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Darum versenkt, wer im unges�li�teten Zwist der Völker na�

geistiger Ruhe strebt, gern den Blick in das stille Leben der

Pflanzen und in der heiligen Naturkraft inneres Wirken; oder,

hingegeben dem angestammten Triebe, der seit Jahrtausenden der

Mens�en Brust dur�glüht, blickt er ahndungsvoll aufwärts zu

den hohen Gestirnen, wel�e in ungestörtem Einklang die alte,

ewige Bahn vollenden.
Alexander von Humboldt, Ansichten der Natur [1]





Abstract

Pursuing a deeper understanding of the behaviour of dynamic systems is a main task of modern

sciences, from accurate weather forecasts to precise drug delivery, from electrical engineering to

cell biology and the very fundamental laws of nature. Spurious knowledge or simply the lack of

deeper physical insights lead to structural model errors, which cause discrepancies between the

predictions from the theoretical model and the experimental data.

Significance of SEEDS Dynamic systems serve as models for systems or processes that evolve

over time. To get a better understanding of the dynamic system of interest, a precise mathematical

model is crucial inasmuch as erroneous models lead to false conclusions about the current state of

the system, about the interactions within the system, and about its future development. In this

thesis we offer a methodology for Structural Error Estimation in Dynamic Systems as a solution

to this problem. As in the era of big data, classical procedures become infeasible, a theoretical

framework is presented for the Model Error Reconstruction Problem: A data-driven approach to

compute estimates for structural model errors. By this we quantify the model error, achieve a

numerical description, and correct state estimates.

Results We exploit analytical, algebraic, and structural properties of dynamic systems and

formulate conditions for the invertibility of a dynamic system. Invertibility guarantees a unique

model error reconstruction. We subsequently investigate the network principles that favour the

error reconstruction. We unveil the intrinsic gammoid structure of dynamic input-output systems

and show that invariable sparsity is a well appropriate regularisation concept for non-invertible

systems. In addition a new coherence measure will be introduced that makes a statement about the

distinguishability of model error sources and about the redundancy of sensors. Finally, a LASSO-

type optimisation technique will be presented as a variety of Dynamic Compressed Sensing. The

resulting optimisation problem is capable of producing invariable sparse solutions.
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Preface

The curiosity and strife to understand the world has inspired scientists throughout the ages to
bring order into the vast complexity of phenomena of nature, subject to the zeitgeist and technical
opportunities of their time. The works on theoretical information science and the development
of semiconductor devices lead mankind into the Digital Age. Within seconds computers solve
numerical problems which would have been inconceivable one hundred years ago. Exploiting the
arising abilities and to enrich the sciences with computational methods in order to answer old and
new questions, therefore, is the duty of our generation.

[...] so ging allen Naturforschern ein Licht auf. Sie begriffen, daß die Vernunft nur
das einsieht, was sie selbst nach ihrem Entwurfe hervorbingt, daß sie mit Prinzipien
ihrer Urteile nach beständigen Gesetzen vorangehen und die Natur nötigen müsse, auf
ihre Fragen zu antworten [...] denn sonst hängen zufällige, nach keinem vorher ent-
worfenen Plane gemachten Beobachtungen gar nicht in einem notwendigen Gesetze
zusammen, welches doch die Vernunft sucht und bedarf. * [3]

In the light of current research in the fields of machine learning in its broadest sense, Kant’s
Critique of Pure Reason seems to manifest as a Critique of Pure Data Science. The possibility to
process big data enabled the development of a purely data driven methodology of forecasting.
Such a methodology stands in contrast to the classical way of formulating theories together with
mathematical models to describe the phenomena one aims to understand. As the classical scientist
did not have the chance to make use of modern computers, it seems just fair to glue together the
fragments of analytical understanding by modern methods.

But any purely data driven approach can only make statements that are limited to the given data
and have no power to contradict other possible outcomes. Inasmuch as a trustworthy prediction
needs rules of general validity, a synthetic reasoning, that is, the theoretical hence generally valid
models tested and verified by experimental data, is the way any nature sciences shall follow. For the
last centuries, the human mind and ability to observe his surroundings have been the main tools
for this process. But as the data get big, bigger than a human mind can oversee, new approaches
are needed. Ideas such as causal machines [4] show that this problem is indeed a subject of current
discussion and may provide computational methods for this purpose in the future.

At the end we always have to face the same task: We need to bring together generally valid
theories and apodictically true experimental results. Mathematical models, which are crucial for a
quantitative theory, build on our limited understanding of its fundamental processes. Usually these
models are only valid under certain simplifying conditions or in certain regimes and consequently

*[...] a light dawned on all those who study nature. They comprehended that reason has insight only into what it
itself produces according to its own design; that it must take the lead with principles for its judgements according to
constant laws and compel nature to answer its questions [...] for otherwise accidental observations, made according to
no previous designed plan, can never connect up into a necessary law, which is yet what reason seeks and requires. [2]
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show a discrepancy when compared to experimental data. These discrepancies may be negligible,
or may be severe. This problematic results in what will be called a structural model error. So the
following questions arise: When we observe such a discrepancy between theory and experiment,
can there be a consistent treatment for structural model errors? Can we localise where the model is
erroneous and can we quantify the error? Is it possible to reconstruct the model error?

The aim of this thesis is to develop a theoretical framework which helps to localise and
reconstruct such structural model errors that are inherent in many dynamic systems.

Starting with an introduction to the idea of structural model errors, the model class of dynamic
systems is introduced in order to formulate the Model Error Reconstruction Problem and the key
property of invertibility. For the characterisation of invertibility we exploit state space, differential-
algebraic, as well as structural methods, which, respectively, lead to a set of (almost) equivalent
conditions. The structural version will be used to investigate the network principles of invertibility.
With the rigorous conditions as preliminaries, we turn our interest towards the practical problem
of invariable sparse error reconstruction. Motivated by the classical idea of sparse and compressed
sensing, we proof that the Model Error Reconstruction Problem gives rise to an intrinsic gammoid
that allows to formulate conditions for the reconstruction of invariable sparse model errors. In
order to compute estimates for such invariable sparse model errors, we introduce a variety of
dynamic compressed sensing which is consistent with the new concept of invariable sparsity in
form of a LASSO-type regularised dynamic optimisation problem. To bring the theory to a close,
we derive several applications of the developed theory. Conditions for the concrete cases of fault
detection in a network are provided, a model correction for an erroneous model of the Lorenz system
is presented, and a finally a clustering approach is introduced which identifies indistinguishable
model errors as well as redundant sensors.

This thesis is part of the SEEDS project, funded by Deutsche Forschungsgemeinschaft under
project number 354645666. Earlier publications [5] and [6] already presented intermediate results
of this thesis, furthermore an R implementation of a Model Error Reconstruction Algorithm was
published [7] and provided via CRAN [8]; resemblances of the present thesis with these publications
is consequential.
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CHAPTER 1

Structural Model Errors Emerge

The dynamic systems we need to handle today, be it an ecosystem, a biochemical system like a
living cell, mechanical, electric or even economical systems, are growing bigger, more complex and
more interconnected than they have ever been before; see for instance [9, 10, 11, 12] for discussions
about realistic modelling of biological systems and [13, 14, 15, 16] for databases about systems
of current interest. The year this thesis is submitted, the corona virus brought the century’s first
pandemic. A minute virus that affects a human cell, spreads rapidly - especially by the help of
air travel - all over the world, and causes inestimable economical losses everywhere. Given that,
one must accept that a microscopic perturbation can force a giant system into entirely new and
unpredictable regimes.

As the dynamic systems grow complex, our mathematical models must grow complex as well.
But it seems that the current tendency is to go big rather then complex. Big models may consist of
hundreds of equations and one might have a huge amount of data available to find the parameters
of such a model. But complexity means that it takes more than a combination of simple mathem-
atical functions to grasp all processes within system. Accepting complexity unavoidably means
that the mathematical model we work with is merely a good guess about how things could work.

A Forest in Switzerland

Let us discuss the ecosystem forest as a vivid example. In a study about the reintroduction of the
lynx in the Swiss Jura Forest in the 1970s, among many results, two plausible observations were
made. In the years after the reintroduction of the lynx, the roe population decreased locally to
almost extinction [17, 18]. The theory was formulated that the roe specimen were not used to
predators. Later, the roes adapted to this new situation and learned to be more cautious [19]. As a
consequence, the grown lynx population had to face starvation, they expanded their home-range,
migrated to regions with better food supply, or changed their diet [20].

Assume the lucky case that we had an accurate mathematical model for a single lynx-roe inter-
action and one model that accurately describes the whole forest before the lynx was brought in.
Still, a combination of these two models would not be capable of describing the new situation as
the combination of the two systems changes the behaviour of the fundamental components, in
this case, the animals. The models which have been accurate in isolation cease to be accurate in
combination. There is a discrepancy between the naive combination of the two models and the
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Chapter 1 Structural Model Errors Emerge

unknown complex model that would correctly describe the merge of the systems. We will call this
discrepancy an endogenous model error.

One plausible consequence of the shrunken roe population was the migration of the lynx.
Assume we have an accurate model of the whole forest, including the lynx. As an exogenous
observer, we might be able to define the boundaries of our forest more or less stringently. However,
these are artificial mathematical boundaries of our model and will obviously not stop the starving
animals from migrating into a region with better food supply. The forest is an open system, equation
systems in their common formulation are mathematically isolated, hence are not capable of taking
migration processes into account. How could an isolated model be able to depict an open system?
A holistic model of the forest must respect its own insufficiency to describe anything beyond
its boundaries. The discrepancies between the closed model and an accurate open model that
arise from this issue will be called exogenous model errors. See also [21, 22, 6, 5] where the idea of
endogenous and exogenous model errors has been discussed.

The Discovery of Uranus and Neptune

To formulate a theory, compare it with observations to detect inadequacies of the model, and
develop a new, consistent theory, is the cycle of every nature science. One noteworthy example is
the discovery of the planets Uranus and Neptune, see [23]:

In the year 1687 Isaac Newton published his famous theory for the gravitational attraction of
planets, see [24] for a contemporary translation, and made it possible to predict their orbits on
the basis of a generally valid law. In 1781, William Herschel discovered the planet Uranus. The
observations of Uranus’ orbit, however, did not match the theoretical predictions from Newton’s
law. Astronomers stated the hypothesis that another heavy planet might be the cause for Uranus’
distraction. Urbain Le Verrier and others used the observation data to calculate the position of this
new planet in 1846 and in the same year, Johann Gottfried Galle discovered the planet Neptune at
the predicted location.

In this story, the astronomers started with a widely accepted, simple model, Newton’s law of
gravitation. But Uranus’ movement around the sun is not a closed system. Neptune caused
a perturbation that came from outside of the system boundaries, that is, Neptune caused an
external model error. Le Verrier estimated this model error quantitatively and gave hints for
where and when to make new observations so that Galle finally found the unknown planet that
seemed to perturb Uranus’ movement. This interplay of theoretical predictions and experimental
observations enabled the astronomers to extend the model of the solar system.

What Model Errors Can Teach Us The emergence of model errors seems to be unavoidable
once the system of investigations becomes too complex to fully understand it in theory or isolate
it in practice. Figure 1.1 depicts the emergence of model errors. Subfigure (a) shows a graphical
representation of an exemplary system, inspired by [21]. The blue-shaded region represents our
knowledge about a dynamic system we want to investigate. This subsystem is embedded into
a larger, complex system shaded in grey. The black dots represent the entities, and the arrows
represent the interactions between them.

As in the example of the Swiss forest, we might know all the entities (roe and lynx) but we do
not know how the interaction between them will manifest in reality. The green arrow shows an
interaction between two known entities, but the interaction itself lies beyond the borders of the

2



(a) (b)

Figure 1.1: A visualisation of structural model errors. (a) A known subsystem (blue shaded region) is
embedded into a larger unknown exo-system (grey shaded region). The subsystem interacts with the exo-
system as indicated by the arrows. In addition, there exists one interaction (green dotted arrow) between
two elements of the subsystem that leaves the known (blue) region. (b) A reformulation with model errors
(red wiggly arrows). The interaction with the exo-system leads to an exogenous model error, the unknown
interaction within the model leads to an endogenous model error.

known sub-system. As in the example of Uranus and Neptune, there might be influences from
outside the borders of the known world. What we actually see is shown in subfigure (b): A system
which is disturbed by perturbations of unknown origin, as represented by the wiggly arrows.

Aim of this Thesis

Model errors lead to false predictions and to a wrong estimation of the current state of the system.
We call the endogenous and exogenous errors structural for they unveil inadequacies of the model
that cannot be remedied by adjusting its parameters but which are related to the very structure
of the system, meaning the existence and functional form of its interactions. As the systems of
interest become complex and data become big, a classical workflow like in the story of Neptune
and Uranus becomes infeasible.

In seminal papers Engelhardt et al. presented algorithms motivated by optimal control problems
in order to estimate model errors [21, 22]. But these algorithms were heuristic and they do not
give satisfaction to the need to investigate further into this issue. Until now, it lacks a theoretical
understanding, if it is at all possible to estimate model errors, how much or which kind of data we
need, and which algorithms are adequate to compute good estimates. The following chapters shall
help to illuminate the problem of Structural Error Estimation in Dynamic Systems (SEEDS).

Conditions for Invertibility The possibility to infer model errors from given data will be treated
under the name invertibility. We will search for necessary and sufficient conditions for the invert-
ibility of a dynamic system.

Impact of the Network Structure It will be investigated, whether and how the network structure
of a system can make a statement about its invertibility. We discuss scenarios for an experimental
design which respects the invertibility conditions.

3



Chapter 1 Structural Model Errors Emerge

Localisability If we are not able to infer a quantitative description of the model error, we might
still be able to localise with best precision within the framework of the given data. Intrinsic
independence and coherence structures of a dynamic system are presented and utilised to learn
more about the localisability of invariable sparse model errors.

Recovery Algorithm In order to give a practical algorithm that is capable of producing estimates
for model errors, an optimisation problem is discussed, which can be seen as a variation of the
LASSO-regularisation appropriate for erroneous dynamic systems.

1.1 Dynamic Systems

Having discussed the natural emergence of structural model errors, the first step must be a
mathematically comprehensible characterisation of model errors in dynamic systems. In its
broadest and abstract form, a dynamic system can be any set of entities, that interact according to
specific, fundamental laws, giving rise to a development of the whole system over time. Though
one could think of various ways to mathematically model a dynamic system, the formulation
presented below is the standard form which is usually found in the literature, see for instance [25]
for one of many textbooks on dynamic systems.

Time The main characteristic that renders a system dynamic is its time-development.

Time is the spacial dimension that has only one direction. *

Mathematically, time can be characterised as the solution of the initial value problem

d

dτ
t (τ) = 1 , t (0) = t0 . (1.1)

This defines the time-domain T ⊆ R of a dynamic system. Without loss of generality the time
domain is assumed to be

T = [0,T ] . (1.2)

Our intuitive interpretation of time in contrast to any spacial coordinate, however, serves well for a
vivid understanding of the time course of a system.

Space The current state of the i th entity at a certain point in time t ∈ [0,T ] can usually be
described by a real number xi (t ) ∈R. We call xi the state variable of i . Say, the system comprises
N entities, then the vector

x(t ) =

 x1(t )
...

xN (t )

 (1.3)

represents the state of the whole system at time t . The initial state x0 of the system is the state of
the system at the first point in time x(0). As there is by construction no time-development before
t = 0, the initial state must be one given parameter in the formulation of a dynamic system.

*Prof. Ben Schweizer, in a lecture about PDEs at TU Dortmund.
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1.1 Dynamic Systems

Trajectory The vector of state variables

x : [0,T ] →R
N (1.4)

can be interpreted as a curve through the state space RN . A curve through state space will be called
a trajectory of the system. If we denote Xi the space of all possible time courses of state variable
xi , the compound space

X :=X1 ⊕ . . .⊕XN (1.5)

reflects all possible curves through state space, i.e., all possible trajectories. Here, we follow the
convention from [26] and write X as a direct sum (⊕) as this will be consistent with the idea of
invariable sparsity, proposed at a later point, where Xi can be an arbitrary Banach space. For the
scope of this thesis, the formulation as a Cartesian product (×) is equivalent and more prominent
in the literature, though.

Vector Field Which trajectory x ∈X is realised by the system is not ambiguous but governed by
its laws of interaction. As before, these laws can principally be formulated in a variety of ways. In
practice, however, the common form is that of ordinary differential equations

ẋi (t ) = fi (x(t ), t ) (1.6)

where fi :RN × [0,T ] →R is a Lipschitz function. In the engineering literature, see for instance [27],
predominantly in optimal control problems, the system is steered into a desired state by applying
external inputs u = (u1, . . . ,uM )T and the differential equation takes the form

ẋi (t ) = fi (x(t ),u(t )) . (1.7)

As soon as one chooses the input u these two formulations are equivalent. A system without
explicit time dependency is called autonomous. According to (1.1) the variable t itself can be
considered the state variable of a dynamic system, hence it turns out that any system can be made
autonomous. We will henceforth suppress explicit time dependencies as well as known external
inputs from our notation. The vector valued function

f (x) =

 f1(x)
...

fN (x)

 (1.8)

is the vector field of the system.

Flow Among all possible trajectories x ∈X of a system, only those can be realised, which are in
accordance with the initial value

x(0) = x0 (1.9)

and with the governing laws of interaction

ẋ(t ) = f (x(t )) . (1.10)
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Chapter 1 Structural Model Errors Emerge

The classical Picard-Lindelöf theorem, see [28, 29] for the original works and well known in the
literature, ensures the existence and uniqueness of such a trajectory. The trajectory which is
realised by the system will be called the flow ϕt (x0) of the system.

Observables When it comes to practical problems, usually it is not possible to measure each state
variable x1, . . . , xN individually. Instead, one has only access to a smaller number of observables
y1, . . . , yP , which carry some information about the state of the system, as the state is mapped to
the observables via a measurement function

c :RN →R
P . (1.11)

The measurement function can also be interpreted as a map

c : X →Y (1.12)

where
Y =Y1 ⊕ . . .⊕YP (1.13)

represents all possible trajectories of the observables. We call Y the output space and y(t) =
c(ϕt (x0)) the output of the system.

1.2 Quantifying Model Errors

Having discussed the basic notions of a dynamic system, we are ready to define the first mathem-
atical model for dynamic systems.

Definition 1 A system of the form
ẋ(t ) = f (x(t ))

x(0) = x0

y(t ) = c(x(t ))

(1.14)

is called an ordinary state space system.

Nominal Model and Identification of Model Errors When one builds a mathematical model
for a dynamic process of interest, one usually comes to the form of an ordinary state space system.
From the introductory discussion about model errors, we expect this model to be erroneous hence
it is not an adequate description of reality. But it usually represents the best model we have. In
[21] the term nominal model was introduced to express exactly this situation of a model that
proved useful with some limitations but is not yet an accurate description of the true dynamics of
a system.

The state variables x1, . . . , xN of a system are usually not accessible, but the experimentally
accessible quantities are given by the observables y1, . . . , yP . It becomes clear that any detection or
reconstruction of model errors must solely rely on the observables of the system and that it must
be seen in relation to the nominal model.
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1.2 Quantifying Model Errors

1.2.1 Exogenous Model Errors

Exogenous model errors are understood as migration processes, external perturbations etc. that
have their origin beyond the boundaries of the considered system. See also figure 1.2 for a schem-
atic illustration. Subfigure (a) shows a forest with a multitude of interacting entities z = (z1, . . .)T ,
trees, mammals, insects, etc. which would be necessary to accurately describe this complex system.
Since already a single tree is a sophisticated dynamic system itself we understand the forest as a
dynamic network in the sense of [30], i.e., a network of dynamic systems which stay in contact but
also show some intrinsic node dynamics. When we define the nominal system, e.g., the vicinity of
a single tree, we draw a boundary around the tree to separate it from the exo-system, the parts
which we are not interested in at the moment. However, this boundary is purely imaginary and not
a physical boundary, i.e., does not prevent the plants and animals to interact across this border.
Subfigure (b) shows a view on the tree; the node dynamics might now be modelled in more detail.
The state variables x = (x1, x2, x3)T apparently constitute a standalone system. By construction
we know that they stay in some complex contact with the exo-system. Let us see how exogenous
model errors can be incorporated into an ordinary state space system.

Make the assumption that we have a complete and accurate description of a complex system,
take again a forest for instance. Say, we are actually interested in a smaller subsystem, such as
the vicinity of a single tree. The N state variables z = (z1, . . . , zN )T of the complex system behave
according to

ż(t ) = g (z(t )) (1.15)

where g is the vector field of the complex model. Without loss of generality, the subsystem of
interest (the vicinity of the tree) corresponds only to the first n state variables z1, . . . , zn . One can
introduce xi := zi for i = 1, . . . ,n as the state variables of interest. The differential equation of xi

can be written as
ẋi (t ) = gi (x1, . . . , xn , zn+1, . . . , zN ) . (1.16)

If gi turns out to be independent of zn+1, . . . , zN , then we can simply interpret

fi (x) := gi (x , zn+1, . . . , zN ) (1.17)

as one component of the vector field of the subsystem. If gi does depend on the states zn+1, . . . , zN

we can still formally extract the variables of the subsystem

gi (x1, . . . , xn , zn+1, . . . , zN ) = fi (x)+ (
gi (x , zn+1, . . . , zN )− fi (x)

)
. (1.18)

Here, fi is principally an arbitrary function.

That the vector field f of the subsystem is theoretically an arbitrary function becomes plausible
as soon as one becomes aware of the fact that the subsystem is an artificial construction. The
arbitrariness of the vector field reflects the arbitrariness in choosing the (mathematical) boundaries
of the subsystem. Despite this caprice it seems intuitive that choosing f close to g is advantageous
for the numerical estimation, as will be explained in the later chapters.

The correct behaviour of x is obtained by the differential equation

ẋ(t ) = f (x(t ))+ (P g (z(t ))− f (x)(t )) (1.19)
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Chapter 1 Structural Model Errors Emerge

where P is understood as the projection onto the first n components. Now let η and ϕ be the flows
of the accurate model (1.15) and of the nominal model

ẋ(t ) = f (x(t )) , (1.20)

respectively. If the nominal model would already produce the correct behaviour we would find

Pηt (z0) =ϕt (P z0) . (1.21)

But if the nominal model suffers from model errors, the quantity

w (t ) := P g
(
ηt (z0)

)− f
(
Pηt (z0)

)
(1.22)

describes the discrepancy between the vector fields of the accurate and the nominal model along
the true flow ηt (z0) for each point in time. Thus, installing the additional input w we obtain an
augmented system with differential equation

ẋ(t ) = f (x(t ))+w (t ) . (1.23)

Let the flow of this augmented system be denoted as ϕ̃. This time we find

ϕ̃t (P z0) = Pηt (z0) . (1.24)

The augmented system produces exactly the projection of the accurate complex system onto the
desired subsystem.

1.2.2 Endogenous Model Errors

Endogenous model errors are understood as errors emerging from a poor model, e.g., due to
inaccuracy of model parameters or simply due to limited knowledge about the fundamental
processes. Consider again figure 1.2. The tree, represented in (a) by z1, has an intrinsic node
dynamics and splits into (x1, x2, x3) in the more detailed view (b), representing the treetop, trunk,
and roots. When we formulate a dynamic system with these three variables, we will encounter
endogenous model errors: In reality, each of the nodes will not be characterised by a real number,
but again show some complex dynamics that cannot be grasp by the three-dimensional nominal
system. Or, even if we knew all state variables that are sufficient to describe the real system
accurately, a precise description of all interactions is unrealistic to achieve. This limited knowledge
about the complex relations within the boundaries of the system lead to endogenous model errors.

Assume that
ẋ(t ) = g (x(t )) (1.25)

is a completely correct description of a system with N state variables and flow ηt (x0) and let

ẋ(t ) = f (x(t )) (1.26)

be the nominal model. The model error can be written as

w (t ) := g
(
ηt (x0)

)− f
(
ηt (x0)

)
(1.27)
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1.2 Quantifying Model Errors

Figure 1.2: A vicinity of a tree becomes a nominal system.
Public domain (L;) found at [31] were used. (a) A schematic illustration of the multiple state variables
zi of the complex system. We are interested in the vicinity of a single forest, illustratively described by
the variables z1, z2, z3. The boundary of the subsystem are drawn basing on our intuitive understanding,
however, without mathematical reason. Furthermore, the boundary is an imaginary line but not a physical
barrier. Hence, the interactions with the other state variables are not affected. (b) In the nominal model, the
tree appears to be a standalone system.

such that we can again define an augmented model

ẋ(t ) = f (x)+w (t ) . (1.28)

The flow of this augmented model again matches the correct flow ηt (x0) exactly.

1.2.3 Endogenous or Exogenous?

In the discussion above it has been shown that endogenous and exogenous model errors both lead
to an augmentation of the nominal model. This clearly implies the advantageous fact that both
kinds of errors can be treated with the same methodology so that we can merely speak of structural
model errors, disregarding their origin. However, it comes to the cost that we cannot distinguish
endogenous from exogenous errors directly. In [21, 22] the analysis of correlations between the
estimated model error and the state variables for the biochemical JAK-STAT system lead to the
strong indication that the observed model error emerges from an unknown feedback loop in the
system. Correlations, or anticipating the next chapter, differential-algebraic dependencies between
the model error and the state variables may indicate its endogenous nature. For a large system
and complex dependencies such an analysis might become practically infeasible, though. Also an
exogenous model error can be assumed to be produced by some dynamic exo-system, as there
is hardly any function, more precisely only the hyper-transcendental or differential-algebraically
transcendental functions, which does not behave like any dynamic system, see for instance [32] for
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Chapter 1 Structural Model Errors Emerge

an early treatment. To finally understand the model error we would have to model the exo-system
itself. Approaches to find the governing equations for observed state variables [33] could be applied
to the numerical estimates for an exogenous model error.

The knowledge whether a model error is endogenous or exogenous is clearly informative for
the design of new or more precise experiments. As well is a functional form for the so far only
quantitatively estimated model error w beneficial in order to formulate an improved, predictive
model. This thesis focuses on the reconstruction of model errors in the sense of finding an estimate
for the unknown input function w . The aforementioned analyses utilise methods which base on
a trustworthy estimate for the time course of the errors and may therefore be subsequent goals
which lie beyond the scope of this thesis.

1.3 Reconstruction of Model Errors

The discussion of endogenous and exogenous model errors above has shown that both can be
remedied by augmentation of the nominal model with an additional unknown input w : T →R

N .
Approaches for the same purpose have been presented in [34]. The augmentation of an ordinary
system makes it loose its quality to be ordinary.

Definition 2 A system of the form
ẋ(t ) = f (x(t ))+u(t )

x(t ) = x0

y(t ) = c(x(t ))

(1.29)

is called a state space input-output system.

Originating in the theory of control systems in engineering and cybernetics, see the standard
textbooks [27, 35] for a good overview over multi-input control, systems of the form above have
been object of research for several decades.

Inputs The nomenclature of the unknown input that compensates model errors as w is chosen
for historical reasons [21]. In the broader setting of input-output systems, we stick to the common
terminology that u represents an input of the system. In analogy to the trajectory and output space
of a dynamic system, we introduce the input space

U =U1 ⊕ . . .⊕UN (1.30)

where Ui represents all allowed input functions which possibly augment the i th component of the
differential equation.

Input-Output Map An input-output system can be interpreted as map

Φ : U →Y . (1.31)

If ϕu
t (x0) represents the flow of the system under input u, the input-output map can be written as

Φ(u)(t ) = c(ϕu
t (x0)) . (1.32)
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1.3.1 The Model Error Reconstruction Problem

Utilising the interpretation of structural model errors in terms of dynamic input-output systems,
we have everything ready to formulate the key problem of this thesis.

Model Error Reconstruction Problem (MERP) Let Φ : U → Y be the input-output map of a
state space input-output system and y data ∈Y be given data. Solve

Φ(u) = y data (1.33)

for u.

If we find an input w ∈U that solves this problem, it can be seen as a numerical estimate for the
model error of the nominal system.

In the last decades, the aim to solve what we call the Model Error Reconstruction Problem
has been treated independently from different perspectives: The contribution to this subject
from the engineering society is unmeasurable and only the publications with greater impact to
the present research can be mentioned. Focusing on the geometrical and algebraic properties
[36, 37, 38, 39, 40, 41, 42, 30, 43, 44, 45, 46, 47, 48, 49] present important developments of the field.
Textbooks [39, 50] give an overview with the focus on fault detection for engineering. The frontier
of generic and structural analysis has been pushed by [51, 52, 53, 54]. The application to biological
systems has been discussed for instance in [55, 12, 10, 56, 57, 58].

1.3.2 Significance of SEEDS

In the light of the aforementioned, broad literature which deals with the MERP in diverse ways, the
question arises in how much the present thesis contributes to the picture. To pick up the earlier
formulated aims of this thesis, the conditions for invertibility, the algebraic approach introduced
by Fliess [38] and the necessary structural condition by Wey [51] are refurbished and featured in
a consistent and complete way. Furthermore, the lacking proof for sufficiency of the structural
condition is provided.

As a new contribution, the Model Error Reconstruction Problem is treated with the methodology
of network science, yielding insights into the network principles of invertibility. From the results of
the network analysis, a practical sensor node placement algorithm is deduced.

A novel perspective is introduced by the finding that input-output systems are naturally equipped
with an intrinsic gammoid structure. This new found structure paves the way for the sparse sensing
of model errors.

The concept of error localisability is introduced as a relaxation of the error reconstruction. It is
closely related to a measure of coherence between the model errors and between the sensors with
which we observe the system.

Finally, a dynamic optimal control procedure which is inspired by classical optimal control
problems is proven to be capable of producing model error estimates as a dynamic variation of
compressed sensing.
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1.3.3 Example

For the numerical computations and simulations we used python with the popular numpy and
scipy packages. To see an example for the MERP consider figure 1.3. The equations of this toy
model are inspired by cell biological pathways but simplified and designed to make the results
clearer. The initial state is set as

x0 = 0. (1.34)

One can read the equations of the nominal model directly from the graph in subfigure (a), since
every arrow represents a linear interaction with strength a = 0.75 and every state variable has a
self-loop of strength b =−0.8. E.g., the right hand side for x5 is given by

f nominal
5 (x) = ax1 +ax7 −bx5 . (1.35)

The three measurable quantities y = (y1, y2, y3) are the state variables x2, x4, and x9. The initial
value is x0 = 0.

Nominal Flow The nominal model reflects our a priori knowledge of the system and does not
include the inputs w = (w1, w2, w3). The flow of the nominal system can easily be deduced as

ϕt (0) = 0 ∀t ∈ [0,T ] . (1.36)

So the nominal model rests in a fixed point and the outputs are constant zero

yi (t ) = 0 ∀t ∈ [0,T ] . (1.37)

True Flow The true system is usually unknown to the scientist, otherwise the MERP would be
pointless. To generate pseudo-experimental data, however, we have to define a ground truth. The
true system differs from our nominal guess only in the right hand side for x8, that is,

f true
8 (x) = ax5 +ax7 +ax11 −bx8 . (1.38)

Due to this, the flow of the true system differs from the constant zero nominal expectations. The
data points in subfigure (b) shows output y data of the true system observed at 10 discrete time
points. We added Gaussian noise with a relative standard deviation of 5% of the measured value.

Flow Correction One will realise that the data y data contradict the nominal model, as the
measurements do not yield a constant zero output. We augment the system in order to fit the
measurements. Let us, for simplicity, assume that we have three potential candidates for the model
error, as indicated by the wiggly arrows in subfigure (a). In the augmented model, the right hand
side for x5 reads

f augmented
5 (x , w ) = ax1 +ax7 −bx5 +w2 . (1.39)

Subfigure (b) shows the outputs of the augmented model for two choices of inputs. The two choices
of inputs are shown in subfigures (c) and (d). The dotted lines (with inputs (c)) and the solid lines
(with inputs (d)) show exactly the same results and match the data points perfectly. Thus, we have
found two solutions of the MERP.
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(a) (b)

(d)(c)

(e) (f)

Figure 1.3: An exemplary model error reconstruction. (a) The considered system. Each node xi represents
one state variable, each arrow represents a linear interaction with coefficient one. The wiggly arrows indicate
the additive inputs wi , the square nodes represents the measured outputs yi . The initial value is set to zero,
x(0) = 0. (b) The pseudo-experimental data of the system (a) and the corrected model with inputs from
(c, dotted lines) and (d, solid lines). (c) One choice of input functions applied as w1, w2, w3 to the systems
(a) and (e). The corresponding trajectory of the system is shown as dotted lines in (b) and (f). (d) Another
choice of input functions applied to the systems (a) and (e). The corresponding trajectory of the system
is shown as solid lines in (b) and (f). (e) A variation of the system (a). It differs in the output y3. (f) The
pseudo-experimental data of the system (f) and the corrected model with inputs from (c, dotted lines) and
(d, solid lines).
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Replaced Outputs Now consider the model from subfigure (e). This model is identical to the
model discussed above, with the only difference that we now measure the state variables x2, x4

and x6. Again, the nominal model has constant zero outputs. Subfigure (f) shows the pseudo-
experimental data points. The dashed and solid lines again show the outputs of the augmented
model with the inputs from (c) and (d). One can see that the dashed and solid lines do not coincide
this time. Output y3 with inputs from (d) matches the data points exactly. With inputs (c), however,
the output does not match the data points at all. Indeed, the input set from (d) is the only choice
that is able to produce the desired output.

Discussion of the Error Estimates Let henceforth an asterisk, represent the correct description
of the model error,

Φ(w∗) = y data . (1.40)

A hat, for instance ŵ , shall stand for our estimate of the model error. In the first model that was
discussed above, there are two choices of inputs, that produce exactly the same output

Φ(w (c)) =Φ(w (d)) = y data . (1.41)

Indeed, the theoretical results presented in a later chapter show, that there is an infinite dimen-
sional function space of solutions. It is therefore highly questionable, whether w (c) or w (d) can
serve as an estimate for the true model error w∗ at all. In contrast to that, in the second model,
subfigure (d) is the only input estimate that can correct the model flow

Φ(w (d)) = y data (1.42)

such that the outputs match the data points. Therefore, this estimate ŵ := w (d) must match the
true model error w∗, up to statistical uncertainties.

Whenever we know, that the estimate ŵ for the model error is unique, then it necessarily must
match the true model error w∗. And only the true model error leads to the correct estimate of the
system state. Therefore we can formulate

Φ(ŵ ) =Φ(w∗) ⇒ ŵ = w∗ . (1.43)

The uniqueness of solution for the MERP is therefore a crucial necessity for the credibility of the
error estimate.

1.3.4 Invertibility of a Dynamic System

As soon as one has found an algorithm to solve the MERP, it is possible to compute an estimate
ŵ for the model errors of the nominal system. One can then use this estimate to compute for
example the correct state of the system at any time t via

x(t ) =ϕŵ
t (x0) . (1.44)

But how trustworthy is this estimate? Say, there are two possible inputs u, v ∈U that both solve

Φ(u) =Φ(v ) = y data . (1.45)
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Which input should be considered the better estimate for the model error?
The first approach to answer this question is the rigorous claim for uniqueness of solution.

Necessarily, this unique solution must correspond to the model error. The treatment introduced by
Fliess [38] and Wey [51] yielded conditions which will be in the focus of the following two chapters.
Therein as well as in the aforementioned literature, the term invertibility of dynamic systems has
been established to express the uniqueness of solution.

The second approach is to introduce a regularisation strategy to obtain an ordering among
all solutions such that we can choose the most preferable one. Engelhardt et. al [21, 22] have
presented the Dynamic Elastic Net and the Bayesian Dynamic Elastic Net which both consider a
dynamic version of the Dynamic Elastic Net which was originally presented to compute sparse
and smooth estimates for static problems [59]. With the focus on signal reconstruction [60, 61] and
signal recovery [62] regularisation strategies to get an optimal representation have been discussed.

Invertibility

Definition 3 An input-output system is called invertible, if any solution of the Model Error Recon-
struction Problem is unique.

The definition above focuses in the intuitive understanding of invertibility as the counterpart of
the problem of degenerated solutions of the MERP. It, however, deserves substantiation in form
of testable conditions in order to decide whether a concrete system is invertible or not. So far,
dynamic systems are formulated as state space models which can be interpreted as an input-output
mapΦ : U →Y . This brings us the first implementation of invertibility.

Definition 4 Let Φ be the input-output map of a state space input-output system. The system is
called analytically invertible ifΦ is one-to-one.

In the following chapter, two other representations of dynamic systems with their own varieties of
invertibility, namely differential-algebraic and structural invertibility, will be discussed.

Robustness of the System Inversion In advance to a closer investigation of dynamic systems, a
fundamental mathematical theorem unveils an issue intrinsic to the MERP. Hadamard [63] defined
a well-posed problem by three conditions:

1. There is at least one solution.

2. There is at most one solution.

3. The solution depends continuously on the parameters.

Point one is silently assumed in this thesis. And this assumption is not an issue, since as soon
as we see a deviation of the experimental data from the theoretical predictions, we deduce the
existence of a model error. And as we have already seen that any model error can be understood as
an additional input w to the system, we know that there exists at least one solution for the MERP
for the given data. The second point is clearly equivalent to invertibility and hence in the focus of
the following chapters. Point three has not been discussed, yet.
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The input reconstruction problem belongs to the class of inverse problems. Let us assume, the
operatorΦ is linear. Given that the Hadamard conditions one and two are fulfilled, there exists an
inverse mapΦ−1 and the unknown input w can be inferred via

Φ−1(y data) = w . (1.46)

A problem arises from the fact thatΦ : U →Y is a Hilbert-Schmidt operator [5], see also [64] for a
comprehensive textbook, given that the vector field is sufficiently smooth. Therefore,Φ : U →Y

is a compact operator between infinite-dimensional spaces. It is a generally valid fact for such
operators [64] that the inverse Φ−1 : Y →U is not continuous. Hence, even if the operator Φ is
linear and (left and right) invertible, we still have to face an ill-conditioned problem.

