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ABSTRACT

Cosmology is the science that aims to explain the Universe in its entirety. While the
standard cosmological model has had tremendous success in explaining independent
astrophysical observations, we still lack understanding of the very nature of its main
constituents, namely dark matter and dark energy. To better understand their
origin, we can map matter structures throughout the Universe and their evolution
using the distortion of light rays as they travel through the inhomogeneous Universe.
This approach is called weak gravitational lensing, and this thesis focusses on galaxy-
galaxy lensing (GGL), which directly reveals the relation of the visible ‘normal’
matter to underlying dark matter structures. Typically, GGL is measured in terms
of tangential shear, i.e., the distortion of the observed galaxy shapes with respect
to foreground galaxy positions.
Shear estimates from weak lensing surveys will soon enable us to determine cos-

mological parameters with sub-percent accuracy. The necessary analyses require
excellent control over detector systematics, a sound theoretical model, and capa-
ble numerical tools. Therefore, we first developed an open-source numerical tool
to extract GGL signals efficiently and then used it to pursue the following science
cases.
Weak lensing magnification describes the change of a galaxy’s observed flux. It

consequently changes the observed number density of galaxies on the sky, which in
return affects the observed tangential shear. In this thesis, we provide leading-order
analytical descriptions for the magnification effects. Further, we present numerical
methods to select samples of foreground (lens) and background (source) galaxies
that are unbiased by magnification. Currently, the combination of the three sur-
veys KiDS+VIKING+GAMA provides one of the best constraints on cosmological
parameters. We analysed the impact which neglecting magnification effects has on
such a survey and find that, for lens galaxies at redshift zd = 0.36 and source galax-
ies with mean redshift z̄s = 0.79, the shear profile is changed by 2% and the mass
of the lens is biased by 8%. We conclude, magnification effects by source and lens
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galaxies must be carefully taken into account even for ongoing surveys, while the
statistical power of future weak lensing surveys certainly warrants correction for this
effect.
The shear-ratio test (SRT) is a null-test that probes for systematics in galaxy

shape and redshift estimates simultaneously. It is a purely geometrical probe that
relies on shear and distance measurements for one foreground and two background
galaxy populations. In this thesis, we show that the test is heavily biased if weak
lensing magnification is not accounted for. The bias is stronger for increasing redshift
of lenses and therefore, affects future surveys more severely. Using simulations, we
find that an SRT with flux-limited lens galaxies at redshift zd = 0.8 deviates up to
9σ from zero. To retain the useful properties of the SRT, we provide a mitigation
strategy that solely relies on already present observational data. The mitigation
reduces the bias by a factor of ∼ 100 and, at the same time, reduces the total
uncertainties. This results in a deviation of typically <1σ.
Lastly, we explore the influence of baryon acoustic oscillations (BAO) in the GGL

signal. BAO are frozen-in density fluctuations in the large-scale structure that were
generated by sound waves in the early Universe. The detection of the BAO signal
as a function of redshift is an excellent probe for the time evolution of dark energy.
Upcoming surveys will enable us to constrain the BAO signal from GGL measure-
ments for the first time. In this thesis, the BAO signal is first modelled analytically.
Then, we aimed to compare the model to the signal estimated from weak lensing
simulations. However, various problems with the weak lensing simulations were dis-
covered that prohibit detecting BAO. Nonetheless, the analysis pipeline has been
set-up successfully and improved data catalogues can be analysed on the time-scale
of an hour.
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CHAPTER 1

INTRODUCTION

“Astronomy? Impossible to understand and madness to investigate.”
– Sophocles, 496-406 BC

The Universe is simple yet bizarre. It is simple because we only need six parameters
to describe and predict a multitude of astrophysical observations. These observations
cover a wide range of space and time. Within the framework of our standard model,
we understand the dynamics of stars in galaxies, and also the motion of galaxies
in galaxy clusters, the most massive bound structures in the Universe. The cosmic
microwave background (CMB) was emitted 380 000 years after the Big Bang, and
the six parameters of the standard model describe the CMB-data within 1 − 2%
uncertainty. The same model also provides an excellent fit to data from the local
Universe, more than 13 billion years later. We obtain the same parameters when
measuring the primordial composition of the interstellar gas, as well as observations
that follow the bending of light around mass. Yet, it is a strange Universe because
the standard model suggests that only 5% of the energy density in the Universe is
made up of atoms. Dark matter that does not interact with light fills 26% of our
Universe while dark energy, an energy associated with the empty space, contributes
69%. Neither of these two is understood; dark matter candidates escape any direct
detection in the laboratory, and dark energy even lacks insight into its physical
mechanisms.
Cosmology studies the Universe as a whole and its temporal evolution using our

best understanding of its physical laws and its composition. Starting with the
formulation of Einstein’s general relativity (GR), this field of science has been rapidly
advancing ever since. Technological breakthroughs gift us with an unprecedented
sharp view deep into the Universe. With dedicated surveys, astronomers all over
the world try to shed light on the nature of dark matter and dark energy. Wide-
field and deep imaging surveys for almost all wavelengths of the electromagnetic
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1. Introduction

spectrum have finished recently, are currently underway, or are planned for the near
future. With the next generation of surveys, we will map about ten billion galaxies
a few billion years back in time. Figure 1.1 illustrates the optical sky, populated
with thousands of galaxies in a field of view smaller than the angular diameter of the
moon. We see some of the galaxies as they looked when the Universe was a tenth of

Figure 1.1. – The left-hand side is the Hubble eXtreme Deep Field which reveals several
thousand galaxies in a field of view that is only a small fraction of the full moon’s angular
diameter. As of yet, it is the deepest image ever taken. It displays a sky that is densely
populated with galaxies of various colours and shapes. The image was taken by NASA’s
Hubble Space Telescope from Illingworth et al. (2013). On the right, a re-creation of such a
field by the Illustris simulation (Vogelsberger et al., 2014) is shown. The two sub-figures span
≈ 3 arcmin on each side.

its current age. Galaxies have colours ranging from blue to deep red and countless
different shapes, which has been dubbed the ‘galaxy zoo’1. Using information from
other wavebands, especially the infrared and X-ray wavelengths, reveals different
properties of the galaxies. For cosmology, we are most interested in the galaxies’
distances, measured in terms of redshifts, as well as their masses.
Planned ground-based surveys are the Large Synoptic Survey Telescope (LSST,

www.lsst.org) in the optical wavelength and the Square Kilometre Array Ob-
servatory Square Kilometre Array Observatory (SKA, www.skatelescope.org)
for the radio sky. Near-future space-based surveys encompass the Euclid satel-
lite (www.euclid-ec.org) in the optical and near-infrared wavebands, the James
Webb Space Telescope (JWST, www.jwst.nasa.gov) as well as the Wide-Field
Infrared Survey Telescope (WFIRST, wfirst.gsfc.nasa.gov) for the infrared
sky, and the Advanced Telescope for High Energy Astrophysics (Athena, www.

1Galaxy Zoo is also the name of a remarkable crowd-sourced astronomy project. It invites volun-
teers all over the world to help classify the morphology of galaxies in recent surveys, see also,
www.zooniverse.org/projects/zookeeper/galaxy-zoo/.
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the-athena-x-ray-observatory.eu) for the X-ray wavelengths. Wide-field sur-
veys that are currently collecting data are the Dark Energy Survey (DES, www.
darkenergysurvey.org) in the optical, the Hyper Surprime-Cam Subaru Strategic
Program (HSC SSP, hsc.mtk.nao.ac.jp/ssp/) for the optical and near-infrared
sky, and the extended Roentgen Survey with an Imaging Telescope Array (eROSITA,
www.mpe.mpg.de/eROSITA). Recently finished photometric surveys with not fully
analysed data sets are the Kilo Degree Survey (KiDS, kids.strw.leidenuniv.nl)
in the optical wavelength, and its partner survey the VISTA2 Kilo-Degree Infrared
Galaxy Survey (VIKING, casu.ast.cam.ac.uk/vistasp/viking). Surveys that
rely on spectroscopy rather than photometry are the extended Baryon Oscillation
Spectroscopic Survey (eBOSS, a component of the Sloan Digital Sky Survey – SDSS,
www.sdss.org/surveys/eboss/), and the Galaxy And Mass Assembly (GAMA,
www.gama-survey.org). This list of surveys, especially for the spectroscopic sur-
veys, is not exhaustive.
In this thesis, gravitational lensing is the tool of choice to study cosmology.

Lensing describes the distortion of light as it travels through the matter struc-
tures of the Universe. To tightly link observations to the underlying cosmological
model, we use simulations of the Universe. As an example, simulations can be
used to model the limitations of telescopes to observe the Universe. We can also
test the consequences of our limited understanding of the analytical framework.
The simulation that currently models our Universe best is the Illustris simulation
(www.illustris-project.org) which follows the structure evolution of ‘normal’
matter and dark matter from very early times to today. Figure 1.1 shows on the
one side Hubble’s eXtreme Deep Field and on the other side a mock image from
the Illustris simulation. The similarity is striking; unfortunately, the size of the
simulated cube is not yet big enough to study the whole visible Universe or even
its largest structures. Computationally less expensive are dark matter-only simu-
lations of which we make extensive use in this thesis. They are accompanied by
semi-analytical models for galaxy formation. While keeping the numerical accuracy
in mind, we confirm and expand our analytical understanding of the statistics of
matter structures in the Universe. Ultimately, this brings us a step closer to refine
our standard cosmological model or even detect deviations from it.
In the following, I introduce a self-developed numerical tool to efficiently anal-

yse two-point correlation functions which are used to study lensing magnification
in-depth. Magnification or de-magnification of the incoming flux is a direct con-
sequence of the distortion of light bundles as they travel through the Universe.
However, in contrast to the change in the galaxy’s apparent shape, magnification
effects are less understood and more challenging to measure. If effects from lensing
magnification are ignored, the inferred cosmological parameters are bound to be bi-
ased. By providing analytical insights and numerical tools, that are made publicly

2Visible and Infrared Survey Telescope for Astronomy
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1. Introduction

available, I hope to improve analysis pipelines, especially for the upcoming surveys.
The same numerical tool is then used to study the clustering signal from baryon
acoustic oscillations (BAO). BAO are frozen-in density waves that are imprinted on
the CMB as well as on the distribution of matter in the local Universe approximately
13 billions years later. As of yet, they have not been detected in galaxy-shear cor-
relation functions, which are generally referred to as galaxy-galaxy lensing (GGL).
By using mock data from simulations, I try to give first insights into the detection
significance for planned surveys.
The outline of the thesis is as follows. In Chapter 2, we briefly review the most

critical aspects of the cosmological framework. We introduce the theoretical foun-
dations of the standard model of our Universe and its predictions. The focus lies on
the large-scale structure (LSS) of the Universe and its statistical properties. Chap-
ter 3 introduces weak gravitational lensing as a tool to observationally study the
LSS and its temporal evolution. After a general introduction, we focus on GGL,
which correlates the position of galaxies to distortions of the shape from background
galaxies. Chapter 4 focuses on the numerical aspects of this thesis. Simulations of
matter structures in the Universe and weak lensing simulations are introduced. This
is followed by a detailed account of a code developed for this work to extract shear
profiles in the era of large data sets. The code is then used to study the effects of
magnification in weak gravitational lensing in Chapter 5 and 6. Chapter 5 focuses
on magnification bias in the shear-ratio test (SRT) and its mitigation strategies. In
Chapter 6 magnification effects are discussed in general, using analytical approxi-
mations and numerical methods. Chapter 7 looks at BAO and their footprint in
simulated weak lensing data. Lastly, we conclude with a summary in Chapter 8.
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CHAPTER 2

COSMOLOGICAL FRAMEWORK

Humankind has always tried to describe and explain the world we
live in. In the last two centuries technology advanced rapidly. We
now have a multitude of observations at our disposal to understand
the nature of the Universe. The concurrent development of scien-
tific theories opened up the possibility to also explain these obser-
vations. Together, they led to the concordance or standard model
of cosmology, that is referred to as the Λ cold dark matter model
(ΛCDM).

The ΛCDM model is based on Einstein’s well-tested GR and the observationally
motivated cosmological principle. This principle states that our Universe is homo-
geneous and isotropic. The well-disposed reader might notice that we live in a rather
inhomogeneous environment and, indeed, the average density of a human being is
roughly 1031-times the average density of the Universe. Cosmology, however, tries
to explain the origin and the evolution of the Universe as a whole and is valid on
large scales, i.e. scales that are much larger than the size of our galaxy, but still are
much smaller than the size of the observable Universe. Nowadays, tensions between
cosmological observation and theory exist only on a minor level and extensions to
the standard theory of gravity and the cosmological principle are currently investi-
gated. However, this thesis mainly focuses on the conventional framework of ΛCDM
cosmology.
In the following, I motivate the several concepts of cosmological distances that are

rather different from the well-known Euclidean space. I then explain how we expect
structures in the Universe to grow depending on its constituents. For an extensive
and thorough theoretical treatment the reader is referred to Peebles (1993), Dodelson
(2003), and Schneider (2015).
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2. Cosmological framework

2.1. Distance measures in cosmology
In contrast to our daily life, measuring distances in cosmology is by no means trivial.
In an expanding Universe with a curved spacetime, the separation between two
objects is constantly changing. Moreover, as we observe the distant Universe, we
look back in time. This section provides a description of homogeneous world models
and their cosmological distances.

2.1.1. Robertson-Walker metric
Since the Universe as a whole is neutral, the only fundamental force that acts on
cosmological scales is gravity. In 1916, Albert Einstein formulated the theory of
GR, which successfully describes gravity. In GR, space and time are expressed as a
four-dimensional manifold which is shaped by its matter and energy content. This
is described by Einstein’s field equation

Gµν = −8πG
c4 Tµν − Λgµν , (2.1)

that relates the geometry of the Universe to its energy content. The former is
expressed by the Einstein tensor Gµν and the latter by stress-energy tensor Tµν , the
cosmological constant Λ, and the metric tensor gµν . The Greek indices run over the
four components ‘0’ for time and ‘1, 2, 3’ for space. Finally, G is the gravitational
constant and c the speed of light in vacuum.
We can solve Eq. (2.1) if the cosmological principle holds. This principle is strongly

supported by observations of the homogeneous and isotropic CMB (Planck Collab-
oration et al., 2018b) and the distribution of galaxies (Blanton et al., 2017). In
the framework of GR, we assume the existence of fundamental observers whom all
experience the same history of the Universe and observe the Universe’s properties
as being isotropic. In this special case, Howard P. Robertson and Arthur G. Walker
showed independently that a rather simple solution of Einstein’s field equations
exists (Robertson, 1935; Walker, 1937),

ds2 = c2dt2 − a2(t)
[
dχ2 + f 2

K(χ)(dθ2 + sin2 θ dϕ2)
]
, (2.2)

where t is the cosmic time, a(t) the scale factor, χ the radial comoving coordinate,
and θ and ϕ are the angular coordinates on a unit sphere. fK(χ) is the comoving
transverse distance which is a function of the Universe’s curvature K

fK(χ) =


K−1/2 sin[K1/2χ] for K > 0 ,
χ for K = 0 ,
(−K)−1/2 sinh[(−K)1/2χ] for K < 0 .

(2.3)

Observers on constant comoving coordinates (χ, θ, ϕ) are called comoving observers
and coincide in the Robertson-Walker metric with fundamental observers.

6



2.1. Distance measures in cosmology

A cosmological model that is based on the Robertson-Walker metric forms either
an expanding or contracting spacetime. Vesto Slipher was the first person to obtain
observational evidence that we live in an expanding Universe; he found that most
galaxies show a spectrum shifted to lower photon energies. Subsequently, Edwin
Hubble interpreted this ‘redshifting’ as a receding motion from us. In general,
in a homogeneously expanding (or contracting) sphere with uniformly distributed
density ρ(t), a particle is chosen to be at spatial position x at initial time t0 and is
at position

r(t) = a(t)x , (2.4)

at time t. The scale factor is conveniently chosen as a(t0) = a0 = 1 today and x
is the time-independent comoving coordinate. Hence, the world-line (r, t) of any
comoving particle is completely characterised by (x, a(t)). In other words, if we
determine the behaviour of the scale factor with time, we understand the dynamics
of the Universe.

2.1.2. The Friedmann equations
When inserting the metric tensor (2.2) into Einstein’s field equations (2.1), the
resulting stress-energy tensor Tµν represents a perfect fluid with density ρ(t) and
pressure p(t). The field equations reduce to two differential equations, the so-called
Friedmann equations, that describe the dynamics of the scale factor(

ȧ

a

)2
= 8πG

3 ρ− Kc2

a2 +Λ c2

3 , (2.5)

ä

a
= −4πG

3

(
ρ+ 3p

c2

)
+Λ c2

3 . (2.6)

The cosmological constant Λ, as introduced by Einstein, can also be written as the
vacuum or dark energy density ρΛ = Λc2/(8πG) with negative pressure pΛ = −ρΛc

2.
When the two Friedmann equations are combined, we obtain the cosmological equiv-
alent of the first law of thermodynamics. The adiabatic equation reads

d(a3ρc2)
dt = −pda3

dt . (2.7)

It states that the temporal change of energy ρc2 contained in a comoving volume is
equal to the expansion/contraction work in this volume.
To understand the time evolution of the scale factor, we still need a relation

between energy density and pressure, which we call the equation-of-state (EOS). In
general, the EOS is

p

ρc2 = w , (2.8)
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2. Cosmological framework

where all components can be time-dependent in principle. Inserting the equation
above into Eq. (2.7) yields for any component ‘x’ of the Universe

ρx(a) = ρx,0 exp
[
−3

∫ a

1
da′1 + wx(a′)

a′

]
. (2.9)

The three main components of the Universe and their EOS parameter are

matter: wm = 0 99K ρm ∝ a−3 ,

radiation: wr = 1/3 99K ρr ∝ a−4 , (2.10)
dark energy: wΛ = −1 99K ρΛ = const ,

where the dependence of the scale factor on time is obtained by solving the first
Friedmann equation (2.5). Since all components scale differently with scale factor,
the energy density of matter, radiation and dark energy dominate the Universe
energy budget at different times. The constituents of the Universe are introduced
more thoroughly in Sect. 2.2.
To express the first Friedmann equation in a form that gives us a more intuitive

insight into the expansion history of the Universe, it is useful to introduce the Hubble
parameter H(a). The parameter H(a) describes the expansion rate of the Universe
and is defined as H(a) = ȧ/a; the relation between scale factor and cosmic time is
then expressed as

t(a) =
∫ a

0

da′
a′H(a′) . (2.11)

The Hubble parameter that we measure today in the local Universe is usually
referred to as the Hubble constant H0, which is one of the fundamental pa-
rameters of cosmology and, therefore, a quantity of great interest. Historically,
it was (and is still) useful to parametrise our ignorance of the true value with
H0 = 100h km/s/Mpc. An accurate estimate of H0 is difficult to obtain and our
current best estimates indicate h ≈ 0.7 (Wong et al., 2019; Hotokezaka et al., 2019;
Domínguez et al., 2019; Riess et al., 2019; Ryan et al., 2019; Macaulay et al., 2019;
Planck Collaboration et al., 2018b), where all the references cited make use of a
different branch of astronomy, namely: strong gravitational lensing, gravitational
waves, gamma-ray attenuation, cosmological distance ladder, BAO, Supernova Type
Ia, and the CMB.
Using the Hubble parameter and (2.5), we can calculate the expression for the

current density of a flat Universe. This quantity is called the critical density and
reads ρcrit = 3H2

0/(8πG). We can use it to rewrite the first Friedmann equation to(
H(a)
H0

)2

=
(
ȧ

a

)2
= Ωr,0

a4 + Ωm,0

a3 + 1− Ω0,0

a2 + ΩΛ,0 . (2.12)
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2.1. Distance measures in cosmology

Here, we introduced today’s unitless density parameter Ωx,0 = ρx,0/ρcrit,0.
If not noted otherwise, the density parameters are all set to the current
epoch without the explicit ‘0’-index. The total energy density parameter
Ω0 is defined as Ω0 = −Kc2/H2

0 = Ωr + Ωm + ΩΛ. Then, the history of cosmic ex-
pansion (2.12) is fully determined by H0 and the density parameters Ω today.

2.1.3. The concept of distance
In Euclidean space it is, with sufficient information, possible to obtain a unique
distance. Along a backward light cone in a curved spacetime, however, we have to
define carefully what type of distance we are investigating. Commonly used dis-
tances relate the diameter of an object to its apparent angle on the sky or compare
the flux of an object with intrinsic luminosity. Alternatively, the distance can char-
acterise the photon’s light travel-time. In general, two distance measures differ in
a curved, non-steady spacetime. In an expanding or contracting universe distances
also constantly change over time. Hence, it is quite appealing to define a comoving
distance independent of the expansion.

Comoving distance along the line-of-sight

The (radial) comoving distance of two objects without peculiar velocities is a central
quantity in cosmological investigations which can be related to all other distance
measures. A photon heading towards an observer follows a null geodesic, i.e. ds2 = 0.
Hence, for a radial light ray with dθ = dϕ = 0, Eq. (2.2) reduces to

cdt = −a(t)dχ , (2.13)

and we observe photons from a source at time t today at comoving distance

χ(t) =
∫ t0

t

c dt′
a(t′) =

∫ a(t0)

a(t)

c da
a2H(a) , (2.14)

where in the second equality we have inserted the definition of the Hubble param-
eter and, therefore, highlighted the dependence of the comoving distance on the
cosmological parameters. The largest comoving distance that allows two comoving
observers to have been in causal contact is called the horizon today and obtained in
the limit of a→ 0.

Cosmological redshift

An effect of the expanding Universe is that photons constantly lose energy as they
travel to us, this phenomenon is called redshift. Redshift is defined as

1 + z = λobs

λem
= 1
a
, (2.15)

9



2. Cosmological framework

where λobs is the observed wavelength and λem the wavelength emitted in the galaxy’s
rest-frame. Locally, redshift can be interpreted as the source’s recession velocity v
using the Hubble Law

v = H0D = cz , (2.16)

where the source is located at distance D.
Making use of the definition of redshift, Eq. (2.14) is rewritten as

χ(z1, z2) =
∫ z2

z1

c dz′
H(z′) , (2.17)

which is generally known as the distance-redshift relation. This relation allows us to
infer cosmological parameters if we are able to obtain the redshift and the comoving
distance independently from each other.

Comoving separation in the transverse direction

The transverse comoving distance fK(χ) as defined in (2.3). Then the comoving
separation of two comoving objects at the same redshift and observed under an
angle ∆θ is R = fK(χ) ∆θ, where we made use of the small-angle approximation.

Angular diameter distance

The angular diameter distance relates the physical transverse size d of an object to
its observed angular size θ on the sky. Thus, it is closely related to the transverse
comoving distance fK(χ) by

Dang(a) = afK(χ) = d

θ
. (2.18)

It is also noteworthy that the angular diameter distance is not a monotonously
increasing function with redshift, but it shows a maximum value at z ≈ 1.7 or
equivalently a ≈ 0.4 for our Universe. Thus, objects with the same physical size
appear larger at a = 0.3 than those nearer to us at a = 0.4.
In general, the transverse comoving and the angular diameter distance do not

follow an additive relation for two objects at redshifts z1 and z2, e.g., Dang(z1, z2) =
a(z2) fK [χ(z1, z2)] 6= Dang(z2) − Dang(z1). Only in the case of vanishing curvature
follows the transverse comoving distance such a relation. However, in the limit of
small distances, the additive relation can be used as a good approximation.

Luminosity distance

An isotropic light source with bolometric luminosity L is observed with a bolometric
flux S that decreases with the inverse square of its distance. So, we can define the
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2.2. The Universe’s composition

luminosity distance as

Dlum =
√

L

4πS . (2.19)

However, the Universe is expanding while photons travel to us, which additionally
dilutes the measured flux compared to what we would expect in a Euclidean met-
ric. Hence, luminosity and angular diameter distance are not the same in general.
Etherington’s reciprocity theorem (1933) states that for bolometric quantities the
distances obey the relation

a2Dlum = afK(χ) = Dang . (2.20)

In Fig. 2.1 the angular diameter distance, the luminosity distance, the comoving
distance, and the Hubble law are shown as a function of redshift.
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Figure 2.1. – Different cosmological distance measures are compared as a function of redshift
z. The distances are computed for a flat ΛCDM model with h = 0.7, Ωm = 0.3, and ΩΛ = 0.7;
for the naive Hubble law H(z) = H0 is assumed. In the local Universe, i.e. for z � 1,
all distance measures agree, for higher redshifts they diverge with Dang < χ < Dhubble <
Dlum. For very high redshifts, the luminosity distance diverges, while the comoving distance
converges towards the size of the observable Universe, and the angular diameter distance
decreases after a maximum at z ≈ 1.7.

2.2. The Universe’s composition
According to the Friedmann equations, the content of the Universe governs its expan-
sion history. Major effort has been done to develop tools to measure the properties
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2. Cosmological framework

of the Universe’s constituents and infer the corresponding cosmology. Identifying
particles that govern the mass-energy budget of the Universe has not been completed
yet. In the following, a summary is given, what we do know about the constituents
of the Universe, what we assume to be true, and what we still have to figure out.

2.2.1. Baryonic matter
We start our account with the matter component that we have studied for the longest
time. Baryons include neutrons, protons, and the atoms they form. To the dismay
of particle physicists, cosmologists also include the leptonic electrons and muons to
the baryonic content1. By electromagnetic interaction mediated through photons,
they form all the luminous matter in the Universe. Observations from the CMB
indicate that today’s unitless baryon density parameter is Ωb = 0.0489 ± 0.0003
(Planck Collaboration et al., 2018b).
All the stars and galaxies that we see with our telescopes only make up approxi-

mately 10% (Fukugita and Peebles, 2004) of the baryonic matter and therefore only
≈ 0.5% of the total energy budget of the Universe. Further 50− 60% of the bary-
onic matter is detected as cold clouds of gas between galaxies, which leave 30−40%
of the baryons unaccounted for. The missing baryons are postulated to reside as a
diffuse warm-hot gas that is bound to galaxy groups but never collapsed to form a
galaxy. Postulated temperatures are 105 − 106 K with corresponding peak emission
in the far-ultraviolet and soft-X-ray radiation. This makes the warm baryonic gas
very hard to detect since the interstellar medium in our galaxy is opaque for these
wavelengths. Last year, several groups (Nicastro et al., 2018; Tanimura et al., 2019;
de Graaff et al., 2019) found the first observational evidence of the existence of a
diffuse warm-hot gas between galaxies with just the right amount to solve the miss-
ing baryon problem. Follow-up observations using quasars as well as the so-called
thermal Sunyaev-Zel’dovich effect are currently in progress.

2.2.2. Dark matter
In 1937, Fritz Zwicky compared the dynamical mass of the Coma galaxy cluster
to the mass expected from its luminosity and concluded the dominant amount of
matter in the cluster must be non-luminous or ‘dark’. Today, observations of galac-
tic dynamics, CMB, primordial nucleosynthesis, X-ray gas analysis, and masses
from gravitational lensing confirm the existence of dark matter on all scales out
to the highest observable redshifts (for a review see, e.g., Freese, 2009). Dark
matter behaves, like baryonic matter, as a pressureless fluid with an EOS param-
eter of w = 0, but is roughly five times more abundant than baryonic matter,

1to not only offend one branch of science, they commonly refer to any atom that is heavier than
Helium as a metal.
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i.e. Ωm = Ωb + Ωdm = 0.3111± 0.0056 (Planck Collaboration et al., 2018b). Follow-
ing the Friedmann equations (2.12), matter becomes the dominant energy source in
the Universe at redshift zeq ≈ 3400, i.e. approximately 50 000 years after the big
bang. Since a redshift of z ≈ 0.3 or roughly 3.5 Gyr ago, dark energy governs the
energy content in the Universe. Hence, matter and particularly dark matter gov-
erns most of the structure formation in the Universe. Its influence on the structure
formation is determined by the weight of the dark matter particles. Light particles,
referred to as hot dark matter, are free-streaming, which means all small-scale per-
turbations are erased, and the largest structures form first. On the other hand, a
cold dark matter scenario of massive dark matter particles lets small structures, like
galaxies, form first and large structures, like galaxy clusters, only emerge later. This
is called a bottom-up or hierarchical scenario. A mix from dominantly cold and a
small fraction of hot dark matter agrees well with observations of our Universe.
While the existence of cold dark matter is observationally strongly favoured and

therefore widely accepted, we have not yet identified its physical origin. Astro-
physical candidates like brown dwarfs or primordial black holes are referred to as
massive compact halo objects (MACHOs) and have been excluded by microlensing
studies. At most, they account for a small fraction of the total amount of dark
matter (Alcock et al., 2000; Niikura et al., 2019). There exist many, many specu-
lative possibilities on the nature of dark matter particles. Nowadays, dark matter
is widely believed to be a massive particle that interacts weakly (WIMP). Bertone
et al. (2005) gives an overview of possible particle candidates; examples for possible
candidates are the neutralino, the least massive particle predicted by supersym-
metry theories, thermal relics from the big bang, or the very massive WIMPzillas.
X-ray and gamma-ray surveys are currently conducted to measure a possible spec-
tral signature of dark matter self-annihilation, while several long-term experiments
aim for direct detection of these elusive particles. Using high-energy proton-proton
collisions, the High-Luminosity Large Hadron Collider (HL-LHC) will attempt to
generate dark matter particles by 2026. Besides, with underground experiments,
that are shielded from the ambient nuclear radiation as well as cosmic rays, several
groups try to observe rare collisions of dark matter particles with regular atoms,
where the reader is referred to Schumann (2019) for an extensive overview of direct
detection experiments.

2.2.3. Radiation

Radiation includes all particles with zero rest mass as well as massive particles
at relativistic energies; it is described as a pressurised fluid with w = 1/3. As
the Universe keeps cooling, the number of relativistic particle species declines and
radiation only dominates the energy content of the Universe for redshifts z > zeq.
Today’s best estimate is Ωr ≈ 10−5 (Planck Collaboration et al., 2018b). Photons
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dominate the radiation energy density, but also, depending on their rest mass, the
lightest neutrino family might still be relativistic in the current epoch.
Neutrinos are produced in the early Universe in large quantities and they form a

homogeneous and isotropic neutrino background with an average temperature that
is slightly lower than the one of the CMB photons. The Planck Collaboration et al.
(2018b) estimates the number of neutrino families to be Neff = 3.0± 0.3, consistent
with predictions from the standard model of particle physics. As an extension to
the standard model, observations of neutrino oscillations require the neutrinos to
have a small, but non-zero rest mass (Fukuda et al., 1998; Ahmad et al., 2001),
which actually makes neutrinos the only proven-to-exist dark, weakly interacting,
and massive particles. Since neutrinos form hot dark matter, they cannot account
for the structure evolution in the Universe that we observe. However, they at least
pose a fraction of dark matter and must be included in theoretical and numerical
considerations. The exact contribution cannot be quantified yet since the individual
neutrino masses are not known. However, neutrino oscillation experiments (Capozzi
et al., 2017) and cosmological observations (Planck Collaboration et al., 2018b)
constrain the sum of the neutrino masses to be 0.06 eV < Σmν < 0.12 eV; oscillation
experiments further give precise constraints to the mixing angles and squared mass
differences with ambiguity on the sign (Gerbino and Lattanzi, 2017). In the current
epoch, at least two neutrino families are non-relativistic.

2.2.4. Dark energy
The cosmic expansion is accelerated. This observation was independently made in
1998 by Adam Riess et al. and in 1999 by Saul Perlmutter et al. They investigated
the cosmic expansion history by analysing the distance-redshift relation of Super-
novae Type Ia and found that the Universe’s expansion is not decelerating as would
be expected from a Universe that is filled with matter and radiation. The term
‘dark energy’ was invented to denote a mysterious and unknown constituent of the
Universe. Dark energy dominates the total energy content of the Universe in the
current epoch with ΩΛ = 0.6889± 0.0056 (Planck Collaboration et al., 2018b).
According to the second Friedmann equation (2.6), an accelerated Universe with

ä > 0 is only possible if the dominating energy component has negative pressure,
which implies w < −1/3. In the special case of an EOS parameter of w = −1, the
energy density ρΛ is constant in time (although ΩΛ is still a function of time through
the definition of the critical energy density) and can be related to the cosmological
constant Λ as seen in the Friedmann equations (2.5) and (2.6). In this case, today’s
value of the cosmological constant is ΩΛ = Λc2/3H2

0 . A ΛCDM Universe implies
that dark energy is indeed consistent with the cosmological constant and a wide
range of cosmological observations support this assumption (see Fig. 2.2’s upper
panel). The best current estimate is w = −1.01±0.06 (Alam et al., 2017). The true
EOS parameter of dark energy is one of the main science drivers for several planned
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experiments like the Large Synoptic Survey Telescope (LSST) and Euclid. These
experiments will also unveil the time dependence of the EOS parameter, which is
usually parametrised as

w(a) = w0 + wa (1− a) +O(a2) , (2.21)

with w0 = −1 and wa = 0 for a cosmological constant. Recent results can be seen in
the lower panel of Fig. 2.2. While w0 and wa are likely to be determined soon, the
physical mechanism behind the acceleration remains a mystery. It may even pose
the biggest outstanding problem in physics today, and the reader is kindly referred
to a review of Huterer and Shafer (2018) for the current state of the art.

2.2.5. Total energy budget
The total energy density parameter Ω0 is the sum of all energy densities and it relates
to the Universe’s curvature K. Summing up the contributions of all the components
mentioned above leads to Ω0 ≈ 1 or more exact 1− Ω0 = 0.0007± 0.0019 (Planck
Collaboration et al., 2018b). Thus, the Universe is flat, and since it can be shown
that the sign of K is preserved in cosmic evolution, a flat Universe has always been
and will always remain flat. It has an average density that coincides with its critical
density, which is ρ̄(t0) = ρcrit(t0) = 8.6×10−27 kg/m3 or approximately ten hydrogen
atoms per cubic meter.
Since the Universe is flat, the term proportional to 1 − Ω0 vanishes in the first

Friedmann equation (2.12). This fact and the negligible contribution of the radiation
energy density Ωr makes it reasonable to define the cosmic evolution function

E2(z) = Ωm(1 + z)3 + ΩΛ . (2.22)

The first Friedmann equation is thus sometimes written as H(z) = H0E(z) and in
this limit, the cosmic expansion in the flat ΛCDM model is fully determined by the
three parameters H0,Ωm, and ΩΛ.

