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Abstract

The research work focuses on the development of innovative sensor data processing

techniques for traffic surveillance, which aim at improving the performance yielded

by state-of-the-art tracking solutions when a dynamically evolving target scenario

is sensed by heterogeneous, geographically distributed sensors. Specifically, the mar-

itime environment is considered, since the lack or deficiencies of customized techniques

is currently in the spotlight due to the rising of events such as illegal migration, sea

piracy, and accidents in new highly-trafficked sea routes. Maritime surveillance ap-

plications rely on multiple sensors, which might be located on the coast, on board

patrolling or commercial vessels, or air/space-based platforms. This plethora of infor-

mation sources urges for ad hoc data processing techniques. However, such techniques

suffer from intrinsic problems due to the characteristics of the vessel traffic or to the

space/time constraints of the observations.

Specifically, the PhD work aims at facing the following - often recorded - phenomena

that hinder target tracking and identification performance: (i) lack and/or inter-

mittence of sensor measurements due to occlusions or limited sensor coverage; (ii)

spoofed or erroneous position messages from ships and (iii) false alarms originated by

the sensors due to the presence of clutter (e.g. echoes from land and wind parks).

These phenomena, experienced by active and passive coastal radars and collabora-

tive systems such as Automatic Identifications Systems or Long Range Identification

and Tracking system, lead to discontinuous, inaccurate and false vessel tracks in the

maritime traffic picture.

The fundamental concept proposed by the PhD work is the exploitation of external

information in the target tracking stage. This is specifically valid in the maritime

context, which is rich in contextual (e.g., coastline, location of ports, sea lanes, cor-

ridors and interdicted areas, oil spills, clutter conditions) and target-related informa-
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tion (e.g., target behavioral models, declared and preferred routes). These factors

constrain the evolution of the target in the observed scenario, hence they can be ex-

ploited when attempting at reconstructing the target track from the available, scarce

and inaccurate measurements. The crucial question is how and at what step of the

target tracking processing chain this external information should be used in order to

maximize the payoff.

Constrained filtering has been investigated in the past in general terms. However,

application-oriented mathematical models are required for including the context infor-

mation (our “knowledge”) as constraint in the non-linear estimation problem. Specif-

ically, Bayesian non-linear filtering strategies are considered within the research work

and different mathematical models (i.e., the Navigation Field and the Sea Lane con-

cepts) are formulated. This leads to the conceptualization and development of in-

novative Knowledge-based tracking filters, which are demonstrated to improve track

performance metrics, such as continuity, accuracy and false track rate. Exhaustive

performance assessment is carried out over simulated maritime traffic scenarios.

Finally, within the PhD research, the introduced techniques are tested in the frame

of operational applications, such as (i) active radar surveillance in coastal areas, (ii)

collaborative vessel traffic monitoring in high seas and coastal areas, and (iii) passive

radar surveillance in coastal areas. The availability of sensor data allows tuning the

developed models to the operational (realistic) maritime scenarios, and providing a

clear insight into Knowledge-based data processing techniques for area surveillance.

Keywords - Knowledge base, context information, target tracking, con-

strained Bayesian filtering, data association, Extended Kalman filter, par-

ticle filter, Kullback-Leibler divergence, maritime situational awareness,

navigational field assisted target tracking, sea lane assisted target track-

ing, knowledge-based MHT, vessel route prediction, vessel monitoring,

AIS, coastal radar, passive radar.
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CHAPTER I

Introduction

“Remote Sensing is gathering information about an object without touching it”,

[FRH86].

Most human activities rely on the way the world around is sensed by him, and on

the way he is able to reason on the information collected through his senses. Since

ages, people have extended their senses through the use of devices and adapted their

reasoning to the newly collected data. A straightforward example is a person looking

at an object through a lens, and inferring the characteristics of the object despite the

“enhanced” vision of it.

Sensors are nowadays well established tools of our daily life. However, sensor data are

by nature incomplete, inaccurate, and affected by errors due to the sensing process

itself. The human brain is able to cope with these deficiencies in a very effective way

(as an example, the role of the human analyst is still actual in many applications),

if it is not overwhelmed by the amount of data, the duration of the observation, or

the operative conditions. In such cases the use of automatic processing techniques

(or “reasoning” techniques) is attempted. Are they able to mimic the capability of

human brain against imperfect senses?

A wide scientific literature is available on data processing techniques devoted to the

estimation of unknowns from error-prone sensor measurements. Statistical estimators

are well established in guidance and navigation applications, as well as in surveillance

devices, for which the presence, position and kinematics of the moving object(s) rep-

resent often the unknown.

As far as surveillance applications are concerned, a wide class of data processing
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1 Introduction

algorithms are commonly referred to as tracking techniques, whose fundamentals

have been laid down by Kalman et al. [Kal60, KB61]. They rely on the statistical

characterization of the sensing “problem”: both target evolution and the measurement

process are modeled as stochastic processes. Originally, the tracking algorithms were

based on linear models, i.e. the target and the measurement processes are described

by linear relationships among the variables. Then, they have been quickly extended

to non-linear models in order to approximate real observation conditions in a closer

way [Sor85]. The typical sources for non-linearity are the measurement process (e.g., a

sensor that estimates the relative angle of arrival of the detected signal and attempts

at reconstructing the Cartesian coordinates of the emitting object) as well as the

target cinematic model (e.g., an object accelerating along its trajectory). The final

goal of these algorithms is generally to make the collected measurements usable (in

a friendly and confident way) by the User, or, in other words, to improve the quality

of the “sensing service”.

Another important milestone in the research on data processing techniques consists of

the application of the tracking techniques to heterogeneous measurement sets, such as

for example the ones provided by two different sensors or by geographically distributed

sensors. The basic problem in multi-sensor systems is “to integrate a sequence of

observations from a number of different sensors into a single best-estimate of the state

of the environment”, [DW88]. In this framework, the estimation techniques are often

referred to as data fusion. At the end the processing of multi-sensor data is “a process

dealing with the association, correlation, and combination of data and information

from single and multiple sources to achieve refined position and identity estimates,

and complete timely assessments of situations and threats, and their significance. The

process is characterized by continuous refinements of its estimates and assessments,

and the evaluation of the need for additional sources, or modification of the process

itself, to achieve improved results”, [Why87]. Hall and Llinas [HL97] provided the

following well-known definition of data fusion: “data fusion techniques combine data

from multiple sensors and related information from associated databases to achieve

improved accuracy and more specific inferences than could be achieved by the use of

a single sensor alone”. A detailed overview of state-of-the-art techniques is reported

in [BP99] from the point of view of tracking, and in [HM04] from the point of view

of data fusion.

Focusing on surveillance sensors, it is possible to group the applied algorithms into

classes or blocks of an overall data processing architecture. Most surveillance appli-

cations in this field yield indeed similarities and commonalities. For instance, they

often require a detection stage to extract the information of interest (i.e. detections,

2



hits or plots) from the wide set of raw data. This step is commonly followed by a

filtering/tracking stage, which attempts at refining the measurement and reduce the

effect of erroneous measurement on the overall result. The filtered data (i.e. track)

is built up in order to have enough accuracy and confidence to support the “right”

decision by the User. A similar task is also assigned to the fusion stage that combines

heterogeneous bits of information. This can work on sensor data or generic informa-

tion sources, such as human reports, databases or social media. All these steps - from

the collected raw data to the final results provided to the User - can work in real time

or in near real time according to the application.

Radar, cameras, communication interceptors as well as GNSS-based devices benefit

from such processing architectures. Taking into consideration the well-known Joint

Directors of Laboratories (JDL) model for Sensor Data Fusion [Why87], it is possible

to define five levels of data processing:

� Level 0 - Preprocessing: it consists of the basic information extraction process at

the signal and pixel levels. This level reduces the amount of data and maintains

useful information for the high-level processes;

� Level 1 - Object refinement: This already includes spatio-temporal alignment,

association, correlation, clustering or grouping techniques, state estimation, re-

moval of false positives, identity fusion, and the combining of features that were

extracted from images. Generally speaking, classification, identification and

object tracking belong to this stage.

� Level 2 - Situation assessment: This aims at establishing relationships (i.e.,

proximity, communication) between the objects and identifying patterns in order

to perform higher level inference.

� Level 3 - Impact assessment: this level evaluates the impact of the detected

activities through future projection. Goal is to identify possible risks, vulnera-

bilities, and operational opportunities.

� Level 4 - Process refinement: this level provides resource and sensor manage-

ment.

The above-described levels correspond to logical functions that might be present in the

processing scheme for the addressed sensor data. The specific algorithm will depend

on the nature of the collected data and/or information itself, and will be described in

this work on case by case basis.

However, it is worth underlining another general feature of the processing scheme, i.e.,
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1 Introduction

the difference between centralized and decentralized data fusion. A centralized archi-

tecture means that the fusion node resides in the central processor that receives the

information from all sources in terms of raw measurements. This scheme is theoreti-

cally optimal if data can be correctly aligned in time and space. The main drawback

is usually the large amount of data to be transferred. Therefore, distributed archi-

tectures are quite common. In this case, a network of nodes collaborate, each with

its own processing capabilities: measurements from each source node are processed

independently through data association techniques (Level 0 and 1) before the infor-

mation is sent to the fusion node. Of course, other hybrid schemes do exist and can

be derived from these two.

The selection of the data processing scheme depends on the considered application.

In this work, among others, the following Use Case is addressed. An extended

maritime area or multiple maritime sectors are monitored by the User for security or

safety purposes. Task of the User is to detect, recognize and follow each vessel passing

by, and eventually detect anomalies in their behavior (e.g., entering prohibited zones,

deviating from the expected route, etc.). This also includes small rapid vessels. To

this aim, a set of active and passive sensors are deployed over the territory, including

coastal radars and networks of transponders (e.g., the Automatic Identification Sys-

tem, AIS). A distributed fusion architecture is considered: each sensor is equipped

with its own tracking algorithm and delivers plots and tracks to the central data

processing node. The fusion engine is responsible for compiling the fused picture of

the maritime traffic and deliver it to the automatic reasoning engine. This latter will

mimic the human reasoning in identifying the anomalies and detecting risks. This

might be fully automatic or supervised by the Operator, and usually results into the

generation of alarms in real time or off-line reports. This Use Case is depicted in

Figure 1.1.

Figure 1.1: Example use case addressed in this PhD work.
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As described above, the main task of the considered data processing scheme is to com-

pile the common operational picture (COP) of the maritime traffic for the automatic

reasoning tool or for the operator in charge of the monitoring service. The operative

goal is to increase the situational awareness in the area. The compiled picture should

include the position and kinematics of all vessels in the area of interest (that could be

a port area, the entire national coastal waters, or high sea Exclusive Economic Zone),

and the identification or classification of each vessel. This latter information is based

on typical vessel attributes that are collected or measured by the sensor and made

available to the fusion engine (as recipient of the track messages). Exemplary at-

tributes are ship’s IMO (International Maritime Organization) identification number,

ship class or size, port of destination, estimated time of arrival, etc. These features are

also prone to errors (human or due to the statistical process) which need to be con-

sidered during the association step or when compared to a vessel database. The final

picture will be “common”, i.e., the information coming from different sensors should

be fused before presentation to the User, and should support operations. This usually

turns into a requirement on the latency between the acquisition of measurements and

the time it is available for the User.

The performance of tracking techniques has been characterized and assessed in

several forms in literature (e.g. [RD00]). This work addresses the application require-

ments: this means that in order to fulfill the task of increasing the maritime situation

awareness and support the User in his decision tasks, the outputs of the fusion en-

gine have to yield specific performance values. The analyzed processing techniques

will be then “successful” if they achieve these Use Case dependent values. These

requirements are detailed in Section 2, and dictate the performance metrics of the

techniques. The key metrics are the following:

� Track continuity, which quantifies the capability of the tracking algorithm to

maintain the track “confirmed” even in presence of measurements with large er-

rors, absence of updates, or target dense environment with measurement-track

association errors. The commonly observed effect in these cases is the segmen-

tation of the track into multiple non-connected tracks with different identifiers

- as if originated by different targets. This leads to misinterpretation of the

tactical picture.

� False Track Rate, which quantifies the rate of formation of false tracks be-

ing originated by false alarms of from unassociated measurements. This phe-

nomenon could be due to a target-dense environment and the resulting overlap-

ping of measurements, or by clutter effects that introduce false detection hits.
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1 Introduction

Another cause could be a spoofing signal, which turns into a fake target or fake

location of a real vessel within the monitored area.

� Track accuracy. This corresponds straightforwardly to the (average) differ-

ence between the real position of the target and the estimated one. This depends

on the sensor measurement accuracy as well as to the update rate, the target

kinematics, and the algorithm itself.

The relation of these parameters to the likelihood of using the results contained in the

COP is straightforward, as showed by the following examples. The continuity of the

track allows correctly assessing the behavior of a given vessel, which might be then

labelled as dangerous, illegal or in danger. The accuracy of the track allows generating

alarms (e.g., for the Coast Guard and rescue centers) if the vessel approaches too

closely dangerous areas, such as the coast. A high rate of false alarms might lead to

useless interventions of the Coast Guard or even neglecting actions requested by true

vessels, since deeply submerged by the false alarms.

It might be also possible to define the performance in terms of Data Fusion techniques.

In this case, we might refer to the False Association rate, which quantifies the error

rate during the association of measurements to existing tracks or between two tracks.

However, the resulting effect - at COP level - will be again encoded by the above-

defined performance metrics at track level. For this reason, we will refer to the former

exclusively.

1.1 Motivations and Objectives

The introduction demonstrates the wide use of data processing techniques for surveil-

lance applications, which fostered over the last 80 years a significant amount of re-

search work. However, state-of-the-art techniques still yield performance deficiencies

mainly due to the complex operative conditions, which might depart from the theo-

retical models. They unavoidably fail in considering all the constraints of the “real

world”, since these constraints are hard to describe in quantitative terms. An overall

assessment of maritime surveillance awareness (MSA) data processing performance in

real conditions does not exist. Sensors are generally defined with maximum perfor-

mance values, which are achieved in benign conditions, but their characterization in

real conditions is protected by the intellectual property rights of the manufacturer.

Moreover, the details of the algorithms are not generally known. End Users, as well,

tend not to disclose the performance of their surveillance networks due to the strategic

relevance of this data. A quantitative assessment of the problem is therefore hardly

possible.
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1.1 Motivations and Objectives

However, the same questions on the achieved performance are raised in case of ac-

cidents at sea. For example, the absence of real-time alarms in the COP in case of

approaching vessels in the proximity of the coast might be unexpected, especially

because observations relied on the coastal surveillance network capabilities.

One significant example is given by the Costa Concordia case. Costa Concordia was a

cruise ship built in 2004 by the Fincantieri’s Sestri Ponente yards in Italy and operated

from 2005 until 2012 by the Costa Crociere subsidiary of Carnival Corporation. On

13 January 2012 in calm seas and overcast weather, after departing Civitavecchia (the

port for Rome, Italy), on a 7-night cruise, at 21:45 local time, Costa Concordia hit a

rock off Isola del Giglio, on the western coast of Italy about 100km (62 NM) northwest

of Rome. A 53 m long gash was made in the port-side hull, along 3 compartments of

the engine room (deck 0); resulting in power losses, leading to a loss of propulsion and

loss of electrical systems, which crippled the ship. Taking on water, the vessel tipped

over the port side. Twenty-four minutes later, strong winds pushed the vessel back to

Giglio Island, where she grounded 500 m north of the village of Giglio Porto, resting

on her starboard side in shallow waters, with most of her starboard side underwater

(en.wikipedia.org/wiki/Costa Concordia, latest access on 23rd August 2019). In this

case it seems that no alarm was generated by the coastal surveillance systems for the

ship transiting in dangerous areas.

Figure 1.2: The sinking cruise ship Costa Concordia on January 13th, 2012
(www.corriere.it/gallery/cronache/01-2012/costa-concordia/3/tragedia-giglio-gigante-
costa-inclinato 4ea8800c-3e92-11e1-8b52-5f77182bc574.shtml, latest access on 23rd August
2019)

7



1 Introduction

The unavailability of sensor data (or good enough sensor data) in conjunction with

other accidents is also hardly justifiable. On April 12th, 2015, the radar sensor located

on the southern dam of the port of Ravenna in Italy was broken since a few months.

The merchant vessels Lady Aziza and Gokbel collided on December 28th a mile off

the port of Ravenna. Experts said that even with a fully operational radar, the track

accuracy would have not been enough to avoid the accident.

Figure 1.3: Result of the collision between the Lady Aziza and Gokbel merchant vessel on
December 28th, 2015 (www.ilrestodelcarlino.it/ravenna/cronaca/naufragio-gokbel-marinaio-
morto-identificato-1.1456429, latest access on 23rd August 2019).

A sequence of collisions between military ships and merchant ships has generated the

question if GPS- or AIS-spoofing techniques are already in use. The generation of a

false AIS track (or equivalently the lack of an AIS track in the operational picture) is

expected to reduce the early warning capabilities of other vessels for collision avoid-

ance. This means that the reliability of the cooperative systems, such as the AIS,

needs to be high or needs to be supported by non-cooperative sensing. The comple-

mentarity of the data sources should be used not only as back-up but also to prevent

the mystification of the picture.

In the three mentioned accidents, a common aspect can be found: a priori information

was available, but it was not used for different reasons. The presence of hazardous

routes, the unavailability of a sensor, or the likely presence of fake targets in the
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1.1 Motivations and Objectives

Figure 1.4: Collision of US military ships due to AIS spoofing (Jim Richards’ twit on 20th
August, 2017).

COP are a priori information that the human brain is able to process. Would it be

possible then to integrate this kind of information into the automatic tracking and

fusion algorithms?

This research work aims at supporting this analysis and tackles - from a theoretical

and experimental perspective - the introduction of a Knowledge Base (KB) into

data processing algorithms for the MSA. Knowledge is a generic term that refers to

any relevant information to infer on the sensor data. In the maritime surveillance

applications, typical knowledge is related to the geographical information about the

coastline, ports, corridors, bathymetry, vessels databases, etc., whose detailed descrip-

tion is provided in Section 2. Nowadays, this knowledge is not part of the automatic

processing scheme, even though a few attempts have been made to introduce con-

straints in the filtering techniques. At Level 0 of the JDL Model, it is not rare that

the detection algorithms use some sort of knowledge to filter out false alarms. At

Level 1, the identification step is mostly based on external databases, which can be

considered as a sort of knowledge. This is particularly true whenever identification

is based on attributes (e.g., operative modes) and not only on single-shot emission

parameters (e.g., frequency).

In this work, the Knowledge Base is exploited at Level 1 of the JDL Data Fusion

architecture, i.e., within tracking and association algorithms. Alternative approaches

with the introduction of the KB at higher levels are of course possible, but probably
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harder to assess.

The inclusion of the Knowledge Base elements in the statistical estimation problem

(i.e., single-target tracker) is likely to result in the following benefits:

� Improve the track continuity and track accuracy in presence of intermittent

sensor data (i.e. measurements);

� Improve the false track rate in presence of false sensor data and when operating

in cluttered areas.

Considering the mathematical formulation of the well-known detection and tracking

schemes, the Knowledge Base could be exploited in any step of the detection and/or

tracking algorithm, such as state prediction and update, including the data associa-

tion, and to track initialization.

Independently from how the Knowledge might be exploited, the research activity plan

is structured as follows:

1. Review of the maritime sensors and the available Knowledge Base (e.g. the

context information on the environment in which the target evolves and its

related information);

2. Review of the state-of-the-art techniques for Knowledge Base Bayesian filtering;

3. Formulation of mathematical models for the maritime Knowledge Base. The

models will be functional to the KB inclusion in data processing techniques and

will be based on concise description of the modeled elements. These descriptors

will encode the impact over the static/dynamic target system in terms of affected

parameters, constraints or exercised forces;

4. Design and development of data simulators for the addressed scenarios, which

will extend the conventional target dynamics simulations in order to include the

features addressed in the KB models.

5. Design of innovative filtering techniques in the framework of the target track-

ing tasks (i.e. prediction/association/update), which exploit the identified KB

elements;

6. Definition of suitable measures of performance in order to assess the improve-

ment

Generally speaking, the Knowledge will be mapped over an N-dimensional domain,

which originates from the standard 2D spatial domain in which the targets evolve.

10
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The spatial domain will contain the local distribution of the effects of each modeled

“knowledge” element. Similarly, target feature domains (e.g., kinematics or target

shape) will be formed in order to encode the effect that each modeled element has on

that specific attribute. Data processing will be then conducted conventionally over

the 2D domain, or over the N-dimensional domain.

In order to demonstrate how the use of the KB brings improvement to specific aspects,

real maritime surveillance applications that rely on different sensors will be considered:

� Active Radar Surveillance in Coastal Areas;

� Collaborative Vessel Traffic Monitoring In High Seas and Coastal Areas;

� Passive Radar Surveillance in Coastal Areas.

1.2 Work Structure

The work in this Thesis is structured as follows.

Chapter 2 reviews the requirements dictated by the maritime domain to guarantee a

certain level of Maritime Domain Awareness (MDA). Then it provides an overview of

the sensors available for the maritime surveillance, including both in-situ and space

based sensors, with a special focus on active and passive radar technologies since

they represent the basis for consolidated vessel monitoring techniques such as Vessel

Traffic System (e.g. active coastal radars) and innovative solutions for surveillance

at sea (the passive radars). Finally, this Chapter summarizes the Knowledge Based

elements that could be taken into account in the design phase of innovative vessel

tracking algorithms.

Chapter 3 recalls the fundamental of the data processing technique used in this

thesis. Specifically, the Bayesian target tracking methodology is addressed, with a

special focus on the various tracking filters (linear and non-linear) and data associa-

tion strategies used in this research work. Also the measures of performance usually

adopted to evaluate the vessel tracking algorithm results are presented in the Chap-

ter. Specifically, the evaluation instruments to compare different knowledge-based

filtering techniques and to evaluate the tracking results with respect to the non KB

applications are provided.

Chapter 4 introduces the concept of constrained Bayesian filtering, whose theoreti-

cal formulation represents the basis for the context based target tracking techniques

developed in this research work. Specifically, it is shown how hard constraints can

11
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be included both in the prediction step and the update step of the Bayesian recur-

sion, bringing to the same result form the Bayesian perspective. Some state-of-the-art

algorithms are also recalled in the Chapter. They include two basic examples of gen-

eral purpose algorithms that exploit the context in the prediction and in the update

steps, respectively. Moreover, other KB algorithms tailored for ground vehicles target

tracking applications are also reported.

Chapter 5 presents the knowledge based tracking filters designed for maritime surveil-

lance applications. These filters incorporate different KB elements, being some of

them a priori known, like the geographic information about coastline and ports, and

other online estimated and/or received during the data processing task itself, such as

the identification number of the vessel or the destination port, usually contained in

messages provided by cooperative maritime information data sources (e.g. Terrestrial

and Satellite AIS, LRIT, etc.). The mathematical model of the knowledge is derived

and the filters modified properly to handle its inclusion. As already mentioned, the

knowledge can affect the prediction or the update step in the filter, or can also have

an impact on the target detection task. Examples of these possibilities are provided

in the Chapter.

Chapter 6, Chapter 7 and Chapter 8 are devoted to the presentation of maritime

surveillance applications in which the derived KB filters have been used to track the

vessels. Such applications are related to real exemplary scenarios in which the targets

evolve and deal with different kinds of sensor. Specifically, the problem of tracking

vessels in coastal areas in presence of intermittent sensor measurements from active

radars is addressed in the Chapter 6. Chapter 7 deals with the traffic monitoring in

coastal areas and high seas in presence of discontinuous data from collaborative data

sources (i.e. AIS). Finally, Chapter 8 addresses the same problem but dealing with a

monitoring system based on the passive radar technology. For all the applications, it

is demonstrated how the exploitation of KB filters allows the vessels monitoring task

also when gaps of measurements are experienced, improving the tracks continuity

and the quality of the overall maritime picture. Moreover, the use of the context

information in the tracking filters leads to the reduction of the false tracks rate in the

area. Finally, for the vessel monitoring in remote areas application (which is presented

in Chapter 8), it is shown how the knowledge of geographical information about the

coastline and the possibility to resort to passive radar vessel detections instead of

satellite based sensors measurements, bring to a continuous maritime picture.

Chapter 9 contains the conclusions of this work. The major achievements and results

are here summarized and the possible extensions for future work are finally presented.
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CHAPTER II

Fundamentals of Maritime Situational Awareness

According to the NATO definition [NAT08], the Maritime Situational Awareness is

defined as “the understanding of military and non-military events, activities and cir-

cumstances within and associated with the maritime environment that are relevant for

current and future NATO operations and exercises where the Maritime Environment

(ME) is the oceans, seas, bays, estuaries, waterways, coastal regions and ports”. The

International Maritime Organization (IMO) is using a similar concept; IMO defines

Maritime Domain Awareness (MDA) as “the effective understanding of anything as-

sociated with the maritime domain that could impact the security, safety, economy,

or environment of the sea”, [Off07]. In the latter definition, the maritime domain

includes all areas and things of, on, under, relating to, adjacent to, or bordering on

a sea, ocean, or other navigable waterway, including all maritime-related activities,

infrastructure, people, cargo, and vessels and other conveyances.

No matter of the definition used, MSA results from intelligence capabilities, policies

and operational relationships used to integrate all available data, information and in-

telligence in order to identify, locate, and track potential threats to maritime interests.

MSA provides accurate, relevant and collaborated maritime threat information to op-

erational and law enforcement entities, supporting a variety of tactical, operational,

and strategic requirements. MSA results from persistent monitoring of maritime ac-

tivities in such a way that trends can be identified and anomalies detected. It is a

layered picture of the current state and trends that includes information pertaining

to MSA pillars (vessels, cargo, people and infrastructure) and related economic and

environmental issues. The most important step to achieve Maritime Security is the

improvement of collaboration for enhanced Maritime Situational Awareness, both be-
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2 Fundamentals of Maritime Situational Awareness

tween nations and organizations, but also between various agencies within the same

nation or organization. Without a comprehensive and mutually shared understanding

of what is occurring in the maritime environment, vital opportunities to detect and

mitigate threats at global scale or critical vulnerabilities at the earliest opportunity

may be lost.

Although collaboration and information sharing are complicated, everyone is in agree-

ment that it is required for effective MSA. Success in MSA hinges on the ability to

work together and on the ability to use sensor resources in an intelligent way, both

by getting the most possible out of sensors used today and by finding new sensors

capable of contributing to greater situational awareness.

One of the main and widespread service supporting the maritime situational aware-

ness is the Vessel Traffic Service (VTS) [oMAtNI16], which is designed with the

objective to (i) aid the mariner in the safe and efficient use of navigable waterways

(Safety of Navigation), (ii) afford unhindered access to pursue commercial and

leisure activities (Unhindered Access), and (iii) contribute to keeping the seas and

adjacent environment free from pollution (Clean Seas and Waterways). Vessel

traffic services are provided by VTS Operators within a designed area, which could

be restricted to a port or harbour (i.e. Port-VTS) or extended to the coastal envi-

ronment (i.e. Coastal-VTS). A Port-VTS is mainly concerned with vessel traffic to

and from a port or harbour or harbours, while a Coastal-VTS is mainly related to

vessel traffic passing through the area. A VTS could also be a combination of both

types, [(IM97]. An example of a VTS Operative Center is hereafter reported.

Figure 2.1: VTS operative center (picture taken from coastalsafety.com/vessel-traffic-
services-vts/).
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Whatever the case, different functions, internal and external, have to be performed

to implement the service. The internal functions concern all the activities to enable

a VTS to operate. Data collection, data evaluation and decision-making tasks belong

to this group. The external functions are executed with the purpose of influencing the

vessel traffic characteristics. They relate to the primary traffic management functions

of rule-making, allocation of space, routine control of vessels and manoeuvres to avoid

collisions, as well as to other management functions (i.e. enforcement, remedial and

ancillary activities).

By the way, the most important functions of a VTS are those related to, contributing

to and thereby enhancing the activities listed in the first column of the Table 2.1.

Specifically, Table 2.1 shows how these activities are linked to the three VTS objectives

listed before.

Table 2.1: Relationship between VTS functions and VTS objectives.

VTS Objective

Activities
Safety of

Navigation

Unhindered

Access

Clean Seas

and Waterways

Safety of Life at Sea X - -

Safety of Navigation X X X

Search and Rescue X - -

Efficiency of Vessel

Traffic Movement
X X X

Protection of the Marine

Environment
- - X

Supporting Maritime

Security
X X -

Supporting Law

Enforcement
X X X

Protection of Adjacent

Communities

and Infrastructure

- - X

Based on the VTS objectives, three types of vessel traffic services are provided to

the maritime Users: the Information Service (IS), the Traffic Organization Service

(TOS) and the Navigational Assistance Service (NAS), [oMAtNI12]. The IS involves

maintaining a traffic image and allows interaction with traffic and response to de-

veloping traffic situations. It provides essential and timely information to assist the
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2 Fundamentals of Maritime Situational Awareness

on board decision-making process. The TOS prevents the development of dangerous

maritime traffic situations and provides for the safe and efficient movement of vessel

traffic within the declared VTS area. It concerns the operational management of

traffic and the planning of vessel movements and is particularly relevant in times of

high traffic density or when vessel movements may affect the traffic flow. Finally, the

NAS provides essential and timely navigational information to assist in the on board

navigational decision-making process and to monitor its effects. It may also involve

the provision of navigational advice and/or instruction.

In order to provide the services, a VTS System (i.e. hardware, software and their

behaviour as a coherent entity, excluding personnel and procedures) has to be set

up. A VTS system is a complex system which typically comprises one or more of the

following elements:

� Radio Communication;

� Sensors (e.g. Radar, Automatic Identification System, Environmental Monitor-

ing, Electro Optical Systems, Radio Direction Finder, Long Range Sensors);

� Data Processing;

� VTS Human/Machine Interface;

� Decision Support;

� External Information Exchange.

To this aim, the VTS Authority defines (in accordance with the IALA Recommenda-

tion V-119 [oMAtNI09]) the operational requirements and the associated validation

requirements that should be applicable to all parts of the VTS system. They should

delineate the VTS areas and sub-areas or sectors in which one ore more VTS Services

(IS, TOS, NAS) have to be provided, together with the types and sizes of vessels

which are required or expected to participate in the VTS. The requirements should

also address the navigational hazards and traffic patterns and the human factors in-

cluding health and safety issues. The tasks to be performed by System users, the

operational procedures and the cooperation with external stakeholders are important

frameworks to the requirement definition process. Finally, the business continuity,

availability, reliability and disaster recovery and all the legal related issues have to be

taken into account. Availability and reliability figures for the overall system should

be defined by the VTS authority based on the risk assessment results, from which

individual equipment reliability may be derived. The availability is defined in IMO

Resolution A.915 (220 Ref.40) as: “The percentage of time that an aid, or system of
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2.1 Maritime Surveillance Sensors and Related Technical Requirements

aids, is performing a required function under stated conditions. The non-availability

can be caused by scheduled and/or unscheduled interruptions”. Availability = (service

time - out of service time) / service time.

Once the operational requirement are defined, they may be grouped in different classes

in order to facilitate the derivation of the technical requirements (e.g. the functional

requirements) at system level. The definition of the technical requirements as well

as the determination of a provisional system concept may follow an iterative process.

The derived technical requirements are also grouped in different classes, for example:

1. The VTS centre, sites, sensors and processing;

2. Recording and replay including the post situational analysis;

3. Redundancy and Resilience.

Specifically, this work will address the requirements related to the first item of the

above list, i.e. the VTS sensors and the sensor data processing, with a special focus on

the target tracking capability. Thus, some sensors used in a VTS system (e.g. active

radar and the Automatic Identification System) are described in the following section

and some related technical requirement are presented. Other sensors supporting the

MDA but not included in a VTS system are also described.

2.1 Maritime Surveillance Sensors and Related Technical Require-

ments

2.1.1 Active Radar

Active radars (AR) widely support maritime surveillance applications and the Vessel

Traffic Service (VTS). Specifically, they support the following operational functions

of the maritime service: (i) Path, time and track prediction, (ii) Evaluation of the

Closest Point of Approach (CPA) and the Time to Closest Point of Approach (TCPA),

(iii) Anchor Watch, (iv) Vessel Vector determination, (v) Course, Speed and Identity

evaluation, and (vi) alerting collisions.

These radars are non-coherent sensors in S- (2.0-4.0 GHz), X- (8.0-12.0 GHz), and

recently K-band (18.0-27.0 GHz), as reported in [Bri04]. Their performance require-

ments are highly influenced by target and scenario characteristics, e.g., ship size,

traffic density, sea state and atmospheric clutter conditions. Generally, X-band sys-

tems provide a high resolution performance, whereas S-band radars are less affected

by rain and fog.
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2 Fundamentals of Maritime Situational Awareness

Figure 2.2: VTS radar tower in Hamburg (Germany) (picture taken from the web,
www.lightphotos.net/photos/index.php).

As the detection and measurement capability is concerned, theses radars should

be able to detect and track all types of surface objects defined by the VTS authority

in normal weather conditions. As already mentioned, such capabilities depend on the

characteristics of the radar and the target. Table 2.2 illustrates typical target pa-

rameters, including reflection characteristics, and identifies the detection capabilities

required for differing types of targets.

The standard detection range, dictated by IALA guidelines, goes from few nautical

miles (e.g. 3NM) for rubber boats up to tens of miles (e.g. 25NM) for cargoes and

cruise ships, depending on the antenna elevation and on the sea state. The acqui-

sition rate is variable depending on the antenna rotation speed, typically varying

from 10rpm for long range to 25rpm for short and medium range applications. As the

radar resolution capabilities are concerned, the angular resolution, which depends

on the antenna dimensions, varies from 0.6° and 1.2° for the X-band radar, and from

1.8° and 4° for the S-band. The range resolution (which is tens of meter) is poor

and usually limits VTS radars identification capabilities. Powerful radars, which fully

exploit coherent processing in order to achieve better performance (i.e. larger cover-

age in range, higher spatial resolution and better target identification), are deployed

by military corps to monitor strategic coastline locations.
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Table 2.2: Target reflection characteristics.

Target Type Design Requirements

Radar Cross Section Height of

Target

S-Band X-Band

1 Aids to Navigation etc.

-without radar reflector.

Small open boats, fiber-

glass, wood or rubber with

outboard motor and at

least 4 meters long, small

speedboats, small fishing

vessels, small sailing boats

and the like.

− 1m2 1m ASL

2 Inshore fishing vessels, sail-

ing boats, speedboats and

the like.

− 3m2 2m ASL

3 Aids to Navigation with

radar reflector.

4m2 10m2 3m ASL

4 Small metal ships, fishing

vessels, patrol vessels and

the like.

40m2 100m2 5m ASL

5 Coasters and the like. 400m2 1000m2 8m ASL

6 Large coasters, bulk carri-

ers, cargo ships and the like.

4000m2 10000m2 12m ASL

7 Container carriers, tankers

etc.

40000m2 100000m2 18m ASL
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An important issue is represented by the requirement posed by the VTS authority with

respect to the plot extraction and tracking. Plot extraction, i.e. the process of de-

tecting and determining the target characteristics such as kinematics and intensity by

analyzing the radar signal, should be automatic (see IALA Guideline [oMAtNI07a])

and should provide a minimum of plots per rotation which vary according to the basic,

standard or advanced recommendation level. The implementation of clutter and noise

reduction techniques (i.e. white noise suppression, interference rejection and sea and

rain clutter processing adaptation to varying propagation conditions) help in keeping

the number of the extracted plots in line with the performance requirements. The

extracted plots are considered potential targets and they could be associated with the

previously established tracks or they could initiate new tracks, i.e. tentative tracks.