The issue of an ill-conditioned inverse problem is intrinsic to the model error estimation, as the
input space and output space are both infinite dimensional. In praxis, the presence of measure-
ment noise as well as numerical stiffness of the system make it hard to solve the inverse problem.
Though a closer look on these issues is highly relevant before we can investigate the MERP in
practical situations, there are still theoretical advances to make, thus let us for the moment assume
the ideal, noiseless case.
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CHAPTER 2

Differential-Algebraic Invertibility

Though many stones dœ bear greate price,

The whetstone is for exersice

As neadefull, and in woorke as straunge:

Dulle thinges and harde it will so �aunge,

And make them sharpe, to right good use:

All artesmen knowe, thei can not �use,

But use his helpe: yet as men see,

No sharpenesse semeth in it to bee.

Robert Recorde, The Whetstone of Witte [65]

The grounde of artes did brede this stone

His use is greate, and moare then one.

Here if you lift your wittes to whette,

Mo�e sharpenesse therby shall you gette.

Dulle wittes hereby dœ greately mende,

Sharpe wittes are fined to their fulle ende.

Now proue, and praise, as you dœ finde,

And to your self be not unkinde.

Going back to the very outset of dynamic systems as entities and interactions, one will agree that
the mathematical representations of dynamic systems can be divers. The state space form is without
doubt the most prominent representation, for it works with the state variables xi as functions of
time and with the vivid geometrical understanding of trajectories through space. This chapter will
employ the theory of differential-fields and formulate a dynamic system as a differential-algebraic
problem. Differential-algebra was invented by Ritt [66] and mainly investigated by Ritt, Kolchin
[67] and Kaplansky [68], who already made the statement [68]:

Differential algebra is easily described: it is (99 per cent or more) the work of Ritt and
Kolchin.

The differential-algebraic treatment of dynamic systems was established by Fliess [38], see also
[69] for a later, comprehensive review by him. This chapter shall therefore be understood as an
essay on a concise demonstration of a differential-algebraic toolbox adjusted to handle dynamic
systems rather than a contribution to differential-field theory; especially for non-linear systems,
when it is not possible to write down the input-output mapΦ, or if parameters of the model are
not known precisely, the differential-algebraic treatment offers powerful theorems and insights
into dynamic systems. The novel contribution that utilises this toolbox will then be the result of
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chapter 3.

The Exponential As an illustrative example, let us briefly motivate the step from state space to
differential-algebra. In state space, the laws that govern the system’s behaviour are formulated as
differential equations. For instance, exponential growth is described by

ẋ(t ) =αx(t ) . (2.1)

It is well known from the earlier mentioned Picard-Lindelöf theorem that there is one and only one
solution for each initial value x0 ∈R, here

x(t ) = x0eαt = x0

∞∑
k=0

(αt )k

k !
. (2.2)

We rewrite equation (2.1) to achieve a more algebraic style by replacing the function x by an
indeterminate X , so that the equation becomes

d

d t
X =αX . (2.3)

The latter equation does not appear to add much to the understanding of the exponential function.
Actually, it leads to the question how we can apply a derivation-operator, which actually stems
from Analysis, to an algebraic indeterminate. With differential-algebra, it is possible to bring this
two worlds together.

More than that, whereas equation (2.1) is usually understood as an equation inR, the differential-
algebraic version (2.3) can be formulated over any differential-field. Differential-fields are, for
instance, all rational functions of time, or the Laurent-polynomials. Also equations from physical
field theory, for instance from thermodynamics, fluid dynamics or Maxwell’s theory of electro-
magnetism, see [70, 71, 72] for textbooks, respectively, can be written as (partial-)differential-
polynomials. The solution of equation (2.1) with α not being a real number but an element of a
differential-field leads to a completely different solution from the Analysis point of view. However,
the algebraic structure of this equation and hence of the solution remains the same.

2.1 D-Algebra for Dynamic Systems

Henceforth, the attribute differential will be abbreviated d. The attribute classical emphasises the
non-differential nature of some algebraic object. In several publications, Fliess utilised d-algebra
in his treatment of dynamic control systems, consider his review [69] and references therein. The
control of dynamic systems means to steer the system into a desired state by applying additional
input signals. This is the point of view for many engineering-motivated applications, but obviously
it is mathematically equivalent to structural model errors which also act like additional inputs to
the system. Thus, the reverse engineering problem, i.e., the inference of the control inputs from the
system’s trajectory, is equivalent to the MERP.

Before we can make use of the rich results from the d-algebraic treatment of input-output
systems, it is necessary to discuss the basic terminology of d-algebra and to see how a state space
system is translated into the d-algebra setting.
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2.1 D-Algebra for Dynamic Systems

2.1.1 d-Rings and d-Fields and d-Ideals

d-Rings

Definition 5 A ring R is understood as a set with addition “+” and multiplication “·” and with
neutral elements 0 and 1, respectively, i.e.,

a +0 = a , 1 ·a = a , (2.4)

and such that the properties

1. For a ∈R there is an (−a) ∈Rwith a −a := a + (−a) = 0

2. a +b = b +a and ab = ba

3. a(b + c) = ab +bc

hold. If additionally there is a derivation

∂ :R→R (2.5)

that is linear and fulfils the Leibniz-rule

∂(ab) = ∂ab +a∂b (2.6)

thenR is called a d-ring.

Example (Constant Rings)

Any (classical) ringR can be equipped with a derivation for which we define ∂a = 0 for
each element a ∈R.

In a given d-ringR one can define the constants as those elements a which fulfil ∂a = 0.
Consider

∂(1 ·a) = ∂(1) ·a +1 ·∂a (2.7)

to see that the unit element 1 ∈R is necessarily a constant.

Thus, every classical ring is also a (constant) d-ring, and every d-ring has a constant
hence classical sub-ring.

This first example has shown that classical rings are a special case of d-rings. Subsequently it is
plausible that many properties and theorems from classical algebra can be extended or modified
for d-algebra. The second example demonstrates how we can compute maxima of a Laurent-
polynomial without computing derivatives, but just through d-algebraic operations.

Example (Laurent Polynomials)

Consider the ring of Laurent-polynomials

p(s) = a1
1

s
+a2

1

s2 + . . .+an
1

sn (2.8)
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Chapter 2 Differential-Algebraic Invertibility

with real or complex coefficients ai . The derivation ∂ := d/d s seems natural. But the
derivation operator can also be written directly as multiplication

∂ :
1

sn 7→ −n

s

1

sn . (2.9)

d-Fields

Definition 6 If K is a ring that has also a multiplicative inverse a−1 ∈K

a ·a−1 = 1 (2.10)

for each element a , 0, then K is called a field. If K is equipped with a derivation, it is called a
d-field.

Example (Meromorphic Functions)

Consider the set of meromorphic functions of x, i.e., functions that are holomorphic
except for poles. Meromorphic functions together with the derivation ∂ := d/d x form a
d-field.

d-Indeterminates Now let R be a d-ring with derivation ∂. If we consider an indeterminate
X , this indeterminate has to be consistent with the differential structure ofR. In d-algebra, a d-
indeterminate X represents a whole family {X (0), X (1), . . .} which respects the differential structure
through

∂k X = X (k) . (2.11)

Example (Exponential Growth)

LetR be a d-ring,α ∈R and X a d-indeterminate. Intuitively we would call the solution
of

∂X −αX = 0 (2.12)

the exponential function exp(α).

For the caseR=R and ∂= d/d t , we find the well-known exponential function

X = eαt = 1+αt +α2 t 2

2
+α3 t 3

6
+ . . . (2.13)

is a solution.

For the case of a non-constant d-fieldR, e.g., again the Laurent-polynomials we can
define the exponential of a non-constant α ∈R. For α= 1/s we find

exp

(
1

s

)
= s (2.14)
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2.1 D-Algebra for Dynamic Systems

and for α= 1/s2

exp

(
1

s2

)
= e−

1
s . (2.15)

When we consider several d-indeterminates X1, . . . , XN , we prefer the notation as vector

X = (X1, . . . , XN ) . (2.16)

We do this for two for two reasons: First, for consistency with the state space notation where the
state x is also vector valued. So a trajectory x is one possible value for the d-indeterminate X .
Second, though the sorting of the d-indeterminates is arbitrary, in a concrete case it is convenient
to have a fixed ordering.

d-Polynomials

Definition 7 Let K be a d-field and X a d-indeterminate. A sequence α = (α0,α1, . . .) in N0 that
converges to zero can be understood as multi-index for the d-indeterminate. We call

Xα := Xα0 (∂X )α1

(
∂2X

)α2
(
∂3X

)α3
. . . (2.17)

a d-term and
c Xα (2.18)

with c ∈K a d-monomial. The degree of a d-term is

deg Xα =
∞∑

k=0
αk (2.19)

and the order
ord Xα = max

αk,0
k . (2.20)

Let A be a finite set of multi-indices and cα ∈K, then

p(X ) := ∑
α∈A

cαXα (2.21)

is a d-polynomial in X over K. For a d-ringR the d-polynomials in X areR{X }. The polynomials,
d-polynomials of order zero, are denotedR[X ].

The quotient field of R[X ] is R(X ). The quotient field of R{X } is R〈X 〉.
Consider a differential equation

ẋ(t ) = a0 +a1x(t )+a2x2(t )+ . . .+an xn(t ) (2.22)

where in many practical cases ai are real coefficients. The differential equation would then be
autonomous. In the d-algebraic framework, the coefficients can come from a d-ring R. For
instance, coefficients from the d-ring R = R{t } with derivation ∂ = d/d t make the differential
equation non-autonomous. We can formulate the d-polynomial p(X ) ∈R{X }

p(X ) = ∂X − (a0 +a1X +a2X 2 + . . .+an X n) (2.23)
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Chapter 2 Differential-Algebraic Invertibility

and find, that if a function x solves (2.22), then it is a root of the d-polynomial, i.e., p(x) = 0.

d-Ideal

Definition 8 LetR be a d-ring and r1, . . . ,rN ∈R. The d-ideal generated by r1, . . . ,rN is the set

I(r1, . . . ,rN ) :=R{r1, . . . ,rN }\R , (2.24)

that is, the d-polynomials in r1, . . . ,rN without constant term. The quotient ring

R∼r1,...,rN
:=R/I(r1, . . . ,rN ) (2.25)

is understood as the elements fromR together with the identification

a ∼ b
De f⇔ q = p +ω (2.26)

with ω ∈I(r1, . . . ,rN ).

For simplicity we will introduce the signR∼ whenever there is no confusion about how the d-ideal
is generated. If a d-field is the quotient field of a ring, for instance K〈X 〉 is the quotient field of the
d-ring K{X }, then K〈X 〉∼ denotes the quotient field of the quotient ring K{X }∼.

In the treatment of dynamic systems, d-ideals can be utilised to ensure that the calculations
respect the dynamics of the system. For instance, consider the d-polynomials over (R, d/d t),

p(X ,Y ) = X (1) −Y (0)

q(X ,Y ) = Y (1) +X (0)
(2.27)

and the d-idealI(p) ⊂R{X ,Y }. Since p ∈I(p), also ∂p ∈I(p). Hence in the quotient ringR{X ,Y }∼p

q(X ,Y ) ∼ q(X ,Y )+∂p(X ,Y ) = X (2) +X (0) . (2.28)

We have reformulated the d-polynomial q with respect to the dynamics dictated by p and by this
reduced the number of d-indeterminates and d-polynomials needed to describe the system.

Insensitivity to Initial Values Let us continue with the d-polynomial q(X ) from above to discuss
one characteristic of the d-algebraic approach, which can be advantageous but also disadvantage-
ous under certain circumstances. The flow of a system is a solution of the governing differential
equations (in state space) or, equivalently, a root of the corresponding d-polynomials.

We find, that both, sin(t ) as well as cos(t ) are roots of the d-polynomial q(X ). This is plausible
since both functions solve the same differential equation and merely differ in their initial value.
Still, to formulate the general solution of the differential equation

ẍ(t )+x(t ) = 0 (2.29)

both must be considered.
In the treatment of model errors, this insensitivity leads to the advantage that the results obtained

by d-algebra are independent of the initial state of the system. Hence they have a higher generality
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2.1 D-Algebra for Dynamic Systems

compared to the analytic invertibility of the input-output mapΦ since

Φ(u) = c(ϕu
t (x0)) (2.30)

might be one-to-one for some initial values but for others it may not.

Example (Pathological Initial Value)

Consider the small state space system

ẋ(t ) = u(t )−x(t )

y(t ) = x2(t )
(2.31)

with some initial value x0. The input-output map for this system is

Φ(u) =
(

x0e−t +
∫ t

0
eτ−t u(τ)dτ

)2

. (2.32)

One will realise that if x0 = 0, thenΦ(u) =Φ(−u) and the system is therefore analytically
not invertible. However, for non-zero initial values x0 , 0, the map is one-to-one,
hence in most cases the system is analytically invertible.

At a later point we will introduce the notion of d-algebraic invertibility. The d-algebraic
treatment leads to a d-polynomial in U over R〈Y 〉

p(U ) =(U −U (1))Y (3) + (U −2U (1) +U (2))Y (2) + (2U −3U (1) +U (2))Y (1)

+ (3U (U (1))2 −U 2U (1) −2U 2U (2))
(2.33)

for which, with respect to the d-ideal of the system,

p(U ) ∼ 0. (2.34)

One will see that the d-algebraic approach does not cover the case of a pathological
initial value, but it makes a general statement about the algebraic dependencies within
the system.

2.1.2 From State Space to d-Algebra

Utilising the language developed so far, we have everything ready to formulate a dynamic system in
d-algebraic language. State space systems are usually formulated over the real numbers R, possibly
with explicit time-dependence. Hence, we consider the d-field R〈t〉 and derivation ∂ := d/d t .

In the naive reformulation the state space equation

ẋi (t ) = fi (t , x(t ),u(t )) (2.35)

is translated into
qi (X ,U ) := X (1)

i −pi (X ,U ) . (2.36)
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At this point we make the assumption, that fi is a polynomial in the variables x and u, e.g., the
vector field component

fi (x, t ) = e−t x(t ) (2.37)

is translated into a polynomial p(X ) ∈R〈t〉{X }

p(X ) = aX (2.38)

with a coefficient a ∈ R〈t〉. The case of non-polynomial fi will be discussed subsequently. The
observables of the system can be characterised through the polynomials

h j (Y j , X ) = Y j − c j (X ) (2.39)

where c j is a component of the state space measurement function. It turns out convenient and
without loss of generality to interpret

Y ⊆ X . (2.40)

For the d-algebraic formulation it makes no difference whether the state space system is autonom-
ous or not, it might even be formulated over any other d-field.

2.2 Ordinary d-Algebraic Systems

The ordinary state space system has been introduced in chapter one as the standard form for
nominal models. Reformulated in d-algebra language, the state space equations always lead to a
very specific form of d-polynomials,

qi (X ) = X (1)
i −pi (X ) (2.41)

where pi is a classical polynomial.
One might come to the conclusion that d-algebraic systems can be much more complicated, for

instance including higher order derivatives with a higher degree. Soon it will be shown that we
find a standard form for ordinary d-algebraic systems which serve as nominal models. We discuss
the connection between ordinary systems and the d-transcendental degree of d-algebraic d-field
extensions which will turn out to play a central role in the d-algebraic invertibility theory.

2.2.1 Ordinary System

Definition 9 Let K be a d-field and X = (X1, . . . , XN ) state d-indeterminates. A system of the form

qi (Xi ; X ) = X (1)
i −pi (X ) (2.42)

with pi ∈ K[X ] and i = 1, . . . , N together with a set of observables Y ⊆ X is called an ordinary
d-algebraic system.

In the term above we introduce the notation qi (Xi ; X ), meaning it contains X (1)
i as leading term

plus some classical polynomial expression in X . To see that ordinary d-algebraic systems are
indeed a standard form, the following paragraphs show how non-ordinary systems can be brought
into the desired form.
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2.2 Ordinary d-Algebraic Systems

Observables Assume we have an ordinary system with state indeterminates X and d-polynomials
q1, . . . , qN , but the observable Y is characterised by

h = Y − c(X ) (2.43)

where c ∈K{X }. We can introduce a new d-indeterminate Ỹ and set X̃ = (X1, . . . , XN ,Y ). Via

q̃(Y ; X̃ ) := ∂h = Y (1) −∂c(X̃ ) (2.44)

we can interpret Y as a state indeterminate and characterise the new observable by

h̃ = Ỹ −Y . (2.45)

In the d-ideal I(h̃) we identify
Ỹ ∼ Y (2.46)

hence we can equivalently write Ỹ ⊆ X̃ . One will realise that the system is not yet ordinary due to
the term ∂c(X̃ ), which is not necessarily a classical polynomial, as required for ordinary systems.

d-Rational qi As a first case, consider qi a d-rational in K〈X 〉. Since K〈X 〉 is the quotient field of
K{X }, there are d-polynomials q̂i and q̃i such that

qi =
q̂i

q̃i
(2.47)

Due to the absorption property of the d-ideal I(qi )

qi ∼ qi q̃i = q̂i , (2.48)

hence qi ∼ q̂i . This shows that the d-ideals I(qi ) and I(q̂i ) are equivalent. Hence it is sufficient to
consider d-polynomials.

Higher Order d-Polynomial qi Now let q ∈K〈X 〉 be a higher order d-polynomial. For better
readability a single indeterminate X is considered; the extension to the multivariate case is straight-
forward. Let m be the order of q(X ). Without loss of generality we can assume that X (m) appears
linearly in q since if

q(X ) = . . .+p(X )(X (m))n , (2.49)

where p is of order at most m −1, then

∂q(X ) = . . .+∂p(X )(X (m))n +np(X )(X (m))n−1X (m+1) . (2.50)

The latter expression has a leading term X (m+1) of degree one. As a d-ideal I is closed in the sense

q ∈I⇒ ∂q ∈I , (2.51)
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Chapter 2 Differential-Algebraic Invertibility

the shift from q to ∂q causes no issue. For k = 1, . . . ,m − 1 each derivation ∂k X is going to be
replaced by a new d-indeterminate Zk . We set Z := (X , Z1, . . . , Zm−1) and

q0(X ; Z ) := X (1) −Z1 (2.52)

and for k = 1, . . . ,m −1
qk (Zk ; Z ) := Z (1)

k−1 −Zk . (2.53)

In q(X ) we replace each X k with Zk for k = 1, . . . ,m −1 to get

q(Z ) = f (Z )+ g (Z )Z (1)
m−1 (2.54)

where f and g have order zero. From this we define

q̃(Zm−1; Z ) = Z (1)
m−1 −p(Z ) , (2.55)

with p(Z ) =− f (Z )/g (Z ).

Rational Vector Field Consider

q(X ; X ) = X (1) − f (X ) (2.56)

where f (X ) ∈K(X ). The extension to the multivariate case is again straightforward. Since f is a
rational, we can write

f (X ) = p(X )

g (X )
(2.57)

with two polynomials p, g ∈K[X ]. We define

q1(X ; X , Z ) := X (1) −p(X )Z

q2(Z ; X , Z ) := Z (1) +Z 2
(
∂g

∂X
p(X )Z + (∂g )(X )

)
.

(2.58)

Above we applied the finding that for a polynomial

g (X ) = a0 +a1X + . . .+an X n (2.59)

the derivative
∂(g (X )) = ∂a0 +∂a1X +a1∂X + . . .+∂an X n +annX n−1∂X (2.60)

can be written as

∂(g (X )) = ∂g

∂X
∂X + (∂a0 +∂a1X + . . .+∂an X n)︸                               ︷︷                               ︸

=:(∂g )(X )

. (2.61)

One will see that with respect to the d-ideal I(q1, q2) ⊆K〈X , Z 〉

Z ∼ 1

g (X )
(2.62)
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and thus it is equivalent to the original d-ideal I( f ) ⊆K〈X 〉.

d-Algebraic Function Finally, let f : X 7→ f (X ) be a function that fulfils any differential equation
over K as a classical field. For simplicity only the univariate case is demonstrated. The differential
equation that f fulfils can be understood as a d-polynomial h in the d-field (K,∂X )

h(L) =∑
α

cαLα0 (∂x L)α1 . . . . (2.63)

Let m be the order of this d-polynomial. Now we replace the derivative ∂k
X L by a new d-indeterminate

Zk so that we obtain a polynomial h̃(Z ) ∈K[Z ]. We also introduce

qk := Z (1)
k −Zk+1X (1) (2.64)

for k ∈N0 up to a sufficiently large number, which represents the chain rule

∂ f (X ) = (
∂X f (X )

)
∂X . (2.65)

We find that
K〈X 〉∼ f =K〈X , Z 〉∼h̃,q0,q1,... . (2.66)

We can now bring h̃ into standard form as shown above so that we achieve an ordinary system that
is equivalent to the original one.

2.2.2 Generating Systems

An important role is played by what will be called a generating system. The concept of generating
systems is similar to the idea of polynomial generators which was discussed in [73]. However,
the treatment therein is limited to the field R. In the following, a more general version for arbit-
rary d-fields is presented. With respect to that we need to introduce the idea of algebraic and
transcendental elements of field extensions first.

Definition 10 Let the field K be a proper subset of another field L. The symbol L/K is called a field
extension. An element l ∈ L is called algebraic over K if there is a polynomial p(X ) ∈K[X ] such that

p(l ) = 0. (2.67)

If l is not algebraic, it is called transcendental. If each element of L is algebraic, L/K is called an
algebraic field extension.

Moreover, L/K is a d-field extension if L and K are d-fields. An element l ∈ L is d-algebraic if
there is a d-polynomial p(X ) ∈K{X } such that

p(l ) = 0. (2.68)

Else it is called d-transcendental and if each element is d-algebraic, the d-field extension is called a
d-algebraic d-field extension.

In classical algebra, there is a connection between finite and algebraic field extensions. In d-
algebra, a single d-indeterminate represents infinitely many classical indeterminates. Hence, the
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Chapter 2 Differential-Algebraic Invertibility

concept of finite fields is not applicable. The following idea of generating system however seems to
provide an appropriate alternative. Generating systems will enable us to proof d-algebraic versions
of theorems which are known in classical algebra and whose proof actually utilises the connection
between finite and algebraic field extensions.

Definition 11 Let L/K be a d-field extension and y ∈ L. A system

qi (Xi ; X ) = X (1)
i −pi (X ) (2.69)

with i = 1, . . . , N and X1 ∼ y is called a generating system for y.

Proposition 1 Let L/K be a d-field extension. If y ∈ L is generated by a system over K, then it is
d-algebraic over K.

Proof Consider the generating system

qi (Xi ; X ) = X (1)
i −pi (X ) (2.70)

for i = 1, . . . , N and
y ∼ X1 . (2.71)

At this point it is more convenient to replace the latter by

h = y −X1 (2.72)

and consider the d-ideal I(q1, . . . , qN ,h), for short denoted I. We understand

y ∼ X1 (2.73)

as a replacement rule for X1. The derivative

∂h = y (1) −X (1)
1 (2.74)

is again in I. With respect to the d-ideal we can now replace X (1)
1 with p1(X ) and therein each

appearance of X k
1 with yk . This yields a d-polynomial h̃ ∼ ∂h in K〈y〉[X2, . . . , XN ].

We now show, how to eliminate X2 from this field to get a d-polynomial in K〈y〉[X3, . . . , XN ]. As
an initial step set h[0] := h̃. By construction it is clear that h[0] ∈ I and that it has some degree r
with respect to X2. We will now give an constructive algorithm that reduces the degree. Assume
deg(h[m]) = r , 0 and h[m] ∈I, so there are coefficients ck ∈K〈y〉(X3, . . . , XN ) such that

h[m] =
r∑

k=0
ck X k

2 . (2.75)

The latter can be written as

X r
2 = h[m] −

r̃∑
k=0

ck

cr
X k

2 (2.76)
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with r̃ < r . Applying the derivation to h[m] yields

∂h[m] =
r∑

k=0
∂ck X k

2 +
r∑

k=0
ck∂X k

2 . (2.77)

Within the d-ideal we can replace any derivations ∂Xi with pi (X ) so that we get a classical polyno-
mial again.

Equation (2.76) gives evidence that any monomial of degree r or higher can be replaced by a
polynomial of degree r̃ , so

∂h[m] ∼
r̃∑

k=0
c̃k X k

2 . (2.78)

Since ∂h[m] ∈ I, so is (X2∂h[m]) and the right hand side is of degree r̃ +1. Multiplying with X2

sufficiently often yields a polynomial of degree r −1. Therefore, there exists a

h[m+1] ∼ X r−1−r̃
2 ∂h[m] , (2.79)

with h[m+1] ∈I of degree r −1.
We have constructed a sequence of polynomials in the d-ideal Iwith degree decreasing by one

in each step, until we reach degree zero. In this manner, we can eliminate X3, . . . , XN step by step
and finally find some h∗ which is in K〈y〉 and also in I. The denominator of h∗ = ĥ∗/h̃∗ can be
interpreted as a d-polynomial ĥ∗(Y ) ∈K{Y } for which we find

ĥ∗(y) ∼ 0 (2.80)

hence y is d-algebraic over K.
■

Proposition 2 Let L/K be a d-field extension. If y ∈ L is d-algebraic over K, then there is a system
over K that generates y.

Proof The proof was already presented before the generating system was introduced: Say there is
some higher order d-polynomial f (Y ) ∈K{Y } with

f (y) = 0. (2.81)

We have seen that there is a set of order one d-polynomials

qi (Xi ; X ) = X (1)
i −pi (X ) (2.82)

with X1 = y and a rational pi (X ). Then we have shown that the rational pi can be made polynomial.
■

The two propositions are already hinting towards a way of treating the invertibility problem: If
we were able to proof that a model error, more precisely the d-indeterminate Ui which represents
the i th component of the input vector, is d-algebraic over some known d-field, then there existed a
generating system with an estimate of the model error as its output. Say, the nominal model is for-
mulated as an ordinary system in the state d-indeterminates X plus some input d-indeterminates
U over a d-field K, and Y ⊆ X represent the output of the system. Then the d-field K〈Y 〉 incorpor-
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ates all known or measured quantities. Hence the generating system for Ui does not have to be a
system over K, but we can use the observables and construct a generating system over K〈Y 〉. A
comparable statement about the existence of left-inverse systems for invertible dynamic systems
can be found in the seminal Fliess paper [38].

2.2.3 Differential-Transcendence Degree of Ordinary Systems

Ordinary systems serve as the standard form for d-algebraic systems. They are the direct translation
of ordinary state space systems and serve as nominal models. In state space, the Picard-Lindelöf
theorem ensures the existence and uniqueness of the flow of such a system: The behaviour of
the system is completely determined by the initial value, and clearly by the governing differential
equations.

The fact that there is nothing arbitrary in the behaviour of the system corresponds to a vanishing
d-transcendence degree in the d-algebraic formulation. Vividly spoken, the transcendence degree
can be seen as a measure for arbitrariness. Ordinary systems lack this arbitrariness as we will
show below. The introduction of an unknown input Ui is accompanied by an increment of the
d-transcendence degree while the introduction of an output Y j can, but does not need to decrease
the d-transcendence degree.

Simple d-Algebraic Field Extensions A first lemma in our proof that ordinary systems lack any
algebraic transcendence is the following result about extensions of d-fields with an d-algebraic
element. The classical version is well known, see for instance a standard textbook on algebra [74].
The proof facilitates the connection between finite and algebraic field extensions, which is missing
in the d-algebraic setting. However, the fact that an d-algebraic element can be replaced by its
generating system helps out.

Lemma 1 Let l be a d-algebraic element of the d-field extension L/K. Then K〈l〉/K is d-algebraic.

Proof Since l is d-algebraic, according to proposition 2 there is a generating system with d-
indeterminates X and d-polynomials q1, . . . , qN over K with

l ∼ X1 . (2.83)

Now let
m ∈K〈l〉 . (2.84)

Utilising equation (2.83) we replace l with X1 to get a d-rational r (X1) ∈K〈X1〉. With respect to the
d-ideal I(q1, . . . , qN ) we find that

p0(X ) := ∂r (X1) (2.85)

can be written as a polynomial of order zero. We additionally introduce the d-indeterminate X0

and
q0 := X (1)

0 −p0(X ) (2.86)

and find that m ∼ X0 with respect to I(q0, . . . , qN ). We have constructed a system that generates m,
so m is d-algebraic over K due to proposition 1.

■
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Differential Tower Formula A d-field tower M/L/K is a nested d-field extension, i.e., M/L and
L/K are d-field extensions. As an example, consider a d-field K and elements a1, . . . , an of some
d-field extension L/K. The extension K〈a1, . . . , an〉/K can also be interpreted as a tower of simple
extensions

K〈a1, . . . , an〉 =K〈a1, . . . , an〉/K〈a1, . . . , an−1〉/. . ./K〈a1, a2〉/K〈a1〉/K (2.87)

that is, K is first extended by a1, then K〈a1〉 is extended by a2 and so forth. The following lemma
proves the plausible fact that any tower of d-algebraic d-field extensions is again d-algebraic.

Lemma 2 Let M/L and L/K be two d-algebraic d-field extensions. Then M/K is also d-algebraic.

Proof Let m ∈M. Since m is d-algebraic over L, there are coefficients dα ∈ L with α from a finite
set A of multi-indices, such that

p(M) = ∑
α∈A

dαMα (2.88)

has m as a root. Since each dα is d-algebraic overK, according to proposition 2 there is a generating
system over K for each dα. Let αX = (αX1, . . . ,αX Nα

) and αq1, . . . ,αq Nα
characterise the generating

system for dα. Inserting dα ∼ αX 1 into p(M) yields

p̃(M) := ∑
α∈A

αX 1Mα (2.89)

and with respect to the d-ideal induced by all the d-polynomials αqi of the generating systems, we
find that

p0(αX |α ∈A ) := ∂p̃(M) (2.90)

can be written as a polynomial in K〈αX |α ∈A 〉{M }. Introducing X0 and

q0 := X (1)
0 −p0(αX |α ∈A ) (2.91)

leads to a generating system over K for m. Hence, m ∈M is d-algebraic over K.
■

One will realise that the proof of the latter theorem has some overlap to the proof of lemmas 1 and
3, which clearly lies in the fact that whenever we encounter a d-algebraic element, we can replace
it with its generating system.

One last lemma shall be presented before the d-tower formula is formulated. The following
lemma helps to handle the case of simple field extensions with a d-transcendental element.

Lemma 3 Let M/L/K be a d-field tower and L/K a d-algebraic d-field extension. Let furthermore
b ∈M be d-transcendental over K. Then L〈b〉/K〈b〉 is again a d-algebraic d-field extension.

Proof Let
m ∈ L〈b〉 (2.92)

which can be written as

m = m̂

m̃
(2.93)
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where m̂ and m̃ are d-polynomials of the form

m̂ = ∑
α∈A

d̂αbα (2.94)

and
m̃ = ∑

β∈B

d̃βbβ (2.95)

where d̂α, d̃β ∈ L. The following argumentation holds analogously for m̃. Since each d̂α is d-

algebraic over K, according to proposition 2, there is a generating system with αq̂i , i = 1, . . . , N̂α

and
d̂α ∼α X̂1 . (2.96)

We define the d-polynomial
u := ∑

α∈A
αX̂ i bα (2.97)

which is a d-polynomial in K〈b,αX̂ 1|α ∈A 〉. Analogously we find a

v =K〈b,βX̃
1
|β ∈B〉 . (2.98)

So for w := u/v we have
w ∈K〈b,αX̂ ,βX̃ |α ∈A ,β ∈B〉 . (2.99)

We can formulate the ordinary d-algebraic system over the field K〈b〉 consisting of all αq̂i ,βq̃
i

and

m ∼ w , (2.100)

which, according to proposition 1, is sufficient to say that there exists a d-polynomial f (M) ∈
K〈b〉{M } with

f (m) ∼ 0. (2.101)

Hence, m is d-algebraic over K〈b〉.
■

So far we have seen that the simple d-field extension K〈a〉/K with an d-algebraic element a can
only produce new d-algebraic elements. If b is d-transcendental over K it is clear that K〈b〉/K
is not d-algebraic. However, we have also seen that if in the d-algebraic extension K〈a〉/K both
sides are extended with b to K〈a,b〉/K〈b〉, the whole d-field extension remains d-algebraic. The
d-transcendence degree helps to quantify the problem of transcendences.

Definition 12 Let L/K be a d-field extension and l = (l1, . . . , ln) with li ∈ L. The elements of l are
called d-algebraically dependent over K if there is a (non-zero) d-polynomial p ∈K{L1, . . . ,Ln}
such that

p(l1, . . . , ln) = 0. (2.102)

If no such d-polynomial exists, l is called d-algebraically independent.

If l = (l1, . . . , ln) is the largest d-algebraically independent set, that is, if any l ′ = (l ′1, . . . , l ′n , l ′n+1)
is d-algebraically dependent, then l is called a d-transcendence basis and n the d-transcendental
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2.2 Ordinary d-Algebraic Systems

degree of the d-field extension,
d-tr-dL/K= n . (2.103)

Vividly spoken, the d-transcendence indicates how many simple field extensions are necessary to
make a d-field extension d-algebraic, as

L/K〈l1, . . . , ln〉 (2.104)

is d-algebraic if and only if (l1, . . . , ln) is a d-transcendence basis [66, 67].

The following theorem shall close the d-algebraic toolbox and finally allow us to tackle d-
algebraic invertibility.

Theorem 1 Let M/L/K be a d-field tower, then

d-tr-dM/K= d-tr-dM/L+d-tr-dL/K . (2.105)

Proof Let A = {a1, . . . , aR } be a d-transcendence basis of M/K, B = {b1, . . . ,bS} a d-transcendence
basis of M/L and C = {c1, . . . ,cT } a d-transcendence basis of L/K.

We know thatM/L〈B〉 is d-algebraic. AlsoL/K〈C〉 is d-algebraic, and due to lemma 3, L〈B〉/K〈B ,C〉
is d-algebraic. From lemma 2 we know that M/K〈B ,C〉 is algebraic. Since a d-transcendence basis
A is the smallest set such that M/K〈A〉 is d-algebraic, we find

R ≤ S +T . (2.106)

Now it is clear that C is a d-algebraically independent set over K: Assume C is d-algebraically
dependent over K. Without loss of generality, say, K〈C〉/K〈c2, . . . ,cT 〉 is d-algebraic. But L/K〈C〉
is d-algebraic by construction, so lemma 2 tells us that L/K〈c2, . . . ,cT 〉 is d-algebraic. This again
shows that any d-transcendence basis of L/K has at most T −1 elements. But that would contradict
the initial assumption that C is a d-transcendence basis.

Now assume C ∪ {b1} would be d-algebraically independent. Then b1 would be d-algebraic over
K〈C〉 ⊆ L. But b1 belongs to a d-transcendence basis over L and we have already seen, that B
must be d-algebraically independent over L. This implies that b1 must be d-transcendental over L.
Consequently, B ∪C is a d-algebraically independent set over K and therefore cannot be larger
than any d-transcendence basis of M/K, hence

S +T ≤ R . (2.107)

Therefore
R = S +T (2.108)

or in terms of d-transcendence degrees

d-tr-dM/K= d-tr-dM/L+d-tr-dL/K . (2.109)

■
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Application to Ordinary Systems Let us now apply the lemmas and theorems that we have
developed so far to prove that ordinary systems are indeed free of transcendence.

Theorem 2 The transcendence degree of an ordinary d-algebraic system is zero.

Proof Say the ordinary d-algebraic system over K comprises X = (X1, . . . , XN ) and d-polynomials
q1, . . . , qN . This system can be interpreted as generating system for X1, or after redefining the index,
as generating system for any Xi ∈ X . From proposition 1 it follows, that each Xi is d-algebraic over
K, with respect to I(q1, . . . , qN ). Write the d-field extension K〈X 〉∼/K as a tower

K〈X 〉∼/K=K〈X1, . . . , XN 〉∼/K〈X1, . . . , XN−1〉∼/. . ./K〈X1, X2〉∼/K〈X1〉∼/K . (2.110)

and find

d-tr-d
K〈X1, . . . , Xk〉∼
K〈X1, . . . , Xk−1〉∼

= 0 (2.111)

since each Xk is d-algebraic. Utilising the tower formula 1 we find

d-tr-d
K〈X 〉∼
K

= 0. (2.112)

■

2.3 Differential-Algebraic Invertibility

The elaborated discussion of ordinary d-algebraic systems has yielded tools to handle dynamic
systems in an algebraic way. Let us now apply these tools to tackle the problem of unknown inputs.

Definition 13 Let X = (X1, . . . , XN ) be state-indeterminates, U = (U1, . . . ,UM ) input-indeterminates
and Y ⊆ X output-indeterminates, and

qi (Xi ; X ,U ) = X (1)
i −pi (X ,U ) (2.113)

with pi (X ,U ) ∈K[X ,U ]. This constitutes a d-algebraic input-output system.

The reason why the d-field extensionK〈X 〉∼q1,...,qN
/K (which one can see as a compact notation for

an ordinary system) has a vanishing d-transcendence degree lies in the d-ideal I(q1, . . . , qN ). The
introduction of a d-indeterminate, consider for instance K〈X1〉/K, increases the d-transcendence
degree by one. The governing equation, expressed by q1(X1; X ), reduces the transcendence degree
again. An input-output system has M d-indeterminates more than it has governing equations,
hence it becomes already clear, that

d-tr-d
K〈U , X 〉∼

K
= M . (2.114)

One will now understand the role of the outputs from the d-algebraic point of view: The outputs Y
serve as known elements to reduce the degree of transcendence.
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Definition 14 An d-algebraic input-output system is called d-algebraically invertible if

d-tr-d
K〈U , X 〉∼
K〈Y 〉 = 0. (2.115)

Fliess deduced an alternative condition for d-algebraic invertibility [38]. His theorem is briefly
presented in a consistent notation.

Theorem 3 (Fliess) A system is invertible if and only if

d-tr-d
K〈Y 〉∼
K

= M . (2.116)

Proof For the tower K〈U , X ,Y 〉∼/K〈Y 〉∼/K we find

d-tr-d
K〈U , X ,Y 〉∼

K
= d-tr-d

K〈U , X ,Y 〉∼
K〈Y 〉∼

+d-tr-d
K〈Y 〉∼
K

. (2.117)

We also find for the tower K〈U , X ,Y 〉∼/K〈U 〉/K that

d-tr-d
K〈U , X ,Y 〉∼

K
= d-tr-d

K〈U , X ,Y 〉∼
K〈U 〉 +d-tr-d

K〈U 〉
K

. (2.118)

An input-output system over K is ordinary over K〈U 〉, hence

d-tr-d
K〈U , X ,Y 〉∼

K〈U 〉 = 0. (2.119)

It is also clear that

d-tr-d
K〈U 〉
K

= M (2.120)

as this is just a d-field extension with M d-indeterminates. Altogether we find

d-tr-d
K〈U , X ,Y 〉∼
K〈Y 〉∼

+d-tr-d
K〈Y 〉∼
K

= M . (2.121)

By definition

d-tr-d
K〈U , X ,Y 〉∼
K〈Y 〉∼

= 0 (2.122)

if and only if the system is d-algebraically invertible, thus

d-tr-d
K〈Y 〉∼
K

= M (2.123)

if and only if the system is d-algebraically invertible.
■
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CHAPTER 3

Structural Invertibility

Recalling the very abstract understanding of a dynamic system as entities and interactions between
them, one will come to the probably most minimalistic model to describe this system: The
representation as structural system frees itself from the question how the entities of a system
interact and merely takes the influence structure into account.