2.3. Structures in the Universe
Fortunately, the Universe is not homogeneous at all scales. Scales below 200h−1Mpc
comoving show rich structure, which has been revealed by observations (Sloan Dig-
ital Sky Survey (SDSS), Blanton et al., 2017). Great effort has been made to un-
derstand the structure formation in the Universe theoretically and numerically. Ob-
servations of the CMB (Planck Collaboration et al., 2018b) reveal a very smoothly
distributed matter at redshift z = 1100, where deviations from the average density
are of the order 10−5. Starting from these tiny fluctuations in the earliest phases
of the Universe, structures gravitationally collapsed, then baryonic and dark mat-
ter created the first galaxies and eventually the Earth with its inhabitants. The

15



2. Cosmological framework

Figure 2.2. – Shown are observational constraints in the Ωm − w parameter space for a
dark energy parameter that is constant in time (upper panel). Constraints on w0 and wa
for time-dependent dark energy are shown in the lower panel. The data are provided by
Supernova Type Ia observations (SN Ia by Joint Light-curve Analysis, Betoule et al., 2014, in
blue), observations of BAO (by Baryon Oscillation Spectroscopic Survey – BOSS, Alam et al.,
2017, in green) and CMB observations (by the Planck survey, Planck Collaboration et al.,
2016, in red). Contours indicate model likelihoods of 68.3%, 95.4%, and 99.7%. The three
surveys probe different underlying physical concepts, and they also probe a wide range in
redshift. Thus, it is even more amazing how well all constraints coincide, forming the ΛCDM
concordance model. Both figures are adopted from Huterer and Shafer (2018).

16



2.3. Structures in the Universe

time scale on which the structure formation happens is heavily influenced by the
amount of relativistic and non-relativistic particles and the amount of dark energy
in the Universe. In the following, the theoretical basis of structure formation in the
Universe is outlined.

2.3.1. An analytic approach to density fluctuations
When the Robertson-Walker metric (2.2) is inserted into Einstein’s field equations
(2.1), the energy-momentum tensor takes the form of a perfect fluid. As long as
matter is dominating the energy content in the Universe, we can focus our analytical
treatment on a pressureless fluid. As a further simplification, we apply a Newtonian
description of gravity instead of GR. Since in the limit of small scales GR is consistent
with Newton’s law, we can hope that for scales much smaller than the horizon at
any given epoch, a Newtonian description is sufficient. In this framework, we can
write the fluid equations for vanishing pressure as follows

∂ρ

∂t
+∇r · (ρu) = 0 , (2.23)

∂u

∂t
+ (u · ∇r)u = −∇rφ , (2.24)

∇2
rφ = 4πGρ− Λ , (2.25)

where u is the velocity field of the fluid and φ the gravitational potential. Equa-
tion (2.23) is called the continuity equation and describes matter conservation. The
Euler equation (2.24) expresses the motion of the fluid in the presence of the con-
servation of momentum; it describes the change of the fluid velocity as measured by
an observer that follows the flow and it is solely influenced by the derivative of the
gravitational potential. The third equation (2.25) is the modified Poisson equation
with an additional term that allows for the presence of a cosmological constant.
A valid solution to this set of equations is a homogeneous and isotropic Universe.

The solution agrees with the Friedmann equations in the absence of pressure. We
now define the density contrast as relative deviations from the mean density of the
Universe δ(r, t) = [ρ(r, t) − ρ̄(t)]/ρ̄(t), where ρ̄ denotes the mean density of the
Universe. To go beyond the trivial solution, we now consider small perturbations in
δ and non-vanishing peculiar velocities v = u− ȧ/a r. We further convert the fluid
equations to comoving coordinates and expand to first order in density contrast and
peculiar velocity. The resulting set of equations is

∂δ

∂t
+ 1
a
∇x · v = 0 , (2.26)

∂v

∂t
+ ȧ

a
v = −1

a
∇xΦ , (2.27)

∇2
xΦ = 3H2

0 Ωm

2a δ , (2.28)
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where Φ(x, t) = φ(ax, t) + äa/2 |x|2 is the comoving gravitational potential. Equa-
tions (2.26) to (2.28) show no explicit dependence on the cosmological constant Λ or
in other words, a uniform energy background field does not influence the formation
of structure directly. However, as was shown in Sect. 2.1.2, the evolution of the scale
factor depends on Λ and therefore, it indirectly affects the time scales on which the
density contrast changes.
If we combine the linearised continuity, Euler, and Poisson equation, we obtain

a linear homogeneous, second-order differential equation independent of v that de-
scribes the temporal evolution of the density contrast

δ̈ + 2ȧ
a
δ̇ − 3H2

0 Ωm

2a3 δ = 0 . (2.29)

The density contrast is still a function of space x and time t, but neither does x
appear explicitly nor does (2.29) contain a derivative with respect to x. Thus, we
can conveniently factorise the solution to

δ(x, t) = D+(t)∆+(x) +D−(t)∆−(x) , (2.30)

where D+ and D− are two linearly independent solutions that satisfy (2.29) and
∆+,− are comoving density fluctuation fields. As a general property, D+ is growing
with scale factor a, while D− is decaying and, therefore, D− is irrelevant for the
structure formation of the current Universe. Hence, we can reduce the solution to

δ(x, a) = D+(a)δ(x, a0) . (2.31)

D+ is also known as the growth factor and can be computed explicitly for different
cosmologies. It is normalised to D+(a0) = 1.

2.3.2. Density fluctuations and transfer function
Without showing the explicit derivations, we discuss linear structure formation for
scales much larger than the horizon scale and also expand the discussion to the early
Universe when radiation dominated its energy content.

Radiation-dominated phase

The considerations that led to Eq. (2.29) are only valid in the matter-dominated
Universe. Since in the radiation-dominated phase the expansion rate of the Universe
is different, the ‘friction’ term ȧ/a in (2.29) changes. Using the first Friedmann
equation with negligible curvature and dark energy density, we find for the friction
term (

ȧ

a

)2
= 8πG

3
(
ρr + ρm

)
. (2.32)
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Inserting this leads to a new homogeneous second-order differential equation that
depends solely on the ratio of the energy densities ρm/ρr. The solution of this equa-
tion is δ ∼ const for the radiation-dominated era and recovers δ ∝ a in the matter-
dominated era. Hence, matter density perturbations in the radiation-dominated
phase do not grow.

Super-horizon perturbations

Studying the growth of super-horizon perturbations is crucial since we can always
find a time where a perturbation of a given scale is still super-horizon. As men-
tioned before, we need to apply the framework of GR to investigate super-horizon
perturbations. As a rough outline, one makes use of the decoupled spatial and tem-
poral dependence of the density fluctuations and considers a homogeneous spherical
perturbation. The spherical perturbation follows the same expansion equation as a
homogeneous Universe. It can be shown that super-horizon perturbations still grow
in the matter-dominated and radiation-dominated phase with δ ∝ a and δ ∝ a2,
respectively.

Transfer function

The transfer function accounts for deviations in the structure growth for the different
phases and scales in the Universe. Since the horizon scale grows proportional to the
scale factor, any perturbation on a certain scale is super-horizon at some time. The
density contrast in super-horizon perturbations grows proportional to a2 during the
radiation-dominated phase. If the perturbation enters the horizon in this phase,
i.e. the horizon scale becomes bigger than the fixed perturbation scale, its growth
stops and only resumes growing ∝ a when matter dominates the energy content of
the Universe. Any perturbation that enters the horizon in the matter-dominated
phase does not experience a stop of growth. The transition between a Universe
that is dominated by radiation and a Universe dominated by matter is marked by
zeq = Ωm/Ωr − 1 = 3387± 21 (Planck Collaboration et al., 2018b). Thus, small-
scale perturbations are suppressed compared to large-scale ones up to zeq.
The difference in growth is quantified in the transfer function Tk, which is defined

with respect to an early epoch ai where all perturbations of interest are well above
the horizon scale. We now consider wavenumbers k = 2π/λ, where λ is the comoving
wavelength of a perturbation, and choose a wavenumber ks that enters the horizon
during the matter-dominated phase. Then, we can compare all density fluctuations
to a non-suppressed one

δ(k, a = 1)
δ(ks, a = 1) = Tk

δ(k, a = ai)
δ(ks, a = ai)

. (2.33)

The exact form of Tk also depends on the amount of massive particles, that erase
their own density perturbations by free-streaming. For a cold dark matter only
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Universe that contains no baryons, the transfer function has the following form
(Bardeen et al., 1986)

T (q) = ln(1 + 2.34q)
2.34q

[
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4

]−1/4
, (2.34)

where q = kMpc/(Ωmh
2). This function approaches unity in the limit of very large

scales and is ∝ k−2 for scales much smaller than the horizon.

Baryons

In the derivations so far, we implicitly assumed that matter only interacts gravita-
tionally. This assumption is justified since dark matter is five times more abundant
in the Universe than baryonic matter and, therefore, dominates the structure for-
mation process. However, due to the electromagnetic interaction of photons and
baryons, the history of baryonic perturbation growth is quite different from that of
dark matter.
The early Universe was extremely hot and has been cooling down ever since.

Due to the high temperatures, electrons were not confined in neutral atoms until
the phase of recombination, which happened roughly 380 000 years after the big
bang. Before recombination, photons and electrons were tightly coupled via Thom-
son scattering, while Coulomb scattering coupled electrons and baryons. Solving
the fluid equations for this baryon-photon fluid shows that its perturbations are
oscillating. The gravity of the dominating dark matter causes the baryons to fall
into their potential well, while the photon’s pressure drives the baryons outward
again, which results in an oscillating motion, the so-called baryon acoustic oscilla-
tions. The largest distance an acoustic density wave could travel until the time of
recombination was 150 Mpc comoving. Shortly after recombination, atoms become
neutral, the pressure of the photon-baryon fluid drops to zero and the acoustic den-
sity waves freeze out. Driven by gravity, most baryons quickly fall into the already
formed potential wells of dark matter halos. Later, both matter components keep
growing at the same rate.
The remnants of the density waves can still be observed today in the LSS (Ross

et al., 2017). Observing the angular BAO scale as a function of redshift is a major
science goal of upcoming surveys. The angular BAO scale is related to the comoving
scale by the distance-redshift relation (2.17). Using the condition that the resulting
distance must match the comoving scale at recombination, cosmological parameters
can be inferred. Therefore, BAO are known as the Universe’s standard ruler.
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2.4. A statistical description of the Universe
2.4.1. Two-point statistics and power spectra
In the following, we introduce some mathematical tools that allow us to describe
the density field of the Universe statistically.

Correlation function

The homogeneous and isotropic density field has the two-point correlation function

ξ(|x− x′|) = 〈δ(x)δ∗(x′)〉 , (2.35)

where the asterisk ∗ denotes the complex conjugate and 〈...〉 an ensemble average.
The ensemble average is, due to the lack of an ensemble of universes, replaced by a
volume average of well-separated patches on the sky. The restriction to one of all
possible observable universes leads to the so-called cosmic variance, an uncertainty
in measurements that is especially present on large scales. Finally, homogeneity is
ensured by only including the separation x − x′ of two points and isotropy follows
from not depending on the direction of the separation vector |x− x′|.

Power spectrum

In many occasions, it is useful to quantify the density fluctuations in Fourier repre-
sentation

δ(x, t) =
∫
R3

dk
(2π)3 δ̃(k, t)e

ik·x . (2.36)

A Fourier transform of (2.31) shows that the different Fourier modes δ̃ evolve mu-
tually independently from each other. Of course, this conclusion is limited to the
linear regime and mode coupling is an important effect at small scales. The ensemble
average can be written as

〈δ̃(k)δ̃∗(k′)〉 = (2π)3δD(k − k′)P (|k|) , (2.37)

with δD being the three-dimensional Dirac delta functional and P the Fourier trans-
form of the correlation function

P (|k|) =
∫
R3

d3y ξ(|y|)e−iy·k . (2.38)

Gaussian random fields

Theories, that involve inflation as a phase in the very early Universe, suggest that
the primordial density field is a realization of a Gaussian random field. A random
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field is characterised by a probability distribution for the occurrence of a specific
random realization and can be described using ensemble or volume averages. Let
δ̃(k, t) be the Fourier transform of the random field δ(x, t). If we discretise Eq. (2.36)
for a finite volume L3 and a fixed time t in the following way

δ(x) ≈
∑
k

δ̃(k)
L3 e−ix·k :=

∑
k

δke−ix·k , (2.39)

then, a Gaussian random field has the following properties: (i) The Fourier com-
ponents δk are mutually statistically independent. (ii) The probability density of a
particular δk is a Gaussian, which follows from the first property through the central
limit theorem. (iii) It can be shown from the first two properties that any Gaus-
sian random field is fully characterised by its two-point correlation function or its
power spectrum. So far, there is no observational evidence that higher-order spectra
are necessary to describe the data. A so-called primordial non-Gaussianity would
indicate that our still incomplete understanding of inflation is wrong (e.g., Bartolo
et al., 2004).

Properties the dark matter power spectrum

As discussed before, we only need to specify the initial conditions of the density
field and follow the evolution of the primordial density perturbations. Then, we
have a complete description of the statistical properties of the density field of the
Universe. As long as linear theory of structure evolution is valid, the Gaussianity
of the density fluctuations is preserved. Thus, specifying an initial power spectrum
fully characterises linear density perturbations at all times.
In the very early Universe, all length scales of interest are much larger than the

horizon scale, so that there exists no preferred length scale. The only mathematical
function that does not depend on a characteristic scale is a power law with spectral
index ns

P0(k) ∝ kns . (2.40)

If we now require density fluctuations to be scale-invariant, i.e. they all enter the
horizon with the same amplitude, we can constrain the spectral index to ns = 1
(Harrison, 1970; Zeldovich, 1972). Inflationary models predict a spectral index
which is close to, but slightly smaller than one (ns . 1; Vázquez et al., 2018).
Recent measurements from the Planck mission constrain the spectral index to
ns = 0.9665± 0.0038, which provides strong evidence in favour of inflation.
Combining the preceding considerations with linear structure growth, we find for

the initial power spectrum

P0(k) = Akns T 2
k , (2.41)
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and for the evolution of the power spectrum

P (k, a) = Akns T 2
k D

2
+(a) , (2.42)

where A is the amplitude related to the primordial fluctuations, which must be
constrained through observations. A measurement of the power spectrum is shown
in Fig. 2.3.

Figure 2.3. – Shown is the matter power spectrum P (k) from various probes of the LSS. A
prediction is shown as the red solid line for a ΛCDM cosmology with h = 0.72, Ωm = 0.28,
Ωb = 0.448, and ns = 1. The figure is adopted from Tegmark et al. (2004).

There are many ways to normalise the power spectrum, and the usual represen-
tation is in terms of σ8 := σ(R = 8h−1Mpc). The choice is motivated by the fact
that the variance of number counts of galaxies ∆N/N in an 8h−1Mpc sphere is of
order unity. The standard deviation of matter fluctuation at the scale R is defined
as

σ(R, t) = 1
2π2

∫ ∞
0

dk P (k, t) |Ŵ (kR)|2 k2 , (2.43)
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where Ŵ (kR) is the Fourier transform of the real-space top-hat window function of
radius R

Ŵ (kR) = 3sin(kR)− kR cos(kR)
(kR)3 . (2.44)

The power spectrum P (k, t) is multiplied by Ŵ (kR) which allows for the selection
of specific scales of interest. Finally, combining (2.42) and (2.43) leads to

σ2
8 = A

2π2

∫ ∞
0

dk k2+ns T 2(k) |Ŵ (kR)|2 . (2.45)

Thus, the measurement of σ8 at the current epoch allows us to empirically constrain
the matter power spectrum amplitude A. σ8 has become one of the key parameters
to obtain from cosmological surveys, the Planck mission (2018b) reports their best
constraint as σ8 = 0.8102± 0.0060.

2.4.2. Clustering in the Universe
The Universe is rich in structures that are constantly changing. However, the two
components of matter, dark and luminous matter, show a different clustering be-
haviour with scale and time. Linear perturbation theory fails badly when the density
contrast starts to approach unity and baryon physics on small scales cannot be pre-
dicted by linear theory in general. Nevertheless, non-linear density structures are of
special interest since they are the seeds for galaxies and clusters. For small scales,
an accurate prediction must involve higher-order perturbation theory, semi-analytic
modelling of selected features, or time-consuming numerical simulations (which are
discussed in detail in Sect. 4.1). Each option has advantages and disadvantages and
is limited to certain scales only.

Semi-analytic spherical collapse model

In general, semi-analytical models are interesting since they give more insight into
the physical processes involved. The spherical collapse model has been a particularly
successful, but simple model in describing the density and size of dark matter halos.
This model is based on analytically solving the evolution of a spherical overdensity
in an averagely-dense Universe. The expansion rate of the small sphere is decreased
compared to the rest of the Universe, which increases the density contrast further
over time. As soon as the density inside the sphere becomes reaches a threshold
value, the expansion comes to a halt and the sphere starts to contract. Since the
particles inside the sphere are not expected to follow an exact symmetry, the sphere
does not collapse to a single point, but to an overdense, virialised sphere with a
radius rvir that is half its maximum radius during expansion. We call such a collapsed
mass concentration inside a spherical region a dark matter halo. According to the
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spherical collapse model, its average density is ∼ 200 times the mean density of the
Universe.
The model is particularly powerful since the non-linear density evolution can be

compared to the linear one. A virialised halo in non-linear evolution translates
to a spherical overdensity of δlin = 1.69 in the linear model, where the simplified
cosmological model of an Einstein-de-Sitter (EdS) universe with Ωm = Ω0 = 1 was
used. In this frame, any density perturbation, that had a linearly extrapolated
density contrast of 1.69(1 + z) for any given redshift z, is a collapsed and virialised
structure of density ∼ 200ρ̄(z). Therefore, dark matter halos at a given mass are
more compact in the past than those formed today.

Dark matter halo mass function and profile

Using the spherical collapse model, it is possible to estimate the number density of
collapsed halos as a function of time and halo mass. The halo mass function can
then be used to compare the predicted abundance of massive halos to the observed
one, where usually galaxy cluster masses are used in practice. Bill Press and Paul
Schechter (1974) were the first to derive a halo mass function from an initial Gaussian
density field, and their model became well known as the Press-Schechter theory. If
δc(t, ti) is the density contrast at ti that is necessary for a collapse at time t, the
Press-Schechter model can be written as

dn
dM (M, t) = ρm,0

M

(
−d ln σ

dM

)
f

(
δc

σ

)
, (2.46)

where f is

f

(
δc

σ

)
=
√

2
π

δc

σ
exp

(
δ2

c
2σ2

)
. (2.47)

An application of this model to data yields constraints on the normalization of the
power spectrum σ8 in the form σ8 ∝ 0.6 Ω0.56

m .
The Press-Schechter model traces the abundance of dark matter halos reasonably

well. However, it slightly underestimates the abundance of very massive halos while
overestimating the abundance of low-mass halos. Using numerical simulations, Jenk-
ins et al. (2001) found an approximate fitting formula that is more accurate than
the Press-Schechter theory

f(σ) = 0.315 exp
(
−
∣∣∣ln σ−1 + 0.61

∣∣∣3.8) . (2.48)

Moreover, Julio Navarro, Carlos Frenk and Simon White (1996, 1997) showed
that any ensemble of dark matter halos can be described by a characteristic radius
rs, a characteristic density ρs = 4ρ(rs) and a slope α ≈ 1

ρ(r) = ρs(
r
rs

)α (
1 + r

rs

)3−α , (2.49)
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which is generally known as the NFW model.

Galaxy clustering

So far, we were mainly interested in the evolution of dark matter structures and
we identified some observables that we can use to determine the underlying cos-
mology. However, we cannot observe dark matter directly and we must rely on
the observable luminous matter in galaxies. Unfortunately, baryonic matter shows
a variety of interactions besides gravity which massively complicate the analytical
treatment of galaxy clustering and numerical simulations struggle to give results in
good agreement with observations.
As a first approximation one can describe the galaxy correlation function as a

power law

ξgal(r) =
(
r

r0

)−γ
, (2.50)

where the slope is γ ' 1.7 and the clustering length r0 is typically of the order of
a few megaparsec. As a general rule, the larger the halo the galaxy resides in, the
larger is the clustering length r0.
A more sophisticated model describing non-linear gravitational clustering, which

is in excellent agreement with the observational data, is the halo model (see, e.g.,
Cooray and Sheth, 2002). This semi-analytic model assumes that all matter in the
Universe is located in halos of different size and mass. Therefore, matter particles
that live in the same halo are correlated. However, since the distribution of halos is
correlated, also matter particles that live in different halos show a correlation that
dominates on scales larger than the typical halo size. Thus, in the halo model, the
correlation function (and also the power spectrum) is written as the sum of two
terms, which we call the 1-halo and the 2-halo term, i.e. ξ(r) = ξ1h(r) + ξ2h(r). We
can use, e.g., the Press-Schechter theory to make assumptions on the distribution
of halo masses and describe the spatial distribution of halos using the matter power
spectrum. Alternatively, the halo model can be applied to results from dark matter-
only N -body simulations (which are introduced in Sect. 4.1.1) to populate dark
matter halos. Depending on the halo mass, a halo can be populated by more than
one central galaxy; these galaxies are called satellite galaxies. The halo model is
mainly limited by the assumption that the relation of a galaxy and a dark matter
halo depends only on the halo mass. Deviations from this behaviour are called
assembly bias and hold information about the formation of the halo.

Galaxy bias

The relation between the distribution of dark matter and galaxies is by no means
simple and we parametrise our ignorance with the galaxy bias b. In general, the
bias parameter depends on many variables such as galaxy type, scale and time; for
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a single galaxy, the bias parameter depends on its evolution and surroundings. It
is, thus, a fairly complicated function, but it can be linearised on large scales. For
linear perturbation theory, the relative number fluctuation of galaxies is related to
the underlying density contrast by a linear bias factor b

∆n
n

= b
∆ρ
ρ

, (2.51)

Pgal(k) = b2P (k) . (2.52)

Hence, the bias factor b is closely related to the normalization of the power spectrum,
i.e. σ8 ≈ 1/b. Typical values of the bias factor are 1 . b . 2 depending on scale
and cosmic time. Furthermore, a dependence on galaxy type or luminosity is to
be expected since early-type galaxies are usually found in galaxy clusters which
form inside the heaviest underlying dark matter halos, while late-type galaxies are
typically field-galaxies, which can be associated with lower-mass halos.
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CHAPTER 3

WEAK GRAVITATIONAL LENSING

In the past 40 years, gravitational lensing has become an invaluable
tool to study the Universe. Strong and weak lensing applications
lead to precise mass measurements of galaxies and galaxy clusters,
robust estimates of various cosmological parameters, and the detec-
tion of exoplanets in our galaxy. This thesis focuses on weak grav-
itational lensing which was first detected in 1990 by Tyson, Valdes
and Wenk and has progressed tremendously since then. In the fol-
lowing, I provide a concise introduction of the theory of weak lens-
ing, especially GGL and some applications. For a detailed review,
the reader is referred to Bartelmann and Schneider (2001) and Do-
delson (2017).

3.1. Basics of gravitational lensing
Light deflection by gravitational fields is one of the main predictions of GR. For a
gravitational field that is created by a point mass M , and a light ray from a distant
galaxy passing the point mass at a distance ξ, we expect a deflection of the light
ray by an angle

α̂ = 4GM
c2ξ

, (3.1)

which differs from the Newtonian prediction by a factor of two. During the Solar
eclipse of 1919, it was possible to measure the apparent positions of stars near the
Sun. A comparison between apparent and expected position confirmed Einstein’s
prediction making it the valid theory of gravity since 100 years.
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3. Weak gravitational lensing

3.1.1. The lens equation
Gravitational lens systems can be described with geometrical relations as visualised
in Fig. 3.1. As a light ray travels from the source galaxy at position η to the observer,

Figure 3.1. – Geometry of a typical lens system where all vectors and angles are two-
dimensional quantities and all distances are angular diameter distances.

it passes the gravitational field of the lens galaxy at distance ξ and gets deflected.
The relevant angular diameter distances are from us to the source D(0, zs) := Ds,
from us to the lens (also called the deflector)D(0, zd) := Dd, and from the lens to the
source D(zd, zs) := Dds. In the case that the extent of the lens is much smaller than
the distances involved, we can approximate the light curve by two straight lines with
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a kink in the lens plane. The kink’s magnitude and orientation is described by the
deflection angle α̂. We can now apply the small angle approximation and express the
two-dimensional source position with η = Dsβ and the impact vector with ξ = Ddθ,
where β and θ are the angular positions under which the source would appear and
the actual image does appear, respectively. Then, we can geometrically relate the
true source position β to the observed angular position θ using the deflection angle
α̂

β(θ) = θ − Dds

Ds
α̂(Ddθ) := θ −α(θ) , (3.2)

where we define the scaled deflection angle α = Dds/Ds α̂ in the second equation.
The lens equation (3.2) relates the apparent position of a source galaxy to its

true position. For a given source position β several observed positions θi can satisfy
Eq. (3.2). In this case, we observe the same object at multiple positions. In the
special case of the deflection around a point mass, as given in (3.1), as well as a
source being on the optical axis, we can calculate the solution for θi explicitly. Due
to spherical symmetry, we reduce the lens equation to one dimension and obtain

β = θ − Dds

DdDs

4GM
c2θ

, (3.3)

which has the solution

θE =
√

Dds

DdDs

4GM
c2 . (3.4)

The solution is known as the Einstein angle θE and the source galaxy appears as an
(Einstein) ring around the lens galaxy. If the distances are known, we can directly
infer the unbiased mass of the lens enclosed in the Einstein ring.

3.1.2. Deflection by extended density distributions
If the lens galaxy is extended in three dimensions, the deflection angle can be
expressed as the vectorial sum of the deflections from infinitesimal mass ele-
ments. A light ray that passes the galaxy has a spatial trajectory described by(
ξ1(λ), ξ2(λ), r3(λ)

)
, where λ is the affine parameter and we chose the coordinates

such that the incoming light ray propagates along r3. The lens deflects the light ray,
but if the deflection angle is small we can approximate the light ray as a straight
line in the neighbourhood of the deflecting mass, and we can approximate ξ(λ) ≈ ξ
near the lens. This is referred to as the Born approximation and a mass distribution
that satisfies this condition is called geometrically-thin.
Since the perception of depth for objects at large distances is not available, it is

convenient to define the surface mass density perpendicular to the incoming light
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ray

Σ(ξ) =
∫

dr3 ρ(ξ1, ξ2, r3) . (3.5)

Using the surface mass density, we can express the scaled deflection angle for an
arbitrary density distribution as

α(ξ) = 4G
c2
Dds

Ds

∫
d2ξ′ Σ(ξ′) ξ − ξ′

|ξ − ξ′|2
. (3.6)

Alternatively, we can introduce the dimensionless surface mass density or conver-
gence

κ(θ) = 4πG
c2

DdDds

Ds
Σ(Ddθ) (3.7)

:= Σ(Ddθ)
Σcrit

, (3.8)

and the deflection angle becomes

α(θ) = 1
π

∫
d2θ′ κ(θ′) θ − θ′

|θ − θ′|2
. (3.9)

In Eq. (3.8) we defined a characteristic value of lensing systems – the critical surface
mass density Σcrit. A sufficient but not necessary condition for a mass distribution
to have multiple images is that the surface mass density at at least one point is
larger than the critical surface mass density, i.e. κ > 1. Thus, the ratio of Σ to Σcrit
is a quantity that lets us divide lensing systems into ‘strong’ and ‘weak’ lenses.
The deflection angle has the property to be curl-free, i.e. it has no rotational

modes. It can, therefore, be expressed as a gradient of a deflection potential ψ

α = ∇ψ(θ) , (3.10)

where the deflection potential can also be expressed in terms of the dimensionless
surface mass density

∇ψ(θ) = 1
π

∫
d2θ′ κ(θ) ln |θ − θ′| . (3.11)

These two quantities are therefore related by

∇2ψ = 2κ . (3.12)

3.1.3. Image distortions
Gravitational lensing changes the path of light as it travels through the Universe.
Since source galaxies are extended objects on the sky, we do not expect the image
shape to be the same as the original shape. Still, if the objects are small compared
to the scale on which the lens mapping changes considerably, we can describe the
image distortion using only a few parameters.
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Shear

We investigate the image distortion by looking at the Jacobi matrix of the lens
equation (3.2). The components of the Jacobian are defined as Aij = ∂βi/∂θj and
can be expressed in the following form1

A(θ) =
(
δij −

∂2ψ(θ)
∂θi∂θj

)
:=
(

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)
, (3.13)

where δij is the Kronecker delta and we introduced the two components of the shear
γ = γ1 + iγ2 = |γ|e2iφ. Shear quantifies the shape distortion of an image, e.g., an
ellipticity is induced in an intrinsically round object due to shear as is illustrated in
Fig. 3.2. The convergence, on the other hand, only causes an isotropic scaling of the
image.
By slightly rewriting the Jacobian, the isotropic and anisotropic stretch in the

image plane can be separated into two terms

A(θ) = (1− κ)
(

1− g1 −g2
−g2 1 + g1

)
, (3.14)

where we define the reduced shear g = γ/(1−κ), which is a complex number as the
shear γ. The reduced shear describes the anisotropic distortion of the image shape
between the observed image and source galaxy; it is the central measurable quantity
in weak gravitational lensing, where only small distortions are considered.

Magnification

According to Liouville’s theorem lensing conserves the surface brightness. Due to
the shape distortion, however, the observed apparent solid angle ω of the image
differs from the one in the absence of lensing, ω0. Hence, also the flux s that we
receive, is enhanced or reduced compared to the unlensed flux s0. The magnification
is defined as

µ(θ) = ω(θ)
ω0

= s(θ)
s0

= 1
detA(θ) = 1

[1− κ(θ)]2 − |γ(θ)|2 . (3.15)

In a flux-limited survey, the local number density of galaxies is changed due to a
rescaling of solid angles by 1/µ and an enhancement or reduction of observed flux
by µ. The observed cumulative number density n(> s) is therefore

n(> s) = 1
µ
n0

(
>
s

µ

)
, (3.16)

1This definition is correct under the Born approximation and neglecting lens-lens coupling. These
two approximations account for the fact that higher redshift mass inhomogeneities slightly
distort lower redshift matter distributions as experienced by a light ray on its way to us.
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Figure 3.2. – Starting from a round object in the source plane, a mapping A−1 is applied
and the object becomes displaced, rotated and elliptical in the weak lensing regime. The area
of the object is also changed, which changes the incoming flux described by the magnification
µ. The final shape of the object is determined by convergence κ and shear γ.
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where n0 denotes the cumulative number density in the absence of lensing. Whether
galaxy counts on the sky are enhanced or reduced depends on the form of n0 close
to the flux limit.

3.2. Gravitational lens models
In general, the lens equation (3.2) must be inverted numerically. In case of an
unknown number of multiple images, this is not a trivial task. Thus, simple mass
models that allow for an analytical treatment of (3.2) are of special interest. In the
following, three mass models are presented that are of importance in this theses.

SIS

A singular isothermal sphere (SIS) is a frequently used gravitational lens model. This
model is axi-symmetric and the corresponding spherical mass distribution yields flat
rotation curves, as they are observed in late-type galaxies. The density distribution
ρ(r) = σ2

v/(2πGr2) depends on the velocity dispersion σv and diverges for small
(proper) radii. Moreover, the mass M = 4π

∫
dr r2ρ(r) is not finite for r →∞.

Although an SIS has several limitations and is certainly not a good model of
gravitational lenses for all scales, it is often used to obtain first insights due to its
simplicity. The Einstein radius becomes

θE = 0.′′576
(

σv
200 km/s

)2 (2Dds

Ds

)
, (3.17)

where σv = 200 km/s is the typical velocity dispersion of a galaxy. More useful
lensing quantities, including the mean convergence κ̄ inside a circle with radius θ,
are

κ(θ) = θE

2|θ| ; κ̄(< θ) = θE

|θ|
;

|γ|(θ) = θE

2|θ| ; α(θ) = θE
θ

|θ|
. (3.18)

NIS

A non-singular isothermal sphere (NIS) introduces a finite core with size θc to remove
the divergence of density in the lens centre which makes it a viable alternative to
the SIS for numerical considerations. We then find

κ(θ) =

√
θ2

E + θ2
c

2
2θ2 + θ2

c

(θ2 + θ2
c) 3

2
,

κ̄(< θ) =

√√√√θ2
E + θ2

c
θ2 + θ2

c
, (3.19)
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where the absolute value of the shear is given by

|γ|(θ) = κ̄(θ)− κ(θ) . (3.20)

NFW

The NFW density profile holds well over nine orders of magnitude in radius and was
first introduced in Sect. 2.4.2. However, the analytical solution for the surface mass
density and shear is rather complicated. As before rs is the characteristic scale and
ρs the characteristic density. The surface mass density reads (Bartelmann, 1996)

ΣNFW(r) = 2rsρs g
(
r

rs

)
, (3.21)

where g is a function depending on the dimensionless radius x = r/rs

g(x) =


1

x2−1

(
1− 2√

1−x2 arctanh
√

1−x
1+x

)
for x < 1

1
3 for x = 1 .