Then, if the plots from the consecutive radar scans are associated to those tentative

track, they become confirmed tracks, otherwise they are discarded. The process of

track initiation, confirmation and maintenance goes under certain conditions of Prob-

ability of Detection (PD) and Probability of False Alarm (PFA). Table 2.3 reports the

most important radar track performance parameters, together with the minimum PD

value for the track initiation. For track maintenance a lower minimum PD can apply

and a PFA ≤ 0.01 should be considered. Finally, a confirmed track is terminated if

one of the following conditions apply: (i) it moves outside a user defined maximum

range or into a user defined non-tracking area, (ii) track’s quality falls below a pre-

defined threshold, or (iii) the track cannot be updated with new plots over a certain

length of time.

The radar system should also manage the presence of false tracks, which may ap-

pear as result of disturbances (e.g. noise, clutter and ghost echoes). In this case the

requirement on the maximum number of allowed false track depends on the applica-

tion. They should be totally avoided in safety areas and kept under a low threshold

for surveillance and traffic monitoring applications.

Moreover, in proximity of occlusion areas, the radar system could not be able to

track the targets. The track loss occurs when the PD < 1 in combinations of target

manoeuvres. Usually the VTS operator should correct manually this problem and

this should be done only once per hour in the areas subject to the requirements of

Table 2.3.

Also the track swap and merging phenomena (i.e. swapping track identity or

merge tracks of different targets when they move close together) could occur and

usually manually corrected by the operator.
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Table 2.3: Radar tracking performance parameters.

Plot Extraction and Tracking Performance for each in-

dividual radar in a system

Recommendation Level

Parameter Basic Standard Advanced

Number of plots per antenna

rotation

≥ 1000 ≥ 2500 ≥ 5000

Number of confirmed tracks ≥ 100 ≥ 200 ≥ 300

Minimum Radar PD for

track initiation

0.9 0.8 0.7

Time for confirmation of

tentative track

≤ 1 minutes

Time from track confirma-

tion to achievement of spec-

ified accuracy

≤ 2 minutes

Time from data loss to auto-

matic track termination

≥ 1 minutes

Speed of tracked objects ≤ 50 knots ≤ 70 knots

Turn rate of tracked objects ≤ 10°/second ≤ 20°/second

Accuracy in

track position

Range ≤ 0.75 % of range

covered by the in-

dividual radar or

10m + selected pulse

length, whichever is

the greater

≤ 0.5 % of

range covered

or 5m + pulse

length

Accuracy in

track position

Bearing ≤ 1° in X-band; ≤ 2°

in S-band

≤ 0.5° in X-

band; ≤ 1° in

S-band

Accuracy of

track data

Speed ≤ 2 knots ≤ 1 knot ≤ 1 knot

Accuracy of

track data

Course ≤ 5° ≤ 2° ≤ 2°
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Finally, the track data are delivered together with radar image data and eventually

clutter data as output of the VTS radar service.

2.1.2 Automatic Identification System

The Automatic Identification System (AIS) is a shipboard broadcast system that

acts like a transponder, operating in the Very High Frequency (VHF) maritime band.

It is a mandatory navigation safety communication system under the provisions of

the International Convention for the Safety of Life at Sea (SOLAS), [Org80], which

requires ships of 300 gross tonnage and upwards engaged on international voyages,

cargo ships of 500 gross tonnage and upwards not engaged on international voyages,

and all passenger ships to be fitted with transponders that broadcast the position

of the ship and the identification number of the ship. Smaller vessels may volun-

tarily carry Class B AIS transponders, which transmit less information than Class

A transponders but still including position, vessel type and identification, speed and

heading. Approximately, 70000 ships worldwide are equipped with Class A AIS. In

April 2009 the EU passed legislation1 requiring all EU fishing vessels over 15m length

to be Class A AIS equipped by mid-2014, and the US is also moving to expand the

range of vessels required to carry AIS. Not only ships but also Aids to Navigation

(AtoNs) are equipped with AIS. The structure of the AIS is depicted in Figure 2.3.

Figure 2.3: Automatic Identification System (AIS) (picture taken from the web,
www.bluebird-electric.net).

1 Directive 2009/17/EC of the European Parliament and of the Council of 23 April 2009, amend-

ing Directive 2002/59/EC establishing a Community vessel traffic monitoring and information

system.
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AIS data are not encrypted, hence publicly available with relatively simple AIS re-

ceiving equipment. Protocols for data interpretation can be found in the relevant

Directives or through the Internet. AIS equipped ships broadcast many information,

including position (to GPS accuracy), time, navigational information (heading, course

over ground, speed over ground, rate of turn, etc.) and ship identity (MMSI num-

ber, call-sign, name, type of ship, etc.). This information can be received by other

ships, aircraft, satellite or terrestrial base stations, and displayed on electronic chart

data. Originally intended to help avoid ship collisions, AIS has a far higher report-

ing rate than other systems like VMS, from once every 6 minutes down to every 2

seconds. However, its range is currently limited to 20-100NM. The frequency of AIS

transmissions increases with speed as reported in Table 2.4, [IR14].

Table 2.4: AIS message frequency transmission.

Ship Speed Transmission Rate

Ship at anchor 3 minutes

Ship with speed 0-14 knots 12 seconds

Ship with speed 0-14 knots and changing course 4 seconds

Ship with speed 14-23 knots 6 seconds

Ship with speed 14-23 knots and changing course 2 seconds

Ship with speed > 23 knots 3 seconds

Ship with speed > 23 knots and changing course 2 seconds

It is required, that every ship fitted with AIS shall maintain AIS in operation at

all times except where international agreements, rules or standards provide for the

protection of navigational information. The AIS standard calls up to 26 different

types of AIS messages, summarized in Table 2.5.

In the VTS framework, the AIS service is intended to enhance safety of life at sea, the

safety and efficiency of navigation and the protection of the marine environment. The

service should provide timely, relevant and accurate information to users to support

the decision-making processes of a VTS. This information foresees vessel data (i.e.

vessel position reports and movement information) and the status on AIS equipment

and management functions for the control of the AIS network. The quality of the

transmitted information to the mariners in a crucial point for the AIS, as well as other

aids to navigation and tools, pilotage systems and navigation management systems.

The reliability of information transmitted and received via AIS is one major lack of

the system. The validity of AIS data received from ships is dependent on the proper

installation of AIS, correctly interfaced and functioning ship’s equipment, and correct
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manual input of static and voyage-related data. Detailed studies into ship courses

related to AIS data performed in the area of the Baltic showed that destination,

estimated time of arrival (ETA) and also draught data are often faulty (up to an

amount of 40%). These spotlight results were proved by another case study end of

February 2004 in major European ports. Nearly 50% of the observed targets had

navigational status errors (p.54 of IMO Model Course).

Table 2.5: AIS message types.

Message Categories Fields Reporting Intervals

Position reports

(types 1,2,3,4,18,19)

Ship ID (MMSI)

GPS Position

Course over Ground

Speed over Ground

Rate of Turn

2 seconds at full speed (>23knots)

6 seconds at speed of 14-23knots

10 seconds < 14knots

3 minutes at anchor

Static/Voyage reports

(types 5,24)

Ship ID (MMSI)

Name

IMO

Call Sign

Length

Destination

ETA

6 minutes or when data amended

AToNs

(type 21)

Ship ID (MMSI)

Type

GPS Position

AtoN status

3 minutes

Search and Rescue Aircraft

(type 9)

Ship ID (MMSI)

Name

GPS Position

Speed

Altitude

10 seconds

Safety

(types 12,13,14)
various as required

Binaries

(types 6,7,8,25.26)
various as required
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2.1.3 Satellite Automatic Identification System

Operating in the VHF range, the AIS transponders on board ships are very effective

cooperative data sources for monitoring coastal and territorial waters from shore-

based base stations (within a 35-50NM horizontal range). Through the installation

of ad hoc AIS receivers on board a network of Low Earth Orbit (LEO) satellites, the

Satellite AIS (S-AIS) has extended the coverage of the AIS system over the global seas,

and it is now a powerful, standardized and proven technology for vessel traffic mon-

itoring. The satellite receivers are fully compatible with existing AIS transponders,

not needing any additional changes to existing ground-based equipment, see [ORB].

In general terms, the infrastructure of the companies providing S-AIS services consists

of earth-orbiting satellites, associated ground stations and data processing systems

(e.g. Figure 2.4).

Figure 2.4: exactEarth infrastructure for the operation of satellite-based AIS for vessel
monitoring (picture taken from the web, www.exactearth.com/technology).

Thus, the AIS services applications on vessel monitoring, security, environment and

Search & Rescue are extended to a global framework through the use of satellites,

[exa15a]. As consequence, the navigation service provided by the S-AIS is dictated to

the satellites’ revisit frequency (e.g. position of satellites and locations of the ground

stations to downlink the information). This was one of the S-AIS major limitation:

the S-AIS reports were made available to the operators with a half hour-delay on

average. Nowadays, with the recent expansion of some satellite constellations (Figure

2.5), a real-time global maritime vessel detector and tracker is a reality.
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Figure 2.5: Real time satellite global coverage (picture taken from the web,
www.exactearth.com/technology).

The companies exactEarth Ltd. (one of the major provider of S-AIS services) and

Harris Corporation have recently delivered the exactViewTM product, [exa15b], which

is able to combine the simultaneous global satellite coverage and the instantaneous

downlinking of AIS information, providing a real time global ship tracking in 1 minute

(Figure 2.6). This responds to the ever-growing demand for an immediate MDA and

it brings an enormous contribution in enhancing the safety of life at sea and the

efficiency of navigation.

Figure 2.6: exactEarth-RT (Real Time) global vessel detection and tracking (picture taken
from the web, www.exactearth.com/technology).
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2.1.4 Long Range Identification and Tracking

The Long Range Identification and Tracking (LRIT) system is designed to collect

and disseminate vessel information on identity and position received from the In-

ternational Maritime Organization (IMO) member States ships that are subject to

SOLAS Convention [Org80]. Ships on international voyages including cargo ships of

300 gross tonnage and upwards, passenger ships, and mobile offshore drilling units

have to be equipped with the system. The LRIT concept is based on satellite commu-

nications, enabling the coverage extension if compared to coastal monitoring systems.

The overall LRIT system is depicted in Figure 2.7.

Figure 2.7: LRIT system components.

The LRIT shipborne equipment transmits position information to the Communication

Service Provider (CSP), which provides the communication infrastructure and services

to ensure the end-to-end secure transfer of the LRIT message between the ship and

the Application Service Provider (ASP). The ASP provides a communication protocol

interface and add information to the LRIT message between the CSP and the LRIT

Data Centre. Here the information is collected and then forwarded to the Users

in according to the LRIT Data Distribution Plan (LRIT DDP), which defines rules

and access rights (i.e. which users can receive what LRIT information). Finally,

the International LRIT Data Exchange (IDE) routes the information between Data

Centres according to the DDP, [Age15].
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Requirements for LRIT equipment are specified in [(IM08]. An LRIT message is

transmitted from the ship via its shipborne equipment which includes the identity

of the ship, the ship’s GNSS position (based on the WGS 84 format), date and

time associated with the GNSS position. Further ship identifiers (e.g., the IMO

identification number, the MMSI number, the ship name), other timestamps, and

the LRIT Data Centre identifier are added by the application service provider as the

data travels through the LRIT system network. The system specifies that Flag States

should ensure as a minimum that four position messages per ship per day (every 6

hours) are sent, stored, and are made available for others countries entitled to access

LRIT information.

Differently from the other self-reporting system (i.e. the AIS system), the ship data

are not broadcasted, but collected by the appointed authorities, therefore allowing a

higher security of information exchanged. As already mentioned, the LRIT default

ship reporting rate is every six hours (but end users are allowed to request on-demand

the current vessel position), while the AIS reports are delivered at a rate that is

appropriate to the speed of the vessel. This difference is mainly related to the aim

of both systems: AIS is meant to be used to avoid ship collisions while LRIT is

used to monitor certain ships of interest to the state. As presented in [Lap14], LRIT

data could present anomalies related to the ship’s identification information (e.g.

wrong IMO number, fake MMSI, fields left blank). These errors could derive from an

incorrect process of adding information to the LRIT message by the ADS. Also the

timestamps could presents deviation from what described in the specification [(IM08].

2.1.5 Space Earth Observation Sensors: Satellite-Synthetic Aperture Radar

In recent decades there was a major increase in the amount of satellites launched with

the purpose of gathering information on the earth surface. The number of sensors that

are currently available and the technological advances achieved, make it possible to

gather more and accurate information, almost in real-time. The collected information

from these sensors is of great value to a variety of activities in the scientific community

and to the private sector. The European Union’s Earth Observation Programme

Copernicus ( [Cop]) for example, offers information services based on in situ (non-

space) and satellite Earth Observation data for six different applications, including

security aspects in the maritime surveillance. The Copernicus Maritime Surveillance

(CMS) Service, implemented by the European Maritime Safety Agency (EMSA),

has again the main objective to guarantee the safety of navigation, to support to

fisheries control, to combat marine pollution and law enforcement at sea (Figure 2.8).

Copernicus is served by a set of dedicated satellites (the Sentinel families [Cop]), which
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are developed for the specific needs of the programme, and contributing missions

(existing commercial and public satellites).

Figure 2.8: Copernicus Maritime Surveillance (CMS) Service Tasks (picture taken from
[Age18]).

Several LEO platforms (e.g. TerraSAR-X, Radarsat-2, COSMO-SkyMed, etc.) are

indeed equipped with Synthetic Aperture Radar (SAR) sensors that continuously col-

lect data over sea regions. Generically speaking, SAR is a coherent active microwave

remote sensing technique able to provide bi-dimensional reflectivity images of large

areas (some tens of kilometers) with fine resolutions (at the order of meters). Each

pixel within the image gives a complex reflectivity value that can be related with the

geometrical and physical structure of the imaged scatterers. Two dimensions define

the image, namely: the azimuth dimension fixed by the path of the sensor and the

range dimension fixed by antenna pointing. Images of the sea surface are formed in

near real time (NRT) and delivered to ground stations mostly in Europe, Canada and
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US. Then, service providers offer services related to (i) Ship Detection, Identification

and Classification, (ii) Oil Spill Detection and (iii) Ice Monitoring. Such services can

also support the identification of anomalous behaviours, such as AIS data spoofing or

the presence of ships in forbidden areas. An example of SAR images from TerraSAR-

X and Radarsat-2 in reported in Figure 2.9(a) and Figure 2.9(b), respectively. The

detections are indicated with cyan and red dots. While the red points represent for

sure ships (detections have been validated by meas of other sensors, e.g. AIS), the

blue ones can be either vessels or false detections/alarms.

Figure 2.9: SAR Images from TerraSAR-X (a) and Radarsat-2 (b).

Typical features of SAR products are: (i) spatial resolution ranging from 1 m to 100

m; (ii) swath widths from 10 km to 500 km; (iii) multi-satellite revisit rate for the

same site that varies from one to three days depending on the observed area. The

main limitations in Earth Observation data exploitation reside in (i) long revisit times

offered by satellites with respect to vessel traffic monitoring requirements, (ii) product

delivery time hindered by supervised processing strategies, and (iii) difficult trade-off

between False Alarm Rate (FAR) and the probability of detection.

2.1.6 Passive Radar

Passive radar technologies have gained relevance in recent years, since they finally

transited from the role of scientific demonstrators to commercial products for air and

maritime surveillance. Such devices work by nature as bistatic radars (i.e., systems
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with separate location of transmitter and receiver) and do not “pollute” the electro-

magnetic spectrum, since they do not emit any signal. They exploit indeed signals

that are already present in the Area of Interest (AoI), which are usually referred to as

“illuminators of opportunity”. Examples are Radio/TV signals [HMR05,How99], dig-

ital radio and television (DAB, DVB) signals [SC05], GSM signals [TSL+05], wireless

local area network (WiFi) signals [GWB08], and satellite broadcast [GBB+02]. Few

studies proposed WiMAX-based passive radar for MSA purposes [WLH09,CWGS10].

They addressed passive radars as promising for maritime surveillance applications:

the simulations demonstrated specific scenarios where WiMAX radar may be used

as a low cost surveillance device for detecting both small and large marine vessels in

port areas and open waters. The combination of such sensors with conventional ac-

tive radars could potentially expand the coverage of coastal systems while introducing

significant cost savings.

Despite the absence of own transmitted waveforms, they are capable of detecting

moving targets by Passive Coherent Location techniques (PCL, [GB05]). A PCL sys-

tem comprises a receiving unit that extracts from the electromagnetic environment

both the reference signal (direct path from the illuminator of opportunity) and the

surveillance signal, the latter being a reflection from the moving target. Then, it

generally compares the reference and surveillance signal by correlation and calculates

the bistatic range difference or Time Difference of Arrival (TDoA) and the Doppler

frequency. A series of these measurements allows estimating the position and the

velocity of the target. Even though the waveform is not optimal for the specific

surveillance application, the achieved results are valid at operational level, and such

systems demonstrated to effectively complement active systems in areas that cannot

be polluted by additional transmissions. One of the drawback of PCL systems is

related to the bistatic geometry of the system: the passive range-only position esti-

mation is ambiguous, since it appears as an iso-range 2D ellipse. If a second dislocated

transmitter is available, the intersection of the two ellipses can reduce the ambiguity

down to two positions. The ambiguity can be also reduced to two positions if an ad-

ditional estimate of the direction of arrival (DoA) measurement is taken into account.

The first position represents the true target and the second one acts like a “ghost”

that can only be discarded if advanced tracking techniques are applied ( [Bro12]).

This leads to favoring the use of networks of PCL sensors (receivers) that collaborate

in the detection and tracking tasks. This raises the complexity of the data processing

techniques to support such an amount of heterogeneous data. Due to the complexity

of the sensor geometry and the related processing scheme, the PCL application is very

likely to suffer from phenomena such as false positives, ghost tracks, lack or inter-
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mittence of data. To this aim, the contribution coming from an external Knowledge

might represent the key for wider deployment of this technology.

Figure 2.10: Fraunhofer FKIE experimental passive radar system based on GSM signals.

2.2 Maritime Knowledge Base Description

The main target in maritime surveillance is to enable the automatic monitoring,

analysis and understanding of activities at sea, i.e. the MSA. As previously mentioned,

ancillary information or higher level of abstraction are to be used in order to combine

information “bits” with common origin but different in nature, time and/or space.

In this perspective the availability of an accurate Base of Knowledge might have a

significant role.

As defined in [GR08] a knowledge based system uses a priori information to improve

the performance of deterministic and adaptive systems. Although the exact form

of this a priori knowledge is problem- dependent, a Knowledge based system con-

sists of a knowledge base containing information specific to a problem domain and

an inference engine that employs reasoning to yield decisions. The first applications

of Knowledge-base to adaptive radar techniques have been pioneered in 2002 by the

Defence Advanced Research Projects Agency (DARPA) in US, in the frame of the
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Knowledge aided Sensor Signal Processing and Expert Reasoning (KASSPER) pro-

gram, which focused on Ground Moving Target Indication (GMTI) and Synthetic

Aperture Radar (SAR) algorithms for military applications. A series of lectures have

been devoted to KB-radar signal and data processing by NATO RTO in 2003-2006 to

promote cooperation on this topic. Several publications resulted from this research

effort of several scientists in the world. An interesting application of Knowledge-base

in tracking systems has been formulated and experimented by the Authors in [GR08].

Specifically, they resort to a wide Knowledge Base consisting of:

� Geographical maps;

� Meteo maps;

� Road maps;

� Clutter maps;

� Target characteristics, such as maximum speed.

This knowledge was injected - as a set of rules - into the measurement, association

and identification steps of the processing scheme.

If we focus on maritime domain, it is quite straightforward to define the boundaries of

the problem. Looking at the synthetic data extracted by EU Scientists in the frame

of the Blue Hub project (bluehub.jrc.ec.europa.eu, Figure 2.11), it is evident, how the

maritime traffic itself follows some unwritten rules.

Figure 2.11: European Commission Blue Hub - Transform data into knowledge, [ea14].
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Several “un-sensed” elements have or are expected to have influence on the evolution

of the maritime traffic; these represent sources of a priori information that can be

used in target inference. A priori information is to be intended as any knowledge

on the observed scenario, which is collected before the measurement and estimation

process; it can be either statically (once before the observation period) or dynamically

(before each traffic picture update) collected. Very well known example of a priori

information is the geographic map of roads, along which moving targets are expected

to move. This knowledge is effectively used in GMTI applications, [UK06]. As the

maritime scenario is concerned, numerous elements potentially contribute to the Base

of Knowledge building up. Following the considerations reported by the Authors

in [VSB+08], Table 2.6 and Table 2.7 summarize key sources of a priori information.

Estimation of different degrees of inference might exploit different bases of knowledge.

The identification of the best composition of the base for a given estimation process

is beyond the scope of this work.
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Table 2.6: A priori information for maritime domain (part I).
A priori Information Time Refresh Rate Influence on

Information Source Availability the Traffic

Port GIS-based informa-

tion is commonly

available off-the-shelf

Fixed Pre-loaded before fu-

sion

Origin / Destination

of main traffic routes

Coastline GIS-based informa-

tion is commonly

available off-the-shelf

Fixed Pre-loaded before fu-

sion

Routes parallel to the

coast, influence on

target kinematics

Highways and Corri-

dors, Interdicted Ar-

eas

Info maintained by

Maritime Authorities

Updated every season

or according to special

events (e.g. oil spill,

storm, accident)

Pre-loaded before fu-

sion

Constraints on target

route

Declared and pre-

ferred routes

Info contained in AIS

message or provided

by shipping compa-

nies

Updated every jour-

ney for a given ship

Captured from AIS

messages or pre-

loaded from external

sources

Constraints on target

route

Target dimensions Info contained in AIS

messages, estimated

by active sensors and

contained in vessel

database

Fixed Captured from radar

measurements, mes-

sages or retrieved

by database after

identification

Influence on target

kinematics and be-

haviour

Traffic separation

schemes

Info maintained by

Maritime Authorities

Updated every season

or according to special

events (e.g. oil spill,

storm, accident)

Pre-loaded before fu-

sion

Constraints on target

route

Kinematic behavioral

rules

Info maintained by

Maritime Authorities

Updated according to

local procedures, rules

and special events

Pre-loaded before fu-

sion

Constraints on target

behaviour

3
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Table 2.7: A priori information for maritime domain (part II).
A priori Information Time Refresh Rate Influence on

Information Source Availability the Traffic

Aid to Navigation GIS-based informa-

tion and Nautical

Charts are commonly

available off-the-shelf

Fixed Pre-loaded before fu-

sion

Constraints on main

traffic routes

Oil spills Provided in near real

time by Authorities

and Service Providers

For each detected

event

Pre-loaded before fu-

sion, and updated reg-

ularly

Constraints on traffic

route and target be-

haviour

Clutter conditions Provided in near real

time by Authorities

and Service Providers

For each anomalous

event or routinely

Pre-loaded before fu-

sion, and updated reg-

ularly

Constraints on traffic

route and target be-

haviour

Target Behavioral

Models

No source available,

models can be ex-

tracted from naviga-

tion procedures

Fixed, depending on

geographic location

Pre-loaded before

fusion (self-cognitive

systems might help)

Constraints on target

intent

Maritime Target

Database

No source available Typical radar and

Earth Observation

signatures to be col-

lected

Queries during target

identification process

Constraints on target

behaviour and intent
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2.3 Summary

2.3 Summary

This chapter introduced the main operational requirements for the addressed surveil-

lance applications and illustrates the key sensors contributing to the data sets. In

addition, elements of the knowledge base are presented, which are likely to contribute

to the innovative techniques discussed in this work.
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CHAPTER III

Fundamentals of Multi-Sensor Data Processing

This Section recalls the fundamentals of the multi-sensor data processing with a spe-

cial focus on the Bayesian estimation framework, which allows determining recursively

the hidden states of a dynamical system on the basis of the observation data (i.e. sys-

tem measurements). How to integrate a sequence of observations from different data

sources into a single best-estimate of the state of the environment represents the basic

problem in multi-sensor systems [DW88].

3.1 Bayesian Target Tracking

The estimation process attempts to calculate the statistics of the state (i.e. condition

of the system as a function of time) of a static or dynamically evolving system based

on noisy measurements provided by a single or multiple sensors in an optimal manner,

i.e., by maximizing a reasonable optimality criterion. Figure 3.1 gives an overview of

the relevant components of the general estimation problem.

The system is affected by disturbances, i.e. the system noise or process noise, and

possibly by some kind of control input. The system state is observed by a sensor

which is influenced by measurement errors. A state estimator processes the noisy

sensor measurements and utilizes the knowledge about the system state evolution as

well as an adequately chosen sensor output model to obtain an estimate of the system

state.

In the following, the basic principle of estimation in the context of discrete-time lin-

ear systems is presented and briefly explained. Based on the Bayesian formalism,
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Figure 3.1: Components of the general estimation problem.

the system state described in Section 3.1.1 is sequentially calculated through a two-

step estimation scheme, as discussed in Section 3.1.2. A linear state space model can

be derived from the state equations, which leads to the Kalman filter type update

equations, as shown in Section 3.1.3, The more general non-linear case is discussed in

Section 3.1.4. Finally, the problem of data association, which deals with the assign-

ment of the sensor measurement to the target state is addressed in Section 3.1.5.

3.1.1 System Equations

The general state space representation of a discrete-time system evolving from time

step tk to tk+1 can be written as [BSLK01,Koc14]

xk+1 = fk(xk) + vk , (3.1)

where fk is a possibly non-linear function of the target state vector xk, and vk is the

input disturbance or process noise. The target state and the process noise vectors

have dimensions of nx and nv, respectively. For simplicity, it is assumed that there

is no known input/control uk affecting the system. The Equation (3.1) assumes

that the system state at time step tk+1 depends on the state at time step tk. If

a non-linear relationship between sensor measurements zk and system state and an

additive stochastic disturbance affecting the measurements are assumed, then the

sensor output can generally be written as [BSLK01,Koc14]

zk = hk(xk) +wk , (3.2)
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where hk is a non-linear function of the target state vector xk, and wk is the measure-

ment noise vector with dimension nz. The random process and measurement noises

in the Equations (3.1) and (3.2) introduce non-deterministic components into the sys-

tem state equations. Thus, in order to handle the stochastic behavior adequately, it

is necessary to formulate the estimation problem within a probabilistic framework.

3.1.2 State Estimation Problem

The general objective of the stochastic problem is to infer the system state xk from

the available information of noisy sensor measurements Zk = {Z1, Z2, ..., Zk}, with
Zk = {zmk }mk

m=1 the sensor data at each time step tk consisting ofmk measurement vec-

tors zmk . If we consider xk, vk, zk and wk as random variables, from a Bayesian point

of view this estimation problem is solved by the recursive evaluation of the probability

density function (pdf) p(xk|Zk). Such recursion comprises two main steps, the pre-

diction and the update of the state vector descriptors. Finally a retrodiction step

allows the refinement of the estimated states and the probability densities functions.

Let us assume that at time step tk−1 the posterior pdf p(xk−1|Zk−1) is available.

The prior pdf p(xk|Zk−1), i.e. the prediction density function of xk, is given by the

Chapman-Kolmogorov equation:

p(xk|Zk−1) =

∫
p(xk|xk−1) p(xk−1|Zk−1) dxk−1 , (3.3)

where p(xk|xk−1) is the the transitional pdf, which describes the evolution of the

system on the basis of the evolution model in Equation (3.1). Here, the Markov

property ( [BSLK01,Lof90a]) is assumed for the stochastic process, i.e., the state xk

at tk only depends on the state at the previous time step tk−1 and all system states

xl with l < (k − 1) are irrelevant for the calculation of p(xk|Zk−1).

Once the measurements Zk at tk are available, the prior pdf is updated with the new

information as a consequence of Bayes rule, ( [Koc10]):

p(xk|Zk) =
p(Zk|xk) p(xk|Zk−1)∫
p(Zk|ξk) p(ξk|Zk−1)dξk

. (3.4)

The conditional pdf p(Zk|xk) is the likelihood function. It contains the sensor output

model in Equation (3.2) and reflects all possibilities to interpret the given sensor

output. The denominator in Equation (3.4) serves as normalization factor. The
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conditional pdf p(xk|Zk) is the posterior density as it is obtained after computing the

normalized product of likelihood and prior density.

Finally, the evaluation of the past pdf p(xl|Zk), which allows making statements about

the past system state xl at tl < tk, is made by combining the object evolution model

p(xl+1|xl) with the previous filtering p(xl|Zl) and prediction p(xl+1|Zl) densities

according to:

p(xl|Zk) =

∫
p(xl+1|xl) p(xl|Zl)

p(xl+1|Zl)
p(xl+1|Zk)dxl+1 , (3.5)

where the term p(xl+1|Zk) represents the previous retrodiction.

Once the posterior pdf in Equation (3.4) is available, different criteria can be defined

to obtain the optimal estimate of the system state. For example, the minimum mean

square error (MMSE) and themaximum a posteriori (MAP) estimators are commonly

used. The MMSE estimate is defined as the value of xk which minimizes the mean

square error (MSE) [BSLK01], i.e.,

x̂MMSE(Zk) = arg min
x̂

E
[
(x̂− xk)

⊤ (x̂− xk)
∣∣∣Zk

]
. (3.6)

On the other hand, the MAP criterion searches the argument that maximizes the

posterior density p(xk|Zk):

x̂MAP (Zk) = arg max
xk

p(xk|Zk) . (3.7)

A close analysis of the Equations (3.3) and (3.4) reveals the fundamental structure

of a Bayesian tracking filter: based on the knowledge of the posterior density at the

previous time step tk−1 and the transitional density, the prior pdf in Equation (3.3)

can be computed. After that, the posterior density for the current time step reported

in Equation (3.4) is calculated as the normalized product of the the prior density

and the likelihood function, which is determined by the current sensor data and the

sensor model. Thus, a Bayesian tracking filter results in a sequential update scheme

for the recursive calculation of the conditional target state pdf1 p(xk|Zk), consisting

of a prediction step and a subsequent filter update step at each iteration:

1 It will be shown later that the Bayesian update scheme is not restricted to the propagation of

conditional target state pdf’s.
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p(xk−1|Zk−1)

Prediction

−−−−−−−−−→
Motion Model

p(xk|Zk−1)

Filter Update

−−−−−−−−−−−→
Sensor Model

New Sensor Data

p(xk|Zk) . (3.8)

3.1.3 Linear Gaussian Systems

3.1.3.1 Kalman Filter

Under the restrictive assumptions of linear system equations and Gaussian noises (i.e.

process and measurement disturbances), the optimal solution for the recursive scheme

in Equations (3.3) and (3.4) is available in closed form and given by the Kalman Fil-

ter (KF, [BSLK01,Koc14,Lof90a,Lof90b]). Under these assumptions, the Gaussian

structure of the recursively calculated target state pdf p(xk|Zk) is conserved at each

time step. The system equations in Equations (3.1) and (3.2) become:

xk+1 = Fkxk + vk (3.9)

zk = Hkxk +wk , (3.10)

where Fk and Hk are the evolution and the measurement matrices of dimension

(nx × nx) and (nz × nx), respectively. The random sequences vk and wk are zero-

mean white Gaussian with covariances Qk and Rk, i.e. vk ∝ N (vk; 0,Qk) and

wk ∝ N (wk; 0,Rk).

A Gaussian distribution exhibits the particular feature that it is fully determined by

its first two moments, i.e., its mean and the associated variance (or covariance in the

context of multivariate random variables). Therefore, the recursive update scheme of

the Kalman filter consists of update equations for the estimated mean target state

and the associated estimated covariance. In the following, the recursive Kalman filter

prediction-update equations are reported.

The prediction step, which can be illustrated by

p(xk−1|Zk−1)
Motion Model−−−−−−−−−→
Fk−1 , Qk−1

p(xk|Zk−1) , (3.11)

N (xk−1;xk−1|k−1,Pk−1|k−1)
Motion Model−−−−−−−−−→
Fk−1 , Qk−1

N (xk;xk|k−1,Pk|k−1) , (3.12)
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utilizes the target dynamics model to compute a first estimate of the target state

xk|k−1 and its covariance Pk|k−1, given the posterior pdf p(xk−1|Zk−1) at time tk−1.

Due to the linearity of the target motion model and the white Gaussian process noise

with covariance Qk−1, the motion model is introduced into the algorithm by the

normal density N (xk;Fk−1 xk−1,Qk−1). The Equation (3.3) can be written as

p(xk|Zk−1) =

∫
N (xk;Fk−1 xk−1,Qk−1)︸ ︷︷ ︸

Motion model

N (xk−1;xk−1|k−1,Pk−1|k−1)︸ ︷︷ ︸
Posterior pdf at tk−1

dxk−1 .

(3.13)

The integrand can be transformed into a product of two Gaussians in which one

pdf does no longer depend on the integration variable xk−1 by making use of the

identity [Koc06a,Koc14]

N (a;b,A) N (c;Ba,C) = N (c;Bb,D) N (a;b+Ed,A−EDE⊤) , (3.14)

with d = c−Bb, D = BAB⊤ +C and E = AB⊤D−1. This yields the following

Kalman filter prediction equations for the mean and covariance of the prior density

p(xk|Zk−1):

xk|k−1 = Fk−1 xk−1|k−1 , (3.15)

Pk|k−1 = Fk−1 Pk−1|k−1 F
⊤
k−1 +Qk−1 . (3.16)

As the filter update step is concerned

N (xk;xk|k−1,Pk|k−1)
Sensor Model

New Sensor Data−−−−−−−−−−−→
Hk , Rk , zk

N (xk;xk|k,Pk|k) , (3.17)

the Kalman filter equations are obtained as follows: as the measurement equation

(3.10) is a linear function of the target state, it is reasonable to write the likelihood

pdf as p(zk|xk) = N (zk;Hk xk,Rk). Then, the Bayes theorem in Equation (3.4) is

given by
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p(xk|Zk) =
N (zk;Hk xk,Rk) N (xk;xk|k−1,Pk|k−1)∫
N (zk;Hk ξk,Rk)︸ ︷︷ ︸
likelihood function

N (ξk;xk|k−1,Pk|k−1)︸ ︷︷ ︸
prior density

dξk
. (3.18)

The integrand in the denominator can be again transformed into a product of two

Gaussians in which one pdf no longer depends on the integration variable ξk by

exploiting the formula in Equation (3.14). In addition, also the Gaussian product

in the numerator can be rewritten based on the Equation (3.14). This leads to the

following Kalman filter update equations for the mean and covariance of the posterior

density p(xk|Zk):

xk|k = xk|k−1 +Kk(zk −Hk xk|k−1) , (3.19)

Pk|k = Pk|k−1 −Kk Sk K
⊤
k , (3.20)

Sk = Hk Pk|k−1 H
⊤
k +Rk , (3.21)

Kk = Pk|k−1 H
⊤
k S−1

k , (3.22)

where Sk is the covariance matrix of the innovation and Kk is the Kalman filter

gain matrix. Due to its mathematical structure, the Kalman gain introduces a high

degree of adaptivity into the filter equations: depending on the possibly time-varying

motion and measurement model error covariances, the gain matrix Kk determines

how much information of the currently processed sensor data needs to be added to

the predicted state estimate to deliver an optimal estimation result. The update

equations of the Kalman filter (Equation (3.19) to Equation (3.22)) have a predictor-

corrector structure, because the first estimate of the target state at time step tk,

which is based on the target motion model and the input from tk−1, is corrected or

improved by the current sensor measurements, yielding the optimal estimate of the

target state at time step tk.

