
Inaugural-Dissertation
zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Landwirtschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn
Institut für Geodäsie und Geoinformation

Graph-basedSlidingWindowLocalization
andMapRefinement forAutomatedVehicles

von

DanielWilbers
aus

Rheine, Deutschland

Bonn 2021

Referent:
Prof. Dr. Cyrill Stachniss, University of Bonn, Germany

Korreferent:
Prof. Dr. Ingmar Posner, University of Oxford, UK

Tag der mündlichen Prüfung: 24. September 2021

Angefertigt mit Genehmigung der Landwirtschaftlichen Fakultät der Universität Bonn

Zusammenfassung

Lokalisierung ist ein wesentlicher Bestandteil von automatisierten und
vollautonomen Fahrzeugen. Die genaue Position eines Fahrzeuges wird
benötigt, um Informationen über die Umgebung aus Karten auslesen
zu können. Diese Zusatzinformationen, wie z. B. Verkehrsregeln, wer-

den während der Fahrt als Ergänzung zur Sensordateninterpretation genutzt, um
Funktionen, wie Szenenverständnis und Trajektorienplanung, zu unterstützen.
Thema dieser Arbeit ist die Entwicklung eines Lokalisierungssystems für das
automatisierte Fahren in urbanen Umgebungen. Der vorgestellte Ansatz nutzt
markante Umgebungsobjekte, sogenannte Landmarken, die vom Fahrzeug detek-
tiert und mit einer Karte abgeglichen werden, um das Auto zu lokalisieren. Eine
besondere Herausforderung ist hierbei die Nutzung von Dritthersteller-Karten-
material. Diese sind üblicherweise nicht auf eine spezifische Sensorkonfiguration
zugeschnitten. Dadurch besteht eine Abweichung zwischen den vom Fahrzeug de-
tektierbaren und den in den Karten verzeichneten Landmarken, welche in dieser
Arbeit explizit berücksichtigt wird. Dies ermöglicht den Einsatz von Dritther-
stellerkarten für Landmarkendetektionen auf Basis unterschiedlicher Sensorik.
Eine weitere Herausforderung bei dem Einsatz von Karten zur Lokalisierung ist,
dass diese im Laufe der Zeit veralten. Dies kann im Rahmen des automatisier-
ten Fahrens sicherheitskritisch sein. Für einen langfristig sicheren Betrieb ist
es daher notwendig, Karten regelmäßig zu aktualisieren. Der vorgestellte An-
satz trägt zu diesem Ziel bei, indem zur Laufzeit Update-Hypothesen berechnet
und an ein Back-End zur Validierung mit Hilfe von Flottendaten übermittelt
werden. Im Mittelpunkt steht hier ein Graphen-basiertes Sliding Window Op-
timierungsverfahren, welches sowohl die Trajektorie des Fahrzeuges als auch die
Update-Hypothesen mit hinreichender Genauigkeit und Effizienz berechnet. In-
nerhalb der Arbeit wird erläutert, wie sich die Faktoren des Graphens bestimmen
und die Karte als A-Priori-Verteilung einbinden lassen. Das Verfahren fusioniert
Landmarkenmessungen unterschiedlicher Sensorik, wie z. B. LiDAR und Kamera,
zusammen mit GNSS- und Odometriedaten. Zusätzlich wird ein neues Verfahren
vorgestellt, welches erlaubt die Informationen von zeitlich veralteten Messungen
im Optimierungsverfahren zu erhalten. Die vorgestellten Verfahren werden aus-
führlich anhand von realen Daten eines automatisierten Fahrzeuges evaluiert.

v

Abstract

Localization is an essential task in automated driving and advanced
driver assistance systems. The precise location of a vehicle is required
for extracting information from a map about the vehicle’s environment.
The map information is typically used to enrich the perceptions of the

vehicle using its sensors to ease tasks such as scene understanding or planning.
This thesis investigates the challenge of creating a localization framework for
automated driving in urban scenarios. Our localization approach relies on de-
tecting distinct elements, so-called landmarks, in the vehicle’s surroundings and
aligning them to a given map to infer the vehicle’s location. A particular challenge
that we investigate is using general-purpose landmark maps from third-party dis-
tributors for localization. These maps are typically not tailored towards a specific
sensor setup or the vehicle’s direct sensor configuration, such that the third-party
map is not tuned to what the vehicle is able to detect. We explicitly consider this
challenge within our approach. In return, our approach allows for using landmark
detections from different sensors with a single general-purpose map for localiza-
tion. Another fundamental challenge of map-based approaches is that maps are
getting outdated over time, which is a safety-critical aspect of localization for
automated driving. Therefore, it is necessary to establish a reliable update pro-
cess for successful long-term operation. We contribute to that goal by computing
map update hypotheses during operation that could be transmitted to a server
back-end for fleet-based validation. We solve localization and map refinement
in a combined approach that uses graph-based sliding window optimization to
estimate the vehicle’s trajectory and landmark positions in an accurate and com-
putationally efficient way. We describe how to construct our approach as a factor
graph and derive its necessary factors to model the map landmarks as a prior over
the landmark detections. Our approach fuses landmark detections from various
sensors, e.g., LiDAR and camera, together with odometry and GNSS measure-
ments. Additionally, we present how to compute sparse global priors, a novel
sparsification scheme that allows us to preserve information that we remove from
our sliding window without the drawbacks of dense marginalization. We thor-
oughly evaluate our approach based on real-world data and trajectories recorded
in an automated vehicle.

vii

Acknowledgments

First of all, I would like to express my gratitude for receiving the chance to write
this thesis as an external Ph.D. student of the University of Bonn at Volkswagen
Group Innovation. For that, I would like to thank my supervisor Professor Cyrill
Stachniss for his excellent support and guidance. I am especially grateful for
giving me the freedom that allowed me to flourish my own ideas, as well as the
fruitful and open discussions. I could not have hoped for better supervision.

I would like to thank Christian Merfels, without whom I would not have had
the opportunity to write this thesis in the first place. Our discussions were always
a pleasure and vastly helped me in producing new concepts and realizing them.
Thank you very much to the whole Photogrammetry & Robotics Lab. I always
felt welcome in Bonn and enjoy remembering meeting everyone at conferences.
Special thanks to Olga Vysotska for proof-reading my papers and parts of my
thesis. I deeply appreciated the open and honest feedback. My sincere thanks to
Birgit Klein for her kind and caring support.

Likewise, I would like to thank my colleagues and friends Bernd Rech, Nik-
las Koch, Constanze Hungar, Christian Merfels, Thilo Schaper, Stefan Jürgens,
Christopher Plachetka, Jenny Fricke, and Andreas Kwoczek not only for their
support but also for making my Ph.D. time a true pleasure. Special thanks to
Bernd Rech for providing his professional perspective and valuable advice.

Additional thanks to my colleagues and supervisors at Volkswagen Group Re-
search for keeping up the team spirit and providing a friendly work environment.
Many thanks to Henrik Bohlke and Lars Rumberg for collaborating with me and
the group.

Most heartwarmingly, I would like to thank Juliane Spieker for always being
there for me.

Last but not least, I would like to deeply thank my family for their uncondi-
tional care and support since I can remember.

ix

Disclaimer

The results, opinions, or conclusions of this dissertation are not necessarily those
of the Volkswagen AG.

Ergebnisse, Meinungen und Schlüsse dieser Dissertation sind nicht notwendiger-
weise die der Volkswagen AG.

xi

Contents

Abstract vii

Acknowledgments ix

Contents xiii

1 Introduction 1
1.1 Localization for automated driving 2
1.2 Scope and limitations . 4
1.3 Main contributions . 5
1.4 Publications . 6

2 Related work 9
2.1 Vehicle localization . 9
2.2 GNSS-based localization . 10
2.3 Perception-based localization . 12
2.4 State estimation for localization 16

2.4.1 Robust estimation . 18
2.4.2 Sliding window graphs . 20
2.4.3 Marginalization and sparsification 21

2.5 Maps for road vehicle localization 23
2.5.1 Tailored maps . 23
2.5.2 General-purpose maps . 24
2.5.3 Refining landmark maps 26

3 Fundamentals 29
3.1 Coordinate systems . 29

3.1.1 World reference frame . 29
3.1.2 Vehicle reference frame . 31
3.1.3 Importance of calibration 31

3.2 Landmarks . 32
3.3 State definitions for vehicle localization 34

xiii

Contents

3.4 Graph-based optimization . 36
3.4.1 Probability maximization and error minimization 36
3.4.2 Gauss-Newton algorithm 38
3.4.3 Gauss-Newton on manifolds 41
3.4.4 Handling outliers . 42

3.5 Factor graph representation . 44
3.6 Marginalization . 46

3.6.1 Relation to iterative optimization 48

4 Localization on general-purpose landmark maps 51
4.1 Design principles . 52
4.2 Graph-based sliding window localization 57

4.2.1 Sliding window definition 57
4.2.2 Optimization-based pose estimation 62

4.3 Using third-party landmark maps 63
4.3.1 Third-party maps . 63
4.3.2 Integrating map factors as state priors 64
4.3.3 Map covariance . 65
4.3.4 Impact on Gauss-Newton 67
4.3.5 Map landmarks with angular state components 67

4.4 Data association . 68
4.4.1 Local association . 69
4.4.2 Map Matching . 72
4.4.3 Tuning the weighting parameter η 79
4.4.4 Temporal association smoothing 81
4.4.5 Integration of delayed measurements 82
4.4.6 Delayed associations . 84
4.4.7 Reversible associations . 85

4.5 Error functions . 85
4.5.1 Point-based landmark constraints 88
4.5.2 Orthogonal landmark constraints 88
4.5.3 Fully constraining the sliding window graph 90

4.6 Time synchronization . 92
4.7 Particle filter vs. sliding window graphs 94
4.8 Summary . 97

5 Delayed map refinements 99
5.1 Refining maps for automated driving 99
5.2 Adding, modifying, and deleting landmarks 100
5.3 Estimating landmark positions 102

5.3.1 Selecting suitable landmarks 103

xiv

Contents

5.3.2 Sliding window marginalization 104
5.3.3 Calculating the marginalization prior 106
5.3.4 Sparsifying the marginalization prior 108
5.3.5 Computing sparse global priors 110

5.4 Summary . 111

6 Experimental Evaluation 113
6.1 Dataset description . 114

6.1.1 Sensor setup . 114
6.1.2 Odometry evaluation . 119
6.1.3 Landmark detectors . 123

6.2 Localization on a third-party map 128
6.2.1 Key parameters . 128
6.2.2 Incorporating a general-purpose third-party map 129
6.2.3 Localization accuracy . 132
6.2.4 Outages and availability 133
6.2.5 Runtime . 137

6.3 Particle filter vs. sliding window graphs 143
6.3.1 Runtime behavior . 144
6.3.2 Accuracy . 146
6.3.3 Estimating past poses . 148

6.4 Implications of including low-cost GNSS 148
6.5 Impact of our data association strategy 150
6.6 Delayed map refinements . 150

6.6.1 Approximating marginalization with sparse global priors . 151
6.6.2 Global vs. local linearization vs. our approach 153
6.6.3 Conservative estimates . 154
6.6.4 Sparsity pattern and accuracy of landmark additions . . . 154
6.6.5 Modifying map landmarks 156

6.7 Summary of the evaluations . 159

7 Conclusion 161
7.1 Short summary of key contributions 162
7.2 Limitations, outlook, and discussion 163

Acronyms 168

Bibliography 170

List of Figures 192

List of Tables 195

xv

Chapter 1

Introduction

Automated driving is a technology that will have a drastic impact on
our everyday life. While the applications span from individual and
public passenger transportation to industrial logistics, the benefits of
automated vehicles are numerous. On a macroscale, the main public

advantages are increased road safety for traffic participants and potentially more
environment-friendly driving. Besides that, on a microscale, individual benefits
include increased mobility, efficiency, and comfort.

Starting decades ago with simply the vision in mind, researchers have tackled
many different aspects of automated driving (e.g., Tsugawa et al. (1979) and
Dickmanns et al. (1990)). Nowadays, advanced driver assistance systems (ADAS)
with a limited level of autonomy, like automated emergency braking and assisted
steering, are already commercially available (e.g., Volkswagen AG (2017) and
Tesla, Inc. (2018)). Nevertheless, with the increasing level of autonomy, new
challenges arise that still must be solved. As the responsibility of the system
grows, automated driving functions must be more failsafe, more robust, and more
reliable than before. This imposes new requirements on hard- and software, which
are being tackled in recent research.

A promising approach for alleviating the challenges of software modules in-
volved in automated driving is to use knowledge based on a given map. If the
vehicle knows its location relative to a map, it can enrich its environment model
with information from this map. For example, in blocked line-of-sight scenarios,
objects like crosswalks and traffic lights that can not be detected directly with the
vehicle’s sensors can still be incorporated into the decision-making by extracting
them from a map. Comparable to the experience of a human driver, map-based
approaches model prior knowledge about the environment and thus help to over-
come sensor limitations. Hence, improved anticipatory driving is possible, which
contributes to the safety and reliability of automated driving. For map-based ap-
proaches, it is crucial that the vehicle can estimate its location within the map.

1

1.1. Localization for automated driving

This ability is referred to as self-localization and is the main focus of this thesis.

1.1 Localization for automated driving
Besides the conventional use of self-localization in navigation systems, know-
ing the vehicle’s location is a prerequisite for many different applications. For
example, it is used in augmented reality windscreens that provide information
about the vehicle surrounding to the passenger, as well as in cooperative driving
functions. Within automated driving, the vehicle’s location is frequently used
for perception, prediction, and trajectory planning, which all benefit from using
information from a given map.

In general, a vehicle’s location is defined as its pose, which is the vehicle’s
position and orientation. In the context of this thesis, we perform map-relative
localization on a globally accurate map, such that our estimated pose is also
in a global reference frame. Compared to other mobile robotic applications,
where the coordinate system is usually local, using a global frame is preferable
in automated driving. It allows the direct substitution or supplementation of
other global localization approaches (e.g., satellite-based localization). Besides,
it eases the integration of other globally referenced information sources, like other
complementary navigation maps or traffic data.

A popular approach to global localization is using one or multiple of the
available Global Navigation Satellite Systems (GNSS). Depending on the region,
different variants are applicable. Besides GLONASS, BeiDou, Galileo, and QZSS,
the most common one is the Global Positioning System (GPS). A classical GPS
setup with one antenna is able to provide a position estimate within a meter-
level accuracy. Using a real-time kinematic (RTK) system with two antennas
drastically improves the accuracy to a centimeter-level and additionally provides
the vehicle’s orientation. This is achieved by incorporating atmospheric correc-
tion data provided by a nearby base station. Nevertheless, a major drawback
of satellite-based approaches is that they only work optimally in open sky scen-
arios. Whenever multipath or blocked line-of-sight effects occur, the achieved
accuracy and precision are typically heavily degraded. In extreme cases, localiz-
ation might even not be possible at all. As this is typical in urban scenarios, like
parking garages and street canyons, localization with GNSS alone is not sufficient
for automated driving.

Another well-known approach to localization is called landmark-based localiz-
ation, which has a long tradition, e.g., through geodetic observing towers built for
triangulation networks (Agarwal et al., 2014a). Thrun et al. define a landmark
as ‘[…] distinct, stationary features of the environment that can be recognized
reliably’ (Thrun et al. 2005, p. 21). The general idea is to detect landmarks at

2

Chapter 1. Introduction

runtime in the vehicle and match the set of observed landmarks to a predefined
landmark map. Whenever the map is globally referenced, so is the inferred vehicle
pose. In that case, landmark-based localization can directly be used complement-
ary or supplementary to GNSS. To detect landmarks in the first place, different
kinds of sensor technologies are applicable. The most common ones are LiDAR,
radar, and camera. Incorporating multiple sensing modalities in a single localiz-
ation approach is crucial for the robustness against sensor faults. It enables the
system to robustly work in different environment scenarios, like highways and
cities.

A requirement within automated driving is that localization systems must
work at first operation. For landmark-based localization this implies that the
globally referenced landmark map must be available at startup and can not
be created on-the-fly. Nowadays, an initial map is usually created in a semi-
automated process that requires a special mapping drive with another vehicle.
Creating landmark maps still involves much manual effort to filter out dynamic
objects and label data, which is why it is resource expensive. Comparable to
navigation maps, it is necessary that only one common initial map is required
for a whole fleet of vehicles. Ideally, the initial map can be used in a general-
purpose fashion in combination with various sensors, which we investigate in
this thesis. Perspectively, third-party mapping companies will be able to provide
these highly accurate initial landmark maps on a large scale. These third-party
landmark maps are typically not tailored towards a specific sensor setup or a
vehicle’s sensor configuration but are instead created as general-purpose maps.
As an effect, the elements of general-purpose third-party maps are not tuned to
what a specific vehicle is able to detect with its sensors, which is a challenge that
we investigate within this thesis.

A fundamental challenge of any map-based localization is that they suffer from
maps getting outdated over time. Leading to degraded accuracy and possibly
complete failure, maintaining the landmark map is a key challenge for the long-
term functionality of landmark-based localization systems. One approach for
updating maps is to rely on over-the-air updates, which are either based on fleet
data or manually engineered. To keep updating maps manageable in large-scale
applications, it is beneficial to compute the map updates in an automated fashion.
A requirement for this is that vehicles can transfer their recorded data to a back-
end service. Thereby the amount of data that needs to be transferred is ideally
as small as possible. The most expressive form would be to transmit the raw
measurements to the back-end, which is unfeasible for over-the-air communication
due to the large amount of data. As a part of this thesis, we investigate the
challenge of estimating hypothesis for landmark updates directly on-board within
a vehicle. Our approach reduces the amount of data transmitted to a back-end.

3

1.2. Scope and limitations

In general, a localization system for automated driving must be designed to

• work in a variety of scenarios independent of the environment,

• applicable to a broad range of sensor setups,

• support third-party maps,

• and provide long-term operability through refining its map,

which brings us to the key question of this thesis: How can we design a multimodal
landmark-based localization system that works with third-party maps and can
estimate in-vehicle map refinements?

1.2 Scope and limitations
In this thesis, we investigate how to design a landmark-based localization system
for automated driving. We utilize graph-based optimization techniques for es-
timating the vehicle trajectory within a sliding window and explain the necessary
steps for the state estimation. This covers an in-depth description of how we
solve data association, construct the graph, and define the involved error func-
tions. Our center of interest is on adapting graph-based optimization to a sliding
window paradigm such that it is computationally fast enough for automated driv-
ing and incorporates general-purpose third-party landmark maps. In addition, we
investigate how to incorporate measurement data outside of the sliding window
through marginalization.

We do not investigate the optimization itself but instead rely on well-known
algorithms. We discuss the advantages and disadvantages of graph-based optim-
ization compared to particle filters and evaluate both approaches against each
other.

Our system does not rely on specific sensors for landmark measurements but
instead incorporates landmarks in a general way, which allows us to incorporate
measurements from various sensor sources flexibly. Mainly these include land-
marks from LiDAR, radar, and camera. We do not investigate how to design a
detector for landmarks but rely on already available modules. This specifically
means that we cope with landmark detectors as if they are black boxes, which is
beneficial for easily changing detector modules with different sensor setups and
vehicles. Although the concepts presented in this thesis are in general applicable
to 3D poses, we limit ourselves to estimating the vehicle’s global 2D pose. This is
sufficient for our use case of automated driving in urban scenarios as our vehicle
moves on a ground plane and map information is stored relative to the ground.

While our primary focus is on the localization itself, i.e., estimating the global
vehicle pose, we also investigate how to estimate the position of landmarks for

4

Chapter 1. Introduction

delayed map refinements. We use the latter as update hypotheses that can be
transmitted to a remote back-end service, which in this context is an application
running in the cloud. We conceptually discuss how a back-end side could be
integrated into our localization system but do not cover the remote back-end
service itself. In the context of automated driving, it is essential to minimize the
risk of defective updates, which could potentially have a safety-critical impact.
Therefore, we only update the map after a back-end service has validated the
update hypotheses. This is in contrast to standard simultaneous localization and
mapping (SLAM) systems that continuously generate and update a map. We
use the term delayed map refinement to emphasize that we do not immediately
update the map but first conceptually wait for back-end validation.

In detail, our localization system must be able to fulfill a set of requirements
to be applicable for automated driving. Our localization system must be

• highly accurate, whereas the intended minimum average Euclidean error
depends on the driving scenario,

• incorporate landmarks in a universal way, such that multiple sensor mod-
alities can easily be integrated,

• computationally tractable for online localization,

• provide pose estimates with a frequency between 10 Hz to 20 Hz, depending
on the scenario,

• rely on general-purpose landmark maps whenever available,

• fallback to a general-purpose fusion of GNSS and odometry otherwise,

• and estimate conservative in-vehicle map refinements as update hypotheses
that can be transmitted to a back-end service.

In the remainder of this thesis, we investigate how to fulfill these requirements.

1.3 Main contributions
The main contribution of this thesis is the design of a graph-based localization
system suitable for automated driving addressing the criteria mentioned above.

At first, we contribute to adapting graph-based optimization such that it is
suitable for automated driving. We show how to separate data association into
local association between landmark measurements and global association to a
given general-purpose map. Together with a temporal association smoothing,
our system can successfully revise map associations and perform delayed associ-
ation. In relation to computational tractability, we employ a sliding window over

5

1.4. Publications

vehicle poses that limits the size of the state vector. In return, this limits the
computation time required for our localization approach. Overall, our architec-
ture contributes to having a frequent and globally accurate self-localization. We
analyze our approach’s properties and provide an in-depth evaluation with the
main focus on urban scenarios.

Second, we contribute to using general-purpose third-party landmark maps
within localization for automated driving. We introduce a map matching al-
gorithm that allows us to use landmark maps that are not tailored to a specific
sensor setup. This is essential for the flexibility of our localization system. It
allows us to incorporate landmark measurements from various sensors without
adjusting our localization approach.

Third, we examine how to limit the loss of information when removing meas-
urements from the sliding window. We derive sparse global priors that approxim-
ate dense marginalization to capture removed information. Our approach avoids
marginalization fill-in in the graph and has the same sparsity pattern as without
marginalization. Additionally, we show how to utilize global linearization points
instead of local ones and evaluate the benefits.

Fourth, we show that our sparse global prior approach contributes to com-
puting conservative estimates for landmark updates with our online system. Our
focus is on computing update hypotheses, which are send to a back-end service.

Fifth, we derive the error functions required for different types of landmarks.
This includes point landmarks and polyline-based landmarks, which require par-
ticular focus in relation to having a full rank optimizable system and ambiguities.
Our contribution is the comparison between the different concepts of landmark
integration.

1.4 Publications
Parts of this thesis have been published in the following peer-reviewed conference
and patent applications:

• Daniel Wilbers, Christian Merfels, and Cyrill Stachniss. A Comparision of
Particle Filter and Graph-based Optimization for Localization with Land-
marks in Automated Vehicles. In Proceedings of the IEEE International
Conference on Robotic Computing (IRC), 2019b

• Daniel Wilbers, Lars Rumberg, and Cyrill Stachniss. Approximating Mar-
ginalization with Sparse Global Priors for Sliding Window SLAM-Graphs.
In Proceedings of the IEEE International Conference on Robotic Computing
(IRC), 2019c

6

Chapter 1. Introduction

• Daniel Wilbers, Christian Merfels, and Cyrill Stachniss. Localization with
Sliding Window Factor Graphs on Third-Party Maps for Automated Driv-
ing. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2019a

Patent applications:

• Positionsbestimmungssystems für eine mobile Einheit. Patent application
at Deutsches Patent- und Markenamt, Germany, DE 10 2018 117 660.0

• Positionsbestimmungssystem und Verfahren zum Betreiben eines Positi-
onsbestimmungssystems für eine mobile Einheit. Patent application at
Deutsches Patent- und Markenamt, Germany, DE 10 2018 133 461.3

• Verfahren zur Aktualisierung einer Umgebungskarte, Vorrichtung für die
fahrzeugseitige Durchführung von Verfahrensschritten des Verfahrens, Fahr-
zeug, Vorrichtung für die zentralrechnerseitige Durchführung von Verfah-
rensschritten des Verfahrens sowie computerlesbares Speichermedium. Pat-
ent application at Deutsches Patent- und Markenamt, Germany,
DE 10 2018 118 215.5

• Verfahren zur Schätzung der Lokalisierungsgüte bei der Eigenlokalisierung
eines Fahrzeuges, Vorrichtung für die Durchführung von Verfahrensschritten
des Verfahrens, Fahrzeug sowie Computerprogramm. Patent application at
Deutsches Patent- und Markenamt, Germany, DE 10 2018 118 220.1

• Verfahren zum Bewerten einer digitalen Karte, sowie Bewertungssystem.
Patent application at Deutsches Patent- und Markenamt, Germany,
DE 10 2020 115 743.6

• Verfahren zum Beurteilen einer Genauigkeit einer Positionsbestimmung ei-
ner Landmarke, sowie Bewertungssystem. Patent application at Deutsches
Patent- und Markenamt, Germany, DE 10 2020 115 746.0

7

Chapter 2

Related work

In this chapter, we summarize the current state of the art and outline the key
points of the main related work relevant to this thesis. We start by relating our
approach to general vehicle localization in Section 2.1. Afterward, we discuss
using GNSS for localization in relation to our work in Section 2.2. Furthermore,
we review perception-based localization approaches in relation to their sensor
and landmark types in Section 2.3. In Section 2.4, we focus on state estimation
techniques for localization. In more detail, we provide an overview of robust
estimation techniques in Section 2.4.1, sliding window approaches in Section 2.4.2,
and marginalization and sparsification approaches related to our map refinement
approach in Section 2.4.3. We categorize the different types of maps used for
localization in Section 2.5 and discuss techniques for landmark map refinement
in Section 2.5.3.

2.1 Vehicle localization
Estimating a vehicle’s pose is required for many different applications in, e.g., aer-
ial, maritime, underwater, indoor, ground, and other environments. While the
imposed challenges on sensors are substantially different, similar mathematical
backgrounds and concepts can be found across all domains. Among the most
common localization techniques for vehicle localization are satellite-aided meth-
ods, ground-based infrastructure techniques (e.g., cell-based, Wi-Fi-based, ultra-
wideband-based, and Bluetooth-based approaches), and map-based approaches
that rely on environmental perception. We refer to the survey of Kuutti et al.
(2018) for a review of the various technologies commonly used in localization for
autonomous driving. In addition to our review, it contains vehicle-to-everything
(V2X) localization approaches and provides further information about the dif-
ferent technologies’ working principles. In contrast to GNSS and map-based
localization, vehicle-to-vehicle approaches highly depend on the number of par-

9

2.2. GNSS-based localization

ticipating surrounding vehicles and vehicle-to-infrastructure approaches on the
availability of costly infrastructure (Kuutti et al., 2018). For these reasons, V2X
approaches are unsuitable for scalable localization within the near future. There-
fore, we focus on GNSS and perception-based localization approaches. Compared
to GNSS-based approaches performing global localization, approaches based on
environment perception estimate poses relative to a map. Nevertheless, map-
relative localization approaches can also be used for global localization whenever
the map is given in global coordinates. The prevalent idea in perception-based
localization is to infer the vehicle location by matching perceived environment
elements to a map. An advantage of perception-based approaches for automated
driving applications is that they allow self-localization in areas with limited or no
satellite visibility, e.g., in parking garages (Houben et al., 2015). Still, the ability
of GNSS to directly compute global poses and its worldwide availability make it
a valuable asset for automated driving. We review GNSS-based localization ap-
proaches and the challenges concerning automated driving in urban areas in the
following section and afterward review perception-based localization techniques.

2.2 GNSS-based localization
The usage of GNSS-based localization has been investigated and enhanced for
many years. Nowadays, GNSS variants like GLONASS, BeiDou, Galileo, QZSS,
GPS are available and commonly used in, e.g., smartphones, navigation systems,
and many more applications. We refer to Teunissen and Montenbruck (2017) for
a comprehensive GNSS overview, including principles, variants, augmentation
techniques, related algorithms, and applications. In the following, we focus on
the related aspects of GNSS w.r.t. localization for automated driving in urban
environments.

While classical GPS setups with a single antenna achieve meter-level accuracy
and only provide estimates of the position, RTK techniques with two antennas
nowadays allow for centimeter-level accuracy and provide orientation estimates
(U.S. Government - National Coordination Office for Space-Based Positioning,
Navigation, and Timing, 2018). The main idea of augmentation techniques like
RTK is to incorporate atmospheric correction data from nearby base stations.
The potential of using RTK for SLAM tasks is, for example, demonstrated by
Klingbeil et al. (2014) and Schneider et al. (2016). They present a computation-
ally efficient and accurate approach that combines vision, IMU, and RTK-based
GPS and is applicable to light-weight unmanned aerial vehicles. A limitation of
GNSS approaches is that they only work optimally under open sky conditions.
The more restricted the satellite visibility, the more challenging it is to compute
accurate and reliable pose estimates. The dominant error sources are non-line-of-

10

Chapter 2. Related work

sight effects, in which the direct view between satellite and receiver is obstructed,
and multipath effects, in which satellite signals are reflected by, e.g., surrounding
buildings. Breßler et al. (2016) and Ollander et al. (2018) review these effects
and point out their importance for urban scenarios. Stephenson (2016) points out
that an additional error source for RTK-based systems is poor cellular coverage,
limiting receiving correction data. Nevertheless, cellular coverage is usually more
critical in rural areas than in urban scenarios.

Using GNSS in automotive applications has a long history, mainly for navig-
ation systems and, more recently, ADAS applications (Skog and Händel, 2009).
A recent study that compares the performance of various GNSS receivers in road
scenarios is presented by Štern and Kos (2018). Among other things, they com-
pare current low-cost receivers and more expensive ones in the urban area of
Nantes, France. Their main conclusion is that pure GNSS-based receivers are
unsuitable for sub-meter localization accuracy in urban environments. They
emphasize that multi-sensor fusion is required for more accurate localization.
Joubert et al. (2020) survey the current state-of-the-art GNSS-based approaches
w.r.t. automated driving. They state that lane-level accuracy on highways is
achievable with inertial navigation system (INS)-aided GNSS approaches but un-
derline that GNSS outages in urban scenarios remain an issue. In line with their
findings, Reid et al. (2019b) examine the performance of RTK-aided GNSS solu-
tions on North American highways and find that lane-level localization is achiev-
able under favorable GNSS conditions. Likewise, their results show that passing
through major urban centers with poor satellite reception and multipath effects
is still challenging with GNSS-based approaches. For more details on the applic-
ability of correction data services for the automotive industry, we refer to Vana
et al. (2019). Zimmermann et al. (2015) investigate the effect of various satellite
obstruction scenarios (e.g., urban canyons) and suspect that multipath effects
and blocked line-of-sight have a more significant impact on the accuracy than a
degraded satellite geometry. In the context of automated driving, the Stanley
vehicle winning the 2005 DARPA Grand Challenge (Thrun et al., 2006) success-
fully used GPS for navigating on roads in a desert. The vehicle could compensate
for GPS outages and shifts by including an Inertial Measurement Unit (IMU),
wheel encoders, and different fusion models depending on the GPS status. In the
later 2007 DARPA Urban Challenge, the Junior vehicle (Montemerlo et al., 2008)
successfully used GPS in combination with detecting road reflectivities and curbs
to overcome GPS inaccuracies in an urban scenario. Nowadays, the majority of
localization approaches for automated driving applications rely on fusing multiple
sensor modalities. Their targets range from overcoming short-term GNSS out-
ages, e.g., by fusing in-vehicle sensor data, to fully independent GNSS operation.
For an accurate and robust localization, most of these methods rely on fusing

11

2.3. Perception-based localization

environmental perception data, which we review in Section 2.3. In this thesis,
we use GNSS for globally initializing our approach and show how to incorpor-
ate GNSS pose estimates in our sensor fusion framework. Also, we demonstrate
the challenging conditions for GNSS in urban environments and show that our
approach only requires GNSS for initialization and works without it otherwise.

2.3 Perception-based localization
In the following, we review approaches related to road vehicle localization cat-
egorized by their main sensor type for environment perception. We start with
camera-based approaches followed by radar-based and LiDAR-based approaches.
We conclude with techniques that incorporate multiple perception sensors. Dur-
ing our review, we focus on the different types of landmarks used for localization.

Using cameras for localization and mapping tasks, which is also known as
visual simultaneous localization and mapping (vSLAM), is a broad and active
research field with many applications and, for example, surveyed by Taketomi
et al. (2017) and Saputra et al. (2018). Closely related to vSLAM is the field of
visual odometry (VO), which can be seen as SLAM without loop closures (Cadena
et al., 2016). We refer to Scaramuzza and Fraundorfer (2011) and Fraundorfer and
Scaramuzza (2012) for a survey on VO techniques. In relation to our approach
VO approaches can be used as an odometry input to our system.

In general, SLAM approaches, and thus also vSLAM, relate to our approach
based on the state estimation technique and applied landmark types. We review
the latter in the context of road vehicle localization for automated driving in the
following and refer for a broader overview to Cadena et al. (2016). The approach
by Ziegler et al. (2014) integrates two separate camera-based features. Their
approach relies on visual point features for urban localization and uses camera-
based lane and curb detections in rural areas. Another camera-based approach
is presented by Harr et al. (2018), who use two separate rear and front-facing
cameras to detect lane markings for localization on highways. Bürki et al. (2019)
present an approach that uses four cameras in a surround-view system for extract-
ing visual features. Another visual landmark type is used by Ranganathan et al.
(2013), who perform global localization based on corner features of road markings
and visual odometry. Their approach is demonstrated on a globally referenced
and self-generated map in a parking lot and operates on camera only. The ap-
proach by Suhr et al. (2017) uses classified camera-based road markings as well
as lane detections from a mono camera fused with IMU and wheel speed data for
urban localization. Jeevan et al. (2010) present a GNSS-independent localization
approach that uses the ground markings of parking spots for localization. Based
on two cameras for stereo vision, Poggenhans et al. (2018) present an approach

12

Chapter 2. Related work

that uses road markings detected in a generated top-view image. Spangenberg
et al. (2016) detect pole landmarks based on front-facing stereo cameras and show
that visual pole landmarks are applicable for urban localization. Caselitz et al.
(2016) propose a mono camera-based approach that matches image features to
a given 3D point cloud map. In this thesis, we rely on road marking detections
from a front-facing camera and a top-view camera system, which we integrate
besides other landmarks within our evaluation.

A growing research direction that could impact the quality of visual odometry
and vSLAM approaches in the context of automated driving is event-based vision.
Compared to frame-based cameras, event-based cameras have a different working
principle such that conventional techniques are no longer applicable and new
methods are required. For example, Vidal et al. (2018) introduce an approach
for drone-based SLAM based on event cameras that works under challenging
conditions like low-light and highly dynamic lighting. Gallego et al. (2020) review
the current state-of-the-art of event-based vision and its applications. We refer
to them for further reference. Despite recent improvements, the applicability of
event-based vision for map-based localization in road vehicles is still an open field.

Another actively researched field is visual place recognition, which is, e.g., re-
viewed by Lowry et al. (2016). Most place recognition techniques aim to recognize
the place that is shown in an image instead of directly estimating the camera pose.
Nonetheless, approaches like Naseer and Burgard (2017) and Valada et al. (2018)
show that the boundaries to conventional SLAM are vanishing. While visual
place recognition techniques are essential in the context of loop closure detection
for SLAM applications, their applicability to our localization use case is, how-
ever, limited. The main reason is that most place recognition approaches require
a special type of map, e.g., an image database, which is limited in the transferab-
ility to other sensors. In comparison, we target to use general-purpose maps that
are usable with different sensors. In addition, the global accuracy of visual place
recognition is still limited, such that pure visual place recognition is unsuitable
in the context of automated driving. Nevertheless, the latest improvements in
handling appearance changes could be an asset for localization in the context of
automated driving. Nowadays, visual place recognition tasks are able to cope
with severe appearance changes through, e.g., illumination, weather, seasons, dif-
ferent viewpoints, and dynamic objects in the scene. Approaches presented by,
e.g., Milford and Wyeth (2012), Sünderhauf et al. (2015), Vysotska and Stachniss
(2016b), Schönberger et al. (2018), Naseer et al. (2018), Vysotska and Stach-
niss (2019), and Vysotska (2019), have all shown the importance of handling
appearance changes specifically for road vehicle localization. In relation to our
approach, visual place recognition could serve as an alternative to GNSS, which
would especially be helpful in GNSS-denied regions. Visual place recognition ap-

13

2.3. Perception-based localization

proaches that extract landmarks could, in theory, also be used as an input to
our approach. Most methods do not focus on geometric semantic landmarks but
instead use image features, making them difficult to apply in our general-purpose
approach.

Another commonly used sensor type within road vehicles are radar sensors.
One of the advantages for ADAS applications is that radar sensors even robustly
work in challenging weather conditions (Langer, 1996). For example, Cen and
Newman (2018) highlight the benefits of radar-based landmarks for ego-motion
estimation under adverse conditions like rain and darkness. They also extend and
evaluate their approach for urban and other scenarios (Cen and Newman, 2019).
Another interesting concept using radar is, for example, presented by Cornick
et al. (2015). Their approach relies on a ground-penetrating radar that is mounted
under the vehicle and used for detecting features below the road surface. In the
context of SLAM applications, Dissanayake et al. (2001) showed that radar-based
point-landmarks are a promising concept for vehicle localization. More recently,
Schuster et al. (2016) presented a radar-based localization that also integrates
wheel-tick and IMU data. Their approach is to extract features from the vehicle’s
road environment in an accumulated radar measurement grid, which is afterward
matched to a self-generated radar landmark map. The above approaches highlight
that radar sensors can successfully contribute to the robustness of localization
approaches, which is why we consider radar-based landmarks as one of the inputs
for our approach. Closely related to this thesis is the work of Jürgens et al.
(2020). They present an approach for radar-based odometry estimation and radar
landmark extraction, which are used as input data for the graph-based sliding
window approach presented in this thesis. Their work emphasizes the general-
purpose characteristics of our approach and shows that it is applicable on a purely
radar-based system.

Within autonomous driving applications, LiDAR sensors are one of the pre-
dominant choices for localization. The main advantages of LiDAR sensors are
their precise spatial resolution, comparably low sensor noise, and wide detection
range. A LiDAR-based localization approach is presented by Levinson et al.
(2007), who use LiDAR reflectivities that are matched to a 2D dense reflectivity
map. Their approach integrates GPS, IMU, and wheel odometry data. Akai et al.
(2017) present an approach that uses voxelized LiDAR raw data and a prerecor-
ded LiDAR voxel map for localization on mountainous public roads. To be more
robust against environmental changes, they extend their approach to incorporate
road markings, which are detected through LiDAR-based ground point reflectiv-
ities. Wolcott and Eustice (2015) investigate a 3D LiDAR-based scan matching
approach for localization to cope with challenging weather conditions by utilizing
grid-based height distributions. In comparison, the approach by Baldwin and

14

Chapter 2. Related work

Newman (2012) uses a horizontally and a vertically mounted 2D LiDAR in con-
junction with a previously recorded 3D point cloud map. Serafin et al. (2016)
tackle the challenge of matching sparse LiDAR point clouds to dense point cloud
maps by using extracted line and plane like features based on principle compon-
ent analysis. The approach by Wang et al. (2017) uses curb landmarks detected
with LiDAR scans for localization in urban environments. Complementary to
this thesis, we investigated the use of non-semantic LiDAR features for localiza-
tion on a pre-generated LiDAR feature map (Hungar et al., 2020). The applied
graph-based sliding window approach is based on the framework introduced in
this thesis, whereas the LiDAR feature extraction is presented by Hungar et al.
(2019). The presented results suggest that further work on the feature extraction
is required to improve the achieved accuracy such that the presented feature-
based approach is applicable to automated driving. Brenner (2009) proposes to
use pole landmarks extracted from LiDAR for global localization, which is ap-
plied to a system with an automotive-grade LiDAR by Schlichting and Brenner
(2014). Schaefer et al. (2019) also use the pole concept based on LiDAR for urban
localization and show that it works on 15-month-old maps. Within this thesis, we
use the concept of LiDAR poles as one of the landmark types for the evaluation
of our presented localization approach.

Multi-sensor fusion for localization and mapping is applied in many different
domains and platforms, e.g., in unmanned aerial vehicles (Klingbeil et al., 2014),
unmanned underwater vehicles (Eustice et al., 2006), mobile ground robotics
(Newman et al., 2009), and others. A cross-modality approach for road vehicle
localization is presented by Sefati et al. (2017), who compare pole detections
based on stereo depth images with poles detected from LiDAR data. They con-
clude that LiDAR-based poles yield more robust results than camera-based poles.
Schindler (2013) approaches the localization problem by fusing camera-based lane
marking and LiDAR-based pole detections in rural scenarios. A cross-modality
approach for urban localization is presented by Wolcott and Eustice (2014), who
use a LiDAR for map generation and a mono camera for localization. They infer
the vehicle pose by comparing live images to multiple generated synthetic images
based on a 3D LiDAR map. Another approach that combines multiple landmark
types is presented by Lundgren et al. (2014). They fuse camera-based lane mark-
ings as well as unclassified radar landmarks, which include guardrails, reflector
posts, and traffic signs, with GPS, wheel speed, and gyroscope data. In con-
trast to using individual detectors for each sensor modality, Deusch et al. (2014)
present an approach that uses the same feature detector for a front and a rear-
facing camera as well as a LiDAR-based grid map. Kümmerle et al. (2019) present
an urban localization approach that combines LiDAR-based building facades and
pole landmarks, as well as camera-based road markings. Wu et al. (2017) present

15

2.4. State estimation for localization

a similar approach that combines camera-based lane markings and uses blob fea-
tures extracted from a 2D LiDAR-based occupancy grid.

In this thesis, we present a generic localization framework that allows incor-
porating landmarks independent from the applied sensors as long as the measure-
ments are given in the vehicle reference frame (VRF). In the scope of our evalu-
ation, we discuss landmarks from radar and demonstrate our approach based on
landmarks from LiDAR and camera.

2.4 State estimation for localization
Besides sensor technologies and landmark types, another fundamental aspect of
perception-based localization approaches is the underlying state estimation tech-
nique. Our work is closely related to the SLAM domain, in which map-based loc-
alization can be seen as a subcategory. Over the last 30 years, extensive research
has been done in the field of mapping and localization. An introduction to the
topic is presented by Durrant-Whyte and Bailey (2006) and Bailey and Durrant-
Whyte (2006). We refer to Cadena et al. (2016), who provide a broad overview of
the challenges and open questions in the field. Similarly, the work of Huang and
Dissanayake (2016) reviews theoretical aspects of SLAM approaches. A recent
overview with a particular focus on autonomous driving is given by Bresson et al.
(2017). For a broader overview of technologies applied within automated driving
and their relation to localization, we refer to Yurtsever et al. (2020). The state
estimation techniques applied for pure map-based localization are often either
designed as a standalone approach or based on a closely related SLAM approach.
Predominantly, the methods of choice are either particle filters, Kalman filters,
or graph-based optimization. Stachniss et al. (2016) review and compare these
three methods and provide a taxonomy for categorizing SLAM-related problems.
Less frequently but still employed are histogram filters as a Bayesian method,
e.g., Fox et al. (1999) and Bârsan et al. (2018). A disadvantage of those ap-
proaches is that they require a discretization of the state space, which can be a
limiting factor for applications that require continuous poses at a high frequency.
Although deep learning techniques for global localization, like Valada et al. (2018)
or Naseer and Burgard (2017), are recently gaining more attention, they are still
drastically outperformed by more classical techniques. Nowadays, graph-based
optimization is considered the de-facto standard for SLAM applications. Some of
the fundamental works that lead to formulating SLAM as a graph-based optim-
ization problem are Lu and Milios (1997), Frese and Hirzinger (2001), Folkesson
and Christensen (2004), and Thrun and Montemerlo (2006). Graph-based ap-
proaches for map-based localization only recently gained attention in the last few
years. From a mathematical perspective, our localization approach is closely re-

16

Chapter 2. Related work

lated to the non-linear least squares formulation of graph-based SLAM presented
by Grisetti et al. (2010). Another option for formulating graph-based optimiza-
tion problems is to view it as a probability maximization problem. We show the
connection between probability maximization and least squares error minimiza-
tion in Section 3.4.1. The work of Agarwal et al. (2014a) connects graph-based
SLAM approaches to techniques known from the Geodesy domain. They identify
similarities and point out that the underlying problems in both domains are often
related. For an overview on the Geodesy domain’s mathematical perspectives,
we refer to Niemeier (2008).

