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ABSTRACT

In this thesis we study the existence and uniqueness of steady Kähler-
Ricci solitons. We consider two classes of manifolds on which we obtain
new examples of steady solitons by using different methods for each
class.

In the first part we focus on suitable vector bundles over Kähler
manifolds whose Ricci curvature has constant eigenvalues. This condi-
tion reduces the soliton equation to an ODE, which we then solve to
find new examples. Moreover, we show that these new steady Kähler-
Ricci solitons are unique if the Kähler class, the vector field and the
asymptotic behavior is fixed.

In the second part we consider certain crepant resolutions π : M →
(C×D) /Γ of orbifolds (C×D) /Γ for some finite group Γ which acts
by rotation on the first factor and preserves a holomorphic volume
form on C × D. To construct new steady Kähler-Ricci solitons on
M we use PDE methods for complex Monge-Ampère equations. The
solitons obtained this way are asymptotic to a Ricci-flat cylinder.
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INTRODUCTION

In 1982, Hamilton introduced the Ricci flow equation

∂

∂t
g(t) = −2 Ric(g(t))

for a family of Riemannian metrics g(t) with Ricci curvature Ric(g(t))
([Ham82]) and outlined a possible approach to proving Thurston’s ge-
ometrization conjecture in subsequent works. Since then, Ricci flow
was used to prove spectacular theorems in geometry. Most notably,
various authors worked on Hamilton’s program until Perelman com-
pleted the proof of Thurston’s conjecture. (For an introduction to this
topic, see for example [MT07]). In higher dimensions, Böhm and Wilk-
ing successfully applied Ricci flow to show that manifolds with positive
curvature operator are space forms ([BW08]), and Brendle and Schoen
also relied on Ricci flow to prove the differentiable sphere theorem
([BS11]).

On Kähler manifolds, Hamilton’s Ricci flow has been the subject of
intense study over the past two decades because it has deep connections
with the complex geometry of the underlying manifold. In this context
there also exists a guiding program which was developed by Song and
Tian ([ST07],[ST09],[Tia08]). This so-called Analytic Minimal Model
Program proposes how Ricci flow may be used to tackle Mori’s Program
in birational geometry, which is an essential step towards a possible
classification of algebraic varieties (see [BEG13][Chapter 3] and [Tos18]
for excellent introductions).

For many applications of Ricci-flow, it is important to understand
how the metric g(t) changes if t approaches the maximal existence time
T > 0. In general, g(t) does not converge to a smooth metric as t→ T ,
but forms singularities whose study is a broad area of current research.
Possible models for singularities are provided by Ricci solitons which
are self-similar solutions to Ricci flow, i.e. they only evolve by scaling
and diffeomorphisms. For instance, Type IIa singularities, which occur
if the maximal existence time T > 0 of Ricci flow is finite and the
curvature blows up faster than (T − t)−1, are expected to be related to
so-called steady Ricci solitons (compare [CK04][Chapter 2.6], or more
recently [CDM20], [CFSZ20], [BCD+21] for results in this direction).

In this work we focus on the special case of so-called steady Kähler-
Ricci solitons and the goal is to study existence and uniqueness of these
objects. Recall that a steady Kähler-Ricci soliton is a triple (M, g,X)
consisting of a Kähler manifold (M, g) and a real holomorphic vector
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2 INTRODUCTION

field X on M such that

Ric(ω) = −1

2
LXω,(1)

where ω denotes the Kähler form of g, Ric(ω) the corresponding Ricci
form and LX the Lie derivative in direction of X. If X is the gradient
field of some function f : M → R, we say that the soliton (M, g,X) is
gradient. Interestingly, if (M, g,∇gf) is a gradient steady Kähler-Ricci
soliton on a simply-connected manifold M , then (1) is equivalent to

ωn = in
2

e−fΩ ∧ Ω(2)

for some holomorphic volume form Ω on M , see [Bry08][Theorem 1].
This equation is the starting point for the construction of such solitons
since it allows us to reduce (1) to a Monge-Ampère equation for a single
scalar function.

However, it is in general not known when a Kähler manifold with
trivial canonical bundle admits a steady Kähler-Ricci soliton, and it
is also not clear to which extends these solitons are unique. In con-
trast, the existence and uniqueness of compact Ricci-flat Kähler man-
ifolds is well understood due to Yau’s solution to Calabi’s conjecture
([Cal54],[Yau78]).

One difficulty in studying non-trivial (i.e. non Ricci-flat) steady soli-
tons is that they can only exist on non-compact manifolds ([Ive93]).
While there are general versions of Yau’s theorem for non-compact
manifolds (most notably [TY90] and [Hei10]), there do not exist com-
parable results for solutions to (2) in this generality.

Instead, all known examples of steady Kähler-Ricci solitons are con-
structed by first fixing a specific complex manifold M and then pursu-
ing one of the following two approaches: The first is to consider complex
manifolds, on which the scalar Monge-Ampère equation may be further
reduced to an ODE, for instance by considering U(n)-invariant metrics
on Cn or on the canonical bundle KCPn−1 . (Works in this direction
include [Ham88],[Cao96],[DW11] and [Yan12]).

In the second approach, the underlying manifolds are certain resolu-
tions of isolated conical singularities, for example crepant resolutions
of orbifolds Cn/Γ for finite subgroups Γ ⊂ SU(n) that fix the origin.
Since there exists an (incomplete) steady soliton on the smooth part
of the singular space (Cn \ {0}/Γ in the example), the idea is to use
PDE methods for complex Monge-Ampère equations to construct a
(complete) soliton on the resolution (compare [BM17],[CD20]).

Corresponding to these two construction methods, this thesis is di-
vided into two parts. Part I is the preprint [Sch20], in which we unify
and extend the existing results obtained by the ODE approach. More-
over, we also study uniqueness of this class of solitons. Part II consists
of [Sch21], in which we construct new examples of steady Kähler-Ricci



INTRODUCTION 3

solitons by considering resolutions of orbifolds different from those in
[BM17] and [CD20].

In the following two sections, we give a more precise description of
our results and briefly discuss their proofs.

1. Overview of Part I.

The ODE approach to solving the Monge-Ampère equation (2) uses
an Ansatz which goes back to Calabi ([Cal79]) and was originally in-
troduced to find Ricci-flat metrics on the canonical bundle KCPn−1 over
complex projective space. In the case of solitons, it was applied by
various authors ([Cao96],[FIK03],[Yan12]) to construct steady Kähler-
Ricci solitons on the canonical bundle π : KM → (M, gM) over Kähler-
Einstein Fano manifolds (M, gM). If ωM is the corresponding Kähler
form on M , Calabi’s Ansatz takes the form

ωφ = π∗ωM + i∂∂̄φ,

for some function φ = φ(t) only depending on the parameter t =
log hM , where hM is the Hermitian metric on KM induced by gM . The
Einstein condition on ωM then reduces (2) to an ODE in φ.

For constructing Kähler-Einstein metrics by Calabi’s Ansatz, it was
observed by Hwang and Singer ([HS02]) that imposing a weaker con-
dition on gM suffices to reduce the Einstein equation to an ODE. They
merely assumed that the endomorphism

g−1M · Ric(ωM) : T 1,0M → T 1,0M

on the base manifold (M, gM) has constant eigenvalues.
We adapt Hwang-Singer’s observation to the case of steady Kähler-

Ricci solitons and obtain the following

Theorem 1.1 ([Sch20][Theorem 1.1]). Let π : KM → (M, gM) be the
canonical line bundle over a compact Kähler manifold. Assume that the
Ricci form of gM is positive semi-definite and has constant eigenvalues
with respect to gM . Then KM admits a 1-parameter family of complete
steady Kähler-Ricci solitons in the Kähler class [π∗ωM ].

This theorem includes all known examples of steady Kähler-Ricci
solitons which have previously been constructed on line bundles over
Kähler manifolds by ODE methods ([Cao96],[CV96],[PV99],[FIK03],
[Yan12]). In addition, Theorem 1.1 also produces new examples, for
instance if M = P(T ∗CPn) is the projectivization of the cotangent
bundle T ∗CPn. Since P(T ∗CPn) is a flag variety, there exists a metric
gM for each Kähler class on P(T ∗CPn), which satisfies the required
assumption (see [Sch20][Example 2.5] for details). In comparison, the
previous works only found steady solitons with Kähler class that is a
multiple of (the pullback of) the first Chern class π∗c1(P(T ∗CPn)).
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Hwang and Singer modified their approach in [HS02][Section 3.2]
such that it can also be applied to certain vector bundles of rank ≥ 2.
The idea is essentially to work on the corresponding tautological line
bundle over the projectivization. However, the conditions one requires
on the base manifold are more complicated to state, so we refer the
reader to [Sch20][Section 3] for a detailed discussion of the necessary
changes. The main result of this section is [Sch20][Theorem 1.2], which
constructs steady Kähler-Ricci solitons on vector bundles of higher rank
by adapting Hwang-Singer’s ideas. As Theorem 1.1, it also unifies and
extends the previous results that rely on ODE methods to obtain steady
Kähler-Ricci solitons on vector bundles of higher rank ([Li10],[DW11]).

In the second part of the article [Sch20], we study the uniqueness
of the solitons constructed in [Sch20][Theorems 1.1 and 1.2]. Before
this article, the only known uniqueness result for steady Kähler-Ricci
solitons was the following

Proposition 1.2 ([BM17][Proposition 1.2]). Let (M, g,X) be a steady
Kähler-Ricci soliton with Kähler form ω. Suppose ω + i∂∂̄u defines
another steady Kähler-Ricci soliton on M with the same vector field
X, such that at infinity we have

u→ 0, X(u)→ 0 and |∂∂̄u|g → 0.

Then u ≡ 0.

Thus, it is natural to ask if the solitons ωφ constructed in Theo-
rems 1.1 and 1.2 of [Sch20] are unique provided the following three
parameters are fixed:

(i) the vector field,
(ii) the de Rahm cohomology class [ωφ] and

(iii) the asymptotic behavior.

To make (iii) precise, suppose ωφ is defined on some vector bundle
E →M and denote the corresponding metric by gφ. We introduce the
spaces C∞δ (Λ∗T ∗E) that consist of differential forms η on the manifold
E such that for all k ∈ N0

|∇kη| = O(d−δ−kgφ
).

Here, ∇ and | · | are induced by the metric gφ and dgφ is the distance
function of gφ to a fixed point. With this notation, we show:

Theorem 1.3 ([Sch20][Theorem 1.3]). Let ωφ be a steady Kähler-Ricci
soliton constructed in [Sch20][Theorem 1.1 or 1.2]. Assume that ω is
a Kähler-Ricci soliton on E with the same vector field as ωϕ such that
[ω] = [ωϕ] ∈ H2(E). If moreover ωφ−ω ∈ C∞−δ(Λ2T ∗E) for some δ > 2,
then ωφ = ω.

Our approach is to reduce this theorem to Proposition 1.2 which is
accomplished by the next
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Theorem 1.4 ([Sch20][Theorem 5.4]). Let δ > 2 and η ∈ C∞−δ(Λ∗T ∗E)

be a real (1, 1) form. If η is d-exact, then η =
√
−1∂∂̄u for some

u ∈ C2
2−δ(E).

Applying Theorem 1.4 to the difference ωφ − ω allows us to use
Proposition 1.2 since δ > 2. Then Theorem 1.3 follows immediately.

Since the underlying manifold E is non-compact, it is a priori not
clear why Theorem 1.4 should be true. Our proof of this theorem
uses a strategy that was pursed by Conlon and Hein ([CH13][Section
3]) for conical Kähler manifolds of non-negative Ricci curvature. Why
their strategy works in our context can essentially be traced back to two
things: Firstly, the spaces C∞δ (Λ∗T ∗E) are well-adapted to the Laplace
operator ∆ of gφ since we can solve Poisson’s equation ∆v = h for func-
tions v, h with controlled growth (see [Sch20][Proposition 5.6]). And
secondly, it turns out that gφ is in fact of non-negative Ricci curvature
([Sch20][Theorem 4.1]). Using these two facts, we conclude Theorem
1.4 in the same way as Conlon and Hein proved [CH13][Theorem 3.1].

After our preprint [Sch20] was uploaded to the arXiv, Conlon and
Deruelle also posted their work [CD20], which contains new existence
and uniqueness results for steady Kähler-Ricci solitons. There is some
overlap between their and our results. For example, in the case of
the canonical bundle KM →M over a Kähler-Einstein Fano manifold,
[CD20][Theorem A] includes both Theorem 1.1 and 1.3 as a special
case.

Conlon-Deruelle’s existence result takes a different approach than
we pursued here. It is based on the continuity method for complex
Monge-Ampère equations and their ideas play a crucial role in the
second article [Sch21], which is discussed in the next section.

2. Overview of Part II.

Before stating our main result, we briefly explain the work [CD20]
because we use the same underlying idea to find new examples of steady
Kähler-Ricci solitons. While Conlon and Deruelle study resolutions of
general Ricci-flat cones, let us focus on the special case of orbifolds
Cn/Γ for finite subgroups Γ ⊂ SU(n) that only fix the origin. Recall
that there is a U(n)-invariant steady Kähler-Ricci soliton on Cn (due to
Cao [Cao96]), and so it descends to a soliton on the (singular) orbifold
Cn/Γ. By considering resolutions π : M → Cn/Γ of the isolated singu-
larity, one may search for new steady solitons on the complex manifold
M , which are asymptotic to Cao’s soliton on Cn/Γ. This requires that
the resolution is

(i) crepant and
(ii) equivariant, i.e. that the C∗-action, given by multiplying a vec-

tor in Cn by λ ∈ C∗, extends equivariently to the resolution
M .
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Conditon (i) means that M admits a holomorphic volume form Ω and
(ii) implies that the radial vector field on Cn/Γ extends to a real holo-
morphic vector field X on M . This X is the candidate for the soliton
field. With these assumptions, Conlon and Deruelle set up a continuity
method to solve the Monge-Ampère equation (2).

In [Sch21], our goal is to construct new examples of steady Kähler-
Ricci solitons which are geometrically different from those in [CD20].
While Conlon-Deruelle’s solitons have rather complicated asymptotics
(these are so-called cigar-paraboloids, see [CD20][Section 3]), we aim at
finding new examples that are asymptotically cylindrical. So we purse
a strategy similar to Conlon and Deruelle, but we consider a different
asymptotic model as a starting point.

Recall that Hamilton ([Ham88]) constructed a steady Kähler-Ricci
soliton on C, that is asymptotic to the cylinder R×S1 ∼= C∗. Then the
product C ×D of Hamilton’s soliton and a compact Ricci-flat Kähler
manifold D is also a steady Kähler-Ricci soliton, asymptotic to the
cylinder R× S1 ×D.

To find non-trivial examples, we pass to the quotient (C×D) /Γ
by a suitable finite cyclical group Γ and then consider resolutions π :
M → (C×D) /Γ. We essentially require that Γ acts by rotation on
the first factor and that D admits a holomorphic volume form ΩD such
that Γ preserves Ω := dz ∧ ΩD, so that Ω descends to the quotient.
As explained before, we have to assume that the resolution π : M →
(C×D) /Γ is crepant (i.e. Ω extends to M) and satisfies a certain
equivariance condition so that the radial vector field on the first factor
of (C×D) /Γ also extends to the resolution.

Under these assumptions our main result is to construct steady
Kähler-Ricci solitons on M , which are asymptotic to the Ricci-flat
cylinder R× (S1 ×D) /Γ.

Theorem 2.1 ([Sch21][Theorem 1.2]). Let Dn−1 be a compact Kähler
manifold with nowhere-vanishing holomorphic (n−1, 0)-form ΩD. Sup-
pose γ : D → D is a complex automorphism of order m > 1 such that

γ∗ΩD = e−
2πi
m ΩD,

and consider the orbifold (C×D)/〈γ〉, where γ acts on the product via

γ(z, w) =
(
e

2πi
m z, γ(w)

)
.

Let π : M → (C × D)/〈γ〉 be a crepant resolution such that the C∗-
action on (C×D)/〈γ〉 given by

λ ∗ (z, w) = (λz, w), λ ∈ C∗,

extends π-equivariantly to a holomorphic action of C∗ on M .
Let M = M ∪D be the complex compactification of M by adding the

orbifold divisor D := D/〈γ〉 at infinity. Then for every orbifold Kähler
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class κM on M , there exists a steady Kähler-Ricci soliton on M whose
Kähler form is contained in the class κM |M ∈ H2(M,R).

The compactification M of a resolution π : M → (C×D)/〈γ〉 as in
Theorem 2.1 is obtained by replacing the C-factor with the Riemann
sphere Ĉ = C ∪ {∞}, i.e. we glue in the divisor D = {∞} × D/〈γ〉.
The reason for passing to M is that we obtain a precise characterisation
of Kähler classes which admit asymptotically cylindrical Kähler forms.
By work of Haskins, Hein and Nordström ([HHN15]), these classes
are restrictions of orbifold Kähler classes from M to M (also compare
[Sch21][Section 4] for details).

Given such a class κ ∈ H2(M,R), there exists a Kähler form ω0 ∈ κ,
whose corresponding metric is asymptotic to the Ricci-flat cylinder
R × (S1 ×D) /〈γ〉 (see [HHN15][Section 4.2]). For constructing new
solitons, we make the Ansatz ωϕ = ω0 + i∂∂̄ϕ so that (2) can be
rewritten as

ωnϕ = eF−
X
2
(ϕ)ωn0(3)

for a suitable choice of F . Finding a solution ϕ to (3) by setting up a
continuity method requires two key points.

First, we need to define suitable Banach spaces between which the
linearisation of (3) is an isomorphism. Here we consider the func-
tion spaces C∞ε (M) that are well-adapted to the cylindrical geometry,
see [HHN15][Section 1] for instance. The space C∞ε (M) contains all
functions whose derivatives decay at least like e−εt, with t denoting
the cylindrical parameter. If gϕ denotes the metric associated with ωϕ,
then the linearisation of (3) is given by the so-called drift Laplace oper-
ator ∆gϕ +X. Using the theory of asymptotically translation-invariant
operators, we show that ∆gϕ + X is indeed an isomorphism between
the chosen function spaces.

The second and most difficult part is to obtain a priori estimates on
ϕ. For these estimates, we essentially adapt Conlon-Deruelle’s ideas
([CD20]) to our cylindrical setting. While the uniform estimates in
[CD20][Section 7] rely on F being compactly supported, we present a
modified proof allowing us to immediately assume that F is merely
decaying exponentially, see [Sch21][Section 5].

Combining the previous two parts then finishes the proof of Theorem
2.1.
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[BW08] C. Böhm and B. Wilking, Manifolds with positive curvature operators
are space forms, Ann. of Math. (2008), 1079–1097.

[Cal54] E. Calabi, The space of Kähler metrics, Proc. Internat. Congress Math.
Amsterdam 2 (1954), 206–207.
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EXISTENCE AND UNIQUENESS OF S1-INVARIANT
KÄHLER-RICCI SOLITONS∗

JOHANNES SCHÄFER

Abstract. We use the momentum construction for S1-invariant
Kähler metrics as developed by Hwang-Singer to construct new
examples of steady Kähler-Ricci solitons. We also prove that these
solitons are unique in their Kähler class, provided the vector field
and the asymptotic behavior are fixed.

1. Introduction

A steady Kähler-Ricci soliton is a Kähler manifold (M, g) whose
Kähler form ω satisfies

Ric(ω) = −LXω(1)

for some vector field X which is the real part of a holomorphic vector
field. Solutions to (1) are natural generalizations of Ricci-flat metrics
and arise as self-similar solutions to Ricci flow.

If the vector field X is non-zero, the manifold must be non-compact
[Ive93]. In general, there is no classification for steady Kähler-Ricci
solitons available and only few examples are known. Even if a manifold
admits a Kähler-Ricci soliton, it is not understood which subset of the
Kähler cone contains further examples of Ricci solitons. It is also not
clear, how many solitons there are in each Kähler class.

All known examples with X 6= 0 are divided into two classes. One
class contains explicitly constructed solutions by using ODE methods
([Ham88], [Cao96], [CV96], [PTFV99], [FIK03], [Li10], [DW11],[FW11],
[Yan12]), while the other examples are obtained by using PDE gluing
methods ([BM17]). The explicit examples are constructed on Euclidean
space or on holomorphic vector bundles over Kähler manifolds, while
the gluing method produces solitons on certain crepant resolutions of
orbifolds Cn/G.

In this article, we use the momentum construction introduced by
Hwang-Singer [HS02] to find new examples of steady Kähler-Ricci soli-
tons. More precisely, we prove the following theorem.

∗This chapter is the article:
Johannes Schäfer, Existence and uniqueness of S1-invariant Kähler-Ricci soli-
tons, arXiv:2001.09858v2, to appear in the Annales de la Faculté des Sciences de
Toulouse mathématiques.

13
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Theorem 1.1. Let π : KM → (M, gM) be the canonical line bundle
over a compact Kähler manifold. Assume that the Ricci form of gM is
positive semi-definite and has constant eigenvalues with respect to gM .
Then KM admits a 1-parameter family of complete steady Kähler-Ricci
solitons in the Kähler class [π∗ωM ].

Theorem 1.1 generalises results obtained in [Cao96], [CV96], [PTFV99],
[FIK03], [DW11] and [Yan12]. The main difference is that we do not as-
sume (M, gM) to be a Kähler-Einstein Fano manifold, but only require
that Ric(ωM) has constant eigenvalues.

Under the same assumption, Hwang-Singer [HS02] used Calabi’s
ansatz to construct Kähler-Einstein metrics on line bundles. They
observed that the constancy of eigenvalues is sufficient to reduce the
Kähler-Einstein equation to a single ODE, which is linear after apply-
ing a certain transformation. We prove Theorem 1.1 by adapting their
construction to the case of steady Kähler-Ricci solitons.

Theorem 1.1 produces new examples if the base M is a flag variety.
More concretely, consider the canonical bundle over M = P(T ∗CPn),
the projectivization of the cotangent bundle T ∗CPn. Previously, it
was only known that compactly supported Kähler classes admit steady
solitons ([PTFV99], [DW11], [Yan12]), whereas Theorem 1.1 shows
they sweep out the entire Kähler cone.

Another interesting feature of Hwang-Singer’s construction is that it
can also be applied to certain vector bundles of rank ≥ 2. Then we
obtain a result analogue to Theorem 1.1.

Theorem 1.2. Let π : E → D be a holomorphic vector bundle of rank
m over a compact Kähler manifold (D,ωD). Assume that E admits a
Hermitian metric h such that the corresponding curvature form γ of
the tautological bundle (OP(E)(−1), h) is negative semi-definite and has
constant eigenvalues with respect to the Kähler metric ωM = p∗ωD− γ,
where p : M = P(E) → D is the natural projection. Additionally,
suppose that

Ric(ωM) = −mγ.(2)

Then E admits a 1-parameter family of complete steady Kähler-Ricci
solitons in the class [π∗ωD].

This can be applied to certain sums of line bundles and again, if the
base is a flag variety, it constructs steady solitons in each Kähler class,
generalising results in [Li10] and [DW11][Theorem 4.20].

Given a Kähler-Ricci soliton, it is an interesting question whether or
not it is unique in its Kähler class. It is natural to fix a vector field for
this question because there can be families of solitons as in Theorem
1.1 and 1.2 for instance. In general, this question seems to be largely
open.
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In the special case of Ricci-flat Kähler metrics, the question of unique-
ness is studied under additional assumptions on the asymptotic be-
haviour of the metric ([Joy00], [Got12], [CH13], [HHN15]). For exam-
ple, asymptotically conical Ricci-flat metrics are unique in their Kähler
class [CH13].

In the different setting of solitons with X 6= 0, there are only few re-
sults such as [BM17]. Assuming that two steady solitons ω1, ω2 with the
same vector field are related by ω1 = ω2+

√
−1∂∂̄u, [BM17][Proposition

1.2] shows that ω1 = ω2 provided u and its derivatives tend to zero at
infinity.

In this work, we extend the previous result for the metrics con-
structed in Theorem 1.1 and 1.2.

Theorem 1.3. Let E → D be a holomorphic vector bundle satisfying
the assumptions in Theorem 1.1 or 1.2 and denote the steady Kähler-
Ricci solitons constructed in Theorem 1.1 or 1.2 by ωϕ. Suppose that
ω is a Kähler-Ricci soliton on E with the same vector field as ωϕ such
that [ω] = [ωϕ] ∈ H2(E). If moreover ωϕ − ω ∈ C∞−δ(Λ2T ∗E) for some
δ > 2, then ωϕ = ω.

We reduce the proof of Theorem 1.3 to [BM17][Proposition 1.2] by
proving a ∂∂̄-Lemma with controlled growth. Assuming that ωϕ − ω
is asymptotic to zero, in a suitable sense, we show that there exists a
smooth function u such that ωϕ−ω =

√
−1∂∂̄u and u ∈ C∞−δ+2(E), i.e.

u and all its derivatives tend to zero because 2− δ < 0.
The strategy for finding such a function u is analogue to [CH13][Section

3]. The main point is proving that all harmonic 1-forms of a certain
growth behaviour are identically zero which requires non-negative Ricci
curvature. We will see that this is indeed true for the metrics ωϕ con-
structed in Theorem 1.1 and 1.2.

This article is structured as follows. In Section 2, we recall Hwang-
Singer’s construction of Kähler metrics and prove Theorem 1.1. For
proving Theorem 1.2, we have to make some adjustments which are
explained in Section 3. The metrics are studied more closely in Section
4. Here we observe in particular that the curvature of these metrics
is bounded and that the Ricci curvature is non-negative. Then, in
Section 5, we prove Theorem 1.3 by studying the Laplace operator and
harmonic 1-forms of the metrics constructed in Theorem 1.1 and 1.2.

After the first version of this paper was uploaded to the arXiv, Con-
lon and Deruelle [CD20] posted a preprint on the arXiv containing a
new existence result for steady Kähler-Ricci solitons. There is some
overlap between their main result [CD20][Theorem A] and our Theo-
rems 1.1 and 1.2, compare Remarks 2.6 and 3.4 below.

Acknowledgement. The author is financially supported by the Max-
Planck-Institute for Mathematics in Bonn and would like to thank his
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PhD advisor, Prof. Ursula Hamenstädt, for her encouragement as well
as helpful discussions.

2. Calabi’s Ansatz for line bundles

Hwang-Singer’s construction combines Calabi’s ansatz with ideas
from symplectic geometry ([HS02]). If π : (L, h)→ (M,ωM) denotes a
Hermitian holomorphic line bundle over a Kähler manifold, then Cal-
abi’s idea ([Cal79]) was to search for Kähler metrics of the form

π∗ωM +
√
−1∂∂̄f(t).(3)

Here, t denotes the logarithm of the fibre-wise norm function induced
by h and f is a convex function of one variable. Instead of describing
the metric (3) in terms of the potential f , Hwang-Singer introduced a
new variable τ = τ(t) and a function ϕ = ϕ(τ) : (0,∞) → R+ which
is related to the Legendre transformation F of f by ϕ = 1/F ′′. In
particular, ϕ determines the metric (3) uniquely.

Assuming that the curvature form of h has constant eigenvalues, we
will see in this section that the non-linear Kähler-Ricci soliton equation
(1) is equivalent to a single, linear ODE in the function ϕ, which can be
solved explicitly. This leads to a proof of Theorem 1.1. Additionally,
we discuss the main examples to which Theorem 1.1 applies.

2.1. Notation and set-up. We begin by briefly recalling Calabi’s
construction of Kähler metrics in the special case of the canonical bun-
dle. We follow the presentation in [HS02][Section 2].

Let (Mn, ωM) be a Kähler manifold of complex dimension n and
equip its canonical line bundle π : KM →M with the Hermitian metric
h induced by ωM . Let γ be the curvature form of h and assume that
−γ ≥ 0, i.e. γ is negative semi-definite. Recall that γ is given by

γ = −
√
−1∂∂̄ log h(s, s̄) = −Ric(ωM),

where s : U → KM is a local holomorphic section of KM and Ric(ωM)
denotes the Ricci form of ωM . We introduce the radial function r :
KM → R≥0 defined by r(v) =

√
h(v, v̄) and outside the zero section,

we define a new function t : KM \M → R by t = 2 log r. The pullback
π∗γ is a ∂∂̄-exact form on KM \M and satisfies

π∗γ = −
√
−1∂∂̄t.(4)

Suppose f : R→ R is a smooth function satisfying

lim
t→−∞

f ′(t) = 0 and f ′′ > 0.(5)

Then Calabi’s Ansatz searches for Kähler metrics ω of the form

ω = π∗ωM +
√
−1∂∂̄f(t) = π∗ωM − f ′(t)π∗γ + f ′′(t)

√
−1∂t ∧ ∂̄t.(6)

Note that ω is defined on KM \M , the canonical bundle with the zero
section removed, and it is positive since we assumed −γ ≥ 0 and (5).
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Depending on the behaviour of f(t) as t → ±∞, ω can be extended
to all of KM and define a complete metric. When this can happen is
explained in the next subsection.

We conclude this subsection by describing the Calabi metric ω in
terms of the Legendre transformation of its potential f , which is well-
defined since f is convex by (5). We now briefly recall this transfor-
mation. Let I = Im f ′ ⊂ R+ be the image of f ′ and define the new
variable τ := f ′(t) ∈ I. We write I = (0, τ2), which means that

lim
s→−∞

τ(s) = lim
t→−∞

f ′(t) = 0, lim
s→+∞

τ(s) = lim
t→+∞

f ′(t) = τ2.

We point out that in general τ2 ≤ +∞, but in the case considered in
subsequent sections, we have in fact that τ2 = +∞. The Legendre
transform F : I → R is defined by the formula

f(t) + F (τ) = tτ.

One can check that F is also strictly convex, so that we can define a
new function ϕ : I → R+ by

ϕ(τ) =
1

F ′′(τ)
.

Then we obtain the following relations

dτ

dt
= f ′′(t) = ϕ(τ), f ′′′(t) =

dϕ

dt
= ϕ′(τ)ϕ(τ).(7)

In particular, (5) translates into

ϕ > 0 on I = (0, τ2).(8)

We can then express the metric ω obtained from Calabi’s construction
(6) as

ω = π∗ωM − τπ∗γ +
1

ϕ(τ)

√
−1∂τ ∧ ∂̄τ(9)

by using equations (6) and (7).
The function ϕ is called the momentum profile of ω. We note that

it is possible to reconstruct the Kähler potential f of ω from its mo-
mentum profile by

f(t) =

∫ τ(t)

0

xdx

ϕ(x)
.(10)

Hence, the Kähler metric given by Calabi’s Ansatz (6) is uniquely deter-
mined by its momentum profile. We emphasize this by writing ω = ωϕ.
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Completeness of ωϕ. The Kähler metric ω = ωϕ given by (9) is a pri-
ori only defined on KM \M and is in general not complete. Whether
or not ωϕ extends across the zero section to a complete metric is de-
termined by the behaviour of the momentum profile ϕ toward the end-
points of I = (0, τ2). This is well-understood and there is the following
well-known proposition, whose proof can be found in [HS02][Section 2]
or [FW11][Section 6], for example.

Proposition 2.1. Let ωϕ be given by (9). Suppose the profile ϕ : I → R
has a zero of integer order at each endpoint of I = (0, τ2). Then ωϕ
extends across the zero section if and only if ϕ(0) = 0 and ϕ′(0) = 1.

In this case, the resulting metric on KM is complete if and only if
at the upper endpoint τ2, one of the following conditions (i) and (ii)
holds:

(i) The endpoint τ2 is finite and ϕ vanishes at least to second order.
(ii) The endpoint τ2 is infinite and ϕ grows at most quadratically.

Remark 2.2. Note that [HS02][Proposition 2.3] is identical with Pro-
position 2.1, except that Hwang and Singer require ϕ′(0) = 2 instead
of ϕ′(0) = 1. This is due to the fact that our Kähler potential f is
twice the potential function used by Hwang and Singer; compare (6)
with [HS02][(1.1)].

If the metric ωϕ extends to the total space of KM , we would like
to identify its de Rham cohomology class. Since we assumed (8), i.e.
I = (0, τ2), it follows immediately that [ωϕ] = [π∗ωM ] ∈ H2(KM). We
refer to the class [π∗ωM ] as the Kähler class of ωϕ.

More generally, we define a Kähler class on KM simply to be a class
in H2(KM) containing positive (1, 1) forms and the Kähler cone is the
set of all such Kähler classes. Using this definition, the projection map
π∗ : H2(M)→ H2(KM) identifies the Kähler cone of the compact base
M with the Kähler cone of KM . Indeed, given a Kähler form on KM ,
its restriction to M clearly is a Kähler form on M . Conversely, given
a Kähler form ωM on M , Calabi’s Ansatz always produces a positive
(1, 1) form in the class [π∗ωM ], for example consider ωϕ with ϕ(τ) = τ ,
which extends to KM by Proposition 2.1.
The Ricci form. In this paragraph, we provide a description of the
Ricci-form of ωϕ. The computations can be found, for example, in
[HS02][Section 2.1].