3.1.4 Non-linear Systems

The problem of estimating the target state on the basis of the sensor measurements

might become highly non-linear. Non-linearity comes from several sources. For ex-

ample, the target range, range rate and bearing measurements from a conventional

radar system undergo the non-linear coordinate transformation to the Cartesian state

space. Also the target dynamics could be non-linear especially when the target is

subject to significant angular speed and acceleration (e.g. turning maneuver). Simi-

lar estimation problems are often handled by decomposing the maneuver into phases
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( [RAG04,KBSPK00]), hence switching among different target dynamic models. Nev-

ertheless, for some phases the assumption of linear system equations and Gaussian

noise do not hold, and the optimal Bayes solution to the filtering problem needs to

be approximated. The Extended Kalman Filter (EKF) falls into the local lin-

earization class of approximate solutions. So, when non-linear and non-Gaussian

conditions hold, the EKF offers an approximation of the posterior pdf in Equa-

tion (3.4). Other approaches are based on the Unscented Transformation (UT)

( [JU97,JU04]), grid-based numerical integration, and sequential Monte Carlo estima-

tion ( [Tan96,DFG01,RAG04]). The closeness to the optimum depends on the track-

ing conditions. For instance, the EKF approximation presented in [BU11] diverges

from the optimal solution in highly non-linear/non-Gaussian conditions. Conversely,

the Particle Filter (PF) allows solving optimally the Bayesian filtering problem -

independently from the severity of the non-linearity - if a large number of particles is

considered. Particles are indeed a numerical approximation of the probability density

function of the target state, which is sought in the Bayes approach. Specifically, the

EKF, the Unscented Kalman Filter (UKF) and the PF non-linear filtering techniques

are briefly recalled in the following, since they are used in the tracking algorithms

developed in this research work.

3.1.4.1 Extended Kalman Filter

The extended Kalman filter is based on the first-order local approximation of the

functions f(.) and h(.) in the state and measurement Equations (3.1) and (3.2). The

mean value and the covariance matrix of the pdfs in Equations (3.3) and (3.4) result:

xk|k−1 = fk−1(xk−1|k−1) , (3.23)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1 , (3.24)

and

xk|k = xk|k−1 +Kk[zk − hk(xk|k−1)] , (3.25)

Pk|k = Pk|k−1 −KkSkK
T
k , (3.26)

where
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Sk = HkPk|k−1H
T
k +Rk , (3.27)

Kk = Pk|k−1H
T
k S

−1
k . (3.28)

Matrices Fk−1 and Hk result from the linearization of functions fk−1 and hk: they

coincide with the Jacobian of the two equations [DFG01], evaluated at the latest

estimate of the state xk−1|k−1 and xk|k−1, respectively.

3.1.4.2 Unscented Kalman Filter

The unscented Kalman filter basic idea is to exploit the unscented transformation to

approximate the posterior pdf p(xk|Zk) by a Gaussian density represented by a set

of deterministically chosen points, instead of linearizing the functions f(.) and h(.)

that describe the state evolution and the measurement equation, respectively.

Let us consider the non-linear filter problem described in the Equations (3.1) and

(3.2). Under the assumption of a Gaussian distribution for the posterior pdf, i.e.

p(xk−1|Zk−1) = N (xk−1;xk−1|k−1,Pk−1|k−1), a set of N sample points χi
k−1 and

their weights W i
k−1 with i = 0, ..., N − 1 are taken to represent this density.

The prediction step is performed as follows:

xk|k−1 =

N−1∑
i=0

W i
k−1fk−1(χ

i
k−1) , (3.29)

Pk|k−1 =

N−1∑
i=0

W i
k−1

[
fk−1(χ

i
k−1)− xk|k−1

] [
fk−1(χ

i
k−1)− xk|k−1

]T
,(3.30)

where the predicted density, i.e. p(xk|Zk−1) ∝ N (xk;xk|k−1,Pk|k−1), is represented

by a set of N sample points χi
k|k−1 = fk−1(χ

i
k−1). Then, the predicted measurement

is given by

zk|k−1 =

N−1∑
i=0

W i
k−1hk(χ

i
k|k−1) . (3.31)

The update step is:
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xk|k = xk|k +Kk(zk − zk|k−1) , (3.32)

Pk|k = Pk|k−1 −KkSkK
T
k , (3.33)

where

Kk = PxzS
−1
k , (3.34)

Sk = Rk +Pzz , (3.35)

Pxz =

N−1∑
i=0

W i
k−1

[
χi
k|k−1 − xk|k−1

] [
hk(χ

i
k|k−1)− zk|k−1

]T
, (3.36)

Pzz =

N−1∑
i=0

W i
k−1

[
hk(χ

i
k|k−1)− zk|k−1

] [
hk(χ

i
k|k−1)− zk|k−1

]T
. (3.37)

It has to be stressed that the explicit evaluation of the Jacobian is not necessary for

this algorithm, as conversely expected in the EKF formulation. As the selection of

the sample points χi
k−1 and their weights is concerned, different choices are possible

but not addressed in this Section. For their evaluation, is it possible to refer to the

works in [JU04,oSTTAB08].

3.1.4.3 Particle Filter

Particle Filters are Sequential Monte Carlo (SMC) techniques, which use a discrete

representation of probability density functions. The pdf p(xk|Zk) in Equation (3.4)

is approximated by a weighted sum over Np particles, {xi
k, π

i
k}

Np

i=1, as:

p(xk|Zk) ≈
Np∑
i=1

πi
kδ(xk − xi

k) , (3.38)

where xi
k is the state vector and πi

k the weight of the i− th particle. Hence, the aim

in the particle filter setting is to recursively determine the particles’ states and the

weights. There are different possibilities to build a particle filter, whose basic steps

are often the same. The steps can be summarized as follows ( [RAG04]):

� Prediction: it draws the xi
k particle from the proposal distribution, i.e. the

transitional prior pdf xi
k ∼ p(xi

k|xi
k−1) through the adopted process model;
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� Update: it evaluates the corresponding weight πi
k from the likelihood function,

π̃i
k = πi

k−1p(Zk|xi
k);

� Normalization: it normalizes the weights of theNp particles, πi
k = π̃i

k/
∑Np

i=1 π̃
i
k;

� Resampling: it performs resampling.

The resampling step is introduced to solve the problem of the filter degeneration: with

time, only few particles will have non-zero weights resulting in a poor approximation

of the posterior density p(xk|Zk). To solve this issue, the resampling discards the

particles with low importance weights and multiplies the samples with high impor-

tance weights. Depending on the algorithm, this step is performed at each iteration,

like in the in the Sequential Importance Resampling (SIR) particle filter algorithm

( [DFG01]), or according to certain criterion (e.g. when the effective sample size

Neff = 1/
∑Np

i=1(π
i
k)

2 falls below some threshold Nthr).

As there are, in principle, no restrictions on the functional form of the transitional pdf

nor on the likelihood function, it is easy to include even strongly non-linear constraints

in a particle filter. Typical implementations are the rejection sampling and the pseudo

measurement approaches, discussed in Sections 4.2.1 and 4.2.2, respectively. In spite

of the usually simple implementation, the efficiency of the particle filter strongly

depends on the actual system equations and constraints, in particular on the overlap

of the prior pdf with the likelihood function [DFG01].

3.1.5 Data Association Problem

In real world applications, the assumption of dealing with unique sensor measurement

is often not valid. Sensor measurements are generally incomplete, imprecise, ambigu-

ous and uncertain due to different factors, such as thermal noise or the presence of

clutter (i.e. unwanted response from objects which are not of interest). In order to

deal with these factors within the Bayesian target state estimation process, the de-

tection probability PD and the spatial false measurement density ρF have to be taken

into account.

If the sensor is characterized by a PD < 1 and ρf > 0 the likelihood function p(Zk|xk)

in Equation (3.4) has to be generalized in order to comprise all the possible sensor

data interpretations. Due to PD < 1, the target might be detected or missed and

because of ρF > 0 also several false alarms are potentially included in the current

data set Zk = {zjk}
mk
j=1, where mk denotes the number of measurements at time tk.

Under the assumption that only one detection per target is possible and that the PD

is independent from target state, the expression of the generalized likelihood function

is given by [BP99,BSLK01]:
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p(Zk,mk|xk) = Λ

(1− PD) +
PD

ρF

mk∑
j=1

p(zjk|xk)


= Λ

(1− PD) +
PD

ρF

mk∑
j=1

N (zjk;Hkxk,R
j
k)

 ,
(3.39)

where Λ is independent from xk and given by Λ = ρ
mk
F /(mk!) e

−ρF |FoV|, with FoV as

the field of view of the sensor. Based on this likelihood function, a Bayesian tracking

filter is able to handle the sensor outputs in such real scenarios. The first addend,

(1− PD), describes the missed detection hypothesis whereas the sum of pdfs denotes

the mk hypotheses that the detection with index j is the correct target measurement

and all others are false alarms.

The presence of false measurements and/or missed target detections could affect the

overall target tracking algorithm, especially when the incoming measurements have to

be assigned to the already existent targets (i.e. data association problem). Many data

association techniques are presented in literature, which can be mostly differentiate

between hard and soft techniques, depending on the measurement/target association

type ( [BP99]). In this Section, a brief overview of the Multiple Hypotheses Tracker

(MHT, [BP99,Bla04,Koc06a]) is provided, which enumerates different hypotheses for

data associations and provides the best scoring hypothesis or the merged results of

all of them as tracking result.

3.1.5.1 Multiple Hypotheses Tracker

Given the iterative structure of the Bayesian tracking filter in Section 3.1.2, the com-

bination in the update step of the mk sensor measurements with the generalized

likelihood in the Equation (3.39) generates (mk +1) hypotheses for a single Gaussian

prior density and for each time instant tk. If all of them are kept, they will exponen-

tially grow with the consecutive iterations. In order to manage this effect, methods for

hypotheses reduction are considered, like gating, pruning and merging, which allow

maintaining only the relevant hypotheses at each time step. The Multiple Hypotheses

Tracker takes into account the above mentioned techniques. The key idea is to de-

scribe the posterior pdf p(xk|Zk) by a Gaussian mixture. This is done by generating a

hypotheses tree starting by an appropriate initialization. A new measurement brings

a new hypothesis, which represents the probability that the measurement belongs to

the target.
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To obtain the posterior density at tk, let us consider the posterior pdf at tk−1 as a

Gaussian mixture of nk−1 individual track hypotheses:

p(xk−1|Zk−1) =

nk−1∑
i=1

wi
k−1N (xk−1;x

i
k−1|k−1,P

i
k−1|k−1) , (3.40)

where the individual weights wi
k−1 have to fulfill the condition

∑nk−1

i=1 wi
k−1 = 1. The

hypotheses in Equation (3.40) are then predicted and updated according to the new

measurements.

As the prediction step is concerned, the prior density p(xk|Zk−1) is evaluated as-

suming the target moving according to a linear motion model characterized by white

Gaussian noise:

p(xk|Zk−1) =

nk−1∑
i=1

wi
k−1N (xk;x

i
k|k−1,P

i
k|k−1) , (3.41)

where the state estimates xi
k|k−1 and the covariances Pi

k|k−1 of each hypothesis are

obtained by the Kalman filter prediction Equations. Then each predicted hypothesis

i is evaluated with each incoming measurement using the bayesian formalism (i.e. up-

date step). By combining the prior in Equation (3.41) with the generalized likelihood

in Equation (3.39) and by resorting to the product formula in (3.14), the posterior

pdf at the time tk is again given as a weighted sum of Gaussian:

p(xk|Zk) =

nk−1∑
i=1

mk∑
j=0

wij
k N (xk;x

ij
k|k,P

ij
k|k) , (3.42)

where mk is the number of the incoming measurements and j = 0 denotes the missing

detection case. Specifically, the weight factor wij
k is given by:

wij
k =

ŵij
k∑nk−1

i=1

∑mk
j=0 ŵ

ij
k

, (3.43)

where

ŵij
k =

wi
k−1

PD
ρF

N (zjk;Hkx
i
k|k−1,S

ij
k ) if j > 0 (detection),

wi
k−1(1− PD) if j = 0 (missdetection).

(3.44)
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The state vector and the covariance matrix estimates in Equation (3.43) can be eval-

uated via Kalman filtering. In this case, for j > 0 we have:

xij
k|k = xi

k|k−1 +Kij
k (zjk −Hk x

i
k|k−1) , (3.45)

Pij
k|k = Pi

k|k−1 −Kij
k Sij

k (Kij
k )⊤ , (3.46)

Sij
k = Hk P

i
k|k−1 H

⊤
k +Rj

k , (3.47)

Kij
k = Pi

k|k−1 H
⊤
k (Sij

k )−1 . (3.48)

Since the prediction-update recursion is performed for each possible hypothesis - mea-

surement combination, the number of the hypotheses increases from scan to scan by

factor (mk + 1).

As already mentioned, to contrast the exponential growth of the number of hypothe-

ses, specific hypotheses reduction techniques can be applied to make the MHT algo-

rithm real-time capable. Specifically, we deal with:

� Gating: only the measurements, the predicted covariances and the measure-

ments error covariances that fit in a specific area (gate) are evaluated;

� Pruning: all the hypotheses with weight smaller than an appropriate threshold

are deleted;

� Merging: the hypotheses with very similar state vectors and covariances are

merged into one hypothesis.

An example of the evolution in time of an MHT hypotheses tree is reported in Figure

3.2 without and with application of the mixture reduction methods listed above.

Specifically, one or two detections are registered during the time interval [tk, tk+3].

The root of the tree is the original hypothesis. The first expansion of the hypothesis

tree is done by using all the possible assignments of the first measurement. Empty

circles take into account the false detections.

Summarizing, the above described MHT algorithm is a single target tracker, whose

implementation steps include: (i) the initiation of a tentative track from a selected

measurement and the formation over time of the correspondent hypotheses tree; (ii)

prediction of the tree according to the target motion model; (iii) update of the tree

with the new measurements and eventually false detections; (iv) implementation of

hypotheses reduction techniques and (v) track evaluation. In addition, the steps

related to the track management issues (i.e. track initialization, confirmation and
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Figure 3.2: Evolution of exemplary MHT hypothesis tree.

deletion) foresee the evaluation of the sequential likelihood ratio (LR) test, introduced

in [vK02]. The LR function is sequentially calculated on the basis of the hypotheses

weights, yielding to track scores for each track. The comparison of the scores with

thresholds related to decision errors (e.g. probabilities of accepting measurements in

presence of measurement sequence containing measurements and false detections or

only false detections) allows taking decisions about the track. The detailed description

of the MHT algorithm adopted in this thesis and the track management aspects are

provided in [Bro12].

3.2 Measures of Performance

The evaluation of tracking algorithms performance depends on the complexity of the

scenario in which the system evolves. It can be straightforward for scenarios with a

few widely spaced targets and no false signals, or extremely complex for environments

with multiple and closely-spaced targets. In the first case, a system track is updated

with measurements from the same target and as performance evaluation is concerned,

the track state estimate can be easily compared with the true state of its target, which

represents the only source of measurements for that track. Alternatively, the track

state estimate can be compared to the only true target state that is near to it in

state space. On the other hand, for complex scenarios the evaluation of tracking

performance results complicated due to possible ambiguities in measurement-to-track

association, misassociation and missed targets.

The tracking filters presented in this work have been designed and developed for a

single-target environment (i.e. under the assumption that targets are well separated in

space, thus avoiding problem in associating incoming detections to already established

tracks). Specifically, two Measures of Performance (MoP) are hereafter reported,

both used to compare tracking filters in Monte Carlo simulations. The measures of
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performance are computed for each track assigned to a target, for each time stamp

of the simulation and for each Monte Carlo run. Then the average of each MoP for a

target is computed over all Monte Carlo runs and it is repeated for each target and

each time stamp.

3.2.1 Root Mean Squared Errors

The Root Mean Squared errors are the most common metrics used to evaluate the

performance of a filter. They are mostly used to determine the accuracy of a track,

i.e. how the track assigned to a target deviates to the truth state of the target itself.

In the following the expressions for these errors in position, velocity, speed and course

are given. Given N Monte Carlo runs, for the 2D position vector x = [x, y] with

observed errors x̃i and ỹi, the RMS position error is given by:

RMS(x̃) =

√√√√ 1

N

N∑
i=1

(
x̃2i + ỹ2i

)
. (3.49)

Correspondingly, for the velocity vector ẋ = [ẋ, ẏ] the RMS velocity error is given by:

RMS(˜̇x) =

√√√√ 1

N

N∑
i=1

(
˜̇xi

2
+ ˜̇yi

2
)

. (3.50)

The RMS speed error is given by:

RMS(s̃) =

√√√√ 1

N

N∑
i=1

s̃2i , (3.51)

where s̃i = si − ŝi is the observed error of the speed si =
√
ẋ2i + ẏ2i and ŝi its

estimation.

Similarly, the RMS course error is evaluated as:

RMS(θ̃) =

√√√√ 1

N

N∑
i=1

θ̃2i , (3.52)

where θ̃i = θi − θ̂i is the observed error of the course θi = tan−1
[
ẋi
ẏi

]
(measured from

the y axis, i.e. North, clockwise) and θ̂i its estimation.
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3.2.2 Kullback-Leibler Divergence

The comparison between tracking filters by using metrics based on point estima-

tors (e.g. the root mean squared errors) leads to proper results when performed

under Gaussian assumptions and linear target dynamics. However, if the problem

is such that the second order moment can be sufficiently well approximated by a

Gaussian density, but not the higher order moments, then another measure is needed

( [HKGN06]). The Kullback-Leibler Divergence (KLD) is taken as reference for com-

paring the empirical distributions of EKF and PF, for example.

Given two continuous densities on Rd, p and q, the KLD DKL(p, q) is defined as:

DKL(p, q) = Ep

[
log

p

q

]
=

∫
p(x)log

p(x)

q(x)
dx, (3.53)

DKL is non-negative, not symmetric in p and q, zero if the distributions exactly

match and potentially equal infinity. As reported in [CGPB11] and [WKV09], under

the hypothesis of i.i.d samples from p and q, an asymptotic unbiased and mean square

consistent estimator of the expression in (3.53) can be defined.

Let {X1, ..., Xn} and {Y1, ..., Ym} be i.i.d. drawn samples from the distributions p

and q, respectively. The estimator of D̂KL(p, q) is given by:

D̂KL(p, q) =
d

n

n∑
i=1

log
νki(i)

ρli(i)
+

1

n

n∑
i=1

[
ψ(li)− ψ(ki)

]
+ log

m

n− 1
, (3.54)

where νki(i) is the Euclidean distance betweenXi and its ki-nearest neighbour in {Yi},
ρli(i) is the Euclidean distance between Xi and its li-nearest neighbour in {Xj}j ̸=i,

and ψ is the Digamma function, i.e. the logarithmic derivative of the Gamma function.

In order to compare the EKF (continuous) and PF (discrete) distributions, is it pos-

sible to proceed as follows:

� A reference distribution (PFRef) is generated using a PF with a high number of

samples (NpRef );

� A PF with NpPF particles, such that NpPF << NpRef , is considered and the

KLD between PF and PFRef distributions is calculated, D̂KL(PF,PFRef);

� The EKF distribution is sampled for comparison. To limit the effect of this

approximation a high number of samples NpEKF = NpRef has to be chosen for

computing the D̂KL(EKF,PFRef);
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� Finally D̂KL(PF,PFRef) and D̂KL(EKF,PFRef) are compared in terms of mean

value.

The above described procedure will be adopted to compare the different tracking

filters developed in this PhD work.

3.3 Summary

The Chapter introduced the fundamental concepts of Bayesian target tracking. Specif-

ically, linear and non-linear tracking filters (e.g. KF, EKF, UKF and PF) were recalled

as references for the development of the tracking filters addressed by this PhD work.

As data association techniques are concerned, the MHT algorithm was presented in

the form described in [Bro12]. Data association problem is not directly addressed in

the tracking filters developed in this Thesis, but the MHT is used to show the track-

ing results for the maritime surveillance application presented in Chapter 8. Finally,

the RMS errors and the KLD were presented as measures of performance adopted to

evaluate the vessel tracking algorithm results.
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CHAPTER IV

Context Exploitation for Target Tracking

The Bayesian recursion, illustrated in Section 3.1, allows incorporating different kinds

of external factors, such as equality and inequality constraints, which can be modeled

as linear or non-linear functions of the target state vector. Context information for

target tracking can be indeed considered as a constraining factor, since it affects

the possible evolution of some of the positional/kinematic components of the state

vector either bounding them or limiting a given non-linear combination of them.

Such constraining effect generally varies over time (i.e., at each time instant in the

considered discrete-time system model), and depends from the state vector itself. This

is due for example to the spatial (geographic) layout of the context in the area where

the target evolves. In addition, the context-driven constraint might be fulfilled by the

system in all cases (i.e., hard constraint), such as for instance the boundary between

land and sea for a ground moving target, or mostly (i.e., soft constraint), such as the

adherence to a traffic separation scheme.

In literature several algorithms are reported, which take into account constraints in

the estimation process, depending on the addressed application and the nature of the

constraint itself. A quite exhaustive overview is reported by Simon in [Sim10]. In

this survey, a preliminary distinction between the available techniques for linear and

non-linear dynamic systems and linear and non-linear constraints is provided.

Specifically, when the system evolution is described by linear equations, techniques

like estimate projection [SC02], gain projection [GH07], probability density function

truncation [SS10] and interior point likelihood maximization [BBP09] can be adopted

for incorporating hard inequality and linear constraints. Other techniques, like model

reduction [WDW92], perfect measurements [WCC02] and system projection [KB07]
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are used for dealing with equality constraints. In case of linear systems, the Kalman

filter (Section 3.1.3) represents the solution for the recursive constrained state esti-

mation. If the constraints result as non-linear, a linearization step is required before

adopting the above mentioned techniques in the Kalman filter. If the constraints main-

tain their non-linearities, solutions like the extended Kalman filter (EKF), unscented

Kalman filter (UKF) and particle filter (PF) - see Section 3.1.4 - are considered for

the target estimation process. Others methods to include the inequality constraints

are discussed in literature: among them we mention the second order expansion of

non-linear constraints [YB08] and the Moving Horizon Estimation (MHE, [RRL01]).

As non-linear systems are concerned, EKF, UKF, MHE and PF-based algorithms

combined with various techniques to handle constraints have been proposed in the

literature. The MHE approaches result attractive but require excessive computational

effort, [RRM03]. Techniques based on sequential Monte Carlo (SMC) methods are

prone to the inclusion of additional information since they present no restriction on

the type of models (e.g. target dynamics, noise distributions, etc.). Considering

different motion models or filter parameters allows as well using KF extensions as

constrained tracking filters.

Generally speaking an underlying aspect when comparing constrained Bayesian fil-

ters is the entry point of the constraint in the recursive formulation of Bayes. As

recalled in the Section 3.1, each estimation iteration is split into prediction and up-

date steps, which lead to the calculation of the posterior density of the state vec-

tor p(xk|Zk) through the evaluation of the prior pdf p(xk|Zk−1) and the likelihood

function p(Zk|xk). The prior pdf is then calculated on the basis of the posterior pdf

p(xk−1|Zk−1) at the previous time instant and the transitional probability p(xk|xk−1).

The algorithms derived within the general Bayes formulation generally constrain ei-

ther the prior pdf (or better the transitional density) or the likelihood function. The

mathematical modification of the unconstrained pdf into the constrained pdf then

varies from filter to filter, largely depending on the application sought for the estima-

tor.

The general formulation of the constrained Bayesian filtering is reported in the follow-

ing, where the equivalence between the introduction of the constraint in the prediction

step and in the update step from a Bayes point of view is demonstrated.

4.1 Constrained Bayesian Filtering

In this Section the Bayesian recursion for the inclusion of constraints in the tracking

process is presented. Let us consider the most generic case, i.e., the context informa-
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tion is available at the time instant tk in terms of non-linear inequality constraint on

the target state xk:

ak ≤ Ck(xk) ≤ bk , (4.1)

where Ck : Rnx → Rnc . The constraint as defined in Equation (4.1) can be exactly

satisfied (hard constraint) or it can present uncertainties. This could be due to the

uncertainty of the boundaries, i.e. the vectors ak and bk, or to the uncertainty of

the constraint Ck, which is allowed to exceed the boundaries with a certain proba-

bility (soft constraint). In the following we focus on the perfect knowledge of hard

constraints and the constraints space. The analysis of the soft constraint case is out

of the scope of this Paragraph.

Given these considerations, let Ck be the set of states satisfying the Equation (4.1)

and Ck the sequence of Ck up to the time k :

Ck = {xk : xk ∈ Rnx ,ak ≤ Ck(xk) ≤ bk} (4.2)

Ck = {C0, C1, ..., Ck} . (4.3)

The inclusion of the sequence of constraints in (4.3) in the Bayesian formalism requires

the evaluation of the constrained posterior pdf p(xk|Zk, Ck), where the conditioning

is with respect to Ck, too.

The two-step recursion (prediction and update) for the evaluation of the constrained

posterior pdf is modified in accordance to the new conditioning. The expression in

Equation (3.8) becomes:

p(xk−1|Zk−1, Ck−1)
Constrained
Prediction−−−−−−−−−−→
Motion Model

p(xk|Zk−1, Ck)

Filter Update

−−−−−−−−−−−−−→
Sensor Model

New Sensor Data zk

p(xk|Zk, Ck).

(4.4)

p(xk−1|Zk−1, Ck−1)
Prediction

−−−−−−−−−→
Motion Model

p(xk|Zk−1, Ck−1)

Constrained
Filter Update−−−−−−−−−−−−−→

Sensor Model
New Sensor Data zk

p(xk|Zk, Ck).

(4.5)
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Specifically, the information about the constraint can be either exploited in the pre-

diction or in the update step ( [PPB+12]), as stated in the Equations (4.4) and (4.5)

respectively, leading to the same result from the Bayesian point of view as demon-

strated in the following.

4.1.1 Inclusion of Constraints in the Prediction Step

In this case the prior pdf is defined as follows:

p(xk|Zk−1, Ck) =

∫
p(xk,xk−1|Zk−1, Ck, C

k−1)dxk−1

=

∫
p(xk,xk−1,Zk−1, Ck, C

k−1)

p(Zk−1, Ck, Ck−1)
dxk−1

=

∫
p(xk|xk−1,Zk−1, Ck, C

k−1)p(xk−1,Zk−1, Ck, C
k−1)

p(Zk−1, Ck, Ck−1)
dxk−1

=

∫
p(xk|xk−1,Zk−1, Ck, C

k−1)p(xk−1|Zk−1, Ck, C
k−1)p(Zk−1, Ck, C

k−1)

p(Zk−1, Ck, Ck−1)
dxk−1

=

∫
p(xk|xk−1,Zk−1, Ck, C

k−1)p(xk−1|Zk−1, Ck, C
k−1)dxk−1

=

∫
p(xk|xk−1, Ck)p(xk−1|Zk−1, Ck−1)dxk−1 .

(4.6)

The current state xk in the transitional density p(xk|xk−1, Ck) is conditioned to the

current set of constraints Ck and not to the previous constraint history.

The posterior pdf definition is given by:

p(xk|Zk, Ck) =
p(xk, zk,Zk−1, Ck)

p(zk,Zk−1, Ck)

=
p(zk|xk,Zk−1, Ck)p(xk,Zk−1, Ck)

p(zk,Zk−1, Ck)

=
p(zk|xk,Zk−1, Ck)p(xk|Zk−1, Ck)p(Zk−1, Ck)

p(zk|Zk−1, Ck)p(Zk−1, Ck)

=
p(zk|xk)p(xk|Zk−1, Ck)

p(zk|Zk−1, Ck)
.

(4.7)

The inclusion of constraints in the prediction step requires the evaluation of the

constrained transitional density p(xk|xk−1, Ck) in the Equation (4.6).

60
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4.1.2 Inclusion of Constraints in the Update Step

The prior pdf is defined as follows:

p(xk|Zk−1, Ck−1) =

∫
p(xk,xk−1|Zk−1, Ck−1)dxk−1

=

∫
p(xk|xk−1,Zk−1, Ck−1)p(xk−1|Zk−1, Ck−1)dxk−1

=

∫
p(xk|xk−1)p(xk−1|Zk−1, Ck−1)dxk−1 .

(4.8)

The posterior pdf definition is given by:

p(xk|Zk, Ck) =
p(xk, zk,Zk−1, Ck, C

k−1)

p(zk,Zk−1, Ck, Ck−1)

=
p(zk|xk,Zk−1, Ck)p(xk,Zk−1, Ck)

p(zk,Zk−1, Ck)

=
p(zk|xk)p(Ck|xk)p(xk|Zk−1, Ck−1)

p(zk|Zk−1, Ck)p(Ck|Ck−1)
.

(4.9)

In this case, the existence of constraints brings to the definition of the constrained

likelihood function p(Ck|xk) in the Equation (4.9).

By comparing the equations (4.7) and (4.9) it is easy to demonstrate that they coincide

from the Bayesian point of view if the following equivalence holds:

p(xk|Zk−1, Ck) =
p(Ck|xk)p(xk|Zk−1, Ck−1)

p(Ck|Ck−1)
. (4.10)

The inclusion of equality constraints in the Bayesian recursion can be handled simi-

larly.

4.2 State-of-the-art Constrained Algorithms

This section presents some state-of-the-art algorithms for recursive target state es-

timation exploiting the context information. The constrained tracking filters have

been derived on the basis of the Bayesian recursion presented in Section 4.1, where

the context has been properly modeled in order to be included in the formalism de-

pending on the application. It has to be stressed that some algorithms include the

context information in the prediction phase of the tracking process, others are char-

acterized by a constrained target state update. Specifically, two general methods for
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constraint exploitation in target tracking are recalled, the rejection sampling and the

pseudo measurement approach, both used for several target tracking applications. Fi-

nally, other two algorithms for tracking ground targets (e.g. vehicles) are reported:

the roadmap assisted target tracking and the blind zone assisted target tracking. The

latter two algorithms have been developed to support the ground situation aware-

ness of highly dynamic scenarios with many ground moving targets. This application

requires computer aided extraction and maintenance of target tracks in the surveil-

lance area. Although the use of airborne ground moving target indication (GMTI)

radar promises high radar coverage of the surveillance region (regardless of daytime

or weather conditions), several issues make automatic target tracking difficult, e.g.,

the clutter notch of the sensor, terrain obscuration, missed detections, false alarms

or data assignment ambiguities in the case of closely spaced targets. Specifically,

the two presented algorithms exploit different types of constraints: (i) constraints on

the motion of road targets and (ii) constraints on the target state and sensor-target

geometry implied by the (negative) outcome of a GMTI sensor measurement.

4.2.1 Rejection Sampling

The rejection samplingmethod imposes the constraints on the prior pdf, specifically

on the transitional density in the Equation (4.6), which is modified as follows (see

[PPB+12]):

p(xk|xk−1, Ck) ∝

{
p(xk|xk−1) if xk ∈ Ck,

αp(xk|xk−1) otherwise.
(4.11)

The constrained pdf is the original p(xk|xk−1) restricted to Ck. The parameter α is

generally chosen in the interval [0, 1[. For the hard constraints case, such value is set

to α = 0.

This approach can be straightforward applied to a particle filter tackling the non-

linear estimation problem: only the particles that satisfy the constraints are accepted,

the others are rejected. The solution is extremely simple, but is computationally

expensive. In particular, the time required to perform rejection-sampling, i.e., to

generate a given number of particles is not known a priori. The smaller the fraction

of the state space that fulfills the constraint, the more inefficient the rejection sampling

approach becomes. For equality constraints this method cannot be applied at all, since

the probability that a randomly drawn particle fulfills the constraint vanishes.
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4.2.2 Pseudo Measurements

The pseudo measurements approach deals with constraining the instantaneous

measurement. Specifically, the constraint is considered as an additional measurement.

This impacts the posterior pdf and requires the evaluation of the constraint based

likelihood function p(Ck|xk) in (4.9):

p(Ck|xk) =

{
1− α if xk ∈ Ck,

α otherwise,
(4.12)

where α ∈ [0, 1[, which is multiplied to the measurement-induced likelihood function.

Specifically, we have α = 0 to deal with the hard constraint case.

In a particle filter application (see [PPB+12]) p(Ck|xk) affects the weight of parti-

cles or even reduces them to zero if the (hard) constraint is not fulfilled. While in

the rejection sampling approach (Section 4.2.1) the computation time is a priori un-

known, in the pseudo measurement approach, there can be a large number of particles

with small or vanishing weight leading to an inefficient filter, too. Like in the rejec-

tion sampling approach, the filter becomes more and more inefficient the smaller the

constraint state space is. For this reason, in the limit of equality constraints, both

variants cannot be applied.

4.2.3 Roadmap Assisted Target Tracking

The use of roadmaps to enhance the tracking performance is a typical example of

map matching, a frequently applied approach, e.g., for navigation systems. Infor-

mation about roadmaps can be exploited in different steps of the tracking filter (see

for example [AGOR02,AS03,KKU06, Str08, ZKL08,OSG09]), e.g. by projecting the

measurements or the state vectors to the road. In a road network or in the case of

winding roads, however, the projections of the state vector estimate and the covari-

ance onto the road are ambiguous. A different approach consists in modelling the

target dynamics in the road coordinates. In the simplest case, this leads to a descrip-

tion of the target state in reduced dimensions, using the mileage and speed as target

state parameters. As real roads are not strictly one-dimensional, their width, i.e. the

motion transversal to the road direction, has to be modeled too. In [Koc06b,UK06]

an approach that models the target motion in road coordinates and performs the

data processing in Cartesian coordinates is presented and here recalled. The non-

linear mapping between the two coordinate systems is done using a Gaussian mixture

approach.
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4.2.3.1 Context Modelling

A road can mathematically be described by a continuous 3-D curve R∗ in Cartesian

coordinates and is parametrized by the corresponding arc length l with R∗ : l 7→
R∗(l) can be approximated by a polygonal curve R consisting of nr piecewise linear

segments. The nr +1 nodes of this polygonal curve are given by the 3-D node vectors

rs = R∗(ls), s = 1, . . . , nr + 1 (4.13)

and for each road segment a normalized tangential vectors

ts =
rs+1 − rs
|rs+1 − rs|

, s = 1, . . . , nr (4.14)

can be derived. With the segment length λs = ls+1 − ls and the indicator function

defined by

χs(l) =

{
1 for l ∈ [ls, ls+1)

0 otherwise
s = 1, . . . , nr (4.15)

the polygonal curve R is then given by

R : l ∈ [l1, lnr+1) 7→ R(l) =

nr∑
s=1

[
rs + (l − ls)ts

]
χs(l) (4.16)

with R∗(ls) = R(ls) = rs and s = 1, . . . , nr + 1. Thus, each segment s of the polygo-

nal road R is determined by the node vector rs, the arc length λs, and the normalized

tangential vector ts. In addition, both the width and the accuracy of the road are

described by a covariance matrix Rr
s which also accounts for the discretization error

introduced by λs−|rs+1−rs|, i.e., the difference between the length of a segment and

the actual distance traveled along this segment. Such a description makes sense when

an estimate of the target position transversal to the road direction is not required,

i.e., in particular when the measurement uncertainty is significantly larger than the

width of the road or lane.
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4.2.3.2 Filter Implementation: Tracking with Road Networks

Road network data generally contains several road sections, each consisting of a cer-

tain number of linear segments connected at specific nodes. This yields a complex

structure exhibiting crossings and junctions. The basic idea of a tracking scheme uti-

lizing complex roadmap data is, first of all, to introduce a local road for each target

which consists of only a limited number of segments. Depending on the specific mo-

tion of a target along the road network, this local road then needs to be continuously

adapted: as the target approaches the head of the road, new segments are added, and

segments with vanishing probability at the tail of the road are pruned. In addition,

the orientation of the local road is reversed if a target moves backwards along the

associated road segments.

