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Summary

In the postgenomic era it is impossible to annotate the majority of new proteins
in any other way than with computational methods. Our tool AHRD automat-
ically annotates proteins with human readable descriptions and Gene Ontology
(GO) terms on a genomic scale. It does so by performing a lexical analysis
modeled on the decision process of a human curator investigating the protein
descriptions of homologous proteins found by sequence similarity.

The central questions of this thesis are how GO annotations can be accurately
evaluated and how the annotation performance of AHRD can be increased.

To this end we firstly generated an unbiased ground truth set of high quality
protein annotations with minimal redundancy. It contains many proteins that
are difficult to annotate and thus facilitates contrasting annotation methods.
Secondly, we implemented and tested three evaluation metrics for the congru-
ence of GO term annotations. The third metric, which employs the structure of
the Gene Ontology and the commonness of GO terms to determine the semantic
similarity of GO annotations, is able to perform the most nuanced and consistent
evaluation. In addition to a preexisting simulated annealing-based approach a
genetic algorithm-based machine learning method was implemented to use the
aforementioned evaluation metrics to optimize AHRD’s input parameters. Al-
though the genetic algorithm was only able to provide small improvements, they
were statistically significant and parameter optimization proved to be necessary
to achieve optimal annotation performance. In the style of the lexical analysis of
candidate descriptions a new GO term-based analysis for candidate annotations
was created. This was able to improve AHRD’s GO annotation performance
and also enabled the incorporation of new quality indicators such as GO term
information content and annotation evidence codes which improved the perfor-
mance further. It also facilitated the annotation with newly combined sets of
GO terms instead of only fixed sets obtained from reference proteins. However,
this approach proved to be not viable as it resulted in a significant regression
of annotation performance. Using our evaluation method we were able to show
that AHRD is able to predict description and GO annotations better and at
a greater coverage than most of its competitors. Despite the fact that AHRD
is tailored for the application to whole proteomes from all branches of life and
for ease of use, in the CAFA3 challenge, a community-driven evaluation of GO
annotation methods that often do not have these benefits, AHRD was able to
show satisfactory results in most categories.

In conclusion, we demonstrated a reliable GO annotation evaluation method
and used it to develop AHRD’s GO annotation from an afterthought to a mature
feature. We showed that AHRD is not only successful at the annotation of
descriptions but also at GO terms, while staying applicable in whole genome
projects.
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AHRD: Automatically Annotate Proteins with Human Readable Descriptions and Gene Ontology Terms

1 Background

Emerging technologies enable the sequencing of a human genome in under 24h
[1]. In 2018 the cost for sequencing dropped below $1000 per genome [2]. With
the time and cost efficiency of high throughput sequencing rapidly rising the
amount of publicly available sequence data has grown massively [3]. As a conse-
quence, biological databases such as the UniProtKB are flooded with new entries
[4]. But there is an ever increasing discrepancy between the number of new func-
tionally unknown entries and the number of actually known and well-annotated
proteins [4]. Even for a model organism such as Arabidopsis thaliana where in
2013 94% of proteins had at least one GO annotation, only 39% of proteins had
a functional annotation with experimental evidence [5]. To overcome this divide,
protein functions can be predicted by computer-driven, automatic classification
methods. But no automatic method always works correctly. And because exist-
ing annotations are often the source for the prediction of new ones, annotation
errors can propagate through databases further and further [6, 7].

1.1 Describing Protein Function

Although human readable descriptions of proteins use scientific prose they are
still made using natural language. This makes them easy to parse by humans
but hard to compare computationally. On one hand computationally viewed,
strings of characters can appear very similar but still carry semantically distinct
concepts. On the other hand in text form, the same protein function can be
expressed in many synonymic ways seen as completely different by a computer.

The Gene Ontology (GO) [8] is a controlled vocabulary of classes (GO terms)
with relations forming a directed acyclic graph (DAG). These GO terms fall in
one of three biological knowledge domains: Biological Process (a biological “pro-
gram” facilitated by multiple molecular activities), Molecular Function (activity
of a protein on the molecular level) and Cellular Component (part of the cell
where the protein performs its function). Besides relations such as “regulates”,
which can span from one domain to another one, the most important ones are
“is a” and “part of”. These cannot go from one knowledge domain to the other
and convey clear superclass-subtype (parent-child) relationships.

The Functional Catalogue (FunCat) [9] has a similar structure. But other
than in the Gene Ontology, here every child can only have a single direct parent
class.

MapMan [10] bins are biological concepts arranged in a hierarchical tree
structure. They are part of the MapMan framework which was created specif-
ically for plant genomics. MapMan bins encompass metabolic and regulatory
processes, transcription factors, signaling pathways and stress response to biotic
as well as abiotic factors.

The InterPro database [11] integrates signatures from 13 member databases.
InterPro entries can be used to classify proteins into families and assign domains
to them. These domains provided by InterPro are protein function archetypes
that are annotated with human readable descriptions, GO terms and EC num-
bers.

12
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EC (Enzyme Commission) numbers [12] are enzyme classifications. Their nu-
merical classification scheme is based on recommendations by the Nomenclature
Committee of the International Union of Biochemistry and Molecular Biology
(IUBMB). Thus, the components of an EC number can be directly “translated”
into the name of an enzyme class.

KO (KEGG Orthology) numbers are the primary identifiers of the KEGG
(Kyoto Encyclopedia of Genes and Genomes) [13] database. Through assign-
ment to a particular KO number proteins are associated to enzymatic pathways,
chemical reactions and more.

1.2 Protein Function Prediction

1.2.1 Sequence Similarity / Homology-Based Function Prediction

Homologous proteins share a common evolutionary history. When two sequences
are more similar than what can be expected by chance, homology can be inferred.
Under selective pressure, protein function is evolutionarily conserved. The func-
tion of a protein is dependent on its structure which in turn is determined by
its amino acid sequence. The selective pressure on the function consequently
also leads to a conservation of the protein sequence. Thus, to a certain extent,
sequence similarity (i.e. homology) is linked to similarity of protein function.
But the exact amount of sequence similarity that is sufficient to guarantee a
similar structure is hard to pin down [14]. And the same can be said about
the relationship of protein sequence to enzymatic function [15]. Nonetheless,
sequence similarity is the basis of many successful protein function prediction
methods. The operating principle is to find a protein with a sequence similar
to the query protein in order to transfer the function to it, assuming homology
between the two.

Because of this it is paramount to be able to quantify the similarity of the
two sequences. The traditional way to do this is by aligning them. For the global
alignment of two biological sequences, the Needleman-Wunsch algorithm [16],
published in 1970, can be used. As an application of dynamic programming,
it divides the problem in many small problems and uses the solutions of these
small problems to find an optimal global alignment. But it has been recognized
that proteins are not monolithic. Often they are made up of several structural
domains. Protein domains are units of molecular function [17] making up a
repertoire continuously recombined by evolution to form the immense diversity
of protein function [18]. Thus, a global alignment of protein sequences will often
miss crucial similarity of some of its parts. Therefore, the Smith-Waterman al-
gorithm [19], a modification to the Needleman-Wunsch algorithm, can be used
to compute optimal local alignments. Both algorithms give optimal alignments
with respect the scoring system they are provided with. These systems have
scores for matches, mismatches (i.e. substitutions) and opening as well as exten-
sion of gaps. The scores for matches and mismatches between the 20 standard
amino acids are stored in substitution matrices. Most commonly either PAM
or BLOSUM matrices are used. PAM matrices are based on the likelihood of
each particular amino acid to be replaced by an other amino acid through point

13
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accepted mutations in an evolutionary time span [20]. BLOSUM matrices use
the log-odds score of substitution pairs in observed alignments [21]. Both the
Needleman-Wunsch and the Smith-Waterman algorithms have a quadratic re-
lationship between the length of the input sequences and the time and space
they require. So it is impractical at best or actually impossible to compute
pairwise alignments between a query and for example all 190 million proteins in
the UniProtKB [4]. For this reason the first heuristic method FASTA [22, 23]
was developed. It allows rapid identification of similar sequences in a protein
databases and then provides exact scores for local alignments to these results.
But for the size of modern database FASTA is already much too slow. Nowadays
the de facto standard for this purpose is the suit of BLAST [24] applications.
Given the required computational resources BLASTP allows the search of a
whole proteome worth of proteins in the current TrEMBL release in roughly a
day. But large proteomes, like for example Barley with almost 40 000 proteins,
can quickly push this up to the scale of weeks. More modern alternatives like
DIAMOND [25] offer further speedups of up to 20 000 times.

1.2.2 Protein Structure-Based Function Prediction

The structure determines a protein’s function to a high degree [26], and its
amino acid sequence in turn determines said structure. So in order to predict
protein function from protein sequence it makes sense to predict the structure
first. This can be done based on homology to known protein structures, by ab
initio modeling or by threading [27].

There is a limit to the structural motifs in the tertiary structure of proteins
and in general the structure of proteins is more conserved than their sequence. So
many similar sequences can be linked to the same structural elements [28]. The
Protein Data Bank (PDB) [29] stores known experimentally determined struc-
tures coupled with their sequence. Sequence similarity search can be used to find
homologous template sequences which are associated to the three-dimensional
structure tentatively fitting the query protein. Then, a model of the query pro-
tein is assembled from structures found for fragments of its sequence. Thereafter,
this model can be refined based on a statistical potential or on physics-based
energy calculations [30].

For proteins without any homologous protein structures in PDB threading
or fold recognition can be applied [31, 32]. It uses statistics derived from the
connection of structures in PDB to their sequences. The fit of each amino acid
of the query is compared to positions in template structures. Then, the template
with the best fit can be used to build a model of the structure.

Ab initio protein modeling can be applied to generate a protein’s structure
solely based on calculations of molecular dynamics. So no previously solved
structures are needed and the model is built from scratch. A correctly folded
protein is in a relatively low state of free energy. To model the free energy
dependent on the protein structure an energy function must be used. Typ-
ically, such energy functions are either derived from physics of molecular in-
teractions or based on statistical knowledge of native protein conformations.
Then, the conformation space of the protein is explored to find a structure with
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a low-energy conformation. The length of the amino acid sequence and thus
the size of the protein determines the size of the conformation space. Find-
ing a good low-energy conformation can quickly become restricted by the high
amount of computational effort it requires. This can be mitigated by leveraging
the assistance of machine learning algorithms. Even so, as of 2017 ab initio pro-
tein structure prediction is still limited to under 120 residues [33]. Distributed
computing projects like Rosetta@home are used to push these limitations a bit
further, for example in an effort to fight the COVID-19 pandemic [34].

1.2.3 Sequence Pattern-Based Function Prediction

Proteins are made up of functional units. These units, known as domains,
are conserved and continuously recombined by evolution to form new proteins
[35]. Domain families contain proteins with just those or more different domains
[18]. Pfam [36] is a database of multiple sequence alignments and profile hidden
Markov models of domain families. For each family a functional annotation,
literature references and database links are available. So query protein sequences
that have been aligned to entries in Pfam can be annotated with these functions.

The functional sites of proteins experience the highest selective pressure and
are thus in general highly conserved. Consequently, common motifs can be
found in their sequences which can be linked to their function. InterPro [11] is a
collection of libraries with such motifs. It can be used to quickly detect known
motifs in a query sequence.

1.2.4 Genomic Context-Based Function Prediction

The physical organization of their genes on the genome can provide indications
for proteins’ functions.

Genes repeatedly observed neighboring the query can indicate functional as-
sociation. An example for this are operons, first described in 1960 [37]. They
are groups of genes, roughly at the same locus, that are regulated in tandem
and have functions targeted at a common objective. The organization, occur-
rence and regulation of genes in operons are conserved. So if a pair of genes
is repeatedly found in close proximity in various species, a selective pressure to
keep up the gene organization can be assumed. This permits the inference of
protein function.

For some protein pairs homologs can be found in other organism that are
fused into one larger protein. This is a strong indication for the presence of
an interaction between the two proteins and thus also enables inference of their
function. Because they decipher the interaction of unknown proteins, these kind
of sequences have been coined Rosetta stone sequences [38].

Both genetic neighborhood and gene fusion rely on the proximity of the
proteins’ genes on the genome. If this is not the case, phylogenetic profiles can
be of help. These consist of the presence or absence of orthologous proteins in
various species. If proteins are often gained or lost together, i.e. have similar
phylogentic profiles, they are likely to be functionally related [39].
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Each genomic context-based protein function prediction method has its lim-
its, strengths and weaknesses. So combining them typically yields the best
results [40].

1.2.5 Proteomic Context-Based Function Prediction

In addition to the above mentioned genome-based methods, there are also ex-
perimental techniques available to extract protein interaction data from the
proteome itself. Hawkins and Kihara [27] list mass spectrometry, 2D gel elec-
trophoresis, yeast two-hybrid methods, protein chips and high-throughput
protein-protein interaction screens in their 2007 review. The interactions of
proteins in the cell can be represented as graphs or networks. Nodes are pro-
teins, and edges are their interactions. Then, the “guild by association” principle
can be used: Proteins close to each other are more likely to share their func-
tion than farther apart ones. In an early method a protein simply inherited the
function that was most common in its direct neighborhood [41]. Later methods
increased the predictive power by transferring functions statistically abundant
in a broader neighborhood [42]. A more current example application uses the
STRING database [43] to predict Biological Process and Cellular Component
GO terms [44]. In general, protein-protein interaction network-based function
prediction works only on the broader function (i.e. Biological Process of the
Gene Ontology as opposed to Molecular Function). The only exception are pro-
teins that interact within the same protein complex. Then, similarity of the
Molecular Function can be assumed as well.

Gene expression data can be obtained by utilizing high throughput experi-
mental techniques. Historically cDNA micro arrays [45] were used. Nowadays,
RNA-Seq is typically used as it offers some distinct advantages: It is not lim-
ited to known sequences, provides details about alternative splicing, has a lower
background signal, a larger dynamic range and higher accuracy for quantifying
expression levels, better reproducibility and easier sample preparation [46]. The
expression data is used to cluster genes that show similar expression patterns
under certain conditions or along a time scale. A common function can be in-
ferred for the products of these genes. So most methods that use expression data
for function prediction focus on the identification of significant gene clusters and
the enrichment of GO terms in them [27].

1.2.6 Current Challenges in Protein Function Prediction

Sometimes proteins perform their function only in specific tissues or under
specific conditions (stress or developmental stages [47]). This can also affect
protein-protein interactions [48]. So proteins with multiple functions might not
exhibit all of them when the time comes to finally confirm them experimentally.
This means that ways to define the differential functions of proteins become
increasingly important.

Differing research interest, cost and feasibility constrains as well as ethical
restraints have lead to deviating levels of completeness of the function annota-
tions between various species [49]. Depending on the subontology, from 86% to
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88% of the experimental GO annotations in the UniProtKB are from only 10
species [50]. Plants are especially affected because only one of these 10 species
comes from their kingdom: Arabidopsis thaliana. In the future good functions
need to be provided for non-model species as well.

Complete and unbiased GO annotations are rare. So they are subject to the
“open world assumption”, which means that the absence of a GO term does not
guarantee the absence of a function [51, 52]. This leads to a systematic overes-
timation of the false positive rate when predictions are evaluated in accordance
to an inherently sparse ground truth. This means that annotation methods op-
timized to reproduce annotations similar to such a ground truth will predict too
few GO terms in many cases.

1.3 Evaluation of GO Annotations

The most basic comparison of GO annotations can be performed by simply con-
sidering the presence and absence of the GO terms in question. Only exact GO
ID matches are considered and the structure of the GO is completely omitted.
This method treats the comparison of GO annotations like a simple multi-label
classification problem but in reality it is a hierarchical multi-label classification
problem (HMC).

In contrast, semantic similarity-based approaches are able to quantify how
similar two different GO terms are. Edge- (or path-) based approaches do this
by calculating the number of edges (or nodes) on the shortest path between
terms [53]. But most current methods derive the semantic similarity of GO
terms from their information content. If the information content of GO terms
is calculated using only the topology of the GO (e.g. [54, 55, 56]), no additional
information is needed and calculated similarity values remain stable with respect
to a particular version of the GO. However, when the information content of
GO terms is derived from their frequencies in a corpus of annotated proteins
[57, 58], the similarity values can be more nuanced but become dependent on
said corpus. Recent similarity-based approaches often use a combination of the
aforementioned methods [59].
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2 Automated Assignment of Human Readable

Descriptions (AHRD)

Under the guidance of Prof. Dr. Heiko Schoof, AHRD was originally developed
by Girish Srinivas in 2009 [60]. At its core AHRD performs a lexical analysis
of candidate descriptions retrieved by sequence similarity search methods like
BLAST [24, 61]. This central workflow was written in the Perl programming
language [62]. It was supplemented by GO terms acquired through an extended
version of SIFTER [63, 64] and domain names retrieved with InterProScan [65].

In 2014 Asis Hallab and Kathrin Klee ported AHRD to Java [66] and made
it version controlled in Git [67] as well as publicly available on GitHub (https:
//github.com/groupschoof/AHRD). Its code is organized in the “package by
layer” principle and is developed in a test driven manner. The prediction of GO
terms was moved to an R [68] workflow called PhyloFun (https://github.com/
groupschoof/PhyloFun), which algorithmically propagates GO terms inside a
phylogenetic tree [69]. AHRD has already been used in many genome projects
and for annotations in some databases (see supplement 28.5 for details).

The main functionality of AHRD is still to use the descriptions of candi-
date proteins to predict annotations for unknown proteins. To do so, one must
generate the main input AHRD needs first: the results of a similarity search of
the query amino acid sequences in one or better several protein databases. The
lexical analysis of the candidate descriptions AHRD performs works as follows:
AHRD removes descriptions that contain indicators for a previous annotation
transfer because the description should be as close to the primary source as pos-
sible. After that, the descriptions are deconstructed into their words, from here
on referred to as tokens. Tokens known to be common to all kinds of protein de-
scriptions and generally considered as uninformative are ignored. All others are
scored by their abundance in descriptions from proteins with a high bit-score
search result, a good alignment overlap and an origin in a trusted database.
Then, the description candidates can be ranked according to their tokens and
the top result can be used for annotation transfer to the query. Along with the
human readable description GO terms can be transferred as well. Because of the
Gene Ontology’s structure, prediction of GO terms is a hierarchical multi-label
classification (HMC) problem. This needs be taken in consideration when GO
annotations are predicted as well as when predictions are evaluated in com-
parison to ground truth annotations. Both of which are central to the work
presented in this thesis.

3 Aim

The overarching objective is to increase AHRD’s ability to predict concise pro-
tein function annotations — i.e. its annotation performance. This immediately
leads to the problem of quantification of said annotation performance. The
cornerstone of evaluating protein annotations is a set of known, well-annotated
proteins. AHRD’s primary use case is the functional annotation of an organism’s

18

https://github.com/groupschoof/AHRD
https://github.com/groupschoof/AHRD
https://github.com/groupschoof/PhyloFun
https://github.com/groupschoof/PhyloFun


Dissertation Florian Boecker Part I: Introduction

proteome in the course of a genome project. There are well-annotated proteomes
of model organisms but these have species-specific biases and AHRD is meant to
be species agnostic. Protein databases have a wealth of well-annotated proteins
but are also rife with redundant proteins, erroneous annotations and artificial
biases towards proteins that are either easily examined or of relevance in better
supported research fields. So the first major task is to find a way to generate
an unbiased, non-redundant set of well-annotated ground truth proteins. These
properties should hold true for the set’s human readable description as well as
GO annotations.

The next question that arises about annotation performance evaluation is
how to exactly quantify the congruence of protein function annotations. Con-
cretely, we need to find a nuanced and consistent scoring method appropriate for
GO annotation predictions. First, the usefulness of a direct GO ID overlap-based
score is to be determined. The second candidate that we want to examine facil-
itates the structure of the Gene Ontology by extension of the GO annotations
to all of their parental terms. Furthermore, the added benefit of considering the
pervasiveness of GO terms in a corpus of typical annotations, is to be investi-
gated.

With a proper ground truth and a robust performance evaluation method
the foundation for using machine learning is laid. We want to find out if this is a
necessary step to achieve optimal protein annotation performance with AHRD.

In the past AHRD only examined the descriptions of proteins in order to
rank reference proteins that are candidates for a transfer of the function to a
query protein. An open question is whether a separate algorithm, which instead
examines the GO annotations of these candidates, can be used to make better
predictions for the GO terms of query proteins. The consideration of candidate
GO annotations opens up a few new avenues to determine the value of possible
annotations. Then, the homologs AHRD uses for annotation transfer are subject
to different, new rankings, each of which needs to be examined to determine its
usefulness.

Human readable descriptions cannot be mixed and matched without diffi-
cult natural language processing because of the complex interactions of words
within them. In contrast each GO term is a concept in itself and defined in its
entirety elsewhere (in the Gene Ontology). Thus, recombining multiple terms
from different sources without disruption of meaning is possible. Accordingly
we want to determine whether it is feasible to annotate query proteins with GO
terms picked from multiple different reference proteins instead of transferring a
fixed set from the top ranking homolog.

Lastly, the now optimized AHRD is to be compared to other programs com-
monly used for protein function prediction. There is the need to look at the
quality as well as the quantity of the predicted descriptions and GO terms de-
termined with our own evaluation methods. As a result of our participation in
the CAFA 3 challenge, their evaluation method has been applied to AHRD’s
GO term predictions as well and is to be examined too.
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4 Public Data and Software

4.1 Selection of Reference Databases as Annotation
Source

The UniProtKB currently contains the sequences and annotations of over 190
million proteins [4]. These proteins are from species across all branches of the
tree of life. It is split into Swiss-Prot for expert curated proteins and TrEMBL
for uncurated proteins. These properties make the UniProtKB a good general
annotation source for AHRD. Especially because AHRD can use different pri-
orities for annotations retrieved from Swiss-Prot or from TrEMBL. If AHRD
is used to annotate a proteome of a particular organism, a curated database
from a related organism can be useful (e.g. TAIR [70] in case of a plant). But
niche databases that contain useful information have often already been merged
into Swiss-Prot anyway (as is the case for TAIR). And because the proteins
in our ground truth test set (section 5) are also scattered across all groups of
organisms, the two UniProtKB databases will be a good match.

Since our ground truth test set is sourced from Swiss-Prot, we created a
custom version of it, which is missing all proteins found in the set. This makes
sure that no self-matches will obfuscate the performance analysis of AHRD
and its competitors. As we tested AHRD (section 7.6) using either the second
or third version of our ground truth set (section 5), which are based on the
UniProtKB’s 10th release from 2016 and 9th release from 2018 respectively, we
always used the appropriate UniProtKB version to remove the ground truth set
from and use as reference search space.

4.2 Reference Proteomes

To show examples of AHRD’s annotation performance in its typical use case
— a proteome of a newly sequenced species — we compare the annotation
fraction (coverage) of two established proteomes prior to and after AHRD’s
use for both descriptions and GO terms [8, 71]. First, we use the proteome
of Hordeum vulgare (subsp. vulgare) commonly known as domesticated barley
[72, 73]. And secondly we use the proteome of Blumeria graminis (f. sp. hordei)
commonly known as barley powdery mildew [74]. In many cases annotations
from these genome projects have made it into the two UniProtKB-Databases.
In an effort to make the conditions more realistic we removed the proteins of all
barley subspecies from the UniProtKB (Release 2019 09) to create the reference
databases to use for AHRD in this test. Analogously, we removed the proteins
of all subspecies to create the reference databases for the annotation of Blumeria
graminis.

Different genome projects have different nomenclatures to signal annotation
failure for their proteins. To catch all common cases we removed all descrip-
tions with “undescribed protein”, “unknown function”, “unknown protein” or
“uncharacterized protein” at the start. Thus, proteins with these descriptions
are treated as not annotated.
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Similarly we removed the three GO root terms (GO:0003674, GO:0008150
and GO:0005575) from the GO annotations so that proteins with only root terms
were properly recognized as unannotated.

4.3 Other Protein Annotation Programs — AHRD’s
Competitors

4.3.1 Maximum Attainable

AHRD does not build compound annotations but always transfers the complete
annotation of a reference protein from one of its target databases. But there is
not always a perfect annotation for every query protein. Sometimes even the
best choice will lead to an F-score smaller than one. But knowing the ground
truth, we can always find the best possible choice AHRD could have made.
Similarly the annotations to achieve a maximum possible precision or recall can
be determined. The scores for this mock annotation method are reported as
“Maximum Attainable”.

4.3.2 “Best BLAST Swiss-Prot” (BBsprot) and
“Best BLAST TrEMBL” (BBtrembl)

BLAST [24] reports the bit-score as a measure of the alignment quality of each
hit in a target database. The hit with the highest bit-score is called the “Best
BLAST” result. Transferring the “Best BLAST” result’s annotation to the
query protein is a straight forward yet, naive annotation method. We evaluated
it alongside AHRD and its other competitors.

