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Abstract

In the present thesis, we focus on the potential and limits of multi-view regression
techniques in the field of ligand affinity prediction.

Multi-view learning (MVL) denotes machine learning approaches that utilise different
representations (views) on data. MVL can be grouped into three classes of algorithms:
multiple kernel learning (MKL), co-training style algorithms, and subspace learning-
based approaches [Xu et al., 2013]. The first group considers prediction models that use
a linear combination of view-related predictors. Co-training style algorithms include the
pairwise comparison of predictions from multiple views into the training process. The
class of subspace learning-based approaches incorporates a common subspace of different
feature spaces for their predictions. It is known that MVL improves the performance in
many important real-world applications, but there is hardly any thorough evaluation of
MVL in the life science domain. We are the first to apply MVL to affinity prediction
under particular consideration of the availability of molecular compounds with affinity
annotation.

The binding of small compounds to large protein molecules is central to the activity of
the cell as such processes are involved in the majority of biochemical pathways. A real-
valued binding affinity characterises the binding strength of the protein-ligand complex.
The identification of these affinities serves as an initial point for the discovery of drugs
correlated with the respective pathways and is therefore an important real-world problem
to master. Binding affinities can be determined on a large scale via high-throughput
screening (HTS) [Mahé and Vert, 2009]. Databases with millions of annotated com-
pounds are the result of these efforts. As HTS is very time- and cost-consuming, and
the number of proteins and potential compounds is huge, machine learning methods
for the prediction of binding affinities were established as support. For binding affin-
ity prediction in ligand-based virtual screening, single-view support vector regression
(SVR) utilising molecular fingerprints [Balfer and Bajorath, 2015] is the state-of-the-art
approach.

The special situation with respect to the representation and availability of data suggests
the application of multi-view regression for affinity prediction. Views are data repre-
sentations canonically related to so-called kernel functions which provide a generalised
similarity measure for data instances. On the one hand, different representations of data
instances are available for affinity prediction naturally as a large variety of molecular
descriptors designed for different purposes exist [Bender et al., 2009]. On the other hand,
labelled data is typically not abound because of the huge number of existing proteins.
We address these challenges and present multi-view kernel approaches to overcome the
mentioned difficulties. The general question of the thesis is: Can affinity prediction ben-
efit from the diversity of useful representations for molecular compounds via multi-view
learning? We will answer this question in three different multi-view prediction settings
of high practical relevance in concordance with the classes of MVL. We show that the
affinity prediction performance can be improved by the application of MVL techniques.
We present a systematical procedure to deal with a multitude of graph representations
as well as novel kernel algorithms for semi-supervised and unsupervised learning.
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Initially, we consider the case of supervised learning where labelled training compounds
for a precise protein are available. Moreover, we assume different molecular fingerprints
based on the graph structure or other molecular properties exist. We enhance the set of
existing fingerprints with feature vectors of systematically enumerated cyclic, tree, and
shortest path patterns, as well as Weisfeiler-Lehman label patterns of different calcula-
tion depths [Ullrich et al., 2016b]. We are the first who apply multiple kernel learning
(MKL) that identifies a linear combination of the utilised set of views in the context of
affinity prediction. In addition to the rich set of data representations, we investigate both
a loss function known from regularised least squares regression (RLSR) [Cortes et al.,
2009] and one from SVR [Vishwanathan et al., 2010]. In our practical experiments, we
analyse the influence of different patterns on the affinity prediction performance and ad-
dress the question: Can we find better molecular fingerprint representations for affinity
prediction by a systematic combination of graph patterns and omit the expensive choice
of the optimal representation in the training phase? We suggest a scheme to perform a
systematical preselection of graph patterns for molecular compounds. In our empirical
analysis we show that MKL with a preselection of graph patterns or standard molecular
fingerprints outperforms state-of-the-art algorithms for ligand affinity prediction.

In the second group of approaches we take into account the small number of compounds
with known affinity and exploit the availability of unlabelled data. In addition to empiri-
cal risk minimisation in the supervised case, the technique of co-regularisation permits a
semi-supervision via an adjustment of predictions for unlabelled instances. This adjust-
ment occurs for pairwise predictions from different views. We define co-regularised sup-
port vector regression (CoSVR) [Ullrich et al., 2016a, 2017] analogously to the approach
of co-regularised least squares regression (CoRLSR) [Brefeld et al., 2006]. We present
the CoSVR algorithm and theoretical properties of it. CoSVR is the first support vector
regression approach with a co-regularisation term for the comparison of view-related
predictions for unlabelled data. We contrast a co-regularisation term with squared and
ε-insensitive loss function. Both theoretically and empirically we answer the question:
Can we compensate for few labelled examples by an abundance of unlabelled instances and
multiple views on data? We define a novel kernel algorithm for semi-supervised learning
in different variants with decreasing number of optimisation variables. Furthermore,
we derive a multi-view CoSVR variant with single-view complexity and a Rademacher
bound for the corresponding function class. We prove empirically that ligand affinity
prediction profits from the application of CoSVR in comparison to the baselines.

Finally, we consider the unsupervised task of orphan screening where no labelled training
data is available for the considered protein. We focus on the following question: How can
we tackle orphan screening using binding information for other proteins and similarity
values for proteins? We propose two algorithms for the solution of this problem. Firstly,
we define corresponding projections (CP) [Ullrich and Gärtner, 2014, Giesselbach et al.,
2018] as a novel kernel method for unsupervised or transfer learning. Secondly, we
show how orphan screening can be solved via knowledge-based principal component
analysis (IPCA) [Oglic et al., 2014] in form of orphan principal component analysis
(OPCA) [Giesselbach et al., 2018]. CP and OPCA can be applied as single- and multi-
view algorithm and both are also applicable to learning tasks like classification. Our
empirical results show that CP outperforms the orphan screening baseline of the target-
ligand kernel approach and approximates the performance of supervised algorithms that
utilise very few labelled training examples.

iv



Acknowledgements

First of all, I would like to thank my supervisors Prof. Dr. Thomas Gärtner and Prof.
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Chapter 1

Introduction

Artificial intelligence and machine learning in particular are highly topical research fields
with a rapid development. At present, their achievements have an almost immediate and
wide influence on everyone’s lives. Just to mention a few, we point to navigation systems,
placing of advertisement, or search engines. Thus, the great potential of machine learning
research comes along with a responsible handling of its outcomes. In the present thesis
we focus on ligand affinity prediction as a promising and important application in the
medical domain. Prospectively, it inherits the capability to substantially support and
guide the discovery of novel drugs via computational methods.

According to Kaplan and Haenlein [2019], artificial intelligence is a system’s ability to
correctly interpret external data, to learn from such data, and to use those learnings
to achieve specific goals and tasks through flexible adaptation. It is the entirety of
intelligent data reception, processing, and reaction of machine hardware and software.
Machine learning denotes autonomous learning and adaption processes of computers or
programs by turning experience into expertise [Shalev-Shwartz and Ben-David, 2014].
In this spirit, machine learning can be considered the heart of artificial intelligence.
Strongly related and overlapping with machine learning are the fields of data mining
and knowledge discovery. They refer to the (typically unsupervised) extraction process
of knowledge and patterns from huge amounts of data [Berthold et al., 2010]. In contrast
to data, which correspond to single instances or events, knowledge expresses general rules
and principles for a group of objects [Berthold et al., 2010]. As a subfield of practical
computer science [Herold et al., 2007], machine learning uses insights of many other
scientific subjects. For example, techniques appear from convex optimisation [Boyd and
Vandenberghe, 2004], functional analysis (theory on kernels) [Werner, 1995], complex-
ity and information theory [MacKay, 2003], probability theory and statistics [Mitchell,
1997, Cherkassky and Mulier, 1998, Hastie et al., 2001]. Moreover, accomplishments
like autonomous driving, military drones, or automatic speech and face recognition have
to be discussed under the viewpoint of law and ethics. Groundbreaking technological
achievements in the last centuries like powerful computers, storage media and data con-
nections [Berthold et al., 2010] enabled machines to already achieve astonishing results.
The additional gathering of huge amounts of different types of data in a very short time
period (big data) facilitates artificial intelligence in various applications on a human level
and beyond [Kaplan and Haenlein, 2019]. Because of the enormous calculation power
of computers, the increasing potential of algorithms, and the huge amounts of data
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daily arising in the bio-medical area, computer-aided medicine and pharmacy became
an important application of machine learning in recent years.

The idea to apply machine learning in the biomedical research field yet appeared decades
ago [Mitchell, 1997] and already became reality, if one considers, for example, the com-
putational analysis of the genome. The intention is to turn medical data into medical
knowledge in order to finally improve the treatment of diseases [Shalev-Shwartz and Ben-
David, 2014]. The present thesis is dedicated to an application from chemoinformatics
named ligand affinity prediction where one intends to predict the chemical binding affin-
ity of small compounds (ligands) to protein molecules. Protein-ligand complexes play
an important role in the effectiveness of drug substances. Therefore, the correct predic-
tion of ligands with computational methods would support the drug discovery process
and make laboratory experiments more time- and cost-efficient [Michielan and Moro,
2010, Sheridan et al., 2015]. Numerous virtual screening approaches model the ligand
prediction task as a classification problem which is a simplification of the reality. For
this reason we, solve it in a regression scenario as the prediction of precise affinities, i.e.,
the actual strength of the protein-ligand binding, is more meaningful for the assessment
of the ligand’s activity towards a certain protein.

Small molecular compounds as potential ligands can be represented with molecular fin-
gerprints that gather various structural or physico-chemical properties of the respective
molecules. A variety of such vectorial representations for molecules exist a priori from
other similar applications in chemoinformatics and can be used to train a prediction
model for ligand affinity using information of known affinity values. The multi-view
machine learning paradigm seems convenient in this setting of multiple data representa-
tions with no particular preferences to one representation or view. With respect to the
practical application, we want to take advantage from the multitude of data represen-
tations for the affinity prediction performance. Regarding machine learning we exploit
that views on data and kernel functions are canonically related. Kernel functions imply
a generalised similarity measure for the data instances of interest. We will see that the
comparison between instances, such as small molecular compounds or proteins, in form
of kernel values plays a central role in the machine learning models below. Thus, we
contribute to the field of (multi-view) kernel methods as well. Interestingly, the cate-
gorisation of multi-view learning algorithms can be aligned well with different learning
scenarios of affinity prediction regarding the availability and format of labelled training
examples, numbered with (i)–(iii).

(i) Firstly, we consider the supervised learning scenario where affinity-labelled ligands
are sufficiently available. Our aim is to particularly benefit from the graph struc-
ture of molecules and combine the various graph patterns that can be used for the
representation of compounds via multiple-kernel learning techniques.

(ii) Secondly, the group of co-regularised algorithms can be assigned to the field of
semi-supervised learning. Typically only few annotated compounds are available
for a given protein but countless unlabelled molecules in chemical databases.

(iii) Thirdly, the class of projection-based algorithms is applied to tackle the orphan
screening learning problem. Orphan screening denotes the search for novel lig-
ands if no training affinities for the considered protein are known yet. We show
how this unsupervised learning problem can be solved via dimensionality reduction
techniques which are based on projections of high-dimensional molecular finger-
prints.
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1.1 Objectives and Contribution

Due to the availability of different effective representations for small molecules, affinity
prediction is qualified well to be approached with multi-view learning. Due to its high
practical relevance in the process of drug discovery and design it is worth a thorough
investigation. However, the proposed algorithms can be applied in various other learning
scenarios as well which were not in the focus of the present work. Other applications
which come along with multiple views are cross-language and web text classification,
natural language processing problems or issues of computer vision like object or face
recognition [Xu et al., 2013].

In the following section, we introduce the subject of the present thesis avoiding formal
definitions. We explain why it is interesting and non-trivial, and highlight problems
with existing approaches. Subsequently, we summarise the results and achievements of
the present thesis. A thorough related work section on multi-view learning and ligand
affinity prediction follows in Sections 1.2 and 1.3, respectively. Section 1.4 gives an
outlook on the thesis content.

1.1 Objectives and Contribution

Binding affinity prediction is an application for regression which describes the deter-
mination of real-valued chemical affinities of small molecules (ligands) to proteins with
machine learning techniques. The learning scenario of affinity prediction comes along
with a particular situation concerning data availability and data representation. Firstly,
molecular learning objects can canonically be identified with graphs. Secondly, in ad-
dition to ligands with known affinities, a big number of synthesizable small molecules
without affinity label are gathered in databases for learning. In contrast to unlabelled
compounds, annotated ligands are rare and expensive to obtain. A third property of
the affinity prediction setting is the representation of data instances typically in form of
molecular fingerprints. Many different fingerprints are available and each of these usu-
ally high-dimensional vectorial representations comprises a characteristic set of molecular
features. The mentioned prerequisites lend themselves for an application of multi-view
algorithms for binding affinity prediction. These algorithms are machine learning meth-
ods which utilise different views or representations on data instances in order to train a
model. The involved kernel function can be imagined a generalised similarity measure
for data instances, e.g., for graphs or vectors. The kernel function is canonically related
to the data representation and endows the corresponding kernel methods with benefi-
cial properties. The objective of the present thesis is to answer the question whether
binding affinity prediction can be improved under particular consideration of molecular
representations and availability of molecular data using multi-view kernel algorithms for
regression? We will specify the objectives for the three main chapters below.

Ligands are small molecular compounds with a low molecular weight, whereas proteins
are large molecules composed of amino acids. Protein-ligand complexes are highly rel-
evant in the majority of biochemical processes of organisms. Numerous drugs act as
protein ligands and by this means trigger or regulate cellular pathways connected with
the development of diseases. In view of this background, the identification or prediction
of binding strengths for protein-ligand complexes is of prime importance for the discov-
ery and development of novel drugs. In this connection, a special position is taken on
by so-called orphan proteins for which no ligand affinities are known so far. Although
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laboratory experiments for the determination of affinities can already be performed effi-
ciently, the process is still very time-consuming and cost-intensive in practice. Machine
learning should be used to assist and support this relevant research field. The automatic
suggestion of ligand candidates and their protein affinities would speed up the drug dis-
covery process and at the same time make it more resource efficient. Although we focus
on the prediction of affinities throughout this work, the proposed approaches can as well
be applied to other applications from a regression domain with analogous preconditions
on data and learning scenario.

Existent affinity prediction approaches do not or only rarely exploit the precise learning
scenario accompanied with the particular regression task.

(i) Ligands of proteins and their corresponding affinity can be found in molecular
databases and used as training examples for supervised learning algorithms. For
the representation of molecules one can choose between a variety of molecular
fingerprints. Their respective feature sets comprise physico-chemical properties,
structural patterns of the molecular graph, or 3D information, depending on the
original purpose they were designed for. It is not a trivial decision which molecular
fingerprint to utilise for the affinity prediction task. In previous work this problem
was addressed via fingerprint fusion or recombination techniques as well as the
plain comparison of results for various fingerprints.

(ii) As the overall number of proteins is large, for one particular protein there are often
only very few affinity-annotated ligands. In contrast, there are many compounds
that carry affinity values with respect to other proteins and millions of potentially
synthesizable database molecules without binding information. This unlabelled
data was to the best of our knowledge not yet utilised in the context of affinity
prediction.

(iii) For the special case of orphan screening, i.e., affinity prediction for proteins without
known ligands, only very few machine learning approaches exist at all.

The aim of this work is to propose solutions for these non-trivial issues in the context
of affinity prediction. However, the insights and results will be applicable for general
learning problems with appropriate preconditions on the learning scenario as well.

(i) If there are multiple options for the representation of molecular data, the optimal
representation for the respective regression problem must be found in a prepro-
cessing step. Apart from fingerprint recombination attempts there are hardly any
systematic approaches to tackle the variety of fingerprints. Instead of making a
choice, we suggest to utilise multiple fingerprints simultaneously via multi-view
learning. We investigate whether we can find better molecular fingerprint repre-
sentations for affinity prediction by a systematic combination of graph patterns
and omit the expensive choice of the optimal representation in the training phase?

(ii) A small number of labelled training molecules most probably leads to weak pre-
diction models for the considered protein. We intend to compensate for the lack
of sufficient labelled data with the inclusion of unlabelled data. To this aim, we
make use of multiple fingerprints and multi-view learning techniques. We inves-
tigate whether it is possible to compensate for few labelled examples for affinity
prediction by an abundance of unlabelled instances and multiple views on data?
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(iii) In the case of orphan screening the absence of affinity information for the orphan
protein is problematic per se, as the binding preferences cannot be concluded from
labelled training compounds or transferred from one protein to another without
further information sources. We present a solution for this unsupervised learning
task by a novel transfer learning algorithm that uses a kernel function for proteins
and one for ligands. We investigate both in a single- and a multi-view scenario,
how we can tackle orphan screening using binding information for other proteins?

The present thesis contributes both to the field of chemoinformatics and to machine
learning research. With respect to machine learning, we investigate a wide group of
approaches as we consider and explore algorithms in the field of supervised, semi-
supervised, and unsupervised learning. We advance multi-view regression in a semi-
supervised scenario via the introduction of the novel algorithm co-regularised support
vector regression and variants of it. Furthermore, in the scenario of unsupervised learn-
ing we introduce corresponding projections that can be used for single- and multi-view
learning and is an all-purpose concept in the sense that it is not restricted to regression.
Additionally, we contribute to kernel methods as we present the approaches in a general
kernelised formulation. With regard to chemoinformatics, we suggest procedures and
algorithms to handle the variety of existing molecular fingerprints for small compounds
and investigated the prerequisites of affinity prediction in terms of data availability.
Moreover, we present a solution for orphan screening, for which only few regression ap-
proaches exist at all. Affinity prediction research itself will be a central point on the
way to automatic drug discovery and can therefore be regarded important.

(i) In the supervised setting, we answer the questions of the present thesis affirma-
tively. More precisely, we tackle the inherent challenge of the optimal fingerprint
choice for the representation of compound instances by using multiple representa-
tions simultaneously. The application of a linear combination of multiple predic-
tor functions which relate to the views on data enables the concurrent inclusion
of different compound representations in a single optimisation. In particular, we
take the graph structure of the learning objects into consideration and perform a
systematic selection of cyclic, tree, and shortest path patterns as well as Weisfeiler-
Lehman labels for graphs [Shervashidze et al., 2010]. The preselection of patterns
can then be utilised in the actual multiple kernel learning model. We call this novel
preselection scheme to handle the multitude of data representations multi-pattern
kernel multiple kernel learning [Ullrich et al., 2016b]. In our work Ligand Affinity
Prediction with Multi-Pattern Kernels [Ullrich et al., 2016b], we show that the
performance of ligand affinity prediction can be improved by the simultaneous in-
clusion of different data representations via multiple kernel learning [Cortes et al.,
2009, Vishwanathan et al., 2010].

(ii) Analogous to the supervised case, we achieve the objectives of the present the-
sis stated above for the semi-supervised setting as well. The novel co-regularised
support vector regression algorithm presented in Ligand-Based Virtual Screen-
ing with Co-Regularised Support Vector Regression [Ullrich et al., 2016a] and Co-
Regularised Support Vector Regression [Ullrich et al., 2017] includes unlabelled data
in addition to annotated molecules as well as multiple representations on data into
the learning process. We define co-regularised support vector regression as a novel
kernelised multi-view algorithm and further variants with respect to the number of
optimisation variables. We show that the variant Σ-co-regularised support vector
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regression has complexity properties of a single-view algorithm, which reduces the
running time drastically. Moreover, we prove a bound for the Rademacher com-
plexity of the corresponding co-regularised candidate function class that can be
applied to restrict the expected error. By means of the co-regularisation technique
we are able to reduce the prediction error of ligand affinities despite of only few
annotated training molecules and without an expensive choice for the best data
representation. To be more precise, the multi-view approaches in the empirical
analysis at least performed as good as the best single-view baseline by including
all molecular representations in one optimisation problem. By investigating the
more realistic scenario of few labelled ligands and sufficient unlabelled database
compounds, we address one of the limitations of affinity prediction from the intro-
duction.

(iii) For the unsupervised scenario, we achieved the objectives stated above by propos-
ing the two novel projection-based methods corresponding projections and orphan
principle component analysis for the solution of the ambitious orphan screening
problem. Both corresponding projections [Ullrich and Gärtner, 2014] and orphan
principal component analysis can be applied as single- and multi-view algorithm.
In Corresponding Projections for Orphan Screening [Giesselbach et al., 2018] we
show how the combination of labelled information from other proteins and inter-
protein relations can be used to solve orphan screening. We prove empirically
that corresponding projections outperforms the state-of-the-art approach of target-
ligand kernels and approximates the results of supervised single-view support vec-
tor regression using only very few labelled training examples. We obtained simi-
lar results for corresponding projections and baselines when we applied canonical
multi-view compound representations, in particular, by means of a dimensionality
reduction step for the generation of the multi-view representation.

The content of this thesis is based on the following publications

• [Ullrich and Gärtner, 2014] Kernel Corresponding Projections for Orphan Targets.
K. Ullrich and T. Gärtner. Extended abstract for the workshop on Multi-Target
Prediction (KERMIT) at the European Conference on Machine Learning, 2014,

• [Ullrich et al., 2016b] Ligand Affinity Prediction with Multi-Pattern Kernels. K.
Ullrich and J. Mack and P. Welke. Conference paper in Proceedings of the Inter-
national Conference on Discovery Science, 2016,

• [Ullrich et al., 2016a] Ligand-Based Virtual Screening with Co-Regularised Support
Vector Regression. K. Ullrich and M. Kamp and T. Gärtner and M. Vogt and
S. Wrobel. Workshop paper in Proceedings of the workshop on Data Mining in
Biomedical Informatics and Healthcare (DMBIH) at the International Conference
on Data Mining, 2016,

• [Ullrich et al., 2017] Co-Regularised Support Vector Regression. K. Ullrich and
M. Kamp and T. Gärtner and M. Vogt and S. Wrobel. Conference paper in
Proceedings of the European Conference on Machine Learning, 2017,

• [Giesselbach et al., 2018] Corresponding Projections for Orphan Screening. S.
Giesselbach and K. Ullrich and M. Kamp and D. Paurat and T. Gärtner. Workshop
paper in Proceedings of the workshop on Machine Learning for Health (ML4H) at
the Neural Information Processing Systems conference, 2018.
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1.2 Multi-View Learning

Preliminary work in the field of ligand prediction via structured outputs was done in
[Ullrich et al., 2010].

1.2 Multi-View Learning

With regard to algorithms we focus on the field of multi-view learning (MVL), which
means to solve machine learning tasks using different views on data. A view is a sight or
representation of data instances of interest and can be imagined as a predefined collec-
tion of features. In contrast to the conventional single-view learning, MVL approaches
utilise multiple data representations with distinct feature sets at the same time [Sun,
2013]. Multiple views arise from various sources of supervision or description. For ex-
ample, video and audio recording are two different ways to monitor the same object or
event. Apart from the improvement in learning performance that has been proven both
in theory [Dasgupta et al., 2002, Rosenberg and Bartlett, 2007, Cortes et al., 2010] and
many practical applications (see examples from above), MVL offers a way to manage
the variety of data descriptors that frequently appear in real-world scenarios by simply
using them all simultaneously. It supersedes an exhaustive choice procedure for the
optimal view for a given learning task. In the last decade, multi-view learning became
more and more prominent in machine learning. It turned out that many practical and
theoretical aspects of learning can be studied within this setting, e.g., the availability
of data, the handling of different learning tasks, or the generalisation performance com-
parison between different algorithms. Using the example of ligand affinity prediction we
demonstrate the flexibility of multi-view learning algorithms and at the same time sug-
gest novel techniques to the chemical community for the practical problem. MVL can be
grouped differently. We introduce MVL according to the survey of Xu et al. [2013] and
adhere to the classes co-training style algorithms, multiple kernel learning, and subspace
learning-based approaches as it was motivated at the beginning of the present chapter.
MVL techniques can potentially be applied in a wide range of learning tasks and appli-
cations. However, we solve the task to learn a predictor function for real-valued ligand
affinities.

1.2.1 Multiple Views and Definition

For the present and the following sections on MVL we anticipate Chapter 2 with regard
to machine learning and notation. We consider objects from a space X for which we
intend to solve a learning task. A view v on data is a representation of the learning
objects in an appropriate feature space H. For the time being, we restrict to the case
that the corresponding feature map Φv implies a dv-dimensional vectorial representation
for the data. As mentioned above, a thorough theoretical introduction can be found
in Chapter 2 below. In particular, a formal definition of a view will be presented in
Definition 2.17. Moreover, we will explain how feature maps and kernel functions are
canonically related and go into detail with the feature spaceH. Multiple views essentially
appear in two situations which in a way are contrary. On the one hand, different feature
representations of the same objects or events exist a priori in case different information
sources are available. For example,

• color, texture, and attached text can describe one and the same image [Xu et al.,
2013],
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• video and audio signals which describe a movie or event [Sun, 2013],

• different camera angles are another way to describe a movie literally with multiple
views [Sridharan and Kakade, 2008],

• a text can be translated into different languages [Sridharan and Kakade, 2008],

• and finally, structural graph patterns or physico-chemical properties can be used
to describe molecular compounds as potential ligands of proteins (see Section 1.3
below).

On the other hand, a given set of features can be used to generate multiple views via
feature selection or partitioning, for example

• via randomly splitting the features into two ore more subsets [Brefeld et al., 2006],

• via feature clustering approaches or other optimised division algorithms [Xu et al.,
2013],

• by representing texts with terms of different lengths [Matsubara et al., 2005],

• or simply by the application of different kernel functions on one and the same
feature set [Xu et al., 2013].

However, not every view combination is appropriate for the application in a MVL al-
gorithm, independent of whether multiple views exist naturally or are the result of a
view generation procedure. There are attempts to assess the sufficiency or quality of
views to be profitable in an MVL scenario (for more details we refer to Xu et al. [2013]).
To some extent, the multi-view approaches multiple kernel learning and canonical cor-
relation analysis introduced below deliver some information on the appropriateness of
the utilised views as a byproduct in form of a kernel linear combination and correlation
coefficients (compare Sections 1.2.3 and 1.2.5).

Suppose we face a learning task to assign to an input from X a certain output from Y
via a functional model f . Assume, the data objects X can be described in M different
ways, i.e., there are M feature maps Φv : X → Rdv , where v = 1, . . . ,M . Then

fv(Φv(X ))→ Y

is the learning model based on the v-th feature representation. For the sake of simplicity,
we often write fv(X ) which implies that fv actually operates on the v-th view on data.
In the case of regression we consider a predictor function fv with output space Y = R.
Without further restrictions, a view model fv can be found with a single-view method,
i.e., a machine learning algorithm that only utilises one view on data, such as for example
least squares regression, support vector machines, or principal component analysis. These
approaches will be discussed later and appear as important baselines in comparative
experiments between single-view and multi-view learning. We will denote a model fv
a single-view model. In contrast, if the predictor function is not independent of the
respective other views but corresponds to a fixed view, we will call it a view model.

In the literature, MVL is introduced as learning in the presence of distinct feature sets
or representations [Sun, 2013]. Although the intention behind this definition of MVL
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is intuitively clear, it would include single-view models or an approach that uses the
average of M independently learned single-view predictors as final predictor. Therefore,
we claim that the idea of MVL is to find a model f that depends on M views

f(Φ1(X ), . . . ,ΦM (X ))→ Y,

such that the simultaneous awareness of all M views has an influence on the final MVL
model f and, hopefully, leads to an improved performance in comparison with respective
baselines. For example, a canonical MVL approach is to attach the M feature represen-
tations of data instances one after another and learn a model with a single-view approach
with the concatenated feature vectors. According to Xu et al. [2013] the concatenation
method suffers from overfitting. Another simple MVL approach for classification or re-
gression is to use the average of M view predictors as prediction model. We point to
the fact that this is different from taking the average of M independent view predictors.
Both the concatenation approach and the average predictor approach will be considered
in the empirical sections below.

1.2.2 Principles and Branches

In our definition of MVL we postulate the simultaneous knowledge of all views. Two
principles underlie MVL approaches [Xu et al., 2013] which finally result in this demand.
At first, one assumes that each view suffices to describe the data appropriately and
solve the learning task alone. Hence, the consensus principle embraces the efforts in
MVL to find consistent view predictors by minimising the differences between pairs
of hypotheses [Dasgupta et al., 2002]. Though, if all predictors would be consistent
from the beginning there was nothing to benefit from multiple views. Therefore, the
complementary principle unites the beliefs in MVL that each view should contribute
some information to the solution of the respective learning task which the other views
do not deliver. However, just like the complete accordance of two models also grave
differences between views could hinder a useful MVL result. This aspect of MVL has
already been considered [Nigam and Ghani, 2000, Christoudias et al., 2008].

Similar to the definition of MVL, also the branches of MVL are not reported concordantly
in the literature. For reasons explained at the beginning of the introductory chapter, in
the present thesis we orient to the MVL classes suggested by Xu et al. [2013]

(i) Multiple kernel learning,

(ii) Co-training style algorithms, and

(iii) Subspace learning-based approaches,

and dedicate a main chapter to each class towards affinity prediction

(i) Multiple kernel learning for supervised affinity prediction (Chapter 3),

(ii) Co-regularisation for affinity prediction with few labelled data (Chapter 4), and

(iii) Projection-based learning for orphan screening (Chapter 5).
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The numbering (i)–(iii) refers to the one already used above. In the Sections 1.2.3, 1.2.4,
and 1.2.5 we briefly introduce the three classes of MVL and present related work in the
respective fields which is relevant to the present work. We anticipate some concepts
from machine learning which will be explained formally in Chapter 2 below. Sridharan
and Kakade [2008] similarly divide MVL into co-regularisation and canonical correlation
analysis-based algorithms, whereas Sun [2013] only distinguishes between co-training and
co-regularisation style algorithms. In addition to co-training and co-regularisation, Zhao
et al. [2017] mention a further class called margin-consistency style algorithms. The
literature on MVL is predominated by the prediction task of classification, in particular,
co-training has been studied extensively in theory and in practice.

1.2.3 Multiple Kernel Learning

We already know that views on data are canonically related to so-called kernel functions.
If there is a feature representation or view on data this automatically implies a way to
compare data instances. The precise relation between data representation and kernel
functions will be explained in detail in Section 2.5 below. Every view or kernel delivers
different aspects of similarity which all can be useful for the respective learning task
[Xu et al., 2013]. In order to utilise multiple sources of information at the same time
and to prevent an exhaustive search for the optimal data representation, multiple kernel
learning (MKL) looks for a combination of multiple kernels to form a new kernel [Gönen
and Alpaydin, 2011]. The combination parameters provide the opportunity to regulate
the influence of each kernel function. That means, using MKL one is looking for a kernel
kb as a function of different kernels k1, . . . , kM

kb(x, x
′) = fb(k1, . . . , kM |b),

where x, x′ are learning objects and b the parameterisation of the functional relationship
fb. The idea to connect multiple kernels that appear in a parameterised form of the target
function for learning is very similar to the concept of boosting or ensemble learning, where
a number of classifiers or even learning algorithms are merged such that the final model
is better than the potentially weaker single classifiers or algorithms. Multiple kernel
learning (MKL) might be confused with multi-view learning (MVL). However, MKL
denotes the subgroup of MVL algorithms reviewed in this section. MKL is also often
used synonymously with learning a linear combination of kernel function

kb(x, x
′) =

M∑
v=1

bvkv(x, x
′)

in the notation from above. Actually, this is the predominant approach in the litera-
ture and will be referred to with MKL in the remainder of this work. However, MKL
also comprises non-linear and data dependent kernel combinations and can be grouped
according to various criteria [Gönen and Alpaydin, 2011]. In addition to the functional
form of the kernel combination these criteria also include the target function for op-
timisation (e.g., structural risk minimisation), the training method (e.g., simultaneous
or iterative approach), and the base learner (e.g, regularised least squares regression or
support vector regression) [Gönen and Alpaydin, 2011]. As already mentioned above,
we focus on structural risk minimisation approaches which learn a linear combination
of kernel functions. For the sake of convenience, we will use the term kernel linear
combination below.
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Lanckriet et al. [2004b] firstly came up with the idea of combining kernels via a kernel
combination to prevent the choice of a particular kernel function. Instead of consider-
ing the whole kernel function, they applied a transductive classification approach and
learned the linear combination of the kernel’s Gram matrices. The corresponding opti-
misation problem with `1-norm regularisation of the linear coefficients turned out to be a
quadratically constrained quadratic program which becomes intractable if the number of
instances or kernels become large [Rakotomamonjy et al., 2008] and can be solved with
techniques of semi-definite programming (for more details also confer Section 2.5 below).
Interestingly, early work on MKL was already applied in the biochemical domain, e.g.,
for protein classification tasks [Lanckriet et al., 2004c,a]. Bach et al. [2004] presented a
reformulation of Lanckriet et al. [2004b]’s problem version using both the `1- and the
`2-norm such that a sequential minimal optimisation approach could be employed for its
solution. In order to apply MKL for large datasets and many kernels, Sonnenburg et al.
[2006] found another reformulation as semi-infinite linear program. Rakotomamonjy
et al. [2008] used an iterative approach and the SimpleSVM algorithm to solve MKL
in an `2-norm regularised variant and call their efficient and well-performing approach
SimpleMKL. SimpleMKL works by minimising the primal problem which, in contrast
to the dual problem, is differentiable. In addition to classification, SimpleMKL can also
be applied to regression, one-class, and multi-class classification. Another iterative `2-
regularisation variant of MKL for regression was proposed and investigated by Cortes
et al. [2009]. Finally, the most general case in this list of MKL variations was investi-
gated by Kloft et al. [2009, 2011] in form of an `p-norm regularisation of the kernel linear
coefficients in the minimisation objective for p ≥ 1. Vishwanathan et al. [2010] showed
how this general MKL formulation can be solved via sequential minimal optimisation.
In addition to aspects of efficiency and performance also learning theoretical properties
of MKL have been investigated, e.g., generalisation bounds in terms of the Rademacher
complexity [Kloft et al., 2011, Cortes et al., 2010].

1.2.4 Co-Regularisation

Multi-view learning is the intention to profit from the simultaneous application of differ-
ent data representations and involved information content without the need to decide in
favour for one particular view or kernel function. We introduced MKL as the first impor-
tant class of multi-view learning algorithms above. The class of multi-view algorithms
we introduce in the present section includes unlabelled data in order to compensate
for a small number of labelled examples. Co-regularisation aims at maximising the
prediction agreement with respect to the labelled set of instances and minimising the
disagreement for the unlabelled set. Whereas MKL comprises supervised approaches,
co-regularisation is a technique of semi-supervised learning. More precisely, a predictor
function for every single view is learned simultaneously such that both the empirical risk
for each view predictor and the pairwise prediction differences with respect to different
views for unlabelled instances are minimised. That means to solve

min
f1,...,fM

M∑
v=1

R(fv) +

M∑
u,v=1

R̂(fu, fv),

where f1, . . . , fM are predictor functions that correspond to M different views or kernels
and R and R̂ are appropriately defined risk functionals. Because of the correspondence
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of views and kernels we will discuss co-regularisation algorithms again in the context of
kernel methods.

The idea of co-regularisation for regression originates from the concept of co-training that
was introduced for classification by Blum and Mitchell [1998]. Co-training was originally
developed for the scenario of two views and only few labelled training data. The two
corresponding view predictors trained from the labelled examples in each view should
successively be boosted via additional examples. These arise from unlabelled instances
that obtained their labels from the respective other view predictor function. Thus, the
compatibility and independence assumption for co-training are an implementation of
the consensus and complementary principle of MVL [Nigam and Ghani, 2000, Dasgupta
et al., 2002, Balcan and Blum, 2005, Leskes, 2005, Sridharan and Kakade, 2008]. Zhou
and Li [2005] came up with a single-view variant of co-training that in a sense can be
regarded as the bridge to co-regularisation for regression. More precisely, they trained
two k-nearest neighbour predictors for regression that used different metrics instead of
different views and improved their performance utilising unlabelled examples. Sindhwani
et al. [2005] presented a multi-view co-regularisation approach for regression (or co-
regression) which included the predictions for unlabelled instances directly in the global
optimisation objective. Brefeld et al. [2006] found an analytic solution for their co-
regularised least squares algorithm instead of an iterative description. A bound on the
Rademacher complexity of the respective co-regularised function classes was proven by
Rosenberg and Bartlett [2007]. Sindhwani and Rosenberg [2008] deduced an algorithm
from the originally multi-view objective for co-regularisation with the properties of a
single-view approach. As multiple languages constitute multiple views on data very
naturally, Wan [2013] successfully applied co-regression for cross-language review rating.

As mentioned already, co-regularisation is one way to include unlabelled instances in ad-
dition to labelled examples into the training procedure for the prediction model which is
commonly known as semi-supervised learning. Co-regression denotes co-regularisation
approaches for regression tasks. As labelled data are available, semi-supervised learn-
ing can be considered a special case of supervised learning [Chapelle et al., 2006]. An
overview of semi-supervised methods was presented by Zhu [2006]. Graph-based meth-
ods, the expectation-maximisation algorithm [Dempster et al., 1977], and the trans-
ductive support vector machine [Joachims, 1999] are examples for the variety of semi-
supervised algorithms that do not base upon co-regularisation. Support vector regression
(SVR) and regularised least squares regression (RLSR) play a central role in the present
thesis. Semi-supervised variants of support vector machines and least squares regression
can be found in the literature already for different learning scenarios. Semi-supervised
variants of support vector classification were considered by Bennett and Demiriz [1998],
Chapelle et al. [2008], Kondratovich et al. [2013], whereas Zhou and Li [2005], Wang
et al. [2010a], Xu et al. [2011] introduced semi-supervised SVR in the one-view scenario.
Sun [2011] and Farquhar et al. [2005] came up with support vector classification using
multiple views. Also structured output support vector machines were investigated in
the multi-view setting of Brefeld and Scheffer [2006]. A co-regularised variant of RLSR
was introduced by Brefeld et al. [2006].

1.2.5 Projection-Based Learning

Projection-based learning (also referred to as subspace learning) refers to a large number
of algorithms with numerous applications both in the single- and multi-view learning
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scenario. For this reason, we give a short summary of the intentions of projection-
based learning and the classes of comprised multi-view learning approaches. The idea
behind approaches that utilise projections of the respective data instances is that a
high-dimensional feature representation of data might be redundant such that the true
underlying information is smeared over an unnecessary large number of variables which in
turn complicates calculations and storage. Therefore, the aim of (multi-view) projection-
based learning can either be the pure compression of the data representation (dimen-
sionality reduction) or the enhancement of the learning result or both at once. The
prime example of multi-view projection-based algorithms that can be used for both
dimensionality reduction and prediction tasks is canonical correlation analysis (CCA)
[Hardoon et al., 2004, Kakade and Foster, 2007, Foster et al., 2008]. Comparable to MKL
and co-regularisation, the usage of multiple views in projection-based learning offers a
broad spectrum of information without the need for an optimal view choice. Again the
correspondence between kernel functions and views make projection-based learning an
important branch of kernel methods.

According to Xu et al. [2013], subspace learning can be categorised into CCA-based
algorithms, multi-view Fisher discriminant analysis, multi-view embedding, multi-view
metric learning, and latent space models. CCA was introduced by Hotelling [1936]
and intends to identify common latent relations between different data representations
[Hardoon et al., 2004, Welling]. Therefore, CCA aims at projections P1, P2 of two views
of data Φ1(x) and Φ2(x) such that the mapped vectors correlate maximally, i.e., for

max
P1,P2

Corr(P T1 Φ1(x), P T2 Φ2(x)),

where Corr(a, b) = Cov(a, b)/(
√

Var(a)
√

Var(b)). In contrast to CCA which is an unsu-
pervised method, kernel Fisher discriminant analysis [Mika et al., 1999] finds a projection
of data such that the geometric class mean differences are maximised and the respective
class variances are minimised. Diethe et al. [2008] generalise this approach to multiple
views. Embedding and metric learning deliver further supervised and unsupervised pro-
jection approaches for multi-view data to lower dimensional feature spaces which are
optimal to some objective criteria. In contrast, latent space models focus on the latent
relationships between different views for learning [Xu et al., 2013].

In Chapter 5 of the present thesis, projection-based methods are considered to solve an
unsupervised problem. More precisely, the aim is to find labels of instances with respect
to a target for which no labelled training examples are available. However, for the same
or a very similar learning task and related targets there are labelled examples available.
Projection-based approaches turn out to be very useful in this scenario. In the first
instance, the projections serve as a transfer tool for label information from one target
to another. In order to solve this problem from transfer learning [Pan and Yang, 2010],
scalar projections as well as a variant of principal component analysis (PCA) [Schölkopf
et al., 1997] are applied. PCA finds a projection of the data feature representation
in an unsupervised manner such that the mapped variables exhibit maximal variance
from the original data points. The knowledge-based PCA variant of Oglic et al. [2014]
includes further information of the learning domain in form of must-link and cannot-
link constraints. The definitions of the two novel algorithms introduced in Chapter
5 are not based on multiple views in the first place. However, we utilise Johnson-
Lindenstrauss (JL) projections [Dasgupta and Gupta, 2003] to include multiple views
in the model training phase in the empirical analysis. A multi-view PCA approach for
transfer learning was presented by Ji et al. [2011].
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1.3 Affinity Prediction

As mentioned already in Section 1.1, in the present thesis we focus on a problem of
chemoinformatics called ligand affinity prediction. We illustrate why affinity prediction
is an important and challenging application from practice. In the subsequent main chap-
ters we exploit the particular characteristics of the learning scenario typically accompa-
nied with affinity prediction in order to improve existing machine learning approaches
for its solution.

Ligands are small molecules that bind to proteins with a real-valued chemical affinity
that we intend to predict. On the one hand, this is a fundamental learning task in
practice as bindings of proteins and ligands are essential for the understanding of protein
function in biological organisms [Nelson and Cox, 2001]. Proteins are crucially involved
in the majority of biochemical cell processes which make them the central molecules
for life besides the nucleic acids DNA and RNA (more details in Section 1.3.1). Hence,
influencing proteins via ligands is one excellent starting point for drug discovery efforts.
On the other hand, the learning scenario and the nature of typical datasets (see below)
depicts an interesting setting for learning which is worth investigating, independent of
affinity prediction. Indeed, other relevant applications share a similar scenario, e.g.,
object detection from different perspectives, translation based on multilingual corpora,
and disease diagnosis from different physiological markers.

In concordance with the three presented classes of multi-view learning in Section 1.2,
we consider three different affinity prediction variants in the main chapters below.

(i) Supervised affinity prediction: Small molecules and their affinity values with re-
spect to a fixed protein are used to train a binding model for that protein. Different
molecular fingerprint designs (see Section 1.3.4) for small molecules are available.

(ii) Semi-supervised affinity prediction: Small molecules and their affinity values with
respect to a fixed protein are used to train its regression model using further
small molecular compounds without known affinity as unlabelled data. Multiple
molecular fingerprint formats exist. In particular, also unlabelled compounds can
be represented and compared using these multiple fingerprint representations.

(iii) Unsupervised affinity prediction (orphan screening): We consider a protein for
which no affinity values of small molecules are known at all. Therefore, this partic-
ular protein is called orphan protein. Nevertheless, labelled instances with respect
to other proteins are available and used to learn an affinity model for the orphan
protein. Again, for all included small molecules different fingerprint representa-
tions are available.

In the following section, we give a general introduction to the practical problem of ligand
affinity prediction to which all methods of this thesis are oriented. We go into detail
with the biochemical background, explain how molecular data instances can be displayed
for learning, and place affinity prediction within the research field of chemoinformatics.
Furthermore, we review existing machine learning approaches for its solution, in par-
ticular, the small number of already existing multi-view attempts in chemoinformatics.
As affinity prediction seems predestined for multi-view learning because of the different
representations for data instances of interest, we aim at complementing the mentioned
attempts with our proposed approaches in Chapter 3, 4, and 5.

14



1.3 Affinity Prediction

1.3.1 Biochemical Background

From a very general point of view, a ligand is a molecule that binds to another determined
molecule named target which is typically much bigger than the ligand itself. Usually,
the binding is non-covalent and reversible. There is a large variety of target-ligand
relationships. For example, a ligand can be a single iron ion that builds a complex with
the biomolecule haemoglobin, the red blood pigment. In contrast, large DNA-binding
proteins are also referred to as (DNA) ligands. However, in the present thesis we consider
ligands of proteins. The ligands are molecules with usually organic scaffolds and a low
molecular weight. Proteins themselves are high-molecular chains of amino acids that
form a 3-dimensional structure with binding sites or binding pockets for ligands that
emerge from the spacial arrangement of amino acids and their respective functional
groups.

Being the direct product of gene transcription and translation, proteins are crucial for the
structure and functionality of life. Among others, they serve as transporters (thyroxin-
binding globulin), ion channels (transmembrane sodium channel), hormones (oxytocin),
receptors (G-protein coupled serotonin receptor), scaffold proteins (regulators of signal
pathways), enzymes or catalysts (DNA ligase). Numerous biochemical reactions are
triggered via protein-ligand bindings [Nelson and Cox, 2001]. The tendency or capacity
of a ligand to stick to a certain protein is called binding affinity and is mainly due to
intermolecular forces. The binding affinity can be expressed quantitatively via different
characteristics. The most common is the half-maximal inhibitory concentration IC50

which is the concentration (unit molar 1M) of ligand molecules necessary to achieve the
half-maximal biological activity of the protein. The inhibitory concentration essentially
quantifies the same physico-chemical property of molecules like the inhibition constant
Ki. For reasons of statistics and scalability often

pKi = − log10Ki

is considered. In contrast to the values of Ki, IC50 values depend on experimental con-
ditions. Active compound concentrations lie in the range of nano- or micro-molars nM
and µM , respectively. A small inhibition constant indicates a high binding affinity. In
our experiments below we use the inhibition constant Ki as measure of ligand affinity.
However, other measures such as ligand efficiency have been investigated in the con-
text of affinity prediction as well [Sugaya, 2013]. The usage of the name ligand differs
depending on the binding model into consideration. If one is interested in whether a
small molecule binds or not (ligand prediction or classification model) we distinguish be-
tween ligands and non-ligands. If the focus is to determine the actual binding strength
(affinity prediction or regression model) practically every small molecule is a ligand to
some extent. However, if a ligand’s binding strength is too small, the assigned affinity
value might not be biologically meaningful anymore. In both model cases, the name
(molecular) compound refers to a small molecule whose binding behaviour is or is not of
interest or unknown.

Proteins and their derivatives are important points of contact for chemical substances
in living organisms. For this reason, the active components of many drugs work as pro-
tein ligands, e.g., insulin against diabetes, beta blocker against hypertension, opioids as
painkiller, thyroxine against hypothyreodism, and many more. As it is the case for in-
sulin or serotonin, the ligands can be small proteins or amino acids themselves. Though,
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the molecular fingerprints used in this thesis are only applicable to small molecular com-
pounds and not to protein or polypeptide macromolecules. Most obviously, the search
for novel and effective protein ligands for drug discovery depicts an important real-world
problem.

In practice, the protein-ligand interaction can be measured in the laboratory via screen-
ing assays. These assays were developed by researchers in order to prove and quantify
a particular biochemical process, e.g., by the concentration of reaction products or by
reflection and absorption effects during the process. Nowadays, large physical libraries
of small molecule compounds can be tested whether they bind to proteins on large scale
via high-throughput screening (HTS). Via HTS millions of experiments can be conducted
simultaneously by robots on well plates that contain the reacting agents. The determi-
nation of Ki or IC50 values usually occurs in two phases. In a first phase many different
potential ligands are tested with a fixed ligand concentration. The promising candi-
dates from the first phase are then investigated under varying concentration conditions
in order to estimate Ki or IC50 as good as possible.

1.3.2 Molecular Fingerprints and Databases

In order to include complex objects such as molecules into a mathematical algorithm
it is necessary to find an informative representation that can be worked on and stored
easily. Actually, dozens of file formats exist that save chemical structures together with
associated properties. We restrict our presentation to the formats relevant for this thesis.

Molecular fingerprints are vectorial representation formats that take structural or physico-
chemical information into account. Every element of the typically high-dimensional vec-
tor represents a molecular feature in a binary, integer-valued or real-valued manner.
Binary features indicate the presence or absence of a structural property whereas inte-
ger values appear if structural features are counted [Heikamp, 2014]. Physico-chemical
properties, such as molecular weight, solubility, lipophilic or hydrophilic character, and
total polar surface area (which apart from the molecular weight are also a result of the
two-dimensional composition and three-dimensional conformation of the molecule) are
expressed with real values [Sugaya, 2014]. The majority of fingerprints are based on
the interpretation of molecules as undirected graphs with labelled vertices (atoms with
labels C, O, H, N, S, etc.) and labelled edges (chemical bonds with labels 1 for single,
2 for double, 3 for triple, and a for aromatic). With bond we refer to the connection
between atoms in molecules, whereas binding relates to the docking of one molecule to
another. Novel bonds can emerge from the docking process. The graph character of
molecules (compare Figure 3.1) needs to be documented appropriately such that finger-
prints can be determined or calculated correctly. The structure data file (SDF) format
of a molecule is an adjacency table with label information for atoms and bonds as well
as the three-dimensional relative positions of atoms. This adjacency table is sometimes
complemented with a list of further properties, such as identifier strings or the molec-
ular weight. A number of other chemical file formats exist, for example the single-line
notations simplified molecular input line entry specification (SMILES) or SMILES arbi-
trary target specification (SMARTS)1. The formats can be converted into each other via
software tools, e.g., via Open Babel2.

1Daylight Theory Manual www.daylight.com/dayhtml/doc/theory/
2openbabel.org
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A large amount of publicly available or commercial molecular fingerprints exists [Bender
and Glen, 2004, Bender et al., 2009, Koutsoukasa et al., 2013]. Depending on their
original purpose of use, each fingerprint is equipped with a specialised composition of
structural or physico-chemical features. There are prediction tasks that can be modelled
and solved well via physico-chemical properties [Liu et al., 2006]. However, for the
assessment of bioactivity of molecular compounds, structural features turned out to be
very successful [Bender et al., 2009]. A unique classification of structural descriptors is
difficult because of the ambiguity of certain standard fingerprint formats and the lack
of completeness in view of the fingerprint variety. In our experiments below we use
fingerprints from the following prominent fingerprint types [Heikamp, 2014]

• Predefined keys,

• Pharmacophore fingerprints, and

• Extended connectivity fingerprints,

which are not unique nor complete, but sufficiently reflect the existing diversity for our
purposes.

Predefined keys (or structural fingerprints) represent a collection of fixed features in a
binary bit string indicating presence or absence of the respective feature in a molecule.
Features are molecular patterns, such as atom types, rings and aromatic systems, func-
tional groups, or other substructures. The 166-bit fingerprint Maccs was originally
designed by Molecular Design Limited (MDL) Inc. Information Systems [Durant et al.,
2002]. The features of pharmacophore fingerprints encode two- or three-dimensional ar-
rangements of atom types [Heikamp, 2014]. We will use the three-point pharmacophore
GpiDAPH3 that considers any set of the three possible atom types donor, acceptor, and
atom in aromatic pi system [Bender et al., 2009]. In a sense, pharmacophore fingerprints
are keyed fingerprints of fixed size as well. Extended connectivity (or combinatorial) fin-
gerprints list circular atom environment features [Rogers and Hahn, 2010, Heikamp,
2014] strongly related to the concept of Weisfeiler-Lehman labels (compare also Section
3.1.5). In contrast to the first two groups, extended connectivity fingerprints are neither
fixed in length nor in the set of features, but depend on the features that are found in
the precise set of compounds at hand. ECFP4 and ECFP6 consider a radius (or Weis-
feiler Lehman depth) of 2 or 3, respectively. All utilised fingerprints in the experimental
sections can be calculated with Molecular Operating Environment (MOE)3 or Pipeline
Pilot (PP)4 software.