The approach by Levinson et al. (2007) uses graph-based SLAM for a dedic-
ated map generation, while the localization is carried out with a particle filter.
Yielding higher precision estimates, they enhance their approach in later work
to use a histogram filter instead of a particle filter (Levinson and Thrun, 2010).
A more recent approach that relies on histogram filtering is presented by Ma
et al. (2019). They first correlate landmark detections with a map and afterward
perform sensor fusion through an additional correlation step in a Bayesian fash-
ion for highway driving. In contrast, Schuster et al. (2016) apply graph-based
SLAM for mapping but use random sample consensus (RANSAC) map matching
for pose estimation. The approach by Spangenberg et al. (2016) first employs a
particle filter for map-based localization and additionally filters the resulting pose
estimates with a subsequent Kalman filter. In contrast, Ziegler et al. (2014) only
rely on Kalman filters. The localization approach by Engel et al. (2019) combines
a deep learning approach for odometry estimation and relies on a Kalman filter
for integrating temporal information. Another combination is demonstrated by
Wolcott and Eustice (2014), who use pose graph SLAM for mapping and an Ex-
tended Kalman filter for localization. Similarly, Poggenhans et al. (2018) present
an approach that uses a Kalman filter for localization and relies on pose graph
optimization in their mapping pipeline. In the work of Schreiber et al. (2013)
the mapping process does not require a dedicated state estimation technique be-
cause it is only based on highly precise GNSS data and manual labeling. For
localization, they employ a Kalman filter. Similarly, Aeberhard et al. (2015) use
a Kalman filter for pose estimation based on landmarks and GPS data. The ap-
proaches by Lundgren et al. (2014), Deusch et al. (2014), and Schindler (2013) are
examples of various variants of using particle filters for localization. Their main
difference is the sensor setup, landmark types, and particle weighting. More re-
cent particle filter approaches for urban vehicle localization are Sefati et al. (2017)
and Schaefer et al. (2019), which show that particle filters remain popular. This
is also underlined with the approach presented by Jonschkowski et al. (2018),
which is a particle filter formulation that allows for end-to-end learning of meas-
urement and motion models. We refer to the work of Stachniss and Burgard

17

2.4. State estimation for localization

(2014), who provide an overview of various approaches to localization and SLAM
using particle filters. Within the evaluation of this thesis, we use the particle fil-
ter implementation presented by Stess (2017) and compare it to our graph-based
optimization approach.

2.4.1 Robust estimation
Handling outliers is an essential aspect of robust optimization techniques. Due to
the quadratic weighting of error terms in non-linear least squares optimization,
outliers have a drastic effect on the optimization result. A common approach
for robustification is to alleviate outliers’ influence by downweighting their large
error terms during optimization. The idea is to modify the original optimization
problem by applying a robust cost function. In statistics literature robust optim-
ization is referred to as M-Estimation (Huber and Ronchetti, 2009). We present
this technique in more detail in Section 3.4.4.

As robust optimization is a well-studied field, several options for robust cost
functions have been proposed. Classical choices are the Huber kernel (Huber,
1964), Welsch kernel (Dennis, Jr. and Welsch, 1978), Geman-McClure kernel
(Geman and McClure, 1985), and Cauchy kernel (Black and Anandan, 1996).
The latter is also known as the Lorentzian kernel. Which robust cost function
is applicable depends on the nature of the dataset and the characteristics of the
error function that is robustified.

An essential aspect of graph-based localization is solving the data association
of landmark measurements. This may include solving loop closures in SLAM ap-
plications, associating landmarks to a map, and finding out if multiple landmark
measurements belong to the same object. The data association problem is natur-
ally ambiguous if multiple similar landmark configurations in the real world exist.
Within the SLAM domain, this is also known as perceptual aliasing. It leads to
incorrect data associations and thus might cause localization failure. Therefore
dealing with outliers has been widely studied in the SLAM domain.

Agamennoni et al. (2015) investigate a concept, called self-tuning M-estimators,
for choosing a robust cost function based on the likelihood of the data given the
best fitting distribution model. They interpret M-estimators as being derived
from elliptical distributions, which helps tuning the M-estimator’s parameter
automatically.

Barron (2019) presents a generalized robust cost function that represents a
broader family of well known traditional cost functions. The presented cost func-
tion can be adjusted by tuning a single shape parameter, which allows deriving,
e.g., L2, Cauchy, German-McClure, Welsch, and other cost functions. Besides,
Barron proposes an algorithm that automatically tunes the shape parameter dur-
ing optimization without the need to set any hyperparameters. In return, the

18

Chapter 2. Related work

optimization problem is adaptively robustified in an ideal way. Chebrolu et al.
(2021) enhance this method by proposing an algorithm that iteratively optimizes
the shape parameter and cost function based on an Expectation-Maximization
approach instead of jointly optimizing both.

Olson and Agarwal (2013) present an approach called Max-Mixture (MM)
that models multi-modal beliefs through a sum of Gaussians. Instead of incor-
porating all modes of the sum of Gaussians, they suggest selecting the component
with the maximum log-likelihood during optimization, which effectively deactiv-
ates erroneous modes of the Gaussian. Their approach is applied for eliminating
erroneous loop closure constraints by modeling the loop closure and a null hy-
pothesis in a two-component Gaussian. Additionally, their approach is demon-
strated for odometry outlier rejection by modeling separate modes for slip and
grip measurements.

Latif et al. (2013) introduce the Realizing, Reversing, Recovering (RRR) ap-
proach that clusters loop closure constraints based on similarity and extracts the
largest subset of consistent clusters. RRR requires that the optimization success-
fully converges in order to reveal erroneous constraints.

Sünderhauf and Protzel (2012) present an approach called Switchable Con-
straints (SC), in which the topology of a graph itself is optimized. They augment
loop closure constraints with a switching variable which are controlled through
switching priors to prevent that all constraints are deactivated. More theoretical
aspects are covered by Sünderhauf (2012). Lajoie et al. (2019) present an ap-
proach that improves upon SC by using truncated least squares and show that
modeling the correlation between outliers also improves the performance. Simil-
arly, the approaches by Yang et al. (2020b) and Yang et al. (2020a) use truncated
least squares formulations to model outliers within point cloud registration and
shape alignment tasks. In addition to previous work, both approaches also provide
criteria for certifying results. Agarwal et al. (2013) propose an improvement to
SC called dynamic covariance scaling (DCS). They present a closed-form solution
that is applied as a weight to the covariance matrix of each constraint. The weight
dynamically scales the covariance based on the original quadratic error term.
Their approach is popularly used as it is easily integrated into commonly used
optimization frameworks. As experimentally shown by Agarwal et al. (2014b),
DCS improves SLAM applications under poor initial estimates and handles data
association outliers.

MacTavish and Barfoot (2015) compare various choices for robust cost func-
tions. They find that DCS and Geman-McClure are well suited for the task of
treating correspondence outliers in visual feature-based applications. Both cost
functions behave similarly for larger errors, while DCS is equivalent to standard
least squares for smaller errors. Sünderhauf and Protzel (2013) compare RRR,

19

2.4. State estimation for localization

MM, and SC on different datasets for pose graph SLAM. They point out that all
three methods have varying performance, and there is no clear winner in their
comparison. A further comparison of RRR, MM, SC, and DCS is presented
by Latif et al. (2014). In addition to a benchmark-based comparison, they also
provide an argumentative comparison. They find that DCS is the fastest but also
highlight that SC and DCS could trap the optimization in local optima.

2.4.2 Sliding window graphs
For automated driving, any localization algorithm must be computationally effi-
cient as the car requires pose estimates in (near) real-time. Within graph-based
approaches, one way of achieving computational tractability is to limit the op-
timization problem’s size by using sliding windows over states. In general, optim-
izing over a set of consecutive states, i.e., a temporal sliding window, is known
as smoothing. An advantage of smoothing techniques is that the states within
the sliding window can be used for relinearization during optimization (Julier,
2003; Dellaert and Kaess, 2006). In contrast, filtering techniques like Extended
Kalman Filter (EKF) only update states at a single timestamp such that lin-
earization errors accumulate over time, which might lead to inconsistent results
(Julier and Uhlmann, 2001). Related to this, Strasdat et al. (2012) demonstrate
for visual SLAM that keyframe bundle adjustment, which is similar to sliding
window methods, is superior to filtering. More close to our approach is the work
of Sibley (2006), who highlights the benefits of sliding window filters coupled with
delayed marginalization of poses and landmarks. The approach is also demon-
strated by Sibley et al. (2010) for planetary landing applications and used by
Newman et al. (2009) for urban SLAM based on a modified Segway platform. In
comparison, we explicitly consider the choice of linearization points for further re-
ducing linearization errors and present a sparsification scheme for sliding window
graphs that prevents marginalization fill-in. Another beneficial aspect of slid-
ing window graphs is presented by Ranganathan et al. (2007). They introduce
an algorithm for pose estimation based on fixed-lag smoothing and emphasize
the benefits of integrating out-of-sequence measurements within sliding window
graphs.

We explain the sliding window concept used in this thesis in more detail in
Section 4.2 and cover related work for road vehicle localization in the following.
Lategahn et al. (2013) present an approach that uses graph-based optimization
for map creation and also for localization. Their localization is formulated as a
two-step sliding window optimization problem. In each optimization cycle, they
first detect visual landmarks in an image and optimize a single pose estimate such
that the back-projection error is minimized. These pose estimates are then used as
constraints in a sliding window graph that further integrates IMU measurements.

20

Chapter 2. Related work

Similarly, the work of Chiu et al. (2013) uses a sliding window graph framework
that is divided into short-term and long-term smoothing. In their approach, both
smoothers share a common map. While the long-term smoother integrates loop
closure constraints and is optimized at a low frequency, the short-term smoother
is optimized at a higher frequency to maintain constant-time localization updates.
Wu et al. (2017) investigate a localization approach based on pose graph optim-
ization. In comparison to their work, our graph-based approach benefits from
a different data association strategy and grid-independent landmark detections.
Harr et al. (2018) present a pose graph optimization approach to localization that
is closer to our approach. Compared to our work, we use a different data associ-
ation strategy and incorporate landmarks into state optimization, which results
in a more accurate system. The recently presented approach by Kümmerle et al.
(2019) uses pose graph optimization and integrates landmarks in a local map
similar to our approach. The difference to our approach is that we do not rely on
a pose graph but instead integrate point landmarks into the state vector, which
allows us to explicitly constrain map-matched landmarks through position priors.

The sliding window graph formulation in this thesis is closely related to the
work of Merfels and Stachniss (2017). They present how to synchronize odometry
and pose measurements in sliding window pose graphs. We extend their frame-
work in this thesis and show how to integrate landmarks in the sliding window
graph formulation. We implement our sliding window graph approach within
the g2o framework presented by Kümmerle et al. (2011a). A similarly useful
framework that eases implementation effort and shares a similar nomenclature as
used in this thesis is called GTSAM and presented by Dellaert (2012). Another
popular choice is the Ceres Solver by Agarwal et al. (2020). In contrast to the
mentioned related approaches, we incorporate a given third-party map as unary
priors for landmark states in our state estimation. Instead of directly changing
the map, we use the estimated landmark positions for delayed map refinement
through a back-end service. Another aspect that distinguishes graph-based slid-
ing window approaches is how they handle measurements that drop out of the
sliding window. We cover the different options separately in the following section.

2.4.3 Marginalization and sparsification
Compared to full graph solutions, marginalization allows preserving information
while limiting the state dimension. The latter is necessary to ensure computa-
tional tractability in online scenarios. The common drawbacks of marginalization
are the missing option of relinearization and induced fill-in in the graph and its
corresponding system matrix. The latter one negatively influences the sparsity
pattern and thus increases computation costs. For the case of pose graphs, Mer-
fels and Stachniss (2016) presented in their work how to compute pose priors that

21

2.4. State estimation for localization

approximate pose graph marginalization.
One of the options for reducing the number of constraints induced by mar-

ginalization is commonly called sparsification. The Sparse Extended Information
Filter (SEIF) by Thrun et al. (2005) selectively deactivates constraints between
the current robot pose and landmarks but keeps intra-landmark constraints. Eu-
stice et al. (2005) extend the SEIF approach with a modified sparsification step
that preserves the state mean and produces similar results as the full-covariance
EKF. The work of Frese (2005) compares representing the SLAM problem in
covariance form against representing it in information form. He shows that the
information matrix representation is approximately sparse, and distant landmarks
can be conservatively eliminated by removing off-diagonal entries. This is one of
the foundations in the development of state-of-art graph-based SLAM techniques.

Vial et al. (2011) present a technique for conservative graph sparsification
via Kullback-Leibler Divergence (KL) minimization. Huang et al. (2013) intro-
duce a sparsification scheme that first sparsifies nodes through marginalization
while retaining consistent relative constraints. Afterward, they sparsify edges
by solving a l1-regularized minimization problem. Kretzschmar et al. (2011) use
a Chow-Liu tree to approximate marginalization and maintain a sparse graph.
The idea of Chow-Liu trees is also used in the context of appearance-based loc-
alization within the FAB-MAP algorithm, Cummins and Newman (2007) and
Cummins and Newman (2008). The idea of Kretzschmar et al. (2011) is ex-
tended by Carlevaris-Bianco and Eustice (2013), Carlevaris-Bianco et al. (2014),
and Carlevaris-Bianco and Eustice (2014) through introducing a conservative
tree approximation. Using more complex topologies than trees as an optimiza-
tion technique for sparsification is suggested by Vallvé et al. (2017), Vallvé et al.
(2018), and Vallvé et al. (2019). Without explicit marginalization, Choudhary
et al. (2015) reduce poses and landmarks based on expected information gain.
Ta et al. (2018) present a near-optimal method for pose marginalization by re-
parameterizing to local spaces.

More closely related to our work, Hsiung et al. (2018) investigate how to
approximate marginalization with sparse priors. While their work focuses on
localization errors in the visual-inertial odometry domain, we focus on estimat-
ing landmark positions for automated driving. Additionally, they do not cover
the effects of different linearization points and rely on suboptimal global linear-
ization points. Eckenhoff et al. (2016) provide a derivation that suggests using
local linearization points for marginalization but requires local optimization of
the marginalization blanket. Mazuran et al. (2014) show how to recover artificial
measurements from marginalized information, which allows for relinearization.
They further argue that local linearization points provide superior results in in-
cremental mapping scenarios. An extended version of their work is Mazuran et al.

22

Chapter 2. Related work

(2016).
Compared to the related work, we show how to avoid using local linearization

points and derive how to utilize global linearization points by respecting gradient
effects inside our sparse priors. We study the effects in relation to map refinement.

2.5 Maps for road vehicle localization
In the following, we distinguish between localization approaches that rely on
tailored maps and approaches that use general-purpose maps. We conclude this
section by discussing approaches for landmark map refinement.

2.5.1 Tailored maps

The category tailored maps includes localization approaches that operate on a
map that was created with a sensor setup that is similar to the one used for loc-
alization. This is usually the case for approaches that share a common methodo-
logy between map creation and localization, e.g., in SLAM techniques. Likewise,
approaches with a methodologically different mapping process also belong to this
category as long as they operate on a similar sensor setup as it is used for loc-
alization. An advantage of using the same setup for mapping and localization is
that the map reflects and matches the vehicle’s sensor characteristics. Therefore,
the map only contains elements that the vehicle can detect and no additional ele-
ments. In return, the underlying map matching is easier as it must not consider
systematic differences between the map’s content and the detectable elements. In
general, a significant disadvantage of such approaches is that it is often unclear
if the created maps are transferable to other sensor setups. An implication is
that maps might need to be recreated if sensor setups are changed. This lim-
its the applicability to series production, especially if the covered map areas are
huge. Many localization approaches rely on previously built and tailored maps.
We mention some of them in the following for further reference. An example of
tailored maps are LiDAR-based 2D ground reflectivity maps proposed in the work
of Levinson et al. (2007) and Levinson and Thrun (2010). In comparison, the
approach by Schuster et al. (2016) requires a previously built 2D radar feature
map. A popular choice is to rely on point cloud maps, for example, Baldwin and
Newman (2012) and Withers and Newman (2017). A broad share of literature in
the domain focuses explicitly on generating point cloud maps. For example, Yang
et al. (2018) present how to generate 3D point cloud maps at a city scale. One
of the main challenges in using maps for localization is to ensure long-term local-
izability. The approach by Egger et al. (2018) uses LiDAR-based voxel features
in conjunction with multiple local sub-maps for localization in changing environ-

23

2.5. Maps for road vehicle localization

ments. They achieve long-term localization through individually updating local
sub-maps if deviations are detected. In the context of deep learning assisted
localization, Wei et al. (2019) present an approach for compressing highly ac-
curate LiDAR intensity images used as a map. Their approach aims to reduce
the required storage for their LiDAR-based intensity map, which is one of the
main disadvantages with respect to scaling them. All of the above approaches
are tailored towards specific sensors, limiting their transferability to other sensor
setups. In comparison, we review approaches that use general-purpose maps in
the following.

2.5.2 General-purpose maps
The category general-purpose maps refers to maps that are used for multiple ap-
plications and purposes. A property of general-purpose maps usually is that they
represent the environment in a generic way such that the elements of a map have
a specific semantic meaning. The challenge of using these maps for localization
is that the map elements must not necessarily correspond to what the vehicle
can detect. For example, the approach presented by Vysotska and Stachniss
(2016a) matches LiDAR data to OpenStreetMap (OSM) data for localization.
They explain their approach in more detail in subsequent work, see Vysotska
and Stachniss (2017). Other approaches that utilize OSM data for localization
are, e.g., Floros et al. (2013), Landsiedel and Wollherr (2017), Ma et al. (2017),
Fleischmann et al. (2017), and Brubaker et al. (2016). All of these approaches
show that OSM data can be used to improve the accuracy of localization estim-
ates. Nevertheless, so far none of the localization approaches using OSM or other
comparable maps are accurate enough for automated driving. Agarwal et al.
(2015) present an approach using visual feature points extracted from monocular
images matched to Google Street View panoramas for localization. They show
that their approach is suitable for localizing a smartphone in urban environments.
However, due to the limited accuracy, their approach does not seem promising
for automated driving applications. The approach by Kümmerle et al. (2009) and
Kümmerle et al. (2011b) improves localization estimates by finding correspond-
ences between LiDAR scans and aerial images, which in a way can be seen as a
map. Similarly, Tang et al. (2020a) present how to use radar data in combination
with aerial images for localization. They also extend their approach to work with
LiDAR data (Tang et al., 2020b). Another type of map is used by Lee et al.
(2007) , who suggest incorporating road network maps, e.g., navigation maps, as
priors for their 2D LiDAR-based localization system. Their approach effectively
restricts pose estimates to be close to the road. We consider this approach as
potentially hazardous as vehicle poses that, in reality, are next to the road might
be estimated as on the road. Roh et al. (2016) present an approach that leverages

24

Chapter 2. Related work

available geospatial information, like digital elevation models and building planes
as polygon chains. Their approach is mainly focused on map creation rather than
localization. Nevertheless, various aspects of their work can be transferred to pure
localization applications. Although all of the above approaches show that they
are eligible for improving localization and mapping applications based on existing
general-purpose maps, the achieved accuracies also highlight that highly accurate
map-based localization also requires highly accurate maps.

In general, approaches that use dense 3D point clouds as maps but use other
sensors for localization can also be included in the general-purpose maps category.
For example, the approach of Caselitz et al. (2016) matches visual features to a
given 3D LiDAR point cloud map for map-relative localization. Chen et al. (2019)
present a SLAM approach for generating LiDAR-based surfel maps that contains
a semantic class for each surfel. Their work highlights that semantic meaning in
maps is beneficial for localization. However, a significant disadvantage of using
dense 3D point cloud maps is that they require an extensive amount of memory
if used in large-scale applications, which is why we do not further consider them.

More close to our work is the use of a third-party map, as shown by Wu
et al. (2017). Their map is designed for automated driving use cases and includes
globally accurate landmarks. Their landmark detection is based on building occu-
pancy grids and blob feature extraction to extract distinct landmarks. Their map
matching is a nearest neighbor search, and data associations are solved within
graph optimization. In comparison, our approach does not rely on grid discret-
ization, follows a different map matching technique, and solves data association
before optimization. Although their sensor setup and dataset is different from
ours, comparing the results suggest that our method is more reliable and accur-
ate. The approach by Poggenhans et al. (2018) also utilizes a highly precise map
for automated driving that contains road markings and lane boundaries. Their
approach uses an Unscented Kalman Filter for localization and is demonstrated
for camera-based localization in an urban scenario. The limited availability of
their approach on narrow urban road highlights the importance of fusing differ-
ent landmark types for localization.

Bresson et al. (2017) state that localization approaches based on existing maps
are not yet suitable for automated driving. The prevailing reasons are the lack
of accuracy in large-scale maps, and that accurate maps are only available for
limited areas. Mapping companies are nowadays working on providing highly
accurate maps for large areas, which could close this supply gap soon. Therefore,
we investigate how to use such a general-purpose third-party landmark map as
prior knowledge for localization in this thesis.

25

2.5. Maps for road vehicle localization

2.5.3 Refining landmark maps

A fundamental challenge to all approaches relying on pre-built maps is that the
maps are getting outdated over time. In automated driving, temporary con-
struction sides and newly built streets directly impact the map’s correctness and
thus localization. Pauls et al. (2018) present a case study investigating the road
changes on a German highway that render a map outdated. They distinguish
between major road changes that invalidate entire parts of the map and minor
changes that do not have a safety-critical impact on automated driving functions.
The latter describes the map changes that we want to estimate within this thesis
and thus prevent that minor changes aggregate and become safety-critical over
time. Pannen et al. (2020) point out that it seems unsuitable for large scale
applications to rely on specialized mapping vehicles for capturing map updates.
They argue that the frequency of traversals would be insufficient and propose to
use camera data from nowadays series vehicles for mapping highways. Similarly,
approaches like Skibinski (2019) and Sons and Stiller (2018) tackle updating maps
for automated driving through fusing collective vehicle data on a back-end server
but focus more on rural and urban areas. Disadvantages of these methods are
the possibly extensive amount of data that needs to be transmitted and the delay
until updates are received by the vehicle.

Narula et al. (2018) investigate the accuracy limit of GNSS-based mapping
achievable with low-cost receivers through collective data. They state that sub-
50 cm accuracy is feasible. As this is not sufficient for automated driving, it is
necessary to aid mapping through RTK-based GNSS or large-scale SLAM-based
methods to achieve sufficient global accuracy. An example of such a dedicated
system for mapping based on point clouds is presented by Yang et al. (2018).
These highly accurate point clouds are commonly either directly used for local-
ization or the foundation for creating and updating landmark maps. A further
aspect in the context of updating landmark maps is the concept of using temporal
decay for map elements. Skibinski et al. (2016) suggest using temporal weights
that decay over time and are reset whenever a landmark is measured. This al-
lows a back-end server to dismiss landmarks that have been removed. A similar
idea is presented by Rosen et al. (2016), who show how to measure the temporal
persistence of features. They show how to model periodic disappearance or other
temporal patterns and model the expected survival time for individual features.
The approach is successfully applied by Chebrolu et al. (2019) in the domain of
updating crop field maps. Their approach is from a methodical point not far from
updating landmark maps for automated driving applications and therefore is also
promising for urban scenarios.

Within this thesis, we focus on estimating landmark update hypotheses dir-
ectly in the vehicle. We conceptually discuss sending the update hypotheses

26

Chapter 2. Related work

over-the-air to a back-end service such that validated map updates can be com-
puted based on fleet data. We extend our graph-based sliding window approach
to localization in Chapter 5 w.r.t. refining landmark maps. A key factor within
our extension is how we deal with measurements that drop out of the sliding
window. We use delayed marginalization similar to Sibley et al. (2010) but show
how to apply a further sparsification step to preserve our sliding window graph’s
sparsity. In addition, we explicitly consider the choice of linearization points for
further reducing linearizations errors.

27

Chapter 3

Fundamentals

In this chapter, we explain the fundamentals required for the rest of this thesis.
We explain the basics that are relevant throughout the whole thesis and introduce
fundamental algorithms and concepts that we use within this thesis.

3.1 Coordinate systems
In the following, we explain the world reference frame (WRF) and vehicle refer-
ence frame (VRF) as used in this thesis and discuss the consequences of calibration
errors when projecting landmark measurements into the VRF.

3.1.1 World reference frame
We choose to represent global information like vehicle poses and map landmarks
in the Universal Transverse Mercator (UTM) coordinate system, which is widely
used across various domains and a popular mapping standard. The main ad-
vantage of using UTM is that it is based on representing the world in Cartesian
coordinates, which makes it straightforward to compute Euclidean distances and
transformations. The UTM system divides the globe into 6° wide segments, yield-
ing in total 60 different UTM zones. Each zone is defined by its central meridian
and individually projected onto a perpendicular secant cylinder. By design, the
projection cylinders are scaled down by a factor of 0.9996 compared to its defin-
ing central meridian, which balances the scale variation within a segment. The
cutting circles in which the cylinder intersects the globe represent the lines of true
scale. The scale is shrunk between the two cutting circles and expanded outside,
which minimizes the overall scale variation. Unfolding the cylinder then produces
a Cartesian coordinate system in which the central meridian defines the x-axis
(Easting) and the equator corresponds to the y-axis (Northing). The origin at
the equator’s intersection with its central meridian of each UTM zone is set to
(500 000 m, 0 m) for the northern hemisphere and to (500 000 m, 10 000 000 m) for

29

3.1. Coordinate systems

the southern hemisphere, which prevents negative coordinates. A more detailed
description of the secant transverse Mercator projection and the UTM system
definition is provided by Snyder (1987). We illustrate the secant transverse Mer-
cator projection and the derived UTM coordinate system in Figure 3.1. The
vehicle orientation in each UTM zone is zero if the vehicle faces east, and it
increases counter-clockwise, which is shown in Figure 3.1b. Also, Figure 3.1b il-
lustrates the meridian convergence, which is the deviation between true north and
grid north. The deviation increases with growing distance to the central meridian.
It must be considered when converting the vehicle’s position and orientation to,
e.g., the World Geodetic System (WGS) coordinate system.

Concerning the methods presented in this thesis, the UTM system could be
substituted with any other Cartesian coordinate system without implications on
the presented approaches. This might especially be relevant for, e.g., localization
within parking garages or other locally defined maps.

3° 3°

Equator (EQ)

Projection frame

Central Meridian (CM)

(a) Secant transverse Mercator projection

CM

EQ θ

N

E

γ
A B

V

(b) UTM Coordinates

Figure 3.1: Universal Transverse Mercator (UTM) projection. Both figures illustrate how the
coordinate system of a UTM zone is constructed. For illustrative purposes, the proportions
are heavily exaggerated, and only the northern hemisphere is shown in detail. Projections of
the southern hemisphere are made accordingly. (a) A UTM zone with its central meridian
and its in total 6° wide segment, which is shown in red. The segment is projected onto the
secant cylinder, which is unfolded to produce the projection frame. The green circles denote
the cutting circles between the globe and cylinder. (b) The origin of the UTM zone coordinate
system is defined at the intersection between the equator (EQ) and central meridian (CM).
Its x-axis is the Easting (E) direction, whereas the y-axis is the Northing direction (N). If a
vehicle at position V is oriented towards grid north, i.e., in the direction of vector A, true north
deviates, which is in the direction of B, by the angle γ.

30

Chapter 3. Fundamentals

3.1.2 Vehicle reference frame
The VRF used in this thesis is similar to the ISO 885:2011 definition by the
International Organization for Standardization (2011). The coordinate system’s
origin is defined in the ground projected middle of the vehicle’s rear axle. Its
x-axis points towards the front of the vehicle, whereas the y-axis direction is to
the left side of the vehicle. The vehicle orientation starts at zero within the x-
axis and increases counter-clockwise. Figure 3.2 illustrates the reference system.
Within the scope of this thesis, we use the VRF to describe the vehicle’s relative
movement within a specific time interval. These are called odometry measure-
ments. Also, we expect landmark measurements to be available in the VRF.
This allows us to employ a generic interface between landmark detectors and our
localization approach. In contrast, each sensor modality could supply landmark
measurements in its sensor reference frame (SRF), which would require that each
sensor must be individually incorporated into our approach. Instead, we abstract
from the specific sensor modality and use the VRF as an abstraction layer. This
allows us to interchangeably incorporate landmark measurements from LiDAR,
radar, camera, and other sensors without adapting our approach.

x

y

θ

Figure 3.2: Vehicle reference frame as used in this thesis. The y-axis increases to the left of the
vehicle, whereas the x-axis increases towards the front of the vehicle. The vehicle’s orientation
θ is zero within the x-axis and increases counter-clockwise.

3.1.3 Importance of calibration
We assume that landmark measurements are available to our localization ap-
proach within the VRF. Therefore, landmark detectors must either perform land-
mark detection directly in the SRF and afterward transform the detected land-
marks into VRF or first transform measurement data into VRF and afterward
perform landmark detection. In both cases, it is crucial to have a valid and ac-
curate transformation matrix from SRF to VRF. In the context of this thesis, we
understand estimating such a transformation matrix as sensor calibration. While
i.i.d. noise of landmark measurements is acceptable and can be handled within
our optimization approach, systematic calibration errors have a direct impact on

31

3.2. Landmarks

our localization approach. Although the effects on the estimated vehicle pose are
possibly mitigated by taking into account multiple sensor modalities, the negative
impact on estimating the position of a landmark remains if it is only measured
with a single sensor. An angular calibration error of 0.5° already displaces a land-
mark measurement that was taken at a 100 m distance by approximately 0.9 m
from its true position. An example of a calibration error with a constant angular
offset is illustrated in Figure 3.3. For the sake of convenience, we assume that
sensor calibration is solved upfront and independent of our approach. Although
various methods for online calibration exist, e.g., Levinson and Thrun (2013) and
Mirzaei et al. (2012), we assume in this thesis that a static calibration is given.

(a) (b)

Figure 3.3: Exemplary impact of an angular calibration error between SRF and VRF. (a)
Instead of measuring the true landmark positions in blue, the erroneously miscalibrated meas-
urements in red are produced. (b) As a consequence, the vehicle’s orientation is falsely rotated
when matching the measurements to their true position. Within our sliding window approach,
the effect on the vehicle pose is mitigated by fusing the measurements of several sensor modal-
ities over a specific time interval.

3.2 Landmarks
So far, we mentioned that we rely on landmark measurements that are associated
with a map in order to compute a global vehicle pose. In this section, we explain
and define in more detail what we understand as a landmark. Afterward, we
present the landmark types that we incorporate into the localization estimate.

In literature, the term feature is often used exchangeable to the term land-
mark, whereas we distinguish between both of them in this thesis. A feature
(also referred to as a key point) is in computer vision a pixel of interest in an
image. It describes, for example, a significant change in brightness or color. Sim-

32

Chapter 3. Fundamentals

ilarly, the term is also used for other sensors like radar and LiDAR. In the case of
LiDAR sensors, a feature point could be a sudden jump in depth or reflectivity.
While these examples only give a brief idea about the nature of a feature, its
clear definition usually depends on the sensor being used and the application.
Defining feature descriptors is an active and open research field. With respect to
automated driving, one of the main challenges is to find feature descriptors that
are stable and persistent over time and in varying weather conditions. In con-
trast to features, we understand landmarks as being more semantically distinct
and human interpretable. The term landmark is also used in marine navigation,
where it describes an object, like a church tower or lighthouse, that is easily vis-
ible from a distance. Thus, the position of the boat can be inferred by taking
angular measurements of multiple landmarks and then performing triangulation.
The same concepts also apply to celestial navigation, only with much larger dis-
tances and celestial bodies. From a conceptional point of view, these types of
landmarks are already close to the ones applicable for automated driving. In this
thesis, we rely on the general definition of Thrun et al. 2005, p. 21, and extend
it for our use case.

Definition 1. A landmark for automated driving is

• a stationary element of the environment,

• easy to recognize,

• reliably detectable with one or ideally multiple sensor modalities,

• visible from the road,

• has a preferably large viewing scope,

• might have additional properties that describe its appearance, and

• either a specific or abstract semantic type.

Although our definition is strict in some points, it is intentionally interpretable
in others. For example, in terms of semantic meaning, it would be optimal to dis-
tinguish between the trunk of a tree and a lamp post. The available detectors in
the vehicle, however, might only be able to measure a cylindrical object without
being able to distinguish both objects. Nevertheless, the common abstract de-
scription of a cylindrical pole can still be used as a landmark type. Similarly,
additional properties like a radius or color of a pole are desirable and helpful for
distinguishing measurements but not strictly necessary. The absolutely neces-
sary thing that each landmark must fulfill is that it is stationary and must have
a persistent and distinct location.

33

3.3. State definitions for vehicle localization

We distinguish in the 2D case between landmarks defined with a single pos-
ition and landmarks that require multiple positions to define their location. We
call the first one point landmarks and the second polyline landmarks. Through-
out this thesis, we show how to utilize these landmarks for estimating the vehicle
pose. An excellent example of a point landmark is a lamp post, whereas vegeta-
tion (e.g., a bush) is not suitable as its dimension and location might vary over
time. Similarly, a fixed reflector post at the street side is more suitable as a
landmark than an easily movable one used in construction sites.

Another important aspect is that landmarks for automated driving must be
visible from the road. For example, a building usually is only visible from a few
sides, whereas the backside is usually not measurable. This means a building
itself is not a suitable landmark, whereas some of the building facades are. Be-
sides, landmarks are ideally continuously visible from subsequent poses while a
vehicle passes by. A landmark has a large viewing scope if it is visible from many
locations. In return, a passing vehicle can measure it more often than a landmark
with a small viewing scope. Therefore, landmarks with a larger viewing scope
can be more beneficial for localization than landmarks with a comparably small
viewing scope. It is crucial to consider the different aspects that a landmark must
fulfill when designing a landmark-based localization system. Specific examples
for landmarks used in this thesis are

• point landmarks based on lamp posts, reflector posts, traffic light posts,
bridge pillars, and

• polyline landmarks based on curbs, building facades, solid lines, dashed
lines, guardrails, and fences.

We show in Section 4.5 how to incorporate these landmark types into our graph-
based localization system. Figure 3.4 gives an example of landmarks that qualify
as suitable and unsuitable landmarks.

3.3 State definitions for vehicle localization
Throughout this thesis, we seek to optimize the vehicle’s trajectory and the po-
sition of detected landmarks along with it. Based on our requirements for auto-
mated driving, we limit ourselves to estimating 2D poses and ground-projected
landmarks. This is sufficient for our use case of automated driving in urban
scenarios as our vehicle moves on a ground plane and map information is stored
relative to the ground. The concepts of this thesis are, in general, also applicable
to 3D poses and landmarks. In the following, we state our notation used in this
thesis, which is essential for understanding our derivations and concepts in the

34

Chapter 3. Fundamentals

Figure 3.4: Exemplary scenes with suitable landmarks in green and elements that we consider
unsuitable as landmarks in red. Left: The buildings and pillars on the left side are suitable
as they are stationary. On the contrary, the construction site elements on the right side are
not persistent and easily movable, thus unsuitable for long-term localization. Middle: Road
markings, curbs, and bridge pillars are suitable landmarks as their position is definable as point
or polyline landmark. Right: The stem of a tree is a suitable landmark, whereas tree crowns are
unsuitable as they change their form and appearance through the rotation of seasons. Similarly,
dynamic objects and construction site elements are unsuitable as they are temporary.

later chapters. We define the overall state vector that we want to estimate as the
vector concatenation

x = [xp,xl]⊤,

where xp is the vehicle trajectory and xl the vector of landmark states. In more
detail, we represent the vehicle trajectory as

xp = [xp
1, . . . ,x

p
N]

⊤,

where each xp
i is an individual pose at some timestamp, which is not further

denoted in our notation, and the number of poses N . In our case, each vehicle
pose is within a Lie group SE(2) such that

xp
i = [xUTM, yUTM, θUTM]

⊤,

where xUTM is the UTM Easting coordinate, yUTM the UTM Northing coordin-
ate, and θUTM the vehicle’s orientation w.r.t. the UTM grid zone. Similarly, we
concatenate the individual landmarks that we want to estimate as

xl = [xl
1, . . . ,x

l
M]⊤,

where xl
i is a landmark that has been observed from one of the poses in the

vehicle trajectory. Note that we do not necessarily include all landmarks that
have been observed but carefully choose which ones we want to include in the
state estimate. Table 3.1 summarizes the state definitions for vehicle poses and
provides an overview of exemplary landmark state definitions.

35

3.4. Graph-based optimization

Variable Definition Description
xp [x, y, θ] a vehicle pose defined by position and orient-

ation
xl general landmark
xlp [x, y] a point landmark, e.g., a pole
xld [x1, y1, x2, y2] a line element defined by two points
xlc [x, y, α, θ] a corner defined by a center point, opening

angle α, and orientation θ

Table 3.1: Exemplary state definitions that apply to the concepts presented in this thesis. Note
that all stated position coordinates are within the UTM coordinate system.

3.4 Graph-based optimization

In this section, we explain the essential equations behind graph-based optimiz-
ation approaches and introduce the notation used throughout the rest of this
thesis.

3.4.1 Probability maximization and error minimization

In the following, we describe the relation between the maximum a posteriori
(MAP) approach to optimization and the minimization of weighted quadratic
errors. We describe the problem of estimating a state vector x that best fits a
set of measurements z as the commonly used optimization problem

x∗ = argmax
x

p(x | z), (3.1)

with posterior distribution p(x | z). In the following, we show how to convert
this general formulation into an equivalent minimization problem of weighted
quadratic errors. For clarity, we omit the presence of outliers and discuss them
separately in Section 3.4.4. Using Bayes rule, we transform the problem into

x∗ = argmax
x

p(z | x)p(x), (3.2)

where p(z | x) is called the likelihood and p(x) the prior distribution. We make
the following assumptions about the involved random variables and distributions:

Assumption 1. Measurements and prior terms are independent and identically
distributed (i.i.d.).

36

Chapter 3. Fundamentals

It follows that

p(x) =
∏
j

p(xj)

p(z | x) =
∏
i

p(zi | x).

Assumption 2. The observation likelihood functions are Gaussian.

In detail, we assume the distributions to be

p(zi | x) = N (zi | hi(x),Σi) ∝ exp
(
−1

2
(zi − hi(x))

⊤Σ−1
i (zi − hi(x))

)
= exp

(
−1

2
e(zi, hi(x))

⊤Ωi e(zi, hi(x))

)
,

with e(zi, hi(x)) = zi − hi(x)

and measurement function hi(x) that produces an expected measurement given
the state x. The term e(zi, hi(x)) is commonly called the error function.

Assumption 3. The prior distributions are either Gaussian or uniform.

We define the prior distributions either as Gaussians

p(xj) = N (xj | µj,Σj) ∝ exp
(
−1

2
(xj − µj)

⊤Σ−1
j (xj − µj)

)
= exp

(
−1

2
e(xj)

⊤Ωje(xj)

)

or as a uniform distribution over all possible states

p(xj) = ϵ,

where we used e(xj) to match the notation of the likelihood function. From a
practical point of view, the option to choose between a uniform and Gaussian
prior for each involved state allows us to apply prior knowledge about states. In
our case, we consider the position of a map landmark as a prior, which we describe
in more detail in Section 4.3.2. For the following derivation, we assume that the
priors are Gaussian. In the case of uniform distributions, the related terms cancel
out such that the given derivation stays valid. Using the above assumptions, we

37

3.4. Graph-based optimization

transform Equation (3.2) into

x∗ = argmax
x

∏
i

p(zi | x)
∏
j

p(xj)

= argmin
x

− log
(∏

i

p(zi | x)
∏
j

p(xj)

)

= argmin
x

−

(∑
i

log p(zi | x) +
∑
j

log p(xj)

)
= argmin

x

∑
i

e(zi, hi(x))
⊤Ωi e(zi, hi(x)) +

∑
j

e(xj)
⊤Ωje(xj).

For notational convenience, we gather the indices k = {i, j} and use the error
vector ek to represent the results of either e(zi, hi(x)) or e(xj). We can now
represent the MAP approach from Equation (3.1) as

x∗ = argmin
x

∑
k

e⊤
k Ωkek, (3.3)

which shows that under the assumptions A-1, A-2, and A-3 the MAP formulation
is equivalent to minimizing a sum over weighted quadratic errors.

3.4.2 Gauss-Newton algorithm
A classical way of solving non-linear least squares problems is to use the Gauss-
Newton algorithm. The general idea of Gauss-Newton is to approximate the cost
function F (x) locally with an analytically solvable function and then iteratively
improve the estimates x. In the following, we use the work by Grisetti et al.
(2010) and derive the algorithm with respect to our graph-based optimization
problem and notation. For notational convenience, we first rewrite our optimiz-
ation problem as

x∗ = argmin
x

∑
k

e⊤
k Ωkek

= argmin
x

∑
k

ek(x)⊤Ωkek(x)

= argmin
x

F (x) ,

where we use the notation ek(x) to make the error functions dependent on all
state variables and gather all costs in F (x). We use Taylor approximation to
locally approximate the cost function F (x) around the linearization point x̆ as

F (x̆+∆x) =
∑
k

ek(x̆+∆x)⊤Ωkek(x̆+∆x)

≈
∑
k

(ek(x̆) + Jk(x̆)∆x)⊤ Ωk (ek(x̆) + Jk(x̆)∆x) ,

38

Chapter 3. Fundamentals

with Jk(x̆) being the Jacobian of error function ek(x̆) at linearization point x̆

and the update ∆x. Multiplying out and reordering the terms results in

F (x̆+∆x)

≈
∑
k

ek(x̆)⊤Ωkek(x̆) + 2ek(x̆)⊤ΩkJk(x̆)∆x+∆x⊤Jk(x̆)
⊤ΩkJk(x̆)∆x

=
∑
k

ek(x̆)⊤Ωkek(x̆)︸ ︷︷ ︸
c

+2
∑
k

ek(x̆)⊤ΩkJk(x̆)︸ ︷︷ ︸
b(x̆)=b

∆x+∆x⊤
∑
k

Jk(x̆)
⊤ΩkJk(x̆)︸ ︷︷ ︸

H(x̆)=H

∆x

= ∆x⊤H∆x+ 2b⊤∆x+ c, (3.4)

where we have shown that after Taylor approximation our target function is now
quadratic in ∆x. We can now solve for the optimal update ∆x∗ based on the
current linearization point x̆ in closed form as

∆x∗ = argmin
∆x

F (x̆+∆x) ,

F (x̆+∆x)

∂∆x
= 2H∆x+ 2b

!
= 0,

which leads to the system of linear equations of the form

H∆x∗ = −b. (3.5)

Usually, this form is not directly solved for ∆x∗ because it requires inverting the
system matrix H, which is usually a computationally expensive task. Commonly
used methods are, for example, QR-factorization and Cholesky decomposition.
It is important to note that the system matrix H and gradient vector b are
computed in Equation (3.4) as

H =
∑
k

Hk =
∑
k

Jk(x̆)
⊤ΩkJk(x̆), (3.6)

b =
∑
k

bk =
∑
k

ek(x̆)⊤ΩkJk(x̆), (3.7)

which means that the individual summands Hk and bk can be computed inde-
pendently for each error function. This allows for only partially relinearizing the
system and more efficient calculations by grouping error functions based on their
mathematical properties. In Section 4.3.2, we make use of this to simplify the
terms for map landmark priors. To explicitly point out that the system matrix
H and the gradient vector b are computed based on the linearization point x̆, we
later use the definition

H = H (x̆) ,

b = b (x̆) .

39

3.4. Graph-based optimization

Another important aspect is that the inverse of the system matrix, i.e., H−1, is
the covariance matrix of the Normal distribution

N
(
x̆, H−1

)
,

which is based on the observation that H is constructed in Equation (3.6) by
propagating the uncertainty of measurement errors into the state space of x̆

(Grisetti et al., 2010). After computing the optimal state update ∆x∗, we apply
it to the linearization point x̆, which completes one Gauss-Newton iteration and
results in the optimized state vector

x∗ = x̆+∆x∗. (3.8)

In summary, Algorithm 1 describes the different required steps.

1 set x̆ to initial estimate;
2 while not converged do
3 compute H = H (x̆) and b = b (x̆);
4 solve H∆x∗ = −b;
5 apply update x∗ = x̆+∆x∗;
6 set x̆ = x∗;
Algorithm 1: Gauss-Newton optimization

Levenberg-Marquardt algorithm

A popular alternative to Gauss-Newton is the Levenberg–Marquardt (LM) al-
gorithm. It is based on dampening the system matrix H in Equation (3.5), which
is rewritten as

(H + λI)∆x∗ = −b,

with the dampening parameter λ. The intuition behind the dampening parameter
is that the higher its value, the smaller is the resulting update ∆x∗. The value of
the dampening parameter is typically chosen based on some heuristic. A simple
one is to adjust it in each iteration after computing the parameter update ∆x∗.
If an update does not improve the overall cost, i.e., F (x̆+∆x∗) > F (x̆), the
computed update can be considered as too greedy. In this case, the computed
update is ignored and the whole iteration redone with an increased dampening
value λ. In the case that the update successfully reduces costs, i.e., F (x̆+∆x∗) <

F (x̆), the dampening value λ can be decreased to improve the convergence speed.

40

Chapter 3. Fundamentals

Compared to Gauss-Newton, LM is slower as it might require more iterations
to converge. Also, due to rejecting suboptimal updates, LM is guaranteed to
converge. This is not the case for Gauss-Newton, which might even diverge
such that optimization fails. A benefit of LM is that it can also be used for
applications in which the equation system is underconstrained. Nevertheless,
we still prefer Gauss-Newton for research purposes and development because it
more easily reveals implementation and conceptual flaws as it does not hide rank-
deficiency issues.

3.4.3 Gauss-Newton on manifolds

A practical issue of the Gauss-Newton state update x∗ = x̆+∆x∗ (Equation 3.8)
is that it assumes Euclidean spaces for the involved states. This renders other
state space definitions without further adjustments incompatible. A relevant
example for a state space that is not Euclidean is the vehicle orientation, which is
defined as θ ∈ [−π, π). Using the state update equation might therefore produce
results with the vehicle orientation being outside its defined limits. A tailored
solution to our simple example is adding or subtracting 2π from θ whenever it
exceeds the limit, which is called normalization. The more generalized notation
for handling state space mapping issues is to use manifold operations. Rewriting
Equation (3.8) with the manifold operation � yields

x∗ = x̆�∆x∗.

The manifold operator � can be interpreted as a mechanism that ensures that
the update ∆x∗ is correctly applied, and x∗ is still in a valid state space.

Besides applying state updates, manifolds are also useful within error func-
tions. We demonstrate this with the error function e(z, θ) = z − θ, where z ∈
[−π, π) is the measurement of the vehicles orientation and θ is the current expec-
ted measurement. This error function might produce high errors if z and θ are
on the opposite ends of the state limits, although both are close together. This
is again solved by using manifold operations within the error function instead of
relying on subtraction. Figure 3.5 illustrates this issue.