Network Structure The structure of equations (2.1) and (2.3) which describe the exponential
function takes a very simple form:

x 	

which expresses, that only the current value of x influences its change ẋ. The structural approach
leaves indeed much space for interpretation. If the loop is intensifying, for instance, we get a
vicious circle, whose amplitude grows exponentially, or, if the loop is mitigating, it represents
an exponential decay. The exponential growth and decay present two qualitatively different
phenomena, however, the influence structure is one and the same. Given that, the question might
arise, whether the structural representation contains enough information about the system to
make mathematically rigorous statements at all.

Structural Properties Starting in 1974 with Lin’s proof that structural controllability [75] is
indeed able to make useful statements about dynamic control systems, the exploration of structural
properties pops up in the literature every now and then, see [35] for an engineering textbook
including discussions of structural observability and controllability. The currently increasing
interest on network science lead to a transfer of structural properties, originally proven for dynamic
systems, to general networks, see for instance [76, 77, 78, 79] for overviews, also [80, 81], and
[82, 83, 84]. For a critical discussion on the significance of structural properties see also [85, 86]
and [30].

Structural Invertibility The main result of this chapter will show that the structural and al-
gebraic properties of a dynamic system are closely connected, inasmuch as we show that the
d-transcendence degree of an input-output system can be deduced from its influence structure.
It can therefore be seen as a key result that connects the analytical and d-algebraic conditions,
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which are mathematically rigorous but hard to verify in practice, with conditions on the structural
or network level. This connection also builds the basis of chapters 4 and 5.

3.1 Structural Systems

The structural approach employs the language of graph theory, see [87] for a textbook. In the graph
theoretical framework, the i th entity of the system corresponds to a node i of a graph. This node
plays the role of the state variable xi in state space or of the d-indeterminate Xi in the d-algebraic
representation. Assume that in state space we find

∂ f j

∂xi
, 0 (3.1)

or equivalently in the d-algebraic system

∂p j

∂Xi
, 0. (3.2)

This means that the value xi (t ) has a direct influence on the change ẋ j (t ). The structural approach
lacks an equation to describe this interaction but is restricted to the statement

i→ j (3.3)

meaning i has a direct influence on j.

Definition 15 A graph g = (N,E) is understood as a set of nodes N together with a set of edges
E⊆ N×N. An edge e ∈ E takes the form e= (a→ b) with a,b ∈ N.

Let furthermore S,Z⊆ N be two sets, the input set and output set, respectively. We understand the
doublet

(g,Z) (3.4)

as an ordinary structural system. The triple

(S,g,Z) (3.5)

is understood as an structural input-output system.

Whereas the state space formulation yields the geometric interpretation of the system’s time
course as trajectory through space, and the d-algebraic formulation yields the classification as
transcendental or algebraic model errors, the structural approach equips invertibility problem
with a new picture of the scene. The representation of a dynamic system in form of an influence
graph is less common in pure mathematics but mainly exploited in the engineering literature, see
for instance [35].

Information Flow The structural approach lacks a quantitative description of the interactions in
a system but it rather suggests the following interpretation: Some information (for instance about
the model error) enters the system at the input nodes s1, . . . ,sM ∈ S. This information is passed by
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the interactions, i.e., along the edges from one node to the following nodes and by this percolates
through the system. We assimilate the information output at the nodes z1, . . . ,zP ∈ Z. The question
is now: Can we reconstruct paths over which the information flowed through the system to infer
the input set S?

Definition 16 Let g := (N,E) be a graph. A path π is understood as

π= (a0 → . . . → aL) (3.6)

where for l = 1, . . . ,L each al ∈ N is a node and each (al−1 → al ) ∈ E is an edge of g. The length of this
path is

lenπ= L , (3.7)

the initial node
inπ= a0 (3.8)

and the terminal node
terπ= aL . (3.9)

Let a,b ∈ N be two nodes. The set of paths of length k from a to b is understood as

Pk (a,b) := {π | lenπ= k, inπ= a, terπ= b} (3.10)

and all paths from a to b

P (a,b) :=
∞⋃

k=0
Pk (a,b) . (3.11)

Let π= (a0 → . . . → aL) and ρ = (b0 → . . . → bM ) be two paths with terπ= inρ. The concatenation
of π and ρ yields a new path

π◦ρ := (a0 → . . . → aL → b1 → . . . → bM ) . (3.12)

Structural Invertibility Exploiting the structural system terminology, let us first define struc-
tural invertibility on a purely graph theoretical level before we proof the (almost) equivalence of
structural and d-algebraic invertibility. Linked sets in a graph have earlier been connected to input
reconstruction [53, 51].

Definition 17 Let g= (N,E) be a graph and S,Z ∈ N. We say S is linked in g to Z, if there is a familyΠ
of node-disjoint paths with inΠ= S and terΠ= Z. We say S is linked in g into Z, if there is a family
Π of node-disjoint paths with inΠ= S and terΠ⊆ Z.

The concept of linked sets can be treated as a purely graph theoretical problem, see for instance
[88] for an early paper on the subject and the references in chapter 5. With the interpretation
of (S,g,Z) as structural system, the linkage of the input and output set can be reinterpreted as
invertibility.

Definition 18 Let (S,g,Z) be a structural system. The system is called structurally invertible, if S is
linked in g into Z.
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(a) (b)

Figure 3.1: Structural invertibility analysis for the two systems from figure 1.3. (a) A system with three inputs
w1, w2, w3 and three outputs y1, y2, y3. All paths from w2 and w3 to the outputs intersect at node x9. A
node-disjoint linking of inputs and outputs is not possible and the system structurally non-invertible. (b)
After replacing the output y3, there exists a node-disjoint linking as indicated by the colouring. The system
is structurally invertible.

3.2 Necessity of Structural Invertibility

The following two theorems show that structural invertibility is a necessary condition for d-
algebraic ivertibility. They have first been formulated by Wey [51]. These theorems seem to
be the only results on this subject. The first theorem is given to give a better picture of Wey’s results.
However, it is of less importance for the purposes of this thesis and therefore presented without
proof. The second theorem proofs the necessity of structural invertibility. Here, a new proof is
given which utilises the d-algebraic tools presented so far.

Theorem 4 (Wey I) Consider a dynamic input-output system with differential output rank

ρ := d-tr-dK〈Y 〉∼/K . (3.13)

Let g be the influence graph of the system with input set S and output set Z and let ρ∗ denote the
maximum amount of node-disjoint paths from S to Z. Then

ρ ≤ ρ∗ . (3.14)

Theorem 5 (Wey II) Consider an input-output system in d-algebraic form

qi (Xi ; X ,U ) = X (1)
i −pi (X ,U ) (3.15)

and structural form
(S,g,Z) . (3.16)

The system is d-algebraically invertible only if it is structurally invertible.

Proof First, note that by Menger’s theorem [88] the number of node-disjoint paths between two
sets equals the size of the smallest separator of these sets.

Assume the system is structurally not-invertible. That means, the maximal number of node-
disjoint paths from S to Z is m < M where M = cardS. This indicates that we can separate the
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nodes into N= N1∪̇N2∪̇N3 such that S⊆ N1, Z ∈ N3 and such that N2 is the separator of size m. There
is no edge i→ j ∈ Ewith i ∈ N1 and j ∈ N3.

Let X α = (Xk |k ∈ Nα) be the vectors of d-indeterminates that correspond to the three node sets.
We find that for i ∈ N2∪̇N3 the d-polynomials have the form

qi (Xi ; X 2, X 3) = X (1)
i −pi (X 2, X 3) (3.17)

and
Y ⊆ X 3 . (3.18)

So N2∪̇N3 is a subsystem. More than that, this subsystem is ordinary over X 2 hence

d-tr-d
K〈Y 〉∼
K

= m < M . (3.19)

■

3.3 Sufficiency of Structural Invertibility

While the necessity of structural invertibility has been proven earlier, its sufficiency seems to be an
open question until today. For this purpose, the technique of a propagating transcendence basis is
suggested.

In the interpretation of an information flow, we have said, that some information enters the
system at the input set S, flows through the graph g and is then observed at the output set Z. Note
that a d-algebraic input-output system over K can also be interpreted as an ordinary system over
K〈U 〉, indicating that the input set U is a d-transcendence basis of the system. The example below
shows, how this d-transcendence basis propagates along the edges of the graph.

Example (d-transcendence basis propagation)

Consider the d-algebraic systemS0

q1(X1;U1) = X (1)
1 −p1(U1)

q2(X2;U2) = X (1)
2 −p2(U2)

q3(X3; X1, X2) = X (1)
3 −p3(X1, X2)

q4(X4; X3) = X (1)
4 −p4(X3)

q5(X5; X3) = X (1)
5 −p5(X3)

(3.20)
over a d-field K. The observables are
given by

(Y1,Y2) = (X4, X5) . (3.21)

Find the influence graph of this system
on the right hand side in figure 3.2.

X X

X

X X

Y Y

U U

Figure 3.2: The influence graph of the ex-
emplary system 3.20 to demonstrate the
propagation of a d-transcendence basis.
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SinceS0 is ordinary over K〈U1,U2〉,

B 0 := {U1,U2} (3.22)

is a d-transcendence basis of the system.

Now consider the following calculations: We find

∂p1(U1) =∑
k
∂akU k

1 +∑
k

ak kU k−1
1 ∂U1 (3.23)

and −∂q1∑
k ak kU k−1

=U (1)
1 −X (2)

1 +∑
k
∂akU k

1 . (3.24)

We set
p̃(X1,U1) := X (2)

1 −∑
k
∂akU k

1 (3.25)

and
q̃1(U1; X1,U1) :=U (1)

1 − p̃1(X1,U1) . (3.26)

Since q1 and

q̃1 =
−∂q1∑

k ak kU k−1
, (3.27)

only differ by a differentiation and multiplication, the elements q1 and q̃1 generate
equivalent d-ideals. The system

S1 := q̃1(U1; X1,U1), q2(X2;U2), q3(X3; X1, X2), q4(X4; X3), q5(X5; X3) (3.28)

is ordinary over K〈X1,U2〉, hence

B 1 := {X1,U2} (3.29)

a d-transcendence basis.

In complete analogy we find a d-polynomial

q̃2(U2; X2,U2) =U (1)
2 − p̃2(X2,U2) (3.30)

and for

S2 := q̃1(U1; X1,U1), q̃2(U2; X2,U2), q3(X3; X1, X2), q4(X4; X3), q5(X5; X3) (3.31)

the d-transcendence basis
B 2 := {X1, X2} . (3.32)

We can proceed with the polynomial for X3,

q3(X3; X1, X2) =∑
k

ck X k
1 (3.33)
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where ck ∈K〈X2〉. With

p̃3(X1, X2, X3) := X (2)
3 −∑

k ∂bk X k
1∑

k bk k X k−1
1

(3.34)

and
q̃3(X1; X1, X2, X3) := X (1)

1 − p̃3(X1, X2, X3) (3.35)

we find that

S3 := q̃1(U1; X1,U1), q̃2(U2; X2,U2), q̃3(X1; X1, X2, X3), q4(X4; X3), q5(X5; X3) (3.36)

is ordinary over K〈X2, X3〉, so
B 3 := {X2, X3} (3.37)

is a d-transcendence basis.

The same procedure for q4 leads to

q̃4(X3; X3,Y1) = X (1)
3 − p̃4(X3,Y1) (3.38)

and to the d-transcendence basis

B 4 := {X2,Y1} (3.39)

for

S4 := q̃1(U1; X1,U1), q̃2(U2; X2,U2), q̃3(X1; X1, X2, X3), q̃4(X3; X3,Y1), q5(Y2; X3) (3.40)

where Y1 and Y2 were already inserted for X4 and X5.

At this point there is no possibility propagate the d-transcendence basis any further.

The idea which is used repetitively throughout the example above is the following: Say Xi and
X j are two d-indeterminates of an input-output system and there is a governing d-polynomial
qi (Xi ; X ) that renders Xi d-algebraic, whereas X j remains d-transcendent. By a sent calculation
we find that, with respect to the d-ideal of the system, we can transform qi to q̃i (X j ; X ). We have
swapped the roles of Xi and X j , such that we now have a d-polynomial that makes X j d-algebraic
but in return Xi became d-transcendent. However, this swapping of two d-indeterminates is not
always possible.

Direct Dependence First, the polynomial pi must depend on X j , i.e.

∂pi

∂X j
, 0. (3.41)

If not, qi (Xi ; X ) does not receive information about X j directly and the reformulation into q̃i (X̃ j ; X )
cannot be done. As the condition above is exactly the condition for the existence of an edge

i→ j (3.42)
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from the structural point of view, one can see this as a propagation of the d-transcendence basis
along the edges of the structural system.

Sufficient Number of Node-disjoint Paths Second, take a look at q̃4(X3; X3,Y1) and q5(Y2; X3)
from the example above, where we propagated the d-transcendence basis until B 4 = (X2,Y1).
Ideally, we want to have the observables (Y1,Y2) to be a d-transcendence basis. The only way to
put Y2 into the d-transcendence basis, however, goes via q5(Y2; X3). But swapping X3 and Y2 in the
described manner would yield q̃5(X3; X3,Y2) which is redundant as we already have q̃4(X3; X3,Y1)
as d-polynomial for X3. More than that, q̃4(X3; X3,Y1) shows that X3 is d-algebraic over K〈Y1〉 and
q5(Y2; X3) makes Y2 d-algebraic over K〈X3〉, always with respect to the generated d-ideal. Lemma
1 and 2 tell us, that consequently Y2 is d-algebraic over K〈Y1〉. Hence (Y1,Y2) are d-algebraically
dependent and cannot belong to the same d-transcendence basis. This issue that we would get
two redundant d-polynomials, here q̃4(X3; X3,Y1) and q̃5(X3; X3,Y2), goes back to the fact, that X3

is a separator of between the initial d-transcendence basis (U1,U2) and the desired one (Y1,Y2).
Take a look at figure 3.2 to see this.

Pathological Case Third, a pathological case where it is not possible to construct a d-transcendence
basis arises when the d-polynomials of the system are d-algebraically dependent. Assume, for
instance, (X1, X2) is a d-transcendence basis, or a subset of a d-transcendence basis, and

q3(X3; X1, X2) = X (1)
3 − f (X1, X2)

q4(X4 : X1, X2) = X4(1)− g (X1, X2)
(3.43)

where f and g are d-linearly dependent over K〈X1, X2〉. With d-linear dependence we mean that
there are two elements in the d-ring of derivation operators δ1,δ2 ∈K〈X1, X2〉[∂] such that

δ1( f )+δ2(g ) = 0. (3.44)

Then
δ1(q3)+δ2(q4) ∼ 0 (3.45)

is clearly still in the d-ideal and

δ1(q3)+δ2(q4) = δ1(X (1)
3 )+δ1(X (1)

4 )− (
δ1( f )+δ2(g )

)︸               ︷︷               ︸
=0

. (3.46)

One will see, that
r (X3, X4) := δ1(X (1)

3 )+δ1(X (1)
4 ) (3.47)

is a d-polynomial over K that implies the d-algebraic dependence of (X3, X4). Hence, (X3, X4)
cannot be part of the same d-transcendence basis.

Almost Equivalence The first point can be interpreted as the propagation of the d-transcendence
basis along the edges of the influence graph. The general formulation will follow in the theorem
below. The second point handles the case that there exists a separator of a cardinality smaller
than the number of inputs. As due to Menger [88] the size of the separator equals the number of
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node-disjoint paths, the propagation is possible only if the number of node-disjoint paths is large
enough. One will realise that this reproduces the necessary condition, theorem 5. The third point
remains a pathological case and is responsible for the designation that structural and d-algebraic
invertibility are almost equivalent.

Theorem 6 Consider a d-algebraic dynamic system in X = (X1, . . . , XN ) and B = (B1, . . . ,BM ) over
the d-field K

qi (Xi ; X ,B ) = X (1)
i −pi (X ,B ) (3.48)

with p ∈K[X ,B ] and
∂p1

∂B1
, 0. (3.49)

If B is a d-transcendence basis and if X1 is a d-transcendental element of the d-field extension
K〈X1,B2, . . . ,BM 〉∼/K〈B2, . . . ,BM 〉, then (X1,B2, . . . ,BM ) is a d-transcendence basis of the system.

Proof By assumption p1 is a non-constant polynomial in K〈X ,B2, . . . ,BM 〉[B1], so

p1(B1) =
K∑

k=0
ak B k

1 (3.50)

with ak ∈K〈X ,B2, . . . ,BM 〉. Defining

q̃1 := −∂q1∑K
k=0 ak kB k−1

1

(3.51)

and

p̃1 :=
∑K

k=0∂ak B k
1∑K

k=0 ak kB k−1
1

−X (2)
1 (3.52)

yields a d-polynomial
q̃1(B1; X ,B ) := B (1)

1 − p̃1(X ,B ) . (3.53)

One will realise that due to the terms ∂ak and X (2)
1 , p̃1 is not of order zero. However, it is of order

zero in B1. Higher orders in X2, . . . , XN can be remedied by inserting q2, . . . , qN . Higher orders
in X1,B2, . . . ,BM cause no issue, as we now find the system q̃1, q2, . . . , qN to be ordinary over the
d-field K〈X1,B2, . . . ,BM 〉. The d-ideals induced by q1, . . . , qN and q̃1, q2, . . . , qN are the same, hence
we can use the d-tower formula

d-tr-d
K〈X ,B〉∼

K
= d-tr-d

K〈X ,B〉∼
K〈X1,B2, . . . ,BM 〉︸                           ︷︷                           ︸

=0

+d-tr-d
K〈X1,B2, . . . ,BM 〉

K
= M (3.54)

to see (X1,B2, . . . ,BM ) is indeed a d-transcendence basis of the system.
■
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3.4 A Note on the Connection between State Space, d-Algebraic,
and Structural Systems

The different kinds of models, state space, d-algebra, and structural should not be seen as com-
peting model classes. It should rather be emphasised, that they are different perspectives upon
one and the same system. Starting from a state space model, it is always possible to deduce a
d-algebraic form, and from the d-algebraic from it is always possible to obtain a structural system.
Both steps, however, make a generalisation: The d-algebraic form does not take the initial value
into account. The structural system does not incorporate a quantitative description about the
interactions.

Hence, there are many state space systems, namely one for each initial value, that will be mapped
to the same d-algebraic system. In the same way, many d-algebraic systems will be mapped to the
same structural system Sys.

Example: Path Lengths As one example how a property of a system substantiates in the
different representations, consider the following connection between path lengths in the structural
system and perturbation theory in state space.

If an edge (a→ b) represents a direct influence from a to b, then a path π ∈Pn(a,b) represents
an indirect influence. For simplicity assume there is only one path π between these two nodes. For
a discrete-time system one will see that an input on node a influences the behaviour of b after n
time steps. Consider also the seminal work by Kalman [89, 90] where this can easily be deduced for
linear systems from the Kalman controllability matrix.

In continuous-time systems that are described by ordinary differential equations without delay
terms or other special elements, also indirect influences happen instantaneously. Meaning that an
input starts to perturb a at a time t0, then this perturbation can be detected at b at time t0 +ε, for
any ε> 0.

However, say xb is the state variable that corresponds to the node b and has a Taylor-expansion

xb(t0 +ε) = xb(t0)+ . . .+ 1

n!

d n xb
d t n

∣∣∣∣
t=t0

εn + . . . . (3.55)

We indeed find that the perturbation appears first at order O (εn) with n = lenπ. If the underlying
d-field K is actually a classical field, it appears only at this order.
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CHAPTER 4

Invertibility Structures in Complex Networks

In contrast to state space and d-algebraic models, the influence graph of a system carries the
information which entities of the system interact but not how they interact. Any dynamic system
formulated in state space or d-algebraically therefore contains an underlying structural system. In
fact, it is likely to happen that two dynamic systems, e.g., a predator-prey like model

ẋ1(t ) = x1 −x1x2

ẋ2(t ) = x1x2 −x2
(4.1)

and a chemical reaction model
ẋ1(t ) =−x1x2

ẋ2(t ) =+x1x2
(4.2)

describe two completely different problems but with an identical influence structure. The systems
are then said to be topologically equivalent or simply to have the same structure.

The main result of the former chapter has shown, that the influence structure of a system makes
a statement about its invertibility. But this result can also be viewed from another perspective: The
structural system is the fundamental model and has numerous realisations in d-algebra or state
space. All these realisations are topologically equivalent.

Working with a dynamic system, one can take advantage of structural properties which are
actually inherited from the underlying structural system. Unfortunately, structural properties are
often veiled by stiff numerics or apparently complicated vector fields. It is therefore worth an
investigation, in how much the exploration of the influence structure of a system can already aid
in our aim to reconstruct model errors. The seminal paper [75] was the first hint that structural
properties build the bridge between dynamic systems and a rather new field of research: Network
science. However, network science is applicable to a broad variety of tasks and in no way restricted
to dynamic systems any more. In the same way the investigation of the network principles (compare
[80] and references given in chapter 3) that support or mitigate structural invertibility might turn
out to be of greater validity than for the reconstruction of model errors in dynamic systems.

Networks To emphasise the more general scope of this chapter, the network character shall be
put into focus. Two important classes of networks (or graphs) are the Erdős-Rényi networks [91]
and Scale-Free networks [92]. Both are random networks and have been discussed many times
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throughout the literature, e.g., connected to structural observability and structural controllability,
see [80] for an overview. These two types of networks will help to understand the importance
of density, homogeneity, and the role of hubs and satellites in a network. To complement these
results, a choice of real networks from various fields is also considered. From these we will learn in
how much the principles of structural invertibility are realised in reality.

Experimental Design As the discussion of network structures and invertible configurations is to
manifold to give a complete treatment, only one line of reasoning will be demonstrated, which can
be considered as three steps towards an experimental design and might therefore be of practical
relevance.

Scenario I represents a pure a posteriori analysis. Meaning, we assume to have a model and data
for a certain dynamic system but the data assimilation was done without respecting invertibility at
all. In this scenario we choose the input and output nodes randomly to simulate a not-designed
experiment, and check whether the obtained network is structurally invertible. In this scenario we
will also learn about the issues arising from network hubs and satellites.

In Scenario II a sensor placement algorithm will be presented, building on the new gained
knowledge. We will see how this sensor node placement algorithm is capable of increasing the
probability, that a system is structurally invertible.

Scenario III finally presents the case of a full experimental design, meaning, we can not only
place the sensors but also the model errors. This scenario might not often be the case, as one
usually does not have control about the model errors, but it can be seen as lucky case and therefore
yield an upper bound for realistic situations.

4.1 Random Networks

A random graph or random network is a graph-valued random variable. We will present two
important classes of random graph, Erdős-Rényi (ER) and Scale-Free (SF) networks and examine
their structural invertiblity behaviour.

Definition 19 Let g= (N,E) be a graph. For a node n ∈ N, Pa(n) ⊆ N denotes the set of parent nodes.
A parent node of n is a node m for which the edge m→ n ∈ E exists. The in-degree din(n) is the
cardinality of Pa(n). In the same way Ch(n) denotes the child nodes n→ m ∈ E and dout(n) the
out-degree. The degree of n is understood as the total degree d(n) = din(n)+dout(n). The average
degree d(g) of the graph is straightforwardly defined as the average of the degrees of all nodes.

4.1.1 Erdős-Rényi Network

An ER-network [93] can be created by the following algorithm.

Algorithm (Erdős-Rényi Network)

Let 0 < p < 1 and let N= {1, . . . , N } be a set of nodes. Initialise the graph g= (N,E=;).
For each pair i,j ∈ Nwith i, j, add the edge i→ j ∈ Ewith a probability of p.

For a node n, there could be (N −1) outgoing edges and the same number of incoming edges. The
edge (n→ n) is irrelevant for the structural invertibility behaviour and therefore neglected. As each
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of these 2(N −1) edges exists with a probability of p, the expectation value for the degree of n turns
out to be

Ed(n) = 2(N −1)p . (4.3)

As this equation holds for each node, we find the same result for the average degree,

Ed(g) = 2(N −1)p , (4.4)

and also
1

2
Ed(n) = Edin(n) = Edout(n) . (4.5)

The algorithm above takes only two parameters, the node number N ∈N0 and an edge probability
0 ≤ p ≤ 1, where the cases N = 0, p = 0 or p = 1 are allowed but trivial. From the latter equations
one will see that we could use the node number N and the average degree 0 ≤ d̄ ≤ 2(N −1) as
parameters of the algorithm. A graph that is constructed by this algorithm will be homogeneous,
meaning there is no special structure in this network. ER-networks are therefore well suited to
understand the impact of the size of the network, via the node number N , and the impact of the
density or connectivity, via the average degree d̄ or the edge probability p. To simulate ER-networks,
the function gnp_random_graph provided by the python networkx package was used.

4.1.2 Scale-Free Networks

The degree distribution P of a network (or graph) g = (N,E) counts the number of nodes with a
certain degree

P(k) := card{n ∈ N |d(n) = k} . (4.6)

If the degree distribution of a network behaves like a power law

P(k) ≈ k−γ (4.7)

it is called scale-free [92]. The following algorithm implements a result presented in [94] and was
realised in python using the networkx package.

Algorithm (Scale-Free network)

Let 0 <α< 1 and let N= {1, . . . , N } be a set of nodes. Let furthermore 0 < d < 2(N −1)
be given. Initialise the graph g= (N,E=;). Assign a weight of

wn := n−α (4.8)

to each node n ∈ N, where n is understood as numerical value and a probability

p(n) := wn∑
n∈Nwn

. (4.9)

According to this probability distribution, we draw pairs of nodes i and j, i, j, and
add an edge (i→ j) to E as long as the average degree of the graph does not exceed
the desired value,

d(g) ≤ d̄ . (4.10)
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For N large enough one will approximate the desired average degree

d(g) ≈ d̄ . (4.11)

The network generated by the algorithm above fulfils a power law with exponent

γ= 1+α
α

. (4.12)

Due to the obtained degree distribution P(k) ∼ k−γ, there are many nodes with a small node degree
and very few nodes with a large node degree. The former are called satellites while the latter ones
will be referred to as hubs of the network. While the node number and average degree allow to
compare the size and density of ER- and SF-networks, the exponent γ acts like a parameter for
inhomogeneity. SF-networks are thus useful to understand the consequences of input or output
nodes being hubs or satellites of the network.

4.1.3 Structural Invertibility Algorithm

The great advantage of structural invertibility is that one can make use of efficient algorithms
developed by graph theorists to solve the invertibility question for dynamic systems. The direct
search for a family of node-disjoint paths in a structural system is not efficient yet. Indeed, it is
mainly a combinatoric problem and we cannot give a deterministic algorithm with polynomial
runtime. But structural invertibility does not require to explicitly find a family of node-disjoint
paths, the mere existence of such a family is sufficient. Luckily, here we face a problem where
it is indeed possible to formulate another graph theoretical problem which is equivalent to the
existence proof: Due to the Max-Flow-Min-Cut-Theorem [88, 52, 95] the existence of a family of
node-disjoint paths can be reformulated as a flow problem.

Flow Graph Let (S,g,Z) be a structural input-output system with graph g= (N,E). We will now
construct the flow graph g̃ = (Ñ, Ẽ). First for each node n ∈ N there are two nodes n+,n− ∈ Ñ to
separate ingoing and outgoing edges (see Fig. 4.1). Meaning that if (i→ j) ∈ E, then

(i+ → j−) ∈ Ẽ . (4.13)

In addition to that for each pair n+,n− ∈ Ñ there is an edge

(n− → n+) ∈ Ẽ . (4.14)

Second, we introduce a source node σ ∈ Ñwith edges

(σ→ n−) ∈ Ẽ (4.15)

for each n ∈ S as well as a sink node ζ ∈ Ñwith edges

(n+ → ζ) ∈ Ẽ (4.16)

for each n ∈ Z. We assign a weight of 1 to each edge.
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g Ginfluence graph flow graph

Figure 4.1: The transformation from influence graph g to flow graph G for an exemplary system.

Max-Flow Problem It is a fact from graph theory which will not be proven here, that the size
of the largest family of node-disjoint paths in g from S to Z equals the maximum flow through g̃
from the source σ to the sink ζ, see, e.g., [95] for an overview and further literature. The Goldberg-
Tarjan algorithm [96] is one of several efficient algorithms provided by the networkx package
to solve maximum flow problems. To analyse the computational complexity of the structural
invertibility algorithm, let N and E be the number of nodes and edges in the original graph.
The number of input nodes is M and P is the number of output nodes. In directed graphs the
number of edges is limited by E ≤ N 2. For large networks we can assume M ≈ P << N . To create
the flow graph G , n = 2N + 2 nodes and e = N +E + M +P edges are created. On (σ, g̃,ζ) the
Goldberg-Tarjan algorithm has a running time scaling like O (n2 pe). All together we find that the
structurally invertibility algorithm has a running time of O (N 3). On a single node of an Intel®
Xeon® Processor E5-2690 v2 an average time of 0.15±0.03 seconds is needed for a network
with N = 103 nodes and 2.4±0.4 seconds for N = 104 nodes to check the existence of a node-disjoint
path family.

4.2 Scenario I

The first scenario is motivated by pure a posteriori analysis. If we do an experiment, we usually
have some theoretical idea about what will happen, the nominal model. We consider ER- and
SF-networks as network topologies for the nominal model. As we intentionally do not want to
respect the system’s network topology, the input and output sets are chosen randomly without
any preference. As the concrete realisation of the network and the input and output sets are
random, we get a probability for structural invertibility, depending on the parameters. E.g., for an
ER-network we have a size of N , an edge probability of p, and an input and output set size of M .
For each choice of parameters we draw n = 100 structural input-output graphs and take

ρ(N , p, M) := #invertible systems

#non-invertible systems
(4.17)

as the empirical probability that a system with these parameters is structurally invertible. Please
note that the number of invertible systems is binomially distributed, hence each value of ρ has an
empirical standard deviation of

σ(ρ) = √
nρ(1−ρ) . (4.18)
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For the sake of a clearer visualisation we drop the error bars in the following figures, keeping this
in mind. We have found that the probability ρ converges as the network gets larger,

N →∞ . (4.19)

We fix the node number to N = 103 as such networks seem to not differ significantly from this limit
and at the same are computationally feasible. For simplicity, we consider the same number of
input and output nodes. We do this, as the case cardS> cardZwill always lead to non-invertibility.
More precisely, considering the ratio

r := cardZ

cardS
, (4.20)

we know that r < 1 means non-invertibility. Increasing this ratio with all the other parameters fixed
will monotonically increase the probability ρ but will not lead to any qualitatively new behaviour.

4.2.1 Random Networks

Our first point of interest is the dependence on the density of the network. In a very dense network,
there are many interactions between all state variables. Therefore, a perturbative influence on one
state variable perculates quickly through the network.

Figure 4.2 shows the probability ρ for ER-networks (a) and SF-networks (b) as a function of
the average degree d̄ and the input and output number M . One will directly see from both
subfigures how the probability monotonically increases with the average degree, indicating that
dense networks have a higher tendency to be structurally invertible. Furthermore, the probability
decreases with increasing input and output size M . It is plausible that adding input nodes will
decrease the probability, whereas adding output nodes must increase the probability to reconstruct
the inputs.

It is important to note that the ratio r = 1 stays fixed in our simulations. We must deduce that
the negative impact of additional input nodes outdoes the positive effect of additional outputs.
Here we find an early indication that the number of input nodes has a strong impact on the whole
invertibility behaviour. In a later chapter, we will see that we can take advantage of this finding as
we formulate a regularisation based on the sparsity of the input set.

Looking at subfigure (a) one will realise that for a fixed number M of input and output nodes, the
probability ρ as a function of the average node degree undergoes a kind of transition. Starting in a
region of non-invertibility, ρ ≈ 0, there comes a relatively narrow transition zone leading to a region
of invertibility, ρ ≈ 1. Thus, as soon as we know that a system has the structure of an ER-network,
we can simply compute the average degree of the influence graph. Due to the narrow transition
zone, it is very likely that we directly get an almost certain statement (ρ ≈ 0 or ρ ≈ 1) whether the
system is invertible or not. Structural invertibility of an influence graph is (almost) equivalent
to the analytic invertibility of the original system. This result yields a remarkably simple way to
decide whether the (in general non-linear) input-output mapΦ of this system is one-to-one. Note,
that the ER-networks we consider represent systems of N = 103 coupled differential equations and
that it takes less than a second to compute the average degree of such a network.

In a homogeneous (ER) network the average degree carries significant information
about the invertibility of the whole system.
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(a) (b)

Figure 4.2: The probability ρ for an invertible ER- or SF-network with random input and output sets as a
function of the average degree d̄ . The network size is fixed to N = 1000, the input and output sets have a size
of M . For each value of d̄ , ρ is computed as the relative number of structurally invertible networks among
100 network realisations. Each data point has an empirical standard deviation of

√
Nρ(1−ρ) which is not

plotted for better readability. (a) ER-networks. (b) SF-networks with a scaling parameter γ= 2.8.

Subfigure (b) shows the results for SF-networks with γ = 2.8. We focus on this choice of γ as
it produces networks with SF-behaviour but without super-hubs or too many isolated satellites.
The comparison between ER- and SF-networks (for the same M and d̄) leads to the result that
inhomogeneity shrinks the probability ρ for the random network to be structurally invertible.
Furthermore, the transition from non-invertibility to invertibility is blurred over a wider range.
Consequently, the average degree is a less significant indicator for invertibility.

Dense and homogeneous networks have a better invertibility behaviour than sparse
and inhomogeneous networks.

In SF-networks, paths from an input node to an output node are much smaller compared to
ER-networks, compare [97] for estimates of network diameters. From the d-algebraic point of
view, where a path family from the input nodes to the output nodes can be understood as the
propagation of a d-transcendence basis, one might come to the hypothesis that short paths
are beneficial. But the network analysis has shown that this is false; instead, metaphorically
spoken, the basis gets stuck at the hubs and bottlenecks which are already occupied. In dense and
homogeneous networks, the basis has a better chance to find a detour around the occupied nodes
and consequently a better chance to reach the output nodes.

4.2.2 Real Networks

With the results above in mind, a selection of 17 real networks from various fields was studied
under scenario I. Biological systems can handle perturbations remarkably well, think of the im-
mune system that not only detects a virus but somehow gathers information about its shape
and produces specific anti-bodies, see also the references in the first chapter. Here, the virus
can be interpreted as the unknown input and the immune reaction takes precise information
about the virus into account. Not in the sense of an intelligent being but in the sense of a smart
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mechanism, the immune system has to reconstruct the form of the unknown input in order to start
an appropriate reaction. One might come to the hypothesis that biological systems are designed,
meaning evolutionarily encoded in the DNA or naturally grown, such that their structure supports
the detection of unknown inputs, i.e., that they tend to be structurally invertible.

Some properties of the real networks can be found in table 4.1. Given a real network, we distribute
M input and output nodes randomly. For each network and each M this was done n = 100 times
and again we took the fraction of structurally invertible networks as empirical probability ρ. As
explained above, we again drop the error bars in all figures. The resulting probability ρ is plotted in
figure 4.6 (a) as a function of the input and output number M . Except for two networks (WikiVote
and Consulting) the probability tends to zero already for small M < 10, directly leading to a clear
rejection of our primary hypothesis under scenario I.

Under scenario I, real networks are hardly ever invertible.

This result must be interpreted in a modest way and is not in a too stark contrast to the hypothesis
stated above, as soon as we remind ourselves that model errors can be of various nature. One might
rather add the hypothesis that invertibility under scenario I is not the mechanism that explains the
robustness of biological networks against external perturbations.

4.3 Scenario II

In contrast to the latter scenario which represented an a posteriori analysis, we now want to make
the first step towards an experimental design. More precisely, we want to place the sensors in the
network in a way to make the system more likely to be invertible. As before, we have no control
about the input nodes, i.e., they will be distributed randomly over the network.

The results of scenario I show, that of two networks with the same size, one ER and one SF, with
identical number of input nodes and the same average degree, the ER-networks has a much higher
chance to be structurally invertible. Hence, not only the average degree of the network but the
degree distribution, i.e., the node degrees the individual nodes have a significant impact on the
invertibility.

4.3.1 The Role of Hubs

To understand the role of hubs, random SF-networks were generated as before, but with two
selection preferences for the input and output nodes:

A Choose the hubs as output nodes, distribute the input nodes randomly over the remaining
nodes.

B Choose the hubs as input nodes, distribute the output nodes randomly over the remaining
nodes.

Let us first focus on case A. The network size was again set as N = 1000 and the power law exponent
to γ= 2.8. The input and output set size was chosen as M = 10. It turned out that choosing the
M = 10 largest hubs as output set often leads to specific non-invertible structures. To avoid such
pathological constellations it makes sense to soften the selection preferences. Instead of choosing
the M = 10 largest hubs directly as output nodes, the set of the M ′ = 50 largest hubs was taken.
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Among these M ′ = 50 nodes, the output set was then chosen randomly. We found M ′ = 50 to be an
appropriate number given the parameters of the network, meaning that these M ′ = 50 nodes have
an over average node degree. Placing the input nodes randomly over the remaining nodes of the
network consequently yields an input set that consists mainly of satellites. Again, it makes sense to
not choose the satellites with the lowest node degrees, as these satellites tend to be isolated and
therefore again lead to pathological constellations. As before, for each parameter configuration
100 networks were generated and ρHubsOut represents the fraction of structurally invertible ones.
See figure 4.3 for the results. To have a reference, ρ shows the results for randomly chosen input
and output sets, thus basically scenario I. From the comparison of ρHubsOut and ρ one will directly
see that the preferential choice of output nodes with a high node degree leads to an increase of the
probability for the network to be structurally invertible.

