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Abstract

Chemical lead optimization (LO) plays an important role in pharmaceuti-
cal drug discovery. It represents a highly complex multi-objective process, in
which the ultimate goal is to identify a suitable candidate molecule that satis-
fies a variety of often contradicting properties. This is facilitated by iterative
synthesis and testing of structurally similar analog compounds, leading to the
formation of analog series (ASs) with distinct characteristics contingent upon
the project requirements. Decision-making during LO is largely driven by the
subjective intuition, experience, and knowledge of medicinal chemists, which
renders it challenging and prone to bias when assessing the overall progress of
a campaign. While most of the in silico methods relevant to LO are mainly
focused on characterizing single molecules, so far only a few approaches have
been explicitly designed to evaluate its course at the level of entire series.

This thesis follows the gradual evolution of computational methodologies
for data-driven LO rationalization based upon analyzing individual ASs. In
addition, it explores different strategies for design and prioritization of new po-
tential candidate compounds. Thereby, real-world LO campaigns are modeled
by systematically extracting series from publicly available compound bioactivity
data originating from medicinal chemistry literature and screening campaigns.
The incremental development of novel cheminformatic approaches for quanti-
fying the chemical saturation and structure-activity relationship progression of
ASs culminates in the introduction of the Compound Optimization Monitor
(COMO) as a diagnostic tool for holistic evaluation of different optimization
aspects. Thus, by subjecting ASs to comprehensive scoring, their development
stage can be estimated according to their distinct LO profile, providing a means
for objective comparison and (de)prioritization as well as rationale for potential
(dis)continuation criteria. Moreover, an elaborate system for virtual analog de-
sign and candidate selection is integrated into the method, in order to further
enhance its potential for practical application and support medicinal chemists in
deciding upon what compounds to synthesize next in a given series. Therefore,
different de novo design strategies for generation of synthetically accessible fo-
cused compound libraries ranging from rule-based methods to generative deep
learning models are investigated and combined with different approaches for
compound activity prediction.
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Chapter 1

Introduction

1.1 Drug discovery

Pharmaceutical research and development is an integral part of modern
medicine and healthcare.1 Since the late 1800s drug development has become
an increasingly complex task giving rise to a large high-tech multi-billion dollar
industry.2–5 Today, its importance is particularly evident in the midst of 2020’s
global COVID-19 pandemic.6,7 In an unprecedented effort to develop vaccines
and antiviral drugs within a shortest possible period of time, pharmaceutical
research has largely benefitted from the application of advanced computational
methods and artificial intelligence which significantly accelerate progression and
reduce the cost of the undertaken campaigns.8–10

1.1.1 Development stages

The process of small molecule drug discovery and development, albeit very
distinct in each case, generally consists of several stages as shown in Figure
1.11 The first step is target identification which involves basic research in patho-
physiology and chemical biology to explore and determine the pharmacologi-
cal target(s) and the molecular mechanism of action associated with a disease
phenotype.12–14 During the following stage of hit identification, large chemical
libraries of structurally diverse compounds15 are screened for activity against
the validated target in a series of biological assays.16,17 In the subsequent hit-to-
lead phase, compounds found to be active (hits) are examined more closely and
the most promising (lead) molecules, which typically represent several different
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chemotypes, are prioritized.18,19 In the next stage of lead optimization (LO),
critical drug-related properties, which determine the pharmacodynamic, phar-
macokinetic, and toxicological profile of a compound, are improved through
directed chemical modifications in lead structures accompanied by extensive
in vitro and in vivo testing.20 Finally, if successful, preclinical drug develop-
ment converges at the point of formal registration of an investigational new
drug (IND) for subsequent clinical trials in humans.21 If a drug is approved
by a regulatory institution and granted market access, its post-approval usage
and conferred therapeutic benefits must be continuously monitored according
to pharmacovigilance guidelines to protect patients from risks and adverse side
effects.22 The estimated success rate of drug development projects is around
10%23 and, given their considerable length and high financial cost, significant
efforts are made to reduce attrition in each of the aforementioned stages.24–27

Figure 1: Drug discovery and development. An overview of the main stages of drug
discovery and development is provided.

1.1.2 Computational methods

In the last several decades, a variety of in silico methods have been developed
to augment and accelerate experimental medicinal chemistry campaigns for
small molecule drug discovery.28–32 For example, structure-based computational
chemistry approaches such as molecular docking33 and molecular dynamics34

are related to the fields of structural biology and biophysics.29 They require
prior knowledge of the structure of both biological target and ligand(s) and
rely on theoretical and quantum chemistry to derive mathematical models for
explaining and predicting molecular interactions.30

In contrast, cheminformatics is primarily focused on “the design, creation,
organization, retrieval, analysis, dissemination, visualization, and use of chem-
ical information”.35,36 As a data-centric discipline similar to bioinformatics,37 it
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has emerged as an efficient tool to manage the exponentially increasing amounts
of generated chemical information in the era of Big Data.38–41 Cheminfor-
matics gives rise to ligand-based approaches, where explicit knowledge of the
pharmacological target structure is not imperative, since compound activity
is implicated by chemical similarity to already known ligands.30,39 The theo-
retical foundations for this are attributed to the similarity-property principle,
which is a leading paradigm in drug discovery and states that structurally sim-
ilar compounds demonstrate similar chemical and biological properties.42 This
serves as a basis for quantitative structure-property relationship (QSPR) and
quantitative structure-activity relationship (QSAR) analysis methods, which
aim at predicting changes in physicochemical properties and biological activ-
ity as functions of structural modifications in compounds.43–46 The similarity-
property principle is further utilized by ligand-based virtual screening, where
potential new hit compounds are identified from large pools of existing or vir-
tual molecules47 based on their similarity to known reference ligands or on the
presence of predefined structural features, such as pharmacophores which deter-
mine biological activity.48,49 Furthermore, machine learning (ML)50,51 and, more
recently, deep learning (DL)52–55 methods from computer science have been
widely adopted, often in combination with Big Data, to address the aforemen-
tioned classical cheminformatic problems46 as well as tasks such as chemoge-
nomics,56 de novo molecular design,57,58 chemical reaction prediction,59–61 and
exploring alternative molecular representations.62

1.1.3 Medicinal chemistry databases

Recent advances in cheminformatics can be attributed not only to the grow-
ing computational power and algorithmic development but also to the increas-
ing availability of chemical and biological data.63 Notable examples for online
databases relevant for drug discovery include DrugBank,64 the Protein Data
Bank,65 UniProt,66 SureChEMBL,67 and ZINC.68 Currently, the largest pub-
licly available repository for compound bioactivity information is PubChem
BioAssay.69 It stores heterogeneous small molecule screening data in form of
biological assays deposited by various research institutions worldwide. One of
the main advantages of PubChem is that by extracting data from many dif-
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ferent assays, information about compound test frequency can be obtained.
Conversely, the ChEMBL database comprises only compound bioactivity in-
formation collected from the medicinal chemistry scientific literature.70 Here,
automatic data extraction is coupled with manual curation, which leads to im-
proved data quality and homogeneity. Furthermore, ChEMBL provides a com-
prehensive uniform database vocabulary, which allows the definition of different
data confidence criteria and enables efficient data mining.

1.2 Chemical lead optimization

Once a promising lead compound with desirable activity for a given target
or disease phenotype has been identified among screening hits, it needs to be
transformed into an efficacious and safe clinical IND candidate.20 First and
foremost, a suitable candidate must be highly potent i.e. display a sustain-
able level of activity at the pharmacological target(s), typically at a nanomolar
concentration.71,72 Its selectivity profile with respect to physiologically similar
targets must be precisely determined, so that therapeutic efficacy is achieved
only through explainable target modulation.73,74 Furthermore, potential geno-
toxicity must be precluded and off-target activity against proteins, that are
known to elicit adverse side effects (antitargets), must remain as low as possi-
ble.75,76 Besides these pharmacodynamic criteria, pharmacokinetic properties,
such as absorption, distribution, metabolism, and excretion (ADME), which
govern the compound’s behaviour in complex biological systems, must be also
calibrated.77 Among these, stable metabolism and predictable interactions with
transporter proteins are of paramount importance for minimizing potential tox-
icological risks.78–80 Hence, computational methods for prediction of compound
interactions with antitargets,81–83 ADME profile,84,85 and drug metabolism86,87

have been proposed to address some of these challenges.
The simultaneous balancing of often contradicting compound properties

represents a complex multi-parameter optimization (MPO) problem and is
typically facilitated by iteratively synthesizing and testing different struc-
tural analogs of a lead compound in comprehensive screening cascades.88–90

Thus, chemical series with large numbers of analogs,91 frequently resulting
from bioisosteric transformations,92 may emerge from different lead compound
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chemotypes until, ultimately, an IND is proposed.20 The recurrent need for ac-
celerating and reducing the cost of long experimental campaigns has led to the
introduction of in silico approaches for scoring and (de)prioritizing individual
compounds.93–95

Critical physicochemical properties that need to be optimized include,
among others, molecular weight, octanol-water partition coefficient (LogP),
distribution coefficient at pH 7.4 (LogD), polar surface area, acid dissociation
constant (pKa), number of hydrogen bond donors and acceptors.95 Different
combinations of these have been reported to influence the ADME and toxi-
city of compounds and consequently, various “rules of thumb” and property
filters have been proposed as guidelines for prioritizing potential “drug-like”
candidates.96–100 In addition, more sophisticated methods, such as desirabil-
ity functions,101,102 Pareto optimization,103 and probabilistic scoring104,105 have
been employed for MPO. Furthermore, ligand efficiency indices have been de-
veloped as semi-empirical metrics combining free target-ligand binding energy
with different physicochemical properties.106–109 The underlying premise is that
over the course of LO increase in compound potency often tends to be a con-
comitant effect of increasing molecular size and/or lipophilicity, which is in turn
associated with higher risk of failure due to unfavorable ADME or toxicity.110

Finally, some entirely empirical composite scores such as the quantitative esti-
mate of drug-likeness111 and the relative drug likelihood112 have been derived
based on the distributions of physicochemical properties of a set of approved
oral drugs.

Nevertheless, due to the ambiguity in the definition of a drug and its of-
ten subjective association with regulatory approval status, the entire concept
of drug-likeness and the strict application of rules, filters, and metrics arising
from it have been disputed.112–114 As has been repeatedly shown, the molecu-
lar properties of drugs do not represent some special confined property space,
which is exclusively populated by successfully marketed compounds and must
therefore be pursued on all accounts during LO, but instead have constantly
evolved over time.113,115–117 Hence, coveted compound characteristics are more
contingent upon the specific requirements of an individual LO project than an
abstract notion of drug-likeness.113
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1.3 Virtual compound libraries

As outlined above, chemical exploration during LO is limited to a con-
fined region of biologically relevant chemical space.118 The latter, in turn, rep-
resents only a minute fraction of the chemical universe.119 Theoretical esti-
mates of the magnitude of the entire chemical space exceed 1060 organic small
molecules, however the largest part of it is considered of no relevance for drug
discovery.120 Computational methods for efficient navigation and exploration
of chemical space include, among others, the enumeration of all chemically
feasible compounds with up to 17 heavy atoms,121 identification of drug-like
subspaces,122 network-based analysis,123 chemography,124 and generative DL
modeling.125 Extending the chemical space of existing compound collections
with both diverse and focused virtual molecular libraries is of prime interest
for early drug discovery and is largely driven by the availability of chemical
reactions.126–129 Therefore, in silico assessment of the synthetic feasibility of
generated virtual compounds needs to outperform or, at least, be in consen-
sus with human knowledge and intuition.130–132 In light of these considerations,
different methods for computational estimation of synthetic tractability have
been proposed based upon retrosynthetic rules or molecular complexity.133,134

An efficient hybrid algorithm combining both approaches is the empirically de-
rived synthetic accessibility score (SAscore), which takes into account historical
synthetic knowledge instead of explicit retrosynthetic templates.135 Hereby, the
frequency of occurrence of individual chemical fragments is correlated to their
quantitative contribution to synthetic accessibility while non-standard struc-
tural features, stereochemical complexity, and increasing molecule size are pe-
nalized.

The term de novo design refers to “the application of computational meth-
ods to automatically generate new compound structures in the search for an
optimal compound ”.95 As such, de novo design aims to reduce experimental ef-
forts by accomplishing the following three tasks: create virtual molecules, score
and filter them, and subsequently optimize the sampling strategy according to
the predefined objective based on previous knowledge.136 Various ligand-based
de novo design methods have been developed to address one or more of these
tasks.137 For example, in order to ensure synthetic accessibility, structure gener-
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ation can be accomplished by conducting virtual reactions on synthetic building
blocks.138,139 This represents a successful deterministic approach for expanding
biologically relevant chemical space,140 however it might be prohibitive for gen-
erating molecular structures beyond the strict constraints of a relatively small
set of robust organic reactions defined by medicinal chemists.

Alternative design methods can create new synthetically amenable com-
pounds according to empirical rules derived from compound transformations
typically undertaken in medicinal chemistry campaigns.141,142 Such data-driven
approaches allow the (de)prioritization of certain structural modifications based
on their frequency of occurrence in historical data.143 In addition, adaptive
methods, such as evolutionary algorithms, can be utilized to select candi-
dates via iterative cycles of optimization and sampling.144–147 Successful ap-
plications of MPO-centric de novo approaches include the design of selec-
tive148 and polypharmacological149 compounds. Other methods, such as inverse
QSAR/QSPR,150,151 are still of limited use for drug discovery.152

1.4 Molecular representations

Encoding of structural features and/or properties of molecules is typi-
cally application-dependent and of variable degree of complexity.153 In gen-
eral, molecular representations can be categorized into one-, two-, and three-
dimensional (1D, 2D, and 3D, respectively) as illustrated in Figure 2.154 Lin-
ear notations, such as simple composition formulae, Simplified Molecular Input
System (SMILES)155 or IUPAC international chemical identifier (InChI),156 are
examples for 1D representations that emphasize either on human-readability or
efficient computational processing. SMILES account for atom and bond types,
aromaticity, branching, and stereochemistry by following specific syntax and
canonicalization rules,157,158 whereas InChI can, in addition, also encode differ-
ent tautomers of a molecule.

The most popular and intuitive forms of molecular representation are 2D
chemical graphs, which describe the specific molecular structure and topol-
ogy.159 Here, individual atoms and bonds are represented as nodes and edges,
respectively, and can be optionally annotated with stereochemical informa-
tion regarding their relative spatial arrangements. However, molecular con-
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formation, surface, and volume are best described using explicit 3D representa-
tions.160 These consider specific steric and electronic properties including exact
coordinates, bond orders, charges, and hybridization states.160 Efficient com-
putational processing of 2D and 3D molecular graphs is typically facilitated by
storing them as connectivity tables in different file formats.159,161

Figure 2: Molecular representations. Shown are different molecular representations of
the antibacterial drug benzylpenicillin in 1D, 2D, and 3D formats.

1.4.1 Descriptors

Molecules can be also described in terms of numerical values by applying
different mathematical models on their 1D, 2D or 3D representations.162–165 A
large variety of molecular descriptors have been introduced in order to address
different problems in cheminformatics.166,167 For example, 1D descriptors calcu-
lated from linear molecular notations are only limited to bulk properties, such
as simple atom counts or molecular weight. The more complex 2D descrip-
tors are derived from molecular graphs and are used to quantify topological
characteristics, such as total polar surface area (TPSA),168 or approximate ex-
perimentally measured properties, such as LogP.169 Lastly, 3D descriptors can
be derived from specific molecular conformations or quantum mechanics calcu-
lations. Since individual descriptors are computed as single values condensing
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the information from entire molecular representations, they are typically aggre-
gated into multi-dimensional molecular feature vectors, which constitute the
dimensions of a chemical reference space.166 The individual vectors are then
used as coordinates to define the position of each molecule and quantitatively
estimate its spatial proximity to other molecules.

1.4.2 Fingerprints

In contrast to that, molecular fingerprints (FPs) are a special category of
descriptors, which directly represent the entire molecule as a numerical vector
of homogeneous features.170 Both length of the vector and type of the chemi-
cal feature can differ according to the FP definition.171 Furthermore, FPs can
be subdivided into binary and non-binary (counted).172 In binary FPs, the
presence or absence of a certain chemical feature determines whether its corre-
sponding position in the bit vector is set to 1 or 0, respectively. In counted FPs,
the frequency of occurrence of that feature is recorded instead. An example for
a fixed-length binary FP is the Molecular ACCess System (MACCS),173 which
is a substructure FP that accounts for the presence or absence of predefined
structural patterns (keys), each corresponding to a certain position in a 166-bit
molecular vector. Other types of binary FPs, that go beyond the constraints
of preset structural features, include combinatorial FPs such as the extended-
connectivity fingerprints (ECFPs).174 These circular FPs make use of a hashing
function to encode specific atom environments as structural features based on
traversing all possible molecular subgraphs in a layered fashion within a defined
diameter.175 Thus, the dimension of an ECFP is determined by the numerical
range of the hashing function. It is typically too large to allow the represen-
tation of these FPs as explicit bit vectors. However, its dimensionality can
be optionally reduced to a fixed-length vector via a special folding operation.
Figure 3 illustrates some of the principles for calculating descriptors and FPs.
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Figure 3: Molecular descriptors and fingerprints. An exemplary calculation of physic-
ochemical descriptors (left), ECFPs with diameter of 4 atoms (middle), and MACCS FPs
(right) for benzylpenicillin.

1.5 Structure-activity relationships

During LO, an analog series (AS) typically evolves around one or several
congeneric core structures, also referred to as scaffolds, which are generally
responsible for the underlying biological activity.176–179 Medicinal chemists typ-
ically introduce structural modifications by exchanging functional groups (R-
groups) at certain substitution sites in the AS core, in order to achieve a desired
compound activity. The exploration and exploitation of such structure-activity
relationships (SARs) is of crucial importance in medicinal chemistry because
it can provide some orientation in the trajectory of a LO project. Moreover,
the increasing amounts of available compound bioactivity data have enabled
systematic large-scale SAR analysis beyond the scope of individual LO cam-
paigns.180

In contrast to predictive methods such as QSAR, descriptive approaches aim
to retrospectively deconvolute and visualize available SAR information.181,182

Popular methods for SAR visualizaiton include SARmatrices and graphs, chem-
ical space networks, and activity landscapes.183 Furthermore, the SAR index
can be employed to quantify distinct SAR characteristics for sets of compounds
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active against specific targets.184 For instance, gradual changes in biological
activity as a response to chemical modifications of varying magnitude can be
rationalized as SAR continuity.184 In a LO context, such predictable “linear”
SAR behaviour might be desirable for fine-tuning physicochemical properties
while trying to maintain relatively constant potency levels. Conversely, SAR
discontinuity translates into large potency fluctuations resulting from minor al-
terations in chemical structure184 with activity cliffs185 representing the most
notable examples. An activity cliff represents a pair of structurally similar
compounds that exhibit a large potency difference.186 Discontinuous SARs are
naturally information-rich and indicative for progression but might be undesir-
able in some MPO scenarios due to higher probability of an unexpected “steep”
decrease in compound potency. The concepts of SAR (dis)continuity are illus-
trated in detail in Figure 4.

Figure 4: SAR (dis)continuity. Displayed are four highly (above) and four weakly (below)
potent inhibitors of serine/threonine-protein kinase PIM1 and their corresponding potency
values as negative logarithmic (log10) constants of inhibition (pKi). Each structural modi-
fication in a compound (red) induces a different response in activity, corresponding to SAR
continuity (left to right) or discontinuity (bottom to top).
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1.5.1 Molecular similarity

The concept of molecular similarity is fundamental to cheminformatics due
to its implications for the similarity-property principle. Therefore, proper as-
sessment of molecular similarity has been a widely studied topic in chemin-
formatics as it often governs the success of virtual screening campaigns and
QSAR/QSPR analysis.187,188 A variety of measures have been developed to
quantitatively estimate molecular similarity.189,190 One approach is based upon
the calculation of distances between compounds.43 For example, the Euclidean
distance d between two compounds P and Q in n-dimensional descriptor vector
space can be calculated as follows:

d (P,Q) =

√√√√ n∑
i=1

(pi − qi)2 (1)

where pi and qi are the i-th descriptor of P and Q, respectively. Since distance
in vector space is complementary to similarity, compounds with small distances
to each other are regarded as similar and vice versa.191 The most popular -
albeit not universal - similarity measure in cheminformatics is the FP-based
Tanimoto coefficient (Tc) also known as the Jaccard index.192,193 It can be
calculated for both binary or counted FPs and accounts for the percentage of
shared structural features between two molecules. For two compounds with
n-dimensional FPs A and B the similarity is computed as follows:

Tc (A,B) =

n∑
i=1

min(ai, bi)

n∑
i=1

max(ai, bi)
(2)

where ai and bi denote the i-th feature of FP A and B, respectively. Because
the outcomes of similarity calculations are dependent on the choice of similar-
ity measures and molecular descriptors/FPs, no universal threshold value for
molecular (dis)similarity exists, although some empirically derived suggestions
have been proposed.190,194

Alternatively, a more qualitative approach for the assessment of molecu-
lar similarity, that resonates with chemical intuition, is the identification of
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substructure relationships, such as matched molecular pairs (MMPs).190,195 A
MMP is defined as a pair of compounds that only differ at a single substitu-
tion site.196 Systematic exploration of the effects of such structural transforma-
tions on compound properties is a widely used technique in medicinal chemistry
and cheminformatics.197–199 Algorithmic MMP generation relies on systematic
compound fragmentation, which can be optionally designed to take synthetic
feasibility into account by following certain retrosynthetic rules.200,201 Given
the subjective nature of the molecular similarity concept, qualitative and quan-
titative approaches do not necessarily overlap in their explanatory power, as
depicted in Figure 5, and should be therefore viewed as complementary rather
than mutually exclusive.190

Figure 5: Molecular similarity. Two exemplary MMPs are displayed, for which the
corresponding Tanimoto (Tc) similarity values calculated on the basis of MACCS substructure
FPs differ significantly.

1.5.2 Analog series

Because no universal definition of an AS exists, computational SAR ex-
ploration employs molecular similarity concepts to group compounds together
into series under consideration of their biological activity.180–182 When under-
taking chemical transformations in a series, medicinal chemists typically rely on
so-called R-group tables, where different combinations of core and substituent
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structures can be monitored.20 Naturally, some of the most popular and intu-
itive methods for extraction and visualization of SARs and ASs include exten-
sions of conventional R-group tables202,203 or SAR matrices (SARMs).204–206

Alternatively, ASs can be identified by organizing similar compounds around
individual cores with one or more substitution sites.207 One such approach relies
on systematic clustering of MMPs, such that each compound in a series forms a
MMP with at least one other analog.208 This method enables the extraction of
AS-based (ASB) scaffolds, thereby ensuring that all conserved structural char-
acteristics of the corresponding ASs are retained.209,210 In another approach
based on individual compound-core relationships (CCRs),211 ASs are formed
independently of MMPs. In this case, compounds are first subjected to multi-
step fragmentation and subsequently all possible cores are matched without
considering information about substitution sites. Analogs are organized into
series around the smallest possible generalized core, to which the initial substi-
tution site information is then reversely mapped. Thus, an AS core represents
the generalized maximum common substructure of all associated analogs as de-
picted by the example in Figure 6. Both described methods rely on systematic
compound fragmentation, which can be optionally guided by retrosynthetic212

rules and are independent of molecular representations and similarity metrics.

Figure 6: Analog series. Three compounds (left) active against the human prostaglandin
E synthase sharing the same core structure (blue) are organized in an exemplary AS. The
extracted scaffold contains three substitution sites, where R-groups are exchanged (red).
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1.5.3 Chemical neighborhoods

Following the aforementioned definitions, chemical space covered by an AS
can be viewed as core-centric. Depending on the variation of R-groups at each
substitution site, analogs may map to different areas of AS-relevant chemical
space. Hence, chemical neighborhoods (NBHs) of highly similar analogs can
emerge as subclusters in individual series.213 This is typically a likely conse-
quence of medicinal chemists focusing their efforts on potentially more promis-
ing candidates and their nearest neighbors during LO.20,197 Chemical NBHs
provide an intuitive local structural context and thus a more granular view on
subtle SAR patterns in a given series.195,214

The chemical NBH concept is also utilized in the Free-Wilson (FW) addi-
tivity principle that is widely used in medicinal chemistry.215,216 Accordingly,
individual R-groups at different scaffold substitution sites contribute to changes
in compound activity in an independent and additive manner. Thus, a medic-
inal chemist is able to approximate the potency of a compound prior to its
synthesis, given that the potency values of its nearest neighbors with corre-
sponding R-groups are known.216 FW-type calculations are particularly useful
as local “mini-QSAR” models for activity predictions in MMP-based chemical
NBHs.217

As outlined in the example in Figure 7, MMPs are formed between analog
I and II, I and III, II and IV, III and IV, respectively, and the net potency
difference associated with each R-group exchange is highlighted accordingly
(orange or blue). Given the potency values of analogs I, II, and III are known,
the potency of analog IV can be approximated by adding the individual net
contributions of directed R-group modifications. Here, the activity of analog
IV is predicted retrospectively and its real experimentally measured activity is
provided for comparison. Importantly, such potency predictions can be derived
from different NBHs (if available) for one and the same compound. Thus, their
accuracy can be statistically evaluated and potential outliers can be disregarded
when calculating the average estimated potency.
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Figure 7: Free-Wilson additivity principle in chemical NBHs. Shown is a four-
membered MMP-based chemical NBH comprising inhibitors of GABA receptor alpha-5 sub-
unit together with their potency values as negative logarithmic (log10) constants of inhibition
(pKi). Detailed description is provided in the text. The figure is adapted from the publication
in Chapter 6 of this thesis.