The trajectory of a realistic road target will include junctions and crossings. In such

a case, the arising ambiguity can easily be resolved over time by utilizing a multiple

model [BSL95] approach with respect to the generated local roads. The possible paths

of the moving object at the junction or crossing lead to different road hypotheses h

with h = 1, ..., Nh, where each has a different continuation of the previous local

road after the junction. An example for this is shown in Figure 4.1. If a target

approaches a junction or crossing, a road hypothesis for every possible continuation

after the junction is generated. In the subsequent time steps, the probability of a

particular road hypothesis, conditioned on the accumulated measurement sequence,

is then calculated at the end of the filter update based on the computed component

weights. In that way, the tracking algorithm is able to handle the arising ambiguity

due to the different possible trajectories of the target. This ambiguity is then resolved

over time as the target passes the junction or crossing and moves further away. The

obtained target measurements then facilitate the discrimination among the different

road hypotheses.

Following the approaches in [Koc06b,UK06], the state vector of a road target at time

step tk is described in the road coordinate system, i.e., by its arc length lk along

the road and by the associated speed l̇k as xr
k = [lk, l̇k]

⊤. In the following, a single

iterative loop of the road tracking scheme is summarized. First of all, it is assumed

that the target state pdf in continuous road coordinates at time step tk−1 is available

and given by the expression

p(xr
k−1|Zk−1) =

Nh∑
h=1

Pk−1(h|Zk−1) p(xr
k−1|h,Zk−1) . (4.17)

When the pdf for each road hypothesis h is determined by a single Gaussian, the pdf
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Figure 4.1: Left: Exemplary road network consisting of three road sections. Right: Local
roads generated for a target which moves from left to right and approaches the junction.

take the form of a Gaussian mixture. Applying the Chapman-Kolmogorov equation

(3.5), the predicted pdf, too, is given by a Gaussian mixture in continuous road

coordinates.

This prior then has to be transformed into the ground coordinate system, so that the

sensor data can be processed, i.e.,

p(xr
k|Zk−1)︸ ︷︷ ︸

in road coordinates

roadmap−−−−−−−−−→
roadmap error

p(xg
k|Z

k−1)︸ ︷︷ ︸
in ground coordinates

. (4.18)

By utilizing the linear segmentation of the constructed local road for each road hy-

pothesis h with nr(h) segments (as discussed in the previous section), the prior density

in ground coordinates is computed as ( [UK06]):

p(xg
k|Z

k−1) =

Nh∑
h=1

Pk−1(h|Zk−1)

nr(h)∑
s=1

Ph
k (s|Zk−1) p(xg

k|s,Z
k−1)

 . (4.19)

The expression Ph
k (s|Zk−1) denotes the probability that the target moves on segment

s of local road h, based on the accumulated sensor data Zk−1.

The segment dependent pdf in ground coordinates in (4.19) is calculated from the pdf

in road coordinates as:

p(xg
k|s,Z

k−1) =

∫
p(xg

k|x
r
k, s) p(x

r
k|s,Zk−1) dxr

k . (4.20)
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Assuming Gaussian error on the road segments of the map, the transition density

(4.20) is Gaussian, too, and the integration provides a pdf in ground coordinates,

constrained to the segment s:

p(xg
k|s,Z

k−1) = N (xg
k;x

g
k|k−1(s),P

g
k|k−1(s)) (4.21)

and the segment dependent pdf (4.20), then, can be calculated as a Gaussian distri-

bution. Explicit formulas for the arguments in (4.19) are given in [UK06].

In this approach, the pdf in road coordinates is unconstrained, but it is mapped by

(4.18) to a pdf in ground coordinates that is constrained by the road geometry. As

the mapping is based on Gaussian distributions, the constraints are, exactly speaking,

only statistical and, therefore, soft.

In the filter update step, each component on the r.h.s. of (4.19) is updated withmmea-

surements. After the generation of all hypotheses, each segment-dependent density

p(xg
k|m, s,Z

k) is individually transformed back from Cartesian to road coordinates

by a simple projection onto the corresponding road segment:

p(xg
k|m, s,Z

k)︸ ︷︷ ︸
in ground coordinates

roadmap−−−−−→ p(xr
k|m, s,Zk)︸ ︷︷ ︸

in road coordinates

. (4.22)

The pdf in continuous road coordinates for every road hypothesis h yields, for each

of the generated hypotheses, a Gaussian mixture of segment-dependent probability

densities with mean and covariance as given in [UK06]. For simplicity, this is then

approximated by second-order moment-matching [BSLK01], resulting in a single den-

sity

p(xr
k|h,m,Zk) ≈ wm

k (h)N (xr
k;x

r,m
k|k (h),P

r,m
k|k (h)) , (4.23)

with the component weights wm
k (h) =

∑nr(h)
s=1 Ph

k (s|Zk−1)wm
k (s). The posterior den-

sity of the target state in continuous road coordinates can finally be written as

p(xr
k|Zk) =

Nh∑
h=1

Pk(h|Zk) p(xr
k|h,Zk) , (4.24)

67



4 Context Exploitation for Target Tracking

with the posterior for each road hypothesis h determined by

p(xr
k|h,Zk) =

mk∑
m=0

wm
k (h) N (xr

k;x
r,m
k|k (h),P

r,m
k|k (h)) . (4.25)

As the new updated pdf in road coordinates (4.24) has the same structure as the one at

time tk−1, (4.17), this closes one iteration of the tracking filter, depicted in Figure 4.2:

Figure 4.2: Scheme of one iteration of the roadmap assisted tracking filter: i) prediction in
continuous road coordinates, ii) segmentation into road segments and mapping to Cartesian
coordinates, iii) data processing in Cartesian coordinates, iv) projection onto road coordi-
nates, v) merging (moment matching) to a single component [LSE16].

4.2.3.3 Particle Filter Approach

Alternatively to the Gaussian mixture approach described above, particle filter tech-

niques can be applied (see e.g, [AGOR02, AS03, UK06, OSG09]). Here the particle
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states are given by two-dimensional vectors, describing position (mileage) and speed

along the road. The low dimensionality of the state vectors has the advantage to en-

hance the efficiency of particle filter sampling. A corresponding sampling importance

resampling (SIR) particle filter is described and evaluated in [UK06]. The non-linear

mapping to ground coordinates can be done exactly within the errors of the underly-

ing roadmap. In this mapping, a noise term, proportional to the road segment width,

is added which shifts the particle position across the road direction. The noise terms

describes both the road width and the road mapping error. The particle positions

in Cartesian coordinates are used to calculate the likelihood function and, hence, the

updated particle weights. The SIR particle filter has been used as a benchmark for

the above described Gaussian mixture approach and it has been shown that, for re-

alistic scenarios and system parameters, the performance of the latter almost always

is optimal [UK06].

4.2.4 Blind zone Assisted Target Tracking

For the tracking of ground moving targets, measurements of airborne ground moving

target indication (GMTI) radar [Sko08] are well-suited due to its favorable wide-area

illumination, all-weather, day and night availability as well as real-time capabilities.

In general, moving objects are detected based on the Doppler shift in the reflected

signal, induced by the radial motion of the targets. However, a large amount of the

back-scattered radiation originates from the ground, but due to the motion of the

sensor platform, these clutter measurements are also colored in Doppler, i.e., exhibit

a nonzero Doppler shift. Therefore, a sophisticated clutter suppression technique has

to be applied first in order to cancel out the general clutter background, before true

detections from moving objects can be obtained and passed along to the tracking

unit. The state-of-the-art technique for this clutter cancellation is space-time adap-

tive processing (STAP) [Gue03,Kle06], which performs an optimal two-dimensional

suppression of the clutter distribution.

A major challenge for a tracking algorithm using detections from airborne GMTI

radar arises from the fact that reflections from moving targets can be suppressed by

the STAP clutter filter. This is mostly the case if the radial speed of the target is

below the minimum detectable velocity (MDV) threshold which indicates the width

of the clutter distribution in the Doppler domain. Such low-Doppler targets may

arise due to an unfavorable target-sensor geometry, slow targets, or due to a stopping

manoeuvre. These targets will not be detected by the sensor, yielding possibly long

sequences of missed detections. This blind spot of the GMTI sensor is called Doppler

blind zone and its width is given by MDV.
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If a target is masked by the Doppler blind zone, this introduces a constraint which

confines the target motion to a certain region. In [KK01,Koc06b,Koc07], the Doppler

blind zone information is accounted for in a Bayesian tracking filter by utilizing a

state-dependent detection probability, which takes low values whenever an object’s

range-rate is inside the suppressed Doppler interval. The impact of this blind zone

on the detection probability is modeled by an inverse Gaussian, yielding a soft blind

zone constraint. In the following, this technique is discussed.

4.2.4.1 Context Modelling

The distance from the blind zone center depends on the target state xk and sensor

position rSk and is defined by the Doppler notch function, nD(xk, r
S
k ) = ṙk − ṙck, i.e.,

the difference in range-rate between target and surrounding main lobe clutter. Using

standard transformation rules, this expression is given in Cartesian coordinates by

nD(xk, r
S
k ) =

rk − rSk
||rk − rSk ||

ṙk (4.26)

and is thus equal to the target velocity projected onto the line-of-sight vector between

sensor and target. Another important quantity is the already mentioned width of the

blind zone given by the MDV. In general, the MDV is not a constant sensor parameter

for a given scenario setup [MKK14] but depends on a possible spacial separation

between transmit and receive unit of the radar (bistatic setup), the array antenna

configuration and the look angle of the receive antenna towards the target. But in

the following, the MDV will be assumed constant which holds for the monostatic

sideways-looking case.

An appropriate modelling of the detection probability impacted by the Doppler blind

zone has to account for the following implications:

1. The detection probability PD has to depend on the state vector of the target,

i.e., PD = PD(xk).

2. PD has to be small or even vanish if |nD(xk, r
S
k )| < MDV.

3. For |nD(xk, r
S
k )| ≫ MDV, i.e., far away from the blind zone, PD has to depend

solely on the directivity pattern of the antenna and the distance between sensor

and target.

To meet the above condition while preserving the Gaussian framework of (extended)

Kalman filtering, the following functional form of the the detection probability PD

has been proposed [KK01]:
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Pd(xk, r
S
k ) = pd(rk, φk, θk)

1− e
− log 2

(
nD(xk,r

S
k )

MDV

)2
 , (4.27)

where pd(rk, φk, θk) accounts for the receive directivity pattern which depends on the

Rx azimuth angle towards the target and the target range. The particular form of the

detection probability is chosen to approximately resemble the influence of the STAP

clutter suppression. If the Doppler notch function equals the current width of the

blind zone, then Pd = pd(φk, θk, rk)/2. Hence, target detections become more and

more unlikely as the target moves deeper into the blind zone region and vanish at the

blind zone center where the target’s range-rate matches the range-rate of the main

lobe clutter.

4.2.4.2 Filter Implementation: Inclusion of Doppler Blind Zones

The knowledge on the Doppler blind zone is incorporated into the Bayesian tracking

filter by expanding (4.26) in first order around the predicted target state and, then,

substituting the target state dependent detection probability (4.27) into the likelihood

function (see [KK01]).

This yields a fictitious measurement z̃f and fictitious observation matrix H̃f :

z̃f = nD(xk|k−1, r
S
k ) + H̃fxk|k−1 (4.28)

H̃f = − ∂

∂xk
nD(xk, r

S
k )
∣∣∣
xk=xk|k−1

. (4.29)

In that way, the exponential in (4.27) can be rewritten as a Gaussian which linearly

depends on the target state vector xk, yielding

Pd(xk, r
S
k ) = pd(rk, φk, θk)

[
1− cD N (z̃f ; H̃fxk, vD)

]
, (4.30)

where cD = MDV/
√

log(2)/π is a normalization factor and vD = MDV2/(2 log 2) is

the variance of the fictitious measurement z̃f in the range-rate domain.

The implications of this detection probability, representing a refined GMTI sensor

model, can easily be illustrated by calculating the likelihood function which is now a

function of the measurement and the constraint:
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4 Context Exploitation for Target Tracking

p(Ck, zk|xk) =
(
1− Pd(xk, r

S
k )
)
+
Pd(xk, r

S
k )

ρf
N (zk;Hk xk,Rk) , (4.31)

similar as in (3.39), but with a state dependent detection probability.

With the standard expression for Pd, this yields a Gaussian mixture posterior den-

sity consisting of two components, representing the following possible sensor data

interpretations:

1. The detection belongs to the target, a regular filtering is executed.

2. The detection is due to a false alarm, the target was not detected.

On the other hand, if the refined GMTI sensor model is considered by inserting (4.30)

into (4.31), then due to the (1− x) structure, each previous mixture component now

splits into two components. The resulting four mixture components contain two

additional components which can be interpreted as follows:

3. The detection belongs to the target, it is not masked by the Doppler blind zone,

removing probability mass out of the blind zone region.

4. The detection is due to a false alarm because the target is masked by the Doppler

blind zone.

In other words, the hypothesis that the target is masked (not masked) by the Doppler

blind zone induces an inequality constraint on the target state, as the radial velocity

has to be smaller (larger) than MDV. As Pd describes a statistical detection proba-

bility, the constraint is soft.

This example makes clear that due to the increased number of hypotheses established

in the filter update step, a tracking filter utilizing the refined GMTI sensor model

is able to interpret the sensor output in a more sophisticated manner compared to

a standard tracking filter and is capable of handling a sequence of missed detections

arising due to Doppler blind zone masking.

4.3 Summary

This Chapter showed how the Bayesian estimation process was modified in order to

embed external information such as the context information. The inclusion of this

kind of knowledge was done by resorting to constraints affecting the evolution of

the target state space. The constraints could be different: soft, hard, equality or

inequality. Specifically, the case of hard inequality constraints affecting non-linear
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systems has been taken into account for the derivation of the constrained Bayesian

formalism and to develop the tracking filters presented in this research work. It has

been demonstrated that constraints can be easily inferred in the prediction or in

the update steps of the estimation recursion: this leads to the same result from the

Bayesian point of view. Finally, some state-of-the-art tracking algorithms have been

presented as example of context-based tracking algorithms. The rejection sampling

algorithm showed how the constraints impact the prediction step of the estimation

process; conversely, the pseudo measurement approach resorted to the modification

of the update step. The road-map and the blind zone assisted trackers were also

reported as well established state-of-the-art algorithms which deal with the inclusion

of context as soft constraint.
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CHAPTER V

Innovative Solutions for Maritime Situational

Awareness Context-based Target Tracking

The Section presents potential strategies for context-based tracking filters in the area

of Maritime Situational Awareness (MSA). As already stated in Chapter 2, MSA is

based on the exploitation of data from heterogeneous sources, which concur in provid-

ing the maritime traffic picture in the observed region. The involved systems include

coastal active radars, Navigation Aids, air- and space-based monitoring services, and

recently conceived passive sensors. It is clear that one of the major achievements to

be sought for future MSA systems is the effective integration of all data sources.

The extraction of the global maritime picture has to cope with the limited perfor-

mance of each sensor and the complexity of the operational scenario. Target signal

fading, anomalous propagation conditions, clutter returns or interferences, transmis-

sion channel loss, sensor blockage or malfunctioning, intentional spoofing, etc., make

the accurate and reliable extraction of vessel tracks harder. In this perspective, con-

text elements are expected to have an influence on the maritime traffic evolution,

since they represent sources of a priori information that can be used in target infer-

ence. Geographical information on coastline, ports, maritime highways and corridors,

such as information on kinematics and route of each vessel (whose characteristics are

summarized in Section 2.2), are elements that can be properly modeled and exploited

in the target tracking filtering (i.e., the process of target state vector prediction and

measurement update).

The tracking filters hereafter introduced have been conceived and developed with the

aim to support the MSA, providing a maritime picture made of multi-sensor tracks
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5 Innovative Solutions for Maritime Situational Awareness Context-based Target Tracking

which are build by exploiting some context information of the maritime environment.

These techniques rely on the constrained Bayesian filtering presented in Chapter 4.

In all the cases, non-linear dynamic or measurement models subject to hard equality

and/or inequality constraints are taken into consideration. Given the non-linearity

of the target state estimation problem, the algorithms are based on EKF and PF

implementations.

5.1 Navigation Field Assisted Target Tracking

According to the Navigation Field Assisted EKF presented by the author in

[BU11], the context information plays a fundamental role in the prediction step of

the target state vector. Under Gaussian assumptions and local linearization - whose

parameters vary according to the constraint - the constrained transitional probability

density function in Equation 4.6 can be expressed as follows:

p(xk|xk−1, Ck) ∼=


N (xk;gk−1(xk−1);Q

g
k−1) if xk ∈ Ck AND xk−1 ∈ Dk−1,

N (xk; fk−1(xk−1);Q
f
k−1) if xk−1 /∈ Dk−1,

0 otherwise,

(5.1)

where Ck is the state vector (equality constraint) that can be reached from the target

state xk−1 and Dk−1 is the ensemble of state vectors that are subject to the influence

of the context at time instant tk−1. f(.) and g(.) are the transition functions of

the state, which allows transiting from xk−1 to Ck and Qg
k−1 and Qf

k−1 are the

covariance matrices of the process noises. It is evident that on the basis of the

reported pdf, the transitional functions f(.) and g(.) to be used by the filter vary and

generally their parameters depend on the actual context influence on the state vector

xk−1. The influence might be negligible or actual on the basis of the value of some

of the components of the state vector at a given time instant. In order to evaluate

the expressions in (5.1), context elements generating the constraint are modeled as

hereafter reported.

5.1.1 Context Modelling

In the Navigation Field model presented in [BU11] context elements are considered

as originators of attractive or repulsive forces for targets evolving in their proximity.

They are described in a geographic map, whose pixels or cells indicate the intensity

KC (refer to Equation (5.2)) of their effect on targets. Specifically, for the maritime
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5.1 Navigation Field Assisted Target Tracking

environment, ports, coastline, sea highways and corridors, interdicted areas are ele-

ments that can be easily represented on the map, providing a better understanding

of the scenario (see Figure 5.1).

Figure 5.1: Intensity KC map for a reference maritime scenario. Repulsive and attractive
sources for transiting vessels are represented by the highest and the lowest values in the map,
respectively ( [VSB+08]).

If we consider that the context acts like a force on target, we can resort to the

Navigation Force Field (NFF) definition in [VSB+08], which describes the resulting

effect as superposition of forces.

Let F⃗Gi be the force of the i-th context source point acting on a given target. Its

strength |Fi| and direction ∠Fi depend on (i) the distance ri between the target and

the i-th element, and (ii) the attractive or repulsive nature of this source. If we choose

a force model according to the law of gravity, for the superposition principle the total

force exerted on target from N sources is given by:

F⃗G =

N∑
i=1

F⃗Gi =

N∑
i=1

KiCi
r⃗i
ri3

, (5.2)

where Ki is the gravitation coefficient describing the strength of the interaction with

the i-th source, and Ci ± 1 denotes the attractive or repulsive nature of the force.

Alternatively, instead of a radial force, the context element can induce a rotational

momentum on the target around a pole O:

M⃗G = F⃗G × l⃗ , (5.3)

where l⃗ is the rotation axis through O.
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For a target evolving in a two-dimensional scenario, the total force F⃗G is dynamically

evaluated for each discrete time instant tk as:

FGx(xk, yk) =

N∑
i=1

KiCi
xk − xi

RDi
3 (5.4)

FGy(xk, yk) =

N∑
i=1

KiCi
yk − yi

RDi
3 , (5.5)

where the FGx and FGy represent the force components in both X and Y directions,

xk and yk the coordinates at time tk and RDi the distance between the target position

and the i-th cell. For the sake of simplicity, we assume that the track state is described

with a finite set of Motion Models, e.g. MM = {S,N,A,R} and the force F⃗G dictates

the actuation of the specific MM . In the S (Still) state, the target is steady while in

the N (Navigation) state, we assume that it moves along a rectilinear path and is not

subject to significant acceleration/deceleration. It can be considered as a pointlike

mass mT, not subject to external forces (Constant Velocity model, CV, [BP99]). In

the A (Approaching) state, the target approaches a destination: its motion comprises

deceleration and quick variation of the heading, which can be described by friction

forces. Finally, in the R (Rotating) state the target moves along a circular trajectory

with constant speed, in accordance to the Coordinated Turn model, CT [BP99].

The navigation force F⃗G could affect the target by modifying its velocity module

and/or its velocity vector orientation. In this case the force is modeled as an addi-

tional acceleration which has a direct impact on the target motion (we refer to this

as Model I). Alternatively, as stated in the equation (5.3), F⃗G is represented by

means of rotational momentum M⃗G applied to the target seen as a dipole of length l,

with inertial momentum IT . Under this assumption, the combination of the exerted

force, the target speed and the moment of inertia, leads to the angular acceleration ω̇

evaluation, since ω̇ = MG/IT , (named as Model II). For both models, the context

information brings non-linearities into the system, independently from the measure-

ment equation applicable to the problem. Thus, each model would require an EKF.

It is to be stressed that the effect of the force F⃗G affects only the target state vector

and the state covariance matrix predictions; the state vector and the state covariance

measurement update equations are not subject to any modification with respect to

the well known EKF formulation recalled in Section 3.1.4.1.

5.1.2 Filter Implementation: Model I - Force as Acceleration
Let the state vector at discrete time tk consist of position, velocity and acceleration

components of the target in Cartesian coordinates, i.e. x0
k = [xk, yk, ẋk, ẏk, ẍk, ÿk].
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5.1 Navigation Field Assisted Target Tracking

For the considered target motion model, the accelerations components ẍk and ÿk are

constant in the time interval ∆T = [tk−1, tk] and given by

ẍk = FGx(xk, yk) , ÿk = FGy(xk, yk) . (5.6)

Thus, the problem of estimating the target kinematic state is reduced to the evaluation

of the following state vector, xk = [xk, yk, ẋk, ẏk].

By resorting to the EKF formulation and taking into account the equation (5.1), the

prediction of the target state and covariance are recursively defined as follows:

x̂k|k−1 = gk−1(x̂k−1|k−1) = Gk−1x̂k−1|k−1 +Ak−1 (5.7)

Pk|k−1 = Ĝk−1Pk−1|k−1Ĝ
′
k−1 +Qg

k−1 , (5.8)

with

Gk−1 =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

 , Ak−1 =


T2

2
ẍk−1

T2

2
ÿk−1

T ẍk−1

T ÿk−1

 , (5.9)

where T is the sampling interval and Ak−1 is a vector of deterministic inputs that

accounts for the observed acceleration (e.g. the constraint), supposed to be constant

within the time interval ∆T . The matrix Qg
k−1 in Equation (5.8) represents the

covariance of the process noise, while the local linearization Ĝk−1 of the non-linear

function gk−1 is given by its Jacobian:

Ĝk−1 =
[
∇xk−1g

T
k−1(xk−1)

]T
|xk−1=x̂k−1|k−1

=


1 + T2

2
∂ẍ
∂x

T2

2
∂ẍ
∂y

T 0
T2

2
∂ÿ
∂x

1 + T2

2
∂ÿ
∂y

0 T

T ∂ẍ
∂x

T ∂ẍ
∂y

1 0

T ∂ÿ
∂x

T ∂ÿ
∂y

0 1


|x=x̂k−1|k−1,y=ŷk−1|k−1

.
(5.10)

If the Navigation Field does not impact the target motion (i.e. the acceleration

components in Equations (5.6) are zero and the condition xk−1 /∈ Dk−1 holds), the
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target state vector and the covariance matrix prediction equations become:

x̂k|k−1 = fk−1(x̂k−1|k−1) = Fk−1x̂k−1|k−1 (5.11)

Pk|k−1 = F̂k−1Pk−1|k−1F̂
′
k−1 +Qf

k−1 . (5.12)

Specifically we have that Fk−1 coincides with Gk−1 in accordance to a CV target

motion model. The matrix F̂k−1 in Equation (5.12) is computed as usual as:

F̂k−1 =
[
∇xk−1 f

T
k−1(xk−1)

]T
|xk−1=x̂k−1|k−1

. (5.13)

The update step of the state estimation process is not influenced by the Navigation

Field and follows the EKF formulation presented in Section 3.1.4.1 and hereafter

reported:

x̂k|k = x̂k|k−1 +Kk[zk − hk(x̂k|k−1)] , (5.14)

Pk|k = Pk|k−1 −KkSkK
T
k , (5.15)

where

Sk = ĤkPk|k−1Ĥ
T
k +Rk , (5.16)

Kk = Pk|k−1Ĥ
T
k S

−1
k . (5.17)

The matrix Ĥk results from the linearization of the measurement function hk that

coincides with the Jacobian of the measurement equation, evaluated at x̂k|k−1:

Ĥk =
[
∇xkh

T
k (xk)

]T
|xk=x̂k|k−1

. (5.18)

We refer to this filter implementation as NF-CV-CA-EKF (i.e. Navigation Field -

Constant Velocity - Constant Acceleration - EKF).
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5.1.3 Filter Implementation: Model II - Force as Angular Acceleration

For this model, the target state vector at discrete time tk consists of position, velocity

and angular velocity, i.e. x0
k = [xk, yk, ẋk, ẏk, ωk].

The force allows the evaluation of the target angular acceleration ω̇k, from which the

target angular velocity ωk can be extracted:

ω̇k = f
{
FGx(xk, yk), FGy(xk, yk), ẋk, ẏk

}
(5.19)

ωk = f {xk, yk, ẋk, ẏk} = ω̇k−1T + ω̇k−1 . (5.20)

Also in this case, we deal with a reduced dimension target state vector, i.e. xk =

[xk, yk, ẋk, ẏk]. The prediction of the target state and the covariance matrix are

defined as follows:

x̂k|k−1 = gk−1(x̂k−1|k−1) = Gk−1x̂k−1|k−1 (5.21)

Pk|k−1 = Ĝk−1Pk−1|k−1Ĝ
′
k−1 +Qg

k−1 . (5.22)

It has to be stressed that the state-dependent angular velocity ωk−1 derived by the

force as in Equation (5.20) is used for the computation of the matrix Gk−1. Specifi-

cally, on the basis of the CT motion model we have:

Gk−1 =


1 0

sin(ωk−1T )

ωk−1
− 1−cos(ωk−1T )

ωk−1

0 1
1−cos(ωk−1T )

ωk−1

sin(ωk−1T )

ωk−1

0 0 cos(ωk−1T ) − sin(ωk−1T )

0 0 sin(ωk−1T ) cos(ωk−1T )

 , (5.23)

where the sign of the variable ω determines the clockwise and anticlockwise coordi-

nated motion dynamics. Including the definition in the (5.20) in the Equation (5.23),

the Ĝk−1 is obtained via the Jacobian:

Ĝk−1 =
[
∇xk−1g

T
k−1(xk−1)

]T
|xk−1=x̂k−1|k−1

. (5.24)

If the force does not influence the target motion at a given instant of time, the angular

velocity ωk−1 is not evaluated. Thus, the target prediction is made in accordance to

another motion model (i.e. the CV), and the equations (5.21) and (5.22) become:

x̂k|k−1 = fk−1(x̂k−1|k−1) = Fk−1x̂k−1|k−1 (5.25)

Pk|k−1 = F̂k−1Pk−1|k−1F̂
′
k−1 +Qf

k−1 , (5.26)
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where

Fk−1 =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

 , F̂k−1 =
[
∇xk−1 f

T
k−1(xk−1)

]T
|xk−1=x̂k−1|k−1

.

(5.27)

Also in this case, the target state update follows the Equations (5.15) to (5.18).

We refer to this filter as NF-CV-CT-EKF (i.e. Navigation Filed - Constant Velocity

- Coordinated Turn - EKF).

5.2 Sea Lane Assisted Target Tracking

As the Sea Lane Assisted Tracking approach is concerned (refer to the Author’s

work in [BUP+12]), the general assumption is that the context information drives

the selection of the target dynamic motion model (DMk) in the tracking filter at

each time step tk, affecting again the prediction step of the target state vector. The

constrained transitional density in Equation (4.6) can be expressed as follows:

p(xk|xk−1, Ck) ∼=

{
N (xk; f

DM
k−1 (xk−1);Q

DM
k−1) if xk ∈ Ck,

0 otherwise,
(5.28)

where fDM (.) is the context-driven transition function, which allows transiting from

xk−1 to one of the possible states in Ck (inequality constraint) and QDM
k−1 is the

covariance matrix of the process noise, which differs depending on the target dynamic

motion model. Whereas a Particle filter formulation is required, the constrained

transitional density in Equation (5.28) can be written for each i − th particle (i =

1, ..., Np) of the cloud approximating the pdf as follows:

p(xk|xi
k−1, Ck) ∼=

{
N (xk; f

DMi
k−1 (xi

k−1);Q
DMi
k−1 ) if xk ∈ Ck,

0 otherwise.
(5.29)

The choice of fDM and QDM in Equation (5.28) and for the particles in Equation

(5.29) depends on the models adopted to describe the target behavior and the context

information. In the following these models are presented as well as the derived target

tracking filters.
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5.2.1 Target and Context Modelling

The concept of sea lane (including port approaches, shipping lanes, sea highways and

traffic separation schemes) has been addressed since it identifies the recommended

or most likely route followed by the vessel (see for instance [PHBB14]). The general

assumption is that the target is navigating with the aim of reaching a destination or

following a predefined path. Therefore, each change of its trajectory (e.g. maneuver)

is dictated by the influence of context elements. These considerations allow adopting

simple geometrical models describing the target behavior. Specifically, the trajec-

tory is decomposed into linear segments connecting adjacent waypoints. Misaligned

segments indicate a maneuver for the target, which is characterized by the time of

maneuver, the angular speed and the limiting points. The position of future way-

points and the values of the maneuvering parameters are directly inferred from the

context information. We assume that the target proceeds with constant velocity along

a linear path and then follows a circular trajectory with a constant angular speed ω to

perform the maneuver. Once completed, the target resumes the linear trajectory. It

follows that the trajectory is split in a sequence of Constant Velocity and Coordinated

Turn segments. The simplified geometrical model for the target maneuver is reported

in the following picture:

Figure 5.2: Geometrical model for vessel maneuver.

In Figure 5.2, A and C are the start and the end points of the maneuver, respectively.

We assume the ship to maintain the same velocity magnitude, i.e. |vA| = |vC |. The

problem is the evaluation of the sea lane entry point C, with xC = [xC , yC , ẋC , ẏC ],

and the value of ω on the basis of geometric considerations and initial target state

vector xA = [xA, yA, ẋA, ẏA]. We proceed as follows: (i) point A is chosen with a

distance d from the lane axial direction; (ii) point B′ is the intersection between the
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direction of the ship velocity vector in A and the lane axis; (iii) point B lies in AB
′

direction and has a displacement from B due to the uncertainty of the entry point

within the lane. The distance AB is given by AB = AB
′
+ ξ, where ξ is a random

variable extracted form a truncated Gaussian random process with zero mean value

and standard deviation σξ, i.e. ξ ∼ N (0, σξ), with

σξ =
∆L

4cosα
, ξ ∈

[
− ∆L

2cosα
,

∆L

2cosα

]
, (5.30)

where ∆L is the lane width. Finally, (iv), point C is given by the intersection of

the circle tangent to AB in A and the transverse axis passing in B. The value of the

angular speed ω is derived from the Coordinated Turn model as follows:

ω =


ẏC−ẏA
xC−xA

, if xA ̸= xC

ẋA−ẋC
yC−yA

, if yA ̸= yC

. (5.31)

5.2.2 Filter Implementation: Context driven Target Model Switching

The context information drives the selection of the target Dynamic Model (DM ) in

Equation (3.3) for each time instant tk. It has to be stressed that this selection follows

a rule based approach (i.e. target position-sea lane geometry as depicted in Figure

5.2), so the dynamic motion model switching probability is not evaluated.

Let the state vector at the discrete time k consist of position and velocity components

of the target in Cartesian coordinates, i.e. xk = [xk, yk, ẋk, ẏk]. With respect to the

EKF formulation in Section 3.1.4.1 and the transitional pdf in Equation (5.28), the

prediction of the target state and the covariance matrix are recursively obtained as:

x̂k|k−1 = fDM
k−1 (x̂k−1|k−1) = FDM

k−1x̂k−1|k−1 (5.32)

Pk|k−1 = F̂DM
k−1Pk−1|k−1F̂

′DM
k−1 +QDM

k−1 . (5.33)

Values of FDM
k and QDM

k depend on the selected dynamic model. As the target tra-

jectory is decomposed in linear and curvilinear segments covered at constant velocity,

the FDM
k assumes the form of:
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FCV =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

 , FCT =


1 0 sin(ωT )

ω
− 1−cos(ωT )

ω

0 1 1−cos(ωT )
ω

sin(ωT )
ω

0 0 cos(ωT ) − sin(ωT )

0 0 sin(ωT ) cos(ωT )

 ,
(5.34)

under the CV and CT assumptions, respectively. T is the sampling interval and ω

is the angular velocity for the CT, evaluated as in Equation (5.31). Specifically we

have:
FDM

k = FCT , F̂DM
k = F̂CTk , QDM

k = QCT
k if (xk ∈ Ck and xk−1 ∈ Dk−1)

FDM
k = FCV , F̂DM

k = F̂CVk , QDM
k = QCV

k if (xk−1 /∈ Dk−1)

(5.35)

where Dk−1 is the ensemble of state vectors that are subject to the influence of the

context at time instant (k − 1).

The target state update is obtained as follows:

x̂k|k = x̂k|k−1 +Kk[zk − hk(x̂k|k−1)] , (5.36)

Pk|k = Pk|k−1 −KkSkK
T
k , (5.37)

where

Sk = ĤkPk|k−1Ĥ
T
k +Rk , (5.38)

Kk = Pk|k−1Ĥ
T
k S

−1
k . (5.39)

We refer to this filter as SL-CV-CT-EKF.

When a PF technique is adopted, FDM
k value differs for each particle of the cloud,

as the value of ω depends on the maneuver associated to each particle. Thus, the

influence of the context information on the tracking filter is twofold. It drives the

switching among different target dynamic models, and it tunes the parameters of

the current model (e.g., ω, time for the entire maneuver). We refer to this filter as

SL-CV-CT-PF.

For practical issues, the value of the constraint Ck can be evaluated in accordance to

the procedure depicted in Figure 5.3. Ck can assume two values: 0 when operating

with the CV motion model and 1 for the CT case. We assume that in presence of
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sensor measurements only the CV model is used. The CV to CT switch takes place

when gaps of measurements occur and the target is close to a Knowledge element.