4.3.3 Blast2GO

Blast2GO [75] is a commercial desktop application utilizing similarity search
results to annotate proteins with GO terms and descriptions. Activated with a
free basic account key, it must be run interactively (batch mode is a pro feature).
First, we merged Swiss-Prot (excluding the ground truth proteins) and TrEMBL
into one big database and performed a BLAST search of our protein set on it.
The BLAST results were imported into Blast2GO (version 5.2.5) specifying that
up to 300 results should be considered per query with an HSP length cutoff of
10. It took roughly 10 hours to annotate our test set of 2244 proteins (section
5).

4.3.4 NetGO

NetGO [76] is an updated version of GOLabeler, an annotation method that
topped many categories in the CAFA3 challenge [77]. NetGO uses offline (pre-
computed) machine learning to integrate sequence and network information of
reference proteins to annotate queries with GO terms in conjunction with a con-
fidence score. The NetGO online service is limited to 1000 proteins at a time
and takes 1 to 2 hours to complete annotation. Larger jobs either have to be
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divided into chunks or submitted via email. We chose a confidence threshold of
0.5 to evaluate NetGO alongside AHRD.

4.3.5 EggNOGmapper

The EggNOGmapper [78] uses a database of precomputed clusters and phylo-
genies to assign orthology-based GO terms and descriptions to query proteins.
We used EggNOGmapper (version: emapper-1.0.3-35-g63c274b; emapper DB:
2.0) with its default settings, online at http://eggnog-mapper.embl.de/ on
the 26th of September of 2019. It took roughly 50 minutes to annotate the 2244
proteins of our test set (section 5).

4.4 Programming Languages and Software Packages

� AHRD — Automated Assignment of Human Readable Descrip-
tions
Software that provides functional annotation for novel protein sequences
in the form of human readable descriptions and GO terms. AHRD is the
central topic of this thesis, written in Java, version controlled with git and
freely available on GitHub (https://github.com/groupschoof/AHRD).

� git
Git [67] is a distributed version control system. It is well-suited for multi-
ple developers collaboratively working on multiple branches of a software
project. After changes to the source code snapshots are saved as so-called
commits, de facto versions of the software which are identifiable by unique
(SHA-1) hash codes generated based on the commit’s code.

� Java 8
Java [66] is an object-oriented general purpose programming language.
It is compiled to bytecode which then can be run on all architectures
that have a java runtime environment (JRE) installed. This makes Java
programs largely platform independent. AHRD previously only required
Java 7 but since commit b6aca4d (introducing the owlapi) it requires Java
8.

– JUnit 4.9b2
JUnit [79] is a unit testing framework for Java. It allows us to develop
AHRD in a test-driven manor.

– YamlBeans 1.06
YamlBeans [80] is a Java library that AHRD uses to load its settings
from YML files.

– OWL API 4.5.4
The OWL API [81] is a Java library used by AHRD to parse a OWL
formatted download of the Gene Ontology database.

24

http://eggnog-mapper.embl.de/
https://github.com/groupschoof/AHRD
https://github.com/groupschoof/AHRD/tree/b6aca4d


Dissertation Florian Boecker Part II: Methods

� Apache Ant
Ant [82] is a build automation software developed by the Apache Software
Foundation. We use it to build AHRD’s .jar file (i.e. compiling the Java
source code to bytecode and packaging it into a single file).

� Eclipse
Eclipse [83] is the IDE (integrated development environment) that was
used to develop AHRD. Features of Eclipse often utilized include its object
browser, version control with the git plugin EGit, a debugger and of course
the Java editor. Among other things the Java editor facilitates syntax
highlighting, code assist and code refactoring.

� R 3.6.2
R [68] is an interpreted programming language focusing on statistical com-
puting and graphics. It is freely available under the GNU General Public
License.

– RStudio
RStudio [84] is an IDE for R.

– ggplot2 3.2.1
Ggplot2 [85] is an R package for data visualization.

– gridExtra 2.3
We used the gridExtra [86] R package to arrange multiple graphs
made with ggplot2 in a single plot.

� BLAST
The Basic Local Alignment Search Tool [24] is a program that can compare
biological sequence data (amino-acid, DNA or RNA). Given a query, its
primary use is the search of sequences with a high degree of similarity
from large databases. BLAST uses a stochastic model to estimate the
similarity of sequences. Thus an optimal alignment of the query and target
sequence cannot be guaranteed but it is much more time efficient than the
Smith-Waterman algorithm.

� DIAMOND
DIAMOND [25] is a modern alternative to BLAST offering a significant
reduction in computation time while maintaining a similar sensitivity.

5 Creating a Ground Truth Set With Low

Functional Redundancy

To train and evaluate AHRD a set of proteins with well-known functions is
needed — a ground truth set. Because UniProtKB/Swiss-Prot contains only
curated proteins it is a good source in principle.

First, we extracted all proteins with at least one experimentally verified GO
annotation. Experimentally verified GO annotations (expGOA) are annotations
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with evidence codes listed under “Experimental Evidence Codes” and “High
Throughput Experimental Evidence Codes” in supplemental section 28.4 as well
as “TAS: Traceable Author Statement” and “IC: Inferred by Curator”. This
step is important to eliminate proteins whose functions are likely to have been
transferred from other proteins. We also filtered out proteins with description
lines matching any entry in AHRD’s description line blacklist. In effect, this
step uses the descriptions as another avenue to gather evidence indicative of a
prior annotation transfer.

Additionally, all proteins were removed whose descriptions start with “Pro-
tein” followed by a single word. This single word is very often just a gene
identifier useless for description of protein function and thus undesirable.

An ideal ground truth set for general function prediction contains an equal
number of proteins for different protein families and different phylogentic taxa.
But the composition of Swiss-Prot reflects trends in biological research instead of
biological abundance of proteins and thus shows biases towards certain protein
families and taxa. These biases can lead to an overspecialization of AHRD’s
training and skewed evaluation results, which both need to be avoided. We
thus iterated over all proteins and kept each new protein only if all words in its
description had not been seen in any of the previous descriptions. This removes
redundancy from the set based on the descriptions. In this step it was necessary
to use AHRD’s token blacklist to ignore unspecific words commonly found in
protein descriptions (such as “protein”, “gene” or “family”) or else to many
otherwise dissimilar proteins would have been discarded.

In the next step, we clustered the remaining protein sequences with the
CD-HIT algorithm [87] at a sequence identity threshold of 40%. Through keep-
ing only one protein of each cluster we further lowered redundancy in the set
based on sequence similarity.

The first version of this set was based on Swiss-Prot from the UniProtKB
release 2016 10 and dubbed “nrSprotExpGOAv1” (3357 sequences). Because
we found that proteins with useless descriptions like “Protein ABC” (where
ABC stands for a gene ID) were enriched in our set, we added a filter for these
cases and created the second version “nrSprotExpGOAv2” (2251 sequences). A
third version “nrSprotExpGOAv3” (2244 sequences) was created by updating
the source data to the UniProtKB release 2018 09.

6 AHRD’s Capabilities Prior to This Work

When the function of a new amino acid sequence needs to be determined, the
result of a sequence similarity search is often the starting point. AHRD’s al-
gorithm combines the search results from multiple databases and emulates the
decision process of a human curator to determine a reference protein that is
most likely to provide a good functional description and a GO annotation for
a given query sequence (section 6.1). The emphasis AHRD places on numerous
factors indicating the quality of a reference protein’s annotations is controlled
by a number of parameters. AHRD’s annotation performance, as a function of
a certain set of parameter values, can be evaluated by the comparison of its
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predictions to ground truth annotations (section 5). We evaluate human read-
able descriptions based on word overlap (section 6.2). Then, the so computed
evaluation score can be used as the objective function of a heuristic parameter
optimization approach based on simulated annealing (section 6.3).

6.1 Annotation of Proteins With Human Readable
Descriptions

AHRD’s annotation procedure for human readable descriptions was originally
implemented by Asis Hallab [69], Kathrin Klee and Girish Srinivas under the
supervision of Heiko Schoof.

6.1.1 Description Annotation Workflow

Protein databases contain many proteins with functional descriptions transferred
from other proteins. These transfer methods are often automatic and can create
and propagate annotation errors. To weed out these cases AHRD first discards
proteins with telltale signs of previous annotation transfers (words like “simi-
lar to”, “probable”, “putative”, “predicted” and so forth found in the protein
descriptions; see supplement 28.2.1).

Protein descriptions often contain additional database-specific information
like the organism or a clone ID the protein belongs to (supplement 28.2.2).
This information will be no longer relevant after description transfer and is thus
removed by AHRD beforehand.

Words common to many protein descriptions, with little to no information
conveyed (e.g. “protein”, “gene”, “family”, “product”; see supplement 28.2.3),
are ignored in the following scoring process but, in case of a top scoring target
sequence, transferred to the query nonetheless.

The remaining tokens (character sequences with a collective meaning) are
scored in accordance to three major criteria: Alignment quality of the query to
the target sequence, confidence in the quality of the database and abundance in
high scoring targets.

The target proteins are ranked according to their tokens while a normaliza-
tion step keeps AHRD from preferring longer descriptions over shorter ones.

Together with the top scoring description GO terms can be transferred to
the query protein. If the focus is on GO terms, only targets that also have GO
terms associated with them will be considered.

An example of AHRD’s decision process is shown in figure 1.

27



AHRD: Automatically Annotate Proteins with Human Readable Descriptions and Gene Ontology Terms

1.
Search 

>sp|O76743|GLH4_CAEEL ATP-dependent RNA helicase glh-4
>sp|Q02843|GAG_SIVG1 Gag polyprotein OS=Simian immunodeficiency

>AT4G36020.1 cold shock domain protein 1
>AT3G42860.1 zinc knuckle (CCHC-type) family protein

>tr|J7GY52|J7GY52_NEMVE Vasa-like protein (Fragment) OS=Nematostella
>tr|B7Q8N8|B7Q8N8_IXOSC Zinc-finger protein, putative OS=Ixodes
>tr|V5H407|V5H407_IXORI Putative e3 ubiquitin ligase OS=Ixodes
>tr|Q4W7T7|Q4W7T7_9CRUS VASA RNA helicase OS=Moina macrocopa GN=vasa
>tr|Q7JQ89|Q7JQ89_TETTH CnjB protein OS=Tetrahymena thermophila
>tr|A0A059AAY2|A0A059AAY2_EUCGR Uncharacterized protein
>tr|N1JH42|N1JH42_BLUG1 Zinc knuckle domain-containing protein

Blacklist 
Descriptions

5.
Annotate

Zinc knuckle (CCHC-type) family protein

GO:0003677	DNA binding
GO:0008270	zinc ion binding
GO:0045893	positive regulation of transcription, 
           DNA-templated
...

Blacklist 
Descriptions

2.
Blacklist

>sp|O76743|GLH4_CAEEL ATP-dependent RNA helicase glh-4
>sp|Q02843|GAG_SIVG1 Gag polyprotein OS=Simian immunodeficiency

>AT4G36020.1 cold shock domain protein 1
>AT3G42860.1 zinc knuckle (CCHC-type) family protein

>tr|J7GY52|J7GY52_NEMVE Vasa-like protein (Fragment) OS=Nematostella
>tr|B7Q8N8|B7Q8N8_IXOSC Zinc-finger protein, putative OS=Ixodes
>tr|V5H407|V5H407_IXORI Putative e3 ubiquitin ligase OS=Ixodes
>tr|Q4W7T7|Q4W7T7_9CRUS VASA RNA helicase OS=Moina macrocopa GN=vasa
>tr|Q7JQ89|Q7JQ89_TETTH CnjB protein OS=Tetrahymena thermophila
>tr|A0A059AAY2|A0A059AAY2_EUCGR Uncharacterized protein
>tr|N1JH42|N1JH42_BLUG1 Zinc knuckle domain-containing protein

Blacklist 
Descriptions

3.
Filter

>sp|O76743|GLH4_CAEEL ATP-dependent RNA helicase glh-4
>sp|Q02843|GAG_SIVG1 Gag polyprotein OS=Simian immunodeficiency

>AT4G36020.1 cold shock domain protein 1
>AT3G42860.1 zinc knuckle (CCHC-type) family protein

>tr|J7GY52|J7GY52_NEMVE Vasa-like protein (Fragment) OS=Nematostella
>tr|B7Q8N8|B7Q8N8_IXOSC Zinc-finger protein, putative OS=Ixodes

>tr|Q4W7T7|Q4W7T7_9CRUS VASA RNA helicase OS=Moina macrocopa GN=vasa
>tr|Q7JQ89|Q7JQ89_TETTH CnjB protein OS=Tetrahymena thermophila

>tr|N1JH42|N1JH42_BLUG1 Zinc knuckle domain-containing protein

Blacklist 
Descriptions

4.
Score - ATP-dependent RNA helicase glh-3

zinc knuckle (CCHC-type)
Zinc-finger
Zinc knuckle domain

predictedDB

+
ATP-dependent RNA helicase glh-3
zinc knuckle (CCHC-type)
Zinc-finger
Zinc knuckle domain

curatedDB
Query CYKCGKLGHFARSCHVVT
      CYKCGK GH+AR C V +
Hit   CYKCGKEGHWARDCTVQS

Query SNGC------PNKRTDQV
      S  C      P     Q+ 
Hit   SRDCTAQSGNPKYEPGQM
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Figure 1: AHRD’s Central Workflow: The Decision Process to Find the
Best Functional Description for a Query Protein

1. Search:
Sequence similarity searches are carried out on chosen protein databases. The
first two reference proteins are from Swiss-Prot, the section of the UniProtKB
[4] which exclusively consists of curated entries. The next two proteins are from
TAIR [70]. TAIR contains only Arabidopsis thaliana proteins but also offers a
high level of curation. 13 proteins (7 shown) are found in TrEMBL. This is the
uncurated but much larger section of the UniProtKB.

2. Blacklist:
Reference proteins with descriptions matched in a blacklist are considered un-
informative and are therefore discarded (crossed out in red).

3. Filter:
Parts of the descriptions that are specific to the database are removed from
them (crossed out in red). Unspecific words common to protein descriptions
are kept but excluded from the following scoring step (crossed out in purple).

4. Score:
Candidate proteins are scored in accordance to three major quality indicators.
The first row shows cases that lead to a score increase (indicated by +) while the
second row shows reasons for lowering the score (indicated by -). The sequence
similarity, measured by the score and the overlap of the alignment between query
and reference, is the first major factor to distinguish candidates (first column).
The frequency of its words in all hits (indicated in red) is the next differentiation
factor for description candidates (second column). The confidence generally put
into the quality of annotations in the database is the third factor to discriminate
candidate descriptions (third column).

5. Annotate:
The reference protein with the top scoring candidate description is used as
description and GO annotation source for the query protein.

Courtesy of Kathrin Klee and Heiko Schoof.
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6.1.2 Scoring of Candidate Descriptions

Each query protein receives a set of description candidates from the sequence
similarity searches on multiple reference protein databases.

Overlap score
For each description candidate an overlap score is calculated. This is the average
fraction of the query and hit sequence that is covered by the local alignment.

oi =
(QueryEnd−QueryStart+ 1) + (SubjectEnd− SubjectStart+ 1)

QueryLength+ SubjectLength
(1)

where:

i := index over all description candidates

Query := query protein’s amino acid sequence

Subject := found hit protein’s sequence

Start and End := the respective sequence position in the BLAST alignment

Length := the respective sequence length

Token score
The description candidates for all queries are split at every occurrence of a dash,
a back or fourth slash, a semicolon, a comma, a colon sign, any quotation mark,
a period sign, a pipe symbol, a parenthesis and of course white space. If it passes
the token blacklist (supplement 28.2.3) each distinct token is assigned a token
score. The token score is calculated as a linear combination of sequence similar-
ity, database weight and sequence overlap. The sequence similarity is calculated
as the sum of bit scores of all description candidates containing the token di-
vided by the sum of bit scores of all description candidates. The database
weight is calculated as the sum of database weights of all description candidates
that contain the token divided by the sum of database weights of all descrip-
tion candidates. And the sequence overlap is calculated as the sum of overlap
scores of all description candidates that contain the token divided by the sum
of the overlap scores of all description candidates. The importance of each of
these three terms can be re balanced by configuration of the three token score
weights, which always have to sum up to one.
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ts(t) = β

∑
k bk∑
i bi

+ ω

∑
k wk∑
iwi

+ σ

∑
k ok∑
i oi

(2)

where:

t ∈ T
t := a token (word) in a description candidate

T := set of all destinct tokens of all description candidates

i := index over all description candidates

k := index over the description candidates that contain t

b := bit score of a description candidate’s alignment

w := weight of the database a description candidate is from

o := overlap score of a description candiate’s sequence with the

query sequence

β := token score bit score weight (configurable)

ω := token score database score weight (configurable)

σ := token score overlap score weight (configurable)

β + ω + σ = 1.0

Adjusted token score
We use half of the maximum token score over all description candidates of
a query as threshold to distinguish informative tokens from non-informative
ones. Then, the threshold value is subtracted from the token scores of the
non-informative tokens. This adjusted token score is calculated to further pe-
nalize undesirable tokens.

Tifr =
{
tl | ts(tl) ≥ max

m
ts(m) ∗ itt

}
(3)

Tnon =
{
tl | ts(tl) < max

m
ts(m) ∗ itt

}
(4)

tsadjusted(tl) =

{
ts(tl), tl ∈ Tifr
ts(tl)−max

m
ts(m) ∗ itt, tl ∈ Tnon (5)

where:

tl ∈ di
l := index over all tokens in a description candidate

di := set of tokens in a description candidate

m ∈ T
itt := informative token threshold (= 0.5)

Tifr := set of informative tokens

Tnon := set of non-informative tokens
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In AHRD commit a5bccd1 the itt (informative token threshold) was made con-
figurable between 0 and 1.

Lexical Score
All token scores of a description candidate are summed up to calculate its lexical
score. To avoid a bias toward long descriptions the lexical score is corrected
by the highest token score in all description candidates and the proportion of
informative tokens in the description candidate in question.

ls(di) =
| Tifr |

| Tifr |+ | Tnon |
·
∑

tl∈di tsadjusted(tl)

max
m

ts(tm)
(6)

where:

| Tifr | := cardinality of the informative tokens of di

| Tnon | := cardinality of the non-informative tokens of di

Description score
Finally, a description score can be assigned to each candidate. It is a combination
of the lexical score and the blast score influenced by a configurable weight. The
blast score is calculated as the fraction of the description candidates bit score
of the maximum bit score of all hits for the particular query.

ds(di) = ls(di) + δ
bi

max
n

bn
(7)

where:

δ := description score bit score weight (configurable)

n := index over all description candidates (like i)

b := bit score of a description candidate’s alignment

The description scores are used to rank all description candidates and the query
is annotated with the highest scoring candidate’s description.

6.2 Evaluation of Protein Annotations:
Word Overlap-Based Comparison of Human Read-
able Descriptions

For the evaluation, the ground truth description and the predicted description
are split into tokens in the same way it is performed in preparation of the
description candidate scoring (section 6.1.2). The tokens are also filtered by the
token blacklist (supplement 28.2). By ignoring tokens common to all kinds of
protein description we increase AHRD’s ability to differentiate between wrong
and correct descriptions. This is something that becomes especially important
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when the evaluation of AHRD’s predicted descriptions is used to optimize its
parameters (sections 7.4 and 6.3).

The intersection of the ground truth and prediction constitutes the set of true
positive tokens. The size of this set can be compared to the size of the prediction
to calculate the precision and to the size of the ground truth to determine the
recall.

precisionHRD(GTHRD, P redHRD) =
| GTHRD ∩ PredHRD |

| PredHRD |
(8)

recallHRD(GTHRD, P redHRD) =
| GTHRD ∩ PredHRD |

| GTHRD |
(9)

where:

precisionHRD := precision of a human readable description

recallHRD := recall of a human readable description

GTHRD := set of ground truth tokens

PredHRD := set of predicted tokens

| · | := cardinality of a set

The Fβ-score is calculated as the weighted mean of precision and recall.

Fβ(precision, recall) = (1 + β2) · precision · recall
β2 · precision+ recall

(10)

where:

β := weighting parameter between precision and recall

To give equal weight to precision and recall the β-parameter was always kept at
1, thus calculating the F1-score, the harmonic mean of precision and recall. But
AHRD supports other values as well. Modification to β can especially influence
AHRD’s training (sections 7.4 and 6.3) to yield parameter sets better suited to
make precise predictions (0 < β < 1) or to make more comprehensive predictions
(β > 1).

6.3 Parameter Optimization via Simulated Annealing

AHRD’s parameter optimzation via simulated annealing was originally imple-
mented by Asis Hallab and described in his PhD thesis [69].

Simulated annealing models the process of heating a material to reduce de-
fects (i.e. decrease the energy in the system) while cooling it down slowly [88].
This probabilistic approach is meant to approximate the global optimum (i.e.
a maximum evaluation score) in the optimization problem of finding the best
set of parameters. To do so, the algorithm moves through the parameter space
by trying one change to the parameters at a time. The choice which parame-
ter to change is influenced by the so-called “hill climbing probability” ph. It is
the probability to modify the same parameter again after the last change was
beneficial.
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ph :=
exp(−(1− d)) + s

exp(0) + s
(11)

where:

d := increase in mean Fβ score achieved in the last step

exp() := the exponential function

s := configurabe scaling factor (default: 0.7)

ph := probability to modify the same parameter again

A parameter randomly chosen to be changed is equally likely to have its value
increased or decreased (within allowed value margins). The magnitude m of the
change is based on a standard normally distributed random value r (µ = 0 and
σ = 1) transformed by two configurable parameters for the standard deviation
c1 and the mean c2.

m = r ∗ c1 + c2 (12)

where:

r := Gaussian distributed random value

c1 := parameter for the standard deviation (default: 0.15)

c2 := parameter for the mean (default: 0.25)

m := value to change a parameter by

A positive change in the resulting evaluation score always means the new pa-
rameters will be accepted. Otherwise both the amount of change and the tem-
perature are used to calculate pacpt: the probability of accepting parameters
resulting in worse evaluation scores.

pacpt = exp

(
−(Fβ(a)− Fβ(c)) · k

Tc

)
(13)

where:

Fβ(x) := mean Fβ score of a parameter set x

a := accepted parameter set

c := currently evaluated parameter set

Tc := current temperature

k := scale parameter

exp() := the exponential function

pacpt := accepting probability
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In order to avoid being trapped in local optima of the parameter space, the
algorithm starts at a high temperature. As the temperature is decreased in
small steps at each iteration, the probability of accepting big negative changes
to the evaluation score decreases as well.

With the option “remember simulated annealing path” set to TRUE, the
evaluation of already encountered parameter sets can be omitted, thus saving
compute time at the cost of additional memory use.

The procedure finishes when the temperature reaches 0. The best set of
parameter values encountered during the optimization procedure is considered
its result.

7 The Improvements Made to AHRD

Increasing the GO annotation performance of AHRD necessitates the ability to
assess said annotation performance in the first place. This can simply be based
on term overlap (section 7.2.1). But we also implemented more sophisticated
GO evaluation metrics based on term ancestry overlap (section 7.2.2) and se-
mantic similarity (section 7.2.3). These hinge on the availability of information
about the hierarchical relationships of the terms in the Gene Ontology as well
as information about the typical commonness of a given GO term in protein
annotations (section 7.1). Using the description-based method to choose a can-
didate protein for the transfer of its annotations to the query (section 6.1) is an
indirect way to perform GO term annotation, which can cost annotation per-
formance. We thus implemented a new algorithm that works in a similar way
but focuses on the GO annotations of the candidate proteins (section 7.3). In
addition to the already available simulated annealing-based approach (section
6.3) we implemented another heuristic procedure to improve AHRD predictions
by employing a genetic algorithm (section 7.4).

7.1 Parsing the Gene Ontology and Swiss-Prot to Build
AHRD’s Internal GO Term Database

AHRD needs to access its internal GO database when the annotation frequency
(equation 15) is needed to calculate the information content score (equation 27)
for a GO annotation candidate, when the ancestry of a GO term is needed to
calculate the ancestry overlap-based F-score of a GO prediction (section 7.2.2)
or when the maximum common information content of GO term pairs (equa-
tion 22) needs to be determined for the calculation of semantic similarity-based
F-scores (section 7.2.3). In these instances a serialized object will be quickly
loaded from disk if the GO database has been computed in a previous execution
of AHRD. But if it is needed for the first time, AHRD has to build its GO
database from scratch:
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Parsing the Gene Ontology
First, the Gene Ontology is downloaded as a single OWL file and parsed using
the owlapi java library. In this step each GO term is saved with its ID, label,
namespace (MFO, PBO or CCO) and obsolescence status. Additionally, alter-
native GO IDs are linked to their primary instance and the ancestry of each
term is determined.

Counting Swiss-Prot annotations
A file containing all of Swiss-Prot is retrieved from the UniProtKB FTP server
and filtered for the GO annotation lines. Each annotation of a certain GO term
found in Swiss-Prot is counted towards the term itself and each term in its an-
cestry. Consequently, the annotation count of a GO term η(go) is the sum of
its direct annotations | Annot(gt) | and its indirect annotations through direct
annotations of its child terms

∑
ct∈C(gt) | Annot(ct) |.

