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Introduction

In the standard mechanism design paradigm, the designer commits to a mecha-
nism, which induces a game among the agents. There are no explicit constraints on
the mechanism, but there is an implicit assumption that the outcome of the induced
game does not directly depend on the agent’s type. Thus, each type can freely mimic
every other type in the game that is induced by the mechanism. As a consequence,
the principal’s only channel of learning an agent’s type is through the mechanism:
the mechanism must make it optimal for the agent to reveal his type.

In practice, however, we observe mechanisms that go beyond this paradigm:
insurers can costly verify claimants’ statements before the payout. Employees receive
confidential letters of recommendation about an applicant’s quality.

In this thesis which consists of three self-contained papers, I address different
deviations from this standard paradigm and its implications for the shape of optimal
institutions.

In my first paper (Chapter 3), Costless Information and Costly Verification: A Case
for Transparency (joint with Jan Knoepfle), we study the optimal mechanism for a
principal who has to take a binary decision. She relies on information that is held by
a completely biased agent. Monetary transfers between the agent and the principal
are not feasible. In contrast to the standard paradigm, we assume the following:
(i) The principal observes a noisy signal that is correlated with the agent’s type.
(ii) The principal can perfectly learn the type of the agent at a cost. In the optimal
mechanism, the principal bases her decision on the signal and allows agent to appeal.
If he does so, the principal costly verifies the agent’s type.

We find that without money, the principal cannot complement the screening of
the agent with her private information. She only screens via the costly verification
after an appeal. This mechanism can be transparently implemented; the principal
does not have to keep her signal secret from the agent. We then use our findings to
argue that there is no value in keeping the charges secret from a defendant during
a pretrial.

In my second paper (Chapter 2), Probabilistic Verification in Mechanism Design
(joint with Ian Ball), we introduce a model of probabilistic verification in a mech-
anism design setting. The principal verifies the agent’s claims with statistical tests.
The agent’s probability of passing each test depends on his type. We introduce a
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tractable reduced form for the testing technology. Because verification is noisy, our
framework is amenable to the local first-order approach. This was not possible with
previous models of verification, wherein the probability of detecting a lie discon-
tinuously jumps from 0 to 1. Under our probabilistic verification, this probability
can depend continuously on the agent’s report; therefore each local constraint is
loosened but not eliminated. We apply our framework to several classical revenue-
maximization problems.

As the precision of the verification technology varies, our setting continuously in-
terpolates between private information and complete information. This is reflected
in the form of the optimal mechanisms we derive. They contrast with the discontin-
uous mechanisms that were derived under previous frameworks of verification.

In my job market paper (Chapter 1), Allocation with Correlated Information: Too
good to be true, I study a principal–agent allocation problem. The agent privately
learns the value of an indivisible good that the principal can allocate to him. The
principal also has private information: she learns the cost of the allocation. Cost and
value are correlated, and monetary transfers are not feasible. The principal wants to
maximize welfare; whereas the agent wants to maximize the probability of receiv-
ing the good. This is not an informed principal problem, because the principal can
design the mechanism contingent on the cost realization. I study how the principal
utilizes her information in the optimal mechanism: when the correlation is nega-
tive, she bases her decision only on the costs. When the correlation is positive, she
screens the agent. To this end, she forgoes her best allocation opportunities: when
the agent reports high valuations but her costs are low. Under positive correlation,
these realizations are unlikely; the principal will find them too good to be true. In
contrast to standard results, this optimal mechanism may not allocate to a higher
value agent with higher probability. I discuss the application to intra-firm allocations,
task-delegation, and industry self-regulation.

The optimal mechanism utilizes positive correlation for screening. The possibil-
ity of using positive correlation for screening opens interesting new directions of
future research. My characterization is the first step toward analyzing a richer set-
ting in which the principal endogenously chooses the degree of positive correlation.

I introduce a novel regularity assumption on the distribution of costs and values.
In my model, it guarantees the interval structure of the optimal mechanism. I be-
lieve that this assumption will be useful in other models too. In the paper I give an
intuition that translates the heterogeneity of the agent’s belief into heterogeneity
of risk preferences. The assumption then guarantees that these risk preferences are
ordered.



.

Chapter 1

Allocation with Correlated Information:
Too good to be true ?

Job Market Paper

1.1 Introduction

A principal (she) can allocate an indivisible good to an agent (he). She privately
learns her costs c of allocating the good to him. He privately learns his valuation v
for the good. She is benevolent and wants to allocate whenever v exceeds c. He does
not incorporate the costs and wants the good in any case. In many applications of
this setting, monetary transfers between the principal and the agent are not allowed.
However, their information is often correlated. Examples include the following: the
federal government decides whether to allocate a task to the local government, the
management of a company decides whether to buy a capital good and allocate it to
one of its departments, a regulator decides whether to approve a new product after
she has investigated one of its features, and the producer of the good reports his
assessment about the safety of the other features.

To my knowledge, this is the first study that analyzes the optimal mechanism in
this bilateral trade setting with correlated information and without transfers.

As a benchmark, consider this setting when the designer could use monetary
transfers to screen the agent. In this case, the efficient allocation could be imple-
mented. The principal could charge her cost as the price for the good. Then, the
agent would buy if and only if his valuation exceeds the cost.

? I thank my advisers, Stephan Lauermann and Benny Moldovanu, for their continual guidance.
For helpful discussions, I thank: Ian Ball, Nina Bobkova, Gregorio Curello, Francesc Dilmé, Yingni Guo,
Carl Heese, Matthew Jackson, Jan Knöpfle, Daniel Krähmer, Annie Liang, Helene Mass, Andre Speit,
Rani Spiegler, Dezsö Szalay and Asher Wolinsky. I am grateful for funding from the German Research
Foundation (DFG) through CRC TR 224 (Project B04). An extended abstract for this paper appeared
in EC ’20.
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In many situations, however, monetary transfers are not feasible. This can be
for organizational reasons (companies and state agencies do not want to introduce
internal budgets), for technological reasons (a website and its user might not have
a payment channel), or for moral and legal reasons.

Moreover, it is natural that valuation and costs are not independent but corre-
lated:

If the federal government delegates a task to the local government, her oppor-
tunity costs are given by the value she could have created in the task herself. In this
example, the values which the agent (local government) and the principal (federal
government) could create in the same task are positively correlated.

If the management buys the capital good from a third party, her costs are given
by the price. This price could be a quality signal. Then, the price and the valuation
for the good are positively correlated. If the regulator investigates one aspect of a
new product and the producer investigates another, these aspects are likely positively
correlated.

In my setting, the principal designs a mechanism that can be contingent on the
realization of her cost. Her objective is to maximize the ex-ante expected efficiency
of the allocation. When she screens the agent to allocate efficiently, she has to dis-
courage an agent with a value below her costs to pretend to have a higher value.
Without money, she can only use the allocation itself as an incentive. Thus, she must
offer a low-value agent sufficiently high expected allocation probability to prevent
him from mimicking an agent with a higher value. However, allocating to low-value
agents distorts the expected efficiency. In the optimal mechanism, she has to square
the inefficiencies that screening entails with the efficiency gains that the information
about the agent’s value permits.

Results. The revelation principle applies in this setting. Therefore, it is sufficient to
study direct mechanisms. In a direct mechanism, the principal commits to a menu of
allocation schedules, with one allocation schedule for each valuation. An allocation
schedule specifies an allocation probability for any cost realization. The agent learns
his valuation, forms expectations about the cost, and then reports his valuation to the
principal. The principal learns the cost and allocates according to the schedule for
the reported valuation. Because cost and valuation can be correlated, agents of dif-
ferent valuations form different expectations about the cost and evaluate allocation
schedules differently. The agent must find it optimal to report truthfully. Therefore,
he must expect the allocation schedule that corresponds to his true valuation to yield
him the highest probability of allocation.

When cost and valuation are independent or negatively correlated, the optimal
mechanism ignores the agent’s report and bases the allocation decision only on the
cost: the principal commits to implement the same allocation schedule after all val-
uation reports. She allocates if and only if the cost falls below a cutoff. The reason
is that with negative correlation, low costs tend to occur with high valuations and
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vice versa. Therefore, basing the decision only on the costs is already quite efficient.
Screening the agent would only slightly increase the expected efficiency.

When costs and valuations are positively correlated, the optimal mechanism
might screen the agent. To illustrate this screening mechanism, suppose there are
two possible valuations vL < vH. If the agent reports the low valuation vL, the princi-
pal sticks to a cutoff allocation schedule: she only allocates if the cost remains below
a cutoff, c< cL. If the agent claims to have high valuation vH, the allocation schedule
is characterized by two cost cutoffs cH ≤ cH that form an interval. If the cost is either
too low or too high, the principal does not allocate the good. She allocates only after
intermediate cost realization between the two cutoffs, c ∈ (cH, cH). This means that
the principal does not allocate when the gains from allocation v− c are the highest.
The form of this allocation schedule exploits the difference in beliefs of the two valu-
ation types. Under positive correlation, an agent with vL finds low costs likelier than
an agent with vH. When the principal chooses to not allocate after a high valuation
report and low costs, she makes misreporting for the low type unattractive. She for-
goes the most efficient allocation opportunity; however this allows her to allocate
overall with a higher probability to vH without giving the agent with vL incentives
to misreport.

With more than two valuations, the structure from the above example extends. I
introduce a novel regularity assumption on the joint distribution. Under this assump-
tion, the allocation schedule for all valuation reports has interval form. Furthermore,
the intervals are ordered. For a higher valuation, both the upper and lower support of
the allocation schedule exceed the upper and lower support of the allocation sched-
ule of a lower valuation.

With correlated information, agents of different valuations hold different beliefs
about the costs. Therefore, the interim expected allocation probabilities are insuffi-
cient to describe the mechanism and the standard approaches fail. In particular, the
set of incentive compatible mechanisms cannot be easily characterized. Therefore, I
directly characterize the optimal mechanism. First, I use the new regularity assump-
tion to argue that the allocation schedules of the optimal mechanism are in interval
form (Proposition 1). This assumption is similar (but weaker) to an assumption Je-
witt (1988) uses in a moral hazard setting. I illustrate the role of this assumption by
introducing a related problem. In this related problem, agents of different valuations
share the same belief about the cost but differ in their risk preferences. The regu-
larity assumption then guarantees that in the related problem, agents with higher
valuation are more risk-averse. This leads to the interval form of the allocation sched-
ules.

Next, I show that the allocation schedules are ordered (Proposition 2). When
an agent evaluates an allocation schedule, he weighs the probability of receiving
the good at a certain cost realization with his belief that this cost realization occurs.
This evaluation is as if the agent would have a Bernoulli utility function with respect
to costs that is equal to his belief and would evaluate a lottery that is given by



6 | 1 Allocation with Correlated Information

the allocation schedule. I establish that these utility functions have single-crossing
expectational differences. Finally, I use the resulting monotone comparative statics
to show that the interval allocation schedules in the optimal mechanism are ordered.
In contrast to standard results, this interval monotonicity does not imply that the
interim allocation probabilities are monotone in the agent’s valuation.

Applications. The characterization of the optimal mechanism hasmany interesting
consequences for applications: if the principal buys the good from a third party to
allocate it to an agent inside her organization, her demand schedule is no longer
monotone. When the agent reports a high valuation, she will buy for intermediate
prices but will not buy for high or low prices.

The optimal mechanism under positive correlation gives a rationale for ineffi-
cient governmental allocation of resources and tasks. This demands a high degree
of commitment from the principal. It might be difficult for a public official to defend
the decision to not allocate a task to a subordinate agency if (i) the subordinate
agency predicts to be very successful in the task whereas (ii) the principal agency
expects to perform poorly. This advocates for an intransparent allocation procedure,
where the performance predictions do not become public record. In contrast, under
negative correlation, the optimal mechanism can be transparently implemented: the
principal does not collect any information from the agent. Given only the realization
of the costs, her decision is efficient.

The possibility of using positive correlation for screening has interesting effects
on the value of correlation. I demonstrate this with a numerical example, wherein
the principal compares two joint distributions with equal marginal expectations for
costs and valuation. The second distribution exhibits a higher degree of positive
correlation than the first. As a benchmark, I consider the case without information
asymmetry, where the principal can observe the agent’s valuation. Here, she prefers
the first distribution because the higher positive correlation lowers her expected
value of the efficient allocation. However, if the valuation is the agent’s private infor-
mation, the efficient allocation is not implementable. Then, the principal prefers the
second distribution. The higher degree of positive correlation allows her to screen
the agent and to allocate more efficiently in the second-best solution.

Finally, I investigate whether a regulator can delegate parts of the certification
process of a new product to the producer. I model this long-standing practice of
industry self-regulation as follows. The regulator analyzes one aspect of the safety
of the product and learns its value a1; a second aspect a2 is analyzed by the pro-
ducer. The two aspects are positively correlated and jointly determine the safety of
the product. To fit this setting into my model of valuation and cost v− c, I define
the principal’s cost as c= −a1 and the agent’s valuation as v= a2. With this defini-
tion, cost and valuation are negatively correlated. In the optimal mechanism, the
regulator bases her decision only on the aspect that she herself analyzes. In this
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model of industry self-regulation, delegation of an aspect implies ignoring it for the
assessment of the safety of the product.

Related literature. Myerson and Satterthwaite (1983) introduce the bilateral
trade setting and show that with balanced transfers, the efficient allocation can-
not be implemented. I deviate from their setting in three dimensions: (i) I let the
principal (the seller in their terminology) design the mechanism. She can commit
to make her decision contingent on her information. In contrast to Myerson and
Satterthwaite, the optimal mechanism does not have to consider her incentive con-
straints. This also sets my model apart from informed principal problems (Myerson
(1983) and Maskin and Tirole (1990)). (ii) I allow cost and valuation to be corre-
lated. (iii) I do not allow for monetary transfers. If monetary transfers are allowed
and the information of the players is correlated, Cremer and McLean (1988), Rior-
dan and Sappington (1988), Johnson, Pratt, and Zeckhauser (1990), McAfee and
Reny (1992), and Neeman (2004) have demonstrated how and when a designer can
exploit the differences in the beliefs of the players to implement any social choice
function. I revisit some of their results in section 1.3.1.

My model also relates to the literature on delegation started by Holmstrom
(1977). To my knowledge, it is the first that studies delegation with two-sided in-
formation asymmetry. The interval structure of the optimal mechanism is similar to
the interval delegation in Alonso and Matouschek (2008).

In settings without monetary transfers, the optimal mechanism often invents
artificial money to screen agents. Hylland and Zeckhauser (1979) have agents trade
allocation probabilities for indivisible goods; Jackson and Sonnenschein (2007) have
voters trade the weights of their ballot in elections on different matters.

Bhargava, Majumdar, and Sen (2015) show how positively correlated beliefs
among voters allow overcoming the impossibility of nondictatorial voting rules es-
tablished by Gibbard (1973) and Satterthwaite (1975).

Guo and Hörner (2018) study a dynamic allocation problem between a benev-
olent principal and an agent. They use promises of future allocations as a means to
incentivizes the agent to report truthfully.

Another strand in the literature on mechanism design studies allocation prob-
lems without money but allows for the costly verification of hidden information: Ben-
Porath, Dekel, and Lipman (2014), Li (2017), Mylovanov and Zapechelnyuk (2017),
Epitropou and Vohra (2019), and Kattwinkel and Knoepfle (2019). Chakravarty and
Kaplan (2013) study an allocation with costly signaling.

Manelli and Vincent (2010) and Gershkov, Goeree, Kushnir, Moldovanu, and
Shi (2013) analyze the equivalence between Bayesian optimal and ex-post incen-
tive compatible implementation when monetary transfers are feasible. Ben-Porath,
Dekel, and Lipman (2014) and Erlanson and Kleiner (2019) and Kattwinkel and
Knoepfle (2019) show that with costly verification and without monetary transfers—
similar to the results in this paper—the optimal mechanism is ex-post incentive com-
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patible if the values are independent or the correlation is negative. The screening
mechanism I derive shows that in a setting without transfers and with positively
correlated information, this equivalence can fail.

Fieseler, Kittsteiner, and Moldovanu (2003) study the problem of efficient trade
with interdependent values. They find that only under negative interdependent val-
ues can balanced transfers implement efficiency. Like in my setting, in this case, the
expected conflict is small: small values of one agent occur with high values of the
others. Therefore, they can be mediated with money. In my setting, under negative
correlation, screening offers only little efficiency improvement and the principal ab-
stains from screening.

The regularity assumption that I introduce is weaker than a similar assumption
that Jewitt (1988) uses to justify the first-order approach in a moral hazard problem.
The intuition for why this assumption guarantees interval allocation schedules ar-
gues with Diamond and Stiglitz’s (1974) notion of utility preserving spreads. More
generally, this intuition sheds light on a connection between belief heterogeneity
and the heterogeneity in risk preferences.

To prove that the allocation schedules are ordered, I use that the utility functions
of the players have single crossing-differences for ordered lotteries. The difference
from Kartik, Lee, and Rappoport (2019)’s result is that I need this property to hold
only for ordered lotteries. The result I use is a consequence of the variation diminish-
ing property of totally positive kernels (Schoenberg (1930), Motzkin (1936), and
Karlin (1968)).

1.2 Model

1.2.1 Setting

A principal (she) can allocate an indivisible good to an agent (he). Her allocation
decision is denoted by x ∈ {0,1}. If she mixes, x ∈ [0, 1] denotes the probability of al-
location. The allocation is costly for the principal. These costs are a random variable
C taking values c ∈ R. Of course, these costs can also be interpreted as opportunity
costs. Then, C denotes the principal’s valuation for the good. The realization of the
costs is the principal’s private information. The agent has a valuation for the good V,
which takes values v ∈ R++. The realization of V is the agent’s private information.
Valuation V and cost C are jointly distributed according to a cdf F(v, c). I assume that
the supports of the valuation and the costs are both finite and denote them by V
and C , respectively. Let f(v, c) denote the pdf. The assumption on the distribution
of the costs is generalized in section 1.4.2.

The principal’s objective is to maximize social welfare; her Bernoulli utility func-
tion is given by,

w(v, c, x) = x · (v − c).
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The agent does not bear the costs; his utility reads as follows:

u(v, c, x) = x · v.

because v> 0, he always prefers receiving the good. The agent’s outside option is
zero so that he is always willing to participate in the mechanism.

The correlation between the agent’s information V and the principal’s informa-
tion C is captured by the following likelihood ratios. For all v′ < v′′ ∈ V :

f(v′, c)
f(v′′, c)

. (1.1)

I distinguish three cases.

(1) Negative affiliation: the likelihood ratios (1.1) are strictly increasing in c. The
higher the costs, the more likely is a low valuation by the agent.

(2) Independence: the likelihood ratios (1.1) are constant in c. In this case, the costs
are not informative about the valuation.

(3) Positive affiliation: the likelihood ratios (1.1) are strictly decreasing in c. The
higher the costs, the more likely is a high valuation.

In the remainder I will use the term positive correlation for positive affiliation and
negative correlation for negative affiliation.

1.2.2 Mechanism

The principal announces and commits to a mechanism before she learns the costs.
The realization of the costs is contractible. The agent learns his valuation (but not
the costs) and then plays a Bayesian best response.

Formally, a mechanism is given by a message set M and an allocation function x :
M×C → [0,1] that specifies an allocation probability for any pair of message and
cost realization. The revelation principle applies so that it suffices to have valuations
as messages, M = V and to study mechanisms where the incentives are such that
the agent reports his type truthfully.

Given a valuation report v, a direct mechanism specifies an allocation probability
for all cost realization c ∈ C . Denote this vector

x(v) = (x(v, c))c∈C

and term it as v’s allocation schedule.
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1.2.3 Agent’s problem

The agent takes a mechanism x as given. He does not know the costs of the good,
but forms expectations about it based on the realization of his valuation v. If he
reports truthfully, he faces the random allocation lottery x(v, C). If he reports v̂, he
faces a different lottery x(v̂, C). Therefore, the Bayesian incentive constraints read
as follows:

∀v, v̂ ∈ V : v · E [x(v, C) | V = v ] ≥ v · E [x(v̂, C) | V = v ] .
(1.2)

Every type derives strictly positive utility from the good (v> 0 for all v ∈ V ); it
follows that the intensity of type v’s preferences can be eliminated from the incentive
constraint: the agent maximizes his expected allocation probability.

IC(v, v̂) =
∑

c∈C
f(v, c) [x(v, c) − x(v̂, c)] ≥ 0. (1.3)

This shows that the setting is equivalent to a setting where the valuation v does not
enter the utility of the agent: he has utility 1 if he receives the good and 0 otherwise.
In this setting, the valuation v is the value of the principal. Formally, in this equivalent
setting, the principal’s utility function stays the same and the agent’s utility is given
by

u(x, v, c) = x.

Moreover, note that the expected allocation probability at a certain misreport
is not independent of the true valuation type, as different valuation types have dif-
ferent conditional beliefs over the distribution of C. The interim expectations are
therefore insufficient to describe the mechanism.

1.2.4 Principal’s problem

The principal designs a mechanism that maximizes social welfare. If she could ob-
serve the valuation of the agent, she would allocate the good efficiently: that is, if
and only if v− c≥ 0. However, because she only observes the costs, she must incen-
tivize the agent to report his valuation. Her problem can be stated as the following
linear program:

max
0≤x≤1
E [ x(V, C) · (V − C) ] s.t. ∀(v, v̂) ∈ V × V : IC(v, v̂) ≥ 0. (1.4)
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1.3 Optimal mechanism

1.3.1 If monetary transfers were feasible

If the principal could, in addition to the allocation decision x ∈ [0,1], set a monetary
transfer t ∈ R that would enter the agent’s utility additively,

û(v, c, x, t) = u(v, c, x) − t = x · v − t,

the efficient allocation could be achieved: the principal can offer the good at price c
to the agent and completely align the agent’s interest in the mechanism with hers.
To achieve efficiency, it is necessary that the agent’s valuation and the principal’s
valuation for the good coincide. In (1.3), it is shown that without transfers, it is
not relevant whether v enters the agent’s utility. This is not the case if transfers are
feasible. If the agent’s utility is not affected by v and is just 1 if he receives the good
and 0 otherwise, selling the good at price c does not induce the efficient allocation.

However, with transfers and correlation, there is another distinct way to achieve
efficiency. This method exploits the differences of the beliefs that agents of different
valuations v hold about the cost realization. It requires that the beliefs identify the
corresponding valuations. Therefore, it must not be the case that there exists a type
v′ and λ(v)≥ 0 for all v ∈ V − {v′} such that,

f(c|v′) =
∑

v∈V −{v′}

λ(v) · f(c|v) for all c ∈ C . (1.5)

This rank condition1 ensures that the belief that an agent holds is a sufficient statistic
for the valuation v. If costs and valuation are independent, this condition is not
fulfilled.
Theorem 1 (Cremer and McLean (1988))
If monetary transfers are feasible and the spanning condition is met, for any x(v, c)
there exists t(v, c) implementing x with E[t(v, C)]= 0 for all v ∈ V .

The proof is an adaption of Cremer and McLean (1988)’s proof for the setting
studied here: if the rank condition is met, the principal offers the agent a menu of
lotteries whose payments depend on the realizations of the costs. For each valuation,
there is one lottery. An agent with this valuation expects the corresponding lottery
to pay out 0 and expects all other lotteries’ payout to be lower than some bound
b< 0. This bound b can be chosen uniformly for all valuations and can be set arbi-
trarily low. By setting b arbitrarily low, the mechanism gives the agent an arbitrarily
high incentive to choose the lottery that corresponds to his valuation and thereby
reveal it, irrespective of the allocation rule that the principal implements with this
information. This mechanism also works if v does not enter into the agent’s utility.

1. An equivalent formulation of this condition is that the set of beliefs for all types are the
extreme points of their convex hull.
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1.3.2 Independence and negative correlation

In the case of independence ((1.1), case (2)), the costs do not convey any informa-
tion about the agent’s value. In turn, agents of all valuations share the same belief
about the costs. The principal cannot use the difference in the agent’s belief to distin-
guish between them. As a result, optimally, there is no meaningful communication
between the principal and the agent.

Ignorant mechanism. A mechanism that ignores the agent’s report,

x(c, v′) = x(c, v′′) for all v′, v′′ ∈ V ,

is ex-post incentive compatible in the sense that an agent who would learn the cost
realization before reporting to themechanism is still incentivized to report truthfully.
In practice, such a mechanism can be implemented by a procedure that does not ask
the agent for his valuation at all. The optimal ignorant mechanism is given2 by

x(c, v) = 1 if and only if E[V |C = c] ≥ c.

More surprisingly, there is also no ground for communication when the correlation
is negative.

Theorem 2
If costs and valuation are negatively correlated ((1.1), case (1)) or independent ((1.1),
case (2)), then it is optimal for the principal to offer an ignorant mechanism. In these
cases, the optimal (ignorant) mechanism is given by a simple cutoff rule:

c = min{c ∈ C | E[V |C = c] ≥ c}.

and
x(c, v) = 1 if and only if c ≤ c.

The proof (in the appendix) introduces a relaxed problem: it disregards all in-
centive constraints for the agent to understate his valuation. For a fixed valuation
report v′ and two cost realizations c′ < c′′, there always exists a modification of the
allocation schedule for v′, x(v′)→ x̃(v′), that decreases the allocation probability af-
ter the high cost realization c′′, x(v, c′′) ↓, and in turn increases the probability after
the lower cost realization c′, x(v, c′) ↑, such that

E[x̃(v′, C) |V = v′] = E[x(v′, C) |V = v′]

2. The optimal ignorant mechanism is unique except for the allocation probability after cost
realizations c with E[V |C = c]= c. I assume that in this case, the principal allocates the good.
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and for all v< v′

E[x̃(v′, C) |V = v] ≤ E[x(v′, C) |V = v].

The existence of this modification follows from the negative correlation (negative
affiliation): an agent with lower valuation v puts relatively more likelihood on the
realizations of high cost than on the realizations of low compared with an agent with
a higher valuation v′. By shifting mass from high costs to low costs, one can keep
the high valuation type indifferent while harming a lower type. The principal strictly
prefers this modification because on average she has to bear lower costs while the
overall probability of allocation to this valuation type remains constant.

Under negative correlation, the interest of the principal and the higher valuation
type v′ are aligned (put mass on low costs) and are distinct from the interest of a
lower type v (put mass on high cost realization).

In the optimal mechanism, any allocation schedule must be in cutoff form. Oth-
erwise it could be improved by a modification of the above form. Finally, the proof
shows that these cutoff allocation schedule are optimally identical for all valuations.
Hence, the optimal (Bayesian) mechanism is ignorant.

1.3.3 Positive correlation

Under positive correlation, the optimal mechanism offers different allocation sched-
ules and the agents of different valuations sort themselves by their choice.

Regularity Assumption. To study the optimal mechanisms under positive corre-
lation, I introduce a new regularity assumption on the joint distribution of cost and
valuation. Under positive correlation (positive affiliation) the likelihood ratios (1.1)
are strictly decreasing in c. The regularity assumption demands that these ratios are
convex decreasing. The next definition formalizes the convexity of a function on a
discrete set.

Definition 1. A function l onC is strictly convex if for all c′ < c′′ and for all α ∈ (0,1)
with α · c′ + (1−α) · c′′ ∈ C , l(α · c′ + (1−α) · c′′)< α · l(c′)+ (1−α) · l(c′′).

If the set is convex,this definition coincides with the usual definition of convexity.
The regularity assumption reads as follows.

For all v′ < v′′ ∈ V ,
f(v′, c)
f(v′′, c)

is strictly convex in c. (1.6)

Jewitt (1988) introduces a similar condition in a moral hazard setting. He assumes
that the increasing function that maps c to

f(v′′, c)
f(v′, c)

=
1

f(v′,c)
f(v′′,c)
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is concave. These conditions are very similar; in general, they demand that the extent
of the interference about the valuation decreases with increasing observed costs.
However, the condition used here is weaker than the condition in Jewitt (1988).

Corollary 1
If a function g : R→ R++ is increasing and concave, then the function 1

g is decreasing
and convex. The reverse implication might not be true.

The proof is in the appendix. The regularity assumption is met by many distri-
butions. I list some of them in section 1.4.2.

Next, the optimal mechanism is characterized.

Relaxation. Again, it is sufficient to consider a relaxed problem, where all incentive
constraints that prevent the agent from understating his type are disregarded and
only the upward incentive constraints,

IC(v, v̂) ≥ 0 for v < v̂ ∈ V ,

are considered.

1.3.3.1 Plateau mechanisms

The first characteristic of the optimal mechanism concerns the form of the allocation
schedules that the principal offers to the agents with different values.

Definition 2 (Single plateau). Let x be a mechanism and v ∈ V be a valuation. The
allocation schedule x(v) has a single plateau if for all c′ < c′′ < c′′′ ∈ C it holds,

x(v, c′) > 0 and x(v, c′′′) > 0 ⇒ x(v, c′′) = 1.

A mechanism exhibits single plateaus if for all v ∈ V , the allocation schedule x(v)
has a single plateau.

The support of an allocation schedule with a single plateau is always an interval
in C : it is given by C ∩ [c, c] for some c, c ∈ C . The allocation probability in the
interior of this interval is always 1 and outside the interval is 0. Allocation prob-
abilities different from {0,1} are only possible on the boundary of its support. In
section 1.4.2, the case of continuously distributed costs is analyzed. In this case the
mechanism is deterministic: the allocation probability is either 0 or 1.

The allocation schedules studied in section 1.3.2 allocate whenever the cost is
below a cutoff. These cutoff schedules also have a single plateau. But the plateau is
not interior. Intuitively, an allocation schedule with an interior single plateau allo-
cates the good for intermediate costs with certainty and for extreme costs with zero
probability.
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Figure 1.1. The allocation schedule for report vH is not in single plateau form.

Proposition 1
If costs and valuations are positively correlated ((1.1), case (3)) and the distribution
meets the regularity assumption (1.6), then the optimal solution to the relaxed problem
has single plateaus.

If an allocation schedule has a single plateau, then the following modification
is not feasible: for some triple c′ < c′′ < c′′′ ∈ C , decrease x(v, c′) ↓ and x(v, c′′′) ↓
while increasing x(v, c′′) ↑. To show that the optimal mechanism has single plateaus,
it sufficies to show that there always exists such a modification that respects the
relaxed incentive constraints while increasing the principal’s expected payoff. These
shifts resemble the shifts of the payoffs that are used to study risk aversion (Diamond
and Stiglitz (1974)). The formal proof of the Lemma uses a version of Farkas’ Lemma
and is relegated to the appendix.

Instead, I present a related problem which makes the connection to risk pref-
erences transparent and illustrates how the regularity assumption leads to single
plateau allocation schedules.

Intuition: a related problem with homogeneous beliefs. Suppose there are two
valuations {vL, vH} with vH − c≥ 0 for all c ∈ C . Let f(v, c) be a twice differentiable
interpolation of f for all c 6∈ C . Before describing the related problem, I want to
emphasize three important features of the setting that is studied in this paper. (i)
Agents of different valuations hold different beliefs about the costs. (ii) The agent
does not bear the costs of the allocation. (iii) The problem is equivalent to a setting
where all the agents of different valuations have the same utility function.

The related problem contrasts the original setting in these three respects: (i)
Agents of different valuations and the principal share a common belief about the
costs. (ii) The agent bears the costs of the allocation. (iii) Agents with different
valuations and the principal differ in their risk preferences with respect to the costs.
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Suppose that the following related setting exists: costs are distributed ac-
cording to a pdf g. Again, g(c) denotes a twice differenteiable interpolation of
g for all c 6∈ C . There exist twice differentiable and increasing utility functions
ũL(−c), ũH(−c), w̃(−c) for the agent with low valuation vL, the agent with high val-
uation vH and the principal, respectively. uH(−c) describes the utility an agent with
valuation vH derives from receiving the good if the cost realization is c. The utili-
ties are such that the preferences over allocation schedules for vH coincide with the
preferences in the original problem, formally:

ũH(−c) · g(c) = f(vH, c), (1.7)
ũL(−c) · g(c) = f(vL, c), (1.8)
w̃(−c) · g(c) = f(vH, c) · (vH − c). (1.9)

It follows from this equation, that the optimal mechanism in the original setting and
in the related problem coincide. Take any allocation schedule for vH as given. For
c′ < c′′ < c′′′ ∈ C , consider the following modification of the mechanism:

decreases x(vH, c′) ↓ and x(vH, c′′′) ↓, and increase x(vH, c′′) ↑, (1.10)

such that the utility for an agent with valuation vH remains constant. When does
such a modification simultaneously increase the principal’s expected utility and de-
crease the expected utility of a low valuation agent?

Diamond and Stiglitz (1974) show that this is the case for all such modifications
if a player with utility w̃ is more risk averse than a player with ũH and a player with
ũH is more risk averse than a player with ũL, each in the sense of Arrow-Pratt:

w̃ ≥AP ũH ≥AP ũL.

This is equivalent (see for example Jewitt (1989)) to,

ũ′H(−c)

w̃′(−c)
and

ũ′L(−c)

ũ′H(−c)
are decreasing in c. (1.11)

In the appendix, I show that (1.7)–(1.9) and (1.11) can only hold together if

∂ 2

∂ 2c

�

f(vL, c)
f(vH, c)

�

≥ 0.

In the related problem, the players’ heterogeneity of beliefs is transformed into het-
erogeneity of their risk preferences. The regularity assumption ensures that these
risk preferences can be ordered in a way that makes the modification of the form
(1.10) simultaneously incentive compatible and worthwhile for the principal. In the
optimal mechanism this modifications must not be feasible. Therefore, it must have
single plateaus.
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Figure 1.2. A plateau monotone mechanism.

1.3.3.2 Plateau-monotone mechanisms

Because V is ordered, one can number its elements.

V = {v0, v1, . . . , vm−1}.

To state the second characteristic of the optimal mechanism—a form of mono-
tonicity—one needs to introduce a partial order on the set of allocation schedules
{x(v) | v ∈ V }.

Definition 3. Let x be a mechanism. Define the partial order � on {x(v) | v ∈ V }
such that for v′, v′′ ∈ V

x(v′′) � x(v′) :⇔ ∀c′ < c′′ ∈ C : x(v′′, c′) ≥ x(v′, c′) ⇒ x(v′′, c′′) ≥ x(v′, c′′),

x(v′, c′′) ≥ x(v′′, c′′) ⇒ x(v′, c′) ≥ x(v′′, c′).

Or equivalently,

x(v′′) � x(v′) :⇔ c 7→ x(v′′, c) − x(v′, c) is single-crossing from below.

Define the strict order x(v′′)� x(v′) if x(v′′)� x(v′) and x(v′′) 6= x(v′).
A mechanism is monotone if

v′′ > v′ ⇒ x(v′′) � x(v′)

or equivalently, a mechanism is monotone if x(·, ·) has single-crossing differences
from below.
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Proposition 2
If costs and valuations are positively correlated ((1.1), case (3)) and the distribution
meets the regularity assumption (1.6), then the optimal mechanism in the relaxed
problem is plateau-monotone.

Fix two valuations v′′ > v′ and consider a plateau-monotone mechanism. Denote the
upper and lower bounds of the support of the allocation schedule for v′′ by c′′ and
c′′, respectively. Denote the bounds for v′ respectively as c′ and c′. Then,

c′′ ≥ c′ and c′′ ≥ c′.

The plateau of the higher valuation type is shifted to the right.

