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Abstract

In this thesis, we study automorphic forms on the rank 2 symplectic group Sp(4), in the context
of analytic number theory. While much of the abstract theory is described in Langlands’ theory,
one needs more explicit formulae for applications in analytic number theory. The thesis consists
of three parts.

In the first part of the thesis, we first give explicit formulations for Sp(4) Eisenstein series. Then
we compute explicit formulae for constant terms and Fourier coefficients of Sp(4) Eisenstein
series, in terms of Whittaker functions.

In the second part of the thesis, we study Sp(4) Kloosterman sums, and evaluate non-trivial
bounds for these sums, using a stratification argument, and p-adic stationary phase method.
We also compute explicitly the Fourier coefficients of Sp(4) Poincaré series, using Kloosterman
sums.

In the third part of the thesis, we construct an Sp(4) analogue of the Kuznetsov trace formulae.
We also obtain explicit relations between Fourier coefficients of Sp(4) automorphic forms and
Hecke eigenvalues. Using these results, and estimates of Sp(4) Kloosterman sums, we establish
strong bounds for the number of automorphic forms of level ¢ violating the Ramanujan conjecture
at any given unramified place, which go beyond Sarnak’s density hypothesis.
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Chapter 1

Introduction

The theory of automorphic forms has its origin in the study of modular forms. In the classical
sense, a modular form for the group I' = SL(2,7Z) is a holomorphic function f defined on the
complex upper half plane H := {z € C | Im(z) > 0} satisfying the transformation property

az+b
cz+d

s = £ (E5) = rabso, o= (0 g)er

where k is called the weight of f. We also require that f is “holomorphic at the cusp”, that is,
f satisfies the growth condition f(z + iy) < y” for some fixed N.

An important example of modular forms is the holomorphic Eisenstein series Foj, of weight 2k
for 2 < k € Z, given by

1 1
Ean2) = 5 C%E:Z (cz + d)2F
(e.d)£(0.0)

Maak [Maad9| extended the study to functions that are not holomorphic, but only real-analytic,
and introduced the notion of Maaf forms. A Maaf form for I is a smooth function f: H — C
satisfying the following properties:

() f(r2) = £(z) for all 7 € T
(ii) f is an eigenfunction for the hyperbolic Laplacian A = —? <86722 + %),
(iii) f has moderate growth at the cusp, that is, f(z + iy) < y” for some fixed N.

Furthermore, if f satisfies fol f(x +iy)dz = 0, then f is called a Maafs cusp form.

An important example of Maafs form is the non-holomorphic Eisenstein series

1 Im(z)‘”‘é 1

E(zs)=5 Y —o -

= 2 Gen et dpert’ Re(s) > 2
(ed)#(0,0)

This function is real-analytic in z, and holomorphic in s. Since
E(z+1,s) = E(2),
the Eisenstein series has a Fourier expansion

E(z,s) = Z an(y)e(nz),

ne”L
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where z = x + iy, and e(r) := €2™®. One may compute that the Fourier expansion of E(z, s) is
given by
A(2s)

1 eyl 2y
E =yt g 2 sty g VI _ " Ks(2

where A(s) = 7~ %/2T(s/2)((s) is the completed zeta function, o4(n) = S.d° is the divisor
dln
function, and
1 [ —1y du
K —— e—gy(u""u )usi
is the K-Bessel function. It follows from the Fourier expansion that E(z,s) can be continued
into a meromorphic function on C as a function in s.

The Eisenstein series is also of great importance in the spectral decomposition of automorphic
functions. Precisely, we have the Selberg spectral decomposition [Sel56]

L*(T\H) = C & L (T\H) @ Lo, (T\H),

where L2, (I'\H) denotes the cuspidal spectrum, spanned by Maa® cusp forms, and L2 (I'\H)

cusp cont
denotes the continuous spectrum, spanned by Eisenstein series.

In the monumental theory of Langlands [Lan76], we have a description of Eisenstein series on
adelic quotients G(F)\G(A), where G is a suitable reductive Lie group, F' is a number field,
and A is the ring of adeles of F'. This then gives a spectral decomposition of the L2-space of
the locally symmetric space I'\G(R)/K for a congruence subgroup I' and a maximal compact
subgroup K of the real group G(R). The Selberg spectral decomposition then corresponds
to the case where I' = SL(2,Z), G(R) = SL(2,R), and K = SO(2,R). While the spectral
decomposition is known in general, its application in analytic number theory remains limited
in other cases, because the constant terms and Fourier coefficients of Eisenstein series are only
known explicitly for few cases, such as GL(2,R) and GL(3,R).

1.1 Symplectic Eisenstein series

While much of the theory was already worked out implicitly in the work of Langlands [Lan76,
Art79|, relatively little is known about the explicit formulations for Eisenstein series for G =
Sp(4). For applications in analytic number theory, we often require explicit formulae. This
applies in particular to trace formulae and relative trace formulae (& la Kuznetsov) whose use in
analytic number theory is based on its explicit shape [BloI9b]. Such formulae are only worked
out for few groups. Besides the classical case GL(2), such explicit computations have only been
done for GL(3) by Bump, Goldfeld and others [Bum84l, BFG88|, Thi04} [Gol06, Ball5], with hints
on how to generalise to GL(n), and are not known for other classical groups. The group Sp(4)
is a natural candidate as the first step for the generalisation of these computations to a group
besides GL(n). It is worth noting that some work has been done on the exceptional group Go
[XiolT].

Eisenstein series find many applications in number theory. Langlands [Lan76] introduced in
his spectral theory the notion of constant terms along a parabolic subgroup. This generalises
the notion of constant Fourier coefficient in the classical theory, and is essential to the spectral
decomposition of automorphic forms. The Fourier coefficients of Eisenstein series are featured in
the construction of automorphic L-functions by Langlands-Shahidi method [ShalQ]. Eisenstein
series are also connected to algebraic objects, such as quadratic forms [Blo20] and algebraic
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varieties [FMT89]. Through the construction of the Eisenstein series, we see that their Fourier
coeflicients feature a generalised version of exponential sums and divisor-type functions, which
are worthy of investigating by their own.

For G = Sp(4), there are three types of Eisenstein series, corresponding to the three parabolic
subgroups of Sp(4): those associated to the Siegel maximal parabolic subgroup, those associated
to the non-Siegel maximal parabolic subgroup, and those associated to the Borel subgroup. Since
the Levi factor for the maximal parabolic subgroups is GL(2), it is also possible to twist the
corresponding Eisenstein series by classical Maaf cusp forms. However, we shall only focus on
Eisenstein series with trivial twist. Such Eisenstein series correspond to the residual spectrum.
The residual Eisenstein series are special in the sense that their properties can be inferred from
those of the minimal Eisenstein series with relative ease.

It follows from the general theory [Lan76, MWO95| that the Eisenstein series, while originally
defined on an open subset of the complex space where the series converges absolutely, can be
extended meromorphically to functions defined on the whole complex space.

The objective of Chapter [2] is to compute the constant terms and the Fourier coefficients of
the minimal Eisenstein series Ey(g, ), and the residual Eisenstein series F,(g,v,1), Eg(g,v,1).
The precise notations for the Eisenstein series are given in Section We outline our approach
here.

We recall the definition of Eisenstein series in general. Let G be a reductive group, I' a discrete
subgroup, and P = NM be a standard parabolic subgroup of G, with Levi subgroup M. Let
A be the maximal torus of the identity component of its centre, which we assume to be split.
Let M' = A\M. Then we have decompositions M = AM’ and P = NAM’'. Let K be a
fixed maximal compact subgroup of G. By Iwasawa decomposition, we have P = NMK =
NAM'K.

Let ap be the real Lie algebra of A, and a}, its dual. Let apc = ap ®r C and ape = ap @r C
be the complexifications of ap and a}, respectively. This gives a natural pairing (—, —) : apg x
apc — C. There is a homomorphism Hp : G — ap, which takes ¢ € G to Hp(g), for g €
Nexp(Hp(g))MK. It is easily checked that this is well-defined.

Let f be an automorphic form on M. The Eisenstein series associated to the parabolic P and
twist f is

Ep(g,v, )= > flmp(yg))exp A+ pp, Hp(v9)), (1.1)
yePNI\I'

where g € G, v € app, pp the half-sum of positive roots of n, the Lie algebra of IV, and
mp: G — M/(K N M) the projection map with respect to the decomposition G = NM K. We
see that Ep(g,v, f) defines a function on I'\G/ K, whenever the sum converges.

To obtain explicit formulations for the Eisenstein series, it is necessary to obtain a system of
representatives for the quotient PNI'\I'. This is done for G = Sp(4) in Section 2.2} by introducing
parameters known as Pliicker coordinates, cf. [BFH90| and [Gol06, Ch. 11]. We also give a
partition of the coset representatives with respect to Bruhat decomposition G = BW B, where B
is a standard Borel subgroup of G, and W is the Weyl group of G, with each piece corresponding
to a Weyl element w € W. This is useful for the computation of the constant terms and the
Fourier coefficients.

In Section [2.3] we compute the constant terms of the Eisenstein series. While we have explicit
systems of coset representatives, and hence explicit expressions for the constant term integrals,
these integrals are complicated, and it is difficult to evaluate them using elementary methods.
To evaluate the integrals, we switch to the adelic side, and make use of the intertwining operators
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for automorphic forms [Lan76l MWO95]. Through a functional equation of Langlands, we can
relate the constant term integrals for different Bruhat pieces. In this way, we can express the
constant terms for all Bruhat pieces using the constant terms for pieces corresponding to simple
reflections in the Weyl group, which are easy to compute. In this way we obtain the constant
term of the minimal Eisenstein series Fy(g,r) along the minimal parabolic Py. The constant
term consists of 8 terms, the size of the Weyl group W of Sp(4). Deferring the notations to
Chapter [2], the constant term is given as follows.

Theorem 1.1. The constant term of the minimal Eisenstein series Ey(g, ) along the minimal
parabolic subgroup Fj is given by

/ Bolug,v)du =" Coulgv),
No(Z)\No(R) weW

where

v1i+2 2uo—1v1+1
Coalg,v) =y "y,

_ A(2V1 — 2V2) 2up—v1+2_ 11+1
CO,S&(.(J?V) - A(2V1 _ 21/2 + 1) 1 y2 9
A(2vy — 1) yu1+2 v1—2v2+1
(21/2 -+ 1) 1
A(1) A(2v1 — 21) 22 —v1+2y ~1+l
(v + 1) A(2v — 2v5 + 1) 71 2
A(2V2) A(2V2 — 1/1) yl/172l/2+2y111+1
(2v9 + 1) A(2uy — vy + 1) 71 2
AQ2vy)  A(rn)  AQ2vy —2u) T2 2]
(2v9 + 1) A(vy +1) A(2vy — 205 + 1) 71 2 ’
A1) ARry) A2y —11) =242y~
(r1 + 1) A2vo + 1) A(2vg — vy +1)7F 2
ARvy —v1) AQ2ry)  A() AR —21) 1o o
Qs — 01 + A2 + DAy + D) A2y — 2 + 1)L 2 '

i

CO,SB(Q;V) = A

CO,S&SB (ga U) = A

CO,S@SQ (9,v) = A

CO,SaS@sa (9,v) = A

CO,sBsasg (ga V) = A

CO,SQSBSQSB (g,v) = A

A more precise version of the theorem, as well as the constant terms of the minimal Eisenstein
series Ey(g,v) along other parabolic subgroups are given in Section , in Theorems [2.21},
and [2.24

Since the residual Eisenstein series E4(g,v,1) and Eg(g,v,1) are residues of the minimal Eisen-
stein series Ey(g,v), one can obtain their constant terms simply by taking the residues of the
constant term of Ey(g,v). These constant terms are given in Corollaries to m

In Section [2.5| we compute the Fourier coefficients of the Fisenstein series, in terms of Whittaker
functions. To state the result, we need to evaluate the Dirichlet series for a Sp(4) Ramanujan
sum. This is treated separately in Section The Fourier coefficients of Ey(g,v) is given in
Theoremm By taking residues, we obtain the Fourier coefficients of E, (g, v, 1) and Eg(g, v, 1),
in Corollaries and

1.2 Symplectic Kloosterman sums and Poincaré series

We first give a brief review of classical Kloosterman sums. A Kloosterman sum is given by

x,Yy€L/qZ
zy=1(mod q)
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Such sums naturally appear in the Fourier expansion of GL(2) Poincaré series

Pu(ziv)= Y Im(y2)’e(m(yz)), (1.2)

~yeEP2NT\I'

where T' = SL(2,Z), P? = {<* :) € SL(Z,R)} CSL(2,R), z € H, m > 0, Re(v) > 1.

To look for generalisations of Kloosterman sums, it is helpful to reformulate the definition of
Kloosterman sums in the context of automorphic forms. We start by noting that Kloosterman
sums satisfies a multiplicativity relation. Let ¢ = q1g2, with (g1, ¢2) = 1. Choose 71,9 such that
r1qg1 =1 (mod ¢2), and r2g2 =1 (mod ¢1). Then

S(m,n;q) = S(ram,ren; q1)S(rim, rin; ).

So it is sufficient to consider the case where ¢ = p* is a prime power.

T::{(“ a1)eSL(2,Q)}, U::{(l DESL(Q,@)}

be the standard torus and the standard unipotent subgroup of SL(2,Z) respectively. We denote
by N the normaliser of T" in SL(2,Q). Then the Weyl group of SL(2, Q) is given by W := N/T.
The Weyl group W = {id, wp} consists of two elements, where the non-identity element wy is
represented by the matrix
-1
wo = ( 1 ) .

Let v € SL(2,Z). We consider a Bruhat decomposition v = uwtu’ of 7, where u,u € U(Q),
w e W, and t € T. Let C(p*) denote the set of v € SL(2,Z) with Bruhat decomposition

v = uwot ru’, where
ok
tr = .| €T,
g < P k)

and let X (p¥) = U(Z)\C(p*)/U(Z). Now we give an explicit characterisation of X (p¥). An
element v € X (p¥) has the form

=6 ) )00 ) e

The resultant matrix having integral entries implies x,y € p‘kZ/ 7, and zyp* —p~F € Z.

Let

For m € Z, let x,, : Q/Z — C* be the character defined by x — e (mx). We define projection
maps

u:X(p*) = U(Z)\U(Q),

u X (p") = U(Q)/U(2)
by the relation v = u(y)wotru'(y) for v € X(pF). We consider for m,n € Z the character
sum

KI(p", xms xn) = D xm(u(3))xn (/' (7))-
YEX (p*)

Using the characterisation above, we see that

K xmoxn) = Y, xm@xal@) = D e(W)ZS(m,n;pk)

p
z,yep *ZL/Z x,y€Z/p*Z
zypF—p~Fecz zy=1(mod p*)

5



returns a Kloosterman sum.

It is apparent from this formulation that one can construct generalised Kloosterman sums over
arbitrary reductive groups; in particular, we can define Kloosterman sums for every element in
the Weyl group. However, in the classical SL(2,Z) case, the Kloosterman sums for w = id is
trivial, so we only see one kind of Kloosterman sums, corresponding to w = wg the non-trivial
Weyl element, in the classical theory.

In [BFGS8S|, Bump, Friedberg and Goldfeld introduced GL(r) Poincaré series for » > 2, and
gave a generalisation of Kloosterman sums to GL(3). The notion of Kloosterman sums was then
generalised to GL(r) for » > 2 by Friedberg [Fri87|, and then to arbitrary simply connected
Chevalley groups by Dabrowski [Dab93].

By methods in algebraic geometry, Weil [Wei48] obtained a bound for GL(2) Kloosterman
sums

1S (m,n; q)| < 7 (q) (m,n,q)"* ¢"/?, (1.3)

where 7 denotes the divisor function. However, it remains a major open problem to give non-
trivial bounds for Kloosterman sums in general, and currently only a small set of examples
can be treated. Bounds for GL(3) Kloosterman sums were first obtained by Larsen [BFG8S,
Appendix| and Stevens [Ste87|, and were improved by Dabrowski and Fisher [DEF97|. Bounds
for some GL(4) Kloosterman sums were given by Huang [GSW19, Appendix|. Friedberg [Fri87|
generalised the results to GL(r) Kloosterman sums attached to certain Weyl elements. On
reductive groups, Dabrowski and Reeder [DR98| gave the size of Kloosterman sets, establishing
a trivial bound for Kloosterman sums on reductive groups.

Poincaré series can be considered as a generalisation of Eisenstein series, by introducing an
extra twist by a character; this is apparent from the definition of the classical Poincaré
series. And as in the classical case, the Fourier coeflicients of symplectic Poincaré series features
symplectic Kloosterman sums. Therefore, having a good bound for the Kloosterman sums leads
to information on the Poincaré series.

Poincaré series play an important role in number theory. Beside being examples of automorphic
functions, they are also involved in various trace formulae, the most prominent of which being
the Petersson/Kuznetsov trace formulae, which have great importance in the context of analytic
number theory [Blo19b|. Indeed, in Chapter 4| we obtain a density theorem for symplectic
automorphic forms using a Kuznetsov-type trace formula.

The main objective of Chapter [3[is to prove non-trivial bounds for Sp(4) Kloosterman sums.
Let N(Q) be the set of rational matrices which normalise the diagonal torus T of the symplectic
group G = Sp(4) (see Section for details). For w € W, and ¢1, co € N, we set

1/01
ny(c1,c2) == a/e: o w € N(Q).
62/01

Then we have the following theorem.



Theorem 1.2. Let c¢j,cs € N. Then we have

Kl (TLid(Cl,CQ) Y, w') =1 ifecg=co =1,

K1 (ns, (1, c2), 1, ¢") | <y e 61/2+5 if cp =1,

‘Kl (nsﬂ(01762),w,w/)‘ Lol e 62 /2+e ife; =1,

K1 (ns, s, (c1,¢2), 1,0 )| Ky e (63, ¢1)(cre2)* if co | e1,

K1 (nsys, (c1,¢2),1, %) | <yppre (e, c2)(cre2)® if ¢f | c2,

K1 (12505550 (c1,€2), 10, 0") | Kyt e (c1,¢2)(cren) /3T if ¢ | cf,

‘Kl (nsﬁsasﬁ (c1,¢2), ¢,¢')‘ ST (2, 62)61_1/265/2(0102)8 if ¢1 | co,
‘Kl (nwo (c1,¢2), LZ),?!/)‘ Ly e (€1,¢2) /261/263/4(6102)6,

and the Kloosterman sum Kl (n,(c1,c2),%,9") vanishes if the condition on the right is not
satisfied.

For comparison, the trivial bound of Dabrowski and Reeder [DRI8| says

K1 (nw(er, e2), 9, 9) | < erea,

and we can check explicitly that the bounds given above are always non-trivial.

We outline the content of Chapter [3| below. In Section we follow the notations of Stevens
[Ste87] and Dabrowski [Dab93|, and define Kloosterman sums for Sp(2n) in general. While the
classical Kloosterman sums are defined globally (over Q), and multiplicativity is proven as a the-
orem, we define the Kloosterman sums locally (over Q,), and define global Kloosterman sums
as the product of local Kloosterman sums for all primes p. So, under this construction, multi-
plicativity holds by definition. We also make explicit formulations for local Sp(4) Kloosterman
sums Klp,(n,1,v"), using the coset representatives obtained in Section

In Section we introduce a decomposition for Sp(2n) Kloosterman sums. This generalises
the treatment in [Ste87] for GL(n) Kloosterman sums. Each piece in the decomposition is an
exponential sum of classical Kloosterman sums, or a product of classical Kloosterman sums.
Then we can bound each piece individually.

However, in general it is not sufficient to just use the classical bound (|1.3)) to obtain non-trivial
bounds for Sp(2n) Kloosterman sums. Briefly, a local Kloosterman sum is an exponential sum

of the form
=08

€S

for some k € N. To obtain non-trivial bounds for Sp(4) Kloosterman sums, we adopt two
different approaches, depending on the size of k:

(i) when k > 2, we use the p-adic stationary phase method [DF97];

(ii) when k£ = 1, the stationary phase method fails, and one has to resort to algebro-geometric
arguments. Known results of Deligne [Del77], and Adolphson and Sperber [AS89] are
manipulated to give the bounds we need.

In Section [3.3] using these two approaches, we obtain power-saving bounds for local Kloosterman
sums for all Weyl elements, given in Theorems to The bounds for global Kloosterman
sums are then obtained by combining the local Kloosterman sums. The end results are given
in Theorems [3.14] to [3.18] in Section These theorems entail Theorem and also describe
the behaviour of the Kloosterman sums in relation to the characters 1), ',

7



Finally, in Section [3.5] we give an introduction to symplectic Poincaré series, and relate the
symplectic Kloosterman sums to the Fourier coeflicients of the Poincaré series. We also give
explicit expressions for the Fourier coefficients of Sp(4) Poincaré series.

1.3 Kuznetsov trace formula and density theorems

We introduce the problem of density estimates in the context of automorphic forms. We first
recall the Ramanujan conjecture. In the context of automorphic forms, the conjecture says that
cuspidal automorphic representations of the group GL(n) over a number field F' are tempered.
However, this conjecture in its full generality is far out of reach, even for GL(2), the simplest
case. Instead, we can consider approximations to the conjecture as a substitute, and try to
bound the number of members in a given family of automorphic representations violating the
conjecture relative to the amount by which they violate the conjecture. Such results are known
collectively as density theorems. Clearly, these density results do not prove the conjecture, but
they are often sufficient in applications.

On the other hand, it is natural to consider the generalisation of the Ramanujan conjecture to
reductive groups other than GL(n). It is however well-known that the naive generalisation of
the Ramanujan conjecture is false for Sp(4), because of the presence of Saito-Kurokawa lifts,
which are not tempered. This is not the end of the investigation, however. It is also known that
Saito-Kurokawa lifts are not generic, i.e. do not have a Whittaker model. So it is natural to
rephrase the question, and ask whether generic cuspidal automorphic representations of Sp(4)
are tempered. This problem is also open, and currently far out of reach. Density theorems in
this context have numerous applications as well.

Because of the importance of density theorems, they have attracted much attention in history,
and many strong density results are known for various automorphic families on GL(2) with
different settings [Hux86, [Sar87, Twa90l, BM98, BM03, BBR14|. Via Kuznetsov-type trace for-
mulae on GL(3), strong density results on GL(3) were obtained in [Blo13, BBRI14, BBMI17].
Blomer [Blo19a] further generalised the technique to obtain results on GL(n) beyond Sarnak’s
density hypothesis. However, relatively little is known for general reductive groups. Finis and
Matz [FM19] give as by-products some density results for the family of Maaf forms of Laplace
eigenvalue up to a height T and fixed level. However, these bounds are weak, and even the
“convexity bound” cannot be obtained.

We describe the problem of density estimates in detail, for G = Sp(4). Fix a place v of Q. For
an automorphic representation m = ) m, of Sp(4), we denote by pr(v) = (px(v, 1), ur(v,2)) its

local Langlands spectral parameter, gvhich we define precisely in Section [£.1] We write
ox(v) = max {|Re i (v,1)], |Re pr(v,2)|}. (1.4)

The representation 7 is tempered at v if o(v) = 0, and the size of o.(v) gives a measure on
how far 7 is from being tempered at v. An example of a non-tempered representation is the
trivial representation, which satisfies oy,iv(v) = 3/2 for all places v.

For a finite family F of automorphic representations of Sp(4) and o > 0 we define
Ny(o,F)=|{r € F|ox(v) >0c}.

Trivially, we have N,(0,F) = |F|, and if F contains the trivial representation, then we have
Ny(3/2,F) > 1. One may hope to interpolate linearly between the two extreme cases, and
obtain a bound of the form

Ny(0, F) <pe |F|' 0T (1.5)



with a = 3/2. In the context of groups G of real rank 1, for the principal congruence subgroup
I'(q) ={y€ G(Z)|v=1id (mod ¢)} and v = oo, this is known as Sarnak’s density hypothesis
[Sar90].

In this chapter, we consider the family F;(q) of generic cuspidal automorphic representations
for the group I'g(q) C Sp(4,Z) for a large prime ¢, and Laplace eigenvalue A in a fixed interval
I. A simple application of Weyl’s law shows that |F;(q)| <r ¢® when the size of I is sufficiently
large, noting that the contribution from the continuous spectrum has size O(q). The main result
of the chapter is that for the family F;(¢) and any place v # ¢ of Q, we go beyond the density
hypothesis and obtain obtain a density estimate with a = 3/4, which is halfway between the
density hypothesis and the Ramanujan conjecture.

Theorem 1.3. Let ¢ be a prime, and v a place of Q different from ¢, I C [0, c0) a fixed interval,
€ >0,and ¢ > 0. Then
No(, F1(9)) <1wmne ¢

The proof is based on a careful analysis on the arithmetic side of the Kuznetsov formula, and
on the spectral side through a relation of Fourier coefficients between automorphic forms and
Hecke eigenvalues. Let A(m, ) be the Hecke eigenvalue of m € F(q) for the m-th standard Hecke
operator T'(m). It is convenient to adopt the normalisation X (m, ) := m~=3/2X(m, ).

Theorem 1.4. Keep the notations above. Let m € N be coprime to ¢ and Z > 1. Then

Z ‘)\/(m7 71') |2 ZQO'W(OO) <<I’g q3+€
T€F1(q)

uniformly in mZ < ¢? for a sufficiently small implied constant depending on I.

Let us roughly sketch the proof of Theorem We denote by {w} an orthonormal basis of right
K-invariant automorphic forms for I'g(q), cuspidal or Eisenstein series, where K is a maximal
compact subgroup of Sp(4,R). We denote by f(q) dw the integral over the complete spectrum

of L?(To(q)\ Sp(4,R)/K). Very roughly, the Kuznetsov formula takes the form

Kl w(c, M, M
/ ‘Aw(M)F ZQUW(OO)(g)\weId?D POL Z Z M’ (1_6)
(9) idtweW c1rc0 c1C2

where M = (1,m) € Z*, A5 (M) is the M-th Fourier coefficient of w, defined in (£.8), W is the
Weyl group of Sp(4), and Kl ., (¢, M, M) is a generalised Kloosterman sum of level ¢, defined in
(4.22), associated with the Weyl element w, and moduli ¢ = (¢1, ¢2). Note that the Kuznetsov
formula only extracts the generic spectrum.

However, the situation here is very different from GL(n) case found in [Blo19a)]. In the symplectic
case, there are no simple relations between the Fourier coefficients A, (M) of a cuspidal newform
w and Hecke eigenvalues \'(m, 7) of the corresponding automorphic representation (i.e. @ € V).
This is in stark contrast with the GL(n) case, where the Fourier coefficients and Hecke eigenvalues
are proportional |Gol06, Theorem 9.3.11|. It is because of this obstacle that the Kuznetsov
formula is not yet a standard tool for the group GSp(4), and the present paper seems to be
the first application of the Kuznetsov formula that is seen in action for a group other than

GL(n).

While the Fourier coefficients in principle contain the information on Hecke eigenvalues, it is
not obvious how to extract it. A detailed analysis of the relations between them is found in
Section In Theorem we establish a recursive formula of A(p",7) in terms of Fourier
coefficients.



Using Theorem we deduce from Lemma that for a prime p { ¢ and r € N, the size
of Fourier coefficients A, (1,p") of an L2-normalised generic cuspidal form w is often as big
as ¢ 3/2eprox(p), Through this relation, we are able to use the Kuznetsov formula to derive
information on ¢, (p) from an analysis of the Kloosterman sums. Meanwhile, the factor Z27=(>°)
deals with the infinite place, so the test function |Ag(M)|* Z297(°) treats the finite places and
the infinite place essentially on the same footing.

When mZ < ¢, the Kloosterman sums associated to non-trivial Weyl elements are empty, hence
the off-diagonal terms vanish completely. We will use this observation to prove Theorem
below. To obtain stronger density results, we have to deal with the Kloosterman sums appearing
in the off-diagonal terms, and improve the trivial bound [Sy (¢, M, N)| < cico. In our scenario,
the Kloosterman sums we need can be evaluated explicitly, and there is no need to rely on the
general bounds in Chapter [3]

Now we give applications of Theorem for a large sieve inequality analogous to the GL(n)
case [Blo19a.

Theorem 1.5. Let ¢ be prime and {a(m)},,cn any sequence of complex numbers. Then

Z ‘ Z m)\ (m W)’ <1 ¢*FF Z la(m)[?

T€Fr(q) m<z m<x

uniformly in z < ¢q for a sufficiently small implied constant depending on 1.

As a corollary, we establish a bound for the second moment of spinor L-functions on the critical
line. Precisely, let L(s,m) be the spinor L-function associated to 7, normalised such that its
critical strip is 0 < Res < 1.

Corollary 1.6. For ¢ prime and ¢ € R, we have

ST oILa/2+ it m) < ¢
we€Fi(q)

Finally, in the appendix (Section , we outline an algorithm for computing arbitrary Fourier
coefficients of a cuspidal form in terms of its Hecke eigenvalues. While this is not needed for the
proof of the theorems, such results serve an independent interest in number theory, in laying
the groundwork for further applications of the Kuznetsov formula on Sp(4), as well as Fourier
analysis of automorphic forms on Sp(4) in general.
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Chapter 2

Symplectic Eisenstein series

2.1 The setup

Let G = Sp(4,R) be the real symplectic group of degree 2, namely

0 I 0 I 10
T 2 _ 2 _
(% w)om (G w)t m 6,

where g7 denotes the matrix transpose of ¢ as usual. Let T and U be a maximal split torus and
a maximal unipotent subgroup of G respectively, defined as follows:

G =Sp(4,R) = {g € GL(4,R)

T = {diag (y1,v2, 91 vy ') € G},
1 ni no ns
1 Ty ns

1
—Mn1 1

U= € G | ng=ning +ng

Then B = UT is a Borel subgroup of G. We also define

T+ = {diag (y1,92, 91 " v5 ') € G | y1,92 >0} C T,
V= {diag (51,52,51_1,52_1) ‘ €1,89 = il} C G.

Let X (T') and X*(T') be the character group and the cocharacter group of T respectively, with a
natural pairing (—, —) : X(T)x X*(T) > Z. Let , 8 € X(T') such that o (diag (y1, 2, yr y;l)) =
y1y2_1 and 8 (diag (yl,yg,yl_l,yz_l)) =y3. Then A = A(T,G) = {a, B} is a set of simple roots,
and RT = {a, 8,a + 3,2a + B} is a set of positive roots with respect to (B,T). We denote by
s and sg the simple reflections in the hyperplane orthogonal to o and 3 respectively. Then the
Weyl group W = W (T, G) is given by

W = {1, 54,53, 5058, 585a; Sa585as 585458, Sa585aS3} -

We often write wg := sa5s5q53 for the long Weyl element. The generators s, and sg can be
represented by matrices

11



Definition 2.1. A parabolic subgroup of G is a closed subgroup P such that G/P is a projective
variety. It is known that a parabolic subgroup contains a Borel subgroup [Bor97, Corollary 11.2].
We say P is stardard if P O B =UT.

Let P be a standard parabolic subgroup, and N the unipotent radical of P. The projection
P — N\P splits, giving a reductive subgroup M of P such that P = NM. A splitting M is
called a Levi subgroup of P, and the decomposition P = NM is called a Levi decomposition.
If we fix a maximal torus T" C P, then the condition M 2 T determines M uniquely. There is
a bijective correspondence between standard parabolic subgroups of G and subsets of A(T, G),
the simple roots of G [Shal(O, Chapter 1.2]. Let P = MN be a standard parabolic subgroup
of G. Then P corresponds to Ay = A(T, M), the set of simple roots of M with respect to T,
which is a subset of A(T,G).

For G = Sp(4,R), we have standard parabolic subgroups Py, P,, Pg, corresponding to the
subsets (0, {a}, {8} of A respectively. Explicitly, the standard parabolic subgroups of G are
given by

* *
B=PF= : NG, (minimal parabolic subgroup)
\ * %
4 * * 3\
*ook . .
P, = . s NG, (Siegel parabolic subgroup)
* k)
* x %
Pg = : * N G. (non-Siegel maximal parabolic subgroup)
ok %

The Levi decompositions P; = N;jMj, j € {0, o, B} are given by

1 n1 no ninsg+ng

1 . 1
No= n14 " . Mo{diag (y1,y2,51 ", %5 ") € G | y1,y2 € R},
—n1 1
L S\| or A
o (GO S s [ P
1 n1 m2 mng Y
1 ng a a b
Ng= 1 R Mp= yl_l y € RX, (C d> € SLy(R)
—n1 1 C d

Let K be the maximal compact subgroup of G given by

K:{<_fjB ﬁ) ‘A+BieU(2)}.

By Iwasawa decomposition, elements in G/K can be represented by matrices of the form

1 1 no mn3 Y1
g= Lona s 2o e UT, (2.2)
1 i
—np 1 y2_1
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with ng = nins + n4. So we may assume that yi,ys are positive.

We now give explicit characterisations for Eisenstein series for parabolic subgroups of G, using
the general definition in (1.1).

Notation. For symbols indexed with a parabolic subgroup P, we often replace the parabolic
subgroup with the index of the parabolic subgroup. So we write Ey for Ep,, po for pp,, and so
on.

For the minimal parabolic subgroup P, the automorphic form f is a constant function. Parametris-
ing af~ by via + o8 for vy, 15 € C, we have pg = (2,3/2). So the minimal Eisenstein series is
given by
Eo(g,v)= > Io(vg.v),
~yePyNI'\I'

where v = (11,15) € C?, and Iy(g,v) = y}* 2372+

For the Siegel parabolic subgroup P,, an automorphic form f on M, is simply an automorphic
function on GL(2,R). Parametrising a} by v(a + ) for v € C, we have p, = 3/2. So the
Siegel Eisenstein series is given by

Ea(Q?”?f): Z f(ma(ﬁ)/g))Ia(fyg?V)a

NEP,NI\T'

where v € C, and I,(g,v) = (y1y2)V+3/2_

For the non-Siegel maximal parabolic subgroup Pz, an automorphic form f on Mp is also an
automorphic function on GL(2,R). Parametrising aj by v(a+3/2) for v € C, we have pg = 2.
So the non-Siegel Eisenstein series is given by

Es(gov, /)= D fms(v9)Is(vg,v),

yEP3NT\T

where v € C, and Ig(g,v) = yll’“.

2.2 Coset representatives

The Eisenstein series Ep is defined as a sum over P N T'\I'. Hence, for explicit computations,
we need explicit characterisations of the coset representatives for P N T'\T.

2.2.1 Minimal parabolic

Let Py be the standard minimal parabolic subgroup of G. We denote by U = Uy C Py the
subgroup of unipotent matrices, and I'g = U NT". We compute the coset representatives of U\G
and I'o\I'. Note that we have Py N T'\I' = (V- T'g)\I'.

Let
ail a2 a3 a4
a1 a2 G23 Qa24
€ G.
az] az2 a3z as4
aq1 Q42 Q43 Q44

a =

We define the following quantities, known as Pliicker coordinates, associated to a:
V1 = az1, V2 =432, V3 =0asz, V4= 434,
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V12 = a31442 — 432041, V13 = (31443 — 433041, V14 = 31044 — 434041,
V23 = 432043 — 33042, V24 = 432044 — A34042, V34 = 433044 — A34043.
It is well-known that these quantities are invariant under left action by U. The following relations

come immediately from the definition:

V1U23 — V2013 + v3v12 = 0, v1U24 — V2V14 + V4V12 = O,

V1U34 — U3V14 + V4v13 = 0, V2V34 — V3V24 + V423 = 0. (2:3)
And symplecticity implies
v13 + v9g = 0. (2.4)
Define
Vo = {v = (v1,-++ , 04,012, ,V34) € R ‘ v satisfies and } (2.5)

Proposition 2.2. Via the Pliicker coordinates, there is a bijection between U\G and Vj\ {0}.
Proof. As the coordinates are invariant under left action by U, the map U\G — Vp\ {0} is
well-defined.

Now we show injectivity. Suppose a = (a;j),b = (b;j) € G have the same Pliicker coordinates.
We want to show that there exists v € U such that va = b. Fix the following parameterisation
of v:
1 ni no ns
1 ng n3
7 = 1 e U7
—n1 1
subject to the condition ng = nins + ng4.

Firstly, we show that there exists n; € R such that
( 1 ) <a31 azz  as3 a34> _ <b31 b3a b33 b34> (2.6)
—n1 1/ \an as2 aa3 au b1 baa baz bas /)’ '

agjzvj:bgj, j€{1,2,3,4}.

Clearly, we have

By permuting the columns, we may assume without loss of generality that ag; # 0. By comparing
secondary Pliicker coordinates we obtain

azi(asj — baj) = asj(asr —bar), j€{2,3,4}. (2.7)

Then we solve n1 = (aq1 — bg1)/as1. The relations (2.7) then imply ({2.6).