η(gt) =

{
| Annot(gt) |, if gt is a leaf

| Annot(gt) |+
∑

ct∈C(gt) | Annot(ct) |, otherwise
(14)

where:

gt := a GO term

Annot(gt) := set of all reference annotations that contain gt

| · | := cardinality of a set

ct := a child GO term

C(gt) := set of child terms of GO term gt

η(gt) := annotation count of GO term gt

Annotation frequency
The frequency f of a GO term gt in Swiss-Prot can be calculated by dividing its
annotation count η(gt) with the annotation count of the root term η(root(gt))
of the ontology (MFO, BPO or CCO) it belongs to. This works because the root
term is implicitly annotated with every annotation of any term in the particular
ontology and thus has the sum of annotations for the ontology as its annotation
count. Consequently, the root terms own annotation frequency turns out to
be 1. GO terms that have no direct or indirect annotations in Swiss-Prot are
marked with an annotation frequency of 0.

f(gt) =
η(gt)

η(root(gt))
(15)

where:

gt := a GO term

η(gt) := annotation count of GO term gt

root(gt) := root term of the subontology GO term gt belongs to

f(gt) := the annotation frequency of GO term gt
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Information content
The information content ic of a GO term gt is calculated by taking the negative
natural logarithm of its annotation frequency f(gt). This results in a value of
0 for the three root terms and infinity for GO terms without annotations in
Swiss-Prot.

ic(gt) = −ln(f(gt)) (16)

where:

gt := a GO term

f(gt) := the annotation frequency of GO term gt

ic(gt) := the information content of GO term gt

As of the 18th of February 2020 the lowest non-zero information content is as-
signed to the CCO term “cellular anatomical entity”(GO:0110165). It has been
(in-/directly) annotated in Swiss-Prot 681 717 times. The number of annota-
tions in the cellular component ontology is not much higher at 795 054. Its
information content is thus −ln(681717/795054) ≈ 0.15
2 811 GO terms are annotated only once in Swiss-Prot. With 1 155 153 the BPO
has the most annotations and thus its single annotation terms have the highest
finite information content at −ln(1/1155153) ≈ 13.96.

7.2 Evaluation of Protein Annotations: Gene Ontology
Annotation Evaluation

7.2.1 Term Overlap-Based Evaluation

The most simple way to compare predicted GO annotations to ground truth
GO annotations is to determine the fraction of overlapping GO terms relative
to the number of GO terms in the prediction and in the ground truth.

precisionsimpleGO(GTGO, P redGO) =
| GTGO ∩ PredGO |
| PredGO |

(17)

recallsimpleGO(GTGO, P redGO) =
| GTGO ∩ PredGO |

| GTGO |
(18)

where:

GTGO := set of ground truth GO terms

PredGO := set of predicted GO terms

| · | := cardinality of a set

precisionsimpleGO := “simple” precision of a GO annotation

recallsimpleGO := “simple” recall of a GO annotation

We call the Fβ-score (equation 10) calculated from the precisionsimpleGO and
recallsimpleGO the “simple GO score”.
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7.2.2 Term Ancestry Overlap-Based Evaluation

The “simple GO term score” (section 7.2.1) only considers exact matches be-
tween a prediction and the ground truth. Two distinct GO terms with a very
similar meaning are very close to each other in the DAG (directed acyclic graph)
but still have completely different GO IDs. However, such a pair of GO terms
will usually have a major part of their ancestry in common. So the mutual
overlap of their two ancestries in relation to the distinct parts of their ancestries
can be used as a measure for the similarity of two terms in the GO. Here we
propose an F-score with this information included. After the sets of predicted
and ground truth GO terms are expanded with their respective ancestries the
precision and recall are calculated in the same way as the “simple GO score”.

precisionancestryGO(GTGO, P redGO) =
| A(GTGO) ∩ A(PredGO) |

| A(PredGO) |
(19)

recallancestryGO(GTGO, P redGO) =
| A(GTGO) ∩ A(PredGO) |

| A(GTGO) |
(20)

where:

A(gt) := set of ancestors of the GO term gt (including gt itself)

GTGO := set of ground truth GO terms

PredGO := set of predicted GO terms

| · | := cardinality of a set

precisionancestryGO := ancestry-based precision of a GO annotation

recallancestryGO := ancestry-based recall of a GO annotation

We coined the resulting Fβ-score (equation 10) the “ancestry GO score”.

7.2.3 Term Semantic Similarity-Based Evaluation

If the prediction of a set of GO terms is evaluated against a set of ground truth
GO terms, only by a simple check of the presence or absence of GO terms (“sim-
ple GO score” in section 7.2.1), most, if not all of the nuance in DAG of the
Gene Ontology is missed. On the one hand, if a predicted GO term is close to
a ground truth term in the tree, the prediction should not be considered to be
completely wrong (“ancestry GO score” in section 7.2.2). On the other hand,
the exact reproduction of a ground truth term can be insignificant if the term is
very common (e.g. “protein binding” GO:0005515) or even meaningless if it is a
root term. We thus propose the semantic similarity of GO term sets as an eval-
uation metric. It is based on the common information content of GO term pairs.

Implementation
The information content ic of a GO term gt is calculated as the negative natural
logarithm of its annotation frequency f in Swiss-Prot (section 7.1 equations 15
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and 16).

ic(gt) = − ln

(
f(gt)

f(root(gt))

)
(21)

where:

gt := a GO term

f(gt) := annotation frequency of a GO term

root(gt) := root term of the subuntology GO term gt belongs to

ic(gt) := information content of a GO term

Theoretically the information content a GO term that is not (yet) annotated
in any protein in Swiss-Prot is infinite (−ln(0) = ∞). In practice we use the
highest finite information content in its ancestry as a surrogate.

The highest information content of their mutual ancestry determines the maxi-
mum common information content mcic of two GO terms gta and gtb [57].

mcic(gta, gtb) = max(ic(gt) : gt ∈ A(gta) ∩ A(gtb)) (22)

where:

gt := a GO term

A(gt) := set of ancestors of the GO term gt (including gt itself)

ic(gt) := information content of a GO term

mcic(gt, gt) := maximum common information content of the two GO terms

The sum of the highest maximum common information content of each ground
truth term and all prediction terms is divided by the sum of the information
content of the ground truth term set to calculate a semantic similarity-based
recall. The recall thus measures the fraction of the ground truth’s information
content that the prediction was able to reproduce.

recallsemsimGO(GTGO, P redGO) =

∑
gta∈GTGO

max(mcic(gta, gtb) : gtb ∈ PredGO)∑
gtx∈GTGO

ic(gtx)

(23)

where:

gt := a GO term

GTGO := set of ground truth GO terms

PredGO := set of predicted GO terms

ic(gt) := information conent of a GO term

mcic(gt, gt) := maximum common information content of the two GO terms

recallsemsimGO := semantic similarity-based recall
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The semantic similarity-based precision is calculated analogously. The sum of
the highest maximum common information content of each term in the predic-
tion set and all ground truth terms is divided by the sum of the information
content of the predicted terms. It thus represents the fraction of the prediction’s
information content that was actually part of the ground truth.

precisionsemsimGO(GTGO, P redGO) =

∑
gtb∈PredGO

max(mcic(gtb, gta) : gta ∈ GTGO)∑
gtx∈PredGO

ic(gtx)

(24)

where:

gt := a GO term

GTGO := set of ground truth GO terms

PredGO := set of predicted GO terms

ic(gt) := information conent of a GO term

mcic(gt, gt) := maximum common information content of the two

GO terms

prcisionsemsimGO := semantic similarity-based precision

Finally, the Fβ-score is calculated as the weighted mean of recall and precision
(equation 10). We use the term “semantic similarity (SemSim) GO score” to
refer to this evaluation metric.

Consequences
Because the UniProtKB/Swiss-Prot annotation counts (equation 14) are propa-
gated up to the roots of each ontology (i.e. the root terms are always considered
to be annotated indirectly), their annotation count ends up equal to the num-
ber of annotations in the ontology over all. A root terms annotation frequency
(equation 15) is thus calculated to be 1. And therefore, their information content
(equation 16) turns out to be 0, just like intuition suggests.

If two terms from the same ontology are so dissimilar that their shared
ancestry consists of only the root term, their maximum common information
content is consequently 0. In such a case the semantic similarity-based recall
(the maximum common information content divided by the information content
of the ground truth) is also 0. Similarly the semantic similarity-based precision
(the maximum common information content divided by the information content
of the prediction) is determined to be 0 as well in such cases.

If the predicted term has the ground truth term in its ancestry, their max-
imum common information content is the information content of the ground
truth term. Thus, the semantic similarity-based recall is 1 in such a case while
the precision will be between 0 and 1 and reflect a penalty for the over-specific
prediction.
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Analogously, if the ground truth term has the predicted term in its ances-
try, their maximum common information content is the information content of
the predicted term. Consequently, in such a case the semantic similarity-based
precision will be calculated to be 1, but the recall ends up between 0 and 1
reflecting the missing information content in the prediction.

Edge cases
Even in such a ground truth set as our own “nrSprotExpGOAv3.fasta” (section
5), consisting exclusively of curated proteins with at least one experimentally
verified GO annotation each, sometimes no information is available for one of
the three subontologies. In theory this means all predictions in this subontology
are over-specific and are thus penalized with a lower precision score. But if there
is no knowledge about a particular aspect of a protein’s function, the prediction
can also not be known to be wrong. After all, all proteins must have at least one
molecular function, must participate in at least one biological process and must
appear in some cellular component. To take this into account, predictions made
in a subontology for which no prior knowledge exists (i.e. the ground ground
truth is empty) are ignored by the scoring algorithm.

Originally in the absence of any annotation in the prediction or ground truth,
both the recall and precision were just set to 0. Consequently, the portion of pro-
teins annotated — an annotation method’s coverage — had a strong influence
on the average Fβ-score. We decided that separating these two quality measures
can give a greater insight in the different strengths and weaknesses of various
annotation methods. Consequently, from AHRD’s commit 1c316ea onward we
set the recall and precision both to NaN (not a number) in case a ground truth
protein is entered in the evaluation without any annotations at all. If no pre-
diction was made the recall is set to 0 and the precision is set to NaN. Both of
these cases also result in a NaN value for the “semantic similarity Fβ-score”. It
is important to be able to distinguish these cases from bad predictions that sim-
ply have so little in common with the ground truth that the resulting score is 0.
Then, NaN values are excluded when calculating average Fβ-scores. So instead
they have influence on the fraction of proteins with a non-NaN Fβ-score, which
can additionally be provided as “coverage” in the output.

7.3 Annotation of Proteins With Gene Ontology Terms

Previous versions of AHRD transferred GO annotations from reference proteins
scored solely on the characteristic of their human readable descriptions. To in-
crease AHRD’s GO term annotation performance we implemented a candidate
protein scoring procedure based directly on GO annotations. But for the pre-
diction of GO terms it is just as important to avoid electronically transferred
protein annotations as it is for the description prediction. We thus subject the
candidate reference proteins for the annotation with GO terms to the same filter-
ing steps performed on the description candidates (section 6.1.2). So AHRD’s
GO term annotation procedure benefits from quality indicators derived from
human readable descriptions.
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7.3.1 AHRD’s Scoring of Candidate GO Term Annotations

GO term score
For each unique GO term gt of all candidate annotations a GO term score gts
is calculated. Among other factors we also tested different versions of the GO
term score (section 7.6.1). Here only the full fledged version incorporating both
the information content score ics (equation 27) and the evidence code score
ecs (equation 28) in addition to the GO term abundance gtas (equation 26) is
shown.

gts(gt) = gtas(gt) · ics(gt) · ecs(gt) (25)

where:

gt := a GO term

gtas(gt) := the GO term abundancy score of a GO term

ics(gt) := the information content score of a GO term

ecs(gt) := the evidence code score of a GO term

gts(gt) := GO term score of a GO term

GO term abundancy score
The GO term abundancy score gtas is analogous to the token score for the
scoring of candidate description tokens (section 6.1.2). It is a linear combination
of sequence similarity, database weight and sequence overlap. The sequence
similarity is calculated as the sum of bit scores of all annotation candidates
containing the GO term (

∑
k bk) divided by the sum of bit scores of all annotation

candidates (
∑

i bi). The database weight is calculated as the sum of database
weights of all annotation candidates that contain the GO term (

∑
k wk) divided

by the sum of database weights of all annotation candidates (
∑

iwi). And the
sequence overlap is calculated as the sum of overlap scores of all annotation
candidates that contain the GO term (

∑
i ok) divided by the sum of the overlap

scores of all annotation candidates (
∑

i oi). The importance of each of these
three terms can be rebalanced by configuration of the three token score weights
β, ω and σ, which always have to sum up to one. The weights’ names are
recycled from the calculation of the token scores for the description annotation.
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gtas(gt) = β

∑
k bk∑
i bi

+ ω

∑
k wk∑
iwi

+ σ

∑
k ok∑
i oi

(26)

where:

gt ∈ GT
gt := a GO term

GT := set of all distinct GO terms of all candidate annotations

i := index over all candidate annotations

k := index over the candidate annotations that contain gt

b := bit score of a candidate’s sequence alignment

w := weight of the database a candidate annotation is from

o := overlap score of a candiate’s sequence with the query sequence

β := token score bit score weight (configurable between 0 and 1)

ω := token score database score weight (configurable between 0 and 1)

σ := token score overlap score weight (configurable between 0 and 1)

β + ω + σ = 1.0

GO term information content score
The information content score ics leverages a different source than the sequence
similarity search results as a quality measure of a candidate GO term: Its ex-
pected occurrence in the annotation of a typical protein in Swiss-Prot (section
7.1), i.e. its annotation frequency f . The impact of the information contents
score on the GO term score (gts) can be configured by changing the GO term
information content weight (ι).

ics(gt) = 1− ι · f(gt) (27)

where:

gt := a GO term

ics(gt) := the information content score of a GO term

ι := GO term information content weight (configurable between 0 and 1)

f(gt) := the annotation frequency of a GO term in Swiss-Prot
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GO term evidence code score
Consider a GO annotation p

ec→ gt. For a given GO term gt there is a set
of candidate proteins with annotations Annot(gt) for the GO term. For each
annotation a ∈ Annot an evidence code ec is provided to give an indication
how the association to the GO term is supported. Using configurable weights
for each evidence code an average can be computed over all annotations of a
GO term. Augmented by another weighting parameter, this average is used to
determine the evidence code score ecs.

ecs(gt) = 1− ε ·

1−

∑
a∈Annot(gt)

w(ec(a))

| Annot(gt) |

 (28)

where:

gt := a GO term

a := p
ec→ gt := a GO annotation

a ∈ Annot(gt)
Annot(gt) := set of all candidate annotations that contain gt

| · | := cardinality of a set

ec(a) := the evidence code of an annotation

w(ec) := the weight of an evidence code (configurable between 0 and 1)

ε := GO term evidence code score weight (configurable between 0 and 1)

ecs(gt) := the evidence code score of a GO term

If not specified, the evidence code weights default to a value of 1 for all evidence
codes encountered. Thus, the influence of the evidence code score is negated
and AHRD behaves in an evidence code agnostic manner. The evidence code
weights we used in our experiments are listed in supplement 28.4

Adjusted GO term score
The informative token threshold itt — an adjustable parameter — is used to
distinguish informative GO terms GTifr from non-informative GO terms GTnon
by comparison of their GO term scores gts to the maximum GO term score. The
adjusted GO term score gtsadjusted is calculated by subtraction of the threshold
value from all non-informative GO term scores. This further penalizes unwanted
GO terms and aims at increasing the discriminatory power of the GO term score.

44



Dissertation Florian Boecker Part II: Methods

GTifr =

{
gtl | gts(gtl) ≥ max

m∈GT
gts(m) · itt

}
(29)

GTnon =

{
gtl | gts(gtl) < max

m∈GT
gts(m) · itt

}
(30)

gtsadjusted(gtl) =

{
gts(gtl), gtl ∈ GTifr
gts(gtl)− max

m∈GT
gts(m) · itt, gtl ∈ GTnon (31)

where:

gt := a GO term

l := index over all distinct GO terms in all candidate annotations

gts(gt) := the GO term score of a GO term

GT := set of all distinct GO terms in all candidate annotations

itt := informative token threshold (configurable between 0 and 1)

GTifr := set of informative GO terms

GTnon := set of non-informative GO term

gtsadjusted(gt) := the adjusted GO term score of a GO term

Lexical GO annotation score
For each GO annotation candidate Di a lexical score lgas is calculated analo-
gously to the lexical score for description candidates (equation 6): The sum of
the adjusted GO term scores gtsadjusted of all GO terms gt of the GO annota-
tion Di is divided by the highest GO term score of all annotation candidates.
Many uninformative GO terms (with negative adjusted GO term scores) will
already result in a low lexical score, but to mitigate a bias towards long anno-
tations even further the fraction of informative tokens in all tokens of the GO
annotation candidates is used to scale the final score value.

lgas(Di) =
| GTifr ∩Di |
| Di |

·

∑
l∈Di

gtsadjusted(l)

max
m∈GT

gts(m)
(32)

where:

Di := set of GO terms that is the GO annotation of one protein

| GTifr ∩Di | := cardinality of the informative GO terms of Di

| GTnon ∩Di | := cardinality of the non-informative GO terms of Di

| Di | = | GTifr ∩Di |+ | GTnon ∩Di | := cardinality of Di

gtsadjusted(gt) := adjusted GO term score of a GO term

GT := set of all distinct GO terms in all candidate annotations

lgas(D) := lexical GO annotation score of a GO term set
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GO annotation score
Finally, the GO annotation score gas for a GO annotation candidate Di is
calculated as the sum of its lexical GO annotation score lgas and its relative bit
score. The relative bit score of an annotation candidate is the fraction of its bit
score bi and the maximum bit score of all annotation candidates weighted by a
configurable parameter δ.

gas(Di) = lgas(Di) + δ
bi

max
n

bn
(33)

where:

Di := set of GO terms that is the GO annotation of a candidate protein

lgas(D) := lexical GO annotation score of a GO term set

δ := description score bit score weight (configurable between 0 and 1)

n := index over all candidate proteins (like i)

b := bit score of a candidate protein’s alignment

gas(D) := GO annotation score of the GO annotation of a candidate protein

In the end, the highest scoring candidates GO annotation is transferred to the
query protein.

7.3.2 Annotation of GO Slim Terms

GO slims are versions of the Gene Ontology that have been pruned to contain
only broad terms. They are used to give an overview of a body of more detailed
annotations. GO slims can be custom made but the Gene Ontology consortium
also maintains standard sets and provides them in the OBO format.

AHRD can output GO slim terms in addition to its normal GO annotations.
This is triggered by providing an OBO-formatted file of the GO slim using the
“go slim” YML-key. Instead of properly parsing the OBO-file AHRD simply
matches all lines that start with “id: GO:” and have nothing but seven digits
afterwards. Besides being crude but effective this “parsing” method enables the
input of custom GO slims with files that simply provide the GO terms in lines
that match this pattern.

After the normal GO annotation is completed, AHRD searches for the GO
slim terms in the ancestry of each protein’s annotations. GO slims can have
terms whose sets of descendants overlap. If this leads to a case of multiple GO
slim terms for one original (detailed) GO term, only the GO slim term with the
highest information content (section 7.1 equation 16) will be annotated.
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7.4 Parameter Optimization With a Genetic Algorithm

Given ground truth annotations, AHRD can calculate an evaluation score based
on a particular set of parameters. The evaluation score is calculated by taking
the mean Fβ-score over all query proteins in AHRD’s prediction run. If AHRD
is only supplied with the data to annotate the queries with human readable
descriptions, the evaluation score will be based on the overlap of words in ground
truth and prediction. But if an annotation of GO terms was performed the
evaluation score is based on the semantic similarity (section 7.2.3) of ground
truth GO terms and predicted GO terms. We use this evaluation score as
objective function in both a simulated annealing approach (section 6.3) and a
genetic algorithm to optimize AHRD’s parameters.

Our genetic algorithm [89] works by revising a “population” of parameter
sets for a certain number of “generations”. It uses the biology inspired processes
of selection, recombination and mutation to arrive at a high performing set of
parameters. The first generation can be seeded by parameters known to perform
well but we use a naive set instead. The rest of the first generation is filled with
randomly generated parameters. After an evaluation has been performed based
on each parameter set, the population is ranked in accordance to the parameter
sets’ scores. This ranking is used to create the next generation of parameter
sets. The best 20% survive and are transferred as is. To form an offspring
the parameter sets of two random survivors are combined randomly so that on
average half of the parameter values come from the first parent and the other
half come from the second parent. These make up the next 20% of the new
generation. Another 20% is filled with mutants of random survivors. A mutant
is a parameter set with one parameter value changed. To create a mutated
parameter set, the java method for parameter modification from the simulated
annealing trainer (implemented by Asis Hallab [69]) was reused. The random
selection of survivors for the creation of both offspring and mutants is based on
their ranking and has a strong bias towards the very best performing parameter
sets (equation 34). The rest (40%) of the new generation is filled with new
randomly generated sets of parameters. After the last generation is evaluated,
the top ranking parameter set is considered the result of the training procedure.
In figure 2 the resulting probabilities for 20 parameter sets are plotted against
the rank.

R = dabs(r ∗ n/3)e (34)

where:

r := Gaussian distributed random value (µ = 0 and σ = 1)

n := size of the survivor set

abs() := absolute value of a number

d · e := ceiling function

R := Selected Rank {R ∈ N : 1 ≤ Rselect ≤ n}
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Figure 2: Rank-Dependent Parameter Set Selection Probability
The genetic algorithm selects the best performing parameter sets to survive to the
next generation. The survivors are the basis for the generation of new parameter
sets by crossover and mutation. Which particular survivors are used is determined by
random selection based on their function prediction performance ranking (equation
34). Here we show the resulting probability for a rank to be selected in a typical
example of a survivor set size of 20 (population size of 100 parameter sets).
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7.5 Prediction and Evaluation of Term-Centered GO
Annotations

In certain scenarios there can be value to taking the typical research question
of “What are the functions of a certain protein?” and turning it around to ask
“What are the proteins with a certain function?”. In the context of GO terms
this translates to asking “Which proteins are to be annotated with a particular
GO term?” instead of “With which GO terms is a single protein to be anno-
tated?”. This question is usually brought up in the context of an organism’s
whole proteome and a few selected GO terms, just like in the CAFA-π challenge
(section 8.2). To participate, we created a version of AHRD that can predict
and evaluate the associations of a proteome’s proteins to one or more GO terms.

Prediction
In the CAFA-π challenge predictions were evaluated with a sliding annotation
confidence threshold. Therefore, we based the term-centric version of AHRD on
the separate GO term annotation version of AHRD (section 7.3.1), because it
calculates GO term scores (equation 25), which can be used to quantify the con-
fidence in GO terms separately. First, for each protein, all reference annotations
from the sequence similarity search results are stored alongside their GO term
scores. If the GO term of interest is found in the ancestry of the annotations
for a protein, the protein is considered to be associated with the term. The GO
term score of the annotation that has the GO term of interest in its ancestry is
used as the confidence score for the association to the protein. Of course the GO
term of interest can have multiple children (or grandchildren and so forth) in
the annotations that are found for the protein. In these cases the maximum of
the GO terms scores is used. For a given GO term all proteins are investigated
in this manner. The confidence scores are scaled by their maximum value over
all proteins to use the full “space” between 0 and 1.

Evaluation
Using the confidence score as a discrimination factor in the binary classification
question of GO term association, a receiver operator curve can be generated for
a parameter set of AHRD. So the evaluation procedure iterates over 101 small
confidence score threshold steps from 0 to 1. At each threshold value the proteins
with greater confidence scores are considered to be predicted. If the GO term
of interest also appears in the ancestry of the ground truth GO annotations of a
protein, the protein is considered a true positive and otherwise a false positive.
A protein that has the GO term of interest in its ancestry but has not been asso-
ciated with it, is considered a false negative. Thus, for each threshold value the
precision, recall and Fβ-score can be calculated. The maximum Fβ-score of all
confidence score threshold values is used as performance metric for the current
parameter set. AHRD can perform the term-centric annotation for multiple GO
terms at the same time. In this case the Fβ-score is averaged over the GO terms.

Training
Parameter optimization based on GO term-centric annotations can be performed

49



AHRD: Automatically Annotate Proteins with Human Readable Descriptions and Gene Ontology Terms

using the GO term-centric Fβ-score (see above) as objective function. Both
simulated annealing (section 6.3) and the genetic algorithm (section 7.4) can be
used.

7.6 Testing AHRD

Through the course of developing AHRD, different ideas to improve its annota-
tion performance have been pursued. Naturally, a central point in this endeavor
was the ability to quantify the impact of these ideas. The most important com-
ponent of any prediction evaluation is a good ground truth set. Our procedure
to extract a set of proteins from UniProtKB/Swiss-Prot with experimentally
verified GO annotations and a low sequence redundancy is described in sec-
tion 5. The UniProtKB was also used as sequence similarity search space and
annotation reference. So because the ground truth proteins were part of the
search space, self-matches needed to be avoided. Usually some proteins from
the ground truth might appear in the search results of other ground truth pro-
teins and consequently the self-matches should be filtered on a case by case
basis. But because our ground truth set has a very low sequence redundancy,
it is be very unlikely to find ground truth proteins in each other’s search re-
sults. Thereby, it was possible to avoid self-matching at an earlier stage of the
work flow by simply filtering the complete set of ground truth proteins from
Swiss-Prot.