Denote the Kähler metric of ωM by gM and the curvature form of
(KM , h) by γ. It gives rise to an endomorphism B : T 1,0M → T 1,0M
of the holomorphic tangent bundle, which is locally defined by B :=
g−1
M γ = gk̄iMγjk̄. As in Theorem 1.1, we assume from now on that the

eigenvalues of B are constant over M . This condition is sufficient to
reduce the soliton equation (1) to an ODE. These conditions guarantee
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that the function Q : I ×M → R+ defined by

Q = det
(
g−1
M (ωM − τγ)

)
= det (Id−τB)(11)

only depends on the parameter τ , i.e. is constant over M . Also observe
that Q is a positive function because −γ ≥ 0 and τ ≥ 0. Q naturally
appears in the computation of Ric(ωϕ). Indeed, the Ricci form is given
by

Ric(ωϕ) = π∗Ric(ωM) +
(ϕQ)

′

Q
π∗γ − 1

ϕ

(
(ϕQ)

′

Q

)′ √
−1∂τ ∧ ∂̄τ,(12)

see [HS02][(2.14)].

2.2. Reduction to an ODE. We use the previously derived formula
for the Ricci curvature to show that the Kähler-Ricci soliton equation is
equivalent to an ODE in the function ϕ(τ). Our presentation is similar
to [FW11][Section 4].

By definition, the soliton vector field X must be the real part of a
holomorphic vectorfield, i.e. LXJ = 0. On the line bundle KM , there
is a natural choice for X, which we now describe. KM admits a holo-
morphic C∗-action by fibre-wise multiplication and the corresponding
holomorphic vector field Z is given by Z = z0

∂
∂z0

, where z0 denotes the
fibre coordinate of KM . In terms of the radial function t defined at the
beginning of this section, we can write Z as

Z = ReZ +
√
−1 ImZ =

∂

∂t
−
√
−1J

∂

∂t
.(13)

So it is natural to set X := µReZ = µ ∂
∂t

for some constant 0 6=
µ ∈ R. Before deriving the ODE, we need to calculate the following
Lie-derivative:

LXωϕ = d(ιXωϕ) =
√
−1∂∂̄(LXf)(t) = µ

√
−1∂∂̄f ′(t).(14)

Here, we used 2
√
−1∂∂̄ = dJd and LXJ = 0 to obtain the second

equality. We shall write out equation (14) in terms of fibre and base
direction, as we did for the Ricci-form in (12):

−LXωϕ = µϕ(τ)π∗γ − µϕ
′

ϕ
(τ)
√
−1∂τ ∧ ∂̄τ.(15)

Now we are in position to see by comparing (12) and (15) that the
soliton equation (1) for ωϕ is equivalent to the following two equations

Ric(ωM) +
(ϕQ)′

Q
(τ)γ = µϕ(τ)γ(16)

(
(ϕQ)′

Q

)′
(τ) = µϕ′(τ).(17)

Since Ric(ωM) = −γ, we see that differentiating (16) gives (17), so that
we proved the following Lemma:



20 JOHANNES SCHÄFER

Lemma 2.3. Suppose that ωϕ is a Kähler metric with momentum pro-
file ϕ. Then (1) with X = µ ∂

∂t
is equivalent to the following equation:

ϕ′(τ) +

(
Q′

Q
(τ)− µ

)
ϕ(τ) = 1(18)

For the rest of this paragraph, we study the solution ϕ to Equation
(18). This is a linear ODE of the form y′+ p(x)y = q(x), which has an
explicit one-parameter family of solutions given by

y = exp

(
−
∫
p(x)dx

)(∫
q(x) exp

(∫
p(x)dx

)
dx+K

)
.(19)

Applying (19) to (18), we have

ϕ(τ) =
eµτ

Q(τ)

(∫ τ

0

e−µxQ(x)dx+K

)
,(20)

where K ≥ 0 is determined by the initial value limτ→0 ϕ(τ). Justified
by (ii) of Proposition 2.1, we will assume that K = 0.

One can compute the integral (18) explicitly in terms of the co-
efficients bj ≥ 0 of the polynomial Q(τ) = det (Id−τB) = bkτ

k +
bk−1τ

k−1 + · · · + b0. Note that the degree k of Q could be less than
n since B is allowed to have zero eigenvalues. In fact, it is straight
forward to see that

ϕ(τ) = ν(0)
eµτ

Q(τ)
− ν(τ)

Q(τ)
,(21)

where ν is given by

ν(τ) =
k∑

j=0

j∑

l=0

bj
j!

l!

τ l

µj+1−l .(22)

We point out that the explicit expression for ν is not relevant, but
rather that it has the form

ϕ(τ) = ν(0)
eµτ

Q(τ)
+

(−bk/µ)τ k +Rk−1(τ)

Q(τ)
(23)

for a polynomial Rk−1 of degree k − 1. Hence, we found an explicit
solution for the soliton ODE (18). Also note that ϕ is defined on
[0,+∞) since Q(0) > 0. Moreover, ϕ is clearly positive on (0,+∞).

With these observations, we can now finish the proof of Theorem
1.1.

2.3. Proof of Theorem 1.1. Let KM → (M, gM) be the canonical
bundle whose semi-negative curvature form γ = −Ric(ωM) has con-
stant eigenvalues w.r.to gM . Suppose ϕ : (0,+∞)→ R is given by (20)
with K = 0 and, as before, let ωϕ be defined by (9). Since ϕ(τ) > 0
for all τ > 0, ωϕ defines a Kähler metric and hence is a steady Kähler-
Ricci soliton by Lemma 2.3. We note that these metrics can only be
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complete if µ < 0. This can be proven similarly to [FIK03][Lemma
5.1].

Hence we assume µ < 0. From (23), we have the following asymptotic
behaviour for large τ :

ϕ(τ) = − 1

µ
+O(1/τ).(24)

Also recall that ϕ and the potential f are related by

df ′

dt
(t) = ϕ(f ′(t)).(25)

Using (25) together with (24), we conclude that the corresponding
potential f(t) is indeed defined for all t ∈ R, i.e. ωϕ is defined on
KM \M .

It remains to check that ωϕ extends across the zero section and de-
fines a complete metric as t→ +∞. By the first part of Proposition 2.1,
ωϕ extends provided ϕ(0) = 0 and ϕ′(0) = 1. Since we assumed K = 0
in (20), we have ϕ(0) = 0. Plugging this into (18) gives ϕ′(0) = 1, as
desired. The completeness as t → +∞ follows immediately from the
asymptotic expansion (24) and (ii) of Proposition 2.1.

2.4. Examples. Theorem 1.1 immediately recovers all known exam-
ples of steady Kähler-Ricci solitons on the total space of line bundles
([Cao96], [CV96], [PTFV99], [DW11], [Yan12]). In these cases, the base
is a product of Kähler-Einstein manifolds and the considered Kähler
classes are represented by convex combinations of Kähler-Einstein met-
rics on each factor.

If the base manifold is a flag variety, Theorem 1.1 produces examples,
which have not been mentioned before. In this case, steady solitons
sweep out the entire Kähler cone.

Example 2.4 (Products). Let (Mi, ωi), i = 1, . . . , r be Kähler-Einstein
manifolds with non-negative scalar curvature and denote their canoni-
cal bundles by KMi

→Mi. We consider the bundle

KM = p∗1KM1 ⊗ · · · ⊗ p∗rKMr →M := M1 × · · · ×Mr,

where pi : M → Mi is the projection. Then Theorem 1.1 applies
and gives a complete steady soliton in each Kähler class of the form∑r

i=1 αi[p
∗
iωi] ∈ H2(M) with αi > 0.

The case r = 1 was first considered in [Cao96] and [CV96] for M =
CPn and in [PTFV99] for a general Kähler-Einstein Fano manifold. For
r > 1, these solitons are found in [DW11][Theorem 4.20].

Example 2.5 (Flag varieties). Let G be a complex semisimple Lie
group, P ⊂ G a parabolic subgroup and K ⊂ G a maximal compact
subgroup. Then K acts transitively on the flag manifold M = G/P .
It is well-known that M admits a K-invariant complex structure so
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that its anti canonical bundle is ample, compare [Bes87][Chapter 8] for
example.

The previously mentioned results only produce solitons on the canon-
ical bundle KM whose Kähler class is a multiple of [π∗c1(M)]. In gen-
eral, however, H2(M) is not spanned by [c1(M)].

We claim that every Kähler class admits a steady Kähler-Ricci soli-
ton. Indeed, every Kähler class on M admits a K-invariant Kähler
form ωK whose Ricci form Ric(ωK) is also K-invariant. This means
that the eigenfunctions of Ric(ωK) w.r.t. ωK must be K-invariant and
hence constant since K acts transitively on M . So Theorem 1.1 can be
applied and proves the existence of a steady soliton in the class [π∗ωK ].

Remark 2.6. The new metrics in Example 2.5 can also be obtained
from the recent result [CD20][Theorem A], which was posted after the
first version of this paper was uploaded to the arXiv.

3. Calabi metrics on vector bundles

Given a vector bundle E → D, Hwang-Singer’s idea was to apply
their construction to the tautological bundle OP(E)(−1) over P(E), the
projectivization of E ([HS02][Section 3.2]). In this section, we explain
the changes which are necessary to prove Theorem 1.2 and provide
some examples.

The main difference is that one has to choose a new background
metric on P(E), with respect to which the eigenvalues of the curvature
form are computed. Then the discussion of the previous section can be
applied and again, the soliton equation (1) reduces to a simple ODE.
In this new setting, however, the function Q defined by (11) will have
zeros at τ = 0, so there are some details which have to be checked.

3.1. Constructing a Kähler metric. As in [HS02][Section 3.2], we
explain how to adapt the machinery from the previous section to the
tautological line bundle.

Let π : E → (D,ωD) be a holomorphic vector bundle of rank m ≥
2 equipped with an Hermitian metric h and assume that the Kähler
manifold D has complex dimension d. As in the case of line bundles,
we define r : E → R≥0 to be the radial function induced by h and let
t = log r2. Then Calabi’s Ansatz has the form

ω = π∗ωD +
√
−1∂∂̄f(t).

By construction, the projectivization of E is naturally a fibre bundle
p : P(E)→ D, with fibre isomorphic to CPm−1. Recall that the natural
map OP(E)(−1) ⊂ p∗E → E identifies OP(E)(−1) \ P(E) ∼= E \D. By
abuse of notation, we denote the bundle projection of OP(E)(−1) also
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by π, so that we have a commuting diagram

L := OP(E)(−1) −−−→ E

π
y

yπ
M := P(E)

p−−−→ D

(26)

In the notation from the previous section, let us denote the complex
dimension of M by n, i.e. n = d+m−1. Via the natural identification
L \M ∼= E \ D, h induces a Hermitian metric on L, which we also
simply denote by h. Hence, we can view r as a function on L and, if
γ is the curvature form of (L, h), we have as before π∗γ = −

√
−1∂∂̄t

with t = log r2. We again assume that −γ ≥ 0. Then we are looking
for metrics of the form

ωϕ =π∗ωD − f ′(t)π∗γ + f ′′(t)
√
−1∂t ∧ ∂̄t(27)

where we require that f : R→ R satisfies (5) to obtain a positive form.
As before, we set τ := f ′(t) and define ϕ : (0, τ2)→ R+ by (7), so that
it also satisfies (8). Hence, ωϕ can also be expressed as in (9).

For the computation of Ricci curvature below, we need to choose a
background Kähler metric ωM on M . Define

ωM = p∗ωD − γ,(28)

which is clearly positive in base direction of the fibration p : P(E)→ D.
To see that ωM is positive in fibre direction, we note that −γ restricts
to the Fubini-Study metric on each fibre ∼= CPm−1.
The Ricci form. The calculation is in principle the same as in the line
bundle case, but the polynomial Q does have zeros. Let B = g−1

M γ be
the curvature endomorphism of γ, where gM is the metric with Kähler
form given by (28) and assume that the eigenvalues of B are constant
over M . Then we define a function Q by

Q = det(g−1
M (p∗ωD − τγ)),(29)

which can be viewed as a function Q : (0, τ2) → R≥0. Indeed, we can
write

g−1
M (p∗ωD − τγ) = g−1

M (ωM − (τ − 1)γ) = Id−(τ − 1)B,(30)

so that Q is constant over M , i.e. it only depends on τ . If β1, . . . , βn
are the eigenvalues of B, we must have βd+1 = · · · = βn = −1 by the
definition of ωM and β1, . . . , βd ≤ 0 by assumption. From (30), we
conclude that Q is given by

Q(τ) = τn−d
d∏

j=1

(1 + βj − τβj) = τn−dQ̂(τ),(31)

for some polynomial Q̂. Since p∗ωD is positive in base direction, we
conclude from (30) that 1 +βj > 0 for all j = 1, . . . d. Hence, Q̂(0) > 0
and Q has a zero at τ = 0 of order n− d = m− 1.
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As in (12), one can find the following expression for the Ricci form:

Ric(ωϕ) = π∗Ric(ωM) +
(ϕQ)′

Q
π∗γ − 1

ϕ

(
(ϕQ)′

Q

)′
∂τ ∧ ∂̄τ.(32)

3.2. The ODE. The natural C∗-action on E by biholomorphisms in-
duces a holomorphic vector field Z. On L\M , which is the tautological
bundle with the zero section removed, the real part of Z is given by
ReZ = ∂/∂t, so we are looking for Ricci solitons with vector field
X = µ∂/∂t. Again, we find

−LXωϕ = −µ
√
−1∂∂̄f ′(t) = µϕ(τ)π∗γ − µϕ

′

ϕ
(τ)
√
−1∂τ ∧ ∂̄τ.(33)

Combining (27) with (32) and (33), one can check that the soliton
equation (1) is equivalent to

Ric(ωM) = cγ(34)

ϕ′(τ) +

(
Q′

Q
(τ)− µ

)
ϕ(τ) = −c(35)

for some integration constant c ∈ R. In fact, we must have c = −m
since the first Chern class of M = P(E) is given by

c1(M) = −mc1(OP(E)(−1)) + p∗c1(E) + p∗c1(D).(36)

Equation (35) has the same form as (18), but with a different Q. Hence,
the solution ϕ is given by

ϕ(τ) =
eµτ

Q(τ)

(∫ τ

0

me−µxQ(x)dx

)
,(37)

if we assume the integration constant to be zero.
We end this section by studying the solution ϕ. Let us write Q(τ) =

bk+n−dτ k+n−d + · · ·+ bn−dτn−d with coefficients bj ≥ 0 for j = 1 + n−
d, . . . , k + n− d and bn−d = Q̂(0) > 0. Adapting (21) and (22) to this
case, we obtain

ϕ(τ) = ν(0)
eµτ

Q(τ)
− ν(τ)

Q(τ)
(38)

as well as

ν(τ) = m
k+n−d∑

j=n−d

j∑

l=0

bj
j!

l!

τ l

µj+1−l .(39)

A priori, ϕ given by (37) is defined on the interval (0,+∞) and because
Q(0) = 0 one needs to check that ϕ and its derivatives have a limit as
τ → 0. To see that this is the case, note that we can rewrite (39) as

ν(0)eµτ − ν(τ) = m
k+n−d∑

j=n−d
bj

j!

µj+1

∞∑

l=j+1

(µτ)l

l!
,
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i.e. τ−(n−d)(ν(0)eµτ − ν(τ)) tends to zero as τ → 0. Since Q vanishes
of order n − d at τ = 0, we then deduce from (38) that limτ→0 ϕ = 0.
Similarly, it follows that all derivatives of ϕ have a limit as τ → 0.

3.3. Proof of Theorem 1.2. The proof is now analogue to Section
2.3. The only part that might a priori be different is the extension of ωϕ
to a complete metric on E. However, one can check that Proposition
2.1 also applies to the vector bundle case, see [HS02][Lemma 3.7].

As before, one can check that ϕ has the behaviour required by Propo-
sition 2.1. Indeed, one can compute that ϕ(0) = 0 and ϕ′(0) = 1, as
desired. Sending τ → +∞, we conclude the following asymptotic ex-
pansion from (37) and (38)

ϕ(τ) = −m
µ

+O(1/τ),(40)

and so we obtain a complete metric on the total space E.

3.4. Examples. We briefly discuss three different situations to which
Theorem 1.2 applies. New examples of steady solitons are given in
Example 3.2.

Example 3.1 (Complex plane). We letD be a single point and E ∼= Cn

be the trivial bundle over D. Let h be the Euclidean metric on E, so
that ωM = −γ is the Fubini-Study metric on M = CPm−1. This is the
situation first studied in [Cao96].

Example 3.2 (Sum of line bundles). Let (D,ωD) be a Kähler-Einstein

Fano manifold of Fano index m. Define L := K
1/m
D and consider the

m-fold sum of L with itself, i.e. E = L ⊗ Cm. Then we have M =
P(E) = CPm−1 ×D and

OP(E)(−1) = p∗1OCPm−1(−1)⊗ p∗2L,
where p1, p2 denote the projections onto the first and second factor of
M , respectively. Let ωFS be the Fubini-Study metric on CPm−1, so
that γ = −p∗1ωFS − 1/mp∗2 Ric(ωD) is the curvature form of OP(E)(−1),
and define ωM = p∗2ωD − γ. Then we clearly have

Ric(ωM) = mp∗1ωFS + p∗2 Ric(ωD) = −mγ,(41)

since ωD is Kähler-Einstein. Moreover, the eigenvalues of Ric(ωM)
w.r.t. ωM are constant, so that Theorem 1.2 can be applied. These
examples of steady solitons are obtained in [Li10][Theorem 2.1] and
[DW11][Theorem 4.20].

If the base D = G/P is a flag manifold for G a complex semisimple
Lie group and P ⊂ G a parabolic subgroup, one can find steady solitons
in every Kähler class, similarly as in Example 2.5.

To see this, assume that ωD represents a given Kähler class (not nec-
essarily the first Chern class of D). We can pick ωD to be K-invariant,
where K ⊂ G is a maximal compact subgroup. Since Ric(ωD) is also
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K-invariant, the form −γ = p∗1ωFS + 1/mp∗2 Ric(ωD) is invariant under
the diagonal action of SU(m)×K and also positive.

We claim that Ric(−γ) = −mγ. By [Bes87][Theorem 8.2], we know
that there exists a SU(m)×K-invariant Kähler-Einstein metric ωKE ∈
c1(CPm−1 × D). Also recall that the Ricci forms of all SU(m) × K-
invariant Kähler metrics agree, i.e. Ric(−γ) = Ric(ωKE). Since −mγ
and ωKE are in the same Kähler class, we deduce from the uniqueness
part of Calabi’s conjecture that −mγ = ωKE = Ric(−γ).

As the form ωM = p∗2ωD − γ is also invariant under SU(m)×K, we
conclude

Ric(ωM) = Ric(−γ) = −mγ,
and hence the assumptions in Theorem 1.2 are satisfied.

Example 3.3 (Cotangent bundle of CPd). Let D = CPd be projective
space equipped with the Fubini-Study metric and consider E = T ∗CPd,
the cotangent bundle of CPd. E is naturally a SU(d+ 1)-homogeneous
vector bundle, where the fibre action is given by the coadjoint action of
SU(d+1) on its Lie algebra. Since CPd is a rank 1 symmetric space, the
induced action of SU(d+ 1) on M = P(E) is transitive. Verifying the
assumptions of Theorem 1.2 is now similar to the previous Example.
These steady solitons on T ∗CPd are of cohomogeneity one and are
contained in [DW11][Section 5].

Remark 3.4. All the previous examples can also be constructed from
[CD20][Theorem A].

4. Properties of ωϕ

In this short section, we study curvature properties of the previously
constructed metric ωϕ. We show that ωϕ has bounded curvature and
that its Ricci curvature is non-negative. Moreover, we obtain estimates
on the growth of the function f and its derivatives.

Recall that f = f(t) is the Kähler potential of ωϕ as defined in
(6) and ϕ = ϕ(τ) is its momentum profile, see (9). If ωϕ is a steady
Kähler-Ricci soliton constructed in Theorem 1.1 or Theorem 1.2, then
ϕ satisfies (18) or (35), respectively. This ODE is in turn determined
by the polynomial Q = Q(τ) defined by either (11) or (29). The
statements in this section mainly reduce to understanding Q and how it
effects the asymptotic behaviour of ϕ, compare (21) or (38) depending
on the rank of the underlying vector bundle.

We begin by considering the Ricci curvature of ωϕ. More precisely,
we prove the following theorem, which we need in the subsequent sec-
tion. It generalises the observation made in [Yan12][Case 7].

Theorem 4.1. The complete steady Kähler-Ricci solitons constructed
in Theorem 1.1 and 1.2 have non-negative Ricci curvature. Moreover,
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if the curvature form −γ is positive definite, then the Ricci curvature
is positive away from the zero section.

Proof. First, we consider the solitons constructed on line bundles in
Theorem 1.1. Let ωϕ be the Kähler metric given by (9) with ϕ satisfying
(18) and ϕ(0) = 0. Recall that the Ricci curvature is given by

Ric(ωϕ) = −LX(ωϕ) = µϕ(τ)π∗γ − µϕ
′

ϕ

√
−1∂τ ∧ ∂̄τ.

Since ϕ(0) = 0, ϕ > 0 on (0,∞), and µγ ≥ 0, we only need to show
that ϕ′ > 0. To see that this is the case, we define a function

H(τ) :=
Q2

Q′ − µQe
−µτ −

∫ τ

0

e−µxQ(x)dx.(42)

Using the ODE (18), it is straight forward to prove that ϕ′ ≥ 0 iff
H ≥ 0. As H(0) > 0 for Q given by (11), we are done if we can show
that H ′ ≥ 0. From the definition of H, we compute

H ′(τ) = e−µτ
Q

(Q′ − µQ)2

(
(Q′)2 −QQ′′

)
,(43)

so that H ′ ≥ 0 if and only if (Q′)2−QQ′′ ≥ 0. The later condition can
be checked easily starting from the explicit expression for Q. Indeed,
let β1, . . . , βn be the eigenvalues of the endomorphism B = g−1

M γ :
T 1,0M → T 1,0M , and write

Q(τ) = det (Id−τB) =
n∏

j=1

(1− βjτ).(44)

Then we have

(Q′)2 −QQ′′
Q2

=
n∑

j=1

β2
j

(1− βjτ)2
≥ 0,(45)

as required. For the second statement, it suffices to observe that
ϕ′(τ) > 0 if and only if (Q′)2 − QQ′′ > 0, which is certainly true if
γ < 0. This proves Theorem 4.1 for line bundles.

The arguments for the metrics in Theorem 1.2 are analogous. It also
reduces to showing that (Q′)2 − QQ′′ ≥ 0, where Q is this time given
by (31). �

Note that the non-negativity of Ricci curvature can also be expressed
in terms of the potential function f . In particular, we have the following

Corollary 4.2. Let ωϕ be a steady Kähler-Ricci soliton constructed
in Theorem 1.1 or 1.2 and let f = f(t) be defined by (6) or (27),
respectively. Then f ′′ is monotone increasing.
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Proof. Recall from (14) or (33) that we have

−LXωϕ = −µ
√
−1∂∂̄f ′(t) = µf ′′(t)π∗γ − µf ′′′(t)

√
−1∂t ∧ ∂̄t,

and so Ric(ωϕ) = −LXωϕ can only be non-negative if f ′′′(t) ≥ 0 since
µ < 0. Thus, Theorem 4.1 implies that f ′′ is increasing. �

We end this section by pointing out some growth properties of the
potential function f .

Lemma 4.3. Let ωϕ be a steady Kähler-Ricci soliton constructed in
Theorem 1.1 or 1.2 and let f = f(t) be related to ϕ by (10). Then
there is a constant C > 0 such that for all t ≥ C, we have

C−1 ≤ f ′′(t) ≤ C and C−1t ≤ f ′(t) ≤ Ct.(46)

Moreover, for all j ∈ N0 and t ≥ C

C−1(1 + f ′(t))−j ≤ |f (2+j)(t)| ≤ C(1 + f ′(t))−j.(47)

Proof. First note that the bound on f ′′(t) in (46) implies the bound on
f ′(t) after integrating the parameter t, so we only need to find C > 0
such that

C−1 ≤ f ′′(t) ≤ C(48)

for all t ≥ C. Translating the problem into bounding ϕ(τ), we recall
from (7) that

τ = τ(t) = f ′(t) and ϕ(τ(t)) = f ′′(t).(49)

Since f ′(t) is positive and increasing, we can choose a C ≥ 1 such that
the following estimate

τ(t) = f ′(t) ≥ C−1(50)

holds for all t ≥ C. Then we recall the asymptotic expansion (40)

ϕ(τ(t)) = −m
µ

+O(1/τ(t))

with µ < 0 implying that ϕ(τ(t)) is uniformly bounded from above
because of (50). Together with (49), this proves the upper bound for
f ′′(t) in (48). For the lower bound, note that f ′′(t) > 0 is increasing
and thus is bounded from below by some positive constant if t ≥ C.
Inequality (48) now follows, and so does (46).

Next, consider the case j > 0, i.e. we estimate f (2+j)(t). Differenti-
ating (49) and using the chain rule, we see that

f ′′′(t) = ϕ′(τ(t))
dτ

dt
(t) = ϕ′(τ(t)) · f ′′(t).

Taking further derivatives of this equation, we conclude that f (2+j) can
be written as

f (2+j) =
∑

α

cα · ϕ(α1) · . . . · ϕ(αi) · (f ′′) j,(51)
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where the sum is over all multi-indices α with α1 + . . .+αi = j and cα
are constants only depending on the multi-index α. Since f ′′(t) satisfies
(48), it is sufficient to estimate derivatives of ϕ. In fact, we have for
all β ∈ N that

C−1τ−β ≤ |ϕ(β)(τ)| ≤ Cτ−β,(52)

because ϕ(τ) behaves asymptotically like a rational function of the
form P/Q with polynomials P (τ), Q(τ) having the same degree, see
(23). Substituting τ(t) = f ′(t) in (52) and combining the resulting
estimate with (51), we finally obtain (47) as desired. �

The important point about Lemma 4.3 is estimate (46), i.e. that
f ′′(t) behaves like a constant and f ′(t) growths roughly like the function
t in the limit t → ∞. This will be crucial in the next section because
we want to understand the asymptotic geometry of ωϕ.

Another interesting consequence of Lemma 4.3 is that the metrics
ωϕ have bounded curvature and positive injectivity radius.

Lemma 4.4. The curvature tensor of the steady solitons constructed
in Theorem 1.1 and 1.2 is uniformly bounded and each of these metrics
has positive injectivity radius.

Proof. It is straight forward to see that the first claim reduces to bound-
ing f ′′(t), f ′′′(t) and f (4)(t), where ϕ and f are related by (10), so we
focus on the second one.

According to [CGT82][Theorem 4.7], the lower bound on the injectiv-
ity radius follows if we can bound the volume of all unit balls uniformly
from below. For this, recall that the function t identifies E\D ∼= R×S,
where S is the S1-bundle associated to OP(E)(−1) → P(E), see (26).
Under this identification, the metric gϕ admits the following decompo-
sition on R× S

gϕ = f ′′(t)
(
dt2 + (Jdt)2)+ f ′(t)π∗ĝ + π∗gD,(53)

where J denotes the complex structure on E, and ĝ, gD are the (2,0)
tensors associated to −γ, ωD, respectively. By compactness of D, we
only have to consider the set {t� 1}, on which gϕ is uniformly equiv-
alent to the metric

gt := dt2 + (Jdt)2 + tπ∗ĝ + π∗gD,(54)

compare Lemma 4.3. Let us further denote gS1 := (Jdt)2 and rescale
gt by some fixed constant so that the diameter diam(S, gS1) of each S1-
fibre satisfies diam(S, gS1) = 1/4. It then suffices to bound the volume
of unit balls w.r.t. gt on the set {t� 1} uniformly from below.

Let x ∈ E with t(x)� 1 and denote the unit ball of gt around x by
Bgt(x, 1). We introduce families of metrics on M and S by declaring

gM,τ := τ ĝ + p∗gD

gS,τ := gS1 + π∗gM,τ
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for each τ ≥ 1, where p : M → D is the projection as in (26) and
π : S → M . In particular, the projection π becomes a Riemannian
submersion π : (S, gS,τ ) → (M, gM,τ ). Using this notation and writing
x = (t(x), y), we obtain the following inclusion

B := [t(x)− 1/2, t(x)]×BgS,t(x)(y, 1/2) ⊂ Bgt(x, 1).

This is an immediate consequence of the decomposition (54) together
with the fact that for all p ∈ B we have t(p) ≤ t(x) and gS,τ0 ≤ gS,τ1
for all τ0 ≤ τ1. Before estimating the gt-volume Volgt(Bgt(x, 1)) of the
unit ball Bgt(x, 1), we observe that

gS,t(x)−1/2 = gS,t(x) −
1

2
π∗ĝ ≥ gS,t(x) −

1

2
(t(x)− 1)π∗ĝ ≥ 1

2
gS,t(x)(55)

provided t(x) ≥ 2. Using the inclusion B ⊂ Bgt(x, 1) then implies that

Volgt(Bgt(x, 1)) ≥ Volgt(B)

≥ 1

2
· VolgS,t(x)−1/2

(BgS,t(x)(y, 1/2))

≥ 2−
dimR S

2
−1 VolgS,t(x)(BgS,t(x)(y, 1/2)),

where we applied Fubini’s theorem in the second line, and the last
inequality follows from (55). Thus, it remains to bound the gS,t(x)-
volume of BgS,t(x)(y, 1/2) uniformly from below.

We further reduce this volume bound to an integration on M by
observing that the projection π : S →M satisfies

π−1(BgM,t(x)(π(y), 1/4)) ⊂ BgS,t(x)(y, 1/2)(56)

Indeed, given a b ∈ BgM,t(x)(π(y), 1/4) and a length-minimizing curve

q : [0, 1] → M from π(y) to b, we may lift q to a horizontal curve q̃ in
S from q̃(0) = y to some point q̃(1) ∈ π−1(b). For any a ∈ π−1(b), the
triangle inequality for the distance function distgS,t(x) then yields

distgS,t(x)(y, a) ≤ distgS,t(x)(y, q̃(1)) + distgS,t(x)(q̃(1), a)

≤ distgM,t(x)(π(y), b) +
1

4

<
1

4
+

1

4
=

1

2
,

where the second inequality holds since we normalised each fibre π−1(b)
to be of diameter 1/4 and the third one follows since π : S → M is a
Riemannian submersion. Hence, we conclude that a ∈ BgS,t(x)(y,1/2) as
claimed.

Inclusion (56) yields an estimate on the gS,t(x)-volume as follows. We
write ωt(x) for the Kähler form of gM,t(x) and χ for the characteristic
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function of the ball BgS,t(x)(y, 1/2), and then observe that
∫

BgS,t(x) (y,1/2)

(Jdt) ∧ π∗ωdimCM
t(x) =

∫

BgM,t(x) (π(y),1/2)

π∗(χJdt) · ωdimCM
t(x)

≥
∫

BgM,t(x) (π(y),1/4)

π∗(Jdt) · ωdimCM
t(x)

= VolgS1 (S1) ·
∫

BgM,t(x) (π(y),1/2)

ωdimCM
t(x) .

Here, π∗(χJdt) denotes the function onM obtained by integrating χJdt
over fibres, i.e. π∗(χJdt)(b) =

∫
π−1(b)

χJdt, so that the first equality

follows from Fubini’s theorem. In the second line, we used that χ ≡ 1
on the set π−1(BgM,t(x)(π(y), 1/4)) by (56) and the final equation holds

because the volume of each S1-fibre is the same by (54). Thus, it
remains to find a constant C > 0, independent of x = (t(x), y), such
that

VolgM,t(x)(BgM,t(x)(π(y), 1/4)) ≥ C−1 > 0.(57)

To prove this, let us first assume that ĝ is positive definite. Then
we can find a constant C0 > 0, only depending on the eigenvalues of ĝ
w.r.t. gM , such that

C−1
0 τgM ≤ gM,τ ≤ C0τgM ,

for all τ ≥ 1 and with gM := gM,1. Since we can rescale by a fixed
constant, it suffices to bound the τgM -volume of BτgM (z, 1) from below
by a constant independent of both z ∈M and τ � 1. We note that

BτgM (z, 1) = BgM (z, τ−
1
2 )

and by compactness, the gM -volume VolgM (BgM (z, τ−
1
2 )) is, up to some

uniform constant, bounded from below by τ−
dimRM

2 for τ sufficiently

large. This shows that VolτgM (BτgM (z, 1)) = τ
dimRM

2 VolgM (BgM (z, τ−
1
2 ))

is indeed uniformly bounded from below and (57) then follows.
Let us now assume that γ has at least one zero eigenvalue w.r.t. gM .

