebra; rather it explains how the m = 0 case
of associativity can be thought of as translation invariance of µ by making
translations act on Vbb by using µ.

Proposition 2.1.4. The vector space Vbb is a representation of G = C× n C
where w ∈ C acts as w.x =

∑
k∈Z µ(pk(x), w) and λ ∈ C× acts as (λ.x)k =

λkxk for x ∈ Vbb.

Proof. For w1, w2 ∈ C and x ∈ Vbb

w1.(w2.x) =
∑
k1∈Z

µ

(
pk1

(∑
k2∈Z

µ(pk2(x), w2)

)
, w1

)
=
∑
k1∈Z

∑
k2∈Z

µ(pk1(µ(pk2(x), w2)), w1)

=
∑
k2∈Z

∑
k1∈Z

µ(pk1(µ(pk2(x), w2)), w1)

=
∑
k2∈Z

µ(pk2(x), w2 + w1) (3)

= (w1 + w2).x ,
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where the sums are exchangeable because they are finite in each component of V
and line (3) uses the associativity of V for m = 0. Furthermore

0.x =
∑
k∈Z

µ(pk(x), 0) =
∑
k∈Z

pk(x) = x.

These actions of C× and C assemble to an action of C× n C because

λ.(w.(λ−1.x)) = λ.
∑
k∈Z

µ(pk(λ.x), w)

=
∑
k∈Z

λ.µ(λ−1.pk(x), w)

=
∑
k∈Z

µ(pk(x), λw)

= (λw).x

because of C×-equivariance.

If V is a Z-graded vector space and v ∈ V is homogeneous, then |v| denotes
the degree of v.

Definition 2.1.5. A Z-graded vertex algebra consists of:

• a Z-graded vector space V =
⊕

l∈Z Vl over C,

• a linear map

Y : V −→ EndV[[x±1]]

a 7−→ Y (a, x) =
∑
k∈Z

a(k)x
−k−1,

where the k-th mode a(k) is a homogeneous endomorphism of V of de-
gree |a| − k − 1 for homogeneous a ∈ V,

• a degree 1 endomorphism T of V,

• a vector |0〉 ∈ V0 called the vacuum,

such that:

• (locality) For all a, b ∈ V, there exists a natural number N such that

(x− y)N [Y (a, x), Y (b, y)] = 0

in End(V)[[x±1, y±1]].

• (translation) T |0〉 = 0 and [T, Y (a, x)] = ∂xY (a, x) for all a ∈ V.

• (creation) Y (a, x)|0〉 ∈ a+ xV[[x]] for all a ∈ V.

• (vacuum) Y (|0〉, x) = idV .

2.1.6. In terms of the modes of a ∈ V, the translation axiom for a ∈ V is
equivalent to demanding that [T, a(k)] = −ka(k−1) for all k ∈ Z. The creation
axiom for a is equivalent to the equation a(−1)|0〉 = a and a(k)|0〉 = 0 for k ≥ 0.
The vacuum axiom says that for all a ∈ V we have |0〉(k)a = 0 for k 6= −1
and |0〉(−1)a = a.
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In a vertex algebra, the translation operator T and the vacuum |0〉 are
uniquely determined by the vertex operators Y (a, x).

Proposition 2.1.7. Let (V, Y, T, |0〉) be a vertex algebra. Then Ta = a(−2)|0〉
for all a ∈ V. If a ∈ V satisfies Y (a, x) = idV , then a = |0〉.

Proof. Let a ∈ V. It follows that

Ta = Ta(−1)|0〉 = [T, a(−1)]|0〉+ aT |0〉 = a(−2)|0〉+ 0

by the creation axiom and the translation axiom. If Y (a, x) = idV , then

a = Y (a, x)|0〉|x=0 = id(|0〉)|x=0 = |0〉

by the creation axiom.

Proposition 2.1.8. Let V be a geometric vertex algebra. Let a ∈ V and k ∈ Z.
The k-th mode of a is a well-defined linear map

a(k) : V −→ V

b 7−→ a(k)b :=
1

2πi

∫
S1

zkµ(a, z; b, 0)dz.

If a ∈ V is homogeneous, then a(k) is homogeneous of degree |a|−k−1. A priori,

the map a(k) is well-defined as a map V → V. Recall that we identify V =
⊕

k Vk
with its image in V =

∏
k Vk under the natural injection.

Proof. Let a, b ∈ V be homogeneous. Note that z.(a(k)b) = z|a|−k−1+|b|a(k)b for
all z ∈ C× because

2πi z.(a(k)b) = z.

∫
S1

wkµ(a,w; b, 0)dw

=

∫
S1

wkz.µ(a,w; b, 0)dw

=

∫
S1

wkµ(z.a, zw; z.b, 0)dw

= z|a|+|b|
∫
S1

wkµ(a, zw; b, 0)dw

= z|a|−k−1+|b|
∫
zS1

wkµ(a,w; b, 0)dw (substituted w/z)

= z|a|−k−1+|b|
∫
S1

wkµ(a,w; b, 0)dw (holomorphic)

= 2πi z|a|−k−1+|b|a(k)b.

This implies that pl(a(k)b) is zero if l 6= |a| − k − 1 + |b|. Thus a(k)b ∈
V|a|−k−1+|b| ⊆ V. Since every element of V is a finite sum of homogeneous
elements, it follows that a(k)b ∈ V for all a, b ∈ V.

Definition 2.1.9. Let V be a Z-graded vector space over C. Let A ⊆ C be
an annulus with center 0. If f : A → V is a holomorphic function, meaning in
particular that it takes values in a finite-dimensional subspace in each degree,
then we define the Laurent expansion L(f)(x) ∈

∏
k∈Z

(
Vk[[x±1]]

)
of f on A

componentwise.
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For V a Z-graded vector space, we identify V[[x±1]] with a subspace of

∏
k∈Z

(
Vk[[x±1]]

)
=

(∏
k∈Z

Vk

)
[[x±1]] = V[[x±1]]

via the injective linear map

∑
l

Alx
l 7−→

(∑
l

pk(Al)x
l

)
k∈Z

.

Proposition 2.1.10. Let V be a geometric vertex algebra. For all a, b ∈ V, the
Laurent expansion L[z 7→ µ(a, z, b, 0)](x) is an element of V[[x±1]] and is equal
to
∑
l a(l)b x

−l−1.

Proof. By the integral formula for the coefficients of the Laurent expansion

L[z 7→ µ(a, z, b, 0)](x)k =
∑
l∈Z

1

2πi

∫
S1

zlpk(µ(a, z, b, 0))dz · x−l−1

=
∑
l∈Z

pk

(
1

2πi

∫
S1

zlµ(a, z, b, 0)dz

)
x−l−1

=
∑
l∈Z

pk(a(l)b)x
−l−1.

For fixed l ∈ Z, the sum
∑
k pk(a(l)b) is finite and equals a(l)b, so

∑
l a(l)bx

−l−1

is the desired preimage.

We are now ready to state a more detailed version of Theorem 2.0.1.

Theorem 2.1.11. Let V be a Z-graded vector space over C. There is a bijective
map from the set of geometric vertex algebra structures on V to the set of Z-
graded vertex algebra structures on V defined by

Y (a, x)b = L[z 7→ µ(a, z, b, 0)](x) (∈ V[[x±1]])

Ta = ∂zµ(a, z)|z=0

|0〉 = µ(∅)

for all a, b ∈ V. The inverse to this bijection is uniquely determined by the
equation

µ(a1, z1, . . . , am, zm) =
∑
k1∈Z

(a1)(k1)z
−k1−1 . . .

∑
km∈Z

(am)(km)z
−km−1|0〉

for a1, . . . , am ∈ V and z ∈ Cm \∆ with |z1| > . . . > |zm|.

The r. h. s. above converges absolutely in each component of V by Proposi-
tion 2.3.2.

13



2.2 From Geometric Vertex Algebras to Vertex Algebras

Given a geometric vertex algebra, we construct a Z-graded vertex algebra with
the same underlying vector space.

Proposition 2.2.1. Let V be a geometric vertex algebra. Let a1, . . . , am ∈ V
and i, j ∈ {1, . . . ,m} with i < j. For all (z1, . . . , zi−1, zi+1, . . . , zm) ∈ Cm−1 \∆
and ε > 0 with ε < |zl − zj | for all l 6= i, j,

1

2πi

∫
∂Bε(zj)

(zi − zj)kµ(a, z)dzi

= µ(a1, z1, . . . , âi, zi, . . . , aj−1, zj−1, ai(k)aj , zj , aj+1, zj+1, . . . , am, zm).

Proof. Using permutation invariance and associativity

µ(a, z) =
∑
l∈Z

µ(. . . , âi, zi, . . . , plµ(ai, zi − zj , aj , 0), zj , . . .)

and convergence is normal as functions of zi on ∂Bε(zj) in each component of V
since it is locally normal by the associativity axiom and ∂Bε(zj) is compact. It
follows that we can exchange integration over ∂Bε(zj) with summation to get

1

2πi

∫
∂Bε(zj)

(zi − zj)kµ(a, z)dzi

=
∑
l∈Z

µ(. . . , âi, zi, . . . , pl
1

2πi

∫
∂Bε(zj)

(zi − zj)kµ(ai, zi − zj , aj , 0)dzi, zj , . . .)dzi.

Here, we may move the integral into the argument of µ and pl because these
maps are linear and the relevant functions take values in finite-dimensional
subspaces. Shifting the contour integral to zero and noting that it does not
matter whether we integrate around a circle of radius ε or 1 as in the definition
of the modes, we get

1

2πi

∫
∂Bε(zj)

(zi − zj)kµ(ai, zi − zj , aj , 0)dzi =
1

2πi

∫
∂Bε(0)

wkµ(ai, w, aj , 0)dw

= ai(k)aj

and thus

1

2πi

∫
∂Bε(zj)

(zi − zj)kµ(a, z)dzi =
∑
l∈Z

µ(. . . , âi, zi, . . . , plai(k)aj , zj , . . .)

= µ(. . . , âi, zi, . . . ,
∑
l∈Z

plai(k)aj , zj , . . .) = µ(. . . , âi, zi, . . . , plai(k)aj , zj , . . .)

because the sum is finite.

For i, j ∈ {1, . . . ,m} with i < j, let Uij be the set of z ∈ Cm \∆ with |zi −
zj | < minl 6=i,j |zl − zj |. The following proposition is the analogue of Proposi-
tion 5.3.6 from [2, p. 167] for geometric vertex algebras. It expresses products
for zi close to zj in terms of a series in zi−zj and other vertex algebra elements
inserted at zj and goes by the name of operator product expansion (OPE).
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Proposition 2.2.2. Let V be a geometric vertex algebra and let a1, . . . , am ∈ V.
For z ∈ Uij

µ(a1, z1, . . . , am, zm) =
∑
k∈Z

µ(. . . , âi, zi, . . . , ai(k)aj , zj , . . .)(zi − zj)−k−1

with locally normal convergence.

Proof. For fixed z1, . . . , zi−1, zi+1, . . . , zm the l. h. s. is a holomorphic function
of zi such that z ∈ Uij . The integral formula for the coefficients of the locally
normal Laurent expansion and Proposition 2.2.1 imply

µ(a, z) =
∑
k∈Z

1

2πi

∫
∂Bε(zj)

(w − zj)kµ(. . . , ai, w, . . . , aj , zj , . . .)dw(zi − zj)−k−1

=
∑
k∈Z

µ(. . . , âi, zi, . . . , ai(k)aj , zj , . . .)(zi − zj)−k−1.

Proposition 2.2.3. Assume that the underlying datum (V, µ) of a geometric
vertex algebra satisfies all the axioms of a geometric vertex algebra except mero-
morphicity. If V is bounded from below, then V is meromorphic.

Proof. If V is bounded from below, then meromorphicity follows because

µ(b, w, c, 0) =
∑
k∈Z

µ(b(k)c, 0)w−k−1 =
∑
k

b(k)cw
−k−1

and b(k)c is zero for k large enough for degree reasons.

The map of Theorem 2.1.11 is well-defined:

Proposition 2.2.4. If V is a geometric vertex algebra, then V forms a Z-graded
vertex algebra with the above Y , T and |0〉.

Proof. Fix µ such that (V, µ) is a geometric vertex algebra. Our goal is to check
that (V, Y, T, |0〉) as defined above is a vertex algebra. We determine the degrees
of T and |0〉 using the action of C× and the equivariance axiom similarly to how
we determined the degrees of the modes in Proposition 2.1.8: For all z ∈ C×,

z.|0〉 = z.µ(∅) = µ(∅) = |0〉

so |0〉 ∈ V0 ⊆ V since this shows that pl|0〉 = 0 for l 6= 0. For all z ∈ C×

and a ∈ V homogeneous, we have

z.Ta = z.∂wµ(a,w)|w=0 = ∂wz.µ(a,w)|w=0 = ∂wµ(z.a, zw)|w=0

= ∂wµ(z|a|a, zw)|w=0 = z|a|+1∂wµ(a,w)|w=0 = z|a|+1Ta

so Ta is concentrated in degree |a|+ 1 and T has degree 1. It follows that the
image of T is a subset of V.
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Locality: Let a, b, c ∈ V. It suffices to treat the case of a, b, c homogeneous.
Applying Proposition 2.2.2 twice, we find

µ(a, z, b, w, c, 0) =
∑
l

µ(a, z, b(l)c w
−l−1, 0) =

∑
l

∑
k

a(k)b(l)c z
−k−1w−l−1

with locally normal convergence for |z| > 1 > |w| > 0. Let

Ar,R = {z ∈ C | r < |z| < R}

for 0 ≤ r,R ≤ ∞. Using a similar notation for the Laurent expansion of
functions of several variables on products of annuli, we get

L(z,w)∈A1,2×A0,1
µ(a, z, b, w, c, 0)(x, y) = Y (a, x)Y (b, y)c

and analogously

L(z,w)∈A0,1×A1,2
µ(a, z, b, w, c, 0)(x, y) = Y (b, y)Y (a, x)c.

For all N ∈ N

L(z,w)∈A1,2×A0,1
(z − w)Nµ(a, z, b, w, c, 0)(x, y) = (x− y)NY (a, x)Y (b, y)c

L(z,w)∈A0,1×A1,2
(z − w)Nµ(a, z, b, w, c, 0)(x, y) = (x− y)NY (b, y)Y (a, x)c

because Laurent expansion intertwines the action of polynomials as functions
with the action of polynomials as formal polynomials. For N large enough,
the function (z − w)Nµ(a, z, b, w, c, 0) of (z, w) ∈ A0,2 × A0,2 \ ∆ extends to
a holomorphic function of (z, w) ∈ A0,2 × A0,2 as a consequence of Propo-
sition 2.2.2 about the OPE and meromorphicity. If F ∈ O(A0,2 × A0,2),
then LA1,2×A0,1

F = LA0,1×A1,2
F in C[[x±1, y±1]], and therefore

(x− y)NY (a, x)Y (b, y)c = (x− y)NY (b, y)Y (a, x)c

in V[[x±1, y±1]].

Vacuum: Since

µ(|0〉, z, a, 0) = µ(µ(∅), z, a, 0) = µ(a, 0) = a

by the definition of |0〉, associativity, and insertion at zero, we have that

|0〉(k)a =
1

2πi

∫
S1

zkµ(|0〉, z, a, 0)dz =
1

2πi

∫
S1

zkadz = δk,−1a

for all a ∈ V and k ∈ Z.

Creation: Let a ∈ V. By associativity µ(a, z, |0〉, 0) = µ(a, z) and this is a
holomorphic function of z ∈ C. Therefore its Laurent expansion has no negative
powers and its zeroth term is µ(a, 0) = a because of the axiom about insertion
at zero.
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Translation: Let T : V → V be defined by Tx =
∑
k Tpkx. This sum is finite

in each degree, and T is linear. Let a, b ∈ V. The identity

[T, Y (a, x)]b = TY (a, x)b− Y (a, x)Tb = ∂xY (a, x)b.

is implied by

Tµ(a, z, b, 0)− µ(a, z, T b, 0) = ∂zµ(a, z, b, 0) (4)

because Laurent expansion is compatible with linear maps and with differentia-
tion. Recall that Tc = ∂wµ(c, w)|w=0 for c ∈ V. We may assume that w is close
to zero to compute the w-derivative.

µ(a, z, T b, 0) = µ(a, z,
∑
k

pkTb, 0) (5)

=
∑
k

µ(a, z, pk∂wµ(b, w)|w=0, 0) (6)

=
∑
k

∂wµ(a, z, pkµ(b, w), 0)|w=0 (7)

=

[
∂w
∑
k

µ(a, z, pkµ(b, w), 0)

]
w=0

(8)

= ∂wµ(a, z, b, w)|w=0 (9)

Equation (9) follows from associativity which implies that the sum in (8) is
locally normally convergent, and this implies that we can commute the sum and
the derivative in Equation (8), so the sum in (7) is locally normal. Equation (7)
uses pk is linear and that µ is linear in each argument from V. The sums in (5)
and (6) are finite. Similarly,

Tµ(a, z, b, 0) =
∑
k

∂wµ(pkµ(a, z, b, 0), w)|w=0

= ∂w
∑
k

µ(pkµ(a, z, b, 0), w)
∣∣
w=0

= ∂wµ(a, z + w, b, w)|w=0

and thus

Tµ(a, z, b, 0)− µ(a, z, T b, 0) = ∂wµ(a, z + w, b, w)|w=0 − ∂wµ(a, z, b, w)|w=0

= ∂wµ(a, z + w, b, 0)|w=0

= ∂zµ(a, z, b, 0),

which is Equation (4).
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2.3 From Vertex Algebras to Geometric Vertex Algebras

Proposition 2.3.1. Let V be a Z-graded vertex algebra. For all a, b ∈ V, there
exists a number N s. t. a(n)b = 0 if n ≥ N .

This follows for degree reasons in the bounded below case. The proof given
below does not use this assumption and serves a warm-up for the construction
of µ.

Proof. Let a, b ∈ V. By the locality axiom, there exists an N such that

(x− y)NY (a, x)Y (b, y)|0〉 = (x− y)NY (b, y)Y (a, x)|0〉 . (10)

By the creation axiom for b, we may set y = 0 on the l. h. s. and get

xNY (a, x)b =
∑
n

a(n)bx
N−n−1 .

Using Equation (10) and the creation axiom for a on the r. h. s., it follows that
the l. h. s. contains no negative powers of x, even after setting y = 0. This means
that a(n)b = 0 for N − n− 1 < 0, equivalently n ≥ N .

Proposition 2.3.2. Let V be a Z-graded vertex algebra. Fix an integer m ≥ 0.
For a1, . . . , am ∈ V and z ∈ Cm \∆ the series

Y (a1, z1) . . . Y (am, zm)|0〉 :=
∑
k1∈Z

(a1)(k1)z
−k1−1
1 . . .

∑
km∈Z

(am)(km)z
−km−1
m |0〉

converges locally normally in each component of V for z ∈ Dm, where

Dm := {z ∈ Cm | |z1| > . . . > |zm|} ⊆ Cm \∆ .