Proof sketch. The formal proof is in the appendix.
Step 1: It is established, that if x is an optimal mechanism in the relaxed problem,
then the partial order � is total on {x(v) | v ∈ V }. For any pair of v′, v′′ ∈ V either
x(v′)� x(v′′) or x(v′′)� x(v′).
Step 2: The following result about the variation diminishing property of totally pos-
itive functions is used:

Lemma (Schoenberg (1930) and Karlin (1968))
If a real function function K : V ×C → R is strictly totally positive of order 2 (STP2)
and there are allocation schedules: x(ṽ)� x(v), then for any v′ < v′′ ∈ V it holds
∑

c∈C
K(v′, c) · (x(ṽ, c) − x(v, c)) ≥ 0 ⇒

∑

c∈C
K(v′′, c) · (x(ṽ, c) − x(v, c)) > 0,

∑

c∈C
K(v′′, c) · (x(ṽ, c) − x(v, c)) ≤ 0 ⇒

∑

c∈C
K(v′, c) · (x(ṽ, c) − x(v, c)) < 0.

Or equivalently, v′ 7→
∑

c∈C K(v′, c) · (x(ṽ, c)− x(v, c)) crosses zero at most once and
then from below.³

When the players compare two allocation schedules x(ṽ)� x(v), they form ex-
pectations about the costs C and then evaluate the difference between these two
schedules x(ṽ, C)− x(v, C). The above variation diminishing results ensure that the
ranking over the schedules is monotone in the valuation of the agents: setting
K(v, c)= f(v, c) yields, for example, that if an agent of valuation v′ ranks x(ṽ) over
x(v) then an agent with a higher valuation v′′ > v′ ranks these allocation schedules
in the same way.

An analogue monotone comparative static result follows for the principal. Again,
suppose that x(ṽ)� x(v). Setting K(v, c)= f(v, c) · (v− c) yields that if assigning the
allocation x(ṽ) to an agent with valuation v′ yields her a higher expected payoff than
x(v) the same must hold true for an agent with a higher valuation v′′ > v′.

3. A touching of zero is counted as a crossing.
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A key step,is to establish that the assumptions of Karlin’s lemma is met. The pdf
f(v, c) is strictly affiliated and strictly positive and therefore strictly totally positive
(STP2). Also, restricted on {(v, c) ∈ V × C | v> c}, the function (v, c) 7→ v− c is STP2

and so is the productf(v, c) · (v− c). The proof in the appendix shows that all relevant
comparisons between allocations schedules take place in this restricted set.
Step 3: Suppose for this proof sketch, that the only relevant incentive constraints
are the local-upward incentive constraints of the form: IC(vk−1, vk)≥ 0.

If an optimal mechanism was not plateau-monotonic, there would be some k
such that x(vk−1)� x(vk). Consider the following modification: offer vk the alloca-
tion schedule x(vk−1). An agent with vk−1 ranks schedule x(vk−1) over x(vk). Because
x(vk−1)� x(vk), an agent with type vk ranks them in the sameway (step 2). Themod-
ification would therefore not violate any of the local-upward incentive constraints.
Hence, this modification cannot be optimal for the principal:

E[(vk − C) · x(vk−1, C) |V = vk] ≤ E[(vk − C) · x(vk, C) |V = vk].

This implies (step 2) that

E[(vk − C) · x(vk−1, C) |V = vk−1] < E[(vk − C) · x(vk, C) |V = vk−1].

However, then the mechanism can not have been optimal in the first place: modify-
ing it such that it offers vk−1 the allocation schedule x(vk) would be a strict improve-
ment for the principal and would not violate the incentive constraints.

Theorem 3
If costs and valuations are positively correlated ((1.1), case (3)) and the distribution
meets the regularity assumption (1.6), then the optimal mechanism has single plateaus
and is plateau-monotone. It fulfills all local-upward incentive constraints with equality,
for all 0< k<m:

∑

c∈C
f(vk−1, c) · [x(vk−1, c) − x(vk, c)] = 0.

In the relaxed problem, the principal is not restrained by the incentive con-
straints that prevent the agent from misrepresenting his valuation as the lowest v0.
Therefore, it cannot be the case that the principal allocates the good to the lowest
type at some cost c′′ but does not allocate with certainty at some lower costs c′ < c′′.
If this were the case, she could profitably shift the allocation probability from c′′ to
c′, keeping the lowest type indifferent. This rules out any interior single plateau as
the allocation schedule for the lowest valuation.
Corollary 2
Under the assumptions of Theorem 3, the allocation schedule for the lowest valuation
v0 is always in cutoff form.

x(v0, c) =

(

1, c < c̃

0, c > c̃
.
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1.3.4 Monotonicity

Proposition 2 establishes that the optimal allocation schedules are plateau ordered.
Of course, the ignorant cutoff mechanisms that are optimal under negative correla-
tion are also ordered in this sense. However, in general, this monotonicity does not
imply that a higher valuation type receives the good with higher probability. Again,
there is a difference between positive and negative correlation. Under negative corre-
lation, the expected allocation probabilities in the optimal ignorant mechanism are
increasing in the agent’s valuation. That is because, the function x(c)=

¦

1, c≤ c

0, otherwise is
decreasing on C . By negative affiliation, E[x(C) |V = v] is therefore increasing in v.
If the optimal mechanism under positive correlation is also ignorant, it must have
the cutoff from. ⁴ However, in this case, the expected allocation probabilities are de-
creasing in the agent’s valuation because under positive correlation E[x(C) |V = v]
is decreasing in v.

example 4 shows that the interim expected allocation probabilities can be de-
creasing under positive affiliation, even if the optimal mechanism screens.

This difference with respect to standard results steams from the fact that the
agents of different valuations hold different beliefs. For v′′ > v′ by incentive compat-
ibility,

E[x(v′′, C) |V = v′′] ≥ E[x(v′, C) |V = v′′]

E[x(v′, C) |V = v′] ≥ E[x(v′′, C) |V = v′],

but because v′ and v′′ do not share the same belief, one cannot compare
E[x(v′′, C) |V = v′′] and E[x(v′, C) |V = v′] with the above equations.

1.4 Extensions

1.4.1 Discrete costs

In section 1.2.1, I assumed that the support of the costs is finite. However, the proofs
in the appendix allow the support to be countably infinite. Therefore, the case of
many discrete cost distributions is covered.
Example 1. Suppose that valuations are finite: V = {v0, v1, . . . , vm−1}.

(1) Suppose that conditional on the valuation V = vk, the cost C is binomally dis-
tributed with equal number-of-trials parameter n and success probabilities pk.
Formally, f(C = i|V = vk)=

�n
i

�

· pi
k · (1− pk)n−i. The distribution is strictly posi-

tively affiliated if and only if p0 < p1 < · · ·< pm−1. Then, for all j< k the de-
creasing likelihood ratio, f(C=i|V=vj)

f(C=i|V=vk) is also convex in i. Therefore, the regularity
assumption (1.6) is fulfilled.

4. Otherwise, if the ignorant allocation schedule was interior, it could be shifted to lower costs,
keeping the expected allocation value constant but decreasing the expected allocation costs
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(2) Suppose that conditional on the valuation V = vk, the cost C is geometrically
distributed with failure probabilities pk. Formally, f(C = i|V = vk)= (1− pk)i · pk.
The joint distribution is strictly positively affiliated if and only if p0 > p1 > · · ·>
pm−1. Then, the regularity assumption is also fulfilled.

(3) Suppose that conditional on the valuation V = vk, the cost C has a Poison distri-
bution with parameter λk. Formally, f(C = i|V = vk)=

λi
ke−λk

i! . The joint distribu-
tion is strictly positively affiliated if and only if λ0 < λ1 < · · ·< λm−1. Then, the
regularity assumption is also fulfilled.

1.4.2 Continuous costs

Here, I assume that the costs are continuously distributed on an interval while the
valuations remain finitely distributed. Formally, there is a measurable positive func-
tion f(v, c) such that for all B ⊂ R,

P(V = v, C ∈ B) =

∫

B
f(v, c)dc.

I assume that the cost distribution has the same interval as the support for all v, i.e.
there exists an interval C ⊂ R such that for all v ∈ V :

C = {c ∈ R|f(c, v) > 0}.

Furthermore c 7→ f(v, c) is assumed to be continuous on C for all v ∈ V .
An allocation schedule for a valuation report v is given by a measurable function

x(v) :C → [0,1], and a mechanism specifies an allocation schedule for all valua-
tions v ∈ V . I distinguish the same three cases for the likelihood ratios with v′′ > v′

f(c, v′)
f(c, v′′)

.

Of course, manipulations on a set B ⊂ C of measure zero, neither affect the in-
centive constraints nor the principal’s expected payoff. Mechanisms that differ only
on a zero measure subset of C are equivalent. The regularity assumption (1.6) re-
mains the same.

Theorem 4(1) If costs and valuations are independent or negatively correlated, the
optimal mechanism is equivalent to an ignorant cutoff mechanism of the form

x(v, c) =

(

1, c ≤ c∗

0, c > c∗
,

for some c ∈ C .
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(2) If costs and valuations are positively correlated and the regularity assumption (1.6)
is met, the optimal mechanism is equivalent to a plateau-monotone mechanism of
the form

x(v, c) =

(

1, c(v) ≤ c ≤ c(v)

0, otherwise
,

with increasing functions c(v)≤ c(v).

If the costs are continuous, there is always an optimal mechanism that is deter-
ministic.

Example 2. If the distribution of cost and valuation is of an exponential fam-
ily, i.e., f(c|v)= h(c) · eη(v)·T(c)−A(v), then it is strictly positive affiliated if T′(c) ·
(η(v′)−η(v′′))< 0 for all c and v′ < v′′. The regularity assumption (1.6) is met
if (T′(c) · (η(v′)−η(v′′))2 > T′′(c) · (η(v′)−η(v′′)) for all c and v′ < v′′. This yields
that the regularity assumption is met if cost and valuation are jointly normally dis-
tributed and have positive correlation.⁵ Also, if conditionally on V = vk the cost is
exponentially distributed with parameter λk, then the distribution is positively affil-
iated if and only if λ0 > λ1 > · · ·> λm−1. In this case, the regularity assumption is
also met.

Optimal ignorant mechanism. Under negative correlation or independence, the
optimal ignorant mechanism was a simple cutoff rule. Despite the regularity as-
sumption, the optimal ignorant mechanisms under positive affiliation can be quite
irregular. For sets C′, C′′ ⊂ C define C′ ≤ C′′ if for all c′ ∈ C′ and c′′ ∈ C′′: c′ ≤ c′′. An
ignorant mechanism x(v, c)= x(c) has a hole if there exist sets C′ ≤ C′′ ≤ C′′′ ⊂ C
of positive measure such that x(c)> 0 for all c ∈ C ′ ∪ C′′′ and x(c)= 0 for all c ∈ C′′.
The holes of a mechanism are counted in the following way:

sup{k ∈ N | ∃C1 ≤ B1 ≤ C2 ≤ B2 ≤ · · · ≤ Ck+1 : c ∈ Ci : x(c) = 0

&c ∈ Bi : x(c) > 0}.

Lemma 1
For any k ∈ N∪ {∞}, there exists a positively correlated (item (3)) joint distribution
that meets the regularity assumption such that the optimal ignorant mechanism x(c)
has k holes.

Under negative correlation, E[V|C = c] is decreasing in c. Therefore, E[V|C =
c]− c is also decreasing, and the optimal ignorant mechanism is always in the cutoff
form. Under positive correlation, E[V|C = c] is increasing and therefore E[V|C =

5. Of course this paper does not cover this case, since I assume that valuation types are finite
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c]− c can cross zero infinitely many times. The proof (in the appendix) of Lemma 1
constructs such an example.

An optimal mechanism is in plateau form and therefore has no holes. The reg-
ularity assumption separately guarantees the plateau form of all single allocation
schedules. However, the ignorant mechanism consists of one allocation schedule for
all v. The separate regularity of the single optimal schedules does not aggregate to
the regularity of the single optimal schedule for the ignorant mechanism. Finally
if the optimal ignorant mechanism is irregular, it can be strictly improved, by an
non-ignorant mechanism.
Corollary 3
If the optimal ignorant mechanism under positive affiliation has a hole, then the opti-
mal mechanism is not ignorant.

1.4.3 Binary values

When V = {vL < vH} and the costs are continuously distributed on an interval C =
[a, b) with a ∈ R and b ∈ R∪ {∞}, the optimal mechanism can be pinned down.
With binary values, there is only one likelihood ratio of interest:

l(c) =
f(vL, c)
f(vH, c)

.

As a convex function, l is almost surely differentiable.
Proposition 3
When costs and valuations are positively affiliated and [vL, vH] ⊂ C , then either:
(1) The optimal mechanism is ignorant and of a cutoff form:

x(v, c) = x(c) =

(

1, c ≤ c

0, otherwise
.

In this case, c ∈ C is the unique solution to

c ∈ [vL, vH]:
f(vL, c)
f(vH, c)

=
vH − c
c − vL

. (1.12)

(2) The optimal mechanism is not ignorant and of the following form:

x(vL, c) =

(

1, c ≤ cL

0, otherwise
, x(vH, c) =

(

1, cH ≤ c ≤ cH

0, otherwise
.

In this case, a< cH ≤ cH and cL < cH are the unique solution to:

l(cH) =
vH − cH

cL − vL
(1.13)

l(cH) =
vH − cH

cL − vL
(1.14)

F(cL|V = vL) = F(cH|V = vL) − FL(cH|V = vL). (1.15)
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Remark 5. The system (1.12) always has a solution. If it is not unique then the opti-
mal ignorant mechanism has holes and by corollary 3, the optimal mechanism is not
ignorant. Then case 2 applies. Only if the solution is unique the optimal mechanism
can be ignorant.

The system (1.13)–(1.15) has at most one solution. If it has no solution then
the optimal mechanism is ignorant. If both (1.12) and (1.13)–(1.15) have a unique
solution, then they are the two candidates for the optimal mechanism. It cannot be
the case that simultaneously (1.12) is not unique and (1.13)–(1.15) do not have a
solution.

When monetary transfers are feasible, any form of correlation can be exploited.
Without transfers, negative correlation is not used to screen the agent. The next
result shows that under positive correlation, the degree of correlation must exceed
a certain threshold at the lowest cost.

Lemma 2
Suppose that l′ is continuous at a. If

−l′(a)
l(a)

<
1
vH

,

then the optimal mechanism is ignorant.

Example 3. If f(c|V = vω)= λωe−λω·c for ω ∈ {L, H} and λL > λH, the condition
from Lemma 2 translates to λL −λH <

1
vH
.

The characterizations of this section can be used to efficiently calculate numeri-
cal examples:

Example 4. f(c, V = vω)= 1
2 ·λωe−λω·c for ω ∈ {L, H} with λL = 1,λH = 1/5 and

vH = 5, vL = 0. The optimal mechanism screens. It is given by cL = 1.22 and
(cH, cH)= (0.34, 4.88). The optimal ignorant mechanism has: c= 4.32. It is
worth noticing that the lower type has a higher expected allocation probability:
E[x(vL, C) |V = vL]= .71> E[x(vH, C) |V = vH]= 0.56.

1.4.4 General allocation values

The principal’s value from the allocation can be generalized from v− c to

w(x, v, c) = x · z(v, c)

with z increasing in v and decreasing in c. Under negative correlation or indepen-
dence the same results go through.
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Theorem 6
If costs and valuations are negatively correlated ((1.1), case (1)) or independent ((1.1),
case (2)), then it is optimal for the principal to offer an ignorant mechanism. In these
cases, the optimal (ignorant) mechanism is given by a simple cutoff rule:

c = min{c ∈ C | E[z(V, c) |C = c] ≥ c}.

and
x(c, v) = 1 if and only if c ≤ c.

For the case of positive correlation, the regularity assumption generalizes to the
following: for all v′ < v′′ ∈ V and all c′ < c′′ < c′′′ ∈ C ,

f(v′,c′′)
f(v′′,c′) −

f(v′,c′)
f(v′′,c′′)

f(v′,c′′)
f(v′′,c′′) −

f(v′,c′′′)
f(v′′,c′′′)

≥
z(v′′, c′) − z(v′′, c′′)
z(v′′, c′′) − z(v′′, c′′′)

. (1.16)

It demands that the decreasing likelihood ratio (on the left hand side) must be more
convex than the allocation value of the principal (on the right hand side). This regu-
larity assumption ensures the plateau form of the optimal mechanism in the relaxed
problem. To establish that the optimal mechanism is plateau-monotone, it must be
the case that z is log-supermodular on {(v, c) | z(v, c)> 0}, formally for all v′′ > v′

and c′′ > c′,

if z(v′, c′′) > 0: z(v′′, c′′) · z(v′, c′) > z(v′′, c′) · z(v′, c′′).

Theorem 7
Under positive correlation ((1.1), case (3)), if the generalized regularity assumption is
fulfilled and z is log-supermodular where it is positive, then the optimal mechanism has
single plateaus and is monotone. It fulfills all local-upward incentive constraints with
equality.

1.5 Applications

1.5.1 Intra-firm allocation

A new computer model is about to enter the market. The management of a company
has to decide whether it should buy the new computer. Before the market opens, the
research department privately learns the value that the computer could generate
for the company. The management wants to buy whenever the value exceeds the
purchasing price; the research department wants to have the computer in any case.
Before the competitive market price realizes, the management can communicate
with the research department and commit to a demand schedule in the upcoming



26 | 1 Allocation with Correlated Information

competitive market. Can the management use future market information to counter
the internal information asymmetry?

Suppose that the correlation between market price and valuation stems from
an unobservable quality factor q ∈ [0, 1] with strictly positive density h(q). At t=
0, the quality realizes and the research department learns the value for the firm.
The value is either low or high: v ∈ {vL < vH}. Let f(v |q) denote the probability
that valuation is v ∈ {vL, vH} if the quality level is q. Suppose that l(q)= f(vL |q)

f(vH |q) is
twice differentiable and strictly decreasing. High quality indicates higher values. At
t= 1, a competitive market for the computer opens. The management learns the
rational expectation equilibrium price and can buy the computer at this price. The
market is abstractly modeled as an equilibrium price function, which defines for
any quality level q a price p(q). Suppose that the price is strictly increasing in the
quality. Defining the costs as c= p(q) puts this in the positive correlation case. The
regularity assumption then translates to l(p−1(p)) being convex; this is the case if

−
l′′

l′
> −

p′′

p′
. (1.17)

By assumption, l′ < 0 and p′ > 0. This condition is most easily fulfilled when the
price is a convex increasing function of the quality or if the price is linear and l is
convex. The price must react faster to an increase in quality than the value for the
firm.

If the condition is met and the optimal mechanism involves screening, the man-
agement’s demand schedule in the market is not monotone. Suppose the research
department reports that the value of the computer is high. Then, the management
will buy for intermediate prices and will not buy if the price is too low or too high.

1.5.2 Task delegation

The state wants to open a new hospital in a city. She has to decide if she wants to
operate the hospital on her own or wants to delegate the operation to the city. Both
the state and the city privately know what benefit for the society they would create
as operators of the hospital. Denote the state’s value by vP and the city’s value by vA.
These values are positively correlated: whenever the state can create a high value,
it is more likely that the city could also create a high value. The state wants to del-
egate the operation to whoever creates the highest social value. The city wants to
have control over the hospital in any case. If the state decides to delegate to the city,
she forgoes the social value that she could create. This opportunity cost c= −vP rep-
resents her costs of allocation, whereas the social value that can the city can create
is the value of the allocation: v= vA. v and c are positively correlated, therefore the
optimal mechanism might screen. If there is any screening then x(supV , infC )< 1.
The state has to commit that she will not delegate when the city reports the highest
possible value while she predicts the lowest possible value. Such a decision might be
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difficult to publicly defend. This advocates for an intransparent procedure, where
the reported values are not part of the public record.

The next numerical example illustrates the effect of screening on the value of
correlation.

Numerical example: value of correlation. Suppose that the state can build the
hospital in one of two cities. After she builds the hospital, her and the city’s operation
value realize and she has to decide who operates it.

Both cities are with probability 1/2 good operators of the hospital and would
create a social value of v1

H = v2
H = 5 and with probability 1/2 bad operators creating

zero value. The states ability differs in the two cities. In the first city, her value is ex-
ponentially distributed with parameter λ1

H = 1/4 if the city itself is a good operator
and with parameter λ1

L = 1/2 when the city is a bad operator. In the second city, the
respective parameters are λ1

H = 1/5 and λ1
L = 1. The unconditional expectation of

the state’s operation value is the same in both cities. However, the degree of positive
correlation is higher in city 2.

Without asymmetric information, the principal would prefer to build the hospi-
tal in city 1. If she could observe the realization of the city’s operation value, she
would implement the efficient allocation. This would yield her 2.146 for city 1 and
1.839 for city 2. With more positive correlation, if one of the two values is low, it is
likelier that the other value is also low. In this sense, negative correlation serves as
an insurance against low values.

The state’s choice changes when she takes the asymmetric information into ac-
count. Now she prefers to build the hospital in city 2. The optimal mechanism in
city 1 is ignorant. It allocates whenever vP > 2.376. This yields the state 0.546. The
extent of the positive correlation is not sufficient to screen out the city’s type. In city
2, the positive correlation is sufficiently strong. The optimal mechanism screens the
agent: When the city reports v2

L , the state lets her operate the hospital whenever
vP < 1.222. when the city reports v2

H, the principal lets her operate the hospital if
vp ∈ (0.338261,4.87646). This yields her 0.5887> 0.546.

1.5.3 Self-regulation

A firm seeks a regulator’s approval for a new product. There are two aspects,
a1anda2, that are positively correlated and jointly determine the probability that
the product is not faulty p(a1, a2). The probability increases in both aspects. An ex-
ample could be the approval of a new airplane model. If the regulator approves and
the product turns out to not be faulty a social benefit B> 0 is created. If the regula-
tor approves and the product is faulty, a social loss L> 0 occurs. The expected social
benefit from approving reads as follows.

p(a1, a2) · B − (1 − p(a1, a2)) · L.
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If the product is not approved, the effect on social welfare is independent of whether
the product is faulty or not and normalized to zero.

It is a long-standing practice that regulators delegate parts of the certification
process to the producers of the product. In the case of airplanes, the Search Results
Web result with site links Federal Aviation Administration (FAA) fostered this devel-
opment with their ”Organizational Designation Authorization" program in 2005.⁶
The extend of the delegation is substantial; the Transportation Department’s Inspec-
tor General (2005) reported, ”One aircraft manufacturer approved about 90 percent
of the design decisions for all of its own aircraft."

The regulators argue that the delegation increases the efficiency of the process
whilst ensuring its safety.⁷

To analyze this claim, suppose that the regulator delegates the certification of
the first aspect to the producer and bases her decision on the reports from the pro-
ducer and her own investigation of the second aspect. Setting

w(x, v, c) = x · (p(v,−c) · B − (1 − p(v,−c)) · L)

as the principal’s objective translates the positive correlation between the aspects, a1

and a2, into negative correlation between valuation v= a1 and costs c= −a1. The
optimal mechanism therefore ignores the producer’s report about the first aspect
and bases the decision solely on the regulator’s own findings. Delegation of an aspect
implies that it is ignored it for the assessment of the safety of the product.

1.6 Conclusion

I study the bilateral trade setting with correlated information when monetary trans-
fers are not feasible and characterize thewelfaremaximizingmechanism. This mech-
anism uses positive correlation to screen the agent; whereas under negative cor-
relation, the optimal mechanism does not elicit the agent’s valuation. My charac-
terization of the optimal mechanism has interesting consequences for applications.
Screening makes it necessary to forgo the highest gains from allocation. Also, the
optimal mechanism may not allocate to higher valuation-types with higher prob-
ability. I introduce a novel regularity assumption that ensures an interval form of
the optimal mechanism. The possibility of using positive correlation for screening
opens interesting new directions of future research. My characterization is the first
step toward analyzing a richer setting in which the principal endogenously chooses
the degree of positive correlation.

6. see Federal Aviation Administration (2005).
7. See, for example, the testimony of the FAA’s acting administrator Daniel K. Elwell (2019) in

a senate hearing on the Boeing 737 Max crashes.
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Appendix 1.A Proofs

All the proofs in this section are for the more general case of allocation values of the
form w(x, v, c)= x · z(v, c) with

• z(v, c) is increasing in v and decreasing in c.
• z(v, c) is log-supermodular on {(v, c) | z(v, c)> 0}.

This generalization is introduced in section 1.4.4. The allocation value z(v, c)= v− c
is of this form, since

∂v∂c log(v − c) =
1

(v − c)2
≥ 0.

As V ,C are assumed to be discrete and ordered one can number its elements:

V = {v0, v1, . . . , vm−1}, C = {c0, c1, . . . , cn−1}.

The support of C can be countably infinite, then n=∞.

Notation. For two vectors a, b ∈ Rn let a · b denote their standard inner product.⁸
Let a ◦ b denote the vector of their element-wise products.

If there were monetary transfers

Independence and negative correlation

Proof of Theorem 2.
Take any incentive compatible mechanism x. If it is not ignorant and in cutoff form
I construct a modification of this mechanism that yields the principal a higher ex-
pected utility while keeping the incentive constraints satisfied.
step 0: (Relaxation)
In a relaxation of the problem the designer maximizes the same objective but dis-
regards the incentive constraints for the agent not to report a lower type. The only
incentive constraints which a solution of the relaxed problem has to respect are:

∀v < v̂: IC(v, v̂)

step 1: For all v there exists a cutoff c(v) such that x(v, c)=
¨

1, c< c(v)

0, c> c(v)
.

Suppose there exists v′′ and c′ < c′′ with x(v′′, c′)< 1 and x(v′′, c′′)> 0. Consider the
following modification of the mechanism:

• allocate with probability x(v′′, c′)+ dx(v′′, c′) after (v′′, c′)

• and with x(v′′, c′′)+ dx(v′′, c′′) after (v′′, c′′),

8. If n= 1 than this denotes the standard product of two real numbers.
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with
dx(v′′, c′′) = −

f(v′′, c′)
f(v′′, c′′)

· dx(v′′, c′)

and dx(v′′, c′)> 0 small enough such that: x(v′′, c′)+ dx(v′′, c′)≤ 1 and x(v′′, c′′)+
dx(v′′, c′)≥ 0. It follows that

f(v′′, c′) · dx(v′′, c′) + f(v′′, c′′) · dx(v′′, c′′) = 0,

i.e. the probability of allocation for type v′ (if he reports truthfully) remains the same
in the modified mechanism. Since the allocation probability for all reports v′′′ > v′′

were not modified, v′′ has no new incentives to report a higher type. The principal’s
expected value increases:

f(v′′, c′) · dx(v′′, c′) · (−c′) + f(v′′, c′′) · dx(v′′, c′′) · (−c′′) = f(v′′, c′) ·
�

c′′ − c′
�

> 0.

Furthermore for any v′ ≤ v′′,

f(v′, c′) · dx(v′′, c′) + f(v′, c′′) · dx(v′′, c′′)

= dx(v′′, c′) · f(v′, c′′) ·
�

f(v′, c′)
f(v′, c′′)

−
f(v′′, c′)
f(v′′, c′′)

�

≤ 0,

i.e. for lower types misreporting their type as v′′ becomes less attractive. Since the
original mechanism was assumed to be incentive compatible in the relaxed problem,
it follows that the modified mechanism remains compatible to the relaxed problem.
We set c(v) such that⁹

x(v, c) =











1, c < bc(v)c

c(v) − bc(v)c, c = bc(v)c

0, c > c(v)

.

step 2: There exists x :C → [0,1] with x(v, c)= x(c) for all v.
First, it can be ruled out that there exists v′ < v′′ such that c(v′)< c(v′′) since this
would violated IC(v′, v′′). Suppose next, there exists v′ < v′′ such that c(v′)> c(v′′).
Define

v′ = sup{v ∈ V |∃v′′ > c: c(v) > c(v′′)}, (1.A.1)
v′′ = inf{v ∈ V | v > v′, c(v) < c(v′)}. (1.A.2)

Suppose there was v ∈ V with v′ < v< v′′. From v< v′′ it follows that c(v)≥ c(v′)
and from v> v′ that c(v)≤ c(v′′). Together this yields a contradiction to the assump-
tion that c(v′)> c(v′′). Therefore v′ and v′′ must be successors. This entails that all of

9. If c(v)= 3.7 the corresponding allocation is given by x(v, ·)= (1, 1,1, 0.7,0, · · · ). If c(v)= 3
the allocation is x(v, ·)= (1, 1,0, 0, · · · )
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v′ incentive constraints in the relaxed problem must slack: c(v′)> c(v′′)≥ c(v′′′) for
all v′′′ ≥ v′′. If the mechanism is optimal in the relaxed problem, it must be the case
that w(v′, bc(v′)c)≥ 0. As w(·, ·) is increasing in the first component and decreasing
in the second, it follows that w(v′′, c)≥ 0 for all c≥ bc(v)c.
step 3: By step 2 we can assume that the optimal mechanism is ignorant. Since any
ignorant mechanism is incentive compatible, the optimal ignorant mechanism is a
solution to the relaxed and to the original problem.

Positive correlation

Proof of corollary 1.
Suppose g(c) is concave. For all c′ < c′′ and for all rational α ∈ (0,1)∩Q we have

1
g(α · c′ + (1 − α) · c′′)

≤
1

α · g(c′) + (1 − α) · g(c′′)

Since α was assumed to .be rational there are natural numbers j< n ∈ N such that
α= j

n . But then it follows that

n
j · g(c′) + (n − j) · g(c′′)

≤
j
n
·

1
g(c′)

+
n − j

n
·

1
g(c′′)

,

since the arithmetic mean exceeds the harmonic mean. For α ∈ (0,1) not rational,
it can be expressed as limit of rational αs, and the result follows as a limit. Note
that as g is assumed to be concave it must be continuous on all interior points of its
support. Since α ∈ (0,1) the point α · c′ + (1−α)c′′ is always in the interior of the
support.
To see that the reverse might not be true consider the function c 7→ 2−

p
c on (0,1)

it is strictly convex but c 7→ 1
2−
p

c is not concave on (0,1).

The next result gives an equivalent characterization fo convexity for a decreas-
ing function. It both applies when the function is defined on a interval and when
the function is defined on a discrete set and convexity is discrete convexity. (See
definition 1)

Corollary 4
A real decreasing function g defined on some set I ⊂ R is strictly convex iff ∀c′ < c′′ <
c′′′ ∈ I :

(g(c′) − g(c′′)) · (c′′ − c′) > (g(c′′) − g(c′′′)) · (c′′′ − c′′).

Proof. For α= c′′′−c′′
c′′′−c′ it holds that c′′ = α · c′ + (1−α) · c′′′. Plugging this into the def-

initions yields the result.
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This corollary shows that if z(v, c)= v− c as in the main body, the generalized
formulation of the regularity assumption (1.16) coincides with convexity of the lik-
lihood ratios. Now, we are all set for the proof of Theorem 3. The proof proceeds in
several steps. First I show that all the allocation schedules of the optimal mechanism
in the relaxed problems have single plateaus.

Proof of Proposition 1.
Suppose the allocation schedule for vj, x(vj), was not having a single plateau. This
means that there exists c′ < c′′ < c′′′ with x(vj, c′)> 0, x(vj, c′′)= 0 and x(vj, c′′′)> 0.
The remainder shows that under the regularity assumption there exists a modifica-
tion of the mechanism, given by

x̃(v, c) =

(

x(v, c) + dx(v, c), if v = vj and c ∈ {c′, c′′, c′′′}

x(v, c), otherwise
, (1.A.3)

with dx(vj, c′)< 0, dx(vj, c′′′)< 0 and dx(vj, c′′′)> 0. This proof uses a form of Farkas’
Lemma (Farkas’ Alternative) which I restate here:

Lemma (Farkas’ )
Suppose that A ∈ Rk,l, b ∈ Rl then exactly one of these two alternatives is true:

(1) ∃p ∈ Rl with
• Ap≥ 0.
• p · b< 0.
• p> 0 :⇔ p≥ 0∧ p 6= 0.

(2) ∃y ∈ Rk with
• y′A≤ b.
• y ≥ 0.

A proof for this version of Farkas’ Lemma can be found in Gyula Farkas’ original
paper, Farkas (1902). The above formulation is taken from Border (2013), Corollary
11. Setting

A=











f(v0, c′) −f(v0, c′′) f(v0, c′′′)
... −

... ...
f(vj−1, c′) −f(vj−1, c′′) f(vj−1, c′′′)
−f(vj, c′) f(vj, c′′) −f(vj, c′′′)











∈ Rj+1×3, b=





z(v′, c′) · f(v′, c′)
−z(v′, c′′) · f(v′, c′′)
z(v′, c′′′) · f(v′, c′′′)





establishes equivalence between alternative 1 and the existence of a feasible, strictly
profitable deviation of the form (1.A.3), which is then given by





dx(vj, c′)
dx(vj, c′)
dx(vj, c′)



 :=





−p1

p2

−p3



 .
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The last entry of Ap≥ 0 guaranties that all incentive constraints, IC(vj, v′′)≥ 0
for v′ ≥ vj are fulfilled in the modified mechanism. The other entries ensure that
IC(v′, vj)≥ 0 for all v′ ≤ vj. No other incentive constraints in the relaxed are affected
by the modification. Therefore the modified mechanism is also incentive compatible.
Furthermore, 0> b · p= ensures strict profitability.

To conclude the proof one needs only to rule out alternative 2 under the regu-
larity assumption. Suppose alternative 2 was true, then ∃y ∈ Rj+1

+ such that y′A≤ b.
This implies, that

yj + z(vj, c′) ≥
j−1
∑

i=0

f(vi, c′)
f(vj, c′)

yi (1.A.4)

yj + z(vj, c′′) ≤
j−1
∑

i=0

f(vi, c′′)
f(vj, c′′)

yi (1.A.5)

yj + z(vj, c′′′) ≥
j−1
∑

i=0

f(vi, c′′′)
f(vj, c′′′)

yi (1.A.6)

(1.A.4)− (1.A.5) yields:

z(vj, c′) − z(vj, c′′) ≥
j−1
∑

i=0

yi ·
�

f(vi, c′′)
f(vj, c′)

−
f(vi, c′)
f(vj, c′′)

�

(1.A.7)

(1.A.6)− (1.A.5) yields:

z(vj, c′′′) − z(vj, c′′) ≥
j−1
∑

i=0

yi ·
�

f(vi, c′′′)
f(vj, c′′′)

−
f(vi, c′′)
f(vj, c′′)

�

(1.A.8)

⇔ z(vj, c′′) − z(vj, c′′′) ≤
j−1
∑

i=0

yi ·
�

f(vi, c′′)
f(vj, c′′)

−
f(vi, c′′′)
f(vj, c′′′)

�

(1.A.9)

Note that by affiliation of the distribution and since z(vj, c) is decreasing c, all terms
of the sum in (1.A.7) and (1.A.9) are positive.
Therefore (1.A.7) / (1.A.9) yields:

z(vj, c′) − z(vj, c′′)

z(vj, c′′) − z(vj, c′′′)
≥

∑j−1
i=0 yi ·

�

f(vi,c
′′)

f(vj,c′)
− f(vi,c

′)
f(vj,c′′)

�

∑j−1
i=0 yi ·

�

f(vi,c′′)
f(vj,c′′)

− f(vi,c′′′)
f(vj,c′′′)

� (1.A.10)

⇔
j−1
∑

i=0

yi ·
�

z(vj, c′) − z(vj, c′′)
�

·
�

f(vi, c′′)
f(vj, c′′)

−
f(vi, c′′′)
f(vj, c′′′)

�

(1.A.11)

≥
j−1
∑

i=0

yi ·
�

z(vj, c′′) − z(vj, c′′′
�

·
�

f(vi, c′′)
f(vj, c′)

−
f(vi, c′)
f(vj, c′′)

�

(1.A.12)
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But by the regularity assumption and since yi ≥ 0 it holds ∀i ∈ {1, . . . , j− 1}:

yi ·
�

z(vj, c′) − z(vj, c′′)
�

·
�

f(vi, c′′)
f(vj, c′′)

−
f(vi, c′′′)
f(vj, c′′′)

�

(1.A.13)

≤ yi ·
�

z(vj, c′′) − z(vj, c′′′
�

·
�

f(vi, c′′)
f(vj, c′)

−
f(vi, c′)
f(vj, c′′)

�

(1.A.14)

Finally suppose that ∀i ∈ {1, . . . j− 1} : yi = 0. Then (1.A.9) would imply that,
z(vj, c′′)− z(vj, c′′′)≤ 0. Contradiction since z(vj, c) is assumed to be strictly decreas-
ing!
So we can assume that the above equation (1.A.14) holds strictly for at most one
i ∈ {1, . . . j− 1} contradicting therefore (1.A.12). Thus, alternative 2 can be ruled
out.