Again by permuting columns, we may assume v1a # 0. So the vectors (as1,asz) and (a41, a42)
are linearly independent, and we can find n4, ns such that

azr a2
(1 na ns) las as2 | = (bar bo2).
as1 a4

By symplecticity of b we have
b21b33 + baobzs = b23b31 + b2abza, ba1baz + baobas = ba3bay + baabao + 1,
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from which we solve

b21b33b42 + baob3abis — b21b32b43 — b22b32bag + b3
b23 = ’
b31ba2 — ba1b32
—(a21 + n4azi + nsaq1)ves — (aze + naaze + nsaa2)vaa + asz
V12
—@21V23 — G22V24 + a32 n —(n4as1 + nsaqr)ves + (naage + nsaa2)vi3
V12 V12

= Q93 + N4a33 + N5a43.

Analogously we solve byy = aoq + n4ass + n5a44.

Noting that ng = ng4 + nins, it remains to show that there exists ng such that

a11 a2 aiz a4
a1 Q22 Aa23 0G24
a31 a32 as3z a4
G41 Q42 Q43 Q44

(1 ny n9 ng) :(bll b12 b13 b14>‘

Again, we may assume v; # 0. Then we solve ne = (b11 — a11 — n1az — n3aq1)/as;.

symplecticity of b we have
b12b31 + bazbs1 = b11b32 + b21ba,
b12b33 + bazba3z = b32b13 + baobos,
b14b33 + baabs3z = b13b34 + bo3baa,

from which we solve
bi2 = a12 + niage + noase + n3aqa,
bi3 = a13 + n1ags + noass + n3ays,

b14 = a14 + n1a24 + N2azq + n3a44.
So we have injectivity.
Now we show surjectivity. Let v € Vj\ {0}. Put
azy = vy, az2 =v2, a3z3 ="U3, U34 = V4.

Again, we may assume v; # 0. Then there exists &1, &2, &3 € R such that

§1v1 + &g + E3v3 = 1.

Now put
agr = —&3v13 — &oav12, aq2 = 112 — 3093,
ag3 = &3 + §1v13,  agq = (vig — v4(&3v13 + &2v12)) Jv1.

We check that the bottom two rows

aszr a3z a33 a34
a41 Q42 Q43 Q44

have the correct Pliicker coordinates. By completing remaining rows, we obtain surjectivity. [

Proposition 2.3. A coset of U\G contains an element of I' if and only if its corresponding
Pliicker coordinates are such that (vq,---,v4) are coprime integers, and (vi2,--- ,v34) are co-

prime integers.
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Proof. (=) Trivial.

(<:) The case v1 = vg = v = 0 is trivial. Now suppose (v1,v2,v3) = d > 0. Then there exist
617 §2, 53 c d_IZ such that

§1v1 + &g + E3v3 = 1.

By the relation
V1V24 — V2U14 + v4v12 = 0,

we deduce that d | vgv12. But (d,vq4) = 1, so d | v12. Similarly, we have d | v13,v23. Construct
a41, 42,043, 644 as in the proof of surjectivity in Proposition Note that a41,a40,a43 are
constructed as integers. For a44, observe that

ase = vy ' (vig — va(E3v13 + E2012))

=1 ! (v14 + &3v1v34 — E3v3014 + E2v1v24 — E2V2014)
= "U1_1 (&1v1v14 + E301034 + §gvlv24)

= §1v14 + &2v24 + E3034.

So agq € d7'Z. As (d,vy4) = 1, there exists n € Z such that d | dags + nvs. Then

1 U1 V9 V3 (7} . U1 (%) V3 V4

7 1) \aa1 as2 a3z aa ag + 5 age + P a3+ UFE ags + 5P
is integral and has the correct Pliicker coordinates. It is then straightforward to show that this
can be completed to a symplectic matrix with integral entries. ]

2.2.2  Siegel parabolic

Let P, be the Siegel parabolic subgroup. Let U, C G be the subgroup of matrices of the
form

X Y
g= < (Xl)T) € G, X eSLyR),

and 'y, = U, NT. We compute the coset representatives of U,\G and I',\I'. Note that
P,NT\I' = (V' -T,)\I', where

V' ={diag (¢, 1,¢,1) | e = +1} C V. (2.8)

It is clear that the Pliicker coordinates v;; are invariant under left action of U,. We know that
[Gol06, Ch. 11.3]

V12U34 — V24013 + V14023 = 0. (2.9)
Again, by symplecticity we have
13 + vag = 0 (2.10)
We define
Vo={v=(vi2, " ,v34) € RO | v satisfies and (2.10)} . (2.11)

Proposition 2.4. Via the Pliicker coordinates, there is a bijection between U, \G and V,\ {0}.
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Proof. As the coordinates are invariant under left action by Uy, the map U,\G — V,\ {0} is
well-defined.

Now suppose a = (a;5),b = (bi;) € G have the same Pliicker coordinates. We want to show that
there exists v € U, such that ya = b. Firstly, we show that there exists h € SLy(R) such that

p (@31 a2 ass as) _ b31 b3z b3z b3y
41 Q42 Q43 Qa4 bsr baz baz baa

Assume v12 # 0. Then there is a unique h € SLy(R) such that
p (@1 as2) _ b31 b3z
a41 @49 by baz)
Now note that
() =i Cen) -5 () Ge) =2 ) -2 )
as3 V12 \ Q42 vig \@41/)  \ba3 v12 \baz vig \ba1)
asz\ _ vi3, (a3 v23, (a3 _ vi3 (b3 v23 (b31\ _ (b33
h = U3y, _ By _ - - .
a43 Uiz \ @42 vig  \ @41 v12 \ba2 vi2 \ba1 bs3

The same argument gives
)6
44 baa

By the same argument, for any X € SLy(R), we can find a 2 x 2 matrix Y such that

X <a11 012) Ly <a31 a32> _ (bn 512>'
a1 a2 a1 Q42 ba1  b22

So we obtain a matrix X € SLg(R) and a 2 x 2 matrix Y such that

Hence

ail a2 a1z a4 b1 bia * %

X Y a1 a2 azz aza | [ bar baa ok
(X1 T asi aso asy asa| ™ [bs1 b2 bag baa
aq Q42 Q43 Q44 by baz b4z by

Denote
B X Y
L)

b21b33b42 + b22b34ba2 — b21b32b43 — b22b32b4g + b32
b31ba2 — ba1b32
—(x21a11 + T22021 + Y21a31 + Y22041)V23 — (T21012 + T22a22 + Y21a32 + Y22042)V24

Symplecticity of b says

bo3 =

V12
+ 22032 — T21042
V12
_ To1(—a11v23 — a1avay — a42) N T22(—0a21v23 — 22024 + a32) n Yy21(as2v13 — a31v23)
B 12 V12 12
n Y22(a42v13 — G41v23)
V12

= X21a13 + 22023 + Y21a33 + Y22043.
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Analogous results hold for by3, b14 and bey. Thus we have va = b. Finally, note that v = ba~ 1 is
necessarily symplectic. So v € U,.

Surjectivity follows immediately from Proposition 2.2 O
Proposition 2.5. A coset of U,\G contains an element of I' if and only if its corresponding
Pliicker coordinates (vig,- -+ ,v34) are coprime integers.

Proof. The statement follows immediately from Proposition [2.3 O

2.2.3  Non-Siegel parabolic

Let Pg be the non-Siegel parabolic subgroup. Let Ug C G be the group of matrices of the

form
1 * * x
* % %
g - 1 6 G?
* % %

and I's = UgNI". We compute the coset representatives of Ug\G and I'g\I'. We have PgNT'\I" =
(V' -Tp)\I', with V" as in (2.8).

We define
Vg = {v = (v1,v2,v3,04) € R4} . (2.12)

Proposition 2.6. Via the Pliicker coordinates, there is a bijection between Ug\G and Vj\ {0}.

Proof. As the coordinates are invariant under left action by Ug, the map Ug\G — V3\ {0} is
well-defined.

Suppose a = (ai;),b = (b;j;) € G have the same Pliicker coordinates (i.e. the same third row).
We want to show that there exists v € Ug such that ya = b. Consider the columns

ag1 a2 a23 a24
asi |, as2 |, ass | , a34
a4l a42 43 Q44

As a is symplectic, it has nonzero determinant. By permuting columns, we may assume that

asr a2 a3
det | as1 azz2 ass | #0,

a41 A42 Q43
and asg # 0. Then we can find A1, A9, As, 1, t2, i3, 71, M2, N3 such that

azr azy aG23
(A1 A2 A3) [asi ase ass | = (bar boo ba3),
a41 A42 Q43
az azy aG23
(n1 p2 ps) |ast ase ass | = (bar baz bas),
a41 A42 Q43

ail a2 a3
as1 age a9

I m2 n3 = (b11 b2 bi3).

( ) asz;p as2 ass ( )

as1 Q42 a43
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Symplecticity of b says

ba1b33 + bagbszs — ba3bsi
b32
(Ar1a21 + A2az1 + Azaqr)ass + (A1a2z + Aaasz + Azaqz)azs — (A1ag3 + Aaass + Azaqs)az:
a32

boy =

= A1a24 + A2a34 + A3a44.
Analogously, we have
baa = p1ass + poass + p3ags, bia = arg + mags + n2a34 + M3044.

Thus, denote by v the matrix

I m n2 mn3
A A2 A3

/7 = 1 )
M1 p2 3

we have ya = b. Again, as v = ba~! is necessarily symplectic, we have v € U, 3.
Surjectivity follows immediately from Proposition [2.2 O

Proposition 2.7. A coset of Ug\G contains an element of I' if and only if its corresponding
Pliicker coordinates (vy,--- ,v4) are coprime integers.

Proof. The statement follows immediately from Proposition [2.3] O

2.2.4 Bruhat decomposition

By Proposition we can enumerate the cosets U\ G using Pliicker coordinates. Now it remains
to find representatives with given coordinates.

G = ]_[ Gy = ]_[ UwTU.

weW weW

Bruhat decomposition says

Hence a coset v € U\G can be represented by a matrix in wTU = wP, for some w € W; such
Weyl element is unique, and depends on the corresponding Pliicker coordinates of the coset. For
example, let v € U\G correspond to Pliicker coordinates v, and suppose 7 lies in G, then ~
has a representative of the form

ko ok ok
* ok ok ok
v~ . 5 €q@q.
*

This says Uy satisfies vy, v34 # 0, and vy, v2, V12, V13, V14, V23, V24 = 0.

We define an equivalence of Pliicker coordinates (vy, va, v3, V4; V12, V13, V14, V23, V24, U34) by
. . X
(1, ,v45012, - ,v3a) ~ (Ko, -+, kvas kava, - -+, kovsy) for Ky, kg € R™.

Then we have v, ~ (0,0,%,1;0,0,0,0,0,1), where the entries marked by * are arbitrary.

Now we give representatives of v € U\G with corresponding Pliicker coordinates v, classified
by the Weyl element w € W:
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(i) w =id: This says vy ~ (0,0,1,0;0,0,0,0,0,1). In this case, the matrix

1/1]3 1 1/1)3
v3/ 34 1 v3/ 34
V3 1 V3
v34/v3 1 v34/v3

has the given coordinates.
(ii) w = sq: This says vy, ~ (0,0,%,1;0,0,0,0,0,1). In this case, the matrix
1/v4 1 —v4/v34  V3/V34
—1)4/1)34 1)3/1)34 1 1/1}4

V3 V4 1 *U34/U4
—U34/U4 1 V3 V4

has the given coordinates.
(iii) w = sg: This says v, ~ (0,0,1,0;0,0,0,1,0,%). In this case, the matrix

1/’1}3 1 1/7)3
v3/ 23 1 v3/v3 —v34/v3
V3 1 V3
—v93/v3 v34/03 -1 v3/ V23

has the given coordinates.

(iv) w = sqsp: This says vy ~ (0,1, %,%;0,0,0,1,0,%). In this case, the matrix

—1/2}2 1 1)2/1}23 ’1)3/’023
v2/ V23 vg/vaz | _ [ 1 —vy  —U3 —vy
V2 (%3 V4 -1 V23 /’1)2
’1)23/’1)2 1 71/1}2

has the given coordinates.

(V) w = sgsqe: This says vy ~ (0,0, %,1;0,%,1,%, %, ). In this case, the matrix

1/va 1 V14/vs  Vo4/vs V34/U4
U4/1)14 . 1 1/’04
V3 V4 o 1 ’()4/1)14
—v1a/vs  —vu/vs —v34/v4 -1 U3 V4

has the given coordinates.

(Vi) w = 54585q: This says vy, ~ (1,%,%,%;0,%,1,*,%, ). In this case, the matrix

—1/1)1 1 —U1 —V2 —vU3 —U4q
v1/vi4 Va/V14 _ 1 v1/v14  V4/V14
U1 Vo U3 vy -1 —1/u
vi3/v1 via/v1 1 viz/v1 via/v1

has the given coordinates.

(vil) w = sgsasg: This says vy ~ (0,1, %,%; 1,%,%, %, %,%). In this case, the matrix

—1/1)2 1 v12/v2 —1)23/’()2 —1}24/1}2
v2/V12 _ 1 —V2 —U3 —v4
vy V3 V4 o -1 v2/v12
—v12/v2 v93/Va V24 /U2 -1 —1/vo

has the given coordinates.
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(vili) w = wo: This says vy ~ (1,%,%,%; 1, %,%,%, %, %). In this case, the matrix

—1/mn 1 —v1 —V9 —v3 —vy
va/viz —vi/vie | _ 1 —vi2/v1 —viz/vr —vig/v1
U1 (P V3 V4 —1 —1/’1)1
vig/v1 viz/vr via/vr -1 vo/v12  —v1/v12

has the given coordinates.

Now we find coset representatives for Py NT'\I'. For w € W, let 'y, = Ty N will“gw. We also
let Uy =UNw U Tw, and U, = U Nw 'Uw. Clearly we have U = U,Uy = UyUs.

Lemma 2.8. T',, acts freely on Py N T'\I' N G, on the right.

Proof. This is [Fri87, Lemma 1.2] when stated for GL(n), but the proof works in our settings
as well. For convenience we repeat the short argument. Suppose v € I'y, fixes the left coset
(PpbNT)d. By Bruhat decomposition, we can write § = bjwtby, with by,by € U, t € T. By

choosing different Bruhat decompositions, we may assume by € U,. It is then obvious that
bg*ybgl € Uy. On the other hand, we have

(Po N F)blwtbyy = (P(] N F)blwtbg.

So we have

(Po N F)blwtbgvbglt_lw_l = (P() N F)bl,
which implies wtbyyby 't~ 1w~ € T, € U,,. This says bayby " € Uy, So bayby t € UpyNU, = {1},
and v =1. O
By Lemma [2.8] it suffices to give a complete set of coset representatives for the quotient Py N
\I'N Gy /Ty, which we denote by R,,.
Note. For a coset in Py NT'\I' N G, the matrix representative given above does not necessarily
have integral entries, but it can always be converted to one under left action by U.
Now we compute R, in terms of the corresponding coordinates v, using the coprimality condition

given in Proposition [2.3

(i) w = id: We have v ~ (0,0,1,0;0,0,0,0,0,1). Coprimality condition gives v = v3q4 = 1.
Hence
Rid = {(07 07 1a Oa Oa Oa 07 07 07 1)} :

(ii) w = so: We have v ~ (0,0,%,1;0,0,0,0,0,1). Right action by ', says that vs is defined
modulo v4. Coprimality condition gives v34 = 1, and (vs,v4) = 1. Hence

Rsa = {(07 07”371}4; 07 0, 0, O, O7 1)} P

where vy > 1, and vs (mod v4) such that (vs,vq) = 1.

(ili) w = sg: We have v ~ (0,0,1,0;0,0,0,1,0, ). Right action by I',, says that vs4 is defined
modulo ve3. Coprimality condition gives v3 = 1, and (ves,v34) = 1. Hence

RS[B = {(07 O) 1) Oa Oa 05 05 V23, 07 034)} 5
where vy3 > 1, and v34 (mod veg) such that (ves,vss) = 1.
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(iv)

(vii)

w = S453: We have v ~ (0,1,%,%;0,0,0,1,0,%). From the matrix representative, we
deduce %4 = —Z—;. Coprimality condition gives (v2,v3,v4) = 1 and (ve3,v34) = 1. Then

v23
we solve v93 = (v;)iu)' Finally, right action by I',, says v3, v4 are defined modulo vo. Hence

Rsa55 — {(O; V2, U3, U4, Oa 07 07 %7 07 7%)} )

where v > 1, v3,v4 (mod vy) such that (ve,vs,v4) = 1, and d = (vg, vy).

w = $8Sq: We have v ~ (0,0,%,1;0,%,1,%,%,%). Recall the symplectic relation vi3 +

vo4 = 0. From the matrix representative, we deduce % = —Z—i. Coprimality condition
gives (vs,vq4) = 1 and (vi4,v23,v24,v34) = 1. Fix v14,v94. Let d = (v14,v24), and write
V14 = dvly, voa = dvly, 3 Then we have vg = —v),, v4 = v},. From the matrix representative,
we deduce vz = —U%ild. Since wvg3 is an integer, and (v},,v5,) = 1, this implies v}, | d.

Write d = v},d’. Then the coprimality condition becomes
(d/vif, —d/v§42,d’v’14v§4,v34) =1.

Since (viy,vh,) = 1, the coprimality condition simplifies to (d’,v34) = 1. Finally, right
action by I'y, says vo4, v34 are defined modulo v14. Hence

2
V24 V14 Vg
Rsﬁsa = {(0707_ d ) d 707 _U247U147_v147v2477)34 )

where vy4 > 1, vaq,v34 (mod v14), d = (v14,v24), such that viy | d? and (%ﬂ’%) =1

W = 505854 We have v ~ (1,%,%,%;0,%,1,%, % x). Again, the symplectic relation says
v13 + v94 = 0. From the matrix representative, we deduce Zﬁ = —Z—f. Coprimality
condition gives (v, v2,v3,v4) = 1 and (v13, v14, v23,v34) = 1. So we can write viy = rv%,

vz = —rv1ve for some r € Q\ {0}. Then the coprimality condition can be rewritten as
1— (L 2 2
= (v13, V14, V23, v34) = ( — TU1V2, 707, =103, 7(V103 + V2v4)).

Writing d = (v1,v2), the condition simplifies to (TdQ,T(’Ul’Ug + Ugv4)) = 1, so we solve
r = (d?, vivs + vavy) " !, Finally, right action by Iy, says vg,v3,v4 are defined modulo v;.
Hence

2 2
V1V Vi V5 U1V2 VU3 + V2U4
RSQSBSQ — {(U151}27037U4;07_5757_5a 5 ) 5 )
where v; > 1, v9,v3,v4 (mod v1), such that (vi,ve,v3,v4) = 1, and d = (vy,v2), 6 =
(d2, V103 + ’1)21}4).

w = s5gSasg: We have v ~ (0,1, %, %; 1, %, %, %, %, %). Symplectic relation says vi3 + va4 = 0.

From the matrix representative, we deduce z—; = %, Z—;‘ = % Let dy = (vi2,v13, v14).

Coprimality condition says (va,vs,vs) = 1 and (vi2,v13,v14, V23, v34) = 1. This implies

by V12 vz Ul
2 = ) 3 = P 4 = .
do do do

Let dy = (v12,v14). The relations
vig +v24 =0, V12034 — V1324 + V14v23 = 0
imply dy | vi;. Write v; = dik, vig = d1v},, vi4 = d1v},. Then we require that

2 /
T “+ V14023 o k+ V14023
V34 = — = - 7
V12 U9
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is an integer, and satisfies the coprimality condition. Since (vi2,v13,v14) = di, the copri-
mality condition simplifies to

(d,va3,v34) = 1.
Since v34 is an integer, we have vj,v93 = —k (mod v},). Since (v],,v],) = 1, we can write
v9g = a + rv}y, where a is a particular solution for the congruence equation

avy, = —k (mod v}y), (2.13)

!
avy,+k
!

and r € Z. Let t = (k,d1). We claim that a can be chosen such that a and
12
both divisible by t. Let a be an arbitrary solution to the congruence (2.13)). Then

are

a=—kvi, (moduly) <= a+ kv, = uv], for some u € Z.

Then a — uv}, is a solution to the congruence, which is divisible by ¢. So we may assume
a is divisible by ¢t. Again we write a + kv}, = uviy. Let f = (t,v]5). Then wvi, is divisible
by t, so u is divisible by ¢/f. Now consider the equation

( N nt ) b ( N nt) ,
a —U (% = u — | U19.
f 12 14 f 12

Pick n € Z such that u + ”Tt is divisible by ¢. Then o’ := a + ”Ttv’u is a solution to the
/ 1
congruence ([2.13)) divisible by ¢, and % is also divisible by t. Multiplying by v},, we
12

see that % is divisible by ¢. This finishes the proof of the claim. Now the coprimality

12
condition becomes

aviy +k
/

(dl,a—l—rv'lz,— —r’uh) =1,

12
which holds if and only if (r,¢) = 1.

Now we give an alternative expression for t. Let d’ = d1/dy. Then the conditions d; | vis
and (vi2, v13,v14) = do imply d’ | dp. Write v13 = dov}3. Then we see that

(@ v %>_1
dO’ 13> dO )

which implies (d',v}3) = 1. Now define ¢ := dy/d’. Then

2
t=t(v)y%, d?) = (vt d*t) = (%,dl) — (k,dy)
1

returns the original definition.

Finally, right action by Iy, says vis, v14, v23 are defined modulo v12. Hence

2
. V12 V13 V14 Vi3 1 V14V23
RS[;SQSﬁ - 07 9 9 ; V12, V13, V14, V23, —V13, — .
do " do do V12

where vis > 1, v13,v14,v23 (mod v12), with the following conditions. Let dy = (vi2,v14),
and dp = (v12,v13,v14). Then we require dy | d3. Write v1a = djv}y, v14 = d1v]y, v13 = dik,
and d' = dy/dy, t = do/d'. Let a be a solution to avj, = —k (mod v},), such that a and

M are divisible by ¢. Then we require vg3 to be of the form wves = a + rvj, with
12

(r,t) = 1.
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(viil) w = wp: We have v ~ (1, %, %, %; 1, %, %, %, %, %). Recall the relation vjvaq —vov14+v4v12 = 0.
By the symplectic relation v13+ voq = 0, this translates to vi1v13 + vovi4 — v4v12 = 0. From
the matrix representative, we compute

_ V2V13 — U3V12 _ U3V14 — U413
Vg3 = —————, U4 =—"T-——"—.
U1 U1
Coprimality condition says (vi,ve,vs3,v4) = 1, and (vi2,v13, V14, v23,v34) = 1. However,
no good simplification to these conditions is found. Right action by I'y, says ve, vs, v4 are
defined modulo v1, and v13, v14 are defined modulo v12. Hence
. V2V13 — V3012 V3V14 — V4013
Ry = § | v1, 02,03, 045012, 013, V014, ———————, U1z, ————— | ¢,
U1 U1
where vy,v12 > 1, and wva,v3,v4 (mod v1), v13,v14 (mod v12), such that viviz + vovig —

V2V13—V3V V3V14—0V4V
vavi2 = 0, (v1,v2,03,04) = 1, and (vi2, V13, V14, ZHEHE DIVLTUNIE ) —

2.2.5 Residual Eisenstein series

Recall the definition of GL(2) Eisenstein series

E(z,s) = Z 1(0z,s),
SEP2MT2\I"2
where I'? = SL(2,7Z), P? = { (* :) € SL(Q,R)} C SL(2,R) the standard parabolic subgroup
of SL(2,R), and I(z,s) = Im(z)5+1/2,

Recall the maximal parabolic Eisenstein series Fo (g, v, f) and Eg(g,v, f). We show that if f is a
GL(2) Eisenstein series, then E, (g, v, f) and E3(g,v, f) become minimal Eisenstein series.

Proposition 2.9. We have
Eo(g,v, E(%,5)) = Eo (g, (v + s,v)),
Eﬁ(ga v, E(*a S)) = EO (97 (Va V/2 + 8)) .

Proof. First we assume Rer > 0, and Res > % For the Siegel Eisenstein series, we have

Eo(g,v,E(x,9) = > > I(0ma(vg), 8)Ia(vg,v).

YEPLNT\I' §€ P2NI'2\I"2

Recall the formula

Im(dz) = ;in_(f()ﬂ for § = <Z Z) € SL(2,Z).

Assume g has the form as in (2.2)). Then we set

1 nm\ [ ) Y1 .
m = ~ny+ —1=:2p.
«(9) < 1) < Y2 Ty 0

Evaluate the inner sum:

v+s+2
> tma@ e =5 3 (Pg) ket

§EP2AI2\[2 e deZ |ezo +d|
(e,d)=1
1)
= Z IO(( (5—1)T> g?(V+S7V)>'
§eP2NI2\I2
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We observe that there is an isomorphism P2 NT?\I'? ~ (PyNT)\(P, NT) via the map § +

(5 o). s

Eo(g,v,E(x,8) = > > I(dyg, (v +s,v))

NEPLNT\T §€(PonT)\(PoI)

= > (g, (v +s,v))

~yePyNI'\I'
= EO (gv (V + s, V))

is a minimal Eisenstein series.

For the non-Siegel Eisenstein series, we have

Eg(g.v,E(x,8) = Y Y 1(6ms(rg).5)1s(19.v).

YEPNI\I" e P2NI'2\I"?

1 n .
ma(g) = < f’) <y2 y21> ~ 15+ y3i =1 zo.

Evaluate the inner sum:

2 s+1/2
Z I(6mg(vg),s)Iz(vg,v) :% Z <y2> Y+

Then we set

2
S€P2NI2\I'2 e, de?, |czo + d
(e,d)=1
1
b
= Z Iy ¢ 1 gu(V7V/2+S)
5:(22)6P2OF2\F2 c d

Again, we have P2NT2\I'? ~ (Py NT)\(P3 NT) via the map (CCL Z) = ”). Hence

By (g,v, E(x,5)) = > Yo Io(dvg. (v )2+ 5))

’YGPBQF\F 56(P0ﬁF)\(PBﬂF)

= Z 10(797 (Vv V/2+8))

’YGP()(-TF\F
= By (g, (v.r/2 + )

is a minimal Eisenstein series.

It is well-known from the general theory [Lan76| that these Eisenstein series can be continued
into meromorphic functions in v and s respectively. So we deduce that the equalities hold for
all v and s. O

Recall that the GL(2) Eisenstein series E(z, s) has a pole at s = 1/2 with residue 3/7. Taking
the residue of F, (g,v, E(*,s)) and Eg (g,v, E(*,s)) at s = 1/2 gives the following:

Proposition 2.10. We have
3
Ress=1/2 EO (.97 (V + s, V)) = ;Ea(.% v, 1)7
3
Resszl/Z Eo (gv (Vv V/2 + 8)) = ;Eﬁ(g7 v, 1)

25



2.2.6 Alternative expressions for Eisenstein series

We end the section by giving alternative expressions for Eisenstein series, directly in terms of
Pliicker coordinates. Recall the definition of the minimal Eisenstein series

Eo(g,v)= > Io(vg.v),
~yePyNI'\I'
v1+2 2v9—1r1+1

where In(g,v) = y{* "y . Let v € T be fixed. Let vg = nak be the Iwasawa decomposi-
tion of vg, withn € U, a € TT, and k € K. If we write

ST -1 -1 +
a—dlag(al,ag,al , Oy )GT ,

then Iy(yg,v) = a'fl+2agy2_yl+l.

Pliicker coordinates of ~.

So it suffices to find expressions for a; and ao in terms of

Suppose 7 has Pliicker coordinates v = (v1,- -+ ,v4; 012, -+ ,v34). Define

T T
Vo = (’U127U1371}147U23aU247U34) ) U,B - (Ul,UQ,Ug,U4) .

Suppose g has the form
ok ok %
I R
97 bay bsy bay b | T
ba1 bao baz by

Then vg(vg)T = nak(nak)’ = na?n™. Since n € U has the form
1 v x  *
1 *x %
n = € N,
1
—u 1
we compute
EE 3 * *
%k * *
na*n’ = —9 2
* ok ag —ua;
¥ x —uag 2 uQCLI2 + a;Q

Evaluating vg(v9)T = vgg"y" yields

ay? = 03; + b3 + b33 + b3y,
—uaj? = by1ba1 + baabas + bazbag + bsabaa,
u?ar? +ay? = b3, 4+ by + by + b2y,
from which we solve

(b31b41 + bsobas + bazbyz + bagbyy)?

31 32 33 3

In particular, we have

ay’ay” = (bgl + b3y + b33 + 534) (174211 + by + b3 + b4214) — (b31ba1 + b3obag + b3zbas + b3abas)?
= Z (b3ibaj — b3;bai)? .

1<i<j<4
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Meanwhile, expanding g, we see that
(b1 b2 b3 bs) =vjg.

Let g A g be the exterior square of g, that is, gA g = (gij,kl)1§i<j§4, where g;; 11 = gik9ji — 9iljk-
1<k<i<4
Then we have

(b3ib4j - b3jb4i)1§i<j§4 = ’Ug; (g A g) )

where we consider (bgib4j — b3jb4i)1 <icj<4 S A TOW vector. So we can write
a;® = v g9 vs, (2.14)
a;’ay” =0k (g A g)(g A g) Ve (2.15)

Hence we have

l/1+2a31/271/1+1 — (’UZ;(

v1/2—v9—1/2
Io(vg,v) = d¥ ) g ) 12

gAhg)gAg vhgg vg) Y2,

To conclude, we see that Ey(g,v) can be expressed as a height zeta function associated with a
bi-projective quadratic variety.

Proposition 2.11. Let Vj be defined as in (2.5). Then we have
1 v1/2—vo—1/2 o
Bg =7 D, (0Z(g A g)(g A g)Twa) 22 P (L ggTug) 2172,
vEVp(Z) primitive
Where Vo = (1)127 v ’1)34)T and ’Uﬁ = (Ula e ’rU4)T fOI’ v = ('Ul, Cee L U401, 0 ,’1)34) c ‘/O(Z)

By the same argument, we can show that E,(g,v, 1) and Eg(g,v,1) can be expressed as Epstein
zeta functions.

Proposition 2.12. Let V,,, V3 be defined as in (2.11)) and (2.12)) respectively. Then we have

1 —v/2-3/4
Ea(g,v,1) = 5 > (I (g A g)(g A g)Tva) /2,
Vo €V (Z) primitive
1 /9
Ep(g,v.1) = 3 > (vFgg )P

vg€Vp(Z) primitive
Proof. By definition, we have

Ea(gayal) = Z Ia(’ygv’/% Eﬁ(gaya 1) = Z Iﬁ(VgaV)7

YEPLNT\T ~EPNI\T
where I,,(g,7) = (y1y2)"+3/2, and I5(g,v) = y*. Then the statement follows from expressions
E1) and (215). 0

2.3  Constant terms

Definition 2.13. Let Ep(g,v, f) be an Eisenstein series for a standard parabolic subgroup
P=MN CG. Let P"= M'N' be another standard parabolic subgroup. The constant term of
Ep(g,v, f) along the parabolic P’ is defined as

CE (g0, f) = / Ep(ng,v, f)dn,
N'(Z)\N'(R)

where N'(Z) =T N N'(R).
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Notation. When P = P’, the superscript P’ is omitted from the notation.

For the computation of constant terms, we make use of intertwining operators, introduced by
Langlands [Lan76|, in the theory of automorphic forms. The intertwining operators are usually
defined in adelic settings. Instead of translating the notion into classical settings, we simply
establish a relation between classical and adelic objects, and use the adelic theory.

To state the functional equation of Langlands, we follow the setup in [MWO95]. Let A be the
ring of adeles of Q. Let G be a reductive group, and P = NM a standard parabolic subgroup
of GG, with respect to a fixed Borel subgroup B C G.

Definition 2.14. Let 7 be an irreducible automorphic representation of M(A), and ¢, an
element in A(N(A)M(Q)\G(A))x, the m-isotypic part of the space of automorphic forms on
N(A)M(Q)\G(A). The Eisenstein series associated to ¢, is a function on G(Q)\G(A), given by

E(QZ)N:T")(Q) = Z ¢ﬂ(79)
YEP(Q\G(Q)
whenever it converges. The constant term of F(¢,, 7) along another standard parabolic subgroup

P’ = N'M’ is given by

Ep/(¢pr,m)(g) := E(¢r, m)(ng)dn.

/N’(@)\N’(A)

Definition 2.15. Let P’ = N'M’ be another standard parabolic subgroup of G, 7 an irreducible
automorphic representation of M (A), and ¢, € A(N(A)M(Q)\G(A))r. Let w € G(Q) be such
that wMw~™! = M’. For g € G(A), we set

M(w, m)pr(g) = / ¢ (w™ng)dn
(N(@)NwN (Q)w—1)\N’(4)

whenever the integral is convergent. This defines an intertwining operator

M(w,7) : AIN(A)M(Q)\G(A))x = AN'(A)M'(Q\G(A))wr-

Now we are able to state the functional equation of Langlands.

Theorem 2.16. (Langlands [Lan76]) Assume the settings above. Then we have

M(w',wr) o M(w,7) = M(w'w, ).

Let G = Sp(4). By strong approximation, for g € G(A), we can decompose g = dgooko, with
J € G(Q), goo € G(R), and k¢ € K, the maximal compact subgroup of G(A). Let Py = NoM)
be the minimal parabolic subgroup of Sp(4), with Levi component My = T. For v € C2, let =,
be the character on My(A) defined by

|l/1+2 2ua—v1+1

™ (diag(y1, yo, 1 Hya t)) = |y |ya

By parabolic induction, we see that ¢, (g) == |y1|"* 2 |y2|*2 7" ! lies in A(No(A)Mo(Q)\G(A))s, .

Proposition 2.17. Assume the setup above. Then E(¢,,7,)(g9) = Eo(goo, V)-

Proof. Write I' = Sp(4,Z) as usual. Unfolding the definitions, the equation says

Yo abt= D (19

YEP (Q\G(Q) yEPy(R)NC\T
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First we observe a bijection between Py(Q)\G(Q) and Py(R)NT'\I". Let v € G(Q). Via left action
by T(Q) C Py(Q), we may assume that - has Pliicker coordinates v = (v1,- -+ ,v4; 012, -+ ,V34)
such that (vq,---,v4) are coprime integers, and (vi2,--- ,vs34) are coprime integers. By Propo-
sition we see that 7 is equivalent to a matrix in I' under left action by No(Q) C No(R). So
v € Py(Q)\G(Q) corresponds to a unique element in Py(R) NT\T.

As E(¢,,v) is left G(Q) and right K-invariant, we may assume ¢ = (goo,1,1,--+). Let v €
Py(Q)\G(Q). From the bijection above, we may assume that v € I" has integral entries. Then
~ is integrally invertible, that is, v € Kgy,, the maximal compact subgroup of the finite adele
G(Agy). This implies the Py(Q)\G(Q)-action at finite places is trivial. Hence

Yo a() = D bus(19) = Y. Io(19s0v). O

YEPR(Q\G(Q) YEPy(R)NC\T yEPy(R)NC\T
We also have a correspondence between constant terms.
Proposition 2.18. Let g = (90, 1,1,--+) € G(A). Then Ep/(¢y,m,)(9) = C} (Goos V).

Proof. We expand

Ep (6 7)(g) = > almpin= [ b ().

/N'(Q)\N'(A) YEPy(Q)\G(Q) N/(Q\N'(A) YEPy(R)NT'\T"

At finite places, since both I and N'(Z,) lie in K, := G(Z,) the maximal compact subgroup at

p, it follows that the integral at finite places is trivial. So only the archimedean place remains,
and hence

Ep(6um)0) = [ ST Greolmgee)dn = CF (g, ). =
N'ZA\N'(R) e py(R)nT\T

2.3.1 Minimal Eisenstein series

We consider the minimal Eisenstein series

Eo(g,v)= Y. Tolvgv),

~EP,AL\T
where Io(g,v) = ¥/ t2y2">7"* "1 The constant term of Ey(g,v) along Py is
Co(g,v) := / > Io(yng,v)dn.
UEZNUR) ,e par\T

It is clear from the definition of the constant term that Cy(g,v) is invariant under left action by
No(R). So we may assume that g = diag(yi, yo, yl_l, yz_l) is diagonal. Write

1 ni no ns

1 n n
n= 14 | € No(R),

—nq 1
with the relation ng = ng + n1ns. So the constant term can be rewritten as
1,1 1 p1
Co(g,v) = / / / / Z In(yng, v)dnidnadngdns.
0 0 0 0

yePyNI\T"
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We break down the summation over Py N I'\I" via Bruhat decomposition

V) = Z EO,w(g) V)? where EO,w(gay) = Z IO(’YQ) V)'

weW ~yePyNI'\(I'NGy)

This gives a decomposition of the constant term

V) = Z CO,w(ga V)v where CO,w(gv V) = / EO,w(nga V)dn
weW U(Z)\U(R)

Proposition 2.19. For g = (9o, 1,1,--+) € G(A), we have M (w,v)¢,(g) = Cp -1 (goos V).

