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Summary

This thesis studies C-homology theories, i. e. homology theories for diagram spaces
over an index category C, from a topological and from an algebraic point of view.

To begin with, we construct a Spanier-Whitehead type external duality functor
relating finite C-spectra to finite Cop-spectra and prove that every C-homology theory
can be represented by taking the homotopy groups of a balanced smash product with
a fixed Cop-spectrum.

More specifically, our duality comes from an abstract framework of adjoint 1-
morphisms in closed bicategories, applied to a certain bicategory DerModSpO of
spectral categories, derived bimodules and morphisms between these which we con-
struct in a first step, using advanced methods from enriched homotopy theory. We
also deal with the question how this closed bicategory depends on the model of spectra
used to define it, proving compatibility results for comparison along monoidal Quillen
adjunctions.

As an application, we use the homology representation result mentioned above to
construct Chern characters for certain rational C-homology theories. This leads to
the algebraic question to characterise which category algebras are hereditary, which
we achieve under certain mild combinatorial conditions. The algebras which occur
here are rings with approximate unit, and we adapt certain methods for unital rings
to this setup.

A prominent example to which our methods may be applied is the orbit category of
a discrete finite or infinite group G, whose homotopy theory of diagram spaces is
equivalent to the homotopy of G-spaces. We characterise very concretely when these
have hereditary category algebras and discuss interesting examples where G is the
fundamental group of a graph of groups.
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0. Introduction

This thesis deals with the homotopy theory of pointed C-spaces, or pointed diagram
spaces over C, which are functors

X : C −→ Top∗ ,

where C is a small category.
Example 0.1. Let C consist of two objects c and d, with C(c, c) = {idc}, C(d, d) = {idd}
and C(c, d) consisting of a single morphism, whereas C(d, c) = ∅. Then a pointed
C-space can equivalently be described as a triple (X,Y, f), where X and Y are pointed
spaces and

f : X −→ Y

is a pointed continuous map. We see here where the name "diagram space" comes
from: A pointed C-space is a diagram of pointed spaces of a given, in this case quite
simple, form. A morphism of C-spaces from f : X → Y to f ′ : X ′ → Y ′ is given by a
commutative square

X Y

X ′ Y ′

f

f ′

and composition is given by juxtaposition of squares.
Example 0.2. A prominent class of examples of index categories C, studied for reasons
explained below, is given by the so-called orbit categories : Let G be a discrete group,
then Or(G) is the category whose objects are all transitive G-sets G/H and whose
morphisms are all G-equivariant maps between them. Certain full subcategories of
the orbit category, where the subgroup H is restricted to a so-called family F , see
Definition 5.27, are also studied in the literature and in this thesis.
The famous Elmendorf Theorem [Elm83] identifies the homotopy theory of G-spaces
for a discrete group G with the homotopy theory of diagram spaces over the orbit
category Or(G). This may seem surprising at the first glance: we single out a
small number of G-spaces, namely only the transitive ones, and the corresponding
subcategory already governs the homotopy theory of all G-spaces. This theorem is
one of the most fundamental reason why the homotopy theory of diagram spaces
attracted mathematical attention.
Similarly to classical homotopy theory, major tools to study C-spaces are C-homology
theories, which are collections of functors

hCn : Fun(C,Top∗)→ Ab

i



0. Introduction

satisfying the usual Eilenberg-Steenrod axioms, cf. Section 4.1. A well-known way to
construct a C-homology theory is by setting

hCn(X;E) := πn(E ∧C X) (0.1)

where
E : C −→ SpO

is a (cofibrant) orthogonal Cop-spectrum. Here, ∧C denotes the balanced smash prod-
uct over C, a well-known categorical construction which we will recall in Section 1.2.
The construction (0.1) can be traced back to the very beginning of the theory of
spectra in the case that C is the trivial category and was first formulated by Davis
and Lück [DL98] in this general form. It since has proved useful in many contexts,
primarily in work on the Farrell-Jones conjecture [LR05,BLR08,BL12,Weg15,KLR16,
Rüp16,Wu16,KUWW18,BB19].
This thesis puts C-homology theories into the spotlight and recognises them as worthy
of study in their own right. The first aspect we investigate is the question whether
every C-homology theory arises in the way described above. This is answered in
the positive by our first theorem, the homology representation theorem, proved as
Theorem 4.7:
Theorem A . Suppose that C is countable. Let hC∗ be any C-homology theory. Then
there is a Cop-spectrum E and a natural isomorphism

hC∗(−) ∼= hC∗(−;E) . (0.2)

Moreover, every morphism of homology theories

hC∗(−;E) −→ hC∗(−;E′)

is induced by a morphism E −→ E′ in the derived category of Cop-spectra.
In practical situations, for many C-homology theories a concrete representing diagram
spectrum can be written down explicitly, or the theory arose from an application
of the Davis–Lück construction in the first place, so that the above theorem is not
needed. Examples include Borel homology [Lac16, Sec. 3.4], Bredon homology (see
Lemma 5.17) and the G-homology theories defined from the K- and L-theory spectra
over the orbit category [DL98, Sec. 2]. However, there are exceptions, the most
prominent one being equivariant bordism:

Example 0.3. Let G be a countable discrete group. A G-manifold is a smooth manifold
M , with or without boundary, together with a smooth G-action. Such a G-manifold
is called proper if the stabilisers of all points are finite, and cocompact if G\M is
compact. For any pointed G-space X, we define the n-th G-bordism group

NG
n (X) := {(M,∂M)

f−→ (X, ∗) | M proper cocompact G-manifold}/ ∼ ,

where we divide out proper cocompact G-bordisms over (X, ∗). This defines a
homology theory on proper G-spaces, i. e. a C-homology theory for the opposite

ii



0. Introduction

orbit category C = Or(G,FIN )op of G with respect to the family of finite subgroups
[Lac16, Sec. 5]. Since the latter category is countable, our Theorem A yields an
Or(G,FIN )-spectrum E such that

NG
n (X) ∼= πn(X ∧Or(G,FIN ) E) .

To the author’s knowledge, this is a new result, and no concrete construction of such
a diagram spectrum is contained in the literature. Our Theorem A doesn’t yield any
information on how to construct such a spectrum neither.

Proof strategy of Theorem A

It is a well-known theme in algebraic topology that cohomology is much easier to
access for representability arguments than homology. This is technically due to the
Yoneda Lemma. In the basic case C = ∗, the cohomological analogue of Theorem A
is the famous Brown representability theorem [Bro62]. Neeman [Nee01] has vastly
generalised this argument to a triangulated category setup that is sufficient to treat
the case of C-cohomology theories. Specific references for the case of C-spaces are
[Bár14,Lac16].
The classical strategy for deducing the homological Theorem A from the cohomological
consists of the following two steps:

1. Use Spanier-Whitehead duality to switch between cohomology and homology.

2. Then use Adams’ version of Brown’s representability theorem to deal with the
arising difficulty that the duality functor is only defined on finite spectra.

The latter point can easily be carried out in our setup, since Adams’ result was also
generalised by Neeman [Nee97] in a form suitable for our applications.
Remark 0.4. Neeman’s results, and all similar results contained in the literature, have
countability hypotheses on the triangulated category, and it is at this point where the
countability hypothesis of Theorem A comes in. We do not know whether Theorem A
holds true for uncountable categories. However, most of the categories of practical
interest are countable. Indeed, orbit categories of finite groups supply a large class of
categories where the result is of interest and the category C is even finite.
To adapt the first point of the strategy described above, i. e. to find a suitable
generalisation of Spanier-Whitehead duality, is more difficult. The main innovation
here is that the correct notion of duality is not incorporated by a functor

D : Fun(C,SpO)op −→ Fun(C,SpO) ,

but by a functor
D : Fun(C, SpO)op −→ Fun(Cop, SpO) .

This is the reason why we call it the external (Spanier-Whitehead) duality functor in
this thesis. Note that in the technical sense, the term "duality" is not justified: It
refers to the canonical isomorphism

DDX ∼= X (0.3)

iii



0. Introduction

for dualisable X. However, the two D’s here are not, as in the classical case, the
same functor, but only formally given by the same construction, applied to C and
Cop, respectively.
These two aspects originate from the fact that instead of classical duality theory,
which takes place in a monoidal category, the correct framework for us is duality
theory in a closed bicategory. This was first developed in [MS06, Ch. 16]. We give
a slightly simplified exposition in Chapter 3. With the correct setup at hand, the
following statement, which is our Corollary 3.16, may be proved mostly analogously
to the classical case:
Theorem B . Every finite C-CW-spectrum is dualisable.
More precisely, we apply bicategorical duality theory to a closed bicategory of
spectrally enriched categories, derived bimodules and morphisms between these,
constructed in Theorem 1.16. Chapter 1 recalls the basic enriched homotopy theory
that we need for this setup. Whereas we restricted to discrete categories C in this
introduction, we treat more general topological or even spectral categories C in the
rest of the thesis. Theorem A holds true for all spectral categories satisfying a certain
cofibrancy condition (C), and we also explain ways how to deal with categories not
satisfying (C).
This is a good place to mention that the literature contains a plethora of well-known
models for the stable homotopy category other than orthogonal spectra. Chapter 2
makes the point that we could equally well have taken one of the other models to
set up our theory and finally construct homology theories: we list mild conditions
that a category of spectra1 has to satisfy in order that our setup from Chapter 1
can be built on this category as well, and we argue why two monoidally Quillen
equivalent models yield the same theory by writing down comparison maps between
the corresponding balanced smash products. Some technical problems occur in this
program, and we install different solutions on several layers of generality, as explained
in the introduction to the chapter.

Relation to genuine G-homotopy theory

Let us lose a few words about the relation between our results and the classical
genuine G-homotopy theory which is prominent in the literature. This exists for
a finite group G and is a very sophisticated and rich theory. However, it relies
on the abundance of the orthogonal representation theory of G. In particular, the
construction of Spanier-Whitehead duality takes advantage of the fact that every
finite G-CW-complex embeds into a representation sphere. This totally breaks down
for infinite G, as the following example shows.

Example 0.5. A result of Grothendieck [Gro70, Corollaire 2.1] says that if G is a
finitely generated group without proper normal subgroups of finite index, then every
finite-dimensional representation of G over any field is trivial. In characteristic 0,

1or more generally an arbitrary monoidal model category, which could as well model a different
homotopy theory
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0. Introduction

this is due to Mal’tsev [Mal40, Thm. 7]. An example of such a group, constructed by
Higman [Hig51], is given by the following presentation:

G = 〈a, b, c, d | a−1ba = b2, b−1cb = c2, c−1dc = d2, d−1ad = a2〉 .

The overall goal of this thesis can be summarised as remedying this defect: Applying
our constructions to Or(G) yields a suitable duality functor on finite G-spaces, where
G is any discrete group, e. g. the Higman group we just mentioned. This route is
thus completely independent of the representation theory of G.
Recently, the paper [DHL+19] developed a different approach to proper equivariant
homotopy theory for infinite discrete groups, generalising the genuine theory. We want
to stress that for (finite or infinite) groups, our results are neither generalisations nor
special cases of the results for the genuine theory. We refer the reader to Remark 1.5
for a more detailed discussion.

The rational case

After having proved the representation theorem, we shift our focus by investigating
rational C-homology theories. It is well-known from the classical case C = ∗ that
studying these theories can be translated into a purely algebraic theory, and the same
turns out to be the case for general (countable) C.
We will always focus on the question whether a Chern character exists for a given
rational C-homology theory hC∗ . This means that hC∗ can be written as a sum of
so-called Bredon homology theories which have a simple algebraic construction and
can be seen as the counterparts of singular homology in the equivariant setup, see
Section 5.4. In the classical case C = ∗, every rational homology theory has a Chern
character, or equivalently, is isomorphic to a direct sum of shifted singular homology
theories with Q coefficients, by a folklore result which is based on the computation of
the rational stable homotopy groups of the sphere in Serre’s thesis [Ser51].
An application of Theorem 4.7 already brings us halfway to the existence of Chern
characters. The idea here is that rational spectra are well-known to be Quillen
equivalent to unbounded rational chain complexes by the Dold-Kan correspondence,
so that the balanced smash products of spectra we dealt with before translate into
balanced tensor products of chain complexes, which in turn are isomorphic to tensor
products over the so-called category algebra QC of C. We thus get the following result,
proved as Corollary 5.7:
Theorem C . If E is a chain complex of right QC-modules, then

hC∗(X;E) = H∗(E ⊗QC X)

defines a rational reduced C-homology theory. Here X denotes a certain resolution of
the normalised singular chain complex of X.
Conversely, if hC∗ is a rational C-homology theory, then there are a chain complex E
and a natural isomorphism of homology theories as above. Any morphism of rational
homology theories is represented by a morphism in the derived category of chain
complexes.

v



0. Introduction

Implementing the proof idea sketched above reveals some technical difficulties: Firstly,
one has to realise the Dold-Kan correspondence in a suitably monoidal way so that
it is compatible with balanced smash products. This was done in the paper [Shi07],
which we review in Section 5.1. For us, the Dold-Kan correspondence is a certain
zig-zag of weak monoidal Quillen equivalences, and we can now profit from our
comparison results proved in Chapter 2, in particular in Section 2.2.1, to prove that
balanced smash products are preserved. One caveat is that C has to be discrete from
this point on.
Secondly, if the category C has infinitely many objects, then the ring QC fails to
have a unit. However, there is a good substitute at hand: It always has a so-called
approximate unit. This technical replacement for a unit, see Definition 5.4, makes it
possible to transfer virtually all results which are well-known for unital rings, though
one usually has to take a little more care. We discuss this in Section 5.3.
Having arrived at this point, the existence of a Chern character boils down to a
purely algebraic question. In the situation of Theorem C, a Chern character exists
for hC∗ = hC∗(−;E) if and only if E is decomposable, i. e. is isomorphic in the derived
category to a complex with zero differentials, cf. Lemma 5.21. We provide two
approaches to proving decomposability.
The first approach uses a spectral sequence argument to show that if all homology
modules Hs(E) are flat as right QC-modules, then E decomposes. This is formulated
as Proposition 5.23. An important special case, explained in Section 5.5, is when
Hs(E) has an extension to a Mackey functor, as happens in many examples. This
approach follows ideas of [Lüc02], see Remarks 5.24 and 5.35.

Hereditary category algebras

The second approach, discussed in Chapter 6, has no hypothesis on the derived chain
complex E, but on the category C: It asks when all rational C-homology theories
possess a Chern character. This leads to the task of characterising hereditary category
algebras. This task, which is interesting in its own right, has been accomplished (for
EI categories satisfying a mild combinatorial assumption) in joint work with Liping
Li [LL20], based on earlier work of Li in the finite case [Li11]. The following is proved
as a corollary of Theorem 6.7:
Theorem D . Let C be a countable discrete EI category. Suppose that

• C has the finite factorisation property FFP and the unique factorisation property
UFP,

• all group algebras QGc are hereditary,

• the opposite category Cop satisfies conditions (Ad) and (Bd) for k = Q.

Then QC is hereditary and every rational C-homology theory has a Chern character.

Remark 0.6. This is actually an ’if and only if’ statement (if the FFP is assumed), as
proved in [LL20]. We focus on the sufficiency implication in this thesis. Using the
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0. Introduction

’only if’ application, we get the result that there certainly exist rational C-homology
theories which do not possess a Chern character, for example over the category

• •

• •

since this doesn’t have the UFP.

Let us comment shortly on the list of hypotheses appearing here. The finite factorisa-
tion property FFP is a combinatorial assumption satisfied in most practical examples,
cf. Definition 6.4. The unique factorisation property already appears in the finite
case [Li11] as the main pattern governing hereditarity. It refers to the factorisability
properties of morphisms, and categories with the UFP can be seen as analogues of the
unique factorisation domains in commutative algebra. The conditions (Ad) and (Bd)
refer to a governing pattern which only appears if C is infinite, namely the structure
of C(c, d) as a (Gd, Gc)-bimodule for arbitrary objects c 6= d. All these conditions are
explained in detail in Section 6.1.
To prove Theorem D, we first translate it to a purely algebraic statement about the
global dimension of certain tensor algebras, see Theorem 6.26, which we prove by
mimicking a strategy from the paper [CQ95].
Applying Theorem D to orbit categories yields the following result, proved as Theo-
rem 6.12:
Theorem E . Let G be a discrete group and F a family of finite subgroups. Suppose
that

• G is either countable locally finite or the fundamental group of a connected
graph of finite groups,

• all members of F are cyclic of prime power order, and their Weyl groups are
finite (except possibly for the Weyl group of {1}).

Then every rational Or(G,F)-homology theory possesses a Chern character.

Relation to the preprints [Lac19] and [LL20]

Many of the results from Part I and Chapter 5 can already be found in my arxiv
preprint [Lac19]. There are, however, some technical improvements concerning the
setup of the theory and the comparison methods. Referring to the five questions
formulated in the introduction of the paper, this thesis succeeds in answering Questions
2 and 5. Chapter 6 is based on the paper [LL20] of the author together with Liping
Li. I included mainly those of our results which are relevant for the question of the
existence of a Chern character, mentioning the more general results as a side remark
from time to time.
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0. Introduction

Organisation of the thesis

The thesis is divided into two parts: Part I, comprising Chapters 2 through 5,
deals with C-homology theories in general and is thus the topological part. In Part
II, we treat rational C-homology theories and quickly arrive at a purely algebraic
situation. Chapter 2, together with Section 5.1, serve as a bridge between the two
parts, translating the topological constructions into algebraic ones.
Here is a more detailed overview:

• Chapter 1 recalls some notions from enriched homotopy theory and constructs
the closed bicategory of spectrally enriched categories.

• Chapter 2 discusses what happens if orthogonal spectra are replaced by another
model category of spectra as the target category of our diagram spectra.

• Chapter 3.1 develops external duality theory in closed bicategories and applies
this to C-spectra, proving Theorem B.

• Chapter 4 proves Theorem A via the route sketched above.

• Chapter 5 introduces Chern characters and proves Theorem C. It also recalls
the background on rings with approximate unit which is needed for this and
the next chapter.

• Chapter 6 treats hereditarity criteria for category algebras, leading to Theo-
rems D and E.

The thesis has three appendices:

• Appendix A describes an alternative way to develop the setup underlying our
theory, based on the paper [Shu06].

• Appendix B proves a finiteness result for the compact-open orbit categories of
certain p-adic Lie groups, opening the way to applications of Theorem A.

• Appendix C discusses combinatorial and geometric conditions, in terms of group
actions on trees, under which the hypotheses of Theorem E are satisfied.
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Part I.

Topology





1. The closed bicategory DerModSpO

The correct setup for developping external duality theory, as is done in Chapter 3,
is given by the notion of a closed bicategory. This will then be applied to deduce
results about C-spectra. In this first chapter, we will introduce the actors, i. e.
recall the basics about model structures on the category Fun(C,SpO) of C-spectra
in Section 1.1, introduce the notion of a closed bicategory in Section 1.2 and show
how Fun(C, SpO) can be endowed with this structure, cf. Proposition 1.12, and then
show that we can preserve this structure when passing to the homotopy category in
Section 1.3, especially Theorem 1.16. Our closed bicategories will, in the underived,
resp. derived case, consist of small spectrally enriched categories (with cofibrant
mapping objects), (derived) bimodules over these and morphisms (in the homotopy
category) of bimodules.

1.1. Recapitulations about the homotopy category of
C-spectra

Let SpO denote the category of orthogonal spectra with the stable model structure,
as discussed in [MMSS01], and let C be a small category enriched in SpO. Let
Fun(C, SpO) denote the category of enriched functors from C to SpO and enriched
natural transformations [Bor94b, Def. 6.2.4]. Prominent objects of this category are
the representable functors

c = C(c, ?)

for c ∈ Ob(C), or more generally X ∧ c for some spectrum X, where the smash
product is meant objectwise.
We want to endow Fun(C, SpO) with a model structure in which the fibrations and
weak equivalences are given by the objectwise fibrations and weak equivalences. This
determines the model structure, if it exists, uniquely, justifying that we call it ’the’
projective model structure.
For usual Set-enriched categories C, the existence of the projective model structure
is folklore since SpO is a cofibrantly generated model category [Hir03, Thm. 11.6.1,
Prop. 11.6.3]. For spectrally enriched C, the situation is more subtle. The first assertion
of the following theorem is due to Shipley and Schwede [SS03a, Thm. 6.1(i)1]. The
topological case was first written down in [Pia91, Thm. 5.4]. The second assertion

1This theorem is stated with the assumption that every spectrum is small with respect to the
whole category of spectra, which is not true for orthogonal spectra, but the conclusion of the
Theorem still holds, as remarked on p. 330.

3



1. The closed bicategory DerModSpO

then follows formally and can be found in [Shu06, Thm. 24.4] or [GM20, Thm. 4.32].
All these theorems use the fact that SpO satisfies the monoid axiom [SS00, Def. 3.3],
as is proved in [MMSS01, Thm. 12.1(iii)].
Theorem 1.1 . (i) The projective model structure exists for any spectral category C.
A class of generating cofibrations is given by morphisms of the form X ∧ c→ Y ∧ c,
where X → Y runs through a class of generating cofibrations of SpO and c through
the objects of C; a class of generating trivial cofibrations is described similarly.
(ii) A cofibration in the projective model structure is objectwise a cofibration if C
satisfies the following condition:

(C) The mapping spectra C(c, d) are cofibrant for all c, d ∈ C.

Because of this theorem, if not explicitly mentioned otherwise,

we assume from now on that our category C satisfies (C).

We denote
S H C C = Ho(Fun(C, SpO))

and use square brackets to indicate that we are talking about morphisms in the
homotopy category:

[X,Y ]C := HomHo(Fun(C,SpO))(X,Y ) = HomS H C C(X,Y ) .

Remark 1.2. The paper [SS03b] shows that (if spectra are simplicial symmetric
spectra) the model categories Fun(C, SpΣ

sSet) are exactly the simplicial, cofibrantly
generated, proper, stable model categories with a set of compact generators, up to
zig-zags of Quillen equivalences.

Fun(C, SpO) is a stable model category, so the homotopy category admits a preferred
triangulated structure, even in the strong sense of [Hov99, Sec. 7]. We refer to the
fact that

X
f−→ Y −→ Z → ΣX (1.1)

is a distinguished triangle sloppily as Z = C(f). Note that this notion makes sense
already in the pointed model category of pointed C-spaces [Hov99, Sec. 6]. If f is a
cofibration between cofibrant objects, then C(f) = Y/X.
It is a well-known fact about triangulated categories that a distinguished triangle (1.1)
induces a long exact sequence

. . . −→ [ΣY,B]C −→ [ΣX,B]C −→ [Cf,B]C −→ [Y,B]C −→ [X,B]C −→ . . . (1.2)

and similarly for [B,−]C .
A triangulated subcategory of S H C C is a full subcategory closed under Σ and Σ−1

with the property that if it contains a morphism f : X → Y , then also its cone Cf .
Recall from [MMSS01] that SpO is inhabited by various spheres FkSn with F0S0 = S
and Fk(X ∧ Y ) = (FkX) ∧ Y . In the homotopy category, FkSn becomes a k-fold
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1.1. Recapitulations about the homotopy category of C-spectra

desuspension of Sn. The canonical maps Fk(Sn+)→ Fk(Dn+1
+ ), with k ∈ Z and n ∈ N,

define a class of generating cofibrations in SpO. A class of generating cofibrations
in Fun(C,SpO) is thus given by Fk(Sn+) ∧ c → Fk(D

n+1
+ ) ∧ c for k ∈ Z, n ∈ N and

c ∈ Ob(C). We will call an object of S H C C a finite C-CW-spectrum if it can
be obtained from the trivial functor ∗ by a finite number of gluing steps using
these generating cofibrations. The C-Spanier-Whitehead category S W C is the full
subcategory of S H C C on the finite C-CW-spectra.
The name is justified by the following lemma:

Lemma 1.3. (a) S W C is the full subcategory of S H C C on objects of the form
ΣNΣ∞A for some integer N and some finite pointed C-CW-complex A.
(b) If A is a finite C-CW-complex and B is an arbitrary C-CW-complex, then

HomS W C(Σ
NΣ∞A,ΣMΣ∞B) ∼= colimk

{
ΣN+kA,ΣM+kB

}
C
,

where the curly brackets on the right denote (unstable) homotopy classes of maps of
C-spaces.
(c) S W C is the smallest triangulated subcategory of S H C C containing the objects c
for all c ∈ Ob(C).

Note that statement (b) serves as an alternative definition of S W C , not using
S H C C .