We here demonstrated manifold operations for the orientation of a SE(2)
vehicle pose as this relates to our use case. Manifolds are also especially required
for SE(3) poses, in which the angular state components are additionally prone
to singularities. For a more in-depth discussion of the mathematical background,
we refer to the work of Hertzberg (2008) and Hertzberg et al. (2013).

41

3.4. Graph-based optimization

y

x
+

−
θ = −7

8
π

z = 7
8
π

e(z, θ) = 1
4
π

Figure 3.5: The illustration shows the requirement for using manifolds within angular state
spaces. The angular measurement z and the expected measurement θ are both at the end of the
state space limits [−π, π). Simple subtraction within the error function produces the incorrect
error e(z, θ) = z − θ = 7

4π. Using manifold operations ensures that the error is correctly mapped
across the space limits and yields e(z, θ) = z � θ = 1

4π.

3.4.4 Handling outliers

An essential aspect of robust optimization is handling outliers, which might have a
drastic effect on the optimization result if being unhandled. In our case, outliers
are measurements that violate our Gaussian assumptions A-2 and A-3. One
way of dealing with outliers is carefully selecting the constraints included in the
optimization with the intention of filtering out outliers beforehand. We discuss
this option for our problem in Section 4.1. Another approach is to alleviate the
effects of outliers within the optimization by weighting down large error terms.
This is referred to as M-Estimation (Huber and Ronchetti, 2009). The original
optimization problem from Equation (3.3) is modified as

x∗ = argmin
x

∑
k

ρ
(
ek(x)

⊤Ωkek(x)
)
,

= argmin
x

∑
k

ρ (Fk(x)) , (3.9)

where ρ is called a robust cost function that is positive-definite and symmetric
(Zhang, 1997). Depending on the characteristics of the involved cost terms, dif-
ferent robust cost functions are convenient. To illustrate the concept, we briefly
state dynamic covariance scaling (DCS) by Agarwal et al. (2013) based on the
formulas by MacTavish and Barfoot (2015), who write the robust cost function
as

ρDCS (Fk(x)) =

F 2
k /2 F 2

k ≤ ϕ
2ϕF 2

k

F 2
k+ϕ

− ϕ
2

F 2
k > ϕ,

where we use Fk as an abbreviation for Fk(x) and ϕ is a tuning parameter that
controls the impact of the robust cost function. A more classical robust cost

42

Chapter 3. Fundamentals

function is the Cauchy kernel (also called Lorentzian), defined as

ρCauchy (Fk(x)) =
ϕ2

2
log
(
1 +

F 2
k

ϕ2

)
.

We refer to Zhang (1997) for a more comprehensive list of further robust cost func-
tions. Following Zhang (1997) and Agarwal (2015), we interpret Equation (3.9)
as an iterative reweighted least squares (IRLS) problem and rewrite it as

x∗ = argmin
x

∑
k

ek(x)
⊤ (w (Fk(x̆)) Ωk) ek(x),

where w is a weighting function, and x̆ is the linearization point and result
of the last Gauss-Newton iteration. We refer to Förstner and Wrobel (2016,
Chapter 4.7) for a more in-depth discussion on weighted least squares for robust
estimation. For DCS, the weighting function is given as

wDCS (Fk(x̆)) =

1 F 2
k ≤ ϕ

4ϕ2

(F 2
k+ϕ)2

F 2
k > ϕ

,

with tuning parameter ϕ, which is the quadratic error threshold up to which DCS
is similar to standard least squares. This means that we can control the error
boundary b by setting

ϕ = b2,

which allows an intuitive interpretation of the DCS effects. The weighting func-
tion for the Cauchy robust cost function is

wCauchy (Fk(x̆)) =
1

1 +
F 2
k

ϕ2

.

We illustrate the robust cost and the weighting function for the DCS and Cauchy
kernel in Figure 3.6. Choosing a suitable cost function depends on the nature of
the data and the underlying optimization problem. DCS is popularly used for
robustifying data association constraints. The underlying weighting effectively
deactivates outliers and is therefore commonly used to robustify loop closure de-
cisions in SLAM applications. As we will discuss in Chapter 4.1, our localization
architecture carefully selects the integrated data association constraints, such that
using DCS is not beneficial in our case. In contrast to other approaches using
DCS might, in our case, even prevent our graph-based approach from converging
to the correct solution. Therefore, we make use of the Cauchy function for all
included constraints in the graph. We consider this a trade-off between outlier
rejection and allowing the optimization to jump to the correct solution. This is
the case in, for example, reinitialization phases.

43

3.5. Factor graph representation

−4 −2 0 2 4
0

2

4

Error

C
os

t
ρ

(a) DCS cost function

−4 −2 0 2 4
0

2

4

Error

W
ei

gh
t
w

ϕ = 32

ϕ = 22

ϕ = 12

(b) DCS weight function

−4 −2 0 2 4
0

2

4

Error

C
os

t
ρ

(c) Cauchy cost function

−4 −2 0 2 4
0

2

4

Error

W
ei

gh
t
w

ϕ = 32

ϕ = 22

ϕ = 12

(d) Cauchy weight function

Figure 3.6: Illustration of DCS and Cauchy robust cost as well as their corresponding weight
functions. The parameter ϕ allows controlling the cost function’s behavior. In the DCS case,
it allows to set the boundary up to which the errors are equal to standard least squares.

3.5 Factor graph representation
Regardless of choosing either the MAP or error minimization interpretation for
SLAM problems (see Section 3.4.1), it can be helpful to represent the optimiza-
tion problem graphically. Figure 3.7 shows two commonly used representations.
In both representations, the unfilled nodes represent unknown states that we
want to estimate. The difference between both representations is how they out-
line relations between the states and measurements. In the dynamic Bayesian
network, nodes are connected through arrows, representing causal dependencies,
and grayed out states are used to denote known measurements. On the other
side, the factor graph representation outlines the error relation between states.
For a more detailed discussion of the various aspects of graphical representations,
we refer to the work of Dellaert and Kaess (2017) and Förstner (2013). In the
scope of this thesis, we use factor graphs and the following factor definition.

Definition 2. A factor fk
i is a triplet composed of

• a measurement zk
i ,

• the corresponding covariance matrix Σk
i or information matrix Ωk

i = Σk
i
−1,

44

Chapter 3. Fundamentals

and

• an error function ek(x, zk
i) between the state and the measurement vector.

Within the definition, the superscript k denotes the type of the factor, for ex-
ample, an absolute pose measurement from GNSS or relative measurement of a
pole landmark. The subscript i is the index within all available measurements
of the corresponding type. Within this thesis, we use the factor graph repres-
entation because its notation directly corresponds to the structure of the system
matrix H. Figure 3.8 gives an example.

xp
0 xp

1 xp
2 xp

3

o0 o1 o2

xl
0 xl

1

m0

a0 a1

(a) Dynamic Bayesian network

xp
0 xp

1 xp
2 xp

3f odo
0 f odo

1 f odo
2

xl
0 xl

1

fmap
0

f lm
0 f lm

1f lm
2 f lm

3 f lm
4

f abs
0 f abs

1

(b) Factor graph

Figure 3.7: Comparison of two commonly used graph representations. Both representations
describe the same state estimation problem with vehicle poses xp = {xp

0, ...,x
p
3} and two land-

marks xl = {xl
0,x

l
1}, where only xl

0 is in the map.

xp
0 xp

1 xp
2 xp

3f odo
0 f odo

1 f odo
2

xl
0 xl

1

fmap
0

f lm
0 f lm

1f lm
2 f lm

3 f lm
4

f abs
0 f abs

1

(a) Factor graph

xp
0 xp

1 xp
2 xp

3 xl
0 xl

1

xp
0

xp
1

xp
2

xp
3

xl
0

xl
1

(b) System matrix H

Figure 3.8: Factor graph and its corresponding system matrix structure. (a) A factor graph with
landmark factors in green, odometry factors in red, absolute factors in blue, and a yellow map
factor. (b) Structure of the corresponding system matrix H within the optimization problem.
The coloring shows the contributions of the different factor types to the matrix.

45

3.6. Marginalization

3.6 Marginalization
A common way of keeping an optimization problem computationally tractable
is to limit the state vector’s size. This can be achieved by either simply de-
leting states or by marginalizing them out. While we discuss both options in
Section 5.3.2, we state the mathematical background for marginalization in the
following. The overall marginalization problem is given as

p(xn) =

∫
p(xn,xm)dxm, (3.10)

where p(xn,xm) = p(x) is the distribution over all states, xm contains the mar-
ginalized states, and p(xn) is the marginalized distribution without the states
xm. If the joint distribution p(xn,xm) is Gaussian and given in covariance form
as

p(xn,xm) ∼ N

([
µm

µn

]
,

[
Σm Σmn

Σ⊤
mn Σn

])
,

marginalization of xm is equal to deleting all entries involving m and results in

p(xn) ∼ N (µn,Σn) ,

which is explained by Walter et al. (2007) in more detail. Since it is beneficial
in graph-based SLAM to represent Gaussians with mean and information matrix
instead of mean and covariance matrix, marginalization must be handled dif-
ferently. Assuming that the joint distribution from Equation (3.10) is denoted
as

p(xn,xm) ∼ N

[µm

µn

]
,

[
Ωm Ωmn

Ω⊤
mn Ωn

]−1
 ,

the Schur complement can be used to calculate the marginal distribution

p(xn) ∼ N
(
µn,Ω

−1
n

)
,

Ω−1
n =

[
Ωn − ΩmnΩ

−1
m Ω⊤

mn

]−1
. (3.11)

A major drawback of this exact marginalization is that the sparsity pattern of
the resulting information matrix Ωn is negatively influenced and thus leads to
an increased computational demand for most subsequent operations involving
Ωn. We refer to Sibley et al. (2010), who explain in more detail how the sparsity
pattern changes. To illustrate the change in sparsity, Figure 3.9 compares a graph
before and after marginalization.

46

Chapter 3. Fundamentals

xp
0 xp

1 xp
2

xl
0

xl
1

xl
2

xl
3

xl
4

(a) before marginalizing out xp
0

xp
1 xp

2

xl
0

xl
1

xl
2

xl
3

xl
4

(b) after marginalizing out xp
0

xp
0 xp

1 xp
2 xl

0 xl
1 xl

2 xl
3 xl

4

xp
0

xp
1

xp
2

xl
0

xl
1

xl
2

xl
3

xl
4

(c) H before marginalizing out xp
0

xp
1 xp

2 xl
0 xl

1 xl
2 xl

3 xl
4

xp
1

xp
2

xl
0

xl
1

xl
2

xl
3

xl
4

(d) H after marginalizing out xp
0

Figure 3.9: The figure illustrates a worst-case example of marginalization. It shows an exem-
plary factor graph and its corresponding system matrix before and after marginalization. (a)
The original factor graph before marginalization. (b) All states that were connected to xp

0

are now interconnected through a dense marginalization prior. (c) The system matrix H has
several empty entries, which are colored in white. (d) After marginalization, the system matrix
H is significantly more dense than before. All entries that are affected by the marginalization
are colored in purple. Note that the entries for vehicle state xp

2 are not influenced.

47

3.6. Marginalization

3.6.1 Relation to iterative optimization
To show the connection between marginalization using Schur complement and
iterative optimization, we rewrite the equation system that needs to be solved in
each Gauss-Newton iteration (Equation 3.5) as[

Ha Hab

H⊤
ab Hb

][
∆x∗

a

∆x∗
b

]
= −

[
ba
bb

]
, (3.12)

where we have split up the involved matrices and vectors into the two parts a

and b. Part a corresponds to the part of the state vector that we want to mar-
ginalize out, whereas part b is the one that we want to keep. It is important to
point out that the system matrix H = H (x̆) and gradient vector b = b (x̆) are
constructed based on the linearization point x̆. We will later use this to elab-
orate on the linearization errors induced by marginalization. Another essential
aspect to remember is that H−1 is the covariance matrix of the Normal distri-
bution N (x̆, H−1), which shows the relation to the probabilistic interpretation
from the previous Section 3.6. Following Sibley et al. (2010), we now rearrange
Equation (3.12) into[

Ha Hb

0 Hb −H⊤
abH

−1
a Hab

][
∆x∗

a

∆x∗
b

]
= −

[
ba

bb −H⊤
abH

−1
a ba

]
,

such that we can partly solve the equation system for ∆x∗
b without solving for

∆x∗
a as (

Hb −H⊤
abH

−1
a Hab

)
∆x∗

b = −
(
bb −H⊤

abH
−1
a ba

)
.

Comparing the left-hand side of the equation system with Equation (3.11) re-
veals that we have applied the Schur complement, which is, as previously shown,
equivalent to marginalization. Gathering all parts of the equation that contain
information about the marginalized states yields

(Hb −Hmarg)∆x∗
b = − (bb − bmarg) .

We rewrite the equation and explicitly denote the dependency on the linearization
point as(

Hb (x̆b)− Hmarg

([
x̆a

x̆b

]))
∆x∗

b = −

(
bb (x̆)− bmarg

([
x̆a

x̆b

]))
,

where we can see that Hmarg and bmarg depend on the linearization point x̆ of the
current Gauss-Newton iteration. Linearization errors now emerge in subsequent
iterations of the Gauss-Newton algorithm because Hmarg and bmarg are not recom-
puted but treated as constant terms. In return, this ensures that the state update

48

Chapter 3. Fundamentals

no longer requires linearizing xa as it is not part of the optimization anymore.
In comparison, all states within xb remain active such that the corresponding
system matrix Hb and gradient vector bb can not only be relinearized but also
be augmented with additional information that is available to the system at a
later point in time. A major drawback besides the induced linearization errors
is that the fill-in produced by Hmarg renders the overall system matrix H dense
and therefore negatively impacts the required computation time for solving the
linear equation system. In Chapter 5.3.2, we propose a method for sliding window
optimization that limits linearization errors and simultaneously prevents fill-in.

49

Chapter 4

Localization on general-purpose
landmark maps

In the following, we present our approach to vehicle localization for automated
driving. We extend upon our previously reported findings (Wilbers et al., 2019a)
and discuss the aspects of our approach in greater detail. In this chapter, our main
contribution is the adaptation of graph-based optimization such that it is suitable
for self-localization in the context of automated driving. In detail, the contribu-
tions that we present in this chapter include an architecture for graph-based
sliding window localization, a data association approach that utilizes general-
purpose third-party landmark maps, and a comparison to particle filters for pose
estimation. Our key claims are that our graph-based localization approach

(i) provides globally accurate pose estimates,

(ii) incorporates landmark measurements in a generic sensor-independent fash-
ion,

(iii) utilizes general-purpose third-party landmark maps,

(iv) integrates delayed measurements,

(v) revises map associations to increase the localization quality, and

(vi) is fast and frequent enough for application in an automated vehicle.

We focus on the localization aspects of our approach in the following and cover
map refinements separately in Chapter 5. Our graph-based localization approach
relies on a fixed pose frequency sliding window graph for computational tractab-
ility, for which we first present our design principles in Section 4.1 and afterward
present our approach in Section 4.2. Furthermore, we propose an approach for in-
tegrating third-party maps in our sliding window graph in Section 4.3 and present

51

4.1. Design principles

our data association technique in Section 4.4. Our data association approach in-
cludes locally associating measurements to find out if they belong to the same
landmark, matching landmarks to a given general-purpose map, and temporally
filtering map associations. We discuss each of these steps in detail. Furthermore,
we derive and discuss the error functions required for different types of landmarks
in Section 4.5 and discuss the different options for synchronizing measurement
data in Section 4.6. We conclude this chapter by comparing our sliding window
approach to particle filters on an argumentative level in Section 4.7.

4.1 Design principles
Our localization approach fuses data from GNSS, odometry, landmark detect-
ors, and general-purpose landmark maps to estimate a vehicle pose with graph
optimization. The architecture of our approach consists of different processing
layers that we structure such that they contribute to fulfilling the requirements
for our localization system as listed in Section 1.2. In brief, we require highly ac-
curate poses that are computed computationally tractable for online localization
with a target frequency between 10 Hz to 20 Hz. Also, our localization system
must incorporate landmarks in a generic way such that multiple sensor modalities
are integrable. Our approach must incorporate general-purpose map landmarks
and fallback to fusing GNSS and odometry in environments without landmarks.
Furthermore, our approach must be capable of computing conservative in-vehicle
map refinements as update hypotheses that can be transmitted to a back-end
service. We target to realize our approach based on design principles that we
discuss in the following.

Our approach for designing a robust and reliable localization system is built
on abstracting the used sensors away from the core localization system. The idea
is that different sensors can detect the same landmarks such that we can incor-
porate landmark measurements in a general fashion. For example, a lamp post
can be measured with a LiDAR, as well as a camera or radar. We suggest using
a detection module for each sensor that processes the raw data and outputs land-
mark measurements in the VRF. The benefits of using generic interfaces are also
common in other ADAS domains, e.g., Kubertschak et al. (2014) and Munz et al.
(2010). A benefit of using landmarks for localization is that it allows us to di-
vide the raw data processing (i.e., landmark detection) across different processing
units in the vehicle such that we can implement a decentralized architecture. This
enables us to balance the computational workload and bandwidth requirements
of our system. Darms and Winner (2005) discuss this aspect in a more general
fashion. To avoid correlated errors and systematic failure, it is crucial that the
detectors work individually on the sensor data and do not rely on, e.g., the odo-

52

Chapter 4. Localization on general-purpose landmark maps

metry that is later fused into the state estimate. Additionally, to support the
i.i.d. assumption (see Assumption 1 in Chapter 3.4.1), the detectors should be
designed without internal tracking or predictions. Whenever we use black box
detectors, this is sometimes hard to ensure. In practice, we ignore violations of
the i.i.d. assumption for landmark measurements, as the impact heavily depends
on the error characteristics of the underlying sensor. We consider it the detector’s
responsibility to deliver landmark measurements free of systematic and correlated
errors. We will show in our evaluation that this works well in practice for our use
case of localization in urban areas. It is worth mentioning that advanced methods
could be used to handle correlated errors within optimization (see Noack et al.,
2015) or even do online calibration to handle systematic errors. While this is
common and helpful for regular SLAM systems, we advise against doing so in
localization systems for automated driving. Especially online calibration involves
the risk of actually decalibrating the sensor parameters in challenging environ-
ment scenarios. Related to functional safety, we consider this type of error source
too hazardous and therefore exclude online calibration for our approach in this
thesis. Overcoming these reservations is an open research field with methods that
might help to relax the mentioned issues in the future.

A major design aspect that we consider in our architecture is to avoid any
feedback loops, which means that we do not use pose estimates from preceding
algorithm cycles as an input to the current or following algorithm cycles. In
comparison, it is a common technique in related work to explicitly rely on given
pose estimates to, e.g., identify outliers and perform data association, which is
prone to error accumulation and may result in failure (Lajoie et al., 2019). As we
consider localization for automated driving safety-relevant, it is important that
any errors do not amplify over time. In the worst-case, this would lead to a
complete failure of the localization system. Therefore, we avoid using estimation
results from previous algorithm cycles as a direct input to any of the processing
steps in our architecture for subsequent algorithm cycles. To be correct, one
exception to this is our map matching, which requires one initial starting pose in
order to limit the search area in the map. However, the initial pose could also
be a pose from GNSS or any other pose estimate, as it must only be roughly in
the area of the true pose. We still consider this feedback-free since the pose must
only be approximately correct and errors do not propagate through the system.

A further design principle is that we avoid solving data association within the
graph optimization but instead rely on estimating it during graph construction.
Although solving data associations, e.g., loop closures and measurement asso-
ciation, is commonly done during graph optimization in SLAM algorithms, we
consider it a risk for our localization use case. This is because solving data associ-
ation within graph optimization might involve the risk of divergence. Instead, we

53

4.1. Design principles

prefer validating our decisions upfront during graph construction, which enables
us to make more comprehensible and conservative decisions.

Another design aspect is that we perform map matching independently of
previously found matches. We always search for the best map matching based on
the measurements in the current sliding window. This is important because we
add and remove measurements in each algorithm cycle from the sliding window
such that the map matching results might differ between subsequent algorithm
cycles. To avoid matching errors, we additionally filter map associations tem-
porally, which gives us the most probable matches over time. In combination,
this allows us to recover whenever the vehicle drove through an area without
landmarks, no landmark measurements were available, or the localization was
erroneous. We explain our algorithm in detail in Section 4.4.2.

Our architectural choices are based on the discussed design principles. Fig-
ure 4.1 illustrates the described elements of our approach and states the references
to the related sections in which we provide detailed information. In the following,
we briefly describe the illustrated data flow of our architecture. The input data
to our approach consists of GNSS, odometry, map data, and a combination of
LiDAR, camera, and/or radar. The data from LiDAR, camera, and radar is con-
sumed by given landmark detector modules that provide landmark detections in
VRF. Hereby, we completely abstract the landmark detections away from their
initial sensor modality such that subsequent modules have no knowledge about
the sensor origin. Our local association module accumulates odometry data and
landmark measurements to identify which landmark measurements belong to the
same landmark. The result of our local association step are clustered landmark
measurements that we in a later step include in the graph and a local map based
on accumulated odometry data that we use for map matching. In the follow-
ing map matching step, we calculate the best fit between the local map based
on the input data to the current algorithm cycle and the general-purpose map.
Subsequently, we accumulate the found map matches over all previous algorithm
cycles in our temporal association step to find the best map associations that
we include in our graph. In the last three steps of our architecture, we first syn-
chronize all measurements, afterward construct the graph based on the previously
found associations, and finally optimize our sliding window graph.

54

Chapter 4. Localization on general-purpose landmark maps

GNSS Odometry LiDAR Camera Radar Map

Landmark
Detector

Landmark
Detector

Landmark
Detector

Local Association (Section 4.4.1)

Map Matching
(Section 4.4.2)

Temporal
Association Smoothing

(Section 4.4.4)

Time Synchronization (Section 4.6)

Sliding Window Graph Construction (Sections 4.2.1, 4.5)

Graph Optimization (Section 3.4)
and Sliding Window Marginalization (Section 5.3.2)

Vehicle Trajectory

Po
se

Figure 4.1: The architecture gives an overview of the involved steps in our localization archi-
tecture. The highlighted elements in blue are in the scope of this thesis and presented in more
detail in the denoted sections.

55

4.1. Design principles

map matched pole
map element
map element
landmark constraint
estimated pose
GNSS pose

Figure 4.2: The figure shows a screenshot of our sliding window graph implementation in a real-
world urban scenario. In this example, we use pole and building facade measurements from
LiDAR, lane boundary measurements from camera, odometry measurements, GNSS poses, and
map data to constrain the vehicle trajectory. A gray line denotes a constraint between a vehicle
pose and a landmark. The number of incorporated landmark constraints in our sliding window
graph is naturally limited by the number of landmarks in the environment, the detector’s
frequencies, and the number of poses in the graph.

56

Chapter 4. Localization on general-purpose landmark maps

4.2 Graph-based sliding window localization

We adopt the graph optimization principle to a sliding window formulation such
that it is computationally tractable for online localization. First, we concentrate
on the properties, advantages, and disadvantages of our sliding window design.
In its most basic form, without including any landmark states and measurements,
we derive our sliding window principle from the pose graph formulation of Mer-
fels (2018). We extend upon this by incorporating landmark measurements and
including landmarks in the state vector. Although we include landmarks in the
state vector, our approach is not a regular SLAM system because of two reasons.
The first one is that we never directly change or update the general-purpose map
at runtime and only integrate it as prior knowledge. Secondly, we only use the
estimated landmark positions as update hypotheses that we can send to a back-
end service for validation. Our system forgets about the estimated landmarks as
soon as they are out of range and potentially transferred to the back-end service.
Therefore, our approach is mainly a localization approach that also allows map
refinement instead of a regular SLAM technique. We discuss map refinements
separately in Chapter 5. In general, estimating a trajectory is known as smooth-
ing, whereas filtering techniques, like Kalman filter, usually only estimate the
latest pose (Sibley et al., 2010). We discuss the benefits of our approach in the
remaining sections of this chapter.

4.2.1 Sliding window definition

We define the length of our sliding window based on the number of maximum
poses inside the graph. The poses inside the graph have a fixed temporal dis-
tance that is equal for all poses. The main advantage of having a sliding window
defined over time instead of space is the minimal data maintenance effort. Poses
can be stored in a list, and whenever the sliding window is moved, new poses
can be added in the front, and old ones can be deleted at the back. More im-
portantly, it also naturally limits the number of landmark measurements that we
include in the graph. The total number of landmark measurements depends on
the detectors’ measurement frequency and the number of visible landmarks at
the vehicle location. On the contrary, a sliding window defined by space would
require a method that prevents excessive growth of measurements in the graph
when, e.g., standing still or driving in circles. We illustrate an exemplary sliding
window graph in a real-world urban scenario in Figure 4.2. We denote the total
time span that our sliding window graph covers as

T =
N

f
,

57

4.2. Graph-based sliding window localization

with the frequency of poses f and number of maximum poses N inside the graph.
The pose frequency f here describes the temporal resolution of the sliding window
graph which can be chosen freely. We denote the state vector for a sliding window
at time τ as

xτ = [xp
τ−T , . . . ,x

p
τ ,x

l
1, . . . ,x

l
M]⊤,

with poses xp, landmarks xl, and the number of landmarks in the graph M .
Depending on how we choose the pose frequency f and the number of maximum
poses N , we influence the size of the state vector. At the same time, the state
vector size influences the computation time, which must be considered. Addition-
ally, as we want to make sure that subsequent pose vertices are linked, we require
that the measurement frequency of the odometry must be higher than the pose
frequency f . This guarantees that all subsequent poses are connected through
factors in the graph, and no split graph occurs.

It is important to note that the graph’s internal resolution, which is defined
by the pose frequency f and the number of maximum poses N , is independent of
how often and when we optimize the graph. We separately define an optimiza-
tion frequency f o that controls how often the algorithm cycle is triggered and the
graph optimized. This allows us to distinguish between the requirements within
graph construction and the pose output frequency required by subsequent mod-
ules. Besides, it is essential to consider that our sliding window’s pose frequency
directly influences the magnitude of measurement interpolation errors through
time synchronization, which we discuss in more detail in Section 4.6. We illus-
trate the connection between internal graph resolution and algorithm cycle in
Figure 4.3.

In addition to the states, we denote the set of raw measurements z̃ as

z̃τ = [z̃τ1 , . . . , z̃τR],

where R is the number of total measurements within the time span of the sliding
window graph τ , and the subscript only iterates the measurements, as multiple
measurements for a specific timestamp are allowed. Here z̃ denotes the set of raw
measurements with their original timestamp.

To be included in the graph, the measurements must be synchronized to the
pose timestamps in xτ . We denote the synchronized measurements as

zτ = [zτ1 , . . . , zτG],

where G is the number of measurements in the graph, which is different from the
number of raw measurements R as we might exclude landmarks if they are not
matched to the map. Additionally, we use the notation z̃τ+ and zτ+ to denote
the set of new measurements that we add to the sliding window τ and use z̃τ− ,

58

Chapter 4. Localization on general-purpose landmark maps

zτ− to denote the sets of measurements that we remove from the sliding window
graph in algorithm cycle τ .

It is important to note that only the most recent vehicle pose in each slid-
ing window graph is relevant for other modules of the driving stack. Subsequent
modules to localization, like trajectory planning or path prediction, typically base
their decisions on the latest estimated vehicle pose, whereas the vehicle’s traject-
ory in the past is unused. This means that the output interface of our localization
system only covers the latest poses xp

τ of each algorithm cycle. Estimating the
trajectory is, however, a crucial factor for the accuracy of the graph’s latest pose.
This stems from the fact that linearization errors are reduced, and past data
association decisions can easily be changed within the sliding window. As an
overview, we illustrate the benefits w.r.t. data association in Figure 4.4.

A further important aspect of our approach is how we remove measurements
from our sliding window graph. In the remainder of this chapter, we focus on
pure localization and use truncation for removing outdated measurements from
our sliding window graph. Compared to marginalizing out measurements, this
means that we completely forget outdated measurements. While a disadvantage
of truncation is that the end of the graph is less constrained compared to margin-
alization and we forget information, an advantage is that linearization errors can
not accumulate over time. Also, truncation does not produce fill-in in the system
matrix H and is therefore computationally faster. Truncation is a suitable ap-
proach as long as the sliding window contains sufficiently enough measurements
to fully constrain the trajectory, the covered graph time span is long enough such
that measurements at the end of the graph only have a marginal influence on the
latest vehicle pose, and we are only interested in the latest vehicle pose. We will
show in our evaluation that truncation is sufficient for our pure localization use
case in urban areas. Nevertheless, using marginalization is beneficial as soon as
we are interested in the estimated landmark positions for map refinement. We
discuss marginalization in more detail and introduce an approach for mitigating
its disadvantages for our use case in Chapter 5. In the following sections, we
present the details of our graph-based sliding window approach.

59

4.2. Graph-based sliding window localization

xp
0

.xp
0 xp

1 xp
2 xp

3 xp
4 xp

5 xp
6 xp

7 τ = 1

xp
0

.xp
0 xp

1 xp
2 xp

3 xp
4 xp

5 xp
6 xp

7 τ = 3

xp
0

.xp
0 xp

1 xp
2 xp

3 xp
4 xp

5 xp
6 xp

7 τ = 5

xp
0

.xp
0 xp

1 xp
2 xp

3 xp
4 xp

5 xp
6 xp

7 τ = 7

xp
0

.
1 2 3 4 5 6 7

time

Figure 4.3: Example of a sliding window graph with an internal pose frequency of f = 1 Hz
and a maximum number of poses N = 4. Instead of using marginalization for removing data,
we truncate the sliding window graph in this example. We set the optimization frequency in
this example to fo = 0.5 Hz, i.e., the algorithm cycle is executed every 2 s. For simplification,
we here only illustrate the odometry factors and omit other factor types. The sliding window
graph at time (τ = 1) is still in its initialization phase as the maximum number of poses has not
been reached yet. Starting at time (τ = 5), each algorithm cycle removes two outdated poses
and adds two new ones. The marks above the timeline at the bottom of the image illustrate
when the algorithm cycle is executed.

60

Chapter 4. Localization on general-purpose landmark maps

xp
0 xp

1 xp
2 xp

3 xp
4 xp

5 xp
6

xl
0 xl

1

(a) τ = 3

xp
0 xp

1 xp
2 xp

3 xp
4 xp

5 xp
6

xl
0 xl

1

(b) τ = 4

xp
0 xp

1 xp
2 xp

3 xp
4 xp

5 xp
6

xl
0 xl

1 xl
2 xl

3

(c) τ = 5

xp
0 xp

1 xp
2 xp

3 xp
4 xp

5 xp
6

xl
0 xl

1 xl
2 xl

3

(d) τ = 6

Figure 4.4: The figure illustrates our sliding window graph concept together with the benefits
of modifying the structure of the factor graph. It serves as an introductory overview of the
concepts that benefit from using sliding window graphs. In this example, we rely on truncation
for removing measurements from our sliding window graph. We individually discuss delayed
measurements, delayed data association, and reversible data association later in this chapter.
The different subfigures represent the graph at different time steps τ . The maximum number
of poses in this example is N = 4. In each timestep, the oldest pose is removed, and a new
one is added. (a) Initial graph after the maximum number of poses has been reached. (b)
Integration of a delayed landmark measurement that connects xp

2 and xl
0 (see Section 4.4.5).

(c) Delayed map association of xl
1. This happens if, e.g., the map match previously was not

probable enough (see Section 4.4.6). (d) The map match from xl
2 is considered wrong and

reversed (see Section 4.4.7).

61

4.2. Graph-based sliding window localization

4.2.2 Optimization-based pose estimation
Our sliding window problem formulation follows the general notation for optimiz-
ation problems presented in Section 3.4.1. While we are mainly interested in the
vehicle pose, we simultaneously estimate the location of landmarks to compute
map update hypotheses, as we will discuss in Chapter 5. In particular, we define
the state optimization problem for a specific sliding window at time τ as

x∗
τ = argmax

xτ

p(xτ | zlm, zodo, zabs,m), (4.1)

with landmark observations zlm, odometry measurements zodo, absolute pose
measurements zabs (e.g., GNSS), and a map m. For notational convenience,
we will use x ≡ xτ and z ≡ zτ in the following, such that we can reuse the
subscript for other purposes if necessary. Assuming i.i.d. measurements, Gaussian
distributions (see Chapter 3.4.1) and outliers (see Chapter 3.4.4), we transform
Equation (4.1) into

x∗ = argmin
x

K∑
k

ρ
(
e⊤
k Ωkek

)
,

which contains all involved constraints K that we select during graph construction
for our current sliding window τ . For notational clarity, we omit the robust
cost function ρ in the following and distinguish between the different types of
constraints, which yields

x∗ = argmin
x

∑
i

eodo(xp, zodo
i)⊤Ωodo

i eodo(xp, zodo
i)

+
∑
i

eabs(xp, zabs
i)⊤Ωlm

i eabs(xp, zabs
i)

+
∑
i

elm(xp,xl, zlm
i)⊤Ωabs

i elm(xp,xl, zlm
i)

+Fmap (xl,m
)

(4.2)

with the error functions for odometry ·odo, absolute measurements ·abs, landmark
measurements ·lm, and map association costs Fmap (xl,m

)
. We explicitly discuss

the latter in more detail in Section 4.3.2, as the integration of map landmarks is
fundamental to our approach. In our case, we use the Cauchy kernel as robust
cost function as explained in Chapter 3.4.4. Additionally, we carefully select the
used constraints in the first place, which we discuss in Section 4.4. We rely on
the Gauss-Newton algorithm, as presented in Section 3.4.2, to minimize the cost
function Equation (4.2).

62

Chapter 4. Localization on general-purpose landmark maps

4.3 Using third-party landmark maps
In the following, we present our approach for integrating general-purpose third-
party landmark maps into our graph-based sliding window approach. We start by
discussing third-party maps in Section 4.3.1. Afterward, we propose how to in-
tegrate third-party landmarks as priors into our state estimation in Section 4.3.2,
how to estimate missing covariances in Section 4.3.3, discuss the impact on Gauss-
Newton in Section 4.3.4, and consider landmarks with angular state components
in Section 4.3.5.

4.3.1 Third-party maps
Using third-party maps imposes unique challenges for localization systems, which
we discuss in the following. The process in which a map is created by a third-party
is usually unknown. Hence it can be considered a black box. It might involve
manually creating landmarks based on globally referenced aerial images or point
clouds, as well as semi-automated or automated extraction from the available
data. A key aspect of creating such a black box map is that the map elements
must be considered as generic as possible. As the sensors and detectors used in
a localization system can vary, the map landmarks should be general-purpose,
i.e., detectable with different sensors. Thus, we require that the elements of a
landmark map must be similar to our definition of a landmark for automated
driving in Section 3.2. The opposite of a general-purpose third-party map is
a map that is created with the same sensors, sensor mountings, and landmark
detectors as later used for localization. On the one side an advantage of such
a tailored map is that a vehicle with the same setup should be able to detect
all mapped landmarks at runtime which eases map matching. On the other
side a limitation is that the map might not be usable with other sensor types,
e.g., because detection ranges are different. Thus, tailored maps have a limited
transferability. This loss of versatility is mostly a disadvantage concerning cost-
effectiveness and maintainability. Whenever updating a map is required, each
tailored map must be changed individually. Whereas in the case of a generic
landmark map updating the map must only be done once. The main challenge
of relying on a general-purpose map is that the map elements may differ from
what the detectors can observe at runtime. While the reasons for not observing
a landmark can be sensor noise or blocked line-of-sight, it is also possible that
detecting a general-purpose map landmark might not be possible with a specific
landmark detector and sensor setup. For example, a landmark detector based
on a LiDAR sensor with limited resolution might not be able to detect pole
landmarks with a small radius, which, however, are part of the map. Undoubtedly
there must be at least some overlap between what the vehicle is able to detect

63

4.3. Using third-party landmark maps

and the map elements. Only then map matching is possible and the map is
useful for localization. As a consequence, measurements of landmarks that are
not part of the map must not be erroneously associated with the map. This
might lead to localization failure. We consider these challenges within our data
association and discuss them in more detail in Section 4.4. In addition to having
a general-purpose landmark map that is usable with different sensor setups, our
decision to rely on landmark maps has further reasons. At first, the data size
of landmark maps is significantly smaller than storing raw sensor data or dense
feature maps. Secondly, landmarks are easier to interpret by humans, which is
vital for manually creating, updating, and especially verifying maps. Although
this might be relaxed in the future due to increased automation within map
creation and verification, it is an important point that eases the traceability of
localization in case of localization failure and thus contributes to functional safety
aspects. Figure 4.5 illustrates an excerpt of a general-purpose landmark map that
we use within this thesis. We develop our data association concepts to consider
the mentioned challenges. Nevertheless, our concepts also work with maps that
are created for specific sensors. We do not impose the restriction of only using
general-purpose maps but open up the possibility to do so.

Poles
Dashed
Building Planes
Curbs
Solid Lines

Figure 4.5: An example of a general-purpose landmark map as used in this thesis. The figure
shows a real-world excerpt of an urban area.

4.3.2 Integrating map factors as state priors

Our approach for utilizing landmark maps in graph-based localization is to incor-
porate map matches as priors over landmark states. For now, we assume that the
data association is given and discuss the detailed aspects later in Section 4.4. Here
we focus on the mathematical aspects of incorporating landmarks from a given
map into graph-based optimization. We show how we define the map factors of
our graph-based approach, as illustrated in Figure 4.6.

64

Chapter 4. Localization on general-purpose landmark maps

xp
0 xp

1 xp
2 xp

3

xl
0 xl

1

map factor

Figure 4.6: Exemplary sliding window graph that contains four vehicle poses xp and two
landmarks xl. The landmark xl

0 is constrained by a map factor.

We model each map association that we found during data association as a
gaussian prior

p(xl
k) = N

(
xl
k | mk,Ω

map
k

)
,

with the individual landmark state xl
k ∈ xl, the matched state of the map land-

mark mk, and its information matrix Ωmap
k . We use the index k ∈ [1, . . . , K] to

identify individual matches within the total number of K map matches in the
graph. Following our derivation in Section 3.4.1, we transform each prior into a
cost function, such that the total map association costs are

Fmap (xl,m
)
=
∑
k

emap(xl
k,mk)

⊤Ωmap
k emap(xl

k,mk), (4.3)

where we define the error function emap(xl,mk) to match our error function nota-
tion. We define the error function itself as

emap(xl
k,mk) = xl

k −mk. (4.4)

Note that the error function is valid whenever the underlying landmark state space
is Euclidean, which is the case if the landmark is only defined by its position. If
a landmark state contains angular information, like the orientation of a building
corner, it is necessary to ensure that all operations produce valid results in the
defined parameter space. We discuss this in Section 4.3.5.

4.3.3 Map covariance
A challenge of using third-party maps exists whenever covariance estimates for
the map landmark states are neither available nor reliable. In that case, an
educated guess for the covariance or information matrix Ωmap

k must be made. In
addition to the i.i.d. assumption, we make the following assumptions to make an
educated guess for the information matrix of map factors:

65

4.3. Using third-party landmark maps

Assumption 4. The position uncertainty of any landmark in the general-purpose
map position is assumed to be isotropic.

Assumption 5. All third-party map landmarks of the same type share the same
covariance estimate.

In our case, Assumption 5 is required because no distinct covariances are avail-
able from the map provider. If distinct and meaningful covariances are available
Assumption 5 can be omitted. Nevertheless, an advantage of assuming shared
covariance estimates is that it reduces the required computations, as we will show
in the next section. Following Assumption 4 and the i.i.d. assumption, we write
the information matrix as

Ωmap
k = ωmap

k I,

with the map information factor ωmap
k . Taking into account Assumption 5, we

rewrite the equation as

Ωmap
k = ωmapI, (4.5)

where now ωmap is shared between all landmarks. For notational convenience, we
omit that the covariance scalar is not necessarily equal for all landmark types.
To make an educated guess for the map information factor ωmap, we suggest
the following heuristic. Instead of directly using the map information factor,
we understand it as more graspable to estimate the covariance or the standard
deviation such that we can use it as a parameter to our approach. Our notation
and the conversion to the map information factor is

ωmap =
1

σ2
,

with the covariance factor σ2. Following this, we estimate the covariance factor
as

σ2 =
1

γ(c)
r2, (4.6)

where γ is the two-dimensional inverse-chi-squared cumulative distribution func-
tion, c the confidence interval, and r a user-defined radius. Assuming that,
e.g., 95% (c = 0.95) of all map landmarks were measured within an error ra-
dius of r = 0.02 m, the educated covariance guess with Equation (4.6) results in
σ2 ≈ 6.7 × 10−5. This example illustrates how we guess the map covariance after
manual inspection if no further details about the map quality are available from
the map provider.

66

Chapter 4. Localization on general-purpose landmark maps

4.3.4 Impact on Gauss-Newton
Our assumptions about map landmarks allow us to simplify the involved terms
in Gauss-Newton. We first note that we can rewrite the map cost function from
Equation (4.3) as

Fmap (xl,m
)
= ωmap

∑
k

emap(xl
k,mk)

⊤emap(xl
k,mk),

where we have used Equation (4.5).
Following the fact that our map error function from Equation (4.4) is linear,

we write its Jacobian as

Jk(x̆
l
k) = I,

where x̆l
k denotes the linearization point and I the identity matrix. In return,

we can simplify the computation of the system matrix H and gradient vector b

involved in Gauss-Newton. We rewrite the summands from Equation (3.7) that
correspond to the map costs as

H = H\k +
∑
k

Jk(x̆
l
k)

⊤Ωmap
k Jk(x̆

l
k) = H\k + ωmapKI,

b = b\k +
∑
k

emap(x̆l
k,mk)

⊤Ωmap
k Jk(x̆

l
k) = b\k + ωmap

∑
k

emap(x̆l
k,mk),

where H\k and b\k denote the corresponding parts without any map factors.
For notational convenience, we ignore the dimensional mismatch between the
summands. It must be ensured that the summands are added to the correct rows
and columns of H and b.

4.3.5 Map landmarks with angular state components
To handle landmark states with angular components, we rewrite the map error
function from Equation (4.4) in the more general form

emap(xl
k,mk) = xl

k �mk,

with � denoting a manifold operation. While in our 2D case the manifold opera-
tion corresponds to the normalization of the involved angles after subtraction, it
is more involved in the 3D case as singularities must be considered. For the latter,
we refer to Grisetti et al. (2010) for a more detailed discussion and to Hertzberg
(2008) for more mathematical details on manifolds. In addition to using manifold
operations within the error functions, the Taylor approximation and state update
equations in the Gauss-Newton optimization are affected accordingly as we have
shown in Section 3.4.3.

67

4.4. Data association

Regarding the map information factor, we so far omitted that the covariances
for angular elements must be handled separately. The corresponding derivation
can be done similar to the derivations without angles. For example, in the case of
building corners, which we do not further consider in this thesis, the information
matrix for a map landmark could be

Ωmap
kcorner

=

ωmapI2x2 0 0

0 ωmap
α 0

0 0 ωmap
θ

 ,

where ωmap
α denotes the map information factor for opening angles and ωmap

θ the
one for orientation angles of building corners. Both must be guessed in addition
to the overall map information factor ωmap for positions.

4.4 Data association
The main design challenge of our data association approach is to render us-
ing general-purpose landmark maps possible. Typical general-purpose maps for
landmark-based localization contain semantic objects like lamp posts, road mark-
ings, reflector posts, and others depending on the environment scenario and use
case. In more detail, we present our definition of a landmark in Section 3.2 and
discuss third-party maps in general in Section 4.3.1. One of the main challenges
we address in our approach is that the set of detected landmarks may only par-
tially match the landmarks in the general-purpose map. On the one side, this is
caused by missing map landmarks and false positive detections, whereas on the
other side, the map contains landmarks that are not detectable by the vehicle at
all. For example, a map may contain pole-like objects with varying diameters,
in which case a vehicle that is only equipped with a low-resolution LiDAR might
never be able to detect the ones with small diameters. Compared to using maps
explicitly designed for a specific sensor, i.e., detectable and map landmarks are
well aligned, we prefer having a general-purpose map that can be used with a
variety of sensors. We consider this advantageous over creating individual maps
for specific sensor types. It increases the transferability and maintainability of
the used map and such may heavily reduce costs.

Our approach to data association is to distinguish between three subsequent
parts, which we call local association, map matching, and temporal association
smoothing. We find out if multiple measurements belong to the same landmark
within local association, whereas in map matching, we match the identified land-
marks to a given map. A crucial aspect of our map matching is that it only
suggests map matches for the current sliding window, which happens independ-
ently from previous matching results. Instead, we track the suggested matches

68

Chapter 4. Localization on general-purpose landmark maps

over time in our temporal association smoothing step and identify the most prob-
able associations for all individual landmarks. This helps us to robustify our
approach against outliers and resolve ambiguous map matches over time. We
explain the different steps of our data association approach in the following.

4.4.1 Local association
Our first step in graph construction is to find out if measurements within our
sliding window belong to the same landmark. Following our design principles,
our approach does not rely on any feedback but instead is independently solved
upfront to map matching and graph optimization. Within our approach, we first
project all raw landmark measurements within a sliding window’s time span into
a common local coordinate system based on accumulated odometry data. Af-
terward, we spatially group the projected measurements into landmark clusters.
In our algorithm, we iteratively loop over all projected measurements and assign
them individually to either an existing landmark measurement cluster or a new
one. In more detail, we compute the distance between a projected measurement
and the center positions of surrounding clusters and decide based on a threshold if
they belong together. Whenever we assign a landmark measurement to a cluster,
we fuse the projected measurement into the cluster and update the cluster’s cen-
ter position. We illustrate the local coordinate system and projected landmark
measurements in Figure 4.7. Algorithm 2 gives an overview of the different steps
involved in solving the local association problem. We apply this algorithm in-
dependently for each landmark type. We denote the set of landmark clusters as
C = {C1, . . . , CQ}, where Q is the initially unknown number of clusters. During
local association, each landmark measurement is assigned to only one cluster.