As a function of z, the value of this series extends to a unique holomorphic
V-valued function

µ(a, z) = µ(a1, z1, . . . , am, zm)

of z ∈ Cm \∆. It satisfies µ(aσ, zσ) = µ(a, z) for every permutation σ ∈ Σm.
Furthermore, µ(a) is identically zero in sufficiently low degree for every a ∈
V⊗m.

This proposition and its proof are very similar to what is found in [3, 1.2
and 4.5], [11, 5.3], [4, A.2], [5, 3.5.1], which treat the bounded below, degreewise
finite-dimensional case in these parts.

Proof. We may assume that a1, . . . , am are homogeneous. Let

f(a, x) ∈ V[[x±1
1 , . . . x±1

m ]]

denote the formal series corresponding to the sum in the claim. By the creation
axiom for am, there are no negative powers of xm in f(a, x). The locality axiom
for ai and aj implies that there is a natural number Nij with

(xi − xj)Nij [Y (ai, xj), Y (aj , xj)] = 0
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for 1 ≤ i < j ≤ m. Let

g(x) =
∏
i<j

(xi − xj)Nij (11)

and it follows that

g(x)f(aσ, xσ) = g(x)f(a, x) (12)

for all permutations σ ∈ Σm. This can be checked by considering the special
case of σ a transposition. Equation 12 and the creation axiom for ai imply
that there are no negative powers of xi in g(x)f(a, x) for any i = 1, . . . ,m.
Let l ∈ Z. The Vl-component pl(g(x)f(a, x)) has no negative powers of xi for
any i = 1, . . . , n. We claim that pl(g(x)f(a, x)) is a polynomial in the xi with
coefficients in Vl. Let rβ ∈ Z be the coefficient of xβ in g(x). The coefficient
of xα in

pl(g(x)f(a, x)) =
∑
α∈Zm

 ∑
β+k=α

rβpl((a1)(k1) . . . (am)(km)|0〉)

xα (13)

is zero if αi < 0 for some i = 1, . . . ,m. Let α ∈ Zm be such that the coefficient
of xα is not zero. There is at least one pair (β, k) with β + k = α and

rβpl((a1)(k1) . . . (am)(km)|0〉) 6= 0 .

This implies that rβ 6= 0 and pl((a1)(k1) . . . (am)(km)|0〉) 6= 0. Thus β is in a
fixed finite subset of Zm depending only on the Nij , and k satisfies

l = |(a1)(k1) . . . (am)(km)|0〉| = |a1| − k1 − 1 + . . .+ |am| − km − 1 , (14)

so

m∑
i=1

αi =

m∑
i

(βi + ki) =

m∑
i

(βi + |ai|)− n− l.

For fixed β, the set of such α is a hyperplane intersecting Zm≥0 in finitely many
points. It follows that α is in a finite subset of Zm depending only on the Nij .
In summary, each Vl-component of g(x)f(a, x) is a polynomial in the xi with
coefficients in Vl. Thus

Fa(z) = [g(x)f(a, x)]x=z

defines a holomorphic function Fa : Cm → V. Let A ⊆ Dm be a product of
annuli centered at 0. Let

L : O(A;V) −→
∏
k

Vk[[x±1
1 , . . . , x±1

m ]]

denote the Laurent expansion map on A. The Laurent expansion on A of
holomorphic functions defined on Dm is independent of the choice of A. In
particular, the Laurent expansion L(Fa) of Fa on A is independent of the choice
of A and satisfies L(Fa)(x) = g(x)f(a, x). Then

µ(a1, z1, . . . , am, zm) = g(z)−1Fa(z) (z ∈ Cm \∆)
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defines a holomorphic function on Cm \ ∆ with values in V whose Laurent
expansion on A, again independent of the choice of A, is equal to f(a, x) because

L[z 7→ µ(a1, z1, . . . , an, zn)](x) = L(Fa/g)(x) = L(1/g)(x)L(Fa)(x)

= L(1/g)(x)g(x)f(a, x) = L(1/g)(x)L(g)(x)f(a, x) = L(1)(x)f(a, x) = f(a, x).

Thus f(a, z) converges locally normally for z ∈ A and f and µ agree on A. For
every z ∈ Dm there is an A as above with z ∈ A, so f(a, z) converges locally
normally for all z ∈ Dm and f and µ agree on all of Dm. The uniqueness
of µ follows by the identity theorem for analytic functions because Cm \ ∆ is
connected, Dm ⊆ Cm is open and non-empty, and µ(a, z) = f(a, z) for z ∈
Dm. Note that the identity theorem for holomorphic functions with values in a
finite-dimensional vector space applies here because there is a finite-dimensional
subspace of Vl for each l ∈ Z to which the function z 7→ pl(µ(a, z)) maps
holomorphically.

Proof of permutation invariance: Let σ ∈ Σm. We now write gN for g to
make the dependence of g on the Nij explicit. Let Ñ denote a choice like N

for aσ instead of a (e. g., Ñij = Nσ(i)σ(j)). Our goal is the equality of

µ(a, z) = [gN (x)f(a, x)]x=zgN (z)−1

with

µ(aσ, zσ) = [gÑ (x), f(aσ, x)]x=zσgÑ (zσ)−1

= [gÑ (xσ), f(aσ, xσ)]x=zgÑ (zσ)−1

for z ∈ Cm \∆. Starting with Equation (12), it follows that

gN (x)f(a, x) = gN (x)f(aσ, xσ)

gÑ (xσ)gN (x)f(a, x) = gN (x)gÑ (xσ)f(aσ, xσ)

[gÑ (xσ)gN (x)f(a, x)]x=z = [gN (x)gÑ (xσ)f(aσ, xσ)]x=z

gÑ (zσ)[gN (x)f(a, x)]x=z = gN (z)[gÑ (xσ)f(aσ, xσ)]x=z

[gN (x)f(a, x)]x=zgN (z)−1 = [gÑ (xσ)f(aσ, xσ)]x=zgÑ (zσ)−1

µ(a, z) = µ(aσ, zσ).

We now prove that µ(a, z) is zero in sufficiently low degree. It suffices to
prove that pl(g(x)f(a, x)) is zero for l low enough. This formal series in the xi
with coefficients in Vl has no negative powers of xi for any i. Therefore, for
a monomial in (13) with non-zero coefficient, the −ki − 1 in Equation 14 are
bounded from below, so l is as well, and the bound is independent of z.

Proposition 2.3.3. The pair (V, µ) satisfies the axioms of a geometric vertex
algebra.

Proof. Let m ≥ 0. Both the multilinearity and C×-equivariance may be checked
on Dm by the uniqueness of analytic continuations from Dm to Cm\∆. On Dm,
we can express µ in terms of Y and multilinearity follows from the fact that Y
is linear and composition in End(V) is bilinear. For C×-equivariance, it suffices
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to consider homogeneous a1, . . . , am ∈ V: for all z ∈ C× and w ∈ Dm,

z.µ(a,w)

=
∑

k1,...,km∈Z

z.
(

(a1)(k1)w
−k1−1
1 . . . (am)(km)w

−km−1
m |0〉

)
=

∑
k1,...,km∈Z

z|a1|−k1−1+...+|am|−km−1(a1)(k1)w
−k1−1
1 . . . (am)(km)w

−km−1
m |0〉

=
∑

k1,...,km∈Z

(z.a1)(k1)(zw1)−k1−1 . . . (z.am)(km)(zwm)−km−1|0〉

= µ(z.a1, zw1, . . . , z.am, zwm).

The axiom about insertion at zero follows from the creation axiom of the vertex
algebra: for all a ∈ V,

µ(a, 0) = Y (a, 0)|0〉 = a.

To see that the meromorphicity axiom is satisfied, let N be the maximum of
the Nij from the construction of µ, after fixing some elements of V. By con-
struction, we then have the following strong version of meromorphicity:

• For all a1, . . . , an ∈ V, there is a natural number N such that the function

z 7−→
∏
i<j

(zi − zj)Nµ(a1, z1, . . . , an, zn)

with values in V has a holomorphic extension from Cn \∆ to Cn.

Proposition 2.3.5, proven further below, says that µ satisfies the associativity
axiom.

The next proposition describes how µ behaves w. r. t. translations. It is used
in the proof of associativity to arrange a generic position. A translation by z ∈ C
acts on Vbb via the automorphism ezT of Vbb defined by

ezTx =
∑
k∈Z

ezT pk(x)

which is finite in each component of Vbb because T has degree 1 and x ∈ Vbb is
zero in sufficiently low degree..

Proposition 2.3.4. Let b1, . . . , bn ∈ V and w ∈ Cn \∆. For all z ∈ C,

ezTµ(b1, w1, . . . , bn, wn) = µ(b1, w1 + z, . . . , bn, wn + z) . (15)

In the case n = 1 and w1 = 0, the proposition together with insertion at zero
implies that ezT b = Y (b, z)|0〉 for b ∈ V and z ∈ C. This means that a(k)|0〉 =

1
(−k−1)!T

−k−1a for k ≤ −1, which one could have also deduced directly from

the translation axiom of the vertex algebra V. In particular Ta = a(−2)|0〉
and µ(a,w) = a+Taw+ . . .. Also, since ezTa = µ(a, z) for all a ∈ V and z ∈ C,
the proposition is the special case m = 0 of the associativity axiom for µ.
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Proof. Both sides of the equation are holomorphic functions of (z, w) ∈ C ×
(Cn \∆). By the identity theorem we may assume

|w1| > . . . > |wn|,

and having fixed a choice of w, we may assume z to be in the non-empty, open,
and convex region B of those z such that

|w1 + z| > . . . > |wn + z|.

For z ∈ B, the equation is equivalent to

ezTY (b1, w1) . . . Y (bn, wn)|0〉 = Y (b1, w1 + z) . . . Y (bn, wn + z)|0〉 .

Let f(z) equal the l. h. s. and g(z) equal the r. h. s. for z ∈ B. The function f
is the unique solution of the (holomorphic) initial value problem

∂zϕ(z) = Tϕ(z) ϕ(0) = Y (b1, w1) . . . Y (bn, wn)|0〉 ϕ ∈ O(B,Vbb) (16)

as can be deduced from the fact that ϕ(z) = ezAx is the unique solution of

∂zϕ(z) = Aϕ(z) ϕ(0) = x ϕ ∈ O(B,X) . (17)

We prove by induction on n that g is a solution of (16), too. The base case n = 0
holds because then g(z) = |0〉. The induction hypothesis implies

∂zY (b2, w2 + z) . . . Y (bn, wn + z)|0〉 = TY (b2, w2 + z2) . . . Y (bn, wn + z)|0〉 .

Proposition 2.3.2 implies

g(z) =
∑
k∈Z

b1(k)(w1 + z)−k−1Y (b2, w2 + z) . . . Y (bm, wm + z)|0〉

and thus

∂zg(z) =
∑
k∈Z

b1(k)(−k − 1)(w1 + z)−k−2Y (b2, w2 + z) . . . Y (bm, wm + z)|0〉

+
∑
k∈Z

b1(k)(w1 + z)−k−1∂zY (b2, w2 + z) . . . Y (bm, wm + z)|0〉

=
∑
k∈Z

b1(k−1)(−k)(w1 + z)−k−1Y (b2, w2 + z) . . . Y (bm, wm + z)|0〉

+
∑
k∈Z

b1(k)(w1 + z)−k−1TY (b2, w2 + z) . . . Y (bm, wm + z)|0〉

after reindexing. The translation axiom implies that [T, b1(k)] = −kb1(k−1).
Therefore

∂zg(z) =
∑
k∈Z

Tb1(k)(w1 + z)−k−1Y (b2, w2 + z) . . . Y (bm, wm + z)|0〉

= TY (b1, w1 + z) . . . Y (bm, wm + z)|0〉 = Tg(z),

and this concludes the induction step.

22



Proposition 2.3.5. µ satisfies associativity.

Proof. By Proposition 2.3.4, it suffices to show that∑
k

µ(a1, z1 − y, . . . , am, zm − y, pk(µ(b1, w1, . . . , bn, wn)), zm+1 − y)

= µ(a1, z1 − y, . . . , am, zm − y, b1, w1 + zm+1 − y, . . . , bn, wn + zm+1 − y)

for some y ∈ C. Locally normal convergence is preserved by the application
of eyT as this yields a finite sum in each component. We pick y so that

|zm+1 − y| < |zm+1 − zi| and |wj + zm+1 − y| < |zi − y| (18)

for all i = 1, . . . ,m and j = 1, . . . , n and so that the |zi − y| are pairwise
distinct and the |wj + zm+1 − y| are pairwise distinct. The second condition
on the pairwise distinct norms holds for all y outside a finite union of lines.
The first condition holds for all y close enough to zm+1 because maxj |wj | <
min1≤i≤m |zi−zm+1| is a prerequisite in the associativity axiom. It follows that
such a y exists.

Permuting the z1, . . . , zm and the w1, . . . , wn and using the permutation
invariance of µ, we may assume that

|z1 − y| > . . . > |zm − y| and |w1 + zm+1 − y| > . . . > |wn + zm+1 − y|,

and we have |zm − y| > |w1 + zm+1 − y| by Equation 18 so

|z1 − y| > . . . > |zm − y| > |w1 + zm+1 − y| > . . . > |wn + zm+1 − y|.

Without loss of generality, we may assume y = 0 by redefining zi to zi − y
and wj to wj − y so that

|z1| > . . . > |zm| > |w1 + zm+1| > . . . > |wn + zm+1| .

Then, using the absolute convergence from Proposition 2.3.2,

µ(a1, z1, . . . , am, zm, b1, w1 + zm+1, . . . , bn, wn + zm+1)

=
∑

i∈Zm,j∈Zn
a1(i1)z

−i1−1
1 . . . am(im)z

−im−1
m

b1(j1)(w1 + zm+1)−j1−1 . . . bn(in)(wn + zm+1)−jn−1|0〉

=
∑
l

∑
i∈Zm

a1(i1)z
−i1−1
1 . . . am(im)z

−im−1
m

pl
∑
j∈Zn

b1(j1)(w1 + zm+1)−j1−1 . . . bn(in)(wn + zm+1)−jn−1|0〉

=
∑
l

∑
i∈Zm

a1(i1)z
−i1−1
1 . . . am(im)z

−im−1
m plµ(b1, w1 + zm+1, . . . , bn, wn + zm+1)

=
∑
l

∑
i∈Zm

a1(i1)z
−i1−1
1 . . . am(im)z

−im−1
m plµ(b1, w1 + zm+1, . . . , bn, wn + zm+1),
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and, since

µ(b1, w1 + zm+1, . . . , bn, wn + zm+1)

=
∑
k

ezm+1T pkµ(b, w)

=
∑
k

Y (pkµ(b, w), zm+1)|0〉

=
∑
k

∑
im+1

(pkµ(b, w))(im+1)z
−im+1−1|0〉,

by Proposition 2.3.4, the former equals∑
l

∑
i∈Zm

a1(i1)z
−i1−1
1 . . . am(im)z

−im−1
m pl

∑
k

∑
im+1

(pkµ(b, w))(im+1)z
−im+1−1|0〉

=
∑
l

∑
i∈Zm+1

a1(i1)z
−i1−1
1 . . . am(im)z

−im−1
m pl

∑
k

(pkµ(b, w))(im+1)z
−im+1−1|0〉

=
∑
k

∑
l

∑
i∈Zm+1

a1(i1)z
−i1−1
1 . . . am(im)z

−im−1
m pl(pkµ(b, w))(im+1)z

−im+1−1|0〉

=
∑
k

∑
i∈Zm+1

a1(i1)z
−i1−1
1 . . . am(im)z

−im−1
m (pkµ(b, w))(im+1)z

−im+1−1|0〉

=
∑
k

µ(a1, z1, . . . , am, zm, pk(µ(b1, w1, . . . , bn, wn)), zm+1),

where convergence is locally normal to begin with since power series converge
locally normally and we may thus interchange the sums.

Proof of Theorem 2.1.11. Let Φ denote the map from geometric vertex algebra
structures on V to vertex algebra structures on V as described in the statement
of the theorem. Proposition 2.2.4 says that it is well-defined. Let Ψ denote the
map from vertex algebra structures on V to geometric vertex algebra structures
defined using Proposition 2.3.2 and Proposition 2.3.3. It is clear from the con-
struction that Φ ◦Ψ = id because it suffices to consider Y to equate two vertex
algebra structures on the same Z-graded vector space (see Proposition 2.1.7).
To see that Ψ ◦ Φ = id, we repeatedly apply Proposition 2.2.2 to deduce that

µ(a, z) = Y (a1, z1) . . . Y (am, zm)|0〉

for all a1, . . . , am ∈ V and z ∈ Cm \∆ with |z1| > . . . > |zm|, where µ is a given
geometric vertex algebra structure and Y is part of Φ(µ). Thus, for fixed a,
the functions µ(a, z) and Ψ(Φ(µ))(a, z) of z ∈ Cm \ ∆ are analytic continua-
tions of the same function, and therefore agree by the uniqueness statement in
Proposition 2.3.2, which characterizes Ψ(Φ(µ)).
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3 Meromorphic Prefactorization Algebras

A prefactorization algebra F on a space X assigns a vector space F (U) to every
open U ⊆ X and has multiplication maps

F (U)⊗ F (V ) −→ F (W )

for all open subsets UtV ⊆W ⊆ X. These maps are required to be associative,
unital and symmetric in an appropriate sense. Prefactorization algebras have
all of the data of a factorization algebra but not necessarily their local-to-global
properties, which we treat in Section 4. In this section, we introduce the addi-
tional structures and properties of a prefactorization algebra on X = C which
allow us to obtain a geometric vertex algebra VF from it. Roughly speaking,
the underlying Z-graded vector space of VF consists of the weight spaces for
an action of D× = {z ∈ C | 0 < |z| < 1} on a small disc around zero, and the
multiplication map µ : VF ⊗VF → VF for (z, w) ∈ C2 \∆ corresponds to the
multiplication map of F for the inclusion of two disjoint small discs centered
at z and w into a large disc centered at zero. Here, the additional structure
of F being affine-linearly invariant provides some of the isomorphisms between
the F (d) for the different discs d ⊆ C. However, we also make use of the
maps induced by inclusions to compare the values assigned to concentric discs
of different sizes.

The first three subsections contain the relevant definitions and the verifica-
tion of the axioms of the geometric vertex algebra VF associated with a holo-
morphic prefactorization algebra on C with discrete weight spaces and mero-
morphic operator product expansion (OPE). In the fourth subsection, we take a
geometric vertex algebra V and describe FV as a holomorphic affine-linearly in-
variant prefactorization algebra on C. The fifth subsection establishes that FV
has discrete weight spaces and meromorphic operator product expansion, and
that VFV ∼= V as geometric vertex algebras.