Proof. Part (a) is an easy induction. In part (c), the fact that S W C is triangulated
is clear as well. For the minimality, note that this would be clear inductively if we
had defined finite C-CW-spectra using attaching maps Fk(Sn) ∧ c → Fk(D

n+1) ∧ c
since Dn+1 = C(Sn). Unfortunately, Dn+1

+ is not the cone of Sn+. However, in the
homotopy category, we may suspend as often as we want since this is an isomorphism.
After one suspension, the basepoint problem vanishes: the inclusion Sn+ → Dn+1

+

becomes the inclusion of the boundary B of an (n+ 2)-disk D with two boundary
points identified (to the basepoint). The cone of the quotient map Sn+1 → B can be
identified with D.
For part (b), note that it suffices to prove this statement for ΣA and ΣB. Fix B. As
in the proof of (c), we only need to show that it holds true for all c and if it is true for
A and A′, and if f : A→ A′ is a morphism, then it is true for Cf . For corepresentable
functors c, the statement boils down to the well-known corresponding statement for
S H C . Use Theorem 1.16 (c) and Lemma 1.23 below to deal with the left-hand
side. For the cone argument, first prove that the right-hand side functor (for fixed
B) turns cofibre sequences into long exact sequences, similarly to (1.2). There is a
natural map from the right-hand side to the left-hand side which is compatible with
these two cone long exact sequences, and thus the claim follows via induction and
the five lemma.

Remark 1.4. If C = Or(G) is the orbit category of a group G, then Marc Stephan
[Ste16] has shown that Elmendorf’s Theorem holds in orthogonal spectra, i. e. there
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1. The closed bicategory DerModSpO

is a model structure on naive orthogonal G-spectra (G-objects in the category of
orthogonal spectra) and a Quillen equivalence between this model category and
Fun(C, SpO). However, this may fail in other categories of spectra with the properties
discussed in Section 2.1 below. For instance, it definitely fails in ChQ. The reason is
that Stephan’s paper has a cellularity condition that is satisfied by SpO, but not by
ChQ. We will not use the spectral Elmendorf Theorem in this thesis.

Remark 1.5. As promised in the introduction, we want to compare our approach to the
classical one of classical genuine G-equivariant homotopy theory. Surveys on this topic
are [May96], [Sch18, Ch. 3] and [HHR16, Sec. 2,3, App. A,B]. In this context, G is a
finite (or compact Lie) group, and usually not Z-graded, but so-called RO(G)-graded
(co-)homology theories are considered and this leads to a stable category in which not
only S1, but all representation spheres SV are invertible with respect to the smash
product, where V runs through all finite subrepresentations of a so-called universe
U . Using Remark 1.4 above, one sees that (for SpO as the category of spectra) we
invert subrepresentations of the trivial universe R∞, an approach sometimes called
naive equivariant stable homotopy theory in the genuine context.
This framework in all its generality breaks down when G becomes an infinite group.
Recently, the authors of [DHL+19] developed a generalisation for infinite (or non-
compact Lie) groups G with respect to the family of finite (or compact) subgroups.
In their setup, smashing with all Thom spaces Sξ, with ξ a G-vector bundle over
EG, is inverted. Thus, this gives a different setup than the one we treat here, and
in particular does not relate to the Davis-Lück construction of homology theories
occuring in our homology representation theorem 4.7. Also, our theory is more general
in that it treats diagram spaces over arbitrary countable categories C.

1.1.1. Topological categories without (C)

Let us shortly dwell on the case that our index category C doesn’t satisfy condition
(C). This becomes important in relation with forthcoming work of Bartels-Lück on
the algebraic K-theory of Hecke algebras, where certain topological categories appear
whose mapping spaces are totally disconnected.
As will become clear soon, the derived balanced smash product − ∧LC − is not even
defined, so even the formulation of our homology representation theorem, as well
as the application of most other results and methods in this thesis, is out of reach.
However, we can approximate C by a suitable category C′ satisfying (C) and yielding
the same homotopy theory of diagram spaces, starting from the following construction.
A continuous functor ν : C → D induces a functor

ν∗ : Fun(D, SpO) −→ Fun(C, SpO)

given by precomposition with ν, which has a left adjoint ν! given by left Kan extension.

Definition 1.6. A continuous functor ν : C → D is called weakly fully faithful if
ν : C(c, d) → D(ν(c), ν(d)) is a weak equivalence for all c, d ∈ Ob(C). It is called a
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1.1. Recapitulations about the homotopy category of C-spectra

weak equivalence if it is weakly fully faithful, and essentially surjective in the usual
sense.

Proposition 1.7 [GM20, Prop. 2.4]. Let C be a small category enriched in SpO, not
necessarily satisfying (C). The adjunction (ν!, ν

∗) is a Quillen adjunction, which is a
Quillen equivalence if and only if ν is a weak equivalence.

Given a spectral category C, one may thus try to find a category C′ satisfying (C)
together with a weak equivalence ν : C′ → C, so that ν induces an equivalence of
categories

S H C C′ ∼= S H C C

and we can apply the methods developed in this thesis to C′ to study C-homology
theories.
In case that the index category comes from a topological category (by adding base-
points to and then applying the infinite suspension functor to the mapping spaces),
this is always possible. The reason is that Top has a strong monoidal cofibrant
replacement functor

Q = |Sing(−)| ,

cf. [GJ09, Prop. 2.4, Thm. 11.4]. Moreover, applying the suspension functor Σ∞

preserves weak equivalences in this case by [MMSS01, Thm. 6.9 (i)] since we suspend
well-pointed spaces by definition (we have added a basepoint).

Remark 1.8. It is not known to the author whether there is a similar construction for
pointed topological categories, let alone general spectral categories.

Remark 1.9. As a side remark, we want to warn the reader that the suspension
spectra doesn’t in general preserve weak equivalences [Kar20].

Corollary 1.10. Let C be an arbitrary topological category. Then there is a topological
category C′ together with a continuous functor ν : C′ → C such that

• Σ∞C′+ satisfies (C) and

• the induced functor Σ∞C′+ → Σ∞C+ is a weak equivalence.

The topological category C′ has the same objects as C, and

C′(c, d) = |Sing(C(c, d))| .

Summarising, the homotopy theory that we study in this thesis doesn’t see the
point-set topology on the mapping spaces of a topological category. This can be
remedied by considering the Čech model structure [Dug99]. This model structure
plays no role in this thesis, however.
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1. The closed bicategory DerModSpO

1.2. ∧C and mapC

From now on, the letters A,B and D also refer to spectrally enriched small categories
satisfying (C). The spectrally enriched category A ∧ Bop has objects Ob(A)×Ob(B)
and

(A ∧ Bop)((a, b), (a′, b′)) = A(a, a′) ∧ B(b′, b) .

An (A,B)-bimodule is a continuous functor A∧Bop → SpO. We denote the category
of (A,B)-bimodules and (A,B)-linear morphisms (i. e. natural transformations of
enriched functors) by

Mod(A,B) = Fun(A ∧ Bop, SpO) ,

with Hom sets denoted by Hom(A,B)(−,−) and homotopy sets (i. e. Hom sets in
the homotopy category of (A ∧ Bop)-spectra) denoted by [−,−](A,B). (C, ∗)- and
(∗, C)-bimodules are just called left, respectively right C-modules.
If X is a right and Y a left C-module, then X ∧C Y is the spectrum

coequ

 ∨
(c,d)∈Ob(C)2

Y (c) ∧ C(c, d) ∧X(d)⇒
∨

c∈Ob(C)

Y (c) ∧X(c)

 .

Here, the upper arrow is defined on any (c, d)-summand via the morphism corre-
sponding to

X∗ : C(c, d)→ map(X(d), X(c))

under the adjunction between − ∧ X(d) and map(X(d),−). The lower arrow is
defined similarly, using Y instead of X.

Remark 1.11. One could understand the above coequaliser in two ways: Either as
a colimit in the usual sense in the category SpO, or as a SpO-colimit, meaning that
the mapping spectrum out of it is isomorphic, as a spectrum, to a suitable limit of
mapping spectra. Since we are working with SpO itself as target category here, there
is no distinction between these two notions, compare the discussion in [Shu06, § 11].

More generally, the balanced smash product X ∧B Y of an (A,B)-bimodule X and a
(B, C)-bimodule Y is the (A, C)-bimodule defined by

X ∧B Y (a, c) = X(a, ?) ∧B Y (?, c) .

Similarly, the mapping spectrum mapCop(U,X) between two right C-modules U and
X is defined as

equ

 ∏
c∈Ob(C)

map(U(c), X(c))⇒
∏

(c,d)∈Ob(C)2

map (C(c, d),map(U(d), X(c)))

 .

More generally, for an (A,B)-bimodule X and a (C,B)-bimodule U , we have an (A, C)-
bimodule mapBop(U,X). We can similarly define the mapping spectrum between
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1.2. ∧C and mapC

two left C-modules, or between an (A,B)-bimodule and an (A, C)-bimodule. We also
introduce the (A,A)-bimodule A defined by

(a, a′) 7→ A(a′, a) ,

this not being a tautology, but referring to the mapping spectra of the category A.
The constructions just introduced can not only be defined in SpO, but in any cosmos
V . They are linked in various ways that can be subsumed using the notion of a closed
bicategory. Recall that a bicategory A consists of a class of objects Ob(A ), and a small
category of 1-morphisms A (A,B) between any two objects A and B, together with
composition functors that are associative and have units up to coherent isomorphisms
[Bor94a, Def. 7.7.1]. The morphisms between the 1-morphisms are called 2-morphisms.
A bicategory is called closed [MS06, Def. 16.3.1] if for every 1-morphism f : A→ B
and every object C, the precomposition with f , f∗ : A (B,C) −→ A (A,C), as well
as the postcomposition with f , f∗ : A (C,A) −→ A (C,B), have a right adjoint. Since
adjoints are unique up to unique isomorphism if they exist, this is a property of a
bicategory, not an additional structure on it.

Proposition 1.12. Let V be a cosmos. Then there is a closed bicategory ModV in
which the objects are given by small V-enriched categories; 1-morphisms from A to B
are (A,B)-bimodules, with composition given by balanced product and idA given by
the (A,A)-bimodule A; the 2-morphisms are given by morphisms of bimodules; if X
is an (A,B)-bimodule, then the right adjoints of pre- and postcomposition with X are
given by mapA(X,−) and mapBop(X,−).

Proof. The bicategory structure was first discussed in [Bén73] for V = Set; [HV92,
Prop. 2.6] is a classical reference for V = Top, though it omits bicategorical language.
A general reference is [Shu13, Sec. 3, esp. Lemmas 3.25, 3.27].

Remark 1.13. In the literature, there are three different names for what we call
bimodules here, all of which seem to be common in some circles; the other two
are distributors and profunctors. Consequently, the bicategory introduced above is
sometimes also called DistV or ProfV .

Remark 1.14. The category Mod(A,B) can again be jazzed up to a spectrally enriched
category: If we view two (A,B)-bimodules X and Y as left (A ∧ Bop)-modules
(or right (Aop ∧ B)-modules), we can define a mapping spectrum map(A,B)(X,Y )
with underlying set Hom(A,B)(X,Y ). Thus, ModSpO is a spectrally enriched closed
bicategory in the obvious sense. We don’t give further details since we won’t use this
enrichment.

Example 1.15. In addition to V = Set and V = SpO, another interesting example
of a cosmos is V = Ab. An Ab-enriched category is usually called a preadditive
category, and a preadditive category with one element is the same as a ring, with a
bimodule in the sense discussed here corresponding to a bimodule in the usual sense
(whence the name). Thus, we get as a full sub-bicategory of ModAb the bicategory
of rings, (R,S)-bimodules and (R,S)-linear homomorphisms between them, which
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1. The closed bicategory DerModSpO

is sometimes called the Morita category. More generally, one can take V = R−Mod
for some commutative ring R. One may also take V = ChR. A ChR-category is
the same as an R-linear dg-category. Suppose that A and B are R-linear categories
(concentrated in degree 0), then an (A,B)-bimodule is the same as a chain complex
of (A,B)-bimodules over R−Mod. Thus we get as a full sub-bicategory of Mod(ChR)
the bicategory of R-linear categories and chain complexes of (A,B)-bimodules. We
will study this in detail for R = Q in Chapter 5.

1.3. Deriving ∧C and mapC

We will now derive the whole setup in the sense that we pass to the homotopy
category of every bimodule category Mod(A,B), and define a derived version of the
balanced smash product which allows us to view the collection of all derived bimodule
categories as a bicategory, as well as derived versions of the mapping spectra which
exhibit this bicategory as closed. Technically, we achieve this by using the notion of
a Quillen adjunction of two variables [Hov99, Sec. 4.1]. The paper [Shu06] presents a
slightly different approach based on the two-sided bar construction. This has stronger
assumptions, but avoids certain technical difficulties arising in this section and the
next chapter. We review this approach in Appendix A.
Throughout the rest of this section, let X be an (A,B)-bimodule, Y a (B, C)-bimodule,
Z a (C,D)-bimodule, U an (A,D)-bimodule, and V an (A, C)-bimodule. (This
convention will always be clear from the context.)

Theorem 1.16. The following data defines a closed bicategory DerModSpO : objects
are small SpO-enriched categories satisfying (C); 1-morphisms from A to B are
(A,B)-bimodules; 2-morphisms are given by

(DerMod(A,B))(X,Y ) = [X,Y ](A,B) .

The identity 1-morphism of an object A is the (A,A)-bimodule A and the identity
2-morphism of a 1-morphism X is idX . The composition of 1-morphisms and their
adjoints are given by the functors

− ∧LB − : DerMod(A,B)×DerMod(B, C) −→ DerMod(A, C) ,

RmapCop : DerMod(B, C))op ×DerMod(A, C) −→ DerMod(A,B) ,

and
RmapA : DerMod(A,B)op ×DerMod(A, C) −→ DerMod(B, C) ,

which are the total derived functors of − ∧B −, mapCop and mapA. Explicitly, for Q
a functorial cofibrant replacement and R a functorial fibrant replacement, we have

X ∧LB Y ∼= QX ∧B QY , RmapCop(Y, V ) ∼= mapCop(QY,RV )

and
RmapA(X,U) ∼= mapCop(QX,RU) .
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In particular, the closed bicategory structure induces the following natural isomor-
phisms:

(a) A ∧LA X ∼= X ∼= X ∧LB B in DerMod(A,B),

(b) (X ∧LB Y ) ∧LC Z ∼= X ∧LB (Y ∧LC Z) in DerMod(A,D),

(c) [X ∧LB Y, V ](A,C) ∼= [X,RmapCop(Y, V )](A,B)
∼= [Y,mapA(X,V )](B,C),

(d) RmapA(A, X) ∼= X ∼= RmapBop(B, X) in DerMod(A,B),

(e) RmapA(X ∧LB Y,U) ∼= RmapB(Y,RmapA(X,U)) in DerMod(C,D),

(f) RmapDop(Z,RmapA(X,U)) ∼= RmapA(X,RmapDop(Z,U)) in DerMod(B, C).

Remark 1.17. This theorem allows one to construct a Ho(SpO)-enrichment of S H C C ,
interpreting C-spectra as (∗, C)-spectra and using RmapC(−,−).

Proof. Let A, B and C denote small spectrally enriched categories satisfying (C). The
closedness of the bicategory ModSpO gives natural isomorphisms

ϕl : Hom(A,C)(X ∧B Y, V )
∼=−→ Hom(B,C)(Y,mapA(X,V ))

and
ϕr : Hom(A,C)(X ∧B Y, V )

∼=−→ Hom(A,B)(X,mapCop(Y, V )) .

The categories Mod(A,B), Mod(B, C) and Mod(A, C) with the quintuple consisting
of ∧B, Homr = mapCop , Homl = mapA and the two isomorphisms ϕr and ϕl form an
adjunction of two variables in the sense of [Hov99, Def. 4.1.12]. We want to apply
[Hov99, Cor. 4.2.5] to show that ∧B is a Quillen bifunctor.
For this we have to check that the pushout product of two generating cofibrations is a
cofibration, and that it is a trivial cofibration if one of the factors is a generating trivial
cofibration. For the definition of the pushout product �, see [Hov99, Def. 4.2.1]. We
check the first statement, the other two being similar. We may choose the generating
cofibrations of the form f ∧ (a, b) and g ∧ (b′, c), where f and g belong to a class
of generating cofibrations of SpO. Up to isomorphism of morphisms, we have the
identity

(f ∧ (a, b)) �B (g ∧ (b′, c)) ∼= (f � g) ∧ B(b, b′) ∧ (a, c) . (1.3)

By the pushout-product axiom for SpO, f�g is a cofibration. Now, B(b, b′) is cofibrant
by (C) and thus (f � g) ∧ B(b, b′) is a cofibration, since it is a smash product of a
cofibration with a cofibrant object. Here we use the pushout-product axiom for SpO

again. Thus, the right hand side of (1.3) has the left lifting property with respect to
all trivial fibrations and is thus a cofibration.
Proposition 4.3.1 of [Hov99] then applies to show that we have total derived functors
as in the statement of the theorem and that the quintuple

(∧LB, RmapCop , RmapA, Rϕr, Rϕl)
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defines an adjunction of two variables. This gives the isomorphism (c). Isomorphism
(b) follows from the explicit description of ∧LB together with the fact that the balanced
smash product of two cofibrant bimodules is cofibrant, which follows from the Quillen
bifunctor property.
To show that DerModSpO is actually a bicategory, we are left to deal with two points:
Firstly, that there is an associativity isomorphism satisfying a coherence square.
This follows directly from the corresponding fact for ModSpO , as in the proof of
[Hov99, Prop. 4.3.1 or Prop. 4.3.2]. Secondly, that we have an identity 1-morphism at
every object. Surprisingly, this is the more difficult part, since the identity A might
be non-cofibrant. However, we may use Corollary 1.21 below to see that

A ∧LA X ∼= A ∧A X ∼= X

since A is obviously right flat in the sense of Definition 1.20. The coherence conditions
for this unitality isomorphism are readily checked.
The fact that the derived mapping functors are right adjoints of the derived smash
products is part of the adjunction of two variables statement. Summarising, we have
now proved that DerModSpO is a closed bicategory, amounting to isomorphisms (a)
to (c).
Now the punchline is that (d) to (f) are valid in any closed bicategory: (d) follows
from (a) – if pre- and postcomposition with A is isomorphic to the identity, then the
same has to be true for their adjoints. Similarly, (e) and (f) follow from (b).

Proposition 1.18. If X is a cofibrant (A,B)-spectrum, then X ∧B − preserves weak
equivalences.

Remark 1.19. To the author’s knowledge, it is not clear whether this holds for arbitrary
X, even for A = B = ∗.

Proof. Let Y → Y ′ be any weak equivalence of (B, C)-spectra which will be fixed
throughout the proof. We first treat the case where X = FkA ∧ (a, b), with A a
pointed CW-complex. Smashing with FkA ∧ (a, b), we get the map

FkA ∧ A(a,−) ∧ Y (b,−) −→ FkA ∧ A(a,−) ∧ Y (b,−) .

Now, A(a,−) is objectwise a cofibrant spectrum by (C), and so is FkA. But smashing
with a cofibrant spectrum preserves weak equivalences by [MMSS01, Prop. 12.3].
Now we want to reduce to the general case. By general theory of cofibrantly generated
model categories, a cofibrant object is a retract of a cell complex. Since weak
equivalences are closed under retracts, we may assume that X is a (transfinite)
cell complex, i. e. a transfinite composition [Hir03, Def. 10.2.2] of pushouts along
generating cofibrations. Suppose that the transfinite composition is indexed by some
ordinal β and denote the intermediate ’skeleta’ by Xα, α < β, where Xα+1 can be
obtained from Xα by a cobase change along a coproduct of generating cofibrations.
In particular, Xα ↪→ Xα+1 is a cofibration in the projective model structure, but this
property is not preserved when smashing (over C) with an arbitrary spectrum. This is
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why we have to use the more subtle notion of h-cofibration. This is a concept which
is not available in an arbitrary model category, but in many topological examples, in
particular in SpO. Our use of h-cofibrations is restricted to this proof.
We define a map of C-spectra A→ B to be an h-cofibration if B ∧ I+ retracts onto
A ∧ I+ ∪A B ∧ {0}+, cf. [MMSS01, p. 457]. Since the generating cofibrations are h-
cofibrations, the same is true for the inclusions Xα ↪→ Xα+1. Moreover, h-cofibrations
are preserved under balanced smash products by definition.
Now we are in shape to prove the proposition for general X by transfinite induction on
β. Suppose that Xα ∧B − preserves weak equivalences. We have a pushout diagram

A B

Xα Xα+1

with a generating cofibration A ↪→ B. This will stay be a pushout diagram after
applying − ∧B Y and − ∧B Y ′, since these functors have right adjoints. We get a
comparison diagram

Xα ∧B Y A ∧B Y B ∧B Y

Xα ∧B Y ′ A ∧B Y ′ B ∧B Y ′

∼ ∼ ∼

where the hooked arrows denote h-cofibrations. The left vertical arrow is a weak
equivalence by induction hypothesis, and the two right vertical arrows are by the
beginning of this proof, for A = Sn+ and A = Dn

+. It follows that the map on the
pushout is a weak equivalence by [MMSS01, Thm. 8.12(iv)]. For limit ordinals β, we
know that Xβ is the colimit of Xα, α < β. This is preserved when smashing with Y
and Y ′. In orthogonal spectra, a stable equivalence is the same as a π∗-isomorphism
[MMSS01, Prop. 8.7]. Computing the stable homotopy groups commutes with colimits
along h-cofibrations, since these are levelwise closed inclusions.

Definition 1.20. An (A,B)-spectrum F is right flat if the functor

F ∧B − : Mod(B) −→ Mod(A)

preserves weak equivalences. f : F → X is called a right flat replacement of X if F is
right flat and f is a weak equivalence.

Since weak equivalences are defined objectwise, for a right flat (A,B)-spectrum F
and arbitrary C, the functor

F ∧B − : Mod(B, C) −→ Mod(A, C)

will preserve weak equivalences as well.
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Corollary 1.21. Let f : F → X be a right flat replacement of X. Then there is a
natural isomorphism

X ∧LB Y ∼= F ∧B Y

for any (B, C)-bimodule Y .

Proof. There are weak equivalences

X ∧LB Y = QX ∧B QY
∼−→ X ∧B QY

∼←− F ∧B QY
∼−→ F ∧B Y ,

where the first and second weak equivalence follow from Proposition 1.18.

Left flat replacements are defined similarly and the statement of the corollary carries
over mutatis mutandis.

Remark 1.22. Proposition 1.18 and Corollary 1.21 have been proved to show the
isomorphism A∧LAX ∼= X. The proofs are technically much more advanced than the
rest of the proofs in this chapter and in particular harder to generalise to other model
categories of spectra than orthogonal spectra, cf. Chapter 2. In the understanding of
the author, this is inevitable for Proposition 1.18 since the corresponding statement
for C = ∗ is a subtle point in all treatments he could find. A different setup in which
the fact that A ∧LA X ∼= X can be proved without Proposition 1.18 is presented in
Appendix A.

The one-object Yoneda lemma carries over to the derived setting without trouble
since c is a cofibrant Cop-spectrum. We state it here for later use.

Lemma 1.23. For a C-spectrum X and c ∈ Ob(C), there are natural isomorphisms
in S H C

c ∧C X ∼= X(c)

and
RmapC(c,X) ∼= X(c) .
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2. Changing the category of spectra

Throughout the thesis hitherto, we investigated C-spectra in the sense of functors
from C to the category SpO of orthogonal spectra. However, the literature also
uses several other model categories of spectra, which are either Quillen equivalent
to orthogonal spectra (respecting the smash product in one sense or the other, as
discussed below), or describe a slightly different version of spectra, e. g. connective
spectra or rational spectra. In addition, there are of course monoidal model categories
describing completely different homotopy theories, but our results may still be helpful
in these categories. The purpose of this chapter is to bring all these other models in,
in the following two ways:

• Firstly, we state conditions under which much of the framework built up so far
can be built up with another monoidal model category instead of orthogonal
spectra.

• Secondly, suppose we have built up the framework for two different model
categories S and T , and we have a Quillen adjunction between the two. Then we
want to compare our constructions, performed in S, with the same constructions,
performed in T .

The first item will be carried out in Section 2.1. We will write down a list of
assumptions on the monoidal model category and then deduce a substantial part of
Chapter 1. At this point, we introduce three different layers of generality.
In the first layer, the minimalist approach, we generalise enough to write down derived
smash products and mapping spectra, and prove the various adjunctions between
them, cf. Proposition 2.5. What we will not prove is the derived Yoneda Lemma

A ∧LA X ∼= X ∼= X ∧LB B

since the way we proved it used rather specific properties of orthogonal spectra, cf.
the proof of Proposition 1.18. The minimalist approach can, by definition, be applied
to so-called nice enriching categories. In addition, we introduce very nice enriching
categories, in which the derived Yoneda Lemma holds, and very very nice enriching
categories, in which the derived Yoneda Lemma holds and can be derived in the same
way as for orthogonal spectra.