Affinity-annotated compounds can be found and composed to appropriate datasets from
different publicly accessible databases. BindingDB5, ChEMBL6, and PubChem7 contain
thousands of ligands in standard chemical file formats (compare above). In addition to
affinities against protein targets obtained from bioassays, the databases contain further
information on the comprised compounds such as absorption, distribution, metabolism,
and excretion (ADME) parameters [Fröhlich et al., 2005, Heikamp, 2014]. Structural,
functional, and relational information on proteins are contained, e.g., in the protein
data bank (PDB)8 database for biological macromolecules. The amino acid sequence,

3Chemical Computing Group www.chemcomp.com
4BIOVIA www.3dsbiovia.com
5www.bindingdb.org
6ww.ebi.ac.uk/chembl/
7https://pubchem.ncbi.nlm.nih.gov/
8www.rcsb.org/
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connectivity of peptide chains, and 3D structure of proteins can be useful in docking
algorithms (see Section 1.3.4) and for the quantitative assessment of the relation between
protein targets (compare Chapter 5).

1.3.3 Kernels for Molecular Graphs

The concept of kernel functions already appeared in Section 1.2.1 on multiple views and
Sections 1.2.3, 1.2.4, and 1.2.5 on the classes of multi-view learning. Although the pre-
cise definition will follow below in Section 2.5 on machine learning basics, for the time
being we understand kernel functions as generalised scalar products that deliver a quan-
titative assessment of the similarity between learning objects. Furthermore, different
kernels relate to different feature representations of these objects. In this sense, molec-
ular fingerprints induce a kernel function and vice versa. Kernel functions are applied
successfully in a variety of learning algorithms (the so-called kernel methods) such as the
ones investigated in the present thesis. Frequently, complex structured data objects are
in the focus of a certain learning task, e.g, trees, graphs, strings or whole text passages
[Collins and Duffy, 2001, Ralaivola et al., 2005]. If an appropriate kernel function for
complex inputs is available, kernel methods can be utilised to solve the learning task at
hand. For obvious reasons, molecules can be identified with graph objects, where atoms
and bonds are labelled vertices and edges, respectively. A kernel function as measure
of similarity for molecular graphs enables the comparison between different compounds.
This in turn forms the basis for the application of the molecular similarity principle,
i.e., to assume and to exploit that structurally similar compounds also exhibit similar
properties [Bender and Glen, 2004]. The application of the similarity principle finally
leads to a quantitative structure-activity relationship model (compare Section 1.3.4 be-
low) for the prediction of the molecule’s behaviour. However, also other objects that are
in the focus of machine learning attempts have graph structure, for example, the scheme
of biochemical pathways, the network of hyperlinks or citations, and the connections in
social networks [Kondor and Lafferty, 2002].

A literature survey of Gärtner [2003] on kernels for structured data appeared nearly con-
currently to the emergence of modern virtual screening and affinity prediction. Gärtner
et al. [2003] defined graph kernels by counting walks with equal start and end node and of
the same length or common labelled sequences. Kondor and Lafferty [2002] developed
and applied so-called diffusion kernels based on matrix exponentiation. In addition
to linear patterns like paths or trees, the cyclic pattern kernel [Horváth et al., 2004,
Horváth, 2005] also took cyclic patterns within the graph into account to assess the sim-
ilarity between molecules. With respect to the decomposition of graphs into cyclic and
acyclic components we refer to Section 3.1.3 below. In their overview of graph kernels
and machine learning approaches in chemical informatics, Ralaivola et al. [2005] suggest
to apply conventional and novel fingerprinting techniques based on graph structures in
connection with the Tanimoto, MinMax, and Hybrid kernel function. An optimal as-
signment kernel was presented by Fröhlich et al. [2005], who suggested to firstly compare
vertices and edges between direct neighbours within a certain neighbourhood radius and
then calculate the actual assignment by maximising the vertex and the edge similarities.
The application of support vector classification or regression in combination with ker-
nels for molecular graphs became more and more important for virtual screening and has
been investigated by a number of authors. For example, Geppert et al. [2008] utilised
the linear kernel and standard molecular fingerprints for ligand prediction with support
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vector machines. 2D walk and tree kernels [Gärtner et al., 2003, Ramon and Gärtner,
2003, Kashima et al., 2004] and 3D pharmacophore kernels [Mahé and Vert, 2009] were
considered in this scenario as well. Gaüzère et al. [2014] performed classification and
regression experiments using small subgraphs (treelets) as well as cyclic and chiral infor-
mation. Finally, the target-ligand kernel is a product kernel for molecular compounds
and considered protein targets. It will be discussed in detail in Section 5.2 below.

1.3.4 Virtual Screening

Chemoinformatics applies techniques and knowledge from computer science and chem-
istry in order to extract, process, and extrapolate meaningful information from chemical
structures. Pioneering work in that research field was done by Hansch et al. [1962]
already half a century ago. Chemoinformatics considerably gained in importance in
recent years because of the rapidly increasing amount of data with complex chemical
information and machine learning algorithms capable of detecting non-linear patterns
[Lo et al., 2018]. HTS techniques already work very fast and efficient in practice but are
still time-consuming and cost-intensive, in particular, if one keeps in mind that there
are quasi infinitely many conceivable compound candidates. Additionally, just like all
practical experiments it might produce incorrect outcomes such as false positives or false
negatives [Heikamp, 2014]. Although it cannot replace practical experiments completely,
(in-silico) virtual screening is the attempt to simulate HTS with computational methods
virtually without any expenditure of time and money. It denotes the screening of large
molecular databases (see Section 1.3.2 above) for compounds with a certain bioactivity
and is one of the central applications in chemoinformatics [Shoichet, 2004, Irwin, 2008].
A successful application of such techniques would support the empirical screening pro-
cess by preliminary selection tests, prioritisation of chemical candidates, and finally also
by reducing animal experiments [Maunz and Helma, 2008].

Virtual screening can be divided into ligand-based virtual screening and structure-based
virtual screening approaches. Structure-based approaches calculate a scoring function
[Ain et al., 2015] via computational methods. Amongst others, these methods comprise
SVR [Li et al., 2011], random forests [Ballester and Mitchell, 2010, Liu et al., 2013, Li
et al., 2014], partial least squares regression and artificial neural networks [Wang et al.,
2010b, Speck-Planche and Cordeiro, 2014, Stepniewska-Dziubinska et al., 2018, Ferreira
and Andricopulo, 2019, Tetko and Engkvist]. The scoring function is derived from 3D
structure information of the involved molecules [Ortiz et al., 1995, Zhou and Skolnick,
2012] and models the protein-ligand docking process via thermodynamical statistics. In
contrast, ligand-based approaches utilise information of known ligands and their affinities
to obtain a binding model (more details below). For the reasons explained above, virtual
screening plays an important role for the discovery and design of novel lead compounds
for drugs as a central concern in medicine [Jacob et al., 2008]. In Chapter 3, 4, and 5 we
focus on the affinity prediction task with ligand-based approaches in order to obtain a
so-called quantitative structure activity relationship (QSAR) model [Maunz and Helma,
2008, Cherkasov et al., 2013].

Ligand-based virtual screening for the prediction of protein-ligand bindings is based on
the molecular similarity principle or similarity property principle (SPP), which states
that similar molecules are likely to have similar activities [Bender and Glen, 2004, Bender
et al., 2009, Geppert et al., 2010]. Apart from this commonality, the precise approaches
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differ in computation method and learning task. An overlap of methodologies and tasks
makes a unique structuring of virtual screening very difficult.

• The inter-molecular relation can either be considered as a classification problem,
i.e., whether a ligand binds to a protein or not which we will refer to as ligand
prediction. More specifically, it can also be modelled as a regression problem with
positive real-valued affinities or related quantities (compare Section 1.3.1) which
we will denote affinity prediction. Although the classification model is a strong
simplification of the reality, this approach predominates the literature [Burbidge
et al., 2001, Erhan et al., 2006, Geppert et al., 2008, Jacob et al., 2008, Geppert
et al., 2009, Ning et al., 2009, Wassermann et al., 2009a, Ullrich et al., 2010, Vogt
and Bajorath, 2010, Sugaya, 2013]. Only few publications go beyond the sheer
suggestion of ligand candidates with a regression approach [Bock and Gough, 2002,
2005, Sugaya, 2014, Balfer and Bajorath, 2015]. In the present thesis we focus on
the regression task of affinity prediction.

• Another distinctive feature strongly related to the modelling of the binding process
is the type of the actual outcome of the prediction model. In addition to the
classification or affinity annotation of single compounds, an order or ranking of a
set of compounds [Bock and Gough, 2002, Geppert et al., 2008] or a compound
representation as structured output [Ullrich et al., 2010] can be outcomes as well.

• With respect to computation, the majority of algorithms can be assigned to sim-
ilarity search [Willett et al., 1998, Sheridan and Kearsley, 2002, Willett, 2006,
Geppert et al., 2010, Vogt and Bajorath, 2010] or classical machine learning [Bur-
bidge et al., 2001, Geppert et al., 2008, Mahé and Vert, 2009] using molecular
fingerprint representations, where the transition between both fields are smooth.
Similarity search denotes a ranking of compounds with respect to their similarity
value (Tanimoto coefficient) compared to one or multiple active reference com-
pounds [Geppert et al., 2008]. More details on machine learning and molecular
fingerprints can be found in Chapter 2 and Section 1.3.5 below.

• The availability and amount of labelled compounds with respect to proteins induces
a grouping of applied algorithms. There are supervised algorithms that rely on
sufficient labelled training compounds [Lo et al., 2018]. So-called semi-supervised
algorithms operate in the learning scenario of few labelled training examples and
many unlabelled instances [Ning et al., 2009, Kondratovich et al., 2013]. Also un-
supervised algorithms play an important role. Actually, orphan screening denotes
the search for ligands of protein targets without known training ligands [Geppert
et al., 2009, Wassermann et al., 2009a, Ullrich et al., 2010].

• Finally, algorithms can be categorised depending on whether they investigate the
compound activity with respect to one single target [Geppert et al., 2008] or against
multiple targets. The latter is strongly related to the questions about the binding
preference of a compound to one particular target over other targets, also known
as selectivity [Wassermann et al., 2009b, Heikamp, 2014].

Apart from ligand or affinity prediction there are other learning tasks in the field of
virtual screening using similarity search and machine learning. Strongly related is the
detection of bioactivities with support vector classification (SVC) or SVR models based
on ligand efficiency indices [Sugaya, 2013, 2014]. These are alternative quantities to
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assess a compound’s drug potency. Scaffold hopping is another task connected with the
identification of ligand affinities. It denotes the identification of structurally different
active molecules [Wassermann et al., 2009a]. For the development of novel drugs it is
rather less interesting to find molecules very similar to already known ligands. Instead,
molecules with a different molecular scaffold are more likely to be candidates for further
research [Heikamp, 2014]. Binding sites or pockets are the protein substructures where
the actual interaction with the ligand occurs. The identification of similar binding
sites via protein structure-based fingerprints can be used to find structurally diverse
ligands from binding information in databases [Wood et al., 2012]. The protein targets
themselves can be categorised into classes depending on their functionality. Machine
learning algorithms such as support vector machines (SVMs) [Burges, 1998] were applied
successfully to the classification of database proteins and, hence, to protein function
prediction [Cai et al., 2003, Lanckriet et al., 2004c, Tsuda et al., 2005]. Last but not
least, also DNA is in the focus of virtual screening. Genes are DNA sectors which are
correlated with a certain protein expression activity and have been classified successfully
via machine learning algorithms [Vert and Kanehisa, 2002].

As we have shown above, virtual screening techniques can be employed in a wide range
of applications. However, it exhibits intrinsic limitations [Shoichet, 2004], particularly
for affinity prediction.

1. Firstly, a variety of molecular fingerprints exists and it is neither obvious which one
to choose for a given task, nor whether the representation comprises the features
necessary to explain the desired activity [Sheridan and Kearsley, 2002, Heikamp,
2014].

2. Similar to an inapt molecular representation, also scaffold hopping [Geppert et al.,
2010, Heikamp, 2014] and activity cliffs [Medina-Franco et al., 2009, Balfer and
Bajorath, 2015] can lead to a failure of the SPP. Activity cliffs are in a sense
the opposite of scaffold hopping as they describe big changes in activity for small
structural differences.

3. If two ligands bind to the same protein target but the binding occurs at two
different binding sites, e.g., in the case of allosteric inhibition [Nelson and Cox,
2001], the SPP will not be helpful to infer about the affinity from one ligand to
another [Heikamp, 2014].

4. A more general problem of the prediction scenario is the typically small number
of known ligands and corresponding affinities [Geppert et al., 2008, Jacob et al.,
2008]. Given a considered protein target, it is expensive to obtain practically
verified labelled training examples.

5. Activities against multiple protein targets or the search for target-selective com-
pounds represent further challenges in the context of affinity prediction [Wasser-
mann et al., 2009a, Heikamp, 2014].

6. Orphan screening as an unsupervised learning problem represents a challenge to
computational methods per se.

We address the proposed limitations of the affinity prediction task in items 1., 4., and
6. with our approaches proposed in the main chapters below.
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1.3.5 State-of-the-Art Ligand-Based Approaches

Affinity prediction as an instance of ligand-based virtual screening is in the focus of the
present thesis with respect to the practical application. For this reason, we dedicate this
chapter to the machine learning methodologies applied in this field so far. The state-of-
the-art of the recent two decades has been reviewed yet [Burbidge et al., 2001, Geppert
et al., 2010, Cherkasov et al., 2013, Heikamp, 2014, Heikamp and Bajorath, 2014, Lo
et al., 2018]. In this section, we summarise the literature on ligand-based approaches
which is relevant for the present thesis.

Virtual screening can be considered a major application for SVMs nearly since their
breakthrough at the end of the last century. In particular, its explicit classification
variant support vector classification (SVC) as well as SVM-based ranking strategies
and similarity search [Sheridan and Kearsley, 2002, Willett, 2006, Vogt and Bajorath,
2010] play a predominant role in the literature (compare also Section 1.3.4 above). For
historical reasons, SVM is frequently used as synonym for SVC, although in the strict
sense it is a generic term for a class of algorithms. Sugaya [2013] performed SVC using
training data based on a threshold on ligand efficiency indices (as an alternative to Ki−
or IC50-values) to predict ligands. Geppert et al. [2008] investigated SVC-based and
different similarity search-based ranking strategies to find new ligands at the presence of
various known active compounds. SVC and similarity search methods were applied both
for ligand prediction in the standard supervised case with labelled training data and for
orphan screening by Geppert et al. [2009]. Multi-class SVC experiments were conducted
by Wassermann et al. [2009b] who categorise ligands into selective, non-selective, and
inactive ones. For example, the experiments with a k-nearest neighbour approach in
Geppert et al. [2008] showed that there is a smooth transition from similarity search to
machine learning algorithms like SVC. Decision trees and Bayesian classifiers [Burbidge
et al., 2001, Geppert et al., 2010] are examples of alternative machine learning algorithms
that have been applied for the prediction of ligands as well. The learning task of ligand
prediction was also already handled in a structured output prediction scenario where the
ranking of compounds itself was the output of the algorithm [Ullrich et al., 2010]. For the
quality assessment of classification models in virtual screening, performance measures
like sensitivity, specificity, accuracy, and recovery rate are typical [Geppert et al., 2008,
2009, Sugaya, 2013, Heikamp, 2014].

In addition to ligand prediction as a classification approach, Fröhlich et al. [2005] consid-
ered affinity prediction with a regression model to describe the protein-ligand complex.
Affinity prediction references in the regression scenario are still rare taking into account
the overall number of publications in the field of ligand prediction and virtual screening.
However, the majority of authors use SVR and variants for the prediction of ligand
affinities [Bock and Gough, 2002, Liu et al., 2006, Sugaya, 2014]. Balfer and Bajorath
[2015] studied inherent problems of SVR models, in particular to predict high affinities
and discontinuities in activity landscapes (activity cliffs). Maunz and Helma [2008] pre-
dicted toxic activities with local SVR models. Besides SVR also least squares regression
variants [Ding et al., 2013, Abbasi et al., 2017] and random forests [Abbasi et al., 2017,
Kundu et al., 2018] are applied frequently in ligand-based approaches, but were not able
to replace SVR for the prediction of affinities so far. Recently, various types of artificial
neural networks were applied successfully to affinity prediction [Jiménez et al., 2018,
Öztürk et al., 2018, Ferreira and Andricopulo, 2019, Tetko and Engkvist]. Artificial
neural networks and deep learning will prospectively gain more and more importance
for chemoinformatics in the near future. Frequently, variants of the mean squared error
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are applied as performance measure for the considered regression task [Bock and Gough,
2002, Liu et al., 2006, Maunz and Helma, 2008]. To a small extend, also alternative eval-
uation criteria like Pearson’s correlation coefficient [Sugaya, 2014] or R2-values [Balfer
and Bajorath, 2015] are investigated.

All of the methods mentioned so far utilise fingerprints for the representation of the
small molecular compounds (see Section 1.3.2). A big number of fingerprint descrip-
tors with structural and physico-chemical molecule features exist [Bender et al., 2009]
that can be applied for virtual screening and related tasks [Wassermann et al., 2009b,
Sugaya, 2013]. The choice of the optimal representation of molecular instances for the
respective learning problem is a central issue in virtual screening and strongly relates to
the research on fingerprint design [Heikamp and Bajorath, 2012], recombination [Nisius
and Bajorath, 2009, Nisius, 2010, Nisius and Bajorath, 2010], compression and feature
selection [Geppert et al., 2010]. Fingerprints can easily be included in kernel methods
which are able to detect non-linear dependencies in data. To this aim, a variety of kernel
functions (compare Section 2.5 and Table 2.1) have already been applied to molecular
instances in this field so far, for example, the linear, Tanimoto, Gaussian, and the poly-
nomial kernel [Liu et al., 2006, Wassermann et al., 2009a,b, Balfer and Bajorath, 2015].
Again, the application of the Tanimoto coefficient as a way to express similarities for
compound ranking approaches [Geppert et al., 2008, Heikamp, 2014] shows close connec-
tions between machine learning and similarity search. According to the kernel trick the
explicit knowledge of the corresponding feature representation is not an issue as long as
the calculation of kernel values for involved learning objects is possible. Fröhlich et al.
[2005] and Mahé and Vert [2009] exploited this property of kernel methods with their
alignment and structure kernel algorithms. Kernel functions were not only applied to
small molecular compounds as potential ligand candidates but also to proteins. The
target-ligand kernel appearing in Jacob et al. [2008], Jacob and Vert [2008], Vert and
Jacob [2008], Geppert et al. [2009], Wassermann et al. [2009a] is a product kernel for
proteins and small molecular compounds for which different kernel functions for proteins
are investigated.

A special case of ligand or affinity prediction in the context of virtual screening is orphan
screening. In contrast to the problems and solution methods above, orphan screening
denotes the search for novel ligands of proteins (and their respective affinities) for which
no labelled binding information is available at the time of prediction. The most promi-
nent approach in this scenario is the application of target-ligand kernels in combination
with SVMs [Jacob et al., 2008, Jacob and Vert, 2008, Geppert et al., 2009, Wassermann
et al., 2009a]. Here, labelled information of related targets are included in the learning
process via a product kernel for targets and ligands. Ning et al. [2009] also investigated
the usefulness of unlabelled compounds in a semi-supervised approach, as well as multi-
task learning and multi-ranking. Erhan et al. [2006] applied artificial neural networks
and collaborative filtering to orphan screening. Only little effort was done so far in
the research field of ligand affinity prediction in an orphan screening setting [Bock and
Gough, 2005].

1.3.6 Multiple Views in Chemoinformatics

Multi-view learning is not a completely new learning paradigm in chemoinformatics. For
this reason, we present existing approaches in this section. However, to the best of our

23



Introduction

knowledge it was not applied to virtual screening and in particular to affinity prediction
at all.

A transductive multi-view approach was applied to learn the kernel linear coefficients
corresponding to MKL (see Section 1.2.3) and the desired labels for protein function
prediction [Lanckriet et al., 2004c] and transmembrane protein identification [Lanckriet
et al., 2004a]. In this context, kernels based on protein sequence alignments, protein-
protein interactions, and gene expression measurements served as views. Tsuda et al.
[2005] solved a protein classification problem by learning a linear combination of protein
networks. The multiple protein networks put different protein properties into relation.
In a sense, they represent a sparse variant of Gram matrices. The algorithm is a multi-
view variant of graph-based learning and works more efficient than the MKL variant of
Lanckriet et al. [2004b] as, in contrast to the Gram matrix of kernel functions, networks
are in general sparse. Gaüzère et al. [2014] performed MKL using a kernel based on a
bag of small molecular subgraphs. The inhibitory potential of short interfering RNA
in a viral gene expression pathway is measured via its efficacy, which is similar to the
affinity of general molecular compounds. Qiu and Lane [2008] utilised an MKL regression
approach to predict this efficacy value. Vert and Kanehisa [2002] improved a gene
classification task based on microarray RNA expression data as one representation of
instances with further information on the respective genes. To this aim, they used
a graph of genes extracted from a chemical reaction database where two genes are
connected if they catalyse subsequent reactions in a biochemical pathway. They applied
kernel canonical correlation analysis to perform microarray feature extraction directed
from the gene representation in the reaction graph.

1.4 Thesis Outlook

In the present chapter we introduced topic and contribution of this thesis and positioned
it both within the research field of multi-view machine learning and the chemoinformatics
application of ligand affinity prediction. The second preliminary chapter is followed by
three main chapters dedicated to affinity prediction in different learning scenarios and
adequate machine learning approaches to solve them.

In Chapter 2 we give an overview of relevant concepts for the thesis from the research
field of machine learning. More precisely, here we deliver the foundation to investigate
and later apply multi-view kernel algorithms to learn a real-valued prediction function.
The section on notation where we emphasise the indexing with respect to different
views as well as labelled and unlabelled data, is followed by the presentation of how the
learning procedure theoretically occurs. We explain the different phases of learning and
how complexity measures from learning theory can be used to control the generalisation
performance of function classes and algorithms. We introduce techniques from convex
optimisation which will be the basis for the solution of the optimisation problems in
the main chapters. Furthermore, we define the central concept of a kernel function and
corresponding function spaces. We discuss important properties of kernels and illuminate
how kernels are related to feature representations of learning objects. Chapter 2 finishes
with kernelised single-view regression and dimensionality reduction techniques.

Chapter 3 addresses affinity prediction in a supervised scenario with multiple kernel
learning under particular consideration of the graph structure of learning objects. It is
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based on our publication Ligand Affinity Prediction with Multi-Pattern Kernels [Ullrich
et al., 2016b] at the Discovery Science conference in 2016. At first, we review basics
from graph theory and comment on how graph patterns and labels that cleverly condense
information on graphs were used to define existing kernel functions for graphs. We go a
step further and construct a kernel linear combination of popular graph kernels calcu-
lated for different depths of a high-level graph labelling procedure. This multi-pattern
kernel is canonically included in objectives from multiple-kernel learning that will be
presented here. In the subsequent empirical section we investigate the role of different
graph patterns for their respective predictive ability. We evaluate and discuss the use-
fulness of the multi-pattern kernel for supervised affinity prediction and an automatic
weighting of various kernel functions.

The subsequent main chapter focuses semi-supervised affinity prediction due to our work-
shop paper Ligand-Based Virtual Screening with Co-Regularised Support Vector Regres-
sion [Ullrich et al., 2016a] at the International Conference on Data Mining in 2016 and
our publication Co-Regularised Support Vector Regression [Ullrich et al., 2017] at the Eu-
ropean Conference on Machine Learning in 2017. Via the approach of co-regularisation
unlabelled data in addition to labelled data are used for the prediction of ligand affinities
to compensate for a small number of labelled examples. Co-regularisation allows for a
comparison of predictions for unlabelled objects utilising multiple data representations.
In Chapter 4 we propose a novel co-regularised kernel algorithm and variants of it. The
different versions either arise from modified risk functionals for labelled and unlabelled
instances that lead to a diminished number of variables, or from a fused kernel func-
tion which provides the co-regularised algorithm with a single-view character. Finally,
we empirically evaluate the novel algorithms by a comparison to existing co-regularised
approaches and other single- and multi-view approaches for the practical task of affinity
predictions.

We consider an unsupervised learning scenario for affinity prediction in Chapter 5 which
we firstly presented in our workshop paper Corresponding Projections for Orphan Screen-
ing [Giesselbach et al., 2018] at the Neural Information Processing Systems conference
in 2018. Here, projection-based approaches are applied to transfer information from
related learning tasks with training data to an unsupervised prediction problem. Ini-
tially, we review an important baseline from chemoinformatics using product kernels
for a prediction model. Afterwards we introduce two novel kernel algorithms to infer a
predictor for a protein without labelled training examples. The first of which directly
relates similarities in the space of tasks and hypotheses and the second applies a dimen-
sionality reduction technique to fuse task and hypothesis space. In contrast to the linear
combination and co-regularisation approach from Chapters 3 and 4, these algorithms
can be formulated and applied in a single- and multi-view version. Subsequently, we
practically evaluate the approaches for the unsupervised affinity prediction task.

Finally, in Chapter 6 we conclude the thesis with a summary of the achievements and
a list of future directions. The conclusion is followed by an appendix chapter where we
present long technical proofs, detailed information on the used datasets, and supporting
pseudocode formulations for a number of the applied algorithms. Closing this outlook
section and preceding to the main part of the thesis, we determine conventions with
respect to citation. We give references to definitions, lemmas, and theorems either
directly or in the immediate neighbourhood. For general concepts, like empirical risk
minimisation or positive semi-definiteness, we chose a reference with an appropriate
formulation and context. The content based on our publications [Ullrich et al., 2016b,a,
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2017] and [Giesselbach et al., 2018] is presented in an elaborate version. A detailed
description can be found in the main chapters below. The Lemmas 5.5, 5.7, 5.9, and
5.11 as well as Definitions 5.6, 5.8, 5.10, and 5.12 are novel.
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Chapter 2

Machine Learning Preliminaries

Machine learning is the process of drawing conclusions and making predictions from
known information contained in data. It is strongly related with data mining, the actual
data exploration and extraction process of unknown information. Data mining applies
techniques from machine learning. Machine learning, inversely, requires data mining
techniques and results. Both can be seen as a subdiscipline of knowledge discovery, a
general term for the amplification of knowledge by computer programs [Mitchell, 1997,
Hastie et al., 2001, MacKay, 2003, Flach, 2012]. As an important computer science
discipline, machine learning arised from the efforts and findings in connection with ar-
tificial intelligence that in its modern sense bases upon the fundamental work of Turing
[1950] and others in theoretical informatics. It has numerous practical applications and
utilises theory and methods from various mathematical fields, such as optimisation,
statistics and probability theory, functional analysis, and complexity theory. Navigation
systems, speech and object recognition, fraud detection, and search engines are only a
few example tasks for machine learning techniques. Since the end of the 20th century,
machine learning is flourishing and getting more and more important because of the
establishment of the world wide web and sophisticated electronic devices with computer
technology in basically every sector of life. The coherent appearance of huge amounts
of data and the increasing potential of computers in calculation and storage poses a big
chance and a big challenge to machine learning.

Machine learning can be categorised generally via different criteria which will be focused
in Section 2.2 below. Generally, the common aim of machine learning attempts is to
learn a predictor function (or model) f that maps objects from an instance space X into
a label space Y

f : X → Y, (2.1)

such that the error that can be expected for future predictions is minimal. The elements
of X are the learning objects, i.e., the instances we want to receive novel insights for by
the help of algorithms. The label space Y comprises the possible outcomes of the model
to be learned. In order to avoid trivial or bad results, machine learning approaches
are accompanied with a performance measure and an error functional that directs the
learning procedure by rewarding good outcomes and punishing bad ones.

This work focuses on the inductive task of learning a regression function for unseen
instances. However, aspects of transductive algorithms and transfer learning will play a
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role in Chapters 4 and 5 as well. These and other central notions of machine learning
will be explained in the two subsequent sections. In the case of regression, typically the
distance between true label and prediction value will be used to assess the quality of
a model function [Schölkopf and Smola, 2002]. How an appropriate machine learning
modelling can be performed via risk minimisation in theory and practice will be shown
in Section 2.3 on learning theory. In the present work, we obtain a predictor function
via kernel methods using multiple data representations (or views) on data. In Sections
2.4 and 2.5 we show how convex optimisation in combination with a special candidate
space for predictor functions induces the beneficial properties of kernel methods. These
kernel methods will be applied to solve the considered task of ligand affinity prediction.
At the end of this chapter in Sections 2.6 and 2.7 we will present standard regression
algorithms and dimensionality reduction methods. These constitute the basis for the
multi-view techniques in the three main chapters below.

2.1 Notation

We initiate the chapter on preliminaries with notational conventions that can be used as
a reference in the remainder of the thesis. Some of the mathematical concepts mentioned
here might not be completely clear at this point, but are either understood intuitively
or will be explained precisely in the sections and chapters below.

In the following, we will denote X , Y, and H instance space, label space, and hypothesis
or candidate space. Single objects will be denoted with x ∈ X or z ∈ X , depending
on whether they are instances with or without known label y ∈ Y. If X ⊆ Rd and
x1, . . . , xn ∈ X , by X we address a finite subset of X in form of a matrix

X =

 xT1
...
xTn

 =

 x11 . . . x1d
...

. . .
...

xn1 . . . xnd

 . (2.2)

The vector Y = (y1, . . . , yn)T contains the corresponding labels y1, . . . , yn. For regression
problems the label space are the real numbers Y = R. More precisely, in the affinity
prediction scenario the non-negative real numbers R+ are used as label space. With
respect to machine learning, the concept of a view on (or a representation of) data
is the central theme of the present thesis. One particular view will be indexed with
v. We will consider M different views. The feature map Φ : X → H symbolises the
representation of an abstract object x ∈ X in an appropriate feature space. Hence, for
a given view, Φv is the v-th feature map and Φv(X ) is the v-th view applied on data
instances. A predictor function f : X → Y assigns a label y ∈ Y to an object x ∈ X
that holds some interesting information about the object. Again, for a given view v
the function fv : Φv(X ) → Y is the v-th (single-)view predictor function. We point
out that fv can either be the result of the v-th single-view regression method (single-
view predictor) or one of the simultaneous outcomes f1, . . . , fM of a multi-view method
(view predictor). We will present multi-view optimisation problems below, where the
minimisation or maximisation should be performed with respect to multiple different
views simultaneously. For the sake of simplicity, we abbreviate

min
f1∈H1,...,fM∈HM

with min
fv∈Hv
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and, analogously,

max
α1,...,αM∈Rn

with max
αv∈Rn

in order to refer to the optimisation with respect to all v = 1, . . . ,M . Also for the
sake of simplicity, we abbreviate v ∈ {1, . . . ,M} and u, v ∈ {1, . . . ,M} with v ∈ [[M ]]
and (u, v) ∈ [[M ]]2, respectively. Frequently, variables below carry double or even triple
indices of the kind αv,i or γu,v,j , where typically u, v ∈ {1, . . . ,M} are view indices,
i ∈ {1, . . . , n} is the index over labelled examples, and j ∈ {1, . . . ,m} the index over
unlabelled instances. We will abbreviate this double or triple indices with αvi or γuvj .

A kernel function k : X × X → R is a generalised similarity measure for objects x ∈ X
[Vert et al., 2004] and can be related to a view via kv, analogous to a predictor functions
fv or a feature map Φv. The Gram matrix Kv of a kernel function kv consists of the
kernel values

Kv =
(
kv(xi, xj)

)
i,j∈1,...,n

for x1, . . . , xn ∈ X , or

Kv =
(
kv(xi, xj)

)
i,j∈1,...,n+m

for x1, . . . , xn+m ∈ X . It will be stated in the respective sections which definition of Kv

will be applied. In the latter case, we use a decomposition of Kv ∈ R(n+m)×(n+m) into
an upper Lv = (Kv)

n,n+m
i,j=1 and a lower Uv = (Kv)

n+m
i,j=n+1,1 submatrix.

2.2 The Concept of Learning and Tasks

In this section we introduce very general terms and categorisation attempts of machine
learning that are relevant for the present work. According to Mitchell [1997], (machine)
learning can be defined as follows.

Definition 2.1 (Learning). [Mitchell, 1997] A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P , if its
performance at tasks in T , as measured by P , improves with experience E.

An attempt to align this definition with the concept behind Equation 2.1 is that the
machine learning approach is the computer program written with the intention to learn.
For this purpose, the machine learning approach requires at least partial knowledge
about the instance space X and label space Y as well as the relation between both,
joined together as experience E. The output of a machine learning approach is the
model f which performs task T . The whole process is directed via the performance
measure P . In a regression approach the instance space X could be the set of connected
labelled graphs that represent molecules, the label space Y are affinity values from R, and
the model from an appropriate function space is evaluated via a performance measure
for regression. Let f : X → R be a regression function and (x1, y1), . . . , (xn, yn) ⊆ X ×R
be pairs of instances and corresponding real-valued labels. The root mean squared error
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(RMSE) of f with respect to the data sample is defined as

RMSE(f) =

√√√√ 1

n

n∑
i=1

(yi − f(xi))2.

The described scenario applies to the learning task of affinity prediction that we focus
on in the following main chapters. By the properties of E, T , and P we can divide
machine learning into different groups of algorithms. However, the decompositions will
often be incomplete or overlapping. For example, if we consider the learning task as the
distinguishing feature, commonly considered approaches are

• regression (real-valued output, e.g., affinity value),

• binary or multi-class classification (finitely many classes, e.g., the gender of a
person),

• structured output prediction (complex output object, e.g., an order of molecular
graphs),

• density estimation (parameters of a probability distribution, e.g., mean and stan-
dard deviation of data points),

• dimensionality reduction (lower-dimensional representation of data points, e.g., 2D
projection of high-dimensional data),

• clustering (decomposition of data in groups, e.g., symptom-based disease classes),

• association rule mining (relations between dataset variables, e.g., product sugges-
tion based upon a shopping basket), and

• reinforcement learning (sequence of actions, e.g., walk through a labyrinth).

As already mentioned above, the list above is not only an incomplete but also ambiguous.
For instance, density estimation could also be assumed a structured output prediction.
Another example are support vector machines (SVM) algorithms that can be designed
for (one- or multi-class) classification, regression, and structured output prediction.

Another categorisation that emphasises the generalisation performance of the learn-
ing task discriminates between inductive and transductive learning. For inductive ap-
proaches we learn a universal model f that can be applied to any object of the instance
space X , particularly to novel elements of X unknown at learning time. Whereas, in
the transductive learning scenario all training and testing instances as a subset of X are
known a priori [Schölkopf and Smola, 2002]. The availability and quality of training data
can also be lifted as grouping criterion with respect to experience. During the learning
phase of a model we call data instances x ∈ X with known label y ∈ Y labelled data,
whereas instances x without label are named unlabelled data. Generally, we distinguish
between supervised and unsupervised learning approaches. For supervised learning la-
belled data must be available, however, this is not necessary for unsupervised learning.
If some training molecules with binding affinity are known, the regression example from
above is a typical supervised learning task. The notion of unsupervised learning in this
thesis often appears in connection with so-called transfer learning [Pan and Yang, 2010].
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Transfer learning can best be explained in terms of task and experience as well. It con-
sists in the knowledge transfer drawn from solving a task T by experience E to a related
task T ′ with experience E′. As it is the case in the considered unsupervised learning
scenario of affinity prediction in the present thesis, the experience E′ for the related task
does not necessarily include the availability of labelled training data. A special case of
the supervised learning scenario is denoted with semi-supervised learning. In addition
to labelled data, here we expect to be aware of unlabelled data instances, for example,
molecules without known affinity value. Although semi-supervised learning is actually a
part of supervised learning we will treat supervised learning, semi-supervised learning,
and unsupervised learning independently and dedicate each scenario one of the following
chapters.

2.3 Learning Theory

Being aware of general ideas of machine learning, we now have to work out in more
detail how a model with desirable generalisation properties can be derived. According
to Shalev-Shwartz and Ben-David [2014], a successful learner needs to be able to gen-
eralise from examples to unseen instances and to have prior knowledge on the scenario
(inductive bias). To this aim, we will treat aspects of both statistical learning theory
[Vapnik, 1999] and computational learning theory. They deal with the general problem
of “Given a task T , experience E, and a performance measure P , how can we derive a
good model?” and address questions of the kind “Having T , E, and P , how difficult is it
to derive a good model?” With our explanations we will focus on the case of supervised
and semi-supervised regression as performed in Chapters 3 and 4. In some respects, the
unsupervised regression problem from Chapter 5 is transformed into a supervised learn-
ing task as well. The presented choice of loss functions, risks, and complexity measures
is directed towards the regression task we intend to solve and the techniques we apply
for this purpose [Schölkopf and Smola, 2002].

2.3.1 Empirical Risk Minimisation

To the aim of solving a machine learning task and finding an optimal prediction model,
a loss function is typically applied to measure the appropriateness of a single model.
We will use the name loss for both the function itself and the loss function’s output.

Definition 2.2 (Loss function). [Schölkopf and Smola, 2002] Let Y be a label space.
The non-negative function ` : Y × Y → R+ is called a loss function if

`(y, y) = 0

for all y ∈ Y.

In particular, given a data example (x, y) ∈ X × Y and a model f : X → Y. Then
the loss function `(y, f(x)) will output zero if the observation y agrees with the model
prediction f(x). Assume, there is another model f ′ : X → Y. If the two predictions f(x)
and f ′(x) are equal, the loss `(f(x), f ′(x)) would output zero as well. For a regression
task T a good model f will be characterised by a preferably small distance between the
prediction value f(x) and the true label y ∈ R of instance x ∈ X . The loss ` should
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return a small value in case the prediction was good, and a low value in the opposite case.
Therefore, the respective loss function for regression will take the distance |y−f(x)| into
account. A convex loss function is a convex function ` with input |y − f(x)|, i.e., which
is convex in the distance between y and f(x). If necessary, we assume the considered
loss functions in the present thesis to have this convexity property. In the following,
we present the two distance-based loss functions [Steinwart and Christmann, 2008] for
regression that will accompany us through the whole thesis.

Definition 2.3 (ε-insensitive and squared loss). [Steinwart and Christmann, 2008] Let
ε > 0 be a constant and y1, y2 ∈ Y. The ε-insensitive loss is defined as

`ε(y1, y2) = max{0, |y1 − y2| − ε}. (2.3)

The function
`2(y1, y2) = |y1 − y2|2 (2.4)

is known as squared loss.

We postulate ε to be greater than zero in order to distinguish it from the absolute loss `abs

below, although ε = 0 would be possible in the definition of `ε as well. The squared loss
function `2 is also commonly known as least squares loss. Because of its relation to the
`2-norm we use the symbol `2, which should not be confused with the space of sequences
`2. The latter continuously penalises gaps between the two inputs y1 and y2, whereas
for the ε-insensitive loss intervals between y1 and y2 smaller than ε do not cause a loss
value greater than zero. The different loss functions influence on the final properties of
the respective learning algorithms. Absolute distance `abs(y1, y2) = |y1−y2| and squared
ε-insensitive loss `2ε(y1, y2) = max{|y1 − y2| − ε, 0}2 are other related examples of loss
functions for regression.

Having defined a loss function that evaluates predictions for single instances, one would
like to assess the overall quality of a prediction model. Assume data examples (x, y) ∈
X × Y are generated via the joint distribution D = P(x, y). One would be interested in
the minimisation of the risk functional (or expected risk) [Vapnik, 1999, Schölkopf and
Smola, 2002]

R(f) = ED(`(y, f(x)) =

∫
X×Y

`(y, f(x)) dP(x, y), (2.5)

which collects and weighs the loss of all possible data tuples. However, as the underly-
ing probability distribution P is unknown, the expected risk can be estimated via the
empirical risk

Remp(f) = Ê(`(y, f(x)) =
1

n

n∑
i=1

`(yi, f(xi)) (2.6)

and training examples (x1, y1), . . . , (xn, yn) drawn from distribution D. In order to find
an appropriate or optimal predictor function f amongst a multitude of functions one
has to fix or restrict the set of potential candidates. We call the function space H
the hypothesis space or candidate space. The aim is to find the best function of the
hypothesis space with respect to the empirical risk, which leads us to the empirical risk
minimisation inductive principle.
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Definition 2.4 (ERM). [Schölkopf and Smola, 2002] Let H be a space of functions
mapping from X to Y with norm ‖ · ‖H and ` be a loss function. The optimisation

min
f∈H

Rreg(f) = min
f∈H

n∑
i=1

`(yi, f(xi)) (2.7)

is called empirical risk minimisation (ERM).

If the hypothesis space is rich and the data is noisy or does not carry sufficient in-
formation, the learning task might still be intractable or not solvable in a satisfactory
manner [Vapnik, 1999, Schölkopf and Smola, 2002, Shawe-Taylor and Cristianini, 2004].
In this context, overfitting denotes the overly adaption of a predictor function to the
observations, disregarding the true functional relationship between inputs and outputs.
These effects can for example be suppressed by a further limitation or restriction on the
functions of the candidate set, known as regularisation. A prominent example of regu-
larisation is the inclusion of the function norm into the considered objective to optimise.
The following definition is a specification of Definition 2.4.

Definition 2.5 (RRM). Let H be a candidate space as introduced above. Let, further-
more, g : R→ R be a strictly monotonically increasing function. The functional

Rreg(f) = g(‖f‖H) +
n∑
i=1

`(yi, f(xi)), (2.8)

is called regularised empirical risk and its minimisation with respect to f is called regu-
larised risk minimisation (RRM).

The regularised risk functional Rreg is the starting point for a variety of machine learning
algorithms, where loss function ` and regularising term g(‖f‖H) vary from approach to
approach. All machine learning algorithms considered in the main chapters below follow
the (regularised) ERM principle or a related approach. The details can be found in
Chapters 3, 4, and 5. In Definition 2.5 we omit the factor 1

n from the empirical risk
Remp because of the flexibility of the function g, for example, if g(·) = ν(·)2 for a trade-off
parameter ν > 0. We will use the term error synonymously for risk.

2.3.2 Rademacher Complexity

Although not known precisely, it is possible to control the empirical risk of a predictor
function, i.e., its qualification to generalise to arbitrary data instances [Shawe-Taylor
and Cristianini, 2004]. One would prefer a function class as candidate space such that
for every function the difference between training and true error is small (known as
uniform convergence).

Definition 2.6 (Empirical Rademacher complexity). [Bartlett and Mendelson, 2002]
Let x1, . . . , xn ∈ X be a random sample of instances drawn i.i.d. from distribution D
and H be a function class. With σ = (σ1, . . . , σn) we denote n independently identically
distributed Rademacher random variables. The empirical Rademacher complexity of H
is defined as

R̂n(H) = Eσ

[
sup
f∈H

∣∣∣∣∣ 2n
n∑
i=1

σif(xi)

∣∣∣∣∣
]
.
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The empirical Rademacher complexity is a measure of a function class to fit random
data. This property is also known as capacity of a function class. Another measure
of function class capacity (or complexity) that is independent of the data’s probability
distribution is the so-called Vapnik-Chervonenkis dimension. A big capacity of a function
class implies a big capacity to find patterns in random noise. For this reason, a small
empirical Rademacher complexity is desirable for the function class H. In Definition
2.6, the randomness should be represented by the Rademacher random variables σ. The
following theorem supports the ERM principle, as the difference between expected risk
and empirical risk can be controlled via the empirical Rademacher complexity.

Theorem 2.7. Let δ ∈ (0, 1). Assume H is a class of functions f : X → Y and ` a loss
function mapping into [0, 1] without loss of generality. For every f ∈ H

ED(`(y, f(x)) ≤ Ê(`(y, f(x)) + R̂n(H) + 3

√
ln(2/δ)

2n

holds true with probability greater or equal (1− δ).

The theorem was proven by Shawe-Taylor and Cristianini [2004]. Applying Theorem
2.7, a bound on the empirical Rademacher complexity finally gives us the opportunity
to compare different approaches with respect to their theoretical generalisation perfor-
mance. An example of a bound on the empirical Rademacher complexity depending on
the algorithm’s parameters and the data sample can be found in Section 4.3.5.

2.3.3 Phases of Learning

As we have seen above, the expected risk can be bounded via Rademacher complexity R̂n
and empirical risk Remp. In the present section, we address the issue of how the learning
process can be directed in practice such that the empirical risk of the learned model f
becomes minimal given the algorithm, the candidate space, the data, and the limitations
of optimisation. Indeed, the successful accomplishment of a machine learning task T
requires the two phases training and testing. During training the available information
or experience E is used to actually learn (or train) a model or predictor function, for
example via the ERM principle. We will refer to the available data during the training
phase as training data, regardless whether the data is labelled or unlabelled, or of a
completely other kind (such as similarity values between protein targets like in Chapter
5). An optimisation procedure of the algorithm’s parameters is also included in the
learning phase. It is necessary to pick the best assignment of parameter values for the
task at hand. In the testing phase the learned model has to be evaluated with respect to
its prediction performance using test data. In this connection, the performance measure
P is not always equal to the applied loss function. Via the loss function the predictor
function can be equipped with desirable properties such as the sparsity in the case of
ε-insensitive loss. However, with respect to the performance P one is interested in the
actual discrepancy between true and prediction value (least squares loss in the case of
regression). Usually, the entire available data is divided into training data and test data.
In the case of supervised or semi-supervised learning, the known labels are compared
with the predictions in order to calculate a performance measure.

In order to choose the best parameter assignment and to assess the quality of the learned
model as good as possible, i.e., to give a good estimate of its expected risk, we need to
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introduce some randomness in the data. It is principally fixed once drawn from some
unknown distribution. This randomness in the learning procedure can be achieved via
the so-called k-fold cross-validation (CV) technique. Here, the whole data is split into k
folds and every fold is used once as test data and the respective union of the remaining
k − 1 folds as training data. The final performance is then the average over the k
empirical error values. Assume we are at fold k0. For every combination of possible
parameters another k′-fold CV is executed including only the training data of fold k0.
The parameter combination with the lowest error value in average is then chosen for
the learning procedure in fold k0. In general, the best combination will vary from fold
to fold depending on the k0-th training data. If a parameter is real-valued, one should
fix a set of typical parameter values out of R or R+ and perform a grid search over the
chosen representatives. Apart from the standard k-fold CV procedure, also other CV
schemes are employed in special learning scenarios. For example, inverse CV uses only
one fold for training and the other k − 1 folds for testing (compare Brefeld et al. [2006]
and Section 4.4). In particular, if the number of folds k does not induce the desired
fraction of training and test data (e.g., 10 folds and 30% of training data) it is more
useful to randomly draw the training data for each fold instead of splitting the data into
folds.

2.4 Optimisation Theory

We will apply the RRM principle from above in Chapter 3 and Chapter 4, which means
that we minimise a functional including the empirical risk which is typically convex. The
related approach for the objective function in Chapter 5 also turns out to be convex.
Algorithms for kernel methods are generally often formulated in terms of convex opti-
misation problems as convex problems have a single global optimum [Lanckriet et al.,
2004b]. Therefore, the present section is an extract of the theory of convex optimisation
and provides the basics and efficient solution tools for this group of well-studied opti-
misation problems. Our explanations below mainly follow the book of Cristianini and
Shawe-Taylor [2000]. Details are also taken from the very comprehensive reference on
convex optimisation by Boyd and Vandenberghe [2004]. We begin with the notions of
convex and affine functions.

Definition 2.8 (Convex function). [Cristianini and Shawe-Taylor, 2000] A function
f : Rd → R is convex if for any x1, x2 ∈ Rd

f(τx1 + (1− τ)x2) ≤ τf(x1) + (1− τ)f(x2)

holds true for all τ ∈ (0, 1). In case of a strict inequality the function is called strictly
convex.

The convexity property of a function f of d variables is equivalent with its Hessian matrix
of second derivatives being positive semi-definite [Boyd and Vandenberghe, 2004].

Definition 2.9 (Affine function). [Cristianini and Shawe-Taylor, 2000] Let A ∈ Rk×d be
a real-valued matrix and b ∈ Rk be a vector. A function f : Rd → Rk with f(x) = Ax+b
is said to be affine.

We will consider minimisation problems with additional requirements concerning the
optimisation variables. In the constrained primal problem below, f is the objective
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function, gl(x) ≤ 0, l = 1, . . . , ng, are called the inequality constraints, and hl′(x) = 0,
l′ = 1, . . . , nh, the equality constraints. If x∗ is a solution of Equation 2.9 then f(x∗) is
called the optimal value of the problem.

Definition 2.10 (Convex optimisation problem). [Cristianini and Shawe-Taylor, 2000]
If the objective function f : X → R, the set X , and the inequality constraint functions
gl are convex and the equality constraint functions hl′ are affine, the minimisation

min
x∈Rd

f(x) (2.9)

s.t.

{
gl(x) ≤ 0
hl′(x) = 0

}
l∈[[ng ]], l′∈[[nh]]

.

is a convex optimisation problem.

A set X ⊆ Rd is said to be convex if θx+(1−θ)x′ is an element of X for all x, x′ ∈ X and
all θ ∈ (0, 1). We know that for unconstrained problems with differentiable objective
function f , the partial derivative set to zero

∂f(x∗)

∂x
= 0

is a necessary condition for x∗ being a minimum of f . It turns into a sufficient condition
if f is additionally convex [Cristianini and Shawe-Taylor, 2000]. The point x∗ is the
global minimum if f is strictly convex. If we aim at solving problems with equality and
inequality constraints we need to expand a bit further and study Lagrangian theory and
introduce the concept of duality. At first, we define an important auxiliary function.

Definition 2.11 (Lagrangian function). [Cristianini and Shawe-Taylor, 2000] Suppose
we have an optimisation problem with objective function f , inequality constraint func-
tions gl, l = 1, . . . , ng, and equality constraint functions hl′ , l

′ = 1, . . . , nh. We denote
L : Rd × Rng × Rnh → R with

L = L(x, α, β) = f(x) +

ng∑
l=1

αlgl(x) +

nh∑
l′=1

βl′hl′(x), (2.10)

the Lagrangian of the optimisation problem. The real numbers αl and βl′ are the
Lagrangian multipliers.

In this context, the pointwise infimum θ : Rng × Rnh → R given as

θ(α, β) = inf
x∈Rd

L(x, α, β)

is known as (Lagrange) dual function. For the sake of simplicity, we omit the variables
of the Lagrangian function L = L(x, α, β) in calculations below.

The optimal value f(x∗) of Equation 2.9 is bounded from below by the dual function
θ(α, β) if αl ≥ 0 for all l = 1, . . . , ng [Boyd and Vandenberghe, 2004]. The following
definition applying this lower bound will lead us to the central solution strategy of
dualisation for many relevant optimisation problems.
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Definition 2.12 (Dual problem). [Cristianini and Shawe-Taylor, 2000] Assume a (pri-
mal) problem as stated in Equation 2.9. The maximisation problem

max
α,β

θ(α, β)

s.t. {αl ≥ 0}l∈[[ng ]]

is called its (Lagrangian) dual problem. The difference between the optimal value of the
primal problem and the optimal value of the dual problem f(x∗) − θ(α∗, β∗) is called
the duality gap.

By the lower bound property of the dual function, the duality gap is always non-negative,
which is known as weak duality. If the duality gap vanishes we have the case of strong
duality. We will exploit later that for convex optimisation problems the strong duality
theorem holds true. The theorem can be found in Cristianini and Shawe-Taylor [2000].

