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Abstract

Wildfires ravaging forests around the globe cost lives, homes and billions in damages every year,

which motivates the study of effective firefighting. In the area of theoretical computer science, several

different models inspired by firefighting have been established and studied to find efficient firefighting

strategies.

In Hartnell’s fire fighter problem [44], a fire burns through the vertices in a graph in rounds: in

each round, the fire spreads from each burning vertex to all adjacent vertices. A firefighter is tasked

with protecting as many vertices of the graph as possible by blocking a single vertex each round.

While a plethora of results have been obtained with respect to specific graph classes or variations of

the firefighter’s power, the modus operandi of the fire rarely changes.

We study a new model generalizing the one used by Hartnell to better simulate the varying speeds,

at which a fire spreads through different terrain types, by incorporating a fire resistance and energy for

each vertex. We present an efficient algorithm to track the fire propagation in a given graph G = (V,E)

in time O(|E| · |V |), that is particularly efficient in graphs with bounded vertex degree, where its

runtime lies in O(|V | log |V |). We also obtain polynomial-time algorithms for two problems regarding

protecting a set of vertices along the boundary of a hexagonal cell graph. We show NP-completeness

for an inverted third problem, where the goal is instead to ignite a set of target cells given a set of

starter cells. We also examine the unique features of the model and propose a number of new questions

utilizing them.

In the second part of this thesis we focus on geometric firefighting as introduced by Bressan [14].

In that model, the fire burns a region of the Euclidean plane that grows over time with unit speed, and

has to be contained by building barrier curves with some building speed v. In the original problem,

the exact necessary building speed to contain the fire is not known, as a gap remains between the best

known strategy for a speed of v > 2 and a lower bound of v > 1. The difficulty in closing this gap

seems to lie with the following question: To contain a fire, should one build an enclosing barrier at

maximum speed, or is it better to invest some time in building extra delaying barriers that will not be

part of the final enclosure but can slow the fire down during construction?

To get a step closer to the answer to this question, we mainly study a variant of the original

problem, where a fire spreading at unit speed according to the L1-metric is to be contained in an open

half-plane. Towards that goal, the firefighter is allowed to build one infinite enclosing barrier along

the x-axis, and vertical delaying barriers attached to it. We prove that at least a building speed of
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v > 1.6 is necessary to contain the fire in this variant, while providing a strategy that suceeds for a

speed v > 1.8772. We also study some smaller variants of both this and the original problem.

In the final part of this thesis, we study the Minimum Enclosing Ball problem in high dimensions:

given a set of n points in the d-dimensional Euclidean space, find the ball of minimum radius

containing all points. This is a classic clustering problems and has been studied extensively in the past,

often together with its generalization, the Euclidean k-center problem. Among the known results are

polynomial-time algorithms to obtain optimal solutions for fixed k and d [64, 82], polynomial-time

(1+ ε)-approximation algorithms for k = 1, but arbitrary d [7, 61] as well as – most recently – a

polynomial-time algorithm for instance with rational coefficients [74]. However, it can not be solved

in polynomial time for general d. We provide a simple gradient-descent based (1+ ε)-approximation

algorithm, that runs in time O
(
nd 1

ε

)
and improves on the similar core-set based approximation

algorithms.
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Chapter 1

Introduction

When hearing the word algorithm, a lot of people think of Google showing them ads based on their

last searches, analytic companies influencing elections using facebook groups, or self-driving cars

deciding to brake. However, the fundamental idea is just to train a computer to help us solve complex

problems efficiently. Big Data Analysis and Artificial Intelligence, as often in the news today, are just

a small portion of those problems solved in computer science.

While inspired by problems and questions in the real world, theoretical computer scientists study

somewhat simplified abstractions of these problems. Finding good abstractions helps us to understand

what is at the core of the questions we ask about the world, and sometimes leads us to discover that two

problems, that seem very different, are fundamentally the same. They also allow us to mathematically

prove the correctness or efficiency of our solutions, an endeavour that is likely to fail when trying

to consider each and every parameter of our infinitely complex reality, that could affect any given

problem.

In the field of computational geometry, the problems studied are often inspired by movement

in the real world. It can be searching a way out of any maze or finding out that it does not have an

exit [1], finding the fastest route by car from home to work [28], or finding the closest supermarket

or post office on a city map and where to put another one to attract the most customers [5]. While

describing these problems is often intuitive, solving them can be surprisingly complex.

The problems examined in this thesis are inspired by firefighting. Forest wildfires that ravage

especially Australia and North America on a regular basis cause billions of dollars of damages every

year and burn hundreds of homes [32], sometimes even threatening larger settlements and urban

areas. As fighting these fires is costly, dangerous and exhausting for the firefighters involved, one

naturally wants to do it in the most efficient way possible. But before ever designing an algorithm that

might help firefighters coordinate their efforts, one must first model the problem and analyse possible

solutions.

When finding abstract models for any problem, but especially for those inspired by nature, the

balance between simplicity and power of expression is of utmost importance. On the one hand, the

model must be sufficiently detailed to represent the problem adequately. Otherwise, results obtained
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for the abstract model have no bearing in reality. On the other hand, it should be kept as simple as

possible to still be able to obtain reasonable results and avoid both unnecessary complexity and – in

the worst case - undecidable problems. Hence, it does not surprise that different firefighting models

have been discussed in the scientific community. They can mostly be split into two distinct groups:

discrete firefighting in graphs and continuous firefighting in the Euclidean plane, also called geometric

firefighting.

1.1 Methods and Prerequisites

From here on out, this thesis assumes general familiarity with basic concepts of theoretical computer

science. In the following, we will give a short overview of the prerequisites utilized and where to best

get an introduction to them, if any are unfamiliar.

This includes basic complexity theory to compare the efficiency of algorithms presented within

this thesis, more specifically O-, Ω and Θ-Notation as well as the complexity classes P and NP. A

good introduction into these topics can be found in Computational Complexity - A Modern Approach

by Arora and Barak [3].

Especially in Chapter 2, we will rely on knowledge of basic graph theory and algorithms. This

includes both the definitions and basic properties of graphs and common graph classes, as well as

basic search algorithms like Breadth- and Depth-First-Search or Dijkstra’s shortest path algorithm.

These topics are well covered by a number of books, not least in Introduction to Algorithms by

Cormen et al. [24] and Graph theory with applications by Bondy et al. [13].

For a comprehensive introduction to algorithms from the area of computational geometry specifi-

cally, one can also study Computational Geometry by de Berg et al. [25] or Algorithmische Geometrie

by Klein [52].

The analyses provided in this thesis additionally utilize fundamental mathematical techniques, for

example linear algebra to solve linear recurrences. For a good foundation of mathematical background,

refer to Concrete Mathematics by Graham et al. [41].

1.2 Discrete Firefighting

The classic firefighter problem was first introduced by Hartnell at a Conference in 1995 [44] and is

defined on a graph.

Hartnell’s Firefighter
Input: A graph G = (V,E) and a burning starting vertex s ∈V .

Consider the following game played in rounds: In each round, the firefighter is allowed to mark a

vertex v ∈V that is not burning as ‘protected’. Then, the fire spreads to all non-protected vertices

adjacent to at least one burning vertex. All burning or protected vertices stay so until the end of the

game. The game is played until there are no more non-protected vertices adjacent to a burning vertex.
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Goal: Find a sequence of vertices to protect that minimizes the number of burned vertices when the

game ends.

Finbow and MacGillivray provide an excellent comprehensive survey of results and related

research up to 2009 [33]. Nevertheless, we will give an overview here, also including some more

recent developments.

The firefighter problem is trivially solvable for paths and cycles and, by a natural extension of

that, in graphs of maximum degree three, as long as the starting vertex has degree at most two [34]. In

contrast, the firefighter problem was proven to be NP-complete even in fairly simple graph classes

like bipartite graphs [63], trees of maximum degree three [34], and cubic graphs [51].

It can also not be approximated to a factor of n(1−ε) in general graphs [2] and only trees are

known to allow a constant-factor (e/(e−1)) approximation algorithm [23]. An interesting variation

occurs when considering a variant with a budget b, where the firefighter is allowed to protect not

one, but b many vertices in each round. In that case, maximizing the number of saved vertices is still

NP-complete. Minimizing the budget necessary to save a specific subset of vertices however can be

done within an approximation factor of O(
√

n) [2].

While studying general graphs, bipartite graphs or trees are natural points of view for graph

theorists, they do not actually represent scenarios of a spreading fire very well. Of course, the same

model also applies to other things that can spread - like a disease, a computer virus or a viral fake

news story. Where the vertices represent people or computers, the edges represent physical or virtual

contact. The protected vertices are then vaccinated people, computers with an updated antivirus

program or people reached by a fact-checked counter argument. Especially with the last case as

motivation, it is also valuable to consider variants where the protection is spreading in the same

manner as the “fire” (in that case the fake news story) itself, as done by Anshelevich et al. [2]. In

the context of spreading diseases, it is reasonable to consider nondeterministic variants, in which the

“fire”(in this case the disease) spreads along each edge with a certain probability each round [78].

However, there already has been a lot of research on the propagation of diseases or computer viruses

in the network and medical community. Motivated by real world properties of viruses and the typical

connectivity of populations, they focus mostly on scale-free networks or small-world networks and

use varied probabilistic models (for examples, see [27, 72, 84]).

For an actual fire however, it is more natural to consider graph classes, that can represent an area

through which the fire spreads, like grid graphs. These are infinite planar graphs whose faces form a

regular tiling in some Euclidean space. In infinite graphs, the game only ends if the fire is contained,

i. e., completely surrounded by protected vertices. So before optimizing solutions, the first question to

answer is whether the fire can be contained at all, and what budget b per round is necessary to do so.

To contain a fire in a d-dimensional square grid graph, a budget of 2d−1 is sufficient and can be

used to contain the fire in only two rounds with two vertices burned. In fact, for every dimension but

2, this budget is optimal. For the special case of 2, the fire can also be contained with a minimum

budget of 2. In that case, however, an optimal strategy takes eight rounds and leaves 18 vertices
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burned [26, 69]. This special behaviour of the low dimension is repeated when considering multiple

fires breaking out at once. For d = 2, these can still be contained with a budget of 2 [36]. For d ≥ 3,

however, for any budget b there is a finite number of fires that can not be contained at all [26].

Besides the square grid, other natural grid types of varying regular vertex degree k have of course

also been studied [36, 68] requiring a similar small constant optimal budget of ⌈ k
2⌉ in dimension 2.

1.2.1 Related Problems

Aside from questions focused around fighting the fire, one can also pose questions in the other

direction: If we are allowed to set one vertex on fire each round, how many rounds r does it take at

minimum until all vertices are burned by our actions and the subsequent spread. This value r is known

as the burning number as introduced by Bonato et al. [12] and reflects the vulnerability of a graph to

spreading fire.

Two closely related problems that have a certain similarity to firefighting are cop-and-robber

games as well as the lion-and-man problem [11]. Belonging to a bigger family of pursuit-evasion

games, they usually feature one or more pursuers (cops, lions), who are trying to catch a target (robber,

man) moving through a graph. Depending on which party knows the others strategy and the number

of pursuers, winning strategies for either party can be found on some graph classes [70].

Berger et al. [10] discuss a variant of the lion-and-men problem on grid graphs with a particularly

close relation to the firefighting problem. In that variant, the position of the man is assumed to be

unknown to the lions. Thus, they want to systematically prowl through the grid in a way that they

catch him no matter where and how he moves. If the man could be at a vertex v at time t, at the next

time step he could have moved to any adjacent vertex as long as there was no lion waiting for him.

So the possible position of the man spreads similar to the fire. However, in contrast to the firefighter

problem, as the lions move around, protected vertices become unprotected again and previously

“burning” vertices can become protected.

1.2.2 Our Contribution

While the current research of firefighting in graphs varies with respect to the graph classes or power

of the firefighters studied, the modus operandi of the fire stays nearly identical: it always spreads

uniformly in all directions. In reality however, a fire spreads at varying speeds due to differences in

wind, or vegetation and other terrain features.

In other communities, models have therefore been developed to predict a fire’s propagation rate in

a given terrain. To make the forecast as realistic as possible, some models incorporate thermodynamic

or chemical parameters as well as weather conditions including wind speed and direction. Some of

the models are capable to distinguish between fires at different heights such as ground fires and crown

fires. Pastor et al. [71] survey a number of theoretical and (semi-)empirical models. One drawback

they mention is that most models reduce the fire front to a single line, whereas in practise a whole
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combustion zone should be taken into account. A drawback which Knight and Coleman [59] bring

forward, is that most of these models assume that each point of fire propagates independently of its

neighbours.

We introduce a new model, that generalizes the classical firefighting model in graphs with a focus

on a more varied spread of the fire by giving energy and resistance values to vertices of the graph. The

aim is to provide a still relatively simple theoretical framework, that is capable of simulating varied

terrains and other parameters. This allows the fire to spread at different rates depending on the terrain,

and can have multiple neighbours of a vertex affect its ignition, addressing the concern of Knight and

Coleman mentioned above.

As this is a new model, we subsequently discuss its general properties and how it relates to the

classic firefighting model and other related models. We also investigate the potential power lying in

the adaptability of the generalized model. On the fundamental algorithmic side, we give an efficient

algorithm to calculate the fire propagation in a graph with given energy and resistance values.

We also consider a series of problems related in a graph based on hexagonal cells, in which the

goal is to protect a specific vertex subset representing a village from an approaching fire. Similar to

questions like the burn number of graphs, we also study a problem where the goal is inverted and a set

of target cells must be burned by igniting cells from a set of source cells.

1.3 Continuous Firefighting

A continuous version of the firefighter problem was introduced by Bressan in 2007 [14], where the

fire is modelled as a subset of the Euclidean plane, i. e. a region of the plane that is on fire. Starting

with a set R0 at time t = 0, the set grows continuously over time according to some spreading function

as the fire spreads through the plane. The goal is then to contain the fire within barrier curves serving

a similar function as blocked vertices in the discrete problem. They are impassable to the fire, can not

be moved or destroyed after building and must be built dynamically while the fire is spreading. The

length of the barriers built is limited by a building speed v, i. e., the length of barriers built may never

exceed v · t at any time t. These barriers represent forest parts preventively soaked in water to protect

them from igniting or firebreaks created by deliberately cutting away strips of forest. The main task

is to find strategies that minimize the building speed v necessary to build the barriers fast enough to

actually contain the fire.

For specific results, Bressan initially focused on the following special case: The fire starts with

the unit ball and its spread function is also governed by the unit ball, which means that it spreads

at constant speed 1 uniformly in all directions. By rescaling arguments, all variants with the fire

spreading uniformly in all directions can be normalized to this special case independent of the starting

area. He further showed, that a building speed v > 1 is necessary and provided a strategy that shows

that v > 2 is sufficient for this case, which he also conjectured to be optimal. Though both these initial
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results are rather straight-forward, that gap of (1,2] has remained open, despite a 500 USD reward

offered by Bressan himself in 2011 [15].

Later research by Bressan et al. [14, 18, 19, 81] focused mainly on finding conditions for barrier

arcs that are part of optimal strategies, in the sense that they minimize the area burned. For this,

Bressan developed the notion of a time efficiency of barrier arcs, measuring how the time cost spent

on building some barrier arcs is returned, when the fire is delayed and reaches other barriers later,

allowing them to be built later as well.

It seems that the difficulty lies with the following question: To contain a fire, should one build

an enclosing barrier at maximum speed, or is it better to invest some time in building extra delaying

barriers that will not be part of the final enclosure but can slow the fire down during construction?

If delaying barriers could be shown to be useless, Bressan’s proof of the lower bound of 1 could be

naturally extended to prove his conjecture, the lower bound of 2. In fact, Bressan et al. [17] also

consider a special variant in where the fire spreads in a half plane. For this variant, they constructed a

strategy without delaying barriers requiring building speed v = 1, that encloses the fire between the

boundary of the half plane and the barrier curve and proved it to be optimal.

1.3.1 Related Problems

A special case of the firefighting problem, where only a single barrier curve is built in one continuous

motion has also been considered by Bressan et al. in 2008 [21] providing a strategy, for which a

building speed v > 2.6144 is sufficient. A slightly different strategy requiring the same speed was

later discussed by Klein et al. [57] and shown to be optimal regarding the building speed v among a

subset of spiralling strategies.

As in the discrete case, the continuous fire model also works well as a model for other phenomena

featuring a some spreading contagion. The best fitting among these is probably an oil spill spreading

on the surface of the ocean. The typical method to fight such spills is to deploy swimming containment

booms by ship, which is well represented by the barrier curves in the plane. More generally, the

modelling technique Bressan uses - defining the area burned by the fire as the reachable set of a

differential inclusion of a set-valued function - has also been applied to other problems like herding

flock [20] or modelling spreading disease [6].

Klein et al. [55] also studied controlling the spread of fire in restricted domains, namely polygons.

As the fire is already contained in the bounded region of the polygon, the objective shifts instead to

save as much of the polygon area as possible. They proved this problem to be NP-hard even when

restricting the barriers to the diagonals of the polygon, but provided an approximation scheme as long

as the barriers must come from a set of straight-line segments with both endpoints on the boundary of

the polygon.

Kostitsyna et al. [60] also studied a related problem in polygons - given an entry and an exit

interval on the boundary, they study how to build barriers to maximize the length of the shortest path
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from entry to exit or minimize the biggest flow. This is similar to delaying a fire entering the polygon

at the entry from reaching the exit as long as possible.

1.3.2 Our Contribution

In this thesis, we focus specifically on the aspect of delaying barriers, as understanding their value

seems to be crucial to close the gap between the known lower and upper bound on the necessary

building speed.

The central results are obtained for a specific scenario, where a fire spreading at unit speed

according to the L1-metric is to be contained in an open half-plane. To study the effect of delaying

barriers, we focus on barrier systems that are a combination of the horizontal enclosing barrier along

the boundary of the half-plane, as well as vertical delaying barriers attached to that boundary.

Intuitively, the fire can be contained in the upper half-plane with just the horizontal barrier and

a building speed v > 2. Although one might initially expect this to be, in fact, optimal, we instead

construct strategies that contains the fire for lower speeds. The best of those contains the fire for any

v > 1.8772. To complement this constructive upper bound on the necessary building speed v, we also

develop a series of lower bounds by careful analysis of the manner in which the fire buns along barrier

systems of this specific structure, the strongest of which shows v > 1.6 is necessary.

To provide additional context about the usefulness of delaying barriers in addition to these main

results, we also examine three additional variants of geometric firefighting, for which the best known

strategies involve delaying barriers to varying degrees. When restricting the firefighter by only

allowing a single continuous barrier curve, the best known strategies (compare [21, 57]) involve

spiralling around the fire origin, such that most of the barrier curve creates a single long delaying

barrier. When restricting the fire, such that it only spreads along the rays from the origin, we present

an optimal strategy for any positive speed that does not involve delaying barriers at all. Finally, we

show that a variant of the half-plane model, with the fire restricted to only burning along barriers

already built, allows for simple symmetric strategies with infinitely many delaying barriers.

1.4 The Minimum Enclosing Ball Problem

The Minimum Enclosing Ball problem (MEB) or Euclidean 1-Center problem is a well-established

geometric clustering problem.

Minimum Enclosing Ball (MEB)
Input: A set of points P⊂ Rd .

Goal: Find a ball containing P with minimum radius. This is equivalent to finding the center c ∈ Rd

minimizing max
p∈P

d(c, p), where d(c, p) denotes the Euclidean distance between the points c and p.

The Minimum Enclosing Ball problem relates to firefighting in two ways. First, consider a number

of points in Rd representing sites that need to be protected from a fire using an Rd−1-dimensional
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barrier. One natural way to do so, would be to build the surface of a minimum enclosing ball, which

needs to be found first. Second, the center of a minimum enclosing ball is the optimal position to

build a firefighter station that minimizes the maximum response time of reaching a fire breaking out

at any of the points.

For any constant dimension, the Minimum Enclosing Ball problem can be solved in linear time as

shown by Megiddo in 1983 [64] by using a rather complicated prune and search approach. Based on

the simple observation, that the minimum closing ball in a constant dimension d can be determined

by at most d +1 of the points from P lying on its boundary, and a linear programming algorithm by

Seidel [75], Welzl described a surprisingly simple randomized algorithm running in expected time

O(n) in 1991 [82]. However, both Megiddos and Welzls algorithm run in time O((d +1)(d +1)!n)

for general dimension d, although the latter provided experimental results of its efficiency in practice.

An algorithm by Gärtner et al. [40] based on quadratic instead of linear programming intended for

dimensions up to 30 runs in practice in time polynomial in d. However, it requires arbitrary precision

linear algebra to stay robust, which limits its use in higher dimensions. This problem is avoided

by a purely combinatorial algorithm by Fischer et al. [35], which is another example of an exact

algorithm with exponential runtime in the worst case, but good performance in practice up to roughly

d = 10000. Until today, no exact algorithm with running time polynomial in d is known. Therefore,

approximation algorithms have been considered.

Bǎdoiu et al. [9] presented an (1+ ε) approximation algorithm running in time O(nd
ε2 +

1
ε10 log 1

ε
).

It is based on finding a core-set of size at most 1
ε2 - a subset of points S ⊂ P, such that the optimal

MEB solution for S is an (1+ ε) approximation for the whole set P. Kumar et al. [61] improved

these results to finding ε-core-sets of size O( 1
ε
) in time O(nd

ε2 +
1

ε4.5 log 1
ε
). Independently Bǎdoiu and

Clarkson [7] achieved an algorithm with a slightly worse running time of O(nd
ε
+ 1

ε5 ) while having a

stricter bound of ⌈ 2
ε
⌉ on the size of their core-set.

Bǎdoiu and Clarkson [7] also gave an incredibly simple gradient-descent algorithm obtaining

a (1+ ε)-approximation in time O(nd
ε2 ) and later showed that a tight bound of ⌈ 1

ε
⌉ on the size of

ε-core-sets exists, see [8].

Rösner [74] recently applied known results about optimization over convex bodies (see [43]) to

obtain a (1+ ε)-approximation algorithm in time and space polynomial to the encoding size of the

problem instance and log 1
ε

. For instances with rational or integral coefficients, his algorithm can even

be used to obtain optimal solutions.

The core-set based algorithms, Bǎdoiu’s gradient-descent algorithm as well as Rösner’s convex

optimization based algorithm can also be applied to the Euclidean k-center problem, a classic clustering

problem and natural extension of the minimum enclosing ball problem:

Euclidean k-center
Input: A set of points P⊂ Rd and a value k ∈ N.

Goal: Find k centers c1, . . .ck ∈ Rd minimizing max
p∈P

min
i

= 1kd(ci, p), where d(ci, p) denotes the

Euclidean distance between the center ci and the point p.



1.4 The Minimum Enclosing Ball Problem 9

As shown by Megiddo [65, 66], the Euclidean k-center problem is NP-hard for d ≥ 2 and does not

have a polynomial time approximation scheme in high dimensions unless P = NP. For d = 1 however,

it can be solved exactly in time O(n logn) [67]. For d = 2, an initial algorithm by Drezner [29]

computing an optimal solution in time O
(
n2k+1 logn

)
was improved by Hwang et al. [45] to a runtime

of O
(

n
√

k
)

.

The case d = 2 and k = 2 has received particularly extensive attention resulting in a series of

publications improving the running time step by step culminating in a randomized algorithm with

expected running time O
(
n2 logn

)
by Eppstein [31], which could only recently be matched by a

deterministic algorithm by Tan and Jiang [77].

When restricted to rational instances P ⊆ Qd with |P| = n, Rösner [74] gave an algorithm that

computes an optimal Euclidean k-center solution in O
(
n(d+1)k poly(enc)

)
time, where enc is the

length of the input encoding. It first computes a set of O
(
ndk
)

partitionings of the point set, which

includes the optimal partitioning into clusters, and then tests all those partitionings by applying the

1-center algorithm to each partition.

The core-set based approximation algorithms can be extended to the k-center problem using a

guessing oracle approach [9]. Assuming we had an oracle telling us for each point added to the

core-set, to which of the k-clusters it belongs, it suffices to build a core-set with k times as many point

as for the 1-center problem. Missing such an oracle, just exhausting all guesses results in a run time

of O
(

nd k
k
ε

)
. As the running time is then exponential in the size of the core-set, a tight bound on

that size is paramount for this approach. The same approach can be applied to the gradient-descent

algorithm, in which case the number of points used for the gradient descent steps has the same effect

on the run time as the size of the core-set.

1.4.1 Our Contribution

We extend a geometric property first used for a 2-center streaming algorithms by Kim and Ahn [47]

to improve the gradient-descent approach and provide a (1+ ε)-approximation with a run time of

O
(nd

ε

)
using ⌊ 2

ε
⌋ many points. While this is an improvement on the known core-set-based algorithms

only for nd ∈Ω
( 1

ε3.5 log 1
ε

)
and the exact dependency on the input encoding size in comparison to the

most recent result by Rösner is unclear, the simplicity of the algorithm might nevertheless make it an

attractive option in real-world applications.

In clustering and Big Data, a simpler algorithm can be preferable to a more complex algorithm

despite a worse worst-case runtime, as that simplicity usually results in low run time constants and

easier adaptability. In the case of the 1-center problem, this is evident by the fact that Bǎdoiu and

Clarkson considered an incredibly simple gradient-descent algorithm despite having found a core-set

based algorithm of better asymptotic worst-case performance. They used performance experiments on

both the gradient-descent and the different core-set-based algorithms to show that the gradient-descent

algorithm converges significantly faster than its theoretical bound suggests [8].
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1.5 Structure of this Thesis and Bibliographical Notes

After this introduction, the main body of this thesis consists of three chapters, each focusing on one of

the three problems introduced. The results will be summarised in a final conclusion chapter.

Some results in this thesis have been presented at workshops or conferences, published in the

respective proceedings or as journal versions. We provide an overview of previous publications here

and also specify in which way this thesis extends or improves on these results.

Chapter 2 This chapter covers our contributions to discrete firefighting as detailed in Section 1.2.

Preliminary versions of the results in this chapter have been presented at the Conference on Algorithms

and Discrete Applied Mathematics (CALDAM 2020) and published in its proceedings [58] together

with co-authors Rolf Klein, David Kübel, Elmar Langetepe and Jörg-Rüdiger Sack. A full version

of the conference paper is available as an arXiv preprint [56] including some proofs omitted from

the conference version due to space constraints. Some of the results focusing on the computability

aspects of the new model are presented in the PhD-Thesis of David Kübel [46].

In contrast to these publications, this thesis generalizes both the model and the algorithmic results

presented with respect to the underlying graphs. In addition, we explore the adaptability of our new

model to several environmental factors affecting wildfires, as well as propose a number of open

problems focused on the unique features of our model.

Chapter 3 This chapter covers our contributions to continuous firefighting as detailed in Section 1.3

The central results, with respect to containing a fire in the upper half-plane, have been presented at

the Algorithms and Data Structures Symposium (WADS) 2019 and published in its proceedings [49]

with co-authors Elmar Langetepe, Sang-Sub Kim, Rolf Klein and David Kübel. A full version of

the conference paper including some proofs omitted due to space constraints is available as an arXiv

preprint [50] and has been submitted to Computational Geometry: Theory and Applications. Initial

results had also been presented at the 34th European Workshop on Computational Geometry (EuroCG

2018) [54] based on an extended abstract without formal publication.

As one of the problems presented to give context to the focus on delaying barriers we also

summarize results from a previous publication with co-authors Rolf Klein, Elmar Langetepe, Christos

Levcopoulos and Andrzej Lingas about a variant of geometric firefighting, in which the fire is

contained by a single continuous barrier curve [57]. An earlier version of those results by Rolf Klein,

Elmar Langetepe and Cristos Levcopoulos was presented at the 31st Symposium on Computational

Geometry (SoCG 2015) and included in its proceedings [53].

This thesis contains some unpublished material in addition to the results included in these

publications: An optimal strategy to contain a fire spreading along rays from an origin point, and a

strategy to prevent a fire that is only allowed to burn along existing barriers from entering the lower

half-plane, are included to provide context about the importance of delaying barriers in different

variations of geometric firefighting. A lower bound for strategies to contain a fire, that starts at some
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small distance from the x-axis, in the upper half-plane, two additional lower bounds for the half-plane

model based on different approaches than the main result, and a discussion how to extend the obtained

results to higher dimensions or to a fire spreading according to the L2-metric, provide additional

insight into the central half-plane model.

Chapter 4 This chapter covers our contributions to the minimum enclosing ball problem as detailed

in Section 1.4. The results in this chapter have been presented at the 36th European Workshop on

Computational Geometry (EuroCG 2020) [48] based on an extended abstract with co-author Sang-Sub

Kim, but have not been formally published. This thesis completes that extended abstract with full

proofs.





Chapter 2

A New Model for Discrete Firefighting

In this chapter we introduce a discrete model for a fire spreading through a graph, that is a direct

extension of the model used in Hartnell’s Firefighter Problem. We begin with the definition of the

model and compare it to both the original model used by Hartnell and the related concept of cellular

automata. While the model is defined on general graphs, it makes the most sense in simulating terrain

when applied to graphs induced by a regular tiling of the plane.

We discuss a variety of problems based on the new model, mainly focusing on the graph induced

by the regular hexagonal tiling of the plane. First we present an efficient algorithm to track the fire

propagation that is particularly effective in graphs with bounded maximum vertex degree. Second we

present algorithms for finding a barrier to protect a specific set of target vertices representing a village

in graphs induced by a hexagonal tiling of the plane. At last we prove that the problem of choosing to

ignite a minimum subset of some candidate starter vertices to eventually ignite a set of target vertices

is NP-complete, even in rectangular grid graphs.