Related work. Huang [12] considers a locally convex completion H of a
finitely generated degreewise finite-dimensional bounded-below Z-graded vertex
algebra V. The construction of this locally convex completion uses the standard
disc in C. He constructs maps H ⊗H → H for pairs-of-pants and shows that
they encode the vertex operators of V. André Henriques suggested a variation
of this construction for discs to the author, and how to extend it to open sub-
sets of C. Bornological vector spaces appear in the book [2] by Costello and
Gwilliam, too. There, the bornologies of bornological vector spaces are assumed
to arise from a locally convex Hausdorff topology. We have split their procedure
to obtain vertex algebras from suitable factorization algebras into two steps by
making a stop at geometric vertex algebras.
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3.1 Functional-Analytic Preliminaries

Unless otherwise noted, all vector spaces are over C. Recall that a linear map
between semi-normed spaces is continuous if and only if it is bounded. Continu-
ity can be phrased in terms of the collections of open subsets. Boundedness can
be phrased in terms of the collections of bounded subsets: a map is bounded
if and only if it sends bounded subsets to bounded subsets. The collection of
bounded subsets of a semi-normed space form a bornology. These two perspec-
tives in terms of topologies and bornologies lead to two generalizations of Banach
spaces, namely complete locally convex topological vector spaces and complete
convex bornological vector spaces, or complete bornological vector spaces for
short. Our factorization algebras take values in the symmetric monoidal cat-
egory of complete bornological vector spaces. A complete bornological vector
space may be thought of as ascending union of Banach spaces. The author has
made use of [14, 15, 9, 10, 16, 2] to learn about bornological spaces.

Definition 3.1.1. Let X be a set. A bornology BX on X is a set of subsets
of X such that

• A ⊆ B ∈ BX ⇒ A ∈ BX ,

• A,B ∈ BX ⇒ A ∪B ∈ BX , and

• x ∈ X ⇒ {x} ∈ BX .

We call the elements of BX the bounded subsets of X. A map X → Y of sets
with bornologies BX and BY is bounded if f(BX) ⊆ BY . Now, let X be a vector
space over C. A subset A of X is called absolutely convex if λx + µy ∈ A
for all x, y ∈ A and λ, µ ∈ C with |λ| + |µ| ≤ 1. We let 〈A〉 denote the
absolutely convex hull of A, that is, the smallest absolutely convex subset of X
containing A. A bornological vector space X is a vector space X together with
a bornology such that

• B ∈ BX , λ > 0⇒ λB ∈ BX and

• B ∈ BX ⇒ 〈B〉 ∈ BX .

If X is a bornological vector space, and A,B ∈ BX , then A + B ∈ BX ,
because A+B ⊆ 〈2(A ∪B)〉.

Definition 3.1.2. Let BVS denote the category of bornological vector spaces
and bounded linear maps.

The category BVS is additive but not abelian and has all colimits and limits.
The direct sum

⊕
i∈I Xi of a family of bornological vector spaces is the direct

sum of the underlying vector spaces together with the following bornology. A
subset B ⊆

⊕
i∈I Xi is bounded if there exists a family of bounded subsets Ci ⊆

Xi for i ∈ I with B ⊆
⊕

i∈I Ci such that all except finitely many Ci are
zero. This bornology is the unique bornology turning the direct sum into the
coproduct in BVS.

If X is a sub vector space of a bornological vector space Y , then Y/X is a
bornological vector space where a subset is defined to bounded if it is the image
of a bounded subset under the quotient map q : Y → Y/X:

BY/X := {C ⊆ Y/X | ∃B ∈ BY : C = q(B)}
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This bornology is called the quotient bornology. If f : X → Y is a bounded
linear map, then Y/f(X) together with the quotient map from Y to X is a
cokernel of f in the category of bornological vector spaces.

The product
∏
i∈I Xi in the category of bornological vector spaces has the

product of vector spaces as its underlying vector space. Its bornology consists
of those sets which are contained in a set of the form

∏
i∈I Bi for bounded

subsets Bi ⊆ Xi for i ∈ I. A sub vector space X of a bornological vector
space Y is a bornological vector space by defining subsets to be bounded if they
are bounded in Y ,

BX = {A ⊆ X | A ∈ BY } .

This bornology is called the subspace bornology. If f : X → Y is a bounded linear
map, then f−1(0) with the subspace bornology is a kernel of f in the category
of bornological vector spaces. Our next goal is the definition of completeness
for bornological spaces.

Definition 3.1.3. If X is a semi-normed space, then the set of all subsets
of X bounded w. r. t. its norm defines a bornology on X and turns X into
a bornological space. This defines a full embedding of the category of semi-
normed spaces and bounded maps into BVS. The image of this functor consists
of those bornological spaces whose bornology arises from some semi-norm and we
call such bornological spaces semi-normable. Similarly, we call such bornological
spaces normable if their bornology comes from a norm and completely normable,
or Banachable, if their bornology comes from a complete norm.

Two semi-norms on a vector space are equivalent if and only if their bornolo-
gies are equal.

Definition 3.1.4. Let X be a bornological vector space with bornology BX . A
bornological vector space Y with bornology BY is a subobject of X if Y ⊆ X is
a sub vector space and BY ⊆ BX .

The inclusion Y ⊆ X of a subobject is bounded, but Y does not necessarily
carry the subspace bornology inside X.

Definition 3.1.5. A bornological space is called complete, if every bounded
subset is contained in some completely normable subobject and bounded there.
A completion of X is an initial object in the full subcategory of BVSX/ whose
objects are maps from X to a complete bornological vector space.

This definition of completeness of bornological spaces is easily seen to be
equivalent to the one given in [9, 3:2.1] using completant discs. If a map f :
X → X is a completion of X, we usually omit the map f and call X a completion
of X. If X is already complete, then idX is a completion of X. Completions are
unique up to unique isomorphism as initial objects in the category mentioned
above. The category of complete bornological vector spaces has all colimits
and limits, which are described further below. Completions exists because the
completion of a semi-normable space is its usual completion and

X = colim
Y⊆X

semi-norm.

Y

is a completion of X where the colimit is taken inside the category of complete
bornological vector spaces.
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The direct sum of a family of complete bornological vector spaces is com-
plete. In particular, such a sum is the coproduct in the category of complete
bornological vector spaces. The analogous statements hold for products. We
now define the topology of sequentially closed sets, or b-closed sets, in order to
describe cokernels in the category of complete bornological spaces.

Definition 3.1.6. A sequence (xn)n in a bornological vector space X converges
to y ∈ X if there is a semi-normable subobject Y ⊆ X containing y and all xn
such that (xn)n converges to y in Y .

Convergence of sequences in a semi-normable bornological space Y is in-
dependent of the choice of a semi-norm inducing the bornology of Y . If X is
bornological vector space, then the set of sequentially closed sets form the closed
sets of a topology on X. These closed sets are called b-closed. Bounded linear
maps are continuous w. r. t. this topology. A subspace of a complete bornological
space is b-closed if and only if it is complete, see [9, 3:2.3 Proposition 1]. If X is
a b-closed subspace of a complete bornological space Y , then Y/X is complete,
see [9, 3:2.3 Proposition 2]. Therefore, if f : X → Y is a bounded linear map,
then Y/f(X) is a cokernel of f in the category of complete bornological vector
spaces. The kernel of a bounded linear map f : X → Y between complete
spaces in the category of complete bornological vector spaces is again f−1(0),
since bounded linear maps are continuous w. r. t. the topology of b-closed sets
and {0} is b-closed in every complete bornological space. The quotient of a
complete bornological space by the action of a finite group is again complete, as
can be seen by identifying it with the complete bornological space of invariants.

Definition 3.1.7. Let U ⊆ Rk and X be a complete bornological space. A
function f : U → X is continuous if limn xn = x∞ implies limn f(xn) = f(x∞).

Continuity in the sense of Definition 3.1.7 is equivalent to the property that
every compact K ⊆ U is mapped into a completely normable subobject Y of X
for which f |K is continuous as a map to Y in the usual sense.

Definition 3.1.8. Let U be an open subset of Cn and let X be a complete
bornological vector space. A map f : U → X of sets is called holomorphic if
every p ∈ U has an open neighborhood V s. t. f(V ) ⊆ Y for some completely
normable subobject Y ⊆ X and the map f |V : V → Y is holomorphic.

Definition 3.1.9. Let X be a locally convex topological vector space. Let X ′

be its continuous dual, that is, the vector space of continuous linear functionals
on X. Let B ⊆ X ′ be bounded if and only if there exists a continuous semi-
norm p on X with |α(x)| ≤ p(x) for all α ∈ B and x ∈ X. This turns X ′ into a
bornological vector space.

If X is a locally convex space, then X ′ is always complete as a bornological
vector space. Our main example of a non-discrete bornological vector space is
the complete bornological vector space O′(U) := O(U)′ of analytic function-
als on an open subset U ⊆ Ck. Here, O(U) is the locally convex space of
holomorphic functions on U whose topology is defined by the supremum semi-
norms ||–||∞,K on compact subsets of K. This means that a subset B ⊆ O′(U) is
bounded if and only if there exists a compact subset K ⊆ U and a number C > 0
s. t.

|α(f)| ≤ C||f ||K
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for all α ∈ B and f ∈ O(U).

Definition 3.1.10. If U ⊆ Cn is open and K ⊆ U is compact, then O′K(U)
is the subset of analytic functionals bounded w. r. t. ||–||∞,K , the supremum
semi-norm on K.

Note that O′K(U) is a Banach space and a completely normable subobject
of O′(U). Another description of the complete bornological space O′(U) is

O′(U) =
⋃
K⊆U

compact

O′K(U)

where the bornology on O′(U) is the union of the bornologies on the O′K(U),
that is, a subset B ⊆ O′(U) is bounded if and only if there is a compact K ⊆ U
such that B is a bounded subset of O′K(U).

Definition 3.1.11. Given bornological vector spaces X and Y , we define the
bornological tensor product X⊗Y to be the algebraic tensor product X⊗Y with
the smallest convex bornology for which all sets of the form B ⊗ C for B ⊆ X
and C ⊆ Y are bounded.

Definition 3.1.12. For bornological vector spaces X and Y , we define the
completed tensor product X ⊗̄ Y to be the completion of X ⊗ Y .

Bornological vector spaces form a symmetric monoidal category BVS whose
structure maps are obtained from the symmetric monoidal category of vector
spaces by forgetting the bornology. It is clear that these maps are bounded.
They induce the structure of a symmetric monoidal category on the cate-
gory CBVS of complete bornological spaces via the completion functor. The
completed tensor product commutes with colimits in each variable separately.
We take the liberty to denote the image of x⊗ y in X ⊗̄ Y by x⊗ y, too.

Every finite-dimensional vector space has a unique bornology turning it into
a complete bornological vector space. If X is a vector space, then we can
turn it into a bornological vector space by declaring a subset to be bounded if
it is contained in a finite-dimensional subspace and is bounded there. These
bornological vector spaces are called discrete. A bornological vector space is
discrete if and only if it is a direct sum of one-dimensional bornological vector
spaces. Discrete bornological vector spaces are complete. Taking the tensor
product with a discrete bornological vector space preserves completeness. One
way to see this is to use the fact that the tensor product is left adjoint to the
internal hom in bornological spaces, defined next, and thus preserves colimits,
and in particular direct sums.

Definition 3.1.13. Let Y and Z be bornological vector spaces. A subset B ⊆
BVS(Y, Z) is bounded if, for every bounded C ⊆ Y there exists a bounded D ⊆
Z such that f(C) ⊆ D for all f ∈ B. The collection of these bounded sets
turns BVS(Y,Z) into a bornological vector space.

Both CBVS and BVS are closed in the sense of having internal homs adjoint
to the tensor product. If Z is complete in the above definition, then BVS(Y,Z)
is complete, so the internal hom in CBVS agrees with that in BVS.

Since the passage from factorization algebras on C to Z-graded geometric
vertex algebras is via the direct sum of the weight spaces of the value of the
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factorization algebra on a disc, we now consider Z-graded complete bornological
spaces.

Definition 3.1.14. A Z-graded complete bornological vector space X is a com-
plete bornological vector space X whose underlying vector space is equipped
with a Z-grading such that X is the direct sum of the Xk for k ∈ Z in the
category of complete bornological spaces.

A Z-graded complete bornological space X is the same thing as a Z-graded
vector space each of whose graded components Xk is additionally equipped with
a bornology which turns Xk into a complete bornological space.

Proposition 3.1.15. Let (Xi)i∈I be a family of complete bornological vector
spaces. Let U ⊆ Cn be an open subset and let f : U →

∏
i∈I Xi be a map of

sets. Then f is holomorphic if and only if each of its components is.

Proof. A map g into a complete bornological space is called holomorphic if it
is locally a holomorphic map to some completely normable subobject. There-
fore, g holomorphically maps the interior of every compact subset K ⊆ U to
some completely normable subobject depending on K. Let each component fi
be holomorphic. Without loss of generality, 0 ∈ U and we show that f is
holomorphic on a neighborhood of 0. Let r > 0 with K := Br(0) ⊆ U . For
all i ∈ I, there is a completely normable subobject Yi of Xi such that fi(K) ⊆ Yi
and fi restricted to interior of K is holomorphic as a map with target Yi. For
all i ∈ I, the Taylor series

∑∞
k=0 fi,kz

k of fi converges absolutely at r in Yi. For
each i ∈ I, pick a norm pi on Yi so that

∞∑
k=0

pi(fi,k)rk ≤ 1 .

Such a norm exists because absolute convergence means that there is some
norm for which this sum is finite. Let Y be the completely normable subobject
of
∏
iXi consisting of those x with finite norm p(x) := supi pi(xi). Let fk ∈∏

iXi be given by (fk)i = fi,k. Then fk ∈ Y because

p(fk) = sup
i
pi(fi,k) ≤ 1

rk

so

∞∑
k=0

p(fk)|z|k ≤
∞∑
k=0

|z|k

rk
<∞

for |z| < r, meaning that
∑∞
k=0 fkz

k absolutely converges on Br(0). Since the
projection

∏
j Xj → Xi is bounded for all i and maps fk to fi,k, it follows that

this sum converges to f(z).
Conversely, if f is holomorphic, then each component of f is holomorphic,

because the projections
∏
X → Yi are bounded and the composition of a holo-

morphic map with a bounded linear map to another complete bornological space
is again holomorphic.

Definition 3.1.16. Let X be a complete bornological space and let U ⊆ Cn

be open. A subset B ⊆ O(U ;X) is bounded if and only if there exists a map β :
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Pc(U)→ BX from the set of compact subsets of U to the set of bounded subsets
of X such that f(K) ⊆ β(K) for all f ∈ B and K ⊆ U compact. With these
bounded sets O(U ;X) is a complete bornological space.

Let X and Y be complete bornological spaces. For U ⊆ Cm open, the
pointwise tensor product of holomorphic functions f : U → X and g : U → Y is
the holomorphic function fg(z) = f(z)⊗ g(z) ∈ X ⊗̄ Y of z ∈ Cn. This defines
a bounded linear map

O(U ;X)⊗O(U ;Y ) −→ O(U ;X ⊗̄ Y ) .

Similarly, we have the exterior product f×g(z, w) = f(z)⊗g(w) of (z, w) ∈ U×V
for V ⊆ Cn open and g : V → Y . The exterior product defines a bounded linear
map

O(U ;X)⊗O(V ;Y ) −→ O(U × V ;X ⊗̄ Y ) .

For α ∈ O′(U) and β ∈ O′(V ), the exterior product α × β ∈ O′(U × V ) is
defined by

α× β(f) = α(z 7→ β(w 7→ f(z, w))) . (19)

This defines a bounded linear map

O′(U)⊗O′(V )→ O′(U × V ) ,

called the exterior product of analytic functionals.
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3.2 Holomorphic Affine-Linearly Invariant Prefactoriza-
tion Algebras

We define prefactorization algebras on a topological space X with values in a
symmetric monoidal category C. For X a G-space for a group G, there is also
the notion of a G-invariant prefactorization algebra on X. Being G-invariant
is not just a property, but comes with isomorphisms F (U) ∼= F (gU) for g ∈ G
and U ⊆ X open. If G is complex-analytic, we also define what it means for a
prefactorization algebra with values in CBVS to be holomorphic. Our case of
interest is X = C with the group of affine-linear isomorphisms C× n C.

Definition 3.2.1. Let X be a topological space and (C,⊗,1C) a symmetric
monoidal category. A (unital) prefactorization algebra on X with values in C
consists of

• an object F (U) of C for every open U ⊆ X,

• multiplication maps

MU,V
W : F (U)⊗ F (V ) −→ F (W )

in C for all disjoint open subsets U, V of some open subset W ⊆ X, and

• unit maps
1C → F (∅)

such that:

• (associativity) For W ⊆ X open, V1, V2 ⊆ W open, and U1, U2, U3 ⊆ X
open and pairwise disjoint with U1, U2 ⊆ V1, U2, U3 ⊆ V2, and U1 disjoint
from V2 and V1 disjoint from U3, the diagram

(F (U1)⊗ F (U2))⊗ F (U3) F (U1)⊗ (F (U2)⊗ F (U3))

F (U1)⊗ F (V2)F (V1)⊗ F (U3)

F (W )

∼=

MU1,U2

V1
⊗ id id⊗MU2,U3

V2

MV1,U3

W MU1,V2

W

commutes where the unlabeled isomorphism is the associator in C.

• (unitality) For U ⊆ X open, the composition

F (U) ∼= F (U)⊗ 1C −→ F (U)⊗ F (∅) −→ F (U)

is the identity of F (U).
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• (compatibility with braiding) For disjoint, open U, V ⊆ X, the braid-
ing βF (U),F (V ) of F (U) with F (V ) in C is compatible with multiplication
in the sense that

MV,U
UtV ◦ βF (U),F (V ) = MV,U

UtV .

Remark 3.2.2. Let F be a prefactorization algebra on a topological space X.
If U1 t . . . t Um ⊆ V are pairwise disjoint open subsets of X, we get an m-ary
multiplication map

MU1,...,Um
V : F (U1)⊗ . . .⊗ F (Um) −→ F (V )

subject to associativity as in [2, 3.1.1]. The conditions involving the maps
for m = 0 express unitality. Recall that a precosheaf on a topological space X
is a functor from the category of opens of X and inclusions among them to some
other category. For m = 1, the maps

MU
V : F (U)→ F (V )

for U ⊆ V open are the extension maps of the underlying precosheaf of F , which
we also denote by F . If F is a precosheaf, we denote its extension maps by MU

V

for notational compatibility.

Definition 3.2.3. Let X be a topological space with an action of a group G.
The category of open subsets of X has a left G-action which is compatible with
taking disjoint unions. Therefore G acts on the category of prefactorization
algebras. A prefactorization algebra is called G-invariant if it is equipped with
the data of a fixed point for this action. This consists of maps

σUg : F (U) −→ F (gU)

for g ∈ G and U ⊆ X open such that

• σUid = idF (U) for U ⊆ X open,

• σhUg ◦ σUh = σUgh for g, h ∈ G and U ⊆ X open,

• σ∅g : F (∅)→ F (∅) is compatible with the unit map for all g ∈ G

• σWg ◦M
U,V
W = MgU,gV

gW ◦ (σUg ⊗ σVg ) for g ∈ G and U, V ⊆ W open and
disjoint and W ⊆ X open.

A prefactorization algebra on C is called affine-linearly invariant if it is invariant
w. r. t. the group G = C× n C of affine transformations of C.