1
x2−1

(
1− 2√

x2−1 arctan
√

x−1
1+x

)
for x > 1

(3.22)

The shear is then denoted by (Wright and Brainerd, 1999)

γNFW(r) = rsρs

Σcrit
h
(
r

rs

)
, (3.23)

where h is

h(x) =



8 arctanh
√

1−x
1+x

x2
√

1−x2 + 4
x2 ln x

2 −
2

x2−1 +
4 arctanh

√
1−x
1+x

(x2−1)
√

1−x2 for x < 1
10
3 − 4 ln 2 for x = 1 .
8 arctan

√
x−1
1+x

x2
√
x2−1 + 4

x2 ln x
2 −

2
x2−1 +

4 arctan
√

x−1
1+x

(x2−1)
3
2

for x > 1

(3.24)

3.3. Galaxy-galaxy lensing
In the following, we only consider weak gravitational lensing where small effects on
background galaxies are induced, i.e. κ � 1 and |γ| � 1. We cannot detect weak
lensing effects for a single object. One of the reasons for this is that we cannot
observe an unlensed sky. Moreover, weak distortions are typically of the order of
1% compared to the intrinsic, randomly oriented galaxy ellipticities. However, we
can make use of the cosmological principle that the Universe is homogeneous and
isotropic. It ensures that, if we average over a sufficiently large number of galaxies,
the average ellipticity is zero, i.e. 〈εint〉 = 0; in other words, no direction in the
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Universe is singled out. The addition of shear to the intrinsic ellipticity is a non-
linear relation in general, but can be linearised in the presence of weak reduced
shear. Then, the observed ellipticity averaged over many galaxies,

〈εobs〉 ≈ 〈εint〉+ 〈g〉 = 〈g〉 ≈ 〈γ〉 , (3.25)

is actually an unbiased estimator of the average reduced shear and, therefore, at
least approximately for the averaged shear. However, it is a noisy estimator since
the intrinsic ellipticity dominates the measured shape. This so-called shape noise
is the main contributor to noise in most weak lensing measurements (e.g., Niemi
et al., 2015). The relative contribution of shape noise decreases with an increasing
number of observed galaxies, which is why wide and deep surveys are favoured
by lensing enthusiasts. Taking deep data refers to measuring ever fainter objects
that are located at larger distances from us, and taking wide data means obtaining
preferably full-sky galaxy and shear maps.
GGL probes the average surface mass overdensity around galaxies by cross-

correlating the positions of foreground galaxies (lenses) to the shear of background
galaxies (sources)

〈γt〉(θ) = 〈κg(θ′)γt(θ′ + θ;θ)〉 , (3.26)

where the signal only depends on the absolute value of the projected separation
|θ| = θ, and κg is the projected fractional number-density contrast of lens galaxies.
The tangential shear is denoted by γt and measured with respect to the connecting
line between lens and source, orthogonal to that line is the tangential shear γt, and
the cross shear γx is measured with a 45◦-rotation (cmp. Fig. 3.3). For a fixed lens
position θd this corresponds to a rotation of the shear components

γt(θ) + iγx(θ) = −γ(θ) (θd − θ)∗
θd − θ

, (3.27)

where we also conveniently write the position on the sky in complex notation,
i.e. θ = θ1 + iθ2, and an asterisk denotes complex conjugation.
Astronomical objects only induce a tangential shear on background galaxies. The

average cross shear 〈γx〉 must vanish due to parity invariance (Schneider, 2003) and
detection of a non-negligible cross shear shows the presence of systematic errors in
the data. The average tangential shear 〈γt〉(θ) is related to the azimuthally averaged
convergence 〈κ〉(θ) and the mean convergence inside a circle with radius θ by

〈γt〉(θ) = κ̄(< θ)− 〈κ〉(θ) . (3.28)

In the case that the redshifts of sources and lenses are known, the most common
observable is the excess surface mass density

∆Σ(R) = Σ̄(< R)− Σ(R) = γt(R)Σcrit , (3.29)
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Figure 3.3. – The difference between tangential εt and cross ellipticity ε× is shown. A
tangentially and a radially aligned galaxy do not show any cross ellipticity but have different
signs of tangential ellipticity. A galaxy that is rotated by φ = 45◦ with respect to the circle’s
tangent does not show any tangential ellipticity.

where R is the physical or comoving distance from the lens centre. In practice, the
average tangential shear 〈γt〉 is further averaged over many lenses to obtain a high
signal-to-noise ratio. The mean tangential shear or excess surface mass density is
then analysed as a function of distance from the lens centre and compared to known
gravitational lens models as given in the previous section.

3.4. Weak lensing observations
In the last 30 years, the methodology and observation techniques of weak lensing
have advanced continuously. Currently, two weak lensing surveys are ongoing: DES
and HSC SSP; and KiDS has only recently finished its observations. In the near
future, LSST will also provide measurements from the ground, while the space-based
missions Euclid and WFIRST will obtain measurements untainted by the Earth’s
atmosphere.
Weak lensing measurements are dominated by noise and the key to successful

surveys is a large sample of galaxies, which can be obtained by taking deep and
wide data. However, an improved statistical error on measurements has to be ac-
companied by sufficiently controlled astrophysical and detector-related systematic
errors. The lensing community is currently putting huge effort into understanding
systematics that affect and will affect weak lensing measurements as well as their
implications. The interested reader is kindly referred to Mandelbaum (2018) for an
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extensive review regarding sources of systematic errors in the pipeline from galaxy
images to scientific results. In the following, I provide an outline of the current
challenges in shear measurements and analyses.

telescope systematics In an imaging system, a point-like object is blurred to an
extended shape which is described by the point spread function (PSF). The
observed brightness profile Iobs is related to the true surface brightness I of an
image by a convolution with the PSF P

Iobs(θ) =
∫

dϑ2I(θ − ϑ)P (ϑ) . (3.30)

The atmosphere is a major contributor to the wavelength-dependent blurring
effect, which is one of the reasons astronomers are not fond of it. The PSF is
modelled using bright stars that are assumed to undergo the same telescope-
induced changes as the galaxies and is then carefully interpolated to the galaxy
positions. More sources of systematics induced by the detector are the pixel
response to incoming light (e.g., non-linear response and the brighter-fatter
effect; Guyonnet et al., 2015; Plazas et al., 2016) and charge diffusion between
pixels (e.g., charge transfer inefficiency; Kannawadi et al., 2016).

galaxy detection In a simplified picture, galaxies are detected when the integrated
flux is brighter than the survey magnitude limit. However, the fainter the
magnitudes we observe, the more densely the sky is populated. This leads to
overlapping galaxy profiles which is referred to as blending. If multiple ob-
jects are detected, the individual galaxy properties, e.g., their redshift, must
be analysed very carefully (Dawson et al., 2016). Unresolved galaxies, how-
ever, that are just below the detection limit, pose an even bigger challenge as
they affect the measured galaxy properties and lead to correlated pixel-noise
(Gurvich and Mandelbaum, 2016).

shear estimation The galaxy ellipticities 〈ε〉 are measured as the second moments
of galaxy images

Qij =
∫

d2θ I(θ)W (θ) θiθj∫
d2θ I(θ)W (θ) , (3.31)

where θ1,2 correspond to Cartesian coordinates. Their origin is the centre of
light within a limiting isophote of the image, andW (θ) is a weighting function.
The trace of Q contains the information about the size of the image, while the
traceless part describes the ellipticity information. The true and the observed
second-order brightness moments are related by Qobs,ij = Qij + Pij, where Pij
are the second-order moments of the PSF and the weighting function is chosen
to be constant.
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Commonly, the ellipticity is defined in terms of the moments as

e = e1 + ie2 = Q11 −Q22 + 2iQ12

Q11 +Q22
, (3.32)

or alternatively as

ε = ε1 + iε2 = Q11 −Q22 + 2iQ12

Q11 +Q22 + 2 |detQ |1/2 . (3.33)

These definitions have a well-defined response to the lensing shear which al-
lows for averaging across ensembles of galaxies. In the presence of a PSF the
observed ellipticity is related to the true ellipticity by

eobs = e+ T ePSF

1 + T
, (3.34)

with

T = P11 + P22

Q11 +Q22
and ePSF = P11 − P22 + 2iP12

P11 + P22
, (3.35)

where similar equations can be found for ε. These rather simple relations are no
longer valid for a non-constant weighting function W , which also complicates
the relation (3.25) between the observed ellipticity and true shear.
Uncorrected (residual) telescope systematics may also lead to biased results.
This bias is typically assumed to be small but relevant and can be split into
a term that scales with the ensemble shear statistics, the multiplicative bias,
and a term that is independent of it, the additive bias. Computationally
expensive image simulations, null-tests and self-calibration methods exist and
are developed to sufficiently control the bias.

redshift estimation To infer cosmological parameters or the galaxy-dark matter
halo connection, we must further obtain accurate information about the red-
shift of the galaxy sample. Obtaining an exact redshift estimate with spectro-
scopic methods (spec-z) is only feasible for foreground galaxy samples. Back-
ground galaxies are too numerous and too faint for spectroscopic analyses. For
these galaxies, photometric redshift (photo-z) estimates are obtained. The
photo-z estimates are typically done using template-fitting of galaxy fluxes or
machine-learning algorithms (Hildebrandt et al., 2010; Wright et al., 2020).
The goal (and challenge) is to obtain the true posterior probability function
of the whole galaxy sample.

theoretical predictions Weak lensing observations are compared to theoretical pre-
dictions to find the best-fitting models. Thus, we are challenged with the
need for an accurate description of the non-linear matter power spectrum and
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the non-linear galaxy bias. The validity of approximations (as the flat-sky,
the Born, and the Limber approximation as well as the impact of higher-
order lensing terms) is currently being investigated. Furthermore, analytic
theoretical predictions for cosmological studies often disregard the complex
baryon physics. Therefore, semi-analytic models or simulations for baryonic
effects (Schneider et al., 2020; Chua et al., 2019) and the intrinsic alignment
of galaxies (Troxel and Ishak, 2015) are needed. Lastly, inferring astrophysical
parameters is based on accurate covariance estimations that still require a com-
putationally expensive numerical estimation (Sellentin and Heavens, 2017).
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CHAPTER 4

SHEAR ESTIMATES IN A
SIMULATED UNIVERSE

Simulations of the Universe are the astronomer’s playground.
While having complete control over the input parameters, we can
study the outcome. The results can be compared or applied to real
data while carefully keeping the limitations of the simulations in
mind. For studying cosmology and weak gravitational lensing, pow-
erful simulations have become invaluable tools that we explore in
this chapter.

4.1. Simulations for cosmology and lensing
To model the smallest scales in the Universe, the use of numerical simulations is un-
avoidable. In the past three decades, tremendous progress has been achieved. Analy-
ses of the resulting matter structures extend the linear power spectrum to non-linear
scales using fitting formulae. In general, numerical results have several restrictions,
e.g., they have a minimum and maximum length scale on which predictions are still
expected to be accurate. The results are also limited by mass resolution. Finally,
they may or may not involve baryons and their complicated interactions (e.g., star
formation, gas cooling, feedback from supernovae and active galactic nuclei (AGN),
and the chemical evolution of the intergalactic medium). Dark matter-only simula-
tions need considerably less computation time than a similar-sized cube filled with
dark matter and baryons. On the other hand, baryons gravitationally influence the
distribution of dark matter on the galactic scale, although they make only a small
fraction of the matter content. Negligence of baryons results in a suppression of the
power spectrum by up to 20% (Semboloni et al., 2011; van Daalen et al., 2014) com-
pared to a pure dark matter universe, where the suppression is a function of scale.

43
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In general, dark matter-only simulations overpredict the structure growth on scales
. 1 Mpc to a largely unknown degree. However, baryon physics is not understood
in detail, and any implementation of baryons comes with a huge computational cost
compared to scenarios where the only acting force is gravity. For these reasons,
dark matter-only simulations are still the best tool to cover the largest simulated
volumes and capture the Universe’s structure growth over time. Since the mass ratio
of baryons to dark matter is roughly 1:5, the Universe is indeed well represented by
results from dark matter-only, large-scale simulations. Caution has to be applied on
scales comparable to the size of a galaxy, where baryon physics becomes important.
Thus, each simulation must be carefully fine-tuned to the research question to

gain an optimal output for given computation time. The maximum size and mass
resolution of a simulation are, therefore, linked to the ever-growing computational
capabilities. In the following, we focus on the tools used in this thesis – dark matter-
only N -body simulations, semi-analytic galaxy formation models and ray-tracing
simulations.

4.1.1. Cosmological N-body simulations

N -body simulations use a finite set of particles to mimic the distribution of matter.
Dark matter is represented by a set of collisionless particles that only interact via
gravitational forces. The first attempts to simulate matter structures in the Universe
that way were done in the 1970’s by Peebles who simulated the structure of the Coma
cluster using a set of 300 particles.
To set up a dark matter-only N -body simulation, the comoving length of the

simulated cube has to be chosen as well as the number of particles N and the mass
per particle M . The size of the simulated volume must be carefully tailored to the
science goals since density fluctuations on scales comparable to or larger than the side
length of the simulated cube are completely neglected. These density fluctuations
are called super-modes and their impact on the matter power spectrum is not yet
fully understood. To minimise the impact of super-sample modes, the size of the
simulation cube should be at least as large as the scale on which we observe the
largest gravitationally bound structures, i.e. ≈ 200h−1Mpc.
The initial conditions are set such that the distribution of particles at very early

times resembles a Gaussian random field. Further, the power spectrum of the particle
distribution is matched to the linear power spectrum of a chosen cosmology. Such
a linear power spectrum can be calculated analytically. Lastly, the finite volume of
the simulation cube needs to be accounted for. Since the Universe is homogeneous
on large scales, the outside of the simulation cube cannot be simply treated as
empty, which is equivalent to a sharp drop in density. The problem is solved by
periodically extending the simulation cube to all sides with the disadvantage of only
having reliable results on scales less than half the cube’s side length.
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When the initial particle positions are set, the movement of the particles per time
step must be calculated. The force exerted on the i-th particle for any given time is

F i = GM2
N∑
j 6=i

rj − ri
|rj − ri|3

, (4.1)

where rj − ri is the distance of two particles i and j. Crudely calculating (4.1)
requires N2 operations per time step. However, this method can be optimised
considerably by separating the gravitational potential of a particle into a short-
and long-range component. Short-range interactions are then indeed calculated by
summing (4.1). Long-range interactions, however, can be calculated by placing the
particles on a regular mesh and using a fast Fourier Transform (FFT). The number
of cells is chosen to roughly match the number of particles and, in this case, only
N logN operations are needed to calculate the gravitational force of such a field
(Hockney and Eastwood, 1988). Such an algorithm is referred to as a particle-
particle particle-mesh (P3M) algorithm. Further, choosing the length of a time step
is also critical for the performance of the simulation. Any particle that has close
neighbours experiences faster changes in their position and velocity than particles
in a sparse neighbourhood. Thus, the length of the time steps is typically varied
from particle to particle.
As the change of position due to the gravitational force is calculated for each time

step, outputs are generated. Similar to the limited computational power, also the
storage capacities are finite and the format of the output has to be chosen well.
Large storages are needed if the resulting positions and velocities of all particles
for several time steps are saved. Alternatively, positions and masses of dark matter
halos can be identified from the particle positions on-the-fly and then saved with a
significant reduction in storage space needed. The virial mass Mvir, the virial radius
Rvir, and the circular virial velocity Vvir(Rvir) are simply related by

Mvir = 100
G

H2(z)R3
vir = V 3

vir
10GH(z) . (4.2)

As an example, the Friends-of-Friends (FoF) algorithm from Davis et al. (1985) is
commonly used to quickly find dark matter halos by linking two particles if their sep-
aration is less than 20% of the mean particle separation. As a disadvantage, the FoF
algorithm is unable to identify substructures in a dark matter halo. Substructures
are needed to resolve the merger history of each dark matter halo which is a crucial
requirement for the application of semi-analytical galaxy formation models (SAMs)
that are introduced in the next section. A possible tool for subhalo identification
is the SUBFIND algorithm (Springel et al., 2001)1; it calculates basic (sub)halo
properties as, e.g., cumulative density profiles, maximum circular velocities, velocity

1A thorough discussion of the performance of halo and subhalo finders can be found in Knebe
et al. (2011) and Onions et al. (2012), respectively.
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dispersions, as well as halo shapes and orientations. In the following the N -body
simulations used in this work are briefly introduced.

Millennium Simulation

The Millennium Simulation (MS) (Springel et al., 2005) is a dark matter-only N -
body simulation that traces 21603 particles with mass 8.6×108 h−1M� from redshift
z = 127 to today. Consistent with a combined analysis of the first-year Wilkin-
son Microwave Anisotropy Probe data (WMAP, wmap.gsfc.nasa.gov, Spergel
et al., 2003) and the results from the 2-degree Field Galaxy Redshift Survey (2dF-
GRS, www.2dfgrs.net, Colless et al., 2001), the underlying ΛCDM cosmology is
Ωm = Ωdm + Ωb = 0.25, Ωb = 0.045, ΩΛ = 0.75, h = 0.73, ns = 1, and σ8 = 0.9.
The periodic cube has a comoving side length of 500h−1Mpc, and the spatial resolu-
tion limit is ≈ 5h−1kpc comoving, which is equivalent to a dynamic range of 105 for
the three dimensions in the whole simulation. An illustration of the result can be
seen in Fig. 4.1. Using 512 processors of an International Business Machines (IBM)
p690-parallel-computer for 350 000 processor hours of central processing unit (CPU)
time (≈ 40 years), or 28 days wall-clock time, Springel et al. (2005) calculated up
to 11 000 time-steps per individual particle. The raw data volume of almost 20 ter-
abytes holds the full particle data for 64 time steps; in the data > 107 resolved halos
are identified.

Millennium-XXL Simulation

The Millennium-XXL Simulation (MXXL) (Angulo et al., 2012) uses the same un-
derlying cosmology as the MS but differs in size and resolution. 67203 particles are
distributed on a cube with comoving side length 3h−1Gpc. This makes the simu-
lated volume as large as the observable Universe up to a redshift of z = 0.72. The
spatial resolution limit is 10h−1kpc resulting in a dynamic range similar to the MS,
and the mass resolution is 8.456 × 109 h−1M� with 7 × 108 resolved halos. The
MXXL run took 9.3 days of wall-clock time and 2 860 000 CPU hours (≈ 326 years)
on 1536 nodes each equipped with two quad-core Intel-X5570-processors. From a
starting redshift of z = 63 to today, halo and subhalo catalogues are stored for the
same redshifts as for the MS. In contrast, the full particle data are only available
for a couple of time steps resulting in a total output volume of 100 terabytes.

Scinet light cone simulations

The Scinet light cone simulations (SLICS) (Harnois-Déraps and van Waerbeke, 2015;
Harnois-Déraps et al., 2018) are a suite of currently 1025 dark matter-only N -body
simulations. The underlying ΛCDM cosmology is based on the 9-year Wilkinson
Microwave Anisotropy Probe (WMAP) plus BAO plus supernova cosmology results:
Ωm = Ωdm + Ωb = 0.2905, Ωb = 0.0473, ΩΛ = 0.7095, h = 0.6898, ns = 0.969, and
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4.1. Simulations for cosmology and lensing

Figure 4.1. – Five zoom-ins of the projected matter density field for redshift z = 0 from
the MS are shown. Each panel shows the projection of matter from a slice with thickness
15h−1Mpc. The colour traces density and local dark matter velocity dispersion. The figure
is adopted from Springel et al. (2005).
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σ8 = 0.826. The number of particles is 15363, and the comoving side length of
the periodic cube is 505h−1Mpc. The non-linear evolution of matter structures is
traced from z = 120 to today with a spatial resolution of ≈ 600h−1kpc. For each
simulation, a wall-clock time of 30 hours on 64 nodes of IBM-iDataPlex-DX360M2
machines with two quad-core Intel-E5540-processors was used. The output contains
the positions of particles extrapolated on a grid for several redshifts as well as a
catalogue with resolved dark matter halos and their positions.

4.1.2. Semi-analytic galaxy formation models
Dark matter-only N -body simulations are powerful tools to visualise the distribution
of matter in the Universe. However, the direct detection of dark matter in obser-
vations is still elusive. To perform a comparison, we use the light-emitting galaxies
that are, at best, biased tracers of the true matter distribution. However, the tempo-
ral evolution of galaxies and dark matter halos differs substantially (Springel et al.,
2006). Thus, we need a bridge between observational results and dark matter-only
simulations. The SAMs use simplified analytic descriptions of baryon interactions
which govern the galaxy formation history and assign galaxies with respect to the
merger history from their dark matter halos. The model results are then matched
to key observations which in return provides insights on the dominating physical
processes involved. The so-called merger trees that are needed for the SAMs are
obtained from simulations, and therefore all SAMs ultimately are only valid for the
chosen cosmology of the N -body simulation, although it is possible to use scaling
relations for different cosmologies (Angulo et al., 2012). SAMs depend on a variety
of parameters that require fine-tuning. In the following, these parameters and the
concept behind them are introduced.
After identifying halos from N -body simulations, baryons are assigned to dark

matter halos according to the baryon fraction fb = Ωb/Ωm. As the density of the
baryon gas increases, the gas also heats up due to compression and friction. An effi-
cient gas cooling mechanism must be present for the first, very massive Population
III stars to form. The first galaxies are in the form of disk galaxies due to conser-
vation of angular momentum (for a review of galaxy formation see, e.g., Silk, 2013).
At this point, the angular momentum of the galaxy is still the same as the one of
its hosting halo. After the first galaxies emerge, the reionisation of hydrogen and
later helium starts which reaches its mid-point at redshift zre = 7.82± 0.71 (Planck
Collaboration et al., 2018a). The Universe is fully ionised by z ≈ 6 (Bouwens et al.,
2015).
Population III stars start to change the composition of the primordial gas. They

are very short-lived compared to their successors, the Population II and I stars. As
the first stars explode in a supernova, they inject large amounts of kinetic energy into
the interstellar medium. This so-called supernova feedback suppresses gas cooling
and therefore star formation. A similar form of feedback that affects star formation
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is AGN feedback, which is driven by the galaxy’s central supermassive black hole
that accretes the surrounding, in-spiralling gas and injects kinetic energy into the
interstellar medium in the form of jets.
As time progresses, halos and their galaxies undergo minor and major mergers

according to the halo’s mass ratios. In minor mergers, the more massive halos are
barely affected and the low-mass galaxies become satellite galaxies. The satellites
are then gradually disrupted and eventually destroyed by the central galaxy. Major
mergers, on the other hand, affect the morphology of the colliding galaxies. The
merger initiates a starburst with a subsequent quenching of star formation. De-
pending on the density of the galaxy’s local environment, either disk galaxies with
a bulge component are formed or, in more dense environments, elliptical galaxies
emerge.
Lastly, the SAMs also model the observed fluxes in different filters from artificial

galaxies. Using the initial mass function and the star formation history as prox-
ies, assumptions about the stellar composition in the galaxy are made. Then, the
integrated spectral energy distribution is inferred from the Hertzsprung-Russell di-
agram (HRD). Additionally, the presence of dust in the galaxies alters the observed
spectral energy distribution. Dust attenuation is known to cause a reddening of
the emitted spectra, i.e. suppression of UV and optical photons. This attenuation
depends mostly on the optical depth, the column density, and the metallicity of the
dust.
Thus, the SAMs incorporate models for stellar formation, supernova and AGN

feedback, the initial mass function, merger outcome, as well as chemical evolution of
the gas. Some model parameters need to be tuned to observations, where the exact
number of parameters depends on the specific SAM. The SAM used later in this work
was created by Henriques et al. (2015). They fine-tune nine parameters using mainly
results from analyses of early SDSS data (Stoughton et al., 2002), e.g., the stellar
mass function as a function of redshift, star formation rate and age of low-redshift
galaxies, the gas-phase oxygen abundance as a function of stellar mass from star-
forming galaxies, as well as the u-i colour distribution of galaxies. After fine-tuning,
the SAMs are validated with independent observational results. Henriques et al.
(2015) show that the model reproduces the observed galaxy correlation function, and
Saghiha et al. (2017) show that the GGL signal as well as the galaxy-galaxy-galaxy
lensing signal from Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS,
www.cfhtlens.org) is matched.

4.1.3. Ray-tracing simulations
Weak lensing simulations connect lensing observables like shear and convergence to
results from N -body simulations. Possible strategies are to perform a ray-tracing
simulation through the full three-dimensional gravitational potential or to construct
a backward light cone along one or multiple lens planes. Instead of precisely cal-
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culating the photon trajectories, a fast solution can be obtained along the straight
paths of the Born approximation. An overview and comparison of these and further
methods have been recently provided by Hilbert et al. (2020).
The lens equation (3.2) is very generally given by

β(θ, zs) = θ − 2
c2

∫ χs

0
dχd

fds

fdfs
∇βΦ[β(θ, zd), χd, χs] , (4.3)

where fds = fK(χs − χd), fd = fK(χd), and fs = fK(χs) are comoving angular
diameter distances. The redshift corresponding to χd,s is zd,s, and ∇β denotes a
gradient with respect to the angular source position β. Lastly, Φ(β, χd, χs) denotes
the three-dimensional Newtonian potential at position [β(θ, zd), χd]. The Jacobian
for a flat sky is then

∂βi
∂θj

= δij −
2
c2

∫ χs

0
dχd

fds

fdfs

∂2Φ[β(θ, zd), χd, χs]
∂βi ∂βj

∂βk(θ, zd)
∂θj

, (4.4)

which is connected to the convergence and shear by Eq. (3.13).

Multiple-lens-plane approximation

Using the information of the three-dimensional gravitational potential of the con-
tinuous mass distribution is computationally very expensive. Instead, the den-
sity contrast can be collapsed onto a series of two-dimensional mass distributions,
i.e. δ = ∑

δ2D. In the flat sky approximation, the planes lie perpendicular to the
central line-of-sight of the observer’s backward light cone; the lens planes act as a
series of deflectors along the line-of-sight (Blandford and Narayan, 1986), reducing
(4.3) and (4.4) to a discrete sum.
Since N -body simulations have a finite size, constructing a backward light cone

results in the repetition of the same matter structures at different redshifts. To
avoid the introduction of spurious correlations in the lensing data, random transla-
tions, parity transformations, and rotations by 90◦ around the coordinate axis are
applied to the distribution of particles. This is possible due to the periodic boundary
conditions of the simulation (Martel et al., 2002).
The deflection angle (3.10) for the kth lens plane as a function of β is

α(k)(β(k)) = ∇β(k)ψ(k)(β(k)) . (4.5)

Starting from the angular position θ = β(1), a light ray is traced back to a plane
k > 1 by

β(k)(θ) = θ −
k−1∑
l=1

f (l,k)

f (k) α
(l)(β(l)) , (4.6)
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where f (l,k) = fK(χ(k) − χ(l)). Equation (4.6) reduces to the lens equation (3.2) in
the case k = 2. For practical reasons, (4.6) is rewritten to (Hartlap, 2009)

β(k) =
(

1− f (k−1)

f (k)
f (k−2,k)

f (k−2,k−1)

)
β(k−2) + f (k−1)

f (k)
f (k−2,k)

f (k−2,k−1)β
(k−1)

− f (k−1,k)

f (k) α(k−1)(β(k−1)) , (4.7)

which is visualised in Fig. 4.2. Starting again from θ = β(1), the angular positions
on other lens planes are efficiently computed by iterating (4.7).

Figure 4.2. – Schematic view of the multiple lens plane and its backward light cone. The
continuous matter distributions are projected on discrete lens planes. A light ray originating
from the observer’s position travels backward through the k lens planes, where it experiences a
series of deflections α(k). Following Eq. (4.7), each angular position β on plane k is calculated
by its two preceding positions β(k−1) and β(k−2). The figure is adopted from Hilbert et al.
(2009).

Following Bartelmann and Schneider (2001), the convergence of a three-
dimensional mass distribution in a flat universe in a slice is then given as

κ(k)(β(k)) = 3H2
0 Ωm

2c2
f (k)

a(k)

∫ χ
(k)
high

χ
(k)
low

dχ δ(β(k), χ) , (4.8)

where the slice boundaries χ(k)
low and χ

(k)
high have to satisfy χ

(k)
low < χ(k) < χ

(k)
high and

χ
(k)
high = χ

(k+1)
low .

Born approximation

In the Born approximation, we replace β by the angular position θ and then Taylor
expand (4.4) to first-order in Φ which yields

β(θ, zs) = θ − 2
c2

∫ χs

0
dχd

fds

fdfs
∇θΦ(θ, χd, χs) , (4.9)
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4. Shear estimates in a simulated universe

and

∂βi
∂θj

= δij −
2
c2

∫ χs

0
dχd

fds

fdfs

∂2Φ[θ, χd, χs]
∂θi ∂θj

. (4.10)

This first-order approximation also encompasses neglecting lens-lens coupling, which
is sometimes treated as a part of the Born approximation. Differences occur mainly
on small angular scales (Hirata and Seljak, 2003).
The convergence (4.8) becomes

κ(θ) = 3H2
0 Ωm

2c2

∫ χs

0
dχd (1 + zd) fdfds

fs
δ(θ, χd) , (4.11)

where again the multiple lens plane approximation can be applied. The solution is
then obtained by summing (4.11) over the series of two-dimensional projected lens
planes δ2D from the observer to a maximum comoving angular diameter distance.
The maximum distance is typically chosen to be larger than the largest redshifts
observed in current and future weak lensing surveys.

4.2. Fast extraction of shear estimates
The synthetic lensing data in combination with SAMs provide the perfect tools to
explore GGL. However, the vast amount of available galaxy and shear data must
first be reduced and linked to observables. It is then possible to numerically study
observational challenges as well as test new methods to mitigate biases. The open-
source C++-Code ShearCo available on github.com/SandraUnruh/shearco has been
developed throughout the course of this thesis and all results presented in Chapter
5, 6 and 7 are based on variants of this code. In this section, ShearCo is described
and its performance verified. This method is capable of efficiently dealing with very
large data sets due to the employment of FFT.

4.2.1. Obtaining a shear profile
First, a detailed description is given on how azimuthally-averaged tangential shear
estimates are obtained as function of distance from the lens centre. All following
examples and visualizations refer to results from the MS by Springel et al. (2005,
see also Sect. 4.1.1), SAMs by Henriques et al. (2015, see also Sect. 4.1.2), and ray-
tracing simulations by Hilbert et al. (2009, see also Sect. 4.1.3).

Shear input

From the ray-tracing simulations, the components of the Jacobi matrix are given on
Npix = 40962 pixels, from which the shear γ and convergence κ (Eq. 3.13) as well as
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Figure 4.3. – Shown is a visual representation of the Cartesian coordinates of shear
γ1,2. The redshift of the shear field is z = 0.99 and the shear catalogue name is
‘los_8_2_4_[...]_plane_41’.

the magnification µ (Eq. 3.15) are calculated. Fig. 4.3 shows a visualisation of the
Cartesian shear at a redshift z = 0.99, where the choice of the specific shear field
is unimportant. For consistency, all following shear fields and estimates are shown
for the same field. The originally 4◦ × 4◦ per shear field are cropped to 1◦ × 1◦ for
better visibility. A direct comparison of γ1 and γ2 shows that apparent structures
are rotated by 45◦ to each other, as expected from the general properties of lensing
shear.

Lens input

Lens galaxy positions are extracted from the synthetic galaxy catalogue as obtained
from the SAM. Only such galaxies are extracted that fulfil some pre-set conditions,
e.g., applying a cut in magnitude, mass, or galaxy colours. It must be kept in mind,
that the galaxy positions are directly computed from the positions of the dark matter
halos in the N -body simulation. Therefore, they are not a priori confined to the
same regular grid as the ray-tracing results.
It is advantageous to project the lens positions on the same regular grid that is

used for the shear field. The easiest option is to assign galaxies to their nearest grid
point (NGP). Thus, we define a square field of Npix pixels that contains the number
of galaxies on each pixel, which is typically zero, one, or two. For this method,
analyses close to the centre of the galaxy suffer from discretisation effects on scales
comparable to the pixel width 3.5 arcsec.
A more advanced and commonly used method is a so-called cloud-in-cell algorithm

(CiC). The CiC interpolates the lens position to the four NGPs. If xg and yg are
the true galaxy positions in pixel coordinates, the fractions of a galaxy fCiC on the
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4. Shear estimates in a simulated universe

nearest grid positions (i, j) to (i+ 1, j + 1) are

fCiC
i,j = (xi+1 − xg) (yi+1 − yg) ,

fCiC
i+1,j = (xi − xg) (yi+1 − yg) ,
fCiC
i,j+1 = (xi+1 − xg) (yi − yg) ,

fCiC
i+1,j+1 = (xi − xg) (yi − yg) , (4.12)

where the sum of all fCiC is normalised to one. For galaxies with positions xg > 4095
or yg > 4095 the respective coordinate is set to 4095.
The density of lens galaxies nd for the grid positions θi for the NGP method is

given as

nd(θ) = 1
Nd

Nd∑
i=1

δD(θ − θi) , (4.13)

where for CiC grid positions one also has to sum over all four positions with their
appropriate weights fCiC. While the CiC method can be enabled in the code, galaxies
are typically assigned using the NGP method since the misplacement is negligible
for all cases considered in this thesis.

Fast-Fourier transformation

Averaging the shear field around many lenses is a convolution of the lens density
and the shear field. Thus, we can apply the convolution theorem, which states that
under certain conditions, the point-wise product of the Fourier transform of two
functions is equal to the Fourier transform of their convolution. In this case, the
average shear signal is written as

〈γ〉(θ) =
∫

d2θ′ γ(θ + θ′)nd(θ′) (4.14)

= F−1
{
F{γ} · F∗{n∗d}

}
(θ) ,

where F{f} represents a Fourier transform of a function f and F−1{f} the inverse
Fourier transform. The asterisk indicates a complex conjugate which is not needed
for the real number density but is mentioned for completeness. Please note that all
two dimensional integrals without specific boundaries are assumed to be integrated
over the whole simulated field.
To process the shear information efficiently, an FFT is employed. An FFT is

a numerical method for discrete values in arbitrary dimensions that is known for
its fast calculation speed (Press et al., 1992b). The C subroutine library of Frigo
and Johnson (2012) is used for the numerical computation of the Fourier transforms.
Since an FFT implicitly assumes periodic boundary conditions, shear estimates from
lenses near the edges of the field are bound to be inaccurate. To mitigate this effect,
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4.2. Fast extraction of shear estimates

we restrict the area from which we select lenses to the inner (4◦ − 2θout)2 of the
field. For numerical calculations in this chapter θout = 17.′5 is assumed, if not noted
otherwise.2
The result of convolving the shear field with a lens density field at redshift

zd = 0.41 is shown in Fig. 4.4. The GGL signal is averaged over Nd = 13 346 lenses
brighter than 22 mag in the r-band. In the first two panels γ1,2 are displayed as
obtained by numerically solving Eq. (4.14). The two shear components still show a
rotation of 45◦ with respect to each other. However, the tangential shear as well as
the cross shear are on average different from zero due to the presence of long modes
in the density field. A subtraction of the lensing signal around random points miti-
gates this effect (Singh et al., 2017), which is seen in the last two panels.