Specifically, a proximity criterion is used for the switch. The distances dj , with

j = 1, .., NKB , between the vessel and the NKB elements of the KB are evaluated (as

in Figure 5.2). If the minimum value of dj is below the threshold λ, the manoeuvre is

initiated with respect to the corresponding KB element. To initialise a new CT mode

the angular velocity, ωk, is evaluated as in Equation (5.31). It will remain constant

during the entire time interval TAC (from point A to C in Figure 5.2) required for

completing the manoeuvre. The TAC value depends on the geometry and the initial

speed of the vessel. The manoeuvring state lasts until its full completion, unless

sensor measurements are received.

Figure 5.3: Block diagram for target dynamic model switching.

As already said, for the SL-CV-CT-EKF the switching procedure described above

is computed for the estimated target state. Conversely, the process is iterated for

each particle in SL-CV-CT-PF; hence, they follow manoeuvres that differ both in

velocity and start/end points. This phenomenon is depicted in Figure 5.4, where a

representative particle cloud splits between particles in “CV mode” and particles in

“CT mode”. In the background, an exemplary sea lane is also reported representing

the context information.
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Figure 5.4: Sample particle cloud for PF: particles following different target dynamic models
during lack of measurements.

5.3 Knowledge-based Multiple Hypotheses Tracker

With respect to the Knowledge-based Multiple Hypotheses Tracker (KB-

MHT) approach, we resort to the MHT algorithm described in [Bro12], whose main

characteristics are recalled in Section 3.1.5.1. The maritime scenario related context

information, i.e. the coastline, the land shape and the clutter conditions, is firstly

modeled, properly embedded in specific maps and finally included in the algorithm

in the update step of the Bayesian recursion (see [ZDBN12] and [ZBBN14]).

The context information related to the geography can be treated as illustrated in the

pseudo measurement approach (Section 4.2.2). The constrained likelihood density

function p(Ck|xk) in the filter update Equation (4.9) can be approximated as follows:

p(Ck|xk) =

{
1 if xk ∈ Ck,

0 otherwise.
(5.40)

Then, the expression in Equation (5.40) is multiplied to the generalized likelihood

function p(Zk,mk|xk) in Equation (3.39), in order to take into account the clutter

and false alarm issues in the tracking process.
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5.3.1 Context Modelling

Information about specific elements in the maritime environment can be easily em-

bedded in geographic maps that are a priori loaded before the data processing starts

and exploited during the different phases of the tracking algorithm (see Section 2.2).

As the knowledge-based MHT algorithm is concerned, the basic idea is that each pixel

or cell in a geographic map provides the probability (1 or 0) that a vessel can occupy

it or not. Specifically such a map encodes the information about coast/terrain and

zones interdicted to navigation.

Information about clutter regions are embedded in dedicated clutter maps, which are

adaptively generated during the processing phase by estimating the clutter density

for each pixel in the area under observation, following the process described in (

[MSMM05] and [SD10]). Specifically, the estimation is done by averaging the cell

outputs over time and assuming that moving vessels cross the cells in a short time

while the clutter remains stationary. This results in the assignment of a probability

value within [0,1] for each cell in the map, describing the appearance of the false

alarms.

5.3.2 Filter Implementation

The context information related to the geographic map is exploited by the KB-MHT

algorithm in the update step of the algorithm, in two different ways: (i) to remodel

the transitional pdf in accordance to the context (pseudo-measurement acting on the

prediction) and (ii) when new sensor measurements mk are received as input at time

step tk. In both cases, unrealistic situations such as measurements over land or tracks

crossing land are discarded. This allows the reduction of the number of the hypotheses,

crucial point for the MHT algorithm, as already mentioned in Section 3.1.5.1. As the

information about clutter is concerned, its use affects the track hypotheses update

step only.

Let us consider the constrained posterior pdf at tk−1 as a Gaussian mixture of nk−1

individual track hypotheses:

p(xk−1|Zk−1, Ck−1) =

nk−1∑
i=1

wi
k−1N (xk−1;x

i
k−1|k−1,P

i
k−1|k−1) , (5.41)

where wi
k−1 is the i-th hypothesis weight with

∑nk−1

i=1 wi
k−1 = 1. The hypotheses in

Equation (5.41) are predicted to get the unconstrained prior density p(xk|Zk−1, Ck−1),
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assuming the target moving according a linear motion model characterized by white

Gaussian noise:

p(xk|Zk−1, Ck−1) =

nk−1∑
i=1

wi
k−1N (xk;x

i
k|k−1,P

i
k|k−1) . (5.42)

The state estimates xi
k|k−1 and the covariances Pi

k|k−1 of each hypothesis are obtained

by the Kalman filter prediction Equations:

xi
k|k−1 = Fk−1 x

i
k−1|k−1 , (5.43)

Pi
k|k−1 = Fk−1 P

i
k−1|k−1 F

⊤
k−1 +Qk−1 . (5.44)

where Fk−1 and Qk−1 are the transition matrix of the state and the covariance matrix

of the process noise, respectively:

Fk−1 =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

 , Qk−1 =


T 3/3 0 T 2/2 0

0 T 3/3 0 T 2/2

T 2/2 0 T 0

0 T 2/2 0 T

 .

(5.45)

Each i-th predicted hypothesis is then checked to fulfill or not a geographical con-

straint (i.e. if the hypothesis prediction lays on the land). To this aim, the prior

density in Equation (5.42) is approximated by N random samples, i.e. by a sum of δ

- functions, where the s-th sample weight is given by πs = 1/N :

p(xk|Zk−1, Ck−1) ≈
nk−1∑
i=1

wi
k−1

N∑
s=1

πsδ(xk − xis
k|k−1) . (5.46)

For each sample, the correspondent probability value (1 or 0) is extracted from the

geographical map: thus, only a subset of the N samples (i.e. the ones that satisfy

the condition of laying at sea, with probability 1) will be taken into account in the

hypothesis update step. A constrained likelihood function p(Ck|xk), encoding the

geo map information, has to be considered for each hypothesis in order to build the

constrained posterior pdf p(xk|Zk, Ck).

The update step in Equation (4.9) is given by:

p(xk|Zk, Ck) ∝ p(Zk|xk)

nk−1∑
i=1

wi
k−1

N∑
s=1

πsp(Ck|xk)δ(xk − xis
k|k−1) . (5.47)
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Inserting the definition of the constrained likelihood of Equation (5.40) in Equation

(5.47) and under Gaussian assumptions we have:

p(xk|Zk, Ck) ∝ p(Zk|xk)

nk−1∑
i=1

wi
k−1

∑
xis
k|k−1

∈Ck

π̃sδ(xk − xis
k|k−1)

∝ p(Zk|xk)

nk−1∑
i=1

wi
k−1N (xk; x̃

i
k|k−1, P̃

i
k|k−1) .

(5.48)

where x̃i and P̃i represent the constrained state and the covariance matrix of the

i-th hypothesis, respectively and p(Zk|xk) is the generalized likelihood function re-

ported in Equation (3.39), which takes into account the clutter density and the false

alarm distribution in the FoV of the sensor. Specifically, if we consider mk sensor

measurements received at the time instant tk and by resorting to the product formula

in Equation (3.14), the posterior pdf in Equation (5.48) is again given as a weighted

sum of Gaussian:

p(xk|Zk, Ck) ∝
nk−1∑
i=1

mk∑
j=0

wij
k N (xk; x̃

ij
k|k, P̃

ij
k|k) , (5.49)

where j = 0 denotes the missing detection case. The weight factor wij
k is given by:

wij
k =

ŵij
k∑nk−1

i=1

∑mk
j=0 ŵ

ij
k

, (5.50)

where

ŵij
k =


0 if j > 0 AND zjk /∈ Ck ,

wi
k−1

PD
ρF

N (zjk;Hkx̃
i
k|k−1,S

ij
k ) if j > 0 (detection),

wi
k−1(1− PD) if j = 0 (missdetection).

(5.51)

For each recorded measurement zjk at the time instant tk, the related probability value

in the geographic map is extracted on the basis of the geographical coordinates of the

measure itself. If the probability value is 0, the measurement is discarded and the

hypothesis weight wij
k set to 0, otherwise the it is taken as possible candidate for new
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track generation or it is used to update existent tracks. It has to be stressed that the

comparison between the measurement position and the map has to be conducted in the

same geographic reference system, this means that some coordinates transformation

can be required before starting the processing.

The state vector and the covariance matrix estimates in Equation (5.49) are evaluated

via Kalman filtering. Specifically, for j > 0 we have:

x̃ij
k|k = x̃i

k|k−1 +Kij
k (zjk −Hk x̃

i
k|k−1) , (5.52)

P̃ij
k|k = P̃i

k|k−1 −Kij
k Sij

k (Kij
k )⊤ , (5.53)

Sij
k = Hk P̃

i
k|k−1 H

⊤
k +Rj

k , (5.54)

Kij
k = P̃i

k|k−1 H
⊤
k (Sij

k )−1 . (5.55)

5.4 Summary

The Chapter presented the description of three innovative solutions for context-based

target tracking for the maritime surveillance. The algorithms resort on the constrained

Bayesian formalism, which allows the inclusion of constraints in the prediction or

the update steps of the recursion. For each technique, the mathematical model to

incorporate the available a priori context information into constraints and the tracking

filter implementation were described. The Navigation Field assisted target tracking

exploited the Navigation Field concept (i.e. force exerted from KB elements on the

vessel) to constraint the target state prediction. This led to the formulation of two

tracking filters, the NF-CV-CA-EKF and the NF-CV-CT-EKF, depending on the

model chosen to describe the navigation force field. The Sea Lane assisted target

tracking solution considered the sea lane concepts as main driver for the evolution of

the target state. It has been demonstrated how the influence of sea lanes on the filter

is twofold. It drives the switching between two different target dynamic models, and it

tunes the parameters of the current model. The algorithm could be build by mean of

EKF or PF techniques and the derived filters were referred as SL-CV-CT-EKF and SL-

CV-CT-PF, respectively. Finally, the Knowledge-based Multiple Hypotheses Tracker

(KB-MHT) algorithm allowed incorporating the context information in the update

step of the filter. In this case the constrained likelihood function was determined.
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CHAPTER VI

Application-Experimentation I:

Active Radar Surveillance in Coastal Areas

Active radars are the primary sensors used for real time coastal surveillance purposes.

Widely used in VTS systems, as already described in Chapter 2, they allow detecting

and tracking different types of vessels (e.g. from rubber boats to cargoes) depending

on their specifications and the environmental conditions (e.g. presence of weather

and/or sea clutter). However, the target detection and tracking tasks could show

deficiencies (e.g. missdetections, false and discontinuous tracks, etc.), mainly due

to: (i) radar coverage gaps, (ii) shadowing/masking effects, (iii) dense vessel traffic.

In this Chapter, the Navigation Field and the Sea Lane based tracking filters are

presented as possible solutions to track vessels monitored by active radars in coastal

areas.

6.1 Navigation Field Based Vessel Monitoring

The Navigation Field based tracking filters (NF-CV-CA-EKF and NF-CV-CT-EKF)

described in Section 5.1 are hereafter considered. The operative conditions are de-

signed in a such a way the output of a surveillance system (i.e. the maritime traffic

picture) results fragmented due, for example, to the presence of gaps of sensors cov-

erage. In such conditions, the tracking filters, which exploit the context information

embedded in the navigation field, are expected to bring improvements in the tracking

task, in a way that allows faithful reconstruction of vessel trajectories in specific cases,

e.g. when scarceness of sensor measurements is recorded.
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6.1.1 Test Scenarios and Simulation Rationale

In order to build a realistic scenario for the application, several historical AIS record-

ings have been analyzed. These data are referred to AIS equipped vessels, such as

cargoes and passenger ships, providing information about their positions, speed over

ground, rate of turn, etc. This allows investigating the behavior of real targets in the

maritime environment and deriving standard motion parameters for the addressed

class of ships. The analysis of ship trajectories and dynamics reveals typical vessel

behaviors characterized by:

� uniform quasi-rectilinear motion with no significant acceleration, interleaved

with curvilinear segments, aimed at slowly re-orienteering ship’s heading;

� curvilinear motion with significant acceleration/deceleration within mooring ar-

eas.

On the basis of the above analysis, synthetic targets have been generated and in-

jected in a representative scenario for which external information is available from

public sources or easily inferred. This “unsensed” information, which is collected be-

fore the measurement and estimation process and eventually updated, is expected to

influence the evolution of the maritime traffic. Specifically, ports, coastline, sea high-

ways and corridors, interdicted areas, are taken into consideration and embedded in

a geographic map, which represents a reference for sensor data processing and inter-

pretation, hence for the implementation of the tracking algorithms. Figure 6.1 shows

the geographic area in which the targets evolve (left hand side), and the correspon-

dent geographic map containing the context information (right hand side). Figure 6.2

reports the synthetic target tracks (e.g. ground truth) evolving in the same area.

Figure 6.1: Scenario under test: Area of Interest (left hand side) and Geographic Map
embedding the context information (right hand side).
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Figure 6.2: Scenario under test: synthetic target tracks over an interval of few hours.

Specifically, the map color scale in Figure 6.1 indicates the “intensity” KC of the

effect caused by each KB geographic element on a transiting ship, as reported in the

Equation (5.2). In particular, the sea as a whole is considered a neutral element in

the map, with 0 intensity, since it does not have effect on the target motion. There-

fore, it shall not affect the tracking algorithm, which exploits the Knowledge Base

information. Conversely, elements such as land areas and sea lanes are represented in

the map by means of positive and negative intensity values, respectively. This spatial

environment where the vessels evolve introduces navigational constraints similar to

the trafficability concept proposed and applied to the α − β filter in [GCS09]. We

assume that ports, interdicted areas, etc. exert an attractive or repulsive “force” on

the vessel during its motion. This effect is quantified in Section 5.1. In contrast to the

trafficabilty concept in [GCS09], the forces considered here include the description of

the long range influence of environmental elements on the vessels.

In order to test the NF-filters, two data sets have been generated. The first one con-

tains the targets that have to be monitored. In particular, true vessel state vectors

are used as ground truth, while the correspondent shore-based radar sensor measure-

ments are simulated on the basis of typical VTS (Vessel Traffic Service) radar accuracy

( [oMAtNI07b]). Gaps of sensor measurements are randomly inserted in the observa-

tion during the target path evolution. Specifically, gaps of L minutes (L = 30, 60min)

are considered for each 2-hour navigation segment. The targets evolution dura-

tion is 4 hours on average. The measurement vector is given by z(tk) = z ∈ R2,

z(tk) =
[
ρ(tk), θ(tk)

]
, where ρ(tk) and θ(tk) are the range and azimuth measurements

at the time instant tk. The elevation measurement is here neglected. The standard
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deviations of the measurement errors are given by σρ = 5m and σθ = 0.1° in range

and azimuth, respectively. The second data set, i.e. the “training set”, is used to

infer routine trajectories (e.g. the a priori information as in Figure 6.1). An example

of simulated measurements is reported in Figure 6.3.

Figure 6.3: Example of simulated vessel trajectories with gap of measurements.

The collected measurements are then transformed into Cartesian coordinates, thus

representing the input for tracking filters. The target state vector becomes x(tk) =

x ∈ R4, x(tk) =
[
x(tk), y(tk), ẋ(tk), ẏ(tk)

]
, where x(tk), y(tk) and ẋ(tk), ẏ(tk) are the

position and the velocity components of the vessel at the time instant tk.

It has to be stressed that the current investigation is focused on the filtering per-

formance only, avoiding any association problem. Thus, well separated targets are

considered under the hypotheses of a probability of detection PD = 1 and no false

detections. The NF-filters are compared with the non KB counterpart, i.e. the Con-

stant Velocity Kalman filter (CV-KF) and the performance assessment is given in

terms of vessel track continuity and track accuracy. In order to evaluate the track

continuity over the observation time the following criterion is taken into account: a

track is lost if the state estimation error exceeds the value of 3σm, where σm is the

RMS measurement error. As the track accuracy is concerned, it will be given as the

time percentage over the entire observation of a track in which the context based-filter

outperforms its counterpart in terms of RMS error. It is worth to note also that the

NF-filters are used when sensor measurements are not available (e.g. during the gaps)

and that the analysis addresses the navigation (N) and rotation (R) states only (see

Section 5.1).
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6.1.2 Simulation Results

Figure 6.4 reports as example the filtering performance for non-intermittent signals

received along a single target path, taken as reference.

Figure 6.4: Track evolution over a single reference ship target of the considered tracking
filters with full measurements coverage.

Three filters (CV-KF, NF-CV-CA-EKF and NF-CV-CT-EKF) are hereafter com-

pared. Specifically, a set of 50 Monte Carlo runs has been carried out with random

measurement errors, while the Continuous White Noise Acceleration model (CWNA)

was used to describe the target dynamics. The covariance matrix of the process noise

was given by:

Q =


T3

3
0 T2

2
0

0 T3

3
0 T2

2
T2

2
0 T 0

0 T2

2
0 T

 q̃ (6.1)
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where T is the sampling interval and q̃ = σv
2T is the power spectral density of

the process noise, with physical dimension [length]2/[time]3. A process noise with

standard σv = 0.2m/s2 was adopted for the simulation. The performance has been

recorded in terms of percentage of occurrences of the track-loss condition (evaluated

over the entire track duration) to provide a measurement of the track continuity. It is

evident that the introduction of the knowledge does not affect the filters performance

in case of measurements availability.

Figure 6.5 shows the results obtained by tracking the vessel with the proposed filters

when gaps of L = 30min and L = 60min are randomly selected along the navigation

path. It is evident that the NF-CV-CT-EKF outperforms the other filters in most

cases. However, the recorded improvement for the track under test is not very signif-

icant for small temporal gaps. In case of larger coverage gaps (L = 60min), the track

continuity definitely increases even though NF-CV-CT-EKF parameters need to be

further optimized.

These results suggested to perform the analysis on the complex traffic scenario com-

posed by the 30 ship targets in Figure 6.2 taking into account the NF-CV-CT-EKF

formulation only. The results are reported in Figure 6.6. Here the track loss indica-

tor is depicted for coverage gaps of L = 30min and L = 60min, respectively. The

track loss indicator shows the improvement introduced by the NF-CV-CT-EKF with

respect to the CV-KF that does not exploit the context information. The average

reduction of track loss condition is around 10%− 20%.

A global improvement might be achieved by adapting the KB filter configuration.

In the presented analysis, the filter has been tuned globally for the entire maritime

scenario: it does not consider local parameters, such as ship characteristics, sea condi-

tions, navigation rules, etc. These features might have - on average - a non negligible

effect on the prediction of the target path, which should be taken into account in the

building up of the Knowledge Base. On the other hand, the reported results also sug-

gest that the exploitation of the KB might have a superior impact on later processing

stages, e.g. track association, which are not bound to the specific EKF assumptions.
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In the following, three case studies, which are representative of complex vessel trajec-

tories with maneuvers, are reported as reference for the application. The considered

target trajectories are quite complex, as the vessels are surrounded by several context

elements (e.g. ports, coastline and preferred routes), and they follow highly non-

linear paths. As usual, random gaps of measurements with duration L = 30, 60min

are inserted each 2 hours of navigation. For these case studies, some NF-based fil-

ter parameters have been optimized in order to minimize the estimation error along

the observation gap. Specifically, the parameters subject to tuning process are: (i)

the geographical area around the target for KB evaluation, (ii) the geographical area

for preferred route evaluation, (iii) the moment of inertia contributing to the force

evaluation and (iv) the process noise gain. The description of these parameters is

reported in Section 5.1. Finally, the estimation error between the NF-based filter and

the classical CV filter is compared. The measure of performance are evaluated by

resorting to 500 Monte Carlo runs per target.

The scenario for the first case study (i.e. target entering the port through the sea

lane) is reported in the Figure 6.7, the one for the second test case (i.e. target leaving

the port through the sea lane) is depicted in Figure 6.8, while Figure 6.9 is related to

the third case study (i.e. long journey and maneuvering target). Each picture in the

Figures shows the possible outputs of the considered tracking filters (NF-CV-CT-EKF

and CV-KF) and the collected sensor measurements (black crosses).
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Figure 6.5: Simulated performance over a single ship target for the considered tracking
filters with intermittent measurements: Occurrence of track loss condition, with coverage
gaps of L=30min (top) and L=60min (bottom).
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Figure 6.6: Simulated performance over 30 ship targets for the considered tracking filters
with intermittent measurements: Occurrence of track loss condition, with coverage gaps of
L=30min (top) and L=60min (bottom).
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Figure 6.7: Case Study I: target entering the port through the sea lane.
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Figure 6.8: Case Study II: target leaving the port through the sea lane.
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Figure 6.9: Case Study III: long journey and maneuvering target.
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The Table 6.1 reports the results of the analysis related to the position estimation

error evaluated over the entire track life for the three targets addressed in the case

studies. Specifically, the µET expresses the percentage of time in which the estimation

error provided by the NF-CV-CT-EKF is lower than the CV-KF error, while the NL

value indicates the percentage of time in which the track positioning errors remain

within the sea lane (i.e. within its width). Moreover, the Table 6.2 reports the average

of the Root Mean Square Error (RMSE) in position evaluated over the three reference

targets.

Table 6.1: Position estimation errors over the entire track life.

Target 1 Target 2 Target 3

µET (Gap 60 min) 52% 48% 50%

NL (CV-KF, Gap 60 min) 48% 68% 59%

NL (NF-CV-CT-EKF, Gap 60 min) 55% 74% 65%

Table 6.2: Average position RMSE over three reference targets.

RMSE (Gap 60 min) CV-KF

≈ 3.6km

NF-CV-CT-EKF

≈ 3.1km

Along Track direction 3.4km 3km

Across Track direction 1.4km 0.9km

These results show how the NF-based filter reduces the estimation error in the 50%

of the entire tracks duration (see µET parameter), on average. But if we observe the

time spent by the estimated track within the lane (NL), it sums to 60-70% for the

NF-based filter. This is confirmed by the average track error of the filter in Table 6.2,

which is around 1km in the across-track (i.e. across-lane) direction for the position

estimates for the NF-CV-CT-EKF. However, this is only an average error over the

observation gap. It is natural to expect an increasing error during the measurement

gap. The worst condition is experienced when sensor data restart after a gap and the

estimated position might be very far from the new incoming measurement.

Table 6.3 reports the results of the analysis related to the position estimation error

evaluated at track reinitialization step for the three targets. In this case, the µNM

represents the percentage of time in which the estimation error provided by the NF-

CV-CT-EKF is lower than the CV-KF error evaluated after a measurement gap.
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Table 6.3: Position estimation errors evaluated at the track reinitialization step.

Target 1 Target 2 Target 3

µNM (Gap 60 min) 74% 65% 67%

Table 6.4 reports the average of the RMSE in position evaluated over the three refer-

ence targets. It is possible to notice that at the time instant of the track reinitializa-

tion, the RMSE provided by the NF-based filter is still acceptable for the application,

as it is exactly the transverse lane dimension (2.5km circa).

Table 6.4: Average position RMSE over three reference targets evaluated at the track reini-
tialization step.

RMSE (Gap 60 min) CV-KF

≈ 9.3km

NF-CV-CT-EKF

≈ 7.2km

Along Track direction 8.4km 6.8km

Across Track direction 4km 2.5km

6.2 Sea Lane Based Vessel Monitoring

In this Section the sea-lane based tracking filters (SL-CV-CT-EKF and SL-CV-CT-

PF) described in Section 5.2 are used to track vessels monitored by active radars

in coastal areas. The observation conditions might result problematic: shadowing

effects, presence of strong sea clutter and failure in data transmissions can affect

the sensor detection capability and consequently the vessel tracking task. This leads

to a fragmented vessel traffic picture that is undesirable in the coastal surveillance

applications.

6.2.1 Test Scenarios and Simulation Rationale

In order to analyze the use of the context information for the two non-linear Bayesian

algorithms we resort to Monte Carlo simulations over complex test scenarios. The

presented analysis has two objectives. The first one (Objective A) is to assess the

improvement coming from the use of the sea-lane information. Specifically, we want

to demonstrate how the filters follow more reliably the evolution of the track if the

knowledge information is used when the measurements fail. The second objective

(Objective B) aims at comparing the predisposition of the tracking filters to easily

incorporate the context information, i.e. which of the considered knowledge based

filters maintains the track more faithfully in presence of measurement gaps. Given
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these considerations, the Objective A requires the comparison of each filter (SL-

CV-CT-EKF and SL-CV-CT-PF) with its standard counterpart (EKF or PF); the

Objective B resorts on the their direct comparison.

Two test scenarios have been considered for the performance assessment. In both

cases, a vessel proceeding with a constant speed of v = 16knots is monitored in

an area of [3 × 2]km by an active coastal radar. The vessel is totally observed for

a maximum period of Tobs = 420s and the collected information is processed each

T = 2s (i.e., update rate for the tracking filter). The probability of detection is

assumed PD = 1, but drops to zero when gaps of measurement are simulated in the

observation time Tobs. Figure 6.10 shows the vessel path (i.e. the ground truth) for

the Scenario I. A passenger ship begins its voyage approximately 2km far from the

littoral, then approaches the coast, enters the closest sea lane and proceeds along

the lane direction, which is approximately parallel to the coastline. The turning

maneuver starts roughly 450m before the lane. Different possibilities are indicated

for the radar position. The final one will be chosen in the following for the assessment

of the Objectives A and B. In Figure 6.11 the Scenario II is reported. In order to

approach the port, the passenger ship performs a double maneuver, which comprises

two changes in direction to follow the depicted sea lanes.

Figure 6.10: Simulated Scenario I: single maneuver target tracking in proximity of the coast
accordingly to one sea lane.
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Figure 6.11: Simulation Scenario II: double maneuver target tracking for approaching the
port berthing area, accordingly to two sea lanes.

The analysis for the Objectives A and B is performed over both scenarios. Specifi-

cally, the single maneuver scenario is also taken as reference to determine the radar

location along the coast and to tune the filters parameters. The identified setting is

then applied to the more complex observation conditions of Scenario II. A number of

NRUN = 50 Monte Carlo trials have been run per each analysis. Random measure-

ments with zero-mean Gaussian errors are generated in accordance to the observation

conditions described above and the sensor model. Specifically, the measurement vec-

tor is given by z(tk) = z ∈ R2, z(tk) =
[
ρ(tk), θ(tk)

]
, where ρ(tk) and θ(tk) are the

range and azimuth measurements at the time instant tk. For the sake of simplic-

ity, the radar measurements in the elevation direction are neglected. The standard

deviations of the measurement error are σρ = 10m and σθ = 1◦ in range and az-

imuth, respectively. These values are specified in [oMAtNI07b] as basic performance

achieved in Vessel Traffic Services. Gap of measurements have been inserted during

the observation period to simulate the lack of information. Specifically, only one gap

of measurements (∆GAP = 60s) is generated in the fixed interval of TI = [80, 140]s

for the Scenario I. Conversely, many gaps of ∆GAP = 72s are simulated randomly for

Scenario II. Then the measurements are injected in the sea lane based filters (SL-CV-

CT-EKF and SL-CV-CT-PF) and in their non-knowledge based counterparts (EKF

108



6.2 Sea Lane Based Vessel Monitoring

and PF), thus the measurements transformation from the polar coordinates system to

the the Cartesian space is required. The target state vector becomes x(tk) = x ∈ R4,

x(tk) =
[
x(tk), y(tk), ẋ(tk), ẏ(tk)

]
, where x(tk), y(tk) and ẋ(tk), ẏ(tk) are the position

and the velocity components of the vessel at the time instant tk. Under the hypothesis

of a constant velocity of the vessel during the observation period Tobs, the Continu-

ous White Noise Acceleration model (CWNA) is used in the simulations to describe

the target dynamics. As derived in [BSLK01], the resulting process noise covariance

matrix for the EKF formulation in Section 3.1.4 is given by

Q =


T3

3
0 T2

2
0

0 T3

3
0 T2

2
T2

2
0 T 0

0 T2

2
0 T

 q̃ (6.2)

where q̃ is the power spectral density of the process noise, with physical dimension

[length]2/[time]3. Also the choice of q̃, hereafter defined as q̃ = σ2T , will be considered

in the tuning process reported in the following.

The performance assessment is given in terms of the Kullback-Leibler Divergence

(KLD), whose estimator D̂KL(p, q) is used to compare two continuous densities p

and q. The comparison between the EKF and PF distribution follows the process

described in Section 3.2.2. Moreover, for the filters tuning phase, in which the most

important parameters for the tracking task are identified, we resort also to the Root

Mean Square Error (RMSE) formulation, as defined in Section 3.2.1.

6.2.2 Simulation Results over Scenario I

Before proceeding with the filter parameters definition, a proper radar position that

guarantees adequate performance in vessel monitoring has to be defined along the

coastline. The aim is to identify non-linearity conditions dictated by the observation

model and reduce the effect.

The vessel in Figure 6.10 is observed by a radar displaced in three different locations.

It has to be stressed that no gap of measurements have been simulated during the

observation time (i.e. PD = 1 in TOBS) for this analysis. The collected measurements

are given as input to the standard EKF and PF (Section 3.1.4). The tracker outputs

are then compared with the vessel ground truth, represented by a reference probability

distribution based on PF (PFRef) and generated with a high number of particles

(NpRef = 105). Also the posterior densities of the two non-linear filters have been
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sampled with the same number of particles, specifically (NpEKF = NpRef ) for the EKF

and (NpPF = NpRef ) for the PF formulation. The results, given in terms of D̂KL(p, q)

mean value, are reported in Figure 6.12.

Figure 6.12: D̂KL mean value for Scenario I with all measurements. D̂KL(PF,PFRef) and
D̂KL(EKF,PFRef) are evaluated over 50 Monte Carlo runs with radar position in [3000, 0]m,
[1500, 0]m or [0, 0]m. Filters are tuned for linear acceleration with σv = 1m/s2. Temporal
filter update T = 2s; total duration Tobs = 300s.

As the non-linearity gets severe, the non-Gaussianity of the posterior PDF of the

state becomes more pronounced. In such cases, we expect the performance of the

EKF schemes to degrade significantly. As described in [DFG01] the particle-based

description of the PDF better approximates the true distribution (KLD ≃ 0) as the

non-linear transformation is applied to the Gaussian measurement vector. Figure 6.12

shows that the performance of the two classes of filters diverge more significantly for

the radar located in [0, 0]m (i.e. blue plots), where the non-linearity effect is higher

due to the angle among the target trajectory and the sensor range, and the larger

target distance from the radar. For the forthcoming analysis we select the sensor in

[3000, 0]m, which allows a fair comparison being an intermediate situation in terms

of non-linearity. In addition, this latter viewing condition leads to RMS errors, which
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are still acceptable (Figure 6.13).

Figure 6.13: RMSE mean value for Scenario I with all measurements. RMSE of PF and
EKF are evaluated over 50 Monte Carlo runs with radar position in [3000, 0]m, [1500, 0]m or
[0, 0]m. Filters are tuned for linear acceleration with σv = 1m/s2. Temporal filter update
T = 2s; total duration Tobs = 300s.

Filter Tuning Phase

Next step is devoted to the choice of the number of particles to be used in the PF

formulation. Figure 6.14 shows the D̂KL in terms of mean value and variance for a PF

with particles cloud of different dimension. As expected, the KLD estimate converges

as the number of particles increase. It is evident that the convergence is reached also

for Np = 3000, this means that no drastic improvement is envisaged when a larger

cloud is used. Thus, the value of 3000 particles is chosen for the analysis.
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6 Application-Experimentation I: Active Radar Surveillance in Coastal Areas

Figure 6.14: D̂KL mean value (Top) and variance (Bottom) for a PF over Scenario I. Steady
filter behavior as a function of particles number is reported. All measurements are considered
for radar in position [3000, 0]m. PF is tuned for linear acceleration with σv = 1m/s2.
Temporal filter update T = 2s; total duration Tobs = 300s; number of Monte Carlo runs =
50.

The last step is related to the tuning of the standard deviation value of the process

noise (σv) for the tracking task. This parameter contributes to the covariance ma-

trix prediction in the EKF, and the particle cloud prediction for PF (Section 3.1.4).

Figure 6.15 shows that a process noise with standard deviation σv = 0.3m/s2 allows

the EKF to better approximates the PFRef . For PF, a small performance degrada-

tion is observed during the initial phase, which is anyhow negligible for most of the

observation time. This setup is used for the further analyses.
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Figure 6.15: D̂KL mean value for Scenario I with all measurements. D̂KL(PF,PFRef)
(Top) and D̂KL(EKF,PFRef) (Bottom) are evaluated over 50 Monte Carlo runs with radar
position in [3000, 0]m and different rms velocity errors σv of 0.3m/s2, 1m/s2, 2m/s2 and
5m/s2. Temporal filter update T = 2s; total duration Tobs = 300s.

Objective A - Knowledge Based Improvement

The assessment is given in terms of D̂KL. The SL-CV-CT-EKF and SL-CV-CT-

PF are compared with the standard EKF and PF to assess the improvement coming

from the exploitation of the sea lanes. The reference distribution PFRef , with NPRef =

105, which represents the ground truth, is generated without exploiting the context

information since it runs over the continuous set of measurements (i.e., estimation

with no measurement gaps as it is the ideal situation we tend to). The posterior pdf

of the EKF is generated with NpEKF = NpRef . The PF filter is run with NpPF = 3000.

Figure 6.16 shows the results of the comparison for the Scenario I. In the time inter-

val (TI = [80, 140]s) in which the measurement gap occurs and in which the target

maneuvers, the KB filters outperform EKF and PF. The performance is based on the

assumption of perfect knowledge of the maneuver by the filters (i.e. ω value, start-end

points, TAC in Figure 5.2).
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Figure 6.16: D̂KL mean value for Scenario I, evaluated with ∆GAP=60s in TI = [80, 140]s,
T=2s and TOBS=300s. Radar position in [3000, 0]m and σv = 0.3m/s2. Top: EKF case.
Bottom: PF case
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Objective B - PFvsEKF

The comparison between the SL-CV-CT-EKF and the SL-CV-CT-PF is here re-

ported for Scenario I. For computing the KLD estimator, a new reference distribution

based on the context exploitation (i.e. SL− CV − CT− PFRef) is generated with

NpRef = 105 over an intermittent set of measurements, randomly simulated during

the observation period. The distribution for the SL-CV-CT-EKF is generated with

NpEKF = NpRef while the SL-CV-CT-PF filter is run with NpPF = 3000 particles.

Figure 6.17 shows the D̂KL mean value and variance obtained with respect to the

reference distribution SL− CV − CT− PFRef . In other words, the measurements

gap (fixed in this case) is considered for all filters, so that the approximation loss for

SL-CV-CT-EKF and SL-CV-CT-PF can be observed. It is evident that the PF based

technique yields a much better capability in approximating the asymptotically true

posterior pdf with respect to the EKF counterpart.
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Figure 6.17: Comparison between the SL-CV-CT-EKF and SL-CV-CT-PF for Scenario I
in terms of D̂KL mean value (Top) and variance (Bottom), evaluated with ∆GAP=60s in
TI = [80, 140]s, T=2s and TOBS=300s. Radar position in [3000, 0]m and σv = 0.3m/s2.
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6.2.3 Simulation Results over Scenario II

The filters setup - identified in the previous analysis - has been applied to the second

test scenario, which offers a double ship manoeuvre study case. We considered two

or three measurement gaps, each of 72 seconds, randomly simulated over the entire

observation period of 420 seconds. Additional losses are inserted by mismatching

the used manoeuvre model with respect to the true trajectory. Adopted manoeuvres

fall in the ranges defined in Table 6.5 for large ships. All parameters definitions are

extracted from [RT01]. Specifically, the tactical diameter is taken as 4 times the

ship length and the speed on turn is taken as 1.2 the circle diameter. Finally, all

parameters are defined for vessel navigating with a speed of 16 knots.

