
Dispersion-theoretical analysis
of ππ and πη rescattering effects

in strong three-body decays

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Tobias Isken

aus

Köln

Bonn, Juli 2021



Angefertigt mit Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn unter
https://bonndoc.ulb.uni-bonn.de/xmlui/ elektronisch publiziert.

Promotionskommission

1. PD Dr. Bastian Kubis

2. Prof. Dr. Dr. h.c. Ulf-G. Meißner

3. Prof. Dr. Ulrike Thoma

4. Prof. Dr. Alexander C. Filippou

Tag der Prüfung
29.09.2021

Erscheinungsjahr
2021

https://bonndoc.ulb.uni-bonn.de/xmlui/


Abstract

Employing dispersion theory to analyse hadronic three-body decays is a classic subject.
Based on the fundamental physical principles of analyticity and unitarity, dispersion re-
lations exploit basic theorems of complex analysis to provide a mathematical toolkit that
describes the analytic structure of the amplitude in terms of integral equations. Since the
resummation of the leading final-state rescattering effects among the three decay products
is implemented by construction, an application is of particular interest for processes of
the strong interaction at low energies, where a perturbative expansion of quantum chro-
modynamics fails. In this thesis we present a dispersion-theoretical analysis of hadronic
three-body decays based on integral equations of the Khuri–Treiman type.

The η′ → ππη decay offers several features of interest: due to the small available
phase space it can be used to constrain πη rescattering at low energies, in the soft-
pion limit current algebra predicts two Adler zeros in the unphysical region, and the
neutral η′ → π0π0η Dalitz-plot distribution is expected to show a cusp effect at the
π+π− threshold. Restricting ourselves to the dominant S-wave discontinuities, our dis-
persive representation of η′ → ππη is based solely on the ππ and πη S-wave scattering
phase shifts. Isospin symmetry dictates that both the charged and neutral decay modes
η′ → π+π−η/π0π0η are given in terms of the same amplitude. The subtraction con-
stants contained in the dispersion relation are determined by a fit to experimental data
of the η′ → π+π−η Dalitz-plot distribution from the VES and BESIII collaborations. In
accordance with the soft-pion theorem our amplitude exhibits two Adler zeros. We com-
pare the dispersive representation to variants of chiral perturbation theory and provide a
prediction for the cusp effect in the η′ → π0π0η Dalitz-plot distribution.

Patterns of C- and CP -violation from mirror symmetry breaking in the Dalitz-plot
distribution of the η → π+π−π0 decay offer an ideal arena in the search for physics be-
yond the standard model. Effects of this kind are particularly interesting as they are
not directly constrained by limits on electric dipole moments. Determined by the isospin
coupling of the three pions in the final state, the amplitude can be decomposed into
an isoscalar, isovector, and isotensor structure. Based on the dispersive framework, we
present a consistent description of these isospin amplitudes allowing for contributions of
ππ S- and P -waves to the discontinuities. We compare the dispersive representation to
experimental data of the η → π+π−π0/3π0 Dalitz-plot distributions from the KLOE-2
and A2 collaborations as well as constraints of standard chiral perturbation theory. Fur-
thermore, our dispersion relation allows us to give bounds on effective coupling strengths
of the underlying operators beyond the standard model.

Decays of light isoscalar vector mesons into three pions provide an ideal test case for
dispersion relations. Due to Bose symmetry only odd partial waves are allowed to con-
tribute, so neglecting discontinuities of F - and higher partial waves, the decay is fully
described by the ππ P -wave rescattering effects. In the context of two-body resonances,
like the ρ(770), unitarized versions of chiral perturbation theory offer a way to investigate



resonance properties and their quark-mass dependence. Three-body resonances like the
ω(782) cannot be accessed in such a formalism. We study the quark-mass dependence
of ω → 3π decays within the dispersive framework, relying on the ππ P -wave scattering
phase shift extracted from unitarized chiral perturbation theory. The described formalism
may be used as an extrapolation tool for lattice QCD studies of three-pion decays, for
which ω → 3π serves as a paradigm case.
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Introduction

Ever since the existence of humanity, the description and prediction of natural phenomena
from cosmological scales to the quantum level has been at the heart of our aspiration. In
our strive to discover the elementary building blocks of matter and understand the funda-
mental laws of nature we pushed physics to smaller and smaller dimensions, corresponding
to ever increasing energy scales at which theory has to be probed by experiment.

At present it is believed that the fundamental forces mediating interactions between
the elementary particles fall into four categories differentiated by their strength: strong,
weak, electromagnetic, and gravity. Since its formulation in the second half of the 20th
century the standard model (SM) of particle physics [1–5] has become the accepted theory
unifying three of the fundamental forces (strong, weak, and electromagnetic interactions,
excluding gravity) and classifying all known elementary particles. Verified by direct and
indirect experimental searches over an energy range of many orders of magnitude, the SM
has proven to be extremely successful in describing particle physics processes of the strong
and electroweak interactions. By now, it is regarded as one of the best tested theories
in physics. However, the SM does not explain gravity and so far a consistent unification
with general relativity at the quantum level has not been achieved. Further caveats like
the hierarchy problem or its inconsistency with the Lambda-CDM model of cosmology
indicate that the SM may only be a part of a more fundamental yet to unravel theory of
everything.

As a locally Poincaré and gauge invariant quantum field theory of the underlying
symmetry group

SU(3)C × SU(2)L × U(1)YW
, (1)

the SM is founded on the principles of special relativity and quantum mechanics. Each
kind of elementary particle is described in terms of its corresponding dynamical field that
pervades space-time. These fields lie in different representations of the various symmetry
groups of the SM, which define their fundamental properties. The dynamics of the fields
are controlled by the Lagrangian of the SM. In its most general form this Lagrangian
depends on 19 a priori unknown parameters not fixed by theory, whose numerical values
have to be determined by experiment.

The matter content of the SM consists of twelve spin-1
2
fields (Fermions) obeying

the Fermi–Dirac statistics, which can be grouped into six quark fields (charged under
SU(3)C , i.e., they interact strongly) and six lepton fields (singlets of SU(3)C , i.e., they do
not interact strongly). While all quarks also interact weakly and electromagnetically, the
leptons can be further subdivided into electrically charged leptons and neutrinos (they do
not carry electric charge, thus they only participate in weak interactions). Both quarks
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8 Introduction

and leptons are pairwise grouped into three generations or families, with the second and
third being an exact copy of the first concerning all quantum numbers except for increasing
masses. Each quark and lepton has a corresponding antiparticle.

Apart from the Fermionic matter content the SM also contains five elementary fields
with integer spin (Bosons), which respect the Bose–Einstein statistics. Four spin-1
gauge fields act as carriers of the fundamental forces mediating the interactions of the
Fermions: the gluon (strong), the W and Z (weak), and the photon (electromagnetic).
An auxiliary Yukawa-type interaction is mediated by the spin-0 Higgs field, the only
elementary scalar field of the SM. Note that Bosons do not only interact with Fermions,
but also among themselves.

Due to gauge invariance of the SM, an explicit inclusion of mass terms for the gauge
fields is forbidden. Thus, the gluon, the W and Z, as well as the photon are required to
be massless. However, it is known from experiment that the W - and Z-Bosons not only
have mass, but are even among the heaviest particles of the SM. This puzzle has been
solved by the Brout–Englert–Higgs mechanism formulated in 1964 [6–8]. According
to this mechanism the masses of the quarks, the electrically charged leptons, as well as
the W -, Z-, and Higgs Bosons are all generated through the spontaneous breaking of
electroweak symmetry

SU(2)L × U(1)YW
→ U(1)e.m. , (2)

induced by the non-vanishing vacuum expectation value of the Higgs field. As its last
missing essential piece, the Higgs particle was experimentally discovered by the ATLAS
and CMS collaborations at CERN’s Large Hadron Collider in 2012 confirming the SM
prediction [9, 10].

The focus of this thesis is on aspects of quantum chromodynamics (QCD) as the theory
describing strong interactions. While in the electroweak sector of the SM the framework of
perturbation theory allows for precise predictions in the experimentally accessible energy
region, the dynamics of strong interactions are still insufficiently understood at low en-
ergies as its running coupling constant becomes too large for a perturbative description.
At these energies a spectrum of composite hadrons emerges, replacing the quarks and
gluons as the relevant degrees of freedom of the theory. In order to describe the dynamics
of strong interactions in the realm of hadrons alternative solution methods have been
developed. Besides the effective field theory approach or simulating QCD on discretized
space-time lattices, dispersion theory is one of these alternatives. Founded on the fun-
damental principles of analyticity and unitarity, dispersion theory exploits the analytic
structure of scattering processes and relates them to holomorphic functions of complex
variables that can be obtained by solving integral equations. As we will demonstrate
exemplarily in this thesis, the three methods mentioned above are not mutually exclusive
but are particularly strong in their interplay.

As decay and scattering processes of hadrons allow us to uncover essential information
on the structure of QCD and the SM, much has been learned and will be learned by
further investigation of these processes in experiment and theory. In this thesis we employ
a dispersion-theoretical approach to study hadronic three-body decays. Contrary to two-
body decays where the kinematical variables are completely fixed by energy-momentum
conservation, the kinematical structure in three-body decays is more involved, making
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these decays an ideal testing ground for the dynamics of strong interactions at low energies.
In order to obtain a sensible description in the physical decay region of the heavy state,
an accurate control over the final-state interactions of the three light decay products is of
paramount importance. This can be achieved in a dispersive treatment based on integral
equations of the Khuri–Treiman type [11]. One of its main virtues is the fact that the
most important final-state interactions among the three light decay products are fully
taken into account, hence analyticity and two-body unitarity are respected exactly. This
becomes the more important, the higher the mass of the decaying heavy particle, and
therefore the higher the possible energies of the lighter decay products in the final-state
two-body subsystems get.

The outline of this thesis is as follows: in ch. 1 we review the structure of strong
interactions at low energies in more detail. This is followed by a short introduction
into S-matrix theory and its application in scattering processes discussed in ch. 2. We
display the basic concepts of the dispersion-theoretical framework for functions with one
cut in ch. 3, and extend it to functions with two cuts in ch. 4. Applications of these
dispersive techniques to hadronic three-body decays in terms of Khuri–Treiman-type
equations are presented in the final three chapters. In ch. 5 we study the η′ → ππη
Dalitz-plot distributions and compare our dispersive representation with experimental
data, a low-energy theorem, as well as variants of chiral effective theories. We analyze
mirror symmetry breaking C- and CP -violating effects of the η → π+π−π0 Dalitz-plot
distribution in ch. 6 and show how the interference of the underlying isospin amplitudes
affect these patterns. A study of the quark-mass dependence of ω → 3π decays based on
the dispersion-theoretical framework is presented in ch. 7. The thesis closes with a short
summary and outlook.
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Chapter 1

Theory of the strong interaction

QCD as the theory of strong interactions and one of the pillars of the SM is formulated in
terms of a non-Abelian Yang–Mills gauge theory of the underlying SU(3)C symmetry
group [5,12,13]. Its fundamental degrees of freedom are the quarks (massive spin-1

2
matter

fields) and the gluon (massless spin-1 gauge field). The quark fields can be grouped into
six different flavors : up (u), down (d), strange (s), charm (c), bottom (b), and top (t).
Contrary to the theory of quantum electrodynamics (QED), where the uncharged photons
mediate the interactions between electrically charged particles, the quarks and gluons are
carriers of a SU(3)C color charge (the QCD analog to the electric charge of QED). While
free quarks or gluons have never been observed in nature, a spectrum of colorless bound
states, so-called hadrons, emerges at low energies, which take the place as relevant degrees
of freedom of the strong interaction, cf. fig. 1.1.

The mechanism behind this property of QCD is called color confinement : the strong
force between two color charges does not decrease with distance as one would expect
e.g. from electromagnetic interactions. Thus the energy required to separate two quarks
within a hadron ever increases until a quark–anti-quark pair is spontaneously produced
out of the vacuum, resulting in two hadrons instead of an isolated color charge. This
mechanism renders QCD strongly coupled at low energies, and thus a perturbative de-
scription of interactions between quarks and gluons fails. Although color confinement has
not been rigorously proved mathematically, it is well established by lattice QCD simu-
lations and experimental measurements [15]. Its pending analytical proof is one of the
seven Millennium Prize Problems stated by the Clay Mathematics Institute [16].

Another peculiarity of QCD is asymptotic freedom: the coupling strength of strong
interactions between quarks and gluons decreases as the energy scale increases, i.e., the
β-function of QCD is negative [17–22]. At very high energies (small distances) the strong
interaction becomes weak, thus quarks and gluons start to behave like free particles.
For their discovery of asymptotic freedom Gross, Politzer, and Wilczek have been
awarded the 2004 Nobel Prize in physics.

Since strong interactions are not discriminating between different quark flavors (the
strong force is flavor blind), QCD exhibits a chiral flavor symmetry in the limit of massless
quarks. In nature the scale separation of QCD dictates that this symmetry is only mean-
ingful for the three light-quark flavors u, d, and s whose masses are small compared to the

13
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Fig. 1.1: Mass spectrum of all established states in the light-meson sector up to 2GeV
labelled according to the PDG nomenclature [14]. The states are classified by their spin J ,
parity P , charge conjugation C, and isospin I quantum numbers: isospin singlets (black),
doublets (red), and triplets (blue). The decay widths of the states are marked by the
boxes.

hadronic scale Λhadr. ∼ 1GeV (e.g. the lightest baryons, i.e., the nucleons, have a mass
of mN ∼ 939MeV),#1 while the heavy-quark flavors c, b, and t are integrated out at low
energies. However, chiral flavor symmetry is spontaneously broken by the non-vanishing
vacuum expectation value of the chiral quark condensate 〈q̄q〉, which results in the emer-
gence of eight massless Nambu–Goldstone Bosons [32–35] that can be identified with
the pseudoscalar octet of pions, kaons, and the η [36–41]. Since the physical values of
light-quark masses will cause an additional explicit breaking of chiral symmetry, these
mesons actually acquire a finite mass, but are still significantly lighter than the other
states in the hadron spectrum, cf. fig. 1.1. The Nobel Prize in physics has been awarded
to Gell-Mann in 1969 for his work on classifying the ground-state hadron spectrum and
Nambu in 2008 for the discovery of the mechanism of spontaneously broken symmetry.

#1In fact the trace anomaly of the QCD energy-momentum tensor causes the nucleon to stay massive
even in the limit of vanishing quark masses [23–27]. Moreover, the by far biggest bulk of nucleon mass is
generated by self-interactions of the gluon field, while the light-quark masses turn out to cause only tiny
corrections [28–31].
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The outline of this chapter is as follows: in sec. 1.1 we discuss QCD and its global
symmetries in the chiral limit. We study the main mathematical features of the chiral
SU(3)V × U(1)V flavor symmetry group and its realization in the physical properties of
the pseudoscalar meson nonet in sec. 1.2. A discussion of the mass generation due to
explicit chiral flavor symmetry breaking is given in sec. 1.3. For further details on QCD
and general aspects of chiral flavor symmetry presented in this chapter we refer to [42–48].

1.1 The Lagrangian of quantum chromodynamics

The dynamics of the quarks and gluons are controlled by the QCD Lagrangian that is
given by

LQCD = q̄ (i /D −M) q − 1

2
tr(FµνF µν) + θ

g2

16π2
tr(FµνF̃ µν) , (1.1)

where q = (u, d, s, ...)T contains the quark fields transforming under the fundamental
representation 3 of SU(3)C andM = diag(mu,md,ms, ...) denotes the quark-mass matrix.
Of course, each component of q introduced here will be the usual four-dimensional Dirac-
spinor under the Lorentz group. The adjoint quark field q̄ = q†γ0 will transform under
the conjugate representation 3̄ of SU(3)C . Since we are interested in strong interactions
at low energies, we will drop the contributions of the heavy-quark flavors c, b, and t
to eq. (1.1) from now on. The vector potential Gµ = 1

2
λaGµ

a , which lies in the adjoint
representation 8 of SU(3)C , describes the gluon field. It enters through the covariant
derivative

Dµ = ∂µ − ig Gµ , (1.2)

and the field-strength tensor

F µν = ∂µGν − ∂νGµ − ig [Gµ, Gν ] , (1.3)

where g is the coupling constant of QCD, λa are the complex 3×3 Gell-Mann matrices
and the trace relations in eq. (1.1) have to be evaluated in color space, cf. app. A.1. For
completeness, we also included the θ-term of QCD, which involves the dual field-strength
tensor F̃µν = 1

2
εµναβF

αβ and is related to strong P - and CP -violation. However, careful
estimations indicate that the θ-term is extremely small [49], and therefore we will neglect
it in the following calculations by setting θ = 0.

1.1.1 Accidental chiral U(3)L × U(3)R flavor symmetry

Rewriting the QCD Lagrangian in terms of left- and right-handed chiral fields

qL/R =
1∓ γ5

2
q , (1.4)

the Dirac part in eq. (1.1) decomposes into

q̄ (i /D −M) q = q̄L i /D qL + q̄R i /D qR − q̄LM qR − q̄RM qL . (1.5)
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In the limit of vanishing light-quark masses (mu = md = ms = 0) it becomes manifest
that the left- and right-handed chiral fields in eq. (1.5) decouple. Accordingly, the QCD
Lagrangian becomes invariant under the transformations

qL 7→ UL qL , qR 7→ UR qR , UL/R ∈ U(3)L/R (1.6)

of global U(3)L×U(3)R flavor symmetry in the so-called chiral limit. Obviously, the mass
term in eq. (1.5) mixes left- and right-handed fields. Consequently, chiral flavor symmetry
is explicitly broken by the light-quark masses.

The chiral U(3)L × U(3)R flavor symmetry group can be factorized in terms of

SU(3)L × SU(3)R × U(1)V × U(1)A , (1.7)

where we have introduced vector V = L+R and axial vector A = L−R transformations.
According to Noether’s theorem the symmetry group in eq. (1.7) is related to a total
number of 18 currents given by

V µ = q̄γµq , Aµ = q̄γµγ5q ,

V µ
a = q̄γµ

λa

2
q , Aµa = q̄γµγ5

λa

2
q ,

(1.8)

which are all conserved at the classical level. Under parity the currents V µ, V µ
a and Aµ,

Aµa transform like vector and axial vectors, respectively. After quantization it turns out
that the singlet axial-vector current Aµ is anomalous and thus not conserved [50–54]

∂µA
µ =

3g2

8π2
tr(FµνF̃ µν) , (1.9)

which is known as the U(1)A anomaly of QCD.#2 The transformation corresponding to
Aµ is therefore not a symmetry of the chiral QCD Lagrangian. However, all the other
currents defined in eq. (1.8) are still conserved at the quantum level. Thus the symmetry
group that leaves the chiral QCD Lagrangian invariant is reduced to

SU(3)L × SU(3)R × U(1)V . (1.10)

In the presence of the quark-mass term the divergences of the currents defined in
eq. (1.8) are given by

∂µV
µ = 0 , ∂µA

µ = 2iq̄Mγ5 q +
3g2

8π2
tr(FµνF̃ µν) ,

∂µV
µ
a = iq̄

[
λa

2
,M

]
q , ∂µA

µ
a = iq̄

{
λa

2
,M

}
γ5 q ,

(1.11)

with [·, ·], {·, ·} being the commutator and anticommutator, respectively. Hence, only the
singlet vector current V µ is conserved, implying that the massive QCD Lagrangian

#2Since the strong coupling constant behaves like g2 ∼ N−1C with NC being the number of colors, the
singlet axial-vector current will be conserved in the limit of NC →∞.
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possesses only a U(1)V symmetry.#3 By means of eq. (A.10) the quark-mass matrix can
be spit into

M =
mu +md +ms√

6
λ0 +

mu −md

2
λ3 +

m̂−ms√
3

λ8 , (1.12)

with m̂ = 1
2
(mu +md) combining the up- and down-quark masses. We note that the term

proportional to λ0 in this decomposition acts as identity in flavor space, while the latter
two terms proportional to λ3 and λ8 measure the strength of isospin SU(2) and flavor
SU(3) symmetry breaking, cf. sec. 1.2.1. If the contributions of λ3 and λ8 are neglected,
i.e., in the limit of equal light-quark masses mu = md = ms, the octet vector currents V µ

a

will again be conserved. Contrary, for the conservation of the octet axial-vector currents
Aµa the anticommutation relations in eq. (1.11) require all three structures proportional
to λ0, λ3, and λ8 to vanish, i.e., the chiral limit.

Since the physical values of the light-quark masses mu ∼ 2MeV, md ∼ 5MeV, and
ms ∼ 93MeV are small compared to Λhadr. ∼ 1GeV, nature is not too far from the
chiral limit.#4 Thus (approximate) chiral flavor symmetry of the QCD Lagrangian is
only an accidental consequence of the smallness of the three light-quark masses, but not a
fundamental symmetry at all. One would expect that the hadron spectrum at low energies
is organized in degenerate multiplets corresponding to the symmetry group of the chiral
QCD Lagrangian given in eq. (1.10). Indeed, the conservation of the baryon number
B, which corresponds to the U(1)V symmetry group, induces an ordering principle of the
hadrons: the spectrum can be grouped into states with B = 0 and integer spin (mesons)
as well as states with B = 1 and half-integer spin (baryons). Hence, we are left with the
question whether the remaining chiral SU(3)L × SU(3)R symmetry group is realized in
the Wigner–Weyl mode [55, 56], i.e., the hadron spectrum is arranged in degenerated
parity multiplets (parity doubling), or in the Nambu–Goldstone mode [32–35], i.e., a
multiplet of spin-0 massless excitations emerges in the hadron spectrum corresponding to
the generators of the spontaneously broken symmetry (Nambu–Goldstone Bosons).

Phenomenologically, we find the hadron spectrum ordered in (approximate) multiplets
of the SU(3)V symmetry group, while parity doubling is not observed in nature (e.g.
the hadron spectrum at low energies does not contain a baryon octet of negative parity
degenerate with the lowest-lying positive-parity one). Furthermore, the masses of the
ground-state pseudoscalar meson octet, i.e., the states with spin-0 and negative parity
(JP = 0−), turn out to be exceptionally light (Mπ ∼ 138MeV, MK ∼ 496MeV, and
Mη ∼ 548MeV) in comparison to those of the corresponding JP = 1− vector mesons, cf.
fig. 1.1. In accordance with these observations, the Vafa–Witten theorem [57] demands
the pattern of spontaneous symmetry breaking (SSB) to be

SU(3)L × SU(3)R
SSB−−→ SU(3)V . (1.13)

The eightNambu-Goldstone Bosons corresponding to the broken generators of SU(3)A
#3Note that the conservation of the singlet vector current for any value of the quark masses is a direct

consequence of flavor blindness of the strong interaction.
#4As the quarks are color confined, it is impossible to treat them as free asymptotic states. Accordingly,

their masses turn out to be scale-dependent quantities, which cannot be measured directly. The running
masses quoted here are fixed in the MS-scheme at a renormalization scale of 2GeV [14].
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should be pseudoscalars, and therefore can be identified with the octet of pions, kaons,
and the η. Note that the U(1)V symmetry is untouched by the chiral SSB, and therefore
is still preserved. Moreover, the mass gap to the much heavier η′ meson (interpreted as
the corresponding pseudoscalar singlet state with Mη′ ∼ 958MeV), can be explained by
the U(1)A anomaly of QCD (1.9), which gives rise to a non-vanishing mass even in the
chiral limit.

1.2 Multiplets of chiral SU(3)V flavor symmetry
As explained in the previous section, the ordering principle of the hadron spectrum at low
energies is directly related to the chiral SU(3)V × U(1)V flavor symmetry group. While
the classification into mesons and baryons according to the conserved baryon quantum
number of U(1)V symmetry is obvious, the identification of the states within multiplets
of SU(3)V is less clear. In the following we want to present the mathematical basis to
classify the states of the pseudoscalar meson nonet.

We begin with three orthonormal vectors |ei〉 with components defined by

ek(i) ≡ 〈ek|ei〉 = δik , (1.14)

where the indices i, k run from 1 to 3. In the three-dimensional flavor space spanned by
these basis vectors the contravariant components qi = 〈ei|q〉 of the quark field transform
under the fundamental 3 representation of SU(3)V according to

qi 7→ U i
k q

k , U = exp
(
iεaL

a
)

(1.15)

with U ∈ SU(3)V , where the real parameters εa define the infinitesimal generalized angles
and the summation index a runs from 1 to 8. The eight linearly independent generators
La ≡ 1

2
λa fulfill the Lie algebra commutation relations (cf. app. A.1)[

La, Lb
]

= ifabc L
c . (1.16)

Contrary, the Hermitian adjoint covariant components q̄i of the quark field transform
under the conjugate 3̄ representation of SU(3)V like

q̄i 7→ q̄k (U †)ki , U † = exp
(
iεa L̄

a
)
, (1.17)

where the set of generators is given by L̄a ≡ −1
2
(λa)∗. These conjugate generators L̄a

fulfill the same commutation relations as the La do in eq. (1.16):[
L̄a, L̄b

]
= ifabc L̄

c . (1.18)

Introducing a ninth generator L0 = 1
2
λ0 the transformation U ∈ U(1)V of the quark

fields is given in analogy to eqs. (1.15) and (1.17). Since the U(1)V symmetry is flavor
blind, λ0 has to act like the identity in flavor space and may be given in terms of the
Casimir element of SU(3)V

8λ0λ0 ≡ λaλa , (1.19)
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where the summation index a runs from 1 to 8. Taking this choice the identities in
eq. (A.8) will hold for all nine λa. As already discussed in sec. 1.1.1 the baryon number B
is the conserved additive quantum number of U(1)V , which we identify with the operator

B =
√

2
3
L0 . (1.20)

Accordingly, the basis vectors of the quark field in the fundamental representation take
the eigenvalues B = 1

3
, while the eigenvalues of basis vectors of the adjoint representation

are found to be B = −1
3
(anti-quarks). Note that the scalar product 〈q̄q〉 with B = 0

is an invariant of Lorentz as well as chiral SU(3)V × U(1)V flavor transformations, cf.
eqs. (1.15) and (1.17).

1.2.1 SU(2) subspaces and classification of the light-quark states

Considering the explicit representation of the generators of SU(3)V in the fundamental
representation (A.1) we directly recognize that the operators L3 and L8 are diagonal at
the same time. Additionally, in the two-dimensional subspace spanned by the vectors
|e1〉 and |e2〉 the matrices λ1, λ2, and λ3 act like the Pauli matrices σ1, σ2, and σ3

of SU(2). Thus, we identify |e1〉 and |e2〉 as the two components of an isospin doublet,
while |e3〉 will be considered as the corresponding isospin singlet. Consequently, the first
additive quantum number we introduce in this scheme is the eigenvalue of the third isospin
component I3, which can be taken as coincident with the generator L3. A second useful
quantum number connected to the eigenvalues of the other diagonal operator will be the
hypercharge Y = 2√

3
L8.#5

Taking the eigenvalues of the operators (I3, Y ) acting on |ei〉 as components of a two-
dimensional vector in weight space spans an equilateral triangle.#6 The components of
these weights are interpreted as the quantum numbers suited to identify the basis vectors
uniquely with the light-quark flavor states |u〉, |d〉, and |s〉. A weight diagram of the
fundamental representation is depicted in fig. 1.2. For the conjugate representation the
weight diagram can be obtained by reflecting the weights of the fundamental representa-
tion with respect to the origin, cf. fig. 1.2. Accordingly, the basis vectors of the conjugate
representation are interpreted as corresponding anti-quark states |ū〉, |d̄〉, and |s̄〉.

Besides the already discussed diagonal operators I3 and Y , we want to construct
ladder operators that allow for a transition between different basis states of the SU(3)V
representation. These will be given by

I± = L1 ± iL2 , V ± = L4 ± iL5 , U± = L6 ± iL7 . (1.21)

From these definitions we note that three SU(2) sub-algebras are embedded in the SU(3)V

#5Note that strong interactions will always preserve hypercharge, since it is directly related to the
baryon and strangeness quantum numbers Y = B + S.

#6Using the eigenvalues of (I3, Y ) instead of (L3, L8) the weight diagram loses its fundamental symme-
try character. However, for physical applications it is more natural to introduce the operator Y instead
of L8. In order to preserve the symmetry in the (I3, Y ) diagrams, different scales of the I3- and Y -axes
are used.
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|u〉|d〉

|s〉

− 1
2

1
2

1
3

− 2
3

I3

Y

−|d̄〉|ū〉

−|s̄〉

− 1
2

1
2

− 1
3

2
3

I3

Y

Fig. 1.2: Weight diagrams of the fundamental 3 (left) and conjugate 3̄ (right) represen-
tations of chiral SU(3)V flavor symmetry in the (I3, Y ) plane. The identification with the
light quark and anti-quark states follows the de Swart phase convention [58].

representation [59]: the I-spin algebra

[I+, I−] = 2I3 , [I3, I
±] = ±I± , (1.22)

the V -spin algebra
[V +, V −] = 2V3 , [V3, V

±] = ±V ± , (1.23)

and the U -spin algebra

[U+, U−] = 2U3 , [U3, U
±] = ±U± . (1.24)

The diagonal operators V3 and U3 defined in the above equations are combinations of I3

and Y given by
V3 = 1

2
I3 + 3

4
Y , U3 = −1

2
I3 + 3

4
Y . (1.25)

Among the different SU(2) subspaces the ladder operators fulfill the commutation relations

[I±, V ∓] = ∓U∓ , [I±, U±] = ±V ± , [V ±, U∓] = ±I± . (1.26)

In each of these sub-algebras an additional combination of I3 and Y plays the role of
a scalar operator for that respective sub-algebra. In case of the I-spin we already know
that Y is this generator, since

[I±, Y ] = 0 , [I3, Y ] = 0 . (1.27)

We conclude that states belonging to the same isospin multiplet share the same hyper-
charge quantum number and the ladder operators I± obey the selection rule ∆Y = 0, cf.
fig. 1.2. For this reason the U -spin is of particular interest, since the scalar operator in
this case can be identified with the electric charge operator#7

Q = I3 + 1
2
Y . (1.28)

#7The quarks are the only particles in the SM whose electric charges are not integer multiples of the
elementary charge e.
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Accordingly, the quark-charge matrix reads Q = e diag(2
3
,−1

3
,−1

3
). Equation (1.28) is

known as the Gell-Mann–Nakano–Nishijima formula [60–62]. States belonging to
the same U -spin multiplet have the same electric charge Q given that

[U±, Q] = 0 , [U3, Q] = 0 . (1.29)

Thus the U± ladder operators fulfill the selection rule ∆Q = 0. Finally, the scalar operator
QV of the V -spin is defined by

QV = I3 − 1
2
Y . (1.30)

Apart from any immediate deeper physical meaning this operator fulfills

[V ±, QV ] = 0 , [V3, QV ] = 0 , (1.31)

thus states in the same V -spin multiplet share the same value ofQV . However, strangeness-
changing weak transitions occur inside V -spin multiplets, as they obey the ∆Y = ∆Q
selection rule like the V ± ladder operators.

The previous definitions classify the basis states according to their I-, U -, or V -spin
content. Obviously the classification of a state in terms of |I3, Y 〉, |U3, Q〉, or |V3, QV 〉 is
an equally good choice. Indeed, the choice is immaterial for the states in the fundamen-
tal or conjugate representation, since each state can be unambiguously identified by its
respective weight.#8 Hence, we are in the position to define the matrix elements of the
ladder operators in the SU(2) subspaces:

I± |I3, Y 〉 = |I3 ± 1, Y 〉 , U± |U3, Q〉 = ±|U3 ± 1, Q〉 , V ± |V3, QV 〉 = |V3 ± 1, QV 〉 .
(1.32)

The relative phases within these multiplets are chosen according to the de Swat con-
vention [58], requiring real non-negative coefficients in all I- and V -spin matrix elements.
This directly fixes the coefficients of the remaining U -spin multiplets uniquely by the
commutation relations given in eq. (1.26).

1.2.2 The pseudoscalar meson nonet

So far we discussed the properties of the three light-quark flavors in the fundamental 3 and
their anti-quark counterparts in the conjugate 3̄ representation. In the next step we want
to consider states composed out of a quark and an anti-quark, i.e., mesons with B = 0,
and study their behaviour within SU(3)V symmetry. Given that 3 ⊗ 3̄ = 1 ⊕ 8 we can
form nine different orthogonal combinations, i.e. one flavor singlet state and eight states
forming a flavor octet. The quantum numbers I3 and Y are additive, thus the quantum
numbers of mesons can be calculated by vector addition of the respective fundamental
and conjugate weights. The associated weight diagrams of the 1⊕8 representation can be
found by placing a 3̄ diagram with its (I3, Y ) origin once at each corner of the 3 diagram

#8The fundamental and conjugate representations contain only simple weights. This does not need to
be the case when dealing with states in higher SU(3) representations. Considering a state belonging to a
multiple weight. In such a case a definite I-spin eigenstate will be an admixture of every U - (or V -) spin
eigenstate belonging to that weight.
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and adding up the weight vectors, cf. fig. 1.3. It follows immediately that three states will
be located at the (I3, Y ) origin, hence this point is a multiple weight. One of these states
can be identified with the singlet representation which contains only a single point. The
other two states have to be in the octet representation, thus the quantum numbers I3 and
Y are not sufficient to identify the basis states uniquely within this multiplet. In order
to remove this degeneracy we have to introduce an additional new quantum number. We
may choose the square of the total isospin operator

I2 = 1
2
{I+, I−}+ I2

3 , (1.33)

as an additional quantum number, which fulfills the constraints

[I2, I3] = 0 [I2, Y ] = 0 . (1.34)

Any generic state |I, I3, Y 〉 of a given irreducible representation is uniquely characterised
by the set of eigenvalues belonging to the operators I2, I3, and Y .#9 The flavor singlet
will be assigned with |0, 0, 0〉 and identified with the |η1〉 state. In case of the flavor octet
the degeneracy is now lifted by choosing the respective basis states |π0〉 and |η8〉 as |1, 0, 0〉
and |0, 0, 0〉.#10

Starting from these states, the repeated application of the ladder operators defined in
eq. (1.21) allows us to construct all basis states within the octet, cf. fig. 1.3. These states
can be grouped according to their behavior under isospin transformations: the states |π+〉,
|π0〉, and |π−〉 form an isospin triplet, two doublets are consisting of |K+〉 and |K0〉 as well
as |K̄0〉 and |K−〉, and an isospin singlet given by the |η8〉 state. In some cases it might
be more convenient to work in the Hermitian basis of the generators La instead of the
introduced physical basis, cf. eqs. (1.21) and (A.1). For such a change of basis the matrix
elements of the generators and the basis states have to be known. When dealing with
the regular 8 representation of SU(3)V these matrix elements are immediately known,
since they are given by the structure constants of SU(3)V . In order to include the |η1〉
singlet state of the 1 representation in this scheme, we have to extend the symmetry back
to SU(3)V × U(1)V by introducing the ninth generator L0, cf. app. A.1. Labelling the
Hermitian basis states by |ϕa〉 we find

La |ϕb〉 = ifabc |ϕc〉 . (1.35)

#9As discussed already earlier, the classification of the basis states according to the transformation
properties under the operations of I-spin subgroup is arbitrarily chosen. In general the sets of the V -spin
operators V 2, V3, and QV or the U -spin operators U2, U3, and Q would be an equally good choice. The
benefit of I-spin states comes from physical considerations, given the fact that isospin is a good quantum
number when dealing with strong interactions.

#10Note that the physical mass eigenstates |η〉 and |η′〉 are considered as linear combinations of the
flavor octet |η8〉 and singlet |η1〉 states according to

|η〉 = cos θ |η8〉 − sin θ |η1〉 , |η′〉 = cos θ |η1〉+ sin θ |η8〉 .

In general the mixing angle introduced here is considered to be small θ ≈ −10◦...−20◦, thus the physical
mass eigenstates can be identified with |η〉 ∼ |η8〉 and |η′〉 ∼ |η1〉, respectively [63].
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|π−〉 |π0〉 |π+〉

|K0〉 |K+〉

|K−〉 |K̄0〉

|η8〉 I3

Y

|η1〉 I3

Y

Fig. 1.3: Weight diagrams of the 8 (left) and 1 (right) representations of SU(3) in the
(I3, Y ) plane. Note that the scales of the I3- and Y -axes are chosen differently to preserve
the symmetric structure. The identification with the pseudoscalar meson nonet follows
the de Swart-phase convention [58].

Of course we want to identify the Hermitian with the physical states. We start with
the assumption |π0〉 = |ϕ3〉, suggested by physics. Making repeated use of the ladder
operators (1.21) according to eq. (1.35) leads to the identification

|π+〉 = − 1√
2
|ϕ1 + iϕ2〉 , |π0〉 = |ϕ3〉 , |π−〉 =

1√
2
|ϕ1 − iϕ2〉 ,

|K+〉 = − 1√
2
|ϕ4 + iϕ5〉 , |K−〉 =

1√
2
|ϕ4 − iϕ5〉 ,

|K0〉 = − 1√
2
|ϕ6 + iϕ7〉 , |K̄0〉 = − 1√

2
|ϕ6 − iϕ7〉 ,

|η8〉 = |ϕ8〉 , |η1〉 = |ϕ0〉 .

(1.36)

It might also be of interest to study the quark–anti-quark content of the constructed
meson nonet. Starting at the left edge of the octet weight diagram we identify |π−〉 = |dū〉
in fig. 1.3. Again using the ladder operators (1.21) repeatedly on this state we can
generate the whole octet basis. The missing singlet state can then be found by demanding
orthogonality to all other states. This procedure yields

|π+〉 = −|ud̄〉 , |π0〉 =
1√
2
|uū− dd̄〉 , |π−〉 = |dū〉 ,

|K+〉 =− |us̄〉 , |K0〉 = −|ds̄〉 , |K̄0〉 = −|sd̄〉 , |K−〉 = |sū〉 ,

|η8〉 =
1√
6
|uū+ dd̄− 2ss̄〉 , |η1〉 =

1√
3
|uū+ dd̄+ ss̄〉 .

(1.37)
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Hence, the flavorless physical states |π0〉, |η8〉, and |η1〉 are realised as three orthogonal
linear combinations of the light quarkonium states |uū〉, |dd̄〉, and |ss̄〉.

Since the representations 1 as well as 8 are self-conjugate, the de Swat-phase con-
vention demands

|I, I3, Y 〉∗ = (−)Q|I,−I3,−Y 〉 , (1.38)

as link between an arbitrary eigenstate and its conjugate counterpart. This relation can
be interpreted as the charge conjugation operator C acting on the eigenstate |I, I3, Y 〉.
Considering an isospin rotation with respect to the I2-axis another useful relation can be
found

exp(iπI2)|I, I3, Y 〉 = (−)I+I3|I,−I3, Y 〉 . (1.39)

Thus the isospin triplet |π〉 as well as the two isospin singlets |η8〉 and |η1〉 are eigenstates
of the G-parity operator defined by G = C exp(iπI2) with

G |π〉 = −|π〉 , G |η8〉 = |η8〉 , G |η1〉 = |η1〉 . (1.40)

1.3 Current algebra and low-energy theorems

The spontaneous breakdown of approximate chiral flavor symmetry (cf. sec. 1.1.1) does not
only require the occurrence of eight Nambu–Goldstone Bosons (the pions, kaons, and
the η), but also governs their dynamical properties. In particular, the analytic structure
of QCD at low energies is dominated by the pole contributions of these mesons. One way
to access the physics of the strong interaction at low energies is provided by statements of
current algebra [64–68]. The resulting low-energy theorems, first studied in the days when
the QCD Lagrangian was unknown, are exclusively based on the symmetry principles
of the hadronic currents in the limit where the involved four-momenta vanish.

According to Weinberg’s conjecture [69–71] the low-energy structure of QCD can
also be analyzed in terms of an effective field theory (EFT). The standard version of this
EFT, known as chiral perturbation theory (ChPT), exploits chiral flavor symmetry and
provides a systematic description of QCD at low energies [72, 73]. Hence, the effective
Lagrangian of ChPT contains the pseudoscalar octet fields as its basic degrees of free-
dom, which are organized in a series of operators suppressed by higher and higher powers
in the expansion of the light-quark masses and involved four-momenta. Moreover, the
fundamental symmetries that ChPT is based on dictate the structure of these operators,
but the strength of their couplings is a priori unconstrained and encoded in so-called low-
energy constants (LECs). Thus the low-energy theorems formulated in current algebra
can be understood as leading-order expressions in the chiral expansion.

1.3.1 PCAC hypothesis and the meson decay constant

We start by considering the two-point function generated by the time-ordered product of
two flavor octet axial-vector currents (1.8) acting on the QCD vacuum |0〉. Separating
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the pole contribution of the involved pseudoscalar meson state (1.36), the Lehmann–
Symanzik–Zimmermann (LSZ) reduction formula [74] yields

i

∫
d4x exp(ipx) 〈0|T{Aµa(x)Aνb (0)}|0〉 = − pµpν

p2 −M2
GB

F 2
0 δ

ab + ... , (1.41)

where T{...} refers to the time-ordering operator, MGB to the mass of the octet state and
p the four-momentum flow through the currents. Lorentz invariance determines the
structure of eq. (1.41) up to an unknown LEC denoted by F0. Moreover, the residue in
eq. (1.41) defines the non-vanishing matrix element of the axial-vector current between
the vacuum and an octet state

〈0|Aµa(x)|ϕb(p)〉 = i pµF0 δ
ab exp(−ipx) (1.42)

in terms of F0, which is therefore referred to as the meson decay constant in the chiral
limit.#11 Thus the octet axial-vector current acts as a so-called interpolating field for
the octet state |ϕa(p)〉. From eq. (1.42) follows directly that a non-zero value of F0 is a
necessary and sufficient criterion for spontaneous chiral flavor symmetry breaking (lattice
QCD determines F0 ∼ 86MeV [75]). Taking the divergence on both sides of eq. (1.42)
results in

〈0|∂µAµa(x)|ϕb(p)〉 = F0M
2
GB δ

ab exp(−ipx) . (1.43)

Since the octet axial-vector current given in eq. (1.11) is a conserved quantity in the chiral
limit, it becomes immediately clear that MGB is required to vanish (provided that F0 is
finite) and the octet states become massless in this limit. Accordingly, the octet axial-
vector currents reveal a kind of partial conservation related to the small masses of the
octet states, also known as partial conservation of the axial currents (PCAC) hypothesis.

1.3.2 The Gell-Mann–Oakes–Renner relation

In the next step we want to extend eq. (1.41) to

i

∫
d4x d4y exp(ip1x) exp(ip2y) 〈0|T{Aµa(x)Aνb (y)H(0)}|0〉 , (1.44)

by adding an external fieldH. Using the LSZ reduction formula and the PCAC hypothesis
we find the low-energy theorem

lim
p1,p2→0

〈ϕb(p2)|H(0)|ϕa(p1)〉 = − 1

F 2
0

〈0|[Qa
A, [Q

b
A,H(0)]]|0〉 , (1.45)

where Qa
A is the octet axial-charge operator defined by

Qa
A =

∫
d3xA0

a(0,x) . (1.46)

#11This identification follows from the fact that eq. (1.42) is responsible for the weak π+ → l+νl decay.
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Identifying the external field with the quark-mass term of the QCD Lagrangian (1.1),
the commutator on the right-hand side of eq. (1.45) simplifies to

[Qa
A, [Q

b
A, q̄Mq]] =

1

4
q̄{λa, {λb,M}}q . (1.47)

On the other hand, the Feynman–Hellmann theorem [76–79] relates the diagonal
elements (a = b) the on left-hand side of eq. (1.45) to the QCD mass eigenvalue M̂GB of
the respective octet state

mq
∂M̂2

GB

∂mq

= lim
p1,p2→0

〈ϕa(p2)|q̄Mq|ϕa(p1)〉 , (1.48)

where the derivative has to be taken with respect to the three light-quark masses mq.
Thus, the QCD mass squares#12 of the eight Nambu–Goldstone Bosons scale linearly
in mq according to

M̂2
GB = − 1

4F 2
0

〈0|q̄{λa, {λa,M}}q|0〉 , (1.49)

which is known as the Gell-Mann–Oakes–Renner (GMOR) relation [80]. Note that
this relation only holds up to corrections of order m2

q in the expansion of light-quark
masses.

Using the identification for the physical basis of the pseudoscalar octet states given in
eq. (1.36) the GMOR relation yields

M̂2
π = 2B0 m̂ , M̂2

K+ = B0 (mu +ms) , M̂2
K0 = B0 (md +ms) , M̂2

η =
2

3
B0 (m̂+ 2ms) ,

(1.50)
where B0 is another LEC related to the scalar quark condensate 〈q̄q〉 in the chiral limit

B0 = −〈q̄q〉
3F 2

0

, 〈q̄q〉 ≡ 3〈ūu〉 = 3〈d̄d〉 = 3〈s̄s〉 . (1.51)

Note that a non-zero value of B0 or 〈q̄q〉 is a sufficient, but in contrast to a non-vanishing
value of F0 not a necessary, condition for the spontaneous breakdown of chiral flavor
symmetry. Moreover, we find the octet states to become massless in the chiral limit,
which is in agreement with eq. (1.43).

In the derivation of eq. (1.49) we only considered the diagonal elements of eq. (1.47),
but actually we find one pair of non-vanishing off-diagonal elements

− 1

4F 2
0

〈0|q̄{λ3, {λ8,M}}q|0〉 = − 1

4F 2
0

〈0|q̄{λ8, {λ3,M}}q|0〉 =
1√
3
B0 (mu−md) , (1.52)

which generates an isospin breaking mixing of the flavorless triplet |ϕ3〉 and singlet |ϕ8〉
states. Note that this term will vanish in the isospin limit, i.e., for equal up- and down-
quark masses. However, in general we have to perform a rotation of the flavorless states
given by

|π0〉 = cos ε |ϕ3〉 − sin ε |ϕ8〉 , |η〉 = sin ε |ϕ3〉+ cos ε |ϕ8〉 , (1.53)
#12Any contribution to the masses of the Nambu–Goldstone Bosons has to be generated by terms

that break chiral flavor symmetry explicitly. Since all terms of the QCD Lagrangian (1.1) that involve
the gluon field respect chiral flavor symmetry, their contribution to M̂GB vanishes.
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in order to diagonalize of the π0η mass matrix. At leading order in mu −md the isospin-
breaking π0η mixing angle ε is found to be

ε =

√
3

4

mu −md

m̂−ms

. (1.54)

Moreover, the QCD mass eigenvalues of the flavorless states receive leading corrections

M̂2
π0 = 2B0 m̂+

8

3
B0 (m̂−ms) ε

2 , M̂2
η =

2

3
B0 (m̂+ 2ms)−

8

3
B0 (m̂−ms) ε

2 (1.55)

at order ε2. Accordingly, the GMOR relation states that pion triplet is mass degenerate
in QCD up to effects of second order in isospin breaking. Since these shifts are tiny, we
can safely ignore them in the following.