Tangential shear

Rotating the Cartesian shear components as introduced in Eq. (3.27) results in the
tangential and cross shear. A visual representation of these two shear components
is given in Fig. 4.5. The stacked halos around the lens galaxies show an approxi-
mately symmetric profile and, therefore, also the measured tangential shear profile
is expected to be symmetric around the lens centre. The cross shear, on the other
hand, is expected to vanish. In the first two panels of Fig. 4.5 the expectation is cer-
tainly not fulfilled, which stresses once more how important the subtraction of the
signal around random points is. If the signal around random points is subtracted,
the cross shear signal shows only small fluctuations, as can be seen in Fig. 4.5. The
fluctuations are due to statistical uncertainties and are reduced if the data of all
64 available lines-of-sight are averaged. In the following, all shear estimates are
implicitly given with the signal around random points subtracted, i.e. γ → γ−γrand.
The final tangential shear profile is obtained by azimuthally averaging the shear

around the lens centre. By using polar coordinates with the lens in the centre, we
obtain

〈γR
t,x〉(θ) =

∫ dϕ
2π 〈γt,x〉(θ, ϕ) . (4.15)

The averaging is typically done in logarithmically spaced annuli. For 16 annuli in
the range 0.′6 ≤ θ < 17.′5, the result is shown in Fig. 4.6. The shear profile is the
average profile of all 64 lines-of-sight that the MS offers, while errors are obtained
by a Jackknife method. The cross shear is compatible with zero and at least three
orders of magnitude smaller than the tangential shear. A close inspection of the
average shear profile shows a kink at θ ∼ 4′ corresponding to a comoving distance
of R ∼ 1.8 Mpc. The kink is predicted by the previously discussed halo model and
shows the transition from the 1-halo to the 2-halo term.

2Alternatively, we also provide a zero-padding method and extend the shear and lens field to
(4◦ + θout)2. For this method to work, we need to modify Eq. (4.14) to account for the empty
areas, which is discussed in Sect. 4.3 with the inclusion of shape noise and masks.
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(a) Displayed is the lensing signal γ1,2 averaged over 13 346 lenses. In this shear field, the
average shear signal of the two shear components is different from zero.
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(b) Subtracting the shear signal around random points removes the large-scale signal in the
area of interest. The resulting shear field is symmetric but noisy, as naively expected.

Figure 4.4. – Shown is a visual representation of the Cartesian coordinates of shear
γ1 (left panels) and γ2 (right panels) averaged over lens galaxies in a foreground field
at redshift zd = 0.41 and the shear field shown in Fig. 4.3 at zs = 0.99. The lens
galaxies are brighter than 22 mag in the r-band and the circle with θout = 17.′5 in-
dicates the outer boundary of reliable shear estimates. The lens catalogue name is
‘los_8_2_4_[...]_Henriques2014_[...]_plane_50’.
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(a) These two panels are analogous to Fig. 4.4a for a visualization in tangential and cross
shear components. Both signals show strong asymmetries.
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(b) In analogy to Fig. 4.4b, the GGL signal around random points is subtracted from results in
the upper two panels. Now, the expected symmetry around the lens centre for the tangential
shear and the almost vanishing cross shear is seen.

Figure 4.5. – Shown is a visual representation of tangential shear γt (left panels) and cross
shear γx (right panels) averaged over lens galaxies in a foreground field for the same lenses
and sources as in the previous figures.
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Figure 4.6. – Shown is the tangential and cross shear profile which is obtained by azimuthally
averaging the GGL signals from Fig. 4.5b. For this figure, all 64 lines-of-sight are used which
contain Nd = 822 213 lenses brighter than 22 mag in the r-band. Errors are obtained by a
Jackknife method.
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4.2. Fast extraction of shear estimates

4.2.2. Obtaining an integrated shear profile
To further compress the information of the GGL signal, it is possible to integrate
the shear profile shown in Fig. 4.6 with respect to the angle θ. An obvious solution
to this problem is to integrate the shear profile (4.15) in the radial direction

〈γ̄t〉 =
∫ θout

θin
θ dθ 〈γ̄R

t (θ)w(θ) , (4.16)

where w(θ) is an optional weighting function, e.g., to optimise the signal-to-noise
(S/N). Numerically, one has to choose an appropriate integration scheme and as
a fairly simple approach, one could use the trapezoidal rule. By making (correct)
assumptions about the true form of the underlying function, it is always possible
to increase the level of sophistication. However, the accuracy of the integration
method certainly is a function of the number of annuli in the integration range,
where the smallest meaningful size of an annulus is given by the size of one pixel.
Unfortunately, this approach leads to a considerable increase in computation time.
Thus, it is advantageous to avoid employing an integration scheme at all, since we

do not have to carefully balance computation time and numerical accuracy. There-
fore, we reconsider the steps made in Eq. (4.14) to (4.16). Instead of averaging the
shear field over many lenses first, it is convenient to perform the azimuthal and
radial integration first

γ̄t = −<
[∫

d2θ′ γ(θ + θ′) θ
′∗

θ′
w(|θ′|)

]
, (4.17)

where <(x) is the real value of a quantity x and we again add an optional weighting
function w(θ). As an illustrative example, a viable weighting function is

w(θ) = θ2
E
θ2
H(θ − θin)H(θout − θ)

π(θ2
out − θ2

in) , (4.18)

which is only supported in the region θin ≤ θ ≤ θout being enforced by the Heaviside
step function H. This form of the function also optimises the S/N ratio for a shear
profile behaving like 1/θ, i.e. an SIS, as is shown in Sect. 4.3.3.
Equation (4.17) is solved with the convolution theorem, where we have to calculate

the Fourier transforms F{γ} and F∗{[ θ∗/θw(|θ|]) ]∗}. Finally, we simply obtain
the integrated shear averaged over all lenses by

〈γ̄t〉 = 1
Nd

Nd∑
i=1

γ̄t(θi) , (4.19)

which must be slightly modified if lens positions are assigned with the CiC-method.
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4. Shear estimates in a simulated universe

4.3. Masks, shape noise, magnification effects, and
signal-to-noise

To mimic real data within its limitations more closely, the methods above must be
modified and extended. In this section, numerical methods are described to include
the dominant source of noise and sky masking, which is unavoidable in wide-field
imaging surveys. We further study effects from lensing magnification in detail.
Lastly, the S/N ratio is compared to a simplified analytical model.

4.3.1. Inclusion of shape noise and masks
Shape noise is the main source of noise in weak lensing measurements. Starting from
results of the ray-tracing simulation, we artificially add intrinsic ellipticities for each
galaxy, and also limit the number density of source galaxies to realistic values.3
To mimic a realistic set of galaxies with intrinsic ellipticities, a simplified model

of additive, uncorrelated Gaussian noise with zero mean and width σε = 0.3 is em-
ployed. The Gaussian noise is added to each Cartesian shear component as given in
the ray-tracing catalogue. Besides, we reduce the density of sources brighter than
24.5 mag in the r-band to ≈35 gal/arcmin2 summed over all redshifts. Accordingly,
a set of random source galaxy positions is assigned to every source plane. Analogous
to (4.13), we can then define a function ns for all Ns.
To include the changes in the source density, we weigh Eq. (4.14) by the number

of lens-source pairs that can be found with separation θ

〈γ〉(θ) =
∫

d2θ′ γ(θ + θ′)ns(θ + θ′) nd(θ′)∫
d2θ′ ns(θ + θ′) nd(θ′) . (4.20)

Equivalently, Eq. (4.17) is weighted by the number of sources that can be found in
an annulus from θin ≤ θ < θout

γ̄t(θ) + iγ̄x(θ) = −
∫

d2θ′ γ(θ + θ′)ns(θ + θ′) θ′∗

θ′
w(|θ′|)∫

d2θ′ ns(θ + θ′)w(|θ′|) , (4.21)

where in both cases nominators and denominators are calculated with an FFT. These
modification encompass empty regions from masks by design. Now, a zero-padding
method can be included to avoid biases from the periodic boundary conditions. It
is further possible, to enforce a minimum number of lens-source pairs that must be
present for a shear estimate to be valid.
The mean separation 〈θ〉 of lens-source pairs within an annulus in the presence of

masks, survey boundaries, and realistic source number densities can also be obtained
3Using the full information from the ray-tracing data leads to an artificial source galaxy density
of 17 000 gal/arcmin2 per redshift slice and independent of flux-limit.
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by an FFT. If galaxy positions are truly random and Poisson noise is low, i.e. the
number of lens-source pairs is very high, 〈θ〉 per bin is simply calculated as

〈θ〉i =
√
θ2
i+1 + θ2

i

2 , (4.22)

where θi are the 17 boundaries of the 16 annuli. For the more realistic case, let us
denote the denominator of Eq. (4.20) with Nds−pairs, then 〈θ〉 per bin is calculated
as

〈θ〉i =
∫

d2θ H(θ − θi)H(θi+1 − θ) Nds−pairs(θ) |θ|∫
d2θ H(θ − θi)H(θi+1 − θ) Nds−pairs(θ) . (4.23)

The mean separation of pairs in an annulus is important for connecting the shear
profile to its underlying dark matter halo, and comparison to theoretical models in
general. Magnification effects that are discussed below are known to change the
number density of galaxies on the sky; therefore, also the mean angular distance
in a bin is slightly affected. A comparison of the true mean separation (4.22) to
the idealised (4.23) may even give the first insights into how much magnification
affects the GGL estimate. In any case, caution must be applied since in general is
〈γ(θ)〉 6= γ(〈θ〉).

4.3.2. A switch for magnification effects
Magnification changes the observed number density of galaxies on the sky, which
includes lens as well as source galaxies. Theoretical predictions tend to ignore mag-
nification effects which is not a viable strategy in the age of wide-field, deep lensing
surveys. Neglecting how magnification affects GGL estimates certainly leads to bi-
ases in the result. The advantage of ray-tracing simulations is that magnification
is simulated accurately. To study effects that arise from ignoring or misestimating
magnification, we now describe a way to turn magnification off and on in simulated
data.

Lens galaxies

Lens galaxies as extracted from the galaxy catalogues are influenced by magnifica-
tion by design. Galaxies brighter than a flux-limit slim,d just need to be assigned to
their NGP. Magnification influences the observed number density on the sky by mag-
nifying the galaxy’s flux and by shifting its observed position on the sky. The former
effect can be removed easily, but the original galaxy positions cannot be recovered in
the available ray-tracing simulations. Therefore, to remove the magnification effect
on lens galaxies, a different method must be employed.
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We Taylor expand Eq. (3.16) for small magnifications |µ − 1| � 1 in the weak
lensing limit and obtain to first order

n(> s)
n0(> s) = µα−1 , (4.24)

where α is the local slope at the flux-limit slim

α = −d log10 n0(> s)
d log10 s

∣∣∣∣∣∣
slim

. (4.25)

From (4.24) follows that galaxy counts are enhanced (reduced) for local slopes α > 1
(α < 1) and are unaffected for α = 1. We therefore transform the demagnified lens
number density to a distribution with slope one. We let the number of galaxies at the
flux-limit stay constant, i.e. n0(> slim,d) = n′0(> s′lim,d), and obtain the transformed
flux

s′0(s0) = slim,d
n0(slim,d)
n0(s0) . (4.26)

In the transformed flux system α′ is unity, independent of the flux-limit. We cal-
culate a transformed number density n′d(> µs′0) and choose only galaxies brighter
than the flux-limit s′ = µs′0 > slim. A catalogue of flux-limited lens galaxies chosen
like this is, therefore, not affected by magnification, although this is not true for the
individual lens galaxies.
The number of lens galaxies is expected to stay constant within the numerical

accuracy when the magnification is switched off. For a magnitude cut of 22 mag
and a lens redshift of zd = 0.41, 595 348 lenses are found with a cut in observed
magnitude and 595 355 lenses with transformed magnitude s′. A detailed analysis
showed that for the intrinsic magnitude 917 galaxies became brighter than 22 mag
while 924 galaxies became dimmer, which leaves the number of galaxies almost
unchanged.

Source galaxies

In principle, the magnification effects for the source galaxies can be removed as
was done for the lens galaxies. However, in contrast to the lens galaxies, it is not
important to keep track of the true galaxy positions. Therefore, the easiest method
is to assign random positions that have the same number density ns(slim,s) as the
catalogue source galaxies, where slim,s is the source galaxy’s flux-limit. This allows
for the realisation of an arbitrary number of source mock catalogues.
A source mock catalogue, that is subject to magnification effects, is created with

the following strategy. We first calculate the cumulative demagnified source number
density ns,0(> s0,θ) from the simulated data. The expected source number density
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as a function of the local magnification µ(θ) is obtained by inserting a flux-limit
slim,s into Eq. (3.16)

ns(> slim,θ) = 1
µ(θ) n0

(
>

slim

µ(θ) ,θ
)
, (4.27)

where the flux-limit is locally modified by the magnification to slim/µ(θ).
We define the threshold of finding a source galaxy at angular position θ

T (θ) = Ans(> slim,θ)
Npix

, (4.28)

with A = 16 deg2 being the area of one simulated field and where we enforce T < 1.
We then draw a random number P (θ) between zero and one and assign a galaxy at
position θ if T (θ) > P (θ). In general, the number of assigned source galaxies differs
from the number in the demagnified case due to magnification effects. Using this
method, an arbitrary number of mock catalogues can be generated. By inserting
µ(θ) = 1 into (4.27), we recover an assignment of purely random positions, i.e. the
‘magnification switched off’ case.

4.3.3. Signal-to-noise in theory and simulation
Using simplifying assumptions about the underlying average mass profile, it is fairly
easy to calculate the expected S/N ratio for GGL. To derive this equation, we closely
follow the considerations given in Bartelmann and Schneider (2001).
We assume that the gravitational lens has the form of an SIS as discussed in

Sect. 3.2. Then, we azimuthally average the tangential shear profile using Ns source
galaxies. The tangential shear of such a deflector only depends on the radial distance
to the centre and is denoted as εt. We can then define an estimator for the lensing
signal X, including for now arbitrary factors w(θi) = wi

X =
Ns∑
i=1

wi εt,i , (4.29)

where X vanishes when there is no lensing signal. Using (3.18), the expectation
values of X and X2 of an SIS yield

E(X) = θE

Ns∑
i=1

wi
2θi

, (4.30)

E(X2) =
Ns∑
i,j=1

wiwj E(εt,i, εt,j)

=
[
E(X)

]2
+ σ2

ε

Ns∑
i=1

w2
i . (4.31)
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Then the S/N becomes

S
N = θE

2σε

∑Ns
i=1wi/θi√∑Ns

i=1w
2
i

. (4.32)

The S/N maximises for factors wi ∝ 1/θi, as is seen when (4.32) is differentiated
with respect to wj. Inserting this choice of the wi in (4.31) yields the sum

〈∑
i θ
−2
i

〉
which can be replaced by its ensemble average over the annulus〈∑

i

θ−2
i

〉
= Ns

〈
θ−2
i

〉
= 2Ns

θ2
out − θ2

in

∫ θout

θin
θdθ θ−2

= 2nsπ ln(θout/θin) . (4.33)

Finally, substituting the Einstein angle (3.4) leads to
S
N = θE√

2σε
√
πns

√
ln(θout/θin)

= 0.7
√

ns

35 arcmin−2

(
σε
0.3

)−1
(

σv
200 km/s

)2√ ln(θout/θin)
ln 10

〈
Dds

Ds

〉
, (4.34)

for a single deflector with typical velocity dispersion σv ∼ 200 km/s. All values have
been chosen as used in this thesis. It can be seen that the GGL signal cannot be
detected for a single lens galaxy; a stacking of lensing signals increases the S/N by√
Nd. Thus, at least a hundred lenses are needed for a significant detection.
In Fig. 4.7 the resulting S/N from the MS for various lens-source combinations is

shown compared to results from Eq. (4.34). The signal from the MS is the integrated
shear profile in an annulus from θin = 0.′6 to θout = 17.′5 estimated as in Eq. (4.21)
with weighting function (4.18). As before, lens galaxies brighter than 22 mag in
the r-band are used. The mean velocity dispersion 〈σv〉 is not calculated by the
SAM, but it is related to the stellar mass M∗ by σv ∝ Mα

∗ with slope α ≈ 0.3
(Zahid et al., 2016). We use fitting parameters from Zahid et al. (2016) that are
listed in their Table 1 (rows with labelling ‘SHELS’) and shown in their Fig. 7.4
The number of source galaxies is equal to the expected number of sources with a
magnitude cut of 24.5 mag in the r-band such that the cumulative number density
is ns = 35 arcmin−2; the source positions are then randomly distributed. The shape
noise is set to σε = 0.3. Errors are obtained through a Jackknife method of the
64 lines-of-sight. The resulting S/N is seen in the upper panel of Fig. 4.7. The
model assumes a simplified density profile and we just considered shape noise as a
source of noise. Therefore, a perfect match between theory and simulated data is
not expected. In general, the simulated S/N is smaller than the theoretical one due
to the presence of subdominant noise terms, e.g., sample variance. Overall, theory
and data show good agreement.

4Zahid et al. (2016) used data from the Smithsonian Hectospec Lensing Survey (SHELS) that
has an r-band magnitude limit of 20.9 mag and contains central galaxies up to redshift 0.7.
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(a) The S/N as obtained from the MS for various lens redshifts (see x-axis) and
source redshifts (see colour code).
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(b) For the same redshift combinations as in the upper panel, the theoretical S/N
is calculated.

Figure 4.7. – The theoretical S/N as given in (4.34) is compared to the one obtained by
data from the MS for different lens and source redshifts. In general, the theoretical S/N
overestimates the true S/N but for the highest lens and source redshifts. The grey bars under
the data points are provided for better visibility of the general trend.

65





CHAPTER 5

MAGNIFICATION BIAS IN
THE SHEAR-RATIO TEST

Using the numerical tool ShearCo described in Sect. 4.2, the influ-
ence from magnification on the so-called SRT is explored. This
chapter is complemented by Appendix A by studying the break-down
of the thin-lens approximation (TLA) and its influence on the SRT.
The following chapter was first published as Unruh et al. (2019) in
the journal Astronomy & Astrophysics, Volume 623, pages A94-
A103, reproduced with permission ©ESO.

Abstract: Using the same lens galaxies, the ratios of tangential shears for differ-
ent source galaxy redshifts are equal to the ratios of their corresponding angular-
diameter distances. This is the so-called shear-ratio test (SRT) and it is valid when
effects induced by the intervening large-scale structure (LSS) can be neglected. The
dominant LSS effect is magnification bias which, on the one hand, induces an addi-
tional shear, and on the other hand, causes a magnification of the lens population.
Our objective is to quantify the magnification bias for the SRT and show an easy-
to-apply mitigation strategy that does not rely on additional observations. We use
ray-tracing data through the Millennium Simulation to measure the influence of
magnification on the SRT and test our mitigation strategy. Using the SRT as a
null-test, we find deviations from zero up to 10% for a flux-limited sample of lens
galaxies, which is a strong function of lens redshift and the lens-source line-of-sight
separation. Using our mitigation strategy, we can improve the null-test by a factor
of ∼100.
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5. Magnification bias in the shear-ratio test

5.1. Introduction

Light bundles from background galaxy images get coherently distorted as they travel
through the inhomogeneous Universe. We refer to that effect as gravitational lensing.
The distortion includes a change of the intrinsic shape of the galaxies (lensing shear)
as well as a magnification effect which affects the observed number density of galax-
ies. In the regime of weak gravitational lensing, the change of galaxy shapes cannot
be seen for single galaxies. A statistical approach is needed where information is ex-
tracted from thousands to millions of lens galaxies. Amplitude and direction of the
distortion depend on the integrated tidal gravitational field along the line-of-sight
as well as the curvature of the Universe, which makes weak lensing measurements
a powerful cosmological probe (see, e.g., Kilbinger, 2015, for a recent review). Ar-
guably, it is the most powerful method to constrain the equation of state of Dark
Energy (Albrecht et al., 2006). Ongoing surveys like the Hyper Suprime-Cam SSP
Survey (Aihara et al., 2018), Kilo Degree Survey (KiDS) (Kilo Degree Survey, de
Jong et al., 2017) and Dark Energy Survey (DES) (Abbott et al., 2018) already put
tight constraints on cosmological parameters (Troxel et al., 2018; Hildebrandt et al.,
2017) especially in combination with other probes (van Uitert et al., 2018; Joudaki
et al., 2018; Harnois-Déraps et al., 2017). In the future even bigger projects are
planned with the Euclid mission (Laureijs et al., 2011), the Square Kilometre Array
Observatory (SKA, Blake et al., 2004), and the Large Synoptic Survey Telescope
(LSST, Ivezić et al., 2019).
The correlation between the positions of a foreground lens population and the

shear of more distant background source galaxies has been named galaxy-galaxy
lensing (GGL; see, e.g., Hoekstra, 2013). The excess projected mass around lens
galaxies within an aperture (Squires and Kaiser, 1996; Schneider, 1996) is reflected
by the so-called tangential shear γt. In 2003, Jain & Taylor proposed the shear-
ratio test (SRT) as a purely geometrical probe for cosmology. If the maximum
separation over which galaxies are correlated with the large-scale structure (LSS) is
small compared to the angular-diameter distance between lens and source, the ratio
of tangential shear values from two different source populations with the same lens
population does only depend on a ratio of angular-diameter distances. Hence, there
is no contribution from the lens properties anymore, while the distance ratios depend
on cosmology through the distance-redshift relation. Therefore, shear-ratios were
originally constructed for probing cosmological parameters (Jain and Taylor, 2003;
Bernstein and Jain, 2004). However, as it turns out, the dependence on cosmology
is rather weak (Taylor et al., 2007, Zhao & Schneider in prep.) and correspondingly,
first applications of this SRT returned only weak constraints (Kitching et al., 2007;
Taylor et al., 2012). Alternative probes, e.g., CMB (Planck Collaboration et al.,
2016), Supernovae Type 1a (Scolnic et al., 2018), and cosmic shear (Hildebrandt
et al., 2017), provide far more accurate constraints on cosmological parameters,
which essentially renders the SRT non-competitive for its original purpose. Yet, we
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can turn the argument around and use the SRT as a null test to detect remaining
systematics (see, e.g., Schneider, 2016; Prat et al., 2018).
The main challenge in ongoing and future weak lensing surveys is to obtain an

unbiased estimate of shear from faint background galaxies and their corresponding
redshift distributions. Great efforts to understand what influences/biases the data
beside shape distortion by the weak lensing effect (see, e.g., Mandelbaum, 2018;
Harnois-Déraps et al., 2017; Amon et al., 2018; Zuntz et al., 2018; Abbott et al.,
2018) uncovered, e.g., noise bias (Bartelmann et al., 2012; Melchior and Viola, 2012),
underfitting bias (Voigt and Bridle, 2010), and intrinsic alignment effects (Troxel and
Ishak, 2015). Moreover, photometric redshift estimates suffer from dust obscuration
in galaxies, the lack of a sufficient number of spectroscopic galaxy redshifts for the
calibration, and a limited number of spectral bands and galaxy template spectra.
Since biases in the data, if uncorrected, can be a magnitude larger than the effects
from weak lensing, different strategies including null tests have been proposed to
check for remaining systematics. Commonly used null tests are correlations between
corrected galaxy shapes and uncorrected stellar ellipticity (e.g., Heymans et al.,
2012) or other quantities that should be independent of shear, as well as checking
for B-mode statistics with the cross shear or using COSEBIs (Complete Orthogonal
Sets of E-/B-mode Integrals, Schneider et al., 2010; Asgari et al., 2017). The SRT
emerged among other more recently introduced probes for systematics (see, e.g., Cai
et al., 2016; Li et al., 2017, for alternative probes).
Magnification bias in GGL and the SRT has been considered by Ziour and Hui

(2008). Hilbert et al. (2009) showed that magnification bias suppresses the GGL sig-
nal expected from shear that is induced by matter correlated with the lens galaxies,
by up to 20%. For galaxies in the Canada-France-Hawaii Telescope Lensing Sur-
vey (CFHTLenS) the magnification bias has a confirmed impact of ∼ 5% (Simon
and Hilbert, 2018). The LSS between us and the lens will shear source galaxies.
While this shear is not correlated with the true positions of the lens galaxies, mag-
nification by the LSS also affects the observed number density of lenses and thus
leads to a correlation between observed lens positions and source shear (Bartelmann
and Schneider, 2001). The induced correlation between foreground and background
galaxy populations has already been measured in different surveys (see, e.g., Scran-
ton et al., 2005; Garcia-Fernandez et al., 2018). Despite the fairly large effect of
this magnification bias on the GGL signal shown by Hilbert et al. (2009), it ap-
pears to have been neglected in (almost) all observational studies of GGL and their
quantitative interpretation.
In this paper, we will investigate the effect of magnification bias on the SRT.

Since magnification bias is a function of source and lens redshift, the SRT can fail
even if shear and redshift data are sound (Ziour and Hui, 2008). We use simulated
data to quantify the magnification bias in the SRT, describe its properties and, most
importantly, we will present a simple mitigation strategy. The main advantage of this
mitigation method is that no additional measurements are needed. We also consider
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a second mitigation strategy that employs stellar velocity dispersion measurements
to estimate the magnification.
This paper is organised as follows: in Sect. 5.2 we will revisit the basics of the

SRT in more detail. In Sect. 5.3 we will briefly describe our synthetic lensing data
taken from ray-tracing through the Millennium Simulation as well as the mock lens
catalogue. The effects of the magnification bias and its mitigation strategies will be
described in Sect. 5.4 and Sect. 5.5. We will conclude in Sect. 5.6.

5.2. Weak lensing and the shear-ratio test

5.2.1. Cosmological distances
The comoving distance χ(z1, z2) of a source at redshift z2 from a lens at redshift z1 is
given by an integration over the Hubble parameter H(z) as a function of redshift z

χ(z1, z2) =
∫ z2

z1

c dz′
H(z′) , (5.1)

where (
H(z)
H0

)2

= Ωm(1 + z)3 + (1− Ωm) , (5.2)

for a flat Universe with matter density Ωm in units of the present-day critical density
ρcrit,0 = 3H2

0/(8πG). The comoving distance χ is related to the angular-diameter
distance D via:

D(z1, z2) = χ(z1, z2)
1 + z2

. (5.3)

Note that χ(z1, z2) = χ(0, z2) − χ(0, z1) but D(z1, z2) 6= D(0, z2) − D(0, z1) except
for z2 − z1 � 1. In the following, we will omit the argument zero in the distances,
i.e. D(0, z) := D(z).

5.2.2. Galaxy-galaxy lensing
Foreground matter at a redshift zd will deflect light rays from background galaxies
and induce a shear pattern. In complex notation the shear reads

γ(θ) = γ1(θ) + iγ2(θ) . (5.4)

Here, θ is the position on the sky and γ1,2 are the Cartesian shear components at
angular position θ. In GGL, the shear is measured with respect to the connecting
line between a lens at position θd and a source galaxy – orthogonal to that line is
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the tangential shear γt, and the cross shear γ× is measured with a 45◦-rotation. For
a fixed lens position θd this corresponds to a rotation of the shear components

γt(θ) + iγ×(θ) = −γ(θ) (θ − θd)∗
θ − θd

, (5.5)

where we also conveniently write the position on the sky in complex notation,
i.e. θ = θ1 + iθ2, and an asterix denotes complex conjugation.
Shear is caused by a foreground line-of-sight overdensity. The lensing strength

factorises into a part containing all the lens properties, and one containing the
angular-diameter distances between us and source, D(zs) = Ds, as well as between
lens and source, D(zd, zs) = Dds (see, e.g., Schneider et al., 1992). The lens proper-
ties are characterised by its matter distribution and its angular-diameter distance,
Dd. Shear that is caused by the matter associated with the lens galaxies will be de-
noted with γg, where the ‘g’ refers to galaxy. The expectation value of this tangential
shear measurement can be written as

γg(θ; zd, zs) = γg,∞(θ; zd) Dds

Ds
:= γg,∞(θ; zd) β(zd, zs) , (5.6)

where zd is the redshift of the lens for background sources at redshift zs. The
lensing efficiency β is a ratio of angular-diameter distances which is scaled by γg,∞.
If not noted otherwise further expressions of shear in this paper are tangential shear
estimates.

5.2.3. The classical shear-ratio test
We can calculate a weighted integral to obtain a mean shear estimate γ̄g

γ̄g(θ) =
∫

d2θ′ γg(θ + θ′)w(|θ′|) , (5.7)

where

w(θ) = 1
2πθ2 H(θ − θin)H(θout − θ) , (5.8)

is a weight function different from zero only in the annulus θin ≤ θ ≤ θout and
where H is the Heaviside step function. This form of the weight function optimises
the signal-to-noise ratio for a shear profile behaving like 1/θ, as is the case for an
isothermal profile (Bartelmann and Schneider, 2001).
If the tangential shear can be factorised as in Eq. (5.6), i.e. into a factor that

depends only on lens properties and the lensing efficiency, we can consider shear
measurements from two different source populations at zi and zj behind the same
lens galaxy or a population of lens galaxies at fixed redshift zd. Then the ratio,
R, of those shear measurements is independent of the lens properties and is solely
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determined by the geometry of the observer-lens-source system as a ratio of lensing
efficiencies,

γ̄g(zd, zj)
γ̄g(zd, zi)

= β(zd, zj)
β(zd, zi)

=: R(zd; zi, zj) . (5.9)

Equation (5.9) can be written as a null test which can be applied in cosmic shear
measurements as a consistency check that does not require any additional data. This
method is purely based on geometrical considerations and as such it is independent
of structure growth in the Universe. This makes the SRT easy-to-apply since it does
not require the use of simulations.

5.3. Mock data
5.3.1. Millennium simulation data
In this work we make use of the Millennium Simulation (MS, Springel et al., 2005).
The MS is an N -body simulation tracing the evolution of 21603 dark matter particles
of mass 8.6×108 h−1M� enclosed in a (500h−1Mpc)3-cube, where h is the dimension-
less Hubble parameter defined as H0 = 100h km s−1 Mpc−1. In the MS, 64 snapshots
are available in the redshift range from z = 127 to today. The underlying cosmol-
ogy is a flat ΛCDM cosmology with matter density parameter Ωm = 0.25, baryon
density parameter Ωb = 0.045, dark energy density parameter ΩΛ = 1−Ωm = 0.75,
a dimensionless Hubble parameter h = 0.73, a scalar spectral index ns = 1 and a
power spectrum normalization of σ8 = 0.9. These values agree with a combined
analysis of 2dFGRS (Colless et al., 2001) and first-year WMAP data (Spergel et al.,
2003).
Various catalogues of galaxies have been added to the simulation using semi-

analytic galaxy-formation models. Saghiha et al. (2017) showed that the galaxy
catalogue from the model by Henriques et al. (2015) matches best with the ob-
served GGL and galaxy-galaxy-galaxy lensing signal from the CFHTLenS. We use
lens galaxies from the redshift slices 59 to 43 corresponding to z59 = 0.0893 and
z43 = 0.8277.
Furthermore, we use simulated lensing data obtained by a multiple-lens-plane ray-

tracing algorithm in 64 realizations with a 4 × 4 deg2-field-of-view (Hilbert et al.,
2009), where we consider the source redshift planes 58 to 34 that correspond to
redshifts z58 = 0.1159 and z34 = 1.9126. To perform the ray-tracing, the matter
distribution in each redshift slice is carefully mapped to the midplane. Then, a mul-
tiple lens plane algorithm is used to calculate shear, magnification and convergence
information on a grid in each midplane. With a box size of 500h−1Mpc, the MS is
not large enough to contain a full light cone out to high redshifts. However, a simple
stacking of simulation cubes would result in a light ray that meets the same matter
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structures several times on its way to z = 0 due to periodicity. Therefore, Hilbert
et al. (2009) decided to perform the ray-tracing using a skewed angle through the
box, yet making use of its periodic boundary conditions. Hence, no random ro-
tation or translation of the matter in the box has been done, which preserves the
galaxy-matter correlation. Effectively, a light ray can travel a comoving distance of
5h−1Gpc before encountering the same matter structures.
To avoid double counting, the indices in Eq. (5.9) will be restricted to i < j since

R(zd; zi, zj) = 1/R(zd; zj, zi). We will also only use consecutive redshift bins for
taking ratios due to the relation R(zd; zi, zk) = R(zd; zi, zj)R(zd; zj, zk).

5.3.2. Obtaining a tangential shear estimate
We can calculate the weighted mean tangential shear

γ̄t(θ) = −<
[∫

d2θ′ γ(θ + θ′) θ
′∗

θ′
w(|θ′|)

]
, (5.10)

for every grid point of the 4× 4 deg2-field. It defines a convolution which reduces to
a simple multiplication in Fourier space. We thus use fast Fourier Transform (FFT)
from the library of Frigo and Johnson (2012) to compute the shear estimator (5.10).
An FFT implicitly assumes periodic boundary conditions. Since we convolve the
shear field with a function of finite support, results from the FFT will be wrong in
a stripe of the thickness θout around the field edge. Thus, we do not consider shear
data in this stripe and focus on the data in the inner (4◦ − 2θout) × (4◦ − 2θout)
area of the field. For the inner boundary of the annulus we will set θmin = 0.′5 in
the paper if not explicitly noted otherwise. The exact value of θmin is not crucial,
since the weighting function will give the same shear signal per logarithmic bin if
the mass profile is isothermal. However, we cannot go to arbitrarily small θin due to
the finite resolution of the simulation.
We extract the positions of galaxies from the Henriques et al. (2015) model cata-

logue that fulfill our selection criteria, e.g., a flux limit or a cut in halo mass. The
positions of the NL galaxies are then assigned to their nearest grid point. Each pixel
in the grid has a size of (3.5 arcsec)2. Thus, as long as we choose the size of our
integration area in (5.10) in the square arcminute regime, we will not suffer from
discretization effects. We then simply average the shear signal (5.10) for all lens
galaxies

〈γ̄t〉 = 1
NL

NL∑
i=1

γ̄t(θi) . (5.11)

When we apply a cut at 24 mag in the r-band, we typically find 1500 lens galaxies
per field in the lowest redshift slice and around 30 000 lens galaxies in the highest
redshift slice. To reduce the statistical error, we use the shear information on all
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40962 pixel (in contrast to using shear information only on those positions where a
source galaxy is located according to the Henriques galaxy catalogue).
We repeat the whole process, but this time we randomise the lens galaxy positions.

Singh et al. (2017) showed that subtracting the signal around random points from
the actual shear signal usually leads to a more optimal estimator with a decreased
error budget. Although this poses only a minor contribution in our case, we change
our shear estimator to γ̄t → γ̄t − γ̄t,rand.