Remark 3.2.4. Note that the maps σUg are isomorphisms. The m-ary ver-
sions of M constructed from the unit and the binary M , which are part of a
prefactorization algebra F by definition, are also fixed by the action of G if F
is G-invariant:

σVg ◦M
U1,...,Um
V = MgU1,...,gUm

gV ◦ (σU1
g ⊗ . . .⊗ σUmg )

for U1 t . . . t Um ⊆ V open subsets of X and g ∈ G.
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We make analogous definitions for precosheaves instead of prefactorization
algebras. We denote the extension maps of a precosheaf F by

MU
V : F (U)→ F (V )

to be compatible with the notation for prefactorization algebras. The extension
maps of a G-invariant precosheaf satisfy

σVg ◦MU
V = MgU

gV ◦ σ
U
g

for g ∈ G and U ⊆ V ⊆ X open.

Definition 3.2.5. Let F be a C×-invariant precosheaf on C with values in the
category of vector spaces. For r > 0, the semi-group D× = {z ∈ C | 0 < |z| < 1}
acts on Br(0) and hence F (Br(0)) by

ρ : D× −→ Hom(F (Br(0)), F (Br(0)))

q 7−→M
Bqr(0)

Br(0) ◦ σ
Br(0)
q .

For a character χ ∈ Hom(C×,C×), let F (Br(0))χ be the weight space for χ,
that is,

F (Br(0))χ = {x ∈ F (Br(0)) | ∀q ∈ D× : ρ(q)(x) = χ(q)x} .

Let F be a C×-invariant precosheaf on C. We write F (Br(0))k for the k-th
weight space for k ∈ Z which corresponds to χ(q) = qk. The maps

irR := M
Br(0)
BR(0) : F (Br(0)) −→ F (BR(0))

induced by the inclusions for 0 < r ≤ R ≤ ∞ are D×-equivariant, so they
induce maps

(irR)χ : F (Br(0))χ −→ F (BR(0))χ

for all χ ∈ Hom(C×,C×).

Proposition 3.2.6. The map (irR)χ is an isomorphism for all characters χ ∈
Hom(C×,C×) and 0 < r ≤ R <∞.

Proof. Let q = r/R. The map (irR)χ is inverse to (σ
BR(0)
q )χ up to a non-zero

scalar factor, namely χ(q).

(irR)χ ◦ (σBR(0)
q )χ = χ(q) idF (BR(0))χ (20)

by the definition of F (BR(0))χ. To prove

(σBR(0)
q )χ ◦ (irR)χ = χ(q) idF (Br(0))χ

we replace R with qR = r and r with qr in Equation (20) to get

(iqrr )χ ◦ (σBr(0)
q )χ = χ(q) idF (Br(0))

whose l. h. s. equals
(σBR(0)
q )χ ◦ (irR)χ

because
iqrr ◦ σBr(0)

q = σBR(0)
q ◦ irR

because F is an invariant precosheaf.
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Definition 3.2.7. Let F be a precosheaf on C. Let

F (z) = lim
r>0

F (Br(z))

denote the costalk of F at z ∈ C.

We restrict attention to weights χ ∈ Hom(C×,C×) given by χ(q) = qk for
some k ∈ Z because vertex algebras are Z-graded. The k-th weight space of the
costalk is

F (z)k =

(
lim
r>0

F (Br(z))

)
k

∼= lim
r>0

F (Br(z))k.

because limits commute. We suppress this isomorphism in our notation. By
Proposition 3.2.6,

F (z)k ∼= F (BR(z))k

for all R > 0.

Definition 3.2.8. Let X be a topological space with the action of a complex-
analytic group manifold G. For U, V ⊆ X, let

DU,V = {g ∈ G | gU ⊆ V } .

A G-invariant prefactorization algebra F on X with values in the symmetric
monoidal category of complete bornological spaces is called holomorphic if the
map

ρU,V : DU,V −→ BVS(F (U), F (V ))

g 7−→MgU
V ◦ σUg

is holomorphic on the interior of its domain. This condition only depends on the
underlying G-invariant precosheaf of F and we define holomorphic G-invariant
precosheaves using this condition. We abbreviate ρU,V by ρ.

Proposition 3.2.9. Let X be a complete bornological vector space with a holo-
morphic representation

ρ : D× −→ End(X) := BVS(X,X)

of the semi-group D×. For k ∈ Z the map

lk : X −→ Xk

x 7−→ 1

2πi

∮
z−k−1ρ(z)(x)dz

to the k-th weight space of ρ is a well-defined bounded linear map and a D×-
equivariant splitting of the inclusion.

Proof. The contour integral may be taken over any of the circles tS1 in D×

35



with 0 < t < 1. For q ∈ D×,

ρ(q)(lk(x)) =
1

2πi

∫
tS1

z−k−1ρ(q)(ρ(z)(x))dz

=
1

2πi

∫
tS1

z−k−1ρ(qz)(x)dz

=
1

2πi

∫
qtS1

qk+1z−k−1ρ(z)(x)q−1dz

= qk
1

2πi

∫
qtS1

z−k−1ρ(z)(x)dz

= qk
1

2πi

∫
tS1

z−k−1ρ(z)(x)dz (deform)

= qklk(x) ,

so lk(x) ∈ Xk for x ∈ X. Equivariance uses the commutativity of D×:

ρ(q)(lk(x)) =
1

2πi

∮
z−k−1ρ(qz)(x)dz

=
1

2πi

∮
z−k−1ρ(z)(ρ(q)(x))dz

= lk(ρ(q)(x))

For x ∈ Xk

lk(x) =
1

2πi

∮
z−k−1zkxdz = x ,

so lk is a splitting of the inclusion of Xk into X.

It remains to prove that lk is bounded. Let Y ⊆ X be a completely normable
subobject of X. It suffices to prove that lk|Y is bounded. By the compactness
of tS1 and the holomorphicity of ρ, there is a completely normable subspace Z
of the endomorphisms of X with ρ(tS1) ⊆ Z bounded. If B ⊆ Y is bounded,
then ρ(tS1)(B) is bounded inside some completely normable subobject Y ′ of X,
so the boundedness of lk(B) follows, since lk(B) is a subset of the closure in-
side Y ′ of the convex hull of ρ(tS1)(B).

Let F be a holomorphic C×-invariant precosheaf on C. For r > 0 and k ∈ Z,
let

lrk : F (Br(0)) −→ F (Br(0))k

denote the weight space projection lk for the D×-representation F (Br(0)). The
costalk F (0) is a holomorphic D×-representation, too, as the limit of holomor-
phic representations. For r > 0, let

πr : F (0)→ F (Br(0))

denote the projection to the r-component of the costalk of F at zero. Of
course, πr is equivariant by construction and hence compatible with the weight
space projections, i. e.
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F (0) F (0)k

F (Br(0)) F (Br(0))k

lk

πr πr

lrk

commutes. It can be shown that the D×-representation on F (0) extends to
a holomorphic C×-representation and its weight space projections lk sum to
the identity, k ∈ Z. However, to prove associativity of the geometric vertex
algebra VF associated with certain holomorphic prefactorization algebras F as
in the next subsection, we need to sum up all weight space projections for F
evaluated on a disc of medium size after including into a slightly larger disc.

Proposition 3.2.10. Let F be a holomorphic C×-invariant precosheaf on C.
For R > r > 0, we have

irR =
∑
k∈Z

irR ◦ lrk

in the space BVS(F (Br(0)), F (BR(0))) with absolute convergence in a com-
pletely normable subobject.

Proof. Let A = BR/r(0)− 0. The function

ρ : A −→ BVS(F (Br(0)), F (BR(0)))

q 7−→M
Bqr(0)

BR(0) ◦ σ
Br(0)
q = iqrR ◦ σ

Br(0)
q

is holomorphic by assumption. The Laurent expansion of ρ can be computed
on D× and is (0 < t < 1)

ρ(q) =
∑
k∈Z

1

2πi

∫
tS1

z−k−1ρ(z)dzqk =
∑
k∈Z

(irR ◦ lrk)qk

because

1

2πi

∫
tS1

z−k−1ρ(z)dz =
1

2πi

∫
tS1

z−k−1izrR ◦ σBr(0)
z dz

=
1

2πi

∫
tS1

z−k−1irR ◦ izrr ◦ σBr(0)
z dz

= irR ◦
(

1

2πi

∫
tS1

z−k−1izrr ◦ σBr(0)
z dz

)
= irR ◦ lrk .

We evaluate at q = 1 to get

irR =
∑
k∈Z

irR ◦ lrk

with absolute convergence in BVS(F (Br(0)), F (BR(0))) because the Laurent
expansion of a holomorphic function with values in a complete bornological
space converges absolutely in a completely normable subobject on any compact
subset.
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3.3 From Prefactorization Algebras to Geometric Vertex
Algebras

We fix a holomorphic prefactorization algebra F and construct a geometric
vertex algebra FV from it under additional assumptions which we now describe.
Let VF denote the Z-graded vector space

VF =
⊕
k∈Z

F (0)k,

the direct sum of the weight spaces of the D×-action on the costalk of F at zero.
The homogeneous components F (0)k are complete bornological vector spaces
and we assume these to be discrete, as is done in the setting of differentiable
vector spaces in [2] for the weight spaces of F evaluated on a disc. In common
examples, the homogeneous components are in fact finite-dimensional and VF
is bounded from below or even concentrated in non-negative degrees. Assuming
that the weight spaces of the costalk are discrete, we construct a Z-graded vector
space VF from F together with the underlying data of a geometric vertex alge-
bra. We prove that these data satisfy the axioms of a geometric vertex algebra
except possibly meromorphicity. We then say that a holomorphic prefactoriza-
tion algebra has meromorphic OPE if VF satisfies the meromorphicity axiom,
so that holomorphic prefactorization algebras with discrete weight spaces and
meromorphic OPE yield geometric vertex algebras. The author expects that
the discreteness assumption can be removed with more work.

The multiplication maps of F induce a map

Mz1,...,zm : F (z1)⊗ . . .⊗ F (zm) −→ colim
R>0

F (BR(0))

for z ∈ Cm \∆ with |zi| < R. We get a bounded linear map

M̃z1,...,zm : F (0)⊗m −→ colim
R>0

F (BR(0))

by using the translation invariance of F . This is almost the multiplication map
of the geometric vertex algebra associated with F ; it remains to precompose
with a map to VF and postcompose with a map to VF . The target of M̃z

maps to

VF :=
∏
k∈Z

F (0)k

as follows. For R > 0 and k ∈ Z, the map F (BR(0)) −→ F (0)k is the composite

F (BR(0))
lRk−→ F (BR(0))k

∼=−→ lim
r>0

F (Br(0))k ∼= F (0)k , (21)

where the first isomorphism arises from Proposition 3.2.6 and the second from
the fact that limits commute with each other. The source of M̃ receives a map
from VF⊗m induced by the inclusion of VF into F (0). Post- and precomposing
with these maps results in a map

µz1,...,zm : VF⊗m −→ VF

still depending on z ∈ Cm \∆, as it should.
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We now introduce a little bit more notation to write down the explicit for-
mulas for µz used to check the axioms of a geometric vertex algebra. These
formulas differ from the above more abstract description in that specific radii
of discs appear. As in [2] and [12] and other places, we consider a moduli
space of a fixed number of discs sitting inside a larger disc. For r1, . . . , rm > 0,
let D(r1, . . . , rm;R) denote the set of z ∈ Cm with

Br1(z1) t . . . tBrm(zm) ⊆ BR(0) .

We also denote this set by D(r;R) and can often restrict attention to the case
of r1 = . . . = rm = r for some small r > 0. Let

Pr : VF =
⊕
k∈Z

F (0)k −→ F (Br(0))

be the map given by

F (0)k = (lims>0 F (Bs(0)))k F (Br(0))k ⊆ F (Br(0))
(πr)k

on the k-th summand for k ∈ Z. Let

LR : F (BR(0)) −→
∏
k∈Z

F (0)k = VF

be the map whose k-th component is given by (21). In terms of the maps LR, Pri ,
the definition of µz is equivalent to the equation

µ(a1, z1, . . . , am, zm) = µz(a)

= LR(M
Br1 (z1),...,Brm (zm)

BR(0) (σ
Br1 (0)

(+z1) (Pr1(a1)), . . . , σ
Brm (0)

(+zm) (Prm(am))) (22)

in V for a = a1 ⊗ . . . ⊗ am ∈ VF⊗m and r1, . . . , rm, R > 0 with z ∈ D(r;R).
This is because Pr is the lower left composite in the commutative square

F (0)k F (0)

F (Br(0))k F (Br(0))

(πr)k πr

in which the horizontal maps are the inclusions. Note that, for every R > 0, an
element x ∈ VF is uniquely determined by the PRpkx for k ∈ Z. Considering
one degree k ∈ Z at a time,

PR(pk(µz(a)))

= lRk (M
Br1 (z1),...,Brm (zm)

BR(0) (σ
Br1 (0)

(+z1) (Pr1(a1)), . . . , σ
Brm (0)

(+zm) (Prm(am)))) (23)

in F (BR(0))k because PRpkL
Ry = lRk y for all y ∈ F (BR(0)).

So far, we know that the maps µ are linear maps from VF⊗m to the set of
functions on Cm \∆ with values in VF . Our next goal is holomorphicity.

Proposition 3.3.1. Let a ∈ V⊗m. Then µz(a) = µ(a, z) is a holomorphic
function of z ∈ Cm \∆.
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Proof. A function Cm \ ∆ → VF is holomorphic if and only if its compo-
nents pk ◦ f are holomorphic for all k ∈ Z. Since VFk is assumed to be
discrete, pk ◦ f is holomorphic if it is locally a holomorphic map to a finite-
dimensional subspace of VFk. This notion of holomorphicity coincides with the
notion of holomorphicity used in the definition of a geometric vertex algebra.

Let z ∈ Cm \ ∆. Pick R > 0 and r > 0 s. t. z ∈ D(r;R). Let s = r/2.
It suffices to find a neighborhood U of z s. t. µz

′
(a) is a holomorphic function

of z′ ∈ U for some given a = a1 ⊗ . . . ⊗ am. We use U =
∏m
i=1Bs(z) and note

that it suffices to prove the holomorphicity of

N(z′) = M
Bs(z

′
1),...,Bs(z

′
m)

BR(0) (σ
Bs(0)
(+z′1)(x1), . . . , σ

Bs(0)
(+z′m)(xm))

for xi ∈ F (Bs(0)) because we can then plug in xi = Psai and postcompose
with LR to get µ(a, z′). By the associativity of M ,

N(z′) = M
Br(z1),...Br(zm)
BR(0) (ρ1(z′1)(x1), . . . , ρm(z′m)(xm)) ,

where

ρi(z
′
i) : F (Bs(0)) −→ F (Br(zi))

y 7−→M
Bs(z

′
i)

Br(zi)
(σ
Bs(0)
(+z′i)

(y)),

so N is holomorphic as the composite of

• the map

U −→
⊗m

i=1
BVS(F (Bs(0)), F (Br(zi)))

(z′1, . . . , z
′
m) 7−→ ρ1(z′1)⊗ . . .⊗ ρm(z′m) ,

which is holomorphic because F is holomorphically translation-invariant,
and the pointwise tensor product of holomorphic functions is holomorphic,

• the bounded evaluation-at-a map to
⊗m

i=1 F (Br(zi)), and

• the bounded map M
Br(z1),...Br(zm)
BR(0) .

Remark 3.3.2. If F is holomorphic in the sense of Definition 3.2.8, then it
is holomorphic pointwise, meaning that ρU,V (z)(x) is a holomorphic function
of z ∈ DU,V for all x ∈ F (U). The proof of Proposition 3.3.1 works if we only
assume that F is holomorphic pointwise.

Proposition 3.3.3. (VF, µ) satisfies the insertion-at-zero axiom.

Proof. Let a ∈ VF . For all R > 0 and k ∈ Z,

PRpkµ(a, 0) = lRkM
Br(0)
BR(0)(Pra) = lRk PRa = lRk PR

∑
l∈Z

pla

=
∑
l∈Z

lRk PRpla = PRpka ,

where the last equality holds because PR is D×-equivariant, so PRpla has de-
gree l, and lRk is the identity on the k-th weight space and zero on the others.
This implies µ(a, 0) = a.
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Proposition 3.3.4. (VF, µ) is C×-equivariant.

Proof. For D× instead of C×, this follows since the maps are equivariant w. r. t.
this semi-group in an appropriate sense: For all degrees k ∈ Z, it suffices to
consider some R > 0 with zi ∈ BR(zi) for i = 1, . . . ,m with r > 0 small enough
so that z ∈ D(r, . . . , r;R), and to show equality after application of PR ◦ pk.

PRpk(q.µ(a1, z1, . . . , am, zm))

= q.PR(pk(µ(a1, z1, . . . , am, zm)))

= q.lRk (M
Br(z1),...,Br(zm)
BR(0) (σ

Br(0)
(+z1)(Pra1), . . . , σ

Br(0)
(+zm)(Pram)))

= lRk (q.M
Br(z1),...,Br(zm)
BR(0) (σ

Br(0)
(+z1)(Pra1), . . . , σ

Br(0)
(+zm)(Pram)))

= lRkM
BqR(0)

BR(0) σ
BR(0)
q M

Br(z1),...,Br(zm)
BR(0) (σ

Br(0)
(+z1)(Pra1), . . . , σ

Br(0)
(+zm)(Pram))

= lRkM
BqR(0)

BR(0) M
Bqr(qz1),...,Bqr(qzm)

BqR(0) (σ
Br(z1)
(q·) (σ

Br(0)
(+z1)(Pra1)), . . . ,

σ
Br(zm)
(q·) (σ

Br(0)
(+zm)(Pram)))

= lRkM
BqR(0)

BR(0) M
Bqr(qz1),...,Bqr(qzm)

BqR(0) (σ
Bqr(0)

(+qz1)(σ
Br(0)
(q·) (Pra1)), . . . ,

σ
Bqr(0)

(+qzm)(σ
Br(0)
(q·) (Pram)))

= lRkM
BqR(0)

BR(0) M
Bqr(qz1),...,Bqr(qzm)

BqR(0) (σ
Bqr(0)

(+qz1)(σ
Br(0)
(q·) (Pra1)), . . . ,

σ
Bqr(0)

(+qzm)(σ
Br(0)
(q·) (Pram)))

= lRkM
Bqr(qz1),...,Bqr(qzm)

BR(0) (σ
Bqr(0)

(+qz1)(σ
Br(0)
(q·) (Pra1)), . . . , σ

Bqr(0)

(+qzm)(σ
Br(0)
(q·) (Pram)))

= lRkM
Br(qz1),...,Br(qzm)
BR(0) (M

Bqr(qz1)

Br(qz1) (σ
Bqr(0)

(+qz1)(σ
Br(0)
(q·) (Pra1))), . . . ,

M
Bqr(qzm)

Br(qzm) (σ
Bqr(0)

(+qzm)(σ
Br(0)
(q·) (Pram))))

= lRkM
Br(qz1),...,Br(qzm)
BR(0) (σ

Br(0)
(+qz1)(M

Bqr(0)

Br(0) (σ
Br(0)
(q·) (Pra1))), . . . ,

σ
Br(0)
(+qzm)(M

Bqr(0)

Br(0) (σ
Br(0)
(q·) (Pram))))

= lRkM
Br(qz1),...,Br(qzm)
BR(0) (σ

Br(0)
(+qz1)(q.Pra1), . . . , σ

Br(0)
(+qzm)(q.Pram))

= lRkM
Br(qz1),...,Br(qzm)
BR(0) (σ

Br(0)
(+qz1)(Pr(q.a1)), . . . , σ

Br(0)
(+qzm)(Pr(q.am)))

= PRpkµ(q.a1, qz1, . . . , q.am, qzm)

Equivariance for C× follows from the uniqueness of analytic continuation.