Our local association produces two different outputs. First, the decision about
which landmark measurements belong together, such that we can create the
factors between vehicle poses and landmark states in our sliding window graph.
Second, the cluster centers which represent a local map that we use during map
matching. Our local association only influences the structure of the graph, while
the original measurements remain untouched.

An important aspect of our local association algorithm is that it requires a
near drift-free odometry as input data. The negative effect of odometry drift
within our local association is that the landmarks measurements are inaccurately
projected into the local coordinate system. The more the odometry drifts, the
less accurate is the projection. As a consequence, landmark measurements might
falsely get clustered during local association. Also, the local map that is cre-
ated during local association and used for map matching gets distorted and thus
negatively influences our map matching step. Therefore, we make the following
assumption.

69

4.4. Data association

x [m]
y

[m
]

Accumulated odometry pose
Cluster Ck

Center of a cluster
Landmark measurement z̃lm

i

Figure 4.7: Illustration of our local association. We first accumulate odometry measurements,
which we use to project landmark measurements from VRF into a common local coordinate
system. Afterward, we identify clusters of landmark measurements. The results of our local
association step are the cluster centers, which we use for map matching, and the assignments
of measurements to clusters that we use during graph construction.

Assumption 6. The accumulated odometry drift within the time span relevant
to local association is neglectable.

In practice, this limits the length of the sliding window that can be used
for local association because the accumulated drift increases with an increasing
sliding window length.

An important parameter of our Algorithm 2 is the distance threshold dcmax.
We associate a measurement to the closest cluster whenever their distance in the
local coordinate system is below the threshold dcmax. Considering that landmark
measurements are noisy, the parameter must be tuned such that measurements
are correctly clustered together. There are two distinct error types that we need
to consider. If the threshold is too high, measurements might falsely get clustered
together. Whereas if the threshold is too low, the measurements might falsely get
split into multiple clusters. In our case, the latter error type is favorable, such
that we suggest choosing a value that rather is too low than too high. This is
because we allow multiple landmark measurement clusters to be associated with
the same map landmark during map matching. In this case, the corresponding
landmark clusters have the same map prior during graph optimization, which
affects the vehicle’s trajectory as if the landmark clusters were correct.

However, even if measurements are falsely clustered during local association,
our localization approach is still robust against these outliers to some extend.
We achieve this by using robust kernel functions, like Cauchy, during the graph
optimization phase. The kernel functions decrease the negative impact of false
cluster associations by limiting the incorporated error (see Section 3.4.4). In

70

Chapter 4. Localization on general-purpose landmark maps

return, our localization result is likely to be still valid even if some measurements
are associated to a wrong cluster.

The applicable distance metric for dcmax depends on the use case and the land-
mark type. The simplest option is the Euclidean distance between the current
cluster center and the measurement, which, e.g., is applicable for pole measure-
ments. If the landmark measurements contain reliable covariance estimates, a
more sophisticated alternative is the Mahalanobis distance, which is preferable
as it takes the covariance of the measurement into account. Compared to scan-
matching approaches, e.g., iterative closest point (ICP)-based, our odometry-
based algorithm reliably works if the vehicle does not steadily detect all land-
marks in every time step and even handles situations with very few and noisy
detections.

Our local association approach’s main advantage is that it even works robustly
in environmental scenarios with few landmarks. It is independent of the number
of landmarks and even works with a single landmark detection, while its compu-
tational effort is minimal even in scenarios with many landmarks. Furthermore,
it is independent of the landmark measurement frequency, measurement delay,
and works with out-of-sequence measurements.

1 Function LocalAssociation(new landmark measurements z̃lm
τ+ ,

accumulated odometry a, clusters C, distance threshold dcmax):
2 extend accumulated odometry a using z̃odo

τ+ ;
3 foreach z̃lm

i in z̃lm
τ+ do

4 project z̃lm
i into local coordinate system using a;

5 find closest cluster Ck in C with distance < dcmax;
6 if found Ck then
7 create new cluster with z̃lm

i ;
8 add new cluster to C;
9 else

10 add z̃lm
i to cluster Ck;

11 recompute cluster center of Ck;
12 return clusters C;

Algorithm 2: Pseudo code for our local association strategy. Our local
association algorithm iteratively associates landmark measurements to
either existing landmark measurement clusters or creates new ones. We
execute this algorithm once in every main algorithm cycle.

71

4.4. Data association

4.4.2 Map Matching
The next step after local association in our architecture is map matching. We
use map matching to find the best overlap between our general-purpose map
and the landmarks that the vehicle perceives. In combination with our temporal
association smoothing, the found map matches allow us to globally constrain the
landmark positions in our sliding window graph as explained in Section 4.3.2.
At first, we take all landmark clusters from local association and estimate the
mean c of each cluster C as its landmark position in the local map. We represent
our local map as

l = {c1, . . . , cQ},

with Q landmarks in the local map. This local map contains all landmarks that
were detected by the vehicle in the current sliding window. Map matching in our
case is the problem of finding a transformation matrix that optimally projects
the local map onto the global general-purpose map. Figure 4.9a illustrates an
example in which the landmarks of the local map are denoted as orange cluster
centers, while Figure 4.9b shows an example of a global map. As the scale of
the local map is already accurate, the map matching problem reduces to finding
the translational and rotational components of an affine transformation matrix.
More specifically, we compute a transformation matrix independently for each
sliding window τ , which gives us the best transformation matrix estimate T ∗

τ .
We denote a set of globally projected landmarks from our local map as

lT = {cT 1, . . . , cTQ},

where lT is now the set of globally projected landmarks from local association, T
is some transformation matrix, and cT i are the projected individual landmarks.
For visual reference, Figure 4.10 illustrates an example projection from our local
map into global coordinates. Following our design principles, it is important to
note that the transformation matrix T is independent of any graph optimization.
It only depends on the global map and the landmark clusters derived from the
raw odometry and landmark measurements. We write map matching as the cost
minimization problem

T ∗
τ = argmin

T
c (lT , g) , (4.7)

where c (lT , g) is the cost function between a transformed local map lT and global
map g.

An essential challenge that we consider in our approach is that the general-
purpose map elements are not necessarily tuned to reflect what the vehicle is
actually able to detect. This implies that the map matching algorithm must

72

Chapter 4. Localization on general-purpose landmark maps

consider that the overlap of the local and global map might be limited. Therefore,
we design our cost function c (lT , g) from Equation (4.7) in a way that allows us
to match as many local landmarks to the map as possible while simultaneously
making sure that the distances for all matches are minimal. We approximate this
with the cost function

c (lT , g) =

Q∑
c∈lT

f(c, g), (4.8)

f(c, g) =

dc dc < dmax

dmaxη dc ≥ dmax
, (4.9)

dc = min
g

d(c, g),

where f is the cost that is assigned to each landmark cluster c, dc is the distance
to the closest map landmark for cluster c, η is a weighting parameter, and dmax

is the maximum distance threshold that decides if a cluster and a map match
can be considered matches. The latter threshold is only used within our map
matching. It does not decide whether the match is included in the graph or not.
The applicable value of dmax depends on how accurate the map and the landmark
detections are. In the scope of this thesis, we use dmax = 1 m for, e.g., pole
landmarks.

The key aspect of our matching approach is Equation (4.8). It evaluates the
applied transformation matrix T by favoring well-fitting matches and punishing
non-matches. If a landmark from the local map is matched by the criteria de-
scribed above, it contributes to the cost function with its distance to the map.
Otherwise, the maximum allowed distance is multiplied by the weighting para-
meter η. The weighting parameter ensures that we match as many landmarks
as possible instead of selecting a few good ones. This is especially important for
general-purpose landmark maps containing many landmarks that the vehicle can
not detect. Together with measurement noise and false positive landmark detec-
tions, it is likely in some situations that a small set of landmarks erroneously seem
to fit well, which is why it is crucial to match as many landmarks as possible. We
discuss the distance threshold dmax and the role of the weighting parameter η in
more detail in Section 4.4.3.

Since we rely on landmarks, which are naturally sparser than, e.g., raw sensor
measurements, and limit ourselves to the 2D case, it is possible to search for
map associations by solving Equation (4.7) in a brute force manner. In brief,
our approach reduces the map matching problem to creating a list of transforma-
tion matrix candidates and evaluating them individually. We then pick the best
transformation matrix that produces the lowest sum of distances for all associ-
ated and unassociated landmarks. We provide a pseudo code implementation

73

4.4. Data association

of Equation (4.7) in Algorithm 3, visualize the essential steps from Figure 4.9
to Figure 4.14, and describe our algorithm in the following in more detail. Our
algorithm’s input is the local map from local association and our general-purpose
map in global coordinates, which we illustrate in Figure 4.9. Additionally, our
algorithm requires an initial vehicle pose (e.g., from low-cost GNSS), the dis-
cussed maximum distance threshold dmax, and the maximum transformation vec-
tor length dTmax that limits the search radius. We start by projecting our local
map into global coordinates based on the initial vehicle pose, as shown in Fig-
ure 4.9. Afterward, we create a list of potential transformation matrices for each
landmark from the local map based on all map landmarks within the specified ra-
dius dTmax , as illustrated in Figure 4.11. In this step, we consider transformation
matrices with rotational components by rotating the local map around the initial
vehicle pose and performing the illustrated transformation candidate generation
for each potential rotation. Next, we loop through all potential transformation
matrices, temporarily apply each transformation matrix to the local map to cal-
culate its cost (Equation 4.8). Figure 4.12 and Figure 4.13 illustrate examples of
applying a transformation matrix and the individual costs for each projected and
transformed cluster. In total, Table 4.1 shows the cost table for all transformation
matrices in our example from which we choose the one with the lowest cost as
our optimal transformation matrix T ∗

τ in the current algorithm cycle. In compar-
ison to ICP-based algorithms, which typically require a good initial guess and are
prone to get stuck in local minima (Pomerleau et al., 2015), our approach only
requires a rough initial pose estimate within the maximum search radius dTmax

and yields the best transformation matrix with the global cost minimum.
After finding the best transformation matrix, we compute the map matches

that best fit the measurement data in the current sliding window, as shown in
Figure 4.14. Applying transformation matrix T ∗

τ to the local map and searching
for the closest map landmark gives us the set of map matches Mτ for the current
sliding window τ , which is the input for our temporal association smoothing,
which we will explain in Section 4.4.4.

Vehicle pose
Cluster Ck
Center of a cluster
Landmark measurement z̃lm

i

Map landmark
Transformation T

Maximum search radius
Maximum matching distance dmax

Figure 4.8: Legend for the subsequent Figures 4.9 to 4.14 in this section.

74

Chapter 4. Localization on general-purpose landmark maps

x [m]

y
[m

]

(a) Local association

Easting [m]

N
or

th
in

g
[m

]

(b) Global landmark map

Figure 4.9: Example of our local association in (a) and the corresponding landmark map
in global UTM coordinates in (b). Within our local association, we accumulate odometry
measurements to create a pose for each unique timestamp of all landmark measurements inside
our sliding window. We attach each landmark measurement to its corresponding local pose
to compute its position inside the local map. This allows us to obtain a set of clusters, such
that we have identified which measurements belong to the same landmark. The cluster centers,
which are shown in orange, represent the local map l that we want to match to the global
landmark map.

x

y

(a) Before projection

E

N

true pose

(b) After projection

Figure 4.10: The figure illustrates how we project the local map onto the global coordinate
system. First, we calculate the positions of all cluster centers relative to one vehicle pose, as
shown in (a). Afterward, we project the local map into the global coordinate system based on
an initial global vehicle pose, which we draw in black in (b). The initial vehicle pose is either
the last received GNSS pose or a pose estimate from previous algorithm cycles of our approach.
We assume that the initial pose is within a predefined radius around the true unknown vehicle
pose. This is based on the maximum search radius dmax during our transformation matrix
search, which we illustrate in Figure 4.11. In our case, we use dmax = 10 m.

75

4.4. Data association

E

N

C0
C1

C2

C3

C4

T0

T1

T2

T3

T4

Figure 4.11: The figure illustrates how we generate a list of transformation candidates. Based
on the initial projection (shown in Figure 4.10b), we consider for each cluster from the local map
all map landmarks within a specified radius dmax as possible matches and create a corresponding
transformation T as a candidate. We individually evaluate all identified possible transformation
matrices, which we exemplarily illustrate in Figure 4.12 and Figure 4.13. The results are
shown in Table 4.1. For clarity, we limit our example to translation only and exclude any
transformation matrices with rotational components.

E

N

T1

T1
T1

T1

T1

(a)

E

N

dmaxη

dmaxη

0.1

0.5

(b)

Figure 4.12: This figure illustrates how we apply a transformation candidate and evaluate it. In
this example, we examine the transformation T1 from Figure 4.11. (a) We apply the transform-
ation T1 to all clusters except the one in gray, which was used to generate the transformation.
(b) We evaluate the transformation by computing cost terms for each transformed cluster. If
a transformed cluster has no map landmark within the maximum matching distance dmax, its
corresponding cost is dmaxη. Otherwise, its cost is the Euclidean distance to the closest map
landmark. We explain the weighting parameter in Section 4.4.3. The costs for all transforma-
tions of our example are given in Table 4.1.

76

Chapter 4. Localization on general-purpose landmark maps

E

N

T4

T4
T4

T4

T4

(a)

E

N

dmaxη
dmaxη

dmaxη

0.8

(b)

Figure 4.13: This figure is similar to Figure 4.12 except that we here illustrate the transform-
ation T4. In this example, the transformation is likely wrong since only one cluster has a map
landmark within the maximum matching radius, while all others can not be matched. The
costs for all transformations of our example are given in Table 4.1.

c0 c1 c2 c3 c4
∑

T0 - 0.2 dmaxη 0.6 dmaxη 8.8
(see Figure 4.12) T1 0.1 - dmaxη 0.5 dmaxη 8.6

T2 0.5 dmaxη - dmaxη dmaxη 12.5
T3 0.15 0.5 dmaxη - dmaxη 8.65

(see Figure 4.13) T4 dmaxη 0.8 dmaxη dmaxη - 12.8

Table 4.1: Cost table for our map matching example shown in Figures 4.9 to 4.14. The table
summarizes the cost for all transformation candidates. In more detail, Figure 4.12 and Fig-
ure 4.13 illustrate how we compute the cluster costs ck for the transformations T1 and T4. In
our example, we use dmax = 1 m and η = 4, such that T ∗

τ = T1 is the best transformation with
the lowest cost of 8.6. We use the best transformation to identify the set of map matches for
the current sliding window, as shown in Figure 4.14.

E

N

m1

m2

m3

Figure 4.14: The figure illustrates the three map matches as green arrows that our algorithm
identifies within our example. We obtain the set of map matches for the current sliding window
Mτ = {m1,m2,m3} based on the best transformation T ∗

τ , as stated in Table 4.1. In this step,
we reuse the results from the previously applied transformation as shown in Figure 4.12b.

77

4.4. Data association

1 Function FindBestTransformation(local map l, global map g, pose
xp, maximum matching distance dmax, maximum transformation vector
length dTmax):
/* Project local map to global frame. See Figure 4.10. */

2 Tinit = GetApproximateTransformation(xp);
3 lT init = ApplyTransformation(l, Tinit);

/* Generate transformation matrix candidates. See
Figure 4.11 */

4 tCandidates = GenerateCandidates(lT init, g);
/* Get potential map matches for all local landmarks */

5 gl = GetMapLandmarksInRange(lT init,g,dTmax + dmax);
/* Initialize variables */

6 minCostForBestTransformation = Inf;
7 T ∗

τ = empty;
/* Main loop */

8 foreach T in tCandidates do
9 lT = ApplyTransformation(l, T);

10 costForT = 0;
11 foreach landmark xl

lj
in lT do

12 dmin = dmaxη ;
/* Loop over all map landmarks that were previously

identified as potential matches. */
13 foreach landmark xl

gk
in gl(lj) do

14 d = Distance(xl
lj
,xl

gk
);

15 if d < dmax AND d < dmin then
16 dmin = d;
17 costForT += dmin;
18 if costForT < minCostForBestTransformation then
19 minCostForBestTransformation = costForT;
20 T ∗

τ = Ti;
21 return best transformation T ∗

τ ;
Algorithm 3: Pseudo code for our algorithm that finds the optimal
transformation matrix T ∗

τ between our local map l and the given map g.
The algorithm is exemplarily illustrated in Figures 4.8 to 4.14.

78

Chapter 4. Localization on general-purpose landmark maps

4.4.3 Tuning the weighting parameter η

An aspect of our map matching algorithm is to apply various transformation
matrices to a locally created map and find the one transformation matrix that
produces the best overlay with the given map. Therefore, it is necessary to assess
the overlay such that we can compare different transformation matrices to each
other and find the one that produces the minimal cost, i.e., yields the best overlay
with the map. When tuning the weighting parameter η in Equation (4.9), we need
to consider two aspects that we explain in the following. Figure 4.15 provides an
example of the cost function Equation (4.9) and illustrates different parameter
choices. First, our map matching should prefer an overlay with many noisy

0 1 2 3 4 5 6 7
0

2

4

distance dc

co
st

f
(c
,g
)

dmax = 1, η = 4
dmax = 1, η = 3
dmax = 2, η = 1

Figure 4.15: Examples of different parameter choices for the cost function in Equation (4.9) used
to assess a matching between a detected and a map landmark. The distance dc is the distance
between a detected landmark in the transformed local map and its closest map landmark. In
the case of pole landmarks, dc corresponds to the Euclidean distance. Within this thesis we
choose dmax = 1 and η = 4.

matches over one that contains only a few perfect matches. This is necessary due
to the inherent position noise in the local map. It ensures that the unity of all
landmarks in the local map is considered and prevents that a few good but wrong
matches are preferred. Figure 4.16 illustrates this issue. Within the cost assigned
to a transformation matrix, the weighting parameter η serves as a punishment
for not matching a landmark from the local map to the general-purpose map. As
a consequence, our algorithm tries to match as many landmarks as possible.

Second, we need to consider that not all detected landmarks in the local map
are part of the given general-purpose map. This might be caused by, e.g., false
positive detections or an incomplete given map. Therefore, we assume that there
are always landmarks that can not be matched to the given general-purpose map.
Consequently, the weighting parameter η can not be chosen to be arbitrarily
high but instead must be limited. It must be chosen in a way such that a few
unmatched landmarks do not overrule an otherwise plausible overlay.

Both points contradict each other, such that we need to find a reasonable
balance when setting the weighting parameter η. Figure 4.16 illustrates this
issue.

79

4.4. Data association

(a) Example 1 based on trans-
formation matrix TA

(b) Example 2 based on trans-
formation matrix TB

map landmarks

projected
landmarks from
local map

Figure 4.16: An example of two boundary cases while assessing two different transformation
matrices. The images (a) and (b) illustrate the result of applying two different transformation
matrices. The configuration of the local landmarks is the same in both images, except that their
projection onto the global map is different. Our map matching algorithm is designed to prefer
Example 2, which we influence by setting the weighting parameter η. The corresponding costs
for both examples are illustrated in Figure 4.17. (a) Three local landmarks perfectly match the
global map, whereas four are not matched. (b) Five landmarks are in each case close to a map
landmark and matched with the maximum allowed distance. Two landmarks are not matched.

To analyze the effect of the weighting parameter η, we investigate the upper
and lower cost boundaries of Equation (4.8) together with the percentage of local
landmarks that are matched to the map. We denote the latter as the matching
ratio α ∈ [0, 1]. A ratio of α = 1 implies that all detected landmarks, i.e., the
landmarks in the local map, can be matched to a map landmark, whereas in the
case of α = 0, none of the detected landmarks can be matched to the map. Given
some matching ratio α, the lower bound of Equation (4.8) is reached if all of the
matched landmarks perfectly overlay with their assigned map landmark. In this
case, the cost of each map match is zero, such that the overall cost is defined by
the remaining landmarks that could not be matched. We write this lower bound
for the average matching cost per cluster landmark with respect to the matching
rate α as

c↓(α) = dmaxη(1− α). (4.10)

Vice versa, the upper cost bound

c↑(α) = dmaxη(1− α) + dmaxα (4.11)

is reached if all matched landmarks have a distance that is equal to the maximum
allowed matching distance dmax. We show both bounds in Figure 4.17, which
illustrates the role of the weighting parameter η. It shows which boundary cases
produce the same costs for a few exemplary weighting parameters η. Throughout
this thesis, we choose to set the weighting parameter to η = 4.

80

Chapter 4. Localization on general-purpose landmark maps

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

matching rate α

av
er

ag
e

m
at

ch
in

g
co

st
c

c↑(α), η = 4, dmax = 1

c↓(α), η = 4, dmax = 1

c↑(α), η = 2, dmax = 1

c↓(α), η = 2, dmax = 1
Example 1
Example 2

Figure 4.17: Impact of the weighting parameter η in our map matching algorithm. The figure
shows the upper and lower bound average cost of Equation (4.8) depending on the map matching
rate α for various choices of the weighting parameter η and matching threshold dmax. The solid
lines represent the upper boundaries c↑(α) (see Equation (4.11)), whereas the dashed lines show
the lower boundaries c↓(α) (see Equation (4.10)). As a more specific application, the average
cost for the two examples in Figure 4.16 is shown for two sets of parameters. η = 4, dmax = 1

corresponds to our parameter choice within this thesis. In this case, the cost of Example 2 is
lower compared to the cost of Example 1 and thus selected by our algorithm. Vice versa, for
η = 2, dmax = 1, the choice would be reversed.

4.4.4 Temporal association smoothing
In this step, we compute a temporally consistent set of map associations based
on all map matches, i.e., detected landmarks matched to map landmarks found
in previous algorithm cycles. In comparison, our map matching approach so far
was only based on the measurement data within the current sliding window τ .
By design, our graph-based sliding window evolves over time, which means we
incorporate new measurements and discard old ones in every algorithm cycle.
Hence, our map matching algorithm runs on different data in every algorithm
cycle, which possibly changes the found map matches between subsequent al-
gorithm cycles. By taking into account the matching results of previous sliding
windows, we robustify our approach against outliers. Besides, by keeping track of
all found matches, our temporal association smoothing helps to resolve ambiguous
map matches over time. This is because our approach allows us to add the most
probable map associations to the graph. We define the problem of finding the
most probable map match for an individual landmark xl

i based on the matching
history as

m∗
i = argmax

mi

p(mi | M1, . . . ,Mτ), (4.12)

where m∗
i is the map landmark that we matched most often to the detected

landmark xl
i while considering all map matching sets M of previous algorithm

cycles. In this sense, we consider the map landmark m∗
i as the optimal choice

81

4.4. Data association

for the perceived landmark xl
i. This helps us overrule individual outliers for each

landmark and joint outliers for all landmarks that might occur during our map
matching step. Also, temporally smoothing the associations helps us to fill in
matches if missed during map matching. In our approach, we accumulate the
results of our map matching step and find the map landmark that we matched
most often to a detected landmark. We refine Equation (4.12) as

m∗
i = argmax

mi

∑
t ρ(Mt,mi)∑

t

∑
j ρ(Mt,mj)

, (4.13)

∝ argmax
mi

∑
t

ρ(Mt,mi)

ρ(Mt,mi) =

1 mi is matched to xl
i in Mt

0 mi is not matched to xl
i in Mt

,

with the indicator function ρ(Mt,mi). Implementing Equation (4.13) is straight-
forward as it only involves counting, which we do subsequently in every algorithm
cycle. The result of temporal association smoothing is the most often matched
map landmark m∗

i for each detected landmark. In case the detected landmark
was never matched to a map landmark, the most matched map landmark m∗

i

is empty. We denote the overall set of optimal map landmark choices for all
detected landmarks as

M∗ = {m∗
1, . . . ,m

∗
N},

where N is the number of detected landmarks. An essential aspect of our data
association approach, which includes local association, map matching, and tem-
poral association smoothing, is that the found map associations are not based on
our graph optimization results. By avoiding this feedback loop, we prevent the
feedback propagation of errors and are not prone to errors like early convergence
to local optima.

4.4.5 Integration of delayed measurements
Relying on a sliding window of measurements with a fixed temporal distance
between poses allows us to include measurements in the state estimation even
if they are delayed. While this is cumbersome with popular state estimation
techniques like Kalman filters or particle filters, it is straightforward with time-
based sliding window graph optimization. Our approach allows us to directly
insert measurement data into the graph as long as the corresponding point in
time is inside our temporal sliding window. Figure 4.18 gives an example of how
we add a delayed measurement to our factor graph. In general, our approach
does not have any hard requirements on the maximum delay of input data as

82

Chapter 4. Localization on general-purpose landmark maps

xp
0 xp

1 xp
2 xp

3 xp
4 xp

5 τ = 4

xl
0

xp
0 xp

1 xp
2 xp

3 xp
4 xp

5 τ = 5

xl
0 xl

1

A B

C

Figure 4.18: The figure illustrates three delayed measurements integrated into a sliding window
graph with the maximum number of poses N = 5. At optimization time τ = 5, the three delayed
measurements A, B, and C are integrated into the sliding window graph. A is a landmark
measurement of the already observed landmark xl

0, whereas B has not been observed before
such that the landmark state xl

1 is created in the graph. C is a delayed GNSS measurement
that constraints the pose xp

2. Including delayed measurements in our sliding window approach
is a simple matter of extending the graph’s structure. There is no need to alter the existing
parts of the graph.

long as it stays inside the sliding window. Otherwise, the data would be lost.
This property is beneficial in combination with landmark detectors that only
provide detections with a low frequency (e.g., landmark detection with accumu-
lated radar data). An exception to the required maximum delay in our approach
is the odometry data. It must be available whenever a new algorithm cycle is
started, and new poses are added to the sliding window. Missing odometry data
leads to unconnected poses in the graph, which is problematic as it could cause
optimization issues. Although we could fill the gaps with data generated by a
prediction model, we aim to be model-free within our approach. Thereby, we
avoid the requirement of adapting movement models to specific vehicle configur-
ations, which makes our approach more flexible. Although integrating delayed
measurements is straightforward within our approach, it is advisable to avoid
measurement delays whenever possible. Adding a delayed measurement changes
the underlying probability distribution, such that the optimal state estimate x∗

is changed accordingly. In an extreme case where all landmark measurements
are significantly delayed, the accuracy of the latest vehicle pose depends on the
odometry drift’s magnitude and the time span without landmark detections. In
order to compensate global drift, landmarks must be matched to the given map
as soon as possible. Besides our factor graph approach, the different steps of our
data association architecture also allows for an effortless integration of delayed

83

4.4. Data association

landmark measurements. Incorporating delayed measurements in our local as-
sociation and map matching is straightforward. Both steps neither require the
data to arrive in order nor have hard requirements on the maximum delay. While
in the literature, the integration of delayed measurement is often neglected, it is
crucial for real-world applications. From our perspective, delayed measurement
integration is one of the properties that make sliding window graphs superior to
other commonly used state estimation techniques, especially filtering techniques.

4.4.6 Delayed associations

To avoid including possibly wrong matches, we delay association decisions until
they are confident. Doing so represents a risk-averse behavior and is important
in the context of automated driving. For example, we require that a landmark
measurement cluster in local association needs at least a minimum amount of
measurements before we consider it for map matching. This is based on the fact
that the position of the local landmark cluster is closer to the expected value, the
more measurements are incorporated. In return, the input data for map matching
is less noisy, which improves our map matching. Similar to that, we only consider
map matching results if we could at least match a minimum number of landmark
clusters to the given map. This is especially important in the initialization phase
when ambiguities are still unresolved. We wait to include the found map matches
M∗ until we confirmed them several times. Figure 4.19 illustrates a situation
with ambiguities, whereas Figure 4.20 shows how a delayed association changes
the structure of the graph.

(a) (b)

Figure 4.19: The figure shows an example situation in which delayed association is necessary.
An ambiguous situation is resolved over time. (a) The vehicle pose (gray) is undetermined as it
could either be on the left or the right side of the image. The correct map associations between
map landmarks (blue) and observations (green) are unclear. (b) With an additional landmark
detection over time (purple circle), the setting is correctly assessed by our algorithm, and all
true map associations (red) are found.

84

Chapter 4. Localization on general-purpose landmark maps

xp
0 xp

1 xp
2 xp

3 xp
4 xp

5 τ = 4

xl
0 xl

1

xp
0 xp

1 xp
2 xp

3 xp
4 xp

5 τ = 5

xl
0 xl

1

Figure 4.20: The figure illustrates two different aspects of delayed association. These are the
delayed integration of landmark measurements and delayed map association. In this example,
a landmark must be measured at least three times before it gets included in the graph. At time
τ = 4, two measurements of landmark xl

1 are available but not included in the graph. In the
next algorithm cycle at time τ = 5, three measurements of landmark xl

1 are available such that
the landmark and its measurements are now included in the graph. Besides, both landmarks
are now reliably matched to the map such that we constrain them with map factors.

4.4.7 Reversible associations
The ability to reverse falsely integrated map associations is an attractive property
of our approach. Having a time-based sliding window in which we estimate all
states in each algorithm cycle allows us to change the graph’s structure and, thus,
previous association decisions. In comparison, filtering techniques like Kalman
filters marginalize out previously estimated states and their connected measure-
ments, which introduces linearization errors that might even be critical if false
map associations are marginalized. Within localization for road vehicles, the
viewing angle of a landmark typically changes while driving. As an effect, the
position estimate of a landmark in the local map l gets more precise. In re-
turn, our algorithm might change the associated map landmark. In practice, this
manifests in neighboring landmarks that are first mistaken and then correctly
associated over time. Figure 4.21 shows how a reversed association changes the
graph structure, whereas Figure 4.22 illustrates a real-world situation.

4.5 Error functions
Apart from deciding which measurements are included during graph construction,
it is essential how we design each factor’s corresponding error function. We
distinguish between the error functions for odometry, absolute pose priors, relative

85

4.5. Error functions

xp
0 xp

1 xp
2 xp

3 xp
4 xp

5 τ = 4

xl
0 xl

1 xl
2

xp
0 xp

1 xp
2 xp

3 xp
4 xp

5 τ = 5

xl
0 xl

1 xl
2

revised
association

Figure 4.21: The figure illustrates an exemplary sliding window graph in which we revise a
map association. New measurements, available in the algorithm cycle at time τ = 5, expose
that the previously made map association of landmark xl

1 at time τ = 4 was incorrect. We
revise the map association and add the correct map landmark to the landmark state xl

1. A
revised association does not change the structure of the factor graph but instead changes the
underlying constraint. To emphasize this, we illustrate the revised factor with a dashed pattern.
In addition, this example shows that the two other landmarks, xl

0 and xl
2, are now associated

to the map as well.

(a)

initial wrong
association

(b)

correctly
revised
association

(c)

Figure 4.22: Illustration of a situation in which we revise a map association after receiving
additional landmark detections. For clarity, we only show the connections (gray lines) to the
revised landmark. (a) Initial unclear situation in which the landmark detection is not associated
to the map. (b) An additional inaccurate landmark detection induces a false map association.
(c) The situation is revised after additional landmark detections were made.

86

Chapter 4. Localization on general-purpose landmark maps

landmark, and map constraints. We construct the landmark measurement error
functions in a general-purpose way such that they are not tailored to a specific
sensor. In return, our approach is easily extensible and transferable. As a common
general-purpose interface, we require that all landmark measurements are given
in the VRF.

In the context of SLAM algorithms, error functions are often designed as the
difference between a measurement zi and a measurement function hi(x), which
returns an expected measurement based on the current state estimate x. The
corresponding notation is

e(zi, hi(x)) = zi − hi(x).

See Section 3.4.1 for more details on the probabilistic interpretation.
In the following, we define the error functions used in this thesis without ex-

plicitly denoting the measurement function. Instead, we plug in the measurement
function and denote the error functions directly depending on the state vector,
which simplifies our notation. Our error functions for odometry measurements
connect two subsequent vehicle poses and are based on the definition of Merfels
(2018) and Kümmerle et al. (2011a). We integrate odometry factors as binary
constraints and write the error function as

eodo(xp
a,x

p
b , z

odo
i) =

R⊤
θ∆

([
x∆

y∆

]
−R⊤

θa

([
xb

yb

]
−

[
xa

ya

]))
θ∆ − θb − θa

 ,

with vehicle poses xp
a = [xa, ya, θa]

⊤ and xp
b = [xb, yb, θb]

⊤, odometry measurement
zodo
i = [x∆, y∆, θ∆]

⊤, and rotation matrices R. We assume that the vehicle moves
from pose a to pose b. Our error function is similar to the one used by Grisetti
et al. (2010), but we arrange expected measurement and measurement the other
way around. As all involved errors are squared during optimization, the order is
interchangeable.

We integrate absolute pose measurements (e.g., from GNSS) as priors over
individual vehicle pose states xp

i and denote the corresponding error functions of
these unary constraints as

eabs(xp
i , z

abs
i) =

[
R⊤

θz
0

0 1

]
(zi − xp

i) =

R⊤
θz

([
xz

yz

]
−

[
x

y

])
θz − θ

 ,

with measurement zabs
i = [xz, yz, θz]

⊤, vehicle pose xp
i = [x, y, θ]⊤, and rotation

matrix R⊤
θz

. In cases where the measurement only constrains the vehicle position,
i.e., zabs

i = [xz, yz]
⊤, we modify the error function to

eabs(xp, zabs
i) =

[
xz

yz

]
−

[
x

y

]
,

87

4.5. Error functions

such that the error function and its Jacobian do not influence the pose orientation.
In this case, it is important to ensure that the system matrix H has full rank,
i.e., the vehicle orientation is well defined, to avoid any rank-deficiency problems
during optimization.

4.5.1 Point-based landmark constraints
Essential to our localization approach is how we integrate landmark measure-
ments. We assume that any detector in the vehicle outputs relative measurements
in the VRF. In comparison to integrating error functions designed for a specific
sensor and work in the SRF, this allows us to be sensor independent so that we
can easily integrate different sensor modalities. We write the error function of a
relative landmark measurement as a binary constraint that describes the relation
between the vehicle pose and a single position landmark as

elm(xp
i ,x

l
i, z

lm
i) =

[
xz

yz

]
−R⊤

θ

([
xl

yl

]
−

[
xp

yp

])
,

with vehicle pose xp
i = [xp, yp, θ]

⊤, landmark state xl
i = [xl, yl]

⊤, and landmark
measurement zlm

i = [xz, yz]
⊤ in VRF. This point-based error function alone is

already very powerful in the context of urban automated driving as it covers a
variety of landmark types. It is applicable for, e.g., pole landmarks, lamp posts,
trees, and, in general, whenever the landmark state is defined as a single position.

4.5.2 Orthogonal landmark constraints
Whenever a landmark can not be fully observed by a single measurement, its
state can not be estimated without further assumptions. It is necessary to either
postpone the state estimation until enough measurements have been collected or
break up the full state into partial estimates. Both cases are not easy to im-
plement as they require sophisticated data management or might even not be
possible, e.g., if the extent of a landmark is much larger than the sliding window.
Examples of such a landmark in urban scenarios are walls of larger buildings and
curbs. In rural scenarios and on highways, the predominant examples are solid
lines and guard rails, which typically extend over several kilometers. Due to the
vehicle’s limited sensor range, they can never be measured to their full extent at
once but only in parts. However, it is important that these landmarks are still
considered for localization as they provide valuable information about the lateral
location of the vehicle inside a lane. We assume that the corresponding measure-
ments are available as, or can be converted to, a sequence of point measurements.
Compared to clothoid representations, using polylines allows us to avoid assump-
tions about the shape of the measurement. Additionally, this enables us to treat

88

Chapter 4. Localization on general-purpose landmark maps

these measurements in a generic way. We can cover different landmark types with
a single error function, which is beneficial for the transferability and applicability
of our approach. The idea is to constrain the distance between a single support
point of a measured polyline and the segment of a map polyline that has been
observed. The resulting factors are unary constraints that can be compared to
constraints in map-based pose graph localization. This means that there is no
restriction on the number of support points in a polyline measurement as each
support point is treated individually. If necessary, the polyline can be down-
sampled or upsampled to reflect the desired shape better. The more complex the
shape and the more constraints can be generated, the better constrained is the
vehicle state. Figure 4.23 illustrates the structure of our sliding window graph
including multiple unary polyline factors. We follow the derivation of Bohlke
(2019) and denote the error function for a single support point constraint as

epoly(xp
i , zi,m1,m2) =

det
([

u v
]
2×2

)
|v|

(4.14)

v = m2 −m1

u = ẑ −m1

ẑ = Rθzi +

[
xp

yp

]
,

with vehicle pose xp
i = [xp, yp, θ]

⊤, globally transformed measurement ẑ, support
points m1 and m2 of the map line segment, |v| is the norm of vector v, and
zi ∈ IR2×1. A disadvantage of integrating polyline landmarks in such a generic
way is that estimating possible map updates can not be done within graph optim-
ization. Without further assumptions, the support points m1,m2 are undercon-
strained as they can move freely along the described line without changing the
error function. As a consequence, we do not estimate the landmark position and
treat the error function as a unary pose constraint. Any map updates regarding
polyline landmarks can be done in a separate module after graph optimization,
or further assumptions must be made.

Our error function assumes that the association between the measurement
support point and the map segment has already been found upfront. As we treat
each support point of a measurement individually, each measurement can directly
be included in the graph without local association. However, finding the segment
of a polyline landmark requires an adjusted map matching, which is explained by
Bohlke (2019) in more detail.

89

4.5. Error functions

xp
0 xp

1 xp
2 xp

3 xp
4 xp

5 xp
6

xl
0 xl

1 xl
2

Figure 4.23: The figure illustrates the structure of a sliding window graph with unary polyline
factors, shown in orange. In comparison to absolute pose constraints (in blue), unary pose-
landmark factors only constrain the vehicle pose along one direction. Note that the factor
graph here only allows inferring which parts of the system matrix H are affected by the unary
constraints. The actual error function is given in Equation (4.14).

4.5.3 Fully constraining the sliding window graph
A vital aspect of sliding window graph localization is ensuring that the under-
lying optimization problem has a unique solution. Therefore, the system mat-
rix H must be fully constrained, i.e., it must not suffer from rank-deficiency. A
foundation of our graph-based localization approach is that it relies on globally
constraining the position of landmarks based on map priors, which implicitly
globally constraints the vehicle poses. While landmark and odometry measure-
ments only provide relative information, the map priors contribute to finding
unique global pose estimates. Similarly, GNSS may also globally constrain the
sliding window graph. Due to possible outages, this is, however, not a reliable
option. Therefore, we add an artificial pose constraint based on previous pose
estimates to the end of the sliding window graph in cases where the graph would
be globally underconstrained. Other options to fully constrain the optimization
problem are using Levenberg-Marquardt optimization, which inherently ensures
optimizability through regularization. Compared to Gauss-Newton optimization,
Levenberg-Marquardt tends to be slower, which is why we prefer artificially alter-
ing the optimization problem by adding an additional constraint. Ensuring that
the sliding window graph is fully constrained is, in practice, easier with point-
based landmark constraints than with orthogonal landmark constraints. This is
based on the spatial distribution of underlying landmarks for which the error
functions are designed. Figure 4.24 illustrates how point-based landmark con-
strain a vehicle pose, whereas Figure 4.25 demonstrates the ambiguity challenge
typical for orthogonal constraints based on road marking measurements.

90

Chapter 4. Localization on general-purpose landmark maps

(a) (b) (c)

Figure 4.24: The figure illustrates that at least three point-based landmark measurements are
required to fully constrain a single vehicle pose. In our graph-based sliding window approach,
we optimize over a set of past measurements such that the landmark measurements can be
made at different points in time to resolve this kind of ambiguity. Note that we here only
illustrate constraining the vehicle pose in some local coordinate system. Globally constraining
the vehicle within a map, however, is similar. (a) In the case of a single landmark measurement,
the vehicle could be anywhere on a circle around the measured landmark. (b) Assuming that the
map association is unclear, there are two options for the vehicle’s location. (c) Three landmarks
fully constrain the vehicle pose such that the vehicle’s location is distinct.

(a) landmark measurements (b) ambiguities with unary con-
straints

Figure 4.25: The figure illustrates an underconstrained situation with orthogonal constraints
based on road markings. Our graph-based approach resolves these types of ambiguities by in-
corporating past measurement data from other landmarks or GNSS data in the sliding window,
which is not illustrated here. (a) Exemplary polyline landmark measurements of road markings
in the vehicle reference frame. (b) The detected landmark measurements only allow constrain-
ing the vehicle laterally to the road markings. Without further information, the vehicle can not
be localized longitudinally. In addition to the illustration, the vehicle could also be rotated by
180°, which would also satisfy the constraints.

91

4.6. Time synchronization

4.6 Time synchronization
Our choice to use a fixed pose frequency in each sliding window requires syn-
chronizing measurement data to the timestamps of the poses in the graph. In our
approach, we perform the synchronization right before we add the measurements
to the graph. The prior data association steps are not affected as they are com-
puted independently from the graph’s pose frequency. We distinguish between
three main synchronization principles that are suitable depending on the type
of measurement data. We explain the three types in the rest of this section.
Figure 4.26 illustrates the time synchronization issue.

xp
0

.xp
0 xp

1 xp
2 xp

3 xp
4 xp

5 xp
6

xl
0 xl

1 xl
2

A′ B′ C ′ D′ E′/F ′

xp
0

.
1 2 3 4 5 6

A B C D E FA′ B′

time

Figure 4.26: The figure illustrates the necessary time synchronization for measurement data
to be included in the sliding window graph. The landmark measurements A, B, C, D, E, and
F, are measured at some timestamp that does not match the pose timestamps in the sliding
window graph. Therefore, we project each measurement to the nearest timestamp of a vehicle
pose. We mark the projected measurements with the prime symbol (′). For clarity, we omit
to mark the projections of C, D, E, and F. Furthermore, the figure illustrates two options for
handling multiple measurements between the same pose and landmark. In the case C ′ and D′,
we add two individual constraints to the graph, whereas in the case E′ and F ′ we combine both
measurements by averaging them.

The most straightforward option is to ignore the time difference between meas-
urement and graph pose. In this case, we overwrite the measurement’s timestamp
with the timestamp of the temporally closest graph pose. At the same time, we
do not change the rest of the measurement, e.g., the part of the measurement
given in the VRF or WRF. This is a suitable choice whenever the pose frequency
is high enough such that the induced error is marginal. It can be a valid option
for GNSS and landmark measurements.

The second option is to linearly interpolate between consecutive measure-
ments. While this is suitable for absolute pose measurements because they are
taken in a WRF, it is unsuitable for landmark measurements. Since landmark
measurements are taken in the VRF, measurements of the same object change if
the vehicle moves, which renders interpolation impractical. For absolute meas-
urements, it is important that interpolation easily correlates the data whenever

92

Chapter 4. Localization on general-purpose landmark maps

an original measurement is used twice. Figure 4.27 illustrates this issue. Within
graph optimization, this type of error leads to overconfident estimates. One way
of avoiding this is to always consume two measurements for computing one in-
terpolated measurement. As this halves the measurement frequency, it must
be considered in practice if it is suitable for the actual implementation. An-
other approach is to consider the induced correlation within the optimization as,
e.g., presented by Merfels et al. (2016).

xp
0

.xp
0 xp

1 xp
2 xp

3 xp
4 xp

5 xp
6

correlated correlated

xp
0

.
1 2 3 4 5 6

A B C D
used twice

time

Figure 4.27: Interpolated and thus correlated measurements arise whenever a measurement is
used twice for interpolation. The figure shows the original absolute pose measurements A, B,
C, and D, which are used for creating the interpolated blue factors. The measurements B and
C are used twice, which introduces a correlation between the interpolated consecutive factors
in the sliding window graph.

The third option is to project measurements in time with the help of odo-
metry data. For absolute measurements, this is possible if the measurement also
contains the vehicle’s orientation. Depending on the time frame that is inter-
polated and the heading’s accuracy, this option might amplify the measurement
errors, which is why this option should be avoided in practice. On the contrary,
for landmark measurements, this option is perfectly valid. We use the odometry
to compensate for the vehicle movement and change the landmark measurement
accordingly. Although this induces correlation between the odometry and land-
mark measurements, the effect is negligible if the odometry has little drift and
the interpolated time span is short as it is commonly the case in the context
of automated driving. We require that the odometry’s measurement frequency
is higher than the pose frequency, which allows us always to downsample the
odometry as required for projection and reduce interpolation errors.

Choosing between the discussed synchronization methods mainly depends on
the desired graph’s pose frequency and how distinct the discussed advantages
and disadvantages are. In general, the higher the pose frequency, the less syn-
chronization errors. In our case, the odometry is available with 100 Hz, GNSS
measurements are available at 1 Hz, landmark measurements typically arrive with
a frequency of 10 Hz, and the frequency of poses inside the graph typically is

93

4.7. Particle filter vs. sliding window graphs

f = 25 Hz. Thus, the maximum time span for synchronization that we need to
cover is 40 ms. We choose to interpolate GNSS measurements and ignore the
induced correlation, whereas we project landmark measurements with odometry
measurements.