Since these eigenvalues are assumed to be constant over M , its Kernel
Ker γ defines a proper subbundle of T 1,0M . Moreover, γ is closed, so
that Ker γ is integrable according to Frobenius’ theorem. Thus, if n is
the complex dimension of M and k the number of positive eigenvalues
of γ, we find a chart around each point defined on some neighborhood
of the Euclidean unit ball B(1) ⊂ Cn ∼= Ck × Cn−k around the origin
such that each slice {z0} × Cn−k in B(1) is an integral manifold for
Ker γ, i.e.

γ(v, v) > 0 and γ(v, w) = 0 for all v ∈ TCk, w ∈ TCn−k.
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By compactness, we can cover M by finitely many of such Euclidean
balls Bj(1) for j = 1, . . . , N and also find a constant C0 > 0 such that

C−1
0 gCn ≤ gM ≤ C0gCn on each Bj(1),

where gCn is the Euclidean metric on Bj(1) and the constant C0 is
independent of the ball Bj(1).

For τ ≥ 1, we also consider the following product metric

gCn,τ := (1 + τ)gCk + gCn−k on Cn ∼= Ck × Cn−k

Then there exists a uniform constant C > 0, which only depends on
C0 and the gM -eigenvalues of γ, such that

C−1gCn,τ ≤ gM,τ ≤ CgCn,τ on each Bj(1).(58)

Let ε > 0 be the Lebesgue number associated to the cover {Bj(1)}j=1,...N

of the manifold (M, gM), i.e. the ball BgM (z, ε) is contained in Bj(1)
for some j. Note that since gM ≤ gM,τ , we also have BgM,τ (z, 1) ⊂
BgM (z, 1) ⊂ Bj(1). Additionally, we may assume that ε < 1, so that it
suffices to bound the gM,τ -volume of the smaller ball BgM,τ (z, ε) from
below because the constant ε > 0 is independent of both z ∈ M and
τ ≥ 1.

This, in turn, can be reduced to bounding the gCn,τ -volume of

BgCn,τ (z, C
− 1

2 ε). Indeed, this is a direct consequence of (58), which
implies that the volume forms of gCn,τ and gM,τ are uniformly equiva-
lent on BgM,τ (z, ε) and also that we have the inclusion

BgCn,τ (z, C
− 1

2 ε) ⊂ BgM,τ (z, ε).

For the remaining lower volume bound, observe that the following prod-
uct of Euclidean balls

BgCk

(
z,

1

2
C−

1
2 ε(1 + τ)−

1
2

)
×BgCn−k

(
z,

1

2
C−

1
2 ε

)
(59)

is contained in BgCn,τ (z, C
− 1

2 ε). Applying Fubinis’ theorem to the prod-
uct (59) and using the fact that the volume form of gCn,τ is equal to
(1 + τ)k-times the volume form of gCn then yields the required lower

bound on the gCn,τ -volume of BgCn,τ (z, C
− 1

2 ε), which is independent of
both z ∈M and τ ≥ 1. This finishes the proof.

�

5. Uniqueness in a Kähler class

The purpose of this section is to prove Theorem 1.3. We begin by
briefly recalling notation from Sections 2 and 3 and then define the
function spaces appearing in Theorem 1.3. We also explain how to
reduce the proof to a ∂∂̄-Lemma, which is stated below (Theorem 5.4).



EXISTENCE AND UNIQUENESS OF KÄHLER-RICCI SOLITONS 33

5.1. A ∂∂̄-Lemma. Throughout this section, let π : E → D be a rank
m holomorphic vector bundle over a compact Kähler manifold (D,ωD).
The complex dimension of E (as a manifold) is denoted by m+d, where
d is the complex dimension of D. If m = 1, we assume that it satisfies
the conditions in Theorem 1.1, and if m ≥ 2, we assume E is given as in
Theorem 1.2. Also recall that we defined a radial function r : E → R≥0

by r(v) =
√
h(v, v̄), which vanishes along the zero section of E and we

set t := 2 log r. Note that we can use the function t to identify E,
with its zero section removed, as the product R × S, where S is the
S1-bundle associated to OP(E)(−1) → P(E), see Diagram (26). Under
this identification, the function t on E\D corresponds to the projection
onto the first factor of R× S.

Let ωϕ be the Kähler Ricci soliton constructed in Theorem 1.1 or 1.2,
i.e. ωϕ is defined by (9) with ϕ satisfying (18) if E is a line bundle or
by (27) and (35) if m ≥ 2. We denote the corresponding Riemannian
metric by gϕ.

On the manifold R× S, we can write the metric gϕ as follows. If J
denotes the complex structure on E and gD and ĝ are the (2,0) tensors
associated to ωD and −γ, respectively, then

gϕ = f ′′(t)
(
dt2 + (Jdt)2)+ f ′(t)π∗ĝ + π∗gD,(60)

where f can be reconstructed from ϕ via (10). We would also like
to point out that we allowed −γ to have zero-eigenvalues, i.e. ĝ is
only semidefinite. As a consequence, the volume growth of gϕ will be
determined by the zero-eigenvalues of −γ.

Before stating the main theorem of this section, we require a defi-
nition of weighted function spaces. As a weight function, we choose
w : E → R+ to be defined by

w(t) := 1 + f ′(t).(61)

This choice is inspired by the work of Hein [Hei11]. Indeed, the follow-
ing lemma shows that w has the same properties as the function ρ in
[Hei11][Theorem 1.6].

Lemma 5.1. Fix x0 ∈ E and denote the distance function of gϕ by
ρ(x). Then there exists a constant C > 0 such that

C−1w(t(x)) ≤ (1 + ρ(x)) ≤ Cw(t(x))(62)

for all x ∈ E with w(t(x)) ≥ C. Moreover, w satisfies

|∇w|+ w|∆w| ≤ C,(63)

where | · |,∇ and ∆ are associated with gϕ.

Proof. We identify E \ D ∼= R × S and without loss of generality, we
can assume x0 = (t0, y0) ∈ R × S. Let (t, y) ∈ R × S with t0 ≤ t and
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consider a shortest path qt,y = (qt, qy) : [0, 1] → R × S from (t0, y0) to
(t, y). Its length L(qt,y) is given by

L(qt,y) =

∫ 1

0

√
gϕ (q̇t,y(σ), q̇t,y(σ))dσ.

Then (62) reduces to finding a constant C > 0 such that

C−1w(t) ≤ L(qt,y) ≤ Cw(t)(64)

for all y ∈ S and all t ≥ C. In fact, it is sufficient to show inequality
(64) with w(t) replaced by t since there is a C > 0 such that

C−1t ≤ w(t) ≤ Ct(65)

for t ≥ C, compare (46). Thus, we begin by choosing C > 0 such that
(65) holds, and we increase C > 0 as we go along, if necessary.

For proving the lower bound in (64), we estimate

L(qt,y) ≥
∫ 1

0

√
f ′′(qt,y)q̇t(σ)dσ ≥

√
f ′′(t0)(t− t0),

as required. Before showing the upper bound, we conclude from (46)
that

gϕ ≤ C
(
dt2 + tgS

)
,

where we define gS := (Jdt)2 + π∗ĝ + π∗gD with ĝ and gD as in (60).
Also observe that we can now assume qt to be the linear path in the
R-factor, i.e. qt(σ) = σ(t− t0) + t0. Then we obtain

L(qt,y) ≤ C

∫ 1

0

q̇t(σ)dσ + C

∫ 1

0

√
qt(σ) ·

√
gS(q̇y(σ), q̇y(σ)dσ

≤ Ct+ C diam(S, gS)
√
t(66)

≤ Ct,

for all t sufficiently large and with diam(S, gS) denoting the diameter
of the compact manifold (S, gS). Now (5.1) follows immediately.

For the second claim, observe from (27) that we have

|∇w| = f ′′,

which is uniformly bounded according to Lemma 4.3. For bounding
the Laplace operator ∆w = ∆f ′, recall that on a Kähler manifold, the
Laplace operator ∆ satisfies ∆ = 2 trωϕ

√
−1∂∂̄, where trωϕ denotes the

trace computed w.r.to gϕ. Then we apply (33) to obtain

∆f ′ = 2 trωϕ
(√
−1∂∂̄f ′

)

=
2

µ
trωϕ (LXωϕ)

= 2

(
ϕ
Q′

Q
+ ϕ′

)
,
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where the last equality holds since there is the following formula

trωϕ(−π∗γ) =
Q′

Q
,

see [HS02][(2.22)]. Using the soliton ODE (35), we continue

w∆w = (1 + f ′)∆f ′

= 2(1 + τ)

(
ϕ
Q′

Q
+ ϕ′

)

= 2(1 + τ) (m+ µϕ) ,

which is also uniformly bounded because of the asymptotic expansion
(40). This, together with the uniform bound on |∇w|, implies (63). �

Lemma 5.1 ensures that our definition of weighted function spaces
below coincides with the one used in [Hei11]. These spaces are well-
adapted to study the Laplace operator on a wide class of complete
manifolds.

Definition 5.2. Let Λ∗T ∗E be the exterior algebra of T ∗E and con-
sider δ ∈ R and k ∈ N0. We define Ck

δ (Λ∗T ∗E) to be the space of
k-times continuously differentiable sections η of Λ∗T ∗E such that the
norm

||η||Ckδ :=
k∑

j=0

sup
E
|wj−δ∇jη|

is finite, where w is given by (61) and ∇, | · | are associated to gϕ. We
also set

C∞δ (Λ∗T ∗E) :=
⋂

k∈N0

Ck
δ (Λ∗T ∗E).

In other words, elements in C∞δ (Λ∗T ∗E) grow at most like wδ and
their l-th derivatives at most like wδ−l. Having introduced the neces-
sary notation, we can now state the main result of this section.

Theorem 5.3. Let ωϕ be a steady Kähler-Ricci soliton constructed in
Theorem 1.1 or 1.2. Assume that ω is a Kähler-Ricci soliton on E with
the same vector field as ωϕ such that [ω] = [ωϕ] ∈ H2(E). If moreover
ωϕ − ω ∈ C∞−δ(Λ2T ∗E) for some δ > 2, then ωϕ = ω.

The main part of proving Theorem 5.3 will be a ∂∂̄-Lemma, with
controlled growth. In fact, we will prove

Theorem 5.4. Let δ > 2 and η ∈ C∞−δ(Λ∗T ∗E) be a real (1, 1) form.

If η is d-exact, then η =
√
−1∂∂̄u for some u ∈ C∞2−δ(E).

Assuming this result, Theorem 5.3 follows immediately.
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Proof of Theorem 5.3. By Theorem 5.4, there exists a u ∈ C∞2−δ(E)

such that ωϕ − ω =
√
−1∂∂̄u. Since 2 − δ < 0, u and all its deriva-

tives tend to zero at infinity, so we can apply the maximum principle
[BM17][Proposition 1.2] and conclude that ωϕ = ω. �

The remainder of this section is devoted to proving Theorem 5.4. We
follow the ideas for asymptotically conical metrics given in [CH13][Section
3], which rely on two main ingredients. Firstly, we need to understand
solutions to Poisson’s equation ∆u = h and their growth behaviour
(Section 5.2). Secondly, we need to show that harmonic (1,0) forms of
certain growth behaviour are identically zero (Section 5.3). The proof
of Theorem 5.4 will then be finished in Section 5.4.

5.2. The Laplace Operator. We start by considering the Laplace
operator ∆ of the metric gϕ acting on suitably weighted Hölder spaces,
which we now define.

Definition 5.5. Let dist(x, y) be the distance between x, y ∈ E mea-
sured w.r.to gϕ and denote the injectivity radius of gϕ by i0. (Note
that i0 > 0 by Lemma 4.4). For 0 < α < 1 and δ ∈ R, we define a
seminorm on the space of all tensor fields T on E by

[T ]C0,α
δ

:= sup
x 6=y∈E

dist(x,y)<
i0
2

(
min(w(x), w(y))−δ

|Tx − Ty|
dist(x, y)α

)
,

where the norm |·| is induced by gϕ and the difference Tx−Ty is defined
by using parallel transport along the minimal geodesic from x to y.

The weighted Hölder space Ck,α
δ (E) is then defined to be the subset

of all u ∈ Ck
δ (E) for which the norm

||u||Ck,αδ := ||u||Ckδ + [∇ku]C0,α
δ−k−α

is finite.

The Laplace operator ∆ acts as

∆ : C2,α
2+δ(E)→ C0,α

δ (E),

for any δ ∈ R and we are interested in the surjectivity of this operator.
A partial answer to this question is provided in [Hei11].

Given h ∈ C0,α
δ (E) with δ < −2, we can essentially always solve

Poisson’s equation ∆u = h, but it is not clear how the solution u will
behave as t→∞. This depends on the volume growth of gϕ, which is
related to the degree k of the polynomial Q defined in (11) for m = 1
or (31) for m ≥ 2. Alternatively, it is evident from the definition of Q
that k is equal to m + d − 1 minus the number of zero-eigenvalues of
γ. (Recall that m+ d− 1 is the complex dimension of P(E).)

More precisely, we will prove the following important proposition
about the existence of solutions to ∆u = h.
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Proposition 5.6. Let δ > 2 and suppose h ∈ C0,α
−δ (E).

(i) If k ≤ 1, assume
∫
hωm+d

ϕ = 0 additionally. Then there exists

a u ∈ C2,α(E) such that ∆u = f and the integral
∫
|∇u|2ωm+d

ϕ

is finite.
(ii) If k > 1 and 2 < δ < k + 1, then there exists u ∈ C2,α(E) such

that ∆u = h and u = O(w2−δ+ε) as well as |∇u| = O(w2−δ+ε)
for all ε > 0.

Before proceeding with its proof, we first of all need to check that we
can indeed apply Hein’s work [Hei11][Theorem 1.5, 1.6], i.e. we have
to verify that the metric (E, gϕ) satisfies Hein’s condition SOB(β). For
the sake of completeness, we recall [Hei11][Definition 1.1] here.

Definition 5.7 ([Hei11][Definition 1.1]). A Riemannian manifold (M, g)
is called SOB(β) if there exists a x0 ∈ M and a constant C ≥ 1 satis-
fying the following:

(i) The set B(x0, s1) \B(x0, s0) is connected for all s1 > s0 ≥ C,
(ii) Vol(B(x0, s)) ≤ Csβ holds for all s ≥ C,

(iii) Vol(B(x, (1− C−1)ρ(x))) ≥ C−1ρ(x)β holds for all x ∈M with
ρ(x) ≥ C,

(iv) Ricx ≥ −Cρ(x)−2 holds if ρ(x) ≥ C.

Here B(x0, s) denotes the geodesic ball around x0, Vol(B(x0, s)) its
volume and ρ(x) denotes the distance from x to x0.

As the next lemma shows, the soliton metrics (E, gϕ) constructed in
Theorem 1.1 and 1.2 are SOB(k + 1).

Lemma 5.8. The metric (E, gϕ) is SOB(k + 1), where k is equal to
m+ d− 1 minus the number of zero-eigenvalues of the curvature form
γ on P(E).

Proof. We fix x0 ∈ D ⊂ E to be a point on the zero-section of E.
Thanks to Theorem 4.1, Condition (iv) in Definition 5.7 is clearly sat-
isfied, so we focus on (i), (ii), (iii).

Beginning with the volume estimates (ii) and (iii), we consider the
volume form of gϕ, which is given by

ωm+d
ϕ

(m+ d)!
=

√
−1

(m+ d)!
f ′′Q(f ′)∂t ∧ ∂̄t ∧ (π∗ωD − π∗γ)m+d−1 ,(67)

where the polynomial Q is defined by (11) if m = 1 or (29) if m ≥ 2.
Recall from above, that the degree of Q is equal to k as defined in
Lemma 5.8. If we then choose C ≥ 1 such that (46) is satisfied, we
obtain for large t ≥ C:

C−1tk ≤ f ′′(t)Q(f ′(t)) ≤ Ctk.(68)

Moreover, Lemma 5.1 implies that

C−1t(x) ≤ ρ(x) ≤ Ct(x)(69)
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if ρ(x) ≥ C. In the estimates that follow, we increase C > 0 if neces-
sary but it still denotes a uniform constant which only depends on the
geometry of (E, gϕ) and the choice of base point x0.

For verifying (ii), let s ≥ C and observe that (69) implies

B(x0, s) ⊂ B(x0, C) ∪ {y ∈ E | 0 ≤ t(y) ≤ Cs} .
Integrating over these sets and using (67), we obtain

Vol(B(x0, s)) ≤ C + C

∫ Cs

0

∫

S

f ′′(t)Q(f ′(t))dt ∧ ∂̄t ∧ (π∗(ωD − γ))m+d−1

≤ C + C

∫ Cs

0

tkdt

≤ Csk+1,

where we used (68) in the second line. This proves (ii) of Definition
5.7 with β = k + 1.

For showing (iii), the goal is to choose a new C0 ≥ 1 such that for all
x ∈ E with ρ(x)� 1 sufficient large, we have an inclusion of the form

B(x, (1− C−1
0 )ρ(x)) ⊃

{
t(y) ∈

[
t(x) + 1, t(x) + C−1

0 ρ(x)−
√
ρ(x)

]}
.

(70)

Indeed, if (70) holds, we can integrate and use (68) to estimate

Vol(B(x, (1− C−1
0 )ρ(x))) ≥ C−1

0

∫ t(x)+C−1
0 ρ(x)−

√
ρ(x)

t(x)+1

σkdσ

≥ C−1
0 ρ(x)k+1,

which is (iii) with β = k + 1 as required. Hence it remains to check
inclusion (70). To see that this is true, we again introduce the metric
gS := (Jdt)2 + π∗ĝ + π∗gD on the cross-section S as in the proof of
Lemma 5.1, so that

gϕ ≤ C
(
dt2 + tgS

)
=: gt.(71)

To estimate the distance function of gt from above, we proceed as in
(66). Given x, y ∈ E with C ≤ t(x) and t(x) ≤ t(y), we consider a path
q : [0, 1]→ E from q(0) = x to q(1) = y, which we write as q = (q1, q2)
under the identification E \D ∼= R× S. Furthermore, we assume that
q1(σ) = σ(t(y) − t(x)) + t(x) is the linear path from t(x) to t(y), so
that we estimate using (46)

distgt(x, y) ≤ C

∫ 1

0

q̇1(σ)dσ + C

∫ 1

0

√
q1(σ)

√
gS(q̇2(σ), q̇2(σ))dσ

≤ C(t(y)− t(x)) + C diam(S, gS)
(√

t(y)− t(x) +
√
t(x)

)
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Together with (69) and (71), this implies

distgϕ(x, y) ≤ C
(
t(y)− t(x) +

√
t(y)− t(x)

)
+ C

√
ρ(x)(72)

from which we can deduce inclusion (70). Indeed, let C > 0 satisfy (72)
and define a new constant C0 > 0 by C−1

0 = C−1(1−C−1). If we then

assume that ρ(x)� 1 is large enough so that C−1
0 ρ(x)−

√
ρ(x) > 1, we

estimate for all y ∈ E with t(x) + 1 ≤ t(y) ≤ t(x) +C−1
0 ρ(x)−

√
ρ(x):

distgϕ(x, y) ≤ C (t(y)− t(x)) + C
√
ρ(x)

≤ CC−1
0 ρ(x)− C

√
ρ(x) + C

√
ρ(x)

=
(
1− C−1

)
ρ(x).

Here we obtained the first inequality by applying t(y) − t(x) ≥ 1 to
(72) and the second inequality makes use of the upper bound on t(y).
This shows inclusion (70) and thus (iii).

It remains to verify Condition (i). By compactness of D, we can
choose C > 1 such that for all s ≥ C the ball B(x0, s) contains a tubular
neighborhood of the zero section. Given x ∈ E \ D, we denote the
complex line thorough x by Lx ∼= C. We need to understand the shape
of the intersection of Lx with the set B(s0,s1)(x0) := B(x0, s1)\B(x0, s0)
for all s1 > s0 ≥ C.

First, we claim that for each x ∈ B(x0, s), the radial path qrad in Lx
from x to 0 ∈ Lx is entirely contained in the ball B(x0, s). Note that
for this to be true it suffices to show that the function ρ is increasing
along qrad. In order to prove this, use the identification E \D ∼= R×S
and write x = (a1, b). Let q : [0, 1] → E be a shortest geodesic from
q(0) = x0 to q(1) = (a1, b). On E \D, we decompose q = (q1, q2) and
let us assume for the moment that q1(σ) is increasing in σ ∈ [0, 1].
Given a0 < a1, we then choose a σ0 ∈ (0, 1) with q1(σ0) = a0 and
reparameterize the path q by declaring qσ0(σ) := (q1(σ0σ), q2(σ)), so
that qσ0 is a path from x0 to (a0, b). It follows from (60) that we have

gϕ (q̇σ0(σ), q̇σ0(σ)) ≤ gϕ (q̇(σ), q̇(σ))

for all σ ∈ [0, 1], since f ′′ and f ′ are both increasing and we assumed
that q1(σ0σ) ≤ q1(σ). Then we conclude L(qσ0) ≤ L(q) and thus
ρ(a0, b) ≤ ρ(a1, b) for all a0 < a1 and b ∈ S, as we claimed.

Hence, the claim holds if we show that q1 is increasing. Recall that by
definition, q1 = t(q) and clearly q1 increases if and only if r2(q) = et(q)

does, where r : E → R≥0 is defined at the beginning of Section 5. Since
x0 lies on the zero section of E, we have r(q(0)) = 0 and consequently
there is a σ̂ ∈ [0, 1) such that

r(q(σ)) = 0 for all σ ∈ [0, σ̂] and
d

dσ
r2(q(σ)) > 0 on (σ̂, σ̂ + ε)
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for some small ε > 0. In particular, limσ→σ̂+ q̇1(σ) ≥ 0 and we only
have to rule out the existence of two points σ1, σ2 ∈ [σ̂, 1] with σ1 < σ2

such that

q1(σ1) = q2(σ2) and q1(σ1) < q1(σ) for all σ ∈ (σ1, σ2).(73)

However, if this was the case, then the path q cannot be length-
minimizing. Indeed, suppose that there are such numbers σ1, σ2 satis-
fying (73). Then we define a new path q̃ from x0 to x by

q̃(σ) =

{
q(σ) if σ ∈ [0, 1] \ (σ1, σ2)

(q1(σ1), q2(σ)) if σ ∈ (σ1, σ2).

Using the decomposition (60) and the fact that f ′′ is increasing, we see
that

L(q̃) < L(q),

contradicting the minimality of q. It follows that q1 must be increasing.
Now we can verify Condition (i), so consider any s1 > s0 ≥ C.

As shown in the previous paragraph, both Lx ∩ B(x0, sj) with j =
1, 2 are star-shaped regions with center 0 ∈ Lx, so the complement
Lx∩B(s0,s1)(x0) is diffeomorphic to a genuine open annulus in C. From
this, we deduce that B(s0,s1)(x0) is a fibre bundle over P(E) with annuli
in C as fibres. In particular, B(s0,s1)(x0) is connected because D is,
finishing the proof. �

Before proving Proposition 5.6, we study the spaces Ck,α
δ (E) fur-

ther. In fact, Lemma 5.1 allows us to obtain the expected embedding
theorems and also Schauder estimates for ∆.

Lemma 5.9 (Embeddings). Let k, l ∈ N, 0 < α0, α1 < 1 and δ0 ≤ δ1.
Then there are the following continuous embeddings:

(i) Ck
δ0

(E) ⊂ C l
δ1

(E) if l ≤ k,

(ii) Ck,α0

δ0
(E) ⊂ C l,α1

δ1
(E) if l ≤ k and α1 ≤ α0 ,

(iii) Ck+1
δ (E) ⊂ Ck,1

δ (E). In particular, C∞δ (E) =
⋂
k∈N0

Ck,α
δ (E).

The proof of this lemma is analogue to [CSCB79][Lemma 2], so we
omit it here.

Now we are in a position to show Proposition 5.6.

Proof of Proposition 5.6. Part (i) is a direct consequence of Theorem
1.5 in [Hei11]. Indeed, (E, gϕ) is SOB(k + 1) by Lemma 5.8, and,
because of Lemma 5.1, we have that |h| = O(ρ−δ) with δ > 2, where
ρ(x) denotes the distance to some fixed point x0. Then (i) is precisely
[Hei11][Theorem 1.5].

For (ii), we note that the function w satisfies the assumption of The-
orem 1.6 in [Hei11], see Lemma 5.1. Consequently, [Hei11][Theorem
1.6] gives a u ∈ C2,α(E) such that ∆u = h and u = O(w2−δ+ε) for all
ε > 0.
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Then it only remains to verify the decay rate of |∇u|, which is a
consequence of standard Schauder theory. Indeed, since the curvature
of gϕ is bounded by Lemma 4.4, we can find s > 0 and Q > 0 such
that for all x ∈ E, there is a chart Φx from to the Euclidean ball
Bx(s) ⊂ Rm+d of radius s onto a neighborhood of x so that 1

Q
geuc ≤

Φ∗xgϕ ≤ Qgeuc and ||Φ∗xgϕ||C1,α(Bx(s)) ≤ Q ([Pet97][Theorem 4.1]). Here,
geuc denotes the flat metric and || · ||C1,α(Bx(s)) the Euclidean Hölder
norm. For simplicity, we suppress the chart Φx and view Bx(s) as a
subset of E. Also note that we can assume that s is strictly smaller
than the injectivity radius of (E, gϕ). Applying the Euclidean Schauder
estimates ([GT01][Theorem 6.2]) to the balls Bx(s), we obtain that

|∇u|gϕ(x) ≤ Q|du|geuc(x)

≤ Q||u||C2,α(Bx(s))(74)

≤ QC0

(
||h||C0,α(Bx(s)) + ||u||C0(Bx(s))

)

for some uniform constant C0 > 0 depending only on α, s and Q.
Moreover, the weight function w is chosen so that there is a uniform
constant C1 > 0 such that for all x ∈ E with t(x) � 1 and all y ∈
Bx(s), we have 1

C1
w(y) ≤ w(x) ≤ C1w(y). This follows directly from

Lemma 5.1 and the fact that gϕ and geuc are uniformly equivalent on
Bx(s). Therefore, we continue to estimate for all x ∈ E with t(x)� 1
and all y ∈ Bx(s):

u(y) ≤ Cw(y)2−δ+ε ≤ CC2−δ+ε
1 w(x)2−δ+ε,

i.e. ||u||C0(Bx(s)) = O(w(x)2−δ+ε). Similarly, we conclude that

||h||C0,α(Bx(s)) = O(w(x)−δ)

because s is chosen strictly smaller than the injectivity radius and
h ∈ C0,α

−δ (E). In combination with (74) we consequently arrive at

|∇u|gϕ = O(w2−δ+ε),

as claimed. �
The issue with (ii) of Proposition 5.6 is that one can in general not

conclude u = O(w2−δ) if u = O(w2−δ+ε) for all ε > 0. For proving The-
orem 5.4, however, we would like to conclude that indeed u = O(w2−δ).
The following proposition gives a criterion, when this conclusion is true.

Lemma 5.10. Let δ > 0 and suppose that ξ ∈ C∞−1−δ(T
∗E). If ξ = du

for some u ∈ C1(E), then there exists a constant function uc such that
u− uc ∈ C∞−δ(E). If additionally u→ 0 as t→∞, then uc ≡ 0.

Proof. This lemma is proven analogously to the corresponding state-
ment for conical metrics [Mar02][Lemma 5.10]. First observe that we
only need to find a constant uc such that u − uc ∈ C0

−δ(E) because
∇(u− uc) = du ∈ C∞−1−δ(T

∗E) by assumption.
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We work on E \D ∼= R×S and fix a point (t0, y0) ∈ R×S. Viewing
S as the slice {0}×S, we endow S with a metric gS by restricting gϕ to
S. For a different point (t, y), we let qt0,t be the straight line path from
(t0, y0) to (t, y0) and qy0,y be a path joining the points (t, y0) and (t, y),
so that its projection onto S is a length minimizing geodesic. Then we
have by Stoke’s theorem

u(t, y)− u(t0, y0) =

∫

qt0,t

ξ +

∫

qy0,y

ξ.(75)

As in the proof of [Mar02][Lemma 5.10 (c)], the key is to notice that the
integral of ξ along the path qt0,∞ is finite, where qt0,∞ is the linear path
from (t0, y0) to (+∞, y0). Indeed, since ξ ∈ C∞−1−δ(T

∗E) and δ > 0, we
can estimate

∣∣∣∣∣

∫

qt0,∞

ξ

∣∣∣∣∣ ≤
∫ ∞

t0

|ξ(q̇t0,∞)| ds(76)

≤ ||ξ||C0
−1−δ

∫ ∞

t0

f ′′w−1−δds

≤ ||ξ||C0
−1−δ

w−δ(t0)

δ
< +∞,

Splitting the integral
∫
qt0,∞

ξ into two parts, we can rewrite (75) as

follows:

u(t, y)− u(t0, y0)−
∫

qt0,∞

ξ = −
∫

qt,∞
ξ +

∫

qy0,y

ξ.(77)

As in (76), it is easy to see that the right hand side of (77) is bounded
by w−δ(t). In fact, we have

∣∣∣∣∣

∫

qy0,y

ξ

∣∣∣∣∣ ≤
∫ b

a

|ξ|ϕ|q̇y0,y|ϕds(78)

≤ C||ξ||C0
−1−δ

w−1−δ(t)
√
f ′(t)

∫ b

a

|q̇y0,y|gSds

≤ C||ξ||C0
−1−δ

w−δ(t) diam(S, gS),

where qy0,y is defined on the interval [a, b] and C > 0 is some constant
independent of t. Combining with (76), we obtain

∣∣∣∣∣u(t, y)− u(t0, y0)−
∫

qt0,∞

ξ

∣∣∣∣∣ ≤ ||ξ||C0
−1−δ

(
δ−1 + C diam(S, gS)

)
w−δ(t),
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i.e. u− uc ∈ C0
−δ(E) where we set

uc = u(t0, y0) +

∫

qt0,∞

ξ

= u(t0, y0) + lim
t→∞

(u(t, y0)− u(t0, y0))

= lim
t→∞

u(t, y0).

Thus, it remains to show that uc is indeed constant. Let qy0,y1 be a
path in the slice {t}×S connecting two points (t, y0) and (t, y1). Then
we have

u(t, y1)− u(t, y0) =

∫

qy0,y1

ξ,(79)

and by (78), the right hand side of (79) goes to 0 as t → ∞. Hence
limt→∞ u(t, y0) = limt→∞ u(t, y1) for any y0, y1 ∈ S, proving the lemma.

�

5.3. Vanishing of harmonic forms. We aim at proving a vanishing
theorem for harmonic (1,0)-forms on the manifold (E, gϕ). This will be
needed for the ∂∂̄-Lemma. We start with a basic observation which is
immediate from the standard Bochner formula.

Lemma 5.11. Any harmonic 1-form β on (E, gϕ) such that |β| → 0
as t→∞ must vanish identically.

Proof. Since Ric(ωϕ) is non-negative by Theorem 4.1, the Bochner for-
mula reads

∆|β|2 ≥ 0,

and the claim then follows from the Maximum principle. �
It becomes more interesting if we replace the asymptotic condition

of β in the previous lemma by requiring that β be square-integrable
instead. If β is moreover of type (1, 0), it is also holomorphic and it
must be zero by the following Theorem.

Theorem 5.12. Any L2-holomorphic (1,0)-form on (E, gϕ) is identi-
cally zero.

Proof. We adapt the idea behind [MW15][Theorem 7]. Let β be a
holomorphic (1,0)-form, which is square integrable w.r.to the metric
gϕ. Then ∂̄β = ∂̄∗β = 0, and by the Kähler identities ∆dβ = 0, i.e. β
is harmonic. Since every L2-harmonic form on a complete manifold is
closed and coclosed, we conclude dβ = d∗β = 0. Observe that β and
π∗j∗β are in the same de-Rham cohomology class, where π : E → D is
the projection and j : D → E is the inclusion of D as the zero section.
Hence β = π∗j∗β+∂h for some function h. It follows immediately that
∂̄∂h = 0.