Proposition 3.3.5. µ satisfies the associativity axiom.

The map Φ in the following proof plays a very similar role as the map denoted
by the same letter in Proposition 5.3.6 of [2].

Proof. Let a1, . . . , am ∈ VF , b1, . . . , bn ∈ VF . Let

Am,n = {(z, w) ∈ (Cm \∆)× (Cn \∆) | max
1≤j≤n

|wj | < min
1≤i≤m

|zi − zm+1|}

denote the set of tuples of points in C as in the associativity axiom of a ge-
ometric vertex algebra. The summands in the associativity axiom, viewed as
functions of (z, w) ∈ Am,n, are elements of O(Am,n; VF ) and we prove absolute
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convergence in a completely normable subobject. By the definition of the bornol-
ogy on O(Am,n; VF ), this implies that, for every compact subset K ⊆ Am,n
and k ∈ Z, there is a completely normable subobject VK,k of VFk in which
absolute convergence takes place. The discreteness of VFk implies that the
bounded unit disc of VK,k is contained in a finite-dimensional subspace of VFk
so VK,k is finite-dimensional.

It suffices to prove convergence of functions on a neighborhood U of (z, w)
for every (z, w) ∈ Am,n. Let S > T2 > T1 > 0 all be smaller than min1≤i≤m |zi−
zm+1|, but only slightly smaller, so that

w1, . . . , wn ∈ BT1
(0) (⊂ BT2

(0) ⊂ BS(0)) .

Let r > 0 be small enough so that w ∈ D(r, . . . , r;T1) and the Br(zi), i =
1, . . . ,m, are pairwise disjoint and disjoint from BS(zm+1). Let R > 0 be big
enough so that

z ∈ D(r, . . . , r, S;R) .

Let s = r/2 and

U =

m∏
i=1

Bs(zi)×BS−T2
(zm+1)×

n∏
j=1

Bs(wj)

which is a subset of Am,n as we now check. Let (z′, w′) ∈ U . For all i, j
with 1 ≤ i ≤ m and 1 ≤ j ≤ n,

|w′j | < |wj |+ s = |wj |+ r − s < T1 − s
< S = S + r − 2s ≤ |zi − zm+1| − 2s < |z′i − z′m+1|

so (z′, w′) ∈ Am,n.

We show convergence of holomorphic functions on U with values in VF by
constructing a bounded linear map

Φ : BVS(F (BT1
(0)), F (BT2

(0))) −→ O(U ; VF )

with Φ(iT1

T2
) given by the r. h. s. of the associativity axiom, see (2), and Φ(iT1

T2
◦lT1

k )
given by the k-th summand of the associativity axiom for all k ∈ Z, see (1). The
existence of such a map implies the associativity axiom on U because bounded
linear maps map absolutely convergent sums to absolutely convergent sums
and iT1

T2
=
∑
k∈Z i

T1

T2
◦ lT1

k by Proposition 3.2.10. Let

(Φ(f))(z′, w′)

= LRM
Bs(z

′
1),...,Bs(z

′
m),BT2 (z′m+1)

BR(0) (σ
Bs(0)
(+z′1)(Psa1), . . . , σ

Bs(0)
(+z′m)(Psam),

σ
BT2 (0)

(+z′m+1)(f(M
Bs(w

′
1),...,Bs(w

′
n)

BT1 (0) (σ
Bs(0)
(+w′1)(Psb1), . . . , σ

Bs(0)
(+w′n)(Psbn)))) .
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For f = iT1

T2
, we use associativity, translation invariance, and associativity again:

(Φ(f))(z′, w′)

= LRM
Bs(z

′
1),...,Bs(z

′
m),BT2 (z′m+1)

BR(0) (σ
Bs(0)
(+z′1)(Psa1), . . . , σ

Bs(0)
(+z′m)(Psam),

σ
BT2 (0)

(+z′m+1)(M
Bs(w

′
1),...,Bs(w

′
n)

BT2 (0) (σ
Bs(0)
(+w′1)(Psb1), . . . , σ

Bs(0)
(+w′n)(Psbn)))

= LRM
Bs(z

′
1),...,Bs(z

′
m),BT2 (z′m+1)

BR(0) (σ
Bs(0)
(+z′1)(Psa1), . . . , σ

Bs(0)
(+z′m)(Psam),

M
Bs(w

′
1+z′m+1),...,Bs(w

′
n+z′m+1)

BT2 (z′m+1) (σ
Bs(0)
(+w′1+z′m+1)(Psb1), . . . , σ

Bs(0)
(+w′n+z′m+1)(Psbn)))

= LRM
Bs(z

′
1),...,Bs(z

′
m),BT2 (z′m+1),Bs(w

′
1+z′m+1),...,Bs(w

′
n+z′m+1)

BR(0) (

σ
Bs(0)
(+z′1)(Psa1), . . . , σ

Bs(0)
(+z′m)(Psam), σ

Bs(0)
(+w′1+z′m+1)(Psb1), . . . , σ

Bs(0)
(+w′n+z′m+1)(Psbn))

= µ(a1, z
′
1, . . . , am, z

′
m, b1, w

′
1 + z′m+1, . . . , bn, w

′
n + z′m+1)

For k ∈ Z and f = iT1

T2
◦ lT1

k , we consider the argument of σ
BT2 (0)

(+z′m+1) which is

iT1

T2
◦ lT1

k (M
Bs(w

′
1),...,Bs(w

′
n)

BT1 (0) (σ
Bs(0)
(+w′1)(Psb1), . . . , σ

Bs(0)
(+w′n)(Psbn)))

and, because of iT1

T2
◦ lT1

k = lT2

k ◦ i
T1

T2
and associativity, equal to

PT2
(pk(µ(b1, w

′
1, . . . , bn, w

′
n))) .

Plugging in, this implies that

(Φ(f))(z′, w′)

= LRM
Bs(z

′
1),...,Bs(z

′
m),BT2 (z′m+1)

BR(0) (σ
Bs(0)
(+z′1)(Psa1), . . . , σ

Bs(0)
(+z′m)(Psam),

σ
BT2 (0)

(+z′m+1)(PT2
(pk(µ(b1, w

′
1, . . . , bn, w

′
n)))))

= µ(a1, z1, . . . , am, zm, pk(µ(b1, w
′
1, . . . , bn, w

′
n)), zm+1)

which is the k-th summand in the associativity axiom.
Now, we check that Φ is a bounded linear map and actually maps to the space

of holomorphic functions O(U ; VF ) by writing Φ as a composite of bounded
linear maps. This argument is similar to the proof of Proposition 3.3.1 about
holomorphicity. By associativity,

(Φ(f))(z′, w′)

= LRM
Br(z1),...,Br(zm),BS(zm+1)
BR(0) (ρ1(z′1)(Psa1), . . . , ρm(z′m)(Psam)),

ρm+1(z′m+1)(f(M
Br(w1),...,Br(wn)
BT1 (0) (τ1(w′1)(Psb1), . . . , τn(w′n)(Psbn)))) ,

where the map

ρi : Bs(zi) −→ BVS(F (Bs(0)), F (Br(zi)))

z′i 7−→M
Bs(z

′
i)

Br(zi)
◦ σBs(0)

(+z′i)
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is holomorphic for i = 1, . . . ,m, and so are

ρm+1 : BS−T2(zm+1) −→ BVS(F (BT2(0)), F (BS(zi)))

z′m+1 7−→M
BT2 (z′m+1)

BS(zm+1) ◦ σ
BT2 (0)

(+z′m+1)

and

τj : Bs(wj) −→ BVS(F (Bs(0)), F (Br(wj)))

w′j 7−→M
Bs(w

′
j)

Br(wj)
◦ σBs(0)

(+w′j)

for j = 1, . . . , n. Thus the map

n∏
j=1

Bs(wj) −→
⊗n

j=1
F (Br(wj))

(w′1, . . . , w
′
n) 7−→ τ1(w′1)(Psb1)⊗ . . .⊗ τn(w′n)(Psbn)

is holomorphic. Postcomposing with M
Br(w1),...,Br(wn)
BT1 (0) and f defines a bounded

linear map

BVS(F (BT1(0)), F (BT2(0)) −→ O

 n∏
j=1

Bs(wj);F (BT2(0))

 .

Taking the exterior product with

ρm+1 ∈ O(BS−T2(zm+1); BVS(F (BT2(0)), F (BS(zi))))

is a bounded linear map with target

O

BS−T2(zm+1)×
n∏
j=1

Bs(wj) ; BVS (F (BT2(0)), F (BS(zi))) ⊗̄ F (BT2(0))


from which we can postcompose with the evaluation pairing to get an element
of

O(BS−T2
(zm+1)×

n∏
j=1

Bs(wj);F (BS(zi))) .

Again using the holomorphicity of F , the map

m∏
i=1

Bs(zi) −→
⊗m

i=1
F (Br(zi))

(z′1, . . . , z
′
m) 7−→ ρ1(z′1)(Psb1)⊗ . . .⊗ ρm(z′m)(Psbm)

is holomorphic, and taking the exterior product with it is a bounded linear map
with target

O(U ;⊗mi=1F (Br(zi))⊗ F (BS(zi))) .

Postcomposing with LR◦MBr(z1),...,Br(zm),BS(zm+1)
BR(0) gives Φ(f) ∈ O(U ; VF ).
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Definition 3.3.6. Let F be a holomorphic affine-linearly invariant factorization
algebra on C. We say that F has discrete weight spaces if VFk is discrete for
all k ∈ Z. If F has discrete weight spaces, we say that F has meromorphic
operator product expansion (OPE) if (VF, µ) satisfies the meromorphicity axiom
of a geometric vertex algebra, where µ is the sequence of multiplication maps
for VF constructed above.

We sometimes call holomorphic prefactorization algebras with meromorphic
OPE meromorphic prefactorization algebras, with the caveat that, in contrast to
the language for functions, a meromorphic prefactorization algebra is a special
kind of holomorphic prefactorization algebra.

Proposition 3.3.7. If F is a holomorphic prefactorization algebra on C with
discrete weight spaces and meromorphic OPE, then (VF, µ) is a geometric vertex
algebra.

Proof. Permutation invariance holds because the multiplication maps in a pref-
actorization algebra are compatible with the braiding. We have already checked
all the other axioms except meromorphicity which we now assume.

Recall from Proposition 2.2.3 that VF is meromorphic if it is bounded from
below. Being bounded from below is the assumption made in [2] when con-
structing a vertex algebra from a prefactorization algebra. While less general,
this assumption has the pleasing feature that it does not make reference to the
multiplication maps of the prefactorization algebra.
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3.4 From Geometric Vertex Algebras to Prefactorization
Algebras

Let V be a geometric vertex algebra. We construct a holomorphic prefactor-
ization algebra FV on C. In Section 3.5, we prove that FV has meromorphic
OPE and discrete weight spaces by relating it to V. We prove that FV is a
factorization algebra in Section 4.

The precosheaf FV is a quotient of the precosheaf EV of expressions with
labels in V, which we define first. It only makes use of the underlying Z-graded
vector space of V and not of its multiplication maps.

Definition 3.4.1. Let V be a Z-graded vector space. We define a precosheaf
on C with values in the category of complete bornological spaces. Let U ⊆ C
be open. The precosheaf EV of expressions is defined by

EV(U) =
⊕
m≥0

(O′(Um \∆)⊗ V⊗m)Σm

which is complete by the following proposition. Here, the action of σ ∈ Σm
on O′(Um \∆) ⊗̄ V⊗̄m is given by

σ.(α⊗ a1 ⊗ . . .⊗ am) = σ∗α⊗ aσ(1) ⊗ . . .⊗ aσ(n) .

The extension maps of EV are the pushforward of analytic functionals, dual to
restriction of functions, and the identity on the V⊗m.

If we have a fixed V in mind, we also write E for EV.

Proposition 3.4.2. E(U) is complete for all open U ⊆ C.

Proof. Analytic functionals are complete as the dual of a locally convex topo-
logical vector space. The tensor products are again complete because taking the
bornological tensor product with a discrete space preserves completeness and V
is defined to be discrete. The quotient of a complete space by the action of a fi-
nite group is complete, too, so (O′(Un \∆)⊗V⊗n)Σn is complete. Infinite direct
sums of complete spaces are again complete, finishing our argument that E(U)
is complete.

We now turn E into a prefactorization algebra. To multiply α ∈ O′(Um \∆)
and β ∈ O′(V n \∆) for U tV ⊆W , we use the exterior product of functionals,
see Equation 19, to get α × β ∈ O′((Um \ ∆) × (V n \ ∆)) which we can then
pushforward to an element αβ ∈ O′((UtV )n\∆) along the embedding of (Um\
∆)×(V n\∆) into (UtV )m+n\∆ induced by the associativity isomorphism Cm×
Cn ∼= Cm+n. This embedding is well-defined because U and V are disjoint.

Proposition 3.4.3. If V is a Z-graded vector space, then EV is a prefactoriza-
tion algebra on C with values in the symmetric monoidal category of complete
bornological spaces with the underlying precosheaf of Definition 3.4.1 whose mul-
tiplication maps are

µU,VW : EV(U)⊗ EV(V ) −→ EV(W )

[α⊗ a]⊗ [β ⊗ b] 7−→ [αβ ⊗ a⊗ b]

where α ⊗ a ∈ O′(Um \ ∆) ⊗ V⊗̄m and β ⊗ b ∈ O′(V n \ ∆) ⊗ V⊗̄n). Its unit
is 1 in the summand corresponding to m = 0 which can be identified with C in
a natural way and which is present for U = ∅, too.
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Proof. The exterior product of functionals is compatible with pushforwards
along complex-analytic embeddings. This implies that the multiplication maps
for E are well-defined w. r. t. the permutation actions. Taking exterior prod-
uct of functionals is a bounded linear map and the braiding of CBVS is as
well, so the multiplication maps of E are bounded linear maps. Unitality and
associativity follow from the behavior of the exterior product of functionals.

Compatibility with the braiding is enforced by modding out the action of
the permutation groups, let τ ∈ Σm+n be the permutation moving the first m
elements past the last n elements: We want to show that

βα(f) = β(y 7→ α(x 7→ f(y, x)))

is equal to

τ∗(αβ)(f) = αβ(τ∗f) = α(x 7→ β(y 7→ τ∗f(x, y))) = α(x 7→ β(y 7→ f(y, x)))

for

f ∈ O((U t V )m+n \∆)

α ∈ O′(Um \∆), β ∈ O′(V n \∆) .

The functionals βα and τ∗(αβ) are the pushforwards of

β × α, τ∗(α× β) ∈ O′((V n \∆)× (Um \∆)) .

Thus, it suffices to check the desired equality on the dense subset of holomorphic
functions f which are a finite sum of functions h(y)g(x) of x ∈ Um \∆ and y ∈
V n \∆ for g and h holomorphic. For f(y, x) = h(y)g(x),

β × α(f) = α(g)β(h) = (τ∗(α× β))(f) .

To identify the underlying precosheaf of E with the precosheaf defined earlier,
we note that multiplying with the unit in C ∼= O′(pt) = O′(∅0 \ ∆0) is the
pushforward of analytic functionals.

Now using the multiplication maps of V, we define the evaluation map

evU : EV(U)→ Vbb

for U ⊆ C open. Let α ⊗ a ∈ O′(Um \∆)⊗ Vm. As part of the structure of a
geometric vertex algebra, we have a holomorphic function µ(a) : Um \∆ → V.
We would like to evaluate α on it to obtain an element of V. Let k ∈ Z. The
holomorphic function pk◦µ(a) takes values in a finite-dimensional subspace F ⊆
Vk. The evaluation pairing tensored with F gives a map (X := Um \∆)

O′(X)⊗O(X;F ) ∼= O′(X)⊗O(X)⊗ F → C⊗ F ∼= F

so we define the evaluation of α on pk ◦ µ(a) to be the image of α⊗ (pk ◦ µ(a))
under this map to get an element of Vk for all k ∈ Z. Let α(µ(a)) denote the
resulting element of V. What we have just described more generally applies to
any open X ⊆ Cm and any holomorphic function f ∈ O(X;V) and α ∈ O′(X)
and defines α(f) ∈ V, where V is a Z-graded vector space. It is clear that α(f)
depends linearly and boundedly on α ⊗ f , by the universal property of the
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product V this means linearity and boundedness in each component. It follows
that α(µ(a)) depends linearly and boundedly on α⊗a, recall that V⊗m is given
the discrete bornology. If (ei)i is a basis of a finite-dimensional subspace F in
which pk ◦ f takes values for some k ∈ Z, then

α(f)k =
∑
i

α(e∗i (pk ◦ f))ei .

The permutation invariance of µ and the universal property of the direct sum
give a well-defined and bounded linear map

evU : EV(U) −→ V
[α⊗ a] 7−→ α(µ(a)) .

The collection of the evU for U ⊆ C open defines a map of precosheaves from E
to the constant precosheaf constV.

Definition 3.4.4. The precosheaf R on C is defined as the kernel of ev :
E(U)→ constV, that is,

R(U) = ker evU ⊆ E(U)

for U ⊆ C open. We call the elements of R(U) relations on U .

Remark 3.4.5. Note that R(U) ⊆ E(U) is b-closed as the kernel of a bounded
linear map since such maps are continuous w. r. t. the b-topology.

The multiplication on E does not induce a multiplication on E/R in general.

Example 3.4.6. We consider the case that there are a, b ∈ V s. t. a(m)b 6= 0
for some m ≥ 0. For example, this is the case for V the free boson, a = b the
generator and m = 1. Let

U1 = B2(0) \B1(0)

U2 = B1(0)

W = B2(0)

so that we have U1 ∩U2 = ∅ and U1, U2 ⊆W . Our goal is to show that there is
no dotted arrow making

E(U1)⊗ E(U2) E(W )

E(U1)/R(U1)⊗ E(U2)/R(U2) E(W )/R(W )

commute, where the left map is the tensor product of the quotient maps and
the right map is the quotient map.

Let α ∈ O′(U1) and β ∈ O′(U2) be the analytic functionals

α : h ∈ O(U1) 7→
∫

3
2S

1

zmh(z)dz

resp.
β : h ∈ O(U2) 7→ h(0) .
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Then α⊗ a and β ⊗ b represent classes x ∈ E(U1) resp. y ∈ E(U2). The image

of x⊗ y in E(W ) under MU1,U2

W is represented by αβ ⊗ a⊗ b, where

αβ : h ∈ O(W 2 \∆) 7→ α[z 7→ β[w 7→ h(z, w)]] =

∫
3
2S

1

zmh(z, 0)dz .