Proof. We expand

M(w, m,)b(g) = / $(w™ng)dn
(No(Q)NwNo (Q)w—1)\No(A)
= / Z bu (w ung)dn.
No(Q)\No(A)

u€(No(Q)NwNo(Q)w=1)\No(Q)

As ¢r(w™Ing) is trivial at finite places, we only have to consider the archimedean place:

M(w, WV)QZ)V(Q) = / Z qu,oo(wilung)dn
No(Z)\No(R) ;¢ (N (@) NwNo (@)w~1)\No (Q)
-/ S h(ger) = Coui(gmer). O
UZ)\U(R)

vEPR (R)QF\(FQGU)_ 1)

For g € G(R), we abuse notation and also write g to denote the corresponding element (g, 1,1,--+) €
G(A). Via the functional equation, it suffices to just compute Cy (g, v) for w = id, s4, 5.

Lemma 2.20. For w € W, we have

Cow(gv) =Y / o(yng, v)dn.

YERw

Proof. By Lemma we expand

Colg,v) = / Z Io(yng,v)dn
(ZNUR) e ponI\(I'NGw)

=) Z/ Io(yéng,v)dn.

YERy §€Ty, Y VENU(R)

Recall that I'y, = T'g N w_lfgw = Uy(Z). Through the decomposition U = U,,U,,, the constant
term can be rewritten as

Co,w(g,v / / To(yn'ng, v)dndn'.
0, =) S . of )

YERy

Now we show that the integral is independent of 7’. Consider a Bruhat decomposition v =
bywtbe, with by,be € U(R), and t € T. Without loss of generality, we may assume by € U, (R).
Then

v = (blwtn’tflwfl)wt(n'_lbg)
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is another Bruhat decomposition of 7. Hence

/ Io(vn’ng,V)dnz/ To((brwtr't Y w™Ywt ('~ ba)n'ng, v)
Uw(R) w(R)

Noting that 7'~ bonf € U, (R), the change of variables 7/~ "ban/n — 1 gives

/ Io(’m/ngﬂ/)dn:/ Io((brwtn't 'w™wtng, v) =/ Io(wtng,v),
Uw(R) w(R) Uw(R)

which is independent of 7. The lemma then follows from that U.,(Z)\U,(R) has unit measure

O
We also need the following integration formula |[GRO7, 3.251.2]
1 1
/ |z (a® + 2?)"dx = a* T (,u—2|— e ,u—2|—> (2.16)

for Rep > —1, Re (v + &) < %, where

stands for the beta function

Now we compute the constant terms Cp (g, V)

Let v € PpNT\I'. Consider the Iwasawa
decomposition of yng:

1 nf nbh nf vl
1 n) nl A
yng = 14 5 2 (mod K).
A1 )
/ —
-ny; 1

Since Iy is left No(R)-invariant, we may assume that v takes the form given in Section

(i) w = id: In this case, Riq = {I} is a singleton. So the constant term is simply
CO,id(g, V) = Io(g7 ) = ylyl+2y2’/2 vi+l

(ii) w = s4: The constant term is given by

Co,s0 (g, v Z/U o(yng)dn.

YERs,
By linear algebra, we solve

’ Yy1y2
Y1 =

—7 y/Q = V4 \/ S%y% + y%7 (217>
4 192 + y
where s;1 =n; — 2. So

v1+2 v1+2 21/2 211 (.2 2 2\v2—v1—1/2
Co,s.(9,v Z E /f’h Y2 (s1y3 + 1) dny.
v42>1 v3(mod wyq) R
(v3,v4)=1
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By (2.16]), we evaluate the integral and obtain for Re(v; — va) > 1

1
0078& (g’ I/) _ y%zxzfl/1+2y51+1 Z Z Uiu272u1le (2’ vy — I/2>

v42>1 v3(mod vy)

(U3,U4):1
_ 2ue—vi+2 1v1+1 C(2V1 - 21/2) B } o
e 2ot —am )\ 22T

_ y2112 vi+2 vi+1 A(21/1 - 2V2)
! 2 AQu —2up+1)

where A(s) = 77_5/2F(%)§(s) is the completed zeta function as usual.
(iii) w = sg: The constant term is given by

Cosslg,v) = Y /U o(yng)dn.

'yGR sg (R)

By linear algebra, we solve

Y2
Y=y, Yp=———, (2.18)

v23\/y§ + sg

where s5 = ng — % So

CO 55 g’ Z Z /Ry1111+2y21/2 21— 17]12/:13 2U9— 1(y§+5§)yl/2_yz_1/2dn5.

v232>1 v34(mod v23)
(v23,v34)=1

By (2.16]), we evaluate the integral and obtain for Re(2vp — 1) > 1

1 v
2 11 —2us+1 —2us—1 1
oo =0 S5 g (- )

v232>1 v34(mod va3)

(v23,v34)=1
42 21 C(2v2 — 1) B 1 n
Y1 Y2 1) \227% 7 2

_ yu1+2 m—2mpt1  N(2v2 — 1)
! A2y — 11 + 1)

Remark. The constant terms Cp s, (g,v) and Cp s,(g, V) are originally defined on an open subset
of afc, but it follows readily from the expressions that they can be continued into meromorphic
functions on aye.

By Proposition we obtain the expressions for the intertwining operators:

A(2I/1 — 21/2)

Co.5a9:) = M(Sas T ,0))Pa02) = {5 =300 1+ 19 072 —102)7 (2.19)
A(21/2 — Vl)

CO,s,g (ga V) = M(Sﬂv 71—(1/1,V2))¢(l/1,l/2) = A(2V2 — o+ 1)925(1/1,1/1—1/2)' (220)

By the functional equation of Langlands, we compute the constant terms for other Weyl ele-
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ments:

CO,sasg (gv V) = M(Sﬁsaa FV)(bV(g) = M(Sﬁa Wsau)M(Sou ¢V)¢V(g)

Co,5550 (9, V) = M (5055, 7,)Pu(9) = M (Sa, Ts50) M (35, ¢0)du(g)
- ) )y =
Co,5as550 (9, V) = M (508850, 1) Pu(9) = M (Sa; Tsgs0) M (5850, T0) b0 (9)
o AQ2r) A() AC@YH —2v2) 4o gueuit1
T ACmt DA+ D) ACy —2m 1) P2 ’ (223)
Co,5p5055(9, V) = M (585058, T) 0 (9) = M (55, Ts,s50) M (8055, ) bu(9)
An) AQRvy) AQRve—11) ot i1 (2.24)

T A+ DAQu+ DA -+ ) 2
CO,wo (g, V) = M(sﬁsasﬁsaa WU)QSV(Q) = M(Sﬁa WSQSBSQ)M(SO[S/BSQ’ 7rl/)¢1/(g)

_ A(2v — 1) A(2us) A(vy) AQ2v1 —210) L, io u ot
AQ2vy —v1 +1) A + 1) A(vr + 1) A2y — 2v5 + 1)y1 Yo .

(2.25)

Again, these constant terms are originally defined on an open subset of aj., but they can be
continued into meromorphic functions on af.

The computations above thus summarise into the following theorem:

Theorem 2.21. The constant term of the minimal Eisenstein series Fy(g,v) along the minimal
parabolic subgroup Fj is given by

C0(97V) = Z CO,w(97V)7

weWw

where

o 1+2 2ve—vi+1
Coialg,v) =y Ty 27,

A(2V1 — 2V2) Qo — 2 1
C — vo—v1+2, vi+

A(2V2 - Vl) yul+2 v1—2v9+1
(2vy —v1 + 1)t 72 ’
A(V]-) A(QV]- - 21/2) 2V2—7/1+2y—u1+1
(v + 1) A2y — 25 + 1) 71 2
A(2V2) A(2V2 - Vl) yy1—2V2+2yV1+1
(200 + 1) A2y — vy +1)71 2
ARvy)  A(n) AQ@vi—2v2) 4 duyuit1
Qo+ D A(n +1) ACv; — 2 + 1)1 2 ’
A(V]-) A(2V2) A(2V2 B V]-) l/1—21/2+2y—l/1+1
(v + 1) AQ2ra +1) A2y — vy + 1)1 2
_ A(2I/2 - Vl) A(2I/2) A(V]-) A(2V1 - 2V2) —v1+2 v1—2v2+1
Cosasasass(9V) = 35 = T Ao+ DA £ D) A — 2+ YL 22 '

CO,Sﬂ(g7V) = A

CO,SQSﬁ (gv V) = A

CO,Sgsa (97 V) = A

CO,sas/zsa (g,v) = A

CO,Sgsas;g (97 V) = A

The constant term Cy(g, v) is originally defined on an open subset of af, but it can be continued
into a meromorphic function on af..
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For the computation of the constant term of Ey(g,v) along other parabolic subgroups, we need
some more adelic theory. Let W = W(T, G) be the Weyl group of G. For a standard parabolic
subgroup P = NM of G, we denote by Wy, := W (T, M) the Weyl group of M. We write

Wi ={weW |w(a)>0Vae R (T, M)}
where R* (T, M) is the set of positive roots of M with respect to torus 7T

Proposition 2.22. Let 7 be an irreducible automorphic representation of My(A), and ¢, an
element in A(No(A)Mo(Q)\G(A))r. Then the constant term of E(¢r,m) along P is

Ep(dr,m)(9) = ) > M (w, 7)px(mg).-

weWy, meM(Q)Nwhy(Quw~"\M(Q)

Proof. First we consider a Bruhat decomposition
GQ =[] rQu'AQ@= ][ RQuw'PQ).
weW weWp\W

Now observe that W3, is a system of representatives for Wy \W. It then follows from the

definition that
Ep(¢r,m)(9) = / > dx(yg)dn.
N@WA) yep (@)\G(@)

Since the Eisenstein series E(¢r, ) is absolutely convergent, and the constant term integral is
over a compact set, we may exchange the order of sums and integrals, and deduce that

Ep(nm)(g) = 3 3 /
weW 3 me(M(Q)nwPy(@u—)\M(@) " N QWA)
> ¢x(w™ ' mi'ng)dn
' €(N(QNm=1wPy (Quw=1m)\N(Q)
weWp, me(M(Q)NwPy (Quw—1)\M(Q)
Observe that N(Q) NwPy(Q)w~! = N(Q) NwNy(Q)w™t. So
Ep(¢n,m)(9) = > > M (w, ) ¢x(mg). O

weWp, me(M(Q)NwPy(Q)w=1)\M(Q)

/ b (w™ ' nmg)dn.
NQ)NuwPy(Quw—1\N(A)

We compute the constant term of Fy(g,v) along the Siegel parabolic subgroup P, = N,M,.
From Proposition [2.18] we have

Cg(g’ V) = Ep, (¢V77TV)(9) = Z Z M(w,ﬂy)gbl,(mg).

weWp meMa(Q)NwPo(Quw=1\Ma(Q)

Since RT(T, M,) = {a}, we compute that Wi = {id, 53,8854, 585455} Recall (2.20)), (2.21)),
©.24):

2 2uo—v1+1
du(g) =y PRy

A(2I/2 — 1/1) _
M(sp,v)pu(g) = e 1)y11/1+2y21/1 wat1

Alr) AR —2v3) 9 o it
M o v = v = )
(s550:1)9009) = 30 1) K@y —2m + D 2

A1)  A2r2)  AQ2vp — 1) 2t ]
Ay +1) A2y + 1) A(2uy — vy + 1) 71 2

M(Sﬂsasﬂv V)¢u(g) =
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Now we compute M(w,v)(mg) for w € W5, and m € My(Q) N wPy(Q)uw "\M,(Q). For
w € Wy, aset of coset representatives of My (Q) N wPy(Q)w 1\ M,(Q) is given by

1 Kq 1
1 K9 —K1
A T o o | | P2 EN (R R2) =10,
1 /{5 1
which is independent of the choice of w € Wy, . Note that mg, ., are simply matrix representa-

tives given in Sect10nw1th Pliicker coordinates v = (0,0, k1, £2;0,0,0,0,0, 1), which lies in
the class w = s, in Bruhat decomposition. As the Pliicker coordinates of these representatives
satisfy the conditions in Proposition 2:3] they are equivalent to integral matrices with unit de-
terminant under left action by Py(Q). So the contribution from the finite places is trivial, and
we only have to consider the archimedean place.

By (2.17)), we see that
qu(mgl,nzg) yfﬁ_zy%w V1+1Qa,g(’€la/‘32)”2_1/1_1/2’

where Qg ¢(k1, k2) is the quadratic form defined by

Qog(K1, K2) = K3 — 2n1k1kg + < + zé) K2 = |koza + k1%,
2

where z, 1= —ny —|— #.4. Then, summing ¢, (mg) gives a GL(2) Eisenstein series:

1 —_ —
g)+ Z gb’/(mgbfigg) 7y51+2y2y2 vitl Z ‘,{1220‘_‘_%“21/2 2v1—1

2
K2 €N K1,k2€EZ
(k1,k2)=1 (k1,m2)=1
I/Q-‘r3/2 I/Q-‘r3/2
= E (za,v1 — 12) Y Yy -

Finally, through the intertwining operators (2.19), (2.20)), we compute

A(2V2 — I/1)
A(21/2 — v+ 1)
A(ry) A(2vy — 2u0)
A(I/1 + 1) A(21/1 —2v9 + 1)
A(lll) A(2V2) A(2V2 — 1/1)
A(I/l + 1) A(2V2 + 1) A(21/2 — v+ 1)

v1—v2+3/2 vi—va+3/2
E(ZonVQ) Yq Yo 5

Z M(sg, v)py(myg) =

vo— l/1+3/2 vo— l/1+3/2
E(ZOHVQ) Yy Y

S M(s350, )61 (mg) =

—l/2+3/2 —1/2+3/2
Yo :

ZM(Sﬁsasﬁa V)¢l,(mg) = E (Zon vy — VQ) Y1

Since the GL(2) Eisenstein series E(z, s) can be continued into a meromorphic function on C as
a function in s, all the sums above can be continued into meromorphic functions on agj-. So we
conclude:

Theorem 2.23. The constant term of the minimal Eisenstein series Ey(g,v) along the Siegel
parabolic subgroup P, is given by

CO g,V Z COw g,V

weWp,
CX
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where W3, = {id, sg, 5354, 555453}, and
C&id(% v)=FE(zq,11 — 12) y;/2+3/2y;2+3/27
A(2I/2 — 1/1)
(2v2 —v1 + 1)
Alv) A2y — 2u,)
Alwr + 1) AQ2vy — 20 + 1)
C§ (g,v) = A1) A(2v) A2vs — 1)
$psasp\d Ay +1) AQRuy + 1) A(2vg — vy + 1)

v1— I/2+3/2 v1— I/2+3/2
E (za,v2) Yy Ys

Caylg.0) = 5

vo—1v1+3/2 ve—v1+3 2
E(Z()!7V2) / /

081,55504 (97 V) = 2 Ys

—124+3/2 —1p43/2
E (zq,v1 — 1) Yy vet3/ Yy vt3/ ,

with 2z, 1= —nﬁ—g%i. Moreover, the constant term C§ (g, ) can be continued into a meromorphic
function on aye.

We compute the constant term of Ey(g,r) along the non-Siegel maximal parabolic subgroup
Pg = NgMg. From Proposition we have

Cilg.v) = Ep,(du,m)(9) = Y 3 M(w, 7)) (mg).

U)EW&IB mEMﬂ(Q)ﬂwPO(Q)wfl\MB (Q)
Since R* (T, Mg) = {8}, we compute that Wiy, = {id, sa, Sas8, SaspSa}. Recall (2.19), (2.22)),
2.23):

¢y( ) — yl/1+2y21/2 vi+1

9

A(2V1 - 2]/2) 2 —1v14+2 11+1
(8047 )¢V( )_ A(QI/]_ —2]/2+ 1)y1 y2 ’

 A(2w) A(2vy — 1) vi- wa+2, 11+1
M(5a5ﬂ7 V)¢V(g) - A(2V2 + 1) A(2l/2 — o+ 1) Ya )
AQ2ro)  A(v1)  A(2v1 —2w.) 42y J vt
A2vs + D) Ay + D) AQ2v — 2 + 1)1 P2

M(Sasﬂsav V)(bu(g) =

Now we compute M (w,v)(mg) for w € W]% and m € Mg(Q) N wPy(Q)w \Mz(Q). For
w E W]T/[B, a set of coset representatives of Mz(Q) NwPy(Q)w ™1\ M,(Q) is given by

1 1
k1 €N, (k1,k2) =1 o,

1 — K1 K9

which is independent of the choice of w € W]T/[ﬁ. Note that mﬁm are simply matrix representa-
tives given in Section with Pliicker coordinates v = (0,0,1,0;0,0,0, k1,0, k2), which lies in
the class w = sg in Bruhat decomposition. As the Pliicker coordinates of these representatives
satisfy the conditions in Proposition they are equivalent to integral matrices with unit de-
terminant under left action by Py(Q). So the contribution from the finite places is trivial, and
we only have to consider the archimedean place.

By (2.18)), we see that
G (Ml ., 9) = Y T2y T Qg g (1, o) /27212,

where Qg (K1, k2) is the quadratic form defined by
Qp gk, K2) i= (n3 + ya)wT — 2nsRika + K3 = k125 + Kol
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where z5 := —ns5 + y3i. Then, summing ¢, (myg) gives a GL(2) Eisenstein series:

1 v vo—v —219—1
ou(g) + Z (by(mghmg) = §y11+2y§ 2—v1+1 Z k125 + g |1 22

k1EN K1,k2€EZL
(51’52):1 (I{l,ng)=1

= E(zp,v5 —v1/2)yy" .

Finally, through the intertwining operators (2.19)), (2.20]), we compute

_ A(le — 21/2) 2u—v1+2
%: M(Son V)¢V(mg) - A(21/1 — 21/2 + 1) E(zﬁ’ V1/2)y1 3

A(217) A(2vy — 1) V1—200 42
M (sasg, v = E ) 2)yr" R

A(21/2) A(Vl) A(2V1 — 21/2)

u y _ 1/1—‘,-2'
Zm: (sa8850, V) 9w (mg) AQ2uy +1) A(vy +1) A(2v1 — 210 + 1

)E(Z,BM —v1/2)y;

Again, the sums above can be continued into meromorphic functions on aj.. So we con-
clude:

Theorem 2.24. The constant term of the minimal Eisenstein series Ey(g, ) along the non-
Siegel maximal parabolic subgroup Py is given by

Chgv)= > Coulgv),

weWsy,
where
Cg,id(gv v) = E(zp,v2 — V1/2)yfl+2,
Cg’s‘” (g,v) = A(/;(leVi ;yiyj-)l) E(zﬂ7 VI/Q)ZI%VTVlH,
Conos0:4) = Aéi?l) /\(A2(u22yi ;Vjt)l) E(zg,01/2)yp ",
Cosassa(9:) = A([;(Viy—i)l) A([zxjiyjr)n A(/;(yzlyi ;uzyj)l)E(Zm vy — v1/2)y; 2,
with z3 := —ns+y3i. Moreover, the constant term Cg (g, V) can be continued into a meromorphic

: *
function on aye.

2.3.2 Maximal Eisenstein series E,(g,v,1) and Ez(g,v, 1)

Now we compute the constant terms of the maximal Eisenstein series E,(g,v,1) and Eg(g,v,1).
In Proposition we showed that they can be expressed as residues of the minimal Eisenstein
series Fy(g,v). Since the constant terms are an integral over a compact set, we may find the
constant terms of E,(g,v,1) and Eg(g,v,1) by taking the residues of the constant terms of the
minimal Eisenstein series. It is hence straightforward to obtain the following statements.

Corollary 2.25. The constant term of E,(g,v,1) along the minimal parabolic is given by
Co (g, 1) = CQialg, v, 1) + CO 4, (9,1 1) + CO s (9,0, 1) + CO g s, (9,15 1),
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where 18/2 y43/2
Cialg v, 1) = yy oy ™7,

0 (g,v,1) = Alv + 5) v+3/2 —v+1/2

a,s3 - A(V—l—%)yl y2 9
A2v) AW +3) —uis vii)2
0
Casﬁsa(gal/y 1) - A(2I/+1) A( %)yl Yo )
Alv —3) AQ2v) A(V+1)— 8/2, ~v+3/2
CO , 1 2 v+ / v+3/
asﬁsasﬂ(g v,1) = Al %) A2v+ 1) A(l/+ )y Yo

Corollary 2.26. The constant term of E,(g,v, 1) along the Siegel parabolic is given by

Ca (g, v, 1) = Ca,id(g7 v, 1) + Ca7333a (g, v, 1) + Ca,555a55 (g, v, 1)7

where ) ,,+3/2 V+3/2
Ca,id(g,l/, 1) - 2 ,
A( +3)
Caspsa(grv: 1) = 22 E (20, V)Y192,
B A +3)
C (9,v,1) = A=) Ao A 5)y‘”+3/2y—v+3/2
a,s58a55\9s Vs Alv + %) AQ2v +1) A(v + %) 2

Corollary 2.27. The constant term of E,(g,v,1) along the non-Siegel parabolic is given by
Cg,v,1) = C (9,1, 1) + CF s (951 1),

where
ClL. (9.0 1) = B (z5,0/2+ 1/4) 4 T2,
AQ2v) A+ 3 ) —u43/2
8 1) — 92— 1/4) g,V
Ca,sasﬂsa(g7ya ) A(2V+1) A( ) (2/3’7V/ / ) )
with 25 := —ns + y3i.

Corollary 2.28. The constant term of F3(g,v,1) along the minimal parabolic is given by

Cg (9,v,1) = Cg,id(.% v,1) + Og,sa (9,v:1) + Cg,sa% (9,v,1) + Cg,sa858a (9,v,1),

where 0 )
Cﬁ,id(f]? v, 1) - yf—’— )
Alv+1)
0 _ v+1
Cﬁ,sa (g) v, ]-) - A(l/ + 2)y1y2 )
AW) Aw+1)
0 _ v+1
Cﬁ,sa55 (g’ v, ]-) - A(I/ + 1) A(I/ + 2) Y1Yo y
! Av=1) AW) AW+1) .,

1) =
oo 9 1) = 40 R T A+ 2) ¥
Corollary 2.29. The constant term of Eg (g,v, 1) along the Siegel parabolic is given by
)

(
C5(9,v,1) = Cs,(9,v,1) + CF 4505, (9, v, 1),

where /241 v/2+1
03,55(97%1) = E(Zoz7(V+1)/2) ylll y21/ )
Alv) Alv+1) /2L /241
) 1) = FE 2
Cﬂ,SBSaSB(g7V? ) A(V+1) A(V+2) ( ( )/ ) Ya
with 2z, 1= —n1 + %z
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Corollary 2.30. The constant term of Eg(g,v,1) along the non-Siegel parabolic is given by

C,B (g) v, 1) = Cﬂ,id(ga v, ]-) + CB,SQSg (g) v, 1) + CB,SaSﬁSa (gy v, 1)7

where )
CB,id(Q? v, 1) - y11j+ )

Alv+1)

mE (Zf)’, I//2) Y,

A —-1) Alv) Aw+1) .

C/B,SQSBSCX (97 v, ]-) - A(l/) A(I/ + 1) A(l/ + 2) 1 )

Cﬁﬁas,e (9,v,1) =

with z5 1= —ns + y3i.

2.4 Sp(4) Ramanujan sums

The aim of this section is to give an explicit characterisation for Sp(4) Ramanujan sums. Ra-
manujan sums naturally arises in the theory of Eisenstein series. We start with a brief re-
view for classical Ramanujan sums on GL(2). A detailed exposition can be found in [Gol0G,
Bum84].

A Ramanujan sum is an exponential sum of the following form:

0= 2 o(7)

(a,9)=1
where e(z) = €2™® as usual. To find the Fourier expansion of the GL(2) Eisenstein series
E(z,s), we need the following identity:

q=1
where o,(n) := > d” is the divisor function. This is not difficult to prove. First observe
dn

that

> ca(n) Zq: <‘m> {q itq|n,

Ca\n) = el — ) = .

dlq P q 0 otherwise.

Hence

s) Z cq(n)g % = Z (Z cd(n))q_s = Z "7 = o1_s(n).
q=1 qln

q=1 djq

So Ramanujan sums and divisor sums are related by an identity of the form above. This actually
holds for more general cases, with appropriately defined Ramanujan sums and divisor sums. For
example, an explicit characterisation for GL(3) Ramanujan sums is found in [Bum&4|.

We start by defining Sp(4) Ramanujan sums. Recall from Section the set of representatives
Ry, for PyNT\I' N Gy /T, For fixed vy, v12 € N, we denote by Ry, (v1,v12) the subset of Ry,
with Pliicker coordinates vy, v12 as given. Now we define the Sp(4) Ramanujan sum:

niv nav
RU17U12(n17n2) = Z €< 172 + 2 14) . (2.26)

U1 V12

VE Ry (v1,v12)
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We define an appropriate analogue of the divisor function on Sp(4). We start with the symplectic
Schur function for Sp(4, C):

—(\1+2 —(A\1+2

xi\l-i—? — (A1+2) x;\H—? _ 3:2( 1+2)

Aa+1 —(A2+1) Ao+1 —(A2+1)
Ty — Iy ) )

-1

Remark. Terms in Sp,, i, ., (Z1,72) correspond to the dimensions of weight spaces of the ir-
reducible representation V ((ejw; + eaw2)) of sp(4,C), and is a special instance of the Weyl
character formula (see [FHO4, Ch. 24]).

Now we define a multiplicative function o, ,, by setting for p prime

Ty s (P, D7) = p(el+e2)yl+ew2 Spe1+62,e1 (P",p").

We state the main result of the section. Let

vy,,—V2
Ry vs(n1,n2) E Ry, o1y (01, n2) vy Moy

v1,v12>1

Proposition 2.31. For Rev;,Revs > 2, the sum Ry, ., (n1, n2) evaluates as

34w gy (11, 12) .
C(v1)C(r2)C(v1 4+ va — 1)((v1 + 209 — 2) fn,mz #0,
01—, (n1)C(v2 — 1)C(1 + 12 — 2)((v1 + 215 — 3) £y £ 0.1y = 0
_ ) C)Cma)l(v + v = 1)C(vn + 205 — 2) e
RVLV? (nlvnQ) -

T (n2)C(n — )¢ + v =20 + 25 —3) 40
C(v1)C(v2)C(v1 4 va — 1)((v1 + 212 — 2) P

Clr1 = 1)¢(v2 — 1)¢(1 + v2 — 2)((v1 + 202 — 3) e = 1o = 0

L C(n)C(r2) (v + 2 — 1)¢ (11 + 212 — 2) e

For a proof of the proposition, we need to study an auxiliary sum. We define

Tv1,v12 nla TL2 E Ru1 JU12 n17 n2)
ui vy
ui2|viz

Expanding the definition, we see that

nijug naui4
Tvlﬂim(nlanQ) Z Z Z (& < U + ) .
1

U12
uz(mod u1) wui|vi u3,u4(mod uy)
u14(mod wui2) uiz|viz u13(mod wu2)
u1U13+u2u14—uqu12=0
(u1,u2,u3,uq)=1
(u12,u13,u14,u23,u34)=1

Let di,dz be such that v1 = uidy, and vi2 = ui2dz. We also write v; := u;d1, v;j = w;;jda for
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1 <4< j <4. Then the sum becomes

ni1v2 nav14
Tv1,v12 (n1,m2) = Z Z Z e < " + )

V12
dilvi  v2(mod v1) v3,v4(mod v1)
da|vi2 via(mod vi2) v13(mod v12)
v1v13+v2014—v4012=0
(v1,v2,v3,v4)=d1
(v12,v13,v14,023,034)=d2

- ¥ 3 e (";1” n ”2”14> _ (2.27)

V12
vz (mod v1) v3,v4(mod v1)
v14(mod v12) v13(mod v12)
v1v13+v2014—V4012=0
v23,V34 €L

So we get rid of the coprimality conditions appearing in the definition of Ry, 4,,(n1,n2). Evi-
dently, the following equality of Dirichlet series holds:

Z Tvi,012 (nlanQ)Ufulvﬁyg = C(Vl)c(y2)RV1,V2 (nlanQ)' (2'28)

v1,v12>1

Now we determine the sum 7y, 4,, (n1,n2). For fixed vy, v12,v2, v14, we define

V1013 + V2014 — V412 = 0
v1 | vau13 — V3V12
U1 | v3v14 — vav13

B v3,v4 (mod v1)
S(v1,vi2,v2,014) = # vz (mod vy2)

Note that the conditions vy | vav13—v3v12 and vy | v3v14—v4v13 are equivalent to that ves, vsg € Z.
Then we may rewrite (2.27)) as

nivz | N2Vi4
P12
v1 V12

T'ULUIQ (nl?nQ) = Z S(U17U127027UI4)€ <

vz (mod v1)
v14(mod v12)

From the definition, we see that S(vi,v12,v2,v14) is multiplicative. Precisely, let ui, w12, v1,v12
be such that (ujui2,v1v12) =1, and let to (mod wjv1), t14 (mod wigv12). Let ug, uiq, v, v14 be
such that

to = uiva +viug  (mod uqvy), tia = w1014 + v12u1a  (mod ui2v12).
Then we have
S(u1v1, u1av12, ta, t1a) = S(u1, u12, viug, viguia)S(v1, viz, U1V, U12V14).

Hence, we can reduce the task of finding S(vy,v12,v2,v14) to a local problem, and it suffices to
determine the quantities

Sp(wr, wiz, wa, wig) := S(p™t, p**2, p"2, p"1).

The evaluation of quantities Sp(w1, w12, w2, wi4) is straightforward. We simply state the re-
sults.

Proposition 2.32. Let p be a prime, and let 0 < wo < wy, 0 < wyy < wio be integers. Let
d = min {wy,wi4}. Then S, (w1, w1z, w2, w14) is given as follows:

Case 1. If w1 < wqo,
Case 1.1. if 2wy + w4 < 2wy,

Case 1.1.1. if wy + w14 < wi2, then Sp(wi, wiz, wa, wia) = 0;
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Case 1.1.2. if wo + w14 > w1a, then Sp(wla W12, W2, ’11}14) — pw2+’w14;
Case 1.2. if 2wy + w4 > 2wy and wy < 2wy — wra,
Case 1.2.1. if wi + wig — 2wy — 2wyi4 +d > 1, then Sp(w17w127w27w14) — 2pw2+w14;

Case 1.2.2. if wi+wia—2wy—2wi4+d = 0 or —1, then S, (w1, wi2, w2, wi4) = prtwiz—w2—wiatd,

wi+wio+d
Case 1.2.3. if wy + wi2 — 2wy — 2wyg + d < =2, then Sp(wy, wig, wa, wig) = pl 2l

Case 1.3. if 2wy + w4 > 2wy and wy > 2wy — wra,
Case 1.3.1. if wy + w19 — 2we — 2wi4 +d > 1,
Case 1.3.1.1. if wy + w14 < w12, then Sy(wi, w2, w2, w14) = min {p“’2+“’14,p“’1+d};
Case 1.3.1.2. if wy + w14 > w2, then Sy(w1, wi2, wa, wig) = 2p*W2Twrd;
Case 1.3.2. if wy + w12 — 2w9 — 2w14 +d =0 or —1,

Case 1.3.2.1. if w9 4+ wi4 < wqo, then Sp(w17w12,w2,w14) — pwl-&-d;
=P

Case 1.3.2.2. if wg + wyq > w19, then Sp(w17w12,w2,’w14) w1+w12*w27w14+d;
Case 1.3.3. if wy + wig — 2wg — 2wi4 +d < —2,
Case 1.3.3.1. if wo 4+ w4 < wyz2, then S,(wy, wig, we, wi4) = p*1+e;

Case 1.3.3.2. if wy + w14 = wy2, then S,(wy, wig, wa, wiy) = prHwiz-w2—wistd,
Case 1.3.3.3. if wy + w14 > wi2, then Sy(wy, w12, w2, w14) = min {pL%Wmeﬁd};
Case 2. if w1 > wia,
Case 2.1. if wy + w14 < wi2, then Sy(wi, wig, we, wi4) = 0;
Case 2.2. if wy + wig > wi2,
Case 2.2.1. if wy < w2 and 2ws + wis < 2wig, then Sy(wi, wig, wa, wig) = p*2T¥4;

Case 2.2.2. otherwise, Sp(w1, wi2, w2, wi4) = pwiztl 3]

Multiplicativity of S(v1, v12,v2, v14) also implies the multiplicativity of 7y, 4, (11, n2), that is, if
(ululgmlmg, vlvlgnlng) = 1, then

Tugvi,u12v12 (mini, mong) = Tuy,u12 (m1, mZ)Tvmnz (n1,n2).
Indeed, we see that

Tuivi,uigvio (mlnl , m2n2)

minity  monotiy
= E S(U1U1,u12v12,t2,t14)6< +
U1 U12V12

to(mod uqvy)
t14(mod u12v12)

g E S(urv1, u12v12, U1V2 + V1U2, U12V14 + V12U14)E (
uy U1 U129 V12

uz(mod u1) w2(mod vy)
u14(mod wi2) vi4(mod v12)

mity | Moty nivy | MNavi4
= E S(u1, ui2, viug, viguis)e < " + ) g S(v1, vig, U1v2, U12v14)€ ( + )

1 Uu12 U1 V12

miu2 niv2 maui4 n2v14
+ + + )

uz(mod up) va(mod v1)
u14(mod u12) U14(n’10d ’U12)

= Tuy,u12 (ma1, mZ)Tv1,v12 (n1, n2)-
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Hence, it suffices to consider local sums 7w puwia2 (p©', p?). We have

€1 —w €2 —wW
Tpwr puiz (P, p°?) = g Sp (w1, w12, vp(v2), vp(v14)) € (v2p® ~*" + v14p®2~12)
vz (mod p¥1)
014(m0d p12)
w12
E E Sp(w1, w1z, w2, w14) E E e (vap™ T + ugp™T2).
w2=0w14=0 vz (mod p¥1) vi4(mod p*i2)

vp(v2)=w2  vp(vi4)=w14

(2.29)

Note that this also covers the degenerate cases where n; = 0 or ny = 0. Indeed, it is clear from
definition that we have
rpen perz (7, 0) = rpur puis (P, p*12),

Tper pwiz (0, p7) = rpwr ez (p*, p),

Tpwr priz (0,0) = rpwr puwia (p*h, p™'?).

The inner sums of (2.29)) can be evaluated as follows:

if w' = w,
_ P p—1) ifw>w >w—e,
Z e (vp") = _ow—w'—1 ifw =w—-—e—1 (2.30)
v(mod p¥) p - ’
vp(v)=w' 0 ifw <w-—e—2.

Using (2.30) and Proposition [2.32] we can compute 7pw1 pwiz (p©, p®?) explicitly. By comparing
the coefficients of the power series, we obtain the following identities:

Z Z Tyt pon <pe17p52)p—w1u1 wiave __ U§_L1_,,271_Ll(p51,p62)(1 _pl—ul—ug)(l _p2—u1—2u2)’

272 2
w120 w1220

(2.31)
e1 —w1V]— w12V Ul—ul( 61)( 1 vi— 1/2)(1 2 1/1721/2)
wz;()wz;orpwlypwﬂ(p ,0)p = (1-p 1— v2)(1 — p2 v1— VQ)(l_ 3 1,1,2,,2), (2.32)
120 wiz>
€ — w1V —wW12V 01— VQ(pe2)( 1 ne V2)(1 2 V1_2V2)
Tpw1 pwi2 (07p 2)p 11 1202 — — o § (233)

B (1 pl v1— 112)( p2 v1— 21/2)
Z Z Tpw1 pw12(0 O) wiv1—wigl2 (1_ — ,/1)

w1 >0 w12 >0 (1 — pl=v2)(1 — p2—ri—v2)(1 — p3—11—22)’
w12 122

(2.34)
Combining the Euler factors in - - yields for ni,ng # 0 the following identities:

g3_v1 1_vi(ni,n
5—7—1’275—7( 1,72)

m%Zl Ty s (M1, M2)V) Moy = Crn +va —1)C(v1 + 219 —2) (2.35)
vl%;Zl Ty w12 (M1, 0)v] oy ? = O1-1 (m)g((;f ; V12)C_(V11)2-(512 ; 2235(512;k vy — 3), (2.36)
D PR TR

Finally, applying (2.28]) yields the expressions in Proposition and finishes the proof.
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2.5 Fourier coefficients of Eisenstein series

2.5.1 Invariant differential operators

We consider the Siegel upper half space

Hy={Z =X +1iY € My(C) | Z' = Z,Y positive definite} .

An element of Hy is denoted by a matrix <§1 §2>, with Z; = X; +14Y;, j = 1,2,3. Tt is
2 43

well-known that G = Sp(4,R) acts on Hy as a group of biholomorphic automorphisms by

A B

Sp(4,R) X Hy — HQ, <M = (C D

> ,Z) — M (Z):=(AZ + B)(CZ + D)_1 € Hs. (2.39)
There is a canonical bijection between G/K and Hs, given by the map

)

for g € G. Let 2 be the algebra of differential operators on Hsy that is invariant under the
Sp(4,R)-action given in (2.39). The algebra 2 is generated by Ay, As [Niw91], where

A = Z YZYJ&EJ —D <8183 +5183 — ;8282> ,

ij=1
1 R 12 1 3 - 12
Ay = D? (8163 _ 483) (6183 - 462> n 4D<;Y;8i> (6183 . 432>
1 o 1 1 - = 1
n 4D<;Yi8i> <8163 - 4a§> + 46D <61c’)3 + 9105 — 26282> .
Here, we write D =Y Y3 — Y22, and for 1 <14 < 3, differential operators

s _ 0 _1(0 .0 s _ 9 _1(0 .0
T oz, 2\ox; 'ovi )’ Tz, 2\aox; oy )

Through the isomorphism (2.40)), we can also view Z as the algebra of invariant differential
operators on G/K, with the same generators. It is straightforward to verify that for v =
(v1,12) € C2, the function

Io(g,v) =y Foygre

is an eigenfunction for A; and As, with eigenvalues given by

1
M= 1o (24— dvie + 403 - 5)
1
Yo = oo (v =2 —2) (n — 20— 2) (11 +2).

This says Iy(g,v) is an eigenfunction for all differential operators in 2.