However, eq. (1.50) reveals another quantity that is sensitive to the up- and down-
quark mass difference. The degeneracy of the kaon doublets is already lifted at first order
in isospin breaking. More precisely, the QCD kaon mass splitting reads

M̂2
K+ − M̂2

K0 = B0 (mu −md) . (1.56)

Therefore one commonly defines the combined charged and neutral kaon mass, i.e., the
kaon mass in the isospin limit, according to

M̂2
K = B0 (m̂+ms) . (1.57)

Combining eqs. (1.50) and (1.57) we recover the Gell-Mann–Okubo mass formula
[36,81,82], which relates the QCD mass eigenvalues of the pseudoscalar octet states by

4M̂2
K = 3M̂2

η + M̂2
π . (1.58)

The light-quark masses appearing in the GMOR relations are fundamental parame-
ters of QCD, thus their values must be known for a complete understanding of the strong
interaction. However, the unknown LEC B0 in eq. (1.50) prevents us from a direct deter-
mination of the light-quark masses. But we can turn to an indirect method in which B0

cancels: originally proposed by Weinberg, we are can form two light-quark mass ratios
solely fixed by the QCD mass eigenvalues of the pseudoscalar octet [83–88]

mu

md

=
M̂2

K+ − M̂2
K0 + M̂2

π

M̂2
K0 − M̂2

K+ + M̂2
π

,
ms

md

=
M̂2

K+ + M̂2
K0 − M̂2

π

M̂2
K0 − M̂2

K+ + M̂2
π

. (1.59)

1.3.3 Dashen’s theorem

In the previous section we have studied the masses of the pseudoscalar octet states within
pure QCD. Since the light quarks carry different electric charges (1.28), chiral flavor
symmetry is also explicitly violated by electromagnetic interactions. Accordingly, virtual
photons are allowed to generate non-vanishing contributions to the self-energies of the
pseudoscalar octet states. Similarly to the derivation of the GMOR relation (1.49), we
want to study the leading electromagnetic effect that yields a non-vanishing contribution



28 Chapter 1 · Theory of the strong interaction

to the mass eigenvalues of the pseudoscalar octet states. Therefore we can identify the
external field in eq. (1.44) with

HQED(0) = e2

∫
d4xT{Jµ(x) Jν(0)}Dµν(x) , (1.60)

where Dµν denotes the photon propagator and the electromagnetic current Jµ of the
light-quark fields is defined by

Jµ = V 3
µ + 1√

3
V 8
µ . (1.61)

Here V 3
µ and V 8

µ refer to the flavor-diagonal octet vector currents (1.8).
Inserting HQED into eq. (1.45) the self-energies for the neutral states |π0〉, |K0〉, |K̄0〉,

and |η〉 will vanish, since any electrically neutral Qa
A commutes with Jµ. Moreover, there

is no contribution to an off-diagonal element that would be relevant for electromagnetic
π0η mixing. The question remains how self-energies of the charged pseudoscalar states
relate to each other. Since the positively charged states |π+〉 and |K+〉 belong to the same
U -spin multiplet (similarly for |π−〉 and |K−〉), eq. (1.29) demands their electromagnetic
self-energies to be the same

M2
π±

∣∣
QED = M2

K±

∣∣
QED =

2e2C0

F 2
0

. (1.62)

The electromagnetic LEC C0 can be expressed as an integral over the difference of the
vector and axial-vector spectral functions [89]. Accordingly, Dashen’s theorem [90] states
that in the chiral limit the QED mass splittings of the pion triplet and the kaon doublets
are equal

M2
K+ −M2

K0

∣∣
QED = M2

π+ −M2
π0

∣∣
QED . (1.63)

Note that this relation is valid up to corrections of order e2mq.
Using eqs. (1.50), (1.57), and (1.63) we are now able to remove the QED contributions

from the physical masses of the pseudoscalar octet and define the QCD mass eigenvalues

M̂2
π = M2

π0 , M̂2
K =

1

2

(
M2

K+ +M2
K0 −M2

π+ +M2
π0

)
, M̂2

η = M2
η , (1.64)

which are valid up to corrections of O(m2
q, ε

2, e2mq). Moreover, the Gell-Mann–Okubo
mass formula (1.65) explicitly written in terms of the physical masses reads

2M2
K+ + 2M2

K0 = 3M2
η + 2M2

π+ −M2
π0 , (1.65)

and is found to be fulfilled to approximately 7% accuracy in nature. Finally, we find the
improved light-quark mass ratios free of QED effects to be given by

mu

md

=
M2

K+ −M2
K0 −M2

π+ + 2M2
π0

M2
K0 −M2

K+ +M2
π+

∼ 0.56 ,
ms

md

=
M2

K+ +M2
K0 −M2

π+

M2
K0 −M2

K+ +M2
π+

∼ 20 .

(1.66)



Chapter 2

Theory of scattering processes

The renormalization procedure in QED dealing with divergences arising in the per-
turbative approach to quantum field theories has been established at the end of the
1940s [91–99]. However, the application of renormalization in QCD was not successful
until the 1970s [17–22]. In the meantime an alternative approach to strong interactions
was developed, namely the S-matrix theory [100–105]. Since these two concepts are not
in conflict with each other, both can be used to describe the phenomena of the strong
interaction. The link between the S-matrix and perturbation theory is given by the LSZ-
reduction formula [74]. In view of applications to scattering processes in the low-energy
regime, which is the problematic region of QCD (cf. ch. 1), dispersion theory based on
the concepts of the S-matrix approach can be seen as superior to perturbation theory,
cf. chs. 3 and 4. Historically, the S-matrix theory played also a role in the early days of
string theory [106].

The S-matrix can be considered as the scattering operator evolving an arbitrary initial
state in the infinite past into a final state in the infinite future regardless of the number
of interacting particles or precise kind of interaction. Accordingly the S-matrix elements
define the transition amplitudes of a given scattering process without the direct need of
quantum fields or a Lagrangian of the underlying quantum field theory, avoiding the
disadvantages of perturbation theory. For further details on the presented concepts of
scattering theory involving the S-matrix we recommend [107–110].

The discussion of this chapter is organized as follows: in sec. 2.1 we review the conse-
quences of unitarity, analyticity, and crossing symmetry for general S-matrix elements. A
detailed treatment of generic 2→ 2 scattering processes is presented in sec. 2.2. Finally,
we derive the elastic ππ and πη scattering amplitudes in sec. 2.3.

2.1 The S-matrix

In order to define transition amplitudes in this framework consistently, some basic prop-
erties need to be satisfied by the S-matrix [107]:

• the superposition principle of quantum mechanics rendering the S-matrix linear;

29
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• the requirements of special relativity demanding Lorentz invariance of the S-
matrix elements;

• the conservation of probability implying that the S-matrix is unitary ;

• the short-range character of the interaction leading to free and stable particles in
the initial and final asymptotic states ;#1

• and causality implemented in the S-matrix element as the real boundary of a
complex-valued analytic function.

The initial and final states can be specified in general by the momenta of particles
forming the state together with a set of discrete quantum numbers, e.g. spin or isospin.
To keep the notation as simple as possible, in the following incoming asymptotic states
will be labelled by |i; in〉 and outgoing asymptotic states by |f ; out〉 where i, f account
for the respective initial p1, p2, ... and final state q1, q2, ... four-momenta as well as possible
other quantum numbers α1, α2, ... and β1, β2, ... of the individual particles. These states
are postulated to satisfy the orthonormality and completeness relations given by

〈f ; in|i; in〉 = (2π)3 δα1β1 2p0
1 δ

(3)(q1 − p1) ... ,

∫∑
n

|n; in〉〈n; in| = 1 , (2.1)

for the incoming states and accordingly for the outgoing states. In eq. (2.1) the sum is
meant to run over all possible configurations of multi-particle states while carrying out
an integration over the respective momenta.

The Lorentz-invariant S-matrix element Sfi is defined as the probability amplitude
for the transition of an arbitrary initial state into an arbitrary final state given by

〈f ; out|i; in〉 = 〈f ; in|S|i; in〉 ≡ (2π)4 δ(4)(pi − qf )Sfi(p1, p2, ..., q1, q2, ...) . (2.2)

Due to Poincaré invariance the total four-momenta of the incoming pi and outgoing
states qf are conserved, which is assured by the delta function. The S-matrix in eq. (2.2)
evolves an incoming into an outgoing asymptotic state by

〈f ; in|S = 〈f ; out| . (2.3)

Given the fact that incoming and outgoing states form complete sets, the S-matrix cannot
be singular. Accordingly, its inverse must exist transforming an outgoing into an incoming
asymptotic state like

〈f ; out|S−1 = 〈f ; in| . (2.4)

Using the orthonormality and completeness relations (2.1) together with eqs. (2.3) and
(2.4) we find

S =

∫∑
n

|n; in〉〈n; out| , S−1 =

∫∑
n

|n; out〉〈n; in| , (2.5)

#1An extension of this framework to decay processes is addressed at the end of sec. 2.2.2.
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which implies that the S-matrix is unitary

S†S = SS† = 1 . (2.6)

Likewise to eqs. (2.3) and (2.4) the unitarity condition of the S-matrix can be used to
relate incoming and outgoing asymptotic states according to

〈f ; in|S = 〈f ; out| , S†|i; in〉 = |i; out〉 ,

〈f ; out|S† = 〈f ; in| , S|i; out〉 = |i; in〉 .
(2.7)

It follows directly that S-matrix elements expressed in terms of incoming or outgoing
states are equivalent

〈f ; in|S|i; in〉 = 〈f ; out|S|i; out〉 . (2.8)
Thus we are allowed to omit the labels for the incoming and outgoing states safely when-
ever calculating S-matrix elements. In the following we will account for this by labelling
the initial and final states simply by their momenta |p1, p2, ...〉 and |q1, q2, ...〉, respectively.

2.1.1 Consequences of unitarity and the scattering amplitude

Commonly the S-matrix is split into a trivial and non-trivial part

S = 1 + iT , (2.9)

where the latter part containing the T -matrix describes the interactions among the par-
ticles. According to eq. (2.9) the S-matrix element decomposed into

〈q1, q2, ...|S|p1, p2, ...〉 = 〈q1, q2, ...|p1, p2, ...〉+ 〈q1, q2, ...|iT |p1, p2, ...〉 , (2.10)

defines the Lorentz-invariant scattering amplitude given by the T -matrix element

〈q1, q2, ...|iT |p1, p2, ...〉 = i (2π)4 δ(4)(pi − qf ) Tfi(p1, p2, ..., q1, q2, ...) . (2.11)

A diagrammatic sketch of eq. (2.10) is depicted in fig. 2.1. Combining eq. (2.9) with
eq. (2.6) implies the unitarity condition for the T -matrix

i(T † − T ) = T †T = T T † . (2.12)

On the amplitude level, the left-hand side of the unitarity condition yields

〈q1, q2, ...|iT †|p1, p2, ...〉 − 〈q1, q2, ...|iT |p1, p2, ...〉

= i (2π)4 δ(4)(pi − qf )
(
T ∗if (q1, q2, ..., p1, p2, ...)− Tfi(p1, p2, ..., q1, q2, ...)

)
.
(2.13)

Inserting a complete set of intermediate states |k1, k2, ...〉 on the right-hand side of eq. (2.12)
we find#2

〈q1, q2, ...|T †T |p1, p2, ...〉 =

∫∑
n

(2π)4 δ(4)(qf − kn) (2π)4 δ(4)(pi − kn)

× T ∗nf (q1, q2, ..., k1, k2, ...) Tni(p1, p2, ..., k1, k2, ...) .

(2.14)

#2By convention we choose the first equality i(T † − T ) = T †T in eq. (2.12), taking the second one
i(T † − T ) = T T † would lead to a similar result.
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S
p1
p2

...

q1
q2

...
=

p1
p2

...

q1
q2

+ iT
p1
p2

...

q1
q2

...

Fig. 2.1: Diagrammatic sketch of the relation between S-matrix and T -matrix elements
as defined in eq. (2.10).

Using δ(4)(qf − kn) δ(4)(pi − kn) = δ(4)(pi − qf ) δ
(4)(pi − kn) under the integral, both

sides of the unitarity condition given in eqs. (2.13) and (2.14) contain one delta function
enforcing overall four-momentum conservation in the initial to final state system. In the
following these delta functions will be dropped, assuming four-momentum conservation
in the initial to final state system implicitly. Hence, the unitarity condition for a generic
scattering amplitude reads

i
(
T ∗if (q1, q2, ..., p1, p2, ...)− Tfi(p1, p2, ..., q1, q2, ...)

)
= (2π)4

∫∑
n

δ(4)(pi − kn) T ∗nf (q1, q2, ..., k1, k2, ...) Tni(p1, p2, ..., k1, k2, ...) .
(2.15)

2.1.2 Analyticity and singularities

In this section we want to discuss the consequences ofmaximal analyticity on the S-matrix.
A general mathematical rigorous proof of analyticity is still pending, but progress has been
made [107, 111–115] showing a close connection to causality. Therefore we will treat the
statement of analyticity as an axiom of scattering theory [107].

On the level of T -matrix elements the statement of maximal analyticity implies that
the scattering amplitude is holomorphic in all its continuous variables, i.e., the four-
momenta of the involved particles. Additionally, only two kinds of singularities are al-
lowed, namely branch cuts and poles, which can be related to intermediate physical states
of the scattering process. In order to study these singularities it is useful to define a
new set of continuous variables. Since overall momentum conservation is implied, not
all momenta in eq. (2.11) are allowed to be independent. Commonly, the square of the
total energy s in the center-of-mass system (CMS) is chosen as one of these new variables.
Further details on choosing an appropriate set of kinematical variables for the special case
of 2→ 2 scattering will be discussed in sec. 2.2.1.

In accordance to the statement above, the scattering amplitude will be holomorphic
in the variable s. Hence, s is treated to be complex from now on and the amplitude can
be analytically continued into the complex plane. Still for physically allowed scattering
processes, the variable s is bounded to be real and above the respective threshold of the
transition. The domain in which all kinematical variables of the amplitude take physically
allowed values is known as physical region. Since singularities arise from intermediate
physical states, the scattering amplitude will be defined for all values of s in the complex
plane except for the position of these singularities. Intermediate physical states can lead
to two different kinds of singularities: branch cuts appear for multi-particle intermediate
states while poles are connected to bound states, virtual states, or resonances.
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In general multi-particle states, i.e., states consisting of two or more individual par-
ticles, will form a continuum of s values where they are allowed to go on-shell starting
at the respective threshold and extending to infinity.#3 This continuum of singularities
manifests as branch cut reaching from the corresponding threshold (branch point) to in-
finity. Consequently, the scattering amplitude has to be a multi-valued function in the
complex s-plane. We will deal with this fact by introducing a Riemann surface on which
the amplitude can be interpreted as a single-valued function again. The branch cut then
determines where to cut the surface in different Riemann sheets.#4 When s is real and
above the threshold, the physical scattering region is reached by evaluating the amplitude
on the first or physical sheet at s+ iε and approaching the real axis from above ε→ 0+.
If a scattering process allows only for one multi-particle intermediate state, its amplitude
possesses two Riemann sheets. Hence, the physical region can also be accessed from the
second or unphysical sheet by approaching the real axis from below s − iε, again taking
the limit ε→ 0+. Any further opening of a multi-particle channel gives rise to additional
unphysical Riemann sheets.

Single-particle states associated with poles of the amplitude can be grouped into three
categories [116, 117]: a bound state pole will appear below threshold on the real axis of
the physical sheet at the value of s corresponding to its squared invariant mass. Similarly,
a virtual state appears as a pole on the real axis on unphysical sheets again at the value of
s corresponding to its squared invariant mass.#5 In contrast to these two types the poles
associated with a resonance will appear as a pole in the complex plane of an unphysical
sheet.#6 Its location determines the mass MR and width ΓR of the resonance according
to √

sR = MR − i
2
ΓR , (2.16)

where the square-root function is chosen such that MR > 0. As a result of the Schwarz
reflection principle (cf. sec. 3.1) these poles will always appear in complex conjugate pairs
in the complex s-plane, i.e., at sR and s∗R.

2.1.3 Crossing symmetry

Another useful property of the S-matrix resulting from analyticity is crossing symmetry
[110,118]. On the level of T -matrix elements it states the following: consider an arbitrary
scattering process where one of the incoming particles is denoted by φ(p) with four-
momentum p. The corresponding T -matrix element can be related to a similar process
where the incoming particle is replaced by its respective outgoing antiparticle φ̄(−p) of

#3Consider for simplicity a two-particle intermediate state: its squared center-of-mass energy will be
given by (

√
p2 +M2

1 +
√
p2 +M2

2 )2 where the Mi denote the masses of the particles and p = |pi| the
absolute value of the three momentum. Since all values p ≥ 0 are allowed physically, s can take values
from the threshold (M1 +M2)2 up to infinity.

#4Mathematically speaking the path of the branch cut is arbitrary, only the branch point (threshold)
is fixed. For convenience we will choose the branch cuts to run along the real axis.

#5As example consider proton-neutron scattering, which form an I = 1
2 isospin doublet. In nature one

bound state appears identified by the deuteron, an I = 0 isospin singlet state. The corresponding I = 1
isospin triplet state is not realized in nature, but can be interpreted as a virtual state.

#6A common example for such a state is the ρ(770) resonance appearing in P -wave ππ → ππ scattering.
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opposite four-momentum according to

T (φ(p) + ...→ ...) = T (...→ ...+ φ̄(−p)) . (2.17)

Here the dots are meant to represent the remaining incoming and outgoing particles.
In a more formal way the property in eq. (2.17) can be summarized as: scattering

amplitudes involving antiparticles are given by an analytic continuation in the respective
four-momenta of the corresponding scattering amplitude containing the associate parti-
cles. Note that the energy of each particle p0 is defined to be positive, hence the energy
of the antiparticle is continued to −p0 < 0. Therefore an antiparticle can be considered
as a particle moving backwards in time.

2.2 The scattering amplitude for 2→ 2 processes

As discussed in sec. 2.1.1, the T -matrix element defines the transition amplitude for a
generic scattering process. Now we want to study the properties of 2 → 2 scattering
amplitudes in more detail. Obviously, similar considerations can be made as well for
arbitrary other configurations [117].

Throughout this thesis two different kinds of 2→ 2 scattering processes will be inves-
tigated: transitions involving four pseudoscalar mesons according to the reaction

ϕa(p1)ϕb(p2)→ ϕc(p3)ϕd(p4) , (2.18)

and processes involving three pseudoscalar mesons and one vector meson given by

V a
λ(p1)ϕb(p2)→ ϕc(p3)ϕd(p4) . (2.19)

In these reactions ϕa(pi) denotes an arbitrary pseudoscalar meson of species a that carries
the four-momentum pi = (p0

i ,pi)
T . Likewise, a vector meson with helicity λ is denoted

by V a
λ(pi).

The Lorentz-invariant T -matrix element (2.11) for the former reaction (2.18) defines
the 2→ 2 scattering amplitude according to

〈ϕc(p3)ϕd(p4)|iT |ϕa(p1)ϕb(p2)〉 = i(2π)4 δ(4)(p1+p2−p3−p4) T cd,ab(p1, p2, p3, p4) , (2.20)

where the amplitude T cd,ab will only depend on scalar products of the involved four-
momenta. A sketch of the reaction in eq. (2.18) as well as two examples of possible
contributions to the T -matrix element are depicted in figs. 2.2 and 2.3.

Similarly, the T -matrix element for the latter reaction (2.19) is defined by

〈ϕc(p3)ϕd(p4)|iT |V a
λ(p1)ϕb(p2)〉 = i(2π)4 δ(4)(p1+p2−p3−p4) T cd,abλ (p1, p2, p3, p4) , (2.21)

where T cd,abλ is a so-called helicity amplitude. The scattering process V ϕ → ϕϕ contains
an odd number of pseudoscalars, i.e. the process is of odd intrinsic parity. Therefore
T cd,abλ can be further decomposed into a kinematical prefactor containing the polarization
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iT

ϕa(p1)

ϕb(p2)

ϕc(p3)

ϕd(p4)

Fig. 2.2: Diagrammatic sketch of the T -matrix element for a generic 2 → 2 scattering
process ϕa(p1)ϕb(p2)→ ϕc(p3)ϕd(p4) as defined in eq. (2.20).

Fig. 2.3: Two Feynman diagrams that may contribute to the T -matrix element in
eq. (2.20): the two-particle intermediate loop (left) and a resonance exchange (right).

vector nµλ of the vector meson and a scalar amplitude F cd,ab accounting for the dynamical
information of the scattering process [119–121]

T cd,abλ (p1, p2, p3, p4) = iεµναβ n
µ
λ(p1) pν2 p

α
3 p

β
4 F cd,ab(p1, p2, p3, p4) . (2.22)

Like the amplitude T cd,ab of ϕϕ→ ϕϕ scattering defined in eq. (2.20), the scalar amplitude
introduced in eq. (2.22) for V ϕ→ ϕϕ scattering will only depend on scalar products of the
involved four momenta. Consequently, the dependence of the T -matrix elements on the
kinematical variables for both types of processes can be treated completely analogously.

2.2.1 Kinematics

The following discussion of kinematics for generic 2→ 2 scattering processes will be based
on the example of the interaction of four pseudoscalar mesons as defined in eq. (2.18). We
want to stress that the presented framework will also hold for 2→ 2 scattering amplitudes
involving three pseudoscalar mesons and one vector meson as defined in eq. (2.19).

In general the four-momenta appearing in eq. (2.20) can be either timelike, lightlike,
or spacelike, thus in Minkowski space the scalar product (pi)

2 can take arbitrary real
values. Since each of the four particles will contribute one four-momentum, it seems the
amplitude in eq. (2.20) contains 16 kinematical degrees of freedom. However, not all of
them are independent: four degrees of freedom are fixed by the on-shell condition

p0
i =

√
p2
i +M2

i , (2.23)
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where Mi denotes the mass of the particle and the square root is chosen such that p0
i ≥ 0

holds. Moreover, another four degrees of freedom can be eliminated by overall energy-
momentum conservation of the process p1 + p2 = p3 + p4 fixing one of the four-momenta in
terms of the others. Finally, switching to CMS reveals that further six degrees of freedom
can be removed. In CMS the additional constraints (e.g. choose p1 = −p2 and p3 = −p4)
for the three-momenta hold. We know already that one of these momenta (e.g. take p4)
will be fixed by energy-momentum conservation. The constraints of the three-momenta in
the CMS imply that they have to be located in a plane. Accordingly, the absolute value of
one of the three vectors (e.g. |p1| or |p3|) together with the angle between them ∠(p1,p3)
will be the only independent kinematical variables. The CMS is an inertial frame and
thus connected to all other inertial frames by an appropriate Lorentz transformation,
thus the removal of these six degrees of freedom holds in all inertial frames.#7 Hence,
besides the masses of the respective particles any 2 → 2 scattering process will depend
on two independent kinematical variables only.

Conveniently, instead of the four-momenta a set of three Lorentz-invariant Man-
delstam variables is defined

s ≡ (p1 + p2)2 = (p3 + p4)2 ,

t ≡ (p1 − p3)2 = (p2 − p4)2 ,

u ≡ (p1 − p4)2 = (p2 − p3)2 .

(2.24)

Due to energy-momentum conservation it immediately follows that

3r ≡ s+ t+ u =
4∑
i=1

M2
i (2.25)

holds. As given by eq. (2.25) we note that only two Mandelstam variables defined in
eq. (2.24) are allowed to be independent, which is in agreement with the findings of the
previous paragraph. Hence, without any loss of generality the kinematical dependence of
the scattering amplitude given in eq. (2.20) can also be given in terms of Mandelstam
variables.

Especially when dealing with partial-wave amplitudes it turns out to be useful to define
a set of oneMandelstam variable and one scattering angle instead of twoMandelstam
variables to describe the kinematics. Since we have already seen that in the CMS the
constraints on the kinematical variables take a simple form, we will choose the three-
momenta to be p1 = −p2 and p3 = −p4. This allows us to rewrite eq. (2.24) in terms of
the energies p0

i , masses Mi, and three-momenta pi of the involved particles as well as the
scattering angle zs ≡ cos θs:

s = (p0
1 + p0

2)2 = (p0
3 + p0

4)2 ,

t = M2
1 +M2

3 − 2p0
1 p

0
3 + 2|p1| |p3| zs = M2

2 +M2
4 − 2p0

2 p
0
4 + 2|p2| |p4| zs ,

u = M2
1 +M2

4 − 2p0
1 p

0
4 − 2|p1| |p4| zs = M2

2 +M2
3 − 2p0

2 p
0
3 − 2|p2| |p3| zs ,

(2.26)

#7The same result can be obtained as a direct consequence of Lorentz invariance, since the group of
Lorentz transformations is six-dimensional.
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where we have chosen θs = ∠(p1,p3).#8 Equation (2.26) allows us to identify
√
s with

the total energy in the CMS of the considered transition (2.18) and accordingly we will
refer to it as the s-channel scattering process. Taking the on-shell constraint (2.23) into
account, we find expressions for the absolute values of the three-momenta in terms of s
and Mi given by

|p1,2|2 =
λ(s,M2

1 ,M
2
2 )

4s
, |p3,4|2 =

λ(s,M2
3 ,M

2
4 )

4s
. (2.27)

Here we introduce the Källén triangle function

λ(x, y, z) ≡ x2 +y2 +z2−2(xy+xz+yz) =
((√

y−√z
)2−x

)((√
y+
√
z
)2−x

)
, (2.28)

which stays unchanged under permutation of its arguments. Inserting eq. (2.27) into
eq. (2.23) yields for the energies

p0
1,2 =

s±∆12

2
√
s

, p0
3,4 =

s±∆34

2
√
s

, (2.29)

with ∆ij = M2
i −M2

j . Accordingly, the two remaining Mandelstam variables t and u
can be expressed in terms of s and zs as#9

t =
1

2

(
3r − s− ∆12 ∆34

s
+

√
λ(s,M2

1 ,M
2
2 )λ(s,M2

3 ,M
2
4 )

s
zs

)
,

u =
1

2

(
3r − s+

∆12 ∆34

s
−
√
λ(s,M2

1 ,M
2
2 )λ(s,M2

3 ,M
2
4 )

s
zs

)
,

(2.30)

and consequently the scattering angle will satisfy

zs =
s (t− u) + ∆12 ∆34√

λ(s,M2
1 ,M

2
2 )λ(s,M2

3 ,M
2
4 )
. (2.31)

Taking eqs. (2.26) and (2.30) into account it is straightforward to define the physically
allowed values of the Mandelstam variables for the considered scattering process (2.18).
Given that the particle energies (2.23) have to satisfy p0

i ≥Mi we conclude

s ≥ max
(
(M1 +M2)2, (M3 +M4)2

)
, (2.32)

thus the scattering process will be allowed as soon as s exceeds the respective produc-
tion thresholds of the incoming (M1 + M2)2 and outgoing pair of particles (M3 + M4)2.
Accordingly, we will refer to the right-hand side of eq. (2.32) as the s-channel scattering

#8The definition of θs is purely conventional, in general any possible pair of an incoming and an
outgoing three-momentum leads to a valid description of the system. Only the sign of θs might differ
when switching between conventions.

#9In this reduction the square root functions have to be treated with special care. Here and in the
following expressions involving the square root are chosen such that

√
x > 0 for x ∈ R+ is fulfilled, which

directly implies
√
x2 = |x|.
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threshold. For any given s that fulfils eq. (2.32) the limits of the other two Mandelstam
variables t and u can simply be found by imposing −1 ≤ zs ≤ 1 on the scattering angle
in eq. (2.30).

The amplitude reveals a simple symmetry: under simultaneous exchange of the mo-
menta p1 ↔ p2 as well as the quantum numbers carried by the particle ϕa with their
counterparts carried by particle ϕb the T -matrix elements have to satisfy

T cd,ab(s, t, u) = T cd,ba(s, u, t) . (2.33)

Since a similar interchange is also possible for the outgoing particles ϕc and ϕd, we note
that

T cd,ab(s, t, u) = T dc,ba(s, t, u) , (2.34)

imposed by the definitions of the Mandelstam variables in eq. (2.24).
So far we considered the s-channel process (2.18) with the CMS energy given by

√
s.

Crossing symmetry dictates that the reaction depicted in fig. 2.2 likewise describes the
scattering processes

ϕa(p1) ϕ̄c(−p3)→ ϕ̄b(−p2)ϕd(p4) , ϕa(p1) ϕ̄d(−p4)→ ϕ̄b(−p2)ϕc(p3) , (2.35)

in terms of the same T -matrix element as defined in eq. (2.20) when applying the correct
analytic continuations in the four-momenta, cf. sec. 2.1.3. According to eq. (2.24) these
continuations will yield

√
t as CMS energy in the former process, thus we will refer to it

as t-channel scattering. Since in the latter process of eq. (2.35) the CMS energy is given
by
√
u, it will be referred as u-channel scattering. In accordance to the discussion in the

previous paragraphs, we find for the t-channel Mandelstam variables

u =
1

2

(
3r − t+

∆13 ∆24

t
+

√
λ(t,M2

1 ,M
2
3 )λ(t,M2

2 ,M
2
4 )

t
zt

)
,

s =
1

2

(
3r − t− ∆13 ∆24

t
−
√
λ(t,M2

1 ,M
2
3 )λ(t,M2

2 ,M
2
4 )

t
zt

)
,

(2.36)

by interchanging the four-momenta p2 ↔ −p3. Likewise the t-channel scattering angle
will be defined by θt = ∠(p1,−p2) which yields

zt =
t (u− s)−∆13 ∆24√

λ(t,M2
1 ,M

2
3 )λ(t,M2

2 ,M
2
4 )
. (2.37)

By interchange of the four-momenta p2 ↔ −p4, the u-channel Mandelstam variables
are given by

s =
1

2

(
3r − u− ∆14 ∆23

u
+

√
λ(u,M2

1 ,M
2
4 )λ(u,M2

2 ,M
2
3 )

u
zu

)
,

t =
1

2

(
3r − u+

∆14 ∆23

u
−
√
λ(u,M2

1 ,M
2
4 )λ(u,M2

2 ,M
2
3 )

u
zu

)
,

(2.38)



2.2 The scattering amplitude for 2→ 2 processes 39

s

t
u

s = 0

t
=
0

u
=
0

Fig. 2.4: Mandelstam diagram for a 2 → 2 scattering process of particles with equal
mass M , revealing a 2π

3
threefold rotational symmetry. The height of the equilateral

triangle enclosed by the lines of s = 0, t = 0, and u = 0 is given by 3r = 4M2. The three
vectors for the s-, t-, and u-axes are pointing to the triangle center at s = t = u = r. Note
that the subthreshold triangle is represented by the dashed lines of s = 4M2, t = 4M2,
and u = 4M2. Starting at the top in clockwise direction, the physically allowed regions
of s-, t-, and u-channel scattering are denoted by the grey areas.

and the corresponding u-channel scattering angle θu = ∠(p1,p3) defines

zu =
u (s− t) + ∆14 ∆23√

λ(u,M2
1 ,M

2
4 )λ(u,M2

2 ,M
2
3 )
. (2.39)

In analogy to eq. (2.32) the physical regions of the t- and u-channel scattering processes
are limited by the conditions

t ≥ max
(
(M1 +M3)2, (M2 +M4)2

)
, u ≥ max

(
(M1 +M4)2, (M2 +M3)2

)
, (2.40)

for the respective CMS energies, together with the bound −1 ≤ zt,u ≤ 1 on the scattering
angles. Hence, eq. (2.40) defines the t- and u-channel scattering-thresholds, i.e., t and u
exceeding the respective production thresholds of the incoming and outgoing particles.

There is a simple way to represent the kinematics of a 2 → 2 scattering process in
the s-t-u-plane graphically. We start by constructing an equilateral triangle of height 3r,
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where each side of this triangle will represent one of the lines s = 0, t = 0, or u = 0, cf.
eq. (2.25). For any given point within the triangle the sum of perpendicular distances to
each side of the triangle will be equal to its height, hence this represents the constraint in
eq. (2.25). By equipping the perpendicular distance with negative sign to when pointing
to the outside of the triangle, we can extend these findings to any given point in the plane.
Hence, the three perpendicular vectors pointing towards the center of the triangle can be
identified with the s-, t-, and u-axes. An example of such a Mandelstam diagram is
depicted in fig. 2.4.

We are now prepared to consider the kinematics in the situation where one of the
particles is heavy enough to exceed the production threshold of the other three particles.
Choosing the configuration M1 > M2 +M3 +M4 the transition shown in fig. 2.2 will also
allow for a description of the 1→ 3 decay process

ϕa(p1)→ ϕ̄b(−p2)ϕc(p3)ϕd(p4) . (2.41)

As dictated by crossing symmetry the decay process will again be described by the T -
matrix element defined in eq. (2.20) when applying the appropriate analytic continuations
of the four-momenta. Clustering the reaction products into two-body subsystems will
allow for a description of the 1 → 3 decay process (three-body decay) in terms of the s-,
t-, and u-channel 2 → 2 scattering kinematics given by eqs. (2.30), (2.36), and (2.38).
Hence, the physical region of the three-body decay in terms of the CMS energies in the
two-body subsystems will be bounded by

(M3 +M4)2 ≤ s ≤ (M1 −M2)2 ,

(M2 +M4)2 ≤ t ≤ (M1 −M3)2 ,

(M2 +M3)2 ≤u ≤ (M1 −M4)2 ,

(2.42)

and the according scattering angles −1 ≤ zs,t,u ≤ 1. The thresholds on the CMS energies
can be extracted from eq. (2.24) by transforming to the rest frames of the respective two-
body subsystems. Accordingly, we will refer to the limits in eq. (2.42) as the s-, t-, and u-
channel decay- (lower bound) and pseudo-thresholds (upper bound). Eq. (2.42) constrains
all three Mandelstam variables to be positive within the physical decay region, thus in a
Mandelstam diagram this region has to be located within the equilateral triangle given
by the lines s = 0, t = 0, and u = 0, cf. fig. 2.4. Another useful representation of the
decay region is provided in a Dalitz plot [122–124], cf. app. B.

2.2.2 Unitarity condition

Returning to the unitarity condition of a general T -matrix element derived in sec. 2.1.1,
we are now equipped with the tools needed to further simplify eq. (2.15) for the special
case of 2 → 2 scattering. As discussed in sec. 2.2.1 the T -matrix element for such a
process is a function of the Mandelstam variables and obeys the principles of maximal
analyticity, cf. sec. 2.1.2. Hence, in the s-channel above the scattering threshold the
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following identities for the T -matrix elements will hold [125]:

Tfi(p1, p2, p3, p4) ≡ lim
ε→0+

Tfi(s+ iε, t, u) , T ∗if (p3, p4, p1, p2) ≡ lim
ε→0+

Tfi(s− iε, t, u) ,

(2.43)
where the amplitude for fixed initial and final state particle content is now holomorphic in
all its continuous kinematical variables as required by analyticity. Equation (2.43) directly
implies that the left-hand side of eq. (2.15) can be identified with the discontinuity of Tfi
along the real s-axis above the scattering threshold

Tfi(p1, p2, p3, p4)− T ∗if (p3, p4, p1, p2)

= lim
ε→0+

[
Tfi(s+ iε, t, u)− Tfi(s− iε, t, u)

]
≡ discs Tfi(s, t, u) .

(2.44)

Accordingly, for a 2→ 2 scattering process eq. (2.15) simplifies to

discs Tfi(s, t, u) = i (2π)4

∫∑
n

δ(4)(p1 + p2 − k1 − k2) T ∗nf (p3, p4, k1, k2) Tni(p1, p2, k1, k2) ,

(2.45)
where the allowed intermediate states are already implicitly restricted to two-particle
states.#10 Thus, every two-particle intermediate state that is allowed to go on-shell will
contribute with a discontinuity in Tfi along the real s-axis above its production threshold,
cf. sec. 2.1.2. The branch cuts induced by eq. (2.45) are therefore referred to as unitarity
or right-hand cuts.

Invariance under time reversal implies Tfi = Tif for the T -matrix elements of 2 → 2
scattering and accordingly

lim
ε→0+

Tfi(s+ iε, t, u) = lim
ε→0+

T ∗fi(s− iε, t, u) = lim
ε→0+

Tfi((s− iε)∗, t, u) . (2.46)

Hence, the amplitude obeys the Schwarz reflection principle (3.1) and the discontinuity
is purely imaginary

discs Tfi(s, t, u) = 2i lim
ε→0+

Im Tfi(s+ iε, t, u) , (2.47)

leading to the unitarity condition along the s-channel right-hand cut

lim
ε→0+

Im Tfi(s+ iε, t, u) = 8π4

∫∑
n

δ(4)(p1 + p2 − k1 − k2)

× T ∗nf (q1, q2, k1, k2) Tni(p1, p2, k1, k2) .

(2.48)

In the following we will call a 2 → 2 scattering process elastic if the particle content in
the initial-, intermediate-, and final-states coincides. Therefore, when speaking of elastic
unitarity we will consider only one two-particle set in the sum over the intermediate states
of the unitarity condition (2.48).

#10Of course the general unitarity condition for 2 → 2 scattering will allow for any multi-particle
intermediate state in accordance with the considered underlying interaction. But throughout this thesis
we will focus on two-particle intermediate states only.
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We want to stress that that the whole derivation of eq. (2.48) relies on the assump-
tion that the initial and final states can be represented as asymptotic states, in order to
define the S-matrix elements properly, cf. sec. 2.1.1. Since an unstable particle decaying
into three others cannot be treated as an asymptotic state,#11 scattering processes that
allow for the possibility of a 1 → 3 decay are by now explicitly excluded in the deriva-
tion of eq. (2.48). However, a solution to this problem exists by making use of analytic
continuation: consider a world in which the unstable particle is too light to decay. The
scattering amplitude involving this particle in such a world can be defined properly and
eq. (2.48) will hold. Now we will treat the scattering amplitude to be also analytic in
the particle’s squared mass M2, hence the amplitude can be analytically continued in M2

to a physical world in which the decay is kinematically allowed. Due to the additional
cut structure in M2 opening at the three-particle production threshold, the analytically
continued amplitude spoils the Schwarz reflection principle. Thus eq. (2.48) is no longer
valid, however the unitarity condition in eq. (2.45) involving the discontinuity along the
s-channel right-hand cut will hold [11,126,127].

2.3 Elastic ππ and πη scattering processes
Final-state rescattering of ππ and πη subsystems will play a key role in the description of
the three-body decays studied throughout this thesis. Therefore, a detailed understanding
of ππ → ππ and πη → πη scattering processes will be of major relevance in the later
discussion. In this section we want to present a general treatment of elastic ππ and πη
scattering in the isospin limit#12 and derive a decomposition of the respective amplitudes
into partial waves of fixed isospin and angular momentum. According to the constraints
of analyticity and unitarity (cf. sec. 2.2.2), along the upper rim of the right-hand cut these
partial waves can be expressed in terms of the corresponding scattering phase shifts only.
These real-valued functions encode the universal information on the ππ and πη scattering
processes of given isospin and angular momentum.

2.3.1 The ππ scattering amplitude

In sec. 1.2.2 we have deduced that the pions form a triplet of the third isospin component
I3 with total isospin of I = 1. Accordingly the three pion flavors of the physical basis can
be represented uniquely as states of |I, I3〉 given by

|π+〉 = |1, 1〉 , |π0〉 = |1, 0〉 , |π−〉 = |1,−1〉 . (2.49)

In the following it will be convenient to work with the pion state of the Hermitian basis.
These states |πi〉 can be related to the physical ones by

|π+〉 = − 1√
2
|π1 + iπ2〉 , |π0〉 = |π3〉 , |π−〉 =

1√
2
|π1 − iπ2〉 . (2.50)

#11Note that in principle there is an exception to this statement, if the lifetime of the decaying particle
is much larger than the timescale of the considered type of interaction [109].

#12We will treat the pion triplet as mass degenerated Mπ ≡M2
π+ = M2

π0 .
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It follows directly that the states |π1〉 and |π2〉 of the Hermitian basis lack a defined
third isospin component.

Out of the three physical one-pion states nine different two-pion states can be con-
structed. Their Clebsch-Gordan decomposition [117] in terms of isospin states is given
by#13

|π±π±〉 = |2,±2〉 , |π±π∓〉 =
1√
6
|2, 0〉 ± 1√

2
|1, 0〉+

1√
3
|0, 0〉 ,

|π±π0〉 =
1√
2

(
|2,±1〉 ± |1,±1〉

)
, |π0π±〉 =

1√
2

(
|2,±1〉 ∓ |1,±1〉

)
,

|π0π0〉 =

√
2

3
|2, 0〉 − 1√

3
|0, 0〉 .

(2.51)

We note that only two of these states have a defined total isospin component. However
all two-pion combinations are eigenstates of the third isospin component, using the fact
that I3 is an additive quantum number. Inverting eq. (2.51) leads to the decomposition
in terms of definite isospin multiplets according to

|2,±2〉 = |π±π±〉 , |2,±1〉 =
1√
2
|π±π0 + π0π±〉 ,

|2, 0〉 =
1√
6
|π+π− + π−π+ + 2π0π0〉 ,

|1,±1〉 = ± 1√
2
|π±π0 − π0π±〉, |1, 0〉 =

1√
2
|π+π− − π−π+〉 ,

|0, 0〉 =
1√
3
|π+π− + π−π+ − π0π0〉 ,

(2.52)

and similarly we find by inserting eq. (2.50) into eq. (2.52) the decomposition in terms of
the Hermitian states

|2,±2〉 =
1

2
|π1π1 ± iπ1π2 ± iπ2π1 − π2π2〉 , |2,±1〉 = ∓1

2
|π1π3 + π3π1 ± iπ2π3 ± iπ3π2〉 ,

|2, 0〉 = − 1√
6
|π1π1 + π2π2 − 2π3π3〉 ,

|1,±1〉 = −1

2
|π1π3 − π3π1 ± iπ2π3 ∓ iπ3π2〉, |1, 0〉 =

i√
2
|π1π2 − π2π1〉 ,

|0, 0〉 = − 1√
3
|π1π1 + π2π2 + π3π3〉 .

(2.53)
Thus a general two-pion system can form an I = 0, 1, 2 isospin state. Since the pions
are Bosons, they have to obey Bose symmetry whereby the isospin wave function is

#13Here, the Condon-Shortley phase convention is applied [128].
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required to be even (odd) under the exchange of the pions if the angular momentum
quantum number ` is even (odd). It follows immediately that the I = 0 and I = 2 states
require even `, while the I = 1 states are connected to an odd value of `. Additionally,
we note that all two-pion isospin states I = 0, 1, 2 are even under G-parity (1.40).

We want to investigate the behaviour of the pion states under isospin symmetry a bit
more formally: an arbitrary one-pion state transforms under the D1 representation of the
SU(2) isospin algebra according to

|πi〉 7→ Ri
j |πj〉 , (2.54)

with R ∈ SO(3) being an orthogonal 3 × 3 matrix with unit determinant describing a
proper rotation in the three-dimensional isospin space [129]. The two-pion state has to
transform like a rank-two tensor under the D1 ⊗D1 representation of SU(2) given by

|πiπj〉 7→ Ri
k R

j
l |πkπl〉 . (2.55)

Since the isospin rotation operation performed in eqs. (2.54) and (2.55) only changes the
third isospin component without affecting the total isospin, the isospin states of fixed
I have to transform among themselves, cf. eq. (2.53). Therefore, the space of two-pion
states contains three subspaces that are closed under isospin rotations. From eq. (2.53)
it follows directly that the I = 0 state forms a singlet, the I = 1 states a triplet, and
the I = 2 states a quintet of isospin, which transform under SU(2) according to the
D1 ⊗D1 = D0 ⊕D1 ⊕D2 representations, respectively.

According to eq. (2.20) the T -matrix element for the scattering process πi(p1) πj(p2)→
πk(p3) πl(p4) will be defined by

〈πk(p3) πl(p4)|iT |πi(p1) πj(p2)〉 = i (2π)4 δ(4)(p1 + p2 − p3 − p4) T kl,ijππ (s, t, u) . (2.56)

The Mandelstam variables in the s-channel of this scattering process will be given by

s = 4(p2 +M2
π) , t = −2p2(1− zs) , u = −2p2(1 + zs) , (2.57)

in the CMS as discussed in sec. 2.2.1, where p = |p1| denotes the absolute value of the
CMS three-momentum and zs = cos θs defines the s-channel scattering angle.

Since the function T kl,ijππ has to obey isospin symmetry, a further reduction in terms
of one single scalar amplitude can be obtained [68, 130]. We note that T kl,ijππ has to stay
invariant under SU(2) isospin transformations (2.54)

T kl,ijππ = Rk
cR

l
dR

i
aR

j
b T cd,abππ . (2.58)

Now we define row vectors of R according to wc = Rk
c, xd = Rl

d, ya = Ri
a, and zb = Rj

b

and define the function f in order to rewrite the right-hand side of eq. (2.58)

f(w,x,y, z) = wc xd ya zb T cd,abππ . (2.59)

Performing a second isospin rotation on f yields

f(w,x,y, z) = wc xd ya zbR
c
pR

d
q R

a
mR

b
n T pq,mnππ

= (RT w)p (RT x)q (RT y)m (RT z)n T pq,mnππ

= f(RT w, RT x, RT y, RT z) ,

(2.60)
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which imposes a rotation by RT of the arguments in f . Again using the fact that f has
to stay invariant under isospin rotations we can conclude: f is only allowed to depend
on scalar products of the introduced vectors and each term has to contain all of them
linearly. This leads to the decomposition

f(w,x,y, z) = (w·x)(y·z)A(s, t, u)+(w·y)(x·z)B(s, t, u)+(w·z)(y·x) C(s, t, u) , (2.61)

where the functions A, B, and C can be interpreted as the s-, t-, and u-channel scattering
amplitudes, respectively. Using the characteristic properties of the rotation matrices R,
which simplifies the scalar products according to

(w · x)(y · z) = δkl δij , (w · y)(x · z) = δjl δik , (w · z)(y · x) = δjk δil , (2.62)

reduces the expression in eq. (2.61) to

T kl,ijππ (s, t, u) = δkl δij A(s, t, u) + δjl δik B(s, t, u) + δjk δil C(s, t, u) . (2.63)

As the last step in the reduction of T kl,ijππ we want to show that the three functions A,
B, and C can be related to each other using the invariance of the process under crossing
symmetry, cf. sec. 2.1.3. The simultaneous exchange of i ↔ j and p1 ↔ p2 (or t ↔ u)
yields

A(s, t, u) = A(s, u, t) , B(s, t, u) = C(s, u, t) . (2.64)

Similarly, we find

A(s, t, u) = C(u, t, s) , B(s, t, u) = B(u, t, s) , (2.65)

for i↔ k and p1 ↔ −p3 (or s↔ u) as well as

A(s, t, u) = B(t, s, u) , C(s, t, u) = C(t, s, u) , (2.66)

when exchanging i ↔ l and p1 ↔ −p4 (or s ↔ t). Hence, the symmetry in the argu-
ments of the three functions obtained in eqs. (2.64), (2.65), and (2.66) allow us to rewrite
eq. (2.61) in terms of one single function only:

T kl,ijππ (s, t, u) = δkl δij A(s, t, u) + δjl δikA(t, u, s) + δjk δilA(u, s, t) , (2.67)

which by convention will be the s-channel scattering amplitude.
In eq. (2.53) we have seen that the two-pion states can be decomposed into the total

isospin combinations of I = 0, 1, 2. By defining amplitudes of definite total isospin

J〈πk(p3)πl(p4)|iT |πi(p1) πj(p2)〉I = i (2π)4 δ(4)(p1 + p2 − p3 − p4) δIJ Pkl,ijI T ππI (s, t, u) ,
(2.68)

and corresponding isospin projection operators Pkl,ijI we can decompose the scattering
amplitude T kl,ijππ in terms of

T kl,ijππ (s, t, u) = Pkl,ij0 T ππ0 (s, t, u) + Pkl,ij1 T ππ1 (s, t, u) + Pkl,ij2 T ππ2 (s, t, u) . (2.69)
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The isospin projection operators can be constructed exploiting the transformation prop-
erties of the two-pion states under isospin rotations (2.55). We know that the I = 0
singlet state has to transform like a scalar, thus the corresponding projector needs to be
fully symmetric in the isospin indices. The I = 1 triplet states must transform antisym-
metrically under isospin rotation, hence their projector needs to be odd under exchange
of i↔ j or k ↔ l. On the other hand the I = 2 quintet states are again symmetric under
the transformation, thus the projector has to be even under i ↔ j or k ↔ l. Removing
the scalar part from the I = 2 component and adjusting the normalizations properly, the
isospin projection operators are given by

Pkl,ij0 =
1

3
δkl δij , Pkl,ij1 =

1

2

(
δik δjl − δil δjk

)
, Pkl,ij2 =

1

2

(
δik δjl + δil δjk

)
− 1

3
δkl δij ,

(2.70)
and obey the projector identities

Pkl,abI Pab,ijJ = δIJ Pkl,ijI , Pkl,ijI = P ij,klI ,
∑
I

Pkl,ijI = δik δjl . (2.71)

Comparing eqs. (2.67) and (2.69) we find

T ππ0 (s, t, u) = 3A(s, t, u) +A(t, u, s) +A(u, s, t) ,

T ππ1 (s, t, u) = A(t, u, s)−A(u, s, t) ,

T ππ2 (s, t, u) = A(t, u, s) +A(u, s, t) .