The image of this class in E(W )/R(W ) is non-zero because this space maps
injectively to V by construction and the image there is

evW (MU1,U2

W ([x⊗ y])) =

∫
3
2S

1

zmµ(a, z, b, 0)dz = a(m)b 6= 0 .

If there were a dotted arrow making the diagram commute, then the lower
composition would give zero since the image of x in E(U1)/R(U1) is zero because

evU1
(x) =

∫
3
2S

1

zmµ(a, z)dz = 0

since the integrand is defined on C and holomorphic.

Nevertheless, the multiplication maps of E induce a multiplication on F =
E/Rdisc; this is Proposition 3.4.9, where Rdisc are the relations visible on round,
open discs. A (round, open) disc is a subset D ⊆ C which is equal to

Br(z) = {w ∈ C | |z − w| < r}

for some z ∈ C and some real number r > 0.

Definition 3.4.7. The multiplication maps of E assemble to give a map⊕
d,W

R(d)⊗ E(W ) −→ E(U)

where the direct sum runs over all discs d ⊆ U and open subsets W ⊆ U
s. t. d ∩W = ∅. Let Rdisc(U) ⊆ E(U) be the image of this map,

Rdisc(U) = im

⊕
d,W

R(d)⊗ E(W ) −→ E(U)

 .

We call Rdisc the precosheaf of relations on discs. Let F be the precosheaf of
complete bornological vector spaces defined by

F (U) = E(U)/Rdisc(U)

for U ⊆ C open. If we want to make the dependence on V explicit, we use the
notation FV for F .

Note that F (U) is complete because E(U) is complete by Proposition 3.4.2
and because we are modding out by the b-closure of Rdisc(U). The author does
not know if Rdisc(U) is b-closed or not. If U is a disc, then Rdisc(U) = R(U)
by Lemma 3.5.1 further below, and R(U) is b-closed as the kernel of a bounded
map. To prove that F inherits multiplication maps from E, we slightly rephrase
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its definition so that it only refers to complete bornological spaces. Let U ⊆ C
open. The source of the map⊕

d,W

R(d)⊗ E(W ) −→ E(U)

as in the definition of Rdisc(U) is not complete, but

Sdisc(U) :=
⊕
d,W

R(d) ⊗̄ E(W ) ,

with d,W as above, is a completion. The space of relations R(U) ⊆ E(U) is
b-closed, because it is the intersection of the kernels of the components of evU ,
each of which is a bounded map, see its construction. Since E(d) is complete,
its b-closed subspace R(d) is complete, too.

Proposition 3.4.8. The map E(U)→ F (U) is a cokernel of the map

Sdisc(U)→ E(U)

given by the sum of the multiplication maps.

Proof. This amounts to Rdisc(U) = I where I is the image of Sdisc(U) in E(U).
Let d,W be as above. The algebraic tensor product R(d) ⊗ E(W ) maps to its

completion R(d)⊗̄E(W ), so Rdisc(U) ⊆ I, hence Rdisc(U) ⊆ I. Every algebraic

tensor product has dense image in its completion, implying that Rdisc(U) ⊇ I

and Rdisc(U) ⊇ I.

Proposition 3.4.9. F is a prefactorization algebra on C with its multiplication
maps induced from those of E. The multiplication maps of E induce unique
multiplication maps on F , also denoted M , such that the square

E(U) ⊗̄ E(V ) E(X)

F (U) ⊗̄ F (V ) F (X)

MU,V
X

MU,V
X

commutes for all X ⊆ C open and U, V ⊆ X open and disjoint, where the
vertical maps are the completed tensor product of the quotient maps resp. the
quotient map.

Proof. Let U and V be open and disjoint and contained in an open X ⊆ C.
Since cokernels in CBVS commute with ⊗̄ in both variables separately, Propo-
sition 3.4.8 implies that the map E(U) ⊗̄E(V )→ F (U) ⊗̄ F (V ) is the cokernel
of the multiplication map

T := Sdisc(U) ⊗̄ E(V )⊕ E(U) ⊗̄ Sdisc(V )→ E(U) ⊗̄ E(V ) .

For Y ⊆ C open, let qY : E(Y ) → F (Y ) denote the quotient map. We want

to see that T maps to zero under qX ◦ MU,V
X , as it then follows that F is

a prefactorization algebra because E is a prefactorization algebra. To show
that Sdisc(U) ⊗̄ E(V ) maps to zero, let d,W ⊆ U be as in the definition
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of Sdisc(U). Using the associativity of E, we see that the map on the sum-
mand (R(d) ⊗̄E(W )) ⊗̄E(V ) factors through the summand R(d) ⊗̄E(W t V )
of Sdisc(X). To show that E(U) ⊗̄ Sdisc(V ) maps to zero, we also use the com-
patibility of M with the braiding. This time d,W ⊆ V and the map on the
summand E(U)⊗̄(R(d)⊗̄E(W )) factors through the summand R(d)⊗̄E(UtW )
of Sdisc(X).

To describe E as an affine-linearly invariant prefactorization algebra on C,
let L0 denote the grading operator of V. This is the endomorphism of V defined
by L0a = |a|a for a homogeneous, so that λL0v = λ|a|a for a ∈ V homoge-
neous and λ ∈ C×. This defines an action of C× on V and also C× n C be-
cause (λ,w) 7→ λ is a group homomorphism. Therefore EV is an affine-linearly
invariant prefactorization algebra where

σU(λ,w)(α⊗ a1 ⊗ . . .⊗ an) = (λ,w)∗(α)⊗ λL0a1 ⊗ . . .⊗ λL0an

for α ∈ O′(Un \∆), a1, . . . , an ∈ V, and U ⊆ C open. Here, the pushforward of
an analytic functional α ∈ O′(X) along a holomorphic map g : X → Y is

g∗α := [f ∈ O(Y ) 7→ α(x 7→ f(g(x)))] .

We now proceed to show that FV is affine-linearly invariant with the maps σUg
induced from those of EV. The evaluation maps are natural w. r. t. inclusions
because they evaluate a function on Cn \ ∆ only depending on some vertex
algebra elements which are not changed by the extension maps of EV.

Proposition 3.4.10. Let V be a geometric vertex algebra. The evaluation maps
are C× n C-equivariant in the sense that the square

EV(U) Vbb

EV(gU) Vbb

σUg

evU

g

evgU

commutes for U ⊆ C open and g ∈ C× n C.

Recall that translations act on Vbb, the set of bounded-below vectors in V,
by Proposition 2.1.4.

Proof. We check equivariance for translation and multiplication maps sepa-
rately. Let

[α⊗ a] ∈ (O′(Um \∆)⊗ Vm)Σm ⊆ EV(U) .

If g ∈ C× n C, then

evgU (σUg ([α⊗ a])) = evgU ([g∗α⊗ (λ.a)]) = (g∗α)(µ(λ.a))

= α(z 7→ µ(g.a)(g.z)) .

If g ∈ C× n C is multiplication with some λ ∈ C×, then

evgU (σUg ([α⊗ a]))

= α(z 7→ µ(λ.a)(λ.z))

= α(z 7→ λ.µ(a)(z)) (C×-equivariance)

= λ.α(µ(a)) (linearity)

= λ. evU ([α⊗ a]) ,
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and thus
g. evU ([α⊗ a]) = evgU (σg([α⊗ a])) .

If g ∈ C× n C is translation by some w ∈ C, then

evgU (σUg ([α⊗ a]))

= α(z 7→ µ(a)(z + w))

= α(z 7→ g.µ(a)(z)) (associativity for m = 0)

= g.α(µ(a)) (linearity)

= g. evU ([α⊗ a]) .

Equivariance follows because C× n C is generated by the union of the two
subgroups corresponding to C× and C.

Proposition 3.4.11. FV is an affine-linearly invariant prefactorization algebra
on C with its invariance maps induced from those of EV.

Proof. We have to show that the maps σUg for E pass to the quotient, their
properties then follow. The image of a disc under an affine-linear map is again
a disc. The induced map on E preserves membership in R and hence Rdisc

because R(U) is the kernel of evU and the evaluation maps are compatible with
the actions of the affine-linear group by Proposition 3.4.10.

The rest of this subsection consists of a sequence of propositions proving
that F is holomorphic, i. e., F is a holomorphic affine-linearly invariant pre-
cosheaf on C. We first prove this for O′ using the Cauchy integral formula
and the first of these propositions, then proceed to V, which is a G = C×-
representation, then E, and finally F .

Proposition 3.4.12. Let D ⊆ C be a closed disc. The map

D◦ −→ C0(∂D)

w 7−→
[
z 7→ 1

z − w

]
is holomorphic.

Proof. Let w0 ∈ D◦ so ε := dist(∂D,w) > 0. Let δ = ε/2. For w ∈ Bδ(w0) ⊆
D◦ and z ∈ ∂D,

q(z) :=

∣∣∣∣w − w0

z − w0

∣∣∣∣ < 1

and thus

1

z − w
=

1

(z − w0)− (w − w0)
=

1

z − w0

1

1− w−w0

z−w0

=
1

z − w0

∞∑
k=0

(
w − w0

z − w0

)k
=

∞∑
k=0

1

(z − w0)k+1
(w − w0)k .
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We now prove uniform convergence of functions of z ∈ ∂D, that is,[
z 7→ 1

z − w

]
=

∞∑
k=0

[
z 7→ 1

(z − w0)k+1

]
(w − w0)k

in C0(∂D). The remainder term∣∣∣∣∣ 1

z − w
−

N∑
k=0

1

(z − w0)k+1
(w − w0)k

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=N+1

1

(z − w0)k+1
(w − w0)k

∣∣∣∣∣
≤ 1

|z − w0|

∞∑
k=N+1

∣∣∣∣w − w0

z − w0

∣∣∣∣k
≤ 1

|z − w0|
q(z)N+1

1− q(z)

converges to zero uniformly in z ∈ ∂D because

q(z) =

∣∣∣∣w − w0

z − w0

∣∣∣∣ ≤ dist(w,w0)

dist(∂D,w0)
< 1/2 .

Proposition 3.4.13. If X ⊆ Cn is open, then

δ : X −→ O′(X)

x 7−→ δx

is holomorphic.

Proof. Let x ∈ X. There is a closed polydisc D = D1 × . . . × Dn ⊆ X with
center x. Let d = d1 × . . . × dn be an open polydisc concentric with D s. t.
the radius of di is strictly than the radius of Di for i = 1, . . . , n. We claim
that δ(d) ⊆ O′D(X) and that δ|d is holomorphic as a map to the Banach
space O′D(X). Let z ∈ d and f ∈ O(X). We have δz ∈ O′D(X) since

|δz(f)| = |f(z)| ≤ ||f ||D .

The map

F : d −→ C0(∂D1 × . . .× . . . ∂Dn)

w 7−→

[
z 7→

n∏
i=1

1

zi − wi

]

is holomorphic since the maps

d
pri−→ di −→ C0(∂Di)

w 7−→
[
zi 7→

1

zi − wi

]
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are holomorphic for i = 1, . . . , n by Proposition 3.4.12 and the pointwise exterior
product of holomorphic maps is again holomorphic. The map

G : C0(∂D1 × . . .× ∂D2) −→ O′D(X)

f 7−→
[
g 7→ 1

(2πi)n

∫
∂D1×...×...∂Dn

f(z)g(z)dz

]
is bounded because∣∣∣∣ 1

(2πi)n

∫
∂D1×...×...∂Dn

f(z)g(z)dz

∣∣∣∣ ≤ ||f ||||g||D .

The map δ|d is analytic because it is equal to G ◦ F by the Cauchy integral
formula.

Proposition 3.4.14. Let G be a complex-analytic group manifold acting on
a complex-analytic manifold X via an analytic map G × X → X. Then the
precosheaf O′ of analytic functionals on X is a holomorphic G-invariant cosheaf.

Proof. Let U, V ⊆ X be open. We wish to show that the action map

DU,V −→ BVS(O′(U),O′(V ))

g 7−→ g∗

is holomorphic on the interior D◦U,V of the domain. For each g ∈ D◦U,V , the
map g∗ is the composite of

(u 7→ (g, u))∗ : O′(U)→ O′(D◦U,V × U) (24)

and the bounded, linear pushforward map

O′(D◦U,V × U) −→ O′(V )

along the action map
D◦U,V × U −→ V .

The latter of these is independent of g and pointwise composition with a fixed
bounded linear map preserves holomorphicity, so it suffices to show that the
map

I : D◦U,V −→ BVS(O′(U),O′(D◦U,V × U))

g 7−→ (u 7→ (g, u))∗

is holomorphic. Proposition 3.4.13 for X = D◦U,V implies that

D◦U,V −→ O′(D◦U,V )

g 7−→ δg

is holomorphic. It follows that

D◦U,V −→ BVS(O′(U),O′(D◦U,V )) ⊗̄ O′(U))

g 7−→ [α 7→ δg ⊗̄ α]
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is holomorphic because the map

O′(U) −→ O′(D◦U,V ) ⊗̄ O′(U))

α 7−→ δg ⊗̄ α

is bounded and linear. Postcomposing with the exterior product of functionals

× : O′(D◦U,V ) ⊗̄ O′(U) −→ O′(D◦U,V × U)

preserves holomorphicity. Overall, the map

J : D◦U,V −→ O′(D◦U,V × U)

g 7−→ δg × α

is holomorphic. It remains to identify I with J . Let g ∈ D◦U,V . It suffices to
show that I(g) and J(g) agree on the dense subset of product functions p(z, w) =
f(z)h(w), (z, w) ∈ D◦U,V for f ∈ O(D◦U,V ) and h ∈ O(U):

J(g)(p) = δg(z 7→ α(w 7→ f(z)h(w))) = δg(f)α(h) = f(g)α(h) ,

which coincides with

I(g)(p) = ((u 7→ (g, u))∗(α)) (p) = α((u 7→ (g, u))∗p) = α(u 7→ p(g, u))

= α(u 7→ f(g)h(u)) = f(g)α(h) .

Proposition 3.4.15. If A and B are holomorphic invariant precosheaves, then
their pointwise completed tensor product A ⊗̄B is a holomorphic invariant pre-
cosheaf in a natural way.

Proof. The function ρA⊗̄BU,V is holomorphic because

⊗̄ : BVS(A(U), A(V ))⊗̄BVS(B(U), B(V ))→ BVS(A(U)⊗̄B(U), A(V )⊗̄B(V ))

is a bounded linear map so postcomposing with it preserves holomorphicity.

Proposition 3.4.16. Let F1, F2 be affine-linearly invariant precosheaves on C
of complete bornological vector spaces. If F2 is a quotient of F1, the invariance
isomorphisms of F1 are induced from those of F1, and F1 is holomorphic, then F1

is holomorphic.

Here, quotient means cokernel by some map of precosheaves of complete
bornological spaces.

Proof. Let X,Y be complete bornological spaces and A ⊆ X a sub vector space.
The map

{f ∈ BVS(X,Y ) | f |A = 0} −→ BVS(X/A, Y ) (25)

sending f to the map induced by f is a bounded linear map. Let i : G ↪→ F1

be a pointwise inclusion of precosheaves of which q : F1 → F2 is a cokernel.
For U, V ⊆ C open, we apply this to X = F1(U), A = R(U), and Y = F2(V )
to conclude that the action map ρF2

U,V for F2 is holomorphic because it is the

composite of q∗ ◦ ρF1

U,V with the bounded linear map from (25).
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Proposition 3.4.17. Direct sums of holomorphic precosheaves are again holo-
morphic.

Proof. This follows from the compatibility of direct sums with the enrichment
of CBVS over itself and Proposition 3.1.15 that a product-valued function is
holomorphic if and only if its components are.

The same argument proves that direct sums of holomorphic representations
are holomorphic, so V is holomorphic as the direct sum of holomorphic one-
dimensional representations. Thus the constant precosheaf assigning V to every
open is holomorphic.

Proposition 3.4.18. The precosheaves E and F on C are holomorphic.

Proof. The preceding propositions imply that, for n ≥ 0 the precosheaves given
by O′(Un \∆)⊗Vn on U ⊆ C are holomorphic. Proposition 3.4.16 and Propo-
sition 3.4.17 about quotients resp. sums imply that E is holomorphic. Proposi-
tion 3.4.16 implies that F is holomorphic.
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3.5 Back to Geometric Vertex Algebras

Having obtained a holomorphic affine-linearly invariant prefactorization FV
from a geometric vertex algebra V in the previous subsection, we now show that
we can recover V using the procedure of Section 3.3. First, we identify VFV
with V as a Z-graded bornological vector space, proving the discreteness of VFV.
Second, we identity the multiplication maps of VFV with those of V. This im-
plies that FV has meromorphic OPE. In summary, this means that FV is the
sort of prefactorization algebra that gives rise to a (geometric) vertex algebra,
and we show that this geometric vertex algebra VFV is isomorphic to V.

We will use the evaluation map evU from E(U) to V for U a disc to get a
map VFV → V which will turn out to have image in V. In contrast to the case
of E/R, it is not an immediate consequence of the definition that evU induces a
map from F (U) to V, not even if U ⊆ C is a disc. The following lemma implies
that evU is in fact well-defined on F (U). Its proof uses the associativity of V
which we have not used so far, except for the case m = 0 which is translation
invariance.

Lemma 3.5.1. If D ⊂ C is an open disc or U = C, then R(D) = Rdisc(D).

Proof. First, let D ⊆ C be an open disc. The inclusion R(D) ⊆ Rdisc(D)
follows from the definition by considering d = D and W = ∅. For the other
inclusion, let d ⊆ D be an open disc and W ⊆ D be open and disjoint from d.
Our goal is to show that Md,W

U (R(d)⊗E(W )) ⊆ R(D) because sets of this form
span Rdisc(D). We may restrict attention to r ⊗ e ∈ R(d) ⊗ E(W ) with r =∑m
i=0 α

i ⊗ ai with αi ∈ O′(di \∆) for some m ≥ 0 and ai ∈ V⊗i and e = β ⊗ b
with β ∈ O′(Wn \ ∆) and b ∈ V⊗n for some n ≥ 0. Let p be the center of d.
Since r is a relation, so is σd−p(r), which means that

0 = ev(σd−p(r)) =

m∑
i=0

((−p)∗αi)(µ(ai)) =

m∑
i=0

αi[z 7→ µ(ai)(z− p)] , (26)

and this is what we need to prove that Md,W
D (r ⊗ e) is a relation by using the

associativity of V. We denote the first i coordinates of Di+n ⊆ Ci+n by z and
the last n by w.

evD(Md,W
D (r ⊗ e))

=

m∑
i=0

αiβ[(z,w) 7→ µ(ai ⊗ b)(z, w)]

=

m∑
i=0

β[w 7→ αi[z 7→ µ(ai ⊗ b)(z, w)]]

=

m∑
i=0

β[w 7→ αi

(∑
k∈Z

[z 7→ µ(pk
(
µ(ai)(z− p)

)
⊗ b)(p,w)]

)
]

(because of associativity, which holds for tensors like ai, not just elementary
tensors)

=

m∑
i=0

β[w 7→
∑
k∈Z

αi[z 7→ µ(pk
(
µ(ai)(z− p)

)
⊗ b)(p,w)]]
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(because of the continuity of αi)

=

m∑
i=0

β[w 7→
∑
k∈Z

µ(pk
(
αi[z 7→ µ(ai)(z− p)]

)
⊗ b)(p,w)]

=

m∑
i=0

β[w 7→
∑
k∈Z

µ(αi[z 7→ pk
(
µ(ai)(z− p)

)
]⊗ b)(p,w)]

(because evaluating analytic functionals on vector-valued functions is compati-
ble with linear maps)

= β[w 7→
∑
k∈Z

µ(pk

(
m∑
i=0

αi[z 7→ µ(ai)(z− p)]

)
⊗ b)(p,w)]

(because of the componentwise definition of the evaluation of analytic function-
als on functions with values in a Z-graded vector space)

= β[w 7→
∑
k∈Z

µ(pk

(
m∑
i=0

αi[z 7→ µ(ai)(z− p)]

)
⊗ b)(p,w)]

= β[w 7→
∑
k∈Z

µ(0⊗ b)(p,w)] (see Equation (26))

= 0

The case of U = C follows because every analytic functional on Cn arises from
some bounded subset, so U = C reduces to the case of U some sufficiently large
disc.