High degree output nodes improve the structural invertibility behaviour.

Before we come to the Sensor Node Placement Algorithm, let us now focus on case B. This case
works analogous to the former one. The only difference is that in case B directly choosing the
M = 10 largest hubs as inputs, i.e., not randomising over the largest M ′ = 50 hubs, won’t lead to
pathological cases. The resulting probability ρHubsIn can be found in figure 4.3. One can see that
case B increases the probability for structural invertibility again. We will come back to this result in
the discussion of scenario III.

4.3.2 Sensor Node Placement Algorithm

The preferential selection of high hubs as output nodes increases the probability that a network
is structurally invertible. The advise for any sensor placement is clearly to monitor those state
variables which are the hubs of the network. In practice, however, there are often many more
restrictions. For example in
cell-biological experiments it is often technically not possible to measure each desired protein
concentration [21]. Or the measurement of one specific variable is costly and should be avoided if
possible. Many sensor placing algorithms, for instance [53], work constructively. Meaning, they
start with a small and insufficient set of sensor and add a sensor that increases the information
content of the measurements while keeping the costs small. We have already learned that real
networks often have a nearly vanishing chance to be invertible. Starting a constructive sensor
node placement therefore comes with the risk of a huge number of iterations and at the end come
to the result that one needs to measure almost each state variable. If there are state variables
which cannot be observed, the algorithm might even run for a long time without any good sensor
placement because there does not even exist a solution that renders the system invertible.

As an alternative approach a destructive algorithm is proposed. As an initial step, we define a
maximal output set Z0, we will call it the output ground set, of all state variables or nodes which
can principally be observed. Thus, already from the initial step we know whether a solution exists.
Then step by step the redundant outputs are removed from the ground set.

Algorithm (Sensor Node Placement)

Let g= (N,E) be a given graph, S⊆ N of size M and Z0 ∈ N.

1. If S is not linked into Z0, stop. Else proceed.
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Figure 4.3: The probability that an SF-network is structurally invertibility under preferential input and
output placement. For each average node degree d , ρ is the relative number of structurally invertible
networks among 100 realisations of Scale-Free networks with N = 1000 nodes and γ= 2.8, where the input
and output sets of size M = 10 were drawn uniformly. For ρHubsIn and ρHubsOut we took the 50 nodes with
the highest node degree and randomly drew a subset of size M = 10 as input and output set, respectively.
The output and input set, respectively, were drawn randomly from the remaining nodes of the network.

2. Sort Z0 by ascending node degree.

3. Delete redundant sensors:

i = k = 0

While |Zk | > M

If S is linked into Zk \Zk [i ]

Zk+1 := Zk \Zk [i ]

Else

Zk+1 := Zk

i ++
k ++

Some comments on this algorithm are in turn. First, if step 1 is not successful, then there is no
chance to make the system structurally invertible and one has to choose a different ground set
Z0. Second, given that step 1 is successful, this algorithm always results in a set Z∗ of size M and
such that S is linked into Z∗. This means, the algorithm always produces a minimal output set that
renders the system structurally invertible. Third, step two is not mandatory for the algorithm to
work, but it will shorten the runtime. We call the algorithm above satellite-deletion. We have also
considered variations in which the output ground set Z0 is present with decreasing node degree,
called hub-deletion, or in random order, random-deletion. Figure 4.4 shows the size P of the
current output set Zi depending on the number of iterations. If M is the size of the input set and P0

the size of the output ground set Z0, then the number n∗ of iterations until the algorithms converge
is bounded by

P0 −M ≤ n∗ ≤ P0 . (4.21)
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Figure 4.4: Convergence of the Sensor Node Placement Algorithm. The size P of the current output set as a
function of the number of iterations for the satellite-deletion, hub-deletion and random-deletion versions of
the algorithm for an exemplary ER-system with N = 1000 and M = 100 inputs. In this example, the minimal
number of iterations is 500 and the maximal number of iterations 600.

One will quickly realise this: If step one was successful, then the output ground set Z0 of size P0

contains necessarily a minimal set Z∗ of size M . Hence Z0 contains P0−M redundant nodes. In the
lucky case, Z0 is sorted such that it starts with the redundant elements. Then in each iteration we
delete one element and converge after P0 −M steps. In the unlucky case, Z0 is sorted such that the
first M elements are a minimal set Z∗. Then the algorithm first performs M checks whether one of
these nodes can be deleted, before it takes another P0 −M steps to delete the redundant nodes.
Figure 4.4 shows that the satellite-deletion converges the fastest and nearly after the minimal
number of steps. Hub-deletion and random-deletion need almost the maximal number of steps.
The fast convergence of the satellite-deletion underlines again that satellites in the role of output
nodes are usually redundant. This is also in agreement with the former result on hubs as efficient
output nodes.

Finally, it must be noted that there is a clear dependency on the input set S. In practice, one
might have prior knowledge or an educated guess about this input set. If, however, there is no
plausible way to define this set of input nodes, one can only come back to the result that taking
high degree nodes as outputs increases the probability that the system is invertible.

4.3.3 Application to Real Networks

The application of the Sensor Node Placement Algorithm yields a significant improvement of the
invertibility behaviour. For the real networks from table 4.1 we have distributed M input nodes
over the network and applied the Sensor Node Placement Algorithm. Doing so for 100 times again
yields a probability ρ that the system is structurally invertible. The result can be found in figure 4.5.
Subfigure (a) shows that the probability decreases to nearly zero as the number of inputs exceeds
M ≈ 30. It is noteworthy that the Sensor Placement Algorithm always works, given that the initial
step is successful. That means, if one realisation turns out to be non-invertible, then there indeed
exists not one set of sensors that renders the system structurally invertible. This again emphasises
that these real systems have a structure that clearly not supports the structural invertibility under
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(a) (b)

Figure 4.5: Enhanced structural invertibility of real networks. (a) The probability ρ that the networks from
table 4.1 are structurally invertible. The input set of size M is drawn randomly, the output set is obtained
by the Sensor Node Placement Algorithm. For each M , ρ is the relative number of structurally invertible
networks among 100 realisations. Each value is equipped with a standard deviation of

√
Nρ(ρ−1) which s

again not plotted for better readability. (b) The difference in the probabilities between the results of scenario
I, see figure 4.6 (a) and scenario II, see subfigure (a).

scenario II. However, subfigure (b) only shows the difference ∆ρ between scenario I and scenario
II, that is, how much the probability increases by a better sensor node placement. Up to a number
of M ≈ 30 input nodes, the probability increase ranges from 0 to 100%, with many networks easily
reaching 25−50%.

For up to M ≈ 30 input nodes, the Sensor Placement Algorithm in able to improve the
invertibility behaviour significantly.

4.4 Scenario III

4.4.1 Asymmetric Node Degrees

We have seen that real networks between a few hundreds and a hundred thousand nodes have a
vanishing probability to be structuraly invertible under both, the completely random scenario I
and even under scenario II with improved sensor placement. It is especially remarkable that even
the real networks which show a SF degree distribution have a much worse invertibility behaviour
than the SF random networks. To understand the reason for this behaviour, we do the simulations
for real networks under scenario I again, but this time we also apply a randomisation to the real
networks. If the bad invertibility behaviour is due to very specific network topologies, these special
structures should be destroyed. For instance, a network with feed-forward structure (discussed at a
later point) will not be feed-forward after randomisation.

Algorithm (Degree Preserving Randomisation)

Let g= (N,E) be a graph and 0 < p < 1 a fixed probability.

1. Randomly choose two edges (a→ b), (c→ d) ∈ E.
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Name N |E| d̄ SF γ Brief Description Database
Regulatory
TRN-Yeast-2 [98] 688 1079 3.14 True 2.29 Transcriptional regulatory network of S.cerevisiae Uri Alon Lab [99]
Ownership-USCorp [100] 7253 6726 1.85 True 2.45 Ownership network of US corporations Pajek [14]
Trust
WikiVote [101] 7115 103689 29.13 False Who-vote-whom network of Wikipedia users snap Stanford [16]
Epinions [102] 75888 508837 13.41 True 1.73 Who-trust-whom network of Epinions.com users snap Stanford [16]
Food Web
Little Rock [103] 183 2494 27.26 False Food Web in Little Rock lake Mount Sinai [104]
Metabolic
E.coli [105] 1039 5802 11.17 True 2.61 Network of the metabolic reactions of the E. coli bacteria BiGG [106]
Neuronal
C.elegans [107] 297 2345 15.79 True 2.15 Neural network of C.elegans Network Repository [13]
Citation
ArXiv-HepTh [108] 27770 352807 25.41 False Citation networks in HEP-TH category of Arxiv snap Stanford [16]
ArXiv-HepPh [108] 34546 421578 24.41 False Citation networks in HEP-PH category of Arxiv snap Stanford [16]
WWW
Political blogs [109] 1224 19025 31.09 True 1.04 Hyperlinks between weblogs on US politics Moreno [110]
Internet
p2p-1 [111] 10876 39994 7.36 False Gnutella peer-to-peer file sharing network snap Stanford [16]
p2p-2 [111] 8846 31839 7.2 False Same as above (at different time) snap Stanford [16]
p2p-3 [111] 8717 31525 7.2 False Same as above (at different time) snap Stanford [16]
Social Communication
UCIonline [112] 1899 20296 21.38 True 1.33 Online message network of students at UC, Irvine Opsahl [113]
EmailKiel [114] 57194 103731 3.63 True 1.77 Email network of traffic data collected at University of Kiel, Germany Barabasi [77]
Intraorganizational
Manufacturing [115] 77 2228 3.14 False Social network from a manufacturing company Opsahl [113]
Consulting [115] 46 879 38.22 False Social network from a consulting company Opsahl [113]

Table 4.1: A compilation of networks from various fields, also examined by other authors ([77]). Here N is
the number of nodes and |E| the number of edges. The column SF indicates whether the degree distribution
shows a power law and if so, the power law exponent γ was computed.

2. With probability p replace the edges with (a→ d) and (c→ b).

We choose p ≈ 0.5 and perform around N (number of nodes in the network) iterations.

The Degree Preserving Randomisation leaves the in- and out-degrees of each node invariant, it
just rewires the network. Consequently, any special structures might be destroyed, but any overall
asymmetry in the degree distribution will be conserved. Figure 4.6 (b) shows the probabilities ρ
that were already shown in subfigure (a) against the probabilities ρrand of the randomised versions
of the networks. Except for very few data points one finds

ρ ≈ ρrand . (4.22)

The still veiled issue which causes the bad invertibility behaviour of real networks does not vanish
under the Degree Preserving Randomisation. Thus, it must lie within the distributions of the in-
and out-degrees.

It makes sense to take a closer look into the degree asymmetry of a real network. Let us consider
the E.coli metabolism network for instance. The E.coli is a real and experimentally observed
network with a degree distribution that obeys a power law. In figure 4.7 (a) one can see the
probability for structural invertibility of this network and of a SF-network of the same parameters.
We again see the already known behaviour that the random network has a higher probability to
be structurally invertible. Figures 4.7 (b) and (c) show the in- and out-degrees of each node in
the real and in the random network, respectively. One can see that both networks have very few
hubs (in the upper right corner of the figures) and the node degrees are comparable in magnitude.
The obvious difference is that in the real network, subfigure (b), the in- and out-degree of a hub
can differ significantly. In contrast to that, the hubs of the random network, subfigure (c), are
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(a) (b)

Figure 4.6: Structural invertibility of real networks. (a) The probability ρ that the networks from table 4.1
with randomly placed inputs and outputs is structurally invertible as a function of the size M of the input
and output sets. For each value of M one hundred realisations of input and output sets were simulated and
ρ gives the fraction of structurally invertible networks. Each data point has an empirical standard deviation
of

√
Nρ(ρ−1) which is not plotted for better readability. (b) The probability from (a) is plotted against the

probability computed analogously after a Degree Preserving Randomisation.

symmetrically positioned. It makes sense to introduce the notions of in-hubs and out-hubs, the
former of which lie below the symmetry line while the latter lie above this line.

4.4.2 Full Experimental Design

Out-hubs have the property that they are the starting point of many paths that reach almost all
other nodes of the network, whereas in-hubs have the property that many paths terminate there.
It clearly supports the existence of a node-disjoint linking between two sets S and Z, if the input
nodes S lie on the out-hubs and if the output nodes Z lie on the in-hubs. While in scenario II
we have only chosen the output nodes on the hubs, we now want to place the output as well as
the input nodes. Under scenario III, we place M inputs on the largest out-hubs and M outputs
on the largest in-hubs. This process contains no stochastic elements, consequently, instead of a
probability ρ we get a maximum M∗ for each network. Any number of in- and outputs M ≤ M∗ is
surely structurally invertible, whereas M > M∗ unavoidably leads to non-invertibility. The precise
numbers computed for the real networks can be found in figure 4.8. We indeed find that the
maximum M∗ lies easily two orders of magnitude above the results for scenarios I and II, namely,
it is now possible two reconstruct up to hundreds and thousands of inputs.

To improve the invertibility of a system, use in-hubs as outputs and out-hubs as inputs.

4.5 Principles of Structural Invertibility

Figure 4.8 shows a comparison of the probability for structural invertibility for the three scenarios.
Starting with a pure a posteriori analysis, scenario I is the case in which the input and output nodes
are randomly distributed over the system, meaning, not taking any invertibility conditions into
account. We have found, that homogeneity and density are the main supporters for structural
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(a) (b) (c)

Figure 4.7: Impact of asymmetry. (a) The probability for structural invertibility for the E.coli network and
a randomly generated SF-network with the same properties. Analogous to scenario I, see figure 4.6, for
each M , ρ is the relative number of structurally invertible systems among 100 realisations. (b) The in- and
out-degrees of the nodes of the E.coli network. (c) The in- and out-degrees of the nodes of a randomly
generated Scale-Free network.

invertibility. The existence of hubs and satellites diminishes the probability that a system is
invertible. Also, real networks have a strong tendency to be non-invertible a posteriori. Except for
the Manufacturing network which shows an exceptionally good invertibility behaviour and the
E.coli and Consulting networks with a moderate invertibility behaviour, one will easily see that the
probability tends to zero already for an input and output set size of M / 3.

We proceeded with scenario II, where the experimenter is aware of possible model errors and
wants to find a sensor placement that increases the chance to infer these model errors from data
he or she will collect. It turned out that the hubs of a network can indeed be utilised to improve
the invertibility behaviour if chosen preferentially as the outputs of the system. The Sensor Node
Placement Algorithm increases the number of inputs that can be observed to M / 10. However,
some networks, e.g., TRN-Yeast-2, Ownership-USCorp and p2p-1, -2 and -3 do not benefit from the
Sensor Placement Algorithm and remain non-invertible even for small numbers of inputs.

Scenario III finally represents the case, where we have in some sense control over the input
nodes. Clearly, inasmuch as model errors are unknown a priori, one cannot choose which nodes
are targeted by an unknown input. However, in the act of model building one comes to the point to
choose which state variables should be included in or excluded from the model. And usually, these
are then also the state variables on the boundaries of the model, meaning, if they are included,
they are likely to be targeted by an exogenous model error, or, if they are excluded, they cause
the external model error as they weakly interact with the state variables within the borders of the
model. Our investigation has show that one should make the decision based on the in-degree
and out-degree of the corresponding nodes. In the sense of invertibility of dynamic input-output
systems, we call scenario III a full experimental design. As one can see, the full experimental
design is indeed able to make, e.g., the TRN-Yeast-2 network, invertible for input and output sets
of size M ≤ 100, which is remarkable two orders of magnitude higher compared to scenario I
and II. Systems with a moderate inhomogeneity due to the existence of hubs benefit from the
Sensor Placement Algorithm, but then the additional benefit from the full experimental design
is comparably small. For instance, the network Little Rock has a nearly vanishing probability
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Figure 4.8: A comparison of the probability for structural invertibility of real networks for the three considered
scenarios.

already for M = 1 under scenario I, but a non-vanishing probability for M / 25 under scenario
II. For scenario III we find a non-vanishing probability for M / 40, i.e., in the same order of
magnitude as in scenario II. Systems with a strong inhomogeneity due to an asymmetry in the
degree distributions, for instance TRN-Yeast-2, hardly benefit from scenario II at all but show a
completely different behaviour under scenario III.

To summarise, we have found several properties, the density, homogeneity, asymmetry and
clearly the number of input and output nodes which affect the structural invertibility behaviour
of networks. The density of the network and the sizes of the input and output sets lead to a very
clear result. The denser the network, the more node-disjoint paths can exists. And the smaller the
input set, the smaller is the number of node-disjoint paths we need for invertibility. It should be
kept in mind that the number M of input nodes and the number P of output nodes were assumed
to be equal, M = P . The results for the case of few inputs and many outputs will be qualitatively
comparable but quantitatively less frustrating. It is remarkable, though, how homogeneity and
asymmetry have a strong inhibitive effect under scenario I, but under scenario II and III we can use
them to even improve the invertibility behaviour of a system. As this impact can be both, positive
or negative, the network principle cannot solely lie in this property, but one must always consider
homogeneity and asymmetry in combination with the input and output placement.

Apart from the concrete results about the network topology and placement of input and output
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nodes, at this point we actually find that not the influence graph g= (N,E) alone is responsible for
the structural invertibility of a system, but also the input set S and output set Z. The triplet

(S,g,Z) (4.23)

must always be considered together. The conglomeration of all these triplets form a gammoid
and will be in the focus of the next chapter where they turn out to be an essential tool for the
introduction of a dynamic compressed sensing of model errors.
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CHAPTER 5

Sparse Error Reconstruction

The preceding chapter has lead to the pessimistic result that, more often than not, real systems
are not invertible and it is therefore questionable whether we can trust the results of a model
error reconstruction in practice. Despite this issue, let this chapter begin with an exemplary error
reconstruction.

5.1 Error Reconstruction Example

Nominal Model Look at figure 5.1. Subfigure (a) shows the influence graph of an exemplary
N = 30 node system. For simplicity and to avoid numerical issues, the system is linear and each
edge has weight of one. The initial state is x0 = 0. The equation system for this example can be
found in chapter 7, where another approach to the same system is discussed. This model serves
as nominal model. A linear system with initial value x0 = 0 should stay zero for all times, so the
output if the nominal model behaves trivially

y nominal(t ) =Φ(0)(t ) = 0 ∀t ∈ [0,T ] . (5.1)

Data To generate pseudo-experimental data for this system, we put an additional input w∗ to
the state variable x6 and took ten outputs y1, . . . , y10 as indicated in the figure. The time course
of the simulated output signals can also be found in subfigure (b) as ydata

i . A Gaussian noise
with a relative standard derivation of 5% of the current output magnitude was added to simulate
measurement noise.

Recovery Algorithm We now try to recover the input w∗ without any prior knowledge, only
using the nominal model and the data. Without prior knowledge, each node could potentially be
an input node. That is, we consider the input set

S= {1, . . . ,30} . (5.2)

An input set of size M = 30 and an output set of size P = 10 unavoidably leads to non-invertibility.
Ignoring this fact, we augment the nominal model with an input vector w = (w1, . . . , w30)T and
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solve the following optimisation problem to compute an estimate ŵ that hopefully approximates
the true input w∗.

Algorithm (Recovery Algorithm ∆)

LetΦ : U →Y be an input-output map and y data ∈Y given data over a time domain
T . Let M be the number of inputs and P the number of outputs. The cost functional
J : U →R is defined as

J [u] :=
P∑

i=1

∫
T

∣∣∣ydata
i (t )−Φi (u)(t )

∣∣∣2
d t +

M∑
j=1

(∫
T

∣∣∣u j (t )
∣∣∣3

d t

)1/3

. (5.3)

The input is recovered via

∆ : y data 7→ û such that J [û] ≤ J [u] . (5.4)

The recovery map ∆ acts as the inversion of the input-output mapΦ of the augmented nominal
model but is of rather heuristic nature at this point. It fits the output of the augmented model
(Φ(u)) to the data (y data). The 3-norm on the inputs ui makes the results smoother. Applying a
2-norm or any other will produce comparably good results.

Results Figure 5.1(b) shows the data and the fit for the output signals. Recovery algorithm ∆

fitted the model well to the data. Subfigure (c) shows the estimated input vector. One can see that
ŵ6 which is the input component that targets state variable x6 approximates w∗ while the other
components have a nearly vanishing amplitude.

Conclusion The system is highly non-invertible. More precisely, anticipating a later result, this
system has nullity of P −M = 20 which vividly spoken means that there is an arbitrariness in the
input estimate ŵ isomorphic to the function space

L3(T )× . . .×L3(T )︸                     ︷︷                     ︸
20 times

. (5.5)

In other words: We could distribute 20 L3(T )-functions arbitrarily over the thirty components of
an input vector u and we are still able to adjust the remaining components such that u reproduces
the data. In such a highly under-determined setting it is remarkable that a simple optimisation
procedure like ∆ is capable of producing an estimate which approximates the ground truth very
well.

5.2 Localisability of Model Errors

In the example above we were able to successfully compute an estimate of the model error in
a non-invertible system. However, one will realise that the ground truth w∗ was very sparse,
meaning, of 30 potential input components only one did not vanish.
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(a) (b)

(c)

w*

Figure 5.1: Example for a successful model error reconstruction. (a) The influence graph of an exemplary
system of size N = 30. Each node represents one state variable. The black squares represent the P = 10 state
variables that are considered as the observables y1, . . . , y10. The red wiggly arrow indicates that an additional
input w∗, representing a model error, affects state variable x6. (b) Pseudo-experimental and predictions
of the augmented model with the input shown in (c) (c) The estimated input vector ŵ = (ŵ1, . . . , ŵ30)T is
shown together with the ground truth w∗.

Example (Malfunction)

Let us discuss another scenario. An electronic circuit works properly for some time.
At time t1 it starts to behave differently. We deduce that some component of the
circuit broke at t1 causing this malfunction. Unless there is a direct causal connection,
we would not expect that several disconnected components of the circuit all broke
simultaneously. When we try to localise this error, we would therefore first try to find
the one broken component, repair or substitute it, and then switch on the electricity
again.

The electronic circuit can be seen as a network of electronic components N and wires
E. One node n ∈ N is the broken component, the source of the model error, or in other
words, the input node for the input w∗. As we have no prior knowledge about the
location of model error within the system, each electrical component must be seen as
potential input node. Let us call the set of all possible input nodes the input ground
set L. The true input set, here S= {n} however, is only a very small subset S⊆ L.

One can think of many other examples in which we have good reason to assume the true input set
to be very sparse but where we lack knowledge about the location of the input set. This was also
the situation in the introductory example, where we successfully recovered the input set S= {6}
from a large input ground set L= {1, . . . ,30}.
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5.2.1 Input Localisation

Instead of directly tackling the full MERP with a large input ground set L, the problem can be split
into two parts: First, localise the correct input set S⊆ L, and second, check whether the system

(S,g,Z) (5.6)

is invertible.

Model Error Localisation Problem (MELP) Consider a dynamic system with model error w
and input ground set L. Find the minimal input set S⊆ Lwith

wi (t ) = 0 ∀t ∈ [0,T ] ⇔ i ∉ S . (5.7)

Since the true input set S is usually much smaller that the input ground set L, we have a much
better chance for invertivility if we solve the MERP for S instead of L. The remainder of this chapter
will present a gammoid theoretical approach to the MELP in dynamic systems.

5.2.2 Concepts of Sparse Sensing

The fact that the true input vector w∗ had only one non-vanishing component allows to localise the
input set, in the example above S∗ = {6}. Similar findings are known from the literature about sparse
and compressed sensing, see [116, 117] for comprehensive overviews and [118] for a textbook on
the subject.

Varieties of Sparsity The definition of sparsity is based on our physical understanding of the
considered system [119, 117]. For instance, an RN vector x = (x1, . . . , xN )T will be considered sparse
if many components equal zero. The idea of sparsity is with respect to the canonical basis

x = x1e1 + . . .+xN eN (5.8)

with e i = (0, . . . ,0,1,0, . . . ,0)T where the one is in the i th component. As another example in an
infinite dimensional space take a periodic function like

sin(t ) . (5.9)

With the monomials as basis

sin(t ) = t − t 3

3!
+ t 5

5!
− . . . , (5.10)

the sine function is highly non-sparse. But interpreted as a Fourier-series the sine is as sparse as
possible for it is a basis vector itself. The sparsity of a function can only be judged with respect
to a predefined dictionary D = (d1,d2, . . .) where each di is a function. Ideally, the dictionary
is complete, meaning, it spans the whole function space of consideration. A representation or
decomposition of a function f :R→R

f (t ) = a1d1(t )+a2d2(t )+a3d3(t )+ . . . (5.11)
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is then considered to be sparse if the sequence (a1, a2, . . .) has only few non-vanishing elements.
The sparse decomposition of functions of time is investigated under the name of compressed
sensing of analogue signals [116] and are often called dynamic compressed sensing. However, the
term dynamic only reflects that it is compressed sensing for something evolving in time. It should
not be confused with the idea of a dynamic system, where we have knowledge about the governing
laws which determine the evolution of the system.

Another notion of sparsity for dynamic input-output systems is known as hands-off control [120].
Here, one wants to manually control the time development of a system through inputs. The idea
of hands-off control is to apply control inputs, e.g., only for a short interval [t0, t1] such that the
system evolves hands-off, i.e., without further control at a later point. One could also say, hands-off
control searches for an input that is temporally sparse.

Coming back to the example of an electric circuit with one broken component, one will realise
that the caused model error is not necessarily hands-off. It is rather the opposite. One component
breaks at some point t1 in time and clearly stays broken for the rest of time [t1,T ], until at T we
stop the system or repair the broken element.

We can neither give sense to sparsity with respect to any dictionary. For many applications of
compressed sensing of analogue signals one successfully uses Fourier- or Wavelet-decompositions
[116]. And this is fair, as one has knowledge about the physics behind it, so that one can rely on
dictionaries which have also a theoretical background and have proven appropriate over the years.
But in the case of unknown inputs, we have no understanding of functions which are natural
for this problem and which could thus serve as a dictionary. Instead, in order to detect a broken
component, it makes sense to search for an input vector that explains the data with only one or
very few non-vanishing components. The idea of sparsity in the MELP could be called a invariable
sparsity. That is, a single (1-sparse) perturbation that affects node i will not switch over to a
different node j at some point in time. The input set S remains invariable over time but without
restrictions on the functional form of the non-vanishing inputs.

5.3 Gammoid Interpretation of Structural Invertibility

The vast majority of sparse and compressed sensing literature deals with linear decompositions of
vectors or functions, consider the literature given above. Despite this trend, we will see that the
structure of a matroid is actually enough to give reason to the idea of sparsity. The 1935 seminal
work on matroids by Whitney [121] was entitled On the Abstract Properties of Independence, for
the obvious reason that the fundamentals of matroid theory are of rather abstract and theoretical
nature. It is a fortunate turning, though that structural input-output systems give rise to a special
class of matroids that have been investigated in the 1960s under the name of gammoids. With the
interpretation of dynamic input-output systems as gammoids we are in the lucky situation to use
the theoretical framework of matroid theory and at the same time efficient algorithms on graphs.
See also [122] for a textbook on matroids and applications.
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Chapter 5 Sparse Error Reconstruction

5.3.1 Matroids

Definition 20 (Independence Postulates) Let C := {C1, . . . ,CN } be a set with power set PC . The
independent sets I ⊆PC fulfil

1. S ∈I then S′ ∈I for each S′ ⊆ S.

2. Let S = {s1, . . . , sn} and T = {t1, . . . , tn , tn+1} in I . Then there is one element ti ∈ T such that
S ∪ {ti } is in I .

The system M = (C ,I ) of elements C and independence structure I is called a matroid.

Definition 21 (Rank Postulates) Let C := {C1, . . . ,CN } be a set with power set PC . A function
rank :PC →N0 that fulfils

1. rank(;) = 0.

2. For S ∈PC and e ∈C \S either

rank(S ∪ {e}) = rank(S) (5.12)

or
rank(S ∪ {e}) = rank(S)+1. (5.13)

3. For S ∈PC and e1,e2 ∈C \S, if

rank(S ∪ {e1}) = rank(S ∪ {e2}) = rank(S) (5.14)

then
rank(S ∪ {e1,e2}) = rank(S) (5.15)

will be called a rank function. A system M = (C , rank) of elements C and rank function is called a
matroid.

Above, there are indeed two definitions of a matroid, the first one based on the Independence
Postulates and the second one based on the Rank Postulates. It is already due to the inventor
Whitney that both postulate systems are equivalent [121]. Hence each independence structure is
equipped with a rank function and each proper rank function induces an independence structure
according to the following theorem. Henceforth, independence structure always refers to a system
that fulfils the two Independence Postulates. There is indeed a seldom discussed generalisation
of matroids also called independence structure that only fulfils the first Independence Postu-
late without relevance for the purposes of this thesis. The following theorem is a paraphrase of
Whitney’s results and given without proof.

Theorem 7 (Whitney) Let M = (C ,I ) be a matroid. Then

rank : S 7→ max
T∈(PS∩I )

cardT (5.16)

is a rank function.
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5.3 Gammoid Interpretation of Structural Invertibility

Let M = (C , rank) a matroid. Then

S ∈I
Def⇔ rankS = cardS (5.17)

defines independent sets.

As a consequence of the equivalence of the Independence Postulates and the Rank Postulates, as
soon as we find a system with independence structure, we get a rank function. The complement of
the rank is the nullity which we set as the number such that the equation

rankS +nullS = cardS (5.18)

holds. In linear algebra, the columns of a matrix form a matroid and the equation above is known
as the the rank-nullity theorem. Then the nullity corresponds to the dimension of the matrix
kernel. At a later point it will become clear that also in the non-linear d-algebraic setting, the
nullity makes a statement about the dimensionality of the solution space of the MERP. At this point,
however, we first want to discuss the properties of matroids before we connect these to dynamic
systems. It shall raise no confusion that we speak of the equation above as rank-nullity theorem,
though for an abstractly introduced matroid it holds actually by definition.

The terminology of matroid theory is an assembly of terms from linear algebra, graph theory,
combinatorics, and other disciplines. This results in a redundant amount of definitions and
terms which also shall not be the reason for confusion. As one instance, independence of a set
is equivalent to the statement that its nullity is zero. As another example, a base of a matroid
M = (C ,I ) is a maximally large independent set B ⊆C . This is equivalent to

rankB = rankC . (5.19)

If the matroid is a set of matrix columns, then a matroid base is indeed a vector space base of the
vector space spanned by the column vectors. Let us come to a third definition of matroids, again
equivalent to the ones above.

Definition 22 (Base Postulates) Let C := {C1, . . . ,CN } be a set with power setPC . The bases B ⊆
PC fulfil

1. If B ∈B, then B ′ ∉B for each proper subset B ′ ⊂ B.

2. Let A,B ∈B and a ∈ A. Then there is an b ∈ B such that (A\{a})∪ {b} ∈B.

The system M = (C ,B) of elements C and bases B is called a matroid.

Let us take a look at two matroids.

Example (A Matrix as Matroid)

Consider a matrix A = (a1, . . . , aN ) where each ai ∈RM is a column vector. Interpreted
as a matroid, one would simply take the set of columns

C = {a1, . . . , aN } (5.20)
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as ground set. An element S ∈PC is then likewise a subset of columns

S = {as1
, . . . , asn

} (5.21)

where {s1, . . . , sn} are some distinct indices 1 ≤ si ≤ N . One will agree that it is the
easiest to directly identify S with the corresponding index set

S ∼ {s1, . . . , sn} . (5.22)

Clearly, such a set corresponds to a sub-matrix

AS = (as1
, . . . , asn

) (5.23)

of course, only up to permutation of columns.

As matroids are motivated by the column structure of matrices, it is not a surprise that
the switch from matrix to matroid is basically swapping parentheses with curly braces.

Finally, the matrix rank

rank AS := maximal number of linearly independent columns (5.24)

can be interpreted as a functionPA →N0 that fulfils the Rank Postulates.

Example (Algebraic Matroid)

Consider a finitely generated field extension L/K. Remember that a set {l1, . . . , ln} ⊆ L is
said to be algebraically dependent, if there is a polynomial p(L1, . . . ,Ln) ∈K[L1, . . . ,Ln]
such that

p(l1, . . . , ln) = 0. (5.25)

In the literature, see [123] for a textbook, algebraic matroids are discussed which build
on the fact that the structure introduced by algebraic dependence fulfils the Independ-
ence Postulates. Using the terminology of algebraic independence, remember the
transcendence degree of a field extension K(l1, . . . , ln)/K is defined as

tr-dK(l1,...,ln )/K := maximal number of algebraically independent elements. (5.26)

Indeed, this transcendence degree serves as the rank of {l1, . . . , ln}. Finally, also a
transcendence basis corresponds to a basis in the matroid sense.

Before we discuss in which sense a dynamic input-output system can be interpreted as a matroid,
it shall be emphasised that in an equation like

Ax = y (5.27)

with x ∈ RN and y ∈ RP , the matrix A ∈ RP×M combines two structures. On the one hand, the
columns of A form an independence structure. On the other hand, A is an operator that maps
between the spaces RN and RP . In linear algebra for instance, it seems unintuitive to distinguish
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5.3 Gammoid Interpretation of Structural Invertibility

between these two sides as one examines the linear dependence of columns to get information
about the the image and kernel of A as a map. Principally, though, these two structure need
not be connected. A matroid can strand alone as well as an operator. Much emphasise is put
on the distinction of these two structures for two reasons. First, to understand that the matroid
structure of an input-output mapΦ is a game changer for the invertibility question. Even without
an explicit form of this map, we can investigate the dependence structure to get information about
the invertibility of this map. Second, to understand, that sparsity is actually a term associated with
matroids.

The Spark We introduce a last property, the spark of a matroid. The spark of a matrix, in some
literature also known as girth, consider for instance [124] and references therein to see that the
computation of the girth is an object of current research, has been a key in the seminal papers
on compressed sensing [119]. It is therefore plausible that the results in the early papers on com-
pressed sensing, which actually stem from the underlying matroid structure, can be generalised
for the matroids arising from dynamic input-output systems.

Definition 23 Let M = (C ,I ) be a matroid. The spark of M is the largest integer such that for any
set S ∈PC

cardS < sparkM ⇒ S = 0. (5.28)

5.3.2 The Gammoid Structure of Dynamic Input-Output Systems

There is a problem of purely graph theoretical origin: For a given directed graph g= (N,E), find
the sets S ⊆ N and Z ⊆ N such that S is linked in g into Z. Actually, this is exactly the problem of
structural invertibility to which we came after a large d-algebra detour. Without knowing about
this connection the linked paths problem was discussed in a sequence of papers mainly in the
late 1960s. Actually tackling graph theoretical questions, Perfect [125] found the probably first
connection between this problem and independence structures. Quickly a new name was found by
combining graph and matroid to the new term gammoid, which seemingly appeared for the first
time in a paper by Pym [126]. The field was pushed and widely understood in the following years
[127, 128, 129, 130]. Also the connection to matroids became already very clear. The following
definition of gammoids and the new term weighted gammoids below have proven appropriate for
the purposes of this work.

Definition 24 Let g= (N,E) be a graph and let L⊆ N and M⊆ N be an input ground set and output
ground set, respectively. We call

Γ := (L,g,M) (5.29)

a gammoid. If there is a weight function F : E→R, whereR is a ring, and F is a homomorphism in
the sense that

F (π◦ρ) = F (π)F (ρ) (5.30)

and for a setΠ of paths
F (Π) = ∑

π∈Π
F (π) (5.31)

then we call g a weighted graph and Γ a weighted gammoid.
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With input set S⊆ L and output set Z⊆ M, a structural input-output system

(S,g,Z) (5.32)

can be understood as a realisation of the gammoid (L,g,M) With this understanding one will see,
that for instance a sensor placement algorithm like the one presented in the last chapter can also
be seen as a discrete optimisation problem

minimiseZ⊆ M
subject to(S is linked intoZ)

(5.33)

Already in the early works on gammoids, a detail can sometimes make a difference. So is the initial
step of the sensor placement algorithm presented in the chapter before always to check whether
the input set S of is linked into the output ground set M. If not, there exists no sensor placement
that renders the corresponding dynamic system invertible. The algorithm iteratively deletes nodes
from M until we reach an output set Z∗. This output set is minimal if and only if S is not only linked
into, but also linked to Z∗.

Input and Output Spaces Let us briefly clarify the connection of the input and output sets S
and Z and the input and output spaces U and Y . In the most general and unrestricted case, the
differential equation of a dynamic input-output system in state space form reads

ẋ(t ) = f (x(t ))+u(t ) (5.34)

where each vector has N components. The space of all allowed input functions u is the input space
U which is a compound space

U =U1 ⊕ . . .⊕UN , (5.35)

where Ui is the function space for the i th component of u. We have already introduced the input
ground set L⊆ {1, . . . , N } which tells us that only those components ui are allowed to be non-zero,
for which i ∈ L. For instance L= {1,3,4, . . .} yields a restricted input space

UL :=U1 ⊕ {0}⊕U3 ⊕U4 ⊕ . . . (5.36)

Another way to express such a restriction would be to introduce an appropriate RN×L matrix D so
that the differential equation becomes

ẋ(t ) = f (x(t ))+Du(t ) (5.37)

and the restricted input space takes the form

UL =
⊕
l∈L

Ul . (5.38)

The latter formulation suppresses the trivial function spaces. Both formulations are equivalent
and might turn out more or less convenient for certain considerations.
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5.3 Gammoid Interpretation of Structural Invertibility

With the same argumentation, we could write the output space as

YM =
⊕
m∈M

Ym (5.39)

where M is the output ground set and Yi represents the function space of the observable yi (t) =
xi (t ). In practice, however, we usually work with some fixed output space Y of dimension P < N
that corresponds to the given output set Z.

Furthermore, we usually assume that the model errors are not correlated. That means, if we
restrict the input space, then only by restrictions to single components as shown above. For
instance

−b ≤ ui ≤ b (5.40)

makes sense and reflects the assumption that the magnitude of the model error represented by the
unknown input ui is bounded by some value b ∈R+. On the other hand, a restriction like

p(ui ,u j ) = 0 (5.41)

for some (d-)polynomial p would represent the case of two coupled model errors. Since we have
no a priori knowledge about the model errors, such a case cannot be excluded by a rigorous
argumentation, but goes beyond the presented framework. An example for such correlated model
errors was presented in [22].