As flexibility was the focus of the creation of this new model, we then discuss a few ways to extend

or adapt this model to reflect multiple environmental aspects affecting real world fire propagation. We

also propose a number of problems that could be studied utilizing the unique properties of the new

model.

2.1 Model Definition

The goal of our model is to better reflect the properties of terrain affecting the spread of a fire by

extending the simple model of a burning vertex igniting all neighbours.

On the one hand, depending on varying parameters (type and thickness of vegetation, humidity

and more) an area of terrain might be harder or easier to ignite by a spreading fire. For example, a dry

wheat field is much easier to ignite than a thick forest full of fresh moist greenery. We model this as

the resistance r of a vertex, which is reduced by burning neighbours until a vertex ignites when its

resistance reaches 0.
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On the other hand, terrain does not burn indefinitely after catching fire, but different terrain might

burn for varied durations and with varied intensity, which makes it easier or harder for the fire to

further spread to the surrounding area. While the dry wheat field burns out fast, the thick forest will

burn much longer and have a higher chance of spreading the fire further. We model this as the energy

e of a vertex, which decreases over time until a vertex burns out and no longer affects its neighbours

when its energy reaches 0.

Definition: Resistance and Energy Model (r,e-Model)
Let G= (V,E) be a connected graph, and r0 : V 7→N, e0 : V 7→N two initialization functions assigning

a starting resistance and energy to each vertex v in the graph. We call such a triplet (G,r0,e0) an

instance of the r,e-model. Then the state of a cell at a discrete time t ∈ N is given by two attributes:

its energy e(v, t) and resistance r(v, t) with e(v,0) = e0(v) and r(v,0) = r0(v). A vertex v is called

• alive at time t if r(v, t)> 0,

• burning if e(v, t)> 0 and r(v, t) = 0 and

• dead if e(v, t) = 0 and r(v, t) = 0.

The following transition rules for a vertex v model the spread of the fire through the graph:

• If v is alive at time t, then e(v, t + 1) := e(v, t) and r(v, t + 1) := max{r(v, t)− b,0}, where b

denotes the number of direct neighbours of v in G burning at time t.

• If v is burning at time t, then r(v, t +1) := r(v, t) = 0 and e(v, t +1) := e(v, t)−1.

• If v is dead at time t, then r(v, t +1) := r(v, t) = 0 and e(v, t +1) := e(v, t) = 0.

When using the r,e-model to represent a fire spreading through a terrain, it is intuitive to consider

graphs induced by tessellations. A tessellation is a non-overlapping tiling of the plane with polygons.

A tessellation is called regular, if the tiles are all congruent regular polygons. The only regular

polygons, for which a regular tessellation exists are triangles, squares and hexagons.

A tessellation T induces an infinite planar graph GT = (VT ,ET ): each polygon in T corresponds

to a vertex v in VT and ET contains an edge (u,v) if and only if the polygons corresponding to u and

v share a polygon edge in the tessellation T . Due to its regularity, we mainly focus on the graph

Ghex induced by the regular hexagonal tiling (and finite subgraphs of it) and refer to its tiles and the

corresponding vertices as cells. Figure 2.1 shows an example of how a fire expands over time from a

single source in a small subgraph of 4×4 hexagonal cells. That example also highlights, that there

are instances in which the fire burns out on its own, without igniting every vertex of the graph G.
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Figure 2.1: Fire spreading in a finite subgraph of Ghex. The resistance and energy are given in the
cells as pairs of the form r;e. The state of the cells are further indicated by colours: Burning cells are
red, alive cells are white, and dead cells are grey. At time t = 10, the fire has burned out and several

living cells remain.

2.2 Related Models

2.2.1 Hartnell’s Firefighter

In the original Firefighter problem as introduced by Hartnell in [44] (compare Section 1.2), a burning

vertex in a graph ignites each non-burning adjacent vertex each round. As intended, the r,e-model

generalizes this fire propagation model:

Let (G,s) be an instance of Hartnell’s firefighter problem. Then consider an instance of the

r,e-model of the same graph G with e0(v) = 1 for all vertices and r0(v) = 1 for all vertices except the

starting vertex s, for which r0(s) = 0. Thus, the information about the starting vertex is implicitly

included in r0. With that initialization, any vertex ignites all non-burning neighbours within one time

step. This makes the set of all burning and dead vertices at time t in that r,e-model instance the same

as the set of vertices on fire in round t in Hartnell’s model, while the set of the burning vertices in the

r,e-model at time t is exactly the vertices ignited in round t in Hartnell’s model.

Consequently, Hartnell’s firefighter problem (and other problems using the same propagation

model) can be adapted to this model:

r,e-Firefighter
Input: An instance of the r,e-model.

Consider the following game played in rounds. Each round, a firefighter is allowed to mark a non-

burning vertex as protected. Then the fire affects non-protected vertices according to the transition

rules of the r,e-model. The game is played until there are no more non-protected vertices adjacent to

a burning vertex.
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Goal: Find the sequence of vertices to protect that minimizes the number of burning or dead vertices

at the end of the game.

The construction described above is a polynomial time reduction of Hartnell’s Firefighter problem

to the r,e-Firefighter Problem. Thus, the r,e-Firefighter Problem is NP-complete for graph classes, for

which Hartnell’s Firefighter problem is NP-complete, like bipartite graphs [63], trees of maximum

degree three [34], and cubic graphs [51].

On the other hand, the fire according to the r,e-model burns at most as fast through a graph G as

Hartnell’s fire.

Lemma 1
Let G = (V,E) be a graph with initialization functions r0 : V 7→N and e0 : V 7→N, such that there is a

unique starting vertex s ∈V with r0(s) = 0. Let Fre(t) be the set of burning or dead vertices according

to the r,e-model at time t and FH(t) be the set of cells on fire after round t of fire spreading from s

according to Hartnell’s model. Then Fre(t)⊆ FH(t).

Proof. The claim follows by induction. As a start, Fre(0) = {s}= FH(0). Now assume, Fre(t)⊆ FH(t)

for some fixed t. Then in Hartnell’s model, every neighbour of a burning vertex gets ignited. In the

r,e-model, a vertex ignites, when its resistance is reduced to 0. The resistance of a vertex is only

reduced in a round if it has burning neighbours, so the ignited vertices are a subset of all neighbours

of burning vertices, which again is a subset of Fre(t) which concludes the proof.

By Lemma 1, any strategy for Hartnell’s Firefighter model saves at least as many vertices when

applied to an instance of the r,e-Firefighter Problem with a unique starting vertex s.

Similar relations can be found when adapting the results for the budgeted Firefighter problem

on regular grid graphs as introduced in Section 1.2. As a reminder, in the budgeted variant of the

Firefighter problem, the fighter is allowed to protect not only 1 but b vertices each round according

to a budget b. In infinite graphs, the game only ends if the fire is contained, i. e. when there is no

non-protected alive vertex adjacent to a burning vertices. Therefore, the budgeted Firefighter problems

asks two questions. First, what is the minimum budget b to contain the fire in some regular grid graph.

Second, given a budget b, give an optimal strategy that minimized the number of burned vertices.

By Lemma 1, if a budget b suffices to contain a fire spreading from a single vertex in some

n-dimensional regular grid-graph G, then the same budget suffices for every instance of the r,e-

Firefighter problem on that graph with a unique starting vertex s. However, depending on the initial

resistance and energy values, the fire might burn out on its own without any interference from a

firefighter. Therefore, for any given instance of the r,e-Firefighter problem on G, the optimal firefighter

budget to contain the fire lies somewhere between 0 and b.

2.2.2 Cellular Automata

A cellular automaton is defined on cells in a regular tiling, typically (but not limited to) the square tiling.

Each cell is assigned a starting state at time t = 0 from a finite set of states. In each subsequent discrete
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time step (i. e. t ∈ N>0), the state of cell is determined by the states of the cell in its neighbourhood in

the previous time step based on a fixed rule set. A general introduction can be found in [79].

When applied to a regular grid of square cells, i. e. a graph induced by a regular tessellation, the

r,e-model defines a cellular automaton as long as the initial resistance and energy are bounded by

a constant c. Although the set of states seems to be infinite at first glance, observe that both energy

and resistance of a cell never increase. Thus, the finite set of states is the set of pairs (r,e) with

r,e ∈ {0, . . . ,c}. Note, that the fire propagation model used in Hartnell’s Firefighter Problem also

defines a cellular automaton, albeit a very simple one with just two states and a single rule, allowing a

one-time transition from alive to burning.

Originally introduced as “cellular spaces” by von Neumann and Ulam to model biological self-

replication [80], it has been shown, that there exist computation-universal cellular automata, i. e.

some cellular automata can simulate a universal Turing machine [76]. Among them (as shown by

Rendell [73]) is the probably most famous cellular automaton: Conway’s “Game of Life”, which first

appeared in Martin Gardner’s column “Mathematical Games” [38]. It plays out on the orthogonal grid

of square cells and each cell lives or dies dependent on its eight neighbours. A living cell survives to

the next time step, if and only if it has two or three live neighbours. A dead cell on the other hand

becomes a living cell, if and only if it has exactly three live neighbours. These rules are inspired

by aspects affecting the survival of real life populations, like over- and underpopulation as well as

reproduction.

What contrasts the r,e-model to typical cellular automata like Conway’s “Game of Life” is it’s

monotonicity. Both the resistance r and the energy e of a cell will only decrease, never increase. Thus,

a dead cell with state (0,0) will stay in that state forever and the number of times a single cell v will

change its state is limited by r0(v)+e0(v). Therefore, if the automaton is limited to a finite number of

cells, it will always eventually arrive at a still state with all cells either alive or dead, but not burning.

In contrast, cells in Conways “Game of Life” can repeatedly switch between dead and alive, and

infinitely oscillating structures are known on bounded grids of sizes as small as 3×3 cells.

This variety in behaviour and power of cellular automata makes them notoriously hard to rigorously

classify. The most notable classification of cellular automata was introduced by Wolfram in “A new

kind of Science” [83], and its 4 classes are not based on formal definitions, but different types of

behaviours Wolfram observed in a huge variety of 1-dimensional cellular automata. Essentially,

Wolfram splits cellular automata into those that always quickly evolve into (relative) stability or

patterns oscillating within very few rounds (class 1 and 2), pure chaos (class 3) or complex interacting

structures surviving for many rounds (class 4).

This complex behaviour of the last class, to which Conway’s “Game of Life” belongs, seems to

enable universal computation. As such, Wolfram conjectured that most, if not all, cellular automata

belonging to that class have the same capability of universal computation. It is clear, that some initial

patterns in our r,e-model can enter a stable state very quickly if the fire burns out fast, fitting the

class 1 or 2. But the fire might also burn on forever without ever stabilizing or oscillating, as it does
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when initializing all cells with r0 and e0 set to 1 except for a single cell s with r0(s) = 0 instead,

which suggests class 4 instead. Due to the inherent fuzziness of the classification, our model can not

necessarily be classified with certainty.

However, we will later shortly address a variation of the r,e-model in Section 2.5, that is capable

of simulating Turing machines as proven by David Kübel in his PhD-Thesis [46]. However, this

computational power either requires additional transformation rules for our r,e-model, or an underlying

graph different from the 2-dimensional grids of cellular automata.

2.3 An Efficient Algorithm for Fire Propagation

When studying firefighting strategies, we need a baseline to compare any firefighting effort to, i. e.,

what happens without any interference. Therefore, given an instance (G,r0,e0) of the r,e-model, one

might be interested in the situation at a specific time, i. e., the state of every vertex v ∈V at time step t.

We call this the snapshot of an instance (G,r0,e0) at time t.

In the similar model for Hartnell’s Firefighter Problem, this question is easy to answer for an

instance (G,s). As the state of a vertex is binary (burning or alive), finding the snapshot at time

t reduces to finding the set of vertices ignited in rounds 1 to t. As the fire spreads to all adjacent

vertices each round, the vertices ignited in round 1 are exactly the vertices with distance 1 to s . In the

next round, all non-burning neighbours of these vertices are ignited, which are exactly the vertices

at distance 2 to s. Inductively, the vertices with a distance k to s are ignited in round k. As G is an

undirected unweighted graph, a simple Breadth-First-Search algorithm running in time O(|E|+ |V |)
is enough to determine the ignition round of every vertex, which allows to return the snapshot for any

round t in the output time O(|V |).
It is not as simple in the r,e-model, even if there is only a unique starting vertex s with r0(s) = 0

as in Hartnell’s model. The naive way to calculate a snapshot is to start with the snapshot at time

t = 0 as given directly by the instance and do a step-by-step simulation. This simulation terminates

either when t is reached or when the fire burns out and no vertex changes its state from one round

to the next. This can take as much as |V | · emax many rounds, where emax := max
v∈V

e0(v) is the highest

starting energy of any vertex. Each round, O(|E|) edges between alive and burning vertices can affect

the state of vertices in the next round. Together, this yields the following theorem:

Theorem 1
Using a step-by-step simulation for an instance of the r,e-model, a snapshot at time t can be calculated

in time O(|E|min{t, |V | · emax}).

Instead of this naive approach, one can use a similar approach as using BFS in Hartnell’s Model

to determine the ignition round of each vertex and use this as a preprocessing step. Given an instance

(G,r0,e0) of the r,e-model, let ti(v) be the ignition time of a vertex v, i. e. the smallest time t, for

which it holds r(v, t) = 0, or ∞ if no such t exists. We will present an algorithm to compute ti(v) for
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all vertices v ∈V , as well as show how to use this preprocessing step to compute a snapshot at any t,

culminating in the following theorem:

Theorem 2
For an instance (G,r0,e0) of the r,e-model, the ignition time of every vertex in G can be computed

in time O(|E| · |V |). A snapshot at time t can be computed based on the ignition times in additional

time O
(
|V |2

)
. For graphs with maximum vertex degree bounded by a constant, these runtimes can be

reduced to O(|V | log |V |) for the ignition times and an additional O(|V |) for the snapshot.

Crucially, the runtime of both steps is only dependent on the size of the graph G and neither on the

initial resistance and energy values given by e0 and r0, nor the time step t. As long as t ∈Ω(|V |), this

approach is better than the naive step-by-step simulation, especially if we want to compute multiple

snapshots. For graphs with maximum vertex degree bounded by a constant, like graphs induced by

regular tessellations, the difference becomes even stronger. In this case |E| ∈O(|V |), so the runtime of

the step-by-step algorithm reduces to O(min{t, |V |emax}|V |). This means the preprocessing approach

is better for t ∈Ω(log |V |).

2.3.1 An Efficient Algorithm to Compute Ignition Time

Let Nv be the neighbourhood of a vertex v, i. e. Nv := {u ∈V | {u,v} ∈ E}. By the propagation rules

of the r,e-model, these are the only vertices that affect ti(v).

Let n be an arbitrary neighbour of v. Until time ti(n), n is alive and hence does not affect r(v).

After n ignites at round ti(n), it burns, reducing the resistance of v by one each round, until either v

ignites, or n dies after e0(n) rounds. At an arbitrary time t, n can therefore have reduced the resistance

of v by at most max{0,min{t− ti(ni),e0(ni)}}.
This gives us a formal definition of the ignition time:

ti(v) = min

{{
t ∈ N

∣∣∣∣∣ r0(v)≤ ∑
n∈Nc

max{0,min{t− ti(n),e0(n)}}
}
∪{∞}

}
.

Now, let N ⊆Nv be a subset of the neighbours of v for which ti is known. We define the partial

ignition time tpi(N,v) to be the time at which v would ignite if the vertices in N were the only

neighbours of v, so

tpi(v) := min

{{
t ∈ N

∣∣∣∣∣ r0(v)≤ ∑
n∈N

max{0,min{t− ti(n),e0(n)}}
}
∪{∞}

}
.

As we are working with a subset of the actual neighbours of v, it is clear, that tpi(N,v)≥ ti(v) for any

N ⊆Nv. Our algorithm is mostly based on the following intuitive observation: A neighbour n of v

that ignites after v does not actually affect ti(v), which corresponds to the following formal Lemma.
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Lemma 2
Let v be a cell and Nv its neighbourhood. If N = {n ∈Nv | ti(n)< ti(v)}, then tpi(N,v) = ti(v) holds.

Proof. Obviously, if N = Nv, then tpi(N,v) = ti(v). Consider a vertex ni ∈Nv that is not in N; hence

ti(ni) ≥ ti(v)⇔ ti(v)− ti(ni) ≤ 0 holds and consequently max{0,min{t− ti(ni),e0(ni)}} = 0. This

implies that ni does not affect ti(v):

ti(v) = min

{{
t ∈ N

∣∣∣∣∣ r0(v)≤ ∑
n∈Nv

max{0,min{t− ti(n),e0(n)}}
}
∪{∞}

}

= min

{{
t ∈ N

∣∣∣∣∣ r0(v)≤ ∑
n∈Nv\{ni}

max{0,min{t− ti(n),e0(n)}}
}
∪{∞}

}
= tpi(Nv \{ni},v),

which concludes the proof

Using this observation, we can define an algorithm very similar to Dijsktra’s shortest path

algorithm to compute ti(v) for all vertices v. The idea of Algorithm IGNITIONTIME is to compute ti
of all vertices in ascending order. Starting with the vertices s with r0(s) = 0, which have ti(s) = 0,

vertices are added to the a set C of ‘correct’ vertices in order of their partial ignition times computed

based on the vertices in C.

Algorithm 1: IGNITIONTIME (G,r0,e0)
Input :An instance (G,r0,e0) of the r,e-model
Output :ti(v) for all v ∈V .

1 C = /0
2 foreach vertex v ∈V with r0(v)> 0 do
3 ti(v)← ∞

4 foreach vertex v ∈V with r0(v) = 0 do
5 ti(v)← 0
6 while there is a vertex v /∈C with ti(v)< ∞ do
7 get v /∈C with minimum ti[v]
8 C←C∪{v}
9 foreach neighbour n ∈Nv with n /∈C do

10 ti(n)← tpi(Nn∩C,n)
11 return ti(v) for each v ∈V

2.3.2 Correctness of Algorithm IGNITIONTIME

Let t ′i(v) be the ignition time as computed by our algorithm. To prove the correctness, we need to

show that t ′i(v) = ti(v) for all vertices in V , when the algorithm terminates. We prove this separately

for vertices in C and not in C at the termination of the algorithm.
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Lemma 3
For each v ∈C, t ′i(v) = ti(v).

Proof. We prove this by induction on |C|, as one vertex is added to C in each step. The first vertex

added to C must be a vertex with t ′i(v) = 0 = r0(v) = ti(v). Now let v be the last vertex added to C in

an arbitrary step. As our induction hypotheses, it holds t ′i(v
′) = ti(v′) for all v′ ∈C \{v}. We need

only show that t ′i(v) = ti(v) to conclude the proof.

It holds by construction t ′i(v) = tpi(Nv∩C,v)≥ ti(v). By Lemma 2 and the induction hypothesis,

if all neighbours n of v with ti(n) < ti(v) are in C, then t ′i(v) = ti(v). Assume there is at least one

neighbour n of v with ti(n)< ti(v) not in C. Then again by construction, it holds t ′i(n)= tpi(Nn∩C,n)≥
ti(n). Thus, if all neighbours n′ of n are in C with ti(n′)< ti(n)< ti(v), then t ′i(n) = ti(n)< ti(n)≤ t ′i(v).

As the algorithm added v to C, this is a contradiction as t ′i(v) must be minimum among all vertices not

in C. So there must be another neighbour n′ of n with ti(n′)< ti(n)< ti(v) not in C. We can repeat

this argument |V | many times showing that there must be more than |V | many distinct vertices of

strictly decreasing ti not in C. This contradiction concludes the proof.

Lemma 4
For each v from V with v /∈C, t ′i(v) = ti(v).

Proof. Consider an arbitrary vertex v from V with v /∈C at the termination of our algorithm. Then

t ′i(v) = ∞ and, by construction and Lemma 3, t ′i(v) = tpi(Nv∩C,v)≥ ti(v).

Now assume ti(v) < ∞. Then by the same argument as in the previous proof, there must be a

neighbour n /∈ C of v with ti(n) < ti(v). The same argument can be repeated |V | times, showing

that there must be more than |V | many vertices from V with distinct ti not in C. This contradiction

concludes the proof.

Lemma 3 and Lemma 4 together prove the correctness of Algorithm IGNITIONTIME.

2.3.3 Runtime of Algorithm IGNITIONTIME

It remains the question of an efficient implementation of Algorithm IGNITIONTIME. We can use a

priority queue to store the at most |V | vertices not in C with their ti(v) as the priority key. Using strict

Fibonacci heaps for the implementation, we can return and remove the vertex with minimum key ti(v)

in time O(log |V |) and insert new items or decrease their key in constant time O(1) [22]. As each

vertex is removed from the queue at most once, this takes a total time O(|V | log |V |). Initialization

and output both take O(|V |).
The remaining cost is the computation of tpi(Nn∩C,n) and the subsequent updates of the priority

keys. Such a computation happens at most once for every edge, so O(|E|) times. To determine this,

we will first show how to efficiently compute tpi(Nv,v) for any vertex v.
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Lemma 5
Let (G,r0,e0) be an instance of the r,e-model and v be a vertex in G of degree d. Then given ti(n) for

each neighbour n ∈Nv, ignition time ti(v) can be computed in time O(d logd).

Proof. The time during which a neighbour n burns corresponds to an interval [ti(n), ti(n)+ e(n,0)],

as illustrated in Figure 2.2. We use a sweep-algorithm over the start- and endpoints of these intervals

to compute ti(v). We first need to order the start- and endpoints using time O(d logd).

0 t

ti(n1)
e0(n1)

ti(n2)

ti(n3)

ti(n4)

ti(n5)

ti(n6)

ti(v)

∑ = 10

t+t

0 1 2 3 2 1

Figure 2.2: Each neighbour ni of v starts burning at time ti(ni) and burns for e0(ni) rounds. The
number of active intervals denoted below the axis is the amount, by which r(v) is reduced each round.

The dashed intervals belong to neighbours of v that ignite after v and thus do not affect ti(v).

Let the vertices n1, . . . ,nd be the neighbours of v in ascending order of ignition time, i. e. ti(ni)≤
ti(n2). During the sweep we maintain r(v, t) and the number of burning neighbours b, i. e. the number

of intervals intersected by the sweep line. We begin with b = 1 and r(v, ti(n1)) = r(v,0) at the start of

the first interval. At an arbitrary interval start- or endpoint t with b active intervals, we can determine

r(v, t+) for the next interval-start or endpoint t+ in constant time as r(v, t+) = max{0,r(v, t)−b(t+−
t)}. If this is 0, then we can find our target ti(v) in constant time as t+ ≥ ti(v) = ⌈t + r(v,t ′)

b′ ⌉.
If we reach the last interval endpoint with r(v, t) > 0, then ti(v) = ∞. As we have O(d) many

interval start- and endpoints and each can be handled in constant time, the runtime of this algorithm is

dominated by the sorting step taking O(d logd).

The same sweep-algorithm can be applied to the computation of tpi(Nn∩C,v) for a neighbour

of a vertex v newly added to C. However, each time we compute tpi(Nn∩C,n), only a single vertex

has been added to Nn∩C, namely v. So if we keep the sorted list of interval start- and endpoints

between updates, we don’t need to spend O(d logd) time sorting everything again. Instead, O(logd)

is enough to insert the endpoints of the new interval for v. Therefore, every single computation of

tpi(Nn∩C,v) can be done in time O(dmax), where dmax is maximum vertex degree of any vertex in

V . There are at most O(|E|) many such computations (one for each pair of adjacent vertices), so

the total time spent on computing partial ignition times is O(|E|dmax) ∈ O(|E| |V |). As |E| ∈Ω(|V |)
for connected graphs, this dominates the queue handling costs of O(|V | log |V |) for retrieving v each

round as well as the initialization costs of O(|V |).
Thus, Algorithm IGNITIONTIME runs in time O(|E| |V |).
If the degree of every vertex in V is bounded by a constant, the sweep subroutine to compute

tpi runs in constant time. In addition |E| ∈ O(|V |), which means the total time spent on computing
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partial ignition times is only O(|V |). Thus, the handling cost of the priority queue for retrieving v

each round dominates the runtime of Algorithm IGNITIONTIME instead, which therefore runs in time

O(|V | log |V |) in graphs of bounded maximum vertex degree.

2.3.4 Computing the Snapshot

Given ti for all vertices in V , we can compute the state of a vertex v at time t with the same

sweep approach as used to compute tpi in the proof of Lemma 5. If t > ti(v), then r(v, t) = 0 and

e(v, t) = max{0, t − ti}. Otherwise, e(v, t) = e0(v) and we can determine r(v, t) based on the last

interval endpoint before t. As we really only require the ignition time of all vertices v, that have

ti(v)≤ t, we can save a little time by terminating Algorithm IGNITIONTIME, as soon as the minimum

ignition time of any vertex not in C is larger than t. If we remember, where we stopped Algorithm

IGNITIONTIME, we can continue where we left of, if we want to compute an additional snapshot for

some larger t.

When computing a snapshot, we need the state of every vertex v, so we can save some time again

by globally sorting the interval end points once instead of doing it separately for every vertex. This

reduces the runtime to O
(
|V |2 +(|V | log |V |)

)
. If the graph has bounded vertex degree, however, the

sweep algorithm runs in constant time, which means we can compute the snapshot in time O(|V |).
This concludes the proof of Theorem 2.

2.4 Results for Regular Tilings

There is a multitude of interesting questions one can formulate within this model. To choose a graph

that nicely represents an area, we will focus on the graph Ghex induced by the regular hexagonal tiling

of the Euclidean plane, and the graph Gsquare induced by the regular square tiling. As each vertex of

these graphs corresponds to a hexagonal or square tile, we will also refer to them as cells.

More specifically, we will focus on specific subgraphs G of Ghex, fulfilling additional structural

conditions. Clearly, by the regularity of the hexagonal tiling, every cell in G has at most 6 neighbours.

We refer to the set cells with exactly 6 neighbours as the interior of G and to its members as interior

cells. Equivalently, we refer to the set of cells with less than 6 neighbours as the boundary of G and to

its members as boundary cells.

Definition: Smooth Hexagonal Graph
A smooth hexagonal graph is a finite, connected subgraph of Ghex, such that

i) the hexagonal tiles corresponding to the vertices in G cover a simply connected region of the

Euclidean plane,

ii) and the boundary cells of G form a unique cycle, which will be referred to as the boundary

cycle of G.
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We equivalently define the class of Smooth Square Graphs for finite connected subgraphs of

Gsquare. In this thesis, we will address three problems on smooth hexagonal graphs or smooth square

graphs.

For the first two problems we will focus on a village protection instance (G,r0,e0,T ). This is

an instance of the r,e-model together with a set of cells T representing a village, that fulfils some

additional structural properties.

i) G is a smooth hexagonal graph;

ii) the set S⊂V of initially burning cells forms a subpath of the boundary cycle of G;

iii) and the non-empty set of village cells T ⊂V \S forms a subpath of the boundary cycle of G.

Note, that while T is explicitly given in the instance, S is implicitly given by r0, as the set of

initially burning cells are exactly all cells c with r0(c) = 0. But we require both S and T to form

subpaths of the boundary cycle of G.

To protect the village cells from the fire, a firefighter can preventively fortify some of the cells

not initially on fire by increasing their resistance r. In the first version of this problem discussed in

Subsection 2.4.1, all cells from a protective set P have their resistance increased by the same amount

k. This could correspond to a fly-over by aircraft that douses each cell with the same amount of water.

The goal is to both find the minimum k, such that the village can be protected, and the minimum

cardinality set P for this k.

(a) A protective set (blue cells) prevents a fire (red
cells) from reaching the village (yellow cells).

(b) Given two set of cells S (red) and T (blue). Can
m cells out of S set on fire burn down all cells of T ?

Figure 2.3: Problem variants on a smooth hexagonal graph.

In the second version of this problem discussed in Subsection 2.4.2, firefighters can increase the

resistance of cells individually. This might correspond to the firefighters thinning out parts of the

forest and removing dry timber to make it harder for the fire to spread. Now we are interested in

finding a protective set P for which the sum of these resistance increments of cells in P is minimal;

see Figure 2.3a.

The third problem is an inverse variant of these problems. Given an instance (G,r0,e0) the goal is

to ignite a set of target cells T ⊂V . To achieve this goal, one may set a number of cells from a set

S⊂V on fire, i. e. change r0 to 0 for these cells; see Figure 2.3b. The optimization question is then
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as follows: Are there m cells in S which, when set on fire, will eventually ignite all cells in T ? In

Subsection 2.4.3 we prove this problem to be NP-complete, even if G is a smooth square graph,.

2.4.1 The k-Protection Problem

Let (G,r0,e0,T ) be a village protection instance. Assume that, before the fire starts to spread, some

firefighters are allowed to protect the village cells by dousing some cells with water to increase

their resistance by a constant amount k. We call a subset P of V \S a k-protective set, if increasing

the resistance of every cell in P by k results in no cell from T igniting. More precisely, P is a

k-protective set, if and only if ti(v) = ∞ for all village cells v ∈ T in a modified instance (G,r′0,e0),

with r′0(c) = r0(c)+ k for all cells c in P, and r′0(c) = r0(c) otherwise.

k-Protection
Input: A village protection instance (G,r0,e0,T ).

Goal: Find the minimum k, such that a k-protective set P exists.