To proof monotonicity the following Lemma is used:

Lemma 3. Suppose plateau allocation rules x′′, x′ :C → [0, 1] are strictly ordered:
x′′ � x′. If there is v ∈ V with

f(v) · (x′′ − x′) = 0

then it must hold that
f(v) ◦ w(v, c) · (x′′ − x′) < 0

Proof. Define

C′′ = {c ∈ C |x′′(c) − x′(c) > 0}, C′ = {c ∈ C |x′′(c) − x′(c) < 0.

As the allocation rules are in plateau form an ordered there exists c∗ ∈ C with

∀c′′ ∈ C′′∀c′ ∈ C′ : c′ ≤ c∗ ≤ c′′.

As w(v, ·) is strictly increasing it follows that

∑

cinC′′
f(v, c) · w(v, c) · (x′′(c) − x′(c)) ≤ w(v, c∗) ·

�

∑

c∈C′′
f(v, c) · (x′′(c) − x′(c))

�

= w(v, c∗) ·

�

∑

c∈C′
f(v, c) · (x′′(c) − x′(c))

�

≤
∑

c∈C′
f(v, c) · w(v, c) · (x′′(c) − x′(c)).

As x′′ � x′ at least one of the two inequalities must be strict.

I also use the following result about totally positive kernels and adapt its formu-
lation to my setting:
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Lemma 4 (Schoenberg (1930) and Karlin (1968)). If a real function function
K : V ×C → R is strictly totally positive of order 2 (STP2) and there are allocation
schedules: x(ṽ)� x(v) then for any v′ < v′′ ∈ V it holds
∑

c∈C
K(v′, c) · (x(ṽ, c) − x(v, c)) ≥ 0 ⇒

∑

c∈C
K(v′′, c) · (x(ṽ, c) − x(v, c)) > 0,

∑

c∈C
K(v′′, c) · (x(ṽ, c) − x(v, c)) ≤ 0 ⇒

∑

c∈C
K(v′, c) · (x(ṽ, c) − x(v, c)) < 0.

Or equivalently, v′ 7→
∑

c∈C K(v′, c) · (x(ṽ, c)− x(v, c)) crosses zero at most once and
then from below.1⁰

A proof can be found in Karlin (1968). Setting K(v′, c)= f(v′, c) or K(v′, c′ =
f(v′, c) · z(v, c)

Proof of Proposition 2.
Let x be a solution to the relaxed problem. With Proposition 1 we can assume that
the mechanism is in plateau form. Let

k = min{0 < i < m |x(vi) � x(vi−1)}

If k= 1, the mechanism is plateau monotone. Otherwise we have ¬[x(vk)�
x(vk−1)]. This means

¬[c(vk) ≥ c(vk−1) and c(vk) ≥ c(vk−1)].

One has to to distinguish three cases:

(1) c(vk)≤ c(vk−1) and c(vk)≥ c(vk−1) with at least one inequality strict. This case
can be ruled out immediately, since if this were the case, then

f(vk−1) · x(vk−1) < f(vk−1) · x(vk),

which would be a violation of IC(vk−1, vk).
(2) c(vk)> c(vk−1) and c(vk)≤ c(vk−1) with at least one inequality strict.

For all j< k it holds,

f(vj) · x(vj) ≥ f(vj) · x(k−1) > f(vj) · x(vk).

Since j≤ k− 1, the first inequality follows from incentive compatibility. The sec-
ond strict inequality follows from the initial assumption about xk and xk−1. As a
consequence, all incentive constraints IC(vj, v,k ) for j< k slack. This could have
only been optimal if for all c≤ bck−1c it was the case that w(vk, c)≤ 0. But then

10. A touching of zero is counted as a crossing.
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as w is strictly increasing in v it follows that w(vk−1, v)< 0 for all c≤ bck−1c. But
this is a contradiction since, for all l≥ k it holds:

f(vk−1) · x(vk − 1) > f(vk−1) · x(vk) ≥ f(vk−1) · x(vl).

The first inequality is again by the initial assumption and the second follows
since xl � xk. This means that all incentive constraints IC(vk−1, vl) for l> k− 1
slack. So the choice of xk−1 could not have been optimal in the first place.

(3) c(vk)≤ c(vk−1) and c(vk)≥ c(vk−1) with at least one inequality strict.
step 1: Define the upper end of the support of x(vk−1) as c, i.e. c= dc(vk−1)− 1e.
In this step I show that: w(vk−1, c)> 0.

First suppose that w(vk−1, )≤ 0. If

f(vk−1) · x(vk−1) = f(vk−1) · x(vk)

then allocating the good after vk−1 according to allocation rule x(vk) instead of
x(vk−1) does not generate new profitable deviations. But since x(vk)� x(vk−1 it
would strictly improve the principals expected utility (Lemma 3). We can there-
fore assume that IC(vk−1, vk)> 0. But since for all l≥ k

f(vk) · x(vk) ≥ f(vk) · x(vl) ⇒ f(vk−1) · x(vk) ≥ f(vk−1) · x(vl),

it follows that IC(vk−1, vj)> 0. Since there are only finitely many types there
is ε > 0 such that IC(vk−1, vl)≥ ε ,i.e. vk−1 incentive constraints slack uni-
formly. This result directly in a contradiction if w(vk−1, c)< 0 since then
x(vk−1, dc(vk−1)− 1e) could be lowered to increase the principals expected pay-
off. If w(vk−1, c)= 0 then x(vk−1, c) could still be lowered until either IC(vk−1, vk)
binds or if the incentives still slack with x(vk−1, c)= 0 one could proceed and
lower x(v, c−). In the former case, one could now improve the principals payoff
by allocating the good after vk−1 according to allocation rule x(vk) instead of the
modified x(vk−1).
step 2: Consider the following modification of the mechanism: after vk allocate
according to x(vk−1) instead of x(vk). This change does not introduce new prof-
itable deviations since,

f(vk−1) · x(vk−1) ≥ f(vk−1) · x(vk) ⇒ f(vk) · x(vk−1) ≥ f(vk) · x(vk).

Therefore, this modification cannot yield a higher expected value for the princi-
pal:

f(vk) ◦ w(vk) · x(vk−1) ≤ f(vk) ◦ w(vk) · x(vk)

It follows by Lemma 4 and since w(vk−1, c)> 0 that

f(vk−1) ◦ z(vk−1) · x(vk−1) < f(vk−1) ◦ z(vk−1) · x(vk)
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For any α ∈ (0, 1) it would be strictly profitable to modify the mechanism in the
following way: after vk−1 allocate according to αx(vk)+ (1−α)x(vk−1) instead
of x(vk−1). It must therefore be the case that any such modification would violate
the incentive constraints. This can only be the case if there is a binding incentive
constraint for vk−1, i.e. there exists l≥ k such that

f(vk−1) · x(vk−1) = f(vk−1) · x(vl).

and x(vl)� x(vk). Otherwise — if x(vl)= x(vk) — there would be no incentive
violation in the modified mechanism.

As IC(vk−1, vk)≥ 0, it follows that

f(vk−1) · x(vl) ≥ f(vk−1) · x(vk).

But since x(vl)� x(vk) it follows that l> k and

f(vk) · x(vl) > f(vk) · x(vk),

a contradiction to IC(vk, vl)≥ 0.

Lemma 5. In the optimal solution to the relaxed problem all local incentive con-
straints are binding. That is for all 0< k<m IC(vk−1, vk)= 0, i.e.

f(vk−1) · x(vk−1) = f(vk−1) · x(vk − 1).

Proof. Suppose there was some k with IC(vk−1, vk)> 0. It cannot be the case that
xk = xk−1. Therefore xk � xk−1. By Lemma 4 it follows for all j< k that

f(vj) · x(vk−1) > f(vj) · x(vk)

For all j< k the relaxed incentive compatibility implies

f(vj) · x(vj) ≥ f(vj) · x(vk),

it follows that for all j< k the incentive constraints slack, IC(vj, vk)> 0. As x(vk)�
x(vj) and f(vk−1) · x(vk−1)> f(vk−1) · x(vk), it must be the case that x(vk, c0)< 1.
Choose u=max{i : 0< i< n, x(vk, ci)> 0}. Since all incentive constraints slack one
can freely shift mass from x(vk, cu) ↓ to x(vk, c0) ↑ at a rate that keeps vk’s expected
allocation probability constant,

dx(vk, c0) · f(vk, c0) = −dx(vk, cu) · f(vk, cu),

by Lemma 3 this modification would strictly improve the principal’s expected utility.
Contradiction.
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Lemma 6. The plateau-monotonic solution to the relaxed problem is a solution to
the original problem.

Proof. Let x be the plateau-monotonic solution to the relaxed problem. Suppose
that x was not a solution to the original problem. This means that a high type has
incentive to misrepresent himself as a lower type. Set

k = min{l ∈ N |0 < l < m,∃j < l with f(vl) · x(vl) < f(vl) · x(vj)}.

It follows that x(vk)� x(vj). By Lemma 5 it holds that,

f(vk−1) · x(vk) = x(vk−1).

By Lemma 4 an since x(vk)� x(vk−1) (monotonicity) it follows that

f(vk−1) · x(vk) = x(vk−1).

One can deduce that k− 1> j. Therefore, since x is monotone: x(vk−1)� x(vj).
k was chosen minimally, therefore:

f(vk−1) · x(vk−1) ≥ f(vk−1) · x(vj).

But then again by Lemma 4 it follows that,

.f(vk) · x(vk−1) ≥ f(vk) · x(vj).

Contradicting, the initial assumption that IC(VK, vj)< 0.

Taking all these results together proofs Theorem 3.

Continuous Costs

Lemma 7 (Lemma 1). For any k ∈ N∪ {∞} there exists a positively affiliated joint
distribution that fulfills the regularity assumption (R) such that the optimal ignorant
mechanism x(c) has k holes.

Proof. Suppose that there are only two valuations vL < vH. The optimal ignorant
mechanism reads:

x(c) =

(

1, E[V |C = c] > c

0, E[V |C = c] < c
.

For c ∈ (vL, vH):

E[V |C = c] > c ⇔
f(vL, c)
f(vH, c)

<
vH − c
c − vL

.
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Setting vH = 3, vL = 0 and

f(vH, c) =

(

K, c ∈ (1,2)

0, otherwise
,

f(vL, c) =

(

K ·
�

vH−c
c−vL

+ ε · sin
� 1

c−1

�

(c − 1)4
�

, c ∈ (1,2)

0, otherwise

vH−c
c−vL

is a strictly convex decreasing function. For vH = 3, vL = 0 vH−c
c−vL

, −
�

vH−c
c−vL

�′
, and

�

vH−c
c−vL

�′′
are all bounded from below by a strictly positive bound on the whole support

(1,2). Since | sin
� 1

c−1

�

(c− 1)4|, |
�

sin
� 1

c−1

�

(c− 1)4
�′ | and |

�

sin
� 1

c−1

�

(c− 1)4
�′′ | are

bounded from above on (1, 2) there exists ε > 0 such that for all K > 0 f(vL, c)> 0
and f(vL,c)

f(vH ,c) is decreasing convex. Since
∫ 2

1 sin
� 1

c−1

�

(c− 1)4 dc exists and is bounded
K > 0 can be chosen such that f(v, c) is a density.

Proof of Theorem 4.
The proof essentially replicates all the arguments from the finite realization case.
First we show that it is in plateau form, which corresponds to intervals in this new
setting:

Let λ denote the Lebesgue measure. Let C′, C′′, C′′′ be measurable subset of C
with positive measure that are ordered in the following sense: ∀(c′, c′′, c′′′) ∈ C′ ×
C′′ × C′′′: c′ ≤ c′′ ≤ c′′′. The sets are assumed to be distinct on a positive measure:
λ(C′∆C′′)> 0,λ(C′′∆C′′′)> 0 and λ(C′∆C′′′)> 0, where∆ denotes the symmetric
differences of sets.

Suppose that x is an optimal mechanism and there exists v′ ∈ V with:
∫

C′
x(v, c) dc > 0,

∫

C′′
(1 − x(v, c))dc > 0,

∫

C′′′
x(v, c) dc > 0

It is without loss to assume that x(v′, c)> 0 for all c ∈ C′ ∪ C′′′ and x(v′, c)< 1 for
all c ∈ C′′ and that c′ < c′′ < c′′′. Otherwise use C′ − C′′ − C′′′ − {c ∈ C |x(v′, c)= 0}
instead of C′ and corresponding subsets of C′′ and C′′′.

Since for any measurable C ⊂ C the function b 7→ λ(C ∩ [−b, b]), is continuous,
there exists C̃′ ⊂ C′, C̃′′ ⊂ C′′, and C̃′′′ ⊂ C′′′ with λ(C̃′)= λ(C̃′′)= λ(C̃′′′)> 0. There
exist measure preserving bijections φ : C̃′→ C̃′′ and ψ: C̃′→ C̃′′ (see for example
Alós-Ferrer (1999) , Lemma 3). For all c′ ∈ C̃′ we can apply res:.. to c′ < φ(c′)<
ψ(c′′). This gives for any c′ that the set of feasible, incentive compatible and strictly
profitable deviations dx(v′, c′), d(v′, c′′), dx(v′, c′′) is not empty. One needs to argue
why this correspondence exhibits a measurable selection. The usual measurable se-
lection theorems are formulated for closed correspondences. But since the deviations
here must be strictly profitable the definition of the correspondence includes a strict
inequality. To get around this, consider the correspondence that maps c to the set of
deviations which are feasible, incentive compatible and profitable or neutral for the
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principal. This does not involve strict inequalities therefore it is compact valued. It
is also weakly measurable, denote it by Γ .

From above we know that the most profitable deviation in Γ (c′) is a strictly
profitable deviation. Also, the function which evaluates the profitability of a devia-
tion (c′, x1, x2, x3) 7→ f(v′, c′) · x1 + f(v′,φ(c′)) · x2 + f(v′,ψ(c′)) · x3 is measurable in
c′ and continuous in (x1, x2, x3). Hence, it is a Caratheodory function.

With this we can apply a measurable maximum theorem (Aliprantis and Border
(2006), Theorem 18.19) and get a measurable selection of the most profitable de-
viation, which is strictly profitable. Denote it by γ(c′)= (γ1(c′),γ2(c′),γ3(c′)). With
this we can construct a new measurable mechanism x̃, which has x̃(v′, c′)= x(v′, c)+
γ1(c′), x(v′,φ(c′))= x(v′,φ(c′))+ γ2(c′), and x(v′,φ(c′))= x(v′,φ(c′))+ γ3(c′) for
all c′ ∈ C̃′ and equals x elsewhere. This new mechanism has a strictly higher payoff
for the principal on a set with positive measure. Therefore the original mechanism
can not have been optimal.

It follows that the optimal mechanism to the relaxed problem can be character-
ized by two functions: c, c : V →C with ∀v ∈ V : c(v)≤ c(v). Define an analogous
partial order on the set of allocation schedules in plateau form:

x(v′′) � x(v′) ⇔ c(v′′) ≥ c(v′) and c(v′′) ≥ c(v′).

The variation diminishing property also holds for kernels that are continuous in c:

Lemma (Schoenberg (1930) and Karlin (1968))
If a real function function K : V ×C → R is strictly totally positive of order 2 (STP2)
and there are allocation schedules: x(ṽ)� x(v) then for any v′ < v′′ ∈ V it holds
∫

C
K(v′, c) · (x(ṽ, c) − x(v, c)) dc ≥ 0 ⇒

∫

C
K(v′′, c) · (x(ṽ, c) − x(v, c)) dc > 0,

∫

C
K(v′′, c) · (x(ṽ, c) − x(v, c)) dc ≤ 0 ⇒

∫

C
K(v′, c) · (x(ṽ, c) − x(v, c)) dc < 0.

The cost-continuous analog of Lemma 3 directly follows, if in its proof the sums
are replaced by integrals.

With these results in hand, all the other steps of the proof with finite realizations
can be replicated analogously.

Binary valuation

Proof of Proposition 3.
First, since vH ∈ (a, b), there always exists d> a such that the ignorant mechanism
x(c)=

¦

1, c ∈ [a, d)

0, c ∈ [d, b) dominates the mechanism that never allocates. Similarly, the igno-
rant mechanism x(c)=

¦

1, c ∈ [a, vH)

0, c ∈ [vH , b) dominates the mechanism that always allocates.
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Suppose first, that the optimal mechanism x screens, i.e. cL < cH and cH > a. I
consider two feasible infinitesimal deviations that keep the incentives intact. Then it
must be the case for each of them that they do not increase the principal’s expected
utility:

(1) Change cL and cH simultaneously such that

f(vL, cL) · dcL = f(vL, cH) · dcH (1.A.15)

The principal’s expected utility changes by

f(vH, c) · (vH − cH) · dcH + f(vL, cL) · (vL − cL)dcL.

Plugging in (1.A.15) yields:

f(vL, cL) ·
�

f(vH, cH)

f(vL, cH)
· (vH − cH) + (vL − cH)

�

· dcL

To rule out any strictly profitable modification of the mechanism it must be the
case:

f(vH, cH)

f(vL, cH)
· (vH − cH) + (vL − cH) = 0 ⇔

vH − cH

cH − vL
=

f(vL, cH)

f(vH, cH)
= l(cH).

(1.A.16)

(2) Change cL and cH simultaneously such that

f(vL, cL) · dcL = f(vL, cH) · dcH. (1.A.17)

Again, the principal’s expected utility cannot be strictly improved if,

vH − cH

cL − vL
=

f(vL, cH)
f(vH, cH)

. (1.A.18)

From Theorem 3 we know that IC(vL, vH)= 0. This gives a third equation

F(cL|vL) = F(ch|vL) − F(cH|vL). (1.A.19)

These three equations ((1.A.16),(1.A.18),(1.A.19)) uniquely pin down the optimal
mechanism with screening, since the optimummust fulfill them and I will show that
they have at most one solution.

For a a fix cL consider the function c 7→ vH−c
cL−vL

on c ∈ [vL, vH]. This linear function
can be described as a straight line that hits zero at c= vH. For higher cL its slope
gets less negative. This linear function intersects at most twice with the convex de-
creasing function l(c). denote—if existent—the lower intersection point by cH(cL)



42 | 1 Allocation with Correlated Information

and the higher intersection point by cH(cL). By the convexity of l it follows that for
cH(cL)− cH(cL) is decreasing in cL. Therefore

F(cL|vL) − (F(cH(cL)|vL) − F(cH(cL)|vL))

is increasing in cL It follows that there is at most one cL solving the equations
(1.A.16), (1.A.18), (1.A.19) simultaneously.

Suppose now that the optimal mechanism is ignorant. Then the optimal cutoff
c ∈ [vl, vH] must be locally optimal:

0 = f(vH, c) · (vH − c) · dc + f(vL, c) · (vL − c) · dc ⇔
vH − c
c − vL

= l(c)

If this equation is not unique then we know by corollary 3 that the optimal mecha-
nism is not ignorant. Then it must be uniquely characterized by the equations of the
screening case.

Proof of Lemma 2.
Under which circumstances can we rule out that the system (1.A.16), (1.A.18) and
(1.A.19) has a solution. One of this instances is given, if the tangent at a of l crosses
zero before vH. Since then no linear function crossing zero at vH can twice intersect
with l. Formally this is the case if:

l(a) + l′(a) · vH < 0 ⇔ vH >

Appendix 1.B Related Problem

ũH(y) · g(y) = f(v′,−y) = f(v′, c)

ũL(y) · g(y) = f(v,−y) = f(v, c)

0 ≤
�

ũ′L(y)

u′H(y)

�′

=
�

−l′(−y) · ξ(x)ũL(y)
�

· g(y) = f(v,−y)

w̃(y) · g(y) = f(v′,−y) · (v′ + y)

It follows:

ũL(x)
ũH(x)

=
f(v,−x)
f(v′,−x)

=: l(x)

w̃(x)
ũH(x)

= x.
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From that we get,

ũ′L(y) = −l′(y) · ũL(y) + l(y) · ũL(y) (1.B.1)
w̃′(y) = ũH(y) + y · ũ′H(y) (1.B.2)

To have the principal with utility w̃ to be more risk avers than an agent with utility
ũH we need to have,

0 ≥
�

w̃′(y)
ũ′H(y)

�′

=











ũH(y)
ũ′H(y)
︸ ︷︷ ︸

=:ξ(y)

+y











′

= ξ′(y) + 1

To also have an agent with utility function ũH be more risk averse than an agent
with utility function ũL it must be the case, that

0 ≤
�

ũ′L(y)

u′H(y)

�′

=
�

−l′(−y) · ξ(y) + l(−y)
�′
= l′′(−y) · ξ(y) − l′(−y) · ξ′(y) − l′(y)

putting both conditions together yields:

l′′(y) · ξ(y) ≥ l′(−x) · (ξ′(y) + 1) ≤ 0

Assuming that ũH, u′H ≥ 0 and l′ ≤ 0 we conclude,

l′′(−y) ≥ 0.
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Chapter 2

Probabilistic Verification in Mechanism
Design?

Joint with Ian Ball

2.1 Introduction

In the standard mechanism design paradigm, the principal can commit to an arbi-
trary mechanism, which induces a game among the agents. There are no explicit
constraints on the mechanism, but there is an implicit assumption that the outcome
of the induced game does not depend directly on the agents’ types. Thus, each type
can freely mimic every other type. The principal learns an agent’s type only if the
mechanism makes it optimal for that agent to reveal it.

In practice, claims about private information are often verified. If an employee
applies for disability benefits, the provider performs a medical exam to assess the
employee’s condition. If a driver makes an insurance claim after a car accident, the
insurer checks the claim against a police report. If a consumer reports his income to
a lender, the lender requests a monthly pay stub for confirmation. In these examples,
verification is noisy—medical tests are imperfect, witnesses fallible, and pay stubs
incomplete.

The seminal paper of Green and Laffont (1986) first incorporates partial verifica-
tion into mechanism design. In a principal–agent setting, they illustrate how verifi-
cation relaxes incentive compatibility and hence makes more social choice functions

? We thank our advisors, Dirk Bergemann and Stephan Lauermann, for continual guidance. For
helpful discussions, we thank Tilman Börgers, Marina Halac, Johannes Hörner, Navin Kartik, Andreas
Kleiner, Daniel Krähmer, Bart Lipman, Benny Moldovanu, Jacopo Perego, Larry Samuelson, Sebastian
Schweighofer-Kodritsch, Philipp Strack, Roland Strausz, and Juuso Välimäki. We are grateful for fund-
ing from the German Research Foundation (DFG) through CRC TR 224 (Project B04). An extended
abstract for this paper appeared in EC ’19.
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implementable. In their model, mechanisms are direct and each type faces an ex-
ogenous restriction on which reports he can send to the principal. The following
interpretation is suggested. As a function of the agent’s type, certain reports are al-
ways detected as false while other reports never are. The punishment for detection
is prohibitively costly, so the agent chooses among the reports he can send without
being detected.

Partial verification cannot capture the noisiness of real verification. Under partial
verification, the agent knows with certainty which reports will be detected as false.
But in many applications, each report is detected with an associated probability.
Thus, agents trade off the benefits of successful misreporting against the risk of
detection.

In this paper, we model probabilistic verification by endowing a principal with a
stochastic testing technology. We consider a principal–agent setting. The agent has a
private type. The principal has full commitment power and controls decisions (which
may or may not include transfers). To this standard setting, we add a family of pass–
fail tests. The principal elicits a message from the agent and then conducts a test. The
agent sees the test and privately chooses whether to exert effort, which is costless.
If he exerts effort, then his passage probability depends on his type and on the test;
if he does not exert effort, then he fails with certainty. The principal observes the
result of the test—but not the agent’s effort—and then takes a decision.

We analyze which social choice functions can be implemented with a given test-
ing technology. We reduce the class of mechanisms in two steps.

First, we simplify communication. Since testing does not intrude into the com-
munication stage, we get a version of the revelation principle (Theorem 8): There is
no loss in restricting attention to direct mechanisms that induce the agent to report
truthfully and to exert effort on every test. We contrast our result with the failure of
the revelation principle in the setting of Green and Laffont (1986).

Second, we simplify the choice of tests. In general, which test is best for veri-
fying a particular type report depends on which types the principal would like to
screen away. We introduce for each type θ an associated order over tests. One test
is more θ -discerning than another if it can better screen all other types away from
type θ . This family of orders is the appropriate analogue of Blackwell’s (1953) infor-
mativeness order for our testing setting. These discernment orders provide a unified
generalization of various conditions imposed in the deterministic verification liter-
ature, such as nested range (Green and Laffont, 1986), full reports (Lipman and
Seppi, 1995), and normality (Bull and Watson, 2007).

A function assigning to each type θ a most θ -discerning test is a most-discerning
testing function. The sufficiency part of ourmain implementation result (Theorem 9)
states: If there exists a most-discerning testing function, then every implementable
social choice function can be implemented using that testing function. In this case,
the testing technology induces an authentication rate, which specifies the probabil-
ities with which each type can pass the test assigned to each other type. The prin-
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cipal’s problem reduces to an optimization over decision rules, subject to incentive
constraints involving the authentication probabilities.

The reduction from a testing technology to an authentication rate can be in-
verted. We provide a necessary and sufficient condition for an authentication rate
to be induced by a most-discerning testing function. In applications, we can directly
specify an authentication rate that satisfies our condition—testing need not be mod-
eled explicitly. If the authentication rate takes values 0 and 1 only, then our condition
reduces to the nested range condition that Green and Laffont (1986) use to recover
the revelation principle.

We are the first to analyze verification with the first-order approach. . Partial
verification is not amenable to this approach because the authentication probability
jumps discontinuously from 0 to 1. Under probabilistic verification, the authentica-
tion rate can depend continuously on the agent’s report, so each local constraint is
loosened but not eliminated. In a quasilinear environment, we aggregate these loos-
ened local constraints to derive a virtual value that encodes the testing technology.

We use this virtual value to solve for revenue-maximizing mechanisms in three
classical settings: nonlinear pricing, selling a single good, and auctions. With ver-
ification, the revenue-maximizing allocations have their usual expressions, except
that our virtual value appears in place of the classical virtual value. The associated
transfers are higher in the presence of verification. If the tests are completely un-
informative, then our virtual value equals the classical virtual value. As the tests
become more precise, our virtual value increases toward the agent’s true value, and
the revenue-maximizing allocation becomes more efficient. When selling a single
good, a posted price is not optimal. Instead, the price depends on the agent’s report.
To study auction settings, we extend the model to allow for competing agents who
submit reports and are tested separately. A virtual value is defined for each agent.
The revenue-maximizing auction allocates the good to the agent whose virtual value
is highest.

Finally, we consider tests with more than two results. Our discernment orders
naturally extend. As in the baseline model, if there exists a most-discerning testing
function, then there is no loss in using that testing function only.

The rest of the paper is organized as follows. section 2.2 presents our model
of testing. section 2.3 establishes the revelation principle. section 2.4 introduces
the discernment orders and states the most-discerning implementation result. sec-
tion 2.5 reduces the verification technology to an authentication rate. section 2.6
considers applications to revenue-maximization. We extend the model to allow for
multiple agents in section 2.7 and nonbinary tests in section 2.8. section 2.9 connects
our model to previous models of verification in economics and computer science;
other relevant literature is referenced throughout the text. section 2.10 concludes.
Measure-theoretic definitions are in section 2.A. Proofs are in sections 2.B and 2.C.
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2.2 Model

2.2.1 Setting

There are two players: a principal (she) and an agent (he). The agent draws a private
type θ ∈ Θ from a commonly known distribution. The principal takes a decision x ∈
X.1 Preferences depend on the decision x and on the agent’s type θ . The Bernoulli
utility functions for the agent and the principal are

u: X × Θ → R and v: X × Θ → R.

A social choice function, denoted

f : Θ → ∆(X),

assigns a decision lottery to each type.2

2.2.2 Verification technology

To the principal–agent setting we add a verification technology. There is a set T
of tests, with generic element τ. Each test generates a binary result—pass or fail,
denoted 1 or 0.3 The distribution of test results is determined by the passage rate

π: T × Θ → [0, 1],

which assigns to each pair (τ,θ) the probability with which type θ can pass test τ.
The passage rate π is common knowledge, as is the rest of the setting, except the
agent’s private type.

The principal can conduct one test from the set T. The procedure is as follows.
First the principal selects a test τ. Next the agent observes τ and chooses to exert
effort or not, denoted ē or

¯
e. Effort is costless. If the agent exerts effort, nature draws

the test result 1 with probability π(τ|θ) and the test result 0 otherwise. If the agent
does not exert effort, the test result is 0 with certainty. The principal observes the
test result, but not the agent’s effort choice.⁴

1. Decisions are completely abstract; they may or may not include transfers.
2. We make the following standing technical assumptions. Each set is a Polish space endowed

with its Borel σ-algebra. The space of Borel probability measures on a Polish space Z is denoted∆(Z).
All primitive functions are measurable. Social choice functions and other measure-valued maps satisfy
a weaker measurability condition called universal measurability. The details are in section 2.A.

3. We consider nonbinary tests in section 2.8; our main results go through.
4. The same procedure is used in Deb and Stewart (2018). They allow the principal to conduct

tests (termed tasks) sequentially before making a binary classification. In DeMarzo, Kremer, and Skrzy-
pacz (forthcoming), a seller of an asset can conduct a test of the asset’s quality. Each test has a null
result, which the seller can always claim to have received. If there is only one non-null result, then this
technology is equivalent to ours.
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Figure 2.1. Social choice function induced by a profile

Effort is an inalienable choice of the agent, as in models of evidence in which
the agent chooses whether to produce the evidence he possesses (Bull and Watson,
2007). Indeed, if the passage rate takes values 0 and 1 only, then each test can be
interpreted as a request for a particular piece of hard evidence; see example 6. In
general, the passage rate takes interior values, so the agent is unsure whether he
will pass each test. The agent can, however, intentionally fail each test by exerting
no effort. The active role played by the agent and the resulting asymmetry between
passage and failure are what distinguish tests from statistical experiments.

2.2.3 Mechanisms and strategies

The principal commits to a mechanism, which induces an extensive-form game that
proceeds as follows. The agent sends a message to the principal. Based on the mes-
sage, the principal selects a test. The agent observes the test and chooses whether
to exert effort. Nature draws the test result, as prescribed by the passage rate and
the agent’s effort. The principal observes this result and takes a decision.

In view of this timing, we define mechanisms and strategies.

Definition 4 (Mechanism). A mechanism (M, t, g) consists of a message space M
together with a testing rule t : M→∆(T) and a decision rule

g: M × T × {0, 1} → ∆(X).

Once the principal commits to a mechanism, the agent faces a dynamic deci-
sion problem. First he sends a message. Then, after observing the selected test, he
chooses effort.

Definition 5 (Strategy). A strategy (r, e) for the agent consists of a reporting strategy
r: Θ→∆(M) and an effort strategy

e: Θ × M × T → [0,1],

specifying the probability of exerting effort.

A mechanism (M, t, g) and a strategy (r, e) together constitute a profile, which in-
duces a social choice function by composition, as indicated in fig. 2.1. The functions e,
π, and g are represented by dashed arrows as a reminder that these functions depend
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Figure 2.2. Feasible reports

on histories, not just their source sets in the diagram. Using the notation for compo-
sition from Markov processes—think of a probability row vector right-multiplied by
stochastic matrices—the induced social choice function f is (r× t× (eπ))g. The map
r× t× (eπ) from Θ to ∆(M× T × {0,1}) is applied before the map g. For measure-
theoretic definitions of these operations, see section 2.A.1.

The players use expected utility to evaluate lotteries over decisions. A profile
(M, t, g; r, e) is incentive compatible if the strategy (r, e) is a best response to the mech-
anism (M, t, g), i.e., the strategy (r, e) maximizes the agent’s utility over all strategies
in the game induced by the mechanism (M, t, g). A profile (M, t, g; r, e) implements a
social choice function f if (M, t, g; r, e) is incentive compatible and f = (r× t× (eπ))g.
A social choice function is implementable if there exists a profile that implements it.

2.3 Revelation principle

We now begin our analysis of which social choice functions can be implemented,
given a testing technology. The space of incentive-compatible profiles is large. We
reduce this space by establishing a version of the revelation principle. First we revisit
the failure of the revelation principle in Green and Laffont’s (1986) model of partial
verification.

Example 5 (Partial verification, Green and Laffont, 1986). The agent has one of
three types, labeled θ1, θ2, and θ3. Type θ1 can report θ1 or θ2; type θ2 can report
θ2 or θ3; and type θ3 can report only θ3. This correspondence is represented as a
directed graph in fig. 2.2. Each type is a node, and edges connect each type to each
of his feasible reports.

The principal chooses whether to allocate a single good to the agent, who prefers
to receive it, no matter his type. Consider the social choice function that allocates
the good if and only if the agent’s type is θ2 or θ3. To truthfully implement this
allocation, the principal must allocate the good if the agent reports θ2. But then
type θ1 can report θ2 in order to get the good. Therefore, this allocation cannot be
implemented truthfully. It can, however, be implemented untruthfully: The principal
allocates the good if and only if the agent reports θ3. Types θ2 and θ3 both report
θ3, but type θ1 cannot.

What goes wrong in this example? In the partial verification model, reports are
not cheap-talk messages. Instead, each report serves as a test that certain types can
pass. Truthful implementation implicitly assigns to each type θ the test “report θ ",
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regardless of which other types can pass that test. By contrast, our testing framework
separates communication from verification. Reports retain their usual meaning and
thus the revelation principle holds.

In the standard mechanism design setting, the revelation principle states that
there is no loss in restricting to direct and truthful profiles. In our testing framework,
we demand also that the agent exert effort on every test.

Definition 6 (Canonical). A profile (M, t, g; r, e) is canonical if (i) M = Θ, (ii) r= id,
and (iii) e(θ ,θ ,τ)= 1 for all θ ∈ Θ and τ ∈ T.

Here the identity, id, maps each type θ to the point mass δθ in∆(Θ).⁵ Condition
(i) says that the mechanism is direct. Condition (ii) says that the agent reports truth-
fully. Condition (iii), which is specific to the verification setting, says that the agent
exerts effort on every test.⁶ A social choice function is canonically implementable if
it can be implemented by a canonical profile. Our revelation principle states that
there is no loss in restricting to canonical implementation.