Theorem 2.13 (Strong duality theorem). Suppose the equality and inequality constraint
functions of a convex optimisation problem are all affine. Then the duality gap is zero,
i.e., f(x∗) = θ(α∗, β∗).

Various settings that imply strong duality as well as the Karush-Kuhn-Tucker conditions
introduced below were discussed by Boyd and Vandenberghe [2004]. Consequently, op-
timisation problems that fulfill the preconditions from above can equivalently be solved
via their dual formulation. It turns out that this fact will be applicable for the majority
of machine learning algorithms considered below (compare, in particular, Chapter 3 and
4). The solution strategy for dual problems is a consequence of the theorem of Kuhn
and Tucker [Cristianini and Shawe-Taylor, 2000, Boyd and Vandenberghe, 2004].

Theorem 2.14. We consider a convex problem with affine equality and inequality con-
straint functions as in Equation 2.9. Necessary and sufficient conditions for a point x∗ ∈
Rd being optimal for the primal problem is the existence of a pair (α∗, β∗) ∈ Rng × Rnh

such that

∂L(x∗, α∗, β∗)

∂x
= 0, (2.11)

∂L(x∗, α∗, β∗)

∂β
= 0, (2.12)

α∗l gl(x
∗) = 0, (2.13)

gl(x
∗) ≤ 0, (2.14)

and αl ≥ 0, (2.15)

for l = 1, . . . , ng.

In the case of no inequality constraints, i.e., al = 0 for all l = 1, . . . , ng, the theorem
above equals the Lagrange theorem and reduces to Equations 2.11 and 2.12. It will be
applied, e.g., in Section 2.6.1. The conditions in Equations 2.11 to 2.15 are denoted
as Karush-Kuhn-Tucker conditions (KKT conditions). Equation 2.13 is also known as
KKT complementary condition. Its special role will be explained in Section 2.6.2.

Particular optimisation problems are difficult to solve in their initial (primal) formula-
tion. A constructive solution approach is the following. At first, the Lagrangian L is

37



Machine Learning Preliminaries

build according to Equation 2.10. Subsequently, from the derivatives of L with respect
to the problem variables and to the dual variables corresponding to equality constraints
(compare Equations 2.11 and 2.12) one derives a dual formulation, which can be solved
efficiently. The additionally added equality and inequality constraints from the applica-
tion of KKT conditions are necessary for the correct solution of the optimisation problem
and the ranges of the solution parameters (compare Section 2.6.2). We will apply the
techniques from convex optimisation in order to find appropriate predictor functions.
In order to distinguish predictor functions from objectives, we will denote the objec-
tive function in the following chapters with Q, the predictor function with f , and the
complexity class symbol with O.

2.5 Kernel Methods

In Section 2.3 on learning theory we have seen that a specification of the candidate space
for the predictor function gives the opportunity to have an influence on the generalisation
performance of a learning algorithm. To benefit from this result, in the present section
we describe a class of function spaces called reproducing kernel Hilbert spaces. Each of
these spaces is canonically related to a kernel function in a way that will be explained in
detail below. With kernel methods we denote learning algorithms that apply reproducing
kernel Hilbert spaces as candidate spaces.

In principle, kernel methods always comprise two steps [Shawe-Taylor and Cristianini,
2004].

1. A mapping of the considered objects is performed into an appropriate linear feature
space, and

2. the actual learning algorithm is a search for linear patterns in that feature space.

Because of the kernel trick, which will be introduced below, the explicit calculation of
the feature representation becomes unnecessary. For this reason, the first step is often
performed only indirectly by a reformulation of the algorithm’s objectives in terms of
kernel values. As the linear methods in feature space are often well-known approaches,
such as linear regression, the kernelised algorithms can be solved efficiently. As we will
see, the combination of linear methods with the benefits of kernel functions make kernel
methods powerful machine learning tools.

In the empirical sections below we will mostly utilise the linear kernel, which is the inner
product of instances in form of d-dimensional vectors. We present all algorithms in the
kernelised version to facilitate the applications of general kernel functions. The linear
kernel case is then a special case of the kernelised formulation.

Initially, the central concept of a Hilbert space from functional analysis is followed by
the definition of the kernel function.

Definition 2.15 (Hilbert space). [Werner, 1995] A mapping 〈·, ·〉 : X ×X → R is called
inner product, if it is linear in both arguments, symmetric and 〈x, x〉 ≥ 0 for all x ∈ X
and 〈x, x〉 = 0 if and only if x = 0. A Hilbert space H is a complete vector space
with norm ‖ · ‖H such that there is an inner product 〈·, ·〉H : H × H → R for which√
〈x, x〉H = ‖x‖H is valid.
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Definition 2.16 (Kernel function). [Steinwart and Christmann, 2008] Let X be a set
of instances. The function k : X × X → R is called a kernel, if there is a Hilbert space
H and a mapping Φ : X → H such that

k(x, x′) = 〈Φ(x),Φ(x′)〉H (2.16)

for all x, x′ ∈ H. The function Φ is called feature map and the space H in this context
is called feature space. The matrix

K =
(
k(xi, xj)

)n
i,j=1

(2.17)

is the Gram matrix of kernel k with respect to instances x1, . . . , xn ∈ X .

Actually, for a given kernel k there are infinitely many isometric isomorphic feature maps
Φ and Hilbert spaces H such that Equation 2.16 holds true [Minh et al., 2006]. In the
case of H = Rd, the name feature space is very intuitive as instances x ∈ X are mapped
to d feature values Φ(x). This leads us to the definition of a view as a central concept
of this thesis. It formalises the fact that a view on data is basically a particular feature
map of data instances.

Definition 2.17 (View). Let X be an arbitrary instance space and H a feature space.
The representation of an instance space by a feature map Φ(X )

Φ : X → H

is called a view on data. We will denote a set of M feature representations

Φ1 : X → H1, . . . ,ΦM : X → HM (2.18)

as multiple views of the instance space X . We refer to the respective view by its index
v ∈ {1, . . . ,M}.

In addition to the feature space representation, the property of positive semi-definiteness
will play an important role for kernel functions.

Definition 2.18 (Positive semi-definiteness). [Steinwart and Christmann, 2008] Let X
be an arbitrary instance space. A function k : X ×X → R is called positive semi-definite
if and only if

n∑
i,j=1

αiαjk(xi, xj) ≥ 0 (2.19)

for all n ∈ N, α1, . . . , αn ∈ R, and x1, . . . , xn ∈ X .

In the strict positive case the function is said to be positive definite. It turns out that the
characteristic of positive semi-definiteness and the property of a function to be a kernel
function are actually equivalent as a consequence of the following theorem [Steinwart
and Christmann, 2008].

Theorem 2.19. A function k : X × X → R is a kernel according to Definition 2.16 if
and only if it is symmetric and positive semi-definite.
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Table 2.1: Examples of kernel functions

Name Kernel Function (x, x′ ∈ Rd)

Linear kernel k(x, x′) = 〈x, x′〉

Tanimoto kernel k(x, x′) = 〈x,x′〉
〈x,x〉+〈x′,x′〉−〈x,x′〉

Polynomial kernel k(x, x′) = (〈x, x′〉+ c)d, c ≥ 0

Gaussian kernel k(x, x′) = exp (−‖x−x
′‖2

2σ2 ), σ > 0

As an interpretation of their definition, kernel functions can be regarded generalised
similarity measures [Lanckriet et al., 2004c, Vert et al., 2004] between two objects x
and x′ from an instance space X of interest. In contrast to mathematical measures, a
kernel function is in general not normalised. Regardless, we use the expression similarity
measure below in order to exemplify the concept of kernel functions. A number of
established kernel functions for vectors from Rd can be found in Table 2.1, where ‖ · ‖
and 〈·, ·〉 are the Euclidean norm and scalar product in Rd. Kernels for graphs objects
play an important role in chemoinformatics. An introduction to graph kernels and
related work can be found in Section 1.3.3 above and the introduction of Chapter 3
below. The kernel property is preserved under summation of two kernel functions and
multiplication of a kernel with a positive constant. Furthermore, the tensor product
of two kernel functions is a kernel function again [Steinwart and Christmann, 2008].
Analogous closure properties for Gram matrices are valid. From the definition it is
obvious that kernel functions and Gram matrices are strongly related to the concept of
covariance functions of random variables and covariance matrices (compare also Section
2.7). For more details on the stochastic interpretation of kernel functions and their origin
in the context of integral operators consult the literature on kernel theory [Aronszajn,
1950, Schölkopf and Smola, 2002, Shawe-Taylor and Cristianini, 2004, Minh et al., 2006].
The property of a function to be a kernel comes along with the positive semi-definiteness
of the corresponding kernel matrices. A symmetric matrix K ∈ Rn×n is said to be
positive semi-definite if and only if for all α ∈ Rn

αTKα ≥ 0 (2.20)

holds true. Hence, a function k is a kernel if all its Gram matrices are positive semi-
definite. There are optimisation problems below where the Hessian matrix is equal to the
Gram matrix of a kernel function. Consequently, this Hessian matrix is positive semi-
definite. The corresponding optimisation has a convex objective function according to
Definition 2.8 above. For the resulting convex optimisation problem we can apply the
solution techniques from Section 2.4.

As mentioned already above, every kernel function induces a function space. These kind
of functions spaces are chosen as candidate space in kernel methods.

Definition 2.20 (Reproducing kernel Hilbert space). [Steinwart and Christmann, 2008]
A function k : X × X → R is called the reproducing kernel of the reproducing kernel
Hilbert space (RKHS) Hk if and only if

1. k(x, ·) ∈ Hk for all x ∈ X , and

2. f(x) = 〈k(x, ·), f〉Hk
for all x ∈ X and all f ∈ Hk.

40



2.5 Kernel Methods

The second property is also known as reproducing property. Finally, it can be shown
that the property of a function to be a kernel and to be a reproducing kernel are indeed
equivalent [Steinwart and Christmann, 2008]. The RKHS Hk is a feature space of kernel
k, which can be seen via the canonical feature map

Φk(x) = k(x, ·) , x ∈ X ,

together with the reproducing property, as we may conclude

k(x, x′) = 〈k(x, ·), k(x′, ·)〉Hk
= 〈Φk(x),Φk(x

′)〉Hk

for all x, x′ ∈ X . In contrast to the feature maps and feature spaces, every reproducing
kernel has a uniquely defined RKHS and vice versa [Steinwart and Christmann, 2008].
The RKHS Hk of the reproducing kernel k is one of its corresponding infinitely many
feature spaces H according to the canonical feature map. For this reason, from now on
we will omit the index k in the RKHS as long as the corresponding kernel is obvious.
There is also a subset of reproducing kernels called Mercer kernels which will not be
discussed here in more detail.

The already mentioned kernel trick describes the fact that the calculation of a kernel
value can be substituted by an inner product in an appropriate linear feature space and
vice versa. For this reason, the kernel trick enables the application of principally arbi-
trary linear algorithms in feature space. Moreover, it is possible to avoid the calculation
of the potentially non-linear and infinite-dimensional feature map Φ if only the neces-
sary kernel values are known or can be calculated. Hence, alternative formulations of
algorithms can be generated by just exchanging the kernel function by an inner product
or another kernel function [Schölkopf and Smola, 2002].

As kernel functions correspond to feature representations in a canonical way, the multi-
view scenario from Definition 2.17 is equivalent with having a number of kernel functions

k1 : X × X → R, . . . , kM : X × X → R

available for instances from X . Again, we realise that handling multi-view problems
with kernel methods does not require the explicit knowledge of the respective feature
representation if one is able to calculate the kernel function.

The subsequent representer theorem supplies us with a convenient solution tool for
a class of optimisation problems in kernel methods [Schölkopf et al., 2001, Steinwart
and Christmann, 2008]. It guarantees a representation of solution functions as linear
combinations of the RKHS’s reproducing kernel. Consequently, the representer theorem
is the basis for the elegant solution techniques in the context of support vector machines
and related algorithms we will consider below.

Theorem 2.21 (Representer theorem). [Schölkopf et al., 2001] We consider an instance
space X and examples (x1, y1), . . . , (xn, yn) ∈ X × R. Let k : X × X → R be a kernel
function and H be the RKHS of kernel k with norm ‖ · ‖H and inner product 〈·, ·〉H.
Assume we intend to solve

min
f∈H

c (y1, f(x1), . . . , yn, f(xn)) + g (‖f‖H) (2.21)

for an arbitrary cost function c : (Y × X )n → R and strictly monotonically increasing
regularising function g : R+ → R. Then a solution f of Equation 2.21 has got a
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representation in form of

f(·) =

n∑
i=1

πik(xi, ·) (2.22)

for appropriate π1, . . . , πn ∈ R.

Schölkopf et al. [2001] used the term cost function in the sense of a loss function generali-
sation in order to express the loss sustained for the labelled examples (x1, y1), . . . , (xn, yn).
For the relation between cost and loss refer also to Steinwart and Christmann [2008].
Notice that the minimisation in Equation 2.21 is just an RRM according to Equation
2.8. The subsequent proof is a version of the proof by Schölkopf et al. [2001].

Proof. Let f ∈ H be the minimising function of the optimisation in Equation 2.21. We
consider the canonical feature map of kernel k with Φ(x) = k(x, ·) for x ∈ X and the
decomposition of H into

S = span {Φ(xi) : x1, . . . , xn are the training instances}

and its orthogonal complement S⊥. We may write f always as f = f0 + f1 such that
f0 ⊥ f1 and

f0(·) =
n∑
i=1

πiΦ(xi)(·) ∈ S

for π1, . . . , πn ∈ R and f1 ∈ S⊥. Because of the reproducing and orthogonality property
one concludes for the function values f1(xi) of the training instances xi, i = 1, . . . , n,
that

0 = 〈f0, f1〉H = 〈
n∑
i=1

πik(xi, ·), f1〉H =
n∑
i=1

πi〈k(xi, ·), f1〉H =
n∑
i=1

πif1(xi) (2.23)

holds true for every choice of coefficients π1, . . . , πn ∈ R. For this reason, f1(xi) = 0 holds
true for x1, . . . , xn ∈ X and, hence, the cost function c in Equation 2.21 is unaffected by
f1. Furthermore, as f can be decomposed into the two orthogonal functions f0 and f1,
the norm term in the objective function can be written as

g(‖f‖2H) = g(‖f0‖2H + ‖f1‖2H).

Again, a non-zero function f1 would only increase the norm in Equation 2.21, for which
reason we conclude the desired representation of f as an element of S.

We will present all algorithms in kernelised form, i.e., we use RKHSs of appropriate
kernel functions as candidate spaces. Therefore, we will omit the additional word kernel
in the algorithm’s names. For examples, we use support vector regression instead of
kernel support vector regression. Based on the representer theorem, we will formulate
kernelised objectives and obtain their solutions with respect to the view predictor func-
tions in terms of the kernel linear combination’s coefficients π from Equation 2.22. For
a Gram matrix K ∈ Rn×n of kernel k

Kπ = (f(x1), . . . , f(xn))T (2.24)
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holds true for instances x1, . . . , xn ∈ X .

The single-view regression methods introduced in the following section apply Theorem
2.21 for the derivation of their solution. The definition and solution of kernelised RLSR
and kernelised SVR build the basis for the multi-view methods in the subsequent chap-
ters. In order to solve multi-view optimisation problems in a kernelised scenario, we
aim at a representation of the view predictors as a kernel linear combination as well. In
the following chapters, we will consider different multi-view optimisation settings with
respect to the availability of labelled and unlabelled data and, hence, with respect to the
optimisation objectives. We will prove multi-view versions of the representer theorem
in Chapters 3 and 4 and argue for the application of Theorem 2.21 in Chapter 5.

2.6 Single-View Regression

Regression denotes the practical task of finding a real-valued function of one or more
input variables. To approximate binding affinities with a feature vector that represents
a molecular compound as input is one out of numerous applications for regression tech-
niques. Many single- and multi-view regression algorithms arise from the ERM principle
proposed in Section 2.3.1 or related approaches. However, the precise methods differ in
the applied regularisation and loss function. In this section we introduce two well-known
and effective single-view regression techniques. They form the basis for regression meth-
ods that apply multiple views on data which are in the focus of the subsequent main
chapters.

2.6.1 Regularised Least Squares Regression

Least squares regression approaches are prominent regression techniques. The first
single-view method we present utilises the `2-norm as loss function and the Hilbert
space norm of the predictor function as a regularisation term.

In the subsequent optimisation problem formulations, ν will be used as the trade-off pa-
rameter between regularisation term and various loss terms. As the proposed methods
originate from different research works, it is not used consistently. In Chapter 3 it is the
parameter associated with the labelled error, whereas in Chapter 4 we will use it as reg-
ularisation parameter associated with the norm term. It is necessary to adapt formulas
or parameter values for the comparison of practical experiments if the parameters in the
approaches are combined with different terms in the RRM formulation. For arithmetical
reasons, a factor of 1/2 is included occasionally as parameter joined with the `2-norm.
Furthermore, it is common to define the empirical risk with a factor of 1/n in order to
reduce the influence of the actual number of examples n. We avoided this factor and
compensated it by an appropriate range of selectable parameter values.

The definitions and lemmas in the following Sections 2.6.1 and 2.6.2 are modified and
adapted from the introduction of kernel ridge regression and ε-insensitive regression in
[Cristianini and Shawe-Taylor, 2000] and [Shawe-Taylor and Cristianini, 2004].

Definition 2.22 (Regularised least squares regression). Let H be an RKHS with kernel
function k. Assume we have training examples (x1, y1), . . . , (xn, yn) ∈ X × Y and a
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regularisation parameter ν > 0. The optimisation problem

min
f∈H

ν‖f‖2H +

n∑
i=1

|yi − f(xi)|2 (2.25)

is called regularised least squares regression (RLSR).

The linear case of RLSR is also known as ridge regression [Shawe-Taylor and Cristianini,
2004]. Because of the squared loss function this problem is already quadratic in the
parameterised form and we can derive a solution analytically.

Lemma 2.23. Let K be the Gram matrix of kernel k over the training examples and
Y = (y1, . . . , yn)T be the label vector. Let the parameter ν > 0 be chosen, such that
the inverse of the matrix K + νIn exists. Then the solution of kernel regularised least
squares regression is

π = (K + νIn)−1Y, (2.26)

where the predictor function equals f(x) =
∑n

i=1 πik(xi, x).

An appropriate choice of the parameter ν > 0 furthermore ensures the smallest eigen-
value of K + νIn to be large enough and, hence, a good condition of this matrix.

Proof. From the representer theorem we directly obtain a parameterised version of the
solution function according to Equation 2.24. The problem can then be rewritten as

min
π∈Rn

νπTKπ + ‖Y −Kπ‖2.

The derivative of the objective Q(π) with respect to π equals

∂Q
∂π

= 2νKπ − 2K(Y −Kπ)

and should be zero for optimality. Hence, we conclude π = (K+νIn)−1Y , which finishes
the proof.

2.6.2 Support Vector Regression

The second basic regression approach utilises the ε-insensitive loss function `ε from
Equation 2.3 in its primal formulation of the ERM principle. The desired predictor
function f should again be an element of an RKHS H with kernel k.

Definition 2.24 (Support vector regression). Let H be an RKHS and let ε > 0 and
ν > 0 be model parameters. Given training examples (x1, y1), . . . , (xn, yn) ∈ X ×Y, the
optimisation problem

min
f∈H

ν‖f‖2H +
n∑
i=1

max{0, |yi − f(xi)| − ε} (2.27)

is called support vector regression (SVR).
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The name support vector will be motivated below. Because of the absolute value in the
definition of the loss function we cannot apply the same technique we used for RLSR.
However, in its dual version SVR according to Equation 2.27 can be solved as a quadratic
program in the dual variables. To derive this dual version, we need to reformulate the
ε-insensitive loss. An equivalent reformulation can be achieved by the introduction of
so-called slack variables as done in the proof of the following lemma.

Lemma 2.25. Assume training instances x1, . . . , xn ∈ X and the corresponding vector
of labels Y . Let K be the Gram matrix over training instances of kernel k with RKHS
H and hyperparameter ν > 0. The problem

max
α,α̂∈Rn

− 1

4ν
(α− α̂)TK(α− α̂) + (α− α̂)TY − ε(α+ α̂)T1n, (2.28)

s. t. 0n ≤ α, α̂ ≤ 1n

is the SVR dual optimisation problem, where for x ∈ X the predictor can be written as
f(x) =

∑n
i=1 πik(xi, x), such that π = 1

2ν (α− α̂) ∈ Rn.

In the proof below we apply Theorem 2.21 and the techniques from Lagrangian duality
presented in Section 2.4. This procedure will be performed again in Chapter 4 for the
solution of multi-view regression approaches.

Proof. For the solution of Equation 2.27 we may directly apply the representation in
Equation 2.22 and deduce a representation of the solution function f(·) =

∑n
i=1 πik(xi, ·)

with coefficients π1, . . . , πn ∈ R, leading to a parameterised variant of SVR

min
π∈Rn

νπTKπ + 1Tn max{0n, |Y −Kπ| − ε1n},

where the max function acts component-wise

max{0n, |Y −Kπ| − ε1n} =

 max{0, |y1 − (Kπ)1| − ε}
...

max{0, |yn − (Kπ)n| − ε}

 ∈ Rn.

We reformulate the primal kernelised problem via the inclusion of slack variables ξ, ξ̂ ∈
Rn and obtain

min
π∈Rn, ξ,ξ̂≥0n

νπTKπ + (ξ + ξ̂)T1n (2.29)

s.t.


Y −Kπ ≤ ε1n + ξ

Kπ − Y ≤ ε1n + ξ̂

ξ, ξ̂ ≥ 0n

 .

By means of the Lagrangian multipliers α, α̂, β, β̂ ≥ 0n we can introduce the constraints
into the objective and formulate the Lagrangian L (see Equation 2.10)

L =νπTKπ + (ξ + ξ̂)T1n

+ αT (Y −Kπ − ε1n − ξ) + α̂T (Kπ − Y − ε1n − ξ̂)
− βT ξ − β̂T ξ̂.
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According to the KKT condition in Equation 2.11 the partial derivatives of L with
respect to primal and slack variables

∂L

∂ξ
= ν1n − β − α,

∂L

∂ξ̂
= ν1n − β̂ − α̂, and

∂L

∂π
= 2νKπ −K(α− α̂)

need to be zero which induce the inequality constraints on the dual variables 0n ≤ α, α̂ ≤
1n, the relation between primal and dual variables π = 1

2ν (α−α̂), and the dual objective
Q(α, α̂)

Q(α, α̂) = − 1
4ν (α− α̂)TK(α− α̂) + (α− α̂)TY − ε(α+ α̂)T1n, (2.30)

which finishes the proof.

It is also possible to use the square of the loss vector in the problem formulation of
Equation 2.27, which leads to a very similar optimisation problem [Shawe-Taylor and
Cristianini, 2004]. This is referred to as squared ε-insensitive loss regression. RLSR is a
special case of it for ε = 0.

Interestingly, the KKT complementary condition in Equation 2.13 is not used for the
derivation of the dual formulation in Equation 2.28. Nevertheless, it determines im-
portant characteristics of SVR and related algorithms which we will encounter, e.g.,
in Chapter 4. In particular, the KKT complementary condition can be consulted to
substantiate the expression support vector. Actually, it postulates that the product be-
tween inequality constraint and corresponding Lagrangian multiplier must be zero at
the solution. In the case of the SVR formulation in Equation 2.29 we obtain

αi(yi − (Kπ)i − ε− ξi) = αigi(π) = 0 (2.31)

α̂i((Kπ)i − yi − ε− ξ̂i) = α̂iĝi(π) = 0 (2.32)

βiξi = (1− αi)ξi = 0 (2.33)

β̂iξ̂i = (1− α̂i)ξ̂i = 0. (2.34)

The primal SVR formulation in Equation 2.29 also implies that ξi should be the smallest
non-negative value such that gi(π) ≤ 0 holds true. If yi − f(xi) < ε (prediction and
label have a distance strictly smaller than ε) it follows that gi(π) < 0 and, therefore,
the corresponding multiplier must be zero (αi = 0) in order to satisfy Equation 2.31.
In the case of yi − f(xi) = ε the complementary condition in Equation 2.31 is fulfilled
directly with gi(π) = 0, for which reason it is sufficient that ξi = 0 and αi ≤ 1 (as a
consequence of ∂L/∂ξ = 0 in the proof above). If the solution of the predictor function
in the original setting was assumed to be of the form

f(·) =

n∑
i=1

πik(xi, ·) + b

for b 6= 0 (other than the representation in Equation 2.22), an instance xi with αi < 1
would enable the calculation of a function bias b ∈ R via yi −

∑n
i=1 πik(xi, ·) + b −

ε = 0. If yi is farther than ε apart from the prediction f(xi) also gi(π) = 0 holds
true, but with ξi > 0. Consequently, αi = 1 is valid according to Equation 2.33.
Equivalent conclusions hold true for ξ̂i, ĝi, and α̂i. Figure 2.1 gives an overview of the
relations between inequality constraints (gi/ĝi), corresponding multipliers (αi/α̂i), and
slack variables (ξi/ξ̂i) in the respective areas around the predictor function hyperplane.
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2.7 Dimensionality Reduction

Figure 2.1: Active and inactive inequality constraints (g), multipliers (α), and slack
variables (ξ)

It shows the values taken by the ξ-, g-, and α-variables within the ε-margin, at the margin
border, and apart from the predictor hyperplane. By construction, also αiα̂i = 0 is valid,
for which reason either αi or α̂i is equal to zero. An inequality constraint is called active
if it is valid in form of an equality and inactive in case of a strict inequality. Therefore,
only training instances xi with corresponding active inequality constraints, i.e., that lie
at the ε-tube around the SVR predictor f or outside of it, have a non-zero multiplier αi
or α̂i, respectively. These instances play an important role for the SVR model.

Definition 2.26 (Support vector). [Schölkopf and Smola, 2002] We consider the rep-
resentation of the solution function as kernel linear combination f(·) =

∑n
i=1 πik(xi, ·)

from Equation 2.22. A training instance xi ∈ X is called support vector if its corre-
sponding linear coefficient πi is different from zero.

From πi = 1
2ν (αi − α̂i) we see that only instances with corresponding active inequality

constraints gi(π) or ĝi(π) are necessary to calculate the prediction values of f . The
margin size of ε determines the actual sparsity of the predictor, i.e., the number of
coefficients πi unequal to zero (compare also Section 4.3.4). This sparsity property is
characteristic for SVR and related algorithms [Chan et al., 2007] and leads to an efficient
model calculation and storage.

2.7 Dimensionality Reduction

In this section we will discuss machine learning tools to reduce the feature space di-
mension. Essential information with respect to objective criteria from typically high-
dimensional feature space representations should be kept during the reduction procedure
and unnecessary information discarded. Working with lower-dimensional feature spaces
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reduces memory requirements and computing time. Moreover, it is a reasonable demand
that the mapped objects maintain nearly the whole information compared to the objects
in the original feature space. Dimensionality reduction as an unsupervised data-driven
downscaling can be regarded a learning task itself or as a tool to solve another learn-
ing task as it is the case, for example, in Chapter 5. There are approaches which take
multiple views on data into account to calculate an appropriate reduction model, e.g.,
canonical correlation analysis (CCA). However, the following two methods only consider
one single feature space.

2.7.1 Johnson-Lindenstrauss Random Projection

Firstly, we present a random projection technique for dimensionality reduction based on
the work of Dasgupta and Gupta [2003]. We consider an arbitrary but fixed data matrix
Φ(X) ∈ Rn×D, such that Φ(x1)T , . . . ,Φ(xn)T are the rows according to Equation 2.2 and
Φ : X → RD is the feature map for instances from X . The Johnson-Lindenstrauss (JL)
[Dasgupta and Gupta, 2003] lemma states that for a well-defined projection mapping
f : RD → Rd, d ≤ D, the distance between instances from X remain approximately the
same in the image space compared to the distance in the initial feature space. More
formally, for two instances x, x′ ∈ X

(1− ε)‖Φ(x)− Φ(x′)‖2 ≤ ‖f(Φ(x))− f(Φ(x′))‖2 ≤ (1 + ε)‖Φ(x)− Φ(x′)‖2 (2.35)

holds true, where 0 < ε < 1 is a small error bound. For more details on the preconditions
of the mapping f and the proof of the JL lemma we refer to Dasgupta and Gupta [2003].

As it will be applied in the empirical section of Chapter 5, we present an example for
a precise projection f that fulfills the requirements of the JL lemma. We consider the
data matrix Φ(X) ∈ Rn×D which we intend to map to a lower dimension d. Indeed, the
mapping

f(Φ(x)) =
1√
d
P TΦ(x), (2.36)

such that P ∈ RD×d and Φ(x) ∈ RD consists of Bernoulli random variables with a
probability of success of p = 0.5 is a valid JL projection [Baraniuk et al., 2008] if
d ∈ O((lnn)ε−2) holds true.

2.7.2 Principal Component Analysis

For the introduction of the second unsupervised approach we explicitly consider the
feature map Φ : X → RD, where D is the dimension of the initial feature space for
instances. The cumulative variance contained in the feature space components can be
used as indicator of the information content or to monitor the information loss in the
case of dimensionality reduction. Therefore, the idea of principal component analysis
(PCA) [Schölkopf et al., 1997] is to learn an orthogonal transformation of the feature
space such that the resulting projection of data keeps as much intrinsic variance as
possible in decreasing order of the resulting components [Schölkopf and Smola, 2002].
This demand can be formulated as an eigenvector problem which we will introduce
briefly in the following.
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We assume the data representations to be centered, i.e., the mean of every feature space
component is supposed to be zero. Let Φ(X) ∈ Rn×D be the data matrix in the initial
feature space corresponding to instances x1, . . . , xn ∈ X

Φ(X) =

 ΦT (x1)
...

ΦT (xn)

 ,

where Φ(x) ∈ RD for all x ∈ X . Now we aim at a projection matrix P ∈ RD×d such
that the projected data

Φ(X)P ∈ Rn×d

exhibits the desired properties of maximal variance within a smaller number d ≤ D of
projection image components. It turns out that the columns p of P are actually the
eigenvectors of the empirical covariance matrix

C =
1

n
ΦT (X)Φ(X) ∈ RD×D

according to the eigenvector-eigenvalue equation Cp = λp, where λ is an eigenvalue.
This eigenvector problem can be solved as an ERM problem according to Equation 2.7.
For the precise formulation and more details consult Schölkopf et al. [1997] and Schölkopf
and Smola [2002].

With regard to the kernelised PCA formulation, let k : X ×X → R be a kernel function
with canonical feature map Φ(x) = k(x, ·) as well as k(x, x′) = 〈Φ(x),Φ(x′)〉 for all
x, x′ ∈ X . If p is an eigenvector solution of the PCA optimisation, as a consequence of
Theorem 2.21 there are coefficients π1, . . . , πn ∈ R such that p has a representation in
form of p = ΦT (X)π. Consequently, we obtain a kernelised formulation via

Φ(X)P = Φ(X)ΦT (X)Π = KΠ, (2.37)

where K = Φ(X)ΦT (X) ∈ Rn×n is the Gram matrix and Π ∈ Rn×d a projection of K.
If the inverse K−1 exists we conclude

λp = Cp

λ(ΦT (X)π) = C(ΦT (X)π)

λΦ(X)(ΦT (X)π) = Φ(X)C(ΦT (X)π)

λΦ(X)ΦT (X)π = 1
nΦ(X)ΦT (X)Φ(X)ΦT (X)π

λKπ = 1
nK

2π

nλπ = Kπ.

Hence, the kernelised PCA algorithm is a modified eigenvector problem and its result Π is
a projection of the kernel matrix K. Let (γ, π̃) be a pair of eigenvalue and corresponding
eigenvector of K. The scaled eigenvectors π = π̃/

√
γ build the columns of Π in Equation

2.37. The scaling of the eigenvectors π̃ arises from the requirement of an orthonormal
basis in P from above, where 1 = pT p is necessary. The final number of columns
d ≤ min{n,D} must be chosen depending on the practical purpose and the data itself.
The PCA approach for dimensionality reduction can be applied with arbitrary kernel
functions as the feature vectors are only required in form of inner products. For more
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details on the derivation of PCA and its properties we refer to Schölkopf et al. [1997,
1998], Schölkopf and Smola [2002] and Shawe-Taylor and Cristianini [2004].

An equivalent formulation of the PCA eigenvector-eigenvalue problem will be used in
Chapter 5. Let M ∈ Rd×d be an arbitrary symmetric matrix. Hence, M has got a
so-called eigenvalue decomposition [Werner, 1995] in form of

M = UDUT , (2.38)

where U ∈ Rd×d is a unitary matrix with columns equal to the eigenvectors of M . This
decomposition into U and D is denoted with diagonalisation. The factor D ∈ Rd×d is a
diagonal matrix such that the eigenvalues of M are the corresponding diagonal elements.
Equation 2.38 is equivalent with UTMU = D. Regarding the reformulation of the PCA
optimisation we exploit the fact that the value of

max
U∈Rd×d′

tr(UTMU) (2.39)

s.t. UTU = Id′

is reached if the columns of U are the eigenvectors corresponding to the d′ largest
eigenvalues of M [Werner, 1995]. Hence, the maximal value is the sum of the d′ largest
eigenvalues.
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Chapter 3

Multiple Kernel Learning

We introduced ligand affinity prediction as an important problem from chemoinfor-
matics in detail in Section 1.3.4 of the introductory chapter. In order to support the
expensive identification of ligand affinities in practice and to plan experiments efficiently,
machine learning methods can be used to predict affinity values via computational al-
gorithms in the context of similarity-based virtual screening. SVR utilising a molecular
fingerprint is the state-of-the-art method and was already tested successfully [Liu et al.,
2006, Sugaya, 2014, Balfer and Bajorath, 2015]. This supervised approach for regression
employs labelled instances in vectorial format in order to train an inductive model for
future instances. Many publicly available or commercial fingerprint descriptors for small
molecules exist. These fingerprints list (or count) diverse physico-chemical properties of
the respective molecule, structural properties of their molecular graphs in 2D, or even 3D
information [Bender et al., 2009]. The variety of data descriptions here is both a blessing
and a curse. On the one hand, there are many different data representations available,
which were originally designed towards different purposes. On the other hand, the va-
riety of representations implies the need for a choice of the optimal one for the affinity
prediction task. In the first instance, it is not obvious which molecular representation is
optimal for a considered prediction task from chemoinformatics [Fröhlich et al., 2005]. A
branch of chemoinformatics research considers fingerprint reduction and recombination
techniques to design an optimal fingerprint and select the most informative features for
prediction [Willett, 2006, Nisius and Bajorath, 2010, Heikamp and Bajorath, 2012].

In contrast to the described approaches, in the present chapter we investigate strategies
to deal with the variety of descriptors by including multiple representations simultane-
ously. To this aim, a group of multi-view learning approaches named multiple kernel
learning (MKL) trains a linear combination of predictor functions such that each func-
tion is related to a particular representation of data using labelled training data (see
Section 1.2.3). Although multiple views are not completely new to chemoinformatics
(compare Section 1.3.6), the application of supervised MKL approaches in combination
with a systematic choice of graph patterns is novel in the field of ligand affinity pre-
diction. These MKL approaches will be the first group of multi-view learning methods
which we investigate in this thesis. Beyond our focused task of affinity prediction, the
proposed approaches below are generally applicable for learning tasks with

• instances that can be interpreted as graphs,
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• multiple data representations with appropriate similarity measure (kernel func-
tions),

• a real-valued label, and

• sufficient labelled examples.

The following real-world applications display examples which illustrate the described
learning scenario.

Example 3.1. (Drug discovery) The interaction of chemical substances with each
other, such as the binding of a small molecule to a protein, needs to be tested practically
in a time- and cost-consuming process. However, the efforts made in this research field
are justified by the fact that many drugs act as protein ligands. Documented laboratory
results meanwhile led to the formation of huge molecule databases with ligands and their
respective protein affinity. Various kinds of molecular fingerprint descriptors have been
developed (see Section 1.3.4) and can be used to represent small molecules differently.
This information can be used to learn binding models of proteins in supervised algorithms.

Example 3.2. (Temperature forecast) The development of climate has now been
recorded for decades in great detail and nearly on a worldwide basis. In view of a dra-
matical increase of the temperature on earth its forecast is no longer only important for
the weather of the following days. The temperature at a certain location in the world
is recorded together with a variety of characteristic information, such as physical infor-
mation (air pressure, humidity, cloudiness, wind strength and direction), geographical
information (soil conditions, temperature zone, and vegetation), local information (GPS
position, height, hillside situation), different wavelength sensors from satellite data, and
neighbourhood information. Using multi-view learning the temperature can be forecasted
taking various information sources on climate and environment into account.

Example 3.3. (Condition monitoring and predictive maintenance) In assem-
bly and production a number of input parameters describe the process conditions. Ad-
ditionally, accompanying equipment like microphones or acceleration sensors record the
progress of the production process and the quality of the involved tools and products. To
the aim of a maximal product quality and resource efficiency the prediction of present
and future tool condition parameters is an important application of supervised multi-view
algorithms.

Apart from the algorithmic aspect of this chapter, we additionally address the topic of
view generation and analysis for graph data, such as small molecules. Actually, both
structural and neighbourhood information are crucial for the capacity of small molecules
to be a ligand and for the strength of the binding [Ralaivola et al., 2005, Gaüzère
et al., 2014]. For example, the presence of a benzene ring or that of an alcoholic group
and their relative positions influence the chemical properties of the compound at hand.
None of the existing fingerprints that collect structural information, however, captures
both all circular and tree patterns of the molecular graph independent of size and the
adjacency and connectivity information of atoms within the graph structure. To the
aim of an optimised graph representation for the practical task at hand we propose to
investigate and systematically combine graph kernels that incorporate relevant patterns
for structural and neighbourhood information. To be more precise, we consider the
feature set of the cyclic pattern kernel (CPK) [Horváth et al., 2004, Horváth, 2005], the
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feature set of shortest path (SP) kernels [Borgwardt and Kriegel, 2005], and Weisfeiler-
Lehman (WL) labels [Shervashidze et al., 2010]. The WL algorithm assigns (new) labels
to each vertex in the graph that depend on the surrounding vertices up to a certain
distance h. CPK decomposes a graph into the set of contained cycles (C) and remaining
tree components (T ) formed by edges that do not belong to cycles. Shortest path features
(P) collect the shortest paths from one vertex to another. Finally, we also consider the
labels of the atoms (L) themselves as features. In order to supply structural patterns
with additional neighbourhood information we determine cycles, trees, shortest paths,
and labels based on the WL labelled graph of depth h, resulting in 4 · h feature sets,
each in a binary or counting feature representation [Ralaivola et al., 2005]. However, it is
neither clear which of them to keep in the application scenario of affinity prediction, nor
obvious how important the components are for the success of prediction. We propose and
evaluate a systematic view generation and analysis process to obtain an optimised choice
and weighting of the mentioned feature sets applying a multi-pattern kernel (MPK)
[Ullrich et al., 2016b]. Being a kernel linear combination, the MPK can directly be
included in an MKL algorithm. [Fröhlich et al., 2005] We employ two formulations and
corresponding solutions of MKL, learning kernel ridge regression (LKRR) by Cortes
et al. [2009] (which we will denote `2-MKL) and another ε-insensitive loss MKL variant
of Vishwanathan et al. [2010] (ε-MKL). Both algorithms optimise a linear combination
of kernel functions corresponding to the provided data representations or views. The
linear combination of functions is included in a regularised empirical risk functional with
squared loss function (`2-MKL) or ε-insensitive loss (ε-MKL). The resulting multi-view
SVR and multi-view RLSR algorithms and MPKs are applied to find the graph feature
combination that achieves the best prediction results. In the case of the linear kernel this
is equivalent with utilising a novel fingerprint representation with differently weighted
pattern components, such that the weighting highlights the importance of the pattern
group for the affinity prediction task.

The present chapter is based on our publication [Ullrich et al., 2016b]. It is structured
as follows. At first we deliver all necessary tools from the theory of graph kernels in
Section 3.1. After we discussed how an aromatic edge label can be determined au-
tomatically from the molecule’s structure formula, we consider some properties of set
kernels. Subsequently, we introduce three important representatives of graph or set ker-
nels, accompanied with the pattern classes cycles, trees, shortest paths, and WL labels
in Sections 3.1.3, 3.1.4, and 3.1.5. The pattern classes will then be used in the following
definition of multi-pattern kernels for molecular learning instances in Section 3.2. In the
third section, we present solutions for an SVR and an RLSR multiple kernel learning
variant. Finally, in the empirical Section 3.4.1 we analyse multiple kernel learning with
MPKs for affinity prediction. We show that in comparison with single-view baselines and
standard molecular fingerprints we can indeed take profit from the proposed multi-view
approach for our considered practical task.

3.1 Graph Kernels

The concept of graph kernels was introduced in Section 1.3.3 above. Similar to molecular
fingerprints, there is a variety of graph kernels [Gärtner, 2003]. We consider graph kernels
which are based on different feature representations of structural patterns for molecules.
The following definition is modified from [Horváth et al., 2004].
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Figure 3.1: Glucose molecule in 3D representation and as a graph

Definition 3.1 (Graph). Let Σ be a set of labels which can be ordered linearly. The
tuple G = (V,E) together with the labelling function λG : V ∪E → Σ is called a labelled
undirected graph if V is a finite set of vertices and E ⊆ V 2 are the edges. The labelling
function λG assigns a label to every edge and vertex.

The edges E as a subset of V 2 in undirected graphs are assumed to be sets of the
form {v1, v2} such that v1, v2 ∈ V . In the graph scenario, we will denote the instance
space G (instead of X ) in order to emphasise that the learning objects are graphs. A
function k : G × G → R is called a graph kernel if it is a kernel function and the
instance space G is a set of graphs. The presented kernels below are examples of graph
kernels and their calculation is based on the determination of structurally interesting
subgraphs, also called graph patterns. In the ligand affinity prediction scenario kernels
for graphs are of particular interest, because molecules can be considered as undirected
labelled graphs (compare also Section 1.3.4). Their atoms and covalent bonds serve as
nodes and vertices, respectively, whereas atom and bond types are the labels. This is
illustrated for the glucose molecule in Figure 3.1 [Ullrich et al., 2016b]. Before we start
with the introduction of graph kernels and graph patterns, we illustrate how we tackled
the challenge of identifying and labelling the special bond type of an aromatic bond.
Furthermore, we briefly consider the concept of set kernels and their relation to pattern
feature vectors of graph kernels.

3.1.1 The Aromatic Bond

Potential ligands are small organic molecules that typically carry single and double
bonds (labels 1 and 2 ). Very rarely also triple bonds occur (label 3 ), for example
in the class of alkynes [Nelson and Cox, 2001]. There is a fourth type of bonds that
plays an important role in our considered molecules and that widely influences their
binding properties. Therefore, this bond type should be marked with an extra label
a. In fact, small (organic) molecules frequently exhibit aromatic ring systems. The
so-called π-electrons are outer atom shell electrons which are not involved in a bond to
another atom. An aromatic ring is a ring of atoms in which the π-electrons of the atoms
are delocalised, i.e., the π-electrons are no longer assignable to one fixed atom orbital
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but to a group of orbitals. In this case all bonds in the ring are said to be aromatic.
As a consequence of this, the ring has a planar structure (in contrast for example to
the jagged glucose ring), is more stable, and supplies the corresponding substances
with novel characteristics. Typically, the aromatic molecule parts are represented as
conjugate (alternating) single and double bonds in structural formulas of molecules. In
Figure 3.2 three equivalent representations of the molecule anthracene with different
arrangements of single and double bonds are shown. Because of these differences and
the simplification tendencies in order to omit redundant information it is not always
trivial to detect aromatic bonds in molecular graph representations such as the SDF
(compare Section 1.3.4). A very helpful tool is Hückel’s rule that classifies a molecular
ring to be aromatic if the sum of its π-electrons is 4n+ 2 for some n ∈ N ∪ {0} [Nelson
and Cox, 2001]. For the above mentioned reasons this rule is not always applicable in a
straightforward manner. To understand the following explanatory example one should
be aware that the vertices of rings in organic molecules are carbon atoms. Furthermore,
the double bonds are represented with two lines and have 2 π-electrons, whereas single
bonds are represented as single lines and have no π-electron. Anthracene consists of
three aromatic 6-rings in a row. Figure 3.2 shows that in each of the representations
of anthracene one of the three rings has 6 π-electrons and the respective others only 4
π-electrons. Via Hückel’s rule only one ring would be classified correctly as aromatic
and it depends on the considered representation which ring.

Figure 3.2: Hückel’s rule applied to the anthracene molecule

To overcome this problem, we introduce a Hückel’s rule heuristic in order to easily de-
tect aromatic rings ad hoc in molecular graph representations with high accuracy. It is
based on the fact, that aromatic structures can be detected by a successive application
of Hueckel’s rule (compare Figure 3.2). We formulated this practical procedure as pseu-
docode in Algorithm 1 that can be found in Appendix C. Aromatic ring systems usually
consist of molecular rings with 5 or 6 atoms (5- or 6-cycles) that are aromatic themselves.
Therefore, we systematically test each of the found simple cycles for their aromaticity.
The Hückel’s rule heuristic is accompanied with the following two conventions:
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• If a simple cycle is identified to be aromatic, all its edges immediately get the label
a for aromatic.

• If an edge once got label a, it keeps this label during all further loops of the
algorithm.

The most frequent case are cycles that fulfill Hückel’s rule for n = 1, i.e., have 6 π-
electrons. For 5-cycles with only one and 6-cycles with only two double bonds it is
helpful to keep in mind that this already enforces the planarity of the ring and therefore,
promotes the aromaticity. Two π-electrons can be contributed by a double or aromatic
bond (labels 2 or a) or by a free electron pair delivered from a nitrogen, oxygen, or
sulfur heteroatom, i.e., a vertex with label N, O, or S. In Figure 3.2 we see an example
of how the aromatic character of one ring induces the aromaticity of the other, resulting
in equivalent molecule representations and the repeat-until-loop in the algorithm below.
The reduced representations of structure formulas with single and double bonds in Figure
3.2 imply a carbon atom C at every vertex and a hydrogen atoms H at every spare valence
electron.

To the best of our knowledge, this algorithm classifies the majority of existing aro-
matic rings or ring systems correctly. Nevertheless, being a heuristic implementation of
Hückel’s rule, Algorithm 1 fails for very special structures. One prominent example is the
porphyrin ring system in hemoglobin or chlorophyll that has an aromatic 16-ring which
is only partially detected to be aromatic by Algorithm 1. Even more, there are aromatic
ring systems that do not satisfy Hückel’s rule at all, e.g., the polycyclic superphenalene.
However in this rare cases, the union of other labels and patterns already describes the
respective molecules well. And also in case of false positive aromatic rings, e.g., as in
the case of phenalene, the structure of the respective molecule is at least similar to an
aromatic one and therefore remarkable. Algorithm 1 can easily be modified and refined,
for instance by admitting other heteroatoms or expanding the search to other cycle sizes,
e.g., to the cyclopropenyl cation (fulfills Hückel’s rule with n = 0) or to the 16-cycle of
porphyrin mentioned above.

3.1.2 Pattern Feature Vectors

The definitions of graph kernels below are based on the assumption that molecular
graphs can be represented appropriately via a set of features. In a sense, these kernels
are actually set kernels and we start with a consideration of sets, multisets, and different
concepts of set intersections. For every set A of elements from an instance space X the
indicator function 1A with

1A(x) =

{
0 : x /∈ A
1 : x ∈ A

assigns the membership of x ∈ X to A. Multisets are a generalisation of sets where
elements may appear multiply in one set. The elements of a multiset A can be viewed
as tuples (x,mA(x)) of the actual object x and its multiplicity mA(x), which is the
frequency an object x appears in A [Singh et al., 2007]. The multiplicity function m(·)
should not be confused with the number of m of unlabelled instances in semi-supervised
learning (see Chapter 4). For a multiset A the indicator function is a multiplicity func-
tion with 1A(x) = mA(x) and describes the structure of the multiset A [Singh et al.,
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2007]. Operations between sets or multisets can be expressed in terms of indicator or
multiplicity functions as well. If A,B ⊆ X are sets, the indicator function of their
intersection is

1A∩B(x) = 1A(x) · 1B(x) = min{1A(x),1B(x)}, (3.1)

where the product and the minimum of set indicator function values are always equal.
In the case of two multisets A and B, the product and the minimum of the multiplicity
function values are in general different. Due to this, also different concepts of multiset
intersections A ∧B and A uB with

1A∧B(x) = min{1A(x),1B(x)} and 1AuB(x) = 1A(x) · 1B(x) (3.2)

can be considered, of which A ∧B describes the standard multiset intersection.

Let A be a class of graph patterns (for a precise definition see below). Without loss
of generality, the number d of patterns is finite. Then A(G) denotes the respective
subset (or sub-multiset) of patterns occurring in the labelled undirected graph G ∈ G.
We represent A(G) in form of a d-dimensional feature vector via a bijection between
dimension component of the feature vector i ∈ {1, . . . , d} and the ith graph pattern.
The binary feature vector

(ΦA(G))i =

{
1 : pattern i occurs in G
0 : pattern i does not occur in G

(3.3)

and the counting feature vector

(ΦA(G))i = multiplicity of pattern i in G. (3.4)

correspond to A(G) as a set or multiset, respectively. It will be stated explicitly which
one is meant in the following applications. Based on the introduction of set and multiset
intersections as well as binary and counting feature vectors, we define three graph kernels.
The following definition and lemma are modified from [Ralaivola et al., 2005].

Definition 3.2 (Intersection, multiset intersection, and counting kernel). Let G,G′ ∈ G
be labelled undirected graphs. Let A be a class of patterns.
(i) If A(G) and A(G′) are sets

k∩,A(G,G′) = 〈ΦA(G),ΦA(G′)〉 (3.5)

is called an intersection kernel.
(ii) In the case of multisets A(G) and A(G′)

k∧,A(G,G′) = min{ΦA(G),ΦA(G′)} and (3.6)

ku,A(G,G′) =〈ΦA(G),ΦA(G′)〉 (3.7)

denote a multiset intersection kernel and a bag-of-words or counting kernel, where the
minimum in (3.6) is defined component-wise.

The normalised variants with respect to the set union of k∩,A and k∧,A are also known
as Tanimoto kernel (compare Table 2.1) and MinMax kernel [Ralaivola et al., 2005].

Lemma 3.3. All kernels in Equations (3.5) to (3.7) and their normalised variants from
above are well-defined.
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Proof. To start with, all kernels in Equations (3.5) to (3.7) are symmetric by definition.
If the dimension d of the feature vector is finite, the intersection kernel k∩,A and the
counting kernel ku,A are positive semi-definite and symmetric because of the properties
of the inner product in Rd. For the proof of the positive semi-definiteness of k∩ we
refer to the reasoning of Horváth et al. [2004]. The proof for ku is very similar, but
uses the multiplicity function instead of the indicator function. For α1, . . . , αn ∈ R and
pattern feature multisets A1, . . . ,An of arbitrary labelled undirected graphs G1, . . . , Gn

we obtain

n∑
i,j=1

αiαjku,A(Gi, Gj) =

n∑
i,j=1

αiαj
∑

x∈XA(i,j)

1Ai(x)1Aj (x) (3.8)

=
∑

x∈XA(i,j)

(
n∑
i=1

αi1Ai(x)

)2

≥ 0,

where XA(i, j) = {x ∈ X : 1Ai(x) > 0 and 1Aj (x) > 0}, which shows the desired
property. The scenario for the multiset intersection kernel k∧ is different as it cannot
be represented as a product of indicator or multiplicity functions. However, in order to
proof the positive semi-definiteness of k∧, we apply Theorem 21.11. [Klenke, 2006] and
use that min{s, t}, is the covariance function of a centered Gaussian process B named
Brownian motion, which means that

EB(s)B(t) = Cov(B(s), B(t)) = min{s, t} (3.9)

holds true for s, t ≥ 0. Hence, we conclude with Equations 3.2, 3.6, and 3.9 that

n∑
i,j=1

αiαjk∧,A(Gi, Gj) =
n∑

i,j=1

αiαj
∑

x∈XA(i,j)

min{1Ai(x),1Aj (x)}

=

n∑
i,j=1

αiαj
∑

x∈XA(i.j)

EBx(i)Bx(j)

= E
∑

x∈XA(i,j)

(
n∑
i=1

αiBx(i)

)2

≥ 0.

which proves the positive semi-definiteness of the multiset intersection kernel. For more
information regarding stochastic processes we refer to Klenke [2006]. The normalised
variants of the intersection, multiset intersection, and counting kernel are valid kernels
as well, which is proven in Proposition 6 of Ralaivola et al. [2005].