5.4. The magnification bias
5.4.1. The conventional shear-ratio test
We calculate ratios of observed shear estimates and consider the null-test〈

γ̄g(zd, zj)
γ̄g(zd, zi)

〉
− β(zd, zj)
β(zd, zi)

= 0 . (5.12)

We use the shear-ratios for all statistically independent redshift bins and show the
result of the SRT in Fig. 5.1. Since our method is unaffected by shape noise and
Poisson noise of source galaxies, we expect only minor deviations from zero in the
SRT. However, this is not the case. The deviation from zero gets worse for higher
lens redshift and smaller separations between lens and sources. In the right figure,
we applied a cut in magnitude which includes the magnification (and is thus the ob-
served magnitude), in contrast to the left figure where we used all available galaxies
in the catalogue which is equivalent to a stellar mass-limited sample. In the lowest-
redshift bins (i.e. zd < 0.15) the results are almost identical since > 95% of the
lenses are brighter than 24 mag in the r-band. For these redshift bins, the classical
SRT (5.12) performs as expected. In the medium-redshift range 0.15 ≤ zd ≤ 0.4 a
sensible choice of lens and source redshifts will keep the deviations small. The effect
for the magnitude-limited sample is quantitatively smaller but qualitatively simi-
lar. The bias is strongest for high-redshift lenses with zd > 0.4 where even widely
separated lenses and sources show deviations from zero at the percent level.

5.4.2. Magnification effects
Until now, we have only considered the shear caused by the matter that is associated
with the lens galaxies at fixed redshift zd. However, there exists intervening LSS
between us and the source that can induce an additional shear signal. This shear is
not correlated with the true positions of lens galaxies. However, the LSS also alters
the distribution of lens galaxies on the sky by magnification effects. This leads
to a correlation between shear caused by the LSS and the observed distribution of
galaxies. For most practical purposes magnification bias is the dominant second-
order effect (Hui et al., 2007).
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Figure 5.1. – Shear-ratio test of two populations of galaxies that are sheared by the same
lens, i.e. zfar > znear > zd with source redshifts in consecutive bins. The dotted lines separate
shear-ratios from different lens galaxies, while source redshifts increase from left to right, which
is highlighted by colour code. Each color represents a combination of two sources at znear and
zfar. Ideally, the outcome of the SRT (5.12) is zero. Data are taken from ray-tracing through
the MS. The shear estimator 〈γ̄t〉 is defined in Eq. (5.11) with θin = 0.′5 and θout = 5′. Errors
are obtained by a Jackknife method from the 64 different realizations per redshift. Upper:
all simulated galaxies have been used. Lower: a magnitude cut of 24 mag in the r-band is
applied for the lens galaxies.
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We can approximate the influence of magnification by the LSS with

γ̄t(zd, zs) = γ̄g(zd, zs) + γ̄LSS(zs) . (5.13)

The shear at the source redshift is a superposition of the shear induced by matter
associated with the lens galaxies at redshift zd and the LSS between us and the
source galaxies. An average of the shear contribution from the LSS over a sufficient
number of source galaxy must be zero. However, we use lens galaxies to obtain
an averaged tangential shear estimate and the observed position of these galaxies
is altered by the intervening LSS. This leads to a correlation between LSS-induced
shear and lens galaxy positions:

〈γ̄t〉(zd, zs) = 〈γ̄g〉(zd, zs) + 〈γ̄LSS〉(zd, zs) . (5.14)

The relative contribution of the foreground LSS to the observed lensing signal
depends on the size of the annulus. We expect that for a small annulus close to the
lens position, the mean lensing signal is dominated by shear associated with matter
at the lens redshift zd. Hence, we investigate the impact of θout for two different
θin for the shear estimator γ̄t. We concentrate on the realistic case of a flux-limited
sample and for each θin we vary θout for an SRT as done in Fig. 5.1. For clarity we
only plot the SRT for the lens-source-source combination zd = 0.83, znear = 0.91 and
zfar = 0.99 which corresponds to one the largest deviations from zero in our SRT.
The result shown in Fig. 5.2 follows our expectations. The deviation from zero is
less pronounced for small annuli but it is still present. For larger integration ranges,
the deviation is larger, but stays approximately constant for θout ≥ 5′.
We verify that it is indeed magnification that affects the shear estimate around

galaxies. Since the influence grows with redshift, with smaller redshift differences of
lens and source galaxies (Fig. 5.1), and with the size of the annulus (Ziour and Hui,
2008, see Fig. 5.2), we choose (again) our highest redshift bins with zd = 0.83 and the
two consecutive redshift bins as source galaxies with znear = 0.91 and zfar = 0.99. We
set the integration range to θout = 17.′5. We bin the lens galaxies in magnification
such that each bin contains a roughly equal number of lenses. Then, we measure the
shear in the two source planes, 〈γ̄t〉(zd, znear) and 〈γ̄t〉(zd, zfar), for each bin and plot
it against the average magnification per bin. Furthermore, we want to visualise the
influence the LSS has on the measured shear result. Since we chose lens and source
plane close to each other, almost all the relevant LSS is also in front of the lenses.
Then, we can just measure the shear signal 〈γ̄t〉(zd, zd) around the lens galaxies at
the lens redshift to get an approximate measurement of 〈γ̄LSS〉(zd, zs).
The result is displayed in Fig. 5.3, where we also plot the mean shear for all lens

galaxies irrespective of magnification as dashed lines. As expected from the form
of the lensing kernel, the shear from sources with higher redshift 〈γ̄t〉(zd, zfar) is
larger than 〈γ̄t〉(zd, znear). Shear and magnification show a clear correlation. The
red dashed line, however, is naively expected to be consistent with zero, as it would
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Figure 5.2. – For an identical setup as the right Fig. 5.1 we perform the SRT; we vary the
integration range by choosing two different θin and by altering θout in the shear estimator
(5.10) for each θin. The leftmost points are shear estimates around a thin annulus at θ = 0.′15
(blue) and θ = 0.′5 (orange). For clarity only the outcome of the SRT for the combination
zd = 0.83, znear = 0.91 and zfar = 0.99 is shown. The SRT differs strongly from zero regardless
of θout, only at a thin annulus very close to the lens is the signal almost compatible with zero.
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Figure 5.3. – The shear estimate 〈γ̄t〉(zd = 0.83, zi) with θin = 0.′5 and θout = 17.′5 is
shown. A grey vertical line indicates the mean magnification of all lens galaxies. The lens
galaxies have been binned in magnification with a roughly equal number of lenses in each bin.
We omitted the two highest bins in magnification at mean magnification µlens = 1.11 and
µlens = 1.6 for clarity. The dashed lines represent the mean shear estimates for all lenses.
Due to the magnification effects of the intervening LSS, the shear around lens galaxies at lens
redshift (red triangles) differs from zero as does the red dashed line which is an approximate
measure for γ̄LSS in Eq. (5.14). A clear correlation between shear and magnification can be
seen.
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be the case if all the contributions to the lensing signal came from matter associated
with the lens galaxies. However, there exists an additional contribution from shear
caused by the LSS in front of the lens galaxies. Due to the selection of lens galaxies
in the foreground (in contrast to random positions) the LSS-induced shear does not
vanish. It can be seen that the red dashed line, a measure for γ̄LSS, is of the same
order of magnitude as the blue dashed line, the shear signal for sources zs > zd.

5.5. Mitigation strategies

As we have seen in the previous section, the influence of the magnification bias is
negligible for low lens redshifts as well as for lenses and sources separated widely in
redshift. This was already pointed out in Moessner and Jain (1998). However, as
we approach Stage IV experiments to infer the equation of state parameter for Dark
Energy, we go to higher and higher lens and source redshifts. A mitigation strategy
is thus crucial. Using theoretical considerations for lensing power spectra, Ziour
and Hui (2008) derived a mitigation in their Eq. (38) for the SRT. It involves the
knowledge of the easily obtainable number count slope as well as the linear galaxy
bias factor at of lenses as a function of mass, which is notoriously difficult to obtain.
The assumption of a linear bias factor will eventually break down for small angular
scales, and even on large scales, a linear bias is not necessarily a sufficiently accurate
approximation (Hui et al., 2007).
In the following, we will introduce a new mitigation strategy. Its main advantage

is that it does not require additional observations or simulations. As can be seen
in Fig. 5.3, the shear signal 〈γ̄t〉(zd, zd) is not zero if measured at the lens redshift.
However, the shear induced by matter associated with the lens galaxy 〈γ̄g〉(zd, zd) is
certainly zero. Thus, what we measure is due to the intervening LSS

〈γ̄t〉(zd, zd) = 〈γ̄LSS〉(zd, zd). (5.15)

In general, the influence of the LSS grows with redshift, and if the separation
of lenses and sources is moderate, we can introduce a scaling factor λ & 1 that
parametrises this similarity as 〈γ̄LSS〉(zd, zs) ≈ λ〈γ̄LSS〉(zd, zd). From the form of the
lensing kernel, we can deduce that the main contribution of the LSS to the shear
signal is located at about half the distance between us and the source. Therefore, if
we increase the source redshift only slightly, we will also increase λ slightly. Using
these assumptions, it follows naturally that the SRT performs better for high source
redshifts at fixed lens redshift. Relative to the shear contribution from the LSS, the
shear from matter associated with the lens galaxies shows a strong dependence on
source distance. Thus, the LSS-induced shear has less impact for larger line-of-sight
separations of lens and sources.
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5. Magnification bias in the shear-ratio test

5.5.1. Improved SRT – quantifying the foreground contribution
The scaling factor can be obtained from the data by correlating the observed lensing
signal 〈γ̄t〉(zd, zs) at the source redshift with the foreground part 〈γ̄LSS〉(zd, zd). Using
Eq. (5.14), we find

〈γ̄t(zd, zs)γ̄LSS(zd, zd)〉 = 〈γ̄g(zd, zs)γ̄LSS(zd, zd)〉
+ λ(zd, zs) 〈γ̄LSS(zd, zd)γ̄LSS(zd, zd)〉 , (5.16)

where averages are taken as in Eq. (5.11) for each lens. The first term on the right-
hand side, 〈γ̄gγ̄LSS〉, vanishes since the shear from matter associated with the lens
galaxies is uncorrelated with the shear caused by the foreground matter. Exploiting
Eq. (5.15), we can calculate the scaling factor by

λ(zd, zs) = 〈γ̄t(zd, zs)γ̄LSS(zd, zd)〉
〈γ̄LSS(zd, zd)γ̄LSS(zd, zd)〉 = 〈γ̄t(zd, zs)γ̄t(zd, zd)〉

〈γ̄t(zd, zd)γ̄t(zd, zd)〉 . (5.17)
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Figure 5.4. – Shown is a shear-ratio test with the same properties as the right panel of
Fig. 5.1 but with a modified shear estimator (5.18) that corrects for magnification bias. While
the lowest-redshift bins are almost unchanged, the high-redshift bins show a significant im-
provement. Note, the change of y-axis compared to the right panel of Fig. 5.1.
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For brevity, we will introduce a new tangential shear estimator

〈γ̂t〉(zd, zs) = 〈γ̄t〉(zd, zs)− λ(zd, zs)〈γ̄t〉(zd, zd) , (5.18)

In Fig. 5.4, we show the results for the modified estimator in the realistic case of a
flux-limited sample1. Correcting for magnification bias indeed improves the SRT by
two orders of magnitude. The scaling factor λ ranges from 1.1 for redshifts adjecant
to the lens redshifts to λ ≈ 1.7 for ∆z ≈ 1 to λ ≈ 2.5 for ∆z ≈ 2. This behaviour is
fairly independent of lens redshift, while λ-values tend to be slightly higher for low
lens redshifts than for high lens redshifts.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
lens redshift zd

10−6

10−5

10−4

〈γ̄
〉

mass cut: 〈γ̄t〉(zd, znear)

mass cut: −λ(zd, znear) 〈γ̄LSS〉(zd, zd)

magn. cut: 〈γ̄t〉(zd, znear)

magn. cut: −λ(zd, znear) 〈γ̄LSS〉(zd, zd)

Figure 5.5. – A comparison of γ̄t and λ γ̄LSS, where we used the shear estimator (5.11)
within an annulus θin = 0.′5 and θout = 5′. Red and blue symbols correspond to a mass-
limited sample while the orange and cyan symbols correspond to a magnitude cut r = 24.
znear is the adjacent redshift slice of the lens redshift zd. For low redshifts the scaling factor λ
is around 1.2 and it decreases to 1.1 for the high redshift bins. The contribution from the LSS,
γ̄LSS, to the shear is a steep function of lens redshift. Whereas for low redshifts the effect is
negligible, the ratio of γ̄LSS/γ̄t approaches 1 for the highest lens redshift bin considered. The
flux-limited sample is in general less affected but shows qualitatively a similar behavior.

To visualise the contribution from magnification effects, Fig. 5.5 shows 〈γ̄LSS〉 in
comparison to the shear signal 〈γ̄t〉 measured from the source redshift slice that is

1The result for the stellar mass-limited sample are almost identical to those in Fig. 5.4.
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5. Magnification bias in the shear-ratio test

adjacent to the lens redshift slice. For low lens redshifts, 〈γ̄LSS〉 makes a negligible
contribution. The ratio 〈γ̄LSS〉/〈γ̄t〉 rises with increasing redshift. The red and blue
lines correspond to a mass-limited sample and show a stronger contribution by the
LSS to the shear signal than the orange and cyan lines, which represent a flux-limited
sample of lens galaxies; this behaviour was already seen in Fig. 5.1. The reason for
this is the way magnification changes the observed number density of galaxies in
the sky. For a stellar mass-limited sample the ratio of lensed galaxy number counts,
n, over unlensed galaxy number counts, n0, depends solely on the magnification,
n/n0 = µ−1. A flux-limited sample, on the other hand, also depends on the slope of
cumulative galaxy counts evaluated at the limiting flux, α = − (d lnn0/d ln s) |slim .
The ratio of lensed over unlensed galaxy number counts changes to n/n0 = µα−1.

5.5.2. Alternative ways of obtaining the scaling factor λ
In the previous section, we showed that the scaling factor λ can be obtained by
correlating the lensing signal at the lens redshift with that at the source redshift. We
can also divide the lens population into sub-samples that show a different dependence
on magnification to obtain an estimate for the scaling factor. For each of the N ≥ 2
sub-samples Eq. (5.14) holds

γ̄it(zd, zs) = λ(zd, zs)γ̄iLSS(zd, zd) + γ̄ig(zd, zs) . (5.19)

A binning of the lenses in their magnification is, of course, dependent on magnifica-
tion but unfortunately, this property is not directly observable. As proof of principle,
we will show the result of this approach with the magnification readily available in
the ray-tracing catalogues. We already presented the dependence of shear on mag-
nification in Fig. 5.3 where we split the lens sample into 19 sub-samples. For a high
number of lens galaxies, it is sufficient to split the lens population into two sam-
ples, for example, in samples with magnification bigger or smaller than the mean
magnification. Then we can calculate the scaling factor λ with

λ = γ̄1
t − γ̄2

t
γ̄1

LSS − γ̄2
LSS

, (5.20)

where ‘1’ corresponds to µlens < 〈µ〉 and ‘2’ to µlens ≥ 〈µ〉. Furthermore, we set
γ̄1

g(zd, zs) = γ̄2
g(zd, zs) since the shear induced by matter correlated with the lens

galaxies must be independent of the lens magnification.
We checked this approach and found similar results to our previous method for

lens redshifts zd > 0.15 with slightly worse performance for high source redshifts.
For the low-redshift bins, we have only a comparatively low number of galaxies
available, while at the same time the average of the LSS-induced shear γ̄LSS is of the
order 10−6, which is a factor of 1000 lower than the actual shear signal. This leads
to a very noisy estimate of the scaling factor λ.
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5.5. Mitigation strategies

Magnification estimates are challenging since the intrinsic variation of galaxy
properties is very broad. Nonetheless, viable techniques to estimate magnification
exist. One of these techniques makes use of the Fundamental Plane (FP, Bertin
and Lombardi, 2006) for elliptical galaxies. In the FP, the intrinsic effective radius
of a galaxy RFP

eff is related to the galaxy’s surface brightness and stellar velocity
dispersion (neither of which are affected by lensing magnification). The measured
effective radius Reff , on the other hand, is magnified. A comparison of Reff and RFP

eff
estimates the magnification of a galaxy µ ≈ (Reff/R

FP
eff )2. A modified version of

the FP has been successfully applied by Huff and Graves (2011) to the photometric
catalogue from the Sloan Digital Sky Survey (SDSS).
The intrinsic scatter in the FP is ∼ 20% (Bernardi et al., 2003) which corresponds

to a σµ ∼ 40% scatter in the magnification estimate. We repeat our analysis with
a scaling factor as measured in Eq. (5.20) but now add Gaussian noise with mean
zero and width σµ to the magnification from the ray-tracing catalogue. Fortunately,
the introduced scatter does not invalidate the mitigation for lens redshifts zd > 0.2.
The reason for this is the almost linear relation between magnification and shear,
as seen in Fig. 5.5. For lenses with zd ≤ 0.2 the noise in the magnification estimate
enhances the variance in the SRT by a factor of ∼ 20. This is again due to the very
small foreground signal (compare Fig. 5.5). The difference in the foreground signal
γ̄LSS between bin ‘1’ and ‘2’ is so small that the introduced scatter in magnification
can bring the difference very close to zero and can thus lead to unreasonably high
values in the scaling factor. The enhanced scatter in the SRT can be suppressed by
enforcing the scaling factor to be smaller than 5, which is physically justified. With
the added constraint on λ, the alternative mitigation strategy for the magnification
bias performs nearly as well as shown in Fig. 5.4.

5.5.3. Impact of shape noise
In this work, we made use of ray-tracing simulation that have only minor contri-
butions of noise. In observations, the largest source of uncertainty in weak lensing
measurements is shape noise (e.g., Niemi et al., 2015). It arises because the mea-
sured galaxy ellipticities are dominated by the intrinsic galaxy shapes, with a much
weaker contribution from lensing shear. The intrinsic ellipticity is expected to be
randomly distributed and thus, the average over a sufficiently large number of galax-
ies vanishes. We employ a simplified model of additive, uncorrelated Gaussian noise
to obtain an estimate of how shape noise affects our mitigation strategy. We add
a Gaussian with zero mean and width σε = 0.3 to each Cartesian shear component
from the ray-tracing catalogue before estimating the tangential shear around lens
galaxies. Furthermore, we limit the density of source galaxies to < 35 gal/arcmin2

which is certainly fulfilled with a magnitude cut in the r-band at 24 mag. The last
adjustment we make for the limiting magnitude for the lens galaxies, it is reduced to
22 mag which leaves ∼ 1/3 of the lens galaxies with a 24 mag-cut. Since we reduced
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5. Magnification bias in the shear-ratio test

the density of background galaxies by a factor of ∼ 2500, the SRT shows a way more
noisy result. For some combinations of lens and source redshifts, the corresponding
variance increased by a factor of 10 000. As one of the reasons, we identify the de-
creased statistics; however, we must also take into account how we constructed the
null hypothesis of the SRT (5.12). It contains a ratio of shear values, nominator as
well as denominator are noisy quantities and if the denominator is close to zero, we
obtain very high values in the SRT. Hence, we propose to change the null hypothesis
to

〈γ̄g(zd, zj)〉 β(zd, zi)− 〈γ̄g(zd, zi)〉 β(zd, zj) = 0 . (5.21)
With the new estimator the noise increased for all combinations of lens and source
redshifts roughly by a factor 100 without extreme outliers as before.
To still verify that our mitigation strategy improves the SRT, we perform a re-

duced χ2 test and the result is shown in table 5.1. As expected, the mitigation

Table 5.1. – Results of a reduced χ2 test.

lens mag limit source mag limit mitigation χ2
red

none none no 80.90
none none yes 1.06
24mag none no 10.97
24mag none yes 1.02
22mag 24.5mag no 2.28
22mag 24.5mag yes 1.36

Notes. We perform the test for comparability for all cases with the modified null hypothesis
(5.21). The first two rows correspond to a mass-limited sample, the next two to a magnitude
limited sample and the last two also consider shape noise. For each, we show the χ2

red result
with and without mitigation. As can be seen by eye, the mitigation drastically improves the
result in the first two cases. In the case that includes noise, the χ2

red test still performs better
when the mitigation is used.

improves the χ2
red value significantly for the cases shown in Fig. 5.1. For the shape

noise dominated case, an SRT with corrected magnification bias still performs better
than without mitigation, although the difference is less pronounced. It is important
to note that the level of shape noise reduces with an increased observed area in the
sky. On the other hand, the magnification bias is fairly independent of the observed
area. Thus, future surveys with observed areas & 1000 deg2 will have less impact on
shape noise than we considered here (and vice versa).

5.5.4. Impact of intrinsic alignments
So far we ignored that the intrinsic ellipticities of galaxies may be correlated with
the positions of other galaxies that are close in real space (e.g. Joachimi et al.,
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2015). This flavor of intrinsic alignment (IA) may impact our estimate of the LSS
contribution to the shear signal at the lens redshift. In particular, Eq. (5.15) is
modified

〈γ̄t〉(zd, zd) = 〈γ̄LSS〉(zd, zd) + 〈γ̄IA〉(zd, zd). (5.22)
The IA contribution is

〈γ̄IA〉(zd, zd) =
∫ θout

θin
2π θ dθ 〈γIA〉(θ)

1
2πθ2 . (5.23)

The intrinsic tangential ellipticity 〈γIA〉(θ) as a function of angular separation can
be roughly estimated by:

〈γIA〉(θ) ≈
wdI(θχd, zd)

∆χ(∆z) + wdd(θχd, zd) . (5.24)

Here, wdI(r, z) denotes the projected cross correlation at transverse comoving sepa-
ration r and redshift z between the lens galaxy positions and the tangential compo-
nents of the source galaxy intrinsic ellipticities, wdd(r, z) denotes the projected cross
correlation of the lens and source galaxy positions, and ∆χ is the projection depth
corresponding to the redshift interval ∆z used to select source galaxies around the
lens redshift.
We estimate the IA contribution using measurements of the projected IA cor-

relations by Hilbert et al. (2017) in the Illustris simulation (Vogelsberger et al.,
2014). The correlation wdI, and thus 〈γ̄IA〉(zd, zd), depends on the source and lens
galaxy sample selection criteria, and also on how much weight the galaxy image
shear estimator gives to the outskirts of the galaxy images.
The resulting 〈γIA〉(θ) is shown in Fig. 5.6 for lenses at zd = 0.83 and sources

between zs = zd − ∆z/2 and zs = zd + ∆z/2, where ∆z = 0.05. This yields
〈γ̄IA〉(zd, zd) ≈ −3 × 10−4 for radially weighted moments (such as Kaiser et al.,
1995, KSB), which is noticeable compared to the LSS contribution 〈γ̄LSS〉(zd, zd)
(see Fig. 5.5).
Equation (5.24) shows that the IA contribution 〈γ̄IA〉(zd, zd) could be reduced

by substantially increasing the source redshift window size ∆z. Furthermore, IA
correlations appear to be dominated by galaxies in the same halo and do not reach
beyond a few tens of Mpc. Thus, the IA contribution could be avoided if one can
reliably select source-lens pairs such that the sources are at least a few tens of Mpc in
front of the lenses. Moreover, the IA contribution 〈γ̄IA〉(zd, zd) can be substantially
reduced by increasing the lower integration bound θin. For example, 〈γ̄IA〉 practically
vanishes for KSB-like estimators and θin ≥ 1 arcmin.

5.6. Discussion & Conclusion
In this article, we take a closer look at the influence of magnification bias on the
shear-ratio test as introduced in Jain and Taylor (2003) as well as a viable mitigation
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Figure 5.6. – The mean intrinsic tangential ellipticity 〈γIA〉(θ) as a function of angular
separation θ (estimated from the Illustris simulation, Vogelsberger et al., 2014; Hilbert et al.,
2017) for lenses at redshift zd = 0.83 and sources at redshifts zs ∈ [0.805, 0.855]. The IA signal
strongly depends on whether the shape estimator uses unweighted or radially weighted second
moments of the galaxy image light distribution.
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strategy. An advantage of the SRT is that it can be applied to the same data as
obtained from cosmic shear surveys. Moreover, it is a purely geometrical method
and does not rely on any assumptions of structure growth. As such, this null test has
the potential to uncover remaining systematics in shear measurement and redshift
estimation. Schneider (2016) even extended the SRT in such a way that it does not
depend on the choice of cosmology anymore.
The SRT is based on a ratio of shears that are induced by matter correlated

with the lens galaxies, and it does not take LSS effects into account. LSS mainly
changes the observed shear signal due to magnification which alters the observed
number density of lens galaxies on the sky. Hilbert et al. (2009) showed that,
depending on the observed scale, the tangential shear can deviate by up to 20%
from the GGL signal expected from shear that is induced by matter correlated with
the lens galaxies, though this fact seems to have been largely ignored in subsequent
observational studies. By using shear power spectra, Ziour and Hui (2008) derived
relations that suggested that magnification bias influences the SRT quite heavily.
We made use of ray-tracing results through the Millennium Simulation (Hilbert

et al., 2009) and galaxy catalogues from semi-analytic models (Henriques et al.,
2015) to obtain accurate estimates for the tangential shear around galaxies at several
redshifts. We used lenses in the redshift range 0.09 ≤ zd ≤ 0.83 and sources in the
range zd < zs ≤ 1.9. With that, we were able to quantify the impact of magnification
bias on the SRT as can be seen in Fig. 5.1 and 5.2. We find: (1) the higher the lens
redshift, the larger is the deviation of the SRT from its expected value – for the lens
redshifts considered the deviation from 0 increases from 10−3 by a factor of ∼100,
(2) lenses and sources must be well separated along the line-of-sight – the relative
impact of the magnification bias on the SRT is largest when the source and lens
galaxies are close, and (3) magnification bias depends on the range over which shear
is estimated.
For our mitigation strategy, we assume that the shear signal is a superposition of

the shear induced by matter correlated with the lens galaxies at redshift zd and shear
due to matter between us and the source galaxies, where the LSS in the redshift
range zd < z < zs is irrelevant for the magnification bias on the shear signal. To
extract the LSS-induced shear signal from the data, we measure the tangential shear
around lens galaxies at the lens redshift and use a scaling factor to approximate its
value at the source redshift. The scaling factor can be calculated as a correlation
between these two shear components (Eq. 5.17). Subtracting the scaled LSS-induced
shear from the measured shear signal will yield the shear that is induced by mat-
ter correlated with the lens galaxies. The latter is what is needed for the SRT,
and the good performance of this mitigation approach can be seen in Fig. 5.4. We
further introduced an alternative way of obtaining the scaling factor that relies on
dividing the lens population into sub-samples with different magnification. Esti-
mating the magnification with the Fundamental Plane for early-type galaxies leads
to results that perform well for all redshifts where magnification bias is important.
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Furthermore, we estimated the impact of shape noise on our mitigation strategy.
All redshifts show an increased scatter by a factor of ∼ 100. A χ2

red analysis showed
that applying the mitigation still improves the SRT. Also, shape noise can be re-
duced by observing a larger area on the sky in contrast to the magnification bias.
We used roughly 1000 deg2 for our analysis, future experiments like Euclid will sur-
pass this by a factor of ≥ 10. Finally, we discussed the possible impact of IA on
our mitigation strategy. Since the IA contribution to the shear signal at the lens
redshift might be substantial compared to the LSS contribution, modifications to
our mitigation strategy that reduce the impact of IA (e.g. by estimating the LSS
contribution using sources slightly in front of the lenses) should be explored in more
detail in future work.
Magnification bias is present on all relevant scales and needs to be corrected

for. It affects not only the performance of the SRT but must be considered in
all applications of GGL and its generalization to groups and clusters. A viable
mitigation strategy is, therefore, crucial for ongoing and future experiments.
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CHAPTER 6

MAGNIFICATION EFFECTS IN
GALAXY-GALAXY LENSING

Building on the results of the previous chapter, the influence from
magnification effects on shear estimates is generalised. This chapter
was accepted by the journal Astronomy & Astrophysics, reproduced
with permission ©ESO.

Abstract: Magnification changes the observed local number density of galaxies on
the sky. This biases the observed tangential shear profiles around galaxies: the
so-called galaxy-galaxy lensing (GGL) signal. Inference of physical quantities, such
as the mean mass profile of halos around galaxies, are correspondingly affected by
magnification effects. We used simulated shear and galaxy data from the Millennium
Simulation to quantify the effect on shear and mass estimates from the magnified lens
and source number counts. The former is due to the large-scale matter distribution
in the foreground of the lenses; the latter is caused by magnification of the source
population by the matter associated with the lenses. The GGL signal is calculated
from the simulations by an efficient fast Fourier Transform, which can also be applied
to real data. The numerical treatment is complemented by a leading-order analytical
description of the magnification effects, which is shown to fit the numerical shear
data well. We find the magnification effect is strongest for steep galaxy luminosity
functions and high redshifts. For a KiDS+VIKING+GAMA-like survey with lens
galaxies at redshift zd = 0.36 and source galaxies in the last three redshift bins
with a mean redshift of z̄s = 0.79, the magnification correction changes the shear
profile up to 2%, and the mass is biased by up to 8%. We further considered an
even higher redshift fiducial lens sample at zd = 0.83, with a limited magnitude of
22 mag in the r-band and a source redshift of zs = 0.99. Through this, we find that
a magnification correction changes the shear profile up to 45% and that the mass is
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biased by up to 55%. As expected, the sign of the bias depends on the local slope of
the lens luminosity function αd, where the mass is biased low for αd < 1 and biased
high for αd > 1. While the magnification effect of sources is rarely more than 1%
of the measured GGL signal, the statistical power of future weak lensing surveys
warrants correction for this effect.

6.1. Introduction
Gravitational lensing is a powerful tool in unveiling the true distribution of matter
in the Universe and probing cosmological parameters (see, e.g. Kilbinger, 2015, for a
recent review). The lensing signal is sensitive to all matter, regardless of its nature,
and is observed as the distortion of light bundles travelling through the Universe.
In the weak lensing regime, this distortion is small and must be studied with large
statistical samples. Therefore, large and deep surveys are required, for example, the
Kilo Degree Survey1(KiDS), the Dark Energy Survey2 (DES), the Hyper Surprime-
Cam Subaru Strategic Program3 (HSC SSP), or the near future surveys with Euclid4,
and the Large Synoptic Survey Telescope5 (LSST). To maximise the scientific output
from these surveys, the scientific community is currently putting great efforts into
understanding nuances in the theoretical framework.
Galaxy-galaxy lensing (GGL) correlates the position of foreground galaxies to

the distortion of background galaxies (see, e.g. Hoekstra, 2013). The distortion
is typically measured in terms of mean tangential shear with respect to the lens
position. This shear signal, as a function of separation from the lens centre, can
be related to the underlying mass properties of the parent halo. A major challenge
is obtaining an unbiased mass estimate. Biases arise if the underlying model does
not describe all contributions to the matter-shear correlation function sufficiently.
Also, the galaxy bias that connects the position of galaxies to its surrounding matter
distribution must be carefully taken into account. For current and future surveys,
we must further consider second-order effects to the galaxy-matter correlation, such
as, for example, magnification effects (Ziour and Hui, 2008; Hilbert et al., 2009) and
intrinsic alignment of galaxies (Troxel and Ishak, 2015). In this work, we focus on
the former effect.
Magnification is the change of the observed solid angle of an image compared

to the intrinsic solid angle, or, since the surface brightness remains constant, the
ratio of observed flux to the intrinsic one. Like the shear, it is a local quantity, a
direct prediction of the lensing formalism, and is caused by all matter between the
observed galaxy population and us. However, direct measurements of magnification

1https://www.kids.strw.leidenuniv.nl
2https://www.darkenergysurvey.org
3https://hsc.mtk.nao.ac.jp/ssp/
4https://www.euclid-ec.org
5https://www.lsst.org
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are challenging because the intrinsic flux is typically unknown. Yet, the change in
size and magnitude results in a changed spatial distribution of the galaxy population.
This so-called number count magnification has been measured (e.g., Chiu et al.,
2016; Garcia-Fernandez et al., 2018). Consequently, magnification by the large-
scale structure (LSS) also changes the GGL signal compared to a signal that is just
given by matter correlated with the lens galaxies. We stress that the magnification
changes the number counts of the source as well as lens galaxies on the sky. The
impact of magnification of the lens galaxies on the GGL signal for surveys like
Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) is ∼ 5% (Simon and
Hilbert, 2018), but can be as large as 20% for other lens samples (Hilbert et al.,
2009). Although these results suggest a fairly large impact of magnification on GGL
lensing estimates, quantitative analyses widely neglect the influence of magnification.
Unruh et al. (2019) studied the impact of the number count magnification of lens
galaxies on shear-ratios. They found that the shear-ratio test (Jain and Taylor, 2003)
is affected by lens magnification and that its effect must be mitigated, especially for
high lens redshifts.

In this paper, we quantify the impact of magnification on observed tangential
shear profiles and halo-mass estimates from GGL. We consider both the effect of
magnification of the sources by the lenses, as well as the effect of magnification
of the lenses by the LSS. For this, we compared the GGL signal with and without
magnification using simulated data. We then derived mean halo masses in both cases
employing a halo model to quantify the expected mass bias. We complemented the
numerical results with analytic estimates of the effects.

This article is organised as follows. The theoretical framework is briefly described
in Sect. 6.2. Section 6.3 features an analytical description of how magnification
affects shear estimates, as well as a brief discussion of how numerical results were
obtained in this study. The numerical procedure is then more thoroughly explained
in Appendix 6.8. In Sect. 6.4, we discuss the impact of magnification of source
galaxies by the lenses, and in Sect. 6.5 we discuss magnification of the lens galaxies
by the LSS. We study the magnification bias on mass estimates in Sect. 6.6 and
conclude in Sect. 6.7.

6.2. Theory

In the following, we introduce the theoretical concepts of gravitational lensing for
this work. For a more general and extensive overview, the reader is kindly referred
to Bartelmann and Schneider (2001).
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6.2.1. Cosmological distances
For a flat universe, the Hubble parameter H(z) can be written as

(
H(z)
H0

)2

= Ωm(1 + z)3 + 1− Ωm , (6.1)

where z is the redshift, H0 denotes the Hubble constant, and Ωm is the matter
density in units of today’s critical density ρcrit = 3H2

0/(8πG); with the vacuum
speed of light c and the gravitational constant G. The comoving distance travelled
by a photon between redshift z1 and z2 reads

χ(z1, z2) =
∫ z2

z1

c dz′
H(z′) , (6.2)

and the angular-diameter distance is

D(z1, z2) = χ(z1, z2)
1 + z2

. (6.3)

For a redshift z1 = 0, which is the observer’s position, we write D(0, z) =: D(z).
In addition, the dimensionless Hubble parameter h is used to parametrise
our ignorance about the true value of today’s Hubble parameter, defined as
H0 = 100h km s−1 Mpc−1. In the following, all distances are angular-diameter dis-
tances.