Theorem 8 (Revelation principle)
Every implementable social choice function is canonically implementable.

The structure of the proof is similar to that of the standard revelation principle.
Given an arbitrary profile (M, t, g; r, e) that implements a social choice function f ,
we construct a canonical profile that also implements f . Play proceeds as follows.⁷
The agent truthfully reports his type θ . The principal feeds this report θ into the
reporting strategy r to draw a message m, which is then passed to the testing rule
t to draw a test τ. The agent exerts effort, so nature draws the test result 1 with
probabilityπ(τ|θ) and the test result 0 otherwise. If the test result is 0, the principal
feeds 0 into the decision rule g. If the test result is 1, the principal feeds into g the
result 1 with probability e(θ , m,τ) and the result 0 otherwise. Therefore, the input
to g is 1 with probability π(τ|θ)e(θ , m,τ).⁸

This canonical profile induces f . To check that this profile is incentive compatible,
we show that for any deviation in the canonical mechanism, there is a corresponding
deviation in the original mechanism that induces the same (stochastic) decision. The
original profile is incentive compatible, so this deviation cannot be profitable.

5. We sometimes identify a map y 7→ f(y) from Y to Z with the map y 7→ δf(y) from Y to ∆(Z).
6. The agent’s off-path behavior can be ignored because the best-response condition is in strate-

gic form. Alternatively, condition (iii) could be strengthened to require that e(θ ,θ ′,τ)= 1 for all
θ ,θ ′ ∈ Θ and τ ∈ T. The results would not change.

7. In the proof, we use a more general procedure that works also for nonbinary tests.
8. Technically, this is not a mechanism but a generalizedmechanism (Mertens, Sorin, and Zamir,

2015, Exercise 10, p. 70) because the distribution of the randomization device—the message the
principal draws—depends on the agent’s type report. In the proof, we eliminate this device by applying
the disintegration theorem.
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Suppose that the agent reports θ ′ and then follows the strategy of exerting ef-
fort with probability ẽ(τ) on each test τ. The agent can get the same decision in the
original mechanism by playing as follows. Feed θ ′ into the strategy r to draw a mes-
sage m to send to the principal. If test τ is conducted, exert effort with probability
ẽ(τ)e(θ ′, m,τ).

By separating communication from testing, we recovered the revelation princi-
ple. Conceptually, our testing framework elucidates the role of verification in elicit-
ing private information. Computationally, our progress is less clear. The complexity
of untruthful reporting has been replaced by the complexity of testing rules. Reduc-
ing this class of testing rules is what we turn to next.

2.4 Ordering tests

In this section, we identify a smaller class of testing rules that suffices for implemen-
tation. To define this class, we introduce a family of orders over tests.

2.4.1 Discernment orders

The basic question is whether one test can always be used in place of another. More
precisely, fix a type θ and tests τ and ψ. Suppose that the principal conducts test
ψ on type θ . Is it always possible to replace test ψ with test τ and then adjust the
decision rule so that (i) the decision for type θ is preserved, and (ii) no new devia-
tions are introduced? The key is to convert each score⁹ on test τ into an equivalent
score on test ψ. The principal feeds this converted score into the original decision
rule.

A score conversion is a Markov transition k on {0, 1}, which associates to each
score s in {0,1} a measure ks in ∆({0,1}). A transition k on {0,1} is monotone if k1

first-order stochastically dominates k0, denoted k1 ≥SD k0. For each test τ and type
θ , denote by πτ|θ the measure on {0, 1} that puts probability π(τ|θ) on 1. When
a test result is drawn from the measure πτ|θ and a Markov transition k is applied,
the resulting distribution is denoted πτ|θk, which can be viewed as the product of a
row vector and a stochastic matrix.

Definition 7 (Discernment order). Fix a type θ . A test τ is more θ -discerning than
a test ψ, denoted τ�θ ψ, if there exists a monotone Markov transition k on {0,1}
satisfying:

(i) πτ|θk= πψ|θ ;
(ii) πτ|θ ′k≤SD πψ|θ ′ for all types θ ′ with θ ′ 6= θ .

9. We use score synonymously with result. Tests are pass–fail, but the language of scoring is
more intuitive and our constructions immediately extend to the nonbinary case.
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Conditions (i) and (ii) correspond to parts (i) and (ii) of the motivating question
above. Each condition compares two testing procedures. On the left side, the agent
exerts effort on test τ and his score is converted by k into a score on test ψ. On the
right side, the agent exerts effort on testψ and his score is drawn. Condition (i) says
that for type θ these two procedures give the same score distribution. Condition (ii)
says that for all other types the converted score distribution is first-order stochas-
tically dominated by the unconverted score distribution on test ψ. The conversion
k is required to be monotone so that effort weakly improves the distribution of the
converted score. In short, the definition ensures that the conversion k from τ-scores
to ψ-scores is fair for type θ but (weakly) unfavorable for all other types.

The relation�θ is reflexive and transitive. For reflexivity, take k to be the identity
transition. For transitivity, compose the score conversions and note that monotone
transitions preserve first-order stochastic dominance and are closed under composi-
tion; see section 2.A.2. Two tests can be incomparable under�θ . We use the notation
∼θ for equivalence under �θ , and �θ for the strict part of �θ .

The θ -discernment order resembles Blackwell’s (1953) informativeness order
between experiments. Given a state space Ω and a signal space S, an experiment is
a map from Ω to ∆(S). In an experiment, the signal realizations are drawn exoge-
nously by nature. A garbling is a Markov transition on S. An experiment τ is more
Blackwell informative than an experiment ψ if there exists a garbling g such that

τg = ψ. (2.1)

To bring out the connection with the discernment orders, set Ω = Θ, and denote by
πτ|θ ′ the distribution of signals from experiment τ in state θ ′. Then (2.1) can be
expressed as

πτ|θ ′g = πψ|θ ′ for all θ ′ ∈ Θ. (2.2)

The Blackwell order is concerned with information, not incentives. The garbled
signal from experiment τ must have the same distribution as the ungarbled signal
from experiment ψ, in every state of the world. No state is privileged, and no struc-
ture on the signal space is required. In contrast, the discernment orders reflect the
agent’s incentives to report truthfully and to exert effort. There is a family of dis-
cernment orders, one associated with each type θ . For the distinguished type θ , the
converted score on test τ must have the same distribution as the unconverted score
on testψ. For all other types—the potential deviators—the converted score on test
τ need only be stochastically dominated by the score on testψ. A conversion, unlike
a garbling, is required to be monotone so that effort weakly improves the distribu-
tion of the converted score. For dominance and monotonicity to make sense, scores
must be totally ordered.
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2.4.2 Implementation with most-discerning testing functions

We are interested in maximum tests with respect to the discernment orders.

Definition 8 (Most discerning). A test τ ismost θ -discerning if τ�θ ψ for allψ ∈ T.
A function t : Θ→ T is most discerning if, for each type θ , the test t(θ) is most θ -
discerning.

To state the implementation result, we need a few definitions. Given a type
space Θ, a testing environment consists of a test set T and a passage rate π: T ×Θ→
[0,1]. A decision environment consists of a decision set X and a utility function u: X ×
Θ→ R for the agent. Given a testing rule t̂ : Θ→∆(T), a social choice function f
is canonically implementable with t̂ if there exists a decision rule g such that the
mechanism (̂t, g) canonically implements f .

Theorem 9 (Most-discerning implementation)
Fix a type space Θ and a testing environment (T,π). For a measurable testing function
t̂ : Θ→ T, the following are equivalent.

(1) t̂ is most discerning.
(2) In every decision environment (X, u), every implementable social choice function is

canonically implementable with t̂.

The implication from condition (1) to condition (2) means that a single most-
discerning testing function suffices for implementation. The proof formalizes the
test replacement that motivated our definition of the discernment orders. By the
revelation principle (Theorem 8), there is no loss in considering only canonical pro-
files. Suppose that in a canonical profile, some report θ is assigned a test ψ with
ψ 6= t̂(θ). Since t̂(θ)�θ ψ, the principal can use a score conversion to replace test
ψ with test t̂(θ), without introducing any new deviations. We perform this replace-
ment simultaneously for every type to construct an incentive-compatible canonical
profile with testing rule t̂.

The implication from condition (2) to condition (1) means that the most-
discerning property is necessary. If a testing function t̂ is not most discerning, then
in some decision environment there is an implementable social choice function that
cannot be canonically implemented with testing rule t̂. The construction is as follows.
Since t̂ is not most-discerning, there exists some type θ and some test τ such that
t̂(θ) 6�θ τ. We start with a social choice function that can be implemented by assign-
ing test τ to type θ . To replace test τ with test t̂(θ), we would need a score conver-
sion from τ to t̂(θ) that preserves the decision for type θ . But any such conversion
is either nonmonotone or violates the dominance condition (ii). If the conversion
is nonmonotone, then type θ can improve his passage probability by not exerting
effort. If (ii) is violated, then there is some other type θ ′ whose score distribution
after reporting θ is improved by the conversion. In the proof, we construct a decision
environment in which these deviations are profitable.
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The most-discerning property takes a simple form when tests are deterministic.

Example 6 (Deterministic tests and evidence). If the passage rate π is {0,1}-valued,
then our testing framework reduces to Bull and Watson’s (2007) model of hard
evidence. Each test can be interpreted as a request for a piece of evidence. Define a
correspondence E : Θ� T by

E(θ) = {τ ∈ T : π(τ|θ) = 1}.

Type θ can provide the evidence requested by test τ if and only if τ is in E(θ). It
can be shown that1⁰ a test τ in E(θ) is most θ -discerning if and only if, for every
test ψ in E(θ),

E−1(τ) ⊆ E−1(ψ).

That is, test τ is the hardest test that type θ can pass. The existence of a most-
discerning testing function is equivalent to Bull and Watson (2007) evidentiary nor-
mality condition, which in turn is equivalent to Lipman and Seppi (1995) full reports
condition.

If a most-discerning testing function does not exist, we can still reduce the class
of testing rules that we need to consider.

Definition 9 (Most-discerning correspondence). A subset T0 of T is most θ -
discerning if for each test ψ ∈ T there exists a test τ ∈ T0 such that τ�θ ψ. A cor-
respondence T̂ : Θ� T is most discerning if for each type θ the set T̂(θ) is most
θ -discerning.

A testing function t̂ : Θ→ T is a selection from a correspondence T̂ : Θ� T if
t̂(θ) ∈ T̂(θ) for each θ ∈ Θ. We extend this notion to stochastic testing rules. A test-
ing rule t̂ : Θ→∆(T) is supported on a correspondence T̂ : Θ� T if supp t̂θ ⊂ T̂(θ)
for each θ ∈ Θ. The next result says that if a correspondence is most discerning, then
we can restrict attention to the testing rules supported on that correspondence. To
avoid measurability problems, we impose additional regularity conditions.

Theorem 10 (Implementation with a most-discerning correspondence)
Suppose that the passage rate π is continuous. Let T̂ be a correspondence from Θ to
T with closed values and a measurable graph. If T̂ is most discerning, then for every
implementable social choice function f , there exists a testing rule t̂ supported on T̂ such
that f is canonically implementable with t̂.

10. Argue directly from the definition using deterministic score conversions. Alternatively, apply
Proposition 5, stated below.
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θ1 θ2 θ3

τ1 τ2 τ3

Figure 2.3. Passage correspondence

If T̂ is singleton-valued, then exactly one testing rule is supported on T̂, and
Theorem 10 reduces to the sufficiency part of Theorem 9.11 In general, Theorem 10
allow us to restrict attention to testing rules supported on a fixed correspondence T̂.
For example, suppose each type θ in some subset Θ0 of Θ has a most θ -discerning
test t̂(θ). Take T̂(θ)= {̂t(θ)} for θ ∈ Θ0 and T̂(θ)= T for θ 6∈ Θ0.

We apply Theorem 10 to the the Green–Laffont example, which we reformulate
with tests.

Example 7 (Green–Laffont with tests). Set Θ = {θ1,θ2,θ3} and T = {τ1,τ2,τ3}.
Type θi can pass test τj if and only if, in example 5, type θi can report θj. This {0, 1}-
valued passage rate is represented in fig. 2.3 as a directed graph on Θ ∪ T.12 Edges
connect each type to each of the tests he can pass. The discernment relations are
given by

τ1 �θ1
τ2 �θ1

τ3, τ2,τ3 �θ2
τ1, τ3 �θ3

τ2 ∼θ3
τ1.

Tests τ2 and τ3 are incomparable under �θ2
because τ2 screens away type θ3 (but

not θ1) and τ3 screens away θ1 (but not θ3). The following correspondence T̂ is
most-discerning:

T̂(θ1) = {τ1}, T̂(θ2) = {τ2,τ3}, T̂(θ3) = {τ3}.

By Theorem 10, there is no loss in restricting to testing rules supported on T̂. But
we cannot assume that type θ2 is assigned test τ2—this is the crux of the original
counterexample.

11. In this case, the continuity assumption onπ is unnecessary. We use the regularity assumptions
only to apply a measurable selection theorem, which ensures that there is a measurable way to assign
each pair (θ ,ψ) a test τ in T̂(θ) satisfying τ�θ ψ. If it can be shown independently that such an
assignment exists, then the conclusion of Theorem 10 follows without any assumptions on π or T̂.
When T̂ is singleton-valued, there is at most one such assignment.

12. Compare this graph on Θ ∪ T with the graph on Θ in fig. 2.2.
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Figure 2.4. Conversion from test τ to test ψ for type θ

2.4.3 Characterizing the discernment orders

We provide a more practical characterization of each discernment order. Fix a type
θ and tests τ and ψ. To determine whether τ is more θ -discerning than ψ, we
first characterize the monotone Markov transitions k satisfying πτ|θk= πψ|θ . We
parameterize these transitions as convex combinations of two extreme points.

The first extreme point is obtained by matching quantiles, much like scores are
converted between the SAT and the ACT. fig. 2.4 shows this Markov transition, sep-
arated into two cases. In the left panel, π(τ|θ)≥ π(ψ|θ), so a score of 0 on τ is
never converted to a 1 on ψ. In the right panel, π(τ|θ)< π(ψ|θ), so a score of 1
on τ is never converted to a 0 on ψ.

To formally define this transition, we construct Markov transitions that are ana-
logues of distribution and quantile functions. Given a type θ and a test τ, the asso-
ciated cumulative distribution transition

F̃τ|θ : {0,1} → ∆([0, 1])

maps 0 and 1 to the uniform distributions over [0, 1−π(τ|θ)] and [1−π(τ|θ), 1],
respectively. The associated quantile transition

Q̃τ|θ : [0, 1] → ∆({0, 1})

maps points in [0, 1−π(τ|θ)] to δ0 and points in (1−π(τ|θ), 1] to δ1.13 The
quantile-matching transition is the composition F̃τ|θ Q̃ψ|θ .

The second extreme point is the constant transition that maps both scores 0 and
1 to the measure πψ|θ . This transition is denoted πψ|θ as well.

13. To handle an edge case in Proposition 4, we redefine Q̃τ|θ to map 1 to δ1 even if π(τ|θ)= 0.
For more general definitions of these transitions and for some of their properties, see section 2.A.2.
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Proposition 4 (Score conversion characterization)
Fix a type θ and tests τ and ψ. For a Markov transition k on {0, 1}, the following are
equivalent.

(1) k is monotone and πτ|θk= πψ|θ .
(2) k= λF̃τ|θ Q̃ψ|θ + (1−λ)πψ|θ for some λ ∈ [0, 1].

We characterize the discernment order in terms of this parameter λ ∈ [0,1]. For
any passage rate π, define the associated failure rate π̄ by π̄= 1−π.

Proposition 5 (Discernment order characterization)
Fix a type θ and tests τ and ψ.

(1) Suppose π(τ|θ)≥ π(ψ|θ). We have τ�θ ψ if and only if there exists λ ∈ [0,1]
such that, for all types θ ′,

[λπ(τ|θ ′) + (1 − λ)π(τ|θ)]π(ψ|θ) ≤ π(ψ|θ ′)π(τ|θ). (2.3)

(2) Suppose π(τ|θ)< π(ψ|θ). We have τ�θ ψ if and only if there exists λ ∈ [0,1]
such that, for all types θ ′,

[λπ̄(τ|θ ′) + (1 − λ)π̄(τ|θ)]π̄(ψ|θ) ≥ π̄(ψ|θ ′)π̄(τ|θ). (2.4)

Remark. Ifπ(τ|θ)≥ π(τ|θ ′) for all θ ′, then (2.3) and (2.4) are each weakest when
λ= 1, so we can equivalently require λ= 1 in the statement of Proposition 5. If, in
addition, the passage rates are interior, then (2.3) and (2.4) can be expressed as

π(τ|θ)
π(τ|θ ′)

≥
π(ψ|θ)
π(ψ|θ ′)

and π̄(τ|θ)
π̄(τ|θ ′)

≤
π̄(ψ|θ)
π̄(ψ|θ ′)

.

For the relation τ�θ ψ, the passage (failure) rate ratio is what matters if type θ is
more likely to pass (fail) test τ than test ψ.

Example 8 (More θ -discerning with λ 6= 1). For simplicity, we consider a type θ
and two tests τ and ψ such that π(τ|θ) and π(ψ|θ) are equal and nonzero. In this
case, test τ is more θ -discerning than test ψ if and only if there exists λ ∈ [0,1]
such that

λπ(τ|θ ′) + (1 − λ)π(τ|θ) ≤ π(ψ|θ ′) for all θ ′ ∈ Θ. (2.5)

The passage rates for these tests are plotted in fig. 2.5.1⁴ The type space is an interval,
plotted on the horizontal axis. For test τ, the passage rate is an increasing affine
function; for testψ, the passage rate is increasing and convex. The dotted line takes
the constant value π(τ|θ), and the dashed line is the average of the passage rate
π(τ|·) and the constant π(τ|θ). From the graph we see that (2.5) is satisfied with
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Figure 2.5. More θ-discerning with λ 6= 1

λ= 1/2, so τ�θ ψ. Moreover, the tangency at the point (θ ,π(τ|θ)) shows that
1/2 is the only value of λ for which (2.5) holds.

Example 9 (Relative performance and scaling tests). Consider a type θ and tests τ,
ψ1, and ψ2 whose passage rates are plotted in fig. 2.6.1⁵ Test τ is the test that type
θ is least likely to pass, but τ is more θ -discerning than ψ1 and ψ2. This is possible
because test τ is difficult for every type. The performance of type θ relative to the
other types is better on test τ than on tests ψ1 and ψ2.

This example illustrates also the subtle effect of scaling the passage rate. The
passage rate on ψ2 is a scaling of the passage rate on ψ1: π(ψ2|·)= 0.75π(ψ1|·).
Since π(ψ1|θ)> π(ψ2|θ), the relation ψ1 �θ ψ2 depends on the relative passage
rates; it is satisfied. The reverse relation depends on the relative failure rates; it is
not satisfied. Thus, ψ1 �θ ψ2.

Lastly, we study equivalence with respect to each discernment order. Two tests
are θ -equivalent if they are equivalent with respect to�θ . Two tests are equal if their
passage rates are equal. A type θ is minimal on a test τ if π(τ|θ)≤ π(τ|θ ′) for all
θ ′ ∈ Θ.

Proposition 6 (θ -discernment equivalence)
Fix a type θ . Tests τ1 and τ2 are θ -equivalent if and only if (i) τ1 and τ2 are equal,
or (ii) θ is minimal on τ1 and τ2.

14. Algebraically,Θ = [1/4,3/4] and θ = 1/2. The passage rates areπ(τ|θ ′)= 1/2+ (3/4)(θ ′ −
1/2) and π(ψ|θ ′)= θ ′(θ ′ − 1/4)+ 3/8.

15. Again, Θ = [1/4, 3/4] and θ = 1/2. The passage rates are π(ψ1|θ ′)= 0.75− 4(θ ′ − 0.5)2;
π(ψ2|θ ′)= 0.75

�

0.75− 4(θ ′ − 0.5)2
�

; and π(τ|θ ′)= 0.375− 5(θ ′ − 0.5)2.
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Figure 2.6. Relative performance and scaling

If two unequal tests are θ -equivalent, then these tests have no power to screen
other types away from type θ . Whichever of the two tests is used, every decision
that is feasible for type θ is also feasible for all other types. Proposition 6 considers
θ -equivalence for a fixed type θ . If two tests are θ -equivalent for every type θ , then
their passage rates are constant, but the constants are not necessarily equal.

2.5 Testing in reduced form

If there exists a most-discerning testing function, then our framework takes a re-
duced form in which tests do not appear explicitly.

2.5.1 Induced authentication rates

When the agent makes a type report, his passage probability depends on the test
that the principal conducts after that report. If there is a most-discerning testing
function t̂, then by Theorem 9 we can restrict attention to mechanisms in which
each report θ ′ is assigned test t̂(θ ′). In this case, the passage probabilities for each
report are pinned down for each type.

Definition 10 (Induced authentication rate). Given a most-discerning testing func-
tion t̂ : Θ→ T, the authentication rate induced by t̂ is the function α: Θ×Θ→ [0,1]
given by

α(θ ′|θ) = π(̂t(θ ′)|θ).

There can bemultiple most-discerning testing functions. Each induces a different
authentication rate. But Theorem 9 guarantees that every most-discerning testing
function can be used to implement the same set of social choice functions. There is
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a corresponding equivalence between the authentication rates induced by different
most-discerning testing functions. We need a few definitions. A testing environment
ismost discerning if it admits a most-discerning testing function. A type θ isminimal
for an authentication rate α if α(θ |θ)≤ α(θ |θ ′) for all θ ′ ∈ Θ. Authentication rates
α1 and α2 are essentially equal if (i) α1 and α2 have the same minimal types, and
(ii) α1(θ |·)= α2(θ |·) for all types θ that are not minimal for α1 and α2. Essential
equality is an equivalence relation.
Proposition 7 (Essential uniqueness)
In a most-discerning testing environment, the authentication rates induced by most-
discerning testing functions are all essentially equal.

Hereafter, we identify authentication rates that are essentially equal, so we speak
of the authentication rate induced by a most-discerning testing environment.

2.5.2 Incentive compatibility

Given a most-discerning testing environment (T,π), we reformulate the principal’s
problem in terms of the authentication rate α induced by (T,π). When the agent
reports θ ′, he is authenticated if he passes the associated most θ ′-discerning test. A
reduced-form mechanism consists of functions g0 and g1 from Θ to ∆(X). When the
agent reports θ ′, the principal takes the decision g1(θ ′) if the agent is authenticated
and the decision g0(θ ′) otherwise. If type θ reports θ ′ and exerts effort on the
associated test, his interim utility u(θ ′|θ) is given by

u(θ ′|θ) = α(θ ′|θ)u(g1(θ ′),θ) + (1 − α(θ ′|θ))u(g0(θ ′),θ).

On the right side, the function u is extended linearly from X to ∆(X). Even in this
reduced form, the cost of lying is determined endogenously by the mechanism g, in
contrast to models of lying costs.1⁶

The incentive-compatibility constraint becomes
u(θ |θ) ≥ u(θ ′|θ) ∨ u(g0(θ ′),θ) for all θ ,θ ′ ∈ Θ. (IC)

The right side is the interim utility for type θ if he reports θ ′ and then chooses effort
to maximize his utility. The principal selects a reduced-form mechanism to solve

maximize E[α(θ |θ)v(g1(θ),θ) + (1 − α(θ |θ))v(g0(θ),θ)]

subject to (IC).

In the applications below, we also impose participation constraints.

16. In models of lying costs, the agent’s utility is the difference between his consumption utility
and an exogenous lying cost, which depends on the agent’s true type and the agent’s report. Lying costs
relax the incentive constraints. See, for example, Lacker and Weinberg (1989), Maggi and Rodriguéz-
Clare (1995), Crocker and Morgan (1998), Kartik, Ottaviani, and Squintani (2007), Kartik (2009),
and Deneckere and Severinov (2017). In computer science, Kephart and Conitzer (2016) show that,
with lying costs, the revelation principle holds if the lying cost function satisfies the triangle inequality.
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2.5.3 Primitive authentication rates

We showed that a most-discerning testing environment has a simpler representation
as an authentication rate. Can we start with the authentication rate as a primitive?
To retain the testing interpretation, a primitive authentication rate must be induced
by a most-discerning testing environment. We characterize when this is the case.

An authentication rate α implicitly associates to each report θ ′ a test t̂(θ ′) with
passage rate π(̂t(θ ′)|·)= α(θ ′|·). To check whether this testing function t̂ is most
discerning, we must specify which other tests are in the test set. We claim that there
is no less in choosing the minimal test set t̂(Θ)= {̂t(θ ′) : θ ′ ∈ Θ}. If t̂ is not most-
discerning with this test set, then it cannot be most-discerning with any larger test
set because adding tests adds constraints to definition 7. We translate this condi-
tion—that the testing function t̂ is most discerning with the test set t̂(Θ)—into a
condition on the authentication rate α. For an authentication rate α, let ᾱ= 1−α.
Definition 11 (Most-discerning authentication). An authentication rate α is most
discerning if the following hold for all types θ2 and θ3.
(1) If α(θ2|θ2)≥ α(θ2|θ3), then there exists λ ∈ [0, 1] such that, for all types θ1,

[λα(θ2|θ1) + (1 − λ)α(θ2|θ2)]α(θ3|θ2) ≤ α(θ3|θ1)α(θ2|θ2).

(2) If α(θ2|θ2)< α(θ2|θ3), then there exists λ ∈ [0, 1] such that, for all types θ1,

[λᾱ(θ2|θ1) + (1 − λ)ᾱ(θ2|θ2)]ᾱ(θ3|θ2) ≥ ᾱ(θ3|θ1)ᾱ(θ2|θ2).

From our characterization of the discernment order (Proposition 5), we get the
following characterization for authentication rates.
Theorem 11 (Authentication rate characterization)
An authentication rate α is induced by some most-discerning testing environment if and
only if α is most discerning.
Remark. If α(θ |θ)≥ α(θ |θ ′) for all types θ and θ ′, then α is most discerning if
and only if

α(θ3|θ2)α(θ2|θ1) ≤ α(θ3|θ1)α(θ2|θ2), (2.6)
for all θ1,θ2,θ3 ∈ Θ.

If α is {0, 1}-valued and α(θ |θ)= 1 for all θ , then α induces a message corre-
spondence M : Θ� Θ defined by

M(θ) = {θ ′ : α(θ ′|θ) = 1}.

This correspondence M satisfies θ ∈M(θ) for each θ , as in Green and Laffont
(1986). In terms of M, (2.6) becomes

θ3 ∈ M(θ2) & θ2 ∈ M(θ1) =⇒ θ3 ∈ M(θ1),

which is exactly Green and Laffont’s (1986) nested range condition.
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2.6 Applications to revenue-maximization

We solve for revenue-maximizing mechanisms with the local first-order approach.
The solutions use a new expression for the virtual value.

2.6.1 Quasilinear setting with verification

Consider the nonlinear pricing setting from Mussa and Rosen (1978). The agent’s
type θ ∈ Θ = [

¯
θ , θ̄] is drawn from a distribution function F with strictly positive

density f . The principal allocates a quantity q ∈ R+ and receives a transfer t ∈ R.1⁷
Utilities for the agent and the principal are

u(q, t,θ) = θq − t and v(q, t) = t − c(q).

Here, c is the cost of production. Assume that c(0)= c′(0)= 0 and that the marginal
cost c′ is strictly increasing and unbounded.

The verification technology is represented by a measurable most-discerning au-
thentication rate α: Θ×Θ→ [0,1] that satisfies the following conditions.

(i) α(θ |θ)= 1 for all types θ .
(ii) For each θ ′ ∈ Θ, the function θ 7→ α(θ ′|θ) is absolutely continuous.
(iii) For each θ ∈ Θ, the right and left partial derivatives D2+α(θ |θ) and D2−α(θ |θ)

exist, and the functions θ 7→ D2+α(θ |θ) and θ 7→ D2−α(θ |θ) are integrable.1⁸

Condition (i) ensures that the agent is authenticated if he reports truthfully. The
regularity conditions (ii) and (iii) allow us to apply the envelope theorem. Since α is
most discerning, (i) implies that α(θ3|θ2)α(θ2|θ1)≤ α(θ3|θ1) for all θ1,θ2,θ3 ∈ Θ.
fig. 2.7 plots an authentication rate that satisfies our assumptions. The agent’s type is
on the horizontal axis. Each curve corresponds to a fixed report. In this example, the
authentication probability decays exponentially in the absolute difference between
the agent’s type and the agent’s report.

We assume that the agent is free to walk away at any time, so we impose an ex
post participation constraint. Whether or not the agent is authenticated, his utility
must be nonnegative.1⁹ Without these constraints, the principal could apply severe
punishments to effectively prohibit the agent from making any report that is not

17. The pair (q, t) is the decision x in the general model. In applications, t always denotes transfers,
not testing. Since we work directly with authentication rates, we make no reference to tests.

18. These derivatives are defined by

D2+α(θ ′|θ)= limh↓0
α(θ ′|θ + h)−α(θ ′|θ)

h
, D2−α(θ ′|θ)= limh↓0

α(θ ′|θ)−α(θ ′|θ − h)
h

.

19. In particular, we rule out upfront payments like those used in Border and Sobel (1987).
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Figure 2.7. Exponential authentication rate

authenticated with certainty. In that case, the model reduces to partial verification,
as in Caragiannis, Elkind, Szegedy, and Yu (2012).

We work with reduced-form mechanisms. Since the agent is always authenti-
cated on-path, there is no loss in holding him to his outside option if he is not au-
thenticated. We take g0(θ)= (0,0) for all θ , and we optimize over the decision rule
g1. Without loss, we restrict g1 to be deterministic. The component functions of g1

are denoted q and t.
The principal selects a quantity function q: Θ→ R+ and a transfer function

t : Θ→ R to solve

maximize

∫ θ̄

¯
θ

[t(θ) − c(q(θ))]f(θ) dθ

subject to θq(θ) − t(θ) ≥ α(θ ′|θ)[θq(θ ′) − t(θ ′)], θ ,θ ′ ∈ Θ

θq(θ) − t(θ) ≥ 0, θ ∈ Θ.

(2.7)

The first constraint is incentive compatibility. The second is ex post participation,
conditional upon being authenticated. The utility u(θ ′|θ) takes a simple form be-
cause the agent gets zero utility if he is not authenticated. The maximum operation
from (IC) is dropped because it is subsumed by the participation constraint.

2.6.2 Virtual value

To motivate our new expression for the virtual value, we use the envelope theorem
to compute the agent’s equilibrium utility function U, defined by

U(θ) = u(θ |θ) = max
θ ′∈Θ

u(θ ′|θ).
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In the classical setting without verification, u(θ ′|θ)= θq(θ ′)− t(θ ′). By the enve-
lope theorem, U′(θ)= D2u(θ |θ)= q(θ). Integrating gives

U(θ) =

∫ θ

¯
θ

q(z) dz. (2.8)

With verification, the equilibrium utility U takes a different form. We sketch the
derivation here. From (2.7), the interim utility is given by

u(θ ′|θ) = α(θ ′|θ)[θq(θ ′) − t(θ)].

The envelope theorem gives the bounds

q(θ) + D2+α(θ |θ)U(θ) ≤ U′(θ) ≤ q(θ) + D2−α(θ |θ)U(θ).

Since α(θ |θ)= 1, we have D2+α(θ |θ)≤ 0≤ D2−α(θ |θ). If α has a cusp, as in the
example in fig. 2.7, these inequalities are strict and the derivative of U is not pinned
down. To maximize the principal’s revenue, we set U′(θ) equal to the lower bound.
Define the precision function λ: Θ→ R+ by

λ(θ) = −D2+α(θ |θ).

The larger is λ(θ), the steeper is the function α(θ |·) to the right of θ . For θ ′ ≤ θ ,
let

Λ(θ ′|θ) = exp

�

∫ θ

θ ′
−λ(w) dw

�

.

The minimum equilibrium utility U is given by

U(θ) =

∫ θ

¯
θ

Λ(z|θ)q(z) dz. (2.9)

With this expression for equilibrium utility, we define the virtual value. Recall
Myerson’s (1981) virtual value

ϕM(θ) = θ −
1 − F(θ)

f(θ)
= θ −

1
f(θ)

∫ θ̄

θ

f(z) dz. (2.10)

The virtual value of type θ is the marginal expected revenue with respect to the
quantity q(θ). There are two parts. First, the principal can extract the additional
consumption utility from type θ , so the marginal revenue from type θ equals θ .
Second, the quantity q(θ) pushes up the equilibrium utility according to (2.8), so
the marginal revenue from each type z above θ is−1; this effect is integrated against
the relative density f(z)/f(θ). Verification does not change the marginal revenue
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Figure 2.8. Virtual value for di�erent precision functions λ

from type θ , but the marginal revenue from each higher type z becomes −Λ(θ |z),
by (2.9). We define the virtual value by

ϕ(θ) = θ −
1

f(θ)

∫ θ̄

θ

Λ(θ |z)f(z)dz. (2.11)

Comparing (2.10) and (2.11) gives the inequality

ϕM(θ) ≤ ϕ(θ) ≤ θ .

The virtual value ϕ(θ) tends towards these bounds in limiting cases.

Proposition 8 (Testing precision)
As λ converges to 0 pointwise,ϕ(θ) converges toϕM(θ) for each type θ . As λ converges
to∞ pointwise, ϕ(θ) converges to θ for each type θ .

fig. 2.8 illustrates these limits in a simple example, where the agent’s type is
uniformly distributed on the unit interval and the precision function λ is constant.

Remark. If λ(θ)= 0 for all θ , then Λ(θ |z)= 1 for θ ≤ z. Therefore, our virtual
value coincides with the classical virtual value, and by the results below, the revenue-
maximizing mechanism is unaffected by verification. This holds in particular if α has
no kink on the diagonal, e.g., if α(θ ′|θ)= 1− |θ ′ − θ |σ with σ > 1.

2.6.3 Nonlinear pricing

The virtual value is derived from the envelope representation of the equilibrium
utility, which uses only local incentive constraints. We assume that the virtual value
is increasing. But because the interim utility is not linear in the agent’s type (due
to the authentication rate α), we need further assumptions to ensure that the local
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incentive constraints imply the global incentive constraints. This implication holds
in particular for the exponential authentication rates, given by

α(θ ′|θ) = exp

�

−
∫ θ

θ ′
λ(z) dz

�

,

for integrable functions λ: Θ→ R+. We permit a larger class of authentication rates.
We impose a global condition on the relative values of α and Λ. The function

Λ is determined by the behavior of α in a neighborhood of the diagonal in Θ×Θ.
Because α is most discerning, it follows that Λ is a global lower bound for α.

Proposition 9 (Lower bound)
For all types θ ′ and θ with θ ′ ≤ θ , we have α(θ ′|θ)≥ Λ(θ ′|θ).

For the exponential authentication rates, this inequality holds with equality. We
require that α not be much greater than Λ. The precise condition depends on the
optimal quantity function q?, which will be defined in the theorem statement. The
global upper bound states that, for all types θ ′ and θ with θ ′ ≤ θ ,

α(θ ′|θ) ≤ Λ(θ ′|θ)A(θ ′|θ),

where

A(θ ′|θ) =

∫ θ

¯
θ

Λ(z|θ̄)q?(z) dz
.

∫ θ

¯
θ

Λ(z ∧ θ ′|θ̄)q?(z ∧ θ ′) dz.