(2.72)

Now we want to make use of the unitarity condition of the scattering amplitude as
discussed in sec. 2.2.2. We will treat the ππ scattering to be elastic, since the first physical
allowed intermediate state#14 contributing will be four pions. Thus strictly speaking
the elastic approximation holds only for CMS energies s < 16M2

π below the four-pion
threshold.#15 In this low energy region the intermediate states are given by |πa(k1) πb(k2)〉
and the integral sum in eq. (2.48) can be replaced by∫∑

n

7→ 1

2

∑
a,b

∫
d3k1

(2π)3 2k0
1

d3k2

(2π)3 2k0
2

, (2.73)

where the sum over the intermediate states a, b runs from 1 to 3 and the symmetry factor
in front compensates for the double counting of identical states. Making use of isospin
projection operators (2.70) the unitarity condition (2.48) can be given directly in terms
of the definite isospin amplitudes by

Im T ππI (s, zs) =
1

16π2

∫
d3k1

2k0
1

d3k2

2k0
2

δ(4)(p1 + p2 − k1 − k2)

× T ππI (p1, p2, k1, k2) (T ππI )∗(k1, k2, p3, p4) ,

(2.74)

#14As long we restrict ourselves to G-parity conserving strong processes, only even multiplets of pions
are allowed to contribute as intermediate states in ππ → ππ, cf. ch. 1.

#15In practice it turns out that the four-pion-state contribution can be safely neglected even up to
s & 1GeV2 due to the soft opening of the four-particle phase space, cf. [120,131]. Actually, KK̄ systems
for energies above s > 4M2

K will be the dominant inelastic effects in I = 0 S-wave ππ → ππ scattering
[132–134].
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where the left-hand side is implicitly understood to be evaluated for s+ iε in the limit of
ε→ 0+ along the right-hand cut. Choosing the CMS fixes the three-momenta p1 = −p2

and accordingly p3 = −p4 allows us to split the delta function into δ(
√
s−k0

1−k0
2) δ(3)(k1+

k2). The evaluation of the first integration over k2 will fix the momenta k1 = −k2 and
energies k0

1 = k0
2, thus we define k ≡ |k1| =

√
(k0

1)2 −M2
π . Switching now to spherical

coordinates in the remaining integral with d3k1 = dΩ′s dk k2 = dΩ′s dk0
1 k

0
1 k the unitarity

condition in eq. (2.74) simplifies to

Im T ππI (s, zs) =
1

64π2

∫
dΩ′s dk0

1

k0
1

√
(k0

1)2 −M2
π δ(
√
s− 2k0

1) T ππI (s, z′s) (T ππI )∗(s, z′′s )

=
1

128π2
σπ(s)

∫
dΩ′s T ππI (s, z′s) (T ππI )∗(s, z′′s ) ,

(2.75)
where σπ(s) ≡

√
1− 4M2

π/s defines the two-pion phase-space function. The introduced
scattering angles zs, z′s, and z′′s are defined in the initial-to-final ∠(p1,p3), the initial-
to-intermediate ∠(p1,k1), and the intermediate-to-final ∠(k1,p3) systems, respectively.
Accordingly, the solid angle dΩ′s is defined in the initial to intermediate system. Expanding
both sides of eq. (2.75) in terms of partial waves

T ππI (s, zs) = 32π
∞∑
`=0

(2`+ 1)P`(zs) t
ππ
I` (s) , (2.76)

and using the properties of the Legendre polynomials P` (cf. app. A.2) we arrive at the
unitarity condition of the `-th partial-wave amplitude

lim
ε→0+

Im tππI` (s+ iε) = lim
ε→0+

σπ(s) |tππI` (s+ iε)|2 , (2.77)

valid for real values of s > 4M2
π . In other words, the partial-wave amplitude along the

upper rim of the right-hand cut has to be of the form (cf. app. A.3)

lim
ε→0+

tππI` (s+ iε) = σ−1
π (s) sin δππI` (s) exp

[
iδππI` (s)

]
, (2.78)

where the real-valued functions δππI` define the ππ scattering phase-shifts of isospin I
and angular momentum `. As already stated earlier, I and ` have to be both even
or odd in order to fulfil the constraints of Bose symmetry on the T -matrix element.
This property is now encoded in the behaviour of the isospin-projection operators and
Legendre polynomials, which map the system under simultaneous interchange of the
pion isospin indices i↔ j and momenta p1 ↔ p2 (or zs 7→ −zs) to

Pkl,ijI 7→ (−)I Pkl,ij , P`(zs) 7→ (−)` P`(zs) . (2.79)

Truncating the sum in eq. (2.76) after S- and P -waves we obtain the isospin amplitudes of
elastic ππ scattering in the isospin limit along the upper rim of the unitarity cut according
to

lim
ε→0+

T ππ0 (s+ iε, zs) = 32π σ−1
π (s) sin δππ00 (s) exp

[
iδππ00 (s)

]
,

lim
ε→0+

T ππ1 (s+ iε, zs) = 96π zs σ
−1
π (s) sin δππ11 (s) exp

[
iδππ11 (s)

]
,

lim
ε→0+

T ππ2 (s+ iε, zs) = 32π σ−1
π (s) sin δππ20 (s) exp

[
iδππ20 (s)

]
.

(2.80)
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2.3.2 The πη scattering amplitude

In an analogous fashion to sec. 2.3.1 we want to decompose the scattering amplitude for
the πη → πη process. The η can be identified as the I = 0 isospin singlet counterpart of
the pion I = 1 isospin triplet, cf. sec. 1.2.2. Hence, in terms of a |I, I3〉 state it can be
represented by

|η〉 = |0, 0〉 . (2.81)

Accordingly, three different two-particle states of total isospin I = 1 can be formed out
of a πη pair

|π+η〉 = |1, 1〉 , |π0η〉 = |1, 0〉 , |π−η〉 = |1,−1〉 , (2.82)

which can be identified by their third isospin component I3 uniquely. Considering the
G-parity transformation properties (1.40) of the pions and the η, we note that the |πη〉
states will be odd under G.

The T -matrix element (2.20) for the πi(p1) η(p2)→ πj(p3) η(p4) scattering process will
be defined by

〈πj(p3) η(p4)|iT |πi(p1) η(p2)〉 = i(2π)4 δ(4)(p1 + p2 − p3 − p4) T ijπη(t, zt) , (2.83)

where the Mandelstam variables are chosen according to

s = (p1 − p4)2 , t = (p1 + p2)2 u = (p1 − p3)2 , (2.84)

and zt denotes the scattering angle in the t-channel, cf. sec. 2.2.1. Since the T -matrix
element obeys isospin symmetry, we have to ensure identical pion-isospin indices for the
considered initial and final states. Therefore, the scattering amplitude is given in terms
of one single I = 1 isospin amplitude#16

T ijπη(t, zt) = δij T πη1 (t, zt) . (2.85)

Under the assumption of elastic scattering,#17 only |πa(k1) η(k2)〉 are allowed to con-
tribute as intermediate states in the unitarity condition for the scattering amplitude, cf.
sec. 2.2.2. Replacing the integral sum in eq. (2.48) by∫∑

n

7→
∑
a

∫
d3k1

(2π)3 2k0
1

d3k2

(2π)3 2k0
2

, (2.86)

#16The t- and u-channel both equally define the πη → πη scattering amplitude while the s-channel
amplitude can be identified with ηη → ππ scattering, which is not of interest here. Nevertheless we want
to point out that the s-channel, where isospin conservation forces the |πiπj〉 state to be of total isospin
I = 0, gives rise to inelastic contributions in the unitarity conditions of ππ → ππ and ηη → ηη.

#17Under the assumption of isospin symmetry two-pion states are not allowed to contribute as interme-
diate states in this process. This can be seen easily considering the opposite transformation properties
under G-parity of the respective two-particle systems. Hence, the first reasonable contribution in the
πη S-wave will come from KK̄-systems for energies t > 4M2

K [135, 136]. For the higher partial waves
the first inelastic contribution to πη scattering will stem from three-pion states above the threshold
t > 9M2

π [137–139]. It is worth to mention that this transition is of odd intrinsic parity and therefore
governed by the chiral anomaly of QCD [140,141].
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where the sum over the isospin index a runs from 1 to 3, unitarity demands the isospin
amplitude to fulfil

Im T πη1 (t, zt) =
1

8π2

∫
d3k1

2k0
1

d3k2

2k0
2

δ(4)(p1 + p2 − k1 − k2)

× T πη1 (p1, p2, k1, k2) (T πη1 )∗(k1, k2, p3, p4) ,

(2.87)

where the left-hand side is implicitly understood to be evaluated for t + iε in the limit
of ε → 0+ along the right-hand cut. The integrals over the intermediate-state momenta
will be treated in a similar manner as discussed in sec. 2.3.1 for the ππ scattering am-
plitude. Choosing the center-of-mass frame p1 = −p2 and p3 = −p4 allows us to split
the four-dimensional delta function. The three-dimensional part of the delta function will
fix k1 = −k2 when performing the first integral over k2. Accordingly, the leftover one-
dimensional delta function demands that k0

1 =
√
k2 +M2

π and k0
2 =

√
k2 +M2

η , where
k2 ≡ |k1|2 = λ(t,M2

π ,M
2
η )/(4t) as given in eq. (2.27) yields the correct πη phase-space

factor when integrating over d3k1 = dΩ′t dk k2. This simplifies eq. (2.87) to

Im T πη1 (t, zt) =
1

64π2

√
λ(t,M2

π ,M
2
η )

t2

∫
dΩ′t T πη1 (t, z′t) (T πη1 )∗(t, z′′t ) , (2.88)

where the scattering angles zt, z′t, and z′′t are chosen in the initial to final ∠(p1,p3), the
initial-to-intermediate ∠(p1,k1), and the intermediate-to-final state systems ∠(k1,p3),
respectively. The solid angle dΩ′t is defined analogously in the initial-to-intermediate
system. We define the partial wave decomposition of the isospin amplitude according to

T πη1 (t, zt) = 16π
∞∑
`=0

(2`+ 1)P`(zt) t
πη
1` (t) , (2.89)

and using the properties of the Legendre polynomials P` (cf. app. A.2) directly reduces
eq. (2.88) to the unitarity condition for the partial-wave amplitudes given by

lim
ε→0+

Im tπη1` (t+ iε) = lim
ε→0+

√
λ(t,M2

π ,M
2
η )

t2
∣∣tπη1` (t+ iε)

∣∣2 , (2.90)

valid along the upper rim of the unitarity cut for real values of t > (Mπ +Mη)
2. Hence, in

terms of the real-valued πη scattering phase-shifts δπη1` elastic unitarity states (cf. app. A.3)

lim
ε→0+

tπη1` (t+ iε) =

√
t2

λ(t,M2
π ,M

2
η )

sin δπη1` (t) exp
[
iδπη1` (t)

]
. (2.91)

Restricting ourselves to S- and P -wave contributions only, the isospin amplitude for elas-
tic πη scattering in the isospin limit along the upper rim of the unitarity cut can be
decomposed into

lim
ε→0+

T πη1 (t+ iε, zt) = 16π

√
t2

λ(t,M2
π ,M

2
η )

(
sin δπη10 (t) exp

[
iδπη10 (t)

]
+ 3zt sin δπη11 (t) exp

[
iδπη11 (t)

])
.

(2.92)
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Part II

Introduction to dispersion relations
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Chapter 3

Dispersion relations for functions with
one cut

As discussed in ch. 2, S-matrix elements share certain powerful analytic constraints on
which dispersion theory is founded. Exploiting basic theorems of complex analysis, disper-
sion relations connect the discontinuity of a function along its branch cuts to the function
itself via an integral equation, and therefore provide an analytic continuation into the
entire complex plane. In this chapter we focus exclusively on these mathematical aspects
of dispersion theory. We want to introduce these fundamental concepts on a couple of
examples for complex-valued single-variable functions f possessing only a right-hand cut.
An application of this framework to physical 2→ 2 scattering amplitudes will be discussed
in ch. 4.

This chapter is structured as follows: the spectral representation of f is discussed in
sec. 3.1. In sec. 3.2 we introduce the Omnès function Ω and the Omnès representation
of f in terms of this function. A matching scheme for a change between the two repre-
sentations is described in sec. 3.3. In sec. 3.4 the concept of basis functions is introduced.
Finally, a comment on the possibility of allowing for polynomial shifts in the Omnès
representation of f is given in sec. 3.5. For further details on general aspects of dispersion
theory we suggest [44, 107, 108, 111, 142, 143]. A highly recommended comprehensive and
mathematically rigorous formulation of the subjects of this chapter can be found in [144].

3.1 Spectral representation of dispersion relations
In order to introduce the mathematical concepts of dispersion relations we start with a
basic example. Consider a complex-valued function f(s) that fulfills the following prop-
erties:

• f is a holomorphic function in the cut complex plane C\B+ excluding a branch cut
B+ = [s0,∞) along the positive real axis starting at some value s0 > 0;

• f takes real values for any s ∈ R \ B+;

• f(s) � sn with n ∈ R, i.e., f will not grow faster than some power n of s when
taking the limit of |s| → ∞.

53
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Fig. 3.1: Sketch of the imaginary part of f(s) = −√s0 − s in the complex s-plane in
arbitrary units. The real and imaginary s-axes are pointing from the left to the right and
from the front to the back, respectively. The branch point s0 > 0 is marked by the black
dot and the thick black line marks s + iε for s ∈ R in the limit of ε → 0+. Evaluating
Im f(s) for complex values of s yield the function on the first (red) and second Riemann
sheet (blue), which are smoothly connected along the branch cut.

A function that obeys these properties satisfies the Schwarz reflection principle

f ∗(s) = f(s∗), (3.1)

for any given s ∈ C \ B+. This principle allows us directly to relate the discontinuity of
f to its imaginary part

disc f(s) = lim
ε→0+

[
f(s+ iε)− f(s− iε)

]
= 2i lim

ε→0+
Im f(s+ iε) , (3.2)

since f(s− iε) = f ∗(s+ iε) holds for s ∈ R according to eq. (3.1).
We want to give a simple example of a function fulfilling the properties discussed in

the previous paragraph. Consider the equation s = w2 which has two solutions w = ±√s.
Hence, the square root is a multivalued function yielding two distinct Riemann sheets
representing the two solutions ±√s. Since we have chosen

√
s > 0 for s > 0 in ch. 2,

a valid example will be given by f(s) = −√s0 − s. By definition f will represent the
function fI evaluated on the first Riemann sheet, while fII(s) =

√
s0 − s will yield f on

the second Riemann sheet. A sketch of this example function in the complex s-plane is
given in fig. 3.1.

3.1.1 Unsubtracted spectral representation

According to Cauchy’s integral formula any given function f holomorphic in the complex
s-plane enclosed by the contour C can be represented by

f(s) =
1

2πi

∮
C
dx

f(x)

x− s , (3.3)

where the integration path has to be taken in a counter-clockwise sense. Given that f
possesses a right-hand cut as defined in sec. 3.1, a valid integration path that avoids this
branch cut needs to be defined. Apart from this limitation the contour is allowed to be
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•
s0

s
×

Rex

Imx

Fig. 3.2: Choices of the integration contour (blue) in the complex x-plane. The dashed
path depicts a closed circular contour of Cauchy’s integral formula (3.3), while the solid
path represents the enlarged contour enclosing the cut complex plane C \B+. Starting at
s0 > 0, the branch cut (red) extends to infinity along the positive real axis. The integration
contour will avoid this cut by running along the upper and lower rims according to the
prescription x± iε in the limit ε→ 0+.

chosen freely as long as the point s is encircled, a proper choice of such a path is shown
in fig. 3.2. This allows us to split eq. (3.3) into three contributions

f(s) =
1

2πi
lim
ε→0+

∫ ∞
s0

dx
f(x+ iε)

x− s − 1

2πi
lim
ε→0+

∫ ∞
s0

dx
f(x− iε)
x− s +

1

2πi

∫
γA

dx
f(x)

x− s

=
1

π
lim
ε→0+

∫ ∞
s0

dx
Im f(x+ iε)

x− s +
1

2πi

∫
γA

dx
f(x)

x− s .
(3.4)

According to eq. (3.2) the numerators of the former two integrals can be identified with
the imaginary part of f evaluated on the upper rim of the cut. The latter part in eq. (3.4)
contains the contribution of the integral along the complex arc parameterized by the path
γA of radius Λ2. In order to account for any given value of s ∈ C\B+ this radius Λ2 needs
to be sent to infinity.

We want to study the behavior of the second integral of eq. (3.4) in more detail. Along
the complex arc the path γA can be parameterized by a circular segment

γA(φ) = c+ Λ2 exp(iφ) (3.5)

of radius Λ2 > 0 and origin c ∈ C \ B+. The integral along the path γA is then given by∫
γA

dxh(x) =

∫ φ(x−iε)

φ(x+iε)

dφh
(
γA(φ)

)
γ′A(φ) = i

∫ φ(x−iε)

φ(x+iε)

dφΛ2 h
(
γA(φ)

)
exp(iφ) , (3.6)

where we introduced the function h(x) = f(x)/(x − s). Provided that h asymptotically
falls off fast enough, i.e., h(s) � xn−1 with n < 0 when taking the limit |x| → ∞, the
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contribution along an infinite arc will vanish:

lim
Λ2→∞

∫
γA

dxh(x) = 0 . (3.7)

Accordingly, the asymptotic behavior of f(s) � sn needs to be restricted likewise. Since
in such a case the integrand in the first term on the second line of eq. (3.4) vanishes
asymptotically faster than s−1, the integral along the branch cut will converge. This
allows us directly to relate the function f with n < 0 for any s ∈ C \ B+ to

f(s) =
1

π
lim
ε→0+

∫ ∞
s0

dx
Im f(x+ iε)

x− s , (3.8)

which is a dispersion relation for f or, to be more precise, this special case is known as
the unsubtracted spectral representation of f .#1 Note that eq. (3.8) provides an analytic
continuation of f into the complex plane determined entirely by the information on its
imaginary part along the upper rim of the branch cut.

3.1.2 Subtracted spectral representation

We would like to allow for a less restrictive asymptotic behavior of the function f according
to f(s) � sn with n ≥ 0 in the limit of |s| → ∞. Therefore, we introduce a new
function [145]

g(x) ≡ f(x)

Qm(x) (x− s) , (3.9)

where Qm is a polynomial of degree m = bnc+ 1 with real coefficients sj < s0 of the form

Qm(x) = (x− s1) · (x− s2) · ... · (x− sm) . (3.10)

Accordingly, the function g is meromorphic on C \ B+, i.e., it exhibits isolated poles at
the zeros of the denominator in eq. (3.9). As a more generalized version of eq. (3.3) we
consider the residue theorem∑

j

res(g, ζj) =
1

2πi

∮
C
dx

f(x)

Qm(x)(x− s) , (3.11)

where the residue of g at an isolated pole ζj of degree k is given by

res(g, ζj) =
1

(k − 1)!
lim
x→ζj

dk−1

dxk−1

[
(x− ζj)k g(x)

]
. (3.12)

The integration contour will be chosen as depicted in fig. 3.3, such that all singularities
apart from the branch cut are enclosed by the path γC.

#1Dispersion relations are commonly stated in the form of an integral over the imaginary part of f .
However, we want to stress that the derivation will also hold for functions that do not obey the Schwarz
reflection principle. In such a case the imaginary part of f in eq. (3.8) needs to be replaced by the
discontinuity of f .
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•
s0

s
×

s1×
s2×

sm×
Rex

Imx

Fig. 3.3: Choices of the integration contour (blue) in the complex x-plane. The dashed
paths depict closed circular contours around the isolated poles s, s1, s2, ..., sm in the residue
theorem (eq. (3.11)), while the solid path represents the enlarged contour enclosing C\B+

running along the upper and lower rim of the cut according to the prescription x± iε in
the limit of ε→ 0+. Starting at s0 > 0, the branch cut (red) extends to infinity along the
positive real axis.

In order to solve the left-hand side of eq. (3.11) we assume that all poles are of
degree one, i.e. the denominator of eq. (3.9) exhibits m+1 separated zeros at s, s1, ..., sm.
Therefore we can apply eq. (3.12) with k = 1 on the left-hand side of eq. (3.11) resulting
in ∑

j

res(g, ζj) =
f(s)

Qm(s)
+

f(s1)

(s1 − s) · (s1 − s2) · ... · (s1 − sm)

+
f(s2)

(s2 − s) · (s2 − s1) · ... · (s2 − sm)
+ ...

=
1

Qm(s)

[
(f(s)− (s− s2) · ... · (s− sm)

(s1 − s2) · ... · (s1 − sm)
f(s1)

− (s− s1) · ... · (s− sm)

(s2 − s1) · ... · (s2 − sm)
f(s2) + ...

]
=

1

Qm(s)

[
f(s)− Pm−1(s)

]
,

(3.13)

where Pm−1 is a polynomial of degree m − 1. We want to stress that this is only one
possible choice on the location of s1, s2, ..., sm. In fact any other arrangement of the zeros
in Qm will yield a similar result as given in eq. (3.13), although the coefficients of Pm−1

might depend on the exact choice of s1, s2, ..., sm.
In accordance with eq. (3.4) the right-hand side of eq. (3.11) can be rewritten as

1

2πi

∮
γ

dx
f(x)

Qm(x)(x− s) =
1

π
lim
ε→0+

∫ ∞
s0

dx
Im f(x+ iε)

Qm(x) (x− s) +
1

2πi

∫
|x|=Λ2

dx
f(x)

Qm(x) (x− s) ,

(3.14)
where we used the fact that Qm a real-valued polynomial along the real axis and free of
any cuts. Taking the limit Λ2 →∞ we note that the integrand falls off fast enough such
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that the former integral in eq. (3.14) along the branch cut will converge while the latter
integral along the complex arc vanishes (3.7). Hence, for any s ∈ C \ B+ the function f
is given by the dispersion relation

f(s) = Pm−1(s) +
Qm(s)

π
lim
ε→0+

∫ ∞
s0

dx
Im f(x+ iε)

Qm(x) (x− s) , (3.15)

which is the so-called m-times subtracted spectral representation of f .#2 In contrast to
eq. (3.8), f is not entirely determined by its imaginary part along the upper rim of the
branch cut, since eq. (3.15) contains an additional subtraction polynomial Pm−1 that needs
to be fixed. The coefficients of Pm−1 corresponding to the subtraction points sj are called
subtraction constants. As f obeys the Schwarz reflection principle it follows immediately
that the subtraction constants have to be real, cf. eq. (3.13).

By comparing eqs. (3.8) and (3.15) we note that the minimal number of subtractions
m needed in order to obtain convergence of the dispersive integral is given by

m =

{
bnc+ 1 , if n ≥ 0

0 , if n < 0
, (3.16)

for any function f possessing a branch cut along s ∈ B+ that grows asymptotically like
f(s) � sn with n ∈ R as |s| → ∞.#3 Of course it is always possible to over-subtract the
dispersion relation in eq. (3.15) with m′ > m according to

f(s) = Pm′−1(s) +
sk

π
lim
ε→0+

∫ ∞
s0

dx
Im f(x+ iε)

xm′ (x− s) , (3.17)

where for the sake of simplicity all subtraction points are set to zero. Accordingly, the
asymptotic behavior of the polynomials Pm−1 and Pm′−1 differs drastically, as they are of
different degree in s. Since both eqs. (3.15) and (3.17) describe the same function there
needs to be a relation between the subtraction polynomial and the dispersive integral.

In order to study this in more detail we choose m′ = m+ 1, thus the relation

sm

xm (x− s) =
sm

xm+1
+

sm+1

xm+1 (x− s) (3.18)

allows us to rewrite the m-times subtracted spectral representation according to

f(s) = Pm−1(s) +
sm

π
lim
ε→0+

∫ ∞
s0

dx
Im f(x+ iε)

xm (x− s)

= Pm−1(s) +
sm

π
lim
ε→0+

∫ ∞
s0

dx
Im f(x+ iε)

xm+1
+
sm+1

π
lim
ε→0+

∫ ∞
s0

dx
Im f(x+ iε)

xm+1 (x− s) .
(3.19)

#2Like for the unsubtracted case, the derivation of the dispersion relation in eq. (3.15) will also hold for
a more general case where f does not fulfil the Schwarz reflection principle. In such a case the imaginary
part in eq. (3.15) needs to be replaced by the discontinuity of f and the subtraction polynomial is allowed
to contain complex-valued subtraction constants.

#3We want to stress that eq. (3.15) even applies to functions without a cut. In such a case the dispersion
integral will be zero, thus f is an entire function given in terms of the subtraction polynomial of degree
n ∈ N0.
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A comparison of eqs. (3.17) and (3.19) yields

Pm(s) = Pm−1(s) +
sm

π
lim
ε→0+

∫ ∞
s0

dx
Im f(x+ iε)

xm+1
, (3.20)

where the remaining integral is independent of s. Thus it can be absorbed in the polyno-
mial. By repeated use of eq. (3.18) we are able to generalize the relation in eq. (3.20) for
m′ > m to

Pm′−1(s) = Pm−1(s) +
m′−m−1∑
j=0

sm+j

π
lim
ε→0+

∫ ∞
s0

dx
Im f(x+ iε)

xm+j+1
, (3.21)

which is a so-called sum rule.
Hence, the interplay between the subtraction polynomial and the remainder of the

dispersion integral is balanced in such a way that the asymptotic behavior of f remains
unchanged if the number of subtractions is increased. More precisely, the additional
subtraction constants that appear when raising the number of subtractions are directly
fixed by eq. (3.21). Thus, an improvement of the convergence behavior of the dispersion
integral (3.15) is only possible when violating the sum rule at the cost of introducing
additional subtraction constants and a less restrictive asymptotic behavior of f .

3.2 The Omnès function
In addition to the functions considered so far (cf. sec. 3.1), it turns out to be useful to
investigate the properties of a more special type of functions. This new type of complex-
valued function Ω will obey the following additional requirements:

• log Ω is a holomorphic function in the cut complex plane C \ B+, i.e. Ω does not
possess any zeros;

• Ω is normalized according to the condition Ω(0) = 1;

• arg Ω is bounded along the branch cut B+, thus

lim
ε→0+

arg Ω(s+ iε) ≡ δ(s) � kπ (3.22)

with k ∈ R will hold when taking the limit s→ +∞.#4

Since the logarithm of Ω can be expressed as

log Ω(s) = log
∣∣Ω(s)

∣∣+ i arg Ω(s) , (3.23)

we note that the discontinuity can be related to

disc
[

log Ω(s)
]

= 2i lim
ε→0+

Im
[

log Ω(s+ iε)
]

= 2i δ(s) . (3.24)

#4Obviously, identifying arg Ω(s+iε) with a real-valued function δ(s) along the right-hand cut does not
happen without an ulterior motive. Its physical importance arises when setting it equal to a scattering
phase shift, cf. sec. 2.3.
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Accordingly, we are allowed cast eq. (3.24) into a once-subtracted spectral representation
(3.15) given by

log Ω(s) = c+
s

π

∫ ∞
s0

dx
δ(x)

x (x− s) , (3.25)

where the subtraction polynomial reduces to a constant c and the subtraction point is
chosen to be s1 = 0. Given that the normalization condition Ω(0) = 1 needs to be fulfilled,
the subtraction constant c is fixed to zero. Thus Ω is represented by the dispersive integral

Ω(s) = exp

[
s

π

∫ ∞
s0

dx
δ(x)

x (x− s)

]
. (3.26)

Any function Ω that meets these requirements is called Omnès function [146, 147]. We
note that Ω is fixed as soon as its argument along the upper rim of the cut is known.
In case that the discontinuity vanishes, i.e., δ(x) = 0 for all x ∈ R, eq. (3.26) directly
requires Ω(s) = 1 for all s ∈ C.

We already know the asymptotic behavior of arg Ω along the cut. However, we should
also investigate the behavior of Ω in the limit of |s| → ∞. Given that the argument of
Ω approaches a constant asymptotically, we introduce a cutoff Λ2 above which we will
assume δ(x) = kπ. Thus the integral in eq. (3.26) can be split into two parts:

s

π

∫ ∞
s0

dx
δ(x)

x (x− s) = − 1

π

∫ Λ2

s0

dx
δ(x)

x
+ s k

∫ ∞
Λ2

dx
1

x (x− s) , (3.27)

where we already imposed the limit |s| → ∞ under the former integral. Accordingly, this
part is independent of s and yields a constant only. The latter integral can be solved
analytically resulting in

s k

∫ ∞
Λ2

dx
1

x (x− s) = k log
Λ2

Λ2 − s . (3.28)

Inserting eqs. (3.27) and (3.28) into eq. (3.26) we conclude that the Omnès function
behaves asymptotically like

Ω(s) � s−k , (3.29)

taking the limit |s| → ∞.
Next to the normalization condition Ω(0) = 1, it might be also of interest to study

the next coefficients of the Taylor expansion around s = 0 given by

Ω(s) = 1 + Ω′(0) s+
1

2
Ω′′(0) s2 +

1

6
Ω′′′(0) s3 +O(s4) . (3.30)

Given that Ω possesses a branch cut this expansion will only be valid for |s| < s0. The
first three derivatives of the Omnès function at zero are given by

Ω′(0) = ω1 , Ω′′(0) = 2ω2 + ω2
1 , Ω′′′(0) = 6(ω3 + ω2 ω1) + ω3

1 , (3.31)

where we introduced the function

ωj =
1

π

∫ ∞
s0

dx
δ(x)

xj+1
. (3.32)
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3.2.1 Homogeneous Omnès problem

Now that we have introduced the Omnès function Ω, we would like to return to a more
general type of function f . Therefore we soften the constraints on f and demand the
following properties:

• f is holomorphic on C \ B+;

• f obeys the Schwarz reflection principle;

• f(s) � sn with n ∈ R when taking the limit |s| → ∞;

• arg f is bounded along the branch cut B+, accordingly

lim
ε→0+

arg f(s+ iε) ≡ δ(s) � kπ (3.33)

with k ∈ R will hold when taking the limit s→ +∞.

The problem of finding a general solution for the function f with the given requirements
is known as the (homogeneous) Omnès problem.

However, it is possible to find a solution to this problem. Since f satisfies the Schwarz
reflection principle, its discontinuity can be represented in the form (cf. app. A.3)

disc f(s) = 2i lim
ε→0+

Im f(s+ iε)

= 2i lim
ε→0+

f(s+ iε) sin δ(s) exp
[
− iδ(s)

]
.

(3.34)

Casting eq. (3.34) into an m-times subtracted spectral representation (3.15) results in

f(s) = Pm−1(s) +
Qm(s)

π
lim
ε→0+

∫ ∞
s0

dx
f(x+ iε) sin δ(x) exp

[
− iδ(x)

]
Qm(x) (x− s) , (3.35)

where the minimal number of subtractions m needed is given by eq. (3.16). The function
f appears on both sides of eq. (3.35), thus the dispersive representation can be seen as
integral equation that determines f .

In addition to eq. (3.35) an alternative way of solving the homogeneous Omnès prob-
lem exists. We consider the function

h(s) ≡ f(s)

Ω(s)
, (3.36)

where we made use of the fact that there exists an Omnès function Ω for which

lim
ε→0+

arg f(s+ iε) = lim
ε→0+

arg Ω(s+ iε) (3.37)

holds along the branch cut, cf. sec. 3.2. Given that both f and Ω are holomorphic on C\B+

and Ω is free of any zeros, the function h introduced in eq. (3.36) will be holomorphic on
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C\B+ as well. In addition both functions f and Ω fulfil the Schwarz reflection principle,
accordingly the discontinuity of h will be given by

disch(s) = 2i lim
ε→0+

Imh(s+ iε) = 2i lim
ε→0+

Im
[
f(s+ iε)

Ω(s+ iε)

]

= 2i lim
ε→0+

Im
[ ∣∣f(s+ iε)

∣∣ exp
(
i arg f(s+ iε)

)∣∣Ω(s+ iε)
∣∣ exp

(
i arg Ω(s+ iε)

)] = 2i lim
ε→0+

Im
[ ∣∣f(s+ iε)

∣∣∣∣Ω(s+ iε)
∣∣
]

= 0 .

(3.38)
Thus h is free of any branch cuts, i.e. it must be an entire function. Since the asymptotic
behavior of f(s) � sn and Ω(s) � s−k is known, h has to be a polynomial of degree bn+kc
and the solution of the homogeneous Omnès problem given by

f(s) = Pbn+kc(s) Ω(s) . (3.39)

This solution is called Omnès representation of f . We note that the coefficients of the
polynomial Pbn+kc are required to be real, otherwise f would spoil the Schwarz reflection
principle. In addition we want to stress that the polynomials appearing in eqs. (3.35) and
(3.39) might differ, cf. sec. 3.3.

3.2.2 Inhomogeneous Omnès problem

Given the discontinuity of f in the homogeneous Omnès problem (3.34), we would like
to relax the constraints on f to the inhomogeneous Omnès problem. Therefore we will
consider a function f with the following requirements:

• f is holomorphic on C \ B+;

• f(s) � sn with n ∈ R when taking the limit |s| → ∞;

• the discontinuity of f along the cut is given by

disc f(s) = 2i lim
ε→0+

[
f(s+ iε) + f̂(s)

]
sin δ(s) exp

[
iδ(s)

]
; (3.40)

• the real-valued function δ is bounded on B+, i.e. δ(s) � kπ with k ∈ R for s→ +∞;

• the hat function f̂ might take complex values and the discontinuity equation of f
implies f̂(s) � sn for s→ +∞.

We note that neither arg f(s+ iε) = δ(s) in the limit of ε→ 0+ along the branch cut will
hold, nor the Schwarz reflection principle needs to be satisfied. Casting eq. (3.40) into
an m-times subtracted spectral representation (3.15) yields

f(s) = Pm−1(s) +
Qm(s)

π
lim
ε→0+

∫ ∞
s0

dx
[
f(x+ iε) + f̂(x)

]
sin δ(x) exp

[
− iδ(x)

]
Qm(x) (x− s) , (3.41)

where the appropriate minimal number of subtractions m is given by eq. (3.16).
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In accordance to sec. 3.2.1 we want to study the function h defined in eq. (3.36) again.
Still h will be holomorphic on C \B+, as f and Ω are holomorphic on C \B+ and Ω does
not possess any zeros. Its discontinuity along B+ is given by

disch(s) = lim
ε→0+

[
f(s+ iε)

Ω(s+ iε)
− f(s− iε)

Ω(s− iε)

]
= lim

ε→0+

[
f(s+ iε)

Ω(s+ iε)
− f(s− iε)

Ω∗(s+ iε)

]

= lim
ε→0+

[
f(s+ iε) exp

[
− iδ(s)

]
− f(s− iε) exp

[
iδ(s)

]∣∣Ω(s+ iε)
∣∣

]

= lim
ε→0+

[[
f(s+ iε)− f(s− iε)

]
exp

[
iδ(s)

]
− 2i f(s+ iε) sin δ(s)∣∣Ω(s+ iε)
∣∣

]

= 2i lim
ε→0+

f̂(s) sin δ(s)∣∣Ω(s+ iε)
∣∣ ,

(3.42)

where we employed the fact that Ω satisfies the Schwarz reflection principle, although
it might be spoiled by f . Note that in the last equality we made use of eq. (3.40).
Accordingly, the discontinuity of h (3.42) will only depend on f̂ and δ, but not on f
itself. Equipped with the asymptotic behavior of h(s) � sn+k, we are allowed to cast the
discontinuity of h into an m-times subtracted spectral representation (3.15) given by

h(s) = Pm−1(s) +
Qm(s)

π
lim
ε→0+

∫ ∞
s0

dx
f̂(x) sin δ(x)∣∣Ω(x+ iε)

∣∣Qm(x) (x− s) . (3.43)

Again, the minimal number of subtractions m needed for convergence of the dispersion
integral is given by eq. (3.16). Solving eq. (3.43) for f we find its Omnès representation

f(s) = Ω(s)

[
Pm−1(s) +

Qm(s)

π
lim
ε→0+

∫ ∞
s0

dx
f̂(x) sin δ(x)∣∣Ω(x+ iε)

∣∣Qm(x) (x− s)

]
. (3.44)

In fact eq. (3.44) is the most general solution of the inhomogeneous Omnès problem.
This can easily be proven by considering a function v being a solution to the homogeneous
Omnès problem (3.39) with v(s) � sn for |s| → ∞ and arg v(s+ iε) = δ(s) along the cut.
According to eqs. (3.34) and (3.40) the discontinuity of f + v will be given by

disc
[
f(s) + v(s)

]
= 2i lim

ε→0+

[
f(s+ iε) + v(s+ iε) + f̂(s)

]
sin δ(s) exp

[
− iδ(s)

]
. (3.45)

It follows immediately that f+v will be a solution of the inhomogeneous Omnès problem
if f is one. The polynomials in eqs. (3.39) and (3.44) are both of degree m− 1 = bn+ kc,
thus the sum of them will be of the same degree. Consequently, the representation given
in eq. (3.44) is indeed the general solution of the inhomogeneous Omnès problem.

Since this representation will be of crucial importance in the following chapters, we
want to study its properties in more detail. First of all, the minimal number of subtrac-
tions m needed to obtain convergence of the dispersion integral (3.44) will be given by

m =

{
bn+ kc+ 1 , if n+ k ≥ 0

0 , if n+ k < 0
, (3.46)
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given that the asymptotic behavior on f̂ and δ is assumed to be f̂(s) � sn and δ(s) � kπ.
A comparison of eqs. (3.39) and (3.44) reveals that the inhomogeneous solution reduces
to the homogeneous solution if the hat function f̂ is set to zero and arg f(s + iε) equals
δ(s) along the cut. Moreover, if f̂ is real-valued and the subtraction constants as well as
the subtraction points are real, f will satisfy the Schwarz reflection principle. On the
other hand, as soon as f̂ develops a non-vanishing imaginary part, f immediately spoils
the Schwarz reflection principle.

Equation (3.44) might lead to a misunderstanding in the special case of k ∈ Z. In
this scenario the asymptotic behavior of the function δ dictates δ(s) = kπ for s � Λ2.
Accordingly the sine function in the discontinuity will vanish, which introduces a cutoff
in dispersion integral at Λ2. It might be tempting to reduce the number of subtractions
in such a case, since the convergence behavior of the dispersive integral is now controlled
by the cutoff. Nevertheless, an approach with less subtractions than required by the
asymptotics will not yield a legitimate solution. Recalling the derivation of the spectral
representation this becomes immediately clear, since the minimal number of subtractions
are needed as well to get rid of the contributions from the complex arc, cf. sec. 3.1.2.

In accordance to the discussion in sec. 3.1.2, we are allowed to over-subtract theOmnès
representation. Taking m′ > m subtractions yields the sum rule

Pm′−1(s) = Pm−1(s) +
m′−m−1∑
j=0

sm+j

π
lim
ε→0+

∫ ∞
s0

dx
f̂(x) sin δ(x)∣∣Ω(x+ iε)

∣∣xm+j+1
, (3.47)

where for the sake of simplicity all subtraction points are chosen to be zero. The derivation
proceeds in the same way as discussed for eq. (3.21).

Finally when considering theOmnès representation (3.44) as an integral equation that
fixes f , it turns out to be superior to the spectral representation (3.41). This becomes clear
when studying the following example with n ≥ 0 and k ≥ 0: the Omnès representation
needs a minimal number of m = bn+kc+1 subtractions, thus the subtraction polynomial
contains m subtraction constants as degrees of freedom. On the other hand, the spectral
representation of the same function f needs bnc + 1 subtractions and therefore exhibits
bnc+ 1 subtraction constants as free parameters. Accordingly, in the case of k < 1 both
representations yield an equal number of parameters. However, if e.g. k = 1 the Omnès
representation will contain one parameter more than the spectral representation, i.e., solv-
ing eq. (3.41) cannot be unique and it will allow for a one-parameter family of solutions.
Given that theOmnès representation is the general solution of the inhomogeneousOmnès
problem, the solution of eq. (3.44) has to be unique. Accordingly, eq. (3.44) will always
be used when dealing with inhomogeneous Omnès problems [120,121,127,148–156].

3.3 Matching of dispersive representations

In sec. 3.2.2 we discussed two different dispersive representations for the function f . The
considered function will behave asymptotically like f(s) � sn with n > 0. Accordingly,
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the function in the spectral (3.41) and the Omnès representation (3.44) is given by

f(s) =
m−1∑
j=0

αj s
j +

sm

π
lim
ε→0+

∫ ∞
s0

dx
[
f(x+ iε) + f̂(x)

]
sin δ(x) exp

[
− iδ(x)

]
xm (x− s)

= Ω(s)

[
m′−1∑
j=0

βj s
j +

sm
′

π
lim
ε→0+

∫ ∞
s0

dx
f̂(x) sin δ(x)∣∣Ω(x+ iε)

∣∣xm′ (x− s)
]
,

(3.48)

where the minimal numbers of subtractions needed to achieve convergence of the dis-
persion integrals are given by m = bnc + 1 and m′ = bn + kc + 1. The subtraction
polynomials are given explicitly in terms of the subtraction constants αj and βj. For the
sake of simplicity all subtraction points are equal to zero in both representations.

We want to relate the subtraction constants of the two different representations given
in eq. (3.48). Considering the specific case of k ≥ 0 with m′ ≥ bnc + 1 subtractions,
the Taylor expansions of both representations will not yield any contribution from the
dispersive integrals up to order bnc. Performing an expansion around s = 0, which will
converge as long as |s| < s0, allows us directly to match the first bnc + 1 subtraction
constants of both representations. In the Omnès representation Ω is expanded according
to eq. (3.30). As an example with fixed n = 3, we find

α0 = β0 , α2 = β2 + 2β1Ω′(0) + β0 Ω′(0) ,

α1 = β1 + β0 Ω′′(0) , α3 = β3 + 3β2 Ω′(0) + 3β1 Ω′′(0) + β0 Ω′′′(0) .
(3.49)

3.4 Basis functions
We want to consider the solution of the inhomogeneous Omnès problem in a more re-
stricted system. Therefore the following requirements will hold:

• f1, f2 are solutions of the inhomogeneous Omnès problem;

• f̂ will depend linearly on f , thus f̂(s) = f̂ [f ](s) will satisfy

f̂ [λ1f1 + λ2f2](s) = λ1 f̂ [f1](s) + λ2 f̂ [f2](s) , (3.50)

where λ1, λ2 ∈ C denote some arbitrary constants.

To illustrate the impact of this additional constraint on the inhomogeneous Omnès prob-
lem we decompose f and f̂ in the following form:

f(s) =
m−1∑
j

λj fj(s) , f̂ [f ](s) =
m−1∑
j

λj f̂j(s) , (3.51)

where f̂j will be a short hand notation for f̂ [fj] and m denotes the number of subtractions
needed in the Omnès representation of f . It is always possible to find such a decomposi-
tion so that without loss of generality eq. (3.44) holds for the individual fj, given that f is
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a solution to the inhomogeneous Omnès problem. Choosing the coefficients λj identical
to the subtraction constants in the Omnès representation of f reveals

fj(s) = Ω(s)

[
sj +

Qm(s)

π
lim
ε→0+

∫ ∞
s0

dx
f̂j(x) sin δ(x)∣∣Ω(x+ iε)

∣∣Qm(x) (x− s)

]
. (3.52)

In contrast to f , the basis functions fj defined in this way will be independent of the
subtraction constants [157,158]. Accordingly once the dependence f̂ [f ] is fixed, eq. (3.52)
can be used as an integral equation determining the basis functions of f for any given δ.

The decomposition into the basis functions given in eq. (3.51) can also be used to
generate the basis functions of the spectral representation. Using the matching constraints
discussed in sec. 3.3 we can relate the basis functions of theOmnès representation directly
to the ones of the spectral representation. For instance, consider the case n = 1 and k ≤ 1
with all subtraction points set to zero, cf. eqs. (3.48) and (3.49):

f(s) = β0 f0(s) + β1 f1(s) = α0 f0(s) +
[
α1 − α0 Ω′(0)

]
f1(s)

= α0

[
f0(s)− Ω′(0) f1(s)

]
+ α1 f1(s) = α0 f

SR
0 (s) + α1 f

SR
1 (s) ,

(3.53)

where fSR
0 ≡ f0(s) − Ω′(0) f1(s) and fSR

1 ≡ f1 define the basis functions of the spectral
representation.#5 Using the linearity of the hat function f̂ [fSR

0 ] = f̂ [f0]− Ω′(0) f̂ [f1], the
Omnès representation of fSR

0 will be given by

fSR
0 (s) = Ω(s)

[
1− Ω′(0) s+

s2

π
lim
ε→0+

∫ ∞
s0

dx
f̂SR

0 (x) sin δ(x)∣∣Ω(x+ iε)
∣∣x2 (x− s)

]
. (3.54)

Thus eq. (3.53) defines the change of basis from fj in the Omnès representation to fSR
j

in the spectral representation, or accordingly the exchange of the subtraction constants
βj with αj.

3.5 Polynomial shifts
In order to investigate the transformation properties of the dispersive representation for
f under polynomial shifts, the function f is satisfies the following constraints:

• f is a solution of the inhomogeneous Omnès problem;

• ∆f and ∆f̂ are polynomials whose degree is at most bnc, given that f behaves
asymptotically like f(s) � sn with n > 0;

• f and f̂ transform under the polynomial shift according to

f(s) 7→ F (s) ≡ f(s) + ∆f(s) , f̂(s) 7→ F̂ (s) ≡ f̂(s) + ∆f̂(s) , (3.55)

where F is a solution of the inhomogeneous Omnès problem with the corresponding
hat function F̂ .

#5In the case at hand, the number of subtraction constants in the Omnès and spectral representations
are equal, i.e., there is no ambiguity present in the latter representation. Of course when constructing
a case that is not unique in the spectral representation, the identification of basis functions encounters
this ambiguity, too.
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The idea of this investigation goes back to [159]. Note that ∆f as defined above will
neither alter the asymptotic behavior nor the analytic structure of the transformed func-
tion F . Since ∆f is an entire function its discontinuity will vanish, thus the shifted
discontinuity will be given by

disc f(s) 7→ discF (s) = disc f(s) . (3.56)

Equation (3.40) infers directly that f̂ has to transform opposite to f under the polynomial
shift

f̂(s) 7→ F̂ (s) = f̂(s)−∆f(s) . (3.57)

Accordingly, f and F both can be given in terms of a m-times subtracted spectral rep-
resentation (3.41) with the only difference that the subtraction polynomial for F will be
given by Pm−1(s) + ∆f(s), where Pm−1 denotes the respective subtraction polynomial in
the representation of f .

However, in the Omnès representation of f given in eq. (3.44) this transformation
behavior is not immediately evident. We want to study this issue in more detail by
considering the Omnès representation of the shifted function F given by

f(s) + ∆f(s) = Ω(s)

[
Pm−1(s) + ∆P (s)

+
Qm(s)

π
lim
ε→0+

∫ ∞
s0

dx
[
f̂(x)−∆f(x)

]
sin δ(x)∣∣Ω(x+ iε)

∣∣Qm(x) (x− s)

]
,

(3.58)

in terms of the same δ as for the representation of f . Thus we need to tackle the question
whether ∆P , i.e., the shift of the subtraction polynomial Pm−1, can be given as a polyno-
mial of degree m − 1 at most. Ignoring the contributions to f for now, a rearrangement
of eq. (3.58) yields

∆P (s) =
∆f(s)

Ω(s)
+
Qm(s)

π
lim
ε→0+

∫ ∞
s0

dx
∆f(x) sin δ(x)∣∣Ω(x+ iε)

∣∣Qm(x) (x− s) . (3.59)

According to the requirements on Ω given in sec. 3.2 the inverse of the Omnès function
will satisfy

disc
1

Ω(s)
= −2i lim

ε→0+

sin δ(s)∣∣Ω(s+ iε)
∣∣ , (3.60)

which allows for spectral representation with m = bn+ kc+ 1 ≥ bkc+ 1 subtractions

1

Ω(s)
= PΩ

m−1(s)− Qm(s)

π
lim
ε→0+

∫ ∞
s0

dx
sin δ(x)∣∣Ω(x+ iε)
∣∣Qm(x) (x− s) . (3.61)

Correspondingly, the subtraction polynomial denoted by PΩ
m−1 is of degree m− 1. There-

fore eq. (3.59) can be rewritten as

∆P (s) = PΩ
m−1(s) ∆f(s) +

Qm(s)

π
lim
ε→0+

∫ ∞
s0

dx
[
∆f(x)−∆f(s)

]
sin δ(x)∣∣Ω(x+ iε)

∣∣Qm(x) (x− s) . (3.62)
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Given that ∆f is a polynomial of degree bnc it can be represented by

∆f =

bnc∑
j=0

cj s
j , (3.63)

where cj ∈ C denote the expansion coefficients. Inserting eq. (3.63) into eq. (3.62) and
use the identity in eq. (A.24) yields

∆P (s) = PΩ
m−1(s)

bnc∑
j=0

cj s
j +

Qm(s)

π

bnc∑
j=1

j−1∑
l=0

cj s
j−l−1 lim

ε→0+

∫ ∞
s0

dx
xl sin δ(x)∣∣Ω(x+ iε)

∣∣Qm(x)
.