44 JOHANNES SCHÄFER

For some ε > 0, consider the tube Dε = {z ∈ E | r(z) ≤ ε} around
the zero section. Then by Stoke’s theorem, there is the following for-
mula

∫

Dε

|∂h|2 = −
∫

Dε

〈h, ∂∗∂h〉+

∫

∂Dε

hιν(∂h).(80)

Here, ν := X
|X| denotes the outward pointing unit normal vector to

∂Dε. As X is a real holomorphic vector field, the function ιX(∂h) is also
holomorphic and we claim that it is in L2. Indeed, using ιX(π∗j∗β) = 0,
we observe that

|ιX(∂h)| = |ιX(β)| ≤ |X| · |β|

so that ιX(∂h) is square-integrable since X is bounded and β is L2.
Hence, ιX(∂h) is an L2-holomorphic function and must consequently
be zero. Moreover, 2∂∗∂h = ∆h = 0 because h is pluriharmonic. Thus,
∂h vanishes identically on Dε by (80). So ∂h must be zero everywhere
since it is a holomorphic (1,0)-form.

We conclude that β = π∗j∗β. However, a form pulled back from
the base can never be in L2, unless it vanishes identically. Indeed, let
α be a 1-form on D which is non-zero at some point p. Keeping the
expression (60) in mind, we can always estimate in a neighborhood
around p

〈π∗α, π∗α〉 ≥ Cw−1 > 0

for some C > 0 independent of t. It follows that
∫
E
|π∗α|2 = +∞ since

w−1 is not integrable. This finishes the proof. �

5.4. The ∂∂̄-Lemma. In this paragraph, we prove Theorem 5.4 on
the manifold E analogue to [CH13][Theorem 3.11].

The first step is to find a primitive of η, with controlled growth. In
fact, one can write down an explicit primitive for η on the product
E \D ∼= R×S and then read off its growth behaviour. This is the idea
behind the next proposition.

Proposition 5.13. Let δ > 2 and η ∈ C∞−δ(Λ
2T ∗E) be a d-exact 2-

form. Then η = dθ for some θ ∈ C∞−δ+1(T ∗E).

Proof. As in [CH13][Theorem 3.11], we first reduce the problem to
finding a primitive for η on the product R× S. By assumption, there
exists a 1-form ξ such that η = dξ. Let t1 < t2 and define two compact
sets Kj with j = 1, 2 by

Kj = {z ∈ E | t(z) ≤ tj},
where we view the zero section of E to be the set {z ∈ E | t(z) = −∞}.
We pick a cut-off function χ so that χ ≡ 0 on K1 and χ ≡ 1 on the
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complement of K2. Then we put ξ̂ := χξ and η̂ := dξ̂. Note that if
η̂ = dθ̂ for some θ̂, then θ := ξ − ξ̂ + θ̂ satisfies

dθ = dξ − d(χξ) + η̂ = η.

Since θ = θ̂ outside K2, it suffices to find θ̂ ∈ C∞1−δ(Λ∗E) with η̂ = dθ̂

and θ̂ ≡ 0 on K1. The following construction of θ̂ can be found in the
proof of [Mar02][Proposition 5.8].

For each t ∈ R, there is an inclusion it : {t} × S → R × S given by
it(y) = (t, y). Write η̂ = dt∧ η̂1 + η̂2, where η̂j are 1-parameter families
of j-forms such that

ι ∂
∂t
η̂j = 0 and i∗t η̂j = 0 for all t ≤ t1.(81)

We define a family θ̂t with t ∈ R of 1 forms on S by

θ̂t = −
∫ ∞

t

i∗s(η̂1)ds.(82)

Then we define a 1-form θ̂ on R× S by requiring that

ι ∂
∂t
θ̂ = 0 and i∗t θ̂ = θ̂t for all t ∈ R.(83)

We have to prove that θ̂ is well-defined, i.e. that the integral (82)
exists. We start by looking at |η̂1|. As dt and η̂1 are orthogonal to each
other, we have that

|dt ∧ η̂1| = |dt||η̂1| =
1√
f ′′(t)

|η̂1|.

Using that dt ∧ η̂1 is orthogonal to η̂2, we can estimate

|η̂1| =
√
f ′′(t)|dt ∧ η̂1| ≤

√
f ′′(t)|dt ∧ η̂1 + η̂2| = O(w−δ),(84)

since f ′′ is bounded and |η̂| = O(w−δ) by assumption. To compute the
integral (82), we work in coordinates. Let (y0 = t, y1, . . . , y2(m+d)−1)
be real coordinates of R × S and write η̂1 =

∑
j≥1 η̂1,jdyj. Then (82)

becomes

θ̂t = −
∑

j≥1

(∫ ∞

t

i∗sη̂1,jds

)
dyj.(85)

Note that the norms |dyj| may not have the same asymptotic behaviour
for different values of j = 1, . . . ,m+ d− 1. In fact, it follows from (60)
that we have

|dyj| =
{
O(w−

1
2 ) if π∗ĝjj > 0,

O(1) if π∗ĝjj = 0,
and

1

|dyj|
=

{
O(w

1
2 ) if π∗ĝjj > 0,

O(1) if π∗ĝjj = 0.

(86)

As |η̂| = O(w−δ), we conclude that either |η̂1,j| = O(w−δ+
1
2 ) or |η̂1,j| =

O(w−δ) and hence, the integrals in (85) are all finite because we chose
−δ + 1 < −1.
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We also observe from (81) that θ̂t = θ̂s for all s, t ≤ t1, so θ̂ extends

to a smooth 1-form on E. Moreover, we can read off (85) that |θ̂| =

O(w−δ+1), i.e. θ̂ ∈ C0
−δ+1(T ∗E). It is possible to obtain estimates on

derivatives of θ̂ and to show that θ̂ ∈ C∞−δ+1(T ∗E). However, this is
a long calculation which relies only on two main observations. First,
we deduce from Lemma 4.3 that |∇ldyj| behaves asymptotically like
|dyj|w−l for all l ≥ 0 and j = 0, . . . , 2(m + d) − 1. Secondly, we can
conclude from η ∈ C∞−δ(Λ

∗T ∗E) that also |∇lη̂1| = O(w−δ−l). Using

formula (85), it is then straight forward to verify |∇lθ̂| = O(w−δ−l+1),
as claimed. We leave the details to the reader, but remark that the
required estimate is similar to bounding |θ̂|.

It remains to show that η̂ = dθ̂ by considering its components. In
fact, it is an easy calculation ([Mar02][p.80]) to prove that

∂

∂t

(
i∗t (η̂ − dθ̂)

)
= 0,

i.e. i∗s(η̂ − dθ̂) = i∗t (η̂ − dθ̂) for all s, t ∈ R. Since η̂, θ̂ → 0 as t → ∞,

we conclude that i∗t (η̂ − dθ̂) = 0 for any t ∈ R. Moreover, it is shown
in [Mar02][p.80] that

ι ∂
∂t
η̂ = ι ∂

∂t
dθ̂,

and hence η̂ = dθ̂ as we claimed.
�

Proof of Theorem 5.4. The strategy is the same as for the proof of
[CH13][Theorem 3.11]. We start with some basic observations. By
Proposition 5.13, there exists a θ ∈ C∞1−δ(Λ∗E) such that dθ = η. Since

η is real, θ will also be a real form, i.e. θ1,0 = θ0,1 if θ = θ1,0 + θ0,1 is
the decomposition into types. Moreover, η is of type (1,1), so we must
have that ∂θ1,0 = ∂̄θ0,1 = 0.

If ∂∗ denotes the formal dual of ∂ (w.r.to the L2-metric induced by
gϕ), then ∂∗θ1,0 ∈ C∞−δ(E). We would like to find a solution u to the
equation ∆u = ∂∗θ1,0, whose growth we can control. There are two
cases to consider, corresponding to part (i) and (ii) of Proposition 5.6.

First, we consider the case where the degree k of the polynomial
Q is greater or equal to 2. By (ii) of Proposition 5.6, there exists
u ∈ C2,α(E) such that ∆u = ∂∗θ1,0 and |u| + |∇u| = O(w2−δ+ε). It
follows that ∂∗ (∂u− θ1,0) = ∂ (∂u− θ1,0) = 0, and hence the 1-form
∂u− θ1,0 is harmonic by the Kähler identities.

Choosing ε > 0 small enough, we can assume that 2− δ+ ε < 0 and
hence we see from |∇u| = O(w2−δ+ε) and θ ∈ C∞1−δ(Λ∗E) that

|∂u− θ1,0| ≤ |du|+ |θ| → 0,
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as t→∞. Then Lemma 5.11 implies ∂u− θ1,0 = 0 and consequently,

η = dθ = ∂θ0,1 + ∂̄θ1,0 = ∂∂̄ū+ ∂̄∂u = −2
√
−1∂∂̄ Imu,

where Imu is the imaginary part of u.
It remains to show that Imu ∈ C∞2−δ(E) as opposed to only Imu ∈

C2,α(E) and Imu = O(w2−δ+ε). As we can choose ε > 0 so that
2 − δ + ε < 0, this improvement of the decay rate, however, follows
immediately from Proposition 5.10 if we can show d Imu ∈ C∞1−δ(Λ∗E).
This last condition is clearly satisfied since θ1,0, θ0,1 ∈ C∞1−δ(Λ∗E) and

θ1,0− θ0,1 = ∂u− ∂u = dReu+
√
−1d Imu. This settles the first case.

For the second case, assume that k ≤ 1. We want to use (i) of
Proposition 5.6 to solve ∆u = ∂∗θ1,0. This time, however, we only know
that the solution u satisfies

∫
|∇u|2ωm+d

ϕ < +∞, and not necessarily
that u decays towards infinity. So the idea is to use the vanishing
Theorem 5.12 instead.

Before applying Proposition 5.6 (i), we need to verify that
∫
∂∗θ1,0ωm+d

ϕ

is zero. For any t0 ∈ R, define Kt0 = {z ∈ E | t(z) ≤ t0} and consider
the integral ∫

Kt0

∂∗θ1,0ωm+d
ϕ =

∫

Kt0

d ∗ θ1,0 =

∫

{t0}×S
∗θ1,0,(87)

where we used Stoke’s for the last equality. If we equip the slice {t0}×S
with the restriction of gϕ and denote the corresponding volume by
Vol({t0} × S), then we can estimate∣∣∣∣

∫

{t0}×S
∗θ1,0

∣∣∣∣ ≤ Vol({t0} × S) sup
{t0}×S

|θ| = O(wk+1−δ(t0)),

since |θ| = O(w1−δ) and Vol({t0} × S) = O(wk). It follows that the
right hand side of (87) goes to zero as t0 → +∞, as we assumed k ≤ 1
and δ > 2. Hence

∫
∂∗θ1,0ωm+d

ϕ = 0, as claimed.

So we find a u ∈ C2,α(E) such that ∆u = ∂∗θ1,0 and
∫
|∇u|2ωm+d

ϕ is

finite. In particular, the 1-form β = θ1,0 − ∂u is harmonic. Also note
that

|θ|ωm+d
ϕ = O(w2−2δ+k)

with 2− 2δ + k < −1, so that θ is in L2, and thus β is L2 as well.
It follows that dβ = d∗β = 0, and in particular, β is an L2-holomorphic

(1,0)-form. Hence it must be identically zero by Theorem 5.12, i.e.
θ1,0 = ∂u. The rest of the proof is now analogous to the first case.

�
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Part II.





ASYMPTOTICALLY CYLINDRICAL STEADY
KÄHLER-RICCI SOLITONS∗

JOHANNES SCHÄFER

Abstract. Let D be a compact Kähler manifold with trivial
canonical bundle and Γ be a finite cyclical group of order m acting
on C × D by biholomorphisms, where the action on the first fac-
tor is generated by rotation of angle 2π/m. Furthermore, suppose
that ΩD is a trivialisation of the canonical bundle such that Γ pre-
serves the holomorphic form dz ∧ ΩD on C ×D, with z denoting
the coordinate on C.

The main result of this article is the construction of new ex-
amples of gradient steady Kähler-Ricci solitons on certain crepant
resolutions of the orbifolds (C×D) /Γ. These new solitons con-
verge exponentially to a Ricci-flat cylinder R× (S1 ×D)/Γ.

1. Introduction

A steady Ricci soliton is a Riemannian manifold (M, g) together with
a vector field X such that

Ric(g) =
1

2
LXg,(1)

where Ric(g) denotes the Ricci tensor of g and LX is the Lie derivative
in direction of X. The soliton (M, g,X) is called gradient if X is the
gradient field of some function on M .

If (M, g) is Kähler and the vector field X real holomorphic, equation
(1) is equivalent to

Ric(ω) =
1

2
LXω,(2)

where ω is the Kähler form of g and Ric(ω) the corresponding Ricci
form. A Kähler manifold (M, g) which admits a real holomorphic vector
field X satisfying (2) is called a steady Kähler-Ricci soliton.

Steady solitons may be viewed as natural generalisations of Einstein
manifolds, which correspond to the case X ≡ 0. Non-Einstein steady
solitons, however, must be non-compact ([Ive93]).

To each steady Ricci soliton (M, g,X) one can associate a self-similar
Ricci-flow by rescaling and pulling back g along the flow of X. Thus,
steady solitons may be possible candidates for singularity models for

∗This chapter is the preprint:
Johannes Schäfer, Asymptotically cylindrical steady Kähler-Ricci solitons,
arXiv:2103.12629.
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Ricci-flow. They are also important in the context of so-called Type II
singularities, i.e. when a Ricci-flow exists up to the finite time T > 0,
and the curvature blows up faster than (T − t)−1. For recent progress
in the study of singularities as well as steady Ricci solitons, we refer
the reader to [BCD+21], [CDM20], [Bam20], [CFSZ20], [DZ20], and
the references therein.

This article focuses on the case of steady Kähler-Ricci solitons, and
our main result is the existence of a new class of such solitons. In
contrast to general Ricci-solitons, it suffices to solve a single equation
of top-dimensional differential forms in order to construct a gradient
Kähler-Ricci soliton. If M is a complex manifold of (complex) dimen-
sion n, together with a nowhere-vanishing holomorphic (n, 0)-form Ω,
and a Kähler metric g whose Kähler form ω satisfies

ωn = e−f in
2

Ω ∧ Ω(3)

for some function f : M → R, then (M, g,∇gf) defines a gradient
steady Kähler-Ricci soliton. In fact, if M is simply-connected, then
one can always associate such a form Ω to a gradient steady Kähler-
Ricci soliton, compare [Bry08][Theorem 1].

However, given M and a nowhere-vanishing holomorphic n-form Ω
on M it is not known if M admits a steady soliton, i.e. there is no
general existence theory for steady Kähler-Ricci solitons as is the case
for compact Ricci-flat Kähler manifolds due to Yau [Yau78].

All previously known examples of steady Kähler-Ricci solitons may
be divided into two classes. The first group consists of solitons con-
structed by reducing (2) to an ODE, for instance by Hamilton [Ham88],
Cao [Cao96], Dancer and Wang [DW11], Yang [Yan12] and the author
[Sch20]. Most notably, we mention Hamilton’s cigar on C ([Ham88])
and Cao’s soliton on Cn for n ≥ 2 ([Cao96]). The cigar is asymp-
totic to the cylinder dt2 + dθ2 on the product R × S1 ∼= C∗, whereas
Cao’s soliton has a more complicated asymptotic behavior. (It is a
so-called cigar-paraboloid whose precise asymptotics are explained in
[CD20b][Section 3].)

The second group of examples are constructed by PDE methods
([BM17], [CD20b]). Here, the underlying complex manifolds are equi-
variant, crepant resolutions of certain orbifolds Cn/G ([BM17]) and of
more general Calabi-Yau cones ([CD20b]). In both cases, the solitons
have an asymptotic behavior similar to Cao’s soliton.

In this article, we build on ideas developed in [CD20b] and find new
examples of steady Kähler-Ricci solitons which are asymptotic to a
product C × D of Hamilton’s cigar and a compact Ricci-flat Kähler
manifold D. (Note that this product is also a steady Kähler-Ricci soli-
ton.) These new examples exist on resolutions π : M → (C×D) /Γ of
certain orbifolds (C×D) /Γ. Before introducing the precise conditions
on D,Γ and M , consider the following example.
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Example 1.1. Let D = T be the (real) 2-torus and let Γ = {± Id}.
Then (C× T) /Γ has precisely four singular points, each isomorphic to
a neighborhood of the origin in C2/{± Id}. Thus, we may blow-up each
of these singular points to obtain a resolution π : M → (C× T) /Γ.
(Note that previously, certain Calabi-Yau metrics, so-called ALG grav-
itational instantons, were constructed on this resolution, see [BM11].)

This resolution π : M → (C× T) /Γ satisfies three essential proper-
ties. First, the resolution is crepant, i.e. the holomorphic (2,0)-form
Ω on (C∗ × T) /Γ, which lifts to the canonical form dz1 ∧ dz2 on C2,
extends to a nowhere-vanishing form on the entire resolution M .

Second, the C∗-action on (C∗ × T) /Γ given by

λ ∗ (z, w) = (λz, w), λ ∈ C∗,

extends π-equivariantly to a holomorphic action on M , since the res-
olution is toric. In particular, the infinitesimal generator z1

∂
∂z1

on

(C∗ × T)/Γ extends to a holomorphic vector field Z on M .
And third, M admits a natural complex compactification M ob-

tained by adding the divisor T := T/{± Id} ‘at infinity’, i.e. we com-
pactify C by the Riemann sphere C∪{∞} and let M = M∪

(
{∞} × T

)
.

Given a Kähler class κM ∈ H2(M,R) on M , it is possible to construct
a new Kähler form on M in the class κM |M ∈ H2(M,R) that is asymp-
totic to the cylinder

|z1|−2 i

2
dz1 ∧ dz̄1 +

i

2
dz2 ∧ dz̄2.(4)

(This construction follows by adapting ideas from the case of asymp-
totically cylindrical Calabi-Yau manifolds [HHN15].)

Thus, one may ask if there exists a steady Kähler-Ricci soliton on M
which is asymptotic to the cylinder (4), whose Kähler form is contained
in the class κM |M and whose soliton vector field equals the real part of
Z. This is indeed a non-trivial question, because M is not a product,
but a resolution of the orbifold (C× T) /Γ.

Our main result (Theorem 1.2), however, implies that M does admits
such solitons. In fact, Theorem 1.2 proves the existence of steady
Kähler-Ricci solitons for a more general setup:

Theorem 1.2. Let Dn−1 be a compact Kähler manifold with nowhere-
vanishing holomorphic (n − 1, 0)-form ΩD. Suppose γ : D → D is a
complex automorphism of order m > 1 such that

γ∗ΩD = e−
2πi
m ΩD,

and consider the orbifold (C×D)/〈γ〉, where γ acts on the product via

γ(z, w) =
(
e

2πi
m z, γ(w)

)
.
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Let π : M → (C × D)/〈γ〉 be a crepant resolution such that the C∗-
action on (C×D)/〈γ〉 given by

λ ∗ (z, w) = (λz, w), λ ∈ C∗,

extends π-equivariantly to a holomorphic action of C∗ on M .
Let M = M ∪D be the complex compactification of M by adding the

orbifold divisor D := D/〈γ〉 at infinity. Then for every orbifold Kähler
class κM on M , there exists a steady Kähler-Ricci soliton on M whose
Kähler form is contained in the class κM |M ∈ H2(M,R).

As in Example 1.1, M admits a nowhere-vanishing holomorphic
(n, 0)-form because the resolution is crepant, and the infinitesimal gen-
erator of the C∗-action on M provides a candidate for the soliton vector
field. Also, the Kähler class is determined by the compactification M
and the resulting Kähler-Ricci soliton is asymptotic to the cylinder
dt2 + dθ2 + gD on the product (C∗ ×D) /〈γ〉 ∼= R × (S1 ×D) /〈γ〉 for
some Ricci-flat Kähler metric gD on D.

The new examples of steady Kähler-Ricci solitons provided by The-
orem 1.2 are geometrically different from all previously found examples
in complex dimension n ≥ 2. For instance, their volume grows linearly
since they are asymptotically cylindrical, while the examples modelled
on Cao’s soliton in complex dimension n have volume growth equal to
n, compare [Cao96], [BM17] and [CD20b].

Interestingly, our examples also seem to be the only (non-Einstein)
steady Kähler-Ricci solitons whose asymptotic model is Ricci-flat. This
contrasts with the fact that Cao’s soliton has positive Ricci curvature
([Cao96][Lemma 2.2]).

The strategy for proving Theorem 1.2 is analogue to the proof of
[CD20b][Theorem A]. We adapt Conlon and Deruelle’s ideas to our set-
ting and reduce (2) to a complex Monge-Ampère equation, whose solu-
tion exists by the following result, which is similar to [CD20b][Theorem
7.1]

Theorem 1.3. Let (M, g, J) be an asymptotically cylindrical Kähler
manifold of complex dimension n with Kähler form ω. Suppose that M
admits a real holomorphic vector field X such that

X = 2Φ∗
∂

∂t

outside some compact domain, where Φ denotes the diffeomorphism
onto the cylindrical end of (M, g) and t is the radial parameter on this
end. Moreover, assume that JX is Killing for g.

If 1 < ε < 2 and F ∈ C∞ε (M) is JX-invariant, then there exists a
unique, JX-invariant ϕ ∈ C∞ε (M) such that ω + i∂∂̄ϕ > 0 and

(
ω + i∂∂̄ϕ

)n
= eF−

X
2

(ϕ)ωn.



ACYL KÄHLER-RICCI SOLITONS 57

Note that in this theorem, we do allow more general manifolds than
those appearing in Theorem 1.2. This is because the proof of Theorem
1.3 essentially only requires that we have a Kähler manifold (M, g, J),
asymptotic to a cylinder (in the sense of Definition 2.1 below) and
satisfying two further assumptions: Firstly, we need the radial vector
field on the cylinder to be extended to a real holomorphic vector field
on (M,J) and secondly, JX must be an infinitesimal isometry of g.
We will see in Proposition 3.5 below that this ensures X = ∇gf for
some function f with understood asymptotical behavior.

The spaces C∞ε (M) in Theorem 1.3 contain all smooth functions
on M whose covariant derivatives (with respect to g) decay at least
like e−εt with t denoting the cylindrical parameter of (M, g) (compare
Definitions 2.1 and 2.3). These function spaces are well-adapted to the
cylindrical geometry and have previously been used in the construction
of asymptotically cylindrical Calabi-Yau manifolds [HHN15].

Following the proof of [CD20b][Theorem 7.1], we also implement a
continuity method to conclude Theorem 1.3. To this end, we need to
show two things. First, that the linearisation of the Monge-Ampère op-
erator is an isomorphism, which can be deduced from standard results
on asymptotically translation invariant differential operators. Second,
and most importantly, we have to derive a priori-estimates along the
continuity path, where the C0-estimate is the key part of the proof.
To obtain this estimate, we adapt the C0-estimate of Conlon and
Deruelle ([CD20b][Section 7.1]) to our cylindrical setup. These au-
thors first assume that the right-hand side F is compactly supported to
obtain the C0-estimate ([CD20b][Theorem 7.1]) and in a second step,
they explain how to solve the Monge-Ampère equation for decaying F
([CD20b][Theorem 9.2]). We, however, present a modification of their
argument, which allows us to achieve the C0-estimate directly for F
decaying exponentially in Theorem 1.3.

This article is structured as follows. In Section 2, we recall the
notion of asymptotically cylindrical manifolds and the theory of linear
asymptotically translation-invariant operators on such manifolds. This
is later applied to the linearisation of the Monge-Ampère operator.

The basics of steady Kähler-Ricci solitons are covered in Section
3. We recall the underlying Monge-Ampère equation and also discuss
when a soliton is gradient. Most notably, we show at the end of this
section that, under the assumptions of Theorem 1.3, X must be a
gradient field.

In Section 4, we reduce Theorem 1.2 to Theorem 1.3. We discuss the
existence of cylindrical Kähler metrics on manifolds as in Theorem 1.2
in Section 4.1 and also explain which Kähler classes do indeed admit
such metrics. Theorem 1.2 is then proven in Section 4.2, before we
provide further examples in Section 4.3.
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The fifth and final section is entirely devoted to Theorem 1.3. We
explain the continuity method and reduce the proof to an a priori-
estimate.

Acknowledgement. This article is part of the author’s PhD thesis.
The author is financially supported by the Max-Planck-Institute for
Mathematics in Bonn and would like to thank his advisor, Prof. Ursula
Hamenstädt, for her encouragement as well as helpful discussions.

2. Linear analysis on ACyl manifolds

In this section, we review the basic definitions and theorems about
asymptotically translation-invariant operators on ACyl manifolds fol-
lowing the presentation in [HHN15][Section 2.1] and [Nor08][Section
2.3]. The goal is to apply the general theory to the special class of
operators that arise as the linearisation of the Monge-Ampère operator
in Section 5 below.

We begin by recalling the definition of ACyl manifolds. For simplic-
ity, we restrict our attention to the case of only one cylindrical end,
i.e. a connected cross-section.

Definition 2.1. A complete Riemannian manifold (M, g) is called
asymptotically cylindrical (ACyl) of rate δ > 0 if there is a bounded
open set U ⊂M , a connected and closed Riemannian manifold (L, gL)
as well as a diffeomorphism Φ : [0,∞)× L→M \ U such that

|∇k (Φ∗g − gcyl) | = O(e−δt)

for all k ∈ N0, where gcyl := dt2 + gL is the product metric and both
∇ and | · | are taken with respect to this metric. Here t denotes the
projection onto [0,∞) and we extend the function t ◦ Φ−1 smoothly
to all of M . This extension is called a cylindrical coordinate function,
(L, gL) is called the cross-section and Φ the ACyl map.

Throughout this section, (M, g) denotes an ACyl manifold of rate
δ > 0 as defined above. It will be convenient to suppress Φ and simply
view t as smooth a function on M .

Let E,F → M be tensor bundles over M and denote the corre-
sponding space of smooth sections of E and F by Γ(E) and Γ(F ), re-
spectively. Then we consider a differential operator P : Γ(E) → Γ(F )
of order l and we would like to understand P on the cylindrical end
M \ U ∼= [0,∞)× L.

As in [Mar02][Section 4], we cover the compact link L by charts
V1, . . . , VN so that both E and F are trivial over each R+ × Vα. Given
u ∈ Γ(E), we denote the components of u and Pu on R+ × Vα by
uαj and (Pu)αi , respectively, where α = 1, . . . , N , j = 1, . . . , rankE

and i = 1, . . . , rankF . Moreover, there are smooth functions Pαβ
ij :
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R+ × Vα → C such that

(Pu)αi =
rankE∑

j=1

∑

0≤|β|≤l
Pαβ
ij D

βuαj(5)

where the second sum runs over all multi-indices β = (β0, . . . , βdimL)
of order |β| at most l and Dβ is defined to be

Dβ :=
∂|β|

∂tβ0xβ11 · · · ∂xβdimL

dimL

for coordinates (x1, . . . , xdimL) of Vα.
Given a second operator Q : Γ(E) → Γ(F ) also of order l, we say

that P is asymptotic to Q if the coefficients Pαβ
ij , Q

αβ
ij defined by (5)

satisfy

sup
{t}×Vα

∣∣∣ραDγ
(
Pαβ
ij −Qαβ

ij

)∣∣∣→ 0 as t→∞

for all i = 1, . . . , rankF , j = 1, . . . rankE, α = 1, . . . N , |β| ≤ l and all
multi-indices γ, where ρ1, . . . , ρN is a partition of unity subordinate to
the cover V1, . . . , VN . Note that this definition does neither depend on
the choice of covering nor on the partition of unity.

With this notion of asymptotic operators, we may introduce the
following definitions, compare [Mar02][Section 4.2.2].

Definition 2.2. Let P, P∞ : Γ(E)→ Γ(F ) be two differential operators
of order l between sections of tensor bundles E,F →M .

(i) P∞ is called translation-invariant if the functions (P∞)αβij de-
fined in (5) are invariant under translation in the R+-factor, for
all i = 1, . . . , rankF , j = 1, . . . , rankE, α = 1, . . . , N and all
multi-indices β of order at most l.

(ii) P is called asymptotically translation-invariant if P is asymp-
totic to some translation-invariant operator P∞.

Important examples of asymptotically translation-invariant opera-
tors include the Laplacian ∆g and the operator d∗ associated to the
ACyl metric g. These are asymptotic to the corresponding operators
associated to the cylinder gcyl.

Such operators may in general not be Fredholm between the usual
Hölder spaces because M is noncompact. However, this changes if we
introduce weight functions.

Definition 2.3. Let (M, g) be an ACyl manifold with cylindrical co-
ordinate t and suppose E → M is a tensor bundle. The metric on E
induced by g is also denoted by g, with corresponding connection ∇.
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(i) For α ∈ (0, 1), the Hölder semi-norm [ · ]C0,α is defined for any
continuous tensor field v over M by

[v]C0,α := sup
x 6=y∈M

dg(x,y)<
i(g)
2

|vx − vy|g
dg(x, y)α

,

where vx−vy is defined by parallel transport along the minimal
geodesic from x to y and i(g) > 0 denotes the injectivity radius
of g.

(ii) For k ∈ N0, α ∈ (0, 1) and ε ∈ R, we define Ck,α
ε (E) to be the

space of k-times continuously differentiable sections u of E such
that the norm

||u||Ck,αε :=
k∑

j=0

sup
M

∣∣eεt∇ju
∣∣
g

+ [eεt∇ku]C0,α

is finite.
(iii) C∞ε (E) is defined to be the intersection of Ck,α

ε (E) over all k ∈
N0.

(iv) If u is a function on M , the corresponding spaces are denoted
by Ck,α

ε (M).

In other words, elements in C∞ε (E), as well as their covariant deriva-
tives, are bounded from above by e−εt. It is not difficult to see that the
definition is independent of the extension of the cylindrical coordinate
t. Moreover, there are continuous inclusions

Ck+1
ε (E) ⊆ Ck,α

ε (E) and Ck,α
ε1

(E) ⊆ Ck,α
ε0

(E),

if ε0 ≤ ε1.
This notion of weighted Hölder spaces is well-adapted to the study

of asymptotically translation-invariant operators. If the operator is
moreover elliptic, we have the following weighted Schauder estimates.

Theorem 2.4. Let (M, g) be ACyl and let P : Γ(E) → Γ(F ) be an
elliptic, asymptotically translation-invariant operator of order l. Sup-
pose h ∈ Ck,α

ε (E) and that u is a k+ l-times continuously differentiable
solution to Pu = h. If u ∈ C0

ε (E), then u ∈ Ck+l,α
ε (E) and

||u||Ck+l,αε
≤ C

(
||h||Ck,αε + ||u||C0

ε

)

for some constant C > 0 independent of u.

Proof. This is [MP84][Theorem 3.16]. �
Every translation-invariant operator P : Γ(E) → Γ(F ) of order l

induces a bounded map P : Ck+l,α
ε (E) → Ck,α

ε (F ). If P is moreover
elliptic, it depends on the weight ε ∈ R whether or not the induced
map P : Ck+l,α

ε (E)→ Ck,α
ε (F ) is Fredholm. This naturally leads to the

definition of so called critical weights.



ACYL KÄHLER-RICCI SOLITONS 61

Definition 2.5. Let P : Γ(E) → Γ(F ) be a differential operator
asymptotic to a translation-invariant operator P∞ : Γ(E) → Γ(F ).
ε ∈ R is called a critical weight if there exists a non-trivial solution
v = eiλtu : R× L→ C to

P∞(v) = 0(6)

for some λ ∈ C with Imλ = ε and for some smooth section u = u(t, x)
of E over R× L that is a polynomial in t.

Note that the set of critical weights is discrete in R. In the case of
functions, i.e. if E is the trivial line bundle, u in the above definition
is simply a polynomial in t with smooth functions on L as coefficients.
This is crucial because it allows us to explicitly compute critical weights
in examples.

The fundamental result in the theory of asymptotically translation-
invariant operators is the following

Theorem 2.6. Let P : Γ(E) → Γ(F ) be an elliptic, translation-
invariant operator of order l. If ε is not a critical weight, then the
map P : Ck+l,α

ε (E)→ Ck,α
ε (F ) is Fredholm.

This result was originally formulated for weighted Sobolev spaces
([LMO85][Theorem 6.2]). However, as explained in [HHN15][Section
2.1], the same proof applies in the Hölder setting as well.

Knowing that the induced map P : Ck+l,α
ε (E) → Ck,α

ε (F ) is Fred-
holm for all non-critical weights ε, we would now like to have a better
understanding of its kernel and image.

Proposition 2.7. Let P : Γ(E) → Γ(F ) be an elliptic, translation-
invariant operator of order l. If an interval [ε1, ε2] contains no critical
weights, then the kernels of P in Ck,α

ε1
(M) and Ck,α

ε2
(M) are equal.