Remark 2.1. A completely different approach to the first item, which has slightly
stronger assumptions, but in which the derived Yoneda Lemma doesn’t need specific
treatment, is presented in Appendix A.
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2. Changing the category of spectra

The second item is dealt with in Section 2.2. The Quillen adjunction between S and
T has to be compatible with the smash product. The literature knows (at least)
two different ways in which a Quillen adjunction can be compatible with monoidal
structures on its source and target: strong and weak monoidal Quillen adjunctions.
Their definitions will be recalled below. In many cases, it is possible to compare
two categories of spectra by a strong monoidal Quillen adjunctions, and then the
comparison result is trivial (for discrete categories). For instance, all pairs of model
categories of spectra discussed in [MMSS01] are linked by strong monoidal Quillen
equivalences. However, we also discuss the comparison along the less restrictive
notion of a weak monoidal Quillen adjunction, which is not trivial any longer, cf.
Subsection 2.2.1.
The agenda of the first item may be carried out for spectrally enriched categories
C satisfying (C). For the second item, we can pass to enriched categories for strong
monoidal Quillen adjunctions only. This is discussed in Subsection 2.2.2, which is
based on the paper [GM20].
The reason that we get into this discussion in detail is twofold: Firstly, it is intrinsically
satisfying to know that our results are independent of the choice of a model category
of spectra. Secondly, and more concretely, our comparison results will become crucial
in Section 5.1, where they are used in the rational case to pass from rational spectra
to rational chain complexes. It is here where it becomes important that we can also
deal with weak monoidal Quillen equivalences.

Remark 2.2. We want to comment the way we intend to apply the comparison results
of this chapter. Suppose S is a model category of spectra which is Quillen equivalent
to orthogonal spectra, and we are interested in Theorem A from the Introduction
for S. Then we will use the result for SpO, to be proved below, and then compare
the balanced smash product occuring (secretly) on the right hand side of (0.2) to the
corresponding balanced smash product in S, using the machinery we are just about
to develop, for instance the isomorphism (2.2).
Another strategy would be to develop bicategorical duality theory over S and then
prove Theorem A separately for S. Although this is also a totally valid approach, it
is not the one we will use here – mainly because of the technical problem mentioned
above that we potentially cannot prove the derived Yoneda Lemma for S and thus
do not have a clean bicategory at hand.

2.1. Nice enriching categories

We start by distilling properties of SpO we used to set up the framework of Chapter 1.
Let (S,∧,S) denote a model category which also has a monoidal structure. As
already explained above, we rather pursue a minimalist approach here, comprising
the following goals: Set up homotopy categories, as in Section 1.1 up to and including
the discussion of the triangulated structure; define balanced smash products and
mapping spectra, Section 1.2; derive these as in Theorem 1.16 to get ∧LC and RmapC
and isomorphisms (b) through (f).
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2.1. Nice enriching categories

To prove these statements, we used the following list of properties of SpO:

• The smash product and mapping spectra furnish SpO with the structure of a
cosmos, i. e. a closed symmetric monoidal category with all small limits and
colimits.

• It has a cofibrantly generated model structure. There is a class of generating
cofibrations and generating trivial cofibrations whose sources are cofibrant,
and small with respect to all relative cell complexes in any diagram category
Fun(C, SpO).

• The unit of the smash product is cofibrant.

• The pushout-product axiom [SS00, Def. 3.1] holds.

• The monoid axiom [SS00, Def. 3.3] holds.

Definition 2.3. We call a monoidal model category (S,∧,S) satisfying the above
list of properties a nice enriching category.

We don’t claim that a nice enriching category is stable [Hov99, Ch. 7] or models the
same homotopy theory as SpO. This has the advantage that we can also apply the
following ’meta theorem’ to different situations which play a supporting role in this
thesis.

Example 2.4. The categories Top and Top∗ of (pointed) compactly generated weak
Hausdorff spaces with the model structure from [Hov99, Sec. 2.4] are nice enriching
categories. The monoid axiom is shown on p. 7 of [Hov98].

Proposition 2.5. If (S,∧, S) is a nice enriching category, then the statements of
Theorems 1.1 and 1.16 hold for S in the place of SpO, except that DerMod(S) may
fail to have identities, thus is not a bicategory, and that isomorphism (a) may not
hold.

Remark 2.6. The fact that SpO is a cosmos (with respect to the smash product)
was crucially needed to construct balanced smash products and mapping spectra,
and the compatibility with the model structure to derive these, cf. Sections 1.2 and
1.3. The cofibrant generation is needed to construct model structures on C-spectra.
The smallness condition goes into Theorem 1.1, see [GM20, Rem. 4.34]. The same
remark explains why it follows from standard arguments in all cases we consider. The
cofibrancy of the sources is used in the proof of Proposition 2.13 below. The facts
that SpO is a cosmos, the unit is cofibrant and the pushout-product axiom holds
imply that it is a monoidal model category in the sense of [Hov99, Def. 4.2.6]. The
latter notion is slightly weaker than the three mentioned facts and would technically
also suffice for our purposes. The monoid axiom is needed for Theorem 1.1.
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2. Changing the category of spectra

If (S,∧,S) satisfies the above list of properties and in addition the derived Yoneda
Lemma

A ∧LA X ∼= X ∼= X ∧LA X (2.1)

holds, then we say that (S,∧,S) is a very nice enriching category. In this case, the
full Theorem 1.16 holds and there is a bicategory DerModS of S-categories satisfying
(C), bimodules over S and S-bilinear maps.

Remark 2.7. In Appendix A, we review some results from the paper [Shu06] which
shows essentially that simplicial monoidal model categories are very nice. Actually,
we can only show that they are almost very nice due to some technical problems.
This almost means that they are very nice, see Definition A.3 for a more serious
explanation. All monoidal model categories mentioned in this section are simplicial.

One way to show that (S,∧, S) is a very nice enriching category is to show that
Proposition 1.18 holds over S: Any cofibrant bimodule is left and right flat. In this
case, we call (S,∧, S) a very very nice enriching category.
For instance, this is satisfied if any cofibrant object S ∈ S is flat, and there is a
meaningful notion of h-cofibrations, as in many topological models for spectra, which
gets the proof started as above. But it also holds in other cases.

Example 2.8. We prove in Lemma 5.9 below (see also Remark 5.6) that ChQ is a very
very nice enriching category.

Example 2.9. We don’t know whether Top∗ is very nice. We will show in Appendix A
that Top∗ is almost very nice. However, Top∗ is not very very nice.
We find a counterexample to Proposition 1.18 already in the category itself: Smashing
with the cofibrant object S1 does not preserve weak equivalences in this monoidal
model category. In fact, the map

N0 → {0} ∪
{

1

n
, n ∈ N

}
, 0 7→ 0, n 7→ 1

n
,

where source and target are endowed with the subspace topology from R, is a weak
equivalence. The smash product of the right hand side with S1 can easily be identified
with the Hawaiian earrings which are not weakly equivalent to a wedge of circles
since their fundamental group is too large [deS92].

The literature in stable homotopy theory contains many different model categories of
spectra. The paper [MMSS01] further treats the model categories of W -spaces and
sequential spectra. The treatment of W -spaces and orthogonal spectra is completely
analogous, so that all results will be true for W -spaces, with the same references in
[MMSS01] applying. In particular, W -spaces are a very very nice enriching category.
All model categorical aspects apply to sequential spectra as well, but this is not a
closed symmetric monoidal category and will be treated separately in Section 2.3.
We will also use the category SpΣ

sSet of simplicial symmetric spectra with the stable
model structure from [HSS00].
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2.2. Comparison between different enriching categories

Lemma 2.10. The model category SpΣ
sSet is a nice enriching category.

Proof. See [HSS00, Thm. 2.2.10, Thm. 3.4.4, Cor. 5.3.8, Cor. 5.5.2]. Note that the
authors of [HSS00] call a monoidal model category what we defined as a model
category satisfying the pushout-product axiom. The fact that the unit is cofibrant is
remarked on p. 53 of [HSS00].

We will now discuss some model categories of rational spectra originally introduced
in [Shi07]. These will be the main actors of Section 5.1. The four monoidal model
categories are:

• the category HQ−Mod of modules over the monoid HQ in SpΣ
sSet with model

structure as explained in [SS00, Thm. 4.1(1)];

• the model category of unbounded rational chain complexes [Hov99, Sec. 2.3];

• the category SpΣ(sVectQ) of symmetric spectra over simplicial Q-vector spaces
[Hov01b];

• the category SpΣ(ch+
Q) of symmetric spectra over non-negatively graded rational

chain complexes [Hov01b].

The latter two model structures are constructed following the general construction
[Hov99] of a model category of symmetric spectra over a given (nice) monoidal model
category. It is applied to the categories of simplicial objects in Q-vector spaces with
the model structure from [Qui67, Ch. II.4] and to ch+

Q with the projective model
structure [DS95, Sec. 7].

Lemma 2.11. The four model categories mentioned above are nice enriching cate-
gories.

Proof. The Standing Assumptions 2.4 of [Shi07], proved for our four model categories
in Section 3, comprise all our assumptions except the cofibrancy of the sources of
the generating (trivial) cofibrations. For HQ −Mod, this can be seen as follows:
Generating cofibrations for HQ-modules can be obtained from generating cofibrations
in SpΣ

sSet by smashing with HQ (cf. [SS00, Lemma 2.3]). Since these have cofibrant
sources and HQ is cofibrant, the smash product is cofibrant in SpΣ

sSet and thus also in
HQ−Mod since this has less cofibrations. For ChQ, the sources are cofibrant since
they are bounded and (trivially) degreewise projective. For the latter two categories,
the stable model structures on symmetric spectra have the same cofibrant objects as
the projective model structures introduced [Hov01b, Thm. 8.2] and the generating
cofibrations of these have cofibrant sources since this is true for sVectQ and ch+

Q.

2.2. Comparison between different enriching categories

Let (S,∧,S) and (T ,⊗,T) denote nice enriching categories. Let

F : (S,∧,S)� (T ,⊗,T) : G
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2. Changing the category of spectra

be a Quillen adjunction, where F is the left adjoint. If A is an S-category, we want to
compare the derived category of A-modules over S with B-modules over T , where B is
a suitable T -category. This comparison should be compatible with derived balanced
smash products and mapping spaces. In case that A is the free S-category on a
discrete category, as in the first subsection, we may take the free T -category on the
same category as B. For an arbitrary enriched category A, the first difficulty will be
to find the right category B. Note that the natural candidate FA, which has the
same objects and morphism spaces are obtained by application of F from those of A,
only defines a T -category if F is strong monoidal, see Subsection 2.2.2.
Recall the definition of weak and strong monoidal Quillen adjunctions from [SS03a,
Sec. 3.2]: A Quillen adjunction is called strong monoidal if F is strong monoidal and
F (QS)→ F (S) ∼= T is a weak equivalence for the unit S. It is called weak monoidal
if G is lax monoidal, thus F lax comonoidal, such that the maps

∇ : F (x ∧ y)→ F (x)⊗ F (y)

are weak equivalences for all cofibrant x and y, and the composite

F (QS)→ F (S)→ T

is a weak equivalence as well. In our case, the unit S is cofibrant, so the unit condition
is vacuous for strong monoidal Quillen equivalences and boils down to the fact that
F (S)→ T is a weak equivalence in the weak monoidal case.
In many cases of interest, a strong monoidal Quillen equivalence exists. However,
we will also need the case of weak monoidal Quillen equivalences when studying the
Dold-Kan correspondence in Section 5.1.

Example 2.12. If S = SpΣ
sSet and T = SpO, then a Quillen equivalence can be

constructed by first comparing with topological symmetric spectra (via degreewise
application of geometric realisation and singular set, see [MMSS01, Thm. 19.4]) and
then moving on to orthogonal spectra [MMSS01, p. 442]. Both Quillen equivalences
are strong monoidal, and so is their composition.
If C denotes a discrete category, then we get a Quillen equivalence

F : Fun(C,SpΣ
sSet)� Fun(C,SpO) : G .

Since F respects colimits and is strong monoidal, there is an obvious natural isomor-
phism

F (X ∧C Y ) ∼= F (X) ∧C F (Y )

for all X and Y . This descends to the homotopy category: If Φ and Γ denote the
derived functors of F and G, then

Φ(X ∧LC Y ) ∼= Φ(X) ∧LC Φ(Y )

and consequently
Γ(X ′ ∧LC Y ′) ∼= Γ(X ′) ∧LC Γ(Y ′) .
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2.2. Comparison between different enriching categories

Furthermore, one checks easily that the functors preserve suspension spectra in the
sense that the suspension symmetric spectrum of a C-simplicial set is isomorphic to
the suspension orthogonal spectrum of its objectwise geometric realisation; and the
suspension orthogonal spectrum of a C-space is isomorphic (in the derived category)
to the suspension symmetric spectrum of its objectwise singular complex.

2.2.1. Weak monoidal Quillen adjunctions and discrete categories

Throughout this subsection, A, A′ and A′′ are discrete1 categories. An (A,A′)-
bimodule is just a functor in the usual non-enriched sense from A × (A′)op to S,
respectively T . We thus have a Quillen adjunction

F∗ : Fun(A ∧ (A′)op,S)� Fun(A⊗ (A′)op, T ) : G∗

which is again a Quillen equivalence if (F,G) is [Hir03, Thm. 11.6.5].
The comonoidal transformation ∇ induces the following natural commutative diagram
for a ∈ Ob(A) and a′′ ∈ Ob(A′′):∨

a′1→a′2
F (X(a, a′2) ∧ Y (a′1, a

′′))
∨
a′
F (X(a, a′) ∧ Y (a′, a′′))

∨
a′1→a′2

F (X(a, a′2))⊗ F (Y (a′1, a
′′))

∨
a′
F (X(a, a′))⊗ F (Y (a′, a′′))

∇ ∇

and thus induces a map on the colimits of the rows. Since F commutes with colimits,
we get ∇ : F∗(X ∧A′ Y )→ F∗(X)⊗A′ F∗(Y ).

Proposition 2.13. ∇ is a weak equivalence if X and Y are cofibrant.

Proof. We first treat the case where X = A ∧ (a, a′) for some cofibrant spectrum A.
Then ∇ is isomorphic to

∇ : F (A ∧ a ∧ Y (a′,−))→ F (A ∧ a)⊗ F (Y (a′,−))

which is a weak equivalence since A ∧ a is objectwise cofibrant by discreteness of
A and C, and Y (a′,−) is objectwise cofibrant by Theorem 1.1 (ii), which follows
already from [Hir03, Prop. 11.6.3] here since A′ and A′′ are discrete. Note the natural
isomorphism

F∗(A ∧ (a, a′)) ∼= F∗

∨
a′

A ∧ a

 ∼= ∨
a′

F∗(A ∧ a) ∼= F∗(A ∧ a)⊗ a′ ,

since F commutes with colimits.
1as opposed to: enriched
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2. Changing the category of spectra

In the general case, X is a retract of a (transfinite) cell complex. We may thus assume
that X is itself a cell complex. Arguing by transfinite induction, we have to show that
the property that ∇ is a weak equivalence is preserved under gluing along coproducts
of generating cofibrations and under passage to colimits along cofibrations.
For the first point, we use the first step of the proof and the Cube Lemma [Hov99,
Lemma 5.2.6]. The two comparison diagrams consist of cofibrant objects and one
cofibration since F∗ is left Quillen and ∧A′ and ⊗A′ are Quillen bifunctors, cf. the
proof of Theorem 1.16.
For the second point, suppose that we have a chain of cofibrations of some shape κ.
This is a cofibrant diagram in the projective model structure on the functor category
of κ-sequences: The lifting property can be proved by transfinite induction. Since the
colimit is a left Quillen functor [Hir03, Thm. 11.6.8], it preserves weak equivalences
between cofibrant objects.

For the derived functor

Φ = Φ(A,A′) = Ho(F∗) : DerModS(A,A′)→ DerModT (A,A′) ,

we get a natural isomorphism in DerModT (A,A′′)

Φ(X ∧LA′ Y ) = F∗(QX ∧A′ QY )
∼=−→
∇
F∗(QX)⊗A′ F∗(QY ) ∼= Φ(X)⊗LA′ Φ(Y ) . (2.2)

This induces by adjunction and Yoneda Lemma an isomorphism of derived (A,A′)-
bimodules over T

Γ(RmapA′′(Φ(Y ), V ′)) ∼= RmapA′′(Y,Γ(V ′)) (2.3)

for any derived (A,A′′)-bimodule V ′ over T , where Γ = Ho(G∗).
If (F,G) is a Quillen equivalence, then we get further isomorphisms

Γ(X ′ ∧LA′ Y ′) ∼= Γ(X ′)⊗LA′ Γ(Y ′) (2.4)

as well as

RmapA(Φ(X),Φ(U)) ∼= Φ(RmapA(X,U)) (2.5)

and

RmapA(Γ(X ′),Γ(U ′)) ∼= Γ(RmapA(X ′, U ′)) (2.6)

and similar isomorphisms for RmapA′ .
If S and T are very good categories of spectra, we can formulate this in terms of the
bicategories DerModS and DerModT . This uses the notion of a pseudofunctor.
Let A and B denote bicategories. Recall that a pseudofunctor between A and B
consists of the following data:

• an assignment
F : Ob(A) −→ Ob(B) ,
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2.2. Comparison between different enriching categories

• for all A,A′ ∈ Ob(A), a functor

F : A(A,A′) −→ B(FA,FA′) ,

• for all A ∈ Ob(A), a 2-isomorphism

α : F (idA)→ idFA ,

• for all pairs (g, f) of composable 1-morphisms, a 2-isomorphism

mgf : F (g ◦ f) −→ F (g) ◦ F (f) ,

satisfying certain coherence conditions detailed in [Hov99, Def. 1.4.2]. We call a
pseudofunctor F a biequivalence if it induces equivalences of categories on all categories
on 1-morphisms and 2-morphisms.

Remark 2.14. Biequivalences are sometimes called equivalences of bicategories in the
literature. For every biequivalence, there exists a pseudofunctor in the other direction
which is its inverse up to a suitably coherent notion of pseudonatural transformation.

Definition 2.15. Let S be a very nice enriching category. The locally full sub-
bicategory2 of DerModS on all free S-categories on discrete categories is denoted by
DerModdisc

S .

Corollary 2.16. Suppose that S and T are very nice enriching categories. A weak
monoidal Quillen adjunction induces a pseudofunctor

Φ: DerModdisc
S −→ DerModdisc

T .

If (F,G) is a Quillen equivalence, then Φ is a biequivalence.

Proof. The functor Φ is given by the identity on objects, viewed as discrete categories,
and by application of Φ on 1- and 2-morphisms. The unit isomorphisms α are induced
by the natural weak equivalences

F (S ∧ A) ∼= F (S) ∧ A ∼−→ T ∧ A .

The isomorphisms mgf are given by the composition (2.2). The coherence diagrams
are checked to commute already before passing to the derived category.

2By this we mean a bicategory which consists of a subclass of objects, and all 1- and 2-morphisms
on these objects.
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2. Changing the category of spectra

2.2.2. Strong monoidal Quillen adjunctions and enriched categories

In case that (F,G) is a strong monoidal Quillen equivalence, we can deal with
enriched categories as well. We follow [GM20, Sec. 3], and prove that certain Quillen
equivalences given there are compatible with balanced smash products. Throughout
the following, A, A′ and A′′ are S-categories satisfying (C), and B, B′ and B′′ are
T -categories satisfying (C).
There is a T -category FA with the same objects as A and

FA(x, y) = F (A(x, y)) ,

and similarly an S-category3 GB.
Remark 2.17. Note, however, that FA in general has a different underlying (Set-
enriched) category than A, while GB and B have the same underlying category. Also
note that if CA denotes the free S-enriched category over a discrete category C, as
discussed in the last subsection, then FCS ∼= CT , but in general GCT and CS are
different.

Lemma 2.18. (i) If A satisfies (C), then so does FA.
(ii) Every A-module X defines an FA-module FX by objectwise application of F .

Let A be a small S-category. We want to compare A-modules (over S) with FA-
modules (over T ). More generally, we state our comparison result for a small T -
category B with the same objects asA, together with a T -functor ψ : FA → B which is
the identity on objects. An equivalent datum is the §-linear adjoint φ = ψ[ : A → GB.
This setup, which was already studied in [GM20], has the advantage that given B, we
can set A = GB and let ψ be the T -functor FGB → B given by objectwise applying
the counit of the adjunction. We thus study the relation between B-modules and
GB-modules in the same breath. Throughout the following, (A, ψ,B), (A′, ψ′,B′)
and (A′′, ψ′′,B′′) denote three such triples.
We recall the decisive construction from [GM20, (3.11)], with a changed notation and
adjusted to bimodules. Our goal is a Quillen adjunction

(F(ψ,ψ′), G(ψ,ψ′)) : ModS(A,A′)� ModT (B,B′) . (2.7)

If Y is a (B,B′)-bimodule over T , then G(ψ,ψ′)Y is given by G(Y (−)) on objects and
on morphisms by the adjoint of

A′(a′1, a′2) ∧G(Y (a1, a
′
2)) ∧ A(a1, a2)

φ∧φ′−−−→ G(B(a′1, a
′
2)) ∧G(Y (a1, a

′
2)) ∧G(B(a1, a2))

−→ G(B(a′1, a
′
2)⊗ Y (a1, a

′
2)⊗ B(a1, a2))

−→ G(Y (a2, a
′
1)) .

If X is an (A,A′)-bimodule over S, then FX is an (FA, FA′)-bimodule over T . We
now consider the (B, FA)-bimodule L over T given by

B ⊗ FAop id⊗ψop

−−−−→ B ⊗ Bop B−−→ T .
3For G, this is in fact already true for a weak monoidal Quillen equivalence.
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2.2. Comparison between different enriching categories

The (FA′,B′)-bimodule R′ is obtained by swapping the order of B and FA, and
inserting primes everywhere. We set F(ψ,ψ′)X = L ⊗FA FX ⊗FA′ R′. It is easy to
check that these two functors are well-defined and adjoint, using Proposition 1.12.
Moreover, (F(ψ,ψ′), G(ψ,ψ′)) is a Quillen adjunction: G(ψ,ψ′) preserves fibrations and
acyclic fibrations since these are defined objectwise.

Proposition 2.19. Let X be an (A,A′)-bimodule and Y an (A′,A′′)-bimodule. Sup-
pose that the following conditions are satisfied:

• The functor ψ′ : FA′ → B′ is weakly fully faithful.

• L ⊗FA FX is a right flat (B, FA′)-bimodule and FY ⊗FA′′ R′′ is a left flat
(FA′,B′′)-bimodule in the sense of Definition 1.20.

Then there is a natural weak equivalence of (B,B′′)-bimodules over T

F(ψ,ψ′′)(X ∧A′ Y ) −→ F(ψ,ψ′)X ⊗B′ F(ψ,ψ′′)Y .

Proof. We have

F(ψ,ψ′)X ⊗B′ F(ψ′,ψ′′)Y = L ⊗FA FX ⊗FA′ R′ ⊗B′ L ′ ⊗FA′ FY ⊗FA′′ R′′ .

By the Yoneda Lemma, the (FA′, FA′)-bimodule R′ ⊗B′ L ′ is given by B′(−,−) on
objects and on morphisms by

FA′(a′1, a′2)⊗ FA′(a′1, a′2)
ψ′⊗ψ′−−−−→ B′(a′1, a′2)⊗B′(a′3, a′4)

B′−→ T (B′(a′4, a′1),B′(a′3, a′2)) .

There is a weak equivalence of (FA′, FA′)-bimodules

FA′ ∼−→ R′ ⊗B′ L ′

given by applying ψ′ objectwise. Since L ⊗FA FX and FY ⊗FA′′ R′′ are right, resp.
left flat, this induces a weak equivalence

F(ψ,ψ′′)(X ∧A′ Y ) ∼= L ⊗FA F (X ∧A′ Y )⊗FA′′ R′′

∼= L ⊗FA FX ⊗FA′ FY ⊗FA′′ R′′
∼= L ⊗FA FX ⊗FA′ FA′ ⊗FA′ FY ⊗FA′′ R′′
∼−→ L ⊗FA FX ⊗FA′ R′ ⊗B′ L ′ ⊗FA′ FY ⊗FA′′ R′′

= F(ψ,ψ′)X ⊗B′ F(ψ′,ψ′′)Y .

Recall that a functor K : N →M between model categories is said to create the weak
equivalences if it has the property that f is a weak equivalence in N if and only if
K(f) is a weak equivalence inM.

Lemma 2.20. Suppose that
H : M� N : K

is a Quillen equivalence and the right adjoint K creates the weak equivalences. Then
the adjunction unit

η : M −→ K(H(M))

is a weak equivalence for any cofibrant M ∈ Ob(M).
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2. Changing the category of spectra

Proof. In general for a Quillen equivalence, the composition

M
η−→ K(H(M))

K(f)−−−→ K(R)

is a weak equivalence, where f : H(M)
∼−→ R is a fibrant replacement [Hov99,

Prop. 1.3.13]. Since K creates the weak equivalences, K(f) is a weak equivalence
and thus η is, by 2-out-of-3.

Theorem 2.21 [GM20, Thm. 3.17]. If (F,G) is a strong monoidal Quillen equiva-
lence, G creates the weak equivalences, and ψ and ψ′ are weakly fully faithful, then
(F(ψ,ψ′), G(ψ,ψ′)) is a Quillen equivalence.

Proof. Apply the theorem cited above to V = V+ = S. We use here our assumption
that the unit of the smash product is cofibrant. The case of bimodules works in the
same way as for modules.
The cited theorem has the assumption that instead of ψ, the adjoint φ is fully faithful.
But these conditions are actually equivalent in our situation: Let A = A(a1, a2) and
B = B(a1, a2) for some objects a1, a2 of A. Then A is cofibrant by (C). We have a
commutative diagram

A GFA

GB

η

φ
G(ψ)

with η a weak equivalence by Lemma 2.20. Thus, φ is a weak equivalence if and only
if G(ψ) is if and only if ψ is.