4.7 Particle filter vs. sliding window graphs
In the following, we compare our graph-based sliding window localization to
particle filters on an argumentative level. At the end of this section, Table 4.2
provides a brief overview of our assessment results. We compare the stochastic
nature of particle filters against the deterministic optimization of graph-based
approaches, discuss multimodal vs. unimodal pose distributions for automated
driving, and characterize conceptual advantages of graph-based approaches over
particle filters. In detail, these are the capability of estimating old poses and the
integration of outdated measurements. We provide a visual comparison of both
concepts in Figure 4.28.

(a) Particle filter (b) Graph-based localization

Figure 4.28: Localization problem in the same situation solved with two different approaches.
(a) Particle filter. The color of a particle represents its current weight. If a particle weight
is high the color ranges from green to yellow. Recovery particles from GNSS receive a low
weight (red). (b) Sliding window graph. Finding matches (red crosses) between landmark
observations (green dots) and map landmarks (blue crosses) allows us to constrain the vehicle
trajectory (black triangles). The connections (gray lines) illustrate from which poses a landmark
was observed. The current vehicle pose is depicted as a gray rectangle.

Stochastic vs. deterministic algorithm

A fundamental difference between particle filters and graph-based techniques is
how they update their state belief. Graph-based approaches use optimization
algorithms like Gauss-Newton to find the optimal state that best fits the current

94

Chapter 4. Localization on general-purpose landmark maps

set of measurements. In practice, the optimization starts at some initial state
estimate and iteratively improves its estimate (see Section 3.4.2). This process
can be considered deterministic as the same input data, i.e., measurements and
initial state, always produces the exact same state vector output. In comparison,
the resampling step in the particle filter algorithm requires drawing samples from
a distribution, which is why particle filters are stochastic. As a consequence,
particle filters produce different results on multiple runs with the same input data.
Although the variations in the results might only be marginal, the implications
w.r.t. functional safety are unclear. Due to the safety-critical role of localization in
automated driving, it might be that stochastic algorithms, like particle filters, are
inapplicable for the series development of automated driving functions. Although
this remains under discussion, deterministic localization approaches are favorable,
in our opinion.

Multimodal vs. unimodal state estimation

Graph-based approaches and particle filters follow different concepts in represent-
ing the probability distribution of the vehicle’s pose. In general, particle filters
are able to represent multimodal beliefs about the vehicle’s pose. An advant-
age of particle filters is that it is straightforward to incorporate environmental
ambiguities into the nonparametric particle distribution. In graph-based local-
ization under the conventional probabilistic interpretation, the graph infers the
set of most likely poses given the measurements, see Equation (3.1). As a graph
is usually built up by multiple poses, this is technically a multimodal Gaussian
distribution. Each pose, however, corresponds to a single unimodal Gaussian
that is being estimated. Consequently, any environmental ambiguity must be
resolved during graph construction. Therefore, the expressiveness about the be-
lief of the pose at a given point in time is higher for particle filters, as they are
not restricted to parametric or Gaussian distributions. Depending on the use
case and subsequent software modules for which localization is required, both
approaches can be feasible. An issue with particle filters for localization is that
it is necessary to identify a specific particle as the pose estimate is sent out to
other subsequent modules. Since particle filters are able to represent multiple
modes, the chosen pose estimate might jump between different equally probable
modes of the distribution. Although some heuristics, as, e.g., combining multiple
particles into a single estimate, may partly relax the issue, the underlying prob-
lem remains. For example, taking the mean over all particles might ignore that
the underlying probability distribution has multiple modes such that the mean
estimate could lie within a near-zero probability region between modes. With
respect to automated driving, we prefer using unimodal estimates for localization
if the subsequent modules require one pose estimate per timestamp.

95

4.7. Particle filter vs. sliding window graphs

Integration of outdated measurements

Incorporating outdated and out-of-sequence measurements into the pose estima-
tion is a beneficial property for real-world localization applications. An advantage
of sliding window graphs is that the pose history maintained in the graph makes
it easy to integrate delayed or out-of-sequence measurements. Similarly, the slid-
ing window graph’s flexible structure makes it possible to perform delayed data
association so that only confirmed map matches are incorporated in the graph.
An additional benefit is that the mechanism of maintaining a history of poses
and measurements allows the continuous relinearization of all states within the
sliding window such that the overall linearization errors are reduced. In con-
trast, particle filters usually only track the most recent vehicle pose within each
particle’s state. The set of particles is updated based on propagating previous
pose estimates and incorporating only the latest measurements. Incorporating
out-of-sequence or delayed measurements with particle filters would require re-
winding the state of the particle filter to a specific point in time, adding the
delayed measurement, and recomputing all following steps. Alternatively, all
delayed measurements must be projected to the latest timestamp, which poten-
tially introduces great errors depending on the time span of the projection. In
principle, methods like maintaining a history of particle sets or calculating back
in time may enable incorporating delayed measurements within particle filters.
However, in practice, delayed or out-of-sequence measurements are usually dis-
carded because of the required computational resources or memory. The same
arguments hold for delayed landmark association, which is unfeasible for particle
filters. Another challenge with particle filters is that the measurements incor-
porated in each algorithm cycle must share the same timestamp as the vehicle
pose that is being computed, which introduces interpolation errors. Although
methods like keeping particles for various timestamps could help to reduce the
incorporated interpolation errors, the disadvantages of tracking more particles
outweigh the advantages. In comparison, our sliding window graph’s advantage
is that the measurements must not be synchronized to the latest vehicle pose.
However, each measurement must be individually interpolated to its temporally
closest pose maintained within the sliding window graph. As long as the tem-
poral distance between subsequent poses in the graph is smaller than the particle
filters output interval, the introduced interpolation errors within sliding window
graphs are smaller than the interpolation errors within particle filters. In theory,
sliding window graphs could also contain poses for each measurement timestamp,
which could potentially eliminate interpolation errors. This contradicts our ap-
proach of having a fixed temporal distance between poses, which heavily reduces
the number of required poses in the graph and thus improves the time required
for data management and optimization. Overall, sliding window graphs provide

96

Chapter 4. Localization on general-purpose landmark maps

much higher flexibility in including time-based measurement data than particle
filters.

Estimating past poses

Graph-based approaches maintain a recent history of poses within the state estim-
ation problem, while particle filters only maintain the current pose. This allows
graph-based approaches to benefit from delayed data association and frequent
relinearization, which means that the past and present states are simultaneously
improved when, e.g., past associations are revised. Additionally, this allows us
to output a lagged pose, i.e., a pose with a certain delay compared to the cur-
rent timestamp, representing the current best estimate of the past. Outputting
a lagged pose can be beneficial for applications that need older pose estimates in
favor of higher estimation accuracy. In comparison, particle filters never change
their past beliefs about the robot poses. They only track the current set of
particles and thus lack the option of outputting a lagged pose.

particle filter graph-based
algorithm approach stochastic deterministic 3

solution space multimodal unimodal 3

integrating outdated measurements 7 3

estimating old poses 7 3

Table 4.2: Summary of our argumentative comparison between particle filters (PF) and graph-
based localization (GBL) for automated driving. Checkmarks (3) indicate that the related
characteristic is favorable for our automated driving application. A cross (7) denotes an un-
supported property.

4.8 Summary
In this chapter, we presented our graph-based sliding window approach for vehicle
self-localization. We first discussed our design principles, including that our data
association does not rely on estimated vehicle poses of previous algorithm cycles
to avoid accumulating errors. Additionally, we require that landmark measure-
ments are given in the VRF, which allows us to integrate landmarks from different
sensors in a generic way. We presented our graph-based sliding window approach
that relies on a fixed pose frequency, is fast enough for application in an auto-
mated vehicle, and integrates odometry, landmark measurements, and GNSS.
The latter is only required for global initialization or as a fallback in unmapped
areas. Our presented data association approach is to, first, locally cluster land-
mark measurements that belong to the same landmark. Afterward, we perform
a subsequent map matching step that assigns the identified landmark clusters to

97

4.8. Summary

a given general-purpose third-party landmark map. Finally, we aggregate the
found map matches of each algorithm cycle such that we can extract tempor-
ally smooth associations and revise and delay associations if necessary. Our data
association concept copes with the challenge of using a given general-purpose
third-party map for localization. We proposed and discussed our approach that
allows us to find the best overlay between the landmarks stored in the given
map and the landmarks detected by the vehicle at runtime. Furthermore, we
discussed including different error functions for different landmark types, elabor-
ated on synchronizing measurement data for including it in our sliding window
graph, and finally compared our approach to particle filters for localization. In
sum, our presented graph-based sliding window approach contributes to vehicle
localization in the context of automated driving.

98

Chapter 5

Delayed map refinements

One of the main challenges of localization with given landmark maps are environ-
mental changes that render the used landmark maps outdated over time. In the
following, we extend our graph-based localization approach for automated driving
w.r.t. selectively updating and extending given maps. We introduce our concept
of keeping landmark maps up to date through computing map updates live in
the vehicle and validating them through a back-end server before actually chan-
ging the map. In short, we call this delayed map refinements. We separate the
map update process into the independent parts deleting, modifying, and adding
landmarks. Our contribution and focus is the estimation of landmark positions
within our sliding window approach, whereas the server-side validation is not part
of this thesis. We introduce sparse global priors that capture the information of
measurement data that we remove from the sliding window by approximating
marginalization. This chapter is in parts closely related to the Master’s thesis
of Rumberg (2018), which I co-supervised, and based on our previously reported
findings (Wilbers et al., 2019c). We repeat, extend, and discuss our results in
this chapter.

5.1 Refining maps for automated driving
Construction works and environmental changes influence any localization system
that is based on given maps. Typical examples in urban areas are road construc-
tion works and the demolishing and construction of buildings. As a consequence,
the given maps become outdated over time, which may lead to localization fail-
ure. Therefore, it is crucial to update maps over time. Since inaccurate and
erroneous map updates may lead to inaccurate localization and, therefore, haz-
ardous driving behavior, updating maps is a safety-critical task. For this reason,
we consider it essential that map updates are verified before they are applied.
We assume that this is achieved by aggregating fleet data in a back-end service,

99

5.2. Adding, modifying, and deleting landmarks

which computes and distributes reliable map updates over-the-air. An essential
aspect of validating updates through a back-end server that we need to consider
when designing an update process is how we generate the input made available
to the back-end. We discuss this acquisition process in the following. Nowadays,
maps for automated driving are mostly created and updated based on particular
mapping drives. However, the trend is towards using fleet data that can be used
in an automated fashion to generate map updates. Ideally, the size of the data
transmitted to the back-end server is small such that the required bandwidth
and resulting costs are minimal. We achieve this by transmitting preprocessed
data instead of raw sensor data or raw landmark measurements. As discussed
before, we have designed our graph-based sliding window approach to estimate
the global position of landmarks. This has the advantage that several landmark
measurements are already aggregated into a single estimate, which reduces the
amount of data. Figure 5.1 illustrates our proposed update architecture. In the
scope of this thesis, we focus on computing map refinements, which are position
updates for existing landmarks and position estimates for new landmarks. We
aim to compute these refinements whenever the vehicle is successfully localized,
which enables us to compute globally accurate landmark positions. With respect
to automated driving, we assume that the vehicle’s navigation avoids unmapped
areas. Likewise, we assume that construction zones are made available to the
vehicle, e.g., comparable to traffic news, such that areas that potentially com-
promise localizability are avoided. These areas might be updated with the help
of manual mapping drives. The extend of how sensible the localization system
is to changes in the environment depends on the diversity of the incorporated
landmark types and their amount. Whenever only a small part of the landmarks
are outdated, our localization approach likely remains unaffected, which is a cru-
cial property. This is based on our design choices for incorporating third-party
maps, where we consider that detected and map landmarks may only partially
match. The property is likewise beneficial for scenarios in which map landmarks
are partially outdated or missing. We present our refinement architecture in more
detail in the following section.

5.2 Adding, modifying, and deleting landmarks
Within refining landmark maps, we distinguish between the three distinct oper-
ations: adding, modifying, and deleting. While our approach relies on verifying
updates through a back-end service, which itself is not part of this thesis, we out-
line the most important ideas in the following. An essential aspect of updating
landmark maps to consider is that the initial maps might get tailored towards a
specific sensor setup over time. This might occur whenever the fleet data used in

100

Chapter 5. Delayed map refinements

Update
Processor

Graph-based
Sliding Window

Localization
Map

Back-end Service

Initial Map Map Refinements

Sensor Input Pose

Verified Updates

Update Hypotheses

Figure 5.1: Brief overview of our map refinement architecture. We illustrate modules inside
the vehicle as blue boxes and the back-end service as grayed out. In this thesis, we focus on
the in-vehicle modules and assume the back-end service to be given. Our graph-based sliding
window approach computes map refinements, which we collect in the Update Processor. The
latter is responsible for the data exchange with the back-end server and is not further discussed
in this thesis.

the back-end service is based only on a specific sensor setup. If the map contains
elements that can not be detected with a specific sensor setup, the corresponding
landmarks will get deleted over time. Likewise, new landmarks will only be added
based on the specific sensor setup. This might affect the initial general-purpose
map, which was usable with different sensors, such that it loses this property over
time. Nevertheless, this can also be seen as an advantage that allows omitting
expendable map elements. It might even be possible to extract and maintain
different map variants for different sensor setups in the back-end service.

Adding landmarks to the map is required whenever they are missing in the
initial map or were newly installed, e.g., due to construction works. We estimate
the position of these landmark additions within our graph-based sliding window
approach whenever our sliding window graph is sufficiently constraint by other
map landmarks. A challenge in adding landmarks to the map is that the estimated
landmarks might be based on false positive detections. For example, if a dynamic
object, which is temporally not moving, is mistaken as a stationary landmark.
Since we treat all map refinements as hypotheses for updates, we assume that the
back-end server takes care of this challenge. The most straightforward solution,
in this case, is that the back-end server requires a minimum amount of hypotheses
by various vehicles before it confirms the update. Similarly, the back-end service
is responsible for ensuring that verified additions are accurate. A simple approach
here would be to average over the received hypotheses to get a verified landmark
position.

We consider modifying the position of map landmarks relevant for improving

101

5.3. Estimating landmark positions

the position accuracy within the initial map. This is especially helpful if the
accuracy of the initial map is partially or entirely unknown. Our approach is to
recompute the map landmark positions while using them for localization within
our sliding window graph. As presented in Chapter 4.3.2, we integrate map
landmarks as priors such that the position estimate within the graph may differ
from the map position. These position refinements are sent to the back-end
server, which compares the refinements with other fleet data before the position
modifications are sent out as a verified update.

Within our update architecture, deleting landmarks is within the responsibil-
ity of the back-end service. Our approach is to aggregate a list of map landmarks
that have successfully been used for localization at runtime. This list of con-
firmed map landmarks is sent in fixed intervals to the back-end server, which
receives various fleet confirmations over time. If a landmark is never confirmed
during a specific time span, i.e., never used for localization, it can be deleted from
the map. This reflects a temporal decay, which means that, over time, uncon-
firmed landmarks will be deleted from the map. An advantage of this approach
is that it does not require additional implementation as it reuses the found map
matches during localization. However, a disadvantage is that confirming every
map matched landmark might result in an excessive amount of data that needs
to be transferred to the back-end service. This could be solved by introducing
confirmation requests for selected landmarks that are sent out by the back-end
service to the fleet. The vehicle would then only transmit the confirmation of the
requested landmarks. An alternative approach for deleting landmarks would be
to asses within the vehicle if a landmark should have been detected. This might
be inferred by considering if the line-of-sight to a landmark was unobstructed and
the sensors should have measured a landmark. If this is the case, the vehicle sends
a deletion request to the back-end service, which is responsible for verifying the
request based on fleet data. Nevertheless, if this alternative approach is feasible
in practice depends on the sensor modalities used for localization. For example,
it is easier to infer if the line-of-sight is blocked with a LiDAR than with camera
or radar.

5.3 Estimating landmark positions
We focus on the problem of estimating the positions of previously unmapped
landmarks on-the-fly in the vehicle. In particular, we use our sliding window
formulation to keep the problem size computationally tractable. We present a
novel approach, which approximates marginalization without inducing any fill-in,
as shown in Figure 5.2. Compared to nonlinear factor recovery (Mazuran et al.,
2016), generic linear constraints (Carlevaris-Bianco et al., 2014), and the pose

102

Chapter 5. Delayed map refinements

(a) dense marginalization (b) our approach

estimated landmarks estimated vehicle poses
reference trajectory landmark constraints
marginalization fill-in map landmarks

(c)Figure 5.2: The influence of marginalization on the graph structure. The illustration shows
that our approach does not suffer from fill-in, which reduces computational complexity and
thus is faster to compute. Simultaneously, our approach provides a comparable accuracy of the
resulting estimate.

graph compression approach by Kretzschmar and Stachniss (2012), we focus on
the special case of sliding window graphs for which different assumptions hold.
On the one side, we target a special approximation topology with individual priors
for each state. On the other side, we ensure by design that our system matrix H

always has full rank, i.e., we do not need to cope with the deficient rank problem.
Our main contribution is a novel sparsification scheme for marginalization in
sliding window graphs. We achieve this by deriving individual global priors for
all states involved in marginalization. This allows us to estimate incremental
map refinements in the context of automated driving. In sum, we make four key
claims that our approach

(i) approximates sliding window marginalization with sparse global priors,

(ii) utilizes global linearization points and thus does not require local optimiz-
ation,

(iii) computes conservative landmark positions for incremental map refinement,

(iv) has exactly the same sparsity pattern compared to using no marginalization
but provides more accurate estimates.

5.3.1 Selecting suitable landmarks
Before we describe our approach’s mathematical details in the later sections, we
first focus on the important practical aspect of filtering out unsuitable point land-

103

5.3. Estimating landmark positions

marks. Unsuitable in this context refers to false positive measurements, as well as
landmarks that can only be observed by the vehicle from very distinct locations.
We favor landmarks that the vehicle observes from multiple locations, which
increases their impact on localization compared to landmarks that are rarely
observed. The probably most straightforward filtering approach is requiring at
least a minimum number of measurements per landmark before including it in the
state estimation. However, the number of received measurements per landmark
depends on the driving speed and might grow arbitrary, e.g., when standing still,
and thus is insufficient for our intended filtering. Instead, we additionally estim-
ate the spatial coverage of the viewing angles from which a landmark is observed.
Within our approach, this is an extension that only affects the detected land-
marks that we could not match to the map, which means that we suggest them
as potential map additions to the back-end server. We only include unmatched
landmarks in our sliding window graph if the landmark has a minimum amount of
measurements and if the spatial viewing scope exceeds a prespecified threshold.
To estimate the covered viewing scope of a landmark, we extend the local as-
sociation step of our approach (Algorithm 2). For each landmark measurement
that we add to a cluster, we project it into the local coordinate system that is
based on accumulated odometry data and check how the measurements influence
the currently stored viewing scope. In short, we store the two angles that define
the outer boundaries of the viewing scope and extend them if necessary based on
the current measurement that we integrate. We perform this iteratively for each
incoming landmark measurement. Since our calculations are done in the local
coordinate system, the calculated viewing scopes are affected by the accumulated
drift error of the odometry. Therefore, our estimated viewing scopes are only
approximations, which are more accurate the better the odometry. We illustrate
the effect based on a real-world example in Figure 5.3, where we also highlight
the viewing scopes of some landmarks.

5.3.2 Sliding window marginalization
In this section, we describe how to preserve the information of measurements
outside of the sliding window through marginalization. A common approach for
marginalizing out states and their connected measurements is to use the Schur
complement, as we have shown in Chapter 3.6. Sibley et al. (2010) demonstrate
this for sliding window filters and describe how the Schur complement induces
fill-in in the system matrix H. Another negative aspect of marginalization is
that it induces linearization errors. So far, we prevented fill-in and accumulated
linearization errors by simply truncating measurements and states instead of mar-
ginalizing them out. This is a valid option for pure localization applications as
long as the sliding window contains enough measurements that sufficiently con-

104

Chapter 5. Delayed map refinements

α1

α2
α3

α4

(a) unfiltered

unmapped landmark
map matched landmark
map element
detection
pose α4

(b) filtered based on viewing scopes

Figure 5.3: The figure shows a real-world example for filtering out unsuitable unmapped land-
marks based on their viewing scope. The remaining unmapped landmarks with a suitable
viewing scope are map refinements that are sent to the back-end server to extend the map.
(a) The figure shows the sliding window graph without filtering out any landmarks. It also
exemplarily shows the viewing scope of four different unmapped landmarks. We incorporate
all landmarks in the graph that are part of local association. (a) Sliding window graph that
only incorporates unmapped landmarks with a viewing scope above a predefined threshold.
From the exemplarily selected landmarks, we only integrate the one with the viewing scope α4

in the graph. The landmarks with view scopes α1 and α2 from the unfiltered example might
get included at a later point in time as the vehicle moves forward and the viewing scopes are
potentially increased. All unmapped landmarks, including those not integrated into the graph,
remain part of our algorithmic approach for local association and map matching. Selecting
landmarks based on their viewing scope only affects the unmapped landmarks that we estimate
as potential map refinements inside our sliding window graph.

105

5.3. Estimating landmark positions

strain the graph. Whenever the graph is not well constrained by the included
measurements, as discussed in Section 4.5.3, the optimization might fail, or the
pose accuracy might drastically decrease, leading to localization failure. A simple
heuristic that helps alleviate the issue is to condition the graph on the oldest pose
in the sliding window. This effectively sets the oldest pose as an anchor of the
graph such that the optimization space is restricted, which is error-prone due to
noise in the pose that is used for conditioning. Besides these challenges, we will
show in our evaluation that truncation is a valid option for pure localization in
urban scenarios. Nevertheless, a significant drawback of truncation is that the
state estimates of individual landmarks become unstable over time. Compared
to the vehicle trajectory, which is constrained by all graph measurements, an
individual landmark typically has much fewer constraints. As the sliding window
moves past a landmark, the number of measurements inside the sliding window
decreases until the landmark is no longer part of the graph. As an effect, the
landmark’s estimated state in each algorithm cycle depends on a different set of
measurements. To prevent information loss and estimate reliable landmark pos-
itions, we investigate marginalizing out the measurements instead of truncating
them. To avoid the fill-in problem, we present an approach that approximates
dense marginalization with sparse priors. A difference to many graph-based ap-
proaches is that our temporal sliding window guarantees by design that there are
always global factors in the marginalization blanket. We ensure this by including
global information from previous time steps. Because of that, our sparsification
scheme does not require relative formulations as, e.g., the approaches by Mazuran
et al. (2016) and Eckenhoff et al. (2016). Thus, we avoid any deficient rank issue
in cases where we only marginalize measurements in the VRF.

5.3.3 Calculating the marginalization prior

Our sliding window approach is based on marginalizing out the oldest pose and
adding a new pose to the front of the graph in every timestep. As a consequence,
the number of poses in the graph is constant, whereas the environment naturally
bounds the number of landmarks. Additionally, we marginalize out landmarks,
as shown in Figure 5.4, if the only connected pose is the last one in the sliding
window and subject to marginalization.

We divide the set of all states x = {xm,xn,xr} into marginalization nodes
xm, directly connected neighbor nodes xn, and the remaining states xr. In the
following we, call the set {xm,xn} the marginalization blanket. Considering these

106

Chapter 5. Delayed map refinements

xp
0 xp

1 xp
2f odo

0 f odo
1

xl
0 xl

1

fmap
0

f lm
0f lm

1 f lm
2 f lm

3

f abs
0

(a) marginalization blanket

xp
1 xp

2f odo
1

xl
1

fmap
0

f lm
2 f lm

3fp

(b) dense marginaliza-
tion

xp
1 xp

2f odo
1

xl
1

fmap
0

f lm
2 f lm

3

fp
l1

fp
p1

(c) individual global pri-
ors

Figure 5.4: Illustration of our approach for computing global priors in order from left to right.
All f are factors, whereas xp are poses and xl are landmarks in the sliding window graph.
(a) The highlighted nodes and factors are part of the marginalization blanket involved in our
marginalization and sparsification process. (b) Graph after marginalizing out the oldest pose xp

0.
The dense factor fp represents the marginalized information. (c) The result of our sparsification
step. We compute an individual global prior for each remaining state of the marginalization
blanket.

definitions, we rewrite the general optimization problem from Equation (4.2) as

x∗ = argmin
x

∑
k

e⊤
k Ωkek

= argmin
x

∑
j

ej(xm,xn, zj)
⊤Ωjej(xm,xn, zj)

+
∑
i\j

ei(xr, zi)
⊤Ωiei(xr, zi)

= argmin
x

Fm,n (xm,xn) + Fr (xn,xr) , (5.1)

where i\j denotes the absence of any measurement connected to the margin-
alization nodes, Fm,n (xm,xn) is the cost of the marginalization blanket, and
Fr (xn,xr) captures the cost of the rest of the graph. Following the argument-
ation of Eckenhoff et al. (2016), we can write Equation (5.1) as a cost function
problem

C =min
x

(Fm,n (xm,xn) + Fr (xn,xr))

= min
xn,xr

(
min
xm

Fm,n (xm,xn) + Fr (xn,xr)

)
.

We minimize the cost of the marginalization blanket Fm,n (xm,xn) via Taylor ap-
proximation and solve for the optimal marginalization state x∗

m with linearization
points x̆m and x̆n in the following. The Taylor approximation is

Fm,n (xm,xn) ≈ Fm,n (x̆m, x̆n) + b⊤∆x+
1

2
∆x⊤H∆x, (5.2)

107

5.3. Estimating landmark positions

where the Hessian H, gradient b, and ∆x are defined as

H =

[
Hm Hm,n

H⊤
m,n Hn

]
, b =

[
bm
bn

]
, (5.3)

∆x =

[
xm − x̆m

xn − x̆n

]
=

[
∆xm

∆xn

]
.

Solving Equation (5.2) for the optimal marginalization state x∗
m results in

x∗
m = x̆m −H−1

m (bm +H⊤
m,n∆xn). (5.4)

By substituting Equation (5.4) back into Equation (5.2), we render the cost of
the marginalization blanket independent of the marginalized states xm, such that

Fm,n (xm,xn) ≈ Fm,n (xn, x̆n)

=
1

2
∆x⊤

nHt∆xn + b⊤t ∆xn + c, (5.5)

with Ht = Hn −Hm,nH
−1
m H⊤

m,n,

bt = bn −Hm,nH
−1
m bm,

and c is a constant that is omitted when applying the argmax operator. The
interpretation behind Equation (5.5) is that we have performed marginalization
over the marginalization nodes xm resulting in

p(xn) =

∫
p(xn,xm)dxm = N

(
x̆n, H

−1
t

)
. (5.6)

We call the distribution p(xn) the marginalization prior. Compared to using the
Schur complement of Equation (5.3) to compute Ht and bt, Equation (5.5) em-
phasizes the effect of the gradient bt on the optimization problem. Eckenhoff et al.
(2016) argue that the performed marginalization is only optimal if the lineariza-
tion point x̆n is the local optimum of the marginalization blanket, and, thus, the
gradient bt vanishes. Extending their argumentation, we show in Section 5.3.5
how to use a linearization point that is not the local optimum.

5.3.4 Sparsifying the marginalization prior
In the following, we show how to derive sparse global priors that approximate
dense marginalization in closed form. Our sparsification scheme is designed to
have the exact same sparsity pattern compared to using no marginalization. This
means that our approach does not suffer from fill-in and simultaneously computes
more precise estimates than without using marginalization. As we derive indi-
vidual global priors for each involved state, we can visually draw them similar to
other measurements. This is not only beneficial for data inspection but also helps

108

Chapter 5. Delayed map refinements

unmapped landmark
map matched landmark
map element
map element
landmark constraint
estimated pose
prior

Figure 5.5: The figure shows a screenshot of our implementation with an exemplary real-world
sliding window graph that contains sparse global priors. In this example, some landmarks have
a sparse global prior constraint while others do not. If a landmark measurement was already
removed from the sliding window graph, the corresponding landmark has a sparse prior. The
tip of the prior symbol marks the position of the sparse prior. Due to the low measurement
noise, the prior positions are nearly identical to the estimated landmark positions.

to understand the effect of our approximation. Figure 5.5 illustrates a real-world
example.

Instead of applying the marginalization prior directly in the next sliding win-
dow, we first sparsify the distribution p(xn) to avoid fill-in and ensure sparsity
in the graph. By design, we compute a global prior for each state xn inside the
marginalization prior. We formulate the sparsification problem as a minimization
of the Kullback-Leibler (KL) divergence DKL as

argmin
µa,Ωa

DKL

(
N
(
x̆n, H

−1
t

)
∥ N

(
µa,Ω

−1
a

))
,

with N
(
µa,Ω

−1
a

)
=
∏
i

N
(
µai,Ωa

−1
i

)
,

where N
(
µai,Ωa

−1
i

)
is the approximated prior for each individual neighbor state

in the marginalization blanket. The KL-divergence between the two multivariate
normals is defined as

DKL

(
N
(
x̆n, H

−1
t

)
∥ N

(
µa,Ω

−1
a

))
=

1

2

(
tr
(
ΩaH

−1
t

)
+ (µa − x̆n)

⊤Ωa (µa − x̆n)− d+ ln
(

det(Ω−1
a)

det(H−1
t)

))
,

with the dimension d of the state vectors. In the multivariate normal case the
KL-divergence reaches its minimum if both means are equal (µa = x̆n). Thus,

109

5.3. Estimating landmark positions

the approximation problem reduces to

argmin
Ωa

DKL = argmin
Ωa

(
tr(ΩaH

−1
t)− ln

(
det(ΩaH

−1
t)
))

=
∑
i

(
tr(Ωai)− ln

(
det(Ωai{H−1

t }i)
))

, (5.7)

where we have applied the definition of N
(
µai,Ωa

−1
i

)
and use the notation {H−1

t }i
to reference the i-th block-diagonal entry of H−1

t . Deriving Equation (5.7) with
regard to Ωai yields for each individual prior the optimal information matrix

Ωa
∗
i = {H−1

t }−1
i . (5.8)

Given our specific topology in the form of absolute priors, Equation (5.8) shows
that we can ignore the covariances between states to get the optimal approxim-
ation. We denote the sparsified distribution as p̃(xn) = N (x̆n,Ω

−1
a), where Ω−1

a

is block-tridiagonal. Inserting the approximation into Equation (5.5) yields

Fm,n (xm,xn) ∝
1

2
∆x⊤

nΩa∆xn + b⊤t ∆xn, (5.9)

which we use in the following.

5.3.5 Computing sparse global priors
By extending the proof of Eckenhoff et al. (2016), we now show that we must
not necessarily use the local optimum of the marginalization blanket as the lin-
earization point x̆n. Instead, we utilize the previous global estimate by including
the gradient term inside the quadratic term. We first note that any cost term
independent of the state variable is constant and neglected during optimization.
This allows us to add the constant term c = Ω−1

a btΩaΩ
−1
a bt to Equation (5.9).

By rearranging and completing the square, we obtain

Fp (xn, x̆n) ∝
1

2
(∆xn + Ω−1

a bt)
⊤Ωa(∆xn + Ω−1

a bt)

=
1

2
(xn − (x̆n − Ω−1

a bt)︸ ︷︷ ︸
=̂µp

)⊤Ωa(xn − (x̆n − Ω−1
a bt)︸ ︷︷ ︸

=̂µp

). (5.10)

We refer to the distribution

p̃(xn) = N
(
µp,Ω

−1
a

)
=
∏
i

N
(
µpi,Ωa

−1
i

)
(5.11)

as the sparse global prior distribution. It consists of individual prior terms for
each state in xn. By including the gradient term inside the quadratic term, we
compensate for the effects of the gradient term without using the local optimum

110

Chapter 5. Delayed map refinements

of the marginalization blanket as the linearization point. Therefore, our approach
renders local optimization of the marginalization blanket unnecessary. Returning
to our original sliding window optimization problem in Equation (4.2), we include
our sparse global prior distribution as the marginalization cost

Fmarg (x) =
∑
i

(xn − µpi)
⊤Ωai(xn − µpi),

which concludes our derivation.

5.4 Summary
In this chapter, we proposed an approach for delayed map refinement in the con-
text of automated driving. We conceptually discussed integrating a back-end
service that is responsible for verifying update hypotheses that it receives from a
fleet. Our presented main focus is on reliably estimating the landmark positions
in our sliding window graph in a computationally tractable way. Therefore, we
extended our graph-based sliding window approach such that we can compute
the update hypotheses at runtime. In comparison to related work, we investig-
ated the special case of sliding window graphs for which different assumptions
hold compared to arbitrary graphs. We introduced sparse global prior for ap-
proximating dense marginalization, which allows us to capture information that
we remove from our sliding window in an efficient way. Therefore, we derived
how to compute individual global priors for all states involved in marginalization.
Additionally, we designed our approach to have exactly the same sparsity pattern
compared to using no marginalization such that our graph-based sliding window
does not suffer from fill-in during optimization. Furthermore, we presented how
to use global linearization so that we do not require an additional local optimiz-
ation step. In sum, our approach contributes to computing reliable and accurate
landmark positions in sliding windows graphs for delayed map refinement.

111

Chapter 6

Experimental Evaluation

We evaluate our graph-based localization approach with respect to two different
use cases. At first, we focus on the capabilities of our system as a pure localization
approach on a third-party map. The results of our experiments support the key
claims, which are that our graph-based localization approach

(i) provides globally accurate pose estimates,

(ii) incorporates landmark measurements in a generic sensor-independent fash-
ion,

(iii) utilizes general-purpose third-party landmark maps,

(iv) integrates delayed measurements,

(v) revises map associations to increase the localization quality, and

(vi) is fast and frequent enough for application in an automated vehicle.

Additionally, we show that our approach requires GNSS only once for global
initialization, is favorable over particle filters for localization, and has a high
availability even in challenging urban scenarios. Furthermore, we evaluate our
system’s capability to compute delayed map refinements in Section 6.6. Our
related experiments are designed to show the capabilities of our sparse global
prior method and to support our key claims, that our approach

(i) approximates sliding window marginalization with sparse global priors,

(ii) utilizes global linearization points and thus does not require local optimiz-
ation,

(iii) computes conservative landmark positions for incremental map refinement,

(iv) has exactly the same sparsity pattern compared to using no marginalization
but provides more accurate estimates,

113

6.1. Dataset description

(v) is able to improve existing map landmarks.

We start by describing the sensor setup and data recordings before reporting on
the results of our experimental evaluation.

6.1 Dataset description
In this section, we present the sensor setup that was used for our data recordings,
as well as the odometry module and landmark detectors that we applied. The
presented modules are applied within various recordings that we use throughout
our evaluation. In the following, we provide a detailed overview of the set of
data recordings that we use for evaluating our localization approach on a third-
party map within an urban environment. By the time this thesis was written,
no urban driving dataset was publicly available for commercial use that provided
the required data for our use case. A major benefit of using our own self-recorded
dataset is that the estimated trajectories are computed live within the vehicle in-
stead of post-processing the recorded raw data. This ensures that our evaluation
reflects the real-world performance of our approach. Our urban driving dataset
aims to provide a representative amount of challenging sceneries within a typical
urban environment. The dataset was recorded on five subsequent days in Decem-
ber 2019 in Hamburg, Germany, at different times of the day. It contains a wide
variety of environmental sceneries, as well as different traffic situations, weather,
and lighting conditions. Typical sceneries in the dataset are urban canyons, huge
and small traffic junctions, bridges in various styles, and tree-lined roads. Fig-
ure 6.1 provides a few representative pictures of the dataset. In numbers, the
total driven distance in the dataset is 319 km, which roughly corresponds to 16 h
of driving. We provide an overview of the individual trajectories in Figure 6.2.
Apart from our Hamburg dataset, which we use to evaluate our localization ap-
proach in urban scenarios, we also use further simulated and real-world datasets
to evaluate our map refinement approach.

6.1.1 Sensor setup
The prototype vehicle we used in our urban dataset is an e-Golf similar to the
one shown in Figure 6.3. Its sensor setup is illustrated in Figure 6.4.

The relevant sensors used as input for our approach are five Velodyne VLP-
32C LiDAR sensors (Veloyne Lidar, 2020), a front-view camera, four top-view
cameras facing the ground, a low-cost u-blox NEO-M8L GNSS receiver (u-blox,
2020), and an odometry system. The latter is a successor of the approach presen-
ted by Baer et al. (2009) and integrates an Xsens MTi 100-series IMU (Vydhy-
anathan and Bellusci, 2018), wheel ticks, and the steering angle. We provide an

114

Chapter 6. Experimental Evaluation

Figure 6.1: An impression on the variety of sceneries within our urban dataset. The dataset
contains day and night, sunny and rainy, as well as light and heavy traffic sequences. Typical
for our dataset are urban canyons, occasional bridges, and tree-lined roads.

115

6.1. Dataset description

(a) 31.6 km (b) 29.6 km (c) 35.5 km (d) 32.0 km

(e) 19.9 km (f) 16.7 km (g) 13.3 km (h) 17.6 km

(i) 13.7 km (j) 13.5 km (k) 14.9 km (l) 15.2 km

(m) 24.8 km (n) 16.0 km (o) 24.3 km

0 10 20 30 40 50

Velocity [km/h]

Figure 6.2: Overview of the different trajectories in the urban dataset with their colored velocity
profile. We provide a combined overview on an aerial image in Figure 6.18.

116

Chapter 6. Experimental Evaluation

Figure 6.3: The prototype e-Golf used in our experiments. It is equipped with various sensors,
as illustrated in Figure 6.4. Source: Volkswagen AG (2019).

Odometry LiDAR Reference Antenna

GNSS Antenna Camera Computers

Figure 6.4: The figure illustrates the relevant sensors within the experiments of this thesis.
The prototype vehicle is equipped with five Velodyne VLP-32C LiDAR sensors (Veloyne Lidar,
2020), four surround-view cameras, and one forward-facing camera behind the windshield for
environmental perception. The low-cost u-blox NEO-M8L GNSS receiver (u-blox, 2020) uses a
single antenna, whereas the Applanix LV 520 reference system (Applanix, 2019) and the RT3000
(Oxford Technical Solutions, 2020) use the dual antenna setup. The EgoMaster odometry
module (Baer et al., 2009) is a black box system that integrates an Xsens MTi 100-series
IMU (Vydhyanathan and Bellusci, 2018), wheel ticks, and the steering angle. All sensors are
connected to the computer rack in the trunk of the vehicle. It contains several compute units,
which are connected over a network, and run the automated driving stack.

117

6.1. Dataset description

evaluation of the odometry in Section 6.1.2, which gives insights into its accuracy
and helps to compare our setup to other approaches. Note that our low-cost u-
blox NEO-M8L GNSS receiver does not use dead reckoning, although the receiver
supports such an option. It is configured to calculate pose estimates only based
on GNSS.

For a comparison with a purely GNSS-based localization approach, we recor-
ded the live trajectories of an RT3000 (Oxford Technical Solutions, 2020). The
receiver was equipped with dual antennas and received live correction data. We
did not perform any special warm-up procedures for initializing the GNSS re-
ceiver. Nevertheless, the system was always started with as much open sky as
possible in the urban environment.

As a reference system, we used an Applanix LV 520 (Applanix, 2019) in post-
processing mode, which can achieve a 2 cm root mean square (RMS) accuracy
and an output frequency of 200 Hz. Its position tracking accuracy without GNSS
reception for 60 s degrades to 10 cm. These specifications are achieved with a
dual antenna setup, an integrated IMU, GNSS correction data, and a wheel tick
encoder. The latter, however, was not part of our setup, which in combination
with GNSS outages due to urban canyons and tunnels, partly led to defects in the
reference trajectories. As a consequence, we excluded the affected segments from
our evaluation so that we can provide an unbiased evaluation. In numbers, this
corresponds to 6.61% of the overall recorded data of our urban dataset. Figure 6.5
demonstrates the issue, whereas Table 6.1 contains further information. Note that
we never use the RT3000 or the Applanix system as an input to our approach.
Instead, we only use the low-cost GNSS receiver.

Recorded driven distance 319.0 km
Maximum velocity ≤ 62.6 km/h
Average velocity ∼ 19.9 km/h

Utilizable driven distance 255.3 km
Excluded due to:
reference errors 21.1 km
unmapped areas 36.5 km

sensor failure 6.1 km

Table 6.1: Key numbers of our urban dataset. By excluding erroneous parts of the dataset,
which are unrelated to our localization approach, we make sure that our evaluation is reliable.
Excluded parts contain reference errors, as shown in Figure 6.5, driving in unmapped areas,
and sensor failures.

118

Chapter 6. Experimental Evaluation

jump

ours
reference

Figure 6.5: The figure shows cases in which the reference trajectory is inaccurate and unusable
for our evaluation. This is based on sudden changes, i.e., jumps, in the reference trajectory as,
e.g., shown in the bottom right image. Whenever there is a jump in the reference trajectory, the
reference system corrects previously accumulated drift. Consequently, the preceding segment of
the reference system is inaccurate and thus unusable for our evaluation. We manually identified
these problematic segments and excluded the corresponding parts from our evaluation. The
trajectory estimates of our system are only shown for visual comparison. Aerial images by
Landesbetrieb Geoinformation und Vermessung (2019).

6.1.2 Odometry evaluation

The black box odometry module used in this thesis is a proprietary successor of
the EgoMaster (EgM) approach presented by Baer et al. (2009). It combines IMU,
wheel-tick, and steering angle measurements to calculate the vehicle’s movement
with a frequency of 100 Hz. To provide an indication of the odometry module’s
performance, we evaluated it based on our urban dataset. This may help the
reader to put the challenges and results of our urban localization approach into
perspective. Additionally, the evaluation allows us to verify the assumption A-6
that the odometry can be considered drift-free within the time span relevant
for local association. We found that our odometry module, on average, drifts
24.14 m over 1 km driving within our urban dataset. In this sense, we measure
drift as the Euclidean distance between the true vehicle position and the accu-
mulated odometry, when both have the same initial position. Figure 6.6 shows
the drift characteristics for different driving distances. Furthermore, we evalu-
ated the odometry based on the KITTI evaluation criteria presented by Geiger
et al. (2012). It separates the translational and rotational odometry errors and
thus allows to individually analyze both error types. The criteria is used in the
popular KITTI visual odometry benchmark1 to rank various visual odometry ap-

1http://www.cvlibs.net/datasets/kitti/eval_odometry.php

119

http://www.cvlibs.net/datasets/kitti/eval_odometry.php

6.1. Dataset description

0 100 200 300 400 500 600 700 800 900 1,000
0

10

20

Path Length [m]

Eu
cl

id
ea

n
Er

ro
r

[m
]

EgM
EgM (To)

Figure 6.6: Euclidean error of the odometry module that we use as an input for our localization
approach. The plot shows the average position offset of the odometry after accumulating it for a
specific path length. The curve EgM (To) only considers translational odometry measurements
without considering the vehicles heading. On the contrary, the EgM curve includes heading
changes, which corresponds to the accumulated full odometry. Comparing both curves shows
the impact of rotational odometry errors.

proaches based on the associated KITTI dataset. From this ranking, we choose
the leading Vision-lidar Odometry and Mapping (V-LOAM) approach presented
by Zhang and Singh (2015), which combines LiDAR and camera-based odometry,
and achieves 0.54 % relative translational drift and 0.0013 deg

m rotational error on
the KITTI dataset. In comparison, the EgM approach, on average, yields 0.48 %
translational and 0.0057 deg

m rotational error on our urban dataset. Although
the results are based on different urban datasets, we consider them comparable
w.r.t. their characteristics. This takes into account that both datasets capture
a wide variety of urban scenarios such that the results are likely generalizable
to other urban areas. We provide more detailed results on the two approaches
in Figure 6.7. Although both approaches rely on entirely different sensors, their
performance is comparable, while some characteristics are unique to the particu-
lar approach. In detail, the plots show that V-LOAM more accurately estimates
rotational changes, whereas EgM is superior in estimating translational changes.
A characteristic of the EgM approach is that it is more accurate with increasing
speed, whereas it is notably worse at low speeds. Judging from outside the black
box, this might be an effect of using a wheel-tick sensor, which are comparably
unreliable at low speeds. Vice versa, V-LOAM, which does not use a wheel-tick
sensor, seems not to have this effect.

Our local association step assumes that the accumulated odometry is con-
sidered drift-free for the time span that is covered in the local association (see
A-6). In our case, this corresponds to the graph time span T = 10 s, such that
the covered trajectory length depends on the vehicle’s velocity, as shown in Fig-
ure 6.2. Within our urban dataset, 99.9 % of all graphs are under 83.5 m and
on average 15 m long. Considering the odometry drift, as shown in Figure 6.6,
the average drift of the accumulated odometry in the local association is roughly

120

Chapter 6. Experimental Evaluation

0 200 400 600 800 1,000

0.4

0.6

0.8

1

1.2

Path Length [m]

Tr
an

sla
tio

n
Er

ro
r

[%
]

EgM
V-LOAM

0 200 400 600 800 1,000
0

0.01

0.02

Path Length [m]R
ot

at
io

n
Er

ro
r

[d
eg

/m
]

EgM
V-LOAM

0 20 40 60 80
0

1

2

Speed [km/h]

Tr
an

sla
tio

n
Er

ro
r

[%
]

EgM
V-LOAM

0 20 40 60 80
0

0.02

0.04

0.06

0.08

Speed [km/h]R
ot

at
io

n
Er

ro
r

[d
eg

/m
]

EgM
V-LOAM

Figure 6.7: Evaluation of the EgM odometry module, which we use as an input for our graph-
based localization approach. The shown plots are based on the KITTI odometry evaluation
criteria (Geiger et al., 2012). The EgM plots are based on our own urban dataset. As a
comparision we show the visual and LiDAR approach V-LOAM by Zhang and Singh (2015)
based on the KITTI dataset.