6.2.2. Gravitational lensing distortions and magnification
Gravitational lensing distorts the appearance of galaxy images. In the weak lensing
regime, this distortion can locally be described as a linear mapping from the back-
ground (source) plane to the foreground (lens) plane. The Jacobian A of the local
mapping can be written as

A =
(

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)
= (1− κ)

(
1− g1 −g2
−g2 1 + g1

)
, (6.4)

where κ is the convergence, γ1,2 are the two Cartesian shear components, and
g1,2 = γ1,2/(1− κ) are the two Cartesian reduced shear components, which all de-
pend on the position in the lens plane. The convergence causes an isotropic scaling
of the galaxy image, while the shear leads to an anisotropic stretching, and thus
causes an initially circular object to appear elliptical.
This scaling of the galaxy image changes the apparent solid angle ω of the image,

compared to one in the absence of lensing, which we denote by ω0. Likewise, the
flux is affected by gravitational lensing, the unlensed flux s0 is enhanced or reduced
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to the observed flux s. The ratio of these quantities defines the magnification µ and
can also be calculated from the Jacobian by

µ = ω

ω0
= s

s0
= 1

detA = 1
(1− κ)2 − |γ|2

. (6.5)

Magnification changes the observed local number density of galaxies on the sky. The
cumulative observed number density of galaxies on the sky n(> s), brighter than
flux s, is locally

n(> s) = 1
µ
n0

(
>
s

µ

)
, (6.6)

where n0 denotes the cumulative number density in absence of lensing. The prefactor
1/µ is due to the scaling of the solid angle. The flux in the argument of n0 must
also be scaled by 1/µ to account for the flux enhancement or reduction.
Magnification effects in the weak lensing limit are small, specifically |µ− 1| � 1,

and we Taylor expand Eq. (6.6) in (µ− 1) to obtain to first order

n(> s)
n0(> s) = µα−1. (6.7)

Where the exponent α is the local slope at the flux limit slim, it is defined as

α = −d log10 n0(> s)
d log10 s

∣∣∣∣∣∣
slim

. (6.8)

For α > 1, the galaxy counts are enhanced, and for α < 1 they are depleted. In the
case of α = 1, no magnification bias is present.

6.2.3. Galaxy-galaxy lensing
In GGL, the positions of foreground galaxies (lenses) are correlated with the shear
of background galaxies (sources). For a position θ, the complex shear is written as
γ(θ) = γ1(θ) + iγ2(θ). The tangential shear γt and the cross shear γx at source
position θs for a given lens at position θd are

γt(θs;θs − θd) + iγx(θs;θs − θd) = −γ(θs)
(θs − θd)∗
θs − θd

, (6.9)

where an asterisk denotes complex conjugation. The GGL signal 〈γt〉(θ) is defined
as the correlator between the positions of foreground galaxies and the tangential
shear,

〈γt〉(θ) = 〈κg(θ′) γt(θ′ + θ;θ)〉 , (6.10)
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where κg(θ) is the fractional number-density contrast of foreground lens galaxies
on the sky. The corresponding correlator for the cross-component of the shear is
expected to vanish, due to parity invariance.
A practical estimator for the GGL signal averages the tangential and cross shear

over many lens-source pairs in bins of separation θ:

γ̂t/×(θ) =
∑
ij ∆

(
θ, |θ(i)

s − θ
(j)
d |
)
γt/×

(
θ(i)

s ;θ(i)
s − θ

(j)
d

)
∑
ij ∆

(
θ, |θ(i)

s − θ
(j)
d |
) . (6.11)

Here, θ(i)
s denotes the position of the i-th source, θ(j)

d denotes the position of the
j-th lens, and the binning function ∆(θ, θ′) is unity if θ′ falls into the corresponding
θ bin, and zero if it does not.

6.3. Magnification effects in GGL
In this section, we consider the effect of magnification on the GGL signal. As we
show, magnification of sources and lenses leads to a bias of the estimator (6.11),
which is a function of limiting magnitudes for the lens and source population, as
well as their redshifts, since these determine the local slope (6.8) at the limiting
magnitude. Magnification is typically assumed to be a minor effect in GGL mea-
surements, and most theoretical predictions do not account for it. While the impact
of the magnification of lenses has already received some attention (e.g., Ziour and
Hui, 2008; Hartlap, 2009), the source magnification is less well known.

6.3.1. Magnification of lenses by large-scale structure
Magnification, caused by the LSS between us and the lenses, changes the num-
ber density of the lens galaxy sample, while simultaneously inducing a shear on
background galaxies. Thus, the observed shear signal differs from what is typically
considered as the GGL signal, which is a correlation of lens galaxy positions and
the shear on background galaxies (Eq. 6.11). In this correlation, the lens galaxies
are connected by the galaxy bias to their surrounding matter, which induces a shear
in the background galaxies. Magnification by intervening matter structures alters
this rather simple picture. Since for larger lens redshifts more intervening matter is
present, the impact of magnification effects grows with increasing redshift. On the
other hand, the impact is reduced with increasing line-of-sight separations of lenses
and sources. In the following, we consider a lowest-order correction for the mag-
nification of the lenses by the LSS for the GGL signal of a flux- or volume-limited
lens sample (see, e.g., Ziour and Hui, 2008; Hartlap, 2009; Thiele et al., 2020). We
stress that this correction ignores the magnification of sources, which is treated in
the next sub-section.
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In the weak lensing regime, we can approximate the magnification by µ ≈ 1 + 2κ,
valid if κ� 1, |γ| � 1. Then, the number count magnification (6.7) of the observed
number density of lenses nd(θ) at redshift zd on the sky is, for a flux-limited sample,

nd(θ, zd) = nd,0(θ, zd) + 2 [αd(zd)− 1] κLSS(θ, zd) n̄d(zd) , (6.12)

where nd,0 denotes the lens number density without magnification, n̄d denotes the
mean lens number density, αd denotes the local slope of the lenses at the limiting
magnitude, and κLSS denotes the convergence due to matter structures between
us and the lenses. Thus, in the presence of magnification, the expected signal is
modified to

γt(θ|zd, zs) = γnomagn
t (θ|zd, zs) + 2 [αd(zd)− 1] γLSS

t (θ|zd, zs) , (6.13)

where γnomagn
t denotes the tangential shear signal without magnification, and the

LSS shear signal is

γLSS
t (θ|zd, zs) = 9H3

0 Ω2
m

4c3

∫ ∞
0

d` ` J2(`θ)
∫ zd

0
dz H0

H(z)

× D(z, zd)D(z, zs)
Dd Ds

Pm

(
`+ 1/2

(1 + z)D(z) ; z
)
, (6.14)

which is shown explicitly in Hartlap (2009) and Simon and Hilbert (2018). We set
D(zs) = Ds and D(zd) = Dd and by Jn(x) we denote the nth-order Bessel function
of the first kind. In this work, we use the revised Halofit model (Takahashi et al.,
2012) for the spatial matter power spectrum Pm(k; z) at wavenumber k and redshift
z. The argument in the matter power spectrum arises through the application
of the wide-angle corrected Limber projection, which was recently put forward by
Kilbinger et al. (2017); the denominator is the comoving angular-diameter distance
fk(z) = (1 + z)D(z) at redshift z. The corresponding expression of Eq. (6.13) in the
absence of a flux limit, meaning for a volume-limited lens sample, can be obtained
by setting αd = 0.
For αd < 1, the magnification by the LSS suppresses the GGL signal. For αd = 1,

the magnification effect vanishes. For αd > 1, the LSS contribution enhances the
GGL signal.

6.3.2. Magnification of sources by lenses
Galaxies are correlated with the mass distribution, and thus the location of the
galaxies correlates with the magnification induced on the background sources. This
implies that the number density of sources is correlated with the positions of the
lens galaxies. Assuming for a moment that the number-count slope of sources α is
larger than unity, one expects that the number density of sources is more enhanced
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close to lens galaxies living in a dense environment. The estimator (6.11) therefore
contains a disproportionately high number of lens-source pairs for those lenses living
in a dense environment compared to those located in less dense regions.
The expected number density of sources is

ns(θ, > s) = 1
µ(θ) ns0

(
>

s

µ(θ)

)
≈ ns0(> s)µαs−1(θ)

≈ ns0(> s) [1 + 2(αs − 1)κ(θ)] , (6.15)

where in the second step we used the first-order Taylor expansion leading to Eq. (6.7),
and in the last step we again made the weak lensing approximation µ ≈ 1 + 2κ.
The expectation value of the estimator (6.11) of the GGL signal is therefore

affected by the local change of the source number density and becomes

〈γ̂t〉(θ) =
〈
κg(θ′) γt(θ′ + θ;θ) 1

µ(θ′ + θ;θ)
ns0[> s/µ(θ′ + θ;θ)]

ns0(> s)

〉
≈ 〈κg(θ′) γt(θ′ + θ;θ)µαs−1(θ′ + θ;θ)〉 (6.16)
≈ 〈γt〉(θ) + 2(αs − 1)〈κg(θ′) γt(θ′ + θ;θ)κ(θ′ + θ;θ)〉 .

Thus, in the case of small magnifications, the bias is given by a third-order cross-
correlation between the number density of foreground (lens) galaxies and the shear
and convergence experienced by the background galaxies. This correlation is caused
by the lensing effect of matter associated with the lens galaxies; hence, the bias
is caused by magnification of sources by the matter at zd. Equation (6.16) ignores
the effect of intervening matter since this is sub-dominant for the source galaxy
sample. Given that the bias term differs from the GGL signal by one order in the
convergence, and that the characteristic convergence dispersion is of order 10−2, we
expect that magnification of sources biases the GGL signal at the level of ∼ 1%.
Interestingly, the third-order correlator in the final expression of Eq. (6.16) is

related to the galaxy-shear-shear correlator that was introduced by Schneider and
Watts (2005) as one of the G± quantities of galaxy-galaxy-galaxy lensing, since
κ and γ are linearly related. Thus, from measurements of the galaxy-shear-shear
correlations in a survey, this bias term can be directly estimated. We note that such
measurements have already been successfully conducted (e.g. Simon et al., 2008,
2013). A more quantitative description of this correction, which will be relevant for
precision GGL studies in forthcoming surveys like Euclid and LSST, is beyond the
scope of this paper and will be done at a later stage.
An approximate, more intuitive way of describing the magnification of sources

by lenses is provided by assuming that each lens is located at the centre of a halo
of mass m. In the case of no magnification, the expected tangential shear signal
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γt(θ) = 〈γ̂t(θ)〉 can be expressed as6

γt(θ) =
∫

dzs pzs(zs)
∫

dzd pzd(zd)
∫

dm pm|zd(m|zd)γt(θ|m, zd, zs) , (6.17)

for a population of sources with redshift distribution pzs(zs), a population of lenses
with redshift distribution pzd(zd), and a conditional distribution pm|zd(m|zd) of the
masses m of the halos in which the lens galaxies reside. The mean tangential shear
profile γt(θ|m, zd, zs) for lenses with halo massm at redshift zd and sources at redshift
zs can be factorised,

γt(θ|m, zd, zs) = γ∞(θ|m, zd)Dds

Ds
, (6.18)

where Dds = D(zd, zs), and γ∞ is the mean shear profile for (hypothetical) sources
at infinite distance.
Equation (6.17) assumes that the source number density is statistically indepen-

dent of the lens positions. However, the observed number density of sources may
change behind lenses due to magnification by the lenses. The expected magnifica-
tion is a function of angular separation, the source and lens redshift, and the lens
halo mass. For a flux-limited sample, the expected shear signal (6.17) then changes
to:

γt(θ) =
∫ dzs pzs(zs)

∫
dzd pzd(zd)

∫
dm pm|zd(m|zd)

× µ(θ|m, zd, zs)αs(zs)−1
]−1

×
∫

dzs pzs(zs)
∫

dzd pzd(zd)
∫

dm pm|zd(m|zd)

× µ(θ|m, zd, zs)αs(zs)−1 γt(θ|m, zd, zs) ,

(6.19)

where µ(θ|m, zd, zs) denotes the mean magnification of sources at redshift zs and
separation θ by lenses at redshift zd with halo mass m, and αs(zs) denotes the slope
of the source counts at redshift zs at the source flux limit as in Eq. (6.8). We obtained
the corresponding expression for a volume-limited source sample by replacing αs by
zero in Eq. (6.19).
We may also assume that γt(θ|m, zd, zs) and µ(θ|m, zd, zs) are larger when the halo

mass m is larger (in the weak-lensing regime). Then, lens galaxies in more massive
halos appear under represented in the estimator (6.11), and the expected shear
signal (6.19) is lower than the prediction (6.17) ignoring magnification when αs < 1.
For αs = 1, the effect vanishes. For αs > 1, the number of source-lens pairs with
more massive lenses in the GGL estimator (6.11) is enhanced more by magnification,

6A more comprehensive halo model is discussed in Sect. 6.6.
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and thus one expects a shear signal (6.19) that is larger than the prediction (6.17).
When neglecting magnification, this may cause biases in the estimation of the mean
halo mass.
As Eq. (6.19) indicates, magnification may also affect the observed redshift

distributions of the lenses and sources. Furthermore, the magnification profile
µ(θ|m, zd, zs) usually has a strong radial dependence, being large for radii close
to the Einstein radius, but rapidly dropping to values close to unity for larger radii.
Thus, the magnification effects on the GGL signal are stronger for smaller radii.
When neglecting magnification, this may cause additional biases when estimating
parameters such as the halo concentration, and also when estimating the width of
the halo-mass distribution.

6.3.3. Mock data production

We made use of ray-tracing results through the Millennium Simulation (Springel
et al., 2005; Hilbert et al., 2009), from which we obtained tangential shear profiles
using a fast Fourier Transform (FFT) method. The method follows and improves
the one presented in Unruh et al. (2019). Specific details are given in Appendix 6.8.
For the radial binning of the tangential shear profile, we chose Nbin = 16 logarith-

mically spaced bins between θin = 0.6′ and θout = 17.5′. We estimated the error on
the shear signal with a jackknife method that measures the field-to-field variance of
the 64 fields. Then, we repeated the whole process while replacing the lens galax-
ies with random positions to obtain the shear estimate that is caused by the long
modes in the matter density field, as well as boundary effects as recommended by
Singh et al. (2017). The random signal γ̂rand was subtracted from original signal
γ̂t → γ̂t − γ̂rand. For convenience, we dropped the hat to distinguish the estimator
γ̂t from theoretical expectations γt = 〈γ̂t〉 in the following.
For our analyses, we wanted to obtain samples of galaxies with different local

slopes α of the source counts, which depend on redshift and limiting magnitude.
For a given lens galaxy sample with a magnitude cut corresponding to a flux limit
slim, we estimated the local slope (6.8) by finite differencing around slim. Figure 6.1
illustrates the cumulative number of galaxies at redshift zd = 0.41 for the whole
simulated field of 64× 16 deg2. Several magnitude cuts are indicated, as well as one
example of a tangential curve at slim = 21 mag with slope α = 1.06. For all GGL
measurements in this work, we fixed the source redshift to zs = 0.99. To find the
local slopes αs of the source galaxy counts, we varied the limiting magnitude in the
r-band filter (see Table 6.1a). For the local slope αd of the lens galaxy counts, we
further varied the lens redshift zd, as well as the limiting magnitude, as shown in
Table 6.1b and 6.1c.
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Figure 6.1. – Cumulative number of galaxies N0 is shown as a function of r-band magnitude
for a field of 64×16 deg2 at redshift z = 0.41. The dotted vertical lines indicate the magnitude
cuts listed in Table 6.1b. Finally, the tangential curve shows the local slope α at r = 21 mag.

Table 6.1. – Local slopes for the source galaxy counts αs and the lens galaxy counts αd given
as a function of redshift and as a function of the limiting flux.

(a) (b) (c)
fix zs = 0.99 fix zd = 0.41 fix slim,d = 22

slim,s αs slim,d αd zd αd

22.0 2.89 19.5 2.71 0.24 0.46
22.5 2.33 20.0 2.03 0.41 0.66
23.0 1.75 20.5 1.56 0.51 0.98
23.5 1.29 21.0 1.06 0.62 1.58
24.0 0.93 21.5 0.85 0.83 2.49
24.5 0.68 22.0 0.66
25.0 0.58 23.0 0.44
26.0 0.45

Notes. Either redshift or limiting flux is always kept fixed, while the other quantity is varied,
as shown below. The limiting flux is given in terms of r-band magnitude.
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6.4. Magnification effects on background galaxies
Lens and source galaxies are affected by magnification. To understand this impact
in more detail, we first discuss how the shear profile changes when only source
galaxies are magnified. In the following, we describe how we generated an arbitrary
number of mock source catalogues, with and without magnification bias included.
Results from the Millennium Simulation are then presented, and the magnification-
induced bias in the GGL signal is compared to the prediction of the analytical model
presented in Sect. 6.3.2.

6.4.1. Magnification switched off
To switch magnification off, we simply chose random source positions. We set the
number of galaxies to Ns,0 = 107 per 16 deg2 field to keep the impact of noise low.

6.4.2. Magnification switched on
Magnification changes the number counts of observed galaxies on the sky. Using
the ray-tracing data, we obtained the cumulative number counts of the galaxies as a
function of magnification-corrected flux, ns,0(> s0). We obtained the local expected
number counts of galaxies by adjusting the flux limit to slim,s/µ(θ) at each position
θ and using the first equality in Eq. (6.15). We further scaled the number counts
so that for µ = 1 the expected number of source galaxies is Ns = 107 per field of
solid angle A = 4◦ × 4◦. The threshold of finding a source at a grid position θ
is then T (θ) = ns(> slim,s;θ)A/Npix, where we restricted T (θ) to be smaller than
unity. Finally, we drew a uniform random number P (θ) between zero and one for
each position. A source galaxy was placed at a position θ if T (θ) > P (θ). The
‘magnification off’ method can be recovered if we insert µ = 1 for all θ in Eq. (6.15).

6.4.3. Results
The relative impact of magnification of sources on a tangential shear profile is shown
by the orange ‘upward’ triangles in Fig. 6.2. As expected, the net effect depends on
the local slope αs; the effect is typically of the order of 1 to 2% per bin. In the two
panels on the left-hand side in Fig. 6.2, the local slope αs is larger than unity, and the
shear signal is enhanced; while in the two panels on the right, αs < 1, which reverses
the effect. Also, the magnification effect is stronger for smaller separations θ. This
is seen more clearly in Fig. 6.3, where the absolute difference of source-magnified
to magnification-corrected shear profiles is compared. The shear profiles vary with
αs for constant redshifts zd,s according to Table 6.1a. The difference between the
expected and ‘measured’ shear profiles in Fig. 6.3 is the bias that we estimated in
Sect. 6.3.2 and gave in Eq. (6.16). We calculated the first and the third line of (6.16)
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Figure 6.2. – Relative difference between shear profiles with and without magnification. The
redshifts for the lenses are zd = 0.41 in the upper panels and zd = 0.62 in the lower panels;
the source redshift is kept fixed at zs = 0.99. The limiting magnitude of the lenses is 22 mag
in the r-band, and for the sources it is 23 and 25 mag for αs = 1.75 and 0.58, respectively.
The red ‘downward’ triangles indicate shear profiles that only have magnification in the lens
galaxy population, while the orange ‘upward’ triangles show the influence of magnification for
source galaxies only. It can be seen that a local slope > 1 of lens or source population leads
to an enhanced signal, whereas αd,s < 1 causes a reduced signal. The green crosses display
a measurement closest to real observations, i.e. where magnification affects both source and
lens galaxy populations. A reduction or enhancement depends on both slopes αd,s, as well as
the redshifts of lenses and sources zd,s. In all cases, the shape of the shear profile changes.
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Figure 6.3. – Absolute difference between shear profiles with and without magnification of
sources, for different local slopes αs shown in the legend. The solid lines correspond to the
first expression in Eq. (6.16) and dotted lines correspond to its approximation in the third line.
The upper scale shows comoving transverse separation, and the redshifts are zs = 0.99 for the
sources and zd = 0.41 for the lenses. The brown triangles with αs = 1.75 and the orange ones
αs = 0.58 are directly comparable to the orange triangles in the upper panels of Fig. 6.2. We
also show the goodness-of-fit parameter χ2

red with 16 degrees of freedom for the solid line.
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6.5. Magnification effects on foreground galaxies

using the numerical data and show them as solid and dotted lines, respectively. Both
models are in good agreement with the numerical data for moderate αs. However,
for very steep αs & 2, the weak lensing approximation |µ − 1| � 1 is not sufficient
anymore; although large magnifications are rare, they affect the number counts
significantly.
We define the mean fractional difference between a shear profile with and without

magnification for all bins as

δγ = 1
Nbin

Nbin∑
i=1

γti − γt
nomagn
i

γt
nomagn
i

, (6.20)

where we stress that a difference of δγ = 0 is not necessarily equivalent to an
unaltered shear profile. However, we only applied this estimator to the orange
‘upward’ and red ‘downward’ triangles seen in Fig. 6.2, which display either a positive
or a negative sign for all angular scales investigated.
Results for δγ as a function of αs for constant zs can be seen in Fig. 6.4. We

selected the source galaxies according to Table 6.1a, for which δγ is almost linear
in αs, as expected from Eq. (6.16) in the weak lensing approximation, although the
slope of the linear relation depends on different zd (Table 6.1c). The maximum shear
difference of 4% is found for the largest αs.

6.5. Magnification effects on foreground galaxies
In this section, we investigate the influence of magnification on lens galaxies. We
follow the structure from the previous section, meaning we obtain and analyse results
from the ray-tracing data and then compare those to the analytic estimate presented
in Sect. 6.3.1.

6.5.1. Magnification switched on
The galaxies in the Henriques catalogue are affected by magnification by design.
Hence, to create a catalogue including magnification, we simply extracted lens po-
sitions from galaxies brighter than a magnitude limit slim,d and assigned them to
their nearest grid point.

6.5.2. Magnification switched off
To switch off magnification in the mock data, we undid the magnification as follows.
As was done for the sources, the magnification-corrected flux s0 can be easily re-
covered from the magnification given in the ray-tracing catalogue and the apparent
flux of lens galaxies. The galaxy’s apparent position, however, is shifted on the sky
compared to its unlensed position. Unfortunately, the unlensed position cannot be
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6. Magnification effects in galaxy-galaxy lensing

Figure 6.4. – Fractional change of the shear profile by magnification is displayed, where
the magnification is only turned on for the source galaxies at zs = 0.99 (Table 6.1a). At a
local slope of αs ≈ 1 the impact of magnification flips its sign. The relation between αs and
δγ is almost linear. Different redshifts of the lenses zd = 0.41 (plus) and 0.62 (cross) affect
the impact of the sources’ magnification; the r-band limiting magnitude of lenses is fixed to
22 mag.
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6.5. Magnification effects on foreground galaxies

recovered from the simulated data, and the absolute amount of shifting is of the
order of an arcminute and depends on redshift (Chang and Jain, 2014). Hence, we
must aim to create a sample of galaxies that is not affected by magnification in a
different way.
As was outlined in Sect. 6.2.2, for both local slopes αd,s = 1, the magnification

leaves the observed number counts unaffected, and thus the shear profile γt unbi-
ased. Therefore, we transformed the magnification-corrected flux distribution such
that the galaxy counts obey n′0 ∝ s′0

−1. As a reference point, we chose the number
of galaxies at limiting magnitude n0(> slim,d) = n′0(> s′lim,d). This results in the fol-
lowing mapping from observed magnification-corrected flux, s0, to the transformed
flux

s′0(s0) = slim,d
n0(slim,d)
n0(s0) . (6.21)

In other words, this new flux scale distorts the number counts of lenses in such a way
that in the transformed flux system, α′ = 1, the lens galaxy counts are unaffected
by magnification bias (although the individual lens positions are not). We can
now calculate the observed transformed number density n′(> s′), where s′ = µ s′0.
To create a lens galaxy sample free from magnification, we again chose only those
galaxies that are brighter than the given flux limit s′ > slim,d. This leads to a
different selection of galaxies for the original and the transformed number density.
We tested this approach with two consistency checks. The first is based on the fact

that in the method described above, the total number of galaxies has to be conserved.
This is true for all the lens redshifts used. For a magnitude cut of 22 mag in the
r-band, a lens redshift of zd = 0.41, and the full field of view of 64×16 deg2, 595 348
lenses are found with a cut in observed magnitude, and 595 355 lenses are found
with observed transformed magnitude. Compared to the original fluxes, a detailed
analysis showed that in the transformed flux system, 917 galaxies became brighter
than 22 mag, while 924 galaxies became dimmer, leaving the overall number count
almost unchanged. The tiny difference in seven galaxies is due to the fact that the
number count function is discretely sampled.
The second consistency check uses a null test: the so-called shear-ratio test (SRT,

Jain and Taylor, 2003) which is based on Eq. (6.18),

T (θ; zd, zs1 , zs2) := γt(θ; zd, zs1)
γt(θ; zd, zs2) −

Dds1

Ds1

Ds2

Dds2

, (6.22)

for which we expect T (zd, zs1 , zs2) = 0 for two source populations at redshifts zs1

and zs2 in the absence of magnification effects. For the test, the location of the same
lens galaxies and the shear from two source galaxy populations at different distances
Ds1,2 were used. A ratio of the tangential shear estimates is equal to the ratio of the
corresponding angular-diameter distances, while the lens properties drop out. As
shown in Unruh et al. (2019), the SRT is strongly affected by lens magnification.
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6. Magnification effects in galaxy-galaxy lensing

The impact is stronger for higher lens redshifts and smaller line-of-sight separation
of lenses and sources. Therefore, we performed the SRT for lenses selected with
and without magnification for two different lens redshifts. We performed the SRT
by taking a weighted integral of T (θ; zd, zs1 , zs2) over θ from θin to θout as in Unruh
et al. (2019). In the case that includes magnification, we recovered the results from
Unruh et al. (2019). For lenses that are selected with corrected magnification, the
SRT performs better by a factor of & 100. We give results for two example redshift
combinations in Table 6.2. The corrected SRT still shows a slight scatter due to the
statistical noise in the data, coming from the lensing by the large-scale structure
in each of the 64 fields, and a bias that arises from shifting lens galaxies to their
nearest grid point.

Table 6.2. – Shear-ratio test (6.22) performed for two example cases to demonstrate the
removal of the magnification from the lens galaxies.

redshifts SRT result T (zd, zs1 , zs2)
zd zs1 zs2 magn no magn
0.41 0.46 0.51 (5.6± 1.4)× 10−2 (7.0± 13.7)× 10−4

0.83 0.91 0.99 (1.3± 0.2)× 10−1 (−5.1± 10.5)× 10−4

6.5.3. Results
The red ‘downward’ triangles in Fig. 6.2 show the relative impact of magnification
on γt. Similar to the results given in Sect. 6.4.3, where the magnification of the
source galaxies is discussed, the local slope αd determines whether the shear signal
is enhanced or reduced. The upper panels of Fig. 6.2 show that the shear profiles are
reduced for a local slope αd that is smaller than unity at redshift zd = 0.42, while the
lower panels display shear profiles with αd > 1 at a higher redshift zd = 0.62, where
the reverse effect is observed. The panels with higher zd show larger magnification
effects; relative deviations by up to 7% in a single bin can be seen. In general, the
shear signal is more strongly affected at larger separations θ from the lens centre
until it reaches a maximum at ≈ 8′ for zd = 0.62 and ≈ 10′ for zd = 0.41; for even
larger separations, the magnification effect becomes relatively weaker.
A comparison of numerical results to the analytic estimate (6.13) can be seen in

Fig. 6.5. The absolute difference between shear profiles affected by a magnification
of lens galaxies and those unaffected by magnification is plotted. The triangles show
numerical results, while lines indicate our analytical model for 2 [αd(zd)− 1] γLSS

t .
We employed the reduced χ2-test as an estimator for the goodness of our model and
find that all models are in good agreement with the data for the considered angular
scales. However, the local slope is not necessarily a sufficiently good quantity for
the analytic correction if the local slope αd becomes very steep, meaning when the
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6.5. Magnification effects on foreground galaxies

Figure 6.5. – Absolute difference between shear profiles with and without magnification
of lenses. The upper scale shows comoving transverse separation and the shear difference is
shown for several limiting magnitudes of the lens galaxies, which yield the local slopes αd
shown in the legend. Also, the goodness-of-fit parameter χ2

red with 16 degrees of freedom is
indicated in the legend. The redshifts are zs = 0.99 for the sources and zd = 0.41 for the
lenses.
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6. Magnification effects in galaxy-galaxy lensing

luminosity function is not well approximated by a power law anymore (cf. Fig. 6.1).
However, the analytic correction still reduces the impact of magnification signifi-
cantly.
To explore the dependencies of the mean fractional shear difference δγ (Eq. 6.20)

on αd, we altered the lens properties according to Table 6.1b. Results can be seen

Figure 6.6. – To change the lens properties according to Table 6.1b, we show the behaviour
of mean fractional shear difference δγ as a function of local slope for lens galaxies αd and
r-band-limiting magnitude. The source and lens redshift is the same for both cases, i.e.,
zd = 0.41 and zs = 0.99. The effect is independent of the sources local slope αs.

in Fig. 6.6 and show the impact of magnification for constant lens redshift zd and
varying limiting magnitude, for two different local slopes αs of the sources. The
impact on the shear profile is almost exactly the same in both local slopes, with
a small residual noise that is present in the data. The dependence of δγ on αd is
similar to the one in Fig. 6.4, which shows the magnification for source galaxies only.
The shear profile changes by up to 3% in the mean.
We further investigated the dependence of the magnification on the values of

αd and zd for fixed zs in Fig. 6.7. δγ is calculated for various lens redshifts with
constant limiting magnitude for the lenses (see Table 6.1c) and the same two values
of αs as before. The figure shows that the sources’ local slope does not affect the
magnification induced by lens galaxies. The signal is again moderately reduced by
1% for αd < 1 but is not monotonic anymore. For αd > 1, the relation deviates
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6.5. Magnification effects on foreground galaxies

Figure 6.7. – For a magnification of lens galaxies only, the impact on the shear profile is
shown as a function of αd and zd (Table 6.1c) for fixed flux limit of r = 22 mag. The redshift
zd is given on the (non-linear) top axis. Again, the effect switches its sign at αd ≈ 1. It then
rises up to 45% for larger αd, while less impact is seen for αd < 1. Different local slopes of
the sources αs at zs = 0.99 leave the lens’ magnification unaffected.
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6. Magnification effects in galaxy-galaxy lensing

significantly from a linear one. Magnification is stronger for larger αd and larger zd,
leading to deviations of up to 45% in the most extreme case.
Lastly, we combined the numerical methods and results that were addressed in-

dividually in Sects. 6.4 and 6.5. The green crosses in Fig. 6.2 show numerical re-
sults from source and lens galaxy populations that are both affected by magnifica-
tion, meaning the case of relevance for observational studies of GGL. The fractional
change is approximately the sum of the bias of lens galaxies only plus the bias of
source galaxies only. Hence, to first order, it is determined by αd and αs. The sign
of δγ cannot easily be predicted if αd < 1 and αs > 1, and vice versa. For δγ the
sign also depends on θ since the change of shear signal per bin behaves differently
for magnified lenses and magnified sources.

6.6. Magnification bias in halo-mass estimates

6.6.1. Estimating the mean halo mass of lenses
The GGL signal is sensitive to the surface-mass density around lenses that differs
from the average projected cosmological matter density. To infer from this the
mean mass of a parent halo that hosts a typical lens galaxy, we used a halo-model
prescription to describe the relation between galaxies and matter (Cooray and Sheth,
2002). In this prescription, we expand the galaxy-matter power spectrum at redshift
zd of lenses and at comoving wave number k,

Pgm(k) = P 1h
gm(k) + P 2h

gm(k) , (6.23)

in terms of a one-halo term,

P 1h
gm(k) =

∫ ∞
0

dmn(m)m
Ωm ρcrit n̄d

ũm(k,m)
(
〈Ncen|m〉+ 〈Nsat|m〉 ũm(k,m)

)
, (6.24)

and a two-halo term,

P 2h
gm(k) =

∫ ∞
0

dmn(m)mbh(m)
Ωm ρcrit

ũm(k,m)Plin(k)

×
∫ ∞

0

dmn(m) bh(m)
n̄d

(
〈Ncen|m〉+ 〈Nsat|m〉 ũm(k,m)

)
. (6.25)

In this model, ũm(k,m) denotes the Fourier transform of a Navarro-Frenk-White
(NFW; Navarro et al., 1996) density profile for a virial halo mass m, truncated
at the virial radius and normalised to ũm(k,m) = 1 for k = 0 (Scoccimarro et al.,
2001) for the mass-concentration relation in Bullock et al. (2001). We further denote
the mean comoving number density of halos in the mass interval m1 ≤ m < m2 by∫m2
m1

dmn(m) (Sheth and Tormen, 1999), the bias factor of halos of mass m by
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bh(m) (Scoccimarro et al., 2001), and the linear matter power spectrum by Plin(k)
(Eisenstein and Hu, 1998). Finally, the mean number density of lenses is

n̄d =
∫ ∞

0
dmn(m)

(
〈Ncen|m〉+ 〈Nsat|m〉

)
, (6.26)

This version of the halo model assumes a central galaxy at the centre of a halo
whenever there are lens galaxies inside the halo, and satellite galaxies with a number
density profile equal to the NFW matter density. For the mean number of central
and satellite galaxies for a halo mass m, we follow Clampitt et al. (2017) but with
central-galaxy fraction fcen ≡ 1,

〈Ncen|m〉 = 1
2

[
1 + erf

(
log10 (m/mth)

σlogm

)]
; (6.27)

〈Nsat|m〉 = 〈Ncen|m〉
(
m

m1

)β
, (6.28)

where Θ = (m1,mth, σlogm, β) are four model parameters that determine the halo-
occupation distribution (HOD) of our lenses, and erf(x) = 2π−1/2 ∫ x

0 dt e−t2 is the
error function. The model parameters have the following meaning: mth determines
at which mass scale 〈Ncen|m〉 = 1/2; at halo mass m1 the mean number of satellites
equals that of central galaxies; σlogm is the width of the HOD of centrals; and β is
the slope of the satellite HOD.
The matter-galaxy cross-power spectrum is related to the mean tangential shear

by a Limber projection, which for lenses at zd and sources at zs is

γt(θ) = 3H2
0 Ωm

2c2
Dds

DdDs

∫ ∞
0

d` `
2π J2(`θ)Pgm

(
`+ 1/2

(1 + zd)Dd
; zd

)
. (6.29)

We employed a maximum-likelihood estimator (MLE) to infer the mean halo mass
of lenses from GGL. For this, we set {γt,i(Θ) | i = 1 . . . Nbin} as a set of Nbin mea-
surements of the mean tangential shear in our mock data, obtained for different
lens-source angular separation bins i; the error covariance estimated from the mea-
surements for bin θi and θj is Cij, and its inverse [C−1]ij. For the MLE of Θ, we
then minimised

χ2(Θ) =
Nbin∑
i,j=1

(
γt,i(Θ)− γt,i

)
[C−1]ij

(
γt,j(Θ)− γt,j

)
, (6.30)

with respect to Θ, where γt,i(Θ) is the halo model prediction of γt(θ|Θ) averaged
over the size of the ith separation bin that corresponds to γt,i. We refer to Θmle as
the parameter set that minimises χ2(Θ). Finally, given the MLE Θmle, we obtain
the MLE of the mean halo mass by the integral

〈m〉mle =
∫ ∞

0

dmn(m)m
n̄d

(
〈Ncen|m〉+ 〈Nsat|m〉

)
, (6.31)
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Figure 6.8. – Upper panel: Magnification-corrected shear profiles for two lens redshifts zd
with a r-band magnitude cut of 22 mag and two differently selected source galaxies at redshift
zs = 0.99 are shown (crosses) as well as their best fit according to the halo model (solid line).
Lower panel: Absolute difference ∆γt between data and halo model fit (open circles with the
same colour). For each lens redshift, source galaxies were chosen with two limiting magnitudes
that have the local slopes αs = 0.58 and 1.75, respectively. As expected, the shear profile does
not depend on the choice of source galaxies. The offset between the red/blue points as well as
the magenta/green points is for better visibility only.
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which has to be evaluated for the HOD of galaxies that is determined by Θmle.