Table 6.5: Typical vessel manouvring parameters.

IALA

Type
Description

Sample Length

[m]

Tactical Diameter

[m]

Advance

[m]

Speed on Turn

[deg/s]

5 Fishing or patrol vessel 30 120 144 6

6 Passenger ship 100 400 480 2

7 Cargo ship 200 800 960 1

Objective A - Knowledge Based Improvement

Figure 6.18 reports the results for Scenario II. The performance improvement due to

the use of the context (i.e., the two sea lanes and the port location) is still very high.

The robustness of the knowledge based filters to the model mismatch is promising,

especially for the SL-CV-CT-PF case, which allows to better handle the non-linearity

conditions experienced at the end of the observation period (i.e. vessel approaches

the port).
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Figure 6.18: D̂KL mean value for Scenario II, evaluated with random measurement gaps of
∆GAP=72s, T=2s and TOBS=420s. Radar position in [3000, 0]m and σv = 0.3m/s2. Top:
EKF case. Bottom: PF case
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Objective B - PFvsEKF

Figure 6.19 reports the comparison between the SL-CV-CT-EKF and SL-CV-CT-PF

for Scenario II in terms of KLD mean value and variance. Also for this Scenario, the

knowledge-based PF technique outperforms the EKF counterpart.

Figure 6.19: Comparison between the SL-CV-CT-EKF and SL-CV-CT-PF for Scenario II in
terms of D̂KL mean value (Top) and variance (Bottom), evaluated with random measurement
gaps of ∆GAP=72s, T=2s and TOBS=420s. Radar position in [3000, 0]m and σv = 0.3m/s2.
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6.3 Summary

In this Chapter the innovative Navigation Field (NF) and the Sea Lane (SL) based

tracking filters were used to track vessels monitored by active radars in coastal areas.

Results over synthetic data in a real scenarios demonstrate that the KB filters are

promising techniques for achieving increased track continuity in the absence of con-

tinuous measurements, i.e., tracking information sources that are intermittent due to

sensor coverage gaps, loss of communication, non-cooperative targets, etc.

For the NF-based filters, tracking performance were given in terms of track continuity

and track accuracy. With respect to the track continuity definition (i.e. a track is lost

if the error on the state estimate exceeds 3 times the RMS measurement error), it has

been demonstrated that the KB-filters reduced the track-loss condition of 10% to 20%

on average with respect to the standard KF. This value increased when larger gaps of

measurements were registered. As track accuracy is concerned, the time percentage

over the entire observation of a track in which a NF-filter outperforms its non KB

counterpart in terms of RMS position error was evaluated. The results showed how

the NF-based filters reduce the estimation error in the 50% (on average) of the entire

tracks duration.

For the SL-based filters, the performance on tracks accuracy were provided through

the evaluation of the Kullback-Leibler Divergence in terms of mean value and vari-

ance. The performance analysis over two simulated scenarios yielded a significant

improvement coming from the exploitation of the a priori information about the sea

lane. For both scenarios the SL-filters outperformed their non-KB counterparts. In

addition, the PF scheme demonstrated increased robustness with respect to the EKF

as highly non-linear tracking conditions were experienced.
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CHAPTER VII

Application-Experimentation II:

Collaborative Vessel Traffic Monitoring In High

Seas and Coastal Areas

The use of collaborative vessel traffic monitoring systems like AIS (terrestrial and/or

satellite based) or LRIT is well established for maritime surveillance and safety at

sea purposes. Today, over half a million vessels use AIS to transmit their position

and other useful information, which are collected by a network of AIS receivers on

other vessels, deployed in land stations or in satellites. The combination of data from

satellite and land-based receivers has enabled the creation of a worldwide network that

can collect, share and interpret the information broadcast by each ship, to provide

users with a real-time picture of global shipping traffic.

However, such collaborative systems could suffer from unexpected interruptions of

signal transmission due to systems’ malfunctioning other wanted turning off. AIS

signals are indeed expected to be continuous in time within the transmission range.

Any unrealistic changes within this range may indicate suspicious activities. The

AIS transmitter could have been switched off or it could have been manipulated

to send incorrect information about the vessel. Specifically, static information like

vessel’s name, type, dimensions, IMO number, relative position of the AIS unit, the

destination, the ETA and also draught can be manipulated and/or not correctly

updated by the vessel’s officer. Finally, the lack of AIS receivers especially in high

seas navigation condition does not consent a continuous vessel monitoring. These

aspects could represent a problem for the vessel tracking task, which has to deal with

discontinuous information and/or incorrect data. In such conditions, the exploitation
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of maritime context information, i.e. the knowledge of navigational routes, represents

the key to support the vessel monitoring, since it allows keeping the target tracking

during the information gaps.

In this Chapter, an operative solution based on vessel route prediction concept is

presented to track vessels in high seas and coastal areas.

7.1 Vessel Route Prediction

The basic idea of route prediction is to obtain the estimates of the vessel position dur-

ing a long observation interval under the influence of intrinsic parameters (e.g. vessel

motion characteristics) and external information (e.g. perturbing factors due to the

environment). This can be used to support the compilation of the traffic picture and

to detect anomalous behaviors of the vessels. This concept has been embedded in the

Route Propagation Module (RPM), developed by the author for the EU-FP7 funded

project NEREIDS (New Service Capabilities for Integrated and Advanced Maritime

Surveillance, [fIS]), and hereafter presented. The module addresses the problem of

tracking maneuvering vessels for long time intervals, in which no new information

(reports) on the vessels’ state is received. This means that the module can support

the tracking task either in remote coastal areas characterized by a poor sensor cover-

age, or in high seas, where vessels are monitored by specific satellite based technology

sensors (see Section 2.1). For track maintenance purposes, the RPM algorithms ex-

ploit a priori information such as the knowledge of maritime traffic patterns, sea

lanes, and the bathymetry of the monitored area of interest. The capabilities of this

context-aided technique are assessed for realistic scenarios that include typical vessel

maneuvers. The results on real data show that the use of the a priori information

yields improvements in the accuracy of the predicted vessel position.

The RPM main objective is to identify the most likely locations where vessels might

be in the future within a given scenario. This could be required for two main reasons:

(i) the information about the vessels (e.g. current track estimates) is not available

anymore (i.e. track drop, sensor coverage/data transmission problems, etc...), but

it is necessary to get the vessels’ state estimate after a given time period, and (ii)

even when the information is available, there is the need to compare the actual vessel

behavior with the results of the RPM estimation process for monitoring purposes

(e.g., anomaly detection).

Specifically, the vessels’ position predictions are provided at time instants (tk +∆T )

much larger than 1 hour, after having received the vessels’ state at time tk. This puts

the RPM algorithms somehow in between Level 1 and Level 2 of the Joint Directors
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of Laboratories’ (JDL) model for data fusion, [HM04]. From one side the RPM

performs the prediction step of JDL Level 1 tracking algorithms, but the time interval

is definitely larger with respect to the ones adopted in JDL level 1. Since no further

information contributes to the track estimates update during ∆T , the uncertainty of

the estimation process largely increases with respect to the conventional JDL Level

1 techniques. On the other hand, the RPM might be seen as predicting the “intent”

of a tracked target, which falls into category 2 of the JDL model. Sample solutions

for “extended track prediction” are based on deterministic motion models, preferred

routes and non-linear filtering techniques ( [PVB13], [RAG04] and [BSLK01]). The

algorithm developed for the RPM belongs to the latter class ( [BUP+12]) whereas

it relies on a priori knowledge information, such as coastlines, bathymetry, preferred

routes, ship characteristics, planned journey, etc., in order to reduce the uncertainty

in the estimation process.

7.1.1 Route Prediction Module Architecture

The RPM block diagram is depicted in Figure 7.1, where the inputs/output and the

main building blocks are clearly identified. Their high-level description is provided

in the following subsections, with a reference to the techniques (e.g., Knowledge-

based Particle Filter) that have been selected for the implementation of the RPM

functionalities.

Figure 7.1: RPM logical block diagram.
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7.1.1.1 Inputs

The RPM main input data consist of Knowledge Base (KB) elements and Track

Reports. The first type of input (i.e. context based) is in the form of raster/vector

layers or structures containing relevant information about the Area of Interest (AoI).

Specifically, the characteristics of the scenario, the shape of the coast, the bathymetry,

the vessel traffic density and the maritime traffic patterns are fundamental for the

main task of the RPM, which is the execution of extended track prediction in case

of lack of sensor measurements. An example of the context information exploited by

the RPM is illustrated in Figure 7.2. Specifically, the large amount of information

contained in the traffic patterns plays a key role in the prediction process. Generally

they are complex structures derived through a methodology based on a set of classes

progressively shaped by vessel objects behaviors [VBBV12]. For the specific case of

the RPM, only a subset of characteristics is taken into account per each maritime

pattern. It includes the pattern direction, the average Course over Ground (COG)

and the average Speed over Ground (SOG) of the vessels contributing to the pattern,

and the identification number of the ships (MMSI) that follow that pattern. For a

detailed description of these fields, refer to the Section 2.1. This leads to a simplified

maritime traffic pattern network, a graph whose nodes (waypoints) and edges (sea

lanes described by linear objects) have specific properties.

As the track reports are concerned, they contain the measurements provided by the

sensors usually involved in the maritime surveillance, such as the Terrestrial and/or

Satellite Automatic Identification System (T-AIS or S-AIS), Long Range Identifica-

tion and Tracking (LRIT) and Vessel Monitoring System (VMS), (Section 2.1). They

can also be provided in terms of augmented state vectors describing a track (e.g. as

result of a conventional tracker for coastal radars, as Vessel Traffic Service - VTS -

output). For the application under consideration, T-AIS and S-AIS data are taken

into account.

Finally, additional parameters related to the data processing feed the module as input

as well.
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Figure 7.2: RPM inputs - Knowledge Base elements.

7.1.1.2 Outputs

Output data consists of georeferenced maps containing the confidence level (proba-

bility) for a vessel being at position (x, y) at time tk. The maps take the shape of

raster images, where each pixel identifies the vessel location probability. Figure 7.3

reports an example of the module’s output and shows the evolution of the confidence

level map during the time interval ∆T in which no sensor measurements have been

recorded. Specifically, the cyan points show the exact vessel positions (i.e. the ground

truth) along the navigational route while the yellow dot represents the position of the

last recorded measurement for that vessel. The magenta points are the position esti-

mates evaluated at different prediction time intervals ∆T , which are associated with

the correspondent ground truth positions.
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Figure 7.3: RPM output - Evolution in time of the confidence level map.

7.1.1.3 Main Blocks

The block diagram in Figure 7.1 shows the main components of the RPM. Specifically,

three blocks are devoted to the input ingestion. The Scenario Ingestion Mod-

ule manages the a priori geographic information on the AoI, coastline, bathymetry,

and the additional information of the traffic density. The Maritime Traffic Pat-

terns Ingestion Module is in charge of the maritime traffic patterns extrapolation,

whereas the Track Ingestion Module deals with the state vectors (i.e. target track)

of the vessel for which the user is interested in performing the extended prediction.

These modules interpret the input data and rearrange them in specific structures for

further processing. The Processing Definition Module is used for the definition

of processing parameters (e.g. the identification number of the fused track for which

the RPM output should be provided and the processing duration). The Extended

Track Prediction Module represents the core module of the RPM. It implements

the forward prediction of the maritime traffic picture through a sequential non-linear

filtering based on a Particle Filter. It is to be stressed that the extended tracker

module exploits the a priori knowledge listed before. This context information allows

improving the estimation accuracy in target positioning. The module outputs are the
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Confidence Level Maps described above. Finally, the Output Generation Module

rearranges the content of the “Map” for the final delivery.

7.1.2 Route Prediction Module Algorithms

This subsection describes the algorithms implemented in the extended track prediction

module, which perform the functions of (i) track initialization, (ii) knowledge base

track propagation, (iii) track update and, (iv) confidence level map generation.

7.1.2.1 Constrained particle filter for extended track prediction

As already mentioned, the RPM addresses the problem of tracking maneuvering ves-

sels for long time intervals, in which no new information on the vessels’ state is

received. For this reason, it attempts to calculate the target position estimate (i.e.

target state probability density function, pdf ) also in lack of updated target informa-

tion with the help of a priori information. Moreover, given the maritime application

field, the problem of estimating the vessel position and velocity on the basis of sen-

sor measurements is highly non-linear. Therefore, a constrained bayesian filter

formulation based on particle filtering is used, which introduces the expression for

the posterior pdf in the presence of hard constraints (Section 4.1). Specifically, the

SL-CV-CT-PF described in Section 5.2 is taken into account for this application. The

constraints are dictated by the context information and they drive the selection of the

target dynamic model for the target state prediction from two consecutive instants

of time. The use of different Dynamic Models (DM) in the filter derives from the

model adopted to simulate vessel trajectories when approaching specific knowledge

base elements, such as the sea lanes. It has to be stressed that this algorithm allows

the estimation of the posterior pdf of the target state resorting on a PF technique.

This means that this pdf is represented by a weighted sum of particles.

7.1.2.2 Kernel density estimator for target existence probability density map

In order to determine the main output of the RPM (i.e. confidence level map on target

positioning), a continuous density has to be estimated on the basis of the particle

distribution. This is implemented in the confidence level map generation function of

the RPM extended track prediction module. There are two basic approaches for doing

this: (i) the parametric approach, which consists of equipping the unknown density

with a finite set of parameters, and (ii) the non-parametric approach, which does not

restrict the possible form of the density function by assuming the PDF to belong to

a pre-specified family of density functions ( [Hae91]).
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In this case, the second type, which is mostly applied when no precise information

about the form and the class of the true density is available, is utilized. Specifically,

a Kernel Density Estimator (KDE) is considered for the confidence level map

generation. The KDE can be expressed as follows:

f̂h(x) =
1

n

n∑
i=1

Kh(x−Xi) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
(7.1)

where K is the kernel function, h is the bandwidth that regulates the degree of

smoothness for kernel smoothers, n is the total number of the samples drawn for the

distribution (i.e. the number of the particles in our case) and X is the i-th sample.

Different kernel functions can be chosen for the implementation of the Equation 7.1.

The following Gaussian Kernel is used:

K(u) =
1√
2π
exp

(
−1

2
u2

)
(7.2)

Figure 7.4 summarizes the main functions implemented in the extended track predic-

tion module:

Figure 7.4: Extended track prediction module functionalities.

7.1.3 Test Scenarios and Simulation Rationale

The Route Propagation Module was tested over real data collected during two live

campaigns conducted in the Gulf of Gabes (Tunisia) and Lampedusa (Italy) in June

2013 and in the Norwegian Sea in May 2014. Figure 7.5 (top) shows the two areas

of interest for the operative scenarios, with the context information (coast shape and

maritime traffic patterns) exploited by the route propagation algorithm.
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Figure 7.5: Areas of interest (Top) and real data from AIS (Bottom) for the live campaigns
in Tunisia/Italy - Gulf of Gabes (Left) and Norway (Right).

Real data from T-AIS and S-AIS were acquired for over a month, bringing into the

NEREIDS general toolbox approximately 1500 different vessel tracks to deal with.

They are also reported in Figure 7.5 (bottom). The data analysis showed an inter-

mittent AIS transmission (lack of sensor measurements) for a significant time intervals

(greater than 1.5 hour) for a large number of vessels (about 200). The reason for the

measurement gaps has to be investigated and clarified (e.g. no coverage due to the

shoreline) but it is out of the scope of the results presented for this application. The

vessels characterized by discontinuous measurements are the object of the analysis

and they represent the input in terms of track reports for the RPM. The confidence

level maps provided as output are then analyzed in the light of users needs and re-

quirements.
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A typical example of the use of the RPM could be described by this storyboard:

� The operator follows a given vessel on the screen (VTS function);

� @ T0 the vessel track disappears from the current picture even if its position

should be still in the coverage of the sensors (e.g. T-AIS, S-AIS);

� @ T1 the operator runs the RPM for that track. The RPM outputs the confi-

dence areas at T3 = T0 + ∆T ;

� @ T2 < T3 the operator evaluates the risk associated to the vessel (e.g. suspi-

cious, hazardous materials, estimated position close to sensitive area, etc.) and

takes a decision on how to proceed.

There are many possibilities related to the operator’s decision. She/he could, for

example, (i) wait until new data come and then check the vessel behavior, (ii) check

the ship position through other available sensors or maritime patrol aircraft, or (iii)

intercept the vessel with a boat. Other decisions are indeed possible. In the follow-

ing section, results related to the above mentioned operative cases are reported as

example.

7.1.4 Results on Real Data Sets

For each test case, the “intermittent” vessel trajectory due to the lack of sensor

measurements is provided as input to the RPM (i.e. red plots on left hand side of the

Figures representing the ground truth), together with the maritime traffic patterns

(i.e. blue lines). The results are given in terms of one or more areas (Confidence

Level Maps) in which the vessel is expected after ∆T minutes of navigation after T0

(right hand side of the following Figures). In those maps, scarlet colors represent

pixels with high probability of finding a vessel (and also high density of particles)

whereas blue ones a low probability (low density of particles). For these test cases,

it is important to point out that the RPM tracking algorithm exploits information

about the coastline, some features contained in the traffic patterns (vessel Maritime

Mobile Service Identity - MMSI, path direction) and the information provided by the

AIS message (vessel MMSI, destination port), if available and correct.

7.1.4.1 Example I: Operator waits for new data and checks the vessel be-

havior.

The operative scenario and the results for this example are shown in Figure 7.6.

A vessel is navigating in the Norwegian waters along the cost from North to South

with declared direction Kvinesdal. The AIS reports are lost for a long time interval,
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7.1 Vessel Route Prediction

Figure 7.6: Input (Left) / Output (Right) data for real test Scenario I.

appearing again after ∆T = 120 minutes of navigation. The extended target position

prediction, which starts at T0, is made by resorting to the SL-CV-CT-PF algorithm

and exploiting two kinds of a priori knowledge: (i) the information about the desti-

nation port (e.g. city of Kvinesdal in Norway) provided by the AIS message and (ii)

the vessel MMSI contained in one of the traffic patterns (i.e. the upper blue line in

Figure 7.6, left).

The output (e.g. the confidence level map on the right) is also provided at T0+∆T .

Unfortunately, the area with high probability to find the vessel after the extended

prediction does not contain the target position after the long time interval (red dot in

Figure 7.6, right). This is due to the fact that the prediction is made in accordance

to the specific pattern containing the vessel MMSI; however, in the actual situation

the ship takes the alternative route to reach its final destination. This deviation form

the expected traffic pattern (e.g. anomalous behavior), suggests the operator to wait

for new data: as soon as updated information about the vessel is received from AIS,

an alarm could be generated and the vessel contacted for clarifications.

7.1.4.2 Example II: Check ship position through satellite image data.

The operative scenario and the results for the second test case in Norwegian waters

is shown in Figure 7.7. A vessel is navigating in the Norwegian waters from South

to North with declared direction Hirtshals, in Denmark. Also in this case, no AIS

updates are received for about 2 hours of navigation. Unfortunately, the a priori

knowledge about the port destination extracted from the AIS message cannot be

exploited by the tracking filter since it is wrong (i.e. it has been observed that the
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Figure 7.7: Input (Left) / Output (Right) data for real test Scenario II.

indicated port is on the opposite direction with respect to the vessel path). Moreover

none of the traffic patterns contains the MMSI of the ship. This means that the

extended prediction algorithm is performed following all the available sea lanes fitting

with the vessel route.

Thus, two possibilities for the vessel position estimation at T0+∆T , with ∆T = 120

minutes, are provided. The results are encoded into two maps of areas of [15× 15]km

each; one of them, shown on top right of the Figure 7.7, contains the real vessel

position, which is provided by the AIS after ∆T . The ship is only 5km far from the

particle cloud center. Given these observation conditions, the vessel position could

be also checked trough the use of alternative data sources, especially if the data

provided by the AIS are not received. Specifically, SAR images covering the area

containing the predicted target position @ ∆T (i.e. including the particles cloud) can

be acquired. These images, if taken in high resolution, could support the operator in

vessel detection and identification.
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Figure 7.8: Example of SAR footprints for SAR image acquisition for real test Scenario II.

In Figure 7.8 an example of possible footprints of SAR images is provided. Specifically,

a footprint of a SAR spotlight image (e.g. from Cosmo-SkyMed or TerraSAR-X) with

[10×10]km swath and resolution < 1m and another from a VHR Sensor (e.g. SPOT)

with swath depth < 60km and resolution < 2.5m are depicted in the Figure. Both

are useful for vessel identification and classification.

7.1.4.3 Example III: Intercept the Vessel.

This last test case is performed in the Tunisian waters. The RPM tracking algorithm

can exploit only the information about the coast shape for the extended prediction,

since other a priori information sources are not available. The recorded AIS message

reports the wrong information about the port destination (i.e. Porto Nogaro in Italy)

and the traffic patterns built for the area do not contain the MMSI of the vessel under

observation. The RPM Input/Output are shown in Figure 7.9. The output area of

[20 × 20]km provided by the tool at T0 + ∆T , with ∆T = 170 minutes, not only

contains the vessel, but the distance between the real vessel position (ground truth)

and the particle cloud center is just few meters. In this case, given the precision
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provided by the the confidence level map, the RPM output can support interception

forces in detecting the vessel with the on-board sensors by narrowing the search area.

Figure 7.9: Input (Left) / Output (Right) data for real test Scenario III.

7.2 Summary

The Chapter presented a tool, the Route Propagation Module (RPM), based on the

vessel route prediction concept to support the maritime surveillance in coastal areas

and high waters. The tool resorts on the non-linear Bayesian tracking filter technique

for the target state estimation (i.e. the constrained SL-CV-CT-PF algorithm in Sec-

tion 5.2) and exploits the context information for the target state prediction over

long time intervals (∆T ) and in absence of sensor measurements. Information about

coastline, bathymetry, vessel traffic density and maritime traffic patterns is ingested

and used by the “extended tracker”.

Specifically, the RPM has been tested in complex real scenarios characterized by in-

termittent data as input. The AIS data (terrestrial and from satellite) have been

collected over two areas of interest (Tunisia and Norway) within two acquisition cam-

paigns. The results, given in terms of areas (maps) in which the vessel has a high

probability to be located after ∆T , show the added value brought by the use of

the RPM. The provided Confidence Level Maps could indeed support the operators

and/or the users in different tasks such as the decision making and the detection of

anomalous vessel behaviors.
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CHAPTER VIII

Application-Experimentation III: Passive Radar

Surveillance in Coastal Areas

In the last years, the use of passive radar systems for surveillance applications is

representing a key research and development path for private companies, research

laboratories and governmental institutions throughout the world (see Section 2.1.6).

In this Chapter, the use of passive radar technologies to monitor the vessel traffic

situation in coastal areas is presented. Specifically, two scenarios are addressed. The

first one at the Baltic Sea is characterized by dense vessel traffic conditions and an

heavy clutter environment due to the presence of wind parks. Also the choice of

proper transmitting stations among the many possibilities in the area represents a

challenge for the system setup. Given the bistatic nature of a passive radar system,

its performance is indeed influenced by the selected transmitters-receiver geometry.

This scenario will be adopted to assess the performance of the Knowledge-based MHT

(KB-MHT) algorithm presented in Section 5.3. It will be demonstrated how the ex-

ploitation of context elements such as the probability of detection maps, the adaptive

clutter maps and the geographical maps encoding information about coast and terrain

bring an improvement in the tracking algorithm in terms of track continuity and false

track rate reduction.

The second scenario is set in the remote regions of the Canadian Arctic. On the

contrary it presents a low vessel traffic density and adverse climate and navigation

conditions due to the presence of ice and scarceness and/or total absence of monitoring

sensors. Given this latter point, it will pointed out how the use of an innovative system

based on the passive radar technology could support the already existent solutions for

traffic monitoring in such remote areas, which usually resort on satellite based data
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only (e.g. S-AIS). Moreover, the a priori knowledge of transmitting base stations in

the area, the context information about the digital elevation model of the terrain and

the bathymetry map allows the definition or the refinement of the bistatic geometries

of the passive radar surveillance system. It will be demonstrated how optimized

transmitter-receiver configurations lead to improved vessel tracking performances.

8.1 Vessel Monitoring in the Baltic Sea

The availability of a large number of GSM transmitting stations along the Baltic

Sea coast and some their specific features (e.g. a proper orientation of transmitting

antennas), suggest the exploitation of a GSM based Passive Coherent Location (PCL)

system to monitor the vessels traffic in the area. Such a system could complement the

existing ones based on active radar sensors technology and cooperative identification

radio systems like AIS, which suffer from some deficiencies, as reported in Section

2.1. Also passive radar systems based on GSM technology present some problematic

to take into account for monitoring purposes. Even though the discrimination in the

azimuth direction is good due to the relatively high frequencies broadcast by GSM

Base Transceiver Stations (BTSs), the range resolution is poor due to the low signal

bandwidth, [Nic14]. Also the transmitting signal power is relatively low. These lead

to deficiencies in the target detection task. It has been demonstrated, [Bro12], that

the fusion of information from multiple bistatic geometries (i.e. TX-RX pairs) allows

a better target localization and coverage. This represents the major tasks of the

tracking algorithm, which is fundamental for this application. Specifically, the KB-

MHT is taken into account for the vessel monitoring. In particular the improvement

that can be gained by exploiting different kinds of a priori information is discussed

and tested over real data acquired in the Baltic Sea trough the experimental system

GAMMA-2 developed by Fraunhofer FKIE, [Zem16], whose main characteristics are

reported in the next Section for the sake of completeness.

8.1.1 Experimental System Set Up

8.1.1.1 GAMMA-2 System Receiver and Data Processing

The guideline for the system concept of GAMMA-2 was to realize a software defined

radar as much as possible, [ZBBN14]. This leads to the design of a Uniform Linear

Array (ULA) with 16 elements and 16 digital receivers. The ULA guarantees maxi-

mum spatial target discrimination as well as deep and narrow nulling of interference

for a given number of channels, hence minimizing the clutter in the transmitter di-

rection, [ZNW09]. The output of this array can be used for all tasks: reference signal

acquisition, surveillance signal extraction and BTS monitoring.
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For this application the receiving system GAMMA-2 shown in Figure 8.1(b) has been

used. Each element of the ULA is composed of columns of 3 Vivaldi antennas in the

frequency range of [1.5 GHz-2.15 GHz], which are summed in the analogue domain.

Each column has a 3 dB elevation beamwidth of 27◦ and a gain of 10 dB (at 1.8

GHz), which results in an array gain of 22 dB. For the reception of GSM1800 signals,

the distance between the elements is set to 8 cm, which corresponds to a spacing

of the half wavelength for a frequency of 1874 MHz. As a compromise between

processing speed and flexibility, the hardware of the digital receiver has been designed

to extract in parallel up to eight GSM frequency channels (demodulated I&Q) of 200

kHz width within the system receiving bandwidth of 30 MHz. Each frequency channel

is subsequently digitally down converted and stored for further signal processing steps.

This special realization of the hardware limits the number of transmitters that can

be used in parallel.

A standard signal processing is then considered, where the reference signal is extracted

by conventional beamforming ( [Wir13]). The Field of View (FoV) for the surveillance

signal ([−60◦, 60◦]) is sampled by a set of fixed beams in azimuth. For each beam with

a given angle of arrival (AoA) a digital adaptive beamforming and clutter cancella-

tion are performed to obtain the corresponding surveillance signal ( [ZNW09]). The

clutter cancellation method is based on the projection of the received signal onto the

subspace orthogonal to the clutter subspace ( [CCL06]). Then the signal power is ac-

cumulated by coherent integration. The Coherent Integration Time (CIT) is selected

as the longest time interval in which the evolving target remains in the resolution

cell. According to [Nic14] and the application scenario a CIT of 1.8 s is obtained,

which produces a very fine Doppler resolution (∆Doppler= 0.56 Hz) corresponding to

a radial velocity less than 0.05 m/s. The long CIT is suited for the detection of mar-

itime targets. The Doppler is therefore an excellent criterion to distinguish closely

located vessels in areas with high target density. Finally, the range-Doppler-bin for

which the signal strength exceeds a predefined threshold is declared as detection and

it is forwarded to the tracker. In contrast, the range resolution ∆rg of this system is

poor due to the low effective signal bandwidth of 81 kHz, which leads to ∆rg = 1.9

km for the monostatic case, [Wir13]. However, the achievable accuracy in range σrg

(i.e. the standard deviation of the peak of the complex ambiguity function) can be

significantly improved depending on the estimation method used [Weh95]. For system

performance evaluation, perfect operative conditions, i.e. high SNR, perfect system

calibration, multipath free reception, etc. are assumed.
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8.1.1.2 Parameter Accuracies

To characterize the measurement accuracies for target tracking a simple bin process-

ing strategy is assumed. Of course, a detailed analysis of the achievable accuracies

must include all effects, starting with the implemented estimation and calibration

algorithms, the environmental effects like multipath and the target SNR, but it is out

of the scope of this work.

Let us considering a simple grid search over the range domain. The grid cell dimension,

∆cell, is selected according to the sampling frequency of the Analogue to Digital

Converter (ADC) and is smaller than the resolution limit ∆rg. Thus, the range

accuracy for high SNR values is determined by:

σ2
rg =

∆2
rg

12
(8.1)

This is valid under the following assumptions: (i) the unknown target position is

uniformly distributed within the cell, and (ii) no fine estimation technique is imple-

mented (e.g. interpolation or range monopulse). In this experiment the signals are

sampled at a frequency equal to 240 kHz. Thus, the monostatic range accuracy is

about 360 m. This is less than the range resolution but still not satisfying for moving

targets position estimation. It has to be stressed that, when operating in Cartesian

coordinates, the achieved position estimation accuracy depends not only on the mea-

surement errors, but also on the bistatic geometry. Thus, the position estimate can

also be worse than 360 m.

For the azimuth angle estimation a simple search of the maximum response over the

16 look directions (beams) within the FoV is considered. Thus, the angular cell ∆az

defines the angular accuracy. In the case of a uniformly distributed target over the

angular cell and considering an angle bin of ∆az = 7.5◦, the angular accuracy is

about σaz = 2.15◦. Such an angular accuracy can only be attained if targets are well

separated without any clutter influence. In reality clutter cancellation and especially

direct signal cancellation is imperfect and this will influence this parameter. To deal

with this, a distribution of the angle error over two adjacent beams is assumed. Thus,

the angular accuracy becomes σaz ∼ 5◦.

Following the same argumentation as above, the Doppler accuracy σDoppler for an

integration time CIT = 1.8 s results into 0.56 Hz. This high accuracy compensates

the low accuracy in range and allows target discrimination and tracking as will be

seen in the following.
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8.1.2 Test Scenario and Simulation Rationale

The trial scenario considers the maritime traffic in the Fehmarn Belt, between Ger-

many and Denmark. The system receiver GAMMA-2 is mounted on a tower of 56 m

height, as shown in Figure 8.1 and it is located at the Eastern cape of the Fehmarn

island (Figure 8.2), pointing at 0◦ with respect to the North direction. The area

covered by the receiver is represented by the orange sector in the Figure, which is

characterized by a Field of View of 120◦ in the azimuth direction and an illumination

range of 40 km. Three GSM Base Transmitter Stations (BTS), indicated by black

triangles, are considered in the scenario. Each BTS typically covers a sector of 120◦

in azimuth, as represented by the small red sectors in the Figure 8.2, one for each

BTS.

Figure 8.1: Receiver system GAMMA-2. (a) GAMMA-2 mounted on the tower; (b) GSM
PCL antenna and GAMMA-2 receiver

The characteristics of the BTSs are summarized in Table 8.1. Also others illumina-

tors are available in the area, but they are discarded due to their operative carrier

frequency that results beyond the receiver bandwidth of 30MHz. In such conditions,

they cannot be simultaneously used, as stated in [Zem16].

Figure 8.2 shows typical vessel paths, which indicate the trajectories of a cargo ship

(black line) and a ferry (white line), respectively. Finally the blue area indicates the

geographic location of wind park, which represents the main clutter source for the

application.

The collected system measurements represent the major input for the KB-MHT al-

gorithm described in Section 5.3, which is used in the application to track the vessel
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Figure 8.2: Operative scenario in the Fehmarn Belt, [Zem16].

Table 8.1: GSM-BTS parameters in the Fehmarn Belt.

BTS ID Lat Lon Frequency Pointing Height

[deg] [deg] [kHz] [deg] [m]

BTS1 54.495183 11.198764 1860.8 60 59.2

BTS2 54.454546 11.137672 1860.2 0 40

BTS3 54.372576 10.986496 1848.8 30 40

in the Belt. As already stated in the Chapter introduction, the main objective of this

simulation is to demonstrate how the use of context elements (i.e. probability of de-

tection maps, adaptive clutter maps and geographical maps) in the MHT algorithm

brings an improvement in terms of track continuity and false track rate reduction.

Before proceeding with the general case for the simulation, the theoretical perfor-

mance bounds that can be achieved for the above described scenario are evaluated,

as reported in following Section.
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8.1.2.1 Theoretical Performance Bounds

The theoretical analysis is conducted trough the evaluation of the CrÃ¡mer Rao Lower

Bound (CRLB), which provides a lower bound to the position estimation performance,

as reported in [TB07]. The more the vessel position estimation accurate is, higher is

the algorithm capability in maintaining the vessel track (i.e. improved track conti-

nuity). Given the dependency of the system detection capability from the different

bistatic geometries, the CRLB is evaluated for each TX-RX pair in the scenario.

Specifically, the CRLB of the i-th TX-RX pair is calculated by the inverse of the

Fisher Information Matrix (FIM) for a single time scan as follows, [Bec00]:

FIMi(xk) =
∂hi(xk)

T

∂xk
R−1 ∂h

i(xk)

∂xk
, (8.2)

where hi is the i-th non-linear function of the target state vector xk and R is the

measurement covariance matrix R = diag(σ2
rg, σ

2
Doppler, σ

2
az). The result of fusion of

the N bistatic geometries is simply obtained from the sum of the correspondent FIMs:

FIM(xk) =

N∑
i=1

FIMi(xk) . (8.3)

The additivity is a property of the information matrix and does not depend on the fu-

sion scheme (i.e. centralized, decentralized [HM04], etc.), which is chosen for tracking.

In particular, this reflects the theoretical consideration that adding measurements of

an additional TX-RX pair will result in an increase of the information and conse-

quently in a decrease of the estimation uncertainty (described by the CRLB). This

can be further extended to multiple time scans by incorporating the target propa-

gation model, [TMN98]. In particular, when considering multiple time scans, the

impact of the target velocity estimate (which is based on Doppler measurements) on

the position estimate can be analyzed.

For passive radar applications, a performance prediction tool based on the CRLB

calculation has been developed in [Bro12]. This tool is here applied for the Fehmarn

Belt scenario. As first step, the i-th coverage map for the probability of detection

P i
D is generated for each bistatic geometry. The process to obtain these maps will be

illustrated in the following (see Section 8.2.1.3). The Figure 8.3 shows the sum of the

three probability of detection maps PD
i for the addressed scenario. The Figure also

reports the real AIS data collected for a vessel crossing the bay.
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Figure 8.3: Coverage area for the Fehmarn Belt scenario, [ZBBN14].