1.6 Machine learning

Predicting the biological activity of compounds is one of the main applica-
tions of statistical and ML modeling in cheminformatics.46 Ligand-based QSAR
has been traditionally employed for classification or regression problems, such
as differentiating between active and inactive molecules or predicting their exact
potency values, respectively.45 In the context of an AS, where all compounds
are designed as close structural analogs of an active lead molecule and hence
generally expected to be (at least weakly) active, regression modeling repre-
sents a more likely application scenario than classification because it does not
require an arbitrary potency threshold for separating data into active and in-
active compounds in the first place.
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1.6.1 Regression models for compound activity prediction

Building a ML model requires each compound to be represented by a molec-
ular feature vector x, composed of descriptors or FPs as input variables, and the
corresponding potency, usually as a negative logarithmic (log10) value, serving
as output variable y.43 Furthermore, compound data is typically partitioned
into training, internal validation, and external validation sets.218 The training
set is used to fit models with varying hyper-parameters, which are then evalu-
ated on the internal validation set. Once a model with an optimal parameter
setting has been selected, it is used to retrospectively predict the potency values
in the external validation set. A double (internal and external) cross validation
procedure with multiple different random data splits is typically carried out
in order to avoid overfitting and ensure model robustness.219,220 Finally, over-
all model quality is assessed by juxtaposing predicted and expected values and
computing performance measures. The most widely used measure for regression
problems is the coefficient of determination R2 defined as:

R2 = 1 −
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2
(3)

where, yi and ŷi are the expected and predicted values of instance i, respectively,
and ȳ is the mean expected value of the underlying data set. The maximum
value for R2 is 1, which translates into ideal model performance, whereas a
value of 0 or a negative value indicates that the model is performing as good
as or worse than simply predicting the same value ȳ for every instance.

Some of the most commonly used statistical methods and ML algorithms
in cheminformatics include linear/logistic regression (LR),46,50 random forests
(RFs),221,222 support vector machines (SVMs),223,224 and deep neural networks
(DNNs).225,226 A LR aims to fit a line through the input data distribution by
minimizing the sum of the squared residuals between predicted and expected
output values and assigning weight coefficients as follows:

f(x) = wx+ b (4)

where, x and w are the input variable and its corresponding weight, respectively,
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and b is the y-intercept. Advanced LR methods, such as ridge regression, are in-
troduced to alleviate deteriorating model performance that is caused by outliers
in the data distribution, by penalizing model weights.227

The predictive ability of LR models is typically limited to the presence of
linear SARs in a compound data set and therefore more sophisticated ML tech-
niques, such as SVMs, are employed for nonlinear QSAR modeling.45 Initially
introduced as a binary classification method, SVMs are supervised ML mod-
els which maximize the margins of a multi-dimensional hyperplane that best
separates positive from negative class instances.228 If linear separation in the
underlying feature space is not possible, SVMs allow the use of kernel functions
to calculate the relationships between data projections as vector dot products
in a higher dimensional feature space, where linear separation might be feasi-
ble.223 This so-called “kernel trick” circumvents the computationally expensive
explicit mapping of data instances in (potentially infinite) higher dimensions.
Commonly used kernel functions include linear, polynomial, radial basis, and
Tanimoto kernels, with the latter often being used in combination with binary
FPs in cheminformatics.229

Support vector regression (SVR) is an extension of the SVM algorithm de-
signed for numerical predictions (Figure 8).230 Hence, a real-valued output is
computed from a feature vector for each data instance and compared to the
corresponding real value. Deviations are permitted only within a predefined
error range ε and are otherwise penalized. This so-called “ε-insensitive tube”
and the regularization parameter C, which controls the subtle trade-off between
error penalization and model complexity, are hyper-parameters, which typically
need to be optimized during model training.231 The final regression function is
defined as:

f(x) =
∑
i

(αi − α∗
i )K(x, xi) + b (5)

where xi are the support vectors and ai, a∗i the associated weights obtained from
solving a convex optimization problem; K(x, xi) is the kernel function applied
to the input feature vector x and support vector xi, and b is the bias param-
eter. Thus, SVR relies on the kernel trick to fit a LR function to nonlinearly
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distributed data and can be utilized for modeling more challenging prediction
scenarios that arise from the presence of discontinuous SARs.232

Figure 8: Support vector regression. A schematic illustration of the principle of SVR.
Circles represent data points (e.g. compounds) with increasing numerical values (e.g. potency
values) as color gradients from red to green.

1.6.2 Generative deep learning methods

In the last several years, generative DL methods225,233 have become increas-
ingly popular in molecular de novo design due to their ability to automati-
cally generalize and infer knowledge from large amounts of chemical structure
and reaction data.234,235 For example, reinforcement learning (RL), where the
“decision-making policy” of a generative model is trained to maximize the re-
ward for sampling compounds according to predefined desirability parameters.
has been successfully applied for MPO-guided compound design.236,237 Another
strategy for generating focused compound libraries relies on transfer learning
(TL), where knowledge acquired for solving one task is conveyed to solving re-
lated tasks.238,239 Hence, models are first pre-trained on large compound data
sets representing a broad chemical space and then fine-tuned by further training
on specific small data sets, in order to sample compounds within a desired con-
fined area of chemical space.240–242 Commonly used algorithms for generative
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modeling include autoencoders (AEs),243–245 generative adversarial networks
(GANs),246,247 and recurrent neural networks (RNNs)248,249 which can operate
on either molecular graph250,251 or textual252,253 compound representations.

One of the most extensively explored and computationally inexpensive gen-
erative approaches utilizes RNNs in combination with SMILES sequences.57

An RNN is a type of a DNN which can operate on sequential data types in a
time-dependent manner.225,233 A DNN consists of multiple nodes (also called
neurons or units) which receive, transform, and pass forward numerical infor-
mation.254,255 Nodes receiving the same input data and operating in parallel
are grouped into layers and the output of each layer is transmitted to the next
one according to the way adjacent layers are connected to each other (fully or
partially).254 DNN architectures consist of an input layer, two or more hidden
layers in the middle, and an output layer. Input variables are formatted by the
input layer, transformed during forward propagation through the hidden layers,
and finally converted into output values by the output layer.254 During train-
ing the weights of the network are iteratively modified via a backpropagation
algorithm with the objective of minimizing the error between predicted and
expected output values.256 Model overfitting can be decreased by artificially in-
jecting “noise” into the network through dropouts that randomly convert subsets
of output values in each layer to zero.257

1.6.3 Recurrent neural networks

In an RNN, in addition to the training data input, hidden nodes also receive
information about their respective “hidden states” from previous time steps (se-
quentially behind the current input).255 This additional temporal dimension al-
lows RNNs to process sequences of arbitrary length and complexity and hence
they have been successfully exploited in domains such as natural language pro-
cessing,258 speech recognition,259 formal language,260 and computer code gen-
eration.261 The most widely used node types in RNNs include long short-term
memory (LSTM)262 or gated recurrent unit (GRU)263 neurons, which contain
memory cells stabilizing the value gradients during training. In the context
of de novo design, RNNs are trained to learn the universal SMILES syntax
of entire molecules264 or individual fragments265 and (re)produce chemically
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meaningful strings. Due to their internal “memory” of previously seen sequence
elements, they are able to capture complex contextual patterns in SMILES,
such as side chains or ring openings/closures.266 Thereby, presenting the RNN
model with different SMILES variants of one and the same molecule during
training can serve as a computationally efficient data augmentation technique,
which reduces model overfitting caused by learning strict canonical representa-
tions and increases the proportion of syntactically valid SMILES by improving
the generalization capability of the model.267

In the first step of the training procedure, individual SMILES characters (or
character combinations such as “Cl” or “[nH]”) are typically tokenized by con-
verting them into so-called “one-hot” numerical representations before present-
ing them to the model.268 Thereby, each unique sequence element is assigned a
k-dimensional bit vector, where only a single position specifically corresponding
to that element is set to 1, and k is equivalent to the model vocabulary size i.e.
the number of possible tokens that can be sampled by the model (Figure 9).
Furthermore, special “start” and “end” tokens are added as placeholders before
and after the SMILES string to define its limits.

The tokenized SMILES sequence is then injected to the model one element
at a time, beginning with the start token, and propagated along the network.255

At time step t, a hidden state ht, which contains d hidden nodes and receives
one-hot input vector xt (k× 1), comprises an input WX (d× k), a hidden state
WH (d × d), and an output WY (k × d) weight matrix. These three weight
matrices remain constant across all time steps within a single RNN loop. At
each time step the model computes its current hidden state vector ht (d× 1) as
follows:

ht = a(WH · ht−1 +WX · ht) (6)

where a is a nonlinear activation function, ht−1 (d × 1) is the hidden state
vector from the previous time step, xt is the input vector from the current time
step, WH and WX are the hidden state and input matrices, respectively. In the
special case when the start token x1 is passed, the initial hidden state vector
h0 can be set to a null vector or pre-conditioned to initiate a more focused
sampling within a certain output domain.269
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Figure 9: Tokenization of SMILES. A schematic illustration of tokenizing individual
syntactic elements in a SMILES string.

Since the model objective is to predict the next character of the sequence,
the hidden state vector ht obtained from the equation above is used to calculate
the current output ŷt as follows:

ŷt = g(WY · ht) (7)

where g is the output function and WY is the output weight matrix. The pre-
dicted value is then used as input xt+1 at the next time step t+1. Alternatively,
the expected output may be presented to the model instead, in an approach
referred to as “teacher’s forcing”, which leads to faster model convergence.270

This cycle is repeated for T time steps with T being the maximum permitted
length of the SMILES string. For sequences shorter than T , the resulting buffer
can be padded with start or end tokens.

Once the entire SMILES string is sampled, its deviation from the expected
sequence is calculated as the total loss.271 Thereby, the probability distributions
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of the real yt and predicted ŷt values are compared at each time step t and
summed for the whole sequence as:

J(y, ŷ) = −
T∑
t=1

yt · log(ŷt) (8)

where J is the categorical cross entropy loss function, while y and ŷ are the
expected and predicted output sequences for all T time steps, respectively.
Finally, an RNN training loop is completed by backpropagation, where the
gradients for adjusting the model weights are computed with respect to the
total training loss.271 Figure 10 provides a schematic overview of the RNN
training procedure.
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Figure 10: Recurrent neural network. Depicted are two different views of the basic RNN
architecture and the model training process. (bottom) A hidden layer with three hidden
nodes receives a tokenized one-hot vector as input xt and a hidden state vector ht−1 from
its previous hidden state. Based upon that, the current hidden state vector ht is computed,
used to calculate an output one-hot vector ŷt , and then passed along to the next hidden
state. (top) An input sequence is injected to the model one step at a time beginning with a
“START” token and an initial hidden state h0. The next sequence element is predicted by the
model and compared to the expected output at the current time step using the loss function
(the output sequence is shifted one time step further from the input sequence). The expected
output is used as input for the next time step (green dotted lines). In this example, the
first three SMILES characters (“C”, “C”, “(”) as well as the last token (“END”) are predicted
correctly, whereas the fourth sequence element (“C”) is predicted incorrectly (“N”)

.

24



1.7 Thesis outline

This dissertation follows the iterative development of in silico methods for
rationalizing chemical LO and compound design on the basis of individual ASs.
Chapter 2 shortly elaborates on already existing similar approaches reported
in the literature and places the scope of the methods developed in this thesis in
a scientific context. Chapter 3 to Chapter 7 include five original publications
in a chronological order representing the evolution of the methods described
herein. Chapter 3 examines the influence of varying calculation parameters
on a newly proposed concept of chemical saturation within ASs Chapter 4, a
method combining improved assessment of chemical saturation and novel SAR
progression scoring is introduced for further series characterization. Chapter
5 presents the COMO methodology and its application for categorizing ASs
according to their LO development stage. Chapter 6 elucidates the extension
of COMO with an integrated strategy for design and prioritization of new analog
molecules. In Chapter 7, DL models are utilized for generating focused virtual
compound libraries for ASs profiled with COMO and the outcome is compared
to previously explored rule-based de novo design strategies. Finally, Chapter 8
reiterates over the most important findings and concludes this thesis.
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Chapter 2

Overview of Computational Methods for
Series-based Evaluation of Progress in
Lead Optimization

Given its compound-centric nature, the LO process aims at finding a sin-
gle “ideal” candidate at the intersection of multiple properties. Consequently,
computational methods that can be applied in the context of LO, such as
QSAR/QSPR, MPO techniques or drug-likeness measures, are predominantly
focused on evaluating and predicting individual compound characteristics.
However, these approaches are of limited use for assessing LO progress in gen-
eral. In practice, it is difficult to predict the trajectory of a growing AS and
the outcome of a LO campaign. Moreover, knowledge transfer between dif-
ferent programs is not necessarily straightforward since the blueprint of each
project is likely to have its own specific endpoints. Objective evaluation is fur-
ther complicated by the fact that as compound series grow larger, it tends to
become more difficult to discontinue them, especially after a significant amount
of effort has been already invested. Hence, an AS is usually terminated only
when insurmountable roadblocks are met. However, decisions on whether to
continue can be often taken at a much earlier stage, provided that progression
can be objectively monitored. In light of these challenges, in silico methods for
rationalizing the course of LO on the basis of entire ASs are highly desirable in
order to support decision-making in a more data-driven and less biased manner.

To these ends however, only few such methods have been previously intro-
duced. One of these approaches is LO attrition analysis, where progression
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of individual ASs is determined by the proportions of experimentally tested
analogs passing or failing certain predefined filters.272 Another method is LO
telemetry, which employs statistical risk assessment of individual compounds in
order to derive a global model for calculating the odds for success of different
ASs and visualizing important milestones in LO convergence.273 Furthermore,
in a different approach, the SARM data structure is utilized as a chemically
intuitive tool for monitoring SAR progression in evolving series by quantify-
ing the amount of non-redundant SAR information being added with newly
synthesized compounds.274

In addition to these approaches, which are relatively simple, robust, and
powerful in their ability to discriminate between different AS phenotypes, a
novel computational method for estimating chemical saturation in ASs has been
introduced.275 Accordingly, it quantifies how extensively the chemical space of
an individual series has been explored through synthetic efforts. Thereby, AS-
relevant chemical space is delineated by populations of (not yet synthesized
or tested) virtual analogs (VAs), which are projected alongside already exist-
ing analogs (EAs) in a descriptor-defined chemical reference space allowing for
calculation of inter-compound distance relationships. Based on those, local
chemical NBHs around EAs are derived, leading to the development of a dual
scoring scheme for categorizing series into different stages of LO.

In conclusion, the latter method proposes the concept of chemical saturation
as a measure for distinguishing between ASs and serves as a starting point for
the development of the methods presented in this thesis.
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Chapter 3

Computational Assessment of Chemical
Saturation of Analogue Series under
Varying Conditions

Introduction

The initial method for assessment of chemical space saturation has been
introduced as a proof-of-concept for discrimination between compound series
of different LO stages. In this case, exemplary ASs have been computationally
extracted from biological assay data (PubChem) containing both active and
inactive compounds against a given target. Depending on that, two types of
chemical NBHs have been defined based on distances between EAs and/or VAs,
giving rise to a global and a complementary local saturation score.

In this chapter, the initially developed local saturation score is modified
and the robustness of the dual scoring scheme explored under varying param-
eter settings. In addition to the previously analyzed ASs from PubChem, new
series are extracted from medicinal chemistry literature, comprising exclusively
active analogs. Alternative molecular descriptors constituting the chemical ref-
erence space, in which compounds are projected, are compared. Furthermore,
differently designed VA populations are explored and the influence of varying
numbers of VAs used for scoring is benchmarked. Finally, the chemical satura-
tion behaviour of growing ASs is analyzed.
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My main contribution to this work was carrying out all calculations under
varying conditions and providing statistics and visualization for subsequent
analysis.

Reprinted with permission from “D. Yonchev, M. Vogt, D. Stumpfe, R. Kuni-
moto, T. Miyao, J. Bajorath. Computational assessment of chemical saturation
of analog series under varying conditions. ACS Omega 2018, 3, 15799-15808”.
Copyright 2018 American Chemical Society.
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ABSTRACT: Assessing the degree to which analogue series are
chemically saturated is of major relevance in compound optimization.
Decisions to continue or discontinue series are typically made on the
basis of subjective judgment. Currently, only very few methods are
available to aid in decision making. We further investigate and extend a
computational concept to quantitatively assess the progression and
chemical saturation of a series. To these ends, existing analogues and
virtual candidates are compared in chemical space and compound
neighborhoods are systematically analyzed. A large number of analogue
series from different sources are studied, and alternative chemical space
representations and virtual analogues of different designs are explored.
Furthermore, evolving analogue series are distinguished computation-
ally according to different saturation levels. Taken together, our findings
provide a basis for practical applications of computational saturation
analysis in compound optimization.

1. INTRODUCTION

In medicinal chemistry, compound optimization relies on the
generation of analogues to explore structure−activity relation-
ships (SARs) and improve molecular properties. Chemical
optimization is largely driven by intuition and experience. The
optimization process is difficult to rationalize and formalize,
and consequently, subjective criteria dominate decision
making. In particular, it is very difficult to determine when a
sufficient number of analogues have been generated and no
further progress can be expected. Series progression can be
evaluated on the basis of SAR features and/or chemical
saturation. Both criteria go hand in hand but provide
somewhat different perspectives. From an SAR viewpoint,
the central question is whether or not compound potency and
other relevant properties can be further improved by
generating additional compounds. Chemical saturation, on
the other hand, primarily addresses the question whether the
chemical space around active compounds has been sufficiently
covered to ensure that no potential optimization pathways
remain unexplored.
So far, only a few approaches have been introduced to

evaluate the generation of analogue series. These approaches
include multiparameter optimization (MPO) using desirability
functions,1 attrition curves,2 or risk statistics,3 which balance
multiple compound properties. However, MPO does not
directly assess progression saturation of analogue series, but it
prioritizes candidate compounds with desirable property
profiles. MPO can hence be applied to indirectly evaluate

series progression by prioritizing candidate compounds with
preferred property combinations that can still be obtained.
Regardless of the MPO approach that is applied, a pool of
candidates for evaluation must be generated separately. In
addition, numerical3,4 and graphical5 SAR analysis methods
have been introduced to monitor SAR progression of evolving
compound series and evaluate whether newly generated
analogues yield further SAR information. These approaches
may also suggest preferred candidate compounds3 or provide
diagnostics for SAR landscapes of compound data sets.4,5

Previously, we have introduced a computational concept to
more directly and quantitatively assess progression saturation
of analogue series using virtual analogue populations that are
mapped into chemical reference space together with exiting
analogues.6 The approach is focused on the assessment of
chemical progression saturation, but not SAR progression, and
addresses the following questions: Do existing analogues
provide sufficient chemical space coverage? Are virtual
candidate compounds available that have a high likelihood of
activity? As discussed in detail below, the methodology
requires the use of chemical reference spaces and virtual
candidate compounds to quantify chemical saturation. The
degree to which the results of computational saturation
analysis depend on such parameters is yet to be explored.
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Therefore, we have further investigated and extended the
methodology for medicinal chemistry applications by analyzing
many analogue series of different compositions, exploring
alternative chemical space representations, and virtual
analogues resulting from different design strategies. Therefore,
critical computational parameter settings underlying the
analysis were assessed. We also show that large series with
similar numbers of analogues have different saturation
characteristics. Distinguishing between different saturation
levels relies on computational analysis, as demonstrated herein.

2. MATERIALS AND METHODS
2.1. Methodology. 2.1.1. Concept. Progression saturation

of the analogue series is evaluated by comparing distributions

of existing analogues and virtual candidate compounds for
series expansion in chemical space6 applying a neighborhood
concept.7,8 First, chemical space coverage of the analogue
series is estimated by determining the proportion of virtual
candidates falling into predefined neighborhoods of existing
analogues. For this purpose, a global saturation score is
calculated, as defined below. In this case, chemical neighbor-
hoods of analogues are defined on the basis of nearest-
neighbor distances between virtual compounds to measure
global coverage of the chemical space. Second, the population
of neighborhoods of active analogues (active neighborhoods)
is assessed by determining virtual candidates falling into active
neighborhoods. Therefore, neighborhoods are defined differ-
ently on the basis of median distances between active

Figure 1. Saturation scores and categorized combinations. (a, b) Calculation of the raw global and local saturation scores is illustrated, respectively.
The coordinate system represents a chemical reference space containing an analogue series and virtual candidates. “D” stands for descriptor. Each
descriptor adds a dimension to the space. (c) Combinations of global and local saturation scores are categorized as indicators of different
progression saturation stages. Figure panels were adapted from ref 6.
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compounds in the chemical space and a local saturation score
is calculated, as also defined below. Relating global and local
compound distributions and resulting scores to each other
makes it possible to evaluate progression saturation of the
analogue series. The assessment is primarily focused on
chemical progression saturation (rather than SAR progres-
sion), addressing the questions whether chemical space
coverage by existing analogues is extensive and, in addition,
whether a significant number of virtual candidates exist that are
likely to be active.
2.1.2. Scoring Scheme. A quantitative measure of

progression saturation is obtained by calculating two scores
and relating them to each other.6 The raw global saturation
score is defined as the ratio of the number of virtual candidate
compounds that fall into neighborhoods of experimental
analogues relative to the total number of virtual compounds

= | |
| |S

v

V
raw global saturation score ( ) Exptl

S denotes the set of experimental analogues, V denotes the set
of virtual analogues, and vExptl denotes the set of virtual
compounds falling into neighborhoods of experimental
analogues. The neighborhood radius is determined as follows.
For each virtual analogue, mean Euclidian distances to the top
1% of its nearest virtual neighbors are calculated. The median
of these distances is used as the neighborhood radius.
Accordingly, only closely related virtual candidates map to
the same neighborhood. The top 1% of nearest virtual
neighbors were selected on the basis of initial test calculations
in which the percentage of nearest virtual neighbors was
systematically varied. For different percentages, comparable
scores were obtained and the top 1% were selected to control
the number of distance calculations.
The so-defined raw global saturation score, the calculation of

which is illustrated in Figure 1a, measures the chemical space
coverage of existing analogues and virtual candidates. Hence,
the larger the score, the more virtual analogues map to
neighborhoods of experimental analogues, indicating extensive
coverage. Depending on the composition of a series, S may
contain both active and inactive or only active analogues.
The raw local saturation score is defined as the ratio of the

number of active analogues relative to the number of virtual
analogues falling into the neighborhoods of active analogues

= | |
| | +A

A
V

raw local saturation score ( )
1active

A is a set of active compounds and Vactive is a set of virtual
candidates in active neighborhoods. A Laplace-like correction
by adding 1 is applied to the denominator to avoid numerical
instabilities when Vactive is small or 0. For calculating the raw
local saturation score, the neighborhood radius of each active
analogue is set to the median value of pairwise distances
between active analogues. Hence, the size of the so-defined
neighborhood accounts for typically observed distances
between active analogues in chemical space. The raw local
saturation score, the calculation of which is illustrated in Figure
1b, measures the distribution of virtual analogues around active
analogues. The larger the score, the less populated are the
neighborhoods of active analogues with virtual candidates.
The raw global scores and logarithmically transformed local

saturation scores are converted into conventional Z-scores on
the basis of the mean and standard deviation of the score

population of large sets of analogue series. Accordingly, the
mean of the score population was subtracted from each raw
score and the difference was divided by the standard deviation
of the distribution, yielding the Z-score. Accordingly, the
resulting Z-scores have a mean of 0 and standard deviation of
1. Global and local scores generally display low correlation.6

2.1.3. Score Combinations. Combinations of global and
local saturation scores can be divided into four categories that
characterize different levels of saturation progression,6 as
schematically shown in Figure 1c: (1) low global and high local
scores (category low/high, upper left quadrant) characterize
the series that have low analogue coverage of chemical
reference space and only few virtual candidates in active
neighborhoods. Hence, these series are only little explored and
thus rationalized as early-stage series. (2) Category low/low
(lower left quadrant) describes the series with low chemical
space coverage by experimental analogues but with many
virtual candidates located in active neighborhoods. Such series
are more advanced chemically and rationalized as mid-stage
series. (3) Category high/low (lower right) identifies the series
with more extensive coverage of experimental analogues and
many virtual candidates that are present in active neighbor-
hoods. Such series are best characterized as late-stage series,
which approach saturation. (4) Category high/high (upper
right) characterizes series with extensive analogue coverage but
only few remaining virtual candidates in active neighborhoods,
thus indicating a high level of chemical saturation (saturated
series).
Threshold values for categorization of Z-score combinations

are set to 1, i.e., one standard deviation (σ) above the mean of
the fitted normal distribution of Z-scores for sets of analogue
series.