AHRD’s parameter optimization procedures described in sections 6.3 and
7.4 are designed to heuristically find an optimum in the parameter space that
performs as closely as possible to the global optimum. Each time we introduce
a significant change to AHRD’s annotation prediction algorithm the parameter
space changes too. It was thus necessary to retrain and reevaluate AHRD each
time changes were made to assess the impact of these changes.

For the evaluation a set of 1000 proteins from our ground truth set were taken
aside. The remaining proteins (e.g. 1244 from nrSprotExpGOAv3) were used
for the training. This split of the ground truth set was performed at random
and repeated 10 times. This 10 times splitting procedure was performed only
once. Thus, all subsequent analysis steps use the same 10 training and test sets.
This facilitates a better comparison between AHRD versions as the variation
between splits can be excluded as a contributing factor for differences between
the mean evaluation scores.

All parameter optimization was performed with the genetic algorithm we
implemented for AHRD (section 7.4). Although we generally observed satisfac-
tory training results after 5000 parameter set evaluations (e.g. 50 generations of
100 parameter sets), we chose to perform 100 generations at a population size
of 200 to be sure. Depending on the complexity (only descriptions or also GO
annotations), our training took between 4 and 8 hours on a single core of a server
grade CPU. After that, the resulting parameter set was used for the function
prediction of the remaining 1000 proteins, which were evaluated in light of their
ground truth annotations. The mean value of the 1000 so obtained evaluation
scores was calculated to express the annotation performance in a single number
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for each ground truth set split.
As mentioned in section 7.2.3, in AHRD’s git commit 1c316ea we imple-

mented the separate evaluation of quality and coverage of a method’s annota-
tions. That means the average Fβ-score is only calculated from proteins that
have annotations predicted. And in addition, the coverage, i.e. the number of
annotated proteins divided by the size of the protein test set, can be obtained.

7.6.1 Evaluate Different GO Prediction Approaches for AHRD

We used UniProtKB version 2016 10 (both Swiss-Prot and TrEMBL) as the
search space for reference annotations. The protein set that was used is the sec-
ond version of our ground truth set (section 5). It was extracted from Swiss-Prot
(UniProtKB 2016 10) and called nrSprotExpGOAv2.

Variation in training
Because the training procedure makes liberal use of pseudo-randomly generated
numbers the outcome, i.e. the mean evaluation score of the protein test set, can
vary for repeated executions of the same training. Therefore, it was necessary
to assess the magnitude of the variation in the resulting mean score based solely
on the variation of the training. To do so we used AHRD commit 87166d5,
which is functionally identical to 24a82dc (see below), as an example to repeat
the training and evaluation procedure for every of the 10 ground truth set splits
1000 times, and we recorded the resulting evaluation scores.

Variation in splitting
As previously mentioned, to evaluate the influence of a change in AHRD’s GO
prediction algorithm, the ground truth set was split 10 times into training and
test set. Because the evaluation scores for the proteins can vary wildly from each
other, the exact composition of the protein splits can also influence the mean
evaluation score of the test set. It was thus also necessary to quantify the vari-
ation in the mean evaluation score based on protein set splitting. To do so, we
pooled the evaluation scores of all proteins in the 10 test sets after one round of
training and evaluation with example AHRD commit 87166d5. Samples of the
same size as the test set (1000 proteins) were randomly (without replacement)
drawn from the pool 1000 times. The mean evaluation score was calculated each
time. When proteins where inevitably found in more than one test set, the eval-
uation score for the particular protein was chosen at random from one of the sets.

Pairwise one-sided t-tests of evaluation scores from different AHRD
versions
The performance of AHRD’s different prediction algorithms can be assessed
by comparing their ground truth protein reannotation-based evaluation scores.
The validity of hypotheses regarding the in- or decrease of these scores must be
ascertained with statistical testing. Figure 5 in section 11 demonstrates that
the difference of mean evaluations scores can be expected to be much higher
between ground truth set splits than what is caused by the random nature of
AHRD parameter optimization. We observed that the variation between the
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ground truth set splits is also higher than the difference between various pre-
diction algorithms. Therefore we chose to perform the hypothesis testing in a
pairwise fashion on a per protein basis. The evaluation scores (F1, precision and
recall) are limited to the interval between 0 and 1. Furthermore, in many cases
the scores will be the same between different prediction algorithms, which leads
to a high number of difference values equal to 0. Consequently, the distribution
of pairwise differences can not be expected to exhibit normality. Non-parametric
tests could be used but their increased robustness comes at a cost to statistical
power. Thanks to the central limit theorem, parametric tests comparing the
mean of an outcome variable, such as the t-test, are robust to departures from
the normality assumption if sample sizes are large enough [90]. With 10 000
score pairs (1000 proteins × 10 splits) per test, this requirement is easily met in
our case.

AHRD’s GO prediction approaches

� Conventional description-based:
Feature code: - - - -

Commit: 24a82dc
The description score (equation 7) is used to choose the candidate protein,
whose GO annotations are transferred to the query.

- The adjustment of the token scores (equations 3 – 5) is performed
with an informative token threshold fixed to 0.5.

- No GO term score is calculated so the GO term abundance cannot
be considered.

- No GO term score is calculated so the information content of the GO
terms cannot be considered.

- No GO term score is calculated so the evidence codes of the candidate
GO annotations cannot be considered.

� Description-based with variable informative token threshold:
Feature code: itt - - -

Commit: dab2244
The description score (equation 7) is used to choose the candidate protein,
whose GO annotations are transferred to the query.

itt The adjustment of the token scores (equations 3 – 5) is performed
with a variable informative token threshold (itt).

- No GO term score is calculated so the GO term abundance cannot
be considered.

- No GO term score is calculated so the information content of the GO
terms cannot be considered.

- No GO term score is calculated so the evidence codes of the candidate
GO annotations cannot be considered.
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� Basic GO-based:
Feature code: - gtas - -

Commit: b8d95c6
The GO annotation score (equation 33) is used to choose the candidate
protein, whose GO annotations are transferred to the query.

- The adjustment of the GO term scores (equations 29 – 31) is per-
formed with an informative token threshold fixed to 0.5.

gtas The GO term score (equation 25) incorporates the abundance of GO
terms among the candidate proteins (equation 26).

- The GO term score (equation 25) ignores the information content of
the GO term.

- The GO term score (equation 25) ignores the evidence codes of the
candidate annotations.

� GO-based with information content score:
Feature code: - gtas ics -

Commit: b250834
The GO annotation score (equation 33) is used to choose the candidate
protein, whose GO annotations are transferred to the query.

- The adjustment of the GO term scores (equations 29 – 31) is per-
formed with an informative token threshold fixed to 0.5.

gtas The GO term score (equation 25) incorporates the abundance of GO
terms among the candidate proteins (equation 26).

ics The GO term score (equation 25) incorporates the information con-
tent of the GO term (equation 27).

- The GO term score (equation 25) ignores the evidence codes of the
candidate annotations.

� GO-based with evidence code score:
Feature code: - gtas - ecs

Commit: 510656a
The GO annotation score (equation 33) is used to choose the candidate
protein, whose GO annotations are transferred to the query.

- The adjustment of the GO term scores (equations 29 – 31) is per-
formed with an informative token threshold fixed to 0.5.

gtas The GO term score (equation 25) incorporates the abundance of GO
terms among the candidate proteins (equation 26).

- The GO term score (equation 25) ignores the information content of
the GO term.

ecs The GO term score (equation 25) incorporates the evidence codes of
the candidate annotations (equation 28).
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� GO-based with information content score and evidence code score:
Feature code: - gtas ics ecs

Commit: f0a2e61
The GO annotation score (equation 33) is used to choose the candidate
protein, whose GO annotations are transferred to the query.

- The adjustment of the GO term scores (equations 29 – 31) is per-
formed with an informative token threshold fixed to 0.5.

gtas The GO term score (equation 25) incorporates the abundance of GO
terms among the candidate proteins (equation 26).

ics The GO term score (equation 25) incorporates the information con-
tent of the GO term (equation 27).

ecs The GO term score (equation 25) incorporates the evidence codes of
the candidate annotations (equation 28).

� GO-based with variable informative token threshold:
Feature code: itt gtas - -

Commit: 3ebdb8b
The GO annotation score (equation 33) is used to choose the candidate
protein, whose GO annotations are transferred to the query.

itt The adjustment of the token scores (equations 3 – 5) is performed
with a variable informative token threshold.

gtas The GO term score (equation 25) incorporates the abundance of GO
terms among the candidate proteins (equation 26).

- The GO term score (equation 25) ignores the information content of
the GO term.

- The GO term score (equation 25) ignores the evidence codes of the
candidate annotations.

� GO-based with variable informative token threshold and infor-
mation content score:
Feature code: itt gtas ics -

Commit: 9bfb756
The GO annotation score (equation 33) is used to choose the candidate
protein, whose GO annotations are transferred to the query.

itt The adjustment of the token scores (equations 3 – 5) is performed
with a variable informative token threshold.

gtas The GO term score (equation 25) incorporates the abundance of GO
terms among the candidate proteins (equation 26).

ics The GO term score (equation 25) incorporates the information con-
tent of the GO term (equation 27).

- The GO term score (equation 25) ignores the evidence codes of the
candidate annotations.
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� GO-based with variable informative token threshold and evi-
dence code score:
Feature code: itt gtas - ecs

Commit: 557b902
The GO annotation score (equation 33) is used to choose the candidate
protein, whose GO annotations are transferred to the query.

itt The adjustment of the token scores (equations 3 – 5) is performed
with a variable informative token threshold.

gtas The GO term score (equation 25) incorporates the abundance of GO
terms among the candidate proteins (equation 26).

- The GO term score (equation 25) ignores the information content of
the GO term.

ecs The GO term score (equation 25) incorporates the evidence codes of
the candidate annotations (equation 28).

� Fully featured GO-based with variable informative token thresh-
old, information content score and evidence code score:
Feature code: itt gtas ics ecs

Commit: fdfbdea
The GO annotation score (equation 33) is used to choose the candidate
protein, whose GO annotations are transferred to the query.

itt The adjustment of the token scores (equations 3 – 5) is performed
with a variable informative token threshold.

gtas The GO term score (equation 25) incorporates the abundance of GO
terms among the candidate proteins (equation 26).

ics The GO term score (equation 25) incorporates the information con-
tent of the GO term (equation 27).

ecs The GO term score (equation 25) incorporates the evidence codes of
the candidate annotations (equation 28).

7.6.2 Test Competitors Alongside AHRD

The third version of our non-redundant ground truth protein set (section 5)
was annotated by some of AHRD’s best known competitors (section 4.3). We
used the AHRD commit 651fd2b of the “sem sim go OWL” branch to create
our own descriptions and GO annotations. To highlight the differences in the
predictions, we sorted the evaluation scores and plotted line plots (figures 12
and 14). The differences were also calculated on a by-protein basis and plotted
in two-sided histograms (figures 13 and 15).
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8 The CAFA Challenge

The CAFA (Critical Assessment of Functional Annotation) challenge is a recur-
ring community-wide contest to test competing computational protein function
prediction tools [91].

8.1 CAFA3

In 2017 we participated in the third installment of the challenge [77] with AHRD
under the name “schoofcropbiobonn”. We submitted around 1.5 million an-
notations for roughly 126 000 test proteins. After the submission deadline in
February new experimentally verified annotations accumulated for some of the
test proteins until the final benchmark collection was performed in November.
The organizers used evaluation metrics established in the previous challenge
[92, 93]:

� Fmax is the F1-score of the point on the precision-recall curve that maxi-
mized the harmonic mean of both precision and recall.

� The weighted version of Fmax (wFmax) takes the information content of
GO terms into account.

� The remaining uncertainty (ru) is defined as the average sum of the in-
formation content of ground truth terms missing from the prediction (i.e.
the false negatives). The misinformation (mi) is the average sum of the
information content of predicted terms not found in the ground truth (i.e.
the false positives). Smin minimizes the Euclidean distance of the remain-
ing uncertainty and the misinformation to the origin of a ru-mi-graph (at
which: ru = 0 and mi = 0).

� A normalized version of Smin (nSmin) brings the score values between 0
and 1. To achieve this the information content sums are divided by the
sum of the information content of the union of prediction and ground truth
(i.e. false positives + true positives + false negatives).
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In addition the evaluation was divided into multiple aspects:

� Ontology

– Biological process (BPO)

– Molecular function (MFO)

– Cellular component (CCO)

� Species

– all

* eukarya

· Rattus norvegicus (RAT)

· Candida albicans SC5314 (CANAX)

· Homo sapiens (HUMAN)

· Arabidopsis thaliana (ARATH)

· Dictyostelium discoideum (DICDI)

· Mus musculus (MOUSE)

· Drosophila melanogaster (DROME)

· Schizosaccharomyces pombe (SCHPO)

· Danio rerio (DANRE)

* prokarya

· Escherichia coli K-12 (ECOLI)

· Salmonella typhimurium (SALTY)

· Bacillus subtilis (BACSU)

� Type

– No Knowledge: Only proteins with no experimentally verified anno-
tations at the time of the submission deadline are evaluated.

– Limited Knowledge: Proteins that, at the time of the submission
deadline, had experimentally verified annotations in one or two on-
tologies (but not in the ontology that is benchmarked) are evaluated.

� Mode

– Full: Evaluation of all proteins (penalizes not making predictions).

– Partial: Only proteins for which predictions were made are evaluated.
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8.2 CAFA-π

Shortly after CAFA3 (section 8.1) a smaller interim challenge, coined CAFA-π,
was held. It focused exclusively on term-centered annotations (GO terms are
annotated with the parts of an organism’s proteome that they are associated
with). The GO term “biofilm formation” (GO:0042710) was to be annotated
with proteins from Candida albicans (strain SC5314) and Pseudomonas aerug-
inosa (strain UCBPP-PA14) and the GO term “cilium or flagellum-dependent
cell motility” (GO:0001539) was to be annotated with Pseudomonas aeruginosa
proteins. In order to evaluate the CAFA-π submissions, the organizers per-
formed genome-wide screens of the GO terms in question in the aforementioned
model organisms.

To make the predictions for our submission we used the term-centered version
of AHRD presented in section 7.5. Because the challenge is quite species-specific,
we tried to increase AHRD’s annotation performance by training it in the respec-
tive taxonomic niche. So we used 1 518 Swiss-Prot proteins of the Candida genus
as ground truth and 33 025 Swiss-Prot proteins as well as ca. 7.6 million TrEMBL
proteins of the Fungi kingdom as search space for AHRD’s training before the
C. albicans predictions. Similarly, we used used 3 501 Swiss-Prot proteins of the
Pseudomonas aeruginosa species group as ground truth and 14 482 Swiss-Prot
proteins as well as ca. 5 million TrEMBL proteins of the Pseudomonadales order
as search space for AHRD’s training before the P. aeruginosa predictions. The
term-centered version of AHRD is able to predict and consequently also able to
be trained on multiple GO terms at once. But to achieve the best performance
AHRD is capable of, the training for P. aeruginosa was performed for the two
GO terms of interest separately.

8.3 CAFA4

The fourth CAFA experiment was announced in late 2019. We participated
with over 1.5 million annotations for around 99.7% of the 97 999 target pro-
tein sequences. To speed up the preparations necessary for AHRD, we used
DIAMOND [25] for the sequence similarity searches on UniProtKB/TrEMBL
[4].
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9 Comparison of the Low Redundancy Ground

Truth Set to Random Proteins

Section 5 describes the workflow for the creation of a set of ground truth pro-
teins with a low level of function and sequence redundancy based on Swiss-Prot
proteins with experimentally verified GO annotations. In figure 3 AHRD’s an-
notation performance on this set is compared to the annotation performance on
random proteins from the whole pool of Swiss-Prot proteins with experimen-
tally verified GO annotations. The performance was determined using AHRD’s
git commit 7389bc5 and adhering to the training and test procedures laid out
in section 7.6. Figure 3 also shows the annotation performance of the “Best
BLAST” results (section 4.3.2) and the maximum theoretically possible perfor-
mance (section 4.3.1).

When the non-redundant set is annotated, the average scores are lower for
all methods, be it for descriptions (HRD) or GO terms. The amount of proteins
annotated with descriptions (HRD coverage) remains almost unchanged. The
annotation coverage with GO terms is only marginally lower for AHRD but
clearly lower for the “Best BLAST” results.
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Figure 3: Annotation Performance on a Low Redundancy Protein Set
Compared to the Annotation Performance on Random Swiss-Prot Pro-
teins
In order to test AHRD and other protein annotation programs a good set of ground
truth proteins is needed. Here the third version of such a set created in accordance to
the workflow described in section 5 is compared to random sets of proteins extracted
from the same Swiss-Prot release. The non-redundant set of Swiss-Prot proteins with
experimentally verified GO annotations (nrSprotExpGOAv3) is shown in pink. Ran-
dom sets of Swiss-Prot proteins with experimentally verified GO annotations (spro-
tExpGOA) are shown in turquoise. Next to the annotation performance of AHRD,
the performance of the BLAST result with the highest bitscore from Swiss-Prot or
TrEMBL is shown (section 4.3.2). To find the highest possible annotation perfor-
mance all candidate annotations were evaluated against the ground truth. The score
averaged over the top candidates of every protein in the set is shown as “Max Attain-
able” (section 4.3.1). Description-based evaluations are in the top row and GO-based
evaluations are in the bottom row. The mean F1-scores of the annotated proteins are
shown in the first column while the second column shows the fraction of annotated
proteins in the set. All tests were repeated with randomly selected proteins 10 times.
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10 Difference of GO Evaluation Methods

Figure 4 compares the three evaluation methods AHRD (commit 44f1374) pro-
vides for GO annotations (section 7.2).

The “Simple” method (section 7.2.1) uses the number of GO terms over-
lapping in prediction and ground truth compared to the size of these sets to
determine precision and recall, which are used to calculate an F1-score. The
“Ancestry” method (section 7.2.2) adds all parental GO terms to the predic-
tion and the ground truth before the sizes of both sets and their overlap are
determined. For the “SemSim” method (section 7.2.3) the maximum common
information content of the GO terms in prediction and ground truth is com-
pared to calculate a semantic similarity-based precision, recall and subsequently
an F1-score.

Over half of the predictions consist of eight GO terms or less while the ground
truth has a median of 11 GO terms. In many cases this leads to a quantization
of the “Simple” methods scores to common small fractions such as 2

5
, 1

2
or 2

3
.

Expanding the ground truth and prediction sets to include their whole ances-
try increases the number of possible set sizes and thus results in more fine-grained
score values of the ancestry-based F1-score. Predictions that match the ground
truth exactly are expanded with their ancestry in precisely the same way the
ground truth is and thus keep the perfect score of 1.0. Predictions with false
negative or false positive terms that do not share parts of their ancestry with
the respective other set, result in increasingly lower scores than the “simple GO
score” the more ancestors they have. However, false negative or false positive
terms that do share many ancestral terms with the terms of the respective other
set result in increased F1-scores in comparison to the “simple GO score”. This
results in a net increase of the mean F1-score (e.g. 0.691 up from 0.651).

With increasing distance to the root the information content of GO terms
can never decrease and typically increases (see section 7.1 for reference). Be-
cause the information content does not always increase proportionally to the
depth in the ontology, the ancestry-based GO evaluation score and the semantic
similarity-based GO evaluation score can differ from each other. Two extreme
examples found in Swiss-Prot release 2020 05 combined with the 2020-10 re-
lease of the Gene Ontology are the terms “BP: glycolytic process” (GO:0006096)
and “CC: symplast” (GO:0055044). GO:0006096 has an ancestry of 47 terms
but has been found in Swiss-Prot 5 209 times resulting in an information con-
tent of only 5.4. In contrast to that, GO:0055044 has only three ancestors
but because it was also annotated only twice (sp|Q94AN2|CHER1 ARATH and
sp|O80928|DOF24 ARATH), it has an information content of 12.9. So the “Sem-
Sim” approach increases the weight of rare terms comparatively close to the root
and lowers the importance of common terms — even if they are further away
from the root and have accordingly large ancestries. Table 6 shows the evalu-
ation of an example protein annotation that illustrates this. Additionally, the
semantic similarity-based GO evaluation offers greater consistency in a variety
of edge cases. Root terms have an information content of 0.0 and are thus not
considered as a valid annotation (tables 1 and 5). Predictions for ontologies not
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represented in the ground truth are not treated as false positives as they should
not be considered to be wrong if no knowledge is available for the particular
functional aspect of the protein (table 11).
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AHRD's GO annotation evaluation: Comparison of F1 scores
from 1000 proteins from nrSprotExpGOAv3 in uniprot_2018_09
Commit: 44f1374 Split: 1
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Figure 4: Comparison of AHRD’s GO Annotation Evaluation Methods
AHRD’s GO Annotations for 1000 proteins from the third version of our ground truth
set (section 5) were evaluated in accordance with three different methods.

Because the prediction and ground truth sets can sometimes be quite small, the
“Simple” F1-scores can become quantized. This can be seen in panel A and B as
vertical lines of data points at values of e.g. 2

5 , 1
2 and 2

3 . The “Ancestry” and “SemSim”
methods do not show similar lines which can be attributed to more fine-grained score
values.

Based on their mean F1-scores, ancestry-based scores are generally higher than
“Simple” scores (panel A) while “SemSim” scores are even higher still (panel C). This
is reaffirmed by the number of proteins where the “Ancestry” or “SemSim” scores are
higher than the “Simple” score (panels a and c).

The “Simple” method scores 38 proteins with a 0.0 which implies no overlap
between prediction and ground truth. But the “Ancestry” method can find common
parental GO terms in 30 of these cases (see table 3 for the example protein O13926).
Although these predictions still score very low (see the vertical line at the origin of the
graph in panel A) this shows how the “Ancestry” method can give a more nuanced
evaluation. With the “SemSim” method the number of predictions scored with a 0.0
increases again (panel c). This can be traced back to the methods recognition of
root GO terms which have an information content of 0.0 (see table 5 for the example
protein Q557B8).

AHRD was unable to assign any GO terms to 10 of the query proteins. These
consequently received NaN (Not a Number) scores in all three methods (panel a and
b). The “SemSim” method gave NaN scores to an additional 21 proteins (panel c).
In these cases there were GO terms predicted, but none in any (sub-)ontology present
in the ground truth (see table 1 for the example protein Q3E7D1).

All example proteins:
◦ Q3E7D1 (table 1): Only root term predicted
4 Q10478 (table 2): Predicted GO term covers significant part of the information
content in various ground truth terms
+ O13926 (table 3): Prediction entails a significant part of the ground truth’s
information content
× P24559 (table 4): High-information-content-terms completely missing in predic-
tion
� Q557B8 (table 5): Overlap of only root terms
5 Q9S851 (table 6): Prediction with many ancestors but low information content
� P20962 (table 7): GO term with few ancestors but high information content
×+ Q9P4R5 (table 8): Prediction of a crucial term with many ancestors and high
information content
+� P08148 (table 9): Prediction recalls most of the ground truth but misses the most
important terms⊕

D4A770 (table 10): Root terms in prediction
� Q9UBM4 (table 11): Ontology missing in ground truth
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Table 1: Example Protein ◦ Q3E7D1: Only Root Term Predicted
The only knowledge available about this protein is in the CCO: It is located in the
chloroplast (GO:0009507). But the root term of the BPO is also present in the ground
truth and the prediction.

The “simple GO score” does not take the different importance of these terms into
account. Thus, half of the ground truth is considered reproduced, resulting in a recall
of 1/2 = 0.5.

The “ancestry GO score” weights the “chloroplast” term much higher but does
not dismiss the BPO root terms as irrelevant. So its recall is set to 1/11 = 0.09.

When the “SemSim GO score” is calculated, the BPO root term’s information
content of 0.0 makes the prediction effectively empty and thus prevents the precision
to be calculated. In essence, the protein is considered unannotated.

Ground Truth: sp|Q3E7D1|FB131 ARATH Ancestors: IC:
CC: GO:0009507 chloroplast 10 4.54
BP: GO:0008150 biological process 1 0.00
Prediction: sp|Q3EBI7|FB130 ARATH Ancestors: IC:
BP: GO:0008150 biological process 1 0.00

Simple Ancestry SemSim
F1 Precision Recall F1 Precision Recall F1 Precision Recall

0.667 1.0 0.5 0.167 1.0 0.091 NaN NaN 0.0

One of two terms

GO:0009507 has
nine ancestors.

So one of 11 terms have
been recalled.

Root terms are ignored,
so effectively

no prediction was made.
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Table 2: Example Protein 4 Q10478: Predicted GO Term Covers Signifi-
cant Part of the Information Content in Various Ground Truth Terms
Of six CC terms and one term in BP and MF each, only one CC term has been
predicted.