To solve the k-Protection Problem, we first study the corresponding decision problem: Given

(G,r0,e0) and k, does a k-protective set P exist?

Clearly, if P is a k-protective set, then any superset P′ of P with P′ ⊂V \S is a k-protective set as

well. By definition, V \S is a superset of any k-protective set P. Thus, a k-protective set exists if and

only if V \S is a k-protective set. We can test this applying Algorithm IGNITIONTIME presented in

Section 2.3 to determine the ignition time of all village cells in the modified instance (G,r′0,e0). By

Theorem 2, this takes O(|V | log |V |) time, as G has a bounded maximum vertex degree of 6.

Intuitively, if P is a k-protective set, then it also is a k′-protective set for any k′ > k. Thus, we

can combine our algorithm for the decision problem with binary search over possible k to solve the

minimization problem. It remains to find a suitable upper bound for k. Let emaxSum be the maximum

sum of initial energy values of all direct neighbours of a cell, over all cells in the grid. A cell with

more initial resistance than the sum of its neighbours initial energy survives even if all neighbours

ignite. Hence, V \S is a emaxSum-protective set, so 0≤ k ≤ emaxSum holds, which concludes the proof

of the following theorem.

Theorem 3
The k-Protection Problem can be solved in time O(|V | log |V | logemaxSum).

Note that this approach trivially extends to arbitrary graphs and arbitrary, but disjoint, sets S⊂V

and T ⊂V . The only difference is the increased runtime of Algorithm IGNITIONTIME for general

graphs.

Minimum Cardinality k-Protection

The k-Protection Problem gives rise to another closely related optimization problem.
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The Minimum Cardinality k-Protection Problem
Input: A village protection instance (G,r0,e0,T ), as well as a protection parameter k.

Goal: Find a k-protective set P of minimum cardinality.

To solve the k-Protection Problem, we used Algorithm IGNITIONTIME to test whether V \S is a

k-protective set. While this is the maximum cardinality k-protective set, the result of that algorithm

can also be used to obtain a much smaller k-protective set.

Consider the time tend , when the fire has burned out and every cell is either alive or dead. To

find such a time tend , we simply take the maximum ti(c)+ e0(c) over all cells c with ti(c)< ∞. By

definition, all cells are either alive or dead, but none burning at time tend . As the initial set of burning

cells S is connected, all dead cells induce a connected subgraph of G. By contrast, the subgraph

induced by all alive cells can have several connected components. However, as the initial set of village

cells T is also connected, only one of those components contains village cells. We call the set of alive

cells from this component, that have at least one dead neighbour in G, the fire border B (compare

Figure 2.3a).

We call the other vertices from this component the safe side of B and all remaining vertices the

fire side of B. By construction, the cells in B separate the cells on the safe side from the cells on the

fire side, i. e., every path from a cell on the fire side to a cell on the safe side contains a cell from

B. Consider what changes if we remove the resistance increase of all cells on the fire side of B. In

the worst case, all cells on the fire side ignite and burn down. But only the direct neighbours of

B affect the survival of cells in B and these ignite and burned even with a resistance increase of k.

Thus, removing all vertices on the fire side of B from our largest protective set V \S still results in a

protective set for k.

Due to the separation property, for any cell on the safe side of B to ignite, there would first have to

ignite a cell on B. Thus, increasing the resistance of vertices on the safe side of k also does not affect

whether B survives as a whole. Thus, B is a k-protective set.

Now consider any cell c in B at the end of the fire propagation, i. e. rend := r(c, tend). Increasing

the resistance of c by k did affect its survival if and only if r(c, tend)≤ k. Thus, the set of cells c in B

with r(c, tend)≤ k is a k-protective set. We will refer to this set as Bmin.

By construction, Bmin is the set of minimum cardinality among all k-protective sets that create

the same fire border B as V \S, but not necessarily among all k-protective sets of G. As illustrated in

Figure 2.4, there might be a k-protective set with less cells that creates an entirely different fire border.

Using Algorithm IGNITIONTIME we can test if an arbitrary candidate set P⊆V \S is a k-protective

set. A brute force approach would therefore simply test all O
(
2|V |
)

subsets of V \S and return the

minimum one.

There are multiple ways we can do this a little more cleverly. First, if P and P′ are both k-protective

sets with P ⊆ P′, then all cells on the safe side of BP are also on the safe side of BP′ . Hence, the

subset-relation provides an order on the candidate sets, and V \S creates the fire border closest to the

fire with the most cells on its safe side.
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Figure 2.4: A village protection instance with two 1-protective sets creating different fire borders.
The initial resistance and energy are given in the cells as pairs of the form r;e. The village cells are

yellow and the fire cells are red. The fire borders are given by the blue cells, with the respective
1-protective set highlighted. While the right fire border is created by the set of all its cells, the left fire
border is created by just a single cell. Thus, this cell forms a Minimum Cardinality 1-protective set.

Another useful observation regards the set Bmin of minimum cardinality among all k-protective

sets that create the same fire border B as V \ S . Consider an arbitrary cell c and the candidate set

V \ (S∪{c}) with exactly that cell removed. Then candidate set V \ (S∪{c}) creates a different fire

border B′ if and only if c ∈ Bmin. However, B and B′ can still share some cells. By construction, if B′

is distinct from B, V \ (S∪{c}) is the set of largest cardinality that creates B′. Let B′min ⊆V \S\{c}
be the set of minimum cardinality that creates B′. By the same argument, a candidate set P that creates

a fire border distinct from both B and B′ must exclude at least one vertex from both Bmin and B′min.

The cells in the minimal set Bmin are in a sense essential cells for that fire border, and removing any of

them guarantees that the resulting set either creates a different fire border or is not a k-protective set at

all.

Algorithm 2: TESTSET((G,r0,e0,T ),k,P)
Input :A village protection instance (G,r0,e0,T ), a protection parameter k and a candidate set

P⊆V \S.
Output :The k-protective set of minimum cardinality among all subsets of P.

1 Run IGNITIONTIME (G,r′0,e0) with r′0(c) = c+ k for all cells c ∈ P and r′0(c) = r0(c), otherwise.
2 if ti(v) = ∞ for all v ∈ T then
3 Pmin← the minimal set creating the same fire border as P
4 foreach cell c ∈ Pmin do
5 P′min← TESTSET((G,r0,e0,T ),k,P\{c})
6 if |P′min|< |Pmin| then
7 Pmin← P′min
8 return Pmin

This idea is applied recursively in Algorithm TESTSET. As the size of the candidate set decreases

with each recursion, it is clear that Algorithm TESTSET terminates. Also, by construction, any set it

returns is a k-protective set. To find a minimum cardinality protective set Popt , we need to make at

least one recursive call for a k-protective set P that creates the same fire border as Pmin. When calling
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Algorithm TESTSET with V \S, the superset of all possible k-protective sets, as the initial candidate

set P, it remains to prove, that we do not miss Popt .

Lemma 6
For any k-protective set P, Algorithm TESTSET((G,r0,e0,T ),k,V \ S) will result in at least one

recursive call of Algorithm TESTSET((G,r0,e0,T ),k,P′) for a k-protective set P′ that creates the

same fire border as P.

By contradiction. Assume the Lemma does not hold for some k-protective sets. Among those, let P∗

be the k-protective set that creates the fire border B∗ with the most cells on the safe side of it. Let Pmax

be the k-protective set of maximum cardinality, that creates the same fire border as P∗. Let c be an

arbitrary cell from V \S not in Pmax. As supersets of k-protective sets are also k-protective, Pmax∪{c}
is a k-protective set. By the construction of Pmax, Pmax∪{c} creates a fire border Bc distinct from B∗.

Then, again by the superset argument, Bc has more cells on its safe side than B∗. Finally, as removing

c from Pmax∪{c} creates a different fire border, c must be a part of B∗min.

By the choice of P∗, there must have been a recursive call of Algorithm TESTSET((G, r0, e0,

T ), k, P′) for a k-protective set P′ that creates the same fire border as Pmax ∪{c}. But this would

have also resulted in a call of Algorithm TESTSET((G,r0,e0,T ),k,Pmax), which contradicts our initial

assumption.

It remains to examine the run time of Algorithm TESTSET((G,r0,e0,T ),k,V \ S). At its core,

Algorithm TESTSET searches for the k-protective set of minimum cardinality by testing sets of

maximum cardinality for every fire border. We can avoid some redundancy by storing the results of

previous recursive calls and stopping the recursion, when we encounter a candidate set creating a

fire border we already encountered. However, we might still end up with an exponential number of

recursive calls, if there are exponentially many distinct fire borders created by k-protective sets. Thus,

asymptotically, it might take time O
(
2|V ||V | log |V |

)
for Algorithm TESTSET to terminate.

Although the asymptotic worst-case might be identical, Algorithm TESTSET((G,r0,e0,T ), k,

V \S) will terminate much faster if there is only a low number of distinct fire borders. This might be

due to some structural property imposed on V or the initialization functions r0 and e0. If there are only

O(|V |) many distinct fire borders B, each will cause at most O(|V |) many recursive calls as Bmin ∈
O(|V |) for each B. Then, Algorithm TESTSET((G,r0,e0,T ),k,V \S) runs in time O

(
|V |3 log |V |

)
.

2.4.2 The Minimum Fortification Problem

Let (G,r0,e0,T ) be a village protection instance. Now assume, instead of increasing the resistance of

all vertices by k as for the k-protection problem, the firefighters are allowed to increase the resistance

of some cells individually before the fire starts to spread. We call a set P a protective set if no village

cell from T ignites as long as no cell from P ignites. Thus, it suffices for the firefighters to invest in

the resistance of the cells in P to protect the cells in T .
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As a cell does not ignite if its initial resistance exceeds the sum of the initial energy of all its

neighbours, this is equivalent to the following notion: P is a protective set, if and only if ti(v) = ∞ for

all village cells v ∈ T in a modified instance (G,r′(0),e0), with r′0(c) = 1+ ∑
n∈Nc

e0(n) for all cells c

in P, and r′0(c) = r0(c) otherwise.

Now depending on which of its surrounding cells actually ignite, a lower resistance than 1+

∑
n∈Nc

e0(n) might also suffice for a cell P to survive. Instead, the resistance of a cell must only exceed

the sum of the energy of exactly those neighbours, that will ignite. Then given any set P we can define

its fortification costs c(P) as the minimum sum of individual resistance increases for cells in P, such

that no cell in P ignites. We will also refer to the individual resistance increase of a particular cell c in

P as the fortification costs cP(c).

Intuitively, T itself is a protective set by definition, and similar to the k-protective sets, every

superset of a protective set is also a protective set. However, while sufficient, it is not necessary for a

protective set to be a superset of T .

This gives rise to the following optimization problem:

Minimum Fortification
Input: A village protection instance (G,r0,e0,T ).

Goal: Find a protective set of minimum fortification cost.

Consider an arbitrary protective set P and the modified instance (G,r′0,e0) with r′0(c) = r0(c)+

cP(c) for each cell c ∈ P and r′0(c) = r0(c), otherwise. As for the k-protective sets in Subsection 2.4.1,

we can consider the state of all cells after the fire has burned out in (G,r′0,e0) at some time tend .

Assume, we were given an optimal solution Popt for an instance of the Minimum Fortification

Problem, together with the fortification cost for all cells in Popt . By definition, all cells are either alive

or dead, but none burning. By the construction of our instance, all village cells and all cells from P

are alive due to P being a protective set. As the initial set of burning cells S is connected, all dead

cells induce a connected subgraph of G. By contrast, the subgraph induced by all alive cells can have

several connected components. However, as the initial set of village cells T is also connected, only

one of those components contains village cells. We refer to the set of alive cells from this component

that have at least one dead neighbour in G as the fire border B. In addition, we refer to the other

vertices from this component as the safe side of B and all remaining vertices as the fire side of B.

As such a fire border separates the village from the fire, it is clear that it is also a protective set.

However, for any optimal protective set Popt , the corresponding fire border Bopt is also an optimal

protective set:

Lemma 7
The fortification cost of Popt is equal to the fortification cost of Bopt .

Proof. Adding any cell c /∈ Popt alive at tend to Popt does not increase the fortification cost, as they

already survive without resistance increase. Thus, the fortification cost of Popt ∪Bopt is equal to the

fortification cost of Popt .
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Let c be an arbitrary cell in Popt \Bopt = (Popt ∪Bopt)\Bopt . Obviously, c is alive at tend . If c is

in the same connected component as the village, it has no burning neighbours as it is not in Bopt ,

so its fortification cost is 0. If c is not in the same connected component, then its survival does not

affect the survival of any village cell. Thus, Popt \{c} must also be a protective set. By the optimality

of Popt , the fortification cost of c must be 0. As the fortification cost of any cells not in Popt \Bopt

is 0, the fortification cost of Bopt = (Popt ∪Bopt)∩Bopt = (Popt ∪Bopt)\ (Popt \Bopt) is equal to the

fortification cost of Popt .

While the fortification cost of an arbitrary protective set is not obvious at first glance, the

fortification cost of a fire border B is easy to compute. For a cell c in B, let eB(c) be the sum of initial

energies e0(n) of all neighbours n of c on the fire side of B. As every such neighbour will ignite, the

initial resistance of c must exceed the eB(c). Thus, the fortification cost cB(c) of a cell c in P is the

minimum k, such that r0(c)+ k ≥ eB(c)+1. By definition, the fortification cost of B is the sum of the

fortification costs of all cells in B.

So instead of finding an arbitrary protective set of minimum fortification cost, we can search for a

fire border of minimum fortification cost. At first glance, this seems to resemble two known graph

problems - vertex separator problems and shortest path problems.

For a given graph G = (V,E), a set S⊂V is a vertex separator, if removing S from G splits G into

at least two connected components. In our case, the fire border separates the vertices on its safe side

from the vertices on its fire side. Research has focused mostly on finding vertex separators of small

cardinality (or weight) that split G into connected components of roughly equal size. This was initially

motivated to enable efficient “divide-and-conquer” algorithms on graphs [62], but applications, for

example in bioinformatics [37] reinforced this motivation more recently. However, we require our

separator to separate specific sets of vertices from another (the village and the fire cells). In fact, the

set of village cells itself could be the fire border B, in which case B is not even a separator at all as

there are no vertices on the safe side. Thus, applying well-known results for vertex separators does

not provide a quick solution to the Minimum Fortification Problem.

Shortest path problems are one of the most studied problems on graphs. Given two vertices s and t,

a path from s to t (or s-t-path) is a sequence of distinct vertices (s = v0,v2, . . . ,vk = t) corresponding

to a sequence of distinct edges (e1,e2, . . . ,ek) with ei = {vi−1,vi}. If the sequence of vertices contains

duplicates, we call such a sequence an s-t-walk instead. A shortest path from s to t is one with a

minimum number of edges among all s-t-paths. In the weighted case, a shortest path is instead one

with a minimum sum of edge weights. Among the huge number of shortest-path algorithms, often

specialized for specific graph or weight types, Dijkstra’s shortest path problem is one of the oldest

and probably the most famous [28].

Initially, this seems as unpromising as looking at the fire border as a vertex separator, as the

optimal fire border Bopt does not necessarily need to form a path. Instead, there are instances, where

Bopt forms a walk, but not a path, an example of which is given in Figure 2.6. However, a fire border
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does correspond to a path on the graph formed by the edges and vertices of the regular hexagonal

cells inducing G. We call this graph the border graph Gb.

Except at the boundary, each vertex of the border graph is adjacent to exactly three cells, and

each edge to exactly two cells. Consider the border graph at the boundary of G, as seen for example

in the hexagonal graphs in Figure 2.6. We will call the vertices of Gb with exactly two adjacent

hexagonal cells the boundary vertices of Gb and those with exactly one adjacent cell the outer vertices.

In contrast, we call the vertices with exactly three adjacent cells the inner vertices of Gb. As S and

T each form a subpath of the boundary cycle of G, we can split the boundary of G into four sets.

Imagine moving counter-clockwise on the boundary cycle starting at some cell in S. We call the set of

cells on the boundary cycle between S and T the upper boundary and the set of cells between T and S

the lower boundary of G. In all our examples, where the cells of our smooth hexagonal graph form a

rectangle, these are exactly the cells along the lower and upper edge of the rectangle. Equivalently

for the border graph Gb, we call the set of boundary vertices of Gb adjacent to cells on the upper

boundary of G the upper boundary of Gb; equivalently for the lower boundary.

Then all border edges between cells on a fire border B and cells on its fire side form a path πB from

the lower to the upper boundary of Gb. We call such paths separating paths in Gb and define their

fortification cost c(πB) as the fortification cost c(B) of the corresponding fire border. By construction,

a separating path contains no outer vertices at all, and no boundary vertices except the very first and

very last vertex. To solve the Minimum Fortification Problem, we need to find the separating path

with minimum fortification cost. To reduce this to a shortest path problem in Gb, we want to transform

the fortification cost of the path and thus, the corresponding fire border, into edge costs in the border

graph Gb, such that the sum of edge costs of a separating path π is exactly the fortification cost.

First, to distinguish which adjacent cell lies on B and which on its fire side, we replace every edge

{v,w} in the border graph by two directed edges (v,w) and (w,v). Then, for a separating path π from

the lower to the upper boundary, the cells on the left side are the cells in the corresponding fire border

B, and the cells on the right side lie on the fire side of B.

For an edge e on π we will say it runs along the fire border cell on its left side. Now consider the

example depicted in Figure 2.5, where e0 = 5 for all cells and cell c has r0 = 8. While it makes sense

to charge the fortification cost of c to the edges along c, the fortification cost of c actually changes

based on which of the edges along c are included in π . However, as shortest-path algorithms usually

build the path incrementally, we will charge the fortification costs of c to the edges in π based on

their order in π: The first directed edge of π along c has cost 0 because no additional fortification is

necessary to protect c from a single burning neighbour; the second edge has cost 3; every further edge

has cost 5, since the resistance of c has to be increased by 5 for every additional burning neighbour.

With such a cost assignment, the cost c(π) of a separating path π is exactly the fortification cost

of the corresponding fire border B. However, the cost of the same edge e can differ depending on the

π it is contained in. But if two paths π1 and π2 consist of identical edges up to some edge ek, the costs

of the edges e1 to ek is identical in both paths.
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Figure 2.5: The cost of edges on a path in the border graph Gb running along a cell c. The initial
resistance and energy values are given in the cells as pairs r;e

However, edges along the same cell might not lie on a separating path consecutively, if the

corresponding fire border is not a path. As mentioned before, this can even affect the optimal

separating path, as illustrated in Figure 2.6. We will say π revisits a cell c if π contains a sequence of

edges e1, . . . ,ek, where e1 and ek run along the same cell c but at least one edge ei with 1 < i < k does

not. Hence, the cost of an edge can be influenced by any previous edge in the path, which makes the

application of standard shortest path algorithms difficult.
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Figure 2.6: A village protection instance, where the fire border (blue cells) of the minimum
fortification set is not a path, but a walk. The initial resistance and energy are given in the cells as

pairs of the form r;e. The village cells are marked in yellow, the cells initially burning are marked in
red, while the cells on the fire border are marked in blue. The highlighted cell in the third row is the

single cell in the minimum fortification set and has fortificiation cost 1. It is also the cell that is
revisited by the corresponding separating path (also marked in blue on the edges of the hexagonal

cells).

In the following, we will therefore focus on village protection instances, where the initial energy

e0 is some identical constant f for all cells and the initial resistance of every cells is bounded by

≤ 2 f +1. This implies that, without fortification, each cell can resist at most two burning neighbours,

but is always ignited by three. We will subsequently show, that this allows us to disregard paths that

revisit cells, when searching for an optimal fire border.

To that end, we will define an alternative cost function that is only locally dependent on the path,

but no longer matches the fortification cost exactly. Let e be an edge along a cell c of resistance

re := r(c,0). We say e is of type r if it comes after a right turn or is the very first edge of path πb. All

edges of this type will run along a different cell than its predecessor on the path. We say e is of type lk
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if it comes after the kth consecutive left turn of πb along c. Thus, e is the (k+1)th consecutive edge

running along the same cell c. A separating path can contain at most five consecutive edges running

along the same cell, which limits k to at most four. As we assume all cells to have identical initial

energy f , we can define the local cost of an edge e at cell c depending on re and its type:

lc(e, type) =


max(0, f +1− re), if type = r

min( f ,2 f +1− re), if type = l1

f , if type ∈ {l2, l3, l4}.

The local cost lc(π) of a path π in Gb is then the sum of the local cost of its edges. Clearly, the

local cost of a separating path π in Gb is identical to its fortification cost c(π) if it has no revisits, but

can be less otherwise. However, given our restrictions on the initial energy and resistance of cells, we

can prove the following lemma.

Lemma 8
Let π be a separating path with minimum local cost. Then there exists a separating path π ′ without cell

revisits with fortification cost less or equal to the local cost of π , so c(π ′) = lc(pi′)≤ lc(π)≤ c(π).

Proof. If π is a path without cell revisits, than its local cost is identical to its fortification cost, so π

itself fulfils the lemma. So let π be a separating path with minimum local cost with at least 1 cell

revisit and let e be the first edge on π that runs along a revisited cell c. Let the edges of c be numbered

counter clockwise from 0 to 5, where e is edge 0. Then, the situation at c can be restricted to the

following two cases, also illustrated in Figure 2.7.

1 The last edge along c on π is edge 2 and 1 does not lie on πb.

2 The last edge along c on π is edge 3 and at least one of the edges 1 and 2 does not lie on πb.

Note that π can neither include edge 4 nor 5. If it included edge 5, π would contain a duplicate

vertex and not be a path. If it included edge 4 but not 5, the edge preceding e on πb would also run

along a revisited cell and we assumed e to be the first such edge on π .

Case 1 Case 2

c

0

1

23

5

4 c

0

1

23

5

4

Figure 2.7: Path π follows the blue edges upon its first visit of c and the red edges on its second visit.

We can construct a new separating path π ′ from π that does not revisit c as follows. In case 1, we

can replace all edges on πb after edge 0 and before edge 2 by edge 1. This increases the local cost of
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the path by at most cost 2 f ( f for the new edge 1, and another f , as edge 2 changes its type to l2). In

case 2, we replace all edges on πb between edge 0 and edge 3 including these two edges by edge 4

and 5. This also adds at most cost 2 f ( f for edge 4 and 5 each). However, the removed part of π can

not include more right turns than left as it starts at the lower boundary of Gb and would otherwise

intersect with itself. More precisely, as every left or right turn is exactly a 60°-degree turn in the path,

we know that in both cases, the removed part contains at least two more lk edges than r-edges. Thus,

the removed part contains at least two lk-edges with k > 1 and thus had local cost at least 2 f .

Hence, the local cost of π ′ is at most the local cost of π . In addition, π ′ has strictly fewer edges

than π and revisits strictly fewer cells, so after repeating this construction a finite number of times we

will arrive at a path π ′′ without revisits. As π ′′ has no revisits, its fortification cost is equal to its local

cost which is at most as high as the local cost of π which concludes the proof.

Thus, given our restrictions on the initial energy and resistance of cells, it suffices to find a

separating path of minimum local cost. But the local cost is still dynamic in the sense that an edge

can have different costs in different paths, albeit no longer dependent on the whole path. This still

prevents us from directly applying for example Dijskstra’s shortest path algorithm. Due to the locality

of the cost definition, if given the information from which neighbour we arrived at a vertex v and

which type the last edge had, both the cost and the type of the possible two outgoing edges are fixed.

We use this observation to construct a weighted directed graph G′b from Gb with fixed edge weights,

that contains a corresponding path π ′ for each separating path π without revisits with exactly the local

cost of π as the cost of the path π ′.

First, we construct the vertex set V ′. Consider a triplet (v, p,e), where v denotes an inner vertex v

in Gb, the predecessor p a neighbour of v in Gb and e an edge type from the set {r, l1, l2, l3}. As argued

in the proof of Lemma 8, we can exclude edges of type l4, as they will result in a revisit. Then G′b will

contain 12 copies of the vertex v, one representing each such triplet.

In addition, consider the boundary and outer vertices of Gb. As a separating paths does not contain

any outer vertices by definition, we do not need to include them in G′b. Similarly, we only need to

include boundary vertices from the upper and lower boundary of Gb. Of those boundary vertices

we need exactly one copy, representing the possible start and end points of our paths. To simplify

the application of a shortest path algorithm, we add a universal starting vertex s and a universal end

vertex t.

In summary, V ′ consists of the following vertices.

• A vertex for each triplet (v, p,e), where v is an inner vertex of Gb, p is a neighbour of v in Gb

and e is an edge type from the set (r, l1, l2, l3).

• A vertex for each vertex on the lower or upper boundary of Gb.

• A start vertex s and an end vertex v.

Now we construct the edge set E ′. For each vertex v on the lower boundary, we add an edge

(s,v) with cost 0; and for each vertex v on the upper boundary, we add an edge (v, t) with cost 0.
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Each vertex v on the lower boundary has a unique inner vertex neighbour n in Gb, so we add an edge

(v,(n,v,r)). This edge is of type r and gets the appropriate local cost as edge weight, because it is the

first edge of any separating path starting in v.

Now consider a vertex for a triplet (v, p,e), and let the neighbours of the inner vertex v in Gb in

counter-clockwise order be p, nr, and nl . First, assume nr and nl are also both inner vertices of Gb.

As the predecessor p signifies from which neighbour a separating path is coming from, any outgoing

edge must go to either nr or nl . Continuing the path to nr means taking a right turn, so we add an edge

((v, p,e),(nr,v,r)) to our edge set. Similarly, continuing to nl means taking a left turn, so we add an

edge ((v, p,e),(nl,v, lk)) to our edge set, with k = 1 if the edge type e of the incoming edge is r, and

k = i+1 if e = li. If the edge type e in our triple, i. e., the edge type of the incoming edge, is l3, than

taking a further left turn would result in a path with a cell revisit, so we only add the outgoing edge

to (nr,v,r) for those vertices. We know the edge type of all these outgoing edges and can assign the

appropriate edge weights. If nr (or nl) is a vertex from the lower boundary, we don’t add outgoing

edges towards that vertex at all, as separating paths will contain vertices from the lower boundary

only in the beginning. If nr (or nl) is a vertex from the upper boundary, we add an outgoing edge

((v, p,e),nr) of the appropriate edge type as described above.

As a result of this construction, every incoming edge of an inner vertex representing a tuple

(v, p,e) will have the associated cost of an edge of type e. As intended, for each separating path of

some local cost, there will be an s-t-path of equal cost in G′b. However, while there exist an s-t-path

corresponding to each separating path in Gb, the inverse is not true. If an s-t-path contains two

vertices representing two different tuples for the same vertex v, this only corresponds to a walk in

Gb, which does not have a corresponding fire border or minimum fortification set. As illustrated in

Figure 2.8, this can even affect a shortest s-t-path in G′b. Thus, finding a shortest s-t-path in G′b does

not necessarily solve the problem of finding an s-t-path of minimum local cost in Gb.
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1;1 1;1 1;1 1;1 1;1 1;1

1;1 1;1 1;1 1;1 1;1 1;1
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0;1

0;1
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0;1

Figure 2.8: A village protection instance, such that the shortest s-t-path in G′b does visit two copies of
the same vertex. The shortest s-t-path in G′b has cost 0 (and winding number 7), and the

corresponding walk in Gb (marked in blue) visits some vertices twice (at the highlighted edge).

However, s-t-paths have an additional property, that we can utilize to avoid this complication.

Let the winding number of a path π in Gb be the difference between the number of edges of type

r and the number of edges of type li in π . Consider an arbitrary separating path π , starting in a vertex

l on the lower boundary and ending in a vertex u on the upper boundary. As all turns in the hexagonal
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grid have exactly the same angle, the winding number is a measure of the turn angle of the path. For

any right turn, the total angular turn of the path decreases by 60 and every left turn increases the turn

angle by 60. Thus, every separating path π∗ starting in l and ending in u will have the same winding

number as pi by the regularity of Gb. We also call this the winding number wl,u of the pair (l,u).

Note that this only applies to pairs of points from the lower and upper boundary. As a separating

path starts and ends at the boundary of Gb, it can not have more right or left turns without intersecting

itself. Different paths between two arbitrary vertices u and v can have a different winding number.

Now let π be an s-t-path in G′b containing the vertices l and u from the lower and upper bound-

ary of Gb. Then let πb be the corresponding l-u-walk in Gb, i.e., the vertex sequence we get by

removing s and t from π and replacing every vertex in π representing a triplet (v, p,e) by the cor-

responding vertex v in Gb. As a reminder, an a-b-walk of length k is a sequence of not necessarily

distinct vertices (a = v0,v1, . . . ,vk = b) corresponding to a sequence of not necessarily distinct edges

({v0,v1}, . . . ,{vk−1,vk}). We call such a walk from the lower to the upper boundary, that corresponds

to an s-t-path in G′b a separating walk, similar to the separating paths. We can apply the same notion of

winding number to an l-u-walk. Generally, while every separating path from l to u is also a separating

walk with a fixed winding number wl,u, not every separating walk from l to u with winding number

wl,u corresponds to a separating path.

However, given our restrictions on the initial energy and resistance of the cells, we can prove the

following lemma.

Lemma 9
Let πb be the shortest s-t-path in G′b, such that the corresponding separating l-u-walk in Gb has

winding number wl,u. This means, for any s-t-path in G′b strictly shorter than πb, the corresponding

separating l′-u′-walk in Gb does not have winding number wl′,u′ . Then, πb is a separating path, i. e.,

πb does not contain any duplicate vertex.