2.2. Analogue Series. Analogue series were assembled
using a computational method that identifies analogue series in
compound data sets of any composition.9 This method makes
use of the matched molecular pair (MMP) concept.10 An
MMP is defined as a pair of compounds that are distinguished
by a chemical modification at only a single site.10 This
modification involves the exchange of a pair of substructures,
which is termed as transformation.11 For our study, MMPs
were generated by single-cut fragmentation of exocyclic single
bonds11 on the basis of retrosynthetic rules,12 yielding RECAP-
MMPs.13

Compounds sharing the same RECAP-MMP core form a
matching molecular series (MMS),14 which represents an
analogue series with a single substitution site.9 By contrast,
different MMSs sharing analogues form a series with multiple
substitution sites.9 In this case, substitution sites of the
corresponding RECAP-MMP cores are transferred to shared
analogues from which an analogue-series-based (ASB)
scaffold15,16 with multiple substitution sites16 is extracted.
This ASB scaffold then represents an analogue series with
multiple substitution sites.
Two sets of analogue series were extracted from screening

data and medicinal chemistry sources, respectively.
2.2.1. Series of Screening Compounds. A set of 80 series

containing active and inactive analogues was extracted from
the PubChem Bioassay database.17 The series were required to
have single substitution sites, consist of at least 30 analogues
tested in the same assay, and include at least three active
compounds. They contained a total of 1618 compounds and
covered 25 biochemical assays and 23 unique targets. These
series were used in the proof-of-concept study introducing
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computational progression saturation analysis.6 They are
termed PubChem series in the following.
2.2.2. Series from Medicinal Chemistry. A set of 64

analogue series yielding ASB scaffolds with multiple sub-
stitution sites were extracted from ChEMBL (release 23)18 on

the basis of high-confidence activity data. Accordingly, only
compounds with direct interactions (type “D”) with human
targets at the highest assay confidence level (confidence score
9) were selected. As potency measurements, only specified
equilibrium constants (Ki values) or IC50 values were

Figure 2. Representative analogue series. Exemplary compounds of series from (a) PubChem and (b) ChEMBL are shown with associated target
and potency information and corresponding virtual analogues (red). In addition, the composition of each series is reported and its ASB scaffold is
shown.
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considered. These analogue series, termed ChEMBL series in
the following, were required to consist of 10−30 active
analogues. They contained a total of 1422 compounds and
covered 62 unique targets.
In addition, three large series with 100 or more analogues

were extracted from ChEMBL to model evolving series and
analyze their saturation characteristics.
Compositions of all analogue series, their structures, and

targets are reported in Table S1 in the Supporting Information.
Figure 2 shows exemplary compounds from representative
series with associated activity and target information together
with virtual analogues. Because our approach is designed to
assess chemical saturation of analogue series, rather than SAR
progression, potency and target information for analogues is
not of primary relevance. As discussed, compound potency is
not a computational parameter here.
2.3. Chemical Reference Spaces. Two overlapping

chemical reference spaces were generated using descriptor
subsets of different designs and information contents. Because
chemical reference space is a variable for saturation analysis,
investigating the influence of alternative chemical space
representations is an important aspect of our study. The first
space representation was 7-dimensional and formed by
intuitive molecular descriptors including molecular weight,
the number of hydrogen-bond donor and acceptor atoms, the
number of rotatable bonds, the logarithm of the octanol/water
partition coefficient (log P), aqueous solubility, and topological
polar surface area. These descriptors accounted for chemical
features known to be relevant to ligand−target interactions. In
addition, a 14-dimensional reference space was generated by
adding seven more abstract two-dimensional descriptors with
little pairwise correlation to the initial set. Selected descriptors
(Table 1) were calculated with the Molecular Operating
Environment (MOE)19 and scaled to zero mean and unit
variance.
2.4. Virtual Analogues. Two conceptually different

strategies were applied to generate virtual analogues for series

including a transformation- and a matrix-based approach.
Virtual analogues served as candidates for series progression.

2.4.1. Transformation-Based Virtual Candidates. System-
atic RECAP-MMP fragmentation, as described above, was
applied to ChEMBL compounds with high-confidence activity
data to sample chemical transformations from which individual
substituent fragments were extracted. A total of 13 203 unique
substituents were obtained. These substituents were system-
atically recombined with the RECAP-MMP core of each
screening analogue series, yielding a constant number of 13
203 virtual analogues per series. This strategy was applied in
our initial study.6 In addition, the substituent pool was
recombined with ASB scaffolds representing medicinal
chemistry series with multiple substitution sites to randomly
sample the same number of virtual candidates per series.
Transformation-based virtual analogues were generated with
Python scripts aided by the OpenEye toolkit.20

2.4.2. Matrix-Based Virtual Candidates. Furthermore, the
SAR matrix (SARM) data structure21,22 was used as a source of
virtual analogues for medicinal chemistry series. SARMs are
obtained from compound sets through systematic two-step
MMP fragmentation and identify all subsets that have
structurally analogous cores, i.e., core structures that are
distinguished by a structural modification only at a single
site.21 Each subset of analogue series with structurally related
cores is represented in a single SARM that is reminiscent of a
standard R-group table. A matrix cell represents a unique
combination of a core and substituent. Analogue series in
SARMs typically contain different substituents. Hence, the
systematic recombination of structurally related cores obtained
from the second round of fragmentation and substituents from
the first round reproduces all existing analogues and, in
addition, generates virtual analogues representing as of yet
unexplored core−substituent combinations.21

By design, structurally related cores and SARMs can be
obtained only from analogue series with multiple substitution
sites. Such series typically yield multiple SARMs. Depending
on the number of structurally related cores and substituents
resulting from two-step fragmentation, a series-specific number
of virtual candidates is obtained.
A major difference between the transformation- and matrix-

based virtual analogue generation approaches is that matrix-
based candidates are generally more closely related to existing
analogues than transformation-based candidates, for which a
diverse array of possible substituents is available. The
distribution of virtual analogues from SARMs can be
rationalized as an envelope in chemical space formed around
an existing series.22

The 64 ChEMBL series with 10−30 analogues yielded
between 101 and 501 matrix-based virtual candidates per
series. In each case, the same number of transformation-based
virtual analogues were generated through random sampling. In
addition, for direct comparison with PubChem series, a
constant number of 13 203 transformation-based virtual
analogues per ChEMBL series was also generated through
random sampling. The same number of transformation-based
virtual analogues was generated for three large ChEMBL series
with more than 100 analogues.

3. RESULTS AND DISCUSSION
3.1. Progression Saturation Analysis. The scoring

scheme underlying progression saturation assessment is
illustrated in Figure 1a,b. Global and local saturation scores

Table 1. Descriptors for Chemical Reference Spacesa

descriptor name description

set 1 a_acc number of H-bond acceptor atoms
a_con number of H-bond donor atoms
b_1rotN number of rotatable single bonds
log P (o/w) log octanol/water partition coefficient
logs log solubility in water
TPSA topological polar surface area
weight molecular weight

set 2 petitjeanSC topological shape index
(diameter − radius)/radius

rsynth synthetic feasibility based on retrosynthetic
rules

PEOE_VSA_FNEG fractional negative van der Waals surface
area

balabanJ topological index (Balaban distance
connectivity)

PEOE_RPC+ relative positive partial charge
PEOE_VSA_FPPOS fractional polar positive van der Waals

surface area
a_nN number of nitrogen atoms

aDescriptors used for the design of chemical reference spaces are
described according to the Molecular Operating Environment with
which they were calculated. Set 1 constitutes a seven-dimensional
reference space, and sets (1 + 2) form a 14-dimensional space.
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quantitatively account for global chemical space coverage of
analogues and the distribution of virtual candidates across
chemical neighborhoods of active analogues, respectively.
These scores yield characteristic combinations that reflect
different levels of saturation and make it possible to assign
analogue series to different progression stages according to
Figure 1c. Relationships among score magnitudes, analogue
distributions, and saturation states are detailed in Section 2.
We note that there is no a priori preferred saturation level for
analogue series. The methodology is designed as a diagnostics
to characterize and differentiate between different levels of
chemical saturation, which is important for practical
applications.
Herein, we have systematically analyzed sets of series from

different sources. The major difference between PubChem and
ChEMBL series is that the former contained both active and
inactive analogues, whereas the latter exclusively consisted of
active analogues from medicinal chemistry publications.
Different parameters were evaluated that were expected to
impact the computational assessment of progression satu-
ration.
3.2. Z-Scores. Global and local saturation scores must be

separately calculated for different sets of analogue series and
varying parameter settings including chemical space represen-
tations and populations of virtual candidates. For example, for
the 80 screening series with 13 203 transformation-based
virtual candidates projected into the seven-dimensional
reference space, global and local saturation Z-scores covered
the intervals [−2.1, 2.3] and [−1.3, 4.6], respectively. Other
parameter settings yielded only slightly different score
distributions. The threshold value for high global and local
saturation Z-scores was set to 1σ above the mean in all cases
and was thus constantly 1.0. On the basis of this threshold
value, the four different score combinations for classifying
analogue series according to Figure 1c were calculated.
3.3. Alternative Chemical Reference Spaces. For the

assessment of progression saturation, analogue series must be
projected into chemical reference spaces. We first investigated
the influence of alternative chemical space representations on
score and series categorization. Figure 3 shows the comparison
of 7-dimensional (Figure 3a) and 14-dimensional reference
spaces (Figure 3b) for 80 PubChem series in the presence of
13 203 transformation-based virtual analogues. In both
reference spaces, similar score combinations were obtained
for analogue series, leading to a closely corresponding
assignment of series to different progression stages (Figure
3c). In both reference spaces of different dimensionalities, the
majority of series (60 vs 58) fell into the low/low global/local
saturation score category, 13 series belonged to the high/low
category, and only three series were assigned to the high/high
category. As shown in Figure 4, equivalent observations were
made for the 64 ChEMBL series in the presence of 13 203
transformation-based virtual analogues. In both chemical
reference spaces, most series (43 vs 49) belonged to the
low/low category. In this case, no series were assigned to the
high/high category. Hence, both sets of PubChem and
ChEMBL series were dominated by analogue series with
mid-stage character. Only 17 PubChem and 12 ChEMBL
series were found to belong to different categories in the 7- and
14-dimensional reference spaces, consistent with the closely
corresponding distributions observed in Figures 3 and 4. Thus,
scoring was stable in both reference spaces and very similar
assignments were obtained, indicating that progression

saturation assessment was not sensitive to chemical reference
space variation. Furthermore, the score distributions in Figures
3 and 4 also reveal a significant spread of series across the
scoring range, indicating the capacity of global and local scores
to distinguish between different series. At least for analogue
series from chemical optimization projects published in the
medicinal chemistry literature, the observed prevalence of
series with a mid-stage character would be expected.

Figure 3. Analysis of PubChem series in different chemical reference
spaces. Progression saturation of analogue series from PubChem with
13 203 virtual candidates is assessed in (a) 7-dimensional and (b) 14-
dimensional reference spaces. Scatter plots report local and global
saturation scores obtained for all series (each dot represents a series).
(c) Assignment of series to different score combination categories
(according to Figure 1c).
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3.4. Virtual Analogues of Different Designs. Next, we
compared different ensembles of virtual candidates for
progression saturation assessment, which represented another
parameter of the analysis. For ChEMBL series having multiple
substitution sites, matrix-based virtual analogues were
generated, yielding varying numbers of 101−501 candidates
per series. For each series, the corresponding number of
transformation-based virtual analogues were generated and
saturation scores were calculated on the basis of alternative sets
of virtual analogues in 14-dimensional reference space. Figure

5a,b shows the score distributions obtained for matrix- and
transformation-based virtual candidates, respectively. The
resulting assignment of series to score combination categories
is shown in Figure 5c. Here, moderate changes were observed,
predominantly for the low/high and low/low categories.

Figure 4. Analysis of ChEMBL series in different chemical reference
spaces. Progression saturation of analogue series from ChEMBL with
13 203 virtual candidates was assessed in (a) 7-dimensional and (b)
14-dimensional reference spaces. (c) Assignment of series to different
score combination categories. The representation is according to
Figure 3.

Figure 5. Progression saturation analysis using virtual analogues of
different designs. Progression saturation of ChEMBL series was
assessed on the basis of corresponding numbers of (a) matrix- and (b)
transformation-based virtual candidates. Scatter plots report local and
global saturation scores obtained for all series (each dot represents a
series). (c) Comparison of the assignment of series to different
categories. Here, the raw global saturation score calculation was
modified using the top 10% of nearest virtual neighbors for
determining the neighborhood radius to account for the smaller
number of virtual candidates.
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Progression saturation assessment in the presence of trans-
formation-based virtual analogues assigned 13 series to the
high/low and 38 series to the low/low category. By contrast,
assessment in the presence of matrix-based virtual candidates
yielded eight high/low and 44 low/low series. In addition, 13
and 12 low/high series were obtained using transformation-
and matrix-based virtual analogues, respectively. Thus, there
was a shift from late-stage series toward series with the mid-
stage character for matrix-based virtual analogues compared to
that of transformation-based candidates. By design, matrix-
based virtual analogues were structurally closer to existing
analogues than transformation-based virtual candidates, which
contained structurally more diverse substituents. Hence,
matrix-based candidates should be more likely to map to
neighborhoods of active analogues than transformation-based
virtual analogues, which would result in lower raw saturation
scores. This was consistent with the observation that 22 series
contained no transformation-based virtual analogues within
neighborhoods of active analogues, whereas all series contained
at least a few matrix-based virtual candidates in active
neighborhoods. However, lower raw saturation scores do not
necessarily translate into significant differences in category
assignments because the category of a series is determined on
the basis of the magnitude of its global and local scores relative
to the scores of the other analogue series. Mapping of
transformation- or matrix-based virtual analogues delineates
the chemical space of an analogue series. One might argue that
the space covered by matrix-based virtual compounds, which
are closely related to existing analogues, might more accurately
reflect the space that is relevant for a given series.
3.5. Increasing Numbers of Virtual Analogues. In

addition to alternative analogue design strategies, the use of
varying numbers of virtual analogues to sample chemical space
was also investigated. Figure 6 shows the results of progression
saturation analysis of ChEMBL series in the presence of

stepwise increasing numbers of transformation-based virtual
analogues. Only small variations in series assignments were
observed over a wide range of virtual candidates, indicating
that the number of virtual analogues was not a critical
parameter for saturation progression assessment. This can be
rationalized by taking into account that, independent of the
size of the set, virtual candidates are used to sample the
chemical space centered on an analogue series. This implies
that larger sets of virtual analogues do not necessarily cover a
larger section of chemical space. Rather, they more densely
sample chemical space around an analogue series. Saturation
scores assess the chemical space coverage by the series on the
basis of these virtual analogues. Because a small set of samples
is less likely to be evenly distributed, one would expect larger
variations for smaller sets of virtual candidates and more stable
category assignments for larger sets. Over different set sizes,
only small fluctuations in distributions were observed,
indicating that chemical space coverage by a few hundreds to
a few thousands virtual analogues was sufficient for ensuring
stable category distributions. For practical applications, the
results in Figure 6 suggest that on the order of 1000 virtual
candidates are sufficient for the analysis of moderately sized
analogue series.

3.6. Evolving Analogue Series. Although parameter
evaluation depends on the analysis of large ensembles of
similar analogue series from which statistically sound scores
can be derived, the assessment of individual series is of
particular interest in medicinal chemistry. In practice, the
analysis of progression saturation would primarily be on the
agenda for evolving series for which a significant number of
analogues have already been generated. However, such series
are rarely disclosed and only few examples are available in the
public domain, which prohibits Z-score calculations. From
ChEMBL, we have obtained three series with 100 or more
analogues and analyzed them on the basis of raw scores
instead. For consistency with calculations reported above,
13 203 transformation-based virtual analogues were generated
for each series and projected into the 14-dimensional reference
space. To model the evolution of series, subsets of 30 and 60
analogues were taken from each series and compared to those
of the complete series. The results are shown in Figure 7a, and
representative analogues from each series are depicted in
Figure 7b. The analogue series include 126 inhibitors of acetyl-
CoA carboxylase 2; 146 inhibitors of phosphodiesterase 10A,
the largest available series; and 100 inhibitors of the 5-
lipoxygenase activating protein. For compounds from each
series, exemplary transformation-based virtual analogues are
shown. Figure 7a reveals for each series an increase in
saturation scores for subsets of increasing size, consistent with
the expectation that increasing numbers of analogues should
generally result in increasing levels of chemical saturation.
Interestingly, the progression saturation characteristics of all
three series differed. The series on the left in Figure 7a yielded
the lowest global and highest local saturation scores, the series
in the middle had intermediate scores, and the series on the
right yielded the highest global and lowest local scores. Thus,
on a relative scale, the series on the left had lower analogue
coverage and fewer virtual candidates in active neighborhoods
than those in the others. By contrast, the series on the right
had more extensive analogue coverage than the others and
more virtual candidates in active neighborhoods. In qualitative
terms, progression saturation of the series in Figure 7a
increased from the left to the right. The analogue series on

Figure 6. Category distributions for increasing numbers of virtual
analogues. For increasing numbers of virtual analogues, score
combination categories for ChEMBL series are reported as
percentages. As in Figure 4, the top 10% of nearest neighbors were
used for determining the neighborhood radius for calculating the
global saturation score.
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the right displayed late-stage character and the highest level of
progression saturation.

4. CONCLUSIONS
Herein, we have investigated computational progression
saturation analysis of different sets of analogue series,
originating from biological screening or medicinal chemistry,
under varying parameter settings. The computational approach
depends on relating chemical space distributions of existing
analogues and virtual candidates to each other and on
analyzing chemical neighborhoods of existing analogues.
Accordingly, it is important to explore how different analysis
conditions might influence the results of progression saturation
analysis. Relevant parameters include alternative chemical
space representations, varying compound numbers, and
different virtual analogue design strategies. Moreover, it is of
critical relevance to evaluate the influence of varying
computational analysis settings on the categorization of series
on the basis of characteristic score combinations; a prerequisite
for meaningful practical applications. Therefore, different
chemical reference spaces and populations of virtual
compounds were explored. Essentially, scoring remained stable
under these conditions and only minor to moderate alterations
in series categorization were observed. Furthermore, we have
analyzed exemplary large analogue series, which are rare in the
public domain, and used these analogue series to model series
progression. Analysis of evolving series revealed an intuitive
increase in chemical saturation when series grew in size,
lending further credence to the methodological concept.
Moreover, computational comparison of large series compris-
ing similar numbers of analogues revealed different saturation
characteristics, which is of high relevance for medicinal
chemistry applications. Distinguishing between these charac-
teristics relied on our computational analysis scheme. Herein,
we provide all details required for computational progression
saturation analysis, which should make it straightforward for
interested investigators to implement the methodology.
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Summary

Herein, analysis of the chemical saturation of ASs has been carried out
under varying conditions. Based on combinations of global and local satura-
tion scores, the majority of the studied ASs have been categorised as having
mid-stage LO character, regardless of whether they originated from biological
screening data or medicinal chemistry literature. Furthermore, expanding the
initial seven-dimensional chemical reference space with additional weakly cor-
related descriptors has not led to significant changes in category assignment of
ASs, indicating that the method is rather insensitive to the choice of chemical
reference space representation. The two separate VA design strategies explored
herein have mainly reflected local saturation scores with matrix-based VAs map-
ping more closely to EA NBHs than transformation-based VAs. Furthermore,
variations in the number of VAs used for score calculations have yielded only
moderate changes in scores, which tend to become more stable with increas-
ing VA population sizes. Lastly, scoring of growing ASs has revealed distinct
chemical saturation trajectories for each of the three analyzed ASs, thus further
corroborating the robustness and discriminative ability of the method.

Taken together, these findings were encouraging for searching for further use
cases and methodological extensions, which can account for not only chemical
saturation but also SAR progression in ASs.
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Chapter 4

Computational Method to Evaluate
Progress in Lead Optimization

Introduction

Assessing SAR (dis)continuity in ASs is of major interest in LO campaigns.
SAR patterns within single ASs are not necessarily uniformly distributed i.e.
some areas in chemical space may be predominantly characterized by continu-
ous and others by discontinuous SARs, thus posing a limiting factor for global
QSAR models. Precisely in such cases, the chemical NBH concept can pro-
vide a high-resolution view on distinct SAR environments and serve as helpful
orientation for medicinal chemists. This principle has been utilized in SAR
matrices where local NBHs are defined on the basis of MMP relationships be-
tween compounds. However, such NBHs represent discrete constructs due to
the strict binary-like definition of an MMP (only a single-site transformation
is allowed). Alternatively, the distance-based NBHs described in the previous
chapters exhibit a more flexible character (depending on molecular represen-
tations and distance types) and represent attractive data structures for local
SAR exploration.

In this chapter, chemical saturation analysis is coupled with estimation of
SAR progression, which is quantified as a function of NBH-based SAR disconti-
nuity. The two different NBH definitions that have been initially proposed, are
combined into a single universal one and based on that, previously introduced
chemical saturation scoring is further improved to yield more interpretable score
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combinations. In this study, chemical saturation is calculated as a function of
the degree and density of chemical space coverage by EAs. In light of these
methodological modifications, calibration of hyper-parameters, such as number
of used VAs and NBH radii, is carried out once again on the basis of newly
extracted ASs from ChEMBL. In contrast to the previous chapter, in this anal-
ysis only VAs obtained via AS core enumeration are considered for delineating
AS-centric chemical space.

My main contribution to this work was the design and implementation of
the new scoring system and the subsequent analysis of ASs.

Reprinted with permission from “M. Vogt, D. Yonchev, J. Bajorath. Computa-
tional method to evaluate progress in lead optimization. J. Med. Chem. 2018,
61, 10895-10900”. Copyright 2018 American Chemical Society.
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ABSTRACT: In medicinal chemistry, lead optimization is a critically
important task and a highly empirical process, largely driven by chemical
knowledge and intuition. Only very few approaches are available to guide and
evaluate optimization efforts. It is often very difficult to understand when a
compound series is exhausted and the generation of additional analogs
unlikely to yield further progress toward potent and efficacious candidates.
Rationalizing lead optimization remains an essentially unsolved problem.
Herein, we introduce a new computational method to aid in evaluating
whether sufficient numbers of analogs have been made and further progress is
unlikely. The approach integrates the assessment of chemical saturation and
structure−activity relationship progression of compound series. Easy-to-
calculate scores characterize evolving analog series and identify candidates
with high or low priority for further chemical exploration.

■ INTRODUCTION

One of the great challenges in medicinal chemistry is
rationalizing lead optimization (LO).1 At each stage of this
time-consuming and costly process, a medicinal chemist must
decide which compounds to make next in order to reach
optimization milestones. Moreover, as an analog series (AS)
evolves, it is difficult to judge the odds that further progress
will be made in exploring and exploiting structure−activity
relationships (SARs). During LO, multiple properties must be
balanced to reach the stage when an active compound can be
considered for in vivo studies. However, if a compound is not
sufficiently potent, it will not become a candidate, irrespective
of other features. This requirement makes SAR exploration a
central task during early to mid-stages of LO. Given the
complexity of LO, this process is largely driven by chemical
knowledge, experience, and intuition. There are neither
generally applicable optimization routines available nor
methods to rationalize LO campaigns and estimate their
outcomes. More often than not, roadblocks are encountered
during LO and progress made is less than anticipated.
However, once substantial efforts have been expanded to
advance ASs, terminating a project is a difficult decision to
make, even if it is questionable or unlikely that final goals are
within reach. Given the essentially subjective nature of LO and
the absence of unbiased evaluation criteria, it is often easier to
make more analogs and hope to hit a home run than to
discontinue a high-profile project. As a consequence, many LO
campaigns are carried on for a long time and large numbers of
analogs are generated, despite the lack of ultimate success.
In light of this situation, methodologies that help to

characterize ASs and evaluate their potential are sought after
in medicinal chemistry. Of course, it can hardly be expected
that any single methodology will be capable of solving the LO

problem. However, any method that can provide decision
support during LO is desirable, especially when assessing
project progression. Only very few approaches are currently
available that can be considered in this context. Among
computational methods, quantitative SAR (QSAR) analysis2

has long been a standard for predicting active analogs for an
evolving series. However, QSAR is not capable of assessing the
progression of an AS. Going beyond compound potency
prediction, statistical multi-objective optimization and analysis
methods are applicable to suggest candidate compounds with
desirable properties3,4 or monitor compounds during LO that
meet predefined optimization criteria.4 Furthermore, coverage
of chemical space around ASs has been estimated by defining
neighborhoods (NBHs) of experimental analogs and screening
these NBHs with virtual compounds.5,6 Other approaches have
been introduced to visualize SAR information7 and monitor
SAR characteristics of evolving data sets.8 Furthermore,
numerical SAR analysis functions can be applied to assess
SAR progression9,10 and statistical techniques to identify
compounds that make significant contributions to positive
progression and reduce the risk of failure.11 However, although
SAR visualization methods and numerical functions enable
retrospective analysis, they cannot be used to predict whether
further progress in LO might be made.
Herein, we introduce a computational method to estimate

whether an AS can be further advanced by generating more
analogs or whether this would be unlikely. The approach was
designed to integrate the assessment of chemical saturation
and SAR progression of ASs. Evaluation of our methodology
was based on the largest ASs from medicinal chemistry sources
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that we were able to identify in the public domain. Figure 1
shows representative examples.