It has to be stressed that the maximal value of the colourmap in the Figure is therefore

equal to the number of the available transmitters. The objective of this representation

is to highlight the regions of high and low coverage in terms of detection by multiple

transmitters, contrary to the cumulative probability of detection PC
D . This is not a

characterization of the PD of the fused tracks, but gives the expected number of ob-

servations from different bistatic pairs. This has a significant influence on estimation

performance, as discussed in the following.

The probability of detection PD
i of a single TX-RX pair is an input parameter for the

calculation of the CRLB. By use of the information reduction factor as introduced

by [ZWBS05] this results in a scaling of FIM according to:

FIM(xk) =

N∑
i=1

PD
iFIMi(xk) . (8.4)
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In Figure 8.4 the CRLB for the expected position errors is reported. The three

transmitters (black triangles) are nearly placed on a line. The receiver position is

indicated by the black circle. In the bottom left side of each figure, the direction of

the velocity vector used in the CRLB evaluation is indicated. It is possible to notice

that for a single time scan large position errors are recorded, especially in the region

between the Fehmarn island and Rodby in Denmark (Figure 8.4(a)). These errors can

be reduced by considering three time scans, as shown in Figure 8.4(b). Finally, Figure

8.4(c) shows the results obtained when an alternative velocity vector with respect to

the Doppler measurements (e.g. perpendicular to the measurement) is considered for

the evaluation of the CRLB.

Figure 8.4: CRLB Position Estimates: (a) Single Time Scan; (b) Three Time Scans; (c)
Three Time Scans Alternative Velocity Vector, [ZBBN14].

8.1.3 Results on Real Data Set

Once evaluated the theoretical boundaries for the performance, the experimental mon-

itoring system is tested over real data, i.e. passive radar measurements from vessels

navigating in the Fehmarn Belt (Section 8.1.2). In order to test and validate the

results, the reference ground truth is built up by exploiting the AIS data acquired

in real time from the vessels. Specifically, the information about vessels positions

and velocities, provided by the AIS respectively in the WGS84 domain and knots, is

properly transformed into the range-Doppler-azimuth domain in order to be further

compared with the measurements provided by the GMS PCL system. As a first step,

the association between the vessel ground truth and the incoming measurements is

made via the Global Nearest Neighbor (GNN) approach [BP99]. Then, the associated

measurements are processed by the UKF to obtain estimates of the target position

and velocity as well as the covariances [DNK12]. An example of the results for a ferry

approaching the Fehmarn island from Rodby in Denmark is reported in Figure 8.5.
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Figure 8.5: Position estimation results: (a) Covariances; (b) Position error.

Specifically, Figure 8.5(a) shows the sequence of the estimation results. The AIS

data of the observed vessel (i.e. the reference ground truth) are depicted as red

crosses. The resulting GSM track (provided for several time scans) is represented

by black crosses, which represent the mean values of the estimated positions, and by

appended black lines, which describe the mean velocities. The black ellipses show the

corresponding track position uncertainty (described by the track covariance). Finally,

the blue and green ellipses illustrate the position uncertainty given by the plots (after

transformation into Cartesian domain) of one time instant for each of the bistatic

configurations that provide detection. The uncertainty ellipses are plotted according

to the 3-sigma volume (3-times the standard deviation). Figure 8.5(b) reports the

position RMSE over the track time. The fusion of the three available BTSs delivers

indeed a more accurate position estimation than with only one BTS, but it is not

satisfying. This performance can be referred to the inconvenient choice of the BTSs,

which are almost on the same line with respect to the trajectory of the ferry (see Figure

8.2). Thus, the corresponding position ellipses coincide. No significant accuracy

improvement can be expected from the fusion of the BTSs during the first half of

the scenario. Only the fusion over time (according to the adopted motion model)

improves the performance. In the second half of the scenario, the target is moving in

an area of better estimation performance, which is confirmed by the tracking result

(Figure 8.5(b)).

It has to be stressed that the presented data evaluation is made on the basis of a

simplified association strategy based on the AIS data. The tracking results for the

full KB-MHT (without AIS support) are discussed in the following Section.
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8.1.3.1 Tracking Results

The quality of the adopted target tracking algorithm is generally limited by the num-

ber of false alarms, which can lead to the generation of unwanted false tracks in the

observation regions. As the addressed application is concerned, numerous false alarms

due to clutter residues in the BTS direction for each bistatic TX-RX pair are regis-

tered. Moreover, the presence of other clutter sources in the area (i.e. wind parks)

contributes to this phenomenon. The presence of such false detections is in part

related to the adopted conventional signal processing technique and the hardware

imperfections both characterizing the experimental GAMMA-2 monitoring system.

A detailed description of their generation and how to handle this problem from the

signal processing point of view is provided in [Zem16] and it is out of the scope of this

work. The objective here is to demonstrate how the use of a specific target tracking

algorithm (i.e. KB-MHT) could handle the false tracks generation problem.

As the Fehmarn Belt scenario is concerned (see Figure 8.2), the wind park at the coast

of the Fehmarn island represents the principal source of false alarms. This clutter

contribution has been properly modeled following the procedure recalled in Section

5.3.1 and embedded in the target tracking algorithm. Thus, an adaptive clutter map

has been generated for each BTS in the area on the basis of all collected measurements

in the region ( [MSMM05] and [SD10]). This is done under the assumption that the

clutter is stationary and the targets, which move, are average out. The clutter map

identifies the regions of high false alarm level. This means that for each BTS and for

each range-Doppler cell a probability value describing the appearance of a false alarm

is assigned. The generated clutter map for one BTS is reported in Figure 8.6.

It has to be stressed that the targets associated to the AIS data have been removed

from the adaptive statistic. The contribution of the wind park becomes apparent in

the first two range cells. This context information is exploited by the tracker in the

plot to track association by the factor ρF (i.e. the spatial false alarm intensity), by

influencing the hypothesis weights ŵij
k , as stated in the Equation (5.51) in Section

5.3.2. In addition, a threshold on the false alarm probability has been introduced to

avoid track initiation in a region of high false alarm level. However, an existing track

can be maintained in a clutter region.

In addition to the clutter map, the geographic information of the coastline can be

inserted in order to discard detections on the land. A geographic map of admissible

areas as the one shown in Figure 8.7 is taken into account in the KB-MHT algorithm.
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Figure 8.6: Clutter map for the BTS1-RX bistatic configuration.

Figure 8.7: Geographical map for the Baltic Sea.
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The basic idea is that each pixel or cell in the map provides the probability (1 or

0) that vessels can occupy it or not. The exploitation of this information makes the

target state estimation more accurate with respect to the target position components,

because the effect of a low sensor angular accuracy is mitigated. It is well known that

tracking algorithms are prone to strange behaviors (fluctuations, divergence, etc.)

in case of low accuracy measurements. For this application, the geographic map is

preloaded before the processing starts. The tracker listens to this context information

in two different steps of the processing: (i) when new sensor measurements are received

as input for the algorithm and (ii) when already existing tracks are predicted. In both

cases the unrealistic cases (e.g. measurements over land, or tracks crossing land) are

discarded in order to reduce the number of the hypotheses.

Using both forms of context knowledge (clutter and land maps) an impressively clean

situation picture can be achieved only on the basis of GSM measurements. Figure

8.8 and Figure 8.9 report the tracking results for the Fehmarn Belt scenario (with

three BTSs) with and without exploiting the clutter and the geographical maps,

respectively.

Figure 8.8: Tracking results for MHT (without context information).
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Figure 8.9: Tracking results for KB-MHT (with context information).

The visualization symbols of the tracking results are listed in Table 8.2.

Table 8.2: Visualization scheme for tracking results.

Tracks Small Ship Symbols Green: high-probability track

Red: low-probability track

Grey: identify an inactive track

Ground

Truth

Triangles Orange: AIS target detected by the

GSM system

(from AIS) White: no associated measurement

Look Direc-

tion

Shaded Area Red: receiver

Green: transmitter

The tracking results are also reported in Figure 8.10. The GSM tracks (i.e. blue

plots) and the AIS data available for the addressed scenario (i.e. red plots) are both

shown. In the Figure 8.10(a) the passive radar measurements have been processed
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trough the MHT algorithm. In this case the detections that lie on the land and the

clutter contributions have not been filtered out before and during the tracking phase.

This leads to an high number of false tracks (i.e. false track rate of 57% in this case).

If the information about the context is taken into account in the processing, the use

of the KB-MHT algorithm leads to the results in Figure 8.10(b). In this case the

number of false tracks is significantly reduced (i.e. false track rate of 4%).

Figure 8.10: Tracking results for the Fehmarn Belt scenario.
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8.2 Vessel Monitoring in the Canadian Arctic

The possibility to track vessel in remote icy waters (e.g. North West Passage, NWP,

in the Canadian Arctic) by means of passive radar technologies is presented in this

Section.

The combination of technological, economical, and climatic factors nowadays leads to

a growth in maritime traffic in the Arctic. The observed reduction in ice coverage,

thickness, and duration - combined with improved ship building - facilitates Arctic

shipping for longer periods of the year and at higher latitudes. This enhances the

investment in - and operation of - resource extraction vessels, transarctic shipping,

vessels for resupply of the local communities, cruise ship and adventurer tourism in

these waters. On the other hand, the remoteness, the harsh weather and ice con-

ditions, and the lack of emergency response facilities lead to serious risks for the

ships operating in the Arctic, as well as for communities and the environment. It

is therefore important to monitor continually the vessel traffic in the Arctic in order

to provide government agencies and mariners with the degree of Maritime Domain

Awareness (MDA) that they need to conduct safe operations and voyages and to man-

age risks such as maritime accidents or spills or transiting of illegitimate vessels. On

the basis of recommendations from civil and military parts, which both recognize the

insufficient Arctic surveillance for vessel tracking capability, different system concepts

for improving the MDA have been presented in the past years, (e.g. [Fea08,Art15]).

They investigated the exploitation of heterogeneous and complementary surveillance

sensors, whose outputs (e.g. passive underwater sonar and electromagnetic detec-

tions, active and passive radio-frequency detections, and active and passive optical

and infrared detections) were stored and eventually fused to present effectively and

efficiently the integrated surveillance data. At present, the backbone for MDA in the

Arctic is the Satellite-based Automatic Identification System (S-AIS). Operating in

the VHF range, the AIS transponders on board ships are a very effective cooperative

data source for monitoring coastal and territorial waters from shore-based base sta-

tions. Through the installation of ad hoc AIS receivers on board a network of Low

Earth Orbit satellites, the satellite based AIS (S-AIS) has extended the coverage of

the system over the global seas, and it is now a powerful, standardized and proven

technology for vessel traffic monitoring. It turns out, however, that S-AIS alone is not

sufficient to provide continuous and comprehensive MDA. Reasons are (i) temporal

gaps due to limited satellite coverage and low reporting frequency, (ii) AIS transpon-

ders are not mandatory for small vessels and, (iii) the existence of false AIS reports

due to technical failure or even spoofing (see Section 2.1).
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It is therefore necessary to research additional sensors and techniques that are able to

complement the data provided by the S-AIS. Considering the remoteness and vastness

of the area, space borne sensors such as Synthetic Aperture Radars (SAR) and optical

imagery can be considered for the scope, even if they are also subject to observation

gaps due to limited satellite coverage. For locations of high interest (e.g. choke

points or entry/exit points of NWP routes) or for specific operations (e.g. search and

rescue), local sensors such as active and passive radar systems (ground-based, air- or

shipborne) can be considered to supplement the space-based sensor data. However,

the use of local sensors introduces challenges in terms of installation, operations and

maintenance costs due to the remoteness of the considered Arctic areas (e.g., no access

point to the power grid).

In the recent years, passive means for vessel detection and tracking have gained atten-

tion due to their reduced electromagnetic pollution and interference to pre-existing

radio-frequency systems, the reduced installation and maintenance costs, and finally

for not being subject to safety authorities’ authorization. Given these considerations,

in this Section a vessel tracking application based on passive radar technologies and

illuminators of opportunity (i.e., GSM base stations and VHF radio stations) is there-

fore presented, with the aim to show an enhanced MDA capability and to implement

a covert surveillance for non-cooperative vessels, minimizing the impact on the en-

vironment (e.g. electromagnetic pollution) and the costs for future implementation.

Moreover, the collected information is connected with some maritime context infor-

mation, whose exploitation will be described in detail in the following. The use of

passive radar technologies combined with a priori information here suggested rep-

resents a new research path to be addressed with respect to the system concepts

in [Fea08] and [Art15].

8.2.1 Passive Radar Measurements and Tracks Simulator

The vessel tracking application resorts on a passive radar measurements and tracks

simulator, which has been developed in the framework of the Canadian-German re-

search project PASSAGES (Protection and Advanced Surveillance System for the

Arctic: Green, Efficient, Secure [PASSftAG]), operating in the complex real scenario

of the NWP in the Canadian Arctic. The description of the passive radar technol-

ogy and its measuring and working principle are well documented in the literature

( [Che07], [GB17]) and reported partially in Section 2.1. Its detailed explanation is

beyond the scope of this Section, where only some notions related to the simulators’

main functions are recalled for the sake of simplicity. Figure 8.11 depicts the Passive

Radar Data Simulator Block Diagram with a clear reference to the order for the execu-
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tion of the main functions in the simulation process. The blocks’ main functionalities

and the Input/Output structures are described in the following subsections.

Figure 8.11: Passive radar data simulator block diagram.

Finally, it has to be stressed that for the application, the a priori knowledge of the

context information is used as follows:

� Bathymetry maps and the information about the coastline is exploited for the

definition of the vessel ground truth;

� The Digital Terrain Elevation Data (DTED) are taken into account to perform

the passive radar Line of Sight (LoS) analysis. This is used to evaluate the

positions of the simulated transmitting base-stations and the passive radar re-
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ceiver and consequently to determine the Probability of Detection Maps for each

TX-RX pair;

� Clutter and land maps represent an input for the target tracking algorithm to

remove false and/or inaccurate passive radar measurements.

8.2.1.1 Scenario Definition Module

The module aims at defining (i) the operative scenario for the vessel traffic monitoring,

(ii) the passive radar sensors (i.e. transmitting and receiving units) and (iii) the

general processing parameters for the overall simulation.

The scenario and the reference vessel traffic picture are defined on the basis of the

geographical boundaries of the Area of Interest (AoI) and the historical data on traf-

fic (e.g. real data from Satellite-AIS). If the latter input is available, it provides

information on kinematic data (e.g. position, Course over Ground and Speed over

Ground) and type (e.g. cargo, tanker, fishing and passenger) of vessels navigating in

the AoI. Such features are fundamental for the transmitter-receiver (TX-RX) config-

uration design phase. The defined fields are stored in a dedicated output structure

“Scenario”.

Subsequently, already existent illuminators in the scenario are identified. In particu-

lar, real GSM base stations and/or VHF radio stations are taken into consideration

in this application. If such transmitters are available, their major characteristics and

operative parameters (e.g. position, height, orientation, operative frequency, trans-

mitting power, etc.) are stored and saved in the “TX” output structure. Otherwise,

new transmitting stations have to be simulated and fully characterized. In the same

way, passive receiving stations (“RX” structure) have to be deployed in the AoI.

Finally, the target motion related parameters together with general ones (e.g. radar

cross section, probability of false alarm, etc) are defined for further use in the other

simulator blocks (i.e. generation of probability of detection maps, sensor measure-

ments and tracks generator).

8.2.1.2 Radar Coverage Analysis

The module evaluates the coverage of the transmitting and receiving stations identified

in the Scenario module. Specifically, the purpose of a Radar Coverage Analysis (RCA)

is to collect precise information about the area the sensors can reach, i.e. which

parts of the Earth’s surface and the space above it can be observed when the sensors

are deployed at a certain location. This is important to know because in a natural

environment with mountains, valleys, lakes and the open sea some areas can be hidden.
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The locations of the TX-RX units have to be chosen in order to fulfill the coverage

requirements. However, the location found may not be acceptable due to reasons like

not getting the necessary infrastructure there. This means that the analysis has to

be iteratively performed in order to identify and evaluate the suitability of the chosen

sensors locations.

The RCA analysis uses a spherical Earth model, whose radius is the average of the two

radii of the WGS84 ellipsoid, high-resolution Digital Terrain Elevation Data (DTED)

offering terrain data with various resolutions in height and in a Longitude-Latitude

(Lon-Lat) grid, and basic parameters of the sensors under consideration, such as

instrumented range and the geometry of scan sectors. The RCA can be applied both

for monostatic and bistatic (multistatic) radar configurations. For the latter, the

covered area results from transmitter-receiver (TX-RX) pair specific coverage areas

by intersection. The algorithm for calculating the radar coverage consists of the

following steps:

� Calculate for a given azimuth direction the terrain height profile from the radar

position to a point at the border of the map;

� Calculate the visible terrain points;

� Calculate the visible points at a target dependent height above the selected

profile, e.g. sea level;

� If desired consider an elevation sector or other restrictions to the elevation of

the radar field of view.

These steps are repeated until all required azimuth directions are covered. As already

mentioned, the RCA tool is used to optimize the TX-RX geometry for a given AoI and

employed in the generation of radar measurements for a specific simulated scenario.

8.2.1.3 Detection Probability Maps Generator

The module evaluates the target’s probability of detection (PD) for each transmitter-

receiver pair in the AoI. To this aim, the Bistatic Signal to Noise Ratio (SNR) has to

be evaluated per each pixel of the AoI grid [Che07]:

SNR =
PR

PN
=

PTGTσ0λ
2GR

(4π)3RT
2RR

2LTLRLs

Gint
1

kT0FB
, (8.5)

In the Equation 8.5, PR and PT are the power of the received and transmitted signals,

respectively. GR and GT are the gain coefficients for the transmitting and receiving
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antennas; σ0 the bistatic radar cross section (RCS) of the target and λ the wavelength.

RT is the range of the target relative to the transmitter while RR represents the

range of the target relative to the receiver. LT are the losses that appear during

wave propagation in the area of the transmitter-target; in the same way LR are the

losses that appear during the wave propagation in the area of the target-receiver

and Ls represents the system losses. The term PN = kT0FB represents the receiver

noise power: k is the Boltzmann’s constant, T0 is a reference temperature of 290K,

F is the receiver noise figure and B is the receiver bandwidth. Finally, Gint is the

gain factor related to the coherent processing time interval Tcpi adopted in the signal

processing [Nic14]. All the parameters in Equation 8.5 can be directly taken from the

data structures defined in the Scenario module (which also represent the inputs for

the detection probability maps generator module) or can be evaluated from them (e.g.

Gint = TcpiNpulses). Then, the definition of the Probability of False Alarm (PFA),

i.e. the probability of exceeding the detection threshold when no signal is present,

the choice of the target distribution model and the SNR in Equation 8.5 allow the

evaluation of the Probability of Detection (PD), [Sko08]. This is calculated for each

TX-RX pair and represents the major output of the module.

Figure 8.12: Example of a detection probability map for a TX-RX pair in the AoI.
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Figure 8.12 shows an example of the target detection probability map for typical vessel

(RCS = 100m2) and a transmitter-receiver pair in the AoI, obtained through the

above described steps. Specifically, the TX and RX positions are indicated together

with the TX and RX antennas’ sectors. The sectors’ shapes are dictated by the

antenna Field of Views (FoV), which determine the sectors’ aperture and the Distance

of Views (DoV), which establish the maximum detection range. It is evident that the

PD assumes significant values in the intersection of the sectors, except in the area close

to the direct path that connects the TX and RX antennas, where there is no possibility

to detect the target. Specifically, the echoes from particular angles of arrival and cells

in range in this region are not Doppler-shifted with respect to the direct signal due

to the observation geometry between transmitter, target and receiver. The absence

of the Doppler component makes the detection impossible.

The availability of different TX-RX pairs in the monitored area allows improving the

target detection capability. If the measurements of N bistatic geometries are gathered

simultaneously, the cumulative probability of detection PD
C can be written as:

PD
C = 1−

N∏
i=1

(1− PD
i), (8.6)

where PD
i represents the probability of the i-th TX-RX pair [Nic14]. An example of

the cumulative PD
C is shown in Figure 8.13.
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Figure 8.13: Example of a cumulative detection probability map for the AoI.

8.2.1.4 Measurements Simulator Module

The module simulates the passive radar measurements for each bistatic geometry in

the AoI. In order to derive a measurement vector zk for a given time tk, the bistatic

geometry in Figure 8.14 is taken as reference:

Figure 8.14: Bistatic Geometry and Notations.
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Specifically, the target state is described in 3D Cartesian coordinates assuming a

constant velocity dynamic model. The target state vector is given by:

xk = (pk,vk)
T = (xk, yk, zk, ẋk, ẏk, żk)

T , (8.7)

which includes the position pk and the velocity vk components at time tk. In the same

way, the positions and the velocities of the transmitter and receiver are respectively

given by

xTx
k = (pTx

k ,vTx
k )T = (xTx

k , yTx
k , zTx

k , ẋTx
k , ẏTx

k , żTx
k )T , (8.8)

and

xRx
k = (pRx

k ,vRx
k )T = (xRx

k , yRx
k , zRx

k , ẋRx
k , ẏRx

k , żRx
k )T . (8.9)

Assuming the target to be moving at height zero with constant velocity (vk = v), the

measurements equation can be computed as in 3.2:

zk = hk(xk) +wk = (rk, φk, ṙk)
T +wk, (8.10)

where hk is the non-linear measurement function and wk is a zero mean white Gaus-

sian sequence with diagonal covariance Rk. rk is the bistatic range, φk is the azimuth

angle and ṙk the bistatic range rate, which is proportional to the Doppler shift:

rk =
∥∥∥pk − pTx

k

∥∥∥+ ∥∥∥pk − pRx
k

∥∥∥ , (8.11)

φk = atan2(xk − xRx
k , yk − yRx

k ) ∈ (−ϕ, ϕ], (8.12)

ṙk = −fdλ =

(
pk − pTx

k∥∥pk − pTx
k

∥∥ +
pk − pRx

k∥∥pk − pRx
k

∥∥
)T

· v. (8.13)

∥·∥ denotes the Euclidean Norm, fd the bistatic Doppler frequency and λ the wave-

length. Moreover we assume a stationary transmitting and receiving platforms, thus

their velocity components are equal to zero.

The module takes as input the reference ground truth generated by interpolating real

Satellite AIS tracks of the vessels navigating in the AoI, which suffer from gaps of

information due to the satellite constellation’s revisit time (see Section 2.1). The

estimation of the target positions between consecutive data bursts is realized by a

simple and linear interpolation algorithm (e.g. in time and space over the entire

observation period), which keeps the vessel speed constant between the consecutive
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original messages. The vessels’ positions, originally provided in the WGS84 reference

system by the S-AIS, are converted in the Cartesian space and chronologically ordered.

The interpolation algorithm uses a parameter that defines the maximum allowed

spatial distance (dmax) between two S-AIS data. If two consecutive S-AIS messages for

the same vessel have a distance (dAIS) that exceeds this threshold, the interpolation

is executed. The number of the interpolated points ninterp in the gap is given by:

ninterp =

⌊
dAIS

dmax

⌋
(8.14)

Subsequently, the WGS84 coordinates in terms of latitude and longitude of the new

points are evaluated. This basic algorithm performs well in open waters but not

in narrow passages or close to the coastline where the interpolation may lead to

tracks that cross over landmasses. In order to avoid this unrealistic behavior, the

algorithm exploits bathymetry maps and coastline information in the AoI to force the

interpolated tracks to follow corridor points in the route where no intersections with

the land are foreseen and where the water is sufficiently deep for the vessel to pass.

The Figure 8.15 shows an example of S-AIS real data with information gaps for a

given vessel (A), the result of the simple linear interpolation algorithm (B), and the

improvement in the interpolation process when driven by external a priori information

such as bathymetry and coastline (C).

Finally, the positions of the derived ground truth are converted again in the Cartesian

space, taking the coordinates of the receiving station as the origin of the XYZ plane.

Then, the passive radar measurements (i.e. measurement vectors) are expressed in

the Doppler-Bistatic Range domain through the Equations 8.11, 8.12 and 8.13. For

an exhaustive simulation, the measurement vectors have to be generated in according

to proper measurement errors. For the application a Gaussian distribution with given

accuracies in range (σr), azimuth (σφ) and range rate (σṙ) is taken into account. In

addition, only the measurements with Probability of Detection larger than 0 (e.g.

evaluated truth the exploitation of the PD maps) are provided as the main output of

the module. Finally, false target detections are generated for each TX-RX pair, i.e.

false alarms are uniformly distributed in the AoI in accordance with the false alarm

probability parameters and the PD map. An example of the overall measurement

simulation process will be provided in the following sections.
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Figure 8.15: Example of ground truth generation as Input for passive radar measurement
simulator Module: A) S-AIS real data with information gaps for a given vessel, B) result of
the linear interpolation algorithm, C) result of the linear interpolation algorithm supported
by a priori knowledge of corridor points.

8.2.1.5 Target Tracker Module

The module aims at generating the passive radar tracks. Target tracking is the es-

timation of the state of one or multiple (generally an unknown number) of evolving

objects (targets) based on a time series of measurements coming from one or several

sources (sensors). The goals of target tracking are (i) to establish a one-to-one corre-

spondence between the estimated objects (tracks) and the true targets in the scene,

and (ii) to generate estimates of the kinematic state of the targets (potentially aug-

mented by further attributes), including measures of the accuracy and reliability of

the estimates. Generally, target tracking comprises the tasks of data alignment, asso-

ciation, filtering, and track management [HM04], which are repeated at each iteration
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or update of the estimated tracks. Data alignment supports indeed the association

step by pre-processing (e.g., interpolating or extrapolating) the collected sensor data,

if required by the selected processing scheme. Then, input data (e.g. measurements)

are assigned to the existing tracks or used to initiate new tracks through a given plot-

to-track association strategy. This step is particularly challenging in the case of dense

target scenarios and a high false alarm rate, i.e. high rate of input measurements

that do not originated from true targets (e.g. due to measurement noise, clutter or

interferences). For each successful data association, the state estimate of that track

is updated in the filtering step, using the actual measurement. Finally, track man-

agement consists of several functions to establish a clear and unique track picture,

like track extraction (initialization), track split, track merging, track numbering and

track-to-track fusion. There exists a vast body of literature on the topic of target

tracking ( [BP99, BSLK01, Koc14]), which is today addressed in the framework of

sensor data and information fusion [HM04].

In this application, we refer to the approach reported in Section 4.1, where the se-

quential processing scheme of track prediction and measurement update within the

context based Bayesian estimation theory is presented, and Section 5.3, where the

algorithm to handle the inclusion of specific context based element in the Multi-

ple Hypotheses Tracker (MHT) is described. Specifically, the information about the

coastline and the PD maps represent the a priori knowledge for this example. The

measurement-target association task is handled by resorting to the MHT technique

based on Unscented Kalman Filter (UKF, [JU04]) formulation, since the measure-

ment equation is non-linear for this passive radar based application. The association

problem between measurements and transmitters, which appears when multiple TX-

RX pairs contribute to the target tracking, is well known in a GSM/VHF PCL based

system ( [ZBBN14]) and it is not hereafter addressed.

8.2.2 Test Scenario and Simulation Rationale

The geography of the NWP presents a limited set of options for a transiting vessel,

which varies according to the ice and weather conditions and the season of the year.

Figure 8.16 (A) shows the major traffic routes in the Arctic, identified trough the

analysis of historical data on maritime traffic (e.g. data collected in the years 2011-

2013). Specifically, we focus on the high traffic route to the Hudson Bay and Frobisher

Bay (black circle in Figure 8.16 (A)) as the reference corridor for the demonstrating

the improved MDA for this application (see Figure 8.16 (B)).
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Figure 8.16: Test scenario: A) The Arctic Ocean with routes, B) AoI for the application.

The identified area, which is approximately 300km × 300km, is interesting to mon-

itor for several reasons. First of all, Frobisher Bay is the only waterway leading to

Nunavut’s capital Iqaluit, which is the the largest city in the NWP area (over 6000

inhabitants). The Bay is a 230km long inlet that varies in width between 40km and

20km, with a tidal difference between 7m and 11m. The islands situated at the nar-

row inner end of the inlet, the presence of ice and the absence of port and any sort

of beach security, make the navigation in the area extremely challenging and time

consuming. For example, unloading supplies on the beach in Iqaluit takes at least 30

- 40 days and most ships suspend their voyage whenever the traditional navigation

routes in Frobisher Bay are impassable because alternative and safer routes are not

available or simply unknown. Moreover, Hudson Strait and Davis Strait are popular

fishing grounds, but they are not monitored on a regular basis and it happens that

many fishing vessels there do not use their AIS to report the position because they

are competing for the best fishing grounds with each other.

The only regular source of information on transiting, fishing or stationary vessels

are satellite S-AIS reports. Possibly, information derived from S-SAR images can

additionally contribute to the maritime picture. Cost-benefit considerations and the

fact that Iqaluit is close-by, suggest the possibility to exploit already existing sensors

and information sources in the area for vessel monitoring purposes. One option is to

use existing transmitters of radio frequencies to apply the efficient and covert passive

radar methodology. Specifically, the advantages resulting from the use of an optimized

network of passive sensors that exploit GSM base stations and VHF radio stations as

illuminators of opportunity is addressed in this scenario.
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The setup of this vessel traffic monitoring service is tackled through different steps.

First of all the Area of Interest (AoI) and the reference traffic picture are defined

on the basis of historical data. Figure 8.17 shows the maritime traffic obtained from

available S-AIS data covering a time period of 8 days in August 2013.

Figure 8.17: Example of S-AIS dataset for August 2013.

This analysis leads to the identification of different types of vessels crossing the se-

lected area, such as fishing and passenger vessels, cargo ships and tankers (occasionally

transporting hazardous materials), which have similar or different routes according to

their specific destinations. The vessel kinematics (e.g. position, course over ground

and speed over ground) and the vessel type (e.g. cargo, tanker, fishing, passenger,

etc.) are relevant for the design of transmitters-receiver configurations. Specifically,

this requires an iterative analysis. The first step foresees the identification of avail-

able transmitters in the AoI (e.g. already existent GSM base stations and/or VHF

radio stations) and the deployment of the passive receiving station, together with the

specification of their major characteristics and operative parameters (e.g. position,

height, orientation, operative frequency, transmitting power, etc.). This is made also

in accordance to the RCA analysis previously described. Then the evaluation of the

vessel PD is carried out for each TX-RX pair. To this aim the bistatic SNR is cal-

culated for the entire AoI under the assumption of a stationary target, whose RCS

is constant throughout a single radar scan (e.g. Swerling I Model) and for a given

PFA. If the achieved performance is not satisfactory, new transmitters are introduced

and the configuration is iteratively optimized. Then, passive radar measurements are

simulated for the reference traffic picture and PR tracks are generated by resorting

to the MHT algorithm.
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In order to test over real data the capability of a passive radar based monitoring

system exploiting the KB-MHT algorithm in Section 5.3 three sub areas in the entire

AoI have been identified. They are reported in Figure 8.18, together with the S-

AIS data registered in two consecutive days in August 2013 for three different vessels

(passenger ship, cargo and tanker). As expected, the S-AIS data present gaps over the

entire observation period. The passive radar measurements and the derived tracks

are expected to fill completely or partially these gaps ensuring a continuous vessel

monitoring.

Figure 8.18: Sub Areas.

In the first sub area, which covers part of the Frobisher Bay with an extension of

100km × 100km, only four real GSM transmitting base stations exist, almost co-

located in Iqaluit. Other illuminators are simulated in order to cover the Bay with

adequate probability of detection (PD) values, together with the receiver base station.

Figure 8.19 shows an example of the adopted bistatic geometries: the transmitting
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(real and simulated) and receiving stations are reported together with the global

coverage created in the area. Specifically, for each sensor, the Field of View (FoV) and

the orientation (heading angle defined clockwise with respect to the North direction)

are reported. For the simulated TX and RX two illumination sectors have been

considered.

Figure 8.19: Position of the GSM transmitting and receiving stations in the Sub-Area#1.

The choice of the simulated TX and RX positions has been supported by the radar

coverage analysis. The exploitation of the Digital Terrain Elevation Data allows to

determine the proper sensors’ locations in order to maximize their coverage. Figure

8.20 shows an example of this process: TX and RX positions (Latitude, Longitude

and Height) have been refined in accordance to the DTEM. The colors in the picture

(e.g. red and yellow) represent the sensor coverage evaluated for different terrain

heights, red color for 0m and yellow for 50m AMSL, respectively.
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Figure 8.20: Refinement of the TX and RX positions in accordance to the RCA.

For each TX-RX configuration, the correspondent PD map is generated. An example

of one PD map and the cumulative is PD is depicted in Figure 8.21 and Figure 8.22,

respectively. They are evaluated on the basis of the parameters reported in the Table

8.3 for the GSM case.

166



8.2 Vessel Monitoring in the Canadian Arctic

Figure 8.21: PD map for one TX-RX configuration in the Sub-Area #1.

Figure 8.22: Cumulative PD map for the sensor configuration adopted in the Sub-Area#1.

Then, passive radar measurements and tracks are then simulated. The S-AIS tracks of

the vessels are subject to the procedure described in the previous Section to generate

the ground truth in WGS84 Coordinates. Then, the simulated radar measurements

are provided in terms of bistatic range, Doppler and azimuth angle, taking into ac-

count the probabilities of detection and the measurement errors. Specifically, for this

application we took σr = 300m, σφ = 2◦ and σṙ = λσd = λ2Hz as reference values

for the simulation, where σd represents the accuracy in Doppler. In addition, only the

measurements with Probability of Detection larger than 0 are provided as result of

the simulation. Figure 8.23(A) shows the detection region for a given TX-RX bistatic

geometry, with two vessels crossing the area. The passive radar measurements gener-
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Table 8.3: Parameters for PD generation and passive radar measurements and tracks sim-
ulations.

TX Parameters Value RX Parameters Value

Frequency 1900MHz Frequency 1875MHz

Beamwidth 4.15MHz Beamwidth 81.3kHz

Field of View 120◦ Field of View 120◦

Distance of View 40km Distance of View 40km

Antenna Gain 10dB Antenna Gain 10dB

Transmitting Power 10W Noise Figure 10W

Losses 5dB

CPI 1.8s

Pulses 500

Target Parameters Value Other Parameters Value

RCS 100m2 PFA 10−3

Height 20m Azimuth Resolution 3.2◦

MDV 4m/s

ated by considering measurement errors and in accordance to the detection probability

map are reported in Figure 8.23(B).

Figure 8.23: (A): PD map for one TX-RX configuration in the Sub-Area#1, (B) Simulated
passive radar measurements
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These measurements and the false target detections generated for each TX-RX pair

(i.e. false alarms uniformly distributed in the AoI in accordance with the false alarm

probability parameters in Table 8.3 and the PD map) represent the main input for

the tracking algorithm. The output is depicted in Figure 8.24.