Proof. Assume, πb contains at least one duplicate vertex. We will construct a separating path π ′b,

such that the corresponding s-t-path in G′b has lower cost to contradict this assumption and prove the

Lemma.

Let πb = (l = v0,v1,v2, . . . ,vi, . . . ,vk−1,vk = u). Let v = vi be the first duplicate vertex, and v j = v

its next appearance. Then consider the path π ′b = (v0, . . .vi,v j +1, . . .vk) obtained by removing all

the edges on the walk between vi and v j. If the resulting separating walk π ′b still contains duplicate

vertices, we can repeat this a finite number of times to obtain a separating path.

However, while removed edges can no longer contribute directly to the local cost of the walk,

removing them can change the type and hence the local cost of the edges from v up to the first

unaffected r-edge after (v,v j+1). Therefore we must look at the specific situation at v more closely to

analyse the change in cost.

The situation at the intersection can take one of the following four cases illustrated in Figure 2.9:

1. πb turns right at vi and left at v j.
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2. πb turns left at vi and left at v j.

3. πb turns right at vi and right at v j.

4. πb turns left at vi and right at v j.

Notice that these are all cases because πb cannot include vi−1 a second time as we assumed vi to be

the first duplicate vertex.

v v v v

vi+1 vi+1 vi+1

vi−1vi−1vi−1vi−1

vj−1 vj−1vi+1

vj+1
vj+1 vj+1

vj+1vj−1 vj−1

Case 1 Case 2 Case 3 Case 4

Figure 2.9: πb follows the blue edges upon its first visit of v and the red edges on its second visit.
Cases are equivalent for rotation.

Recall the local-cost function, that dictates the cost of edges in G′b: edges of type r and l1 cost

between 0 and f ; edges of type l2 and l3 always cost f . Also for edges along the same cell, edges

of type r are at most as costly as l1 edges and both are at most as costly as edges of type l2 and l3.

Hence, edges can only become more expensive if they were of type r or l1 on πb and the new cost can

be at most f .

In cases 1 and 2, (v,v j+1) is an edge of type l1, l2, or l3 on πb and all further edges until the next r

edge are of type l2 or l3. On π ′b, (v,v j+1) is of type r, so the local-cost of π ′b can only be less or equal

to that of πb in these cases.

In case 3 and 4, (v,v j+1) is an edge of type r on πb and (v j+1,v j+2) could be of type l1, so they

could increase in cost by f each. All further edges until the next r edge are of type l2, l3, or l4 and

hence do not matter. So π ′b can have local-cost higher than πb by at most 2 f , if the removed part of

the path vi,vi+1, . . . ,v j had local cost less than 2 f . But then, the removed part can contain at most 2

edges of type lk with k > 1. But this is not enough to reach the edge (v j−1,v) from (v,vi+1) without

taking more right turns than left turns. So in both these cases, the removal of that piece of the path

either does not increase the cost of π ′b or the winding number of π ′b is at least 6 higher than that of πb,

because the path took an entire turn with 6 more right turns than left.

But the resulting path π ′b at the end of the repeated removal steps is a separating path from l to u,

and therefore a path π ′b with winding number wl,u. Therefore, on one of the later removal steps, we

must have removed a part of the path, such that the winding number of π ′b decreases by 6. Considering

that removing a part changes the type of at most one of the edges still in π ′b to r in any of the cases

given above, the removed part contains at least 5 more edges of type li than of type r. That means, it

must include at least 5 edges of type l2 or l3, decreasing the cost of π ′b by at least 5 f , which counters
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the cost of the removal that increased the winding number. In fact similar arguments can be made

about the removed parts of the path in case 1 and 2, so that in total, the cost of π ′b is strictly less than

πb.

By Lemma 9, it suffices to find the shortest s-t-path in G′b, such that the corresponding separating

l-u-walk in Gb has winding number wl,u. To achieve this, we further modify our graph G′b to another

graph G′′b = (V ′′,E ′′) to separate paths by the winding number. Let wmax be the maximum absolute

winding number of any path in Gb. Then V ′′ contains 2wmax+1 copies of each vertex v in G′b (except s

and t) representing pairs (v,−wmax), (v,−wmax +1), . . ., (v,wmax−1), (v,wmax). E ′′ contains an edge

((u,wmax),(v,wmax +1)), if the vertices u and v in G′b are connected by an edge (u,v) representing an

edge of type r. Equivalently, E ′′ contains an edge ((u,wmax),(v,wmax−1)), if the vertices u and v in

G′b are connected by an edge (u,v) representing an edge of type li for some i. The cost of the edges in

G′′b is identical to the cost of the respective edges in G′b.

By construction, the both |V ′′| and |E ′′| lie in O(|V |wmax), where |V | is the number of cells in

our underlying smooth hexagonal graph. Trivially wmax ∈ O(|V |), as the winding number of a path

can be at most its length. However, a path with very high winding number resembles a big spiral

and therefore wmax ∈ O
(√
|V |
)

. Thus, Dijkstra’s single source shortest path algorithm runs in time

O
(
|V |
√
|V | log(|V |

√
|V |)

)
= O

(
|V | 32 log |V |

)
in G′′b .

We still need to actually use G′′b to find the shortest s-t-path in G′b, such that the corresponding

separating l-u-walk in Gb has winding number wl,u. If we run a shortest path algorithm in G′′b starting

from some vertex l′′ in G′′b representing a pair (l,0), where l is a vertex from the lower boundary of

Gb. Then we find the shortest path to every vertex u′′ representing a pair (u,wl,u), where u is a vertex

from the upper boundary of Gb. If we do this for every possible starting vertex l′′ from the lower

boundary, the shortest path among all these corresponds to the shortest s-t-path in G′b that we seek.

Now consider two separate vertices l1 and l2 from the lower boundary. As the winding number is

essentially an angle counter, if a separating l1-u-path has the same winding number as a separating

l2-u-path for an arbitrary u from the upper boundary of Gb, this holds for every such vertex u. We

call such vertices l1 and l2 winding number equivalent. By the same arguments as for the size of G′′b ,

there can be at most O(
√

n) many equivalence classes of winding number equivalent vertices from

the lower boundary of Gb. For each such equivalence class [[li]], we can add a starting vertex si to G′′b

and an edge (si,(l,0)) for each vertex l in the equivalence class [[li]]. Then, we can start our single

source shortest path algorithm in each si and find the shortest path we seek among the shortest paths

to vertices (u,w(li,u)), where u is a vertex from the upper boundary.

This reduces the number of necessary runs of a single source shortest path algorithm from O(n) to

O(
√

n). For some graphs or graph classes, the number of equivalence classes - and hence, necessary

runs, might be a constant. For example, in the previous variation of these results as presented at

CALDAM 2020 [58], we assumed the cells to form a rectangle of rows with an equal number of cells

each, where the village lies on the left and the initial fire cells on the right side of the rectangle. In this
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graph class, which is also used in our examples figures, all vertices on the lower boundary lie in the

same winding number equivalence class, such that a single run of a shortest path algorithm suffices.

For general smooth hexagonal graphs, we obtain the following Theorem:

Theorem 4
The Minimum Fortification Problem can be solved in time O

(
|V |2 log |V |

)
, if each cell has the same

initial energy f and the initial resistance of each cell is bounded by 2 f +1.

2.4.3 The Target Ignition Problem

In this section, we will discuss a problem, where instead of trying to protect certain cells as in the

previous sections, the goal is to ignite a certain set of target cells T .

Target Ignition
Input: An instance of the r,e-model (G,r0,e0), and two disjoint subsets S and T of V .

Goal: Find a minimum cardinality subset P⊆ S, such that igniting every cell in P eventually ignites

every cell in T . More precisely, find a subset P ⊆ S of minimum cardinality, such that ti(v) < ∞

for all target cells v ∈ T in a modified instance (G,r′0,e0), with r′0(c) = 0 for all cells c in P, and

r′0(c) = r0(c), otherwise.

We will prove this problem to be NP-complete, even if G is smooth square graph, by a reduction

from planer vertex cover.

Planar Vertex Cover
Input: A planar graph G = (V,E).

Goal: Find a subset C of V that contains at least one endpoint of every edge in E. So for every edge

e = {u,v} in E, it must hold C∩ e ̸= /0.

The planar vertex cover problem has been shown to be NP-complete, even for graphs with

maximum vertex degree three [39].

To prove the NP-completeness of the target ignition problem, we show how to obtain an instance

of the fire expansion problem in polynomial time from a planar graph of maximum vertex degree

three. In a first step, we compute a planar grid embedding G□ of G into the rectilinear grid such that

the following holds: Disjoint vertices of G are mapped to disjoint integer coordinates; edges of G

are mapped to rectilinear paths in the grid such that no two paths have a point in common, except,

possibly, for the endpoints. The size of G□ is polynomial in |V | and can be computed in polynomial

time; see [30].

In a second step, we scale G□ by a factor of two: a vertex at coordinates (a,b) is mapped to

coordinates (2a,2b); edges of G□ are stretched accordingly. This introduces buffer coordinates

between different edges in the embedding of G□. Finally, we place a square cell at every integer

coordinate spanned by G□ and set the (r,e)-values of the cell c as follows:
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(c) Target Ignition Instance for G.

Figure 2.10: An example of the reduction of Planar Vertex Cover to Target Ignition. In the Target
Ignition Instance (c), the cells in S are marked red, while the cells in T are marked blue.

• If c corresponds to a vertex of G□ (vertex-cell) set the weights to (5,1);

• if c corresponds to an edge of G□ (edge-cell) set the weights to (1,1);

• set the weights of all remaining cells to (0,0).

Add all vertex-cells to S and all edge-cells adjacent to a vertex-cell to T . The size of the resulting

instance and the construction time are polynomial in |V | and the resulting graph is a smooth square

graph.

It remains to prove that this instance has m cells that ignite all cells in T if and only if G has a

vertex cover of size m.

On the one hand, if G has a vertex cover C of size m, the corresponding vertex-cells can be chosen

as the set P to ignite. Due to the choice of values, they will ignite all adjacent edge-cells. Since C is a

vertex cover, all edge-cells will burn and therefore all cells in T .

On the other hand, assume there is a subset P⊂ S of size m that will eventually ignite all cells of

T . By construction, all cells of P are vertex-cells, so only vertex-cells are put on fire. Observe that

due to the choice of weights, a burning edge-cell can never ignite an adjacent vertex-cell. Moreover,

due to the buffer coordinates, any two edge-cells that belong to different edges of G□ are separated

by at least one cell of weight (0,0). Consequently, every edge-cell in T must be either ignited by a

directly adjacent vertex-cell or by a fire reaching it from the directly adjacent edge-cell, emanating

from a different vertex-cell. Since for every edge in G there is an edge-cell in T , which is ignited via

one of the adjacent vertex-cells of P, the vertices of G corresponding to the vertex-cells in P constitute

a vertex cover of size m for G.

Certainly the problem is in NP, since the ignition time of all cells can be verified in polynomial

time by using the Algorithm IGNITIONTIME presented in Section 2.3. Thus, we obtain the following

theorem.

Theorem 5
Target Ignition is NP-complete, even on smooth square graphs.
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2.5 Adaptability of the r,e-model

Although energy and resistance of vertices can already model a variety of terrain, we will investigate

several different ways to adapt and change the given model, specifically to model further factors

affecting forest fires like wind and vegetation height. Most of the time, these adaptations are achieved

by slight changes or additions to the transition rules and can often be combined to model several

different factors at once. We will also discuss how these changes affect the complexity of this

model, especially but not limited to its effect on the runtime of the snapshot algorithms discussed in

Section 2.3.

2.5.1 Heat and Combustion Zones

In the r,e-model the energy parameter only governs how long a vertex burns once ignited, but different

areas of the forest might also burn with varying temperatures, igniting adjacent areas more or less

easily. An intuitive way to adapt the given r,e-model accordingly, is to give vertices additional weights

to model how fast and hot a vertex burns with more precision.

As an intuitive way to implement this, we can give each vertex v an additional constant weight

parameter h representing the heat of the vertex when burning. To reflect, that hotter vertices ignite

their neighbours more easily, the transition rule for the resistance of alive vertices changes to:

• If v is alive at time t then r(v, t +1) := max{r(v, t)− ∑
u∈B

h(u),0}, where B is the set of burning

neighbours of v at time t.

This change adds only a constant factor to the computation of a single vertices transition in a round

and the sweep-subroutine used in the Algorithm IGNITIONTIME and hence does not affect their

asymptotic runtimes.

Taking this idea a small step further allows us to address a mayor drawback of many firefighting

models, that Pastor et al. bring forth in their survey [71]. They observe that the spread fire is often

modelled as a single line moving forward instead of taking combustion zones into account. The

desired effect would be that a fire front with a lot of forest still burning behind it spreads faster than

on its own. Instead of using a constant heat parameter h(u) in the rule above, the heat of a vertex

could be the number of its burning neighbours, reflecting that a vertex with a lot of fire around it burns

hotter itself.

This does not affect the asymptotic performance of the step-by-step simulation beyond a constant

factor. It suffices to go over all edges each round to count the burning neighbours of each vertex to

determine its heat. But a single round of simulation takes time O(|E|) anyway to compute the adjusted

resistance values. However, as a vertex starting (or ending) to burn does not only affect its direct

neighbours, but also the neighbours of these neighbours, the preprocessing based approach is affected

more. Both the number of times a vertices ignition time is recomputed and the number of vertices

affecting said recomputations increases. However, even if all vertices are affected in each round of
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the algorithm, and each vertex affects each other vertices ignition time, the resulting algorithm still

runs in O
(
|V |3

)
. When restricted to graphs with the maximum vertex degree bounded by a constant,

the number of vertices affected by a single vertex is constant, so the asymptotic runtimes remain

unchanged.

2.5.2 Wind

Wind is one of the biggest factors affecting the spread of wildfires. Depending on the strength of

the wind, a fire might spread at different speed or only in a specific directions. Wind and weather

conditions might also change while the fire is spreading.

One general way to introduce wind to the r,e-model is to replace the undirected input graph

G = (V,E) with a directed graph G′ = (V,E ′) with two directed edges (u,v),(v,u) ∈ E ′ for each edge

{u,v} ∈ E. Then we can assign each edge (u,v) a positive integer weight w(u,v) representing the

strength of the wind along this edge, i. e., how strongly it affects the resistance of v if u is burning.

The transition rule for the resistance of alive vertices intuitively changes to:

• If v is alive at time t then r(v, t+1) :=max{r(v, t)− ∑
u∈B

w(u,v),0}, where B is the set of burning

neighbours of v at time t.

These changes add only a constant factor to the computation of a single vertices transition in a

round and the sweep-subroutine used in Algorithm IGNITIONTIME and hence does not affect their

asymptotic runtimes. Even allowing the wind, and thus, the weight w to change a constant number of

times during the fires propagation adds only constant overhead.

When restricting to a graph induced by a regular tessellation like the regular hexagonal or square

tiling, it can make sense to have a global wind setting affecting all cells identically. Figure 2.11 gives

an example of how a strong west wind would be represented for a hexagonal cell graph.

2.5.3 Ground and Crown Fires

A forest’s greenery and ecosystem can be separated into multiple levels from the roots up to the

canopy and each level might provide different conditions affecting the spread of a fire. For example,

depending on the type of forest, there might be different amounts of low bushes and dry timber near

the ground, and the thickness of the canopy can vary. Thus it makes sense to consider the spread of the

fire separately for the different levels as well as how it spreads from level to level. Graham et al. [42]

classify fires into different types depending on what level of the forest it is burning through.

Ground fires burn closest to the ground, mainly feeding on moss, lichen and duff. Due to the

wetness and thickness of the fuel, they are often spreading very slow and mostly smoulder rather than

burn with open flames. Often a remnant of higher forest fires, they can keep burning over weeks and

even months and sometimes grow to surface fires.

Surface fires are fires feeding on low bushes and dry timber near the ground. These fires usually

spread more freely in forest consisting mostly of broad-leafed trees, as the lighter canopies facilitate
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Figure 2.11: The first figure denotes the weights representing a strong west wind in each direction.
The following figures show an example how a fire spreads through an instance according to this wind.

While all cells have the same resistance, the fire spread much faster in the eastern direction.

the growth of more surface fuel like bushes. Alternatively, a tree that has recently died and is especially

dry, or a young tree with some low-hanging branches can act as torch for a surface fire to ignite a

crown fire.

Crown fires are fires burning mainly through the canopy of a forest. These usually spread fast

and are especially susceptible to the effect of wind and weather, which fires on the lower level are

partially sheltered from.

When using a graph induced by a regular tessellation to model the terrain, one can intuitively

stack multiple copies of the graph on top of each other to represent these layers. The different varieties

in spreading speed and burn time could then be nicely simulated with the resistance and energy

parameters. The resulting graph would still have the degree of each vertex bounded by a constant and

no further effect on the runtime of Algorithm IGNITIONTIME.

If canopy and surface are especially far apart, it can make sense to consider an additional ladder

level between surface and crown representing fuel like vines growing up tree trunks or a half-toppled

tree leaning against another. In contrast to the other levels however, such ladder fuel mostly facilitates

surface fire spreading to crown fires without much spread within the layer itself. In that case in

particular, one might want to consider different rules for spreading between levels and within. This

can be implement using weighted (directed) edges as proposed for modelling wind in Subsection 2.5.2.

But even without any changes to the transformation rules of the model, stacking a small constant

number of layers admits a surprising power of computation if one considers infinite graphs. As

David Kübel proves in his PhD-Thesis[46], two layers of the infinite square grid graph with constant

description complexity with respect to r0 and e0 allow to simulate any Turing machine. The core idea
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is to show that the problem of whether a cell c in an instance (G,r0,e0) ignites can be reduced to the

halting problem.

2.5.4 Regeneration and Regrowth

The resistance of a vertex being reduced by burning neighbours can be imagined as it slowly heating

up until it is finally hot enough to ignite. This visualisation highlights one drawback of our model.

While it is nice that the effect of multiple burning neighbours is accumulated towards igniting a

vertex, these neighbours need not be burning at the same time, as the effect of a burning vertex on

the resistance of its neighbours is permanent. This can lead to scenarios as illustrated in Figure 2.12,

where a vertex is ignited by the joint effect of two neighbours, that each burn for just five rounds, but

do so 50 rounds apart.

1;1 1;1

1;1 1;1

1;5 10;1

0;56 56;5

(a) t = 0

1;1 1;1

1;1 1;1

0;5 10;1

0;55 55;5

(b) t = 1

1;1 1;1

1;1 1;1

0;0 5;1

0;50 50;5

(c) t = 6

1;1 1;1

1;1 1;1

0;0 5;1

0;0 0;5

(d) t = 56

1;1 1;1

1;1 1;1

0;0 0;1

0;0 0;0

(e) t = 61

Figure 2.12: An example of a cell that is ignited by two neighbours burning 50 rounds apart. The
initial resistance and energy are given in the cells as pairs of the form r;e.

To counter this effect, one can allow alive vertices to regain resistance up to either the initial

resistance or a separately defined upper limit rmax(v) as long as none of its neighbours is burning.

Allowing the same for both the resistance and the energy of dead vertices simulates the regrowth of

greenery after a fire. Whether it is realistic to model this within the same time frame as the spread

of the fire is questionable, but this might be a better fit better when using this model for something

different than fire. In this case rmax must be greater than 0 for all v, otherwise a dead vertex could

regenerate a point of energy but not resistance and immediately ignite again.

These changes affect propagation rules for alive and dead vertices as follows:

• If v is alive at time t, then e(v, t +1) := e(v, t). If v has burning neighbours, then r(v, t +1) :=

max{r(v, t)− b,0}, where b denotes the number of burning neighbours of v. Otherwise,

r(v, t +1) := max{r(v, t)+1,rmax(v)}.
• If v is dead at time t and has burning neighbours, then r(v, t +1) := r(v, t) = 0 and e(v, t +1) :=

e(v, t) = 0. Otherwise, r(v, t +1) := max{1,rmax(v)} and e(v, t +1) := max{1,emax(v)}.

As these changes to the transformation rules allow vertices to change their state infinitely often, it

is clear that this significantly increases the computational power of our model. When restricted to a

regular square grid, it can be considered as a cellular automaton of class 4 (compare Subsection 2.2.2).

By the same reduction as for the layered version, David Kübel proves in his PhD-Thesis, that an

infinite square grid graph with constant descriptions complexity with respect to r0 and e0 allows to
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simulate any Turing machine using these additional rules. This fits Wolfram’s conjecture, that cellular

automata of class 4 are capable of universal computation.

On the other hand, even in finite graphs, a vertex might ignite, burn down, regrow and ignite again

over the course of several rounds. This means, that the snapshot algorithm introduced in Section 2.3

can not be applied to this variation, as it is based on determining the unique ignition time of very

vertex as a preprocessing step before computing the snapshot at a given time t. Although it can

be adapted to cope with this in general, its termination and runtime then must depend on t for its

termination, losing its advantage in comparison to the naive step-by-step simulation.

The only way to remedy this might to the detect a regular recurrence of snapshots. Due to the

upper limit on the resistance and energy, every vertex can only attain a finite number of states. That

means, there is only a finite number of state combinations for all vertices in a finite graph, i. e. a finite

number of possible snapshots. As the transition rules are deterministic, if the snapshots at times t and

t ′ are identical with t ′ > t, it holds:

• The snapshot at time t∗ = t ′+(t ′− t) is identical to the snapshots at times t and t ′.

• The snapshots at time t + k and t ′+ k are identical for any k ∈ N.

2.5.5 Continuous Time

Another adaptation of the r,e-model that suggests itself is to move from a discrete to a continuous time

model. While moving the whole model of fire propagation from a discrete to a continuous domain

creates a new family of problems more closely discussed in Chapter 3, considering just the flow of

time as continuous instead of discrete time steps changes surprisingly little about the model.

The definitions of alive, burning and dead stay the same. However, the step-wise transformation

rules for the resistance and energy are replaced by non-increasing, continuous, piecewise-linear

functions. In an interval, during which the number of burning neighbours b of an alive vertex v is

a constant, it is a linear function with slope −b. From when the resistance of v arrives at 0 at some

ignition time ti(v), the resistance function remains constant. Note that the coefficients of all piece-wise

linear functions are integers, so all ignition times will be rational.

The energy function e(v, t) on the other hand is constant until ti(v), followed by one piece of a

linear function with slope −1 until it arrives at 0 as well. From then on, both the energy and resistance

function remain constant.

Given the same instance (G,r0,e0), this does not affect whether a vertex will ignite or not, as a

single neighbour will effectively reduce a vertices resistance by at most its initial energy value – the

same as in the original model. However, the ignition time in this continuous model will always be at

most as big as the ignition time in the discrete time model, as we essentially just remove rounding to

the next integer. While the step-by-step simulation algorithm for snapshot computation is no longer

applicable to this continuous time model, the preprocessing based approach works just fine with very

slight adjustments.
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2.6 Open Questions

As discussed in Section 2.2, the original Firefighter problem is just as hard in the r,e-model as in

Hartnell’s original model. Thus, it suggests itself to investigate other problems and questions one

can pose on the foundation of this new model. Besides those discussed in Section 2.4, we will

present some additional problems to study, focusing on some that utilize more unique features of the

r,e-model, e. g. the fact, that the fire does not necessarily spread to every vertex of the graph even

without any firefighting measures.

2.6.1 Burning Number

Consider the burning number of a graph as introduced by Bonato et al. [12]. Given a graph G, one

chooses one vertex to be ignited each round in addition to the neighbours of already burning vertices.

The minimum number of rounds it takes with any sequence of vertices to burn the whole graph is the

burning number b(G).

This notion can be adapted for an instance (G,r0,e0) with r0(v)> 0 for all vertices, such that no

vertex is initially burning. Then, igniting a vertex is equivalent with reducing it’s resistance to 0. As

igniting a single vertex might not be enough to ignite the whole graph, one might then ask several

questions:

• What is the minimum number of vertices, such that igniting them ignites the whole graph?

• If one is allowed to reduce the resistance of a single vertex to 0 each round, what is the minimum

number of rounds it takes to burn down the whole graph?

• If one is allowed to reduce the resistance of a single vertex by 1 each round, what is the

minimum number of rounds it takes to burn down the whole graph?

The answer to these questions is dependent on both the structure of the graph and the resistance and

energy values of the vertices. Answering the first question is actually a special case of the problem

discussed in Subsection 2.4.3 where both the set of source and the set of target cells is the whole

vertex set.

2.6.2 Evacuation Distance

The aspect that some parts of a graph might remain unburned allows us to propose problems regarding

the evacuation to safe areas. Imagine a person starts at an arbitrary vertex v in round 0 of an instance

(G,r0,e0) and can move along an edge to an adjacent vertex each round. An evacuation path would

be a path from v to a safe vertex of G that will not ignite, i. e. has ignition time ∞, such that a person

moving along that path never ends a round in a burning vertex. We say a vertex v has evacuation

distance k, if there exists an evacuation path of length k starting in v, and evacuation distance ∞,

otherwise.
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We can identify all vertices with finite evacuation distance by starting with the safe vertices. Using

the fire propagation preprocessing algorithm discussed in Section 2.3 to compute the ignition time

of each vertex, we can identify all vertices with ignition time ∞. These are all the vertices with an

evacuation distance 0. A person starting on a neighbour of such a vertex can evacuate within a single

round, except when it’s vertex was already burning at round 0. Thus, a vertex that did not ignite at

round 0, and has a neighbours with evacuation distance 0, has evacuation distance (at most) 1. By the

same argument, vertices that are still alive in round k, and have a neighbour with evacuation distance k,

have evacuation distance (at most) k+1. By these arguments, a single Breadth-First-Search from the

safe vertices suffices to determine the evacuation distance of all vertices in G.

A firefighter might be especially interested in those vertices that do not have an evacuation path.

With saving as many people as possible as a priority, a firefighter would want to maximize the number

of vertices that have evacuation paths. To do that he could protect some vertices to create new vertices

to evacuate to, which gives rise to the following problem:

k-Evacuation Spot Problem
Input: An instance of the r,e-model.

Goal: Find k vertices, such that protecting these vertices maximizes the number of vertices with

evacuation distance < ∞.

2.6.3 Budgeted Firefighting

A direct extension of Hartnell’s Firefighter as described in Section 2.2 is at least as hard as the original

problem. However, the resistance and energy values of the vertices allows to define firefighting actions

in a more nuanced way than just protecting a vertex entirely. Generally, two types of actions reduce

the spread of the fire: On the one hand, increasing the resistance of vertices not yet on fire can cause

them to ignite later or not at all, On the other hand, decreasing the energy of vertices, which already

did or eventually will ignite, reduces their impact on adjacent vertices, causing them to ignite later or

not at all.

So instead of protecting a vertex each round, the firefighter can increase the resistance or reduce

the energy of one or more vertices, with the sum of those changes limited by some budget b. The goal

can also vary between minimizing the number of burned vertices, the number of rounds until the fire

burns out, or even the number of vertices affected by the firefighters or the fire. The last option would

be motivated by the fact that firefighting efforts themselves can cause damages, so we might want to

apply them efficiently.

When reducing the objective to protecting a set of target vertices, we arrive at more general

dynamic versions of the village protection problems discussed in Section 2.4, where increasing the

resistance of the protective sets takes time. This will result in protective sets closer to the village

cells to be better, as the distance to the fire allows for more time to apply the resistance increases. In

addition, it might be necessary to fortify some cell closer to the fire, that is not part of the final fire

border, to delay the fire, such that the firefighters have enough time to fortify the actual protective set.
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Note however, that the results we obtained for the static versions in addition heavily utilize topological

properties of the fire border in the underlying graph and set of village cells and require restrictions on

the possible initial energy and resistance values.

A plethora of problem variations also arises by varying the exact parameters of protection. The

firefighters might be allowed to affect only resistance, only energy or both. In the last case, there

might be separate budgets for both types of actions; or a joined one, but affected at different weights

by the two types of action. For example, preventative measures (i. e., increasing resistance) might be

cheaper than actually extinguishing a fire (i. e., decreasing the energy of burning cells).

Besides adapting the exact parameters, more specific variations can also be obtained by focusing

on certain graph classes, or simplifying conditions on the initial resistance and energy functions.

Based on the complexity of Hartnell’s Firefighter Problem, as well as the challenges encountered

in the static version of the village protection problems, the complexity of these types of dynamic

firefighting problems might depend heavily on exploiting some regularity in the input instance.



Chapter 3

Continuous Firefighting

In this chapter we study the effect of delaying barriers in continuous firefighting.

We begin by introducing the canonical problem variant as introduced by Bressan in more detail.

We shortly present both the best known upper and lower bound on the necessary building speed v and

argue how the lower bound proof motivates the investigation of delaying barriers. We then present

three smaller related problems, in which delaying barriers play three distinct roles.

Afterwards we present the problem variant of continuous firefighting considered in detail in this

chapter - to contain the fire in a half-plane. We present some structural observations on optimal

strategies that admit some basic lower bounds on the building speed v and subsequently refine

these using three different approaches resulting in three different lower bounds, the best of which

shows v≥ 1.66 is necessary. We present an approach to construct a working strategy for v < 2 and

subsequently optimize this approach to create a strategy for which a speed of v > 1.8772 suffices.

Finally, we discuss some possible extension of our results including some open questions.

3.1 Bressan’s Original Problem

Originally, Bressan proposed a rather general model for geometric firefighting, in which the starting

area is some arbitrary subset R0 of the plane and the spread of the fire is governed by a multifunction

F : R2 7−→ R2 meaning the fire spreads with different speed in different directions. The area R(t)

reached by the fire at some point in time t is then modelled as the reachable set of a differential

inclusion, a concept defined in [4]. For a point p ∈ R(t) there must exists a path from a point in R0 to

p, such that the time it takes the fire to move along that path according to the spread function F is at

most t.