(3.64)
Since the remaining dispersion integral collapsed to a constant, ∆P is indeed a poly-

nomial. However, the right-hand side of eq. (3.64) seem to imply that ∆P is of degree
m + bnc − 1 instead of m − 1, which would lead to a contradiction for n ≥ 1. A closer
look at eq. (3.61) reveals that this conclusion is wrong. Since the asymptotic behavior
of 1/Ω is given by 1/Ω(s) � sk, its spectral representation needs a minimal number of
mΩ = bkc + 1 subtractions, cf. eq. (3.29). Thus with the chosen m = bn + kc + 1 sub-
tractions the representation for 1/Ω is over-subtracted, accordingly there has to be a sum
rule dealing with the additional bnc subtractions and renders ∆P to be of degree m− 1.

In order to prove this we choose all subtraction points equal to zero and n ≥ 1. Thus
the m-times subtracted spectral representation of 1/Ω satisfies the sum rule (3.21)

PΩ
m−1(s) = PΩ

m−bnc−1(s)−
bnc−1∑
j=0

sm−bnc+j µm−bnc+j+1 , (3.65)

where we introduced the short-hand notation for the remainder of the dispersive integral

µj ≡ lim
ε→0+

1

π

∫ ∞
s0

dx
sin δ(x)∣∣Ω(x+ iε)

∣∣xj . (3.66)

Accordingly, eq. (3.64) reads

∆P (s) = PΩ
m−bnc−1(s)

bnc∑
j=0

cj s
j −

bnc∑
j=0

bnc−1∑
l=0

cj s
m−bnc+j+l µm−bnc+l+1

+

bnc∑
j=1

j−1∑
l=0

cj s
m+j−l−1 µm−l .

(3.67)

Performing an index shift of l 7→ bnc − l − 1 in the second term on the right-hand side,
it can be split into

bnc∑
j=0

bnc−1∑
l=0

cj s
m+j−l−1 µm−l =

bnc∑
j=1

j−1∑
l=0

cj s
m+j−l−1 µm−l +

bnc∑
j=0

bnc−1∑
l=j

cj s
m+j−l−1 µm−l . (3.68)
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Inserted back into eq. (3.67) yields

∆P (s) = PΩ
m−bnc−1(s)

bnc∑
j=0

cj s
j +

bnc∑
j=0

bnc−1∑
l=j

cj s
m+j−l−1 µm−l , (3.69)

where it is now explicitly shown that the highest power of s appearing on the right-hand
side is given by m− 1 in the case of j = l.
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Chapter 4

Dispersion relations for functions with
two cuts

In this chapter, we broaden the discussion on the mathematical concepts of dispersion
theory to describe T -matrix elements for arbitrary 2 → 2 scattering processes. The
scattering amplitude for a process involving altogether four particles in the initial and
final state will depend on the three Mandelstam variables variables s, t, and u, of
which only two are independent, cf. ch. 2. Since the dispersive framework introduced in
ch. 3 is developed for functions that depend on one complex variable only, it cannot be
applied to 2 → 2 scattering amplitudes without further ado. In the following we will
derive a more general dispersion-theoretical framework that allows for a description of
2 → 2 scattering amplitudes. Applications of this dispersive framework in the analysis
of physical 1→ 3 decay processes, based on equations of the Khuri–Treiman type, are
discussed in chs. 5, 6, and 7.

This chapter is organized as follows: in sec. 4.1 we introduce the fixed-t dispersive
representation for the 2 → 2 scattering amplitude and discuss its analytical properties.
Combining this dispersive formalism with the constraints on the discontinuities of the am-
plitude demanded by two-body unitarity, we derive its reconstruction theorem in sec. 4.2.
For further details on fixed-t dispersion relations we suggest [142, 143, 160]. A highly
recommended pedagogical discussion can also be found in [144].

4.1 Fixed-t dispersion relations
We denote the T -matrix element of an arbitrary 2 → 2 scattering process involving four
particles of fixed species byM.#1 According to sec. 2.2.1,M can be expressed in terms
of the Mandelstam variables

M(s, t) ≡M(s, t, u) =M(s, t, 3r − s− t) , (4.1)

#1In cases of 2→ 2 scattering amplitudes involving three pseudoscalar particles and one vector particle
we are interested only in the analytic structure of the scalar amplitude F containing the dynamical
information, accordingly in such a case M will refer to F instead of the full T -matrix element, cf.
sec. 2.2.

71
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•
sleft

•
sthr

s
×

s1×
s2×

sm×
Rex

Imx

Fig. 4.1: Choices of the integration contour (blue) in the complex x-plane. The dashed
paths depict closed circular contours around the isolated poles s, s1, s2, ..., sm in the residue
theorem (3.11), while the solid path represents the enlarged contour enclosing C\(B+∪B−)
running along the upper and lower rim of the cuts according to the prescription x ± iε
in the limit of ε → 0+. Starting at sthr > 0, the right-hand cut (red) extends to infinity
along the positive real axis. The left-hand cut (red) starts at sleft = 3r − t − uthr and
extends to minus infinity along the negative real axis.

where we made use of eq. (2.25), which states that only two of them are independent,
i.e., we have chosen s and t. Of course we assume that the squares of the involved four-
momenta are known. Given that M(s, t) as a function of two variables would require
a more sophisticated mathematical framework than discussed in ch. 3, we simplify the
problem by fixing one of the Mandelstam variables. Accordingly, the amplitude is a
function of the variable s only

M(s) =M(s, t) , (4.2)

for t being fixed. The analytic structure of M(s) can now be studied by extending the
concepts introduced in ch. 3.

We choose t to be real and below any t-channel production threshold t < tthr. In
the s-channel we allow for an intermediate multi-particle state to go on-shell for s ≥ sthr,
leading to a right-hand cut B+ = [sthr,∞). Moreover, there might also be an intermediate
multi-particle state contributing in the u-channel above the threshold u ≥ uthr. Using
eq. (2.25) we can relate the unitarity cut in the u-channel to a left-hand cut in the complex
s-plane given by B− = (−∞, sleft] with

s ≤ 3r − t− uthr ≡ sleft . (4.3)

For the following discussion to apply we need to require sleft < sthr, i.e., the branch cuts
are not allowed to overlap. Accordingly, the lower bound on t is given by

t > 3r − sthr − uthr . (4.4)

In the Mandelstam plane a valid line of fixed t needs to be parallel to t = 0 and is
demanded to cross the subthreshold diagram twice, cf. fig. 2.4.

Given these constraints, the considered amplitudeM is a holomorphic function in s on
C \ (B+ ∪B−). Assuming an asymptotic behaviour ofM� sn with n ∈ R, the amplitude
can be treated in a similar manner to eq. (3.11) when choosing the integration contour as
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depicted in fig. 4.1. In accordance to the derivation of the spectral representation we find
the fixed-t dispersion relation forM given by

M(s) = Pm−1(s) +
Qm(s)

2πi

∫ ∞
sthr

dx
discM(x)

Qm(x) (x− s) +
Qm(s)

2πi

∫ sleft

−∞
dx

discM(x)

Qm(x) (x− s) , (4.5)

where the subtraction points sj in the polynomials Qm need to lie between the two cuts
sj ∈ R \ (B+ ∪ B−). The adequate minimal number of subtractions m will be given by
eq. (3.16) as derived for the spectral representation in eq. (3.15). It turns out to be useful
to define

discxM(x, t, 3r − t− x) ≡ lim
ε→0+

[
M(x+ iε, t, 3r − t− x− iε)

−M(x− iε, t, 3r − t− x+ iε)
]
,

(4.6)

for t kept fixed. Since the discontinuity, sleft, and the subtraction polynomial Pm−1 depend
on the choice of t, the dispersion relation given in eq. (4.5) changes for different t. In order
to allow for a variation in t within its given bounds, we write

M(s, t, 3r − s− t) = P t
m−1(s) +

Qm(s)

2πi

∫ ∞
sthr

dx
discxM(x, t, 3r − t− x)

Qm(x) (x− s)

+
Qm(s)

2πi

∫ sleft(t)

−∞
dx

discxM(x, t, 3r − t− x)

Qm(x) (x− s) .

(4.7)

Still the subtraction polynomial P t
m−1 is of order m− 1 in s, but its coefficients cj might

depend on t, i.e.

P t
m−1(s) =

m−1∑
j=0

cj(t) s
j . (4.8)

Note that this dependence of the coefficients on t is not required to be of polynomial form.
We want to comment on the analytic structure of the fixed-t dispersion relation for

M given in eq. (4.7): according to the statement of maximal analyticity, the amplitude
M is holomorphic in both s and t, cf. sec. 2.1.2. In the dispersion relation at hand, these
two variables are treated on an unequal footing. By construction the right-hand side of
eq. (4.7) will be holomorphic in s on C \ (B+ ∪ B−). However, this does not apply for
t, given that t is constrained to take real values bounded by t ≤ tthr and eq. (4.4). But
within the values under consideration the right-hand side will be a smooth function in t
(i.e. a C∞ function), since the left-hand side is holomorphic in t and therefore C∞ in t.

We want to draw the attention to the second dispersion integral along the left-hand
cut in eq. (4.7). Performing a change of variables

y = 3r − t− x , dx = −dy , x− s = u− y ,
y(sleft) = uthr , y(−∞) =∞ ,

(4.9)

and using eq. (4.6) to derive

discxM(x, t, 3r − t− x) = lim
ε→0+

[
M(3r − t− y + iε, t, y − iε)

−M(3r − t− y − iε, t, y + iε)
]

≡ −discyM(3r − t− y, t, y) ,

(4.10)
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we find

Qm(s)

2πi

∫ sleft(t)

−∞
dx

discxM(x, t, 3r − x− t)
Qm(x) (x− s)

=
Qm(3r − t− u)

2πi

∫ ∞
uthr

dy
discyM(3r − t− y, t, y)

Qm(3r − t− y) (y − u)
.

(4.11)

According to eq. (A.26) the polynomials Qm fulfil the relation

Qm(3r − t− u)

Qm(3r − t− y)
=
Qm(u)

Qm(y)
+ (y − u) qym−1(u) , (4.12)

with qym−1 being another polynomial in u of degree m− 1 whose coefficients depend on y.
Combining eqs. (4.11) and (4.12) yields

Qm(s)

2πi

∫ sleft(t)

−∞
dx

discxM(x, t, 3r − x− t)
Qm(x) (x− s)

=
Qm(u)

2πi

∫ ∞
uthr

dy
discyM(3r − t− y, t, y)

Qm(y) (y − u)

+
1

2πi

∫ ∞
uthr

dy qym−1(u) discyM(3r − t− y, t, y) .

(4.13)

Since the coefficients of qym−1 are of order O(y−m−1), the second integral converges and
reduces to a polynomial in u of degree m − 1. The polynomial in u is absorbed into the
subtraction polynomial by a redefinition of P t

m−1 when eq. (4.13) is inserted into eq. (4.7),
which yields

M(s, t, 3r − s− t) = P t
m−1(s) +

Qm(s)

2πi

∫ ∞
sthr

dx
discxM(x, t, 3r − x− t)

Qm(x) (x− s)

+
Qm(u)

2πi

∫ ∞
uthr

dx
discxM(3r − t− x, t, x)

Qm(x) (x− u)
.

(4.14)

Comparing eqs. (4.7) with (4.14) we note that the dispersion integral along the left-hand
cut can be rewritten as a dispersion integral along the right-hand cut of the crossed chan-
nel. This is an important feature of the fixed-t dispersion relation, since the constraints
of unitarity yield a direct access to the hight-hand cuts of the amplitude, cf. sec. 2.2.2.
In general this does not apply for left-hand cuts.

In practice the information on the discontinuities of a scattering amplitudeM along
the right-hand cuts is limited and not available to infinite energies. Since the fixed-t
dispersive representation requires knowledge of the discontinuities up to infinity, we have
to make assumptions on their high-energy behaviour or introduce a cutoff in the inte-
gration. Moreover, the maximal number of needed subtractions m is restricted by the
Froissart–Martin bound, stating that the scattering amplitude behaves asymptoti-
cally like M � s log2 s. However, a formal proof of this statement is only available for
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2 → 2 scattering processes involving four scalar particles [161, 162]. Thus in general the
Froissart–Martin bound will serve as an additional constraint that can be imposed on
the amplitude. Nevertheless, in some cases it might be wise to oversubtract the dispersive
representation to suppress the contributions of the high-energy region, i.e., the scattering
amplitude will grow asymptotically faster than required by the Froissart–Martin. The
additional subtraction constants arising in this way can be understood to parameterize
the lack of knowledge on the discontinuity at high energies. Therefore, they are very
similar to the LECs introduced in effective field theories, cf. sec. 1.3.

4.1.1 Symmetric fixed-t dispersion relation

We want to investigate the behaviour of eq. (4.14) for a special type of amplitudes. Con-
sider an amplitude which is symmetric under exchange of s↔ u, i.e.

M(s, t, 3r − s− t) =M(3r − s− t, t, s) , (4.15)

and sthr = uthr. Thus, for the discontinuities in eq. (4.14)

discxM(x, t, 3r − t− x) = discxM(3r − t− x, t, x) (4.16)

will hold.#2 The symmetric fixed-t dispersion relation forM reads

M(s, t, 3r − s− t) = P t
m−1(s) +

Qm(s)

2πi

∫ ∞
sthr

dx
discxM(x, t, 3r − x− t)

Qm(x) (x− s)

+
Qm(u)

2πi

∫ ∞
uthr

dx
discxM(x, t, 3r − t− x)

Qm(x) (x− u)
.

(4.17)

In order to maintain the symmetry given in eq. (4.15), the right-hand side of eq. (4.14)
must be symmetric under interchange of s ↔ u for t fixed. Since the two dispersion
integrals are invariant under this symmetry, it is clear that the subtraction polynomial
has to P t

m−1 has to obey
P t
m−1(s) = P t

m−1(3r − s− t) . (4.18)

Inserting eq. (4.8) into the symmetry constraint yields

0 = (2s+ t− 3r)
m−1∑
j=1

cj(t)

j−1∑
l=0

sj−l−1 (3r − s− t)l , (4.19)

where we applied eq. (A.24). Given that eq. (4.19) has to hold for all s ∈ C \ B+ ∪ B−,
it can be used to constrain the coefficients cj of the subtraction polynomial, e.g. m = 2
results in c1(t) = 0. Thus for m = 1 and m = 2 the polynomial is independent of s and

#2Note that eq. (4.16) is not in contradiction with eq. (4.10). The former equation relates s- and
u-channel discontinuities along the right-hand cuts, while the latter one links the s-channel discontinuity
along the left-hand cut to the u-channel discontinuity along the right-hand cut.
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fully determined by c0(t). However, for m > 2 the symmetry condition relates c1 to all
other cj with j > 1 and P t

m−1 in general depends on s, e.g. m = 3 yields

0 = c1(t) + (3r − t) c2(t) . (4.20)

Thus, P2(t) will be given by

P2(t) = c0(t) + c2(t) s (s+ t− 3r) = c0(t)− c2(t) s u , (4.21)

where eq. (2.25) is used.

4.1.2 Antisymmetric fixed-t dispersion relation

In analogy to consideration of a symmetric amplitude (4.15), we want to study an ampli-
tude that is antisymmetric under interchange of s↔ u, i.e.

M(s, t, 3r − s− t) = −M(3r − s− t, t, s) , (4.22)

and sthr = uthr. Inserting the discontinuity relation for eq. (4.22) given by

discxM(x, t, 3r − t− x) = −discxM(3r − t− x, t, x) (4.23)

into the general fixed-t dispersion relation (4.14) results in

M(s, t, 3r − s− t) = P t
m−1(s) +

Qm(s)

2πi

∫ ∞
sthr

dx
discxM(x, t, 3r − x− t)

Qm(x) (x− s)

− Qm(u)

2πi

∫ ∞
uthr

dx
discxM(x, t, 3r − t− x)

Qm(x) (x− u)
.

(4.24)

Accordingly, eq. (4.24) fulfils the antisymmetry relation defined in eq. (4.22), if the
subtraction polynomial P t

m−1 is antisymmetric under interchange of s↔ u, i.e.

P t
m−1(s) = −P t

m−1(3r − s− t) . (4.25)

Casting the general form of P t
m−1 given in eq. (4.8) into eq. (4.25) yields

0 =
m−1∑
j=0

cj(t)
[
sj + (3r − s− t)j

]
, (4.26)

relating the coefficients cj. In the special case of m = 1 eq. (4.26) results in c0(t) = 0,
thus P0(t) has to vanish. For any given m > 1 the antisymmetry condition allows us to
relate c0 to all other coefficients cj with j > 0, e.g. m = 3 yields

0 = 2c0(t) + c1(t) (3r − t) + c2(t)
[
s2 + (3r − s− t)2

]
. (4.27)

Hence, using eq. (2.25) the subtraction polynomial P t
2 is given by

P t
2(s) =

(2s+ t− 3r)

2

[
c1(t) + c2(t) (3r − t)

]
=

(s− u)

2

[
c1(t) + c2(t) (3r − t)

]
. (4.28)
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4.2 The reconstruction theorem
To proceed with the dispersive treatment of 2→ 2 scattering processes we want to recall
the analytic properties of the fixed-t dispersion relation given in eq. (4.14). The right-
hand side of this equation is holomorphic in s apart from the branch cuts starting at the
production thresholds sthr and uthr, but the derivation of the fixed-t dispersion relation
relies on real values of t. Therefore the right-hand side of the equation is only a smooth
function in t. However, maximal analyticity states that the left-hand side is holomorphic
in both s and t up to the branch cuts of the different channels, cf. sec. 2.1.2.

In the following we want to derive a dispersive representation for M satisfying the
constraints of analyticity such that the amplitude is a holomorphic function in both s
and t up to the branch cuts. In order to achieve this we expand the amplitude into
partial waves inside the fixed-t dispersion relation to find explicit expressions for the
discontinuities. However, several kinematical requirements have to be satisfied. First, for
eq. (4.14) to hold, t is constrained by eq. (4.4) and t < tthr. Second, the partial-wave
expansion is defined in the scattering region, e.g., s ≥ sthr in the s-channel expansion.
If we consider processes for which none of the particle masses exceed the production
threshold of the other three particles (i.e., we exclude the possibility of 1 → 3 decays),
we can find kinematical regions where both requirements are met.

This so-called reconstruction theorem states that a given 2 → 2 scattering amplitude
M can be reconstructed just from the information on the discontinuities of the partial
waves under consideration and some polynomial contributions obeying the exact same
symmetries as M. It was first derived for the ππ scattering amplitude [163, 164] and
later generalized to arbitrary 2 → 2 scattering processes of spin-zero particles [165, 166].
Since this dispersive representation relies on the partial-wave expansion of the considered
amplitude, we begin the discussion by restricting ourselves to amplitudes involving four
pseudoscalar particles. An extension to amplitudes containing one vector particle will be
considered at the end of this section.

In the specific case of 2→ 2 scattering processes involving only spin-zero pseudoscalar
particles, the amplitudeM can be expanded in terms of ordinary Legendre polynomials.
The s-channel (2.30) partial-wave expansion ofM reads

M(s, zs) =
∞∑
`=0

[
λ(s,M2

1 ,M
2
2 )λ(s,M2

3 ,M
2
4 )
]`/2

P`(zs) f`(s) . (4.29)

where f` defines the `-th partial-wave amplitude.#3 Note that the factor in the square
bracket is purely conventional and only introduced to avoid possible kinematical singu-
larities arising from eq. (2.31). Similar expressions can be obtained for the t- (2.36) and
u-channels (2.38), where we will denote the partial-wave amplitudes of these channels by
g` and h`, respectively.

In the following we will truncate the expansion of the discontinuities after S- and
P -waves, thus we assume that contribution of D- and higher partial waves to the discon-

#3For the sake of simplicity possible contributions of different isospin combinations to the same angular
momentum ` are subsumed in the partial-wave amplitudes f`.
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tinuities can be neglected, i.e.,

discsM(s, zs) = disc f0(s) + zs

√
λ(s,M2

1 ,M
2
2 )λ(s,M2

3 ,M
2
4 ) disc f1(s) , (4.30)

for the s-channel and similarly for the t- and u-channels. Accordingly, the fixed-t disper-
sion relation reads

M(s, t, 3r − s− t) = P t
m−1(s)

+
Qm(s)

2πi

∫ ∞
sthr

dx
disc f0(x) +

[
x (t− y) + ∆12 ∆34

]
disc f1(x)

Qm(x) (x− s)

+
Qm(u)

2πi

∫ ∞
uthr

dx
disch0(x) +

[
x (y − t) + ∆14 ∆23

]
disch1(x)

Qm(x) (x− u)
,

(4.31)
with y = 3r − t − x = s + u − x in the integrals for the P -wave contributions. The
s-channel P -wave dispersion integral can be further simplified to

Qm(s)

2πi

∫ ∞
sthr

dx
[
x (x− s+ t− u) + ∆12 ∆34

]
disc f1(x)

Qm(x) (x− s)

=
[
s (t− u) + ∆12 ∆34

] Qm−2(s)

2πi

∫ ∞
sthr

dx
disc f1(x)

Qm−2(x) (x− s) + ... ,

(4.32)

where the dots represent polynomial contributions in s of degree m − 1 that can be
absorbed into the subtraction polynomial P t

m−1. Note that we reduced the number of
subtractions by two in the remaining dispersion integral, cf. eq. (3.21). This dispersion
integral will still converge, since f1(s) � sn−2 as defined in eq. (4.29), if behaves asymp-
totically like M(s, zs) � sn. A similar decomposition can be found for the u-channel
P -wave contribution. Inserting these findings into the fixed-t dispersion relation yields

M(s, t, 3r − s− t) = P t
m−1(s)

+
Qm(s)

2πi

∫ ∞
sthr

dx
disc f0(x)

Qm(x) (x− s) +
Qm(u)

2πi

∫ ∞
uthr

dx
disch0(x)

Qm(x) (x− u)

+
[
s (t− u) + ∆12 ∆34

] Qm−2(s)

2πi

∫ ∞
sthr

dx
disc f1(x)

Qm−2(x) (x− s)

+
[
u (s− t) + ∆14 ∆23

] Qm−2(u)

2πi

∫ ∞
uthr

dx
disch1(x)

Qm−2(x) (x− u)
.

(4.33)
Thus an expansion of the discontinuities into partial waves renders the dispersion integrals
free of any t dependence.

Analogously to the derivation of the fixed-t dispersion relation it is also possible to
write down a fixed-u or fixed-s dispersion relation of M. Following the steps of the
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derivation described in sec. 4.1 with keeping u fixed, we find

M(3r − t− u, t, u) = P u
m−1(t)

+
Qm(s)

2πi

∫ ∞
sthr

dx
disc f0(x)

Qm(x) (x− s) +
Qm(t)

2πi

∫ ∞
tthr

dx
disc g0(x)

Qm(x) (x− t)

+
[
s (t− u) + ∆12 ∆34

] Qm−2(s)

2πi

∫ ∞
sthr

dx
disc f1(x)

Qm−2(x) (x− s)

+
[
t (u− s)−∆13 ∆24

] Qm−2(t)

2πi

∫ ∞
tthr

dx
disc g1(x)

Qm−2(x) (x− t) .
(4.34)

The dispersion integrals for the s-channel contribution are the same as in eq. (4.33), but
the integrals for the u-channel are replaced by integrals for the t-channel. Moreover, the
P u
m−1 is now a polynomial in t of degree m− 1 whose coefficients depend on u. Similarly,

the fixed-s dispersive representation will be given by

M(s, 3r − s− u, u) = P s
m−1(u)

+
Qm(t)

2πi

∫ ∞
tthr

dx
disc g0(x)

Qm(x) (x− t) +
Qm(u)

2πi

∫ ∞
uthr

dx
disch0(x)

Qm(x) (x− u)

+
[
t (u− s)−∆13 ∆24

] Qm−2(t)

2πi

∫ ∞
tthr

dx
disc g1(x)

Qm−2(x) (x− t)

+
[
u (s− t) + ∆14 ∆23

] Qm−2(u)

2πi

∫ ∞
uthr

dx
disch1(x)

Qm−2(x) (x− u)
,

(4.35)
containing the same dispersion integrals for the t- and u-channels as given in eqs. (4.33)
and (4.34), while the coefficients of P s

m−1 will depend on s.
Therefore we combine eqs. (4.33), (4.34), and (4.35) to

M(s, t, u) = Pm−1(s, t, u) +
Qm(s)

2πi

∫ ∞
sthr

dx
disc f0(x)

Qm(x) (x− s)

+
Qm(t)

2πi

∫ ∞
tthr

dx
disc g0(x)

Qm(x) (x− t) +
Qm(u)

2πi

∫ ∞
uthr

dx
disch0(x)

Qm(x) (x− u)

+
[
s (t− u) + ∆12 ∆34

] Qm−2(s)

2πi

∫ ∞
sthr

dx
disc f1(x)

Qm−2(x) (x− s)

+
[
t (u− s)−∆13 ∆24

] Qm−2(t)

2πi

∫ ∞
tthr

dx
disc g1(x)

Qm−2(x) (x− t)

+
[
u (s− t) + ∆14 ∆23

] Qm−2(u)

2πi

∫ ∞
uthr

dx
disch1(x)

Qm−2(x) (x− u)
,

(4.36)

where Pm−1 is now a polynomial in all three Mandelstam variables. Since the non-
polynomial parts of the dispersion relation depend on one Mandelstam variable only,
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we introduce a set of single-variable amplitudes. In the s-channel these amplitudes will
be given by

F0(s) = P 0
m−1(s) +

Qm(s)

2πi

∫ ∞
sthr

dx
disc f0(x)

Qm(x) (x− s) ,

F1(s) = P 1
m−3(s) +

Qm−2(s)

2πi

∫ ∞
sthr

dx
disc f1(x)

Qm−2(x) (x− s) .
(4.37)

Likewise, we define single variable amplitudes for the t- and u-channel denoted by G` and
H`. Assuming that the contributions of the subtraction polynomial Pm−1 in eq. (4.36) can
be fully absorbed in the polynomials defined along with the single-variable amplitudes,
we arrive at the decomposition

M(s, t, u) = F0(s) + G0(t) +H0(u) +
[
s (t− u) + ∆12 ∆34

]
F1(s)

+
[
t (u− s)−∆13 ∆24

]
G1(t) +

[
u (s− t) + ∆14 ∆23

]
H1(u) ,

(4.38)

which is the reconstruction theorem forM.

4.2.1 Symmetric and antisymmetric decompositions

Following the discussion of the symmetry behaviour of the fixed-t dispersion relation (cf.
sec. 4.1.1) we want to investigate these symmetries within the reconstruction theorem.
We start by considering an amplitude that is symmetric under interchange of t↔ u, i.e.

M(s, t, u) =M(s, u, t) , (4.39)

and tthr = uthr. Thus two of the involved particles must have equal masses, e.g. we choose
M3 = M4. According to the symmetry properties of the partial wave decomposition given
in eq. (4.29) and the scattering angle zs (2.31), the discontinuity of the s-channel (4.30)
is only allowed to contain even partial waves, i.e.

discsM(s, zs) = disc f0(s) . (4.40)

Similar considerations for the scattering angles zt (2.37) and zu (2.39) yield the disconti-
nuity of the t-channel

disctM(t, zt) = disch0(t)− zt
√
λ(t,M2

1 ,M
2
3 )λ(t,M2

2 ,M
2
3 ) disch1(t) , (4.41)

in terms of the u-channel partial-wave amplitudes. Repeating the steps performed in the
derivation of eq. (4.38) we find the reconstruction theorem

M(s, t, u) = F0(s) +H0(t) +H0(u) +
[
t (s− u) + ∆13 ∆23

]
H1(t)

+
[
u (s− t) + ∆13 ∆23

]
H1(u) ,

(4.42)

which respects the symmetry behaviour defined in eq. (4.39).
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Analogously to the discussion started in sec. 4.1.2 on the antisymmetric fixed-t dis-
persion relation, we want to study an amplitude that is antisymmetric under interchange
of t↔ u, i.e.

M(s, t, u) = −M(s, u, t) , (4.43)

and tthr = uthr. Again we will fix the particle masses M3 = M4. In contrast to the
previous case, an antisymmetric behaviour as given in eq. (4.43) demands

discsM(s, zs) = zs

√
λ(s,M2

1 ,M
2
2 )λ(s,M2

3 ,M
2
3 ) disc f1(s) , (4.44)

for the discontinuity ofM in the s-channel. The S-wave amplitude has to vanish, since
only odd s-channel partial-wave amplitudes obey the correct transformation behaviour
under t↔ u (2.30). Likewise the t-channel discontinuity has to satisfy

disctM(t, zt) = −disch0(t) + zt

√
λ(t,M2

1 ,M
2
3 )λ(t,M2

2 ,M
2
3 ) disch1(t) , (4.45)

i.e., it can be expressed in terms of the u-channel partial-wave amplitudes. Restricting
to these discontinuities in the derivation of the reconstruction theorem (4.38) yields

M(s, t, u) = H0(u)−H0(t) + (t− u)F1(s)−
[
t (s− u) + ∆13 ∆23

]
H1(t)

+
[
u (s− t) + ∆13 ∆23

]
H1(u) ,

(4.46)

which obeys the antisymmetry behaviour demanded in eq. (4.43). Note that in eq. (4.46)
we absorbed a factor of s into F1 by redefinition of eq. (4.37).

Finally, consider an amplitude that is antisymmetric under pairwise interchange of all
Mandelstam variables, i.e.

M(s, t, u) = −M(s, u, t) =M(t, u, s) = −M(t, s, u) =M(u, s, t) = −M(u, t, s) .
(4.47)

Accordingly, the thresholds obey sthr = tthr = uthr and three of the particles have equal
masses, e.g. we choose M2 = M3 = M4. Given the transformation properties of the
scattering angles zs, zt, and zu defined in eqs. (2.31), (2.37), and (2.39), we conclude for the
fully antisymmetric discontinuities depending solely on the s-channel P -wave amplitude
given by

discxM(x, zx) = zx

√
λ(x,M2

1 ,M
2
2 )λ(x,M2

2 ,M
2
2 ) disc f1(x) , (4.48)

with x ∈ {s, t, u}. Therefore the reconstruction theorem yields

M(s, t, u) = (t− u)F1(s) + (u− s)F1(t) + (s− t)F1(u) , (4.49)

which is indeed fully antisymmetric under pairwise interchange of the Mandelstam
variables.
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4.2.2 Analytic properties of the decomposition

Although the derivation of the reconstruction theorem forM relies on “fixed-t” dispersion
relations in the three channels, eq. (4.38) will apply also if theMandelstam variables are
complex. Moreover, the single-variable amplitudes introduced in eq. (4.37) posses right-
hand cuts only. They are holomorphic on C except for a branch cut along the positive
real axis starting at the respective threshold sthr, tthr, or uthr, and therefore allow for a
continuation ofM to complex values in all three Mandelstam variables. Note that the
cuts in the single-variable amplitudes result in the correct cut structure forM required by
analyticity. Accordingly, the right-hand side of eq. (4.38) is holomorphic in all Mandel-
stam variables up to the cuts. On the other hand the dynamical information included in
the reconstruction theorem is limited by the number of partial-wave amplitudes consid-
ered in the expansion of the discontinuities. Hence, the reconstruction theorem provides
only a valid description of the scattering process in the region where the contributions of
higher partial waves to the discontinuities can be safely neglected.

The reconstruction theorem provides a drastic simplification of the dispersive repre-
sentation forM. It reduces the investigation ofM, which depends on two independent
Mandelstam variables and possesses several cuts, to the single-variable functions of sim-
pler analytic structure. However, it is important to realise that in general the absorption
of the subtraction polynomial Pm−1 in eq. (4.36) into the single-variable amplitudes is not
unique. Due to eq. (2.25) it is possible to find polynomial shifts given by

F`(s) 7→ F`(s) + ∆F`(s) (4.50)

for the s-channel single-variable amplitudes (similarly for G` and H`), which leave M
unchanged. As an example, consider the reconstruction theorem given in eq. (4.42), the
most general polynomial shifts meeting the requirement

0 = ∆F0(s) + ∆H0(t) + ∆H0(u) +
[
t (s− u) + ∆13 ∆23

]
∆H1(t)

+
[
u (s− t) + ∆13 ∆23

]
∆H1(u)

(4.51)

are given by

∆F0(s) = 2a+ b (r − s) + c
[
2s2 + 9r (r − s)

]
+ d

[
2s3 + 27r2 (r − s)

]
,

∆H0(t) = −a+ b (r − t)− c (t2 + ∆13 ∆23)− d
[
t3 + 3∆13 ∆23 (3r − t)

]
,

∆H1(t) = c+ 3d (3r − t) .

(4.52)

Accordingly, eq. (4.42) reveals a four-parameter ambiguity with a, b, c, d ∈ C.#4

By definition the single-variable amplitudes (4.37) share the same discontinuity as the
partial-wave amplitudes along the right-hand cuts. However, the partial-wave amplitudes
possess left-hand cuts as well. Thus a single-variable function and its respective partial-
wave amplitude do not coincide in general. We want to investigate the partial-wave

#4If the considered amplitudeM is required to fulfil the Schwarz reflection principle, the ambiguity
parameters need to be real.
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amplitude in more detail. Using the orthogonality relation of the Legendre polynomials
(A.12) we can project eq. (4.29) onto distinct partial-wave amplitudes in the s-channel
by

f`(s) =
2`+ 1

2

[
λ(s,M2

1 ,M
2
2 )λ(s,M2

3 ,M
2
4 )
]−`/2 ∫ 1

−1

dzs P`(zs)M(s, zs) . (4.53)

Separating the contributions of F` as given in eq. (4.38) defines the hat functions F̂`
according to

F̂0(s) =
1

2

∫ 1

−1

dzs
[
M(s, zs)−F0(s)

]
,

F̂1(s) =
3

2

∫ 1

−1

dzs zs
M(s, zs)−

[
s (t− u) + ∆12 ∆34

]
F1(s)√

λ(s,M2
1 ,M

2
2 )λ(s,M2

3 ,M
2
4 )

.

(4.54)

Thus the partial-wave amplitudes are given by

f` = F`(s) + F̂`(s) . (4.55)

Analogous expressions can be found for the t- and u-channel partial-wave projections.
Since F` contains the complete information of f` along the right-hand cut, F̂` is de-
manded to possess the left-hand cut of f`. In particular F̂` is free of any right-hand cuts.
Moreover, by definition eq. (4.53) is independent of the polynomial shifts (4.50), thus the
hat functions need to obey

F̂`(s) 7→ F̂`(s)−∆F`(s) . (4.56)

Note that the partial waves given in eq. (4.55) will contain contributions to the right-
hand cuts only for S- and P -waves, since in the derivation of eq. (4.38) we truncated the
expansion of the discontinuities for D- and higher partial waves. However, note that this
only accounts for the right-hand cuts. In general the right-hand side of eq. (4.53) will not
vanish for ` ≥ 2.

4.2.3 Extension to amplitudes involving a spin-one particle

We want to extend the reconstruction theorem to amplitudes involving three spin-zero
pseudoscalar particles and a spin-one vector particle. In the following we will work on the
level of the scalar amplitude defined in eq. (2.22) after the separation of the kinematical
prefactor, which is a polynomial in the momenta and therefore does not contribute to the
discontinuity of the amplitude. ThusM will refer to this scalar amplitude. Due to the spin
structure of this scattering process, the expansion is performed in terms of derivatives of
the Legendre polynomials [120,167]. Thus the s-channel (2.30) partial-wave expansion
is given by

M(s, zs) =
∞∑
`=1

[
λ(s,M2

1 ,M
2
2 )λ(s,M2

3 ,M
2
4 )
](`−1)/2

P ′`(zs) f`(s) , (4.57)
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where the `-th partial wave is denoted by f`. Similarly, the t- and u-channel partial waves
will be denoted by g` and h`. As in the spin-zero case, the factor in the square bracket
is purely conventional to absorb possible kinematical singularities arising from eq. (2.31).
Note that the expansion in this case starts at P -waves, since the spin structure of the
considered process does not allow for S-wave contributions.

We truncate the expansion of the discontinuities after P - and D-waves, i.e., contri-
butions of F - and higher partial waves will be neglected. Thus the expansion in the
s-channel reads

discsM(s, zs) = disc f1(s) + 3zs

√
λ(s,M2

1 ,M
2
2 )λ(s,M2

3 ,M
2
4 ) disc f2(s) , (4.58)

and analogously for the t- and u-channels. Casting these discontinuities into fixed-t, fixed-
u, and fixed-s dispersion relations and following the steps in the derivation of eq. (4.36)
we arrive at

M(s, t, u) = Pm−1(s, t, u) +
Qm(s)

2πi

∫ ∞
sthr

dx
disc f1(x)

Qm(x) (x− s)

+
Qm(t)

2πi

∫ ∞
tthr

dx
disc g1(x)

Qm(x) (x− t) +
Qm(u)

2πi

∫ ∞
uthr

dx
disch1(x)

Qm(x) (x− u)

+
[
s (t− u) + ∆12 ∆34

] 3Qm−2(s)

2πi

∫ ∞
sthr

dx
disc f2(x)

Qm−2(x) (x− s)

+
[
t (u− s)−∆13 ∆24

] 3Qm−2(t)

2πi

∫ ∞
tthr

dx
disc g2(x)

Qm−2(x) (x− t)

+
[
u (s− t) + ∆14 ∆23

] 3Qm−2(u)

2πi

∫ ∞
uthr

dx
disch2(x)

Qm−2(x) (x− u)
.

(4.59)

The non-polynomial contributions are now given explicitly in terms of the dispersion
integrals, while Pm−1 is a polynomial in all three Mandelstam variables. Since the
dispersion integrals depend on one Mandelstam variable only, we define single variable
functions

F1(s) = P 1
m−1(s) +

Qm(s)

2πi

∫ ∞
sthr

dx
disc f1(x)

Qm(x) (x− s) ,

F2(s) = P 2
m−3(s) +

3Qm−2(s)

2πi

∫ ∞
sthr

dx
disc f2(x)

Qm−2(x) (x− s)

(4.60)

for the s-channel and similarly for the t- and u-channels, which will be denoted by G`
and H`. Under the assumption that Pm−1 can be fully absorbed into the subtraction
polynomials given in eq. (4.60), we find

M(s, t, u) = F1(s) + G1(t) +H1(u) +
[
s (t− u) + ∆12 ∆34

]
F2(s)

+
[
t (u− s)−∆13 ∆24

]
G2(t) +

[
u (s− t) + ∆14 ∆23

]
H2(u) .

(4.61)

This is the reconstruction theorem of the scalar amplitude M taking P - and D-wave
contributions to the discontinuities into account. It fulfils the analytic properties discussed
in sec. 4.2.2.
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As in the spin-zero case, we can use the orthogonality relation of the derivatives of
the Legendre polynomials (A.18) to project onto the `-th partial-wave amplitude in the
s-channel

f`(s) =
1

2

[
λ(s,M2

1 ,M
2
2 )λ(s,M2

3 ,M
2
4 )
](1−`)/2 ∫ 1

−1

dzs
[
P`−1(zs) + P`+1(zs)

]
M(s, zs) .

(4.62)
Accordingly, the hat functions F̂` can be found by separating the contribution of F`
yielding

F̂1(s) =
3

4

∫ 1

−1

dzs (1− z2
s)
[
M(s, zs)−F1(s)

]
,

F̂2(s) =
15

4

∫ 1

−1

dzs zs (z2
s − 1)

M(s, zs)−
[
s (t− u) + ∆12 ∆34

]
F2(s)√

λ(s,M2
1 ,M

2
2 )λ(s,M2

3 ,M
2
4 )

,

(4.63)

and the partial-wave amplitudes are given by

f1(s) = F1(s) + F̂1(s) , f2(s) =
1

3

[
F2(s) + F̂2(s)

]
. (4.64)

Again, similar expressions can be found for the t- and u-channels.
Continuing the discussion on symmetry and antisymmetry behaviour of M under

interchange of the Mandelstam variables (cf. sec. 4.2.1), we want to consider a scalar
function completely symmetric under pairwise interchange of the Mandelstam variables

M(s, t, u) =M(s, u, t) =M(t, u, s) =M(t, s, u) =M(u, s, t) =M(u, t, s) . (4.65)

The thresholds have to be identical sthr = tthr = uthr, which forces three of the particle
masses to be equal, e.g. we choose M2 = M3 = M4. According to the transformation
properties of the scattering angles given in eqs. (2.31), (2.37), and (2.39) only odd partial
waves are allowed to contribute to the discontinuities in such a system, thus forcing the
D-waves to vanish. The discontinuities in all three channels will be given by

discxM(x, zx) = disc f1(x) , (4.66)

where x ∈ {s, t, u}. Hence, the reconstruction theorem of a fully symmetric scalar function
will be given by

M(s, t, u) = F1(s) + F1(t) + F1(u) . (4.67)

Furthermore, we want to consider a scalar amplitude M antisymmetric under inter-
change of t↔ u, i.e.

M(s, t, u) = −M(s, u, t) , (4.68)

and tthr = uthr. Accordingly, two of the particle masses need to be identical, e.g. we choose
M3 = M4. Since the scattering angle zs is odd under exchange of t ↔ u, we find for the
s-channel discontinuity

discsM(s, zs) = 3zs

√
λ(s,M2

1 ,M
2
2 )λ(s,M2

3 ,M
2
3 ) disc f2(s) . (4.69)
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For the t-channel discontinuity the antisymmetry behaviour ofM yields

disctM(t, zt) = −disch1(t) + 3zt

√
λ(t,M2

1 ,M
2
3 )λ(t,M2

2 ,M
2
3 ) disc g2(t) , (4.70)

in terms of the u-channel partial-wave amplitudes. Therefore the reconstruction theorem
forM is given by

M(s, t, u) = H1(u)−H1(t) + (t− u)F2(s)−
[
t (s− u) + ∆13 ∆23

]
H2(t)

+
[
u (s− t) + ∆13 ∆23

]
H2(u) .

(4.71)

Note that a factor of s is absorbed in the definition of F2.
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Chapter 5

Dispersion relations for η′→ ππη#1

The decay η′ → ππη has received considerable interest in past years for several reasons.
Due to the U(1)A anomaly the η′ is not a Nambu–Goldstone Boson and therefore
“standard” ChPT based on the spontaneous breaking of SU(3)L×SU(3)R chiral symmetry
fails to adequately describe processes involving the η′, cf. ch. 1. In the limit of the number
of colors NC becoming large (“large-NC limit”) the axial anomaly vanishes, which leads
to a U(3)L×U(3)R symmetry, so that a simultaneous expansion in small momenta, small
quark masses, and large NC gives rise to a power counting scheme that in principle allows
one to describe interactions of the pseudoscalar nonet (π,K, η, η′). However, the question
whether this framework dubbed large-NC ChPT [168, 169] is actually well-established
remains under discussion, mainly due to the large η′ mass. This is an issue that can in
principle be addressed by a study of η′ → ππη. So far there are indications that a large-NC

ChPT treatment alone is not sufficient to describe the decay, as final-state interactions
play a rather important role, cf. refs. [169,170].

Furthermore, the η′ → ππη decay channel could be used to constrain πη scattering: the
η′ mass is sufficiently small so that the channel is not polluted by nonvirtual intermediate
states other than the rather well-constrained ππ scattering. In the past claims were made
that the mechanism via the intermediate scalar resonance a0(980)→ πη even dominates
the decay [171–173]. These claims are based on effective Lagrangian models with the
explicit inclusion of a scalar nonet incorporating the a0(980), f0(980), and σ/f0(500)
resonances. They were further supported by refs. [174, 175]: a chiral unitary approach
shows large corrections in the πη channel and there is a dominant low-energy constant
in the U(3) ChPT calculation that is saturated mostly by the a0(980). The πη P -wave,
however, was found to be strongly suppressed [176–178].

The η′ → π0π0η decay channel is expected to show a cusp effect at the charged-
pion threshold [178] that in principle can be used to obtain information on ππ scattering
lengths. So far this phenomenon has not been observed: the most recent measurement
with the GAMS-4π spectrometer did not have sufficient statistics to resolve this subtle
effect [179].

The extraction of πη scattering parameters such as the scattering length and the
effective range parameter is a more complicated subject compared to ππ scattering. There

#1The contents of this chapter have been published in [154].
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is no one-loop cusp effect as in the ππ channel, since the πη threshold sits on the border
of the physical region and not inside. The hope of extracting scattering parameters from
a two-loop cusp is shattered likewise: there is a rather subtle cancellation of this effect at
threshold (cf. refs. [180,181] for an elaborate discussion).

Measurements of the Dalitz plot of the charged channel have been performed by
the VES [182] and BESIII [183] collaborations, while earlier measurements at rather low
statistics have been reported in refs. [184, 185]. The more recent measurements seem to
disagree considerably with regard to the values of the Dalitz-plot parameters, and also
in comparison with the GAMS-4π measurement [179] the picture remains inconsistent.

In this chapter we present the dispersion-theoretical analysis of η′ → ππη decays
by employing integral equations of the Khuri–Treiman type [11]. The discussion is
structured as follows: we will start by defining the necessary kinematical variables as
well as describing the resulting analytic structure of the η′ → ππη matrix element in
sec. 5.1, before deriving and analyzing dispersion relations of Khuri–Treiman type for
the decay amplitude in sec. 5.2. The results of the fits to data will be discussed in sec. 5.3.
Predictions for higher order Dalitz-plot parameters, the occurrence of Adler zeros close
to the soft-pion points, and the decay into the neutral final state η′ → π0π0η are discussed
in sec. 5.4. Finally, we perform a matching of the free parameters to U(3) extensions of
ChPT in sec. 5.5. Some technical details are relegated to the appendices.

5.1 Kinematics and the matrix element
We define transition amplitude and kinematic variables of the η′ → ηππ decay in the
usual fashion (cf. sec. 2.2),

〈πi(p2) πj(p3) η(p4)|iT |η′(p1)〉 = i (2π)4δ(4)(p1 − p2 − p3 − p4) δijM(s, t, u) , (5.1)

where i, j refer to the pion isospin indices.#2 We define the Mandelstam variables for
the three-particle decay processes according to

s = (p2 + p3)2 , t = (p2 + p4)2 , u = (p3 + p4)2 , (5.2)

which fulfill the relation

3r ≡ s+ t+ u = M2
η′ +M2

η + 2M2
π . (5.3)

The process is invariant under exchange of the pions, i.e., under t ↔ u the amplitude
obeys the symmetry property

M(s, t, u) =M(s, u, t) . (5.4)

In the CMS of the two pions, one has

t(s, zs) = u(s,−zs) =
1

2

(
3r − s+ κππ(s) zs

)
, (5.5)

#2In the following, we will consider both the charged decay channel η′ → π+π−η and the neutral
channel η′ → π0π0η. They differ only by isospin-breaking effects.
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where zs = cos θs refers to the s-channel scattering angle,

zs =
t− u
κππ(s)

, κππ(s) =

√
λ(M2

π ,M
2
π , s)λ(M2

η ,M
2
η′ , s)

s
. (5.6)

Similarly, in the CMS of the t-channel, one finds

s(t, zt) =
1

2

(
3r − t− ∆

t
− κπη(t) zt

)
, u(t, zt) =

1

2

(
3r − t+

∆

t
+ κπη(t) zt

)
, (5.7)

with ∆ ≡ (M2
η′ −M2

π)(M2
η −M2

π) and

zt =
t (u− s)−∆

t κπη(t)
, κπη(t) =

√
λ(M2

π ,M
2
η , t)λ(M2

π ,M
2
η′ , t)

t
. (5.8)

Due to crossing symmetry, the u-channel relations follow directly from t↔ u, zt ↔ −zu.
The physical thresholds in the three channels are given by

sthr = 4M2
π , tthr = uthr = (Mπ +Mη)

2. (5.9)

5.2 Khuri–Treiman equations for η′ → ππη

In this section, we set up dispersion relations of Khuri–Treiman type for the decay
process η′ → ππη, in analogy to previous work on different decays into three pions [11,
120,127,186]. The idea is to derive a set of integral equations for the scattering processes
ηη′ → ππ and πη′ → πη with hypothetical mass assignments that make these (quasi-)
elastic: in such a kinematic regime the derivation is straightforward. The dispersion
relation for the decay channel is then obtained by analytic continuation of the scattering
processes to the decay region.