Figure 8.24: Ground truth and simulated passive radar tracks in the Sub-Area#1

The black plots represent the ground truth, while the blue ones are the simulated

passive radar tracks. They have been evaluated by fusing the contribution of all the

TX-RX bistatic geometries in the AoI and by resorting to the cumulative probability

of detection depicted in Figure 8.22. In particular five targets are navigating in the

AoI in the considered time window: for the selected processing parameters the tracker

provides 52 track segments as output. They are post-processed to get continuous

tracks, as depicted in Figure 8.25, where the results are shown for a passenger ship

and a tanker. Specifically, due to the probability of detections, the passenger ship final

track is made of 12 segments, (e.g. track continuity of 45.6%), while the tanker track

results continuous (only 1 segment, track continuity of 99.9%). The track continuity is

evaluated over the time intervals in which the PD > 0, for both the target separately.
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Figure 8.25: Ground truth and simulated passive radar tracks for passenger ship and tanker
in the Sub-Area#1
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If we compare this results with the S-AIS tracks for the same vessels (i.e. the black

stars in Figure 8.25), it its evident to see how the exploitation of passive radar data

brings a significant improvement for the vessel monitoring task, filling the gap between

S-AIS detections, as depicted in Figure 8.26 for passenger ship (left) and for the tanker

(right).

Figure 8.26: Sensor data availability for passenger ship (left) and for tanker (right) in Sub-
Area#1.

As the other two Sub-Areas#2 and #3 in Figure 8.18 are concerned, the overall data

simulation and processing took place by resorting to real GSM BTS and simulated

VHF transmitting stations, whose coverage in range is greater than the GSM case

with a FoV of 360◦. The position of the BTSs and the tracking results are reported

in Figure 8.27 and Figure 8.28 for both Sub-Areas.
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Figure 8.27: Positions and illuminating sectors of BTSs (left); Ground truth and simulated
passive radar tracks in the Sub-Area#2 (right).

Figure 8.28: Positions and illuminating sectors of BTSs (left); Ground truth and simulated
passive radar tracks in the Sub-Area#3 (right).

For both cases, the fusion of S-AIS data with the simulated passive radar tracks

brought to a continuous vessel monitoring. Figure 8.29 shows the sensor data avail-

ability for the passenger ship and the tanker along their journey through the selected

Sub-Areas, as depicted in Figure 8.18.
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Figure 8.29: Sensor data availability for passenger ship (left) and for tanker (right) through
all Sub-Areas.

8.3 Summary

In this Chapter the use of passive radar technologies supporting already established

coastal surveillance systems was presented. Specifically, a GSM-PCL based system

has been tested to monitor vessels in two scenarios: in the Baltic Sea, characterized

by dense traffic conditions and dense clutter environment, and in the remote region

of the Canadian Arctic, which suffers from the lack of common surveillance systems

and infrastructure.

In both cases, it was demonstrated how the exploitation of the context information

(i.e. target detection probabilities, clutter distributions and DTED models) encoded

in georeferenced maps brought added value to the overall system. For the Baltic Sea

scenario case, an improvement in the vessel tracking task was envisaged. Specifically,

the adopted KB-MHT algorithm allowed achieving better performance in terms of

track continuity and false track rate reduction. As the Canadian Arctic scenario is

concerned, the terrain and bathymetry models were used to support the choice of

the TX-RX configuration, which is demonstrated to be extremely important for the

system performance given its bistatic nature, while resorting to the PD maps allowed

improving the tracks continuity.
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CHAPTER IX

Conclusions

The objective of the presented research work is to demonstrate that background

knowledge can be effectively exploited to improve the situational awareness in different

operative applications in the maritime environment. Specifically, the tracking and

data fusion processing scheme, which forms the basis for compiling the traffic picture,

has been considered as “recipient” of the innovative features. Diverse features have

been taken into consideration during the work, since the maritime environment is rich

of a priori knowledge (sea lanes, coastlines, bathymetry, etc.) and common practices

that might be promisingly used to better infer the presence and dynamic behaviour

of moving targets.

Having identified the knowledge base, state-of-the-art tracking algorithms have been

successfully modified in order to constrain or modify the evolution of the target state

based on the available knowledge. Constrained Bayesian theory has been widely used

in this work as framework for the mathematical derivation of the knowledge-based

filtering techniques.

Since both the availability of knowledge and the available sensor measurements largely

depend on the specific application, it has been decided to address a wider range of

solutions that cope with the different operative applications. The addressed solutions

are presented in this work with focus on (i) active radar surveillance in coastal areas,

(ii) collaborative vessel traffic monitoring in high seas and coastal areas, and (iii)

passive radar surveillance in coastal areas.

An extensive use of live data has been made, which have been collected during test

campaigns performed within European and international research consortia. These
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data provided a reliable basis for simulating complexer scenarios, which have been

then processed by the innovative algorithms. The building of test scenarios and char-

acteristics of knowledge elements derived from extensive discussions with operators

and stakeholders for the addressed applications.

The research results demonstrate improvements in track continuity and track accu-

racy for the addressed test scenarios. A significant effort has been provided in the

customization of the techniques to the specific use cases and in the tailoring of the

algorithms’ parameters. The analysis of environment characteristics, sensor measure-

ments, dependencies of track evolution from each contributing parameters as well

as the real influence of the addressed knowledge features, has built up a significant

expertise on this topic, which combines theoretical aspects and the “practical data

analysis” experience. The achieved results have been addressed as promising by the

stakeholders themselves.

Summarizing the results, the work confirms and assesses the potential benefits of

constrained filtering for maritime surveillance as well as highlights the dependency

of the optimal formulation of the knowledge-based technique on the scenario. It is

realistic to say that the optimum solution does not exist, i.e., a tool that generally

outperforms the non-constrained techniques for all the addressed cases. The data

analysis experience is the key enabler for mapping the theoretical formulation into

the operative solution.

Based on the achieve results, it is author’s opinion that the herein described techniques

has laid down a wide mathematical framework for future research activities, and has

paved the way with several examples on how to turn this into application-specific

solutions. Future research work will move on from this basis by addressing higher level

of inference and assessing the impact that knowledge might have on these. Specifically,

it is worth mentioning the following processing steps, which have not been covered

by this work:

� measurement-to-measurement, measurement-to-track and track-to-track associ-

ation;

� target classification and identification;

� inference on intention and level of risk.
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der Gesellschaft für Informatik e.V., 2010, pp.796-799, Leipzig (DE), 27 Sept. -
01. Oct. 2010.

6. Battistello, G.; Ulmke, M.; Koch, W., “Knowledge-aided Multi-Sensor Data
Processing for Maritime Surveillance”, in Proceedings SPIE 8047, Ground/Air
Multisensor Interoperability, Integration, and Networking for Persistent ISR II,
80470N, 2011, Orlando, Florida (US), 25 April 2011.

187



7. Battistello, G.; Ulmke, M., “Exploitation of a priori Information for Tracking
Maritime Intermittent Data Sources”, in Proceedings of the 14th International
Conference on Information Fusion (FUSION), 2011, pp.1-8, Chicago, Illinois
(US), 5-8 July 2011.

8. Papi, F.; Podt, M.; Boers, Y.; Battistello, G.; Ulmke, M., “Bayes Optimal
Knowledge Exploitation for Target Tracking with Hard Constraints”, in Pro-
ceedings of 9th IET Data Fusion and Target Tracking Conference (DFTT 2012):
Algorithms and Applications, pp.1-6, London (UK), 16-17 May 2012.

9. Battistello, G.; Ulmke, M.; Papi, F.; Podt, M.; Boers, Y., “Assessment of
Vessel Route Information Use in Bayesian Nonlinear Filtering”, in Proceed-
ings of 15th International Conference on Information Fusion (FUSION), 2012,
pp.447-454, Singapore, 9-12 July 2012.

10. Papi, F.; Podt, M.; Boers, Y.; Battistello, G.; Ulmke, M., “On Constraints
Exploitation for Particle Filtering Based Target Tracking”, in Proceedings of
15th International Conference on Information Fusion (FUSION), 2012, pp.455-
462, Singapore, 9-12 July 2012.

11. Zemmari, R.; Daun, M.; Battistello, G.; Nickel, U., “Target Estimation Im-
provement of GSM Passive Coherent Location System”, in Proceedings of IET
International Conference on Radar Systems (Radar 2012), pp.1-6, Glasgow
(UK), 22-25 Oct. 2012.

12. Gonzalez, J.; Battistello, G.; Schmiegelt, P.; Biermann, J., “Semi-automatic
Extraction of Ship Lanes and Movement Corridors from AIS Data”, in Pro-
ceedings of IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), 2014, pp.1847-1850, Quebec (Canada), 13-18 July 2014.

13. Battistello, G.; Gonzalez, J.; Ulmke M., “Vessel Route Prediction for Mar-
itime Surveillance”, in Proceedings of 9th Security Research Conference (Future
Security), 2014, pp. 348-355, Berlin (DE), 16-18 Sept. 2014.

14. Battistello, G.; Ulmke M.; Mohrdieck, C., “Enhanced Maritime Traffic Picture
for the Canadian Arctic”, in Proceedings of 10th Security Research Conference
(Future Security), 2014, pp. 41-48, Berlin (DE), 15-17 Sept. 2015.

15. Battistello, G.; Ulmke M.; Gonzalez, J.; Mohrdieck, C., “Multi-sensor Data
Fusion for Improved Maritime Traffic Monitoring in the Canadian Arctic”, in
9th Symposium of the International Society of Digital Earth (ISDE), 2015,
Halifax, Nova Scotia (Canada), 5-9 Oct 2015.

16. Gonzalez, J.; Madhogaria, S.; Battistello, G.; Ulmke M., “Assignment of
Probabilities to Ship Detections from Satellite SAR Imagery Based on Ice Cover
and Satellite AIS Density Maps”, in Proceedings of 36th European Association

188



of Remote Sensing Laboratories (EARSeL) Symposium, 2016, Bonn (DE), 24-26
June 2016.

17. Battistello, G.; Gonzalez, J.; Ulmke, M.; Koch, W.; Mohrdieck, C., “Multi-
sensor Maritime Monitoring for the Canadian Arctic: Case Studies”, in Pro-
ceedings of 19th International Conference on Information Fusion (FUSION),
2016, Heidelberg (DE), 5-8 July 2016.

Journals

1. Zemmari, R.; Broetje, M.; Battistello, G.; Nickel, U., “GSM Passive Coherent
Location System: Performance Prediction and Measurement Evaluation”, in
IET Radar, Sonar and Navigation, vol.8, no.2, pp.94-105, February 2014, [DOI:
10.1049/iet-rsn.2013.0206].

Book Chapters

1. Battistello, G.; Mertens, M.; Ulmke, M.; Koch, W., “Context Exploitation for
Target Tracking”, Chapter in the Book: “Context-Enhanced Information Fusion
- Boosting Real World Performance with Domain Knowledge”, L. Snidaro, J.
Garcia, J. Llinas and E. Blasch Editors, Springer, 2016.

189





Bibliography

[Age15] European Maritime Safety Agency. Vessel Tracking Globally - Under-
standing LRIT. EMSA, 2015.

[Age18] European Maritime Safety Agency. Copernicus Maritime Surveillance
Service - Info Sheet. European Maritime Safety Agency, 2018.

[AGOR02] M. S. Arulampalam, N. Gordon, M. Orton, and B. Ristic. A Variable
Structure Multiple Model Particle Filter for GMTI Tracking. In Proc.
5th International Conference on Information Fusion, Annapolis, 2002.

[Art15] B. A. Mc Arthur. A System Concept for Persistent, Unmanned, Local-
Area Arctic Surveillance. SPIE Proceedings Unmanned/Unattended
Sensors and Sensor Networks XI; and Advanced Free-Space Optical
Communication Techniques and Applications,, 9647, 2015.

[AS03] C. Agate and K. J. Sullivan. Road-Constraint Target Tracking and
Identification Using a Particle Filter. In Proc. Signal and Data Pro-
cessing of Small Targets, vol. 5204, SPIE, 2003.

[BBP09] B. Bell, J. Burke, and G. Pillonetto. An inequality constrained nonlin-
ear kalman-bucy smoother by interior point likelihood maximization.
Automatica, 45(1):25 – 33, 2009.

[Bec00] K. Becker. Target Motion Analysis aus Winkelmessungen:
Parametrische Studie in drei Dimensionen. FKIE Bericht 12, FGAN,
Wachtberg-Werthoven, 2000.

[Bla04] S. Blackman. Multiple Hypothesis Tracking for Multiple Target Track-
ing. IEEE Aerospace and Electronic Systems Magazine, 19:5 – 18, 2004.

[BP99] S. Blackman and R. Popoli. Design and Analysis of Modern Tracking
Systems. Artech House, Norwood, MA, 1999.

191



Bibliography

[Bri04] J. Briggs. Target Detection by Marine Radars. IEE Publishing, Steve-
nage, UK, 2004.

[Bro12] M. Broetje. Multistatic Multihypothesis Tracking Techniques for Under-
water and Air Surveillance Applications. Siegen: GCA-Verlag Waabs,
2012.

[BSL95] Y. Bar-Shalom and X.-R. Li. Multitarget-Multisensor Tracking: Prin-
ciples and Techniques. YBS Publishing, Storrs, CT, 1995.

[BSLK01] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan. Estimation with Appli-
cations to Tracking and Navigation: Theory, Algorithms and Software.
John Wiley & Sons, 2001.

[BU11] G. Battistello and M. Ulmke. Exploitation of a priori Information for
Tracking Maritime Intermittent Data Sources. In Proc. 14th Interna-
tional Conference on Information Fusion, Chigago, 2011.

[BUP+12] G. Battistello, M. Ulmke, F. Papi, M. Podt, and Y. Boers. Assessment
of Vessel Route Information Use in Bayesian non-linear Filtering. In
Proc. 15th International Conference on Information Fusion, Singapore,
2012.

[CCL06] F. Colone, R. Cardinali, and P. Lombardo. Cancellation of Clutter and
Multipath in Passive Radar Using a Sequential Approach. In Proc. of
IEEE Radar Conference, Verona, NY, USA, 2006.

[CGPB11] R. Chou, M. Geist, M. Podt, and Y. Boers. Performance Evaluation for
Particle Filters. In Proc. 14th International Conference on Information
Fusion, Chicago, USA, 2011.

[Che07] M. Cherniakov. Bistatic Radar. Principle and Practice. John Wiley
and Sons Ltd., 2007.

[Cop] https://www.copernicus.eu/en.

[CWGS10] K. Chetty, K. Woodbridge, H. Guo, and G.E. Smith. Passive Bistatic
WiMAX Radar for Marine Surveillance. In Proc. IEEE International
Radar Conference, 2010.

[DFG01] A. Doucet, N. De Freitas, and N.J. Gordon. Sequential Monte Carlo
Methods in Practice. Springer, 2001.

[DNK12] M. Daun, U. Nickel, and W. Koch. Tracking in Multistatic Passive
Radar Systems Using DAB/DVB-T Illumination. Signal Processing,
92(6):1365–1386, 2012.

192



Bibliography

[DW88] H. F. Durrant-Whyte. Integration, Coordination and Control of Multi-
Sensor Robot Systems. Springer, Boston, MA, 1988.

[ea14] A. Alessandrini et al. Data Driven Contextual Knowledge from and for
Maritime Situational Awareness. In Proceedings of the 1st International
Workshop on Context-Awareness in Geographic Information Services,
2014.

[exa15a] exactEarth. Satellite AIS. exactEarth, 2015.

[exa15b] exactEarth. www.exactearth.com/products. exactEarth, 2015.

[Fea08] J. L. Forand and et al. Surveillance of Canada’s high Arctic. In Proc.
of Oceans 2008, Quebec City, QC, 2008.

[fIS] NEREIDS: New Service Capabilities for Integrated and Ad-
vanced Maritime Surveillance. http://maritimesurveillance.security-
copernicus.eu/fp7-supporting-projects/nereids.

[FRH86] J. Fussell, D. Rundquist, and J.A. Harrington. On defining Re-
mote Sensing. Photogrammetric Engineering and Remote Sensing,
52(9):1507–1511, 1986.

[GB05] H.D. Griffiths and C.J. Baker. Passive Coherent Location Radar Sys-
tems. Part 1: Performance Prediction. IEE Proceedings Radar, Sonar
and Navigation, 152(3):153–159, 2005.

[GB17] H.D. Griffiths and C.J. Baker. An Introduction to Passive Radar.
Artech House, 2017.

[GBB+02] H.D. Griffiths, C.J. Baker, J. Baubert, N. Kitchen, and M. Treagust.
Bistatic radar using satellite-borne illuminators. In Proc. IEEE Inter-
national Conference on Radar, 2002.

[GCS09] J. George, J.L. Crassidis, and T. Singh. Threat Assessment Using
Context-Based Tracking in a Maritime Environment. In Proc. 12th
Int. Conference on Information Fusion, Seattle, WA, USA, 2009.

[GH07] N. Gupta and R. Hauser. Kalman filtering with equality and inequality
state constraints. Source: http:// arxiv.org/ pdf/ 0709.2791.pdf , page
URL last checked December 2014, 2007.

[GR08] F. Gini and M. Rangaswamy. Knowledge Based Radar Detection,
Tracking and Classification. Wiley-Interscience, 2008.

[Gue03] J. R. Guerci. Space-Time Adaptive Processing for Radar. Artech House,
Boston, London, 2003.

193

http://arxiv.org/pdf/0709.2791.pdf


Bibliography

[GWB08] H. Guo, K. Woodbridge, and C.J. Barker. Evaluation of wifi beacon
transmissions for wireless based passive radar. Proc. IEEE Radar Con-
ference, pages 1–6, 2008.

[Hae91] W. K. Haerdle. Smoothing Techniques - With Implementation in S.
Springer - Verlag, 1991.

[HKGN06] G. Hendeby, R. Karlsson, F. Gustafsson, and N.Gordon. Performance
Issues in Non-Gaussian Filtering Problems. In Proc. of IEEE Nonlinear
Statistical Signal Workshop, 2006.

[HL97] D.L. Hall and J. Llinas. An introduction to multisensor data fusion.
Proceedings of the IEEE, 85:6–23, 1997.

[HM04] D.L. Hall and S. McMullen. Mathematical Techniques in Multisensor
Data Fusion. Artech House, 2004.

[HMR05] P.E. Howland, D. Maksimiuk, and G. Reitsma. Fm radio based bistatic
radar. Proc. IEE Radar Sonar Navigation, 152(3):107–115, 2005.

[How99] P.E. Howland. Target tracking using television-based bistatic radar.
Proc. IEE Radar Sonar Navigation, 146(3):166–174, 1999.

[(IM97] International Maritime Organisation (IMO). Resolution A.857(20),
Guidelines for Vessel Traffic Service. IMO, 1997.

[(IM08] International Maritime Organisation (IMO). Resolution MSC.263(84),
Revised performance standards and functional requirements for the
LRIT of ships. IMO, 2008.

[IR14] ITU-R. Recommendation ITU-R M.1371-5: Technical characteristics
for an automatic identification system using time division multiple ac-
cess in the VHF maritime mobile frequency band. ITU-R, 2014.

[JU97] S. J. Julier and J. K. Uhlmann. A New Extension of the Kalman
Filter to Nonlinear Systems. In Proc. 11th International Symposium
Aerospace/Defense Sensing, Simulation and Controls (AeroSense),
1997.

[JU04] S. J. Julier and J. K. Uhlmann. Unscented Filtering and Nonlinear
Estimation. Proceedings of the IEEE, 92(3):401 – 422, 2004.

[Kal60] R.E. Kalman. A New Approach to Linear Filtering and Prediction
Problems. Journal of Basic Engineering, 82(35):35–45, 1960.

[KB61] R.E. Kalman and R.S. Bucy. New Results in Linear Filtering and
Prediction Theory. Journal of Basic Engineering, 83(1):95–108, 1961.

194



Bibliography

[KB07] S. Ko and R. Bitmead. State Estimation for Linear System with State
Equality Constraints. Automatica, 43(8):1363–1368, 2007.

[KBSPK00] T. Kirubarajan, Y. Bar-Shalom, K. Pattipati, and I. Kadar. Ground
Target Tracking with Variable Structure IMM Estimator. IEEE Trans-
actions on Aerospace and Electronic Systems, 36(1):26 – 46, 2000.

[KK01] W. Koch and R. Klemm. Ground Target Tracking with STAP Radar.
IEE Proceedings - Radar, Sonar and Navigation, 148(3):173 – 185, 2001.

[KKU06] W. Koch, J. Koller, and M. Ulmke. Ground Target Tracking and Road
Map Extraction. ISPRS Journal of Photogrammetry & Remote Sens-
ing, Elsevier, 61:197 – 208, 2006.

[Kle06] R. Klemm. Principles of Space-Time Adaptive Processing. 3rd Edition,
IET Radar, Sonar and Navigation, Series 21, 2006.

[Koc06a] W. Koch. Advanced Target Tracking Techniques. Advanced Radar Sig-
nal and Data Processing, Educational Notes RTO-EN-SET-086, Paper
2, France, 2006.

[Koc06b] W. Koch. Tracking and Data Fusion Applications. Advanced Radar Sig-
nal and Data Processing, Educational Notes RTO-EN-SET-086, Paper
9, France, 2006.

[Koc07] W. Koch. On Exploiting ’Negative’ Sensor Evidence for Target Track-
ing and Sensor Data Fusion. In Proc. 10th International Conference on
Information Fusion, Quebec, Canada, 2007.

[Koc10] W. Koch. On Bayesian Tracking and Data Fusion: a Tutorial Introduc-
tion with Examples. IEEE Aerospace and Electronic System Magazine,
25(7):29 – 52, 2010.

[Koc14] W. Koch. Tracking and Sensor Data Fusion - Methodological Frame-
work and Selected Applications. Springer Verlag Berlin Heidelberg,
2014.

[Lap14] S. Lapinski. LRIT and AIS: An analysis of October 2010 data. DRDC
Atlantic TM 2012-234; Defence Research and Development Canada-
Atlantic, 2014.

[Lof90a] O. Loffeld. Estimationstheorie, Bd.1, Grundlagen und stochastische
Konzepte. R. Oldenbourg Verlag GmbH, Muenchen, 1990.

[Lof90b] O. Loffeld. Estimationstheorie, Bd.2, Anwendungen, Kalman-Filter. R.
Oldenbourg Verlag GmbH, Muenchen, 1990.

195



Bibliography

[LSE16] J. Llinas L. Snidaro, J. Garcia and E. Blasch Editors. Context-Enhanced
Information Fusion - Boosting Real World Performance with Domain
Knowledge. Springer, 2016.

[MKK14] M. Mertens, T. Kirubarajan, and W. Koch. Exploiting Doppler Blind
Zone Information for Ground Moving Target Tracking with Bistatic
Airborne Radar. IEEE Transactions on Aerospace and Electronic Sys-
tems, 50(1):130 – 148, 2014.

[MSMM05] D. Musicki, S. Suvorova, M. Morelande, and B. Moran. Clutter Map
and Target Tracking. In Proc. 8th International Conference on Infor-
mation Fusion, Philadelphia, 2005.

[NAT08] NATO. Multinational Experimentation 5 MSA, final report. 2008.

[Nic14] U. R. O. Nickel. System Considerations for Passive Radar with GSM
Illuminators. In Proc. of IEEE International Symposium on Phased
Array Systems and Technology (ARRAY), 2014.

[Off07] National Maritime Domain Awarness Coordination Office. National
Concept of Operations for Maritime Domain Awareness. 2007.

[oMAtNI07a] International Association of Marine Aids to Navigation and Light-
house Authorities (IALA). Establishment of VTS Radar Services 1056.
Saint Germain en Laye, France, 1st Edition, 2007.

[oMAtNI07b] International Association of Marine Aids to Navigation and Light-
house Authorities (IALA). Recommendation V-128 on Operational and
Technical Performance Requirements for VTS Equipment. Saint Ger-
main en Laye, France, 3rd Edition, 2007.

[oMAtNI09] International Association of Marine Aids to Navigation and Light-
house Authorities (IALA). Recommendation V-119 on Implementation
of Vessel Traffic Services. Saint Germain en Laye, France, 2nd Edition,
2009.

[oMAtNI12] International Association of Marine Aids to Navigation and Light-
house Authorities (IALA). IALA Guideline 1089 on Provision of Vessel
Traffic Services. Saint Germain en Laye, France, Edition 1, 2012.

[oMAtNI16] International Association of Marine Aids to Navigation and Light-
house Authorities (IALA). VTS Manual. Saint Germain en Laye,
France, Edition 6, 2016.

[ORB] ORBCOMM. ORBCOMM Website,
http://www.orbcomm.com/services-ais.htm.

196



Bibliography

[Org80] International Maritime Organization. International Convention for the
Safety of Life at Sea (SOLAS), 1974 - Chapter V - Safety of Navigation.
International Maritime Organization, 1980.

[OSG09] U. Orguner, T.B. Schon, and F. Gustafsson. Improved target track-
ing with road network information. Aerospace conference, 2009 IEEE,
pages 1–11, March 2009.

[oSTTAB08] B. o. S. Teixeira, L. A. B. Torres, L. A. Aguirre, and D. S. Bernstein.
Unscented Filtering for Interval-Constrained Nonlinear Systems,. In
Proceedings of 47th IEEE Conference on Decision and Control, Cancun,
Mexico, 2008.

[PASSftAG] PASSAGES: Protection and Secure Advanced Surveillance System
for the Arctic: Green, Efficient. http://passages.ie.dal.ca/.

[PHBB14] G. Pallotta, S. Horn, P. Braca, and K. Bryan. Context-enhanced Ves-
sel Prediction Based on Ornstein-Uhlenbeck Processes Using Historical
AIS Traffic Patterns: Real-world Experimental Results. In Proceedings
of the 17th International Conference on Information Fusion, 2014.

[PPB+12] F. Papi, M. Podt, Y. Boers, G. Battistello, and M. Ulmke. On Con-
straints Exploitation for Particle Filtering Based Target Tracking. In
Proceedings of the 15th International Conference on Information Fu-
sion, 2012.

[PVB13] G. Pallotta, M. Vespe, and K. Bryan. Vessel Pattern Knowledge Dis-
covery from AIS Data: a Framework for Anomaly Detection and Route
Prediction. Entropy, 6(15), 2013.

[RAG04] B. Ristic, S. Arulampalam, and N. Gordon. Beyond the Kalman Filter:
Particle Filters for Tracking Applications. Artech House, 2004.

[RD00] R.L. Rothrock and O.E. Drummond. Performance metrics for multiple-
target tracking. Proc. SPIE 4048, Signal and Data Processing os Small
Targets 2000, 2000.

[RRL01] C. Rao, J. Rawlings, and J. Lee. Constrained Linear State Estimation
- a Moving Horizon Approach. Automatica, 37(10):1619 – 1628, 2001.

[RRM03] C. Rao, J. Rawlings, and D. Mayne. Constrained State Estimation
for Nonlinear Discrete-Time Systems: Stability and Moving Horizon
Approximations. IEEE Transactions on Automatic Control, 48(2):246
– 258, 2003.

[RT01] K.J. Rawson and E.C. Tupper. Basic Ship Theory. Butterworth-
Heineman, Elsevier, 2001.

197



Bibliography

[SC02] D. Simon and T. L. Chia. Kalman Filtering with State Equality Con-
straints. IEEE Transactions on Aerospace and Electronic Systems,
38(1):128 – 136, 2002.

[SC05] R. Saini and M. Cherniakov. DTV signal ambiguity function analysis
for radar application. Proc. IEE Radar Sonar Navigation, 152(3):133–
142, 2005.

[SD10] I. Schlangen and M. Daun. Different Tools for Clutter Mapping. In
Proc. of INFORMATIK 2010-Jahrestagung der Gesellschaft fuer In-
formatik e.V. (GI) 5th German Workshop Sensor Data Fusion (SDF
2010), Leipzig, 2010.

[Sim10] D. Simon. Kalman Filtering with State Constraints: a Survey of Lin-
ear and Nonlinear Algorithms. IET Control Theory and Applications,
4(8):1303 – 1318, 2010.

[Sko08] M. Skolnik. Radar Handbook. Third edition, McGraw-Hill, 2008.

[Sor85] H. W. Sorenson. Kalman filtering: Theory and Application. IEEE
Press, 1985.

[SS10] D. Simon and D. L. Simon. Constrained Kalman Filtering via Den-
sity Function Truncation for Turbofan Engine Health Estimation. Int.
Journal of System Science, 41(2):159–171, 2010.

[Str08] D. Streller. Road Map Assisted Ground Target Tracking. In Proc. 11th
International Conference on Information Fusion, Cologne, 2008.

[Tan96] H. Tanizaki. Nonlinear Filters: Estimation and Applications. Second
Edition, Springer-Verlag, 1996.

[TB07] H. L. V Trees and K. L. Bell. Bayesian Bounds for Parameter Estima-
tion and Nonlinear Filtering/Tracking. Wiley-Interscience, New York,
2007.

[TMN98] P. Tichavsky, C. Muravchik, and A. Nehorai. Posterior Cramer-Rao
Bounds for Discrete-Time Nonlinear Filtering. IEEE Transaction on
Signal Processing, 46(5):1386, 1998.

[TSL+05] D.K.P. Tan, H. Sun, Y. Lu, M. Lesturgie, and H.L. Chan. Passive
radar using Global System for Mobile communication signal: theory,
implementation and measurements. Proc. IEE Radar Sonar Naviga-
tion, 152(3):116–123, 2005.

[UK06] M. Ulmke and W. Koch. Road-Map Assisted Ground Moving Target
Tracking. IEEE Transactions on Aerospace and Electronic Systems,
42(4):1264 – 1274, 2006.

198



Bibliography

[VBBV12] M. Vespe, K. Bryan, P. Braca, and I. Visentini. Unsupervised Learning
of Maritime Traffic Patterns for Anomaly Detection. In Proceedings of
9th IET Data Fusion and Target Tracking Conference, London, 2012.

[vK02] G. van Keuk. MHT extraction and track maintenance of a target
formation. IEEE Transaction on Aerospace and Electronic Systems,
288(38):525–531, 2002.

[VSB+08] M. Vespe, M. Sciotti, F. Burro, G. Battistello, and S. Sorge. Maritime
Multi-Sensor Data Association Based on Geographic and Navigational
Knowledge. In Proceedings of IEEE Radar Conference,2008, Rome,
2008.

[WCC02] L. Wang, Y. Chiang, and F. Chang. Filtering Method for Nonlinear
System with Constraints. IEE Proc. on Control Theory Application,
149(6):525–531, 2002.

[WDW92] W. Wen and H. Durrant-Whyte. Model-based multi-sensor data fusion.
In IEEE Int. Conf. on Robotics Automation, 1992.

[Weh95] D.R. Wehner. High-Resolution Radar. Artech House, 1995.

[Why87] F.E. Whyte. Data Fusion Lexicon. In Joint Directors of Laboratories,
Technical Panel for C3, Data Fusion Sub-Panel, Naval Ocean Systems
Center, San Diego, 1987.

[Wir13] W.D. Wirth. Radar Techniques Using Array Antennas. Second Edition,
IET, 2013.

[WKV09] Q. Wang, S.R. Kulkarni, and S. Verdu. Divergence Estimation for
Multidimensional Densities via k-Nearest-Neighbor Distances. IEEE
Trans. on Information Theory, 55(5):2392–2405, 2009.

[WLH09] Q. Wang, Y. Lu, and C. Hou. An experimental WiMAX based passive
radar study. In Microwave Conference 2009, 2009.

[YB08] C. Yang and E. Blasch. Kalman Filtering with Nonlinear State Con-
straints. IEEE Transactions on Aerospace and Electronic Systems,
45(1):70 – 84, 2008.

[ZBBN14] R. Zemmari, M. Broetje, G. Battistello, and U. Nickel. GSM Passive
Coherent Location System: Performance Prediction and Measurement
Evaluation. IET Radar, Sonar and Navigation, 8(2):94 – 105, 2014.

[ZDBN12] R. Zemmari, M. Daun, G. Battistello, and U. Nickel. Target Estima-
tion Improvement of GSM Passive Coherent Location System. In IET
International Conference on Radar Systems, Glasgow (UK), 2012.

199



Bibliography

[Zem16] R. Zemmari. GSM Passive Coherent Location Signal Processing: Im-
pact on System Performance. Siegen: GCA-Verlag Waabs, 2016.

[ZKL08] M. Zhang, S. Knedlik, and O. Loffeld. An Adaptive Road-Constrained
IMM Estimator for Ground Target Tracking in GSM Networks. In 11th
International Conference on Information Fusion, Cologne, 2008.

[ZNW09] R. Zemmari, U. Nickel, and W. D. Wirth. GSM Passive Radar for
Medium Range Surveillance. In European Radar Conference, EURAD,
Rome (IT), 2009.

[ZWBS05] X. Zhang, P. Willett, and Y. Bar-Shalom. Dynamic Cramer-Rao Bound
for Target Tracking in Clutter. IEEE Transaction on Electronic Sys-
tems, 41(4):1154 – 1167, 2005.

200


	Introduction
	Motivations and Objectives
	Work Structure

	Fundamentals of Maritime Situational Awareness
	Maritime Surveillance Sensors and Related Technical Requirements
	Active Radar
	Automatic Identification System
	Satellite Automatic Identification System
	Long Range Identification and Tracking
	Space Earth Observation Sensors: Satellite-Synthetic Aperture Radar
	Passive Radar

	Maritime Knowledge Base Description
	Summary

	Fundamentals of Multi-Sensor Data Processing
	Bayesian Target Tracking
	System Equations
	State Estimation Problem
	Linear Gaussian Systems
	Non-linear Systems
	Data Association Problem

	Measures of Performance
	Root Mean Squared Errors
	Kullback-Leibler Divergence

	Summary

	Context Exploitation for Target Tracking
	Constrained Bayesian Filtering
	Inclusion of Constraints in the Prediction Step
	Inclusion of Constraints in the Update Step

	State-of-the-art Constrained Algorithms
	Rejection Sampling
	Pseudo Measurements
	Roadmap Assisted Target Tracking
	Blind zone Assisted Target Tracking

	Summary

	Innovative Solutions for Maritime Situational Awareness Context-based Target Tracking
	Navigation Field Assisted Target Tracking
	Context Modelling
	Filter Implementation: Model I - Force as Acceleration
	Filter Implementation: Model II - Force as Angular Acceleration

	Sea Lane Assisted Target Tracking
	Target and Context Modelling
	Filter Implementation: Context driven Target Model Switching 

	Knowledge-based Multiple Hypotheses Tracker
	Context Modelling
	Filter Implementation

	Summary

	Application-Experimentation I: Active Radar Surveillance in Coastal Areas
	Navigation Field Based Vessel Monitoring
	Test Scenarios and Simulation Rationale
	Simulation Results

	Sea Lane Based Vessel Monitoring
	Test Scenarios and Simulation Rationale
	Simulation Results over Scenario I
	Simulation Results over Scenario II

	Summary

	Application-Experimentation II: Collaborative Vessel Traffic Monitoring In High Seas and Coastal Areas
	Vessel Route Prediction
	Route Prediction Module Architecture
	Route Prediction Module Algorithms
	Test Scenarios and Simulation Rationale
	Results on Real Data Sets

	Summary

	Application-Experimentation III: Passive Radar Surveillance in Coastal Areas
	Vessel Monitoring in the Baltic Sea
	Experimental System Set Up
	Test Scenario and Simulation Rationale
	Results on Real Data Set

	Vessel Monitoring in the Canadian Arctic
	Passive Radar Measurements and Tracks Simulator
	Test Scenario and Simulation Rationale

	Summary

	Conclusions
	List of Figures
	List of Tables
	List of Acronyms
	List of Own Publications
	Bibliography