■ RESULTS
Methodological Concept. The new method is based on

the following principle. To evaluate LO progress, it must be
determined (i) how extensively chemical space around a given
AS is covered and (ii) whether analogs display significant
potency variations. The tasks in (i) and (ii) can be rationalized
as determining chemical saturation and SAR progression,
respectively. Varying potency of structural analogs indicates
SAR discontinuity,9 the apex of which are activity cliffs.12 In
the absence of SAR discontinuity, that is, when all analogs
made have comparable potency values, there is no SAR
progression. Combining (i) and (ii) enables the character-
ization of LO progress of ASs. In the presence of extensive
chemical space coverage around an AS and the absence of SAR
discontinuity, it is unlikely that additional analogs with further
increased potency will be available. To assess (i) chemical
saturation, populations of virtual analogs are generated for a
given AS whose distribution serves as an indicator of chemical
space coverage around the series. To evaluate (ii) SAR
progression, potency changes among analogs that have
overlapping NBHs with shared virtual analogs are quantified
and weighted, as further rationalized below.
Central to the methodology is the definition of analog NBHs

in chemical space. The vastness of chemical space makes the
enumeration of all conceivable compounds infeasible, even if
chemical space is confined to a single AS. For a given series,
the space may be mapped using representative virtual analogs.
This concept was adapted from a recent chemical saturation
analysis,5 modified and further extended. For quantification of
parameters, it must be ensured that the sample of virtual
analogs is large enough to yield consistent results. To evaluate
compound distributions in AS-centered chemical space and
across NBHs of analogs, distances are calculated. Specifically,
the distance d(a,b) between two compounds a and b is given
by the Euclidean distance between two multidimensional

vectors encoding molecular properties after unit-variance
scaling on the basis of the virtual analog sample of an AS. A
threshold distance, t, must be set to determine the NBH radius
of an active analog. The derivation of the corresponding
scoring scheme is presented in the following.

Scoring Scheme. On the basis of our methodological
concept, a scoring scheme was developed for profiling ASs that
addresses three important questions concerning the level of
chemical saturation and SAR progression:

1. How extensively does an AS cover chemical space
restricted by its core structure?

2. How densely does an AS sample cover chemical space?
3. How strongly do potencies of close analogs vary?

The first two questions relate to chemical saturation,
whereas the third one relates to SAR progression. Correspond-
ing parameters can be estimated from the structures and
potency values of analogs comprising a given AS. The resulting
scores are simple and intuitive. Their formal derivation is
presented in the following.

Chemical Saturation. Sampled chemical space and NBH
definition form the basis for quantifying a set of key
parameters. Given an AS A = {a1, a2, ..., anA} consisting of nA
active analogs and a sampled chemical space V = {v1, v2, ..., vnV}
of nV virtual analogs, the sets Vi = {v ∈ V | d(v,ai) ≤ t} are
defined as virtual analogs falling into the NBHs of ai. The

union V V
i

n
iN

1

A= ∪
=

then gives the set of all virtual analogs that

are contained in an NBH of at least one active compound ai.
Let nN = |VN| be the number of virtual analogs in NBHs. The
coverage

C
n
n

N

V
=

with range [0, 1] is the fraction of virtual analogs in the
combined NBHs of all active compounds A and used to
estimate coverage of relevant chemical space for a given AS.
Virtual analogs v of VN can be contained in one or more

NBHs. The larger the number of NBHs becomes for a given v,
the more densely the virtual analog is surrounded by actives.
The average number dmean of overlapping NBHs containing a
virtual analog in VN can be determined by summing all NBHs
and dividing by the number of virtual analogs in VN

d
n

V
1

i

n

imean
N 1

A∑= | |
=

This parameter is normalized to the range [0, 1], yielding a
density score

D d1 ( )mean
1= − −

The extent and density of chemical space coverage around a
given AS indicate its chemical saturation. Accordingly, the
coverage and density scores can be combined to yield a single
saturation score S, which is defined as the harmonic mean of C
and D.

S
CD

C D
2= +

SAR Progression. If a virtual analog is present in overlapping
NBHs of multiple actives, the magnitude of potency variations
among active analogs indicates the degree of SAR discontinuity
in this chemical sub-space. The parameter Δ̅i quantifies the

Figure 1. Exemplary ASs. Shown are AS-based scaffolds representing
individual ASs. For each AS, the ChEMBL ID, target name, number
of analogs, and their potency range are reported.
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potency range for multiple actives, with NBHs containing the
same virtual analog. For vi ∈ VN, present in NBHs of mi actives
{a1, ..., ami

}, Δ̅i is calculated as the average potency difference
over all pairs of active analogs.

m m
a a

2
( 1)

pot( ) pot( )i
i i j k

j k

m

j k
, 1

i∑Δ̅ = − | − |
=

<

Here, pot(a) denotes the potency of compound a on a
logarithmic scale.
Parameter P is then calculated as the mean potency range of

NBHs over all virtual analogs using a weighting scheme wi = 1/
mi if mi > 1 and wi = 0 if mi = 1.

P
w

w
1

i
n

i i

n

i i
1 1

N

N∑= ∑ Δ̅
= =

This score accounts for SAR discontinuity in NBHs of active
analogs. The weighting scheme emphasizes SAR discontinuity
in smaller numbers of overlapping NBHs associated with a
given virtual compound, that is, less-explored regions of
chemical space around a given AS where highly potent analogs
might preferentially be identified.
Score Combinations. Considering S and P scores in

combination makes it possible to estimate the potential of an
AS for LO. An AS displaying a high degree of chemical
saturation and little SAR progression is thought to have low
LO potential, corresponding to a large S and small P score. By
contrast, an AS with small S and large P score has high LO
potential. A continuum of score combinations can be
considered to distinguish between different levels of LO
potential.
NBH Radius. A threshold distance t determines the NBH

radius of an active analog. It is derived from distance
distributions between virtual analogs of a given AS. Virtual
analogs outnumber active analogs and serve as an indicator of
chemical space coverage. With increasing NBH radii, the
likelihood increases that NBHs of active analogs are over-
lapping and populated with virtual analogs. Using 10 000
virtual analogs per AS, we calculated scores for increasing NBH
radii. The dependence of coverage C on NBH radii is
monitored in Figure 2, which shows the distribution of C
values for all ASs at a given radius. As expected, C increased
with increasing NBH radii and the score distributions notably
widened. Very similar observations were made for the D and P
scores. Initially, we profiled ASs by comparing two NBH radii
with percentile values of 1.0 and 5.0, respectively, and obtained
similar results. Taking into consideration that publicly available
ASs were confined in size, with five of 34 series consisting of
more than 100 analogs, we consistently set the threshold of the
NBH radius for subsequent calculations to the 1st percentile of
the distribution of pairwise distances between virtual analogs.
Virtual Analog Samples. Next, C, D, and P scores were

calculated by systematically increasing the number of virtual
analogs per series from 500 to 13 000 (in 10 increments of
gradually increasing size). Each calculation was repeated 10
times by randomly selecting the respective number of virtual
analogs from the source set of each AS. C, D, and P scores
remained essentially constant for all ASs when virtual analogs
at least on the order of 5000 were used. For consistency with
calculations varying NBH radii, the results discussed in the

following were obtained for a constant number of 10 000
virtual analogs per AS.

Comparison of Coverage and Density. Figure 3
compares the distribution of C and D scores for all ASs.

Given the confined NBH radius used for moderately sized ASs,
C scores were distributed over the range [0, 0.25] (see also
Figure 2). D scores were widely distributed, mostly over the
range [0.4, 0.8]. Two important observations were made. First,
C and D scores were uncorrelated and ASs with small C and
large D scores and vice versa were detected. Second, C and D
scores did not correlate with the size of ASs; both smaller and
larger series were found to yield a variety of C or D scores
within the observed ranges. Taken together, these observations
indicated that score distributions were influenced by chemical
characteristics of ASs and that C and D scores captured
different aspects of chemical saturation, consistent with their
design. Accordingly, the complementary nature of C and D
supported the generation of a composite chemical saturation
score S.

Profiling of Analog Series. As a central part of our
analysis, chemical saturation and SAR progression were
explored in context. Figure 4 shows the distribution of
progression score P and saturation score S for all ASs. Both
scores were broadly distributed. For ASs with S scores greater

Figure 2. Score dependence on NBH radii. Boxplots report the
distribution of coverage C for NBHs with increasing percentile
threshold (radius). For each AS, the mean of 10 independent
calculations was used. Boxplots report the smallest value (bottom
line), first quartile (lower boundary of the box), median value (thick
line), third quartile (upper boundary of the box), and largest value
(top line).

Figure 3. Density vs coverage. The scatter plot compares D and C
scores for all ASs. Each AS is represented by a dot that is scaled in size
according to the number of analogs it contains (smallest dot, 51
analogs; largest, 166). Exemplary ASs are numbered according to
Figure 1.
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than 0.2, the distribution of P scores widened, covered a large
range [0.2, 1.2], and separated ASs from each other. For
example, AS 2 in Figure 4 (phosphodiesterase 10A inhibitors,
146 analogs; see also Figure 1) was characterized by one of the
highest degrees of chemical saturation in our set of ASs and the
overall highest level of SAR progression. S scores of available
ASs were generally smaller than 0.4. Therefore, AS 2 was
considered to have further LO potential, given its intermediate
S and high P score. Accordingly, the generation of additional
analogs would be expected to yield potent compounds. In
addition, AS 4 (kinase JAK-1 inhibitors, 81 analogs), which
was smaller in size than AS 2, had an S score comparable to AS
2 and the overall second highest P score. Therefore, similar
conclusions would be drawn for AS 2 and AS 4 and generating
additional analogs for AS 4 would be expected to yield further
LO progress. However, other ASs with more than 100 analogs
yielded some of the smallest S and intermediate P scores.
Hence, score differences were not resulting from differences in
size, but chemical composition. For example, this was the case
for AS 1 (acetyl-CoA carboxylase 2 inhibitors, 126 analogs),
which represented one of the series with lowest degree of
chemical saturation, but detectable SAR progression. In this
case, the generation of additional analogs should be carefully
monitored for potential increases in SAR discontinuity. The
observed continuum of S/P score combinations made it
possible to assign different levels of LO potential to ASs.
Notably, ASs with largest S scores within our set and smallest P
were expected to have lowest LO potential among the series
we compared. An example for such ASs was provided by AS 3
(dopamine D2 receptor antagonists, 69 analogs), which had
low priority for further exploration. By contrast, other ASs with
S scores around 0.2 and P scores of 0.6 or greater had higher
LO potential. Overall, a variety of score combinations were
observed for ASs of varying size, which clearly differentiated
ASs and made it possible to prioritize series for further
optimization efforts. For example, Figure 5 shows exemplary
analogs of a series of ATPase inhibitors and virtual analogs
falling into their NBHs. This AS was among the smallest we
profiled (53 analogs) and had one of the lowest S scores
(0.11). However, despite low chemical saturation, the AS
reached an intermediate P score (0.46) within our set and
should thus be considered to have further optimization
potential.

■ DISCUSSION AND CONCLUSIONS
In medicinal chemistry, LO is a largely subjective process that
is difficult to rationalize and formalize. Generally applicable LO
criteria or protocols are not available, and it is very difficult to
understand when optimization efforts become unlikely to
further advance an AS. Consequently, approaches that provide
guidance during LO and decision support are highly desirable.
We have introduced a computational method to evaluate LO
progress. The approach combines the assessment of chemical
saturation and SAR progression and makes it possible to
characterize and differentiate ASs. Sets of virtual analogs
generated for individual ASs aid in defining NBHs of active
analogs and serve as an indicator of chemical space coverage.
Furthermore, detectable SAR discontinuity within overlapping
NBHs is regarded as a prerequisite for obtaining increasingly
potent compounds. The combined analysis of chemical
saturation and SAR progression is translated into a scoring
scheme for profiling and prioritizing ASs. High S scores
approaching 1 and low P score approaching 0 indicate that ASs
are exhausted and provide a criterion for discontinuation
beyond subjective assessment. On the other hand, opposite
scores are indicative of optimization potential.
The approach is expected to be influenced by the choice of

descriptors and chemical reference spaces as well as virtual
compound populations. A previous study investigated metrics
for the assessment of chemical saturation of ASs under varying
conditions.6 This included investigating the influence of
chemical space representations based on different descriptor
sets and alternative approaches to virtual compound
generation for sampling chemical space. The saturation
assessment for different sets of ASs remained essentially stable
under these varying conditions. For example, when a 14-

Figure 4. SAR progression vs chemical saturation. The scatter plot
compares P and S scores for all ASs. Each AS is represented by a dot
that is scaled in size according to the number of analogs. Exemplary
ASs are numbered according to Figure 1.

Figure 5. Progressing AS. Shown are exemplary analogs belonging to
a series of endoplasmic reticulum ATPase inhibitors (black) and their
NBHs (light blue) and virtual analogs (red) falling into the NBHs.
Substitution sites are encircled.

Journal of Medicinal Chemistry Article

DOI: 10.1021/acs.jmedchem.8b01626
J. Med. Chem. 2018, 61, 10895−10900

10898



dimensional reference space was used instead of the seven
chemically intuitive descriptors used herein, comparable results
were obtained.6 Similarly, only little changes in chemical
saturation were observed when virtual analog populations were
generated using different R-group sets and design strategies. In
this study, we used R-group sets that were systematically
extracted from bioactive compounds in ChEMBL to
enumerate virtual analogs on the basis of ASB scaffolds
representing series, without additional filtering of analogs.
Importantly, as introduced herein, the methodology can be
tested with many different descriptors and candidate
compounds, depending on preferences and project specifics.
There are no intrinsic limitations. This also applies to distance
measures for defining NBHs in chemical reference space. After
initially exploring various alternatives, including Tanimoto
distances in fingerprint spaces, our preference is the
straightforward calculation of Euclidian distances on the basis
of numerical descriptors, but more complex measures can
certainly be explored. Essentially, calculation parameters can be
adjusted at will and virtual compounds from different sources
be used. We also note that the approach is applicable to ASs of
any composition and not intrinsically limited by the number of
substitution sites. For our study, ASs have been systematically
extracted from public domain compounds originating from the
medicinal chemistry literature. The ASs studied herein
represented the largest we have been able to identify via
automated AS extraction, requiring the availability of reliable
activity measurements, a prerequisite for meaningful profiling
analysis. These ASs contained from one to three substitution
sites. In the practice of medicinal chemistry, ASs with more
than four or five site substitution sites are rare. However, ASs
with three or more sites can be readily profiled.
Given the complexity of LO, it is anticipated that the new

methodology will be of interest to practicing chemists. For
computational medicinal chemists, the scoring scheme is
straightforward to implement and scores are easy to calculate.
Although we are currently limited to studying the relatively

small number of sizable ASs that are available in the public
domain, it will be exciting to see applications of the
methodology to mid- and late-stage series from drug discovery
projects.

■ EXPERIMENTAL SECTION
Chemical Reference Space. For profiling of ASs, a 7-dimen-

sional chemical reference space was generated using chemically
intuitive descriptors accounting for molecular properties known to be
relevant for ligand−target interactions, as previously used for assessing
chemical saturation.5 These descriptors included the number of
hydrogen bond donors, acceptors, and rotatable bonds; logarithmic
octanol/water partition coefficient and aqueous solubility, topological
polar surface area, and molecular weight were calculated using
RDKit13 and, in the case of aqueous solubility, using a freely available
custom implementation based on the ESOL method.14

Analog Series. ASs with single and multiple substitution sites,
more than 50 compounds, and available high-confidence activity data
were systematically extracted from ChEMBL (release 23)15 using a
computational analog selection method16 based on the matched
molecular pair (MMP) formalism.17 An MMP is defined as a pair of
compounds that are distinguished by a chemical change at a single
site.17

A total of 34 ASs were obtained, including 15 ASs with single and
19 with multiple (two to three) substitution sites. The 34 ASs
consisted of 51−166 compounds (five series contained more than 100
analogs). Each AS was active against a unique target. These
compound data sets represented the largest and most diverse

collection of ASs from medicinal chemistry sources that we were
able to identify in the public domain. Figure 1 shows exemplary ASs.
Each AS is represented by its AS-based (ASB) scaffold18 covering all
substitution sites (reminiscent of a Markush structure). For all ASs
and virtual analogs of AS 4 in Figure 1, molecular formula strings are
provided as Supporting Information.

Virtual Analogs. From each AS, the ASB scaffold18 was isolated.
From ChEMBL (release 23), a total of 14 026 unique R-groups were
extracted by systematically calculating MMPs with size-restricted
chemical changes19 from bioactive compounds. On the basis of each
ASB scaffold representing an AS, virtual analogs were enumerated by
systematically adding R-groups to substitution sites. The calculations
were carried out with the aid of the OpenEye toolkit.20

For ASs with single substitution sites, 13 965 to 14 012 virtual
analogs were generated (i.e., one per unique R-group). The number of
virtual analogs per AS was in each case smaller than 14 026 because
existing analogs were frequently reproduced using the pool of R-
groups extracted from ChEMBL. For each AS with multiple
substitution sites, 140 260 distinct virtual analogs were enumerated
by randomly selecting R-groups for each substitution site from the
ChEMBL pool. Virtual analogs generated for each AS provided source
sets for score calculations.
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Summary

Herein, chemical saturation and SAR progression have been combined to a
scoring scheme for AS profiling and prioritization. Newly introduced method-
ological modifications have been extensively tested in order to ensure robust-
ness and identify the optimal parameter setting that provides the best means
for differentiating between series. After plotting ASs based on their charac-
teristic score combinations, no correlation has been observed, and thus their
LO status has been intuitively evaluated. High chemical saturation is generally
an indicator for more developed series but does not necessarily correlate with
the number of synthesized analogs. At the same time, high SAR progression
(resulting into detectable SAR discontinuity) can be rationalized as promising
from a medicinal chemistry point of view, as more pronounced potency fluctu-
ations are more likely to result in faster convergence in the search for a highly
potent candidate.

The successful application of the herein developed scoring system served as
a proof-of-principle for combination of chemical saturation and SAR progres-
sion as diagnostic measures for estimating the LO potential of individual ASs.
These findings have been used as a rationale for the development of the COMO
methodology presented in the following chapter.
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Chapter 5

Compound Optimization Monitor
(COMO) Method for Computational
Evaluation of Progress in Medicinal
Chemistry Projects

Introduction

The method introduced in the previous chapter, albeit robust in its dis-
criminative power, relies entirely on the chemical NBH principle for score cal-
culations. However, in order to gain a more holistic view of AS characteristics,
NBH-independent scoring can be considered as an additional complementary
component. This may be of particular use when investigating certain score
combinations more profoundly. For example, high chemical saturation in com-
bination with low SAR progression may present a potential termination crite-
rion for a series if no sufficient degree of activity is yet present among analogs.
At the same time, it may be a desired characteristic in cases where predictable
(continuous) SARs are required for maintaining already achieved high potency
levels and avoiding potential pitfalls while optimizing other compound proper-
ties. In light of such cases, estimating the general trajectory of potency trends
within a series is likely to provide an additional layer of information for medic-
inal chemists. Furthermore, given the fact that biological activity is not the
only compound property being ameliorated during LO, progression of physico-
chemical properties needs to be monitored in addition.
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In this chapter, the Compound Optimization MOnitor (COMO) is intro-
duced building upon the efforts and gathered knowledge from the previous
approaches. COMO is developed as a diagnostic method for AS categorization
by augmenting the already established scoring system with additional scoring
components for SAR heterogeneity and multiple physicochemical properties.
Furthermore, the quality of the generated VAs is improved by introducing a
reaction-based scaffold enumeration strategy and limitations in molecular size
to ensure better synthetic tractability and adequate representation of series-
relevant chemical space. In this study, a new set of mid- to large-sized ASs is
obtained from ChEMBL and subjected to systematic profiling.

My main contribution to this work was the new VA design strategy, the
development and benchmarking of the scoring extensions, and the subsequent
analysis of the results.

Reproduced from “D. Yonchev, M. Vogt, J. Bajorath. Compound optimization
monitor (COMO) method for computational evaluation of progress in medicinal
chemistry projects. Future Drug Discov. 2019, 1, FDD15” with permission of
Future Science Group.
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Hit-to-lead and lead optimization (LO) are central tasks in medicinal chemistry [1]. The ultimate goal of LO is the
generation of clinical candidate compounds. Once a lead compound has been obtained that displays promising
biological activity and structural features for further exploration, LO usually requires the generation of many analogs
to further improve compound potency and other optimization-relevant properties [1]. LO is largely driven by the
experience and intuition of medicinal chemists and is often perceived to be more of an art form than a science.
For a given analog series (AS), the exploration and exploitation of structure–activity relationships (SARs) typically
present new challenges that must be considered on a case-by-case basis. It is very difficult – if not impossible –
to generalize LO strategies and predict the outcome of LO campaigns. A particularly critical issue during LO is
estimating the odds of ultimate success for a given AS. Once large amounts of time and resources have been spent
to further improve lead(s), discontinuing work on an AS is a difficult call to make in the practice of medicinal
chemistry, understandably so. Consequently, LO efforts are often carried out for too long until they are finally
suspended, and there is only very little external decision support available.

One would hope for decision support through computational analysis aiming to rationalize parts of the LO
process. However, there currently are only few computational methods available to support LO, beyond compound
potency prediction [2,3]. For example, multiobjective optimization is frequently applied to combine and weigh
different compound properties and score candidate compounds [4,5]. In addition, statistical methods can be used to
evaluate SAR progression or prioritize compounds that make positive contributions toward LO [6,7]. However, none
of these few computational approaches with utility for LO is capable of assessing when an AS might be saturated,
and generating more compounds would be unlikely to yield further progress. To these ends, new computational
methodologies are required.

We have spent considerable efforts developing computational concepts for the evaluation of chemical saturation
of ASs [8,9] and the combination of saturation and SAR progression analysis [10]. These concepts have provided
the foundation of the Compound Optimization MOnitor (COMO) methodology presented herein. COMO
is designed to address the questions to what extent an AS is chemically saturated, if there is further potential
for SAR progression and if attractive candidate compounds still exist. It employs an intuitive scoring scheme
comprising multiple score components to quantitatively assess LO progress and provide decision support for
medicinal chemistry. In the following sections, the COMO methodology is detailed and its application to a panel
of ASs from medicinal chemistry reported.

Methodology & calculations
Methodological concept
COMO was designed to evaluate LO efforts by assessing how extensively and densely chemical space around an
AS is covered (chemical saturation) and whether potential for SAR progression is detectable. Key components of
the approach include the use of virtual analog (VA) populations for a given AS to chart series-centric chemical
space and the generation of chemical neighborhoods (NBHs) of active analogs [8]. VAs serve a dual purpose as
diagnostic molecular entities and potential candidates for further optimization. Moreover, the application of the
NBH concept makes it possible to distinguish between overlapping and nonoverlapping NBHs as a measure of
compound density, map locations of VAs and characterize their SAR environments [9]. For an AS, the potential
of further SAR progression is evaluated in a VA-dependent manner by determining local SAR discontinuity [9] as
well as in a VA-independent manner by assessing global SAR heterogeneity. To quantify chemical saturation and
SAR progression, two pairs of complementary and chemically interpretable scores are designed. One of these pairs
yields a combined saturation score. In addition, a multiproperty score is introduced, taking into consideration that
different compound properties must be balanced during late stages of LO. The methodological concept of COMO
is illustrated in Figure 1. We note that NBHs are defined on the basis of distance relationships between compounds
in chemical reference space, as further explained below, and that no similarity metrics are applied.

Virtual analogs
For a given AS, a set of VAs is generated using a newly developed computational enumeration scheme:
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(i) From all bioactive compounds in ChEMBL (release 24) [11] with available high-confidence activity data
(252,779 compounds in total), 16,575 unique substituents with up to 13 nonhydrogen atoms were system-
atically extracted using matched molecular pair fragmentation of exocyclic single bonds [12] on the basis of
retrosynthetic rules [13]. These substituents provide a pool for VA design.

(ii) From an AS, all substituents including hydrogen atoms attached to the common core structure are collected.
For each AS, the proportion of hydrogen atoms among all substituents is determined, which represents the
AS-specific likelihood of hydrogen substitutions. It is calculated by dividing the number of hydrogens found
in analogs across all substitution sites by the total number of substituents collected for a given AS.