Similarly, strategies are defined by set-valued maps t 7→ γ(t) ⊂ R2, where γ(t) is the set of all

barriers built until time t. For such a function γ(t) to describe a valid strategy for a building speed

v, it must fulfil two conditions: Firstly, as barriers can not be demolished or moved, it must hold

γ(t1)⊆ γ(t2). Secondly, to not exceed the building speed limit, the set γ(t) must consist of curves of

measurable length and that length may not exceed v · t at any time t.
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The area reached by the fire not crossing the barriers built according to γ is called Rγ(t). Again,

for a point p ∈ Rγ(t) there must exist a path from a point in R0 to p that the fire can follow in time

t without conflicting with γ . That means, if it takes the fire time tx to reach a point x on that path

according to F , then x /∈ γ(tx). The fire is contained by a strategy γ(t) if Rγ(t) is ultimately bounded,

i. e. if Rγ(t)⊆ Br for all t > 0 and some fixed ball Br with radius r centered at the origin.

Bressan also made one central observation that simplifies the analysis of strategies significantly:

Instead of defining a strategy dynamically as a function γ(t) fulfilling the conditions given above for

some building speed v, one can also equivalently define a strategy by its static end result S⊂ R2 =

lim
t→∞

γ(t). We call such a set a barrier system. The reachability set of the fire RS(t) then contains all

points for which S-free reachability paths of length at most t exist.

Let S⊂ R2 be a set of barriers such that RS(t) is bounded, i. e. S contains the fire. Then the barriers

in S only affect the spread of the fire from the moment they are reached by it. It is therefore intuitive

to build the barriers as fast as possible in the order they are reached. If the total length of barriers in S

reached by the fire at any time t does not exceed v · t for a building speed v, this approach yields a

dynamic strategy γ with Rγ(t) = RS(t). The speed necessary to build every barrier in S at the latest

right before the fire reaches it, is exactly the lowest possible speed v for which Rγ(t) = RS(t).

Bressan’s results nearly exclusively focus on the special case where both R0 and F(x) are the unit

circle. This means that the fire spreads at unit speed in all directions starting with the unit circle at

t = 0. We call this the canonical geometric firefighting model. In that variant, the time it takes the fire

to reach any point is just the length of the euclidean shortest path from R0 to that point.

Regarding the necessary speed v, they obtained two main results for the canonical variant.

Theorem 6: Bressan’s Upper Bound[14]
There exists a strategy containing the fire in the canonical geometric firefighting model for any speed

v > 2.

The strategy they consider is the union of two logarithmic spirals. Starting at the boundary of the

fire and the building with constant speed v just along the edge of the fire produces a logarithmic spiral

with excentricity α := cos−1 1/v for any speed v > 1. Hence, with speed v > 2 one can start two such

spirals in opposite directions from the same point on the unit circle at speed v/2 each. After half a

round both spirals will meet opposite their starting point and hence the fire is contained.

Theorem 7: Bressan’s Lower Bound[14]
There exists no strategy S containing the fire in the canonical geometric firefighting model for any

speed v < 1.

Although Bressan first proved this in [14], we will give the much simpler proof from his survey [16]

based on the ideas first used in a slightly different setting (compare [17]).

Proof. Assume, there existed a strategy given as a set S ⊂ R2 that contains the fire for some speed

v < 1. Then, S must contain some outer barrier SO separating the starting area R0 from the rest of the
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plane, and may contain some inner delaying barriers SI attached to SO and some free-floating barriers

SF inside the area bounded by SO (compare Figure 3.1). Any barriers outside of SO do not affect the

spread of the fire and can therefore be disregarded. Let |SI|, |SO|, |SF | be the sum of the lengths of all

barriers in these respective sets.

R0

x

x0

x1

SF

SI
SO

π0

π′
0

π3

π1

π2

Figure 3.1: An illustration of the lower bound proof construction.

Let x be the last point on SO reached by the fire, the ’last brick’ in the wall. We will ignore the

free-floating barriers for now and handle them in the end. Consider the euclidean shortest path π0

from R0 to x not intersecting any barrier from SI . It starts in some point x0 on the boundary of R0.

Consider prolonging this path from x0 in a straight line until it hits SO at some point x1.

Now we can compare three paths from x1 to x. Let π1 be the path via x0, and π2 and π3 be the paths

clockwise and counter-clockwise along SO and SI . By construction |π0| ≤ |π1| ≤min(|π2|, |π3|)≤
1/2(|π2|+ |π3|) = 1/2(2SI +SO)≤ |SI|+ |SO|. Now assume π0 crosses a free-floating barrier b ∈ SF .

Then we can construct a path from x0 to x not crossing b by following π0 and when hitting b going

either left or right along b until we hit π0 again, depending on what’s shorter. This adds a detour of at

most b to the path. Let π ′0 be a path from x0 to x not crossing any barrier from S constructed in that

manner. Then |π ′0| ≤ |π0|+ |SF | ≤ |SI|+ |SO|+ |SF |.

This means, that the fire reaches x0 before time t = |SI|+ |SO|+ |SF |, i. e. before we could have

built all barriers in S with building speed 1, which contradicts our original assumption and concludes

the proof.

Note that, if we could prove that there exists an optimal strategy, that does not contain any inner

delaying or free-floating barriers, the same arguments immediately hold for v < 2. Hence a closer

look at such inner or free-floating barriers is justified.
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3.2 Related Problems Showcasing Delaying Barriers

We will now present three smaller related models, for which the best known strategies utilize delaying

barriers in three distinct ways.

The single barrier model is very similar to the canonical geometric firefighting model with a

slightly weaker firefighter. Instead of being allowed to build barrier curves freely in the plane, a single

continuous barrier curve has to be built. The best known strategies in this variant build the barrier

in spiral coils around the fire area until closing onto itself after several rounds for a building speed

v > 2.6144. Hence, a big part of the barrier curve, namely all spiral coils except the last one form a

single long delaying barrier while the last coil forms the enclosing outer barrier.

The angle cover model is similar to the canonical geometric firefighting model, but has a weaker

fire. Instead of spreading at unit speed in all directions from the burning area of the plane, the fire

spreads in straight lines from an origin point, burning everything visible from the origin similar to a

nuclear flash. This means that the fire does not burn around corners or endpoints of barrier curves,

such that strategies to contain the fire just need to block every angle, i. e. intersect every outgoing ray

from the origin. As a barrier either blocks a ray or has no effect at all, an optimal strategy for this

model contains no delaying barriers at all and blocks the fire for any speed v > 0.

The barrier following fire model is closely related to the main model studied in this chapter, where

the fire is to be contained in the upper half-plane, but has a weaker fire. The fire starts in the middle

of a small piece of barrier at the origin and is restricted to only burn along the barriers instead of

freely through the plane. The firefighter is restricted to barrier systems consisting of the horizontal

x-axis and vertical barriers attached to it and has to prevent the fire from ever reaching any part of the

horizontal barrier from below. Hence the whole horizontal barrier is the outer enclosing barrier that

limits the fire to the upper half-plane while the vertical barriers are delaying barriers. As the fire burns

twice along each vertical barrier - first up and then down again - building as many of them as possible

is crucial to effective strategies for this model. To avoid degenerate strategies that just build vertical

barriers at infinitesimally short distances to each other, we require that a vertical barrier of height b

has distance b to the next vertical barrier in the same direction. The best known strategy fulfilling this

requires a building speed of v > 4/3 to contain the fire.

3.2.1 The Single Barrier Model

An intuitive variant of the geometric firefighting problem is to allow just one continuous barrier

curve that has to built in one continuous move. This can be interpreted of just a single firefighter

moving through the plane deploying the barrier in its path. We call this the single barrier model.

Such strategies are a subset of the strategies for the canonical variant, hence the lower bound of v≥ 1

(compare Section 3.1) still holds. Focused again on the canonical fire with unit spread in all directions

and the unit circle as its starting area R0, this variant has been discussed by both Bressan [21] and

more in depth by Klein et al. [57].
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Both show the following theorem by providing slightly different strategies.

Theorem 8: Single Barrier Upper Bound
The fire can be contained in the single barrier model with building speed v > 2.6144....

Both strategies form a barrier curve starting at the fire boundary, spiralling around the fire multiple

rounds based on different methods before eventually closing in on itself, such that the last coil of the

spiralling curve hits the previous one to contain the fire. This means, that the only the last coil of

either barrier curve actually forms the enclosing outer barrier and all previous coils form one long

delaying barrier slowing the fire just enough that the barrier curve can be closed.

However, this delaying part of the barrier curve is absolutely crucial to the success of the strategies.

When trying to design a strategy without delaying barriers, the most simple one would be just building

a circle at some distance to the origin, which requires speed v > 2π . During a presentation at SoCG

2015 on a preliminary version of the paper by Klein et al. [53], Langetepe showed a more clever

construction using just a single round which is illustrated in Figure 3.2. It starts at a point q0 away

from the fire and builds a line segment in such a way, that it coincides with the growing fire boundary

at a point q1. From q1 one the barrier curve follows the logarithmic spiral centered at the fire origin,

that runs just along the boundary of the fire, until it intersects the line segment exactly back at the

starting point q0. This strategy without delaying barriers works for v > 3.7788 which is still much

worse than either spiralling strategy.

Figure 3.2: A strategy to contain the fire within a single round.

Bressan’s spiralling construction is based on the following observation. Let P be a point on the

logarithmic spiral Sα = (ϕ,eϕ cotα) of excentricity α , and let Q denote the next point on Sα touched

by a tangent at P; see Figure 3.3, (i).
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Figure 3.3: (i) A logarithmic spiral Sα of excentricity α; angle ϕ ranges from −∞ to ∞. (ii) Curve
FFv results when the fighter moves at speed v along the fire’s expanding boundary.

Then the spiral’s length to Q is at most 2.6144 . . . times the sum of its length to P plus the length

|PQ| of the tangent, for all values of α . In other words, if the fighter builds such a barrier at some

speed v > vc := 2.6144 . . . he will always reach Q before the fire does, which crawls around the

spiral’s outside to point P and then runs straight to Q. In [21] the fighter uses this leeway to build a

sequence of logarithmic spiral segments of increasing excentricities αi that stay away from the fire,

plus one final line segment that closes this barrier curve onto itself.

The strategy studied by Klein et al. [57] instead is to construct a barrier curve FFv by starting at

some point p0 on the boundary of the fire starting area and continue to build just along the spreading

fire. This means, that at any point p on the curve, the length of the barrier curve up to that point is

always exactly v times the length of the shortest fire path to that point, i. e. the shortest path from the

fire origin area to the point p. In the beginning this forms a logarithmic spiral around the origin with

excentricity α := cos−1 1/v. After one round however, the behaviour changes, as the structure of the

fire’s shortest path to the barrier changes.

During the first round, the shortest fire path is always a straight line segment starting on the

boundary of R0 and orthogonal to it. After the first round completes however, the shortest fire path

is instead a straight line segment starting at p0. Therefore, the first round of the logarithmic spiral

centered on the origin is followed by a short section of another logarithmic spiral with the same

excentricity but centered around p0, as illustrated in Figure 3.4.

This changes again, when the shortest fire path becomes tangential to the barrier curve at x0,

i. e. the tangent to the spiral curve at p0 intersects the arc of the logarithmic spiral centered at p0.

From then on the shortest fire path always consists of a part of the barrier curve, followed by a

short line segment tangential to it, as the fire first has to burn around the barrier curve constructed in
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Figure 3.4: The barrier curve starts with two parts of logarithmic spirals of excentricity α , centered at
0 and p0, respectively.

previous rounds. The barrier curve therefore forms a more complicated curve always dependent on

the barrier curve in the previous rounds. However, as the building speed v is constant, the tangents of

the curve always have angle α to the last straight line segment on the shortest fire path, as illustrated

in Figure 3.5.

Dependent on the building speed v, the barrier curve constructed this way is either infinite or

eventually closes in on itself. Klein et al. [57] show that the behaviour of this barrier curve FFv is

governed by a complex function (ewZ−sZ)−1, where w and s are real functions of v. Residue calculus

for this function reveals that the curve contains the fire for any speed v > vc and provides an estimate

for the number of rounds.

Klein et al. [57] also prove a stronger lower bound on the speed for a specific subclass of strategies,

to which both FFv and the piecewise logarithmic strategy by Bressan belong. This subclass of

spiralling strategies consists of all barrier curves, that start on the boundary of the fire and visit the

four coordinate half-axes in counter-clockwise order and at increasing distances from the origin. They

show any spiralling strategy requires at least speed v > 1.618 . . ., the golden ratio, to contain a fire in

the single barrier model.

3.2.2 The Angle Cover Model

Assume a fire starts at the origin (0,0) and spreads along all outward rays at unit speed. This means,

that fire does not burn around the corners of barriers as illustrated in contrast for the same barrier

system in Figure 3.6. Any barrier either blocks an angle for the fire or has no effect, which means

that no delaying barriers exist. This also means, that a barrier system containing the fire does not

need to contain a connected enclosing barrier. Instead the fire is contained if there is a piece of barrier

intersecting any outward ray starting in the fire origin in any direction. Hence we call this the angle

cover model, as a barrier system has to cover every angle to contain the fire.
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Figure 3.5: From point p2 on the barrier curve results from wrapping around the barrier already
constructed. The line segment F , the last piece of the shortest path from the fire source to the current
barrier point p always has angle α to the barrier curve at that point. In addition, F simultaneously

shrinks, as a bigger part of the shortest fire paths wraps around the previous curve, and grows, as the
shortest fire path increases with time. The fighter will be successful if, and only if, F ever shrinks to

zero.

(0, 0)

unit circle

(0, 0)

i) ii)

Figure 3.6: i) A barrier system for the angle cover problem for a speed of v = π .
ii) In the canonical model, the fire would escape from the same barrier system.
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As this makes the fire strictly weaker than in the Bressan model, the upper bound of v > 2 also

holds for the angle cover model. But exceeding that, we will show the following theorem.

Theorem 9
For any speed v > 0, it is possible to contain the fire in the angle cover model in the unit circle.

Proof. The harmonic series ∑
∞
i=1

1
i is unbounded. Therefore for any value x there exists an n such

that ∑
n
i=1

1
i ≥ x. Let nv be the smallest such n for x = 2π

v .

Consider the following strategy with all points given in polar coordinates:

Beginning in point ( 1
nv
,0) build a segment of a circle of length v

nv
. This segment can be build

exactly in time 1
nv

, and therefore the fire reaches the whole segment exactly at time of completion. Let

us say this segment ends in point ( 1
nv
,α1). Then continue building segments i = 2 to nv of a circle of

length v
nv

, always beginning in point ( i
nv
,αi−1) and ending in ( i

nv
,αi). An example of this strategy for

v = π is illustrated in Figure 3.6.

Consider the projection of all those segments of a circle on the unit circle. Each segment i covers

a segment of the unit circle of length v
nv
· nv

i = v
i . Moreover, by choice of start points, the projection of

neighbouring segments do not overlap except for end and start points.

Therefore all segments together cover a segment of the unit circle of length

nv

∑
i=1

v
i
= v ·

nv

∑
i=1

1
i
> 2π, (3.1)

which covers the whole unit circle.

As all barriers are circular arcs with increasing radii around the fire origin and the last piece has

exactly radius 1, all barrier pieces are built inside the unit circle, which concludes the proof.

3.2.3 The Barrier Following Fire Model

In the barrier following fire model, the fire starts at the origin of the plane and has to be contained in

the upper half-plane. To avoid that the fire instantaneously reaches the lower half-plane, we allow an

arbitrarily small head-start barrier of length s in both directions along the x-axis. The fire spreads with

unit speed, but only along any barrier already built.

The firefighter is restricted to building a horizontal barrier along the x-axis and vertical barriers

attached to it and has to prevent the fire from ever reaching the end of the horizontal barrier. Hence

the infinite horizontal barrier is the outer enclosing barrier that limits the fire to the upper half-plane,

while the vertical barriers are delaying barriers. As the fire burns twice along each vertical barrier -

first up and then down again - building as many of them as possible is crucial to effective strategies

for this model. To avoid degenerate strategies that just build vertical barriers at infinitesimally short

distances to each other, we require that a vertical barrier of height b has distance b to the next vertical

barrier in the same direction.
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Consider the following intuitive symmetric strategy. In both directions, the firefighters starts to

build a vertical barrier at the end of the head-start barrier of length s at equal speed v
2 . If v < 2 he is

eventually reached by the fire at a point t1. At this point he will have built two barriers of length vt1
2

each. Hence, vt1
2 + s = t1⇔ t1 = 2s

2−v and the length of the first barrier is b := vt1
2 = vs

2−v .

Now he must build a part of the horizontal barrier in both directions before he is allowed to

build the next vertical barrier, namely a piece of length b1 again. He then starts the next vertical

barrier until he is reached by the fire again, which will have length 2−2v
v−2 b1. Following this approach

repeatedly results in the i-th vertical barrier having length bi =
2−2v
v−2 bi−1 =

2−2v
v−2

i−1
b1. We will call

this the growth factor βv =
2−2v
v−2 . For v = 4

3 it holds βv = 1, so this strategy results in infinitely many

barriers of equal length and distance as illustrated in Figure 3.7 .

ss

2s 2s 2s2s2s

2s

2s 2s2s

2s 2s 2s 2s2s2s

2s2s

2s

Figure 3.7: A infinite symmetric strategy for the barrier following fire model for v = 4
3 .

For v > 4
3 it holds βv > 1, so the length of the vertical barriers increases by a constant factor each

time, e. g. the length of the vertical barriers doubles with each iteration for 3
2 . For v < 4

3 it holds βv < 1

so the length of the vertical barriers decreases by a constant factor with each iteration. This means hat

the total length of all barriers built by this strategy is
∞

∑
k=0

β k
v 2 vs

2−v . As
∞

∑
k=0

xk = 1
1−x if |x|< 1, that sum

is also bounded by 1
1−βv

2 vs
2−v , therefore the fire eventually reaches the end of the horizontal barrier if

v < 4
3 .

Theorem 10
The infinite symmetric strategy contains the fire in the barrier following fire model if and only if v≥ 4

3 .

3.3 The Half-Plane Model

The main model, which we analyse in depth in this chapter, is the half-plane model. In the half-plane

model, the fire spreads from the origin and continuously expands over time with unit speed according

to the L1 metric and has to be contained in the upper half-plane. As in Subsection 3.2.3, we prevent the

fire from immediately spreading into the lower half-plane by allowing an arbitrarily small head-start

barrier of length s into both directions along the x-axis. The goal is then to provide a barrier strategy

that contains the fire in the upper half-plane.

The firefighter is restricted to barrier systems that consist of the horizontal enclosing barrier along

the boundary of the half-plane and vertical delaying barriers attached to it. In contrast to strategies for

the canonical continuous firefighting problem, these barrier system contain an infinite barrier as the

enclosing barrier.
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As established for the canonical model, we don’t need to define the order in which the barriers in

the system are built over time. Instead, we can analyse the order in which the fire reaches the barriers

in a fixed barrier system. It is clear that when building a barrier system simultaneously to the fire

spreading, every piece of barrier must be build before the fire reaches it. A barrier system can be

built with a speed v if and only if the total length of barriers reached at time t never exceeds v · t. The

question we focus on is: What is the minimum speed v for which such a barrier system exists?

As our main results, we show that no such barrier system exists for a speed v≤ 1.6 and provide a

barrier system for a speed v≥ 1.8772.

3.3.1 Notation

To describe a strategy or barrier system in our model, we denote the i-th delaying barrier to the right by

bi. The part of the horizontal barrier between bi−1 and bi is denoted by ai. For simplicity of notation,

we also refer to their length by ai and bi. If there is only a finite number r of vertical barriers in one

direction, then ar+1 denotes the infinite piece of horizontal barrier after the last vertical barrier br. For

the other direction, we use ci and di respectively.

For convenience, Ai := ∑
i
j=1 a j will denote the total length of horizontal barriers in the right

direction up till and including ai and Bi := ∑
i
j=1 b j will denote the total length of vertical barriers in

the right direction up till and including bi. We define Ci and Di equivalently for the left direction.

As the fire spreads over the barrier system, it represents a geodesic L1 circle, which consumes the

barriers when burning along them. The fire-front is the set of all points in the plane, which shortest

non-barrier-crossing path to the fire origin has length t. We consider a point x on a barrier as consumed

at time t if the fire has reached this point at time t. That means there exists a non-barrier-crossing

path of length at most t from the fire origin to the point x. Hence, any piece of the barrier system

is not consumed all at once, but as the fire burns along it. We call a point on a barrier, whose

shortest non-barrier-crossing path to the fire has exactly length t, a consumption point at time t, so

the consumption points are a subset of the fire front. We call the number of consumption points at

time t the current consumption and a time interval with constant k consumption points at all times a

k-interval.

We will usually consider k-intervals and current consumption separately for both directions. The

fire front, consumption points, k-intervals and the effect of vertical delaying barriers are illustrated in

Figure 3.8. After the fire reaches a delaying barrier for the first time, it may burn along the barrier

system at multiple points. However, after reaching both ends and passing the top of a barrier there

might be no consumption for a while as the delaying barrier has already been burned along from the

other side.
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bi

bi−1

ai ai+1Ai−1

bi

bi−1

ai ai+1Ai−1

bi

bi−1

ai ai+1Ai−1

a) b) c)

Figure 3.8: Fire spreading along delaying barriers. The dashed line shows the fire front at different
times t, solid points represent consumption points, while empty points represent places, where the fire
burns along the back of already consumed parts of the barrier bi. In a) there is one consumption point,
so there is a 1-interval in the right direction. In b) there are three consumption points and in c) there is

a 0-interval in the right direction as there are no consumption points.

We define the total consumption C and consumption-ratio Q for a time interval [t1, t2] in a barrier

system:

C(t1, t2) := length of barrier pieces consumed by the fire between t1 and t2
Q(t1, t2) := C(t1,t2)

t2−t1
.

For the consumption in a time interval [0, t], we will also write C(t) and Q(t) for short. In our

setting, if [t0, t1] is a k-interval, then C(t1) = C(t0)+ (t1− t0) · k. As a consequence, |Qt0 − k| >
|Qt1− k| so the consumption-ratio will always go towards k during a k-interval.

Note that all these definitions can easily be applied to either side of the barrier system separately

to define the directional consumption and directional consumption-ratio in the left and right direction,

denoted by Ql(t), Qr(t) and C l(t), C r(t) equivalently. Obviously, Q(t) = Ql(t) +Qr(t) and

C(t) = C l(t)+C r(t).

As C(t) is exactly the sum of lengths of all barriers, it is necessary and sufficient to have

C(t)≤ v · t to be able to build a barrier system with limited building speed v. This is equivalent to

having v≥ supt Q(t), so we will focus on bounding Q(t) at the local maxima to determine for which

speed v a barrier system can be built.

3.4 Lower Bounds for the Half-Plane Model

We will start with some structural observations for optimal barrier systems, that lead to a straight-

forward initial lower bound of v > 3/2 = 1.5. This basic bound is based on the observation, that

the consumption-ratio in both directions will repeatedly attain local maxima of at least 1 while

local minima will still have a directional consumption-ratio of at least 1/2. We will then refine the

analysis of the consumption-ratio around local minima and maxima to obtain increasing lower bounds,

culminating in a lower bound of v > 5
3 = 1.6.
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3.4.1 A Basic Bound

Observe, that a vertical barrier that is shorter than the predecessor in the same direction does not

delay the fire. Hence, we can assume that vertical barriers in one direction increase strictly in length,

so bi > bi−1 and di > di−1 for all i > 1. But we can show an even stronger bound on the growth of

successive vertical barriers.

Lemma 10
Let S be a barrier system with CS(t)≤ v · t at all times t. Then there exists a barrier system S′ with

CS′(t)≤ CS(t) at all times t, in which any vertical barrier bi (or di) is more than twice as long as the

previous barrier bi−1 (or di−1) in the same direction, i. e., we have bi > 2bi−1 and di > 2di−1 for all

i > 1.

Proof. Assume S does not fulfil both properties bi > 2bi−1 and di > 2di−1. As argued above, we can

at least assume bi > bi−1 and di > di−1 for all i > 1. Then we can construct a new barrier system S′

with barriers denoted a′ to d′ with b′i > 2b′i−1 and d′i > 2d′i−1 while CS′(t)≤ CS(t)≤ v · t for all t.

The construction is identical for both directions, so w. l. o. g. we just consider the right direction.

Let r be the number of barriers in S in the right direction, which can be infinity. Let bk (r ≥ k > 1) be

the first vertical barrier in the right direction with bk ≤ 2bk−1. Let ∆ = bk−bk−1.

To construct S′, we remove bk and move all following vertical barrier 2∆ := 2(bk−bk−1) to the

right. If bk is the last barrier in the right direction, nothing changes besides the removal of bk. So, the

right side of our barrier system S′ consists of b′i and a′i precisely as follows:

for 1≤ i < k b′i = bi a′i = ai (3.2)

if k < r b′k = bk+1 a′k = ak +ak+1 +2∆ (3.3)

for k ≤ i < r b′i = bi+1 a′i = ai+1 (3.4)

if r < ∞ a′r = ar+1. (3.5)

We will now give an injective map of any piece of barrier a′i or b′i in S′ to a piece of barrier in S of

at least the same length. As long as every piece of barrier in S′ is consumed at the same time or later

than its counterpart in S, we have CS′(t)≤ CS(t). For i < k, we can clearly map a′i to ai and b′i to bi

as S and S′ are identical up to that point. Therefore, the consumption-ratio in the right direction is

identical for S and S′ until time t = ak−1 +bk−1 when the fire reaches the top of bk−1 in S. We will

consider the mapping for i≥ k in more detail, beginning with a′k.

a′k can be mapped to a combination of ak, ak+1 and bk as illustrated in Figure 3.9. The piece of a′k
that’s identical to ak is consumed by the fire in S′ at the exact same time and speed as in S. In S, the

leftmost point of ak+1 is reached by the fire at time ak +bk−1 +2∆. Therefore the rightmost part of

a′k of the same length as ak+1 is reached and consumed at the by the fire in S′ at the exact same time

and speed as ak+1 in S. The same arguments hold, if bk, was the last barrier in the right direction and

ak+1 (and therefore a′k) are infinite. The remaining part of a′k of length 2∆ is at most as long as bk,
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as 2∆ = 2(bk−bk−1) = bk +(bk−2bk−1)≥ bk, but first reached in S′ at a time, when bk has already

been completely consumed in S. Every a′i with i > k can be mapped to the ai+1 of the same length as

it is reached and therefore consumed exactly ∆ later than its counterpart.

bk+1

ak+1ak a′k = ak + ak+1 + 2∆

∆

b′k = bk+1

2∆
bk−1 b′k−1 = bk−1

bk

S S ′

Figure 3.9: The consumption of the horizontal barrier a′k in S can be mapped to ak, ak−1 and bk in S.
The mapped pieces of equal length are indicated by color. Each piece of a′k in S′ is consumed at the

same time or later than the corresponding barrier in S.

Assuming, bk was not the last barrier in the right direction, b′k can be mapped to bk+1. While b′k
has the same length as bk+1, a different point of it is reached first due to the removal of bk. Every

vertical barrier is first reached by the fire at the height of the previous vertical barrier. While b′k is first

reached at height bk−1, bk+1 is first reached at height bk, exactly ∆ higher. b′k is first reached at time

t +ak +Ak+1 +2∆, while bk+1 is reached at time t +ak +∆+ak+1, exactly ∆ earlier. As b′k is reached

both later and at a lower point, every point on it is consumed later than the same point on bk+1. Every

b′i with i > k can be mapped to the bi+1 of the same length, which is reached at the same point, but

exactly 2∆ earlier.

If S′ still contains some barrier b′j with b′j > 2b′j−1, this transformation can be repeated, which

concludes the proof.

A similar observation can be made about the relation between length of the vertical delaying

barriers and the length of the horizontal pieces in between.

Lemma 11
Let S be a barrier system with CS(t)≤ v · t at all times t. Then there exists a barrier system S′ with

CS′(t) ≤ CS(t) at all times t, in which any horizontal barrier ai (or ci) is at least as long as the

previous vertical barrier bi−1 (or di−1) in the same direction, i. e., we have ai ≥ bi−1 and ci ≥ di−1

for all i > 1.



3.4 Lower Bounds for the Half-Plane Model 63

Proof. By Lemma 10, we can assume S to fulfil bi > 2bi−1 and di > 2di−1 for all i > 1. Assume S

does not fulfil ai ≥ bi−1 and ci ≥ di−1 for all i > 1. Then we can construct a new barrier system S′

with barriers denoted a′ to d′ with a′i ≥ b′i−1 and c′i ≥ d′i−1 for all i > 1, while CS′(t)≤ CS(t)≤ v · t.
The construction is identical for both directions, so w. l. o. g. we just consider the right direction.

Let r be the number of barriers in the right direction, which can be infinity. Let ak (r ≥ k > 1) be the

first horizontal barrier in the right direction with ak < bk−1. Let ∆ = 1
5 (bk−1−ak).