3.1.3 The Cyclic Pattern Kernel

Now we are well-prepared to introduce the cyclic pattern kernel of Horváth et al. [2004].
Its construction requires further fundamental definitions of graph substructures in the
following.

Definition 3.4 (Walk, path). [Horváth et al., 2004] Let G = (V,E) with the labelling
function λG be a labelled undirected graph. A walk w is a k-sequence of edges

w = e1, e2 . . . , ek = {v0, v1}, {v1, v2}, . . . , {vk−1, vk},
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such that e1, . . . , ek ∈ E. This walk is a simple path if all v0, . . . , vk are pairwise distinct.

On the basis of walks and paths we introduce connected graphs as well as cycles and
trees which will play an important role as graph patterns in the following.

Definition 3.5 (Cycle, tree). [Horváth et al., 2004] A walk is a simple cycle if all
v0, . . . , vk are pairwise distinct, except from v0 = vk. If for every pair of vertices there is
a connecting simple path, the graph G is said to be connected. A cycle-free connected
graph is called a tree.

Two simple cycles are assumed to be isomorphic if their edge sequences are cyclic per-
mutations of each other.

Definition 3.6 (Biconnected component). [Horváth et al., 2004] Let G = (V,E) be
a connected graph. A vertex ṽ is an articulation vertex of G if its elimination, i.e.,
Ṽ = V \ {ṽ} and correspondingly reduced set of edges Ẽ, results in a graph G̃ = (Ṽ , Ẽ)
that is not connected. A biconnected component of G is a maximal subgraph of G whose
vertex set contains no articulation vertex.

Clearly, a biconnected component is either a subgraph in which every pair of nodes is
connected via at least two different paths or it is an edge e ∈ E. Hence, biconnected
components induce an edge-disjoint (and simple cycle-disjoint) decomposition of the
connected graph G. An edge e either belongs to a biconnected component with more
than one edge or the edge forms a biconnected component itself. In the first case, for
every two edges e1 and e2 of the biconnected component, there is a simple cycle w1,2

in G that contains e1 and e2. In the second case, the biconnected component does not
contain a simple cycle and is called a bridge. In order to well-define the cyclic and tree
patterns of a connected undirected graph, we need a canonical representation function r,
i.e., a unique notation for both simple cycles and trees build from bridges that otherwise
might be enumerated with different names. For a simple cycle C we consider all cyclic
permutations (positive and negative orientation) of its labelled sequence of vertices and
edges. We fix the canonical representation r(C) to be the lexicographically smallest
cyclic permutation (compare Figure 3.3). In the present scenario of trees T build from
bridges, the representation r(T ) is more complex because the tree is free, i.e., has no
vertex marked as root (compare Figure 3.4). Basically, its canonical representation is the
rooted labelled tree T with lexicographically smallest systematic name string [Horváth
et al., 2004]. Illustrating examples for the canonical representation of cycles and trees
can be found in Figures 3.3 and 3.4.

Definition 3.7 (Cyclic patterns). [Horváth et al., 2004] Let r be the canonical repre-
sentation function from above. The set of all simple cycles of an undirected labelled
graph G is denoted by S(G). Accordingly, the set

C(G) = {r(C) : C ∈ S(G)}

are the cyclic patterns of a graph G.

Two graphs G and G′ are said to be isomorphic if there is a bijection ϕ : V → V ′ such
that {v, w} ∈ E implies {ϕ(v), ϕ(w)} ∈ E′, as well as λ(v) = λ′(ϕ(v)) and λ({v, w}) =
λ′({ϕ(v), ϕ(w)}). The canonical representation r of cycles is defined such that two
isomorphic cycles C1, C2 ∈ C(G) always get the same unique identifier, i.e., r(C1) =
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Figure 3.3: Canonical representation of a simple cycle

r(C2). Hence, if there are two isomorphic cycles in S(G), their canonical representation
will be the same and there is only one representative pattern in C(G) [Ullrich et al.,
2016b]. It might be of interest to know how often an isomorphic pattern appears in a
graph. In this case, we can also define the cyclic patterns as multiset

C(G) = {(r(C),m(r(C))) : C ∈ S(G)},

Figure 3.4: Canonical representation of a free tree
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where m(r(C)) is the actual multiplicity of pattern r(C) in G.

Definition 3.8 (Tree patterns). [Horváth, 2005] With B(G) we call the set of all bridges
of G. The tree patterns of G are defined by

T (G) = {r(T ) : T is a connected component of G with edges from B(G)}.

The subgraph of G build from the edges in B(G) will be called forest (of trees).

Analogous to the cyclic patterns, the tree patterns can also be assumed a multiset

T (G) = {(r(T ),m(r(T ))) : T is a connected subgraph of G with edges from B(G)}.

Having defined cyclic and tree patterns we introduce the first important graph kernel
for our further considerations.

Definition 3.9 (Cyclic pattern kernel). [Horváth et al., 2004] Assume G and G′ are
two undirected labelled graphs. The cyclic pattern kernel (CPK) is defined as

kCP (G,G′) = |C(G) ∩ C(G′)|+ |T (G) ∩ T (G′)|. (3.10)

As an intersection kernel kCP is well-defined according to Lemma 3.3 above. The feature
space of cyclic and tree patterns is theoretically infinitely large. Nevertheless, for our
practical purposes regarding molecular fingerprints in Section 3.4, suppose we have a
database of graphs G with finite cyclic and tree pattern sets C(G) as well as T (G), where
C(G) and T (G) are the canonical generalisations of C(G) and T (G), respectively. The
following lemma is modified from [Horváth et al., 2004] and a direct consequence of the
previous definitions.

Lemma 3.10. Let G be a database of connected undirected labelled graphs with cyclic and
tree patterns C(G) and T (G) of cardinalities dC and dT . Let G ∈ G be a labelled undirected
graph. We consider the enumeration c1, . . . , cdC and t1, . . . , tdT of the elements of C(G)
and T (G). The vectors ΦC(G) and ΦT (G) denote the dC- and dT -dimensional binary
or counting pattern feature vectors of G with respect to cycles and trees according to
Equation 3.3. Having finite feature vectors, the CPK in Equation 3.10 can be expressed
equivalently as linear kernel

kCP (G,G′) = 〈ΦC(G),ΦC(G
′)〉dC + 〈ΦT (G),ΦT (G′)〉dT

for G,G′ ∈ G.

Horváth et al. [2004] showed that enumerating k elements from C(G) of a graph G with
n vertices is NP-hard. That means it belongs to the class of problems that can be
solved with a non-deterministic Turing machine in polynomial time and the solution
of other NP-problems can be reduced to the solution of the NP-hard problem [Turing,
1950]. Based on a result of Read and Tarjan [1975] on the computation of simple cycles,
Horváth et al. [2004] proved that for a database G with at most nmax vertices and mmax

edges, as well as

|S(G)| ≤ k for all G ∈ G (3.11)

the calculation of C(G) and T (G) has time complexity O(|G|((k+2)nmax+2mmax)). The
so-called bounded cyclicity from Equation 3.11 makes many practical problems feasible
in terms of computation.
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3.1.4 Shortest Path Kernel

Given a labelled undirected graph G = (V,E), we enhance the expressiveness of tree
patterns T (G) and cyclic patterns C(G) by computing shortest paths between pairs of
vertices [Ullrich et al., 2016b]. Because of the complexity of the general case, we only
consider shortest paths within the forest of trees of the graph G, which means only
between vertices that build the bridges B(G). To this aim we have to modify the graph
structure with respect to the biconnected components. The vertices contained in cycles
are

Vcycles = {v : v is a vertex of a simple cycle in S(G)}.

We define a contracted version G = (V ,E) of graph G by construction (compare also
Algorithm 2 in Appendix C). Initially, the vertex set is V = V \Vcycles. Now we consider
the decomposition of S(G) into biconnected components according to Definition 3.6. Let
B ∈ S(G) be a biconnected component. As a (contracted) representative of B we add
a new vertex vB with a so far unused label lbc to V . We go on as described for every
biconnected component in G. Consequently, the edge set of G is basically equal to the
original set of bridges E = B(G). Though, the link vertices of bridges with biconnected
components from the original graph G are now contained in a vertex vB for a biconnected
component B and carry the label lbc, which should be kept in mind regarding Equation
3.12 below.

Definition 3.11 (Contracted graph). [Ullrich et al., 2016b] We refer to the notation
and construction of V and E from above. If G = (V,E) with labelling function λG is a
labelled undirected graph, the graph G = (V ,E) is called the corresponding contracted
graph. For the labelling λG of the contracted graph G

λG(v) =

{
lbc : v = vB for biconnected component B

λG(v) : else

as well as

λG({v, w}) = λG({v, w}) (3.12)

holds true.

Because of Definition 3.6 the contracted graph is well-defined if the molecular compounds
are planar and no two biconnected components are linked by an articulation vertex.
Furthermore, the contracted graph is a labelled, undirected, and connected graph.

A shortest path between two nodes v and v′ of a connected graph G is the one with the
shortest length, i.e., edge number along the path. Shortest paths can be used to define
graph kernels as well. The subsequent two definitions are modified from [Borgwardt and
Kriegel, 2005].

Definition 3.12 (Shortest paths). Let G = (V,E) be a labelled undirected graph. We
call

SP(G) = {P : P is a shortest path between vertices v and v′ of G}

the shortest paths of G.
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Definition 3.13 (shortest path kernel). Let SP(G1) and SP(G2) be the shortest paths
of G1 and G2, respectively. We denote

kSP (G1, G2) =
∑

P1∈SP(G1)

∑
P2∈SP(G2)

kpath(P1, P2) (3.13)

shortest path kernel, where kpath is an appropriate kernel for paths.

A path kernel kpath can be defined, e.g., as a product of a kernel for vertices and one for
edges [Schölkopf and Smola, 2002]. Between two nodes v and v′ of a general connected
graph G there might be different shortest paths connecting these vertices. However,
as we only consider shortest paths between vertices in Vforest within the contracted
graph, there is always only one unique shortest path. The transition from shortest
paths to the corresponding patterns again requires a canonical representation which
takes into account the order of vertex and edge labels. As paths are special trees, the
canonical representation function r from above can be used here as well. It is simply the
lexicographically shortest labelled edge sequence in one direction and reverse (compare
Figure 3.4). In contrast to simple cycles and general trees, shortest paths have only
two potential start vertices which simplifies their naming. The following definition is a
variant of the one used in [Horváth et al., 2004].

Definition 3.14 (Shortest path patterns). Let G be a labelled undirected graph with
contracted graph G and r the canonical representation function from Section 3.1.3 above.
We call

P(G) = {r(P ) : P ∈ SP(G)}

the shortest path patterns.

Analogous to cyclic and tree patterns, the shortest path patterns can be assumed a set
P(G) or a multiset

P(G) = {(r(P ),m(r(P ))) : P ∈ SP(G)},

where not only the existence but also the cardinalities of the found patterns are registered
in the multiplicity function m.

We only consider shortest paths between vertices of found trees linked with a contraction
vertex representing the former biconnected component of cycles. However, the determi-
nation of shortest paths G requires the initial decomposition of a graph G into bicon-
nected components and bridges. The contracted graph G is again a tree and between
every two vertices in a tree there is only one path, the shortest path. The Floyd-Warshall
algorithm of Floyd [1962] for the determination of shortest paths has complexity O(n3)
where n is the number of vertices. As all vertices of a biconnected component B are
reduced to a single vertex vB this will be much faster in G than in the original graph G.

3.1.5 Weisfeiler-Lehman Graph Kernel

Another important type of graph kernels from the literature are the so-called Weisfeiler-
Lehman (WL) graph kernels [Shervashidze et al., 2010]. They are defined for labelled
graphs, where only the vertices carry labels. However, the involved Weisfeiler-Lehman
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labelling can still be applied to labelled undirected graphs with edge labels according to
Definition 3.1 by ignoring the edge labels. The WL labelling originates from the WL
test of graph isomorphism [Shervashidze et al., 2010] and requires a recursively defined
labelling function. It consists in a successive label expansion with label information
from adjacent vertices. Suppose, we have an undirected graph G = (V,E) with vertex
and edge labels from an alphabet Σ according to the original labelling function λG. We
explain the WL labelling function λhG : V ∪ E → Σ step-wise. The initial WL labelling
(step h = 0) fulfills

λG
∣∣
V

= λ0
G

∣∣
V

and λG
∣∣
E

= λ0
G

∣∣
E
. (3.14)

As the WL labelling should not affect the edge labels, the equality

λG
∣∣
E

= λhG
∣∣
E

(3.15)

is also valid for h > 0. The WL labels of vertices in step h + 1 are defined recursively.
For a vertex v′ ∈ V we consider its label λhG(v′) and the multiset of labels of its adjacent
vertices

Av′ =
{

(l,m(l)) : l = λhG(w) and {v′, w} ∈ E
}
.

This multiset of adjacent labels should be sorted and appended to the leading label
λhG(v′) respecting their multiplicities. For example, if the label of vertex v′ was N
and the multiset of labels was {(C, 3), (O, 2), (N, 1), (S, 1)}, then the result would be
NCCCNOOS, which is a word over the alphabet Σ. A renaming function r : Σ∗ → Σ
should assign an unused letter from Σ to the concatenated string from the set of words
Σ∗. Finally, for the WL label of v in step h+ 1

λh+1
G (v) = r

{
concatenate

(
λhG(v) , sort (Av)

)}
(3.16)

holds true. The calculation in Equation 3.16 requires a sorting algorithm and a renaming
function r for the concatenated label strings. Using additional symbols like commas and
parantheses, it would be possible to omit the renaming function r. In favor of their
information gain, WL labels could then become large depending on step size h and the
precise structure of graph G. A short example of a WL labelling procedure can be
found in Figure 3.5, which also shows a proof of graph non-isomorphism for the involved
graphs. The emerging labels essentially cover all possible walks of length h coming from
the respective vertex, i.e., the neighbourhood information of a vertex up to a maximal
depth. Therefore, we will denote the step size h also by depth of the WL labelling
procedure. The following two definitions are leaned to the work of Shervashidze et al.
[2010].

Definition 3.15 (WL labelling). The function λhG, h = 0, 1, 2, . . . defined via Equations
3.14, 3.15, and 3.16 is called Weisfeiler-Lehman labelling function. Let G = (V,E) with
labelling function λG be a labelled undirected graph. We denote Gh = (V,E) with
labelling function λhG the graph G’s Weisfeiler-Lehman labelling (WL labelling) of depth
h.

We will synonymously call Gh WL labelled graph (of depth h). The kernel defined in
the definition below directly applies WL labelled graphs.

Definition 3.16 (Weisfeiler-Lehman kernel). Let G1 and G2 be labelled and undirected
graphs with corresponding sequences G1

0, G
1
1, G

1
2, . . . and G2

0, G
2
1, G

2
2, . . . of WL labellings.
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3.1 Graph Kernels

Figure 3.5: Example of a WL labelling of depth h = 1 for two molecular graphs

Having an arbitrary kernel function k : G × G → R for labelled undirected graphs, a
Weisfeiler-Lehman kernel (WLK) up to maximal depth H is defined as

kHWL(G1, G2) =
H∑
h=0

k(G1
h, G

2
h). (3.17)

The fourth group of graph patterns we consider will be the vertex labels generated
in different depths of the WL labelling procedure. It is reasonable to assume that
an information about presence or absence of atom types and their adjacency relations
included in WL labels gives important information about the binding capacity for a
potential ligand. The subsequent definition is an expansion of Definitions 3.7, 3.8, and
3.14 above for cyclic, tree, and shortest path patterns.

Definition 3.17 (Label patterns). [Ullrich et al., 2016b] Let Gh be the WL labelling of
depth h ∈ N of the labelled undirected graph G = (V,E). The set

L(Gh) = {λhG(v) : v ∈ V }

is called label patterns of Gh.

If we are interested in the number of equal labels that appear in a certain labelled graph,
we consider the multiset of labels

L(Gh) = {(l,m(l)) : l = λhG(v) and v ∈ V }

analogous to cyclic, tree, and shortest path patterns. We do not need a canonical
representation r or renaming function r for the definition of L(Gh) as every label is
assumed to be a (renamed) canonical representation by definition. We omit edge labels
in Definition 3.17 as basically all small organic molecules contained in affinity datasets

65



Multiple Kernel Learning

exhibit single, double, and aromatic bonds and, hence, the vast majority of molecules
would carry the same edge labels. Together with the label patterns L(Gh), we will also
consider the sets or multisets C(Gh), T (Gh),P(Gh) of cyclic, tree, and shortest path
patterns of a WL labelled graph Gh in the following section.

3.2 The Multi-Pattern Kernel

The concept behind the kernel class proposed below is to combine WL labelling with
different graph patterns. As a consequence, the WL labels of depth h will, on the one
hand, be the basis for the canonical representation of patterns and, on the other hand,
they will be interpreted as additional pattern class. We will utilise the symbols C, T , L,
and P both as index and identifier for the respective graph pattern classes.

Definition 3.18 (Pattern kernel). [Ullrich et al., 2016b] Let V ∈ {C, T ,P,L} be a graph
pattern class, k an appropriate set kernel, and G,G′ be two labelled undirected graphs.
The cumulative pattern kernel of depth H is defined via

kH,cumV (G,G′) =
H∑
h=0

k(V(Gh),V(G′h)), (3.18)

where either the set or the multiset V(·) for the respective pattern class can be inserted.
We call

kHV (G,G′) = k(V(GH),V(G′H)) (3.19)

the non-cumulative pattern kernel of depth H.

The kernel k in Definition 3.18 is defined on pairs of graph sets. It would be possible to
assume k to be a graph kernel in the sense of

k(V(·),V(·)) : G × G → R

as well, analogous to the introduction of CPK in Definition 3.9 above.

There are a couple of links between different graph kernels and their generation concepts
which we list in the following. Firstly, the cumulative pattern kernel in Equation 3.18
can be considered a generalisation of the WLK in Equation 3.17 [Shervashidze et al.,
2010]. Secondly, it can also be understood as an extension of the CPK in Equation
3.10 [Horváth et al., 2004] or the SPK in Equation 3.13 [Borgwardt and Kriegel, 2005].
Furthermore, the non-cumulative variant in Equation 3.19 is a generalisation of the non-
negatively weighted WLK [Shervashidze et al., 2010]. Finally, the development of the
ECFPd-fingerprints (compare Section 1.3.2) is very similar to the cumulative pattern
kernel kH,cumL of depth H using label patterns. The diameter index d is twice as big as
the depth parameter H. Further differences arise, e.g., from the hashing scheme of the
respective labelling function [Rogers and Hahn, 2010].

We further enhance the diversity of the graph pattern-based molecular kernels by the
following definition.

Definition 3.19 (Multi-pattern kernel). [Ullrich et al., 2016b] Let kθVV , V ∈ {C, T ,P,L},
be a pattern kernel according to Definition 3.18, where θV = (H(V), im(V), ic(V)) is a
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multi-index of the pattern-dependent depth H(V), the binary index for pattern sets or
multisets im(V), and the binary index for the cumulative or non-cumulative variant ic(V).
Let bC , bT , bP , bL ≥ 0 be non-negative weight coefficients. For two labelled undirected
graphs G and G′ the multi-pattern kernel (MPK) is defined as

kMP (G,G′) =
∑

V∈{C,T ,P,L}

bV · kθVV (G,G′). (3.20)

On the basis of this very flexible MPK, we point to the suggestion of Mack [2014]
to utilise binary coefficients bV . But other than Mack [2014], we consider real-valued
coefficients bV in order to include pattern kernels in the magnitude of their importance.
As the MPK in Equation 3.20 is a kernel linear combination, MKL approaches can
be employed to determine appropriate coefficients for the learning task at hand. The
index V together with a precise specification of the actual kernel will be summarised to
the view index v. The index v is used in the context of multi-view approaches in the
subsequent description of MKL algorithms as well as in Chapters 2, 4, and 5.

3.3 Regression with Kernel Linear Combinations

As already stated above, our intention is to solve a regression task by exploiting the
diversity of MPKs. To this aim, we apply multiple kernel learning (MKL) [Gönen
and Alpaydin, 2011] as a subfield of multi-view learning (see Section 1.2). The MKL
approaches we consider have in common the search for a predictor function that relates
to a linear combination of kernels k1, . . . , kM

kb =
M∑
v=1

bvkv, (3.21)

where b1, . . . , bM ≥ 0. Because of the closure properties of kernels from Section 2.5, kb is
a kernel function again. Furthermore, MPKs from Definition 3.19 above are such kernel
linear combinations with bv = bV . Therefore, the pairing of MKL with MPKs allows for
an optimal assignment of the coefficients bV , V ∈ {C, T ,P,L}, in Equation 3.20 and will
be denoted with MPK-MKL. In this context, binary coefficients bC , . . . , bL, as used by
Mack [2014], would rather correspond to a choice than a weighting of pattern kernels for
the regression task. The case of real-valued coefficients bV allows for a better adjustment
of the linear combination parameters of the respective pattern class V towards the precise
learning task.

We already introduced the kernelised versions of RLSR (see Section 2.6.1) and SVR (see
Section 2.6.2) as single-view approaches that operate in an implicit feature space. Now
we consider two multi-view algorithms below which can be interpreted as RLSR and
SVR utilising a kernel linear combination in order to solve the optimisation problem at
hand. The following lemma substantiates the application of the representer theorem in
the considered regularised risk functionals below.

Lemma 3.20. Let k1, . . . , kM be kernel functions and (x1, y1), . . . , (xn, yn) ∈ X × Y be
labelled training examples. With Hb we denote the RKHS with reproducing kernel kb =∑M

v=1 bvkv, b1, . . . , bM ≥ 0, from Equation 3.21. For a loss function `, an appropriate
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convex regularisation term Ψ(b), and hyperparameters ν > 0 and Λ > 0, the solution of

min
f∈Hb,b≥0M

‖f‖2Hb
+ ν

n∑
i=1

`(yi, f(xi)) + ΛΨ(b) (3.22)

has a representation in form of

f(x) =

n∑
i=1

πi

M∑
v=1

bvkv(xi, x), (3.23)

which represents a kernel linear combination of kb.

Proof. The optimisation problem in Equation 3.22 can be reformulated as

min
b≥0M

(
min
f∈Hb

‖f‖2Hb
+ ν

n∑
i=1

`(yi, f(xi)) + ΛΨ(b)

)
, (3.24)

where for fixed coefficients b the term λΨ(b) is a constant. For the inner optimisation

fb = argmin
f∈Hb

‖f‖2Hb
+ ν

n∑
i=1

`(yi, f(xi))

we may apply the representer theorem and obtain a representation

fb(x) =
n∑
i=1

πikb(xi, x) =
n∑
i=1

πi

M∑
v=1

bvkv(xi, x),

which is already the desired result from Equation 3.23. The final predictor f equals fb∗

for optimal coefficients b∗ ≥ 0M from Equation 3.24.

Lemma 3.20 and its proof are analogous to Theorem 2.21 and the corresponding proof
in a multi-view setting. We will apply two MKL approaches of Cortes et al. [2009] and
Vishwanathan et al. [2010], respectively. Both approaches are examples of the optimi-
sation in Equation 3.22 [Oneto et al., 2016]. More precisely, the `2-MKL algorithm in
Section 3.3.1 uses the squared loss function and a box constraint for the linear combi-
nation parameters b ≥ 0M . The second ε-MKL algorithm introduced in Section 3.3.2
utilises the ε-insensitive loss and an `p-norm regularisation of the coefficients b.

In the present chapter, the Gram matrix K of a kernel function k : X × X → R will
generally be defined as

K = (k(xi, xj))
n
i,j=1 ∈ Rn×n

for labelled training instances x1, . . . , xn ∈ X . The MKL approaches from Sections
3.3.1 and 3.3.2 below require the simultaneous calculation of both the kernel expansion
coefficients πi and the parameters bv of the kernel linear combination in Equation 3.23.
In contrast to RLSR and SVR, the MKL objectives cannot be formulated as quadratic
program (QP).
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3.3.1 Learning Kernel Ridge Regression

The first MKL approach for regression we consider utilises the squared loss function
`2 for the empirical error of labelled training examples. The corresponding algorithm
was introduced by Cortes et al. [2009] and is called learning kernel ridge regression
(LKRR). The intention behind is to learn a predictor function f from an RKHS Hb
with reproducing kernel kb : X × X → R which is a linear combination of view-related
kernels k1, . . . , kM with linear coefficients b1, . . . , bM ≥ 0 according to Equation 3.21.
LKRR is essentially an RLSR approach that applies a kernel linear combination with
an additional regularisation constraint for the parameters bv. Concerning the practical
approach of ligand affinity prediction, the idea is to use an MPK for kb and perform
MPK-MKL experiments (see Section 3.4.2). For an appropriate assignment of indices
this means, we will insert pattern kernels kθVV as view kernels kv and linear combination
coefficients bv = bV as used in Equation 3.21. For the sake of consistency, we will rename
the LKRR algorithm of Cortes et al. [2009] in the following definition.

Definition 3.21 (`2-MKL). [Cortes et al., 2009] Let k1, . . . , kM be kernel functions de-
fined on an instance space X and kb be the kernel linear combination according to Equa-
tion 3.21 with RKHS Hb and linear coefficients b1, . . . , bM ≥ 0. Let (x1, y1), . . . , (xn, xn)
be labelled training examples from X × Y. The optimisation

min
f∈Hb, b≥0M

‖f‖2Hb
+ ν

n∑
i=1

|yi − f(xi)|2, (3.25)

s.t. ‖b− b0‖ ≤ Λ

where ν,Λ > 0 are hyperparameters and b0 ≥ 0M the initial linear coefficients, is called
`2-multiple kernel learning (`2-MKL).

In contrast to the RLSR formulation in Equation 2.25, Cortes et al. [2009] used the
parameter ν in Equation 3.25 attached to the empirical risk term.

Lemma 3.22. [Cortes et al., 2009] Let Kb,K1, . . . ,KM ∈ Rn×n be the Gram matrices
of the kernel functions k, k1, . . . , kM and Y be the vector of real-valued labels. For π ∈ Rn
we set

w = (πTK1π, . . . , π
TKMπ)T .

The solution f of the minimisation in Equation 3.25 has got a representation in terms
of b and π corresponding to Equation 3.23. For b ≥ 0M , π ∈ Rn, and initial linear
coefficients b0 ≥ 0M

b = b0 +
w

‖w‖

holds true, where π = (Kb + 1/ν · In)−1Y .

Proof. An extended version of the proof of Cortes et al. [2009] for Lemma 3.22 can be
found in Appendix A.

The presented solution for `2-MKL is not a closed formula as b = b(π) and π = π(b)
are optimised simultaneously. Nevertheless, one can find the approximate solution via
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Lemma 3.22 and an iterative algorithm [Cortes et al., 2009] that can be found in Ap-
pendix C.

3.3.2 ε-Insensitive Loss MKL

An alternative MKL regression approach proposed by Vishwanathan et al. [2010] utilises
the ε-insensitive loss `ε for the calculation of the empirical risk. Furthermore, Vish-
wanathan et al. [2010] applied the `p-norm with p > 1 as regularisation term for the
linear coefficients b in the kernel linear combination kb according to Equation 3.21.

Definition 3.23 (ε-MKL). [Vishwanathan et al., 2010] Let Hb be the RKHS of the ker-
nel linear combination kb from Equation 3.21, where k1, . . . , kM : X ×X → R are kernel
functions. Let (x1, y1), . . . , (xn, yn) ∈ X × Y be training examples. The optimisation

min
f∈Hb

1

2
‖f‖2Hb

+ ν

n∑
i=1

max{|yi − f(xi)| − ε, 0}+
Λ

2
‖b‖2p (3.26)

is called ε-multiple kernel learning (ε-MKL), where ε,Λ, ν > 0, b ≥ 0M are hyperpa-
rameters.

Analogous to `2-MKL, the challenge for ε-MKL is to learn both the kernel expansion
coefficients π ∈ Rn of Equation 2.22 and the kernel linear combination parameters
b ≥ 0M in Equation 3.20 for the predictor function f simultaneously. The solution for
ε-MKL will be presented in the following lemma.

Lemma 3.24. [Vishwanathan et al., 2010] We consider the view-related kernel func-
tions k1, . . . , kM and corresponding Gram matrices K1, . . . ,KM ∈ Rn×n. Additionally,
let kb be the reproducing kernel from Equation 3.21 with RKHS Hb. Assume, for hyper-
parameters p > 1 and q > 1 the relation 1

p + 1
q = 1 holds true. The solution f of ε-MKL

from Equation 3.26 has got a parameterisation in form of

f(·) =

n∑
i=1

πi

M∑
v=1

bvkv(xi, ·).

The parameters b ≥ 0M and π ∈ Rn can be determined via the dual optimisation

max
α,α̂≥0n

− 1

8Λ

(
M∑
v=1

(
(α− α̂)TKv(α− α̂)

)q) 2
q

+ (α− α̂)TY − ε(α+ α̂)1n,

s. t. {0n ≤ α, α̂ ≤ ν1n} ,

such that additionally

bv =
1

2Λ

(
(α− α̂)TKv(α− α̂)

) q
p

(
M∑
v=1

(
(α− α̂)TKv(α− α̂)

)) 1
q
− 1

p

, v = 1, . . . ,M,

and π = α− α̂ is valid.

Proof. The regression case of Vishwanathan et al. [2010]’s proof can be found in Ap-
pendix A.
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Table 3.1: Dataset identifiers in preliminary single-view experiments (part A)

Protein P23946 P09871 Q9Y5Y6 P42574 P07384

Identifier DS1 DS3 DS5 DS7 DS9

Protein P08709 P00750 P29466 P00747 P08246

Identifier DS11 DS13 DS15 DS17 DS19

Table 3.2: Dataset identifiers in MKL experiments (parts B and C)

Protein Q99895 P25774 P17655 P00740 P07339

Identifier DS2 DS4 DS6 DS8 DS10

Protein P43235 P07858 P07711 P00749 P07477

Identifier DS12 DS14 DS16 DS18 DS20

3.4 Empirical Evaluation

In the present empirical section we investigate the benefit of using different molecular
representations in a chemoinformatics problem. More precisely, we apply and analyse
the MPK-MKL approach for ligand affinity prediction. The present section is based
on the empirical section in [Ullrich et al., 2016b]. The presentation of results will be
described in detail below.

3.4.1 Datasets, Implementation, and Experimental Setting

The experiments were performed with 20 datasets, such that each set contains ligands of
one of 20 human proteins. A set contains between 90 and 986 ligands of the respective
protein and every ligand is labelled with its real-valued affinity towards the respective
protein (compare Section 1.3.1). More details on the used datasets can be found in
Appendix B. We ordered the datasets by increasing numbers of ligands and divided
them into two groups. The first group of datasets DS1, DS3, ..., DS19 listed in Table 3.1
together with its corresponding protein target ID was used for preliminary single-view
experiments (A) to find appropriate compositions of graph patterns for the subsequent
multi-view approaches. The main part of experiments concerned with MKL approaches
for affinity prediction (B, C) was performed with another group of datasets DS2, DS4,
..., DS20 which is independent of the one used in part A. The second group of datasets
is listed in Table 3.2 together with their respective protein IDs. More details on the
precise setting of part A, B, and C can be found in Section 3.4.2 below.

Every ligand molecule was originally provided in SMILES format from which its labelled
connected graph structure was calculated as SDF with the chemistry toolbox Open
Babel1 (see Section 1.3.4). We modified the SDF graph by introducing the edge label
a for edges contained in aromatic ring systems using a Hückel’s rule heuristic (compare

1available at openbabel.org
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Section 3.1.1). Based on the modified labels we determined the WL graph labelling up
to depth H = 6. Preliminary experiments showed that there was no gain in prediction
quality using greater WL depths. For every depth h, we calculated the four previously
discussed graph patterns cycles, trees, shortest paths, and WL labels themselves in form
of binary and counting feature vectors (refer to Section 3.1.2). The SMILES format
also allows for a calculation of standard molecular fingerprints. The formats Maccs,
GpiDAPH3 and ECFP6 were applied in the practical experiments of Chapter 3.

We used the SMO-MKL software2 based on libSVM3 [Vishwanathan et al., 2010] for
both our SVR and ε-MKL experiments. In contrast to `2-MKL in Section 3.3.1, where
the squared loss function is applied to determine the empirical risk, the squared `p-norm
implies a regularisation of the kernel linear coefficients b for ε-MKL. Vishwanathan et al.
[2010] showed that their formulation of MKL using the squared `p-norm is differentiable
and hence can be optimised efficiently using sequential minimal optimisation (SMO)
[Platt, 1999]. We chose p = 2. For the `2-MKL and RLSR experiments we utilised our
own implementation of Equation 2.26 and Algorithm 1 [Cortes et al., 2009]. The exper-
imental framework and all figures were generated with Python 2.74, Jupyter Notebook
[Kluyver et al., 2016] and Matplotlib [Hunter, 2007].

In order to evaluate the quality of the predictor function for regression f , we report
the RMSE from Section 2.2 between a vector of predictions and the corresponding
vector of true labels. In our experiments we performed a slightly modified k-fold CV
scheme (compare Section 2.3.3) for both parameter tuning and training. More precisely,
we randomly split a dataset with N instances k-times into a fraction p of training
(n = p ·N) and another fraction (1− p) of test instances (m = (1− p) ·N). In order to
achieve an optimal parameter assignment, in each fold we k′-times split the n training
instances again into n′ = p · n training and m′ = (1 − p) · n testing instances for the
parameter tuning procedure. Without loss of generality, we assume that n and n′ are
integers. In our experiments we applied the modified 5-fold CV scheme for the training
and tuning procedure and we used a fraction of p = 0.8 for the respective training
instances. We applied the kernel kMP according to Definition 3.19 together with `2-
MKL and ε-MKL, and hence, MPK-MKL techniques. For this purpose, we used the
intersection kernel k∩,V from Equation 3.5 and the counting kernel ku,V from Equation
3.7 as set kernels in Definition 3.18. We calculated the linear kernel on binary or counting
feature vectors for the pattern classes cycles, trees, shortest paths, and WL labels based
on the WL labelled molecular graphs. For the reason of calculation stability of the
used software, we normalised every kernel matrix K initially with its Frobenius matrix
norm ‖K‖2 = (

∑n
i,j=1 |kij |2)1/2. In previous experiments, during the parameter tuning

phase the trade-off parameter ν was always chosen large (independent of the offered
range) and all algorithms were almost insensitive to the choice of Λ. Therefore, we fixed
ν ∈ {50.0, 100.0} and Λ = 1.0. According to chemoinformatics expert knowledge with
affinity prediction, we used ε = 0.1 [Balfer and Bajorath, 2015]. For `2-MKL we fixed
b0 = (1/M, . . . , 1/M) as initial kernel linear combination coefficients.

2available at research.microsoft.com/en-us/um/people/manik/code/smo-mkl/download.html
3www.csie.ntu.edu.tw/~cjlin/libsvm/
4https://www.python.org/
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3.4 Empirical Evaluation

3.4.2 Results

We provided a multitude of systematical representations for molecules based on their
graph structure that can be used for single- and multi-view kernel approaches. These
pattern features augment the wide range of standard molecular fingerprints. The general
question of this empirical section is whether there is a benefit for affinity prediction from
the combination of multiple molecular descriptors via MKL approaches, in particular
via MPK-MKL (compare Section 3.3).

A) Preliminary Single-View Experiments

In the first preliminary experiments we extract promising patterns or pattern combina-
tions for the practical task of ligand affinity prediction only using RLSR and SVR. In a
sense, these single-view experiments represent the initial part of the actual MPK-MKL
procedure we propose in this empirical section and serve to handle the variety of graph
patters and kernels.

For the graph pattern classes cycles, trees, shortest paths, and WL labels of different WL
depths we used a cumulative and a non-cumulative feature vector variant which we refer
to with cum. pattern or pattern in Figures 3.10 and 3.11. For the cumulative pattern
variant, we considered all features based on all WL labelling depths up to some depth
H in a concatenated feature vector. For the non-cumulative variant, we only included
features of a fixed depth H. We present the results for different WL depths showing the
average RMSEs with respect to the datasets with odd numbers DS1, DS3, ..., DS19 in
Figures 3.10 and 3.11. We linked the data points with lines in order to better reveal the
trend of RMSE values. A differentiated consideration of the particular datasets can be
found in Figures 3.6 and 3.7.

The results of the preliminary phase can be found in Figures 3.10 (a) - (d) for counting
features or the counting kernel and in Figures 3.11 (a) - (d) for binary features or the
intersection kernel. We observe that the qualitative performance trend is very similar
both for the application of RLSR and SVR and for the application of the intersection
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Figure 3.6: SVR performance with counting features of cycles and trees
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Figure 3.7: SVR performance with counting features of labels and paths
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and the counting kernel. Obviously, the non-cumulative patterns reach an RMSE min-
imum for the respective optimal WL depth and the RMSE increases again for greater
depths. The RMSEs of the cumulative pattern features appear to converge to the opti-
mal performance with increasing WL depth. However, the best RMSE is very similar for
cumulative and non-cumulative patterns for both the binary and the counting feature
vectors.

As the information for individual datasets is not apparent in the diagrams of Figures
3.10 and 3.11, for each cumulative and non-cumulative pattern variant we chose the
best WL depth and extracted the performance for every dataset with odd number. The
result for SVR and the counting kernel is shown in Figure 3.6 for cycles and trees as
well as in Figure 3.7 for labels and shortest paths. We observe that both the relative
performance of patterns and the comparison between cumulative and non-cumulative
feature vectors can be found as a trend for the individual datasets as well.

B) MPK-MKL Experiments

The insights of the preliminary experiments are used for the MPK-MKL experiments
in part B. Although, MKL allows for a simultaneous use of multiple kernels or feature
vectors, we had to choose for a kernel subset for reasons of complexity of the general
problem. We found that different pattern classes show different performance contribu-
tions for our considered regression task. Whereas, the application of cumulative and
non-cumulative features led to very similar results for affinity prediction provided the
respective optimal WL depth is known.

We propose the following experimental scheme for MPK-MKL. Firstly, the most promis-
ing combinations of M patterns with respect to WL depth and RMSEs (denoted with
best) should be extracted in preliminary experiments as it was done in part A. In our
practical experiments we considered M = 2, 3, 4. Secondly, these best (cumulative) M
patterns should be used as views on data for `2-MKL and ε-MKL. The RLSR and SVR
baseline approaches include binary and counting feature vector representations and the
graph kernels best SPK, best WLK, and best CPK, where best indicates that we used
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Figure 3.8: RLSR (coloured) and `2-MKL (grey) performance using the intersection
kernel
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the best cumulative variant with respect to the optimal WL depth. Additionally, we
compared the RMSEs of MPK-MKL with the performance of RLSR and SVR using
standard molecular fingerprints.

The average RMSEs for datasets DS2, DS4, ..., DS20 are shown in Table 3.3. A differen-
tiated presentation of RMSEs with respect to each dataset can be found in Figures 3.8
and 3.9. For all combinations of squared loss regularisation (RLSR and `2-MKL) and

View Combination Kernel

intersection counting intersection counting

Baselines RLSR RLSR SVR SVR

Maccs 1.056 1.082 1.078 1.046
GpiDAPH3 0.952 0.987 0.970 0.929

ECFP6 0.896 0.898 0.893 0.853
best SPK 0.873 0.870 0.886 0.830
best WLK 0.886 0.890 0.886 0.833
best CPK 0.989 0.996 0.981 0.950

MPK-MKL `2-MKL `2-MKL ε-MKL ε-MKL

best 4 patterns 0.838 0.851 0.881 0.832
best cum. 4 patterns 0.842 0.846 0.867 0.834

best 3 patterns 0.826 0.843 0.861 0.824
best 2 patterns 0.813 0.855 0.859 0.827

Table 3.3: Average RMSEs in MPK-MKL experiments (part B)
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Figure 3.9: SVR (coloured) and ε-MKL (grey) performance using the counting kernel
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ε-insensitive regularisation (SVR and ε-MKL) as well as the intersection and counting
kernel, the MPK-MKL approaches with 2, 3, and 4 best pattern combinations outper-
form all baselines with standard graph kernels and molecular fingerprints. The respective
MPK-MKL approaches with 2 or 3 best pattern combinations have the smallest RMSEs
of the presented MKL results. Binary features led to slightly better results for `2-MKL
(see Figure 3.8), whereas counting features are favourable for ε-MKL and the considered
regression task (see Figure 3.9).

C) MKL Experiments with Standard Molecular Fingerprints

The performance of MKL for affinity prediction in combination with standard molecular
fingerprints was investigated as well in the third part of the empirical evaluation. To this
aim, we picked the three different standard fingerprints Maccs, GpiDAPH3, and ECFP6,
such that each of them belongs to another type of binary molecular presenters (compare
Section 1.3.4). As it represents the state-of-the-art approach for affinity prediction with
standard molecular fingerprints, we opposed SVR to the SVR-type ε-MKL approach
(see Section 3.3.2). We did not perform preliminary experiments here, as the molecular
representation was given by the fingerprint format. More precisely, we utilised each
combination of two as well as the set of all three fingerprints. For the experiments
with standard molecular fingerprints, again we considered the datasets DS2, DS4, ...,
DS20 in order to compare the results with the ones for MPK-MKL in part B above.
As baselines for ε-MKL we included the single-view approaches SVR (view), where view
denotes the utilised fingerprint, and the multi-view approach SVR (concat), which uses a
concatenation of the respective fingerprints or views (compare also the empirical section
of Chapter 4). Furthermore, we applied the linear kernel for the vectorial representations
of molecules. We averaged the RMSEs over all datasets in order to present the results
in Table 3.4 and to compare the results with the ones of Table 3.3.

We realise that the performance of SVR (concat) lies in the range of the RMSEs of
the single-view SVR (view) approaches. For the optimal view choice SVR (concat)
shows comparable results to SVR (view). In contrast, ε-MKL beats all baselines for all
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3.4 Empirical Evaluation

Table 3.4: Average RMSEs in ε-MKL experiments with standard molecular finger-
prints (part C)

View Combinations Methods

SVR SVR SVR SVR ε-MKL
view 1/view 2(/view 3) (view 1) (view 2) (view 3) (concat)

Maccs/ECFP6 1.081 0.884 - 0.921 0.848
Maccs/GpiDAPH3 1.050 0.921 - 0.918 0.853
GpiDAPH3/ECFP6 0.856 0.916 - 0.855 0.768

Maccs/GpiDAPH3/ECFP6 0.859 0.919 1.058 0.881 0.824

combinations of two or three standard molecular fingerprints with respect to averaged
RMSEs.

3.4.3 Discussion

The design of the standard molecular fingerprints that we used for our experiments is
based on the 2D graph structure of the respective molecules. This is also the case for the
presented graph pattern classes cycles, trees, shortest paths, and WL labels. However, in
contrast to the graph pattern classes, the characteristic feature set of standard molecu-
lar fingerprints is in principle fixed. To gain more flexibility towards the regression task
at hand, we proposed MPK-MKL as a systematic application of different graph pat-
tern features within supervised multiple-kernel learning algorithms. More precisely, we
compared `2-MKL and ε-MKL to single- and multi-view baselines using various graph
pattern feature representations, standard graph kernels, and molecular fingerprints. In
conclusion, MPK-MKL is a successful technique for the learning task of affinity pre-
diction. We showed that the ligand affinity prediction performance can be improved
compared to the state-of-the-art technique SVR using standard molecular fingerprints.

Obviously, affinity prediction profits from the simultaneous and systematic inclusion of
important graph pattern classes into the learning process. Both investigated MKL al-
gorithms outperform the respective single- and multi-view baselines (see Table 3.3 and
Figures 3.8 and 3.9). The intersection kernel led to smaller RMSEs for both RLSR and
SVR in the preliminary experiments. This was also the case for `2-MKL in the MPK-
MKL experiments. In contrast, the counting kernel applied with ε-MKL outperformed
the intersection kernel for MPK-MKL. In theory, the WL depths for the provided binary
and counting feature vectors can become infinite. Nevertheless, previous experiments on
our regression task have shown that all pattern classes had reached their performance
optimum with RLSR and SVR at a WL depth of 6 or smaller. As the optimal values
were similar, we preferred non-cumulative feature vector variants for the MPK-MKL ex-
periments. In preliminary experiments, WL labels generally show the smallest RMSEs
which underlines the importance of this pattern class for the prediction task at hand.
For that reason, we propose to definitely include WL label patterns in view combinations
of MPK-MKL approaches. We point to the fact that absolute RMSEs for preliminary,
MPK-MKL, and MKL experiments with standard molecular fingerprints cannot be com-
pared directly as we performed different runs and used independent datasets.

A drawback of the proposed MPK-MKL procedure is the big effort to generate and
systematically choose feature representations as a preparation step for the actual MKL
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Multiple Kernel Learning

Figure 3.10: Average RMSEs of RLSR (left) and SVR (right) in preliminary experi-
ments (part A) based on the counting kernel
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experiments. Because of the more difficult optimisation problem of `2-MKL and ε-MKL
in comparison to RLSR and SVR, the running time of these algorithms is high. The
actual choice of fingerprints is still an issue in this learning protocol and additionally
the best WL depth h for each pattern remains an empirical issue. For reasons of com-
plexity, we did not consider combinations of binary and counting or cumulative and
non-cumulative feature vectors within one MKL algorithm. The application of differ-
ent standard molecular fingerprints together with MKL is still expensive in terms of
running time, but the effort reduces to choose a set of standard fingerprints, preferably
from different fingerprint types. The results in Table 3.4 show that MKL in combination
with standard molecular fingerprints competes with MPK-MKL for affinity prediction
if appropriate fingerprint formats are utilised. It is up to the precise dataset, which ap-
proach is preferable and whether the improvement in prediction legitimates the increase
in computing time. In summary, the application of MKL is a very promising technique
in the research field of chemoinformatics, particularly for ligand affinity prediction. The
approach of MPK-MKL includes a very comprehensive set of graph pattern features
for prediction together with its systematic choice as inherent part. In addition to the
improved prediction of affinity values for molecular compounds, MPK-MKL reduces the
efforts for the most appropriate representation by a systematic analysis of graph pattern
performances.
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3.4 Empirical Evaluation

Figure 3.11: Average RMSEs of RLSR (left) and SVR (right) in preliminary experi-
ments (part A) based on the intersection kernel
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Chapter 4

Co-Regularisation

In the previous chapter we investigated a supervised inductive approach that used la-
belled training data and multiple views on data out of a big number of potential rep-
resentations. We showed for the learning task of affinity prediction that we can indeed
take profit from a model which is based on a linear combination of predictor functions
related to different views. However, the described supervised approaches ignore the fact
that the determination of ligand affinities is expensive as they have to be determined in
a time- and cost-consuming procedure in laboratories.

In the present chapter, we take a step forward to a more realistic scenario concerning
the considered learning task. More precisely, a typical ligand affinity prediction setting
is characterised by only few ligands with affinity annotation as the source of labelled
data. In contrast, a large amount of small molecular compounds is available, for which
the affinity information towards a considered protein is unknown. However, these ligand
candidates can be employed as unlabelled data easily, since no efforts have to be done
for their labelling. With respect to the representation of data, molecular fingerprints are
available which describe physico-chemical or structural information of the considered
molecule in vectorial format. A variety of such publicly available or commercial molec-
ular representations exist [Bender et al., 2009]. Each fingerprint captures a particular
set of information and it is not clear a priori which fingerprint is the most appropriate
for the learning task at hand. In Chapter 3, this problem is tackled by using multi-
ple data representations simultaneously in an MKL approach. This approach utilises a
kernel linear combination for the final predictor and outperformed single-view baselines
in our practical experiments on affinity prediction. Different data representations can
also be used to include unlabelled instances in the training process which we investi-
gate in the present chapter. The intention behind the co-regularisation approach from
semi-supervised learning is to compensate the lack of a satisfactory number of labelled
examples by the usage of many unlabelled instances from the respective feature domain.
Although we focus on affinity prediction, the presented approaches below are applicable
for all learning tasks with

• real-valued label,

• few labelled examples, but

• many unlabelled instances,
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• multiple data representations with appropriate measure to assess the similarity
between instances (kernel function).

Semi-supervised learning has already been applied in the field of ligand prediction using
labelled and unlabelled data. Ning et al. [2009] classified molecular compounds by tak-
ing into account additional information of related protein targets. Kondratovich et al.
[2013] applied a transductive support vector machine model [Joachims, 1999]. However,
the combination of multiple views and unlabelled data has not yet been used in the
context of ligand affinity prediction. The following real-world examples, including affin-
ity prediction (drug discovery) and another problem from the medical domain, show
the practical relevance of the considered learning scenario and of the machine learning
algorithms to solve them.

Example 4.1. (Drug discovery) Nowadays, ten thousands of human proteins are al-
ready known, not to mention the number of all proteins in biological organisms. There-
fore, it is not a contradiction that, given a particular protein, the number of labelled
compounds for that protein is in general very small. In contrast, the few labelled com-
pounds face a large amount of synthesizable small molecules without labels, the potential
ligand candidates. More precisely, we know the structure of a lot of small molecular com-
pounds and can represent them via different molecular fingerprint formats, but we do not
have any binding information for them with respect to the considered protein. Affinity
prediction for small molecules such that only few labelled training examples and many
unlabelled instances are available is in the focus of the present chapter. The molecules
with high predicted affinity values can be used as promising drug candidates in order to
make drug discovery in pharmaceutical research more efficient.

Example 4.2. (Body height prediction) Several diseases, such as gigantism or mi-
crosomia, come along with an abnormal growth of the body and of extremities in particu-
lar. For the diagnosis of children it would be helpful to predict the final body height from
the patient’s related data, as the growth process can be influenced via hormones or other
drugs. The diagnosis should occur as early as possible as the therapy becomes unfeasible
once the epiphyseal plates are closed. Patient information records include, e.g., blood
tests, radiographs, body height curves, or other indicators of the body’s physical condi-
tion and development. Unlabelled medical data records of children exist in abundance.
Labelled datasets for body height prediction are difficult to obtain as the final body height
is actually only available in the future.

Affinity prediction and comparable applications suffer from the problems arising from
little label information and the need to choose the most appropriate view for learn-
ing. To overcome this difficulties, the semi-supervised and multi-view approach of co-
regularisation matches the outcome of view predictors for unlabelled instances. This
procedure leads to a regularisation of the view predictors as they are chosen out of the
intersection set of predictors that coincide on unlabelled instances. More precisely, mul-
tiple predictor functions are learned such that each of them is related to a particular
view on data. To this aim, both the regularised empirical risk of every single predictor
and the pairwise distance between the outcomes of different view predictors for unla-
belled instances are minimised. The final predictor is supposed to be the average of the
simultaneously learned view predictor function.