44



2.5.2 Jacquet's Whittaker functions

For my,mg € Z, let ¢ = ¢, m, be the character on U(Z)\U(R) given by

1 n1 ne ng
1 Ty ns
wml,mg 1 =e (mml + m2n5) .

—ni 1

Definition 2.33. A Whittaker function on G' = Sp(4,R) of type v associated to a character v
of U(Z)\U(R) is a smooth function f : G/K — C such that

(i) f is an eigenfunction for differential operators A; and Ag, with same eigenvalues as Iy(g, v);
and

(i) f(ng) = ¥(n)f(g) for all n € U(R).

The space of Whittaker functions of type v associated to 1 is denoted by W(v,1). We also
denote by W(v,1))™°4 the space of Whittaker functions of moderate growth. It is well-known
that W(v, 1) is finite dimensional. More precisely, we have the following “multiplicity-one”
theorem.

Theorem 2.34. (Shalika [Sha74|, Wallach [Wal83|) The dimension of the space W(v, 1) is equal
to 8, the order of the Weyl group W = W (T, G) of G. Furthermore, we have

dim W (v, i)™ < 1.

Recall from that elements in the Weyl group W can be identified with matrices in Sp(4, Z).
As Ay, Ay are Sp(4,R)-invariant differential operators, it follows that for w € W, Iy(wg,v) is
also an eigenfunction for A; and Ag, with the same eigenvalues as Iy(g,v). For a fixed Weyl
element w € W, let 1 be a character of U(Z)\U(R) which is trivial on U, (R). Then

Wonlg, v,10) = /U o VT € W)

is a Whittaker function. If 9 is not trivial on U, (R), we define W, (g, v, %) to be zero.
Using W, (g, v, 1), we construct eight functions in W(v, ), one for each w € W.

(i) w = id: We have
I/Vid(gv v, 1/J070) = ylVl+2y2y2 1/1+1

and VVid(ga v, ¢m1,m2) =0 if (ml)mQ) ?é (050)

(il) w = so: We have
=
Wso (9,7, ,(/)N’Ll,) Z/Tﬁzyulﬂ/ (n?y§+yf)uz ot e(—miny)dny,
R

and Wsa(gv v, ¢m1,m2) =0 if mo 7é 0.
(ili) w = sg: We have

2— 1/2
ng(gayawo,mz) _y11/1+2y21/2 V1+1/R(y +n )lll/ ve=1/ ( m2n5) dn5,

and W, (g, v, Ymy my) = 0 if my # 0.
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(iv) w = sqs5: We have

2—vo—1/2 —v1—1/2
Weass (9, Vs Yo,ms) = 1 2y ”1+2// (yd +n2)" 27272 (g +n2) g2 + 2m3) Y

e (—mans) dngdns,

and Wi, s5(9, v, Yy my) = 0 if mq # 0.

(V) w = sgsq: We have

1/2 111/271/271/2
Wsﬁsa(g,y,@bmho) V1+2 VIH// n1y2+ V2 n=1/ ( (711924—1/%) )

e (—miny) dnidng,

and Wi s, (9, v, Ymy my) = 0 if ma # 0.

(Vi) w = 545854 We have

2 v1/2—va—1/2
Wewssa 000 0) = 9720542 [ ] (04 0303+ (24 mana?)

—v1—1/2

—mlnl) dnldngdn4,
and Wsasfj’sa (9,v, wml,mz) =0if mg # 0.

(vil)) w = sgsqs3: We have

2 2 1/2
WsﬁsaS;g (ga v, 1/)O,m2) - y1V1+ ot / / / y1y2 + n5y1 + 7'L4y2)y2 e

o\ V1/2-v2—1/2
<y%y§ + n2yt + 2n3y3yE + (ning — n2)’ ys + (nans — ng — ninans) )

e (—mans) dnadngdns,

and Wi,s,s5(9, Vs Ymymy) = 0 if my # 0.

(vili) w = sas5453: We have

Wiaspsass (9 Vs Ymyms) = vy Hoyst 2 / / / / (n?niy§+yi‘y§—2nm5n4yfy§—2n1n2n4y§
RJRJR JR

v1/2—v2—1/2
2 4 29, 24, 22 2 2
+n5yr + 2n3nayiy; + nyys + nang — 2nangnsng + ”3”4)

2)1/27V171/2 6(

(n%y%yé + y‘fy% + n%y% + n%yg —ming — m2n5) dnidnsdngdns.

With the exception of the long Weyl element w = wy, the functions W, can be expressed in
terms of classical Whittaker function

y v+1/2
Wy, v, x) :/R<y2+u2> X(u)du,

where x = x; is the additive character of R given by x:(u) = e(tu), for ¢t € R.
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Proposition 2.35. We have

I/I/id (ga v, ¢0,0) — yTH_Q?JQVQ V1+1
vo+3/2
Wsa (g,V, ¢m1, ) Y1 2+3/ uH—lW (yl = V27Xm1/y2) )
131
ng (ga v, wo,mz) - y11+2W (y277/2 2 7Xm2) 9
1 n
WSaSﬁ (ga 71/}0 7’TL2) - y2V2 V1+QB (27 v — VQ) w <y§7 ?7)(7712) )
3/2 131
Wsﬁsa (9, v, Ym0 )= yl1 vt V1+1B (2 B > W (yl’ V2’Xm1/y2) ’
3/2
Wiasssa (957 mi0) = 41" vits/ y> "B ( ) ( V1 — V2> (1512, Xima J) +

W555a85 (ga v, ¢0,m2) - yl1 2V2+QB (2’ V2 — ) ( V2> y2’ 7Xm2> '

Proof. (i) The statement for w = id is obvious.

(ii) For W, we have

—i—1/2
Wi, (90, 0) = yi““ygﬁz/ (niys +43)” " / e (—mani) dny.
R

Change of variables niys — n) gives
vo—v1—1/2
y1”1+2y2”1“/ (n’l2 + y%) e (—mln’1> dn,
R Y2
vo—v1—1/2
V2 +3/2 V1+1/ Y1 ( my /> ,
= y y — & —777/1 dnl
! 2k (n’12 1 y%) Y2

+3/2 1
— g2 PN (g1, 1 — 12, Xy )

(iii) For Wj,, we have

2—1a—1/2
W, (9, v, Yo.ms) = ¥y 20372~ VIH/(yg-i- )VI/ va—1/ e (—mans) dns

y2 Vo — l/1/2+1/2
V142 2
= e(—msons) dn
S /<y§+n§> (Fomans) dns

V1
— y11/1+2W (y%,llg — E,sz) .

(iv) For W, s, we have

2— 1/2 —v1—1/2
Wasy (000 thma) = 0 2502 [ [ ()70 (o ) o 4 o)™

e (—mans) dngdns.
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Change of variables nyys — n gives

2— —1/2 l/2fl/171/2
y11’1+2y12’1+1 /R/R (y% + ng)yl/ va=1/ ((yéL + n5) y1 + nf) e (—mans) dnjydns
_ 1
= y%”Q V1+2y’2’1+1B (2, v — 1/2> / (y2 +n ) v1/2-1/2 e (—mans) dns

_ vo—vi1+ 2
=1 27iTe B (2; vy — V2> /]R <y§ i ng) € (_m2n5) dTL5

vo—v 1 4
= y% : 1+2B <7V1 - V2> w (ygv 717Xm2) .

2 2

(v) For Wi, , we have

v v 1/2 vi/2—va—1/2
WSﬂsa (9, v, 1/1m170) = ?/11+2f‘/21+2 /R/R (n%yg + y VQ Y (n + (n1y2 + y%) )

e (—mynq) dnidns

1 v —vo—1/2
o8 (on =) [ b )

Change of variables niys — nj gives

—vp—1/2
it (Gon = 0] [ (w7 ed) e (<1t ) o
2’ 2/ Jr Y2

) V2+1/2
_ yV1*V2+3/2y51+1B <’ vy — Vl) / 23/712 e <—mln/1> dnll
R 7’L,1 + Y1 Y2

! 2
(yla V2>Xm1/y2) .

I

2 2
y11/1 va+3/ u1+1B < vy — >

(vi) For W, ss., we have

v1/2—v2—1/2
WSQSBSQ (g) v, wth) V1+2 Z/hLQ/ / / yl + n1y2 + (n2 + n1n4)2)

1/2
(?/11/2 + nay3 + niyiys + nj 1)V2 nolZ e (—myin1) dnidnadng.

Change of variables ng + ning — nh gives

2 o\ ¥1/2—v2—1/2
y11/1+2y12/1+2/R/R/R((y%—|—n%y%) —I—TLIQ)

2 vo—v1—1/2
(vtv3 + nbs3 — 2nimhnayd + nindyd + niytys + ndn}) e (=many) dnydnydna.
/02
Completing square with respect to n4 followed by change of variables n4 — % — n)
192 1

gives

V1+2 U1+2/// (y1 +n192 + )yl/Q_Uz_l/Q

vo—v1—1/2
V . y192 ( niys + y7) +n2
(n1y2+ o—v1—1/2 (—miny) dnydnfydn)y
192 + yl
1 v1/2-1/2 —p—1/2
yfw vi+2 2V2 ntp (2, —VQ)// Z/1 +n1y2 + ) (”%yg'i'y%)yl e

e (—miny) dnydni

1 —v2—
y%uz V142 21/2 n+2p (2 2> < Vl_y2> / (n%y§+y%) 2 1/26(—m1n1)dn1.
R
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Change of variables niys — n) gives

1 1 —1p—1/2
yrremntpemntlp (- "B — v — s / (n'12 + y%) ’ e —@n’l ny
272 2 " Yo
1 1 l/2+1/2
— V2_V1+3/2 2V2—V1+1B - ﬂ Bl = _ / Y1 _@ / d /
h . (2, 2 > T R\ 7} 4+ 7 Ty )

- 3/2 2uo—v 1 131 1
_ yllfz v1+3/ yg -+l p (, ) B <2,I/1 - Vg) w (yl,VQ,Xml/yQ) .

(vii) For Wi,s,s, we have

—v1—1/2
W558a55 (97 v, wo,mz) = y11/1+2y2UI+2 A /]R/]R (y%yé + n%y% + nZy%)UQ n-1/

2 l/1/2—1/2—1/2
(vt + myd + 203923 + (mna — o)+ (nams — n— manans)?)

e (—mans) dnadngdns.
We first simplify the expression by setting nf, = no — ning:

2
Yy Ryt /R /R /R (yilyé1 + 2yt + 2ndyiyd + b ys + (nhns —n?) )

)V27V171/2 e (

v1/2—v2—1/2

(y%yg + ngy% + niy% —mans) dnbdngdns.

2
nins

Completing square with respect to n, followed by change of variable nf, — Az nf
gives
2.4 2,2 9 9 2\ Y1/272—1/2
9 9 4 v1/2-vy—1/2 2 Y1Ys + nyyy + niyy
y11/1+y51+///(y2+n§)1 2 n/2/+<12 4512 492
RJR JR Yy + ng

—v1—1/2
(y293 + n2y2 + n23)" % e (—mans) dnfdnadns

1 1 vo—u1/2—1/2 —o—1/2
=y PPyt (2,1/2 - 2) /R/R (yh +n2)"2 722 (20 n2y? ndyd) Y
e (—mans) dngdns.

Change of variables nyys — n gives

v v 1 1 vo—11/2—1/2 2\ 7271/
AR (2 - 2) by (o (o ) + )

e (—mans) dngdns

_ 1 v 1 /9
=y Pty <,V2 - 1) B <, Vz) /R (y3 +n?) /22 (—mans) dns

2 2 2
L i—2upt2 1 Y2
=yTB (2’”2 - 2> b (2’”2) /R <y§+n§) ¢ (Zmans) dns
_ 1 V1 1 141
:yll/l 2y2+23 <23V2_2)B (277/2>W(y§727><m2) : B

Remark. If 1 is a non-degenerate character of U(Z)\U (R), that is, ¢ = ¢, m, with mq, mg # 0,
it is shown in [ISh05] that W, (g, v,¢) has moderate growth, i.e. Wy, (g,v,%) € W(v,)mod.
Hence, by Theorem [2.34] W, (g,v, %) is the unique function (up to a constant multiple) in
W(v,¢)™°d. This function is studied extensively by Ishii [Ish05].
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2.5.3 Minimal Eisenstein series

Let ¥ = ¥, m, be a character of U(Z)\U(R). The -th Fourier coefficient of the minimal
Eisenstein series Ey(g, V) is given by

Eoy(g,v) = /U(Z)\U( o Eo(ng,v)y(n)dn

Remark. In principle, one may consider the Fourier coefficients along other subgroups. For
example, for Siegel modular forms, one usually considers the Fourier coefficients along the upper
right block, which forms an abelian group. Here, we consider the Fourier coefficients along the
unipotent part U of G. As U is not abelian, we are not guaranteed a Fourier expansion from
these Fourier coefficients. Indeed, on Sp(4), there exist automorphic forms that do not admit
a Whittaker model, and all the Fourier coefficients along U vanish. Nevertheless, these Fourier
coefficients find applications for instance in the constructions of L-functions via Langlands-
Shahidi method [Shal0].

To compute the Fourier coefficients Ey (g, ), we break down the expression via Bruhat decom-
position, and express them in terms of Whittaker functions. We have

Eoyl(g,v) = /U E(]w ng, V)Y (n)dn

weWw (2)\U(R

=> Y > / Io(vdng, v)i(n)dn

weW yeRy, 6€ly

= > / . / (R)Io(vnn'gw)@(nn’)dndn’-

weW vyERy

Let v = bywtbs be a Bruhat decomposition, with b1,by € U, t € T. Again we may assume that
by € U,. Then we have

Eoylgv)= Y / . / (R)fo(blwtbznn’g,V)@(nn’)dndn’~

weW ~ERy
y=b1wtba

Then change of variables bon — 7 gives

Eop(g,v) = Z Z Qﬂ(b2)/

weW  ~ERw v
y=biwtba

B / To(wtnn'g,v)¢(nn’)dndy'.
w(Z)\UW( ) w( )

Now observe that
Ip(wtg,v) = Iy ((wtw™ Hwg,v) = Iy(wtw ™, v)Io(wg, v).

So the Fourier coefficient becomes

Eoy(g9,v) = (b2) Ip(wtw™ ,1// / Io(wnn' g, V) (nn)dndn
0wgv)= > > Wbl )mm)\ﬁw(m o o )b (')

weW ’YERw
y=b1wtba

= W (b2) Io(wtw ™, W (' g, v, ) (0 )i
SO b lo(wtw ”)/waw(m (9, v, )l

weW  ~yERy
y=biwtba
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Recall that W, (g,v,1) = 0 unless 1 is trivial on U, (R). If 4 is trivial on U, (R), then it follows
from the definition of a Whittaker function that W, (n'g,v,v) = Wy (g,v,) for 0’ € U,(R).
So the Fourier coefficient becomes

S OY pla)l(wte ) / Wl ).
wEW  ~YERw w(Z)\Uw(R)
y=biwtba

Hence, to obtain the Fourier coefficients of Ey(g,v), it suffices to evaluate for w € W the
sum

Eoypw(g,v) = Z Y(bo) In(wtw ™, V)W (g, v, ).

YERw
y=b1wtba

(i) For w = id, we have Rjq = {I4}. So we immediately obtain
Eo,lb,id(g: V) = I/Vicl(gv v, ¢)

(ii) For w = sq, from Bruhat decomposition in Section we deduce that if v € R, has
Pliicker coordinates v = (0,0, v3,v4;0,0,0,0,0,1), then we have

1 _ . 2v9—2v1—1

Ip(wtw™ ", v)

9

and Y, m,(b2) =€ (—mvlif?’) Hence

vo—2u1 — miv3
Bpanlon) = 3 Y e (< g.n)

V4
v42>1 v3(mod vy)
(v3,va)=1

= D T ey, (ma) W, (g, v,90).

vg42>1

So the inner sum is actually a classical Ramanujan sum. Using the well-known identity

o_g(m)
if m # 0,
en(m)n=F 1 = G(k +1) .
7;1 n(m) . (2.41)
- C(k+1) -

we see that

O2u9—211 (ml )

_ ) ¢(2v1 =21 +1)
EOﬂ/J,Sa (gJ V) - C(2V1 _ 2]/2)

C(2V1 — 29 + 1)

Wsa (ga v, w) if mi ;é 07

Wi (g,v,9)  if my =0.

(iii) For w = sg, if v € Ry, has Pliicker coordinates v, then we have
Ip(wtw™,v) = i3 =227

and Vm m,(b2) =€ (*ijv;"‘) Hence

— — mavs4
E()ﬂhsﬁ(g,lj) = Z Z Ug?l) 22 16 <_ > WSB (ga v, dj)

V23
02321 v34(mod v23)
(v23,v34)=1

= ) o ey, (ma) W, (9,0, 1)),

v23>1

o1



By (2.41)), we obtain that

Oy —2u9 (mQ)

Enopla.v) = § G -0 E

<(21/2 — 11+ 1)

ng(gﬂ/,lb) ifm27é0’

ng(gvva) if mg = 0.

For w = 5458, recall that

RSQSB = {(Oa V2, U3, U4, 07 07 07 %7 07 _%)} )

where vg > 1, v3,v4 (mod vz), such that (ve,vs,v4) = 1, and d = (v, v4). If v € Rs s,
has Pliicker coordinates v, then we have

-1 2v9—2v1—1 1/1 2u9—1 —v1—2 2v9—v1+1
In(wtw™ ", v) = v; Vs = v, T

v2

—v]— — Moy
EO,@D Sasp 97 Z Z 'l)2 ! 2d2u2 V1+1e <> WSasﬁ(g7V7,l/})'

(%)
v22>1v3,v4(mod v2)
(v2,v3,v4)=1

and Y, m,(b2) =€ (m) Hence

Write vg = dvh, v4 = dvj. Then the sum can be rewritten as

/
—v1—2 maov
Bospsasy(9:v) = 3?2770 3 g™ ( ) D Wasa(g:vv)
2

d>1 vh>1 vy (mod v}) v3(mod dv2)
(v =1 (dyus)=

=Y p(d)d® N )T ey (mo) Wy s (9, v, ),

d>1 vh>1

where ¢ stands for the Euler totient function. By (2.41), we obtain that

((2V1 — 21/2) 01, (mg)

)@ =2+ 1) ¢ + 1)
E()@,sasg (97 V) - C(Qlyl — 221/2) C(lyl)

((21/1 — 219 + 1)C(V1 + 1)

W5a85(971/7 lb) if ma 7é 0,

Wios5(g,v59)  if ma = 0.

For w = sgsq, recall that

2
V24 V14 Voy
Rsys, = {(0 0, — VR ;0, —v24, V14, — o )

where vi4 > 1, vV9g, V34 (mod 2}14), d= (1)14,7)24), such that via ‘ d? and (%,U;ﬂ) =1.1If
7 € Rs,s,, has Pliicker coordinates v, then we have

-1 2uo—2v1—1_ 11 —2r9—1 —v1—2 211 —2v9+1
In(wtw™ ", v) = vy v{} =wv, 7 7d ,

and Y, m,(b2) =€ (M> Hence

V14

v - mM1V24
Bowsesal0:0)= D, D, D, v T e () Wissa (9,1, 9)-

V14
v142>1 vo4(mod v14) V34 (mod v14)

2 2
v14|d (L v ) 1
V34
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Write v14 = dvly, vos = dvh,, and d’ = d?/v14. Recall that we have d = vj,d’. Then we
have v14 = d'v},”, and the sum can be rewritten as

v1—2us—1 —2u9—3 myvs
e M o M IR

d'>1 vl >1 vh4(mod vf,) 14 v34(mod d'v},?)
(v14:v54)=1 (d'v34)=1
N qv1—2v2—1 ;) —2v9—1
=) e(d)d D v ey, (M) Wigs, (9,1,0).
d'>1 vy >1

By (2.41)), we obtain that

C(2v2 —1v1) o9, (m1)

_ 1@ —n+1)¢2n+1)
EO,z/J,sBsa (g’ V) - Cl(j22y2 le/1) C(VQQVQ)

<(2V2 -+ 1)((21/2 +1

Ws/;s@ (97 v, 1/1) if my 7é 07

)Wsﬁsa (g,v,v) ifmg =0.

(vi) For w = 545354, recall that

) V1V v% v% V1V V1V3 + V2U4
Rsa35sa: U15U277)37,U47077 5 7?77?7 5 ) 5 )

where v1 > 1, vg,v3,v4 (mod vy), such that (vi,vy,v3,v4) = 1, and d = (v1,v2), § =
(d2, v1v3 + vouy). If v € Rsasﬁsa has Pliicker coordinates v, then we have

Io(wtw_lvy)zvfw 2v1—-1 1!/[11 2v—1 _ 1721/27352@—”14_1’

v1

_ _ _ KP)
EO s s5a g’ Z Z ] 2vo 352V2 l/1+16 <> Wsa553a (g’ v, ?,Z))

U1

and Yy m. (b2) =€ (m) Hence

v12>1 vg,v3,v4(mod v1)
(v1,v2,v3,v4)=1

Write v1 = dv}, v = dvh. Since d | §, so we may also write § = dd’. Note that
8" = (d,vjvs + vhvg) divides d. Then the sum can be rewritten as

—2 3 mlvl 2v9— 1
E01psa55sa g, v Zd v1—2 Z /| —2v3— Z e ( - 2) Z 5/ vo—v1+ Wsasgsa(gvl/7w)~
1

d>1 vi>1 vZ(mod vl) v3,v4(mod dvf)
(vy,vh)= (d,v3,v4)=1

For fixed [ | d, we find the number of pairs (v3, v4) modulo d satisfying (d,vs,v4) = 1, and
(d, vjvs +vhvg) = 1. We first observe that for every residue class (v3,v4) modulo d, we can
find representatives such that 0 < vjvs + vhvs < d. As (v}, v4) = 1, we can find ug,ug € Z
such that vjus + vjus = 1. Then for 0 < n < d, the equation

vivs +vhvy =n  (mod d) (2.42)

has d distinct solutions, given by (vs,v4) = (nug+kvh, nug —kv}) for 0 < k < d. A residue
class (vs,v4) modulo d satisfies (d, vjvs + vhvs) =1 if and only if [ = (n,d). Let 0 <n < d
be such that (n,d) = [. Then the number of solutions to (2.42)) satisfying (d,vs,v4) = 1 is
given by dp(l)/l. Meanwhile, the number of integers 0 < n < d with (n,d) = [ is given by
©(d/l). Hence, there are in total dy(d/l)¢(l)/l solutions for (vs,vs) modulo d such that
(d,vjvs + vjvs) = I. Hence the sum becomes

_ —2u 3
Bogmunpen(9:) = S d S o750, (my Zw() D22 W, oo (9,0,

d>1 v >1 I|d
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(vii)

Writing d = d'l gives

Eopsnspsa(:0) = Y @(d)d ™71 o222ty " ol T 0 () W sea (9, 1510).

d>1 1>1 o) >1

By (2.41), we obtain that

Cr1)  C(2v1 —212) o9y, (m1)

_ )¢ +1)¢(2v1 — 212 +1)¢(2r2 + 1)
Fovsarssal ) =0 e S 2m) | ((2m)

C(I/1 + 1)C(2V1 — 219 + 1){(2V2 +1

WSQSBSQ (97 V7¢) if mi 7& 07

)WSaSBSa(g7 Vﬂb) if my = 0.

For w = sgs4sg3, recall that

2
. V12 V13 V14 V{3 + V14V23
S3SaSB ) ) ) 9 y .
Rsys0ss 0, ; V12, V13, V14, V23, —V13
d do d V12

where v1g > 1, v13, V14, V23 (mod v12), with the following conditions. Let di = (v12,v14),
and do = (v12,v13,v14). Then we require d; | d%. Write vig = div]y, v14 = d1v],, v13 = dik,
and d' = dy/dp, t = dp/d'. Let a be a solution to avi, = —k (mod v},), such that a and

m’:},ﬂ are divisible by ¢. Then we require veg to be of the form vo3 = a + rvj, with
12

(r,t) = 1.

Ifve Rsysass has Pliicker coordinates v, then we have

—1 _ 2ue—2v1—1 vi—2v0—1 _  —v1—2 j2v1 21041
In(wtw™ ", v) = vy V{5 =wvy ' “dg ,

and Yy m, (by) =e (%) Hence

—v mavi14
EO,’L[J,SBSQSB (97 ]/) = Z Z ,U12 1— 2d2V1 2V2+1 ( ) Wsﬁgasﬁ (g,l/,w).

V12
v122>1 v13,v14,v23(mod v12)

conditions

Expanding the conditions above, we rewrite the sum in terms of d’, t and v/y:

’
1—2v3—3 v —2v9—1 / *Vl 2 mavyy
PR RS W) WA SR D D
d’>1 t>1 v,>1 Ui4/(m0/d vy) 12
(vig,014)=1

> Y Wissa(9.0,0)

”13(m0d d'v5) waz(mod d'*tu),)

(d, ”U =1 v23= a+7“v12
(rt)=1
N gt —2v2—1 v1—2vp—1 / —1/1 1
= E (p(d )d E t e E Col, mQ)ngsaSB(ga Va'(/})'
d'>1 t>1 vjo>1

By (2.41)), we obtain that

C(2r) (2 —11) o_y(m2)

_ ¢+ 1)C@r — v+ 1) + 1)
Eopspsass(9:v) = Q(V§U2) ) (CI(/221/2 zlm) é/(ll/l)

CRro+1)((2ve —v1 +1)((r1 + 1)

Wegsass (g,v:p) i ma #0,

SgSasp (g’ v, ¢) lf mo = O

o4



(viii) For w = wo, if v € Ry, has Pliicker coordinates v, then

-1 2V2 2v1—1 Vl 2v9—1

)

v1 V12

and wmhmz (b2) =€ (mlv2 + m2v14) Hence

_ 29 —2v1—1 11 —2wp—1 miv2 mav14

Eovwawo(g’y)_ E : Uy V12 e< + [[wo(g’y’d})'
U1 V12

’YGRwO

Note that this is actually a Dirichlet series of Sp(4) Ramanujan sums. Indeed, we have

Eopu(9,v) = Z Ruy w15 (ma, ma)v %VZ 2t viy 2 1WW0<97 v, ),

v1,v12>1

where Ry, y,,(m1,mg) is an Sp(4) Ramanujan sum, defined in (2.26)). By Propositionm

we obtain
E0,1/),wo (gv V)
0 —vg,vg—11 (mla m2) .

(o —20s T 1)C2s — o £ 1) T 1C@r 7 1) Vw9 v ¥) ifmams 20,
0205 —20, (M1)C (212 — 11)¢(11)((212) W

C(2v1 —2v9 + 1)¢(2v2 — vy + 1)C(n1 + 1)C(2v2 +1) ™
Ou—205(M2)G (201 — 212)C(11)((212) .

C2v1 — 2v + 1)C(200 — 1 + 1)C(vr + 1)C (202 + 1)W“’° (g,v:9) i m1=0,ms #£0,
C(2v1 — 212)((2v2 — 11)C(11)¢(212)

C(2v1 — 2v2 +1)¢(2v2 — v1 + 1)¢(1 + 1)¢(

(gava) ifm17£07m2:07

Wwo(gaya¢) ifm1:m2:0'

29 + 1)

Remark. The Fourier coefficients Ey y ., (g, ) are originally defined on an open subset of a-, but
it follows readily from the expressions that they can be continued into meromorphic functions
on agc.

Recalling that W, (g, v, 1) is nonzero only if 9 is trivial on U,,(R), we conclude the computations
with the following theorem.

Theorem 2.36. For ¥ = 1y, m,, the 9-th Fourier coefficient of the minimal Eisenstein series
Ey(g,v) is given as follows:

(1) If mi,ma 75 0, then

0 —vy,v9—11 (mla m2)

C(2v1 — 219 +1)C(2v2 — 11 + 1)C(11 + 1)C(2v2 + l)I/Vw0

EOJ/J(g?V): (gvva);

(ii) if m1 # 0, ma = 0, then

20520, (M1) C2vy —v1)  o_gu,(my)
T om0 e ) e T T+ 1)
Cr1)  C(2v1 —2u2) 0_24,(m1)
Con + 1) C2vs— 2oy + 1) C(aug 1) oo (8:220)
(v —11) (1) C((2v2) o220, (1)
C(2ve —wv1 +1) (v +1)¢(2v2 +1) ¢(2v1 — 212 + 1)

EO,’QZ)(Q’V) =

Wissa (9, V5 0)

+

W (9, v, 9);
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(iii) if my =0, mg # 0, then

Ty 20, (M2) C(2v1 —2v2) 0y (M2)
CCvs — 11 +1) Wes(9,1,9) + C2vr — 20+ 1) C(n + 1)
((2v2)  C(2r2a—11) 0y (M2)
Cm + D) @ — 1 1) Cn 1) e (9:079)
C(2vy —2v9)  ((r1)  C(2v2)  Ou 20, (M2)
C(2V1 — 29 + 1) C(Vl + 1) C(2V2 + 1) ((21/2 — 1+ 1)

Eoﬂlﬂ(gvy) = WSasﬁ(g7 V7w)

Wwo(g') V7¢);

(iv) if my = mg = 0, then the Fourier coefficient ., ,(g,v) is precisely the constant term
Co(g,v) of the minimal Eisenstein series along the minimal parabolic, and the expression
is given in Theorem [2.21

The Fourier coefficients Ey (g, v) are originally defined on an open subset of aj., but they can
be continued into meromorphic functions on age.

2.5.4 Maximal Eisenstein series E£,(g,v,1) and Ez(g,v, 1)

In Proposition we showed that the maximal Eisenstein series Eq(g,v,1) and Eg(g,v, 1) are
actually residues of the minimal Eisenstein series Ey(g,v). Since the Fourier coefficients are
integrals over a compact set, we obtain the Fourier coefficients of E,(g,v,1) and Eg(g,v,1) by
taking the residues of the Fourier coefficients of the minimal Eisenstein series. Let

Eqy(9,v,1) := /

Eo(ng,v,1)¥(n)dn, Eg(g,v,1) := / Es(ng, v, 1)¢(n)dn
U(Z)\U(R) U(Z)\U(R)

denote the 1-th Fourier coefficients of E,(g,v, 1) and Eg(g,v,1) respectively. Then we have the
following corollaries.

Corollary 2.37. For 1) = 1, m,, the ¥-th Fourier coefficient of E,(g,v,1) is given as follows:
(i) If mi,mg # 0, then E, (g,v,1) = 0;
(i) if m1 # 0, ma = 0, then

Euslgn1) = 2 SO UBT2y, (o0 1/20), 0

(iii) if my =0, mg # 0, then

1 U,V,1/2(7’R2)

E 1 = - Sas ) 1 25 ’
a,TZJ(gvyv ) T C(V+3/2) Wa ,@(g (V+ / V) 1/))
1¢(v+1/2) ((2v) 0_pp1/2(ma)
- Ww ) + 1 27 ) ;
T3/ v+ 1) Corijz) Vel 200
(iv) if my = mg = 0, then the Fourier coefficient Eo 0 (g,v,1) is precisely the constant

term C%(g,v,1) of E,(g,v,1) along the minimal parabolic, and the expression is given in

Corollary
Corollary 2.38. For ¢ = 1y, m,, the ¥-th Fourier coefficient of E3(g,v,1) is given as follows:

(i) If mq, mg # 0, then Eﬁ’w(g, v, 1) =0;

o6



(i) if m1 # 0, mg = 0, then

1 U—V—l(ml)
R ok e (0 D2).9)

i C(v) Cw+1)o_py1(ma) (s .
Tt o) el 1)/2)0);

Eﬁﬂz}(g’ v, 1) -

(iii) if m1 =0, mg # 0, then

1 +1)o_y(m2)
B0 ) = ) S+ )

Wigsass(9; (v, (v +1)/2), );

+|+

(iv) if m1 = ma = 0, then the Fourier coefficient Eg y,,(g,v,1) is precisely the constant
term Cg (9,v,1) of Eg(g,v,1) along the minimal parabolic, and the expression is given in

Corollary [2.28]
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Chapter 3

Symplectic Kloosterman sums

3.1 Construction of symplectic Kloosterman sums

Let
G =Sp(2r) = {M € GL(2r) | M"JM = J}, J_<_[ b)

be the standard symplectic group, with the standard torus and the standard unipotent subgroup

given by
* 1 * ok *
* f
*
T— ca U= S R e
* :

respectively. Let N = Ng(T) be the normaliser of 7' in G. The Weyl group is given by
W = Ng(T)/T. Let w: N — W be the canonical quotient map. For w € W, we define
Uy := UﬁwilUTw, and Uy, := U Nw 1Uw.

Let p be a rational prime. We have a Bruhat decomposition
G(Qp) = U(QP)N(QP)U(@P)'
For n € N(Q,), we define

C(n) :
X(n):

(Q )nU(Qp) N G(Zp)v

U

and projection maps
u: X(n) = U(Zp)\U(Qp),
u' s X(n) = U(Qp) /Uy (Zy)
by the relation x = u(z)nu/(x) for z € X(n).
For n € N(Qp), let ¢, be a character of U(Q,) which is trivial on U(Z,), and ¢/, a character of

Uw(n)(Qp) trivial on Uy, (,)(Zp), such that 17, is the restriction of some character of U(Q)) trivial
on U(Z,). The local Kloosterman sum is then given by

n¢pa Z wp ( (:U))

zeX(n)
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Usually, % is given as a character of U(Qp) trivial on U(Zp), and we write Klp(nawlﬁw]/?) *
mean Kl,(n, 1y, ¢;|Uw(n) (Qp))'

Now we give a global construction of Kloosterman sums. Let A be the ring of adeles of Q. Let
n € N(Q), ¥ = [[¢p a character of U(A) trivial on [TU(Z,), and ¢' = [[ ¢, a character of
P P

P
Uwn)(A) trivial on [T Uyy(n)(Zp), such that 9 is the restriction of some character of U(A) trivial
P

on [[U(Z,). The global Kloosterman sum is then given by
2

Kl(”a wa w/) = H Klp(n’ wlh 1/)1:7)
p

Remark. For characters 1, of U(Q)/U(Z), we can also define Kl(n, v, ') by considering 1), ¢’
as characters of U(A)/ [[U(Z,). In fact, this is how global Kloosterman sums are usually defined
2

in practice, for instance in Sections [3.4] and

Remark. This definition of Kloosterman sums is different from the symplectic Kloosterman sums
introduced by Kitaoka [Kit84], which are more relevant for classical Sp(4) Fourier expansions
with respect to the upper right 2-by-2 block. To6th [T6t13| proved some properties and estimates
of such Kloosterman sums. The Kloosterman sums introduced here fit into the general framework
of Kloosterman sums defined on reductive groups, see e.g. Dabrowski [Dab93].

Proposition 3.1 ([Ste87, Theorem 3.2|). Let n € N(Q,), and 1, 9" characters of U(Q,) trivial
on U(Zy). If t € T(Z)), then

Klp(tna 7/17 @Z’,) = Klp(na ¢ta ¢/))
Klp(nt717 1/}7 ¢/) = Klp(na % T/’Da

where () = (tat™1).

Proof. If x € C(n) has decomposition z = u(z)nu’ (), then tx has decomposition tu(z)t ~nu'(z).
As t is invertible, this shows that C(tn) =t - C(n). Hence

Klp(n, b, ) = > o (tu(@)t ™)y (W(@) = Y o (u(@) ¢ (v () = Kly(tn, 3, ¢).

zeC(n) zeC(tn)

The second statement is proved analogously, using C'(nt=1) = C(n) -t 1. O

By Proposition we can reduce a local Kloosterman sum into a Kloosterman sum Kl (n, 1, ¢')
where the entries of n € N(Q,) are powers of p.

3.1.1 Sp(4) Kloosterman sums
For the rest of the section, we restrict our attention to the case G = Sp(4). A description of

the Weyl group W of G is given in Section For my, mo € Z, let 1y, m, be the character of
U(Qp) given by

Vmymo 1 = e (miz1 + maza) . (3.1)



Then 1, m, is trivial on U(Z,), and it is easy to verify that every character of U(Q)) trivial
on U(Zy) is of this form.