In Fig. 6.8, we show four examples of tangential shear estimates and their best
shear profile fit from the halo model. For the shear profiles, we switched off magni-
fication effects of lens and source galaxies. It can be seen that the fitting procedure
works reasonably well. The halo model itself is only an approximation of the inho-
mogeneous matter distribution in the Universe, and in the presence of our simulated
data with almost vanishing Poisson noise, we do not expect the halo model to work
perfectly. We further used approximations such as a truncated Navarro-Frenk-White
(NFW) model and a specific mass-concentration relation, that certainly further lim-
its the accuracy we can obtain with the halo model. The mean relative difference
between the data and the model for the 16 bins is 2.6% for zd = 0.41, and 1.3% for
zd = 0.62. As expected, the shear profiles are almost independent of the flux limit
of sources if their redshift is fixed, as can be seen for the red and blue crosses, as
well as for the magenta and green crosses. On the other hand, there are three main
reasons for the difference between the red/blue and magenta/green shear profiles.
The lensing efficiencies Dds/Ds are different for different zd. Thus, the red/blue
shear profile with zd = 0.41 has a larger lensing efficiency than the magenta/green
one with zd = 0.62. Moreover, we observed fixed angular scales, which corresponds
to different physical scales. Lastly, the lens galaxy population might evolve between
the two redshifts.

Table 6.3 accompanies Fig. 6.8 and lists the fitting parameters, the goodness-of-fit
values, and the mass estimates for the different shear profiles. The mean halo mass,
in contrast to the shear amplitude, is larger for the high-redshift lenses when the
same magnitude limit is applied.

We quantify this bias in halo mass for fixed limiting magnitudes of lenses and
sources, which means fixed αd,s, and fixed redshifts as follows. Using the halo model
as described above, we calculated the best mass estimate from the magnification-
corrected shear profile. As could be seen in the previous sections, the relative change
of the shear profile is typically of the order of a couple of percent. Therefore, we
fixed the scatter in the host halo mass σlogm and the slope of the mean number of
satellite galaxies β to their best fit value in the magnification-corrected case. Then,
we only fitted the remaining two parameters mth and m1 to estimate the mass for
the three remaining shear profiles, meaning a shear profile with magnification of the
sources only turned on, a profile with magnification of the lenses only turned on,
and a shear profile with lens and source magnification turned on. Similar to the
fractional shear difference (6.20), we define the bias of halo-mass estimates, inferred
from γt, by

δM = 〈m〉mle − 〈m〉
nomagn
mle

〈m〉nomagn
mle

. (6.32)
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Table 6.3. – Fitting results for the halo model, with the mean halo mass 〈m〉mle, the scatter in
host halo mass σlogm, the mass scale where 50% of halos host a galaxy mth, the normalisation
factor for the satellite galaxies m1 and its slope β, and the goodness-of-fit value χ2

red with 12
degrees of freedom.

plot colour
blue red green magenta

zd 0.41 0.41 0.62 0.62
αd 0.67 0.67 1.57 1.57
αs 0.58 1.75 0.58 1.75
〈m〉mle in 1013M� 2.45 2.46 2.58 2.60
σlogm 0.28 0.28 0.28 0.30
mth in 1011M� 2.24 2.26 4.15 4.19
β 1.08 1.09 1.06 1.05
m1 in 1012M� 7.70 7.68 11.54 11.92
χ2

red 1.52 1.84 1.10 1.25

Notes. The lens and source redshifts, and local slopes αd,s are chosen as in Fig. 6.8, the source
redshift zs is 0.99. The fit values for identical lens redshifts are expected to be very similar.

6.6.2. Numerical results
Figures 6.9 to 6.12 show results for the mass bias δM . Figure 6.9 shows the bias for
magnified source galaxy counts and magnification-corrected lens counts. The lenses
have constant limiting magnitude of 22 mag in the r-band and their redshifts are
zd = 0.41 and 0.62. Source galaxies at redshift zs = 0.99 are selected for several
limiting magnitudes (cf. Table 6.1a). The bias is of the same order of magnitude as
the corresponding mean fractional difference of the shear, and αs determines whether
mass is overestimated or underestimated. The mean halo mass is biased by up to
3.5%.
We then explored the dependencies of the fractional mass bias δM on αd, while we

only considered magnification-corrected sources. Firstly, we fixed the lens redshift
to zd = 0.41 and altered the lens’ limiting magnitude according to Table 6.1b. The
result is shown in Fig. 6.10. The mass bias is an almost linear function of αd and
shows a similar dependence on αd as the fractional shear difference (cf. Fig. 6.6).
The mass is biased up to 5% for the largest αd. Lastly, we calculated δM for various
lens redshifts with constant limiting magnitude for the lenses (see Table 6.1c) and
the same two αs as before, which is shown in Fig. 6.11. The mass bias shows a strong
redshift dependence, where the bias increases from a couple of percent to a mass
overestimate of 55%.
To explore the observationally relevant case, we compared halo-mass estimates

with and without magnification for both lenses and sources. Figure 6.12 contains
all different αd,s-zd combinations with constant zs = 0.99 from the Tables 6.1a to
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Figure 6.9. – Relative mass bias δM (6.32) for magnified source number counts is shown.
Source galaxies are at zs = 0.99 and lenses are chosen according to Table 6.1a with redshifts
zd = 0.41 (plus) and 0.62 (cross), for fixed limiting magnitude. The mass bias behaves roughly
like the fractional shear difference (cf. Fig. 6.4). For local slopes αs < 1, the underestimation
of mass is stronger than for the shear profile, while for αs > 1 the overestimate is similar.
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Figure 6.10. – The fractional mass bias δM is shown as a function of local slope αd and
r-band limiting magnitude (cf. Table 6.1b). The source redshift is zs = 0.99 and lens redshift
is zd = 0.41. For αd < 1, δM the mass is biased low, while for αd > 1 the mass is biased high.
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Figure 6.11. – The fractional mass bias δM is shown as a function of local slope αd and
lens redshift zd(cf. Table 6.1c). We keep the r-band limiting magnitude for the lenses and the
source redshift zs = 0.99 constant. The top axis indicates the respective lens redshifts in a
non-linear scaling. Following the trend seen in Fig. 6.7, mass is biased low for αd < 1 and
shows large biases for αd > 1.
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6.1c, plus some additional combinations. It shows δM as defined in Eq. (6.32) as

Figure 6.12. – The total magnification bias for halo-mass estimates as a function of limiting
magnitudes that yield the local slopes αd,s and lens redshift zd (type of symbols). The source
redshift is the same in all cases, i.e., zs = 0.99. The mass difference δM is shown in colour code,
where blue indicates underestimation, red overestimation, and white is an unbiased result. We
cut off the colour bar for the largest deviations of 55% and 58% for αd = 2.41 and zd = 0.83
for higher contrast in the colour scale. The plot is roughly divided by the vertical line with
αd = 1 into mass underestimation for αd < 1 and overestimation αd > 1.

a function of the local slopes αd,s on the x- and y-axis. Red values indicate an
overestimation of the mass, where we cut off the colour bar for the highest values
for better visibility. The blue values show an underestimation, while white values
mean no bias in the mass estimate. The upper-right quadrant shows consistently red
values since αd,s > 1, while the lower-left quadrant has αd,s < 1 and is consistently
blue, as expected from theoretical considerations. In most of the other cases, αd
seems to be the decisive factor for the sign of the mass bias, for αd < 1 leading
to an underestimation and for αd > 1 leading to an overestimation. The slope αs
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influences the total value of the mass bias. Besides, even if two points are close in
the αd-αs parameter space, they do not exhibit the same colour, meaning mass bias,
due to their different zd.

6.7. Discussion & conclusions
In this paper, we quantified the impact of magnification on the GGL signals and
halo-mass estimates. Magnification changes the observed galaxy number counts
on the sky, which has an impact on the measured tangential shear profiles. It is
important to note that magnification affects lens galaxies as well as source galaxies.
Analyses of tangential shear profiles, such as estimates of the excess mass density
profiles or halo mass, are therefore biased if they ignore lens or source magnification.
Our estimates with ray-tracing simulations and synthetic galaxy populations show
that the number count slopes of sources and lenses are the most important quantities
that determine the relative strength of the bias. While the analytical estimate for
the bias on the GGL profile caused by magnification of lenses was known before,
to our knowledge the one caused by magnification of the source population has not
previously been derived.
How magnification affects tangential shear profiles can be seen in Figs. 6.2 to 6.7,

where we varied the local slope of lens and sources galaxies αd,s and the lens redshift
zd. We studied the magnification effect from lenses and sources individually and
compared them to our analytic estimates. The latter are leading-order estimates
and describe the numerical results very well in most cases. One of the surprising
results, shown in Fig. 6.3, is that the weak lensing approximation for the impact
of magnification on source counts can significantly fail if the count slope is steep.
Hence, the validity of the commonly used approximation for the number density of
sources

ns(θ, > s) ≈ ns0(> s) [1 + 2(αs − 1)κ(θ)]

needs to be checked, depending on its application.
Besides confirming that the shear signal is reduced if the slopes αd and αs are < 1

and enhanced for αd,s > 1, we find: For fixed redshifts zd,s, the change of the tangen-
tial shear estimate depends solely on αd,s. For fixed source redshifts zs, the impact
of magnification of sources decreases for larger zd and smaller lens-source separation
Dds (cf. Fig. 6.4). Furthermore, the relative importance of magnification of lenses
increases with zd and rises sharply as zd approaches zs. The relative change from
a biased to an unbiased shear profile is a function of angular separation θ, and the
mean change is typically a few percent. However, if the redshift differences between
sources and lenses become small, the effect can be considerably larger (cf. Fig. 6.7).
For practical applications, the change in the shear signal by magnification is de-

scribed by the sum of the individual effects of source magnification and the one from
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lens magnification. The impact of magnification depends on the galaxy’s luminosity
function, the limiting magnitudes, and the redshifts zd,s, but also the separation θ.
The relative mass bias δM on the average mass of a lens parent-halo inherits all

trends seen in the shear profiles with magnified lenses and magnified sources (see
Figs. 6.9 to 6.12), meaning δM > 0 for αd,s > 0 and vice versa. Medium-redshift
galaxies show a mass bias of less than 10%, and the higher the lens redshift, the
stronger the mass bias with up to 58% for zd = 0.83 and zs = 0.99. The bias δM
is of the same order of magnitude as the relative change of the shear profile δγ.
The particular relation, however, between δγ and the mass bias δM is quite compli-
cated. First and foremost, the amplitude of the measured shear signal determines
the underlying halo mass. However, magnification changes the scale dependence of
the shear signal. In the halo model, this translates to a different behaviour of the
one- and two-halo term, which affects the mass estimate in a highly non-linear way.
Another minor effect is that the true mean halo mass of lens galaxies affected by
magnification probably differs from the true mean halo mass of unmagnified lenses
due to an expected correlation between mass and luminosity. For example, for the
highest zd considered in this work, the mean masses differ by 0.16%. Furthermore,
we fixed the observed angular scales on the sky, which relate to different physical
scales at different redshifts; thus, the relative contribution of the two-halo term on
the shear signal grows with redshift, which makes a comparison of mass biases from
different lens redshifts more complicated. In general, when we allow for magnifica-
tion effects both in source and lens galaxies, meaning, the case for real observations,
the sign of the mass bias is in most cases determined by the value of αd. The only
exceptions shown in Fig. 6.12 are two cases, where either the lens redshift is low or
the local slope αs is very high; in such cases, the sign of the mass bias is not easily
predicted and must be studied case by case.
We also considered a GGL estimate using the flux-limits and redshift distributions

as given from the combined data of KiDS+VIKING (Hildebrandt et al., 2020) and
GAMA (Driver et al., 2011). KiDS and VIKING are partner surveys that probe the
optical and near-infrared sky to obtain high-resolution, wide-field shape and redshift
information from galaxies. GAMA is a spectroscopic, flux-limited survey with a
partly overlapping footprint in the KiDS+VIKING area. In Appendix 6.8.3, we
present a detailed description of the input parameters we use for this estimate. We
list the results in Table 6.4. A lens galaxy sample at redshift zd = 0.21 shows relative
changes in the shear profile due to magnification effects of less than one percent,
and relative mass bias of ≈ 3%, while GAMA’s highest lens sample at zd = 0.36
shows that a magnification correction changes the shear profile by ≈ 2% and the
relative halo mass bias by 8%. Although our estimate used simplifying assumptions,
especially for the source population, for example, no catastrophic outliers in the
redshift distribution and no further selection criteria than a cut in magnitude, we
conclude that magnification effects must be carefully considered in current and future
surveys.
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In this paper, we assume that lenses and sources form a flux-limited sample. While
this assumption may be a realistic one for lens galaxies (e.g. galaxy redshift surveys
frequently start from a flux-limited photometric sample), it is less the case for source
galaxies. Sources in weak lensing studies have rather complicated selection criteria,
not merely based on flux, but also on size and signal-to-noise ratio, for example.
Therefore, our quantitative analysis may not apply directly to observational surveys.
Besides, source galaxies typically enter a weak lensing catalogue with a weight that
characterises the accuracy of the corresponding shear estimate. We ignored any such
weighting scheme in our processing, but it may be relevant, since the weight of an
object is also expected to depend on magnitude and size, and is thus affected by
magnification.
While the relative amplitude of the bias caused by magnification is modest in

most cases, and probably smaller than the uncertainties from shape noise and sample
variance in previous surveys, future surveys like Euclid or LSST have such improved
statistical power that magnification effects must be accounted for in the quantitative
analysis of GGL.

6.8. Appendix A: Mock data
6.8.1. Appendix A.1: Millennium Simulation data
To study magnification effects in GGL, we make use of ray-tracing results through
the MS (Springel et al., 2005), which is an N -body simulation of 21603 dark matter
particles. Each particle has a mass of 8.6× 108M� that is confined to a cube with
side length of 500h−1Mpc and with periodic boundary conditions. The underlying
cosmology is a flat ΛCDM model with a matter density parameter of Ωm = 0.25,
a baryon density parameter of Ωb = 0.045, a dimensionless Hubble parameter of
h = 0.73, a tilt of the primordial power spectrum of ns = 1, and a variance of matter
fluctuations on a scale of 8h−1 Mpc extrapolated from a linear power spectrum of
σ8 = 0.9. This cosmology is based on combined results of 2dFGRS (Colless et al.,
2001) and first-year WMAP data (Spergel et al., 2003).
The ray-tracing results are based on a multiple-lens-plane algorithm in 64 light

cones constructed from 37 snapshots between redshifts z = 0 to z = 3.06, each
covering a 4 × 4 deg2 field of view. For more information about the ray tracing,
the reader is kindly referred to Hilbert et al. (2009). An important aspect of the
algorithm is that the galaxy-matter correlation is preserved. The ray-tracing results
contain the Jacobians A on a Npix = 40962 pixel grid, which corresponds to a
resolution of 3.5 arcsec per pixel. From this, we calculated shear and magnification
on a pixel grid.
We also used a catalogue of galaxies based on a semi-analytic galaxy-formation

model by Henriques et al. (2015). This catalogue matches the GGL and galaxy-
galaxy-galaxy lensing signal from CFHTLenS (Saghiha et al., 2017). The galaxies
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are listed for each redshift snapshot with various properties, for example, (magnified)
flux in various filters and positions, which allows for selection according to chosen
magnitude limits. However, the galaxy positions are not confined to a grid as is
the Jacobi information. Thus, we shifted all selected galaxies to their nearest grid
point. Therefore, analyses that are close to the centre of the galaxy suffer from
discretisation effects on scales comparable to the pixel size.

6.8.2. Appendix A.2: Obtaining a tangential shear estimate
To extract the shear signal averaged over many lenses, a fast Fourier Transform
(FFT) is employed. In order to do so, we first defined lens and source number
density on a grid by

nd,s(θ) =
Nd,s∑
i=1

δK(θ − θ(i)
d,s) , (6.33)

with δK being one if θ = θ
(i)
d,s, and zero otherwise. The number of lenses and sources

is Nd,s, and θ(i)
d,s are the positions of lenses and sources, respectively. Furthermore,

we define the shear field of the sources on the grid by

γs(θ) =
Ns∑
i=1

γ(θ, zs) δK(θ − θ(i)
s ) . (6.34)

Then, the tangential shear estimator (6.11) can be expressed as

γ̂t(θ) = −<
∑
θ′ ∆(θ, |θ′|)θ′∗/θ′ ∑θ′′ nd(θ′′) γs(θ′′ + θ′)∑

θ′ ∆(θ, |θ′|) ∑θ′′ nd(θ′′)ns(θ′′ + θ′)
, (6.35)

where the sums over θ′ and θ′′ extend over the whole grid. The equivalence of
Eqs. (6.35) and (6.11) can be verified by inserting the definitions of nd,s and γs into
the former. The sum over θ′′ in the denominator calculates for each θ′ the number
of lens-source pairs, ensuring that (6.35) is not affected by a potential masking
or inhomogeneous survey areas. Further, the sums over θ′′ in the numerator and
denominator of the GGL estimator (6.35) are convolutions. Thus, the convolution
theorem can be applied to these sums. If F{f} is the Fourier transform of a function
f and F−1 the inverse Fourier transform, then we can rewrite the estimator (6.35)
as

γ̂t(θ) = −<
∑
θ′ ∆(θ, |θ′|)θ′∗/θ′ F−1 {F {nd}F {γs}} (θ′)∑

θ′ ∆(θ, |θ′|) F−1 {F {nd}F {ns}} (θ′) , (6.36)

which can be readily solved by an FFT method. For this, we employed routines
from the FFTW library by Frigo and Johnson (2012) in our code.
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An FFT implicitly assumes periodic boundary conditions, which introduces a bias
to the averaged shear data and, thus, must be mitigated for. We can restrict the
selection of lenses to the inner (4◦ − 2θout)2 of the field, where θout is the maximum
separation from the lens that we considered. However, for a θout ≈ 20′, we already
lose approximately 30% of the lens galaxies. Alternatively, we employed a zero-
padding method in which we increased the FFT-area to (4◦ + θout)2 and filled the
added space with zeros. In this case, we used all available lenses with the cost of
slightly increased computational time and the gain of a less-noisy shear profile. For
the whole 64×16 deg2, our FFT-based code needs a CPU time of 823 s, independent
of the number of sources and lenses. We compared the performance of our method
to the publicly available athena tree-code (Kilbinger et al., 2014). In contrast to the
FFT method, the computation time of athena is enhanced with the number of lens-
source pairs. We adjusted the settings to our survey parameters while leaving the
parameter that sets the accuracy of the tree-code, meaning the open-angle threshold,
to its pre-set value. For 107 sources and lenses at zd = 0.41 with limiting magnitudes
19.5, 22, and 29 mag, athena performs with a CPU time of 889 s, 1167 s, and 2043 s,
respectively.

6.8.3. Appendix A.3: Estimating the impact of the
magnification bias on a KiDS+VIKING+GAMA-like
survey

We considered GAMA-like lens galaxies with narrow redshift distributions at
zd = 0.21 and zd = 0.36 with a flux limit of 19.8 mag. Using simulated data from
the semi-analytic galaxy-formation model by Henriques et al. (2015), we obtain local
slopes of αd = 0.85 and αd = 2.11, respectively. To keep the statistical error low,
we still consider the data from the whole simulated area of 64× 16 deg2. To mimic
the KiDS+VIKING-like source population, we matched the last three bins of the
best-estimated redshift distribution to Millennium data from 0.51 ≤ zs,Mil < 1.28.
We then calculated a weighted shear map from the simulated data, the final source
galaxy distribution has a local slope of αs = 0.51 for a limiting magnitude of 25 mag.
We repeated our analysis from Sects. 6.4, 6.5, and 6.6, and obtain the results listed
in Table 6.4. The results are quantitatively comparable to the results from Figs. 6.4
and 6.6.
A KiDS+VIKING+GAMA-like survey is moderately affected. We stress that

this estimate has been made with simplified assumptions, for example, there are no
catastrophic outliers in the redshift distribution and no selection criteria for source
galaxies other than a magnitude cut.
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Table 6.4. – Impact of the magnification bias on a KiDS+VIKING+GAMA-like survey.

zd 0.21 0.36
αd 0.85 2.11
αs 0.51 0.51
δγ

d −0.09% 1.67%
δγ

s −0.88% −0.94%
δM −2.84% −8.26%

Notes. The superscript ‘d’ indicates the magnification bias caused only by the lens galaxies,
while ‘s’ stands for the source galaxies.
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CHAPTER 7

BARYON ACOUSTIC OSCILLATIONS
IN GALAXY-GALAXY LENSING

BAO are frozen-in density perturbations that are imprinted on the
CMB and today’s three-dimensional matter distribution. They are
detected in the LSS of galaxy distributions using measurements of
correlation functions as well as power spectra. The BAO scale
serves as a standard ruler, and thus, enables us to measure the ex-
pansion history of the Universe. For this reason, the Dark Energy
Task Force (Albrecht et al., 2006) acknowledged BAO measurements
as one of the four most promising ways to unveil the nature of dark
energy. As of yet, BAO have not been detected with weak lensing
methods. The aim of this chapter is to use weak lensing simulations
to constrain BAO in GGL.

7.1. State of the art
In the pre-recombination era, photons were tightly coupled to electrons, while the
electrons were coupled to the baryons by Coulomb interactions. They formed a
baryon-photon fluid that propagated through the early Universe with sound speed
cs. The photon pressure balanced the in-fall of baryons into the potential wells of the
dark matter, forming acoustic oscillations (for a review see, e.g., Bassett and Hlozek,
2010, and references therein). In the era of recombination zrec ≈ 1090, the photons
decouple from baryons and diffuse away. Thus, the propagation of the sound waves
comes to a halt shortly after at the so-called baryon drag epoch zdrag ≈ 1020. While
the majority of the dragged baryons fall back into the potential well of the dark
matter distribution, a part of the dark matter particles follows the baryon density
field. Since the subsequent formation of galaxies follows the underlying matter
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density field, the imprint of this density perturbation is still visible in the late-time
LSS.
The time a sound wave can travel is from the end of inflation to zdrag. Thus, the

physical size of the sound horizon can be calculated as

rdrag =
∫ ∞
zdrag

dz cs(z)
H(z) . (7.1)

Using CMB observations, rdrag is obtained within 0.2% uncertainty (Planck Collab-
oration et al., 2018a). Currently, the best estimate for rdrag is (147.38 ± 0.25) Mpc
comoving which is known as the standard ruler of the Universe. By either measur-
ing the angular BAO scale or its line-of-sight distance in the LSS of the late-time
Universe, we infer cosmological parameters from the distance-redshift relation (see
Eq. 2.17, and for a practical application, e.g., Ross et al., 2017).
The first detection of BAO was made by observing the galaxy distribution; Cole

et al. (2005) studied the BAO imprint on the power spectrum within the 2dFGRS
and Eisenstein et al. (2005) used galaxy data from SDSS I and II to detect BAO
in the correlation function. The most recent results estimate the BAO scale with
percent-level accuracy (Alam et al., 2017; Ata et al., 2018, with BOSS galaxies and
eBOSS quasars, respectively). Galaxy surveys yield cosmological constraints up to
a redshift of approximately two; an estimate at z ≈ 2.3 has recently been done
by Bautista et al. (2017) using the Lyman α forest measured in BOSS quasars.
Planned spectroscopic surveys will span an even wider and deeper survey volume
and improve the measurement accuracy by an order of magnitude. Upcoming sur-
veys are performed by the Dark Energy Spectroscopic Instrument (DESI, starting
the survey in summer 2020, www.desi.lbl.gov), the 4-metre Multi-Object Spec-
troscopic Telescope (4MOST, www.4most.eu), the Prime Focus Spectrograph (PFS,
pfs.ipmu.jp) and the space-based Euclid satellite.
To eventually reach sub-percent accuracy on the angular BAO scale, we have

to control systematic uncertainties extremely well. With the characteristic scale
being about ≈ 100h−1Mpc, we are in the linear regime of structure growth and it
is comparably easy to construct accurate models. On the downside, we only have
a low number of modes available at these large scales. Therefore, the impact of
sample variance or ultimately cosmic variance on the error budget must be carefully
taken account since noise fluctuations affect the shape of the BAO peak (Ruggeri
and Blake, 2019). So-called redshift-space distortions (RSD) are a major source
of error for the BAO scale along the line-of-sight. The RSD are caused by the
peculiar motion of galaxies vpec which slightly alters the observed redshift, while the
projected distance on the sky remains unaffected. If vpec,z is the peculiar velocity
component that is aligned with the line-of-sight, we can write the three-dimensional
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redshift-space coordinates s approximately as

sx,y = rx,y = z c

H(z) θx,y ,

sz = rz + vpec,z

H(z) , (7.2)

where r are the proper coordinates. The RSD cause the observed correlation func-
tion to be slightly anisotropic, which subsequently shifts the observed BAO scale.
BAO are imprinted on the matter distribution of the Universe. We use, however,

galaxies as tracers of the distribution who are known to be biased. Especially the
brightest galaxies, e.g., the luminous red galaxies (LRG) and quasars, are highly bi-
ased tracers but can be observed out to high redshifts. The scale-independent linear
bias factor b (2.51) accounts for the difference of matter tracers and matter distribu-
tion to leading order. Nevertheless, to infer cosmological parameters accurately, we
have to measure the scale-dependency of the galaxy bias precisely, which is known
to be notoriously difficult. Although structure growth on large scales is fairly well
described with linear perturbation theory, the desired percent or even sub-percent
level accuracy warrants attention to non-linear effects as any scale-dependent bias
induces a shift in the BAO peak position and changes the shape of the peak. Bi-
ases that are known to affect small scales are the satellite distribution bias, the
galaxy assembly bias and the velocity bias for central and satellite galaxies. The
satellite distribution bias refers to a non-Poissonian distribution of satellite galax-
ies, and the assembly bias accounts for differences in the formation of galaxies for
equal halo masses due to environmental effects. Lastly, the velocity bias accounts
for differences in the distribution of galaxy velocities compared to that of dark mat-
ter (sub)halos. They are also potential candidates to affect large scales, which is
currently investigated (see, e.g., Duan and Eisenstein, 2019, and references therein).
Another potential source of such a scale-dependent bias that is not captured by

linear theory is proposed by Tseliakhovich and Hirata (2010) and discussed more
recently by Blazek et al. (2016). Shortly after recombination, the baryon sound
waves moved supersonically compared to the velocity field of the dark matter parti-
cles. The matter particles fell into the potential wells, but the supersonic streaming
velocity of the baryons led to suppression in the galaxy formation rate due to a
less effective gas accretion and cooling rate. Thus, the galaxy distribution is not
necessarily matched to the dark matter halo distribution by a linear factor, even on
large scales. This potentially introduces a relative offset of the characteristic BAO
scale between these distributions.
Currently, a method called density field reconstruction is used to allevi-

ate issues related to non-linear structure growth and RSD (Eisenstein et al., 2007)
which has been proven to obtain the desired accuracy until now (Duan and Eisen-
stein, 2019). It has therefore been integrated into the standard analyses routine (for
a recent example of handling observational systematics see, e.g., Ross et al., 2017).
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By using Lagrangian perturbation theory, the reconstruction method aims to reduce
anisotropies in the clustering and takes gravitational bulk flows on large-scales into
account. Recently, many approaches have been made to improve the standard re-
construction method (see, e.g., Schmittfull et al., 2017; Seljak et al., 2017; Hada and
Eisenstein, 2018; Shi et al., 2018; Zhu et al., 2018; Wang and Pen, 2019).
A complementary approach is to use different tracers for the matter structures

to measure the BAO scale. The inference of the BAO scale from the Lyman α
forest has already been obtained, and potential future candidates for detecting BAO
are intensity mappings with the 21 cm line of hydrogen (Chang et al., 2008) and
cosmic voids which refer to three-dimensional troughs in the density field (Zhao
et al., 2020). A multi-tracer analysis reduces the impact of systematic errors and
thus, yields tighter constraints on cosmological parameters (Abramo and Leonard,
2013). Besides, higher-order n-point statistics also have the advantage to capture
non-Gaussian information in the LSS statistics. Recent results were obtained by
de Carvalho et al. (2020) who used the three-point galaxy correlation function to
measure the BAO scale. In 1983, Davis and Peebles proposed to perform the BAO
analysis in a projected space to alleviate RSD and use a model-independent approach
that does not rely on a fiducial cosmological model to calculate the line-of-sight
distance. In this case, the true distance

√
r2

p + l2 between objects is integrated over
the line-of-sight distance l, while the projected distance rp is measured as the angular
scale. McBride et al. (2011) performed such an analysis for three-point correlation
functions which showed promising results to improve the control over systematic
uncertainties.
To circumvent the galaxy bias entirely, we need to obtain the BAO scale directly

from the matter distribution. This will be achieved by a successful detection of
BAO in cosmic shear, which is a two-point correlation function of lensing shear as
a function of angular scale. Cosmic shear is known to be sensitive to the geometry
of space and the structure growth history; it measures the strength of gravitational
clustering in the projected matter distribution. However, the lensing kernel along
the line-of-sight is broad, which smears out the imprint of BAO on the correlation
function. Therefore, galaxies with available shape information need to be finely
binned in redshift. For most galaxies, however, only photo-z estimates are available
which show large uncertainties compared to spec-z estimates. Further, due to the
presence of shape noise, a large number of galaxies with accurate shape and redshift
information is needed. For these reasons, a detection of BAO in cosmic shear is
challenging even for future surveys. Grassi and Schäfer (2014) calculated the de-
tection significance for future tomographic cosmic shear surveys that bin galaxies
using spin-spherical harmonics and spherical Bessel functions (Heavens, 2003). De-
ciding parameters include shape noise, photo-z errors, median redshifts, the average
number of galaxies per area, and the sky coverage. They conclude that LSST as
well as Euclid will be able to detect the first three and four BAO wiggles in the
power spectrum with high significance, respectively. This result has been confirmed
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and further quantified in Bernardeau et al. (2020). Recently, Ding et al. (2019)
proposed to only use galaxies with available spec-z information, which is referred
to as kinematic weak lensing. They forecast a 3σ detection of the BAO scale in the
power spectrum with a precision of 4% for a hypothetical stage IV-like kinematic
weak lensing survey.
The aim of BAO surveys is a statistically significant, unbiased constraint on the

peak position with high precision. Any improvement in the precision level using
multiple tracers or detection techniques, as summarised above, is as effective as
further enlarging the survey area. Accuracy, however, is only improved by comparing
results from different tracers and techniques. In general, a joint analysis is not only
advantageous but also necessary.
To complete the picture of measuring the BAO scale in the galaxy distribution

as well as shear-shear correlation functions, we can analyse the galaxy-shear cross-
correlation which is known as the GGL signal. The dependence of the galaxy-matter
correlation function on the galaxy bias is linear, whereas the galaxy-galaxy correla-
tion function depends quadratically on the bias. Also, RSD and detection system-
atics affect GGL estimates differently. Finally, GGL estimates can be performed
with the combined data from cosmic shear and spectroscopic surveys. Therefore, a
complementary detection of the BAO scale in GGL can only improve future mea-
surements with no additional observing time. Jeong et al. (2009) considered an
LSST-like survey and three fiducial lens samples at zd = 0.3, 0.5, and 0.8 with one
million lenses each; they concluded with an analytical model that χ2-difference of a
model with and without BAO is ∆χ2 = 3.2. The covariance matrix is dominated
by cosmic variance and is further influenced by the number of lenses per redshift
slice, shape noise, and the number density of background galaxies. By adding more
redshift slices, the S/N increases roughly by the square root of the lens number
count,

√
Nd.

Aside from the analytical ascertainment that a BAO detection in GGL is possible
but challenging, no further research has been made (to my best knowledge). There-
fore, I attempt in the following to use artificial galaxy catalogues and ray-tracing
results to obtain a forecast for detecting the BAO signal in GGL. A summary of
this still ongoing project is given in the following sections.