For the quantity function q? in the theorem statement, A(θ ′|θ)≥ 1 for θ ′ ≤ θ .

Proposition 10 (Optimal nonlinear pricing)
Suppose that the virtual value ϕ is increasing. The optimal quantity function q? and
transfer function t? are unique and given by

c′(q?(θ)) = ϕ(θ)+, t?(θ) = θq?(θ) −
∫ θ

¯
θ

Λ(z|θ)q?(z) dz,

provided that the global upper bound is satisfied.

In the optimal mechanism, type θ receives the quantity that is efficient for type
ϕ(θ)+, just as in Mussa and Rosen (1978), except that ϕ is our new virtual value.
Transfers are pinned down by the equilibrium utility U from (2.9). The faster the
virtual value ϕ increases, the faster the optimal quantity function q? increases and
the more permissive is the global upper bound.
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2.6.4 Selling a single good

Suppose that the principal is selling a single indivisible good, which she does not
value. The agent’s type is his valuation for the good. The principal allocates the good
with probability q ∈ [0,1] and receives a transfer t ∈ R. Utilities are

u(q, t,θ) = θq − t and v(q, t) = t.

Without verification, the revenue-maximizing mechanisms is a posted price (Riley
and Zeckhauser, 1983). With verification, the price my depend on the agent’s report.

Proposition 11 (Optimal sale of a single good)
Suppose that the virtual value ϕ is increasing. The optimal quantity and transfer func-
tions are unique and given as follows, provided that the global upper bound is satisfied.
Let θ ? = inf{θ : ϕ(θ)≥ 0}. Each type below θ ? receives nothing and pays nothing.
Each type θ above θ ? receives the good and pays

t?(θ) = θ −
∫ θ

θ ?
Λ(z|θ) dz.

As in the no-verification solution, there is a cutoff type θ ? who receives the good
and pays his valuation. Each type below the cutoff is excluded; each type above the
cutoff receives the good and pays less than his valuation. The allocation probability
takes values 0 and 1 only—there is no randomization. Verification increases the
virtual value relative to the classical virtual value, so the cutoff type is lower and
more types receive the good. The price is (weakly) increasing in the agent’s report,
and strictly increasing if λ is strictly positive. Nevertheless, types above the cutoff
cannot profit bymisreporting downward—the benefit of a lower price is outweighed
by the risk of not being authenticated.

2.7 Testing multiple agents

2.7.1 Testing and implementation

We extend our model to allow for n agents, labeled i= 1, . . . , n. Each agent i inde-
pendently draws his type θi ∈ Θi from a commonly known distribution µi ∈∆(Θi).
SetΘ =

∏n
i=1Θi. The decision set is denoted by X, as before. Each agent i has utility

function ui : X ×Θ→ R; the principal has utility function v: X ×Θ→ R.
For each agent i, there is a set Ti of tests and a passage rate

πi : Ti × Θi → [0, 1],

whereπi(τi|θi) is the probability withwhich type θi can pass testτi. Set T =
∏n

i=1 Ti.
Each agent sees his own test—but not the tests of the other agents—and then
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chooses whether to exert effort. Nature draws the test result for each agent indepen-
dently. A mechanism specifies a message set Mi for each agent i. Set M =

∏n
i=1 Mi.

The rest of the mechanism consists of a testing rule t : M→∆(T) and a decision
rule g: M× T × {0,1}n→∆(X). The test conducted on each agent can depend on
the messages sent by other agents. For each agent i, a strategy consists of a reporting
strategy ri : Θi→∆(Mi) and an effort strategy ei : Θi ×Mi × Ti→ [0,1]. The equilib-
rium concept is Bayes–Nash equilibrium.

In this multi-agent setting, the revelation principle (Theorem 8) holds. The dis-
cernment orders extend. For each agent i and each type θi in Θi, the θi-discernment
order�θi

over Ti is defined as in the baseline model with πi in place of π. Given test-
ing functions ti : Θi→ Ti for each i, define the product testing function ⊗iti : Θ→ T
by t(θ1, . . . ,θn)= (t1(θ1), . . . , tn(θn)). If for each agent i there is a most-discerning
testing function, then the product of these testing functions suffices for implemen-
tation. In particular, the test for agent i depends only on agent i’s report.
Theorem 12 (Most-discerning implementation with multiple players)
Fix a type space Θ and a testing environment (T,π). For a testing function t̂= ⊗îti, the
following are equivalent.
(1) t̂i is most discerning for all i.
(2) In every decision environment (X, u), every implementable social choice function is

canonically implementable with t̂.
For applications, wemake the same assumptions as in the single-agent case. Each

agent is free to walk away, so we impose ex post participation constraints. For each
agent i, the testing environment is represented by a measurable most-discerning
authentication rate αi : Θi ×Θi→ [0,1] that satisfies assumptions (i)–(iii). For each
i, define λi and Λi by putting αi in place of α in the definitions of λ and Λ.

2.7.2 Auctions

Consider an auction for a single indivisible good. Each agent i independently draws
his type θi ∈ Θi = [¯

θi, θ̄i] from a distribution function Fi with positive density fi. The
principal allocates the good to each agent i with probability qi ∈ [0, 1], where q1 +
· · ·+ qn ≤ 1; the principal receives transfers t1, . . . , tn ∈ R. Set q= (q1, . . . , qn) and
t= (t1, . . . , tn). For simplicity, we assume that the principal does not value the good.
Utilities are given by

ui(q, t,θ) = θiqi − ti and v(q, t) =
n
∑

i=1

ti.

Let f−i(θ−i) denote
∏

j6=i fj(θj). For quantity functions qi : Θ→ R, interim expecta-
tions are denoted with capital letters:

Qi(θi) =

∫

Θ−i

qi(θi,θ−i)f−i(θ−i)dθ−i.
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As in the single-agent case, we impose a condition that depends on the optimal
quantity function q?, which is defined in Proposition 12. For each agent i, the global
upper bound states that, for all θi,θ

′
i ∈ Θi with θ ′i ≤ θi, we have

αi(θ
′
i |θi) ≤ Ai(θ

′
i |θi)Λi(θ

′
i |θi),

where

Ai(θ
′
i |θi) =

∫ θ

¯
θi

Λi(zi|θ̄i)Q
?
i (zi)dzi

.

∫ θ

¯
θi

Λi(zi ∧ θ ′i |θ̄i)Q
?
i (zi ∧ θ ′i )dzi.

For each i and all types θi,θ
′
i ∈ Θi with θ ′i ≤ θi, we have Ai(θ

′
i |θi)≥ 1.

Proposition 12 (Optimal auctions)
Suppose that each virtual value ϕi is increasing. The seller’s maximum revenue is
achieved by the allocation function q? and transfer function t? given by

q?i (θ) =

(

1 if ϕi(θi) > 0 ∨ maxj6=iϕj(θj),

0 otherwise,

and
t?i (θ) = q?i (θ)

�

θi −
∫ θi

¯
θi

Λi(zi|θi)
Q?i (zi)

Q?i (θi)
dzi

�

,

provided that the global upper bound is satisfied for each agent i.

The transfers are chosen so that each agent pays only if he receives the good,
thus ensuring that the the ex post participation constraints are satisfied. The alloca-
tion coincides with Myerson’s (1981) solution, except ϕ is our new virtual value. In
Myerson’s (1981) solution, the allocation rule disadvantages bidders whose valua-
tion distributions are greater in the sense of hazard rate dominance. In our solution,
the allocation rule also advantages bidders who can be verified more precisely in
the sense that their local precision functions are pointwise greater.

2.8 Nonbinary tests

In the main model, we consider pass–fail tests because of their natural connection
with partial verification and evidence. Here we extend the baseline principal–agent
model to allow for tests with more than two results. There is a family T of tests. Each
test generates scores in a finite subset S of R. The passage rate

π: T × Θ → ∆(S)

assigns to each pair (τ,θ) the score distribution πτ|θ in ∆(S) for type θ on test τ.
We generalize the agent’s effort choice. On a pass–fail test τ, when type θ ex-

erts effort with probability e, he passes with probability e ·π(τ|θ). Thus, there is
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Table 2.1. Taxonomy of verification models

Reduced form Microfoundation

partial message correspondence
M : Θ� Θ

Green and La�ont (1986)

evidence correspondence
E : Θ� E
Bull and Watson (2007)

probabilistic authentication rate
α : Θ × Θ→ [0, 1]
Caragiannis et al. (2012)

passage rate
π : T × Θ→ [0, 1]
our paper

a correspondence between effort probabilities in [0, 1] and passage probabilities in
[0,π(τ|θ)]. We can equivalently model the agent as choosing the passage probabil-
ity directly, subject to a stochastic dominance constraint. This alternative definition
of a strategy extends immediately to nonbinary tests. A performance strategy is a
map

p: Θ × M × T → ∆(S),

satisfying pθ ,m,τ ≤SD πτ|θ for all (θ , m,τ) ∈ Θ×M× T. The other components of a
profile are defined as before with S in place of {0, 1}.

The revelation principle (Theorem 8) is proved with performance strategies, so
it applies to nonbinary tests. To define the discernment orders, say that a Markov
transition k on S ismonotone if kr ≥SD ks whenever r> s. Put S in place of {0, 1} in the
definition of most-discerning. As before, a single most-discerning testing function
suffices for implementation.
Theorem 13 (Most-discerning implementation with nonbinary tests)
If a testing function t̂ : Θ→ T is most discerning, then every implementable social choice
function is canonically implementable with t̂.

2.9 Review of verification models

Verification has been modeled in many ways, in both economics and computer sci-
ence. We organize our discussion around the taxonomy in table 2.1, which focuses
on the primitives in each model.

Green and Laffont (1986) introduce partial verification. They restrict their anal-
ysis to direct mechanisms. Verification is represented as a correspondence M : Θ�
Θ satisfying θ ∈M(θ) for all θ ∈ Θ. Each type θ can report any type θ ′ in M(θ). In
particular, each type can report truthfully. In this framework the revelation principle
does not hold,2⁰ as Green and Laffont (1986) illustrate with a three-type counterex-
ample, which we adapt in example 5. The revelation principle does hold, however,

20. Strausz (2016) recovers the revelation principle by modeling verification as a component of
the outcome.
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if the correspondence M satisfies the nested range condition, which requires that the
relation associated to M is transitive. Without the revelation principle, it is generally
difficult to determine whether a particular social choice function is implementable
(Rochet, 1987; Nisan and Ronen, 2001; Singh and Wittman, 2001; Auletta, Penna,
Persiano, and Ventre, 2011; Vohra, 2011; Yu, 2011; Fotakis and Zampetakis, 2015).

Bull and Watson (2004, 2007) and Lipman and Seppi (1995) model verification
with hard evidence.21 They introduce an evidence set E and an evidence correspon-
dence E : Θ� E . Type θ possesses the evidence in E(θ); he can present one piece
of evidence from E(θ) to the principal. The evidence environment is normal if each
type θ has a piece of evidence e(θ) in E(θ) that is maximal in the following sense:
Every other type θ ′ who has e(θ) also has every other piece of evidence in E(θ).
Therefore, type θ ′ can mimic type θ if and only if E(θ ′) contains e(θ). A normal evi-
dence environment induces an abstract mimicking correspondence that satisfies the
nested range condition. Normality is a special case of our most-discerning condition;
see example 6.

In computer science, Caragiannis et al. (2012) and Ferraioli and Ventre (2018)
study a reduced-form model of probabilistic verification in mechanism design.
They restrict their analysis to direct mechanisms, and they specify the probabili-
ties with which each type can successfully mimic each other type. Dziuda and Salas
(2018) and Balbuzanov (2019) study a setting without commitment in which these
probabilities are constant.22 Our testing framework microfounds these models of
partial verification, provided that the primitive authentication rate is most discern-
ing. If the primitive authentication rate is not most-discerning, then it cannot be
microfounded by our testing framework.

The computer science literature on probabilistic verification has a different focus
than us. Caragiannis et al. (2012) allow the principal to use arbitrarily severe pun-
ishments to deter the agent from misreporting.23 If one type cannot mimic another
type perfectly, then he risks being detected and facing a prohibitive fine. Therefore,
this setting reduces to partial verification. In our model, the agent can walk away at
any time, so punishment is limited.

If the environment is most discerning, tests can also be interpreted as stochastic
evidence. Each test τ in T corresponds to a request for a particular piece of evidence.
The agent is asked to send a cheap talk message to the principal after he learns his
payoff type but before he learns which evidence is available to him. With probability

21. Evidence was introduced in games (without commitment) by Milgrom (1981) and Grossman
(1981); for recent work on evidence games, see Hart, Kremer, and Perry (2017), Ben-Porath, Dekel,
and Lipman (2018), and Koessler and Perez-Richet (2017).

22. For some fixed p ∈ (0, 1), the authentication probability α(θ ′|θ) equals p if θ ′ 6= θ and 1 if
θ ′ = θ . This authentication satisfies (2.6) and hence is most discerning.

23. Another difference is that Caragiannis et al. (2012) investigate which allocation rules can
be supported by some transfer rule. We view transfers as part of the outcome and we study revenue-
maximization.
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π(τ|θ), type θ will have the evidence requested by test τ. Deneckere and Severi-
nov (2008) study a different kind of stochastic evidence. In their model the agent
simultaneously learns his payoff type and his set of feasible evidence messages.

In economics, “verification" traditionally means that the principal can learn the
agent’s type perfectly by taking some action, e.g., paying a fee or allocating a good.
This literature began with Townsend (1979) who studied costly verification in debt
contracts. Ben-Porath, Dekel, and Lipman (2019) connect costly verification and ev-
idence. When monetary transfers are infeasible, costly verification is often used as a
substitute; see Ben-Porath, Dekel, and Lipman (2014), Erlanson and Kleiner (2015),
Halac and Yared (2017), Li (2017), and Mylovanov and Zapechelnyuk (2017).

2.10 Conclusion

We model probabilistic verification as a family of stochastic tests available to the
principal. Our testing framework provides a unified generalization of previous ver-
ification models. Because verification is noisy, our framework is amenable to the
local first-order approach. We illustrate this approach in a few classical revenue-
maximization problems. We believe this local approach will make verification
tractable in other settings as well.

As the precision of the verification technology varies, our setting continuously
interpolates between private information and complete information. Thus we can
quantify the value to the principal of a particular verification technology. This is the
first step toward analyzing a richer setting in which the principal decides how much
to invest in verification.

Appendix 2.A Measure theory

2.A.1 Markov transitions

This section introduces Markov transitions, which are continuous generalizations of
stochastic matrices. For further details, see Kallenberg (2017, Chapter 1).

Definition 12 (Markov transition). Let (X,X ) and (Y,Y ) be measurable spaces. A
Markov transition2⁴ from (X,X ) to (Y,Y ) is a function k: X ×Y → [0, 1] satisfying:

(i) for each x ∈ X, the map B 7→ k(x, B) is a probability measure on (Y,Y );
(ii) for each B ∈ Y , the map x 7→ k(x, B) is a measurable function on (X,X ).

A Markov transition k from (X,X ) to (Y,Y ) is sometimes written as k: X→
∆(Y). Each measure k(x, ·) on Y is denoted kx, and we write kx(B) for k(x, B). A

24. Markov transitions are also called kernels or Markov/stochastic/probability/transition ker-
nels.
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Markov transition from (X,X ) to (X,X ) is called a Markov transition on (X,X ).
When the σ-algebras are clear, we will speak of Markov transitions betweens sets.

We introduce three operations between Markov transitions—composition, prod-
ucts, and outer products.

(µk)(B) =

∫

X
µ(dx)k(x, B),

for all B ∈ Z .
First we define composition. Let k be a Markov transition from (X,X ) to (Y,Y )

and ` a Markov transition from (Y,Y ) to (Z,Z ). The composition of k and `, denoted
k`, is the Markov transition from (X,X ) to (Z,Z ) defined by

(k`)(x, C) =

∫

Y
k(x, dy)`(y, C),

for all x ∈ X and C ∈ Z . Here the function y 7→ `(y, C) is integrated over Y with
respect to the measure kx. Inside the integral, it is standard to place the measure
before the integrand so that the sequencing of the variables mirrors the timing of
the process.

Next we define products. Let k be a Markov transition from (X,X ) to (Y,Y )
as before, and let m be a Markov transition from (X × Y,X ⊗Y ) to (Z,Z ). Here
X ⊗Y is the product σ-algebra generated by the measurable rectangles A× B for
A ∈ X and B ∈ Y . The product of k and m, denoted k×m, is the unique Markov
transition from (X,X ) to (Y × Z,Y ⊗Z ) satisfying

(k ⊗ m)(x, B × C) =

∫

B
k(x, dy) m((x, y), C),

for all x ∈ X, B ∈ Y , and C ∈ Z . Here the function y 7→m((x, y), C) is integrated over
the set B with respect to the measure kx. If m is a Markov transition from (Y,Y )
to (Z,Z ), we use the same notation, with the understanding that the integrand is
m(y, C) rather than m((x, y), C).

Finally, we define outer products. Let k1 be a Markov transition from (X1,X1) to
(Y,Y1) and k2 a Markov transition from (X2,X2) to (Y2,Y2). The outer product of
k1 and k2, denoted k1 ⊗ k2, is the unique Markov transition from (X1 × X2,X1 ⊗X2)
to (Y1 × Y2,Y1 ⊗Y2) satisfying

(k1 ⊗ k2)((x1, x2), B1 × B2) = k1(x1, B1) · k2(x2, B2),

for all x1 ∈ X1, x2 ∈ X2, B1 ∈ Y1, and B2 ∈ Y2. All three operations are associative.
This holds trivially for outer products; for composition and products, see Kallenberg
(2017, Lemma 1.17, p. 33). We drop parentheses when there is no ambiguity.
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2.A.2 Markov transitions on the real line

The real line R is endowed with its usual Borel σ-algebra.
First, we define Markov transitions that are analogues of the cumulative dis-

tribution and quantile functions. Let µ be a measure on R, and let Fµ : R→ [0,1]
be the associated right-continuous cumulative distribution function. Suppose µ has
compact support S. Define the left-continuous quantile function Qµ : [0, 1]→ S by

Qµ(p) = inf{s ∈ S : Fµ(s) ≥ p}.

The cumulative distribution transition associated to µ, denoted F̃µ, is the Markov
transition from R to [0, 1] that assigns to each point s in R the uniform measure
on [Fµ(s−), Fµ(s)], where Fµ(s−) is the left-limit of Fµ at s. In particular, if Fµ is
continuous at s, then Fµ(s−)= Fµ(s) and this uniform measure is the Dirac measure
δFµ(s).

The quantile transition associated to µ, denoted Q̃µ, is the Markov transition
from [0, 1] to R that assigns to each number p in [0,1] the Dirac measure δQµ(p).

These Markov transitions extend the usual properties of distribution and quan-
tile functions to nonatomic distributions. Let U[0,1] denote the uniform measure on
[0,1].
Lemma 8 (Distribution and quantile transitions). For measures µ and ν on R with
compact support, the following hold:
(i) µF̃µ = U[0,1];
(ii) U[0,1]Q̃ν = ν;
(iii) µF̃µQ̃ν = ν.

For measures µ and ν on the real line, µ first-order stochastically dominates ν,
denoted µ≥SD ν, if Fµ(x)≤ Fν(x) for all real x. In particular, first-order stochastic
dominance is reflexive.

To state the next results, we make the standing assumption that S is a compact
subset of R, endowed with the restriction of the Borelσ-algebra. AMarkov transition
d on S is downward if d(s, (−∞, s]∩ S)= 1 for all s ∈ S.
Lemma 9 (Downward transitions). For measures µ and ν on S, the following are
equivalent:
(i) µ≥SD ν;
(ii) F̃µQ̃ν is downward;
(iii) µd= ν for some downward transition d.

A Markov transition m on S ismonotone if s> t implies ms ≥SD mt, for all s, t ∈ S.
Lemma 10 (Monotone transitions).
(i) A Markov transition m on S is monotone if and only if µm≥SD νm for all mea-

sures µ and ν on S satisfying µ≥SD ν.
(ii) The composition of monotone Markov transitions is monotone.
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2.A.3 Measurability and universal completions

Our definition of θ -discernment includes an inequality for every type. To ensure that
we can select score conversions in a measurable way, we enlarge the Borelσ-algebra
to its universal completion, which we introduce here.

Let (X,X ) and (Y,Y ) be measurable spaces. A function f from X to Y is X /Y -
measurable if f−1(B) is inX for all B inY . This condition is written more compactly
as f−1(Y ) ⊂X . If the σ-algebra Y is understood, we say f isX -measurable, and if
both σ-algebras are understood, we say that f is measurable.

Let (X,X ,µ) be a probability space. A set A inX is a µ-null set if µ(A)= 0. The
µ-completion of σ-algebra X , denoted X µ, is the smallest σ-algebra that contains
every set in X and every subset of every µ-null set. It is straightforward to check
that a subset A of X is a member of X µ if and only if there are sets A1 and A2 in X
such that A1 ⊂ A ⊂ A2 and µ(A2 \ A1)= 0. The universal completion X of X is the
σ-algebra on X defined by

X = ∩µX µ,

where the intersection is taken over all probability measures on (X,X ).
It is convenient to work with the universal completion because of the following

measurable projection theorem (Cohn, 2013, Proposition 8.4.4, p. 264).

Theorem 14 (Measurable projection)
Let (X,X ) be a measurable space, Y a Polish space, and C a set in the productσ-algebra
X ⊗B(Y). Then the projection of C on X belongs to X .

By taking universal completions, we do not lose any Markov transitions.

Lemma 11 (Completing transitions). A Markov transition k from (X,X ) to (Y,Y )
can be uniquely extended to a Markov transition k̄ from (X,X ) to (Y,Y ).

Next we consider the universal completion of a product σ-algebra.

Lemma 12 (Product spaces). For measurable spaces (X,X ) and (Y,Y ),

X ⊗ Y ⊂ X ⊗ Y = X ⊗ Y .

We adopt the convention that when a Markov transition is defined between Pol-
ish spaces, both the domain and codomain are endowed with the universal com-
pletions of their Borel σ-algebras. In particular, when we take a product of Markov
transitions, we extend this transition. By Lemma 12, it does not matter whether the
component transitions are extended first.

We conclude with one note of caution about universal completions. Let k be a
Markov transition k from (X × Y,X ⊗Y to (Z,Z ). Since X ⊗Y is generally larger
than X ⊗Y , the section kx may not be a Markov transition. For fixed x ∈ X and
B ∈ Z , the map y 7→ k(x, y, B) is defined, but may not be Y -measurable. But if Y is
countable, and Y = 2Y , then measurability is automatic.
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2.A.4 Defining mechanisms and strategies

In the model, we make the following technical assumptions. The setsΘ, T, and X are
all Polish spaces. The finite signal space S is endowed with the discrete topology. The
Markov transition π is from (Θ× T,B(Θ× T)) to (S,B(S)). Recall that for Polish
spaces Y and Z, we have B(Y × Z)=B(Y)⊗B(Z). In a mechanism, the message
space M is Polish. Testing rules, decision rules, reporting strategies, and passage
strategies are all Markov transitions, with the domain and codomain endowed with
the universal completions of their Borel (product) σ-algebras.

Appendix 2.B Proofs

2.B.1 Proof of Theorem 8

We begin with new notation. To avoid confusion in the commutative diagrams below,
we denote the message set in a direct mechanism by Θ′. This set is a copy of Θ, but
it is helpful to keep the sets Θ and Θ′ distinct.

We work with performance strategies, as defined in section 2.8. Let f be an
implementable social choice function. Select a profile (M, t, g; r, p) that implements
f . We construct a direct mechanism (̂t, ĝ) that canonically implements f .

Let t̂ be the composition rt, which is a Markov transition from Θ′ to T. By disin-
tegration of Markov transitions (Kallenberg, 2017, Theorem 1.25, p. 39), there is a
Markov transition h from Θ′ × T to M such that r× t= t̂⊗ h.2⁵

Define a Markov transition d from Θ′ ×M× T × S to S as follows. For each
(θ ′, m,τ) ∈ Θ′ ×M× T, set

dθ ′,m,τ = F̃τ|θ ′Q̃θ ′,m,τ,

where F̃τ|θ ′ is the distribution Markov transition corresponding to πτ|θ ′ and Q̃θ ′,m,τ

is the quantile Markov transition corresponding to pθ ′,m,τ; see section 2.A.2 for the
definitions. By Lemma 9,

πτ|θ ′dθ ′,m,τ = pθ ′,m,τ, (2.B.1)
and dθ ′,m,τ is downward because pθ ′,m,τ ≤SD πτ|θ ′ .

Define the direct decision rule ĝ as the composition shown in the following com-
mutative diagram, where j denotes the identity transition from Θ to Θ′.2⁶

25. We cannot directly apply the result to the universal completions of the Borelσ-algebras. Argue
as follows. First, restrict r× t to a Markov transition from (Θ,B(Θ′)) to (M× T,B(M)⊗B(T)) and
t̂ to a Markov transition from (Θ′,B(Θ′)) to (T,B(T)). By Kallenberg (2017, Theorem 1.25, p. 39),
there exists aMarkov transition h from (Θ′ × T,B(Θ′)⊗B(T)) to (M,B(M)) that satisfies the desired
equality for the restricted transitions from (Θ′,B(Θ′)) to (M× T,B(M)⊗B(T)). By Lemma 11, we
can extend h to a Markov transition from (Θ× T,B(Θ)⊗B(T)) to (M,B(M)).

26. To keep the diagrams uncluttered, we adopt the following conventions. The labeled Markov
transition maps a subproduct of the source space into a subproduct of the target space. The other sets
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Θ

Θ×Θ′ Θ×M

Θ×Θ′ × T Θ×M× T

Θ′ × T × S Θ′ ×M× T × S M× T × S

X

j
r

t̂ t

π
p

j×π

h

ĝ

d

g

By construction, this diagram commutes, so the direct mechanism (̂t, ĝ) induces f .
To prove incentive compatibility, we show that for any strategy (ẑ, q̂) in the direct
mechanism, there is a strategy (z, q) in the original mechanism that induces the
same social choice function. Given (ẑ, q̂), define (z, q) by the following commutative
diagrams.

Θ

Θ′ M

ẑ
z

r

Θ × Θ′ × M × T Θ × M × T

Θ′ × M × T × S S

q̂

ẑ

q

d

(2.B.2)

Since each Markov transition dθ ′,m,τ is downward, it follows that q is feasible. These
deviations induce the same social choice function because the following diagram
commutes.

Θ

Θ×Θ′ Θ×M

Θ×Θ′ × T Θ×M× T

Θ′ × T × S Θ′ ×M× T × S M× T × S

X

ẑ
z

r

t̂ t

q̂
q

ẑ

h

ĝ

d

g

in the target space are carried along by the identity. Mechanisms act on the report set Θ′ not the type
space Θ; π acts on Θ.
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Extension tomultiple agents. Following the notation in section 2.7, letΘ =
∏

iΘi,
T =

∏

i Ti, and S=
∏

i Si. Set π= ⊗iπ. With this notation, π is a Markov transition
from T ×Θ to S, as in the single-agent case. After setting M =

∏

i Mi, a mechanism in
the multi-agent setting maps between the same sets. Similarly for the agent’s strate-
gies, set r= ⊗iri and p= ⊗ipi. With these new definitions, construct h as before.
Define di separately for each agent i and then set d= ⊗idi. The proof is exactly as
before. To consider a deviation by a fixed player j, take ẑ= ẑj ⊗ r−j and q̂= q̂j ⊗ p−j.
Then the deviation (z, q) constructed in (2.B.2) will have the form z= zj ⊗ r−j and
q= qj ⊗ p−j.

2.B.2 Proof of Theorem 9

We begin with some notation. As in the proof of Theorem 8, denote by Θ′ the mes-
sage set in a direct mechanism. Thus, Θ′ is a copy of Θ. Similarly, denote by T′ a
copy of T that will be the codomain of a most-discerning testing function. Keeping
these copies separate will be helpeful for the commutative diagrams below.

The proof is organized as follows. First, we select score conversions in a measur-
able way. Next, we prove sufficiency and then necessity.

Selecting score conversions. LetK denote the space∆(S)S of Markov transitions
on S, viewed as a subset ofRS×S, with the usual Euclidean topology and inner product
〈·, ·〉. For k ∈K , denote by k(s, s′) the transition probability from s to s′.

Define the domain

D = {(θ ,τ,ψ) ∈ Θ′ × T′ × T : τ �θ ψ}.

Define the correspondence K : D�K by putting K(θ ,τ,ψ) equal to the set of mono-
tone Markov transitions k inK satisfying (i) πτ|θk= πψ|θ , and (ii) πτ|θ ′k≤SD πψ|θ ′

for all types θ ′. By the choice of domain D, the correspondence K is nonempty-
valued.

Endow D with the restriction of the σ-algebra B(Θ′ × T′ × T). To prove that
there exists a measurable selection k̂ from K, we apply the Kuratowski–Ryll-
Nardzewski selection theorem (Aliprantis and Border, 2006, 18.13, p. 600). The
correspondence K has compact convex values, so it suffices to check that associated
support functions for K are measurable (Aliprantis and Border, 2006, 18.31, p. 611).

Fix ` ∈ RS×S. Define the map C : D→ R by

C(θ ,τ,ψ) = max
k∈K(θ ,τ,ψ)

〈k,`〉.

It suffices to show that C isB(Θ′ × T′ × T)-measurable. Define a sequence of auxil-
iary functions Cm : D× (Θ′)m→ R as follows. Let Cm(θ ,τ,ψ,θ ′1, . . . ,θ ′m) be the value
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of the program

maximize 〈k,`〉

subject to k ∈ K

k is monotone
πτ|θk = πψ|θ

πτ|θ ′j
k ≤SD πψ|θ ′j

, j = 1, . . . , m.

This is a standard linear programming problem with a compact feasible set. By
Berge’s theorem (Aliprantis and Border, 2006, 17.30, p. 569), the value of the linear
program is upper semicontinuous (and hence Borel) as a function of the coefficients
appearing in the constraints. Since π is Borel, so is each function Cm. By the mea-
surable projection theorem (Theorem 14), each map

(θ ,τ,ψ) 7→ inf
θ ′∈(Θ′)m

Cm(θ ,τ,ψ,θ ′)

isB(Θ′ × T′ × T)-measurable. A compactness argument shows that2⁷

C(θ ,τ,ψ) = inf
m

inf
θ ′∈(Θ′)m

Cm(θ ,τ,ψ,θ ′),

so C is alsoB(Θ′ × T′ × T)-measurable.

Sufficiency. Fix a decision environment (X, u) and let f be an implementable social
choice function. By the revelation principle (Theorem 8), there is a direct mecha-
nism (t, g) that canonically implements f . We now construct a decision rule ĝ such
that the direct mechanism (̂t, ĝ) canonically implements f . Define ĝ by the following
commutative diagram, where j denotes the identity transition from Θ to Θ′.

27. We claim that for each positive ε there exists a natural number m and a vector θ ′ ∈ (Θ′)m

such that Cm(θ ,τ,ψ,θ ′)< C(θ ,τ,ψ)+ ε. Suppose not. For each θ ′ ∈ Θ′, let Kθ ′ be the compact set of
monotone Markov transitions k ∈K satisfying (i) πτ|θk=ψψ|θ , (ii) πτ|θ ′k≤SD πψ|θ ′ , and (iii) 〈k,`〉 ≥
C(θ ,τ,ψ)+ ε. This family has the finite intersection property, but the intersection over all θ ′ ∈ Θ′ is
empty, which is a contradiction.
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Θ

Θ × Θ′

Θ × Θ′ × T′ Θ × Θ′ × T

Θ′ × T′ × S Θ′ × T′ × T × S Θ′ × T × S

X

id

t
t̂

π
π

t̂

t

ĝ

k̂

g

(2.B.3)

Since the diagram commutes, the direct mechanism (̂t, ĝ) induces f . For incentive
compatibility, we show that for any strategy (ẑ, q̂) in the new mechanism, there is a
strategy (z, q) in the old mechanism inducing the same social choice function. Given
(ẑ, q̂), set z= ẑ and define q by the following commutative diagram.

Θ × Θ′ × T′ × T Θ × Θ′ × T

Θ′ × T′ × T × S S

q̂

t̂

q

k̂

(2.B.4)

Since each transition k̂θ ,τ,ψ is downward, it follows that q is feasible. These devi-
ations induce the same social choice function because the following diagram com-
mutes.

Θ

Θ × Θ′

Θ × Θ′ × T′ Θ × Θ′ × T

Θ′ × T′ × S Θ′ × T′ × T × S Θ′ × T × S

X

ẑ

t
t̂

q̂
q

t̂

t

ĝ

k̂

g

(2.B.5)
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Necessity. If t̂ is not most-discerning, then there exists a fixed type θ such that
t̂(θ) is not most θ -discerning. Set τ= t̂(θ). Select a test ψ such that τ 6�θ ψ.

Define the decision set

X = {xθ ′ : θ ′ ∈ Θ} ∪ {
¯
x},

where
¯
x, xθ ′ , and xθ ′′ are distinct for all distinct types θ ′ and θ ′′.

Define utilities as follows. Type θ gets utility 1 from xθ and utility 0 from every
other decision in X. For θ ′ 6= θ , type θ ′ gets utility 1 from decision xθ , utilityπ(ψ|θ ′)
from xθ ′ , and utility 0 from all other decisions.

Let f be the social choice function that assigns to each type θ ′ with θ ′ 6= θ the
decision xθ ′ with certainty, and assigns to type θ decision xθ with probabilityπ(ψ|θ)
and decision

¯
x with probability 1−π(ψ|θ). Then f can be canonically implemented

by the mechanism (t, ĝ), where t is any function satisfying t(θ)=ψ and ĝ is the
decision rule specified as follows. If the agent reports θ ′ 6= θ , assign xθ ′ no matter
the test result; if the agent reports θ , select xθ if the agent passes testψ and

¯
x if the

agent fails test ψ.
We claim that f cannot be canonically implemented with the testing function t̂.

Suppose for a contradiction that there is a decision rule ĝ such that f is canonically
implemented by the mechanism (̂t, ĝ). We separate into two cases.

First suppose π(τ|θ)= 0. Then every type can get the good with probability
π(ψ|θ). Since τ 6�θ ψ, there is some type θ ′ 6= θ such that π(ψ|θ ′)< π(ψ|θ), so
type θ ′ has a profitable deivation.

Next suppose π(τ|θ)> 0. Define a Markov transition k on S, represented by a
vector in [0, 1]2 by letting k(s) be the probability that the measure gθ ,τ,s places on
decision xθ . Then πτ|θk= πψ|θ . Since τ 6�θ ψ, either k is not monotone, in which
case type θ can profitably deviate by reporting type θ and failing the test, or there
is some type θ ′ 6= θ such that πτ|θ ′k>SD πψ|θ ′ . In this case, type θ ′ can profitably
deviate by reporting θ ′ and exerting effort.

2.B.3 Proof of Theorem 10

First we use the regularity assumptions to prove that there exists a measurable test
selection. Then we follow the proof of the sufficiency part of Theorem 9.

Measurable test selection. We prove that there exists a measurable function t̄ from
(Θ′ × T,B(Θ′ × T)) to (T′,B(T′)) such that the test t̄(θ ,ψ) is in T̂(θ) and satisfies
t̄(θ ,ψ)�θ ψ, for each θ ∈ Θ and ψ ∈ T. Define a correspondence H : Θ′ × T� T′

by

H(θ ,ψ) = {τ ∈ T : τ �θ ψ}.
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Since π is continuous, the graph of H is closed in Θ′ × T × T′.2⁸ Since the graph of
T̂ is Borel, so is the set {(θ ,ψ,τ) : τ ∈ T̂(θ)} and also the intersection

{(θ ,ψ,τ) : τ �θ ψ and τ ∈ T̂(θ)}.