Fix ¢ = ¥m, ms, and ¢’ = 1y, n,. We give an explicit characterisation of local Kloosterman sums
for G = Sp(4). By Proposition , it suffices to consider the Kloosterman sums Kl,(n, 1, 1’) for
which the entries of n are powers of p. It is also natural to just consider n € N(Q,) such that
X (n) is nonempty. The Kloosterman sums are classified by the Weyl element w(n), and the
elements in X (n) are identified by their Pliicker coordinates, introduced in Section

(i) If w(n) = id, then X (n) is nonempty when n = n;q := I4. In this case, the Kloosterman
sum is trivial:

Klp(nidv ¢, W) =1

(ii) If w(n) = sq, then X (n) is nonempty when

n=mng, =

for r > 0. We identify X (ns, ) by the Pliicker coordinates
X(nsa,r) = {(07 0, fUBapT; 0,0, 07 O, 07 1)} ’

where vz (mod p"), such that (vs,p”) = 1. Bruhat decomposition gives

1 B B2 B3 p" 1 —wgp™"
. I By Bs| |1 1
1 p" 1
B 1 —p~" vsp~ " 1
—B1p" Bz +p~" Bovs — B3pT" Bap”
_| P U3 Bavz — Bsp™"  Pap”
0 0 v3 P’
0 0 —Brvg—p " —B1p"

The entry S1v3+p~" being an integer says 1 = —vzp~" (mod 1). The entry S4p” being an
integer says 84 € p~"Z. So, the entry S4v3 — B5p~" being an integer says 85 = 0 (mod 1).
So the Kloosterman sum is given by

—miU3 — N1V
Kly(ns, ) = > e (””’) — S(m1,n15p").
ug(mod p7) b
(vs3,p")=1

So this is actually a classical Kloosterman sum.
(iii) If w(n) = sg, then X (n) is nonempty when
1
n=ng,, =
—-bp
for s > 0. We identify X (n, s) by the Pliicker coordinates

X(nSB,S) = {(07 07 11 07 07 07 07p87 07 U34)} ;
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where v34 (mod p®), such that (vs4,p®) = 1. Bruhat decomposition gives

1 B B2 B3\ (1 1
S 1 B Bs p° 1 —v34p~°
1 1 1
—p 1 —p° 1

1 —B3p® B2 Bavsa+ Pip°
0 —Bsp° Ba  Bsvaa+p°
0 0 1 0

0 —-p° -5 V34

The entry Bs5vs4 + p~° being an integer says 5 = —v34p~® (mod 1). The entry —3; being
an integer says $1 =0 (mod 1). So the Kloosterman sum is given by

—MmM9U3q4 — NV
Klp(n5ﬁ757¢a¢/) = Z € < 2 34ps 2 34) = S(m27n2;ps)'
v34(mod p*)
(v34,p°)=1

So this is actually a classical Kloosterman sum.

If w(n) = sqsg, then X (n) is nonempty when

= Nsysg,r,s ‘=

for 7 > s > 0. We identify X (ns,s,,rs) by the Pliicker coordinates

X (Nsasgrs) = 1(0,07,v3,04;0,0,0,p°,0, —0ap®~") },

where v3,v4 (mod p"), such that (vs,p") = p" %, and (vs,p" %) = 1. Write vy = vjp" %,

so (v, p®) = 1. Bruhat decomposition gives

1 B B2 B3 -p " 1 vgp~ "
v L B Bs||p° 1 wgp™ vjp~*
1 p" 1
—p 1 P 1

Bip" ™% Pop”  Povs+ B3p® " Povyp” T+ fruspT  —p T
| P Bap" Bavz + BsptTT Bavyp" % + vsp~*
- 0 pr U3 ,UZ/Lprfs

0 —pip" —Pivg+p°T —prugp"—°

The entry —f1v3+p°~" being an integer says 81 = v3p°~" (mod 1). The entry Bavyp" 5+
vzp~® being an integer says 4 = —vjvzp~" (mod p*~"). Write B4 = —vjvsp™" + yap®"
ol 02, —S

for some 4 € Z. The entry B4vs + B5p* " being an integer says y4v3 + 5 = vjv3p
(mod p"~*), hence B5 = vjv3p~* (mod 1). So the Kloosterman sum is given by

. T2 +
Klp (nsaa‘g,r,s;wﬂ//) = Z Z T e (mw:sp ) e <m21)41};s n2U4> ‘

p'l"
vg(mod p*®) v3(mod p")
(va,p*)=1 (v3,p"~*)=1
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(v)

(vi)

If w(n) = sgsq, then X(n) is nonempty when

N = MNsgsq,r,s =
4
for s > 2r > 0. We identify X (ns,s,,s) by the Pliicker coordinates
X(n35sa,r,s) = { (07 0, —v24p" %, p"; 0, —v24, p°, —v24p™*, V24, ")34) } )

where va4,v34 (mod p®), such that (vag,p®) = p*~", and (v34,p* 2") = 1. Write voq =
vh,p*~", s0 (vh,,p") = 1. Bruhat decomposition gives

L B B2 B3 p" L uyp™  vmp™®
. 1 B4+ Ps pre 1
1 p" 1
—p1 1 —p*" —vpp~" 1

—Bsps"  —B3vhp* T +pT" —Bavhy — Bavsap "+ fip" T Bap”

_ | BT —B5vhyp* T2 —Pavhyy — Bsvaap™ " + D" Bap”
0 0 —vh, p"
—p5" —vh,ps 2" Bivh, — vaap™" —B1p"

The entry (10, — v34p~" being an integer says 81 = vhyv3p~" (mod 1). The entry Sap”
being an integer says 84 = Bjp~ " for some [} € Z. The entry —f4vh, — Bsvzap™" +p"—*°
being an integer says Bjvh, + Bsvsa = p* * (mod p"), hence B5 = v31p* ~* (mod 1). So
the Kloosterman sum is given by

M1U24V34 + N1V24 moUzap*"
K res)= ¥ 5 o ) ("5).

pr
vo4(mod p") wv34(mod p®)
(v24,p")=1 (v34,p"~2")=1

If w(n) = s4535q4, then X (n) is nonempty when

N = Nsyspsa,r,s *—

for 2r > s > 0. We identify X (ns,s4s,.r,s) by the Pliicker coordinates

s—2r

X(nsasﬁsaﬂ",s) = { (pr7 v2, V3,043 0, 7v2ps—r’ ps’ *’U%]) ’ UQPS_T’ (pr,v3 + U2/U4)ps_2r) } s

where v, v3,v4 (mod p”), such that (va, v3,v4,p") = 1, and d = (ve,p"), (d?, pv3+vovs) =
p?"~%. Let d = p"~®. Then a satisfies s — 7 < a < s/2. Write vy = vhp" ¢, so (vh,p?) = 1.
Bruhat decomposition gives

1 B B2 B3 —p " L vgp™®  wp™"  ugp™"
- 1 Bs PBs P 1 vap~"
1 p" 1
b1 1 P’ —vpp~* 1

Bop”  Povep” T+ P1p" ™% Pavs — Baugp® T + Pruap™® —p" Povg + B3p*T"
| Bap” BavipT 4 pE Bavg — Bsvpp® " 4 vgp~° Bavg + Bsp®"
o vyp" ¢ U3 vy

—p1p” —Brvgp" ¢ —B1v3 — vop* T —Brvg +p°"
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The entry —f1v5p"~® being an integer says 1 = 1p® " for some 3] € Z. Entries —f1v3 —

! S—a—r

VoD and —fB1v4 + p°~" being integers says
Blos = —vhp® > (mod p" %), Blua=p**  (mod p"*). (3.2)

As (v3,v4,p" %) = 1, these equations determine 1 uniquely modulo 1.

The entry B4v5p"~* + p"~* being an integer says 84 = —vpp®~* (mod p®~"). Write B4 =
—vhp®~* + 44p®~" for some y4 € Z. Then Byvz — Bsvhp* " + v4p~* being an integer says

—0h3p” + Y4v3p* T — Bsvhp® T 4wy =0 (mod p). (3.3)

Write 85 = B5p®*7 =2 for some B4 € Z. Then we solve

72 —_ —_
Bt = —v) v3p® + 14vhvsp® T + vhvy  (mod p®). (3.4)
Then B4v4 + B5p°" being an integer says
Y4 (p™v3 + vhvs) pPPTTT = vgp®®  (mod p). (3.5)

Recall that (p"~%, p®vs + vhvy) = p" T 5. Hence, unless a = 5, we can write p®vz + vhug =
V'prte=s with (V/,p) = 1. Then we solve (3.5)):

v4 = V'vz  (mod p*~29),

Putting back to (3.4) gives
72 —_—
Bt = —vh vsp® + V’vév%ps+“_T +vhvy  (mod p*TaTry),
hence (5 is uniquely determined modulo 1.

When a = §, 4 can be arbitrary, and we have

72 -
Bt = —v v3p® + vhvy (mod p2s_“_r)

)

hence (5 is also uniquely determined modulo 1 in this case.

So the Kloosterman sum is given by

KIP (nsasﬁsa,r,mwawl) = Z Z e (ml’UQ + Tl11)2> ¢ <m2u> 7

T s
s—r<a<s/2 v2,v3,v4(mod p") p p
va=vgp" "%, (vg,p*)=1
(v3,v4,p" " 4)=1
(p"=*,p v3+vhva)=p

r+a—s
where 09 is chosen modulo p" such that
Dovg = —vhp®~*  (mod p"), tovg =p°  (mod p"), (3.6)

and

(3.7)

S

- —Ué 03p2a+r—s + V’Ué’U%an _{_Uéwlpa-i-r—s (mod ps) ifa < g’
2

72 PR
—Ué 03p2a+r—s + Uév4pa+r—s (mod ps) if g =
where V' = p*~"7% (p®v3 + vhuy).
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(vii) If w(n) = sgsasg, then X (n) is nonempty when

N = Nsgsqsg,r,s *—

for s > r > 0. We identify X (ns,s,s5,s) by the Pliicker coordinates

X (Nsgsassrs) = { (0,07, v1sp ™%, v1ap” % p°, 013, v14, V23, —v13, — (03 + viavas)p®) },

where v13, v14, v23 (mod p*), such that (vi3, v14,p®) = p*", (v14, %) | vi3, and (P57, va3, v34) =
1. Recall that vy = —(U%-g) + vigve3)p~®.  Write vz = 2)/13])5_7”7 Vg = Uhps_r, SO
(vig,v]4,p") = 1. Bruhat decomposition gives
L B B2 B3 -p "\ (1 —Ua3p~* Vigp "
. L Bs B pre L wigp™  opp™”
1 p" 1
_51 1 _psfr 1
—Bsp®™"  Bap” 527)33 + B1p" 7% + Bavogp™" [321)34 — 531)13])3_2’" —p"
_ | B Bap” Baviz 4 BovaspT" +p 0 Bavly — Bsvizp®
0 P Vi3 Ul
-p " —=pip" —B1v]3 + vazp~" —B1vly — visp* T

The entry —f1p" being an integer says 51 = fip~" for f] € Z. Entries —f1v]5 + vagp™"
and —pB1v], — v]3p° %" being integers says

Bivig = w3 (mod p"), Biviy = —vip® " (mod p"). (3.8)
As (vi3,v]y,p") = 1, this determines /3 uniquely modulo 1.

Entries S4p” and —fBs5p°~" being integers says 4 = [yp " and S5 = [Lp"*® for some
BY, By € Z. The entry Bavis + Psvazp™" + p'~° being an integer says

Bivisp® " + Btuog +p" =0  (mod p°), (3.9)
which implies
Byvaz = —p"  (mod p°"). (3.10)
The entry B4v], — B5v]3p° 2" being an integer says
Biv1ap®™" = Byvizp® " =0 (mod p*). (3.11)

Then, v}5 times (3.11]) minus v}, times (3.9) gives

By(—vis"p* ™" — viguas) =p'vfy  (mod p’)
Bip vz = p'uy,  (mod p°)
Bsvzs = vy, (mod p*"). (3.12)
As (p°~",ve3,v34) = 1, (3.10) and determine 5 uniquely modulo 1.
So the Kloosterman sum is given by

miu ma14 + Nav
Klp (nsgsaSB,r,sawﬂl)/) — Z €< 1 > 6( 2U14 2 14> 7

7 S
B p p
v13,v14,v23 (mod p*)
S—1T

(p®,v13,v14)=p
(p*,v14)[v35
(P77 was,v34)=1
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where u is chosen modulo p” such that
uvisp”* = w93 (mod p"), uvpgp” = —wv13  (mod p"), (3.13)
and 014 is chosen modulo p® such that

O1av93 = —p*" (mod p?), O14v34 = v14p>* (mod p?). (3.14)

(viii) If w(n) = wp, then X (n) is nonempty when

= Nuwg,rys = r

for r,s > 0. We identify X (ny,s) by the Pliicker coordinates

X (nuwgrs) = { (", va, v3,v4; p%, 13, V14, (V2013 — v3p®)p ™", —v13, (v3V14 — Vav13)p ") },
where v, v3,v4 (mod p"), vi3,v14 (mod p?), such that vigp"+vovia—v4p® = 0, (v2, v3,v4,p") =
1, and (v13, v14, V23, V34, p°) = 1. Recall that

va3 = (vov13 —v3p’)p ", 34 = (V3V14 — V4VIZ)D .
Bruhat decomposition gives

—r —r

I 81 B2 B3 -p " 1 wvp™™ w3p V4P

1 Bs Bs —p"* 1 vigp~®  vuup~?

v 1 " 1
b
—p1 1 p*" —vgp~" 1
Bap”  Pova + B3p®" Povs + B3vizpT" 4 Bivap® —p7" Povg — f1p" % 4 Bavuap ™"
Bap”  Pava + Bsp®T" Bavs + Bsv13p™" 4+ vop~?® Bava + Bsviap™" —p"
p" V2 U3 V4

—Bip" —Prve +p*" —Bivg +vizp™" —B1vg + vuap™"

The entry —f1p" being an integer says 1 = Bip~" for some (] € Z. The last row of v
being integral gives

Bluz=p° (modp"), Plus=wvz (modp"), Llug=wviy (modp").  (3.15)

As (p",va,v3,v4) = 1, these equations determine 51 uniquely modulo 1.

r

The entry S4p" being an integer says 54 = Byp~" for some ) € Z. Then Bve + S5p°~
being an integer says

Biva + Bsp® =0 (mod p"). (3.16)
In particular, this means 85 = Sfp~—° for some f; € Z. The entries S4v3+ S5v13p~" +vop~*
and Byvg + Bsv1ap~ " — p"° being integers says

Byusp® + Byviz +vop” =0 (mod p"*?), (3.17)
Bhoap® + BLorg —p* =0 (mod p" ). (3.18)
In particular we deduce
B5viz +vep” =0 (mod p*), (3.19)
Bivig —p* =0 (mod p*). (3.20)
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Then, vy times (3.17) minus v3p® times (3.16) gives
B (vav13 — v3p®) + v3p" =0 (mod p'**) = Biugz+ 03 =0 (mod p®).  (3.21)
Similarly, v times (3.17]) minus vs4 times (3.18]) gives

By (v3v14 — v4v13) — p" (v3p” 4+ vav4) =0 (mod p
= 5!-)7)34 = (vsp" + wvovy) (mod p®). (3.22)

r+5)

In summary, (% satisfies the following equations:

Byoig = —vap”  (mod p°), Brvia =p?  (mod p°),

Bivgs = —v5  (mod p®),  Bivss = vsp” + vy (mod p®).
As (p®,v13,v14, V23, v34) = 1, these equations determine 5 uniquely modulo 1.

So the Kloosterman sum is given by

my0g + nivy ma014 + Nav14
(o) = 3 (M) ()
v2,v3,v4(mod p”)
v13,1}14(m0d ps)
v13p" +vav14—v4p=0
(p",v2,v3,04)=1
(p®,v13,v14,023,034)=1
where 05 is chosen modulo p” such that
Oove = p° (mod p"), vouz=wv13 (mod p"), vovg =wv1g (mod p"); (3.23)
and 914 chosen modulo p® such that
d14v13 = —vop”  (mod p®), d14v14 =p*  (mod p¥), (3.24)
d14v03 = —v3  (mod p®),  D14v3s = v3p” +vavs  (mod p*).

3.1.2 Properties of Sp(4) Kloosterman sums

Proposition 3.2. Let n € N (Q,), such that w(n) = wy is the long Weyl element. Let 1,9’ be
characters of U(Q,) trivial on U(Zy). Then

Kl, (n,9,9") =Kl (n,9, ) .

Proof. By Proposition [3.1] it suffices to consider the case where

-D
_p/rfs
=T =
p577”
Let z = unu’ € X(n). Write
1 aq [(6%) Qs 1 51 62 ﬁB
1 o «o 1
u= 4 U @)\U@), o = B cu@) /U E,).
—Q] 1 —,31 1

67



Then

T S

agfB3p” + azBs5p® " — aip’”

S—Tr __ I—S

agp”  afip” + azp® a1B1p” T + anfep” + asfup®T —p~

- (14?" ayfbp” +7{15P5_r ayfBap” + a5ﬁ4pj_T + pip" ayfB3p” + 045557P D ca(Z,).
D B1p Bap Bsp

—ap”  —a1fip” +pT" —aqfBop” + Bap®" —aqB3p" + Bsp*T"

Now let
I 81 B2 —PBu 1 a1 o —oy
~ 1 _/63 65 ~/ 1 —o3 (6731
U= 1 , U= 1
—,31 1 —Q 1

Then we see that
7 = and’

Bop”  a1Bep” — Bup®" a1 B1p" T 4 anBop” + a3fap®" —pT" —auBep” — asPup®" — f1p°

| —B3p" —aufB3p” 4 Bsp® " —agf3p" — a3fsp’ " + ap” ayfB3p” + asPsp®" —p'* cG(z,)
- r T T 7 'P)*
p alp QP —0yp

=pp"  —aipip” +p°" —agf1p” — azp®" ayfBip” + asp®"

Therefore
Kl (n,9,¢') = Y @ (u(@) ¢ (v (z)) = o (W' (7)) ¢ (u(®))
zeX(n) z€X(n)
= > Y (@)Y (u(x) =Kl (n,9, ) . O
z€X(n)

We give a few reduction formulae for Kloosterman sums Kl (1.5, %, ¢'), when one of r, s equals
ZETO0.

Proposition 3.3. Let ¢ = ¥y, my, ¥’ = ¥n; n,- Then
Klp (nuwg,r0, ¥, ') = S (my,n1;p") s Kl (Ng,0,5, ¥, ¢') = S (ma, na; p°) .

Proof. For the first statement, we have by explicit construction

Kl (1w 0,9, %) = O <mm+mvz> |

r
v2,v3,v4(mod p") p
v13,v14(mod 1)
v13p" +v2v14—v4=0
(p"v2,03,04)=1

The condition vizp” + vov14 — v4 = 0 reduces to v4 = 0, and ve3 = —w3p~" being an integer
implies v3 = 0 (mod p"). Finally we solve 03 = 73 (mod p"). Hence the sum reduces to

mivg + n1v
Klp (Ruor0,,9) = Y e <12,,12) =S (m1,n1;p").
v2(mod p") P
(v2,p")=1

For the second statement, we have

ma014 + Nav14
/
Klp (nwo,O,s:¢a (0 ) = g € (ps .
v2,v3,v4(mod 1)
v13,v14(mod p*®)
v13+v2v14—v4p°=0
(p®,v13,v14,v23,v34)=1
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The condition v13 + vov14 — v4p° = 0 reduces to vi3 = 0. We also have v93 = v34 = 0. Finally
we solve 014 = 14 (mod p®). Hence the sum reduces to

maU14 + N2V
Klp (nw0,0787¢7¢/) = Z € < - 14ps : 14) = S(mQanQ;ps) . O
v14(mod p?®)
(v14,p%)=1

Proposition 3.4. Let ¢ = ¥, my, ¥’ = ¥y, n,. Then
Klp (nsa55sa,r,07 1% 7//) = Cpr (ml) 5 Klp (nslgsas;;,o,s; wa 1//) = Cps (m2) .

Proof. For the first statement, we have by explicit construction

m10g + nqv
Klp (nSQSQSQ,T’,Oa¢7wl|Usasﬁsa> = Z € <12'r'12> '
v2,v3,v4(mod p") p
va=vhp"
(v3,v4,p")=1

(p",v3+vhva)=p"

We may set v3 = 0. The condition (p”,vs + vhvs) = p” implies p” | v3, so we may also let v3 = 0.
Then we solve 09 = 71 (mod p"). Hence the sum reduces to

m1v4
Klp (nSQSBSQ,T,07¢7 /IZ)I|USQ855(!) = Z € (1> = Cpr (ml) :

T
va(mod p) P
(va,p)=1

For the second statement, we have

mal14 + Nav14
!/
Klp (nsﬁsasﬂ,0,57¢’w |U55Sa55> - Z ‘ <) '

ps
v13,V14,v23(mod p®)
(ps :U1S,U14)=ps
(ps 7U14)|’U%3
(p*v23,—p~* (vist+v14v23) ) =1

We may set v13 = v14 = 0. Then we solve 014 = —T23 (mod p®). Hence the sum reduces to
maU23
Klp (ns@SaSB,O,Sa ¢7w/|Usﬁsasﬁ) = Z € <— i > = Cps (mQ) : [
v23(mod p*)
(v23,p)=1

Proposition 3.5. Let ¢ = ¥, mys ¥’ = ¥ny n,- Then

Kly (Moassor0s 10,00, ) = (1), Klp (Rego0003¥lus,., ) = e (m2).

Proof. Trivial. O

3.2 Stratification of symplectic Kloosterman sums

In this section, we again consider symplectic Kloosterman sums on G = Sp(2r) in general, and
develop a stratification of Sp(2r) Kloosterman sums Kl,(n, 1, ¢').

We first recall some facts about the Lie algebra of G = Sp(2r). Let T be the standard maximal
torus of G, and let

-1 -1
t= (a1, - ,ar,a; -+ ,a, ) €T
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A set of simple roots A = A(T,G) of G is given by {ai,---,a,}, where a;t = ata,;ll for
1 <i<r—1,and a,t = a2. The Weyl group W = W (T, G) of G is generated by reflections s,,
for 1 <4 < r, which are represented by matrices

Ii 1

and

Consider the set of diagonal matrices

A .
T = {( cA_l) € GL(2r,Zy) ’ A = diag(ay,--- ,a,), a1, -+ ,ap,c€ Z;}.
Note that elements of T are in general not symplectic. We have the following simple lemma.

Lemma 3.6. Let n € N (Q,), and t € T. Then n"'tn € T.

Proof. We show that w'tw € T for w € W. It suffices to just check the generators s, of the
Weyl group. Suppose t = diag (al, cee G, cal_l, ‘e ,ca;l). Then we check
S;iltsai = dlag (ala Tty (41, Ayt ,ar,cafl, T ,CCL;'_ll, Ca;la T ,CCL;I) € Ta 1<i<r— ]-7
and
s;Tltsar = diag (al, e ap_1,capt cal_l, e ,car__ll, ar) eT.
Finally, for n = wa € N(Qy), with w € W, a € T(Q,), we have

1

n~Yn=a v Hwa =w Hw e T. O

Let # = unu’ € C(n), and t € 7. By Lemmal[3.6, s := n~'tn € 7. Hence
tes™ = (tut ') n (su/s™) € U (Qp) nU (Qp) NG (Z,) = C(n).
As conjugation by t and s preserves U (Zy) and U, (Z,), this induces an action on X (n):
T x X(n) = X(n), (t,x)—t*x:=trs '
Let n € N(Qp), and v, ¢’ characters of U(Q)) trivial on U(Z,). Partition of X (n) into T-orbits
gives a decomposition of Kloosterman sums
Ky, o) = 3 3 6 (u@) ' (@)
z€T\X (n) y€T *x

Characters of U(Q)) trivial on U(Z,) are of the form vy, .. ,, with n; € Z, 1 < i < 7,

r

where
1
Tpr—1 . * .
1 * *
Py Tr| = H e (nir;) .
1 i=1
—XI1 1

* —xr—1 1



For w e W, let Ay = {a € A | w(a) < 0}. For z € X, suppose

1 : : 1 :

: - ’ :
Tp_1 : * - Ty : >|</
u(z) = 1 * * T, ul(l_) _ 1 * * T,

)
1 1
—T1 1 756‘/1 1

¥ e o—xpp 1 x e o—xl 1

Note that 27 = 0 unless o; € A,,. For x = u(x)nu/(x), we define projections

ki(z) = w3, mi(z)=a;, 1<i<r

Let t = diag (a1, - Lap,capt, - ,ca;t) € T,and s :=n"ttn = diag(a], - - - ,ar,ca’l_l, e ,ca;ﬂl) €
T. Note from the proof of Lemma [3.6] that we have the same ¢. Then
1 alaglxl * * *
1
arfla;lxr1 *
tu(z)t™t = 1 >1k e * clax, ’
1
—ajay 1 1

* cee far,lar’lxr,l 1

and hence
ki (t* ) = a;a ;_11/@(37), 1<i<r-—1,

ki (t* x) = ¢ La2k, (x).

Similarly, we have

For ¢ € N, we define

A Ay
Ay (f) = (Z/pfz) x (Z/pfz) :
Ay X € (Z/p'Z)™ , such that 3t € T with

(2 ¥

V() = Ax N € Ay(0) | ri(t*x) = Aikii(), K5 (t * x) = Nkl ()
forz e X(n), 1 <i,j <7, a; €Ay

Note that |V;,(¢)| = (p* (1 —p~!))". For a character 6 : 4,,(¢) — C*, we define

> 6w

vEVy, ()

Now we state the main result of this section.

Theorem 3.7. Let n € N (Qp), and suppose / is large enough such that the matrix entries
of u(z),u/(x) lie in p~*Z,/Z, for every x € X(n). Let 1 = tp, .. n, and ¢/ = VYt o D
characters of U(Q)) trivial on U(Z,). Define a character 6, : A, (¢) — C* by

T

(A x X) He)\n,m ) I e (Ninjri(x)).

=1
w(a;)<0
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Then

-r

Kl, (n,1, 1) = (p‘f (1 —p*l)) Y N@)Sw (0::0),

z€T\X(n)
where DM(z) := |T * x| is the size of T-orbit of x € X (n).

Proof. Rewrite the Kloosterman sum

()= > > vl (W' (y))
z€T\X (n) yeT*x

= > > He(niﬂi(y)) 11

z€T\X (n) y€T *x i=1 =1

w(a;)<0
=Vo@I™ > Y > [eGunimily) e (Ainiri(y))
z€T\X (n) y€T *x AX N €V, (£) i=1 w(z;)1<0
=Vu(@I™ Y M) Y [eumiri(y) e (Aimiri(y))
z€T\X (n) AXN €V, (£) i=1 w(ia:<)1<0
(=) Y @) (6a30). =

zeT\X(n)

3.3 Bounds for local Kloosterman sums

A trivial bound for Kloosterman sums is given by Dabrowski and Reeder [DR98| Theorem 0.3],
by counting the number of terms. In our context, the trivial bound says

‘Klp(nlU,'I‘,w 1/)7 wl)} S pr+s.

In this section, we establish non-trivial bounds for the Kloosterman sums K1, (1, s, %, 1’), for
fixed characters ¢ = ¥, my» ¥ = VYny ny of U(Qy)/U(Zy).
We first recall from Section that Kl,,(niq,,’) = 1 is trivial, and

Klp(nSa,Ta @Z), ¢/) = S(mla nl;pr)v

Klp(ns/g,sa P, d}/) = S(mg, n2; ps)

are just classical Kloosterman sums. It is well-known that the classical Kloosterman sums are
bounded by [Wei4§], [Smi80]

S, p)| < 22 (ml, Il ), (3:25)

where |m| p stands for the p-adic norm of m. We immediately obtain the bounds

KL (rgo s, 0) | << 72 (a0 a5 p7) 2,
’Klp (nsg,sv @Z% 71/)\ < p8/2(|m2|;1 ) ’n2|;1 7p8)1/2‘

For Kloosterman sums Kl,(n, s, %, ¢') attached to other Weyl elements, we apply Theorem
and decompose the Kloosterman sum into sums of classical Kloosterman sums. Then one may
apply the bound (3.25)) for classical Kloosterman sums. However, applying the classical bound
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alone is in general insufficient to give a non-trivial bound for Kl,(ny. s, %,%'). To obtain non-
trivial bounds, we use two different approaches. Note that Kl,(n, s, 1, 1’) is in general an

exponential sum of the form
f (x)>
E e
( p*

z€eS

for some k € N. The approach we use then depends on the value of &:
(i) when k > 2, we use the p-adic stationary phase method [DF97];

(ii) when k = 1, the stationary phase method fails, and we instead apply known results for
exponential sums, which are derived using algebro-geometric arguments.

We now give an overview of the p-adic stationary phase method, following [DF97|. Let us first
consider a simple case. Let f be a polynomial with coefficients in Z. For m € N we consider the

exponential sum
Sm(f)i= > e <m> :

m
z€ZL/p™L p

Consider the Taylor expansion of f

F@+ 9™ Iy) = f(@) + 0 @)y + oD @)

2
If 2(m —j) >m (or 2(m — j) — 1 > m if p = 2), then we see that
r+p"y)
Sap=r 3 oS
T€EL/pm L yeL/PIT
/
_ Z €<f(,i))‘p_j Z <f()>
€Z/p™Z p P’
*€Z/p YEL/PIZ

The inner sum vanishes unless f/(z) =0 (mod p’), hence the sum becomes

z€L/P™L
f'(@)=0 (mod p?)

This generalises easily to higher-dimensional cases. Let V' be a smooth scheme of dimension n,
and f:V — Al = A%p a Zyp-morphism. We consider the exponential sum

f ($)>
S =S,.(f) = EASI Y 3.26
n= ¥ (D (3.26)
z€V(Z/p™Z)

Let 7 < m be a positive integer. We write

D(Z/pZ) = {x € V(Z/P'Z) | Vf(z) =0 (mod p’)} (3.27)
to denote the “approximate critical points” of f. For T € (Z/p'Z)", we define

S = Z e (f(z)) '
p

z€V(Z/p™ZL)
z=z(mod p7?)

S= > S

TE(LZ/pIL)"

Clearly we have
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Theorem 3.8. [DF97, Theorem 1.8(a)] If 2 < m, then Sz = 0 unless T € D(Z/p’Z). Now
suppose m = 2j or 2j + 1, and let z € (Z/p™Z)" map to T € D(Z/p'Z). If m = 2j, then we

have
Sz = pm”/Qe <f(3:)> .
pm
If m =25 4+ 1, then we have

S = plm=1n/2, <f(37)> Z . (%yTny +p IV f(z)- y> |
ye "

.
b (Z/pZ p

where H, is the Hessian matrix of f at x. In particular, if we let ¢ denote the maximum value

of n — rankg, Hy for T € D(Z/p’Z), then |S| < |D(Z/pZ)| ptmnt/2.

Proof. We give a proof to the special case where V' = A" is the affine space. Then f is a
polynomial with coefficients in Z,. The general case follows from a reduction lemma [DF97,
Lemma 1.18], which reduces the general case into this special case.

Consider the Taylor expansion of f
iy s 1 s
fla+p™Ty) = f(a) +p" V(@) y+ op "y Hay +
Since 25 < m, we have

fla+p"y) = f(x)+p™ IV f(z) -y € Z/p"L.

This is obvious when p is odd, and when p = 2, the diagonal entries of the Hessian H, are even,
so the second-order term vanishes as well. Hence

o flz+ p(mfj)y)
(s
z€(Z/pmL)" ye(Z/pIL)" b
z=Z(mod p7)

- e(!’;ij)).p—nj 5 e(W/)_

: j2
z€(Z/p"Z)" ye(Z/pIZ)™
z=Z(mod p’)

The inner sum vanishes unless Vf(x) = 0 (mod p)/, that is, T € D(Z/p’Z). Assuming this is

the case, we continue '
fla+p y))
Sg = ETPY)
=y (M
ye(Z/pm—IL)"
If m = 2j, then f(z +piy) = f(x) + PV f(2) -y = f(z) € Z/p™Z, s0

Sz = p™2e (ﬂx)) .

M

If m =25 + 1, then we have

fla+py) = f(z)+ V() y+ %p”yTny € Z/p™ L.

o= (12 (Y ey + PV () -y
s=(5) 2, )

m m
P (@ /pm-iT)n P

_ pm—1n/2, <f(fﬂ)> 3 e(%?JTnyﬂLp‘ij(w)-y).
p" e n P

(z/pZ

Hence
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Finally, we observe that the inner sum is an n-dimensional Gaufs sum, and it follows from
straightforward computations that the Gauk sum is bounded by p" "% =/2 The bound for
S then follows. ]

Theorem 3.9. Let 0 < s < r be integers, and ¢ = Y, my, ¥ = Un, n, characters of
U(Qp)/U(Zp). Then

/ : 2s -1  r—s T -1 s 1/2 -1 s 1/2
KLy (Msqsgrs,,9")| < min < p (Iml\p P ),p (Imz\p ,p) (Inzlp ,p) :

Proof. We may assume v,(m1) < r — s, and vp(ma), vp(n2) < s. Observe that
Klp (nSaSB,T‘,S7 wml,mm ¢n1,n2) = pk+2l Klp (nSQSﬂ ,r—k—l,s—lwmlpfhmﬂfl , wnl,ngp*l)
whenever p¥ | (my1,p" %) and p! | (m2, n2,p®). So we may assume s = 0, r = s, or p { mq (ma, n2).
miv3
> (e

vg(mod p")
(v3,p")=1

If s =0, then

< pvp(ml).

‘Klp (nsasﬁ,r,(b 1/}7 wl) ‘ =

If r = s, then

’Klp (nsa55,r,rv 1, Q;Z)/) ’ =

=2
mov4v nav vp(mg) | vp(ng)
Z Z 6( 2U4V3 + 24>‘§pr+1722+pzz

p’f‘
va(mod p”) vz(mod p7)
(va,p")=1

is just a summation of quadratic Gauss sums, and is easily evaluated.

Now suppose p { mi (me,ng2). If p | mg and s > 1, then

ol 2+ "k s—1
Kl, (nsa55,r,s7w7¢/) = Z Z Z (m1v3> <m21)41)3 ngps(’04 P ))

v} (mod p*~1) v3(mod p")
(vj,p)=1 (v3,p" %)= 1

k
= pZe (TL; ) Kl (nsas&rfl,sflvwml,mg/pvwl) = 0.

k=0

If p | mg and s = 1, the same argument shows that the sum is either 0 or p. Similarly, if p | ng,
the sum is also either 0 or p. So we may assume p { mymans.

If » > 25, we write r = 2s + [, for [ > 0. Then
Klp (nsasB 25+1,85 P, 1/)/)

9+l 1 -1 1
> Z pE: <m1 vl + kps L) + plmovg (v 4 kps 12 +p’nzv4>

- s+l
va(mod p®) wi=0 k= p
(’U4,p) 1 (’U3 7p) 1

where k (mod p) is chosen such that (v} + kp*+H=1)(vj + kp*T=1) = 1 (mod p**!). Then the
sum becomes

! myvh + plmatizvy” + plnavy = (mik
/
Klp (nsasﬁ,Qs-&—l,s» (Ol ) = Z Z € ps+l Z € ( > 0.

va(mod p®)  v4=0 k=0
(va,p)=1  (vj,p)=1
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If r < 2s, we write r = 2s — [, for 0 <[ < s. Then

D D T Ly
P Sasp,25—L,8y ¥ =

ps
va(mod p*) v (mod 1)
(va,p)=1 (v3,p)=1

[Jg— — 2
1 P'M1U3 + MoU4v3 + Ny
Y X )

pS
va(mod p*) vz(mod p?)
(va,p)=1  (v3,p)=1

When p is odd, we apply the same argument and see that

sllpl

- my (v + kp*=1) + movg (v 4 kp*~1)% + now
Kl (Rsysp2st:0,0) =" > Z Se (P 1(vh + kp*™ 1) + movg (v + kp*!) 24

ps
vg(mod p®) wvi=0 k=0
(va,p)=1 (vé ,p)=1

psl -1 1 7 — 12 p—1 —
_ P M1Vs + MoU4V;~ + N4 2moUgvak
— pst Z Z ( 3 3 ) e( 3% .
0

S
v4(mod p®) v4=0 p ke p
(va,p)=1 (v},p)=1

When p = 2, if we further assume [ > 2, then we have

ps~2-1 p2—1 — (! 5—2)\2
. plma (v + kp~?) + mata(v + kp*~*)* + nyvs
Klp (nsasﬂ,stl,saqﬁa ¢,) = ps ! Z Z Z ( s ’
va(mod p*) wy=0 k= !