(iii) The set of 16,575 substituents is used to enumerate VAs on the basis of the following rules:
• Substituents are permitted to contain at most 13 nonhydrogen atoms and the total size of a VA (including

all substituents) is limited to at most 1.5-times the size of the corresponding core.
• For each substitution site, the subset of qualifying substituents is determined by testing whether the resulting

bond meets retrosynthetic rule(s); 12 of 13 previously defined rules [13] are considered (excluding olefinic
double bonds).

• ASs with single and multiple substitution sites are investigated. In the case of single substitution sites,
VAs are enumerated using all qualifying substituents (including a hydrogen atom). If an AS has multiple
substitution sites, VAs are generated by randomly decorating each site with a hydrogen or a qualifying
nonhydrogen substituent on the basis of the AS-specific likelihood of hydrogen substitutions according to
(ii).

For the analysis reported herein, 10,000 unique VAs were generated for each AS with multiple substitution sites.
For ASs with single substitution sites, between 5191 and 9850 unique VAs per series were obtained, depending on
the number of qualifying substituents.

Scoring system
The COMO scoring scheme consists of two categories of scores accounting for chemical saturation and SAR
progression, respectively, yielding four score components. In addition, a property score is introduced to balance
multiple optimization-relevant compound properties, which can be flexibly selected for a given compound class
and optimization task.

Chemical neighborhood radius

For each active analog, the NBH radius is set herein to the first percentile of the distribution of pairwise distances
between VAs in chemical reference space. This setting has been selected on the basis of test calculations reported
below. Distance between two compounds in chemical space is calculated as the Euclidian distance between their
descriptor (feature) vectors.

Since VA populations are much larger than existing ASs, they mostly determine coverage of chemical space,
which rationalizes the consideration of VA distance relationships for NBH definition [8,9]. VAs might map to
nonoverlapping NBHs, overlapping NBHs or outside of NBHs, which is quantitatively accounted for through
scoring as detailed below.

Chemical saturation

For a given AS and the corresponding VA population, coverage C of chemical space is quantified as the proportion
of VAs that fall into NBHs of active analogs:

C = nN/nV

Here, nN and nV refer to the number of VAs in NBHs and the total number of VAs, respectively. The C score
has the range (0,1).

Furthermore, a subset of VAs in NBHs might be located in overlapping NBHs.
The more densely the chemical space is covered by active analogs, the larger the total number of overlapping

NBHs becomes and the larger the likelihood will be that VAs in NBHs map to overlapping NBHs.
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Accordingly, dmean is defined as the number of overlapping NBHs containing VAs (NBHO VA) relative to the
number of VAs falling into NBHs:

dmean = NBHO VA/nN

It is normalized to the density score D having the range (0,1):

D = 1 − d−1
mean

Combined coverage and sampling density of chemical reference space is a measure of chemical saturation.
Accordingly, the saturation score S is defined as the harmonic mean of score components C and D:

S = 2CD/(C + D)

SAR progression

If a VA is present in overlapping NBHs of multiple active analogs, the magnitude of potency variations among these
analogs indicates the degree of SAR discontinuity across the associated NBHs. The parameter �i is introduced to
capture the potency range of mi active analogs that form overlapping NBHs containing a VA. For a given VA in
overlapping NBHs, �i is computed as the mean potency difference over all pairs of mi active analogs (potj and
potk represent the logarithmic [log] potency of compound j and k, respectively):

�i =
2

mi (mi − 1)

mi∑

j, k = 1

j < k

|potj − potk|

The SAR progression score P is then calculated as the mean over all VAs in NBHs applying a weighting scheme
wi = 1

mi
if mi > 1 and wi = 0 if mi = 1:

P =
1∑nN

i=1 wi

nN∑

i=1

wi�i

If follows that only VAs in overlapping NBHs contribute to P. The score is a measure of local SAR discontinuity
across overlapping NBHs containing VAs. For P, large values are obtained when VAs map to overlapping NBHs
of active analogs with large potency fluctuations. In such regions, virtual candidates might yield highly potent
compounds. Accordingly, large P values indicate potential for further SAR progression.

Herein, we introduce an additional SAR measure to complement VA-centric progression scoring. The underlying
idea is to relate the potency distribution of active analogs forming overlapping NBHs to the mean potency of the
entire AS. The measure accounts for global SAR heterogeneity and is hence termed H score. It is calculated as the
difference between the weighted mean potency of active analogs forming individual clusters of overlapping NBHs
and the mean potency of the complete AS (poti is the log potency of compound i and potAS the log potency of the
AS):

H =

∑n
i=1 wNipoti∑n

i=1 wNi
− potAS

For each active analog i, the weighting factor wNi represents the number of active analogs that form overlapping
NBHs with analog i. Thus, active analogs with increasing numbers of overlapping NBHs make increasingly large
contributions to the H score. We note that H can be positive or negative, depending on whether the weighted mean
potency of analogs with overlapping NBHs is larger or smaller than the mean potency of the entire AS. Increasingly
positive or negative H values are indicative of increasing SAR heterogeneity at the AS level. By contrast, scores close
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Active analogs

Active neighborhood

10 VAs, 4 NBHs, 2 VAs in NBHs,

1 VA in overlapping NBHs
Virtual analogs Scoring

Figure 1. Methodological concept of compound optimization monitor. Shown is an analog series (black dots) with
compound NBHs (gray spheres) and VAs (red dots) in n-dimensional chemical reference space. A small section of
populated chemical space is enlarged, which contains four active analogs, their NBHs, and 10 VAs. Eight of the ten
VAs are located outside of NBHs and two VAs map to different NBHs. Three of the four NBHs are overlapping and
contain one of the VAs. This NBH and compound classification scheme provides the basis for the calculation of
chemical saturation and structure–activity relationship progression scores.
NBH: Neighborhood; VA: Virtual analog.

to zero reflect low SAR heterogeneity. This characteristic renders the VA-independent H score complementary
to the P score. Local SAR discontinuity, as indicated by P values, can be related to global SAR heterogeneity, as
indicated by H values. By comparing these scores, potential differences between local and global SAR characteristics
can be detected for ASs.

Multiproperty score

During late stages of LO, multiple optimization-relevant properties must typically be balanced while retaining
potency. Therefore, we further extend the scoring scheme through the introduction of a multiproperty (M) score,
which is calculated for active analogs. For scoring, descriptors of physicochemical properties of choice can be
selected. In our current study, five property descriptors are chosen including the number of rotatable bonds in
a molecule, the logarithmic octanol/water partition coefficient, aqueous solubility, topological polar surface area
and MW. These descriptors represent a subset of those used for defining a chemical reference space, as described
below. For the descriptors, preferred, acceptable and undesired value ranges are defined following the calculation
of Absorption, Distribution, Metabolism, Excretion (ADME) traffic lights [14] and scored accordingly. For each
active analog, property values are calculated and a penalty score of 0 (preferred), 1 (acceptable) or 2 (undesired) is
assigned to each value. For MW, an ADME-relevant halogen atom correction is introduced as suggested [14]. For
each compound, descriptor-based penalty scores result in a cumulative score of 0–10. For an AS, the M score is
then calculated as the mean cumulative penalty score.

Chemical reference space
For profiling of ASs, a chemical reference space is required. For the assessment of chemical saturation and VA-
dependent SAR progression, an intuitive, seven-dimensional descriptor space was found to yield results very similar
to those obtained in higher-dimensional and more complex space representations [10]. This space was generated using
descriptors accounting for molecular properties known to be relevant for ligand–target interactions including the
number of hydrogen bond donors, acceptors, rotatable bonds, the logarithmic octanol/water partition coefficient,
aqueous solubility, topological polar surface area and MW. The descriptors were calculated as described [9]. This
chemical reference space is used herein. Distances between compounds in chemical space were calculated as the
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Euclidean distance between descriptor vectors following unit-variance scaling on the basis of the VA population of
a given AS.

We note that for both chemical reference space design and multiproperty scoring, different sets of descriptors
can be selected, given individual preferences and/or requirements of specific applications.

Calculations
ASs with 50 or more compounds and available high-confidence activity data were extracted from ChEMBL (release
24) using a computational AS identification method [15]. Compounds of qualifying ASs were distinguished by
one or more substituents. 72 ASs were obtained that were active against 35 unique targets and contained 50–148
analogs per series (a total of 5430 compounds). These ASs included 29 series with single and 43 series with multiple
(two to six) substitution sites. For each AS, VAs were generated as described above.

Parameters for COMO calculations include the chemical reference space, VA design strategy, size of VA popula-
tions and the NBH radius. For the ASs used herein, test calculations were carried out by systematically varying the
size of VA populations and NBH radii to further investigate the influence of these parameter settings on scoring.

Results & discussion
The COMO methodology was designed to combine computational evaluation of chemical saturation and SAR
progression potential with the aid of VA populations, as illustrated in Figure 1. The use of VAs is essential for
analyzing chemical space and NBH coverage as well as for assessing the density of coverage. For active analogs, NBHs
are generated and overlapping NBHs are identified. Then, it is determined if VAs fall into single or overlapping
NBHs, which provides the basis for calculating C, D, S and P scores. Different from P scores, complementary H
scores for SAR characterization do not take VAs into account but also rely on the notion of overlapping NBHs.
By contrast, M scores only depend on properties directly calculated for ASs and not on the COMO formalism.
Figure 2 shows exemplary compounds from an actual AS, their NBHs and VAs. Four active analogs (black) and
three exemplary VAs (red) are selected. Three active analogs form overlapping NBHs into which one of the VAs
falls. In addition, another VA is located in the NBH of an isolated active analog and the third VA maps outside of
the NBHs.

Virtual analogs
Because VAs play a dual role as diagnostic chemical entities as well as potential candidate compounds, their design
requires careful consideration. Compared with conventional enumeration strategies for virtual libraries [16,17] and
our previously applied method [9], the VA generation approach introduced herein emphasizes synthetic accessibility
of VAs and a balanced size distribution. On the basis of visual inspection, these VAs are typically sound from a
medicinal chemistry perspective and can be readily considered as candidates for optimization efforts.

Parameter settings
In addition to selecting a suitable chemical reference space, key calculation parameters for COMO include the size
of VA populations and the radius of NBHs, as discussed above. Preferred parameter settings can be determined on
the basis of test calculations. Figure 3A shows mean S scores for our ASs, VA populations of increasing size and
increasing NBH radii. As one would expect, S scores tend to increase with increasing NBH radii. However, for a
given radius, the scores are surprisingly stable for increasing number of VAs, which is a consequence of the inter-VA
distance-dependent definition of the NBH radius. Figure 3B shows the distributions of individual S scores for
increasing NBH radii in the presence of a constant number of 3000 VAs. For a percentile of 1.0, an intermediate
score distribution is observed for our ASs ensemble with a median S score of close to 0.3. Figure 3C shows mean
P scores for VA populations of increasing size and increasing NBH radii. Mean P scores for our ASs ensemble are
distributed over a fairly narrow scoring range (from 0.4 to 0.6). For small NBH radii, mean P scores are slightly
more variable than S scores for increasing numbers of VAs, but the scores become essentially constant when about
3000 (or more) VAs are used. Figure 3D reports the distributions of individual P scores for increasing NBH radii
in the presence of 3000 VAs, which are much more similar to each other than the corresponding distributions of S
scores. On the basis of the test calculations reported in Figure 3, the NBH radius was set to the first percentile of
inter-VA distances for all subsequently reported calculations, and 3000 VAs were consistently used.
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Figure 2. Exemplary active analogs, neighborhoods and virtual analogs. For an analog series of sodium channel protein type IX α

subunit ligands, exemplary compounds, their neighborhoods and virtual analogs are shown according to Figure 1.
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Figure 3. COMO calculation parameters. (A) Reports mean S scores for the set of 72 analog series as a function of virtual analog
populations of increasing size over increasing neighborhood radii. (B) Shows box plots representing the distribution of S scores across all
analog series for increasing neighborhood radii in the presence of a constant number of 3000 virtual analogs. (C) Reports mean P scores
corresponding to (A) and (D) reports the distribution of P scores corresponding to (B).
COMO: Compound optimization monitor; NBH: Neighborhood; VA: Virtual analog.

Score distributions
Figure 4 shows the distributions of all six COMO scores for the 72 ASs. Figure 4A compares distributions of C
and D scores, which are combined to yield the S score. The distributions reveal that the ASs studied herein mostly
have limited coverage of chemical reference space (i.e., a low proportion of VAs falling into their NBHs) but a
high density of coverage (i.e., many VAs map to overlapping NBHs). Furthermore, P scores of the ASs ensemble
preferentially populate an intermediate range (Figure 4B). By contrast, the H score is narrowly distributed close to 0,
hence indicating the absence of significant SAR heterogeneity detectable with this score (Figure 4C). Nonetheless,
the tendency to yield positive or negative H scores can be rationalized for these ASs, as discussed in the next
section. The M scores mostly populate an intermediate range, with few outliers having high (unfavorable) scores
(Figure 4D).

SAR heterogeneity
Figure 5 shows network representations for different ASs (with <60 compounds) in which analogs are represented
as nodes (color coded by potency) and edges indicate the formation of overlapping NBHs. These networks show
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Figure 4. Score distributions. Shown are box plots representing the distributions of the six compound optimization monitor scores for
all 72 analog series calculated using a constant neighborhood radius (first percentile) and 3000 virtual analogs.

that only a fraction of analogs have overlapping NBHs, which is an important observation from a methodological
viewpoint. In addition, the networks reveal possible origins of SAR heterogeneity. For example, the network of the
AS in Figure 5A contains two clusters of densely connected and mostly weakly potent analogs, which results in a
negative H score. The network in Figure 5B reveals clusters of compounds with varying potency, which essentially
mirror the potency distribution across the AS, resulting in an H score close to 0. By contrast, the network in
Figure 5C contains clusters formed by mostly highly potent analogs and, in addition, a large number of singletons
with varying potency. The clusters with potent analogs are responsible for producing a positive H score. Hence,
increasing SAR heterogeneity detected by H scoring is straightforward to rationalize on the basis of network views.
Scoring of larger ASs than those currently available (i.e., ASs with more extensive cluster formation) will help to
determine if the H score should be numerically adjusted.

Score comparison
We next compare different COMO scores for individual ASs. Figure 6A shows the comparison of C and D
scores. Different combinations are observed for ASs of varying size and, importantly, no correlation is detectable
between these scores. This confirms that coverage of chemical space and the density of coverage are independent
properties, which can contribute differently to the S score. In addition, Figure 6B compares P and H scores. ASs
with increasing P score predominantly – but not exclusively – display positive H scores, indicating that compounds
with overlapping NBHs on average exceed the potency of the entire AS; an interesting observation. Thus, nearest
neighbors in an AS tend to have above average potency, which likely reflects the generation of close-in analogs once
a potent compound is identified.

Figure 6C shows the comparison of S and P scores, which are central components of the COMO methodology.
Importantly, no correlation between these scores is observed and ASs of similar size display different scores. The
absence of correlation is a prerequisite for an unbiased assessment of chemical saturation and SAR progression.
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Figure 5. Neighborhood overlap-based
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using a continuous color spectrum as
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nodes indicate that the corresponding
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wrapper of the Graphviz software using
the ‘neato’ network layout [18].
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However, one would also expect a tendency that increasing numbers of active analogs should increase the degree of
chemical saturation of an AS. Although the magnitude of such effects is influenced by the compound class under
study and the number of substitution sites per AS, our findings also reflect this expectation. For example, 15 of
the 18 ASs with highest S scores (representing the highest quartile of the S score distribution) exceed the median
number of 66 analogs per AS. These 15 ASs contain nine of a total of 14 ASs with >100 analogs. Moreover, it
is also important to note that the S- and P-score combinations cover wide scoring ranges, hence indicating high
differentiation potential for the small to moderately sized ASs studied here, lending credence to the scoring scheme.

Figure 6 also shows that ASs have rather different M scores, ranging from favorable to unfavorable scores, and
that these scores are not related to other COMO scores, as expected.

Score interpretation
On the basis of characteristic combinations of chemical saturation and SAR progression scores, ASs can be assigned
to different LO stages, as illustrated in Figure 7. The ASs falling into the lower left quadrant of the plot are
characterized by low S and low P scores. It follows that these ASs are still little explored chemically and do not
display detectable SAR progression. Such series are at very early stages of chemical exploration and must be further
extended and to better understand their potential. Furthermore, ASs in the upper left quadrant have low S and
high P scores. Hence, these series are also still at early stages of chemical exploration, but already display significant
potential for SAR progression. Accordingly, they represent promising candidates for further development.
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ASs in the upper right quadrant have high S and P scores, indicating that they are chemically far advanced
but still have potential for SAR progression. This observation can be interpreted in different ways; for example,
by generating additional analogs, further SAR progression might occur and more potent compounds might be
identified. On the other hand, this score combination might also be indicative of steep SARs at late stages of LO.
Such SARs features are undesired when multiple properties must be balanced while retaining compound potency.
Therefore, caution is advised when ASs with high S and high P scores are detected, and follow-up analyses should
be considered. For example, SAR responses of bioisosteric replacements should then be carefully analyzed during
multiproperty optimization.

Finally, ASs in the lower right quadrant of the plot have low P and high S scores. Accordingly, they are chemically
saturated and display very little potential for further SAR progression. Thus, given the absence of potential caveats
associated with steep SARs, such ASs can serve as a basis for ADME-oriented multiproperty optimization once
a desirable potency level of the lead candidate(s) has been achieved. Multiproperty optimization is supported by
multiproperty scoring, as reported herein, and relies on retaining desirable potency levels, which is favored by
low remaining SAR discontinuity. However, ASs with high S and low P scores may also represent candidates for
discontinuation if no highly potent compound(s) have been identified, despite the extensive saturation of analog
space. Furthermore, in some instances, additional help in judging whether or not desirable potencies levels have
been achieved is provided by positive or negative H score, which support decision making during later stages of
LO.

Conclusion
The basic idea underlying the COMO approach is rationalizing LO efforts beyond subjective judgment, especially
considering key questions whether or not enough compounds have been generated or further progress is likely.
Therefore, COMO is designed to characterize ASs by combining the assessment of chemical saturation and
SAR progression. This is facilitated through a scoring scheme comprising two pairs of complementary chemical
saturation- and SAR-relevant scores. As an additional diagnostic, a multiproperty score is calculated for test
compounds. COMO analysis can be conveniently carried out when ASs evolve over time and new compounds are
added. Hence, progress can constantly be monitored and detected changes further analyzed.

Currently, there are no related computational approaches available. Hence, from this point of view, the COMO
methodology is charting new territory in computational medicinal chemistry. As shown herein, the COMO scoring
scheme distinguishes between different ASs and the scores are chemically interpretable. Moreover, the analysis of
score combinations makes it possible to assign ASs to different LO stages and prioritize series for termination or
further exploration. The COMO methodology has been extensively evaluated internally on ASs extracted from
public domain resources, and results obtained so far indicate considerable potential for further practical applications.
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Future perspective
In its current implementation, COMO captures the results of several efforts to develop new computational
concepts for the assessment of chemical saturation and SAR progression. These concepts have been translated into
an advanced scoring system to quantitatively assess LO progress. Of course, as is the case with any computational
methodology, the COMO framework will be subject to further development and extension. For example, it is
conceivable that the scoring scheme will be further refined once large ASs become available for profiling. Notably,
the ASs we are currently able to extract for benchmark calculations from publicly available compounds are generally
limited in size. For example, the ensemble of ASs used herein only contains only a limited number of series with
>100 analogs. Nonetheless, in our previous proof-of-concept investigation [9] and our current study, individual
ASs with large differences between chemical saturation and/or SAR progression scores have already been detected.

Another aspect to consider is that publicly available ASs might often originate from different sources and therefore
reflect practical optimization efforts only to a limited extent. In drug discovery, LO campaigns often produce much
larger ASs than investigated herein and it will be interesting to subject such series to comparative COMO analysis.
Furthermore, profiling of evolving ASs following the sequence of optimization efforts will also be of considerable
interest. Here, decision support provided by computational analysis might have an immediate impact. Indications
are that the methodology has matured to the point that such applications can be carried out.

An attractive area for future research will be further exploiting the dual role of VAs as diagnostic chemical
entities and potential candidates for chemical optimization, for which the current VA generation approach provides
a foundation. For example, initial efforts are currently underway to combine COMO with machine-learning
approaches to derive models for activity prediction. For moderately sized ASs, this is already feasible. Such models
will then be used to predict VAs having the highest probability of activity and highest potential for further SAR
progression, thus adding a compound design component to COMO’s diagnostic repertoire.

Executive summary

Background
• Lead optimization (LO) is largely driven by chemical intuition and experience.
• Progress in LO is difficult to evaluate.
• Only a few computational methods are available to monitor LO.
• New computational concepts are required to provide decision support.
Methodology & calculations
• Compound Optimization Monitor (COMO) is introduced as a new approach for quantifying LO progress.
• The key question is addressed if enough compounds have been made.
• COMO’s methodological concept and its scoring scheme are detailed.
• A new approach for the generation of virtual analogs is introduced.
Results & discussion
• Calculation parameters are evaluated.
• COMO results are presented for an ensemble of 72 analog series (AS).
• Score distributions are analyzed and compared.
• COMO-based assignment of ASs to different LO stages is discussed.
Future perspective
• The computational concept is subject to further extension.
• ASs from the public domain often have limited exploration potential.
• Practical applications on ASs from drug discovery will be a focal point.
• Combining COMO with machine learning is a topic for future research.
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Summary

In this study, the COMO method has been successfully applied for detailed
analysis of AS LO profiles. The herein presented combination of four NBH-
dependent and two NBH-independent scores is designed to address the multi-
dimensional nature of LO and provides complementary points of view on specific
AS characteristics. The utility of the newly introduced NBH-independent SAR
heterogeneity score for assessing the global direction of potency trends within a
series has been corroborated by network analysis and the multi-property score
has been shown to provide intuitive orientation in the progression of physico-
chemical properties. Moreover, it has been shown that all COMO parameters
and scores are easily adjustable to the specific needs of individual LO projects
and to the endpoints of comparison between ASs (provided that experimen-
tally measured data for this are available). Importantly, synthetic accessibility
of the VAs used in this study has been significantly improved, which has laid the
foundations for the next step of bridging between their utility as indicators for
chemical space sampling and potential synthetic candidates for AS expansion.

The latter aspect is explored in the next chapter, where the diagnostic ca-
pabilities of COMO are extended with NBH-oriented prospective VA design.
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Chapter 6

Integrating Computational Lead
Optimization Diagnostics with Analog
Design and Candidate Selectionn

Introduction

The diagnostic capability of COMO enables evaluation of LO progress, how-
ever in its support for prospective decision-making, it is limited to indicating
general project trajectories (e.g. series continuation/termination). As medici-
nal chemists face the daily challenge of which compound to synthesize next, an
extension of the COMO methodology with a component for candidate prioriti-
zation is proposed to complement the discussed scoring scheme. The role of VA
populations, as described until now, has been purely diagnostic i.e. they have
been solely used as indicators for delineating and sampling AS-centric chemical
space. However, they can be also viewed as a pool of potential new molecules
for synthesis and testing. Thereby, important prerequisites for selection of suit-
able candidates are synthetic accessibility and predictable biological activity,
which are expected to reduce experimental efforts.

Herein, a procedure for identifying promising candidates is integrated to the
COMO methodology. First, standard series-based QSAR models for prospec-
tive potency prediction of enumerated synthetically tractable VAs are explored.
Furthermore, as an alternative design strategy, VAs are automatically gener-
ated and prioritized on the basis of MMP-based NBHs specifically assembled for
FW-type analysis. Importantly, these NBHs are not equivalent to the distance-

71



based NBHs utilized in the COMO formalism. Finally, in addition to the exist-
ing diagnostic scoring, LO progress is further rationalized based on the extent
of exploration of such FW NBHs. The procedure is applied to large ASs com-
prising more than 100 compounds (newly extracted from ChEMBL) that are
likely to exhibit a more advanced LO profile.