Corollary 2.22. Suppose that T is a very very nice enriching category. Then F(id,id)

induces a functor

Φ: DerModS(A(i),A(j)) −→ DerModT (B(i),B(j))

such that there is a natural isomorphism

Φ(X ∧LA′ Y )
∼=−−→ Φ(X ⊗LB′ Φ(Y )) .

Now, suppose additionally that (F,G) is a Quillen equivalence, and G creates the weak
equivalences. Then Φ is an equivalence of categories. In this case, the isomorphisms
(2.4), (2.5) and (2.6) follow.

Proof. We apply Proposition 2.19 to ψ(i) = id: FA(i) → FA(i). If X is cofibrant,
then FX = F(id,id)X is cofibrant and thus right flat since T is very very good.
Moreover, L = A is right flat.

Corollary 2.23. Suppose that S is a very nice enriching category and T is a very very
nice enriching category. A strong monoidal Quillen adjunction induces a pseudofunctor

Φ: DerModS −→ DerModT

which is given on objects by A 7→ FA, and on Hom categories by Ho(F(id,id)). If (F,G)
is a Quillen equivalence and G creates weak equivalences, then Φ is a biequivalence.
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2.3. Sequential spectra

We finally treat sequential spectra. Anticipating the next chapter, we argue how
we can substitute orthogonal spectra with sequential spectra in Theorem 4.7 even if
these don’t have a well-behaved smash product.
Sequential spectra do not form a monoidal model category, only a model category
tensored and cotensored over spaces. The tensor and cotensor structure can be
derived by the same Quillen adjunction argument as in Theorem 1.16. In this case,
even Proposition 1.18 may be proved in the same way as above, relying on the
same references in [MMSS01] as this paper treats sequential and orthogonal spectra
uniformly.
Let C denote a discrete category. While it is impossible to formulate duality for
sequential spectra over C (using our methods), it is possible to write down a homology
theory for C-spaces from a sequential Cop-spectrum as in (4.1). For this construction,
Theorem 4.7 actually holds true as well. To see this, we compare with a Quillen
equivalence to orthogonal C-spectra and only have to show that the balanced smash
products are translated into one another.
Let U∗(Y ) denote the underlying (B, C)-sequential spectrum of an (B, C)-orthogonal
spectrum Y . Let X be an (A,B)-space. Then there is a tautological isomorphism of
sequential spectra

U∗(Σ∞X ∧ Y ) ∼= X ∧ U∗Y

inducing the same isomorphism for ∧B instead of ∧ since U∗ commutes with colimits.
To pass to the derived functor, it suffices to cofibrantly replace X by an argumentation
similar to Corollary 1.21. Thus, we get a natural isomorphism

Ho(U∗)(Σ∞X ∧LB Y ) ∼= X ∧LB Ho(U∗)(Y ) .

Similarly,
Ho(U∗)(RmapA(Σ∞X,U)) ∼= RmapA(X,Ho(U∗)(U))

where we use in the derivation process that the right adjoint U∗ preserves fibrant
objects.
Everything we said is more generally true for a topological category C satisfying
(C). This can be proved as in Subsection 2.2.2. The category A doesn’t have to be
changed since the left adjoint P of U (’prolongation’) is compatible with the tensor
structure over spaces.
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3. External Spanier-Whitehead duality

In this chapter, we develop a duality theory in the closed bicategory DerModSpO

discussed in Theorem 1.16. We give this the name "external duality" – which is
slightly oxymorontic, as explained in the Introduction –, since the dual of an object
lives in another category than the object itself: finite C-spectra are paired with finite
Cop-spectra. The constructions of this chapter will allow us to go back and forth
between homology theories on finite C-spectra and cohomology theories on finite
Cop-spectra in the proof of Theorem 4.7.
We will begin by formulating the problem, i. e. by defining the notion of a dual
pair. This is carried out in Section 3.1, which uses only the bicategory structure of
DerModSpO . There are several equivalent formulations of this notion, the equivalence
of which is proved in Proposition 3.2. The discussion in the end of Section 3.1 uses
the symmetry of the bicategory DerModSpO . Finally, the closedness allows us to write
down, in Section 3.2, an ansatz for the solution of the above problem: We construct
a functor D for which it is plausible that (X,DX) is a dual pair. Finally, we prove
in the usual way, using an inductive argument, that finite spectra are dualisable.

Remark 3.1. The yoga of the first section could be carried out in any bicategory,
or a symmetric bicategory for the results after Remark 3.6. The ansatz for the
functor D can be written down in any closed bicategory, so that dualisable objects
are well-defined. The proof that finite C-spectra are dualisable can be absorbed into
the more general context of compatibly triangulated closed symmetric bicategories.
In our exposition, we focussed on the closed bicategory category DerModSpO , which
we will need later, for simplicity. A more general treatment of all three steps can be
found in [MS06].

3.1. Bicategorical duality theory

The discussion in this section is essentially equivalent to [MS06, Ch. 16], slightly
simplified for our purposes. Also compare [LMSM86, Ch. III]. We change our
standing notation from the last chapter: In this chapter, X will always denote an
(A,B)-bimodule, Y a (B,A)-bimodule, Z a (C,A)-bimodule, U a (B, C)-bimodule,
V an (A, C)-bimodule and W a (C,B)-bimodule. All morphisms between bimodules
are morphisms in the homotopy category – in other words, we are working in the
bicategory DerModSpO .
Given a morphism

ε : X ∧LB Y
(A,A)−−−→ A ,
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3. External Spanier-Whitehead duality

we may define
ε1
∗ : [W,Z ∧LA X](C,B) → [W ∧LB Y,Z](C,A)

where ε1
∗(f) is the composition

W ∧LB Y
f∧LBY−−−−→ Z ∧LA X ∧LB Y

Z∧LAε−−−→ Z ∧LA A ∼= Z .

Similarly, we may define

ε2
∗ : [U, Y ∧LA V ](B,C) → [X ∧LB U, V ](A,C) .

On the other hand, a morphism

η : B (B,B)−−−→ Y ∧LA X

yields
η1
∗ : [W ∧LB Y, Z](C,A) → [W,Z ∧LA X](C,B)

and
η2
∗ : [X ∧LB U, V ](A,C) → [U, Y ∧LA V ](B,C) .

In the following, the letters ε and η are reserved for morphisms with source and target
as above. The next proposition is the main point of our discussion of duality since it
shows that the notion of a dual pair can equivalently formulated in terms of ε and
η, or only one of them – the other one can be recovered uniquely. It is essentially
[LMSM86, Thm. III.1.6] or [MS06, Prop. 16.4.6].

Proposition 3.2. The following data determine one another:

(I) morphisms ε and η such that the composition

X ∼= X ∧LB B
X∧LBη−−−−→ X ∧LB Y ∧LA X

ε∧LAX−−−−→ A∧LA X ∼= X

equals idX and the composition

Y ∼= B ∧LB Y
η∧LBY−−−−→ Y ∧LA X ∧LB Y

Y ∧LAε−−−−→ Y ∧LA A ∼= Y

equals idY ;

(II) a morphism ε such that ε1
∗ is a bijection for all W and Z;

(III) a morphism ε such that ε2
∗ is a bijection for all U and V ;

(IV) a morphism η such that η1
∗ is a bijection for all W and Z;

(V) a morphism η such that η2
∗ is a bijection for all W and Z.
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3.1. Bicategorical duality theory

Proof. If ε and η as in (I) are given, then a direct check reveals that ε1
∗ and η1

∗ are
inverse bijections, as are ε2

∗ and η2
∗. Thus we recover (II) through (V). We now show

how to recover (I) from (II), with the proceeding starting from another point being
analogous.
Suppose that ε1

∗ is always a bijection. With C = B, W = B and Z = Y , we get an
isomorphism

ε1
∗ : [B, Y ∧LA X](B,B) → [B ∧LB Y, Y ](B,A) .

Choosing η as the preimage of the canonical isomorphism B ∧LB Y ∼= Y , we get the
second of the two compositions in (I) to equal idY . Note that we have no other choice
for η if we want (I) to hold. Moving on, note that ε1

∗η
1
∗ is the identity for all W and

Z. Since ε1
∗ is a bijection, this exhibits η1

∗ as a bijection as well and implies that the
other composition η1

∗ε
1
∗ also equals the identity. Now, the first composition in (I),

viewed as a morphism X → A∧LAX (i. e., forget the last canonical isomorphism ϕX),
equals η1

∗(ε), so its image under η1
∗ equals ε. But the same is true for ϕ−1

X , so the two
are equal.
It is obvious that the presented constructions are inverse to each other – one way, we
forgot about η, and going back, we had a unique choice for η.

Remark 3.3. Condition (I) says that (X,Y ) is an adjoint pair in the sense of adjointness
between 1-morphisms in bicategories [Bor94a, Def. 7.7.2].

Definition 3.4. (X,Y ; ε, η) – equivalently (X,Y ; ε) or (X,Y ; η) – is called a dual
pair of bimodules if the equivalent conditions of Proposition 3.2 hold.

Note that we can omit one of ε and η from the quadruple (X,Y ; ε, η), but not both:
for instance, ε is not uniquely determined by X and Y , since we might change it by
an automorphism of its source or target.
Remark 3.5. The discussion above is not symmetric in A and B. We could equally
well have formulated a second kind of duality where we interchanged the role of the
source and target of a 1-morphism, as well as the order of the composition (i. e.
balanced smash product) everywhere. This would have given a different notion of
duality with different dual pairs.
The bicategory DerModSpO has a special kind of symmetry available: By defini-
tion, there is a canonical isomorphism of categories between (A,B)-bimodules and
(Bop,Aop)-bimodules which we denote by

X 7→ Xop .

This assignment is involutive, and we have canonical isomorphisms

γ :
(
X ∧LB Y

)op ∼=−→ Y op ∧LBop Xop

of (A, C)-bimodules, and
δ : (idA)op ∼=−→ idAop

of (Aop,Aop)-bimodules.
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3. External Spanier-Whitehead duality

Remark 3.6. In the language of [MS06, Sec. 16.2], this refers to the fact that
DerModSpO is a symmetric bicategory, with involution A 7→ Aop.

In this notation, Remark 3.5 says that the fact that (X,Y ; ε, η) is a dual pair is not
equivalent to the fact that (Xop, Y op; ε′, η′) is a dual pair for some ε′ and η′. However,
there is the following tautological observation which we will use later:

Proposition 3.7. (X,Y ; ε, η) is a dual pair if and only if the pair
(Y op, Xop; δεopγ−1, γηopδ−1) is.

Proof. Trivial for condition (I) of Proposition 3.2.

Proposition 3.8. If (X,Y ; ε, η) and (U,W ; ζ, θ) are dual pairs, then so is (X ∧B
U,W ∧B Y ; ν, ξ) where ν is the composition

X ∧LB U ∧LC W ∧LB Y
X∧LBζ∧

L
BY−−−−−−−→ X ∧LB B ∧LB Y ∼= X ∧LB Y

ε−→ A

and ξ is defined similarly.

Proof. The proof is trivial for condition (I), cf. [MS06, Thm. 16.5.1].

3.2. Proof of Theorem B

We now make use of the closedness of DerModSpO – i. e., the existence of derived
mapping bimodules. The following two propositions are essentially Propositions
16.4.13 and 16.4.12 of [MS06].

Proposition 3.9. If (X,Y ; ε) is a dual pair, then we have the following natural
isomorphisms:

Z ∧LA X
(C,B)−−−→∼= RmapAop(Y,Z) (3.1)

Y ∧LA V
(B,C)−−−→∼= RmapA(X,V ) , (3.2)

and

Y ∼= RmapA(X,A) . (3.3)

Proof. For the first two isomorphisms, use condition (II) and Theorem 1.16 (c) –
and the (usual form of the) Yoneda lemma. Setting C = A and V = A in (3.2)
yields (3.3).

Considering Equation (3.3) above, we will now reverse the logic, define Y asRmapA(X,A)
and investigate when this yields a dual pair.

Definition 3.10. For an (A,B)-spectrum X, define the dual of X to be the (B,A)-
spectrum

DX = D(A,B)X = RmapA(X,A) .
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Remark 3.11. The notation D(A,B) above should draw the reader’s attention to the
fact that the dual of an (A,B)-spectrum depends on the pair (A,B), and not only on
the indexing category A ∧ Bop. However, we will only write D from now on.

Remark 3.12. If we are sloppy for the moment and ignore the derivation process, we
may think of D as given by the formula

DX(c) = mapC(X(−), C(c,−)) .

We have the evaluation map

εX : X ∧LB DX ∼= RmapA(A, X) ∧LB RmapA(X,A)
(A,A)−−−→ A .

Definition 3.13. X is called dualisable if (X,DX; εX) is a dual pair, i. e. if the
map (εX)∗1 from Proposition 3.2 is a bijection for all W and Z.

εX has the following naturality property: For every morphism f : X → X ′ in
DerMod(A,B), the diagram

X ∧LB DX ′ X ′ ∧LB DX ′

X ∧LB DX A

f∧LBid

id∧LBDf εX′

εX

commutes. It follows that for all W and Z (which we consider fixed from now on),

(εX)1
∗ : [W,Z ∧LA X](C,B) → [W ∧LB DX,Z](C,A)

is a natural transformation.
Recall that an exact functor between triangulated categories is a functor which
commutes with the shift functor and sends distinguished triangles to distinguished
triangles. If S is a triangulated category, then S op becomes a triangulated category
with shift functor the opposite of Σ−1, abusively denoted by Σ−1 again, where a
triangle

X → Y → Z → Σ−1X

is distinguished if and only if

Σ−1X → Z → Y → X

is distinguished in S .

Lemma 3.14. (a) D : (DerMod(A,B))op → DerMod(B,A) is an exact functor.
(b) X is dualisable if and only if ΣX is.
(c) If X → X ′ → X ′′ → ΣX is a distinguished triangle and X and X ′ are dualisable,
then so is X ′′.
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3. External Spanier-Whitehead duality

Proof. (a): By Theorem 1.16 (e),

D(ΣX) = RmapA(S ∧L X,A) ∼= Rmap(S, DX) ∼= Σ−1DX .

To show that D preserves cofiber sequences, we may assume that our cofiber sequence
is of the form

X
f−→ Y → Cf → ΣX

with X and Y cofibrant and f a cofibration. By using the explicit cofibrant models
and the properties of (underived) mapping spectra, cf. Section 1.2, the image of the
sequence under D is identified with the sequence

ΩDX → hofib(Df)→ DY
Df−−→ DX

which is a fiber sequence in the sense of [Hov99, Def. 6.2.6]. But fiber and cofiber
sequences coincide in a stable model category by [Hov99, Thm. 7.1.11].
(b): There is a commutative diagram

[W,Z ∧LA ΣX](C,B) [W ∧LB D(ΣX), Z]C,A

[W,ΣZ ∧LA X](C,B) [W ∧LB DX,ΣZ]C,A

(εΣX)1
∗

∼= ∼=

(εX)1
∗

where the vertical arrows are the isomorphisms from Theorem 1.16 (b) and (c), and
the right one uses in addition the isomorphisms ΩE ∼= Σ−1S ∧ E and
Rmap(Σ−1S, F ) ∼= ΣF in S H C .
(c): Fix W and Z. Note that Z ∧LA − and W ∧LB − preserve distinguished triangles
since they are left adjoints. By equation (1.2) on p. 4, the rows of the following ladder
are exact:

[W,Z ∧L
A X](C,B) [W,Z ∧L

A X′](C,B) [W,Z ∧L
A X′′](C,B) [W,Z ∧L

A ΣX](C,B) [W,Z ∧L
A ΣX′](C,B)

[W ∧L
B DX,Z](C,A) [W ∧L

B DX′, Z](C,A) [W ∧L
B DX′′, Z](C,A) [W ∧L

B ΣDX,Z](C,A) [W ∧L
B ΣDX′, Z](C,A) .

(εX )1∗ (ε
X′ )

1
∗ (ε

X′′ )
1
∗ (εΣX )1∗ (ε

ΣX′ )
1
∗

The statement is now deduced via the five-lemma.

From now on, assume that

(FM) The mapping spectra of B are finite CW-spectra.

In our applications, B will always be the trivial category ∗ with mapping spectrum S.

Lemma 3.15. If condition (FM) holds, then every (A,B)-spectrum of the form (a, b)
is dualisable.
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Proof. For clarity, denote by a (as usual) the covariant functor corepresented by a,
and by a the contravariant functor represented by a during this proof. We first treat
the case that B is trivial. Note that Da ∼= a by Lemma 1.23 and

ε : a ∧L a ∼= a ∧ a→ A

is just the composition in A. It follows that ε1
∗ is given by

[W,Z ∧LA a](C,∗) → [W ∧L a, Z ∧LA a ∧L a](C,A)
compose−−−−−→ [W ∧L a, Z](C,A) .

Lemma 1.23 exhibits the source and the target as [W,Z(?, a)](C,∗). Here, Z(a, ?)
makes sense for a derived module Z because of the definition of weak equivalence. A
direct check on elements (assuming that W is cofibrant and Z is fibrant) shows that
the above composition is an isomorphism.
In the general case, we have

(a, b) = a ∧ b ∼= a ∧L b .

Denote by Db the functor Rmap(b,S). This is the dual of b viewed as a (∗,B)-
bimodule. This (∗,B)-bimodule is dualisable by condition (FM). By Proposition 3.8
and the first part of the proof, (a, b) is dualisable with dual

D(a, b) ∼= Db ∧L a .

The following corollary summarises the last two sections and comprises Theorem B
from the Introduction.

Corollary 3.16. Suppose that condition (FM) holds. Then every finite (A,B)-
CW-spectrum is dualisable. Consequently, for every finite (A,B)-spectrum X, any
(A, C)-spectrum V and any (C,A)-spectrum Z, there are natural isomorphisms

Z ∧LA X ∼= RmapAop(DX,Z)

and
DX ∧LA V ∼= RmapA(X,V ) ;

in particular, there is a natural isomorphism

D(Aop,Bop)(D(A,B)X)op ∼= X (3.4)

for finite X.

Remark 3.17. It follows from the proof of Lemma 3.15 that if B = ∗, then the dual of
a finite (A, ∗)-spectrum is a finite (∗,A)-spectrum. This is false for general B.
Remark 3.18. In practice, we will refer to (3.4) sloppily as DDX ∼= X. The ’op’
in (3.4) refers to the fact that we have to consider DX as an (Aop,Bop)-spectrum,
instead of as a (B,A)-spectrum, which implies that the duality functor is taken with
respect to the (contravariant) A-variance again.
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3. External Spanier-Whitehead duality

Proof of Corollary 3.16. The full subcategory of dualisable objects contains all corep-
resentable functors (a, b) by Lemma 3.15 and is a triangulated subcategory by
Lemma 3.14 (b) and (c). Thus, it contains all finite (A,B)-spectra by Lemma 1.3 (c).
The two isomorphisms follow from Proposition 3.9. The isomorphism X ∼= DDX
follows from the first one by setting C = A and Z = A (or from Proposition 3.7).

In particular, D constitutes an equivalence of triangulated categories

S W C → S W op
Cop

for an arbitrary spectrally enriched category C satisfying (C).

Example 3.19. Let C be the orbit category of finite subgroups of the integers. It
has one object and automorphism group Z. We will view C as a spectrally enriched
category by adjoining a basepoint and smashing with S. Let X be the Z-space R
with the usual translation action. This is a free, thus proper action, so it defines a
Cop-space X? that we abusively also denote by X. We want to describe the dual of
X+ which is a C-spectrum. Suspending once, we get a cofibre sequence

Σx
F−−→ Σx −→ ΣX+ .

Here, x denotes the unique object of C and the map F can be described as follows: In
the S1 coordinate, it collapses the antipodal point of the base point to the base point.
Then it maps the first half of the circle to the circle in the target with the same x
coordinate n, and the second half of the circle to the (n+ 1)-st circle. Dualising and
rotating, we thus get a cofibre sequence

Σ−1x
DF−−−→ Σ−1x −→ D(X+) .
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Having established external Spanier-Whitehead duality, we can now prove our homol-
ogy representation theorem, Theorem 4.7, via the route sketched in the Introduction.
Section 4.1 first recollects some well-known information about C-homology theories,
before Section 4.2 uses results of Neeman, as well as the results of Chapter 3, to
prove the main result. It has the hypothesis that S W Cop is a countable category.
For discrete C, this turns out to be equivalent to the countability of C itself (up to
equivalence of categories), as proved in Section 4.3.
From now on, C is a topological index category satisfying (C).

4.1. C-homology theories

Let Λ be a ring, which is set by default to Λ = Z if not mentioned explicitely otherwise.
Recall that a C-homology theory with values in Λ-modules consists of a sequence of
functors

hCn : Fun(C,Top∗)→ ModΛ

for n ∈ Z, together with natural Λ-linear isomorphisms σn : hCn(ΣX) ∼= hCn−1(X) such
that:

• If A f−→ X is a map of pointed C-spaces, then the sequence

hCn(A)→ hCn(X)→ hCn(Cf)

is exact.

• For a collection (Xi) of pointed C-spaces, the canonical homomorphism

⊕
i∈I

hCn(Xi)→ hCn

(∨
i∈I

Xi

)

is an isomorphism.

• If f : X → Y is a weak equivalence of C-spaces, then hCn(f) is an isomorphism
for all n.

C-cohomology theories (hn)n are defined similarly, only that they are contravariant
functors and the wedge axiom has a product instead of a sum.
If the functors hCn are only defined on finite C-CW-complexes, then we call hC∗ a
homology theory on finite C-CW-complexes. For homology theories, this is the same
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datum since the homology of a C-CW-complex is the colimit of the homologies of its
finite subcomplexes, by a telescope argument well-known from the classical setting.
This is, however, not true for cohomology theories. In both cases however, the wedge
axiom is void since it follows from the cone axiom for finite wedge sums.

Remark 4.1. There are variations in this definition which give equivalent notions
of homology theories. For example, the homology theory may only be defined on
pointed C-CW-complexes, with the weak equivalence axiom left out (being void on
C-CW-complexes). Such a theory can be extended to all pointed C-spaces via a
functorial CW-approximation. Also, one might define unreduced homology theories
which are functors from pairs of (unpointed) C-spaces to abelian groups, satisfying the
usual Eilenberg-Steenrod axioms. The notions of reduced and unreduced C-homology
theories are proved to be equivalent in the classical way, see [Lac16] for discrete C.
All combinations of these two variations occur in the literature.

Recall the notion of a (co-)homological functor on a triangulated category from
[Nee01, Def. 1.1.7, Rem. 1.1.9].

Lemma 4.2. A (co-)homology theory on finite pointed C-CW-complexes with values
in Λ-modules is the same datum as a (co-)homological functor with target ModΛ on
the triangulated category S W C.

Proof. We use the description of S W C given in Lemma 1.3. If H is a homological
functor, then defining

hCn(X) = H(Σ−nΣ∞X)

together with the obvious suspension isomorphisms yields a homology theory on finite
C-CW-complexes. Conversely, if hC∗ is such a theory, then Lemma 1.3 shows that

H(ΣNΣ∞X) = hC−N (X)

defines a functor on S W C . The short exact cofibre sequence can be turned into a
long exact sequence by the usual rotation method, showing that H is a homological
functor. It is obvious that these two constructions are inverse to each other.

The following construction is classical [DL98, Lemma 4.2]:

Lemma 4.3. Let E : Cop → SpO be a functor. Then

hCn(X;E) = πn(E ∧LC Σ∞X) (4.1)

defines a C-homology theory.

Remark 4.4. Strictly speaking, in the right-hand side of the above equation, πn(−)
should be [ΣnS,−]S H C . This coincides with the well-known colimit definition for
orthogonal spectra, but not for (all) symmetric spectra, cf. [HSS00, p. 61].
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4.2. The homology representation theorem

Our main result, Theorem 4.7, which is Theorem A from the Introduction, can be seen
as a converse to Lemma 4.3. It shows that every homology theory can be obtained
by this construction, in case S W Cop is countable in the following sense.

Definition 4.5. A category is called countable if it has countably many objects and
morphisms.

Remark 4.6. All our results also apply to categories which are equivalent to countable
categories. We decided to require that they are countable to keep the exposition
simple.

Theorem 4.7. Suppose that S W Cop is countable. Let hC∗ be any C-homology theory.
Then there is a Cop-spectrum E and a natural isomorphism

hC∗(−) ∼= hC∗(−;E) .

Moreover, every morphism of homology theories

hC∗(−;E) −→ hC∗(−;E′)

is induced by a morphism E −→ E′ in the derived category S H C Cop.

Remark 4.8. We will prove in Section 4.3 below that if C is discrete, then the
countability of S W Cop is equivalent to the countability of C.
Remark 4.9. We want to point out that there is an almost invisible difference between
Theorem 4.7 and Theorem A from the Introduction. Indeed, we are dealing with an
arbitrary topological category C satisfying (C) here, whereas we restricted to discrete
C for simplicity in the Introduction.