5.2.1 Reconstruction theorem and Omnès representation

We will begin our discussion by decomposing the amplitude according to the reconstruc-
tion theorem in terms of functions of one Mandelstam variable only, cf. sec. 4.2. This
form will prove very convenient in the derivation of the integral equations and their nu-
merical solution at a later stage. Given the smallness of the available phase space, the
partial-wave expansion is truncated after S- and P -waves. Furthermore, a P -wave contri-
bution to ππ s-channel rescattering is forbidden by charge conjugation symmetry. Thus
the s- and t-channel discontinuities read#3

discsM(s, t, u) = disc f 0
0(s) , disctM(s, t, u) = disc g1

0(t)− zt t κπη(t) disc g1
1(t) ,
(5.10)

#3Here and in the following, relations that involve the discontinuity are always thought to contain an
implicit θ-function that denotes the opening of the respective threshold, i.e. θ(s−sthr) for the ππ channel
and θ(t− tthr) for the πη channel.
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where f I` and gI` refer to the partial-wave amplitudes of angular momentum ` and isospin
I: isospin conservation of the decay constrains the total isospin of the final-state pion pair
to I = 0, while the πη system always has I = 1. SinceM obeys the symmetry property
given in eq. (5.4), the u-channel discontinuity follows directly from t ↔ u, zt ↔ −zu. In
analogy to the derivation of eq. (4.42) we find the reconstruction theorem for M to be
given by

M(s, t, u) = F0
0(s) + G1

0(t) + G1
0(u) +

[
t (s− u) + ∆

]
G1

1(t) +
[
u (s− t) + ∆

]
G1

1(u) , (5.11)

where F I` and GI` are functions of one variable that only possess a right-hand cut. We stress
that the truncation of higher partial-wave amplitudes in the derivation of eq. (5.11) only
neglects the discontinuities or rescattering phases in partial waves of angular momentum
` ≥ 2: projectingM on the ππ D-wave (in the s-channel) yields a non-vanishing result,
however, this D-wave is bound to be real apart from three-particle-cut contributions.

We will briefly discuss the final-state scattering amplitudes that are involved in the
η′ → ππη decay, namely ππ → ππ and πη → πη, cf. sec. 2.3. Given again the maximum
energies accessible in the decay, both rescattering channels are treated in the elastic
approximation, such that the corresponding partial waves can be parametrized in terms of
a phase shift only, without any inelasticity effects. The ππ scattering amplitude (confined
to I = 0) is approximated as

T ππ0 (s, zs) = 32π σ−1
π (s) sin δ0

0(s) exp
[
iδ0

0(s)
]
, (5.12)

with δ0
0 denoting the S-wave phase shift. Analogously, the πη scattering amplitude can

be represented, neglecting D- and higher waves, according to

T 1(t, zt) = 16π

√
t2

λ(M2
π ,M

2
η , t)

(
sin δ1

0(t) exp
[
iδ1

0(t)
]

+ 3zt sin δ1
1(t) exp

[
iδ1

1(t)
])
, (5.13)

where δ1
` is the πη phase shift of angular momentum `.

The unitarity condition for the decay of the η′ to a generic three-body final state n
can be written as

discMn = i (2π)4

∫∑
m

δ(4)(pn − pm)T ∗m,nMm , (5.14)

whereMm denotes the η′ → m decay amplitude and Tm,n describes the m→ n transition,
while the sum runs over all possible intermediate states m, cf. sec. 2.2.2. The integration
over the intermediate-state momenta is implied in this short-hand notation. Limiting the
sum to ππ and πη rescattering, carrying out the phase-space integration, and inserting
the partial-wave expansion for the ππ and πη amplitudes eqs. (5.12) and (5.13), we find

discsM(s, t, u) =
i

2π

∫
dΩ′s sin δ0

0(s) exp
[
− iδ0

0(s)
]
M(s, t′, u′) ,

disctM(s, t, u) =
i

2π

∫
dΩ′t

(
sin δ1

0(t) exp
[
− iδ1

0(t)
]

+ 3z′′t sin δ1
1(t) exp

[
− iδ1

1(t)
])
M(s′, t, u′) ,

(5.15)



5.2 Khuri–Treiman equations for η′ → ππη 93

and similarly for the u-channel. Here, dΩ′s,t denotes the angular integration between
the initial and intermediate state of the respective s- or t-channel subsystem, while z′′s,t
refers to the CMS scattering angles between the intermediate and final state. Finally, we
can insert the expansion (5.10) on the left- and the reconstruction theorem of the decay
amplitude (5.11) on the right-hand side of eq. (5.15) and find the unitarity relations for
the single-variable functions F I` and GI` :

discF0
0(s) = 2i

[
F0

0(s) + F̂0
0(s)

]
sin δ0

0(s) exp
[
− iδ0

0(s)
]
,

discG1
`(t) = 2i

[
G1
`(t) + Ĝ1

`(t)
]

sin δ1
`(t) exp

[
− iδ1

`(t)] ,
(5.16)

where we used the fact that the inhomogeneities F̂ I` and ĜI` given by

F̂0
0(s) = 2〈G1

0〉+

[
3

2
(s− r)(3r − s) + 2∆

]
〈G1

1〉+ s κππ 〈zs G1
1〉+

κ2
ππ

2
〈z2
s G1

1〉 ,

Ĝ1
0(t) = 〈F0

0〉− + 〈G1
0〉+ +

1

4

[
3(r − t)(3r − t) + ∆

(
2− ∆

t2

)]
〈G1

1〉+

− κπη
2

[
t+

∆

t

]
〈zt G1

1〉+ −
κ2
πη

4
〈z2
t G1

1〉+ ,

Ĝ1
1(t) =

3

t κπη

{
〈ztF0

0〉− − 〈zt G1
0〉+ −

1

4

[
3(r − t)(3r − t) + ∆

(
2− ∆

t2

)]
〈zt G1

1〉+

+
κπη
2

[
t+

∆

t

]
〈z2
t G1

1〉+ −
κ2
πη

4
〈z3
t G1

1〉+
}
,

(5.17)
are free of right-hand cuts. Here we used the short-hand notation

〈zn BI`〉 :=
1

2

∫ 1

−1

dz zn BI`
(

3r − s+ zκππ(s)

2

)
,

〈zn BI`〉± :=
1

2

∫ 1

−1

dz zn BI`
(

3r − t+ zκπη(t)±∆/t

2

)
.

(5.18)

Note that the analytic continuation of eqs. (5.17) and (5.18) both in the Mandelstam
variables and the decay mass Mη′ involves several subtleties. This is discussed in detail
in refs. [127, 157, 186–188] for η(′) → 3π, as well as in ref. [120] for ω/φ → 3π and in
ref. [158] specifically for η′ → ηππ. One important consequence is the generation of
three-particle-cut contributions in the decay kinematics considered here.

The unitarity relations given in eq. (5.16) are an inhomogeneous Omnès problem for
the single-variable amplitudes F I` and GI` with inhomogeneities F̂ I` and ĜI` , cf. sec. 3.2.2.
Accordingly, the solution can be written as

F0
0(s) = Ω0

0(s)

{
P 0

0(s) +
sn

π

∫ ∞
sthr

dx
xn
F̂0

0(x) sin δ0
0(x)

|Ω0
0(x)| (x− s)

}
,

G1
`(t) = Ω1

`(t)

{
P 1
`(t) +

tn

π

∫ ∞
tthr

dx
xn
Ĝ1
`(x) sin δ1

`(x)

|Ω1
`(x)| (x− t)

}
.

(5.19)
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The order n of the subtraction polynomials in the dispersion relations is determined such
that the dispersion integrals are convergent. However, we can always oversubtract the
dispersion integral at the expense of having to fix the additional subtraction constants
and possible ramifications for the high-energy behavior of our amplitude, cf. sec. 3.1.2.#4

To study the convergence behavior of the integrand we have to make assumptions about
the asymptotic behavior of the phase shifts. We assume

δ0
0(s)→ π , δ1

0(t)→ π , δ1
1(t)→ 0 , (5.20)

as s, t → ∞. Note that an asymptotic behavior of δ(s) → kπ implies that the corre-
sponding Omnès function behaves like s−k in the same limit, cf. sec. 3.2.

Finally, we assume an asymptotic behavior of the amplitude inspired by the Froissart–
Martin bound [161,162],

M0
0(s) = O(s) , M1

0(t) = O(t) , M1
1(t) = O(t−1) , (5.21)

which allows the following choice for the subtraction polynomials:

P 0
0(s) = α0 + β0

s

M2
η′

+ γ0
s2

M4
η′
, P 1

0(t) = α1 + β1
t

M2
η′

+ γ1
t2

M4
η′
, P 1

1(t) = 0 . (5.22)

The subtraction constants thus defined are correlated since the decomposition eq. (5.11)
is not unique. By virtue of eq. (5.3), there exists a four-parameter polynomial transforma-
tion of the single-variable amplitudes F I` and GI` that leavesM invariant, cf. eq. (4.52).
Restricting the asymptotic behavior to eq. (5.21) reduces it to the following two-parameter
transformation:

F0
0(s) 7→ F0

0(s) + 2c1 + c2
s− r
M2

η′
, G1

0(t) 7→ G1
0(t)− c1 + c2

t− r
M2

η′
, (5.23)

which can be used to set the first two coefficients in the Taylor expansion of G1
0(t)

around t = 0 to zero. Since the transformation polynomial is a trivial solution of the
dispersion relation (with vanishing discontinuity), the transformed representation still
can be cast in the form of eq. (5.19). Relabeling the transformed subtraction constants
and inhomogeneities to the original names, we obtain the following form of the integral
equations:

F0
0(s) = Ω0

0(s)

{
α0 + β0

s

M2
η′

+ γ0
s2

M4
η′

+
s3

π

∫ ∞
sthr

dx
x3
,
F̂0

0(x) sin δ0
0(x)

|Ω0
0(x)| (x− s)

}
,

G1
0(t) = Ω1

0(t)

{
γ1

t2

M4
η′

+
t3

π

∫ ∞
tthr

dx
x3

Ĝ1
0(x) sin δ1

0(x)

|Ω1
0(x)| (x− t)

}
,

G1
1(t) =

Ω1
1(t)

π

∫ ∞
tthr

dx
Ĝ1

1(x) sin δ1
1(x)

|Ω1
1(x)|(x− t) .

(5.24)

#4Each additional subtraction constant contributes an additional power of s to the asymptotic behavior
of the amplitude if the corresponding sum rule for the subtraction constant is not fulfilled exactly. This
can lead to a violation of the Froissart–Martin bound.
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In the following, we will neglect the P -wave in πη scattering as it is strongly suppressed
with respect to the S-wave of ππ and πη scattering, cf. e.g. ref. [178,189]. In fact, the P -
wave in πη scattering has exotic quantum numbers, such that the phase shift is expected
to be very small at low energies. In ChPT, this phase (or the corresponding discontinuity)
only starts at O(p8) (three loops) and is therefore, in this respect, as suppressed as all
higher partial waves.

The decomposition of the amplitude in this case simply reads

M(s, t, u) = F0
0(s) + G1

0(t) + G1
0(u) . (5.25)

We will call the dispersive representation as outlined above “DR4”, as it depends on
four subtraction constants. In our numerical analysis, we compare it to a representation
where we further reduce the number of free parameters by assuming a more restrictive
asymptotic behavior of the amplitude: M(s, t, u) = O(s0, t0, u0) for large values of s, t,
u, respectively. In this case, the symmetrization procedure in the reconstruction theorem
is possible for S-waves only and the single-variable functions fulfill the integral equations

F0
0(s) = Ω0

0(s)

{
α + β

s

M2
η′

+
s2

π

∫ ∞
sthr

dx
x2

F̂0
0(x) sin δ0

0(x)

|Ω0
0(x)| (x− s)

}
,

G1
0(t) = Ω1

0(t)

{
γ

t

M2
η′

+
t2

π

∫ ∞
tthr

dx
x2

Ĝ1
0(x) sin δ1

0(x)

|Ω1
0(x)| (x− t)

}
.

(5.26)

Note that the transformation (5.23) still allows us to set the first subtraction constant
in G1

0 to zero. The second subtraction constant cannot be removed without changing the
asymptotic behavior. As there are three subtraction constants α, β, and γ, we refer to
this setup as “DR3”.

The representation DR4 (5.24) with δ1
1(t) = 0 is equivalent to DR3 (5.26), provided

that the subtraction constants γ0 and γ1 fulfill a certain sum rule in order to guarantee
the constraint of the asymptotic behavior. Explicitly, the relation between the DR4 and
DR3 subtraction constants is given by

α0 = α + γ
3r

M2
η′
, β0 = β − γ

(
1 + 3r ω0

0

)
,

γ0 = I0
0 + γ M2

η′

(
ω0

0 −
3r

2
ω̃0

0

)
, γ1 = I1

0 + γ M2
η′ ω

1
0 ,

(5.27)

where ωI` ≡ ΩI
`
′
(0), ω̃I` ≡ ΩI

`
′′
(0)−2(ΩI

`
′
(0))2, and the sum rule is encoded by the integrals

I0
0 =

M4
η′

π

∫ ∞
sthr

dx
x3

F̂0
0(x) sin δ0

0(x)

|Ω0
0(x)| , I1

0 =
M4

η′

π

∫ ∞
tthr

dx
x3

Ĝ1
0(x) sin δ1

0(x)

|Ω1
0(x)| . (5.28)

Since the Froissart–Martin bound is strictly valid only for elastic scattering, a
pragmatic approach concerning the number of subtractions is advisable. On the one
hand, we try to work with the minimal number of subtractions allowing for a good fit of
the data. On the other hand, additional subtractions help to reduce the dependence on
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the high-energy behavior of the phase shifts. Therefore, in our analysis we compare both
representations DR3 and DR4.

As we will show, the representation DR3 of eqs. (5.25) and (5.26) indeed allows for a
perfect fit of the data from the VES [182] and BESIII [183] experiments. With data of
even higher statistics, it might become possible to include the P -wave in the fit. In this
case, one needs to determine the four subtraction constants of the DR4 representation in
eq. (5.24). A fifth subtraction constant would be introduced if we assumed a different high-
energy behavior of δ1

1: if a resonance with exotic quantum numbers IG(JPC) = 1−(1−+)
coupling to πη exists (the search for which seems inconclusive so far [190, 191]) and we
assume the P -wave phase to approach π instead of 0 asymptotically, the P -wave would
allow for a non-vanishing (constant) subtraction polynomial in eq. (5.19), which cannot
be removed by the transformation (5.23).

The inclusion of a D-wave contribution in ππ rescattering, which has been suggested
in ref. [169] (in the form of the f2(1270) resonance) would require even higher-order
subtraction polynomials, cf. also ref. [192].

5.2.2 Numerical solution of the dispersion relations

The numerical treatment of the integral equations (5.24) or (5.26) is a rather nontrivial
matter, and specific care has to be taken in calculating the Omnès functions, the inhomo-
geneities with their complicated structure, as well as the dispersion integrals over singular
integrands. All the details can be found in [119,157,158,187,188].

The solution of the integral equations is obtained by an iteration procedure: we start
with arbitrary functions F0

0 and G1
0, which we choose to be the respectiveOmnès functions

Ω0
0 and Ω1

0; the final result is of course independent of the particular choice of these starting
points. Then we calculate the inhomogeneities F̂0

0 and Ĝ1
0 according to eq. (5.17), and

insert them back into the dispersion integrals (5.24) or (5.26). This procedure is repeated
until sufficient convergence with respect to the input functions is reached. The iteration
is observed to converge rather quickly after only a few steps.

The integral equations have a remarkable property that greatly reduces the numerical
cost of the calculations: they are linear in the subtraction constants, cf. sec. 3.4. Thus
we can write (for the DR3 representation)

M(s, t, u) = αMα(s, t, u) + βMβ(s, t, u) + γMγ(s, t, u) , (5.29)

where we have defined

Mα(s, t, u) ≡M(s, t, u)
∣∣
α=1, β=γ=0

, (5.30)

and analogously for the remaining basis amplitudes. Each basis amplitude fulfills the
decomposition (5.25), and we denote the corresponding single-variable amplitudes by
F0
α(s), G1

α(t), etc., i.e.

Mα(s, t, u) = F0
α(s) + G1

α(t) + G1
α(u) . (5.31)

We can perform the iteration procedure separately for each of these while fixing the
subtraction constants after the iteration.
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5.2.3 Phase-shift input

The crucial input in the dispersion relation consists of the ππ and πη S-wave phase shifts
δ0

0 and δ1
0. Below the threshold of inelastic channels, the dispersion relation correctly

describes rescattering effects according to Watson’s final-state theorem with phases δ0
0

and δ1
0 that are equal to the phase shifts of elastic scattering. In principle, a coupled-

channel analysis could be used to describe the process above the opening of inelastic
channels, e.g. the explicit inclusion of KK̄ intermediate states would provide a fully
consistent description in the region of the f0(980) and a0(980) resonances; such a coupled-
channel generalization of the Khuri–Treiman equations has recently been investigated
for η → 3π [151]. Alternatively, the single-channel equations (5.19) remain valid if we
promote δ0

0 and δ1
0 to effective phase shifts for this decay. As a full coupled-channel

analysis is beyond the goal of this work, we construct effective phase shifts and quantify
the uncertainties above the inelastic threshold. In such an effective one-channel problem,
there are two extreme scenarios of the phase motion of δ0

0 at the f0(980) resonance,
depending on how strongly the system couples to strangeness [193,194]: large strangeness
production manifests itself as a peak at the position of the f0(980) in the corresponding
Omnès function, and thus the phase shift is increased by about π while running through
the resonance (this scenario is also realized in the elastic ππ scattering phase shift). If
the coupling to the channel with strangeness is weak, the corresponding Omnès function
has a dip at the resonance position and the corresponding phase shift decreases (this
is realized in the phase of the nonstrange scalar form factor of the pion). Scenarios in
between these two extremes are conceivable.

For the input on the elastic ππ phase shift, we use the results of very sophisticated
analyses of the Roy (and similar) equations [133, 134]. As both analyses agree rather
well, we only take one of these parametrizations [133] into account. In fig. 5.1, we show
our phase δ0

0(s), which agrees with the Roy solution [133] below the inelastic threshold.
The uncertainty due to the variation of the parameters in the Roy solution is shown as
a red band labeled “low-energy uncertainty.”

Now, the continuation into the inelastic region is modeled as follows. We calculate
the S-waves for ηη′ → ππ and ηη′ → KK̄ in large-NC ChPT at next-to-leading order
(tree level) and unitarize this coupled-channel system with an Omnès matrix taken from
ref. [195]. The large-NC ChPT representation depends on the LECs L2 and L3. We take
their values from the most recent dispersive analysis of K`4 decays [196],

Lr2 = 0.63(13)× 10−3 , Lr3 = −2.63(46)× 10−3 , (5.32)

and vary each of them within its uncertainty. Adding the variations of the phase shift in
quadrature generates the broad blue band labeled “high-energy uncertainty” in fig. 5.1.
This treatment correctly generates a smooth phase drop by π with respect to the elastic
ππ scattering phase, and the uncertainty band covers a broad energy range for the po-
sition of this decrease. Still, the phase drops at sufficiently high energies such that the
corresponding Omnès function, shown in fig. 5.2, exhibits a peak at the position of the
f0(980) resonance. Asymptotically, we smoothly drive δ0

0 to a value of π. We wish to
emphasize that the role of the large-NC input is not essential and only that of an aux-
iliary tool, which allows for a smooth construction that obeys the two desired features:
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Fig. 5.1: The isospin-zero ππ S-wave effective phase shift δ0
0, constructed with input

from [133]. In the left panel, the physical region of the decay η′ → ππη between the
thresholds s = 4M2

π and s = (Mη′ −Mη)
2 is indicated by the gray area. The right panel

shows a magnification of the physical decay region.
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Fig. 5.2: The absolute value of the Omnès function |Ω0
0|, calculated from the ππ S-wave

effective phase shift δ0
0. The uncertainty band includes both uncertainties in the phase,

combined in quadrature.

the occurrence of an f0(980) peak in accordance with expectations from scalar-resonance
models (cf. e.g., sec. 5.5.1), and an asymptotic phase of π (as opposed to 2π, say). The
large high-energy uncertainty in fig. 5.1 should safely cover a large variety of phases obey-
ing these constraints. Note, finally, that in the physical region of the decay η′ → ππη, the
uncertainties of the phase and the Omnès function are small.

In the same spirit of an effective one-channel treatment, we consider isospin-breaking
effects. In the isospin limit, our formalism applies identically to both the charged and the
neutral processes η′ → π+π−η and η′ → π0π0η. In order to account for the most important
isospin-breaking effects, we construct effective phase shifts for the neutral decay mode that
have the correct thresholds and reproduce the expected nonanalytic cusp behavior, as we
explain in detail in app. C.1.
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is indicated by the gray area. The right panel magnifies the physical decay region. The
restricted high-energy uncertainty band is generated by varying the parameter in the
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Fig. 5.4: The absolute value of the Omnès function |Ω1
0|, calculated from the πη S-wave

effective phase shift δ1
0. The uncertainty band corresponds to the full parameter variation,

90° ≤ δ12 ≤ 125°.

For the πη phase shift δ1
0, we take the phase of the scalar form factor F πη

S of ref. [135]
as input, shown in fig. 5.3. In that reference, a πη–KK̄ S-wave coupled-channel T -
matrix has been constructed, to which chiral constraints [73] have been imposed as well
as experimental information on the a0(980) and a0(1450) resonances. The remaining
model uncertainty has been subsumed in the dependence on one single phase δ12. The
“central” solution corresponds to a parameter value of δ12 = 107.5°, while the uncertainty
band is generated as an envelope of the solutions obtained by varying the parameter in
the restricted range 90° ≤ δ12 ≤ 125° that is compatible with chiral predictions for the
scalar radius. The largest part of the high-energy uncertainty is generated by values of the
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parameter in the range 90° ≤ δ12 ≤ 105°, as shown in fig. 5.3: while for all δ12 ≥ 105°, the
phase approaches its asymptotic value of π very quickly above the a0(1450) resonance, this
convergence becomes very slow and is extended over a vast energy range for δ12 < 105°.
As this high-energy behavior turns out to affect the uncertainties in some (but not all)
quantities extracted from data fits rather strongly, we will occasionally also refer to the
reduced uncertainty, induced by the more restricted range 105° ≤ δ12 ≤ 125°. The Omnès
function with an uncertainty band generated by the full variation 90° ≤ δ12 ≤ 125° is
shown in fig. 5.4. In particular, we observe a pronounced peak at the position of the
a0(980) resonance for all parameter values.

5.3 Determination of the subtraction constants
After having solved the integral equations numerically, we have to determine the free
parameters in the dispersion relation, i.e. the subtraction constants α, β, and γ in the
case of the DR3 representation, or α0, β0, γ0, and γ1 in the case of DR4. We summarize
the experimental situation on η′ → ππη Dalitz plots in sec. 5.3.1. In sec. 5.3.2, we
discuss the results of fitting the subtraction constants to the most recent data sets.

5.3.1 Sampling of experimental Dalitz plots

In experimental analyses of the η′ → ππη Dalitz plot, one defines symmetrized coordi-
nates x and y according to

x =

√
3

2Mη′ Qη′
(t− u) , y = (Mη + 2Mπ)

(Mη′ −Mη)
2 − s

2MπMη′ Qη′
− 1 , (5.33)

where Qη′ ≡ Mη′ −Mη − 2Mπ, cf. app. B. The squared amplitude of the decay is then
expanded in terms of these variables,

|Mexp(x, y)|2 = |Nexp|2
(
1 + a y + b y2 + c x+ d x2 + ...

)
, (5.34)

and the parameters a, b, c, d are fitted to experimental data. Note that a nonzero value
for the parameter c (in η′ → π+π−η) would indicate violation of charge conjugation
symmetry; there is no indication of a nonzero c up to this point, cf. ch. 6. In the following
we consider two recent measurements of the charged final state η′ → π+π−η. These
determinations of the Dalitz-plot parameters by the BESIII [183] and the VES [182]
collaborations currently feature the highest statistics. In tab. 5.1 we have summarized
some details and results of the two experiments.

For our analysis, we have generated pseudodata samples from the Dalitz-plot dis-
tributions as measured by the two groups [198]; the resulting Dalitz-plot distributions
are shown in fig. 5.5. To check our results we have refitted the parametrization (5.34) to
the synthesized data sets, and find agreement with the fit parameters of tab. 5.1 within
statistical uncertainties, as well as with the correlation matrix quoted in ref. [183]. We
note that the two data sets disagree on the parameter a at the 2σ level; of course, it would
be desirable that this experimental disagreement be resolved by future measurements.



5.3 Determination of the subtraction constants 101
y

x

−0.8

−0.4

0

0.4

0.8

1.2

−1.2 −0.8 −0.4 0 0.4 0.8 1.2
60

80

100

120

140

y

x

−0.8

−0.4

0

0.4

0.8

1.2

−1.2 −0.8 −0.4 0 0.4 0.8 1.2
125

150

175

200

225

250

Fig. 5.5: Dalitz-plot samples for η′ → π+π−η from the experimental Dalitz-plot
distribution in tab. 5.1 for the BESIII (left panel) and the VES (right panel) experiment.
BESIII uses a 26× 22 grid with 438 bins in total and VES uses a 8× 8 grid with 50 bins
in total.

5.3.2 Fitting experimental data

We proceed by fitting the subtraction constants, which are the free parameters in our
dispersive representation of the amplitude, to the following data.

• Dalitz-plot distribution for the charged channel from BESIII [183] and VES [182]
experiments.

• The partial decay width Γ(η′ → π+π−η) [197].

Note that we use real fit parameters: in principle the subtraction constants can have
imaginary parts due to the complex discontinuity (5.16). However, since the imaginary
parts of the subtraction constants are proportional to three-particle-cut contributions,
and the available decay phase space of η′ → ππη is small, the imaginary parts are so tiny
that—given the precision of the data sets—their effect is entirely negligible (this is not
the case for processes involving the decay of heavier mesons, compare e.g. refs. [120,155]).

a b c d # events

BESIII [183] −47(11)(3) −69(19)(9) +19(11)(3) −73(12)(3) 43 826(211)

VES [182] −127(16)(8) −106(28)(14) +15(11)(14) −82(17)(8) ' 8623

Tab. 5.1: Dalitz-plot parameter measurements by the BESIII and VES collaborations
in units of 10−3. The first error on the Dalitz-plot parameters is always statistical,
the second systematic. We have estimated the number of η′ → π+π−η events for the
VES collaboration from the total number of selected η′ events and the branching ratio
BR(η′ → π+π−η) = (42.9± 0.7)% [197].
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In the following, we set up a scheme that allows us to fit both the experimental
Dalitz-plot distribution and the partial decay width simultaneously and avoids some
strong correlations between the fitting parameters.#5

First, we perform the following transformation of the fit parameters:

α = N̄ ᾱ , β = N̄ β̄ , γ = N̄ γ̄ . (5.35)

Hence, we write the squared amplitude as

|M(s, t, u)|2 = |N̄ |2 |M̄(s, t, u)|2 ,
∫

dx dy |M̄(x, y)|2 = 1 , (5.36)

where

M̄(s, t, u) = ᾱMα(s, t, u) + β̄Mβ(s, t, u) + γ̄Mγ(s, t, u) . (5.37)

The normalization condition of M̄ defined in eq. (5.36) results in a quadratic equation
for the rescaled subtraction constants ᾱ, β̄, and γ̄. We choose to express γ̄ in terms of ᾱ
and β̄. The experimental partial decay width now directly determines the normalization
N̄ and has no influence on the parameters ᾱ and β̄.

On the other hand, the experimental Dalitz-plot distribution (5.34) has again an
arbitrary normalization. Hence, we have to fit the Dalitz-plot data according to

|Mexp|2 = |Nexp|2
|M̄|2

|M̄(x = y = 0)|2 ≡ |N |
2 |M̄|2 . (5.38)

The Dalitz-plot distribution therefore determines the fitting parameters ᾱ, β̄, and the
irrelevant normalization Nexp or N .

Note that the experimental Dalitz-plot distribution is effectively described by three
Dalitz-plot parameters a, b, and d. In the representation DR3, the shape of the Dalitz-
plot distribution depends only on the two fitting parameters ᾱ and β̄. Therefore, the
parametrization DR3 has predictive power. The representation DR4 describes the shape
of the Dalitz-plot distribution again in terms of three parameters.

The result of the fit to data provides us with a representation of the amplitude that
fulfills the strong constraints of analyticity and unitarity. This will be an essential input
for a forthcoming dispersive analysis of η′ → 3π [199].#6

The experimental partial decay width [197]

Γ(η′ → π+π−η) =
1

256π3M3
η′

∫
ds dt|M(s, t, u)|2

=
MπQ

2
η′

128
√

3π3Mη′ (Mη + 2Mπ)

∫
dx dy |M(x, y)|2 = 84.5(4.1)× 10−6 GeV

(5.39)
#5We write down formulae for the DR3 representation with subtraction constants α, β, and γ. The

fitting procedure for the DR4 representation is completely analogous.
#6Notice that the decay η′ → 3π can proceed via η′ → ππη and isospin-breaking rescattering πη → ππ

(which can be extracted from analytic continuation of the dispersive amplitude η → 3π [200]) and direct
isospin breaking η′ → 3π.
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ᾱ

BESIII fit
VES fit

5

6

7

8

9

10

−3.5 −3 −2.5 −2

Fig. 5.6: Error ellipses for the DR3 fits to BESIII and VES in the plane of the rescaled
subtraction constants (ᾱ, β̄), corresponding to 68.27% confidence regions.

fixes the normalization to
N̄ = 13.88(34) . (5.40)

For the rescaled subtraction constants in the DR3 representation, the fit of the dispersive
representation with central values of the phase input to the BESIII data sample [183]
leads to

ᾱ = −2.34(26) 1.00 −1.00

β̄ = 6.70(83) 1.00
, γ̄

(
ᾱ, β̄

)
= 1.12(14) , (5.41)

while the fit to the VES data [182] gives

ᾱ = −2.63(54) 1.00 −1.00

β̄ = 7.41(1.73) 1.00
, γ̄

(
ᾱ, β̄

)
= 1.29(29) . (5.42)

−α β γ χ2/ndof

DRBESIII
3 33(4)(1) +5

−42 93(12)(3) −15
+127 16(2)(1) −3

+32 459/435 ≈ 1.06

DRVES
3 36(7)(1) +6

−56 103(24)(5) −19
+168 18(4)(0) −4

+41 43.1/47 ≈ 0.92

Tab. 5.2: Fit results for the DR3 subtraction constants for the BESIII and VES data
samples. The first error gives the combined uncertainty of the Dalitz-plot data and the
partial decay width of η′ → π+π−η, while the second (asymmetric third) error gives the
uncertainty due to the ππ (πη) phase input.
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The uncertainties and correlations are the statistical ones due to the fitted data. We
observe a strong anti-correlation between ᾱ and β̄. Note that choosing one or the other
of the two solutions of the quadratic constraint on γ̄ just results in an irrelevant overall
sign change of the amplitude.

Similarly, the fit of the dispersive representation DR4 to BESIII results in

ᾱ0 = −0.84(8) 1.00 −0.86 0.28

β̄0 = 2.01(46) 1.00 −0.73

γ̄0 = 1.79(1.25) 1.00

, γ̄1

(
ᾱ0, β̄0, γ̄0

)
= 0.38(5) , (5.43)

while the DR4 fit to the VES data gives

ᾱ0 = −0.79(16) 1.00 −0.85 0.19

β̄0 = 1.03(86) 1.00 −0.67

γ̄0 = 5.02(2.34) 1.00

, γ̄1

(
ᾱ0, β̄0, γ̄0

)
= 0.40(10) . (5.44)

Table 5.2 shows the χ2/ndof and the absolute subtraction constants obtained from the
DR3 fits to the sampled BESIII and the VES data sets. The first error is the statistical
fit uncertainty. It is dominated by the experimental uncertainty in the Dalitz-plot
distribution, while the uncertainty due to the partial decay width is small. The second
error is the systematic uncertainty due to the ππ phase input. The very asymmetric third
error is due to the πη phase input with a parameter variation in the range 90° ≤ δ12 ≤ 125°.
The upper error corresponds to δ12 ≥ 107.5°, while the lower error corresponds to δ12 ≤
107.5°. If the πη phase variation is restricted to a parameter range of 105° ≤ δ12 ≤ 125°,
the large lower error is much reduced and the uncertainty is covered by a symmetric error
with the magnitude of the upper error.

The variation of the πη phase input for δ12 ≤ 105° has some small effect on the χ2:
for BESIII, the variation is χ2 ∈ [1.05, 1.09], for VES we find χ2 ∈ [0.90, 0.93]. One
might be tempted to minimize the χ2 with respect to δ12 and try to extract information
on the parameter in the πη phase shift. However, such an attempt is futile. Figure 5.3
shows that the variation of the phase mostly affects the high-energy region above 1GeV.

−α0 β0 γ0 γ1 χ2/ndof

DRBESIII
3 11.2(1.0)(4) +0.7

−1.1 24(3)(1) +2
−13 36(5)(5) −6

+40 5.1(7)(2) −0.8
+0.9 459/435 ≈ 1.06

DRBESIII
4 11.6(1.1)(1) +0.9

−2.5 28(6)(3) −3
+9 25(17)(6) −1

+2 5.3(7)(1) −0.9
+3.2 459/434 ≈ 1.06

DRVES
3 11.9(2.0)(2) +1.0

−1.0 24(6)(1) +2
−14 42(10)(7) −7

+54 6.0(1.4)(1) −1.1
+1.5 43.1/47 ≈ 0.92

DRVES
4 11.0(2.2)(1) +1.1

−2.7 14(12)(4) −4
+10 70(33)(7) −1

+2 5.5(1.5)(1) −1.1
+3.3 42.4/46 ≈ 0.92

Tab. 5.3: Fit results for the DR4 subtraction constants for the BESIII and VES data
samples, obtained from the three-parameter fits via the sum rule (5.27) and directly from
the four-parameter fits. The first error is the fit uncertainty, the second (third) error is
the systematic uncertainty due to the ππ (πη) phase input.
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The variation in the parameter region 90° ≤ δ12 ≤ 105° mainly controls how fast the
phase reaches π in the “asymptotic” region. It would certainly be illusionary to extract
information on the phase at such high energies from η′ → ππη Dalitz-plot data. Hence,
the variation of the phase parameter δ12 simply has to be treated as a source of systematic
uncertainty.

The χ2/ndof is close to 1 in both fits, even though compared to the phenomenological
Dalitz-plot parametrization, the dispersive representation DR3 needs one parameter less
to describe the experimental data (disregarding the C-parity violating parameter c). At
first sight, the obtained values for the subtraction constants in the DR3 scheme seem
to be compatible between the fits to the two experimental samples. In fact, there is a
rather strong tension between the fits to the two experiments, disguised by the strong
anti-correlation between ᾱ and β̄. The error ellipses in the (ᾱ, β̄)-plane reveal that the
two fit results are not compatible with each other, cf. fig. 5.6.

Table 5.3 shows the χ2/ndof and a comparison of the absolute subtraction constants in
the DR4 scheme, obtained directly from the DR4 fits as well as extracted from the DR3 fits
via the sum rule (5.27). Due to correlations, the large systematic uncertainty from the πη
phase variation, which is visible in all DR3 subtraction constants α, β, and γ, prominently
shows up in the transformed constant γ0, while we observe a cancellation of this systematic
uncertainty in the other constants, especially in α0 and γ1. The main conclusion is,
however, that tab. 5.3 demonstrates the full consistency of the two subtraction schemes
with each other already within the statistical (fit) uncertainties alone.

DRBESIII
3 DRBESIII

4 DRVES
3 DRVES

4

−a 41(9)(1) −0
+1 42(10)(1)(0) 148(18)(1) −1

+3 145(18)(1)(0)

−b 88(7)(10) +5
−37 76(18)(0)(0) 82(14)(12) +7

−51 110(34)(0)(0)

−d 68(11)(2) −0
+17 69(11)(0)(0) 86(22)(1) −1

+13 85(22)(0)(1)

κ03[y3] 8(1)(2) −1
+4 7(2)(1)(0) 16(3)(3) −1

+8 20(5)(2)(0)

−κ21[y x2] 12(2)(0)(1) 11(2)(0)(1) 9(2)(0) +0
−1 10(2)(0)(1)

κ04[y4] 3(1)(1) −0
+1 3(1)(0)(0) 2(1)(1) −0

+1 5(2)(0)(0)

κ22[y2 x2] 3(1)(0) −0
+1 2(1)(0)(0) 5(2)(1) −0

+2 6(2)(0)(0)

κ40[x4] 0(1)(0)(0) 0(1)(0)(0) 0(1)(0)(0) 0(1)(0)(0)

Tab. 5.4: Dalitz-plot parameters obtained from a Taylor expansion of the dispersive
amplitude according to eq. (5.34), using the best fitting values of the subtraction constants
for the BESIII and VES data samples as input. All values are given in units of 10−3. The
values shown here are to be compared with tab. 5.1. The first error is the fit uncertainty,
the second (third) error is the systematic uncertainty due to the ππ (πη) phase input.
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Fig. 5.7: Decay spectra for η′ → π+π−η integrated over the variable y and divided by
the integral over the normalized phase space dΦ̄(x, y) (first and third rows) and for x↔ y
(second and fourth rows). We show the sampled data sets for the BESIII [183] (first
and second rows) and the VES [182] experiments (third and fourth rows). The DR3 (left
column) and DR4 fits (right column) are shown.
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In fig. 5.7, we display the decay spectrum integrated over the Dalitz-plot variables
x or y, respectively. The results of the two subtraction schemes DR3 and DR4 are very
similar. The DR4 scheme leads to a much smaller systematic uncertainty due to the phase
input at the expense of a larger statistical fit uncertainty.

By expanding the fitted dispersive representations around the center of the Dalitz
plot, we extract theDalitz-plot parameters a, b, and d listed in tab. 5.4. The values of the
polynomial fit to the Dalitz plot of tab. 5.1 are well reproduced within the uncertainties.
Note that this is a nontrivial observation, as the dispersive amplitude obviously is no
polynomial in the Mandelstam variables.

By comparing the two subtraction schemes DR3 and DR4, we see that the additional
parameter in DR4 has basically no influence on the χ2 of the fits. From the point of view
of the goodness of fit, the additional parameter in DR4 is unnecessary. In other words,
the subtraction constants extracted in the DR4 fit are compatible within errors with
the more restrictive high-energy behavior imposed on the DR3 amplitude, and fulfill the
corresponding sum rule (5.27), as can be seen in tab. 5.3.#7 However, by comparing the
systematic uncertainties, we see that the DR3 representation is rather strongly affected by
the uncertainties of the πη phase shift in the high-energy region, especially the extracted
Dalitz-plot parameters. The additional subtraction in DR4 suppresses the influence of
the high-energy phase uncertainty significantly. The price to pay is a larger (statistical)
fit uncertainty due to the additional fit parameter. Forthcoming data of even higher
statistics could reduce this fit uncertainty.

5.4 Predictions of the dispersive representation
With the subtraction constants of the dispersive representation fitted to experimental data
on η′ → π+π−η, we are in the position to make certain additional predictions. In sec. 5.4.1,
we quantify the nontrivial constraint between the leading Dalitz-plot parameters a, b,
and d that exists in the three-parameter scheme DR3. In sec. 5.4.2, we discuss higher
terms in the polynomial expansion of the Dalitz-plot distribution. We study the issue
of Adler zeros of the dispersive amplitude in sec. 5.4.3. Finally, in view of upcoming
high-precision measurements of the neutral decay channel, we specify predictions for the
same in sec. 5.4.4, taking into account the dominant effects of isospin breaking.

5.4.1 The a-b-d constraint

Provided that the dispersive representation DR3 with a more restrictive high-energy be-
havior and fewer subtractions than DR4 allows a good fit to data, it is possible to formulate
a relation between the three parameters a, b, and d, since in this scheme the Dalitz-plot
distribution only depends on two parameters. Although this relation is nonlinear and
cannot be easily given in closed form, we provide an approximate form of the constraint
between a, b, and d valid in the vicinity of the BESIII DR3 fit values in tab. 5.4. Defining

#7If the DR4 subtraction constants are extracted from the DR3 fit, the integral (5.28) leads to a tiny
imaginary part in γ0 and γ1 that we neglect.
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∆a ≡ a− aBESIII , ∆b ≡ b− bBESIII , ∆d ≡ d− dBESIII , (5.45)
we write the a-b-d constraint expanded to second order as

∆d = C10 ∆a+ C01 ∆b+ C20 ∆a2 + C11 ∆a∆b+ C02 ∆b2 (5.46)

and find the following results for the coefficients Cij:

C10 = 0.21 +0.03
−0.09 1.00 0.91

0.98
−0.91
−0.98

0.92
0.70

0.88
−0.41

C01 = 1.71 +0.43
−0.97 1.00 −1.00

−1.00
0.99
0.80

0.97
−0.27

C20 = −0.43 −0.11
+0.24 1.00 −0.99

−0.80
−0.97

0.27

C11 = −0.00 −0.00
+0.00 1.00 0.99

0.35

C02 = −0.02 −0.01
+0.01 1.00

, (5.47)

where the uncertainties and correlations are due to the variation of the phase shifts,
calculated from covariance matrices based on finite differences and an asymmetry due to
the πη phase variation.

Inserting the differences ∆a and ∆b between the VES and BESIII fits from tab. 5.4
into the a-b-d constraint (5.46) and propagating the uncertainties from eq. (5.47) leads to

∆d = −
(
18 +2
−7

)
× 10−3 , (5.48)

in agreement with the actual difference ∆d. The systematic uncertainty of the difference
∆d is reduced compared to the uncertainties of the two determinations of the parameter
d, since these variations are correlated. Restricting the variation of the πη phase to
105° ≤ δ12 ≤ 125° further reduces the lower asymmetric error to a value smaller in
magnitude than the upper error.

The relation (5.46) could be used in forthcoming experiments to perform a phenomeno-
logical fit of the Dalitz-plot distribution, where the number of free parameters is reduced
by one. Alternatively, the consistency with this constraint may be checked a posteriori.
We emphasize, though, that the relation is based on parameters extracted from fits using
the dispersive representation, which has a more physical energy dependence than just a
polynomial; as the example of the VES data demonstrates, it is not guaranteed that a
direct polynomial fit leads to identical results (cf. again tabs. 5.1 and 5.4). In the case of
the neutral decay channel η′ → π0π0η, the Dalitz-plot parametrization might differ by
an isospin-breaking effect, which should be corrected for before the constraint is applied;
cf. sec. 5.4.4.

5.4.2 Higher order Dalitz-plot parameters

From the result of the dispersion relation fitted to data, we can extract not only the
Dalitz-plot parameters a, b, and d, but also the coefficients of higher terms in the
expansion around the center of the Dalitz plot. We define these coefficients as follows:

|Mexp|2 = |Nexp|2
∞∑

i,j=0

κij x
i yj , (5.49)
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where κ00 = 1, κ01 = a, κ02 = b, and κ20 = d. C-parity implies κij = 0 for odd i.
The values for the parameters κij with i + j ≤ 4 are listed in tab. 5.4 for the fits of the
dispersion relation to the BESIII and VES data sets. We observe a clear hierarchy

a, b, d > κij
∣∣
i+j=3

> κij
∣∣
i+j=4

, (5.50)

with κij|i+j=4 an order of magnitude smaller than the parameters a, b, and d. The results
extracted from the DR3 and DR4 schemes are compatible with each other. In the case of
DR3, the systematic uncertainties from the variation of the πη phase shift dominate, while
in the case of DR4, the main uncertainties are the statistical fit errors and the systematic
uncertainties are suppressed. There are, however, some deviations between the fits to
the two different experimental data sets, mainly in κ03, which are a consequence of the
observed tension in the leading Dalitz-plot parameters.

If forthcoming experiments reach significantly higher statistics, it might become pos-
sible to extract these parameters directly in a phenomenological polynomial fit to data
and compare with our predictions.

5.4.3 Adler zeros

In the limit of one of the pion momenta going to zero, p1 → 0 or p2 → 0, current algebra
predicts two Adler zeros of the amplitude [66, 67, 170]. These soft-pion theorems are
protected by SU(2)L × SU(2)R symmetry, hence they only receive corrections of O(M2

π),
cf. sec. 1.3. While the off-shell continuation of the amplitude cannot be defined unam-
biguously, the Adler theorem implies that the on-shell amplitude is of O(M2

π) at the
two soft-pion points

s1 = 2M2
π , t1 = M2

η′ , u1 = M2
η ,

s2 = 2M2
π , t2 = M2

η , u2 = M2
η′ .

(5.51)

In the past, claims have been made that the a0(980) resonance removes the Adler zeros
based on the explicit inclusion of a scalar resonance propagator [171]. Let us study this
issue within our dispersive framework.

In fig. 5.8, we show the result for the dispersive amplitude fitted to data, evaluated
along a line of fixed s = 2M2

π . Both subtraction schemes DR3 and DR4 lead to very
similar results. We encounter zeros in both the real and imaginary part of the amplitude
at positions close to the soft-pion points, but for slightly smaller values of |t− u|. At the
resonance positions

|t− u| ≈ 2M2
a0
−M2

η′ −M2
η , (5.52)

which are also close but outside the soft-pion points, we observe a large peak in the
imaginary part and another zero in the real part. We conclude that the dispersive repre-
sentation refutes the resonance argument of ref. [171] that for η′ → ππη the low-energy
theorem does not result in an Adler zero of the amplitude. Although the corrections at
the soft-pion points are of O(M2

π/(M
2
η′ −M2

a0
)), which is not a small quantity, the zeros

of the amplitude survive and are just shifted to smaller values of |t− u|.
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Fig. 5.8: Real and imaginary part of the amplitude along a line of fixed s = 2M2
π . The

upper two panels give the fit of the dispersive representation to the BESIII, the lower
two panels to the VES data set. The DR3 (left column) and DR4 fits (right column) are
shown.

5.4.4 Neutral channel

So far, we have analyzed experimental Dalitz-plot data sets for η′ → π+π−η. To deduce
a comparably precise prediction for the neutral final state η′ → π0π0η, we have to consider
potentially enhanced sources of isospin-symmetry violation. The consideration of isospin
breaking, in particular due to the pion mass difference, in Dalitz-plot studies is a rather
subtle affair, which has recently received some attention in the context of η → 3π decay
studies [150, 201, 202]. While a correction for phase space alone is straightforward, it is
often less so to construct an amplitude that accordingly has all the thresholds in the right
places. This is particularly true in the context of dispersive analyses, as the ubiquitous
phase shifts are typically derived from a formalism (the Roy equations) that incorporates
isospin symmetry in an essential manner. Isospin-breaking effects are bound to affect
neutral-pion final states more strongly, as the isospin-symmetric phase shifts use the
charged pion mass as their reference scale. Furthermore, the pion mass difference induces
a cusp in π0π0 invariant mass spectra at the π+π− threshold [203, 204], a nonanalyticity
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that cannot be approximated by a polynomial Dalitz-plot distribution. Such a cusp is
known to appear more strongly in η′ → π0π0η [178] than, e.g., in η → 3π0 [205].#8

As we want to avoid the complications to solve Khuri–Treiman equations with
coupled channels [151, 206], we once more follow the strategy proposed in sec. 5.2.3 and
construct effective single-channel phase shifts, to be used as input for the corresponding
Omnès functions, from the phases of certain scalar form factors. We observe that the cusp
structure of the decay amplitude for η′ → π0π0η is very similar to that of the neutral-pion
scalar form factor

F 0
S(s) = 〈π0(p1) π0(p2)|m̂ (ūu+ d̄d)|0〉 , s = (p1 + p2)2 , (5.53)

in particular given that crossed-channel effects in η′ → π0π0η have a negligible influence
on its strength [178]. We will therefore employ argF 0

S as the input π0π0 S-wave phase
shift.