Say the gammoid Γ= (L,g,M) and an input set S⊆ L and output set Z⊆ M belong to some dynamic
system. If S is linked into Z then the input-output map

Φ : US→Y (5.42)

is one-to-one, hence any solution of the MERP is unique.

The Independence Structure of a Dynamic Input-Output System The considerations above
make clear that the structurally invertible input-output configurations of a dynamic system form
a gammoid. The original argumentation that a gammoid induces a matroid is indirectly given
by a combination of much more elaborated theorems, see [125] and references therein. A new
and shorter proof is provided in order to circumvent this technical overload and straightforwardly
shows that the linked sets in a gammoid fulfil the Independence Postulates.

Theorem 8 Let Γ = (L,g,M) be a gammoid. An input set S ⊆ L is called independent in Γ, if S is
linked into M. Let I be the family of independent sets. Then M = (L,I ) is a matroid.

Proof
Let S ∈ I . Thus, there is an output set Z ⊆ M and a family of node-disjoint paths Π such that

in(Π) = S and ter(Π) = Z. For any subset S′ ⊆ S it is clear that there is a Π′ and Z′ ⊆ Z such that
in(Π′) = S′ and ter(Π′) = Z′. The first Independence Postulate is thus fulfilled.

Now let S= {s1, . . . ,sn} and T= {t1, . . . ,tn+1} be two independent sets. Set Si := S∪ {ti }. Let us
assume, each Si is dependent. A separator of Si and M is a set A such that each path that starts in
Si and terminates in M contains at least one node a ∈ A. The size of a minimal separator between
Si and M equals the maximal number of node-disjoint paths between these two sets [88].
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As S is independent, there is a familyΠ of n node-disjoint paths from S to M. The paths fromΠ

contain a set A= {a1, . . . ,an} that is a minimal separator between each Si and M. To see this, let Ai

be a minimal separator between Si and M. We first realise that cardAi = n. Since by assumption Si

is dependent, the size of Ai is smaller than n +1. But since S⊂ Si has n node-disjoint paths to M,
the size of Ai is at least n. Hence cardAi = n.

Second, as each path from Si to M passes Ai , so does each path from S. Consequently, any path
family from S to M does so and if the family has n node-disjoint paths, then it includes n distinct
elements of Ai , that is, the whole set. Hence the familyΠ contains each Ai .

It remains to show that there is one A such that we can choose Ai = A for each i . This can be done
by a separator for which we introduce the term last separator. The last separator between Si and M
is a minimal separator A such that between A and M there is no other separator A′ except for the
trivial one A′ = A. If we choose A the last separator between S and M, this is necessarily also the last
separator between each Si and M.

Now that we have shown that there is a common separator A of size n, it is clear that each path
from si or ti to Mmust pass A for all i . Thus A is necessarily also a separator for

⋃
i Si = S∪T and

consequently for T. But by construction T is independent and of size n +1, thus any separator
between T and Mmust have a size of at least n +1. This is a contradiction, therefore the initial
assumption that each Si is dependent must be false and the second Independence Postulate is
fulfilled.

■

A Note on the Nullity The nullity is a quantity that arises from the gammoid structure of an
input-output system. In each representation some properties of the system are more obvious.
Others appear to be hidden, but then a change in our point of view unveil these intrinsic qualities.
Alike many other properties, the nullity is straightforwardly defined for a gammoid, but it can also
viewed in from other perspectives.

Proposition 3 Consider a dynamic input-output system with d-algebraic representation over a
d-field K and structural representation (S,g,Z). Then

d-tr-d
K〈U , X 〉∼
K〈Y 〉 = nullS . (5.43)

Proof The validity of this theorem comes directly from the necessity and sufficiency of structural
invertibility for d-algebraic invertibility.

The input set S has a subset S̃⊆ S of size rankS, such that S̃ is independent, or, equivalently, such
that S̃ is linked in g into Z. Now split

U = (Ũ ,Û ) (5.44)

such that Ũ corresponds to the input set S̃. By construction Ũ has a size of rankS while the
complementary set Û has a size of nullS. The tower formula now yields

d-tr-d
K〈Ũ ,Û , X 〉∼

K〈Y 〉 = d-tr-d
K〈Ũ ,Û , X 〉∼
K〈Û ,Y 〉 +d-tr-d

K〈Û ,Y 〉
K〈Y 〉 . (5.45)
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By lemma 3

d-tr-d
K〈Ũ ,Û , X 〉∼
K〈Û ,Y 〉 = d-tr-d

K〈Ũ , X 〉∼
K〈Y 〉 = 0 (5.46)

since the structural invertibility of (S̃,g,Z) is sufficient for a vanishing d-transcendence degree. For
the second term

d-tr-d
K〈Û ,Y 〉
K〈Y 〉 = d-tr-d

K〈Û 〉
K

= cardÛ = nullS . (5.47)

■
The proposition above connects the gammoid interpretation with the d-algebraic formulation.
It shows that the (almost) equivalence of structural and d-algebraic invertibility is not restricted
to the statement invertible or non-invertible. When we explore the independence structure of
a gammoid, we also learn about the d-algebraic dependencies of the input-output system, its
d-transcendence bases and so forth. The following proposition conveys the nullity into the state
space form.

Proposition 4 Let Φ : U → Y be the input-output map of a state space system and (S,g,Z) the
structural representation of the system. For the input space U =U1 ⊕ . . .⊕UM assume

Ui = V (5.48)

with some appropriate function space (e.g. V = Lp ([0,T ]) works for many practical problems). Then
for the solution space

A = {u ∈U |Φ(u) = y} (5.49)

for a y ∈Y we find
A � V ×nullS . (5.50)

Proof This proposition comes as a corollary of the one before. From

d-tr-d
K〈U , X 〉∼
K〈Y 〉 = nullS (5.51)

we deduce that there is a set V of size nullS= m such that

d-tr-d
K〈U , X 〉∼
K〈Y ,V 〉 = 0. (5.52)

For instance V ⊆U , i.e. U = (Ũ ,V ). That means, we can choose m input functions v = (v1, . . . , vm) ∈
V ×m as value for V . Since the components of Ũ are d-algebraic over K〈Y ,V 〉, with respect to the
d-ideal of the system, there is a generating system for each Ui ∈ Ũ . It follows that if u solves

Φ(u) = y (5.53)

then for any choice of v we find a ũ such that

Φ(u) =Φ(ũ +v ) . (5.54)
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Hence, the solution u is only fixed up to

A = V ×m . (5.55)

■
5.3.3 Uniqueness of the Sparsest Solution

So far we have seen, how dynamic input-output system naturally incorporate a matroid structure.
The first connection between the matroid structure and the input-output mapΦ is given by the
theorem below. This theorem in the matrix version stems from the original work on compressed
sensing [119]. The matroid structure of a dynamic system allows to proof its validity also for
non-linear input-output maps.

Definition 25 For a vector u ∈U the support of u is the index set

suppu := {i |ui , 0} . (5.56)

The size of the support is called 0-norm denoted

‖u‖0 := cardsuppu . (5.57)

If ‖u‖0 ≤ k for a k ∈N0, the vector u is called k-sparse. The set of k-sparse vectors is denoted Σk ⊆U .
LetΛ⊆ {1, . . . , N } be an index set. The vector uΛ is understood as

(uΛ)i =
{

ui if i ∈Λ
0 if i ∉Λ . (5.58)

Theorem 9 Consider a dynamic input-output system with input-output mapΦ : U →Y and let Γ
be the gammoid of the system. Let y ∈Y . If an input u ∈U solves

Φ(u) = y (5.59)

and

‖u‖0 <
sparkΓ

2
, (5.60)

then for any other solution v ∈U we find

‖v‖0 > ‖u‖0 . (5.61)

Proof We first slightly reformulate the theorem as follows: There can be at most one solution with
0-norm smaller than sparkΓ/2.

So assume there are two distinct solutions u , v that both have 0-norm smaller than sparkΓ/2. If
S := suppu and T := supp v the assumption says card(S),card(T ) < sparkΓ/2. Clearly Q := S ∪T has
cardQ < sparkΓ thus by definition of the spark

Φ : UQ →Y (5.62)
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is one-to-one. So if there is a w ∈UQ that solves

Φ(w ) = y , (5.63)

this w is unique with respect to UQ .
By construction US ⊆ UQ , thus the input u is a solution that lies in UQ . So we know that w

exists and is necessarily equal to u. But also UT ⊆UQ so the vector w must also equal v . We found
u = w = v which contradicts the assumption.

■
The latter theorem can be seen as the fundamental of the remainder of this and the following
chapter. It connects the intrinsic independence structure of a dynamic input-output system with
the uniqueness of sparse solutions. This proofs that sparsity is indeed a regularisation scheme
capable of producing unique solutions in a non-linear non-invertible dynamic system.

5.4 Coherence of Input Nodes

Dynamic input-output system are naturally equipped with the independence structure of a gam-
moid. Say Γ = (L,g,M) is the gammoid of such a system. We are now in the position to decide,
whether, for instance, an input set S= {s,t} of size two is independent or not. If this set is inde-
pendent, the Model Error Reconstruction Problem with the restricted input space

US =Us⊕Ut (5.64)

has a unique solution.

Coherence vs. Strict Dependence Take a look at a simple toy problem in R2

(
2.0 1.8 0
0 0 1.5

)
︸                ︷︷                ︸

:=A

x1

x2

x3

=
(

0
3.0

)
︸ ︷︷ ︸

:=y

. (5.65)

Clearly, the rank of any 2×3 matrix is at most two, hence the system under-determined. A typical
compressed sensing problem. But the case is actually worse. When we compute the spark of A, we
search for the smallest dependent subset of columns. In this example, the first two columns are
dependent (in the matroid sense, equivalent to linearly dependent in the matrix sense). Hence we
obtain

spark A = 2 (5.66)

which is the worst possible value for the spark. To understand that, theorem 9 tells us that a
solution x is the unique sparsest solution if

‖x‖0 <
spark A

2
= 1. (5.67)

However, the only vector that fulfils this inequality is x = 0 which makes the whole equation trivial,
anyway. Despite this finding, the vector x = (0,0,2)T is clearly the most intuitive and sparsest
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solution of the equation above. But why do we get such a frustrating result for the spark, and are
still able to get a sparse solution?

Obviously, if the data vector y was non-zero in the first component, the situation would be not
so obvious because the problem lies in the first two columns of A. Already in the early works on
compressed sensing, the coherence

µi j :=
〈ai , a j 〉

‖ai‖2‖a j‖2
(5.68)

was introduced [119], where ai stands for the i th column of A. A coherence measure for the signal
recovery problem was discussed even earlier in [62]. In Euclidean space

µi j = cos(φi j ) (5.69)

whereφi j is the angle between the corresponding vectors. Hence,µi j serves as a similarity measure
between two columns. For the example above we find

µ12 = 1 , µ13 = 0 , µ23 = 0. (5.70)

Now let us add some noise to the problem,

(
2.1 1.8 −0.1
−0.2 0.1 1.5

)
︸                    ︷︷                    ︸

:=Ã

x1

x2

x3

=
(
0.2
2.9

)
︸ ︷︷ ︸

:=ỹ

. (5.71)

Due to the noise, the first two columns are independent, leading to

spark Ã = 3. (5.72)

Adding noise can destroy dependence structures and a system might appear less under-determined.
However, exact solutions, as for example x = (−673/683, 926/683, 1169/683)T , are all non-sparse and seem
odd. In the spirit of compressed sensing we would rather consider x = (0,0,2)T to be the most
plausible approximate solution of the noisy problem. For the coherences we get

µ12 ≈ 0.99 , µ13 ≈ 0.16 , µ23 ≈ 0.01. (5.73)

Whereas the strict definition of dependence is highly sensible to noise, the coherence of the matrix
columns again indicates that the first two columns are practically dependent, and practically
decoupled from the third column.

A measure for the coherence of columns can help to judge the plausibility of solutions in a
compressed sensing problem. The next aim is therefore to find a coherence measure applicable to
dynamic input-output systems. For the remainder of this chapter, we have to restrict the systems
of consideration to linear dynamic input-output systems.
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5.4 Coherence of Input Nodes

5.4.1 Weighted Gammoids and the Transfer Function

Henceforth, only linear dynamic input-output systems are considered. In a linear differential
equation

ẋ j (t ) = . . .+a j i xi (t )+ . . . (5.74)

one always finds
∂ẋ j

∂xi
= a j i (5.75)

to be a constant. More precisely, a j i is a constant with respect to the variables (x1, . . . , xN ). If the
system of consideration is non-autonomous, i.e., it is not a system over the field R but the d-field
R〈t〉, then a j i ∈R〈t〉 can be a rational function of time. In the graphical representation, the edge
(i→ j) gets the weight

F (i→ j) = a j i . (5.76)

Clearly, for a given weighted gammoid, this identification can also be done the other way round so
that gammoids with constant weights and linear dynamic input-output systems have a one-to-one
correspondence. For gammoids with non-constant weight, this is not the case. To see this, take for
instance

ẋi = fi (x) (5.77)

and realise that F (1→ i)
...

F (N→ i)

=

∂ fi/∂x1

...
∂ fi/∂xN

=∇ fi . (5.78)

Thus only if the weights of the incoming edges at each node form a conservative vector field, it is
possible to find a differential equation that produces these weights.

Linear System in Laplace Space Consider the differential equation over R (or any constant
d-field)

ẋ(t ) = Ax(t )+Du(t ) . (5.79)

The Laplace-transformationLmaps a function of time f : [0,∞) →R to a functionL( f ) = f̃ :C→C

in the complex plane according to

L( f )(s) :=
∫ ∞

0
f (t )e−st d t (5.80)

for s ∈C. Whether the technique of the Laplace-transform can also be applied to (non-constant) d-
fields is an open question and might be part of future research about the gammoid representation
of dynamic systems. Henceforth, our considerations are restricted to the field R. We follow the
convention and use a tilde to abbreviate the Laplace-transform of a function. Applying the Laplace-
transform element-wise to both sides of equation 5.79 yields a linear dynamic input-output
system in Laplace-space

s x̃(s) = Ax̃(s)+Dũ(s) ∀s ∈C . (5.81)
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This shift to Laplace-space is a common technique in the literature about the engineering and
control of linear systems, see [27] for a textbook. Rewritten as

x̃(s) = (s − A)−1Dũ(s) (5.82)

and together with a linear observation function

ỹ(s) =C x̃(s) (5.83)

one obtains the equation
ỹ(s) =C (s − A)−1Dũ(s) . (5.84)

The transfer function
T (s) :=C (s − A)−1D (5.85)

maps the input ũ to the output ỹ and is therefore the Laplace-space representation of the input-
output mapΦ. The proposition below allows to compute the transfer function without the detour
over state-space and Laplace-transform directly from the weighted gammoid.

Lemma 4 Let A ∈ RN×N be a matrix and g = (N,E) the graph with nodes N = {1, . . . , N } and edges
(i→ j) ∈ Ewhenever A j i , 0. For each edge we define the weight as F (i → j ) := A j i . Then

Ak
ba = F (Pk (a,b)) . (5.86)

Proof Let l0,l1, . . . ,lk ∈ N be a list of nodes. If the path π := (l0 → . . . → lk ) exists, then π ∈
Pk (l0,lk ) and we can use the homomorphic property of F to get

F (π) = F (l0 → l1) . . .F (lk−1 → lk ) = Alk lk−1
. . . Al1l0

. (5.87)

On the other hand, if π does not exist, at least one of the terms Ali li−1
equals zero and

Alk lk−1
. . . Al1l0

= 0. (5.88)

When we compute the powers of A we find

Ak
ba =

N∑
l1,...,lk−1=1

Ablk−1
. . . Al1a (5.89)

which sums up all node lists l1, . . . ,lk−1 ∈ Nwith l0 = a and lk = b fixed. It is clear that the terms in
the sum do not vanish if and only if the path (a→ l1 → . . . → lk−1 → b) exists. Thus we can replace
the sum by

Ak
ba =

N∑
π∈Pk (a,b)

Ablk−1
. . . Al1a (5.90)

and we have already seen that for an existing path we can replace the right hand side by

Ak
ba = ∑

π∈Pk (a,b)
F (π) = F (Pk (a,b)) (5.91)
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where the second equality comes simply from the definition of the weight function for sets of
paths.

■

Proposition 5 Let T be the transfer function of a linear dynamic system with input set S= (s1, . . . ,sM )
and and output set Z= (z1, . . . ,zP ). Then

T j i (s) = 1

s

∑
π∈P (si ,z j )

F (π)

slenπ
. (5.92)

Proof There are two ways of writing the transfer function. For an input set S= {s1, . . . ,sM } and
output set Z= {z1, . . . ,zP } we start with the full transfer function (s−A)−1 and eliminate the columns
with indices not in S and rows with indices not in Z. By this we obtain a complex P ×M matrix.
Consequently, since T maps w̃ to ỹ , we have to eliminate the components of ũ with indices not
S. Alternatively, one refrains from deleting columns of (s − A)−1 such that the transfer function
is P ×N and one sets the components of u to zero whenever the index is not in S. So far we have
worked with the latter form, however it turns out that the first one will be more convenient in this
part. We use the Neumann-series to write

T j i (s) =
[

(s − A)−1
]
z jsi

= 1

s

[(
1− A

s

)−1]
z jsi

= 1

s

∞∑
k=0

[
Ak

]
z jsi

sk
. (5.93)

where the brackets just indicate that we first take the matrix power and then take the j i -element.
With lemma 4 we get

T j i (s) = 1

s

∞∑
k=0

∑
π∈Pk (si ,z j )

F (π)

sk
. (5.94)

We now see that k = lenπ. Furthermore we can combine the two sums to get

T j i (s) = 1

s

∑
π∈P (si ,z j )

F (π)

sk
. (5.95)

■

5.4.2 Concatenation of Gammoids

In the last section, a proposition was proven that allows to compute the transfer function by finding
paths in a weighted gammoid. Before we want to apply this theorem, we first want to consider
a helpful construction, the concatenation of gammoids. The construction or decomposition of
electronic systems in Laplace-space are commonly used in engineering problems, see again the
textbook [27]. The concatenation of gammoids transfers this idea to make it applicable in a more
general context.
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Transposed Gammoid First, the idea of a transpose shall be introduced for gammoids. For a
linear dynamic system S

ẋ(t ) = Ax(t )+B w (t )

x(0) = x0

y(t ) =C x(t )

(5.96)

one finds the dual system [27] S ′ to be

ẋ(t ) = AT x(t )+C T y(t )

x(0) = x0

w (t ) = B T x(t ) .

(5.97)

To avoid confusion, note that the term dual is used with different meanings in the literature. The
duality principle for systems must not be confused with the duality principles for optimal control,
see [131] for a textbook, or the duality in the sense of matroids [121]. The duality principle for
systems is a convenient tool as many properties inherit this duality. For instance, it is known that
observability and controllability are dual, meaning, S is observable/controllable if and only if S ′

is controllable/observable and vice versa [27].
The gammoid of the dual system is considered as the transposed gammoid Γ′. The terminology

transposed is preferred to avoid confusion as the the term dual gammoid is already occupied and
refers to the matroid duality principle investigated in [129]. The transposed gammoid can also be
directly introduced as an involution Γ 7→ Γ′ for arbitrary gammoids. Let Γ= (L,g,M) be a weighted
gammoid. The transposed graph g′ = (N′,E′) can be constructed from g= (N,E) in the following
way. For each node n ∈ N there is a n′ ∈ N′. For each edge (a→ b) ∈ E there is an edge (b′ → a′) ∈ E′.
The transposed gammoid is defined as

Γ′ := (M′,g′,L′) . (5.98)

Due to the very symmetric relation between Γ and its transpose Γ′ it is easy to see that any path

π= (a0 → a1 . . . → ak−1 → ak ) (5.99)

through Γ has a one-to one correspondence to a path

π′ = (a′k → a′k−1 → . . . → a′1 → a′0) (5.100)

through Γ′ of the same length and weight.

Concatenation of Gammoids A cascade of gammoids can be constructed by feeding the output
of Γi = (Li ,gi ,Li ) into the input of Γi+1 = (Li+1,gi+1,Li+1). Clearly, two things must be noticed:

1. The output ground set Mi and the input ground set Li+1 must be of the same size.

2. It does matter which output m ∈ Mi is fed into which input l ∈ Li+1.

These issues can be handled in different ways. One can consider an injective map ϕ : Mi → Li+1.
The second point makes clear that there are many, more precisely there is a number of P !, of

84



5.4 Coherence of Input Nodes

such maps ϕ1, . . . ,ϕP !, where P is the size of the ground sets. Each ϕk represents one possible
concatenation of Γi and Γi+1. In a graph theoretical formulation, this is can also be seen as a
matching problem in the bipartite node set Mi ∪̇Li+1. The easiest way to handle this is, however, to
simply assume that the sets are given with a certain order, Mi = {m1, . . . ,mP } and Li+1 = {l1, . . . ,lP }
and one would identify

mk � lk (5.101)

for k = 1, . . . ,P . The resulting gammoid is understood as the concatenation

Γi ◦Γi+1 . (5.102)

Proposition 6 Let Γ1 = (L1,g1,M1) and Γ2 = (L2,g2,M2) be two gammoids and Γ1 ◦Γ2 = (L,g,M) the
result of the concatenation. For any S⊆ L and K⊆ Mwe find: S is linked in g to K if and only if there
is a

Z⊆ M1 � L2 (5.103)

such that S is linked in g1 to Z and Z is linked in g2 to K.

Proof First, note that in the act of concatenation M1 is identified with L2. Assume S⊆ L is linked in
g to K⊆ M. Hence, there is a linking

Π= {π1, . . . ,πR } (5.104)

from S to M. Here R is the size of S and K. For any edge a→ bwith a ∈ N1 and b ∈ N2 we necessarily
find that either

a ∈ M1 (5.105)

or
b ∈ M1 . (5.106)

Since S⊆ L1 ⊆ N1 and K⊆ M2 ⊆ N2, each path πi goes through a one node zi ∈ M1 and these nodes
are pairwise distinct. We find that Z := {z1, . . . ,zR } ⊆ M1 acts as a separator.

We can decompose the path
πi =π1

i ◦π2
i (5.107)

at zi such that π1
i starts in S and terminates at zi and π2

i starts at zi and terminates in K. We find
that

Π1 = {π1
1, . . . ,π1

R } (5.108)

is a linking such that S is linked in g1 to Z. Analogously, throughΠ2 we see that Z is linked in g2 to
K.

Now assume S is linked in g1 to Z and Z is linked in g2 to K. Let Z= (z1, . . . ,zR ) where again R is
the cardinality of S and K. That means we find a linking

Π1 = {π1
1, . . . ,π1

R } (5.109)

such that π1
i starts in S and terminates at zi . We also find a linking

Π2 = {π2
1, . . . ,π2

R } (5.110)

85



Chapter 5 Sparse Error Reconstruction
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Figure 5.2: Construction of the Gramian gammoid. (a) An exemplary gammoid Γ. The red round nodes
are the input set, the blue squared nodes represent the outputs. (b) The transposed gammoid Γ′. The
round blue nodes are the output set and the red squares represent the input nodes. (c) The outputs of Γ are
identified with the inputs of Γ′. We obtain the Gramian gammoid Γ◦Γ′ with inputs indicated in red and
outputs indicated in blue.

such that π2
i starts at zi and terminates in K. We can concatenate the paths

πi :=π1
i ◦π2

i . (5.111)

Since π1
i only contains nodes from N1 and π2

i from N2, it is clear that the paths from

Π := {π1, . . . ,πR } (5.112)

are again node-disjoint. Hence S is linked in g to K.
■

The proposition above emphasises that, though the input ground set L1 is the same forΓ1 andΓ, the
independence structure might be different. For instance, an input set S⊆ L1 can be independent in
Γ1 but dependent in Γ; indicating that it is the structure of Γ2 that renders the system structurally
non-invertible.

A special case is the concatenation of a gammoid with its own transpose,

Γ◦Γ′ (5.113)

We will call this the Gramian gammoid of Γ. In figure 5.2, please find a visualisation of the con-
struction of a Gramian gammoid. The aforementioned issue disappears for a Gramian gammoid:
An input set is independent in Γ◦Γ′ if and only if it is independent in Γ.
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5.4.3 Gramian

In the work on compressed sensing with a matrix A, the Gramian matrix

G := AT A (5.114)

yields a convenient way to compute the coherences of the matrix columns, see for instance the
overview [117]. The Gramian introduced below shall not be confused with the input Gramian or
output Gramian from control theory [27]. The latter two are also useful for the controllability and
observability of dynamic systems and related but not identical with the Gramian presented here.

Definition 26 Let T :C→C
P×M be the transfer function of a linear dynamic input-output system

with P output nodes and M input nodes. The Gramian of the system is defined as

G(s) := T ∗(s)T (s) s ∈C (5.115)

where the asterisk denotes hermitian conjugate.

Making use of proposition 5 we can compute the Gramian via

G(s)ba =
P∑

i=1

1

|s|2
∑

ρ∈P (sa ,zi )

F (ρ)

slenρ

∑
π∈P (sb ,zi )

F (π)

s̄lenπ
. (5.116)

The Gramian of the transfer function is closely related to the Gramian gammoid of the system.
Indeed, in the equation above one can interpret

ψ := ρ ◦π′ (5.117)

as a path in Γ◦Γ′ of weight
F (ψ) = F (π)F (ρ) (5.118)

and length
lenψ= len(ρ)+ len(π) (5.119)

Because any pathψ in Γ◦Γ′ has always a unique decomposition in such a ρ andπ′ we can introduce
the multi-index notation

sψ := slenρ s̄lenπ . (5.120)

The necessity for this notation arises from the fact that the transposed gammoid Γ′ represents the
transposed transfer function T T but not the conjugate T ∗ which actually appears in the Gramian.

An alternative way to circumvent the multi-index can be the following. In the transfer function
element T j i , a path

π= (si → a1 → . . . → aL−1 → z j ) (5.121)

produces an additive term

T j i (s) = . . .+ F (π)

sL+1
+ . . . (5.122)

Each edge (ak → ak+1) contributes a weight F (ak → ak+1) and a factor 1/s. The additional 1/s
stems from the imaginary edge from the source of the input to the input node. In this thesis, the
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input node si represents a state variable that is directly targeted by an input. In the literature about
dynamic systems with inputs, it is also common to have a node ui that represents the source of the
input, see for instance [53]. To build the bridge to the notation used in this thesis, one simply adds
an edge

ui → si (5.123)

of weight one. This elongates π to a length of L +1. It is possible to shift the 1/s into the weight
function. The new complex weightΨ of an edge (a→ b) is then

Ψ(a→ b) := F (a→ b)

s
. (5.124)

Analogous to the transposed gammoid Γ′ = (N′,E′) we can get a conjugate gammoid Γ∗ = (N∗,E∗) if
we additionally complex conjugate the weights,

Ψ(a→ b) =Ψ(
b∗ → a∗)

. (5.125)

Anyway, we finally achieve a simple expression for the Gramian, either with multi-index

G(s)ba = 1

|s|2
∑

ψ∈P (sa ,s′b )

F (ψ)

sψ
(5.126)

or with the complex weight function

G(s)ba =Ψ(
P (sa ,s∗b )

)
. (5.127)

In both notations, the computation of the Gramian G(s) becomes mainly a search for paths, which
is the same for Γ◦Γ′ and Γ◦Γ∗.

A Lemma and a Proposition Before we turn our interest to the meaning of the Gramian for the
invertibility of a system, tools are provided in the form of the following lemma and proposition.

Lemma 5 Let Γ= (L,g,Z) be a gammoid and sa ,sb ∈ L input nodes. In Γ◦Γ′ let γaa′ denote the
shortest path from sa to s′a , ηbb′ denote the shortest path from sb to s′b and ηab′ shall denote the
shortest path from sa to s′b . Then

lenηaa′ + lenηbb′

2
≤ lenηab′ (5.128)

Proof By construction there is a z ∈ Z and a decomposition ηab′ =α◦β′ such that α goes from sa

to node z and β goes from sb to z. We now find that α◦α′ goes from sa to s′a . By assumption of
the lemma, α◦α′ is not shorter than ηaa′ , thus

lenηaa′ ≤ len(α◦α′) = 2lenα . (5.129)

Analogously
len ηbb′ ≤ 2lenβ . (5.130)
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We sum up these two inequalities to get

lenηaa′ + lenηbb′ ≤ 2(lenα+ lenβ) (5.131)

and since α◦β′ is the decomposition of ηab′

lenηaa′ + lenηbb′ ≤ 2lenηab′ . (5.132)

■
In a more provocative formulation the inequality above could also be written as

lenηaa′ + lenηbb′ ≤ lenηab′ + lenηba′ . (5.133)

It says that for two nodes a,b and their mirror partners a′,b′, the cross distances, i.e., from a to b′

and from b to a′, are never shorter than the straight distances from a to a′ and from b to b′. As we
have already discovered that the path lengths correspond to the powers of 1/s in the Gramian G(s),
this lemma can be used in the following proposition about the convergence in the s →∞ limit.

Proposition 7 Let G be the Gramian of a linear dynamic input-output system and

µab(s) := |Gab(s)|√
Gaa(s)Gbb(s)

. (5.134)

Let ηaa′ ,ηbb′ and ηab′ be the shortest paths as defined in lemma 5.
If lemma 5 holds with equality, then

lim
|s|→∞

µab(s) = |F (ηab′)|√
F (ηaa′)F (ηbb′)

. (5.135)

If the lemma holds with strict inequality, then

lim
|s|→∞

µab(s) = 0. (5.136)

Proof As a first remark, note that µab(s) is well defined. The transfer matrix has the form

T (s) =C (1s − A)−1D (5.137)

where the matrices A, C and D define the system. The transfer function and the Gramian G = T ∗T
have singularities, more precisely, poles whenever s ∈C is in the spectrum of A. But in µab these
poles disappear.

Using equation (5.127) we can write

µab(s) = |Gab(s)|√
Gaa(s)Gbb(s)

=

∣∣∣∑ψ∈P (sa ,s′b ) F (ψ)s−ψ
∣∣∣√∑

π∈P (sa ,s′a ) F (π)s−π
∑
θ∈P (sb ,s′b ) F (θ)s−θ

(5.138)

First, let us see that the terms under the square-root are non-negative. For that, let π=α◦β′ be a
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path from sa to s′a . Then we know that also β◦α′, α◦α′ and β◦β′ exist and all go from sa to s′a .
Thus, in the component Gaa we always find the four terms

R := F (α◦β′)

slenα s̄lenβ
+ F (β◦α′)

slenβ s̄lenα
+ F (α◦α′)

slenα s̄lenα
+ F (β◦β′)

slenβ s̄lenβ
(5.139)

together. So it is sufficient to show that R is non-negative. With A := F (α)/slenα and B := F (β)/slenβ

we can rewrite R as
R = AB̄ +B Ā+ A Ā+BB̄ . (5.140)

With A = x + iy and B = u + iv we find

R = (x +u)2(y + v)2 ≥ 0. (5.141)

We now proceed with (5.138). As we want to take the limit |s|→∞, the smallest powers of s will
be dominant. The smallest powers of s correspond to the shortest paths. We neglect higher orders
and get the asymptotic behaviour

µab(s) '
∣∣F (ηab′)s−ηab′

∣∣√
F (ηaa′)F (ηbb′)s−(ηaa′+ηbb′ )

(5.142)

where we use the sign “'” to denote the asymptotic behaviour for |s|→∞. Since the path ηaa′ is
always symmetric in the sense (ηaa′)′ = ηaa′ we find

s−ηaa′ = |s|−lenηaa′ . (5.143)

The same holds for ηbb′ . It follows that

µab(s) ' |F (ηab′)|√
F (ηaa′)F (ηbb′)

|s| 1
2 (lenηaa′+lenηbb′ )−lenηab′ . (5.144)

Lemma 5 tells us that the exponent of |s| is always non-positive, thus the limit always exists. If
the lemma holds with equality, then the exponent exactly vanishes and we get

µab(s) ' |F (ηab′)|√
F (ηaa′)F (ηbb′)

. (5.145)

If inequality holds, then the exponent of |s| is negative and we find

lim
|s|→∞

µab(s) = 0. (5.146)

■
We always speak of, e.g., ηaa′ as the shortest path. In general, there might be several paths of
minimal length. Due to the homomorphic property of F , the calculations above stay valid if ηaa′ is
a set of paths.

90



5.5 Spark Estimation via the Mutual Coherence

5.5 Spark Estimation via the Mutual Coherence

In the original works on compressed sensing, the coherence was not just introduces as a measure
that relaxes the strict dependence structure of a matrix, but it’s value lies in the fact that we can
compute an estimate for the spark, see [119] for early ideas and [116] for a broader treatment. As
the calculation of the spark of a matrix (and of any matroid) is a combinatorial problem, it becomes
quickly infeasible for realistic problems.

5.5.1 Eigenvalues of the Gramian

The Gershgorin Circle Theorem has proven a convenient tool in the theory of (static) compressed
sensing [116]. Fortunately, it stays valid for the more general case of compound (possibly infinite
dimensional) Banach spaces [26] which already indicates that it an also be used for dynamic
compressed sensing in function spaces. In contrast to the static case where one has a real-valued
Gramian matrix AT A, for linear dynamic systems we get a complex-valued and non-constant
Gramian G :C→C

M×M , where M is the number of input nodes.

Rank and Normal Rank of the Transfer Function Let T :C→C
P×M be the transfer function of

a linear dynamic system and assume for an s0 ∈C we find the rank

rankT (s0) = r < M . (5.147)

At s0, the transfer function is not one-to-one. If we visualise the transfer function as a set of column
vectors,

T (s) = (t 1(s), . . . , t M (s)) , (5.148)

the set {t 1(s0), . . . , t M (s0)} must be linearly dependent.

This dependence can have two reasons. Either, {t 1, . . . , t M } as function are linearly dependent, say
of rank r . Then the rank of T (s) will never exceed r . Or, {t 1, . . . , t M } is a set of linearly independent
functions, and the linear dependence at s0 is just an unfortunate coincidence. For instance

T (s) =
(

1/s 1/s2

1/s2 1/s

)
(5.149)

at s0 = 1 has rankT (1) = 1. In such a case, one just has to make a step somewhere into the vicinity
of s0 to see that rank of T (s) is t wo almost everywhere. For this reason, one defines the normal
rank of T as

RankT := max
s∈C

rankT (s) (5.150)

and we know that RankT = rankT (s) almost everywhere. For the invertibility of a linear dynamic
input-output system with M inputs, RankT = M is necessary and sufficient for analytic invertibility.

From this point on we follow the proof idea of [116] but give an slightly enhanced version so
that the results are valid for a dynamic system in Laplace-space. If and only if rankT (s) < M , then
λ= 0 is an eigenvalue of G(s). For most of the calculation, it is convenient to assume s to be a fixed
complex number. Due to the argumentation above, it is sufficient to find one s ∈C that renders the
transfer function T (s) locally one-to-one, in order to make the whole system invertible.
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The Gershgorin Circle Theorem [132] has originally been formulated for matrices and has found
various applications, compressed sensing as one example. Several extensions, for instance to
infinite matrices or to matrices of operators have been developed. The lemma below is actually a
corollary of the original Gershorin Circle Theorem, formulated such that it is directly applicable in
our setting.

Lemma 6 (Corollary of the Gershgorin Theorem) Let G :C→∈CM×M be the Gramian of a linear
dynamic input-output system and

µab(s) := |Gab(s)|√
Gaa(s)Gbb(s)

. (5.151)

We call G strictly diagonally dominant in s if for all a = 1, . . . , M we find

Gaa(s) > ∑
b,a

|Gab(s)| . (5.152)

If G is strictly diagonally dominant in s, then zero is not an eigenvalue of G(s).

Proof As a preliminary, note that the diagonal elements of a Gramian are always real and non-
negative,

Gab(s) =
P∑

b=1
T ∗

ab(s)Tba(s) =
P∑

b=1
|Tba(s)|2 , (5.153)

where P is the number of output nodes, or, equivalently, the number of rows of the transfer function
T . A diagonal element Gaa is the zero function if and only if each Tba for b = 1, . . . ,P is the zero
function. That is, if and only if the a-th column of T is zero for all s ∈ C. Recall the dynamic
equation of the system in Laplace-space

T (s)ũ(s) = ỹ(s) . (5.154)

If the a-th column of T is zero for all s ∈ C, then the input ũa which targets the input node sa has
no influence on the output at all. It is therefore trivially impossible to gain any information about
w̃a . This trivial case shall be neglected, henceforth the diagonal elements of G are assumed to be
non-zero.

For the sake of completeness the full proof including the Gershgorin Circle Theorem is provided
in a consistent notation. Let s ∈C such that G(s) achieves the normal rank and set A :=G(s). We
already know that this works almost everywhere in C. The Gershgorin Circle Theorem states, that
all eigenvalues of A lie within circles of a certain radius ri around the diagonal elements Ai i . We
want to show that if A strictly diagonally dominant, then ri is small enough so that none of these
circles include zero.

Assume λ ∈ C is an eigenvalue of A with eigenvector v ∈ CM . Let vi be a component of v of
maximal magnitude, i.e.,

|vi | ≥ |v j | (5.155)

for all j = 1, . . . , M . Without loss of generality we assume vi = 1. The eigenvalue equation in
components reads

M∑
j=1

Ai j v j =λvi . (5.156)
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5.5 Spark Estimation via the Mutual Coherence

We extract j = i from the sum to get ∑
j,i

Ai j v j =λ− Ai i . (5.157)

Taking the absolute value and applying the triangle inequality yields

|λ− Ai i | ≤
∑
j,i

|Ai j ||v j | . (5.158)

By construction |v j | ≤ |vi | = 1, thus we get the final result

|λ− Ai i | ≤
∑
j,i

|Ai j | . (5.159)

With ri =
∑

j,i |Ai j | we can give a bound for the spectrumσ(A) via a union of circles in the complex
plane,

σ(A) ⊆
M⋃

i=1
{λ ∈C | |λ− Ai i | ≤ ri } . (5.160)

As explained above, if we want to exclude the trivial case we can assume Ai i , 0 for each i = 1, . . . , M .
If A is strictly diagonally dominant, then Ai i > ri for each i = 1, . . . , M . Therefore

0 ∉ {λ ∈C | |λ− Ai i | ≤ ri } (5.161)

and consequently
0 ∉σ(A) . (5.162)

■
5.5.2 Strict Diagonal Dominance for Invertibility

In an introductory example, we have seen that an appropriate coherence measure can help to
circumvent the issue arising when the categorical structure of a matroid encounters random noise,
e.g., noisy data. The following definition gives a coherence function for the input nodes of a
linear dynamic system in Laplace-space. The linear equation system that appears in the classical
compressed sensing problem can be interpreted as a dynamic system where the dynamic part
turns out to be trivial. In this sense the definition indeed reproduces the older definition.