The morphism in the last statement of Theorem 4.7 is in general not unique, already
in the case C = ∗, due to the existence of phantoms. The proof of the theorem is
based on the following two theorems from [Nee97]:
Theorem 4.10 [Nee97, Thm. 5.1]. Let S be a countable triangulated category. Then
the objects of projective dimension ≤ 1 in Fun(S op,Ab) are exactly the homological
functors S op → Ab.
We cite a second theorem from the same paper. The version in which we state it here
seems to be slightly stronger, but the same proofs apply in our case.
In detail: Let T be a triangulated category with arbitrary small coproducts, and
denote by S a triangulated subcategory which

• is essentially small,

• generates T [Nee97, Def. 2.5],

• consists of compact objects [Nee97, Def. 2.2].
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Neeman insists on S being the category T c of all compact objects (and he requires
this subcategory to have the other two properties), but this is not really needed.
Theorem 4.11 [Nee97, Prop. 4.11]. If every homological functor H : S op → Ab
has projective dimension ≤ 1 as an object of Fun(S op,Ab), then the pair (T ,S )
satisfies Brown representability in the sense that the following two assertions hold:

1. Every homological functor H : S op → Ab is naturally isomorphic to a restriction

H(−) ∼= T (−, X) �S

for some object X of T .

2. Given any natural transformation of functors on S op

T (−, X) �S→ T (−, Y ) �S ,

there is a morphism f : X → Y in T inducing the natural transformation. The
map f is in general not unique.

We apply the two theorems to T = S H C Cop and S = S W Cop . The generation
and compactness hypotheses are trivial.

Proof. Let H be the homological functor on S W C corresponding to (the restriction
of) hC∗ by Lemma 4.2. SinceD is exact by Lemma 3.14 (a), we can define a homological
functor G on S W op

Cop by
G(Y ) = H(DY ) .

By Theorems 4.10 and 4.11, there is a fibrant and cofibrant Cop-spectrum E that
represents G. We thus have natural isomorphisms

hCn(X) ∼= H(Σ−nΣ∞X) ∼= G(D(Σ−nΣ∞X)) ∼= [D(Σ−nΣ∞X), E]Cop

(ηX)1
∗∼= [ΣnS, E ∧LC Σ∞X] ∼= πn(E ∧C Σ∞X) .

An arbitrary C-CW-complex X is the colimit of its finite subcomplexes, and both
homology theories commute with these colimits, so the isomorphism can be pulled
over. Finally, an arbitrary C-space can be approximated by a C-CW-complex.
The representation of morphisms of homology theories follows analogously from part
(2) of Theorem 4.11.

4.2.1. C-cohomology theories

A Cop-spectrum E defines a cohomology theory via

h∗C(Y ;E) = [Σ−nΣ∞Y,E]S H C Cop
∼= π−n(RmapCop(Σ∞Y,E)) .

If Y is a C-CW-complex and E is fibrant, the R can be omitted. The fact that
every C-cohomology theory has this form, i. e. the generalisation of the classical
Brown Representability Theorem, may be obtained by mimicking its original proof
[Bár14,Lac16], or by citing a theorem of Neeman again [Nee01, Thm. 8.3.3]. Note
that the cohomological case is in any way considerably easier than the homological
case. It doesn’t need the countability assumption.

40



4.3. Countability considerations

4.2.2. Morphisms of C-cohomology theories

These are always represented by morphisms in S H C Cop : First, replace the represent-
ing spectra E,E′ by fibrant and cofibrant spectra, and restrict to cofibrant X. Then
the n-th degree cohomology theory is just given by [X,En]C , thus we get various maps
En → E′n such that the obvious compatibility diagrams commute up to homotopy.
Now, rewrite these diagrams using the structure maps ΣEn → En+1 and use that these
have the homotopy extension property since E is cofibrant [MMSS01, Lemma 11.4]
to strictify the diagrams inductively. (This is the argument for sequential spectra;
use the arguments presented in Section 2.3 to pass to orthogonal spectra.)

4.3. Countability considerations

In practice, it may seem hard to check whether S W Cop is countable for a given
category C. We want to argue that the contrary is the case, by proving that if C is
discrete, this is equivalent of the countability of the category C itself:

Proposition 4.12. Let C be a discrete category. Then S W C is equivalent to a
countable category if and only if C is.

Example 4.13. If G is a countable group and F is a family of subgroups which is
countable up to conjugation in G, then Or(G,F) is countable. For instance, F can
be the family of finite subgroups.
Example 4.14. If G = SLn(Qp) and COMOP denotes the family of compact open
subgroups, then the orbit category Or(G, COMOP) is countable. This is proved in
Appendix B. What is more, the orbit category is even locally finite, i. e. has finite
Hom sets. More generally, G can be any semisimple algebraic group over a locally
compact nonarchimedean field.

Lemma 4.15. Let X be a countable pointed CW-complex.

(a) For every n, πn(X) is countable.

(b) Fix a map ∂Dn → X. Then the set [(Dn, ∂Dn), X] of homotopy classes of maps
Dn → X rel ∂Dn is countable.

Proof. Part (a) is contained in Theorem 6.1 of [LW69]. Part (b) can be proved
similarly.

Proof of Proposition 4.12. It is obviously necessary that C is equivalent to a countable
category: For any object c, the 0-th singular homology of X(c) ∼= RmapC(c,X) is a
well-defined functor Hc on S W C . The composition with the Yoneda embedding,

Cop −→ Funfin.CW(C, SpO) −→ S W C
(Hc)c−−−→ Fun(C,Ab)

is the Yoneda embedding which is fully faithful. It follows that the composition of
the first two functors sends non-isomorphic objects to non-isomorphic objects and is
faithful.
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4. Homological representation theorems

For the sufficiency, it is obviously enough to show that the category of finite pointed
C-CW-complexes, with homotopy classes of maps, is countable, compare Lemma 1.3.
Note that for a countable C-CW-complex X, all X(c) are themselves countable
CW-complexes, because of the condition that C has countable morphism sets.
First, we show that there are only countably many homotopy types of objects X, via
induction on the number of cells of X. There are only countably many 0-dimensional
CW-complexes since Ob(C) is countable. Now, we suppose that X is given and we
want to show that there are only countably many possibilities to attach one further
cell. This amounts to choosing an object c (countably many choices) and a based
homotopy class of an attaching map Sn+ ∧ c → X. But these are in bijection with
free homotopy classes Sn → X(c) which is a quotient of πn(X(c)) and thus countable
by Lemma 4.15 (a).
The countability of the morphism sets follows similarly from Lemma 4.15 (b).
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Part II.

Algebra





5. Rational C-homology theories and
Chern characters

Let E be a Cop-spectrum such that the corresponding C-homology theory hC∗(−;E) is
rational, i. e. takes values in Q-vector spaces. By plugging in corepresentable functors
c, it follows that all spectra E(c) have rational homotopy groups for all c. Thus the
natural map

E → HQ ∧ E

is a weak equivalence of C-spectra. Note that the right-hand side is not only a
functor from C to spectra, but to HQ-modules. The stable Dold-Kan correspondence,
discussed in Section 5.1, links these to chain complexes.
We have thus arrived in a purely algebraic setting. More precisely, we study modules
over a certain category algebra QC, cf. Section 5.2. One of the tools that is available
here, and was not available in the case of spectra, is the Künneth spectral sequence
for a tensor product of chain complexes. We use this to prove the existence of a Chern
character in the case of flat coefficients, cf. Corollary 5.23. The flatness hypothesis is
true in the homological case if the coefficients extend to Mackey functors, as discussed
in Section 5.5.

Remark 5.1. In this chapter, we work with simplicial symmetric spectra instead
of orthogonal spectra for technical reasons. The two approaches are completely
equivalent, see Example 2.12.

5.1. The stable Dold-Kan correspondence

We work with the paper [Shi07] which realises the stable Dold-Kan correspondence
as a zig-zag of weak monoidal Quillen equivalences (left adjoints on top)

HQ−Mod
Z−←−−−−−−→−
U

SpΣ(sVectQ)
L←−−−−−−−−−−→

φ∗N
SpΣ(ch+

Q)
D−←−−−−−−→−
R

ChQ . (5.1)

The paper constructs these functors over a general ring R (and concentrates on R = Z
in some parts of the exposition), but we will only need the special case R = Q. The
four model categories used here were introduced in Section 2.1. For the definition
of the various functors, we refer to [Shi07]. The definitions of some of them will be
recalled in the proof of Proposition 5.2. They have the special property that all right
adjoints preserve all weak equivalences. This passes to the functor categories and has
the consequence that no fibrant replacements are necessary when the derived functor
is computed.
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5. Rational C-homology theories and Chern characters

For any (Set-enriched) category C, we get Quillen equivalences

Fun(C, HQ−Mod)
Z∗−←−−−−→−
U∗

Fun(C, SpΣ(sVectQ))
L∗←−−−−−−−−−−−−−−→

(φ∗N)∗
Fun(C, SpΣ(ch+

Q))
D∗−←−−−−→−
R∗

Fun(C,ChQ) .

By the discussion in Subsection 2.2.1, we thus get an equivalence of categories

Ho(Fun(C, HQ−Mod))
Φ−←−−→−
Γ

Ho(Fun(C,ChQ))

where Φ and Γ respect derived balanced smash products and mapping spectra, and
are given by

Φ = D∗Q(φ∗N)∗Z∗Q and Γ = U∗L∗QR∗ .

For a based simplicial set A, let Q̃A denote the simplicial Q-vector space which is the
reduced linearisation of A, i. e. it has as a basis in degree n the set of non-basepoint
n-simplices An \ {∗}. Furthermore, let N : sVectQ → ch+

Q denote the normalised
chain complex functor.

Proposition 5.2. If X is a based simplicial C-set, then there is a natural isomorphism

Φ(HQ ∧ Σ∞X) ∼= NQ̃X .

Proof. We may assume that X is cofibrant in the projective model structure since
NQ̃ : sSet −→ ChQ preserves all weak equivalences [GJ09, Prop. 2.14]. We go through
the construction of Φ step by step. The first cofibrant replacement is not needed
since Σ∞X is a cofibrant C-spectrum, and thus HQ ∧ Σ∞X is a cofibrant C-HQ-
module. The functor Z is given by linearising and then using the canonical morphism
µ : Q̃(HQ)→ Q̃S to turn the result into a Q̃S-module again.
We thus have

Z∗Q(HQ ∧ Σ∞X) = Q̃S⊗Q̃(HQ)
Q̃(HQ ∧ Σ∞X)

∼= Q̃S⊗Q̃(HQ)
Q̃(HQ)⊗Q̃S Q̃(Σ∞X)

∼= Q̃(Σ∞X) .

Here we used that the functor Q̃ is strong monoidal and commutes with colimits.
Note that

(Q̃(Σ∞X))n ∼= Q̃Sn ⊗ Q̃X ,

which we refer to as Q̃(Σ∞X) = Q̃S⊗ Q̃X.
Next, we apply the functor φ∗N objectwise. Here N is the normalised chain complex
functor, which sends Q̃(Σ∞X) to an N(Q̃S)-module in the category of symmetric
sequences of positive chain complexes. This becomes a module over Sym(Q[1]) (i. e.,
a symmetric spectrum) via a ring homomorphism

φ : Sym(Q[1])→ N(Q̃S)
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5.2. Rational C-modules and nondegenerate QC-modules

specified on p. 358 of [Shi07]. This ring map is not an isomorphism (it corresponds
to a subdivision of a cube into simplices), but a weak equivalence, cf. the proof of
Shipley’s Proposition 4.4.
Next, we show that NQ̃X is a cofibrant C-chain complex. Since N is an equivalence
of categories, it commutes with colimits, and so does Q̃. Thus the assertion follows
inductively from the fact that NQ̃(Sn−1

+ ) → NQ̃(Dn
+) is a cofibration. The latter

is readily checked since cofibrations of chain complexes over the field Q are just
monomorphisms.
A similar inductive argument shows that Sym(Q[1])⊗NQ̃X is cofibrant in
Fun(C, SpΣ(ch+

Q)) and that φ induces a weak equivalence

φ⊗ id : Sym(Q[1])⊗NQ̃X −→ NQ̃S⊗NQ̃X .

From the right-hand side we go on with the shuffle map of [SS03a, 2.7], applied
levelwise:

∇ : NQ̃S⊗NQ̃X −→ N(Q̃S⊗ Q̃X) .

The shuffle map is always a quasi-isomorphism on the level of chain complexes
(even a homotopy equivalence with homotopy inverse the Alexander-Whitney map),
thus it induces a weak equivalence on each level. To see that it is a morphism of
symmetric spectra, i. e. Sym(Q[1])-modules, it suffices to show that it is a morphism
of NQ̃S-modules. This is an easy diagrammatic check using the fact that N is a
lax monoidal transformation [SS03a, p. 256]. Summarising, we have constructed a
cofibrant replacement

Sym(Q[1])⊗NQ̃X ∇◦(φ⊗id)−−−−−−→
∼

φ∗N(Q̃S⊗ Q̃X) .

The last step is to apply the functor D objectwise to the left-hand side. But this is
objectwise just the suspension spectrum of NQ̃X(?), and D applied to the suspension
spectrum of a chain complex yields just the chain complex itself by [Shi07, Lemma 4.6].
(Suspension spectra are denoted by F0 in Shipley’s paper.)

5.2. Rational C-modules and nondegenerate QC-modules

The computation carried through in the last section leads us to considering functors
from a fixed category C to ChQ. Note that such a functor is the same as a chain
complex of functors from C to Q-vector spaces. We now take a closer look at the
additive category of these. More generally, we consider functors from C to Modk,
where k is an arbitrary commutative ring and C may be an arbitrary k-linear category.
The functor categories in this case consist of k-linear functors.

Definition 5.3. The category algebra kC of C over k is given by⊕
c,d∈C

kHomC(c, d) ,

47



5. Rational C-homology theories and Chern characters

with multiplication defined by bilinear extension of the relations

g · f =

{
gf if g, f are composable
0 else

.

If C happens to be the free k-linear category on a (Set-enriched) category, we have
the presentation

kC ∼= k

〈
ef for f : c→ d

∣∣∣∣∣ egef =

{
egf if g, f are composable
0 else

〉
,

where the angle brackets indicate that we take the quotient of the free (non-
commutative) algebra over the ef by the said relations. If C has only finitely many
objects, the category algebra kC has a unit

∑
c∈Ob(C)

idc. For general (i. e. non-object-

finite) C, kC has only an approximate unit in the sense defined below. Recall that a
net in a set S is a map I → S where I is a directed set, i. e. a partially ordered set
in which any two elements have a common upper bound.

Definition 5.4. A ring S has an approximate unit if there is a net (ei)i∈I of idem-
potents in S with the following two properties:

• For every s ∈ S, there is some i such that eis = s = sei.

• For i ≤ j, we have ejei = eiej = ei.

A left S-module M is called non-degenerate if SM = M . Equivalently, if for every
m ∈ M there is some i such that eim = m. The category of non-degenerate left
S-modules and S-linear maps is denoted NModS .

For our category algebra kC, the set I consists of all finite sets of objects of C, ordered
by inclusion, and the approximate unit sends F ∈ I to

eF =
∑
c∈F

idc .

The following result is essentially [Mit72, Thm. 7.1].

Proposition 5.5. There is an isomorphism of additive categories

Ξ: Fun(C,Modk) −→ NModkC

and a similar equivalence between contravariant functors and non-degenerate right
kC-modules. If this is also denoted by Ξ, then there are natural isomorphisms of
k-modules

Ξ(X)⊗kC Ξ(Y ) ∼= X ⊗C Y
for a right C-module X and left C-module Y , and

HomkC(Ξ(X),Ξ(Z)) ∼= HomC(X,Z)

for two right C-modules X and Z.
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5.2. Rational C-modules and nondegenerate QC-modules

Proof. The equivalence is defined as follows: If X : C → Modk is a functor, define

Ξ(X) =
⊕

c∈Ob(C)

X(c)

with the action of (f : c0 → d0) ∈ kC on x = (xc)c given by

(f · x)d =

{
X(f)(xc0) if d = d0

0 else.

This yields a non-degenerate kC-module: Every element lies in some submodule⊕
c∈F

X(c), where F is a finite set of objects, and eF acts as the identity on this

submodule.
An inverse equivalence

Π: NModkC −→ Fun(C,Modk)

is constructed as follows: If M is a non-degenerate kC-module, let

(Π(M))(c) = idcM .

A morphism f : c→ d induces a linear map idcM → iddM since f = iddf .
It is easy to check that ΠΞ equals the identity. For the other composition, note that
there is a natural map

Ξ(Π(M)) =
⊕

c∈Ob(C)

idcM →M

induced by the inclusions. This will be an injective kC-linear map in general since
the idc are orthogonal idempotents. If M is non-degenerate, it is surjective. The two
asserted natural isomorphisms are straightforward.

Remark 5.6. The category

Ch(NModkC) ∼= Fun(C,Chk)

can be endowed with a model structure in (at least) two ways. The first one is just
the projective model structure as a functor category, coming from the projective
model structure on Chk. The second one is the projective model structure on chain
complexes over NModkC . This model structure (for abelian categories different from
modules over a unital ring) is defined in [Hov01a, Sec. 3]. It has as input a setM of
monomorphisms, for which we choose all monomorphisms of the form 0→ kC · idc
with c ∈ Ob(C). One can then check that the hypotheses of [Hov01a, Thm. 3.7] are
satisfied and that the two model structures have the same cofibrations and the same
weak equivalences, and thus coincide.

The following result was stated in the Introduction as Theorem C.
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5. Rational C-homology theories and Chern characters

Corollary 5.7. If E is a chain complex of right QC-modules, then

hC∗(X;E) = H∗(E ⊗QC X) (5.2)

defines a rational reduced C-homology theory. Here

X = QNQ̃Sing(X) ∼= NQ̃(Q(Sing(X))) (5.3)

denotes a cofibrant replacement of NQ̃Sing(X) and Sing : Top∗ → sSet∗ denotes the
singular simplicial complex functor.
Conversely, if C is countable and hC∗ is a rational C-homology theory, then there is a
chain complex E, and a natural isomorphism of homology theories as above. Moreover,
any morphism of rational homology theories is induced by a morphism in the derived
category of NModQCop .

Analogous statements hold for cohomology.

Proof. The isomorphism (5.3) comes from the fact that NQ̃ preserves all weak
equivalences.
We have to translate the Davis-Lück construction (4.1) from orthogonal spectra to
chain complexes. Let X be a C-space and E a rational Cop-spectrum. We apply first
the Quillen equivalence from Example 2.12 between orthogonal spectra and simplicial
symmetric spectra. The derived balanced smash product E ∧LC X ∼= E ∧LC Σ∞X then
translates into E′ ∧LC Σ∞(Sing(X)), where E′ is obtained by turning the orthogonal
spectrum into a (topological) symmetric spectrum and then applying the singular
complex object- and levelwise, as explained in the mentioned example. The spectrum
E′ is still rational, and thus so is E′ ∧LC Σ∞(Sing(X)).
If Φ is the functor introduced in the beginning of Section 5.1, then we can translate
further as follows:

Φ(E′ ∧LC Σ∞(Sing(X))) ∼= Φ(E′ ∧LC HQ ∧ Σ∞(Sing(X)))

∼= Φ(E′)⊗LC Φ(HQ ∧ Σ∞(Sing(X)))

∼= Φ(E′)⊗LC NQ̃Sing(X) ∼= QΦ(E′)⊗QC QNQ̃Sing(X) .

Here, the second isomorphism used the comparison theory developed in Subsec-
tion 2.2.1, in particular Proposition 2.13, the third isomorphism is Proposition 5.2,
and the last isomorphism is Proposition 5.5. Any chain complex of right QC-modules
may be brought into the form QΦ(E′) by Lemma 5.9 below. We thus have proved
the first part of the corollary. The second part follows by an application of Theo-
rem 4.7.

Remark 5.8. In the second part of Corollary 5.7, if E is cofibrant (as a chain complex
over NModQC), one might take NQ̃Sing(X) instead of its cofibrant replacement X.
This is due to the fact that in the aformentioned model category, tensoring with a
cofibrant chain complexes preserves weak equivalences, by Lemma 5.9 below, so we
get an analogue of Corollary 1.21. However, we will mainly use (5.2) in the form with
X since this allows us to manipulate E.
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Lemma 5.9. If X is a cofibrant chain complex over NModkC, then tensoring with
X preserves weak equivalences.

Proof. Note that a cofibrant chain complex is degreewise projective by the argument
from [Hov99, Lemma 2.3.6]. For positive chain complexes, the assertion thus follows
from the Künneth spectral sequence [ML63, Thm. 12.1]. In the general case, truncate
the chain complexes (the cofibrant one naively, the members of the quasi-isomorphism
as in the proof of Corollary 5.23 below) and then pass to the colimit.

5.3. Basic facts about rings with approximate unit

We recall here some basic facts about rings with approximate unit, and adapt some
standard results from module theory to this setting.
Let S be a ring with approximate unit, as in Definition 5.4. The category NModS
of non-degenerate left S-modules is an abelian category and thus has a meaningful
notion of projective dimension and global dimension [Mit72, Sec. 9]. We refer to this
dimension if we talk about the global dimension of a ring with approximate unit. If ei
is idempotent, then Sei is projective. It follows that the category of non-degenerate
S-modules has enough projectives, so that it is hereditary if and only if submodules
of projectives are projective.
As in the unital case, projective non-degenerate modules are flat:

Lemma 5.10. Let S be a ring with approximate unit.
(a) If M is a non-degenerate left S-module, then there is a natural isomorphism of
S-modules

S ⊗S M ∼= M .

(b) A non-degenerate left S-module P which is projective in the category of non-
degenerate left S-modules is flat in the sense that − ⊗S P is an exact from non-
degenerate S-modules to abelian groups.

Proof. (a) Define an S-linear map f : S ⊗S M −→M by s⊗m 7→ sm. A map g (of
sets) in the other direction is defined as follows: An element m ∈M is mapped to
ei ⊗m, where i ∈ I is such that eim = m. This is well-defined: If j is another such
index, choose k ≥ i, j. Then

ei ⊗m = (ekei)⊗m = ek ⊗ (eim) = ek ⊗m = ej ⊗m.

It is immediate that f ◦ g is the identity. For g ◦ f , we use the fact that S has an
approximate unit: Choose ei with eis = s, then eism = sm and

g(f(s⊗m)) = ei ⊗ (sm) = s⊗m.

(b) A non-degenerate S-module is a quotient of a direct sum of left regular repre-
sentations S. If it is projective, then it is a direct summand and hence flat by part
(a).
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5. Rational C-homology theories and Chern characters

Remark 5.11. Part (b) implies that one can define Tor terms in the usual way via
projective resolutions, which are symmetric and yield long exact Tor sequences for
every short exact sequence of non-degenerate S-modules.

Let A be an S-algebra with approximate unit, i. e. A is a ring equipped with a ring
homomorphism S → A such that the image of the approximate unit of S constitutes
an approximate unit of A. The rest of this section is taken from [LL20]. For unital
rings, the results are already discussed in [CQ95, Sec. 2]. See also [HGK07].

Definition 5.12. The (A,A)-bimodule of differential forms of degree one is defined
as Ω1

SA = A⊗S A/S with the ’Leibniz’ A-bimodule structure

a · (b⊗ [c]) · d = ab⊗ [cd]− abc⊗ [d] .

This is easily checked to be a non-degenerate (A,A)-bimodule.

Definition 5.13. Let S be a ring with approximate unit, A an S-algebra, and M
an (A,A)-bimodule. The abelian group of S-derivations DerS(A,M) consists of all
derivations D : A→M with DS = 0.

There is a canonical S-derivation d : A→ Ω1
SA sending a to ei ⊗ [a], where ei ∈ S is

chosen such that aei = eia = a. This is well-defined: If ej is another such element,
we may assume i ≤ j and get

ei ⊗ [a] = ejei ⊗ [a] = ej ⊗ [eia] = ej ⊗ [a] .

It is a derivation by the definition of the Leibniz bimodule structure.

Lemma 5.14. d is a universal S-derivation, furnishing an isomorphism

Hom(A,A)(Ω
1
SA,M) ∼= DerS(A,M) .

Proof. We have to show that for an S-derivation D : A → M , there is a unique
(A,A)-linear map F : Ω1

SA→M such that F ◦ d = D, i. e. F (ei ⊗ [a]) = Da with ei
as above. Uniqueness is clear: Let a, b ∈ A and choose ei such that aei = eia = a
and bei = eib = b. Then

F (a⊗ [b]) = F (a · (ei ⊗ [b])) = a · F (ei ⊗ [b]) = a ·Db .

On the other hand, one easily checks that this furnishes a well-defined (A,A)-bilinear
map F : Ω1

SA→M which satisfies F ◦ d = D, so that we have proved existence.