Corollary 3.5.2. For every open subset U ⊆ C, the evaluation map evU factors
through F (U).

Proof. By Lemma 3.5.1, this is the case for U = C and evU = evC ◦E(U ⊆
C).

We denote the induced map F (U)→ V by evU , too.

Remark 3.5.3. Another consequence of the lemma is that F (D) = E(D)/R(D)
for D a disc since we know R(D) to be b-closed; see Remark 3.4.5. By the
definition of R(D), this means that we can identify F (D) with a sub vector
space of V.

The comparison map I : V → VFV is defined as follows. For every ε > 0,
evaluation at zero is an element δ0 ∈ O′(Bε(0)), which is fixed under the action
of D×. For homogeneous a ∈ Vk, we define I(a) ∈ VFV to be the element
corresponding to

[δ0 ⊗ a] ∈ F (Bε(0))k ∼= F (0)k = (VFV)k .

It is clear that this is a linear map on the summands of V, and we extend I to V
by linearity. In other words, I is determined by the formula PR(I(a)) = [δ0⊗ a]
where we recall that PR is the natural map VFV → FV(BR(0)) for R > 0.

58



Proposition 3.5.4. The linear map

I : V −→ VFV
a 7−→ [δ0 ⊗ a] (for a homogeneous)

is an isomorphism of Z-graded complete bornological spaces.

Proof. It is clear that I is bounded since V is discrete. For all r > 0, let Jr be the
composite of Pr : VFV → FV(Br(0)) from Section 3.3 (for F := FV) with the
evaluation map FV(Br(0))→ V. The evaluation map, which takes values in V
in general, maps elements arising from VFV to V because the evaluation map
is C×-equivariant. We can thus view Jr as a map to V. The insertion-at-zero
axiom implies that

Jr(I(a)) = evBR(0)(PR(I(a))) = evBR(0)([δ0 ⊗ a]) = µ(a, 0) = a

for homogeneous a. This proves that Jr ◦ I = idV because every element of V is
a sum of homogeneous elements.

It remains to prove that Jr is injective and bounded. It is a bounded linear
map as the composite of two bounded linear maps. The inclusion VF ↪→
VF is the composite of PR with the map LR : F (BR(0)) → VF , so PR is
injective. Lemma 3.5.1 says that Rdisc(Br(0)) = R(BR(0)), so the evaluation
map F (BR(0))→ V is injective. Thus Jr = evBR(0) ◦PR is injective.

The previous proposition implies that VFV is discrete. The comparison
map I induces a map I : V → VFV on the products of the weight spaces. Let µ̃
denote the multiplication maps of VFV.

Proposition 3.5.5. I is a homomorphism w. r. t. the geometric vertex algebra
structures, that is, for m ≥ 0, and z ∈ Cm \∆, the square

V⊗m VFV⊗m

V VFV

I⊗m

µz µ̃z

I

commutes.

It follows that VFV satisfies the meromorphicity axiom; hence FV has mero-
morphic OPE, VFV is a geometric vertex algebra, and I is an isomorphism of
geometric vertex algebras

V ∼= VFV .

Proof. Let k ∈ Z and R > 0 be big enough so that z1, . . . , zm ∈ BR(0). The
image in F (BR(0)) of the k-th component of the lower composition evaluated
at a ∈ V⊗m is

PR(pk(I(µ(a)(z)))) = PR(I(pk(µ(a)(z)))) = [δ0 ⊗ pk(µ(a)(z))] ,
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and this evaluates to pk(µ(a)(z)). For the upper composition and a an elemen-
tary tensor a1 ⊗ . . .⊗ am ∈ V⊗m with ai ∈ V homogeneous, we get

PR(pk(µ̃(I⊗m(a))(z))) = PR(pk(µ̃([δ0 ⊗ a1]⊗ . . .⊗ [δ0 ⊗ am])(z)))

= PR(pk(µ̃([δ(z1,...,zm) ⊗ a1 ⊗ . . .⊗ am])))

= PR(pk(µ̃([δz ⊗ a])))

= lRk ([δz ⊗ a])

=
1

2πi

∮
w−k−1w.[δz ⊗ a]dw

and this evaluates to

1

2πi

∮
w−k−1w. evBR(0)([δz ⊗ a])dw

because evaluation is equivariant. This equals

1

2πi

∮
w−k−1w.µ(a, z)dw = pk(µ(a, z))

in Vk. Two elements of VFVk which evaluate to the same element of Vk must
be equal, so the square commutes and I is a homomorphism.

The meromorphicity axiom for (V, µ) implies the meromorphicity axiom
for (VFV, µ̃) since I and hence I⊗m and I are isomorphisms of vector spaces
by Proposition 3.5.4.

Remark 3.5.6. It can be shown that the image of V in FV(Br(0)) is dense for
all 0 < r ≤ ∞. Furthermore, for 0 < r ≤ R ≤ ∞, the maps

V ↪→ FV(Br(0)) ↪→ FV(BR(0)) ↪→ V

are embeddings of vector spaces, all of which are complete bornological spaces.
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4 Factorization Algebras

In this section, we prove that FV is a factorization algebra with values in the
symmetric monoidal category of complete bornological spaces after recalling the
definition of factorization algebras.

Definition 4.0.1. A prefactorization algebra F on a topological space X with
values in a symmetric monoidal category C is called multiplicative if the map

MU,V
UtV : F (U)⊗ F (V )→ F (U t V )

is an isomorphism for all disjoint opens U, V ⊆ X and the unit map 1C → F (∅)
is an isomorphism.

In our context, ⊗ is the completed tensor product ⊗̄ of complete bornological
vector spaces defined in3.1.12.

Recall that a presheaf G on a topological space X is called a sheaf if it
satisfies descent along open covers, that is, if

G(Y )→
∏
U∈U

G(U) ⇒
∏

U,V ∈U
G(U ∩ V )

is a limit diagram for every open cover U of every open subset Y of X. Similarly,
a precosheaf F on X is called a cosheaf if it satisfies codescent along open covers,
that is, if the diagram⊕

U,V ∈U
F (U ∩ V ) ⇒

⊕
U∈U

F (U)→ F (Y ) (27)

is a colimit diagram. In the definition of a factorization algebra, we demand
codescent for special open covers called Weiss covers.

Definition 4.0.2. A family U of open subsets of a topological space X is called
a Weiss cover if, for every finite subset F ⊆ X, there is a U ∈ U with F ⊆ U .
A precosheaf on a topological space X is a Weiss cosheaf if diagram (27) is a
colimit diagram for all open subsets Y ⊆ X and Weiss covers U of Y .

Every Weiss cover is an open cover. A family U of subsets of a space X is a
Weiss cover if and only if {Un | U ∈ U} is an open cover of Xn for all n ≥ 0.
Another way of phrasing the (Weiss) cosheaf condition is the following, if the
category in which the precosheaf F takes values has all colimits: For Y ⊆ X open
and all (Weiss) open covers U of Y closed under taking pairwise intersections,
the natural map

colim
U∈U

F (U) −→ F (X)

is an isomorphism, where U considered as a poset under inclusions of subsets
of Y , and the colimit is taken over the extension maps of F .

Definition 4.0.3. A factorization algebra is a prefactorization algebra which
is multiplicative and whose underlying precosheaf is a Weiss cosheaf.

We fix a geometric vertex algebra V and use the abbreviations E = EV
and F = FV.
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Related work. Factorization algebras, as considered here, were introduced
by Costello and Gwilliam and the main reference is [2] (see also [7]). We include
multiplicativity in the definition of factorization algebra; in [2] multiplicativity
is a property of some factorization algebras. Earlier, Beilinson and Drinfeld
introduced factorization algebras in algebraic geometry [1].
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4.1 More Functional-Analytic Preliminaries

There are two more topics in functional analysis which we did not treat in our
summary of bornological spaces in Section 3.1 and reference in the proofs of mul-
tiplicativity of F and Weiss codescent. The first is nuclearity, the bornological
vector space O′(U) of analytic functionals on an open U ⊆ Cn is nuclear. Refer-
ences for nuclear spaces include [18] and [10], the latter includes the bornological
setting. The second is the generalization of the identity theorem for holomorphic
functions with values in a Banach space to the case of a complete bornological
space.

We call a completely normable bornological space Hilbertable if one of the
complete norms inducing its bornology is a Hilbert space norm. The notion of
Hilbert-Schmidt map between Hilbert spaces only depends on the bornologies
of source and target. A complete bornological space is nuclear if every bounded
subset B is bounded in a Hilbertable subobject H1 so that H1 is contained in a
Hilbertable subobject H2 such that the inclusion H1 ⊆ H2 is Hilbert-Schmidt.
Let Hilb denote the category of Hilbert spaces and bounded linear maps. The
functor from Hilb to CBVS sending a Hilbert space to its underlying complete
bornological space is a full embedding with image the Hilbertable spaces. In [10,
Chapter III], a locally convex space X is defined to be nuclear if X ′ is a nuclear
bornological space, and this definition is shown to equivalent to some of the
usual ones, e. g., in terms of Hilbert-Schmidt maps. Since O(X) is nuclear
for X ⊆ Cn open, it follows that O′(X) is a nuclear bornological space. Our
next goal is to prove that O′ is a cosheaf for Stein open covers of Stein subsets
of Cn. A Stein open cover is an open cover in which every open set is Stein.
The intersection of two Stein open subsets is again Stein. For X ⊆ Cn open,
let OL2(X) denote the Hilbert space of holomorphic L2-functions on X.

Proposition 4.1.1. The presheaf OL2 of Hilbert spaces satisfies the sheaf con-
dition for finite covers.

Proof. Finite products and kernels exist in the category of Hilbert spaces and
bounded maps, and their underlying vector spaces are products resp. kernels
in the category of vector spaces. Let V ⊆ Cm be open and V1, . . . , Vn cover V .
If f ∈ O(V ) denotes the result of gluing L2-functions on the Vi, then

||f ||2L2(V ) ≤ ||f |V1
||2L2(V1) + . . .+ ||f |Vn ||2L2(Vn) ,

so OL2 is a sheaf of vector spaces. This inequality also proves that the gluing
map is bounded.

Corollary 4.1.2. The precosheaf O′L2 of Hilbert spaces satisfies the cosheaf
condition for finite covers.

Proof. Taking the dual is a functor Hilb→ Hilbop which preserves finite limits
because it is an equivalence of categories.

If U and X are open subsets of Cn, we use the notation U ⊂⊂ X to mean
that U ⊆ X and U is compact.

Proposition 4.1.3. If an open X ⊆ Cn is Stein, then

O′(X) ∼= colim
U⊂⊂X

O′L2(U)

in the category of bornological spaces.

63



Proof. The comparison map is

Φ : colim
U⊂⊂X

O′L2(U) −→ O′(X)

α 7−→ [f 7→ α(f |U )]

whose well-definedness uses the fact that supremum norm || ||∞,U of continu-

ous functions on U bounds || ||L2(U) from above. We prove that Φ is surjec-
tive. Let α ∈ O′(X). There is a compact set K ⊂ X s. t. α is continuous
as a map from (O(X), || ||∞,K) to C. Let U ⊂⊂ X be a neighborhood of K.
Let res : (O(X), || ||∞,K)→ (OL2(U), || ||∞,K) denote the restriction map. It is
continuous. Then

α̃ = α ◦ res−1 : im res→ C

is continuous, in particular well-defined. By the Hahn-Banach theorem, α̃ ex-
tends to a continuous linear functional β defined on (OL2(U), || ||∞,K) with
operator norm ||β|| = ||α̃|| = ||α||. The map

i : (OL2(U), || ||L2(U))→ (OL2(U), || ||∞,K)

given by the identity map on elements is continuous as a consequence of the
Cauchy integral formula. Then the class of β ◦ i is a preimage of α under Φ.

We prove that Φ is injective. Let α ∈ O′L2(U), U ⊂⊂ X, represent a class
in ker Φ. This means that α(f |U ) = 0 for all f ∈ O(X). Without loss of general-
ity, we may assume that U isO(X)-convex, since theO(X)-convex hull of a com-
pact set in a Stein manifold is again compact. Let V ⊂⊂ X be a neighborhood
of U . It suffices to see that α(g|U ) = 0 for all g ∈ OL2(V ). Let A(g) = α(g|U )
for g ∈ OL2(V ). We now argue that the map A : OL2(V ) → C is continuous
w. r. t. the semi-norm || ||∞,U on the source. First, the semi-norm || ||∞,U is at

least as large as the L2-norm on U with respect to which α is continuous by
assumption. Second, recall that the inclusion OL2(V ) ↪→ O(V ) is continuous.
In particular, up to a constant factor, the semi-norm || ||L2(V ) is at least as large
as the continuous semi-norm || ||∞,U on O(V ). This concludes the argument
that A is continuous for the semi-norm || ||∞,U . This is the semi-norm of uni-

form convergence on U . Since U is O(X)-convex, every holomorphic function
on a neighborhood of U can be uniformly approximated on U by holomorphic
functions on X; see [6, Chapter VII, A, Theorem 6]. The restriction to V of
a holomorphic function on X is a holomorphic L2-function on V because V
is compact. By assumption, α and thus A vanish on functions which extend
holomorphically to X. The set of such functions is || ||∞,U -dense in OL2(V ),
the source of A, so A = 0. Hence the class of α is zero in the colimit.

It remains to prove that Φ−1 is bounded. Let B ⊆ O′(X) be bounded.
There is a compact K ⊆ X and a C > 0 with ||α|| ≤ C for all α ∈ B where the
operator norm is taken w. r. t. || ||∞,K on O(X). Let U ⊂⊂ X be a neighborhood
of K. Then Φ−1(α) is represented by β ◦ i ∈ O′L2(U), with

||β ◦ i|| ≤ ||β||||i|| = ||α||||i|| ≤ C||r|| .

Since C||r|| is independent of α, so Φ−1(α) contained in the image of a bounded
subset in O′L2(U), namely the closed ball of radius C||i||.

Proposition 4.1.4. The precosheaf O′ of complete bornological spaces satisfies
the cosheaf condition for Stein open covers of Stein subsets of Cn.
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Proof. Let Y be a Stein subset of Cn and U be a Stein open cover of Y closed un-
der pairwise intersections. Corollary 4.1.2 implies that O′L2 satisfies the cosheaf
property in the category of complete bornological spaces because the inclu-
sion Hilb ↪→ CBVS preserves finite colimits. In the following, F ranges over
all finite sets of open subsets of Y closed under intersection such that, for ev-
ery V ∈ F , there is a U ∈ U with V ⊂⊂ U . The collection of such F is
a partially ordered set w. r. t. inclusions. It is filtered because F and F ′ are
both contained in the closure of F and F ′ under pairwise intersections. The
map colimU∈U O′(U)→ O′(Y ) factors as

colim
U∈U

O′(U) ∼= colim
U∈U

colim
V⊂⊂U

O′L2(V ) (Proposition 4.1.3) (28)

∼= colim
F

colim
V ∈F

O′L2(V ) (29)

∼= colim
F
O′L2(∪F) (Corollary 4.1.2) (30)

∼= colim
W⊂⊂Y

O′L2(W ) (31)

∼= O′(Y ) , (Proposition 4.1.3) (32)

where it remains to justify (29) and (31). Given U ∈ U and V ⊂⊂ U , we
use F = {V } to define the comparison map in (29). For its inverse, we pick
a U ∈ U with V ⊂⊂ U given F and V ∈ F ; the resulting map from O′L2(V ) to
the r. h. s. of (29) is independent of the choice of U because U is closed under
pairwise intersections. For the map in (31), we use W = ∪F . For its inverse,
let W ⊂⊂ F . Pick a finite subcover of U of W and shrink it to get a choice
of F . This is possible because W is compact.

We let X⊗Y resp. X ⊗̄Y denote the tensor product of nuclear locally convex
spaces X and Y resp. the completed tensor product of nuclear locally convex
spaces. We include a proof that dualizing is monoidal, i. e., dualizing takes the
completed tensor products of nuclear locally convex spaces to the completed
tensor product of complete bornological spaces, see Definition 3.1.12.

Proposition 4.1.5. Let X and Y be nuclear locally convex spaces. Then

X ′ ⊗̄ Y ′ −→ (X ⊗̄ Y )′

α⊗ β 7−→ [x⊗ y 7→ α(x)β(y)]

is an isomorphism of nuclear convex bornological spaces.

If X and Y are Hilbert spaces, then

X ′ ⊗̄HS Y ′ ∼= (X ⊗̄HS Y )′

as Hilbert spaces where ⊗̄HS denotes the completed Hilbert-Schmidt tensor
product. If X and Y are Banach spaces, then the bornology on the projec-
tive tensor product X ⊗π Y agrees with the bornology on X ⊗ Y from Defi-
nition 3.1.11, so the underlying bornological space of the completed projective
tensor product of X and Y is the completed tensor product of the underlying
complete bornological spaces of X and Y . The completed tensor product of
nuclear bornological spaces can be computed in terms of the completed Hilbert-
Schmidt tensor product, similar to how the projective tensor product of nuclear
locally convex topological vector spaces can be computed in terms of the Hilbert-
Schmidt tensor product.
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Proof. It suffices to prove that the comparison map c : X ′ ⊗̄ Y ′ → (X ⊗ Y )′ is
an isomorphism of bornological spaces, it then follows that the map X ′ ⊗̄ Y ′ →
(X ⊗̄Y )′ is an isomorphism because (X ⊗̄Y )′ → (X⊗Y )′ is an isomorphism by
the universal property of the completion X ⊗̄ Y . Letting p, q run over a family
of semi-norms exhibiting X resp. Y as an inverse limit of Hilbert-Schmidt maps,
the map c factors as

X ′ ⊗̄ Y ′ ∼= colim
p

X ′p ⊗̄ colim
q

Y ′q

∼= colim
p,q

(X ′p ⊗̄π Y ′q )

∼= colim
p,q

(X ′p ⊗̄HS Y ′q )

∼= colim
p,q

(Xp ⊗̄HS Yq)′

∼= colim
p,q

(Xp ⊗HS Yq)′

∼=
(

lim
p,q

(Xp ⊗HS Yq)
)′

(since the underlying vector space of Xp ⊗HS Yq is independent of p and q)

∼= (X ⊗ Y )
′

.