In comparison to supervised approaches, semi-supervised algorithms are beneficial in the
case of few labelled examples [Chapelle et al., 2006]. A semi-supervised SVR using only
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a single view on data has been investigated by Wang et al. [2010a] and a co-regularised
variant of RLSR named CoRLSR was presented by Brefeld et al. [2006]. We provide
the SVR optimisation with a co-regularisation term and obtain co-regularised support
vector regression (CoSVR) [Ullrich et al., 2016a, 2017]. For the co-regularisation term
we investigate the properties and empirical performance of the squared loss function (`2-
CoSVR) and the ε-insensitive loss function (ε-CoSVR). Because of the longer running
time of the proposed base CoSVR algorithms compared to SVR, we define variants
with a reduced number of variables. Based on a result of Sindhwani and Rosenberg
[2008] we deduce a CoSVR transformation with single-view SVR properties in terms of
optimisation variables and, thus, time complexity. Moreover, we prove upper bounds
for the Rademacher complexity of co-regularised hypothesis spaces, which is useful to
restrict the capacity of the considered function class to fit random data.

The present chapter is based on the publications [Ullrich et al., 2016a] and [Ullrich et al.,
2017]. It is structured as follows. We start with the definition of a semi-supervised vari-
ant of the RRM principle which serves as initial point for the co-regularised algorithms.
In Section 4.2 we present CoRLSR of Brefeld et al. [2006]. Subsequently, we introduce
CoSVR and examine two loss functions for the actual co-regularisation term in Section
4.3. In addition to variants of base CoSVR with less optimisation variables, we also
derive a transformation into the single-view method Σ-CoSVR in Section 4.3.3. In the
following Section 4.3.5 we prove bounds for the Rademacher complexity. The practical
benefit of the presented co-regularisation approaches for ligand affinity prediction will
be shown in the concluding empirical analysis in Section 4.4.

4.1 Co-Regularisation for Regression

We consider a space of instances X and multiple views v = 1, . . . ,M on data. We
intend to learn different predictor functions fv : Φv(X ) → Y, each corresponding to a
view v. Every view predictor fv is intended to have a small training error with respect
to n examples with known labels and a loss function `L. We introduced the concept
of a loss function ` : Y × Y → R+ in Definition 2.2 as a non-negative function with
`(y, y) = 0 for all y ∈ Y. Typically, a loss function is additionally required to be
convex for the solution strategy of the resulting optimsation problem. The approach
of co-regularisation is defined as a multi-view RRM problem such that additionally the
difference between pairwise view predictions over m unlabelled examples measured with
another loss function `U is minimal. In the following, an upper index L will refer to
the empirical risk for labelled examples and the upper U refers to the error term with
respect to unlabelled instances. The following definition generalises the concept of RRM
and comprises the optimisation problems considered [Sindhwani and Rosenberg, 2008,
Rosenberg and Bartlett, 2007, Brefeld et al., 2006].

Definition 4.1 (CoRRM). Let `L and `U be loss functions for regression and Hv be
appropriate function spaces. We consider labelled examples (x1, y1), . . . , (xn, yn) ∈ X×Y
and unlabelled points z1, . . . , zm ∈ X . The co-regularised risk minimisation (CoRRM)
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principle is to solve the optimisation

min
fv∈Hv

M∑
v=1

(
νv‖fv‖2Hv

+
n∑
i=1

`L (yi, fv(xi))

)
(4.1)

+ λ
M∑

u,v=1

m∑
j=1

`U (fu(zj), fv(zj)) ,

where νv, λ > 0 are the hyperparameters. The predictor f : X → Y for the regression
problem at hand is supposed to be the average

f =
1

M

M∑
v=1

fv

of the view predictors f1, . . . , fM .

The hyperparameters νv and λ play a slightly different role compared to ν and Λ in
the MKL objectives in Chapter 3. However, all of them serve as trade-off parameters
between parts of objective functions. The CoRRM approach in Equation 4.1 includes two
types of jointly minimised error terms involving the view predictor functions f1, . . . , fM .
Firstly, all view predictors fv are supposed to be good predictor functions themselves.
More precisely, one aims at a small labelled error term

M∑
v=1

n∑
i=1

`L(yi, fv(xi)).

Due to the lack of labels for unlabelled instances, secondly, the CoRRM optimisation
demands pairs of view predictors to coincide for unlabelled instances as good as possible.
Although the true label of unlabelled instances is unknown, this assumption leads to an
additional regularisation of the solution functions and implies a small unlabelled error
term

M∑
u,v=1

m∑
j=1

`U (fu(zj), fv(zj)) .

The unlabelled error is equipped with hyperparameter λ > 0 to enable a trade-off
between the different terms to minimise in Equation 4.1. Although there are no labels
for unlabelled instances available, we use the name unlabelled error in order to express
that differences between view predictions should measure the quality of the predictor
functions. The norm terms ‖fv‖2Hv

, v = 1, . . . ,M , prevent overfitting. Analogous to
the single-view case in Chapter 2 and the MKL scenario in Chapter 3, we prove a
representation of the CoRRM solution functions in the following lemma.

Lemma 4.2. Let H1, . . . ,HM be RKHSs of the kernel functions k1, . . . , kM . Further-
more, let (x1, y1), . . . , (xn, yn) ∈ X ×Y be labelled training examples and z1, . . . , zm ∈ X
be unlabelled instances. With `L and `U we denote two loss functions and νv, λ > 0 are
hyperparameters. The solutions fv ∈ Hv, v = 1, . . . ,M , of the CoRRM optimisation

min
fv∈Hv

M∑
v=1

(
n∑
i=1

`L(yi, fv(xi)) + νv‖fv‖2Hv

)
+ λ

M∑
u,v=1

m∑
j=1

`U (fu(zj), fv(zj)) (4.2)
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from Definition 4.1 have a representation in form of

fv(·) =

n∑
i=1

πvikv(xi, ·) +

m∑
j=1

πv(n+j)kv(zj , ·), (4.3)

where v = 1, . . . ,M and πv1, . . . , πv(n+m) ∈ R are real-valued coefficients.

Proof. For every v = 1, . . . ,M we consider the space

Sv = span{Φv(xi), i = 1, . . . , n+m}

and its orthogonal complement S⊥v . Analogous to the proof of the single-view case in
Theorem 2.21, every view predictor fv ∈ Hv can be written as fv = f0

v + f1
v , where

f0
v ∈ Sv and f1

v ∈ S⊥v . As shown in Equation 2.23, f1
v (xi) = 0 holds true for every view

v = 1, . . . ,M and every i = 1, . . . , n+m. Consequently, both the empirical risk and the
unlabelled loss term in Equation 4.2 do not depend on f1

v . The norm terms in Equation
4.2 can be written as

‖fv‖2Hv
= ‖f0

v ‖2Hv
+ ‖f1

v ‖2Hv

because of the orthogonality property of f0
v and f1

v . The norm ‖fv‖2Hv
is minimised, if

f1
v is the zero function in S⊥v which finishes the proof.

Lemma 4.2 and its proof are analogues of Theorem 2.21 and the corresponding proof in
a co-regularisation scenario. Similar to the proceeding in Chapter 3, we will consider co-
regularisation in a least squares and support vector regression setting. Again, the choice
of the loss functions `L and `U in Equation 4.1 specifies the actual optimisation problem
to solve in the CoRRM optimisation. The case where `L = `U equals the squared loss is
already known as co-regularised least squares regression (CoRLSR) and was introduced
by Brefeld et al. [2006]. It will be reviewed in Section 4.2. As a novel approach we will
present co-regularised support vector regression (CoSVR) and its variants and properties
in Section 4.3 below. In this context, we choose `L to be the ε-insensitive loss and `U

to be an arbitrary loss function. However, we thoroughly investigate the cases squared
loss function and ε-insensitive loss function for `U .

We will use the term co-regularisation both for the approach in CoRRM and the actual
unlabelled error term. We point out that the view predictors fv are simultaneously
derived from the CoRRM minimisation in Equation 4.1. The view predictors are in
general not equal to the single-view predictors fv, that are calculated independently
with single-view regression algorithms, for example, with RLSR or SVR according to
Equations 2.25 or 2.27. Other than in Chapter 3, the Gram matrix K of a kernel function
k in the present chapter comprises kernel values over labelled and unlabelled examples

K = (k(xi, xj))
n+m
i,j=1 ∈ R(n+m)×(n+m),

where the m unlabelled instances xn+1, . . . , xn+m ∈ X are also denoted with z1, . . . , zm
(compare Section 2.1). We will consider the decomposition of the Gram matrix

K =

(
L
U

)
(4.4)
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into an upper submatrix L ∈ Rn×(n+m) and a lower submatrix U ∈ Rm×(n+m), respec-
tively.

4.2 Co-Regularised Least Squares Regression

The implementation of CoRRM from Equation 4.1 with least squares labelled loss func-
tion co-regularised least squares regression (CoRLSR) [Brefeld et al., 2006] will be the
first of the considered co-regularised algorithms. It is defined as follows.

Definition 4.3 (CoRLSR). [Brefeld et al., 2006] Suppose we have kernel functions
k1, . . . , kM and associated RKHSs H1, . . . ,HM . Furthermore, let (x1, y1), . . . , (xn, yn) ∈
X ×Y be labelled training examples, z1, . . . , zm ∈ X be unlabelled instances, and νv, λ >
0, v = 1, . . . ,M , be regularisation parameters. The minimisation problem

min
fv∈Hv

M∑
v=1

(
νv‖fv‖2Hv

+
n∑
i=1

‖yi − fv(xi)‖2
)

(4.5)

+ λ
M∑

u,v=1

m∑
j=1

‖fu(zj)− fv(zj)‖2

is called co-regularised least squares regression (CoRLSR).

The desired predictor f : X → Y for regression will again be the average f = 1
M

∑M
v=1 fv

of the optimisation results f1, . . . , fM . Brefeld et al. [2006] derived a closed formula for
the solution of CoRLSR shown in the subsequent lemma.

Lemma 4.4. [Brefeld et al., 2006] Let the Gram matrices Kv for view v ∈ {1, . . . ,M}
have a decomposition into an upper part Lv and a lower part Uv according to Equation
4.4. We consider the matrix

Gv = LTv Lv + νvKv + 2λ(M − 1)UTv Uv

for νv, λ > 0, and the vector Y = (y1, . . . , yn)T of training labels. The CoRLSR problem
from Equation 4.5 can be solved via

π =


G1 −2λUT1 U2 · · · −2λUT1 UM

−2λUT2 U1 G2 · · · −2λUT2 UM
...

...
. . .

...
−2λUTMU1 −2λUTMU2 · · · GM


−1

LT1 Y
LT2 Y

...
LTMY

 ,

where

π =

 π1
...
πM

 ∈ RM(n+m) and πv =

 πv1
...

πv(n+m)

 ∈ Rn+m (4.6)

are the kernel expansion coefficient vectors of the view predictors fv corresponding to
Equation 4.3.
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We point to the fact that the indices v1, . . . , v(n+m) in Equation 4.6 are double indices
and not products. The following proof of Brefeld et al. [2006] applies Lemma 4.2 which
is basically a multi-view representer theorem. To be more precise, every view predictor
fv has a representation as kernel linear combination of kv.

Proof. As a consequence of Lemma 4.2 the optimisation in Equation 4.5 admits a rep-
resentation of the solution functions as kernel expansions centered at labelled and un-
labelled examples. For this reason, we reformulate the problem in a parameterised way
with kernel functions kv and parameters πv in place of functions fv

min
πv∈Rn+m

Q(π1, . . . , πM ) = min
πv∈Rn+m

M∑
v=1

(
νvπvKvπv + ‖Y − Lvπv‖2

)
+ λ

M∑
u,v=1

m∑
j=1

‖Uuπu − Uvπv‖2.

The partial derivate of the objective O(π1, . . . , πM ) with respect to πv is

∂Q(π1, . . . , πM )

∂πv
= 2Gvπv − 2LTv Y − 4λ

M,u6=v∑
u=1

UTv Uuπu

with the definition of Gv from above. Setting all derivatives equal to 0n+m leads to the
desired result.

In the next section we introduce the support vector regression variant of CoRRM.

4.3 Co-Regularised Support Vector Regression

In the previous section for CoRLSR, the squared loss `2 was used for both training
error and the co-regularisation term to obtain a multi-view analogue of RLSR. The
SVR algorithm with ε-insensitive loss has a very good generalisation capability and
at the same time shows very good prediction performance [Awad and Khanna, 2015].
Aside from that, SVR is the state-of-the-art method applied in ligand affinity prediction
(compare Section 1.3.5). Therefore, we define co-regularised support vector regression
(CoSVR) as the CoRRM optimisation from Equation 4.1 such that the ε-insensitive loss
function is used for the empirical risk. In contrast to CoRLSR, the labelled loss function
for CoSVR in its base version remains arbitrary according to Definition 2.2. We will
investigate the cases of squared and ε-insensitive labelled loss function extensively below.

4.3.1 Base Algorithm

We start with the definition of the base algorithm as the CoRRM problem from Equation
4.1 with ε-insensitive loss function in the labelled error term and present two special
cases.
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Definition 4.5 (CoSVR, `2-CoSVR, ε-CoSVR). [Ullrich et al., 2017] For v = 1, . . . ,M
let Hv be an RKHS, `U be an arbitrary loss function, and εL, νv, λ > 0 be hyperparam-
eters. The optimisation problem in Equation 4.1 such that `L is the ε-insensitive loss
with ε = εL is called co-regularised support vector regression (CoSVR).
(i) Co-regularised support vector regression with `U = `2

min
fv∈Hv

M∑
v=1

(
νv
2
‖fv‖2Hv

+
n∑
i=1

max{|yi − fv(xi)| − εL, 0}

)
(4.7)

+ λ

M∑
u,v=1

m∑
j=1

‖fu(zj)− fv(zj)‖2,

is denoted `2-co-regularised support vector regression (`2-CoSVR).
(ii) Co-regularised support vector regression where `U is the ε-insensitive loss

min
fv∈Hv

M∑
v=1

(
νv
2
‖fv‖2Hv

+
n∑
i=1

max{|yi − fv(xi)| − εL, 0}

)
(4.8)

+ λ

M∑
u,v=1

m∑
j=1

max{|fu(zj)− fv(zj)| − εU , 0}

is called ε-co-regularised support vector regression (ε-CoSVR).

In comparison to CoRRM from Equation 4.1, we introduced a factor of 1/2 in the norm

term for arithmetical reasons. The sums
∑M

u,v=1 are actually always of the kind
∑M,u6=v

u,v=1 ,
as the respective summands for u = v are equal to zero. In the following, we present
solutions for `2-CoSVR and ε-CoSVR.

Lemma 4.6. [Ullrich et al., 2017] Let νv, λ, ε
L, εU > 0. We use the notation introduced

above. In particular, πv ∈ Rn+m denote the kernel expansion coefficients of the view
predictors fv from Equation 4.3, whereas αv, α̂v ∈ Rn and γuv ∈ Rm are dual variables.

(i) The dual optimisation problem of `2-CoSVR is

max
αv ,α̂v∈Rn,γuv∈Rm

M∑
v=1

(
− 1

2νv

(
α

γ

)T
v

Kv

(
α

γ

)
v

+ (αv − α̂v)TY

−εL(αv + α̂v)
T1n −

1

4λ

M∑
u=1

γTuvγuv

)

s. t.

{
0n ≤ αv, α̂v ≤ 1n
γuv = 2λ

νu
Uu
(
α
γ

)
u
− 2λ

νv
Uv
(
α
γ

)
v

}
(u,v)∈[[M ]]2

,

where (
α

γ

)
v

=

(
αv − α̂v∑M

u=1(γuv − γvu)

)
and πv = 1

νv

(
α
γ

)
v

holds true.
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(ii) The dual optimisation problem of ε-CoSVR equals

max
αv ,α̂v∈Rn,γuv∈Rm

M∑
v=1

(
− 1

2νv

(
α

γ

)T
v

Kv

(
α

γ

)
v

+ (αv − α̂v)TY

−(αv + α̂v)
T εL1n −

m∑
u=1

γTuvε
U1m

)

s. t.

{
0n ≤ αv, α̂v ≤ 1n
0m ≤ γuv ≤ λ1m

}
(u,v)∈[[M ]]2

,

where (
α

γ

)
v

=

(
αv − α̂v∑M

u=1(γuv − γvu)

)
and πv = 1

νv

(
α
γ

)
v

are the kernel expansion coefficients from Equation 4.3.

Proof. The proof can be found in Appendix A.

We will refer to `2-CoSVR and ε-CoSVR as the base CoSVR versions. An overview of
the used variable identifiers and their purpose within the optimisation formulation and
solution can be found in Table 4.1. If variables are used for the same purpose in different
results or proofs they will get the same identifier if possible. The variable name x(v)

means that the variable x exists with or without index v. The symbol(
α

γ

)
v

∈ Rn+m

represents a view-dependent vector composed from α- and γ-variables in different ways.
The precise formulas can be found in Lemmas 4.6, 4.8, and 4.10. The symbol reveals
the analogies between the result from Lemma 4.6 and the related ones in Lemmas 4.8
and 4.10. In the discussed problems above also

αv · α̂v = 0 and γuv = −γvu (for `2-CoSVR) (4.9)

and

αv · α̂v = 0 and γuv · γvu = 0 (for ε-CoSVR) (4.10)

holds true for the respective dual variables according to the KKT conditions in Theorem
2.14. Smola and Schölkopf [2004] commented on how SVR solvers incorporate compa-
rable conditions in the single-view case. By definition, also ζvv = 0m is valid for all
v = 1, . . . ,M .

4.3.2 Reduction of Variable Numbers

According to Lemma 4.6 the base CoSVR algorithm can be solved as a QP with linear
equality and inequality constraints. A solver for this convex optimisation problem has to
handle O(Mn + M2m) variables and corresponding constraints. In real-world applica-
tions, the number m of available unlabelled instances is by magnitudes greater than the
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Table 4.1: Overview of variable notation in semi-supervised approaches

Variable Type Variable Identifier Risk Term

Slack variables ξ(v) = (ξ(v)1, · · · , ξ(v)n)T labelled error

ξ̂(v) = (ξ̂(v)1, · · · , ξ̂(v)n)T

ζ(u)v = (ζ(u)v1, · · · , ζ(u)vm)T unlabelled error

Kernel expansion variables π(v) = (π(v)1, · · · , π(v)(n+m))
T labelled/unlabelled error

Dual variables α(v) = (α(v)1, · · · , α(v)n)T labelled error

α̂(v) = (α̂(v)1, · · · , α̂(v)n)T

β(v) = (β(v)1, · · · , β(v)n)T

β̂(v) = (β̂(v)1, · · · , β̂(v)n)T

γ(u)v = (γ(u)v1, · · · , γ(u)vm)T unlabelled error

δ(u)v = (δ(u)v1, · · · , δ(u)vm)T

number n of labelled instances. For example, assume we only had 2 views, 5 labelled,
and 50 unlabelled examples. This would already result in 220 variables (see Table 4.2
in Section 4.3.4 for the precise number of variables). In comparison, a single-view SVR
solver would have to take only 2n = 10 variables into account. In addition, M+3 hyper-
parameters νv, λ, εL, and εU have to be tuned during the training phase for ε-CoSVR
(M + 2 hyperparameters νv, λ, εL for `2-CoSVR). Whereas, only 2 hyperparameters ν
and ε have to be optimised for single-view SVR.

In order to lower the negative effect on the running time, we present CoSVR variants
with a reduced number of variables. To this aim, we decreased the number of variables
by weaker demands on the view predictors in the error terms. We denote the variant
with modification in the labelled error with CoSVRmod and in the unlabelled error with
CoSVRmod.

Modification of the Empirical Risk

The objective of base CoSVR becomes smaller if the empirical risk decreases with respect
to labelled examples for each view predictor individually. The CoSVRmod approach
applies the average prediction

favg =
1

M

M∑
v=1

fv, (4.11)

to define the labelled error term. The function favg equals the final predictor f by
definition.

Definition 4.7 (CoSVRmod). [Ullrich et al., 2017] For loss functions `L and `U as well
as hyperparameters νv, λ, ε

L > 0, the co-regularised support vector regression problem
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with modified constraints for the labelled examples (CoSVRmod) is defined as

min
fv∈Hv

M∑
v=1

νv
2
‖fv‖2 +

n∑
i=1

max{|yi − favg(xi)| − εL, 0} (4.12)

+ λ
M∑

u,v=1

m∑
j=1

`U (fu(zj), fv(zj)) ,

where favg = 1/M
∑M

v=1 fv is the view predictor average from Equation 4.11. If `U is
the ε-insensitive loss with εU > 0, the problem in Equation 4.12 is called ε-CoSVRmod.
The case `U = `2 is denoted with `2-CoSVRmod.

In the following lemma we present solutions for ε-CoSVRmod and `2-CoSVRmod.

Lemma 4.8. [Ullrich et al., 2017] Let νv, λ, ε
L, εU > 0 be hyperparameters. We utilise

dual variables α, α̂ ∈ Rn and γuv ∈ Rm (compare Table 4.1).

(i) The `2-CoSVRmod dual optimisation problem equals

max
α,α̂∈Rn, γuv∈Rm

M∑
v=1

(
− 1

2νv

(
α

γ

)T
v

Kv

(
α

γ

)
v

+ (α− α̂)TY

−(α+ α̂)T εL1n −
1

4λ

M∑
u=1

γTuvγuv

)

s. t.

{
0n ≤ α, α̂ ≤ 1n
γuv = 2λ

νu
Uu
(
α
γ

)
u
− 2λ

νv
Uv
(
α
γ

)
v

}
v∈[[M ]]

,

where (
α

γ

)
v

=

( 1
M (α− α̂)∑M

u=1(γuv − γvu)

)
and πv = 1

νv

(
α
γ

)
v
.

(ii) The ε-CoSVRmod dual optimisation problem can be written as

max
α,α̂∈Rn, γuv∈Rm

M∑
v=1

(
− 1

2νv

(
α

γ

)T
v

Kv

(
α

γ

)
v

+ (α− α̂)TY

−(α+ α̂)T εL1n −
M∑
u=1

γTuvε
U1m

)

s. t.

{
0n ≤ α, α̂ ≤ 1n
0m ≤ γuv ≤ λ1m

}
v∈[[M ]]

,

where (
α

γ

)
v

=

( 1
M (α− α̂)∑M

u=1(γuv − γvu)

)
,

and πv = 1
νv

(
α
γ

)
v
.

91



Co-Regularisation

Proof. The proof can be found in Appendix A.

It is possible to reduce the number of variables even more using modified constraints for
the co-regularisation term. Because of the typically small number n of labelled examples,
the CoSVRmod algorithm is rather important from a theoretical perspective as the basis
of a further CoSVR variant introduced in Section 4.3.3. The CoSVR variant presented
in the following section is beneficial from a practical perspective if the number of views
M and the number of unlabelled instances m is large.

Modification of the Co-Regularisation

The unlabelled error term of base CoSVR bounds the pairwise distances of view pre-
dictions, whereas now in CoSVRmod only the disagreement between predictions of each
view and the average prediction of the residual views will be taken into account. We use
the view-dependent average

favg
v =

1

M − 1

M,u 6=v∑
u=1

fu

of view predictors in the subsequent definition.

Definition 4.9 (CoSVRmod). [Ullrich et al., 2017] We consider RKHSs H1, . . . ,HM ,
loss functions `L and `U , as well as hyperparameters εL, νv, λ > 0. The co-regularised
support vector regression problem with modified constraints for the unlabelled examples
(CoSVRmod) is defined as

min
fv∈Hv

M∑
v=1

(
νv
2
‖fv‖2 +

n∑
i=1

max{|yi − fv(xi)| − εL, 0}

)
(4.13)

+ λ

M∑
v=1

m∑
j=1

`U (favg
v (zj), fv(zj)) ,

where favg
v = 1/(M − 1)

∑M,u6=v
u=1 fu. If `U is the ε-insensitive loss with εU > 0 then

the optimisation problem in Equation 4.13 is denoted with ε-CoSVRmod and the case
`U = `2 with `2-CoSVRmod.

Again we present solutions for `2-CoSVRmod and ε-CoSVRmod.

Lemma 4.10. [Ullrich et al., 2017] Let νv, λ, ε
L, εU > 0 be hyperparameters. We utilise

dual variables αv, α̂v ∈ Rn and γv, γ̂v ∈ Rm, as well as γavg
v = 1

M−1

∑M,u6=v
u=1 γu and

γ̂avg
v = 1

M−1

∑M,u6=v
u=1 γ̂u analogous to the residual view predictor average.

(i) The `2-CoSVRmod dual optimisation problem equals

max
αv ,α̂v∈Rn, γv∈Rm

M∑
v=1

(
− 1

2νv

(
α

γ

)T
v

Kv

(
α

γ

)
v

+ (αv − α̂v)TY

−(αv + α̂v)
T εL1n −

1

4λ

M∑
u=1

γTv γv

)

s. t.

{
0n ≤ αv, α̂v ≤ 1n
γv = 1

M−1

∑M,u6=v
u=1

2λ
νu
Uu
(
α
γ

)
u
− 2λ

νv
Uv
(
α
γ

)
v

}
v∈[[M ]]

,
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where (
α

γ

)
v

=

(
αv − α̂v
γv − γavg

v

)
and πv = 1

νv

(
α
γ

)
v
.

(ii) The ε-CoSVRmod dual optimisation problem can be written as

max
αv ,α̂v∈Rn, γv ,γ̂v∈Rm

M∑
v=1

(
− 1

2νv

(
α

γ

)T
v

Kv

(
α

γ

)
v

+ (α− α̂)TY

−(αv + α̂v)
T εL1n − (γv + γ̂v)ε

U1m
)

s. t.

{
0n ≤ αv, α̂v ≤ 1n
0m ≤ γv, γ̂v ≤ λ1m

}
v∈[[M ]]

,

where (
α

γ

)
v

=

(
αv − α̂v

(γv − γavg
v )− (γ̂v − γ̂avg

v )

)
,

and πv = 1
νv

(
α
γ

)
v
.

Proof. The proof can be found in Appendix A.

If we combine the modifications in the labelled and unlabelled error term we canonically
obtain the variants `2-CoSVRmod

mod and ε-CoSVRmod
mod. Moreover, it is possible to anal-

ogously define and solve ε-CoRLSR, the variant of CoRLSR with ε-insensitive loss in
the unlabelled error. We omitted that for two reasons. Firstly, there are already plenty
of co-regularised algorithms to investigate and compare, such that a greater variety of
algorithms would probably not be beneficial. Secondly, in comparison to base CoRLSR
the ε-CoRLSR modification cannot be solved as closed formula for the same reason this
is not possible for single-view SVR (see Section 2.6.2). For an overview of the considered
co-regularised approaches and their variants see Figure 4.1. In the taxonomy of Figure
4.1, CoRLSR is used as superordinate concept of `2-CoRLSR. For the sake of simplicity
and in concordance with the work of Brefeld et al. [2006], in the following we denote
`2-CoRLSR with CoRLSR (compare its introduction in Section 4.2).

In the base CoSVR versions the semi-supervision is realised with proximity constraints
on pairs of view predictions. We show in the following lemma that the weaker constraints
of the closeness of one view prediction to the average of the residual predictions implies
a closeness of every pair of predictions too.

Lemma 4.11. [Ullrich et al., 2017] Up to constants, the unlabelled error bound of
CoSVRmod is also an upper bound of the unlabelled error of base CoSVR.

Proof. We consider the settings of Lemma 4.6 (i) and Lemma 4.10 (i). For part (ii) the
proof is equivalent taking εU = 0. To start with, in the case of M = 2, modified and
base algorithm fall together which shows the claim. We continue with M > 2. Because
of the definition of the ε-insensitive loss we know that |fv(zj) − favg

v (zj)| ≤ εU + cvj ,
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Figure 4.1: Overview of single-view and co-regularised approaches

where cvj ≥ 0 is the unlabelled error value

cvj = max{|favg
v (zj)− fv(zj)| − εU , 0}

for fixed view v and fixed unlabelled instance zj . We denote the maximum of cvj with
respect to all views v = 1, . . . ,M with cj

cj = max
v∈{1,...,M}

cvj .

Hence, |fv(zj) − favg
v (zj)| ≤ εU + cj for all v = 1, . . . ,M . Now we conclude for all

j ∈ {1, . . . ,m} and (u, v) ∈ {1, . . . ,M}2

|fu(zj)− fv(zj)|
≤ |fu(zj)− favg

u (zj)|+ |favg
u (zj)− favg

v (zj)|+ |favg
v (zj)− fv(zj)|

≤ εU + cj + 1
M−1 |fv(zj)− fu(zj)|+ εU + cj ,

and, therefore,

|fu(zj)− fv(zj)| ≤ 2(M−1)
M−2 (εU + cj). (4.14)

We consider the upper bound B

M∑
v=1

m∑
j=1

`εU (favg
v (zj), fv(zj)) ≤M

m∑
j=1

cj = B
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of the unlabelled error of CoSV Rmod. From Equation 4.14 we conclude that the unla-
belled error of CoSVR is bounded by B̃

M∑
u,v=1

m∑
j=1

`ε̃(fu(zj), fv(zj)) ≤ B̃

for ε̃ = 2(M−1)
M−2 εU and B̃ = 2M(M−1)

(M−2) B, which finishes the proof.

The complexity class of the base CoSVR variants `2-CoSVR and ε-CoSVR is O(Mn+
M2m), where M is the number of views, n is the number of labelled examples and m
the number of unlabelled instances. Via the presented modifications of CoSVR in the
labelled and unlabelled error terms, the number of variables was reduced significantly
(the precise numbers can be found in Table 4.2). In the case of CoSVRmod a reduction
to O(n + M2m) could be derived. The variable number reduction of CoSVRmod to
O(Mn+Mm) is even more effective, as the number of labelled instances m is typically
greater than the number of labelled examples n, which implies a complexity class of
O(Mm). We point to the fact that the variable number of CoRLSR that can be solved
analytically is also O(Mn+Mm). More details on computational aspects can be found
in Section 4.3.4. A number of optimisation variables in complexity class O(Mm) is still
a lot if one intends to solve a QP problem with an appropriate solver (compare Section
4.3.4). It is therefore even more valuable that there is a single-view reformulation of
`2-CoSVRmod.

4.3.3 Σ-CoSVR

Sindhwani and Rosenberg [2008] showed that a subset of co-regularisation approaches
can be reformulated as single-view approach with fused kernel and sum space HΣ

HΣ = {f : f = f1 + f2, f1 ∈ H1, f2 ∈ H2}, (4.15)

where H1 and H2 are RKHSs with reproducing kernels k1 and k2, respectively. The Σ
in HΣ symbolises the sum of functions or kernels (in contrast to Chapter 3, where Σ
denotes an alphabet). The precise co-regularisation subset considered by Sindhwani and
Rosenberg [2008] is characterised by a two-view setting, i.e., M = 2, a co-regularisation
term with squared loss function `U = `2, and an empirical risk calculated with the
average predictor favg according to Equation 4.11. The corresponding optimisation was
called co-regularised least squares (CoRLS) algorithm by Rosenberg and Bartlett [2007]
and can be formulated as

min
f∈HΣ

∑
v=1,2

νv‖fv‖2Hv
+

n∑
i=1

`L
(
yi,

f1(xi) + f2(xi)

2

)
+ λ

m∑
j=1

|f1(zj)− f2(zj)|2 (4.16)

using the notation from above. The minimisation in Equation 4.16 is a generalisation
of `2-CoSVR. Note that CoRLS is related to but not equal with CoRLSR, which was
introduced in Section 4.2. An overview of algorithms including CoRLS can be found in
Figure 4.2 below.
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Let k be a kernel with Gram matrix K and Z = {z1, . . . , zm} ⊆ X be the set of unlabelled
instances. With k(Z, x) and k(Z,Z) we refer to the submatrices

k(Z, x) = (k(z1, x), . . . , k(zm, x))T

and

k(Z,Z) =
(
k(zj , zj′)

)m
j,j′=1

of the Gram matrix K. Furthermore, for hyperparameters ν1, ν2 > 0 we fix the kernel
linear combinations k⊕ and k	 via

k⊕ =
1

ν1
k1 +

1

ν2
k2 and k	 =

1

ν1
k1 −

1

ν2
k2

for two kernel functions k1 and k2. In the subsequent theorem, we present the result of
Sindhwani and Rosenberg [2008].

Theorem 4.12. We consider two RKHSs H1 and H2 with reproducing kernels kv :
X×X → R, v = 1, 2, together with the scenario and symbols from above. Let ν1, ν2, λ > 0
be hyperparameters. The optimisation

min
f∈H

‖f‖2HΣ
+

n∑
i=1

`L
(
yi,

1

2
f(xi)

)
(4.17)

with norm

‖f‖2HΣ
= min

f=f1+f2, fv∈Hv

∑
v=1,2

νv‖fv‖2Hv
+ λ

m∑
j=1

|f1(zj)− f2(zj)|2

is a reformulation of the CoRLS problem in Equation 4.16 and HΣ is an RKHS with
kernel kΣ

kΣ(x, x′) = k⊕(x, x′)− k	(Z, x)T
(

1

λ
Im + k⊕(Z,Z)

)−1

k	(Z, x′) (4.18)

for x, x′ ∈ X and Z ⊂ X .

The following definition picks up the single-view CoRLS reformulation of Sindhwani and
Rosenberg [2008] with an ε-insensitive loss function (compare also Figure 4.2).

Definition 4.13 (Σ-CoSVR). [Ullrich et al., 2017] Let HΣ be the RKHS from Equation
4.15 with fused kernel function kΣ from Equation 4.18. For εL > 0, we denote the SVR
optimisation

min
f∈HΣ

‖f‖2HΣ
+

n∑
i=1

max{|yi −
1

2
f(xi)| − εL, 0}, (4.19)

Σ-co-regularised support vector regression (Σ-CoSVR).

We point out that the two RKSHs H1 and H2, their corresponding kernel functions
k1 and k2, and the hyperparameters ν1, ν2, and λ appear in the definitions of kΣ and
‖ · ‖HΣ

. For each pair x and x′ of instances, the value of kΣ(x, x′) in Equation 4.18 is
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Figure 4.2: Overview of co-regularised approaches with two views and average pre-
dictor

calculated via kernel values of k1 and k2 including not only x and x′ themselves but also
the unlabelled examples in Z. The optimisation problem in Equation 4.19 is a standard
SVR minimisation with additional information about unlabelled examples incorporated
in the RKHS HΣ.

Lemma 4.14. [Ullrich et al., 2017] The algorithms `2-CoSVRmod and Σ-CoSVR are
equivalent.

Proof. The proof directly follows from Theorem 2.2 of Sindhwani and Rosenberg [2008]
for ε-insensitive loss function, where εL, ν1, ν2, λ > 0 are the hyperparameters of the
`2-CoSVRmod optimisation.

As Σ-CoSVR can be solved as a standard SVR algorithm with O(n) variables, we ob-
tained a multi-view approach with single-view time complexity. The information of the
two views and the unlabelled examples are included in the candidate space HΣ and as-
sociated reproducing kernel kΣ. More details on computational aspects of the presented
co-regularisation algorithms for regression can be found in the following section.

4.3.4 Computational Aspects

The CoRLSR and CoSVR optimisation approaches mainly differ in the kind of loss
functions and whether these are applied to every view predictor or the average of the view
predictors. The precise settings result in different numbers of variables and constraints
in total, as well as potentially non-zero variables (compare Table 4.2 and the proof
of Lemma 4.19). The numbers of variables, constraints, and the number of non-zero
variables determine storage space of the machine learning model and the running time
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Table 4.2: Overview of variables and constraints for different CoSVR versions and
CoRLSR

Algorithm M # Variables Variable Identifiers

ε-CoSVR ≥ 2 2[M ]n+M2m α[v], α̂[v], γuv
`2-CoSVR ≥ 2 2[M ]n+ 1

2(M2 −M)m α[v], α̂[v], γuv
ε-CoSVRmod > 2 2[M ]n+ 2Mm α[v], α̂[v], γv, γ̂v
ε-CoSVRmod = 2 2[M ]n+ 2m α[v], α̂[v], γv, γ̂v, γ1 = γ̂2, γ2 = γ̂1

`2-CoSVRmod > 2 2[M ]n+Mm α[v], α̂[v], γv
`2-CoSVRmod = 2 2[M ]n+m α[v], α̂[v], γv, γ1 = −γ2

Σ-CoSVR = 2 2n α, α̂

CoRLSR ≥ 2 Mn+Mm πv

Algorithm M # Constraints # Non-Zero Variables

ε-CoSVR ≥ 2 4[M ]n+ 2M2m [M ]n+ 1
2(M2 −M)m

`2-CoSVR ≥ 2 4[M ]n+ 1
2(M2 −M)m [M ]n+ 1

2(M2 −M)m
ε-CoSVRmod > 2 4[M ]n+ 4Mm [M ]n+Mm
ε-CoSVRmod = 2 4[M ]n+ 4m [M ]n+m
`2-CoSVRmod > 2 4[M ]n+Mm [M ]n+Mm
`2-CoSVRmod = 2 4[M ]n+m [M ]n+m

Σ-CoSVR = 2 4n n

CoRLSR ≥ 2 0 Mn+Mm

of the corresponding algorithm. We use the formulation of a sparse vector (or matrix)
to indicate that the considered vector (or matrix) predominantly contains zeros. This
property of vectors (or matrices) is also referred to as sparsity.

From the Lagrangian theory (see Section 2.3) we know that at least half of the dual α-
and γ-variables (see Table 4.1) must be zero in the case of ε-insensitive loss function.
According to the Karush-Kuhn-Tucker conditions [Boyd and Vandenberghe, 2004], only
for active inequality constraints the corresponding dual α- and γ-variables can be non-
zero at all. Because of the precise optimisation problem setting with ε-insensitive loss
for the CoSVR variants, the number of non-zero variables in the learned model will be
even smaller than the numbers reported in the non-zero variables column of Table 4.2.
The actual number of non-zero variables in the final solution depends on the choice
of ε. Labelled and unlabelled instances xi ∈ X and zj ∈ Z play the role of (labelled
and unlabelled) support vectors if the corresponding dual variables are different from
zero. Hence, the CoSVR versions admit a final model representation of only few support
vectors relative to the overall number of labelled and unlabelled training examples. The
property of the solution vector in the CoSVR variants to be sparse allows for a more
efficient model storage compared to CoRLSR [Brefeld et al., 2006].

We summarised the numerical information on variables and constraints for the different
algorithms in Table 4.2. The respective CoSVRmod variants are included in the table by
cancelling the factor [M ] and the index [v]. In the special case of M = 2, the base and
the respective CoSVRmod version fall together. In practical scenarios, the number m of
unlabelled instances is greater than the number n of labelled examples. Furthermore,
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the summands linear in n are at most linear in the number of views M . For this reason,
the summands linear in m will mostly influence running time and memory requirements
(see Table 4.2). To be more precise, the number of variables of ε-CoSVR is 2Mn+M2m.
This can be reduced to O(Mm), which is the complexity class of the variable number of
CoRLSR, via the loss function approach of ε-CoSVRmod. The variable number reduction
of ε-CoSVRmod is rather from a theoretical value. As mentioned already above, in the
case M = 2 the variants ε-CoSVR and ε-CoSVRmod fall together. Because of the
symmetry of variables for M = 2 the actual number of variables in Table 4.2 is even
smaller than in the case of M > 2. Analogous considerations hold true for the `2-CoSVR
variants. A substantial reduction of variable numbers can be achieved via the Σ-CoSVR
approach where the number of variables 2n is the number of variables of a single-view
SVR.

All presented problems are convex QPs with positive semi-definite matrices in the
quadratic terms. According to Kozlov et al. [1980] QPs can be solved in polyno-
mial time complexity in the number of optimisation variables, if the Hessian matrix
in the squared term of the objective is positive definite. As the number m in real-
world problems is greater than n, the running time of a QP-solver will be dominated by
the respective second summand in the constraints column of Table 4.2 (except for Σ-
CoSVR). Consequently the variable reduction of CoSVRmod compared to base CoSVR
from O(Mn+M2m) to O(Mm) reduces the running time significantly. However, a clear
advantage of CoRLSR is that it can be solved as a system of Mn+Mm equations which
has cubic time complexity in the number of variables or equations, respectively.

4.3.5 A Rademacher Bound for CoSVR

The empirical Rademacher complexity R̂n from Definition 2.6 is a data-dependent
measure for the capacity of a function class H to fit random data [Shawe-Taylor and
Cristianini, 2004]. Rosenberg and Bartlett [2007] presented a bound on the empirical
Rademacher complexity of CoRLS for the case M = 2 (compare Section 4.3.3). Inspired
by the result of Rosenberg and Bartlett [2007], we prove empirical Rademacher complex-
ity bounds for the ε-CoSVRmod and `2-CoSVRmod function classes. To this aim we fix the
following notation. If a function fv ∈ Hv has got a representation f(·) =

∑n+m
i=1 πik(xi, ·)

with coefficients π ∈ Rn+m, we denote the kernel linear coefficients with π(f) in order
to indicate their relation to the function f .

Definition 4.15 (`2-CoSVRmod and ε-CoSVRmod function class). [Ullrich et al., 2017]
Let H1 and H2 be two RKHSs with kernels k1 and k2. Let K1 and K2 be the corre-
sponding Gram matrices with lower submatrices U1 and U2, λ, ν1, ν1, µ > 0 be hyperpa-
rameters, as well as HΣ be the sum space from Equation 4.15. With

H`2Σ = {f = f1 + f2 : f1 ∈ H1, f2 ∈ H2, (4.20)

ν1π
T
1 K1π1 + ν2π

T
2 K2π2 + λ(U1π1 − U2π2)T (U1π1 − U2π2) ≤ 1}

and

HεΣ = {f = f1 + f2 : f1 ∈ H1, f2 ∈ H2, (4.21)

− µ1n+m ≤ π1, π2 ≤ µ1n+m}

we define two bounded versions of HΣ, where π1 = π1(f1) and π2 = π2(f2).
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The meaning of parameter µ will become obvious in Lemma 4.19 (ii) below. The subse-
quent theorem of Rosenberg and Bartlett [2007] delivered a generalisation bound, which
is a bound on the difference between the expected risk and the empirical risk (compare
Equations 2.5 and 2.6 above).

Theorem 4.16. [Rosenberg and Bartlett, 2007] Let ` : Y × Y → R+ be a loss function
according to Definition 2.2 and J be a RKHS of functions. Without loss of generality,
assume

`(f(x), y)→ [0, 1] (4.22)

for all f ∈ J . Moreover, let ` satisfy a uniform Lipschitz condition, i.e., there is a
constant B > 0 such that

|`(f(x1), ŷ)− `(f(x2), ŷ)|
|f(x1)− f(x2)|

≤ B (4.23)

holds true for all ŷ ∈ Y, x1, x2 ∈ X with x1 6= x2, and f ∈ J . For labelled training data
(x1, y1), . . . , (xn, yn) drawn i.i.d. from distribution D over X × Y and δ ∈ (0, 1)

ED(`(y, f(x)) ≤ Ê(`(y, f(x)) + R̂n(J ) +
1√
n

(
2 + 3

√
ln(2/δ)

2

)
(4.24)

is valid for every f ∈ J with probability at least (1− δ).

Proof. The proof is a consequence of Theorem 2.7 [Shawe-Taylor and Cristianini, 2004]
above as well as the additional precondition of the boundedness in Equation 4.22 and
the Lipschitz-condition in Equation 4.23. It was presented by Rosenberg and Bartlett
[2007].

The following lemma is an elaborate presentation of the result in [Ullrich et al., 2017].

Lemma 4.17. Let H`2Σ and HεΣ be the function class subsets of HΣ from Equations 4.20

and 4.21. The generalisation bound in Equation 4.24 holds true for H`2Σ and HεΣ, if

Equation 4.22 is fulfilled for all f ∈ H`2Σ and all f ∈ HεΣ, respectively.

Rosenberg and Bartlett [2007] demanded a boundedness property of the function class
J in Equation 4.22. A weaker condition is the so-called M -boundedness [Cucker and
Zhou, 2007] of a function class J , when there is a constant M such that `(f(x), y) ≤M
for all f ∈ J . If J was M -bounded, the constant M (which is different from the
number M of views in the general multi-view case) would appear in Equation 4.24 as
well. The M -boundedness is closely related to the fact that the kernel function k is
bounded [Cucker and Zhou, 2007], i.e., supx∈X k(x, x) ≤M for a constant M . This is a
realistic and accomplishable assumption in our ligand affinity prediction scenario. More
precisely, the linear kernel applied to binary fingerprint vectors Φ of dimension d fulfills
〈Φ(x),Φ(x)〉 ≤ d for every molecular compound x.
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Proof. It remains to show that the squared loss `2 and the ε-insensitive loss `ε satisfy a
Lipschitz condition. Firstly, regarding the squared loss `2 we conclude∣∣|f(x1)− ŷ|2 − |f(x2)− ŷ|2

∣∣∣∣f(x1)− f(x2)
∣∣ ≤

∣∣(|f(x1)− ŷ|+ |f(x2)− ŷ|)(|f(x1)− ŷ| − |f(x2)− ŷ|)
∣∣∣∣f(x1)− f(x2)

∣∣
≤ |f(x1) + f(x2)− 2ŷ||f(x1)− f(x2)|∣∣f(x1)− f(x2)

∣∣
≤ |f(x1)− ŷ|+ |f(x2)− ŷ| ≤ 1 + 1 = 2

from Equation 4.22 for all x1, x2 ∈ X , ŷ ∈ Y, and all f ∈ H`2Σ . Hence, the Lipschitz
condition is valid for `2 with B = 2. The Lipschitz condition of the ε-insensitive loss `ε
will be proven by distinction of cases:
Case 1: |f(x1)− y| < ε and |f(x1)− y| < ε implies that∣∣max{0, |f(x1)− y| − ε} −max{0, |f(x2)− y| − ε}

∣∣ = 0.

Case 2: |f(x1)− y| ≥ ε and |f(x1)− y| ≥ ε implies that∣∣max{0, |f(x1)− y| − ε} −max{0, |f(x2)− y| − ε}
∣∣

=
∣∣|f(x1)− y| − ε− (|f(x2)− y| − ε)

∣∣
=
∣∣|f(x1)− y| − |f(x2)− y|

∣∣ ≤ ∣∣f(x1)− y − (f(x2)− y)
∣∣ =

∣∣f(x1)− f(x2)
∣∣.

Case 3: Without loss of generality, |f(x1) − y| ≥ ε and |f(x1) − y| < ε implies that
there is an x3 ∈ X such that |f(x3) − y| = ε and |f(x1) − f(x3)| < |f(x1) − f(x2)|.
Consequently, according to case 2∣∣max{0, |f(x1)− y| − ε} −max{0, |f(x2)− y| − ε}

∣∣
=
∣∣max{0, |f(x1)− y| − ε} −max{0, |f(x3)− y| − ε}

∣∣
≤ |f(x1)− f(x3)| ≤ |f(x1)− f(x2)|.

Case 4: Without loss of generality, |f(x1)−y| ≥ ε and |f(x1)−y| ≤ ε implies that there
are x3, x4 ∈ X such that |f(x3)− y| = ε and |f(x1)− f(x3)| < |f(x1)− f(x2)| and such
that |f(x4)− y| = ε and |f(x2)− f(x4)| < |f(x1)− f(x2)|. Consequently, according to
case 2 ∣∣max{0, |f(x1)− y| − ε} −max{0, |f(x2)− y| − ε}

∣∣
=
∣∣max{0, |f(x1)− y| − ε} −max{0, |f(x3)− y| − ε}
+ max{0, |f(x4)− y| − ε} −max{0, |f(x2)− y| − ε}

∣∣
=
∣∣max{0, |f(x1)− y| − ε} −max{0, |f(x3)− y| − ε}

∣∣
+
∣∣max{0, |f(x4)− y| − ε} −max{0, |f(x2)− y| − ε}

∣∣
≤ |f(x1)− f(x3)|+ |f(x4)− f(x2)| ≤ 2|f(x1)− f(x2)|.

Hence, the Lipschitz condition is satisfied for `ε with B = 2 as well.
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In the following theorem, Rosenberg and Bartlett [2007] considered the precise function
class J

J =

{
f =

f1 + f2

2
:f1 ∈ H1, f2 ∈ H2, (4.25)

∑
v=1,2

νv‖fv‖2Hv
+ λ

m∑
j=1

|f1(zj)− f2(zj)|2 ≤ 1

 .

on the basis of the CoRLS problem formulation from Equation 4.16. We will make use
of two decompositions of the Gram matrices K1 and K2 of the reproducing kernels k1

and k2 into submatrices

K1 =

(
A C
CT B

)
and K2 =

(
D F
F T E

)
,

where A,D ∈ Rn×n, C,F ∈ Rn×m, and B,E ∈ Rm×m.

Theorem 4.18. [Rosenberg and Bartlett, 2007] For the function class J from Equation
4.25

1
4
√

2

MΣ

n
≤ R̂n(J ) ≤ MΣ

n
(4.26)

holds true, where

M2
Σ =

1

ν1
tr(A) +

1

ν2
tr(D)− λtr(JT (Im + λH)−1J)

as well as J = 1
ν1
CT − 1

ν2
F T and H = 1

ν1
B + 1

ν2
E.

Proof. The proof was presented by Rosenberg and Bartlett [2007].

Now we finally prove a bound on the empirical Rademacher complexities of H`2Σ and HεΣ,
respectively.

Lemma 4.19. [Ullrich et al., 2017] Let H`2Σ and HεΣ be the function spaces presented in
Equations 4.20 and 4.21 above based on two RKHS H1 and H2 with reproducing kernels
k1 and k2. Let ‖L1‖∞ and ‖L2‖∞ be matrix norms of the upper submatrices of the Gram
matrices K1 and K2 according to the decomposition in Equation 4.4. Furthermore, with
s we denote the sparsity of the kernel expansion vectors π1(f1) and π2(f2), i.e., the
maximal number of their components not equal to zero.

(i) The empirical Rademacher complexity of the `2-CoSVRmod function class H`2Σ can
be bounded via

4
√

2
3

n

√
trn(KΣ) ≤ R̂n(H`2Σ ) ≤ 2

n

√
trn(KΣ), (4.27)

where trn(KΣ) =
∑n

i=1 kΣ(xi, xi) and kΣ is the sum kernel of Equation 4.18.
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(ii) The empirical Rademacher complexity of the ε-CoSVRmod function class HεΣ can be
bounded via

R̂n(HεΣ) ≤ 2s

n
µ(‖L1‖∞ + ‖L2‖∞), (4.28)

where µ = max{ 1
2ν1
, 1

2ν2
, 2λ
ν1
, 2λ
ν2
} and λ, ν1, ν2 > 0 are the hyperparameters of ε-CoSVRmod

in Equation 4.12.

Proof. (i) By definition of the sum kernel kΣ from Equation 4.18 it holds true that

MΣ = trn

(√
1

ν1
tr(A) +

1

ν2
tr(D)− λtr(JT (Im + λH)−1

)
= trn(KΣ),

where KΣ is the Gram matrix of kΣ. From the definition of J in Equation 4.25 and of
H`2Σ in Equation 4.20 as well as Definition 2.6 of the empirical Rademacher complexity
we conclude

R̂n(H`2Σ ) = 2R̂n(J ),

which combined with Equation 4.26 proves the claim.