Proposition 5.15. Let S be a ring with approximate unit and A an S-algebra with
approximate unit. There is a short exact sequence

0 −→ Ω1
SA

κ−−→ A⊗S A
m−−−→ A −→ 0

of (A,A)-bimodules, with m(a0 ⊗ a1) = a0a1 and κ defined in the proof below.
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Proof. We define an (A,S)-linear section ι of the multiplication map m as follows:
For a ∈ A, choose ei with eia = aei = a and set ι(a) = a⊗ ei. This is well-defined:
Suppose ej is another such element. Since I is directed, we may assume that i ≤ j.
Then

a⊗ ei = a⊗ eiej = aei ⊗ ej = a⊗ ej .
Thus, the kernel of m is identified (as (A,S)-bimodule) with the cokernel of ι via the
projection idA⊗SA − ιm. Since ι is given by the canonical isomorphism

A ∼= S ⊗S A

stemming from the fact that A is a non-degenerate module over S, cf. Lemma 5.10
(a), followed by the canonical morphism S → A, and tensoring is right exact (over an
arbitrary non-unital ring), we identify the cokernel of ι with A⊗S A/S = Ω1

SA. It
follows that the map

κ : Ω1
SA→ A⊗S A

sending a⊗ [b] to
(id− ιm)(a⊗ b) = a⊗ b− ab⊗ ei ,

where ei is chosen such that eiab = ab = abei, is well-defined and renders the above
sequence exact. Finally, one checks that κ is a morphism of (A,A)-bimodules if Ω1

SA
has the Leibniz bimodule structure.

5.4. Chern characters

We quickly recall the notion of Bredon homology [DL98, Sec. 3]. Let M be a right
kC-module. If X is a pointed C-CW-complex, then applying the cellular complex
objectwise yields a left kC-chain complex, and the homology of the tensor product

hC,Br
n (X;M) = Hn(M ⊗kC Ccell

∗ (X;Q))

defines a C-homology theory with values in k-modules – use a CW-approximation to
extend it to arbitrary C-spaces.

Definition 5.16. The coefficient system of a reduced C-homology theory hC∗ with
values in k-modules is the Z-graded right kC-module given by hCn = hCn(S0 ∧ c).

The Bredon homology with respect to this coefficient system appears in the Atiyah-
Hirzebruch spectral sequence

hC,Br
p (X;hCq ) ⇒ hCn(X) , (5.4)

which is proved in the same way as in the case C = ∗ [Lac16].

Lemma 5.17. Suppose that the right kC-chain complex E is given by a right kC-
module E0 = M in degree 0, and En = 0 otherwise. Then there is a natural
isomorphism of homology theories

H∗(E ⊗kC X) ∼= hC,Br
∗ (X;M) .
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5. Rational C-homology theories and Chern characters

Proof. The coefficient system of the left-hand homology theory is given by Ek in degree
k. Since this is 0 in non-zero degrees, the Atiyah-Hirzebruch spectral sequence (5.4)
collapses and gives the above isomorphism.

Remark 5.18. Alternatively to using the Atiyah-Hirzebruch spectral sequence, one
could also prove Lemma 5.17 by using a zig-zag of chain complexes between the
singular and the cellular chain complex which is natural (in cellular maps) and induces
the isomorphism between singular and cellular homology. This then can be upgraded
to C-CW-complexes. Such a zig-zag is constructed on p. 121 of [VF04].

We now turn to the question of existence of Chern characters, which means for us
that the homology theory splits into a direct sum of shifted Bredon homology theories.
By plugging in suspended representable functors Sn ∧ c, one sees that there is only
one choice for the coefficient systems in every degree, yielding the following definition.

Definition 5.19. Let hC∗ be a C-homology theory with values in k-modules. A Chern
character for hC∗ is an isomorphism of C-homology theories with values in k-modules

hCn(X) ∼=
⊕
s+t=∗

hC,Br
s (X;hCt ) .

Remark 5.20. We define Chern characters for C-cohomology theories in the same way,
only with a direct product on the right-hand side. There seems to be no consense
in the literature whether to take a product or sum here. However, in most cases
cohomological Chern characters are only considered for finite C-CW-complexes and
there is no difference.

This notion of Chern character was introduced in [Lüc02], building on [BC98] and
[LO01]. The name originates from the (non-equivariant) case of complex K theory,
where the Chern character

K0(X)⊗Q
∼=−→ Heven(X;Q)

for X a finite CW-complex is constructed using Chern classes.

Lemma 5.21. Let C be countable and let M be a right QC-chain complex. Then a
Chern character exists for hC∗(−;M) if and only if M is isomorphic to a complex
with zero differentials in the derived category of Ch(NModQC). The same is true for
C-cohomology theories.

Proof. This follows directly from the second part of Theorem 4.7 (representation of
morphisms), together with the Dold-Kan correspondence described in Section 5.1 and
Remark 5.6. For cohomology, representation of morphisms is shown in Subsection 4.2.2.

Remark 5.22. In the case that M is bounded, [Ill02, Sec. 4.5, 4.6] describes how
one can find out whether the condition of Lemma 5.21 holds, using a sequence of
obstructions living in ExtiQC(Hp+i−1(M), Hp(M)) with i ≥ 2. The exposition assumes
that the ground ring has a unit, but this is not used in the argumentation.
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We now discuss one approach to construct Chern characters.

Proposition 5.23. Let C be countable. Suppose that hC∗ is a rational C-homology
theory with the property that all coefficient systems hCt are flat as right QC-modules.
Then there exists a Chern character for hC∗ , which is natural in the homology theory
hC∗ .

Remark 5.24. This result is similar to [Lüc02, Thm. 4.4] where the case of the proper
orbit category of a discrete group is treated, with the additional assumption that
the homology theory is equivariant, i. e. there are proper homology theories for all
discrete groups linked via induction isomorphisms. A technical difference is that the
flatness assumption is not over the orbit category itself, but over a certain category
QSub(G,FIN ), whereas the homology theories are defined on Or(G,FIN )-spaces
as usual. Thus, our theorem does not imply Lück’s theorem directly.

Remark 5.25. Taking into account Lemma 5.21, we have proved that whenever a
chain complex of non-degenerate QC-modules has flat homology, then it is isomorphic
to a trivial complex in the derived category. For bounded complexes, we may also
see this as follows: Using the result that over a countable ring, flat modules have
projective dimension at most 1 [Sim74], we see that all higher Exti-groups of the
homology modules, i ≥ 2, appearing in Remark 5.22, vanish.

Proof. Start with the representation as in (5.2). First suppose that E is bounded
below, say positive. We claim that X is degreewise flat. Copying the argument
from the proof of [Hov99, Lemma 2.3.6] shows that X is degreewise projective in the
category NModQC . Note that a fibration is still the same as a degreewise surjective
map. By Lemma 5.10 (b), X is degreewise flat.
Having said this, we get a Künneth spectral sequence [ML63, Thm. 12.1]

E2
p,q =

⊕
s+t=q

TorpQC(Hs(E),Ht(X)) ⇒ Hp+q(E ⊗QC X) .

Since the coefficients Hs(E) are flat, all higher Tor terms vanish and the E2 page is
concentrated on the line p = 0. It thus degenerates and gives an isomorphism

hCn(X) ∼= Hn(E ⊗QC X) ∼=
⊕
s+t=n

Hs(E)⊗QC Ht(X) ∼=
⊕
s+t=n

Ht(Hs(E)⊗QC X)

∼=
⊕
s+t=n

hC,Br
t (X; Hs(E)) ,

where we used flatness of Hs(E) again, and Lemma 5.17. Naturality of the Künneth
spectral sequence shows directly that this isomorphism is natural in X. Naturality in
the homology theory additionally needs the fact that every morphism of homology
theories is induced by a morphism of chain complexes, after possibly replacing E by
a fibrant and cofibrant complex, cf. Theorem 4.7.
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For arbitrary E, let τkE denote the truncations

(τkE)n =


En , n ≥ k
ker(dk) , n = k

0 , n < k

.

There are natural injective chain maps

τkE ↪→ E

inducing a homology isomorphism in all degrees ≥ k, whereas the homology of τkE
in degrees < k is 0. In particular, Ht(τkE) is flat for all t.
The maps above exhibit E as the colimit of the sequence

τ0E ↪→ τ−1E ↪→ τ−2E ↪→ . . . .

We now run the above argument with the truncations τkE. Note that we need not
assume these to be cofibrant, thanks to Lemma 5.9. The various isomorphisms

Hn(τkE ⊗QC X) ∼=
⊕
s+t=n

Hs(Ht(τkE)⊗QC X)

are natural with respect to the inclusions τkE ↪→ τk−1E by naturality of the Künneth
spectral sequence. Passing to the colimit, the right-hand side obviously gives the
desired sum of Bredon homologies. The left-hand side gives Hn(E ⊗QC X) since
homology commutes with filtered colimits, and so does −⊗QC X.

A cohomological version can be proved in a very similar way, except that we have to
restrict to finite X here since the truncation argument doesn’t go through.

Proposition 5.26. Let C be countable, and let h∗C be a rational C-cohomology theory
with projective coefficient systems. Then there is a Chern character for the restriction
h∗C to finite X.

Proof. The proof is analogous, using a cohomological version of Corollary 5.7 and
the cohomological Künneth spectral sequence [Rot79, Thm. 11.34]

Ep,q2 =
⊕
s+t=q

ExtpQC(Hs(X),Ht(E)) ⇒ Hp+q(HomQC(X,E)) .

Note that to formulate Corollary 5.7 with HomQC instead of the derived tensor
product, we also need to replace E fibrantly, since we don’t have a mapping space
version of Corollary 1.21 at hand. However, in ChQ and thus in Fun(C,ChQ), all
objects are fibrant.
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5.5. Mackey functors

In this section, C is the orbit category of a group G. We will show that the flatness
assumption of Corollary 5.23 holds if G is finite and the coefficients can be extended
to Mackey functors.
The following definitions and the explicit description of the orbit category below
are well-known. The restriction that a family is closed under taking subgroups (in
particular, it always contains the trivial subgroup) is sometimes dropped in the
literature, but we use it in this section as well as in Section 6.2 below.

Definition 5.27. (a) Let G be a group. A family of subgroups of G is a set
of subgroups of G which is non-empty and closed under conjugation and taking
subgroups.
(b) The orbit category Or(G,F) has as objects the transitive G-spaces G/H for
H ∈ F , and as morphisms all G-linear maps.

Lemma 5.28. Let G be an arbitrary group and F a family of subgroups. For
H,K ∈ F , there is a bijection

φH,K : K\TransG(H,K) ∼= HomOr(G,F)(G/H,G/K),

g 7→ φH,K(g)

with
TransG(H,K) = {g ∈ G; gHg−1 ⊆ K}

and
(φH,K(g))(xH) = xg−1K

for x ∈ G. Furthermore, for L ∈ F and g′ ∈ TransG(K,L), we have

φK,L(g′) ◦ φH,K(g) = φH,L(g′g) .

If no confusion can arise, we will only write φ for φH,K .

Proof. This follows immediately from the fact that the objects of Or(G,F) are
transitive G-spaces.

From now on, G is finite and F is the family of all subgroups. Recall that a (rational)
Mackey functor assigns to any subgroup H of G a Q-vector space M(H) and to any
inclusion K ⊆ H two homomorphisms

IHK : M(K) −→M(H) and RHK : M(H) −→M(K) ,

called induction and restriction, and for any g ∈ G conjugation homomorphisms

cg : M(H) −→M(gHg−1) .

These have to satisfy certain relations listed for instance in [TW95].
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5. Rational C-homology theories and Chern characters

Let ΩQ(G) denote the Mackey category of G; we take [TW95, Prop. 2.2] as its
definition. It is a category enriched in Q-vector spaces which is not the free Q-linear
category on a category. Its objects the finite G-sets. By design, a Mackey functor is
just a Q-linear functor ΩQ(G) −→ VectQ. The category algebra of ΩQ(G) is called
µQ(G), the Mackey algebra.

Lemma 5.29. There is a canonical functor I : Or(G)→ ΩQ(G) defined by I(G/H) =
H and

I(φ(g)) = IKgHg−1cg

for g ∈ TransG(H,K).

Remark 5.30. Since I is injective on objects, it induces a ring homomorphism I on
the category algebras [Xu06, Prop. 3.2.5].

Proof. Let H,K,L, g and g′ be as in Lemma 5.28. Calculate:

I(φ(g′) ◦ φ(g)) = I(φ(g′g)) = ILg′gH(g′g)−1cg′g = ILg′K(g′)−1I
g′K(g′)−1

g′gH(g′g)−1cg′cg

= ILg′K(g′)−1cg′I
K
gHg−1cg = I(φ(g′))I(φ(g)) .

Definition 5.31. A left (or right) rational Or(G)-module M is said to extend to a
Mackey functor if it is of the form I∗M̃ for a left (or right) ΩQ(G)-module M̃ .

Proposition 5.32. µQ(G) is a projective left QOr(G)-module.

Remark 5.33. It is not known to us whether the corresponding statement for the
right QOr(G)-module µQ(G) holds. Thus, Corollary 5.34 cannot be formulated for
G-cohomology theories.

Proof. AQ-basis of µQ(G) is given on the bottom of p. 1875 of [TW95] (cf. Prop. 3.2, 3.3).
It consists of all elements

IKgLg−1cgR
H
L = I(φ(g))RHL ,

for L ⊆ H and g ∈ TransG(L,K), up to the following identification:

I(φ(g))RHL = I(φ(g′))RHL′ ⇔ ∃x ∈ H ∩ (g′)−1Kg : L′ = xLx−1 . (5.5)

Let P denote a set of representatives of pairs (H,L) with L ⊆ H, modulo the relation
that for fixed H, L may be conjugated by an element from H: (H,L) ∼ (H,hLh−1).
Then we define an Or(G)-linear homomorphism

F :
⊕

(H,L)∈P

QHomOr(G)(G/L,−)⊗QNG(L) Q[NG(L)/(H ∩NG(L))] −→ µQ(G) ,

φ(g)⊗ n 7→ I(φ(gn))RHL .

We will show that F is an isomorphism, which implies the result since the left-hand
side is a projective module by the semi-simplicity of all QNG(L).
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To see that F is surjective, note that by the result cited above, the right-hand side
has a basis of elements I(φ(g))RHL with L ⊆ H. We only have to achieve (H,L) ∈P.
For this, choose h ∈ H such that (H,L′) ∈P with L′ = hLh−1. For g′ = gh−1, we
have

h = (g′)−1 · 1 · g ∈ (g′)−1Kg ∩H
and thus I(φ(g))RHL = I(φ(g′))RHL′ = F (φ(g)⊗ 1) by (5.5).
Next, we show that F is injective. Fix H and K and consider only morphisms from
H to K. Let L be a set of representatives of subgroups of H up to conjugation
(in H). The left-hand side has a basis consisting of all pairs (L, φ(g) ⊗ 1), where
(H,L) ∈ P and g ∈ K\TransG(L,K)/NG(L). Such an element is mapped to the
element I(φ(gn))RHL on the right-hand side, which is part of the Thévenaz-Webb
basis. Thus, we only have to show that F is injective when restricted to the basis
{(L, φ(g)⊗ 1)}. Suppose that

F (L, φ(g)⊗ 1) = F (L′, φ(g′)⊗ 1) .

By (5.5), there exists x ∈ H ∩ (g′)−1Kg such that L′ = xLx−1. In particular, L and
L′ are conjugate in H, i. e. L = L′. Then x ∈ NG(L). We have g′x = kg for some
k ∈ K and consequently

φ(g)⊗ 1 = φ(kg)⊗ 1 = φ(g′x)⊗ 1 = φ(g′)⊗ x = φ(g′)⊗ 1.

Corollary 5.34. Let G be finite and hG∗ a rational G-homology theory with the
property that all coefficient systems hCt extend to Mackey functors. Then there is a
Chern character for hG∗ .

Proof. Let M = I∗M̃ . By [TW90, Thm. 9.1], the Mackey algebra (over Q) is
semisimple. Thus, M̃ is a projective µQ(G)-module and hence M is a projective, thus
flat, QOr(G)-module by Proposition 5.32. The existence of the Chern character then
follows from Corollary 5.23.

Remark 5.35. A similar result was shown by Lück [Lüc02, Thm. 5.2]. His result holds
for arbitrary discrete G (with F the family of finite subgroups), but refers to equivari-
ant homology theories, and the Mackey condition is formulated for QSub(G,FIN )-
modules, cf. Remark 5.24. Lück’s definition of Mackey extension is stronger than our
definition given below. Thus his examples, namely rationalised equivariant bordism
(Ex. 1.4, 6.4) and the equivariant homology theories associated to rationalised al-
gebraic K-theory and rationalised algebraic L-theory of the group ring, as well as
rationalised topological K-theory of the reduced group C∗-algebra (Ex. 1.5, Sec. 8)
can also serve as examples for us.
In contrast to Lück’s result, the argumentation presented here breaks down for infinite
G. While Proposition 5.32 still holds true in this case, it is not true any longer that
µQ(G) is semi-simple. We give an example showing that it is not even von Neumann
regular. Recall from [Goo91] that a ring is called von Neumann regular if every
module is flat, and that this is equivalent to the condition that for every ring element
a, there exists a ring element x such that axa = a.
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Example 5.36. Let G = D∞ = 〈s, t | s2 = t2 = 1〉 be the infinite dihedral group,
and let ΩQ(G) and µQ(G) be defined exactly as above (for finite groups), with the
difference that the subgroups H and K are restricted to the finite subgroups of G.
One can show that

HomΩQ(G)(〈s〉, 〈t〉) = Q〈{I〈t〉1 gR
〈s〉
1 ; g ∈ 〈t〉\G/〈s〉}〉 .

Representatives of the (〈t〉, 〈s〉)-double cosets are given by (st)k for k ∈ Z. Let xk =

I
〈t〉
1 (st)kR

〈s〉
1 and yk = I

〈s〉
1 (st)kR

〈t〉
1 . The yk form a Q-basis of the homomorphisms

from 〈t〉 to 〈s〉 similarly.
Let a = y0 = I

〈s〉
1 R

〈t〉
1 ∈ HomΩQ(G)(〈t〉, 〈s〉). Compute

axka = I
〈s〉
1 R

〈t〉
1 I
〈t〉
1 (st)kR

〈s〉
1 I
〈s〉
1 R

〈t〉
1 = I

〈s〉
1 (1 + t)(st)k(1 + s)R

〈t〉
1

= I
〈s〉
1 ((st)k + t(st)k + (st)ks+ t(st)ks)R

〈t〉
1

= I
〈s〉
1 ((st)k + st(st)k + (st)kst+ st(st)kst)R

〈t〉
1

= yk + 2yk+1 + yk+2 .

It follows easily that the linear equation axa = a has no solution. Thus, µQ(D∞) is
not von Neumann regular.
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As announced in the Introduction, this chapter is devoted to the characterisation of
categories whose category algebra is hereditary. Most of the results are taken from,
or applications of results from, the paper [LL20] of the author together with Liping
Li. This paper in turn builds on Li’s earlier work [Li11] for the finite case.
Recall that a ring is called left (right) hereditary if any submodule of a projective left
(right) module is projective. For a ring with approximate unit, we generalise these
notions to mean that any non-degenerate submodule of a non-degenerate projective
module is projective. By a standard argument, this is equivalent to the vanishing of
Ext2(−,−). There is an intimate connection between hereditarity and the existence
of Chern characters:

Proposition 6.1. The following are equivalent for a countable category C:
(a) QC is right hereditary.
(b) Every rational C-homology theory possesses a Chern character.

The same statement holds for left hereditarity and cohomology. In the rest of this
chapter, we will present sufficient conditions for the hereditarity of the category
algebras of certain EI categories.
We arrived here in a purely algebraic situation. The question of hereditarity of the
category of representations of a category C may be formulated in the following most
general framework:

• instead of considering only Q-vectorspaces, we work over a fixed commutative
ring k from now on,

• C may be an arbitrary small k-linear category.

This most general case is discussed in Sections 6.3 and 6.4. Slightly simplified
conditions for discrete categories are discussed in Section 6.1, with the translation
explained in Section 6.5.

Proof of Proposition 6.1. By Lemma 5.21, assertion (b) is equivalent to the fact that
every chain complex of non-degenerate right R-modules is isomorphic to a trivial
complex in the derived category.
Suppose QC is hereditary. Since NModQC has enough projectives, one easily sees
that any (right) chain complex is quasi-isomorphic to a degreewise projective one,
and it is well-known [Kra07, Sec. 1.6] that these split over right hereditary abelian
categories.
Conversely, assume that QC is not right hereditary. Then there are right QC-modules
M and N such that Ext2

QC(N,M) 6= 0. A straightforward triangulated category

61



6. Hereditary category algebras

argument, explained for instance in [Ill02, Sec. 4.5, 4.6], shows how this can be used
to construct a chain complex L with only nontrivial homology groups H0(L) ∼= M
and H1(L) ∼= N which is not isomorphic to the trivial complex M [0]⊕N [−1] in the
derived category.

6.1. Formulation of the main result for discrete
categories

In this section, let C be a small discrete EI category. This means that all Endomorphisms
in C are I somorphisms. We can define a preorder 6 on the set of objects by letting
c 6 d if C(c, d) is nonempty. This preorder induces a partial order 6 on the set of
isomorphism classes of objects.
Given a pair of objects c and d, the morphism set C(c, d) is a (Gd, Gc)-biset, i. e. a
left (Gd ×Gop

c )-set. As such, it is a disjoint union of transitive bisets

Gd ×Gop
c /Hi

where Hi ⊆ Gd ×Gop
c is a subgroup. We call all subgroups Hi occuring like this biset

stabilisers in C(c, d), and will study the following conditions on the biset stabilisers.

(Ad) For all c < d, all biset stabilisers in C(c, d) are locally k×-finite, in the sense
that all their finitely generated subgroups are k×-finite.

(Bd) For all c < d, and any biset stabiliser Hi in C(c, d), pr1(Hi) is k×-finite. Here
pr1 denotes the projection Gd ×Gop

c → Gd.

Here, a set X is called k×-finite if its cardinality is finite and invertible in k. The
first condition is symmetric, but the second one is not.

Example 6.2. Let G be an infinite, locally k×-finite group, for instance k = Q and
G = Q/Z, and let C be a category with two objects c and d such that Gc = G = Gd,
and C(c, d) as a biset is generated by an element α such that Gd acts on C(c, d) freely
and every element in Gc fixes every morphism in C(c, d), and C(c, d) = ∅. Then we
have Hi = {1} × Gop

c for the only biset stabiliser, and C satisfies (Ad) and (Bd),
whereas the opposite category only satisfies (Ad).

Remark 6.3. By a result of Auslander [Aus55], the left and right global dimensions of
a Noetherian ring coincide. The proof can easily be adapted to rings with approximate
unit via replacing the Noetherian condition by the approximately Noetherian condition
that for every i, every left S-submodule of Sei and every right S-submodule of eiS
is finitely generated as a left, resp. right S-module. In particular, using Theorem
6.7 below, the category algebra of the category C introduced in Example 6.2 is not
approximately Noetherian.

We now consider factorisation properties of morphisms in C. Recall that a non-
invertible morphism in C is called unfactorisable if it can not be written as the
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composition of two non-invertible morphisms. In the following, we focus on discrete
categories with the property that every non-invertible morphism can be written as a
finite composition of unfactorisable morphisms.

Definition 6.4. An EI category C is said to have the finite factorisation property FFP
if every non-invertible morphism is a composition of finitely many unfactorisables.

Example 6.5. For an arbitrary EI category C, not every non-invertible morphism
can be written as a finite composition of unfactorisable morphisms, or even worse,
unfactorisable morphisms do not exist. For example, the poset R with the usual
ordering can be viewed as a category, and in this category every morphism is either
invertible or factorisable. Another example is the poset N ∪ {∞} with the usual
ordering. The reader can see that unfactorisable morphisms exist, but the unique
morphism from 1 to ∞ cannot be expressed as a composition of unfactorisable
morphisms. We shall emphasise that there do exist categories with hereditary
category algebra, but without the FFP, see [LL20, Example 6].

For an EI category C with finite factorisation property, the way to decompose a non-
invertible morphism into unfactorisable morphisms is in general not unique. We now
recall the unique factorisation property UFP due to Liping Li [Li11, Def. 2.7]. Here
we take a slightly altered version which is appropriate for arbitrary, not necessarily
skeletal, EI categories. Loosely speaking, the UFP means that the factorisation of
every non-invertible morphism into unfactorisable morphisms is unique up to insertion
of automorphisms of objects. Therefore, categories having the UFP are analogous to
unique factorisation domains in commutative algebra.

Definition 6.6. The category C satisfies the unique factorisation property (UFP) if
for any two chains

x = x0
α1−→ x1

α2−→ . . .
αn−−→ xn = y

and
x = x′0

α′1−→ x′1
α′2−→ . . .

α′
n′−−→ x′n′ = y

of unfactorisable morphisms αi and α′i which have the same composition f : x→ y,
we have n = n′ and there are isomorphisms hi : xi → x′i for 1 ≤ i ≤ n− 1 such that

h1α1 = α′1, α′nhn−1 = αn and α′ihi−1 = hiαi for 2 ≤ i ≤ n− 1 ,

i. e., the following ladder diagram commutes:

x x1 x2 . . . xn−1 y

x x′1 x′2 . . . x′n−1 y .