By themeasurable projection theorem (Theorem 14), the associated correspondence
from (Θ′ × T,B(Θ′ × T)) to T′ is measurable. Moreover, this correspondence has
closed values, so we can apply the Kuratowski–Ryll-Nardzewksi selection theorem
Aliprantis and Border (2006, 18.13, p. 600) to obtain the desired function t̄.

Sufficiency. With t̄ in hand, the proof is almost the same as the proof of Theorem 9
in section 2.B.2, but we are not given t̂. Instead, t̂ is defined by the commutative
diagram. The second and third rows of (2.B.3) and (2.B.5) become

Θ×Θ′

Θ×Θ′ × T′ Θ×Θ′ × T

t
t̂

t̄

In (2.B.4), put t̄ in place of t̂. The rest of the proof is completed as above.

2.B.4 Proof of Proposition 4

A Markov transition k on {0, 1} can be represented as a vector

(k(0), k(1)) ∈ [0, 1]2,

where k(s) is the probability of transitioning from s ∈ {0, 1} to 1. A Markov transition
k is monotone and satisfiesπτ|θk= πψ|θ if and only if the vector (k(0), k(1)) satisfies

k(1) ≥ k(0) and π(τ|θ)k(1) + (1 − π(τ|θ))k(0) = π(ψ|θ).

We separate the solution into cases.

(1) If π(τ|θ)≥ π(ψ|θ), then the solutions are given by
�

k(0)
k(1)

�

= λ

�

0
π(ψ|θ)/π(τ|θ)

�

+ (1 − λ)

�

π(ψ|θ)
π(ψ|θ)

�

,

for λ ∈ [0,1], provided that we use the convention that 0/0 equals 1.

28. Take a sequence (θn,ψn,τn) in gr H converging to a limit (θ ,ψ,τ) in Θ′ × T × T′. For each
n, there is a monotone Markov transition kn on S such that (i) πτn |θn

kn = πψn |θn
, and (ii) πτn |θ ′kn ≤SD

πψn |θ ′ for all θ ′ ∈ Θ. The space of Markov transitions on S is compact, so after passing to a subsequence,
we may assume that kn converges to a limit k, which must be monotone. Since π is continuous, taking
limits gives (i) πτ|θk= πψ|θ , and (ii) πτ|θ ′k≤SD πψ|θ ′ for each θ ′ ∈ Θ. Therefore, (θ ,ψ,τ) is in gr H.
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(2) If π(τ|θ)< π(ψ|θ), then the solutions are given by

�

k(0)
k(1)

�

= λ

�

π̄(ψ|θ)/π̄(τ|θ)
1

�

+ (1 − λ)

�

π(ψ|θ)
π(ψ|θ)

�

,

for λ ∈ [0,1].

In each case, the left term is the vector representation of F̃τ|θ Q̃τ|θ and the right term
is the vector representation of the constant Markov transition πψ|θ .

2.B.5 Proof of Proposition 5

Fix a type θ and tests τ and ψ. If k= λF̃τ|θ Q̃τ|θ + (1−λ)πψ|θ , then by Lemma 8,

πτ|θ ′k = λπτ|θ ′ F̃τ|θ Q̃ψ|θ + (1 − λ)πψ|θ =
�

λπτ|θ ′ + (1 − λ)πτ|θ
�

F̃τ|θ Q̃ψ|θ .

Therefore, by Proposition 4, we have τ�θ ψ if and only if there exists λ ∈ [0,1]
such that

�

λπτ|θ ′ + (1 − λ)πτ|θ
�

F̃τ|θ Q̃ψ|θ ≤SD πψ|θ ′ , (2.B.6)

for all θ ′ ∈ Θ. Now work with cases.

(1) If π(τ|θ)= π(ψ|θ)= 0, the result is clear.
(2) If π(τ|θ)≥ π(ψ|θ) and π(τ|θ)> 0, we compare the probability of passage.

The inequality holds if and only if

[λπ(τ|θ ′) + (1 − λ)π(τ|θ)]
π(ψ|θ)
π(τ|θ)

≤ π(ψ|θ ′),

This reduces to the desired inequality.
(3) If π(τ|θ)< π(ψ|θ), we compare the probability of failure.The inequality holds

if and only if

[λπ̄(τ|θ ′) + (1 − λ)π̄(τ|θ)]
π̄(ψ|θ)
π̄(τ|θ)

≥ π̄(ψ|θ ′).
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2.B.6 Proof of Proposition 6

Fix a type θ and tests τ1 and τ2.
One direction is clear. If τ1 and τ2 are equal, then τ1 and τ2 are clearly θ -

equivalent. If type θ is minimal on τ1 and τ2, take λ= 1 in Proposition 5 to see
that τ1 and τ2 are θ -equivalent.

For the other direction, suppose τ1 and τ2 are θ -equivalent. Without loss, we
may assume π(τ|θ)≥ π(ψ|θ). We separate into cases according to whether θ is
minimal on τ.

First suppose θ is minimal on τ1. Since τ1 �θ τ2, there are probabilities k(0)
and k(1) such that for all types θ ′,

π(τ2|θ) = k(0) + (k(1) − k(0))π(τ1|θ)

≤ k(0) + (k(1) − k(0))π(τ1|θ ′)

≤ π(τ2|θ ′).

Now suppose θ is not minimal for τ, so there exists some type θ ′′ such that
π(τ|θ ′′)< π(τ|θ). In particular, π(τ|θ)> 0.

Claim. π(τ|θ)= π(ψ|θ).

Suppose for a contradiction that π(τ1|θ)> π(τ2|θ). By Proposition 5, there are
constants λ1 and λ2 in [0,1] such that for all types θ ′,

[λ1π(τ1|θ ′) + (1 − λ1)π(τ1|θ)]π(τ2|θ) ≤ π(τ2|θ ′)π(τ1|θ),

[λ2π̄(τ2|θ ′) + (1 − λ2)π̄(τ2|θ)]π̄(τ1|θ) ≥ π̄(τ1|θ ′)π̄(τ2|θ).

With θ ′ = θ ′′ the first inequality is weakest when λ1 = 1, so

π(τ1|θ ′′)π(τ2|θ) ≤ π(τ2|θ ′′)π(τ1|θ). (2.B.7)

Taking λ2 = 0 in the second inequality, and noting that π̄(τ2|θ)= 1−π(τ2|θ)> 0,
yields the contradiction π̄(τ1|θ)≥ π̄(τ1|θ ′′). Therefore, the inequality must hold
with λ2 = 1, so

π̄(τ2|θ ′′)π̄(τ2|θ) ≥ π̄(τ2|θ)π̄(τ1|θ ′′). (2.B.8)

We show that (2.B.7) and (2.B.8) are incompatible. In (2.B.8), subtract
π̄(τ1|θ)π̄(τ2|θ) from both sides to get

[π̄(τ2|θ ′′) − π̄(τ2|θ)]π̄(τ1|θ) ≥ [π̄(τ1|θ ′′) − π̄(τ1|θ)]π̄(τ2|θ),

which is equivalently,

[π(τ2|θ) − π(τ2|θ ′′)]π̄(τ1|θ) ≥ [π(τ1|θ) − π(τ1|θ ′′)]π̄(τ2|θ).
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The right side is strictly positive and π̄(τ2|θ)< π̄(τ1|θ), so

π(τ2|θ) − π(τ2|θ ′′) > π(τ1|θ) − π(τ1|θ ′′). (2.B.9)

Now negate (2.B.7) and add π(τ1|θ)π(τ2|θ) to both sides to obtain

[π(τ1|θ) − π(τ1|θ ′′)]π(τ2|θ) ≥ [π(τ2|θ) − π(τ2|θ ′′)]π(τ1|θ).

But π(τ2|θ)< π(τ1|θ), so (2.B.9) gives the opposite inequality.
With the claim established, we now complete the proof. By Proposition 5 there

are constants λ1 and λ2 in [0,1] such that for all types θ ′,

[λ1π(τ1|θ ′) + (1 − λ1)π(τ1|θ)]π(τ2|θ) ≤ π(τ2|θ ′)π(τ1|θ),

[λ2π(τ2|θ ′) + (1 − λ2)π(τ2|θ)]π(τ1|θ) ≤ π(τ1|θ ′)π(τ2|θ).

After cancelling the common value of π(τ1|θ) and π(τ2|θ), which is nonzero by
assumption, we have

λ1π(τ1|θ ′) + (1 − λ1)π(τ1|θ) ≤ π(τ2|θ ′), (2.B.10)
λ2π(τ2|θ ′) + (1 − λ2)π(τ2|θ) ≤ π(τ1|θ ′). (2.B.11)

It suffices to show that λ1 = λ2 = 1, for then π(τ1|θ ′)= π(τ2|θ ′) for all types
θ ′. Take θ ′ = θ ′′ in both inequalities. We have π(τ2|θ)= π(τ1|θ)> π(τ1|θ ′′), so
(2.B.11) implies that π(τ2|θ ′′)≤ π(τ1|θ ′′). Substituting this into (2.B.10), we get
λ1 = 1. Then π(τ1|θ ′′)≤ π(τ2|θ ′′), so (2.B.11) implies λ2 = 1.

2.B.7 Proof of Proposition 7

We simply translate Proposition 6 into the language of authentication rates. Suppose
t̂1 and t̂2 are most-discerning testing functions, and let α1 and α2 be the induced au-
thentication rates. For each type θ , we know t̂1(θ) and t̂2(θ) are most θ -discerning
tests. Apply Proposition 6 and translate the conclusion into the language of authen-
tication rates.

2.B.8 Proof of Theorem 11

Let α be an authentication rate. First, suppose that α is most discerning. Let T =
{τθ ′ : θ ′ ∈ Θ}, and define the passage rate π by π(τθ ′ |θ)= α(θ ′|θ) for all types θ
and θ ′. Combining definition 11 and Proposition 5, we see that the testing function
θ 7→ τθ is most discerning. By construction, this testing function induces α.

Now suppose α is induced by a most-discerning testing function t̂ in a testing
environment (T,π). Substitute the equality α(θ ′|θ)= π(̂t(θ ′),θ) into Proposition 5
to conclude that α is most discerning.
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2.B.9 Proof of Proposition 8

We apply the dominated convergence theorem. As λ converges to 0 pointwise,
Λ(z|θ) converges to 1 for all z and θ with z≤ θ . Hence ϕ(θ) converges to ϕM(θ),
for each θ . Likewise, as λ converges to∞ pointwise, Λ(z|θ) converges to 0 for all
z and θ with z< θ . Hence ϕ(θ) converges to θ , for each θ .

2.B.10 Proof of Proposition 9

We will prove a stronger result that we use below. Define functions λ+ and λ− from
Θ to [0,∞) by

λ+(θ) = −D2+α(θ |θ), λ−(θ) = D2−α(θ |θ).

In the main text, we only work with λ+, which is denoted λ. Extend the function Λ
to Λ: Θ×Θ→ [0, 1] by

Λ(θ ′|θ) =











exp
�

−
∫ θ

θ ′
λ+(s)ds

�

if θ ≥ θ ′,

exp
�

−
∫ θ ′

θ
λ−(s)ds

�

if θ < θ ′.

With these definitions, we now prove that α(θ ′|θ)≥ Λ(θ ′|θ) all types θ ′ and θ .
Fix θ and θ ′. For each h, transitivity gives

α(θ ′|θ + h) ≥ α(θ ′|θ)α(θ |θ + h).

Subtract α(θ ′|θ) from each side to get

α(θ ′|θ + h) − α(θ ′|θ) ≥ α(θ ′|θ)(α(θ |θ + h) − 1))

= α(θ ′|θ)[α(θ + h,θ) − α(θ |θ)].

Dividing by h and passing to the limit as h ↓ 0 and h ↑ 0 gives

D2+α(θ ′|θ) ≥ −λ+(θ)α(θ ′|θ) and D2−α(θ ′|θ) ≤ λ−(θ)α(θ ′|θ).

Nowwe use absolute continuity to convert these local bounds into global bounds.
Fix a report θ ′. Define the function ∆ on [

¯
θ , θ̄] by

∆(θ) =
α(θ ′|θ)
Λ(θ ′|θ)

.

By construction, ∆(θ ′)= 1. We will argue that ∆(θ)≥ 1 for all θ . For θ ′ < θ , if
D2+Λ(θ ′|θ) exists, then

D+∆(θ) =
1

Λ(θ ′|θ)

�

D+α(θ ′|θ) + λ+(θ)α(θ ′|θ)
�

≥ 0.



90 | 2 Probabilistic Verification in Mechanism Design

For θ ′ > θ , if D2−Λ(θ ′|θ) exists, then

D−∆(θ) =
1

Λ(θ ′|θ)

�

D−α(θ ′|θ) − λ−(θ)α(θ ′|θ)
�

≤ 0,

Since Λ(θ ′|·) is absolutely continuous, these inequalities hold almost surely. More-
over, the product of absolutely continuous functions on a compact set is absolutely
continuous, so ∆ is absolutely continuous, and hence the fundamental theorem of
calculus gives ∆(θ)≥ 1, as desired.

2.B.11 Proof of Proposition 10

First we introduce notation. For a given quantity function q, there is a one-to-one
correspondence between the transfer function t and the utility function U, given by
U(θ)= θq(θ)− t(θ). We will interchangeably refer to such a mechanism as (q, t)
or (q, U). Let

u(θ ′|θ) = α(θ ′|θ)[θq(θ ′) − t(θ ′)], U(θ) = u(θ |θ) = max
θ ′∈Θ

u(θ ′|θ).

Lemma 13 (Utility bound). Let q be a bounded quantity function, and let U be a
utility function. If (q, U) is incentive compatible, then for every type θ , we have

U(θ) ≥
∫ θ

¯
θ

Λ(z|θ)q(z) dz. (2.B.12)

If the function θ 7→ Λ(θ |θ̄)q(θ) is increasing and the global upper bound is satisfied,
it is incentive compatible for (2.B.12) to hold with equality.

Lemma 13 is proved in section 2.B.12. Here we prove the theorem, taking
Lemma 13 as given. There is no loss in restricting attention to bounded quantity
functions.2⁹ Pick a bounded quantity function q: Θ→ R+. The principal’s objective
function can be decomposed as the difference between the total surplus and the
agent’s rents:

∫ θ̄

¯
θ

[θq(θ) − c(q(θ))]f(θ) dθ −
∫ θ̄

¯
θ

U(θ) dθ .

Plug in the bound from Lemma 13 and switch the order of integration to obtain the
following upper bound on the principal’s objective:

V(q) =

∫ θ̄

¯
θ

[ϕ(θ)q(θ) − c(q(θ))]f(θ)dθ .

29. Pick a quantity q̄ such that θ̄ q̄= c(q̄). Offering more than q̄ will always result in weakly
negative profits, so we can remove those offerings from the menu and increase the principal’s revenue.
Therefore, there is no loss in focusing on quantity functions that are bounded above by q̄.
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The quantity function q? from the theorem statement maximizes the expression
in brackets pointwise, and t? is the corresponding transfer that achieves the utility
bound. Sinceϕ is increasing and the global upper bound is satisfied, this mechanism
is incentive compatible. Since c′ is strictly increasing, the pointwise maximizer is
unique, so this quantity function q? is unique almost everywhere.

2.B.12 Proof of Lemma 13

Let (q, t) be a bounded incentive compatible mechanism. The first step is showing
that the equilibrium utility function U is absolutely continuous. Fix types θ and θ ′.
We have

U(θ ′) ≥ α(θ ′|θ)
�

θ ′q(θ) − t(θ)
�

+

≥ Λ(θ ′|θ)
�

θ ′q(θ) − t(θ)
�

+

≥ Λ(θ ′|θ)
�

θ ′q(θ) − t(θ)
�

,

where the first inequality uses individual rationality and incentive compatibility, and
the second uses the inequality between α and Λ established in section 2.B.10. There-
fore,

U(θ) − U(θ ′) ≤ θq(θ) − t(θ) − Λ(θ ′|θ)
�

θ ′q(θ) − t(θ)
�

= θq(θ) − t(θ) − Λ(θ ′|θ)
�

(θ ′ − θ)q(θ) + θq(θ) − t(θ)
�

= (1 − Λ(θ ′|θ))(θq(θ) − t(θ)) − Λ(θ ′|θ)(θ ′ − θ)q(θ)

≤ (1 − Λ(θ ′|θ))(θ̄‖q‖∞ + ‖t‖∞) + |θ ′ − θ |‖q‖∞.

To avoid separating into cases according to the relative sizes of θ and θ ′, set λ̂=
λ+ ∨λ−. Since λ̂≤ λ+ +λ−, we know λ̂ is integrable. Using the inequality ex ≥
1+ x, we have

1 − Λ(θ ′|θ) ≤ 1 − exp
�

−
∫ θ ′∨θ

θ ′∧θ
λ̂(z) dz

�

≤
∫ θ ′∨θ

θ ′∧θ
λ̂(z)dz.

Plug this into the inequality above to get

U(θ) − U(θ ′) ≤ C

∫ θ ′∨θ

θ ′∧θ
(λ̂(z) + 1) dz,

where C =max{1, θ̄}‖q‖∞ + ‖t‖∞. Switching the roles of θ and θ ′ gives the same
inequality, so we conclude that

|U(θ) − U(θ ′)| ≤ C

∫ θ ′∨θ

θ ′∧θ
(λ̂(z) + 1) dz,

which proves the desired absolute continuity.
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Now we use the absolute continuity of U to establish the bound. Define the
auxiliary function ∆ on [

¯
θ , θ̄] by

∆(θ) = Λ(θ |θ̄)
�

U(θ) −
∫ θ

¯
θ

Λ(z|θ)q(z) dz
�

= Λ(θ |θ̄)U(θ) −
∫ θ

¯
θ

Λ(z|θ̄)q(z) dz.

The function ∆ is absolutely continuous since it is the product of absolutely con-
tinuous functions on a compact set. By Theorem 1 in Milgrom and Segal (2002),
whenever U is differentiable, we have

q(s) − λ+(s)U(s) = D2+u(θ |θ) ≤ U′(s) ≤ D2−u(θ ,θ) = q(s) + λ−(s)U(s).

At each point θ where all the functions involved are differentiable, which holds
almost surely, we have

∆′(θ) = λ+(θ)Λ(θ |θ̄)U(θ) + Λ(θ |θ̄)U′(θ) − Λ(θ |θ̄)q(θ)

= Λ(θ̄ ,θ)
�

U′(θ) − (q(θ) − λ+(θ)U(θ))
�

≥ 0.

Since ∆(
¯
θ)= 0, the fundamental theorem of calculus implies that ∆(θ)≥ 0 for all

θ , as desired.
It remains to check that the global incentive constraints are satisfied, provided

that q is monotone. Expressing incentive-compatibility in terms of U, we need to
show that for all types θ and θ ′,

U(θ) ≥ α(θ ′|θ)(U(θ ′) + (θ − θ ′)q(θ ′)). (2.B.13)

We consider upward and downward deviations separately. First suppose θ ′ > θ .
Write out (2.B.13) as

U(θ) + α(θ ′|θ)(θ ′ − θ)q(θ ′) ≥ α(θ ′|θ)U(θ ′),

or equivalently,
∫ θ

¯
θ

Λ(z|θ)q(z) dz+α(θ ′|θ)

∫ θ ′

θ

q(θ ′)dz

≥ α(θ ′|θ)

∫ θ

¯
θ

Λ(z|θ ′)q(z)dz+α(θ ′|θ)

∫ θ ′

θ

Λ(z|θ ′)q(z)dz.

Compare the corresponding terms on each side. Since Λ(z|θ)≥ Λ(z|θ ′) for z≤ θ ≤
θ ′, we get the inequality between the first terms. For the inequality between the
second terms, multiply by Λ(θ ′|θ̄)/α(θ ′|θ) and use the fact that Λ(z|θ̄)q(z) is in-
creasing in z.
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Now suppose θ ′ < θ . Express (2.B.13) as

∫ θ ′

¯
θ

Λ(z|θ)q(z)dz+

∫ θ

θ ′
Λ(z|θ)q(z) dz

≥ α(θ ′|θ)

�

∫ θ ′

¯
θ

Λ(z|θ ′)q(z)dz+

∫ θ

θ ′
q(θ ′)dz

�

=
α(θ ′|θ)
Λ(θ ′|θ)

�

∫ θ ′

¯
θ

Λ(z|θ)q(z)dz+

∫ θ

θ ′
Λ(θ ′|θ)q(θ ′)dz

�

.

Multiply both sides by Λ(θ |θ̄) and then rearrange to get the equivalent inequality

α(θ ′|θ) ≤ Λ(θ ′|θ)

∫ θ ′

¯
θ
Λ(z|θ̄)q(z) dz +

∫ θ

θ ′
Λ(z|θ̄)q(z)dz

∫ θ ′

¯
θ
Λ(z|θ̄)q(z)dz +

∫ θ

θ ′
Λ(θ ′|θ̄)q(θ ′)dz

= Λ(θ ′|θ)

∫ θ

¯
θ

Λ(z|θ̄)q(z)dz
.

∫ θ

¯
θ

Λ(z ∧ θ ′|θ̄)q(z ∧ θ ′)dz.

2.B.13 Proof of Proposition 11

The same argument as in the proof of Proposition 10 (section 2.B.11) shows that
the principal’s value as a function of q can be written as

V(q) =

∫ θ̄

¯
θ

ϕ(θ)q(θ) dθ .

The quantity function q? from the theorem statement maximizes this quantity point-
wise, and t? is the corresponding transfer function. Since q? is monotone, this mecha-
nism is incentive compatible and hence optimal. Except at points θ where ϕ(θ)= 0,
the pointwise maximizer is unique, and hence the mechanism is unique almost ev-
erywhere outside the set ϕ−1(0).

2.B.14 Proof of Theorem 12

The proof of Theorem 9 (section 2.B.2) can be extended to allow for multiple agents
by taking products like in the proof of Theorem 8 (section 2.B.1). For the sufficiency,
define k̂i for each agent i and set k̂= ⊗ik̂i. For necessity, if there is some j such that
t̂j is not most-discerning, apply the construction above on agent j, assuming every
type of every other agent is indifferent over all decisions.
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2.B.15 Proof of Proposition 12

Applying the same argument player by player gives

V(Q) =

∫

Θ

�

n
∑

i=1

ϕi(θi)qi(θi)
�

f(θ)dθ .

This is maximized by the interim quantity functions q? in the theorem statement,
which induces monotone interim quantity functions. For each agent i, the transfer
function is pinned down by the envelope expression for Ui. We then choose a transfer
function t? consistent with these interim transfer functions that also satisfies the ex
post participation constraints.

Appendix 2.C Supplementary proofs

2.C.1 Proof of Lemma 8

(i) Fix p ∈ [0,1]. It suffices to show that (µF̃µ)[0, p]= p. For each s ∈ R, let Fµ(s−)
denote the left limit of Fµ at s. With this notation, we have

F̃µ(s, [0, p]) =











1 if Fµ(s) ≤ p,
p−Fµ(s−)

Fµ(s)−Fµ(s−) if Fµ(s−) ≤ p < Fµ(s),

0 if Fµ(s−) > p.

Set F+µ (p)= sup{t ∈ R : Fµ(t−)≤ p}.3⁰ By the left-continuity of the map t 7→ Fµ(t−),
we have Fµ(F+µ (p))≤ p, with equality if µ is continuous at F+µ (p). If µ is continuous
at F+µ (p), then

(µF̃µ)[0, p] = µ(−∞, F+µ (p)] = Fµ(F+µ (p)) = p.

If µ is discontinuous at F+µ (p), then

(µF̃µ)[0, p] = Fµ(F+µ (p)−) + µ({F+µ (p)})
p − Fµ(F+µ (p)−)

Fµ(F+µ (p)) − Fµ(F+µ (p)−)
,

and the right side simplifies to p.
(ii) Fix s ∈ R. For each p ∈ [0, 1], recall that for all s ∈ suppν, we have Qν(p)≤ s

if and only if p≤ Fν(s). Therefore,

Q̃ν(p, (−∞, s]) =

(

1 if p ≤ Fν(s),

0 if p > Fν(s).

30. This is the right-continuous inverse of Fµ and is more commonly defined as inf{t ∈ R : Fµ(t)>
p}.
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We conclude that

(U[0,1]Q̃ν)(−∞, s] = U[0,1][0, Fν(s)] = Fν(s) = ν(−∞, s].

(iii) This follows immediately from (i) and (ii).

2.C.2 Proof of Lemma 9

By Lemma 8 (iii), we have (ii) =⇒ (iii). We prove that (i) =⇒ (ii) =⇒ (i).
(i) =⇒ (ii). Suppose µ�SD ν. Set k= F̃µQ̃ν. Fix s ∈ S and let S0 = (−∞, s]∩ S.

Recall that the left-continuous quantile function satisfies the Galois inequality

Qν(p) ≤ s ⇐⇒ p ≤ Fν(s).

Thus,

k(s, S0) =

∫ 1

0

F̃µ(s, dp)Q̃ν(p, S0) =

∫ Fν(s)

0

F̃µ(s, dp).

By first-order stochastic dominance, Fν(s)≥ Fµ(s). Thus, the right side is at least
F̃µ(s, [0, Fµ(s)]), which equals 1.

(iii) =⇒ (i). Let k be a downward transition. Fix s in S, and let S0 = S∩ (−∞, s].
We have

(µk)(S0) =

∫

R
µ(dt)k(t, S0) ≥

∫

(−∞,s]
µ(dt)k(t, S0) = µ(S0).

2.C.3 Proof of Lemma 10

(i) Suppose m is monotone on S. If µ≥SD ν, then by Lemma 9 (iii) there is a down-
ward transition k on S such that µk= ν. Fix s0 ∈ S, and set S0 = (−∞, s0]∩ S. Then

(νm)(S0) − (µm)(S0) = (µkm)(S0) − (µm)(S0)

=

∫

S
µ(ds)[(km)(s, S0) − m(s, S0)]

=

∫

S
µ(ds)

∫ s

−∞
k(s, dt)[m(t, S0) − m(s, S0)]

≥ 0,

where we get the second equality because k is downward, and the inequality because
m is monotone.

For the other direction, take µ= δs and ν= δt for s> t. Then

ms = δsm ≥SD δtm = mt.



96 | 2 Probabilistic Verification in Mechanism Design

(ii) Let m and m′ be monotone transitions on S. Suppose µ and ν are measures
on S satisfying µ≥SD ν. Applying (i) twice, we have µm≥SD νm and hence

µ(mm′) = (µm)m′ ≥SD (νm)m′ = µ(mm′).

By (i), mm′ is monotone.

2.C.4 Proof of Lemma 11

Consider a Markov transition k: X ×Y → [0,1]. Define k̄: X ×Y → [0, 1] by set-
ting k̄x equal to the extension of kx to Y , for each x in X. For each B in Y , we
have k̄(x, B)= k(x, B), so the map x 7→ k̄(x, B) is measurable and hence universally
measurable. We need to check universal measurability for sets B in Y . Let µ be
an arbitrary probability measure on (X,X ). It suffices to show that k̄(·, B) is X µ-
measurable for all B in Y (µk). If B is in Y (µk), then we can sandwich B between B1

and B2 satisfying

0 = (µk)(B2 \ B1) = µ(k(·, B2)) − µ(k(·, B1)).

So the function k̄(·, B) is sandwiched between the X -measurable functions k(·, B1)
and k(·, B2), which agree µ–almost surely. Hence k̄(·, B) is X µ-measurable.

2.C.5 Proof of Lemma 12

For the inclusion, it suffices to show that every probability measure µ on (X × Y,X ⊗
Y ), we have

X ⊗ Y ⊂ (X ⊗ Y )µ.

Fix such a probability measure µ. Define measures µ1 and µ2 on X and Y by

µ1(A) = µ(A × Y) and µ2(B) = µ(X × B).

If A is in X µ1
, then there exist A1 and A2 in X sandwiching A such that

0 = µ1(A2 \ A1) = µ((A2 \ A1) × Y) = µ((A2 × Y) \ (A1 × Y)).

Similarly, if B in Y µ2
, then X × B is in (X ⊗Y )µ. Taking intersections we conclude

that A× B is in (X ⊗Y )µ. Therefore,

X ⊗ Y ⊂ X µ1
⊗ Y µ2

⊂ (X ⊗ Y )µ.

Now we turn to the last equality. For each probability measure µ on X ⊗Y , let
µ0 be the restriction of µ to X ⊗Y . Then

X ⊗ Y ⊂ (X ⊗ Y )µ0
⊂ (X ⊗ Y )µ.

Taking the intersection over all such µ gives X ⊗Y ⊂X ⊗Y .
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Now we prove the reverse inclusion. Each probability measure ν on X ⊗Y has
a complete extension ν̄ to (X ⊗Y )ν. Let ν0 be the restriction of ν̄ toX ⊗Y . Then

(X ⊗ Y )ν = (X ⊗ Y )ν0
⊃ X ⊗ Y .

Taking the intersection over all such ν gives X ⊗Y ⊃X ⊗Y .
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Chapter 3

Costless Information and Costly
Verification: A Case for Transparency?

Joint with Jan Knoepfle

3.1 Introduction

A principal has to take a binary decision for which she relies on an agent’s private
information. The agent prefers one of the two actions independent of his informa-
tion. Prior to the decision, the principal privately observes a signal about the agent’s
information. She cannot incentivize the agent through monetary transfers but has
the opportunity to reveal his information at a cost.

Examples for this setting include: a human resource department decides
whether to hire a candidate, a judge decides whether to acquit or convict a de-
fendant, or a competition authority decides whether to grant or deny a company
permission to merge with or acquire another firm.

While one party —the agent— has a clear preference toward one action (the
candidate wants to be hired, the defendant wants to be acquitted, and the company
wants to merge), the preferences of the other party —the principal— depend on in-
formation that is privately held by the agent. Here, one may think of the candidate’s
ability, the defendant’s guilt, or the company’s competitive position in the market.
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Often, monetary transfers to elicit the agent’s private information are not feasible
(for practical or moral reasons1), but the principal can learn the information at a
cost, for example, by conducting an assessment center, a trial, or a market analysis.
However, verification is costly, so the principal has an incentive to economize on it.

Typically, costly information acquisition is not the only way to learn the agent’s
private information. The potential employer receives references or recommendation
letters from previous supervisors, the judge can inspect the outcome of pretrial in-
vestigations, and the competition authority has sector-specific knowledge derived
from its supervisory function. That is, the principal privately observes factors that
are correlated with the agent’s type.

This paper investigates how the principal can use this private, costless informa-
tion in conjunction with the costly verification to maximize her expected payoff from
the decision if monetary transfers are not feasible.

Preview. We show that the optimal Bayesian incentive compatible (BIC) mecha-
nism takes a simple cut-off structure: if the principal observes a signal that makes
her sufficiently certain that the agent’s preferred action is also better for her, she
takes it, independent of the type report. If the signal falls below the cut-off, she
takes the nonpreferred action by default but gives the agent the possibility to ap-
peal. An appeal is always verified and induces the agent-preferred action whenever
his type exceeds a threshold. This appeal threshold is set such that the agents who
appeal are only those whose typemakes it worthwhile for the principal to implement
the agent-preferred action and pay the verification cost.

This mechanism is ex-post incentive compatible (EPIC). It would also be incen-
tive compatible if the principal’s signal was known to the agent. This result implies
that the principal does not benefit from the privacy of her signal. It advocates for
transparent procedures.

We extend our result to settings where the information that the principal pri-
vately observes has a positive direct effect on her utility from the agent’s preferred
choice. The structure of the optimal mechanism remains, and, again, transparency
comes without loss for the principal. If, in contrast, the direct effect is negative, the
principal benefits from hiding his information. The equivalence between EPIC and
BIC optimal mechanisms breaks down; we show that the simple EPIC mechanism is
no longer optimal in the larger class of BIC mechanisms.

Literature. In settings where monetary transfers are feasible, the principal can de-
sign a lottery rewarding the agent for guessing the value of her privately observed
signal correctly. Different agent types hold different beliefs over the signal distribu-
tion and, therefore, reveal their type by guessing the signal they deem most likely.

1. The assumption is that payments cannot depend on the agent’s report. Even though a public
sector job entails payments, if the payment is fixed, it cannot be used to incentivize truthful reports
of the candidate’s ability.
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If the agent’s liability is not limited, the principal can increase reward and loss in
the lottery to such an extent that the incentives to win the lottery exceed any incen-
tives regarding the allocation decision. In doing so, she can learn the agent’s type at
arbitrarily small costs. Mechanisms with monetary transfers and correlated informa-
tion have been discussed by Crémer and McLean (1988), Riordan and Sappington
(1988), Johnson, Pratt, and Zeckhauser (1990), and McAfee and Reny (1992), who
all establish conditions on the information structure that ensure full surplus extrac-
tion by the principal. As all surplus can be extracted, revenue maximization leads to
ex-post efficient allocations. Neeman (2004) discusses the genericity of the above-
mentioned conditions and shows that full surplus extraction is possible only if ev-
ery preference type is “determined” by his belief over the correlated characteristics.
Even though this condition is fulfilled, in our setting with costly verification instead
of monetary transfers, full surplus extraction is not feasible and implementing the
ex-post efficient allocation is not optimal for the principal.

The full surplus-extracting lotteries require potentially unbounded transfers. For
the case of bounded transfers or limited liability, Demougin and Garvie (1991) show
that the qualitative results, the application of rewards as bets on the signal, still apply.
Different from our setting, the principal gains by maintaining her signal private.

In the absence ofmonetary transfers, Bhargava, Majumdar, and Sen (2015) show
how positively correlated beliefs among voters allow overcoming the impossibility of
nondictatorial voting rules established by Gibbard (1973) and Satterthwaite (1975).

Our result is in line with the findings in other settings where monetary trans-
fers are not feasible but correlated information is absent. The literature (Glazer and
Rubinstein, 2004; Ben-Porath, Dekel, and Lipman, 2017; Hart, Kremer, and Perry,
2017; Erlanson and Kleiner, 2019; Halac and Yared, 2019) has found optimal mech-
anisms to take a simple cut-off structure and to be EPIC in the sense that the agents
would also report truthfully if they were informed about the other agents’ type real-
izations before their report.

The possibility for the mechanism designer to verify an agent’s private infor-
mation at a cost was first introduced by Townsend (1979) considering a principal-
agent model for debt contracts, which was extended to a two-period model by Gale
and Hellwig (1985). These early models of state verification feature both, monetary
transfers and verification. Glazer and Rubinstein (2004) introduce a setting where
the principal has to take a binary decision depending on the multidimensional pri-
vate information of the agent. Here, the principal cannot use monetary transfers,
but she can learn about one dimension before making her decision.

Our model is most closely related to that of Ben-Porath, Dekel, and Lipman
(2014), who model costly verification and consider the case of allocating a good
among finitely many agents whose types are independently distributed; see also
the discussion section. Erlanson and Kleiner (2019) study a collective decision prob-
lemwith costly verification and show that the optimal mechanism is EPIC and can be
implemented by a simple weighted majority voting rule. Mylovanov and Zapechel-
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nyuk (2017) consider an allocation problem without monetary transfers in which
the principal learns the agents’ types without cost but only posterior to the alloca-
tion decision and has the ability to punish untruthful reports up to a limit. Halac
and Yared (2019) consider a delegation problem and specify conditions on the veri-
fication cost that ensure optimality of a threshold mechanism with an escape clause.