Because none of the three GO evaluation scores find any false positives, the preci-
sion is determined to be 1.0 with all the methods.

Weighting all GO terms equally, the “simple GO score” computes a recall of
1/8 = 0.125.

On the one hand the ancestries of the CC terms in the ground truth overlap on
many of their terms. But on the other hand the predicted CC term “outer membrane”
(GO:0019867) reproduces only three of these ancestral CC terms. Even worse: The
BP term “protein insertion into mitochondrial outer membrane” (GO:0045040) has
the most ancestors of any ground truth term, and all of these are considered false
negatives. Thus, the “ancestry GO score” calculates the recall to be only ≈ 0.044.

The overlap of the ground truth CC term’s ancestries is also reflected in the
combined information content of ground truth for this ontology. It is far lower
than the sum of the shown information content numbers. Additionally, despite its
many ancestors the BP term “protein insertion into mitochondrial outer membrane”
(GO:0045040) has not a proportionally high information content. The predicted CC
term is thus considered to reproduce a significant amount of the ground truth’s infor-
mation content, resulting in a “SemSim GO recall” of a comparatively high value of
≈ 0.327

Ground Truth: sp|Q10478|SAM50 SCHPO Ancestors: IC:
CC: GO:0001401 SAM complex 14 9.64
CC: GO:0005739 mitochondrion 9 4.34
CC: GO:0005741 mitochondrial outer membrane 15 6.65
CC: GO:0016020 membrane 2 1.86
CC: GO:0016021 integral component of membrane 4 2.26
CC: GO:0019867 outer membrane 3 5.41
BP: GO:0045040 protein insertion into mitochondrial outer

membrane
38 8.57

MF: GO:0003674 molecular function 1 0.00
Prediction: tr|E9D731|E9D731 COCPS Ancestors: IC:
CC: GO:0019867 outer membrane 3 5.41

Simple Ancestry SemSim
F1 Precision Recall F1 Precision Recall F1 Precision Recall

0.222 1.0 0.125 0.085 1.0 0.044 0.493 1.0 0.327

Only one out of
eight terms

GO:0001401, GO:0005741
and GO:0045040 each
have a large number

of ancestors.

GO:0019867 recalls a
significant part of

the information content
of the other CC terms.
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Table 3: Example Protein + O13926: Prediction Entails a Significant Part
of the Ground Truth’s Information Content
As there is no direct overlap between the ground truth and the prediction GO terms,
the “simple GO score” is set to 0.0.

Because “methylation” (GO:0032259) is in the ancestry of both “peptidyl-lysine
methylation” (GO:0018022) and “regulation of cytoplasmic translation”
(GO:2000765) a small part of the BPO is reproduced. Also, both terms pre-
dicted in the MFO (GO:0008168 “methyltransferase activity” and GO:0016740
“transferase activity”) are ancestors of the only ground truth term in the MFO
(GO:0016279 “protein-lysine N-methyltransferase activity”). Consequently, the
“ancestry GO precision” is determined to be 1.0 and the recall low but not 0.0 with
a value of ≈ 0.127.

The information content of GO terms with many ancestors is compared to the
information content of terms with fewer ancestors. But in this case the information
contented does not scale proportionally with the size of the ancestry. The information
content of the prediction is thus found to cover a significantly greater part of the
ground truth’s information content than its ancestry is able to reproduce of the ground
truth’s ancestry. Therefore, with a value of ≈ 0.304 the “SemSim GO recall” is higher
as well.

Ground Truth: sp|O13926|YF66 SCHPO Ancestors: IC:
CC: GO:0005634 nucleus 8 3.05
CC: GO:0005737 cytoplasm 4 1.62
CC: GO:0005829 cytosol 5 3.41
BP: GO:0018022 peptidyl-lysine methylation 22 7.54
BP: GO:2000765 regulation of cytoplasmic translation 20 8.13
MF: GO:0016279 protein-lysine N-methyltransferase activity 11 7.64
Prediction: tr|S9R925|S9R925 SCHOY Ancestors: IC:
BP: GO:0032259 methylation 3 5.51
MF: GO:0008168 methyltransferase activity 5 4.05
MF: GO:0016740 transferase activity 3 2.11

Simple Ancestry SemSim
F1 Precision Recall F1 Precision Recall F1 Precision Recall
0.0 0.0 0.0 0.225 1.0 0.127 0.467 1.0 0.304

No terms overlap

GO:0032259 is ancestor
of GO:0018022.

GO:0008168 and GO:0016740
are ancestors of GO:0016279.

Prediction entails
a significant part of
the ground truth’s

information content
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Table 4: Example Protein × P24559: High-Information-Content-Terms
Completely Missing in Prediction
Of seven GO terms in the ground truth the prediction was able to reproduce three
exact matches. Thus, the “simple GO recall” is set to 3/7 ≈ 0.429 and the precision
to 1.0.

Because some of the ground truth’s terms have overlapping ancestries, the predic-
tion’s ancestry can cover more than half of it despite missing some important terms.
Thus, the “ancestry GO recall” is set to ≈ 0.512.

The MF term “ATPase activity” (GO:0016887) which is missing in the predic-
tion has only the root term in common with the predicted terms “nucleotide bind-
ing” (GO:0000166) and “ATP binding” (GO:0005524). So its information content
is counted completely towards the false negatives. In light of their moderately
sized ancestries the two BP terms “pilus retraction” (GO:0043108) and “type IV
pilus-dependent motility” (GO:0043107) both have a comparatively high information
content. Other than the root term they only overlap in one more term: “cellular
process” (GO:0009987). Because for the BPO no prediction was made at all and the
small overlap of the two ground truth terms most of their combined information con-
tent will be considered as false negative. The “SemSim GO recall” is set accordingly
low with a value of ≈ 0.137.

Ground Truth: sp|P24559|PILT PSEAE Ancestors: IC:
CC: GO:0005737 cytoplasm 4 1.62
CC: GO:0044096 type IV pilus 5 12.17
BP: GO:0043108 pilus retraction 7 13.92
BP: GO:0043107 type IV pilus-dependent motility 6 11.35
MF: GO:0000166 nucleotide binding 7 2.13
MF: GO:0005524 ATP binding 10 2.50
MF: GO:0016887 ATPase activity 8 3.89
Prediction: sp|Q06581|PILT NEIGO Ancestors: IC:
CC: GO:0005737 cytoplasm 4 1.62
MF: GO:0000166 nucleotide binding 7 2.13
MF: GO:0005524 ATP binding 10 2.50

Simple Ancestry SemSim
F1 Precision Recall F1 Precision Recall F1 Precision Recall
0.6 1.0 0.429 0.677 1.0 0.512 0.24 1.0 0.137

Recalled three out
of seven terms

The three recalled terms have
just as many ancestors
as the remaining four

GO:0016887 has only the root
in common with GO:0000166

and GO:0005524.
No predictions for
Biological Process:
Full penalization

for the missing terms
GO:0016887, GO:0043108

and GO:0043107
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Table 5: Example Protein � Q557B8: Overlap of Only Root Terms
The only immediate intersection of ground truth and prediction are the root terms
of the CCO and the MFO. The other two ground truth terms are missing and the
“simple GO recall” is consequently set to 2⁄4=0.5. Three of the five predicted terms are
not present in the ground truth, so the “simple GO precision” turns out to 2/5 = 0.4.

Because the ancestry of the three predicted CC terms overlap, the number of
predicted terms considered for the ancestry-based scores, is only seven. The predicted
root term of the BPO is an ancestor of “aggregation involved in sorocarp development”
(GO:0031152) in the ground truth, thus the number of true positives is three terms.
Thus, the “ancestry GO precision” is calculated as 3/7 ≈ 0.429. Counting 24 ancestral
terms, the term “aggregation involved in sorocarp development” (GO:0031152) makes
up the majority of the ground truth’s ancestry. Because it is missing in the prediction,
the “ancestry GO recall” turns out to 3/27 = 0.111.

The ground truth term “extracellular region” (GO:0005576) has only its root
term in common with the predicted terms “membrane” (GO:0016020) and “integral
component of membrane” (GO:0016021). But the root terms have no information
content. Consequently, the “SemSim GO score” records a true positive semantic
similarity of 0.0 and thus sets the precision as well as the recall to 0.0.

Ground Truth: sp|Q557B8|COMF DICDI Ancestors: IC:
CC: GO:0005575 cellular component 1 0.00
CC: GO:0005576 extracellular region 3 3.40
BP: GO:0031152 aggregation involved in sorocarp development 24 9.17
MF: GO:0003674 molecular function 1 0.00
Prediction: sp|Q54LY1|Y6311 DICDI Ancestors: IC:
CC: GO:0005575 cellular component 1 0.00
CC: GO:0016020 membrane 3 1.86
CC: GO:0016021 integral component of membrane 5 2.26
BP: GO:0008150 biological process 1 0.00
MF: GO:0003674 molecular function 1 0.00

Simple Ancestry SemSim
F1 Precision Recall F1 Precision Recall F1 Precision Recall

0.444 0.4 0.5 0.176 0.429 0.111 0.0 0.0 0.0

Overlap of two root terms

The two root terms
become a smaller portion

of the prediction
and ground truth.

Ignoring the root terms
eliminates all similarity

of prediction and ground truth.
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Table 6: Example Protein 5 Q9S851: Prediction With Many Ancestors
but Low Information Content
If all predicted terms also appear in the ground truth, the “simple GO precision” is
determined to be 1.0. But only three of the seven terms in the ground truth have
been reproduced, so the “simple GO recall” is set to 3/7 ≈ 0.429.

Most of the ancestors in the ground truth are also found in the prediction, the
“ancestry GO recall” thus turns out to be 0.75.

The recalled term “regulation of transcription, DNA-templated” (GO:0006355)
with the highest number of ancestors in the ground truth has a comparatively low
information content. In contrast “meristem initiation” (GO:0010014) and “organ
boundary specification between lateral” (GO:0010199) — both ground truth terms
missing in the prediction — have a high information content in regard to the sizes of
their ancestries. Consequently, with a value of ≈ 0.233, the “SemSim GO recall” is
set much lower.

Ground Truth: sp|Q9S851|NAC31 ARATH Ancestors: IC:
CC: GO:0005634 nucleus 8 3.05
BP: GO:0006355 regulation of transcription, DNA-templated 19 3.53
BP: GO:0007275 multicellular organism development 5 5.32
BP: GO:0010014 meristem initiation 3 10.18
BP: GO:0010199 organ boundary specification between lateral

organs and the meristem
6 11.72

MF: GO:0003677 DNA binding 6 3.00
MF: GO:0003700 DNA-binding transcription factor activity 3 4.30
Prediction: tr|F5B9T7|F5B9T7 BRAOL Ancestors: IC:
CC: GO:0005634 nucleus 8 3.05
BP: GO:0006355 regulation of transcription, DNA-templated 19 3.53
MF: GO:0003677 DNA binding 6 3.00

Simple Ancestry SemSim
F1 Precision Recall F1 Precision Recall F1 Precision Recall
0.6 1.0 0.429 0.857 1.0 0.75 0.378 1.0 0.233

Three out of seven
terms recalled

GO:0006355 has
many ancestors

Despite its may ancestors
GO:0006355 has a

low information content.
High information content terms

GO:0007275, GO:0010014
and GO:0010199 are missing
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Table 7: Example Protein � P20962: GO Term With Few Ancestors but
High Information Content
The prediction contains just one term also found in the ground truth among two
others. Consequently, the “simple GO recall” for this prediction is 1/3 = 0.333.

The ancestry of the solely predicted term “immune system process” (GO:0002376)
contains only the root of the BPO and itself. With this in mind, its information
content is comparatively high with a value of 4.25. In contrast, the ground truth term
“DNA replication” (GO:0006260) has far more ancestors (n=22), but with a value
of 5.08, a comparatively small information content. Therefore, the “ancestry GO
recall” is very low ( 2

8+2+21 ≈ 0.065) while the “SemSim GO recall” is relatively high

( 4.25
3.05+4.25+5.08 ≈ 0.343).

Ground Truth: sp|P20962|PTMS HUMAN Ancestors: IC:
CC: GO:0005634 nucleus 8 3.05
BP: GO:0002376 immune system process 2 4.25
BP: GO:0006260 DNA replication 22 5.08
Prediction: sp|P08814|PTMS BOVIN Ancestors: IC:
BP: GO:0002376 immune system process 2 4.25

Simple Ancestry SemSim
F1 Precision Recall F1 Precision Recall F1 Precision Recall
0.5 1.0 0.333 0.121 1.0 0.065 0.511 1.0 0.343

Recalled one of three terms
GO:0005634 and GO:0006260
have many ancestral terms;
GO:0002376 has only one.

About a third
of the ground truth’s
information content is

from GO:0002376.

Table 8: Example Protein ×+ Q9P4R5: Prediction of a Crucial Term With
Many Ancestors and High Information Content
Only one term was predicted. As it is also present in the ground truth, the “simple
GO recall” turns out to 1⁄5=0.2.

Because the predicted term “carbon catabolite repression of transcription”
(GO:0045013) has a high number of ancestors as well as a high information con-
tent, the “ancestry GO recall” and “SemSim GO recall” are both much higher than
the “simple GO recall” ( 53

1+7+53+1+2 ≈ 0.828 and 9.86
3.05+9.86+2.62 ≈ 0.635)

Ground Truth: sp|Q9P4R5|CREC EMENI Ancestors: IC:
CC: GO:0005575 cellular component 1 0.00
CC: GO:0005634 nucleus 8 3.05
BP: GO:0045013 carbon catabolite repression of transcription 53 9.86
MF: GO:0003674 molecular function 1 0.00
MF: GO:0005515 protein binding 3 2.62
Prediction: tr|C5FCR9|C5FCR9 ARTOC Ancestors: IC:
BP: GO:0045013 carbon catabolite repression of transcription 53 9.86

Simple Ancestry SemSim
F1 Precision Recall F1 Precision Recall F1 Precision Recall

0.333 1.0 0.2 0.906 1.0 0.828 0.777 1.0 0.635

One out of five terms recalled
GO:0045013 has
many ancestors

GO:0045013 has a
high information content
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Table 9: Example Protein +� P08148: Prediction Recalls Most of the
Ground Truth but Misses the Most Important Terms
The ground truth consists of 13 terms spread over all three ontologies. All but three
terms (GO:0036523, GO:0052014 and GO:0052032) are reproduced by the prediction.
Thus, the “simple GO score” is 10/13 ≈ 0.769.

Each of the three missing terms has a high number of ancestors. Although these
three ancestries overlap partially, they still make up the majority of the combined
ancestry of the ground truth. As a consequence, the “ancestry GO recall” is set
relatively low (≈ 0.254).

The three missing GO terms also have a high information content each. But com-
pared to the number of ancestors the increase is not as pronounced and the aforemen-
tioned overlap of their ancestries lowers their combined information content further.
Thus, the information content missing in the prediction is only about half of the infor-
mation content of the ground truth. Therefore, with a value of ≈ 0.532, the “SemSim
GO recall” is higher than the “ancestry GO score”.

Ground Truth: sp|P08148|GP63 LEIMA Ancestors: IC:
CC: GO:0005886 plasma membrane 4 2.56
CC: GO:0016020 membrane 2 1.86
CC: GO:0031225 anchored component of membrane 4 6.26
BP: GO:0006508 proteolysis 9 4.60
BP: GO:0007155 cell adhesion 3 5.43
BP: GO:0036523 positive regulation by symbiont of

host cytokine secretion
69 13.92

BP: GO:0052014 catabolism by symbiont of host protein 33 12.82
BP: GO:0052032 modulation by symbiont of

host inflammatory response
26 12.82

MF: GO:0004222 metalloendopeptidase activity 7 5.77
MF: GO:0008233 peptidase activity 5 3.98
MF: GO:0008237 metallopeptidase activity 7 5.11
MF: GO:0016787 hydrolase activity 3 2.17
MF: GO:0046872 metal ion binding 5 2.12
Prediction: sp|P15706|GP63 LEICH Ancestors: IC:
CC: GO:0005886 plasma membrane 4 2.56
CC: GO:0016020 membrane 2 1.86
CC: GO:0031225 anchored component of membrane 4 6.26
BP: GO:0006508 proteolysis 9 4.60
BP: GO:0007155 cell adhesion 3 5.43
MF: GO:0004222 metalloendopeptidase activity 7 5.77
MF: GO:0008233 peptidase activity 5 3.98
MF: GO:0008237 metallopeptidase activity 7 5.11
MF: GO:0016787 hydrolase activity 3 2.17
MF: GO:0046872 metal ion binding 5 2.12

Simple Ancestry SemSim
F1 Precision Recall F1 Precision Recall F1 Precision Recall

0.87 1.0 0.769 0.405 1.0 0.254 0.695 1.0 0.532

Recalled 10
out of 13 terms

The three missing terms
GO:0036523, GO:0052014

and GO:0052032
have large ancestries.

The three missing terms
GO:0036523, GO:0052014

and GO:0052032
have a high

information content.
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Table 10: Example Protein
⊕

D4A770: Root Terms in Prediction
The three root terms in the prediction are not present in the ground truth and are
therefore considered false positives in the calculation of the “simple GO score”. So
the “simple GO precision” is set to 2⁄5=0.4.

The correctly predicted term “regulation of mast cell degranulation” (GO:0043304)
has a large ancestry. This lowers the effect of the falsely predicted root terms and
results in an “ancestry GO precision” of 4+28

1+3+1+27+1 ≈ 0.97.
In the calculation of the “SemSim GO score” the zero information containing

root terms are treated as such and are consequently not considered false positives.
Accordingly, the “SemSim GO precision” is set to 1.0.

Ground Truth: sp|D4A770|CL004 RAT Ancestors: IC:
CC: GO:0005737 cytoplasm 4 1.62
BP: GO:0043304 regulation of mast cell degranulation 28 9.15
Prediction: sp|Q91YN0|CL004 MOUSE
CC: GO:0005575 cellular component 1 0.00
CC: GO:0005737 cytoplasm 4 1.62
BP: GO:0008150 biological process 1 0.00
BP: GO:0043304 regulation of mast cell degranulation 28 9.15
MF: GO:0003674 molecular function 1 0.00

Simple Ancestry SemSim
F1 Precision Recall F1 Precision Recall F1 Precision Recall

0.571 0.4 1.0 0.985 0.97 1.0 1.0 1.0 1.0
Only two of the five predicted

terms are also in the
ground truth

GO:0043304 has
many ancestral terms

The “SemSim GO score”
ignores root terms
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Table 11: Example Protein � Q9UBM4: Subontology Missing in Ground
Truth
Out of the four GO terms in the prediction and the three GO terms in the ground
truth only two overlap directly. Consequently, the “simple GO precision” is 2/4 = 0.5
and the “simple GO recall” is 2/3 = 0.666.

Because the false positive term “negative regulation of angiogenesis” (GO:0016525)
has a comparatively high number of ancestors, the “ancestry GO precision” is lower
( 3+1+1
3+1+15+1 = 0.25). The “ancestry GO recall”, on the other hand, is slightly higher

(3+1+1
3+1+3 ≈ 0.714).

If for an entire subontology (in this case the BPO) no prior knowledge is available,
a prediction for the particular functional aspect cannot be known to be wrong either.
For this reason the “SemSim GO score” does not consider the predicted term “negative
regulation of angiogenesis” (GO:0016525) a false positive. The root term of the MFO
with its 0.0-information-content also does not add to the false positives. Therefore,
no information content was predicted that was not also part of the ground truth and
the “SemSim GO precision” is thus set to 1.0. But because the complete ground truth
information content in the MFO (7.69) was missing in the prediction, the “SemSim GO
recall” is the lowest in comparison to the other two methods ( 3.4+5.87

3.4+5.87+7.69 ≈ 0.547).

Ground Truth: sp|Q9UBM4|OPT HUMAN Ancestors: IC:
CC: GO:0005576 extracellular region 3 3.40
CC: GO:0031012 extracellular matrix 4 5.87
MF: GO:0005201 extracellular matrix structural constituent 3 7.69
Prediction: sp|Q920A0|OPT MOUSE Ancestors: IC:
CC: GO:0005576 extracellular region 3 3.40
CC: GO:0031012 extracellular matrix 4 5.87
BP: GO:0016525 negative regulation of angiogenesis 15 8.07
MF: GO:0003674 molecular function 1 0.00

Simple Ancestry SemSim
F1 Precision Recall F1 Precision Recall F1 Precision Recall

0.571 0.5 0.667 0.37 0.25 0.714 0.707 1.0 0.547

Recalled two out of three terms.
Two out of four predicted terms

are false positives.

The false positive term
GO:0016525 has many

ancestors.

As long as there is no
ground truth available for

the biological process
ontology, predictions for

it are not considered
false positives.
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11 Variation of GO Prediction Performance

Based on Factors Other Than the Predic-

tion Algorithm

To assess the magnitude of improvements provided by new GO annotation ap-
proaches (section 7.6.1), a baseline of mean F1-score variation due to other fac-
tors had to be established. The two other major factors that influence the mean
F1-score in the presented test setup are the random partitioning of the ground
truth proteins into training and test set (section 7.6) and the randomness inher-
ent to AHRD’s parameter optimization techniques (sections 6.3 and 7.4). Figure
5 shows boxplots of the mean F1-scores based on these two influences. Once for
1000 random samples of 1000 proteins from all 10 splits and 10 times for 1000
repeated parameter optimizations of each of the 10 splits. Comparing the inter
quantile range (IQR) of the training-based mean F1-scores (< 0.0031) with the
IQR of the split-based mean scores (= 0.0096) demonstrates a high difference
of their spread. This is confirmed by Fligner-Killeen tests [94] (null hypothesis:
variances in groups are the same) of the aforementioned training-based mean
scores and the split-based mean scores (supplemental table 13).

It follows that in order to control for the variation between splits the scores
from different prediction algorithms should be compared in a pairwise fashion
on a by protein basis (sections 12 and 13).
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Figure 5: The Influence of Random Protein Set Partitioning and Random-
ness in Parameter Optimization
The mean F1-score of 1000 GO predictions randomly drawn from all 10 splits were
calculated 1000 times and are shown in the left-most boxplot. The aim was to simu-
late the splitting itself and to show the possible variation of the mean F1-score based
on this factor. For each split, AHRD’s parameter optimization was performed 1000
times resulting in the other 10 boxplots. Each boxplot is overlain with a violin plot:
A mirrored density plot with a standard deviation for the gaussian smoothing kernel
of 0.0001.

While the random samples from the pool of all splits show a normal distribution
of their mean F1-scores, the same cannot be observed for the individual splits. This
observation is confirmed by Shapiro-Wilk normality tests [95] (supplemental table 13).

In light of the non-normality of the mean F1-scores obtained by repeated training
the homogeneity of the variance between the random split samples and the retrained
splits was tested with non-parametric Fligner-Killeen tests [94] (supplemental table
13). The tests confirm the visually intuitive observation that the variation introduced
by the randomness built into AHRD’s training is much smaller than the variation
caused by the random splitting of the protein set.
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12 Impact of the New Parameter “Informative

Token Threshold” in Conventional

Description-Based Prediction

12.1 The “Informative Token Threshold” Does Not Sig-
nificantly Improve the Prediction of Human Read-
able Descriptions

We compared AHRD’s description prediction performance using the new pa-
rameter “informative token threshold” (commit dab2244) with the conventional
approach lacking it (commit 9b3a4de). As described in section 7.6 the test setup
consisted of 10 random ground truth set splits à 1000 proteins. In figure 6 the
mean description evaluation scores of both variants are plotted against each
other on a per-split basis. One-sided pairwise t-tests on the scores of all 10 000
description annotation pairs show an increase of the mean precision at a signif-
icance level of 0.001 but a decrease of the mean recall at a significance level of
0.05. These effects cancel each other out partially and thus result in F1-scores
that are only increased at a significance threshold of 0.05. The genetic algorithm
(section 7.4) set the new parameter to values between 0.7 and 0.98 (not shown
here).
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Figure 6: Impact of the New Parameter “Informative Token Threshold”
on the Description Annotation Performance
Parameter optimization and parameter evaluation of 10 splits of our ground truth set
(section 5) were performed with two versions of AHRD. One with the new parameter
“informative token threshold” (commit dab2244) and one without (commit 9b3a4de).
One-sided pairwise t-tests were performed on the description score pairs of all 10 000
protein annotations. The significance level of test results is indicated above the diago-
nal in cases of an increase to the scores and below the diagonal in cases of a significant
test of the opposite hypothesis pair. The p-value thresholds for the “stars notation”
are: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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12.2 The Performance of AHRD’s Conventional
Description-Based GO Prediction Is Improved by
Lowering the “Informative Token Threshold”

AHRD’s GO prediction performance using the conventional description-based
algorithm was evaluated using a fixed (commit 24a82dc) and a variable (commit
dab2244) threshold for the distinction of informative and uninformative tokens.
The test setup — laid out in section 7.6 — consisted of 10 random ground truth
set splits resulting in 10 test sets with 1000 proteins each. Figure 7 shows the
mean scores (F1, recall and precision) of both variants on a per-test-set-basis.
Testing for pairwise differences in the scores of all 10 000 GO annotation pairs
showed an increase of both precision and recall on a significance level of 0.001.
The resulting F1-scores were thus also observed to be increased on this signifi-
cance level.