Definition 27 Let G : C→ C
M×M be the Gramian of a linear dynamic input-output system with

input set S= {s1, . . . ,sM }. The coherence of the input nodes sa ∈ S and sb ∈ S is

µab(s) := |Gab(s)|√
Gaa(s)Gbb(s)

. (5.163)
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Example (2-In-2-Out System)

Consider a linear system with transfer
function

T (s) =
(

1/s 1/s2

1/s2 1/s

)
. (5.164)

The number of columns indicates that
there are two input nodes, hence there
exists only one coherence which turns
out to be

µ12(s) = 2ℜ(s)

1+|s|2
. (5.165)

In polar coordinates s = r eiϕ one also
finds a nice formulation

µ12(r,ϕ) = 2cos(ϕ)
r

1+ r 2 , (5.166)

where one can see that the poles of the
transfer function disappear in the co-

Figure 5.3: The result of the numerical in-
verse Laplace-transform of the coherence
of the exemplary 2-in-2-out system.

herence function. We apply a numerical inverse Laplace-transform, see figure 5.3 for
the result. In Laplace-space the coherence µ12(r,ϕ) approaches the worst case

µ12(1,0) = 1 (5.167)

but tends to the best case
µ12(r,0)

r→∞−→ 0 (5.168)

as the distance r to the origin gets very small or very large. This result indicates that
there are some regimes in the domain C, for which the two inputs are very coherent
hence hardly distinguishable, but there are also regimes, for which the coherence
nearly vanishes.

The example above presents a property of the coherence in a dynamic system, which is absent in
the static case: The coherence in a dynamic system is a quantity that evolves over time. Note that
the coherence µab :C→ [0,1] is defined in Laplace-space. As shown in the example, the complex
variable s ∈C and the time t in state space are connect via the Laplace-transform so that one could
principally apply an inverse Laplace-transform to see how the coherence develops over time.

This development can clearly go into both directions: If two input nodes are coherent in a
certain domain, they can still be distinguishable in another, but also vice versa. It is therefore fair
to distinguish between the local coherence µab(s) which represents the distinguishability of two
input nodes sa and sb ∈ S in a vicinity of s ∈C, and the global coherence

µab := inf
s∈C

µab(s) , (5.169)
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which tells, whether sa and sb are distinguishable somewhere.

Mutual Coherence To carry on the thoughts above: What happens in a system with three input
nodes s1, s2 and s3? We get three pair-wise dynamic coherences µ12(s), µ13(s) and µ23(s). As
before, these coherences can be close to one in some regions and close to zero in others. Say for a
region U ⊆C we find

µ12(s) ≈ 0 for s ∈U (5.170)

and for another region V ⊆C
µ13(s) ≈ 0 for s ∈V . (5.171)

Now what happens, if U ∩V = ;? Then for s ∈ U we can distinguish s1 and s2, but we cannot
distinguish s1 from s3. Symbolically, one could write

(s1,s2,s3) = (s1,s3)⊕s2 , (5.172)

To distinguish two nodes s1 and s2 means the ability to decide from the output of the system,
which input node was truly affected by an unknown input. The true unknown input could attack
only s1, or s3, or even both.

But what we can decide is whether the model error lies somewhere in {s1,s3} or on the node s2.
In the case s ∈V , we get a different result,

(s1,s2,s3) = (s1,s2)⊕s3 . (5.173)

In this region, we can decide whether an input attacks (s1,s2) or s3.
Full invertibility is only achieved, when for some subspace of the complex plane we get the

separation
(s1,s2,s3) = s1 ⊕s2 ⊕s3 , (5.174)

meaning, each input can be reconstructed individually. Hence, for observability it is necessary
that all coherences µab tend to zero in the same region of the complex plane. It makes sense to
introduce the mutual coherence at s,

µ(s) := max
a,b

µab(s) . (5.175)

While the pair-wise coherence µab(s) yields information if a pair of input nodes is distinguishable,
the mutual coherence is the relevant quantity to make a statement whether the whole system is
invertible or not.

Global Mutual Coherence From the argumentation above, one will understand that the mutual
coherence µ(s) carries the information about the overall distinguishability of input nodes at a
certain point s ∈C. For instance the pairwise coherence µab(s) might shrink to zero at some point
s0,

µab(s)
s→s0−→ 0. (5.176)

This indicates the distinguishability of the input nodes a and sb but it does not indicate invertibility,
as the coherence with other possible input nodes sc ,sd , . . . can make the accurate reconstruction
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impossible.
However, we can still exploit the fact that invertibility at one s0 ∈C is sufficient to show that the

system is invertible almost everywhere. Hence it is fair to introduce the global mutual coherence

µ := inf
s∈C

µ(s) . (5.177)

An note of caution is stated with the inequality

max
a,b

inf
s∈C

µab(s) ≤ inf
s∈C

max
a,b

µab(s) , (5.178)

or in terms of the global coherence µab and global mutual coherence µ

max
a,b

µab ≤µ . (5.179)

Shortest and Longest Path Coherence The varieties of the coherence measure discussed
above yield information about the distinguishability of pairs or sets of input nodes. Unfortunately,
they all suffer from the issue, that one has to compute the transfer matrix and search for the
infimum of a function in the complex plain. The shortest path coherence

µshort
ab := lim

|s|→∞
µab(s) (5.180)

provides relief.
In the discussion of the Gramian we have already found proposition 7 which we can now write as

µshort
ab ≤ |F (ηab′)|√

F (aa′)F (ηbb′)
(5.181)

where ηab′ denotes the shortest path (or set of shortest paths) through the gramian gammoid
(Γ◦Γ′) from sa to s′b .

Proposition 8 Let µab(s) be the coherence of two input nodes sa and sb . Then

lim
|s|→∞

max
a,b

µab(s) = max
a,b

lim
|s|→∞

µab(s) (5.182)

Proof First note that µab(s) is continuous, 0 ≤ µab(s) ≤ 1, and that any singularity of µab(s) is
removable. Furthermore we have already seen that each µab(s) convergent with limit µshort

ab as
|s|→∞. Due to this behaviour it is sufficient to consider only real s.

To simplify the notation let fa : R≥0 → R a family of continuous and bounded functions with
a ∈ I where I is a finite index set. We want to show that

lim
x→∞max

a∈I
fa(x) = max

a∈I
lim

x→∞ fa(x) . (5.183)

To see that, let Ma := limx→∞ fa(x) and let a∗ ∈ I such that Ma∗ = maxa∈I Ma . By definition of Ma ,
for any ε> 0 there is an xa such that for all x > xa we have

| fa(x)−Ma | < ε . (5.184)
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Set x0 := maxa∈I xa such that we can use the same epsilon and x0 for all indices a. Let us divide
I = I0∪̇I1 such that I0 contains all indices with Ma < Ma∗ and I1 contains those indices with
Ma = Ma∗

Let us first consider all I0 and let us choose ε such that

ε< 1

2
|Ma∗ −Ma | (5.185)

for all a ∈ I0. We can rewrite this as
Ma +ε< Ma∗ −ε . (5.186)

For this choice of ε there is an x0 such that | fa(x)−Ma | < ε for x > x0, i.e.,

fa(x) ∈ (Ma −ε, Ma +ε) (5.187)

and analogously
fa∗(x) ∈ (Ma∗ −ε, Ma∗ +ε) . (5.188)

Due to our choice of epsilon these two intervals are disjoint and one can see that fa(x) < fa∗(x) for
all x > x0. Thus for x large enough we can always neglect I0,

max
a∈I

fa(x) = max
a∈I1

fa(x) . (5.189)

Let us now focus on I1. Consider

ra(x) := | fa(x)−Ma∗ | (5.190)

for a ∈ I1 and let a′ ∈ I1 such that fa′(x) = maxa∈I1
fa(x). It is now clear that

ra′(x) ≤ max
a∈I1

ra(x) (5.191)

for all x. Insertion of the definitions yields∣∣ fa′(x)−Ma∗
∣∣≤ max

a∈I1

| fa(x)−Ma∗ | (5.192)

and for x > x0 we deduce ∣∣ fa′(x)−Ma∗
∣∣< ε . (5.193)

Since we can do that for arbitrarily small ε> 0 we find the convergence

lim
x→∞ fa′(x) = Ma∗ . (5.194)

We can now insert the definitions

fa′(x) = max
a∈I1

fa(x) = max
a∈I

fa(x) (5.195)

and
Ma∗ = max

a∈I
Ma = max

a∈I
lim

x→∞ fa(x) (5.196)
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to get the desired result
lim

x→∞max
a∈I

fa(x) = max
a∈I

lim
x→∞ fa(x) . (5.197)

■
In the discussion of the global mutual coherence we have seen that the maximum and infimum

operations do not commute. As a consequence, if we want to compute the global mutual coherence,
we have to handle the possibly piece-wise defined mutual coherence

µ(s) = max
a,b

µab(s) (5.198)

and search for the infimum. But the proposition above shows that the maximum and the limit
s →∞ do commute. It is therefore allowed to compute the limit

µshort
ab = lim

s→∞µab(s) (5.199)

before taking the maximum of the produced real-matrix (µab)1≤a,b≤M . This reduces the estimation
of the global mutual coherence to

µ≤ max
a,b

µshort
ab (5.200)

where each µshort
ab can individually be computed via a simple shortest path problem for which there

exists a broad range of theories and algorithms in the literature, see for instance the textbook [87].

We may add a brief additional finding for the sake of consistency. In analogy to the shortest path
coherence can also consider the longest path coherence

µ
long
ab ≤ |F (ψab′)|√

F (ψaa′)F (ψbb′)
(5.201)

where ψab′ denotes the longest path (or set of longest paths) through Γ◦Γ′ from sa to s′b . Unfortu-
nately, many real world dynamic systems have not a tree-like structure but incorporate loops and

often self-loops. As a consequence, µlong
ab is not well-defined in such scenarios. Given that there is

a maximal path length, we find in analogy to proposition 7 that

µ
long
ab ≤ lim

s→0
µab(s) . (5.202)

Diagonal Dominance In [119] the following proposition is presented for real, constant matrices,
which represents only a special case of the more general transfer function T . We can now show its
validity for the non-constant and complex transfer function of a linear dynamic system.

Proposition 9 Let s ∈C be fixed, G :C→C
M×M a Gramian and µ(s) the mutual coherence at s. If

the inequality
Gi i (s) >µ(s) (5.203)

holds for i = 1, . . . , M, then G is strictly diagonally dominant at s.
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Proof For convenience, rescale the system by

G(s){
G(s)

trG(s)
(5.204)

which gives the property
M∑

i=1
Gi i (s) = 1. (5.205)

As in the proof of proposition 7, Gi i (s) > 0 and from the equation above Gi i < 1. The special case
M = 1 is trivial. By definition of the mutual coherence at s we find for all i , j = 1, . . . , M with i , j

|Gi j (s)| ≤µ(s)
√

Gi i (s)G j j (s) . (5.206)

By assumption of the proposition µ(s) ≤ Gi i (s) for all i = 1, . . . , M , and since all quantities are
non-negative

µ<
√

Gi i (s)G j j (s) (5.207)

for all i , j . Combine the latter two inequalities and sum over all j = 1, . . . , i −1, i +1, . . . , M to get∑
j,i

|Gi j (s)| <Gi i (s)
∑
j,i

G j j (s) (5.208)

for all i , . . . , M . Due to equation (5.205), the sum on the right hand side is smaller than one, thus
for all i = 1, . . . , M we find ∑

j,i
|Gi j (s)| <Gi i (s) (5.209)

which is exactly the definition of strict diagonal dominance at s.
■

5.5.3 Estimation of the Spark

So far we have always assumed there is a connection between the coherence and the possibility
to distinguish the input nodes. To make this a trustworthy statement, we show that the mutual
coherence indeed yields a lower bound for the spark of a gammoid. The same bound is already
known for the spark and mutual coherence of a real-valued matrix. As we have seen that the
spark and mutual coherence are quantities that can be generalised to weighted gammoids, it is
not surprising, that with the generalised notions of spark and mutual coherence, we can do an
analogous calculation to get a generalised theorem.

By definition of the mutual coherence at s we get

|Gi j (s)| ≤µ(s)
√

Gi i (s)G j j (s) . (5.210)

Now let Gkk (s) be the maximum of all Gi i (s) for i = 1, . . . , M . Replace the square root and sum over
all j = 1, . . . , i −1, i +1, . . . , M to get∑

j,i
|Gi j (s)| ≤ (M −1)µ(s)Gkk (s)(s) , (5.211)
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where we used that the right hand side is independent of j . One finds the Gramian to be strictly
diagonally dominant if for all i = 1, . . . , M

(M −1)µ(s)Gkk (s)(s) <Gi i (s) . (5.212)

The latter inequality is therefore sufficient for strict diagonal dominance at s. Use Gi i (s)/Gkk (s) < 1
to get

M < 1

µ(s)
+1. (5.213)

Note that the gammoid G depends on the choice of the input set S⊆ L. However, the sufficient
condition for strict diagonal dominance only takes M = cardS into account. It becomes clear that
for all S̃⊆ L with card S̃≤ M we get strict diagonal dominance. Since strict diagonal dominance
leads to structural invertibility, it also tells us that S̃ is independent Γ. By definition, sparkΓ is the
largest integer such that S̃ is independent in Γwhenever card S̃≤ sparkΓ. Since any M that fulfils
(5.213) leads to independence, the spark is not smaller than the right hand side of this inequality.
Therefore

sparkΓ≥ 1

µ(s)
+1. (5.214)

The best estimation of the spark is attain for the global mutual coherence µ= infs∈Cµ(s).

5.5.4 Feed-Forward Graphs

Let us finally discuss a special class of dynamic systems.

Definition 28 Let g= (N,E) be the influence graph of a dynamic system. If one can split

N= N0∪̇ . . .∪̇NL (5.215)

such that for all edges (a→ b) ∈ Ewe find a ∈ Ni−1 and b ∈ Ni for some i ∈ {1, . . . ,L}, then we call the
system feed-forward. We call Ni the i th layer. The gammoid

Γ= (N0,g,NL) (5.216)

is called a cascade gammoid. We call N0 the input layer and NL the output layer.
For L = 1, the graph is called bipartite and the gammoid is called a deltoid.

In a cascade gammoid, all paths from the input layer to the output layer have the same length L.
We find the transfer function to be

T j i (s) = 1

sL

∑
π∈P (si ,z j )

F (π) (5.217)

where si ∈ N0 and z j ∈ NL . Set
a j i := ∑

π∈P (si ,z j )
F (π) (5.218)

to get the simple form

T (s) = 1

sL
A (5.219)
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with a real P×M matrix A = (ai j )1≤i≤P,1≤ j≤M . Calling ai , the i th column of A, we find the coherence
µi j (s) to be a constant

µi j (s) =
〈ai , a j 〉
‖ai‖‖a j‖

. (5.220)

The latter equation looks exactly like the coherence one defines for static compressed sensing
problems, see the textbook [116]. In this particular case we find

µ=µshort (5.221)

that means, in feed-forward systems, the shortest path coherence is exact.

5.6 Overview: Gammoids for Sparse Sensing of Model Errors

After the last two sections equipped us with rather technical results for weighted gammoids, let us
briefly condense the results of this chapter.

Starting with a successful model error reconstruction in a non-invertible system, we came to the
hypothesis that the sparsity of the model error is the reason why it was so easy to pick the input w∗

from the infinite dimensional input space U , which describes the model error correctly. We then
discussed the matroid as the minimal structure to give reason to the term sparsity and showed that
dynamic input-output systems fulfil the postulates of matroid theory and for the special class of
gammoids. Due to our results on structural invertibility, we were able to connect the input ground
set L of a gammoid to the restricted input space UL. Though

Φ : U →Y (5.222)

might not be invertible, but
Φ : UL→Y (5.223)

can still be invertible.
The system with input set S⊆ L is invertible if and only if S is an independent set of the gammoid.

This motivated the formulation of the Model Error Localisation Problem: If the system is not
invertible, first find the independent input sets of the system. If the model error lies within one
independent set S, then we can still reconstruct the model error, even if the full system might be
non-invertible. With this result, the invertibility problem is completely formulated in the language
of gammoids. We have shown that the spark of a gammoid yields a theorem that ensures the
uniqueness of the sparsest solution for linear and non-linear systems. This proves that we can find
the correct model error w∗, given the model error is sparse, even if the system is non-invertible.

For the special case of linear systems, we discussed measures of coherence. These coherences
make a statement about the distinguishability of input nodes and by this about the distinguishab-
ility of model errors. We presented the shortest path coherence which reduces the computation
of the coherence to a shortest path problem on a graph. The coherence measures will play an
important role in the cluster approach presented in chapter 7.
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CHAPTER 6

Dynamic Compressed Sensing

Chapter 5 has shown that the assumption of sparsity provides uniqueness for the MERP. For
this result we have utilised the intrinsic gammoid structure of dynamic input-output systems.
Unfortunately, as discussed below, in real problems it is likely to happen that stochastic noise
corrupts the gammoid structure.

Say, a single model error perturbs state variable x1, so that the true input vector takes the form

w∗ = (w1,0,0, . . . ,0)T , (6.1)

so that
y noiseless =Φ(w∗) (6.2)

but
y data =Φ(w∗)+ξ (6.3)

where ξ represents some noise. Due to the noise, the data vector y data cannot be fitted by a sparse
input any more, but by some input

u = (w∗+ v1, v2, . . . , vN )T (6.4)

where v is some input of small magnitude, only there to fit the noise.

Clearly, fitting the noise should not be our goal. Instead, we search for a way to suppress the
terms vi which actually do not stem from the structural model error.

After an introductory example, this chapter will introduce a norm on the input and output
spaces of a dynamic input-output system that is consistent with our notion of sparsity. We will then
discuss the sparse sensing problem P0 and the relaxed convex problem P1. With an appropriately
formulated RIP2k we will show how we can use the relaxed problem to solve the compressed
sensing problem for model errors in linear dynamic systems.

From Sparse Sensing to Compressed Sensing Let us take a closer look on a classical problem
of compressed sensing [119]. Let y ∈RP and A ∈RP×N be given with P << N : Solve

Ax = y (6.5)
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for x . From linear algebra it is clear that this problem is highly under-determined and the solution
space is at least N−P dimensional. In the spirit of sparse sensing, we search for a vector x ∈RN that
solves the equation above and at the same time has a minimal number of non-zero components.
This task can be formulated as the optimisation problem

minimise‖x‖0

subject to Ax = y
(6.6)

where ‖·‖0 counts the number of non-zero components. In reality, a vector of measured quantities
like y will always incorporate measurement noise. So the equation to solve would rather read

Ax +ξ= y noisy (6.7)

where the vector ξ is a realisation of, e.g., a Gaussian noise. Usually one has some knowledge or
good assumptions about the noise vector. For instance, in the case of white noise we have (in the
expectation value)

P∑
i=1

ξi = 0 (6.8)

or in the case of bounded noise
P∑

i=1
|ξi |2 < ε (6.9)

where ε is a known boundary for the noise. The existence of such an additional, unknown vector
causes an issue for the idea of sparse sensing.

Example (Directions)

The matrix

A =
1 1/

p
2 0 0 1/

p
3 1/

p
2 0

0 1/
p

2 1 1/
p

2 1/
p

3 0 0
0 0 0 1/

p
2 1/

p
3 1/

p
2 1

 (6.10)

comprises some directions in the first octant of R3. Say we aim for a sparse decompos-
ition of

y =
2

3
1

 (6.11)

with respect to the dictionary of directions defined by A. One will find that the sparsest
solution of

Ax = y (6.12)

is the vector
x = (0,

p
8,0,

p
2,0,0,0)T . (6.13)
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However, as soon as a noise vector, e.g.,

ξ=
 0.01
−0.03
0.01

 (6.14)

is added, a sparse decomposition of

y noisy =
2.01

2.97
1.01

 (6.15)

needs at least three non-zero components. Since A serves as a complete but redundant
dictionary it is obvious that there exists a solution of

Ax = y noisy , (6.16)

but this solution is neither sparse nor unique.

Apart from the loss of the matroid structure due to the noisy measurements, another practical
aspect causes trouble. The optimisation problem 6.6 is numerically hard to solve, due to the ‖ ·‖0

term, see [133] for a good overview over sparse optimisation problems and the references therein.
Optimisation problems of this and similar kinds are subject of current research and the literature
mentioned can only give a small excerpt of this topic, which lies beyond the scope and possibilities
of this thesis. The idea of the LASSO-regularisation, stemming from [134] and reinvented by
Tibshirani [135], shall however be presented, as it is a central idea to handle both issues at once.

LASSO-Regularisation for Compressed Solutions The noise vector ξ has no sparse repres-
entation, hence to searching for a sparse solution of

Ax = y noisy (6.17)

would not make sense. But exploiting the standard ‖ ·‖2-norm on RN

‖Ax − y noisy‖2 = ‖ξ‖2 < ε . (6.18)

Hence, one can try to suppress the effects of noise by minimising the term

‖Ax − y noisy‖2 (6.19)

instead of finding an exact solution. At the same time, it has been shown that, under certain
conditions, minimisation of the 1-norm

‖x‖1 := |x1|+ . . . |xN | (6.20)

also leads to sparsity. The idea of LASSO-regularisation is to solve the slightly softened problem

minimise‖Ax − y noisy‖2
2 +‖x‖1 . (6.21)
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Problem Formulation From the considerations above, we can reformulate the Model Error
Reconstruction Problem, incorporating sparsity (‖ ·‖0-norm) and noise (ε> 0) as the problem P0.

Problem (P0)

minimise‖u‖0 s.t.‖Φ(u)− y data‖2 < ε . (6.22)

As explained above, the P0 problem is hard to solve in practice and it was soon replaced by the
LASSO problem P1.

Problem (P1)

minimise‖u‖1 s.t.‖Φ(u)− y data‖2 < ε . (6.23)

The problems P0 and P1 have been written in the typical forms of compressed sensing problems,
compare for instance the problems in [116], but we must confess that the norms on the input
and output space are not yet defined. With the exception of the 0-norm which is defined via the
support and not a proper norm.

The first step in this chapter must therefore be the definition of a proper and appropriate norm
for input and output vectors, so that the analogous formulations of P0 and P1 make sense for
dynamic systems. Then, it will be shown that P1 is a convex optimisation problem. An adjusted
form of the Restricted-Isometry-Property [61] is given and it will be proven that under this condition,
the solution of P1 is the best possible approximation of P0. The final result will be the proof of the
following theorem which one will fully understand at the end of this chapter.

Theorem 10 AssumeΦ is linear and the RIP of order 2k holds. Let w∗ be the solution of P0 and ŵ
the solution of P1. Then

‖ŵ −w∗‖2 ≤C0
σk (w∗)1p

k
+C2ε (6.24)

with non-negative constants C0 and C2.

6.1 Spaces and Norms

The first section is dedicated to the norms on the input and output spaces of the input-output
system in state space formulation. An input vector u ∈U

u =

 u1
...

uM

 (6.25)

is a vector of functions. The Dynamic Elastic-Net from [21] or the CLOT from [120] have suggested
norms which are motivated by the scalar product

〈u, v〉 =
M∑

i=1

∫ T

0
ui (t )vi (t )d t (6.26)
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which can be defined on U .
In [120] it was shown that the regularisation with the induced norm can produce a hands-off

control, meaning an input with a small temporal support. For the concept of sparsity which is
appropriate for the MERP, we do not want to restrict the time interval where the model errors takes
places, but their number.

6.1.1 Input Space

Henceforth we will assume the input component ui ∈Ui to lie in Lp ([0,T ]) for a fixed p and be
piecewise C∞[0,T ].

Underline We first introduce the underline notation

ui := ‖ui‖Lp (6.27)

and for the vector u ∈U we write

u :=


u1
...

uL

 , (6.28)

so the underline operator maps u to a vector u ∈ RN . In the more general setting, Ui is only
assumed to be a Banach space with some norm ‖ ·‖Ui

and the underline maps according to this
norm. The underline notation will help clarify our understanding of sparsity and will be useful
for the formulation of theorems and proofs. As the underline is basically a norm, it inherits the
properties of a norm. The following lemma merely represent calculation rules for underlined
vectors.

Lemma 7 1. For ui ∈Ui we find ui = 0 ⇔ ui (t ) = 0 a.e. in [0,T ] .

2. For ui , vi ∈Ui we find ui + vi ≤ ui + vi .

3. For ui ∈Ui and a ∈R we find aui = |a|ui .

Proof

1. From the definition of the Lp spaces we get

‖ui‖Lp = 0 ⇔ ui = 0 a.e. (6.29)

2. Again from the definition we find

ui + vi = ‖ui + vi‖Lp ≤ ‖ui‖Lp +‖vi‖Lp = ui + vi . (6.30)

3. Since the Lp -norm is homogeneous we have

aui = ‖aui‖Lp = |a|‖ui‖Lp = |a|ui . (6.31)
■
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Proper Norm Utilising the underline notation, we are ready to define the q-norm on U as

‖u‖q := ‖u‖q (6.32)

where on the right hand side the standard q-norm on RL is understood.

Proposition 10 The q-norm on U is a proper norm.

Proof The Lp norm and the q-norm on R
N both are proper norms that fulfil the three proper-

ties positive definiteness, the triangle property, and homogeneity. Since the q-norm on U is a
combination of these two norms, it again fulfils these properties.

1. Positive definiteness. We find
‖u‖q = ‖u‖q ≥ 0 (6.33)

where the inequality comes from the fact that we have a proper norm on RL . Equality holds
if and only if u = 0. Due to lemma 7 this is the case if and only if u = 0.

2. Triangle inequality. Let u, v ∈U .

‖u +v‖q = ‖u +v‖q =
(

N∑
i=1

(ui + vi )q

)1/q

(6.34)

From lemma 7
(ui + vi )q ≤ (ui + vi )q (6.35)

so we get

‖u +v‖q ≤
(

N∑
i=1

(ui + vi )q

)1/q

= ‖u +v‖q (6.36)

and since the latter is a proper q-norm on RL

‖u +v‖q ≤ ‖u‖q +‖v‖q = ‖u‖q +‖v‖q . (6.37)

3. Finally we proof homogeneity. Let u ∈U and a ∈R.

‖au‖q = ‖au‖q =
(

L∑
i=1

(aui )q

)1/q

=
(

L∑
i=1

(|a|ui )q

)1/q

= |a|
(

L∑
i=1

(ui )q

)1/q

= |a|‖u‖q (6.38)

■
Disjoint Supports Remember the definition of the support of input vectors. One will see that
the space of k-sparse inputs, Σk , is the union of all UΛ with cardΛ≤ k, where Λ⊆ {1, . . . , N } are
index sets.

The three following facts can be proven directly: LetΛ0 andΛ1 be two index sets with cardΛ0 =
cardΛ1 = k and let u ∈U . We find

uΛ0
,uΛ1

∈Σk (6.39)

108



6.1 Spaces and Norms

and
uΛ0

+uΛ1
∈Σ2k . (6.40)

IfΛ0 andΛ1 are disjoint we also get

uΛ0
+uΛ1

= uΛ0∪Λ1
. (6.41)

Lemma 8 Let u, v ∈U with disjoint support, then

u ±v = u +v (6.42)

and for the q-norm
‖u −v‖q = ‖u ±v‖q = ‖u +v‖q . (6.43)

Proof If i is in the support of u, then vi = 0 and equation (6.42) reduces to

ui = ui (6.44)

which is true. If i is in the support of v , then ui = 0. Equation (6.42) together with lemma 7 then
becomes

±vi = |±1|vi = vi (6.45)

which also holds true. If i is in neither support, the equation becomes trivial. For equation (6.45)
note, that

‖u ±v‖q = ‖u ±v‖q = ‖u +v‖q (6.46)

where the first equality is clear by definition and the second equality was just proven.

It remains to show that for any two vectors x , y ∈RN with disjoint support one gets

‖x − y‖q = ‖x + y‖q . (6.47)

Due to the disjoint support |xi + yi |q = |xi |q +|yi |q = |xi − yi |q , since at least one of the two terms
is zero. One finds

‖x − y‖q
q =

N∑
i=1

|xi − y1|q =
N∑

i=1
|xi + y1|q = ‖x + y‖q

q . (6.48)

■
The following proposition for the case, where u, v are RN vectors, stems from [136] and has already
been used for the static problem in [137]. We proof its validity for u, v being input vectors of a
dynamic system.

Proposition 11 Let u, v ∈U with disjoint support, then

‖u +v‖q
q = ‖u‖q

q +‖v‖q
q . (6.49)
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Proof With lemma 8 we find

‖u +v‖q
q = ‖u +v‖q

q = ‖u +v‖q
q =

N∑
i=1

(ui + vi )q . (6.50)

Again due to the disjoint support we can write

(ui + vi )q = (ui )q + (vi )q (6.51)

to get

‖u +v‖q
q =

N∑
i=1

(ui )q +
N∑

i=1
(vi )q = ‖u‖q

q +‖v‖q
q . (6.52)

■
We close the investigation of the input space with three lemmas on norm-inequalities. For u being
a vector in RN , these lemmas are proven in [116]. For our purposes, it is necessary to prove the
validity for the q-norms on composite Banach spaces.

Lemma 9 For u ∈Σk we find
1p

k
‖u‖1 ≤ ‖u‖2 ≤

p
k‖u‖∞ . (6.53)

Proof Let 〈·, ·〉 denote the standard scalar product on RN . We can write

‖u‖1 = ‖u‖1 = 〈u, sgnu〉 ≤ ‖u‖2‖sgnu‖2 , (6.54)

where the latter inequality comes from Cauchy-Schwartz and the signum function is understood
component-wise. By assumption u is k-sparse, hence ‖sgnu‖2

2 is a sum of at most k ones. We
obtain

‖u‖1 ≤
p

k‖u‖2 =
p

k‖u‖2 . (6.55)

One will see, that
ui ≤ ‖u‖∞ = ‖u‖∞ , (6.56)

where both sides of the inequality are non-negative. LetΛ= suppu, then

‖u‖2
2 = ‖u‖2

2 =
∑
i∈Λ

(ui )2 ≤ ‖u‖2
∞

∑
i∈Λ

1 = k‖u‖2
∞ . (6.57)

Taking the square-root leads to the desired inequality.
■

Lemma 10 For u, v ∈U with disjoint support we find

‖u‖2 +‖v‖2 ≤
p

2‖u +v‖2 . (6.58)

Proof Consider the R2 vector

x :=
(‖u‖2

‖v‖2

)
. (6.59)
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Lemma 9 holds also for constant vectors and by construction x is k = 2 sparse, thus

‖x‖1 ≤
p

2‖x‖2 . (6.60)

We can now replace
‖x‖1 = ‖u‖2 +‖v‖2 . (6.61)

For the right hand side we find

‖x‖2
2 = ‖u‖2

2 +‖v‖2
2 = ‖u +v‖2

2 (6.62)

where the second equality comes from proposition 11. Combining the latter equations leads to the
desired inequality.

■

Lemma 11 Let u ∈U anΛ0 an index set of cardinality k. For better readability we write x := uΛc
0
.

Note, that x is a RN vector with non-negative components. Let L = (l1, . . . , lN ) a list of indices with
li , l j for i , j such that for the components of x we find

xl1
≥ xl2

≥ . . . ≥ xlN
. (6.63)

Define index setsΛ1 := {l1, . . . , lk },Λ2 := {lk+1, . . . , l2k } and so forth until the whole list L is covered. If
k is not a divisor of N the last index set would have less than k elements. This can be remedied by
appending zero elements.

We find ∑
j≥2

‖uΛ j
‖2 ≤

‖uΛc
0
‖1p

k
. (6.64)

Proof First note that by construction allΛi for i = 0,1, . . . are pair-wise disjoint and that

Λc
0 =Λ1∪̇Λ2∪̇ . . . (6.65)

For any m ∈Λ j−1 we get by construction

um ≥ ‖uΛ j
‖∞ . (6.66)

We now take the sum over all m ∈Λ j−1

‖uΛ j−1
‖1 ≥ k‖uΛ j

‖∞ . (6.67)

From lemma 9 we have for each j
‖uΛ j

‖2 ≤
p

k‖uΛ j
‖∞ (6.68)

and in combination with the latter inequality

‖uΛ j
‖2 ≤

1p
k
‖uΛ j−1

‖1 . (6.69)
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We take the sum over j ≥ 2 ∑
j≥2

‖uΛ j
‖2 ≤

∑
j≥2

1p
k
‖uΛ j−1

‖1 . (6.70)

In the right hand side we first perform an index shift and then use proposition 11 to see that∑
j≥2

‖uΛ j−1
‖1 =

∑
j≥1

‖uΛ j
‖1 = ‖uΛ1∪Λ2∪...‖1 = ‖uΛc

0
‖1 . (6.71)

■

6.1.2 Output Space

In analogy to the input space U , the underline notation can be used for the output space Y =
Y1 ⊕ . . .⊕YP ,

yi := ‖yi‖p ′ . (6.72)

Here, we assume that each yi ∈ Yi is in Lp ′
[0,T ] an piecewise C∞[0,T ]. Principally, p ′ does not

have to match the parameter p from the input spaces. It will be suppressed from out notation as
the result are valid for any fixed value of p ′. Again it would also be sufficient that Yi is a Banach
space. The q-norm on Y is defined as

‖y‖q := ‖y‖q . (6.73)

Clearly, all rules we have derived for underlined input vectors hold true for underlined output
vectors. The following lemma yields a last inequality for underlined vectors.

Lemma 12 Let y , z ∈Y , then
‖y − z‖2

2 ≤ ‖y + z‖2
2 . (6.74)

Proof The inequality can be written as

P∑
i=1

(
yi − zi

)2 ≤
P∑

i=1

(
yi + zi

)2
. (6.75)

To prove the validity of the latter inequality it suffices to show that

|yi − zi | ≤ |yi + zi | (6.76)

for each i in order to complete the proof. First, consider the case yi ≥ zi . From lemma 7 we get

yi = (yi + zi )− zi ≤ yi + zi + zi (6.77)

and subtracting zi on both sides yields

yi − zi ≤ yi + zi . (6.78)
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Both sides are positive so (6.76) holds. Second, consider the case zi ≥ yi and perform the same
steps with zi and yi swapped to get

zi − yi ≤ zi + yi . (6.79)

For the right hand side it is clear that

zi + yi = yi + zi (6.80)

and for the left hand side
zi − yi = |yi − zi | (6.81)

thus equation (6.76) holds also in this case.
■

6.2 Convex Optimisation

Proposition 12 IfΦ is linear, then P1 is a convex optimisation problem.

Proof We first show that the constraint set

A := {u ∈U |‖Φ(u)− y‖2 ≤ ε} (6.82)

with y ∈Y and ε> 0 is convex. Let α,β> 0 such that α+β= 1. We have to show that

u, v ∈A ⇒ (αu +βv ) ∈A . (6.83)

Given thatΦ is linear we can estimate

‖Φ(αu +βu)− y‖2 = ‖αΦ(u)−αy +βΦ(v )−βy‖2 (6.84)

and with the triangle inequality

‖Φ(αu +βu)− y‖2 ≤α‖Φ(u)− y‖2 +β‖Φ(v )− y‖2 ≤αε+βε= ε . (6.85)

Since ‖ ·‖q is a proper norm on U we again apply the triangle inequality

‖αu +βv‖1 ≤α‖u‖1 +β‖v‖1 (6.86)

to see that the function we want to minimize is convex.
■

6.3 Restricted Isometry Property

The Restricted Isometry Property first appeared in [61] and was also considered under the name
ε-isometry in [137]. In the following we will consider linear dynamic system.

Definition 29 The Restricted Isometry Property of order 2k (RIP2k) is fulfilled if there is a constant
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δ2k such that for u, v ∈Σk the inequalities

(1−δ2k )‖u −v‖2
2 ≤ ‖Φ(u)−Φ(v )‖2

2 (6.87)

and
‖Φ(u)+Φ(v )‖2

2 ≤ (1+δ2k )‖u +v‖2
2 (6.88)

hold.

The following lemma was proven for matrices in [116] and can now be generalised to linear
dynamic systems.

Lemma 13 Assume the RIP2k holds and let u, v with disjoint support. Then

〈Φ(u),Φ(v )〉 ≤ δ2k‖u‖2‖v‖2 . (6.89)

Proof First we divide (6.89) by ‖u‖2‖v‖2 to get a normalised version of (6.89)

〈Φ(u),Φ(v )〉
‖u‖2‖v‖2

=
〈
Φ

(
u

‖u‖2

)
,Φ

(
v

‖v‖2

)〉
≤ δ2k (6.90)

where we used the homogeneity of · and the linearity ofΦ. Underlined vectors are simply vectors
in R

P , hence the scalar product is the standard scalar product. For simplicity of notation we
henceforth assume ‖u‖2 = ‖v‖2 = 1. We apply the parallelogram identity to the left hand side of
(6.89) to get

〈Φ(u),Φ(v )〉 = 1

4

(
‖Φ(u)+Φ(v )‖2

2 −‖Φ(u)−Φ(v )‖2
2

)
(6.91)

and since RIP2k holds we get

〈Φ(u),Φ(v )〉 = 1

4

(
(1+δ2k )‖u +v‖2

2 − (1−δ2k )‖u −v‖2
2

)
. (6.92)

We apply lemma 8 to see that due to the disjoint support we get

‖u +v‖2
2 = ‖u −v‖2

2 = ‖u +v‖2
2 (6.93)

and proposition 11 yields

〈Φ(u),Φ(v )〉 ≤ 2δ2k

(
‖u‖2

2 +‖v‖2
2

)
= δ2k . (6.94)

■
To see that our framework is in agreement with the results for the static problem consider the

following: Let A ∈RP×N and y ∈RP be given and w ∈RN . Solve

Aw = y (6.95)

for w . This problem can be seen as a dynamic system with trivial time-development and input-
output map A. Consequently an input set S= {s1,s2, . . .} is independent in the gammoid if and
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only if the columns {as1
, as2

, . . .} of A are linearly independent. In this special case we can drop
the underline notation and we can rewrite the RIP2k condition as follows. Let κ := 2k. For each
u, v ∈Σk

(1−δ2k )‖u −v‖2
2 ≤ ‖Au − Av‖2

2 (6.96)

is equivalent to saying that for each w := u −v in Σ2k =Σκ we have

(1−δκ)‖w‖2
2 ≤ ‖Aw‖2

2 . (6.97)

The same argumentation holds for the second inequality, so that we can say, the system has the
RIP of order κ if and only if for all w ∈Σκ

(1−δκ)‖w‖2
2 ≤ ‖Aw‖2

2 ≤ (1+δκ)‖w‖2
2 . (6.98)

The latter is exactly the RIP condition that one usually formulates for static compressed sensing.