The precise construction of the effective π0π0 phase shift from the corresponding scalar
form factor is discussed in C.1. It takes into account the analytic structure near the two-
pion thresholds, where isospin breaking is enhanced due to the proximity of (S-wave)
threshold cusps, and scales effectively like

√
M2

π −M2
π0 , where we denote by Mπ the

charged and by Mπ0 the neutral pion mass. Regular, polynomial isospin-breaking effects
of order M2

π −M2
π0 are still neglected and assumed to be very small. Similarly, we show

there how a simple rescaling can be used to adapt the π±η phase shift to π0η in such a
way as to put all thresholds into the right places.

Our prediction for the decay η′ → π0π0η is therefore based on the subtraction constants
as extracted from η′ → π+π−η, but with π0π0 and π0η phase shifts adapted as compared
to the π+π− and π±η ones; in this way, the dominant effects of isospin violation due to
the charged-to-neutral pion mass difference are taken into account. The resulting decay
spectrum projected on the y direction is shown in fig. 5.9, where the nonanalytic structure
of the π+π− cusp is clearly visible.

Another rather strong isospin-breaking effect appears in the change of coordinates
from the Mandelstam variables to the Dalitz-plot variables x and y if the neutral pion
mass is used in eq. (5.33) for the parametrization of the neutral Dalitz plot, cf. app. B.
As such this effect has nothing to do with the decay amplitude itself but it affects the
Dalitz-plot expansion parameters. We introduce the isospin-breaking parameter

εiso ≡
(Mη + 2Mπ)Mπ0 Q0

η′

(Mη + 2Mπ0)MπQη′
− 1 ≈ 4.7% , (5.54)

whereQ0
η′ := Mη′−Mη−2Mπ0 . Given the phenomenological observation that 1� a, b, d >

κij for i + j ≥ 3, we neglect terms of O(εiso a
2, εiso a b, εiso a d, εiso κij) and of second order

in isospin breaking and find the following relation between the Dalitz-plot parameters
in the charged (no superscript) and the neutral system (superscript “0”):

a0 = a+ εiso (a+ 2b) , b0 = b (1 + 2εiso) , d0 = d

(
Q0
η′

Qη′

)2

. (5.55)

#8At two-loop order, the lower π0π0 mass induces an anomalous threshold in the η′ → π+π−η ampli-
tude. We have checked, though, that this does not lead to any enhanced isospin-breaking effect, using
the representation of ref. [178]. We thank M. Mikhasenko for suggesting this check.
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Fig. 5.9: Decay spectrum for η′ → π0π0η integrated over the variable x and divided
by the integral over the normalized phase space dΦ̄(x, y), where both are individually
normalized as given in eq. (5.36). The prediction is based on the BESIII fit result for
subtraction constants of the charged decay, cf. tabs. 5.2 and 5.3. The DR3 (upper panel)
and DR4 fit results (lower panel) are shown. The two error bands in each figure give the
uncertainties resulting from the fit to data and originating from the variation of the phase
input, respectively.

For parameters comparable to the BESIII fit results, this amounts to a sizeable correction:
we find a0 ≈ 1.25 a, b0 ≈ 1.09 b, d0 ≈ 1.15 d.

In particular, this correction has to be taken into account if the a-b-d constraint (5.46)
formulated in the charged system is employed for neutral Dalitz-plot parameters. For
convenience, below we provide the explicit form of the a-b-d constraint for the neutral
system. We apply the isospin correction to the BESIII fit values to define the reference
point in the neutral system:

∆a0 ≡ a0 − a0
BESIII , ∆b0 ≡ b0 − b0

BESIII , ∆d0 ≡ d0 − d0
BESIII , (5.56)

where

a0
BESIII = −51× 10−3 , b0

BESIII = −96× 10−3 , d0
BESIII = −78× 10−3 . (5.57)

Then the a-b-d constraint reads again

∆d0 = C0
10 ∆a0 + C0

01 ∆b0 + C0
20 (∆a0)2 + C0

11 ∆a0 ∆b0 + C0
02 (∆b0)2 , (5.58)

where the neutral coefficients are given by

C0
10 =

(
Q0
η′

Qη′

)2

(1− εiso)C10 , C0
01 =

(
Q0
η′

Qη′

)2(
C01 − 2εiso (C01 + C10)

)
,

C0
20 =

(
Q0
η′

Qη′

)2

(1− 2εiso)C20 , C0
11 =

(
Q0
η′

Qη′

)2(
C11 − εiso (3C11 + 4C20)

)
,

C0
02 =

(
Q0
η′

Qη′

)2(
C02 − 2εiso (2C02 + C11)

)
.

(5.59)
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With the values for the charged coefficients Cij given in eq. (5.47), this results in

C0
10 = 0.23 +0.03

−0.09 1.00 0.91
0.98

−0.91
−0.98

0.91
0.97

0.87
−0.45

C0
01 = 1.75 +0.44

−0.99 1.00 −1.00
−1.00

1.00
1.00

0.96
−0.32

C0
20 = −0.44 −0.11

+0.25 1.00 −1.00
−1.00

−0.96
0.32

C0
11 = 0.09 +0.03

−0.06 1.00 0.97
−0.27

C0
02 = −0.02 −0.01

+0.01 1.00

, (5.60)

5.5 Comparison to chiral approaches
As we have seen in sec. 5.3, our dispersive amplitude allows a good fit to both Dalitz-plot
data and the partial decay width. In a next step, we compare the dispersive amplitude
with predictions from extensions of ChPT (cf. sec. 1.3); we choose next-to-leading order
large-NC ChPT and resonance chiral theory (RChT) for that purpose. The results for
the amplitudes in both frameworks, taken from the analysis described in ref. [169], are
discussed in sec. 5.5.1. We decompose these amplitudes into forms amenable to a com-
parison to the dispersion relations and perform the matching in sec. 5.5.2. This allows us
to obtain chiral predictions for the subtraction constants and to compare them with the
fits to data.

5.5.1 Amplitudes from large-NC ChPT and RChT

Large-NC chiral perturbation theory allows the explicit inclusion of the η′ meson in an
effective-Lagrangian framework. It is founded on the notion that as NC → ∞, the
U(1)A anomaly and thus the chiral-limit mass of the η′ vanishes: the η′ becomes aNambu–
Goldstone Boson as the U(3)L×U(3)R symmetry is spontaneously broken to U(3)V [73,
168]. At leading order (LO) the η′ → ππη amplitude is given as [169,172,207–212]

MChPT
LO (s, t, u) =

M2
π

6F 2
π

[
2
√

2 cos(2θP )− sin(2θP )
]
, (5.61)

where θP is the ηη′ mixing angle that relates the flavor octet and singlet states to the
physical states η and η′ at leading order, and Fπ is the pion decay constant. At next-
to-leading order (NLO) loop contributions are still suppressed in the large-NC counting
scheme, and the full amplitude can be derived from the NLO Lagrangian [169],

MChPT
NLO (s, t, u) = cqq

[
M2

π

2
+

2 (3L2 + L3)

F 2
π

(
s2 + t2 + u2 −M4

η′ −M4
η − 2M4

π

)
− 2L5

F 2
π

(
M2

η′ +M2
η + 2M2

π

)
M2

π +
24L8

F 2
π

M4
π +

2

3
Λ2M

2
π

]

+ csq

√
2

3
Λ2M

2
π ,

(5.62)
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where cqq and csq are functions of the octet and singlet decay constants F8/0, as well as of
the two mixing angles θ8/0 required in the ηη′ mixing scheme at NLO [213,214]:

cqq =
F 2

0 S0 − 2F 2
8 S8 + 2

√
2F8 F0C08

3F 2
8 F

2
0 cos2(θ8 − θ0)

, csq = −
√

2F 2
0 S0 +

√
2F 2

8 S8 + F0 F8C08

3F 2
8 F

2
0 cos2(θ8 − θ0)

,

(5.63)
where we defined S0 = sin 2θ0, S8 = sin 2θ8, and C08 = cos(θ0 + θ8). Numerically, we use
cqq = 97.6(7.1)GeV−2 and csq = 4.4(2.9)GeV−2 [169,215] (cf. also ref. [216]).

For the low-energy constants L2 and L3, we use again the values from ref. [196], given
in eq. (5.32), while for L5 and L8, we use the results of the global BE14 fit [217]:

L5 = 1.01(06)× 10−3 , L8 = 0.47(10)× 10−3 , (5.64)

and finally Λ2 = 0.3 [169].
The second chiral approach that we consider is resonance chiral theory, which describes

the interactions between Nambu–Goldstone Bosons and resonances explicitly [218,
219]. RChT finds its most prominent application in the estimate of low-energy constants
by means of resonance saturation. It can, however, also be used to directly derive the
η′ → ππη decay amplitude from the RChT Lagrangian [169]. To properly match it to
the dispersive amplitude, it is useful to write it in the form

MRChT(s, t, u) = cqq

[
M2

S

M2
S − s

(
ρ− c2

d ∆

F 2
π M

2
S

− ρ s

M2
S

)
+

(
M2

S

M2
S − s

+
M2

S

M2
S − t

+
M2

S

M2
S − u

)(
ξ

M4
S

+
ψ

M2
S

+ c2
d

)
M2

S

F 2
π

]
,

(5.65)
where

ξ =
(
M2

η′ +M2
π

)(
M2

η +M2
π

)
c2
d − 6M2

π r cd cm + 4M4
π c

2
m ,

ψ = −3r c2
d + 4M2

π cm cd , ρ =
M2

π

2
− 3

ψ + c2
d (M2

S + r)

F 2
π

.
(5.66)

Here cd and cm describe the coupling between the scalar resonances and the Nambu–
Goldstone Bosons, and MS = 980MeV is the mass of the scalar multiplet. We will
use cd = 0.026(9)GeV and cm = 0.080(21)GeV, which fulfill the theoretical constraint
4cd cm = F 2

π rather well [169].
In the limit of large scalar masses, that is s, t, u, M2

π , M
2
η , M

2
η′ �M2

S, the low-energy
expansion of the amplitude (5.65) agrees with eq. (5.62) for [218]

3L2 + L3 =
c2
d

2M2
S

, L5 =
cd cm
M2

S

, L8 =
c2
m

2M2
S

, Λ2 = 0 . (5.67)

We note that these relations are not at all well fulfilled for the values of the constants
we employ, as cited above: in contrast to vector or axial-vector quantities, resonance
saturation of low-energy constants by narrow scalars is problematic at best.
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5.5.2 Matching chiral approaches with the dispersion relation

We perform the matching to the dispersion relations as follows: we decompose the chiral
amplitudes into single-variable amplitudes and require that the Taylor coefficients of
the latter agree between chiral and dispersive representations. This allows us to extract
chiral predictions for the subtraction constants. The derivation of the explicit matching
equations can be found in app. C.2.

In the case of large-NC ChPT, it is not possible to match directly to the three-
parameter representation (5.26), because the asymptotic behavior of the amplitude vi-
olates the condition that was used to fix the ambiguity of the decomposition. Therefore,
one has to match the chiral amplitude to the four-parameter representation (5.24). In the
case of RChT, the situation is different, because the asymptotic behavior allows a match-
ing to the three-parameter representation DR3. Hence, we have two possibilities: either
we perform the matching with the DR3 representation and require that the constant and
linear terms of the Taylor expansion agree between RChT and dispersive representation,
or we can also perform the matching with the DR4 representation and match constant,
linear, and quadratic terms in the expansion.

The results of the matching are shown in tab. 5.5 and should be compared to tabs. 5.2
and 5.3. In order to compare the chiral predictions with the fits to data, we define the
quantity

∆2
exp ≡

∑
i,j

(ti ∓ texp
i )(C−1)ij(tj ∓ texp

j ) , (5.68)

where ti stands generically for the Taylor coefficients used in the matching equations
and Cij is the covariance matrix of ti ∓ texp

i , including both statistical and systematic
errors. We choose the sign that leads to the smaller value of ∆2

exp (the minus sign for
RChT and the plus sign for large-NC ChPT)—we stress again that the dispersive fits
to data determine the amplitude only up to an overall sign. In eq. (5.68), we choose to
compare the Taylor coefficients instead of the subtraction constants, because their chiral
prediction only depends on the model input and is not entangled with Omnès expansion
parameters.

α(0) β(0) γ(0) γ1 ∆2
BESIII ∆2

VES

DRRChT
3 −7(4) 16(10) 0.8(4) - 18 17

DRRChT
4 −6(4) 12(9) 24(17) 0.8(4) 145 116

DRChPT
4 17(13) −42(32) −73(57) −14(12) 451 343

Tab. 5.5: Results of the matching between the dispersive amplitude and the large-NC

ChPT and RChT representations. In the case of RChT, the uncertainties are due to cqq,
cd, and cm, while for large-NC ChPT, the errors are due to cqq, csq, L2, L3, L5, and L8.
The quantity ∆2

exp is defined in eq. (5.68).
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The analogous quantity for the DR3 fits to BESIII and VES is

∆2
BESIII,VES = 22 , (5.69)

which quantifies again the tension between the two experiments. The values listed in
tab. 5.5 show that for both chiral approaches the four-parameter matching involving the
quadratic Taylor coefficients does not work at all. The fact that the DR3 matching to
RChT gives smaller values for ∆2

exp is explained rather by the larger systematic uncer-
tainties in this setup than a better agreement of the central values.

Given the tension between the two experiments, it is difficult to draw a conclusion
concerning the two chiral approaches. We observe mainly two problems in the matching.

1. The overall normalization is not well reproduced.

2. While the matching in both DR3 and DR4 schemes leads to reasonable relative
values of β/α or β0/α0, the predictions for the relative values of the terms γ/α or
γ0,1/α0 do not work at all.

In the case of large-NC ChPT, the amplitude scales with (3L2+L3), up to terms suppressed
byM2

π . On the one hand, the direct insertion of the phenomenological SU(3) LECs (5.32)
could be problematic: e.g. we have not taken into account additional uncertainties due
to the scale dependence of the SU(3) LECs, which does not appear at NLO in large-NC

ChPT. On the other hand, we cannot exclude that higher-order effects in the chiral and
large-NC expansion (i.e. effects only entering at one loop) produce large corrections.

5.6 Summary and conclusion

In this chapter we have presented a dispersive analysis of the decay η′ → ππη. We
have derived a set of integral equations on the grounds of unitarity for the corresponding
scattering process and performed an analytic continuation to the physical region of the
three-particle decay. The integral equations depend on ππ and πη scattering phase shifts
as well as on a set of subtraction constants. The phase shift of ππ scattering is strongly
constrained by chiral symmetry and Roy equations [133]. For the πη phase shift, the
phase of the scalar form factor F ηπ

S of ref. [135] is used as input.
Within two different subtraction schemes, the free constants have been fitted to data

sets of the Dalitz-plot distribution, sampled from the experimentally measured polyno-
mial Dalitz-plot parametrizations of the VES [182] and BESIII [183] experiments, as
well as the partial decay width [197]. The fits to data require a smaller number of free
parameters than a polynomial Dalitz-plot parametrization and still exhibit a good χ2.
Therefore, we have been able to derive a constraint between the Dalitz-plot parameters
a, b, and d from one of the two dispersive representations. Furthermore, we have made
predictions for higher-order polynomial parameters that have not been measured experi-
mentally so far. By taking into account the leading isospin-breaking effects, we have also
provided predictions for the neutral decay channel. We have further observed that the
amplitude exhibits Adler zeros despite the presence of the nearby a0(980) resonance,
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which only shifts the position of these zeros somewhat compared to the prediction of the
soft-pion theorem.

Matching to large-NC ChPT we find large deviations for the subtraction constants,
rendering this approach unfit to be used in an attempt to extract information on πη scat-
tering. When matching to RChT, the deviations are a bit smaller. However, the matching
in the three-parameter scheme shows less tension mainly because of the larger systematic
uncertainties. Furthermore, the RChT framework does not easily allow for systematic
improvements. Therefore, the theoretical prediction of the subtraction constants with
chiral models as opposed to fitting them to data currently does not seem to be a viable
option.

In the minimally subtracted dispersive amplitude representation, we have observed a
rather significant dependence of the subtraction constants on the assumed high-energy
behavior of the πη phase shift input. More precise experimental data than the one avail-
able to us in this study is required to come to definite conclusions about the sensitivity
of the η′ → ππη decay to low-energy πη scattering.

The derived amplitudes, compatible with the fundamental principles of analyticity and
unitarity, provide ideal tools to analyze forthcoming high-precision Dalitz-plot data, in
particular also for the neutral channel, by the A2 and BESIII collaborations [220, 221];
cf. also ref. [222] for a possible measurement at CB-ELSA. As a further theoretical devel-
opment, the fitted dispersive parametrization will be used as an input in a forthcoming
analysis of inelasticity effects in η′ → 3π [199].
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Chapter 6

C-violation and Dalitz-plot mirror
symmetry breaking in η → π+π−π0

Since the flavorless isoscalar η meson and the isovector pions have opposite G-parity,
the decay process of η → 3π is flavor-diagonal and only allowed to occur when isospin
I- and/or charge-conjugation C-symmetry are broken, cf. ch. 1. Moreover, parity P is
always conserved in η → 3π, since the η as well as the pions are pseudoscalar particles.
This directly implies CP -violation if C is broken in η → 3π. Bose symmetry demands the
three-pion system of total isospin I to be an eigenstate of C = (−1)I+1 [223]. Consequently
η → 3π in general can be mediated by three different operators: if C is conserved the
process can only happen through an isovector ∆I = 1 transition. When we allow for
C-violation two further decay mechanisms are possible, via isoscalar ∆I = 0 or isotensor
∆I = 2 operators [223–226]. As a further consequence of Bose symmetry, the C-violating
operators can only contribute to η → π+π−π0 but not to η → 3π0.

In general the Standard Model (SM) allows for transitions mediated by a C-conserving
isospin-breaking ∆I = 1 operator of either electromagnetic or strong origin, while flavor-
diagonal C-violating ∆I = 0, 2 operators are forbidden.#1 According to Sutherland’s
theorem, a statement of current algebra, electromagnetic contributions in η → 3π are
negligible [229, 230]. Thus the process has to be driven by the strong ∆I = 1 operator
generated by the difference of the up- and down-quark masses [88, 231, 232]. Indeed, as
confirmed by ChPT calculations, the strong interaction provides the dominant contri-
bution to η → 3π [233–235], while electromagnetic effects are found to add only tiny
corrections [201, 236]. Therefore modern dispersion-theoretical studies of η → 3π focus
on a consistent description of the final-state interactions driven by the SM strong ∆I = 1
operator in order to extract the light-quark mass double ratio Q2 ≡ (m̂2−m2

s)/(m
2
u−m2

d)
precisely [127,148–152].

However, beyond the Standard Model (BSM) we are allowed to add the two C-violating
∆I = 0, 2 operators that, besides the SM strong ∆I = 1 operator, can contribute to
η → π+π−π0. These additional contributions will become visible as breaking of mirror

#1Since only flavor-changing elements of the Cabibbo–Kobayashi–Maskawa matrix [227, 228] con-
tain the non-zero phase that leads to C- and CP -violation, the contribution of SM weak interactions to
C- and CP -violating η → π+π−π0 transitions invariably associated with strongly suppressed loop effects.
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symmetry of π+↔ π− in theDalitz-plot distribution, which are generated by interference
of the ∆I = 0, 2 BSM operators with the ∆I = 1 SM operator. In contrast to other C-
violating BSM processes, like the η → 3γ decay, the breaking of mirror symmetry in
η → π+π−π0 is linear in the BSM operators. For a detailed review on C- and CP -
violating processes in the η and η′ sector we suggest ref. [237]. Already in the 1960s it
was claimed that η → π+π−π0 is far more sensitive to ∆I = 2 than to ∆I = 0 transitions,
since the latter is suppressed by a large angular momentum barrier [224]. Effective BSM
operators X /C

I for η → π+π−π0 are given by

X
/C
0 ∼ εijk (∂µ∂ν∂λπ

i)(∂µ∂νπj)(∂λπk) η ,

X
/C
2 ∼ εij3 π

i (∂µπ
j)(∂µπ3) η ,

(6.1)

involving at least six derivatives for a ∆I = 0 transition, while for ∆I = 2 only two
derivatives are required. This implies a strong kinematic suppression of the ∆I = 0
transition compared to ∆I = 2 across the Dalitz plot given the small available phase
space in η → π+π−π0, as long as the respective coupling strength of both operators is of
similar size.

Studying the charge asymmetry of the η → π+π−π0 Dalitz-plot distribution of-
fers an ideal stage in the search for BSM physics. The simplest observable that can be
probed experimentally is the left-right asymmetry ALR that compares the two halves of
the Dalitz-plot distribution divided along the π+↔ π− line of reflection [238]. It is also
possible to construct more sophisticated quadrant and sextant asymmetry parameters AQ
and AS that allow us to disentangle the contributions of the BSM ∆I = 0, 2 operators,
respectively [223,225,238]. The KLOE and KLOE-2 collaborations report all three asym-
metry parameters to be consistent with zero [239, 240]. Alternatively, C-violation in the
phenomenological expansion of the Dalitz-plot distribution can be studied by allowing
for both C-conserving and C-violating terms, cf. app. B. Until now the KLOE-2 collab-
oration has probed the first four C-violating terms of this parameterization, which again
are all consistent with zero [240]. Thus, experimentally there is no evidence found for
C-violation in η → π+π−π0.

After the discovery of CP -violatingK0
L → ππ decays in the 1960s [241,242], theoretical

studies of C-violation in η → π+π−π0 first came to prominence [223,225,238]. Since then
C-violation in this decay has been neglected by theory until recently a new theoretical
formalism was proposed in ref. [243]. In this framework the decay amplitude is decom-
posed into three contributions that can be associated with the ∆I = 0, 1, 2 operators.
The additional BSM amplitudes involve two complex-valued normalizations that fix the
individual strengths of the ∆I = 0, 2 transitions, respectively. Physically this approach
is more meaningful compared to the simple phenomenological parameterization, as it al-
lows for a direct extraction of the coupling strengths to the underlying BSM operators.
However, the construction of the BSM amplitudes in ref. [243] is inconsistent at a certain
level, since the description of crossed-channel final-state interactions is missing. Ref. [243]
finds the BSM normalization of the ∆I = 0 amplitude to be between two and four orders
of magnitude larger than the ∆I = 2 one, lifting the predicted kinematic suppression of
the ∆I = 0 transition [224], but again there is no hint for C-violation in η → π+π−π0 as
both BSM normalizations are consistent with zero.
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In this chapter we generalize the dispersion-theoretical analysis of C-conserving SM
η → 3π decays to additional C-violating BSM contributions. Accordingly, the presented
dispersive representation of η → 3π accounts for a consistent description of the final-state
interactions among the pions in the ∆I = 0, 1, 2 transitions, cf. chs. 4 and 5. The discus-
sion is organized as follows: we start with the definition of the T -matrix element and the
general kinematics of this process in sec. 6.1. In sec. 6.2 we discuss the dispersive repre-
sentation of the C-conserving and C-violating parts of the amplitude. The determination
of the subtraction constants, i.e., the free parameters of our dispersive representation,
by a χ2-fit to data is described in sec. 6.3. Afterwards we compare our representation of
the η → 3π amplitude to measurements of the Dalitz-plot distribution and theoretical
constraints in sec. 6.4. We conclude with a short summary in sec. 6.5.

6.1 Kinematics and the matrix element
The T -matrix element of the η(p1)→ πi(p2) πj(p3) πk(p4) decay will be defined by〈

πi(p2) πj(p3) πk(p4)
∣∣iT ∣∣η(p1)

〉
= i (2π)4 δ(4)(p1 − p2 − p3 − p4) T ijk(s, t, u) , (6.2)

where πi denotes a pion state in the Hermitian basis (2.50). In general the ampli-
tude T ijk will contain contributions generated by either C-conserving ∆I = 1 SM or
C-violating ∆I = 0, 2 BSM operators, which we split according to

T ijk(s, t, u) =
M̂2

K+ − M̂2
K0

3
√

3F 2
π

T ijkC (s, t, u) + T ijk/C
(s, t, u) . (6.3)

Conventionally the SM strong isospin-breaking normalization in terms of the QCD kaon
mass splitting (1.56) is factored out from the C-conserving part of the amplitude [150,152].
In the following we refer to this normalization factor as ξ.

We treat the pion triplet as mass degenerated, i.e., Mπ ≡ Mπ± = Mπ0 , accordingly
the Mandelstam variables (cf. sec. 2.2.1) will be given by

s = (p2 + p3)2 , t = (p2 + p4)2 , u = (p3 + p4)2 , (6.4)

and obey the identity
M2

η + 3M2
π = s+ t+ u ≡ 3r . (6.5)

In the s-channel (2.30) we will make use of

t(s, zs) = u(s,−zs) =
1

2

(
3r − s+ κ(s) zs

)
, (6.6)

where zs ≡ cos θs defines the s-channel scattering angle (2.31)

zs =
t− u
κ(s)

, κ(s) =

√
λ(s,M2

π ,M
2
π)λ(s,M2

π ,M
2
η )

s
. (6.7)

Analogous relations hold for the t- (2.36) and u-channels (2.38).
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Next we want to discuss the isospin structure of the pions in T ijk. For the C-conserving
SM part T ijkC the decomposition#2

T ijkC (s, t, u) = δij δk3MC
1 (s, t, u) + δik δj3MC

1 (t, u, s) + δi3 δjkMC
1 (u, s, t) (6.8)

holds, where we introduced the isovector amplitudeMC
1 that fulfils the symmetry property

MC
1 (s, t, u) =MC

1 (s, u, t) . (6.9)

On the other hand the isospin structure of the pions in the C-violating BSM part T ijk/C
can be separated according to

T ijk/C
(s, t, u) = εijk

[
M/C

0 (s, t, u)+δk3M/C
2 (s, t, u)+δj3M/C

2 (t, u, s)+δi3M/C
2 (u, s, t)

]
, (6.10)

governed by the totally antisymmetric Levi-Civita tensor, cf. eq. (6.1). Under pair-
wise interchange of the Mandelstam variables the isoscalar amplitude M/C

0 is totally
antisymmetric

M/C
0 (s, t, u) =M/C

0 (t, u, s) =M/C
0 (u, s, t)

= −M/C
0 (s, u, t) = −M/C

0 (t, s, u) = −M/C
0 (u, t, s) ,

(6.11)

while the isotensor amplitudeM/C
2 obeys the antisymmetry property

M/C
2 (s, t, u) = −M/C

2 (s, u, t) . (6.12)

In nature two versions of the η → 3π decay are realized: a charged η → π+π−π0 and
a neutral η → 3π0 decay mode. We will describe these two modes by the amplitudes
Mc andMn. According to the decomposition of T ijk given in eqs. (6.8) and (6.10) these
amplitudes are given by

Mc(s, t, u) =MC
1 (s, t, u) + ξ−1

[
M/C

0 (s, t, u) +M/C
2 (s, t, u)

]
,

Mn(s, t, u) =MC
1 (s, t, u) +MC

1 (t, u, s) +MC
1 (u, s, t) .

(6.13)

6.2 Dispersion relations for η → 3π

Following the steps described in ch. 4, we briefly want to discuss the dispersive framework
forMC

1 ,M/C
0 , andM/C

2 based on Khuri–Treiman equations, cf. also sec. 5.2. According
to analyticity the three amplitudes are holomorphic in the Mandelstam plane up to
branch cuts starting at the two-pion production threshold in all channels

sthr = tthr = uthr = 4M2
π . (6.14)

#2The derivation of this decomposition follows the same ideas as already discussed for the ππ scattering
amplitude in sec. 2.3.1 with keeping l = 3 fixed.
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We relate these branch cuts inMC
1 ,M/C

0 , andM/C
2 to the discontinuities of the partial-

wave amplitudes bI` in each channel, respectively. Here and in the following ` and I refer to
the angular momentum and isospin quantum numbers of the two-body subsystems in the
s-, t-, and u-channel expansions. Since the available phase space of η → 3π is small, we can
safely neglect D- and higher partial-waves in these expansions, i.e., only discontinuities of
S- and P -waves will be considered. Accordingly, the reconstruction theorem allows us to
decomposeMC

1 ,M/C
0 , andM/C

2 in terms of single-variable amplitudes BI` containing the
information on the discontinuity of bI` along the right-hand cut, cf. sec. 4.2. Contributions
to the left-hand cuts of bI` reside entirely in the crossed-channel projections B̂I` . Thus the
partial-wave amplitudes will be given by

bI`(s) = BI`(s) + B̂I`(s) . (6.15)

6.2.1 Reconstruction theorems forMC
1 ,M

/C
0 , andM/C

2

We define the expansion of the isovector amplitudeMC
1 into partial-wave amplitudes f I`

in analogy to eq. (4.29). SinceMC
1 has to obey the symmetry relation given in eq. (6.9),

the s-channel expansion allows only for contributions of even partial-wave amplitudes to
the discontinuity#3

discsMC
1 (s, zs) = disc f 0

0(s)− 2

3
disc f 2

0(s) . (6.16)

Similarly, the t- and u-channel discontinuities read

disctMC
1 (t, zt) = disc f 2

0(t)− zt κ(t) disc f 1
1(t) ,

discuMC
1 (u, zu) = disc f 2

0(u) + zu κ(u) disc f 1
1(u) .

(6.17)

The numerical prefactors of the allowed two-body isospin combinations in these expansions
can be extracted from the Clebsch–Gordon decomposition [14].

Following the steps in derivation of eq. (4.42) by using the discontinuities of eqs. (6.16)
and (6.17) the reconstruction theorem for the isovector amplitude yields

MC
1 (s, t, u) = F0

0(s) + (s− u)F1
1(t) + (s− t)F1

1(u) + F2
0(t) + F2

0(u)− 2

3
F2

0(s) , (6.18)

where F I` denotes the single-variable amplitude. In accordance with eq. (6.9) this decom-
position ofMC

1 is symmetric under interchange of t↔ u. Moreover, the decomposition is
unaffected by a polynomial shift of the single-variable amplitudes F I` 7→ F I` + ∆F I` given
by

∆F0
0(s) = −4a+ b (5s− 9r)− 3c (s− r)− 27d r (s− r)

+ 4d s2 − 162e r2 (s− r)− 4e s2 (s− 9r) ,

∆F1
1(s) = c+ 3d s+ 9e s2 ,

∆F2
0(s) = 3a+ 3b s− 3d s2 + 3e s2 (s− 9r) ,

(6.19)

#3Here and in the following relations that involve the discontinuity are always meant to be valid along
the right-hand cut only, which starts at the two-pion threshold in the respective channel.
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revealing a five-parameter ambiguity. Performing a partial-wave projection (4.53) of the
decomposition given in eq. (6.18) we find

F̂0
0(s) =

2

9

[
3〈F0

0〉+ 9(s− r) 〈F1
1〉+ 3κ(s) 〈zsF1

1〉+ 10〈F2
0〉
]
,

F̂1
1(s) =

1

2κ(s)

[
6〈zsF0

0〉+ 9(s− r) 〈zsF1
1〉+ 3κ(s) 〈z2

s F1
1〉 − 10〈zsF2

0〉
]
,

F̂2
0(s) =

1

6

[
6〈F0

0〉 − 9(s− r) 〈F1
1〉 − 3κ(s) 〈zsF1

1〉+ 2〈F2
0〉
]
,

(6.20)

where we used the short-hand notation for the angular integrals

〈zns F I`〉 =
1

2

∫ 1

−1

dzs zns F I`
(
t(s, zs)

)
. (6.21)

In accordance with eq. (6.11) the expansion the isoscalar amplitudeM/C
0 into partial

waves allows only for terms that are antisymmetric under any pairwise interchange of
Mandelstam variables. Hence, only odd partial-wave amplitudes gI` will contribute to
the discontinuity in all three channels x ∈ {s, t, u} with

discxM/C
0 (x, zx) = zx κ(x) disc g1

1(x) . (6.22)

Repeating the steps in deriving eq. (4.49) with these discontinuities the reconstruction
theorem for the isoscalar amplitude reads

M/C
0 (s, t, u) = (t− u)G1

1(s) + (u− s)G1
1(t) + (s− t)G1

1(u) , (6.23)

which indeed is fully antisymmetric under pairwise interchange of the Mandelstam
variables. Likewise to eq. (6.19) the decomposition into the single-variable amplitude GI`
is not unambiguous, in fact eq. (6.23) stays invariant under a three-parameter polynomial
shift GI` 7→ GI` + ∆GI` given by

∆G1
1(s) = a+ b s+ c s2 (3r − s) . (6.24)

A partial-wave projection (4.53) of the decomposition given in eq. (6.23) reveals

Ĝ1
1(s) = − 3

κ(s)

[
3(s− r) 〈zs G1

1〉+ κ(s) 〈z2
s G1

1〉
]
, (6.25)

where the angular integrals contained in the projection ĜI` are defined in analogy to
eq. (6.21).

Since the isotensor amplitude M/C
2 has to fulfil the antisymmetry property derived

in eq. (6.12), a s-channel expansion of M/C
2 is not allowed to contain even partial-wave

amplitudes hI` . Accordingly, the s-channel discontinuity ofM/C
2 reads

discsM/C
2 (s, zs) = 2zs κ(s) disch1

1(s) , (6.26)
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while for the t- and u-channel discontinuities we find

disctM/C
2 (t, zt) = disch2

0(t)− zt κ(t) disch1
1(t) ,

discuM/C
2 (u, zu) = −disch2

0(u)− zu κ(u) disch1
1(u) .

(6.27)

In analogy to eqs. (6.16) and (6.17) the Clebsch–Gordon decomposition [14] of the
allowed two-body isospin combinations in these expansions determine the numerical pre-
factors.

Recapitulating the steps in deriving eq. (4.46) by using the discontinuities given in
eqs. (6.26) and (6.27) the reconstruction theorem for the isotensor amplitude in terms of
the single-variable amplitudes HI

` yields

M/C
2 (s, t, u) = 2(t− u)H1

1(s) + (t− s)H1
1(u) + (s− u)H1

1(t) +H2
0(t)−H2

0(u) . (6.28)

As required this decomposition of M/C
2 is antisymmetric under interchange of t ↔ u.

Moreover, we note that the decomposition into the single-variable functions reveals a
four-parameter ambiguity that allows for a polynomial shift HI

` 7→ HI
` + ∆HI

` according
to

∆H1
1(s) = a+ b s+ c s2 ,

∆H2
0(s) = d− 3a s+ 3b s (s− 3r) + 9c r s (s− 2r)− c s3 .

(6.29)

Performing a partial-wave projection (4.53) of eq. (6.28) we find

Ĥ1
1(s) =

3

2κ(s)

[
3(s− r) 〈zsH1

1〉+ κ(s) 〈z2
s H1

1〉+ 2〈zsH2
0〉
]
,

Ĥ2
0(s) =

1

2

[
9(s− r) 〈H1

1〉+ 3κ(s) 〈zsH1
1〉 − 2〈H2

0〉
] (6.30)

in terms of the angular integrals (6.21).
Finally, we would like to address the leading corrections of the reconstruction theorems

for MC
1 , M/C

0 , and M/C
2 stated in eqs. (6.18), (6.23), and (6.28). The next partial-wave

amplitudes that will contribute to the discontinuities are coming from D- (I is even) and
F -waves (I is odd). Since the symmetry structure of the isoscalar amplitude does not
allow for even partial waves, it is obvious that eq. (6.23) actually holds up to corrections
of F - and higher partial-waves. Moreover, possible D-wave contributions to the discon-
tinuity of the isotensor amplitude (6.27) are only allowed to stem from I = 2. Apart
from these effects, which should be tiny compared to a I = 0 D-wave channel that will
appear in eq. (6.16), the isotensor amplitude is also free of D-wave contributions to the
discontinuity. In contrast to the C-conserving amplitude MC

1 we conclude that the re-
construction theorems for the C-violating amplitudesM/C

0 andM/C
2 will not receive any

(important) corrections from D-wave discontinuities of the partial-wave amplitudes.

6.2.2 Unitarity condition and the Omnès representation

It has been shown in many dispersion-theoretical analyses of SM η → 3π decays that the
dominant contributions to the branch cuts of the partial-wave amplitudes bI` ∈ {f I` , gI` , hI`}
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Fig. 6.1: The S- and P -wave ππ scattering phase shifts δI` at low energies as determined
by Roy equation analysis [132, 133]: δ0

0 (red), δ1
1 (green), and δ2

0 (blue). The gray region
marks the phase-space boundaries of the η → 3π decay.

stem from elastic ππ final-state rescattering [127, 148–152].#4 According to the elastic
approximation the unitarity condition of bI` along the right-hand cut reads [127,244]

disc bI`(s) = 2i bI`(s) sin δI`(s) exp
[
− iδI`(s)

]
, (6.31)

determined by the information on the ππ scattering phase shifts δI` solely, cf. sec. 2.3.1.
Since disc bI` = discBI` along the right-hand cut 6.15, we notice that eq. (6.31) results in
an inhomogeneous Omnès problem for the single-variable amplitude BI` with the inho-
mogeneity B̂I` , cf. sec. 3.2.2.

In order to assure convergence of the Omnès representation (3.44) for the single-
variable amplitudes BI` we need to fix the subtraction scheme. To that end we have
to make some assumptions on the high-energy behaviour of BI` and the ππ scattering
phase shifts δI` . We force the amplitudesMC

1 ,M/C
0 , andM/C

2 to scale asymptotically like
constants, i.e., we are even more restrictive than demanded by the Froissart–Martin
bound [161,162], to keep the number of unknown subtraction constants as low as possible.
In accordance with the reconstruction theorems derived in eqs. (6.18), (6.23), and (6.28)
the single-variable amplitudes will behave like

B0
0(s) � 1 , B1

1 � s−1 , B2
0 � 1 (6.32)

in the asymptotic limit s → ∞. For the ππ scattering phase shifts δI` we rely on a
representation using a Roy equation analysis [132, 133], which determines the behaviour

#4We want to mention that a more elaborate formalism accounting for πη initial-state rescattering as
well as coupled channel KK̄ contributions has been investigated in [151].
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of δI` at low energies very precisely, cf. fig. 6.1. However, at high energies these equations
do not impose strong bounds on the behaviour of δI` . Therefore we continue the phase
shifts by demanding

δ0
0(s)→ π , δ1

1(s)→ π , δ2
0(s)→ 0, (6.33)

when approaching the asymptotic limit s→∞.
With these considerations made we will use a twice-subtracted Omnès representation

for B0
0, while B1

1 and B2
0 are given by once-subtracted Omnès representations. Thus the

single-variable amplitudes F I` appearing in the decomposition of the isovector amplitude
MC

1 are given by

F0
0(s) = Ω0

0(s)

[
α + β s+

s2

π

∫ ∞
4M2

π

dx
x2

F̂0
0(x) sin δ0

0(x)

|Ω0
0(x)| (x− s)

]
,

F1
1(s) = Ω1

1(s)

[
γ +

s

π

∫ ∞
4M2

π

dx
x

F̂1
1(x) sin δ1

1(x)

|Ω1
1(x)| (x− s)

]
,

F2
0(s) = Ω2

0(s)

[
s

π

∫ ∞
4M2

π

dx
x

F̂2
0(x) sin δ2

0(x)

|Ω2
0(x)| (x− s)

]
,

(6.34)

where we used eq. (6.19) and the result of sec. 3.5 to eliminate the subtraction constant
in F2

0.
Similarly, the single-variable amplitude G1

1 contained in the decomposition of the
isoscalar amplitudeM/C

0 reads

G1
1(s) = Ω1

1(s)

[
ε+

s

π

∫ ∞
4M2

π

dx
x

Ĝ1
1(x) sin δ1

1(x)

|Ω1
1(x)| (x− s)

]
. (6.35)

According to the ambiguity shift defined in eq. (6.24) the representation for G1
1 is special:

without spoiling the constraint on the high-energy behaviour of M/C
0 we are allowed to

write down twice- or even three-times subtracted Omnès representations for G1
1, which

still depend on one subtraction constant only. Since the subtraction constants of these
three representations are connected by a sum rule (3.21), the isoscalar amplitude M/C

0

remains unchanged.
Finally, the single-variable amplitudes HI

` appearing in the decomposition of the
isotensor amplitudeM/C

2 satisfy

H1
1(s) = Ω1

1(s)

[
ϑ+

s

π

∫ ∞
4M2

π

dx
x

Ĥ1
1(x) sin δ1

1(x)

|Ω1
1(x)| (x− s)

]
,

H2
0(s) = Ω2

0(s)

[
s

π

∫ ∞
4M2

π

dx
x

Ĥ2
0(x) sin δ2

0(x)

|Ω2
0(x)| (x− s)

]
,

(6.36)

where we made use of eq. (6.29) to eliminate the subtraction constant in H2
0.
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We want to draw the attention to a powerful property of the integral equations derived
so far: the Omnès representations of the single-variable amplitudes BI` and the angular
projections B̂I` are linear in the subtraction constants. Accordingly, as discussed in sec. 3.4
we can solve for basis amplitudes ofMC

1 ,M/C
0 , andM/C

2 that are independent of the sub-
traction constants by construction. It becomes immediately clear that the two subtraction
constants ε and ϑ introduced in eqs. (6.35) and (6.36) will serve as overall normalizations
of isoscalar and isotensor amplitudes, while their energy dependence (or the Dalitz-plot
distribution) is a theoretical prediction solely determined by the ππ final-state dynamics.
We want to emphasize that the two BSM amplitudes M/C

0 and M/C
2 contain only one

subtraction constant each. On the other hand the representation of the SM isovector am-
plitude given in eq. (6.34) involves three subtraction constants α, β, and γ, which contain
the normalization as well as information on the energy dependence ofMC

1 . In general all
five subtraction constants α, β, γ, ε, and ϑ are allowed to be complex-valued.

6.2.3 Taylor invariants

As discussed in sec. 6.2.1 the decomposition of the amplitudesMC
1 ,M/C

0 , andM/C
2 given in

eqs. (6.18), (6.23), and (6.28) in terms of the single-variable amplitudes BI` ∈ {F I` ,GI` ,HI
`}

are not unique as they remain invariant under the polynomial shifts of eqs. (6.20), (6.24),
and (6.29), respectively. Hence, the free parameters of the dispersive framework (the
subtraction constants) are not unique, as they depend on the chosen ambiguity shifts.
Additionally the subtraction scheme, i.e., the introduced number of subtractions to the
dispersive relations, adjusts when changing the high-energy behaviour of the amplitudes.
For this reason the subtraction constants defined in eqs. (6.34), (6.35), and (6.36) them-
selves do not form a suitable set of parameters that can be compared to e.g. chiral effective
theories directly. However, it is possible to construct linear combinations of the subtrac-
tion constants that are invariant under the respective ambiguity shifts. These Taylor
invariants are built upon a series expansion of the single-variable amplitudes BI` in the
unphysical region at s = 0 given by

BI`(s) = AI` +BI
` s+ CI

` s
2 +DI

` s
3 + ... , (6.37)

where the convergence behaviour of chiral effective theories should be best.
The idea of introducing Taylor invariants goes back to the dispersive analysis of

MC
1 in refs. [150, 152]. According to eq. (6.20) the terms up to chiral order p6 in the

expansion of F I` as defined in eq. (6.37) are not unambiguous. Inserting this expansion
into eq. (6.18) reveals

MC
1 (s, t, u) = F0 + F1 (2s− t− u) + F2 s

2 + F3

[
s (t+ u)− 2t u

]
+ F4 s

3

+ F5

[
1

3
(2s3 − t3 − u3) + s2 (t+ u) + s (t2 + u2)− 2t u (t+ u)

]
+O(p8) ,

(6.38)
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where we find a set of six Taylor invariants Fi defined by#5

F0 = A0
0 + r B0

0 +
4

3

(
A2

0 + r B2
0

)
, F1 =

1

3
B0

0 + A1
1 − 3r2C1

1 −
5

9
B2

0 − 3r C2
0 ,

F2 = C0
0 +

4

3
C2

0 , F3 = B1
1 + C2

0 + 9r D2
0 , F4 = D0

0 +
4

3
D2

0 , F5 = C1
1 − 3D2

0 .

(6.39)
Note that the coefficient F0 contains only contributions up to p2 in the chiral expansion,
while F2 is fully determined by contributions of chiral order p4. Commonly, terms involv-
ing D0

0, C1
1, and D2

0 are dropped as they are beyond the reach of one-loop ChPT [152].
Thus a reduced set of only four Taylor invariants F0, F1, F2, and F3 remains, while F4

and F5 vanish completely.#6

In a similar fashion we want to introduce Taylor invariants for the isoscalar and
isotensor amplitudes. Since the reconstruction theorem for M/C

0 defined in eq. (6.23)
allows for an ambiguity shift (6.24) of chiral order p8, we find

M/C
0 (s, t, u) = −G0 (s− t)(u− s)(t− u) +O(p10) (6.40)

depending on a single Taylor invariant

G0 = C1
1 + 3r D1

1 (6.41)

fixed by the expansion of G1
1 according to eq. (6.37). Likewise, the ambiguity shifts (6.29)

for the reconstruction theorem of isotensor amplitudeM/C
2 (6.28) demand

M/C
2 (s, t, u) = (t− u)

[
H0 +H1 (2s− t− u) +H2 (t2 + u2 + t u)

]
+O(p8) , (6.42)

when inserting the expansion of HI
` given in eq. (6.37) up to chiral order p6. The corre-

sponding Taylor invariants of this expansion are given by

H0 = 3A1
1 +3r B1

1 +B2
0 +2r C2

0 , H1 = B1
1 +3r C1

1−
1

3
C2

0 , H2 = C1
1 +D2

0 . (6.43)

Note that H0 contains only contributions up to p4 in the chiral expansion.

6.3 Determination of the subtraction constants
In the previous section we derived dispersive representations for theMC

1 ,M/C
0 , andM/C

2

components of the η → 3π amplitude that obey the fundamental properties of analyticity
and unitarity. However, the five subtraction constants α, β, γ, ε, and ϑ appearing in
eqs. (6.34), (6.35), and (6.36) are not fixed by unitarity. In order to determine these

#5Since eq. (6.20) allows only for shifts up to chiral order p6 all higher terms in eq. (6.37) will not be
affected by the ambiguity. Without further treatment these terms can be considered as Taylor invariants
directly.

#6Obviously, this reduced set of Taylor invariants allows only for ambiguity shifts of eq. (6.20) where
terms of chiral order p6 are dropped.
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free parameters we have to resort to external information on the η → 3π amplitude.
We choose to take three different sources of input into account: binned Dalitz-plot
distributions stemming from high-statistics measurements of the charged and neutral
decay modes provided by the KLOE-2 (4.7×106 selected events of η → π+π−π0) [240] and
A2 collaborations (7× 106 selected events of η → 3π0) [245] as well as ChPT constraints
on the Taylor invariants estimated from the C-conserving one-loop η → 3π amplitude
[150,152,233]. We want to emphasize that in principle each of the three different sources
of input allow us to determine the C-conserving subtraction constants α, β, and γ, but
only the KLOE-2 data contains information on the C-violating effects needed to constrain
ε and ϑ.#7

6.3.1 Total number of free parameters

At one loop ChPT predicts the numerical values of the C-conserving Taylor invariants
as defined in eq. (6.39) (contributions above chiral order p4 are dropped) to be

F0 = 1.176(53) , f1 = 4.52(29)GeV−2 , f2 = 16.4(4.9)GeV−4 , f3 = 6.3(2.0)GeV−4 ,
(6.44)

where the invariant F0 will be used to parameterize the normalization of the C-conserving
amplitudeMC

1 while the reduced invariants fi ≡ Fi/F0 determine its energy dependence.
Note that in accordance with the definitions in sec. 6.1 the estimations given in eq. (6.44)
are valid in the isospin limit. Furthermore, we want to stress that all invariants at one
loop are real-valued.