This is proven in [LMO85][Lemma 7.1]. To give a precise charac-
terization of the image of P , we need to introduce the formal adjoint
P ∗ : Γ(F )→ Γ(E). It is uniquely defined by the condition that

〈Pu, v〉L2 = 〈u, P ∗v〉L2(7)

holds for all smooth, compactly supported sections u, v. Here, the L2-
inner product is defined with respect to the ACyl metric g. Observe
that the identity (7) extends to sections u, v in certain Hölder spaces.

Lemma 2.8. Let P : Γ(E) → Γ(F ) be an asymptotically translation-
invariant operator of order l with formal adjoint P ∗ : Γ(F ) → Γ(E).
Suppose that u ∈ C l,α

ε1
(E) and v ∈ C l,α

ε2
(F ) with ε1 + ε2 > 0. Then

〈Pu, v〉L2 = 〈u, P ∗v〉L2 .

The proof is straight forward, and written out in ([Nor08][Lemma
2.3.15]), for example.
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Proposition 2.9. Let P : Γ(E) → Γ(F ) be an elliptic, asymptoti-
cally translation-invariant operator of order l with formal adjoint P ∗ :
Γ(F ) → Γ(E). If ε is not a critical weight, then the image of P :
Ck+l,α
ε (E)→ Ck,α

ε (F ) is precisely the L2-orthogonal complement to the

kernel of P ∗ : Ck+l,α
−ε (F )→ Ck,α

−ε (E) in Ck,α
ε (F ).

Proof. This can be deduced from Theorem 2.6 and Proposition 2.7,
compare [Nor08][Proposition 2.3.16] for details. �

We seek to apply this general theory to a certain subclass of asymp-
totically translation-invariant operators, which naturally arise as the
linearisation of the Monge-Ampère operator in Section 5 below.

Definition 2.10. Let f be a smooth function on an ACyl manifold
(M, g). Then the following operator

∆fu := ∆gu+ g(∇gf,∇gu)

is called the drift Laplacian with potential function f. If additionally
f − 2t ∈ C∞δ0 (M) for some δ0 > 0, we refer to ∆f as an ACyl drift
Laplace operator.

Any such operator ∆f is self-adjoint with respect to the L2-inner
product induced by the measure ef dVg, i.e.

∫

M

(∆fu)v ef dVg =

∫

M

u(∆fv) ef dVg

for all smooth, compactly supported functions u, v. If ∆f is more-
over an ACyl drift Laplacian, then it is asymptotic to the translation-
invariant operator

∆2tu = ∆gcylu+ gcyl

(
2
∂

∂t
,∇gcylu

)
=
∂2u

∂t2
+ 2

∂u

∂t
+ ∆gLu(8)

where gcyl = dt2 + gL is the product metric. From the general theory,
we deduce the next

Theorem 2.11. Let (M, g) be an ACyl manifold and suppose that ∆f

is an ACyl drift Laplacian with potential function f . Then for any
k ∈ N0, α ∈ (0, 1) and 0 < ε < 2 the operator

∆f : Ck+2,α
ε (M)→ Ck,α

ε (M)

is an isomorphism.

Proof. Since ε > 0, the injectivity of ∆f follows immediately from the
standard maximum principle, so we only need to show surjectivity.
Before using Proposition 2.9, we need to prove the following

Claim. There are no critical weights for ∆f in the interval (0, 2).
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Since ∆f is asymptotic to the operator given in (8), the definition of
critical weights requires us to show that there are no solutions v to the
equation

∂2v

∂t2
+ 2

∂v

∂t
+ ∆gLv = 0(9)

of the form

v = eiλt
d∑

j=0

ajt
j(10)

with Imλ = ε ∈ (0, 2) and functions aj on L. To see this, we plug (10)
into (9) and by considering the coefficient of td, we observe that (9)
can only be satisfied if

∆gLad + (−λ2 + 2iλ)ad = 0.(11)

This implies that −λ2 +2iλ must be real and non-negative because ∆gL

is a negative and self-adjoint operator on the closed manifold (L, gL).
Writing λ = γ + iε, this translates into

2γ(1− ε) = 0, and − γ2 + ε(ε− 2) ≥ 0.(12)

If ε = 1, the second equation in (12) gives a contradiction, and so
γ = 0. Then, however, the second equation implies ε ≥ 2 since ε > 0.
Thus, there cannot be a solution to (9) of the form (10) with ε ∈ (0, 2),
proving the claim.

Hence, according to Proposition 2.9, it suffices to show that the
formal adjoint ∆∗f of ∆f is injective when viewed as a map ∆∗f :

Ck+2,α
−ε (M) → Ck,α

−ε (M) with 0 < ε < 2. A simple computation shows
that ∆∗f is given by

∆∗fu = ∆gu− g(∇gf,∇gu)− u∆gf.

Assuming that u ∈ Ck+2,α
−ε (M) satisfies ∆∗fu = 0, we compute

∆f (e
−fu) = u∆fe

−f + e−f∆fu+ 2g(∇ge−f ,∇gu)

= −ue−f∆ff + e−f∆gu− e−fg(∇gf,∇gu)

= e−f∆∗fu

= 0.

Since ε < 2, the function e−fu tends to zero as t → ∞, and so the
maximum principle implies that e−fu vanishes identically. Thus, the
kernel of ∆∗f is trivial and the theorem follows. �

We end this section by proving a (global) Poincaré-inequality for
a certain drift Laplace operator, which is needed later on to obtain
L2-estimates for the Monge-Ampère operator as in [CD20b].
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Proposition 2.12. Let (M, g) be an ACyl manifold. If f is a C2-
function on M satisfying f − 2t ∈ C2

δ0
(M) for some δ0 > 0 then there

exists a constant λ > 0 such that

λ

∫

M

u2 ef

(f + c)2
dVg ≤

∫

M

|∇gu|2g
ef

(f + c)2
dVg

holds for all smooth, compactly supported functions u on M , where
c > 0 is chosen so that f + c > 0.

Proof. First of all note that we can assume that f + c > 0 for some
c > 0 because f is proper since f − 2t ∈ C2

δ0
(M). By [CD20b][Lemma

5.1], it is sufficient to find a positive C2-function v on M and a positive
constant λ0 such that ∆f−2 log(f+c) v ≤ −λ0v outside some compact
subset K ⊂M .

We claim that this condition holds for the function v := e−
f
2 . Indeed,

we first calculate

∆f−2 log(f+c) e
− f

2 = −e− f2
(

1

2
∆gf +

(
1

4
− 1

f + c

)
g(∇gf,∇gf)

)
,

and, since f − 2t ∈ C2
δ0

(M), we then observe that (f + c)−1 → 0 in the
limit t→∞, as well as

∆gf → ∆gcylt = 0, and |∇gf |2g → |∇gcylt|2gcyl = 1 if t→∞.
The claim now follows by taking for instance λ0 = 1/8 and K := {x ∈
M | t(x) ≤ m} for m� 1 large enough. �

3. Preliminaries on Kähler-Ricci solitons

In this section, we recall some basic definitions and facts about steady
Kähler-Ricci solitons. In particular, we review when a solitons is gra-
dient. The main result in this direction is Proposition 3.5, which states
a criterion for the radial vector field on an ACyl Kähler manifold to be
a gradient field.

Definition 3.1. A triple (M, g,X) consisting of a complete Kähler
manifold (M, g) and a complete real holomorphic vector field X on
M is a steady Kähler-Ricci soliton if the corresponding Kähler form ω
satisfies

Ric(ω) =
1

2
LXω,(13)

where Ric(ω) denotes the Ricci form of ω and LX is the Lie derivative
in direction of X. The vector field X is called the soliton vector field.

We say that a steady Kähler-Ricci soliton (M, g,X) is gradient if
X = ∇gf for some smooth real-valued function f on M . In this case,
f is called the soliton potential and equation (13) becomes

Ric(ω) = i∂∂̄f.(14)

For us, the most important example is Hamilton’s cigar soliton [Ham88].
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Example 3.2 (Cigar soliton). Let M = C and consider the following
metric

gcig =
1

1 + x2 + y2
(dx2 + dy2)

which is Kähler with Kähler form

ωcig =
1

1 + |z|2
i

2
dz ∧ dz̄,

where z = x+ iy is the standard coordinate for C. A straight forward
computation then shows that (C, gcig) defines a Kähler-Ricci soliton
with real holomorphic vector field

X = 2x
∂

∂x
+ 2y

∂

∂y
= 4 Re

(
z
∂

∂z

)
.

In fact, (C, gcig) is also an ACyl manifold in the sense of Definition
2.1, with ACyl map Φ : R× S1 → C∗ given by

Φ(t, e2πiθ) := et+2πiθ.

Under this change of coordinates, we have

Φ∗
∂

∂t
= x

∂

∂x
+ y

∂

∂y
and Φ∗gcig =

1

1 + e2t
(dt2 + dθ2),

from which it is easy to see that gcig is indeed asymptotic to gcyl =
dt2 + dθ2.

In higher dimension, further examples of ACyl Kähler-Ricci soli-
tons can be obtained by taking the product of the cigar soliton with
a compact, Ricci-flat Kähler manifold. Such examples, and their fi-
nite quotients, are the asymptotic model for the solitons constructed
in Theorem 4.6.

Under certain conditions, the soliton equation (13) can be reduced
to solving a Monge-Ampère equation, as shown in [CD20b][Proposition
4.5], for example. We adapt their arguments to obtain the next

Lemma 3.3. Let (M, g, J) be a Kähler manifold of dimension n with
Kähler form ω. Let X be a real holomorphic vector field such that
X = ∇gf , for some smooth function f : M → R, and suppose M
admits a nowhere-vanishing, holomorphic (n, 0)-form Ω. If there is a
smooth function ϕ : M → R satisfying

(
ω + i∂∂̄ϕ

)n
= e−f−

X
2

(ϕ)in
2

Ω ∧ Ω,(15)

then ω+ i∂∂̄ϕ defines a steady Kähler-Ricci soliton with vector field X.
Moreover, if ϕ is JX-invariant, the resulting soliton is gradient.

Proof. We closely follow the computation provided in the proof of
[CD20b][Proposition 4.5]. Suppose ωϕ := ω + i∂∂̄ϕ satisfies (15) and
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compute:

Ric(ωϕ) = −i∂∂̄ log
ωnϕ

in2Ω ∧ Ω

= i∂∂̄f +
X

2
(ϕ)

=
1

2
LXω +

1

2
LX
(
i∂∂̄ϕ

)
=

1

2
LXωϕ,

where we used in the last line that X is real holomorphic, and

1

2
LXω =

1

2
dιXω =

1

2
dJιJXω = −1

2
dJdf = i∂∂̄f

since X = ∇gf . So, if gϕ is the metric corresponding to ωϕ, the triple
(M, gϕ, X) defines a steady Kähler-Ricci soliton.

For the second claim, assume ϕ to be JX-invariant. It is not difficult
to see that ιJX

(
2i∂∂̄ϕ

)
= −dX(ϕ), compare the proof of [CD20b][Lemma

7.3] for instance. Then we conclude

ιJX
(
ω + i∂∂̄ϕ

)
= −d

(
f +

X

2
(ϕ)

)

i.e. X = ∇gϕ
(
f + X

2
(ϕ)
)

as claimed. �

We conclude this section by addressing the question when a given
Kähler-Ricci soliton is gradient. It is not difficult to see that if it is
gradient, then JX is a Killing vector field for the metric. Under certain
conditions, the converse is true as well.

Lemma 3.4. Let (M, g,X) be a steady Kähler-Ricci soliton and sup-
pose that JX is Killing for g, where J denotes the complex structure
of (M, g). If H1(M,R) = 0, then the soliton (M, g,X) is gradient.

Proof. This is a special case of [CD20a][Corollary A.7]. �

In the special case of ACyl manifolds, we can replace the condition
H1(M,R) = 0 in Lemma 3.4 by an asymptotic condition on the vector
field X. In fact, there is the following statement for more general ACyl
Kähler manifolds.

Proposition 3.5. Let (M, g) be an ACyl Kähler manifold of rate δ >
0 with complex structure J and ACyl map Φ. Suppose X is a real
holomorphic vector field on M such that

X = 2Φ∗
∂

∂t
(16)

outside some compact domain. If JX is Killing for g, then there exists
a smooth function f : M → R with f − 2t ∈ C∞δ (M) such that X =
∇gf .
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Proof. The idea is to adapt a proof of Frankel for compact manifolds
([Fra59]) to the ACyl setting. This is possible because there is a version
of Hodge splitting on such manifolds, see for example [Nor08][Section
2.3.3].

Let ω be the Kähler form of (M, g, J). First, since JX is Killing and
X is real holomorphic, we have LJXg = LJXJ = 0 and so LJXω = 0.
In particular, the 1 form ιJXω is closed. We would like to show that
it is in fact exact, for which we need to understand its asymptotic
behaviour.

Let Φ−1 ◦ t be a cylindrical coordinate function for (M, g), whose
smooth extension to all of M is denoted by τ . Then we claim that

ιJXω + dτ ∈ C∞δ (Λ1(M)).(17)

Indeed, outside of a sufficiently large domain so that (16) is satisfied,
we can estimate

|dτ + ιJXω|g = |ιΦ∗∂t(Φ∗gcyl)− ιXg|g ≤ |X|g · |Φ∗gcyl − g|g = O(e−δt)

because (M, g) is ACyl of rate δ > 0 and the norm of X is uniformly
bounded on M . Here we used that on the product R× L, the tensors
dt and gcyl are related by ι∂tgcyl = dt. A similar estimate holds for the
first covariant derivative

|∇g (ιΦ∗∂t(Φ∗gcyl)− ιXg) |g ≤ |∇gX|g · |Φ∗gcyl − g|g + |X|g · |∇ggcyl|g
= O(e−δt)

since |∇gX|g = O(1) and |∇ggcyl|g decays exponentially of rate δ. Sim-
ilarly, we can proceed by induction to obtain bounds on higher deriva-
tives, which implies (17).

By the ACyl version of Hodge splitting ([Nor08][Theorem 2.3.27]),
there are 1-forms h, α, β ∈ C∞ε (Λ1M) such that

ιJXω + dτ = h+ α + β,(18)

where h is ∆g-harmonic, α exact and β co-exact. Here, 0 < ε <
min{δ, λ}, with λ denoting the smallest (positive) critical weight of the
Laplace operator ∆g acting on 1-forms. Moreover, we can write

α = df̃ and β = d∗γ

for some f̃ ∈ C∞ε (M) and γ ∈ C∞0 (Λ2M). (Note that the growth of γ
follows from [Nor08][Theorem 2.3.27] since translation-invariant forms
on the cylinder R × L are bounded with respect to gcyl, and that we

can indeed assume f̃ decays at infinity because the only translation-
invariant harmonic functions are constants.)

We have to show that both h and β vanish identically. We begin by
observing that h is closed. Since h is ∆g-harmonic and in C∞ε (Λ1M),
we may, according to Lemma 2.8, integrate by parts to obtain

0 = 〈h,∆gh〉L2 = 〈dh, dh〉L2 + 〈d∗h, d∗h〉L2 ,(19)
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i.e. dh = 0 and d∗h = 0. Hence, we deduce immediately from the
decomposition (18) that β is also closed. Integrating by parts then
yields

〈β, β〉L2 = 〈β, d∗γ〉L2 = 〈dβ, γ〉L2 = 0,

so β ≡ 0 as desired.
Next, we follow the proof of [Fra59][Lemma 2] to show that h ≡ 0.

By assumption, JX is Killing for g and so

∆g (LJXh) = LJX (∆gh) = 0,

but also LJXh = d(ιJXh), i.e. LJXh is a harmonic and exact 1-form
in C∞ε (Λ1M). Using the orthogonality of Hodge’s decomposition, we
conclude LJXh = 0

Moreover, the 1-form Jh(·) := h(J ·) is also harmonic since the
Laplace operator on a Kähler manifold preserves the bi-degree decom-
position of the cotangent bundle. Using the same computation as in
(19), we conclude that Jh is closed, from which we further deduce that

d (ιJX(Jh)) = LJX(Jh) = LJX(J)h+ JLJXh = 0

because JX is real holomorphic, i.e. LJXJ = 0. In particular, the
function ιJX(Jh) = −h(X) is constant on M , and thus it can only be
identically zero as h(X) tends to zero at infinity. This, together with
integration by parts, in turn gives

〈h, h〉L2 = 〈ιJXω + dτ, h〉L2

= 〈ιJXω, h〉L2 + 〈τ, d∗h〉L2

= −
∫

M

h(X) dVg

= 0,

where we used in the penultimate line that ιJXω is the negative g-dual
of X and d∗h = 0. We conclude h ≡ 0, and consequently

ιJXω = df̃ − dτ
with f̃ ∈ C∞ε (M). It remains to improve the decay rate of f̃ , i.e. we

need to show f̃ ∈ C∞δ (M) instead of merely f̃ ∈ C∞ε (M). It clearly

suffices to prove f̃ ∈ C0
δ (M) because we already know from (17) that

df ∈ C∞δ (Λ1M).

Working on the cylindrical end, we write f̃(t, x) := f̃ ◦ Φ(t, x) for

t ∈ R+ and x ∈ L, and express f̃ as an integral of the radial derivative
as follows:

f̃(t, x) = −
∫ ∞

t

∂sf̃(s, x)ds.

This, together with df̃(X) = O(e−δt), implies f̃ = O(e−δt) as required.

Proposition 3.5 now follows by setting f := −f̃ + τ . �
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4. The existence theorem

The goal of this section is to show the main result of this article (The-
orem 1.2). We begin by introducing a more general setup and discussing
the existence of ACyl Kähler metrics on the considered manifolds. Step
by step, we then add further assumptions and point out their impor-
tance for Theorem 1.2. This discussion will also be accompanied by a
simple, but illustrative example.

Throughout this section, let D = Dn−1 be a compact Kähler mani-
fold of complex dimension n−1 and assume that γ : D → D is a biholo-
morphism of order m > 1. Consider the orbifold Morb := (C×D) /Γ,
where we set Γ := 〈γ〉 ∼= Zm and let γ act on the product via

γ(z, w) :=
(
e

2πi
m z, γ(w)

)
.(20)

The singular part M sing
orb of Morb is clearly contained in the slice ({0}×

D)/Γ and corresponds to the fixed points of γ on D.
Let π : M → Morb be a resolution of Morb, with exceptional set

E = π−1(M sing
orb ). Then we use π to identify M \E ∼= Morb \M sing

orb and,
in particular, we view (C∗ ×D) /Γ as an (open) complex submanifold
of M .

It is instructive to keep the following example in mind.

Example 4.1 (A first example). Let D = T be the (real) 2-torus
and define γ = − Id. Then consider the orbifold (C×D) /〈γ〉 with
four isolated singular points contained inside the slice {0}×D/〈γ〉 and
locally isomorphic to a neighborhood of the origin in C2/Z2. Blowing-
up each of these rational double points then yields a resolution π :
M → (C×D) /〈γ〉.

We point out that this complex manifold M does admit Kähler met-
rics, and in fact, certain Calabi-Yau metrics (so-called ALG gravita-
tional instantons) were constructed on M in [BM11][Theorem 2.3].

Before finding ACyl Kähler metrics on a resolution π : M → Morb,
we have to fix an asymptotic model gcyl on (C∗ ×D) /Γ. For this, we
choose a γ-invariant Kähler metric gD on D and define the cylindrical
parameter t : C∗ ×D → R to be

t(z, w) := log |z|.(21)

If gC denotes the standard flat metric on C, then the product metric

gcyl := e−2tgC + gD(22)

is Γ-invariant and can thus be viewed as a metric on the quotient
(C∗ ×D) /Γ. Note that if we let

Φ : R× S1 ×D → C∗ ×D,
(t, e2πiθ, w) 7→ (et+2πiθ, w)

(23)
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then Φ∗(gcyl) = dt2 + gS1 + gD, where gS1 denotes the metric on S1

of length 1. So gcyl is indeed a Γ-invariant cylinder with cross-section
(S1 ×D, gS1 + gD). The corresponding Kähler form ωcyl on C∗ ×D is
given by

ωcyl = |z|−2 i

2
dz ∧ dz̄ + ωD = i∂∂̄t2 + ωD,(24)

where ωD is the Kähler form associated to gD.
We would like to understand how to construct ACyl Kähler metris on

M that are asymptotic to gcyl as in (22) for some choice of Kähler metric
gD on D. Moreover, we wish to know which de Rham cohomology
classes contain the corresponding Kähler forms.

To simplify notation, we introduce the following notion of Kähler
class.

Definition 4.2. Let π : M →Morb be as above. A class κ ∈ H2(M,R)
is said to be Kähler if there exists a Kähler form ω ∈ κ.

A Kähler class is called ACyl if it contains a Kähler form whose
metric g is ACyl and satisfies

| (∇gcyl)k (g − gcyl) |gcyl = O(e−δt) as t→∞,(25)

for some δ > 0 and all k ∈ N0, where gcyl is given by (22) for some
γ-invariant Kähler metric gD on D.

We point out that this notion of ACyl Kähler classes is quite re-
strictive since we only allow ACyl metrics with ACyl diffeomorphism Φ
defined by (23). In particular, the ACyl Kähler metric g and its asymp-
totic cylinder are Kähler with respect to the same complex structure
since M \ E is biholomorphic to (C∗ ×D) /Γ.

One way to describe ACyl classes is by introducing a complex com-
pactification M of M , whose construction we now describe.

Recall that C can naturally be compactified to the Riemann sphere
CP1 by adding one point ‘at infinity’. We denote this point by ∞, i.e.
CP1 = C∪{∞}. Consequently, the orbifold Morb is naturally compacti-
fied by

(
CP1 ×D

)
/Γ and, since (C∗ ×D) /Γ and M are biholomorphic

outside of the exceptional set E, we also obtain a compactification M
of M .

In other words, M is constructed from M by gluing in the orbifold
divisor D := ({∞} ×D) /Γ at ’infinity’. We emphasize this by writ-
ing M = M ∪ D. Then the following theorem provides equivalent
characterisations of ACyl Kähler classes.

Theorem 4.3. Let π : M →Morb be as introduced at the beginning of
Section 4, and suppose that M = M∪D is the compacification obtained
by adding an orbifold divisor D at infinity. For a given κ ∈ H2(M,R),
the following are equivalent:

(i) κ is an ACyl Kähler class.
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(ii) κ = κM |M for some orbifold Kähler class κM on M .

Moreover, if the C∗-action (C×D)/〈γ〉 given by

λ ∗ (z, w) = (λz, w), λ ∈ C∗,(26)

extends π-equivariantly to a holomorphic action of C∗ on M , then (i)
is equivalent to the following:

(iii) There exists some Kähler form ω0 ∈ κ on M such that the 1-
form ιJ ∂

∂t
ω0 is defined on M and the restriction of ιJ ∂

∂t
ω0 to the

open set (C∗ ×D) /〈γ〉 is exact, where J denotes the complex
structure on M and t is defined in (21).

The equivalence of (i) and (ii) originates in work on ACyl Calabi-Yau
manifolds [HHN15], however, it is impractical to verify in concrete ex-
amples. This is why we introduce criterion (iii). In fact, this condition
allows us to prove:

Corollary 4.4. Let π : M → Morb be as introduced at the beginning
of Section 4 and assume that the C∗-action given by (26) extends π-
equivariantly to a holomorphic action on M .

If every closed, γ-invariant 1-form on D is exact, then each Kähler
class is ACyl.

The proof of this corollary also partly justifies extending the C∗-
action (26) to the resolution.

Proof. Let ω0 a Kähler form on M . Since S1 is compact and connected,
we can average ω0 over this group to obtain a new closed 2-form ω̂0

such that [ω̂0] = [ω0] ∈ H2(M,R). In fact, ω̂0 is a positive (1,1)-form
because S1 acts by biholomorphisms and the averaging does not affect
the positivity.

As the C∗-action (26) extends to M , the radial vector field ∂/∂t also
extends to a real holomorphic vector field Y on M . In particular,

Y =
∂

∂t
on (C∗ ×D) /Γ ⊂M(27)

and JY is a generator of the corresponding S1-action, so that

LJY (ω̂0) = 0.

Hence, the 1-form ιJY (ω̂0) is closed and to apply (iii) of Theorem 4.3,
we need to show that its restriction to M \E ∼= (C∗ ×D) /〈γ〉 is exact.

Observe that it is sufficient for the lift of ιJY (ω̂0) to C∗ × D to be
exact. This lift, in turn, is clearly exact if its restriction to a slice
{0} × S1 × D ⊂ R × S1 × D ∼= C∗ × D is exact. Since ω̂0 is S1-
invariant and we have ιJY (ω̂0)(JY ) = 0, this restriction, however, is of
the form p∗Dα for some 1-form α on D, where pD : S1×D → D denotes
the projection. Using that ιJY (ω̂0) is also closed and γ-invariant, we
conclude that α must be closed and γ-invariant as well, and hence exact
by assumption. �
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The proof of Theorem 4.3 is postponed to Section 4.1.

Remark 4.5. Let us examine the usefulness of this corollary by con-
sidering Example 4.1. Recall that in this case, the resolution π :
M → (C∗ × T) /〈γ〉 is obtained by blowing-up the four fixed points
of γ = − Id on C × T. For showing that the C∗-action given by (26)
extends to the blow-up M , it suffices to do so locally near each singu-
larity because these are isolated points. This, however, is clearly true
because the blow-up

OCP1(−2)→ C2/{± IdC2}(28)

is a toric resolution (with respect to the standard action of (C∗)2 on
C2).

Verifying the condition in Corollary 4.4 is also straight forward. In-
deed, denoting the holomorphic coordinate of the universal cover C of
T1 by w = u+ iv, we see that the translation-invariant 1-forms du and
dv are clearly not fixed by the action of − Id on C. Thus, every Kähler
class of the blow-up M admits an ACyl Kähler metric.

Having understood when a resolution π : M → Morb admits ACyl
Kähler metrics, we may continue adding further assumptions in order
to find steady Kähler-Ricci solitons on M . Namely, assume that Dn−1

admits a nowhere-vanishing holomorphic (n− 1, 0)-form ΩD such that

γ∗ΩD = e−
2πi
m ΩD.

This, together with (20), implies that the holomorphic (n, 0)-form Ω :=
dz∧ΩD is γ-invariant and descends to Morb. Thus, we may require the
resolution π : M →Morb to be crepant, i.e. we assume that Ω extends
to a nowhere-vanishing form on M .

As in Theorem 4.3, we additionally assume the extension of the C∗-
action (26) from Morb to M . This guarantees that the infinitessimal
generator Y of the corresponding R+-action is a real holomorphic vector
field and thus, multiples of Y are candidates for the soliton field of the
desired solitons.

With these conditions, we recall the main result of this article.

Theorem 4.6. Let Dn−1 be a compact Kähler manifold with nowhere-
vanishing holomorphic (n − 1, 0)-form ΩD. Suppose γ : D → D is a
complex automorphism of order m > 1 such that

γ∗ΩD = e−
2πi
m ΩD,(29)

and consider the orbifold (C×D)/〈γ〉, where γ acts on the product via

γ(z, w) =
(
e

2πi
m z, γ(w)

)
.(30)

Let π : M → (C × D)/〈γ〉 be a crepant resolution such that the C∗-
action on (C×D)/〈γ〉 given by

λ ∗ (z, w) = (λz, w), λ ∈ C∗,
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extends π-equivariantly to a holomorphic action of C∗ on M .
Then every ACyl Kähler class admits a gradient steady Kähler-Ricci

soliton. Moreover, the soliton metric is ACyl of rate ε for each 0 <
ε < 2 and with asymptotic cylinder given by

gcyl = e−2tgC + gRF ,

where gRF is a Ricci-flat Kähler metric on D.

Looking back at our Example 4.1, we see that the resolution π :
M → (C × T)/{± Id} satisfies all requirements because the blow-up
(28) of each singularity is indeed crepant, and γ = − Id acts on the
holomorphic 1-form on T1 by multiplication with −1. Hence, Theorem
4.6, together with Remark 4.5, imply the existence of a steady Kähler-
Ricci soliton in each Kähler class on M .

Following ideas of Conlon and Deruelle developed in [CD20b][Section
4.2], the strategy for proving Theorem 4.6 is reducing it to a complex
Monge-Ampère equation. As explain before Theorem 4.6, the assump-
tions ensure the existence of a nowhere-vanishing holomorphic (n, 0)-
form as well as suitable real holomorphic vector fields, so that Lemma
3.3 may indeed be used to set up a Monge-Ampère equation for finding
a steady Kähler-Ricci soliton. The technical argument for solving the
resulting equation is then provided by Theorem 4.7 below, whose proof
we postpone to Section 5.

Theorem 4.7. Let (M, g, J) be an ACyl Kähler manifold of complex
dimension n with Kähler form ω. Suppose that M admits a real holo-
morphic vector field X such that

X = 2Φ∗
∂

∂t

outside some compact domain, where Φ is the ACyl map and t the
cylindrical coordinate function. Moreover, assume that JX is Killing
for g.

If 1 < ε < 2 and F ∈ C∞ε (M) is JX-invariant, then there exists a
unique, JX-invariant ϕ ∈ C∞ε (M) such that ω + i∂∂̄ϕ > 0 and

(
ω + i∂∂̄ϕ

)n
= eF−

X
2

(ϕ)ωn(31)

The remainder of this section is structured as follows. In Section 4.1,
we focus on proving Theorem 4.3. In fact, we provide a detailed con-
struction of the ACyl metrics, and thus obtain more precise statements
than those in Theorem 4.3.

Having derived the necessary tools, we then present the proof of
Theorem 4.6 by reducing it to Theorem 4.7. Further examples to which
Theorem 4.6 may be applied are then discussed in Section 4.3.
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4.1. Constructing ACyl Kähler metrics. The goal is to prove The-
orem 4.3, and we use the notation introduced at the beginning of Sec-
tion 4.

Let π : M → Morb := (C×D) /Γ be a resolution, where D denotes
some compact Kähler manifold, and the action of Γ = 〈γ〉 ∼= Zm is given
by (20). Also, recall that the cylindrical parameter t : C∗ ×D → R is
defined as t(z, w) = log |z|.

We begin by focusing on the equivalence of Conditions (i) and (iii)
in Theorem 4.3 as this is most relevant to our purpose. That (iii)
implies (i) is settled in the next proposition.

Proposition 4.8. Let π : M →Morb be as introduced at the beginning
of Section 4 and let the function t be defined by (21). Suppose that g0

is a Kähler metric on M , whose Kähler form ω0 satisfies

ιJ ∂
∂t
ω0 = df on {t ≥ 0} ⊂ (C∗ ×D) /Γ,(32)

for some smooth f : {t ≥ 0} → R, where J denotes the complex
structure on M . Then there exists an ACyl Kähler metric g on M ,
with Kähler form ω, such that [ω] = [ω0] ∈ H2(M,R).

Moreover, if g is lifted to C∗ ×D, it is explicitly given by

g = gcyl = e−2tgC + gD on {t ≥ t0} ⊂ C∗ ×D(33)

for some t0 > 1, where gC denotes the Euclidean metric on C and gD
is the restriction of g0 to the slice {1} ×D ⊂ C∗ ×D.

Interestingly, the ACyl metrics obtained by the previous proposition
are of optimal rate, i.e. they are equal to its asymptotic model gcyl
outside some compact domain. This is an even stronger statement
than claimed in Theorem 4.3.

Proof. Analogously to [HHN15][Section 4.2], the idea is to glue the
Kähler form ω0 to a certain cylindrical Kähler form ωcyl outside of
some compact domain. Doing so, however, requires that the difference
of these two (1,1)-forms is ∂∂̄-exact.

Thus, before we can perform any gluing, we need to have a descrip-
tion of ω0 in terms of a Kähler potential, at least on the set {t ≥ 0}.
We begin by explaining the construction of such a potential function.

Suppose that ω0 is a Kähler form satisfying

ιJ ∂
∂t
ω0 = df on {t ≥ 0} ⊂ (C∗ ×D) /Γ,(34)

for some smooth function f . Working on C∗ ×D, we lift ω0 and f to
Γ-invariant forms denoted by the same letters. We view C∗ × D as a
(trivial) fibre bundle over D, and introduce two holomorphic maps

j : D → C∗ ×D and p : C∗ ×D → D,
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where j is the inclusion of the slice {1} × D ⊂ C∗ × D, and p the
projection onto D. Then we define a Kähler form ωD on D by setting

ωD := j∗ω0.

Using the cylindrical parameter t as defined in (21), we identify C∗ ∼=
R× S1 and define a new function ϕ by

ϕ(t, y) := 2

∫ t

0

f(s, y)ds for t ∈ R≥0 and y ∈ S1 ×D.