α1

idx

α2

h1 h2

α3 αn−1 αn

hn−1 idy

α′1 α′2 α′3 α′n−1 α′n

The following is the main result of [LL20]. We will prove the sufficiency direction at
the end of Section 6.5. It follows essentially from Theorem 6.26.
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Theorem 6.7. Let k be a semisimple commutative ring and C a discrete EI category
with the finite factorisation property FFP. The category of left C-modules is hereditary
if and only if the following conditions are satisfied:

1. the group ring kGc is hereditary for every object c in C,

2. C has the unique factorisation property UFP,

3. Conditions (Ad) and (Bd) hold.

The hereditarity of group rings is characterised by a result of Dicks [Dic79] which
can be seen as a precursor of Theorem 6.7:
Proposition 6.8 [Dic79, Thm. 1]. Let k be an arbitrary ring and G a group. Then
kG is hereditary if and only if at least one of the following holds:

(H1) k is completely reducible and G is the fundamental group of a connected graph
of k×-finite groups.

(H2) k is (left) ℵ0-Noetherian and von Neumann regular, and G is countable and
locally k×-finite.

(H3) k is hereditary and G is k×-finite.

The conditions on the ring k are explained on the first page of [Dic79]. For the
definition of the fundamental group of a graph of groups, consult [Ser80].
Remark 6.9. If k is a field, then all conditions on k hold. Thus, kG is hereditary if
and only if G is the fundamental group of a connected graph of k×-finite groups, or
is countable and locally k×-finite.
Corollary 6.10 [LL20, Cor. D]. Let k and C be as in Theorem 6.7. Then both
the categories of left and right C-modules are hereditary if and only if the following
conditions are satisfied:

1. the group ring kGc is hereditary for every object c in C,

2. C has the UFP,

3. all biset stabilisers are k×-finite.

Remark 6.11. Under the conditions of Theorem 6.7 and certain additional mild
combinatorial assumptions, the paper [LL20] proves further that every projective
kC-module is a direct sum of modules which are induced up from a group ring Gc,
see Theorem B. This however uses a completely different combinatorial approach to
Theorem 6.7 that we don’t discuss in this thesis.
Returning to our main story, we get that under the hypotheses of Theorem 6.7 for
k = Q, every rational C-homology theory possesses a Chern character. This was
stated as Theorem D in the Introduction. It generalises [Lac19, Cor. 6.5.4] from the
finite to the infinite case. The same statement is true for cohomology if we require C
itself to satisfy (Ad) and (Bd).
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6.2. Application to orbit categories

Let G be a group and F a family of finite subgroups of G. The following result
will be derived by an application of Theorem 6.7 to Or(G,F) and directly implies
Theorem E from the Introduction.

Theorem 6.12. Let k be a field, G a discrete group and F a family of finite subgroups.
Then kOr(G,F) is hereditary if and only if

• G is either countable locally k×-finite or the fundamental group of a connected
graph of k×-finite groups,

• all members of F are cyclic of prime power order, and their Weyl groups are
finite (except possibly for the Weyl group of {1}).

Remark 6.13. Note that if the first item is satisfied, then in both cases all finite
subgroups of G are k×-finite. This refers in particular to the subgroups in F and
their Weyl groups, except WG(1), if the second item is satisfied.
Remark 6.14. Theorem 6.12 is Theorem E of [LL20]. In [LL20, Sec. 5], similar
classification results are proved for transporter categories, Quillen categories (including
fusion systems as an important special case) and the subgroup category in the sense
of Lück [Lüc02].
We now treat some example situations in which Theorem 6.12 applies.
Example 6.15. Suppose that F = FIN is the family of all finite subgroups of G and
that kF is hereditary. If G is locally k×-finite, then any two elements are contained
in a finite, thus cyclic subgroup, and G is abelian. Thus, NG(K) = G for an arbitrary
K and G has to be k×-finite itself and thus cyclic.
On the other hand, if G is the fundamental group of a connected graph of k×-finite
groups, then one can prove that G satisfies the above items if and only if this graph
has trivial edge and loop groups. Contracting a spanning tree, we see that G is a
free product, finite or infinite, of finite groups Z/pkii where pi is a prime invertible in
k, or pi = 1.
Example 6.16. The groups D∞ ∼= Z/2 ∗ Z/2 and PSL2(Z) ∼= Z/2 ∗ Z/3 have a
hereditary orbit category with respect to F = FIN .
Remark 6.17. G is the fundamental group of a finite graph of finite groups if and
only if it is virtually finitely generated free abelian [KPS73]. In this case, we give
a geometric characterisation of the Weyl group condition in Appendix C. It can
be summarised as follows: If F is a finite subgroup of G, then WG(F ) is infinite if
and only if F fixes a ray (equivalently, a line) in the Bass-Serre tree, and there is a
combinatorial algorithm how to read this off from the graph of groups.
Example 6.18. The group SL2(Z) ∼= Z/4 ∗Z/2 Z/6 has a nontrivial normal subgroup
Z/2 and thus the orbit category for any family containing this subgroup is not
hereditary. However, the subgroup Z/3 (canonically embedded via the second factor
of the amalgam) has finite normaliser by Lemma C.1 and thus Or(SL2(Z),F3) is
hereditary where F3 denotes the family of subgroups which are finite 3-groups.
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We now turn to the proof of Theorem 6.12.

Lemma 6.19. Or(G,F) is an EI category which has the FFP. For F ∈ F , there is
a group isomorphism

HomOr(G,F)(G/K,G/K) ∼= K\NG(K) = WG(K) .

Proof. This follows from Lemma 5.28: If F is finite, then gFg−1 ⊆ F implies by
cardinality reasons that gFg−1 = F and thus g−1Fg = F . Moreover, since any
noninvertible morphism strictly increases the cardinality of the finite isotropy group
H, Or(G,F) has the FFP.

Lemma 6.20. Let K ∈ F with K 6= {1}. If Condition (Bd) is satisfied for the
(WG(K), G)-biset HomOr(G,F)(G/{1}, G/K), then WG(K) is k×-finite.

Proof. If we set L = {1} in Lemma 5.28, we have TransG({1},K) = G and get the
isomorphism

φ{1},K : K\G ∼= HomOr(G,F)(G/{1}, G/K) ,

where K\G is furnished with the (WG(K), G)-biset structure given by left and right
multiplication. The biset stabiliser H1 of φ{1},K(1K) thus equals

H1 = {([g], g−1); g ∈ NG(K)} ,

so pr1 is surjective onto WG(K).

Proposition 6.21. Let G be a group and F a family of finite subgroups. The category
Or(G,F) satisfies the UFP if and only if F consists only of cyclic subgroups of prime
power order (where different prime bases may occur in the same family).

This result was already proved in [Lac19, Prop. 6.5.5], but we simplified the proof
considerably. Note the formal similarity to Triantafillou’s results in [Tri83].

Proof. The ’only if ’ part. Suppose that Or(G,F) has the UFP. Let F ∈ F . Let H
and K be two subgroups of F . Let

1 ⊆ H1 ⊆ H2 ⊆ . . . Hi = H ⊆ Hi+1 ⊆ . . . ⊆ Hn = F

be a chain of subgroups such that Hl ⊆ Hl+1 is a maximal subgroup, and similarly

1 ⊆ K1 ⊆ K2 ⊆ . . .Kj = K ⊆ Kj+1 ⊆ . . . ⊆ Km = F .

Recall the bijection φ from Lemma 5.28. We can factor the morphism φ(1) ∈
HomOr(G,F)(G/1, G/F ) as a product of unfactorisables in two ways: Firstly, as

G/1
φ(1)−−→ G/H1

φ(1)−−→ G/H2
φ(1)−−→ . . .

φ(1)−−→ G/Hn = G/F

and secondly, as

G/1
φ(1)−−→ G/K1

φ(1)−−→ G/K2
φ(1)−−→ . . .

φ(1)−−→ G/Km = G/F .
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We infer from the UFP that m = n and that for all l, G/Hl and G/Kl are isomorphic
in Or(G,F) via some φ(h), h ∈ TransG(Hl,Kl) such that φ(1) ◦ φ(h) = φ(1), i. e.,
h = 1 ∈ F\TransG(Hl, F ) and h ∈ F . It follows that for two arbitrary subgroups of
F , one is subconjugate to the other in F .
This implies that F has to be a p-group for some p. Indeed, suppose that two different
primes p and q divide |F |. Then we can choose H of order p and K of order q, and
neither of H and K can be subconjugate to the other.
Next, we claim that all abelian quotients of F are cyclic. Indeed, any abelian quotient
Q of F inherits the property that for any two subgroups, one is subconjugate to the
other. But conjugation is trivial here, so this forces Q to be cyclic: just consider an
element of maximal order.
Finally, we claim that F is cyclic. We show this claim by induction over the order of
F . Since F is a p-group, it has a non-trivial center C. F/C has only cyclic abelian
quotients as well, and it follows that F/C is cyclic. It is an easy exercise to show
that if the quotient of the group by its center is cyclic, the group has to be abelian.
Thus, F is abelian and hence cyclic.
The ’if ’ part. Now, suppose that F only has cyclic members of prime power order.
Given a chain

G/H0
φ(g1)−−−→ G/H1

φ(g2)−−−→ G/H2 . . .
φ(gn)−−−→ G/Hn

of unfactorisable morphisms, we first manipulate it as follows using the equivalence
relation explained in Definition 6.6: Substitute H ′1 = g−1

1 H1g1, g′1 = 1 and g′2 = g2g1,
i. e. we consider the factorisation

G/H0
φ(1)−−→ G/H ′1

φ(g2g1)−−−−→ G/H2
φ(g3)−−−→ G/H3 . . .

φ(gn)−−−→ G/Hn

with the same composition as before. Repeating this step at positions 2 through
n− 1, we arrive at a chain

G/H0
φ(1)−−→ G/H ′1

φ(1)−−→ G/H ′2
φ(1)−−→ G/H ′3 . . . G/H

′
n−1

φ(g′)−−−→ G/Hn

with composition g′ modulo Hn. Since our replacement algorithm followed the
definition of the UFP, we only need to compare morphisms in such a normal form.
Note that since H ′n−1 is cyclic of order a power of p, the index [H ′i : H ′i−1] is always p
since the morphisms of the chain are unfactorisable. This is true for any other chain
from G/H0 to G/Hn and consequently, the length of such a chain is always n. Let

G/H0
φ(1)−−→ G/H ′′1

φ(1)−−→ G/H ′′2
φ(1)−−→ G/H ′′3 . . . G/H

′′
n−1

φ(g′′)−−−→ G/Hn

be another chain with the same composition, i. e. g′′ = fg′ with f ∈ Hn. This implies
that

(g′)−1Hng
′ = (g′′)−1Hng

′′ .

Thus, H ′n−1 and H ′′n−1 are both maximal subgroups of (g′)−1Hng
′, and since this is

a cyclic group, they coincide: H ′n−1 = H ′′n−1. Similarly, H ′i = H ′′i for all i ≤ n − 1.
Since g′′ = fg, we get that φ(g′) = φ(g′′) and thus the two chains are equal.
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Proof of Theorem 6.12. If the two items are satisfied, all automorphism groups have
hereditary group rings by Remark 6.9 and Or(G,F) has the UFP by Proposition 6.21.
Moreover, Conditions (Ad) and (Bd) are trivially satisfied: If G/L < G/K, and L 6=
{1}, then K is nontrivial, so Hi is a subgroup of the k×-finite group WG(K)×WG(L)
and thus k×-finite. If L = {1}, then the biset stabilisers are all isomorphic to NG(K):
For the biset stabiliser of φ{1},K(1K), this follows from the explicit description given
in the proof of Lemma 6.20. The isomorphism is given by pr−1

2 . For any other element,
it follows by transitivity. The group NG(K) is k×-finite since K and WG(K) are.
Now, suppose that kOr(G,F) is hereditary. Note that G = WG(1). By Remark 6.9, if
kOr(G,F) is hereditary, thenG is either countable locally k×-finite or the fundamental
group of a connected graph of k×-finite groups. By Lemma 6.20, all Weyl groups of
nontrivial members of F are finite. Finally, the members of F are cyclic of prime
power order by Lemma 6.21.

The discussion until here treated left kOr(G,F)-modules. Let us comment shortly
on right kOr(G,F)-modules, i. e., left kOr(G,F)op-modules. These appear when
studying (G,F)-homology theories, cf. Theorem D. Condition (Ad), the UFP, and
the Dicks condition for hereditarity of group rings are insensible when passing from
a category to its opposite, but Condition (Bd) a priori is not – the two projections
are interchanged. However, in the present case, the condition becomes stronger
since the first projection (pr2 above) is an isomorphism in the case L = {1}. We
thus get directly that NG(K) is k×-finite and consequently the Weyl group WG(K).
Summarising, we can prove the following in exactly the same way as Theorem 6.12:

Corollary 6.22. Let k be a field, G a discrete group and F a family of finite
subgroups. Then kOr(G,F) is right hereditary if and only if it is left hereditary, i. e.,
the conditions listed in Theorem 6.12 hold.

Finally, we treat an example where Theorem 6.12 cannot be applied directly to
Or(G,F), but we can still use the characterisation from Theorem 6.7.

Example 6.23. Let p be a prime and let G denote the locally compact totally dis-
connected topological group Zp. Let F = COMOP be the family of compact open
subgroups1 of G. The orbit category Or(Zp, COMOP) is an EI category with the
FFP since G has a well-defined finite volume function µ. The automorphism group
of a compact open subgroup F = pkZp is WG(F ) = G/F ∼= Z/pk and thus finite. It
is k×-finite if and only if p ∈ k×. In this case, (Ad) and (Bd) become automatic. The
UFP is always satisfied with a proof similar to the one of Proposition 6.21 since G
has exactly one subgroup of any given volume of the form p−kµ(G). Summarising,
kOr(Zp, COMOP) is hereditary if and only if p ∈ k×.
In contrast, for G = (Qp,+) and F = COMOP, Condition (Bd) is never satisfied.

1This is not a family in the strict sense of Definition 5.27 (a), since it is not closed under taking
subgroups. However, the orbit category is still a well-defined category, and Lemma 5.28 still
holds. Note that for F ∈ F , the quotient G/F is discrete and thus the canonical topology on
Or(G,F) is the discrete topology.
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6.3. Formulation of the main result for k-linear categories

In this section, let C be a directed k-linear category; that is, if C(c, d) 6= 0 and
C(d, c) 6= 0, then c and d are isomorphic. The directedness of C implies that we can
define a partial order on the set of isomorphism classes in C by writing [c] ≤ [d] if
C(c, d) 6= 0. As usual, we write [c] < [d] if [c] ≤ [d] and [c] 6= [d].
The endomorphism k-algebra of an object c is denoted Rc. If c and d are objects,
then C(c, d) is an (Rd, Rc)-bimodule, i. e. a left (Rd⊗Rop

c )-module, where ⊗ without
subscript denotes ⊗k. Paralleling the combinatorial conditions (Ad) and (Bd) on biset
stabilisers of EI categories, we will consider the following two conditions on these
bimodules:

(A) For all c < d, C(c, d) is flat as a right Rc-module.

(B) For all c < d and all left Rc-modules M , the tensor product C(c, d)⊗Rc M is
projective as a left Rd-module.

Note that Condition (B) implies in particular that C(c, d) is projective as a left
Rd-module (take M to be the left regular representation Rc). On the other hand, if
C(c, d) is projective as an (Rd, Rc)-bimodule, and k is semisimple, then (A) and (B)
are satisfied. The category in Example 6.2 yields an example where (A) and (B) are
satisfied, but C(c, d) is not projective as a bimodule. This is implied by the results of
Section 6.5, in particular Lemmas 6.31 and 6.32.
We now introduce a special type of k-linear categories, called free tensor categories,
which are analogues of EI categories satisfying the unique factorisation property
[Li11, Def. 2.1, Def. 2.2, Prop. 2.8].

Definition 6.24. A (directed) k-linear tensor quiver (X,U) consists of

• a partially ordered set X,

• a k-algebra Rx for every x ∈ X, and

• an (Ry, Rx)-bimodule U(x, y) for all x < y.

Suppose (X,U) is a k-linear tensor quiver. For every chain γ = (x0, . . . , x`) in X,
where xi < xi+1, define

U(γ) = U(x`−1, x`)⊗Rx`−1
U(x`−2, x`−1)⊗Rx`−2

. . .⊗Rx1
U(x0, x1) .

This is an (Rx` , Rx0)-bimodule. In particular, if γ consists of two entries x < y,
then U(γ) = U(x, y); if γ has a single entry x, then U(γ) = Rx; if γ is empty, then
U(γ) = 0.
For a chain γ = (x0, . . . , x`) as above, denote `(γ) = `. For two chains γ =
(x0, . . . , x`) and δ = (y1, . . . , ym) with x` = y1, let δγ denote the concatenation
δγ = (x0, . . . , x`, y2, . . . ym). Then we have a canonical map

U(δ)⊗ U(γ)→ U(δ)⊗Rx`
U(γ) ∼= U(δγ) . (6.1)
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Definition 6.25. The free tensor category associated to a k-linear tensor quiver
(X,U) is the k-linear category Tk(X,U) with object set X and

Tk(X,U)(x, y) =
⊕

γ : x→y
U(γ)

where the sum runs over all chains γ = (x, x1, . . . , x`−1, y) in X. Composition is
given by (6.1).

The theorem below is [LL20, Thm. 17]. The next section is devoted to its proof. It
is explained in the end of Section 6.5 how it implies the sufficiency implication of
Theorem 6.7.

Theorem 6.26. Let (X,U) be a tensor quiver with hereditary Rx for every x ∈ X,
satisfying conditions (A) and (B). Then Tk(X,U) is hereditary.

Remark 6.27. A very similar reasoning can provide more general sufficient conditions
for the global dimension of kC to equal the maximum of the global dimensions of the
endomorphism algebras Rc, see [LL20, Thm. A].

6.4. Cuntz-Quillen proof of Theorem 6.26

The main goal of this section is to prove Theorem 6.26, relying on techniques from
[CQ95]. Throughout, C = Tk(X,U) is the free tensor category over a k-linear tensor
quiver (X,U) with Rx hereditary for every x ∈ X which satisfies Conditions (A) and
(B). Let R denote the ring

⊕
c
Rc. It is a hereditary ring with approximate unit.

Proposition 5.15 gives us a short exact sequence

0 −→ Ω1
RC

κ−−→ C ⊗R C
m−−−→ C −→ 0 (6.2)

of (C, C)-bimodules.

Lemma 6.28. Let M be any left C-module. There is an exact sequence of left
C-modules

0 −→ Ω1
RC ⊗C M −→ C ⊗RM −→M −→ 0 . (6.3)

Proof. Tensor the exact sequence (6.2) from the right with M and note that it stays
exact since the last term C is a flat right C-module and thus Tor1

C(C,M) = 0. This
uses Remark 5.11.

Lemma 6.29. Let N be a left R-module. Then the projective dimension of C ⊗R N
as a left C-module is at most the projective dimension of N over R (which is at most
1).

Proof. Condition (A) means that C is flat over R. Take a projective resolution of N
over R, tensor it up to C and it will stay exact.

70



6.5. Translation between the k-linear and the discrete case

Let U =
⊕

x<y(x, y) denote the (R,R)-bimodule of unfactorisables.

Proposition 6.30. There is an isomorphism ΩR
1 C ∼= C⊗RU⊗RC of (C, C)-bimodules.

Proof. The proof is the same as in [CQ95, Prop. 2.6], using Lemma 5.14.

Now we have collected all prerequisites to prove our main result.

Proof of Theorem 6.26. Let M be an arbitrary left C-module. Consider the short
exact sequence (6.3). The first term

ΩR
1 C ⊗C M ∼= C ⊗R (U ⊗RM)

is a projective left C-module since U ⊗RM is a projective left R-module by (B). It
follows from [Mit72, Lemma 9.1] that

p.dimC(M) ≤ max(p.dimC(C ⊗RM), 1)

and this implies the claim by Lemma 6.29.

6.5. Translation between the k-linear and the discrete
case

In this section we show how the hereditarity conditions introduced above for discrete
and k-linear categories translate into one another and deduce Theorem 6.7 from
Theorem 6.26. From now on, we assume that the ring k is semisimple.
Part (a) of the following lemma is well-known.

Lemma 6.31. Let X be a left G-set.
(a) kX is a projective left kG-module if and only if all stabilisers occuring in X are
k×-finite.
(b) kX is a flat left kG-module if and only if all stabilisers occuring in X are locally
k×-finite, i. e., all their finitely generated subgroups are k×-finite.

Proof. (a) Every G-set is a disjoint union of transitive G-sets, and a direct sum is
projective if and only if each summand is. We may thus assume that X = G/H for
some subgroup H, and have to show that k(G/H) is projective if and only if H is
k×-finite. For this, consider the canonical surjection

π : kG� k(G/H) .

It has a section s if and only if k(G/H) is projective. If s exists, then s([1]) has equal
entries in all left H-cosets, hence H is finite. Consequently, π(s([1]) is divisible by
|H| and it follows that H is k×-finite. Finally, if H is k-finite, then a section s can
be defined by

s([gH]) =
1

|H|
∑
h∈H

gh .
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(b) As in the proof of (a), we may assume that X = G/H. Suppose that H is locally
k×-finite. Then H is a filtered union of k×-finite subgroups Hi, thus G/H is a filtered
colimit of G/Hi and k(G/H) is a filtered colimit of projectives k(G/Hi) and hence
flat.
Now, suppose that k(G/H) is flat. For h ∈ H, consider the map of right kG-modules
kG → kG given by left multiplication λh−1 with h − 1. It induces a non-injective
map after tensoring with k(G/H). Since k(G/H) is flat, the original map has to
have nontrivial kernel. Let x = (xgg)g∈G be nonzero in the kernel. Let F be the
finite, nonempty set of elements g with xg 6= 0. Since x = hx, F is invariant under
left multiplication with h, i. e. the subgroup generated by h acts on F . This action
is free since G is a group. It follows that h has finite order, which we denote by m.
Set N(h) = 1 + h+ h2 + ...+ hm−1 ∈ kG. It is easily checked that

ker(λh−1) = im(λN(h)) .

By exactness, this remains true after tensoring with k(G/H). But then 1H lies in
the kernel, and it follows that there exist finitely many ki and gi such that

1H = N(h)
n∑
i=1

kigiH =
n∑
i=1

m∑
j=1

kih
jgiH .

In the above double sum, we now focus on those summands with hjgiH = 1H. (All
other summands cancel each other out.) These satisfy hjgi ∈ H and thus gi ∈ H. It
follows that also all the other hj′gi lie in H and we have

1H =

n∑
i=1
gi∈H

mkigiH =

m n∑
i=1
gi∈H

ki

 · 1H .

Thus, m is invertible in k and 〈h〉 is k×-finite.
For several elements h1, . . . , hn, consider similarly the map

kG −→
n⊕
i=1

kG

where the i-th component is given by left multiplication with hi − 1. Again, we
find a nonzero x in the kernel, and this time, all hi have to stabilise F under right
multiplication, i. e. 〈h1, . . . , hn〉 acts on F freely and thus is a finite group. To show
that it is k×-finite, run the same argument as above with the sum of all elements of
the subgroup 〈h1, . . . , hn〉 as norm element.

Lemma 6.32. If C is a discrete EI category and k is semisimple, then (B) and (Bd)
are equivalent.
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Proof. If (B) holds, take M to be the trivial left Gc-module k = k(Gc/Gc). We get
that

k((Gd ×Gop
c )/Hi)⊗kGc k(Gc/Gc) ∼= k((Gd ×Gop

c )/Hi ×Gc Gc/Gc)
∼= k(Gd/pr1(Hi))

is a projective left kGd-module, so pr1(Hi) is k×-finite by Lemma 6.31 (a).
Conversely, suppose that (Bd) holds. Let M be an arbitrary left kGc-module and Hi

a biset stabiliser for C(c, d). Let L = pr1(Hi). Then Hi is contained in L×Gop
c , so

(Gd ×Gop
c )/Hi can be written as Gd ×L ((L×Gop

c )/Hi). It follows that

C(c, d)⊗Gc M
∼= kGd ⊗kL [k((L×Gop

c )/Hi)⊗Gc M ] .

The term in square brackets is a left kL-module which is projective since kL is
semisimple by Maschke’s theorem. Inducing it up to kGd yields a projective left
kGd-module.

Proof of the sufficiency direction of Theorem 6.7. The UFP translates into the fact
that the k-linearisation of C is a free tensor category over the tensor quiver generated
by the unfactorisable morphisms. Part (b) of Lemma 6.31 (respectively, Lemma
6.32) tells us that Condition (Ad) (resp., Condition (Bd)) for discrete EI categories
C is equivalent to Condition (A) (resp., Condition (B)) for its k-linearisation. The
conclusion then follows from Theorem 6.26.
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Appendix





A. Simplicial monoidal model categories
are almost very nice

In this appendix, we review some aspects of the paper [Shu06] which develops a
slightly different approach to enriched homotopy theory than the one we took in
Chapters 1 and 2. The paper came to the author’s attention after finishing the
aforementioned groundwork of this thesis. The reason why it is interesting to us is
twofold:

• It could serve as an alternative groundwork for the thesis, which does the same
job apart from some technical differences, under slightly stronger assumptions
(which are always satisfied in practical applications, though).