Therefore, if U ⊆ Cm and V ⊆ Cn, there is an isomorphism

O′(U) ⊗̄ O′(V ) ∼= (O(U) ⊗̄ O(V ))′ ∼= O(U × V )′ = O′(U × V )

of complete bornological spaces. This map sends α⊗β to a functional called α×
β, which on product functions f(z)g(w) of (z, w) ∈ U×V is α(f)β(g), and hence
agrees with the map defined by Equation 19. A version of O′(U) ⊗̄ O′(V ) ∼=
O′(U × V ) in the context of locally convex spaces is stated in the Corollary to
Theorem 51.6 of [18]. The author has found [8, Chapter 4] helpful for the proof
of O(U) ⊗̄ O(V ) ∼= O(U × V ), even though this book does not seem to cleanly
state this isomorphism in the generality we use it.

We now formulate the identity theorem for holomorphic functions with values
in a complete bornological space and deduce it from the identity theorem for
holomorphic functions with values in a Banach space.

Proposition 4.1.6. Let f be a holomorphic function on a domain D ⊆ C with
values in a complete bornological space. If D contains an accumulation point
of f−1(0), then f is zero.

Proof. Let S be the set of points z ∈ D which have an open neighborhood U ⊆ D
s. t. f |U = 0. By definition S is open. Locally, f admits a power series expansion
in a Banachable subobject of X and thus

S =
⋂
n≥0

{z ∈ D | f (n)(z) = 0} .

Thus S is closed as the intersection of sets which are closed by the continuity
of f and its derivatives w. r. t. the topology of b-closed sets. It remains to
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show that S is not empty because the claim then follows since D is connected.
Let z0 ∈ f−1(0) be an accumulation point of f−1(0). After restricting f to an
open neighborhood of z0, we may apply the identity theorem for holomorphic
functions with values in a Banach space and conclude that z ∈ S.

Corollary 4.1.7. Let f be a holomorphic function on a domain D ⊆ C with
values in a complete bornological vector space X. Let Y be a sub vector space
of X. If f−1(Y ) contains an accumulation point, then im f ⊆ Y .

Proof. Let q : X → X/Y denote the quotient map. Its target X/Y is the
quotient of a complete bornological vector space by a b-closed subspace and
hence complete. Proposition 4.1.6 applies to q ◦ f , so q ◦ f = 0 and thus im f ⊆
Y .
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4.2 Multiplicativity

Proposition 4.2.1. The prefactorization algebra E is multiplicative.

Proof. Let U, V ⊆ C be open and disjoint. The multiplication map

MU,V
UtV : E(U) ⊗̄ E(V )→ E(U t V )

factors as

E(U) ⊗̄ E(V )

=

⊕
m≥0

(
O′(Um \∆m)⊗ V⊗m

)
Σm

 ⊗̄
⊕
n≥0

(
O′(V n \∆n)⊗ V⊗n

)
Σn


∼=
⊕
m≥0

⊕
0≤i≤m

(
O′(U i \∆i)⊗ V⊗i

)
Σi
⊗̄
(
O′(V m−i \∆m−i)⊗ V⊗(m−i)

)
Σm−i

∼=
⊕
m≥0

(
O′((U t V )m \∆)⊗ V⊗m

)
Σm

,

where the first isomorphism holds because the completed tensor product com-
mutes with direct sums separately in each variable. To deduce that the second
map is an isomorphism, we fix m ≥ 0 and consider the map between the m-th
summands. It factors as⊕

0≤i≤m

(
O′(U i \∆i)⊗ V⊗i

)
Σi
⊗̄
(
O′(V m−i \∆m−i)⊗ V⊗(m−i)

)
Σm−i

∼=
⊕

0≤i≤m

(
O′(U i \∆i)⊗ V⊗i ⊗̄ O′(V m−i \∆m−i)⊗ V⊗(m−i)

)
Σi×Σm−i

∼=
⊕

0≤i≤m

(
O′(U i \∆i) ⊗̄ O′(V m−i \∆m−i)⊗ V⊗i ⊗ V⊗(m−i)

)
Σi×Σm−i

∼=
⊕

0≤i≤m

(
O′((U i \∆i)× (V m−i \∆m−i))⊗ V⊗i ⊗ V⊗(m−i)

)
Σi×Σm−i

∼=
(
O′(Um \∆)⊗ V⊗m

)
Σm

,

where the last isomorphism requires further justification. Let m = {1, . . . ,m}.
For finite sets I, in particular I ⊆ m, we have the finite product CI and its
subset

∆I := {z ∈ CI | zi = zj for some i, j ∈ I with i 6= j} .

There are Σm-equivariant complex-analytic isomorphisms

(U t V )m \∆m = (U t V )m \∆m

∼=
⊔
I⊆m

(U I × Vm\I) \∆I

∼=
⊔
I⊆m

(U I \∆I)× (Vm\I \∆m\I) (U ∩ V = ∅)

given by the inclusions and associativity isomorphism. Combining the induced
isomorphism on O′ with the isomorphism O′(X) ⊗̄O′(Y ) ∼= O′(X×Y ) for X,Y
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open subsets of finite-dimensional complex vector spaces, we get⊕
I⊆m

O′(U I \∆I) ⊗̄ O′(Vm\I \∆m\I) ∼=
⊕
I⊆m

O′((U I \∆I)× (Vm\I \∆m\I))

∼= O′((U t V )m \∆m) ,

again Σm-equivariantly. Tensoring with the Σm-representation Vm gives a Σm-
isomorphism⊕

I⊆m

(
O′(U I \∆I)⊗ VI

)
⊗̄
(
O′(Vm\I \∆m\I)⊗ Vm\I

)
∼= O′((U t V )m \∆m)⊗ Vm .

This yields the second isomorphism in⊕
0≤i≤m

(
O′(U i \∆i)⊗ V⊗i

)
Σi
⊗̄
(
O′(V m−i \∆m−i)⊗ V⊗(m−i)

)
Σm−i

∼=
⊕

0≤i≤m

((
O′(U i \∆i)⊗ Vi

)
⊗̄
(
O′(V m−i \∆m−i)⊗ Vm−i

))
Σi×Σm−i

∼= (O′((U t V )m \∆m)⊗ Vm)Σm
,

and the composite is the map on the m-th summand.

Proposition 4.2.2. The prefactorization algebra F is multiplicative.

Proof. Let U, V ⊆ C be open and disjoint. Recall from the proof of Proposi-
tion 3.4.9 that the map E(U) ⊗̄ E(V ) → F (U) ⊗̄ F (V ) is the cokernel of the
multiplication map

T = Sdisc(U) ⊗̄ E(V )⊕ E(U) ⊗̄ Sdisc(V )→ E(U) ⊗̄ E(V ) .

We already know from Proposition 4.2.1 that E(U) ⊗̄E(V ) ∼= E(U tV ) via the
same map that induces the multiplication map F (U) ⊗̄F (V )→ F (U tV ) given
by Proposition 3.4.9. Therefore, it remains to see that the cokernel of E(U tV )
by Sdisc(U t V ) agrees with the cokernel of

T → E(U) ⊗̄ E(V )→ E(U t V ) .

For this, we use that there is an isomorphism

Sdisc(U t V ) ∼= Sdisc(U) ⊗̄

 ⊕
W ′⊆V

E(W ′)

⊕
 ⊕
W ′⊆U

E(W ′)

 ⊗̄ Sdisc(V )

(33)

compatible with the multiplication maps to E(U t V ). Using (33), we see
that Sdisc(UtV ) has maps to and from T compatible with the maps to E(UtV ).
Hence the images of Sdisc(U t V ) and T in E(U t V ) agree. We obtain the
isomorphism in (33) from the fact that any disc d ⊆ U t V is contained in
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exactly one of U and V and from the multiplicativity of E,

Sdisc(U t V ) ∼=
⊕
d⊆U

W⊆(UtV )\d

E(W ) ⊗̄R(d)⊕
⊕
d⊆V

W⊆(UtV )\d

E(W ) ⊗̄R(d)

∼=
⊕
d⊆U

W⊆(UtV )\d

E(W ∩ V ) ⊗̄ E(W ∩ U) ⊗̄R(d)

⊕
⊕
d⊆V

W⊆(UtV )\d

E(W ∩ U) ⊗̄ E(W ∩ V ) ⊗̄R(d)

∼=
⊕
d⊆U

W⊆U\d,W ′⊆V

E(W ′) ⊗̄ E(W ) ⊗̄R(d)

⊕
⊕
d⊆V

W⊆V \d,W ′⊆U

E(W ′) ⊗̄ E(W ) ⊗̄R(d)

∼=

 ⊕
d⊆U

W⊆U\d

E(W ) ⊗̄R(d)

 ⊗̄
 ⊕
W ′⊆V

E(W ′)



⊕

 ⊕
W ′⊆U

E(W ′)

⊗
 ⊕

d⊆V
W⊆V \d

E(W ) ⊗̄R(d)


∼= Sdisc(U) ⊗̄

 ⊕
W ′⊆V

E(W ′)

⊕
 ⊕
W ′⊆U

E(W ′)

 ⊗̄ Sdisc(V ) .
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4.3 Weiss Codescent

Proposition 4.3.1. The precosheaf E is a Weiss cosheaf of complete bornolog-
ical vector spaces.

Proof. Let X be an open subset of C and U be a Weiss cover of X. There is a
commutative diagram

colim
U∈U

E(U) E(X)

⊕
n≥0

(
colim
U∈U

(O′(Un \∆))⊗ V ⊗n
)

Σn

⊕
n≥0

(O′(Xn \∆)⊗ V ⊗n)Σn

∼=

in BVS. The left hand map is an isomorphism because colimits commute with
each other and with the completed tensor product. The bottom map is an
isomorphism because O′ is a cosheaf for Stein open covers of Stein subsets
of Cn for each n ≥ 0 by Proposition 4.1.4 and Un \ ∆ is Stein for all open
subsets U ⊆ C. Since U is a Weiss cover, {Un}U∈U is an open cover of Xn

for each n ≥ 0. The cosheaf property applied to the open cover {Un \∆}U∈U
of Xn \∆ implies that the bottom map is an isomorphism.

Theorem 4.3.2. The precosheaf F is a Weiss cosheaf of complete bornological
vector spaces.

Lemma 4.3.3. Let d be a disc with center z0 ∈ C and let δ > 0 s. t. Bδ(z0) ⊆ d.
Then

R(d) = i (R(Bδ(z0))) ⊆ E(d) ,

where i = E(Bδ(z0) ↪→ d) and the b-closure is taken in E(d).

Roughly speaking, the proof of the lemma involves viewing an element
of R(d) as the endpoint of a path [ε, 1]→ R(d) which extends to a holomorphic
function taking values in i(R(Bδ(z0))) near its beginning. The path is given
by scaling down a given relation, and this preserves the property of being a
relation, i. e., evaluating to zero, because the evaluation map is equivariant. It
then follows that the holomorphic function has image in the b-closure of the
image of R(Bδ(z0)) by Corollary 4.1.7 to the identity theorem for holomorphic
functions.

Proof of Lemma 4.3.3. It suffices to consider the case of z0 = 0 by the transla-
tion invariance of E. The inclusion “⊇” holds because R(d) is b-closed in E(d)
by Remark 3.4.5. To prove “⊆”, let x ∈ R(d). There exists a strictly smaller con-
centric disc d′ ⊂ d and an x′ ∈ E(d′) which is mapped to x by the map induced
by the inclusion of d′ into d because E is a Weiss cosheaf and the set of concen-
tric discs strictly smaller than d forms a Weiss cover of d. We have x′ ∈ R(d′)
because the evaluation map is compatible with inclusions. Let r > r′ > 0
denote the radius of d resp. d′. We can restrict attention to the case that d′

strictly contains Bδ(0), that is, that r′ > δ, because otherwise d′ ⊆ Bδ(0) and
thus x ∈ i(R(Bδ(0))). Let R = r

r′ and A = BR(0) − 0 ⊆ C×. From now on,
we only consider rotations and dilations among the affine-linear isomorphisms
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of C, and we identify A with a subset of the interior of Dd′,d via the group
homomorphism C× ↪→ C× n C. The map

f : A −→ E(d)

q 7−→ ρd′,d(q)(x
′)

is holomorphic because E is holomorphic. Note that 1 ∈ A since R > 1 be-
cause d′ is strictly smaller than d. Also note that f(1) is the image of x′ under
the inclusion of d′ into d and hence f(1) = x. Let N be the set of q ∈ A
with |q| < δ

r′ . If q ∈ N , then q.d′ ⊆ Bδ(0), so that q ∈ Dd′,Bδ(0) and

ρd′,d(q) = ρBδ(0),d(1) ◦ ρd′,Bδ(0)(q) = i ◦ ρd′,Bδ(0)(q) .

The evaluation map is equivariant by Proposition 3.4.10, so

f(q) = ρd′,d(q)(x
′) ∈ i(R(Bδ(0)))

for q ∈ N . Since N ⊆ A is non-empty and open, it has an accumulation
point inside A. Corollary 4.1.7 applies to the holomorphic function f defined
on the domain A, the complete bornological vector space E(d), and its sub-
space i(R(Bδ(0))) to which N maps. Therefore, the image of f is contained
in i(R(Bδ(0))). In particular, x = f(1) is an element of this set.

Definition 4.3.4. Let X be an open subset of C and let U be a Weiss cover
of X. The relation on discs subordinate to U are defined as

RdiscU (X) = im

⊕
d,W

R(d)⊗ E(W ) −→ E(X)


where the direct sum is taken over pairs of a disc d ⊆ X and W ⊆ X open and
disjoint from d such that there exists a U ∈ U s. t. d and W are both subsets
of U .

The last condition in the definition of RdiscU (X), namely that d and W
are contained in a single U ∈ U , is the only difference from the definition
of Rdisc(X).

Lemma 4.3.5. If X is an open subset of C and U a Weiss cover of X, then

Rdisc(X) ⊆ RdiscU (X) ,

where the b-closure is taken in E(X).

Proof. By definition, the vector space Rdisc(X) is generated by elements of the

form Md,W
X (f⊗g) for f ∈ R(d) and g ∈ E(W ) for some disc d ⊆ X and W ⊆ X

open and disjoint from d. Let z0 be the center of d. The set

W = {V ⊆W open | ∃U ∈ U : U ∩W = V, z0 ∈ U}

is a Weiss cover of W as we now check. Let S ⊆W be finite. Since S ∪ {z0} is
a finite subset of X, there is a U ∈ U s. t. S ∪ {z0} ⊆ U . Thus

V := U ∩W ⊇ S .
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By the definition of the subspace topology, V is an open subset of W . This
concludes the proof that W is a Weiss cover of W .

Let f ⊗ g ∈ R(d)⊗E(W ). Since W is a Weiss cover of W and E is a Weiss
cosheaf, there are W1, . . .Wk ∈ W and gi ∈ imE(Wi ↪→W ) for i = 1, . . . , k s. t.

g =

k∑
i=1

gi ,

and thus

f ⊗ g =

k∑
i=1

f ⊗ gi .

It suffices to consider each summand individually because RdiscU (X) is closed
under addition because it is a sub vector space as the b-closure of a sub vector
space, see [9, 2:12 Proposition 1]. We consider each of these summands indi-
vidually and may therefore restrict attention to the case that there is a U ∈ U
s. t. g ∈ imE(U∩W ↪→W ) and z0 ∈ U . Our goal is to prove that Md,W

X (f⊗g) ∈
RdiscU (X). There is a δ > 0 s. t. Bδ(z0) ⊆ d ∩ U because both U and d are open

and contain z0. Lemma 4.3.3 says that R(d) = i(R(Bδ(z0))) where the b-closure
is taken in E(d) and i is the map from E(Bδ(z0)) to E(d) induced by the inclu-
sion of Bδ(z0) into d. Thus f ⊗ g ∈ i(R(Bδ(z0))) ⊗ E(W ). The claim follows

because the map Md,W
X (–⊗g) : E(d)→ E(X) is bounded and hence continuous,

so

Md,W
X (f ⊗ g) ∈Md,W

X (i(R(Bδ(z0)))⊗ g)

⊆Md,W
X (i(R(Bδ(z0)))⊗ g) ⊆ RdiscU (X) .

Proof of Theorem 4.3.2. Let X be an open subset of C and let U be a Weiss
cover of X closed under taking pairwise intersections. Our goal is to show that
the right vertical map in the following commutative diagram, whose maps are
explained below, is an isomorphism.

colim
U∈U

Rdisc(U) colim
U∈U

E(U) colim
U∈U

F (U)

Rdisc(X) E(X) F (X)

iU

γR

qU

γE γF

iX qX

The colimits are taken over U . The vertical maps are induced by inclusions
between subsets of C. Let

qX : E(X)→ E(X)/Rdisc(X) = F (X)

be the quotient map and let

qU : colim
U∈U

E(U) −→ colim
U∈U

F (U)

be the map induced by the quotient maps qU for U ∈ U instead of X. In the
lower row, the map iX is the inclusion, and the second map qX is its cokernel
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in the category of complete bornological spaces. The upper row is the colimit
of the analogue of the lower row for U ∈ U instead of X. In the upper row,
it also holds that the second map is the cokernel of the first, because colimits
commute with each other.

The map γE is an isomorphism because E is a cosheaf by Proposition 4.3.1.
Hence γF is an isomorphism if im iX = γE(im(iU )) where the b-closure is taken
in E(X), because cokernels in CBVS are computed by modding out the b-closure
of the image. Note that im iX = Rdisc(X) by definition. On the other side,

γE(im(iU )) = im

⊕
d,W

R(d)⊗ E(W ) −→ E(X)

 = RdiscU (X) ,

where d ⊆ X is a disc and W ⊆ X is open and disjoint from d such that there
exists a U ∈ U s. t. d and W are both subsets of U , and the last equality is

the definition of RdiscU (X). Therefore, it remains to show Rdisc(X) = RdiscU (X).
The inclusion “⊇” follows from Rdisc(X) ⊇ RdiscU (X) which is consequence of
the definitions. The inclusion “⊆” follows from Lemma 4.3.5.

We now state a more detailed version of the theorem from the introduction.

Theorem 4.3.6. If V is a geometric vertex algebra, then FV is a holomorphic
factorization algebra with meromorphic OPE and discrete weight spaces whose
associated geometric vertex algebra VFV is isomorphic to V.

Proof. Proposition 3.4.9 says that F = FV is a prefactorization algebra. Propo-
sition 3.4.18 says that F is holomorphic. Proposition 3.5.4 says that VFV ∼= V
as graded bornological vector spaces. In particular, F has discrete weight spaces.
Proposition 3.5.5 says that this isomorphism respects the multiplication maps,
and FV having meromorphic OPE by definition means that VFV satisfies the
meromorphicity axiom of a geometric vertex algebra. Proposition 4.2.2 says
that F is multiplicative, and Theorem 4.3.2 says that F is a Weiss cosheaf, so F
is a factorization algebra.
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[16] Fabienne Prosmans and Jean-Pierre Schneiders. A homological study of
bornological spaces. Preprint 00-21, Prépublications Mathématiques de
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