We now turn our interest to one important proposition about systems that fulfil the RIP2k. This
one corresponds to Lemma 1.3 from [116]. We follow the idea of the proof given there, however,
some additional steps are necessary in order to get a result valid for dynamic systems.

Proposition 13 Assume the RIP2k holds and let u ∈ U and k ∈ N. Let Λ0 be an index set of size
cardΛ0 ≤ k. LetΛ1 correspond to the k largest entries of uΛc

0
(see lemma 11),Λ2 to the second largest

and so forth. We setΛ :=Λ0 ∪Λ1 and

α :=
p

2δ2k

1−δ2k
, β := 1

1−δ2k
. (6.99)

Then

‖uΛ‖2 ≤α
‖uΛc

0
‖1p

k
+β

〈
Φ(uΛ),Φ(u)

〉
‖uΛ‖2

. (6.100)

Proof For two complementary sets Λ and Λc we have Λ∩Λc = ; so that we can use equation
(6.41). Furthermore,Λ∪Λc = {1, . . . , N } shows that u = uΛ+uΛc . Thus due to linearity ofΦwe get

Φ(uΛ) =Φ(u)−Φ(uΛc ) . (6.101)

By constructionΛc =Λ2∪̇Λ3∪̇ . . . so we can substitute the latter term by a sum

Φ(uΛ) =Φ(u)− ∑
j≥2
Φ(uΛ j

) . (6.102)

By construction we also know that uΛ0
,uΛ1

∈Σk , so from the RIP2k we get

(1−δ2k )‖uΛ0
−uΛ1

‖2
2 ≤ ‖Φ(uΛ0

)−Φ(uΛ1
)‖2

2 (6.103)

On the left hand side we notice thatΛ0 andΛ1 are disjoint so we use lemma 8 to see that

‖uΛ0
−uΛ1

‖2
2 = ‖uΛ0

+uΛ1
‖2

2 = ‖uΛ‖2
2 . (6.104)
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On the right hand side we use lemma 12 and the linearity ofΦ to get

‖Φ(uΛ0
)−Φ(uΛ1

)‖2
2 ≤ ‖Φ(uΛ0

)+Φ(uΛ1
)‖2

2 = ‖Φ(uΛ)‖2
2 . (6.105)

We can estimate ‖Φ(uΛ)‖2
2 by

‖Φ(uΛ)‖2
2 ≤

〈
Φ(uΛ),Φ(u)

〉
+

〈
Φ(uΛ),

∑
j≥2
Φ(uΛ j

)

〉
. (6.106)

To see that, we first write the norm as a scalar product

‖Φ(uΛ)‖2
2 =

〈
Φ(uΛ),Φ(u)− ∑

j≥2
Φ(uΛ j

)

〉
(6.107)

where the second vector comes from equation (6.102). The triangle inequality from lemma 7 yields

Φi (u)− ∑
j≥2
Φi (uΛ j

) ≤Φi (u)+ ∑
j≥2
Φi (uΛ j

) (6.108)

as well as ∑
j≥2
Φi (uΛ j

) ≤ ∑
j≥2
Φi (uΛ j

) (6.109)

for each component i = 1, . . . ,P . We proceed with the second scalar product in equation (6.106)〈
Φ(uΛ),

∑
j≥2
Φ(uΛ j

)

〉
=

〈
Φ(uΛ0

),
∑
j≥2
Φ(uΛ j

)

〉
+

〈
Φ(uΛ1

),
∑
j≥2
Φ(uΛ j

)

〉
(6.110)

where we again used the linearity and triangle inequality in each component,

Φi (uΛ) =Φi (uΛ0
)+Φi (uΛ1

) ≤Φi (uΛ0
)+Φi (uΛ1

) . (6.111)

For m = 0,1 we first write the sum outside of the scalar product and apply lemma 13〈
Φ(uΛm

),
∑
j≥2
Φ(uΛ j

)

〉
= ∑

j≥2

〈
Φ(uΛm

),Φ(uΛ j
)

〉
≤ ∑

j≥2
δ2k‖uΛm

‖2‖uΛ j
‖2 (6.112)

and then lemma 11 to get 〈
Φ(uΛm

),
∑
j≥2
Φ(uΛ j

)

〉
≤ δ2k‖uΛm

‖2

‖uΛc
0
‖1p

k
. (6.113)

We add the two inequalities for m = 0 and m = 1 to get〈
Φ(uΛ),

∑
j≥2
Φ(uΛ j

)

〉
≤ δ2k (‖uΛ0

‖2 +‖uΛ1
‖2)

‖uΛc
0
‖1p

k
. (6.114)

116



6.3 Restricted Isometry Property

From lemma 10 we know that

‖uΛ0
‖2 +‖uΛ1

‖2 ≤
p

2‖uΛ0
+uΛ1

‖2 =
p

2‖uΛ‖2 . (6.115)

We combine all these results to get

(1−δ2k )‖uΛ‖2
2 ≤ 〈Φ(uΛ),Φ(u)〉+δ2k

p
2‖uΛ‖2

‖uΛc
0
‖1p

k
. (6.116)

For δ2k < 1 and with α and β as defined above we can divide the inequality by (1−δ)‖uΛ‖2 to get
the desired inequality

‖uΛ‖2 ≤α
‖uΛc

0
‖1p

k
+β

〈Φ(uΛ),Φ(u)〉
‖uΛ‖2

. (6.117)

■

Best Sparse Approximation We want to make use of the latter proposition in the following
way: Say v ∈U is a fixed vector, e.g., the true model error that we want to reconstruct, and u is
our estimate for the model error, e.g., obtained by some optimisation procedure. To measure how
good the optimisation procedure performs, we compute the difference w := u −v and utilise the
proposition to get an upper bound for ‖w‖2

Now assume the RIP2k holds with a constant δ2k < p
2−1. For the proposition we can choose

an arbitrary index set Λ0 of size k. We choose Λ0 such that it corresponds to the k components
of v with highest magnitude. As said in the proposition,Λ1 will now correspond to the k largest
components in wΛc

0
,Λ2 to the second largest an so forth and we setΛ=Λ0 ∪Λ1.

Remember that σk (v )q is the distance between v and the the best k-sparse approximation [118]

σk (v )q := min
ṽ∈Σk

‖ṽ −v‖q (6.118)

and note that
σk (v )1 = ‖vΛ0

−v‖1 . (6.119)

To see the latter equation, let ṽ ∈Σk such that ‖ṽ −v‖1 is minimal. Since ṽ is k-sparse, there is a Λ̃
such that ṽ = ṽ Λ̃. Written as a sum

‖ṽ −v‖1 =
∑
i∈Λ̃

ṽi − vi +
∑

i∈Λ̃c

vi . (6.120)

The non-zero components must be chosen ṽ i = v i since this makes the first sum vanish. In
order to minimise the second sum the index set Λ̃c must correspond to the smallest vi , in other

words, Λ̃ corresponds to the largest vi , thus ṽ = vΛ0
. In the remainder of this section we follow the

argumentation line of [116] where the static problem in RN was considered. Therein, also results
are utilised which were first presented in [138]. We show, how a line of reasoning can be made for
the general case of composite Banach spaces.
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Lemma 14 Consider the setting explained above and assume ‖u‖1 ≤ ‖v‖1. Then

‖w‖2 ≤ 2‖wΛ‖2 +2
σk (v )1p

k
. (6.121)

Proof We begin with splitting w and applying the triangle inequality

‖w‖2 = ‖wΛ+wΛc‖2 ≤ ‖wΛ‖2 +‖wΛc‖2 . (6.122)

SinceΛc =Λ2∪̇Λ3∪̇ . . . we can apply the triangle inequality and lemma 11

‖wΛc‖2 =
∥∥∥∥∥∑

j≥2
wΛ j

∥∥∥∥∥
2

≤ ∑
j≥2

‖wΛ j
‖2 ≤

‖wΛc
0
‖1p

k
. (6.123)

By construction u = v +w so it is clear that

‖v +w‖1 ≤ ‖v‖1 . (6.124)

For the complementary setsΛ0 andΛc
0 we can apply proposition 11 with q = 1 to get

‖v +w‖1 = ‖vΛ0
+wΛ0

‖1 +‖wΛc
0
+vΛc

0
‖1 . (6.125)

In the proof of lemma 12 we know for each component that

||vi |− |wi || ≤ |vi +wi | . (6.126)

So we estimate the norm

‖vΛ0
+wΛ0

‖1 =
∑

i∈Λ0

|vi +wi | ≥
∑

i∈Λ0

||vi |− |wi ||

≥
∣∣∣∣∣ ∑
i∈Λ0

(|vi |− |wi |)
∣∣∣∣∣= |(‖vΛ0

‖1 −‖wΛ0
‖1)| ≥ ‖vΛ0

‖1 −‖wΛ0
‖1

(6.127)

and the same holds forΛc
0. With this result equation (6.125) becomes

‖vΛ0
‖1 −‖wΛ0

‖1 +‖wΛc
0
‖1 −‖vΛc

0
‖1 ≤ ‖v‖1 (6.128)

which yields a lower bound for ‖wΛc
0
‖1

‖wΛc
0
‖1 ≤ ‖v‖1 −‖vΛ0

‖1 +‖wΛ0
‖1 +‖vΛc

0
‖1 . (6.129)

A calculation as in equation (6.127) together with equation (6.119) shows that

‖v‖1 −‖vΛ0
‖1 ≤ ‖v −vΛ0

‖1 =σk (v )1 (6.130)

and sinceΛc
0 is complementary toΛ0, v = vΛ0

+vΛc
0
, thus

‖vΛc
0
‖1 = ‖v −vΛ0

‖1 =σk (v )1 . (6.131)

118



6.3 Restricted Isometry Property

Combining the latter three results we get

‖wΛc
0
‖1 ≤ ‖wΛ0

‖1 +2σk (v )1 . (6.132)

Insertion into equation (6.123) yields

‖wΛc‖2 ≤
‖wΛ0

‖1 +2σk (v )1p
k

. (6.133)

From lemma 9 we get

‖wΛc‖2 ≤ ‖wΛ0
‖2 +2

σk (v )1p
k

. (6.134)

We now use the triangle inequality

‖w‖2 ≤ ‖wΛ‖2 +‖wΛc‖2 (6.135)

and the fact, thatΛ0 ⊆Λ, thus
‖wΛ0

‖2 ≤ ‖wΛ‖2 (6.136)

to get the desired inequality

‖w‖ ≤ 2‖wΛ‖2 +2
σk (v )1p

k
. (6.137)

■
The following theorem follows from a combination of proposition 13 and lemma 14. It is the key
result for the optimisation problem we present for linear dynamic input-output systems.

Theorem 11 Let u, v ∈U with ‖u‖1 ≤ ‖v‖1 and assume forΦwe have the RIP2k with δ2k < p
2−1.

LetΛ0 correspond to the k largest components of v. We set w := u −v and letΛ1 correspond to the k
largest components of wΛc

0
, Λ2 to the second largest and so forth. Let Λ :=Λ0 ∪Λ1. There are two

constants C0 and C1 such that

‖w‖2 ≤C0
σk (v )1p

k
+C1

〈Φ(wΛ),Φ(w )〉
‖wΛ‖2

. (6.138)

Proof We start with proposition 13 applied to w

‖wΛ‖2 ≤α
‖wΛc

0
‖1p

k
+β

〈Φ(wΛ),Φ(w )〉
‖wΛ‖2

. (6.139)

In lemma 14 equation 6.134 we found an estimate of ‖wΛc
0
‖1, inserted into the latter inequality

‖wΛ‖2 ≤α
‖wΛ0

‖1p
k

+2α
σk (v )1p

k
+β

〈Φ(wΛ),Φ(w )〉
‖wΛ‖2

. (6.140)

The first term can be treated with lemma 9 and then we use the fact that Λ0 ⊆Λ, thus ‖wΛ0
‖2 ≤

119



Chapter 6 Dynamic Compressed Sensing

‖wΛ‖2, to get

‖wΛ‖2 ≤α‖wΛ‖2 +2α
σk (v )1p

k
+β

〈Φ(wΛ),Φ(w )〉
‖wΛ‖2

. (6.141)

Due to the assumption δ2k < p
2−1 we also get α < p

2−1 < 1 hence (1−α) is positive so we
rewrite the latter equation as

‖wΛ‖2 ≤
2α

1−α
σk (v )1p

k
+ β

1−α
〈Φ(wΛ),Φ(w )〉

‖wΛ‖2
. (6.142)

To close the proof we use lemma 14 to get

1

2

(
‖w‖−2

σk (v )1p
k

)
≤ 2α

1−α
σk (v )1p

k
+ β

1−α
〈Φ(wΛ),Φ(w )〉

‖wΛ‖2
(6.143)

and with

C0 :=
(

4α

1−α +2

)
(6.144)

and

C1 := 2β

1−α (6.145)

we finally obtain

‖w‖2 ≤C0
σk (v )1p

k
+C1

〈Φ(wΛ),Φ(w )〉
‖wΛ‖2

. (6.146)

■

Application to the MERP We can now apply theorem 11 to the solutions of P0 and P1. Assume
y data ∈Y is given data which is produced by a sparse true input w∗ ∈U , i.e.,

Φ(w∗) = y data . (6.147)

We want to infer w∗ from y data. Sparsity of the true input w∗ means that for all u in

A := {
u ∈U |‖Φ(u)− y‖2 = 0

}
(6.148)

we find
‖w∗‖0 ≤ ‖u‖0 . (6.149)

Now let ŵ be a solution of the convex P1 optimisation problem, that is, for all u ∈A we find

‖ŵ‖1 ≤ ‖u‖1 . (6.150)

We can now apply theorem 11 to w = ŵ −w∗. Note, that

Φ(ŵ ) =Φ(w∗) ⇒ Φ(w ) = 0. (6.151)
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We find

‖ŵ −w∗‖2 ≤C0
σk (w∗)1p

k
. (6.152)

Note that by definitionσk (w∗)1 is the best k-sparse approximation to w∗ in 1-norm. Thus we have
shown that the convex ‖ ·‖1 optimisation yields an approximation of the unknown, true input.

Theorem 11 might be adjusted for various scenarios where we can make further assumptions
about the model error w∗ or about stochastic or measurement errors. We want to derive a last
inequality for the case of bounded noise. Let ξ represent the noise, and Φnoiseless the solution
operator we have discussed so far. We now consider a new solution operator

Φ(u)(t ) :=Φnoiseless(u)(t )+ξ(t ) (6.153)

that incorporates the noise ξ. Since ξ(t ) ∈RP we can interpret ξ ∈Y and use the norm on Y . We
assume that ξ is a bounded noise with ε> 0,

‖ξ‖2 ≤ ε . (6.154)

We adjust the solution set
A := {

u ∈U |‖Φ(u)− y‖2 ≤ ε
}

(6.155)

and define w∗, ŵ ∈A as before with minimal ‖ ·‖0 and ‖ ·‖1 norm, respectively. From the theorem
we get

‖w‖2 ≤C0
σk (w∗)1p

k
+C1

〈Φ(wΛ),Φ(w )〉
‖wΛ‖2

. (6.156)

We want to estimate the scalar product by the Cauchy-Schwartz inequality

〈Φ(wΛ),Φ(w )〉 ≤ ‖Φ(wΛ)‖2‖Φ(w )‖2 . (6.157)

By constructionΛ=Λ0 ∪Λ1 has at most 2k elements. Thus, it is possible to write w = u +v where
u, v ∈Σk have disjoint support. With lemma 7 we get

‖Φ(wΛ)‖2 = ‖Φ(u)+Φ(v )‖2 ≤ ‖Φ(u)+Φ(v )‖2 . (6.158)

We can now use the RIP2k to get

‖Φ(wΛ)‖2 ≤
√

1+δ2k‖u +v‖2 (6.159)

and with lemma 8
‖Φ(wΛ)‖2 ≤

√
1+δ2k‖u +v‖2 =

√
1+δ2k‖wΛ‖2 . (6.160)

On the other hand we can write w = ŵ −w∗ and get

‖Φ(w )‖ = ∥∥(
Φ(ŵ )− y

)− (
Φ(w∗)− y

)∥∥
2 ≤

∥∥Φ(ŵ )− y
∥∥

2 +
∥∥Φ(w∗)− y

∥∥
2 ≤ 2ε . (6.161)

With this, equation (6.157) becomes

〈Φ(wΛ),Φ(w )〉 ≤ 2ε
√

1+δ2k‖wΛ‖2 (6.162)
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and inserting this into equation (6.156) leads to

‖w‖2 ≤C0
σk (w∗)1p

k
+C12ε

√
1+δ2k . (6.163)

We can now adjust the constant C2 := √
1+δ2kC1 to get the result

‖ŵ −w∗‖2 ≤C0
σk (w∗)1p

k
+C2ε (6.164)

which is the equation from theorem 10.
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6.4 Overview: Dynamic Compressed Sensing of Model Errors

For the sake of a clearer understanding of this very technical chapter, let us interpret the results to
round up the scene.

First, we have seen that measurement noise spoils the independence structure which was
presented in chapter 5. To remedy this issue, the idea of a compressed solution was discussed:
Instead of finding a sparse solution

Φ(u) = y data (6.165)

we search for a sparse solution of
‖Φ(u)− y data‖2 ≤ ε . (6.166)

We allow a small deviation of the augmented modelΦ(u) from the data. In return we can compress
the input vector u and set the small but non-vanishing components to zero. By this we achieve a
sparser solution that still matches the data reasonably good.

We presented the P0 and P1 problems, with the aim to minimise ‖u‖0 or ‖u‖1, respectively,
with respect to (6.166). Since ‖u‖0 counts the number of non-zero components, P0 is exactly the
problem we want to solve, i.e., finding a sparse input vector that approximately reproduces the
data. As this is a non-convex optimisation problem, P1 was discussed as a convex alternative.
For the formulation of P0 and P1 we need a norm on the input and output spaces U and Y . We
presented a compound p-q-norm

‖u‖q = ‖u‖q , ui = ‖ui‖Lp . (6.167)

In contrast to other varieties of dynamic compressed sensing, the p-1-norm helps to achieve the
desired invariable sparsity, whereas for example the 1-1-norm and the 2-2-norm are taken for
hands-off control or in the DEN. The dependence on the parameter p can be suppressed, as our
results stay valid for any choice of p. So we usually simply speak of the q-norm.

A version of the Restricted-Isometry-Property that is consistent with this new q-norm was
presented and we were finally able to show that if the system fulfils this property, then P1 indeed
leads to a sparse solution of the dynamic compressed sensing of model errors.
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CHAPTER 7

Applications

The theoretical framework for the localisation and reconstruction of structural model errors
presented in this thesis comprises three central elements: The gammoid interpretation of input-
output systems, a convex optimisation problem, and measures of coherence for error sources as
well as for sensors. It is an urge to finally provide possible applications of the developed theory.
We will discuss applications to the European power grid, to a biological neural network, to the
famous chaotic Lorenz system, and finally we demonstrate an iterative error localisation strategy
for a highly under-determined synthetic system.

Fault Detection Fault diagnosis is an important and widely discussed topic in the engineering
literature, see for instance [39, 50] for textbooks or [41] for recent developments in unknown input
observers for autonomous spacecrafts. Though fault diagnosis might be seen as a synonym for
error detection, i.e., to construct an unknown input observer must be distinguished from sparse
error reconstruction. In a linear (or linearised) system

ẋ(t ) = Ax(t )+Bu(t )

y(t ) =C x(t )
(7.1)

one necessary requirement for the existence of an unknown input observer is the condition [139]

rankC B = rankB . (7.2)

This condition can be translated into gammoid language as

S⊆ Z , (7.3)

i.e., it is required to cover each potential input node with a sensor.

In engineering problems, where the systems go through a design process and are build to work
in a specific way, this assumption might be justified. Each component of the system is well known
and sensors are designed to detect a malfunction of the monitored element. The fault detection
approach stemming from the gammoid interpretation makes no prior assumptions and is not
designed for a certain system. Instead, it works on the very topological structure and utilises the
spark to ensure uniqueness of an invariable sparse error localisation.
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Model Correction In 1963 Lorenz simplified the description of the cellular convection and
developed the convection equations [140]

ẋ(t ) =σy(t )−σx(t )

ẏ(t ) =−x(t )z(t )+ρx(t )− y(t )

ż(t ) = x(t )y(t )−βz(t ) .

(7.4)

The parameters
ρ = 28 , σ= 10 , and β= 8/3 (7.5)

are a standard choice and be traced back to earlier works of Saltzmann [141]. The Lorenz system,
though comprising only three state variables as apparently simple differential equations, offers a
chaotic behaviour and is therefore well suited to investigate the efficiency of data driven methods
under numerically stiff conditions. Data-driven methods like SINDy aim to deduce the 7 terms of
the Lorenz system solely from the measurement data [33]. Such purely data-driven approaches try
to infer the governing differential equations from scratch and become computationally infeasible
as the systems get larger and more complex.

Our approach would rather be the following: Say, we have a first guess, a linear nominal model

ẋ(t ) =σy(t )−σx(t )

ẏ(t ) = ρx(t )− y(t )

ż(t ) =−βz(t ) .

(7.6)

One will see that the nominal model has a model error

w∗(t ) = (
0,−x(t )z(t ), x(t )y(t )

)T . (7.7)

Thus, we make use of our nominal guess and compute a quantitative estimate ŵ . One could then
for instance proceed with a model identification method applied to the remaining 2 non-vanishing
components of the model error, to finally deduce a differential equation that describes the model
error.

So, the second application focuses on the non-linearities of the Lorenz system. In order to
compute quantitative estimates we tackle the convex P1 problem. Let henceforth ∆ : y data 7→ ŵ
denote a recovery algorithm that maps the data to an estimate for the model error. In practice, a
minimisation of the cost functional

J [u] = α

2
‖y data −Φ(u)‖2

2 +β‖u‖1 (7.8)

is equivalent to P1, see for instance [118]. This again is a standard form for dynamic optimisation.
We used the python implementation of CasADi to solves this problem computationally. In the
remainder, ∆will refer to a minimisation of (7.8) via CasADi. Another recovery algorithm would
be the R implementation of the Dynamic Elastic Net [7].

Clustering Approach for Input Localisation and Sensor Placement Finally we consider
a case that will occur frequently in real problems: The system is non-invertible and from the
experimental side it is impractically to observe all the state variables that would be necessary to
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obtain invertibility. It is therefore a relevant question if it is possible to relax the exact localisation
of model errors and instead seek for the best localisation given the insufficient data.

We can make use of the coherence in a twofold way: First, we can search for clusters of in-
distinguishable input nodes. As one example, we will present the input clusters of the neural
network of Caenorhabditis elegans (C.elegans). C.elegans is an approximately 1mm long worm
which attracted attention for it was the first individual whose neural structure was mapped and
catalogued completely. As another example, we consider a non-invertible version of the N = 30
nodes example of chapter 5 again and search for input clusters. Though we cannot localise the
model error within one cluster, we will at least be able to distinguish the active clusters which
contain one or more model errors, from the inactive clusters for which we can surely say that
they do not contain any unknown inputs. Second, we can search for clusters of indistinguishable
output nodes. Sensors that lie within the same cluster provide the same information about the
model errors. One can use this information to replace redundant sensors and by this increase the
information content of the data.

7.1 Fault Detection

A single fault in a system can take different forms, so that an invariable sparse fault does not
necessarily mean invariable 1-sparse. Consider the following two trains of though: A malfunction
of a single element, for instance one component xi of an electric circuit, can be remedied by a
single additional input

ẋ(t ) = f̃i (x(t )) = fi (x(t ))+w∗
i (t ) , (7.9)

where f̃i is a unknown function that represents the malfunctioning component, whereas fi models
the known, normal behaviour of this component. The model error w∗ = (0, . . . ,0, w∗

i ,0, . . . ,0)T

representing such a malfunction is characterised by

‖w∗‖0 = 1. (7.10)

Remember

‖ŵ‖0 <
sparkΓ

2
⇒ ŵ is the unique sparsest solution. (7.11)

We come to the conclusion that sparkΓ≥ 3 is necessary to guarantee the uniqueness of an 1-sparse
error estimate. Let Γ= (L,g,M) be a gammoid. A spark of 3 is achieved, if every input set S⊆ L of
size two is linked into M. As a simple corollary, note that a minimum of two sensors is necessary to
localise a single broken component.

But a single fault can also lie in the interaction of two components, as for instance a misspecified
transition or transport, say from x1 to x2. In such a case, the time course of both reactants are
affected and two inputs are needed to correct the model,

ẋ1(t ) = f̃1(x) = f1(x)+w∗
1 (t )

ẋ2(t ) = f̃2(x) = f2(x)+w∗
2 (t ) .

(7.12)

For a unique localisation of the fault, i.e., of w∗
1 and w∗

2 , a spark of 5 and at least 4 sensors are
required.
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Figure 7.1: A map of the European power grid UCTE, status as of summer 2004. The nodes represent
large power and transformer stations as presented in [142]. Each edge represents a direct connection in
both directions, for a better visualisation represented by a single undirected edge. LM Map of Europe by
albertoalvarez.es, source [143], image section and colour adjusted. Graph illustrating the UCTE as presented
in [142].

European Power Grid

As one application, let us consider the European power grid UCTE presented in figure 7.1, where
each node represents a large power or transformer station and each edge a power line in both
directions. In [142], the fault robustness and synchronisation of the European power grid was
discussed focusing on two malfunctions which occurred on April 2 2003 at Paluel (node 19) and on
June 5 2003 at Schwarze Pumpe (node 72). Later, network controllability principles were utilised to
find optimal actuator placements for the UCTE [144]. These two treatments, however, build on the
assumption that each node of the power grid can be observed.

In the following, let g be the graph with nodes N= {1, . . . ,94} and edges shown in figure 7.1, where
each link represents two directed edges (always understood in both directions). We do not want
to make prior assumptions about malfunctions, so the input ground set is L= N. We search for a
minimal sensor placement, i.e., for an output set Z⊆ N that leads to a sufficiently large spark of the
gammoid Γ= (L,g,Z) and allows for a detection of malfunctions in the UCTE.

1-Sparse Fault The malfunction of a single power plant falls in the category of 1-sparse faults.
From the discussion above we have learned that the unique detection of a 1-sparse input requires
at least two sensors and a spark of three. However, we soon encounter a difficulty when we, for
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7.1 Fault Detection

instance, consider the nodes 1 and 2 in figure 7.1: Each path starting or terminating at node
1 will unavoidably pass node 2. Thus, the set S = {1,2} is dependent, unless 1 ∈ Z. The same
argumentation holds for each node which is connected to only one other node of the graph.
Consequently, the smallest output set capable of rendering each size two input set independent is

Z1 = {1,38,85,86,87,88,89,90,91,92,93,94} . (7.13)

Indeed, we find that
spark(L,g,Z1) = 3. (7.14)

2-Sparse Fault A damaged power cable affects the electricity transmission between two nodes.
It leads to a 2-sparse model and requires a spark of five to be detectable in the sense of gammoid
theory. The output set Z1, though its size is clearly over the minimum of four sensors, is not
sufficient.

Here we see by example that already the search for a sensor set that yields a spark of five becomes
costly: Given a candidate Z2 for the output set, a spark of five requires all 4-node input sets to be
independent. For the UTCE with N = 94 nodes this makes

N (N −1)(N −2)(N −3) = 73.188.024 (7.15)

input sets which must be considered. The approximation via theorem 9 does neither lead to useful
results, as in most cases the shortest path mutual coherence equals one and thus leads to the trivial
bound

sparkΓ≥ 2. (7.16)

For practical purposes, both approaches are hard to handle and motivate the clustering approach
in section three.

Summary This section considered the problem of fault diagnosis in networks. A fault in a network
can appear in different forms: For instance, the malfunction of a single component introduces
a 1-sparse model error, whereas a broken connection between two components will introduce a
2-sparse model error. In order to detect the fault that causes of a k-sparse model error, at least 2k
sensors are needed, and a spark of at least 2k +1.

For the example of the European power grid UCTE we have, however, seen that a number of
P = 12 sensors is needed to ensure the detectability of a 1-sparse malfunction. Though this number
is clearly above the lower bound of 2, one must keep in mind that the UCTE comprises N = 94
power plants each of which could be the source of a model error. In a network like the UCTE,
a sensor placement that respects the gammoid structure can be capable of ensuring a unique
fault detection, even if the system size N exceeds the possible number of sensors P . It must be
mentioned that our analysis takes only the gammoid structure of the UCTE into account. In
reality, economical and political factors will probably play the dominant role when it comes to the
organisation of an international power grid.

It shall also be emphasised that the gammoid approach takes only the network topology into
account. This comes with the advantage that the sensor placement does not rely on a concrete
model about the interactions and stays untouched even if the numerical properties of the model
chance (for instance, consider the exchange of a power cable to reduce electrical losses). However,
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the disadvantage emerging from the gammoid approach is the blindness to numerical issues. So,
though the solution of the model error reconstruction might be unique in theory, a numerically
ill-conditioned problem or strong measurement noise might make a trustworthy error estimation
practically impossible.

7.2 The Lorenz System

The equations of the Lorenz system (7.4) provide
highly nonlinear, chaotic dynamics. It shall there-
fore be exploited to learn more about the capabil-
ities of the convex optimisation P1. So assume we
have measured data (xdata, zdata) for the Lorenz
system. Here, we purposefully omit data for the
state variable y for the reason that our approach
is especially suited to handle systems where we
cannot measure each state variable.
Often, nominal models describe a first attempt
to characterise a system. It is usually justified
to start with a linear model. Thus, we want to
consider the system (7.6) as a nominal guess for
the Lorenz system. We now want to compare the
flow ϕt (x0) of the nominal system to the given
data in order to compute a quantitative estimate
of the model error (7.7). As initial value we choose
x0 = (1,1,1).

x

y
z

Figure 7.2: The influence graph of the lin-
earised Lorenz system.

Input-Output Map The augmentation of the nominal model leads to the input-output system

ẋ(t ) =σy(t )−σx(t )+u1(t )

ẏ(t ) = ρx(t )− y(t )+u2(t )

ż(t ) =−βz(t )+u3(t ) .

(7.17)

One will find the flow of this system to be

ϕu
t (x0) = eAt x0 +

∫ t

0
eA(t−τ)u(τ)dτ (7.18)

with a matrix

A :=
−σ σ 0
ρ −1 0
0 0 −β

 . (7.19)

See figure 7.2 for the influence graph of the nominal model. There, one will realise that z is isolated,
whereas x and y are connected in both directions. For this reason, in order to infer a model
error targeting z we must measure this state variable directly. Under the assumption of invariable
sparsity it is, however, sufficient to measure one of the state variables x and y . We chose x as
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observable, so that the measurement function takes the form of the matrix

C =
(
1 0 0
0 0 1

)
(7.20)

and the input-output map
Φ(u)(t ) =C ϕu

t (x0) . (7.21)

Linear P1 One will realise that the input-output map (7.21) is not linear but affine-linear as it
takes the form

Φ(u) =C eAt x0︸     ︷︷     ︸
=:Φ1(t )

+
∫ t

0
C eA(t−τ)u(τ)dτ︸                    ︷︷                    ︸

=:Φ2(u)(t )

(7.22)

whereΦ1 is constant with respect to u. Since
the convexity of P1 is only guaranteed for lin-
ear input-output maps, we have to perform
the transformation(

x̃data(t )

z̃data(t )

)
=

(
xdata(t )

zdata(t )

)
−C

(
x0 +

∫ t

0
eA(t−τ)x0 dτ

)
(7.23)

and solve the problem

Φ2(u) =
(

x̃data(t )

z̃data(t )

)
(7.24)

whereΦ2 is a linear map.

Figure 7.3: Result of the error reconstruc-
tion for the linearised Lorenz model with data
transformation over a time range [0,1]. One
can see that the error estimates ûi fit the
ground truth w∗

i between t = 0 and t ≈ 0.5.
For larger t , û1 and û2 differ significantly
from the ground truth.

Find the trajectory (x(t ), y(t ), z(t )) of the Lorenz system for the time interval [0,15] before and
after transformation in figure 7.4(a) and (b), respectively. To compute estimates for the model error
we minimise the cost functional

J [u] =α
∥∥∥∥∥
(

x̃data(t )

z̃data(t )

)
−Φ2(u)

∥∥∥∥∥
2

2

+β‖u‖1 (7.25)

with α= 1 and β= 10−3. See figure 7.3 for the estimate in the time interval [0,1].

One will realise that for t / 0.5 the estimates ûi approximate the true model errors w∗
i accurately.

For times later than t ≈ 0.5, however, the estimates do not match the ground truth any more. Figure
7.4(b) and (d) will clarify thus issue. In subfigure (b) one will realise that, after data transformation,
the trajectory diverges. Subfigure (d) shows that around t ≈ 5 the magnitude of the state variables
x and y start to leave any bounded region.
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x10
76

x10
77

(a) (b)

(c) (d)

Figure 7.4: Trajectories of the Lorenz system before and after data transformation. (a) The trajectory before
data transformation over the time range [0,15]. One can identify the well known Lorenz-attractor. (b)
The trajectory after data transformation over the time range [0,15]. The trajectory is unbounded as time
increases. (c) The three state variables before data transformation over a smaller time range. The values stay
in a bounded range. (d) The three state variables after data transformation. The absolute value of the state
variables x and y grow over limitless as the time exceeds t ≈ 0.5.

Non-linear P1 Though our theoretical results are only proven for linear input-output maps, let
us consider the cost functional

J [u] =α
∥∥∥∥∥
(

xdata(t )

zdata(t )

)
−Φ(u)

∥∥∥∥∥
2

2

+β‖u‖1 (7.26)

with non-linearΦ. Figures 7.5(a-c) show the results of the input estimation with a regularisation
parameter of β= 10−5 for the time interval [0,15].

The estimate ŵ1 is relatively small in magnitude, compared to the estimates ŵ2 and ŵ3 but it is
not zero, though this would match the ground truth w∗

1 = 0∀t . Remember that in the 2-norm on
the output space

‖Φ(u)‖2
2 = ‖Φ(u)‖2

2 =
∑

i=x,z
‖Φi (u)‖2

Lp (7.27)

there is a Lp -norm hidden in the underline. While our theoretical results for sparse input estimation
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(a) (b) (c)

(d) (e) (f)

Figure 7.5: Error reconstruction for the linearised Lorenz system without data transformation over the time
range [0,15]. (a) Estimate û1 and ground truth w∗

1 . (a) Estimate û2 and ground truth w∗
2 . (a) Estimate û3

and ground truth w∗
3 .

are valid for any 1 ≤ p <∞, the choice p = 2 make the output space Hilbert. For inverse problems
on a Hilbert space, sparsity can be achieved by Iterative-Threshold-Algorithms [145, 146, 147]. In
this example, Iterative-Thresholding would imply that we force the smallest input estimate to zero.

Figures 7.5(d-f) show the input estimates for ŵ1
!= 0. After one step of Iterative-Thresholding, all

three input estimates ŵi offer accurate descriptions of the true model errors w∗
i .

Note that the greedy approach to the Dynamic Elastic Net [7] implements a variety of Iterative-
Thresholding which has already proven to produce good appropriate estimates of model errors in
linear and non-linear systems.

Summary In this section, we have started with a nominal, linear model for the Lorenz system
and inferred the non-linearities from data for the chaotic Lorenz attractor. In order to obtain a
linear input-output map for the augmented nominal model, we had to perform a transformation
of the data. This data transformation lead to the problem that the data start to diverge as time
exceeds t1 ≈ 0.5. As a consequence, we found that only for t < t1 we were able to reconstruct the
model error accurately. Our theoretical results for the input estimates were proven only for a linear
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input-output map that fulfils the RIP2k condition to a sufficient order. In practice, it is hardly
possible to verify the RIP2k, however, the divergence of the transformed trajectory for t > t1 lead to
the presumption that the RIP2k is clearly not fulfilled for large intervals of time. This presumption
is consistent with the result that our input estimates do not match the ground truth for t > t1.

In a second trial, we skipped the data transformation and worked with a non-linear input-output
map. The non-linear map comes with the advantage that its image stays in a bounded region. We
were able to infer accurate estimates for the model errors for a large interval of time. Though only
proven for linear problems, we come to the conclusion that the optimisation approach for sparse
input estimation can produce accurate results also for a non-linear input-output map. Engelhardt
et al. [21, 22] used a related optimisation problem were also able to produce good error estimates
for non-linear systems. Thus, one can be optimistic that the meaningfulness of the problem P1
will also be verified for non-linear systems in the future.

7.3 Cluster Approach

For a linear system, we have seen that the coherence µi j (s) makes a statement about the distin-
guishability of inputs attacking the input nodes si and s j . It will be convenient to reformulate the
coherence µi j (s) as a distance di j (s) between input nodes according to

di j (s) := 1

µ(s)i j
−1. (7.28)

One will see that two coherent nodes i and j have a short distance, di j (s) ≈ 0, with respect to this
metric whereas incoherence translates to a long distance, di j (s) →∞. As it is not unusual that
a coherence tends to zero or vanishes exactly, the distances are likely to diverge. For practical
purposes it makes sense, to define an upper bound d max. Furthermore it is again convenient to
work with shortest paths, i.e.,

d short
i j = 1

µshort
i j

−1. (7.29)

We call
D :=

(
d short

i j

)
i j

(7.30)

the (shortest path) distance matrix, often we work with the normalised matrix

D̂ := D

maxi j di j
. (7.31)

For this thesis, pythonwith the packages scipy and seabornwere used to compute node clusters
according to the distance matrix.