15 cm. However, this includes sliding windows in stopping phases with an effect-
ive length of zero and, therefore, negligible drift. We provide a more detailed
overview of the accumulated drift in our urban dataset in Figure 6.8. Compared
to our landmark detectors’ measurement noise, the odometry drift is a negligible
minor factor in our local association. We discuss the landmark noise in more de-
tail in the following Section 6.1.3. Even the maximum odometry drift of roughly
85 cm is still acceptable because a single landmark is usually only observed from
a section of the accumulated trajectory, which reduces the effective relevant drift.

Overall, we showed that our local association’s drift-free odometry assumption
(A-6) holds for the EgM odometry module. Furthermore, we demonstrated the
quality of the odometry that we use within this thesis. This may ease the com-
parison of our results to other localization approaches. We conclude that due to
the comparable performance, visual odometry approaches might be a promising
input alternative to the EgM odometry. This also suggests that our graph-based
localization approach is transferable to sensor setups without wheel-tick and IMU
sensors.

121

6.1. Dataset description

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.01
0.02
0.03

0.28

Accumulated drift within local association [m]

Pr
ob

ab
ili

ty

Figure 6.8: Histogram of the odometry drift inherent in our local association within our urban
dataset. The drift within our local association depends on the vehicle’s velocity within our
sliding window and the odometry module’s drift characteristics, as shown in Figure 6.6. The
most left bin captures 28 % of all occurring drifts within our local association, which is caused
by the frequent stop and go traffic in urban areas. Whenever the vehicle stops, the graph’s
length converges to near zero, such that the sliding window is effectively drift-free. The figure
shows that the maximum drift within our urban dataset is roughly 85 cm, which we can consider
neglectable for our use case such that our assumption A-6 holds.

122

Chapter 6. Experimental Evaluation

6.1.3 Landmark detectors

In the following, we examine the landmark detector modules used in the scope of
this thesis. This includes the pole, plane, and lane detectors, available to us as
either gray box or black box systems. We exhibit their quality and characteristics
to reveal the nature of the input data available to our localization approach in the
scope of this evaluation. The number of measurements a detector module provides
naturally depends on the number of landmarks in the vehicle’s environment. Like-
wise, the number of received measurements also depends on the processing speed
of the underlying sensor and detector module. In our case, the LiDAR-based pole
and plane detector processes point clouds with a frequency of 10 Hz, whereas the
camera-based detectors are a black box and their internal processing frequency
is unknown. Overall, our urban dataset contains 38.13 million pole-, 1.05 million
plane-, and 7.61 million lane measurements. Within a time interval of 10 s, which
corresponds to our sliding window length, our landmark detectors produce on av-
erage 6585 pole, 182 plane, and 1316 lane measurements. In sum, 8083 landmark
measurements are on average available to each sliding window graph. After our
data association, we incorporate a filtered subset of the landmark measurements
into our localization estimate, as explained in Chapter 4.4. In Section 6.2.5, we
show that the processing time of our algorithm for all available measurements is
sufficient for our algorithm cycle that runs at a frequency of 10 Hz. We provide
a more detailed view of the distribution of available measurements in Figure 6.9.
Based on the pure amount of measurements, poles are by far the dominating
landmark type in our dataset. In combination with the farthest overall detection
range, this indicates that pole landmarks significantly impact the results of our
evaluation. Due to these properties, pole landmarks are a vital factor in our ro-
bust landmark-based urban localization. We show the detection range histograms
for the different landmark types used in our urban dataset in Figure 6.10. Fur-
thermore, we demonstrate the spatial distributions within the vehicle reference
frame in Figure 6.11. The spatial distributions show that the majority of the pole
and plane landmark detections are on the right side of the vehicle. Although one
could consider the spatial distributions as, e.g., a weighting during map matching
or graph construction, our algorithm considers the landmark detections as uni-
formly distributed. This ensures that our approach does not overfit to the urban
environment of our dataset and can easily be migrated to other environments.
After all, our architecture is designed to be a flexible approach instead of deeply
integrating specific landmark and sensor properties. In fact, the concepts and al-
gorithms presented in this thesis have also been used by Jürgens et al. (2020), who
show the applicability to radar-based odometry and landmark measurements. We
provide a visual comparison between using radar-based and LiDAR-based land-
marks with our approach in Figure 6.13. As an overview that shows the various

123

6.1. Dataset description

0 7,500 15,000
0

0.02
0.04
0.06
0.08

Pole measurements
within 10 s

Pr
ob

ab
ili

ty

0 200 400 600

Plane measurements
within 10 s

0 1,000 2,000 3,000

Road marking meas.
within 10 s

Figure 6.9: Histograms of how many landmark measurements our detectors produce within a
10 s time interval in our urban dataset. The 10 s time interval corresponds to the time span
of our sliding window graph and thus reflects how many measurements are processed for each
sliding window graph. All shown plots in this figure share the same y axis.

0 50 100
0

0.02
0.04
0.06
0.08

Distance [m]

Pr
ob

ab
ili

ty

(a) Poles

0 20 40 60 80
0

0.02
0.04
0.06
0.08

Distance [m]

(b) Planes

0 20 40 60 80
0

0.2

0.4

0.6

Distance [m]

farthest
closest

(c) Road markings

Figure 6.10: Detection distances for the different landmark types in our urban dataset. On
average, a pole is measured 27.91 m away from the vehicle. For planes and road marking
measurements, we depict the histograms for the closest and farthest measurement points to
the vehicle. The closest point of a plane measurement is on average 29.14 m away, whereas the
farthest one is on average 43.38 m away. For road marking measurements, the average numbers
are 3.12 m and 18.83 m. The peak in the histogram for the farthest plane measurements shows
that the detector module internally cuts off plane measurements at 80 m.

characteristics of our detectors, Figure 6.12 illustrates raw landmark measure-
ments at on of the junctions within our urban dataset. The figure provides a few
examples of false positive detections and shows how well the detections corres-
pond to our third-party map. We discuss the latter and the figure in more detail
in Section 6.2.2

In sum, we provided an intuition on the characteristics of the landmark meas-
urements used in the scope of our experimental evaluation. We discussed the
spatial, temporal, and range distributions for the pole-, plane- and lane measure-
ments in our dataset, which emphasize the important role of pole-based landmarks
in our configuration.

124

Chapter 6. Experimental Evaluation

(a) Poles (b) Planes
25 m

forward

(c) Road markings
low

high

P
ro

ba
bi

lit
y

Figure 6.11: Spatial distributions of landmark detections within the vehicle reference frameover
our complete urban dataset. The vehicle is shown as a white rectangle. White spots in the
images indicate that no landmark has been observed for the corresponding coordinate. The
shown distributions are discretized to a 1 m × 1 m grid. The shown spatial area for poles and
planes is 75 m × 75 m. The legend in (c) is valid for all images. (a) Pole detections based on
LiDAR. We see that the highest probability of detecting a pole is on the right side of the vehicle.
This is likely an effect of right-hand traffic, due to which objects on the right side are closer
to the vehicle. In combination with decreasing LiDAR resolution over distance, this manifests
the shown distribution. (b) Plane detections based on LiDAR. Similar to poles, planes are
more likely detected on the right side of the vehicle. The distribution also shows that other
vehicles are detected as false positives, which show up in a lane width distance interval parallel
to the ego vehicle. Note that we only consider vertical plane measurements, e.g., from building
facades, and no ground plane measurements (c) Road marking detections based on top-view
and front-facing cameras. The ego lane and parallel lane boundaries are clearly visible. The
large spread of the distribution is likely caused by false positive detections.

125

6.1. Dataset description

1 m

10 m

false positive
measurements

missing map
landmarks

undetectable map landmarks

Figure 6.12: Exemplary excerpt of our urban dataset with the raw landmark measurements,
in orange, of our pole, plane, and lane detectors. The measurements taken in the vehicle
reference frame are attached to the reference trajectories to show them in world coordinates.
The vehicle trajectories of two different passes are shown in black, whereas the landmark map
is blue. Comparing the map with the measurements illustrates that the measured landmarks
only partly coincide with the third-party map. The undetectable map landmarks in the image
are short pole landmarks with a small radius, which are in general undetectable with our pole
detector and LiDAR sensor combination. In the top right corner of the image, we provide a
zoomed-in view of one of the pole landmarks.

126

Chapter 6. Experimental Evaluation

map matched pole
map element
map element
landmark constraint
estimated pose

(a) Sliding window graph with radar-based landmarks

(b) Sliding window graph with LiDAR-based landmarks

Figure 6.13: The figure shows screenshots of our sliding window graph implementation, which
once runs with radar-based landmarks in (a) and once with LiDAR-based landmarks in (b),
within our urban Hamburg dataset. In both cases, the additional inputs to our approach are,
the third-party map, odometry measurements, and once at startup the low-cost GNSS for global
initialization. Note that we never use the RT3000 or the Applanix reference system as an input
to our approach. While some of the map landmarks are detected with both sensors, others are
only detectable with one of the sensor modalities. This example emphasizes the general-purpose
characteristic of the third-party map and also demonstrates the strength of our approach to
work with landmark detections from different sensors. In the scope of this thesis, we do not
further investigate radar-based landmarks and refer to the work of Jürgens et al. (2020), who
apply the concepts of this thesis to radar-based localization.

127

6.2. Localization on a third-party map

6.2 Localization on a third-party map
This part of our evaluation focuses on our approach’s capabilities to estimate
the vehicle pose in urban environments by using a third-party landmark map.
We show how well the applied landmark detectors match the deployed third-
party map and demonstrate the challenge of using a general-purpose third-party
landmark map for localization. At the core of our evaluation, we analyze the
accuracy, availability, and computational tractability of our localization based
on our urban dataset. An important aspect of this evaluation is that, instead
of recording a dataset and afterward post-processing it, our results are based on
actual real-world field experiments with live and in-vehicle computed poses. This
ensures that the implementation of our localization approach is exposed to per-
turbations, like measurement delays and time synchronization issues. Therefore,
our evaluation reflects the real-world performance and behavior of our approach
at runtime in the prototype vehicle. The input to our approach consists of our
third-party map, odometry measurements, LiDAR-based and camera-based land-
marks, and the low-cost GNSS for global initialization at startup. We never use
the RT3000 or the Applanix system as an input to our system and only use it for
comparison in the scope of our evaluation. We describe the details of our dataset
in the previous Section 6.1.

6.2.1 Key parameters
For the evaluation of our localization approach, we chose to set the applied
key parameters of our sliding window approach based on experience and pre-
evaluations in an urban environment different from our urban dataset. The slid-
ing window parameters presented in Section 4.2 directly affect the size of the state
vector and thus on computation time. Therefore, it is crucial to choose paramet-
ers that maximize the time span covered by the sliding window graph while still
being computationally tractable. For our urban dataset, we set the number of
maximum poses in the graph to N = 250, while the frequency of poses inside the
graph is f = 25 Hz. The latter means that all poses within our sliding window
graph are by design 40 ms apart. In total, the number of poses and the pose
frequency effectively set the total time span covered by the graph to T = 10 s.
We chose an optimization frequency of f o = 10 Hz, which in our case is a suitable
global pose frequency for automated driving. For our implementation, we rely on
g2o (Kümmerle et al., 2011a) as an optimization framework. In this part of our
evaluation, we focus on pure localization and rely on graph truncation instead
of marginalization and evaluate our approximation of marginalization through
sparse global priors w.r.t. map updates separately in Section 6.6. The incorpor-
ated landmark types for our urban dataset are poles (i.e., lamp posts, reflector

128

Chapter 6. Experimental Evaluation

posts, traffic light posts, pillars, trees, and others) and polyline types consisting of
planes and road markings. We chose to use poles exclusively for our transform-
ation matrix search (see Algorithm 3) but include all landmark types for map
matching based on the found result. To reduce the computation time required
for map matching, we only consider landmarks within a 50 m radius around the
initial position guess for the transformation matrices Tinit during transformation
matrix search (see Algorithm 3). Nonetheless, the map matching results pro-
posed in each algorithm cycle are still based on all detected landmarks in the
full detection range. Our focus in this experiment is our approach’s localization
capability, which is why we only include map-matched landmarks in our graph
and omit all others within graph optimization.

6.2.2 Incorporating a general-purpose third-party map
In this experiment, we evaluate the challenge of using a general-purpose third-
party landmark map for localization and demonstrate that our map matching
algorithm is suitable for our localization approach. A main challenge in using
general-purpose third-party maps is that the map elements might not well cor-
respond to what the vehicle can detect. On the one hand, a map might contain
landmarks that are undetectable by the vehicle’s sensor or detectors setup. On
the other hand, the vehicle might measure landmarks that are not part of the
map. These are either landmarks that are missing in the map or false positive
measurements. The magnitude of this map correspondence problem depends on
how the map is created. If the mapping vehicle has a similar sensor and detector
setup as the vehicle performing localization, the map correspondence problem
can be expected to be on a neglectable level. Particularly, if the map is created
in a SLAM-based fashion, the landmarks likely correspond well to what the loc-
alization vehicle can detect. On the contrary, if the map is created in a black
box process, as in our case, the correspondence problem might be significantly
more severe. Furthermore, the more time has passed between creating the map
and using it for localization, the more outdated the map might be, which wor-
sens the correspondence issue. In our case, the third-party map was created in
2017, whereas the urban dataset was recorded in December 2019. We evaluate
the map correspondence problem w.r.t. its magnitude in our urban dataset in the
following. Due to missing ground truth data, we consider a heuristic approach
for identifying undetectable map landmarks and landmark measurements that
are not part of the map. Since the polyline-based landmarks in our third-party
map, i.e., planes and lane boundaries, are not stored as single instances, we can
not compute reliable and meaningful statistics about their map correspondence.
An example of this is a building facade, which, instead of being represented as
a single connected polyline, is stored in the map as multiple overlapping plane

129

6.2. Localization on a third-party map

instances. Although our detector would measure the building plane and we suc-
cessfully use it for localization, not each of the single instances might be used.
In consequence, our results would depend on how the map is stored and pro-
cessed and not on its actual representation of the environment. Therefore, we
omit polyline landmarks from our map correspondence evaluation. Instead, we
focus on pole landmarks, which are clearly defined with a single position. Also,
pole landmarks are of interest as their abstract semantic nature makes them
prone to correspondence issues. In our case, the challenge is that the map con-
tains trees, traffic light pots, pillars, lamp posts, and others as pole landmarks,
while the pole detector just aims to identify cylindrical objects. Our heuristic
approach is to project all pole measurements into UTM coordinates by attaching
them to the reference trajectory. Afterward, we calculate the Euclidean distance
towards the nearest map landmark. Note that the noise level of these globally
transformed landmark measurements is based not only on the detectors’ noise
characteristics but also on the errors within the reference trajectory. For our
evaluation, we only consider landmark measurements taken within the mapped
areas of our urban dataset. Figure 6.12 shows an example of the globally projected
raw landmark measurements of two passes of the same junction. The figure shows
several undetectable map landmarks, many false positive measurements, and a
few missing map landmarks. Based on our complete urban dataset, we found
that 72.13 % (75.05 %) of all globally projected pole measurements are within a
1 m (2 m) radius of a map landmark. Thus, 27.78 % (25.95 %) of all pole meas-
urements are either false positive measurements, are too noisy, or correspond to
missing or shifted map landmarks. Based on visual data inspection, most of the
false positive measurements seem to stem from dynamic objects, which appears
to be a weakness of the given black box pole detector. For example, Figure 6.12
illustrates false positive pole measurements within lanes that likely correspond
to pedestrians or other vehicles. The missing map landmarks mostly stem from
constructional measures or were missed during initial mapping. Due to missing
ground truth data, we can not provide further reliable statistics on missing map
landmarks. Another correspondence issue with third-party maps is that not
necessarily all map landmarks are detectable by the vehicle. Instead of missed
detections due to blocked line-of-sight, we here refer to landmarks that can not
be detected with a specific sensor and detector module combination in general.
An example in our case are poles with a small diameter and a low height, which
return insufficient LiDAR measurements so that our detector can not to detect
them. We consider a pole map landmark as detectable if at least ten globally
projected measurements are within a 1 m radius around the landmark. Using ten
measurements as a boundary allows us to compensate for false positive detec-
tions near map landmarks. Comparably, a detectable pole map landmark in our

130

Chapter 6. Experimental Evaluation

Figure 6.14: Landmarks of the third-party map at an exemplary junction of our urban dataset.
The coloring illustrates if a map landmark was detected and matched at least once during
multiple passes of the junction. If a landmark was detected and matched to the map, it is
shown in green. Otherwise it is colored red. The driven trajectories are shown in white.
The reasons for an unmatched map landmark are manifold, which we show in more detail in
Figure 6.12. Aerial image by Landesbetrieb Geoinformation und Vermessung (2019).

dataset is observed 513 times on average. We found that within the visited areas
of our urban dataset, 53.26 % of all pole landmarks are undetectable, such that
only 46.74 % are usable for localization. Even if we would consider a single meas-
urement as sufficient for classifying a pole landmark as detectable, still 41.35 %
of all pole landmarks are not detectable with our LiDAR sensor and detector
module combination. Overall, this emphasizes the imposed challenge on our map
matching algorithm, which at runtime neither has a priori information about a
landmarks detectability nor missing map landmarks. Although it might be pos-
sible to learn the map correspondence over time, we are in the scope of this thesis
interested in using a general-purpose third-party map without further modifica-
tion. Therefore, we designed our map matching algorithm to cope with a large
number of undetectable map landmarks and a high number of false positives.
Our localization approach matched and incorporated 44.77 % (21289 of 47556) of
all map poles in the third-party map. This is only 1.97 % lower than the 46.74 %
limit, which we deduced as being detectable by the prototype vehicle. Figure 6.14
shows these matching results for multiple passes of an exemplary junction.

In sum, we infer that our map matching algorithm successfully copes with
false positive measurements, missing map landmarks, and the high number of
undetectable map landmarks. Our evaluation w.r.t. localization accuracy (see
Section 6.2.3) further supports that our map matching algorithm successfully

131

6.2. Localization on a third-party map

works, and we can compensate for the map correspondence issues with our loc-
alization approach.

6.2.3 Localization accuracy
This experiment is designed to investigate the accuracy of our approach regarding
pose estimates. We present the accuracy of our graph-based sliding window ap-
proach in our real-world urban dataset and compare it against a low-cost u-blox
NEO-M8L GNSS receiver without dead reckoning (u-blox, 2020) and an RT3000
(Oxford Technical Solutions, 2020). As discussed in Section 6.1.1, we use an Ap-
planix LV 520 system (Applanix, 2019) as a reference and exclude the parts of
the dataset in which the reference system fails. To compute the error statistics,
we interpolate the 200 Hz reference trajectory to the timestamps of each local-
ization approach. Because of the high-frequency reference trajectory, the time
spans that we need to interpolate for our comparisons are minimal. In return,
the induced interpolation errors impacting the accuracy of the interpolated ref-
erence poses are minimal. For our approach, we use the most recent pose of each
optimized sliding window graph as the pose for comparison. This corresponds to
the output pose of our approach to other automated driving software modules.
We investigate the average Euclidean error as the main measure for the vehicle’s
position accuracy and separately provide the average heading error. Also, we
subdivide the position accuracy into average absolute lateral and average abso-
lute longitudinal errors, which allows a more specific interpretation of our results.
For example, in a lane-keeping function, the lateral error is more critical than the
longitudinal error. However, for automated driving, we consider the Euclidean
error as the main performance indicator. Table 6.2 shows our results for all three
localization systems compared to the reference. Moreover, Figure 6.15 shows
the error distributions of our graph-based sliding window approach. Within our
urban dataset, the low-cost GNSS yields an average Euclidean error of 10.15 m,
whereas the RT3000 achieves 0.65 m. In comparison, our approach yields an av-
erage Euclidean error of 0.11 m and outperforms the low-cost GNSS receiver and
the RT3000. Although RTK-based systems, like the RT3000, may have accuracy
specifications up to 0.01 m, they suffer from extended GNSS outages. This is also
shown and discussed by Štern and Kos (2018), Joubert et al. (2020), and Reid
et al. (2019b). We further discuss the outages of all systems w.r.t. our urban
dataset in Section 6.2.4. Given that our reference system operates without a
wheel tick encoder and thus does not work under optimal conditions, we suspect
that our localization’s accuracy might even be better than what our experiment
suggests.

In sum, our experiment emphasizes the advantage of our landmark-based
localization over GNSS-based systems in challenging urban environments and

132

Chapter 6. Experimental Evaluation

supports our claim that our graph-based sliding window approach yields highly
accurate pose estimates.

6.2.4 Outages and availability
This experiment is designed to evaluate if our graph-based sliding window ap-
proach can provide pose estimates with high availability. We compare the avail-
ability of our approach to an RT3000 (Oxford Technical Solutions, 2020) and
additionally include a low-cost GNSS receiver in our evaluation. The latter is
configured to work without dead reckoning such that it only outputs a pose es-
timate if sufficiently enough satellites are visible. We use it here to point out the
challenging conditions in urban environments for GNSS-based systems. First,
we discuss the impact of GNSS outages. A challenge for classical GNSS-based
localization approaches are blocked line-of-sight scenarios, in which satellite sig-
nal reception is limited or not possible at all. Typically, these occur in urban
canyons, tunnels, under bridges, and even on tree-lined roads. A major issue in
these scenarios is that low-cost GNSS receivers without dead reckoning fail to
compute a pose estimate during the outage, which results in a localization out-
age for the vehicle. Note that our u-blox NEO-M8L GNSS receiver does not use
dead reckoning, although the receiver supports such an option. It is configured
to calculate pose estimates only based on GNSS. Based on the low-cost GNSS
receivers frequency of 1 Hz, we consider it an outage in the scope of this thesis if
a localization system can not provide a vehicle pose for more than two seconds.
We provide the outage statistics of our low-cost GNSS receiver for our urban
dataset in Figure 6.17. Additionally, we illustrate the GNSS outages that last
over ten seconds in Figure 6.18a. These extended outages sum up to roughly 18 %
of the overall recorded timestamps. In relation to our graph-based localization
approach, for which we choose a ten-second sliding window (see Section 6.2.1),
these outages correspond to the sliding window graphs for which no GNSS data is
available. Beneficially, our graph-based localization approach only requires GNSS
for initialization and thus is unaffected by the GNSS outages. Additionally, we
include GNSS as a fallback whenever the vehicle leaves its specified operational
domain by driving into an unmapped area. We consider these cases as out-of-
operation phases in which the vehicle’s pose is only estimated based on odometry
and GNSS. Whenever the vehicle reenters the mapped area during an extended
GNSS outage, the reinitialization might be delayed until a valid GNSS pose is
received. This depends on how far away the vehicle estimates are from their true
position during the outage phase. Although our approach perfectly manages to
provide vehicle estimates outside of mapped areas, its accuracy reduces to what
the GNSS receiver can provide. With respect to the safety in automated driving,
we consider it crucial that the vehicle only operates in its specified operational

133

6.2. Localization on a third-party map

error type GBL low-cost GNSS RT3000
lateral 0.06 m / (0.05 m) 7.08 m / (4.44 m) 0.43 m / (0.13 m)

longitudinal 0.08 m / (0.06 m) 5.56 m / (3.12 m) 0.39 m / (0.13 m)
heading 0.11 deg/ (0.08 deg) 31.36 deg/ (3.96 deg) 1.05 deg/ (1.07 deg)

Euclidean 0.11 m / (0.09 m) 10.12 m / (7.01 m) 0.65 m / (0.25 m)

Table 6.2: Error statistics of our graph-based localization (GBL) for the urban dataset compared
to a low-cost u-blox NEO-M8L GNSS receiver without dead reckoning and an RT3000 system.
Our GBL approach only uses the low-cost GNSS once at start up for global initialization and
otherwise does not incorporate any GNSS data while driving in a mapped area. All values are
stated as mean / (median) of the absolute error values and computed against an Applanix LV
520 reference system that operates without a wheel tick encoder.

0 0.1 0.2 0.3 0.4 0.5
0

0.02
0.04
0.06
0.08

Absolute Euclidean Error [m]

Pr
ob

ab
ili

ty

−0.4 −0.2 0 0.2 0.4
0

0.01
0.02
0.03
0.04

Heading Error [deg]

Pr
ob

ab
ili

ty

−0.4 −0.2 0 0.2 0.4
0

0.02

0.04

0.06

Lateral Error [m]

Pr
ob

ab
ili

ty

−0.4 −0.2 0 0.2 0.4
0

0.02

0.04

Longitudinal Error [m]

Pr
ob

ab
ili

ty

Figure 6.15: Error distributions of our graph-based localization approach for our urban dataset.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Absolute Euclidean error [m]

C
D

F

GBL
low-cost GNSS
RT

Figure 6.16: Cumulative distribution functions (CDF) for the absolute Euclidean error in our
urban dataset for our approach (GBL), RT3000 (RT), and the low-cost GNSS module. In this
figure, we assume an example boundary of 0.5 m for the required availability. With respect
to this boundary, the RT3000 has a 69.33 % availability, whereas our sliding window approach
yields 99.97 % availability.

134

Chapter 6. Experimental Evaluation

domain. Thus, we do not further investigate localization in unmapped areas as
a part of this thesis.

Apart from system outages, the availability of a localization system is reg-
ularly described as the percentage for which the system’s accuracy is below a
specific error threshold. Which availability boundary is required for automated
driving is still an open question in the community. In practice, the influencing
factors are not only the operational design domain but also the capabilities, and
architecture of the autonomous system itself. This is discussed in more detail
by Reid et al. (2019a). Based on our experience, we consider an exemplary Eu-
clidean error boundary of 0.5 m as the availability boundary for our automated
system. For this boundary, the low-cost receiver has a near-zero availability,
whereas the RT3000 yields a 69.33 % availability. This shows how challenging
the urban environment is for GNSS-based approaches. Similar to the low-cost
receiver, the GNSS outages seem to have a drastic effect on the RT3000 as well.
Although fusing IMU data allows it to continue operating and does not suffer
from any outages, its performance suffers under the limited satellite reception.
For 29.84 % of the recorded data the RT3000 operates in the highly precise RTK
Integer mode, 13.36 % in the less precise, RTK Float mode, 53.1 % in Differential
GPS (DGPS) mode, and roughly 3 % without any satellite reception. Compared
to the outages of the low-cost receiver, the RT3000 benefits from its dual an-
tenna setup. Our landmark-based approach does not suffer from GNSS outages
and achieves 99.97 % availability w.r.t. the 0.5 m boundary within the mapped
areas of our urban dataset. We compare the cumulative error distributions of the
low-cost GNSS receiver, RT3000, and our sliding window approach within the
mapped areas of our urban dataset in Figure 6.16.

Overall, our evaluation w.r.t. availability demonstrates the advantages of our
landmark-based localization approach over GNSS. Compared to GNSS-based loc-
alization, our approach has a high availability even in challenging urban areas
with limited satellite reception, which is a requirement for automated driving
applications.

135

6.2. Localization on a third-party map

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

100
200
300
400

Length of GNSS outages [s]

su
m

of
ou

ta
ge

s
w

ith
in

a
bi

n
[s]

Figure 6.17: Periods of GNSS outages within our urban dataset. The figure shows a histogram
with a bin width of one second on the x-axis and the total sum of all individual outages for
the specific bin on the y-axis. The red line illustrates the single occurrence boundary, showing
that short outages are much more likely than extended outage periods. The maximum outage
within the dataset is 306 s, which occurred one time within our dataset.

1 km

Figure 6.18: GNSS outages over 10 s. The parts of the trajectories for which the low-cost GNSS
receiver could compute a pose estimate within ten seconds are shown in white. Vice versa,
the locations in our dataset for which the low-cost GNSS receiver was not able to compute a
pose estimate for over ten seconds are shown in red. These outages mainly occur in areas with
blocked line-of-sight like tunnels, bridges, and urban canyons. Overall, roughly 18 % of the
overall recorded trajectories are within a GNSS outage phase. Aerial images by Landesbetrieb
Geoinformation und Vermessung (2019).

136

Chapter 6. Experimental Evaluation

0 20 40 60
0

0.1

0.2

0.3

Computation Time [ms]

Pr
ob

ab
ili

ty
Data Management
Local Association
Map Matching
Optimization

(a)

all >100 ms
0

20

40

60

80

4 43 3

21

84

26

39

Average Computation Time

T
im

e
[m

s]

(b)

Figure 6.19: Computation times for the different steps of our algorithm in our urban dataset.
(a) Histograms for the computation times of the different steps of our algorithm. For clarity,
the histograms do not show outliers above 60 ms, which have a near-zero probability. (b)
Comparison of the different average computation times required by our algorithm. On the left
side, we show the average computation times for the different computation steps. On the right
side, we illustrate the average numbers for the vehicle poses with an overall computation time
over 100 ms, which corresponds to 4.4 % of all computed poses.

6.2.5 Runtime
In the following, we investigate the different influencing factors on the compu-
tation time required for each algorithm cycle of our localization approach. We
support our claim that our system is fast enough for usage in a prototype vehicle,
which requires a pose update every 100 ms on average for automated driving.
First, we discuss the computation time and different steps of our algorithm in
general. Afterward, we consider the different steps of our algorithm in more de-
tail. Our experiment is based on our urban dataset, in which we limit the number
of poses inside the sliding window to 250 with a resolution of 25 Hz. In total, our
sliding window graph covers a time span of 10 s and integrates the measurements
taken within this time frame. The number of landmarks in our sliding window is
unlimited but is, in practice, bounded by the structure of the environment.

Figure 6.19 illustrates the required computation times for the different steps
of our algorithm in our urban dataset. Comparing the histograms in Figure 6.19a
shows that our algorithm’s most time-consuming step is graph optimization fol-
lowed by map matching. At the same time, the computation time required for
locally associating detected landmarks and general data management have a neg-
lectable influence on the overall computation time of an algorithm cycle. In total,
our approach achieved an average computation time per algorithm cycle of 54 ms.
In detail, 95.6 % of all poses are computed in under 100 ms, whereas only 4.4 %
required more computation time. We illustrate the required computation times
for the different steps of our algorithm once based on all algorithm cycles and
once only based on the algorithm cycles that required more than 100 ms in Fig-

137

6.2. Localization on a third-party map

ure 6.19b. In the latter case, our experiment shows that the dominating factor
influencing the overall computation time is our map matching. This occurs in
situations with many detectable landmarks in the vehicles line-of-sight, as, for
example, in large traffic junctions with an unblocked field of view. Since the
computation time required by our map matching depends on the number of de-
tectable landmarks, the overall computation time of an algorithm cycle increases
accordingly. We found that the increased computation time is not an issue for
automated driving in our prototype vehicle. The highly accurate poses of our loc-
alization approaches and the high-frequency odometry allow an odometry-based
extrapolation of the last computed global vehicle pose so that delay can be com-
pensated. Within our urban dataset, we found that for all vehicle poses that took
longer than 100 ms to compute, the maximum driven distance that needs to be ex-
trapolated is 2.8 m. Taking our odometry evaluation in Section 6.1.2 into account,
the added odometry drift error is roughly 0.04 m, which we consider acceptable
for our use case. Alternatively, to reduce the computation time, we could have
limited the number of processed transformation matrix candidates in our map
matching or the range threshold for included landmark detections, which in our
case is 50 m. Considering that delayed measurements are easily integrated into
our sliding window graph, it also seems promising to decouple the map match-
ing from the overall algorithm cycle. Map matching could be processed in its
own threaded cycle such that the results are added as delayed constraints to the
graph as soon as they are available. Since our presented results already fulfill the
requirements on computation time for our prototype vehicle, we did not further
investigate these improvements within this thesis’s scope.

In the following, we investigate the relation between our map matching al-
gorithm presented in Chapter 4.4.2 and its required computation time in more de-
tail. In the scope of our experimental evaluation, we only consider pole landmarks
for determining the best transformation matrix between detected landmarks and
third-party map. Therefore, the runtime of our map matching depends on the
number of pole clusters that we identified during local association and the num-
ber of map poles in the vehicle’s environment. On average, our map matching
takes 21 ms in our urban dataset, which is, in general, suitable for our use case. In
cases with an overall computation time above 100 ms, our map matching takes, on
average, 84 ms. In some rare cases, the required time for map matching reached
roughly 400 ms (see Figure 6.20). This was caused by a combination of many
false positive pole detections in an area with many nearby map landmarks lead-
ing to an excessive number of transformation candidates. We do not consider
this relevant for the overall interpretation of our results since this issue is spe-
cific to our pole detector and implementation. The input to our map matching
algorithm in each algorithm cycle in our urban dataset consists, on average, of 88

138

Chapter 6. Experimental Evaluation

map poles and 59 pole clusters from our local association. Figure 6.20b illustrates
that the number of detected poles exponentially influences the required time for
map matching. Nevertheless, the figure also shows that the distribution over the
number of considered pole clusters is in practice within a feasible range. Besides,
Figure 6.20a indicates a near-linear dependency between the number of considered
map poles and the required computation time for map matching. Although we
consider map poles within a nested loop, the near-linear dependency results from
pre-filtering potential map landmarks for each cluster (see Algorithm 3, line 5).
In combination, map poles and clusters yield, on average, 316 transformation
candidates between our local map and the third-party map that we assess in
each algorithm cycle. Due to the discussed exponential characteristics of Fig-
ure 6.20b, the number of transformation candidates exponentially impacts the
map matching runtime, shown in Figure 6.20c. Note that we only consider pole
clusters and map landmarks within a specified 50 m radius for finding the best
transformation. In sum, finding the best transformation between our local map
and the third-party map requires, on average, 1.2 million distance calculations
between detected and map landmarks (see Algorithm 3, line 14). We refer to
the latter as the number of comparisons in the following. Figure 6.20d illustrates
the relation between map matching runtime and comparisons, which is linear
and depends on the computer’s processing power. In our case, our system can
compute roughly 12 million comparisons within 100 ms. In sum, our experiments
show that the main factors impacting the map matching computation time are
the number of transformation candidates assessed in each algorithm cycle and
the number of detected poles in our local map. Additionally, we showed that
our map matching approach is applicable for online localization in an automated
vehicle. It can handle the number of map landmarks and detected landmarks
that naturally occur in our urban dataset.

Turning our attention to graph optimization, Figure 6.21 illustrates the re-
lation between optimization time and the number of constraints in our sliding
window graph with a time span of 10 s in our experiment. On average, our
sliding window graph contains 2996 constraints, from which the majority stems
from pole measurements. Figure 6.21a illustrates the empirical distribution over
the number of constraints in more detail. Similarly, Figure 6.21b illustrates the
empirical distribution over the number of pole vertices in our sliding window
graph. On average, our graph contains 42 pole vertices. The figures show that
the number of pole constraints and number of pole vertices have a crucial im-
pact on the required optimization time. Since we include poles directly in our
state vector, any constraint between a vehicle pose and a pole state produces an
off-diagonal entry in the Gauss-Newtons system matrix H (see Section 3.4.2 and
Figure 3.8), which increases the time required for the matrix inversion step dur-

139

6.2. Localization on a third-party map

ing Gauss-Newton optimization and thus increases optimization time. Likewise,
adding more poles to the graph increases the size of the system matrix H, which
also influences the required optimization time. Therefore, limiting the number of
constraints and limiting the number of poles in the graph are both viable options
for controlling the required optimization time. We implicitly do this by setting
the number of poses and their temporal distance, which controls the time span
that our sliding window covers. We cover the effects of the sliding window length
in more detail in the following Section 6.3.1.

An option that would further reduce the optimization time is to rely on pose
graphs, which only maintain vehicle poses and do not include any landmarks
in their state vector. Consequently, the system matrix H does not contain off-
tridiagonal entries such that the optimization can be performed more efficiently.
While this is common in related work, e.g., Wu et al. (2017), Harr et al. (2018),
and Lategahn et al. (2013), our approach does the contrary. Our main advant-
ages of re-estimating the landmark positions in each algorithm cycle are reduced
linearization errors and that it enables us to perform map refinement. As our
experiments have shown, the optimization time required for our sliding window
approach, despite optimizing landmark states, is suitable for our urban use case.

In sum, our runtime experiments have shown that our graph-based sliding
window approach is applicable for automated driving in urban areas as it provides
fast and frequent pose estimates.

140

Chapter 6. Experimental Evaluation

0 100 200 300
0

200

400

0

0.01

0.02

0.03

Map Poles

M
ap

M
at

ch
in

g
T

im
e

[m
s]

(a)

0 100 200
0

200

400

0

0.02

0.04

Detected Pole Clusters

Pr
ob

ab
iil

ity

(b)

0 1,000 2,000
0

200

400

0

0.02

0.04

0.06

Transformation Candidates

M
ap

M
at

ch
in

g
T

im
e

[m
s]

(c)

0 0.2 0.4 0.6 0.8 1
0

200

400

0

0.05

0.1

·107Comparisons

Pr
ob

ab
ili

ty

99 % of bin data
Mean
Outlier

(d)

Figure 6.20: Correlation between the computation time required for our map matching (Al-
gorithm 3) and its input data in our urban dataset. All plots illustrate the correlation between
the input data on the x-axis and the required computation time for our map matching on the
left y-axis. At the same time, the plots illustrate the empirical probability distribution on the
right y-axis, which allows to infer the most relevant sections on the x-axis. The higher the
probability, the more meaningful is the corresponding section on the x-axis. For all plots, we
discretized the x-axis into small bins and computed the mean, which is shown in blue. The
vertical gray lines denote the regions covering 99 % of the y values of each bin. All points
outside 99 % of each bin are denoted as outliers in red. (a) Relation between the number of
considered map poles and map matching time. (b) Relation between the considered poles from
our local association step and map matching time. (c) Relation between transformation can-
didates assessed in each algorithm cycle and map matching time. (d) Number of comparisons
between map landmarks and detected landmarks in one algorithm cycle. For clarity, the plot
omits outliers requiring over 10 million comparisons.

141

6.2. Localization on a third-party map

0 2,000 4,000 6,000
0

20

40

60

80

100

0

0.01

0.02

0.03

Constraints in Graph

O
pt

im
iz

at
io

n
T

im
e

[m
s]

99 % of bin data
Mean

(a)

0 50 100
0

20

40

60

80

100

0

0.01

0.02

Pole Vertices in Graph

Pr
ob

ab
iil

ity

(b)

Figure 6.21: (a) Optimization Time and its dependency on the number of constraints in the
graph. The number of constraints is the sum of odometry-, map-, polyline-, and pole measure-
ment constraints in the sliding window graph of one algorithm cycle. In our case, the latter
ones produce off-diagonal elements in the system matrix H, which increases the required op-
timization time. (b) Optimization Time and its dependency on the number of pole vertices
in the graph. In our urban dataset, the number of pole vertices in the graph is equal to the
number of map landmarks in the graph since we only include map matched landmarks in the
graph. We discretized the x-axis of both plots into small bins, which we use for computing the
y-axis mean values, shown in blue. The vertical gray lines denote the regions covering 99 % of
the y values of each bin.

142

Chapter 6. Experimental Evaluation

6.3 Particle filter vs. sliding window graphs
Following our argumentative comparison in Chapter 4.7, we experimentally com-
pare the state estimation with particle filters against our graph-based sliding win-
dow approach in this section. We compare the key aspects of both approaches
and support our claim that graph-based sliding window localization is favorable
in terms of accuracy. Additionally, we evaluate the adaptive behavior of both
approaches in terms of computational resources using the proportional-integral-
derivative (PID) controller presented by Merfels and Stachniss (2017). Lastly, we
demonstrate the beneficial capability of estimating old poses with our graph-based
sliding window approach. The particle filter used in this comparison is described
by Stess (2017) and briefly also by Wilbers et al. (2019b). In the scope of our
experiments, the particle filter operates on the same input data and third-party
map as our graph-based approach, which enables us to compare both approaches
directly.

0 500 1000 1500 2000 2500
0

500

X [m]

Y
[m

]

Figure 6.22: Map and trajectory of our real-world dataset recorded in Fallersleben. All pole-
like landmarks in the test area are denoted in blue. The 16 km trajectory is denoted in red. It
contains velocities between 0 km/h and 70 km/h and covers typical urban scenarios like heavy
and light traffic, different street types, and different junction sizes.

The prototype vehicle used in this section is an earlier version of the e-Golf
used in our Hamburg dataset with a similar sensor setup. A key difference is that
the vehicle used in this experiment is equipped with Velodyne VLP-16 LiDAR
sensors instead of VLP-32, which nearly halves the landmark detection range.
Another difference is that we exclusively consider poles as landmarks and do
not incorporate any other landmark types. The reference system used in this
experiment is an Applanix LV 520 system without a wheel tick encoder, which,
due to nearly perfect open sky conditions, operated flawlessly in its most precise
positioning modes. The reference system is not used by our localization approach
and only serves as a comparison. Our dataset for this experiment was recorded in

143

6.3. Particle filter vs. sliding window graphs

January 2018 in the district Fallersleben of Wolfsburg. The 16 km long trajectory
and the third-party pole map is illustrated in Figure 6.22. We conduct a set
of experiments in which we vary the size of the state vector. In the case of
the particle filter, we directly control the state complexity of the estimation by
setting the number of particles. In contrast, the state vector size of our graph-
based localization is only partly influenced by controlling the number of poses.
Additionally, we evaluate adaptively controlling the state vector size using the
PID controller described by Merfels and Stachniss (2017). The target frequency
of both approaches is set to 20 Hz. The poses inside of our sliding window graph
are 20 ms apart. Within the experiments presented in this section, the lateral and
longitudinal position variance of GNSS pose constraints included in the graph is
set to a static value of 10 m2. We start by comparing the runtime behavior and
accuracy of both approaches. Afterward, we demonstrate the accuracy benefit of
estimating lagged poses with our approach.

6.3.1 Runtime behavior
This experiment is designed to show the relation between computation time and
state complexity of the estimation. We compare the runtime behavior of a particle
filter and our sliding window approach. In the case of particle filters, the complex-
ity of the state estimation is controlled by the number of particles. In our case,
we indirectly control the state vector size by setting the number of poses within a
graph. In addition, we consider a PID controller variant that adaptively controls
the state complexity of the estimation. Figure 6.23 demonstrates the results of
our experiment. The figure shows that the PID controller manages to satisfy tim-
ing requirements by adjusting the number of particles and the number of poses in
the graph. In both cases, the PID approach successfully provides pose estimates
around our set target frequency of 20 Hz. In more detail, we show in Figure 6.24
that the required computation time depends on the number of constraints within
the sliding window. Our insight is that the number of poses in a sliding window
only implicitly influences the required computation time. More important than
the number of poses is the number of constraints, which is influenced by the
number of detected and map landmarks, as we have discussed in Section 6.2.5.
The PID controller exploits this fact without the implicit knowledge of landmarks
and successfully provides pose estimates with the set target frequency. Our res-
ults, illustrated in Figure 6.24, show that using a fixed sliding window with 500
poses is suitable for the above-described vehicle setup and a target frequency of
20 Hz. Likewise, Figure 6.23a shows that roughly 1000 particles are suitable for
the particle filter when using a fixed number of particles. In sum, we compared
the runtime behavior of both approaches and showed that controlling the sliding
window size is a suitable option for limiting the runtime.

144

Chapter 6. Experimental Evaluation

0 2,000 4,000 6,000
0

50

100

150

200

Number of particles

C
om

pu
ta

tio
n

tim
e

[m
s]

PID controller
mean of fixed

(a)

0 500 1,000 1,500 2,000
0

50

100

150

200

Number of poses

C
om

pu
ta

tio
n

tim
e

[m
s]

PID controller
mean of fixed

(b)

Figure 6.23: Relation between computation time and control variable. The green line in each
plot marks the target output frequency of 20 Hz, which corresponds to the maximum compu-
tation time of 50 ms. The average computation time for each experiment is denoted as a red
cross, with the single standard deviation in black lines. (a) For the particle filter, we control
the number of particles. (b) For graph-based localization, we control the number of poses.

0 2,000 4,000 6,000 8,000 10,000
0

50

100

150

200

Constraints

C
om

pu
ta

tio
n

tim
e

[m
s]

poses: 2000
poses: 500
PID

0 1,000 2,000 3,000 4,000 5,000 6,000
0

50

100

150

200

Size of state vector S

C
om

pu
ta

tio
n

T
im

e
[m

s]

100 800 1500
200 900 1600
300 1000 1700
400 1100 1800
500 1200 1900
600 1300 2000
700 1400 PID

Figure 6.24: Influencing factors on the computation time of our graph-based sliding window
approach in our Fallersleben dataset. The green line in both plots marks the target output
frequency of 20 Hz, which corresponds to the maximum computation time of 50 ms. Top:
Relation between computation time and the number of constraints included in a sliding window
graph. The number of edges represents the number of measurements incorporated in the graph.
Bottom: Relation between computation time and the size of the state vector x of a sliding
window graph. In this experiment, the state vector’s size is S = 3N + 2Mp, with N being the
number of vehicle poses and Mp being the number of pole landmarks in the graph.