Erlanson and Kleiner (2019) show further that the equivalence between BIC and
EPIC mechanisms holds more generally rather than only for optimal mechanisms.
This relates to Gershkov, Goeree, Kushnir, Moldovanu, and Shi (2013) and Manelli
and Vincent (2010), who show equivalence between BIC and DIC mechanisms in
settings with monetary transfers. All these results have been derived under the as-
sumption that the private information of players is independently distributed; we
deviate from this assumption by introducing correlation between the agent’s type
and the principal’s signal.

As the principal has private information, our model is also related to the in-
formed principal problem cf. Myerson (1983) and Maskin and Tirole (1990). With
monetary transfers, Severinov (2008) and Cella (2008) show that correlated infor-
mation allows for an efficient solution to the informed principal problem.We assume
that the principal designs mechanisms with full commitment over allocation proce-
dures before observing the signal. A priori, there is no informed principal problem
in our model, but in the discussion section, we show that the optimal mechanism
we derive also solves the informed principal problem.

Roadmap. After an example highlighting the difficulties that correlation adds to
the canonical verification setup, and showing how our findings advocate for trans-
parency in pretrial investigations, section 2 sets up the model. The characterization
of optimal mechanisms starts in section 3 for the class of transparent mechanisms,
and section 4 shows that this mechanism is optimal in the broader class of BIC
mechanisms. We then extend the analysis to a specification in which the princi-
pal’s valuation may be affected by the signal realization, and discuss the relation to
favored-agent mechanisms and to the informed principal problem.

3.2 Example

With the following numerical example, we illustrate (1) how the principal can ex-
ploit correlation to lower the minimal verification cost required for implementing an
allocation and (2) why the optimal allocation does not leave scope for such an im-
provement. Consider a defendant in court (the agent) who privately knows whether
he is of the guilty or innocent type t ∈ {G, I}. The judge (principal) privately observes
signal realization s ∈ {g, i} as a result of pretrial investigations and asks the agent to
plead either guilty or innocent (to report his type). Following the signal and plea,
the judge decides whether to conduct a costly trial (to reveal the agent’s type) and
whether the defendant should be acquitted (as a function the trial’s outcome, in case
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it was conducted). A trial requires verification cost c> 0. The defendant’s utility is 1
from acquittal and 0 if he is convicted, irrespective of his type. Type and signal are
jointly distributed according to

�

fG,g fG,i

fI,g fI,i

�

=

�2
6

1
6

1
6

2
6

�

.

For illustration, we fix acquittal probabilities and consider the optimal verifica-
tion schedule for the case when the defendant observes the outcome of the pretrial
investigation and for the case when he does not observe this signal. Let the guilty
type be acquitted with probability 1/2, at both signals g and i, and the innocent type
with probability 1, independent of the signal. Denote by zt,s ∈ [0, 1] the probability
with which the type-signal combination (t, s) is verified. After verification, the judge
acquits the innocent and convicts the guilty type.2 In a transparent mechanism, the
agent observes the principal’s signal before making a report. The cost-minimal veri-
fication probabilities that ensure truthful reporting are3

�

zG,g zG,i

zI,g zI,i

�

=

�

0 0
1/2 1/2

�

.

This induces a verification cost of 1
6 · 1/2 c+ 2

6 · 1/2 c= 1
4 c.

If, instead, the signal realization is not known to the agent when he makes his
type report, the principal can save verification costs. The above mechanism fulfills
type G’s incentive constraint by verifying report I with equal probability after both
signal realizations. The principal can exploit the fact that type G’s subjective belief
puts more weight on signal g, and shift verification probability from the type-signal
combination (I, i) to (I, g). The verification probabilities

�

zG,g zG,i

zI,g zI,i

�

=

�

0 0
3/4 0

�

produce verification costs of only 1
6 · 3/4 c= 1

8 c but ensure truthful reporting. To
see this, consider the following (Bayesian) IC constraints:

2
3
· 1/2 +

1
3
· 1/2 ≥

2
3
·
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1 − zI,g
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+
1
3
·
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1 − zI,i
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and
1
3
· 1 +

2
3
· 1 ≥

1
3
·
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1/2 − zG,g
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+
2
3
·
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1/2 − zG,i

�

.

2. This assumption is inessential and made for simplicity here. As will be shown in the main
body of the paper, verification optimally affects only misreporting types, with the harshest possible
punishment. That is, whenever verification reveals a misreport, the defendant is not acquitted.

3. Type t= I is acquitted for sure and, therefore, never has an incentive to misreport type t= G.
Type G, who knows signal s, is willing to report his type truthfully if 1/2≥ 1− zI,s.
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The first constraint hinders type G from reporting I. Note that 2
3 is the agent’s pos-

terior belief that the signal matches his type. As before, the second constraint, hin-
dering type I from reporting G, is satisfied independent of the verification. However,
the two constraints illustrate the complication that correlation adds to the analysis:
different types assign distinct probabilities to the signal realizations. Therefore, the
expected utility of a given type report depends on the agent’s real type. This compli-
cates the characterization of incentive compatibility in comparison to other costly
verification models.⁴

With this second verification schedule, the above-mentioned allocation,
�

1/2 1/2
1 1

�

,

is not transparently implementable. If type G knows that the signal is i, he can be
acquitted with probability 1 by misreporting I. This illustrates how a nontransparent
procedure potentially allows the lowering of verification costs by exploiting correla-
tion. The idea parallels the design of transfer lotteries used in Crémer and McLean
(1988) and others to extract the agent’s surplus.

However, conditional on the defendant’s guilt, the outcome of the pretrial in-
vestigation should not affect the judge’s preferences over acquittal or conviction.
Therefore, we can achieve the same ex-ante expected allocation value but adjust
how the probability to acquit the guilty type is distributed over the signal realiza-
tions: consider ex-post acquittal probabilities

�

1/4 1
1 1

�

,

and note that the ex-ante probability for both types and, therefore, the principal’s
expected allocation value remain unchanged. With the above-mentioned verification
probability of zI,g =

3
4 , this allocation can be transparently implemented. The guilty

type is indifferent between truth-telling or misreporting after observing either sig-
nal.⁵ This exemplifies how the allocation can be re-arranged over signal realizations

4. In Ben-Porath, Dekel, and Lipman (2014) and other models of costly state verification, the
absence of correlated information allows to fully characterize incentive compatibility by focusing on
the type with the lowest expected utility. This technique cannot be applied to our setting. To make
this explicit, consider an allocation rule that acquits the agent whenever type and signal do not match
(without verification). Both types would strictly prefer to misreport. Without correlated information,
such a situation cannot arise.

5. The observant reader may notice how the fact that the principal’s value remains unchanged,
hinges on the assumption that the signal does not have a direct effect on the allocation value for
given types. This is justified in most applications, in which the signal is simply informative about the
underlying fundamental type, as the outcome of pretrial investigations gives information about the
defendant’s guilt but should not itself affect the value of a guilty verdict. In the extensions, we show
how ourmain result carries over with a direct effect that goes in the same direction as the informational
effect, for example, when confirming the outcome of the pretrial investigations carries some value on
its own.
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so that the suggested improvement in verification does not impede transparency. In
the main body of the paper, we show how this can be done for the optimal allocation
without violating incentives with arbitrary numbers of types and signals.

The acquittal probability in this example was fixed somewhat arbitrarily to allow
for informative illustration. To consider the original problem of choosing allocation
and verification probabilities jointly, the principal needs to trade off verification costs
and allocation value. The paper proves that this trade-off is optimally solved by a
simple cut-off mechanism. In this court example, for a range of parameter values,
the optimal cut-off mechanism would feature allocation

�

0 1
1 1

�

,

implemented through verification schedule
�

0 0
1 0

�

.

This mechanism resembles the proceedings of a pretrial: The case is dismissed if the
signal for the defendant’s innocence is strong enough, i.e., the charge is weak. If the
signal for innocence is below this cut-off, the agent can plead guilty and is convicted,
or he can request a trial by pleading not guilty, after which he is acquitted if he is
indeed found to be not guilty and convicted otherwise.

An important implication of our result is that as in this simple example, the
justice system cannot gain from keeping the charge secret during a pretrial. This
is established practice in modern codes of procedures but was not always the case.
Compare, for example, today’s Austrian criminal code of procedure⁶ with the code
of 1803⁷. While the modern code grants the defendant the right to learn about all
potential charges, the version from 1803 gives the court of inquiry much more dis-
cretion in the extent of information release to the defendant, stating that he has to
be informed only as far as necessary to notify him that he is accused.
Kittler (2003) argues that this observation is in line with the broader development
of continental European criminal procedure from the medieval inquisitorial proceed-
ings, which exhibited secret charges, to modern forms of criminal law proceedings.⁸

6. §6 (2) StPO: www.jusline.at/gesetz/stpo/paragraf/6
7. II.3 Von Untersuchung des Beschuldigten und dem Verhöre §331
8. Maybe the most famous defendant who is not informed about the charges he faces is Josef K.,

the protagonist in Franz Kafka’s novel The Trial. In fact, Kittler (2003) suggests that Kafka, who took
multiple courses in legal history before completing his law degree at the University of Prague, might
have based this process not on the proceeding standards during his time but on medieval ones.
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3.3 Model

For concreteness, in the remainder of the paper, we take the binary decision to be
the allocation of a single indivisible good. The principal (she) decides whether to
allocate the good to the agent (he).

Types. The agent is characterized by his type T, which takes values t ∈R. We
assume that the type is the agent’s private information and that the set of possible
types T is finite.

The principal privately observes a signal S with realizations s ∈ S ⊂R, finite
and ordered. This signal contains information about the agent’s type: T and S are
jointly distributed according to distribution

�

ft,s
�

t∈T ,s∈S >> 0. The signal satisfies
the Monotone Likelihood Ratio Property:

(MLRP) ∀t, t′ ∈ T with t< t′ :
ft′,s
ft,s

is nondecreasing in s.

This is equivalent to requiring that T and S be affiliated. It implies that a higher
signal is more indicative of a higher type.

Preferences. The principal derives valuation v(t) when allocating the good to an
agent of type t. We normalize the value she derives from not allocating to 0. There-
fore, v represents the net value for the principal. We assume that v(t) is nondecreas-
ing and that there are t′, t′′ ∈ T with v(t′)< 0< v(t′′) (otherwise, the principal could
implement the efficient allocation decision without the agent’s private information).

The signal S provides costless information about the agent’s type to the principal,
but does not affect her payoff from allocating the good directly. In an extension,
we investigate the case in which the signal also directly affects the value of the
allocation.

An agent of type t receives utility u(t)> 0 from the good. The agent’s payoff
from not receiving the good is zero.

Verification. The principal has the option to learn the realization of T after paying
a cost c> 0. Verification is perfect; the principal always learns the exact type.⁹

Solution Concept. The principal can announce and commit to a verification and
allocation mechanism before she learns her private signal. The realization of the
signal is contractible. The agent learns his type (but not the signal) and then plays a
Bayesian best response in the game that is induced by the mechanism. We are inter-
ested in characterizing mechanisms that maximize the principal’s ex-ante expected
payoff in equilibrium.

9. It turns out that with commitment over subsequent allocation decisions, whether the principal
learns the agent’s real type or just learns whether the information he provided is wrong does not alter
the results, as long as she is certain of what she learned. Erlanson and Kleiner (2019) consider the
extension to the case with imperfect verification.
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3.3.1 Mechanisms

The principal can design and commit to any mechanism before her own signal or
the agent’s type realize. The signal is contractible, therefore, the mechanism can
be contingent on the signal. A key question in this setting is: Can the principal use
her private information — the signal— to elicit the agent’s information? To answer
this question we need to study mechanisms in which the principal could potentially
reveal some of her private information to the agent. In the appendix, we, therefore,
define a broad class of dynamic mechanisms. As is shown in the appendix, we can re-
strict our attention to a simpler class of mechanisms when we search for the optimal
mechanism in this setting:

We call a mechanism of the following form direct: It asks the agent to report his
type. Based on this report t and the signal realization s one of these three distinct
events occurs:

(1) with probability x(t, s) the good is allocated to the agent
(2) with probability z(t, s) the agent is verified. Then, the good is allocated to him

if and only if he is found to have reported truthfully
(3) with probability 1− x(t, s)− z(t, s) the good is not allocated to the agent and he

is also not verified.

Such a mechanism is called truthful if it incentives the agent to report truthfully.

Theorem 3.1. There is a direct truthful mechanism which maximizes the principal’s
ex ante welfare.

Note that this theorem combines a revelation principle with optimality consid-
erations. In the appendix we first derive a suitable revelation principle that is rem-
iniscent of the revelation principles in Ben-Porath, Dekel, and Lipman (2014) and
Akbarpour and Li (2019). Then, we show that the optimal mechanism needs to sat-
isfy two intuitive properties: Maximal Punishment: if an agent is revealed to have
reported t̂ different from his actual type t, he is awarded the good with probability
0. Minimal Verification: Following (t, s), the agent is verified only if, after his report
is verified to be true, he receives the good for sure.

It is worth noticing that these truthful direct mechanisms allow the principal to
strategically release information to the agent. To see this, take a mechanism that
is not in direct form: Suppose the principal commits to reveal the realization of
a garbling of her signal to the agent and then let him send some message to her.
Different realizations of the garbling induce different beliefs about the signal of the
agent when he sends his message. By designing the garbling in this mechanism the
principal can design the additional information of the agent.

The revelation principle that we prove in the appendix shows that we can repli-
cate the outcome of this information design mechanism with a direct mechanism.
The principal commits to internally simulate the original mechanism and the agent’s
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response when the agent reports his type to her in the direct mechanism. Although
the agent’s belief in the direct mechanism is not changed before he reports, the
simulated agent’s belief is.

We can encode every direct mechanism by two matrixes (x, z) specifying the
respective probabilities for all combinations of type reports and signal realizations.
Feasibility requires that the total allocation probability xt,s + zt,s ≤ 1 for all (t, s) ∈
T ×S .

3.3.2 The agent’s Problem

The agent’s preferences are such that he only cares about the probability of receiving
the good. Consider the incentive problem of an agent of type t. He does not know the
signal realization. If he reports truthfully, he faces the random allocation probability
xt,S + zt,S. Whether his report is verified is irrelevant for him. If, however, t reports
t̂ 6= t, he receives the good with random probability xt̂,S only if he is not verified.
Therefore, the Bayesian incentive constraint (BIC) reads as follows:

∀t, t̂ ∈ T : u(t) · ES

�

xt,S + zt,S | T = t
�

≥ u(t) · ES

�

xt̂,S | T = t
�

.

As we assume that every type derives strictly positive utility from the good (u(t)>
0), it follows that the intensity of type t’s preferences can be eliminated from the
IC constraint: the agent simply maximizes his expected allocation probability. The
utility he derives from the good is the same irrespective of whether he reported
truthfully or not:

(BICt,̂t) : ES

�

(xt,S + zt,S − xt̂,S) 1{T=t}
�

=
∑

s∈S
ft,s
�

xt,s + zt,s − xt̂,s

�

≥ 0.

The expected allocation probability at a certain misreport is not independent of the
true type, as different types have different conditional beliefs over the distribution of
S. The interim expectations are therefore insufficient to describe the mechanism.1⁰
In most settings without transfers and independence (Ben-Porath, Dekel, and Lip-
man, 2014; Erlanson and Kleiner, 2019) all types have the same interim expecta-
tions about utilities from deviations. In checking the incentive compatibility of a
mechanism, it is then sufficient to restrict attention to deviations of the type with
the lowest expected utility. This approach does not work in our setting.

10. This is a common feature of mechanism design with correlation: the different expected utility
stemming from different beliefs is precisely howmechanisms with money exploit correlation to extract
surplus.
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3.3.3 The Principal’s Problem

The principal designs a mechanism that maximizes her expected utility from the
allocation net of the costs of verification. If the good is assigned without verification,
she gains v(T). In the case of allocation with prior verification, she additionally pays
cost c. Hence, the principal’s problem can be stated as the following linear program:

(LP) max
(x,z)≥0
E [ xT,S v(T) + zT,S (v(T) − c) ]

s.t. ∀t, t̂ ∈ T : (BICt,̂t) and
∀(t, s) ∈ T × S : xt,s + zt,s ≤ 1.

3.4 Optimal Transparent Mechanisms

We call a direct mechanism transparent if the mechanism is such that the agent
would report his type truthfully even if he had learned the realization of S before
reporting. In our setting, transparency coincides with ex-post incentive compatibility
(EPIC). The ex-post incentive constraints read as follows:

∀s ∈ S , ∀t, t̂ ∈ T : (EPIC(s)t,̂t) : xt,s + zt,s − xt̂,s ≥ 0.

The Bayesian incentive constraint (BICt,̂t) is a weighted sum of the corresponding
EPIC constraints over all signal realizations. A transparent mechanism is therefore
necessarily BIC. In this section, we solve for the optimal transparent mechanisms.
In the remainder of the paper, we show that this mechanism will also be optimal in
the wider set of Bayesian incentive compatible mechanism.

Lemma 3.2. The optimal transparent mechanism is as follows: For all s ∈ S ,
(

xt,s = 1, zt,s = 0 if ET[ (v(T) − (v(T) − c )+ | S = s ] > 0

xt,s = 0, zt,s = 1{v(t)>c} otherwise.

The good is allocated without verification whenever the signal alone (without
considering the type report) makes the principal sufficiently optimistic about the
allocation value. If she is not convinced by the signal, she will only allocate after the
successful verification of the agent’s report. This happens if the reported allocation
value exceeds the costs of verification. The induced allocation rule is not ex-post
efficient. At low signals and high types, the allocation value may be positive but
smaller than the verification cost so that the good is not allocated. At high signals
and low types, the good may be allocated even though v(t)< 0.
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Implementation. The optimal transparent mechanism can be implemented as a
provisional decision: the principal bases her initial decision only on the signal but
gives the agent the option to appeal this decision, if the allocation net verification
costs is profitable. If the agent appeals, the principal verifies the agent’s claim and
allocates if she finds that the agent told the truth.

Appealing is weakly dominant for the agent in this implementation game, even if
the appeal has no chance of success. One can prevent this multiplicity of equilibria if
the designer commits to allocating the good with small probability ε after a negative
provisional decision that is not appealed by the agent. For any ε > 0, the unique
best response of the agent is to only appeal if the appeal will be successful. For ε
converging to zero, the loss in efficiency for the principal (comparedwith the optimal
transparent mechanism) goes to zero, as well.

Proof of Lemma 3.2. For a given s ∈ S , let x·,s denote the vector (xt,s){t∈T } and sim-
ilarly for z·,s.

Step 0: For any s ∈ S , the optimal (x.,s, z.,s) can be determined separately, as all con-
straints only involve allocation and verification probabilities for the same signal
realization. The principal’s optimal expected value is the weighted sum of the
values of these subproblems:

(LP(s)) max
(x·,s,z·,s)≥0

ET [ xT,s v(T) + zT,s (v(T) − c) | S = s ]

s.t. ∀t, t̂ ∈ T : (EPIC(s)t,̂t) and
∀t ∈ T : xt,s + zt,s ≤ 1.

Step 1: For any s ∈ S and for all t, t̂ ∈ T : xt,s = xt̂,s, i.e., the allocation probability x·,s has
to be constant in the report.

Suppose to the contrary that there were reports t and t̂with xt̂,s > xt,s. Ex-post
incentive compatibility implies that for all t̃ ∈ T , we have xt̃,s + zt̃,s ≥ xt̂,s > xt,s.
Hence, there could not be a type with a binding incentive constraint regarding
the report t. This, in turn, implies that optimally, zt,s = 0. If it were positive, zt,s

could be lowered and xt,s could be increased, at least until the strict inequal-
ity above binds. This leaves the allocation probabilities unchanged but lowers
verification costs.

The incentive constraints of type t now take the form xt,s + 0≥ xt̃,s for all re-
ports t̃ and, in particular, for report t̂, contradicting the above hypothesis. Hence,
we must have that for all t, t̂: xt,s = xt̂,s ≡ χs.

Step 2: With constant x.,s, all incentive constraints are automatically fulfilled, as the un-
verified allocation probability is the same for any possible report. The principal’s
problem reads as follows:
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(LP(s)) max
(χs,z·,s)≥0

∑

t∈T
ft,s
�

χs v(t) + zt,s (v(t) − c)
�

s.t. ∀t ∈ T : χs + zt,s ≤ 1.

In this simplified program, zt,s will be set as high as possible, i.e., to 1−χs if
(v(t, s)− c) is positive and to 0 otherwise, yielding the following:

(LP(s)) max
χs∈[0,1]

χs ·
∑

t∈T
ft,s v(t) +

∑

t∈T
ft,s (1 − χs) (v(t) − c)+.

Step 3: Expressed in terms of conditional expectations, the problem is linear in χs:

(LP(s)) max
χs∈[0,1]

χs · ET[v(T)| S = s ] + (1 − χs) · ET[(v(T) − c)+| S = s ].

Generically, the optimal value of χ is either 0 or 1, depending on which of the
expectations is larger.

Because of the MLRP, the principal is more optimistic about the agent’s type
when she observes higher signals. This results in an intuitive cut-off form of the
optimal transparent mechanism.

Corollary 3.3.
The optimal transparent mechanism is given by the following cut-off rule:

• If the signal is above the cut-off s the good is allocated without verification (x=1).
• If the signal is below the cut-off s, the good is allocated if and only if the allocation

value net verification v(t, s)− c is positive. In this case, the agent is always verified
(z=1).

Formally,

xt,s = 1{s ≥ s̄} and zt,s = 1{s < s̄} · 1{v(t) > c}.

The cut-off s̄ is uniquely characterized by

s̄=min
�

s | ET[ (v(T) | S= s ]> ET[ (v(T)− c )+ | S= s ]
	

.

Proof. As S and T are affiliated, the function s 7→ ET[v(T)− (v(T)− c)+| S= s ] is
nondecreasing. Hence, there is a unique cut-off s̄ such that

(

ET[v(T)− (v(T)− c)+| S= s ]≥ 0, ∀s≥ s̄

ET[v(T)− (v(T)− c)+| S= s ]< 0, ∀s< s̄.
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z = 1

x = 1

s̄

v(t, s) = c

x + z = 0

v(t, s) = 0

t ↑

s→

Figure 3.1. Transparent cut-o� mechanism

Figure 3.1 sketches the cut-off mechanism. If the signal realization is above the
cut-off, s̄, the principal is optimistic about T and allocates the good to the agent
without verification (x = 1), irrespective of his reported type. If the signal is below
the cut-off, the agent can receive the good only after his type report is verified (z=
1) to be above a threshold so that v(t, s)− c is positive. It is easy to see that this
mechanism is transparently implementable. Either the signal is such that the agent
gets the good independent of his type (the shaded blue area to the right of s̄), or
he can only get the good after being verified (the shaded yellow area above the
horizontal line and to the left of s̄) so that misreporting a higher or lower type
cannot be beneficial even when the agent knows which signal s has realized.

3.5 Optimal BIC Mechanisms

This section shows that the optimal transparent mechanism is also optimal in the
broader class of BIC mechanisms. This implies that the principal cannot exploit the
privacy of her signal; transparency comes at no cost.

Proposition 3.4.
The optimal transparent mechanism is optimal in the class of Bayesian mechanisms.

To gain intuition on why the principal cannot exploit different types’ beliefs, we
refer back to the example in the introduction. Analogous to the method of Crémer
and McLean (1988), the way in which the principal could potentially save verifica-
tion costs with a nontransparent mechanism was to verify the agent who reports
a high type only if the signal is low and not to reveal the signal realization to the
agent.11 Two features of the costly verification setting rule out that such an improve-
ment exists. First, recall that in the example, the improvement was constructed by
shifting verification probability to the lower signal, which is more likely to occur

11. As otherwise, a low type would misreport after observing a high signal.
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from the low type’s perspective, and that this was the only type with an incentive
to deviate. The lack of monetary transfers implies that the relevant incentive con-
straints in verification mechanisms are those that impede reports from less-favorable
toward more favorable types. Hence, it is favorable for all relevant incentive con-
straints to shift verification probability toward lower signals.12 Second, the signal
realization does not affect the principal’s valuation conditional on the agent’s type.
This allows a shift in the allocation probability of lower types toward exactly those
signal realizations after which a misreport may be fruitful (high signals that feature
less verification).13

The optimal transparent mechanism in the last section already distributes alloca-
tion and verification probabilities in the way that this intuition suggests. The proof of
Proposition 1 makes use of the first feature by relaxing the problem and considering
only a specific class of upward incentive constraints. Within the relaxed problem,
we make use of the second fact to apply feasible deviations to an arbitrary mech-
anism that make the principal better off, and finally yield the optimal transparent
mechanism.

Proof. We show that the cut-off mechanism from Corollary 3.3 with

s̄=min
�

s | ET[ (v(T) | S= s ]> ET[ (v(T)− c )+ | S= s ]
	

solves the following relaxation of the problem, which proves that it is a solution to
the original LP. Define the set of profitable types as those t with a positive allocation
value,

T + ≡ {t ∈ T |v(t) > 0},

and the unprofitable types accordingly as T − ≡ T \T +. Both sets are non-empty by
the assumption that v crosses 0. Otherwise, the optimal mechanism is trivial.

The relaxed problem includes only those incentive constraints that prevent types
in T − from misreporting types in T +. Hence, it reads as follows:

(LP.r) max
(x,z)≥0

∑

t∈T

∑

s∈S
ft,s
�

xt,s v(t) + zt,s (v(t) − c)
�

s.t. ∀t ∈ T −, ∀t̂ ∈ T + : (BICt,̂t) and
∀(t, s) ∈ T × S : xt,s + zt,s ≤ 1.

In the remainder of the proof, we derive feasible changes to a solution to the
relaxed problem, which do not lower the principal’s value and which finally lead to

12. If higher types had an incentive to deviate downward, it may save verification cost to verify
after observing high signals for some type reports. This does not occur in our setting.

13. We want to highlight that in settings with monetary transfers, even payoff-irrelevant corre-
lated signals allow for full surplus extraction (Riordan and Sappington, 1988). In the next section, we
consider the case in which the signal has a direct effect on the principal’s value.
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the cut-off mechanism. We make repeated use of the following notation: we denote
changes in the allocation probability by dxt,s so that the new probability after the
change is given by xt,s + dxt,s. dxt,s may be positive or negative. Analogously for dzt,s.
Further, d(BICt,̂t) denotes the change in surplus utility that type t receives from
reporting the truth rather than misreporting t̂, which is induced by a change of the
above form. Recall that the constraint (BICt,̂t) reads as

∑

s
ft,s
�

xt,s + zt,s − xt̂,s

�

≥ 0 so
that d(BICt,̂t) denotes the change to the left-hand side of this inequality.

The value for the principal is given by

V =
∑

t∈T

∑

s∈S
ft,s
�

xt,s v(t)+ zt,s (v(t)− c)
�

,

and dV will denote the induced change to this value.

Step 1: The optimalmechanism in the relaxed problem features∀t ∈ T − ∀s ∈ S : zt,s =
0:

Suppose zt,s > 0 for some type t ∈ T −. Shifting probability mass from zt,s to
xt,s such that the overall allocation probability stays constant,

0 < dxt,s = −dzt,s,

saves the principal verification costs and does not distort the incentives, as type
t’s incentive to misreport remains the same, and all incentive constraints to mis-
report a type t ∈ T − are ignored in the relaxed problem.

Step 2: There is an optimal mechanism in the relaxed problem featuring a cut-off form
for xt̂,·:

∀t̂ ∈ T + ∃s̃(̂t) ∈ S : xt̂,s











= 0 if s< s̃(̂t)

∈ [0, 1) if s= s̃(̂t)

= 1 if s> s̃(̂t)

.

Take a feasible IC mechanism of the relaxed problem featuring that for some
t̂ ∈ T +, ∃s< s′ ∈ S such that xt̂,s > 0, xt̂,s′ < 1.

Modify the mechanism only at two points, shifting allocation probability
mass from xt̂,s to xt̂,s′ , i.e. dxt̂,s < 0 and dxt̂,s′ > 0. Choose these shifts in a pro-
portion, such that for the highest unprofitable type, t̃≡maxT −, the incentive
to misreport t̂ remains unchanged:

0
!
= d(ICt̃,̂t)= −f̃t,s dxt̂,s − f̃t,s′ dxt̂,s′ = 0⇔ dxt̂,s = −

f̃t,s′

f̃t,s
dxt̂,s′ .

For all types t ∈ T −, we have t≤ t̃, and, therefore,

d(BICt,̂t)= −ft,s dxt̂,s − ft,s′ dxt̂,s′ = ft,s

�

f̃t,s′

f̃t,s
−

ft,s′

ft,s

�

dxt̂,s′ ≥ 0
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by the monotone likelihood ratio property.
The principal’s value changes in the following way:

dV =f̂t,s dxt̂,s v(̂t) + f̂t,s′ dxt̂,s′ v(̂t) = f̂t,s

�

−
f̃t,s′

f̃t,s
dxt̂,s′

�

v(̂t) + f̂t,s′ dxt̂,s′ v(̂t)

=f̂t,s

�

f̂t,s′

f̂t,s
−

f̃t,s′

f̃t,s

�

dxt̂,s′ v(̂t) ≥ 0,

since dxt̂,s′ > 0 and t̂ ∈ T + which implies both v(̂t)≥ 0 and t̂> t̃.
The proposed shift is clearly feasible if in the original mechanism, xt̂,s′ +

zt̂,s′ < 1.
In the case that xt̂,s′ + zt̂,s′ = 1, it can still be implemented by shifting in addi-

tion mass from zt̂,s′ to zt̂,s to ensure that xt̂,s′ + zt̂,s′ and xt̂,s + zt̂,s remain constant:

dxt̂,s′ + dzt̂,s′ = 0 and dxt̂,s + dzt̂,s = 0.

This implies dzt̂,s′ < 0 and dzt̂,s > 0. This is feasible, as xt̂,s′ < 1 and xt̂,s′ +
zt̂,s′ = 1 imply that zt̂,s′ > 0. As xt̂,s > 0, we must further have zt̂,s < 1 by feasibil-
ity.

The above changes in x imply for z the following:

dxt̂,s = −
f̃t,s′

f̃t,s
dxt̂,s′⇔ dzt̂,s =

f̃t,s′

f̃t,s
(−dzt̂,s′).

The incentives for any lower type to misreport his type as t̂ are weakened in the
same way as above because zt̂,s and zt̂,s′ do not play a role in the constraints that
prevent misreport t̂.

Finally, the principal’s value now changes by

dV =f̂t,s
�

dxt̂,s v(̂t) + dzt̂,s (v(̂t) − c)
�

+ f̂t,s′
�

dxt̂,s′ v(̂t) + dzt̂,s′ (v(̂t) − c)
�

= − c
�

f̂t,s dzt̂,s + f̂t,s′ dzt̂,s′
�

= − c f̂t,s

�

f̃t,s′

f̃t,s
−

f̂t,s′

f̂t,s

�

(−dzt̂,s′) ≥ 0,

as, by MLRP, the term in squared brackets is negative and, by assumption,
−dzt̂,s′ ≥ 0.

Step 3: There is an optimal mechanism in the relaxed problem featuring xt̂,. = xˆ̂t,. for all
t̂,ˆ̂t ∈ T +:

By the cut-off structure established in Step 2, xt̂,. = (0, . . . , 0,xt̂,̃s(̂t), 1, . . . , 1)
for all t ∈ T +. Suppose to the contrary that xt̂,̃s(̂t) +

∑

s>s̃(̂t) 1> xˆ̂t,̃s(̂̂t) +
∑

s>s̃(̂̂t) 1

for some t̂,ˆ̂t ∈ T +.
Replacing xˆ̂t,. by xt̂,. does not generate new incentives to misreport, but it

increases the principal’s expected value, as it increases the allocation probability
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for profitable types. If feasibility is hurt, i.e., xt̂,s + zˆ̂t,s > 1 for some s ∈ S , de-
crease zt̂,s until xt̂,s + zˆ̂t,s = 1. This is also a strict improvement for the principal,
as she saves verification costs.

Step 4: There is an optimal mechanism in the relaxed problem featuring xt̂,. = xˆ̂t,. for all
t̂,ˆ̂t ∈ T = T + ∪T −:

Fix some unprofitable type t ∈ T −. By Step 1, we have zt,. = 0. Optimally,
the principal wants to choose the lowest possible allocation probability for the
unprofitable types. However, she needs to grant him at least the same interim
allocation probability that he could achieve by misreporting to be a profitable
type t̂ ∈ T + (By steps 2–3, we know that xt̂,. is the same for all t̂ ∈ T +). As the
signal realization has no effect on the allocation value, the principal is indifferent
between any allocation vector xt,. which induces the same interim allocation
probability: E[xt,S|T = t]. Formally,

E[v(t, S)xt,S|T = t]= v(t)E[xt,S|T = t].

Therefore, she can grant the unprofitable types just the same allocation lot-
tery, they would face if they would misreport to a profitable type: xt,. = xt̂,..

In the section about optimal EPICmechanisms, we have shown how, for given
s, a constant allocation x·,s in t implies that the principal’s problem is reduced to
the choice between allocating without verification at all reports and allocating
after verification only if the report is such that v(t)− c≥ 0. This concludes the
proof for the first case of the theorem, showing that the cut-off mechanism solves
the relaxed problem and is therefore optimal in the original problem.

3.5.1 Application: pre-trial

Consider a defendant in court (the agent) who privately knows whether he is of
guilty or innocent type t ∈ {G= 1, I = 0}. The judge (principal) privately observes
the realization of a signal as a result of a pre-trial investigations and asks the agent
to plead either guilty or innocent (report his type). The judge decides whether to
conduct a costly trial (reveal the agent’s type) and whether the defendant should
be acquitted as a function of the type-signal report and the outcome of the trial, in
case it is conducted. A trial requires verification cost c> 0. The defendant’s utility
is 1 from acquittal and 0 if he is convicted, irrespective of his type.

The system wishes justice to prevail. If the allocation decision is identified with
acquitting the defendant the problem can be modeled by

v(t, s)= v(t)= t− r.

For some r ∈ (0, 1). If an innocent agent (t= 0) is convicted (x = 0) the net utility
loss is given by 0− v(1)= −(1− r). If a guilty agent (t= 0) is acquitted (x = 1) it
is given by v(0)− 0= −r.
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The code of procedure prescribes the mechanism in such a setting. The optimal
mechanism we derive resembles the proceedings of a pretrial: The case is dismissed
if the signal for the defendant’s innocence is strong enough, i.e. the charge is weak.
If the signal for innocence is below this cutoff, the agent can plead guilty and is
convicted, or can request a trial by pleading not guilty, after which he is acquitted
if he is indeed found to be not guilty and convicted otherwise.

An important implication from the transparency of the optimal mechanism is
that the justice system cannot gain from keeping the charge secret during a pretrial.
This is established practice in modern codes of procedures but was not always the
case. Compare for example today’s Austrian criminal code of procedure1⁴ with the
code of 18031⁵. While the modern code grants the right to learn about all potential
charges to the defendant, the version from 1803 gives the court of inquiry much
more discretion in the extent of information release to the defendant, stating that
he has to be informed only as far as necessary to notify him that he is accused.
Kittler (2003) argues that this observation is in line with the broader development
of continental European criminal procedure from the medieval inquisitorial proceed-
ings, which exhibited secret charges, tomodern forms of criminal law proceedings.1⁶

3.6 Direct Signal E�ects

In the previous sections, we characterized optimal mechanisms under the assump-
tion that the signal that the principal privately observes had no direct effect on her
allocation value.