A Taylor expansion of the Omnès representation for MC
1 (6.34) performed in ac-

cordance with the prescription given in eq. (6.37) reveals that the contributions from the
Omnès functions are real, but the dispersion integrals will render the coefficients complex.
Thus, the linear relations between the Taylor invariants and the subtraction constants
α, β, and γ involve complex coefficients. Since the dispersion integrals arise from the
crossed-channel discontinuities and we evaluate their Taylor coefficients at s = 0 below
the two-pion threshold, the contributions of the dispersion integrals are small. Thus the
Taylor invariants will only pick up tiny imaginary parts if we assume α, β, and γ to be
real-valued.#8 Accordingly, the number of independent parameters needed to fixMC

1 is
halved from six to three.

Since we are yet missing any chiral effective theory approach that allows for an anal-
ogous extraction of C-violating Taylor invariants (6.41) and (6.43), there is no known
restriction from theory, which states that the normalizations of the C-violating ampli-
tudesM/C

0 andM/C
2 should be real-valued. Thus, the subtraction constants ε and ϑ will

be treated as complex-valued increasing the total number of free parameters needed to be
fixed by four.

#7Since the provided experimental Dalitz-plot distributions are arbitrarily normalized, it is only pos-
sible to fix the relative sizes of the subtraction constants. Furthermore the Dalitz-plot distributions are
proportional to the squared modulus of the η → 3π amplitude, which means that using the experimental
data alone we also loose the information of an overall phase.

#8Note that first contributions to the imaginary parts of the Taylor invariants will appear at two
loops in the chiral expansion [152,235].
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6.3.2 Electromagnetic corrections to η → 3π

Up to now we have assumed the pion triplet to be mass degenerate, i.e., the amplitude
given in eq. (6.13) relies on kinematical variables in the isospin limit. However, in the
physical world the degeneracy is lifted by the electromagnetic contributions to the self-
energy of the charged pions, cf. sec. 1.3.3. Since the physical phase space of η → 3π is
small, the pion mass difference yields a relevant impact on the size of the physical region
and of course the correct position of the respective two-pion thresholds, which must be
accounted for. Similarly to the identity (6.5) fulfilled by s, t, and u in the isospin limit,
the Mandelstam variables sc, tc, and uc for the charged as well as sn, tn, and un for the
neutral decay mode obey the relations

M2
η + 2M2

π± +M2
π0 = sc + tc + uc ≡ 3rc , M2

η + 3M2
π0 = sn + tn + un ≡ 3rn . (6.45)

Accordingly, any comparison of our amplitude in the isospin symmetric world with experi-
ment requires the application of an appropriate kinematic map relating theMandelstam
variables of the physical world to the ones in the isospin limit.

In general, the construction of such a kinematic map for η → 3π is all but unique.
However, the difficulty is to find an acceptable choice for this map, which on the one
hand yields a meaningful prescription of the complete Dalitz plot within its phase space
boundary and on the other hand is easy to handle. Therefore, we will adopt the choice
proposed in ref. [152] that bares the following properties: the mapping is boundary pre-
serving, i.e., the Dalitz-plot boundary of the physical phase space is mapped onto the
boundary of the isospin symmetric phase space, and the identity 3r = s + t + u remains
conserved (6.5). Furthermore, the map is chosen in such a way that it does not generate
any fictitious singularity structure within the Dalitz plot. We find this kinematic map
for sc,n 7→ s, tc,n 7→ t, and uc,n 7→ u to be given by the prescriptions

s = σc,n[sc,n] , (t− u) = (tc,n − uc,n) τc,n[sc,n] ,

t =
1

2

(
3r − σc,n[sc,n] + (tc,n − uc,n) τc,n[sc,n]

)
,

u =
1

2

(
3r − σc,n[sc,n]− (tc,n − uc,n) τc,n[sc,n]

)
.

(6.46)

Since we require the mapping to be boundary preserving, the conditions

τc[sc] =
κ(σc[sc])

κc(sc)
, κc(sc) =

√
λ(sc,M2

π± ,M
2
π±)λ(sc,M2

π0 ,M2
η )

sc
,

τn[sn] =
κ(σn[sn])

κn(sn)
, κn(sn) =

√
λ(sn,M2

π0 ,M2
π0)λ(sn,M2

π0 ,M2
η )

sn
,

(6.47)

will hold, which fix the functions σc,n and τc,n in terms of each other. The kinematical
function κ defined in the isospin limit is given in eq. (6.7). Except for the boundary
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conditions on σc,n imposing

4M2
π = σc[4M

2
π± ] , (Mη −Mπ)2 = σc[(Mη −Mπ0)2] ,

4M2
π = σn[4M2

π0 ] , (Mη −Mπ)2 = σn[(Mη −Mπ0)2] ,
(6.48)

the functions σc,n can be chosen freely. Adding a fixed Dalitz-plot center as further
constraint (xc,n = yc,n = 0 7→ x = y = 0) the functions σc,n can be parameterized by
parabolas going through these three points, respectively.#9 The explicit expressions of
σc,n can be found in ref. [152]. Obviously, the deformation of the decay region imposed
by the kinematical map is strongly energy dependent. However, throughout the entire
Dalitz-plot the deformation is small, at maximum we find a deviation of 3.3% for the
charged and 5.8% for the neutral mode in the respective sets of Mandelstam variables.

So far we discussed the purely kinematic deformation of the physical Dalitz plot
arising from the electromagnetic pion mass difference. This deformation affects the C-
conserving and C-violating contributions of the amplitudeMC

1 ,M/C
0 , andM/C

2 in the same
manner and will be compensated by the kinematic map specified in eq. (6.46). However,
the C-conserving part MC

1 is affected by a second, qualitatively different contribution,
stemming from electromagnetic η → 3π transitions. In order to correct for this effect we
will again make use of the approach proposed in ref. [152].

ChPT allows us to study the electromagnetic corrections in η → 3π systematically by
comparing the one-loop representation of Gasser and Leutwyler (GL) [233] worked
out in the isospin limit with the one of Ditsche, Kubis andMeißner (DKM) [201] that
accounts for electromagnetic effects including contributions of order e2 (mu−md). Based
on the assumption that the electromagnetic effects in η → 3π approximately factorize we
form the ratios#10

Kc,n(sc,n, tc,n, uc,n) ≡ M
DKM
c,n (sc,n, tc,n, uc,n)

MGL
c,n(sc,n, tc,n, uc,n)

, (6.49)

which will serve as correction factors forMC
1 appearing in the amplitudes for the charged

and neutral decay modes (6.13). Within the entire physical region these correction factors
vary in the tight ranges 1.031 < |Kc|2 < 1.078 and 0.972 < |Kn|2 < 0.978. Accordingly,
they affect the energy dependence of Dalitz-plot distributions only little. However,
these corrections have an important effect on the decay rates (and therefore on the rate
BR(η → 3π0)/BR(η → π+π−π0) of the branching ratios), as |Kc|2 will increase the
amplitude modulus square of the charged mode |Mc|2 on average by 7.2%, whereas |Kn|2
reduces the amplitude modulus square of the neutral mode |Mn|2 on average by 2.6%.

#9Note that the straightforward application of the kinematical map (6.46) for the neutral η → 3π0

decay mode meets a technical problem: since s, t, and u are treated on an unequal footage, the map
does not respect Bose symmetry. However, this shortcoming is easily cured by applying three crossed
versions of the mapping according to

Mn(sn, tn, un) = 1
3

{
Mn

(
σn[sn], (tn − un) τn[sn]

)
+Mn

(
σn[tn], (un − sn) τn[tn]

)
+Mn

(
σn[un], (sn − tn) τn[un]

)}
.

#10Note that the Coulomb pole is subtracted from the representation ofMDKM
c , thus the ratio (6.49)

is finite across the entire Dalitz plot, cf. ref. [152].
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6.3.3 Fit setup

In the next step we want to determine the free parameters of our dispersive representation
of η → 3π by a χ2-fit to the three sets of available data: the experimental measurements of
the η → π+π−π0 and η → 3π0 Dalitz-plot distributions as well as the theory constraints
on the Taylor invariants of MC

1 in the isospin limit. As discussed in sec. 6.3.1 the
amplitudesMC

1 ,M/C
0 , andM/C

2 together contain seven real-valued subtraction constants
α, β, γ, Re ε, Im ε, Reϑ, and Imϑ we have to fix in the following.

First of all we recognize that the reduced Taylor invariants of MC
1 (6.44) as well

as the experimental measurements of the Dalitz-plot distributions do not constrain
the physical normalization of the amplitude. Accordingly, the normalization of the C-
conserving amplitudeMC

1 is solely fixed by the information on ReF0, which links α, β,
and γ in a linear relation, cf. eq. (6.39). Note that this condition imposed on α, β, and γ
fixes the strength of the C-violating parts of the amplitudeM/C

0 , andM/C
2 determined by

Re ε, Im ε, Reϑ, and Imϑ relative to the C-conserving normalization ofMC
1 . It also be-

comes immediately clear that the number of independent parameters needed to describe
the reduced Taylor invariants and Dalitz-plot distributions is effectively reduced to
six.

The experimental measurements of the Dalitz-plot distributions provided by the
KLOE-2 and A2 collaborations [240,245] are given in terms of the dimensionless Dalitz-
plot coordinates

xc,n =

√
3

2MηQc,n

(tc,n − uc,n) , yc,n =
3

2MηQc,n

[
(Mη −Mπ0)2 − sc,n

]
− 1 , (6.50)

where Qc = Mη−2Mπ±−Mπ0 and Qn = Mη−3Mπ0 are the available kinetic energies, cf.
app. B. KLOE-2 split the phase space of η → π+π−π0 into a total of 371 rectangular bins
(bins overlapping with the phase space boundary were disregarded), whereas A2 provides
altogether 441 rectangular bins for one Dalitz-plot sextant exploiting the symmetry
behaviour of η → 3π0 (bins overlapping with the phase space boundary were accepted).
We label the i-th bin with the coordinates xic,n, yic,n at its center and use Dexp

c,n ,∆Dexp
c,n for

the bin content and its uncertainty. These values will now be compared to the Dalitz-
plot distributions DDR

c,n obtained by an integration of our dispersive amplitudesMc,n (6.13)
over the respective bin

DDR
c,n (xic,n, y

i
c,n) =

∫
bin #i

dxc,n dyc,n |Mc,n(xc,n, yc,n)|2 . (6.51)

Since the experimental distributions involve arbitrary normalizations, we have to intro-
duce two additional parameters Nc,n that need to be fixed. The discrepancy functions are
then defined by

χ2
c,n =

∑
i

(Dexp
c,n (xic,n, y

i
c,n)−Nc,nDDR

c,n (xic,n, y
i
c,n)

∆Dexp
c,n (xic,n, y

i
c,n)

)2

, (6.52)

where the sum extends over the 371 bins for the KLOE-2 and 441 bins for the A2 data
sets, respectively.
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For the ChPT constraints on the C-conserving reduced Taylor invariants we will use
the discrepancy function

χ2
0 =

∑
i

(
fChPT
i − Re fDR

i

∆fChPT
i

)2

, (6.53)

where the summation index i runs from 1 to 3, fChPT
i denote the central values given in

eq. (6.44), and ∆fChPT
i their respective uncertainties. The invariants Re fDR

i are obtained
from eq. (6.39) by a Taylor expansion of the Omnès representation for MC

1 (6.34).
Accordingly, the subtraction constants of our dispersive representation and the additional
normalizations Nc,n are determined by the minimum of the total discrepancy function

χ2
tot = χ2

0 + χ2
c + χ2

n . (6.54)

6.4 Comparison with experimental measurements and
theoretical constraints

In the following we want to present the results of our dispersion theoretical analysis
of η → 3π. We consider four different scenarios for the χ2-fit described in sec. 6.3.3:
two exclusive fits to the charged Dalitz-plot distribution from KLOE-2 as well as two
combined fits to all three sets of data. For both cases we perform individual fits taking
only the C-conserving part of the amplitude Mc into account (M/C

0 and M/C
2 are tuned

to zero) as well as the explicit consideration of C-violating effects in Mc (contributions
fromMC

1 ,M/C
0 , andM/C

2 are allowed), cf. eq. (6.13). We label the different fit scenarios
by: FIT1 (exclusive, C-conserving), FIT2 (exclusive, C-violating), FIT3 (combined, C-
conserving), FIT2 (combined, C-violating). A summary of the individual χ2 contributions
to the four scenarios is given in tab. 6.1.

We find for all considered fit scenarios a good agreement of our dispersive amplitude
with data. Overall the individual parts of the discrepancy function χ2

0, χ2
c , and χ2

n in the

χ2
0 χ2

c χ2
n dof χ2

tot/dof p-value

FIT1 (1.222) 387.8 (509.5) 368 1.054 22.9%

FIT2 (1.222) 381.7 (509.5) 364 1.049 25.1%

FIT3 1.247 387.9 509.3 811 1.108 1.7%

FIT4 1.247 381.8 509.3 807 1.106 1.9%

Tab. 6.1: Summary of the four considered fit scenarios: FIT1 (exclusive, C-conserving),
FIT2 (exclusive, C-violating), FIT3 (combined, C-conserving), FIT2 (combined, C-
violating). For fits obtained by dropping the contributions of χ2

0 and χ2
n to the total

discrepancy function χ2
tot, their values are put in brackets.
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four different scenarios are almost identical. In fact the dispersive representation is already
perfectly fixed by the KLOE-2 data on η → π+π−π0 alone with the η → 3π0 Dalitz-plot
distribution and the Taylor invariants forMC

1 being a prediction in excellent agreement
with data. Accordingly, the differences between the results for the exclusive and combined
fits are marginal, i.e., comparing FIT1 vs. FIT3 and FIT2 vs. FIT4. Taking the C-
violating contributions into account, we find a slight improvement of χ2

c by 6.1 units
whereas χ2

0 and χ2
n do not change at all, i.e., comparing FIT1 vs. FIT2 and FIT3 vs. FIT4.

Consequently, adding the contributions ofM/C
0 andM/C

2 to our dispersive representation
for Mc has no visible effect on the determination of MC

1 . Furthermore, comparing the
resulting discrepancy functions of the KLOE-2 and A2 data sets, we notice a slightly worse
description of the Dalitz-plot distribution for the neutral η → 3π0 mode. This small
tension of the dispersive representation forMn and the experimental measurement from
A2 has also been observed in ref. [152]. Nevertheless, the experimental data of both the
charged and neutral mode together are well described by our dispersive representation.

Based on the findings discussed in the previous paragraph, the results presented below
will be taken exclusively from FIT4. Moreover, the quoted total uncertainties of the in-
vestigated observables draw from the following sources: the experimental errors from the
KLOE-2 and A2 Dalitz-plot distributions,#11 the uncertainty originating from ChPT
constraints including the Taylor invariants forMC

1 (6.44) and the electromagnetic cor-
rection factors Kc,n (6.49), and the uncertainty resulting from the variation of the phase
shift input in the low- and high-energy region, cf. fig. 6.1. We will treat all these sources
of error as symmetric and Gaussian distributed. Accordingly, the combined total uncer-
tainties are found by adding the individual contributions in quadrature and the presented
correlation matrices are calculated from the respective total covariance matrices of the
investigated observables.

6.4.1 Dalitz-plot distributions ofMc andMn

Considering the tiny influence on the discrepancy function when allowing for the effects
of the C-violating amplitudes M/C

0 and M/C
2 we already note that their contributions to

the η → π+π−π0 Dalitz-plot distribution is marginal, cf. tab. 6.1. A comparison of the
dispersive Dalitz-plot distributions of the full amplitudeMc and the C-conserving part
onlyMC

1 with the experimental measurement from KLOE-2 is depicted in fig. 6.2.
According to the definition ofMc given in eq. (6.13) we can decompose itsDalitz-plot

distribution into∣∣Mc(xc, yc)
∣∣2 =

∣∣MC
1

∣∣2 + 2Re
[
MC

1 (ξ−1M/C
0 )∗
]

+ 2Re
[
MC

1 (ξ−1M/C
2 )∗
]

+
∣∣ξ−1M/C

0

∣∣2 +
∣∣ξ−1M/C

2

∣∣2 + 2Re
[
ξ−1M/C

0 (ξ−1M/C
2 )∗
]
,

(6.55)
where for the sake of simplicity dependencies on xc and yc are dropped on the right-hand
side. Note that the terms are ordered according to their powers in the C-violating effects

#11The A2 collaboration provided us with three independent sets of their data, so we gained control on
the statistical and systematical uncertainties of their analysis. In case of the KLOE-2 data set we will
consider only the statistical errors.
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Fig. 6.2: Comparison of the dispersive Dalitz-plot distribution for η → π+π−π0 to
experimental data. The distributions are normalized to one at the Dalitz-plot center
xc = yc = 0. From the top to the bottom we depict slices through the Dalitz plot
given for ymin

c = −0.95 to ymax
c = 0.85 at distances of ∆yc = 0.1. We show the modulus

square of the full amplitude |Mc|2 with its uncertainty band covering the statistical and
systematical errors added in quadrature (red) as well as the central solution for the C-
conserving part |MC

1 |2 (blue). The 371 data points with error bars (black) were provided
by the KLOE-2 collaboration [240].

M/C
0 andM/C

2 . Since we have full control on the amplitudesMC
1 ,M/C

0 , andM/C
2 appearing

in eq. (6.55), we can study their disentangled contributions to theDalitz-plot distribution
individually, cf. fig. 6.3. We observe a clear hierarchy of these contributions: obviously,
the C-conserving SM part determined by MC

1 is dominating. The two terms linear in
the C-violating amplitudes M/C

0 and M/C
2 are suppressed by three orders of magnitude,

while all remaining terms quadratic in C-violation are suppressed by five to six orders
of magnitude. We want to emphasize that only the two contributions linear in the C-
violating effects determine the size of the mirror symmetry breaking of the Dalitz-plot
distribution under t ↔ u. Furthermore, we find both contributions to be of similar size,
i.e., the interference effect ofMC

1 withM/C
0 compared to the interferenceMC

1 withM/C
2 .

Accordingly,M/C
0 andM/C

2 are of the same order of magnitude. Like the SM contribution
|MC

1 |2, all effects quadratic in C-violation are symmetric under t↔ u and will therefore
not contribute to the mirror symmetry breaking. As these effects are suppressed by five
to six orders of magnitude compared to |MC

1 |2, we can safely neglect them from now on.

The Dalitz-plot distribution ofMc is conveniently parameterized in terms of a poly-
nomial expansion at the Dalitz-plot center xc = yc = 0, cf. app. B. By now the first
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Fig. 6.3: Decomposition of the Dalitz-plot distributions contributing to |Mc|2 as given
in eq. (6.55). The normalization of |Mc|2 is fixed to one at the Dalitz-plot center. All
panels show the central solution of our dispersive representation. The by far dominant
contribution stemming from the C-conserving part |MC

1 |2 is depicted in the center left
panel. Interference terms ofMC

1 withM/C
0 andM/C

2 giving rise to the breaking of mirror
symmetry in the Dalitz-plot are displayed in the top and bottom right panels. Note
that the scales of the individual contributions differ by several orders of magnitude.
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seven coefficients of this phenomenological parameterization

|Mc(xc, yc)|2 ∼ 1 + a yc + b y2
c + c xc + d x2

c + e xc yc

+ f y3
c + g x2

c yc + hxc y
2
c + l x3

c + ... ,
(6.56)

valid up to third order in xc and yc, have been studied by the KLOE-2 collaboration [240].
Note that non-vanishing values of the coefficients c, e, h, and l odd in xc would directly
implicate that C-conjugation symmetry is violated in η → π+π−π0 decays. We perform
a two-dimensional Taylor expansion of our dispersive amplitudeMc and determine the
C-conserving Dalitz-plot parameters generated exclusively byMC

1 to be

a = −1.0819(14) 1.00 −0.06 0.39 −0.47 −0.37

b = 0.1487(34) 1.00 0.57 −0.66 −0.60

d = 0.088(13) 1.00 −0.92 −0.99

f = 0.1131(47) 1.00 0.90

g = −0.068(15) 1.00

. (6.57)

The uncertainties of the parameters b, d, and g are completely driven by the variation of
the phase shift input, while the uncertainties of a and f gain sizeable contributions from
all sources of error.

Similarly, for the C-violating Dalitz-plot parameters generated by the interference
effects ofMC

1 withM/C
0 andM/C

2 we find

c = −0.0021(13) 1.00 −0.25 −0.20 −0.08

e = 0.0034(34) 1.00 −0.44 0.22

h = 0.0053(69) 1.00 −0.75

l = −0.0028(21) 1.00

. (6.58)

The uncertainties of these four parameters are dominated by the statistical error of the
KLOE-2 data, while all other sources of uncertainty do not yield any significant contribu-
tion to the error budget.#12 Accordingly, we can confirm that all C-violating parameters
vanish within 1.6σ at most. Furthermore, the C-violating parameters turn out to be one
order of magnitude smaller than d and g, which are the smallest coefficients of the C-
conserving part of the parameterization (6.57). Separating the individual contributions
to the central values of c, e, h, and l originating from the interference effect ofMC

1 with
M/C

0 we find

c = +0.0002 , e = +0.0011 , h = +0.0055 , l = −0.0027 , (6.59)

whereas the interference ofMC
1 withM/C

2 yields

c = −0.0023 , e = +0.0023 , h = −0.0002 , l = −0.0001 . (6.60)

A comparison of the extracted Dalitz-plot parameters with the results from KLOE-2 as
well as the two most recent dispersive analyses on C-conserving η → 3π decays [151,152]
are summarized in tab. 6.2.

#12Note that the estimated correlations between the C-conserving and C-violating parameters given in
eqs. (6.57) and (6.58) are below 1%.
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For completeness we also want to consider the Dalitz-plot distribution of the neu-
tral η → 3π0 mode. In accordance with the discussion in app. B the phenomenological
parameterization in terms of the coordinates zn and φn is given by

|Mn(zn, φn)|2 ∼ 1 + 2α zn + 2β z3/2
n sin 3φn + 2γ z2

n + ... , (6.61)

accounting for terms up to fourth order in xn and yn. Again, we perform a two-dimensional
Taylor expansion of our dispersive representation yielding

α = −0.0293(31) 1.00 −0.77 0.87

β = −0.0043(8) 1.00 −0.95

γ = 0.0033(7) 1.00

. (6.62)

Our determination of the slope parameter α agrees well with the PDG world average [14].
Similarly, our value of β is compatible with the extraction of the A2 collaboration [245]
and the dispersive analysis of ref. [152]. For our value of γ we find some tension when
comparing to other determinations, e.g. γ = 0.0019(3) taken from ref. [152]. However,
the extraction of this parameter is already far beyond the scope of the present analysis.

Finally, we briefly want to discuss the ratio BR(η → 3π0)/BR(η → π+π−π0) that
is used as an internal consistency check for the electromagnetic corrections described in
sec. 6.3.2. The partial decay widths Γc,n of the η → 3π process are defined by

Γc,n(η → 3π) =
Q2
c,n ξ

2

384
√

3π3Mη

Dc,n
Sc,n

, Dc,n =

∫
DP
dxc,n dyc,n |Mc,n(xc,n, yc,n)|2 , (6.63)

where Sc = 1 and Sn = 6 denoting the symmetry factors and Dc,n the integrals of the
Dalitz-plot distributions over the full phase space. Since contributions antisymmetric
under t↔ u cancel, Dc is determined entirely by |MC

1 |2. We extract

BR(η → 3π0)

BR(η → π+π−π0)
= 1.423(48) (6.64)

in perfect agreement with the PDG world average [14]. Note that the uncertainty quoted
in eq. (6.64) is totally dominated by the errors on Kc,n (6.49).

−a b −c d e f −g h l

KLOE-2 1.095(3) 0.145(3) 0.004(3) 0.081(3) 0.003(3) 0.141(7) 0.044(9) 0.011(9) 0.001(7)

DR Orsay 1.142 0.172 - 0.097 - 0.122 0.089 - -

DR Bern 1.081(2) 0.144(4) - 0.081(3) - 0.118(4) 0.069(4) - -

this work 1.082(1) 0.149(3) 0.002(1) 0.088(13) 0.003(3) 0.113(5) 0.068(15) 0.005(7) −0.003(2)

Tab. 6.2: Comparison of the Dalitz-plot parameters obtained in different analysis of
the KLOE-2 data [240]. The values given in the first row are obtained by a direct fit
of (6.56) to data. The dispersive analyses from the Orsay [151] and Bern groups [152]
consider the C-conserving amplitudeMC

1 only.
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Fig. 6.4: Left panel: the illustration of the two-dimensional xc-yc grid used by the
KLOE-2 collaboration for the binned Dalitz-plot distribution. In total this grid contains
371 bins. Note that KLOE-2 disregarded all bins that overlap with the phase-space
boundary. Right panel: the Dalitz-plot geometry split into the sectors needed to probe
its asymmetry parameters. The left-right asymmetry ALR compares the population of the
left and right halves divided by the line of tc = uc (solid vertical line), AQ the quadrants
divided by tc = uc and sc = rc (solid vertical and dashed horizontal lines), and AS the
sextants divided by tc = uc, sc = tc, and sc = uc (solid vertical and dashed diagonal lines).
In both panels we depict the C-violating interference effects ofMC

1 withM/C
0 andM/C

2 .

6.4.2 Asymmetries and coupling strengths ofM/C
0 andM/C

2

So far we studied the C-violating effects in the Dalitz-plot distribution by extracting the
xc-odd coefficients c, e, h, and l of the phenomenological parameterization (6.56). Besides
these coefficients, we can also investigate three asymmetry parameters to quantify C-
violating effects in the η → π+π−π0 Dalitz-plot distribution: the left-right ALR, the
quadrant AQ, and sextant AS asymmetry parameters [223, 225, 238]. These asymmetries
compare the population of the Dalitz-plot distribution in the different sectors defined by
the Dalitz-plot geometry, cf. fig. 6.4. For our dispersive representation ofMc we obtain

ALR = −7.6(4.7) 1.00 −0.44 0.35

AQ = 4.1(4.3) 1.00 −0.43

AS = 3.7(4.3) 1.00

, (6.65)

where all three asymmetry parameters are given in units of 10−4. We find ALR, AQ,
and AS in good agreement with the results reported by the KLOE-2 collaboration [240].
Again, there is no hint for C-violation as all three asymmetries are compatible with zero
in not more than 1.6σ. Note that the error budget in eq. (6.65) is completely dominated
by the statistical uncertainties of the KLOE-2 data.#13

#13In fact KLOE-2 reports that the systematic uncertainty of ALR dominates the statistical one. Like
the results for AQ and AS , ALR is therefore compatible with zero in less than one-σ if systematic effects
are taken into account.
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In contrast to experimental studies of C-violating effects in the η → π+π−π0 Dalitz-
plot distribution, which are limited to the investigation of xc-odd coefficients of the phe-
nomenological parameterization (6.56) or the probe of the Dalitz-plot asymmetries, our
dispersion theoretical analysis provides us with the tools to disentangle the individual
contributions of M/C

0 and M/C
2 . Furthermore, we are in the position to extract coupling

strengths of the underlying isoscalar and isotensor BSM operators. A matching of eq. (6.1)
to the expansions (6.40) and (6.42) allows us to relate these operators to

X
/C
0 = −G0 (s− t)(u− s)(t− u) , X

/C
2 = H0 (t− u) , (6.66)

where the Taylor invariants G0 and H0 determined byM/C
0 andM/C

2 can be identified
with the respective BSM coupling strengths. For our dispersive representation we obtain

ξ−1 ReG0/GeV−6 = 23.3(25.6) 1.00 −0.93 0.72 −0.72

ξ−1 ImG0/GeV−6 = −47.7(89.8) 1.00 −0.74 0.74

ξ−1 ReH0/GeV−2 = 6.9(109.8)× 10−3 1.00 −0.99

ξ−1 ImH0/GeV−2 = 47.5(298.7)× 10−3 1.00

. (6.67)

Note that for the central values we find a ratio of |G0/H0| ≈ 103 GeV−4. Since the operator
X

/C
0 is kinematically suppressed compared to X /C

2 at small energies, we conclude that the
magnitudes of G0 and H0 are tuned such that the kinematical suppression is overcome,
cf. fig. 6.3 and eq. (6.66). This behavior of the amplitudes M/C

0 and M/C
2 has also been

observed in ref. [243].
Carrying out the phase space integrals individually for contributions involving interfer-

ence effects ofM/C
0 orM/C

2 in the Dalitz-plot distribution, we can relate the asymmetry
parameters (6.65) given in units of 10−4 to the coupling strengths of the isoscalar and
isotensor BSM operators (6.66) according to

ALR = ξ−1
(
0.132ReG0 + 0.042 ImG0 − 0.349ReH0 − 0.131 ImH0

)
,

AQ = ξ−1
(
− 0.067ReG0 − 0.062 ImG0 + 0.075ReH0 + 0.047 ImH0

)
,

AS = ξ−1
(
0.416ReG0 + 0.119 ImG0 − 0.008ReH0 − 0.006 ImH0

)
.

(6.68)

In these relations G0 and H0 enter in units of 1GeV−6 and 10−3 GeV−2, respectively.
Equation (6.68) reveals that especially the sextant asymmetry parameter AS is sensitive
to contributions generated by M/C

0 , while effects of M/C
2 are surpressed. Separating for

contributions ofM/C
0 orM/C

2 to the central values of the asymmetry parameters, we find

ALR = 1.1 , AQ = 1.4 , AS = 4.0 , (6.69)

for interference effects ofMC
1 withM/C

0 , whereas the interference ofMC
1 withM/C

2 yields

ALR = −8.7 , AQ = 2.7 , AS = −0.3 . (6.70)

Once more, all asymmetry parameters are given in units of 10−4.
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6.4.3 Taylor invariants and the Adler zero ofMC
1

Analogous to the extraction of the C-violating Taylor invariants G0 and H0 of the
amplitudesM/C

0 , we now want to discuss the C-conserving invariants of the SM partMC
1 .

First of all, the invariant F0 used to fix normalization is given by

F0 = 1.176(53)− 0.0094(14) i . (6.71)

Note that only ReF0 is fixed by the imposed normalization condition, while ImF0 is
allowed to vary freely, cf. sec. 6.3.1. Since ImF0 is exclusively generated by contributions
of the dispersion integrals to eq. (6.34), it is roughly two orders of magnitude smaller than
ReF0. For the real parts of the reduced coefficients fi we find

Re f1/GeV−2 = 4.34(15) 1.00 0.24 −0.13

Re f2/GeV−4 = 12.99(52) 1.00 0.03

Re f3/GeV−4 = 7.54(59) 1.00

, (6.72)

which are in good agreement with the prediction of one-loop ChPT (6.44). In contrast to
the dispersive representation of ref. [152], which uses a subtraction scheme forMC

1 involv-
ing six independent subtraction constants, our minimalistic scheme (6.34) is extremely
stiff. Therefore it does not allow for a large variation of the reduced Taylor invariants,
cf. tab. 6.1. Similar to ImF0 the imaginary parts of the reduced invariants are found to
be small

Im f1 = 0.193(29)GeV−2 , Im f2 = −0.006(85)GeV−4 , Im f3 = −0.128(39)GeV−4 .
(6.73)

Finally, we want to consider the behavior of MC
1 at its soft-pion point, i.e., in the

limit where the four-momentum of one of the pions vanishes. Since the strong process
η → πiπj +πk(pµ) is of isospin breaking nature, it has to be mediated by the scalar quark
operator S3 = q̄λ3q, cf. eq. (1.12). At the soft-pion point pµ → 0 arguments of current
algebra (cf. sec. 1.3) dictate the behavior of the T -matrix element (6.8)

lim
pµ→0

T ijkC (s, t, u) ∼ 〈πiπj + πk(pµ)|q̄{λk, λ3}γ5q|η〉 . (6.74)

Since the anti-commutator on the right-hand side vanishes except if k = 3, the amplitude
MC

1 exhibits a zero if the momentum of one of the charged pions vanishes. In terms of the
Mandelstam variables we will find two Adler zeros at sA = tA = 0 and sA = uA = 0
connected by crossing symmetry. These zeros are protected by chiral SU(2)L × SU(2)R
flavor symmetry, hence their positions are only subject to corrections of order M2

π if the
pion mass is turned on again. At tree level the amplitude is given by [246]

MC
1 (s, t, u) =

3s− 4M2
π

M2
η −M2

π

, (6.75)

hence it exhibits a zero crossing at sA = 4
3
M2

π . A study of one-loop ChPT yields a slight
shift of the Adler zero to sA ≈ 1.4M2

π [233].
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Fig. 6.5: Comparison of the dispersive amplitudeMC
1 with the respective tree and one-

loop level expressions obtained from ChPT along the critical line s = u. The real and
imaginary parts of the dispersive amplitude are given by the red and blue bands, which
cover the range of statistical and systematical uncertainties added in quadrature. The
tree level result is depicted by the solid black line, while the one-loop real part is given by
the dashed and the imaginary part by the dotted black lines. The black diamond denotes
the position of the Adler zero in one-loop ChPT. The physically allowed region for the
η → 3π decay is depicted by the gray area.

In fig. 6.5 the behavior of our dispersive representation forMC
1 along the critical line

s = u is compared to the tree level and one-loop predictions of ChPT. We extract the
zero crossing of the dispersive representation at

sA/M
2
π = 1.29(13) 1.00 −0.85

(sA − tA)/M2
π = −0.057(15) 1.00

, (6.76)

which is in perfect agreement with the ChPT prediction. Nevertheless, we want to mention
that the Adler zeros are shifted slightly away from the critical lines s = t and s = u. The
dominating error source in eq. (6.76) stems from the low- and high-energy uncertainties
of the phase shift input, cf. fig. 6.1.

6.5 Summary and conclusion
We analyzed C- and CP -violating effects in η → π+π−π0 decays in a dispersion theoretical
framework. In this framework the amplitude can be decomposed into three contributions
MC

1 ,M/C
0 , andM/C

2 , describing the C-conserving ∆I = 1 SM and C-violating ∆I = 0, 2
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BSM transitions, respectively. Analyticity and unitarity constrain these amplitudes by
the dynamical information on the strong two-body ππ scattering phase shifts and a fixed
number of subtraction constants determine the normalizations of MC

1 , M/C
0 , and M/C

2

as well as containing some information on the energy dependence of MC
1 . Therefore

our dispersive representation can be seen as superior compared to a simple phenomeno-
logical parameterization with an a priori unknown number of relevant coefficients. We
demonstrated that our representation allows for a good description of the high-statistics
measurement η → π+π−π0 Dalitz-plot distribution provided by the KLOE-2 collabora-
tion [240]. Moreover, our framework allows us to disentangle of the individual ∆I = 0
and ∆I = 2 contributions systematically. To current precision of experimental data we
are able to limit the patterns of C- and CP -violation in the Dalitz-plot distribution
generated by interference effects ofMC

1 withM/C
0 andM/C

2 to the per mille level. These
in turn, allowed us to extract coupling strengths of the underlying effective isoscalar and
isotensor BSM operators. In principle, an identification of these effective operators with
fundamental BSM operators on the quark level, which is still pending, would allow to
predict a scale for BSM physics [247–252]. We conclude that our framework opens a win-
dow on the systematic analysis of C- and CP -violation in η → π+π−π0 decays provided
by future high-statistics experimental measurements [253–256].

Similar considerations could also be made for decays of the heavier η′, which carries
the same quantum numbers as the η. Thus, the η′ → π+π−π0 transition is also mediated
by the C-conserving ∆I = 1 SM or C-violating ∆I = 0, 2 BSM operators. Especially the
increased phase space of this decay process might yield to a resonance enhancement of the
isoscalar amplitude induced by the ρ(770), which could be tested. However, compared
to η → π+π−π0 the experimental data currently available on η′ → π+π−π0 is rather
limited [257], making it impossible to extract any meaningful bounds on C- and CP -
violating operators at this point. Another possible decay of the η′ that could be tested is
η′ → π+π−η. Recently, a high-statistics measurement of this process has been performed
by the BESIII collaboration [221]. Since this transition preserves G-parity, either isospin
and C-conjugation symmetry are simultaneously conserved or violated. Therefore, decays
of η′ → π+π−η are sensitive to another class of C- and CP -violating BSM operators,
mediating isospin-breaking ∆I = 1 transitions. A combined dispersion theoretical analysis
of C- and CP -violating transitions in η and η′ decays is currently in preparation [258].



Part IV

Decays of vector mesons into three
pions

145





Chapter 7

Quark-mass dependence in ω → 3π
decays#1

Despite tremendous progress in simulating QCD on space-time lattices using physical
quark masses, many studies of complicated observables within lattice QCD are still
performed with light quarks that are heavier than they are in the real world (cf. e.g.
refs. [260, 261] for reviews). To extrapolate such simulations to the physical point, ad-
ditional theoretical input is required, which should ideally be based on systematically
improvable effective field theories. At low energies, the effective field theory that controls
the quark-mass dependence by construction is ChPT [72, 73], which describes the inter-
actions of the Nambu–Goldstone Bosons of spontaneous chiral symmetry breaking,
the pions as well as kaons and the η, cf. ch. 1.

However, the vast majority of states in QCD are resonances, and to perform chiral
extrapolations for these is less straightforward. A popular tool in this regard has been
to employ unitarized versions of ChPT, such as the inverse amplitude method (IAM)
[262–265]: a resummation of higher-order effects obeying S-matrix unitarity allows one to
generate poles on unphysical Riemann sheets in the complex-energy plane, the signatures
of resonances, cf. ch. 2. The IAM can be justified using dispersion theory; scattering
amplitudes constructed via the IAM match smoothly on the ChPT expansion at low
energies. In this manner, the properties of elastic resonances such as the f0(500) and the
ρ(770) in ππ as well as the K∗0(700) and K∗(892) in πK scattering have been investigated
with respect to their quark-mass dependence [266,267].

Nevertheless, by far not all hadronic resonances appear in two-body scattering pro-
cesses. The lightest resonance that decays only into a three-body final state (in QCD in
the isospin limit) is the ω(782), with its dominant decay ω → 3π. Clearly, the quark-
mass dependence of the ω cannot be assessed within an IAM-type formalism; it could at
best be studied within the appropriate partial wave of the 3π → 3π scattering process,
and the formalism to study such processes on the lattice is currently under intense in-
vestigation [268–274]. In this chapter, we suggest an approach to assess the quark-mass
dependence of the ω → 3π decay amplitude based on Khuri–Treiman equations, cf.
chs. 4 and 5. These equations require the two-body P -wave ππ scattering phase shift as

#1The contents of this chapter have been published in [259].
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input, which we extract from the known quark-mass-dependent IAM partial wave. While
we still need to rely on effective field theory ideas to describe the variation of the ω mass
with the quark masses, the dispersive framework allows us to predict its quark-mass-
dependent width. The idea to employ dispersion theory to extend the applicability of
IAM-generated phase shifts is not new: it has already been applied to describe the pion
vector form factor [275], as well as, in a formalism closely related to what we present here,
to the reaction γπ → ππ [144,276].

The outline of this chapter is as follows: we recall the description of ππ scattering with
the IAM formalism in sec. 7.1. The Khuri–Treiman formalism for ω → 3π is described
in sec. 7.2. Supplementary assumptions to describe the quark-mass dependence of the
ω width are collected in sec. 7.3, before we show results in sec. 7.4. We summarize our
findings in sec. 7.5.

7.1 P -wave ππ scattering and the ρ resonance in one-
loop unitarized ChPT

Before starting with the discussion of the quark-mass dependence of the ω as a three-
pion resonance, we briefly summarize the investigation of the quark-mass dependence in
ππ → ππ scattering. The results of this section will be an essential input for the study of
ω → 3π. We follow the formalism introduced in refs. [266,277]. For the later purpose our
investigation will focus on the ρ(770) resonance, which appears as a pole in the P -wave
scattering amplitude. The ππ → ππ rescattering will be treated as elastic in this whole
section.

As discussed in sec. 2.3.1 the ππ scattering amplitude can be decomposed into partial-
wave amplitudes tI` of isospin I and angular momentum `. We work with degenerated
pion masses in the isospin limit, i.e., Mπ ≡ Mπ± = Mπ0 .#2 For center-of-mass energies
s > 4M2

π and below any inelastic thresholds the partial-wave amplitude is given in terms
of the scattering phase shift δI` soley,

tI`(s) = σ−1(s) sin δI` (s) exp
[
iδI`(s)

]
, (7.1)

where σ(s) =
√

1− 4M2
π/s. Since we are interested in P -wave ππ scattering exclusively,

we fix the quantum numbers I = ` = 1 from now on.
In ChPT the pion mass is given in terms of the light-quark masses as an expansion

M2
π = 2B0m̂+O(m2

q), with its leading term known as the GMOR relation, cf. sec. 1.3.2.
The GMOR relation implies that studying the quark-mass dependence is equivalent to an
investigation of the pion-mass dependence. Hence from now on we will refer to the pion-
mass dependence instead. Since we are interested in pion-mass-dependent quantities, it
turns out to be useful to define parameters at the physical point as e.g. M̄π ≡Mphys

π .
The ChPT power counting allows us to expand the P -wave ππ scattering amplitude

up to next-to-leading order in terms of

tChPT(s) = t2(s) + t4(s) +O(p6) , (7.2)
#2A brief discussion of the isospin-breaking effects in ω → 3π can be found in sec. 7.3.3.
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where ti denotes the contribution of chiral order pi. Projecting the expression for the ππ
scattering amplitude given in ref. [72] onto the P -wave yields

t2(s) =
sσ2

96πF 2
, (7.3)

at tree-level and

t4(s) =
t2(s)

48π2F 2

[
s

(
l̄ +

1

3

)
− M4

π

2s

(
41− 2Lσ

(
73− 25σ2

)
+ 3L2

σ

(
5− 32σ2 + 3σ4

))
− 15

2
M2

π

]
+ iσ t2(s)2 ,

(7.4)
for the one-loop correction, where we made use of the abbreviation

Lσ =
1

σ2

(
1

2σ
log

1 + σ

1− σ − 1

)
. (7.5)

The value for the pion decay constant in the chiral limit F is taken from the ratio Fπ/F =
1.064(7) [260, 278–282], where Fπ = 92.28(9)MeV [117] is the pion decay constant at the
physical point. For our purpose it is beneficial to work with F instead of Fπ, since F is
independent of Mπ. We treat the combination of LECs l̄ = l̄2 − l̄1, which occurs in the
ChPT expression at next-to-leading order, as a free parameter that will be fixed in the
following. Note that l̄ is also independent of Mπ, since the individual mass dependences
of l̄1 and l̄2 cancel [72].

This amplitude however cannot capture the effects of the ρ resonance, which we expect
to be the dominant effect in the P -wave above the threshold region, since unitarity is only
fulfilled perturbatively (Im t4 = σ|t2|2). Furthermore t2 and t4 are polynomials in s (up
to cuts encoded in the σ dependence), thus the analytic structure of the standard ChPT
expression tChPT does not allow for any poles on the second Riemann sheet.

In order to include the ρ resonance into our amplitude we will use the IAM. This
method allows us to construct an amplitude that fulfills unitarity exactly. Up to next-to-
leading order the IAM yields

tIAM(s) =
t2(s)2

t2(s)− t4(s)
, (7.6)

which is equivalent to tChPT up to corrections of O(p6). Note that crossing symmetry is
now only fulfilled perturbatively.

7.1.1 Pole position and residue

The characteristic properties of the ρ resonance are encoded in the pole position and
residue of the amplitude on the second Riemann sheet, cf. sec. 2.1.2. By analytic con-
tinuation the amplitude on the second sheet can be expressed in terms of the amplitude
on the first sheet [283]. We employ the specific representation [284]

tII(s) =
tI(s)

1− 2σ̂(s) tI(s)
, σ̂(s) =

√
4M2

π

s
− 1 , σ̂(s± iε) = ∓iσ(s) , (7.7)
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where tI and tII denote the amplitudes on the first and second sheets, respectively. Thus
the pole position of the amplitude is determined by

1− 2σ̂(spole) t
I(spole) = 0 , (7.8)

where spole corresponds to
√
spole = Mρ −

i

2
Γρ . (7.9)

This allows us to identify the mass Mρ, as well as the decay width Γρ of the ρ resonance
(that is assumed to be a purely elastic resonance with a single decay channel ππ). The
location of the ρ pole at the physical pion mass stemming from two studies of ππ scat-
tering with Roy-type dispersion relations [132, 285] is used to constrain the up to now
undetermined LEC. This is done in the following way: we minimize the distance of the ρ
pole position at the physical point of the IAM amplitude with respect to the most pre-
cise extraction of the pole position from the GKPY analysis#3 of ref. [285]. This yields
l̄ = 5.73(8).

The pole position of the IAM at the physical point is then given by
√
spole = 0.7620(15)GeV− i0.0778(11)GeV , (7.10)

which is in good agreement with refs. [266, 277] and the real part of the pole position
coincides with refs. [132, 285] within the error bars. Nevertheless we observe a tension
in the imaginary part, which is ∼ 4 MeV (∼ 2 − 3 standard deviations) larger than the
imaginary parts from the Roy analyses. Thus here we reach the limits of the one-loop
IAM description with only one free parameter; for more elaborate studies with an O(p6)
IAM amplitude containing several LECs, cf. refs. [277,286]. However, for the purposes of
our study of ω → 3π, we consider the one-loop IAM a sufficiently reasonable description
of ππ scattering.

Since the amplitude is not limited to the physical value of the pion mass, we are able
to calculate Mρ and Γρ as a function of Mπ. The trajectory of the pole position on the
second Riemann sheet is displayed in fig. 7.1. As expected from its quark content, the
mass of the ρ increases if the pion becomes heavier. This behavior can be described to
good approximation as a linear function in M2

π given by

Mρ(M
2
π) = Mρ(0) + aM2

π , (7.11)

where Mρ(0) and a can be matched to the pion-mass-dependent pole trajectory extracted
from eq. (7.8), which yields

Mρ(0) = 0.7480(16)GeV , a = 0.719(9)GeV−1 . (7.12)

Similar observations have been made by investigating chiral symmetry constraints [287].
The available phase space for the decay decreases with growing pion mass, since the

ρ mass increases much more slowly than the pion mass [266]. Thus the width of the ρ
#3Note that all three determinations of the ρ pole position in refs. [132,285] lead to compatible results

for l̄.
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Fig. 7.1: Left: trajectory of the ρ pole position of tII in the complex s plane as given in
eq. (7.7) for different pion masses. The gray error band is generated by the uncertainty
of F and l̄. The colored ellipses mark the one-σ uncertainty regions of the pole position
for the respective pion mass. Right: phase shift δ1

1 of the IAM P -wave ππ scattering
amplitude for different values of the pion mass using the same color coding as for the ρ
pole trajectory. Again the error bands result from the uncertainty of F and l̄.

becomes smaller for larger values of Mπ. The coupling gρππ of the ρ to the ππ system is
defined via the residue

g2
ρππ = −48π lim

s→spole

s− spole

s− 4M2
π

tII(s) , (7.13)

where the normalization factors are chosen such that it coincides with the naive expression

Γρ =
|gρππ|2
48πM2

ρ

(
M2

ρ − 4M2
π

)3/2
, (7.14)

as obtained from a Lagrangian-based narrow-width approximation or a vector-meson-
dominance (VMD) model. Equation (7.13) yields a numerical value of |gρππ| = 6.12(4),
which is in fair agreement with other determinations [277, 285]. Note that the coupling
gρππ extracted from the IAM is pion-mass independent to very good approximation. Thus
the pion-mass dependence of Γρ is driven by the phase space factor only, cf. eq. (7.14), as
confirmed by lattice QCD calculations [288].

7.1.2 Scattering phase shift

The I = ` = 1 ππ system is one of the most widely-studied resonant scattering phase
shifts in lattice QCD [288–299]. As defined in eq. (7.1) the scattering phase shift of the
IAM amplitude can be extracted via δ1

1(s) ≡ arg t11(s). The results for different values of
the pion mass are shown in fig. 7.1. As expected, the slope of the phase shift becomes
steeper for heavier pions, while the whole curve moves to the right (decreasing width
and increasing mass of the ρ). This behavior is also observed by various lattice QCD
calculations carried out at different pion masses [288–299]. At the physical pion mass
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the phase shift is in perfect agreement with the Roy analyses of refs. [133, 134] in the
low-energy regime up to

√
s ∼ 0.8GeV.