(va,p)=1 (v} p) 1

where now & (mod p?) is chosen such that (v + kp*™=2)(vh + kp*™=2) = 1 (mod p**!). Then
the sum becomes

, sl 2 plmlg + m2ﬁv§)2 + novy -l 2movgvhk
Klp (n8a55,287l,6‘7 (0 ) =D E § p E € =0.
k=0

s 2
vg(mod p®) v=0 p p
(vap)=1" (vhp)=1

Therefore, it remains to consider the case r = 2s, and, if p = 2, the case r = 2s — 1.
Now suppose 7 = 2s. When s = 1, we have

Klp (Nsgss21,0,0) =p Y > e(m1%+m2v4“§+mm>
as8,2,10 ¥ .

vg(mod p) vz(mod p) p
(va,p)=1 (v3,p)=1

When p = 2, there is nothing to prove. When p is odd, this exponential sum is estimated by
Adolphson and Sperber [AS89, Corollary 4.3| to be of O(p?) as well. So we conclude that

’Klp (”sasg,zlﬂ/wbl)} < p2.
So the theorem holds for this case.

If s > 1, we apply the stationary phase method. Let f(z,y) = = + m2Tz2 + noy. Consider the

o f(z,y)
z,y —
S = Z € (ps> =p s Klp (nsa35,23,5>w7 @Z/) .
z,ye(Z/p°ZL)*
Let j > 1 be such that 2j < s. Define as in ([3.27))

D (2/p'Z) = {(v.y) € (2/V'2)" x (2/p'2)"
~{ww e @z = @)

(z,y) =0 (mod p])}

2max3 = myy (mod p),
max? = ngy?  (mod p’) '
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It is straightforward to check that ‘D (Z/p]Z)‘ < 4, and H,, is invertible over F, for all
(z,y) € D (Z/p7Z), so ranky, H;, = 2. So we deduce from Theorem that

|K1p (nsasﬁﬂ',éh Y, W)‘ < 4p*s.

Now suppose p = 2, and r = 2s — 1. It suffices to prove the boundeor sufficiently large s, so we
can always use stationary phase method. Let f(z,y) = 22 + "2 + ngy. Consider the sum

S = Z e (f($, y)> = pierl Klp(nsaSﬂ,28—1,87 ¢7 W)

S
(TP T)x b

Let 7 > 1 be such that 25 < s. Define as in
D (z/p'Z) = {(v.y) € (Z/V'E)" x (2/p'2)"
~{wn e @) < @)

Vi(z,y)=0 (mod p7)}

2maex® = 2my1y  (mod p?),
mox? = ngy?  (mod p7) ’

Then we have ‘D (z/p? Z)} < 16. The Hessian H, , is not invertible, but nevertheless we have
from Theorem B.8 that

Kl (Mo 261,680, 0) | < 64p™ 7
This finishes the proof of the theorem. O

Theorem 3.10. Let 0 < 2r < s be integers, and ¥ = ¥, mo, ) = Yn, mo characters of
U(Qp)/U(Zp). Then

}Klp (nSﬁSa,T‘,S7 ¢7¢/)‘ < min {p?)r <‘m2’;1 7ps—27“> 7ps <‘m1’;1 y ‘n1’;1 7pr>} .

Remark. Up to multiplication by a constant, this Kloosterman sum can also be considered as a
GL(3) Kloosterman sum. Precisely, following the notation in [BEFG88| (4.3)], we have

Klp (nsgsa,T,S’ Y, 71[},) =p'S (nla my, mQ;pr,ps—T) .

A non-trivial bound for Kl, (”85 samyss Uy U ) then follows from Larsen [BFGS88, Appendix|. For
sake of completeness, we still give a proof below.

Proof. We may assume that v,(m2) < s — 2r, and v,(m1),vp(n1) < r. Observe that

3k+1
Klp (nSﬁSa,T‘,S7 wml,mmwnhng) =Dp + Klp (nsgsaﬂ’fk,872k717 ¢m1p—k,m2p—ly¢n1p—k,n2)

5721").

whenever p¥ | (mq1,n1,p") and p' | (ma,p So we may assume r = 0, s = 2r, or p {

ma(mi,ni).

If r =0, then
K (prantd) [ = Y ("2 ' < pintma)
s p
v34(mod p%)
(v34,p®)=1
If s = 2r, then

< p2r+min{vp(m1),vp(n1)}.

‘Klp (nsﬁsa,r,2T7 w7 7/},) | =

Z Z . (mﬂmvggrﬁ- n1v24)

v24(mod p") vga(mod p27)
(v24,p")=1
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Now suppose p f ma(mi,n1). If p | m; and r > 1, then

p—1 v ! -1 e
myvh,v34 + ni(vy, + kp” MoU34
Klp(nsﬁsa,h& 1/}7 W) = Z Z Z ( 2 1( “ )> € <ps—27” )

pr
vh,(mod p™~1) wza(mod p°) k
(vé47p):1 (v3a,p°~2")=1

k:

If p | m; and r = 1, the same argument shows that the sum is either 0 or p. Similarly, if p | nq,
the sum is also either 0 or p. So we may assume p { miman;.

If s > 3r, we write s = 3r + [, for [ > 0. Then

Klp (nsﬁsa,r,?ﬂ‘-l—la ¢ QJZ),)

r+l 1 1p 1 _ - 7 _
o plmavag (vgy + Ep™ 1) + plnjvgg + ma(vh,y + Epr+i=1)
oy 'y S ,
va4(mod p”) wvh,=0 k=0

(v24,p)=1 (v},,p)=1

where k (mod p) is chosen such that (v}, + kp™=1)(vh, + kp™=1) =1 (mod p"*'). Then the
sum becomes

2 PR pimamaivh, + pravs +madl, | B2 Smgk
Klp (nsgsa,r,3T+la w, W) =P " Z Z pr+l 3 Z e ( > 0.

v24(mod p”)  wvh,=0 k=0 k=0
(v24,p)=1 (v},,p)=1

If s < 3r, we write s = 3r — [, for 0 < [ < r. We apply the same argument, and obtain

rllpl

- ml'U24 Vhy + kp + nqvoy +plm2 quL kpr71
Klp (nsﬁsa,r,Brfla ¢a W) = p% t Z Z Z ( 34 ) ( 34 )

pr
v24(mod p") vh,=0 k=0
(v2a,p)=1 (vg4,p):1

pri-1 — 1 7 p—1
_ L 2r— M10V24vV34 + N1V24 + P'Movsy
=P -
p k

v24(mod p") v3470
(v24,p)=1 (v},,p)=1

So it remains to consider the case s = 3r. When r = 1, we have

Kl (n s ?/”/1/)_]?2 Z Z 6<m111241)34+n1v24+m2v34>
D 58Sa,1,37 ¥ - .

v24(mod p) vz4(mod p) P
(v24,p)=1 (v34,p)=1

Let © = mqU24v34, ¥y = nivoy4, and z = mav3g. After this change of variables, the sum becomes

rT+y+=z
o e <> :
z,y,2€Fp p
TYZ=mamini

which is known as a generalised Kloosterman sum in the sense of Deligne [Del77]. By a theorem
of Deligne [Del77, Sommes. trig., 7.1.3], this sum is bounded by 3p3. So the theorem holds for
this case.

For r > 1, we apply the stationary phase method. Let f(z,y) = =¥ 4+ nix + % Consider the

sum
S = Z e (M> = p72r Klp (77’858@,7‘,37”7 1, wl) .

’
oy (ZlpT)" P
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Let 7 > 1 be such that 25 < r. Define as in
D (Z/p'Z) = {(:c,y) € (Z/PZ)" x (2)pT)" ‘ Vi(z,y)=0 (mod pj)}
—{(:L‘,y)G(Z/ij)XX(Z/ij)X miy =niz?  (mod p?), }

myy? = mex  (mod p’)

We have |D(Z/p’Z)| < 3. The Hessian H,, is invertible unless p = 3. So we conclude from
Theorem 3.8 that

‘Klp(nSBSa,r,?)r, Y, ¢/)‘ < p3r'
This finishes the proof of the theorem. 0

Theorem 3.11. Let 0 < s < 2r be integers, and ¥ = Yy my, ¥ = Yn, ., characters of
U(Qp)/U(Zp). Then

p5T 5 +5min{vp(ma)+svp(ny)+r}+50p(m2) if s <7

’Klp (nSQSﬁSa,T,Sa 0, 77Z}/)l < pr+min{vp(m2),7’+vp(n1)} + pr-i-min{%—O—vp(ml),r—%—l—vp(nl)} if r<s<2r,
pr—l—min{vp(mz),r-l—vp(nl)} if s =2r.

Proof. We make use of the stratification of Kloosterman sums in Section For w = 84585,
we have A,, = {a}. Hence, for ¢ € N, we have

Aw(l) = (Z/p'Z)? x (Z/p"Z).

Let ¢t = diag (al, as, cafl, cagl) € 7. Then s := n~'tn = diag (cafl, az,ay, cagl). We compute

1

Ky (t* 2) = caltay 'K (2).

o / Ala)\%)‘/l S (Z/pZZ)Xa
Vw(é)—{/\x)\ eAw(E)‘ L .

Let 6 : Ay (¢) — C* be a character given by

9()\ o )\,) . (nl)\l +n2)\2> . (nll)\ll)
p* P’

for ni,ne,n} € Z, then

Sw(8,0) = Z e (n;?@) S(nihg,nh;pb). (3.28)

X2 E€(Z/p*7)

Let n = Ng,s550,ms- In terms of Pliicker coordinates (see Section [2.2.4), this says v; = p" and
v14 = p°. Suppose %, € X(n) has coordinates

(v1,v2,v3,v43014) = (", p" "% v3,p" Vs p°).

Let 0/ = (p"~% p*vs + p" ). Then vyy = p"+t%/§. This says s —r < a < s/2, b < r, and
§' = p" %%, From Bruhat decomposition, we have

—a -b

L p=® wp™" p
o (a2 = Lo (mod U(Z,)).



Let X' (n) =T xx.3, and define

Seyy () = ) W (u(@) ¥ (W'(2)).

zGXZ?b(n)
We also set
Xa,b(n) = U Xs?b(n)v
vz (mod p")
(prfa7an3+p7'7b):pT'+afs
and

Sap (0, 0) = D Y (u(@) ¢ (v (2)).

€Xq p(n)

It is easy to see that

X)= JI Xas(n).
s—r<a<s/2
0<b<r

Asr >s/2>a, r > b, we see that u(x),u'(z) have entries in p=2"Z,/Z, for all x € X(n). Let
Sqp be a finite subset of Z, such that

Xa,b(n) = H X:?b(n)
v3€Sa,b
By Theorem [3.7], we have
_ 1y -2
Sap (b, ) =p™" (1=p )" > ‘X;’?b(n)‘ Se (egfb;m) :
v3€Sab

where

a0 = () (i )
) ps pT

with 09 and u given as in (3.6) and (3.7)). By (3.28]), we have
)= X () (memen)

s r
Y€ (Z/p*L)* P P

and we easily deduce that

2 ‘Xﬁi(n)‘ < [Saplp™P < prrer, (3.30)
v3E€Sqp

We estimate the size of S, (9;’31); 2r) below. We start by computing v,(02) and vp(u). From
(3.6), it is clear that vy(92) = s —a. Now we consider v,(u). If a # s/2, then we have (after

putting vy = v} = 1)
u = pa—i-r—s (—pa’U3 + ’U4) + WU?Q)pQG
— P (s + va) — 20apP T 4 Vig2p?e
— PRIyl gy 2atr—s | T2 %
= P2V (P22 9 SV o)
_ anW (pr—svl . v3)2
= p? V7 (p~"us)”
_ 27
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So vp(u) = 2 (r —b). If a = 5/2, then (again we set vj = v} = 1)

U= — vgpQ“JrT*S + uypttTTS = potr s (204 — (pPvsg + v4)) . (3.31)

These expressions will be useful in computing v,(u), when more conditions are given.

Case I: Suppose s < r. We deduce from (3.6]) that v,(v3) = 0,v,(v4) = a, so only terms with
r = a + b contribute. When a # s/2, we have v,(u) = 2 (r —b) = 2a. When a = s/2, we can
still take vp(u) = s = 2a. So vy(u) = 2a always holds.

(1)

(i)

Suppose a < ZST_T Write u = p?®u’. Let
t = min {v,(m2), vp(m1) + 2s —r — 3a, v,(n1) + s — 3a},

and
maep® " 20 n n1p8_3“> , miz n}

y x

,mh = mau'p~t, n) = nlps_?’“_t. Consider the sum

fla,y)=p~" <m2U’y +

where m) = mqigp® 207!

S — Z e (;(_9[727G?J_)t> _ prs—da—tr-2tg <92?b; 2r) .

x,y€(Z/ps—2e-tZ)*

When s —2a —t > 1, let j > 1 be such that 2j < s — 2a — ¢t. Define as in
D (2/p'Z) = {(z.y) € (Z/P'2)" x (Z/p'L)" | Vf(z.9) =0 (mod p))}
z{(x,y)e(Z/ij)Xx(Z/ij)X mix? =nly (mod p’), }

mhy? = mix  (mod p/)

Note that at least one of m}, m} and n} is not divisible by p. It then follows that D (Z/p’Z)
is empty unless vy(ma) = vp(m1) + 2s —r — 3a = vp(n1) + s — 3a. Then this reduces to
the situation seen in the proof of Theorem [3.10, and we obtain a bound

‘Sw (egfb; 27«)‘ < plrH2a=stt (3.32)

Now suppose s —2a—t = 1. If p t m{min/, then it again follows by the theorem of Deligne
[Del77, Sommes. trig., 7.1.3] that S < p. When p divides some (but not all) of m/, mj,
n}, then the sum reduces to a Ramanujan sum, and is easily evaluated that S < p as well.
So the bound also holds for this case.

The bounds for Sy, (9231); 27") in other cases are obtained analogously, and we shall omit
the repetitive computations thereafter.

Suppose a > 2. Write 9 = p*~905. Let
t = min {v,(m2) + 7+ 3a — 2s,v,(m1), vp(n1) + 1 — s},

and ,

my v N nip" mix  n}

—S

, n) =n1p" 5"t Then we have

flz,y)=p~" <mzupr+“_28y +

where m)d4p~t, mly = moup"Te=271

S = Z e <p;i(_fﬂ_gzt> _ p2a72r72572tsw <92?b; 27”) )

T Y€ (L/prtamsTtL)x

Then we obtain analogously

‘Sw (Hgi‘b; 2T) ‘ < pProatstt,
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Recall that we have ¢’ = (p" =%, p® (v3 + 1)) = p"T* 5. A necessary condition for this to hold is
that p"=% | v3 + 1. So [Sap| < p®. So, from (3.30) we actually have

Z )ngb(n)‘ < potatd

'U3€Sa75

Hence

KL (nw, )| < D [Sap (v, 0)]

0<a<s/2
b=r—a

< Y phprtetts, <02f"b;2?“>
0<a<s/2
b=r—a

< Z min {pT+2a+”p(m2) , pS*a+min{5+vp(m1),r+vp(n1)}}
0<a<s/2
< pg-l—%s—l—% min{vp(m1)+s,vp(n1)+r}+%vp(m2)‘

Case II: Suppose s = r. We deduce from (3.6]) that when a # 0, then v,(v3) = 0,v,(v4) > a. So,
only terms with > a + b contribute. When a # s/2, we have v,(u) = 2 (r —b). When a = 5/2,
we can still take v,(u) = s =2(r —b). So v,(u) =2 (r — b) always holds. We compute

1w (822520 )| < p2 min {2 (ma) p2r-atminoy (m)p(n}

a,b’
Hence

Kl (n, 0, ¢") [ < D [Sap (n,9,¢))]
0<a<r/2
b<r—a

< Z p74rpr+a+b (p2r min {p3r72b+vp(m2),p2r7a+min{vp(m1),vp(n1)} })

0<a<s/2
b<r—a

< Z p—r+a+b min {p3r—2b+vp (m2) , p2r—a+min{vp (m1),vp (nl)}}

0<a<s/2
b<r—a

< p%+% min{vp(ml),vp(nl)}—Q—%Up(mg) .

Case III: 2r > s > r. We consider the following subcases:

(a) Suppose a = s—7. Then the condition (pr_a,p“vg —i—pr_b) = 1 implies b = r. So vy(u) = 0.
We deduce from (3.6) that 03 = 0. So

‘S’w (92%; 2r> ‘ < p?”’_S min {pr+vp(m2),p2r+vp("1)} )

(b) Suppose s —r < a < s/2. Then we deduce from (3.6 that v,(vs) = 0, vp(va) > a. So
a+ b < r. Meanwhile, as r + a — s < a, the condition (pr_“,pavg +p7"_b) = p't%7% says
r—b=r4+a—s, which implies a +b = s > r, a contradiction. So there is no contribution

from this case.

(c) Suppose a = s/2. Again, we deduce from ({3.6]) that v,(vs3) = 0, vp(v4) > a. So, only terms
with r > a + b contribute. In this case, we do not have a good bound for v,(u). So

‘Sw (91}3 .27,)‘ < p3r+min{%—}—vp(ml),r—%—kvp(nl)}.

a,b’
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Hence

KLy (n, v, ¢") [ < > [Sap (n,90,9)]
s—r<a<s/2
b<r—a

< Z P —4r r+a+b <p37'73 min {pr+vp(m2)’p2r+vp(n1)})

(IS’I’

+ Z P —4r r+a+b (p3r+min{§+vp(m1),r—%—l—vp(nl)})

a=s/2
b<r—s/2

< pr+min{vp(m2),r+vp(n1)} +pr+min{%—I—Up(ml),r—%—l—vp(nl)}'

—b

Case IV: s = 2r. In this case, we have a = r, and vs,vy = p"~” is arbitrary. We deduce from

(3.6) that 0o = 0. We consider the following subcases:

(a) Suppose b =0. We may assume vq = 0. Then v,(u) = r + v,(v3). We compute

’S < v )‘ < p’ min {p2r+vp(U3)+up(m2)7p2r+up(n1)}.

Fix ¢ <r. Then
[{vs € Sap [ vp(vs) = c}[ <p"“

(b) Suppose b > 0. Then v,(u) = r —b. We compute

‘Sw (05%; 27_) ‘ < pr min {pQT—b—i-vp(mg)’pZT—l—vp(nﬂ} )

Hence

KL, (n,0,0")] < 3 [Sas (n,0,9)]

a=r/2
b<r

< Z p —4r r cta+b (pr min {p2r+c+vp(m2)7p2r+vp(n1)})

a=r/2
b=0
c<r

+ Z p —4r r+a+b <pr min {p2rfb+vp(m2)’p2r+vp(n1)})
a=r/2
b>0
< pr+min{vp(m2),r+vp(n1)}'
This finishes the proof of the theorem. O

Theorem 3.12. Let 0 < r < s be integers, and ¢ = ¥, my, ¥ = ¥n, n, characters of
U(Qp)/U(Zp). Then

p2+ +2vp(m1)+3 min{2r+vp(ma2),s+vp(n2)} if r < 8/2,

’Klp (nsﬂsasﬁ Ts,q/;,@b'” <L {pz 5+30p(m1)+5 min{2r+vp(ma),stop(n2)} 5 s/2<r<s,
ps+min{vp(m1),vp(n2)}_ ifr =s.

Proof. We make use of the stratification of Kloosterman sums in Section [3.2} For w = sgsasg,
we have A,, = {8}. Hence, for ¢ € N, we have

Aw (6) = (Z/p’fz)2 X (Z/p‘fz) .
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Let t = diag (al, as, cal_l, cagl) € 7. Then s = n~'tn = diag (ca;I, cal_l, a9, al). We compute
Kh(t * ) = caj *kh(x).
A, Ao, Ny € (2/p'2)"
V() =3 A x XN € Ay, (¢ 1 225 72 B
© { A e ()‘ A2AoNy = 1
Let 0 : Ay (¢) — C* be a character given by

A A oV
00 x) o (Y (1)

p p

for ny,ne,n, € Z, then

Su(0,0)= Y e (”;?1> S (ngA;Q,n’z;p‘) . (3.33)
ne(z/ptz)”

Let n = ngys,s5ms- In terms of Pliicker coordinates (see Section [2.2.4)), this says vy = p”, and
v12 = p°. Suppose % € X (n) has coordinates

—a _s—b
(vi2,v13, V14, V23) = (Ps,ps “p° ,1123> .

The condition (vi2,v14) | v35 says s—b < 2 (s — a), that is, 2a—b < s. We also have max {a, b} =
r. From Bruhat decomposition, we have

o (2%) = Lor® » (mod U (Z,)).

Let X3 (n) =T =z, and define
Sex ()= Y W (u@)y (W (x)).

IEX:?I? (n)

We also set
Xap(n) = 11 X3 (n),
v23  (mod p®)
(P77 va3,p~ Puag—p* 29 )=1

and
Sap (0, 0) = D v (ul@) ¢ (v ().

x€Xqp(n)

It is easy to see that

X(n) = H Xa,b(n)‘
0<a,b<r
max{a,b}=r
2a—b<s

It is clear that u(z), v/ (x) have entries in p~*Z,/Z, for all x € X (n). Let S, be a finite subset
of Z,, such that

Xap() = ] X2(n).

v23€8S4 b
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By Theorem [3.7, we have

San (mow, ) =p 2 (1—p7H) 7" Y ‘X;’?ﬁ(n)’ Sw (92?5; S) ,

v23€Sq,b

where

~ s—b
L e e |
) pT‘ ps

with 014 and w given as in (3.13) and (3.14). By (3.33]), we have

- P s s—b
o) X () (mir Y

T S
x,ye(Z/p°Z)* P b

and we easily deduce that

> ‘X;}?bg (”)‘ < |Sap|p™ < pte (3.35)

v23€Sq.b

We estimate the size of Sy, (9;’25; s). We start by computing v, (914) and vp(u) in (3.34). From
(3.13)), we see that

up””* = w93 (mod p"), up” " = —p®* (mod p"). (3.36)
So, if a = r, then w = ve3 (mod p"), and if b = r, then u = —p*~® (mod p"). (Recall that
max {a,b} = r.) Also, we know that

g3 = —p*20Tb 4 gpb (3.37)

for some 3 € Z such that (6,p5_2T+b) =1 (see Section [2.2.4). Meanwhile, from (3.14)), we see
that unless r = s, we have v, (014) = 2r — b.

Case I: Suppose r < s/2. We deduce from (3.37) that v,(ve3) = b. From (3.36), we deduce
a > b. So we actually have a = r, and then vy(u) = b.

(i) Suppose b < 3=£. Write u = p®u/. Let
t = min {v,(m1), vp(m2) + 3r — 2b — s, v,(n2) + 1 — 2b}

and

/ 2

my

T—b—st
+ n2pT2by> =—
X

miu N mot14p mhax

Z Y

_l’_

+ nhy,

Fo,y) = p (

r—b—s—t ../
)

where m/| = myu'p™t, mb = mad14p nly = ngp” 2=t Consider the sum

S — Z e <££T;Z_/Z> — p27"—25—2b—2tsw (0;)725’ S) )

x,y€(Z/pr—0=tZ)*

When r —b—1t > 1, let j > 1 be such that 2j < r — b — t. Define as in (3.27)

D(Z/Y'Z) ={(x.y) € @YD) x @YD" | Vi@.y) =0 (mod p)}
_{<337y) e (Z/ij)X < (Z/ij)X 2m’2$35m’1y (mod p’) }

mhr? = nhy?  (mod p’)
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(ii) Suppose b >

Note that at least one of m/}, m/, and n), is not divisible by p. It then follows that when p
is odd, D(Z/p’Z) is empty unless v,(m1) = vy(mz) + 3r — 2b — s = vy(ng) +r — 2b. Then
this reduces to the situation seen in the proof of Theorem (see the case r = 2s). When
p =2, D(Z/P’Z) is empty unless v,(m1) — 1 = vy(ma) + 3r — 2b — 5 = vy(na) + 7 — 2b.
This is also dealt with in the proof of Theorem (see the case r = 2s — 1). In either
case, we obtain a bound

[Su (617535) | < p e, (3.38)

Now suppose r — b —t = 1. If p ¥ mimin/, then it again follows from the argument in the
proof of Theorem [3.9|that |S| < p. When p divides some (but not all) of m/, m,,n}, then
the sum reduces to Gaufs sums or Ramanujan sums, and is easily evaluated that |S| < p
as well. So the bound also holds for this case.

The bounds for Sy, (0225’; s) in other cases are obtained analogously, and we shall omit the

repetitive computations thereafter.

3T . Write 914 = p* %% ,. Let

t = min {v,(m1) + s+ 2b — 3r,vp(m2), vp(n2) + s — 21},

and
+b—3r A2 ! ! 2
_; [ miup? Mol 4T _ m x
t 14 s—2r 1 2 /
fla,y) = < + +nop y> =—+ +nay,
x x
where m) = myup® 073t mb = mad},pt, nb = nap®* "2 ~t. Then we have

o R () s ).

z,y€E (Z/ps+b*27'*tZ) X

Then we obtain analogously

Su (8:7555) | < prrott,

Hence

K1, (n, ¥, ¢)| < Z |Sap (n, 1, 0)]

O<b<r
V23 .
(9(1 b )

< Z p —2s s+a
< Z p —2s s+a< ST min {ps—&—b—l-vp(ml)’pr—b+min{2r+vp(m2),s+vp(n2)}})

O<b<r
0<b<r

< pg—l-%—l—% min{2r+vp(mz),s—i-vp(nQ)}—&—%vp(ml) .

Case II: Suppose r = s/2. We consider the following subcases:

(a) Suppose b =r. From (3.36), we may assume u = 0. We compute
)Sw (9”2; )‘ < p-Hmin{o,(m2),op(na)}
a,b’ .
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(b) Suppose b < . Then a = r. From (3.37), we see that vo3 = (8 — 1) p® for some 3 € 7Z
such that (3,p") = 1. So vp(vag) > b. And from (B.36), we deduce that vy(u) = v,(va3).
We compute

’ S (9@23 >’<< p*/2 min {ps+vp(v23>+vp(m1) ps —brmin{up(ms), vp<n2>}}

a,b’

Fix ¢ > b. Then
[{v2s € Sap | vp(vas) = c}| < p°°.
Hence

Kl ()| < D0 [Sap (.0, 0)]

a,b<r
max{a,b}=r

< p —2s s+a< +min{vp(m2)7vp(”2)})

a<

+ Z p—2$ s—cta+b <ps/2 min {ps+vp(1)23)+vp(m1) p2 —b+min{vp(ma), vp(nz)}}>
b<r
b<c<r

< p%sJF%”p(ml)JF% min{”p(m2)’”p("2)}‘
Case III: Suppose s > r > s/2. We consider the following subcases:
(a) Suppose b =r. Then vy(u) = s — a, and vy(014) = r. We compute

‘ S (9”23 )’ < p°~"min {p2s—a+vp(m1)7 pr+min{r+up(m2)},s—r+up(nQ)}_

a,b?

(b) Suppose b < 7. Then a = r. Then from (3.37) we deduce that v,(ve3) = p*~2*+* and
hence vp,(u) = p*~2*+°. We compute

‘Sw (9221737 ) ‘ < ps—r min {p25—2r+b+vp(m1),pr—b+min{2r+vp(m2),s—i—vp(ng)}} .

Hence
KL (n,y, )| < > |Sap (n,1, )]
a,b<r
max{a,b}=r
2a—b<s

< Zp 2s s+a ( 5=T min {pQS—a—H}p(ml)7pr+min{r+vp(mg)},s—r—i—vp(ng) })
a<'r
+ Z p —2s s+a <ps—7” min {p25—2r+b+vp(m1)’pr—b+min{2r+vp(mg),s-{—vp(ng)} })

2r— 5<b<r

< psfgqt%vp(ml)Jr% min{2r+vp(m2),s+vp(n2)}.

Case IV: r = s. In this case we only have to consider terms with b = r. Indeed, if b < r, then
a = r, and then by (3.36)), we see that up" 0 = — (mod p"), which says b = r, a contradiction.
When b = r, we have v,(u) = s — a, and from we may assume 914 = 0. We compute

S (9225,’ ) < min {pQS—a-FUp(ml)’pS-F’Up(TLQ)}'
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Hence

KL, (n, 9, 9)| < Z\Sab n, )|

a<s

< pr% s+a (Hlln {p237a+vp(m1)7ps+vp(n2)})

a<s

< ps—i—min{vp(ml),vp(nz)}‘
This finishes the proof of the theorem. O
Theorem 3.13. Let ¥ = ¥y, my, ¥ = n, n, be characters of U(Q,)/U(Z,). Then

/ -1 -1 1/2 L4354 Lmin{rs}
‘Klp (nwo,r’s,w,w)} < (\mlmg\p ,]nlng\p ) (s+1)pzTaT2 St

Proof. We make use of the stratification of Kloosterman sums in Section [3.2] For w = wq, we
have A,, = A. Hence, for £ € N, we have

Ay (0) = (Z/pEZ>2 X (Z/peZ)z

1,ca2_1,a1,a2). We compute

Let t = diag (al, az, cal_l, ca2_1) € 7. Then s = n~'tn = diag (cal_
K (t* 1) = agay 'K (x), Kh(t*x) = cay 2kh(x).

So
Vi, () = {)\ X N € Ay () ! MAL = 1,20, = 1}.

Let 6 : Ay, (¢) — C* be a character given by

6 (A xN) ﬁle( )Zﬁle(“/>

for ny,ng,n},nk € Z, then
Sun (0:0) = S (m,mi:p") S (ne, i) (3.39)

Let n = ny,rs. In terms of Pliicker coordinates (see Section , this says v1 = p", and
vz = p°. Suppose z,%""""? € X (n) has coordinates

. _ r o r—a .8 s—b
(v1,v2,v3,V4; V12, V13, V14) = (P D v, 045 9% U013, P )

Note that this also says » > a,s > b. From Bruhat decomposition, we have

—a - -

1 p v3p V4P
1 —s —b
o (xZ?l;M,vm) _ U13f p (mod U (Zp)).
_p_a ]_

Let X %" "3 (n) = T« x.%"""* and define

S (ny ) = Y (u@) Y (v (@)

1)3 ,1)4,’[}13
zeX % (n)
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We also set
Xap(n) = U X;)?l;m,ms (n),
v3,v4(mod p")

v1z(mod p®)
conditions

and
Sap (0, 0) = Y ¢ (u(@) ¢ (u(2)).

x€Xqp(n)

It is easy to see that

X(n)= J] Xap(n).
0<a<r
0<b<s

Now we consider cases r > s and r < s separately.

(i) Suppose r > s. Asr > a,r > s > b, we see that u(z), v (x) have entries in p~"Z,/Z, for
all x € X(n). Let Sqp be a finite subset of Zg such that

Xap(n) = H X;):o,b,w,ms (n).

(v3,94,013)ESap
By Theorem we have

Sup (m ) =7 (1=p7) " DT )| Sun (05757

(v3,v4,v13)ESq b

where

023{;’0471713 (/\ X )\/) —e (
By (3.39), we have
Suwo (92?1;”4’”13;7"> =S (myg,np" "% p") S (mzﬁmp"*s,nzp“b;pr) :

And we obtain a bound by applying ([3.25)):

miteA1 + nip"~%N\] madig + nop®°
P ‘ p* '

1/2
‘Swo (62%1}4,1}13; 7“) ‘ S 4pr (ng (ml’f)g, nlpr—a,pr) ng <m2,f}14pr—s, n2pr—b,pr))

(i) Suppose s > r. Then u(x), v (x) has entries in p~*Z,/Z, for all x € X(n). Again, by
Theorem 3.7 we have

Sup (mb ') =p 2 (L=p7) 7 DT X ()] Sy (65755

(v3,v4,v13)E€Sa b

where

e (o) =
By (3.39), we have
Sug (923};”“’”13; 8) = S (m1oep®™ ", ip® % p%) S (mzﬁm,nzps_b;ps) :
Applying (3.25) gives

‘Swo (92731;1)4’“3; S) ‘ <4p® (ng (maep®™", map*~%,p°) , ged (m27714, TLQPS_b,PS))

(M1dep®") A1 4 (madia) A2 + (R1p*~) A| + (ngp®~?) Xg)
p* '

1/2
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Now we give a bound to the size of K1, (n,,’). To ease computations, we consider a relaxed
bound by ignoring v and 014.

Suppose r > s. Then the bound says

1/2

‘Swo <9Z?b’v4’”13;7")) < dp" (gcd (M1, mp" %, p") ged (mzﬁmp’"_s, n2p’"_”,p’”>>
1/2
< 4p" (\711712’;11?2“&%)

_atb
2r 3

=4dp |n1n2\;1/2.

Note that
paer

S )] < 18w

(v3,v4,v13)ESq b

Hence

KL, (n,9,9")| <> [Sap (n,,9))]
a<lr
b<s

_ 1\ —2 _ a+b

<> (U =p ) dfmanal, VP [Sasl p? T
a<r
b<s

- atb
< [ningl, 1/22’8(“)‘1) 2.

a<r
b<s

So it suffices to give an upper bound to |S,|. Such bounds were computed in Section Note
that we require r > a 4 b in order to have S, nonempty.

Case I: Suppose s —r+a > 0.

(a) If s =2r 4+ 2a 4+ b > 0, then |S, 3| < prs—a=b,

(b) If s —2r +2a+b <0, then [S, | < pgs_b_[%b1 < p3s/2-b/2,
Case II: Suppose s —r +a < 0. Then |S, | < pQS*b*[%b] < pPs/20/2,

Combining the cases, we obtain

Z|Sa,b’pa7+b < Z pr+8_%_% + Z p%—&-% + Z p%"_%

a<r r—s<a<r r—s<a<r a<r—s
b<s 2r—2a—s<b<r—a b<2r—2a—s b<s

< (s+1)potT.

Hence, we have for r > s

5s

K1, (1,9, 9) | < |namal ;1% (s + 1) p3 % (3.40)

For r < s, applying the same argument gives

KL, (n,,9")] < [panal, /* (s =7+ 1) p 5 (3.41)

Combining (3.40) and (3.41), we get

Ky (n,9,9)| < [nana|, /2 (s + 1) 2+ 5+ min{rs), (3.42)
By Proposition [3.2] we can swap the characters, so

(KL, (n,9,0) | < [mams|; /2 (s 4 1) pit 5 +3min{rs) (3.43)
as well. Combining and yields the theorem. O
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3.4 Bounds for global Kloosterman sums

By combining the bounds for local Kloosterman sums Kl, (1, s, %, "), we obtain bounds for
global Kloosterman sums. For w € W, let

1/01
nw(cr, ) = crfex . w e N(Q).
CQ/CI

For ¢; = p", ¢o = p®, then we have ny(c1, ¢2) = Ny rs. Again we fix ¥ = ¥, my, V' = Uny ny» 88
characters of U(Q)/U(Z).

We recall that Klp(niq, ¢, ) = 1 is trivial, so Kl(niq(1,1),v,¢") = 1. Meanwhile,

Klp(nsa,ru Y, 7/}/) = S(m17 nl?ﬂ);
Klp(nSB,SJ Y, 7/)/) = S(m27 n2;ps)

are just classical Kloosterman sums. So it follows from the global bounds for classical Klooster-
man sums that

|K1p (nsa(chl),@b,w/)’ <. (m17n1761)1/261/2+s’
‘Klp (nsﬁ<1762)7¢,¢/)‘ <e (m27n2702)1/26§/2+5.

For w = s,s3 and sgs,, the global bounds are easily derived from the local bounds, given in

Theorems [3.9] and B.101

Theorem 3.14. Let ¢ = ¥y, mys ¥ = Yy, be characters of U(Q)/U(Z). The Kloosterman
sum Kl (nsasﬁ (c1,¢2), 1, 1//) vanishes unless ¢3 | ¢;. When ¢g | ¢1, we have

K1 (nsys5(c1,2), 9,0 | <e <Cg(m17C1/C2),C1(m2,02)1/2(712,02)1/2) (c1e2)®

for every € > 0.

Theorem 3.15. Let ¢ = ¥y, my, ¥ = ¥y n, be characters of U(Q)/U(Z). The Kloosterman
sum Kl (ng,s, (c1,¢2),9, ") vanishes unless ¢f | co. When ¢f | ¢z, we have

K1 (155, (c1, €2), 10, 0') | < (c}(ma, ca/cF), ca(ma,na, 1)) (crc2)®

for every € > 0.

For w = 54,535, and sgsasg, the situation is more complicated, since the shapes of the local
bounds depend on the relative size of r, s. Therefore, in order to obtain a global bound, we have
to find an expression for the local bound that works for all values of r, s.

Theorem 3.16. Let ¢ = ¥y, my, ¥ = ¥, 0, be characters of U(Q)/U(Z). The Kloosterman
sum K1 (ng, 55, (c1,¢2),,9) vanishes unless ca | ¢f. When ¢ | ¢f, we have

K1 (ns,55s0 (c1,¢2), 0, 9") | << (m1,n1,c1)(ma, c2)(cx, c2)(crea)/3te

for every € > 0.