AHRD’s parameter optimization procedure (section 7.4) determined the op-
timal value for the threshold to be very close to 0.0 (0.037 and smaller) with
one exception out of the 10 repetitions where the value was set to 1.0.
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Figure 7: Impact of the New Parameter “Informative Token Threshold”
on GO Annotation Performance in HRD-Bound GO Prediction
Parameter optimization and parameter evaluation of 10 splits of our ground truth
set (section 5) was performed with two versions of AHRD. One with the new pa-
rameter “informative token threshold” (commit dab2244) and one without (commit
24a82dc). Here the mean semantic similarity GO evaluation scores over the 1000 pro-
teins of each test set are shown using both methods. To assess the significance of the
prediction-performance-differences between the two versions of AHRD, two-sided pair-
wise t-tests were performed on all pairs of the 10 000 test protein GO annotations. The
“stars notation” (0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1) is used to
indicate the significance level of a score increase (above the diagonal) or of a score
decrease (below the diagonal).
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13 Separate GO-Based Approaches to the GO

Prediction Increase Performance Signifi-

cantly

Section 7.6.1 shows the combinatorial abundance of different parameters leading
to many GO-based prediction approaches that we explored. Here we compare
all combinations with each other to determine the contribution of single aspects
to the improvement of the prediction performance. In order to keep this from
becoming convoluted, we opted for a matrix of pairwise comparisons instead of a
separate plot for each pair. Each score is shown in a separate plot: The F1-scores
are compared in figure 8 (red), whereas figure 9 (blue) shows the comparison of
the recall and the precision-based plot is in figure 10 (green).

The intersections of the first two columns (on the x-axis) with the first two
lines (on the y-axis) repeat the comparisons shown in figure 7 in section 12.2:
Making the threshold for the distinction of informative from uninformative to-
kens variable (itt) results in an increase of AHRD’s GO prediction perfor-
mance (F1: p < 0.001) provided by both higher recall (p < 0.001) and precision
(p = 0.001).

The GO-based prediction without the “itt” ( - gtas - - ) shows a sig-
nificant performance regression compared to the description-based approaches
( - - - - and itt - - - ). The addition of the information content score
( - gtas ics - ) recoups some of the recall at a cost to the precision. Using the
evidence code score ( - gtas - ecs ) instead achieves even higher scores. But
both at the same time ( - gtas ics ecs ) are necessary to be better than the
description-based approach using the informative token threshold (itt - - - )
at a significance level of 0.01.

The variable informative token threshold (itt) is also a major influence on
the GO prediction performance in all approaches using a GO-based algorithm
(gtas) instead of a description-based one. The genetic algorithm found very low
values to be optimal for it. The highest informative token threshold found in the
here presented tests was ≈ 0.066. It provides a boost to the recall at the cost of
precision. But the higher recall outweighs the lower precision. The addition of
the information content score to the prediction algorithm (itt gtas ics - )
slightly shifts the balance between recall and precision resulting in no net gain to
F1. However, the evidence code score (itt gtas - ecs) can increase both recall
and precision by a little, resulting in an improvement to the mean F1-score at
a significance level of 0.01. The fully featured algorithm (itt gtas ics ecs)
shows the highest mean F1-score and recall. The F1-score is significantly in-
creased compared to all other prediction approaches baring the previous one.
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Figure 8: One-Sided Pairwise T-Tests of the F1-Scores Obtained With
Different GO Prediction Approaches
Each cell shows the p-value of a one-sided pairwise t-test of F1-scores from 1000
proteins in 10 training/test-set splits each. P-values very close to 1.0 or 0.0 had to
be rounded to the whole number due to readability considerations. The cells are
color graded in accordance to commonly used p-value thresholds. The alternative
hypothesis for each t-test below the diagonal is: The mean of the pairwise differences of
the F1-scores of the approach on the y-axis compared to the F1-scores of the approach
on the x-axis is greater than 0.0. While the alternative hypothesis for each t-test
above the diagonal is: The mean of the pairwise differences is smaller than 0.0.
itt: informative token threshold

gtas: go term abundancy score

ics: information content score

ecs: evidence code score

A detailed explanation for the feature codes of the prediction algorithms is provided
in section 7.6.1. The diagonal shows the mean F1-score over all 10 000 proteins.
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Figure 9: One-Sided Pairwise T-Tests of the Recall Obtained With Differ-
ent GO Prediction Approaches
Each cell shows the p-value of a one-sided pairwise t-test of the recall from 1000 pro-
teins in 10 training/test-set splits each. P-values very close to 1.0 or 0.0 had to be
rounded to the whole number due to readability considerations. The cells are color
graded in accordance to commonly used p-value thresholds. The alternative hypoth-
esis for each t-test below the diagonal is: The mean of the pairwise differences of the
recall of the approach on the y-axis compared to the recall of the approach on the
x-axis is greater than 0.0. While the alternative hypothesis for each t-test above the
diagonal is: The mean of the pairwise differences is smaller than 0.0.
itt: informative token threshold

gtas: go term abundancy score

ics: information content score

ecs: evidence code score

A detailed explanation for the feature codes of the prediction algorithms is provided
in section 7.6.1. The diagonal shows the mean recall over all 10 000 proteins.

84



Dissertation Florian Boecker Part III: Results

1

1

1

1

0

0

0

0

0

0.8609

1

1

1

1

0

0

0

0

0.8679

1

1

1

1

1

1

1

1

0.8893

1

1

1

1

1

1

1

1

0.8837

0

1

1

1

1

1

1

0.3528

0.8775

0

0

1

1

1

1

1

1

0.8778

0.6472

0

0

1

1

0.0022

0.0019

0.9999

0.8435

0

0

0

0

0

0

0

0

0.8403

1e−04

0

0

0

0

0

0

0.4739

0.8475

1

0.9981

0

0

0

0

0

0

0.8476

0.5261

1

0.9978

0

0

0

0

0

0

itt gtas ics ecs

itt gtas  −  ecs

itt gtas ics  − 

itt gtas  −   − 

 −  gtas ics ecs

 −  gtas  −  ecs

 −  gtas ics  − 

 −  gtas  −   − 

itt  −    −   − 

 −   −    −   − 

 −
  
 −

  
  
−

  
 −

 

itt
  
−

  
  
−

  
 −

 

 −
  
g

ta
s 

 −
  
 −

 

 −
  
g

ta
s 

ic
s 

 −
 

 −
  
g

ta
s 

 −
  
e

cs

 −
  
g

ta
s 

ic
s 

e
cs

itt
 g

ta
s 

 −
  
 −

 

itt
 g

ta
s 

ic
s 

 −
 

itt
 g

ta
s 

 −
  
e

cs

itt
 g

ta
s 

ic
s 

e
cs

X

Y

Paired
t−Test
p−Value

Mean Precision

  (0.1 − 1.0)

. (0.05 − 0.1)

* (0.01 − 0.05)

** (0.001 − 0.01)

*** (0 − 0.001)

Figure 10: One-Sided Pairwise T-Tests of the Precision Obtained With
Different GO Prediction Approaches
Each cell shows the p-value of a one-sided pairwise t-test of the precision from 1000
proteins in 10 training/test-set splits each. P-values very close to 1.0 or 0.0 had to
be rounded to the whole number due to readability considerations. The cells are
color graded in accordance to commonly used p-value thresholds. The alternative
hypothesis for each t-test below the diagonal is: The mean of the pairwise differences
of the precision of the approach on the y-axis compared to the precision of the approach
on the x-axis is greater than 0.0. While the alternative hypothesis for each t-test above
the diagonal is: The mean of the pairwise differences is smaller than 0.0.
itt: informative token threshold

gtas: go term abundancy score

ics: information content score

ecs: evidence code score

A detailed explanation for the feature codes of the prediction algorithms is provided
in section 7.6.1. The diagonal shows the mean precision over all 10 000 proteins.
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14 Direct GO Annotation Instead of Transfer

From a Reference Protein Severely Lowers

Performance

Usually AHRD ranks the candidate reference proteins found via sequence simi-
larity and transfers the GO annotation along the description from the top protein
to the query. But the rest of the reference proteins can contain valuable infor-
mation too. Combining human readable descriptions would necessitate complex
natural language processing — a large research area by itself. However, GO an-
notations from multiple references can be combined much more easily. To test
this in AHRD, we used a version (commit abaff70) of our GO-based ranking
algorithm (section 7.3.1) and switched it from transferring whole sets of GO
terms from a single reference protein to annotating the query with all GO terms
from the pool of candidates as long as they exceed a certain quality threshold
(commit e33e711). This GO term score threshold is relative to the maximum
GO term score (equation 25) of the GO term candidates and was optimized with
the genetic algorithm-based trainer along AHRD’s other parameters. Both GO
annotation approaches were tested in accordance to the procedure described in
section 7.6.1.

98.7% of the proteins received GO annotations regardless of the annotation
method. On average, the classical approach annotated proteins with 12.5 GO
terms, while the new method increased this number to 20.4. The GO anno-
tation performance of this new version is plotted on the ordinate against its
predecessor’s performance on the abscissa in figure 11. Although the increased
number of GO terms increases the recall significantly, this also leads to the pre-
cision suffering drastically, which in turn leads to a significant decrease of the
F1-score.
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Figure 11: Annotation of Top Ranking GO Terms Instead of Annotation
of GO Term Set From Top Ranking Protein
Parameter optimization and parameter evaluation of 10 splits of our ground truth set
(section 5) was performed with two versions of AHRD.

In the conventional version of AHRD (commit abaff70, shown on the horizontal
axis) GO term scores (equation 25 in section 7.3.1) are used to determine a GO
annotation score (equation 33) for each candidate protein. These are used to rank
the candidate proteins to transfer the set of GO terms from the top candidate to the
query.

The alternative approach (commit e33e711, shown on the vertical axis) tested here
uses the GO term scores to rank the GO terms of all candidate proteins directly
instead. Then, the informative token threshold (parameter taking part in the opti-
mization of AHRD) is used to determine a cutoff value relative to the highest GO
term score. All GO terms making the cutoff are transferred to the query.

Here the mean semantic similarity GO evaluation score of each
1000-protein-test-set is shown using both methods. To assess the significance
of the prediction-performance-differences between the two versions of AHRD,
two-sided pairwise t-tests were performed on all pairs of the 10 000 test protein
GO annotations. The “stars notation” (0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

0.1 ‘ ’ 1) is used to indicate the significance level of a score increase (above the
diagonal) or of a score decrease (below the diagonal).
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15 AHRD’s Prediction Performance Compared

to Competitors

As described in section 7.6.2 we assessed the annotation performance of AHRD
and its competitors on our low redundancy test set (section 5). Descriptions
were evaluated according to words overlapping between prediction and ground
truth, while GO annotations were scored according to their semantic similarity
to the ground truth (section 7.2.3).

Annotation with human readable descriptions
Figure 12 shows that AHRD can annotate more proteins with descriptions,
which perfectly fit the ground truth, than any of its competitors. It also shows
that none of the other methods can annotate as many proteins as AHRD does.
The granularity of the evaluation of descriptions is limited by the relatively small
number of words present in typical protein descriptions. Figure 13 shows the
differences between AHRD and its closest competitors (Blast2GO and BBsprot).
AHRD has a better score in the majority of cases and there are some cases where
only AHRD can annotate the protein. But there are no proteins that have only
been annotated by a competitor.

GO annotation
As the smooth curves in figure 14 show, our semantic similarity-based approach
allows a very fine-grained evaluation of GO annotations. Together with BBsprot,
AHRD annotates the most proteins with a perfect set of GO terms. But when it
comes to the number of proteins that cannot be annotated at all BBsprot loses
to AHRD. NetGO can annotate even more proteins (i.e. higher coverage) but
cannot provide many good annotations. Only AHRD provides both high quality
and high coverage. The direct comparison of proteins that received different GO
annotations by competitors in figure 15 shows more proteins with a better score
for AHRD. Compared to Blast2GO, BBsprot, and EggNOGmapper AHRD also
has more exclusively annotated proteins, i.e. it has a higher coverage. Only
NetGO can exceed AHRD’s coverage but does so by sacrificing quality.
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Figure 12: Description Annotation Performance of AHRD and Competi-
tors
The same 1000 random proteins from the ground truth set were annotated by AHRD
and competing methods. Here each method’s scores are separately sorted in descend-
ing order.

With around 600 proteins, AHRD annotates more proteins with perfect descrip-
tions than any of its competitors. The steepness of the lines shows that the number of
proteins annotated with loosely fitting descriptions is similar between all competitors.
AHRD annotates the highest amount of proteins (841) at a non-zero score.
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Figure 13: Difference in Description Annotation Performance Between
AHRD, Blast2GO and BBsprot
In many cases the F1-score of AHRD and the competitor is the same. Thus, difference
values of zero had to be removed to attain proper scaling.

When AHRD’s description differs from the one annotated by its competitors, most
of the time AHRD achieves a better score. Additionally, some proteins that are not
annotated by the competitors at all were able to be annotated by AHRD — often at
a high quality. The proteins AHRD was unable to annotate were also not annotated
by Blast2GO or BBsprot.
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Figure 14: GO Annotation Performance of AHRD and Competitors
The same 1000 random proteins from the ground truth set were annotated by AHRD
and competing methods. Each method’s scores are separately sorted in descending
order.

AHRD and BBsprot achieve a perfect F1-score equal to 1.0 in 99 and 94 cases
respectively. All other competitors only manage to do this for far fewer proteins.
Following the curves down to lower F1-scores, AHRD beats BBsprot in terms of
coverage (959 instead of 927 proteins annotated). Only NetGO provides a higher
coverage than AHRD but does so mostly with annotations scoring comparatively low.
AHRD is the only method providing high quality and high coverage of annotations at
the same time.
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Figure 15: Difference in GO Annotation Performance of AHRD Versus
Blast2GO, BBsprot, EggNOGmapper and NetGO
We removed difference values of zero to maintain proper scaling.

Compared to Blast2GO, AHRD annotates more proteins exclusively and an-
notates hundreds of proteins a little better. BBsprot’s GO annotations are more
similar to AHRD’s, but here more proteins are only annotated by AHRD. And
these AHRD-exclusive annotations tend to be good matches to the ground truth.
EggNOGmapper has small advantages at a lot of proteins, but so does AHRD. In ad-
dition, AHRD can annotate a lot of proteins with good GO terms that EggNOGmap-
per cannot annotate at all. NetGO can annotate the proteins that AHRD cannot.
But AHRD provides higher quality annotations for the majority of proteins that are
annotated by both.
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16 AHRD Can Increase the Annotation Cov-

erage of Established Proteomes

To test the comprehensiveness of AHRD’s annotations we compared its annota-
tions for the proteomes of Barley and Blumeria graminis to prior knowledge by
Mascher et al. [73] and annotations from the UniProtKB [4] respectively. Figure
16 shows the prior proteome coverage and the coverage AHRD, BBsprot and
BBtrembl achieve. An additional 13% of the proteome is annotated with de-
scriptions by AHRD, and an additional 43% of the proteome is annotated with
GO terms. The “Best BLAST” results from Swiss-Prot can match and some-
times even exceed the prior annotation coverage but only AHRD annotates over
90% of the proteome consistently.
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Figure 16: Coverage of Two Proteomes Prior to and After Annotation
With AHRD
Prior annotations by Mascher et al. [73] were used for Barley and extracted from
the UniProtKB for Blumeria. In both cases the proteins associated with any closely
related subspecies were removed from AHRD’s search databases to avoid self-matches.
In the case of Barley AHRD was able to raise the fraction of annotated proteins by
15% (from 85% to 98%) for descriptions and by 80% (from 53% to 96%) for GO terms.
AHRD was able to increase the portion of Blumeria proteins with descriptions by 12%
(from 84% to 94%) and the portion of proteins with GO terms by 40% (from 65%
to 91%). BBsprot and BBtrembl were sometimes able to match or even exceed the
previous annotation coverage of the two example proteomes. But only AHRD was
consistently able to provide a comprehensive annotation fraction of over 90%.
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17 Parameter Optimization Improves AHRD’s

Annotation Performance

Figure 17 shows the effect that optimizing AHRD’s parameters has on its per-
formance when our low redundancy ground truth set is annotated (section 5).
Parameters that we chose based on intuition did not improve AHRD’s perfor-
mance in a significant way in comparison to naive parameters that give equal
weight to all annotation quality metrics AHRD uses. In contrast, the genetic
trainer (section 7.4) was able to improve the average F1-score by 7% for descrip-
tions and 11% for GO terms.

AHRD currently supports two different methods for the optimization of its
parameters: Simulated annealing (section 6.3) and a genetic algorithm (section
7.4). In figure 18 both methods are compared to the repeated evaluation of
randomly drawn parameter sets. All three methods work with the same compu-
tational budget and therefore arrived at the shown scores after a similar runtime.
The improvements the machine learning algorithms were able to achieve over the
random method are small but significant. Furthermore, the genetic algorithm
was able to show the best results by an even smaller but also significant margin.
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Figure 17: AHRD’s Annotation Performance Before and After Optimiza-
tion of Its Parameters
AHRD’s annotation performance on our ground truth set (section 5) was assessed
depending on different parameter sets. Naive parameters give equal weight to the
various quality metrics and search databases that AHRD uses (section 6.1.2). Intu-
itive parameters were manually selected by us and the optimized parameters were
obtained using machine learning (section 7.4).

While the intuitively chosen parameters can only increase the scores marginally,
machine learning can give AHRD a boost of around 7% for descriptions by increasing
both precision and recall. When predicting GO terms AHRD’s optimization can even
increase its performance by 11%. This is achieved by reducing the underprediction
the naive and intuitive sets result in (shown by the high precision but low recall) and
considerably raising the recall at only a small cost to the precision.
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Figure 18: AHRD’s Parameter Optimization Methods in Comparison
Here the training score (mean semantic similarity F1-score over all training proteins)
is plotted for three optimization methods of AHRD’s parameters. We used our low
redundancy ground truth set (section 5), gave each algorithm a budged of 5000 eval-
uation/optimization cycles and repeated the procedure 100 times. Simply picking the
best of 5000 randomly drawn parameter sets shows the worst results and the greatest
spread of score values. Comparing medians, the simulated annealing (section 6.3) im-
proves the training score by only ≈ 0.6%. But the improvement is highly significant
(p < 2.2e−16). The improvement the genetic algorithm (section 7.4) can provide over
the simulated annealing is even smaller but highly significant as well (p < 2.2e−16).
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18 AHRD’s Placements in the CAFA3 Chal-

lenge

Table 12 lists the numbers and percentages of AHRD’s best placements in the
third installment of the CAFA challenge (section 8.1). AHRD’s annotations
resulted in more high placements when the evaluation was performed according
to the Fmax metric as opposed to the Smin. When the Fmax is weighted by
the information content of the GO terms (wFmax), AHRD’s annotations were
considered to be even better. The normalized Smin (nSmin) also resulted in a
ranking that gave AHRD much more good placements.

The number of AHRD’s placements combined for all metrics but with respect
to four evaluation aspects (section 8.1) are shown in figure 19. AHRD’s anno-
tations for E. coli did fairly well, which also gave it many top 10 placements in
the categories for all prokaryotes. Our annotations for Arabidopsis proteins also
resulted in a high number of top 10 placements. Furthermore, AHRD received
some top 10 placements for its annotation of human, mouse and Drosophila pro-
teins. We were also sometimes in the top 10 of methods for all proteins. AHRD’s
placements were similarly divided among the three (sub-)ontologies of the GO
and between “Limited Knowledge” and “No Knowledge” proteins. Most of our
top 10 placements were achieved in the partial evaluation mode.

Table 12: AHRD’s Best Placements in CAFA3
The CAFA3 challenge was evaluated in accordance to four different metrics and under
various aspects (section 8.1). Each combination of the evaluation aspects is given as a
separate evaluation category. Here we report the number of times AHRD was among
the top 10 and in the upper half of the annotation method rankings of the different
categories.

AHRD’s annotations were evaluated more favorably by the Fmax than the Smin
metric. But AHRD was able to get into the top placements most often when the
weighted version of Fmax (wFmax) and the normalized version of Smin (nSmin) were
used. When looking at the wFmax metric, for example, in 91% of the categories AHRD
was better than half of the other annotation methods.

Metric in the top 10 in the better half
Fmax 25 (19.5%) 115 (89.8%)
Smin 5 (3.9%) 43 (33.6%)
wFmax 30 (23.4%) 117 (91.4%)
nSmin 33 (25.8%) 107 (83.6%)
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Figure 19: AHRD’s Top 10 Placements in CAFA3
In the CAFA3 challenge the final evaluation was subdivided into multiple aspects
(section 8.1). Each combination of these aspects is a separate evaluation category and
has its own ranking for all methods that provided relevant annotations. Here we show
the distribution of AHRD’s top 10 placements under the various aspects and over all
four metrics.

In all of the species in the evaluation, AHRD performed best in Arabidopsis thaliana
(ARATH) and Escherichia coli K12 (ECOLI). Despite only one top 10 placement in
Salmonella typhimurium (SALTY) and Bacillus subtilis (BACSU) AHRD got 17 top
10 placements in the combined evaluation for all three prokaryotes. AHRD achieved
seven top 10 placements in human, mouse, Drosophila melanogaster (DROME) and
in the combined evaluation over all species. No top 10 placements were achieved for
Candida albicans (CANAX) and Danio rerio (DANRE).

AHRD’s top 10 placements show a slight preference for “Biological Process” over
the other two ontologies as well as a minor leaning towards proteins with “Limited
Knowledge” as opposed to “No Knowledge” proteins.

AHRD’s annotations were evaluated much more favorably in the “Partial Mode”
in comparison to the “Full Mode”.
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19 A Non-Redundant Set of Ground Truth Pro-

teins With Experimentally Verified GO An-

notations Is Vital for Training and Testing

AHRD

Question or hypothesis Is the ground truth set we created useful for the
optimization and evaluation of protein function prediction methods?

Result summary In comparison to random expGOA proteins from Swiss-Prot
the mean annotation performance and in some cases the annotation coverage
are lowered significantly.

Critique of the method One step in the workflow to create the ground
truth set (section 5) is to eliminate proteins with descriptions containing tokens
in AHRD’s blacklist. This could be seen as the introduction of a bias, making it
easier for AHRD to annotate the remaining proteins. AHRD is in fact unable to
reproduce such descriptions because it must not transfer descriptions containing
words found in its blacklist. But as can be observed in figure 3 in section
9, the description annotation performance of AHRD and the “Best BLAST”
methods are actually lower when the ground truth set is used compared to
random proteins from expGOA proteins in Swiss-Prot. The same can be seen for
the GO annotation performance. Admittedly the exact cause for the differences
in the presented annotation scores is not elucidated here.

Contextualisation By lowering the number of proteins with similar descrip-
tions and similar sequences we strive to minimize the effects of database biases
on the tests the ground truth set is used in. These biases can be caused nat-
urally, like the large number of copies of some genes in certain genomes (e.g.
cytochrome P450 in A. thaliana [96]), or can have a technical reason because
some protein families are just easier to experiment with than others.

A ground truth set, with a bias that is as low as possible, is important to
enable unbiased testing, but also in order to generate a parameter set for AHRD
that is not only useful for the application to certain proteins, but instead to all
proteins found in typical proteomes. Even well-annotated proteomes of model
organisms are far from free of these problems. This would also inevitably put
AHRD’s parameters into a taxonomic niche (the one which the model organism
belongs to). In contrast, our ground truth set contains proteins of all branches
of the tree of life and can thus facilitate generating parameter sets that are taxon
agnostic.

Interpretation The lack of proteins that are easy to annotate leads to lower
annotation scores of AHRD and “Best BLAST” methods for our ground truth
set. We interpret this lack of “easy” proteins as a confirmation of the elimination
of biases in the protein set. Using such an unbiased protein set for parameter
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training facilitates a broad applicability of AHRD to whole proteomes of species
from different taxa.

Conclusion The low redundancy in the ground truth set we generated is not
only useful for the testing of protein annotation methods but also necessary for
the training of an unbiased parameter set for AHRD. We perceive the perfor-
mance scores derived from this set as a lower bound, most use cases will have
less rare (and thereby difficult to annotate) proteins.

20 AHRD Performs the Most Nuanced and

Consistent Evaluation When Facilitating the

Semantic Similarity of Protein GO Annota-

tions

Question or hypothesis What is the most appropriate method for the eval-
uation of protein GO predictions?

Result summary Of the three methods we implemented in this work the
“SemSim GO score” showed the highest robustness to edge cases and the best
adherence to the congruence of the biological functions in example proteins.