7.3.1 Caenorhabditis Elegans

Though biologists have gathered lots of information about the interplay of neurons and synapses
on cellular level, a better understanding of the working principles of the brain or a neural network
in general still remains a central task for modern sciences, find a comprehensive textbook which
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covers biophysical aspects as well as mathematical models and neural information coding in
[148]. Inspired by generically grown neural networks in living organisms, modern computers
enable us to implement artificial neural networks. This development makes the investigation of
neural structures a relevant subject also for computer scientists in machine learning and artificial
intelligence, find a contemporary review in [149]. Recently, dynamic systems were presented as a
model for continuous neural networks [150].
The online resources [151] and [152] provide
comprehensive information as well as peer-
reviewed publications about the neural network
of C.elegans. C.elegans, see figure 7.6, became a
prominent research biologists managed to com-
pletely map its neural structure and by this made
it possible to study a full connectome. We work
with the data set from [153] provided online
[152]. See figure 7.7(a) for a visualisation of the
C.elegans connectome. The connectome has
been the object of network scientific studies in
recent years. In [154] and [153] the network prin-
ciples and an optimisation of the network lay-
out were discusses. The network controllability
was addressed in [155] where it was shown that
network control principles allow to connect the
structure of the connectome to its function for
the locomotion of the worm. The latter result was
consistent with [156] where it was shown that the
worm’s degree of motion is 95% described by only
four motions, the so called eigenworms.
Despite this consistency between the controllab-
ility framework and the experimentally observed
four eigenworms, one will agree that the neural
network is, from the biological point of view, not

(a)

(b)

Figure 7.6: A photo and a schematic illustration
of an C.elegans individual of hermaphrodite sex.
LM 2015 Life Cycle of C.elegans and C.elegans
anatomy by Ann K. Korsi, Bruce Wightman, and
Martin Chalfie, source and information [157].
The figure shows image sections of the original.
(a) A photo of an adult C.elegans individual. (b)
A schematic illustration of the worm’s physique.

a control system. In a control system, external inputs are applied in order to steer the system into a
desired behaviour. The neural network rather acts like a information processing or error detection
system: If the worm encounters a barrier or receives a thermal stimulus [156], it reacts (or encodes
this information) in form of a movement.

We can reinterpret the connectome of C.elegans in terms of a weighted gammoid: The connec-
tome (the data set we use) comprises a total of 283 neurons (the node set N) which split into 82
sensor neurons, 93 inter neurons, and 108 motor neurons. Furthermore, we have a set of 4693
neural junctions (the directed edges E). The neural junctions take the form of synapses, more
precisely, the data set provides the number of synapses between each pair of neurons. We can take
this multiplicity of synapses as weight function F : E→R. Finally, there are three kinds of neurons.
Sensor neurons act as input nodes and can therefore be regarded the input ground set L, inter
neurons process the information, and motor neurons are finally connected to muscles and can
be interpreted as the output ground set M. Altogether, we obtain a representation of the C.elegans
connectome in form of the weighted gammoid Γ= (L,g,M). In [155] it was already argued why the
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dynamics of the neural network can be approximated by a linear system. It is therefore justified to
compute coherences and distances for the input nodes of the gammoid, which we have so far only
defined for linear systems.

Coherence Structure of the C.elegans Connectome According to (7.30) we can use the weight-
ed C.elegans gammoid to compute a distance matrix for the sensor neurons L. A visualisation
as heat map can be found in figure 7.7(a). Along the diagonal axis we identify four or five larger
clusters, where the exact assignment of the clusters depends on the desired clustering depth, plus
some smaller clusters. For stimuli within one input cluster, the generated output of the network, in
this case the provoked movement, is indistinguishable. Whereas stimuli of sensor nodes of distinct
clusters are distinguishable by their produced output. Though the precise number and size of
the clusters contains some degree of arbitrariness, we find that our results are consistent with the
results of [156], i.e., that the major part of the worm’s locomotion is covered by very few distinct
moves.

(a) (b)

dij

Figure 7.7: Neural structure of hermaphrodite C.elegans. (a) The neuronal network in a simplistic 3-layer
illustration. The data set, published in [153] and online available [152], comprises 283 nodes comprising 82
input neuron (red nodes, top layer), 93 inter neurons (black nodes, middle layer), and 108 motor neurons
(blue nodes, bottom layer). Furthermore there are 4693 synaptic links (grey arrows). The real neural network
does not have a strict cascade structure, i.e., there are direct edges from the top to the bottom layer as well
as edges directed upwards. (b) Heat map of the normalised distance matrix for the 82 sensor neurons. For
the pairwise distance di j an upper bound of dmax = 10 was introduced.
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7.3.2 Iterative Error Detection

In the remainder we will consider a system of N = 30 nodes which we already know from the
introductory example of chapter 5. The differential equations of the nominal model read as follows:

ẋ1(t ) = x7(t )+x26(t )−αx1(t ) ẋ16(t ) = x5(t )+x7(t )+x14(t )+x20(t )+x23(t )+x28(t )−αx16(t )
ẋ2(t ) = x3(t )+x14(t )−αx2(t ) ẋ17(t ) =−αx17(t )
ẋ3(t ) = x2(t )+x9(t )+x11(t )+x22(t )+x30(t )−αx3(t ) ẋ18(t ) = x16(t )+x25(t )+x27(t )+x28(t )−αx18(t )
ẋ4(t ) = x6(t )+x14(t )+x16(t )+x21(t )+x28(t )−αx4(t ) ẋ19(t ) = x4(t )+x7(t )+x9(t )+x27(t )+x30(t )−αx19(t )
ẋ5(t ) = x8(t )+x16(t )+x19(t )+x20(t )+x29(t )−αx5(t ) ẋ20(t ) = x6(t )+x18(t )+x19(t )+x26(t )+x27(t )−αx20(t )
ẋ6(t ) = x8(t )+x14(t )+x15(t )+x20(t )+x30(t )−αx6(t ) ẋ21(t ) = x6(t )+x12(t )+x17(t )+x20(t )+x22(t )+x23(t )+

x24(t )+x25(t )+x27(t )+x30(t )−αx21(t )
ẋ7(t ) = x17(t )+x24(t )−αx7(t ) ẋ22(t ) = x26(t )+x27(t )+x29(t )−αx22(t )
ẋ8(t ) = x21(t )−αx8(t ) ẋ23(t ) = x3(t )+x5(t )+x14(t )+x21(t )+x25(t )+x30(t )−αx23(t )
ẋ9(t ) = x15(t )+x21(t )+x30(t )−αx9(t ) ẋ24(t ) = x10(t )+x27(t )−αx24(t )
ẋ10(t ) = x1(t )+x2(t )+x11(t )+x13(t )−αx10(t ) ẋ25(t ) = x5(t )+x10(t )−αx25(t )
ẋ11(t ) = x9(t )+x13(t )+x14(t )+x21(t )−αx11(t ) ẋ26(t ) = x6(t )+x10(t )−αx26(t )
ẋ12(t ) = x7(t )+x14(t )−αx12(t ) ẋ27(t ) = x4(t )+x30(t )−αx27(t )
ẋ13(t ) = x6(t )+x12(t )+x15(t )+x22(t )+x30(t )−αx13(t ) ẋ28(t ) = x6(t )+x14(t )+x16(t )+x22(t )+x26(t )+x27(t )−αx28(t )
ẋ14(t ) = x2(t )+x16(t )+x18(t )+x29(t )−αx14(t ) ẋ29(t ) = x5(t )+x13(t )+x22(t )−αx29(t )
ẋ15(t ) = x23(t )−αx15(t ) ẋ30(t ) = x5(t )+x7(t )+x15(t )+x29(t )−αx30(t )

The observables are given as the output set

Z = {13,20,7,26,21} (7.32)

and α = 4 and the initial value by x0 = 0. To simulate a model error, we add a single additional
input w∗

6 to the equation for x6, i.e.,

f true
6 (x , t ) = x8(t )+x14(t )+x15(t )+x20(t )+x30(t )−αx6(t )+w∗

6 (t ) . (7.33)

Furthermore we add Gaussian noise with relative standard deviation of σ = 5% of the current
output value to the observables to simulate pseudo-experimental data y data. We now aim to
recover the model error w∗

6 of the nominal model using the pseudo-experimental data. We make
no assumptions about the model error except for sparsity, thus we consider the input ground set
L= {1, . . . ,30}.

Detect the Active Cluster In figure 7.8(a) one can find the estimated inputs for the erroneous
model described above. The estimates were computed via∆withα= 1 andβ= 0.01. The estimated
input ŵ is neither sparse nor does the correct component (ŵ6) fit the ground truth w∗.

The reason for the failure of the error reconstruction lies in the high coherence between the
input nodes, as presented in figure 7.8(b). One can see that there are clusters of indistinguishable
nodes, whereas the distance between two clusters almost vanishes. It turns out that a number
of P = 5 clusters is a robust choice. For the presented results, the hierarchical clustering from
python’s scipy package was used with the option complete which sets the distance d(C1,C2) of
two clusters as the maximum of d(s,t) over all s ∈ C1 and t ∈ C2.

Within one input cluster it is not possible to localise the source node of a model error. However,
we might be able to detect the model error on the level of clusters. Figure 7.8(c) shows the influence
graph of the system, the node colouring encoding the five input clusters C1, . . . ,C5. We now compute
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dij

(a) (b) (c)

(d)

Figure 7.8: Detection of the error cluster. (a) Result of the direct application of the error estimation by
minimising the cost functional. The thirty estimates ŵi are shown as well as the ground truth w∗. (b)
Heat map and dendrogram of the normalised distance matrix of N = 30 example system. For a compact
illustration, the dendroram is slightly compressed, a closer quantitative analysis reveals that a clustering into
five clusters is robust. (c) The influence graph of the system with node colouring indicating the affiliation
of an input node to one of the five clusters. The square nodes indicate the outputs of the system. (d) The
1-norm of the partial input vector ŵCi

which comprises the inputs attacking cluster Ci .

the norm
‖wCk

‖1 =
∑

i∈Ck

wi (7.34)

for each cluster. The result can be found in 7.8(d). As the overall input to cluster C1 is significantly
larger in magnitude compared to the other clusters, we conclude that C1 is the active cluster,
meaning, the cluster that is affected by (at least) one model error.

This argumentation again relies on the assumption of invariable sparsity. Without prior know-
ledge it is not possible to rigorously argue that, for instance, clusters C2 and C3 are affected by
less severe model errors. The identification of active clusters should therefore be regarded as a
heuristic approach for ill-conditioned problems, where the direct error detection does not succeed.

Sensor (Re-)Placement With the finding of the active cluster it makes sense to redefine the
input ground set L := C1. the nodes within this cluster have a high coherence which makes a more
precise localisation of the model error impossible. However, for the Γ= (C1,g,Z) gammoid theory
provides a transposed gammoid Γ′ = (Z′,g′,C′1). And since we use Γ to compute the coherence
of input nodes with respect to the output set, it becomes clear that we can utilise Γ′ to obtain a
coherence measure for output nodes with respect to the input set. So we can take the gammoid
Γ′ = (M′,g′,C1) where M⊆ N, to compute clusters of coherent output nodes (from the output ground
set M) with respect to the new input ground set C1. Figure 7.9(a) shows the influence graph of the
system again, with the node colouring indicating clusters of coherent output nodes.

The figure unveils that the output set Z which has been used so far is not an optimal choice,
as the observables y2 and y4 lie within the same output cluster, i.e., provide indistinguishable
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Figure 7.9: Error localisation and reconstruction in the N = 30 nodes system. (a) Output-clustering of the
influence graph with respect to the active cluster C1. Clusters are indicated by the node colouring. (b) After
sensor replacement, an input clustering is applied to the active cluster C1. The resulting clusters C′1, . . . ,C′2
are indicated by the node colouring. (c) The ‖ ·‖1-norms for the computed estimates of the model errors for
each new cluster C′1, . . . ,C′6. (d) The result of the error reconstruction for the active cluster C′2

information about C1. In order to avoid redundancy in the measurements it makes therefore sense
to replace the sensor such that many output clusters are covered. Compare subfigures (a) and (b)
to see that we have replaced observable y2.

Reconstruct the Model Error Now that we have reduced the input ground set L and replaced
the sensor y2 so that the measurements provide a higher information content, we can try to infer
the model error once more. In the fist step, we cluster the input ground set as shown in figure 7.9(b).
Subfigure (c) shows the total input magnitude for the six input clusters C′1, . . . ,C′6. We identify C′2 as
the active cluster. One will see that the active cluster comprises only one node which corresponds
to state variable x6. Since x6 is indeed the node which is is perturbed by the true input w∗, we
have successfully localised the model error.

Subfigure (d) shows the estimate ŵ6. We have reconstructed the true model error w∗ with
a good accuracy, keeping in mind that we worked with a highly under-determined system and
measurement noise.

7.3.3 Summary

The considered system is affected by a 1-sparse model error w∗. Without prior knowledge, the
input ground set L contains each of the 30 nodes, but it provides only 5 observables. For this system
we find a spark of 3, which actually means that a 1-sparse model is unique. However, the shortest
path coherence mutual coherence is µshort = 1 which indicates that a high coherence between
the nodes will make the error reconstruction difficult in practice. Though we were not able to
reconstruct the model error directly, we computed clusters C1, . . . ,C5 of coherent input nodes and

139



Chapter 7 Applications

we were able to detect C1 as the cluster that contains the model error. Applying the clustering
approach to the transposed gammoid, we computed clusters of indistinguishable output nodes.
We used this information to improve the sensor placement. With the knowledge about the active
cluster and the replaced sensors, we finally succeeded to localise and reconstruct the true model
error.

The example described above provides an iterative strategy which combines the coherence
measure and the minimisation of the cost functional in order to narrow down the location of a
model error step by step. Though this strategy works remarkably well in the presented example,
some comments are in turn: The identification of an active cluster is plausible but still heuristic at
the current state of the theory. When we choose one active cluster, we force the inputs in the clusters
of smaller magnitude to zero. This idea corresponds to Iterative-Hard-Thresholding algorithms
which was first presented for linear, finite-dimensional operators [147] but also discussed for
general Hilbert spaces [146] as well as for non-linear problems [145]. Under which conditions this
kind of algorithm converges to the desired solution is an open question. A related greedy algorithm
was published in [7] and confirms that it is capable of producing good results for real problems.
Furthermore, if the true model error is non-sparse, more precisely, if its support is larger than
the size of the clusters, or if the true model error contains components of small magnitude, the
identification of the active cluster won’t be straightforward.
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CHAPTER 8

A Concluding View on SEEDS

The aim of the present work was to shed light upon the topic of Structural Error Estimation
in Dynamic Systems and provide a methodology for a data driven inference. From a modern
naturalist’s point of view, every investigation of natural phenomena must be made with the humble
confession, that there is hardly any process fully understood. The emergence of structural model
errors of internal or external origin is the unavoidable cost of growing complexity. Therefore it is
high time to develop a methodology for a contemporary treatment of model errors.

Structural Model Errors are Unavoidable Biological, chemical, or physical processes, en-
gineered systems or machines are never isolated, but open systems. Clearly, exceptions exist:
Experimentalists put much effort into high precision experiments to achieve a physical isolation of
the system. But more often than not, the investigated system stays in contact with its environment.
Be it a part of a living organism, which obviously cannot be investigated separately, or a funda-
mental physical system where the very act of observation already intervenes in the system’s future
behaviour, see for instance [158] for Heisenberg’s philosophical thoughts on quantum physics.
The mathematical models we use today are often implicitly, or even unknowingly, blind to such
external model errors. The nominal systems we work with are mathematically isolated.

For a biological system it is clear that it is practically impossible to model each and every process
that keeps the system intact. For a physical system it is never clear, if the understanding we
have attained is really fundamental, or merely a good approximation. There remains always the
possibility of internal model errors, misspecified laws of nature, unknown reactions, or simply
erroneous parameters. Internal and external model errors change the behaviour of the system and
diminish our understanding of the system and our capability to estimate its current and future
development. Therefore one important objectives of this thesis was to demonstrate that all kinds
of model errors, notwithstanding their origin, can be incorporated into the model as additive
unknown inputs.

Significance of the Model Error Estimation Knowing the unknown inputs aids our under-
standing of the system manifoldly: The true state x of the system at a certain point in time is
usually not directly accessible, but it must be estimated from the few observables y for which we
can collect data, in combination with a good theoretical model from which we can infer the state
of the system. An erroneous model leads to erroneous state estimates, and finally to a complete
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loss of control over the system.
In a model for a physical system the single terms of the equations represent the fundamental

(meaning fundamental relative to the level one wants work with) interactions of the system. The
existence of a model error can therefore indicate the need for new or revised interaction laws. It
may also indicate that external perturbations which were deemed to be negligible are potentially
significant. The inference of unknown inputs from given data for a system of consideration can
help to build better mathematical models and by this lead to a better understanding of the laws
that govern the behaviour of the system.

Both the practical issue of estimating the state of a system and the theoretical process of devel-
oping more competent models benefit from a credible model error reconstruction.

8.1 Result: A Theoretical Framework

The ways to formulate dynamic systems are only bounded by creativity, but three representations
have proven convenient in the treatment of dynamic input-output system:

The formulation in state space is an intuitive and common understanding when one speaks
of dynamic systems. A state variable xi (t) gives a numerical value, e.g., a specimen number,
concentration, or voltage, at some point t in time, and the governing laws are formulated as
differential equation

ẋ(t ) = f (x(t )) ∀ t ∈ [0,T ] . (8.1)

The d-algebraic formulation represents a dynamic system as d-polynomials

qi (Xi ; X ) = X (1)
i −pi (X ) (8.2)

from a d-ring K{X } together with a d-ideal I(q1, . . . , qN ) that ensures the conformity with the
governing equations. In this formulation the time resolution is omitted providing a single d-
indeterminate Xi that represents the whole trajectory xi (t)∀t . It is insensitive to singular time
events, such as fixed initial or final state constraints, but therefore naturally integrates the complete
information of a state or observable trajectory.

Finally, the structural or network ap-
proach reduces the dynamic behaviour
of a system to directed links between
nodes, see figure 8.1 on the right. It
lacks the information about the precise
interactions, but therefore yields effi-
cient algorithms.

Figure 8.1: An exemplary structural system.

Invertibility The state space, d-algebraic, and structural approaches to dynamic systems can be
seen as three perspectives of the same system, with focus on its geometric, algebraic and structural
properties, respectively. In each representation some characteristics are obvious, others get
upstaged. This phenomenon facilitated the initial formulation of the Model Error Reconstruction
Problem in state space, and thus enabled the subsequent step of utilising the d-algebraic way
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to finally proof the almost (up to pathological cases) equivalence of analytical, d-algebraic and
structural invertibility. The demonstration of the equivalence of the three invertibilities is the
second important achievement of this thesis.

In the end, analytical, d-algebraic and structural invertibility provide answers to the same ques-
tion: Is it possible to reconstruct the model errors from data? The three notions of invertibility
are supposed to start in their own right; nevertheless a combination of them may also prove itself
purposeful when intending to extract the maximum of information about a system. In the retro-
spective, the goal of the SEEDS project and of this thesis was to pour the different representations
into one consistent theoretical framework to solve the Model Error Reconstruction Problem.

8.1.1 How to: Model Error Reconstruction

Along with the theoretical development, a methodology for practical error reconstruction evolved
as a side product and shall be summarised at this point.

Structural Invertibility of Complex Networks Structural invertibility enabled us to perform
a purely structure-focused investigation to understand the principles of complex networks. It
has been shown that density and homogeneity support structural invertibility. Inhomogeneity
in the degree-distribution, meaning the emergence of hubs and satellites, and inhomogeneity
in the in- and out-degree of the hubs, meaning the emergence of super-collectors and super-
spreaders, diminish the chance for a trustworthy error estimation. However, with a certain input
and output placement that respects hubs and satellites of the networks, it was possible to increase
the probability for structural invertibility significantly.

Real networks are often highly inhomogeneous. The first sensor placement respects the afore-
mentioned network principles and helps to find an experimental design with enhanced invertibility
behaviour.

Sparse Sensing The discovery of an intrinsic gammoid structure enabled us to formulate
a sparse model error reconstruction: In a non-invertible system, there are many input vectors
u,u′,u′′, . . . ∈ U that reproduce the data, hence serve as a candidate for a model error estimate.
But in many realistic scenarios it is plausible to assume invariable sparsity, meaning not each and
every equation of the nominal system is erroneous, but only a small number. We were able to proof
that the assumption of sparse model errors leads to the spark which yields a lower bound ensuring
a unique and by this credible error reconstruction.

Error Localisation When the idea of dependence and independence reaches its limits, we can
use the idea of coherences to achieve less rigorous yet practical approximations. Under very
adverse conditions the bound obtained by the spark is practically pointless as is can happen that
uniqueness is only guaranteed for the trivial solution u = 0. In such a case the coherence of input
nodes helps to find clusters of practically indistinguishable nodes. Within one cluster, it does not
make sense to search for a higher resolution of the model error. The point is that on the level of
input clusters, we are able to distinguish active clusters (i.e., those which contain model errors)
from inactive clusters. Admittedly we are not able to reconstruct the model error, but we can at
least localise it.
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As a dual result, the coherence of output nodes allows to find clusters of coherent outputs or
measurements. Two sensors that lie within the same output cluster yield redundant information
about the mode errors. We deduce the second sensor placement principle which respects the
coherence of output nodes.

Error Estimation The final goal of the invertibility question is the inference of a model error
estimate from given data. A generalised Restricted-Isometry-Property was presented together with
a LASSO-type optimisation problem. For linear systems it was possible to show that the LASSO
optimisation problem produces the best approximation to a sparse solution. This enables us to
handle the reconstruction of model errors as a dynamic compressed sensing problem.

8.2 Perspectives for Future Research

Given that this thesis opens up new views on mathematical models that suffer from endogenous
or exogenous model errors, the boundaries of the presented theory are open in many directions.
Three concrete questions, or possibilities, for future research shall finally be mentioned.

8.2.1 Non-linear Optimisation

Non-linear Gammoids Our results on the coherence measure as well as the results on the LASSO-
type optimisation are restricted to linear systems over a constant field, usually R. The coherence
measure grounds on the structure of a weighted gammoid. The linearity of the system ensures that
the weights are independent of the current state of the system. The way towards the coherence
lead over the Laplace-transformation which is defined for classical fields and therefore our results
on the coherence are not directly applicable to systems over a (non-constant) d-field. It would
be an interesting and relevant investigation if it is possible extend the Laplace-transformation to
d-fields. This would allow to define coherence measures for a system over an arbitrary d-field.

Already [51] briefly mentioned non-constant weights in a structural system, which, for instance,
would emerge from a non-linear system. It seems plausible that at least a local coherence measure
might be explored for non-linear system.

Non-linear Optimisation Also the convexity of the LASSO optimisation as well as the investiga-
tion of the Restricted-Isometry-Property were restricted to the linear case. Despite this fact, we
have applied our methods to a nominal Lorenz model with non-linear input-output map. This
resulted in remarkably accurate estimates for the non-linearities of the Lorenz system. Treatments
of non-linear systems can be found in [21] and [22], where comparable non-linear optimisation
problems lead to accurate error reconstructions. Though its optimality is not yet proven for the
non-linear case, it is a heuristic result that the LASSO-regularisation works well in the non-linear
case.

Even for the simpler non-dynamic case, meaning compressed sensing for a map Φ between
two finite dimensional vector spaces Φ : RN → R

P , the case of a non-linear map is subject to
current research. For instance [146, 145] discusses an Iterative-Hard-Threshold Algorithm. Under
the bi-Lipschitz condition, which is closely connected to the Restricted-Isometry-Property, this
iterative approach yields sparse solutions and it was shown that this algorithm converges also
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in the non-linear case. Whether the Iterative-Hard-Threshold Algorithm can be reformulated
for dynamic systems is an open and highly relevant question, as it not only shows that dynamic
compressed sensing of invariable sparse model errors is possible in non-linear systems, but also
because it presents an alternative way to perform the search for an invariable sparse solution.

8.2.2 Invertibility of Partial Differential Systems

This thesis focused on the classical understanding of dynamic systems as a system of ordinary
differential equations. Another import class of problems are those formulated as partial differential
equations. Take for instance the equation of thermal conduction [71]

ψ̇=∆ψ (8.3)

where ψ : (x , t ) 7→ψ(x , t ) is the temperature as a function of space and time and all constants set to
one. One will believe that such a model can be erroneous as well. For instance imagine an external
heat source

ψ̇=∆ψ+u (8.4)

forces the system into a different behaviour.
We notice a difficulty which was not present before: The entities ψ and u : (x , t) 7→ u(x , t) are

functions of space and time. In the example of a room temperature it seems natural that we use a
thermometer at some position x0 and measure the temperature at this place over time

y(t ) :=ψ(x0, t ) . (8.5)

Or if we take a thermal image at time t1, we may get

y(x) :=ψ(x , t1) . (8.6)

While in the case of ordinary differential equations the unknown inputs, state variables and
observables are all functions of time, partial differential models have the additional quality that
the observables might be fixed to one point in space (8.5) or time (8.6).

Partial d-Field for Thermal Conduction The theory of d-algebra fortunately generalises to
the partial differential case [66]. So K can be a partial d-field if there is a family of commuting
derivation operators ∆= (∂1,∂2, . . . ,∂D ), each of which fulfils the rules for d-fields.

In the heat equation example we would have the (constant) ∆-field R and the derivations
∆= (∂t ,∂x ,∂y ,∂z ). For simplicity we will henceforth only discuss ∆= (∂t ,∂x )

Now, the perturbed heat equation can be written

∂tψ= ∂2
xψ+u . (8.7)

Or to adapt a more algebraic style

q(Ψ,U ) = ∂tΨ− (∂2
xΨ+U ) (8.8)

is a d-polynomial in the ∆-field R{Ψ,U }.
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Influence Pattern An influence structure like i→ j represents an equation of the form

∂t x j (t ) = . . .+x j (t )+ . . . (8.9)

where the interaction is linear only for simplicity. One could say, the directed edge i→ j is a direct
influence conveyed by ∂t ,

i
∂t→ j . (8.10)

In a partial differential context like

∂tψ(x, t ) = ∂xψ(x, t ) (8.11)

however, several translations into the structural representation are possible. For instance a two
node system N= {ψ,∂xψ} with one edge

∂xψ
∂t−→ψ (8.12)

or a one node system N= {ψ} with two edges

ψ
∂t−→ψ , ψ

∂x−→ψ . (8.13)

Let us focus on the first version. Differentiation of the thermal conduction equation with respect
to space and commuting the derivations yield

∂t (∂xψ) = ∂x (∂xψ) , (8.14)

which can be translated to the structure

∂2
xψ

∂t−→ ∂xψ , (8.15)

which looks like a differentiation of the structure (8.12) with respect to x.
In the same manner, one can deduce arbitrarily many edges between the nodes ψ,∂xψ,∂2

xψ, . . .
and the influence graph would be infinite. It seems convenient to introduce the idea of an influence
pattern. For instance, the influence pattern of the thermal conduction with input u and an
observable given by (8.5) would be

g(x) :=
u(t , x) → ψ(t , x)

δ(x−x0)→ y(t )
↑

∂2
xψ(t , x)

(8.16)

with an Kronecker-delta meaning y is connected only at x = x0.

Thermal Conduction as a Structural System For the influence pattern above we can derive a
general formula

∂n
xg(x) =

∂n
x u(t , x) → ∂n

xψ(t , x)
↑

∂n+2
x ψ(t , x)

, (8.17)

146



8.2 Perspectives for Future Research

which helps us to construct the influence graph G(x) (with dependencies neglected)

G=

u → ψ
δ(x−x0)→ y

↑
∂x u → ∂xψ ∂2

x u → ∂2
xψ

↑ ↑
∂3

x u → ∂3
xψ ∂4

x u → ∂4
xψ

↑ ↑
∂5

x u → ∂5
xψ ∂6

x u → ∂6
xψ

↑ ↑
∂7

x u → ∂7
xψ ∂8

x u → ∂8
xψ

↑ ↑
...

...

. (8.18)

One will soon realise that this system has infinitely many input nodes u,∂x u, . . . but only one
output node. However, if we make the assumption that the external heat u is spatially constant, we
find that ∂x u = 0. It is then without issue to collect data only at x = x0 and the system becomes
invertible as it reduces to

G(x0) =

u(t ) → ψ(x0, t ) → y(t )
↑

∂xψ ∂2
xψ

↑ ↑
...

...

. (8.19)

One will see that also a system of partial differential equations can be treated with d-algebraic
and structural methods, but with issues which are not present in the case of ordinary differential
equations. Namely, a more elaborated discussion of the observables is necessary as well as a
treatment of infinite gammoids. It would be a significant contribution to the theory of model error
reconstruction, to examine how the results presented in this thesis can be adapted to the partial
differential case.

8.2.3 Model Discovery

In this thesis, we considered the case that one has a (slightly erroneous) nominal model of a system
in conjunction with observation data. Then an attempt to estimate the model error is undertaken.
Such a process can be viewed as a model correction strategy. Another approach is the discovery
or identification of a model: Given observation data, we aim to construct a model that is simple
yet reproduces the data accurately. For instance SINDy [33] tries to find the simplest model in the
sense that the vector field of the system is sparse with respect to a given dictionary.

As both approaches aim for a precise mathematical description of the system, it might be in the
focus of future research to find a complementary method: Say, we have a nominal model, data,
and we have estimated the model error. Instead of starting a model identification from scratch,
which would neglect all prior knowledge about the system, we first localise and estimate the model
errors with the methods presented in this thesis. Then, we apply the model identification methods
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only to the model errors to learn about their intrinsic dynamics.
Especially in the case of large systems, a direct model identification from scratch would be

computationally infeasible. The identification of the few (invariable sparse) model errors, however,
is much more realistic. A combination of the two methods would be capable of correcting the
vector field with functional terms and by this produce an improved and predictive model.
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List of Figures

1.1 A visualisation of structural model errors. (a) A known subsystem (blue shaded
region) is embedded into a larger unknown exo-system (grey shaded region). The
subsystem interacts with the exo-system as indicated by the arrows. In addition, there
exists one interaction (green dotted arrow) between two elements of the subsystem
that leaves the known (blue) region. (b) A reformulation with model errors (red
wiggly arrows). The interaction with the exo-system leads to an exogenous model
error, the unknown interaction within the model leads to an endogenous model error. 3

1.2 A vicinity of a tree becomes a nominal system. Public domain (L;) found at [31] were
used. (a) A schematic illustration of the multiple state variables zi of the complex
system. We are interested in the vicinity of a single forest, illustratively described
by the variables z1, z2, z3. The boundary of the subsystem are drawn basing on our
intuitive understanding, however, without mathematical reason. Furthermore, the
boundary is an imaginary line but not a physical barrier. Hence, the interactions
with the other state variables are not affected. (b) In the nominal model, the tree
appears to be a standalone system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 An exemplary model error reconstruction. (a) The considered system. Each node
xi represents one state variable, each arrow represents a linear interaction with
coefficient one. The wiggly arrows indicate the additive inputs wi , the square nodes
represents the measured outputs yi . The initial value is set to zero, x(0) = 0. (b) The
pseudo-experimental data of the system (a) and the corrected model with inputs
from (c, dotted lines) and (d, solid lines). (c) One choice of input functions applied
as w1, w2, w3 to the systems (a) and (e). The corresponding trajectory of the system
is shown as dotted lines in (b) and (f). (d) Another choice of input functions applied
to the systems (a) and (e). The corresponding trajectory of the system is shown as
solid lines in (b) and (f). (e) A variation of the system (a). It differs in the output y3.
(f) The pseudo-experimental data of the system (f) and the corrected model with
inputs from (c, dotted lines) and (d, solid lines). . . . . . . . . . . . . . . . . . . . . . 13

3.1 Structural invertibility analysis for the two systems from figure 1.3. (a) A system with
three inputs w1, w2, w3 and three outputs y1, y2, y3. All paths from w2 and w3 to the
outputs intersect at node x9. A node-disjoint linking of inputs and outputs is not
possible and the system structurally non-invertible. (b) After replacing the output
y3, there exists a node-disjoint linking as indicated by the colouring. The system is
structurally invertible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 The influence graph of the exemplary system 3.20 to demonstrate the propagation of
a d-transcendence basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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4.1 The transformation from influence graph g to flow graph G for an exemplary system. 51

4.2 The probability ρ for an invertible ER- or SF-network with random input and output
sets as a function of the average degree d̄ . The network size is fixed to N = 1000,
the input and output sets have a size of M . For each value of d̄ , ρ is computed as
the relative number of structurally invertible networks among 100 network realisa-
tions. Each data point has an empirical standard deviation of

√
Nρ(1−ρ) which is

not plotted for better readability. (a) ER-networks. (b) SF-networks with a scaling
parameter γ= 2.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 The probability that an SF-network is structurally invertibility under preferential
input and output placement. For each average node degree d , ρ is the relative
number of structurally invertible networks among 100 realisations of Scale-Free
networks with N = 1000 nodes and γ= 2.8, where the input and output sets of size
M = 10 were drawn uniformly. For ρHubsIn and ρHubsOut we took the 50 nodes with
the highest node degree and randomly drew a subset of size M = 10 as input and
output set, respectively. The output and input set, respectively, were drawn randomly
from the remaining nodes of the network. . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Convergence of the Sensor Node Placement Algorithm. The size P of the current
output set as a function of the number of iterations for the satellite-deletion, hub-
deletion and random-deletion versions of the algorithm for an exemplary ER-system
with N = 1000 and M = 100 inputs. In this example, the minimal number of iterations
is 500 and the maximal number of iterations 600. . . . . . . . . . . . . . . . . . . . . . 57

4.5 Enhanced structural invertibility of real networks. (a) The probability ρ that the
networks from table 4.1 are structurally invertible. The input set of size M is drawn
randomly, the output set is obtained by the Sensor Node Placement Algorithm. For
each M , ρ is the relative number of structurally invertible networks among 100
realisations. Each value is equipped with a standard deviation of

√
Nρ(ρ−1) which

s again not plotted for better readability. (b) The difference in the probabilities
between the results of scenario I, see figure 4.6 (a) and scenario II, see subfigure (a). 58

4.6 Structural invertibility of real networks. (a) The probability ρ that the networks from
table 4.1 with randomly placed inputs and outputs is structurally invertible as a
function of the size M of the input and output sets. For each value of M one hundred
realisations of input and output sets were simulated and ρ gives the fraction of
structurally invertible networks. Each data point has an empirical standard deviation
of

√
Nρ(ρ−1) which is not plotted for better readability. (b) The probability from

(a) is plotted against the probability computed analogously after a Degree Preserving
Randomisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Impact of asymmetry. (a) The probability for structural invertibility for the E.coli
network and a randomly generated SF-network with the same properties. Analogous
to scenario I, see figure 4.6, for each M , ρ is the relative number of structurally
invertible systems among 100 realisations. (b) The in- and out-degrees of the nodes of
the E.coli network. (c) The in- and out-degrees of the nodes of a randomly generated
Scale-Free network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 A comparison of the probability for structural invertibility of real networks for the
three considered scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
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5.1 Example for a successful model error reconstruction. (a) The influence graph of an
exemplary system of size N = 30. Each node represents one state variable. The black
squares represent the P = 10 state variables that are considered as the observables
y1, . . . , y10. The red wiggly arrow indicates that an additional input w∗, representing
a model error, affects state variable x6. (b) Pseudo-experimental and predictions of
the augmented model with the input shown in (c) (c) The estimated input vector
ŵ = (ŵ1, . . . , ŵ30)T is shown together with the ground truth w∗. . . . . . . . . . . . . 67

5.2 Construction of the Gramian gammoid. (a) An exemplary gammoid Γ. The red
round nodes are the input set, the blue squared nodes represent the outputs. (b)
The transposed gammoid Γ′. The round blue nodes are the output set and the red
squares represent the input nodes. (c) The outputs of Γ are identified with the inputs
of Γ′. We obtain the Gramian gammoid Γ◦Γ′ with inputs indicated in red and outputs
indicated in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 The result of the numerical inverse Laplace-transform of the coherence of the exem-
plary 2-in-2-out system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1 A map of the European power grid UCTE, status as of summer 2004. The nodes
represent large power and transformer stations as presented in [142]. Each edge rep-
resents a direct connection in both directions, for a better visualisation represented
by a single undirected edge. LM Map of Europe by albertoalvarez.es, source [143],
image section and colour adjusted. Graph illustrating the UCTE as presented in [142]. 128

7.2 The influence graph of the linearised Lorenz system. . . . . . . . . . . . . . . . . . . 130

7.3 Result of the error reconstruction for the linearised Lorenz model with data trans-
formation over a time range [0,1]. One can see that the error estimates ûi fit the
ground truth w∗

i between t = 0 and t ≈ 0.5. For larger t , û1 and û2 differ significantly
from the ground truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4 Trajectories of the Lorenz system before and after data transformation. (a) The
trajectory before data transformation over the time range [0,15]. One can identify the
well known Lorenz-attractor. (b) The trajectory after data transformation over the
time range [0,15]. The trajectory is unbounded as time increases. (c) The three state
variables before data transformation over a smaller time range. The values stay in a
bounded range. (d) The three state variables after data transformation. The absolute
value of the state variables x and y grow over limitless as the time exceeds t ≈ 0.5. . 132

7.5 Error reconstruction for the linearised Lorenz system without data transformation
over the time range [0,15]. (a) Estimate û1 and ground truth w∗

1 . (a) Estimate û2 and
ground truth w∗

2 . (a) Estimate û3 and ground truth w∗
3 . . . . . . . . . . . . . . . . . . 133

7.6 A photo and a schematic illustration of an C.elegans individual of hermaphrodite
sex. LM 2015 Life Cycle of C.elegans and C.elegans anatomy by Ann K. Korsi, Bruce
Wightman, and Martin Chalfie, source and information [157]. The figure shows
image sections of the original. (a) A photo of an adult C.elegans individual. (b) A
schematic illustration of the worm’s physique. . . . . . . . . . . . . . . . . . . . . . . 135
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7.7 Neural structure of hermaphrodite C.elegans. (a) The neuronal network in a simplistic
3-layer illustration. The data set, published in [153] and online available [152],
comprises 283 nodes comprising 82 input neuron (red nodes, top layer), 93 inter
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node colouring. (c) The ‖ ·‖1-norms for the computed estimates of the model errors
for each new cluster C′1, . . . ,C′6. (d) The result of the error reconstruction for the active
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4.1 A compilation of networks from various fields, also examined by other authors ([77]).
Here N is the number of nodes and |E| the number of edges. The column SF indicates
whether the degree distribution shows a power law and if so, the power law exponent
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