Reproduced from “D. Yonchev, J. Bajorath. Integrating computational lead
optimization diagnostics with analog design and candidate selection. Future
Sci. OA 2020, 6, FSO451” with permission of Future Science Group.
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Chemical optimization efforts play a central role in the practice of medicinal chemistry [1]. During lead optimization
(LO), many analogs of initially prioritized active compounds must typically be generated until candidate status
is reached. However, despite large compound numbers, work on analog series (ASs) must often be terminated
when required optimization criteria cannot be reached. The need to abandon large-magnitude LO efforts results
in a significant loss of time and resources, which causes major problems for medicinal chemistry. Accordingly, any
approaches that help to evaluate LO projects and estimate the odds of success are highly desirable. For this purpose,
computational evaluation of LO is particularly attractive. However, in addition to quantitative structure–activity
relationship (QSAR) approaches that are long used to predict the potency of newly designed analogs [2,3], only few
computational methods are currently available that aid in planning or assessing LO efforts [4–9]. These methods
include multiparameter optimization and other statistical techniques to evaluate compound property progression
or identify compounds that strongly contribute to structure–activity relationships (SARs) [4–7]. None of these
approaches provide comprehensive LO diagnostics or combines data analysis with molecular design. Recently, a
conceptually different computational methodology has been introduced to address the questions if an AS might be
chemically saturated and if further SAR progression might be expected [8,9]. The analysis makes it also possible to
estimate if sufficient numbers of analogs have been generated for a given series. Hence, the evaluation of chemical
saturation and SAR progression was combined to provide decision support during LO [8]. These efforts have led to
the development of the compound optimization monitor (COMO) program [9]. By design, the COMO approach
is diagnostic in nature, similar to two other SAR evaluation methods [6,7]. However, a special feature of COMO’s
additional chemical saturation analysis component is that it utilizes populations of virtual analogs (VAs) to chart
chemcial space for given ASs. These VAs are specifically generated for each AS and might thus also be evaluated
as candidate compounds for synthesis. Accordingly, the COMO method might be further extended to compound
design and the prediction of preferred candidates. This would provide a unique methodological combination of
chemical saturation and SAR diagnostics with prospective compound design. However, achieving this goal requires
the incorporation of approaches for AS-specific VA selection and candidate prediction. Herein, we report the
extension of COMO to include the design and prioritization of candidate compounds for LO.

Methods
COMO diagnostic concept
The COMO approach, its scoring scheme and parameter optimization have been described in detail [9]. In the
following, a summary of the COMO concept is presented as a basis for rationalizing its extension.

COMO evaluates chemical saturation and SAR progression of ASs by determining how extensively and densely
chemical space around a given series is covered. In addition, COMO determines if significant potency variations
among existing analogs (EAs) and increases in potency are observed during LO. The assessment relies on defining
chemical neighborhoods (NBHs) of EAs and on using populations of VAs for given ASs to map NBHs and
surrounding chemical space. VAs are currently generated using a pool of more than 32,000 unique substituents
with at most 13 heavy atoms that were extracted from bioactive compounds on the basis of retrosynthetic criteria.
For VA generation, the core structure of an AS is isolated while retaining substitution site information through atom
indices. Then, predefined numbers of VAs are enumerated according to retrosynthetic rules using the substituent
library. At individual substitution sites, an AS-specific likelihood of hydrogen substituents is taken into account [9].
All EAs and the corresponding VA population are then projected into a chemical reference space where overlapping
and nonoverlapping NBHs of EAs are analyzed and their VA content is determined. Then, potency variations of
EAs with overlapping and populated NBHs are quantified.

This analysis concept yields multiple scores for evaluating LO progression. COMO key scores account for
chemical saturation and SAR progression. The chemical saturation score S is composed of two components
quantifying the coverage and density of chemical space.
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The coverage score C is defined as the proportion of VAs that populate NBHs of EAs:

C =
nN

nV
(Eq. 1)

Variables nN and nV refer to the number of VAs in NBHs and the total number of VAs, respectively. The C score
has the range [0,1].

In addition, a term dmean is introduced as the number of overlapping NBHs containing VAs (NBHO VA) relative
to the total number of VAs falling into NBHs of EAs:

dmean =
NBHO VA

nN
(Eq. 2)

The density score D with range [0,1] is then calculated as:

D = 1 − 1

dmean
(Eq. 3)

Chemical saturation score S combines coverage and sampling density of chemical reference space and is obtained
as the harmonic mean of score components C and D:

S =
2CD

C + D
(Eq. 4)

Furthermore, SAR progression is assessed by determining potency variations of EAs sharing VAs in overlapping
NBHs, which provides a measure of SAR discontinuity of a given AS. For a given VA, parameter �i accounts for
the potency range among mi associated analogs. It is calculated as the mean potency difference over all pairs of mi

EAs. In addition, potj and potk represent the logarithmic potency of analog j and k, respectively:

�i = 2
mi (mi −1)�

mi

j, k = 1

j < k

|pot j − potk |
(Eq. 5)

The SAR progression score P is then calculated as the mean over all VAs in NBHs using their �i values and a
weighting scheme wi = 1

mi
if mi >1 and wi = 0 if mi = 1:

P =
1

�
nN
i=1 wi

�
nN
i=1 wi �i (Eq. 6)

The COMO calculations reported herein were carried out as described previously [9] using a seven-dimensional
(7D) chemical reference space and a population of 2000 VAs per AS. In each case, S and P scores were calculated
to illustrate the characterization of ASs.

AS
For our analysis, new ASs with activity against a given target and available high-confidence potency measurements
of inhibition constant (Ki) or half maximal inhibitory (IC50) values were extracted from ChEMBL (version 25) [10].
The ASs were identified using a previously reported algorithm [11] following matched molecular pair (MMP)
fragmentation [12,13] of bioactive compounds on the basis of retrosynthetic rules [14,15]. An MMP is defined
as a pair of compounds that are only distinguished by a chemical modification at a single site [12]. Systematic
fragmentation of exocyclic single bonds generates MMP cores and substituent fragments. Following fragmentation,
the AS identification algorithm assembles series with a shared core and single or multiple substitution sites [11]. For
our analysis, the 24 largest ASs with more than 100 compounds (max. 264) and multiple (two to six) substitution
sites were considered. They contained more compounds than previously investigated ASs and were active against
16 distinct targets. Table 1 summarizes their composition.
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Table 1. Analog series.
AS ID Target name ChEMBL Target ID # Subst. Sites # EAs # FW EAs # FW VAs

1 Serine/threonine-protein kinase mTOR 2842 2 153 27 264

2 Acetyl-CoA carboxylase 2 4829 2 112 0 218

3 Acetyl-CoA carboxylase 2 4829 6 149 33 3812

4 Adenosine A2b receptor 255 6 129 72 392

5 GABA receptor alpha-5 subunit 5112 2 193 118 1647

6 Purinergic receptor P2Y12 2001 2 237 145 2766

7 Vanilloid receptor 4794 3 162 0 0

8 Mitogen-activated protein kinase kinase kinase 12 1908389 2 111 44 1844

9 5-lipoxygenase activating protein 4550 3 259 162 5204

10 5-lipoxygenase activating protein 4550 2 100 4 96

11 Epidermal growth factor receptor erbB1 203 2 106 0 306

12 Sodium channel protein type IX alpha subunit 4296 3 146 40 2860

13 Acetyl-CoA carboxylase 2 4829 3 100 10 145

14 Proteinase activated receptor 4 4691 5 117 8 212

15 Acetyl-CoA carboxylase 2 4829 3 128 54 319

16 p53-binding protein Mdm-2 5023 4 149 72 381

17 Acetyl-CoA carboxylase 2 4829 3 116 81 331

18 Sodium channel protein type IX alpha subunit 4296 5 151 17 1736

19 P2X purinoceptor 3 2998 6 102 84 336

20 MAP kinase ERK2 4040 2 264 0 262

21 Tyrosine-protein kinase SYK 2599 5 173 43 5755

22 Prostaglandin E synthase 5658 3 168 63 3893

23 Tyrosine-protein kinase SYK 2599 3 168 72 1887

24 5-lipoxygenase activating protein 4550 2 126 0 124

The table summarizes the composition of ASs used herein and reports the proportion of existing analogs and newly generated virtual analogs that qualify for Free-Wilson potency
prediction, as discussed in the text. ‘# Subst. Sites’ reports the number of substitution sites per AS.
AS: Analog series; EA: Existing analog; FW: Free-Wilson; ID: Identification; VA: Virtual analogs.

Linear & ridge regression
Linear regression (LR) is the simplest and most widely used statistical approach for numerical value predictions [16].
In QSAR modeling, LR is applied assuming the presence of linear relationships between numerical chemical features
and biological activity [3]. The predictive performance of LR models inevitably suffers from outliers [16] and has
limited predictive ability in the presence of nonlinear SARs in training and/or test sets [3]. To address the outlier
problem, a penalty on model weights can be introduced. This requires optimizing the penalized residual sum of
squares defined as:

minw||Xw − y ||2 + α||w||2 (Eq. 7)

Here, Xw is the estimated target value, y the true target value, w the weighting coefficient and α the regularization
parameter determining regularization strength. This regularized least squares LR approach is generally referred to
as ridge regression (RR) [17,18], which was applied herein as an advanced LR technique.

Support vector regression
Support vector machine (SVM) [16,19] is a supervised machine learning algorithm that is widely used in chemical
informatics [3]. SVM was originally introduced as a method for binary object classification (class label prediction)
and ranking. The SVM algorithm aims to separate positive and negative training instances in a given feature
space via a hyperplane having the largest possible margin [19]. If linear separation is not possible in a given feature
space, kernel functions are applied to project the training data into higher dimensional feature spaces where linear
separation might become possible [19].
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Support vector regression (SVR) [20] is a variant of the SVM approach. Instead of optimizing a separating
hyperplane for classification, a regression function is derived for predicting numerical values:

f (x ) = �i (α − αi∗ )K (xi , x ) + b (Eq. 8)

Here, α and αi* are support vectors representing the vector w derived from a convex optimization procedure, K(xi,
x) is the kernel function applied to the input feature vectors and b the bias parameter derived from the convex
optimization procedure [20,21]. SVR is capable of fitting a LR function for nonlinear SARs by increasing the feature
space dimensionality. Therefore, it has become a method of choice for nonlinear QSAR modeling and potency
prediction [3]. Critical parameters during model building include the regularization term C and the ε-insensitive
tube [20,21]. The ε parameter determines the maximally permitted prediction error during training and regularization
term determines the trade-off between model complexity and error penalization.

Free-Wilson formalism
Free-Wilson (FW) analysis is based upon the premise that chemical modifications in series of compounds are
independent of each other and that associated potency changes are additive [22,23]. The additivity assumption
represents an approximation because there might also be cooperativity between substitution sites. However, in
practice, the FW approximation often holds, providing a basis for meaningful compound potency predictions [23].
Principles of FW analysis are illustrated in Figure 1. Exemplary EAs with activity against the GABA receptor alpha-
5 subunit are shown and their experimentally measured logarithmic Ki values are given. Structural relationships
between EAs were established by searching for MMPs. In this example, analog A forms distinct MMP relationships
with analog B and C as a consequence of structural modifications at the first and second substitution site (R1 and
R2), respectively. By contrast, analogs B and C do not form an MMP because they differ at both substitution sites.
Analogs A and B share the same substituent at R2 while the pyridine ring at R1 in A is fluorinated in B, which
results in a potency increase �pKi = +0.3. Conversely, analogs A and C share the same substituent at R1 while the
methyl ester function at R2 in A is replaced by a tri-fluoro ethyl amide in C. This modification results in a potency
increase of �pKi = +0.6 for analog C. Combining the structural modifications that convert analog A to B and A
to C, respectively, results in a new analog X. This analog forms an MMP with B and C, respectively, but not with
analog A that differs from X at two sites. Following FW principles, the potency of analog X can be predicted on
the basis of analog A by adding the potency changes accompanying the conversions of A to B and C, respectively,
as illustrated in Figure 1. Accordingly, the pKi value predicted for analog X is 9.3 (i.e., 8.4 + 0.3 + 0.6). A, B and
C form the Free-Wilson neighborhood (FW NBH) of analog X. For a given FW target compound (such as X),
multiple qualifying FW NBHs may exist. In this case, potency predictions are typically averaged over all qualifying
FW NBHs.

For this FW prediction example, analog X was ‘virtualized’ (i.e., considered as a VA) since it also belonged to the
AS with activity against the GABA receptor alpha-5 subunit. The predicted value of pKi = 9.3 was only slightly
lower than the experimentally observed potency of pKi = 9.5, illustrating the utility of FW predictions when the
additivity approximation applies.

Generation of FW analogs
To complement COMO-derived VA populations a new algorithm was implemented to generate VAs suitable for
FW analysis (termed FW VAs). The FW VA algorithm consists of the following steps:

Given an AS core structure with indexed substitution sites, all EAs and their site-specific substituents are collected.
For EAs, all possible MMPs are generated and organized in a MMP network (using the Python Networkx

package [24]) where nodes represent EAs and edges pairwise MMP relationships.
For each MMP, exchanged and conserved substituents are stored and assigned to the MMP edge in the network.
Exhaustive search for FW NBHs (according to Figure 1) is performed and detected FW NBHs are stored.
For each FW NBH, the direction of the MMP-defining substituent exchanges is determined according to

Figure 1 (i.e., A to B, A to C) and the corresponding newly introduced substituents are recorded.
For each FW NBH, new substituents are added to the AS core (using the OpenEye toolkit [25]) generating a new

FW VA for the NBH.
Unique FW VAs associated with one or more FW NBHs are retained.
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Figure 1. Principles of Free-Wilson analysis. Shown are four analogs from the same AS that are active against GABA receptor alpha-5
subunit (AS 5; ChEMBL target ID 5112). For each compound, its logarithmic experimental potency (pKi) value is reported. In addition, the
core structure of the AS is depicted in the center and the two substitution sites R1 and R2 are highlighted in yellow and blue, respectively.
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�pKi values. The figure illustrates the principles of Free-Wilson predictions of compound potency.
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FW NBHs define existing FW analogs (FW EAs) that are also sampled.

For each AS, varying numbers of FW NBHs, FW EAs and FW VAs were obtained, depending on the underlying
MMP distribution. The calculations identified FW EAs for further analysis and generated FW VAs for potency
prediction and candidate selection.

Potency predictions
Regression models

For each AS, QSAR models using RR and SVR were independently generated via double (internal and external)
cross-validation [26] using scikit-learn [27]. For each analog, the extended connectivity fingerprint with bond diameter
4 [28] was calculated and folded into a 1024-bit feature vector using RDKit [29] as a molecular representation. Initially,
each AS was randomly partitioned into training/test data (80%) and external validation sets (20%) 35 times to
ensure statistically sound model evaluation. In addition, it was monitored that the potency of each FW EA from
a given series was externally predicted at least once using RR and SVR. Training and test data were subjected to
fivefold internal cross-validation. During internal cross-validation optimal hyper-parameters were selected for each
model. These hyper-parameters were subsequently used for prediction of the external validation set for the same
independent trial. For SVR, a parameter grid of 18 C and 5 ε values was optimized in combination with the
Tanimoto kernel [30]. For RR, seven different α values were tested during hyper-parameter optimization. The RR
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and SVR models were also used for predicting the potency of FW VAs for each AS. Predictions were averaged over
all models.

FW predictions

For each AS, compounds forming FW NBHs were identified. Each participating FW EA was virtualized and its
potency was predicted as the mean over all FW NBHs in which it occurred. Analogous predictions were carried
out for newly generated AS-specific FW VAs.

Model evaluation

The performance of QSAR models can be evaluated using different statistical measures [3]. Herein, the coefficient
of determination termed R2 was used as the most popular measure, which is defined as:

R2 = 1 − �i (yi − fi )
2

�i (yi − y )2 (Eq. 9)

Here, yi is the true value of instance i, fi the predicted value of instance i, and y the mean of all true test instance
values. The numerator represents the residual sum of squares and the denominator is the total sum of squares. The
maximal value of R2 is 1, which results from perfect correlation between predicted and true values. A value of 0 (or
negative value) for R2 means that the performance of a model is equal to (or worse than) simple value averaging.

Results & discussion
Study goal
COMO was originally designed as a diagnostic approach to aid in the evaluation of LO efforts by combining
quantitative assessments of chemical saturation and SAR progression. Chemical saturation analysis utilizes AS-
dependent VA populations to chart chemical space around an AS. Such VAs might thus be assigned a dual purpose
as diagnostic chemical entities and as potential candidates for AS expansion. This dual role provides the opportunity
to generate a unique computational approach that combines LO diagnostics with compound design and candidate
prediction. The corresponding workflow includes the analysis of optimization characteristics of ASs, identification
of series with further development potential and use of predictive models to screen AS-specific VA populations for
preferred candidate compounds. Extending COMO for combined diagnostic AS analysis and prospective series
expansion was the major goal of our study.

Diagnostic scoring
For our analysis, new ASs were assembled that contained at least 100 compounds. As reported in Table 1, the
majority of these ASs consisted of 100–200 analogs. The three largest ASs comprised 237, 259 and 264 compounds,
respectively. Hence, newly identified ASs were of considerable size. Initially, it was investigated if these ASs displayed
different characteristics suitable for our analysis. Therefore, COMO scores were calculated. Figure 2 compares S
and P scores for the ASs. COMO scoring clearly distinguished between ASs, revealing different degrees of chemical
saturation and SAR progression that did not correlate with AS size. None of the ASs displayed a combination of
high chemical saturation and low SAR progression, which would represent a termination criterion [9]. Hence, all
ASs were still expandable through the generation of new analogs and were thus suitable for our analysis.

Regression QSAR models
A prerequisite for meaningful screening of AS-specific VA populations is the derivation of accurate QSAR models
for given ASs. Accurate models make it possible to carry out meaningful predictions for VAs and prioritize candidate
compounds for further exploration. Therefore, we generated standard RR and SVR models for all 24 ASs and
evaluated their predictive performance. In our study, no decision tree methods were considered, given that SVR is
a widely applied standard in the QSAR field. The results are shown in Figure 3 and reveal that model performance
was highly heterogeneous, depending on the AS. For the majority of ASs, no predictive regression models were
obtained. Models with R2 values exceeding 0.6 were only observed in a few cases. Overall, there was a slight
increase in prediction accuracy for the more complex SVR over the simple RR models. Limited prediction accuracy
of regression models for ASs is frequently observed if models are not iteratively fine-tuned for individual series.
However, for systematic AS expansion, robust predictive models with meaningful accuracy are required. Clearly,
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on the basis of our test calculations, limited accuracy of standard regression models prohibited their general use for
our purposes. Therefore, alternative predictive approaches were explored.

FW predictions
We reasoned that FW-type predictions following the formalism illustrated in Figure 1 might provide an alternative.
This assumption was based on the local nature of FW predictions involving separate NBHs. Locally confined
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predictions would alleviate the need for building regression models of entire ASs that might be affected by the
presence of SAR discontinuity. Therefore, we systematically searched the 24 ASs for FW EAs enabling local
predictions. Varying numbers of up to 162 FW EAs were detected in 19 ASs (Table 1). For 18 of these ASs (one
with only four FW EAs was excluded), systematic FW predictions were carried out. For this purpose, each FW
EA was virtualized once in each NBH it occurred. Figure 4A shows R2 values for FW and global SVR predictions.
Compared with regression modeling, the results were much more promising. In this case, 11 of the 18 qualifying
ASs yielded FW predictions with R2 values in the range of >0.5 to 1.0 (>0.6 for seven ASs). Predictions on the
seven remaining ASs with typically only small numbers of FW EAs and NBHs essentially failed. As a control,
potency predictions for FW EAs using SVR models were extracted from all external validation sets and separately
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value distributions. Each triplet represents one of 11 ASs yielding predictive FW and SVR models. The y-axis reports
log. potency values and the x-axis the number of FW EAs. Numbers in parentheses are AS IDs. Distributions of
experimental potency values (green), mean FW predictions (red) and mean SVR predictions (orange) are reported for
FW EAs. (B) Individual predictions are shown for four exemplary FW EAs (with ChEMBL IDs) from the same AS with
activity against purinergic receptor P2Y12 (AS 6; ChEMBL target ID 2001). In the table inserts, the first row contains
the experimental potency values of each analog and the second row the mean FW-predicted potency values (with the
corresponding number of FW NBHs in parentheses). The third row contains the mean SVR-predicted potency values
(with the corresponding number of individual prediction trials in parentheses).
AS: Analog series; EA: Existing analog; FW: Free-Wilson; ID: Identification; NBH: Neighborhood; SVR: Support vector
regression.

evaluated, as shown in Figure 4B. Surprisingly, for the 11 ASs with promising FW predictions, the potency of FW
EAs was also predicted with higher accuracy using SVR models than other external validation instances. These
predictions were comparable with FW analysis. Spearman correlation coefficients of potency values predicted by
FW analysis and SVR models were high, ranging from 0.82 to 0.98. These improvements might be attributable to
nearest neighbor effects among FW EAs.

For the 11 AS, we also compared the experimental potency distribution of FW EAs with predicted distributions,
as shown in Figure 5A. In the majority of cases, similar distributions and median values were observed. Notable
differences between experimental and predicted potency distributions were only detected for three ASs. Figure 5B
shows four exemplary FW EAs for which FW potency predictions over 36 to 51 NBHs and SVR predictions over
six to 11 trials were available. These examples represented different levels of prediction accuracy. For one compound
(top left), the experimental potency was exactly predicted by both FW and SVR. For another (bottom right), both
methods under-predicted the experimental value by 0.8 log units. For the remaining two examples, one of the two
approaches was slightly more accurate than the other. However, in all cases, the experimental potency was predicted
well within an order of magnitude using both FW and SVR. Such predictions are meaningful taking experimental
accuracy limits into consideration.

Thus, taken together, the results indicated that predictions of FW EAs focusing on local NBHs were much more
promising than results obtained with regression models for entire ASs. Therefore, preference was assigned to FW
analysis for compound potency predictions. Ultimately, such predictions must be carried out on VAs in order to
prioritize candidate compounds. Therefore, in the next step, COMO VA populations were further analyzed.

FW VAs
The diagnostic VA populations generated for the 24 ASs and used to calculate the COMO scores in Figure 2
were screened for VAs that complemented FW NBHs. These FW VAs qualified for FW predictions. However,
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inserts, the first row contains the experimental potency values of each analog and the second row the mean FW-predicted potency values
(with the corresponding number of FW NBHs in parentheses). The third row contains the mean SVR-predicted potency values (with the
corresponding number of individual prediction trials in parentheses).
AS: Analog series; EA: Existing analog; FW: Free-Wilson; ID: Identification; NBH: Neighborhood; SVR: Support vector regression.

diagnostic VA populations only contained few if any FW VAs. This was a likely consequence of using a large pool
of diverse substituents for VA enumeration (see Methods). Therefore, to make FW analysis a practical option for
potency prediction, we complemented diagnostic VA populations with new FW VAs. These VAs were specifically
designed to complete FW NBHs in given ASs. Therefore, we implemented a new algorithm to generate FW VAs
on the basis of EAs, as detailed in the Methods section. Application of this algorithm yielded between 100 and
5798 FW VAs for all but one of the 24 ASs, as reported in Table 1. Each AS contained multiple substitution
sites with 45–265 available substituents that were recombined for FW analog generation. Accordingly, in some
cases, large VA ensembles with several thousand compounds were obtained. Hence, through complementary analog
design, COMO’s VA populations were significantly enriched with FW VAs as potential candidate compounds for
AS expansion.

Pilot predictions
To further evaluate the general suitability of FW VAs for AS expansion, potency predictions were carried out using
both FW analysis and SVR models for the 11 ASs for which predictions of FW EAs succeeded. The underlying
idea was that FW VA ensembles should contain FW VAs having higher predicted potency than EAs. Such FW VAs
would represent preferred candidates for experimental evaluation.
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Figure 6. Potency predictions for Free-Wilson virtual analogs. (A) Box plots compare experimental potency value
distributions of 11 ASs according to Figure 5A with potency predictions of corresponding FW VA populations. The
y-axis reports logarithmic potency values and the x-axis the number of FW VAs per series. Numbers in parentheses are
AS IDs. The experimental potency distribution of all EAs per series is displayed in light green, the FW-predicted VA
potency distribution in red and the corresponding SVR-predicted distribution in orange. (B) Exemplary VAs (middle
and right) are shown that were predicted to have higher potency than the most potent EA (left) of an AS active
against the P2X purinoceptor 3 (AS 19; ChEMBL target ID 2998). In beeswarm plots below (color-coded according to
the box plots), the exemplary compounds are indicated using arrows.
AS: Analog series; EA: Existing analog; FW: Free-Wilson; ID: Identification; NBH: Neighborhood; SVR: Support vector
regression; VA: Virtual analog.

Figure 6A compares the experimental potency value distribution of the 11 ASs with potency value distributions
predicted for FW VAs using FW analysis and SVR. Predicted potency value distributions were generally lower than
experimental distributions. In all but one case, the predicted median potency was lower than the experimental
median. This was principally meaningful because FW VA ensembles should also contain a variety of inactive
analogs. Consistent with this expectation, FW analysis predicted a number of FW VAs from different ASs to be
inactive. However, the potency value distributions predicted by FW analysis typically covered a wide range. For
each AS, at least a few FW VAs were consistently predicted by FW analysis to be more potent than the most potent
EAs. This was an encouraging observation, providing a basis for FW VA prioritization in practical applications.

SVR-predicted distributions were generally narrower than FW distributions. Different from FW analysis, SVR is
intrinsically limited to interpolative potency predictions falling within the range of training data. Thus, the potency
of a few FW VAs that were predicted by SVR to be more potent than experimental analogs fell within the range
of the permitted absolute prediction error of the models. Consequently, for only three ASs, potencies beyond the
highest experimental value were observed.