Proof. For s < r, we have

KL (saspsams: ¥ ¥) | < p§+4§+% min{vp(m1),vp(n1)}+5vp(m2) < % +5+5 minfop(ma)vp(n) - 50p(ma)
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For r < s < 2r, we have
]Klp (”sa55sa,r,57 ¥, W)’ < prive(ma) 4 prdgtmin{op(ma)vp(n)}
and we have inequalities
4r

prvp(me) e germin{up(ma)ap(n)} < prvp(ma) 44 5-Fmin{up(ma).vp(m)}

prtop(m2) 4 prtgtmin{op(mi)op(na)} < gstop(ma) _|_p%+%+min{vp(m1)7vp(n1)}'
For s = 2r, we have
Kl (Rsqsgsa,rs: ¥, ') < prtortm2) = paten(ma),
So we can conclude for 0 < s < 2r that
KL (Mg sg50mss 0, 0) | < p™i S 45,545 fen(ma)tmin{op(ma).vp(n)}
Since we may assume from that v,(m1),vp(n1) < r, and vy(mg) < s, we have
K1 (g 5550 (€15 2), 8, 0) | e (ma,ma, 1) (ma, e2)(c1, c2)(erea)/*F

for every € > 0. O

Theorem 3.17. Let ¢ = ¥y, mys ¥ = ¥y, be characters of U(Q)/U(Z). The Kloosterman
sum Kl (nsﬁsasﬂ (c1, @),zﬁ,d/) vanishes unless ¢; | co2. When ¢; | ¢, we have

K (R 055 (€1, 02), 9, 9') | <z (M, €1)(ma, na, e2)(c2, ea)er 2eh X (eres)®

for every € > 0.
Proof. For r < s/2, we have
KLy (155055080 s 0') | < p3 5 30p(m)+3 minfop(ma)vp(n2)} < = 5+5 +5vp(m1)+5 min{vp(ma),vp(n2)}
For s/2 < r < s, we have
}Klp (nSﬁSaSﬁ,'I',S7 ¥, w’)‘ < p*§+%+%vp(m1)+% min{vp(m2),vp(n2)} < p%”r%Jr%vp(mlH%min{vp(m2)vvp(ﬂ2)}_
For s = r, we have
K1, (Misgsasgyrss s W] < pstmin{vp(ma),vp(n2)}t — pr+min{op(ma),vp(n2)}
So we can conclude for 0 < r < s that
\Klp (nsﬁsas%s’w’ ¢')| < pmin{%+§,7%+%}+vp(m1)+% min{vp(mz),vp(n2)}
Since we may assume from that v,(m1) < r, and vp(m2), vy(n2) < s, we have

71/205/2(

‘Kl (nSﬂsaslg(CluCQ))wvd}/)‘ <<E (mlaCl)(m27n2702)(6%702)01 6102)6

for every € > 0. O
Theorem 3.18. Let ¥ = ¥y, my, ¥ = n, n, be characters of U(Q)/U(Z). Then we have

K1 (n, (c1, c2), 1, ¥') | <c (mima, ning, c1ea)? (e, 62)1/261/203/4(6102)5

for every € > 0.

Proof. This follows immediately from the local bound given in Theorem [3.13] noting that s+1 <
(p*)°. O
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3.5 Symplectic Poincaré series

We start by defining Poincaré series on Sp(2r). Let G = Sp(2r,R). Again, we denote by K the
standard maximal compact subgroup of G. Let F : T(R*) — C be a smooth function with rapid
decay. Let 1,1 be characters of U(R) trivial on U(Z). For g = uy € G/K, where u € U(R),
y € T(RT), we define Fy(g) := ¥(u)F(y). The symplectic Poincaré series associated to F is
given by

Py(g):= > Fulvg),

yEPyNI\I'

where I' = Sp(2r, Z), and P, is the standard minimal parabolic subgroup of G. The ¢/'-th Fourier
coefficient of Py(g) is given by

Py (9) :/ Py (ug)y’ (u)du.
U(Z)\U(R)

The aim of this section is to compute the Fourier coefficients of symplectic Poincaré series, using
Kloosterman sums. However, for this purpose, it is more convenient to use a slightly different
definition for Kloosterman sums, denoted by Kl(n,1,%’). To motivate the alternative definition,
we start with the following proposition.

Proposition 3.19. [ETi87, Proposition 1.3] Let G = Sp (2r,Q,), n € N (Qp), and =z € X(n),
with Bruhat decomposition & = bynby, with by, by € U (Qp). Let ¢, ¢’ be characters of U (Q,)
which are trivial on U (Zp). Then the quantity v (b1) ¢’ (b2) is well-defined as a function on

X(n) if ¢ (nun™t) = ¢’ (u) for u € U, (Qp).

Proof. Suppose ¢ (nun™') = ¢’ (u) for all u € Uy, (Qp). Let & = binby = binb), be two Bruhat
decompositions. This says b) = by for some v € U(Zy), and by, = bad for some § € U, (Z,).
Then we have

U (Z,) binbad ™" = U (Z,) bynbs,

which implies bgb’zf1 = b25_1b2_ LeU, (Qp). Now, from the equivalence of Bruhat decomposi-
tions, we deduce that

U (Zp) nb2b,2_1n_1Un (Zp) =U (Zp) bflbllUn (Zp) )
which implies v’ (bgb’z_1> — (nb2b’2_1n*1) = (b7'0)). 0

Now we give the definition for Kl(n,,v’). Let n € N (Qp), and 1,1, be characters of U (Q,)
which are trivial on U (Z,,). We consider the sum

> by (b) ¢, (b2).

zeX(n)
x=b1nbsy

By Proposition this sum is well-defined as a function inn € N(Q,) if if ¢, (nun™') = Yy, (u)
for u € U, (Q,). Now we define

KL (n, tp,0p) i= > by (b1) ¢, (b2) -

zeX(n)
x=b1nby

if this condition is satisfied, and we say the sum is well-defined. When this is not the case, we
set K1, (n, ¥y, 1,) to be zero.
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For the global version, let n € N (Q), and ¢ = [[ 4, ' = [[ 4, be characters of U (A) which
P P

are trivial on [[U (Z,). Then we define
P

& (nﬂ/)ﬂb/) = Hﬁp (’I’l,?,[}p, w;’) :
p

Now we give a relation between Kl, (n Up, P! ) and the Kloosterman sum Kl, (n, Up, 1%) intro-
duced in Section [3.1]

Proposition 3.20. If K1, (n, ¥y, wzlo) is well-defined, then K1, (n, ¥y, wz’j) =Kl, (n, ¥y, w;,)
Proof. Trivial. O

Let G = Sp(4,Qyp), and ¢ = ¥y mes ¥ = ¥, ny- We make Proposition explicit, and list
the conditions for Sp(4) Kloosterman sums Kl, (ny,rs,%,¢") to be well-defined.

(i) If w = id, then K, (ny,0,0,%,¢") is well-defined if m1 = n1, ma = na;
(ii) if w = sq, then Kl (124,10, %, Y') is well-defined if mgy = ny = 0;
if w = sg, then KL, (n4,0,5,%,v’) is well-defined if m; = ny = 0;

if w = s45p, then Kl, (Nwrs, ¥, ') is well-defined if mg = n; = 0;

2r—2s

(vi) if w = 80885, then K, (1 s, 1,9 is well-defined if ng = map :

(vii

)
)
iii)
iv)
(v) if w = sgsqa, then KL, (ny,rs, %, 1) is well-defined if m; = ng = 0;
)
) if w = sgsasg, then KL, (ny s, %, ¢') is well-defined if ny = mip~2";
)

(viil) if w = wo, then KL, (ny s, v, Y') is always well-defined.

Remark. From the list above, we see that not all Kloosterman sums K, (n, 1, 1’) correspond to
a well-defined sum Kl, (n, ¥, 9').

The Fourier coefficients Py, (g) can be evaluated using the following theorem of Friedberg:

Theorem 3.21. [Fri87, Theorem A| The Fourier coefficient Py 4(g) of Sp(2r) Poincaré series
is given by

Powrl9) = 3 Kl(nwt!) [ Fy (o) 7 (ur) da
e -

Remark. In [Fri87], the statement concerns GL(r) Poincaré series, but the proof also works for
Sp(2r) Poincaré series.

Proof. We start with

Y (g) = U (u)du = ug) Y (u)du
ORI R ATLOTESSY /U o) Pl

~ePonm\I Y UN\U(R

=Y [ Rt P

WEW ~ERy LTy, ¥ UELNU(R)
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For v € Ry, write v = byjdwbs, with b1,b0 € U, d € D. Write u = ujug, with u; € U,, and
ug € Uy. Let § be a fundamental domain of U,,(Z)\U,(R). We then have

Pw/ Z Z Z / bldw62€u1u2y) W(uluz)dul dUQ

WEW  yER, (€T, \U(R
y=b1dwba
= Z Z ’QD (bl) / / .7:¢, (dwb2u1u2y) w (’LL1U2) duldu2.
weW  ~yERy Uw(R) /§
y=b1dwbsa

Write by = bhbly, with by € Uy, by € U,. After change of variables byju; — uy, ug — uj Tlugug,
b2u2 — ug, we have

Pw/ Z Z )/ Fy (dwugury) ¢ (ugur) duydus.
weW  yERw Uw(R) /05§
'VZbldwa

Since Fy (dug) = ¢ (dud ™) Fy (dg), and wuguiy = (wugw™?) (wury),

P¢’ Z Z Y (br) 1) / Fy (dwu1y)¢'(u1)du1/ Y (dwugw ™ d ) P (up) dus.
weW 7€Rw W(R) b’28:
=b1 dwbs
Observe that
_ 1 if o/ — d fldfl v Uw
/ 1/}(dwu2w_1d—1) W (us) dus :{ if 9" (u2) ¢( WUW ) Uy € Uy,
b, ¥

0 otherwise.

The condition for this integral to be nonzero is exactly the same as the condition for the Kloost-
erman sum to be well-defined. Hence

PW Z ZK] n, Y,y / . Fy (nury) ' (uq) duy. ]

wEW neNy

3.5.1 Sp(4) Poincaré series

Let Py be the standard minimal parabolic subgroup of G = Sp(4). For w € W, let G, = UwDU,
Iy = U(Z)Nw™tU(Z)Tw, and R,, be a complete set of coset representatives for PyNT\I'NG, /T,
as in Section 2.2.4] Define

Ny ={n € N(R) | 3y € Ry, such that v = bynby for by,be € U(R)}.
For ¢ = ¥, ms, and uy, ug € R, we denote the exponential e (mju; + mausz) by ¥ (uy, uz).

Now we compute the Fourier coeflicients Py, ,(g) for Py(g), making use of Theorem Since
for g = uy € G/K we have Fy(g) = ¥(u)F(y), it suffices to just compute Py 4 (y), for y =
diag (y1, 92,51 'y, ') € T(RT).

(i) For w =id, we have n = I, and the integral just gives F (y1,y2). Hence
ia Py = KL(L,9,¢) F (y1,92).

(ii) For w = s4, we have
1/v4 1w
Ny, =S| ™ wu>1y, U (R)= 1 u €R
—1/vy4 —u; 1
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Meanwhile, through Iwasawa decomposition, we obtain that

[ R 9 ) du
Usq (R)

= [¥ o) (A i ot | (.0 du
= , » U 192 1 ) :
B\ vf(ufd +ui) vi/uiys + i

Hence,
1/1)4 9
- U1Ys
Py (9) = Z Kl U4 Y, /111 < 0>
Sa” ¥, = > 2 (12,2 2\’
v4>1 —1/vy " R vi (uiys + 1)
Y1y2
F CZRY uiys +yi | ¢ (u1,0) duy.
<v4\/m
(ili) For w = sg, we have
1 1
1 1
ng _ ) /’023 vog > 13, Us,; (R) — ) us u €R
—7V23 1
Hence,
1
1/v23 ! Us
Puy(g)= 3 K 0 /w<0—>
sty \g ol 1 ¥, O R
v23>1 . R V33(Ys + ug)
F g —2 ) 0, us) dus.
v23+/ Yy + U3
(iv) For w = s4s3, we have
—1/1}2 1 Uy
Ny = v2/va3 vz, 3 > 1 Usos,(R) = 1 ug wus s us € R
) va3 | w2 1
v23/ V2 1
Hence,
71/1}2
susﬂpiﬁ 1[1/ = Z Z Kl 1}2/1}23 vy 7¢7¢/
v22>1 vag|ve 1)23/’02

2 2 2
U4V23Y Uy U5V Y1y U2 —
//¢ - P} 2a_ B 44 22 F( y 477 2>¢,(0,U5)dU4dU5,
R JR van (5% (yz + U5) Uzﬁ v23 \ Y5 + Uj

where 1 = y%y% + ugy% + uiy%

(v) For w = sgsq, we have

1/’U4 1 Ul u
_ V4 /V14 vg,v14 > 1 _ 1
NS/jSa - 'U4 /Ui ‘ U14 bl U55sa (R) - 1 Ul,'UQ e R
—1)14/’04 —Uul 1
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Hence,

1/’04
v4/v14
SﬂSQP’Iﬁiﬁ’ g) Z Z Kl V4 71/%1//
vzl vfons —v14/4
ulugvMyQ ung o Y1Y2 V4 u%y%—l—y% 7 0) duid
T e ) Rl ek e KR A
7 (uiy3 + v 1am V4 utYy +yp V14 n

2
where 7 = (u}y3 + y})” + uj.

(vi) For w = 545354, we have

—1/1}1 1 Ul us U4
v1/v14 v1,v14 > 1 1wy
NSQSﬂsa = vy / V14 | 1}% 5 USQSQSQ (R) = 1 Uy € R
v1a/v1 —up 1
Hence,
—1/v
v1/v14
sasgsapw,w/(g) = Z Z Kl v / 7¢7wl
1zt oult v14/v1
2 2
via(uiw U v v
/// ( 14w ng 4y1)’ 21n3>F< v | \/ )W(Ul, 0) duiduadua,
1)1772 V14T V14/1M2 " v14
where

2
m = (ulys +y3)" + (wua + us2)?,
N2 = uiyiys + Y1ys + uiyi + u3ys,

2 4 3 4 2, 2 3 2

(vii) For w = sgs.sg, we have

—1/v9 1 U U4q
v2/v12 v12,v2 > 1 1 ug us
NS/gSqu; - vy vy | V1o 3 US[jSuSﬁ (R) - 1 Uu; € R
—U12/U2 1
Hence,
—1/1)2
U2/ V12
S/@Sa85P¢7w’(g) = Z Z Kl vy / ﬂﬁﬂ#/
’111221 ’02‘1112 71]12/1]2
2
v v v
///w< 1227737 22774>F< yiya  v2 M )W(O us) dusdusdus,
RJR JR VN ViaM2 V2+/M " 19
where

2 4 2 2 2 2
m = Y1Ys +uzyy + uzys,
n2 = yiys + udyl + 2uiyTys + u3ys + ui — 2uoujus + udud,
n3 = U4U5y% + u2U4y27

2 4 2
N4 = UyUs — U2Yos — U2U5.
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(vili) For w = 54535453, we have

—1/n
Nevspsass =3 | o T2 1y 21 Usapenss (R) = U(R).
v12/v1
Hence,
1w

sasssass Po(9) = K|, Il IR
v >1v12>1 orafn
////qp(—”lf”?’,“j”‘*)z?(m,“W)w(ul,ug,)duldugdmdu@
rRJRJR JR viN2  ViaM v1y/M2 V12 | M

where

n = u%uiyg + y‘fy% — 2u1uQU4y§ + u%uiug + ugyf + 2uiy%y§ + u%yg + 2U1U2U5 - 2u1uzu4ug
—l—ui — 2u2uZU5 + u%ug

T2 = uiyiys + uiuyi + yiys + 2uruausyt + udyi + uiys,

n3 = uly%yé + u1u§y% + u4u5y% + uzu4y§7

3, .4 2, .4 3, 2 2,2 2,2 2, 2 4 3 2 2
N4 = UTULY5 — UTUYy + UTULUS + 2U1UaY Y5 + 2uTUsUs — UTULUE — UsY] + ULUL + Ugud — USUS.
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Chapter 4

Density theorem for Sp(4)

4.1 Preliminaries

Let U(R) C Sp(4,R) be the standard unipotent subgroup

1 212 713 714

Tij € R,
U(R) = 1 xo3 o4 T1y = —4s
— . ,
T14 = Ta3 + T12%24
43 1

Remark. In order to better express the arguments in this chapter, the variables are named
differently than in Section [2.1]

For N = (N1, Ns) € R? we define a character ¢y : U(R) — C* by
Un(2) = e(Niz12 + Nowag) . (4.1)

Note that if N € Z?2, this defines a character of U(Z)\U(R).

Let T' C Sp(4,R) be the diagonal torus. The standard minimal parabolic subgroup is given by
Py=TU. We embed y = (y1,y2) € R? into T(R) via the map

/ 1/2 1/2)

1/2 1/2
L(y) = (Y19, ,yg/,l/ng /5

We denote the image of R2 in T(R) by T(Ry). An element g € Sp(4,R) admits Iwasawa
decomposition g = zyk, with x = U(R), y € T(Ry) and k € K, where K = SO(4,R) N Sp(4,R)
is the maximal compact subgroup of Sp(4,R). We denote by y(g) = ¢~!(y) the Iwasawa y-
coordinates of g. For w € W, y € R% we write Yy = y(we(y) tw™).

a1, Q2

For a € C?, y € R%, we write y® = y{'y5?. Let n = (2,3/2). We define measures

~an @Y1 dy2
Y1 Y2

dr = dripdxi3drozdras, d'y =y

on U(R) and RZ respectively. We denote the pushforward of d*y to T(R;) by ¢ also by
d*y. Then dz is the Haar measure on U(R), and dxd*y is a left Sp(4, R)-invariant measure
on Sp(4,R)/K.

We define another embedding of R? into T'(R4) by
c=(c1,¢2) = ¢ =diag(1/c1,c1/co, 1,02/ c1).
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A simple calculation shows that y(c*)"” = (cie2) L.

Let m = @ 7, be a globally generic irreducible spherical representation of GSp(4) with trivial
central character. Using notations in [RS07], 7, is induced from the character y; X x2 X o, given
by

diag (1,2, 17 v, 5 10) = x1(t1)x2(t2)o (v).
As m, is right K, -invariant, we may assume that y1, x2, 0 are unramified, and we may write y; =

|- " xe=|-|"and o =|- °. As m, has trivial central character, we have oy + ag + 28 = 0.
So the L-parameter is given by

Ozl—l-Oég a1 — 9 —Oél-l-OéQ —al—oz2>

(X1X20,X1U,X2o,a):< R 5 5

We then take

ap+oa ) — Qg

MW(U) = ) ’ (4'2)
2 2

so the L-parameter becomes (ur(v,1), pz(v,2), —piz(v,1), —pr(v,2)). When 7, is lifted to a

self-dual representation of GL(4), this is precisely the natural Langlands parameter of the lift.

In terms of simple roots coordinates (v1,12) € ag, introduced in Section we have a1 = vy,

Qo = 2V2 — 1.

4.2 Auxiliary results

In this section, we prove several technical results about Sp(4), which will be used in the proofs
in later sections.

Since the Iwasawa decomposition Sp(4,R) = U(R)T(R4+)K is actually the Gram-Schmidt or-
thogonalisation of rows, we can compute y(g) explicitly. Let A; be the norm of the third row
of g, and Ay be the area of the parallelogram spanned by the bottom two rows of g. Then we
have
1/A4 * * *
Al /AQ *
Ay
x  Ag/Aq

(mod K).

S
Il

In particular, we have y(g) = (Ay/A% A2/A2). Conversely, if y(g) = (Y1, Y2), then A;(g) =
Y7, % and Ag(g) = Yy Yy

Lemma 4.1. Let w € W, z € Uy,(R), and y, ¢, B € R2. Write y(¢(B)c*wzi(y)) =Y € R2 and
A = (B)c*. Then we have

1 <yy BiBy?, o <,y BiBa,

and
1 < Aj(wz) <y y y(A) Y(A)é/Q, 1 < Ag(wz) <y y y(A)1y(A)2.

Proof. Note that A;(wz) > 1 as one of its minors is always 1. For the first statement, we
compute
1

——pAiway), Ax((B)cwri(y))
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2

Ay (u(B)cfwze(y)) = " BB,

Ag(wze(y)).
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Then we obtain

Al(L(B)c*wa:L(y))BlB21/2 Ly BlBé/Q,

As(t(B)c*wzi(y))B1Bs <y Bi1Bs.

c1 < aAr(wz) Ky c1 A (wze(y))
c2 < Qo (wz) Ky calo(wae(y))

For the second statement, we observe that

et =y(E@ny(e)y, gt =y(E)y(e)s.

Hence
1/2 —1 % w \1/2 _ 1/2
Ar(wz) yy BiBy "¢ = (Bry(¢)1)(Bay(c7)2) '~ = y(A)1y(A4)y'",
Ag(we) <y BiBacy' = (Bry(c¢)1)(Bzy(c")2) = y(A)1y(A)e. 0
Lemma 4.2. Let N € N> and w € W. For x € U,(R), define 2’ = +(N)zt(N)~!. Then

dr' = (YN)"N"dx.

Proof. This is direct computation. For w = wg, we have

1 x2 w3 714 1 Nizia NENazis NiNozia
_ I o3 24 ;o 1 Ni1Noxoz  Nawoy
T = ~ =
1 1
—T12 1 —Njz190 1

It follows that da’ = N} N3dz = (“°N)"N"dx. The proof is similar for other Weyl elements. [

Lemma 4.3. Let B € Ri, and w = sgsasg. Then
vol {z € Uy(R) | Aj(wx) < Bj,j = 1,2} < (B1Ba)'**

for any £ > 0.

Proof. We can assume without loss of generality that B; > 1, otherwise we deduce from
Lemma ] that the volume is 0. We have

1 T3 T23 -1
1 =z x 1
x = 2 T2 Up(R) ~» wa =
1 1 23 o4
1 -1 —x13 —T93
Then we obtain bounds
|wa3| < By, |v13w24 — 233| < Ba.

We also have |z13|, |z24| < b := 1+ max{B;, Ba}. If I C R is any interval of length |I| > 1,
then
|7

min{l,?b} dy < 41| (1+logb).
|<b

vol{(z,) € [~ |ay e 1} < [ y

ly

Hence, if |xo3| < B is fixed, the volume of (z13,224) is O(Bglogb). This establishes the
bound. O
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4.3  Whittaker functions and automorphic forms

In this section, we prove some relations for Jacquet’s Whittaker function on Sp(2n). Let G =
Sp(2n,R), and

" 1 * % *
* 5
%
T— caq U= Prorrhce
* E
* * 1
the standard torus and the standard unipotent subgroup respectively. For m = (my,--- ,my) €

Z", we define a character ¢, : U(Z)\U(R) — C* by

1
Tn—1 * n
Um 1 >1k oI = 1:[ e(m;x;) . (4.3)
=1
—I 1
* cee =T 1

It is easy to see that all characters of U(Z)\U(R) are of this form. The character v, is called
non-degenerate if mq - --m, # 0.

Let K be the maximal compact subgroup of G, and a the real Lie algebra of T'(R). Define a
homomorphism Hy : G — a, which takes g € G to Hy(g), for g € Uexp(Ho(g))K. Let ac be
the complexification of a, and af. the dual of ac. Let v € af, and ¢ : U(Z)\U(R) — C* a non-
degenerate character. Then the Jacquet-Whittaker function associated to v is given by

W(g,v,0) = / I, (wouug) () du,

U(R)

where I,,(g) = exp (v + p, Ho(g)), p is the half-sum of positive roots, and wy € W = W(T, G) is
the long element of the Weyl group.

We rephrase more explicitly. Let g € G/K. By Iwasawa decomposition, we may assume g = uy,
with u € U(R), and t € T(R"). Let

y:dlag (yla"' ayTL)y;la"' ay’r:l) ET(R+)

A set of simple roots of W = W(T,G) is given by A = {ay,--- ,ay}, where oy = yiy;}l for
1<i<n-—1,and a,y = y2. Then p is given by

n (2”%”1)1 for1 <i<n-—1,
p= g rio;,  where r; = n(nt1) for i
; — or i = n.
=1 4
For v = (v1,--- ,vp) € ag, we have
v+ n ve—vi+n—1 Un—1—Vn—2+2 2u,—v,_1+1
L(g) =" "yt T Yn—1 Yn T
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Recall from Section that the Weyl group W can be realised as matrices in Sp(2n), and W is
generated by reflections s,, for 1 <14 < n, represented by the matrices

Sai:<Ai A>7 A’L: 1 ) 1§2Sn_17
7

In—i1

and

Lemma 4.4. We have

W(g,v,bm) = comW (Mga Vo1, Eoe ) )

n
where ¢, = [] [mi]”™ ", and

1=1
mi---Mp—1
My 1/2
M = ( M1> ) MO = |mn‘ / Mp—2Mnp—1
0
Mnp—1
1
Proof. We expand
My
W (Mg,v, ..y o ) = / 1, (wonMg) e (—:m e a:) dn,
mnl U(R) M|
where z; is as in (4.3). After the change of variables
Ty = mixy, -, Tp—1r? Mp_1Tp—1, Tpt> ’mn’ Tn,y
we obtain
n
[T 1l / I, (woMng) e (—mazy — -+ — mpzy) dn
i=1 U(R)
n
= H || " / I, (woMwg - wong) e (—mix1 — -+ — Mpxy) dn
i=1 UR)
n
- H ‘mi|_yi+m / L, (wong) € (_mlxl — = mn$n> dn
i=1 U(R)
n
=TTl ™ W (9,0, 6m) =
i=1

It is well-known that W (g, v, ¢) satisfies a functional equation. To state the functional equation,

we introduce some notations. Let 7 = (71, ,7,) be given by
G0 _in ifi#n,
T =
’ —Lnjl) if i = n.
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Then for v = (v1,- - ,1v,) € C", we have

Loar(y) =yt ys? ™ g g
For w € W, we define wv = (vf,--- ,v),) € C" by

Lyyr (y) = Llwv+r (wy) .

It is more convenient to consider a renormalisation of W (g, v,v). For v = (vq,--- ,vy) € ag, we
n
write 7 = > v;. Let
i=1
n
Ch 1+e; 1+e—e; 1+ei+e;
w* = ven LI r r{—— S \p(—2"23
(9.v4) = W(gww)r " [ ] < 5 )H ( 5 ) < : )
=1 1<j<n
where
1 ifi=1,
€; = V; — Vi1 1f2§z§n—1,

Uy — Vp_1 ifi=n.

Then we have the following functional equation (cf. [Gol06, Theorem 5.9.8|, where an analogous
statement for GL(n) Whittaker functions is given).

Theorem 4.5. The equation

W*(g,v,¢) = W (g, wv, )
holds for all w € W.

Proof. 1t suffices to prove the statement for w = s,, for 1 <i < n.

(i) Let 1 <i<n—1. Let

I 4
NiO > 1 =%
N, = O ) eUR) | Nip = CUR),
(M ) U@ M : (®)
In i1
and N/ := U(R)/N;. We may rewrite
Wig.re) = [ [ Blsomwinigbt)dn (i), (4.4

I JN;

where w; := s;}wo. Consider the Iwasawa decomposition w;n,g = hk, with k € K, and
h € UR)T(R'). We further decompose h = hoh', with

I
_ (Hp B Yi/Yi1 T
hO - < (Ho—l)T> ) HO - 1 ’
In_i 1
* * * *
Yis1lo  *
B = ook x| cUR)T(RY).
* yi_+11]2
* *



Now consider the Iwasawa decomposition s, ,n;ho = n”a”k”, with n” € U(R), a” € T(R™)

and k” € K. Then we have
I, (sq;niwintg) = I,(n"d"K"W') = I,(n"d"W'E") = I,(a") L, (W).

We compute
Ii 4
T> ) al = vir1 v/ Wi/vis1)2+(z+ni)2
) Vg + @+ )’
In—i1

"
n [ Qg
a = (aufl 0 —
0

Hence
g\l N2 ) st
I (a") — (%il) ((yzil) + (z + 1) ifi#£n—1,
V<a ) o Unp—1—Vp—2+2 2 %(V7b—2*2’/n—1+2’/n*1)
(y’;;l) ((y’;nl) —i—(x—i—ni)z) ifi=n-—1.
Write
. F(—vie1 + 20 — vigq) ifi#n—1,
’ %(—anZ +2vp1—2u,) ifi=n-—1
Then
/ L, (8o, nwintg) (n;)dn; = I,,(h) / I,(a")(n;)dn;
N; N;
Vi V;—Vit1+n+1—i—vg Yi
= IV(h/) <Z> WQ <$ + : iu V071/}|N¢> )
Yi+1 Yi+1
where

= )V+é $(—u)du,

Wz(Z,Vﬂ/J):/R [CEELERT

denotes the classical GL(2) Whittaker function. Through the functional equation for GL(2)

Whittaker function
(4.5)

T 1
&WQ(Za V,@ZJ),

_ _—2v
WZ(Za_Vad))_ﬂ- F(—I/—l—%)

We deduce
T (—vo+ 3 I
( - + 2) / Isazl/(s()cznlwzn;g)w(nz)dnz
N;

I (8o, niwinlg)(n;)dn; = w20 ———22
/]Vz ( ) ( ) T (VQ + %)

Putting back into (4.4) gives
r (—V() + l)
W(g,v,¥) = 7?0 —————221 (g, 5.1,
(g,v,9) Do+ 1) (9, S, ;)

and
W*(g,v,9) = W*(g, 5a,v,¥).
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(ii) Let i« = n. The argument is similar. Let

In—l
N, = L |} cum),
In—l
1
and N} := U(R)/N,,. We write
Wig.et) = [ [ (s, nuwint,g)0ns)dn, b0t ), (4.6)
N7/L n

where w,, := s;iwo. Consider the Twasawa decomposition w,nl, g = hk, with k € K, and
h € UR)T(RT). We write h = hoh/, with

In—l
ho

Il
=
|

c UR)T(RT).

Let sq,nnho = n"a’k”. Then I,(sq, npwnnl,g) = I,(a")I,(h"). We compute

_1 _
I,,(a”) _ y%l/n*l/n—l*f*l (yi + (I + nn)z) 5(2un—vp_1+1) .

Writing vy := %(21/71 — Up—1), we have

/ ]V(Sannnwnn%g)ﬂ(nn)dnn = IV(h/)WQ ('T + yTQLiv o, ¢|Nn) .

n

From the functional equation (4.5)), again we have

F(—l/()—{—l)
14 97V7¢ = 7T2V072W gaSanV,%Z)
(@00 =720 LW 50,
and
W*(Q,Vﬂ/i) :W*(975anva)' O

Example 4.6. For Sp(4), the explicit normalisation is given by

W*(g,v,0) = W(g,v,)x~ 1t (1 +V1> r <1 +21/2> r (1 + 214 —21/2) r <1 — +2,/2> |

2 2 2 2

The functional equation says that W*(g, v, ) is invariant under transformations

s
(I/l, VQ) (S—a> (21/2 — I/1,V2> (—ﬁ> (2]/2 — Vi,V — 1/1) <S—a> (—Vl, Vo — Vl)

Is 5 ISB

s
(Vl, v — VQ) (S—a> (V1 — 21/2, vV — 1/2) é (Vl — 2V2, —VQ) (S—a> (—1/1, —VQ).

A Whittaker function is determined by its value on T(R"), and the character ¢. If we de-
fine

W(—,v)=W(—=v,9)|pm+): T(RT) — C, (4.7)
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then for ¢ = zyk € G with x € UR), y € T(RT) and k¥ € K, we have W(g,v,¢) =
(@)W (y, v).

Now let q be a prime, and

Lo(q) = {@ g) €Sp(4,2) ' C=0 (mod Q)} C Sp(4,2)

be the Siegel congruence subgroup of level q. We denote by {w} an orthonormal basis of
right K-invariant automorphic forms for I'g(g), cuspidal or Eisenstein series. Then we equip
L?*(To(q)\ Sp(4,R)/K) with the standard inner product

(fi9) = f(zy)g(zy)dzd™y.

/FO(Q)\ Sp(4,R)/K
An integral over the complete spectrum of L?(Tg(q)\ Sp(4,R)/K) is denoted by f(q) dw. All
the automorphic forms w belong to representations 7 of level ¢’ | ¢, and we assume that {w}

contains all cuspidal newvectors of level ¢’ | g. For simplicity in notations, we denote the local
archimedean spectral parameter p,(00) by u = (u1, 2).

Let w be an automorphic form for T'y(q), with spectral parameter p. We suppose w is generic
throughout the section. For M = (Mj, M) € Z?, the M-th Fourier coefficient of @ is given
by

oule) = [ wlegiinods
U(Z)\U(R)
The Fourier coefficients wjs(g) are actually Whittaker functions. For g = zyk € Sp(4,R), we
have

Ag(M)
M7

wm(g) = Yu(z) - W (e(M)y), (4.8)

where A, (M) € C is a constant, also called the M-th Fourier coefficient of o, and

Wu(y) =W (y, (11 + p2, p2)) -

Note the change of coordinates between parameters p and v. As in the GL(n) case, the size
of or(cc) captures the growth of W), near the origin. Precisely, for a function £ on R and
X € R%, we define

EX (y1,y2) = E(X1y1, Xoya). (4.9)

For B € C, let Dg = —y0, + B. This is a commutative family of differential operators, which
correspond to multiplication by s 4+ 8 under Mellin transform. In the proof of Lemma [£.8] we
need the following technical lemma, found in [Blo19a].

Lemma 4.7. Let @ > 0, and 8 € C such that Re8 < a. Let I = [a,b] C (0,1) be an interval
with a < b < 2a, and w : I — C a smooth function satisfying

[Daw(y)| > ery™,  19y(Dpw)(y)| < e2[[Dpwl|y™ (4.10)

for y € I and some ¢y, co > 0, where ||w|| denotes the sup-norm of w. Then there exists constants
a, by, cy, >0, depending only on ¢1, g, @, 5 (not on a,b) such that a < a’ < b <b, and
«

lw(y)| >y~ |w'(y)] < b ljw|ly™! (4.11)

for y € [/, V].
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Proof. Let w(y) = w(y)y™”. Then @' = —y~#~!Dgw. We deduce that (E.10]) implies

v ()] = ey, [[@"|| < & |||y
for some constant ¢z > ¢o, and @ = o+ Re 5. Let yo = maxyer [@'(y)|. Changing @ by a fourth
root of unity if necessary, we may assume that

Re @' (yo) > L max {clyaafl, HzZJ’H} )

V2

Meanwhile, the condition |@”(y)| < ca ||@']|y~!

implies that the following inequality
- 1 e - -
Red'(y) > z—ﬂmax{clyo U@} = Red' (yo)

holds for y € Iy = [d/, V'], for some @’ < b’ such that yo € Iy. Now we show that y |0 (y)| <
||@]|(yr ) for y € [a’,V]. Let c3 > 0 be a sufficiently small constant. We distinguish two cases:

(i) Suppose Rew(a’) < —csyoRew'(yo). Then [|wl| ) = c3yo Red'(yo) > y @' (y)| for
y € [d,V].

(ii) Suppose Rew(a’) > —csyo Re @' (yo). When ¢3 > 0 is sufficiently small, we have Re w(b') >
yo Re @' (yo), and hence [[w|[, ;1 > yRe @' (yo) > y [@'(y)| for y € [a',V'].

From the bound y [0/ (y)| < ||@]], it follows immediately that |@(y)| > vy~ on [@/, ¥']. Reverting

back to w yields (4.11]). O

Lemma 4.8. Assume that pu = (uq, pe) varies in some compact set , and let Z > 1. There
exists r € N and a compact set S C Ri depending only on 2 (independent of Z), and a finite
collection of functions Fy,--- , E, : Ri — R depending on €2 and Z that are uniformly bounded
and supported in a compact subset of S such that

S (EOD W[ g z2mrtenten) - gosome),
j=1

Proof. The case Z < 1 is proved in [BBMIT, Blol9a]. For each u € €, choose an open set
S, C R? such that ReW,(y) # 0 for all y € S, or ImW,(y) # 0 for all y € S,. Now choose
open neighbourhoods U, about p such that Re W,«(y) # 0 for all y € S, and p* € Uy, or
ImW,«(y) # 0 for all y € S, and p* € U,. By compactness, (2 is covered by a finite collection
of neighbourhoods Uy, ,--- ,U,,, and we may pick corresponding FE; to be real-valued functions
with supports on S, and non-vanishing on the interior Sﬁj.

Now suppose Z > 1 is sufficiently large. Consider the following renormalisation of the Whittaker
function:

Wi(y) =y "Wu(y). (4.12)
The Mellin transform M (s) = fRi W:(y)ys%% is given in [Ish05] (where vy, v in [Ish05| are

p1 + p2 and —py + po in our notation)
M*(S):274F S1+ p1 + p2 T S1+ (1 — 2 r S1 — M1+ Ug r S1 — ph1 — U2
" 2 2 2 2
p82Mm\p (52 M\ p(S2 ke (52 pe
2 2 2 2
1)

psLtsetpep(s1ts— - 5 5, s s2oi
2 9 352 51+s22+u2 51—‘4—522—#2

)
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By Weyl group symmetry, we may assume without loss of generality that o(c0) = Re pg. For
Re(s1) sufficiently large, M (s) is holomorphic for Re(s2) > ox(00), as poles can only occur at
s9 = +uy — k, £pe — k for k € Ny. Hence, for Re(s1) sufficiently large, the function

M;TL(S) = M, (s)(s2 + p1)(s2 — p1)(s2 + p2)(s2 — p2)
is holomorphic for Re(sz) > o(c0) — 1. Now let

T
(5) = L ags o) o ) o2 ) o2+ ).