To construct S′, we reduce the length of both bk−1 and bk by 2∆, move bk by 3∆ and all following

bi with i > k by 2∆ to the right, which changes the lengths of ak and ak+1. If bk is the last barrier in

the right direction, only bk, bk−1 and ak are affected, as ak+1 = ∞. So, the right side of our barrier

system S′ consists of b′i and a′i precisely as follows:

for 1≤ i < k−1 b′i = bi a′i = ai (3.6)

b′k−1 = bk−1−2∆ a′k−1 = ak−1 (3.7)

b′k = bk−2∆ a′k = ak +3∆ (3.8)

if k+1≤ r b′k+1 = bk a′k = ak+1−∆ (3.9)

for k+1 < i≤ r b′i = bi a′i = ai (3.10)

Similar to the proof of Lemma 10, we want to injectively map the consumption of every piece of

barrier in S′ to a piece in S that is consumed at the same time or later. For 1≤ i < k−1, we can map

a′i and b′i in S′ to the identical pieces in S, as the fire spreads through that part identically. Similarly,

we can map every a′i and b′i for i > k+1 to their direct counterparts ai and bi in S. As the length of

b′k+1 is identical to bk+1, and the top of b′k+1 is reached exactly 2∆ later than the top of its counterpart

bk+1 in S, all following b′i and a′i in S′ are reached by the fire in the exact same manner, but 2∆ later

than their direct counterparts in S.

Thus, we only need to consider the consumption of a′k−1, b′k−1, a′k, b′k, a′k+1 and b′k+1 in more

detail. a′k−1 and b′k−1 are consumed identically to ak−1 and bk−1, however, as b′k−1 is 2∆ shorter, there

is a piece of bk−1 remaining that we can map the consumption of another piece to. b′k+1 is 2∆ further

to the right than its counterpart bk+1, but due to b′k being exactly 2∆ shorter than bk, b′k+1 is still first

reached by the fire at the same time as bk+1, albeit at a point 2∆ lower than in S. In addition, by our

initial assumption b′k+1 = bk+1 > 2bk = 2(b′k +2∆)> 2b′k. Thus, b′k+1 is consumed in two phases -

first a 2-interval of length b′k, followed by a 1-interval of length b′k+1−2b′k. This is clearly slower

than its counterpart bk+1 in S, which is consumed first in a 2-interval of length bk = b′k +2∆, followed

by a 1-interval of length bk+1−2bk = b′k+1−2b′k +4∆. Thus, we can map, b′k+1 to bk+1.

The combination of the remaining barriers, a′k, b′k and a′k+1 can be mapped to their counterparts

ak, bk and ak+1 as well as the remaining free piece of bk−1 of length 2∆, but not one to one due to the

differences in length. Instead of describing the mapping piece by piece, we will compare the exact

order in which those barriers are consumed in S and in S′ and the resulting consumption, as illustrated

in Figure 3.10. As long as the consumption of the pieces in S′ never exceeds those of the pieces in S,
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there exists the injective mapping we require. We will start at the time t0, when the fire reaches the

top of b′k−1. This is the first moment, when the consumption of S and S′ differs due to the remaining

piece of bk in S being consumed.

bk−1

bk

ak+1ak

1 0 2 1

2∆ ak 5∆ bk − 2bk−1

1

S

S ′

CrS − CrS′ 4∆

bk

t0

t0

b′k :=

5∆

a′k :=
ak + 3∆

b′k−1 :=

bk−1 − 2∆

bk − 2∆

a′k+1 :=
ak+1 −∆

t0

ak+1

10

0
a′k :=

ak + 3∆

ak

3

∆

3
a′k :=

ak + 3∆

∆

1

b′k − 2b′k−1 :=

bk − 2bk−1 + 2∆

b′k :=

bk − 2∆

a′k :=

ak −∆

2∆ 2∆ 0

0

2∆ 2∆

∆ ∆

0

0

2∆

S S ′

0

∆ ∆ 2∆

Figure 3.10: The combined consumption of the horizontal barriers a′k, b′k, a′k+1 in S happens later than
that of their counterparts ak, bk and ak+1 as well as the remaining free piece of bk−1. The resulting
consumption intervals and the difference in consumption at each interval end is given below the

figures illustrating the construction. The red dashed and dotted lines indicate changes in consumption
in either barrier system.

Thus, the consumption of the aforementioned pieces in S begins with a 1-interval of length 2∆,

until the remaining piece of bk−1 is consumed. This is followed by a 0-interval of length ak, until the

fire reaches the vertical barrier bk at height bk−1. As the fire burns along bk both up and down, this

creates a 2-interval of length bk−ak+1 = 5∆, until the fire reaches the beginning of the horizontal

barrier ak. The added consumption of ak results in a 3-interval of length ak. The remainder of bk is

then consumed in a 1-interval of length bk−2bk−1. After the fire burns down the back of bk without

consumption, resulting in a 0-interval of length bk, the final piece ak+1 is then consumed in a single

1-interval of length ak.

The consumption of a′k, b′k and a′k+1 is a little simpler. Due to the length adjustments, a′k = b′k−1

as a′k = ak +3∆ = ak +
3
5(bk−1−ak) =

3
5 bk−1 +

2
5 ak = bk−1− 2

5(bk−1−ak) = bk−1−2∆ = b′k−1. In

addition, b′k = bk− 2∆ ≥ 2bk−1− 2∆ > 2b′k−1 by construction. Thus, we start with a 0-interval of

length a′k = bk−1 = ak +3∆ until the fire reaches both b′k and a′k simultaneously, which is followed

by a 3-interval of the same length. The remainder of b′k is then consumed in a single 1-interval of

length b′k−2b′k−1 = bk−2bk−1 +2∆. After the fire burns down the back of b′k without consumption,
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resulting in a 0-interval of length b′k = bk− 2∆, the final piece a′k+1 is then consumed in a single

1-interval of length a′k = ak−∆.

Note, that when considering all of S and S′, the consumption of bk+1 and b′k+1 might start at

some point during these time intervals. But we only need to consider ak, bk and ak+1 as well as the

remaining free piece bk−1 of length 2∆, as we already mapped the consumption of all other pieces in

S.

Now, if the consumption of the considered intervals in S′ exceeds the one in S at any point, it will

also do so at the end of one of the intervals due to the linearity of the consumption within one interval.

But, as illustrated in Figure 3.10, the consumption in S lies below S′ at every interval change. Hence,

there exists an injective mapping as required.

By construction, a′k = b′k−1. Thus, repeated application of the transformation above result in a

strategy S′ fulfilling ai ≥ bi for all i.

Note that our proof about the lower consumption of S′ requires S to fulfil bi > 2bi−1 for all i, but

one step of our construction might destroy this property as the length of bk−1 gets reduced. In such a

case, we apply the transformation from the proof of Lemma 10, so S′ fulfils bi > 2bi−1 before each

construction step. This can only lengthen any ai and thus, does not affect the overall construction.

This means that when given an arbitrary barrier system containing the fire for some v < 2, we can

assume the following conditions to hold:

ai+1 ≥ bi and bi+1 ≥ 2bi ∀i≥ 1, (3.11)

similarly ci+1 ≥ di and di+1 ≥ 2di ∀i≥ 1. (3.12)

If a barrier systems fulfils these conditions, the order of consumption of vertical and horizontal

barriers in a single direction is very regular due to the following observation: When the fire reaches

the top of a vertical barrier bi at some time ti (compare Figure 3.12), every barrier ak and bk with k≤ i

has been completely consumed, as for every point on ak or bk the shortest non-barrier-crossing path

has length smaller than Ai +bi = ti.

Hence, a 0-interval in the right direction will begin at such times ti and C r(ti) = Ai+Bi− s, where

s denotes the length of the head-start not contributing to the consumption. Moreover, for a single

direction this results in a repeating sequence of k-intervals of specific lengths and k as illustrated in

Figure 3.11. Due to the ai+1 > bi, the 0-interval starting at t will have length exactly bi. We say, that

the barrier bi generated that 0-interval. This observation holds equivalently for both directions.

We will utilize this structural property both for the construction of viable strategies as well as

in our proofs for lower bounds for v. As an initial result, we will derive a basic lower bound on the

necessary speed v to contain the fire in the half-plane model, by considering the consumption in one

direction at the beginning and at the end of every 0-interval.

Theorem 11: Basic Lower Bound
In the half-plane model, the fire can not be contained with speed v≤ 1.5.
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Figure 3.11: A sequence of k-intervals for the right direction. The length is given above each interval
and the current consumption below.

Proof of Theorem 11

For a barrier system to contain the fire in the half-plane model, we must have C(t)≤ v · t at all times t.

Lemma 12
Let S be a barrier system in the half-plane model with C(t) ≤ 2 · t at all times t. Then, after some

fixed threshold time tt , the consumption-ratio in one direction always exceeds 1 at the beginning of

0-intervals in that direction. Moreover, for any arbitrarily large time t there exist 0-intervals that

begin after t in both directions.

Proof. As without vertical delaying barriers, the consumption-ratio just goes towards 2, S has an

unbounded number of vertical barriers in at least one direction. W. l. o. g. assume this is the right

direction. By Lemma 10, we can also assume bi > 2bi−1 and di > 2di−1 for all i > 1 in S. Therefore,

for any constant, there is some i large enough, such that bi and all subsequent barriers b j with j > i

exceed that constant. In particular, this holds for 2s, e. g. bi > 2s for all i large enough.

bi

Ai

t

0

bi−1

Figure 3.12: At some time t = Ai +bi the fire will reach the top of a vertical barrier bi.

Consider a moment when the fire reaches the end of some barrier bi as illustrated in Figure 3.12.

This happens at time t = bi +Ai and Lemma 10 implies we have C r(t) = Ai +Bi− s.

C r(t) = Ai +Bi− s = Ai +bi +Bi−1− s | Bi−1 > 2s for i large enough

> Ai +bi + s > t + s > t (3.13)
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Hence, when the fire reaches the top of a vertical barrier (i. e. the beginning of a 0-interval) in the

right direction at times t large enough, Qr(t)> 1. Therefore, S also has repeated 0-intervals in the

left direction as well. Otherwise Ql(t) would go towards 1 and Q(t)> 2 at such times.

Hence the same argument holds for the other direction as well, which concludes the proof.

Lemma 12 implies that both directions repeatedly attain local maxima where the directional

consumption-ratio exceeds 1. To derive a lower bound, we also need to consider the local minima.

Lemma 13
Let S be a barrier system for the half-plane model with C(t)≤ 2 · t at all times t. Then, after some

fixed threshold time tt , the consumption-ratio in one direction always exceeds 1
2 in both directions.

Proof. By Lemma 12, the directional consumption-ratio in either direction repeatedly exceeds 1. As

S contains the fire for some speed v < 2, this implies that the consumption-ratio in each direction also

repeatedly falls below 1, such that the sum of consumption-ratio in both directions stays below 2 at all

times.

W. l. o. g. consider a local minimum of the directional consumption in the right direction at

a time tmin with Qr(tmin) < 1. During a k-interval in one direction, the consumption-ratio in that

direction goes towards k. As the consumption-ratio either increases or decreases the whole time

during an interval, a local minimum (or maximum) will always lie at the end of an interval and will

have consumption-ratio greater (smaller for maxima) than k. Therefore, tmin must lie at the end of a

0-interval.

Consider any moment, when we reach the end of a 0-interval in the right direction after the fire

has burned along the back of some barrier bi. This happens at time t = Ai +2bi, when the fire reaches

the horizontal barrier and starts consuming ai+1. As before, Lemma 10 implies C r(t) = Ai +Bi− s.

C r(tmin) = Ai +Bi− s = Ai +bi +Bi−1− s | Bi−1 > s for i large enough

> Ai +bi =
1
2
(2Ai +2bi)>

1
2
(Ai +2bi)≥

1
2

tmin (3.14)

Hence, for times t large enough, at the end of all 0-intervals and therefore at all local minima with

Qr < 1, Qr(t)> 1
2 . This holds equivalently for the left direction, which concludes the proof.

At a time ti, when the fire reaches the top of a vertical barrier bi in the right direction, we have

Qr(t)> 1 by Lemma 12 and Ql(t)> 1
2 by Lemma 13. Therefore, Q(t)> 3

2 = 1.5, which concludes

the proof of Theorem 11.
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3.4.2 A Lower Bound Based on Helpful Cycles

Let S be a barrier system that contains the fire in the half-plane model for some speed v = 3
2 + ε < 2.

By Lemma 12, we know that S has infinitely many 0-intervals in both directions. We therefore

structure the consumption intervals into cycles based on these 0-intervals.

Let zi denote the i-th 0-interval in the right direction. Between two consecutive 0-intervals zi and

zi+1, there is a regular sequence of k-intervals with k ≥ 1 as presented in Subsection 3.4.1. However,

the exact lengths of these k-intervals depends on the barrier system. Without any further assumptions

on the structure of the barrier system, we refer to this whole sequence of k-intervals by wi. Together

we refer to such a pair (zi, wi) as the cycle i. For simplicity, let wi and zi also denote the length of

these intervals. For the left direction, we denote the cycles by (yi,vi) instead.

Let ti = ∑
i−1
j=1(w j + z j) denote the start time of zi, i. e. the beginning of cycle i. Let wi,k be

the total length of all k-intervals within wi and Ki be the largest k within wi with wi,k > 0. Then,

let W µ

i = ∑
Ki
k=1 k ·wi,k denote the total consumption during wi. This is equal to the consumption

C r(ti, ti+1) during the whole cycle i as there is no consumption during the 0-interval zi.

Like in Subsection 3.4.1 we will use the interaction of high and low values of the consumption-ratio

in either direction to obtain a stronger lower bound. By Lemma 12, the directional consumption-ratio

at the beginning of a 0-interval, i. e., at the end of a cycle, exceeds 1. To keep the global consumption-

ratio below 3
2 + ε , this must be countered by a consumption-ratio below 1

2 + ε in the other direction.

Let a helpful cycle be a cycle during which a cycle (y j,w j) from the other direction ends. We will

show that the end of a cycle must lie inside an interval with 1
2 < Qr(t) ≤ 1

2 + ε around the local

minimum of a helpful cycle. Bounding both the size of this interval and the consumption-ratio within

a single helpful cycle, we will obtain the following theorem:

Theorem 12
In the half-plane model, the fire can not be contained with speed v≤ 1.53069.

Proof of Theorem 12

We will start with some structural observations. The first cycle is somewhat unique, as its 0-interval

is generated by the head-start barrier instead of a vertical delaying barrier. But we can derive the

following fundamental properties for all following cycles (zi,wi) for i > 1.

Lemma 14
i) W µ

i ≥ zi + zi+1

ii) zi > wi.

Proof. Let bi be the delaying barrier generating the 0-interval zi. By Lemma 11 and Lemma 10, we

can assume the k-intervals within a cycle to be regular as illustrated in Figure 3.11.

i) The next 0-interval zi+1 will be generated by bi+1 with k > i, so zi+1 = bi+1. However, both

ai+1 and bi+1 are consumed completely during (zi,wi), so W µ

i = ai+1 +bi+1 ≥ zi + zi+1.
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ii) This follows directly form the regular k-intervals, as wi contains a 3-interval of length bi = zi as

well as a 1-interval of length bi+1−2bi > 0.

Now consider a helpful cycle (zi,wi) in the right direction, during which a cycle (yh,vh) from the

other direction ends at some time t.

Lemma 15
For helpful cycles i, we have

zi ≥
1/2− ε

1/2+ ε

i−1

∑
j=1

(w j + z j) . (3.15)

Proof. To counter Ql(t) > 1 at the end of vh, we must have Qr(t) < 1
2 . However, by the regular

structure of the k-intervals, Qr(t)≤ 1
2 + ε only in an interval around the unique local minimum of

(zi,wi), which happens at the end of the zi at ti + zi. Thus, we must have Qr(ti + zi)< 1/2+ ε , hence

Q(ti + zi) =

i−1
∑
j=1

W µ

j

zi + ti
≤ 1/2+ ε ⇔

i−1

∑
j=1

W µ

j ≤ (zi + ti)(1/2+ ε) . (3.16)

By Lemma 12, we know that the directional consumption-ratio exceeds 1 at ti:

Q(ti) =

i−1
∑
j=1

W µ

j

ti
≥ 1 ⇔

i−1

∑
j=1

W µ

j ≥ ti. (3.17)

Combining Equation 3.16 and Equation 3.17, we get:

ti ≤ (zi + ti)(1/2+ ε)

⇔ ti (1/2− ε)≤ zi (1/2+ ε)

⇔
i−1

∑
j=1

(w j + z j)≤
1/2+ ε

1/2− ε
· zi

⇔ zi ≥
1/2− ε

1/2+ ε

i−1

∑
j=1

(w j + z j) (3.18)

By these arguments and Lemma 13, the directional consumption-ratio minimum of a helpful cycle

i at ti + zi attains a value between 1/2+ ε and 1/2. To keep the global consumption-ratio below 3
2 + ε ,

the end of the cycle in the other direction must lie in the interval around that minimum, for which the

consumption-ratio is below 1/2+ ε as illustrated in Figure 3.13.
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zi
wi

ti + zi

1
2

Qr(t)

t

1
2
+ ε

ti + zi + ri

rili

ti + zi − li

Figure 3.13: A local minimum in a helpful cycle.

Lemma 16
Let [ti + zi− li, ti + zi + ri] be the interval around the minimum at ti + zi of a helpful cycle, where the

consumption-ratio in that direction is below or equal to 1/2+ ε . Then

li ≤
ε

1/2+ ε
(ti + zi)≤

ε

(1/2− ε)(1/2+ ε)
zi (3.19)

and

ri ≤
ε

1/2− ε
(ti + zi)≤

ε

(1/2− ε)2 zi. (3.20)

Proof. By Lemma 13, we know that C r(ti + zi) ≥ 1/2(ti + zi). There also is at least consumption 1

between ti + zi and ti + zi + ri, as it is part of wi, hence:

1/2+ ε =
C r(ti + zi + ri)

ti + zi + ri
≥ C r(ti + zi)+ ri

ti + zi + ri
≥

1
2 · (ti + zi)+ ri

ti + zi + ri
. (3.21)

Solving this inequality for ri yields

ri ≤
ε

1/2− ε
(ti + zi) =

ε

1/2− ε

(
i−1

∑
j=1

(z j +w j)+ zi

)
. (3.22)

By Lemma 15, ri can be related directly to zi:

ri ≤
ε

1/2− ε

(
1/2+ ε

1/2− ε
zi + zi

)
=

ε

(1/2− ε)2 zi. (3.23)

Equivalently, applying the fact, that there is consumption 0 between ti + zi− li and ti + zi, yields the

bound for li:

li ≤
ε

1/2+ ε
(ti + zi) =

ε

1/2− ε

(
i−1

∑
j=1

(z j +w j)+ zi

)
≤ ε

(1/2− ε)(1/2+ ε)
zi. (3.24)
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From Lemma 13 it follows that the consumption-ratio in one direction can attain values of at most

1+ ε . But that does not mean that the consumption-ratio of a single cycle C (ti,ti+1)
zi+wi

is at most 1+ ε .

However, the consumption-ratio of a cycle can not be arbitrarily large, as the consumption-ratio is

greater than 1 at the beginning of the cycle and at most 1+ ε at the end. This observation can be used

to obtain an upper bound on zi+1:

Lemma 17
For helpful cycles (zi,wi), we have

zi+1 ≤
(

1+
3−2ε

1−2ε
ε

)
wi.

Proof. Assume an arbitrary cycle has a consumption-ratio of 1+βε , so:

C (ti, ti+1)

zi +wi
= 1+βε ⇔ C (ti, ti+1) = (zi +wi)(1+βε) (3.25)

Now consider the consumption-ratio at the end of the cycle:

C (ti+1)

ti+1
=

C (ti)+C (ti, ti+1)

ti + zi +wi
≤ 1+ ε

⇔ C (ti)+C (ti, ti+1)≤ (ti + zi +wi)(1+ ε). (3.26)

By Lemma 12, C (ti)> ti. Applying this and Equation 3.25 to the left side of Equation 3.26 yields:

ti +(zi +wi)(1+βε)≤ (ti + zi +wi)(1+ ε)

⇔ ti +(zi +wi)+(zi +wi)βε ≤ ti +(zi +wi)+ tiε +(zi +wi)ε

⇔ (zi +wi)βε ≤ tiε +(zi +wi)ε

⇔ (zi +wi)(β −1)≤ ti =
i−1

∑
j=1

(w j + z j) (3.27)

For helpful cycles, we can apply Lemma 15 on the right side and Lemma 14 ii) on the left side of

Equation 3.27 and solve for β :

2zi (β −1)≤
1/2+ ε

1/2− ε
· zi

⇔ β −1≤
1/2+ ε

1−2ε
·

⇔ β ≤
3/2− ε

1−2ε
(3.28)
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So for all helpful cycles the consumption-ratio within the cycle does not exceed 1+βε , i.e.

W µ

i
wi + zi

≤ 1+βε ⇔ W µ

i ≤ (1+βε)(wi + zi)

Applying Lemma 14 i) to the left and, in a second step, Lemma 14 ii) to the right side results in

zi + zi+1 ≤ zi +βεzi +(1+βεwi)

⇔ zi+1 ≤ (1+2β )wi

⇔ zi+1 ≤
(

1+
3−2ε

1−2ε
ε

)
wi. (3.29)

Now consider a zi+1 from a helpful cycle as depicted in Figure 3.14. By Lemma 17, we can bound

zi+1

wi

zi

wi−1

yh
vh

yh+1

vh+1

ti th ti+1

rh ri rh+1

1

1
2
+ ε

1
2

1 + ε
Qr,l(t)

Figure 3.14: Interweaving of directional consumption of left and right cycles.

zi+1 in terms of wi. In turn, we want to bound wi in terms of yh+1. As established in the proof of

Lemma 16, the cycle endpoint at ti+1 with it consumption ≥ 1 can lie at most rh+1 to the right of the

minimum at th +yh+1 to keep to total consumption-ratio below (3
2 + ε). Equivalently, the minimum at

ti + zi can only lie ri to the left of th+1, as seen in Figure 3.14. Hence

wi ≤ yh+1 + ri + rh+1 (3.30)

Applying Lemma 16 results in

wi ≤ yh+1 +
ε

1/2− ε
(ti + zi)+

ε

1/2− ε
(th+1 + yh+1). (3.31)
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Note, that the ri is only relevant if ti+ zi ≤ th+1, so we can assume as much. Then applying Lemma 15

and Lemma 16 we obtain

wi ≤ yh+1 +
ε

1/2−ε
(th+1)+

ε
1/2−ε

(th+1 + yh+1)

≤ y j+1

(
1+ ε

(1/2−ε)2 +
ε(1/2+ε)

(1/2−ε)2

)
.

(3.32)

Lemma 17 and Lemma 16 can be applied to derive equivalent bounds for yh+1, in terms of v j and v j

in terms of zi:

yh+1 ≤
(

1+
3−2ε

1−2ε
ε

)
v j and v j ≤ zi

(
1+

ε

(1/2− ε)2 +
ε (1/2+ ε)

(1/2− ε)2

)
. (3.33)

Combining all arguments from Lemma 17, Inequality 3.32 and Inequality 3.33 to bound zi+1 directly

in terms of zi and ε yields

zi+1 ≤
(

1+
3−2ε

1−2ε
ε

)2
(

1+
ε

(1/2− ε)2 +
ε (1/2+ ε)

(1/2− ε)2

)2

zi. (3.34)

On the other hand, Lemma 15 gives a bound in the other direction, when combined with Lemma 14

ii):

zi+1 ≥
1/2− ε

1/2+ ε

i

∑
j=1

(w j + z j)≥
1/2− ε

1/2+ ε
(wi + zi)≥

1−2ε

1/2+ ε
zi. (3.35)

Satisfying both Inequality 3.34 and Inequality 3.35 yields a contradiction unless ε ≥ 0.03069.

Note that our construction implicitly assumed that all cycles are helpful, and thus, helpful cycles

are consecutive. However, if this is not the case, then both ends of a not helpful cycle (zi,wi) and

thus, the complete cycle must lie within the interval with Ql(t)< 1
2 + ε around a local minimum of a

helpful cycle in the other directions, which only results in an even stronger bound.

This concludes the proof of Theorem 12.

3.4.3 A Lower Bound Based on Intervals with Bounded Directional Consumption-
Ratio

For the basic bound derived in Subsection 3.4.1 one only needed to consider a single point of

consumption in one direction and combine it with the minimum in directional consumption in the

other direction. In Subsection 3.4.2, we refined this idea by focusing on the interval around a helpful

minimum in directional consumption-ratio, which has low enough consumption-ratio to counter high

values in the directional consumption-ratio in the other direction. We will now extend on this idea by

splitting the whole timeline for each direction into time intervals with directional consumption-ratio

either above or below v
2 . Obviously, intervals with directional consumption-ratio above v

2 in one
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direction must be completely contained within an interval with directional consumption-ratio below v
2

in the other direction. By finding bounds for the size of these intervals, we will proof the following

stronger lower bound.

Theorem 13
In the half-plane model, the fire can not be contained with speed v≤ 1.625.

Proof of Theorem 13

Assume there exists a barrier system for a speed v = 1.5+ ε , so supt Q(t)< 3/2+ ε . By Lemma 10

and Lemma 11, we can assume bi > 2bi−1 and ai > bi−1 for all i > 1.

Consider a time tr, at which the consumption in the right direction reaches a maximum between two

0-intervals, for which by Lemma 12 Qr(tr)> 1. By Lemma 13, the consumption in the left direction

is always at least 1
2 , hence Qr(tr)≤ 1+ ε and equivalently for the other direction. Consequently, it

must regularly hold Ql(t)≤ 1/2+ ε at local minima in both directions.

Now consider the situation at a local minimum tmin, w.l.o.g. in the right direction. Again, as

shown in the proof of Lemma 13, a local minimum is reached at the end of a 0-interval. Therefore

Ctmin

tmin
≤ Ai +Bi

Ai +2bi
≤ 1/2+ ε

(1/2− ε)Ai ≤ (1+2ε)bi−Bi

Ai ≤
(2+4ε)

1−2ε
bi−

2
1−2ε

Bi. (3.36)

However, the maximum in consumption-ratio between two 0-intervals is not reached a the

beginning of the 0-interval. By Lemma 12, we know that the consumption-ratio exceeds 1 at the

beginning of a 0-interval. By the regularity of the k-intervals, the 0-interval generated by a vertical

barrier bi+1 is preceded by a 1-interval of length bi+1−2bi. But during a k-interval, the directional

consumption goes towards k, and can therefore only have a consumption-ratio above k at the end if it

the consumption-ratio decreased during the whole interval. This means the directional consumption-

ratio decreased towards 1 during this interval to arrive at a value above 1 at the end of it. Hence,

the directional consumption-ratio at the beginning of this 1-interval must be even higher than at the

beginning of the 0-interval.

However, to keep the combined consumption-ratio below 3
2 + ε , a local maximum in directional

consumption consumption-ratio can not exceed exceed 1+ ε by Lemma 13. Therefore, the direc-

tional consumption-ratio increased during the 3-interval before the 1-interval. Thus, the directional

consumption-ratio has a local maximum at tmax at the end of the 3-interval, when the fire has consumed
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length 2bi of barrier bi+1. Hence,

Ctmax

tmax
≤ 1+ ε

Ai +Bi +ai+1 +2bi

Ai +ai+1 +2bi
≤ 1+ ε

Bi ≤ ε Ai + εai+1 +2εbi.

Here, we can directly apply Equation 3.36 to obtain a lower bound for ai+1:

Bi ≤
ε (2+4ε)

1−2ε
bi−

2ε

1−2ε
Bi + εai+1 +2εbi(

1+
2ε

1−2ε

)
Bi ≤

(
2ε +

ε (2+4ε)

1−2ε

)
bi + ε ai+1

⇒
(

1+
2ε

1−2ε

)
bi <

(
2ε +

ε (2+4ε)

1−2ε

)
bi + ε ai+1

ε ai+1 ≥
(

1+
2ε

1−2ε
−2ε− ε (2+4ε)

1−2ε

)
bi

≥
(

1−2ε

1−2ε
+

2ε

1−2ε
+

4ε2−2ε

1−2ε
+
−4ε2−2ε

1−2ε

)
bi

≥ 1−4ε

1−2ε
bi

ai+1 ≥
1−4ε

ε (1−2ε)
bi =

1−4ε

ε−2ε2 (3.37)

To shorten this in future formulae, we define α := 1−4ε

ε(1−2ε) .

Now we can use Equation 3.36 to obtain a lower bound on bi by applying Equation 3.37 to every

summand in Ai =
i

∑
j=1

a j.

1−4ε

ε (1−2ε)
Bi−1 ≤

2+4ε

1−2ε
bi−

2
1−2ε

Bi

1−4ε

ε (1−2ε)
Bi−1 +

2
1−2ε

bi−1 ≤
(2+4ε)

1−2ε
bi−

2
1−2ε

bi(
1−4ε

ε (1−2ε)
+

2ε

ε (1−2ε)

)
Bi−1 ≤

4ε

1−2ε
bi

1
ε

Bi−1 ≤
2ε

1−2ε
bi

⇔ bi ≥
1−2ε

4ε2 Bi−1

⇒ bi ≥
1−2ε

4ε2 bi−1 =

(
1

(2ε)2 −
1

2ε

)
bi−1 (3.38)

Again, for future use, we define β := 1−2ε

4ε2 .
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Figure 3.15: The consumption-ratio Qr(t) around tmin.