Then we claim that

ω0 = i∂∂̄ϕ+ p∗ωD on {t ≥ 0} ∼= R≥0 × S1 ×D.(35)

In other words, we have to show that the (1, 1)-form α := ω0− i∂∂̄ϕ is
a basic form for the fibre bundle p : C∗ ×D → D. This means that

LV α = 0 and ιV α = 0(36)

for all vector fields V on C∗ × D which are tangent to the fibres of
the projection p. However, since α is d-closed, it suffices to show the
second condition in (36), and thus we only have to prove that

ι ∂
∂t
α = 0 and ιJ ∂

∂t
α = 0(37)

since any vector field tangent to fibres of p can be written in terms of
∂/∂t and J∂/∂t.

Let us begin by considering the first equation in (37). Keeping in
mind that (J∂/∂t)(f) = 0 by (34), we split df = dtf + dDf , where
dt and dD are the differentials in direction of the R- and D-factor,
respectively. Using the definition of ϕ and the fact that ∂∂̄t = 0, we
observe

2i∂∂̄ϕ = dJdϕ = 2df ∧ Jdt+ dtJdDϕ+ dDJdDϕ,

so that we conclude from (34)

ι ∂
∂t

(
i∂∂̄ϕ

)
=

∂

∂t
fJdt+

1

2
JdD

∂

∂t
ϕ = Jdf = ι ∂

∂t
ω0,

as claimed. The second equation in (37) follows similarly:

ιJ ∂
∂t

(
i∂∂̄ϕ

)
= −df · (Jdt)

(
J
∂

∂t

)
= df = ιJ ∂

∂t
ω0.

This finishes the proof of (35).
Let us define the cylindrical Kähler form ωcyl on C∗ ×D to be

ωcyl := i∂∂̄t2 + p∗ωD.

The goal is to construct a new Kähler form ω, cohomologous to ω0,
such that

ω =

{
ωcyl on {t ≥ t2},
ω0 on {t ≤ t1}

(38)
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for some positive numbers t1 < t2. The following gluing procedure
is an adaptation of the one contained on [HHN15][p. 247]. For this
construction, we first fix t0 > 1 and choose a cut-off function χ = χ(t)
satisfying

χ(t) =

{
1 if t ≥ t0,

0 if t ≤ 1,

and then we define a Γ-invariant (1, 1)-form ω on {t ≥ 0} by

ω := i∂∂̄
(
χ(t) · t2 + (1− χ(t)) · ϕ

)
+ ρ(t)dt ∧ dct+ p∗ωD,

where ρ(t)dt∧ dct is an exact bump-form supported inside a neighbor-
hood of [1, t0], say [1/2, t0 + 1/2]. Clearly, ω−ω0 is exact and ω agrees
with ω0 inside the region {t ≤ 1/2}, so that ω extends to a (1,1)-form
on M .

Moreover, we notice that ω = ωcyl if t ≥ t0 + 1/2, and thus, the
only thing left to show is the positivity of ω on the region {1/2 ≤ t ≤
t0 + 1/2}. For t ∈ [1/2, t0 + 1/2] \ [1, t0], this is clear because we have

ω =

{
ωcyl + ρdt ∧ dct on {t ≥ t0},
ω0 + ρdt ∧ dct on {t ≤ 1}

and ρ ≥ 0, so we only need to focus on the case t ∈ [1, t0].
To show that ω > 0 on this region, it suffices to check that ω is

positive in the direction of the D-factor since we can then compensate
for potentially negative terms by choosing ρ sufficiently large inside
[1, t0]. Hence, consider 0 6= v ∈ TCD and observe

ω(v, v) = (1− χ(t)) ·
(
i∂∂̄ϕ

)
(v, v) + p∗ωD(v, v)

= (1− χ(t)) · ω0(v, v) + χ(t) · p∗ωD(v, v)

> 0,

where we used in the first line that χ only depends on t, and the
second equation follows from (35). As explain before, ω is positive on
{1 ≤ t ≤ t0} once we choose ρ� 1 on [1, t0], and so we constructed a
Kähler form ω on M in the same cohomology class as ω0, which also
satisfies (38). The corresponding ACyl metric g then fulfills (33), since
both g and gcyl are Kähler with respect to the same complex structure.

�

For the converse to Proposition 4.8, i.e. that (i) of Theorem 4.3
implies (iii), we additionally assume that the C∗-action on Morb given
by (26) extends π-equivariantly to a holomorphic action on the resolu-
tion π : M → Morb. Hence, the infinitesimal generators of this action
extend to real holomorphic vector fields on all of M . Let Y denote
the generator of the induced R+-action (corresponding to translation
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in the cylindrial parameter t), i.e.

Y =
∂

∂t
on (C∗ ×D) /Γ ⊂M.(39)

Note that if J is the complex structure on M , then JY is generating
the S1-action on M .

Next, we show that Condition (iii) in Theorem 4.3 is in fact necessary
for a Kähler class to be ACyl.

Proposition 4.9. Let π : M →Morb be as introduced at the beginning
of Section 4 and assume that the C∗-action given by (26) extends π-
equivariantly to a holomorphic action on M .

Then every ACyl Kähler class contains an ACyl Kähler form ω̂ such
that

ιJY ω̂ = df,

where JY is the infinitessimal generator of the S1-action.

Proof. Let g be an ACyl Kähler metric, with Kähler form ω, such that
(25) holds. First, average ω over the S1-action to obtain a Kähler
form ω̂ in the same cohomology class. Then observe that the averaging
does not change the asymptotic behavior since both gcyl and t are S1-
invariant, so that the corresponding metric ĝ is ACyl and satisfies (25).
In particular, the function t = log |z| is also the cylindrical parameter
for ĝ.

Then we notice that JY , for Y given by (39), is a Killing field for ĝ
because LJY ω̂ = 0. Thus, Proposition 3.5 implies that Y is the gradient
field of some function on M , or equivalently that ιJY ω̂ is exact. �

It only remains to show the equivalence of (i) and (ii) in Theorem
4.3, i.e. that each ACyl Kähler class is the restriction of some orbifold
Kähler class on the complex compactification M .

This goes back to a construction of Haskins, Hein and Nordström
[HHN15]. In fact, their ideas can be used to prove the following

Proposition 4.10. Let π : M →Morb be as introduced at the beginning
of Section 4, and suppose that M = M ∪ D is the compacification
obtained by adding the orbifold divisor D = D/Γ at infinity.

For a given κ ∈ H2(M,R), the following are equivalent:

(i) κ is an ACyl Kähler class.
(ii) κ = κM |M for some orbifold Kähler class κM on M .

Proof. That (i) implies (ii) is a direct consequence of [HHN15][Theorem
3.2], which can be applied here since g and gcyl are Kähler with respect
to the same complex structure.

The construction required for the converse implication can be found
on [HHN15][p. 247], so we only briefly sketch the idea.
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If ωM is a Kähler form on M , then we define ωD to be the restriction
of ωM to the orbifold divisor D = {∞} ×D/Γ. Note that ωD lifts to
a smooth Γ-invariant form on D, and so we can define the asymptotic
model ωcyl on C∗ ×D to be

ωcyl := i∂∂t2 + ωD.

The new ACyl Kähler form asymptotic to ωcyl is then constructed as

ω := ωM + i∂∂
(
χ · t2

)
+ ρdt ∧ dct,

for some cut-off function χ and a bump-function ρ. The cut-off χ is
equal to 1 in a neighborhood of D and 0 if t ≤ 0, and ρ is chosen
sufficiently large to ensure positivity. �

This concludes the proof of Theorem 4.3, and so we focus on proving
Theorem 4.6 next.

4.2. Proof of Theorem 4.6. Let Dn−1,ΩD,Γ = 〈γ〉 and π : M →
(C×D)/〈γ〉 be defined as in Theorem 4.6. In particular, the discussion
of the previous subsection applies and we use the same notation as
introduced at the beginning of Section 4. We also assume that the
C∗-action on Morb defined by

λ ∗ (z, w) := (λz, w), λ ∈ C∗,

extends π-equivariantly to a holomorphic action on M . As a conse-
quence, the infinitesimal generators of this action extend to real holo-
morphic vector fields on M . Let X be two-times the generator of the
induced R-action (corresponding to translation in the cylindrical pa-
rameter t), i.e.

X = 2
∂

∂t
on (C∗ ×D) /Γ ⊂M.

Then JX is two-times the generator of the S1-action, where J is the
complex structure on M .

Moreover, we point out that the action of γ given by (30) preserves
the holomorphic (n, 0) form Ω on C∗ ×D defined as

Ω := dz ∧ ΩD

since γ satisfies (29). In particular, Ω descends to Morb and, because the
resolution π : M → Morb is crepant, Ω then extends to a holomorphic
(n, 0)-form on M , which we also denote by Ω.

Let κ ∈ H2(M,R) be an ACyl Kähler class, i.e. there exists an ACyl
metric g satisfying (25) and with Kähler form ω ∈ κ. We need to find
a different ACyl metric g0 with Kähler form ω0 also contained in the
given class κ, such that X = ∇g0f and

(
ω0 + i∂∂̄ϕ

)n
= αe−f−

X
2

(ϕ)in
2

Ω ∧ Ω,(40)
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for some JX-invariant functions f, ϕ : M → R and some constant α ∈
R. According to Lemma 3.3, ω0+i∂∂̄ϕ is then a gradient steady Kähler-
Ricci soliton, as required. To achieve this, we begin by modifying ω
near infinity to improve the convergence rate and to ensure that it is
asymptotic to a Ricci-flat cylinder.

First, we improve the asymptotic behavior of ω by applying Propo-
sition 4.8, so that there exists an ACyl Kähler form ω1 ∈ [ω] which, if
lifted to C∗ ×D, is of the form

ω1 = i∂∂̄t2 + ωD on {t ≥ t0}
for some t0 > 0. Here, ωD denotes the restriction of ω to the slice
{1} ×D.

In a second step, we modify ω0 so that it becomes Ricci-flat if re-
stricted to {t} ×D for t� t0. Recall that by Yau’s Theorem [Yau78],
there exists uD : D → R such that ωRF := ωD + i∂∂̄uD > 0 and

(ωRF )n−1 = ci(n−1)2ΩD ∧ ΩD.(41)

Moreover, the uniqueness of solutions to (41) implies that uD is γ-
invariant, because γ preserves both ωD and ΩD ∧ ΩD.

Choosing a cut-off function χ with

χ(t) =

{
1 if t ≥ t0 + 2

0 if t ≤ t0 + 1,

we then define a Γ-invariant (1, 1)-form by

ω0 := ω1 + i∂∂̄ (χ · uD) + ρdt ∧ dct,
where ρ is a bump-function supported in a small neighborhood of [t0 +
1, t0 + 2]. By the same reasoning as in the proof of Proposition 4.8, ω0

is positive if ρ is sufficiently large and thus, ω0 defines a Kähler metric
on M in the class κ = [ω]. Note that by construction we have

ω0 = i∂∂̄t2 + ωRF(42)

on the region {t ≥ t0 + 3}.
The next step is to further modify ω0 so that it satisfies the require-

ments of Theorem 4.7. Note that after averaging ω0 over the compact
and connected group S1 we can assume that ω0 is invariant under the
S1-action because averaging neither affects the cohomology class, nor
the positivity of ω0. Hence, JX is a Killing field for the corresponding
Kähler metric g0 and by Proposition 3.5, there exists a function f such
that

X = ∇g0f and f − 2t ∈ C∞δ (M),

for each δ > 0. In fact, we conclude from (42) that

f = 2t on {t ≥ t0 + 3}.(43)
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In particular, we notice that (M, g0) satisfies the assumptions of The-
orem 4.7.

Let us define a JX-invariant function F : M → R by

F := log
αin

2
Ω ∧ Ω

ωn0
− f

for some constant α to be fixed later. For an appropriate choice of α,
we claim that F has compact support. To see this, first observe from
(41) and (42) that the cylindrical volume form of ωcyl can be computed
as

ωncyl =
c n

2
|z|−2in

2

dz ∧ ΩD ∧ dz̄ ∧ ΩD,

so we set α := cn/2, and obtain

F = log
αin

2
Ω ∧ Ω

ωncyl
+ log

ωncyl
ωn0
− f

= 2t− f
= 0,

if t ≥ t0 + 3. Thus, F is compactly supported.
If we fix some 0 < ε < 2, Theorem 4.7 yields a JX-invariant ϕ ∈

C∞ε (M) such that

(
ω0 + i∂∂̄ϕ

)n
= eF−

X
2

(ϕ)ωn0 =
cn

2
e−f−

X
2

(ϕ)in
2

Ω ∧ Ω,(44)

which is precisely (40), so that ω0 + i∂∂̄ϕ defines a gradient steady
Kähler-Ricci soliton. The underlying Kähler metric is clearly ACyl of
rate ε.

However, since F ∈ C∞ε (M) for all 0 < ε < 2 and since solutions
to (44) contained in C∞ε (M) are unique, we may conclude that indeed
ϕ ∈ C∞ε (M) for all 0 < ε < 2, finishing the proof.

4.3. Examples. We begin by providing further examples in complex
dimension two. The manifolds Mk considered below are defined as in
[BM11][Section 2.2], and their construction is similar to Example 4.1.

Example 4.11. For k = 2, 3, 4, 6 we consider the maps γk : C2 → C2

given by

γk(z1, z2) :=
(
e

2πi
k z1, e

− 2πi
k z2

)

If we let T be the (real) 2-torus, then γk descends to C × T, provided
the lattice in C is chosen appropriately: For k = 2, 4, let T be obtained
from the square-lattice, and for k = 3, 6 use the hexagonal one instead.

In any case, we may define orbifolds Mk
orb := (C× T) /〈γk〉 with

isolated singular points which are locally modelled on a neighborhood
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of the origin in C2/Zj, with Zj-action induced by the map

(z1, z2) 7→ (e
2πi
j z1, e

− 2πi
j z2)

for j ∈ {2, 3, 4, 6}. More precisely,

• If k = 2, M2
orb has four singularities, all isomorphic to C2/Z2.

• If k = 4, the corresponding orbifold M4
orb has one C2/Z2 and

two C2/Z4 singularities.
• If k = 3, there are three singular points in M3

orb and all are
isomorphic to C2/Z3.
• If k = 6, M6

orb also has three singularities: one C2/Z2, one
C2/Z3 and one C2/Z6 singularity.

In each case, condition (29) is fulfilled and the blow-up of all singular-
ities results in a complex manifold denoted by Mk. The corresponding
resolution is indeed crepant since all singularities are isolated points
and because blowing-up the origin in the local models C2/Zj yields in
fact a crepant resolution. Similar to the reasoning in Example 4.1 and
Remark 4.5, one can show that Mk satisfies the requirements of both
Theorem 4.6 and Corollary 4.4.

Thus, there is a steady Kähler-Ricci soliton in each Kähler class
of Mk. Interestingly, these manifolds also admit ALG gravitational
instantons by [BM11][Theorem 2.3], for instance.

For finding examples of complex dimension 3, we may take D to be
a product T × T, but then we consider a different resolution, as the
next example shows.

Example 4.12. Let T be constructed from the hexagonal lattice in C.
By setting D := T× T we define γ : C×D → C×D by

γ(z1, z2, z3) = e
2πi
3 (z1, z2, z3)

and note that γ∗(dz2∧dz3) = e−
2πi
3 dz2∧dz3, i.e. (29) is satisfied. Each

of the 32 = 9 singularities of (C×D) /Z3 is modelled on C3/Z3, and
so we may consider the blow-up M of all singular points.

As before, this resolution is crepant and the C∗-action on the first
factor extends, because the same is true for the resolution

OCP2(−3)→ C3/Z3.

Moreover, the only closed, γ-invariant 1-forms on D are clearly exact,
so that again each Kähler class admits a steady Kähler-Ricci soliton.

We conclude this section by discussing another class of examples with
D a K3-surface and γ an antisymplectic involution. Explicit examples
of such K3-surfaces can for instance be obtain form the Kummer’s
construction.
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Example 4.13. Let D be a K3-surface together with a trivialisation
ΩD of the canonical bundle. Suppose that γD is a holomorphic involu-
tion on D such that

γ∗DΩD = −ΩD.

Also assume that the fixed point set Fix(γD) is non-empty. This implies
that Fix(γD) is the disjoint union of smooth, complex curves. (In fact,
there is a classification for all possibilities of Fix(γD), compare [Nik83].)

At any p ∈ Fix(γD), we may linearise γD so that its action in a
suitable chart is given by

C2 → C2

(z1, z2)→ (−z1, z2)
(45)

In particular, the singular set of the orbifold D/〈γD〉 locally corre-
sponds to {z1 = 0} inside C2/Z2, with Z2-action defined by (45).

As in Theorem 4.6, we let γ : C×D → C×D be

γ(z0, z) := (−z0, γD(z)).

Then the singularities of Morb = (C × D)/〈γ〉 are locally isomorphic
to C3/Z2

∼= C2/Z2 × C, where Z2 acts by −1 in the first two factors,
and trivially in the third one. This orbifold, however, admits a unique
crepant resolution

OCP1(−2)× C→ C2/Z2 × C,(46)

so that the local resolutions may be patched together to yield a crepant
resolution M →Morb. Moreover, the C∗-action by multiplication in the
first factor extends to M , because this is clearly true for the local model
(46).

Since H1(D,R) = 0, we deduce that each Kähler class on M admits
a steady Kähler-Ricci soliton, thanks to Theorem 4.6 and Corollary
4.4.

5. The Monge-Ampère equation

In this section, we present the proof of Theorem 4.7. We consider
a more general setting as in Theorem 4.6 in order to clarify which
assumptions are used for the a priori estimates below. The following
list of properties is assumed throughout this section:

Assumption 5.1. Let (M, g) be an ACyl manifold of (real) dimension
2n in the sense of Definition 2.1.

A.1 Suppose there exists a complex structure J on M , so that
(M, g, J) is Kähler and denote the Kähler form by ω.

A.2 There exists a real holomorphic vector field X on M such that

X = 2Φ∗
∂

∂t
,
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where Φ denotes the ACyl map and t the cylindrical coordinate
function of (M, g).

A.3 JX is a Killing field of g. In particular, LJXω = 0 and according
to Proposition 3.5, there exists a smooth f̃ : M → R such that
X = ∇gf̃ and

f̃ − 2t ∈ C∞δ (M),

where δ > 0 is the convergence rate of (M, g) to its asymptotic

model. We normalise the proper function f̃ by choosing a c > 0
such that f := f̃ + c ≥ 1 so that we still have X = ∇gf .

The reader may recall that the ACyl metric constructed in Section
4.2 satisfies all of these requirements.

We define new function spaces C∞ε,JX(M) consisting of all elements
in C∞ε (M) which are JX-invariant, i.e.

C∞ε, JX(M) := {u ∈ C∞ε (M) | JX(u) = 0} .
Using this notation, the main result of this section is the next

Theorem 5.2. Let (M, g) be an ACyl manifold of real dimension 2n
satisfying the assumptions A.1, A.2 and A.3. Given F ∈ C∞ε, JX(M)
for some 1 < ε < 2, there exists a unique ϕ ∈ C∞ε, JX(M) such that

ω + i∂∂̄ϕ is Kähler and satisfies
(
ω + i∂∂̄ϕ

)n
= eF−

X
2

(ϕ)ωn.(47)

This theorem is analogue to [CD20b][Theorem 7.1], and we also fol-
low the same strategy as in [CD20b][Section 7] to prove it, i.e. we set
up a continuity method.

For given k ∈ N0, α ∈ (0, 1) and F ∈ C∞ε, JX(M) with 1 < ε < 2,
we define the Monge-Ampère operator on the set U containing all ϕ ∈
Ck+2,α
ε, JX (M) with ω + i∂∂̄ϕ > 0 as follows:

M : U × [0, 1]→ Ck,α
ε, JX(M)

(ϕ, s) 7→ log
(ω + i∂∂̄ϕ)n

ωn
+
X

2
(ϕ)− sF

(48)

It is worth mentioning that the functionM(ϕ, s) is indeed JX-invariant
since F is assumed to be invariant under JX, and also LJXω = 0 by
A.3. Before applying the implicit function theorem, we need to com-
pute the linearization of M, i.e. the derivative at the point (ϕ, s) in
direction of (u, 0):

DM(ϕ,s)(u, 0) =
1

2
∆gϕ(u) +

X

2
(u).(49)

Here ∆gϕ denotes the Riemannian Laplace operator of the metric gϕ
associated to the Kähler form ω + i∂∂̄ϕ.
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As in [CD20b], the first step is to show that the linearized operator

is an isomorphism Ck+2,α
ε, JX (M) → Ck,α

ε, JX(M), which is covered in the
next

Proposition 5.3. Let (M, g) be an ACyl manifold of real dimension 2n
satisfying the assumptions A.1, A.2 and A.3. Given k ∈ N0, α ∈ (0, 1)
and 0 < ε < 2, the operator

∆g +X : Ck+2,α
ε, JX (M)→ Ck,α

ε, JX(M)

is an isomorphism.

Here, our arguments differ from those in [CD20b][Theorem 6.6], be-
cause the metrics we consider have a different asymptotic behavior.
Instead, we reduce the proof to Theorem 2.11.

Proof. First, we observe by Assumption A.3, that ∆g + X is an ACyl
drift operator in the sense of Definition 2.10. Thus, according to The-
orem 2.11, the map

∆g +X : Ck+2,α
ε (M)→ Ck,α

ε (M)

is an isomorphism for k ∈ N0, α ∈ (0, 1) and 0 < ε < 2. Consequently,
it only remains to show that u ∈ Ck+2,α

ε (M) is JX-invariant, provided
(∆g +X)(u) is invariant under JX. To see this, we use that X is real
holomorphic and obtain

[X, JX] = J [X,X] = 0,

so that JX(X(u)) = X(JX(u)). Moreover, we have JX(∆gu) =
∆g(JX(u)) which follows directly from the relation

1

2
∆guω

n = n i∂∂̄u ∧ ωn−1

by applying LJXω = 0. Hence, we conclude that if (∆g + X)(u) is
JX-invariant for some u ∈ Ck+2,α

ε (M), then

0 = JX((∆g +X)(u)) = (∆g +X)(JX(u)).

As |X|g is bounded, JX(u) tends to 0 as t → ∞, and the maximum
principle yields JX(u) = 0, as desired. �
Remark 5.4 (on the decay rate ε). The reader may notice that Propo-
sition 5.3 holds for all 0 < ε < 2, whereas Theorem 5.2 only includes
the case F ∈ C∞ε, JX with 1 < ε < 2. This is because Conlon and Deru-

elle’s approach to the uniform C0-estimate requires the convergence of
certain weighted functionals, compare Definition 5.8 below.

However, it seems plausible to use Theorem 5.2 together with ideas
contained in [CD20b][Section 9] to cover the case 0 < ε ≤ 1 as well,
but we do not pursue this further in this article.

We also obtain the following regularity statement for the Monge-
Ampère operator.
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Proposition 5.5 (Regularity). Let (M, g), F ∈ C∞ε,JX(M) and 1 <

ε < 2 be as in Theorem 5.2. Suppose that ϕ ∈ C3,α
ε′, JX(M) for some

0 < ε′ ≤ ε satisfies

(ω + i∂∂̄ϕ)n = eF−
X
2

(ϕ)ωn.

Then ϕ ∈ C∞ε, JX(M).

Note that this statement only gives qualitative information about the
function ϕ, i.e. it does not provide uniform estimates for the C∞ε (M)-
norm of ϕ. The crucial part of the continuity method, however, is
precisely to obtain uniform a priori bounds on ||ϕ||Ck,αε . This is achieved
in the next

Theorem 5.6 (A priori estimates). Let (M, g), F ∈ C∞ε, JX(M) and
1 < ε < 2 be as in Theorem 5.2. Suppose that (ϕs)0≤s≤1 is a family in
C∞ε, JX(M) such that ω+ i∂∂̄ϕs is Kähler for each s ∈ [0, 1] and satisfies

(
ω + i∂∂̄ϕs

)n
= es·F−

X
2

(ϕs)ωn.(50)

Then, for given k ∈ N0, α ∈ (0, 1), there exists a constant C > 0 such
that

sup
s∈[0,1]

||ϕs||Ck,αε ≤ C,

where C only depends on k, α, F and the geometry of (M, g).

The strategy for proving Proposition 5.5 and Theorem 5.6 is to fol-
low, up to some minor adjustments, the arguments provided by Conlon
and Deruelle ([CD20b][Section 7]). In particular, we use their idea to
achieve the uniform C0-bound, but we present a variation of their ar-
guments which allows us to immediately assume F ∈ C∞ε, JX(M) with
1 < ε < 2, instead of first considering functions F with compact sup-
port as in [CD20b][Theorem 7.1].

We postpone the proofs of both Proposition 5.5 and Theorem 5.6
to subsequent sections and for now assume these results to conclude
Theorem 5.2.

Proof of Theorem 5.2. First, we point out that we only need to show
the existence statement since the uniqueness part is a direct conse-
quence of the maximum principle, see [BM17][Proposition 1.2].

For the proof of existence, assume we are given F ∈ C∞ε, JX(M), and
consider the set

S := {s ∈ [0, 1] | there exists a ϕs ∈ C∞ε, JX(M) satisfying (50)}.
Clearly, 0 ∈ S and so it is sufficient to show that S is both open and
closed.

The openness is a consequence of Proposition 5.3. To see this, let U
be the set of all ψ ∈ C3,α

ε, JX(M) such that ω + i∂∂̄ψ > 0 and consider
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the Monge-Ampère operator M defined by

M : U × [0, 1]→ C1,α
ε, JX(M)

(ψ, s) 7→ log
(ω + i∂∂̄ψ)n

ωn
+
X

2
(ψ)− sF

Suppose we are given s0 ∈ S, i.e. ϕs0 ∈ C∞ε, JX(M) solving (50). Since
ϕs0 is JX-invariant and ϕs0 ∈ C∞ε (M), the Riemannian metric gϕs0
corresponding to ω+i∂∂̄ϕs0 is ACyl, with the same ACyl map as g, and
satisfies Assumptions A.1, A.2 and A.3. Hence, the linearization ofM
at the point (ϕs, s), which is given by (49), is injective if restricted to the
subspace C3,α

ε, JX(M) and also surjective according to Proposition 5.3.
Thus, the implicit function theorem implies the existence of a δ0 > 0
such that for all s ∈ (s0−δ0, s0+δ0) there exists a ϕs ∈ C3,α

ε (M) solving
(50). But then ϕs ∈ C∞ε, JX(M) by Proposition 5.5, and consequently
(s0 − δ0, s0 + δ0) ∩ [0, 1] ⊂ S.

That S is closed follows from Theorem 5.6. Indeed, consider a
sequence (sk)k∈N in S which converges to some s∞ ∈ [0, 1], and de-
note the corresponding sequence in C∞ε, JX(M) of solutions to (50) by
(ϕsk). According to Theorem 5.6, this sequence (ϕsk) is uniformly
bounded in C3,α

ε (M). Choosing ε′ ∈ (0, ε) and β ∈ (0, α), the inclusion

C3,α
ε (M) ⊂ C3,β

ε′ (M) is compact (by [Mar02][Theorem 4.3] for instance),

so that we can extract a subsequence of (ϕsk) converging in C3,β
ε′ (M)

to some limit ϕs∞ ∈ C3,β
ε′ (M). Note that we must have JX(ϕs∞) = 0

and that ϕs∞ satisfies

(ω + i∂∂̄ϕs∞)n = es∞F−
X
2

(ϕs∞ )ωn,

as we can take the point-wise limit k →∞ in (50). From this, we imme-
diately see that ω+ i∂∂̄ϕs∞ is a Kähler form, and applying Proposition
5.5 then implies ϕs∞ ∈ C∞ε, JX(M), i.e. s∞ ∈ S. This concludes the
proof. �

The rest of this section is devoted to proving Proposition 5.5 and
Theorem 5.6. We begin in Section 5.1 by deriving the C0-estimate
which is the key part of the proof. Then we move on to higher-order
estimates in Section 5.2 to finish the proof of Theorem 5.6. Afterwards,
we conclude by verifying Proposition 5.5.

5.1. The C0-estimate. Throughout this section, let (M, g) satisfy As-
sumptions A.1, A.2 and A.3. The goal is to obtain uniform estimates
for solutions (ϕs)0≤s≤1 to (50), among which the C0-bound is the most
difficult one to achieve.

The proof of the C0-estimate is split into three parts: First, we obtain
a weighted upper bound on ϕs, then an L2-bound with a certain weight
and finally, we can conclude a lower bound on infM ϕs. The last two
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steps closely follow the ideas developed in [CD20b][Section 7.1]. Before
beginning with the preparations, let us fix some notation.

Notation. We denote the metric associated with ω + i∂∂̄ϕs by gϕs ,
and ∇gϕs , ∆gϕs , etc. denote the Levi-Civita connection, the Laplace
operator, etc. of gϕs . We point out that ∆gϕs is the Riemannian
Laplace operator, i.e. it satisfies

1

2
∆gϕsuω

n
ϕs = n i∂∂̄u ∧ ωn−1

ϕs(51)

for each C2-function u.

5.1.1. An upper bound on ϕs. We begin by estimating ϕs from above:

Proposition 5.7 (Weighted upper bound on ϕs). Let 1 < ε < 2 and
suppose (ϕs)0≤s≤1 is a family in C∞ε, JX(M) solving (50). Then there
exists a constant C > 0 such that

sup
s∈[0,1]

sup
M

eεtϕs ≤ C,

where C only depends on F ∈ C∞ε,JX(M) and the geometry of (M, g).

We present a proof based on the use of a barrier function, so our
argument differs from the one given in [CD20b][Proposition 7.9].

Proof. We begin by observing that ϕs satisfies

1

2
∆g(ϕs) +

X

2
(ϕs) ≥ sF.(52)

Indeed, consider any p ∈ M and holomorphic coordinates (z1, . . . , zn)
such that

gij̄ = δij̄ and
∂2u

∂zi∂z̄j
= λiδij̄ at p

for some λi ∈ R with 1 + λi > 0, where gij̄ are the local components of
g and δij̄ denotes the Kronecker delta. Starting from (50), we compute
at p that

sF − X

2
(ϕs) = log

(
ω + i∂∂̄ϕs

)n

ωn

= log(1 + λ1) · · · (1 + λn)

=
n∑

j=1

log(1 + λj)

≤
n∑

j=1

λj

= trω(i∂∂̄ϕs) =
1

2
∆g(ϕs),
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where trω(i∂∂̄ϕs) denotes the trace of i∂∂̄ϕs with respect to ω and we
used log(1 + τ) ≤ τ if τ > −1 to obtain the inequality in the fourth
line. This finishes the proof of (52).

Moreover, since F ∈ C∞ε (M) with 0 < ε < 2 and because of Assump-
tion A.3, Theorem 2.11 implies the existence of a function uF ∈ C∞ε (M)
such that

1

2
∆g(uF ) +

X

2
(uF ) = F,

which, in combination with (52), leads to

(∆g +X)(ϕs − suF ) ≥ 2s(F − F ) = 0.

Choosing a sequence (tk)k∈N with tk → ∞ and applying Hopf’s max-
imum principle to a sequence of domains of the form {t ≤ tk} ⊂ M
then yields

sup
M

(ϕs − suF ) ≤ lim
t→∞

(ϕs − suF ) = 0,

i.e. ϕs ≤ suF holds on all of M . In particular, we observe that

eεtϕs ≤ suF e
εt ≤ ||uF ||C0

ε
=: C,

which proves the claim. �

For obtaining a lower bound on ϕs, we need to work considerably
harder. The important idea in [CD20b] is to first obtain a weighted
L2-bound.

5.1.2. A weighted L2-bound. As in [CD20b][Subsection 7.1.1.], we con-
sider two functionals which were used by Tian and Zhu [TZ00] to study
shrinking Kähler-Ricci solitons on compact Fano manifolds.

Definition 5.8. Consider 1 < ε < 2 and let (ψτ )0≤τ≤1 be a C1-path in
C∞ε, JX(M) from ψ0 = 0 to ψ1 = ψ and assume for each τ ∈ [0, 1] that

ωψτ := ω + i∂∂̄ψτ > 0. Define:

Iω,X(ψ) :=

∫

M

ψ
(
efωn − ef+X

2
(ψ)ωnψ

)
,

Jω,X(ψ) :=

∫ 1

0

∫

M

ψ̇τ

(
efωn − ef+X

2
(ψτ )ωnψτ

)
∧ dτ,

where ψ̇τ = ∂
∂τ
ψτ .