In this section, we deviate from this assumption: suppose that the principal de-
rives valuation v : T ×S → R when allocating the good to an agent of type t at
signal s. We normalize the value she derives from not allocating again to 0 and as-
sume that t 7→ v(t, s) is nondecreasing for any s ∈ S . Note that the agent’s problem
does not change, so neither do the incentive constraints for the transparent mecha-
nism (EPIC(s)t,̂t) nor for the Bayesian (BICt,̂t). The only change is in the objective of
the principal, which reads as follows:

max
(x,z)≥0
E [ xT,S v(T, S) + zT,S (v(T, S) − c) ].

We first characterize the optimal transparent mechanism. This characterization
and the proof (in the Appendix) are analogous to Lemma 3.2. The reason is that by
transparency the optimal allocation and verification vector can again be determined

14. §6 (2) StPO: www.jusline.at/gesetz/stpo/paragraf/6
15. II.3 Von Untersuchung des Beschuldigten und dem Verhöre §331
16. Maybe the most famous defendant who is not informed about the charges he faces is Josef K.,

the protagonist in Franz Kafka’s novel The Trial. In fact, Kittler (2003) suggests that Kafka, who took
multiple courses in legal history before completing his law degree at the University of Prague, might
have based this "process" not on his contemporary but the medieval proceeding standards.
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for each signal realization s ∈ S separately so that the dependence of the value of
the allocation on the signal does not change the optimal solution.

Lemma 3.5. The optimal transparent mechanism is as follows: For all s ∈ S ,
(

xt,s = 1, zt,s = 0 if ET[ (v(T, s) − (v(T, s) − c )+ | S = s ] > 0

xt,s = 0, zt,s = 1{v(t,s)>c} otherwise.

The characterization of the optimal transparent mechanism in Lemma 3.5 holds
true for any functional form of the principal’s value v(·, ·), which is increasing in the
agent’s type. For the remainder of the paper, we distinguish between two cases in
which the direct effect is either positive or negative. We refer to the setting where
there is no direct effect as case 1.

Case 2: Positive Direct Effect.
First, we assume that for all t, s 7→ v(t, s) is increasing. For example the valuation
could take the functional form v(t, s)= t+ s− r, where the principal’s value from
allocating increases linearly in type and signal and r represents her reservation value
from not allocating.

In the court example, this corresponds to a situation in which it was beneficial
for the justice system that the final verdict confirm the initial charge.

Case 3: Negative Direct Effect.
By contrast, in the case in which for all t, s 7→ v(t, s) is decreasing, the direct effect is
negative. Here, the direct and indirect effects go in opposite directions. This direc-
tion seems natural, for example if the principal observes the allocation value of an
outside option s, which is affiliated with the allocation value of the agent t. In this
example her net utility from allocating could read as follows: v(t, s)= t− s. We also
assume that in this case, v(t, s) is sufficiently decreasing such that,

(Assumption 3) s 7→ E[v(T, s)|S= s] is decreasing.

3.6.1 Cut-o� Mechanisms

First, we establish that in this case, the optimal transparent mechanisms again have
a cut-off structure.

Corollary 3.6.

(i) If the direct effect of the signal is positive (Case 2: s 7→ v(t, s) is increasing), then
the optimal transparent mechanism is given by the following cut-off rule:

xt,s = 1{s ≥ s̄} and zt,s = 1{s < s̄} · 1{v(t,s) > c}.
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x = 1

z = 1

s̄

v(t, s) = c

x + z = 0

v(t, s) = 0

t ↑

s→

Figure 3.2. Transparent cut-o� mechanisms with increasing v(t, ·)

t ↑

s→s̄

z = 1

x = 1 x + z = 0

v(t, s) = 0

v(t, s) = c

Figure 3.3. Transparent cut-o� mechanisms with (su�ciently) decreasing v(t, ·)
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(ii) If the direct effect of the signal is sufficiently negative (Case 3: s 7→ isv(t, s) is de-
creasing) and s 7→ E[v(T, s)|S= s] is decreasing (Assumption 3), then the optimal
transparent mechanism is given by the following cut-off rule:

xt,s = 1{s ≤ s̄} and zt,s = 1{s > s̄} · 1{v(t,s) > c}.

The cut-off s̄ is, in both cases, uniquely characterized by

s̄=min
�

s | ET[ (v(T, s) | S= s ]> ET[ (v(T, s)− c )+ | S= s ]
	

.

3.6.2 Optimal Bayesian Mechanisms

If the direct effect is positive, the optimal Bayesian mechanism is again given by the
optimal transparent mechanism.

Proposition 3.7.
If the direct effect of the signal is positive (Case 2: s 7→ v(t, s)), the optimal transparent
mechanism is also optimal in the class of BIC mechanisms.

The proof is relegated to the Appendix. We again introduce a relaxation by defin-
ing a set of profitable types T +, but now, the relaxed problem has to include incen-
tive constraints ensuring that no type t from the entire T has an incentive to misre-
port a t̂ ∈ T +, which is higher than t. That is, this relaxed problem ignores all down-
ward incentive constraints and all constraints preventing misreports toward types
within T − ≡ T \T +. This requires altering the construction of profitable perturba-
tions, but the intuition is similar to the previous case. The transparent mechanism
requires shifting allocation probability toward higher signals. If the principal’s value
is increasing in the signal, this shift is profitable and, therefore, already a feature of
optimal BIC mechanisms.

The equivalence between transparent and Bayesian optimal mechanisms does
not extend to the case where the direct effect is negative and s 7→ v(t, s) is decreasing
(Case 3). In this case, the principal may incur loss when she chooses the EPIC optimal
mechanism or, equivalently, when she publicizes the realization of the signal before
the agent’s report.

Proposition 3.8.
If the direct effect of the signal is negative (Case 3: s 7→ v(t, s) is decreasing), and the
optimal transparent mechanism (x, z) features xt̂,s > 0 and zt̂,s′ > 0 for some t̂ ∈ T
and some s< s′ ∈ S , then there exists a mechanism (x̃, z̃) with a strictly higher value,
which is BIC. Hence, the principal profits strictly from S being private.

Note that under assumption 3 (ET[ (v(T, s) | S= s ] is decreasing in s), the opti-
mal transparent mechanism has the properties stated in the proposition whenever
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it is nontrivial, i.e. whenever x and z are positive at some combinations (t, s). The
proof is again relegated to the Appendix.

As noted previously, the principal saves verification costs by shifting verification
probability at high reports toward low signals. Low types, who have an incentive to
misreport, find such signals more likely. Transparency then requires a shift in the
allocation probability for low types toward the other signal realizations to ensure
that at those signals indicating no verification of high reports, the low types have
no incentive to deviate. If the principal’s value is decreasing in the signal, shifting
allocation toward higher signals comes at a cost and, therefore, transparency comes
at a cost.

3.7 Discussion and Related Literature

3.7.1 Literature

In settings where monetary transfers are feasible, the principal can design a lottery
rewarding the agent for guessing the value of her privately observed signal correctly.
Different agent types hold different beliefs over the signal distribution and, there-
fore, reveal their type by guessing the signal they deem most likely. If the agent’s
liability is not limited, the principal can increase reward and loss in the lottery to
such an extent that the incentives to win the lottery exceed any incentives regarding
the allocation decision. In doing so, she can learn the agent’s type at arbitrarily small
costs. Mechanisms with monetary transfers and correlated information have been
discussed by Crémer and McLean (1988), Riordan and Sappington (1988), John-
son, Pratt, and Zeckhauser (1990), and McAfee and Reny (1992), who all establish
conditions on the information structure that ensure full surplus extraction by the
principal. As all surplus can be extracted, revenue maximization leads to ex-post ef-
ficient allocations. Neeman (2004) discusses the genericity of the above-mentioned
conditions and shows that full surplus extraction is possible only if every preference
type is “determined” by his belief over the correlated characteristics. Even though
this condition is fulfilled, in our setting with costly verification instead of monetary
transfers, full surplus extraction is not feasible and implementing the ex-post effi-
cient allocation is not optimal for the principal.

The full surplus-extracting lotteries require potentially unbounded transfers. For
the case of bounded transfers or limited liability, Demougin and Garvie (1991) show
that the qualitative results, the application of rewards as bets on the signal, still apply.
Different from our setting, the principal gains by maintaining her signal private.

In the absence ofmonetary transfers, Bhargava, Majumdar, and Sen (2015) show
how positively correlated beliefs among voters allow overcoming the impossibility of
nondictatorial voting rules established by Gibbard (1973) and Satterthwaite (1975).

Our result is in line with the findings in other settings where monetary trans-
fers are not feasible but correlated information is absent. The literature (Glazer and
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Rubinstein, 2004; Ben-Porath, Dekel, and Lipman, 2017; Hart, Kremer, and Perry,
2017; Erlanson and Kleiner, 2019; Halac and Yared, 2019) has found optimal mech-
anisms to take a simple cut-off structure and to be EPIC in the sense that the agents
would also report truthfully if they were informed about the other agents’ type real-
izations before their report.

The possibility for the mechanism designer to verify an agent’s private infor-
mation at a cost was first introduced by Townsend (1979) considering a principal-
agent model for debt contracts, which was extended to a two-period model by Gale
and Hellwig (1985). These early models of state verification feature both, monetary
transfers and verification. Glazer and Rubinstein (2004) introduce a setting where
the principal has to take a binary decision depending on the multidimensional pri-
vate information of the agent. Here, the principal cannot use monetary transfers,
but she can learn about one dimension before making her decision.

Our model is most closely related to that of Ben-Porath, Dekel, and Lipman
(2014), who model costly verification and consider the case of allocating a good
among finitely many agents whose types are independently distributed; see also
the discussion section. Erlanson and Kleiner (2019) study a collective decision prob-
lemwith costly verification and show that the optimal mechanism is EPIC and can be
implemented by a simple weighted majority voting rule. Mylovanov and Zapechel-
nyuk (2017) consider an allocation problem without monetary transfers in which
the principal learns the agents’ types without cost but only posterior to the alloca-
tion decision and has the ability to punish untruthful reports up to a limit. Halac
and Yared (2019) consider a delegation problem and specify conditions on the veri-
fication cost that ensure optimality of a threshold mechanism with an escape clause.

Erlanson and Kleiner (2019) show further that the equivalence between BIC and
EPIC mechanisms holds more generally rather than only for optimal mechanisms.
This relates to Gershkov, Goeree, Kushnir, Moldovanu, and Shi (2013) and Manelli
and Vincent (2010), who show equivalence between BIC and DIC mechanisms in
settings with monetary transfers. All these results have been derived under the as-
sumption that the private information of players is independently distributed; we
deviate from this assumption by introducing correlation between the agent’s type
and the principal’s signal.

As the principal has private information, our model is also related to the in-
formed principal problem cf. Myerson (1983) and Maskin and Tirole (1990). With
monetary transfers, Severinov (2008) and Cella (2008) show that correlated infor-
mation allows for an efficient solution to the informed principal problem.We assume
that the principal designs mechanisms with full commitment over allocation proce-
dures before observing the signal. A priori, there is no informed principal problem
in our model, but in the discussion section, we show that the optimal mechanism
we derive also solves the informed principal problem.
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Roadmap. After an example highlighting the difficulties that correlation adds to
the canonical verification setup, and showing how our findings advocate for trans-
parency in pretrial investigations, section 2 sets up the model. The characterization
of optimal mechanisms starts in section 3 for the class of transparent mechanisms,
and section 4 shows that this mechanism is optimal in the broader class of BIC
mechanisms. We then extend the analysis to a specification in which the princi-
pal’s valuation may be affected by the signal realization, and discuss the relation to
favored-agent mechanisms and to the informed principal problem.

3.7.2 Favored-agent mechanism

Ben-Porath, Dekel, and Lipman (2014) study the problem of allocating a single indi-
visible good among several agents. The principal’s utility from allocating to an agent
is this agent’s private information which is assumed to be independently distributed
across agents. The principal can perfectly verify any agent’s type at an agent-specific
cost. Ben-Porath, Dekel, and Lipman (2014) show that optimal mechanisms are so-
called favored-agent mechanisms, which allocate the object to a predetermined (fa-
vored) agent if no other agent reports a type above his individual threshold. When-
ever there is a type report above the threshold from an agent other than the favored
agent, the highest type, net of verification costs, is verified and receives the good
conditional on having reported the truth. In our setting, we can interpret the value
s as coming from a second agent’s type whose verification cost is zero.

We can interpret v(t, s)= t+ s as the (net) value of allocating to player one
whose type is t. If we let −s be the type of a second player, MLRP between type
and signal means that the two players have negatively correlated values. Case 2
of our setting is fulfilled, and the EPIC mechanism from Figure 3.2 is optimal. This
EPIC mechanism is essentially a favored-agent mechanism in which player one is the
favored agent. If player two’s type, −s, is low, i.e. s is above the cut-off, agent one
always gets the good without being verified. If the signal is below a cut-off, agent
one gets the good only if he is verified to have the highest type, net of verification
costs, i.e., if t− c≥ −s− 0.

Similarly, we can interpret v(t, s)= t− s as the value of allocating to player one
if player two’s type is s, so that MLRP implies positive correlation. As the utility
function v(t, s)= t− s is decreasing in s, case 3 is fulfilled and therefore (proposition
3.8) the EPIC favored agent mechanism is not generally, the optimal mechanism.

The difference between the present paper and Ben-Porath, Dekel, and Lipman
(2014) is the correlation between players’ types through MLRP. In contrast to their
setting, here, different types hold different beliefs and therefore expect different
interim allocations for a fixed type report. Hence, one cannot reduce the mechanism
to interim allocation probabilities for each report.

Despite the technical differences in solving for the optimal mechanism, we find
a close connection to favored-agent mechanisms (which are optimal under indepen-
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dence) and we infer that they remain optimal under negative correlation but not
under positive correlation.

3.7.3 Informed principal problem

By our assumptions on the principal’s commitment, the mechanism proposed by
the designer does not convey information to the agent. However, the fact that the
principal’s signal can bemade public without loss implies that the informed principal
game has a separating equilibrium in which the agent perfectly learns the principal’s
type from the proposal. This implies that our mechanism constitutes a solution to the
informed principal problem for Cases 1 and 2 when the EPIC mechanism is optimal.

3.8 Concluding Remarks

This paper studies the role of information in amechanism designmodel, in which the
principal may use costly verification instead of monetary transfers to incentivize the
revelation of private information. We show that a transparent mechanism is optimal.
It is without loss for the principal to make her information public before contracting
with the agent. Our result gives a rationale for the use of transparent procedures
in a variety of applications from hiring to procedural law. This is in contrast with
results on correlation in mechanism design problems with money.

In an extension in which the principal’s private information also affects her pref-
erences, we characterize the mechanism and show that the above qualities remain
if the information and direct effect work in the same direction. In the opposite case,
we show how the principal can benefit by ensuring that her signal remains private.
Interesting directions for future analysis include the question of whether, with cor-
relation, the equivalence between BIC and transparent (EPIC) mechanisms holds
more generally than for optimal mechanisms.

Appendix 3.A Revelation Principle

The revelation principle presented here is close to the revelation principle in Ben-
Porath, Dekel, and Lipman (2014), but it takes into account possible issues arising
from the correlation between the signal and the type realization.
Pick any (possibly dynamic) mechanism G and an agent strategy sA that is a best re-
sponse to this mechanism. Then, there is an equivalent incentive compatible, direct,
two-stage mechanism characterized by the pair of functions (e, a),

e : T × S → [0, 1],

a : T × T ∪ {;} × S → [0, 1],

of the following form:
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(1) The agent reports his type t̂ ∈ T .
(2) Given her signal realization s, the principal verifies the agent’s type with proba-

bility e(̂t, s).
(3) Depending on the result of this revision t ∈ T ∪ {;}, where ; encodes the event

that there was no revision, the principal allocates the good to the agent with
probability a(̂t, t, s).

Instead of G, the principal could commit to the following mechanism:

• The agent reports a type t̂ ∈ T .
• Given this report and her signal’s realization, s, the principal calculates the

marginal probability of verification in the equilibrium in the original game under
the condition that the agent’s type was t̂ and the principal’s signal was s:1⁷

e(̂t, s) := P(there is verification|sA(̂t), S= s).

• The principal verifies the agent’s true type with this probability: e(̂t, s).
– If she finds that the agent reported the truth, t̂= t, or if she did not verify

t= ;, she allocates the good with probability that equals the marginal prob-
ability of allocation in the original mechanism, conditional on the type being
equal to t̂ and the signal being equal to s.

a(̂t, t̂, s)= a(̂t,;, s)= P(allocation|sA(̂t), S= s).

– If she verifies and finds out that the agent misreported, i.e., t 6∈ {̂t,;}, the
allocation probability is determined in the following way:
The principal constructs a lottery over all stages in the original mechanism,
which have the principal verify the agent with positive probability in
equilibrium, conditional on the event that the agent played according to
sA(̂t) and the signal was s.
The probabilities of the lottery are chosen such that they equal the probabil-
ity of verifying at this stage for the first time, conditional on the event that
there is verification at some point in the game.
Now, she chooses one of these stages according to the above probabilities.
She simulates the game from this point onward, assuming that the game
had reached this stage and it was found at this point that the agent’s true
type was t, by letting the simulated agent behave according to what is
described in sA(t) for behavior after this knot and the verification. The
strategy sA contains a plan for the behavior of the agent from this stage
onward. The principal simulates his own behavior, as prescribed in the

17. This means the probability that there was verification at any point in the game, specified by
G and played by the agent according to sA(̂t), under the condition that signal s realized.
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original mechanism.

Note that given any signal realization, this reproduces exactly the same
allocation profile as the following deviation strategy for type t 6= t̂ (which
he could play without knowing the true signal realization s):
The agent of type t imitates type t̂’s behavior s(̂t) until the first verification,
and then sticks to the behavior that the equilibrium strategy prescribes for
his type.

If the agent reports the truth, the marginal probabilities of verification and al-
location and, therefore, the expected utilities of the agent and the principal are
the same in both mechanisms.
However, truth-telling is optimal for the agent in the constructed mechanism,
as misreporting yields the exact same outcome as the above-described deviation
strategy in the original game and can therefore be not profitable.

There are two further observations that help simplify the class of possible optimal
mechanisms. In short, in any optimal mechanism, the principal will chose he highest
possible punishment for detected misreports and the highest possible reward for
detected truth-telling.

(1) Maximal punishment: t 6∈ {̂t,;}⇒ a(̂t, t, s)= 0
As the mechanism is direct, in equilibrium, the agent will not lie; therefore,
decreasing a(̂t, t, s) for t 6∈ {̂t,;} will not affect the expected utility of the mech-
anism designer. This deviation only increases the incentives to report truthfully.
Therefore in can be assumed WLOG that the optimal mechanism features maxi-
mal punishment.

(2) Maximal reward: e(̂t, s)> 0⇒ a(̂t, t̂, s)= 1.
Suppose a(̂t, t̂, s)< 1. One could now lower the probability of verification
de(̂t, s)< 0 while increasing the probability of allocation after confirming the
report as true da(s, t̂, t̂)> 0 such that d(e(̂t, s)a(̂t, t̂, s))= 0.
Lowering the verification probability would only increase the incentives to misre-
port and the overall allocation probability after report t̂ and signal s, if there was
allocation with positive probability conditional on no verification, i.e. a(s, t̂,;)>
0. However, in this case, this allocation could be lowered da(s, t̂,;)< 0 such that
d((1− e(̂t, s))a(s, t̂,;))= 0, and the incentives to misreport and the overall allo-
cation probability would remain constant. As these procedure would save veri-
fication costs while keeping all unconditional allocation probabilities constant,
the fact that an optimal mechanism features non-maximal reward can be ruled
out.

These observations fix the allocation after verification. Effectively the mechanism
designer therefore has to choose only the verification probability e(t, s) and the al-
location probability, conditional on no verification a(s, t,;).
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For convenience, define zt,s = e(t, s), the joint probability of verification and alloca-
tion, and x(t, s)= (1− e(t, s))a(t,;, s), the joint probability of no verification and
allocation.
Note that the set of mechanisms described by

{(xt,s, zt,s)t∈T ,s∈S |∀t ∈ T ∀s ∈ S : 0≤ xt,s + zt,s ≤ 1}

is equivalent to all maximal reward and punishment, two-stage, direct mecha-
nisms.1⁸

Appendix 3.B Proofs not included in the paper

3.B.1 Proof of proposition 3.7

Step 0: (Relaxation) Define the following cut-off in the signal space:

s=min{s|E[v(T, s)|S= s]> E[(v(T, s)− c)+]},

where (a)+ =max{0, a} and we use the convention that min;=maxS . Note that
v(t, s)− (v(t, s)− c)+ =min{c, v(t, s)} is increasing in both components. Due to the
MLRP it follows that E[v(T, s)|S= s]−E[(v(T, s)− c)+ is increasing in s.

Next, define the set of profitable types T + = {t ∈ T | v(t, s)≥ 0}. We denote all
types that are not profitable by T − = T −T +.

The relaxed problem ignores certain incentive constraints. It optimizes the same
objective function but only subject to:

∀t̂ ∈ T + ∀t ∈ T with t< t̂ : (ICt̂t)

Step 1: There is an optimal solution to the relaxed problem that takes a cut-off form
in x for all t ∈ T :

∀t ∈ T ∃ s̃(t) ∈ S : xt,s =











0 if s< s̃(t)

xt,s ∈ [0, 1) if s= s̃(t)

1 if s> s̃(t)

.

Proof. Suppose there is a (relaxed) incentive compatible mechanism which has for
some t ∈ T and s′ < s′′ ∈ S , that xt,s > 0 and xt,s′ < 1.

18. The inverse mapping is given by

e(t, s), a(t,;, s))=

�

zt,s,
xt,s

1− zt,s

�

.

Note that the value of a(t,;, s) does not play any role in the mechanism if e(t, s)= zt,s = 1 and can
therefore be chosen arbitrarily.
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In the following, we consider a shift in allocation probability from xt,s′ to xt,s′′

that keeps the overall allocation probability for type t constant:

ft,s′ dxt,s′ + ft,s′′ dxt,s′′ = 0⇔ dxt,s′
︸︷︷︸

<0

= −
ft,s′′

ft,s′
dxt,s′′
︸︷︷︸

>0

.

First, for any type t− < t the probability of receiving the good without verification
after a misreport t decreases in the new mechanism:

f̃t,s′dxt,s′ + f̃t,s′′dxt,s′′ = −f̃t,s′

�

ft,s′′

ft,s′
−

f̃t,s′′

f̃t,s′

�

dxt,s′′ ≤ 0.

The last inequality holds since the likelihood ratio is increasing. The shift yields
type t the same allocation probability, so he cannot have a new incentive to misre-
port. Therefore, all relaxed incentive constraints survive.

Second, the modified mechanism yields the principal a higher expected value:

ft,s′ dxt,s′ v(t, s′)+ ft,s′′ dxt,s′′ v(t, s′′)= ft,s′′dxt,s′′
�

−v(t, s′)+ v(t, s′′)
�

> 0

The proposed shift is clearly feasible if in the original mechanism xt,s′′ + zt,s′′ < 1.
In the case that xt,s′′ + zt,s′′ = 1, it can still be implemented by shifting in addition
mass from zt,s′′ to zt,s′ such that xt,s′′ + zt,s′′ and xt,s′ + zt,s′ stay constant:

dxt,s′ = −dzt,s′ and dxt,s′′ = −dzt,s′′ .

As we assume xt,s′′ < 1 and xt,s′′ + zt,s′′ = 1, we have that zt,s′ > 0. Since xt,s′ > 0 we
also have zt,s′ < 1.

The incentives for any lower type to misreport his type as t are weakened in the
same way as above since zt,s and zt,s′ do not play a role in these constraints. The
incentive for t to misreport is not affected since the total allocation probability x+ z
is kept constant.

Further, the principal’s expected value is not changed by this shifts:

ft,s′
�

dxt,s′ v(t, s′) + dzt,s′ (v(t, s′) − c)
�

+ ft,s′′
�

dxt,s′′ v(t, s′′) + dzt,s′′ (v(t, s′′) − c)
�

= −c ft,s′′

�

ft,s′′

ft,s′
−

ft,s′′

ft,s′

�

(−dzt,s′) = 0.

The reason is, that the allocation (x+ z) remains the same with these shifts, so that
only the verification cost changes. Yet, the change in verification is such that it does
change the expected verification probability for the true type t and therefore neither
the expected verification cost for the principal.

Step 2: The optimal mechanism in the relaxed problem features,

∀t ∈ T − ∀s ∈ S : zt,s = 0.
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Proof. In the relaxed problem we disregard all incentive constraints that prevent the
agent to misreport his type as t ∈ T −. If there were some t ∈ T − and s ∈ S with
zt,s > 0, shifting probability mass from zt,s to xt,s by

dzt,s
︸︷︷︸

<0

= − dxt,s
︸︷︷︸

>0

,

would save the principal verification costs while keeping the overall allocation prob-
ability constant. It would therefore not affect the incentive constraints in the relaxed
problem.

Step 3: We can assume that the optimal mechanism also takes a cut-off form in
x+ z:

∀t ∈ T ∃s(t) ∈ S : xt,s + zt,s =











0 if s< s(t)

xt,s + zt,s ∈ [0, 1) if s= s(t)

1 if s> s(t)

.

Proof. For t ∈ T −, this property follows immediately from the previous two steps
with s(t)= s̃(t).

Suppose for t ∈ T + that there exist s′ < s′′ ∈ S with zt,s′ > 0 and xt,s′′ + zt,s′′ < 1.
To rule out this possibility, consider a shift in mass from zt,s′ to zt,s′′ in a way that the
allocation probability for a truth-telling agent of type t remains constant, i.e.,

dzt,s′′
︸︷︷︸

>0

=
ft,s′

ft,s′′
(− dzt,s′
︸︷︷︸

<0

).

Note that this shift is feasible by assumption and that it will keep all relaxed incentive
constraints unchanged, since the true type t receives the same expected allocation
probability, and zt,· does not play a role in the IC constraints preventing misreport
t.

From the principal’s point of view, it is favorable because it keeps the verification
probability and thus the costs constant, while shifting allocation mass from (t, s′) to
the more favorable type–signal pair (t, s′′), i.e.

dV = ft,s′dzt,s′[v(t, s′)− c]+ ft,s′′dzt,s′′[v(t, s′′)− c]= 0 · c+ ft,s′[v(t, s′′)− v(t, s′)](−dzt,s′)> 0.

Step 4: The following restriction of the relaxed problem is without loss for the prin-
cipal. Require, additionally, that the IC constraints hold point-wise. That is ∀t ∈ T ,
∀t̂ ∈ T + with t< t̂ and ∀s ∈ S :

(EPIC(s)t,̂t)= xt,s + zt,s − xt̂,s ≥ 0.

An optimal solution to the restricted relaxed problem therefore also solves the re-
laxed problem.
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Proof. By the above steps, the (Bayesian) IC constraints in the relaxed problem can
be written as follows:1⁹

∀t ∈ T ∀t̂ ∈ T + with t̂ > t :

(ICt,̂t) =
∑

s∈S
ft,s(xt,s + zt,s) −

∑

s∈S
ft,sxt̂,s

= ft,s(t)(xt,s(t) + zt,s(t)) +
∑

s>s(t)

ft,s 1 − (ft,̃s(̂t) xt̂,̃s(̂t) +
∑

s>s̃(̂t)

ft,s 1)
!
≥ 0.

This condition clearly requires that s(t)≤ s̃(̂t) and, in the case of equality, xt,s(t) +
zt,s(t) ≥ xt̂,̃s(t). Because by the definition of s(t), x+ z is equal to 0 below and equal to
1 above this threshold, we can conclude that for all s, xt,s + zt,s ≥ xt̂,s, which implies
(EPIC(s)t,̂t).

Step 5: Consider an optimal mechanism of the above cut-off structure that satisfies
(EPIC(s)t,̂t)≥ 0 for all t ∈ T , for all t̂ ∈ T + with t̂> t, and for all s ∈ S . Then, it
also must hold for t, t̂ ∈ T − with t< t̂, that (EPIC(s)t,̂t)≥ 0. This means that no
unprofitable type has an incentive to report a higher unprofitable type.

Proof. Assume that for some s ∈ S there are types t< t̂ ∈ T − such that the con-
straint (EPIC(s)t,̂t) is violated.

Define s′ ≡min{s ∈ S |∃t< t̂ ∈ T − : xt,s + zt,s < xt̂,s} to be the lowest signal for
which some type t profits from a higher report t̂ ∈ T −. Let t′ ≡min{t ∈ T −|∃t̂ ∈
T with t̂> t : xt′,s′ < xt̂,s′} be the smallest type with EPIC(s′) incentives to misreport
his type to some type t̂ ∈ T −.

Since zt′,s′ = 0 for the unprofitable type t′ (Step 3), this implies xt,s′ < xt̂,s′ . As
t′, t̂ ∈ T −, it follows that t̂’s EPIC(s′) constraints are slack for all reports in T +. Hav-
ing xt̂,s′ > xt′,s′ ≥ 0 can therefore only be optimal in the relaxed problem if v(̂t, s′)≥ 0.
This implies that s′ > s̄ since T − is precisely defined as the set of types t with
v(t, s̄)< 0.

Since xt′,s′ < xt̂,s′ ≤ 1, taking the cut-off structure from step 1 into account we
can infer that for all s< s′ it holds that xt′,s′ = 0 . In particular we have xt′ ,̄s = 0.

By the minimality of s′ we get that 0= xt′ ,̄s ≥ xt̃,̄s for all t̃ ∈ T − with t̃> t′. By the
minimality of t′ we get that xt̃,̄s ≤ xt′ ,̄s = 0 for all t̃ ∈ T − with t̃< t′. Furthermore, by
EPIC(̄s) IC compatability, it follows that 0= xt,̄s ≥ xt′ ,̄s for all t′ ∈ T +. So we have that
xt,̄s = 0 for all t which by definition of s̄ cannot be optimal in the restricted problem
(for which this mechanism is also optimal) as ET[ (v(T, s̄) | S= s̄ ]> ET[ (v(T, s̄)−
c )+ | S= s̄ ]≥ 0.

Step 6: Consider an optimal mechanism of the above cut-off structure that satis-
fies (EPIC(s)t,̂t)≥ 0 for all t ∈ T , for all t̂ ∈ T + with t̂> t, and for all s ∈ S . Then,

19. Making use of the fact that zt,s = 0 for all t ∈ T −.
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for t, t̂ ∈ T with t> t̂ it mus also satisfy (EPIC(s)t,̂t)≥ 0. This means that no type
benefits from reporting any lower type.

Proof. Assume that there are types t′′ > t′ ∈ T such that xt′′,s + zt′′,s < xt′,s for some s.
WLOG let t′′ be the lowest type for which such a downward deviation is profitable.

Optimality of the relaxed mechanism requires then that ET[ v(T, s)1{T≤t′} | S=
s ]> 0. Otherwise the principal would be better off by lowering x for all types be-
low t′′ (Note that xt′′,s + zt′′,s < xt′,s implies that types t< t′′ cannot have binding
upwards constraints towards reports higher than t′′ as this would violate the up-
ward constraints for t′′). Monotonicity of the value in the type in turn implies that
v(t, s)> 0 for all t> t′. This contradicts optimality as the designer could increase xt,s

for all higher types without violating any incentives. Either by just increasing xt,s if
xt,s + zt,s < 1 or by lowering zt,s at the same time to save verification costs.

Step 7: This concludes the proof. We have shown that optimal solution to the relaxed
problem is EPIC (Step 4). Therefore the principal’s expected value in the original
problem cannot exceed the expected value from this optimal EPIC solution. In step
5 and 6 we ruled out the two possible violations of the original (ex-post) incentive
constraints that can arise in a solution to the relaxed problem. Hence the candidate
solution is also EPIC in the original problem. In particular, it is Bayesian incentive
compatible and therefore a solution to the original problem.

3.B.2 Proof of Proposition 3.8

Proof. To prove the claim, we construct an improvement that will not violate the
Bayesian incentive constraints. This suffices to show that the principal strictly prof-
its from ensuring that the realization of S remains private because the improved
mechanism will implement the same allocation at lower verification costs. Consider
the shift of mass from zt̂,s′ to zt̂,s and —in order to maintain the overall allocation
x+ z unchanged— vice versa for xt̂,s′ and xt̂,s :

dxt̂,s′ + dzt̂,s′ = 0 and dxt̂,s + dzt̂,s = 0.

To ensure that the Bayesian incentive constraints of all types t< t̂ are not vio-
lated by the shift, we require that

∀t< t̂ : d(ICt,̂t)= −ft,s dxt̂,s − ft,s′ dxt̂,s′ ≥ 0⇔ dxt̂,s′ ≤
ft,s
ft,s′

�

−dxt̂,s

�

.

The proposed change has (−dxt̂,s)> 0, and ft,s
ft,s′

is decreasing in t. Hence, the
right-hand side of the above expression is minimized at t′ =max{t ∈ T |t< t̂}. Note
that t̂ 6=min{t ∈ T }, as this would imply that at v(t, s′)> c> 0 at all levels of t so
that the optimal mechanism would allocate without verification after this signal.

Setting dxt̂,s′ =
ft′ ,s
ft′ ,s′

�

−dxt̂,s

�

ensures that the incentives to misreport toward t̂ are
weakened for all lower types.
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The above changes in x imply for z:

dxt̂,s =
ft′,s′

ft′,s
(−dxt̂,s′)⇔ (−dzt̂,s)=

ft′,s′

ft′,s
dzt̂,s′ .

The principal’s value changes by:

dV =f̂t,s
�

dxt̂,s v(̂t, s) + dzt̂,s (v(̂t, s) − c)
�

+ f̂t,s′
�

dxt̂,s′ v(̂t, s′) + dzt̂,s′ (v(̂t, s′) − c)
�

= − c
�

f̂t,s dzt̂,s + f̂t,s′ dzt̂,s′
�

= − c f̂t,s

�

ft′,s′

ft′,s
−

f̂t,s′

f̂t,s

�

(−dzt̂,s′) > 0.

The second equality follows because the allocation remains the same with these
shifts, so that only the verification cost changes.

Lastly, note that in the optimal EPIC mechanism, zt̂,s = 1 implies zt,s = 1 for all
t> t̂ and that x·,s is constant in the report at all s. Therefore, the fact that zt̂,s = 1 in
the original mechanism implies that the Bayesian IC constraints for higher types to
lie downward to t̂ are slack so that we can always find a shift in magnitude small
enough to not violate these constraints.

The only case in which these constraints are not slack in the optimal EPIC mech-
anism is when several types receive exactly the same allocation. In this case, the
above improvement can be applied to the highest report in this class.

3.B.3 Proof of Lemma 3.5

Proof. Similar to Step 0 in Lemma 3.2, for any s ∈ S , the optimal (x.,s, z.,s) can
be determined separately, as all constraints only involve allocation and verification
probabilities for the same signal realization.

This results in |S | separate problems, one for each possible signal realization
s ∈ S . In these separate problems v(t, s) is a function of t only. Therefore, for all
s ∈ S , all steps in the proof of Lemma 3.2 can be replicated with v(T) replaced by
v(T, s).
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