Above this energy the Roy solutions are typically continued to an asymptotic value
of π. The IAM amplitude on the other hand behaves like

lim
s→∞

tIAM(s) = − 3π

6l̄ + 2 + 3πi
(7.15)

in the high-energy limit, which depends only on the value of the LEC. Thus the phase
of the IAM amplitude will not reach π for all reasonable values of l̄. Nevertheless the
phase shift gives a reasonable parametrization up to the ρ resonance region and thus will
be used as a key ingredient for the dispersive representation of the ω → 3π amplitude, as
described in sec. 7.2. In order to test the effect of the discrepancy of the IAM compared
to the Roy solution phase shifts, we will also use the parametrization

δ1
1(s) = π − δa

δb + s/Λ2
(7.16)

to account for the correct asymptotic behavior. The parameters δa and δb are fixed
by ensuring continuity of the phase shift and its derivative at some high-energy scale
Λ2 ∼ 1.2GeV2, at which we switch from the IAM to the asymptotic phase shift. Note that
this high-energy continuation has no relevant influence on the ω → 3π amplitude, since its
effects can be fully absorbed by adjusting the unknown normalization of the amplitude,
cf. eq. (7.32) below. Similarly, any hypothetical, subleading, pion-mass dependence in Λ2

would be far too small to be of relevance.

7.2 Dispersive representation of the ω → 3π amplitude
The dispersive framework to describe the ω → 3π decay was already used in previous
studies of this process [120,121] as well as the closely related γ(∗)π → ππ transition [300–
304]. We define the T -matrix element for the ωλ(p1)→ πi(p2) πj(p3) πk(p4) decay as

〈πi(p2)πj(p3)πk(p4)|iT |ωλ(p1)〉 = i(2π)4δ(4)(p1 − p2 − p3 − p4) εijkHλ(s, t, u) , (7.17)

where the helicity of the ω meson is labelled with λ and πi denotes a pion state in the
Hermitian basis, cf. eqs. (2.21) and (2.50). The totally antisymmetric Levi-Civita
tensor guarantees that the three pions couple to a state of total isospin I = 0, which
in nature can only be realized by ω → π+π−π0. In our convention the Mandelstam
variables (cf. sec. 2.2.1) are defined according to

s = (p2 + p3)2 , t = (p2 + p4)2 , u = (p3 + p4)2 , (7.18)

which fulfill the relation
M2

ω + 3M2
π = s+ t+ u ≡ 3r . (7.19)

In the s-channel CMS, t and u can be expressed as (2.30),

t(s, zs) = u(s,−zs) =
1

2

(
3r − s+ κ(s) zs

)
, (7.20)
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where zs = cos θs is the scattering angle (2.31)

zs = cos θs =
t− u
κ(s)

, κ(s) =

√
λ(s,M2

π ,M
2
π)λ(s,M2

π ,M
2
ω)

s
. (7.21)

Similar expressions hold for the t- (2.36) and u-channels (2.38), respectively. The physical
thresholds in the three channels are

sthr = tthr = uthr = 4M2
π . (7.22)

Since the transition ω → 3π is of odd intrinsic parity, the helicity amplitude Hλ can
be further decomposed into a kinematic prefactor and a scalar amplitudeM containing
the dynamical information (2.22),

Hλ(s, t, u) = iεµναβ n
µ
λ(p1) pν2 p

α
3 p

β
4M(s, t, u) . (7.23)

Here nµλ(p1) denotes the polarization vector of the ω meson. The helicity averaged squared
modulus of the amplitude is given by

1

4

∑
λ

|Hλ(s, t, u)|2 =
1

4

[
stu−M2

π

(
M2

ω −M2
π

)2
]
|M(s, t, u)|2 , (7.24)

where the expression in the square brackets is also known as the Kibble cubic [305].
Bose symmetry demands the scalar amplitudeM to be fully symmetric under pair-

wise interchange of the Mandelstam variables, i.e.,

M(s, t, u) =M(s, u, t) =M(t, u, s) =M(t, s, u) =M(u, s, t) =M(u, t, s) . (7.25)

This symmetry reflects the fact that the process is invariant under the exchange of the
pions. Accordingly, only odd partial-wave amplitudes f I` are allowed to contribute to the
process and the partial-wave decomposition forM in the s-channel reads

M(s, zs) =
∑
` odd

P ′`(zs)κ
`(s) f 1

`(s) , f 1
`(s) =

1

2

∫ 1

−1

dzs
[
P`−1(zs)− P`+1(zs)

]
M(s, zs) ,

(7.26)
where P ′` denotes the differentiated Legendre polynomials, cf. app. A.2. As the available
phase space in the ω → 3π decay is rather small, the dominant contribution will come
from the I = ` = 1 partial wave (cf. ref. [120] for a discussion of potential F -wave
contributions). Neglecting discontinuities from F - and higher partial waves, i.e.,#4

discxM(x, zx) = disc f 1
1(x) (7.27)

for x ∈ {s, t, u}, the reconstruction theorem allows us to decompose the scalar amplitude
into a sum of single-variable amplitudes

M(s, t, u) = F1
1(s) + F1

1(t) + F1
1(u) , (7.28)

#4Here and in the following relations that involve the discontinuity are always meant to be valid along
the right-hand cut only, which starts at the two-pion threshold in the respective channel.
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where F1
1 possesses only a right-hand cut, cf. sec. 4.2.3. Combining eqs. (7.26) and (7.28)

the partial-wave amplitude f 1
1 is given by

f 1
1(s) = F1

1(s) + F̂1
1(s) . (7.29)

The right-hand cut of f 1
1 is contained in F1

1, while its left-hand cut contributions reside
entirely in the projection F̂1

1 of the crossed-channel single-variable amplitudes

F̂1
1(s) = 3

〈
(1− z2

s)F1
1

〉
,

〈
znsF1

1

〉
=

1

2

∫ 1

−1

dzs zns F1
1

(
t(s, zs)

)
. (7.30)

Restricting ourselves to elastic ππ final-state rescattering (7.1), the unitarity relation
for the partial-wave amplitude f 1

1 is given in terms of the P -wave ππ scattering phase
shift δ1

1 only
disc f 1

1(s) = 2i f 1
1(s) sin δ1

1(s) exp
[
− iδ1

1(s)
]
. (7.31)

Inserting eq. (7.29) and noting that disc f 1
1(s) = discF1

1(s) along the right-hand cut
results in an inhomogeneous Omnès problem for F1

1 with the inhomogeneity F̂1
1, cf.

sec. 3.2.2. Assuming the Froissart–Martin bound [161, 162], a solution of eq. (7.31)
can be written in terms of a single subtraction constant α [120],

F1
1(s) = Ω1

1(s)

[
α +

s

π

∫ ∞
4M2

π

dx
x

F̂1
1(x) sin δ1

1(x)

|Ω1
1(x)|(x− s)

]
. (7.32)

Since eqs. (7.30) and (7.32) are linear in α, we introduce the basis amplitude F1
1(s)|α=1, cf.

sec. 3.4. By definition this basis amplitude is constructed independently of the numerical
value of α, which therefore can be determined a posteriori. As α serves as an overall
normalization of the amplitude, at physical pion masses it is fixed to the decay width
Γ(ω → 3π), with the energy dependence of the amplitude or the Dalitz-plot distribution
then being a theoretical prediction [120].

7.3 Decay width and pion-mass dependencies
In nature the by far dominant contribution to the total decay width of the ω meson
stems from BR(ω → 3π) = 89.2(7)%. Besides that, the main subleading contributions
are given by BR(ω → πγ) = 8.4(2)% (electromagnetic) and BR(ω → ππ) = 1.5(1)%
(isospin-breaking). Together these contributions account for more than 99% of the decay
width at the physical point [117]. Accordingly the total decay width is fully driven by
ω → 3π, as long as we restrict ourselves to strong interactions in the isospin limit.

Integrating eq. (7.24) over phase space the decay width Γω ≡ Γ(ω → 3π) is obtained
by

Γω =
1

1024π3M3
ω

∫
ds dt

[
stu−M2

π

(
M2

ω −M2
π

)2
]
|M(s, t, u)|2 . (7.33)

This expression has severalMπ dependencies besides the explicit ones (integration bound-
aries and Mandelstam variables), which will be discussed in the following.
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7.3.1 Pion-mass dependence of the ω mass

In contrast to the case of the ρ, for which we can derive the pion-mass dependence of
the complete pole position in the P -wave ππ → ππ amplitude by means of the IAM, we
are not in the position to do the same for the ω within some 3π → 3π amplitude of the
appropriate quantum numbers. We will discuss the complicated pion-mass dependence
of the width of the ω, or the imaginary part of its pole in the complex plane, which
is the main focus of this study, in the following; for the pion-mass dependence of its
mass, the corresponding real part, we have to resort to symmetry arguments based on
effective Lagrangians. These will relate Mω(M2

π) to Mρ(M
2
π), which we have discussed

in sec. 7.1.1.
We briefly recapitulate the analysis of the leading symmetry-breaking effects in the

masses of the vector meson nonet [306–308]. Here, the vector mesons are treated as
static matter fields; the effective Lagrangian is organized in terms of increasing chiral
dimension as well as using the expansion in the inverse number of colors N−1

C . We neglect
isospin breaking and electromagnetic effects [307], and ignore deviations from ideal mixing.
In this approximation, the symmetry-breaking part of the effective Lagrangian can be
written as

LSB =
δ

2
〈W †

µ〉〈W µ〉+
a

2
〈χ{W †

µ,W
µ}〉+

b

4

(
〈χW †

µ〉〈W µ〉+ h.c.
)

+
c

2
〈χ〉〈W †

µW
µ〉+O(m2

q, N
−2
C ) ,

(7.34)

where

Wµ =


ρ0µ√

2
+ ωµ√

2
ρ+
µ K∗+µ

ρ−µ − ρ0µ√
2

+ ωµ√
2

K∗0µ

K∗−µ K̄∗0µ φµ

 (7.35)

contains the (nonrelativistic) vector-meson fields, and χ = diag(M2
π ,M

2
π , 2M

2
K − M2

π)
breaks SU(3) flavor symmetry due to the different quark masses. Among the terms in
eq. (7.34), the quark-mass-independent operator ∝ δ is N−1

C suppressed and breaks nonet
symmetry; the term ∝ a is chirally suppressed, but the dominant flavor-breaking term in
the large-NC limit; and the operators ∝ b and ∝ c are both chirally and N−1

C suppressed.
The term ∝ c leads to a common shift in all nonet masses and hence cannot be discerned
from the common mass MV using experimental data only; on account of the fact that we
can show the operator ∝ b indeed to be strongly suppressed below, we will neglect the
former in the following.

Equation (7.34) then leads to the vector-meson masses

Mρ = MV + aM2
π , Mφ = MV +

δ

2
+
(
a+

b

2

)(
2M2

K −M2
π

)
,

Mω = MV + δ + (a+ b)M2
π , MK∗ = MV + aM2

K ,

(7.36)

which allows us to extract the coupling constants according to

a =
MK∗ −Mρ

M2
K −M2

π

, b =
Mφ − 2MK∗ + 3

2
Mρ − 1

2
Mω

M2
K −M2

π

, δ = Mω −Mρ− bM2
π . (7.37)
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ω

π

π

π

ρ

Fig. 7.2: VMD tree-level diagram for ω → 3π given by a ω → ρπ and a subsequent
ρ→ ππ decay.

In particular the value for b depends quite sensitively on the precise values inserted for
the masses of the broad ρ and K∗ resonances; if we employ the real parts of their pole
positions [285,309], we find a = 0.57(1)GeV−1, b = −0.045(20)GeV−1, δ = 20(2)MeV.

We hence conclude that the formal N−1
C suppression of b/a translates, in fact, into a

numerical suppression by more than an order of magnitude; we will therefore neglect b,
too. Furthermore, we observe that the determination of a based on SU(3) symmetry leads
to an estimate that is about 20% smaller than the value deduced from the one-loop IAM
representation, cf. eq. (7.12). As we expect that SU(3) breaking effects ought to affect
the relation between ρ and ω observables less, we use the arguments above to employ a
pion-mass dependence of Mω that equals the one of Mρ up to the constant offset δ, hence

Mω(M2
π) = M̄ω +

0.719(9)

GeV

(
M2

π − M̄2
π

)
, Mω(0) = 0.7686(20)GeV . (7.38)

At higher orders in the chiral expansion, Nambu–Goldstone Boson loops in-
duce nonanalytic dependencies of the vector meson masses of the form O(m

3/2
q ) and

O(m2
q logmq), which have been studied extensively in the literature [306–308, 310–312];

such terms will obviously break the similarity inMρ(M
2
π) andMω(M2

π) due to the different
coupling of ρ and ω to pions. We ignore such terms in the present study solely based on
the observation in sec. 7.1.1 that a linear dependence ofMρ onM2

π is sufficient to describe
the behavior of the ρ pole of the O(p4) IAM amplitude.

7.3.2 The subtraction constant

As derived in sec. 7.2, we require one subtraction constant in the dispersive representation
of the ω → 3π decay amplitude in order to maintain a convergent integral representation.
Since this subtraction constant is not fixed by unitarity (and, for the process at hand,
cannot be matched to ChPT as for other processes such as γπ → ππ [144, 276, 300]), we
need to fix its pion-mass dependence in a different way.

In sec. 7.1 we have recounted that the coupling gρππ at the ρ → ππ vertex is (essen-
tially) pion-mass independent and in good agreement with a narrow-width formula or a
VMD model. In an isobar model of subsequent two-body decays, ω → 3π is typically
understood in terms of processes ω → ρπ, followed by ρ → ππ decays, cf. fig. 7.2 and
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e.g. refs. [313–315]. Reducing the dispersive representation eq. (7.32) to such a simpli-
fied picture, we find the subtraction constant α in one-to-one correspondence with the
product of coupling constants gωρπ × gρππ. We therefore conjecture that, by analogy, it
is reasonable to assume gωρπ, and hence α, to be also pion-mass independent, and we fix
the subtraction constant to the decay width Γω at the physical point.

7.3.3 Isospin-breaking effects

Up to now all calculations have been carried out under the assumption of isospin symmetry
(Mπ ≡ Mπ± = Mπ0). We now want to briefly discuss the influence of isospin breaking
effects in ω → 3π; a more detailed discussion can be found in ref. [316]. It is well known
that in the context of precision analyses of η → 3π, in particular comparing η → π+π−π0

and η → 3π0, taking into account the pion-mass difference for the available phase space
at least is mandatory [152, 201, 202, 233]. In this section, we therefore only investigate
isospin breaking in the kinematical contribution, ignoring all dynamical effects (i.e. using
M(s, t, u) = const.), expecting this to be the dominant change.

The pion-mass difference

∆π =
(
M2

π± −M2
π0

)
= 1.26116(15)× 10−3 GeV2 (7.39)

originates from two sources: electromagnetic effects and the difference of the up- and
down-quark masses, cf. secs. 1.3.2 and 1.3.3. At leading-order in ChPT (for three flavors),
the latter can be evaluated to

∆QCD
π =

(mu −md)
2

8m̂(ms − m̂)
M2

π ≈ 3× 10−5 GeV2 , (7.40)

hence this effect is very small: the pion-mass difference is dominantly caused by electro-
magnetism, and we neglect the effect of the difference of the light quark masses completely.
Consequently, as long as we neglect higher-order corrections of O(e2mq), the pion-mass
difference ∆π stays constant when varying Mπ. This allows us to relate the neutral pion
mass to the charged one according to

Mπ0(M2
π±) =

√
M2

π± −∆π . (7.41)

Obviously, below a minimal charged pion mass given by Mπ± =
√

∆π ≈ 35.5MeV this
relation breaks down.

It turns out that isospin breaking in the kinematical dependence of Γω as given in
eq. (7.33) when tuning the charged pion mass gives only a tiny correction to Γω of less
than 2%. Due to the connection of the pion masses in eq. (7.41) it is easy to see that
the effect of isospin breaking becomes smaller when increasing the mass of the pions; on
the other hand, since the ratio of the ω mass to the pion masses becomes larger when
approaching the chiral limit, the increasing isospin-breaking effects are lifted by the ω
mass. Thus using the isospin limit is entirely justified for our purposes.
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7.4 Results
In this section we discuss the final results of our dispersive representation of ω → 3π.
First of all we want to compare the resulting pion-mass-dependent Omnès function or
two-body final-state interaction#5 (two-body FSI) to the single-variable amplitude (three-
body FSI) to study the dynamical effects generated by the interaction with the third pion
as depicted in fig. 7.3.

Besides pion masses close to the chiral limit, the three-body FSI leads to an enhance-
ment of the modulus of the single-variable amplitude compared to the Omnès function.
While the peak position in the absolute values (due to the ρ resonance) is essentially
identical for two- and three-body FSI at a given value of Mπ, the phases behave rather
differently. The Omnès function fulfills Watson’s theorem and thus its phase is identical
to the IAM ππ scattering phase shift. Due to the dynamical effects stemming from the
interaction with the third pion (and the generation of a three-pion cut), this does not hold
for the single-variable amplitude, cf. sec. 7.2. Thus the argument of the single-variable
function is shifted compared to the input IAM phase. The lower and upper phase-space
boundaries are marked by dashed vertical lines, and hence denote the kinematical range
directly accessible in the decay. Already here we want to point out that mainly the tails
of the ρ resonance will only contribute to the dynamics when increasing Mπ, cf. fig. 7.5.

In order to study the dynamical effects on the decay width we consider three different
scenarios: first we consider only kinematic contributions to the decay width (all pion–pion
dynamics are disregarded, i.e., δ1

1(s) = 0, and thusM(s, t, u) = const.), secondly we allow
for two-body rescattering effects (meaningM(s, t, u) ∝ Ω1

1(s) + Ω1
1(t) + Ω1

1(u)), and third
the full three-body dynamics are taken into account. A comparison of the different cases
is displayed in fig. 7.4.

First of all we notice that the ω → 3π width decreases with increasing pion mass. This
is not surprising since the mass of the three pions is increasing faster than the mass of the
ω (7.38). Hence the phase space shrinks for larger pion masses as depicted in fig. 7.5. For
Mπ >

1
3
Mω ≈ 1.96M̄π the masses of the three pions exceed the ω mass, thus the reaction

ω → 3π is no longer allowed and the ω becomes stable with respect to the considered
decay channel (i.e., in QCD in the isospin limit).

We now study the effects of the two- and three-body dynamics. First of all we notice
that the kinematical prefactor given in eq. (7.24) vanishes at the phase space boundaries
in all directions. This leads to a stronger weighting of the inner region compared to
the outskirts of the phase space when evaluating the integral eq. (7.33). Secondly, the
dynamics are mainly governed by the ρ resonance in the respective two-body channels,
leading to a three-band structure (one for each channel) in the amplitudeM(s, t, u). The
peak position and width of these bands will be determined by the respective two- and
three-body FSI effects and the information of the scattering phase input from the IAM.
We conclude that strong imprints of the ρ as a dynamical effect will only affect the decay
width close to the chiral limit, since the ρ is only allowed to go on-shell within the phase
space boundaries for Mπ < 0.15M̄π. This effect is even reinforced by the increasing mass

#5Here the third pion will act as spectator, meaning F̂1
1(s) = 0, thus the single-variable amplitude

equals the Omnès function in this case, cf. eq. (7.32).
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Fig. 7.3: Comparison of the absolute value (left column) and phase motion (right column)
of Ω1

1 (red) and F1
1 with α = 1 (blue) for various pion masses: first rowMπ = 0, second row

Mπ = M̄π, third row Mπ = 3
2
M̄π, and last row Mπ = 1.96M̄π ≈ 1

3
Mω(M2

π). The dashed
black lines mark the pion-mass-dependent lower and upper phase-space boundaries for the
ω → 3π decay given by 4M2

π and (Mω−Mπ)2, respectively. The error bands are generated
by taking the uncertainties of the IAM phase shift δ1

1 andMω(M2
π) into account, cf. fig. 7.1

and eq. (7.38). The latter only affects F1
1.
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Fig. 7.4: Pion-mass-dependent decay width for ω → 3π (left) and φ→ 3π (right) shown
for three different cases: kinematic contribution only (black), considering two-body FSI
(red), and full three-body FSI (blue). The physical point is marked by the black diamond.
The error bands are generated by taking the uncertainties of the IAM phase shift δ1

1(s)
and Mω(M2

π) into account (Mφ is considered to be pion-mass independent), cf. fig. 7.1
and eq. (7.38).

of the ρ and its decreasing width with growing pion mass, as investigated in sec. 7.1. Thus
the main contributions to the ω width will come from the tail of the ρ resonances at low
pion masses, cf. fig. 7.5.

This is consistent with the result given in fig. 7.4. We observe that the impact of the
two- and three-body dynamics on the decay width is very strong close to the chiral limit,
where it leads to a reduction of the decay width compared to the one of pure kinematics.
The damping due to the three-body dynamics is four times stronger than the influence
of the two-body effects and results in a width smaller by about one third than the purely
kinematic effects. In the chiral limit we find

Γω(0) = 4.02(1) Γ̄ω = 30.4(1)MeV , (7.42)

for the decay width when allowing for kinematic effects only,

Γω(0) = 3.72(2) Γ̄ω = 28.1(1)MeV , (7.43)

when considering two-body dynamics, and

Γω(0) = 2.81(2) Γ̄ω = 21.3(2)MeV , (7.44)

when accounting for three-body dynamics. Here we used Γ̄ω ≡ Γ̄(ω → 3π) = 7.57(9)MeV
for the decay width at the physical point [117]. Since the subtraction constant of all
three curves is fixed at the physical point, the difference between them shrinks when
approaching this point. Above the behavior is opposite, here the two- and three-body
dynamics generate a decay width that is larger than the one obtained from pure kinematic
effects. Since the phase space at the physical point and above does not allow for on-shell
ρ mesons in the respective two-body systems, the influence of the dynamical effects above
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Fig. 7.5: Left: trajectory of the pion-mass-dependent ω mass and width in the complex-
energy plane of 3π → 3π scattering for the three investigated scenarios: pure kinematics
(black), two-body FSI (red), and full three-body FSI (blue). This plot can be compared
with the one for the ρ resonance, cf. fig. 7.1. The physical point is marked by the black
diamond. The error bands are generated by taking the uncertainties of the IAM phase
shift δ(s), Mω(M2

π), and Γ̄ω into account, cf. fig. 7.1, eq. (7.38), and ref. [117]. Right:
pion-mass-dependent phase space boundaries of ω → 3π (solid lines) and position of the
“on-shell” ρ in the respective s-, t-, and u-channels (dashed lines). The color coding is kept
identical to fig. 7.1 with the following pion masses: 0 (blue), 1

2
M̄π (cyan), M̄π (green),

3
2
M̄π (yellow), 2M̄π (orange), and 5

2
M̄π (red). For the last two the phase space already

vanishes, and thus the ω becomes stable with respect to the investigated decay mode.

this point is very small. Thus the two- and three-body FSI curves do not differ strongly
from the curve of pure kinematics.

Considering eq. (7.9) we are in the position to predict a pion-mass-dependent trajec-
tory of the ω pole position in the complex-energy plane of 3π → 3π scattering similar
to the ρ resonance in fig. 7.1. A plot of this pole trajectory is given in fig. 7.5. Note
that, strictly speaking, our formalism does not determine such a complex pole position:
rather, we have discussed mass (via effective Lagrangians) and width (via the Khuri–
Treiman formalism) individually. Given the smallness of the width of the ω, we regard
the error committed thereby as negligible, although this may not obviously be so in the
general case of an arbitrary 3π resonance.

Since dynamical effects in the investigated process are limited due to the small phase
space, we want to emphasize that the dispersive representation derived in sec. 7.2 is valid
for general V → 3π decays, with V denoting an arbitrary isoscalar vector meson, at least
to the extent that the elastic approximation in the pion–pion rescattering is justifiable.
Thus we are able to describe φ → 3π by just replacing the decay mass according to
Mω 7→Mφ within the same formalism [120,121]. With a mass of 1019MeV [117] its decay
allows for much richer dynamics due to the larger phase space, in particular the three ρ
bands are visible inside the Dalitz plot [317, 318]. In the quark-model picture, the φ
can be understood as a pure ss̄ state, thus its mass does not depend on the pion mass
at leading order. This follows from eq. (7.36) when using the GMOR relation to relate
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M2
K = B(m̂+ms) +O(m2

q). The results for the pion-mass-dependent partial decay width
Γφ ≡ Γ(φ → 3π) are displayed in fig. 7.4. Since the ρ is allowed to go on-shell up to a
maximal pion mass of Mπ ≈ 1.7M̄π, the dynamical imprints are much stronger compared
to the case of the ω → 3π even above the physical point.

Overall, given how subtle rescattering effects beyond two-body rescattering are usually
thought to be (and more often than not neglected altogether in experimental Dalitz plot
analyses), it is remarkable to see that in both cases studied here, ω → 3π and φ→ 3π, the
three-body FSI effects tend to affect the quark-mass dependence of the (partial) widths
about as strongly as the two-body FSI.

We wish to add a few caveats concerning the precision of the predictions shown in this
section. Error bands are estimated solely based on the uncertainty within the one-loop
IAM phase shift input, as well as the one in Mω(M2

π), which is nonetheless based on the
large-NC expansion and leading-order symmetry breaking in the quark masses. We do not
attempt to quantify corrections due to higher orders in either case, and refer to ref. [286]
for future work concerning an improved pion-mass-dependent phase shift. Furthermore, a
high-precision measurement of the φ→ 3π Dalitz plot [317] revealed the need to include
a second subtraction in the dispersive representation of the decay amplitude [120], which
has also not been considered here; experimental data on the ω → 3π Dalitz plot is not
conclusive in this respect yet [319].

7.5 Summary
We have investigated the pion-mass (and hence the quark-mass) dependence of the ω → 3π
decay width, generalizing previous studies of two-pion resonances based on the inverse
amplitude method. To this end, we have employed a dispersive formalism, based on
Khuri–Treiman equations, that uses inverse-amplitude-method phase shifts as input.
The pion-mass dependence of the ω mass is estimated using a symmetry relation based
on chiral perturbation theory for vector mesons. Deviations from phase space behavior
alone, induced by the pion-mass-dependent decay amplitude, are clearly visible, although
suppressed for larger-than-physical pion masses due to the smallness of phase space. We
have demonstrated for the decay of the heavier φ into three pions that this need not be
the case in general. Remarkably, a simple description of the decays in terms of two-body
rescattering alone does not yield a good approximation to the full pion-mass dependence
seen.

The three-pion decays of the lightest isoscalar vector mesons only serve as a paradigm
case for the investigation of three-body resonances; extensions to other, similar decays
within the same formalism ought to be tested in the future.



Summary and outlook

In this thesis we studied the phenomenology of strong interactions in hadronic three-
body decays at low energies exemplary in the analyses of the charged and neutral mode
η′ → ππη Dalitz-plot distributions, C- and CP -violating patterns in η → π+π−π0,
and the quark-mass dependence of ω → 3π. With the presented Khuri–Treiman type
dispersive framework based on the fundamental principles of analyticity and unitarity,
we were able to perform a resummation of the leading ππ and πη final-state rescattering
effects. In this way we consistently accounted for the rescattering effects among all three
decay products, which have been proven to be vital in hadronic final-state interactions at
low energies. The dispersive integral equations have been solved numerically by iteration
until sufficient convergence was reached. As a result, the dispersive framework allowed us
to describe the considered hadronic three-body decay processes in terms of holomorphic
functions, which are also valid outside of the experimentally accessible physical decay
region.

To conclude this thesis, we want to address the question where to go next. Considering
strong three-body decay processes in the η and η′ sector, only three decay modes are
kinematically allowed: one isospin conserving η′ → ππη as well as two isospin breaking
η/η′ → 3π modes. Under the assumption of elastic final-state rescattering, the analytic
structure of the respective amplitudes will be fixed by two-body unitarity for ππ and
πη intermediate states uniquely. However, a η′ → ππη decay followed by πη → ππ
rescattering yields an inelastic contribution to the unitarity relation of η′ → 3π within
the physical boundaries of the Dalitz plot. In order to take this effect properly into
account, the dispersion relations of all three amplitudes have to consistently fulfill the
constraints of unitarity for ππ and πη intermediate states. The work on this extension is
currently in progress [199], including an update of the η′ → ππη analysis based on the
latest version of the πη scattering phase shift from the Orsay group [136] and the high-
statistics Dalitz-plot distributions from the A2 and BESIII collaborations [220,221].

In analogy to the analysis of C- and CP -violating transitions in η → π+π−π0 presented
in this thesis, we are currently extending the dispersive framework to study these kind
of transitions in η′ → π+π−η as well [258]. Due to the different isospin structure of the
three-body final state, this decay is sensitive to a different BSM operator with isovector
quantum numbers. An essential future extension of the analysis, which still has to be
completed for both η → π+π−π0 and η′ → π+π−η, is the construction of operators
mediating such C- and CP -violating transitions in ChPT that can be matched with our
dispersion relations. Furthermore, to predict a scale for BSM physics an identification of
these effective operators with fundamental quark-level operators is needed [252].
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Finally, we want to mention further possible applications of Khuri–Treiman tech-
niques in the analysis of three-body rescattering effects of pions at low and intermediate
energies. The diffractive π−p → π+π−π−p reaction studied at the COMPASS experi-
ment offers a nice testing ground to study final-state interactions of the three-pion system
with isovector quantum numbers [320, 321]. As a first step we propose an analysis of
the spin-exotic IG(JPC) = 1−(1−+) three-pion mode associated with the π1(1600) reso-
nance, since this mode shows rather simple decay dynamics consisting of two interfering
P -waves in the two-body ππ subsystems [322]. Similarly to the IG(JPC) = 0−(1−−)
three-pion mode in ω → 3π decays, elastic two-body unitarity demands the dynam-
ics of π1(1600) → 3π decays to be dominated by ρ(770) contributions at low energies.
In order to gain a better understanding of three-body unitarity effects induced by the
crossed-channel ρ(770) interference in the Khuri–Treiman formalism, a comparison of
the resulting single-variable amplitudes for the isoscalar and isovector three-pion modes
at different invariant energies seems promising. For the future, extensions to other iso-
vector three-pion modes investigated by the COMPASS collaboration are planned. In this
way, the Khuri–Treiman formalism has the potential to systematically improve on new
amplitude analyses of hadronic three-body decays.
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Appendix A

Mathematical formulae

A.1 Properties of the Gell-Mann matrices

In the lowest-dimensional representation of SU(3) the eight generators are given in terms
of 3×3 complex matrices λa. These Hermitian and traceless Gell-Mann matrices [38]
are given by

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 ,

λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 ,

(A.1)

and obey, in analogy to the 2 × 2 Pauli matrices of SU(2), the commutation, anticom-
mutation and orthogonality relations

[λa, λb] = 2i fabc λ
c , {λa, λb} = 4

3
δab + 2dabc λ

c , tr(λaλb) = 2δab . (A.2)

The completely antisymmetric real structure constants fabc can be expressed as

fabc = −1
4
i tr
(
[λa, λb]λc

)
, (A.3)

leading to
f123 = 1 ,

f147 = −f156 = f246 = f257 = f345 = −f367 = 1
2
,

f458 = f678 =
√

3
2
,

(A.4)
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where other combinations not listed above are zero. A similar identity is found for the
completely symmetric real constants dabc given by

dabc = 1
4
tr
(
{λa, λb}λc

)
, (A.5)

fixes
d118 = d228 = d338 = −d888 = 1√

3
,

d448 = d558 = d668 = d778 = − 1
2
√

3
,

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = d377 = 1
2
.

(A.6)

Again, all combinations not listed above are zero.
One may define a ninth 3× 3 matrix [38]

λ0 =

√
2

3

1 0 0
0 1 0
0 0 1

 , (A.7)

which extends SU(3) to U(3) symmetry. The new matrix is chosen in such a way that the
relations

[λa, λb] = 2i fabc λ
c , {λa, λb} = 2dabc λ

c , tr(λaλb) = 2δab , (A.8)

hold for all nine λa. Hence, fabc is defined as before with the exception that it vanishes
if one index is zero. Similarly, dabc will be given as before except for additional nonzero
elements whenever one index is zero and the two other indices will be identical

d000 = d011 = d022 = d033 = d044 = d055 = d066 = d077 = d088 =
√

2
3
. (A.9)

Supplemented by this unit matrix, an arbitrary 3 × 3 matrix M can be constructed
according to

M = Ma λ
a , (A.10)

where summation index a now runs from 0 to 8 and the complex coefficients Ma may be
given by

Ma = 1
2
tr(M λa) . (A.11)

A.2 Properties of the Legendre polynomials

The Legendre polynomials P`(z) with ` ∈ N0 and z ∈ [−1, 1], used in the partial-wave
expansion of 2→ 2 scattering processes involving only particles of spin zero, are a set of
linearly independent functions. Hence, these polynomials fulfil the orthogonality relation∫ 1

−1

dz P`(z)P`′(z) =
2

2`+ 1
δ``′ , (A.12)
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which allows for a projection of an amplitude onto distinct partial waves. Under sign flip
of the argument z 7→ −z the Legrendre polynomials obey

P`(−z) = (−)` P`(z) . (A.13)

Furthermore, if the angles z ≡ cos θ fulfil

cos θ′′ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′) , (A.14)

the identity ∫
dΩ′ P`′(z

′)P`′′(z
′′) =

4π δ`′`′′

2`′ + 1
P`′(z) , (A.15)

holds, which can be proven by using the addition theorem for the spherical harmonics

P`(z
′′
s ) =

4π

2`+ 1

∑̀
m=−`

Y`m(θ, φ)Y ∗`m(θ′, φ′) . (A.16)

The first three Legendre polynomials are given by

P0(z) = 1 , P1(z) = z , P2(z) =
1

2
(3z2 − 1) . (A.17)

When dealing with derivatives of the Legrendre polynomials P ′` the following orthogo-
nality relation will hold:∫ 1

−1

dz
[
P`−1(z)− P`+1(z)

]
P`′(z) = 2δ``′ . (A.18)

A.3 Identities for complex numbers

Any given arbitrary complex number z ∈ C can be given in two different ways: a Carte-
sian representation

z = Re z + i Im z , (A.19)

and a polar representation

z = |z| exp(i arg z) = |z| cos(arg z) + i |z| sin(arg z) , (A.20)

where the second equivalence is known as Euler’s formula. Comparing eqs. (A.19) and
(A.20) yields the identities

Re z = z cos(arg z) exp(−i arg z) , Im z = z sin(arg z) exp(−i arg z) . (A.21)
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A.4 Identities for polynomials
For x, s ∈ C and n ∈ N0 the following identity will hold

xn − sn = (x− s)
n−1∑
k=0

sn−k−1 xk . (A.22)

If a polynomial Pn of degree n is given by

Pn(x) =
n∑
k=0

ck x
k , (A.23)

with cj ∈ C, eq. (A.22) allows us to rewrite

Pn(x)− Pn(s) = (x− s)
n∑
k=1

ck

k−1∑
j=0

sk−j−1 xj . (A.24)

Let Qn denote another polynomial of degree n given by

Qn(s) =
n∏
k=1

(s− sk) , (A.25)

with sk ∈ C, then
Qn(a− s)
Qn(a− x)

=
Qn(s)

Qn(x)
+ (x− s) qxn−1(s) , (A.26)

holds for a ∈ C and qxn−1 denotes another polynomial in s of degree n−1 whose coefficients
are of order O(x−n−1). A formal proof of this relation can be found in [144].



Appendix B

Dalitz-plot expansion of 1→ 3 decay
amplitudes

First invented to study the decay region of K → 3π [122–124], it has become common
to present the Dalitz-plot expansion of the T -matrix element in terms of dimensionless
kinematical variables when analysing three-body decays, cf. chs. 5 and 6. These so-called
Dalitz-plot variables, describing the kinematics in the decay region of the analysed
process, can be related to the Mandelstam variables discussed in sec. 2.2.1.

The construction of the Dalitz-plot variables can be realized in the following way:
we begin by choosing the rest frame of the decaying particle defined in eq. (2.41), i.e.,
p0

1 = M1 and |p1| = 0. The total kinetic energy available for the decay is given by

Q1 = T2 + T3 + T4 = M1 −M2 −M3 −M4 , (B.1)

where Ti = p0
i − Mi define the kinetic energies carried by the three decay products.

Similarly to the sum of the Mandelstam variables (2.25), eq. (B.1) tells us directly that
the sum of the three kinetic energies Ti for a given decay is fixed. In analogy to the
construction of the Mandelstam diagram, we construct an equilateral triangle in the
plane of rescaled kinetic energies εi = 3Ti/Qi rendering them dimensionless. Since the
perpendicular distances from each side will be identified with the respective energies εi,
eq. (B.1) directly fixes the height of the triangle to a value three. Any given kinematical
configuration of the considered three-body decay process (2.41) can be identified uniquely
as a point in the εi-plane bounded by the triangle. The constructed triangle encloses a
unit circle whose center is located at the point of equal εi. Now we introduce a set of two
linear-independent Dalitz-plot variables [122–124]

x ≡
√

3
T4 − T3

Q1

, y ≡ 2T2 − T3 − T4

Q1

, (B.2)

which are defined such that the origin#1 of the new coordinate system x = y = 0 coincides
with the center of the unit circle and the additional condition x2 +y2 = 1 on its perimeter

#1It follows directly that the center of the Mandelstam diagram at s = t = u = r will coincide with
the Daliz-plot center only in the special case of equal mass decay products.
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x

y

ε2

ε3
ε4

Fig. B.1: Geometry of the Dalitz-plot plane spanned by the perpendicular Dalitz-
plot variables x and y, defined in terms of the rescaled dimensionless kinetic energies εi
of the three decay products (B.2). The outer equilateral triangle defines the universal
bounds on x and y for a general three-body decay process. The restrictions for the non-
and ultra-relativistic limits are depicted by the dotted unit circle and the dashed inner
triangle, respectively.

will hold. From eqs. (2.23) and (2.24) follows that the energies of the three decay products
in terms of the Mandelstam variables are given by

p0
2 =

M2
1 +M2

2 − s
2M1

, p0
3 =

M2
1 +M2

3 − t
2M1

, p0
4 =

M2
1 +M2

4 − u
2M1

, (B.3)

which allows us to rewrite the Dalitz-plot variables in eq. (B.2) according to

x =

√
3

2M1Q1

(
t−u+2M1(M3−M4)−∆34

)
, y =

3

2M1Q1

(
(M1−M2)2−s

)
−1 . (B.4)

The Dalitz-plot variables of any given three-body decay process will at least be
bounded by the outer triangle.#2 In the special case of decay products of equal mass, the
limits are further restricted to the inner of the unit circle. Since a decay with identical

#2Dealing with three-body decays involving the decay products with different masses, it might be
convenient to rescale the Dalitz-plot variables by some fraction of these masses, cf. ch. 5. However,
it needs to be mentioned that such a rescaling directly contradicts the underlying symmetry of these
variables.
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reaction products will be symmetric under exchange of the kinetic energies, the three
perpendicular εi-axes reveal the sixfold symmetry of such a process. Therefore the infor-
mation on the T -matrix element in one of the six sub-triangles generates the complete
Dalitz plot by mirroring along the symmetry axes. Additionally, we want to mention
the constraints on x and y in the non- and ultra-relativistic limit : the former limit will
result in a unit circle, while latter limit leads to an equilateral triangle whose tips will
touch the unit circle. A sketch of the geometric considerations made so far is depicted in
fig. B.1.

In case of three-body decay process that is free of any dominant resonance structures
in the Dalitz-plot distribution, it is convenient to expand the modulus square of the
T -matrix element in terms of the Dalitz-plot variables x and y. At the Dalitz-plot
center the most general expansion is given by∣∣Tfi(x, y)

∣∣2 = |N |2(1 + a y + b y2 + c x+ d x2 + e x y

+ f y3 + g x2 y + hx y2 + l x3 + ...) .
(B.5)

where the real coefficients a, b, c, d, e, f , g, h, and l are the so-called Dalitz-plot
parameters and N defines the normalization of the matrix element. Considering the
case of two identical particles in the final state, the squared modulus of the amplitude is
symmetric under exchange of the corresponding momenta, cf. sec. 2.2.1. Conventionally
the kinematic variables will be defined such that the expansion in eq. (B.5) has to be even
under reflection of x → −x, hence all Dalitz-plot parameters of odd powers of x have
to vanish and eq. (B.5) simplifies to∣∣Tfi(x, y)

∣∣2 = |N |2(1 + a y + b y2 + d x2 + f y3 + g x2 y + ...) . (B.6)

Finally, we want to mention that for three-body decay processes with three identical
decay products commonly two additional polar variables are defined at the Dalitz-plot
center

z ≡ x2 + y2 , φ ≡ arg(x+ iy) , (B.7)

which account for the underlying symmetry of this configuration. Thus, the new Dalitz-
plot variable z can only depend on the squares of the Mandelstam variables given by

z =
3

2M2
1 Q

2
1

(s2 + t2 + u2 − 3r2) . (B.8)

Accordingly the Dalitz-plot expansion of the squared absolute value of the T -matrix
element∣∣Tfi(z, φ)

∣∣2 = |N |2(1 + 2α z + 2β z3/2 sin 3φ+ 2γ z2

+ 2δ z5/2 sin 3φ+ 2ε z3 + 2ζ z3 cos 6φ+ ...) ,
(B.9)

defines the Dalitz-plot parameters α, β, γ, δ, ε, and ζ.
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Appendix C

Supplementary notes on η′→ ππη
decays

C.1 Construction of π0π0 and π0η phase shifts
The scalar form factors of neutral and charged pions including isospin-breaking effects
have been calculated in the framework of a nonrelativistic effective field theory (NREFT)
in ref. [323] (cf. also refs. [324, 325] for details on the NREFT formalism). We use a
simplified version of this result: we only retain the correct thresholds of the two channels
(π0π0 and π+π−), but disregard isospin-violating corrections in the polynomials that
describe the effective-range expansion of the scattering partial wave and the low-energy
form factor expansion. In this way, we retain all the nonanalytic effects due to the pion
mass difference that scale like

√
M2

π −M2
π0 near the two-pion thresholds, but neglect

regular isospin violation in the form factor of order M2
π −M2

π0 , which can be calculated in
chiral perturbation theory [326,327]. In this approximation, the phase of F 0

S is given by

argF 0
S(s) = arg

[
1− iσ0v0 −

2

3
i
(v0 − v2)(σ − σ0)

1− iσv2

]−1

, (C.1)

where σ = σπ(s) as defined in sec. 2.3.1, and σ0 =
√

1− 4M2
π0/s. The polynomials vI for

isospin I = 0, 2 are related to the S-wave effective-range expansions,

vI(s) = aI0 +O(s− 4M2
π) , (C.2)

where aI0 are the S-wave ππ scattering lengths. They can be expressed in terms of the
phase shifts of corresponding isospin according to

vI(s) = σ−1(s) tan δI0(s) . (C.3)

In order to continue eqs. (C.1) and (C.3) to the region 4M2
π0 ≤ s < 4M2

π , we employ an
effective-range expansion adapted to the phase shifts used for the vI , and the analytic
continuation σ 7→ +i

√
−σ2.

The resulting phase is shown in fig. C.1 and compared to δ0
0, the phase shift in the

isospin limit. We see that argF 0
S starts at s = 4M2

π0 , and has a sharp cusp at s = 4M2
π , as
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Fig. C.1: Left panel: Comparison of argF 0
S (solid line), the phase of the neutral-pion

scalar form factor including the effects of different π0π0 and π+π− thresholds, to the
isospin-symmetric phase shift δ0

0 (dashed line). Right panel: the difference of argF 0
S and

δ0
0 over a larger range in s.

anticipated. The difference of argF 0
S and δ0

0 quickly becomes tiny away from the threshold
region, and in fact crosses 0 around s = 0.4GeV2. We neglect the isospin-violating phase
difference above this point, and use the isospin-symmetric phase shift at higher energies.

We adapt the πη phase from ref. [135] for π0η scattering in a simpler manner. In
this case, there are no different channels coupling/no additional cusps introduced, hence
we just need to account for the slightly lower threshold. We achieve this by a linear
mapping of the elastic regions [(Mπ0 +Mη)

2, 4M2
K ] 7→ [(Mπ +Mη)

2, 4M2
K ], such that the

π0η scattering phase shift δ̃1
0 is defined as

δ̃1
0(t) = δ1

0

(
t̃(t)
)
, t̃(t) = 4M2

K −
4M2

K − (Mπ +Mη)
2

4M2
K − (Mπ0 +Mη)2

(4M2
K − t) . (C.4)

Above the K̄K threshold, we set δ̃1
0 equal to δ1

0. As the πη phase shift rises only slowly
before the onset of the a0(980) resonance, the isospin-breaking shift is small compared to
the uncertainty in the phase shift itself already rather close to threshold.

C.2 Matching equations

In the case of RChT, the matching procedure to the dispersive representation is straight-
forward: an obvious decomposition of the amplitude (5.65) is

F0,RChT
0 (s) = cqq

M2
S

M2
S − s

[
M2

S

F 2
π

(
ξ

M4
S

+
ψ

M2
S

+ c2
d

)
+ ρ− c2

d ∆

F 2
π M

2
S

− ρ s

M2
S

]
,

G1,RChT
0 (t) = cqq

M2
S

M2
S − t

M2
S

F 2
π

(
ξ

M4
S

+
ψ

M2
S

+ c2
d

)
,

(C.5)
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which is compatible with the required asymptotic behavior. In order also to match the
Taylor expansion in (5.26), we have to apply a transformation (5.23) with c2 = 0 and

c1 = 2cqq
M2

S

F 2
π

A , A ≡ ξ

M4
S

+
ψ

M2
S

+ c2
d . (C.6)

Matching the Taylor coefficients to the dispersive representation leads to the subtraction
constants

αRChT = cqq

[
ρ+

3M2
S

F 2
π

(
A− c2

d ∆

3M4
S

)]
,

βRChT = cqq

[
M2

η′

F 2
π

(
A− c2

d ∆

M4
S

)
− ω0

0

(
3M2

η′M
2
S

F 2
π

(
A− c2

d ∆

3M4
S

)
+ ρM2

η′

)]
,

γRChT = cqq
M2

η′

F 2
π

A .

(C.7)

The RChT amplitude can also be matched to the representation (5.24) with four
subtraction constants. In this case, eq. (C.5) has to be transformed according to (5.23)
with

c1 = 2cqq
M2

S + r

F 2
π

A , c2 = −cqq
M2

η′

F 2
π

A . (C.8)

The matching equations for this case are given by

αRChT
0 = cqq

[
ρ+

3

F 2
π

((
M2

S + r
)
A− c2

d ∆

3M2
S

)]
,

βRChT
0 = −cqq

[
c2
d ∆M2

η′

F 2
π M

4
S

+ ω0
0

3M2
η′

F 2
π

((
M2

S + r
)
A− c2

d ∆

3M2
S

)
+M2

η′ ω
0
0 ρ

]
,

γRChT
0 = cqq

[
− ω̃0

0

3M4
η′

2F 2
π

((
M2

S + r
)
A− c2

d ∆

3M2
S

)

+
M4

η′

F 2
π M

2
S

(
A+

c2
d ∆ (M2

S ω
0
0 − 1)

M4
S

)
−
M4

η′

2
ω̃0

0 ρ

]
,

γRChT
1 = cqq

M4
η′

F 2
π M

2
S

A .

(C.9)

In the case of NLO large-NC ChPT, an obvious decomposition of the amplitude (5.62)
is

F0,ChPT
0,NLO (s) = B + C

s2

M4
η′
, G1,ChPT

0,NLO (t) = C
t2

M4
η′
, (C.10)
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where we defined

B ≡ cqq

[
M2

π

2
− 2 (3L2 + L3)

F 2
π

(
M4

η′ +M4
η + 2M4

π

)
− 2L5

F 2
π

(
M2

η′ +M2
η + 2M2

π

)
M2

π +
24L8

F 2
π

M4
π +

2

3
Λ2M

2
π

]
+ csq

√
2

3
Λ2M

2
π ,

C ≡ cqq
2 (3L2 + L3)

F 2
π

M4
η′ .

(C.11)
In this case, it is not possible to match to the representation (5.26), because NLO large-
NC ChPT is not compatible with the assumed asymptotic behavior. However, it can be
matched directly to the representation (5.24), as both the asymptotics and the Taylor
expansion agree, leading to

αChPT
0 = B , βChPT

0 = −BM2
η′ ω

0
0 , γChPT

0 = C − ω̃0
0

2
BM4

η′ , γChPT
1 = C .

(C.12)
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