Since M is non-compact, we need to show that Iω,X and Jω,X are
well-defined, i.e. that the resulting integrals are finite. Given ψ ∈
C∞ε, JX(M) with 1 < ε < 2, we deduce from (A.3) that ψ ef = O(e(2−ε)t),
so it suffices to show

|ωn − eX2 (ψ)ωnψ|g = O(e−εt)(53)
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since ε > 1. To see that this is true, we expand ωnψ and obtain

ωn − eX2 (ψ)ωnψ =
(

1− eX2 (ψ)
)
ωn − eX2 (ψ)

n∑

k=1

(
n

k

)(
i∂∂̄ψ

)k ∧ ωn−k

from which (53) follows because X
2

(ψ) = O(e−εt) and |i∂∂̄ψ|g = O(e−εt)
by definition of C∞ε (M). Thus Iω,X(ψ) is finite, and the same argument
also proves that Jω,X is well-defined. The crucial starting point is the
next

Theorem 5.9. Let (ψτ )0≤τ≤1 be a C1-path as in Definition 5.8. Then
the first variation of the difference Iω,X − Jω,X is given by

d

dτ
(Iω,X − Jω,X)(ψτ ) = −

∫

M

ψτ

(
1

2
∆gψτ

(ψ̇τ ) +
X

2
(ψ̇τ )

)
ef+X

2
(ψτ )ωnψτ ,

where gψτ is the metric with Kähler form ωψτ = ω + i∂∂̄ψτ . Moreover,
Jω,X does not depend on the choice of path (ψτ )0≤τ≤1, but only on the
end points ψ0 = 0 and ψ1 = ψ.

Proof. This is [CD20b][Theorem 7.5], whose proof in turn relies on
[TZ00]. The reader may observe that this proof is a completely formal
calculation, which applies word-by-word to our case if Stokes theorem
holds. This, however, is only used once on [CD20b][p. 50]. Given our
asymptotics, it is clear from Lemma 2.8 that we as well can integrate
by parts because the integrands decay exponentially in the parameter
t. �

Before we can continue with the weighted L2 bounds, we need an-
other lemma as preparation.

Lemma 5.10 (A first bound on infM X(ϕs)). Let 1 < ε < 2 and
suppose (ϕs)0≤s≤1 is a family in C∞ε, JX(M) solving (50). Then there
exists a constant C > 0 such that

inf
s∈[0,1]

inf
M

(
f +

X

2
(ϕs)

)
≥ 1,(54)

where C only depends on the geometry of (M, g).

Proof. Since both f and ϕs are JX-invariant, the argument [CD20b][(7.6)]
applies and we obtain that

X = ∇gϕs

(
f +

X

2
(ϕs)

)
.(55)

Also observe that X
2

(ϕs) → 0 as t → ∞ because X is bounded with

respect to the norm gϕs . Thus, we conclude from (A.3) that f + X
2

(ϕs)

converges to the function 2t+c with c > 0 and consequently, f+ X
2

(ϕs)
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attains a global minimum at some point p ∈ M . By (55), we see that
X must vanish at p, so we conclude that

inf
M

(
f +

X

2
(ϕs)

)
= min
{X=0}

(
f +

X

2
(ϕs)

)
= min
{X=0}

f

holds for all s ∈ [0, 1]. In particular, (54) follows since we normalised
f such that f ≥ 1 on M . �

Proposition 5.11 (A priori bound on weighted energy). Let 1 < ε < 2
and suppose (ϕs)0≤s≤1 is a family in C∞ε, JX(M) solving (50). Then there
exists a constant C > 0 such that

sup
0≤s≤1

∫

M

|ϕs|2
ef

f 2
dVg ≤ C,(56)

where C only depends on F ∈ C∞ε, JX(M) and on the geometry of (M, g).

Proof. We follow [CD20b][Proposition 7.7]. The idea is to consider two
different paths in C∞ε,JX(M) with 1 < ε < 2 and to use Theorem 5.9
for obtaining the required bound.

We begin by considering a linear path from 0 to ϕs. Given s ∈ [0, 1],
define this path (ψτ )0≤τ≤1 by ψτ := τϕs. Since ω+i∂∂̄ψτ > 0, Theorem
5.9 implies that

(Iω,X − Jω,X)(ϕs) = −
∫ 1

0

∫

M

τϕs
2

(
∆gτϕs +X

)
(ϕs)e

f+τ X
2

(ϕs)ωnτϕs ∧ dτ

(57)

Recalling that X = ∇gτϕs (f+ X
2

(ϕs)), we integrate by parts and obtain

(Iω,X − Jω,X)(ϕs) = n

∫ 1

0

∫

M

τef+τ X
2

(ϕs)i∂ϕs ∧ ∂̄ϕs ∧ ωn−1
τϕs ∧ dτ(58)

=n

∫ 1

0

∫

M

τef+τ X
2

(ϕs)i∂ϕs ∧ ∂̄ϕs ∧ ((1− τ)ω + τωϕs)
n−1 ∧ dτ

≥n
∫ 1

0

∫

M

τ(1− τ)n−1ef+τ X
2

(ϕs)i∂ϕs ∧ ∂̄ϕs ∧ ωn−1 ∧ dτ

≥n
∫ 1

0

∫

M

τ(1− τ)n−1e(1−τ)f i∂ϕs ∧ ∂̄ϕs ∧ ωn−1 ∧ dτ

=n

∫

M

(∫ 1

0

τ(1− τ)n−1e(1−τ)fdτ

)
∧ i∂ϕs ∧ ∂̄ϕs ∧ ωn−1,

where the penultimate line holds since X
2

(ϕs) ≥ −f by Lemma 5.10.
Thanks to [CD20b][Claim 7.8], there exists a constant C > 0 such that

n

∫ 1

0

τ(1− τ)n−1e(1−τ)fdτ ≥ C
ef

f 2
,(59)
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which, in combination with (58), then leads to

(Iω,X − Jω,X)(ϕs) ≥ C

∫

M

ef

f 2
i∂ϕs ∧ ∂̄ϕs ∧ ωn−1.(60)

To estimate (Iω,X − Jω,X)(ϕs) from above, we recall from Theorem 5.9
that Jω,X is independent of the choice of path from 0 to ϕs. Thus, we
can compute (Iω,X − Jω,X)(ϕs) by defining a new path (ψτ )0≤τ≤1 as
ψτ := ϕτs. We point out that ψ0 = ϕ0 ≡ 0 follows from the maximum
principle applied to the Monge-Ampère equation (50). For calculating

ψ̇τ , differentiate (50) with respect to s and obtain

n i∂∂̄ϕ̇s ∧ ωn−1
ϕs =

(
F − X

2
(ϕ̇s)

)
ωnϕs .

Combining with (51) and using ψ̇τ = sϕ̇τs, we arrive at

1

2
∆ψτ ψ̇τ +

X

2
(ψ̇τ ) = sF,

to which we further apply Theorem (5.9) and continue:

(Iω,X − Jω,X)(ϕs) = −
∫ 1

0

∫

M

ψτ · sFef+X
2

(ψτ )ωnψτ ∧ dτ

= −
∫ 1

0

∫

M

ψτ · sFef+τsFωn ∧ dτ

≤
∫ 1

0

∫

M

|ψτ ||F |ef+|F |ωn ∧ dτ

=

∫ 1

0

∫

M

f |F |e f2 +|F | · |ψτ |
e
f
2

f
ωn ∧ dτ

≤ C

∫ 1

0

(∫

M

|ψτ |2
ef

f 2
ωn
) 1

2

dτ.

Here, we applied (50) in the second line, Cauchy-Schwarz in the last one
and the uniform constant C > 0 is given by C2 =

∫
M
f 2|F |2ef+2|F |ωn,

which is finite since f 2ef = O(t2e2t) and F 2 = O(e−2εt) with ε > 1.
From the previous estimate together with (60), we thus conclude

∫

M

|∇gϕs|2g
ef

f 2
dVg ≤ C

∫ 1

0

(∫

M

|ϕτs|2
ef

f 2
dVg

) 1
2

dτ

=
C

s

∫ s

0

(∫

M

|ϕτ |2
ef

f 2
dVg

) 1
2

dτ.

Together with Proposition 2.12, we finally arrive at

λ

∫

M

|ϕs|2
ef

f 2
dVg ≤

C

s

∫ s

0

(∫

M

|ϕτ |2
ef

f 2
dVg

) 1
2

dτ.(61)
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As observed by Conlon and Deruelle [CD20b][Proposition 7.7], this is
a Grönwall-type differential inequality for the function U : (0, 1]→ R+

defined by

U(s) :=

∫ s

0

(∫

M

|ϕτ |2
ef

f 2
dVg

) 1
2

dτ.

Indeed, it is immediate that (61) becomes

U̇(s)√
U(s)

≤ C√
s
,

so that we integrate to obtain
√
U(s) ≤ C

√
s with s ∈ (0, 1]. Hence,

(∫

M

|ϕs|2
ef

f 2
dVg

) 1
2

dτ = U̇(s) ≤ C,

where C = C(M, g, F ) is independent of s ∈ [0, 1], as claimed. �

5.1.3. A lower bound on ϕs. For proving a uniform bound on supM |ϕs|,
it remains to bound infM ϕs from below. This is the main result of this
subsection:

Proposition 5.12 (Lower bound on infM ϕs). Let 1 < ε < 2 and
suppose (ϕs)0≤s≤1 is a family in C∞ε, JX(M) solving (50). Then there
exists a constant C > 0 such that

inf
s∈[0,1]

inf
M
ϕs ≥ −C,

where C only depends F ∈ C∞ε, JX(M) and on the geometry of (M, g).

If we assumed that F was compactly supported, the same argument
as in [CD20b][Proposition 7.10] would go through verbatim and pro-
vide the required bound on infM ϕs, since we already obtained uniform
bounds on supM ϕs (Proposition 5.7) and on the weighted L2-norm
(Proposition 5.11).

In our situation, however, we do not assume that F has compact
support, but merely F ∈ C∞ε, JX(M) with 1 < ε < 2. Thus, we proceed
as follows.

First, we construct a compact domain K ⊂ M so that we obtain
a suitable barrier function on its complement M \ K, which will be
useful for arguments relying on the maximum principle. In a second
step, the argument in [CD20b][Proposition 7.10] gives a lower bound
on infK ϕs. And finally, we will see that the maximum principle yields
a lower bound on infM\K ϕs.

In other words, our strategy is to prove the following lemma, as well
as the next two propositions:

Lemma 5.13 (Construction ofK). Let 1 < ε < 2 and suppose (ϕs)0≤s≤1

is a family in C∞ε, JX(M) solving (50). Then there exists a constant
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0 < ε0 < 1 and a compact domain K ⊂ M such that for all s ∈ [0, 1],
we have

(
∆gϕs +X

) (
e−ε0(f+X

2
(ϕs))

)
≤ −ε0

2
e−ε0(f+X

2
(ϕs)) < 0 on M \K,

(62)

where both ε0 and K only depend on F ∈ C∞ε, JX(M) and the geometry
of (M, g).

Proposition 5.14 (Lower bound on a compact set). Let 1 < ε < 2
and suppose (ϕs)0≤s≤1 is a family in C∞ε, JX(M) solving (50). For the
compact domain K ⊂M given by Lemma 5.13, there exists a constant
C > 0 such that

inf
s∈[0,1]

inf
K
ϕs ≥ −C,

where C only depends on K, F ∈ C∞ε, JX(M) and the geometry of (M, g).

Proposition 5.15 (Lower bound outside of a compact set). Let 1 <
ε < 2 and suppose (ϕs)0≤s≤1 is a family in C∞ε, JX(M) solving (50). For
the compact domain K ⊂ M constructed in Lemma 5.13, there exists
a constant C > 0 such that

inf
s∈[0,1]

inf
M\K

ϕs ≥ −C,

where C only depends on K, F ∈ C∞ε, JX(M) and the geometry of (M, g).

Clearly, Proposition 5.15, together with Proposition 5.14, yield a
uniform lower bound on infM ϕs, as claimed in Proposition 5.12.

Since Lemma 5.13 requires some preparation, let us for the moment
assume that we are given the compact set K ⊂ M from Lemma 5.13
and see how this implies the lower bound on infK ϕs, i.e. Proposition
5.14.

Proof of Proposition 5.14. We follow the proof of [CD20b][Proposition
7.10], which in turn relies on B locki’s local argument [B lo05].

Let K ⊂ M be the compact domain constructed in Lemma 5.13.
For each p ∈ K, let V be a chart around p so that ω can be written
as ω = i∂∂̄G. According to the proof of [B lo05][Theorem 4], there
are constants a, r > 0 only depending on the local geometry of (M, g)
around p such that G < 0 on Bg(p, 2r), G is minimal at p and G ≥
G(p) + a on Bg(p, 2r) \ Bg(p, r), where Bg(p, 2r) ⊂ V is the geodesic
ball of radius 2r around p. Since K is compact, we can cover K by a
finite number of such balls Bg(p, 2r).

For a given s ∈ [0, 1], we consider ϕs solving (50) and point out that
there exists a ps ∈ K such that ϕs(ps) = infK ϕs. Then ps ∈ Bg(p, 2r)
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for one of the balls constructed above. Define a plurisubharmonic func-
tion u : Bg(p, 2r)→ R≤0 by

u =

{
ϕs +G if supM ϕs ≤ 0,

ϕs − supM ϕs +G otherwise,

so that [B lo05][Proposition 3] implies the following estimate

sup
Bg(p,2r)

|u| ≤ a+
(
cn · 2r · a−1

)2n
∫

Bg(p,2r)

|u| dVg ·
(

sup
Bg(p,2r)

ωnϕs
ωn

)2

(63)

where ωϕs = ω+ i∂∂̄ϕs and cn > 0 is a constant only depending on the
dimension n of M .

We now explain how to estimate the terms appearing on the right
hand side of (63). We begin by using (50) together with Lemma 5.10
to obtain

sup
Bg(p,2r)

ωnϕs
ωn

= sup
Bg(p,2r)

es·F−
X
2

(ϕs) ≤ sup
N2r(K)

e|F |+f =: C1.(64)

Here N2r(K) denotes the tabular neighborhood of radius 2r around K.
Note that since K is compact, the constant C1 is indeed finite.

Next, we focus on the integral appearing in (63) and first consider
the case supM ϕs ≤ 0. We continue:
∫

Bg(p,2r)

|u| dVg

≤
∫

Bg(p,2r)

|ϕs| dVg + sup
M

ϕs −G(p)

≤ max {1,Vol(Bg(p, 2r))}



(∫

Bg(p,2r)

|ϕs|2 dVg

) 1
2

+ C −G(p)




≤ max {1,Vol(N2r(K))}
(

sup
M

e−f

f 2
·
(∫

M

|ϕs|2
ef

f 2
dVg

) 1
2

+ C −G(p)

)

≤ max {1,Vol(N2r(K))}
(

sup
M

e−f

f 2
· C + C −G(p)

)
=: C2,

where we used Cauchy-Schwarz and Proposition 5.7 in the second line
and Proposition 5.11 in the last one. Combining this estimate with
(63) and (64) then leads to

− inf
K
ϕs = −ϕs(ps) = −u(ps)− sup

M
ϕs +G(ps)

≤ sup
Bg(p,2r)

|u|(65)

≤ a+
(
cn · 2r · a−1

)2n · C2 · C2
1 .
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Note that a priori, the constants in the last line of (65) depend on
the ball Bg(p, 2r) containing the point in which ϕs attains its mini-
mum inside K. However, since K is covered by only finitely many of
such balls Bg(p, 2r), (65) does indeed prove the required uniform lower
bound on infK ϕs. Observing that the above estimates hold in the case
supM ϕs > 0 as well then finishes the proof. �

Thus, it only remains to show Lemma 5.13 and Proposition 5.15. We
begin with the following crucial observation.

Lemma 5.16 (Uniform bound on X2(ϕs)). Let 1 < ε < 2 and suppose
(ϕs)0≤s≤1 is a family in C∞ε, JX(M) solving (50). Then there exists a
constant C > 0 such that

sup
s∈[0,1]

sup
M
|X(X(ϕs))| ≤ C,

where C only depends on F ∈ C∞ε, JX(M) and the geometry of (M, g).

Proof. The idea is to obtain a differential equality to which the maxi-
mum principle applies, so that the desired estimate follows.

First, we differentiate (50) in the direction of X
2

, i.e. apply LX
2

,

which leads to

ni∂∂̄

(
f +

X

2
(ϕs)

)
∧ ωn−1

ϕs =

(
X

2
(sF )− X2

4
(ϕs) +

1

2
∆gf

)
ωnϕs(66)

where we abbreviated X(X(·)) = X2(·). Here, we also used two for-
mulas, LX

2
ω = i∂∂̄f and LX

2
ωϕs = i∂∂̄f + X

2
(ϕs), whose computations

can be found in the proof Lemma 3.3. Next, recall that for any real
(1, 1)-form α, we have

n(n− 1)α2 ∧ ωn−2
ϕs =

(
(trωϕs (α))2 − |α|2gϕs

)
ωnϕs ,(67)

where trωϕs (α) is defined by

nα ∧ ωn−1
ϕs = trωϕs (α)ωnϕs .(68)

Setting α := LX
2
ωϕs = i∂∂̄f + X

2
(ϕs) and applying LX

2
to the left-hand

side of (68) then yields

(69)

LX
2

(
nα ∧ ωn−1

ϕs

)
=n
(
LX

2
α
)
∧ ωn−1

ϕs + n(n− 1)α2 ∧ ωn−2
ϕs

=
n

2
i∂∂̄

(
X(f) +

X2

2
(ϕs)

)
∧ ωn−1

ϕs

+
(

(trωϕs (α))2 − |α|2gϕs
)
ωnϕs ,

where we used LXα = i∂∂̄X(f) + X2

2
(ϕs) and (67) to conclude the

second inequality.
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If we differentiate the right-hand side of (68) in direction of X
2

, we
obtain

(70)

LX
2

(
trωϕs (α)ωnϕs

)
=
X

2

(
trωϕs (α)

)
ωnϕs + trωϕs (α)nα ∧ ωn−1

ϕs

=

(
X2

4
(sF )− X3

8
(ϕs) +

X

4
(∆gf)

)
ωnϕs

+
(
trωϕs (α)

)2
ωnϕs ,

where the second equality follows from (68) together with the expres-
sion of trωϕs (α) provided by (66).

Since (69) equals (70), we see that the trωϕs (α)2-term is canceled
and, after dividing by ωnϕs , we conclude that

trωϕs i∂∂̄

(
X

2
(f) +

X2

4
(ϕs)

)
− |α|2gϕs =

X2

4
(sF )− X3

8
(ϕs) +

X

4
(∆gf).

Multiplying by 4, adding X2(f) on both sides and keeping in mind that
2 trωϕs i∂∂̄ = ∆gϕs , we may rearrange the previous equation to finally
arrive at

(∆gϕs +X)

(
X(f) +

X2

2
(ϕs)

)
= H1 + 4

∣∣∣∣∂∂̄f +
X

2
(ϕs)

∣∣∣∣
2

gϕs

(71)

with H1 := X2(sF ) + X(∆gf) + X2(f). We continue to estimate the
right-hand side of (71) from below :

4

∣∣∣∣∂∂̄f +
X

2
(ϕs)

∣∣∣∣
2

gϕs

≥ 1

n

(
∆gϕs

(
f +

X

2
(ϕs)

))2

=
1

n

(
X(f) +

X2

2
(ϕs)−H2

)2

,

where H2 := X(f) + X(sF ) + ∆gf and we made use of (66) in the
second line. Combining the previous inequality with (71), we then
obtain

(∆gϕs +X)

(
X(f) +

X2

2
(ϕs)

)
≥ H1 +

1

n

(
X(f) +

X2

2
(ϕs)−H2

)2

.

Note that by Assumption A.3, the function X(f) + X2

2
(ϕs) tends to 1

as t→∞, and so either X(f) + X2

2
(ϕs) ≤ 1, or X(f) + X2

2
(ϕs) attains

its maximum at some point. In the first case, we are done so we assume
that X(f) + X2

2
(ϕs) is maximal at pmax ∈ M . Then we observe that

the previous inequality gives at pmax

X(f) +
X2

2
(ϕs) ≤

√
n sup

M
|H1|+ sup

M
|H2| <∞,
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i.e. X(f) + X2

2
(ϕs) is uniformly bounded from above. This, in turn,

implies the required uniform upper bound on X2(ϕs) since X(f) is
bounded.

For the lower bound on X2(ϕs) we recall from (55) that

X = ∇gϕs

(
f +

X

2
(ϕs)

)
,

so that we can estimate as follows:

X

(
X

2
(ϕs)

)
= −X(f) + |X|2gϕs ≥ − sup

M
|X(f)|,

which is finite. This completes the proof.
�

With the previous lemma, we can finish the proof of Lemma 5.13.

Proof of Lemma 5.13. Let us define the barrier function v := eε0(f+X
2

(ϕs))

for some 0 < ε0 < 1 to be chosen later on. SinceX = ∇gϕs
(
f + X

2
(ϕs)

)
,

we compute

(∆gϕs +X)
(
v−1
)

= ε0v
−1

(
(ε0 − 1)|X|2gϕs −∆gϕs

(
f +

X

2
(ϕs)

))

= ε0v
−1

(
(ε0 − 1)|X|2gϕs +

X2

2
(ϕs)−X(sF )−∆gf

)

where we used (66) in the second line. Recalling the identity

|X|2gϕs =
X2

2
(ϕs) +X(f),(72)

we may further simplify the previous equation to

(73)
(∆gϕs +X)

(
v−1
)

= ε0v
−1
(
ε0|X|2gϕs −X(f)−X(sF )−∆gf

)

≤ ε0v
−1 (ε0C −X(f)−X(sF )−∆gf)

for some uniform constant C > 0 only depending on supM X(f) and the
uniform bound on X2(ϕs) from Lemma 5.16. Note that this estimate
again uses (72).

Since X(f) → 1, and X(F ),∆gf → 0 as t → ∞, there exists a
compact domain K ⊂M such that

X(f) ≥ 3

4
and |∆gf |+ |X(F )| ≤ 1

8
on M \K.

Moreover, we can assume that K is of the form

K = {x ∈M | t(x) ≤ t0}(74)

for some t0 > 0. Choosing ε0 > 0 sufficiently small so that

ε0C ≤
1

8
,
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we thus obtain from (73) that

(∆gϕs +X)
(
v−1
)
≤ −ε0

2
v−1 on M \K,

as claimed. �
Before obtaining Proposition 5.15, we require yet another

Lemma 5.17 (Bounding X(ϕs) on a compact set). Let 1 < ε < 2
and suppose (ϕs)0≤s≤1 is a family in C∞ε, JX(M) solving (50). For the
compact domain K ⊂M given by Lemma 5.13, there exists a constant
C > 0 such that

sup
s∈[0,1]

sup
K
X(ϕs) ≤ C and sup

s∈[0,1]

X(ϕs) ≤ Ct+ C on M \K,

where C only depends on K, F ∈ C∞ε, JX(M) and the geometry of (M, g).

Proof. For the first part of the statement, we essentially follow the
argument in [CD20b][Proposition 7.11].

Consider the flow (Φτ )τ∈R of the complete vector field X
2

. In particu-
lar, the map Φτ corresponds to translation by τ in the radial parameter
t on the cylindrical end [0,∞) × L. Then we let ψx(τ) := ϕs(Φτ (x))
for (x, τ) ∈ M × R and observe that for each fixed x ∈ M , the limit
limτ→±∞ ψx(τ) always exists because ϕs tends to zero as t→∞. Keep-
ing this in mind, we consider η−(τ) := e−τ and integrate by parts as
follows ∫ ∞

0

η′′−(τ)ψx(τ)dτ = −
∫ ∞

0

η′−(τ)ψ′x(τ)dτ + ψx(0)

=

∫ ∞

0

η−(τ)ψ′′x(τ)dτ + ψ′x(0) + ψx(0).

(75)

By choosing x ∈ K, rearranging (75) and using X
2

(ϕs)(x) = ψ′x(0), we
consequently estimate

X

2
(ϕs)(x) ≤ − inf

K
ϕs + sup

M
ϕs

∫ ∞

0

e−τdτ − inf
M

X2

4
(ϕs)

∫ ∞

0

e−τdτ

≤ C1,

where C1 > 0 only depends on F and the geometry of (M, g), thanks
to Propositions 5.14 and 5.7 as well as Lemma 5.16. This shows the
first part of this lemma.

For the second part, recall from (74), that we can identify M \K ∼=
(t0,∞) × L for some t0 > 0. To emphasize this splitting, we write
x = (t, y) for points x ∈ M \K. Under this identification, X = 2∂/∂t
and so we can write

X(ϕs)(t, y) =

∫ t

t0

X2

2
(ϕs)(σ, y)dσ +X(ϕs)(t0, y)

≤ C2(t− t0) + C1,

(76)



ACYL KÄHLER-RICCI SOLITONS 99

since (0, y) ∈ K and X2(ϕs) ≤ C2 for some uniform constant C2 > 0
given by Lemma 5.16. As the right-hand side of (76) is independent of
s ∈ [0, 1], the lemma follows. �

Now we can deduce Proposition 5.15.

Proof of Proposition 5.15. As in [CD20b][Proposition 7.20], we use a
barrier function to show the claim. Let 0 < ε0 < 1 and K ⊂ M be
given by Lemma 5.13, i.e. on M \K, we have

(
∆gϕs +X

) (
e−ε0(f+X

2
(ϕs))

)
≤ −ε0

2
e−ε0(f+X

2
(ϕs)) < 0.(77)

The reader may observe from the proof that (77) holds as long as
0 < ε0 � 1 is sufficient small. In particular, we are free to choose
ε0 > 0 as small was we require and (77) is still valid.

Similar to (52), which was used for proving the upper bound, the
Monge-Ampère equation (50) implies

(∆gϕs +X)(ϕs) ≤ |F |,
and so for some A > 0 to be specified later on, we obtain

(
∆gϕs +X

) (
ϕs + Ae−ε0(f+X

2
(ϕs))

)
≤ |F | − Aε0

2
e−ε0(f+X

2
(ϕs)).(78)

The idea is to choose A� 1 sufficiently large so that the right term in
(78) becomes negative.

Note that by Lemma 5.17 and Assumption A.3 there exists a con-
stant C > 0 only depending on F and the geometry of (M, g) such
that

ε0

(
f +

X

2
(ϕs)

)
≤ ε0Ct+ C ≤ εt+ C,(79)

where the second inequality holds if we fix some ε0 > 0 with

Cε0 < ε.

Applying (79) to the right-hand side of (78) then yields

|F | − Aε0

2
e−ε0(f+X

2
(ϕs)) ≤ e−ε0(f+X

2
(ϕs))

(
eε0(f+X

2
(ϕs))−εt||F ||C0

ε
− Aε0

2

)

≤ e−ε0(f+X
2

(ϕs))
(
eC ||F ||C0

ε
− Aε0

2

)
.

Thus, choosing A > 0 sufficiently large so that

A >
2

ε0

eC ||F ||C0
ε
,

and plugging this back into (78), we arrive at

(
∆gϕs +X

) (
ϕs + Ae−ε0(f+X

2
(ϕs))

)
≤ 0 on M \K.
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Hence, Hopf’s maximum principle states that

ϕs + Ae−ε0(f+X
2

(ϕs)) ≥ min
{

0,min
∂K

(
ϕs + Ae−ε0(f+X

2
(ϕs))

)}

≥ min
{

0,min
K

ϕs

}
(80)

≥ −C

holds on M \K because ϕs + Ae−ε0(f+X
2

(ϕs)) goes to 0 as t → ∞ and
minK ϕs is, according to Lemma 5.17, uniformly bounded from below
by some constant −C < 0. To conclude the Proposition, we observe
that

f +
X

2
(ϕs) ≥ 1

by Lemma 5.10 and consequently,

ϕs ≥ −C − Ae−ε0 on M \K,
as claimed.

�
Having finally finished the proof of Proposition 5.12, we can now

strengthen the estimates in Lemma 5.17, i.e. achieve a uniform bound
on the radial derivative of ϕs.

Corollary 5.18 (Uniform bound on X(ϕs)). Let 1 < ε < 2 and sup-
pose (ϕs)0≤s≤1 is a family in C∞ε, JX(M) solving (50). Then there exists
a constant C > 0 such that

sup
s∈[0,1]

sup
M
|X(ϕs)| ≤ C,

where C only depends on F ∈ C∞ε, JX(M) and the geometry of (M, g).

Proof. We apply the same idea as in the proof of Lemma 5.17. Namely,
by (75), we can estimate for each x ∈M :

X

2
(ϕs)(x) ≤ − inf

M
ϕs + sup

M
ϕs − inf

M

X2

4
(ϕs),

so that the uniform upper bound follows from Propositions 5.7, 5.12
and Lemma 5.16. The lower bound is similar. Using η+ = eτ instead
of η− = e−τ leads to

∫ 0

−∞
η′′+(τ)ψx(τ)dτ =

∫ 0

−∞
η+(τ)ψ′′x(τ)dτ − ψ′x(0) + ψx(0),

and estimating as before then yields

X

2
(ϕs)(x) ≥ inf

M
ϕs − sup

M
ϕs + inf

M

X2

4
(ϕs),

finishing the proof. �
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This new bound on X(ϕs) enables us to conclude a weighted lower
bound on ϕs, at least for some ε0 < ε.

Proposition 5.19 (A first weighted lower bound on ϕs). Let 1 < ε < 2
and suppose (ϕs)0≤s≤1 is a family in C∞ε, JX(M) solving (50). Then there
exist two constants 0 < ε0 < 1 and C > 0 such that

inf
s∈[0,1]

inf
M
eε0tϕs ≥ −C,

where both ε0 and C only depend on F ∈ C∞ε, JX(M) and the geometry
of (M, g).

Proof. Using Corollary 5.18, the proof of Proposition 5.12 can be re-
fined by following the argument in [CD20b][Proposition 7.20].

We repeat the proof until arriving at (80), so that we have on M \K:

ϕs + Ae−ε0(f+X
2

(ϕs)) ≥ min
{

0,min
∂K

(
ϕs + Ae−ε0(f+X

2
(ϕs))

)}
.(81)

By Corollary 5.18 and Assumption A.3, there is a uniform constant
C > 0 such that

C−1e−2ε0t ≤ e−ε0(f+X
2

(ϕs)) ≤ Ce−2ε0t(82)

holds on M . In particular, since infK ϕs is uniformly bounded from
below by Proposition 5.14, we can choose A� 1 even larger, so that

min
∂K

(
ϕs + Ae−ε0(f+X

2
(ϕs))

)
≥ inf

K
ϕs + A inf

K
C−1e−2ε0t ≥ 0.

Consequently, we arranged that (81) becomes

ϕs ≥ −Ae−ε0(f+X
2

(ϕs)) ≥ −ACe−2ε0t on M \K,
because of (82). This is precisely what we wanted to prove. �

Before improving the weighted bound from ε0 to ε, we require uni-
form bounds on all derivatives of ϕs, which is the content of the sub-
sequent section.

5.2. Higher order estimates. In the previous section, we obtained
uniform bounds on ϕs and its radial derivative up to second order.
Using these results, we begin by deriving bounds on the C2- and C3-
norms of ϕs, which then leads to estimates for all derivatives. We purse
essentially the same strategy as in [CD20b][Section 7], but occasionally
we present different computations.

5.2.1. The C2-estimate. The C2-estimate for ϕs is equivalent to bound-
ing the associated metric gϕs uniformly in terms of g.

Proposition 5.20 (Uniform bound on the metric). Let 1 < ε < 2 and
suppose (ϕs)0≤s≤1 is a family in C∞ε, JX(M) solving (50). If gϕs denotes
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the metric associated to the Kähler form ω + i∂∂̄ϕs, then there exists
a constant C > 0 such that

C−1g ≤ gϕs ≤ Cg,(83)

where C only depends on F ∈ C∞ε, JX(M) and the geometry of (M, g).

Before proceeding with the proof, we immediately obtain a uniform
bound on the volume form by looking at (50) and applying Corollary
5.18.

Corollary 5.21 (Uniform bound on volume form). Let 1 < ε < 2 and
suppose (ϕs)0≤s≤1 is a family in C∞ε, JX(M) solving (50). Then there
exists a constant C > 0 such that

C−1ωn ≤ (ω + i∂∂̄ϕs)
n ≤ Cωn,

where C > 0 only depends on F ∈ C∞ε, JX(M) and the geometry of
(M, g).