Critique of the method The rising complexity of the evaluation methods
makes it increasingly difficult to follow how the computation arrives at the end
result. This can be seen in many of the example proteins in section 10: The
“simple GO score” is very straight forward, even in cases with many ground
truth and prediction GO terms. The “ancestry GO score” first expands both
ground truth and prediction with the GO terms ancestral GO terms. Ancestral
terms that are found multiple times are counted only once. It is thus necessary
to know the ancestries’ overlap between ground truth terms or between multiple
predictions terms to correctly arrive at the presented score values. The “SemSim
GO score” makes it even harder because the maximum common information
content of GO terms in the ground truth or the prediction is often needed to
follow the calculation correctly.

Both the “ancestry GO score” and to a higher degree the “SemSim GO score”
are subject to changes made in the Gene Ontology and in case of the “SemSim
GO score” also the Swiss-Prot GO annotations. Scores for the same ground
truth-prediction-pairs can very well be different after an update of AHRD’s
underlying GO database (built from freshly downloaded versions of the Gene
Ontology and Swiss-Prot). In contrast, given a fixed pair of GO term sets the
“simple GO score” will always yield the same result.

Contextualisation The reliance of the “SemSim GO score” on reference an-
notations to quantify the information content of a GO term makes it susceptible
to biases in the database that is used [55]. As Swiss-Prot has been shown to
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have biases in its GO annotations [49], this sometimes called “corpus bias” [97]
is very likely to also be a relevant factor for the “SemSim GO score”. Two
affected GO terms are laid out in section 10.

Proteins can be multifunctional. These proteins have more than one catalytic
function in a single amino acid chain [98]. Constance J. Jeffery coined the
term “Moonlighting proteins” for these cases [99]. Many moonlighting proteins
have been found, but so far, no common structural feature has been identified
[100]. Consequently, a lot more are expected to be discovered in the future
[101]. For this biological reason in particular and for plenty of other monetary
and time constraint reasons in general, functional annotations of proteins can
almost never be expected to be exhaustively complete. Hence GO annotations
are considered subject to the “open world assumption” [51, 52]. The “open
world assumption” implies an incomplete state of knowledge. So the absence of
a GO annotation does not necessarily mean absence of the biological function
in regard to the protein in question. This can lead to unfounded false positives
when more comprehensive predictions are compared to a sparse ground truth of a
test protein. So observed values for the precision are likely to be systematically
underestimated and should be seen as lower bound. With the “SemSim GO
score” we try to mitigate this effect, to an extent by excluding predicted GO
terms from the evaluation if no knowledge is available about their respective
ontology (i.e. BP, MF or CC) in the ground truth.

Proteins found in databases often have only very generic GO annotations
close to the root of the ontology. This is known as the shallow annotation
problem which has been shown to be handled incorrectly by some semantic
similarity-based methods [97]. The “simple GO score” can have very inconsis-
tent results when shallow annotations are compared. When ground truth and
prediction share exactly matching shallow terms, the score will be close to 1.0
while slight mismatches will evaluate close to 0.0. Both the “ancestry” and
“SemSim GO score” will give exact matches a very high score (close to 1.0)
regardless of shallowness. But both metrics will regard close matches (e.g. two
different children of the same term) as much more important when they happen
deep in the ontology than when they are found close to the root. However, shal-
low annotations that merely share the root of the ontology are only recognized
as completely dissimilar by the “SemSim GO score”.

A factor that is relevant for all three GO annotation evaluation metrics: The
balance between precision and recall in the calculation of the F-score is config-
urable with the beta-parameter. Values for beta smaller than 1.0 give more
weight to the precision and less to recall. When the metric is used as objec-
tive function in the training of a GO prediction method this leads to sparser
and shallower annotations in order to minimize the number of wrong annota-
tions. Statistical analysis of whole proteome datasets (e.g. gene set enrichment
analysis) requires low false positive rates. But there are also arguments con-
ceivable for the opposite, a value for beta greater than 1.0. This leads to a
greater weight for the recall and a smaller weight for the precision. Focusing
on the recall favors the annotation of a greater number of terms per protein as
well as terms that are less shallow. Predicting annotations as a direct source
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of information for bench researchers who are interested in a single protein at a
time means as many functional hints as possible are desired. AHRD pursues a
balanced approach using a value for the beta parameter of 1.0. Thus, AHRD’s
annotations are useful from the level of a single protein up to a proteome-wide
scale. This makes AHRD well-equipped for its main use case, the annotation of
whole proteomes in genome projects.

Interpretation We recommend using the “SemSim GO score” because in our
observation it shows the closest adherence to the similarity of the functions and
the highest robustness to edge cases.

Conclusion Although the three examined GO evaluation methods often give
very similar results when they differ, the “SemSim GO score” is the best ap-
proach as it shows a close adherence to functional congruence of GO terms,
fine-grained score values and robustness to edge cases.

20.1 The “Simple GO Score” Is Only Useful for Rudi-
mentary Evaluation

Question or hypothesis Can a direct GO ID overlap-based comparison of
ground truth and prediction yield a useful annotation metric?

Result summary In 11 examples where the GO scoring methods disagreed,
the “simple GO score” was completely wrong seven times (section 10).

Critique of the method Out of the three presented GO annotation scoring
methods the “simple GO score” is by far the easiest to follow because only
the presence and absence of exact GO ID matches are considered. The glaring
issue with this approach is that it completely fails to account for the structure
of the Gene Ontology. AHRD and other GO prediction tools can make more
generalized predictions (i.e. predict GO terms closer to the root than the terms
in the ground truth). With the “simple GO score” these will be considered
false positives leading to an underestimation of the precision. Simultaneously
the related ground truth terms will be treated as false negatives leading to an
underestimation of the recall as well. An extreme example where the “simple
GO score” completely fails to recognize any similarity between ground truth and
recall is shown in table 3.

The comparatively small number of possible presence/absence occurrences
leads the “simple GO score” to be often calculated from common small fractions.
This leads to a quantization of the score values which can be observed as vertical
bands in the scatter plots of score comparisons (panel A and B in figure 4).

Sets of GO terms found as annotations for database proteins often stem from
previous transfer events in the process of high throughput electronic annotation.
Because only exact matches are recognized by the “simple GO score”, these
kind of annotations are scored much higher than annotations close but not
exactly the same as the ground truth. The further a fixed set of annotations
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has automatically been propagated from database entry to database entry the
less it might have in common with the true biological function of the protein. If
used for the training of AHRD the “simple GO score” could lead to an undesired
bias towards previously automatically transferred annotations thus limiting the
performance of AHRD to that of previous tools.

The “simple GO score” has no mechanism to distinguish how specific GO
terms are. In its extreme, this leads to edge cases where root terms (devoid of any
information) in either ground truth or prediction cause completely inaccurate
scores (see tables 1, 5 and 10).

Contextualization Sometimes no prior knowledge about a functional aspect
of a protein is available. This means that the ground truth is empty for one
the three subontologies. In this case, GO terms predicted for the particular
subontology cannot be known to be incorrect (“open world assumption” [51,
52]). But, as can be seen in table 11, the “simple GO score” considers these
predictions false positives, leading to an underestimation of the precision.

Interpretation In our view the “simple GO score” overlooks too much of
the information encoded in the Gene Ontology. To make matters worse its
susceptibility to edge cases can make the “simple GO score” inconsistent.

Conclusion The “simple GO score” is not a useful metric for the congruence
of GO annotations.

20.2 The “Ancestry GO Score” Leverages the Topology
of the Gene Ontology to Evaluate GO Annotations
with Greater Nuance

Question or hypothesis Does taking the topology of the Gene Ontology into
account (section 7.2.2) result in a better GO annotation performance metric?

Result summary In seven out of the 11 examples shown in section 10 the
“ancestry GO score” results in misleading or completely wrong values.

Critique of the method Using the topology of the Gene Ontology inevitably
necessitates additional computational effort that is associated with acquiring this
information.

The calculation of “ancestry GO scores” is less intuitive to follow than the
one of the “simple GO score”, as some GO terms have large numbers of ancestral
terms and the ancestries of GO Terms from the same ontology (BP, MF or CC)
can overlap.

The number of false negatives (expansion of ground truth) and false positives
(expansion of prediction) can increase as well as decrease but true positives can
only increase. Thus, on average, the “ancestry GO F1-scores” are higher in
comparison to average “simple GO F1-scores”.
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The higher numbers in the numerator and denominator of the fractions to
calculate the recall and precision also result in more possible values for the
metric. The lack of banding perpendicular to the plot axis for the “ancestry GO
score” in panels A and C of figure 4 exemplifies this fact.

Because certain knowledge domains can be further developed than others,
the level of detail in various parts of the Gene Ontology can vary drastically [102].
This can lead to uneven ancestry sizes for GO terms with similar specificity. So
this can be a source of bias for the “ancestry GO score”. GO terms can have a
disproportionately large ancestry, giving them too much weight in comparison to
other terms that might have the same importance to the function of a particular
protein.

Root terms are treated equally to any other ancestral GO term. Their oc-
currence in the compared GO term sets can thus lead to score values drastically
different from the perceived agreement between the annotations.

Contextualization A similar metric for the congruence of GO annotations
coined simply “term overlap” has been shown to be a simple but effective alter-
native to methods using explicit information content calculations [97].

Interpretation Thanks to the recognition of GO term depth and more
fine-grained values, in our view the “ancestry GO score” provides a clear im-
provement over the “simple GO score”. But just like the “simple GO score” it
also lacks consistency when edge cases are encountered.

Conclusion The “ancestry GO score” results in a better performance metric
for GO predictions than the “simple GO score”.

20.3 The “Semantic Similarity GO Score” Uses Topology
in Conjunction With Annotation Frequency to
Consistently Evaluate GO Annotations Without
Susceptibility to Edge Cases

Question or hypothesis Does the addition of annotation frequency to the
estimation of the information content of GO terms facilitate a better GO pre-
diction performance evaluation?

Result summary In all of the 11 example comparisons in section 10, the
“SemSim GO score” exhibits score values accurately reflecting the evident con-
gruence of ground truth and prediction.

Critique of the method and contextualization The “SemSim GO score”
is even harder to follow than the “ancestry GO score”. The added complexity of
calculating the information content of GO terms and then finding the maximum
common information content between GO terms is at fault.
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In addition to parsing the Gene Ontology, using “SemSim GO scores” also
necessitates reading in the Swiss-Prot database. This adds computational effort
that has to be done once in order to precompute the information content of each
GO term (section 7.1).

GO evaluation methods based on information content derived from a set of
reference annotations can exhibit a so-called “corpus bias” [55]. Shallow terms
rarely encountered in the annotation corpus can exhibit an inflated information
content. The opposite can be true for protein functions deep in the ontology
but over-represented in the corpus.

The “SemSim GO score” handles edge cases more correctly. GO root terms
have an information content of 0.0 and are thus barred entirely from influencing
the score. This can be substantial in the case of very sparse annotations. If no
prior knowledge is available in a particular ontology (BP, MF or CC), predictions
for this ontology are not counted as false positives. This is a step into the
right direction to account for the “open world assumption” GO annotations are
subject to [51, 52].

Using the maximum common information content of nodes in a taxonomy to
determine their semantic similarity was first proposed by Philip Resnik [103].

Interpretation Disagreement between the “ancestry GO score” and the
“SemSim GO score” often cannot clearly be sorted out, but in our assessment
the “SemSim GO score” shows a clear advantage over both other methods when
edge cases are encountered.

Conclusion Among the here covered methods the “SemSim GO score” is the
most accurate approach to the evaluation of protein GO annotations.

21 Parameter Optimization Is Necessary for

Optimal Performance

Question or hypothesis Is the optimization of AHRD’s parameters neces-
sary and if so, which optimization method is the best?

Result summary Parameter optimization increases AHRD’s annotation per-
formance for human readable descriptions as well as GO annotation significantly.
By a slight margin the best optimization results are achieved with the genetic
algorithm.

Critique of the method Figure 17 in section 17 shows how much AHRD
benefits from the optimization of its parameters. Naive parameters, which lead
to an equal weighting of all indicators AHRD uses to rank the reference candi-
date proteins, already accomplish useful annotations. Surprisingly, the manual
customization of the parameters to put emphasis on criteria we deemed as more
important did not lead to a worthwhile improvement. Parameter optimization
on the other hand, proved itself to be beneficial by providing a significant uplift
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to the annotation performance for descriptions as well as GO terms. Because
we used separate sets of proteins for training and testing we can be confident
that the observed improvement is not due to overfitting.

Our comparison of the parameter optimization procedures that AHRD has
to offer is shown in figure 18 of section 17. Considering the small difference that
can be observed between the two algorithms’ performance no clear winner can
be identified.

Variation between training results based on the split of the protein ground
truth into training and test set are shown in figure 5. Additionally, the size
of the boxplots and the shape of the violinplots convey the distribution of the
performance based on the variation caused by the randomness inherent to the
genetic algorithm. The far greater variation between the splits is most likely
caused by the uneven distribution of easy and hard to annotate proteins. This
shows that the training is close to the limit of what can be achieved considering
the given quality indicators of candidate annotations.

Contextualization In machine learning, parameters that are not optimized
by the training but control the learning process itself are known as hyperparame-
ters [104]. For example, both of AHRD’s optimization algorithms are influenced
by the mean and the standard deviation used for the mutation of parameters.
The key factors for the simulated annealing approach are the stating tempera-
ture, the cool down in each step and the probability to accept worse parameter
sets. The genetic algorithms most important hyperparameters are the size of
the parameter set population and the number of generations to be evaluated.
A complete list of configurable options for AHRD’s trainers can be found in
supplemental section 28.3.5. Both of AHRD’s machine learning methods were
run with intuitively chosen hyperparameters that are likely to provide additional
performance if investigated further.

Regardless of the optimization approach, the most important hyperparam-
eter is always the parameter space in which the optimization takes place. So
probably the primary way to increase performance further is to add more fac-
tors to the prediction algorithm to facilitate additional differentiation of correct
annotations from wrong ones. See sections 12 and 13 for results and sections 22
and 23 for a discussion about our effort to do exactly that. There it was vital
to control for the variation present in our testing setup demonstrated in figure
5.

Interpretation We see the optimization of AHRD’s parameters as an essential
step to achieve the best possible annotation performance. When one does so, it
does not matter which of the two methods we implemented is used.

Conclusion Optimization of AHRD’s parameters is necessary and can be per-
formed by simulated annealing just as well as a genetic algorithm.
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22 The Informative Token Threshold Is Only

Useful for the Annotation With Descrip-

tions but not With GO Terms

Question or hypothesis Is the informative token threshold a useful mechanic
to increase AHRD’s performance?

Result summary Outside of what has been observed for description anno-
tation, when optimizing for GO annotations, parameter optimization always
resulted in very low threshold values.

Critique of the method AHRD splits the descriptions of the candidate an-
notations that are found in the reference databases into their tokens. Each
token is assigned a score (equation 2 in section 6.1.2) to model how informative
it is. This token score depends on the token’s abundance in descriptions that
are found in trusted databases and that have high bit scores as well as good
alignment overlaps. Previously AHRD used 50% of the score that was assigned
to the most informative token, to distinguish informative tokens from unin-
formative ones. When we made this threshold variable and included it in the
parameter optimization (section 7.4) it was set to higher values (between 0.7 and
0.98) but increased the description annotation performance only insignificantly
(section 12.1). When applied to the optimization of AHRD’s GO annotation
(section 12.2), a significant increase of the performance was achieved but it was
set to either 1.0 or very low values (< 0.037). Both values have the same effect:
Practically all tokens are treated as equally informative.

When the scoring of candidate reference proteins is based on their GO an-
notations instead of their descriptions, the new threshold is switched from dif-
ferentiating tokens to differentiating informative from uninformative GO terms
(equation 31 in section 7.3). Then, in every case the variable informative token
threshold was combined with various other new parameters, it led to a signifi-
cant advantage over all variants with a fixed threshold (figure 8 in section 13).
This was always achieved by a significant increase to the recall at a cost to the
precision (figures 9 and 10 in section 13). The highest value the informative to-
ken threshold was set to in all these different optimization tests was ≈ 0.066. So
in effect, the training of the GO annotation always disabled the differentiation
of informative from uninformative GO terms in order to increase the recall. But
the distribution of GO term scores is unknown. Perhaps there is a significant
number of GO terms that, even at the observed threshold values, still fall under
it. So to confirm our findings for the informative token threshold in the GO
term prediction, the tests can be repeated with fixed values of either 0.0 or 1.0.

Interpretation The differentiation of informative from uninformative tokens
is useful for the annotation of descriptions. Optimizing it to other values than
50% yields only insignificant improvements.
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The extreme threshold values obtained by optimizing for GO annotation
performance show that the distinction of informative GO terms is more of a
hindrance than an advantage.

Conclusion The informative token threshold is only necessary for the anno-
tation of human readable descriptions.

23 The Separate GO Prediction Algorithm

Improves AHRD’s GO Annotation Perfor-

mance

Question or hypothesis What is the best version of AHRD for the prediction
of GO annotations? Different versions of AHRD lead to different rankings of
the homologous candidate proteins. Is the same ranking equally useful for the
annotation of descriptions and GO terms or should different rankings be used?

Result summary Using separate algorithms for descriptions and GO anno-
tations permits a significant increase in annotation performance.

Critique of the method Although the improvements have been shown to
be statistically significant (figure 8 to 10 in section 13), overall the increase in
annotation performance is small.

Figure 3 in section 9 shows the theoretical maximum possible annotation
performance AHRD could achieve if it always found the ideal ranking of candi-
date proteins. It is unclear whether information about the candidate proteins in
the databases is still to be leveraged and could make a better ranking possible.
But by the difference between AHRD’s performance and the “Max Attainable”
performance it is clear that even our best prediction algorithm still leaves per-
formance on the table (the version used for figure 3 is functionally closest to
itt gtas ics - shown in figures 8 – 10).

Using a separate GO term-based algorithm to predict GO annotations does
not increase AHRD’s performance on its own. The variable informative token
threshold also plays a bigger role at first (see below). Only the addition of the
information content score and especially the addition of the evidence code score
enable the separate GO-based method to prevail. These two metrics are derived
at a per-GO term basis and thus require the separate GO term-based method.

The information content score favors reference annotations with GO terms
that have a high information content (equation 21). The GO term informa-
tion content is central to the subsequent evaluation of the annotations with the
“SemSim GO score” (section 7.2.3). So this can be interpreted as a “self fulfill-
ing prophecy” situation. When predicted high information content GO terms
are matched in the ground truth, the recall will be higher. But on the other
hand mismatches will lead to a decline of the precision when the information
content of the compared GO terms is higher. In figures 9 and 10 this exact
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behavior can be observed every time the information content score is added to
the prediction algorithm. So the actual usefulness of the information content
score remains to be investigated further.

Contextualization As discussed in the previous section (22), making the in-
formative token threshold variable and including it in the parameter set for
optimization showed that the differentiation of informative from uninformative
GO terms hindered the annotation in the first place. So this means the informa-
tive token threshold is not a useful parameter but at least gave us the evidence
to exclude the step in the annotation algorithm in the future.

Interpretation The best version of AHRD to predict GO annotations is one
that uses a separate algorithm for GO terms, has the informative token thresh-
old set to either 0.0 or 1.0 and uses the information content score as well as the
evidence code score. It results in a ranking for the candidate reference annota-
tions that is better suited to GO term prediction. In our view the additional GO
prediction performance justifies using this separate GO term-based annotation
method.

Conclusion Using a newer version of AHRD with a separate GO term-based
approach is the recommended GO annotation method.

24 Annotation With a New Set of GO Terms

Mixed From Multiple Reference Proteins Is

Not a Viable Strategy

Question or hypothesis Can AHRD’s GO prediction performance be in-
creased by creating new combinations of GO terms from the candidate reference
proteins?

Result summary The direct annotation of GO terms significantly increases
recall but at such a drastic cost to precision that the F1-score is lowered severely.

Critique of the method The mean score per training/test-set split is plotted
in figure 11. The spread of these means is slightly higher along the y-axis (for the
new approach tested here) than along the x-axis (for the conventional approach).
The higher variation of these mean scores hints at higher differences between
the test protein scores within the sets. So the performance of the newly created
GO term sets seems to be less stable (i.e. very good in some cases but equally
as bad in just as many other cases).

The most important parameter responsible for the performance of the ap-
proach tested here is the informative token threshold. It has been reused once
again and directly controls which GO terms are annotated and which are not
depending on their GO term score. It is used relative to the score of the top
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scoring GO term and in effect controls how lax or strict the prediction is made.
Lower threshold values lead to more GO terms and higher values lead to fewer
GO terms annotated. Annotating more GO terms generally entails a higher
recall at a cost to the precision and vice versa. So when the genetic algorithm
optimized the informative token threshold, it had to find the optimal value by
balancing recall and precision much more directly than with any other param-
eter. This has to be kept in mind to understand that the strong increase and
decrease of recall and precision depicted in figure 11 still shows the optimal per-
forming parameters for this new annotation approach. This is a strong sign for
the existence of typical patterns in the GO annotations of the UniProtKB. In-
stead of propagating these patterns further the approach tested here creates new
GO term sets that just do not fit the patterns in the ground truth annotations.

Contextualization Another probable reason for the poor performance could
be the combination of multiple distinct functions through the creation of these
new annotations. A ground truth protein with multiple functions is unlikely to
have all functions accurately annotated because these so-called “Moonlighting
proteins” [99] are common but often undetected. But their sequence can show
homology to multiple other, shorter proteins where this is the only function and
has thus been accurately annotated. When the approach discussed here gathers
the evidence for various GO terms found in the homology search results, it will
combine these functions. But it will seemingly fail when these are compared to
the incomplete annotation of the ground truth. So this problem is related to
the “open world assumption” [51, 52] GO annotations are subject to. Protein
functions not known to be absent from a protein should not be considered as
such only because their corresponding GO terms have not been annotated (yet).
In the future, ground truth sets with more complete annotations could make this
new approach more viable.

Interpretation Deliberations about the reasons and possible solutions for the
lower F1-scores put aside, the recombination of GO terms from multiple candi-
date proteins is currently just not a viable alternative to the conventional GO
annotation procedure of AHRD. This could change if data on functions shown
not to occur in proteins become available (enabling the evaluation of true neg-
atives).

Conclusion As it does not lead to increased performance, we do not recom-
mend to use this annotation method.
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25 AHRD Delivers Both Broad Coverage and

High Quality When Annotating Function-

ally Diverse Proteins With Descriptions and

GO Terms

Question or hypothesis Can AHRD offer better predictions for descriptions
and GO terms and can AHRD cover a greater range of proteins than its com-
petitors?

Result summary Compared to competitors, on a ground truth set, AHRD
annotated more proteins with perfect scoring descriptions and overall more pro-
teins with descriptions (figures 12 and 13). On the ground truth set AHRD also
annotated many proteins with perfect scoring GO annotations while covering
a big part of it too (figures 14 and 15). In a typical use case scenario AHRD
increased the annotation coverage of two proteomes (figure 16).

Critique of the method We were able to reveal the differences between
AHRD and its competitors because of our ground truth set (section 19). By
removing redundant proteins from the comparison, a greater variety of proteins
that can be difficult to annotate can be used for comparison.

A git commit of the “sem sim go OWL” branch was used to record the anno-
tation performance of AHRD. This version of AHRD parses the Gene Ontology
in the OWL format to calculate term information content (section 7.1) and
is thus able to train and evaluate AHRD in accordance to the semantic sim-
ilarity of GO annotations (section 7.2.3). However, when annotating, it lacks
the ability to rank the candidate reference proteins based on anything other
than their descriptions. So the improvements (section 13) achieved by perform-
ing the GO term prediction based on the candidate protein’s GO annotations
instead (section 7.3.1), are not yet factored in here. Thus, for the GO annota-
tion performance, there would likely be a bigger difference to the competitors
if this comparison was repeated using an AHRD git commit from the “sepa-
rate go prediction” (section 7.3) branch.

The line plots (figures 12 and 14) show the evaluation scores for the same
1000 proteins ordered by their numerical values. It is important to keep in mind
that the order is consequently different for each competitor. If two competitors
had completely complementary strengths and weaknesses, so that the incorrectly
annotated proteins of the first were to be perfectly annotated by the other and
visa versa, these plots would still show them as roughly equal. It is better to
consider the line plots presented here as 90◦ rotated cumulative histograms. The
amount of proteins in 10 bins of increasing score difference shown in figures 13
and 15 is better suited to convey differences between AHRD and the competing
methods.

AHRD is meant to be used in an automated fashion as part of genome
projects. Consequently, it is fast and easy to set up and can handle even the
largest proteomes (e.g. Hordeum vulgare). But the same cannot be said about
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many of AHRD’s competitors. So we are aware that there are many more
methods but we restricted ourselves to the selection presented here because many
competitors only offer a web interface limited to a small number of proteins or the
effort of installing and running them was forbidding. We used the proteomes of
barley (Hordeum vulgare) and powdered mildew (Blumeria graminis) as typical
use cases of AHRD covering two eukaryotic kingdoms (Plantae and Fungi). To
demonstrate the universal applicability of AHRD, more different proteomes of
eukaryotic and prokaryotic organisms should be tested.