Figure 6B shows the most potent compound from an AS representing a FW EA whose logarithmic potency
value (pIC50 = 8.4) was well predicted using both FW analysis (pIC50 = 8.0) and SVR (pIC50 = 7.8). In addition,
two FW VAs of this compound are depicted that were predicted to be most potent by FW analysis (pIC50 = 9.0)
and SVR (pIC50 = 8.5), respectively. These two FW VAs were only distinguished by a cyclopentyl ether to methyl
cyclopropanyl ether substitution. Both analogs were predicted by FW analysis to be more potent than the FW EA.

Taken together, the result of pilot predictions on newly generated FW VAs indicated that candidates for AS
expansion could be consistently selected on the basis of FW analysis. While the activity state of preferred FW
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Figure 6. Potency predictions for Free-Wilson virtual analogs (cont.). (A) Box plots compare experimental potency
value distributions of 11 ASs according to Figure 5A with potency predictions of corresponding FW VA populations.
The y-axis reports logarithmic potency values and the x-axis the number of FW VAs per series. Numbers in parentheses
are AS IDs. The experimental potency distribution of all EAs per series is displayed in light green, the FW-predicted VA
potency distribution in red and the corresponding SVR-predicted distribution in orange. (B) Exemplary VAs (middle
and right) are shown that were predicted to have higher potency than the most potent EA (left) of an AS active
against the P2X purinoceptor 3 (AS 19; ChEMBL target ID 2998). In beeswarm plots below (color-coded according to
the box plots), the exemplary compounds are indicated using arrows.
AS: Analog series; EA: Existing analog; FW: Free-Wilson; ID: Identification; NBH: Neighborhood; SVR: Support vector
regression; VA: Virtual analog.

VAs remains unknown prior to experimental evaluation, the calculations revealed potential candidates. Their
prioritization was further supported by meaningful predictions of FW EA potency.

It is important to note that the generation of FW VAs does not yield novel substituents because the substituents
are sampled from existing compounds. Instead, novel core-substituent combinations are obtained. By design, FW
VAs are enumerated to enable frequent FW predictions.
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FW centric saturation diagnostic
The newly introduced FW VA algorithm made it also possible to further extend COMO’s diagnostic scoring
scheme by focusing on the saturation of FW NBHs. This additional scoring opportunity provided a close link
between NBH characteristics and prospective design.

The number of FW EAs and FW VAs per AS depends on pairwise relationships between EAs captured by MMPs.
Increasing numbers of FW NBHs per FW EA support reliable potency predictions. To quantitatively assess these
distributions, we introduce an additional FW NBH saturation score N, which quantifies the saturation of an AS
with FW NBHs:

N = 1 − nFw EA

nFw NBH
(Eq. 10)

Accordingly, increasing N values result from increasing numbers of FW NBHs per FW EA. In addition to
AS size, this also increases the statistical likelihood to identify FW VAs. Large N scores indicate the presence of
NBH behavior among EAs and the potential to further expand ASs with prioritized and correctly predicted FW
VAs. Figure 7 reveals that N scores of ASs typically increased with increasing proportions of FW EAs among EAs.
Accordingly, this measure of NBH content was a meaningful addition to COMO’s scoring repertoire. Furthermore,
nearly all ASs for which well-performing predictive models were obtained produced high N scores indicating reliable
potency predictions. Such predictions can only be obtained in the presence of SAR continuity, which also provides
a basis for optimization of other properties during later stages of LO. This is the case because in the presence of
SAR continuity, substitutions will lead to moderate changes in potency, making it possible to balance multiple
properties.

Conclusion
In this work, the diagnostic COMO approach was used as a platform to develop the first computational methodology
for combining the assessment of progress in LO and expansion of ASs. To these ends, complementary strategies
for analog design and potency prediction were explored. FW analysis was found to be a preferred approach for
potency prediction across different ASs. Given its local nature, interpretability, and low computational complexity,
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FW analysis was attractive from several points of view. However, to enable extensive FW predictions for candidate
prioritization, VA populations needed to be enriched with FW VAs. This was accomplished by developing a new
dual-purpose algorithm to search for FW EAs and generate AS-specific FW VAs as source for candidate compounds.
For FW VAs, FW analysis yielded predictions covering a wide potency range, including FW VAs predicted to be
more potent than EAs. Algorithmic generation of FW NBH also led to the introduction of a new NBH-based
saturation score. This score is applicable to estimate the likelihood of obtaining FW VAs and FW predictions
over multiple NBHs. Taken together, our results indicate that computational LO diagnostics, analog design and
candidate prioritization can be effectively integrated.

Future perspective
Combining LO diagnostics with analog design has significant potential for practical applications. ASs can be
profiled on a large scale and series with strong potential for further development can be selected. In addition,
parallel series can be monitored for chemical saturation and SAR progression characteristics during late stages
of LO and close-in VAs can be generated. COMO offers new opportunities to closely link AS evaluation and
expansion. Assessment of chemical saturation and SAR progression has been extended by FW NBH centric scoring
to identify ASs that have potential for further expansion through FW analysis. For evolving series, FW EAs can
be identified using our new algorithm and then systematically predicted to assess potency prediction accuracy. For
qualifying ASs, the dual-purpose algorithm can be applied to generate FW VAs. The resulting FW VA ensembles
provide the basis for a second round of potency predictions to prioritize candidates for synthesis. As we have shown,
SVR models also yield consistently more accurate potency predictions for FW EAs than other EAs. Hence, SVR
also merits consideration for prediction of FW VAs. FW analysis was shown to produce predictions covering wide
potency ranges, typically including candidates with higher predicted potency than EAs. By contrast, potency ranges
predicted using SVR were smaller. However, for potency predictions of FW VAs, both FW analysis and regression
modeling might best be applied in parallel to determine if most potent FW VA candidates from a given ensemble
are consistently predicted. The combined diagnostic and compound design approach can be practically applied to
ASs of any source. Future refinements and extensions of the methodology will have several focal points. A major
limiting factor for analog prioritization is the dependence of potency prediction accuracy on the nature of ASs,
which represents a general problem in the QSAR field. Hence, for an attractive AS, it might not be possible to
generate reasonable predictive models to guide analog design. Accordingly, it will be beneficial to further explore
and characterize SAR features that limit prediction accuracy. Any potential progress in the area is highly desirable.
Furthermore, specifically for our methodology, an area of high priority for future development will be the extension
of diagnostics and predictions to other LO-relevant molecular properties. Such development efforts are currently
hindered by limited availability of high-quality data beyond potency measurements in the public domain. It is
hoped, however, that such data will become increasingly available in the near future, in particular, through academic
drug discovery efforts and/or increasing collaborations between the pharmaceutical industry and academia.
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Executive summary

• Lead optimization (LO) plays a central role in medicinal chemistry but is vulnerable.
• Computational approaches providing decision support are rare.
• The compound optimization monitor (COMO) method quantitatively assesses optimization progress.
• LO diagnostics and compound design have not yet been combined.
Methods
• Principles of COMO diagnostics are summarized.
• Key scores are explained.
• The identification of analog series is described.
• Different methods for compound potency prediction are compared.
• A new algorithm for FW (Free-Wilson)-oriented analog design is introduced.
• Model building and test calculations are detailed.
Results & discussion
• Study rationale and goals are emphasized.
• Alternative predictive models are evaluated and compared.
• Complementary virtual analog (VA) ensembles for FW analysis are generated.
• FW predictions of candidate compounds are explored.
• A new FW neighborhood centric COMO score is introduced.
Future perspective
• A workflow for practical applications of the extended COMO approach is provided.
• Areas for future development are highlighted.
• Extending the approach to multiple LO-relevant properties is a priority.
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Summary

In this study, diagnostic assessment of LO progress has been coupled with
VA design and candidate selection strategies. Nonlinear QSAR regression mod-
els trained on entire ASs have typically outperformed linear ones, however their
predictive ability has been shown to be limited for prioritizing highly potent
VA candidates. On the other hand, simple local QSAR approximations derived
from FW NBHs have consistently yielded VAs that are predicted to be more po-
tent than experimentally measured EAs. Therefore, an algorithmic procedure
tailored to identifying such FW VAs in each AS has been developed as an ad-
ditional VA design strategy to AS core enumeration. Furthermore, comparison
of global and local models revealed a general agreement in prediction results,
thus lending further credence to their use as a combined predictive tool. Lastly,
by quantifying the amount of FW NBHs associated with EAs, those ASs have
been identified, which are most likely to benefit from expanding their current
chemical space with accurately predicted FW VA candidates.

Based upon the results of this study, the idea of generating VA populations
for different stages of LO by exploiting a generative de novo design strategy is
evaluated in the following chapter.
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Chapter 7

DeepCOMO: From Structure-Activity
Relationship Diagnostics to Generative
Molecular Design Using the Compound
Optimization Monitor Methodology

Introduction

As shown in the previous chapter, rule-based generation of VAs presents an
attractive opportunity for expanding AS chemical space with potentially highly
active analogs. To these ends, two design strategies have been explored. The
first one relies on randomly decorating the substitution site(s) of an AS core
with R-groups while following retrosynthetic criteria and certain constraints in
molecular size. The similarity of these enumerated VAs to EAs depends on
the structural diversity of the R-group pool used for enumeration, which can
be varied according to the scope of the analysis. The second design strategy
identifies distinct MMP-based NBHs complying with the FW additivity princi-
ple and generates complementary VAs, the potency of which can be predicted
by approximating local R-group contributions. By definition, these FW VAs
represent the nearest structural neighbors of EAs and their number is individ-
ual for each AS depending on the underlying MMP distribution. While both
procedures yield synthetically accessible compounds, they are restricted to pre-
defined substitution sites and retrosynthetic criteria. One way to circumvent
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these limitations is the utilization of generative deep learning models for de
novo design.

In this chapter, such models are employed as an additional third strategy for
creating a new type of VAs for the COMOmethodology. In particular, a transfer
learning approach is pursued that focuses a pre-trained recurrent neural network
model towards the chemical space of individual ASs, which significantly differ
in their LO profiles. VAs sampled by the model are then evaluated with respect
to their validity, uniqueness, and similarity to EAs. Finally, they are compared
to the previously used enumerated and FW VAs by subjecting all populations
to rigorous analysis of chemical space coverage, estimated synthetic tractability,
and predicted potency values.

Reprinted with permission from “D. Yonchev, J. Bajorath. DeepCOMO: from
structure-activity relationship diagnostics to generative molecular design using
the compound optimization monitor methodology. J. Comput.-Aided Mol. Des.
2020, 34, 1207-1218”. Copyright 2020 Springer Nature.
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Abstract
The compound optimization monitor (COMO) approach was originally developed as a diagnostic approach to aid in evaluat-
ing development stages of analog series and progress made during lead optimization. COMO uses virtual analog populations 
for the assessment of chemical saturation of analog series and has been further developed to bridge between optimization 
diagnostics and compound design. Herein, we discuss key methodological features of COMO in its scientific context and 
present a deep learning extension of COMO for generative molecular design, leading to the introduction of DeepCOMO. 
Applications on exemplary analog series are reported to illustrate the entire DeepCOMO repertoire, ranging from chemical 
saturation and structure–activity relationship progression diagnostics to the evaluation of different analog design strategies 
and prioritization of virtual candidates for optimization efforts, taking into account the development stage of individual 
analog series.

Keywords Analog series · Lead optimization · Chemical saturation · SAR progression · Activity prediction · Generative 
deep learning

Introduction

The intuition- and experience-driven process of hit-to-lead 
and lead optimization (LO) presents key challenges for 
medicinal chemistry. If successful, it ranges from the initial 
demonstration of sustainable structure–activity relationships 
(SARs) of selected active compounds and the iterative gen-
eration of many analogs to the final stages of confirming 
pre-clinical candidate status of optimized compound(s). 
To this date, the LO process is difficult, if not impossible 
to rationalize. Work on analog series (ASs) continues until 
multi-property optimization criteria are met or insurmount-
able roadblocks are hit. This typically is far from being a 
black-and-white scenario. Partly unclear SAR responses or 
rather subtle differences between desirable and undesirable 
compound properties often propagate through optimization 

efforts until they amplify and result in large-magnitude prob-
lems. At such stages, when much work has already been 
spent on the long road to candidate compounds, it is often 
difficult to call it a day and discontinue work on advanced 
series. As a matter of fact, answering the question when 
sufficient numbers of analogs might have been generated 
and further progress would be unlikely to expect is at least 
as critical in the practice of medicinal chemistry as mak-
ing meaningful initial decisions which compounds or series 
to advance or not. In light of these caveats looming over 
optimization efforts, it is self-evident that any approaches 
providing decision support during LO are more than wel-
come. However, the problems associated with empirical 
optimization are conceptually difficult to tackle. Currently, 
only a limited number of computational approaches are 
available that are capable of supporting LO efforts. This is 
the scientific context in which the Compound Optimization 
MOnitor (COMO) methodology evolved. One of the roots of 
COMO was the development of a scoring scheme to evalu-
ate chemical saturation of compound series on the basis of 
biological screening data [1, 2]. Modifying and extending 
this scoring scheme and combining it with the assessment 
of SAR progression then gave rise to the introduction of the 
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COMO approach [3–5], which was originally designed as 
a diagnostic. On the basis of COMO scoring, ASs can be 
assigned to different development stages. An integral feature 
of the COMO approach is the use of virtual analog (VA) 
populations to aid in the assessment of chemical saturation 
and SAR progression. By default, these VAs also represent 
potential candidate compounds for LO. Thus, although 
COMO was originally devised as a diagnostic/descriptive 
tool it also had the intrinsic potential to bridge between 
LO analysis and compound design. Accordingly, different 
analog design strategies and activity prediction approaches 
have been implemented in COMO to design and prioritize 
VAs [5, 6].

Herein, we report a methodological extension of COMO’s 
analog design strategies through deep learning and genera-
tive modeling using recurrent neural networks (RNNs). 
Accordingly, the combined diagnostic scoring and extended 
analog design approach is termed DeepCOMO. In addi-
tion, we discuss current computational approaches having 
the potential to support different stages of LO efforts. In 
this context, we also describe key components of the Deep-
COMO methodology. Furthermore, we present an applica-
tion of DeepCOMO on two exemplary ASs, illustrating its 
entire analysis and design spectrum, as it has evolved since 
its inception [6]. Here, emphasis is put on the compound 
design aspect applying the DeepCOMO framework.

The subsequent sections are organized as follows. First, 
we review computational approaches that are of at least 
some relevance for chemical optimization (except standard 
QSAR techniques). Second, we discuss key methodological 
features of DeepCOMO. Third, exemplary applications are 
presented.

Computational approaches supporting 
compound optimization

Methods specifically developed to aid in different stages 
of LO are rare. Approaches that have been adopted and 
applied in the broader context of LO include statistical 
multi-parameter balancing and optimization of compound 
sets to suggest candidates for synthesis [7]. Furthermore, 
statistical attrition analysis of candidate compounds has 
also been reported to monitor whether compounds synthe-
sized during LO meet pre-defined quality criteria [8]. Other 
approaches are focused on computational estimation of 
physicochemical properties [9], taking into consideration 
the widely applied rule-based oral availability paradigm 
[10] or ligand efficiency metrics [11]. Attempts have also 
been made to parameterize drug-likeness as a desirability 
function, aiming to generate preferred candidates [12]. Fur-
thermore, computational approaches have been devised to 
elucidate SAR trends in evolving compound data sets [13] 

and analyze such trends in a qualitative [14] and quantitative 
[15] manner. Another interesting methodology that is based 
upon a statistical framework aims to quantify and visualize 
LO progression and assess the efficiency and tractability of 
different projects [16]. In addition, computational tools have 
been introduced to assess synthetic feasibility of candidate 
compound [17]. Given that compound design is of major 
importance during LO, computational approaches provid-
ing guidance for compound synthesis have been applied for 
experimental design [18]. Recently, artificial intelligence has 
entered the de novo design arena providing complex genera-
tive deep learning architectures that are also employed in 
support of LO campaigns [19, 20].

Taken together, most of the computational approaches 
that can be considered in the context of LO focus on com-
pound property analysis, candidate selection, or design. By 
contrast, only very few methods have been introduced to 
monitor compound optimization and/or SAR trends in differ-
ent ways [13, 16]. Hence, from this viewpoint, the diagnostic 
COMO framework was conceptualized to fill a void. As it 
has further evolved, a unique feature of the approach has 
become that it bridges between assessing progress in the 
optimization of ASs and compound design, as exemplified 
by the DeepCOMO extension introduced in the following.

Methodology: from COMO to DeepCOMO

Main principles and diagnostic scoring

COMO combines different scoring schemes including chem-
ical saturation, multi-property, SAR progression, and SAR 
heterogeneity scores [3–6]. For AS diagnostics, the chemi-
cal saturation (S score) and SAR progression (P score) are 
primary measures for assigning ASs to different develop-
ment stages. For the calculation of these diagnostic scores, 
VA populations play a central role because they serve as 
a representative sample of series-centric chemical space. 
In addition, the scoring scheme relies on the application 
of a chemical neighborhood (NBH) principle. Specifically, 
for chemical saturation and SAR progression diagnostics, 
the NBH of each existing analog (EA) comprising a series 
is defined and other compounds falling into the NBH are 
identified. Accordingly, for a given series, EAs and random 
samples of a chosen VA population are projected together 
into a user-defined chemical reference space (typically a vec-
tor space formed by numerical chemical descriptors) and 
the NBH of EAs is defined based on distance relationships 
between VAs, which determine chemical space coverage, 
given their large number compared to EAs. In a subsequent 
step, the proportion of VAs located in NBHs of EAs is calcu-
lated, giving rise to the coverage (C) and density (D) scores. 
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The C score quantifies how extensively EAs cover series-
relevant chemical space and is defined as:

where VANBH is the number of VAs falling into any NBH of 
EAs and VAall is the number of all projected VAs.

In addition, the D determines how densely EAs map 
chemical space by quantifying the overlap of their NBHs:

The term dmean is defined as the number of overlapping 
NBHs containing VAs ( NBHO_VA ) relative to the total num-
ber of VAs ( nNBH) contained in NBHs of EAs:

Both scores are complementary in their nature and can 
be summarized into the S score which is a composite metric 
defined as the harmonic mean of C and D:

While the C, D, and S scores are solely devised to quan-
tify chemical saturation, the P score measures the degree 
of SAR progression as a function of SAR discontinuity in 
overlapping NBHs of EAs. Hence, for VAs located in over-
lapping NBHs, the mean pairwise potency range among 
EAs associated with those NBHs is quantified as the NBH-
specific term 

−
Δi:

Here, mi is the number of EAs with overlapping NBHs 
containing VA(s), potj and potk represent the logarithmic 
(log) potency of EA j and k , respectively. The P score for 
the entire AS represents the mean over 

−
Δi for all n VAs in 

overlapping NBHs of EAs applying a weighting scheme 
wi =

1

mi

 if mi > 1 and wi = 0 if mi = 1:

Hence, large potency variations between structurally sim-
ilar EAs with overlapping NBHs containing VAs correspond 
to a strong SAR response to small chemical modifications 
and, accordingly, to high SAR progression within an AS.

As designed, these scores are robust and practically insen-
sitive to the number of VAs that are used, provided VAs 

(1)C =
VANBH

VAall

(2)D = 1 −
1

dmean

(3)dmean =
NBHO_VA

nNBH

(4)S =
2CD

C + D

(5)

−

Δi =
2

mi(mi − 1)

mi∑

j, k = 1

j < k

|potj − potk|

(6)P =
1∑n

i=1
wi

n�

i=1

wi

−

Δi

outnumber EAs by at least two to three times [2–4]. Further-
more, the choice of chemical reference spaces for compound 
distance calculations is variable and can be modified accord-
ing to the characteristic features and requirements of specific 
optimization efforts. Herein, a seven-dimensional chemical 
reference space composed of seven LO-relevant physico-
chemical descriptors (calculated with RDKit [21]) was used, 
which was shown to provide sufficient chemical resolution 
for the characterization of ASs in our previous studies [3–5]. 
Since the NBH concept plays a central role in the COMO 
approach, score calculations depend on the definition of 
a suitable NBH radius that adequately mirrors distances 
between EAs and VAs. Therefore, this hyper-parameter can 
be fine-tuned according to different VA populations and/or 
chemical space representations that might be used [2–4].

Virtual analog design strategies

Different strategies were designed and implemented to gen-
erate VA populations as diagnostic tools for COMO scoring 
and as candidate compounds for optimization efforts [2–4]. 
These analog design strategies are tailored towards different 
stages of the LO process (Fig. 1). First, VAs can be gen-
erated following a scaffold enumeration procedure. In this 
case, all substitution sites on the AS core scaffold are deco-
rated with randomly selected terminal fragments according 
to pre-defined synthetic reactions. For ASs with multiple 
substitution sites, this procedure can often produce very 
large and complex VA structures that may not adequately 
represent AS-specific chemical space. This problem is cir-
cumvented by restricting VA size ranges to those of EAs and 
by randomly decorating one or more substitution sites with 
a hydrogen atom instead of an organic substituent based on 
an AS-specific substitution probability [4].

Applying the scaffold-based enumeration approach, two 
populations of VAs can be generated, termed diverse and 
close-in VAs, which differ only in the choice of substitu-
ents for enumeration. For diverse VAs, an external pool of 
R-groups is chosen that have not been used for EAs. For 
example, such a pool can be extracted from databases of 
known bioactive compounds. Conversely, for close-in VAs, 
only substituents obtained from fragmentation of the EAs 
comprising the AS under study are used for enumeration. 
Thus, in the case of diverse VAs novel, new chemistry might 
be introduced, which is more likely to be pursued during 
early stages of LO. On the other hand, close-in VAs are 
by design chemically more conservative and should thus be 
more relevant for mid-stages of LO projects.

In addition to AS scaffold-based enumeration, the Free-
Wilson (FW) additivity principle [22, 23] has been adapted 
and converted into a design strategy for generating VA can-
didates for late LO stages [5]. Therefore, matched molec-
ular pairs (MMPs) [24] are calculated for EAs of an AS 
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and systematically organized in MMP networks (generated 
with the NetworkX Python library [25]). Then, analog sets 
are identified to which FW analysis of substituent contri-
butions is applicable [22]. Such compounds can either be 
found among EAs (termed FW EAs) or they may represent 
VAs (FW VAs) with as of yet unexplored combinations of 
substituents. FW VAs are designed to become FW predic-
tion targets on the basis of qualifying EAs. By definition, 
FW VAs can be viewed as a subset of close-in VAs since 
they contain only R-groups present in the AS. The FW VA 
population has the advantage of being specifically tailored 
towards FW potency predictions. Ensuing compound quar-
tets meeting FW requirements consist of three EAs and an 
FW EA whose putative potency is predicted based upon FW 
principles. Such quartets represent local mini-QSAR models 
that have been shown to be surprisingly accurate in many 
cases and capable of complementing global QSAR strategies 
for VA prediction and prioritization [5]. Accuracy of FW 
predictions intrinsically depends on the presence of SAR 
continuity.

Herein we introduce a strategy for de novo design of 
VAs (termed sampled VAs) using an RNN architecture. This 
extension of AS-based VA design was inspired by the poten-
tial to further extend VA generation by taking information 
from related compound series or sets into account. Among 
the many recently introduced approaches for de novo com-
pound design using deep learning, we have given preference 
to transfer learning (TL) considering the characteristics of 
the COMO framework.

For COMO-based design, TL [26] is applied to focus 
a generalized pre-trained generative model by fine-tuning 
using all EAs of a given AS. The implementation is based 
upon freely accessible code from the REINVENT 2.0 pro-
ject [27] as implemented in PyTorch [28], which provides 
a robust pre-trained generative model (so-called Prior). The 
model has been trained on more than 1.4 million compounds 
from ChEMBL (release 25) [29] using tokenized SMILES 
strings with maximal sequence length of 256 elements [30]. 
Randomization of SMILES strings was applied as data aug-
mentation technique [30]. As reported, the RNN architecture 
consists of an embedding layer of size 512, followed by three 
Long-Short-Term Memory (LSTM) layers of size 512, no 
drop-out layers, and a linear transformation layer of size 31 
(equal to the vocabulary size of the corresponding training 
data), followed by a softmax function to convert the output 
into a token probability distribution. Furthermore, adaptive 

learning rate based on exponential learning rate decay with 
fixed patience was used [30] and the ADAM optimizer was 
applied [31]. In addition, a custom Uniformity-Complete-
ness Jensen-Shannon Divergence (UC-JSD) metric [32] was 
used for estimating model performance. Further details are 
provided in the source publications [27, 30]. Since typically 
more than 99% of the compounds sampled using the Prior 
model have valid SMILES syntax [30] this model can serve 
as a starting point for TL on the basis of small and structur-
ally confined sets of compounds such as ASs. During mul-
tiple epochs, the Prior model is fine-tuned to focus on AS-
specific chemical space and generate complementary VAs. 
As introduced herein, DeepCOMO represents the TL-based 
extension of COMO’s analog design capacity.