145

6.3. Particle filter vs. sliding window graphs

6.3.2 Accuracy
To compare the accuracy of our approach to localization to particle filters, we con-
ducted a set of experiments with varying state complexities. In our experiments,
both approaches operate on the same measurement data and map such that
their only difference is the state estimation technique. Considering our above-
mentioned vehicle setup and runtime analysis, a fixed number of 1000 particles
and a sliding window with 500 poses are suitable values allowing online localiz-
ation with 20 Hz. In this case, the achieved average Euclidean errors are 0.24 m
for the particle filter and outperforming 0.17 m for our approach. We found that
increasing the state complexity does not necessarily imply increased accuracy
in both cases. The particle filter’s accuracy starts to stagnate at roughly 1000
particles, while our sliding window approach does not benefit from more than
1000 poses in the sliding window. In the case of particle filters, increasing the
number of particles corresponds to a more fine-grained approximation of the un-
derlying probability distribution, which not necessarily means that the vehicle
pose is estimated more accurately. In our case, increasing the number of slid-
ing window poses means that our approach takes a longer time span of the past
into account for estimating the current vehicle pose. In this sense, our inter-
pretation is that the most recent past is more crucial for estimating the vehicle
pose than the more distant past. Using the PID controller, which variably ad-
justs the state complexity depending on the runtime of previous algorithm cycles,
improves the accuracy of our approach to 0.15 m using, on average, 1104 poses
while still running at 20 Hz. In the particle filter case, the PID controller variant
yields 0.24 m with, on average, 2160 particles. Our experiment highlights that
the PID controller successfully exploits the available computation time, which
can beneficially influence the accuracy under given runtime constraints. In both
localization approaches, it is necessary to maintain at least a minimum number
of states. Using only 250 particles yields an average Euclidean error of 0.27 m,
whereas our graph-based approach yields 0.22 m with 100 poses. Both variants
are less accurate than the experiments with the greater state complexity of the
estimation. We present the discussed results of our experiment in more detail
in Table 6.3. Furthermore, we compare our results based on their empirical cu-
mulative distribution function (CDF) in Figure 6.25. The figure shows that our
graph-based localization is superior to the particle filter in terms of accuracy as
the CDF accumulates faster.

In sum, our experiment shows that our graph-based sliding window approach
localization yields more accurate results and is thus favorable over particle filters
for vehicle localization.

146

Chapter 6. Experimental Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Euclidean error [m]

Em
pi

ric
al

C
D

F

PID GBL
PID PF
GBL poses: 100
GBL poses: 2000
PF particles: 250
PF particles: 4000

Figure 6.25: Empirical CDF for a set of experiments, comparing particle filter (PF) and graph-
based localization (GBL). For clarity, we only illustrate an excerpt of our results. Table 6.3
provides further statistics on our results.

State complexity Euclidean longitudinal lateral heading
100 poses 0.22 m 0.14 m 0.14 m 0.49 deg
500 poses 0.17 m 0.12 m 0.10 m 0.39 deg

GBL 1000 poses 0.15 m 0.11 m 0.08 m 0.34 deg
2000 poses 0.15 m 0.11 m 0.08 m 0.34 deg
PID (avg.: 1104) 0.15 m 0.11 m 0.08 m 0.34 deg
250 particles 0.27 m 0.20 m 0.14 m 1.46 deg
1000 particles 0.24 m 0.18 m 0.12 m 1.41 deg

PF 2000 particles 0.24 m 0.18 m 0.10 m 1.38 deg
4000 particles 0.24 m 0.18 m 0.11 m 1.38 deg
PID (avg.: 2160) 0.24 m 0.18 m 0.12 m 1.42 deg

Table 6.3: Average Euclidean, longitudinal, lateral, and heading errors for different config-
urations of a particle filter and our graph-based approach during a 16 km urban drive in
Fallersleben. The used prototype vehicle is equipped with Velodyne VLP-16 LiDAR sensors.
For the PID experiments, we denote the average number of particles and poses in the graph in
brackets.

147

6.4. Implications of including low-cost GNSS

6.3.3 Estimating past poses
This experiment demonstrates the benefit of optimizing past poses in our graph-
based approach. In contrast to particle filters, re-estimating the trajectory within
the sliding window is part of every algorithm cycle within our graph-based optim-
ization approach. Consequently, over time the estimates of past vehicles poses
are affected by more recent measurements, which improves their accuracy. Fig-
ure 6.26 shows box plots for the Euclidean errors within the trajectory of a sliding
window graph. The accuracy in the middle of the graph is better than at the
head and tail. The reason for this effect is that the poses in the middle of the
graph are more constrained than the poses at the ends of the graph. The effect
at the tail of the graph is caused by using truncation instead of marginalization.
In sum, our experiment highlights that estimated poses in the past are more ac-
curate than the most recent vehicle pose. While automated driving applications
usually require the most recent pose estimate, using more accurate but lagged
poses can be beneficial for non-timing-critical applications.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

Lag/age [s]

Eu
cl

id
ea

n
di

st
an

ce
[m

]

Figure 6.26: Accuracy within the trajectory of a graph. A lag of 0 s represents the most recent
pose at the head of the graph, whereas a lag of 10 s denotes the oldest pose at the tail of the
graph. This plot corresponds to a graph with 500 poses that are 20 ms apart and is based on
our Fallersleben dataset. The figure shows that the most accurate poses are in the middle of
the graph.

6.4 Implications of including low-cost GNSS
This experiment is designed to show the effect of including the pose estimates
of a standard-consumer low-cost GNSS into our graph-based localization. Addi-
tionally, we demonstrate the capability of our approach to work in GNSS-denied
regions, for which we only use GNSS once during initialization in one of our exper-
iments. This corresponds to a complete GNSS outage after the initial startup. We
compare in Table 6.4 the performance in terms of mean Euclidean error, average
lateral error, and average longitudinal error of three different system variations.

148

Chapter 6. Experimental Evaluation

Our experiment is based on our Fallersleben dataset, which does not contain any
GNSS outage, which would distort our results. To compute the errors, we register
the ground truth trajectory of our reference system to the timestamps of the pose
estimates and afterward compute the mean Euclidean distance vector for each
estimate. Our experiments show that including GNSS measurements worsens the
accuracy of our graph-based sliding window approach. This effect is less distinct
the higher the GNSS variances are. In relation to graph-based optimization, a
higher GNSS variance can be interpreted as a down-weighting of the GNSS data
compared to the other inputs. Given that our approach works best without GNSS
at all, this explains our observation. We attribute the negative effect of including
GNSS pose estimates to the Kalman-filter based preprocessing inside the GNSS-
receiver. Usually, this preprocessing handles multipath effects insufficiently. As a
result, the GNSS-based estimates are significantly biased. Naively incorporating
this biased data into our sliding window graph results in biased pose estimates
and, therefore, less accuracy.

Although we showed that our system is able to operate without GNSS over
an extended period of time, we prefer in practice to still include it. Despite the
negative effect on accuracy, GNSS is still useful in scenarios without a map at all
and provides a valuable option for recovery. The issue of including biased data
into graph-based optimization approaches is discussed in more detail by Noack
et al. (2015). Another method that corrects biased GNSS data in a preprocessing
step is presented by Merfels et al. (2016). An approach that directly incorporates
GNSS pseudoranges, instead of already preprocessed pose estimates, into graph-
based optimization has been presented by Sünderhauf (2012). While all of these
methods, would potentially alleviate the bias issue, we found that simply scaling
up the variance to a high value already is sufficient for our use case. As we
have discussed, this down-weights the influence of the GNSS pose estimates on
the optimization result. Beneficially, the constraints are still included in the
graph such that it is still globally constrained and corrected in areas without
any map data but practically ignored if other map data is included in the graph.
Comparing the accuracy results of our Hamburg dataset with an average mean
error of 0.11 m, in which we chose σ = [1000, 1000, 1000], with the 0.10 m error
achieved with our approach without GNSS (see Table 6.4) suggests that simply
scaling up the GNSS variance is a viable option that alleviates the negative impact
on accuracy.

In sum, our experiment highlights that it is crucial to consider the potential
bias inherent in GNSS pose estimates when including them in our graph-based
sliding window approach. We showed that scaling the covariance is a suitable
option in practice and emphasized that our approach also works if GNSS is only
used once for global initialization.

149

6.5. Impact of our data association strategy

error type GNSS GBL + GNSS (σ1) GBL + GNSS (σ2) GBL + GNSS init
lateral 0.95 m 0.15 m 0.10 m 0.08 m

longitudinal 1.00 m 0.12 m 0.12 m 0.06 m
heading 5.54 deg 0.42 deg 0.39 deg 0.25 deg

Euclidean 1.53 m 0.22 m 0.17 m 0.10 m

Table 6.4: Absolute mean errors in our 16 km long urban drive in Fallersleben. The table
shows the errors of our graph-based localization approach in three variants. We choose the
longitudinal, lateral, and heading static variances for all GNSS constraints as σ1 = [2, 1.5, 6],
comparable to the receivers specification, for our first variant. In our second variant we set
σ2 = [100, 100, 600]. Our third variant (GBL) only uses GNSS once for initialization and
afterward completely neglects GNSS information for the whole test drive, which yields the
lowest errors across all variants.

6.5 Impact of our data association strategy
This experiment demonstrates the ability of our system to revise associations
between detected and map landmarks. We explained our concept for revising
associations in Chapter 4.4.7, where we presented an example of such a revision
in Figure 4.22. During our 16 km Fallersleben test drive, the map associations
were revised by our system 35 times. In an additional experiment, the ability
to revise associations was turned off. The mean Euclidean error increased from
10.3 cm to 20.1 cm. This highlights the need for subsequent verification of previous
map associations. Therefore, our strategy for revising associations inside the
graph construction based on subsequent additional information is beneficial for
our system’s performance.

6.6 Delayed map refinements
The main focus of the following experiments is the ability of our localization
approach to propose map refinements. The term delayed map refinements em-
phasizes that we do not directly apply the map refinements but first transmit
them to a back-end service for validation, as we have presented in Chapter 5.
This includes adding new landmarks and changing existing ones. Since the back-
end validation is not part of this thesis, we focus our evaluation on the map
refinements computed within the vehicle. We begin by evaluating our sparsifica-
tion scheme for marginalization in sliding window graphs, which we presented in
Chapter 5.3. It is closely related to the ability of our approach to add previously
unknown landmarks to a map. This part of the evaluation reflects our previously
reported results (Wilbers et al., 2019c). As an addition, we demonstrate the
capability of our approach to refine existing map landmarks in Section 6.6.5.

Our evaluation of sparse global priors is based on simulated data, which allows

150

Chapter 6. Experimental Evaluation

us to use error-free ground truth data as reference, and real-world data collected
with our e-Golf prototype vehicle. The datasets are illustrated in Figure 6.28 and
Figure 6.27. In the scope of this evaluation, we only consider pole-like landmarks.
If not mentioned otherwise, we randomly delete 20% of the map landmarks in our
datasets, which are then re-estimated with our approach. These re-estimations
are the basis for our evaluation. In the context of our map refinement architecture,
the estimated landmarks are additions to the map. We support our claim that
our approach is able to improve existing map landmarks in a separate experiment
in Section 6.6.5.

6.6.1 Approximating marginalization with sparse global
priors

The first experiment on delayed map refinements is designed to evaluate if we
are able to approximate marginalization with our sparse global prior distribution.
Therefore, we calculate the Euclidean distance between the estimated landmark
positions that we add to the map and the corresponding full graph solution based
on simulated data. We compare our sparse approach Equation (5.11) to dense
marginalization as in Equation (5.6), and no marginalization at all. We use the
latter as a baseline and normalize all errors with its mean. In Section 6.6.3, we
investigate the covariance estimates separately and here only consider the estim-
ated mean positions. Table 6.5 highlights the benefits of dense marginalization
with a local linearization point, as described by Eckenhoff et al. (2016), with
53.4% of the errors compared to no marginalization. Its approximation with our
sparse global prior approach performs with 48.2% even slightly better. The sparse
variant performs better than the dense one consistently in all experiments shown
in Table 6.5 regardless of the chosen linearization point. Besides numerical errors,
we explain this positive effect by linearization errors, which for our sliding win-
dow setting have a stronger impact in the dense case. Our approach is explicitly
designed to neglect dependencies between states. In contrast, in the dense case,
inaccurate dependencies induced by marginalization accumulate. The comparable
results show that we are successfully able to approximate marginalization with
sparse global priors. The advantage of our approach over dense marginalization is
that it prevents fill-in in the system matrix H, which would negatively influence
the required computation time during optimization. Moreover, our approach of
decomposing dense marginalization into sparse priors has the advantage that it
eases the data handling within the sliding window graph. Each sparse prior can
not only be individually inspected but also individually robustified by applying
robust cost functions. Overall, our experiment supports our claim that our sparse
global prior approach approximates dense marginalization. We showed that our

151

6.6. Delayed map refinements

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

X [km]

Y
[k

m
]

map landmarks
trajectory
estimated landmarks
removed landmarks

Figure 6.27: Map and trajectory of our real-world dataset. We randomly remove 20% of the
landmarks from the map to evaluate our method. The map was recorded several months before
the actual test drive. The trajectory and pole-like landmark measurements were recorded with
our e-Golf prototype vehicle. The figure illustrates the estimated landmarks relevant to our
evaluation in green. These are a subset of the removed landmarks.

0 10 20 30 40 50 60 70 80 90 100 110 120
0

20

40

60

80

X [m]

Y
[m

]

Figure 6.28: Map and trajectory of our simulated dataset. All blue landmarks are used for
localization. The red crosses represent the ground truth for the estimated landmark positions
in green. The notation is similar to Figure 6.27. The figure provides an impression of our
simulated dataset.

152

Chapter 6. Experimental Evaluation

no
marg

.
den

se
spa

rse
den

se
spa

rse
den

se
spa

rse
0

1

2

3

N
or

m
al

iz
ed

er
ro

r global linearization
local linearization
ours

Figure 6.29: Boxplots of the normalized Euclidean distances between sliding window estimates
compared to the full graph solution based on our simulated dataset.

global linearization local linearization ours
dense 73.5 % 53.4 % 46.7 %

sparse 61.1 % 50.9 % 48.2 %

Table 6.5: Normalized average errors expressed as percentages. The baseline is the average
error without marginalization (100%), such that lower is better in this table. The results are
based on our simulated dataset.

approach yields comparable results without inducing fill-in in the system matrix
H during optimization.

6.6.2 Global vs. local linearization vs. our approach
Our second experiment on map refinements supports the claim that our approach
of utilizing global linearization points yields similar results compared to using
local linearization, which requires optimizing the marginalization blanket. We
compare the use of global and local linearization points to our method of utiliz-
ing global linearization points and including a gradient term, as shown in Equa-
tion (5.10). The comparison for the dense and sparse case is shown in Figure 6.29.
It can be seen that using naive global linearization points still performs better
than no marginalization but yields the worst performance of all marginalization
approaches. The figure shows that our approach performs even slightly better
than local linearization in the sparse case. We contribute this effect to our sparsi-
fication scheme. We first approximate marginalization with a sparse distribution
and afterward include a gradient term in our distribution and not the other way
around. By doing so, we avoid the effect of inaccurate dependencies induced by
marginalization between states on the gradient. Additionally, our experiment
suggests that even in the dense case, it is beneficial to use the global linearization
point and consider the gradient term, as we suggest in Section 5.3.5, rather than

153

6.6. Delayed map refinements

using the local linearization point. Although this might not generalize to arbit-
rary graphs, it is beneficial for our sliding window case. Overall, the comparison
shows that our approach provides comparable results to local linearization and
successfully utilizes global linearization points. Compared to local linearization,
our approach does not require an additional optimization step and is therefore
preferable.

6.6.3 Conservative estimates

The third experiment in this sequence supports our claim that our approach
estimates conservative landmark positions. Based on our simulated dataset we
calculate the Mahalanobis distance between the estimated landmark with its cov-
ariance and the artificially removed landmark position from the map. Figure 6.30
shows the result for the different marginalization and sparsification variants. If
the given percentile levels from a specific experiment are above the given per-
centile boundaries, the covariances are overconfident (too small). Vice versa, if
the levels are below the boundaries, the variances are underconfident (too large).
In our case, it is favorable to underestimate the covariances to be more robust
against outliers. The figure shows that simply using the global linearization point
without considering the gradient term, as described in Section 5.3.5, is suboptimal
and produces overconfident results. In comparison, local linearization and our ap-
proach produce underconfident results. This is preferable within our use case of
estimating landmark positions as map refinements for back-end validation.

6.6.4 Sparsity pattern and accuracy of landmark additions

Finally, we show that our approach has exactly the same sparsity pattern com-
pared to no marginalization but provides more accurate estimates. The results of
this experiment are based on the Euclidean distance between the estimated land-
mark positions and the deleted ones from the map. Figure 6.31 compares our
approach to dense marginalization and shows that our system matrix H achieves
a better sparsity pattern. It is by design exactly similar to using no marginaliz-
ation. Compared to dense marginalization, our approach has the advantage that
the sparsity pattern of the system matrix H does not suffer from fill-in over time.
Therefore, the system matrix H remains sparse, which is beneficial for the re-
quired computation time during optimization. Together with Figure 6.32, which
shows that our approach achieves better accuracy than using no marginalization
and is comparable to dense marginalization, the experiment supports our claim.

154

Chapter 6. Experimental Evaluation

no
marg

.

den
se

(a)

spa
rse

(a)

den
se

(b)

spa
rse

(b)

den
se

(c)

spa
rse

(c)
0

0.5

1

1.5

2

2.5

3

M
ah

al
an

ob
is

di
st

an
ce

11.8% Percentile
39.4% Percentile
86.5% Percentile

Figure 6.30: The figure shows that the estimated covariances fit the errors between estimated
landmark positions and artificially removed landmarks of our map based on our simulated data-
set. The plot compares (a) global linearization, (b) local linearization, (c) our approach. The
figure shows that global linearization produces overconfident results, while local linearization
and our approach yield underconfident, i.e., conservative, estimates. The latter is preferable
for our map refinement use case. The results shown in this figure relate to the normalized Euc-
lidean distances shown in Figure 6.29 by illustrating how reliable the corresponding covariance
estimates are.

0 50 100 150 200 250 300 350 400 450 500 550
0

500

1,000

1,500

time steps

de
ns

ity

no marg.
dense
ours

Figure 6.31: The figure shows the sparsity patterns of dense marginalization, no marginalization,
and our approach, based on our real-world dataset. The density value shown in the plot is the
number of non zero block-diagonal entries in H for each time step. Our sparse approximation
has the exact same sparsity pattern as without marginalization.

155

6.6. Delayed map refinements

(a) (b) (c)
0

0.1

0.2

0.3

0.4

0.5

er
ro

r
[m

]

(a) (b) (c)
0

0.5

1

1.5

2

2.5

3

M
ah

al
an

ob
is

di
st

an
ce

Figure 6.32: Results for our real-world data set. The plots compare (a) no marginalization, (b)
dense marginalization with local linearization points, and (c) our method with sparse global
priors. The plots show that our approach provides similar performance to dense marginalization.
Considering that our approach has a favorable sparsity pattern, it is clear that our approach is
superior to standard dense marginalization.

6.6.5 Modifying map landmarks

In this experiment, we demonstrate the capability of our sliding window ap-
proach to refine existing map landmarks. Instead of directly including the com-
puted refinements into our map, we store the estimated landmark positions for
post-processing as described in Chapter 5. Here, we investigate the accuracy
of the estimated landmark positions based on a dataset, which we illustrate in
Figure 6.34 and explain in the following.

For the purpose of this experiment, we add artificial noise to the position
of each individual landmark stored in the map. We choose to add independent
Gaussian noise N (µ = 0, σ = 0.2) to the Easting and Northing coordinate of
each landmark. Figure 6.34a illustrates the noisy map with its error to the refer-
ence map. We use the artificially noisy map as the input map for our graph-based
sliding window localization. Our approach refines the landmark positions during
localization, which we store and compare to the original reference position before
adding noise. To ensure that errors in the original map do not distort the res-
ults, we perform this experiment based on partly simulated data. Therefore, we
take a real trajectory from one of our drives in our Hamburg dataset and sample
landmark measurements with Gaussian noise N (µ = 0, σ = 0.1) around the true
landmark position based on the vehicle pose and the original reference map. To
model more realistic measurements, we set the probability that a landmark is
measured at a specific timestamp to 10 % and the maximum detection range to
50 m. Our experiment shows that our approach improves the noisy map with an
average Euclidean error of 24.7 cm to a refined version that only has an average
Euclidean error of 12.3 cm. In more detail, Figure 6.33 shows the boxplots and

156

Chapter 6. Experimental Evaluation

histograms for the error distributions of the initial noisy map and the refined
map. Moreover, Figure 6.34b shows the refined map landmarks along the driven
trajectory colored by the remaining error to the reference map. In summary, the
experiment supports our claim that our approach is able to improve existing map
landmarks.

initial map refined map
0

0.2

0.4

0.6

I

Er
ro

r
to

re
fe

re
nc

e
m

ap
[m

]

(a) Boxplots

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

Error to reference map [m]

pr
ob

ab
ili

ty

initial map
refined map

(b) Histograms

Figure 6.33: Error statistics of refined map landmark positions. The figures show that our
sliding window map refinement approach successfully improves the accuracy of an initial noisy
map from an average Euclidean error of 24.7 cm to 12.3 cm.

157

6.6. Delayed map refinements

0 1 2 3
0

1

2

3

X [km]

Y
[k

m
]

0.2

0.4

0.6

0.8

Er
ro

r
to

re
fe

re
nc

e
m

ap
[m

]

(a) artifically noisy map

0 1 2 3
0

1

2

3

X [km]

Y
[k

m
]

trajectory

0.2

0.4

0.6

0.8
Er

ro
r

to
re

fe
re

nc
e

m
ap

[m
]

(b) refined map after one pass

Figure 6.34: Results for our experimental evaluation to demonstrate the capability of our
approach to refine existing map landmarks. We here illustrate the map landmarks colored
with the error to the reference map and provide the statistics of our experiment separately
in Figure 6.33. (a) Artificially noisy map that we produced by adding noise to the reference
map. We use the shown map in this experiment as an input to our graph-based sliding window
approach. (b) The figure illustrates the refined map landmarks along the driven trajectory
colored with the error to the reference map. Our approach clearly improves the map. Landmarks
outside the detection range remain unchanged and are colored in gray.

158

Chapter 6. Experimental Evaluation

6.7 Summary of the evaluations
In this chapter, we experimentally evaluated our graph-based localization ap-
proach with respect to pure localization and map refinement. We started by
introducing our urban dataset recorded in Hamburg covering 319 km driven dis-
tance and provided an impression of the wide variety of included sceneries. To
set our results into perspective, we presented a detailed analysis of our wheel-
tick and IMU-based odometry module and compared it to a visual odometry
approach. We showed that assuming a near drift-free odometry during local
association is a valid assumption of our sliding window approach that holds in
practice. Our results suggest that our approach is transferable to sensor setups
relying on visual odometry instead of wheel-tick and IMU sensors. Afterward,
we investigated the localization performance of our approach w.r.t. urban driving
using a general-purpose third-party map. Yielding an average Euclidean error of
0.11 m and an availability of 99.97 % w.r.t. a 0.5 m average Euclidean error bound-
ary, our experiments support our claim that our presented approach is applicable
for urban automated driving. Compared to GNSS-based systems, our approach
does not suffer from GNSS outages in, e.g., urban canyons and reliably works in
urban scenarios. In relation to computational tractability, we provided a detailed
runtime analysis of the different steps in our algorithm. Our approach requires,
on average, 54 ms for an algorithm cycle and thus is applicable for online localiz-
ation. Furthermore, we demonstrated that sliding window graphs are favorable
over particle filters in terms of accuracy. We compared their runtime behavior
and demonstrated the accuracy benefits of estimating past poses. Additionally,
we experimentally investigated the effect of including pose estimates in our graph
based on a low-cost GNSS receiver and found that including biased GNSS data
negatively impacts the accuracy of our approach. We demonstrated that scal-
ing the covariances of GNSS constraints is viable in practice for mitigating the
negative effects and showed that our approach even works best if GNSS is only
used once for global initialization. We separately conducted a set of experiments
evaluating our map refinement approach. Our evaluation supports our claim that
our sparse global prior approach approximates dense marginalization while using
global linearization points. We showed that our approach maintains the same
sparsity pattern as without marginalization but at the same time improves the
accuracy of estimated landmark positions. Besides, we demonstrated that our
approach contributes to improving the accuracy of landmarks in existing maps.

In sum, our experimental evaluation supports our claim that our presen-
ted graph-based sliding window approach using third-party maps is suitable for
vehicle localization and map refinement in urban areas and therefore enables
automated driving applications.

159

Chapter 7

Conclusion

Automated driving functions are one of the key technologies in in-
creasing road safety and mobility. In this thesis, we presented an ef-
fective and applicable approach for localization of automated vehicles.
Knowing the precise position and orientation of a vehicle within a map

at any point in time allows enriching perception, scene understanding, and plan-
ning tasks with map data. The map data contains information about the vehicle’s
environment, which the vehicle might not be able to sense with its sensors. For
example, large trucks surrounding our vehicle or challenging weather conditions
might restrict the visibility of traffic signs, such that the vehicle needs to rely on
localization to infer the traffic rules from the map.

Nowadays, satellite-based localization techniques, like GPS, have been im-
proved up to centimeter-level accuracy by incorporating real-time error correction
data. These approaches work well under open sky conditions with direct line-of-
sight satellite visibility and are commonly used in several applications where this
constraint holds or when humans supervise the automated system. A major dis-
advantage is that autonomous systems suffer in situations with limited satellite
reception, which especially occur in urban environments.

In this thesis, we presented a localization framework that relies on fusing
landmark-, odometry-, GNSS-, and map data for estimating highly precise vehicle
poses and map refinements. Compared to GNSS-based localization, our approach
provides accurate and reliable pose estimates, even in challenging urban environ-
ments with limited satellite reception. In fact, our approach only requires GNSS
for initialization and does not need it otherwise. We investigated the challenge
of incorporating general-purpose third-party map data, which we consider an
important aspect for scaling autonomous driving applications to mass markets.
Our maps contain static 2D landmarks like poles, building facades, and road
markings, which consume much less memory than, e.g., dense LiDAR maps. We
extended our approach to compute landmark map refinements within the vehicle

161

7.1. Short summary of key contributions

to transmit them to a back-end service. Compared to transmitting raw data,
our approach conceptually requires much fewer data to be transmitted, which is
beneficial for over-the-air updates.

We extensively tested our localization approach under real-world conditions,
where we, among others, used trajectory data computed on-board within a pro-
totype vehicle for our evaluation. Our experiments consider real-world challenges
like extended GNSS outages, stop-and-go traffic, heavy and light traffic, as well
as various environmental conditions. We showed that our data association ap-
proach is applicable for incorporating landmarks from various sensors and can be
used with general-purpose third-party maps. Also, we provided evidence that our
map refinement approach is applicable for generating accurate and conservative
map update hypothesis. Overall, our experiments suggest that the proposed ap-
proach is applicable to urban automated driving. It is currently used in several
automated prototype vehicles, including trucks and the presented e-Golf model.

7.1 Short summary of key contributions
Our main contribution presented in this thesis is the design and realization of a
graph-based sliding window localization approach for automated driving applic-
ations. We investigated five different aspects in this work.

First, we proposed a localization architecture for graph-based optimization
that splits data association into the parts local association, map matching, and
temporal association smoothing. In brief, we first locally associate individual land-
mark detections to each other to identify measurements that belong to the same
landmark. Afterward, we compute the best transformation between the local map
that contains all identified landmarks and the global third-party map. While we
compute the first two steps based on the data within the current sliding window
of each algorithm cycle, we aggregate the found map matches over all algorithm
cycles to infer the overall best matches for our optimization graph. All parts
combined allow us to revise map associations and perform delayed association
such that the detected landmarks are reliably matched to the map. We include
the identified map associations, landmark-, odometry-, and GNSS measurements
in a sliding window graph over vehicle poses to limit the state vector size and the
number of measurements that we consider during optimization. In return, our
approach is computationally tractable for online localization. We analyzed the
properties of our approach and provided an in-depth evaluation.

Second, we contributed to utilizing general-purpose landmark maps for local-
ization. These are typically created by a third-party distributor and not tailored
towards a specific sensor setup. In return, the landmarks stored in the map
and the landmarks that a vehicle can detect may only partially overlay, which

162

Chapter 7. Conclusion

we especially take into account in our data association framework. We showed
how to derive and integrate the individual map landmarks as priors in our factor
graph approach. Our approach is beneficial for using landmark measurements
from various sensors for localization on a single general-purpose landmark map.
It reduces the effort for deploying our approach on vehicles with different sensors
that still use the same general-purpose map.

Third, we contributed to graph-based sliding window optimization by introdu-
cing a novel sparsification scheme that limits the information loss when removing
measurements from the sliding window. We derived novel sparse global prior that
approximate dense marginalization without the drawback of inducing a fill-in in
the optimization. Our approach approximates the removed information in indi-
vidual priors for states such that it has the exact same sparsity pattern as the
problem without marginalization. In addition, we proposed how to utilize global
linearization points instead of local ones.

Fourth, we presented a landmark map refinement scheme that uses our localiz-
ation architecture and sparse global prior approach. We showed how our approach
contributes to estimating accurate and conservative landmark positions for previ-
ously unmapped and changed landmarks. Thereby, our focus is on computing the
landmark positions as update hypothesis that we transmit to a back-end server.

Our fifth contribution is the comparison between including 2D point and
polyline-based landmarks in graph-based optimization techniques. We derived
the error functions and factors for both landmark types and discussed their in-
fluence on having a full rank equation system during graph optimization.

In sum, our graph-based sliding window approach contributes to vehicle loc-
alization for automated driving applications. In sum, our contributions yield a
graph-based sliding window approach for localization that is applicable for auto-
mated driving. Our approach provides highly accurate global pose estimates even
in challenging urban environments and is computationally tractable such that it
is fast and frequent enough for online localization. Moreover, our approach incor-
porates landmarks from multiple sensors, works with general-purpose third-party
landmark maps, and contributes to map refinement for reliable long-term local-
ization. Overall, our contributions lift the potential of graph-based localization
towards enabling autonomous driving applications on a large scale.

7.2 Limitations, outlook, and discussion
In this thesis, we presented our localization framework that incorporates land-
mark measurements in a generic way. While we consider this a substantial ad-
vantage for developing a flexible and transferable approach, it also comes with the
compromise of ignoring the error characteristics of underlying sensors. We require

163

7.2. Limitations, outlook, and discussion

that all landmark measurements are given in the vehicle reference frame (VRF)
and treat all landmark measurements in the same way. Concerning the error
characteristics, we see two improvements that could be made within our graph-
based localization approach. On the one side, graph constraints from different
sensor sources could be treated with different error and robust kernel functions,
which are customized depending on their natural error characteristics. On the
other side, incorporating sensor measurements directly in their natural coordinate
system is a promising room for improvement. For example, it is a challenge for
front-facing cameras to provide highly accurate depth estimation for objects such
that the transformation to VRF is error-prone. In this case, a tighter coupling
with error functions directly in the sensor reference frame is a promising way of
improving the impact of cameras in our system. Nevertheless, both suggestions
trade the flexibility of our system for, yet to be investigated, effects on accuracy
and robustness. Overall, whether a tighter sensor integration is required depends
on the use case and the vehicle’s sensor setup’s overall capabilities.

Another limitation of our current approach is the independent and identically
distributed Gaussian noise assumption for all incorporated measurements. While
this is common in literature, it often does not hold in practice. Especially land-
mark measurements that are heuristically computed within a black box detector
are not only likely to follow a different distribution, but subsequent measurements
might even depend on each other if the detector internally applies tracking. As
a consequence, the measurement fusion within our optimization is suboptimal.
Considering that optimal measurement fusion is a general challenge across vari-
ous domains, multiple approaches have already been developed that might adapt
to our use case. Given that the achieved accuracy of our presented approach
is already sufficient for automated driving, we expect that, at least in our use
case, the expected margin of improvement might be negligible. Nevertheless,
with other sensor setups, a more distinct noise modeling might be more crucial.

Within this thesis, we limited ourselves to computing 2D poses. Although
this is adequate for many automated driving applications, some require a 3D
pose with height, roll, and pitch estimation. For some of these use cases, it is
sufficient to directly complement the 2D pose with the missing 3D information
from, e.g., IMU and GNSS readings. Since computing 3D poses is standard in
closely related SLAM approaches, adjusting our graph-based approach to estim-
ating 3D poses should be straightforward. This could be done in several ways,
one of which would be only to adjust poses to be in 3D while continuing to use
2D landmarks. Besides extending the state vector, the main adaptation would be
to extend the involved error functions such that 3D measurements are properly
integrated. In all cases, we consider it important that the optimization problem
remains fully constrained such that no further assumptions need to be made dur-

164

Chapter 7. Conclusion

ing optimization. Compared to estimating 3D poses, our main advantage of only
considering 2D poses is the reduced computational effort, which is a crucial point
to take into account.

A promising concept that would enhance our approach is to consider more dis-
tinct semantic landmark types. In this thesis, we distinguished between landmark
measurements in a very generic way, mainly based on their physical geometry.
For example, we used cylindrical objects like lamp posts, tree stems, and reflector
posts and jointly considered them as poles in our approach. Considering sensors,
like LiDAR and radar, it is nowadays still a hard task to further classify detected
geometries into semantic objects only based on the sensor data. In the scope of
this thesis, we considered the provided landmark detectors as given and did not
further investigate improving them. Improvements in combining camera-based
object classification with, e.g., LiDAR point cloud data could ease inferring more
distinct landmark types with enhanced semantics. The more reliable semantic de-
tails are available, the easier is local association and map matching. We deem it
possible that incorporating more reliable semantic information is a major advant-
age for localization. Likewise, it would also improve map refinement as landmarks
would get more distinguishable on the back-end server.

Another aspect that could improve landmark and map-based localization ap-
proaches is to target an optimal detector and map overlap, i.e., the map only
contains elements that the vehicle can detect and detectors have a near-zero false
positive rate. In this thesis, we explicitly investigated using general-purpose maps
that are not tailored towards a specific sensor setup. However, long-term map
refinements could tailor the map content over time. It is an open question if a
back-end fusion of fleet data maintains the general-purpose characteristics of a
map. While this certainly depends on the size and variety of the fleet data, it
would also be interesting to investigate the challenges in automatically obtain-
ing subsets of a single general-purpose map that are tuned for specific sensor
setups. In relation, incorporating more semantic and distinct landmark types is
a beneficial factor for generating tailored maps.

Overall, our main conclusion is that the key concepts presented in this thesis
contribute to providing an accurate and reliable localization system for auto-
mated driving. Our graph-based sliding window localization approach was used
in various projects and proved to be useful in many different scenarios. In this
thesis, we tackled incorporating landmarks in a generic way such that our archi-
tecture easily integrates landmark measurements from different sensors. While
having a generic system is especially useful in the research and development con-
text, a more tailored integration might be required for series development. In
this sense, we favor incorporating landmarks in a generic way whenever possible
but likewise think that a deeper and more sensor-specific coupling is favorable

165

7.2. Limitations, outlook, and discussion

in other cases (e.g., no LiDAR, nor radar). We investigated using third-party
landmark maps for localization and showed that using general-purpose maps is
a technically feasible option. We think that our approach could be used for scal-
ing landmark-based localization to mass-market applications. Lastly, we pointed
out multiple aspects for further research and discussed improvements that would
help to lift our presented approach out of the research context towards series
production.

166

Chapter 7. Conclusion

167

Acronyms

ADAS advanced driver assistance system

CDF cumulative distribution function

DCS dynamic covariance scaling

DGPS Differential GPS

EgM EgoMaster

EKF Extended Kalman Filter

FN false negative

FP false positive

GLONASS Globalnaya Navigazionnaya Sputnikovaya Sistema, or Global Nav-
igation Satellite System

GNSS Global Navigation Satellite System

GPS Global Positioning System

ICP iterative closest point

IMU Inertial Measurement Unit

INS inertial navigation system

IRLS iterative reweighted least squares

LiDAR light detection and ranging

LM Levenberg–Marquardt

MAP maximum a posteriori

168

Acronyms

MM Max-Mixture

OSM OpenStreetMap

PID proportional-integral-derivative

QZSS Quasi-Zenith Satellite System

radar radio detection and ranging

RANSAC random sample consensus

RMS root mean square

RRR Realizing, Reversing, Recovering

RTK real-time kinematic

SC Switchable Constraints

SEIF Sparse Extended Information Filter

SLAM simultaneous localization and mapping

SRF sensor reference frame

SVM support vector machine

UTM Universal Transverse Mercator

V-LOAM Vision-lidar Odometry and Mapping

V2X vehicle-to-everything

VO visual odometry

VRF vehicle reference frame

vSLAM visual simultaneous localization and mapping

WGS World Geodetic System

WRF world reference frame

169

Bibliography

Michael Aeberhard, Sebastian Rauch, Mohammad Bahram, Georg Tanzmeister,
Julian Thomas, Yves Pilat, Florian Homm, Werner Huber, and Nico Kaem-
pchen. Experience, Results and Lessons Learned from Automated Driving on
Germany’s Highways. IEEE Intelligent Transportation Systems Magazine, 7
(1), 2015.

Gabriel Agamennoni, Paul Furgale, and Roland Siegwart. Self-tuning M-
estimators. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), 2015.

Pratik Agarwal. Robust Graph-Based Localization and Mapping. Ph.D. disserta-
tion, University of Freiburg, Germany, 2015.

Pratik Agarwal, Gian D. Tipaldi, Luciano Spinello, Cyrill Stachniss, and Wolfram
Burgard. Robust Map Optimization using Dynamic Covariance Scaling. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2013.

Pratik Agarwal, Wolfram Burgard, and Cyrill Stachniss. Survey of Geodetic
Mapping Methods: Geodetic Approaches to Mapping and the Relationship to
Graph-Based SLAM. IEEE Robotics & Automation Magazine, 21(3), 2014a.

Pratik Agarwal, Giorgio Grisetti, Gian D. Tipaldi, Luciano Spinello, Wolfram
Burgard, and Cyrill Stachniss. Experimental Analysis of Dynamic Covariance
Scaling for Robust Map Optimization Under Bad Initial Estimates. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2014b.

Pratik Agarwal, Wolfram Burgard, and Luciano Spinello. Metric Localization
using Google Street View. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2015.

Sameer Agarwal, Keir Mierle, and Others. Ceres Solver, 2020. URL http:
//ceres-solver.org.

170

http://ceres-solver.org
http://ceres-solver.org

Bibliography

Naoki Akai, Luis Y. Morales, Takuma Yamaguchi, Eijiro Takeuchi, Yuki Yoshi-
hara, Hiroyuki Okuda, Tatsuya Suzuki, and Yoshiki Ninomiya. Autonomous
Driving Based on Accurate Localization Using Multilayer LiDAR and Dead
Reckoning. In Proceedings of the IEEE International Conference on Intelligent
Transportation Systems (ITSC), 2017.

Applanix. Datasheet POS LV, 2019. URL https://www.applanix.com/
downloads/products/specs/POS-LV-Datasheet.pdf. Accessed August 27,
2019.

Michael Baer, Mohamed E. Bouzouraa, Christopher Demiral, Ulrich Hofmann,
Stefan Gies, and Klaus Diepold. EgoMaster: A central ego motion estimation
for driver assist systems. In Proceedings of the IEEE International Conference
on Control and Automation (ICCA), 2009.

Tim Bailey and Hugh Durrant-Whyte. Simultaneous Localisation and Mapping
(SLAM): Part II. IEEE Robotics & Automation Magazine, 13(3), 2006.

Ian Baldwin and Paul Newman. Laser-only road-vehicle localization with dual
2D push-broom LIDARS and 3D priors. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2012.

Jonathan T. Barron. A General and Adaptive Robust Loss Function. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

Ioan A. Bârsan, Shenlong Wang, Andrei Pokrovsky, and Raquel Urtasun. Learn-
ing to Localize Using a LiDAR Intensity Map. In Proceedings of the Conference
on Robot Learning (CoRL), 2018.

Michael J. Black and Padmanabhan Anandan. The Robust Estimation of Mul-
tiple Motions: Parametric and Piecewise-Smooth Flow Fields. Computer Vis-
ion and Image Understanding, 63(1), 1996.

Henrik Bohlke. Verwendung von Fahrbahnmarkierungen zur Verbesserung der
graphenbasierten Lokalisierung für das automatisierte Fahren. Bachelor’s
thesis, Ostfalia University of Applied Science, 2019.

Claus Brenner. Global Localization of Vehicles Using Local Pole Patterns. In
Lecture Notes in Computer Science, volume 5748. Springer, Berlin Heidelberg,
2009.

Julia Breßler, Pierre Reisdorf, Marcus Obst, and Gerd Wanielik. GNSS Posi-
tioning in Non-line-of-Sight Context - a Survey. In Proceedings of the IEEE
International Conference on Intelligent Transportation Systems (ITSC), 2016.

171

https://www.applanix.com/downloads/products/specs/POS-LV-Datasheet.pdf
https://www.applanix.com/downloads/products/specs/POS-LV-Datasheet.pdf

Bibliography

Guillaume Bresson, Zayed Alsayed, Li Yu, and Sébastien Glaser. Simultaneous
Localization and Mapping: A Survey of Current Trends in Autonomous Driv-
ing. IEEE Transactions on Intelligent Vehicles, 2(3), 2017.

Marcus A. Brubaker, Andreas Geiger, and Raquel Urtasun. Map-Based Prob-
abilistic Visual Self-Localization. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 38(4), 2016.

Mathias Bürki, Lukas Schaupp, Marcin Dymczyk, Renaud Dubé, Cesar Cadena,
Roland Siegwart, and Juan Nieto. VIZARD: Reliable Visual Localization for
Autonomous Vehicles in Urban Outdoor Environments. In Proceedings of the
IEEE Intelligent Vehicles Symposium (IV), 2019.

Cesar Cadena, Luca Carlone, Henry Carillo, Yasir Latif, Davide Scaramuzza,
José Neira, Ian Reid, and John J. Leonard. Past, Present, and Future of
Simultaneous Localization and Mapping: Toward the Robust-Perception Age.
IEEE Transactions on Robotics, 32(6), 2016.

Nicholas Carlevaris-Bianco and Ryan M. Eustice. Generic Factor-Based Node
Marginalization and Edge Sparsification for Pose-Graph SLAM. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA),
2013.

Nicholas Carlevaris-Bianco and Ryan M. Eustice. Conservative Edge Sparsifica-
tion for Graph SLAM Node Removal. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2014.

Nicholas Carlevaris-Bianco, Michael Kaess, and Ryan M. Eustice. Generic Node
Removal for Factor-Graph SLAM. IEEE Transactions on Robotics, 30(6), 2014.

Tim Caselitz, Bastian Steder, Michael Ruhnke, and Wolfram Burgard. Monocular
Camera Localization in 3D LiDAR Maps. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2016.

Sarah H. Cen and Paul Newman. Precise Ego-Motion Estimation with Millimeter-
Wave Radar under Diverse and Challenging Conditions. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), 2018.

Sarah H. Cen and Paul Newman. Radar-only ego-motion estimation in diffi-
cult settings via graph matching. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2019.

Nived Chebrolu, Philipp Lottes, Thomas Läbe, and Cyrill Stachniss. Robot
Localization Based on Aerial Images for Precision Agriculture Tasks in Crop

172

Bibliography

Fields. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2019.

Nived Chebrolu, Thomas Läbe, Olga Vysotska, Jens Behley, and Cyrill Stachn-
iss. Adaptive Robust Kernels for Non-Linear Least Squares Problems. IEEE
Robotics and Automation Letters (RA-L), 2021.

Xieyuanli Chen, Andres Milioto, Emanuele Palazzolo, Philippe Giguère, Jens
Behley, and Cyrill Stachniss. SuMa++: Efficient LiDAR-based Semantic
SLAM. In Proceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2019.

Han P. Chiu, Stephen Williams, Frank Dellaert, Supun Samarasekera, and
Rakesh Kumar. Robust Vision-Aided Navigation Using Sliding-Window Factor
Graphs. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2013.

Siddharth Choudhary, Vadim Indelman, Henrik I. Christensen, and Frank Del-
laert. Information-based Reduced Landmark SLAM. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), 2015.

Matthew Cornick, Jeffrey Koechling, Byron Stanley, and Beijia Zhang. Localizing
Ground Penetrating RADAR: A Step Toward Robust Autonomous Ground
Vehicle Localization. Journal of Field Robotics, 33(1), 2015.

Mark Cummins and Paul Newman. Probabilistic Appearance Based Navigation
and Loop Closing. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2007.

Mark Cummins and Paul Newman. FAB-MAP: Probabilistic Localization and
Mapping in the Space of Appearance. International Journal of Robotics Re-
search, 27(6), 2008.

Michael Darms and Hermann Winner. A Modular System Architecture for Sensor
Data Processing of ADAS Applications. In Proceedings of the IEEE Intelligent
Vehicles Symposium (IV), 2005.

Frank Dellaert. Factor Graphs and GTSAM: A Hands-on Introduction. Technical
report, Georgia Institute of Technology, 2012.

Frank Dellaert and Michael Kaess. Square Root SAM: Simultaneous Localization
and Mapping via Square Root Information Smoothing. International Journal
of Robotics Research, 25(12), 2006.

173

Bibliography

Frank Dellaert and Michael Kaess. Factor Graphs for Robot Perception. Found-
ations and Trends in Robotics, 6(1-2), 2017.

John E. Dennis, Jr. and Roy E. Welsch. Techniques for nonlinear least squares and
robust regression. Communications in Statistics - Simulation and Computation,
7(4), 1978.

Henrik Deusch, Jürgen Wiest, Stephan Reuter, Dominik Nuss, Martin Fritz-
sche, and Klaus Dietmayer. Multi-Sensor Self-Localization based on Maxim-
ally Stable Extremal Regions. In Proceedings of the IEEE Intelligent Vehicles
Symposium (IV), 2014.

Ernst D. Dickmanns, Birger Mysliwetz, and Thomas Christians. An Integ-
rated Spatio-Temporal Approach to Automatic Visual Guidance of Autonom-
ous Vehicles. IEEE Transactions on Systems, Man, and Cybernetics, 20(6),
1990.

Gamini Dissanayake, Paul Newman, Steven Clark, Hugh Durrant-Whyte, and
Michael Csorba. A Solution to the Simultaneous Localization and Map Building
(SLAM) Problem. IEEE Transactions on Robotics and Automation, 17(3),
2001.