(ii) From the box constraints of the dual optimisation problem of ε-CoSVRmod we know
that for the kernel expansion coefficients

|πvi| ≤
1

Mνv
=

1

2νv
for i = 1, . . . , n, v = 1, 2

and

|πvi| ≤
Mλ

νv
=

2λ

νv
for i = n+ 1, . . . , n+m, v = 1, 2

holds true. Hence,

|πvi| ≤ µ = max{ 1
2ν1
, 1

2ν2
, 2λ
ν1
, 2λ
ν2
} (4.29)

for i = 1, . . . , n + m and v = 1, 2 is valid. We continue to consider the concatenated
vector

π =

(
π1

π2

)
∈ R2(n+m)

in the sequel of the proof. Additionally, we fix the concatenated matrix L ∈ Rn×2(n+m)

with

L = (L1 L2),

where L1 and L2 are the upper parts of the Gram matrices K1 and K2. Let s be the
sparsity of the vector π, i.e., the number of its components different from zero (compare
Section 4.3.4). From the dual optimisation problem of ε-CoSVRmod, we know that
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s� 2(n+m). Moreover, for a constant c > 0 let the scaled ball c ·B1 be defined as

c ·B1 =

x ∈ R2(n+m) :

2(n+m)∑
i=1

|xi| ≤ c

 .

From the sparsity property and the definition of µ in Equation 4.29 we conclude

2(n+m)∑
i=1

|xi| ≤ sµ.

Hence, π lies in the scaled ball sµ·B1. With instances x1, . . . , xn drawn i.i.d. from X and
Bernoulli random variables σ = (σ1, . . . , σn)T , we reformulate the empirical Rademacher
complexity from Definition 2.6 as follows

R̂n(HεΣ) = Eσ
[

sup
f∈Hε

Σ

∣∣∣∣∣ 2n
n∑
i=1

σif(xi)

∣∣∣∣∣
]
≤ 2

n
Eσ
[

sup
π∈sµB1

|σTLπ|

]
. (4.30)

From Theorems II.2.3 and II.2.4 in [Werner, 1995] we know that

sup
π∈sµ·B1

|〈x, π〉| = sµ‖x‖∞ (4.31)

is valid for all v ∈ R2(n+m). From Equations 4.30 and 4.31 we conclude

R̂n(HεΣ) ≤ 2

n
Eσsµ‖σTL‖∞ =

2

n
Eσsµ‖σ‖∞‖L‖∞ =

2

n
Eσsµ‖L‖∞

As ‖L‖∞ is the row sum norm of L with

‖L‖∞ = max
i∈{1,...,n}

n+m∑
j=1

∑
v=1,2

|kv(xi, xj)|.

we finally obtain

R̂n(HεΣ) ≤ 2s

n
µ(‖L1‖∞ + ‖L2‖∞),

which finishes the proof.

4.4 Empirical Evaluation

In this section we investigate the performance of the co-regularisation algorithms intro-
duced above and corresponding baselines at the prediction of small compound’s affinity
values with respect to considered target proteins.
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4.4.1 Datasets, Implementation, and Experimental Setting

We performed our empirical analysis with 22 datasets which are described in detail in
Appendix B. Each dataset contains between 21 and 600 ligands and their positive real-
valued affinity towards a given human protein. For the representation of ligands we
utilised the fingerprints ECFP4, GpiDAPH3, and Maccs. All included fingerprint types
are binary, high-dimensional, and sparse. The performance analysis of co-regularised
algorithms is based on the empirical section in [Ullrich et al., 2016a] and [Ullrich et al.,
2017]. For the above-mentioned dataset we comment on the elaborate presentation in
detail below.

The practical experiments were implemented with Python 2.71. We developed an ex-
perimental framework which is available as open source2. A variety of co-regularised
algorithms and baselines are available within the framework. An overview of the im-
plemented algorithms can be found in Table 4.3. We used the CVXOPT optimisation
package3 for the solution of all single- and multi-view optimisation problems with ε-
insensitive loss function. In order to solve the respective QPs with positive semi-definite
matrices in the quadratic terms as well as equality and inequality constraints we applied
the CVXOPT function cvxopt.solvers.qp. The experimental framework and all figures
were generated with Python 2.74, Jupyter Notebook [Kluyver et al., 2016] and Matplotlib
[Hunter, 2007].

We considered affinity prediction as co-regularised learning with few labelled and many
unlabelled data instances. We randomly split each dataset of annotated ligands into
a labelled and an unlabelled fraction. The co-regularised algorithms employ both the
labelled and the unlabelled part for training. More precisely, in addition to labelled ex-
amples the co-regularised algorithms have access to the entire set of unlabelled instances
without labels. The considered baselines without co-regularisation term are only aware
of the labelled examples for training. For all algorithms the unlabelled data fraction is
used for testing in the sense of a transductive scenario (see Section 2.2). We decided
against a completely independent test sample because of the small fraction of labelled
examples and the fact that technically all possible molecular compounds are known in
advance in real-world applications as well.

Due to the small number of labelled examples n and large number of unlabelled instances
m, we had to modify the grid search scheme for the hyperparameter tuning procedure
as well. The standard k-fold CV scheme was introduced in Section 2.3.3 above. Assume
N is the number of instances of a dataset. Firstly, for training and testing we performed
a k-fold inverse cross-validation similar to the performance evaluation of CoRLSR by
Brefeld et al. [2006]. We chose a fraction p of randomly drawn examples as labelled
examples (n = p·N) and the remaining examples as unlabelled instances for training and
testing (m = (1−p) ·N). Secondly, for the hyperparameter search we performed another
k′-fold inverse CV with a randomly drawn fraction p′ of the labelled examples and the
unlabelled instances (n′ = p′·n, m′ = p′·m). In contrast to the procedure in the empirical
section of Chapter 3, the m′ unlabelled instances for the hyperparameter tuning were
drawn from the n unlabelled instances of the respective fold as we assumed them to
be known (without labels). The reasoning behind was to provide sufficient labelled

1https://www.python.org/
2https://bitbucket.org/Michael_Kamp/cosvr
3http://cvxopt.org/
4https://www.python.org/
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training examples n′ by choosing p′ close to 1.0. The performances of the different
algorithms were calculated using 5-fold inverse CV (p = 0.3). The hyperparameters for
each approach and for each dataset were optimised using grid search with 3-fold CV. The
utilised hyperparameter grid was νv ∈ {10−4, 10−3 . . . , 103}, λ ∈ {10−2, 10−1 . . . , 104},
and εL, εU ∈ {2−3, 2−2 . . . , 20}.

As we dealt with a regression task we used the RMSE from Section 2.2 as evaluation
measure. In order to assess whether the RMSEs of method A were significantly greater
or smaller than the RMSEs of another method B, we applied Wilcoxon signed-rank
tests. The null hypothesis H0 of this non-parametric test was that the median difference
between pairs of measurements be zero5. The alternative hypothesis H1 stated the
median difference to be either greater or smaller than zero, i.e., either method A or
method B had significantly smaller RMSEs than the respective other method.

We compared the CoSVR variants ε-CoSVR, `2-CoSVR, and Σ-CoSVR with CoRLSR
and other single- and multi-view algorithms for regression utilising a linear kernel for
the proposed kernel methods. A list of the reported algorithms in our empirical analysis
can be found in Table 4.3. We point out that the baseline CoRLSR is a multi-view
co-regularised method just like the CoSVR variants. For the practical experiments
we applied the modified versions ε-CoSVRmod and `2-CoSVRmod due to their shorter
running time in comparison to base CoSVR which has a greater number of variables
(see Table 4.2). Pairwise Wilcoxon signed-rank tests showed that the modified versions
do not have greater RMSEs than the base versions, although the unlabelled error term
of the modified algorithms is formulated differently (compare the definitions in Sections
4.3.2). In addition to the co-regularised algorithms we considered the corresponding
single-view SVR (v) and RLSR (v) methods (where v refers to the molecular fingerprint
or view) as well as the canonical multi-view baselines SVR (concat) and RLSR (concat)
(where concat refers to the concatenated features of the involved molecular fingerprints
or views). Finally, for reasons of completeness we also report RMSEs for SVR (avg) and
SVR (best). The first of which outputs the average RMSE of the independently trained
single-view SVR (v) predictors. The latter is an oracle that reports the best result of
all single-view SVR (v) predictors for each dataset.

4.4.2 Results

The presentation of practical results is divided into two parts. In part A) we evaluate co-
regularisation variants using combinations of standard molecular fingerprints. In part B)
we analyse the CoSVR performance with toy data that is supposed to imitate real-world
data and systematically varies structural properties of it.

A) Co-Regularisation Experiment with Combinations of Standard Molecular
Fingerprints

In Figure 4.3 we present the results of the CoSVR variants ε-CoSVR (a)-(j), `2-CoSVR
(b)-(k), and Σ-CoSVR (c)-(l). We compare them to the results of CoRLSR (a)-(c),
SVR (concat) (d)-(f), SVR (best) (g)-(i), and SVR (avg) (j)-(l). The scatter plots of
Figure 4.3 show the RMSE values of the respective opposed algorithms. In each scat-
ter plot we aggregated the RMSE results for all combinations of two fingerprints Gp-
iDAPH3/ECFP4, Maccs/GpiDAPH3, and Maccs/ECFP4, as well as the combination

5http://www.biostathandbook.com
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Figure 4.3: Performance comparison of CoSVR variants and baselines
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Table 4.3: List of single-view and multi-view methods

CoSVR Variants Description

ε-CoSVR multi-view modified ε-CoSVRmod, see Section 4.3.2
`2-CoSVR multi-view modified `2-CoSVRmod, see Section 4.3.2
Σ-CoSVR 2-view CoSVR with fused kernel, see Section 4.3.3

Baselines Description

CoRLSR multi-view RLSR, see Section 4.2
RLSR (v) single-view RLSR for view v, see Section 2.6.1

SVR (v) single-view SVR for view v, see Section 2.6.2
RLSR (concat) RLSR with multiple concatenated views

SVR (concat) SVR with multiple concatenated views

Others Description

SVR (best) multiple single-view SVR, best prediction
SVR (avg) multiple single-view SVR, average of predictions

of all three fingerprints Maccs/GpiDAPH3/ECFP4 to make the performance compar-
ison more comprehensive with respect to views. Each point represents the RMSEs of
two algorithms for one of the 22 dataset (for the three-view combination Maccs/Gpi-
DAPH3/ECFP4 we only calculated the results for the 14 smallest datasets). The figures
indicate that all CoSVR variants outperform CoRLSR, SVR (concat), and SVR (avg)
for the majority of datasets. The performance advantage of CoSVR methods in compar-
ison to the baselines grows from Σ-CoSVR over `2-CoSVR up to ε-CoSVR. Summarised
over all fingerprint combinations and datasets, SVR (best) performs nearly equal to the
variants ε-CoSVR and `2-CoSVR and slightly better than Σ-CoSVR. The results will
be discussed in Section 4.4.3 below.

Additionally, we illustrate the benefit of using CoSVR variants compared to each of the
considered single-view SVR (v) predictors. To this aim, the composition of the scatter
plots in Figure 4.4 is different from the one of Figure 4.3. The circles, squares, and
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Figure 4.4: Comparison of CoSVR variants with single-view SVR (v)
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triangles show the RMSEs of ε-CoSVR, `2-CoSVR, and Σ-CoSVR on the y-axis com-
pared to single-view SVR (v) on the x-axis (SVR (Maccs) in (a), SVR (GpiDAPH3) in
(b), SVR (ECFP4) in (c)). In each diagram we unified different fingerprint combina-
tions for the comparison with the single-view method, namely the ones that included
the respective view. For example, the combinations Maccs/GpiDAPH3, Maccs/ECFP4,
and Maccs/GpiDAPH3/ECFP4 were utilised for the comparison with SVR (Maccs) in
Figure 4.4 (a). The plots show that CoSVR outperforms SVR (GpiDAPH3) and SVR
(Maccs) for the majority of comparisons. The performance comparison of CoSVR with
SVR (ECFP4) becomes obvious from the Tables 4.4 and 4.5 below.

The indications with respect to ε-CoSVR and the single-view baselines SVR (v) as well
as the multi-view baselines CoRLSR and SVR (concat) in Figures 4.3 and 4.4 are sub-
stantiated by a Wilcoxon signed-rank test on the results which we present in Table 4.4).
In this table, we report the test statistics (Z and p-value) itemised with respect to the
combinations of views. The results for combination Maccs/GpiDAPH3/ECFP4 should
be considered in view of the fact that the sample size for a Wilcoxon signed-rank test
should be greater than 20. Results in which ε-CoSVR statistically significantly outper-
forms the baselines with a significance level p < 0.05 are marked in with (+). Results for
which we should remain with the null hypothesis (see above) are marked with (±). The
test confirms that ε-CoSVR performs statistically significantly better than all single-
and multi-view baselines for the fingerprint combinations GpiDAPH3/ECFP4 and bet-
ter than CoRLSR for all view combinations. The test outcomes vary between (+) and
(±) for the baseline SVR (concat) which will be discussed below. ε-CoSVR outperforms
SVR (GpiDAPH3) independent of the fingerprint combination used for it. The advan-
tage of ε-CoSVR against SVR (Maccs) and SVR (ECFP4) is significant for the compar-
ison with fingerprint combination GpiDAPH3/ECFP4 and Maccs/GpiDAPH3/ECFP4,
respectively.

In Table 4.5 we report the average RMSEs of all CoSVR variants and all methods
listed in Table 4.3 for all two- and three-view combinations of the fingerprints Maccs,
GpiDAPH3, and ECFP4. In terms of average RMSE, ε-CoSVR and `2-CoSVR out-
perform all other approaches for the view combination GpiDAPH3/ECFP4. For the
fingerprint combinations Maccs/GpiDAPH3 and Maccs/GpiDAPH3/ECFP4 ε-CoSVR
and `2-CoSVR outperform all other algorithms but the oracle SVR (best). With the
exception of the comparison of SVR (Maccs) and `2-CoSVR, the methods ε-CoSVR and
`2-CoSVR always have lower RMSEs than all other single-view SVR (v) approaches. We
observe that the combination Maccs/ECFP4 results in the highest average RMSEs for
CoSVR approaches. The performance of CoSVR approaches increases from Σ-CoSVR
over `2-CoSVR to ε-CoSVR. The absolute RMSE values are smaller if three views in-
stead of two views are used for learning. Apparently, the RMSE results for `2-CoSVR
and ε-CoSVR are better if three views are used instead of two views. Note that SVR
(best) is only a hypothetical baseline, since the best view varies between datasets and is
thus unknown in advance. The algorithm Σ-CoSVR performs on average similar to the
CoRLSR and SVR (concat) baseline and slightly worse than SVR (best). To avoid con-
fusion about the different performances of Σ-CoSVR and `2-CoSVR, we point out that
Σ-CoSVR equals `2-CoSVRmod (see Lemma 4.14) and not `2-CoSVR (equivalent with
`2-CoSVRmod for M = 2) which we use for our experiments. The advantage in learning
performance of ε-CoSVR and `2-CoSVR is accompanied with a longer running time as
shown in Figure 4.5, where we compared the running time of the CoSVR variants with
the ones of CoRLSR, SVR (concat), and single-view SVR for all combinations of two
molecular fingerprints [Ullrich et al., 2017]. We averaged the results for SVR (ECFP4),
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Table 4.4: Wilcoxon signed-rank test comparison of ε-CoSVR with baselines

Baseline Z p-Value Z p-Value

View Combination GpiDAPH3/ Maccs/

ECFP4 GpiDAPH3

CoRLSR 9.0 < 0.00014 (+) 54.0 < 0.01858 (+)
SVR (Maccs) - - 118.0 < 0.78260 (±)
SVR (GpiDAPH3) 1.0 < 0.00005 (+) 20.0 < 0.00055 (+)
SVR (ECFP4) 39.5 < 0.00473 (+) - -
SVR (concat) 3.0 < 0.00006 (+) 107.0 < 0.52660 (±)

Baseline Z p-Value Z p-Value

View Combination Maccs/ Maccs/

ECFP4 GpiDAPH3/ECFP4

CoRLSR 40.0 < 0.00498 (+) 16.0 < 0.02194 (+)
SVR (Maccs) 85.0 < 0.18310 (±) 13.0 < 0.01315 (+)
SVR (GpiDAPH3) - - 0.0 < 0.00098 (+)
SVR (ECFP4) 101.0 < 0.40770 (±) 48.0 < 0.77760 (±)
SVR (concat) 91.0 < 0.24910 (±) 33.0 < 0.22090 (±)

Figure 4.5: Average running times (logarithmic scale) of the CoSVR variants,
CoRLSR, SVR (concat) and SVR

SVR (GpiDAPH3), and SVR (Maccs) and summarised it with SVR (single-view). For
a fair comparison with respect to running times, we point to the fact that we used our
own implementation for all presented approaches. In accordance with the theory pre-
sented in Section 4.3.3, Σ-CoSVR exhibits a running very close to the single-view SVR
approaches.
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B) Co-Regularisation Experiments with Synthetic Data

The figures and tables above show that the CoSVR variants often outperform baselines
on real-world ligand prediction datasets. In order to understand how CoSVR succeeds to
achieve better prediction results than single-view baselines and, whether there are struc-
tural properties or barriers for the beneficial application of co-regularised algorithms, we
add experiments with synthetic data. This synthetic data was generated with the aim
to imitate structural properties of the real-world datasets. More precisely, we systemat-
ically varied structural parameters in order to expose the resulting consequences of the
data structure for the ligand prediction performance of co-regularised algorithms.

All data representations are binary, high-dimensional, and sparse. With sparse we refer
to the fact that most of the features are equal to zero (compare also Section 4.3.4).
We consider the frequency of a feature as the number of 1’s in the respective compo-
nent column divided by the total number of ligands in the dataset. A typical trend of
feature frequencies is shown in Figure 4.8 for dataset P07858, where the components
of the feature vector dimension on the x-axis are ordered by decreasing frequency and
the dimension d is different for the considered fingerprints (see also Table B.2 in the
appendix). The features seem to follow a characteristic exponential decay, which is less
distinct for fingerprint Maccs because of its much smaller dimension compared to ECFP4
and GpiDAPH3.

We randomly generated binary datasets of 200 examples and different feature dimensions
d (see Table 4.6) and a very small fraction of 0.1 of labelled examples. For the generation
of two views, denoted with view 1 and view 2, we independently drew Bernoulli random
variables with an exponentially decreasing probability of success in order to mimic the
feature frequency trend in the ligand datasets (see Figure 4.8). These frequencies are
represented by the green lines in Figure 4.6 (a), (b), (c), and (d). From the rather
frequent components 1, 2, . . . , d/2 we randomly chose a number of f relevant feature

Method View Combinations

GpiDAPH3/ Maccs/ Maccs/ Maccs/

ECFP4 GpiDAPH3 ECFP4 GpiDAPH3/ECFP4

ε-CoSVR 1.031 0.993 1.014 0.873
`2-CoSVR 1.044 0.989 1.000 0.888
Σ-CoSVR 1.136 1.084 1.109 -
CoRLSR 1.174 1.052 1.045 0.938
SVR (Maccs) - 0.996 1.011 0.950
SVR (GpiDAPH3) 1.333 1.358 - 1.206
SVR (ECFP4) 1.069 - 1.084 0.892
SVR (concat) 1.179 1.106 0.973 0.913
SVR (best) 1.067 0.981 0.948 0.846
SVR (avg) 1.201 1.177 1.048 1.016
RLSR (Maccs) - 1.002 1.013 0.932
RLSR (GpiDAPH3) 1.327 1.347 - 1.202
RLSR (ECFP4) 1.066 - 1.096 0.898
RLSR (concat) 1.159 1.105 0.975 0.904

Table 4.5: Average RMSEs for all methods and fingerprints
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Figure 4.6: Comparison of feature weights for toy experiment
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columns (compare Table 4.6) and changed these features in view 2 by transferring them
from view 1. Consequently, both views exhibited the same relevant feature columns
(grey vertical lines 4.6). Finally, the label was calculated as sum of the relevant feature
columns. We calculated the RMSEs of ε-CoSVR, single-view SVR (view 1), and single-
view SVR (view 2) with default parameters and plotted the feature weights of the two
view-predictors corresponding to ε-CoSVR (blue graphs) as well as the single-view SVR
predictors SVR (view 1) and SVR (view 2) (red graphs) against the respective dimension
component on the x-axis. We joined the data points with a continuous graph in order
to emphasise the highly weighted relevant features at the grey lines (big amplitudes of
blue peaks, smaller amplitudes of red peaks). On the majority, we observe non-negative

Subfigure Dimension Features RMSE

d f SVR (view 1) SVR (view 2) ε-CoSVR

4.6 (a) 100 5 0.467 0.491 0.128
4.6 (b) 100 10 0.841 0.751 0.461
4.6 (c) 200 20 1.160 1.205 0.756
4.6 (d) 400 40 1.961 2.035 1.669

Table 4.6: Input parameters for synthetic datasets and RMSE results
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weights as the algorithm approximates the actual functional relation between input and
output which is a sum of 1’s. Figure 4.6 (a) shows that the view-predictors of ε-CoSVR
are able to extract the relevant features and weight them with a big feature coefficient
value, whereas the single-view SVR predictors weight every feature with a comparatively
small coefficient value. This effect diminishes with increasing dimension d and fraction
of relevant features f which we infer from the trend in Figures 4.6 (a) to Figure 4.6
(d). According to the results in Table 4.6, ε-CoSVR always performs much better than
single-view SVR in terms of RMSEs.

4.4.3 Discussion

CoSVR regression techniques are able to take profit from the inherent information of
unlabelled instances delivered in form of multiple sparse data representations. In view
of the results presented above, they generally perform better than single-view SVR (v),
and RLSR (v) approaches, which can be assumed the state-of-the-art method in affinity
prediction and strongly related tasks [Bock and Gough, 2002, Liu et al., 2006, Maunz and
Helma, 2008, Ding et al., 2013, Sugaya, 2014, Balfer and Bajorath, 2015, Abbasi et al.,
2017]. More precisely, according to Table 4.5, ε-CoSVR and `2-CoSVR outperform the
multi-view approach CoRLSR [Brefeld et al., 2006] on all view combinations and SVR
(concat) on 3 out of 4 view combinations. `2-CoSVR outperforms all single-view SVR
approaches on all view combinations and, ε-CoSVR on 3 out of 4 view combinations.
These conclusions are refined via Wilcoxon signed-rank tests (see Table 4.4). Differ-
ences in the pairwise comparison of precise fingerprint combinations here arise from
the fact that Table 4.5 contains absolute values and Table 4.4 delivers information on
the difference in performance of two algorithms. Furthermore, ε-CoSVR and `2-CoSVR
outperform SVR (best) for the view combination GpiDAPH3/ECFP4 and perform com-
parably for all other combinations. The performance of SVR (best) in comparison with
CoSVR and the baselines is not surprising as the algorithm picks the best single-view
SVR (v) predictor for each dataset individually. We did not expect CoSVR to beat the
oracle SVR (best) as it represents an unrealistic baseline. Instead, we showed that the
multi-view algorithms ε-CoSVR and `2-CoSVR perform automatically as good as the
best single-view predictor. Because of the weaker performance of Σ-CoSVR, this variant
is rather from a theoretical importance (see Sections 4.3.3, 4.3.4, and 4.3.5). To avoid
confusion about the different performances of Σ-CoSVR and `2-CoSVR, we point out
that Σ-CoSVR equals `2-CoSVRmod according to Lemma 4.14. It is not equal to `2-
CoSVR which we use for our experiments and which is equivalent with `2-CoSVRmod for
M = 2. Generally, the absolute RMSEs of the CoSVR variants decrease if 3 molecular
fingerprints are utilised compared to a combination of 2 fingerprints.

A typical ligand affinity dataset using a binary molecular fingerprint is sparse. This is a
consequence of the fact that fingerprints usually gather a large number of molecular fea-
tures, of which finally a potential ligand only exhibits a few. From Figure 4.6 we conclude
that ε-CoSVR detects the impact of the relevant features better than single-view SVR.
Figures 4.6 (a) and (b) show that the view-predictors of ε-CoSVR provide the relevant
features (grey line) with a particular large coefficient, whereas the SVR (view 1) and
SVR (view 2) predictors assign a large weight to all of the frequent features (dimension
between 1 and d/2). This effect can be explained with the feature information contained
in unlabelled data in combination with the sparsity and the high dimensionality of the
data in general. As the fraction of labelled examples in comparison to the one for unla-
belled examples is small and because all features have a low frequency, ε-CoSVR has a
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Figure 4.7: RMSE performance (top), scaled true dataset dimensions, and sparsities
(bottom) for the fingerprint combination GpiDAPH3/ECFP4
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much better chance to detect relevant features for the prediction in the unlabelled data
that do not appear in the labelled data. In general, the RMSEs of all algorithms rise for
increasing true dataset dimension (for the term true dimension compare Appendix B).
In Figure 4.7 we plotted the scaled true dimensions, the sparsities, and the RMSE for
ε-CoSVR, CoRLSR, and SVR (concat) against the number of ligands in the datasets.
We observe that the results become worse if the dimension grows disproportional with
respect to the dataset size and, hence, the number of features exceeds the number of
training examples.

A general drawback of ε-CoSVR and `2-CoSVR is that high expenses are necessary to
solve the corresponding optimisation problems which results in longer running times
compared to single-view algorithms (see Table 4.2 and Figure 4.5). For this reason,
CoSVR should not be preferred if predictions need to be delivered immediately. In
contrast, Σ-CoSVR has the running time of a single-view algorithm. The choice of the
algorithm’s optimal hyperparameters has not only a strong impact on computing time
but also for the respective predicition performance. To be more precise, for ε-CoSVR
M +3 hyperparameters ν1, . . . , νM , λ, ε

L, and εU have to be tuned, which is costly if the
parameter grid is close meshed. In contrast, for SVR only 2 optimal hyperparameters
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Figure 4.8: Feature frequency trend for the considered fingerprints
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ν and ε have to be calculated. Therefore, a compromise between optimal parameter
assignment and the resulting time complexity must be found in this context.

In summary, CoSVR and its variants are novel regression techniques using multiple views
and unlabelled data with a high predictive performance. If computation capacity is not
a limiting factor, the application of CoSVR supersedes the expensive choice of the most
appropriate data representation for the learning task at hand.
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Chapter 5

Projection-Based Learning

In the learning scenarios of the previous chapters labelled data was available for the
generation of a regression model for ligand affinities. Multiple views on data were applied
to find a supervised MKL model based on a linear combination of predictor functions
and sufficient labelled training information in Chapter 3. The semi-supervised MVL
approach of co-regularisation was used in Chapter 4 to obtain a good predictor for
regression even if only little labelled training data was available in addition to a large
number of unlabelled instances. The variety of vectorial fingerprint formats for small
molecular compounds represent the multiple views on data in the previous chapters.
Without further assumptions or practical experiments, it is not known which molecular
fingerprint is optimal for the ligand affinity prediction problem at hand. In Chapter 5, we
investigate the prediction of affinities provided the special case that no labelled examples
are known for a considered target protein at all. The search for novel ligands of so-
called orphan proteins is denoted with orphan screening and an instance of unsupervised
learning. The regression case of orphan screening is the determination of ligand affinities
for the orphan protein. We observed in practical experiments that the regression error
of ligand affinity prediction with supervised kernel methods increased drastically for
decreasing number of labelled examples. Therefore, we investigate alternative techniques
for the marginal case of orphan screening in the present chapter.

The classification case of orphan screening has already been addressed [Geppert et al.,
2009, Wassermann et al., 2009a, Geppert et al., 2010]. In this context, the target-
ligand kernel approach (TLK) [Erhan et al., 2006, Jacob et al., 2008, Jacob and Vert,
2008] is an effective baseline that utilises kernel functions for both targets and ligand
instances. Bock and Gough [2002, 2005] predicted the free energy of a protein-ligand-
complex and performed a ranking approach. Our solution to the described unsupervised
problem requires to firstly consider the actual learning task relative to its corresponding
target and, secondly, the existence of different targets for which this learning tasks can
be solved. In the practical problem of orphan screening the learning task is to predict
ligand affinities for the orphan protein. Besides the orphan target, the affinity prediction
task can be considered equivalently for different proteins. More precisely, to compensate
for the lack of data, labelled information of other targets as well as relations between
the targets will be used to infer an appropriate prediction model for the orphan target.
We introduce and evaluate corresponding projections (CP) for orphan screening [Ullrich
and Gärtner, 2014, Giesselbach et al., 2018]. Additionally, we suggest orphan principal
component analysis (OPCA) as a variant of the interactive knowledge-based PCA of
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[Oglic et al., 2014]. Although we focus on ligand affinity prediction, the presented
algorithms in the present chapters are suitable for learning problems with the following
properties

• a principal learning task and targets for which the learning task can be considered,

• an orphan target,

• further non-orphan targets,

• (at least one) representation of data instances for the principal learning task with
appropriate similarity measure (kernel function),

• and a similarity measure (kernel function) for targets.

Two examples from real-world show that the listed preconditions indeed describe realistic
and relevant scenarios in practice.

Example 5.1. (Orphan screening) Orphan screening denotes the search for binding
partners in compound databases for proteins without previously known information on
ligands and their affinities [Bock and Gough, 2005, Wassermann et al., 2009a, Ullrich
et al., 2010, Giesselbach et al., 2018]. The respective proteins are called orphan pro-
teins. Prominent examples of orphan targets are the human G-protein coupled receptors
(GPCRs) for which hardly any binding partners are known [Jacob et al., 2008, Zhou
and Skolnick, 2012]. Because of their regulatory role in biochemical pathways binding
partners of GPCRs are of great value in drug discovery research. Although millions of
small molecular compounds are identified and protein-ligand information is described in
molecular databases, orphan proteins still exist as the number of functional proteins in
biological organisms is large and can be a result of newly-discovered proteins.

Example 5.2. (Paper rating) Another application from the biomedical domain is the
suggestion or evaluation of medicinal articles, for example from PubMed1, to find the
most promising treatment. Every patient in a hospital or medical practice is represented
via a health record that comprises information on physical parameters, age, pre-existing
condition, and prior examination and therapy efforts. Having these records and the
article’s text document both a patient and article similarity can be calculated. Medical
experts are able to score the relevancy of a scientific article (here used synonymously with
treatment) for documented patients. Such an evaluation would be desirable for completely
new patients at the beginning of the therapeutic treatment.

For both CP and OPCA, projections play an important role for the actual knowledge
transfer from targets with labelled information to targets without labelled information
(compare also Section 2.7 on dimensionality reduction). Projection-based methods have
already been applied in chemoinformatics, for example, Vert and Kanehisa [2002] used
kernel canonical correlation analysis (CCA) to extract the most relevant features for a
gene classification problem. Because of the inclusion of labelled information from other
related targets, we do not face a conventional unsupervised scenario. However, this
classification is still correct for the principal learning task with respect to the orphan
target. The learning scenario and the proposed algorithms better fit in the classes of
transfer learning [Pan and Yang, 2010] or multi-task learning [Caruana, 1997]. Transfer

1https://www.ncbi.nlm.nih.gov/pubmed/
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learning comprises approaches that use model information of already solved problems
for the solution of an unsolved but related problem. Multi-task learning aims at a
simultaneous solution of different problems without a focus on one particular target. In
a transfer learning approach, Ning et al. [2009] enriched the training information for the
protein target under consideration with labelled data from related proteins. Though,
the focused target itself was not an orphan target.

The classification of the approaches considered in the present chapter differs from the
one in two previous chapters. Firstly, the two algorithms CP and OPCA are not re-
stricted to an application for regression problems only. If the hypothesis model allows
for an appropriate parameterisation, both algorithms can be applied to classification or
structured output prediction as well. Furthermore, in contrast to the algorithms inves-
tigated in Chapters 3 and 4, the definitions of the algorithms in the present chapter do
not essentially require a multi-view representation of data instances. Instead, we define
CP and OPCA as single-view approaches and present additional multi-view variants.
Mainly because of the knowledge transfer setting from targets with labelled training
data to targets without labelled training data, a slightly modified notation will be used
in Chapter 5 which will be introduced at the beginning of the following section.

The present chapter is based on our publication [Giesselbach et al., 2018]. It is structured
as follows. Firstly, we introduce the learning scenario and the modified notation of the
present chapter in Section 5.1. Secondly, in Section 5.2 we discuss the TLK baseline.
The subsequent Section 5.3 is dedicated to the CP algorithms and its single- and multi-
view variants. In the fourth empirical section, we evaluate the novel projection-based
algorithm CP practically for the prediction problem of ligand affinity prediction and
compare its performance with baseline methods. Finally, we introduce OPCA in an
extended future work part in Section 5.5.

5.1 Orphan Screening Learning Scenario

As already mentioned above, the learning scenario investigated in the present chapter
differs from the setting in Chapter 3 and 4. The modified scenario comes along with
a slightly modified notation. In Chapter 5, with principal learning task we denote the
search for a predictor function h from a hypothesis space H that maps instances from X
to labels from Y analogous to the focused learning task in the previous main chapters.
The principal learning task always corresponds to a particular target t from a target
space T and, therefore, aims at a target-related hypothesis ht : X → Y. For ligand
affinity prediction, the principal learning task is to find a binding affinity model ht with
respect to a protein target t. Superior to the principal learning task, we consider the
learning problem to find a function f : T → H that assigns a binding model ht to each
target t. Although it is not a general requirement of transfer learning [Pan and Yang,
2010], we are interested in the case that both the instance space X and the label space
Y as well as the principal learning task are the same for all targets. A target t ∈ T
is called supervised target if there is labelled training data from X × Y to solve the
principal learning task for t. The corresponding supervised hypothesis ht can be found
via an arbitrary supervised (kernel) method using the labelled examples for training.
On the contrary, a target to ∈ T without labelled training information is called orphan
target and, hence, to learn an orphan hypothesis ho ∈ H for to is an unsupervised task.
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Figure 5.1: Overview of the orphan screening’s learning scenario

However, knowing f the orphan hypothesis ho can be determined via

f(to) = ho. (5.1)

We will refer to the problem of finding a hypothesis for an orphan target as orphan
screening, independent of whether we consider the practical problem of affinity prediction
or another with the same preconditions on the learning scenario. An overview of the
orphan screening learning scenario with principal and superordinate models can be found
in Figure 5.1. In this figure, t1, . . . , tn ∈ T denote the supervised targets whose so-called
supervised hypotheses h1, . . . , hn ∈ H can be learning with an arbitrary supervised kernel
method. In contrast, to is the orphan target and ho the orphan hypothesis that can be
obtained via transfer learning. In Chapter 5, we will investigate kernelised algorithms
again. Other than in Chapters 3 and 4, we will apply a kernel function kT and a kernel
function kX as similarity measure for targets from T and instances from X , respectively.
Further changes with respect to notation will be explained below.

5.2 The Target-Ligand Kernel Approach

In chemoinformatics, orphan screening has been approached with the target-ligand kernel
(TLK) algorithm which is not based on projections [Erhan et al., 2006, Jacob et al., 2008,
Jacob and Vert, 2008, Wassermann et al., 2009a]. For the TLK algorithm, instances are
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5.2 The Target-Ligand Kernel Approach

assumed to be pairs of targets t ∈ T and learning objects x ∈ X of the principal learning
task according to

z = (t, x)

from the product space Z = T ×X . We point to the fact that in the TLK scenario, z is
not an unlabelled instance (as used in Chapter 4 or Section 5.3.4 below) but an element
of T × X . If kernel functions kT and kX for targets t ∈ T and instances x ∈ X exist, a
product kernel for z ∈ Z can be defined as the product of target and object kernel

kTL(z1, z2) = kT (t1, t2) · kX (x1, x2) (5.2)

for z1 = (t1, x1) and z2 = (t2, x2). According to the closure properties of kernels (com-
pare Section 2.5) the target-ligand kernel kTL from Equation 5.2 is a kernel function
again. Training data for the TLK approach can be obtained by the original training
examples combined with their respective supervised targets. Let each of the supervised
targets t1, . . . , tn have example sets E1, . . . , En ⊆ X × Y of cardinality r which are
supposed to be disjoint without loss of generality, i.e.,

E1 = {(x11, y11), . . . , (x1r, y1r)}
E2 = {(x21, y21), . . . , (x2r, y2r)}

...
...

...

En = {(xn1, yn1), . . . , (xnr, ynr)}.

For convenience, we assume the example sets to have equal size. With an appropriate
renumbering of examples and corresponding supervised targets we obtain N = n · r
labelled examples

(x1, y1), . . . , (xN , yN ) ∈ X × Y. (5.3)

in total for all supervised targets. They can be used to generate training examples from
Z × Y

(zj , yj) = ((ti, xil), yil), (5.4)

where i = 1, . . . , n, l = 1, . . . , r, and j = 1, . . . , N . If we consider the renumbering of
instances from X in Equation 5.3 the Gram matrix KX of kX is

KX = (kX (xi, xj))
N
i,j=1 .

Finally, the TLK prediction model f : Z → Y can be calculated with any supervised ker-
nel method, for example SVR or RLSR, utilising the described training data in Equation
5.4 and the kernel function kTL. The Gram matrix KTL ∈ RN×N of kTL with respect
to z1, . . . , zN can be written as

KTL = KX ◦


kT (t1, t1) · 1r×r kT (t1, t2) · 1r×r . . . kT (t1, tn) · 1r×r
kT (t2, t1) · 1r×r kT (t2, t2) · 1r×r . . . kT (t2, tn) · 1r×r

...
...

. . .
...

kT (tn, t1) · 1r×r kT (tn, t2) · 1r×r . . . kT (tn, tn) · 1r×r

 ,
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where N = n · r and ◦ is the element-wise matrix product. A submatrix of r × r ones
is represented by the symbol 1r×r. The orphan hypothesis ho : X → Y can then be
obtained via

ho(x) = f((to, x)),

where x ∈ X . In contrast to the CP and OPCA algorithms below, the training of the
TLK model f does not require pre-trained supervised hypotheses h1, . . . , hn. Further-
more, once the model f is available, it can be used to generate a binding model for
arbitrary targets t via ht(·) = f((t, ·)) without a new optimisation step.

5.3 Corresponding Projections

The first novel projection-based approach to orphan screening reminds of an RRM frame-
work according to Definition 2.5. Instead of an empirical risk objective as in Equation
2.8, we suggest to compare projections of targets and hypotheses in order to infer the
best orphan hypothesis ho. As explained in Section 5.1, the presented algorithm firstly
lifts the initial prediction problem to a higher level and derives a model f : T → H that
maps hypotheses to targets instead of labels to instances. Secondly, orphan screening is
solved via CP and its variants by inserting to

ho = f(to).

However, the model f can potentially output a hypothesis for any target t ∈ T . We
start with the definition and single-view variants of the algorithm and their solution.
Subsequently, we suggest alternative algorithms that incorporate multiple views on data.

5.3.1 Similarity Transduction and Base Algorithm

Our aim is to learn a hypothesis ho : X → Y for the orphan target to ∈ T . For
to we neither have training examples from X × Y nor other assumptions about an
appropriate predictor. Nevertheless, we make use of information from the environment
of the learning problem that will be helpful to solve orphan screening. Assume at
first there are supervised targets t1, . . . , tn ∈ T for which the corresponding hypotheses
h1, . . . hn ∈ H are already known. If labelled training pairs from X × Y are available
for the supervised targets their hypotheses can be learned by any supervised (kernel)
algorithm, for example SVR or RLSR. The respective training example sets E1, . . . , En ⊆
X × Y may or may not have identical instances. As already mentioned above, the idea
is to find a model f : T → H that operates on a superior level and solves a supervised
learning task with training examples (t1, h1), . . . , (tn, hn) ∈ T × H such that the label
space is the hypothesis space H of the principal learning task (see Section 5.1 and Figure
5.1). Let this function spaceH be a Hilbert space with inner product 〈·, ·〉H as introduced
in Definition 2.15. Additionally suppose that there is a kernel function (or similarity
measure) kT : T × T → R for targets. A good orphan hypothesis ho can be achieved if
we demand the corresponding projections to be approximately equal in the sense of

kT (ti, to)√
kT (ti, ti)

≈ 〈f(ti), f(to)〉H
‖f(ti)‖H

=
〈hi, ho〉H
‖hi‖H

(5.5)
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for i = 1, . . . , n. In terms of geometry we exploit the similarities in target and hypothesis
space T and H, respectively, to infer the orphan hypothesis. Consequently, we minimise
a loss term for the left and the right hand side of Equation 5.5

`
(
kT (ti, to)‖f(ti)‖H, 〈f(ti), f(to)〉H

√
kT (ti, ti)

)
(5.6)

for i = 1, . . . , n, where ` : R2 → R+ is a loss function. We introduce the corresponding
projections algorithm with ` being the squared loss `2 in the following definition.

Definition 5.1 (Corresponding projections). [Giesselbach et al., 2018] We consider the
principal learning task to find a hypothesis ht : X → Y from a hypothesis space H with
respect to a target t ∈ T . Let to ∈ T be an orphan target and (t1, h1), . . . , (tn, hn) ∈
T ×H be examples of supervised targets and associated supervised hypotheses. Assume
kT is a kernel function for targets and H a Hilbert space with inner product 〈·, ·〉H. The
optimisation

f(to) = argmin
h∈H

ν‖h‖2H +

n∑
i=1

(
〈h, hi〉H

√
kT (ti, ti)− kT (to, ti)‖hi‖H

)2
, (5.7)

where ν > 0 is a hyperparameter, is called corresponding projections (CP) algorithm to
solve orphan screening for the orphan target to ∈ T .

The CP algorithm can be found as pseudocode in Appendix C. It is a step-wise de-
scription of all supervised and transfer learning tasks which are necessary to solve the
orphan screening problem (compare Figure 5.1). Also other loss functions such as the
ε-insensitive loss could be inserted for ` in Equation 5.6. We point out that the candi-
date space H can be chosen such that CP is applicable for other principal learning tasks
like classification as well. Furthermore, there is no restriction on tasks T as well as the
spaces X and Y, apart from the existence of kT and the Hilbert space property of H.
In the following two sections we discuss the cases of linear and non-linear hypothesis
spaces H as well as a simplified CP algorithm [Giesselbach et al., 2018].

5.3.2 Linear and Simplified Algorithm

At first, we investigate the special case that H is the d-dimensional Euclidean space
Rd with canonical inner product 〈·, ·〉 and norm ‖ · ‖ and denote it linear corresponding
projections (LCP). LCP is the starting point for further variants of the CP algorithm.
Moreover, a linear hypothesis represents the baseline for ligand affinity prediction using
molecular fingerprints (compare Section 1.3). For the sake of convenience we identify
the orphan hypothesis f(to) = 〈ho, ·〉 with its vector of coefficients ho ∈ Rd. We define
the matrices H ∈ Rd×n and N ∈ Rn×n via

H = (h1 · · ·hn) , N = diag(kT (ti, ti)), (5.8)

as well as the vectors ρo, δo ∈ Rn with

(δo)i = δoi = kT (to, ti)‖hi‖ , (ρo)i =
√
kT (ti, ti)δoi. (5.9)

With diag(v) we name the diagonal matrix of a vector v. In contrast to its role in
Equation 5.3 as example number, the symbol N in Equation 5.8 denotes a matrix. The
following lemma represents a special case of Lemma 5.4 below.
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Lemma 5.2. Let (t1, h1), . . . , (tn, hn) ∈ T ×H be examples of targets and corresponding
hypotheses, kH be the linear kernel, kT be an arbitrary kernel, and the hypothesis space
H = Rd. Then LCP can be solved as

f(to) =

[
νId +

n∑
i=1

hikT (ti, ti)h
T
i

]† n∑
i=1

hi‖hi‖
√
kT (ti, ti)kT (to, ti), (5.10)

where ν > 0 is a hyperparameter and † denotes the pseudoinverse of a matrix.

Proof. We reformulate the objectiveQo(h) in Equation 5.7 with the matrices and vectors
defined in Equations 5.8 and 5.9 and receive

Qo(h) = νhTh+ hTHNHTh− 2hTHρo + δo
T δo.

The solution of LCP in Equation 5.10 can be derived by setting the gradient of Qo(h)

∂Qo(h)

∂h
= 2νh+ 2HNHTh− 2Hρo

equal to zero. We obtain ho = [νId +HNHT ]†Hρo which finishes the proof.

As the matrix HNH from above is positive semi-definite, the inverse [νId + HNH]−1

always exists if ν is positive. Otherwise, the more general pseudoinverse can be applied.
As a further variant we consider a simplified version of CP. For this simplified version
we assume an arbitrary hypothesis space H.

Definition 5.3. [Giesselbach et al., 2018] Let (t1, h1), . . . , (tn, hn) ∈ T ×H be supervised
targets and corresponding supervised hypotheses. For an arbitrary kernel function kT
and hypothesis space H we define simplified corresponding projections (SCP)

f(to) =
n∑
i=1

hi
kT (to, ti)√
kT (ti, ti)

(5.11)

for the orphan target to ∈ T as weighted sum of the supervised hypotheses.

Preliminary work on SCP classification has been published by Geppert et al. [2009]
who applied a weighted sum of predictors denoted as SVM linear combination (SVM-
LC). Using the SCP approach in Equation 5.11, the orphan hypothesis ho = f(to)
can be determined simply as linear combination of the supervised hypotheses hi. The
corresponding linear coefficients can be calculated directly and have not to be optimised
in form of model parameters. Therefore, the complexity of SCP is only O(ndκ) if the
calculation cost for kT can be bounded by κ. In contrast, the complexity for the LCP
computation in Equation 5.10 is O(nd3κ).

5.3.3 Non-Linear Corresponding Projections

In the previous section we considered a linear and a simplified version of CP. In the
present section we exploit the Hilbert space property of the candidate space H with
inner product 〈·, ·〉H and corresponding norm ‖ · ‖H and derive two non-linear versions

124
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of CP. Initially, we show that the orphan hypothesis ho lies in the span of the supervised
hypotheses h1, . . . , hn, i.e., can be represented as linear combination

ho =
n∑
i=1

βoihi , βo ∈ Rn. (5.12)

For the proof of Equation 5.12 we use a similar argument to the one applied in the
proof of Theorem 2.21 [Schölkopf et al., 2001]. We consider the decomposition of H into
S = span{h1, . . . , hn} and its orthogonal complement S⊥. Consequently, the orphan
hypothesis has got a representation ho = s+ g, where s ∈ S and g ∈ S⊥. We conclude
for the objective of CP in Equation 5.7

ho = argmin
s∈S,g∈S⊥

ν‖s+ g‖2H +
n∑
i=1

[
〈s+ g, hi〉H

√
kT (ti, ti)− kT (to, ti)‖hi‖H

]2

ho = argmin
s∈S,g∈S⊥

ν‖s‖2H + ‖g‖2H +
n∑
i=1

[
〈s, hi〉H

√
kT (ti, ti)− kT (to, ti)‖hi‖H

]2

ho =argmin
s∈S

ν‖s‖2H +
n∑
i=1

[
〈s, hi〉H

√
kT (ti, ti)− kT (to, ti)‖hi‖H

]2
,

where we use that g ⊥ {s, h1, . . . , hn} and the objective is minimised if g is the zero
element in S⊥. Analogous to Equations 5.8 and 5.9, we define matrices G,N ∈ Rn×n

(G)i,j = 〈hi, hj〉H, N = diag(kT (ti, ti)) (5.13)

and vectors ρo, δo ∈ Rn

(δo)i = kT (to, ti)‖hi‖H, (ρo)i =
√
kT (ti, ti) (δo)i. (5.14)

For convenience, we identify ho with its vector βo ∈ Rn of coefficients in Equation 5.12.

Lemma 5.4. [Giesselbach et al., 2018] Let H be a Hilbert space and kT : T × T → R
be a kernel function for targets. Using the representation of ho in Equation 5.12 the CP
algorithm from Equation 5.7 can be solved as

βo = [νG+GNG]†Gρo, (5.15)

where N , G, and ρo are the matrices and vectors from Equations 5.13 and 5.14. We
call this version of CP non-linear corresponding projections (NLCP).

Proof. Using Equations 5.12, 5.13, and 5.14, the objective Qo(h) in Equation 5.7 can be
reformulated in terms of β

Qo(β) = νβTGβ + βTGNGβ − 2βTGρo + (δo)
T δo.

If we set the gradient ∂Qo(β)/∂β equal to zero, we obtain the desired result βo =
[νG+GNG]†Gρo.

The computation of βo in Equation 5.15 requires to invert an n×n matrix, which results
in a computational complexity of O(n3) for NLCP.
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For NLCP we assumed that the supervised hypotheses h1, . . . , hn and the orphan hy-
pothesis ho are elements of the Hilbert space H. Because of the existence of labelled
training examples from X × Y for the supervised targets t1, . . . , tn the supervised hy-
potheses can be derived via arbitrary supervised kernel methods. However, we did not
use further structural information about the hypotheses and the hypothesis space. In
the following, we consider the renumbered union of training instances x1, . . . , xN ∈ X
contained in all training sets E1, . . . , En presented in Equation 5.3. For the second
non-linear CP variant we make two additional assumptions. Firstly, H is a RKHS with
kernel k. Secondly, every supervised hypothesis hi of target ti, i = 1, . . . , n, has got a
representation

hi(x) =
N∑
j=1

πijk(xj , x). (5.16)

If xj was not in the training set Ei of ti, the corresponding component πij of the vector
of coefficients πi ∈ RN is equal to zero. In contrast to the notation in Chapter 4, the
double index of πij refers to the index of the supervised target i and the numbering of
instances j. A representation of hypotheses according to Equation 5.16 is a consequence
of Theorem 2.21 for supervised kernel methods with well-posed optimisation problems,
e.g., for SVR or RLSR. In real-world learning scenarios it is possible that the number of
instances N is smaller than the number of supervised targets n. For example, this may
happen in case every supervised target has got the same small labelled ligand training set
and n is greater than the cardinality of this training set. For this case, the CP solution
according to Equation 5.15 can be rewritten such that it can be solved in time O(N3)
where N < n. According to Equation 5.12, ho can be represented as linear combination
of supervised hypotheses

ho(x) =
n∑
i=1

βoihi(x).

Together with the representation of supervised hypotheses in Equation 5.16 we conclude

ho(x) =
n∑
i=1

βoi

 N∑
j=1

πijk(xj , x)

 (5.17)

=
N∑
j=1

(
n∑
i=1

βoiπij

)
k(xj , x) =

N∑
j=1

πojk(xj , x),

where βo ∈ Rn and πi, πo ∈ RN . Hence, with Π = (π1 · · ·πn) ∈ RN×n the coefficients of
the orphan target are πo = Πβo. Let K be the Gram matrix of kernel k with respect
to x1, . . . , xN . Analogous to the derivation of the NLCP solution in Equation 5.15 we
define the matrices G̃ ∈ RN×n and N ∈ Rn×n

G̃ = KΠ, Ñ = diag(kT (ti, ti)) (5.18)

and vectors ρ̃o, δ̃o ∈ Rn

(δ̃o)i = kT (to, ti)
√
πTi Kπi, (ρ̃o)i =

√
kT (ti, ti) (δ̃o)i. (5.19)
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Again, we identify ho with its vector of coefficients πo. We point to the fact that the
subsequent Lemma 5.5 as well as all following lemmas and definitions are novel.

Lemma 5.5. Let the supervised hypotheses h1, . . . , hn, and the orphan hypothesis ho
have the representations from Equation 5.16 and 5.17, respectively, with πi, πo ∈ RN .
With k we denote the reproducing kernel of H and with kT a kernel function for targets
from T . If K is the Gram matrix of kernel k with respect to x1, . . . , xN , the CP from
Equation 5.7 can be solved as

πo =

[
νK +

n∑
i=1

KπikT (ti, ti)π
T
i K

]†

·
n∑
i=1

(√
πTi Kπi

√
kT (ti, ti)kT (to, ti)

)
Kπi, (5.20)

where ν > 0 and t1, . . . , tn are the supervised targets. We call this approach kernel
corresponding projections (KCP).