For ε ≤ 1
2 , Equation 3.38 yields bi ≥ 0, for ε ≤ 1/4, this yields bi ≥ 2bi−1, and for ε approaching

0, the factor approaches infinity. Similarly, Equation 3.37 yields ai+1 ≥ 0 for 0 < ε ≤ 1/4, ai+1 > bi

for ε ≤ 1/4
(
5−
√

17
)
≈ 0.22, and ai→ ∞ for ε → 0. As we already know bi ≥ 2bi−1 and ai+1 > bi

by the much simpler arguments given in Subsection 3.4.1, this bound gives us new information about

strategies for speeds v = 3/2+ ε ≤ 1.72. Thus, from now on, we will assume ε < 0.22.

Let tmin be a time, when the consumption-ratio in the right direction attains a local minimum.

Similar to Subsection 3.4.2, we will now use the bounds obtained above to determine the maximum

size of the time interval around tmin, for which Qr(t)≤ v/2 = 3/4+ ε/2. Similar to the notion of helpful

cycles in the proof of Theorem 12, we will call that interval the helpful interval around tmin. We

can assume w. l. o. g., that Ql attains a local maximum with Ql > 1 at a time tmax sometime during

that helpful interval. We call the interval around tmax with Ql(t)≥ v/2 = 3/4+ ε/2 the costly interval

around tmax. This costly interval must lie completely in the helpful interval around tmin, otherwise

the combined consumption-ratio of both directions exceeds v. We use bounds on the size of these

intervals to create a contradiction for some ε , which will lead to an improved lower bound on v.

Consider the consumption-ratio Qr(t) around tmin as illustrated in Figure 3.15. As it is a local

minimum, tmin must mark the end of a 0-interval after the fire has moved down the back of some

barrier bi. Let ttop be the time when the fire reaches the top of bi at the beginning of the 0-interval. By

Lemma 12, we known that the directional consumption-ratio Qr(t) exceeds one at such moments.

Hence

Qr(ttop) =
C r(ttop)

ttop
> 1 ⇒ C r(ttop)> ttop = Ai +bi > bi. (3.39)

Let [tl, tr] be the interval around tmin with Qr(t) = 3/4+ ε/2, i.e. Qr(tl) = 3/4+ ε/2 = Qr(tr). As

we assume a local maximum tmax with Ql(tmax)> 1 in the other direction to lie in this interval, we

know that Qr(tmin) must not exceed 1/2+ ε to counter this maximum and keep Q(t)(tmax) below v.

Therefore

Qr(tmin) =
C r(tmin)

tmin
≤ 1/2+ ε ⇒ C r(tmin)≤ (1/2+ ε) tmin. (3.40)
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The 0-interval is exactly bi long, hence tmin = ttop + bi. As there is no consumption during a

0-interval, we get C r(tmin) = C r(ttop)> ttop. Applying this to Inequality 3.40 yields

ttop < C r(ttop)≤ (1/2+ ε) ttop +(1/2+ ε) bi

⇒ (1/2− ε) ttop < (1/2+ ε) bi

⇒ bi >
1−2ε

1+2ε
ttop (3.41)

Now lets consider the endpoints of the helpful interval [tl, tr]. By definition,

Qr(tl) =
C r(tl)

tl
= 3/4+ ε/2 ⇒ C r(tl) = (1/2+ ε) tl. | equivalent for tr (3.42)

Again, as there is no consumption during a 0-interval, we get C r(tl) = C r(ttop)> ttop. Let l be the

length of the left part of the helpful interval relative to bi, i. e. lbi := tmin− tl . By this definition,

tl = tmin− lbi = ttop +bi− lbi. Combining both these observations with Equation 3.42, we get

⇒ ttop < C r(ttop)≤ (3/4+ ε/2) (ttop +(1− l) bi)

⇒ (1/4− ε/2) ttop < (3/4+ ε/2)(1− l) bi (3.43)

By construction ttop = Ai + bi > bi. In addition, as we assume ε < 0.22, (1/4− ε/2) > 0, and thus,

(1/4− ε/2) ttop > (1/4− ε/2) bi. Applying this to Equation 3.43 eliminates ttop giving

(1/4− ε/2) bi < (3/4+ ε/2)(1− l) bi

⇒ (3/4+ ε/2) l < 1/2+ ε

⇒ l <
2+4ε

3+2ε
(3.44)

We similarly define rbi := tr− tmin ≤ ttop + bi and examine tr = tmin + rbi = ttop + bi + rbi. We

know that the consumption-ratio in the right direction between tmin and tr is at least 1 the whole time,

hence

C r(tr)≤ C r(tmin)+ rbi = C r(ttop)+ rbi > ttop + rbi. (3.45)

We can again combine the definition of r above, Inequality 3.45 and Equation 3.42 to attain

ttop + rbi < C r(ttop)+ rbi ≤ (3/4+ ε/2) (ttop +(1+ r) bi)

⇒ (1/4− ε/2) ttop < (3/4+ ε/2) bi− (1/4+ ε/2) rbi

⇒ (1/4− ε/2) bi < (3/4+ ε/2) bi− (1/4+ ε/2) rbi

⇒ (1/4+ ε/2) r < (1/2+ ε)

⇒ r <
2+4ε

1−2ε
(3.46)
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Figure 3.16: Construction of the size of the helpful (green) and costly (red) intervals around the local
minimum tmin in both directions. The helpful interval in the left direction must completely cover the

costly interval in the other direction and vice versa.

Of course, this holds for all bi. Now we can relate the size of the interval [tl, tr] to the interval between

one local minimum and the next.

As shown in Subsection 3.4.1, we can assume ai > bi−1 and bi > 2bi−1, such that the sequence

and lengths of the intervals after ttop are fix as illustrated in Figure 3.16: ttop is the beginning of a

0-interval of length bi, followed by a 1-interval of length ai+1− bi > (α − 1)bi. At the end of the

following 3-interval of length bi, Qr attains a local maximum, and after a further 1-interval of length

bi+1−2bi > (β −2)bi, the fire has reached the top of the next vertical barrier of length bi+1. The

cycle then begins anew with a 0-interval of length bi+1 > βbi.

This means we can determine a lower bound on the size of the interval between tr,i and tl,i+1, for

which Qr > 3/4+ε/2. As tr,i = tmin,i+rbi and tl,i+1 = tmin,i+(α−1)bi+bi+(β−2)bi+(1− l)bi−1 >

tmin,i +(α +(2− l)β −2)bi, this costly interval around the local maximum generated at the barrier

bi+1 has size at least (α +(2− l)β −2− r)bi.

This means, that in the left direction, there must be a barrier d j, such that the helpful interval

around the local minimum generated by that barrier has at least the same length. This gives a lower

bound on d j:

(l + r)d j ≥ (α +(2− l)β −2− r)bi

d j ≥
α +(2− l)β −2− r

l + r
bi

d j >
−(1+ ε)(16ε2 +2ε−1)

8x2(1+2ε)
bi (3.47)
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But the costly interval around local maximum generated at that d j must fit inside [tl,i, tr,i]. This

gives an upper bound on d j.

(l + r)bi ≥ (1− l)d j +(d j−2d j−1)+d j−1 +(α−1− r)d j−1

≥ (2− l)d j +(α− r−2)d j−1

≥ (2− l)d j if α ≥ r+2

d j ≤
l + r
2− l

bi <
2+4ε

1−2ε
bi (3.48)

α ≥ r+2 holds exactly if 0 < ε ≤ 0.125. However, (1−ε)(16ε2+2ε−1)
8x2(1+2ε)

< 2+4ε

1−2ε
for 0 < ε < 0.1273.

This is a contradiction to the fact, that a helpful interval around a local minimum in the one direction

must cover the costly interval around the local maximum in the other direction, which concludes the

proof of Theorem 13.

3.4.4 A Lower Bound of v > 5
3

The best known lower bound can be shown by examining the exact moment in detail, when the fire

reaches the top of a vertical barrier in one direction. The consumption-ratio at that time can then be

combined with the consumption-ratio at the next local maxima in the other direction to prove the

following theorem:

Theorem 14
In the half-plane model, the fire can not be contained with speed v≤ 5/3 = 1.6.

Proof of Theorem 14

Assume there exists a barrier system S consisting of horizontal barriers along the x-axis and vertical

barriers attached to it. Further assume for S that C(t)≤ v · t at all times t for some v = (1+V ) with

V ≤ 2
3 . For this we will construct a contradiction by identifying a specific time tS at a local maximum,

for which C(tS)> (1+V ) · tS.

By Lemma 10 and Lemma 11, we can assume bi > 2bi−1 and di > 2di−1, as well as ai > bi−1 and

ci > di−1 for all i > 1. Consider a moment when the fire reaches the top of some barrier bi at time

t = Ai +bi as illustrated in Figure 3.17. By Lemma 13, we have for large enough i

C r(t)> t + s > t (3.49)

We now consider the situation in the left direction at the same time t = bi +Ai. Let d j denote

the last vertical barrier, whose upper end was reached by the fire, so t = d j +C j +δ with 0≤ δ <

c j+1 +d j+1−d j.

W. l. o. g. we assume that bi+1 +Ai+1 ≥ d j+1 +C j+1. Otherwise, there must be multiple vertical

barriers in the right direction whose upper ends are reached by the fire after it reaches the upper end
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bi
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Figure 3.17: At some time t = Ai +bi the fire will reach the top of a vertical barrier bi.
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δ
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dj+1

Figure 3.18: All three possible situations for the left side to be in at time t. Note that in case 2) the
fire might have reached d j+1, which does not affect our considerations.

of d j and before it reaches the upper end of d j+1. In that case, we can assume that bi is the last among

those, such that bi+1 +Ai+1 ≥ d j+1 +C j+1 holds.

We split our consideration in three cases based on the consumption of c j+1 as illustrated in

Figure 3.18:

1. 0≤ δ < d j

2. d j ≤ δ < d j + c j+1

3. d j + c j+1 ≤ δ < c j+1 +d j+1−d j

In the first case, the fire has not reached the horizontal barrier c j+1 yet after passing over d j; in the

second case, it has reached c j+1, but not its end; in the third case the fire has completely consumed

c j+1.

In Case 3, δ = d j + c j+1 +λ for some 0≤ λ < d j+1−2d j. Then

C l(t)≥C j+1 +D j +2d j +λ − s

> (d j +C j)+(d j + c j+1)+λ

= t (3.50)

Inequality (3.50) together with Inequality (3.49) already gives C(t) > 2t > (1+V ) · t, which is a

contradiction.



3.4 Lower Bounds for the Half-Plane Model 81

For both remaining cases, we will derive a lower bound for d j. We will then consider the moment

t1 = 2d j +C j+1, when the fire reaches the end of the horizontal barrier c j+1, i. e. a local maximum in

consumption-ratio in the left direction. Using the lower bound on d j, we will prove C(t1)> (1+V ) ·t1.

Case 1: 0≤ δ < d j

In Case 1, C l(t) > C j +D j− s = C j +d j +D j−1− s > C j +d j, since D j−1 > s for j large enough.

Now at time t, it must hold:

C(t) = C r(t)+C l(t) < (1+V ) · t | Inequality (3.49)

⇒ C j +d j < V (d j +C j +δ )

⇒ (V −1)C j > (1−V )d j−V δ | (V < 1)

⇔ C j < V/(1−V ) ·δ −d j (3.51)

V ≤ 2/3 implies V
(1−V ) ≤ 2 by direct calculation, which gives bounds for C j,d j:

C j < 2δ −d j < d j | δ < d j in Case 1

⇒ 2d j > C j +δ

⇔ d j > 1/2(C j +δ ) (3.52)

Case 2: d j ≤ δ < d j + c j+1

In Case 2 a part of c j+1 of length (δ −d j) has already been consumed, so C l(t)≥ D j +C j +(δ −
d j)− s > d j +C j +(δ −d j) =C j +δ , as D j−1 > s for j large enough. Now at time t it must hold

C(t) = C r(t)+C l(t) < (1+V ) · t | Inequality (3.49)

⇒ C j +δ < V (d j +C j +δ )

⇒ (1−V )(C j +δ ) < V d j

⇒ d j >
(1−V )

V
(C j +δ ) (3.53)

V ≤ 2/3 implies (1−V )
V ≥ 1/2 by direct calculation, which gives the bound:

d j > 1/2(C j +δ ) (3.54)

This is the same bound as found for Case 1 in Inequality (3.52).
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Figure 3.19: After d j + c j+1−δ additional time after t, the fire has reached the end of c j+1 and has
also consumed a piece of length 2d j of the next vertical barrier.

Deriving the contradiction C(t1)> (1+V ) · t1

Now we consider time t1 =C j+1 +2d j > t, when the fire reaches the end of the horizontal barrier

c j+1. As for any time, at time t1, it must hold

C(t1) = C r(t1)+C l(t1)≤ (1+V ) · t1
⇔ C l(t1) ≤ (1+V ) · t1−C r(t1)

= (1+V ) · t +(1+V )(t1− t)− (C r(t)+C r(t, t1))

≤ Vt +(1+V )(t1− t)+ t−C r(t) | Ineq. (3.49) (3.55)

⇒ C l(t1)+ s < Vt +(1+V )(t1− t) (3.56)

By construction, t1 = C j+1 + 2d j. As t = d j +C j + δ , this means t1 = t +(d j + c j+1− δ ). Due to

Lemma 10, we know that the fire has not reached the end of d j+1 yet, hence C l(t1)≥ 3d j +C j+1− s.

Hence, we arrive at the following inequalities:

3d j +C j+1 < V (d j +C j +δ )+(1+V )(d j + c j+1−δ )

⇔ −V (c j+1−δ ) < (V −1)δ +(V −1)C j +(2V −2)d j | (1 >V )

⇔ c j+1−δ >
1−V

V
δ +

1−V
V

C j +2
1−V

V
d j . (3.57)

V ≤ 2/3 implies (1−V )
V ≥ 1/2 by direct calculation, which gives the bound:

c j+1−δ > 1/2δ + 1/2C j +d j

⇔ d j + c j+1−δ > 1/2δ + 1/2C j +2d j (3.58)
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Now in both cases we got d j > 1/2(C j +δ ) (Inequalities (3.52) and (3.54)), so we can apply that and

conclude:

t1− t = d j + c j+1−δ >C j +d j +δ = t = Ai +bi (3.59)

So we know, that in both cases t1− t > bi +Ai. Now consider the situation in the right direction

again (compare Figure 3.17). At t +bi the fire reaches the horizontal barrier ai+1 behind bi. Addi-

tionally, by assumption bi+1 +Ai+1 ≥ d j+1 +C j+1, the fire has not reached the top of the next barrier

bi+1 at t1. This means, that between t +bi and t1, there is always at least consumption 1 in the right

direction, which means the fire has consumed barriers of length at least Ai, hence C r(t, t1)≥ Ai.

As our whole consideration is based on inequalities, we will consider a limiting case with a

contradiction that can be extended to our given barrier system S. More precisely, assume, that

Inequality (3.55) is tight for some t∗1 , so:

C l(t∗1) =Vt +(1+V )(t∗1 − t)+ t−C r(t)

⇔ C r(t)+C l(t∗1) = (1+V )t∗1 (3.60)

By our arguments above, C r(t, t∗1)≥ Ai and hence

C(t∗1) = C r(t, t∗1)+C r(t)+C l(t∗1)≥ (1+V )t∗1 +Ai > (1+V )t∗1 , (3.61)

which is a contradiction for this limiting case.

Now in our given barrier system S we have t1 = t∗1 + x for some x > 0. As everything except c j+1

is fixed at t, this additional time results in additional consumption of at least horizontal barriers of

length x in both directions in comparison to the edge case. Hence we can extend the contradiction:

C(t1) = C l(t1)+C r(t)+C r(t, t1)

= C l(t∗1)+C r(t)+C r(t, t∗1)+2x

= (1+V )t∗1 +2x+Ai

> (1+V )(t∗1 + x) = (1+V )t1. (3.62)

This concludes the proof of Theorem 14.
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3.5 Upper bounds

3.5.1 A Recursive Strategy for v≥ 17
9

Motivated by Lemma 10 and Lemma 11 shown in Subsection 3.4.1, we can assume the following

conditions for any strategy for a building speed v < 2.

ai+1 ≥ bi and bi+1 ≥ 2bi ∀i≥ 1,

similarly ci+1 ≥ di and di+1 ≥ 2di ∀i≥ 1.
(3.63)

This forces the 0-intervals generated by bi to be of maximal length of bi. As discussed in Subsec-

tion 3.4.1, this results in a repeating sequence of k-intervals of specific lengths in each direction. In

these repeating sequences, each 0-interval of length bi is later followed by a 3-interval of length bi

before the next 0-interval, always separated by 1-intervals. Thus, the local maxima in the consumption

of a single direction always happen at the end of the 3-interval, while the local minima are obtained at

the end of the 0-intervals.

The goal is to have the local consumption minima in one direction counter the local maxima

in the other. To this purpose, a barrier system is constructed in such a way that the 0-intervals of

both directions always appear in an alternating fashion. Following this approach, we will prove

the following theorem by constructing a barrier system and showing how its consumption-ratio is

bounded.

Theorem 15
In the half-plane model, the fire can be contained with speed v = 17

9 = 1.8.

Proof of Theorem 15

Consider the periodic interlacing of time intervals as illustrated in Figure 3.20. There, the ends of the

0-intervals in one direction coincide with the ends of the 3-intervals in the other direction, that is, at t3
and t6.

013 1

biai+1 − bi bi+1bi+1 − 2bi bi+1

0 1 13

3

dici+1 − didi

ai+2 − bi+1

di+1
left

right

di+1 − 2di

1

0

t1 t4 t5 t6t2 t3 t7

Figure 3.20: The periodic interlacing of time intervals.

The current consumption is always greater than 1, since the 0-intervals do not overlap. Also, the

combined consumption-ratio Q(t) must be smaller than 2 at all times. This also implies that t3 is

no local maximum of Q(t) as the combined consumption-ratio grows towards 2 between t3 and t4.

Hence, by setting di > 2bi we make t1, t4, t7 the local maxima and t2, t5 the local minima of Q(t).
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Consider the consumption-ratio Q(t1, t4) of the cycle from t1 to t4. There are two 1-intervals

involved in this cycle in the right direction. The first one, where the fire burns along ai+1, is of length

ai+1−bi and lies partially in this cycle. The second one, where the fire crawls up along bi+1, is of

length bi+1−2bi and lies completely in this cycle.

As the beginning of this cycle is given by the start of the 0-interval on one side and the end is given

by the end of the second 1-interval on the other side, the length of this cycle is exactly di+(bi+1−2bi).

The total consumption in this cycle is then di +2bi +2(bi+1−2bi). This means

Q(t1, t4) =
C(t1, t4)
t4− t1

=
di +2bi +2(bi+1−2bi)

di +(bi+1−2bi)
. (3.64)

Now we choose di = β ·bi and bi+1 = β ·di for some β ∈ R with β > 2. Note that this choice

satisfies all our conditions with bi+1 = β 2bi and di > 2bi. Applying this to Equation 3.64 yields

C(t1, t4)
t4− t1

=
βbi +2bi +2(β 2bi−2bi)

βbi +β 2bi−2bi
=

2β 2 +β −2
β 2 +β −2

.

This expression attains a minimal value of value of 17
9 for β = 4. Note that by design, Q(t1, t2) and

Q(t1, t3) stay below 17/9, as well. Moreover, the global consumption-ratio is at most 17/9 at the end of

the cycle at t4, if and only if the global consumption-ratio at the beginning of the cycle at t1 is at most
17/9, as

Q(t4) =
C(t1)+C(t1, t4)

t4
=

t1
t4
· C(t1)

t1
+

t4− t1
t4
· C(t1, t4)

t4− t1
≤ 17

9
.

Since the cycles change their roles at t4 such that the 0-interval occurs in the right direction, the

same argument can be used to bound the local consumption-ratio in the following interval and for all

subsequent cycles inductively. Note, that by looking at the time interval from t3 to t6, we can derive

a closed form for ci+1, namely ci+1 = 2bi+1− 2bi = (2β 2− 2)bi. Similarly ai+1 = 2di− 2di−1 =

(2β 2−2)di−1 = βci.

It remains to find initial values to get the periodic interlacing started, while maintaining Q(t)≤ 17/9.

These provide an induction base, which together with the arguments above, prove Q(t)≤ 17/9 at all t.

Suitable values are

a1 := s b1 := 17s a2 := 34s ai+1 := 7.5bi bi+1 := 4di

c1 := s d1 := 34s c2 := 238s ci+1 := 7.5di di+1 := 4bi+1,

which results in the starting intervals given in Figure 3.21. The local maxima at t1 and t4 then have

consumption-ratio exactly 17/9. The interval between t2 and t3 is set up equivalent to the one between

t3 and t6 in Figure 3.20, which means the interlacing construction can be applied to all intervals

beyond, which concludes the proof of Theorem 15. Note that all barriers scale with the length of the

head-start barrier s.

An example of this construction for s = 1 is given in Figure 3.22.
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Figure 3.21: Illustration of time intervals at the start. Due to their exponential growth, the sizes of the
intervals are not true to scale.
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Figure 3.22: Example for the final barrier system for s = 1, also not true to scale.

3.5.2 An Improved Strategy

It is possible to improve the barrier system constructed in Subsection 3.5.1 to reduce the upper bound

of v = 17
9 = 1.8 slightly to obtain the following Theorem:

Theorem 16
In the half-plane model, the fire can be contained with speed v≥ 1.8772.

As shown in Figure 3.20, the end of the 3-interval in one direction coincides with the end of the

0-interval in the other direction, which makes t4 the only local maximum of the interval [t1, t4]. We

introduce a regular shift by a factor of δ , see Figure 3.23. This allows the 3-interval in one direction

to lie completely inside the 0-interval of the other direction, as shown in Figure 3.23. Then, there

are two local maxima in the equivalent interval [t1, t5], namely at t3 and t5. We force both maxima to

attain the same value to minimize both at the same time.
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bi bi+1bi+1 − 2bi bi+1
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dici+1 − didi

ai+2 − bi+1

di+1
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right

di+1 − 2di

1
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t1 t4 t5 t6t2 t3 t7

δ · bi δ · di δ · bi+1

t8 t9 t10

cycle

Figure 3.23: A general periodic interlacing of time intervals.
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Again, we set di = β ·bi and bi+1 = β ·di, for some β ≥ 1 determined below. Then the value of

the first local maximum can be expressed as

Q(t1, t3) =
C(t1, t3)
t3− t1

=
1 · (δ ·bi)+3 ·bi

δ ·bi +bi
=

δ +3
δ +1

= 1+
2

δ +1
.

Considering the cycle from t1 to t5 in Figure 3.23, we can conclude that ci+1 = bi+1−bi +δbi +δdi.

Similarly, we can proceed on the interval from t5 to t9 to express ai+1 in terms of β , δ and bi.

Using these identities, we obtain for the second local maximum

Q(t1, t5) =
C(t1, t5)
t5− t1

=
1 · (δ ·bi)+3bi +1 · (bi+1−2bi)+1 · (ci+1−di−δ ·di)

di +(ci+1−di)−δ ·di

=
ci+1−δ ·di

ci+1−δ ·di
+

bi+1 +δ ·bi +bi−di

ci+1−δ ·di

= 1+
bi+1−bi +δ ·bi +2bi−di

bi+1−bi +δbi

= 2+
2bi−di

bi+1−bi +δbi
= 2+

2−β

β 2−1+δ
.

As mentioned above, we set both local maxima to be equal, solve for δ and obtain

δ =
1
2

(
β −β

2 +
√
−12+4β +5β 2−2β 3 +β 4

)
.

Plugging this into either one of the two local maxima and minimizing the resulting function for β ≥ 1,

we obtain

β =
3
2
+

1
6

(
513−114

√
6
)1/3

+

(
19(9+2

√
6)
)1/3

2 ·32/3
≈ 4.06887

for the optimal value of β , δ ≈ 1.2802 and

v =
1
6

10− 192/3

3
√

2(4+3
√

6)
+

3
√

19(4+3
√

6))

22/3

≈ 1.8771

as the minimum speed.

Note that the optimal value for β satisfies our conditions given in Equation 3.63, so that the barrier

system can in fact be realized. Finally, we give suitable values to get the interlacing started:

a1 := s c1 := s

b1 :=
v

(4β +2δ +1)− v(2β +δ +1)
s d1 := 2b1

a2 := (δ +1) ·b1 c2 := (2β +3δ −1) ·b1

ai+1 := (δ −1)di +(β +δ )bi+1 ci+1 := (δ −1)bi +(β +δ )di



88 Continuous Firefighting

bi+1 := β ·di di+1 := β ·bi+1.

Note that all barriers scale with the length of the head-start barrier s. This concludes the proof of

Theorem 16.

3.6 Additional Considerations and Open Problems

3.6.1 Removing the Starting Buffer

The two strategies constructed in Section 3.5 both utilize the same effect. They use the 0-interval

generated by the arbitrarily small constant starting buffer to build the first vertical barrier in one

direction. That vertical barrier generates another 0-interval, during which an even bigger vertical

barrier is build in the other direction, that generates a bigger 0-intervals and so on. Without the initial

buffer, but with the fire starting at the highway - any strategy for v < 2 must instantly fail.

In the original setting by Bressan however, the fire does not start with a single point, but with a

small circle. This enforces that any enclosing barrier has a minimum distance from the fire origin point

and therefore measurable length. This avoids the problem of strategies consisting of immeasurably

small barriers around an origin point, which can be imagined as stepping on the fire before it actually

breaks out.

An intuitive way to adapt this would be to have the fire start at some distance s to the horizontal

boundary of the half-plane. This way, we also get to start with a 0-interval of length s before

consumption begins in both directions. The question, is whether the strategies working in the half-

plane model with the head-start buffer can be adapted to this variant. Due to the similarities, we can

use all notations regarding barrier lengths, consumption, etc. as for the half-plane model. As soon

as the fire has passed some vertical barrier bi with bi > s, the further consumption in that direction

is identical in both settings, so the answer to this question is only dependent on the handling of the

starting situation. Interestingly, these two settings are more distinct than their obvious similarities

suggest, as the following theorem shows.

Theorem 17
Assume a fire starts at distance s from the boundary of the half-plane and spreads with unit speed

according to the L1-metric. Then there exists no barrier system containing the fire in the upper half-

plane with speed v < 2 consisting only of a horizontal barrier along the boundary of the half-plane

and vertical barriers attached to it.

Proof. The first crucial observation is that for any sensible strategy, the first vertical barrier in both

directions must have length at least s, so b1 > s and d1 > s. The argument is the same as for strictly

increasing length of vertical barriers, as a barrier shorter than the initial distance s is just passed over

by the fire without delaying it.
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Assume that there exists a strategy that contains the fire for a building speed v < 2, We will

consider the times when the fire reaches the end of a horizontal piece of barrier in either direction,

as these mark the end of 2- or 3-interval in that direction and hence, local maxima in consumption.

Independent of the actual lengths and positions of the vertical barriers, we will show that at latest at

the third such time, the consumption-ratio exceeds 2.

W. l. o. g., assume a1 ≤ c1, so the first vertical barrier encountered by the fire lies in the right

direction, as illustrated in figure Figure 3.24. Let t1 be the moment in time, when the fire reaches

the end of the horizontal barrier ai and, simultaneously, the bottom end of b1, i. e., t1 = a1 + s. Then

C r(t1) = a1 +min{b1,2s} and C l(t1) ≥ t1− s = a1 and hence, C(t1) ≥ 2a1 +min{b1,2s}. This

means C(t1)< 2t1 only if b1 < 2s.

b1

t1

a1

fire origin

s

Figure 3.24: The situation at time t1, when the fire reaches the end of a1.

Let t2 be the first moment in time after t1, when the fire reaches the end of a horizontal piece of

barrier. We have to consider two cases. Either this happens in the same direction as the first time, i.e.

the right direction (Case 1) - or in the opposite direction (Case 2).

Case 1: This case is illustrated in Figure 3.25. Then t2 = a1 +a2 +2b1− s, C r(t2) = a1 +a2 +b1 +

min{b2,2b1} and C l(t2)≥ t2− s = a1 +a2 +2b1−2s. In summary, C(t2)≥ 2a1 +2a2 +3b1−2s+

min{b2,2b1} = 2t2 +min{b2− b1,b1} > 2t2, which is a contradiction to the assumption, that this

strategy contains the fire for v < 2.

b1

a1

fire origin

s

a2

b2

t2

Figure 3.25: The situation at t2 in Case 1, when the fire reaches the end of a2.
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Case 2: This case is illustrated in Figure 3.26 By definition, t2 = c1+s and, by t2 > t1, t2 = a1+b1+

(b1− s)+ x for some x≥ 2s−2b1. Observe that x can be negative, if the fire has not yet reached the

next horizontal barrier piece a2. Either way, C r(t2)≥ a1 +b1 + x = t2− (b1− s). In the left direction

C l(t2) = c1 +min{d1,2s}= t2 +min(d1− s,s). In summary, C(t2) = 2t2 +min{d1− s,s}− (b1− s).

Therefore C(t2)< 2t2 only if min{d1− s,s}< b1− s < s⇒ d1 < 2s.

b1

a1

fire origin

s

t2

c1

d1

x

Figure 3.26: The situation at t2 in Case 2, when the fire reaches the end of c1.

We have established that both b1 < 2s and d1 < 2s. Now let t3 be the third time, when the fire

reaches the end of a horizontal piece of barrier. The argument works identical for either direction, so

we assume w. l. o. g. this happens in the right direction. It is illustrated in Figure 3.27.

b1

a1

fire origin

s

a2

b2

c1

d1

t3

x

Figure 3.27: The situation at t3, when the fire reaches the end of a2.

By definition, t3 = a1+a2+2b1−s and, by t3 > t2, t3 = c1+d1+(d1−s)+x for some x≥ 2s−2d1.