Potency prediction

To prioritize VAs for synthesis, potency prediction 
approaches are applied. In practice, it is hardly possible to 
systematically generate reliable linear or non-linear machine 
learning regression models for given ASs [5]. This is often 
due to their confined size, which limits the applicability of 
machine learning, and also to the presence of series-spe-
cific chemical features and SAR discontinuity in AS, both 
of which might constrain predictive modeling. Furthermore, 
regression models predict potency values for all VAs, which 
is also an approximation at best since VAs might often be 
inactive. However, compounds predicted to be most potent 
within VA populations principally represent preferred candi-
dates for further consideration. For large ASs, we generally 
attempt to build global support vector machine regression 
(SVR) [33] and linear ridge regression [34] models to pri-
oritize VAs. In addition, for all ASs, local FW predictions 
are attempted, which are supported by the generation of FW 
VAs for a given AS [5, 6], as described above.

Exemplary applications

To illustrate the different stages of DeepCOMO analysis, 
two exemplary ASs were selected as model series mimick-
ing practical LO applications. These two ASs were obtained 
from our in-house high-confidence activity data version of 
ChEMBL (release 26) [29]. From this compound database, 
ASs were extracted using the compound-core-relationship 
algorithm [35]. Initially, all active compounds were sub-
jected to systematic fragmentation of acyclic single bonds. 
Subsequently, resulting compound cores were organized into 
different series. To ensure that algorithmically generated AS 
cores contained synthetically accessible substitution sites, 
compound fragmentation was guided by 12 retrosynthetic 
rules [36, 37] and augmented by nine additional synthetic 

Fig. 1  Exemplary analogs and design strategies. a On the left, three 
exemplary EAs (black) from AS 1 are displayed (compounds I, II, 
and III). Sections on the right illustrate different VA design strategies 
of DeepCOMO, as discussed in the text. For each strategy, exemplary 
VAs are shown (red). b On the left, three EAs from AS 2 are shown 
(blue). On the right, exemplary VAs (red) are depicted resulting from 
the different design strategies according to (a)

◂
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reactions [38] implemented with the aid of the OpenEye 
cheminformatics toolkit [39].

Selected analog series

The ASs studied here (termed AS 1 and AS 2) were active 
against the P2X purinoreceptor 3 (AS 1) and the sodium 
channel protein type IX alpha subunit (AS 2) and consisted 
of 219 and 158 analogs, respectively. For all compounds, 
 IC50 measurements were available and recorded as nega-
tive logarithmic potency values  (pIC50). The composition 
of AS 1 and 2 is summarized in Table 1. These ASs were 
selected for several reasons. They were among the largest 
ASs that we algorithmically extracted from public domain 
data. Furthermore, these ASs were of moderate structural 
complexity and contained different core structures with four 
(AS 1) and three (AS 2) substitution sites, hence provid-
ing ample opportunities for analog design. Figure 1a and 
b shows exemplary analogs from AS 1 and 2, respectively.

Diverse, close‑in, and Free Wilson virtual analogs

Alternative analog design strategies are schematically illus-
trated in Fig. 1a. As discussed in detail below, TL produced 
initial sets of 51,200 SMILES representations per AS. For 
comparison, equally sized sets of diverse and close-in ana-
logs were generated utilizing all substitution sites per AS. 
Diverse VAs were randomly enumerated using a pool of 
44,636 substituent fragments comprising at most 13 atoms 
that were extracted from bioactive compounds in ChEMBL 
(release 26). For enumerating close-in VAs, series-based sets 

of 70 (AS 1) and 133 substituents (AS 2) were used. Differ-
ent from diverse and close-in VAs, the number of FW VAs 
per AS is not variable but depends on intra-series structural 
relationships, the corresponding distribution of MMPs, and 
the potential to complement FW NBHs formed by EAs with 
FW VAs (see above). For AS 1 and 2, a total number of 907 
and 3167 FW VAs was obtained, respectively. Figure 1a and 
b show exemplary VAs for AS 1 and 2, respectively.

Diagnostic scoring

Next, chemical saturation and SAR progression scores 
were calculated for both series using the respective close-
in VAs as diagnostic VA populations. Therefore, sets of 
1000 VAs were randomly selected for 10 independent score 
calculations, producing very similar results. Mean scores 
are reported in Table 1. These scores clearly differentiated 
between the two ASs. Although AS 1 contained only ~ 25% 
more compounds than AS 2, it was found to be chemically 
much more saturated (S score = 0.58) with high substan-
tial coverage of chemical reference space (C score = 0.43) 
and particularly high density of coverage (D score = 0.90). 
By contrast, chemical saturation of AS 2 was significantly 
lower (S score = 0.29), resulting from low coverage (C 
score = 0.18) of chemical space and more moderate density 
of coverage (D score = 0.73). However, a different picture 
emerged when SAR progression scores were compared. 
Here, AS 2 displayed much stronger SAR responses (P 
score = 0.95) than AS 1 (P score = 0.55), reflecting the pres-
ence of higher SAR discontinuity in overlapping NBHs of 
EAs. Hence, AS 1 was characterized as a further explored 

Table 1  Analog series 
characteristics

EA existing analog, NBH neighborhood

Analog series ID 1 2

Biological target P2X purinoreceptor 3 Sodium channel protein type 
IX alpha subunit

ChEMBL target ID 2998 4296
Potency measurement type IC50 IC50
# EAs 219 158
# EAs in Free-Wilson NBHs 183 (84%) 45 (28%)
# substitution sites 4 3
# unique substituents 70 133
Analog series core

C score 0.43 (± 0.01) 0.18 (± 0.02)
D score 0.90 (± 0.00) 0.73 (± 0.03)
S score 0.58 (± 0.01) 0.29 (± 0.02)

0.55 (± 0.03) 0.95 (± 0.05)
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compound series with higher series-specific chemical satura-
tion and more balanced potency variations among analogs. 
On the other hand, the scores indicated that AS 2 still had 
significantly potential for obtaining analogs with further 
improved potency. Thus, on the basis of this comparison, 
AS 1 was categorized as a later-stage series, whereas AS 2 
represented an early-/mid-stage series. Notably, conclusions 
drawn from scoring were fully consistent with the numbers 
of FW NBHs and participating EAs detected in both ASs. 
While the subset of FW EAs from AS 1 amounted to 183 
(84%) EAs associated with at least one FW NBH, this was 
the case for only 45 (28%) of the EAs from AS 2, hence 
reflecting the more advanced development stage of AS 1. 
Based on these diagnostic findings, one can then decide 
which VA design strategy would be preferred to generate 
additional candidate compounds. For instance, AS 1 is likely 
to benefit from FW VAs as potential candidates (high struc-
tural similarity to EAs), given its advanced development 
stage. On the other hand, for AS 2, a more explorative design 
strategy would be preferred to further diversify candidate 
compounds.

Transfer learning

The TL extension included in DeepCOMO was then applied 
to sample different VAs, aiming to navigate from generalized 
drug-like space towards narrowly confined series-centric 
space and further extend VA design.

The generative model was trained for 50 epochs with 
1024 sampled VAs per epoch obtained as SMILES strings, 
which resulted in a total of 51,200 initially sampled strings 
per AS. Then, the population of sampled VAs was analyzed 
with respect to model TL performance. Because TL was 
increasingly focused on a specific AS core structure a well-
performing model should be capable of generating many 
chemically meaningful structures and unique compounds 
similar to yet chemically distinct from EAs. Figure 2 shows 
the evolution of the TL model during training and fine-tun-
ing. Beginning with epoch 1, the generalized Prior model 
produced a uniform random VA sample without compounds 
containing the AS cores. However, over the course of only 
few epochs, the model rapidly learned to sample increas-
ing numbers of compounds similar to EAs, as indicated by 
the steep rise of the curves accounting for the proportion of 
sampled VAs with AS cores. The models also reproduced 
EAs from the training sets (Fig. 2), confirming focused 
sampling of VAs. Furthermore, the apparent focusing effect 
was accompanied by a similarly steep decrease in the total 
numbers of unique sampled VAs. By the 50th epoch, less 
than 50% and 60% of the sampled VAs represented unique 
compounds for AS 1 and 2, respectively. Around the 30th 
epoch, the proportion of generated VAs sharing the AS cores 
or reproduced EAs reached a plateau at which the ratios 

between the different curves remain relatively constant. By 
the 50th epoch, approximately 67% of the EAs of both ASs 
were reproduced within a single epoch run, whereas the frac-
tion of unique sampled VAs containing the AS core was con-
sistently above 80% and 75% for AS 1 and 2, respectively. 
Taken together, the analysis revealed successful focusing of 
the TL model for both ASs, with increasing levels of redun-
dancy when sampling VAs.

Next, we analyzed how effectively the TL model 
sampled VAs across different epochs. The 50 training 
epochs with a SMILES sample size of 1024 produced a 
total of 26,081 and 28,592 unique VA structures for AS 
1 and AS 2, respectively, which corresponded to ~ 51% 
and ~ 55% of all sampled SMILES strings for AS 1 and 
AS 2, respectively. These ratios were a consequence of 
increasing sampling of duplicate structures and repro-
duced EAs within individual epochs (Fig. 2). Since this 
effect propagated throughout the fine-tuning phase, some 
VAs were sampled in multiple epochs, whereas others 
were obtained in very few or just one. As illustrated in 
Fig. 3, the majority of sampled VAs was generated during 
only one of the epochs. In addition, the number of VAs 
sampled in multiple epochs significantly decreased over 
increasing number of epochs. In Fig. 3, four exemplary 
structures of VAs of AS 1 are depicted that were sampled 
in different numbers of epochs. These VAs were selected 
from the batch generated during the 40th epoch when the 
output of the generative model was stable (Fig. 2). The 

Fig. 2  Design of virtual analogs via transfer learning. Shown is the 
evolution of multiple parameters across 50 epochs of sampling VAs 
via transfer learning for AS 1 (black lines) and 2 (blue). The x-axis 
reports the number of epochs and the y-axis the number of sampled 
VAs (SMILES strings). Curves with filled circles monitor increasing 
numbers of sampled VAs containing their AS cores. Dotted horizon-
tal lines indicate the number of EAs for each AS. Curves below these 
lines record the number of duplicated (reproduced) EAs of each AS. 
At the bottom, curves with squares monitor the fraction of sampled 
VAs with invalid SMILES strings
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VA in the upper left corner in Fig. 3 was sampled only 
once during the 50 generative epochs because it did not 
contain core of AS 1 but represented a simpler structure, 
consistent with the initial generalization capability of the 
Prior model. The next sampled VA to the right contained 
a substructure of the AS 1 core.

In which the signature o-alkoxyphenyl ring at the 
gamma lactam position was substituted with a thiophene 
ring. Although this sampled VA not contain the entire 
AS 1 core, it was sampled six times (in epochs 8, 16, 26, 
40, 41, and 48) including the late stages of TL. Thus, 
the model consistently diversified structural features of 
sampled VAs including core modifications, even after 
focusing on the same core over many epochs. These 
observations mirrored an intrinsic advantage of the deep 
generative architecture over the simpler VA enumeration 
strategies based upon a conserved AS core. The third VA 
from the left in Fig. 3 contained the complete core of AS 
1, but was only sampled during 12 of 50 epochs. This 
is likely due to the varying frequency of occurrence of 
individual substituents among the EAs used for training. 
For example, the o-methylthiazole and trifluoromethyl 
groups were only present in two and 15 training instances, 
respectively. By contrast, the VA on the right with differ-
ent more frequently occurring substituents was most fre-
quently sampled in 46 epochs. These comparisons illus-
trate the spectrum of structural modifications of sampled 
VAs obtained by AS-centric fine-tuning of the model, 
yielding an expansion of VA space.

Comparison of virtual analog populations

Next, the coverage of AS-specific chemical space by VA 
populations produced using the four design strategies of the 
DeepCOMO framework was analyzed and compared. First, 
the overlap between differently designed VA populations 
(and between VAs and EAs) was determined, as reported 
in Table 2. From the pools of diverse and close-in VAs of 
AS 1 and 2, subsets were randomly selected to match the 
number of sampled VAs. For both ASs, nearly all EAs were 
reproduced by TL. However, the TL model sampled only 
69% of the FW VAs of AS 1 and 45% of AS 2. Apart from 
this, the overlap between different compound populations 
was generally larger for AS 2 than AS 1. The largest differ-
ence was observed between the overlap of close-in VAs with 
other compound populations. Nonetheless, in both cases, all 
four VA design strategies produced significant numbers of 
unique compounds, indicating their principal complemen-
tarity in charting analog space. In the next step, VA dis-
tributions in series-centric chemical space were compared. 
Therefore, EAs and equally sized random samples of all VA 
populations were projected into the descriptor-based seven-
dimensional reference space and subjected to dimension 
reduction using principal component analysis (PCA). Plots 
were generated using the first two principal components. For 
both series, equivalent observations were made. For AS 1, 
pairwise comparisons of the EA distribution and different 
VA distributions are shown in Fig. 4a–d. As expected, the 
FW VA population mapped most closely to EAs (Fig. 4a), 
consistent with the underlying FW NBH-directed design 
strategy. Close-in VAs were already more widely distrib-
uted but mostly covered regions proximal to EA (4b). For 
diverse VAs, a more extensive spread was observed (4c). For 
PCA, sampled VAs shown were exclusively selected from 
the batch obtained for 40th epoch and thus represented a 

Fig. 3  Sampling frequencies of virtual analogs. The bar plot reports 
the frequency of occurrence for sampled VAs during TL (AS 1, 
black; AS 2, blue). The x-axis reports the number of epochs and the 
y-axis the numbers of VAs falling into each category on a logarithmic 
(log) scale. For AS 1, exemplary sampled VAs with different sam-
pling frequencies (indicated by the black arrows) are depicted

Table 2  Virtual analogs statistics

EA existing analog, VA virtual analog, FW Free-Wilson, & intersec-
tion

Analog series ID 1 2

# experimental EAs 219 158
# FW VAs 907 3167
# unique sampled VAs
# diverse VAs
# close-in VAs

26,295 28,748

Sampled VAs & EAs 214 156
Sampled VAs & FW VAs 624 1436
Sampled VAs & close-in VAs 208 1669
Sampled VAs & diverse VAs 0 18
Close-in VAs & diverse VAs 35 37
FW VAs & close-in VAs 53 2909
FW VAs & diverse VAs 0 0
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late-stage “snapshot” of the fine-tuned TL model. Deriving 
this VA population combined information from compounds 
with varying structural relationships to EAs and facilitated 
additional core modifications. Accordingly, the comparison 
of sampled VAs and EAs in Fig. 4d revealed a combina-
tion of different patterns observed for other VAs including 
strong focusing on subsets of EAs, proximal mapping to 
many others, but also substantial diversification. Hence, the 
distribution of sampled VAs combined and further extended 
characteristics of VA populations obtained with simpler 
design strategies.

Synthetic accessibility of virtual analogs

Synthetic accessibility of VAs continues to represent a much 
discussed topic, especially for compounds generated using 

deep learning architectures. Accordingly, we also calculated 
and compared synthetic accessibility (SA) scores [17] for 
our VA populations (using the public RDKit implementation 
available on GitHub [17]). The SA score ranges from 1 to 10 
and accounts for fragment contributions to compounds based 
upon empirical assessment of synthetic building blocks, 
stereo chemistry, and non-standard structural features [17]. 
Increasing scores indicate the presence of chemically com-
plex compounds that are increasingly challenging to synthe-
size. As shown in Fig. 5, VA populations for AS 2 yielded 
SA scores that were comparable to or only slightly higher 
than EA scores, hence indicating general synthetic feasibil-
ity. Equivalent observations were made for AS 1. Overall 
broadest score distributions including subset of higher scor-
ing compounds were observed for diverse VA, which one 
might expect, as these VAs combine substituent fragments 

Fig. 4  Chemical space coverage. In a–d, PC plots compare the cov-
erage of chemical reference space by AS 1 with its four VA popu-
lations. Sampled VAs were randomly selected from the batch of the 

40th epoch. For each principal component, it is reported for how 
much of the original data variance it accounts
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from the entire universe of current bioactive compounds, 
regardless of their core structures.

Prioritization of virtual analogs

VAs predicted to be most potent represent preferred can-
didates for further optimization efforts. For AS 1 and AS 
2, global series-based and local FW NBH-based predic-
tion models were derived. For global predictions, SVR [33] 
models were trained via three-fold double cross-validation 
[40]. For model building, a folded (2048-bit) version of the 
extended connectivity fingerprint with bond diameter of 4 
(ECFP4) [41] was used in combination with the Tanimoto 
kernel [42] as a similarity function. All calculations were 
carried out using Python’s scikit-learn library [43]. For train-
ing, 517 (AS 1) and 1135 (AS 2) compounds with activity 
against each AS target were collected from ChEMBL that 
did not belong to the AS (representing structurally diverse 
active compounds) and combined with 50% of the respective 
AS. The remaining 50% of the EAs were used as an external 
validation set. The SVR models were then used to predict 
the potency of these EAs and of the different VA popula-
tions. Furthermore, FW NBH-based potency predictions 
were carried out for FW VAs and qualifying FW EAs. For 
AS 1, prediction results are reported in Fig. 6 (comparable 
observations were made for AS 2). Accurate retrospective 
potency predictions were obtained for EAs using both local 
and global models, with  R2 values of 0.84 (± 0.0) and 0.81 
(± 0.03), respectively, and mean absolute errors of 0.18 
(± 0.0) and 0.2 (± 0.03), respectively. For VA populations, 
global models generally predicted lower potency values 
than for EAs, as observed previously [5]. Overall highest 
potency was predicted using local and global models for 

FW VAs, which most closely resembled EAs. However, for 
all except diverse VAs, at least few “outlier” compounds 
were predicted to have higher potency than most of the EAs. 
These compounds provide focal points for VA prioritization 
as potential candidates depending on the development stages 
of an AS, as assessed by COMO scoring.

Conclusions

In medicinal chemistry, LO is still more of an art form than 
a scientific exercise following firm and generally applicable 
rules. It is governed by the recurrent need to decide which 
compounds to make next. These largely experience- and 
chemical intuition- driven optimization efforts greatly ben-
efit from any approaches that are capable to rationalize at 
least a part of the proceedings and provide decision support 
beyond subjective judgment. In principle, computational 
methods are prime candidates to support LO. However, 
as discussed herein, only few relevant approaches besides 
standard QSAR techniques have thus far been introduced 
to aid in this process. Within this scientific context, COMO 
was conceptualized, originally as a diagnostic framework, 
and then further expanded to bridge between chemical/
SAR analysis and compound design. Herein, we have dis-
cussed key features of the methodology and presented the 
DeepCOMO extension for further advanced compound 
design. DeepCOMO provides four design strategies that 
yield complementary VA populations with varying AS-
centric chemical space coverage. It has been applied to two 
exemplary ASs at different development stages, illustrating 
the spectrum of its diagnostic and design components and 

Fig. 5  Synthetic accessibility. Violin plots report SA score distribu-
tions for AS 2 and its VA populations

Fig. 6  Compound potency predictions. Box plots report potency 
predictions for AS 1 and its VA populations using global (SVR) and 
local (FW) models. The latter models are only applicable to FW EAs 
and FW VAs
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rationalizing how to combine these components for COMO-
guided decision making. We hope that our discussion and 
findings presented herein might catalyze the development 
of additional computational concepts and methods to aid in 
compound optimization efforts, which would certainly be 
beneficial for the practice of medicinal chemistry. Appli-
cations of DeepCOMO in practical medicinal projects are 
underway.
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Summary

In this work, the final extension of the COMO methodology has been intro-
duced as an additional approach for generating focused virtual libraries for ASs.
An RNN model, initially pre-conditioned to uniformly sample valid compounds
covering a large biologically relevant chemical space, has been fine-tuned to
sample VAs within AS-relevant chemical space through repeated exposure to a
training set of all EAs from a given series. Following this entirely probabilistic
approach, a large pool of syntactically correct SMILES corresponding to novel
molecules with variable degree of similarity to EAs has been sampled, including
virtual compounds that contain the congeneric series scaffold but are substi-
tuted at different sites. Comparison of sampled VAs to FW, close-in, and diverse
enumerated VAs has revealed similar yet distinct chemical space coverage with
very limited structure overlap between the different populations. Sampled VAs
have been shown to exhibit synthetic accessibility comparable to that of EAs.
Furthermore subsets have been identified as potentially highly active candidates
by QSAR models. Despite the challenging setup, which has included two large
series inherently different in their LO characteristics, comparable results have
been obtained for both of them. Importantly, depending on the LO categoriza-
tion of ASs, different VA populations can be utilized as candidates given their
distinct chemical space coverage. Accordingly, diverse VAs are more likely to
be suitable for early-stage, close-in VAs for mid-stage, and FW VAs for late-
stage series. Since de novo sampled VAs combine characteristic features of all
other VA populations but also go beyond deterministic (rule-based) design con-
straints, they can be viewed as complementary compound pools for potential
use in all stages of LO.

Taken together, this study shows that differently designed VA populations
have potential utility for different stages of LO. Diagnostic AS categorization
with COMO can be employed for rationalizing the choice of VA candidates for
series expansion.
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Chapter 8

Conclusion

Chemical LO is a central task in medicinal chemistry projects. Thereby,
new compounds are iteratively synthesized and tested aiming to produce
(pre)clinical candidates with favorable chemical and biological properties. This
gives rise to ASs with different potential for further exploration. Since LO cam-
paigns are mainly guided by medicinal chemistry intuition, objective assessment
of their progress is challenging and can greatly benefit from data-driven compu-
tational methods. While a variety of in silico approaches for characterization
and property prediction of individual compounds exist, rationalization on the
basis of entire ASs has remained largely unexplored.

This thesis reports the evolution of computational methods for evaluation
of progress during LO combined with virtual compound design and candidate
selection strategies. In the first study (Chapter 3 ), the utility of quantifying
chemical space saturation as a novel principle for distinguishing between dif-
ferent AS profiles is explored. Herein, a previously introduced methodology,
which relies on diagnostic VA populations for delineating AS-relevant chemical
space and deriving distance-based chemical NBHs around EAs, has been fur-
ther refined. Chemical saturation characteristics of ASs have been thoroughly
analyzed under varying conditions via a dual scoring scheme. This has yielded
consistent and robust results, which have served as a motivation for further
enhancing the methodology. Consequently, in Chapter 4, chemical saturation
analysis has been extended with quantification of NBH-based SAR progression
as an additional component for estimating the LO potential of individual series.
Based on the newly introduced intuitive scoring system, a set of mid- to large-
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sized ASs has been successfully profiled and different LO scenarios have been
rationalized. Hence, this study has laid the foundation for the development of
COMO as a holistic method for evaluation of progress in LO campaigns pre-
sented in Chapter 5. Therein, complementary scores accounting for chemical
saturation, SAR progression and heterogeneity as well as for multiple physic-
ochemical properties have provided a detailed multi-dimensional view on AS
characteristics and have uncovered more subtle features. Importantly, the ap-
proach allows for flexibility in fine-tuning critical methodological parameters. In
the next study (Chapter 6 ), the utility of COMO has been extended beyond the
retrospective evaluation of current LO status by integrating prospective de novo
design strategies. The motivation has been to augment COMO’s purely diag-
nostic capability with a system for prioritization of potentially active synthetic
candidates to support medicinal chemists in decision-making for future series
development. Therefore, synthetically accessible diagnostic VA populations and
specifically designed FW VAs have been utilized as candidate pools and their
potency predicted via ML regression and FW-type QSAR models, respectively.
For all studied ASs, highly potent FW VAs have been obtained as prospective
candidates. Moreover, extensive neighborhood behaviour among EAs has been
rationalized as a suitable criterion for AS expansion. Finally, in Chapter 7, an
additional VA design strategy based upon a generative deep learning method
has been explored, giving rise to the DeepCOMO extension. SMILES-based
de novo design with RNNs has been exploited in a transfer learning setting
by navigating the output domain of a pre-trained model towards the confined
chemical space of individual ASs. Hereby sampled VAs have been compared to
deterministically generated VAs with respect to chemical space coverage, struc-
ture overlap, synthetic feasibility, and candidate potential. As a result, they
have been shown to combine characteristic features of both enumerated and
FW VAs while going beyond the limitations of explicitly defined rules and scaf-
fold substitution sites. Hence, they have been rationalized as complementary
VA groups. Importantly, all differently designed virtual compound populations
analyzed in this work have the potential to be utilized as synthetic candidate
pools tailored to medicinal chemists’ needs in different stages of LO.

In conclusion, this thesis provides an in-depth exploration of novel compu-
tational strategies for evaluating progress in LO campaigns based on character-
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izing entire ASs. This has led to the natural evolution of COMO as a method
for diagnostic series profiling augmented with strategies for focused library de-
sign and candidate prioritization. The presented cheminformatic framework is
thought to provide a practical and intuitive tool to aid medicinal chemists in
rationalizing and planning LO efforts.
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