Proof. Given the preconditions of the lemma, the objective in Equation 5.7 can be
parameterised as

Qo(π) = νπTKπ + πT G̃ÑG̃Tπ − 2πT G̃ρ̃o + δ̃o
T
δ̃o.

We obtain the solution of KCP in Equation 5.20 if we put ∂Qo/∂π equal to zero.

The computation of KCP in Equation 5.20 requires to invert a N ×N matrix and has
thus a complexity of O(N3). For this reason, KCP should be preferred to NLCP if
the hypothesis space is an RKHS, the number of targets is greater than the number
of labelled training instances, and the supervised hypotheses have a representation as
kernel linear combination as discussed above.

5.3.4 Multi-View Corresponding Projections

Analogous to SVR or RLSR, the definition of CP is not based on multiple representations
of data. But equivalent to the co-regularisation approach in Chapter 4 for SVR or
RLSR, the CP algorithm can be modified to a multi-view algorithm. We present two
different multi-view versions of CP. Both versions make use of the supervised hypotheses
for the optimisation step. For each supervised target ti, i = 1, . . . , n, and each view
v = 1, . . . ,M a supervised hypothesis hvi ∈ Hv can be generated via a supervised kernel
method in a preliminary step of the CP optimisation from the labelled training data in
Ei. In contrast to the single-view setting from above, the involved instances x1, . . . , xN
are now available in M different data representations. The intuition behind the multi-
view approach in Definition 5.6 is the following. Firstly, a term that reminds of the
regularised empirical risk expands the idea of CP in Equation 5.7 to multiple views.
Secondly, the inner products of supervised hypotheses and orphan hypothesis is supposed
to be similar for pairs of views. For both multi-view algorithms in the subsequent
Definition 5.6 and Definition 5.8 below, the multi-view version of the superordinate
model f introduced in Equation 5.1 maps targets from T to M hypotheses from H1 ×
· · ·×HM . Every candidate space Hv is assumed to be a Hilbert space with inner product
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〈·, ·〉Hv and corresponding norm ‖ · ‖Hv . The multi-view solution of orphan screening
can then be obtained via f(to) = (h1

o, . . . , h
M
o ).

Definition 5.6 (MVCP). We consider the orphan target to and supervised targets
t1, . . . , tn. Suppose for each supervised target ti a hypothesis hvi can be learned for every
view v on data, i.e., there are pairs (ti, h

v
i ) ∈ T ×Hv for i = 1, . . . , n and v = 1, . . . ,M .

The optimisation (h1
o, . . . , h

M
o ) =

argmin
hv∈Hv

M∑
v=1

[
νv‖hv‖2Hv

+

n∑
i=1

(
〈hv, hvi 〉Hv

√
kT (ti, ti)− kT (to, ti)‖hvi ‖Hv

)2
]

(5.21)

+ λ

M∑
u,v=1

n∑
i=1

(〈hu, hui 〉Hv − 〈hv, hvi 〉Hv)2

is called multi-view corresponding projection (MVCP), where λ, νv > 0 are hyperparam-
eters and the final predictor for the orphan target is the average ho = 1/M

∑M
v=1 h

v
o.

The hyperparameters νv and λ play comparable roles for MVCP and the second multi-
view CP algorithm below like in the definition of base CoSVR in Chapter 4. The proof
for the solution of MVCP requires a number of further symbols analogous to the proofs
of LCP, NLCP, and KCP above. We define the matrices Gv, N,Dv ∈ Rn×n

(Gv)i,j = 〈hvi , hvj 〉Hv ,

N = diag(kT (ti, ti)), and (5.22)

Dv = νvGv +GvNGv + 2λ(M − 1)GvGv,

as well as the vector ρvo ∈ Rn

(ρvo)i =
√
kT (ti, ti)kT (to, ti)‖hvi ‖Hv . (5.23)

Lemma 5.7. Let Gv, N , Dv, and ρvo be defined according to Equations 5.22 and 5.23.
The solution β1

o , . . . , β
M
o ∈ Rn of MVCP can be obtained by the system of equations

D1 −2λG1G2 . . . −2λG1GM
−2λG2G1 D2 . . . −2λG2GM

...
...

. . .
...

−2λGMG1 −2λGMG2 . . . DM




β1
o

β2
o
...
βMo

 =


G1ρ

1
o

G2ρ
2
o

...
GMρ

M
o

 ,

where βvo are the linear coefficients of the orphan hypothesis in view v

hvo =

n∑
i=1

(βvo )ih
v
i

for v = 1, . . . ,M .

The proof for the solution of MVCP for orphan screening is analogous to the proof of
the CoRLSR solution in Lemma 4.4.
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Proof. For a fixed view on data v, a representation of hvo as linear combination of super-
vised hypotheses

hvo =
n∑
i=1

(βvo )ih
v
i (5.24)

can be proven analogous to the linear case in Equation 5.12, where βvo ∈ Rn are the
linear coefficients. With the representation of ho in Equation 5.24 the objective Qo in
Equation 5.21 can be parameterised with variables βvo for v = 1, . . . ,M . If we apply the
definitions in Equations 5.22 and 5.23 the claim is a consequence of the gradient

∂Qo(β1, . . . , βM )

∂βv
=2νGvβv + 2GvNGv

Tβv − 2Gvρ
v
o

+ 4λ(M − 1)GvGv
Tβv − 4λ

u6=v∑
u=1,...,M

GvGu
Tβu

put equal to zero.

The second multi-view approach adopts the idea of co-regularisation from Chapter 4. For
more details on co-regulariation compare Sections 4.2 and 4.3. Unlabelled data instances
with respect to the principal learning task are used to compare the predictions of the
orphan hypotheses in different views. Let z1, . . . , zm ∈ X be unlabelled data instances.
As we have different views on data, we consider M different kernel matrices Kv, v =
1, . . . ,M , with respect to the union of training instances x1, . . . , xN ∈ X , analogous
to the Gram matrix definition in Lemma 5.5. In order to illustrate the analogies with
Chapter 4 we will use the notation Lv ∈ RN×N for Kv. Equivalently,

Uv = {kv(xi, xj)}N, N+m
i=1, j=N+1 ∈ RN×m

denotes the view kernel matrix with respect to labelled and unlabelled instances, where
xN+1, . . . , xN+m = z1, . . . , zm. As a difference to the approaches in Chapter 4, we
consider the kernel expansion πvo and πvi , v = 1, . . . ,M , i = 1, . . . , n, only with respect
to the labelled instances of the principal learning task x1, . . . , xN . Hence, πvo , π

v
i ∈ Rn

holds true. We define the matrices G̃v ∈ RN×n, Ñ ∈ Rn×n, and Dv ∈ RN×N as follows

G̃v = LvΠv,

Ñ = diag(kT (ti, ti)), and (5.25)

Dv = νvLv + G̃vÑG̃
T
v + 2λ(M − 1)UTv Uv,

as well as the vector ρ̃vo ∈ Rn

ρ̃vo =
√
kT (ti, ti)kT (to, ti)

√
(πvi )TLvπvi . (5.26)

Definition 5.8 (CoCP). Suppose for every view v = 1, . . . ,M on data we have pairs
(ti, h

v
i ) ∈ T × Hv, i = 1, . . . , n of supervised targets and corresponding supervised

hypotheses. Let z1, . . . , zm denote unlabelled instances with respect to the principal
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learning task from X . The optimisation (h1
o, . . . , h

M
o ) =

argmin
hv∈Hv

M∑
v=1

[
νv‖hv‖2Hv

+
n∑
i=1

(
〈hv, hvi 〉Hv

√
kT (ti, ti)− kT (to, ti)‖hvi ‖Hv

)2
]

+ λ
M∑

u,v=1

m∑
j=1

(hu(zj)− hv(zj))2

is called co-regularised corresponding projections (CoCP), where λ, νv > 0 are hyperpa-
rameters and the final predictor for the orphan target is the average ho = 1/M

∑M
v=1 h

v
o.

The objective of CoCP is equipped with an additional regularisation term utilising un-
labelled instances which hopefully results in an orphan hypothesis ho with improved
predictive performance.

Lemma 5.9. With the preconditions of Definition 5.8 as well as Equations 5.25 and
5.26, the system of equations

D1 −2λU1
TU2 . . . −2λU1

TUM
−2λU2

TU1 D2 . . . −2λU2
TUM

...
...

. . .
...

−2λUM
TU1 −2λUM

TU2 . . . DM




π1
o

π2
o
...
πMo

 =


G̃1ρ̃

1
o

G̃2ρ̃
2
o

...

G̃M ρ̃
M
o

 .

delivers the solution of CoCP.

Proof. The reasoning of the proof is equivalent to the one of Lemma 5.7.

Analogous to the single-view case, it depends on the prerequisites on the candidate spaces
and the relation between the number of supervised targets n and the number of training
instances N whether MVCP or CoCP is to be favoured. The computation complexity
is O(Mn) for MVCP and O(MN) for CoCP as a consequence of the respective matrix
inversion.

5.4 Empirical Evaluation

Our aim is to solve the learning problem of orphan screening in the regression scenario,
i.e., to predict ligand affinities for orphan proteins with no labelled training data. For
this purpose, we consider transfer learning approaches which take labelled training data
of other proteins into account. In the present empirical section, we investigate the
performance of the learning algorithms from above and evaluate their usefulness for
orphan screening. The present section is based on the empirical section in [Giesselbach
et al., 2018]. We comment on the the elaborate presentation of results in the following.

5.4.1 Datasets, Implementation, and Experimental Setting

For the practical experiments in Chapter 5, we use 9 protein ligand datasets. Each of
the 9 sets relates to a human protein (the target) and comprises between 268 and 2648
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ligands annotated with their binding affinity towards the protein as pKi-value (compare
Section 1.3.1 on the biochemical background). More details on the datasets can be found
in Appendix B. Hence, we have a data matrix Φ(X) ∈ Rn×D of n = 8928 ligands in a
feature space RD induced by the feature map Φ. The experimental framework and all
figures were generated with Python 2.72, Jupyter Notebook [Kluyver et al., 2016] and
Matplotlib [Hunter, 2007].

For the real-world learning task of orphan screening the feature map Φ is a vectorial
representation of small molecular compounds from X . We apply the standard molecular
fingerprints ECFP4 and GpiDAPH3 (compare also Section 1.3.2). Additionally, we con-
sider 2 combined variants of the fingerprint formats ECFP4 and GPIDAPH3. Firstly,
we use a concatenation of the respective ECFP4 and GpiDAPH3 fingerprint vectors to
a final vectorial representation of length D = 30812 called Concat. The second com-
bined fingerprint was obtained by a Johnson-Lindenstrauss (JL) projection according
to Section 2.7.1 applied to the concatenated fingerprint Concat and will be denoted
JL-Concat. In order to obtain the JL property from Equation 2.35, we chose an image
dimension of d = 1000 and a number of instances n = 8928 such that with an error
bound of ε = 0.1 the dimension d is approximately (lnn)ε−2 according to Section 2.7.1
above. Furthermore, we generated the random projection matrix P ∈ Rd×D such that
for i = 1, . . . , d and j = 1, . . . , D

(P )i,j =

{
−1 · 1√

1000
: with probability p = 0.5

1 · 1√
1000

: with probability (1− p) = 0.5

to satisfy Equation 2.36. For more details on the choice of P consult Section 2.7.1 on
JL random projections. The JL projection-based ligand representations JL-Concant
pursues with the idea of information transfer based on projections. In contrast to the
Concat representation, JL-Concat induces a baselines approach with a low-dimensional
feature space.

We test and compare CP in its NLCP implementation from Section 5.3.3 with baseline
approaches applied to the learning problem of orphan screening. For the sake of sim-
plicity we will refer to the algorithm as CP. An overview of the considered baselines can
be found in Table 5.1. With SCP we refer to the weighted sum of supervised hypothe-
ses defined in Equation 5.11. The TLK predictor assigns an affinity value to pairs of
targets and ligands and is described in detail in Section 5.2. For the experiments each
of the 9 protein targets is assumed to be the orphan target and the respective other
8 targets serve as supervised targets. In contrast, the TLK variant TLK-Clo-3 only
incorporates the 3 closest targets of the orphan protein to as supervised targets. In this
context, closest (farthest) refers to the protein with the biggest (smallest) similarity or
kernel value compared to the orphan protein. Given a fixed orphan target, with Avg we
refer to the average predictor of the respective other 8 supervised targets. Analogous
to TLK-Clo-3, the Avg-Clo-3 algorithm only incorporates the 3 respective closest pro-
teins for the average predictor. The baselines Closest Protein and Farthest Protein use
the supervised hypothesis of the closest and farthest supervised hypothesis, respectively.
With Supervised-l% we refer to standard SVR with l%, l ∈ {5, 10, 30, 50, 80}, labelled
training data. SVR is in a sense an optimal but unfair baseline as for an orphan target
there is actually no labelled data available. We oppose the performance of the described
algorithms using the standard molecular representation formats ECFP4 and GpiDAPH3

2https://www.python.org/
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to the performance results obtained with the fingerprints Concat and JL-Concat. These
combined fingerprints add a canonical multi-view approach to our experiments.

In order to simulate the real-world scenario of orphan screening, each of the 9 proteins
was assumed to be the orphan target once and the respective 8 others the supervised
targets. For a fixed orphan target, we drew 240 ligands from each of the remaining sets
and repeated this procedure 10 times. We report RMSE values (compare Section 2.2)
to evaluate the regression performance of the different algorithms and averaged over the
10 folds for every orphan target. The choice of ν in Equation 5.15 posed a problem as
a labelled training set of 8 supervised targets and corresponding supervised hypotheses
for the general assignment of hypotheses from H to targets from T was not sufficient
to perform a reasonable hyperparameter tuning procedure. We observed in preliminary
experiments that the results were barely affected by the choice of ν. Therefore, we fixed
ν = 5.0 for all orphan targets. Furthermore, we introduced a small modification in the
objective of NLCP in Equation 5.15 with βo = [νG + λIn + GNG]†Gρo and λ = 1.0.
The summand λIn is an additional regularisation term and ensures the existence of the
inverse [νG + λIn + GNG]−1 if λ is large enough. For the initial training procedure
of the supervised hypotheses for supervised targets we applied a 3-fold cross-validation.
The hyperparameters ν and ε of the SVR algorithm were optimised within the ranges
ν ∈ {2−5, 2−4, . . . , 25} and ε ∈ {0.1, 0.01, 0.001}. For a fair comparison between CP
and baseline results, we applied our own SVR implementation based on Definition 2.24
for the determination of supervised hypotheses and the Supervised-l% baseline. For
the ligands, we used a linear kernel applied to the standard and combined fingerprint
representations. The similarity (target kernel) values kT for CP according to Section
5.3.3 were derived from a positive semi-definite similarity matrix for proteins. The
contained similarity values were calculated based on amino acid sequence similarity
measures and normalised.

5.4.2 Results

The experiments in the present empirical section augment the results presented in the
work of Giesselbach et al. [2018]. Figure 5.2 shows two boxplots with the RMSE results
for CP and all baselines from Table 5.1. The RMSEs are averaged over all 9 proteins
and all 10 ligand draws for the supervised models. We report averaged RMSEs for the

Name Description

Simplified SCP approach from Equation 5.11

TLK TLK approach from Section 5.2

TLK-Clo-3 TLK approach from Section 5.2

Avg Average of supervised predictors

Avg-Clo-3 Average of supervised predictors

Closest Protein Predictor of the closest protein

Farthest Protein Predictor of the farthest protein

Supervised-l% Standard SVR with l% of labelled data

Table 5.1: Overview of baseline approaches
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standard molecular fingerprints ECFP4 (a) and GpiDAPH3 (b). To start with, we re-
alise a generally worse performance of all approaches with GpiDAPH3 in comparison
to the application of ECFP4. In both cases, CP outperforms the Avg baseline which
does not make use of inter-target similarities at all. For the ECFP4 fingerprint, CP also
beats all other baselines that make use of these similarities exhibiting an average RMSE
of 2.197. However, this is not the case with respect to the Simplified and Avg-Clo-3
approach if GpiDAPH3 was used. In order to understand how the similarity relation of
proteins affects the prediction quality, we compare the CP performance with the perfor-
mance of the Closest Protein and Farthest Protein model. The fact that Closest Protein
performs much better than Farthest Protein supports the intuition that the molecular
similarity principle [Bender and Glen, 2004] does not only hold for small compounds
but also for proteins, in particular, for the orphan protein. The molecular similarity
principle introduced in Section 1.3.3 states that similar molecules are supposed to have
similar properties with respect to binding and vice versa. The modified average model
Avg-Clo-3 of the 3 most similar targets compared to the orphan target yields a signif-
icant performance improvement both for ECFP4 and GpiDAPH3. Again, the orphan
protein’s binding model obviously profits from the focus on closer proteins. Addition-
ally, we compare with the state-of-the-art approach TLK for orphan screening which
incorporates both target and ligand similarities. It was introduced in detail in Section
5.2 and basically solves a supervised problem in terms of target-ligand pairs. CP out-
performs TLK for both fingerprints. However, an advantage of the TLK approach is
that no supervised hypotheses have to be learned for proteins with training information
in a preliminary step. Regarding TLK-Clo-3 we could not show the positive effect of
emphasising closer targets during model calculation which we have seen for Avg-Clo-3
versus Avg. The approach closest to CP in terms of RMSE is the Simplified approach.
Therefore, depending on the precise learning task at hand, it might be a valuable alter-
native to CP because of its shorter running time. Supervised-l% denotes the standard
supervised SVR algorithm which uses l% of the available data as labelled training exam-
ples. As CP operates in the learning scenario of no labelled training information for the
orphan target, Supervised-l% outperforms CP as expected. We pursued the experiments
with CP and baselines for orphan screening using 2 combined fingerprints as canonical
multi-view representations of small molecular compounds. In Figures 5.3 (a) and 5.3 (b)
we observe that the considered algorithms show a very similar performance in applying
the combined variant Concat and JL-Concat compared to the ECFP4 fingerprint (see
Figure 5.2 (a) above). This will be discussed in the following section.

5.4.3 Dicussion

Orphan screening is a challenging and important real-world learning problem. More
precisely, we investigated the task of ligand affinity prediction for a protein with no
labelled training compounds. We defined CP and variants of it as a novel kernel method
to master this unsupervised problem. The approach of CP is to firstly derive protein-
ligand binding models for protein targets with labelled training data. Secondly, with
further information about the relations between protein targets the knowledge about
protein-ligand binding is transferred to the orphan target. For this reason, CP can
be assigned to transfer learning or multi-task learning as well. Supervised learning
algorithms are based on labelled data and its results degrade typically with a decreasing
number of labelled examples. For both the standard molecular fingerprints ECFP4 and
GpiDAPH3 and the combined representations Concat and JL-Concat we observed that
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Figure 5.2: RMSEs of CP and baselines averaged over all proteins and draws using
fingerprint ECFP4 (a) and GpiDAPH3 (b)

(a) (b)

Figure 5.3: RMSEs of CP and baselines averaged over all proteins and draws using
the fingerprints Concat (a) and JL-Concat (b)

(a) (b)
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the averaged RMSE values seem to increase exponentially from a training examples ratio
from 80% to 5% (compare Figures 5.2 (a) and (b) as well as 5.3 (a) and (b)). In the
performed experiments, CP shows comparable results to the Supervised-5% approach.
This is an interesting result as CP operates without labelled training examples for the
orphan target and, therefore, the Supervised-l% approaches are unrealistic baselines. A
conclusion from this result can be that a training with only few potentially unfavourably
examples is inferior to an approach without labelled training examples for the focused
orphan target which includes plenty of information from related protein targets as well
as well as the inter-protein relation. It is also remarkable that CP outperforms the
orphan screening baseline TLK (see Section 5.2) for ligand prediction clearly for every
applied representation of molecular compounds. However, although CP induces a general
predictor function f from targets to hypotheses in Equation 5.7, the optimisation to
obtain ho has to be performed for every orphan protein target to again. In contrast,
it is an advantage of the TLK algorithm, that it derives a general predictor function f
in one optimisation without the need to generate supervised hypotheses for supervised
targets in a preliminary step. However, the precise performance strongly depends on
the utilised fingerprint representation. The application of the fingerprint ECFP4 yielded
a better RMSE performance than the fingerprint GpiDAPH3 (see Figures 5.2 (a) and
(b)). Additionally, we showed that CP and baselines using the concatenated fingerprint
Concat exhibit approximately equal results compared to the application of the standard
molecular fingerprint ECFP4 (see Figure 5.3 (a)). That means, the multi-view approach
automatically performs nearly equal to the best of the single-view approaches, an effect
that we also found in the experimental sections of Chapter 3 and Chapter 4. The
effect remained for the JL-Concat representation which only uses a drastically reduced
fingerprint dimension compared to the concatenation of standard molecular fingerprints.

In summary, the very good performance of CP in the practical experiments motivates
future work in orphan screening. Including labelled training information for the orphan
target and considering other GPCR datasets are interesting directions to consider. In
the following section we define the versions MVCP and MVOPCA of CP putting CP in
a multi-view setting which can be investigated in future work.

5.5 Future Work: Orphan Principal Component Analysis

In this section, we present an alternative algorithm with single- and multi-view variant
to solve the orphan screening learning problem. It is not included in the empirical
section of the present chapter, for which reason we present it in an extended future work
section. The proposed algorithm is again based on projections and the transfer learning
approach discussed in Section 5.1 (compare also Figure 5.1). As there is no labelled
training data for the orphan target to, we make use of known hypotheses for supervised
targets, i.e., pairs (t1, h1), . . . , (tn, hn) ⊆ T × H. In the considered scenario, T is a
target space with a similarity measure (kernel function) kT : T × T → R and H is a
hypothesis space with inner product 〈·, ·〉H. Other than CP and its variants from above,
the novel approach introduced in the following applies principal component analysis
(PCA) for dimensionality reduction (compare Section 2.7.2) to infer an appropriate
hypothesis for the orphan target to. More precisely, Interactive knowledge-based kernel
principal component analysis (IPCA) was developed by Oglic et al. [2014] to facilitate
the integration of expertise on a focused domain into a visualisation process. The idea
of IPCA is to directly include expert knowledge in form of control points, classification
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constraints, must-link constraints, and cannot-link constraints [Oglic et al., 2014] into
the PCA optimisation objective and to calculate the resulting projection accordingly.
We will use the IPCA algorithm with must-link constraints below in order to solve the
unsupervised learning problem of finding a hypothesis ho ∈ H for the orphan target to.
For more details on IPCA we refer to Oglic et al. [2014].

5.5.1 Base Algorithm

At first, we define the instance space X as a union of targets and hypotheses

X = T ∪ H. (5.27)

which is crucially different to the instance space X being molecular compounds or a
product of proteins and potential ligands as considered in Section 5.2.

very special approach. Additionally, we define a kernel function k : X × X → R via

k(x, x′) =


kT (x, x′) : x, x′ ∈ T
〈x, x′〉H : x, x′ ∈ H
0 : otherwise

.

The kernel k is positive semi-definite as kT , 〈·, ·〉H, and the constant 0 are positive
semi-definite as well. We fix a set

X∪ = {x1, . . . , xp, xp+1, . . . , xp+q} ⊆ X , (5.28)

5.2 where {x1, . . . , xp} ⊆ T are targets and {xp+1, . . . , xp+q} ⊆ H are hypotheses. The
set X∪ must necessarily comprise the supervised targets ti, the supervised hypotheses
hi, i = 1, . . . , n, and the orphan target to. Optionally, further targets and hypotheses
from X can be contained in X∪ as well. Let KT be the Gram matrix of kT with respect
to x1, . . . , xp and KH be the matrix

KH = (〈xi, xj〉H)p+qi,j=p+1 .

Putting it together, the Gram matrix K of k with respect to x1, . . . , xp, xp+1, . . . , xp+q
equals

K =

{
KT 0p×q
0q×p KH

}
⊆ RD×D, (5.29)

where D = p+ q.

The idea of IPCA is to enrich the dimensionality reduction technique of PCA with addi-
tional expert knowledge on the considered domain. The so-called must-link constraints
describe the request that similar instances are supposed to have a small distance in the
image space of the optimised IPCA projection. In the orphan screening scenario the
must-link constraints demand supervised targets ti and their corresponding supervised
hypotheses hi to have a small distance after projection for all i = 1, . . . , n. These n
constraints are represented with the following set C of index pairs for instances

C = {(l, l′) : xl is a supervised target with supervised hypothesis xl′}
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with cardinality equal to n. Consequently, l ∈ {1, . . . , p} and l′ ∈ {p+1, . . . , p+q} holds
true. In particular, xl is not the orphan target to. Oglic et al. [2014] incorporated the
requirements expressed with must-link constraints in the determination of the optimal
projection Π as follows

max
Π∈RD×d

tr

(
1

D
ΠTKHDKΠ

)
− νtr

(
1

|C|
ΠTKLKΠ

)
, (5.30)

s.t. ΠTKΠ = Id

where ν > 0 is a trade-off hyperparameter. The matrices HD and L in Equation 5.30
are defined as

HD = ID − 1
D1D(1D)T

as well as

L =
∑

(l,l′)∈C

(el − el′)(el − el′)T ,

where el is the unit vector in RD such that the l-th component is equal to 1. With
A = K1/2Π and M = K1/2( 1

DHD − ν
nL)K1/2, the optimisation in Equation 5.30 is

equivalent with the standard PCA optimisation from Equation 2.39 in the introductory
section on kernel methods

max
A∈RD×d

tr
(
ATMA

)
s.t. ATA = Id.

The modified PCA projection in Equation 5.30 demands supervised targets and cor-
responding hypotheses to have a small Euclidean distance in the image space of the
projection. Consequently, the unsupervised task of orphan screening can be solved by
searching for the hypothesis in H with smallest distance to the projection of the or-
phan target to. For a general Gram matrix K ∈ Rn×n, corresponding to instances
x1, . . . , xn ∈ X , and some instance x ∈ X we fix the notation

K(x) = (k(x, x1), . . . , k(x, xn))T , (5.31)

which we will use in the following.

Definition 5.10 (OPCA). Let X and K ∈ RD×D be defined as in Equations 5.27
and 5.29. Let Π ∈ RD×d be the solution of the optimisation in Equation 5.30. The
determination of the orphan hypothesis ho for the orphan target to via

ho = argmin
h∈H′

‖ΠT (K(h)−K(to))‖2, (5.32)

is called orphan principal component analysis (OPCA).

There are different options for the precise implementation of the OPCA algorithm. At
the least, the set X∪ comprises the supervised targets and corresponding hypotheses
as well as the orphan target. In order to find a better orphan hypothesis, further
hypotheses can be added to X∪, for example, random hypotheses or linear combinations
of h1, . . . , hn. If H′ = X∪, the solution of Equation 5.32 reduces to finding the minimum
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of a finite set of numbers, i.e., the values of the objective in Equation 5.32 for the elements
of X∪. In the case of H′ = H the determination of the solution for ho in Equation 5.32
depends on the properties of the hypothesis space H and the kernel function kH. We
present a non-trivial solution for the case that H′ equals the span of the supervised
hypotheses in the following lemma. We use the notation from Section 5.5.1.

Lemma 5.11. Let xp+1, . . . , xp+q be the supervised hypotheses and the candidate space
H′ ⊆ Rd′ from Equation 5.32 be defined as

H′ = span{xp+1, . . . , xp+q}.

Furthermore, let kH be the linear kernel and KH as well as KT be the Gram matrices
applied in 5.29 such that K−1

H exists. We consider a decomposition of the projection
Π ∈ RD×d from Equation 5.30 into an upper submatrix ΠT ∈ Rp×d and a lower submatrix
ΠH ∈ Rq×d. Let to ∈ T be the orphan target. The solution of the OPCA optimisation
in Equation 5.32 can be calculated as

αo = K−1
H
(
ΠHΠT

H
)−1

ΠHΠT
T KT (to), (5.33)

where αo ∈ Rq and ho =
∑q

i=1(αo)ixp+i.

Proof. We define the instance matrix X ∈ Rq×d′ via

X =

 xp+1
...

xp+q

 , (5.34)

where xp+1, . . . , xp+q ∈ H are the supervised hypotheses. By definition of H′, every
hypothesis h ∈ H′ has got a representation h = XTα for appropriate α ∈ Rq. For the
objective in Equation 5.32 we conclude

‖ΠT (K(h)−K(to))‖2 = ‖ΠT
H KH(h)−ΠT

T KT (to)‖2

= ‖ΠT
H XXTα−ΠT

T KT (to)‖2,

where the first equality follows from the zero matrices in the definition of K in Equation
5.29. We obtain the parameterised solution αo of the OPCA minimisation in Equation
5.32 by putting the gradient with respect to α equal to zero

2
(
ΠT
H XXTαo −ΠT

T KT (to)
)T · (ΠT

H XXT
)

= 0Tq

As KH = XXT holds true because of the linear kernel, αo can be calculated as

αo =
(
KH ΠHΠT

H KH
)−1

KH ΠHΠT
T KT (to)

= K−1
H
(
ΠHΠT

H
)−1

ΠHΠT
T KT (to)

which finishes the proof.
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5.5.2 Multi-View OPCA

Analogous to the multi-view CP algorithm in Section 5.3.4 above, we present a multi-
view variant of OPCA in the final section of Chapter 5. To this aim, the OPCA algorithm
has to be generalised slightly. Assume there is a target space T with kernel function kT
for targets and, furthermore, there are hypothesis spaces Hv with reproducing kernels
kv, v = 1, . . . ,M , which represent M views on data instances. Again, we consider an
instance space as union of target space and hypothesis spaces

XMV = T ∪ H1 ∪ . . . ∪HM .

In contrast to single-view OPCA, the hypothesis spaces Hv correspond to M views on
data. As the labelled training instances of the supervised targets ti, i = 1, . . . , n, have
different view representations as well, M supervised hypotheses can be learned with
arbitrary supervised kernel methods for each target ti. Hence, we have n (M + 1)-
tuples (ti, h

v
i , . . . , h

v
i ) as subsets of XMV. Analogous to X∪ in Equation 5.28 from the

single-view OPCA version above we define

XMV
∪ = {x1, . . . , xp, xp+1, . . . , xp+q, . . . , xp+(M−1)q+1, . . . , xp+Mq}, (5.35)

where x1, . . . , xp are targets and xp+(v−1)q+1, . . . , xp+v·q are hypotheses from Hv. We

define a kernel function kMV : XMV ×XMV → R

kMV(x, x′) =


kT (x, x′) : x, x′ ∈ T
kv(x, x

′) : x, x′ ∈ Hv
0 : otherwise

,

Let KT be the Gram matrix of kT according to the targets x1, . . . , xp and Kv be the
Gram matrices of kv corresponding to the hypotheses xp+(v−1)q+1, . . . , xp+v·q. We obtain

the Gram matrix with respect to instances from XMV
∪ as

KMV =


KT 0p×q 0p×q . . . 0p×q
0q×p K1 0q×q . . . 0q×q
0q×p 0q×q K2 . . . 0q×q

...
...

...
. . .

...
0q×p 0q×q 0q×q . . . KM

 ∈ RD×D, (5.36)

where the dimension D is equal to p + Mq. The supervised view hypotheses hvi , v =
1, . . . ,M , correspond to the supervised target ti for i = 1, . . . , n. For this reason, their
pairwise PCA projections are supposed to have a small distance in the image space of
the projection analogous to the single-view OPCA approach. More formally, we define
the multi-view version of the index set with cardinality Mn

CMV = {(l, l′) : xl is a supervised target and

xl′ is one of its supervised view hypotheses},

which is used to incorporate the must-link constraints in the standard PCA objective
as proposed by Oglic et al. [2014] analogous to the single-view case in Equation 5.30.

Definition 5.12 (MVOPCA). Let to ∈ T be an orphan target without labelled training
information for the principal learning task. Furthermore, let XMV and KMV ∈ RD×D
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be defined as in Equations 5.35 and 5.36, respectively. We fix the vector

KMV(x) = (kMV(x, x1), . . . , k(x, xD))T ,

where x1, . . . , xD ∈ XMV are the element of XMV
∪ from Equation 5.35. Let ΠMV ∈ RD×d

be the solution of the optimisation in Equation 5.30, such that X = XMV and K = KMV

are applied. The determination of the hypotheses hvo via

hvo = argmin
h∈H′v

‖(KMV(h)−KMV(to))Π
MV‖2, (5.37)

where for v = 1, . . . ,M , the candidate space H′v is an appropriate subset of Hv, is called
multi-view orphan principal component analysis (MVOPCA).

The final predictor ho for the orphan target to is supposed to be the average of the
orphan view hypotheses

ho =
1

M

M∑
v=1

hvo.

Once the PCA projection ΠMV ∈ RD×d is calculated in the multi-view scenario of Equa-
tion 5.30, the optimisation problems for v = 1, . . . ,M in Equation 5.37 are independent
from each other. For this reason, orphan screening can be solved via MVOPCA accord-
ing to Definition 5.12 analogous to the solution of OPCA above.
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Chapter 6

Conclusion

6.1 Summary

In the present thesis, we considered the regression problem of ligand affinity prediction.
Ligands are small molecular compounds that bind to proteins. The strength of the
binding is a characteristic of the precise protein-ligand pair and it is expressed with a
real-valued affinity. Protein-ligand complexes are involved in a multitude of biochemical
pathways. For this reason, ligands are potential drug candidates and ligand affinity pre-
diction has the potential to greatly accelerate the drug discovery process by making it
more efficient. Ligand affinity prediction comes with a variety of descriptors for molec-
ular compounds. Consequently, one is confronted with one of the inherent challenges to
choose the optimal representation for instances to solve the considered learning problem.
Additionally, molecular compounds can canonically be interpreted as graph data. Given
a particular protein, often only few annotated compounds are available because of the
time- and cost-intensive determination in practice. It is known that the generalisation
performance of machine learning models fall with a decreasing number of labelled ex-
amples. In contrast, millions of unlabelled small molecules are gathered in molecular
databases which are disposable to describe the search space. In the extreme case, there
are no labelled molecular compounds for so-called orphan proteins at all. The obvious
question here is how to overcome this lack of information. However, relations between
the orphan protein and other reference proteins with respect to structure or function
exist and can be expressed numerically. The majority of related work was concerned
with ligand prediction as a classification problem, i.e., the simplified problem to decide
whether a compound binds to a protein or not. In almost the same manner, only few
approaches for orphan screening which is the unsupervised version of affinity prediction
existed at all. We considered affinity prediction

(i) as supervised regression problem for graph instances with multiple data represen-
tations (Chapter 3),

(ii) as semi-supervised regression task with few labelled examples and multiple views
on data (Chapter 4), and

(iii) as unsupervised or transfer learning task (orphan screening) in the single- and
multi-view scenario (Chapter 5).
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We applied multi-view kernel methods to solve affinity prediction under particular con-
sideration of the three settings from above. Kernel functions are generalised similarity
measures for the corresponding data instances and they are canonically related to the
views on data. Kernels provide the kernel methods with useful properties. We devel-
oped novel schemes to select graph patterns as a basis for the multi-view learning (MVL)
model (Chapter 3) as well as novel algorithms for both semi-supervised multi-view re-
gression (Chapter 4) and transfer learning (Chapter 5). On the one hand, we managed
to improve the ligand affinity prediction performance despite of the limitations

(i) multitude of data representations,

(ii) usually only few labelled ligands, and

(iii) no labelled ligands at all in the case of orphan proteins.

On the other hand, we contributed to the machine learning subareas of multi-view learn-
ing and kernel methods by presenting a novel selection scheme based on graph patterns
and novel algorithms that can be applied in the described semi-supervised and unsu-
pervised setting from above. More details on the results in the three scenarios will be
discussed below. In summary, we achieved the main objectives of the thesis independent
of the preconditions on data availability. We showed that the affinity prediction perfor-
mance could be improved using MVL without the need to choose the optimal represen-
tation for molecular instances. In all three settings the performance of the multi-view
approaches at least measured up to the performance of the best single-view baseline
approach by including multiple data representations simultaneously. The novel machine
learning techniques can be applied to general learning problems with the mentioned
preconditions on data representation and structure.

In Chapter 3, we regarded ligand affinity prediction as a supervised regression task.
That means, we assumed sufficient labelled training ligands were available from molec-
ular databases for a considered protein. As molecules are atoms connected by different
types of chemical bonds, the data instances for affinity prediction can be interpreted
as undirected labelled graphs. Many different representations for small molecular com-
pounds exist a priori from a variety of applications. Moreover, various graph patterns
describe the properties of graphs and can therefore be adducted to represent the molec-
ular instances as well. Supervised affinity prediction is a relevant real-world application,
as the selection of molecular compounds with predicted high affinity values from a large
database of molecules can be included as promising candidates in drug discovery exper-
iments in practice. Not only in the context of ligand affinity prediction, the choice of
the best data representation is a non-trivial problem. To test and oppose every single
view on data would be computationally expensive. Even if a combination of multiple
views can be incorporated, as done in MVL, a preselection of (graph) data represen-
tations must be performed in order to reduce the complexity of the machine learning
modelling. Other than existing standard molecular fingerprints, which consider prede-
fined structural units in the neighbourhood of atoms, we systematically collected cyclic,
tree, and shortest path graph patterns based on WL labelling in increasing depths for
the representation of small molecular compounds as potential ligands. We applied a
least squares and an ε-insensitive loss variant of multiple kernel learning (`2-MKL and
ε-MKL). We developed a preprocessing scheme to make a preselection out of the large
number of available graph patterns for the representation of data. More precisely, for
each graph pattern class we identified the WL depths with the best single-view regression
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6.1 Summary

results for the prediction of affinities in preliminary experiments. Subsequently, we used
the best combinations of graph pattern representations from preliminary experiments
to perform MKL with multi-pattern kernels (MPK) following the consensus principle
from above. We refer to the combination of promising graph patterns and MKL as
MPK-MKL scheme to handle the multitude of graph pattern representations. In the su-
pervised setting, we accomplished the objectives of this thesis. Firstly, we showed that
ligand affinity prediction as a regression task can be improved via MKL. Secondly, we
tackled the inherent challenge of the optimal fingerprint choice for the representation of
compound instances. Particularly, we took into consideration the graph structure of the
learning objects and performed a systematic selection of graph patterns into the mod-
elling process. In the empirical evaluation, the MPK-MKL approaches outperformed the
single-view baselines in average for both a binary and a counting feature representation
of the graph patterns and, particularly, for standard molecular fingerprints. For the
considered protein-ligand datasets we observed that WL label patterns showed the best
prediction results in preliminary single-view approaches with respect to the root mean
squared error (RMSE) of true label and predicted affinity. The MPK-MKL scheme for
multi-view learning can be applied for any regression problem with graph instances and
sufficient labelled training examples.

In Chapter 4, we investigated ligand affinity prediction in the semi-supervised setting.
Semi-supervision in this context refers to the fact that in addition to a few ligands
with known affinity with respect to a given protein also a lot of unlabelled molecular
compounds are available for learning. This is a more realistic affinity prediction sce-
nario (compared to Chapter 3) as the determination of affinities of small molecules in
laboratories is expensive, whereas plenty of synthesizable compounds are gathered and
enriched with additional information in molecular databases. These compounds serve
as potential ligand candidates and representatives of the instance space of molecules.
Both labelled and unlabelled molecular compounds can be represented with a variety of
molecular fingerprints and an appropriate representation has to be chosen. To the best
of our knowledge we are the first to combine both a semi-supervised approach and MVL
for ligand affinity prediction. On the one hand, via the fusion of semi-supervision and
MVL it is possible to omit the choice of the best data representation and, on the other
hand, unlabelled instances can be utilised to compensate for the small number of labelled
compounds. We applied the extended regularised risk minimisation (RRM) approach of
co-regularisation, which in addition to the empirical risk minimisation for labelled exam-
ples aims at the reduction of an error term for unlabelled instances. More precisely, the
unlabelled error term compares the predictions of different model functions which relate
to particular views for unlabelled instances. We defined co-regularised support vector
regression (CoSVR) as a novel kernel method. In particular, we solved and discussed the
least squares and ε-insensitive loss variants with respect to the co-regularisation term
(`2-CoSVR and ε-CoSVR). In a stepwise manner we modified these algorithms in order
to reduce the number of optimisation variables and algorithm parameters. Finally, we
presented Σ-CoSVR which exhibits complexity properties of a single-view algorithm.
The empirical evaluation yielded that CoSVR achieves lower RMSE values for the pre-
dicted affinities in comparison to the majority of single- and multi-view baselines. Like
in the supervised case, we achieved the objectives of the present thesis stated in the
introduction. Firstly, the prediction error of ligand affinities could be reduced via the
multi-view approach of co-regularisation. The multi-view approaches in the empirical
analysis at least performed as good as the best single-view baseline by including all
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molecular representations in one optimisation problem. By investigating the more real-
istic scenario of few labelled ligands and sufficient unlabelled database compounds, we
addressed one of the limitations of affinity prediction from the introduction. Secondly,
according to machine learning techniques, we presented the novel kernelised multi-view
algorithm CoSVR and different variants of it with respect to the number of optimisa-
tion variables. For the variant of Σ-CoSVR we proved a Rademacher bound for the
co-regularised candidate function class. The Rademacher bound can be used to control
the expected error.

Thirdly, we considered affinity prediction in the most challenging situation where no
labelled training compounds are available for the protein of interest. The described
learning problem is called orphan screening. The complete absence of ligands with affin-
ity label represents another limiting circumstance of affinity prediction tasks discussed
in the introduction. However, there is labelled training information for other proteins
which are related to the orphan protein to some extent. The inter-protein relation can
be expressed by a similarity measure calculated, for example, from structural or taxon-
omy properties. Labelled and unlabelled compounds can be represented with a variety
of molecular fingerprints in the unsupervised setting as well. Receptor proteins in cen-
tral biochemical pathways are orphan proteins and the prediction of potential ligands
would support the discovery of novel drugs. Orphan screening can be regarded a general
learning problem for prediction tasks with the same preconditions on data. We achieved
the objectives of the thesis in this unsupervised setting and compensated for the lack of
labelled training data by two projection-based approaches from transfer learning which
infer a binding model from binding information of other proteins. In addition to labelled
training instances for related proteins and similarity information for small compounds,
both approaches include inter-protein relations in order to enable the transfer of knowl-
edge from one protein to another. The first approach of corresponding projections (CP)
minimises an objective similar to regularised RRM. Due to the lack of labelled training
examples, the empirical risk is replaced by a term which adjusts projections of targets
and corresponding hypotheses. For this primarily single-view algorithm we define a lin-
ear, a simplified, non-linear (kernel) and a multi-view variant. The empirical evaluation
showed that CP is able to outperform the orphan screening state-of-the-art approach of
target-ligand kernels (TLK) as well as further baselines if the molecular fingerprint was
chosen appropriately. CP experiments with combined (multi-view) representations of
molecular compounds delivered promising results as well. Firstly, CP based on the com-
bined fingerprints performed as well as the best single-view CP approach. Secondly, this
was even the case if the dimensionality reduction technique of Johnson-Lindenstrauss
(JL) projection was applied to the combined fingerprint. The second approach for the
solution of orphan screening is a variation of principal component analysis called orphan
principal component analysis (OPCA), which includes the connection between proteins
and corresponding hypotheses via so-called must-link constraints in the optimisation
step. OPCA is also a single-view kernel method in the first place, which can be trans-
formed into a multi-view algorithm. We presented novel kernel methods for transfer
learning. On the one hand, they can be applied to solve an unsupervised problem for
an orphan target. On the other hand, the primal learning problem of the transfer task
is not restricted to regression. CP, OPCA, and their variants can be utilised to solve
classification or other learning tasks as well if the respective preconditions are met.
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6.2 Future Directions

We considered affinity prediction in different settings of data availability and concur-
rently investigated multi-view kernel methods for supervised, semi-supervised, and un-
supervised learning. The broad range of algorithms and potential applications of the
considered techniques open a wide scope for future work. We list interesting topics in
the following.

A starting point for future work is the continuation of the empirical analysis of MVL
for ligand affinity prediction. The prediction of ligand affinities is prospectively useful
to predict promising drug candidates in form of ligands with high predicted binding
affinities. Hence, for practical purposes the order of molecular compounds with respect
to their affinities is more important than the correctness of the affinity values. For this
reason, other evaluation measures, such as the rank correlation coefficient Kendall’s Tau
should be considered as well similar to the analysis of Li et al. [2011]. Similarly, the
utilisation of further molecular fingerprint formats and further kernel functions, e.g.,
the Tanimoto kernel [Geppert et al., 2009, 2008], would be useful to extend the exist-
ing empirical analysis. The empirical results in Chapter 4 indicate that the prediction
performance goes up with increasing number of integrated views in a MVL approach.
Therefore, the inclusion of three or even more views might be beneficial. However, the
inclusion of more and more views leads to a longer running time which is a general issue
of MVL methods that is worth investigating in the future as well. The results in Chapter
5 achieved in combination with the application of dimensionality reduction techniques,
such as JL or PCA projections, suggest to examine the redundancy in the features of
molecular fingerprints towards feature selection and finally model reduction. Although
the three settings supervised learning, semi-supervised learning and unsupervised learn-
ing represent very different learning scenarios which do not appear simultaneously in
practice, it would be very illustrative with respect to machine learning algorithms and
protein-ligand data to compare the outcomes of MKL, co-regularisation, and projection-
based approaches directly. In order to lift ligand affinity prediction from the so far rather
hypothetical level, a next step towards a support of drug discover by machine learning
would be validation of prediction results with real-world laboratory tests. The thesis was
oriented towards the relevant real-world problem of ligand affinity prediction. Though,
we pointed out that all proceedings and presented novel kernel algorithms are applicable
to other tasks with the same preconditions on the learning scenario. Consequently, the
usage and evaluation of the algorithms from all three main chapters to other learning
problems than affinity prediction would be a great benefit. A list of alternative tasks
can be found in the introduction.

In Chapter 3 we assumed a supervised learning scenario with sufficient labelled train-
ing examples and the availability of multiple representations for data instances. Future
efforts concerning this learning problem should generally take artificial neural networks
(ANN) [Speck-Planche and Cordeiro, 2014, Ferreira and Andricopulo, 2019, Tetko and
Engkvist] into account as they come with a canonical multi-view variant. More precisely,
data instances can be included in the input layer of the network in form of tensors which
directly facilitate the inclusion of different data representations. The view choice is
still not completely obsolete by the proposed MPK-MKL scheme for the preselection of
promising view combinations. The resulting issues of running time complexity might
also be solved via ANNs in combination with parallel computing. Chapter 4 was dedi-
cated to the semi-supervised setting stated to be the most realistic real-world scenario
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for ligand affinity prediction. The good performance of co-regularised algorithms from
the respective empirical analysis led us to the conclusion that feature information was
extracted from unlabelled data. In future attempts, we would like to understand better
how this extraction occurs and, particularly, how the sparsity property of the molecular
fingerprints relates to that process. The longer running time of co-regularised algorithms
compared to single-view methods was already approached with variants of CoSVR, in
particular, via Σ-CoSVR. Although Σ-CoSVR has the running time of a single-view al-
gorithm, its prediction performance is worse than the one of base CoSVR. Future work
should be directed towards a satisfactory trade-off between prediction performance and
computation effort. Additionally, two-view semi-supervised algorithms like SVM-2K
[Farquhar et al., 2005] or Σ-CoSVR point to further research topics. For example,
SVM-2K is a semi-supervised support vector machine for classification based on two
kernel functions and canonical correlation analysis (CCA). As CoSVR is restricted to
regression tasks, the idea of co-regularisation could be transferred to classification or
other learning tasks as well, e.g., via co-training [Blum and Mitchell, 1998]. Moreover,
a generalisation of the two-view algorithms and their error bounds to arbitrary many
data representations would be a beneficial contribution for MVL in the future. Finally,
in Chapter 5 we considered orphan screening, the unsupervised case of ligand affinity
prediction. We identified various future work topics on orphan screening both in the
empirical and the theoretical direction. Firstly, the comparison of OPCA and the multi-
view variants of CP and OPCA with the TLK approach and other baselines would
be a canonical continuation of the present empirical results. Further approaches like
structured output SVM or multi-output regression should be tested for orphan screen-
ing as well. An advantage of the transfer learning approaches CP and OPCA is their
applicability to general primary learning tasks. Consequently, not only novel real-world
applications from unsupervised regression, but also alternative unsupervised prediction
tasks like classification could be tackled with the presented transfer learning approaches.
The performance of single-view SVR approaches with very few labelled training ligands
motivate to investigate the question, whether orphan screening with inclusion of related
protein information should be favoured to supervised single-view approaches with too
few training examples. Regarding algorithmic aspects, we suggest to additionally define
and evaluate an ε-insensitive loss variant of CP analogous to the variants of MKL and
CoSVR. In contrast to TLK, the CP and OPCA optmisation for the knowledge transfer
from related proteins to the orphan protein has to be performed for every considered
orphan target individually. A variant with universal orphan screening solution would be
a useful completion in this research field.
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Appendices

A Proofs

Appendix A contains long proofs of Chapters 3 and 4. The proof of Lemma 3.22 in
Chapter 3 is a detailed version of the proof in [Cortes et al., 2009]. A proof for a
classification scenario of Lemma 3.24 can be found in [Vishwanathan et al., 2010]. We
transfer the proof of Vishwanathan et al. [2010] to the regression case. All three proofs
for Chapter 4 presented in the appendix are original [Ullrich et al., 2016a, 2017]. They
follow the same scheme shown for Lemma 4.6, but each with differences in the precise
details. For the used variables also consult Table 4.1 above.

A.1 Proof of Lemma 3.22

Definition 3.21 (`2-MKL). [Cortes et al., 2009] Let k1, . . . , kM be kernel functions de-
fined on an instance space X and kb be the kernel linear combination according to Equa-
tion 3.21 with RKHS Hb and linear coefficients b1, . . . , bM ≥ 0. Let (x1, y1), . . . , (xn, xn)
be labelled training examples from X × Y. The optimisation

min
f∈Hb, b≥0M

‖f‖2Hb
+ ν

n∑
i=1

|yi − f(xi)|2, (3.25)

s.t. ‖b− b0‖ ≤ Λ

where ν,Λ > 0 are hyperparameters and b0 ≥ 0M the initial linear coefficients, is called
`2-multiple kernel learning (`2-MKL).

Lemma 3.22 [Cortes et al., 2009] Let Kb,K1, . . . ,KM ∈ Rn×n be the Gram matrices of
the kernel functions k, k1, . . . , kM and Y be the vector of real-valued labels. For π ∈ Rn
we put

w = (πTK1π, . . . , π
TKMπ)T .

The solution f of the minimisation in Equation 3.25 has got a representation in terms
of b and π corresponding to Equation 3.23. For b ≥ 0M , π ∈ Rn, and initial linear
coefficients b0 ≥ 0M

b = b0 +
w

‖w‖

holds true, where π = (Kb + 1/ν · In)−1Y .
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Proof. According to Lemma 3.20, which is an MKL version of the representer theorem,
the solution of Equation 3.25 has got a representation in form of

f(·) =

n∑
i=1

πikb(xi, ·) =

n∑
i=1

πi

M∑
v=1

bvkv(xi, ·),

where x1, . . . , xn ∈ X are the training instances. Analogous to the derivation of the solu-
tion of RLSR in Section 2.6.1, we can find a kernelised reformulation of the optimisation
in Equation 3.25 with slack variables ξ ∈ Rn

min
π,ξ∈Rn,b≥0M

πTKbπ + νξT ξ

s.t. Y −Kbπ = ξ

‖b− b0‖ ≤ Λ,

whereKb =
∑M

v=1 bvKv, b = (b1, . . . , bM )T , and ν,Λ > 0 and b0 ≥ 0M are the algorithm’s
hyperparameters and the initial linear coefficients. Firstly, we derive the dual problem
with respect to the kernel expansion variables π by including the respective constraint
into the objective with multipliers α ∈ Rn

min
π,ξ∈Rn,b≥0M

max
α∈Rn

πTKbπ + νξT ξ + αT (Y −Kbπ − ξ)

s.t. ‖b− b0‖ ≤ Λ.