Proof of Proposition 5.20. We argue as in [CD20b][Proposition 7.14],
but present different calculations. The bound (83) amounts to bound-
ing both trω ωϕs and trωϕs ω uniformly from above. However, there is
the well-known formula

trωϕs ω ≤ n · ω
n

ωnϕs
(trω ωϕs)

n−1

compare for example ([BEG13][Lemma 4.1.1]). Thus, it suffices to
estimate trω ωϕs since the volume form ωnϕs is uniformly bounded by
Corollary 5.21.

In this proof, C > 0 denotes a uniform constant, which may increase
from line to line but only depends on the geometry of (M, g) and the
C∞-norm of F .

Recall that a standard computation yields the following inequality

1

2
∆gϕs log trω ωϕs ≥ −

trω Ric(ωϕs)

trω ωϕs
− C trωϕs ω,(84)

where Ric(ωϕs) is the Ricci form of ωϕs and C > 0 a constant such
that the holomorphic bisectional curvature of g is bounded from be-
low by −C. For a proof of this inequality, we refer the reader to
[BEG13][Proposition 4.1.2]. Also observe that in our case the bisec-
tional curvature of g is bounded since g is asymptotically cylindrical.
Starting from (50), we compute the Ricci form of ωϕs :

Ric(ωϕs) = −i∂∂̄ logωnϕs = Ric(ω)− i∂∂̄sF + i∂∂̄

(
X

2
(ϕs)

)
.(85)

As both ||F ||C2 and the curvature of g are uniformly bounded, we
continue to estimate

− trω Ric(ωϕs) ≥ −C − trω i∂∂̄

(
X

2
(ϕs)

)
.(86)
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Also recall from [BEG13][Lemma 4.1.1] that

trω ωϕs ≥ n ·
(
ωnϕs
ωn

) 1
n

≥ C−1 > 0,(87)

where the lower bound again follows from Corollary 5.21. Combining
(87) and (86) with (84), we consequently arrive at

1

2
∆gϕs log trω ωϕs ≥ −

trω i∂∂̄
(
X
2

(ϕs)
)

trω ωϕs
− C − C trωϕs ω.(88)

Next, we calculate the radial derivative of trω ωϕs by considering its
defining equation:

trω ωϕs · ωn = n · ωϕs ∧ ωn−1.

Taking the Lie derivative in direction X
2

on both sides of this equation
and then dividing by ωn leads to

X

2
(trω ωϕs) + trω ωϕs · trω LX

2
(ω)

= trω LX
2

(ωϕs) + n(n− 1) ·
ωϕs ∧ LX

2
(ω) ∧ ωn−2

ωn
(89)

= trω LX
2

(ωϕs) + trω ωϕs · trω LX
2

(ω)− 〈ωϕs ,LX
2

(ω)〉g,

or equivalently,

X

2
(trω ωϕs) = trω LX

2
(ωϕs)− 〈ωϕs ,LX

2
(ω)〉g(90)

Here, the last equation in (89) is a straight forward computation, which
can be found in [Szé14][Lemma 4.6], and 〈, 〉g denotes the metric on 2-
forms induced by g. We recall that LX

2
(ω) = i∂∂̄f since X = ∇gf and

also that the norm |i∂∂̄f |g ≤ C is uniformly bounded by some C > 0
because of A.3. Applying these observations to the previous equation,
we obtain

X

2
(log trω ωϕs) =

trω i∂∂̄
(
X
2

(ϕs)
)

trω ωϕs
+

trω i∂∂̄f

trω ωϕs
−
〈ωϕs ,LX

2
(ω)〉g

trω ωϕs

≥ trω i∂∂̄
(
X
2

(ϕs)
)

trω ωϕs
− C

trω ωϕs
− C · |ωϕs|g

trω ωϕs

≥ trω i∂∂̄
(
X
2

(ϕs)
)

trω ωϕs
− C,

where we used the bound on |i∂∂̄f |g in the second line and (87) in the
last one. Altogether, we finally arrive at

1

2

(
X + ∆gϕs

)
log trω ωϕs ≥ −C − C trωϕs ω.(91)
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From there, it is standard to conclude an upper bound on trω ωϕs . We
begin by considering the following inequality

1

2

(
X + ∆gϕs

)
ϕs ≤ C + n− trωϕs ω

where we used the upper bound on X(ϕs) from Proposition 5.18 and
the definition of ωϕs . In combination with (91), we then obtain

1

2

(
X + ∆gϕs

)
(log trω ωϕs − (C + 1)ϕs) ≥ −C + trωϕs ω.(92)

Applying the maximum principle to this equation, yields the desired
estimate for trω ωϕs as follows. Note that we can assume log trω ωϕs −
(C + 1)ϕs > n at least somewhere on M , because otherwise we are
done by the uniform upper bound on ϕs (Proposition 5.7). Thus, there
exists pmax ∈ M such that log trω ωϕs − (C + 1)ϕs is maximal at pmax.
Then at this point, we obtain from (92) that trωϕs ω ≤ C, so that at
pmax:

trω ωϕs · e−(C+1)ϕs ≤ ne−(C+1)ϕs · ω
n
ϕs

ωn
(trωϕs ω)n−1 ≤ C.

Hence, log trω ωϕs − (C + 1)ϕs is uniformly bounded from above, and
so is trω ωϕs , finishing the proof. �

5.2.2. The C3-estimate.

Proposition 5.22 (Uniform C3-estimate). Let 1 < ε < 2 and suppose
(ϕs)0≤s≤1 is a family in C∞ε, JX(M) solving (50). If gϕs denotes the

metric associated to the Kähler form ω + i∂∂̄ϕs, then there exists a
constant C > 0 such that

sup
s∈[0,1]

sup
M
|∇ggϕs|g ≤ C,

where the constant C only depends on F ∈ C∞ε, JX(M) and the geometry
of (M, g).

Proof. We define

S := |∇ggϕs|2g,

and then the computation in [CD20b][Proposition 7.16] goes through
verbatim. In particular, if Rm(g) denotes the curvature tensor of g,
there exists a constant C > 0, which only depends on the constant in
Proposition 5.20 as well as on bounds for covariant derivatives of both
F and Rm(g), such that

1

2

(
∆gϕs −X

)
S ≥ −C(S + 1).(93)
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Moreover, recall that the standard Schwarz-Lemma calculation in holo-
morphic coordinates yields

1

2
∆gϕs trω ωϕs = − trω Ric(ωϕs) + g l̄kϕsR

jī

kl̄
gϕs
ij̄

+ gj̄igq̄pϕsg
l̄k
ϕs∇

g
i g
ϕs
pl̄
∇g
j̄
gϕskq̄ ,

(94)

where gϕs
ij̄

denotes the components of gϕs in coordinates, with inverse

gj̄iϕs , and Rkl̄ij̄ is the local expression of Rm(g). For the computation,
we refer the reader to [BEG13][(3.67)], for example. Starting from (94),
and keeping Proposition 5.20 as well as (86) in mind, we estimate

1

2
∆gϕs trω ωϕs ≥ − trω i∂∂̄

(
X

2
(ϕs)

)
− C + C−1S.

Proposition 5.20 applied to (90) also leads to

X

2
(trω ωϕs) ≥ trω i∂∂̄

(
X

2
(ϕs)

)
− C,

and hence,

1

2

(
∆gϕs +X

)
trω ωϕs ≥ −C + C−1S(95)

for some constant C > 0 only depending on ||Rm(g)||C0(M), ||∂∂f ||C0(M),
||F ||C2(M) and the constant in Proposition 5.20. If we choose a suffi-
ciently large constant C1 > 0 and then add (93) to C1-times (95), we
can arrange that

1

2
(∆gϕs −X) (S + C1 trω ωϕs) ≥ −C + S.(96)

Again, there are two cases to consider. If S +C1 trω ωϕs ≤ limt→∞ S +
C1 trω ωϕs = n, there is nothing to show, so we can assume S +
C1 trω ωϕs > n. Thus, there exists a point pmax ∈ M , where S +
C1 trω ωϕs is maximal. Applying the maximum principle to (96), we
have at pmax:

S + C1 trω ωϕs ≤ C + C1 sup
M

trω ωϕs ≤ C.(97)

This implies a uniform upper bound on S, as claimed. �
Since the C1-norm of gϕs is uniformly bounded, we obtain a uniform

C0,α-bound on gϕs , as in [CD20b][Corollary 7.17].

Corollary 5.23. Let 1 < ε < 2, α ∈ (0, 1) and suppose (ϕs)0≤s≤1

is a family in C∞ε, JX(M) solving (50). If gϕs denotes the Riemannian

metric corresponding to ωϕs, and g−1
ϕs the induced metric on 1-forms,

then there exists a constant C > 0 such that

sup
s∈[0,1]

(
||gϕs||C0,α + ||g−1

ϕs ||C0,α

)
≤ C,

where C only depends on α, F ∈ C∞ε, JX(M) and the geometry of (M, g).
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Proof. Recall that the natural embedding

C1(TM ⊗ TM) ⊆ C0,α(TM ⊗ TM)

is continuous, so that the operator norm of this inclusion only depends
on (M, g) and α. Hence, the C0,α-norm of gϕs is uniformly bounded
from above by ||gϕs||C1 , which in turn is uniformly bounded according
to Proposition 5.20 and 5.22.

Similarly, we find a uniform C > 0, only depending on (M, g) and
α, such that

||g−1
ϕs ||C0,α ≤ C

(
||g−1

ϕs ||C0 + ||∇gg−1
ϕs ||C0

)
.(98)

Moreover, there is the following point-wise estimate

|∇gg−1
ϕs |g ≤ |gϕs|2g · |∇ggϕs|g.(99)

Indeed, this inequality follows immediately by using holomorphic nor-
mal coordinates and differentiating the relation

gj̄iϕs · g
ϕs
kj̄

= δik,

where gj̄iϕs and gϕs
ij̄

are the components of g−1
ϕs and gϕs , respectively.

Thus, we conclude the required uniform bound on ||g−1
ϕs ||C0,α from

(98) and (99), together with Proposition 5.20 and 5.22. �
The standard Schauder theory for ACyl metrics then implies uniform

C2,α-bounds for ϕs.

Proposition 5.24 (Uniform C2,α-bound on ϕs). Let 1 < ε < 2, α ∈
(0, 1) and suppose (ϕs)0≤s≤1 is a family in C∞ε, JX(M) solving (50). Then
there exists a constant C > 0 such that

sup
s∈[0,1]

||ϕs||C2,α ≤ C,

where C only depends on α, F ∈ C∞ε, JX(M) and the geometry of (M, g).

Proof. Recall that ∆g is an asymptotically translation-invariant opera-
tor of order 2, and so the Schauder estimates (Theorem 2.4) apply and
yield a constant C > 0, only depending on (M, g), such that

||ϕs||C2,α ≤ C (||ϕs||C0 + ||∆gϕs||C0,α) .

As ||∆gϕs||C0,α can be bounded from above in terms of ||gϕs||C0,α , the
claim then follows immediately from Corollary 5.23 and the uniform
bound on supM |ϕs| given by Propositions 5.7 and 5.12. �

5.2.3. Local Ck,α-estimates. Uniform higher order estimates can be ob-
tained similarly to the compact case considered by Yau [Yau78]. The
idea is to use local Schauder estimates to conclude higher regularity
in a uniform way. Since our manifold (M, g) is non-compact, we re-
quire the use of special coordinates in which the metric g, and all its
derivatives, are uniformly bounded. This is provided by the following
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Theorem 5.25. Let (M, g) be an n-dimensional ACyl Kähler manifold
and i(g) > 0 the corresponding injectivity radius. For each q ∈ N0,
suppose that Cq > 0 is a constant such that the curvature tensor Rm(g)
satisfies

sup
M
|∇q Rm(g)|g ≤ Cq.

Then there are two constants r2 > r1 > 0, depending only on n, i(g), Cq,
such that for each x ∈ M , there exists a chart φ : U ⊂ Cn → M
satisfying the following properties:

(i) BCn(0, r1) ⊂ U ⊂ BCn(0, r2) and φ(0) = x, where BCn(0, ri)
denotes the Euclidean ball of radius ri around the origin.

(ii) There exists a constant C > 0, depending only on r1, r2 such
that the Euclidean metric gCn satisfies

C−1gCn ≤ φ∗g ≤ CgCn on U.

(iii) For each l ∈ N0, there exist constants Al > 0, depending only
on l, r1, r2, such that

sup
U

∣∣∣∣
∂|µ|+|ν|gij̄
∂zµ∂z̄ν

∣∣∣∣ ≤ Al for all |µ|+ |ν| ≤ l,

where gij̄ are the components of g in the holomorphic coordi-
nates (z1, . . . , zn) induced by φ, and µ, ν are multi-indices with
|µ| = µ1 + · · ·+ µn.

This theorem follows because the asymptotic cylinder is given ex-
plicitly. Similar results have previously been used to solve complex
Monge-Ampère equations on non-compact Kähler manifolds, see for in-
stance [CY80] and [TY90]. More generally, Theorem 5.25 is also valid
for every non-compact Kähler manifold of positive injectivity radius
and bounded geometry, compare [WY20][Theorem 9].

Using the coordinates given by Theorem 5.25, we can apply the local
Schauder theory and conclude estimates on the Ck,α

loc -norm of ϕs. This
argument is by induction on k starting at k = 3.

Proposition 5.26 (Local C3,α-bound on ϕs). Let 1 < ε < 2, α ∈ (0, 1)
and suppose (ϕs)0≤s≤1 is a family in C∞ε, JX(M) solving (50). Then there
exists a constant C > 0 such that

sup
s∈[0,1]

||ϕs||C3,α
loc
≤ C,

where C only depends on α, F ∈ C∞ε, JX(M) and the geometry of (M, g).

Proof. As in [CD20b][Proposition 7.19], we follow the argument given
in the compact case [Yau78].

We consider x ∈ M and work in the holomorphic chart φ : U → M
as in Theorem 5.25. To simplify notation, we suppress φ and simply
view U as a subset of M . The conditions (ii) and (iii) ensure that the



108 JOHANNES SCHÄFER

Euclidean Hölder norm || · ||Ck,α(Bx) on the ball Bx := B(0, r1) ⊂ M is
uniformly equivalent to || · ||Ck,α(Bx,g), the Hölder norm on Bx induced
by the ACyl metric g. In other words, there exists a constant C1 > 0,
only depending on k, α and the constants in Theorem 5.25, such that

C−1
1 || · ||Ck,α(Bx) ≤ || · ||Ck,α(Bx,g) ≤ C1|| · ||Ck,α(Bx).(100)

In particular, the interior Schauder estimates ([GT01][Theorem 6.2,
6.17]) on Bx are valid for the norms || · ||Ck,α(Bx,g). The goal is to apply
these estimates to the equation

1

2
∆gϕs (∂jϕs) = ∂j

(
sF − X

2
(ϕs)

)
+ (trω− trωϕs )L∂j(ω),(101)

where ∂j denotes the coordinate field ∂/∂zj induced by the chart φ
and j = 1, . . . , n. Observe that (101) is obtained by applying the Lie
derivative L∂j to the Monge-Ampère equation (50) and dividing by ωnϕs .

Recall that in holomorphic coordinates, we have

∆gϕs = gj̄iϕs∂i∂j̄,

so that applying Schauder requires to bound the coefficients of ∆gϕs

uniformly in C0,α(Bx), i.e. we have to find a constant D > 0, only
depending on α, F and the geometry of (M, g), such that

||gj̄iϕs||C0,α(Bx) ≤ D and g−1
ϕs ≥ D gCn .(102)

The first inequality is clear by (100) together with Corollary 5.23 and
the second bound follows immediately from Proposition 5.20 and con-
dition (ii) in Theorem 5.25. Thus, interior Schauder estimates provide
a constant C2 > 0, only depending on n, α and D, such that

||∂jϕs||C2,α(Bx) ≤C2

(
||∆gϕs∂jϕs||C0,α(Bx) + ||∂jϕs||C0(Bx)

)

≤C2

(
||∆gϕs∂jϕs||C0,α(Bx) + C1||ϕs||C2,α(M,g)

)
,

(103)

where we used (100) for the second inequality. We continue to estimate
the first term on the right-hand side of (103) as follows

||∆gϕs∂jϕs||C0,α(Bx)

≤||ϕs||C2,α(Bx) + ||F ||C1,α(Bx) + ||(trω− trωϕs )L∂j(ω)||C0,α(Bx)

≤C1

(
||ϕs||C2,α(M,g) + ||F ||C1,α(M,g) + A · ||g−1 − g−1

ϕs ||C0,α(M,g)

)
,

(104)

for some constant A > 0 determined by condition (iii) of Theorem 5.25.
Here, the first inequality is a consequence of (101) and the second one
is obtained from (100). In combination with (104), inequality (103)
then becomes

||∂jϕs||C2,α(Bx) ≤ C3(105)

for some constant C3 > 0 which only depends on C1, C2, A, F and the
uniform bounds on ||ϕs||C2,α and ||g−1

ϕs ||C0,α given by Proposition 5.24
and Corollary 5.23, respectively.
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To conclude the proof, we point out that the same arguments for
(105) also yield

||∂j̄ϕs||C2,α(Bx) ≤ C3,

and hence

||ϕs||C3,α(Bx) ≤
n∑

j=1

||∂jϕs||C2,α(Bx) + ||∂j̄ϕs||C2,α(Bx) + ||ϕs||C0(Bx),

≤ 2nC3 + C1||ϕs||C2,α(M,g)

≤ C4

with C4 > 0 only depending on n, C1, C3 and the uniform bound on
||ϕs||C2,α . In particular, the constant C4 is independent of both x ∈M
and s ∈ [0, 1], so that the proposition then follows.

�
The standard bootstrapping argument then leads to uniform Ck,α-

estimates.

Proposition 5.27 (Local Ck,α-bounds on ϕs). Let 1 < ε < 2, α ∈
(0, 1), k ∈ N≥1 and suppose (ϕs)0≤s≤1 is a family in C∞ε, JX(M) solving
(50). Then there exists a constant C > 0 such that

sup
s∈[0,1]

||ϕs||Ck+2,α
loc

≤ C,(106)

where C only depends on k, α, F ∈ C∞ε, JX(M) and the geometry of
(M, g).

Proof. As in [CD20b][Proposition 7.19], the proof is by induction on
k ≥ 1, with the k = 1 case being settled by Proposition 5.26. Thus, we
consider k ≥ 2 and can assume that the statement holds for k − 1, i.e.
that there is a Ck−1 > 0, only depending on k, α, F and the geometry
of (M, g), such that

||ϕs||Ck+1,α
loc

≤ Ck−1.(107)

Using the same notation as in the previous proof, we work near a given
x ∈ M in the chart φ : U → M given by Theorem 5.25. Because of
(100), it suffices to show (106) for the Euclidean ball Bx := B(0, r1)
and the Euclidean Hölder norm || · ||Ck,α(Bx).

This time, we aim at applying interior Schauder estimates (of higher
order) to equation (101), for which we require a constant Dk−1, de-
pending only on k, α, F and the geometry of (M, g), such that

||gj̄iϕs||Ck−1,α(Bx) ≤ Dk−1 and g−1
ϕs ≥ Dk−1 gC.(108)

The second inequality is again clear by Proposition 5.20 and condition
(ii) in Theorem 5.25, and for the first, recall that

gϕs
ij̄

= gij̄ + ∂i∂j̄ϕs.
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Together with condition (iii) in Theorem 5.25, we obtain

||gϕs
ij̄
||Ck−1,α(Bx) ≤ ||∂∂̄ϕs||Ck−1,α(Bx) + Ak−1

≤ ||ϕs||Ck+1,α(Bx) + Ak−1

≤ Ck−1 + Ak−1,

where we used the induction hypothesis (107) in the last line. Con-
sequently, the entries of the inverse matrix can be bounded as well
since there exists a C0 > 0, depending only on the uniform bound on
||g−1

ϕs ||C0(M) from Proposition 5.20, such that

||gj̄iϕs||Ck−1,α(Bx) ≤ C0||gϕsīj ||Ck−1,α(Bx).

Note that this follows by differentiating the identity

gj̄iϕsg
ϕs
lj̄

= δil

and using the fact that for functions u with inf u > 0, one has

||u||C0,α ≤ (inf u)−1
(
1 + ||u||C0,α(inf u)−1

)
.

Thus, (108) holds if Dk−1 := C0(Ck+Ak−1). Then the interior Schauder
estimates [GT01][Theorem 6.17] provide a constant Ek−1 > 0, depend-
ing only on n, k, α and Dk−1, such that

||∂jϕs||Ck+1,α(Bx)

≤Ek−1

(
||∆gϕs (∂jϕs)||Ck−1,α(Bx) + ||∂jϕs||C0(Bx)

)

≤Ek−1

(
||ϕs||Ck+1,α(Bx) + ||F ||Ck,α(Bx) + ||(trω− trωϕs )L∂j(ω)||Ck−1,α(Bx)

)

≤Ek−1

(
||ϕs||Ck+1,α(Bx) + ||F ||Ck,α(Bx) + Ak−1||g−1 − g−1

ϕs ||Ck−1,α(Bx)

)

where (101) implies the second inequality, and for the third one, we
used the bounds in (iii) of Theorem 5.25. Hence, we conclude from
this, together with the induction hypothesis (107) and (108), that

||∂jϕs||Ck+1,α(Bx) ≤ Ck

for some Ck > 0 only depending on Ek−1, Ck−1, F and the constants
in Theorem 5.25. As in the previous proof, we finally arrive at

||ϕs||Ck+2,α(Bx) ≤
n∑

j=1

||∂jϕs||Ck+1,α(Bx) + ||∂j̄ϕs||Ck+1,α(Bx) + ||ϕs||C0(Bx)

≤ 3nCk,

as required. �

5.2.4. Weighted Ck,α-estimates. Recall from Propositions 5.7 and 5.19
that |ϕs| is uniformly bounded from above by e−ε0t for some 0 < ε0 � 1.
First, we will see that the Ck,α

ε0
-norms of ϕs are also uniformly bounded

and, in a second step, we explain how to improve the decay from ε0 to
ε.
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Proposition 5.28 (Weighted Ck,α-bounds on ϕs). Let 1 < ε < 2,
α ∈ (0, 1), k ∈ N0 and suppose (ϕs)0≤s≤1 is a family in C∞ε, JX(M)
solving (50). For the constant 0 < ε0 < 1 given by Proposition 5.19,
exists a C > 0 such that

sup
s∈[0,1]

||eε0tϕs||Ck,α ≤ C,

where C only depends on ε0, k, α, F ∈ C∞ε, JX(M) and the geometry of
(M, g).

Proof. We follow the argument given in [CD20b][Proposition 7.22]. For
τ ∈ [0, 1], consider the function

H(τ) := log

(
ω + i∂∂̄(τ · ϕs)

)n

ωn
,(109)

so that

H ′(τ) =
1

2
∆gτϕs (ϕs),

where gτϕs denotes the metric with Kähler form ω+i∂∂̄(τϕs). By using
(50) and H(0) = 0, we can write

sF − X

2
(ϕs) = H(1) =

∫ 1

0

H ′(τ)dτ =
1

2

∫ 1

0

∆gτϕs (ϕs)dτ.(110)

The goal is to apply local Schauder estimates to this differential equa-
tion. For any x ∈ M , let φ : U → M be the holomorphic chart with
φ(0) = x given by Theorem 5.25. Then (110) becomes

sF =

(∫ 1

0

gj̄iτϕsdτ

)
∂i∂j̄ϕs +

X

2
(ϕs) =: aj̄i∂i∂j̄ϕs + bj∂jϕs,

where we use Einstein’s sum convention, and the fact that X is real-
holomorphic as well as JX(ϕs) = 0.

Let k ≥ 0 be an integer and α ∈ (0, 1). Recall that by conditions
(ii), (iii) of Theorem 5.25 and Proposition 5.27, there exists a constant
C1 > 0 such that

aj̄i ≥ C−1
1 δij̄, and ||aj̄i||Ck,α(Bx,g) ≤ C1,

where Bx is the holomorphic ball of radius r1 around x and ||·||Ck,α(Bx,g)

the Hölder norm on Bx induced by the restriction of g. Moreover,
we can arrange that ||bj||Ck,α(Bx,g) ≤ C1 since X and all its covariant
derivatives (w.r.t. g) are uniformly bounded. Recall from (100) that
the norms on Bx induced by g are uniformly equivalent to the Euclidean
Hölder norms, so that interior Schauder estimates ([GT01][Theorem
6.17]) can be applied. Hence, there exists a constant C2 > 0, depending
only on n, k, α and C1, such that

(111)
||ϕs||Ck+2,α(Bx,g) ≤ C2

(
||ϕs||C0(Bx) + ||F ||Ck,α(Bx,g)

)

≤ C2

(
C3 + C3||F ||Ck,αε0 (M,g)

)
e−ε0t(x),
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for some C3 > 0 only depending on the radius r1 of the ball Bx and the
bounds from Propositions 5.7 and 5.19. Note that in the last inequality,
we also used that the function t is uniformly equivalent to the distance
function of (M, g) to some fixed point.

As the constants in (111) are independent of the considered point
x ∈ M , we conclude the desired estimate for ||eε0tϕs||Ck,α as follows.
Let 0 ≤ l ≤ k + 1 and notice that (111) implies

|(∇g)lϕs|g(x) ≤ ||ϕs||Ck,α(Bx,g) ≤ C2C3

(
1 + ||F ||Ck,αε0 (M,g)

)
e−ε0t(x)

=: Ce−ε0t(x)

holds for all x ∈M , or equivalently,

||eε0tϕs||Ck+1(M,g) ≤ C.

This finishes the proof because the inclusion Ck+1
ε0

(M) ⊂ Ck,α
ε0

(M) is
continuous.

�

It remains to improve the uniform decay rate of ϕs from e−ε0t to e−εt,
which is achieved in the next

Proposition 5.29 (Improved weighted Ck,α-bounds on ϕs). Let 1 <
ε < 2, α ∈ (0, 1), k ∈ N0 and suppose (ϕs)0≤s≤1 is a family in
C∞ε, JX(M) solving (50). Then there exists a constant C > 0 such that

sup
s∈[0,1]

||eεtϕs||Ck,α ≤ C,

where C only depends on k, α, F ∈ C∞ε, JX(M) and the geometry of
(M, g).

Proof. This improvement of the rate based on [CD20b][p. 63]. We
begin by noting that H(τ) define by (109) satisfies

H ′′(τ) = −|∂∂̄ϕs|2gτϕs ,
so that we can write

(112)
sF +

∫ 1

0

∫ τ

0

|∂∂̄ϕs|2gτϕsdσ dτ = sF +H ′(0)−H(1) +H(0)

=
1

2
(∆g +X) (ϕs),

where we used (50) for the second inequality. From (112) and Proposi-
tion 5.28, we conclude that there exists a uniform constant C > 0 such
that

(∆g +X) (ϕs) ≤ Ce−ε1t with ε1 := min{2ε0, ε} > ε0.(113)

Starting from this equation, we can obtain a uniform lower bound on
eε1tϕs by using the maximum principle and arguing as in Proposition
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5.7. Let v ∈ C∞ε1 (M) be the unique solution to

(∆g +X)(v) = Ce−ε1t,

so that we have

(∆g +X)(ϕs − v) ≤ 0 on M.

Thus, the maximum principle implies

ϕs − v ≥ lim
t→∞

(ϕs − v) = 0 on M(114)

which is a uniform weighted lower bound on ϕs since v ∈ C∞ε1 (M) only
depends on ε1, C and (M, g). Combining (114) with the upper bound
in Proposition 5.7, the term ||eε1tϕs||C0 is uniformly bound from above.

The next step is to prove that for each k ∈ N0, α ∈ (0, 1), there
exists a uniform constant C > 0 such that

||eε1tϕs||Ck,α ≤ C.(115)

Indeed, the same argument as in Proposition 5.28 goes through verba-
tim, starting this time from the uniform bound on ||eε1tϕs||C0 instead
of merely ||eε0tϕs||C0 . Hence, we improved the uniform decay from ε0

to ε1.
If ε1 = ε, we are done, so we assume ε1 = 2ε0 < ε. Notice that (115)

and (112) can then be used to further improve the uniform decay of
(∆g +X)ϕs in (113) to

ε2 := min{2ε1, ε} > ε1 = 2ε0

so that repeating the entire argument then gives a uniform bound on
||eε2tϕs||Ck,α .

After iterating this process a bounded number of times, we finally
conclude the required uniform estimate on ||eεtϕs||Ck,α . �

Since the previous Proposition is precisely the content of Theorem
5.6, the only statement left to show is the regularity result in Proposi-
tion 5.5.

Proof of Proposition 5.5. Let F ∈ C∞ε, JX(M) for some 1 < ε < 2 and

suppose that ϕ ∈ C3,α
ε′, JX(M) solves

(ω + i∂∂̄ϕ)n = eF−
X
2

(ϕ)ωn(116)

with 0 < ε′ ≤ ε. We have essentially seen all required arguments in
Propositions 5.27, 5.28 and 5.29, but the difference is that we now only
require qualitative information on the solution ϕ, i.e. all the constants
below a priori do depend on ϕ.

First, we improve the regularity and claim that ϕ ∈ Ck,α
loc (M) for each

integer k ≥ 3 and α ∈ (0, 1). As in Proposition 5.27, we work around
some x ∈ M in the holomorphic chart φ : Bx = B(0, r1) → M given
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by Theorem 5.25. Differentiating (116) in direction of ∂j = ∂/∂zj, we
obtain

1

2
∆gϕ(∂jϕ) = ∂j

(
F − X

2
(ϕ)

)
+
(
trω− trωϕ

)
L∂j(ω)(117)

Then we notice that the coefficients gj̄iϕ of ∆gϕ , as well as the right-

hand side of (117), are in C1,α(Bx), so that the local regularity for
elliptic equations ([GT01][Theorem 6.17]) implies ∂jϕ ∈ C3,α(Bx) for
all j = 1, . . . , n. Similarly, one can show that each ∂j̄ϕ is also in
C3,α(Bx), implying ϕ ∈ C4,α(Bx). Hence, the standard bootstrapping
gives ϕ ∈ Ck,α(Bx) for any given k ∈ N and α ∈ (0, 1). Indeed, using
ϕ ∈ C4,α(Bx), we observe that the coefficients gj̄iϕ and the right-hand

side of (117) are in C2,α(Bx), so that ∂jϕ, ∂j̄ϕ ∈ C4,α(Bx). This implies
ϕ is C5,α(Bx), and so forth, until we finally arrive that ϕ ∈ Ck,α(Bx),
as claimed.

In the second step, we show that ϕ ∈ Ck,α
ε′ (M), i.e. that higher order

derivatives of ϕ decay as e−ε
′t. In the same notation as in Proposition

5.28, consider the following equation on Bx:

F =

(∫ 1

0

gj̄iτϕdτ

)
∂i∂j̄ϕ+

X

2
(ϕ) =: aj̄i∂i∂j̄ϕ+ bj∂jϕ.

Then, by local Schauder estimates, there exists a constant C > 0,
depending on k, α, ||gϕ||Ck,α(M) and ||X||Ck,α(M), such that

||ϕ||Ck+2,α(Bx) ≤ C
(
||ϕ||C0(Bx) + ||F ||Ck,α(Bx)

)
.

Since ϕ = O(e−ε
′t), F ∈ C∞ε (M) and because the Euclidean Hölder

norms on Bx are uniformly equivalent to the ones induced by the re-
striction of g, we conclude from this equation that ϕ ∈ Ck,α

ε′ (M) by the
same argument used in Proposition 5.28.

Finally, it remains to show ϕ ∈ Ck,α
ε (M), i.e. to improve the decay

rate from ε′ to ε. Similarly to Proposition 5.29, consider the equation

F +

∫ 1

0

∫ τ

0

|∂∂̄ϕ|2gτϕdσ dτ =
1

2
(∆g +X) (ϕ),(118)

and deduce that

(∆g +X) (ϕ) ∈ C∞ε1 (M) for ε1 = min{2ε′, ε}.
Applying Theorem 2.11, we find a unique v ∈ C∞ε1 (M) such that

(∆g +X)(v) = (∆g +X)(ϕ),

but then the maximum principle implies ϕ = v ∈ C∞ε1 (M). If ε1 < ε,
iterate this process starting from (118) a bounded number of times,
and conclude that ϕ ∈ C∞ε (M), finishing the proof.

�
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SUMMARY

In this thesis we constructed new examples of gradient steady Kähler-
Ricci solitons in a given Kähler class. The underlying complex mani-
folds that we considered are divided into two classes. First, we found
new examples on vector bundles E → B over certain Kähler man-
ifolds of non-negative Ricci curvature and studied the uniqueness of
these examples. And second, we focused on crepant resolutions of cer-
tain orbifolds (C×D)/Γ and obtained a precise characterization of the
Kähler classes that admit asymptotically cylindrical solitons.
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