The annotations publicly available for the two use case proteomes cannot
be considered free of natural and technical biases. The available evidence for
these annotations can be seen as roughly equivalent to the evidence available to
AHRD. Consequently, they should not be used as a ground truth and thus we
refrained from calculating and presenting F1-scores.

AHRD’s coverage of a typical proteome exceeds the “Best BLAST” methods
as it integrates the information from both databases. A rather simple method
using “Best BLAST TrEMBL” as fallback if “Best BLAST Swiss-Prot” cannot
deliver will achieve the same coverage as AHRD. But the qualitative differences
to “Best BLAST Swiss-Prot” demonstrated on the non-redundant ground truth
set show that AHRD’s annotations are generally better than such an approach.

Contextualization NetGO [76] is the successor to GOLabeler [105], the de
facto winner of the third CAFA challenge [77]. It is the only method that
achieves a higher coverage on our test set than AHRD. But it does so at great
cost to the quality of annotations. Much fewer proteins are predicted with GO
annotations that achieve scores greater than 0.75. This can also be seen by the
majority of score differences that favor AHRD in figure 15. But there the few
proteins that AHRD was not able to annotate at all, can be seen as exclusives
at the NetGO side. In theory, in these cases AHRD’s predictions could be
complemented by the ones from NetGO to achieve an even better predictor
than each on their own.

Interpretation Used on the ground truth set AHRD shows superiority when
it comes to the annotation of descriptions. Not all GO terms AHRD predicts are
always better than what can be obtained with competitors. But AHRD is often
closer to the GO ground truth overall. Simultaneously AHRD can maintain a
high annotation coverage on many different protein classes and whole proteomes.

Conclusion Based on our evaluation, using a “difficult” test set covering a
wide range of functions, we find that AHRD is able to predict descriptions and
GO annotations better and at a greater coverage than all competitors except
NetGO. While NetGO achieves greater coverage, we find the reduced accuracy
to be unacceptable.

115



AHRD: Automatically Annotate Proteins with Human Readable Descriptions and Gene Ontology Terms

26 AHRD Can Also Keep up With the Com-

petition in a Very Different Evaluation, the

CAFA3 Challenge

Question or hypothesis Can AHRD also succeed in a completely different
test — the CAFA3 challenge [77]?

Result summary AHRD got into the top 10 of many evaluation categories
(figure 19) and was often better than half of the other contestants (table 12).

Critique of the method Gauging AHRD’s performance in the CAFA chal-
lenge by the number of its top 10 placements in various categories is problematic
in the sense that the categories all have a different number of placements. This
is due to the fact that not all methods participated in every category. The
smallest number of participants was 46 and the highest 67. Of course a top
10 placement in the latter is a greater achievement than in the former. Unfor-
tunately the rules of the challenge allow the participants to get detailed data
only about their own method’s performance. So we cannot compare AHRD’s
placements to other contestants directly.

AHRD did particularly well in A. thaliana (n=17) and E. coli (n=14). The
parameters we used for AHRD to make the CAFA3 predictions were obtained
by optimization on our non-redundant, species agnostic ground truth set. So
we did not expect AHRD to show such a preference for particular species. But
this apparent species bias might also be explained by an uneven addition of
new experimental annotations. Research into particular protein families that
are easy for AHRD to annotate correctly might be the source.

Of the three GO knowledge domains, AHRD had the most top 10 place-
ments in “Biological Process” (n=35), closely followed by “Cellular Compo-
nent” (n=31) and “Molecular Function” (n=27). So no clear preference for the
knowledge domains can be discerned. There is also no clear difference between
“Limited Knowledge” (n=49) and “No Knowledge” (n=44). Both of these find-
ings can be seen as testaments to AHRD’s broad applicability.

The number of top 10 placements in “Partial Mode” (n=75) was much higher
than in “Full Mode” (n=18). Although AHRD generally offers a good coverage
(figures 14 and 16), as figures 7, 9, 10 and 17 show, its precision is consistently
higher than its recall. This is likely the reason for its strength in CAFA’s “Partial
Mode” and its shortcomings in “Full Mode”.

When divided by evaluation metric (table 12), AHRD shows the most con-
sistent placement in the upper half in the case of the weighted Fmax (91% of
categories). The weighted Fmax takes the information content of the GO terms
in consideration. We also use term information content in the calculation of the
“SemSim GO score” (section 7.2.3), which was used as objective function for the
optimization of AHRD’s parameters prior to the CAFA predictions. So it makes
sense for AHRD to excel here. But the Smin metric is also based on semantic
similarity (minimization of semantic dissimilarity to be precise) and AHRD can
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only get a placement in the upper half of the field in one third of the categories.
The Smin metric is not weighted. So a few high information content GO terms
that have been miss-predicted or are erroneously missing from the prediction
can have a proportionally high effect on the score. And at the same time many
low information content terms that have been predicted correctly can have a
comparatively small effect. The nSmin, a normalized version of Smin brings the
score to a 0 to 1 scale for every protein and thus avoids these problems. This,
again, is similar to the way the “SemSim GO score” (section 7.2.3) used to op-
timize AHRD is calculated, which is likely the reason AHRD achieves the most
of its top 10 placements measured with this metric and a sizable number of
placements in the upper half of categories (84%). So AHRD is not focused on
the annotation of a few high value targets but on correct annotation of a great
variety of proteins.

Contextualization The motivation for AHRD’s participation in the CAFA3
challenge was the comparison to our own test procedure (section 7.6.1). CAFA
does not have some of the shortcomings of our evaluation method (section 7.6.1)
that is based on our non-redundant ground truth set (section 5). One of these
shortcomings is the potential occurrence of annotations that have been present
in the UniProtKB in the past and have “percolated” [6] through the database as
a fixed set of annotations to various related proteins. But the annotations that
are evaluated in CAFA have their own biases. For one, the characterization of
completely unknown proteins is rarely the focus of research efforts. It is more
likely for existing computational annotations to be verified and then upgraded
to the “experimental” status.

The top contender in CAFA3 [77], GOLabeler [105], is the predecessor of
NetGO [76]. NetGO is included in our evaluation in figures 14 and 15 of section
15. Although there it showed just as good of a coverage as it did in the CAFA3
challenge, it was not able to predict many proteins with very high F1-scores.
This might be a sign that their approach profits from the above-discussed po-
tential biases in the CAFA annotations. With GO term frequencies and sequence
alignments NetGO uses some of same information AHRD also relies on. Further-
more, NetGO uses the frequency of amino acid trigrams, InterPro [11] features
(domains and motifs), ProFET [106] features (biophysical properties) and the
STRING database [43] (protein interactions). It is a conscious decision to not
incorporate these or similar features into AHRD. For a great number of users
that want to perform annotations on a genomic scale, the additional data that
has to be retrieved and the computational time that has to be invested easily
leads to an inability to use complex methods like these.

For the term-centered annotations in CAFA-π we were not able to receive any
results for AHRD. In the case of the GO term “cilium or flagellum-dependent cell
motility” (GO:0001539) in Pseudomonas aeruginosa some methods (especially
the aforementioned GOLabler) were able to outperform naive BLAST-based
methods, but only by a small margin. The CAFA organizers also included
annotations based on data integrated from a previously published compendium
of expression analysis [107]. This method, which is to be used as baseline if the
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challenge is repeated, was able to outperform all regular contestant methods.

Interpretation AHRD is not a top performer in all categories because the
CAFA challenge focuses more on single proteins and we decided to optimize
AHRD for broad applicability. But we remain competitive in all areas despite
the fact that AHRD was optimized with our generalized training set and the
fact that it is comparatively easy to install and execute. So as other methods
become easier to run, AHRD remains to be challenged as well.

Conclusion In the completely different evaluation method that is the CAFA
challenge AHRD was able to show satisfactory results.
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27 List of Abbreviations

AHRD Automated Assignment of Human Readable Descriptions
API Application Programming Interface

BBsprot “Best BLAST Swiss-Prot”
BBtrembl “Best BLAST TrEMBL”

BLAST Basic Local Alignment Search Tool [61]
BLOSUM Blocks Substitution Matrix [21]

BPO Biological Process Ontology (GO subontology)
CAFA Critical Assessment of Functional Annotation [91, 92, 77]
CCO Cellular Component Ontology (GO subontology)
CPU Central Processing Unit
DAG Directed Acyclic Graph

DB Database
DNA Deoxyribonucleic acid

ecs evidence code score (equation 28)
expGOA experimentally verified GOA

f.sp. forma specialis
FASTA FAST-All (Works with any alphabet rather than only pro-

teins = FASTP or only nucleotides = FASTN) [22, 23]
GNU “GNU’s not Unix!”

GO Gene Ontology [8, 71]
GOA GO Annotation
gtas go term abundancy score (equation 26)

HRD Human Readable Description
HSP High-scoring Segment Pair

ics information content score (equation 27)
ID Identifier

IDE Integrated Development Environment
IQR Interquantile Range

itt informative token threshold (equations 3 – 5 and 29 – 31)
JRE Java Runtime Environment

KEGG Kyoto Encyclopedia of Genes and Genomes [13]
MFO Molecular Function Ontology (GO subontology)
NaN Not a Number
OBO Open Biomedical Ontologies
OWL Web Ontology Language
PAM Point Accepted Mutation [20]
RNA Ribonucleic acid

SemSim Semantic Similarity
SHA-1 Secure Hash Algorithm 1
subsp. subspecies
TAIR The Arabidopsis Information Resource [70]
TSV Tabulator Separated Values

UniProtKB UniProt Knowledgebase [4]
YML (YAML) “YAML Ain’t Markup Language”
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28 Supplement

28.1 Variation in GO Prediction Performance Due to
Splitting and Training

Table 13: Variation in GO Prediction Performance Due to Splitting and
Training
This table is meant to supplement figure 5 which is based on the same data. The
ground truth set “nrSpotExpGOAv2” (section 5) was split into a training and test set
10 times. To bootstrap a distribution of the mean evaluation scores 1000 evaluations
where performed for each sample. The “random” sample is based on sampling of
1000 proteins from a pool of predictions from all 10 splits. A Shapiro-Wilk test of
normality [95] (null hypothesis: data is normal distributed) was performed on each
split. A Fligner-Killeen test [94] (non-parametric test for homogeneity of variance that
is robust against non-normality; null hypothesis: variance is homogeneous between
groups) was performed comparing each split with the random sample.

Split Min
First

Quantile
Median Mean

Third
Quantile

Max IQR
Standard
Deviation

Shapiro
p-value

Fligner
p-value

random 0.670 0.688 0.693 0.693 0.697 0.711 0.00884 0.00675 0.157 NA
1 0.681 0.685 0.686 0.686 0.686 0.689 0.00178 0.00116 7.87E-11 2.51E-181
2 0.693 0.696 0.697 0.697 0.698 0.700 0.00161 0.00096 2.61E-19 8.81E-195
3 0.700 0.703 0.704 0.704 0.704 0.708 0.00142 0.00114 2.62E-17 2.98E-184
4 0.696 0.701 0.701 0.701 0.702 0.707 0.00137 0.00146 1.69E-18 3.25E-168
5 0.689 0.691 0.692 0.692 0.694 0.700 0.00305 0.00171 2.08E-18 2.85E-134
6 0.700 0.701 0.702 0.702 0.703 0.710 0.00155 0.00125 1.93E-26 1.43E-178
7 0.695 0.704 0.705 0.704 0.706 0.711 0.00192 0.00275 2.70E-28 2.70E-106
8 0.696 0.697 0.699 0.698 0.700 0.705 0.00267 0.00141 8.48E-23 5.70E-161
9 0.697 0.699 0.699 0.699 0.699 0.702 0.00037 0.00056 1.10E-31 4.40E-236
10 0.690 0.694 0.695 0.695 0.695 0.698 0.00115 0.00107 2.89E-25 5.49E-191

28.2 AHRD’s Default Blacklists and Filter

28.2.1 Description Line Blacklist

Reference proteins with matching description lines are excluded from the anno-
tation process. “(?i)” ensures case insensitive matching, “^” matches the start
of the description line and “\s+” matches one or more white space characters.

(?i)^ similar\s+to

(?i)^ probable

(?i)^ putative

(?i)^ predicted

(?i)^ uncharacterized

(?i)^ unknown

(?i)^ hypothetical

(?i)^ unnamed

(?i)^ whole\s+genome\s+shotgun\s+sequence

(?i)^ clone
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28.2.2 Description Line Filter

Elements of the description line matched with any of the regular expressions
in the filter are replaced with whitespace. Elements that are filtered include
sequence-specific information typical to UniProtKB entries such as organism
name, organism identifier, gene name, protein existence and sequence version
(for example: OS=Oryza sativa OX=4530 GN=H0502B11.9 PE=4 SV=1). Addi-
tionally, InterPro accessions [11], the word “Fragment” and many special char-
acters are also filtered.

\sOS=.*$

(?i)OS .*[.].* protein

(?i)^H0.* protein

(?i)contains .*

IPR.*

\w{2,}\d{1 ,2}(g|G)\d+(\.\d)*\s+

\b\[.*

\b\S+\|\S+\|\S+

\(\s*Fragment\s*\)

^(\s|/|\(|\)| -|\+|\*| ,|;|\.|\:|\||\d)+$

28.2.3 Token Blacklist

Tokens with a match in the token blacklist are excluded from the token scoring
process and thus do not influence the decision process about which reference
protein is used for the annotation transfer. Our evaluation procedure of human
readable descriptions also ignores tokens with a match in the token blacklist.
“(?i)” ensures case insensitive matching, “\b” matches a word boundary, “\w?”
matches a word character zero or one times and \d+ matches a digit one ore
more times.

(?i)\ bunknown\b

(?i)\ bmember\b

(?i)\blike\b

(?i)\ bassociated\b

(?i)\ bcontaining\b

(?i)\ bactivated\b

(?i)\ bfamily\b

(?i)\ bsubfamily\b

(?i)\ binteracting\b

(?i)\ bactivity\b

(?i)\ bsimilar\b

(?i)\ bproduct\b

(?i)\ bexpressed\b

(?i)\ bpredicted\b

(?i)\ bputative\b

(?i)\ buncharacterized\b

(?i)\ bprobable\b

(?i)\ bprotein\b

(?i)\bgene\b
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(?i)\ btair\b

(?i)\ bfragment\b

(?i)\ bhomolog\b

(?i)\ bcontig\b

(?i)\ brelated\b

(?i)\ bremark\b

(?i)\b\w?orf(\w?|\d+)\b

28.3 AHRD’s Settings

28.3.1 Parameters

token score bit score weight

floating-point mandatory Weight of the candidate protein’s alignment bit
score in the calculation of the token score (equa-
tion 2) for descriptions or the go term abundancy
score (equation 26) for GO terms; Between 0.0
and 1.0; Must add up to 1.0 with the other token
score weights

token score database score weight

floating-point mandatory Weight of the candidate protein’s database score
in the calculation of the token score (equation 2)
for descriptions or the go term abundancy score
(equation 26) for GO terms; Between 0.0 and 1.0;
Must add up to 1.0 with the other token score
weights

token score overlap score weight

floating-point mandatory Weight of the candidate protein’s alignment over-
lap score in the calculation of the token score
(equation 2) for descriptions or the go term abun-
dancy score (equation 26) for GO terms; between
0.0 and 1.0; must add up to 1.0 with the other
token score weights

weight

integer mandatory The database weight; Subordinate of entries in
blast dbs; Greater than 0

description score bit score weight

floating-point mandatory Weight of the candidate protein’s relative bit
score in the calculation of the description
score (equation 7); Subordinate of entries in
blast dbs); between 0.0 and 1.0
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informative token threshold

floating-point optional Threshold for the differentiation of informative
from uninformative tokens or GO terms (equa-
tions 3 – 5 and 29 – 31); Introduced in AHRD
commit a5bccd1; Between 0.0 and 1.0; Default =
0.5

go term score information content weight

floating-point optional Weight for the information content score (equa-
tion 27) in the calculation of the GO term
score (equation 25); Introduced in AHRD com-
mit 0a5fe1b; Between 0.0 and 1.0; Default = 0.5

go term score evidence code weight

floating-point optional Weight for the evidence code score (equation 28)
in the calculation of the GO term score (equa-
tion 25); Introduced in AHRD commit 175ce62;
Between 0.0 and 1.0; Default = 0.5

28.3.2 General Input Settings

proteins fasta

string mandatory Path to FASTA file with the amino acid sequences
of the query proteins

proteins fasta regex

string optional Regular expression to extract protein accessions
from proteins FASTA description lines

blast dbs

string(s) mandatory Names of the databases that sequence similarity
search results are to be used from

file

string mandatory Path to file with sequence similarity search re-
sults; Subordinate of entries in blast dbs

database

string mandatory Path to FASTA file with the amino acid se-
quences of the database; Subordinate of entries
in blast dbs

fasta header regex

string optional Regular expression to extract the protein acces-
sion and description from the sequence descrip-
tion lines of the database-file; Subordinate of en-
tries in blast dbs
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blacklist

string optional Path to file with regular expressions for descrip-
tion line blacklisting; Facultative subordinate of
entries in blast dbs; See supplement 28.2.1

filter

string optional Path to file with regular expression to filtering un-
informative contents from description lines; Fac-
ultative subordinate of entries in blast dbs; See
supplement 28.2.2

token blacklist

string optional Path to file with regular expressions to match to-
kens ignored during candidate description scoring;
Facultative subordinate of entries in blast dbs;
See supplement 28.2.3

gene ontology reference

string optional Path to file with reference GO annotations; Nec-
essary for GO term annotation; Subordinate of
entries in blast dbs

gene ontology reference regex

string optional Regular expression to extract the protein acces-
sion and GO term accession from lines in the
gene ontology reference-File; Subordinate of
entries in blast dbs

short accession regex

string optional Regular expression to extract the significant part
of protein accessions at various points in the exe-
cution of AHRD

prefer reference with go annos

Boolean optional If, in addition to descriptions, GO terms are to be
annotated, candidate proteins without GO anno-
tations will not be considered; Default = true

go slim

string optional Path to an OBO-File with a set of GO slim terms
which will be annotated and written to the out-
put; Section 7.3.2
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28.3.3 General Output Settings

output

string mandatory Path to TSV file that AHRD writes its output to

output fasta

Boolean optional Switches AHRD’s output from the TSV to the
FASTA format; default = false

28.3.4 Evaluation Settings

ground truth fasta

string mandatory Path to amino acid FASTA file with the same ac-
cessions as proteins fasta and the ground truth
descriptions in the sequence description lines

ground truth fasta regex

string optional Regular expression to extract the protein acces-
sions and descriptions from the sequence descrip-
tion lines in the ground truth fasta

ground truth go annotations

string optional Path to TSV file with the ground truth GO an-
notations in two columns (protein accession and
GO term ID)

f measure beta parameter

floating-point optional Weighting parameter between precision and re-
call; Greater that 0.0; Default = 1.0

write best blast hits to output

Boolean optional Evaluate the sequence similarity search result
with the highest bit score for each database and
write them to the output file; Default = false

find highest possible evaluation score

Boolean optional Find the candidate protein resulting in the high-
est evaluation score and add its description with
the corresponding score to the output; Default =
false

evaluate only valid tokens

Boolean optional Ignore ground truth tokens that have a match in
the token blacklist; Default = true
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simple GO f1 scores

Boolean optional If GO terms are to be annotated calculate set
overlap-based GO scores (section 7.2.1) and add
them to the evaluation output; Default = true

ancestry GO f1 scores

Boolean optional If GO terms are to be annotated calculate GO
term ancestry-based GO scores (section 7.2.2) and
add them to the evaluation output; Default =
false

semsim GO f1 scores

Boolean optional If GO terms are to be annotated calculate seman-
tic similarity-based GO scores (section 7.2.3) and
add them to the evaluation output; Default =
false

competitors

string(s) optional Names of competitors to evaluate alongside
AHRD

descriptions

string optional Path to a TSV-file with protein accessions and de-
scriptions; Subordinate of entries in competitors

go annotations

string optional Path to a TSV-file with protein accessions and
GO terms Subordinate of entries in competitors

find highest possible go score

Boolean optional Find the candidate protein resulting in the high-
est GO F1-score and add the corresponding score
to the output; Default = false

find highest possible precision

Boolean optional Find the candidate protein resulting in the high-
est GO precision and add the corresponding value
to the output; Default = false

find highest possible recall

Boolean optional Find the candidate protein resulting in the high-
est GO recall and add the corresponding value to
the output; Default = false
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write evaluation summary

Boolean optional Where applicable (numerical columns), write the
mean of all non-NaN values and fraction of
non-NaN values at the end of the evaluation table;
Default = false

28.3.5 Parameter Optimization Settings

path log

string optional Path to file that AHRD writes intermediary re-
sults to during parameter optimization

temperature

integer optional Start temperature for the simulated
annealing-based parameter optimization (section
6.3); Greater than 0

cool down by

integer optional Temperature reduction after each iteration of the
simulated annealing parameter optimization (sec-
tion 6.3); Greater than 0

optimization acceptance probability scaling factor

floating-point optional Scaling factor for the probability to accept worse
parameter sets (equation 13) in the simulated
annealing-based parameter optimization (section
6.3); Default = 2 500 000 000.0

mutator mean

floating-point optional Mean value for the Gaussian distribution (equa-
tion 12) in the mutation of the parameter values
in the course of parameter optimization (sections
6.3 and 7.4); Default = 0.25

mutator deviation

floating-point optional Standard deviation for the Gaussian distribution
(equation 12) in the mutation of the parameter
values in the course of parameter optimization
(sections 6.3 and 7.4); Default = 0.15

remember simulated annealing path

Boolean optional The parameter sets evaluated in the simulated
annealing-based parameter optimization (section
6.3) will be saved together with their evaluation
scores and do not need to be evaluated if encoun-
tered again; Default = false
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p mutate same parameter scale

floating-point optional Scaling factor for the calculation of the probabil-
ity (equation 11) to modify the same parameter
again after a mutation led to a positive change
in the simulated annealing-based parameter opti-
mization (section 6.3); Default = 0.7

number of generations

integer optional The number of generations to be evaluated by the
genetic algorithm-based parameter optimization
(section 7.4); Greater than 0; Default = 100

population size

integer optional The number of parameter sets to be evaluated per
generation by the genetic algorithm-based param-
eter optimization (section 7.4); Greater than 0;
Default = 200
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28.4 Evidence Code Weights Used for the GO Term
Evidence Code Score

Experimental Evidence Codes:
EXP 1.0 Inferred from Experiment
IDA 1.0 Inferred from Direct Assay
IPI 1.0 Inferred from Physical Interaction
IMP 1.0 Inferred from Mutant Phenotype
IGI 1.0 Inferred from Genetic Interaction
IEP 1.0 Inferred from Expression Pattern

High Throughput Experimental Evidence Codes:
HTP 1.0 Inferred from High Throughput Experiment
HDA 1.0 Inferred from High Throughput Direct Assay
HMP 1.0 Inferred from High Throughput Mutant Phenotype
HGI 1.0 Inferred from High Throughput Genetic Interaction
HEP 1.0 Inferred from High Throughput Expression Pattern

Computational Analysis Evidence Codes:
ISS 0.4 Inferred from Sequence or structural Similarity
ISO 0.4 Inferred from Sequence Orthology
ISA 0.4 Inferred from Sequence Alignment
ISM 0.4 Inferred from Sequence Model
IGC 0.4 Inferred from Genomic Context
IBA 0.4 Inferred from Biological aspect of Ancestor
IBD 0.4 Inferred from Biological aspect of Descendant
IKR 0.4 Inferred from Key Residues
IRD 0.4 Inferred from Rapid Divergence
RCA 0.4 Reviewed Computational Analysis

Author Statement Evidence Codes:
TAS 0.4 Traceable Author Statement
NAS 0.2 Non-traceable Author Statement

Curatorial Statement Codes:
IC 0.4 Inferred by Curator
ND 0.1 No Biological Data Available

Automatically-Assigned Evidence Codes:
IEA 0.2 Inferred from Electronic Annotation

Obsolete Evidence Codes:
NR 0.0
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28.5 AHRD Has Been Used in Many Genome Annota-
tion Projects and for Annotation Databases

� Barley [72]

� Wheat [108]

� Tomato [109]

� Melon [110]

� Spinach [111]

� Pineapple [112]

� Rye [113]

� Zucchini [114]

� Spirodela [115]

� Brassica oleracea [116]

� Bottle gourd [117]

� Kiwi [118]

� Protomyces [119]

� Petunia [120]

� Arachis duranensis [121]

� Arachis ipaensis [122]

� Cardamine hirsuta [123]

� Eutrema heterophyllum and Eutrema yunnanense [124]

� Rhizophagus irregularis [125]

� Jaltomata sinuosa [126]

� Penium margaritaceum [127]

� A new thraustochytrid strain [128]

� Legume information system (LegumeInfo.org) [129]

� Cucurbit Genomics Database (CuGenDB) [130]

� PlantsDB [131]

� ORCAE-AOCC [132]

� TodoFirGene [133]
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