The inverse Mellin transform of M 1(s) is then given by
Wu(y) =Dy D, Dy, W: (y)a

where the differential operators are applied to yo. On the other hand, we compute the inverse
Mellin transform directly, and by shifting the contour to Re(sz) = o(00) — %, we obtain the

2
estimate

T - Kk _‘7#(00)"‘l
Wu(y) =Y e WM (y1) + Oy, (Ys )

for y2 — 0, where
sk =+ - + * —
W (1) =T (ua + 1)T <‘“2“2 + 1> r (‘“2“2 + 1> W (y1)yr ",

where W (y1) = y; Y QW#1 (y1) is a normalised GL(2)-Whittaker function.

The rest of the proof follows the argument in [Blol9a]. Applying Lemma repeatedly, we
obtain constants % <1 < 72 < 1 such that the bound

(W) > v, 7 Wit ()]

holds for yo € [v1/Z,7v2/Z], when y; and p vary in some fixed compact domain. Now choose

2

<E;*,W;*>R+ > 1 for
u € Q, where (—, —>R+ denotes the inner product with respect to the Haar measure on R.
Now define EJ(y1,y2) = 0y, <y<y, Ej*(y1). This choice depends on Z, but the support of EY
varies inside some interval depending only on €. Using the relation , and upon setting
E;(y) = y"E}(y), we obtain

functions Ef* : RT — C, depending on Q but not Z, such that )=,

2 ‘<EJ(‘LZ)’ Wu>‘2 > 721 +20m(0)
j

as desired. O

4.4 Hecke eigenvalues and Fourier coefficients

Let M be a set of matrices in GSp(4, Q)" that is left- and right-invariant under T' = Sp(4, Z)
and is a finite union |JT'M; of left cosets. Then M defines a Hecke operator T\ on the space

J
of cuspidal automorphic forms by

Tmw(g) = ZW(Mjg)-

109



For a matrix g € GSp(4, Q)" we denote by T, the Hecke operator Tr,r. For m € N, let
S(m) : = {M € GSp(4,2)" ‘ MTIM = mJ}, J = ( , IQ) .
—19

The m-th standard Hecke operator is then given by T'(m) = Ts(m)- The set of matrices

_1 ai a2 >0, 0 < a < aog,
H(m) = (A mDBD>eS(m) A_<“1 “),B_Gjl 22) 0<bi<m,ADT =ml, 5.
a2 > %/ BD=0 (modm)
(4.13)

gives a complete system of left coset representatives for I'\'S(m) [Spe72]. For r € Ny, 0 < a <
b <r/2 and any prime p, define

Térb) (p) = Tdiag(pa7pb7p'r7a7pr7b) .

)

When the context is clear, we suppress p from the notation, and write 77, instead. Then T'(p")
admits a decomposition

T = > T ).

0<a<b<r/2

It is well-known that the Hecke algebra ¢ of Sp(4,R) is generated by T'(p) = Télo)(p) and

)

Téi) (p) for primes p, along with the identity.

We also define involutions 7%,, T, on the space of cuspidal automorphic forms by

Tt = wlewn) T (7 o A7) ) == (7 o 3r)):

where ¢; = diag(—1,1,—1,1). It is clear that

(Tslw)(Ml,Mg)(g) = w(—Ml,Mz)(g)a (Tszw)(Ml,Mg)(g) = w(Ml,—Mg)(g)' (4.14)

It is also straightforward to check that T;,, T, commute with the Hecke operators and the
invariant differential operators. So we may assume a cuspidal automorphic form w is also an
eigenfunction of 77, T,.

Let 7 be the irreducible automorphic representation corresponding to tw. We write A(m, 7) and
)\((;l))(p, 7) to denote the eigenvalue of w with respect to T'(m) and TCErb) respectively, and write

N(m,m) :=m™3/2\(m, ). Again, we omit 7 from the notation when the context is clear.

It is known that if w is generic and L?-normalised, then by [CI19, Theorem 1.1] and [Lil0]
Theorem 3|, we have

1 3

Sp.Z)  To(@LLmAd ~+9 (4.15)

2
’Aw(lv 1)’ XM

In particular, A5(1,1) # 0.

Notation. Let w be an L?-normalised generic cuspidal newform. For the rest of the section,
it is however instructive to have an alternative normalisation, such that the (1,1)-st Fourier
coefficient is 1. To avoid confusion, we always denote by w an L?-normalised form, and by w;
a scalar multiple of @ such that A, (1,1) = 1. From (4.17)), we see that @y = kw for some
‘ k| < q3/2+€_
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Now fix a prime p{q. Let M = (My, Ms), and 0 < ¢,d < r such that p=¢ | My and p"~2¢ | Ms.
Write
T diag(p®,p’,p" % p" )T = | JThs

as a finite union of left cosets. We can assume that h; € U(Q)T(Q4). Consider the decomposi-
tion h; = §;2;, with §; € T(Q"), #; € U(Q™"). We define exponential sums

(r) ) -
Sy p (e, d) = > (%),
Th;CT diag(p®,p®,p"~%,p" %)
Ji=diag(p®,p?,p"~¢,p" %)

and

6" (e, d)i= > &) (cd) = > P(@;).

0<a,b<r/2 Th;CS(p")

g:=diag(p°,p?,p"¢,p""%)
Proposition 4.9. We have
)\g’,‘l)y(p)Aw(M) = Z Ggfl);,M(Ca d) 20+d_*A (M1pd_c, M2p7”—2d).

0<c,d<r
p°~ 4| My, p?dT | My

)

Proof. We compute the Fourier coefficient of T Cfrb w in two ways. On one hand, we have

[ D@ = 0m) 5 Wa00y). (4.16)
(Z\U(R)

On the other hand, we expand the Hecke operator

/ T (ay)oni (@ da:—z / @ (hiay) s (2)da
U(Z)\U(R) Z)\U(R)
_—— / o (hiwy) b (2)da
Th; U@ Z)\U(R)

Write h;x = 2';, with 2’ € U(R), and ¢; = diag(c1, -+ ,c4). A simple calculation shows that
T =l Z ki Tj-

In particular, we have

2 (hi)iz  c2 . c4 (hi)2a ¢4 .
T12 = ;193/12 - ;71 = ;193/12 — (#i)12, @24 = gﬂﬂlu - éT = 596/24 = (&3)24-

Making this substitution, the expression becomes

I

Th; k,l Z(h ki T4l

ij”rZ(hi)kjwjz . ) R c2 , C4 / Cl o,y
w(x'giy)e (M1(2:)12 + Ma(Z4)24) € *C*MNCH - ;M23324 &dmkw
1 2

where (k,[) runs through the indices (1,2), (1,3),(2,3), (2,4). By periodicity, we shift the inte-
gral and get

Ck v

— ¢ ~ ~ ~ C Cy4 @]
4r Z H/ l w(x/yiy)e (Ml («%’)12 + MQ(JUZ')M) e (—;Mlx/n — C2M2x/24) &dxz’l’

Th; ki
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Since w(2'g;y) is 1-periodic with respect to x;d, this integral vanishes unless ¢; | coM; and
co | c4Ms. We sum over the terms with the same §; = diag(p®, p?,p" ¢, p"~%) and get

Z Gt(z?:l);,M(cv d) /
U(

0<c,d<r
P4 My ,p??—"| Mo

w(z'giy)e (—pd*cMﬂc'H - pT’szga;’M) da’.

Evaluating the integral gives

0<¢,d<r
P M1 ,p?d" | M2

Comparing (4.16]) and (4.17) gives the result. O

Theorem 4.10. Let w; € V;; be a cuspidal newform such that A5, (1,1) =1, and p { ¢ a prime.
The Hecke eigenvalues \(p”, 7) of m with respect to T'(p") are given by

Ap, ) =p*?Ag, (1,p),
A" ) =P (A (1,p") —p 'Am, (L,p" %), r>2.
Proof. Plugging in M = (1,1) to Proposition gives
M)Az (L) = Y A@Az )= Y 60 (e dp*tF Ay, (pP, ).

0<a,b<r/2 0<c<d<r/2
(4.18)

We evaluate &) (¢, d) explicitly. We set Aq := <p ;d>, and partition the sum

6" (¢,d) = Z 6" (¢, d; a), where 6T (¢, d;a) := Z V(Z5),
0<a<pd Th;CS(p")
A(hi)=Aq

and A(h;) denotes the top left 2 x 2 block of h;. Using representatives in (4.13), we rewrite

Sed= ¥ owa= ¥ e(gd)=e(p) T e(G)

ThiCS(pT) ThiCS(p") Th; CS(p")
A(hi):A“ A(hi):Aa A(hi):Aa
The condition BD =0 (mod p") in (4.13)) says
- bip=¢ — abyp~@7¢ byp~d
r E—
p BD = <b2p—c _ abgp_d_c bgp_d € MZ(Z)~ (4.19)

Note that the summation over B depends only on v,(a). We partition the sum with respect to
vp(a). For vy(a) < ¢ — 2, we have

Y eVedag= Y (p) 3 e(YE):o.

0<a<p? 0<v<c—20<a/<pd—" Th;CS(p™)
vp(a)<c—2 (a’,p)=1 A(hi)=Apv

For vy(a) = c¢—1, we have d > ¢ > 1, and

T e ¥ oZ) T A(E) T o)

0<a<p? 0<a/<pd—etl T'h;CS(p") Th;CS(p")
vp(a)<c—1 (a/,p)=1 A(hi)=A,c—1 Ahi)=Ac—1
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The integrality conditions in (£.19) forces p?*! | b3, p? | ba, and p@*+! | byp?=c+1 4 by. Hence

_ 3r—c—2d—1 : _
S e day=—pT Y e b3\ _ )P ifd=1,
7 p%d 0 otherwise
0<a<p? 0<b1,b2,b3<p" ’
vp(a)<c—1 P b3, p?|b2

pd+1|b1pd_c+l+b2

For v,(a) > ¢, the integrality condition in ([{19) forces p? | bg, b3, and p° | by. Hence

b 3r—c—2d ifd=0
r . _ d—c 3 D 5
Z 6( )(Cvd7a)_p Z e(])2d>_{0 .

0<a<p? 0<b1,ba,bs<p” otherwise.
vp(a)>c p|ba,bs
b1
Hence we conclude
p3r if (C, d) — (07 0)’
G(T)(c, d) = _p3r—4 if (C, d) = (17 1),
0 otherwise.
Putting this back into (4.18]) gives the statement. 0

Hecke eigenvalues can also be expressed in terms of local Satake parameters ay, 3, associated
to m. Without loss of generality, assume |oy| > |5p| > 1. Then up to some ordering we have
phn (1) — ap, phe(2:2) — Bp, and ox(p) = px(p,1). By an identity of Shimura [Shi63, Theorem
2|, we have

DA = (1= p*a?) (1 = p*Pape) (1 = pP Py ) TN = p P Bpr) T (1 - p¥P8, M) (4.20)

For convenience, we define ot (p) = 3 + ox(p).

Lemma 4.11. For a prime p{ ¢ and r > 3, the following inequality

)\ T‘*j > p('r—])a’;\"’_(p)
holds for some j € {0,1,2,3}.
Proof. We derive from (4.20]) that
(1—p*Pay 2)(1 = p*2B2) (1 - p*?8,2) Y AP )" = (1 - p*2?) Y (p*%0p) @
r=0

Comparing coefficients gives

AP = AP (gt + By + By7Y) + A AP0, By + oy B+ 1) + A ) et

:p3r/2(a; _ pila;%).

Assume the contrary. Then the left hand side is bounded by

pr‘a#(p) < Ta;f(p)i 2+(r—2)0’7T(p)< 3T/2|OZT* —la’r’—Q
5 =P p =P %

a contradiction. O
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Lemma 4.12. Let w; € V; be a cuspidal newform such that A5, (1,1) =1, p{ ¢ a prime, and
19 € Ng. Then the inequality

plox(®)
|AW1(1,pT)‘ 2 32
holds for some g < r <19+ 5.
Proof. By Lemma [I.11] we have
e pmfr’(P)
>
AP 2 =5

for some rg + 2 < r < rg + 5. By Theorem we have

P¥2 (|Amy (1,p")] + 07 Amy (1,07 72)|) >

and the statement follows. O

4.5 Sp(4) Kloosterman sums

Kloosterman sums for Sp(4) are defined in Section . They generalise in a natural way to the
congruence subgroup I'g(¢). We consider the Bruhat decomposition

Sp) = [[ Guw»  Guw=UuwTU,.
weWw

Let M,N,c € N2, and w € W. Then, if
Yar(werz(c*) tw™) =y (2) (4.21)

for all x € Uy, (R), then the Kloosterman sum

Kl (e, M, N) := > Y ()N () (4.22)

zwc*zeU(Z))\Gw(Q)NTo(q)/U(Z)

is well-defined by an analogue of Proposition If (4.21)) does not hold, we set Kl; ,,(c, M, N) =
0. From Section the Kloosterman sum Kl ,,(c, M, N) is nonzero only if w = id, s4535aq,

535458, Wo.

Now suppose the entries of M = (M;, M3) and N = (Nj, N3) are coprime to q. Considering
the Bruhat decomposition of I'g(q), we deduce that the Kloosterman sum Kl ,(c, M, N) is
nonempty only if

q | c1 for w = 54535q, q | c1 and ¢ | c2 for w = sgsqsa, wo. (4.23)

Meanwhile, the well-definedness condition (4.21)) says that the Kloosterman sums are well-defined

precisely if
2
. C2 .
Ny = MQC—2 if w=s,5854, N1 = Mlc—2 if w = sgs,53.
2 1

Hence the Kloosterman sums are well-defined only if

vg(e1) = vg(c2) if w = sa585a, vg(c2) = 2v4(cr) if w = sg5453. (4.24)
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From the abstract definition in Section the Kloosterman sums Kl ., (¢, M, N) also enjoy
certain multiplicativity in the moduli. We state one particular case. Let ¢ be prime. For
c= (c1,c2) € N?, let ;= g %)c;, j=1,2, and ¢ = (¢}, cy). Then we have

Kly(c, M, N) = Kl <(q“‘1(cl), g()), M, N’) Klp o (¢, M", N") (4.25)

for some M', N’ M",N" € N?2. Moreover, if the entries of M, N are coprime to ¢, then so are
M', N'. From |[DR9§|, we have a trivial bound

Kl (', M", N") < |U(Z)\Gw(Q) NSp(4,Z) /Uy (Z)| < ¢ ch. (4.26)

45.1 Evaluation of Kloosterman sums

For the proof of the theorems in Section[I.3], we compute the following Kloosterman sums:

Klq,sasgsa ((Q7 Q), Ma N) 5 Klq,SﬁSQSB ((Q7 q2)7 M: N) ’
Klgw, ((¢,6%), M,N),  Klgu, ((¢.¢°), M,N) .

We refer to Section [2:2.4] for the Bruhat decomposition.

(i) Consider the Bruhat decomposition for summands in Kl s, sss, ((¢,9), M, N):

1 B B2 B3 —q ! 1 wv/q wv3/q wvi/q
_ 1 B4 Ps 1 1 v1/q
7= 1 q 1
—51 1 1 —’Ug/q 1
Baq  Pava + 1 Pauz — Bava/q+ Piva/q—1/q  [ova+ B3
| Bag Bava+1 Bavg — Psv2/q + va/q Bavs + PBs
- € FO(Q)v
q v2 v3 (2
-B1qg  —pPrve —Bivs — v2/q —Biva+1

with vg, v3,v4 (mod ¢) chosen such that (vs,vy4, (¢q,v2)) = 1, and ((q, v2)?, qug + v2v4) =q.
As vy € T(q), by considering the lower left block, we deduce that vy = 0, and solve 81 =0
(mod 1). The conditions on w3, vs then simplify as (¢,v3) = 1. Considering the second
row, we solve

— 2
Bi= 3" (mod1), Bs=2" (mod1).
q

So the Kloosterman sum is given by

Mov3v?
Kl%sasﬁscx ((qv Q)7Ma N) = Z Z e ( 273 4) =0.

vz(mod ¢) v4(mod q) 4
(v3,9)=1

(ii) Consider the Bruhat decomposition for summands in Klg 45,55 ((¢:¢%), M, N):

1 B B2 B3 —q! 1 —vo3/q? vi3/q?
_ 1 B4 Bs g ! 1 wvis/® via/¢?
v 1 q 1
=5 1 —q 1

—B3q  P2q  Poviz/q+ Pi/q+ Bsvas/q  Pavia/q — Baviz/q —1/q
_ | Bsa Bag  Bavis/q+ Bsvas/q+1/q Bavia/q — Bsvis/q € To(q)
0 q v13/q v14/q 033

-q —pq —pBiv13/q + v23/q —Brvia/q — vi3/q
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(iii)

with v13,v14, v23 (mod ¢?) chosen such that (¢2,v13,v14) = ¢, and (q,v23,v34) = 1, where
v3q = —1)123—2)%1}23. As v € Ty(q), by considering the lower left block, we solve f; = 0
(mod 1). Then, —fjv13/q + va23/q being an integer implies ¢ | ves, so (q,vs34) = 1. Write
v13 = qU}3, V14 = quiy, and By = B} /q, Bs5 = BL/q for some B}, B € Z. By considering the
second row, we deduce that

Byvis + Bsvas/q + 1, Byviy — Byvis € ¢Z,

PR
__ V14V34

from which we deduce 85 = v],731 (mod ¢), and S5 (mod 1). Writing v = quhs,

= q
the Kloosterman sum is given by
Msvy U35 + No|
Klq,8ﬁ5a8[3 ((Q7 q2)7 M7 N) = Z € < 14 14 )
! ’ ! q
V]3:V]4,V93(mod q)
(q’v/137U/14):1
(g,v34)=1
where v34 = —(v}3% + v),vh3). We evaluate
Mosv! 031 + Nov! Nov!
S R S ) Rt D S 0

v} 4,055 (mod q) v 4,0] 4,053 (mod q) q v)3,0]4(mod q) q

(gv13)=1 (a.:v14)=1, (q,v34)=1 (gv14)=1
Consider the Bruhat decomposition for summands in Kl ((q, ), M, N ):

1 B B2 B3 —q! 1 wva/q w3/q wi/q
_ 1 Bs Bs —q ! 1 wvs/d® v/
v 1 q 1
-6 1 q —va/q 1
Baq  Bova+ B3q  Povs + Bavis/q + Biva/q® — 1/q  Bova — B1/q + Bavia/q
_| Bag  Bava+ Psq Bavs + Bsvis/q + vo/q? Bavs + Bsv1a/q — 1/q r
- S O(Q)v
q () U3 Vg
—B1qg —Brv2+q —pivz +vi13/q —fivs + via/q

with vo,v3,v4 (mod ¢) and w3, v14 (mod ¢?) chosen such that vi3q + vovis — v4g® = 0
(q,v2,v3,v4) = 1, and (¢, v13,v14,v23,v34) = 1, where vo3 = W and vy =
%. As v € Tg(q), by considering the lower left block, we deduce that vy = 0,
and solve 51 = 0 (mod 1). The last row being integers implies that ¢ | v13,v14. Write
v13 = qv’lg, via = qui,. The relation vi3q + vov14 — v4g® = 0 says U/13 = v4. We check
that g | ves as well, so (¢,v34) = 1. Write 84 = 34/q, 5 = B5/q for some ), 5L € Z. By

considering the second row, we deduce that

)

Bivs + Bivis, Biva+ Biviy — 1 € ¢Z,

from which we deduce 85 = v3v3z (mod g), and S5 = ¥4 (mod 1). The Kloosterman

q
sum is given by
Msv3T31 + Nav
Klgw, ((¢:6°), M,N) = Y e ( 1,
’ q
1)3,1)4,1)14(1‘110(1 q)
(q’v3yv4):1
(q,v34)=1

— an 2
where v34 = v3vy,4 — vy.
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Fix vy, vf, # 0. As v # 0 varies, U3vs34 = v}, — v303 runs through nonzero residues except
v}, modulo g; hence, as vs varies, v3vU3s runs through all residues except v}, modulo g.

Hence
Mavszz + Novj Mauvl, + Navj
Z . ( 2v31}34q+ 21114> _ Z . < 2014;‘ 21)14) — (g —1)S(Ms, Na; q).
v3,04,0] 4 (mod q) v4,0] 4 (mod q)
(Q7U4)=17 (q,vi4)=1 (qvv4):1
(q,v34)=1 (g,014)=1
If vy # 0 and v}, = 0, then vsy = —v3. The corresponding part of the sum becomes

— Mov=v12
T e(zv?m):o_
q

v3,v4(mod q)
(q,'l)4):1

Meanwhile, for vy = 0, we have v}, # 0, and v34 = v3v},, so vsvUzs = v},. Hence this part
of the sum is

Myv',, + Nov!
. e( : 14q i 14) = (¢ = 1)S(M2, N2; q).

v3,v1,(mod q)
(qv3)=1
(g,v14)=1

Combining the parts above, we conclude that Kl ., ((q, q*), M, N) =0.

Consider the Bruhat decomposition for summands in Kl ., ((q, @), M,N ):

1 B B2 B3 —q ! L wafq w3/q  va/q
y= 1 B Bs —q? 1 vis/¢® via/d
1 q 1
-p1 1 7 —vg/q 1
Baq  Bava + B3q*  PBovs + Baviz/q + Biva/q® —1/q PBova — B1/q? + Bavia/q
| Bag  Bave+ Bs5¢? Bavs + Bsvis/q + va/q? Bavs + Bsvia/q — 1/¢? r
- € 0<q)7
q ()] U3 V4
—Big  —Bivs + ¢* —Biv3 +v13/q —B1va + v1a/q

with ve,v3,v4 (mod ¢) and wvi3,v14 (mod ¢?) chosen such that vi3q + vovig — v4¢° = 0,
(q,v2,v3,v4) = 1, and (¢, v13,v14,V23,v34) = 1, where vy3 = %
w. As v € Ty(q), by considering the lower left block, we deduce that vy = 0,
and solve 51 = 0 (mod 1). The last row being integers implies that ¢ | v13,v14. Write
vi3 = qulg, via = qui,. The relation vi3q + vavis — vag® = 0 says vj3 = vsq. We check
that g | vz as well, so (q,v34) = 1. Write B4 = B8} /q, 85 = B4/q* for some B}, B € Z. By
considering the second row, we deduce that

and vy =

Bivsq + Bivis, Bivag + BEviy — 1 € ¢°Z,

from which we deduce 3% = v3v31 (mod ¢?), and S5 = ”3;;@ (mod 1). The Kloosterman
sum is given by

Kl(l,wo ((q7q3)7Ma N) = Z e (

vs,va(mod g), v, (mod ¢)
(q,'Ug,'U4):1, (q77~)34):1

Mv3v3g + N20'14>
q? ’

— an 2
where v34 = v3v], — viq.
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Fix v4 # 0. Then from (g, vsz4) = 1 we have (g,v},) = 1, and vz # 0. For a fixed v, we
see that as vs varies, Uzvsy = v), —vZﬁq runs through nonzero residues modulo ¢? that are
congruent to v}, (mod ¢), except v},; hence, as v3 varies, v3U34 runs through all residues
modulo ¢ that are congruent to v}, (mod q), except v},. Hence

M3tz + Not, Maov), + Nov)
Z . ( 21}3v34;r 2014> _ Z . ( 2V 4 J; 21114) — (g —1)S(Ms, No; %).
v3,v4 (mod q) q vg(mod q) q
4 (mod ¢?) v}, (mod ¢?)
(qv3)=1, (q,v4)= (g,va)=1, (q,v74)=1

(gv14)=1, (g, v34)

Meanwhile, for v4 = 0, we have (g,v},) = 1, and v34 = v3v],, so v3U314 = v},. Hence this
part of the sum is

Mov'! , + Nov!
Yoo« () = (¢ — 1)S(Ms, Na; q).

vg(mod Q) a
’1 ( od ¢?)
(q,v3)=1, (g,v]4)=1

Combining the parts above, we conclude that Kl ., ((q, ), M, N) =0.

4.6 Poincaré series and the Kuznetsov formula

Let E : Ri — C be a fixed function with compact support, and X € Ri a “parameter”. We
define

EX) (y1, 1) = E(X1y1, Xaya),
and a right K-invariant function FX) : Sp(4,R) — C by

FO(ay) = () BN (y(y)) (4.27)

for x € U(R) and y € T(R4.), where ¢ = 101 1 is as in ([4.I). For N € N2, we define the Poincaré
series of level ¢ to be

POy = Y FOWN)ay).

YEPoNTo(q)\T'o(q)

Note that F)(u(N)zy) = ¢n(2) EX)(Ny(y)) = ¢y (z)E(XNy(y)). For w € W, let G,y =
UwTU, and I, := U(Z)Nw™*U(Z) "w. Let R,(q) be a complete system of coset representatives
for Py N To(¢)\l'o(q) N Gu/T-

We compute the Fourier coefficients of the Poincaré series:

/ P 2y @)de
U(Z)\U(R)

D SR N e e T
y€PoNLo(g)\L'o(q) U@\U(R)

BV / ) ((M)ylry) i (@) da

WEW ~ERw(q) Ll Y VEN\UR

= Z Z Kl (e, M N)/ F) (M) cFway) by (z)de.

weW ceN2 Uw(R)

For fixed y, it follows from Lemma [£.I] and E having compact support that the c-sum runs
over a finite set, and U, (R) runs over a compact domain. In particular, the right hand side is
absolutely convergent.
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Now let @ be an automorphic form in the spectrum of L?(To(q)\ Sp(4,R)/K), not necessarily
cuspidal. By unfolding, (4.8) and a change of variables ¢«(NN)y — y, we obtain

)= Lo Lo SN BTN ey = N1Aw(V) (W, B)
TR) JU@Z\UR

By Parseval, we obtain

(P} = e | A A=(0 |(1 50)

Meanwhile, unfolding the inner product directly gives
(PO, PO / / P (-0 BTNy )y
T(Ry) Z)\U(R
= > Y Klgu(e, M,N) /

/ FOO (M)t wary ) (~2) E(XN -y (g))dad"y.
WEW ceN? T(R+) JUw(R)

Now define
A=y (XM)Fw(XN) ™ = ,((XM) - “(XN))c* € T(R,). (4.28)
Then y(A)7cico = ((XM) - “(XN))". By change of variables (X N)y + y, t( X N)zi(XN) !

T, We can express <PJ§/‘IX ), P](VX)> as

(X M) X, L Awz 1 rd*
S S Kly(e, M, Ny BN /T . /MR)F ((X) Away b1 (—2) By () dad"y.

e Mt c1e9 y(A)n

We then conclude a Kuznetsov-type trace formula.

Lemma 4.13. Let M, N € N2>, X € R?, E a function on Ri with compact support, and define

F&) as in . Then
[ 2
/ A (M)Aw(N) ’<W#,E(X)>‘ dw (4.29)
(@)

B (X 1 CNT T o
=3 S Kt MV [ [ PG00 ) (<) B e

wWEW ¢eN2

with A as in (4.28)).

4.7 Proof of theorems

We establish the following proposition, from which the other theorems are proved.

Proposition 4.14. Keep the notations above. Let m € N be coprime to ¢ and Z > 1. Then
| 1Acm) 2 22708 _crdee <1
(9)

uniformly in mZ < ¢? for a sufficiently small implied constant depending on I.
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Proof. We take X = (1,Z), M = N = (1,m), and apply Lemma By Lemma , there is
a finite set of compactly supported functions F; such that

Z2mt20n(05, e 3 ‘<Wu, E](.X)>‘2. (4.30)
J

Now we consider the arithmetic side of the Kuznetsov formula for a fixed E(X) = E](-X). It
suffices to consider the Weyl elements w € W for which the Kloosterman sum Kl ,(c, M, N)
does not vanish, namely, w = id, 545554, 35053, Wo.

For w = id, we have ¢; = ¢ = 1, and hence the contribution is O(Z?"2) = O(Z3).

Now let w € {s4585q, 585058, wo}. Apply Lemmawith B = (XM)-"(XN). Concretely, we

set
(mZ,1) if w=5,585q,

By, By) =
(B1, Bz) {(1,(mZ)2) if w = 55453, wo.

Then we obtain

mZ if w = s4538a,
c <K BlB;/2sz, c2 L B1By = {( AT e
m I w = 55sa55,w0.

We assume mZ < ¢ with a sufficiently small implied constant, such that
c1,c9 < ¢° for w= 545835, and ¢1 < ¢2,¢p < ¢* for w = 585453, Wo (4.31)

always hold. Now we consider the Kloosterman sums

Kly(c, M, N) = > u(z)Pn ('),

zc*wz' €U(Z)\Gw (Q)NTo(q)/Uw(Z)

where the entries of M = (Mj, M) and N = (Ny, N2) are coprime to ¢q. The Kloosterman sums
are nonzero only when (4.23)) and (4.24]) are satisfied. By (4.25), (4.26) and (4.31)), the problem

reduces to computing the Kloosterman sums

KIQ»SaSBSa ((Q7 Q)v M7 N) ’ KI(LSBSQS,B ((Q7 q2), M, N) )
Klq,wo ((q,qZ),M, N) ’ Klq,wo ((Q> q3)aM7 N) .

From Section we see that only Klgs,s,ss ((q, q?), M, N) does not vanish. So only w =
538455 contributes.

The next step is to estimate for w = sgs,sg the integral

/ / FOO((X) Away)ipx—s (—) By () ded*y
T(R4) JUw(R)

< /T - / o B A B )

This integral is bounded by the size of the set of x € U,(R) such that y(Awzy) lies in the
support of E. Using Lemma [£.I] and Lemma [£.3] we deduce that

[ PO gy (<) B )ddy
T(R+) /Uuw(R)
< vol {1 € Uy(R) | Aa(wn) < y(An v}, Aale) < y(A) (A2} < y(A)0+)
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So the contribution from w = sgs, 53 is given by

2n .
> Klgu(e, M, N)X/ / FO (X)) Away)ipx -1 (—a) E(y (y))dwd"y
e cie2y(A)" Jrwy) Ju,m®)

Z2n2 A)E
< Y. ZVAS g
cy<<mZ/q

Combining the estimates with (4.30)), we obtain

2
/()|Aw(1,m)\2ZS+2”“(°°)5,\w€1dw <<I/ |Ap(1,m)? ‘<W#,E(X)>) dw <. Z3¢°.
q

(9)

Dividing both sides by Z?3 yields the theorem. ]

Proof of Theorem[I.7) It follows easily from Proposition [£.14] Theorem and the estimate
([4.15) that

Z ‘)\I(m,ﬂ)‘2 ZQO’W(OO) <. q3+a/ ‘Aw(l,m)‘Q Z2a7r(oo)5)\w€1 <<I,s q3+£_ ]
wE€F(q) (a)

Proof of Theorem[1.5 This is just a simple variation of the proofs above. Again we have

> | X amyen <o [ | Y atmasn] o ez

r€Fr(q) m<w (9) m<z
(m7q):1 (m7q):1

—¢* Y almya(m) /( Aw(M) A2 (M) i

mi,ma<z
(mima2,q)=1
where M = (1,m), My = (1,m1), M2 = (1,m3). Now we apply Lemma [£.13| and evaluate the
Kloosterman sums on the arithmetic side. For w # id, apply Lemma with B = M; - “M,.
We get
K (mlmg)l/2 <z, co<mi <z for w = sq585q,

< (mlmg)l/2 <z, g <<mimg<z? forw= 5853, Wo.

Note that when x < ¢ with a sufficiently small implied constant, the condition (m,q) = 1
is void, and we deduce from (4.23)) that the Kloosterman sums Kl ,,(c, M, N) are empty for
w # id. Hence only the trivial Weyl element contributes, and we obtain the desired bound. [

Proof of Corollary[1.6. Note that the renormalisation X (m, 7) := m™3/2\(m, 7) moves the crit-
ical strip to 0 < Res < 1. Observe that for 7 € F7(q) an approximate functional equation has
length ¢'/2 (see [IK04, Section 5]). So, for all but O(1) cuspidal representations © € Fr(q) (and
e < 1/2) we have

) 1 2
IL(1/2+ it 7)) <rpe ¢ Z M’ Z /\;(m)‘ )
2i=M<ql/2+e M<m<2M
The statement then follows from Theorem .3 O
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Proof of Theorem[I.5 We first assume v = p # ¢ is a finite place. We choose 1y maximal
such that p*0 < ¢? with an implied constant that is admissible to Proposition Then by
Lemma and the estimate (4.15)), there exists 19 — 5 < v < g such that

|Aw(1,puﬁ)|2 > q737€p2uﬂaﬂ(p)'

Note that p¥= =< ¢?. We apply Proposition with m = p¥7, Z = 1, and conclude that

2vrox(p)

(O’ f] Z p 2,/”0 3 40’+5/ Z ‘AW<17PV)‘2 5Awe1 <o q3740'+5_

WE]:[(q) l/o 5<v<ig

For v = oo, we use the estimate (4.15]), apply Proposition with m = 1, Z <« ¢?, and
conclude that

(0, F1(q)) < Z Z20n(00)=20 q340+s/ | Ao (1, 1)|2 7207 (c0) <Lle q3f4o+€‘ ]
weF1(q) (@)

4.8 Appendix: Computation of Fourier coefficients

In this appendix, we outline an algorithm for computing arbitrary Fourier coefficients of a cus-
pidal newform w; € V; with A, (1,1) = 1. For this purpose, it suffices to compute the actions

of T'(p) and TO(,21) (p), which generate the Hecke algebra. By Proposition H we compute

A(p, ©) Ay (M1, Ma) = p*? (A, (M1, pMa) + A, (0~ "M, pMa) + A, (pM1,p~ " Ma) + Ay (M1, p~ ' Ma) ),

if p| My if p| M2

(4.32)
and if p 1 My,

(/\E)?%(Pv ) 4+ 1) A, (M1, M) = p* (A, (pM1, Ma) +Ags, (p~ ' My, p* Ma) + A, (p~ ' My, Ms) ). (4.33)

if p| My

We proceed to show how the Fourier coefficients A, (p*,p*?) are obtained. Starting from
An, (1,1) =1, we apply (4.32) and (4.33]) with M = (1,1) and solve the coefficients

Ay ) =72 (M D) +1) ) Az, (Lp) =p7*2A0).

)

Inductively, suppose the Fourier coefficients Ay, (p*',p*?) are known for all ky + ko < 7.
For 0 < k < r, applying (£.32) with M = (p¥,p"~¥) yields the coefficient A, (p¥,p"~*+1).
Then, applying with M = (p",1) yields the coefficient Ay, (p**!,1), since the coef-
ficient A, (p"~!,p?) has already been determined. This shows that the Fourier coefficients
A, (p*, p*2) with k1 + ko < 7+ 1 can be expressed in terms of \(p) and /\é? (p), finishing the
induction.

Writing X := p~3/2\(p,7) and Y := p—2 </\(()2% (p,m) + 1), the Fourier coefficients A, (p*t, p*2)

for small k; are computed in the following table:
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—~
T

—_
o

A, (P, p*)
1
X
Y
X2-YvY -1
XY - X
—X24+Y2%2+Y
X3 —2XY - X
XY - X2-Y?2-Y+1
X34+ XY24+ X
—2X2Y +Y3+ X2 +2Y2 -1
X4 —-3X2%Y — X?24Y242Y
X3y — X3 —2XY? 42X
— XY+ X2Y?2 4 X2V —Y? +2X2 —2Y?
—2X3Y + XY34+2X3 4+ XY?2 -2X
X4 —3X2Y2 Y4 4+3Y3 - X2 +Y2-2Y
X5 —4Xx3Y — X3 4+3XY?2 4+4XY - X
XY - X*—3X2Y2 4+ X2V + V34 2X24+2Y2 -V — 1
— X%+ X3Y?2 4 2X3Y —2XY3 +2X3 —2XY?2 - X
—2XYY + X2Y? 42X +3X2Y?2 —Y4* 4+ X2V —3Y3 —4X2 Y242V +1
X? —3X3Y?2 + XY* +2X3Y +2XY3 —3X3 —2XY +2X
3XYY —4X?Y3 +Y® —2X* —3X2Y2 4+4Y* +3Y3 +3X2 -3Y2 -2V

~—

= OO R N W R OFNWORFDNO - O

w
e N N N e e e e e e e e e N N e e e N e

S =N

AN AN AN AN AN AN AN AN N N N N N N N N S N N S
QU W NN Ok W, OWNNRHF,ONRFEOFROO

From Theorem we obtain A(p?,7) = p3(X2 —Y — 1) — p?. Hence the Fourier coefficients
can also be expressed in terms of eigenvalues A(p", 7) of standard Hecke operators.

It is evident from the Proposition that Fourier coefficients are multiplicative, that is,
Ag, (M1N1, MaNy) = Agy (M, My)Ag, (N1, No) if (M Ms, N1 No) = 1. (4.34)

Using (4.34), and (4.14) for negative coefficients, we are able to compute Az, (M) for every
M e Z~.
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