• It can complement our approach and bridge some of the technical difficulties
appearing in it.

We will focus on the second item. In particular, we will be able to show that a great
class of simplicial monoidal model categories are almost very nice enriching categories
(see p. 18), even if they are not very very nice, so that the way chosen in the main
body of the text is barred. Here we wrote ’almost very nice’ instead of ’very nice’
since we have to impose a slight strengthening (C+) of (C) on our enriched categories
C. This explains the title of this appendix.
Concretely, Shulman’s approach is based on the enriched two-sided bar construction.
For a right C-module X and a left C-module Y , this is the simplicial object B(X, C, Y )
(in the enriching category S) given by the formula

Bn(X, C, Y ) =
⊔

α : [n]→C

X(αn) ∧ C(αn−1, αn) ∧ . . . ∧ C(α0, α1) ∧ Y (α0) ,

see [Shu06, Def. 12.1]. This two-sided bar construction is not fully homotopical,
but the idea is that under certain circumstances, it is homotopical if X and Y are
objectwise cofibrant (instead of cofibrant in the projective model structure). Since
this applies to the (C, C)-bimodule C if (C) holds, this opens a new route to prove the
derived Yoneda Lemma (2.1).
We make the following assumptions to get all this to work:

• (S,∧,S) is a nice enriching category.

• (S,∧,S) is a simplicial monoidal model category, i. e. a simplicial model
category [Hov99, Def. 4.2.18] such that the canonical adjunction sSet� S given
by applying tensors to the unit S is strong monoidal.
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• As usual, our S-enriched category C satisfies (C). Additionally, we claim that
all unit inclusions S → C(c, c) are cofibrations in S. We denote this stronger
condition by (C+).

This is not the most general framework in which Shulman’s approach works. Ac-
tually, the paper [Shu06] is written in a much more general context dealing with
homotopical categories and deformable adjunctions instead of model categories and
Quillen adjunctions, and introduces several layers of generality in which the results
hold. Moreover, the paper treats functor categories Fun(C,M ) with M an arbitrary
complete and cocomplete S-enriched category. For us, always M = S.
Example A.1. All monoidal model categories discussed in Section 2.1 are simplicial.
In particular, this applies to Top∗ which is not very very nice, cf. Example 2.9, and
we could not show to be very nice in Section 2.1.

Proposition A.2. Suppose that (S,∧,S) is a simplicial monoidal model category
and that C satisfies (C+). Then the bar construction is homotopical on objectwise
cofibrant C-modules.

Proof. This is proved in §23 of [Shu06]. More precisely, the assumptions on C say
that C is q-cofibrant in the terminology of the paper, and our proposition follows
from Theorem 23.12.

Definition A.3. We say that a monoidal model category (S,∧, S) is almost very
nice if Theorem 1.16 holds when we restrict to S-categories satisfying (C+).

Proposition A.4 [Shu06, Prop. 22.11]. Suppose that (S,∧,S) satisfies the list of
properties on p. 77. Then (S,∧, S) is almost very nice.

Proof sketch: Under the mentioned assumptions, the objectwise cofibrant functors
form a deformation retract of all functors. The reason is that cofibrant objects are
objectwise cofibrant. This is discussed in [Shu06, §24] and in our Theorem 1.1. It
follows that C is very good in the sense of Shulman. By [Shu06, Thm. 20.4], the bar
construction, applied to cofibrant replacements, is a derived functor of − ∧C −. The
derived Yoneda Lemma (2.1) now follows from the fact that the (C, C)-bimodule C is
objectwise cofibrant:

C ∧LC Y ∼= B(QC, C, QY ) ∼= B(C, C, QY ) ∼= QY ∼= Y .

Here the second isomorphism comes from Proposition A.2 and the third isomorphism
from [Shu06, Lemma 13.5].
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B. A geometric proof that the orbit
category of SLn(Qp) is locally finite

Our homology representation theorem, Theorem 4.7, has the hypothesis of countability,
i. e. it can only be applied to categories with a countable skeleton and countable
Hom sets. When analysing the situation of the compact-open orbit category of a
p-adic special linear group SLn(Qp), it turned out that it is even locally finite, i. e.
has finite Hom sets. To prove this is the goal of the present appendix. More generally,
we prove:

Theorem B.1. Let k be a locally compact nonarchimedean field, and let G be a
semisimple algebraic group over k. Let COMOP denote the family of compact open
subgroups1 of G. Then the orbit category Or(G, COMOP) is locally finite.

Our main interest is in the case that k is a finite extension of Qp for a prime p. G
can be one of the well-known groups SLn, Spinn and Spn, but there are many more
examples [Mil17, Ch. 24]. In contrast, our argumentation does not apply to GLn(Qp)
which is not semisimple. The existence of an infinite center makes Theorem B.1
impossible in this case.
Note that the orbits G/K for K compact open are discrete topological spaces, so we
don’t have to worry about a topology on the orbit category and can just treat it as a
discrete category.
Our proof of Theorem B.1 is geometric, using the action of G on its Bruhat-Tits
building ∆. This is a polysimplicial2 complex whose dimension equals the rank of G
and on which G acts in a nice way, with compact open stabilisers if G is semisimple.
∆ has a very subtle combinatorial structure which is comprised in the building axioms
[AB08]. More specifically, it is a Euclidean building, and in particular carries a
CAT(0) metric preserved by G, so that ∆ is a classifying space for the family of
compact open subgroup by a standard argument. As an example, the Bruhat-Tits
building of SL2(Qp) famously is a regular (p+ 1)-valent tree [Ser80, Ch. II §1].

Remark B.2. In this remark, we give the (easy) argument that if G is as above and
k is a finite extension of Qp, then the orbit category of G has a countable skeleton.
Any compact subgroup fixes a vertex in the Bruhat-Tits building, hence is contained
in a vertex stabiliser. These are all conjugate to a stabiliser of the vertex of some

1This is not a family in the strict sense of Definition 5.27 (a), since it is not closed under taking
subgroups. However, the orbit category is still a well-defined category, and Lemma 5.28 still
holds.

2A polysimplicial complex is built out of finite products of simplices in the same way as a simplicial
complex is built out of simplices.
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fundamental chamber, of which there are only finitely many. Let K be a vertex
stabiliser. The compact totally disconnected group K has a countable system Ki of
compact open subgroups which form a neighbourhood basis of the identity. Thus,
every subgroup of K lies between some Ki and K. But for fixed i, there are only
finitely many of these, since they correspond to subgroups of the finite group K/Ki.
Countability of the Hom sets could be shown in the same way.

B.1. A Lemma about Buildings

Throughout, let ∆ denote a thick and locally compact Euclidean building. We use
∆ and its geometric realization |∆| interchangeably. The Euclidean metric on ∆ is
denoted by dE , whereas the Weyl distance function (on chambers) is denoted by δ.
Consult [AB08] for the definition of all these notions.
Suppose that a topological group G acts by type-preserving simplicial isometries on
∆ such that the stabiliser of a chamber is compact open and the action is Weyl-
transitive. The last condition means that if δ(C,D) = δ(C ′, D′), then there is g ∈ G
with gC = C ′ and gD = D′.
I thank Bernhard Reinke for the suggestion that a suitable notion of 2-transitivity
could be used to prove Proposition B.4, leading to Lemma B.5. The proof I had
before was far more complicated.

Remark B.3. A simplicial action of a topological group on a simplicial complex X
has open chamber stabilisers iff it is continuous when X is given the discrete topology
iff it is continuous when X is given the CW topology.

Let x ∈ ∆ and let Gx denote the stabiliser of x. For all y ∈ ∆, the orbit

Gx · y ∼= Gx
/

(Gx ∩Gy)

is finite since Gx is compact and Gx ∩Gy is open. For r ∈ R≥0, let

f(r) = min
{
|Gx · y|; y ∈ ∆ with dE(x, y) = r

}
.

Note that f is increasing by the uniqueness of geodesics.

Proposition B.4. We have
lim
r→∞

f(r) =∞ .

More specifically, there are constants c > 0 and a > 1 such that f(r) ≥ car.

Let D denote the diameter of a chamber of ∆, and call a point of ∆ generic if it lies
in the interior of a chamber. The set of generic points is open and dense in ∆.

Lemma B.5. Let x, y be points in the thick building ∆, and assume that y is a
generic point and dE(x, y) ≥ 2D. Then there is a generic point z with dE(y, z) < 3D
such Gx ∩Gy is a proper subgroup of Gx ∩Gz.
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Figure B.1.: The situation of the proof of Lemma B.5. The figure shows the appart-
ment Σ1 (in the case of type Ã2). In the original position of y, denoted
y0, the geodesic to x didn’t meet the interior of a close-by panel, so it
was moved a little bit.

Proof. The geodesic [x, y] intersects the boundary of a chamber in a point w with
dE(x, y) ≤ D. Note that we may move y inside the interior of the chamber to which
it belongs without changing Gy, since G permutes the chambers. Since the assertion
is only about Gy, we do this once and for all (at the cost of adding a distance D)
accomplishing that w lies in the interior of a panel (i. e., codimension 1 simplex) σ.
Let C1 be the chamber containing y. The geodesic [x, y] intersects a chamber C2 6= C1,
which has σ as a face, on the opposite side than C1 with respect to σ. Let z be a
point in the interior of C2 with dE(z, w) < D, so that dE(z, y) < 3D. Since z lies on
the geodesic [x, y] and since geodesics are unique, we have

Gx ∩Gy ⊆ Gx ∩Gz

and we will now show that this is a proper inclusion.
Let B be a chamber containing x in its closure. By thickness, there is a third
chamber C3 6= C1, C2 containing σ. For every chamber Ci, there is an appartment Σi

containing B and Ci by Axiom (B1). All of them contain x and w, thus the geodesic
[x,w] and thus the chamber C2. Since every Σi is a Coxeter complex, the panel σ
is contained in exactly two chambers in Σi [AB08, p. 5]. It follows that Σ3 doesn’t
contain C1 and consequently y /∈ Σ3.
By Axiom (B2) and [AB08, Prop. 4.6], there is a type-preserving simplicial isomor-
phism φ : Σ1 → Σ3 fixing B and C2 pointwise. Since σ is fixed by φ and is contained
in exactly two chambers in Σ3, we have φ(C1) = C3. Then δ(B,C1) = δ(B,C3) since
φ is type-preserving.
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By Weyl-transitivity, there is g ∈ G fixing B and mapping C1 to C3. Since g preserves
types, it fixes x and C1∩C3 = σ pointwise. In particular, it fixes w, thus the geodesic
[x,w] and thus z. Since y /∈ C3, we have gy 6= y. Consequently,

g ∈ (Gx ∩Gz) \ (Gx ∩Gy) .

Proof of Prop. B.4. Let g be defined similarly than f , but only for generic points:

g(r) = min
{
|Gx · y|; y generic with dE(x, y) = r

}
.

Then for r ≥ 2D, we have
g(r) ≥ 2b

r
3D
c .

This follows directly from Lemma B.5 since the index [Gx ∩Gz : Gx ∩Gy] has to be
at least 2. Thus the asserted inequality holds for g with a = 2

1
3D .

Now, let y be arbitrary with dE(x, y) = r. By local compactness, y can lie in at most
N chambers, where N doesn’t depend on y (only on ∆). Choosing a generic point y′

in one of these chambers (in distance at most D), Gy′ is a subgroup of Gy of index
at most N . It follows that

|Gx · y| ≥
1

N
|Gx · y′| ≥

1

N
g(dE(x, y′))

≥ c

N
ad

E(x,y′) ≥ c

NaD
ar .

B.2. Application to local finiteness

Let G be a topological group and ∆ a simplicial model for the classifying space of
the family of compact open subgroups, and assume that ∆ has a metric for which it
is locally compact and Proposition B.4 holds. In this section, we assume additionally
that G is unimodular.

Proposition B.6. The orbit category of compact open subgroups of G is locally finite.

Proof. Let G/L and G/L′ be objects. If there is any morphism, then L is subconjugate
to L′ and we may assume L ⊆ L′. Let K be a maximal compact subgroup (vertex
stabiliser!) containing L′. Recall that

Hom(G/L,G/L′) ∼= L′\TransG(L,L′) .

Since TransG(L,L′) ⊆ TransG(L,K) and L′ has finite index in K, we may assume
L′ = K. Let x be a vertex with stabiliser K. For every g ∈ TransG(L,K), we have

[Gx : Gx ∩Ggx] = [K : K ∩ gKg−1] ≤ [K : K ∩ gLg−1] = [K : gLg−1] = [K : L] ,

where the last equality used unimodularity. This means that gx has to lie in some
ball around x by Proposition B.4. The orbit of x, which consists of vertices and is
thus discrete, contains only finitely many points from this ball. Thus, there are only
finitely many cosets modulo K in which g can lie.
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I thank Jessica Fintzen for patiently explaining me many of the notions used in the
following proof, and finding the correct generality for Theorem B.1.

Proof of Theorem B.1. The paper [Pra20] constructs the Bruhat-Tits building for k
and G as in the statement of the theorem. We will now check that all hypotheses of
the last two sections are satisfied.
The basic properties of the Bruhat-Tits building are listed in 1.15 and Theorem 3.8,
note that G = G′ for semisimple G. Euclidean is called affine there. Thickness of
∆ is shown in Proposition 3.7. Proposition 3.10 shows that the action is strongly
transitive, which implies Weyl transitivity by [AB08, Cor. 6.12]. By [Pra20, 3.3], the
action is type-preserving if G is simply connected. Every semisimple group admits a
finite covering (surjective morphism with finite kernel) G̃ which is simply connected
and semisimple, and the statement of Theorem B.1 is obviously equivalent for G and
G̃. For local compactness of the building, it is enough to show that every vertex x
is contained in finitely many chambers only. There is a certain group scheme G

◦
x,

defined over the ring of integers o of k, such that the chambers containing x are in
bijection with the minimal parabolic subgroups of the reductive group G

◦
x(κ). Here

κ is the residue field which is finite, thus there are only finitely many (parabolic)
subgroups. For details, consult the proof of [Pra20, Prop. 3.7]. Finally, any reductive
k-group is unimodular.
Our geometric argumentation is based on the treatment of buildings in [AB08]. The
building constructed in [Pra20] satisfies the definition of building given there, cf.
[AB08, Rem. 4.2], except for the technical problem that Prasad allows a building to
be a polysimplicial complex and not just a simplicial complex. One can sweep this
problem under the rug by arguing that the theory presented in [AB08] and our proof
works as well for polysimplicial complexes, or one can argue as follows: The building
is a simplicial complex if G is absolutely almost-simple [Pra20, 3.2]. If we now are
given an arbitrary semisimple group, we first make it simply connected as above and
then apply [Mil17, Thm. 24.3] to write it as a direct product of Weil restrictions of
absolutely almost-simple groups (called geometrically almost-simple there). Since a
Weil restriction has the same Bruhat-Tits building as the original group, and the
statement of our theorem is inherited under direct products, this yields a proof for
G.
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Let π = π1(G, Y, P0) be the fundamental group of a connected finite graph of k×-finite
groups (G, Y ). In this appendix, we analyse the condition appearing in Theorem 6.12
that a finite subgroup F ⊆ π has finite normaliser Nπ(F ). We first treat this question
combinatorially in terms of the graph of groups, and then geometrically. The geometry
enters by the well-known fact that π acts on the Bass-Serre tree X = X̃(G, Y, T )
with finite stabilisers and finite quotient. Here T is a spanning tree of the quotient
graph Y . We use the notation, constructions and main results of the famous and
beautiful book [Ser80].
We now explain how to read off the normaliser of a finite subgroup F ⊆ π from the
graph of groups. By conjugating (in π) if necessary, we may assume that F fixes a
vertex in the chosen lift of T to X.
Let c be a path in Y , given by edges y1, . . . , yn. We put Pi = t(yi) = o(yi+1). Recall
that a word of type c is a pair (c, µ) where µ = (r0, . . . , rn) with ri ∈ GPi . It is
reduced if n = 0 and r0 6= 1, or if n > 0 and whenever yi+1 = yi, we have ri /∈ Gyiyi .
Every reduced word with c a circle is nontrivial in π, and every word in π can be
written as a reduced word. If we restrict to paths starting and ending in P0, as we
do in π1(G, Y, T ), then c is unique and µ is unique up to the equivalence relation
generated by

(r0, . . . , rn) ∼ (r0, . . . , ria
yi+1 , (ayi+1)−1ri+1, . . . , rn) (C.1)

with a ∈ Gyi+1 [Ser80, p. 50].
Let (c, µ) be a reduced word as above. For 0 ≤ i ≤ n, let ic denote the starting
segment (y1, . . . yi) of c, and iµ the starting segment (r0, . . . ri) of µ. We view (ic,i µ)
as a reduced word centered at P0 by going the same path backwards with trivial
labels.

Lemma C.1. Let F ⊆ GP0 be a finite subgroup, and let (c, µ) be a reduced word such
that |c, µ| normalises F . Then

|ic,i µ|−1F |ic,i µ| ⊆ Gyi+1

yi+1
.

Here Gyi+1

yi+1
denotes the image of Gyi+1 = Gyi+1 in Gt(yi+1) = Go(yi+1) = GPi as usual.

Intuitively, the lemma says that every element normalising a subgroup F describes
a way how to move this subgroup along the graph of groups, starting in P0 and
inserting conjugations at subsequent vertices if necessary to push it into the next
edge group. In the end, we arrive at P0 again, with a subgroup conjugate to F in
GP0 .
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Figure C.1.: The path in X, in the case m = 3.

Proof. Let g = |c, µ|. Then F fixes P0 and gP0, thus the geodesic between the two
in X. We show how to use this geodesic to write g in reduced form satisfying the
conjugation assertion of the lemma. By uniqueness of reduced word presentations,
up to equivalence as described above, this proves the lemma.
Let (z1, . . . , zm) be the image of the geodesic from P0 to gP0 in Y , with Qi = t(zi) =
o(zi+1). We have Q0 = Qm = P0. We can write the first edge of the path in X as s0z1

with s0 ∈ GP0 since it is incident to P0. The second vertex then equals s0Q1. The
second edge can be written as (s0z1s1)z2 with s1 ∈ GQ1 since it is incident to s0Q1.
Here, s0z1s1 is to be understood as an element of π (we supress inserting the path
back to P0 with trivial labels in this proof) which acts on the edge z2. Inductively,
one gets a description of the path as in Figure C.1.
We have

(s0 . . . sm−1)P0 = (s0 . . . sm−1)Qm = gP0

and thus g = s0 . . . sm−1zmsm with sm ∈ GP0 . The zi and si define another reduced
word presentation of g. It follows that m = n, zi = yi and Qi = Pi. The ri and si
are linked via the equivalence relation generated by (C.1). But it is easy to check
that the statement of the lemma is insensitive to this equivalence relation, and thus
we assume ri = si without loss of generality.
Consequently, F fixes the edge |ic,i µ|yi+1 and is thus contained in its stabiliser, which
yields the claim of the lemma.

Lemma C.1 can be used to check whether the normaliser Nπ(F ) of F is infinite, for
example in conjunction with the equivalence of the first two items of Proposition C.4
below.

Example C.2. Let Y consist of an edge y, with vertex groups A and B and edge
group C. We identify C with both its images in A and B. Let F ⊆ A.
We can draw the following conclusions from the above lemma:

• If F is not subconjugate to C in A, then Nπ(F ) = NA(F ).

• If F ⊆ C and there exist a ∈ NA(F ) \ C and b ∈ NB(F ) \ C, then Nπ(F )
contains the element 1ybya of infinite order.
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We emphasise that the second condition is not necessary for the infinity of the
normaliser. For example, let A = B equal the dihedral group

D8 = 〈σ, τ | σ4 = τ2 = (στ)2〉

and let
C = 〈τ, σ2τ〉 = {1, τ, σ2τ, σ2} .

Let F be the 2-element subgroup generated by τ . Then NB(F ) = C, so the second
item cannot be satisfied. However, the normaliser of F contains the infinite order
element given by the reduced word 1yσyσ−1.
What happens here is that F = 〈τ〉 is conjugated in the second step into 〈σ2τ〉
which still lies in C, and then back into F in the third step. Similarly, there can
be situations when a chain of length two doesn’t suffice, but length 3 or higher is
necessary.

Example C.3. Let Y consist of a loop t, with vertex group A and loop group C. As
usual, we identify C with one of its images in A and denote the other by ι(C). We
can draw the following conclusions from the above lemma:

• If F is neither subconjugate to C nor to ι(C) in A, then Nπ(F ) = NA(F ).

• If F ⊆ C and there exists a ∈ TransA(ι(F ), F ), then Nπ(F ) contains the
element 1ta of infinite order.

Again, the second condition is not the only way to produce an infinite order element:
Let A = C equal the Klein 4-group {1, a, b, c}, and let ι : C → C be the order 3
automorphism mapping a to b, b to c and c to a. Then F = 〈a〉 cannot be normalised
by going around the loop once – note that all conjugations in A are trivial –, but the
(infinite order) element t3 = 1t1t1t1 normalises F .

A ray in X is a geodesic embedding of the metric space [0,∞) (with the standard
metric) into X, and a line in X is a geodesic embedding R ↪→ X. The existence of a
CAT(0) metric on X equips it with a Gromov boundary. The underlying set can be
described as the set of all rays emanating from a fixed point p [BH99, Lemma III.H.3.1].
Since X is a tree, there is no need of an equivalence relation on the rays. Topologically,
∂X is a Cantor space.

Proposition C.4. Let F be a finite subgroup of π. Then the following are equivalent:

(i) Nπ(F ) is infinite,

(ii) Nπ(F ) contains an element of infinite order,

(iii) XF is an infinite graph,

(iv) F fixes a ray in the tree X pointwise,

(v) F fixes a line in the tree X pointwise,
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(vi) F fixes a point on the Gromov boundary ∂X,

(vii) F fixes two points on the Gromov boundary ∂X.

Proof. (i)⇒ (ii). Nπ(F ) acts on the treeX and is thus isomorphic to the fundamental
group of a certain connected graph of finite groups (G′, Y ′). This need not be a finite
graph of groups, but it inherits from (G, Y ) the property that there is a global bound
on the orders of the groups G′P . We show that this suffices for the existence of an
element of infinite order if Nπ(F ) is infinite.
Assume that Nπ(F ) is a torsion group. The fundamental group of the graph of groups
(G′, Y ′) surjects onto the usual topological fundamental group of Y ′, which has an
element of infinite order unless Y ′ is a tree. Moreover, any edge group has to equal
the vertex groups of one of its two vertices. The reason is that there certainly is an
element of infinite order if both inclusions are strict, see Example C.2 with F = {1}.
Note that the fundamental group of the graph of groups on any subgraph of Y ′

embeds into the whole fundamental group, as can be seen by considering reduced
words. Now, let P be a vertex of Y ′ such that G′P is of maximal order. Then the two
facts mentioned above ensure that the canonical map

G′P −→ π1(G′, Y ′, P ) ∼= Nπ(F )

is an isomorphism, thus Nπ(F ) is finite.
(ii) ⇒ (iii). Since F is finite, it fixes a vertex x. Let g ∈ Nπ(F ) be of infinite order.
For all n, we have g−nFgn ⊆ Stabπ(x), or, equivalently, F ⊆ Stabπ(gnx). Since the
stabiliser of x is finite, there are infinitely many points of the form gnx.
(iii) ⇒ (i). Since there are finitely many π-orbits, F in particular fixes infinitely
many vertices in the same π-orbit. Suppose that this is the G-orbit of x, i. e. there
are infinitely many g ∈ π such that

F ⊆ Stabπ(gx)

or, equivalently,
g−1Fg ⊆ Stabπ(x) .

Thus, the subgroup M ⊆ π consisting of all g with the above property is infinite. But
M acts on the finite set of π-conjugates of F in Stabπ(x) by conjugation, and the
stabiliser of F equals Nπ(F ) which is thus also infinite.
(iii) ⇔ (iv). In the tree X, every vertex is of finite degree since this is true for the
quotient Y = π\X and all edge stabilisers are finite. The same is thus true for XF

which is connected by uniqueness of geodesics. Finally, a connected graph in which all
vertices have finite degree is infinite if and only if it contains a ray [Die17, Prop. 8.2.1].
(iv) ⇔ (vi), (v) ⇔ (vii). In the description of the Gromov boundary as the set of rays
emanating from a fixed vertex p recalled directly before this Proposition, take p to
be a vertex fixed by F . Then F acts on the set of rays, and the assertions translate
into one another.
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(ii) ⇒ (v). Let g be of infinite order normalising F and let x be a vertex fixed by F .
Then F fixes all gnx with n ∈ Z. Let

m = minx∈vertXd(x, gx) > 0 .

By the structure theorem for hyperbolic elements [Ser80, Prop. 24], there is a g-
invariant line L on which g acts by translation by m. Moreover, if z denotes the point
on L closest to x, then the geodesic from x to gx contains z (and gz). Thus, z ∈ XF .
A similar argument applied to gnx shows that gnz is contained in XF . Since XF is
geodesically closed, this implies that it contains the whole line L.
(v) ⇒ (iv). This is a tautology.
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