Secondly, if we put the Lagrangian’s derivatives with respect to ξ and π to zero, we
obtain

ξ =
α

2ν
and α = 2π,

respectively. With w(π) = (πTK1π . . . π
TKMπ)T we obtain a min-max-problem via

resubstitution

min
b≥0M

max
π∈Rn

− bTw(π)− 1

ν
πTπ + 2πTY (6.1)

= max
π∈Rn

(
min
b≥0M

− bTw(π)
)
− 1

ν
πTπ + 2πTY. (6.2)

The equality of Equations 6.1 and 6.2 follows from von Neumann’s minimax theorem
[Kuhn and Tucker, 1958]. The application of von Neumann’s minimax theorem allows
for an initial consideration of the convex optimisation problem in b and to ignore that
w is actually a function in π. The Lagrangian is

L = −wT b− βT b+ γ(‖b− b0‖ − Λ),

where β ≥ 0M and γ ≥ 0 are the Lagrangian multipliers with respect to the inequality
constraints for b. Thirdly, the derivative of ∂L/∂b put equal to zero together with the
remaining KKT condition in Equation 2.13 yield

b =
w + β

2γ
+ b0, (6.3)

0 = bTβ, (6.4)

and 0 = γ(‖b− b0‖ − Λ). (6.5)
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From the constraints of the original problem in Equation 3.25, we know that ‖b−b0‖ ≤ Λ
is valid. If ‖b− b0‖ was strictly smaller than Λ, we obtained γ = 0. This is impossible,
because b must be as large as possible according to Equations 6.2 and 6.3. Hence,
‖b− b0‖ = Λ is valid. A combination of Equation 6.3 and Equation 6.4 shows that

−‖β‖2 = (w + 2γb0)Tβ ≥ 0

and, consequently, β = 0M . Finally, from ‖b− b0‖ = Λ and Equation 6.3 we obtain

b = b0 + Λ
w

‖w‖
. (6.6)

If we reclaim to the maximisation in Equation 6.1, we derive the RLSR solution in (2.26)

π =

(
Kb +

1

ν
In

)−1

Y

with inverse regularisation parameter 1
ν and the relation between b and w expressed in

Equation 6.6.

A.2 Proof of Lemma 3.24

Definition 3.23 (ε-MKL). [Vishwanathan et al., 2010] LetHb be the RKHS of the kernel
linear combination kb from Equation 3.21, where k1, . . . , kM : X × X → R are kernel
functions. Let (x1, y1), . . . , (xn, yn) ∈ X × Y be training examples. The optimisation

min
f∈Hb

1

2
‖f‖2Hb

+ ν

n∑
i=1

max{|yi − f(xi)| − ε, 0}+
Λ

2
‖b‖2p (3.26)

is called ε-multiple kernel learning (ε-MKL), where ε,Λ, ν > 0, b ≥ 0M are hyperpa-
rameters.

Lemma 3.24 [Vishwanathan et al., 2010] We consider the view-related kernel functions
k1, . . . , kM and corresponding Gram matrices K1, . . . ,KM ∈ Rn×n. Additionally, let kb
be the reproducing kernel from Equation 3.21 with RKHS Hb. Assume, for hyperparam-
eters p > 1 and q > 1 the relation 1

p + 1
q = 1 holds true. The solution f of ε-MKL from

Equation 3.26 has got a parameterisation in form of

f(·) =

n∑
i=1

πi

M∑
v=1

bvkv(xi, ·).

The parameters b ≥ 0M and π ∈ Rn can be determined via the dual optimisation

max
α,α̂≥0n

− 1

8Λ

(
M∑
v=1

(
(α− α̂)TKv(α− α̂)

)q) 2
q

+ (α− α̂)TY − ε(α+ α̂)1n,

s. t. 0n ≤ α, α̂ ≤ ν1n,
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such that additionally

bv =
1

2Λ

(
(α− α̂)TKv(α− α̂)

) q
p

(
M∑
v=1

(
(α− α̂)TKv(α− α̂)

)) 1
q
− 1

p

, v = 1, . . . ,M,

and π = α− α̂ is valid.

Proof. At first we reformulate the ε-MKL problem in the feature space of Hb with
reproducing linear combination kernel kb. The corresponding feature map Φb of kb can
be obtained with the concatenated and weighted features Φv : X → Rdv of the single
kernels kv

ΦT
b = (

√
b1ΦT

1 · · ·
√
bMΦT

M ) : X → Rd,

where d = d1 + · · ·+ dM (compare Definition 2.16). For the sake of simplicity, we omit
an index b at dimension d. In the feature space of kb, the minimisation problem we want
to solve is to find a linear model wTb = (wT1 , . . . , w

T
v ) ∈ Rd such that

min
wb∈Rd,ξ,ξ̂≥0n,b≥0M

1

2
wTb wb + ν

n∑
i=1

(ξi + ξ̂i) +
Λ

2
‖b‖2p

s.t.


yi − wTb Φ(xi) ≤ ε+ ξi
wTb Φ(xi)− yi ≤ ε+ ξ̂i

ξi, ξ̂i ≥ 0


i∈[[n]]

,

where (x1, y1), . . . , (xn, xn), are the labelled training examples and ε, ν,Λ > 0 are hyper-
parameters. We obtain a convex optimisation problem if we substitute wv by wv/

√
bv

min
wv∈Rdv ,ξ,ξ̂≥0n,b≥0M

1

2

M∑
v=1

wTv wv
bv

+ ν

n∑
i=1

(ξi + ξ̂i) +
Λ

2
(
M∑
v=1

bpv)
2
p

s.t.


yi −

M∑
v=1

wTv Φv(xi) ≤ ε+ ξi

M∑
v=1

wTv Φv(xi)− yi ≤ ε+ ξ̂i

ξi, ξ̂i ≥ 0


i∈[[n]]

,

where we apply the definition of the `p-norm. Analogous to the proof for Lemma 3.22

above, we consider the minimisation problem with respect to wv, ξ, and ξ̂ first. The
Lagrangian L with Lagrangian multipliers α, α̂, β, β̂ ≥ 0n is

L =
1

2

M∑
v=1

wTv wv
bv

+ ν

n∑
i=1

(ξi + ξ̂i) +
Λ

2

(
M∑
v=1

bpv

) 2
p

−
n∑
i=1

(βiξi + β̂iξ̂i)

+
n∑
i=1

αi

(
yi −

M∑
v=1

wTv Φv(xi)− ε− ξi

)
+

n∑
i=1

α̂i

(
M∑
v=1

wTv Φv(xi)− yi − ε− ξ̂i

)
.
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The derivatives of L with respect to wv, ξ, and ξ̂

∂L

∂wv
= wv/bv −

n∑
i=1

(αi − α̂i)Φv(xi) = 0

∂L

∂ξ
= ν1n − β − α = 0n,

∂L

∂ξ̂
= ν1n − β̂ − α̂ = 0n

lead us to

wv = bv

n∑
i=1

(αi − α̂i)Φv(xi) and α, α̂ ≤ ν1n. (6.7)

Via resubstitution and with the Gram matrix

Kv =
(
ΦT
v (xi)Φv(xj)

)n
i,j=1

of kernel kv we obtain the following min-max-problem

min
bv≥0

max
α,α̂≥0n

− 1

2

M∑
v=1

bv(α− α̂)TKv(α− α̂) + (α+ α̂)TY

− ε(α+ α̂)T1n +
Λ

2

(
M∑
v=1

bpv

) 2
p

s.t. 0n ≤ α, α̂ ≤ ν1n.

Similar to the proceeding in the proof of Lemma 3.22 above, we apply von Neumann’s
minimax theorem, change the positions of min and max, and consider the minimisation
with respect to the linear combination parameters b1, . . . , bM ≥ 0 first. The correspond-
ing Lagrangian L with Lagrangian multipliers γ ≥ 0M is

L = − 1

2

M∑
v=1

bv(α− α̂)TKv(α− α̂) + (α+ α̂)TY − ε(α+ α̂)T1n (6.8)

+
Λ

2

(
M∑
v=1

bpv

) 2
p

−
M∑
v=1

γvbv.

From

∂L

∂bv
= Λ

(
M∑
k=1

bpk

) 2
p
−1

bp−1
v − γv −

1

2
(α− α̂)TKv(α− α̂) = 0

as well as hv = γv + 1
2(α− α̂)TKv(α− α̂) and B = B(p) =

∑M
k=1 b

p
k we conclude

Λ B
2
p
−1
bp−1
v = hv

for v = 1, . . . ,M . Consequently,

Λ
B

2
p

B

M∑
v=1

bpv = Λ B
2
p =

M∑
v=1

bvhv (6.9)
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holds true as well. We apply the equality case of Hölder’s inequality [Werner, 1995] and
obtain

M∑
v=1

bv · hv =

(
M∑
v=1

bpv

) 1
p

·

(
M∑
v=1

hqv

) 1
q

= B
1
p

(
M∑
v=1

hqv

) 1
q

, (6.10)

where 1/p+ 1/q = 1 and p > 1. The combination of Equations 6.9 and 6.10 leads us to

B
2
p =

1

Λ

M∑
v=1

bvhv =
1

Λ
B

1
p

(
M∑
v=1

hqv

) 1
q

=
1

Λ2

(
M∑
v=1

hqv

) 2
q

. (6.11)

In turn, Equation 6.8 together with Equation 6.11 imply a reformulated Lagrangian

L = (α− α̂)TY − ε(α+ α̂)1n +
Λ

2
B

2
p −

M∑
v=1

bvhv

= (α− α̂)TY − ε(α+ α̂)1n −
Λ

2
B

2
p

= (α− α̂)TY − ε(α+ α̂)1n −
1

2Λ

(
M∑
v=1

hqv

) 2
q

= (α− α̂)TY − ε(α+ α̂)1n −
1

2Λ

(
M∑
v=1

(
γv +

1

2
(α− α̂)TKv(α− α̂)

)q) 2
q

.

Finally, we obtain a dual problem in α, α̂, and γ

max
γ≥0M ,α,α̂≥0n

(α− α̂)TY − ε(α+ α̂)1n (6.12)

− 1

2Λ

(
M∑
v=1

(
γv +

1

2
(α− α̂)TKv(α− α̂)

)q) 2
q

s.t. 0n ≤ α, α̂ ≤ ν1n.

The optimal value of Equation 6.12 is taken on for γ = 0M as the `q-norm is strictly
monotonically increasing and γv ≥ 0. Hence, Equation 6.12 turns out to be an optimi-
sation problem in the dual variables α and α̂ only

max
α,α̂≥0n

− 1

8Λ

(
M∑
v=1

(
(α− α̂)TKv(α− α̂)

)q) 2
q

+ (α− α̂)TY − ε(α+ α̂)1n,

s.t. 0n ≤ α, α̂ ≤ ν1n
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which can be solved via the SMO algorithm (see Section 3.4). From Equation 6.9 we
calculate the kernel linear factors bv

bv =

(
hv

1

Λ
B
−( 2

p
−1)
) 1

p−1

=
1

Λ
h

q
p
v

(
M∑
v=1

hv

) 1
q
− 1

p

=
1

2Λ

(
(α− α̂)TKv(α− α̂)

) q
p

(
M∑
v=1

(
(α− α̂)TKv(α− α̂)

)) 1
q
− 1

p

.

If we define

Kx
b = (kb(x1, x), · · · , kb(xn, x)),

the actual predictor f : X → R equals

f(x) = wTΦ(x) =
M∑
v=1

wTv Φv(x) =
M∑
v=1

bv

n∑
i=1

(αi − α̂i)ΦT
v (xi)Φv(x)

=

M∑
v=1

bv

n∑
i=1

(αi − α̂i)kv(xi, x) = Kx
b (α− α̂),

where we use Equation 6.7.

A.3 Proof of Lemma 4.6

Definition 4.5 (CoSVR, `2-CoSVR, ε-CoSVR). For v = 1, . . . ,M let Hv be an RKHS,
`U be an arbitrary loss function, and εL, νv, λ > 0 be hyperparameters. The optimisation
problem in Equation 4.1 such that `L is the ε-sensitive loss with εL is called co-regularised
support vector regression (CoSVR).
(i) Co-regularised support vector regression with `U = `2

min
fv∈Hv

M∑
v=1

(
νv
2
‖fv‖2Hv

+
n∑
i=1

max{|yi − fv(xi)| − εL, 0}

)
(4.7)

+ λ

M∑
u,v=1

m∑
j=1

‖fu(zj)− fv(zj)‖2,

is denoted `2-co-regularised support vector regression (`2-CoSVR).
(ii) Co-regularised support vector regression where `U is the ε-insensitive loss

min
fv∈Hv

M∑
v=1

(
νv
2
‖fv‖2Hv

+

n∑
i=1

max{|yi − fv(xi)| − εL, 0}

)
(4.8)

+ λ
M∑

u,v=1

m∑
j=1

max{|fu(zj)− fv(zj)| − εU , 0}

is called ε-co-regularised support vector regression (ε-CoSVR).

Lemma 4.6 Let νv, λ, ε
L, εU > 0. We use the notation introduced above. In particu-

lar, πv ∈ Rn+m denote the kernel expansion coefficients of the view predictors fv from
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Equation 4.3, whereas αv, α̂v ∈ Rn and γuv ∈ Rm are dual variables.

(i) The dual optimisation problem of `2-CoSVR is

max
αv ,α̂v∈Rn,γuv∈Rm

M∑
v=1

(
− 1

2νv

(
α

γ

)T
v

Kv

(
α

γ

)
v

+ (αv − α̂v)TY

−εL(αv + α̂v)
T1n −

1

4λ

M∑
u=1

γTuvγuv

)

s. t.

{
0n ≤ αv, α̂v ≤ 1n
γuv = 2λ

νu
Uu
(
α
γ

)
u
− 2λ

νv
Uv
(
α
γ

)
v

}
(u,v)∈[[M ]]2

,

where (
α

γ

)
v

=

(
αv − α̂v∑M

u=1(γuv − γvu)

)
and πv = 1

νv

(
α
γ

)
v

holds true.

(ii) The dual optimisation problem of ε-CoSVR equals

max
αv ,α̂v∈Rn,γuv∈Rm

M∑
v=1

(
− 1

2νv

(
α

γ

)T
v

Kv

(
α

γ

)
v

+ (αv − α̂v)TY

−(αv + α̂v)
T εL1n −

m∑
u=1

γTuvε
U1m

)

s. t.

{
0n ≤ αv, α̂v ≤ 1n
0m ≤ γuv ≤ λ1m

}
(u,v)∈[[M ]]2

,

where (
α

γ

)
v

=

(
αv − α̂v∑M

u=1(γuv − γvu)

)
and πv = 1

νv

(
α
γ

)
v

are the kernel expansion coefficients from Equation 4.3.

Proof. (i) The view predictors fv, v = 1, . . . ,M , have a representation as kernel expan-
sion in the coefficients πv ∈ Rn+m according to Lemma 4.2. With the slack variables
ξv, ξ̂v ∈ Rn and ζuv ∈ Rm we reformulate the kernelised version of `2-CoSVR as

min
πv∈Rn+m

M∑
v=1

(
νv
2
πTv Kvπv + (ξv + ξ̂v)

T1n + λ

M∑
u=1

ζTuvζuv

)

s.t.


Y − Lvπv ≤ εL1n + ξv
Lvπv − Y ≤ εL1n + ξ̂v

Uuπu − Uvπv = ζuv
ξv, ξ̂v ≥ 0n


(u,v)∈[[M ]]2

.
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With Lagrangian multipliers αv, α̂v, γuv, βv, and β̂v we obtain the corresponding La-
grangian

L =

M∑
v=1

(
νv
2
πTv Kvπv + (ξv + ξ̂v)

T1n + λ

M∑
u=1

ζTuvζuv

+ αTv (Y − Lvπv − εL1n − ξv) + α̂Tv (Lvπv − Y − εL1n − ξ̂v)

+
M∑
u=1

γTuv(Uuπu − Uvπv − ζuv)− βTv ξv − β̂Tv ξ̂v

)
.

The partial derivatives with respect to the slack variables yield the constraints 0n ≤
αv, α̂v ≤ 1n and the relation ζuv = 1

2λγuv. The insertion into L leads us to

L =
M∑
v=1

(
νv
2
πTv Kvπv + (αv − α̂v)TY − (αv + α̂v)

T εL1n −
M∑
u=1

γTuv ε
U1m

−(αv − α̂v)TLvπv −
M∑
u=1

(γuv − γvu)TUvπv −
1

4λ

M∑
u=1

γTuvγuv

)
.

If we put ∂L/∂πv = 0, we deduce the relation between dual variables and the kernel
expansion parameters

πv =
1

νv

 αv − α̂v
M∑
u=1

(γuv − γvu)

 =
1

νv

(
α

γ

)
v

. (6.13)

The symbol (
α

γ

)
v

∈ Rn+m

is a stacked vector of view-dependent α- and γ-variables according to Equation 6.13.
Furthermore, we obtain the dual objective

L =

M∑
v=1

(
− 1

2νv

(
α

γ

)T
v

Kv

(
α

γ

)
v

+ (αv − α̂v)TY (6.14)

−(αv + α̂v)
T εL1n −

1

4λ

M∑
u=1

γTuvγuv

)
.

We introduced the extra symbol for the composed vector in Equation 6.13 in order to
show analogies between the dual objective in Equation 6.14 and the dual objectives of
related problems presented below. Finally, ∂L/∂γuv = 0 leads to the equality constraints
of the dual `2-CoSVR problem

γuv =
2λ

νu
Uu

(
α

γ

)
u

− 2λ

νv
Uv

(
α

γ

)
v

.
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(ii) Analogous to the proof of part (i) we reformulate ε-CoSVR with slack variables ξv,
ξ̂v ∈ Rn and ζuv ∈ Rm as follows

min
πv∈Rn+m

M∑
v=1

(
νv
2
πTv Kvπv + (ξv + ξ̂v)

T1n + λ

M∑
u=1

ζTuv1m

)

s.t.


Y − Lvπv ≤ εL1n + ξv
Lvπv − Y ≤ εL1n + ξ̂v

Uuπu − Uvπv ≤ εU1m + ζuv
ξv, ξ̂v ≥ 0n
ζuv ≥ 0m


(u,v)∈[[M ]]2

.

Introducing Lagrangian multipliers αv, α̂v, γuv, βv, β̂v, and δuv for the constraints in the
order of appearance above, we obtain its Lagrangian

L =
M∑
v=1

(
νv
2
πTv Kvπv + (ξv + ξ̂v)

T1n + λ

M∑
u=1

ζTuv1m

+ αTv (Y − Lvπv − εL1n − ξv) + α̂Tv (Lvπv − Y − εL1n − ξ̂v)

+
M∑
u=1

γTuv(Uuπu − Uvπv − εU1m − ζuv)− βTv ξv − β̂Tv ξ̂v −
M∑
u=1

δTuvζuv

)
.

The partial derivatives of L with respect to ξv, ξ̂v, and ζuv put to zero lead us to

L =

M∑
v=1

(
νv
2
πTv Kvπv + (αv − α̂v)TY − (αv + α̂v)

T εL1n −
M∑
u=1

γTuv ε
U1m

−(αv − α̂v)TLvπv −
M∑
u=1

(γuv − γvu)TUvπv

)

and the box constraints 0n ≤ αv, α̂v ≤ 1n as well as 0m ≤ ζuv ≤ λ1m. Finally,
∂L/∂πv = 0 for v = 1, . . . ,M imply the relation

πv =
1

νv

 αv − α̂v
M∑
u=1

(γuv − γvu)

 =
1

νv

(
α

γ

)
v

of primal and dual variables. With the substitution of πv into L we obtain the desired
dual objective

L =
M∑
v=1

(
− 1

2νv

(
α

γ

)T
v

Kv

(
α

γ

)
v

+ (αv − α̂v)TY

−(αv + α̂v)
T εL1n −

M∑
u=1

γTuvε
U1m

)
,

which finishes the proof.

156



A.4 Proof of Lemma 4.8

Definition 4.7 (CoSVRmod). For loss functions `L and `U as well as hyperparame-
ters νv, λ, ε

L > 0, the co-regularised support vector regression problem with modified
constraints for the labelled examples (CoSVRmod) is defined as

min
fv∈Hv

M∑
v=1

νv
2
‖fv‖2 +

n∑
i=1

max{|yi − favg(xi)| − εL, 0} (4.12)

+ λ
M∑

u,v=1

m∑
j=1

`U (fu(zj), fv(zj)) ,

where favg = 1/M
∑M

v=1 fv is the view predictor average from Equation 4.11. If `U is
the ε-insensitive loss with εU ≥ 0, the problem in Equation 4.12 is called ε-CoSVRmod.
The case `U = `2 is denoted with `2-CoSVRmod.

Lemma 4.8 Let νv, λ, ε
L, εU > 0 be hyperparameters. We utilise dual variables α, α̂ ∈

Rn and γuv ∈ Rm (compare Table 4.1).

(i) The `2-CoSVRmod dual optimisation problem equals

max
α,α̂∈Rn, γuv∈Rm

M∑
v=1

(
− 1

2νv

(
α

γ

)T
v

Kv

(
α

γ

)
v

+ (α− α̂)TY

−(α+ α̂)T εL1n −
1

4λ

M∑
u=1

γTuvγuv

)

s. t.

{
0n ≤ α, α̂ ≤ 1n
γuv = 2λ

νu
Uu
(
α
γ

)
u
− 2λ

νv
Uv
(
α
γ

)
v

}
v∈[[M ]]

,

where (
α

γ

)
v

=

( 1
M (α− α̂)∑M

u=1(γuv − γvu)

)
and πv = 1

νv

(
α
γ

)
v
.

(ii) The ε-CoSVRmod dual optimisation problem can be written as

max
α,α̂∈Rn, γuv∈Rm

M∑
v=1

(
− 1

2νv

(
α

γ

)T
v

Kv

(
α

γ

)
v

+ (α− α̂)TY

−(α+ α̂)T εL1n −
M∑
u=1

γTuvε
U1m

)

s. t.

{
0n ≤ α, α̂ ≤ 1n
0m ≤ γuv ≤ λ1m

}
v∈[[M ]]

,
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where (
α

γ

)
v

=

( 1
M (α− α̂)∑M

u=1(γuv − γvu)

)
,

and πv = 1
νv

(
α
γ

)
v
.

Proof. The representation of the solution functions as kernel linear combinations and,
hence, the kernelised reformulation can be shown analogous to Lemma 4.2 and its cor-
responding proof. The remainder of the proof follows the same scheme as the proof of
Lemma 4.6.

(i) Kernelised reformulation of `2-CoSVRmod with slack variables ξ, ξ̂, and ζuv:

min
πv∈Rn+m

M∑
v=1

(
νv
2
πTv Kvπv + (ξ + ξ̂)T1n + λ

M∑
u=1

ζTuvζuv

)

s.t.


Y − 1

M

∑M
v=1 Lvπv ≤ εL1n + ξ

1
M

∑M
v=1 Lvπv − Y ≤ εL1n + ξ̂
Uuπu − Uvπv = ζuv

ξ, ξ̂ ≥ 0n


(u,v)∈[[M ]]2

Introduction of Lagrangian multipliers α, α̂, γuv, β, and β̂:

L =

M∑
v=1

νv
2
πTv Kvπv + (ξ + ξ̂)T1n + λ

M∑
u,v=1

ζTuvζuv

+ αT (Y − 1

M

M∑
v=1

Lvπv − εL1n − ξ) + α̂T (
1

M

M∑
v=1

Lvπv − Y − εL1n − ξ̂)

+
M∑

u,v=1

γTuv(Uuπu − Uvπv − ζuv)− βT ξ − β̂T ξ̂

Equalities ∂L/∂ξ = 0, ∂L/∂ξ̂ = 0, and ∂L/∂ζuv = 0:

L =
M∑
v=1

νv
2
πTv Kvπv + (α− α̂)TY − (α+ α̂)T εL1n

− (α− α̂)T
1

M

M∑
v=1

Lvπv −
M∑

u,v=1

(γuv − γvu)TUvπv −
1

4λ

M∑
u,v=1

γTuvγuv

and

0n ≤ α, α̂ ≤ 1n as well as γuv =
1

2λ
ζuv

Kernel expansion coefficients:

πv =
1

νv

 1
M (α− α̂)

M∑
u=1

(γuv − γvu)

 =
1

νv

(
α

γ

)
v
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Final dual objective:

L =
M∑
v=1

− 1

2νv

(
α

γ

)T
v

Kv

(
α

γ

)
v

+ (α− α̂)TY − (α+ α̂)T εL1n −
1

4λ

M∑
u,v=1

γTuvγuv

Additional equality constraints:

γuv =
2λ

νu
Uu

(
α

γ

)
u

− 2λ

νv
Uv

(
α

γ

)
v

(ii) Kernelised reformulation of ε-CoSVRmod with slack variables ξ, ξ̂, and ζuv:

min
πv∈Rn+m

M∑
v=1

νv
2
πTv Kvπv + (ξ + ξ̂)T1n + λ

M∑
u,v=1

ζTuv1m

s.t.



Y − 1
M

∑M
v=1 Lvπv ≤ εL1n + ξ

1
M

∑M
v=1 Lvπv − Y ≤ εL1n + ξ̂
Uuπu − Uvπv ≤ εU1m + ζuv

ξ, ξ̂ ≥ 0n
ζuv ≥ 0m


(u,v)∈[[M ]]2

Introduction of Lagrangian multipliers α, α̂, γuv, β, β̂, and δuv:

L =

M∑
v=1

νv
2
πTv Kvπv + (ξ + ξ̂)T1n + λ

M∑
u,v=1

ζTuv1m

+ αT (Y − 1

M

M∑
v=1

Lvπv − εL1n − ξ) + α̂T (
1

M

M∑
v=1

Lvπv − Y − εL1n − ξ̂)

+

M∑
u,v=1

γTuv(Uuπu − Uvπv − εU1m − ζuv)

− βT ξ − β̂T ξ̂ −
M∑

u,v=1

δTuvζuv

Equalities ∂L/∂ξ = 0, ∂L/∂ξ̂ = 0, and ∂L/∂ζuv = 0:

L =

M∑
v=1

νv
2
πTv Kvπv + (α− α̂)TY − (α+ α̂)T εL1n −

M∑
u,v=1

γTuv ε
U1m

− 1

M

M∑
v=1

(α− α̂)TLvπv −
M∑

u,v=1

(γuv − γvu)TUvπv

and

0n ≤ α, α̂ ≤ 1n as well as 0m ≤ γuv ≤ λ1m
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Kernel expansion coefficients:

πv =
1

νv

 1
M (α− α̂)

M∑
u=1

(γuv − γvu)

 =
1

νv

(
α

γ

)
v

Final dual objective:

L =
M∑
v=1

− 1

2νv

(
α

γ

)T
v

Kv

(
α

γ

)
v

+ (α− α̂)TY − (α+ α̂)T εL1n −
M∑

u,v=1

γTuvε
U1m

A.5 Proof of Lemma 4.10

Definition 4.9 (CoSVRmod). We consider RKHSs H1, . . . ,HM , loss functions `L and
`U , as well as hyperparameters εL, νv, λ > 0. The co-regularised support vector re-
gression problem with modified constraints for the unlabelled examples (CoSVRmod) is
defined as

min
fv∈Hv

M∑
v=1

(
νv
2
‖fv‖2 +

n∑
i=1

max{|yi − fv(xi)| − εL, 0}

)
(4.13)

+ λ

M∑
v=1

m∑
j=1

`U (favg
v (zj), fv(zj)) ,

where favg
v = 1/(M − 1)

∑M,u6=v
u=1 fu. If `U is the ε-insensitive loss with εU > 0 then

the optimisation problem in Equation 4.13 is denoted with ε-CoSVRmod and the case
`U = `2 with `2-CoSVRmod.

Lemma 4.10 Let νv, λ, ε
L, εU > 0 be hyperparameters. We utilise dual variables

αv, α̂v ∈ Rn and γv, γ̂v ∈ Rm, as well as γavg
v = 1

M−1

∑M,u 6=v
u=1 γu and γ̂avgv = 1

M−1

∑M,u6=v
u=1 γ̂u

analogous to the residual view predictor average.

(i) The `2-CoSVRmod dual optimisation problem equals

max
αv ,α̂v∈Rn, γv∈Rm

M∑
v=1

(
− 1

2νv

(
α

γ

)T
v

Kv

(
α

γ

)
v

+ (αv − α̂v)TY

−(αv + α̂v)
T εL1n −

1

4λ

M∑
u=1

γTv γv

)

s. t.

{
0n ≤ αv, α̂v ≤ 1n
γv = 1

M−1

∑M,u6=v
u=1

2λ
νu
Uu
(
α
γ

)
u
− 2λ

νv
Uv
(
α
γ

)
v

}
v∈[[M ]]

,

where (
α

γ

)
v

=

(
αv − α̂v
γv − γavg

v

)
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and πv = 1
νv

(
α
γ

)
v
.

(ii) The ε-CoSVRmod dual optimisation problem can be written as

max
αv ,α̂v∈Rn, γv ,γ̂v∈Rm

M∑
v=1

(
− 1

2νv

(
α

γ

)T
v

Kv

(
α

γ

)
v

+ (α− α̂)TY

−(αv + α̂v)
T εL1n − (γv + γ̂v)ε

U1m
)

s. t.

{
0n ≤ αv, α̂v ≤ 1n
0m ≤ γv, γ̂v ≤ λ1m

}
v∈[[M ]]

,

where (
α

γ

)
v

=

(
αv − α̂v

(γv − γavg
v )− (γ̂v − γ̂avg

v )

)
,

and πv = 1
νv

(
α
γ

)
v
.

Proof. The representation of the solution functions as kernel linear combinations and,
hence, the kernelised reformulation can be shown analogous to Lemma 4.2 and its cor-
responding proof. The remainder of the proof follows the same scheme as the proof of
Lemma 4.6.

(i) Kernelised reformulation of `2-CoSVRmod with slack variables ξv, ξ̂v, and ζv:

min
πv∈Rn+m

M∑
v=1

(νv
2
πTv Kvπv + (ξv + ξ̂v)

T1n + λζTv ζv

)

s.t.


Y − Lvπv ≤ εL1n + ξv
Lvπv − Y ≤ εL1n + ξ̂v

1
M−1

∑M,u6=v
u=1 Uuπu − Uvπv = ζv

ξv, ξ̂v ≥ 0n


v∈[[M ]]

Introduction of Lagrangian multipliers αv, α̂v, γv, βv, and β̂v:

L =
M∑
v=1

(νv
2
πTv Kvπv + (ξv + ξ̂v)

T1n + λζTv ζv

+ αTv
(
Y − Lvπv − εL1n − ξv

)
+ α̂Tv

(
Lvπv − Y − εL1n − ξ̂v

)
+γTv (

1

M − 1

M,u 6=v∑
u=1

Uuπu − Uvπv − ζv)− βTv ξv − β̂Tv ξ̂v

)
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Equations ∂L/∂ξv = 0, ∂L/∂ξ̂v = 0, and ∂L/∂ζv = 0:

L =
M∑
v=1

(νv
2
πTv Kvπv + (αv − α̂v)TY

− (αv + α̂v)
T εL1n − (αv − α̂v)TLvπv

−γTv (
1

M − 1

M,u 6=v∑
u=1

Uuπu − Uvπv)−
1

4λ
γTv γv

)

and

0n ≤ αv, α̂v ≤ 1n as well as γv =
1

2λ
ζv

Kernel expansion coefficients:

πv =
1

νv

 αv − α̂v
1

M−1

M,u6=v∑
u=1

γu − γv

 =
1

νv

(
α

γ

)
v

Final dual objective:

L =
M∑
v=1

(
− 1

2νv

(
α

γ

)T
v

Kv

(
α

γ

)
v

+ (αv − α̂v)TY − (αv + α̂v)
T εL1n −

1

4λ
γTv γv

)

Additional equality constraints:

γv =
1

M − 1

M,u6=v∑
u=1

2λ

νu
Uu

(
α

γ

)
u

− 2λ

νv
Uv

(
α

γ

)
v

(ii) Kernelised reformulation of ε-CoSVRmod with slack variables ξv, ξ̂v, ζv, and ζ̂v:

min
πv∈Rn+m

M∑
v=1

(νv
2
πTv Kvπv + (ξv + ξ̂v)

T1n + λ(ζv + ζ̂v)
T1m

)

s.t.



Y − Lvπv ≤ εL1n + ξv
Lvπv − Y ≤ εL1n + ξ̂v

1
M−1

∑M,u6=v
u=1 Uuπu − Uvπv ≤ εU1m + ζv

Uvπv − 1
M−1

∑M,u6=v
u=1 Uuπu ≤ εU1m + ζ̂v

ξv, ξ̂v ≥ 0n
ζv, ζ̂v ≥ 0m


v∈[[M ]]
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Introduction of Lagrangian multipliers αv, α̂v, γv, γ̂v, βv, β̂v, δv, and δ̂v:

L =
M∑
v=1

(νv
2
πTv Kvπv + (ξv + ξ̂v)

T1n + λ(ζv + ζ̂v)
T1m

+ αTv (Y − Lvπv − εL1n − ξv) + α̂Tv (Lvπv − Y − εL1n − ξ̂v)

+ γTv (
1

M − 1

M,u6=v∑
u=1

Uuπu − Uvπv − εU1m − ζv)

+ γ̂Tv (Uvπv −
1

M − 1

M,u6=v∑
u=1

Uuπu − εU1m − ζ̂v)

−βTv ξv − β̂Tv ξ̂v − δTv ζv − δ̂Tv ζ̂v
)

Equations ∂L/∂ξv = 0, ∂L/∂ξ̂v = 0, ∂L/∂ζv = 0, and ∂L/∂ζ̂v = 0:

L =

M∑
v=1

(νv
2
πTv Kvπv + (αv − α̂v)TY − (αv + α̂v)

T εL1n

− (γv + γ̂v)
T εU1m − (αv − α̂v)TLvπv

−((γv −
1

M − 1

M,u 6=v∑
u=1

γu)− (γ̂v −
1

M − 1

M,u6=v∑
u=1

γ̂u))Uvπv

)

and

0n ≤ αv, α̂v ≤ 1n and 0m ≤ γvγ̂v ≤ λ1m

Kernel expansion coefficients:

πv =
1

νv

 αv − α̂v

(γv − 1
M−1

M,u6=v∑
u=1

γu)− (γ̂v − 1
M−1

M,u 6=v∑
u=1

γ̂u)

 =
1

νv

(
α

γ

)
v

Final dual objective:

L =
M∑
v=1

(
− 1

2νv

(
α

γ

)T
v

Kv

(
α

γ

)
v

+ (αv − α̂v)TY

−(αv + α̂v)
T εL1n − (γv + γ̂v)

T εU1m
)
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B Ligand Affinity Dataset

The ligand affinity prediction experiments were performed with 29 protein-ligand datasets
listed in Tables B.1 and B.2 together with further information on the sets. Each set cor-
responds to a human protein which can be identified via its Uniprot ID1 in the Protein
ID column of Tables B.1 and B.2. For a fixed protein, the set comprises a list of
small molecular compounds and their binding affinity with respect to that protein. The
molecules were gathered from the BindingDB database2 and each set comprises between
21 and 2648 annotated compounds. The real-valued non-negative ligand affinities are
pKi-values that measure the strength of the protein-ligand complex (more details can
be found in Section 1.3.1 on the biochemical background). As we consider a regression
scenario, we call the molecular compounds ligand (candidates) independent of whether
its corresponding affinity is high or low.

Different fingerprint formats are available for the representation of the small molecular
compounds. We utilise the standard fingerprints ECFP4, ECFP6, GpiDAPH3, and
Maccs which are described in Section 1.3.4. All of the applied fingerprints are binary
and high-dimensional formats. A value of 1 at vectorial component c indicates that the
respective compound carries the molecular feature associated with c and vice versa in
case of value 0. The high dimension results from the fact that all of the used formats
are a specific collection of a big number of molecular properties. As a consequence,
many vectorial components will be equal to 0, which we also call a sparse representation
(compare Section 4.3.4).

The dimension of a particular fingerprint type for the representation of instances of inter-
est either results from the number of pre-defined molecular features (such as in the case
of Maccs) or from the overall number of features found in the objects to represent (such
as the graph patterns found in the union of all molecular compounds in all datasets in
the case of ECFP4, ECFP6, or GpiDAPH3). Commonly generated datasets with respect
to more than one protein exhibit the described initial fingerprint dimension. If one con-
siders the sets for machine learning approaches individually (such as done in Chapters 3
and 4), the sparsity property mentioned above results in different true dimensions of the
fingerprints for each of the protein-related datasets. With true dimension we refer to
the number of fingerprint components that exhibit at least once a value of 1 and once a
value of 0 in the respective set. This true dimension will typically scale with an increas-
ing number of ligands. The true dimension of the 29 protein-ligand datasets together
with their relative sparsity are listed in Table B.2 for all applied molecular fingerprint
types. With relative sparsity we refer to the number of non-zero dimension components
(sparsity) divided by the true dimension of the respective dataset. In both Tables B.1
and B.2 the proteins are ordered by increasing number of the comprised molecular com-
pounds. The respective ordinal number can be found in parantheses behind the protein
identifier in the Protein ID column. We observe that the true dimension increases if
more compounds are included as more features can be found if the set of molecules ex-
pands. In contrast, the relative sparsity value decreases (by a factor of 20 in the case of
ECFP6) with increasing number of molecular compounds which ultimately might hinder
a machine learning algorithm to involve or detect a relevant feature in a data subset, for
example, as a result of the train-test-split procedure.

1www.uniprot.org
2www.bindingdb.org
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We used the fingerprint types ECFP6 and Maccs as well as graph patterns for the MKL
experiments and protein-ligand sets 8 − 27 in Chapter 3. For the empirical analysis of
co-regularised algorithms and baselines in Chapter 4 we applied the standard molecular
fingeprints ECFP4, GpiDAPH3, and Maccs as well as protein-ligand sets 1 − 11, 13,
15 − 18, 20 − 25. In Chapter 5 we applied the fingerprints ECFP4 and GpiDAPH3 as
well as protein-ligand sets 20− 22 and 24− 29. In all chapters, the datasets were chosen
within an appropriate range of compound numbers. This range differed for the three
chapters as we considered different algorithm classes and different settings with respect
to data availability. Further differences occurred because of singular KKT matrices
as an integral part of the QP solver used in the empirical section of Chapter 4. In
Chapter 5, datasets happened to become too small because of the removal of ligands
that belonged to more than one protein dataset. Moreover, in Chapter 5 we utilised a
positive semi-definite similarity matrix as kernel values for the involved proteins. The
similarity values for pairs of proteins came in addition to the original 29 protein-ligand
sets and were originally calculated as a similarity measure for amino acid sequences.

Protein Ligand Affinity Protein Ligand Affinity
ID Number Range ID Number Range

P14091 (1) 21 6.1− 10.0 P07384 (16) 189 3.1− 10.7
P08311 (2) 23 3.9− 9.8 P07339 (17) 197 4.1− 11.0
Q16651 (3) 23 4.8− 7.9 P08709 (18) 249 3.9− 9.5
P07288 (4) 28 7.2− 9.7 P43235 (19) 252 3.9− 11.5
P04070 (5) 31 3.7− 7.1 P00750 (20) 268 2.2− 9.5
O60235 (6) 41 5.8− 7.9 P07858 (21) 278 3.0− 10.5
P03952 (7) 76 3.0− 9.3 P29466 (22) 310 3.1− 9.8
P23946 (8) 90 5.4− 8.9 P07711 (23) 357 3.9− 10.6
Q99895 (9) 91 2.7− 8.0 P00747 (24) 474 1.9− 11.0
P09871 (10) 92 4.8− 9.0 P00749 (25) 600 0.3− 11.1
P25774 (11) 104 4.3− 9.8 P08246 (26) 742 2.7− 11.2
Q9Y5Y6 (12) 125 4.0− 10.1 P07477 (27) 986 2.0− 10.6
P17655 (13) 128 4.8− 10.8 P00742 (28) 2626 3.0− 11.4
P42574 (14) 133 4.9− 11.9 P00734 (29) 2648 2.5− 12.5
P00740 (15) 171 3.9− 8.7

Table B.1: Ligand number and label range for protein-ligand datasets
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Table B.2: True dimensions and relative sparsities of the ligand affinity datasets

Protein Dimension Dimension Dimension Dimension
ID (Sparsity) (Sparsity) (Sparsity) (Sparsity)

Fingerprint ECFP4 ECFP6 GpiDAPH3 Maccs

P14091 (1) 392 (0.22) 689 (0.18) 3017 (0.23) 113 (0.64)
P08311 (2) 543 (0.15) 967 (0.12) 3199 (0.14) 118 (0.52)
Q16651 (3) 232 (0.38) 410 (0.33) 2003 (0.37) 98 (0.65)
P07288 (4) 205 (0.33) 371 (0.28) 2482 (0.33) 91 (0.59)
P04070 (5) 501 (0.14) 888 (0.11) 1400 (0.10) 116 (0.64)
O60235 (6) 305 (0.24) 576 (0.19) 1809 (0.13) 102 (0.69)
P03952 (7) 881 (0.07) 1710 (0.05) 2848 (0.06) 125 (0.43)
P23946 (8) 649 (0.12) 1305 (0.09) 2255 (0.14) 127 (0.50)
Q99895 (9) 846 (0.07) 1661 (0.05) 2586 (0.08) 129 (0.40)
P09871 (10) 605 (0.10) 1277 (0.06) 913 (0.06) 118 (0.43)
P25774 (11) 882 (0.08) 1787 (0.05) 3344 (0.08) 124 (0.52)

Q9Y5Y6 (12) 748 (0.11) 1570 (0.08) 4461 (0.10) 124 (0.59)
P17655 (13) 658 (0.09) 1343 (0.07) 2865 (0.12) 114 (0.45)
P42574 (14) 969 (0.07) 1943 (0.05) 3297 (0.07) 135 (0.50)
P00740 (15) 1101 (0.06) 2383 (0.04) 2206 (0.05) 128 (0.38)
P07384 (16) 1045 (0.06) 2237 (0.04) 3788 (0.07) 121 (0.43)
P07339 (17) 1399 (0.06) 2957 (0.04) 7073 (0.08) 127 (0.49)
P08709 (18) 1420 (0.05) 3199 (0.03) 5362 (0.04) 137 (0.39)
P43235 (19) 1479 (0.04) 3259 (0.03) 4579 (0.05) 131 (0.43)
P00750 (20) 1961 (0.03) 4324 (0.02) 4757 (0.02) 136 (0.36)
P07858 (21) 1810 (0.03) 3875 (0.02) 5312 (0.05) 144 (0.37)
P29466 (22) 1667 (0.04) 3757 (0.03) 4110 (0.05) 131 (0.39)
P07711 (23) 1874 (0.04) 4185 (0.02) 5364 (0.05) 137 (0.42)
P00747 (24) 2316 (0.03) 5448 (0.02) 6152 (0.03) 140 (0.42)
P00749 (25) 2623 (0.02) 6446 (0.01) 6468 (0.02) 143 (0.33)
P08246 (26) 3716 (0.02) 8763 (0.01) 8439 (0.03) 150 (0.40)
P07477 (27) 4148 (0.02) 10373 (0.01) 8644 (0.02) 145 (0.39)
P00742 (28) 7433 (0.01) 20965 (0.005) 11671 (0.01) 150 (0.41)
P00734 (29) 7793 (0.01) 21641 (0.005) 13735 (0.02) 151 (0.42)
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C Algorithms

C.1 A Heuristic to Detect Aromatic Bonds

A molecular graph representation, e.g., the SDF format introduced in Section 1.3.2,
delivers information on atom and bond types and their inter-molecular arrangements.
Special circular structures provide the corresponding molecules with particular prop-
erties regarding structure and physico-chemical behaviour known under the name of
aromaticity (see Section 3.1.1). This molecular property cannot be seen directly in the
graph representation, but reasoned iteratively from typical graph patterns. Algorithm
1 is a formal description of this deductive reasoning. We point out that the aromaticity
of a molecular cycle affects the aromatic property of the neighbouring cycles. Addi-
tionally, we indicate that the presented algorithm is only a heuristic, i.e., it detects the
vast majority of aromatic structures correctly. We will use the notation DB(c) for the
number of bonds in a cycle c which are either double or aromatic bonds (labels 2 or a).
The symbol HA(c) denotes the number of heteroatoms in cycle c. A heteroatom is a
nitrogen, sulfur, or oxygen atom (labels N, S, or O) which is able to provide a free atom
pair within a molecular cycle. The input of the subsequent algorithm is the molecular
graph G with original labelling from a representation format like SDF. The output is the
molecular graph G such that all bond labels in a cycle are changed to aromatic (label
a), if the cycle is detected to be an aromatic one. We consider the simple cycles S(G)
according to Section 3.1.3 and their subsets S5(G) and S6(G) of simple cycles with 5
and 6 nodes, respectively. The bond labels in S5(G) and S6(G) may change to aromatic
(label a) throughout the algorithm’s iterations. With Cai we refer to the set of detected
aromatic cycles in iteration i.

Algorithm 1 Detection of aromatic bonds in a molecular graph G

Require: Molecular graph G with original labels of bonds (edges) and atoms (nodes)
Ensure: Molecular graph G with updated bond labels
1: i← 0
2: Cai ← ∅
3: calculate S5(G), S6(G)
4: repeat
5: i← i+ 1
6: Cai ← Cai−1

7: for all c ∈ S5(G) \ Cai−1 do:
8: if (DB(c) ≥ 2) or (DB(c) = 1 and HA(c) ≥ 1) then
9: update all edge labels of c in S5(G) and S6(G) to be a

10: Cai ← Cai ∪ {c}
11: end if
12: end for
13: for all c ∈ S6(G) \ Cai−1 do:
14: if (DB(c) ≥ 3) or (DB(c) = 2 and HA(c) ≥ 1)
15: or (DB(c) = 1 and HA(c) ≥ 2) then
16: update all edge labels of c in S5(G) and S6(G) to be a
17: Cai ← Cai ∪ {c}
18: end if
19: end for
20: until |Cai | = |Cai−1|
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The numbers of double or aromatic bonds and heteroatoms in simple cycles are checked
iteratively. A simple cycle is determined to be aromatic if the corresponding numbers
fulfill certain conditions. For example a 6-cycle with three double bonds (label 2 ) and
three single bonds (label 1 ) is classified to be aromatic and, consequently, all of its six
bond labels are changed into aromatic (label a). The changed labels have an influence
on the classification result of cycles in later iterations. The algorithm stops if no new
aromatic cycles are found. Lines 7 and 13 of Algorithm 1 refer to the simple 5-cycles
and 6-cycles c, respectively, that have not been detected to be aromatic in previous
iterations.

C.2 Contracted Graph Construction

We consider the decomposition of a labelled, undirected graph G into biconnected com-
ponents according to Definition 3.6 and bridges B(G). Algorithm 2 describes the con-
struction of the contracted graph G from Section 3.1.4 as pseudocode. For every bicon-
nected component B we add a new vertex vB with label lbc to the contracted graph as a
representative of B. We denote the set of vertices contained in cycles of G with Vcycles.
If v ∈ V is a vertex of G, v = λG(v) ∈ V is the relabelled vertex of G.

Algorithm 2 Contracted graph construction for the labelled undirected graph G

Require: Labelled, undirected graph G = (V,E) and labelling function λG
Ensure: Contracted graph G = (V ,E) with labelling function λG
1: V ← V \ Vcycles

2: E ← B(G)
3: for all v ∈ V do:
4: λG(v)← λG(v)
5: end for
6: for all biconnected components B do:
7: V ← V ∪ {vB}
8: λG(vB)← lbc

9: end for
10: for all {v, w} ∈ B(G) do:
11: λG({v, w})← λG({v, w})
12: end for

Regarding line 11 we refer to the comments in Section 3.1.4.

C.3 Iterative Solution of `2-MKL

Algorithm 3 delivers an iterative procedure to calculate the solution b and π of the `2-
MKL optimisation presented in Section 3.3.1. In the pseudocode formulation the Gram
matrix of the kernel linear combination kb is Kb =

∑M
v=1 bvKv for b ≥ 0M . Hence, the

Gram matrix of the initial kernel linear combination is K0 =
∑M

v=1(b0)vKv for initial
linear coefficients b0 ≥ 0M . Regarding further details on the solution of `2-MKL and
the properties of Algorithm 3 we refer to Cortes et al. [2009].
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Algorithm 3 Solution of `2-MKL

Require: Gram matrices Kv, v = 1, . . . ,M , label vector Y , initial linear coefficients
b0 ≥ 0M , hyperparameters η ∈ (0, 1), ν,Λ, ε > 0

Ensure: Parameterisation b ≥ 0M and π ∈ Rn of the predictor function
1: π′ ← (K0 + 1

ν In)−1Y
2: repeat
3: π ← π′

4: w ← (πTK1π, . . . , π
TKMπ)T

5: b← b0 + Λ w
‖w‖

6: π′ ← ηπ + (1− η)(Kb + 1
ν In)−1Y

7: until ‖π − π′‖ < ε

C.4 Corresponding Projections Algorithm

Algorithm 4 is a formal description of the CP algorithm from Section 5.3.1 which outputs
a hypothesis for an orphan target, i.e., a target without an available training set. For
the algorithm below we assume that training examples Ei ⊆ X × Y are available for
the so-called supervised targets ti, i = 1, . . . , n. With SKM we denote an arbitrary
supervised kernel method that calculates a prediction model hi from labelled instances
Ei for target ti. With CPO we refer to the CP optimisation in Equation 5.7.

Algorithm 4 Calculation of orphan hypothesis

Require: Training sets E1, . . . , En, targets t1, . . . , tn, orphan target to
Ensure: Hypothesis ho for the orphan target to
1: for i = 1, . . . , n do
2: hi ← SKM(Ei)
3: end for
4: ho ← CPO(to, t1, . . . , tn, h1, . . . , hn)
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M. R. Berthold, C. Borgelt, F. Höppner, and F. Klawonn. Guide to Intelligent Data
Analysis. Springer Verlag, 2010.

A. Blum and T. Mitchell. Combining Labeled and Unlabeled Data with Co-Training. In
Proceedings of the Eleventh Annual Conference on Computational Learning Theory,
pages 92–100, 1998.

J. R. Bock and D. A. Gough. A New Method to Estimate Ligand-Receptor Energetics.
Molecular & Cellular Proteomics, 1:904–910, 2002.

J. R. Bock and D. A. Gough. Virtual Screen for Ligands of Orphan G Protein-Coupled
Receptors. Journal of Chemical Information and Modeling, 45:1402–1414, 2005.

K. Borgwardt and H.-P. Kriegel. Shortest-Path Kernels on Graphs. In Proceedings of
the Fifth IEEE International Conference on Data Mining, pages 74–81, 2005.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

U. Brefeld and T. Scheffer. Semi-Supervised Learning for Structured Output Variables.
In Proceedings of the Twenty–Third International Conference of Machine Learning,
2006.
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C. Pinilla, and R. A. Houghten. Characterization of Activity Landscapes Using 2D and
3D Similarity Methods: Consensus Activity Cliffs. Journal of Chemical Information
and Modeling, 49:477–491, 2009.

L. Michielan and S. Moro. Pharmaceutical Perspectives of Nonlinear QSAR Strategies.
Journal of Chemical Information Modelling, 50:961–978, 2010.
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