7.2. Methods
We use ray-tracing results from the MXXL and the semi-analytical galaxy formation
model (SAM) from Henriques et al. (2015) as well as artificial lens and shear cata-
logues from SLICS, which are explained in Sect. 4.1 in detail. The tangential shear
signal is estimated as given in Eq. (4.20), which is calculated by the FFT method
explained in Sect. 4.3. To alleviate the impact from the FFT’s periodic boundary
conditions, we employ a zero-padding method. For lens redshifts at zd = 0.4, 1, and
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1.4, the BAO signal is expected on angular scales around 3.7◦, 1.7◦, and 1.4◦, respec-
tively. We calculate the shear signal in 30 linearly spaced bins from Rin = 50h−1Mpc
to Rout = 200h−1Mpc in comoving coordinates, and also in angular coordinates with
40 bins for the whole simulated field, with θout = 12◦ for the MXXL and θout = 10◦
for the SLICS. The lens galaxy sample for both simulations is restricted to bright,
elliptical galaxies with several limiting magnitudes in the r-band. We project their
position using the NGP method onto a grid with Npix = 40962.
The shear catalogues for each 12× 12 deg2-field of the MXXL are set up identical

to the MS with its 4 × 4 deg2-fields. Thus, we obtain shear estimates and their
errors in the same way as explained in Sect. 6.8.2, where we explicitly set ns(θ) to
unity for the whole field. The total sky coverage of the MXXL is 2304 deg2, which
is equivalent to 6% of the whole sky and 15% of the Euclid footprint.
The SLICS provide catalogues per line-of-sight with galaxies and their properties

of all redshifts. This applies to lens as well as source galaxy catalogues. Thus, we
have to make two adjustments compared to MXXL. Firstly, shear information is not
available for the whole simulated grid, but only for the source galaxies with positions
that need to be projected onto the grid. Hence, we treat the source galaxies the same
as the lens galaxies, with the difference that we average shear values per pixel instead
of stacking the number of lenses per pixel. Secondly, we use all available sources
with redshifts zs > zd, such that we obtain a comparable S/N as for the MXXL. The
critical surface mass density Σcrit is calculated using the effective source redshift zs,eff
of the source galaxies’ redshift distribution p(zs). In this case, the lensing efficiency
becomes

Dds

Ds
:= D(zd, zs,eff)

D(zs,eff) =
∫ ∞
zd

dzs p(zs)
D(zd, zs)
D(zs)

, (7.3)

where p(zs) is normalised to unity. From the available mock data, we use for the
source galaxies the deep LSST-like catalogues with mean redshifts z̄s = 1.0 and
1.8 which correspond to the sixth and ninth tomographic bin, respectively. For the
lens galaxies, we use the GAMA-like catalogues. For this combination, we have 632
lines-of-sight with each 10× 10 deg2 at our disposal. Thus, the total sky coverage is
63 200 deg2 or 1.5-times the full sky.

7.3. Results
In the following, the expected BAO feature in GGL estimates is analytically ex-
plored. Tangential shear and convergence signals are then compared to numerical
results from the MXXL and SLICS. The SLICS cover a huge simulated area while
providing only relatively low lens redshifts. On the other hand, catalogues from the
MXXL provide very deep lens galaxy information with a substantially lower area.
Unfortunately, both simulations cannot detect BAO in GGL as is shown in this
section. The discussion of the results follows in the Sect. 7.4.
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7.3.1. Analytical estimate
We start by predicting the expected signal analytically with simplified assumptions.
Linear theory is used and we ignore observational systematics as discussed in the
previous section, in particular, RSD, photo-z errors, and shape noise. The linear
matter power spectrum (2.42) is calculated using the Python package COLOSSUS
(Diemer, 2018) which implements a model for transfer function T (k) from Eisenstein
and Hu (1998) with or without baryons as a function cosmological parameters.
Fig. 7.1a shows the corresponding spatial linear matter-matter correlation function
ξ3D, as a function of comoving distance R and of angular scale θ. The cosmology
is set to the one from MXXL and the redshift for all panels is zBAO = 0.4. At
a scale of roughly 110h−1Mpc, the BAO imprint is clearly seen. The projected,
two-dimensional correlation function is calculated as

ξ2D(rp; z) =
∫ ∆l

−∆l
dl ξ3D

[√
r2

p + l2; z(l)
]
. (7.4)

Using a slice of thickness 2∆l centred on the redshift zBAO, we approximate
z(l) ≈ zBAO and show the result in Fig. 7.1b. The projected correlation function
is negative for separations R & 150h−1Mpc comoving and the BAO feature is
smeared out compared to the signal in ξ3D. For a fixed redshift, the smearing is
stronger for thicker slices ∆l. The ray-tracing algorithms rely on the multiple-lens-
plane approximation as was described in Sect. 4.1. The bin width for projecting the
matter onto two-dimensional mass sheets is ∆l = 50h−1Mpc for the MXXL and
∆l = 125h−1Mpc for SLICS. Both cases are visualised in Fig. 7.1b.
The two lower panels of Fig. 7.1 show the tangential shear γt (panel c) and the

convergence κ (panel d). They are calculated as

γt(R) = b ρ0

Σcrit(zd, zs)

∫ dk
2π k P (k, zd) J2(kR) , (7.5)

κ(R) = b ρ0

Σcrit(zd, zs)

∫ dk
2π k P (k, zd) J0(kR) , (7.6)

where J0,2 are the zeroth and second Bessel function of the first kind. The integral
is solved using a Hankel transform method introduced by Ogata (2005). We use
a source redshift of zs = 1, a lens redshift zd = zBAO, as well as an absent linear
galaxy bias, i.e. b = 1. The BAO feature in the tangential shear signal has been
dubbed ‘shoulder’ in the literature and shows the least relative distinction compared
to a zero-baryon model. The convergence in the fourth panel is, like the projected
correlation function, not necessarily a positive function but nevertheless approaches
zero in the limit of infinite separation.

7.3.2. Numerical estimates
We calculate the GGL signal from the SLICS simulation for their highest GAMA-
like lens redshifts. The lens galaxy type is restricted to elliptical galaxies with
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Figure 7.1. – The four panels show various correlation functions as a function of comoving
separation and angular scale. A linear perturbation theory model that includes baryons is
shown in solid lines, while dashed lines show correlation functions in the absence of baryons.
The cosmology for all panels is the one from the MXXL. In the panel a, the spatial correlation
function ξ3D(R =

√
r2
p + l2) is shown for a redshift of zBAO = 0.4. Projecting the spatial

correlation function in a slice of 2∆l to two dimensions, ξ2D(R = rp), results in the panel b,
where the blue curve is matched to ray tracing through the MXXL and the orange curve to
SLICS. The lower panels show the tangential shear γt (panel c) and the convergence κ (panel
d) for an unbiased lens sample at zBAO = 0.4 and zs = 1 as a function of projected distance.

132



7.3. Results

magnitudes md < 19 mag and md < 20 mag, we chose two redshift bins for each
limiting magnitude with 0.4 < zd ≤ 0.45 and 0.45 < zd ≤ 0.5. The angular BAO
scale changes over the redshift bin by ∆θ = 0.36◦ and ∆θ = 0.29◦, respectively. In
Fig. 7.2, we show the results of the four different combinations, where the tangential
shear γt is depicted as a function of comoving distance R and angular scale θ. We
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Figure 7.2. – Tangential shear signals γt estimated from bright, elliptical lenses in a thin
redshift bin from SLICS are shown. The solid, blue lines indicate the shear estimates with
Jackknife errors. Each green line only uses randomly selected 15 000 deg2 of simulated data
for the tangential shear estimate, which is equivalent to a Euclid-like sky coverage. The grey
lines show the best-fitting analytical model, where the galaxy bias b is fitted, and its results
are indicated in the legend. In all four panels the fitting error is ∆b < 0.03. The legend also
indicates the mean lens redshifts z̄d, the effective source redshifts zs,eff , and the lenses’ limiting
magnitudes md. All curves are shown as a function of comoving redshift and angular scale.

further list the number of lenses and sources in Table 7.1. The mean redshift z̄d
is calculated by averaging the redshifts of each galaxy that fit the criteria; and
the effective source redshift is calculated according to Eq. (7.3). We obtain the
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Table 7.1. – We list the mean number of lenses and sources per line-of-sight that are used
from SLICS in Fig. 7.2, and from MXXL in Fig. 7.3. The total number of lines-of-sight for
SLICS is 632 and for MXXL 16. For both simulations, the number of lenses is given as a
function of limiting magnitude in the r-band and redshift. While the lens redshifts are similar
by design, their limiting magnitudes are chosen such that the resulting S/N of the tangential
shear signal is roughly comparable.

Fig. 7.2 with SLICS Fig. 7.3 with MXXL
N̄d N̄d

z̄d = 0.42 z̄d = 0.48 z̄d = 0.41 z̄d = 0.47
md = 19 1256 819 md = 21 11 834 7783
md = 20 5077 3954 md = 22 37 059 33 876

N̄s 936 005 N̄s 16 777 216

galaxy bias b by fitting the analytical model to the data with a piecewise third-
order polynomial interpolation, commonly referred to as a cubic spline interpolation
(Press et al., 1992a). The error of the galaxy bias is < 0.03 for all cases shown
in this section. Lenses selected with a lower magnitude limit have a higher galaxy
bias, as expected. However, lenses at a higher mean redshift show a slightly lower
bias which is not understood. The solid, blue lines indicate the simulated data with
Jackknife errors, and the best fitting analytical estimate is shown in grey. Moreover,
we plot in green the result of randomly drawing ten times 150 lines-of-sight which
is equivalent to a Euclid-like sky coverage. Although, data and simplified theory
show overall a good match, no BAO feature is visible ‘by eye’ in either of the panels.
Furthermore, the error bars indicate that only one redshift bin is not sufficient to
constrain the signal even in the absence of shape noise. For a Euclid-like survey,
this problem is even more severe.
Before averaging the signal over the two redshift bins, we show comparable results

for the MXXL in Fig. 7.3. We again choose elliptical galaxies and match the lens
and source redshifts to the previous case. Due to the smaller simulated area and less
width of the redshift bin, we chose fainter galaxies with magnitudes md < 21 mag
and md < 22 mag to achieve comparable S/N ratios. The explicit numbers of lenses
and sources are listed in Table 7.1. Again, the tangential shear is shown as a function
of comoving distance and angular scale. The data are shown as a solid, blue line and
the theory in grey. Light-blue curves depict the average curve when leaving out one
line-of-sight, which depicts the variance in the data using a Jackknife approach. The
fitted galaxy bias is higher for brighter lens galaxies and those residing at a higher
redshift. As before, no BAO are easily distinguished in the MXXL data curves and
the relative difference of the BAO feature is smaller than the variance of the data.
Repeating the plotting procedure but with the convergence instead of the tangential
shear leads to very similar results in terms of noisiness.
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Figure 7.3. – Tangential shear signals γt estimated from bright, elliptical lenses in a thin
redshift bin from MXXL are shown. Lines and legends are set up as in Fig. 7.2. Additionally,
the light-blue lines show the average signal of 15 from the 16 lines-of-sight, thus, indicating
the Jackknife variance. The source redshift is fixed to zs = 1.03.
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Therefore, we proceed to average the data over redshift bins. We calculate a
weighted average with weights Nd per each lens magnitude limit. For SLICS, the
result is presented in Fig. 7.4. However, no BAO feature can be detected. We
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Figure 7.4. – Tangential shear signals γt estimated from bright, elliptical lenses in two
stacked redshift bins from SLICS are shown. Lines and legends in this figure are set up as in
Fig. 7.2. The data curve is a weighted average of the lensing signals presented in Fig. 7.2 per
each limiting magnitude.

repeat the analysis for the MXXL using tangential shear and convergence, where
we average over four bins in redshift with zd = 0.50, 0.47, 0.44, and 0.42 as well as
constant source redshift. However, the reduction in the scatter of the data is also
not sufficient to exhibit the BAO feature and we omit to show the results here.
Instead, we use 38 lens redshift bins in the range 0.24 < zd ≤ 1.5 and change

the magnitude limit in each redshift bin to only obtain the brightest objects per
redshift. This is achieved by analysing the cumulative number density as a function
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of magnitude. We choose the limiting magnitude such that it corresponds to the
magnitude where the Schechter-like function changes its exponential behaviour to
a linear one. The exact choice of the limiting magnitude is not crucial as long as
bright and therefore highly-biased galaxies are chosen. We fix the source redshift to
zs = 1.78 for all lenses. The results for the tangential shear and the convergence are
depicted in Fig. 7.5. However, also, in this case, no BAO feature is visible. Surpris-
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Figure 7.5. – Lensing signals estimated from 6 698 255 bright, elliptical lenses in stacked
redshift bins from MXXL are shown. Lines and legends are set up exactly as in Fig. 7.3.
The lenses are binned in 38 redshift bins from 0.24 < zd ≤ 1.5 with a fixed source redshift
zs = 1.78. The magnitude limit md is chosen fainter with increasing lens redshift (bin).

ingly, the data even suggest the apparent absence of BAO features since now the
variance of the data is sufficiently low, especially for the tangential shear data in
Fig. 7.5a. A theoretical model with zero baryons fits the data slightly better. The
zero-baryon model fit leaves the bias factor almost unchanged, which still overesti-
mates the signal on large scales. The convergence curve in Fig. 7.5b also lacks any
hint for BAO. A zero-baryon model fit yields a similar galaxy bias factor while still
underpredicting small scales and overpredicting large scales.
The tangential shear as well as the convergence are calculated by subtracting the

signal around random points as has been described Sect. 4.2. To investigate the form
of the signal shown in Fig. 7.2 to 7.5, we show the lensing signals around random
points for tangential shear γt,rand and convergence κrand estimates in Fig. 7.6 as a
function of angular scale for all the source redshifts from the previous figures. For
consistency, we show error bars obtained by a Jackknife method for the SLICS data
and leave-one-out curves for MXXL data, although they depict the same statistical
property. The γt,rand and κrand estimates are independent of lens redshift. Both
tangential shear curves show larger variance for larger angular scales, and at around
4◦ the curves exhibit a positive signal. The convergence shows a variance that is
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Figure 7.6. – Instead of the location of lens galaxies, random positions are used and the
lensing signals are estimated. In panel a results from SLICS are shown. For two effective
source redshifts, the tangential shears with Jackknife errors are depicted. The blue curve is
the signal around random positions that is subtracted to obtain the Figs. 7.2 and 7.4. In panel
b and c results from the MXXL for three different source redshifts are shown; panel b shows
the tangential shear signal around random positions and in panel c the convergence. The thin
lines indicate the Jackknife variance for each source redshift as in Fig. 7.3 and 7.5. The blue
line in panel b shows the signal that is subtracted from the data in Fig. 7.3, the orange lines
in panel b and c are subtracted from the left and right panel of Fig. 7.5, respectively, and the
green line shows an example for an even higher source redshift. The average values of the
convergence fields from panel c are (0.87± 2.00)× 10−4 for zs = 1.03, (2.08± 2.30)× 10−4 for
zs = 1.78, and (2.57± 2.29)× 10−4 for zs = 2.48.
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almost independent of angular scale; its amplitude has a sharp decrease in amplitude
at roughly 9◦ independent of redshift.

7.4. Discussion & outlook
In the previous section, we showed results for measuring the galaxy-matter cross-
correlations for a few selected lens redshifts and limiting magnitudes from simulated
data. We aimed for the detection of BAO in mock data, its comparison to the ana-
lytical model, and ultimately a forecast for a stage IV survey. The FFT-based code
enables us to analyse large quantities of data fast and accurately. Unfortunately,
neither the MXXL nor the SLICS exhibit the BAO signature. Results illustrated in
Figs. 7.2 to 7.5 clearly indicate the absence of BAO in the ray-tracing simulations.
Possible reasons for this are listed in the following. Beyond that, we highlight nec-
essary improvements for the method towards a robust forecast for a stage-IV-like
survey.
Choosing GGL estimators, i.e. the tangential shear and the convergence, to de-

tect the BAO signal is certainly valid as was motivated in Sect. 7.1 and illustrated
in Fig. 7.1. Besides, the N -body simulations used in this thesis include BAO in
their initial power spectra. In general, the size of such a simulation must be con-
siderably larger than the scale of the signal we aim to detect. A periodic box of
size 500h−1Mpc is as large as the SLICS cube and six times smaller than the one
from MXXL. Such a box retains the BAO feature to redshift zero only with a large
scatter around the mean signal due to the small number of available modes which
was shown in Springel et al. (2005) in their Fig. 6 for the MS. The MXXL uses the
same cosmology as the MS, and Harnois-Déraps and van Waerbeke (2015) report
that they base their initial power spectrum for SLICS on CAMB1 (Lewis et al., 2000)
with Ωb > 0.
Next, we shift our attention to the ray-tracing simulations. The multiple-lens-

plane approximation projects matter in thin redshift slices onto a series of two-
dimensional mass sheets. This leads to smearing the BAO peak as a function of
slice thickness (cmp., e.g., Fig. 7.1b), and therefore a dilution of the BAO signal.
Since SLICS uses a bin width that is 2.5-times thicker than the one from MXXL,
a detection of the BAO signal in SLICS data is more challenging.2 From the tech-
nical aspect of the simulations, the detection significance is governed by the size
of the simulated area, the size of individual lines-of-sight, as well as the number
and maximum redshift of the simulated lens and source galaxies. SLICS provides

1which stands for ‘Code for Anisotropies in the Microwave Background’ and can be visited under
camb.info

2This problem can be entirely circumvented by taking the full advantage of the spatial and time
resolution of the N -body simulation at the expense of computational power. The RAY-RAMSES
code (Barreira et al., 2016) provides such ray-tracing simulation. It has not been used in this
thesis since its data products have not been made publicly available as of yet.
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a sky coverage which is 27 times larger than the one from MXXL, while individual
lines-of-sight are 31% smaller compared to MXXL. The number of lenses per given
redshift is comparable, however, the SLICS provide lens galaxies as deep as zd ≈ 0.5
and the MXXL as deep as zd ≈ 3.
Figure 7.6c shows that the convergence measured around random positions has a

similar dependence on the angular scale regardless of redshift. Since angular scales
translate to different comoving scales for different redshifts, potential problems with
the box size of the N -body simulations would impact the convergence at different
angular scales. However, the convergence measured around random points must
be compatible with zero, which is violated especially for the highest source redshift
bin. This hints to problems with the ray-tracing method, which must be investigated
further.
In any case, the advantages and disadvantages of SLICS and MXXL stack in a

way that makes a BAO detection impossible. The major drawback of the MXXL is
most probably the lack of overall sky coverage. We exclude the size of an individual
line-of-sight as the main problem. This assumption is based on the notion that
otherwise high-redshift lenses with 1 ≤ zd < 1.5 and a corresponding BAO scale
of 1.3◦ . θ . 1.7◦ should exhibit a clear BAO signal. Unfortunately, it is highly
unlikely that additional data for the MXXL will be provided. The SLICS would
benefit most from deeper lens galaxy data. A new lens catalogue is planned for the
near future that contains LRG with a maximum redshift of zd ≈ 0.8. If even the
LRG do not exhibit a BAO signal, the projection bin width ∆l is probably chosen
too wide or the N -body box size too small, and SLICS cannot be used to constrain
BAO.
The next immediate measures in this project are: waiting for new SLICS catalogue

and sending an inquiry to obtain catalogues from RAY-RAMSES. In the time-frame of
this doctoral thesis, the project ‘BAO in GGL’ was stopped at this point. Nonethe-
less, we suggest here several improvements of the analysis assuming that BAO will
be eventually found in simulated or observed data. First of all, the assumption of
a scale-independent, linear galaxy bias b must be treated with caution. The non-
linearity becomes less important if the fitting range is kept in a small range around
the BAO scale. In this case, the size of the fitting range must be chosen with care
such that the galaxy bias is not entirely governed by the statistical uncertainty of
the lensing signal. The galaxy bias is further important when averaging the lensing
signal over many redshift bins. This is due to the slight dependence of the BAO
scale on the galaxy bias which dilutes the BAO signal additionally. The impact
can be estimated by choosing lens galaxy samples that have limiting magnitudes
corresponding to a constant galaxy bias. In general, we must choose narrow redshift
bins for the lens galaxies, since the angular BAO scale is a function of redshift.
Furthermore, the full covariance of the data must be used when lens redshifts are

stacked to forecast reliable error estimates. Non-diagonal terms in the covariance
matrix arise, e.g., from the strong correlation of the signal from neighbouring angular
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bins. So far, only the variance has been estimated by a Jackknife method, which
underestimates the total error. Finally, shape noise must be included in the analysis.
Although shape noise is a sub-dominant source of noise compared to the sample
variance, it also leads to an increased error budget. It further adds another source
of correlated errors, i.e. off-diagonal terms in the covariance matrix, since the same
source galaxies are used for different lens galaxies.
Ultimately, we want to observe the BAO signal in stage IV surveys. The number of

lens-source pairs that are needed for the detection is huge and conventional tree-code
algorithms are computationally expensive. The FFT-based method presented here
is fast, precise, and easily applicable to any data catalogue format. This application
is not only limited to the galaxy-shear correlation function but also the shear-shear
correlation function can be analysed with this FFT-based algorithm. Cosmological
constraints from simultaneously obtaining the BAO from these two in addition to the
galaxy-galaxy correlation function will enable us to obtain cosmological parameters
with unprecedented precision and accuracy.
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CHAPTER 8

SUMMARY

This thesis is part of a worldwide effort to study the Universe using
weak gravitational lensing. The focus lies on GGL which enables
us to obtain precise mass estimates of the dark matter halos the
galaxies reside in. Thus, GGL is crucial to understand the dis-
tribution of the elusive dark matter and to constrain cosmological
parameters. Upcoming surveys will provide extensive data sets with
unprecedented statistical accuracy. The data analysis depends on a
sound theoretical model as well as capable numerical tools to deal
with large data sets; this work contributes to both. The following
chapter provides a brief summary of my main projects and con-
cludes with an outlook.

ShearCo – fast extraction of shear estimates

In GGL, we measure the galaxy-matter correlation function in terms of the tan-
gential shear around lens galaxies. This correlation function is calculated as the
convolution of the lens density and a background shear field. Using the convolution
theorem, an efficient FFT method can be used to calculate the tangential shear.
In the framework of this doctoral thesis, the numerical tool ShearCo was developed
and made publicly available under github.com/SandraUnruh/shearco. This tool is
geared towards applications in GGL, although cosmic shear analyses are also possi-
ble. The computational time only depends on the size of the regular grid the galaxies
need to be projected to, while the number of lens-source pairs is irrelevant. This is
particularly useful for the extensive data sets expected from upcoming surveys.
The numerical accuracy is only limited by the angular resolution of the regular

grid. Masks and patchy survey footprints are handled by default. For GGL analy-
ses, several modules were added which can be activated in a configuration file. The
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8. Summary

modules mainly estimate, mitigate or model weak lensing magnification effects. De-
tails about the implementation and the validation of the code are found in Chap. 4,
and three applications are given in Chap. 5, 6 and 7.

Magnification bias in the shear-ratio test

In weak lensing surveys, unbiased galaxy shape and redshift estimates are indis-
pensable for cosmological data analysis. The SRT is a null-test that probes for
systematics in both estimates. It is a geometrical probe which is almost indepen-
dent of cosmology. Using one lens and two source populations, the SRT equates the
ratio of tangential shear values to the ratio of their corresponding lensing efficiencies.
Chapter 5 shows that this is only true if weak lensing magnification can be neglected.
Magnification by the LSS between us and the lenses changes the number count of
lens galaxies, and at the same time, induces a shear on the background galaxies.
Thus, the bias is stronger with increasing lens redshift because more LSS can be
found between us and the lenses. For a fixed lens redshift, the bias is stronger the
closer the sources reside to the lenses. The magnification bias further depends on
the angular scale on which the tangential shear is measured as well as the selection
criteria for the lens galaxies.
Using simulations, we show that an SRT with flux-limited lens galaxies at redshift

zd = 0.8 deviates up to 9σ from zero. We conclude that neglecting magnification
effects in the SRT is unsuitable for ongoing and future weak lensing surveys. Un-
fortunately, it is very challenging to observe the magnification effects directly. In
Chap. 5 we provide a mitigation strategy that solely relies on already present obser-
vational data. The mitigation reduces the bias by a factor of ∼100 and, at the same
time, reduces the total uncertainties. This results in a deviation of typically < 1σ.
The numerical implementation is available within ShearCo as one of the options to
calculate magnification-corrected shear estimates.

Magnification effects in galaxy-galaxy lensing

Chapter 6 generalises and extends the findings from Chap. 5 for GGL. We provide
a leading-order analytical description for the magnification effects by the LSS be-
tween us and the lenses. Furthermore, we present a new method to select a lens
galaxy sample that is unbiased by magnification effects. The method is particularly
useful for weak lensing simulations since the magnification of the lenses must be
known. Additionally, we explore the magnification effects that the matter associ-
ated with the lens galaxies induces on the source galaxies. For the first time, we
provide an analytical approximation of this effect which is given by the third-order
cross-correlation of the lenses’ number density, and the shear and convergence as
experienced by background galaxies. We further provide a numerical method to cal-
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culate magnification-affected and unaffected source catalogues.1 The magnification
effect of the source galaxies is typically . 1% of the measured GGL signal.
We conclude our analysis by quantifying the magnification bias on halo mass

estimates. The mean mass profile of halos around galaxies can be inferred from
tangential shear estimates using a halo model prescription. We then estimate the
bias in shear and halo mass for a KiDS+VIKING+GAMA-like survey. For lens
galaxies at redshift zd = 0.36 and source galaxies with mean redshift z̄s = 0.79, the
shear profile is changed by 2% and the mass is biased by 8%. Thus, magnification
effects by source and lens galaxies must be carefully taken into account for ongoing
surveys, and the statistical power of future weak lensing surveys certainly warrants
correction for this effect.

Baryon acoustic oscillations in galaxy-galaxy lensing

BAO are frozen-in density fluctuations in the LSS that were generated in the early
Universe. They have been detected in the distribution of galaxies and are, among
others, also observable in weak lensing correlation functions. Upcoming weak lensing
surveys will provide the statistical power to measure the BAO signal in tomographic
cosmic shear and GGL surveys. Chapter 7 aims to detect the BAO in simulated
weak lensing catalogues. The BAO signal is first modelled analytically and then
estimated from numerical data. However, various problems with the ray-tracing
simulations were discovered that prohibit detection of BAO in the lensing simula-
tions. Nonetheless, the analysis pipeline has been set-up successfully and improved
data catalogues can be analysed on the time-scale of an hour. In the framework of
the doctoral thesis, the project was stopped here, but it will be continued in the fu-
ture with the overarching objective of measuring BAO in upcoming lensing surveys
for the first time.

Outlook

We live in exciting times. The standard model of cosmology has been proven to
beautifully explain observations for a wide range of time scales and physical scales.
Now, the physical origin of dark matter and dark energy challenges the scientific
community. Weak gravitational lensing surveys will soon reach the accuracy to shed
light on the dark sector. The satellites Euclid and WFIRST2, and the ground-based
LSST will provide redshift and shape information of several billion galaxies up to
a redshift of z ≈ 3 with an unprecedented and partly overlapping sky coverage.
The improved statistics require tighter control over observational systematics and
accurate theoretical predictions. Only then will a joint analysis of shear-shear,

1The mentioned numerical methods and numerical implementations of the analytical approxima-
tions are made publicly available with ShearCo.

2While writing this chapter, WFIRST has been renamed as the Nancy Grace Roman Space
Telescope, in honour of ‘the Mother of Hubble’, Nancy Roman.
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galaxy-shear and galaxy-galaxy correlations yield results with the necessary accuracy
and precision to explore dark matter and dark energy. The scientific community is
putting many resources in understanding all the nuances in the data analysis. This
work contributes to the effort.
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APPENDIX A
BREAK-DOWN OF THE

THIN-LENS APPROXIMATION

A common assumption in GGL is that the mass concentration relevant for lensing is
localised, i.e., the extension of lenses along the line-of-sight is small compared to the
distances between observer, lens, and source. This is referred to as the TLA. The
TLA breaks down when the LSS as an inhomogeneous, extended mass distribution
is taken into account. Since the statistical properties of the LSS are a powerful probe
for cosmology, the continuous deflection and distortion are studied in cosmic shear
analyses (for a recent review see, e.g., Dodelson, 2017). In GGL the extent of the
lens, which is determined by its physical size and its correlation to the surrounding
LSS, is typically neglected. In the following, we drop the assumption of the TLA
and calculate the change of the tangential shear signal as well as its implications for
the SRT analytically for an SIS model.

A.1. Analytical treatment for an SIS
The convergence (4.8) in a flat Universe is given as

κ(θ, χs) = 3H2
0 Ωm

2c2

∫ χs

0
dχ χ(χs − χ)

χs

δ(χθ, χ)
a(χ) , (A.1)

where χs is the comoving distance to the source and κ is somtimes referred to as the
effective (dimensionless) surface mass density. The expression (A.1) is valid in the
Born approximation and neglects lens-lens coupling. The fractional density contrast
is

δ = ∆ρ
ρ̄

= 8πG
3H2

0

a3

Ωm
∆ρ , (A.2)
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A. Break-down of the thin-lens approximation

and the surface mass density is ∆ρ dDprop in a small proper radial distance interval
dDprop = c dt = a dχ. The TLA is equivalent of assuming that the main contribution
to the integral in (4.8) comes from χ ≈ χd, where χd is the comoving distance from
the centre of the lens to us. Thus, we can replace all χ’s by χd, and extend the
integration limits to infinity which simplifies the distance ratio in (4.8) to χ(χs −
χ)/χs = χd(χs − χd)/χs = DdDds/(aDs). We insert this result and (A.2) into (4.8)
and recover the convergence (3.7) derived in Sect. 3.1.2.
To quantitatively test the implications of the TLA, we employ an SIS model

whose radial mass profile behaves as ρ = C r−2 (cf. Sect. 3.2). Using the SIS profile
in comoving coordinates superposed on the homogeneous background, we find

∆ρ = C

a2 [(χ− χd)2 + (χθ)2] , (A.3)

where the two terms in the denominator account for the separation along and
transversal to the line-of-sight from the lens centre. For consistency, we choose
the constant C to be

C = χs θE

2π (χs − χd) , (A.4)

and we obtain

κ(θ, χs) = θE

2π (χs − χd)

∫ χs

0
dχ χ(χs − χ)

(χ− χd)2 + (χθ)2 . (A.5)

We employ the TLA and recover the first expression in Eq. (3.18)

κ0(θ, χs) = θEχd

2π

∫ ∞
−∞

dχ 1
(χ− χd)2 + (χdθ)2 = θE

2θ . (A.6)

The full integral in Eq. (A.5) can be solved analytically, but the resulting expres-
sion is not very insightful. However, we can restrict our attention to small angles.
The fractional difference between κ and κ0 becomes

κ0 − κ
κ0

=
[
2χs + (2χd − χs) ln

(
χs − χd

χd

)]
θ

(χs − χd)π

+ χs − 3χd

χs − χd
θ2 +O

(
θ3
)

= r1(χs)θ + r2(χs)θ2 +O
(
θ3
)
, (A.7)

where in the last step we defined the coefficients ri(χs). Making use of (A.6), we
then find for the convergence

κ(θ, χs) = θE

2θ
[
1− r1(χs)θ − r2(χs)θ2 +O

(
θ3
)]

. (A.8)
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A.2. Effects on the shear-ratio test

Hence, by dropping the TLA, the convergence attains additional terms, the lowest
one of which corresponding to a constant. However, a constant surface mass density
does not yield any shear and this term is irrelevant for weak lensing studies. The
tangential shear becomes

γSIS
t (θ, χs) = θE

2θ

[
1 + 1

3r2(χs)θ2 +O
(
θ3
)]

. (A.9)

For an order of magnitude estimate, we can consider a lens galaxy at comoving
redshift χd = 1000 Mpc and a source population at χs = 1100 Mpc. For a fairly
large angle θ = 1◦ the deviation is of the order of 10−5; smaller angles lead to even
smaller deviations.

A.2. Effects on the shear-ratio test
The SRT relates shear measurements corresponding to same lens, which is just given
by a ratio of Einstein radii for an SIS. However, according to the considerations
above, the effective lens and its redshift are slightly different for every lens-source
pair and, thus, we introduce a systematic bias in (5.12) if we do not account for this
effect. Since the effective lens redshift is a bit lower than the redshift where the actual
lens galaxy resides, we underpredict the ratio of lensing efficiencies β(zd, z2)/β(zd, z1)
for z1 > z2, leading to a positive bias if we choose the null test as in Eq. (5.12). We
thus consider the difference

γSIS
t (θ, χs2)
γSIS

t (θ, χs1) −
χs2 − χd

χs2

χs1

χs1 − χd
= 2χs1 (χs2 − χs1)χd

3χs2(χs1 − χd)2 θ2 . (A.10)

An order of magnitude estimate as before with a second source population at χs2 =
1200 Mpc, yields for θ = 1◦ a deviation of 10−3, where again smaller angles lead to
smaller deviations.
We now compare (A.10) to the results of the null test (5.12) in Sect. 5. The same

shear estimator γ̄t (5.7) is used as well as the same weighting function w(θ; θin, θout)

∫ θout

θin
dθ 1

θ
γSIS

t (θ, χs) = χs − 3χd

3(χs − χd)
(
θout − θin

)
+ 1
θin
− 1
θout

. (A.11)

Also, the redshifts are taken to match those considered in Sect. 5. The result can
be seen in Fig.A.1; the deviation from zero is of the order 10−6. The bias increases
with lens redshift zd, likewise, a smaller separation along the line-of-sight leads to a
larger bias. Compared to the results from Fig. 5.1 the bias induced by assuming the
TLA shows a similar behaviour with redshift but is six orders of magnitude smaller.
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Figure A.1. – Shear ratio test of two populations of source galaxies that reside farther
or nearer to the lens galaxy, i.e. zfar > znear. The dotted lines separate shear-ratios from
different lens galaxies, while different source redshifts are highlighted by colour code, each
colour represents a combination of two sources at zs and zs+1. On the y-axis a deviation from
zero can be seen that arises if the TLA is removed.
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A.3. Conclusions

A.3. Conclusions
The breakdown of the TLA is a function of χd, χs, and the shape of the extended
mass distribution ρ. It also depends on the transverse distance to the lens as well
as slightly on the cosmology through the distance-redshift relation. However, the
systematic that arises from employing the TLA is a sub-dominant effect for all
current purposes, which includes stage IV experiments.
We further note that an SIS is only a valid choice to describe the 1-halo term

of the lensing signal. The 2-halo term usually has a shallower profile than an SIS
and roughly scales with ρ ∝ r−1.8. It is certainly the dominant contribution to the
lensing signal at comoving scales larger than 2 Mpc. However, for the SRT, the
nominator and denominator in (A.10) are affected alike and the difference to an
SIS is only marginal. We omit further investigations into this due to the current
irrelevance of this effect.
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