Again, x can be negative if the fire has not yet reached the next horizontal barrier piece c2. Either way,

C l(t3)≥C1 +d1 + x = t3− (d1− s). In the right direction, C r(t3) = a1 +a2 +b1 +min{b2,2b1}=
t3+s+min{b2−b1,b1}. In summary, C(t3) = 2t3+s+min{b2−b1,b1}−(d1−s)> 2t3 as s> d1−s

and b2 > b1, which is a contradiction to the assumption that this strategy contains the fire for v< 2.

3.6.2 Closing the Gap

There remains a gap between known lower bound of v > 1.6 necessary to contain the fire in the

half-plane model (see Subsection 3.4.4) and the speed v > 1.8772 necessary for the best known

strategy (see Subsection 3.5.2). The proof of the lower bound utilizes several bounds on the length of
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specific barriers and intervals to derive contradictions for speeds v≤ 1.6. However, the inequalities

representing those bounds still include some slack, so it is intuitive to assume that the true lower

bound on v is stronger than what we could show here. Besides tightening the inequalities further,

another way to close the gap from below would be to show that the best known strategy is actually

optimal.

The strategy presented in Subsection 3.5.2, is optimizing a strategy constructed based on several

structural assumption. First, there is the general structural assumption of bi+1 ≥ 2bi and ai+1 ≥ bi.

Second is the assumption of recursive regularity, i. e. that after some constant number of initializing

barriers, bi+1 = βdi = β 2bi. Third is the structure of the regular interlacing, i. e. that the 3-interval in

the one direction lies completely in the 0-interval in the other direction.

Among all strategies fulfilling these assumptions, the strategy presented in Subsection 3.5.2 is

optimal. Hence showing that there is an optimal strategy fulfilling these assumptions would close the

gap.

We already showed in Subsection 3.4.1, that we can assume an optimal barrier to fulfil bi+1 ≥ 2bi

and ai+1 ≥ bi. The core of this open problem are the assumptions on the regularity of the barrier

system, mainly the second assumption.

Given the second assumption, one can rule out all other possible ways of interlacing. The proof

of Lemma 12 can be adapted to show that the directional consumption-ratio exceeds 1 at any time

during the 1-intervals of length bi+1−2bi and di+1−2di respectively. Therefore, these two intervals

cannot overlap in the interlacing, which limits the possible interlacings to a small number of cases.

Optimizing each case similar to the one in Subsection 3.5.2) yields no better strategy.

But as long as one cannot show that regular recursive growth is optimal in general, the gap remains

open.

3.6.3 Higher Dimensions

Considering a problem in higher dimension is a natural extension for any geometric problem. For the

canonical geometric firefighting model, moving from R2 to R3 naturally would have the fire spread in

all directions according to the unit sphere. However, 1-dimensional barrier curves can not contain such

a 3-dimensional fire. Therefore, barriers to contain the fire must then be two-dimensional surfaces in

the Euclidean space, bounded in area by a building speed v. So far, no known progress has been made

towards any bounds in this setting.

The half-plane model however, lends itself to a different way of extending the dimension. During

the analysis it might be noticed, that the spread of the fire in either direction is completely independent

on any barrier in the other direction. So instead of regarding it as two directions of one half-plane, one

can also regard both directions as as two separate quarter planes. The fire starts in the corner of each

quarter plane and spreads through both in parallel. So instead of considering containing the fire above

one horizontal line, one could just as well consider it as containing the fire above two horizontal rays

in parallel.
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From there on, it is easy to extend the half-plane model with a parameter k defining the number

of directions (or quarter planes) the fire spreads along in parallel. As for k = 2 as studied until now,

we assume a head-start barrier of small constant length already built along the beginning of each

horizontal ray. It is trivial to see, that speed k is enough to just build horizontal barriers along each

ray. In fact, by Lemma 12, this is optimal for k = 1. But our strategies for the half-plane model show,

that we can do better for k = 2. For even k ≥ 2, one can adapt the strategy given in Subsection 3.5.2

to k pairs of direction to contain the fire in all directions for a speed of k
2 1.8772. For odd k ≥ 1, the

same approach in combination with just building a horizontal barrier along the remaining unpaired

direction yields a strategy for a speed of k−1
2 1.8772+1.

The lower bound proof however, can not be directly extended in a similar manner, as it remains

open whether there is a more clever way to interweave the consumption intervals of all directions to

create a strategy for an even lower speed.

3.6.4 Euclidean Metric

Another natural extension of the half-plane model would be to have the fire spread according to the

euclidean metric instead of the L1-metric. This would bring it closer to Bressan’s original geometric

firefighting problem.

A fire spreading uniformly in all directions according to the L2-metric is strictly stronger than one

spreading according to the L1-metric, as the L1 distance between two points is always greater or equal

to the L2 distance. Therefore, all lower bounds for barrier systems consisting of a horizontal barrier

with vertical barriers attached to it as obtained in Section 3.4, hold for the L2-setting as well. However,

it is less intuitive in the L2 setting to restrict the barrier systems to vertical delaying barriers only.

It is also clear that the strategies used for the constructive upper bound in Section 3.5 require

a higher speed in the L2-setting as the construction is tight for some times t. However, for a given

barrier system it is not easy to see what the required speed is, even if it only consists of the horizontal

enclosing barrier and vertical delaying barriers. The exception of course is the trivial barrier system

only consisting of the horizontal barrier, which requires speed v = 2.

For analysing more complex barrier systems there are two main difficulties, when trying to apply

the consumption-ratio approach. It still holds that suptQ(t) < vt is necessary and sufficient for a

barrier system to contain the fire in the upper half-plane. However, as a crucial difference, there are

no longer intervals of constant current consumption as heavily utilized in all proofs for the half-plane

model (except when the consumption is 0).

Consider for example, a vertical barrier of length b1has been built right at the end of the head-start

barrier of length s. Then its lower end is reached at time s and its upper end at time
√

b2
1 + s2. At any

point in between, it holds by the Pythagorean theorem C(t) =
√

t2− s2. The speed with which the

fire burns along b1, i. e. the current consumption, at such a time t is the derivative of the consumption,

hence Q(t) = x
x2−s2 , which is far from constant. But still, the consumption during that interval is

governed by the derivative of a single, simple function.
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bi−1

xi−1

xi−2

bi−2

x0

bi

xtop

Figure 3.28: An example of a barrier bi which consumption speed is piecewise dependent on all
previous barriers. In between x0 and xi−1, the previous barrier bi−1 delays the fire. In between xi−1

and xi−2, the previous barrier bi−2 delays the fire. From xi−2 up to the top, no previous vertical barrier
delays the fire at all.

This is no longer true for later barriers, whose consumption can be governed by a complicated

multipart function of all previous barriers b j and a j with j < i. This even holds, if we still assume

bi > 2bi−1. As in the half-plane model, this guarantees, that all barriers a j and b j with j < i have been

completely consumed when the fire reaches the top of bi. However, consider a barrier bi as illustrated

in Figure 3.28.

In the half-plane model, a point at height x > bi−1 on the barrier bi is always reached at time

Ai +x and a point with x < bi at time Ai +2bi−1−x. When the fire spreads according to the L2-metric,

however, barriers b j with j < i−1 can also affect when a point on the barrier bi is reached. If

there were no barriers b1 to bi−1, the point at height x > bi on the barrier is reached exactly at time

tx =
√

A2
i + x2. However, if the straight line from the fire origin to x intersects some of the previous

barriers, these delay the fire and affect the consumption of x. The shortest path from the fire to x is

then not a straight line segment, but a series of line segments connecting the fire origin with x via

several of the top ends of the intersected barriers. But as the fire climbs higher along bi, the straight

line from the fire origin to x will intersect less and less previous barriers, resulting in the complexity

of the shortest path to x decreasing. As in the example in Figure 3.28, the shortest path to a point x

might be influenced by each previous barrier, which means that the consumption of b j above a height

of bi−1 can be governed piecewise by i different functions.

Finally, all shortest paths from the fire to some point x on the barrier system and thus, the time at

which x is reached, will be expressed in sums of square roots, which are just generally harder to work

with.

All this makes it very hard to pinpoint local maxima in consumption and find a recursive strategy

similar to Subsection 3.5.2 which contains the fire for a speed v < 2. It remains open to find a barrier
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system better than the trivial one for v = 2 and shrink the gap between the lower bound of 1.66 and

the upper bound of 2 for the speed v necessary to contain a fire spreading according to the L2-metric

in the upper half plane with a barrier system consisting of a horizontal barrier and vertical barriers

attached to it. Analysis of differently structured barrier systems is also open for this setting.



Chapter 4

The Minimum Enclosing Ball Problem

In this chapter we present a (1+ε)-approximation algorithm for the Minimum Enclosing Ball problem.

Minimum Enclosing Ball (MEB)
Input: A set of points P⊂ Rd .

Goal: Find a ball containing P with minimum radius. This is equivalent to finding the center c ∈ Rd

minimizing max
p∈P

d(c, p), where d(c, p) denotes the Euclidean distance between c and p.

Throughout this chapter, we will use the following notations: Let B(c,r) denote a ball of radius r

centered at c and let r(B) and c(B), denote the radius and center of a ball B, respectively. We denote

by pq the straight line segment between two points p and q and by |pq| the length of pq. Finally, we

denote the boundary of a closed set A by ∂A.

We will refer to the optimal solution of MEB for a set P as B∗ = B(c∗,r∗). A center c is

a (1+ ε)-approximation, if P ⊂ B(c,(1+ ε)r∗), i. e., if max
p∈P

d(c, p) ≤ (1+ ε)r∗. By the triangle

inequality, an arbitrary point c has distance at most |cc∗|+ r∗ to any point in P. Therefore, c is a

(1+ ε)-approximation of B∗ if and only if |cc∗| ≤ εr∗, i. e., c ∈ B(c∗,εr∗).

The general approach used both by our algorithm as well as some previously known algorithms

like the core-set based approaches and the naive gradient-descent algorithm [7–9, 61] is sketched in

Algorithm 3. Essentially, starting with an arbitrary point c in P as an initial candidate, one repeatedly

uses the farthest point fc from c in P to improve c, as the distance between fc and c dictates the

approximation factor of c. The core-set based algorithms do so by adding fc to the core-set used to

construct the candidate center; while the gradient-descent approach moves the center c on the straight

line towards fc, with decreasing step size each round.

Our algorithm follows the gradient-descent approach, so we pick a new center ci in round i

somewhere on the straight line segment between ci−1 and fci−1 . We start with the proof of a geometric

property of line segments in balls, that the exact construction of the next step is based on. We will

subsequently present the construction of the new center in each round. To analyse the run-time of

our algorithm we determine an upper bound on the number of rounds until our algorithm arrives at
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Algorithm 3: General MEB Approach

Input :Set of points P⊂ Rd .
Output :A center c such that B(c,(1+ ε)r∗) covers P

1 pick an arbitrary point from P as center c
2 while c is a not a (1+ ε)-approximation do
3 find farthest point fc from c in P
4 construct a better center c from c and fc

5 return c

a (1+ ε)-approximation. Finally we discuss how to extend these results to the Euclidean k-center

problem.

4.1 A Structural Property

The Structural Property central to our algorithm is a generalization of an idea used for a Euclidean

2-center streaming algorithm by Kim and Ahn [47]. They observe that the midpoint of any line

segment of length at least 1.2 placed completely inside a unit Ball B0 has distance at most 0.8 to the

center of B0. We generalize this observation in several ways.

Theorem 18
For d ≥ 2, let B = B(c,r) and B′ = B(c,r′) be two d-dimensional balls with the same center c, such

that r > r′. Let pp′ be a line segment in B with |pp′| ≥ r, such that p ∈ ∂B and p′ ∈ ∂B′ are points

on the boundaries of B and B′. Let B′′ be the unique d-dimensional ball centered around c that is

tangential to pp′. Let m be the tangential point of B′′ and pp′. Let q ∈ B and q′ ∈ B′ be points in B

and B′, such that |qq′|> |pp′|.
Then any point m∗ on qq′ with |qm∗| ≥ |pm| and |q′m∗| ≥ |p′m| lies inside B′′.

Proof. For d = 2 we first show that qq′ intersects B′′ at all. Note that all pairs p ∈ ∂B and p′ ∈ ∂B′

with the same distance d(p, p′) are tangential to the same Ball B′′. Hence, we can assume without

loss of generality, that p′, c and q′ are collinear, and also q′ ∈ cp′. Because of |qq′|> |pp′|, point q

must lie in B\B(p′, |pp′|), which means qq′ intersects B′′ as illustrated in Figure 4.1.

Let m∗ be an arbitrary point on qq′ with |qm∗| ≥ |pm| and |q′m∗| ≥ |p′m|. Assume m∗ is not

contained in B′′. As qq′ intersects B′′, qm∗∩B′′ = /0 and q′m∗∩B′′ ̸= /0 or vice-versa.

Let us consider qm∗∩B′′ = /0 and q′m∗∩B′′ ̸= /0 first. In this case q ∈ B\B′′.

Let qt be the point on the boundary of B′′ such that qqt is tangential to B′′ and the segment qq′ lies

in the wedge spanned by qt and c with its tip in q. As qm∗∩B′′ = /0, m∗ lies within the triangle qqtc

and |qqt |> |qm∗|. But by construction of B′′, |pm| ≥ |qqt |, which contradicts |pm| ≤ |qm∗|. This is

illustrated in Figure 4.2 (assuming without loss of generality that p is collinear with qq′ by similar

arguments as above). The other case (q′m∗∩B′′ = /0 and qm∗∩B′′ ̸= /0) can be shown equivalently by

switching q and q′ and replacing p and B with p′ an B′, respectively.
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c
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p

m

B′′

q′

q

B(p′, |pp′|)

m∗

Figure 4.1: Construction of m and B′′. Segment qq′ must intersect B′′ if |qq′| ≥ |pp′|.

c

B′′

q

m∗

q′B

p

m∗

qt

Figure 4.2: Assume qm∗∩B′′ = /0. Then |qm∗|< |qqt | ≤ |pm|. This contradicts |qm∗| ≥ |pm|.

For d > 2, the same arguments as for d = 2 hold in the 2-dimensional plane passing through c

and qq′.

Our algorithm will make use of a special case of this core Theorem: Let the point m′ be at the

same relative position on qq′ as m is on pp′, i. e. |m
′q|
|qq′| =

|mp|
|pp′| and |m

′q′|
|qq′| =

|mp′|
|pp′| . Then m′ fulfils the

conditions |qm′| ≥ |pm| and |q′m′| ≥ |p′m| from Theorem 18. We can calculate the radius of B′′ as the

height of the triangle pcp′ using Herons formula, and calculate the relative length |mp|
|pp′| by applying

the Pythagorean Theorem. Together, this yields the following corollary:

Corollary 1
For d ≥ 2, let B = B(c,r) and B′ = B(c,r′) be two d-dimensional balls with the same center c, such

that r′ = δ r for some 0 < ε ≤ δ ≤ 1. Let q ∈ B and q′ ∈ B′ with |qq′| ≥ (1+ ε)r.

Then the ball B′′ = B(c,r′′) with

r′′ = r

√
((1+ ε)+1+δ )((1+ ε)+1−δ )((1+ ε)−1+δ )(−(1+ ε)+1+δ )

2(1+ ε)

= r
1

2(1+ ε)

√(
(2+ ε)2−δ 2

)
(δ 2− ε2)
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is tangential to any line segment pp′ of length |pp′|= (1+ ε)r with p ∈ ∂B and p′ ∈ ∂B′ at a point

m, and contains the point

m′ = q+
(
q′−q

) |mp|
|pp′|

= q+
(
q′−q

)√r2− r′′2

(1+ ε) r

= q+
(
q′−q

) 1
1+ ε

√√√√√√√1−


√(

(2+ ε)2−δ 2
)
(δ 2− ε2)

2(1+ ε)


2

= q+
(
q′−q

) 1

2(1+ ε)2

√
22 (1+ ε)2−

(
(2+ ε)2−δ 2

)
(δ 2− ε2)

4.2 An Efficient Gradient-Descent Algorithm

Our algorithm uses a sequence of points p0, p1, p2, . . . to calculate a sequence of centers c0,c1,c2, . . .

until we arrive at a (1+ ε)-approximation. As sketched in Algorithm 3, p0 is chosen as an arbitrary

point in P, while all subsequent pi are the farthest point in P from the previous center ci−1.

Let

ci :=


p0, if i = 0.

m′(pi,ci−1) := pi +(ci−1− pi)
1

2(1+ε)2

√
22 (1+ ε)2−

(
(2+ ε)2−δ 2

i

)(
δ 2

i − ε2
)
, otherwise.

(4.1)

with

δi :=


1, if i = 0.

1
2(1+ε)

√(
(2+ ε)2−δ 2

i−1

)(
δ 2

i−1− ε2
)
, otherwise.

(4.2)

Lemma 18
ci lies in the Ball B(c∗,δir∗). Thus, it is a (1+δi)-approximation.

Proof by Induction. For i = 0, c0 = p0 is a point from P and therefore lies in the optimal Ball B∗ =

B(c∗,r∗) = B(c∗,δ0r∗). Now assume ci lies in the Ball B(c∗,δir∗) for an arbitrary, but fixed i, but is

not a (1+ε)-approximation. As pi+1 = fci and ci is not a (1+ε)-approximation, |ci pi+1|> (1+ε)r∗.

Also, p ∈ B(c∗,r∗) as B∗ contains all of P. Then ci+1 ∈ B(c∗,δir∗) follows directly from Corollary 1

with B = B∗, B′ = B(c∗,δir∗), pi = q and ci = q′.

Note, that it is not obvious how to test whether a center ci is a (1+ ε)-approximation. In fact,

the arbitrary point pi chosen in the very first round could already be a (1+ ε)-approximation. While

the minimum radius of a ball around ci that contains P is given by d(ci, fci), its relative quality in

comparison to r∗ can not be determined without knowing r∗. However, if we can bound the number of

rounds k it takes at most until our algorithm arrives at a (1+ ε)-approximation, running our algorithm
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for k rounds and taking the center with the smallest necessary radius among all centers c1,c2, . . . ,ck

returns a (1+ ε)-approximation.

It remains to find a sufficient bound on the number of rounds. Obviously, δi < δi−1. In the worst

case, ci lies exactly at the boundary of B(c∗,δir∗) in each round, such that ci is a (1+ε)-approximation

if and only if δi < ε . Thus, instead of choosing pi = fci−1 , we examine a slightly different sequence

of points, that creates this worst case. The length of such a worst-case sequence then gives an upper

bound on the number of rounds necessary in our algorithm.

Let p1, p2, . . . pk be a sequence of points, such that pi ∈ ∂B∗ and |pici−1| = (1+ ε)r∗, where ci

is defined as above. Then the construction in Corollary 1 is tight, as pici−1 is exactly tangential to

B(c∗,δi), and thus ci ∈ ∂B(c∗,δi) is exactly the tangential point. Then, for i≥ 1, we consider the line

segments ai = ci−1ci with |ai|= αi(1+ ε)r∗ and bi = ci pi with |bi|= βi(1+ ε)r∗ that together form

ci−1 pi as illustrated in Figure 4.3.

c∗

B∗

ci−1

pi

r∗

δi−1r
∗

δir
∗

ci

|ai| = αi(1 + ε)r∗

|bi| = βi(1 + ε)r∗

Figure 4.3: Construction of ci based on ci−1 and pi.

As ci converges towards c∗ with increasing i, βi increases and αi decreases. However, βi can

be at most 1
(1+ε) by construction as bi forms a right-angled triangle with c∗pi as the hypotenuse, so

βi(1+ε)r∗ = |bi|< |c∗pi|= r∗. We will now show a lower bound on βi and prove that it exceeds 1
(1+ε)

for i≥ 2
ε
−1. Thus, there exists no point pi with |mi−1 pi|= (1+ε)r∗ and pi ∈ ∂B∗ for i≥ 2

ε
−1. This

means, the intersection of ∂B∗ and ∂B(mi−1,(1+ ε)r∗) is empty, and therefore, B(ci−1,(1+ ε)r∗)

covers B∗. That means, our sequence p1, p2, . . . pk can contain at most
⌊ 2

ε

⌋
many points without any

of the corresponding ci being a (1+ ε)-approximation.

Lemma 19
βi exceeds 1

(1+ε) for i≥
⌊ 2

ε

⌋
> 2

ε
−1.

Proof. By our construction

|bi|= (1+ ε)r∗−|ai| ⇒ βi = 1−αi. (4.3)
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In addition, by the construction of ci as illustrated in Figure 4.3 and the Pythagorean theorem, it

holds

β
2
i (1+ ε)2 = 12−δ

2
i

= 1− (δ 2
i−1−α

2
i (1+ ε)2)

= 1− ((1−β
2
i−1(1+ ε)2)−α

2
i (1+ ε)2)

= α
2
i (1+ ε)2 +β

2
i−1(1+ ε)2

⇒ β
2
i = α

2
i +β

2
i−1. (4.4)

Combining Equation 4.3 and Equation 4.4

1−αi =
√

β 2
i−1 +α2

i

⇒ αi =
1−β 2

i−1

2
. (4.5)

Applying Equation 4.3 again we obtain the recurrence

βi = 1−
1−β 2

i−1

2
=

1+β 2
i−1

2
. (4.6)

If we substitute γi =
1

1−βi
⇔ βi =

γi−1
γi

in Equation 4.6, we get the recurrence

γi =
γi−1

1− 1
(2γi−1)

= γi−1(1+
1

2γi−1
+

1
4γ2

i−1
+ · · ·)≥ γi−1 +

1
2
. (4.7)

Now, p0 and p1 both lie on ∂B∗, and thus, β1 =
1
2 and consequently γ1 = 2.

By induction, γi ≥ (3+i)
2 and hence

βi =
γi−1

γi
= 1− 1

γi
≥ 1− 2

3+ i
=

1+ i
3+ i

(4.8)

Thus, it suffices to have i≥ 2
ε
−1 to have

βi ≥
1+ i
3+ i

≥
2
ε

2+ 2
ε

=
2
ε

2ε

ε
+ 2

ε

=
1

1+ ε
. (4.9)

The upper bound for the number of rounds together with the specific construction of the next

center in each step yields the correctness of Algorithm GRADIENTMEB. It remains to analyse its

runtime: Finding pi = fci−1 each round takes time in O(nd) and the computation of mi takes time in

O(d), as its a linear combination of two d-dimensional points. As the algorithm runs for
⌊ 2

ε

⌋
rounds,

this concludes the proof of the following Theorem:
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Theorem 19
Algorithm GRADIENTMEB computes a (1+ ε)-approximation of the Minimum Enclosing Ball in

time O(nd
ε
).

Algorithm 4: GRADIENTMEB

Input :Set of points P⊂ Rd .
Output :A center c such that B(c,(1+ ε)r∗) covers P

1 p1← arbitrary point from P
2 c1← p1
3 bestRadius← ∞

4 for i = 1 to
⌊ 2

ε

⌋
do

5 pi+1← farthest point from ci in P
6 if |ci pi+1|< bestRadius then
7 bestCenter← ci−1
8 bestRadius← |ci−1 pi|
9 ci+1← m′(pi+1,ci)

10 return bestCenter

4.3 Extension to the k-center Problem for k > 2

The algorithm GRADIENTMEB can be extended to solve the Euclidean k-center problem for k > 2 by

a similar approach as Bǎdoiu et al. [7] employ for their core-set algorithm.

Euclidean k-center
Input: A set of points P⊂ Rd and a value k ∈ N.

Goal: Find k centers c1, . . .ck ∈Rd minimizing max
p∈P

k
min
i=1

d(ci, p), where d(ci, p) denotes the Euclidean

distance between the center ci and the point p.

First we examine, how to solve the k-center problem for k = 2: We aim to construct two sequences

of centers m1, j and m2,k, based on two sequences of points from the two optimal balls B∗1 and B∗2 of

equal radius.

We start with an arbitrary point p1 and set m1,1 = p1 as we can assume w. l. o. g. p1 ∈ B∗1. In

every further step, we pick a point pi farthest from either of the two current centers c1, j and c2,k. So

pi = max
p∈P

min{d(p,c1, j),d(p,c2,k)}. As long as we have no center for B∗2, we pick the point furthest

from c1, j. We then employ a guessing oracle that tells us whether pi belongs to B∗1 or B∗2. Depending

on its answer, we add the point to the sequence for the respective ball then calculate a new center

m1, j+1 or m2,k+1 as in our 1-center algorithm.

After 2
⌊ 2

ε

⌋
+ 1 picks, at least one of the two sequences will contain

⌊ 2
ε

⌋
+ 1 many points,

w. l. o. g. the sequence for B∗1. Now consider the last point pi that was added to the sequence of
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B∗1. By our arguments for the upper bound of rounds necessary for the 1-center algorithm, our

center ci−1 for B∗1 based on the previous
⌊ 2

ε

⌋
many points already is a (1+ ε) approximation. Thus,

d(pi,ci−1) < (1+ ε)r∗. But pi was picked as the point in P farthest away from either of the two

current centers for B∗1 and B∗2, thus, there exists no point in P with distance more than (1+ ε)r∗ to

either current center.

Thus, we obtain a (1+ ε)-approximation within 2
⌊ 2

ε

⌋
+1 rounds. As we don’t have a guessing

oracle, we just exhaust all possible guesses and return the best solution encountered, which results in

a running time of O
(

nd 2
1
ε

)
.

For k > 2, we apply the same approach by constructing k sequences of centers. By the same

arguments as for k = 2, we arrive at a (1+ ε)-approximation after at most k
⌊ 2

ε

⌋
+1 rounds. As we

need to exhaust k possibilities each for these k
⌊ 2

ε

⌋
points, our algorithm runs in time O

(
nd k

k
ε

)
=

O
(

nd 2
k
ε

logk
)

.

Theorem 20
Given a set P ∈ Rd , a (1+ ε)-approximation of the Euclidean k-center problem can be computed in

time O
(

nd k
k
ε

)
.



Chapter 5

Conclusion

Discrete Firefighting We introduced a new model for firefighting problems in graphs aimed to

more realistically portray the spread of a fire using resistance and energy parameters. We showed that

the r,e-model generalizes Hartnell’s model, but allows to incorporate varied terrain parameters. We

presented an algorithm to track fire propagation within a given graph, that is especially efficient in

graphs with bounded maximum vertex degree, which includes most graphs used to model terrain.

We studied a number of problems focused on protecting a set of target cells at the boundary of a

hexagonal cell graph from a spreading fire. When protecting them by adding an identical amount of

resistance to a set of cells, we presented a polynomial time algorithm to decide, whether such a set

of cells exists, while an algorithm to find such a set of minimum cardinality can run in exponential

time in some graphs. When allowed to increase the resistance of cells individually, we provided an

algorithm to solve this problem in polynomial time in graphs with restricted initial resistance and

energy. As the results only apply to restricted classes of graphs, target sets or initial parameters,

solutions for more general versions of this problem remain open. For the inverse problem of igniting

a set of target vertices given a set of possible starter vertices, we showed NP-completeness.

Besides generalizing the algorithmic results for protection problem to more general graphs, we

also discussed a number of other open problems, that allow for further research. One the one hand,

the resistance and energy parameters allow to examine more nuanced versions of already well-studied

problems in graphs, like the firefighter problem or the burning number. However, more unique features

of our model, like the fire not necessarily igniting the whole graph, also allow for entirely new kinds

of problems, e. g. the k-Evacuation Spot Problem.

In summary, the model presented succeeds as a framework with high flexibility and adaptability,

both generalizing well-known problems as well as opening up new areas of research. However, as for

the problems examined in this thesis, this flexibility can easily result in optimal solutions being too

hard to compute in general instances. Instead, one should either restrict the problems to instances

with specific structural properties, ideally derived from real-world instances, or strive to find good

approximations.
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Continuous Firefighting We have shown several non-trivial bounds for the speed necessary to

contain the fire in the half-plane model. In addition we have shown simple strategies for other related

problems like the angle cover or the infinite following fire model. Our results show that delaying

barriers – in the half-plane model vertical segments attached to the horizontal barrier – can help to

break the obvious upper bound of 2 for the building speed in some scenarios.

It remains the interesting question whether a similar effect could also be achieved for Bressan’s

original problem of containing the fire by a closed barrier curve. As an intermediate result in

that direction, one ought to extend these results to more complex delaying barriers, e. g. those

not necessarily connected to the horizontal barriers, as well as the Euclidean metric. However, as

discussed in this thesis, the effects of delaying barriers are less pronounced and harder to analyse in

both cases.

Minimum Enclosing Ball Problem We provided a new efficient gradient-descent (1+ ε) approxi-

mation algorithm for MEB in arbitrary dimensions running in time O
(nd

ε

)
, which is strictly better than

previous core-set based approaches with run times O
(nd

ε
+ 1

ε4.5 log 1
ε

)
as long as nd ∈Ω

( 1
ε3.5 log 1

ε

)
.

Like the core-set based algorithms it can be extended to the k-center problem with a run time of

O
(

ndk
k
ε

)
. While this does not improve upon the most recent results by Rösner for input points with

rational coefficients, the presented algorithm might nevertheless be particularly attractive due to its

simplicity implying very low run-time constants.

As it is a generalization of a property already utilized in a streaming version of the Euclidean

2-center problem, it might be interesting to investigate, whether the structural property utilized in the

algorithm might have applications in other similar clustering problems. Furthermore, the sequence

of points picked by the algorithm is never as bad as the worst-case sequence we used to bound the

necessary number of rounds. Thus, there might be room for improvement in the run-time analysis of

our algorithm.
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