Hugh Durrant-Whyte and Tim Bailey. Simultaneous Localisation and Mapping
(SLAM): Part I. IEEE Robotics & Automation Magazine, 13(2), 2006.

Kevin Eckenhoff, Liam Paull, and Guoquan Huang. Decoupled, Consistent Node
Removal and Edge Sparsification for Graph-based SLAM. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2016.

Philipp Egger, Paulo V. K. Borges, Gavin Catt, Andreas Pfrunder, Roland
Siegwart, and Renaud Dubé. PoseMap: Lifelong, Multi-Environment 3D
LiDAR Localization. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2018.

Nico Engel, Stefan Hoermann, Markus Horn, Vasileios Belagiannis, and Klaus
Dietmayer. DeepLocalization: Landmark-based Self-Localization with Deep
Neural Networks. In Proceedings of the IEEE International Conference on
Intelligent Transportation Systems (ITSC), 2019.

Ryan M. Eustice, Matthew R. Walter, and John J. Leonard. Sparse Extended In-
formation Filters: Insights into Sparsification. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2005.

174

Bibliography

Ryan M. Eustice, Hanumant Singh, John J. Leonard, and Matthew R. Walter.
Visually mapping the RMS Titanic: Conservative Covariance Estimates for
SLAM Information Filters. International Journal of Robotics Research, 25
(12), 2006.

Patrick Fleischmann, Thomas Pfister, Moritz Oswald, and Karsten Berns. Using
OpenStreetMap for Autonomous Mobile Robot Navigation. In Proceedings of
the International Conference on Intelligent Autonomous Systems (IAS), 2017.

Georgios Floros, Benito van der Zander, and Bastian Leibe. OpenStreetSLAM:
Global Vehicle Localization using OpenStreetMaps. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2013.

John Folkesson and Henrik Christensen. Graphical SLAM – A Self-correcting
Map. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2004.

Wolfgang Förstner. Graphical Models in Geodesy and Photogrammetry. Journal
of Photogrammetry, Remote Sensing and Geoinformation Science, 2013(4),
2013.

Wolfgang Förstner and Bernhard P. Wrobel. Photogrammetric Computer Vision,
chapter Robust Estimation and Outlier Detection. Springer, 2016.

Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Markov Localization for
Mobile Robots in Dynamic Environments. Journal of Artificial Intelligence
Research, 11(1), 1999.

Friedrich Fraundorfer and Davide Scaramuzza. Visual Odometry Part 2: Match-
ing, Robustness, Optimization, and Applications. IEEE Robotics & Automation
Magazine, 19(2), 2012.

Udo Frese. A Proof for the Approximate Sparsity of SLAM Information Matrices.
In Proceedings of the IEEE International Conference on Robotics and Automa-
tion (ICRA), 2005.

Udo Frese and Gerd Hirzinger. Simultaneous Localization and Mapping - A Dis-
cussion. In Proceedings of the IJCAI Workshop on Reasoning with Uncertainty
in Robotics, 2001.

Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara Bartolozzi, Brian
Taba, Andrea Censi, Stefan Leutenegger, Andrew J. Davison, Jörg Conradt,
Kostas Daniilidis, and Davide Scaramuzza. Event-based Vision: A Survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020. Ac-
cepted for publication.

175

Bibliography

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

Stuart Geman and Donald E. McClure. Bayesian image analysis: An applica-
tion to single photon emission tomography. In Proceedings of the American
Statistical Association, 1985.

Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, and Wolfram Burgard. A
Tutorial on Graph-Based SLAM. IEEE Intelligent Transportation Systems
Magazine, 2(4), 2010.

Maximilian Harr, Johannes Janosovits, Christoph Stiller, and Sascha Wirges. Fast
and Robust Vehicle Pose Estimation by Optimizing Multiple Pose Graphs. In
Proceedings of the International Conference on Information Fusion (FUSION),
2018.

Christoph Hertzberg. A Framework for Sparse, Non-Linear Least Squares Prob-
lems on Manifolds. Master’s thesis, University of Bremen, 2008.

Christoph Hertzberg, René Wagner, Udo Frese, and Lutz Schröder. Integrating
Generic Sensor Fusion Algorithms with Sound State Representations through
Encapsulation of Manifolds. Information Fusion, 14(1), 2013.

Sebastian Houben, Marcel Neuhausen, Michael Matthias, Robert Kesten, Florian
Mickler, and Florian Schuller. Park marking-based vehicle self-localization with
a fisheye topview system. Journal of Real-Time Image Processing, 16(2), 2015.

Jerry Hsiung, Ming Hsiao, Eric Westman, Rafael Valencia, and Michael Kaess.
Information Sparsification in Visual-Inertial Odometry. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2018.

Guoquan Huang, Michael Kaess, and John J. Leonard. Consistent Sparsification
for Graph Optimization. In Proceedings of the European Conference of Mobile
Robots (ECMR), 2013.

Shoudong Huang and Gamini Dissanayake. A critique of current developments
in simultaneous localization and mapping. International Journal of Advanced
Robotic Systems, 13(5), 2016.

Peter J. Huber. Robust Estimation of a Location Parameter. Annals of Math-
ematical Statistics, 35(1), 1964.

176

Bibliography

Peter J. Huber and Elvezio M. Ronchetti. Robust statistics. Springer, 2nd edition,
2009.

Constanze Hungar, Jenny Fricke, Stefan Jürgens, and Frank Köster. Detection
of Feature Areas for Map-based Localization Using LiDAR Descriptors. In
Proceedings of the Workshop on Positioning, Navigation and Communications
(WPNC), 2019.

Constanze Hungar, Stefan Jürgens, Daniel Wilbers, and Frank Köster. Map-based
Localization with Factor Graphs for Automated Driving using Non-Semantic
LiDAR Features. In Proceedings of the IEEE International Conference on
Intelligent Transportation Systems (ITSC), 2020.

International Organization for Standardization. ISO 8855:2011 road vehicles –
vehicle dynamics and road-holding ability – vocabulary, 2011. URL https:
//www.iso.org/standard/51180.html.

Prasanth Jeevan, Frank Harchut, Bernhard Mueller-Bessler, and Burkhard
Huhnke. Realizing Autonomous Valet Parking with Automotive Grade Sensors.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2010.

Rico Jonschkowski, Divyam Rastogi, and Oliver Brock. Differentiable Particle
Filters: End-to-End Learning with Algorithmic Priors. In Proceedings of the
Robotics: Science and Systems Conference (RSS), 2018.

Niels Joubert, Tyler G. R. Reid, and Fergus Noble. Developments in Modern
GNSS and Its Impact on Autonomous Vehicle Architectures. In Proceedings of
the IEEE Intelligent Vehicles Symposium (IV), 2020.

Simon J. Julier. The Stability of Covariance Inflation Methods for SLAM. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2003.

Simon J. Julier and Jeffrey K. Uhlmann. A Counter Example to the Theory
of Simultaneous Localization and Map Building. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2001.

Stefan Jürgens, Niklas Koch, and Marc-Michael Meinecke. Radar-based Auto-
motive Localization using Landmarks in a Multimodal Sensor Graph-based
Approach. In Proceedings of the International Radar Symposium (IRS), 2020.

Lasse Klingbeil, Matthias Nieuwenhuisen, Johannes Schneider, Christian Eling,
David Droeschel, Dirk Holz, Thomas Läbe, Wolfgang Förstner, Sven Behnke,
and Heiner Kuhlmann. Towards Autonomous Navigation of an UAV-based

177

https://www.iso.org/standard/51180.html
https://www.iso.org/standard/51180.html

Bibliography

Mobile Mapping System. In Proceedings of the International Conference on
Machine Control & Guidance (MCG), 2014.

Henrik Kretzschmar and Cyrill Stachniss. Information-theoretic compression of
pose graphs for laser-based SLAM. International Journal of Robotics Research,
31(11), 2012.

Henrik Kretzschmar, Cyrill Stachniss, and Giorgio Grisetti. Efficient Information-
Theoretic Graph Pruning for Graph-Based SLAM with Laser Range Finders.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2011.

Tim Kubertschak, Mirko Mählisch, and Hans-Joachim Wünsche. Towards a uni-
fied architecture for mapping static environments. In Proceedings of the Inter-
national Conference on Information Fusion (FUSION), 2014.

Julius Kümmerle, Marc Sons, Fabian Poggenhans, Tilman Kühner, Martin Lauer,
and Christoph Stiller. Accurate and Efficient Self-Localization on Roads using
Basic Geometric Primitives. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), 2019.

Rainer Kümmerle, Bastian Steder, Christian Dornhege, Alexander Kleiner, Gior-
gio Grisetti, and Wolfram Burgard. Large Scale Graph-based SLAM using
Aerial Images as Prior Information. In Proceedings of the Robotics: Science
and Systems Conference (RSS), 2009.

Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram
Burgard. g2o: A General Framework for Graph Optimization. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA),
2011a.

Rainer Kümmerle, Bastian Steder, Christian Dornhege, Alexander Kleiner, Gior-
gio Grisetti, and Wolfram Burgard. Large scale graph-based SLAM using aerial
images as prior information. Autonomous Robots, 30(1), 2011b.

Sampo Kuutti, Saber Fallah, Konstantinos Katsaros, Mehrdad Dianati, Fran-
cis Mccullough, and Alexandros Mouzakitis. A Survey of the State-of-the-Art
Localization Techniques and Their Potentials for Autonomous Vehicle Applic-
ations. IEEE Internet of Things, 5(2), 2018.

Pierre-Yves Lajoie, Siyi Hu, Giovanni Beltrame, and Luca Carlone. Modeling
Perceptual Aliasing in SLAM via Discrete-Continuous Graphical Models. IEEE
Robotics and Automation Letters (RA-L), 4(2), 2019.

178

Bibliography

Landesbetrieb Geoinformation und Vermessung. WMS Digitale Orthophotos
Hamburg. Licence: ”dl-de/by-2-0”, available at http://www.govdata.de/dl-
de/by-2-0, 2019. URL http://geodienste.hamburg.de/HH_WMS_DOP? Ac-
cessed May 17, 2020.

Christian Landsiedel and Dirk Wollherr. Global localization of 3D point clouds
in building outline maps of urban outdoor environments. International Journal
of Intelligent Robotics and Applications, 1(1), 2017.

Dirk Langer. An Integrated MMW Radar System for Outdoor Navigation. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 1996.

Henning Lategahn, Markus Schreiber, Julius Ziegler, and Christoph Stiller. Urban
Localization with Camera and Inertial Measurement Unit. In Proceedings of
the IEEE Intelligent Vehicles Symposium (IV), 2013.

Yasir Latif, César Cadena, and José Neira. Robust loop closing over time for
posegraph SLAM. International Journal of Robotics Research, 32(14), 2013.

Yasir Latif, César Cadena, and José Neira. Robust graph SLAM back-ends: A
comparative analysis. In Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2014.

Kwang W. Lee, Sardha Wijesoma, and Javier Ibañez-Guzmán. A constrained
SLAM approach to robust and accurate localisation of autonomous ground
vehicles. Robotics and Autonomous Systems, 55(7), 2007.

Jesse Levinson and Sebastian Thrun. Robust Vehicle Localization in Urban En-
vironments using Probabilistic Maps. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2010.

Jesse Levinson and Sebastian Thrun. Automatic Online Calibration of Cameras
and Lasers. In Proceedings of the Robotics: Science and Systems Conference
(RSS), 2013.

Jesse Levinson, Michael Montemerlo, and Sebastian Thrun. Map-Based Precision
Vehicle Localization in Urban Environments. In Proceedings of the Robotics:
Science and Systems Conference (RSS), 2007.

Stephanie Lowry, Niko Sünderhauf, Paul Newman, John J. Leonard, David Cox,
Peter Corke, and Michael J. Milford. Visual Place Recognition: A Survey.
IEEE Transactions on Robotics, 32(1), 2016.

179

http://www.govdata.de/dl-de/by-2-0
http://www.govdata.de/dl-de/by-2-0
http://geodienste.hamburg.de/HH_WMS_DOP?

Bibliography

Feng Lu and Evangelos Milios. Globally Consistent Range Scan Alignment for
Environment Mapping. Autonomous Robots, 4(4), 1997.

Malin Lundgren, Erik Stenborg, Lennart Svensson, and Lars Hammarstrand.
Vehicle Self-localization Using Off-the-Shelf Sensors and a Detailed Map. In
Proceedings of the IEEE Intelligent Vehicles Symposium (IV), 2014.

Wei-Chiu Ma, Shenlong Wang, Marcus A. Brubaker, Sanja Fidler, and Raquel
Urtasun. Find Your Way by Observing the Sun and Other Semantic Cues. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2017.

Wei-Chiu Ma, Ignacio Tartavull, Ioan A. Bârsan, Shenlong Wang, Min Bai,
Gellert Mattyus, Namdar Homayounfar, Shrinidhi K. Lakshmikanth, Andrei
Pokrovsky, and Raquel Urtasun. Exploiting Sparse Semantic HD Maps for Self-
Driving Vehicle Localization. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019.

Kirk MacTavish and Timothy D. Barfoot. At all Costs: A Comparison of Robust
Cost Functions for Camera Correspondence Outliers. In Proceedings of the
Conference on Computer and Robot Vision (CRV), 2015.

Mladen Mazuran, Gian D. Tipaldi, Luciano Spinello, and Wolfram Burgard. Non-
linear Graph Sparsification for SLAM. In Proceedings of the Robotics: Science
and Systems Conference (RSS), 2014.

Mladen Mazuran, Wolfram Burgard, and Gian D. Tipaldi. Nonlinear Factor
Recovery for Long-Term SLAM. International Journal of Robotics Research,
35(1-3), 2016.

Christian Merfels. Sensor fusion for localization of automated vehicles. Ph.D.
dissertation, University of Bonn, 2018.

Christian Merfels and Cyrill Stachniss. Pose Fusion with Chain Pose Graphs for
Automated Driving. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2016.

Christian Merfels and Cyrill Stachniss. Sensor Fusion for Self-Localization of
Automated Vehicles. Journal of Photogrammetry, Remote Sensing and Geoin-
formation Science, 85(2), 2017.

Christian Merfels, Tobias Riemenschneider, and Cyrill Stachniss. Pose Fusion
with Biased and Dependent Data for Automated Driving. In Proceedings of the
Positioning and Navigation for Intelligent Transportation Systems Conference
(POSNAV), 2016.

180

Bibliography

Michael J. Milford and Gordon F. Wyeth. SeqSLAM: Visual Route-Based Nav-
igation for Sunny Summer Days and Stormy Winter Nights. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA),
2012.

Faraz M. Mirzaei, Dimitrios G. Kottas, and Stergios I. Roumeliotis. 3D LIDAR–
camera intrinsic and extrinsic calibration: Identifiability and analytical least-
squares-based initialization. International Journal of Robotics Research, 31(4),
2012.

Michael Montemerlo, Jan Becker, Suhrid Bhat, Hendrik Dahlkamp, Dmitri Dol-
gov, Scott Ettinger, Dirk Haehnel, Tim Hilden, Gabe Hoffmann, Burkhard
Huhnke, Doug Johnston, Stefan Klumpp, Dirk Langer, Anthony Levandowski,
Jesse Levinson, Julien Marcil, David Orenstein, Johannes Paefgen, Isaac
Penny, Anna Petrovskaya, Mike Pflueger, Ganymed Stanek, David Stavens,
Antone Vogt, and Sebastian Thrun. Junior: The Stanford Entry in the Urban
Challenge. Journal of Field Robotics, 25(9), 2008.

Michael Munz, Mirko Mählisch, Jürgen Dickmann, and Klaus Dietmayer. Prob-
abilistic Modeling of Sensor Properties in Generic Fusion Systems for Modern
Driver Assistance Systems. In Proceedings of the IEEE Intelligent Vehicles
Symposium (IV), 2010.

Lakshay Narula, Matthew J. Murrian, and Todd. E. Humphreys. Accuracy Limits
for Globally-Referenced Digital Mapping Using Standard GNSS. In Proceedings
of the IEEE International Conference on Intelligent Transportation Systems
(ITSC), 2018.

Tayyab Naseer and Wolfram Burgard. Deep Regression for Monocular Camera-
based 6-DoF Global Localization in Outdoor Environments. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2017.

Tayyab Naseer, Wolfram Burgard, and Cyrill Stachniss. Robust Visual Localiz-
ation Across Seasons. IEEE Transactions on Robotics, 34(2), 2018.

Paul Newman, Gabe Sibley, Mike Smith, Mark Cummins, Alastair Harrison,
Chris Mei, Ingmar Posner, Robbie Shade, Derik Schroeter, Liz Murphy, Win-
ston Churchill, Dave Cole, and Ian Reid. Navigating, Recognizing and Describ-
ing Urban Spaces With Vision and Lasers. International Journal of Robotics
Research, 28(11-12), 2009.

Wolfgang Niemeier. Ausgleichungsrechnung – Statistische Auswertemethoden. de
Gruyter, 2nd edition, 2008.

181

Bibliography

Benjamin Noack, Simon J. Julier, and Uwe D. Hanebeck. Treatment of Biased
and Dependent Sensor Data in Graph-based SLAM. In Proceedings of the
International Conference on Information Fusion (FUSION), 2015.

Simon Ollander, Friedrich-Wilhelm Bode, and Marcus Baum. Multi-Frequency
GNSS Signal Fusion for Minimization of Multipath and Non-Line-of-Sight Er-
rors: A Survey. In Proceedings of the Workshop on Positioning, Navigation
and Communications (WPNC), 2018.

Edwin Olson and Pratik Agarwal. Inference on networks of mixtures for robust
robot mapping. International Journal of Robotics Research, 32(7), 2013.

Oxford Technical Solutions. RT3000, 2020. URL https://www.oxts.com/
products/rt3000/. Accessed May 19, 2020.

David Pannen, Martin Liebner, Wolfgang Hempel, and Wolfram Burgard. How
to Keep HD Maps for Automated Driving Up To Date. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), 2020.

Jan-Hendrik Pauls, Tobias Strauss, Carsten Hasberg, Martin Lauer, and Chris-
toph Stiller. Can We Trust Our Maps? An Evaluation of Road Changes and
a Dataset for Map Validation. In Proceedings of the IEEE International Con-
ference on Intelligent Transportation Systems (ITSC), 2018.

Fabian Poggenhans, Niels O. Salscheider, and Christoph Stiller. Precise Loc-
alization in High-Definition Road Maps for Urban Regions. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018.

François Pomerleau, Francis Colas, and Roland Siegwart. A Review of Point
Cloud Registration Algrorithms for Mobile Robotics. Foundations and Trends
in Robotics, 4(1), 2015.

Ananth Ranganathan, Michael Kaess, and Frank Dellaert. Fast 3D Pose Estim-
ation With Out-of-Sequence Measurements. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2007.

Ananth Ranganathan, David Ilstrup, and Tao Wu. Light-weight Localization for
Vehicles using Road Markings. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2013.

Tyler G. R. Reid, Sarah E. Houts, Robert Cammarata, Graham Mills, Siddharth
Agarwal, Ankit Vora, and Gaurav Pandey. Localization Requirements for
Autonomous Vehicles. SAE International Journal of Connected and Automated
Vehicles, 2(3), 2019a.

182

https://www.oxts.com/products/rt3000/
https://www.oxts.com/products/rt3000/

Bibliography

Tyler G. R. Reid, Nahid Pervez, Umair Ibrahim, Sarah E. Houts, Gaurav Pandey,
Naveen K. R. Alla, and Andy Hsia. Standalone and RTK GNSS on 30,000 km
of North American Highways. In Proceedings of the International Technical
Meeting of the Satellite Division of The Institute of Navigation (ION GNSS),
2019b.

Hyunchul Roh, Jinyong Jeong, Younggun Cho, and Ayoung Kim. Accurate Mobile
Urban Mapping via Digital Map-Based SLAM. Sensors, 16(8), 2016.

David M. Rosen, Julian Mason, and John J. Leonard. Towards Lifelong Feature-
Based Mapping in Semi-Static Environments. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2016.

Lars Rumberg. Adding landmarks to maps using a graph-based approach. Master’s
thesis, University of Hannover, 2018.

Muhamad R. U. Saputra, Andrew Markham, and Niki Trigoni. Visual SLAM and
Structure from Motion in Dynamic Environments: A Survey. ACM Computing
Surveys, 51(2), 2018.

Davide Scaramuzza and Friedrich Fraundorfer. Visual Odometry Part 1: The
First 30 Years and Fundamentals. IEEE Robotics & Automation Magazine, 18
(4), 2011.

Alexander Schaefer, Daniel Büscher, Johan Vertens, Lukas Luft, and Wolfram
Burgard. Long-Term Urban Vehicle Localization Using Pole Landmarks Ex-
tracted from 3-D Lidar Scans. In Proceedings of the European Conference of
Mobile Robots (ECMR), 2019.

Andreas Schindler. Vehicle Self-Localization with High-Precision Digital Maps.
Ph.D. dissertation, Universität Passau, 2013.

Alexander Schlichting and Claus Brenner. Genauigkeitsuntersuchung zur Lokalis-
ierung von Fahrzeugen mittels Automotive-Laserscannern. In DGPF Tagungs-
band 23, 2014.

Johannes Schneider, Christian Eling, Lasse Klingbeil, Heiner Kuhlmann,
Wolfgang Förstner, and Cyrill Stachniss. Fast and Effective Online Pose Es-
timation and Mapping for UAVs. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2016.

Johannes L. Schönberger, Marc Pollefeys, Andreas Geiger, and Torsten Sattler.
Semantic Visual Localization. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018.

183

Bibliography

Markus Schreiber, Carsten Knöppel, and Uwe Franke. LaneLoc: Lane Marking
based Localization using Highly Accurate Maps. In Proceedings of the IEEE
Intelligent Vehicles Symposium (IV), 2013.

Frank Schuster, Christoph G. Keller, Matthias Rapp, Martin Haueis, and
Christóbal Curio. Landmark based Radar SLAM Using Graph Optimization.
In Proceedings of the IEEE International Conference on Intelligent Transport-
ation Systems (ITSC), 2016.

Mohsen Sefati, Magnus Daum, Björn Sondermann, Kai D. Kreisköther, and
Achim Kampker. Improving Vehicle Localization Using Semantic and Pole-
Like Landmarks. In Proceedings of the IEEE Intelligent Vehicles Symposium
(IV), 2017.

Jacopo Serafin, Edwin Olson, and Giorgio Grisetti. Fast and Robust 3D Fea-
ture Extraction from Sparse Point Clouds. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2016.

Gabe Sibley. A Sliding Window Filter for SLAM. Technical report, University of
Southern California, 2006.

Gabe Sibley, Larry Matthies, and Gaurav Sukhatme. Sliding Window Filter with
Application to Planetary Landing. Journal of Field Robotics, 27(5), 2010.

Sebastian Skibinski. Extraction, Localization, and Fusion of Collective Vehicle
Data. Ph.D. dissertation, Technische Universität Dortmund, 2019.

Sebastian Skibinski, Frank Weichert, and Heinrich Müller. Parametric Fusion of
Complex Landmark Observations Present Within the Road Network by Utiliz-
ing Bundle-Adjustment-based Full-SLAM. In Proceedings of the International
Conference on Information Fusion (FUSION), 2016.

Isaac Skog and Peter Händel. In-Car Positioning and Navigation Technologies -
A Survey. IEEE Transactions on Intelligent Transport Systems, 10(1), 2009.

John P. Snyder. Map projections: A working manual. U.S. Government Printing
Office, 1987.

Marc Sons and Christoph Stiller. Efficient Multi-Drive Map Optimization to-
wards Life-long Localization using Surround View. In Proceedings of the IEEE
International Conference on Intelligent Transportation Systems (ITSC), 2018.

Robert Spangenberg, Daniel Goehring, and Raúl Rojas. Pole-based Localization
for Autonomous Vehicles in Urban Scenarios. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2016.

184

Bibliography

Cyrill Stachniss and Wolfram Burgard. Particle Filters for Robot Navigation.
Foundations and Trends in Robotics, 3(4), 2014.

Cyrill Stachniss, John J. Leonard, and Sebastian Thrun. Springer Handbook of
Robotics, chapter Simultaneous Localization and Mapping. Springer, 2016.

Scott Stephenson. Automotive Applications of High Precision GNSS. PhD thesis,
University of Nottingham, 2016.

Marek Stess. Ein Verfahren zur Kartierung und präzisen Lokalisierung mit klassi-
fizierten Umgebungscharakteristiken der Straßeninfrastruktur für selbstfahrende
Kraftfahrzeuge. Ph.D. dissertation, Gottfried Wilhelm Leibniz Universität Han-
nover, 2017.

Hauke Strasdat, José M. M. Montiel, and Andrew J. Davison. Visual SLAM:
Why filter? Image and Vision Computing, 30(2), 2012.

Jae K. Suhr, Jeungin Jang, Daehong Min, and Ho G. Jung. Sensor Fusion-
Based Low-Cost Vehicle Localization System for Complex Urban Environ-
ments. IEEE Transactions on Intelligent Transport Systems, 18(5), 2017.

Niko Sünderhauf. Robust optimization for Simultaneous Localization and Map-
ping. Ph.D. dissertation, Chemnitz University of Technology, 2012.

Niko Sünderhauf and Peter Protzel. Switchable Constraints for Robust Pose
Graph SLAM. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2012.

Niko Sünderhauf and Peter Protzel. Switchable Constraints vs. Max-Mixture
Models vs. RRR - A Comparison of Three Approaches to Robust Pose Graph
SLAM. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2013.

Niko Sünderhauf, Sareh Shirazi, Adam Jacobson, Feras Dayoub, Edward Pepper-
ell, Ben Upcroft, and Michael J. Milford. Place Recognition with ConvNet
Landmarks: Viewpoint-Robust, Condition-Robust, Training-Free. In Proceed-
ings of the Robotics: Science and Systems Conference (RSS), 2015.

Duy-Nguyen Ta, Nandan Banerjee, Stephen Eick, Scott Lenser, and Mario E.
Munich. Fast Nonlinear Approximation of Pose Graph Node Marginalization.
In Proceedings of the IEEE International Conference on Robotics and Automa-
tion (ICRA), 2018.

Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda. Visual SLAM algorithms:
a survey from 2010 to 2016. IPSJ Transactions on Computer Vision and
Applications, 9(16), 2017.

185

Bibliography

Tim Y. Tang, Daniele De Martini, Dan Barnes, and Paul Newman. RSL-Net:
Localising in Satellite Images From a Radar on the Ground. IEEE Robotics
and Automation Letters (RA-L), 5(2), 2020a.

Tim Y. Tang, Daniele De Martini, Shangzhe Wu, and Paul Newman. Self-
Supervised Localisation between Range Sensors and Overhead Imagery. In
Proceedings of the Robotics: Science and Systems Conference (RSS), 2020b.

Tesla, Inc. Introducing Navigate on Autopilot, 2018. URL https://www.tesla.
com/blog/introducing-navigate-autopilot. Accessed February 19, 2021.

Peter J. G. Teunissen and Oliver Montenbruck, editors. Springer Handbook of
Global Navigation Satellite Systems. Springer, 2017.

Sebastian Thrun and Michael Montemerlo. The GraphSLAM Algorithm with Ap-
plications to Large-Scale Mapping of Urban Structures. International Journal
of Robotics Research, 25(5-6), 2006.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT
Press, 2005.

Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, An-
drei Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel
Hoffmann, Kenny Lau, Celia Oakley, Mark Palatucci, Vaughan Pratt, Pas-
cal Stang, Sven Strohband, Cedric Dupont, Lars-Erik Jendrossek, Christian
Koelen, Charles Markey, Carlo Rummel, Joe van Niekerk, Eric Jensen, Phil-
ippe Alessandrini, Gary Bradski, Bob Davies, Scott Ettinger, Adrian Kaehler,
Ara Nefian, and Pamela Mahoney. Stanley: The Robot that Won the DARPA
Grand Challenge. Journal of Field Robotics, 23(9), 2006.

Sadayuki Tsugawa, Teruo Yatabe, Takeshi Hirose, and Shuntetsu Matsumoto. An
automobile with artificial intelligence. In Proceedings of the Sixth International
Joint Conference on Artificial Intelligence (IJCAI), volume 2, 1979.

u-blox. NEO-M8L series, 2020. URL https://www.u-blox.com/en/product/
neo-m8l-series. Accessed November 08, 2020.

U.S. Government - National Coordination Office for Space-Based Positioning,
Navigation, and Timing. GPS Accuracy, 2018. URL https://www.gps.gov/
systems/gps/performance/accuracy/. Accessed June 26, 2018.

Abhinav Valada, Noha Radwan, and Wolfram Burgard. Deep Auxiliary Learning
for Visual Localization and Odometry. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2018.

186

https://www.tesla.com/blog/introducing-navigate-autopilot
https://www.tesla.com/blog/introducing-navigate-autopilot
https://www.u-blox.com/en/product/neo-m8l-series
https://www.u-blox.com/en/product/neo-m8l-series
https://www.gps.gov/systems/gps/performance/accuracy/
https://www.gps.gov/systems/gps/performance/accuracy/

Bibliography

Joan Vallvé, Joan Solà, and Juan Andrade-Cetto. Factor descent optimization
for sparsification in graph SLAM. In Proceedings of the European Conference
of Mobile Robots (ECMR), 2017.

Joan Vallvé, Joan Solà, and Juan Andrade-Cetto. Graph SLAM sparsification
with populated topologies using factor descent optimization. IEEE Robotics
and Automation Letters (RA-L), 3(2), 2018.

Joan Vallvé, Joan Solà, and Juan Andrade-Cetto. Pose-graph SLAM sparsifica-
tion using factor descent. Robotics and Autonomous Systems, 119(1), 2019.

Sudha Vana, John Aggrey, Sunil Bisnath, Rodrigo Leandro, Landon Urquhart,
and Paola Gonzalez. Analysis of GNSS correction data standards for the auto-
motive market. NAVIGATION, 66(3), 2019.

Veloyne Lidar. Velodyne VLP-32C, 2020. URL https://velodynelidar.com/
products/ultra-puck/. Accessed November 08, 2020.

John Vial, Hugh Durrant-Whyte, and Tim Bailey. Conservative Sparsification
for Efficient and Consistent Approximate Estimation. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2011.

Antoni R. Vidal, Henri Rebecq, Timo Horstschaefer, and Davide Scaramuzza. Ul-
timate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM
in HDR and High-Speed Scenarios. IEEE Robotics and Automation Letters
(RA-L), 3(2), 2018.

Volkswagen AG. The assistance systems of the new Arteon - Interactive tech-
nologies look ahead for safety, 2017. URL https://www.volkswagen-
newsroom.com/en/stories/the-assistance-systems-of-the-new-
arteon-interactive-technologies-look-ahead-for-safety-2268.
Accessed February 19, 2021.

Volkswagen AG. DB2019AL00706, 2019. URL https://www.
volkswagen-newsroom.com/de/pressemitteilungen/volkswagen-faehrt-
vollautomatisiert-in-hamburg-4797. Accessed November 08, 2020.

Andrej Štern and Anton Kos. Positioning Performance Assessment of Geodetic,
Automotive, and Smartphone GNSS Receivers in Standardized Road Scenarios.
IEEE Access, 6(1), 2018.

Arun Vydhyanathan and Giovanni Bellusci. The Next Generation Xsens Motion
Trackers for Industrial Applications. Technical report, Xsens, 2018.

187

https://velodynelidar.com/products/ultra-puck/
https://velodynelidar.com/products/ultra-puck/
https://www.volkswagen-newsroom.com/en/stories/the-assistance-systems-of-the-new-arteon-interactive-technologies-look-ahead-for-safety-2268
https://www.volkswagen-newsroom.com/en/stories/the-assistance-systems-of-the-new-arteon-interactive-technologies-look-ahead-for-safety-2268
https://www.volkswagen-newsroom.com/en/stories/the-assistance-systems-of-the-new-arteon-interactive-technologies-look-ahead-for-safety-2268
https://www.volkswagen-newsroom.com/de/pressemitteilungen/volkswagen-faehrt-vollautomatisiert-in-hamburg-4797
https://www.volkswagen-newsroom.com/de/pressemitteilungen/volkswagen-faehrt-vollautomatisiert-in-hamburg-4797
https://www.volkswagen-newsroom.com/de/pressemitteilungen/volkswagen-faehrt-vollautomatisiert-in-hamburg-4797

Bibliography

Olga Vysotska. Visual Place Recognition in Changing Environments. Ph.D.
dissertation, University of Bonn, 2019.

Olga Vysotska and Cyrill Stachniss. Exploiting Building Information from Pub-
licly Available Maps in Graph-Based SLAM. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2016a.

Olga Vysotska and Cyrill Stachniss. Lazy Data Association For Image Sequences
Matching Under Substantial Appearance Changes. IEEE Robotics and Auto-
mation Letters (RA-L), 1(1), 2016b.

Olga Vysotska and Cyrill Stachniss. Improving SLAM by Exploiting Building
Information from Publicly Available Maps and Localization Priors. Journal of
Photogrammetry, Remote Sensing and Geoinformation Science, 85(1), 2017.

Olga Vysotska and Cyrill Stachniss. Effective Visual Place Recognition Using
Multi-Sequence Maps. IEEE Robotics and Automation Letters (RA-L), 4(2),
2019.

Matthew R. Walter, Ryan M. Eustice, and John J. Leonard. A Provably Consist-
ent Method for Imposing Sparsity in Feature-Based SLAM Information Filters.
In Proceedings of the International Symposium on Robotics Research (ISRR),
2007.

Liang Wang, Yihuan Zhang, and Jun Wang. Map-Based Localization Method
for Autonomous Vehicles Using 3D-LIDAR. In Proceedings of the IFAC World
Congress, 2017.

Xinkai Wei, Ioan A. Bârsan, Shenlong Wang, Julieta Martinez, and Raquel Ur-
tasun. Learning to Localize Through Compressed Binary Maps. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2019.

Daniel Wilbers, Stefan Jürgens, David Perdomo Lopez, Christian Merfels, Con-
stanze Hungar, Bernd Rech, Thilo Schaper, and Niklas Koch. Verfahren
zur Aktualisierung einer Umgebungskarte, Vorrichtung für die fahrzeugseit-
ige Durchführung von Verfahrensschritten des Verfahrens, Fahrzeug, Vorrich-
tung für die zentralrechnerseitige Durchführung von Verfahrensschritten des
Verfahrens sowie computerlesbares Speichermedium. Patent application at
Deutsches Patent- und Markenamt, Germany, DE 10 2018 118 215.5, 2018a.

Daniel Wilbers, Stefan Jürgens, David Perdomo Lopez, Christian Merfels, Con-
stanze Hungar, Bernd Rech, Thilo Schaper, and Niklas Koch. Positionsbestim-
mungssystems für eine mobile Einheit. Patent application at Deutsches Patent-
und Markenamt, Germany, DE 10 2018 117 660.0, 2018b.

188

Bibliography

Daniel Wilbers, Stefan Jürgens, David Perdomo Lopez, Christian Merfels, Con-
stanze Hungar, Bernd Rech, Thilo Schaper, and Niklas Koch. Verfahren zur
Schätzung der Lokalisierungsgüte bei der Eigenlokalisierung eines Fahrzeuges,
Vorrichtung für die Durchführung von Verfahrensschritten des Verfahrens,
Fahrzeug sowie Computerprogramm. Patent application at Deutsches Patent-
und Markenamt, Germany, DE 10 2018 118 220.1, 2018c.

Daniel Wilbers, Stefan Jürgens, David Perdomo Lopez, Christian Merfels, Con-
stanze Hungar, Bernd Rech, Thilo Schaper, and Niklas Koch. Positionsbestim-
mungssystem und Verfahren zum Betreiben eines Positionsbestimmungssys-
tems für eine mobile Einheit. Patent application at Deutsches Patent- und
Markenamt, Germany, DE 10 2018 133 461.3, 2018d.

Daniel Wilbers, Christian Merfels, and Cyrill Stachniss. Localization with Slid-
ing Window Factor Graphs on Third-Party Maps for Automated Driving. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2019a.

Daniel Wilbers, Christian Merfels, and Cyrill Stachniss. A Comparision of
Particle Filter and Graph-based Optimization for Localization with Landmarks
in Automated Vehicles. In Proceedings of the IEEE International Conference
on Robotic Computing (IRC), 2019b.

Daniel Wilbers, Lars Rumberg, and Cyrill Stachniss. Approximating Marginal-
ization with Sparse Global Priors for Sliding Window SLAM-Graphs. In Pro-
ceedings of the IEEE International Conference on Robotic Computing (IRC),
2019c.

Daniel Wilbers, Henrik Bohlke, Stefan Jürgens, Christian Merfels, Constanze
Hungar, Bernd Rech, and Niklas Koch. Verfahren zum Bewerten einer digitalen
Karte, sowie Bewertungssystem. Patent application at Deutsches Patent- und
Markenamt, Germany, DE 10 2020 115 743.6, 2020a.

Daniel Wilbers, Henrik Bohlke, Stefan Jürgens, Christian Merfels, Con-
stanze Hungar, Bernd Rech, and Niklas Koch. Verfahren zum Beurteilen
einer Genauigkeit einer Positionsbestimmung einer Landmarke, sowie Bewer-
tungssystem. Patent application at Deutsches Patent- und Markenamt, Ger-
many, DE 10 2020 115 746.0, 2020b.

Dan Withers and Paul Newman. Modeling Scene Change for Large-Scale Long
Term Laser Localisation. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2017.

189

Bibliography

Ryan W. Wolcott and Ryan M. Eustice. Visual Localization within LIDAR Maps
for Automated Urban Driving. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2014.

Ryan W. Wolcott and Ryan M. Eustice. Fast LIDAR localization using Mul-
tiresolution Gaussian Mixture Maps. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2015.

Cong Wu, Tiffany A. Huang, Maximilian Muffert, Thilo Schwarz, and Johannes
Graeter. Precise Pose Graph Localization with Sparse Point and Lane Features.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2017.

Heng Yang, Pasquale Antonante, Vasileios Tzoumas, and Luca Carlone. Gradu-
ated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers
to Global Outlier Rejection. IEEE Robotics and Automation Letters (RA-L),
5(2), 2020a.

Heng Yang, Jingnan Shi, and Luca Carlone. TEASER: Fast and Certifiable
Point CloudRegistration. IEEE Transactions on Robotics, 2020b. Accepted for
publication.

Sheng Yang, Xiaoling Zhu, Xing Nian, Lu Feng, Xiaozhi Qu, and Teng Ma. A
robust pose graph approach for city scale LiDAR mapping. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018.

Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A
Survey of Autonomouos Driving: Common Practices and Emerging Technolo-
gies. IEEE Access, 8(1), 2020.

Ji Zhang and Sanjiv Singh. Visual-lidar Odometry and Mapping: Low-drift,
Robust, and Fast. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2015.

Zhengyou Zhang. Parameter Estimation Techniques: A Tutorial with Application
to Conic Fitting. Image and Vision Computing, 15(1), 1997.

Julius Ziegler, Thao Dang, Uwe Franke, Henning Lategahn, Philipp Bender,
Markus Schreiber, Tobias Strauss, Nils Appenrodt, Christoph G. Keller, Eber-
hard Kaus, Christoph Stiller, Ralf G. Herrtwich, and et al. Making Bertha
Drive – An Autonomous Journey on a Historic Route. IEEE Intelligent Trans-
portation Systems Magazine, 6(2), 2014.

190

Bibliography

Florian Zimmermann, Christian Eling, and Heiner Kuhlmann. Investigations
on the Influence of Antenna Near-field Effects and Satellite Obstruction on
the Uncertainty of GNSS-based Distance Measurements. Journal of Applied
Geodesy, 10(1), 2015.

191

List of Figures

3.1 Universal Transverse Mercator projection 30
3.2 Vehicle reference frame . 31
3.3 Calibration error . 32
3.4 Suitable and unsuitable landmarks 35
3.5 Illustration of the requirement for using manifolds within angular

state spaces . 42
3.6 DCS and Cauchy robust cost functions 44
3.7 Comparison of graph representations 45
3.8 Factor graph and its corresponding system matrix structure . . . 45
3.9 Worst-case example of dense marginalization 47

4.1 Our localization architecture . 55
4.2 Example of a real-world sliding window graph 56
4.3 Internal graph resolution and algorithm cycle 60
4.4 Sliding window graph example . 61
4.5 Example of a third-party map . 64
4.6 Map factors in our sliding window graph 65
4.7 Local association example . 70
4.8 Legend for the map maptching figures. 74
4.9 Local association and global map 75
4.10 Local map projection . 75
4.11 Candidate generation . 76
4.12 Evaluation of an exemplary transformation matrix. Example 1 . . 76
4.13 Evaluation of an exemplary transformation matrix. Example 2 . . 77
4.14 The three identified map matches in our example 77
4.15 Cost functions for different weighting parameters η 79
4.16 Boundary cases during transformation matrix search 80
4.17 Impact of the weighting parameter η 81
4.18 Integration of delayed measurements into the graph 83
4.19 Example for delayed association 84
4.20 Delayed association in our sliding window graph 85
4.21 Example of revising a map association in factor graph notation . 86

192

List of Figures

4.22 Visual example of revising a map association 86
4.23 Sliding window graph with unary landmark constraints 90
4.24 Ambiguities with point constraints 91
4.25 Ambiguous unary constraints based on road markings 91
4.26 Time synchronization in the sliding window graph 92
4.27 Correlated measurements due to interpolation. 93
4.28 Particle filter and graph-based localization 94

5.1 Map refinement architecture . 101
5.2 Influence of marginalization on the graph structure 103
5.3 Example of viewing scopes for filtering out unsuitable landmarks . 105
5.4 Computing sparse global priors 107
5.5 Example of sparse priors in a real-world scenario 109

6.1 Scenery overview of our Hamburg dataset 115
6.2 Trajectory overview of our Hamburg dataset 116
6.3 e-Golf prototype vehicle . 117
6.4 Sensor setup of our prototype vehicle 117
6.5 Examples of reference issues . 119
6.6 Euclidean errors of our odometry module 120
6.7 Evaluation of our odometry module 121
6.8 Odometry drift histogram in our local association 122
6.9 Histograms of landmark measurements within 10 s 124
6.10 Landmark detection distances . 124
6.11 Spatial distributions of landmark detections 125
6.12 Exemplary excerpt of our Hamburg dataset 126
6.13 LiDAR-based and radar-based landmarks 127
6.14 Examples of matchable landmarks in our third-party map 131
6.15 Error distributions of our graph-based localization approach for

our urban dataset. 134
6.16 Cumulative absolute error distribution functions for our Hamburg

dataset . 134
6.17 Periods of GNSS outages . 136
6.18 GNSS outages over 10 s in our Hamburg dataset 136
6.19 Computation times for the different steps of our algorithm in our

urban dataset . 137
6.20 Correlation between computation time and map matching 141
6.21 Optimization time vs. number of constraints and number of pole

vertices . 142
6.22 Map and trajectory of our real-world dataset recorded in Fallersleben.143
6.23 Relation between computation time and control variable 145

193

List of Figures

6.24 Computation time vs. state vector size and number of constraints 145
6.25 Empirical CDF for a set of experiments, comparing particle filter

and graph-based localization . 147
6.26 Accuracy within the trajectory of a graph 148
6.27 Map and trajectory of our real-world dataset for sparse priors . . 152
6.28 Map and trajectory of our simulated dataset for sparse priors . . 152
6.29 Comparison of different linearization methods 153
6.30 Comparison of estimated covariance fit 155
6.31 Comparison of sparsity patterns 155
6.32 Error comparison between no-, dense-, and sparse marginalization 156
6.33 Error statistics of refined map landmarks 157
6.34 Refining existing map landmarks 158

194

List of Tables

3.1 State definitions . 36

4.1 Cost table for our map matching example 77
4.2 Summary of our argumentative comparison between particle filters

and graph-based localization . 97

6.1 Key numbers of our urban dataset 118
6.2 Error statistics of our graph-based localization in our Hamburg

dataset . 134
6.3 Errors for particle filter and graph-based localization in our Fallersleben

dataset. 147
6.4 Absolute mean errors in our 16 km long urban drive in Fallersleben 150
6.5 Error comparison of different linearization methods 153

List of Algorithms

1 Gauss-Newton optimization . 40

2 Pseudo code for our local association strategy 71
3 Pseudo code for our transformation matrix search 78

195

	Abstract
	Acknowledgments
	Contents
	Introduction
	Localization for automated driving
	Scope and limitations
	Main contributions
	Publications

	Related work
	Vehicle localization
	GNSS-based localization
	Perception-based localization
	State estimation for localization
	Robust estimation
	Sliding window graphs
	Marginalization and sparsification

	Maps for road vehicle localization
	Tailored maps
	General-purpose maps
	Refining landmark maps

	Fundamentals
	Coordinate systems
	World reference frame
	Vehicle reference frame
	Importance of calibration

	Landmarks
	State definitions for vehicle localization
	Graph-based optimization
	Probability maximization and error minimization
	Gauss-Newton algorithm
	Gauss-Newton on manifolds
	Handling outliers

	Factor graph representation
	Marginalization
	Relation to iterative optimization

	Localization on general-purpose landmark maps
	Design principles
	Graph-based sliding window localization
	Sliding window definition
	Optimization-based pose estimation

	Using third-party landmark maps
	Third-party maps
	Integrating map factors as state priors
	Map covariance
	Impact on Gauss-Newton
	Map landmarks with angular state components

	Data association
	Local association
	Map Matching
	Tuning the weighting parameter η
	Temporal association smoothing
	Integration of delayed measurements
	Delayed associations
	Reversible associations

	Error functions
	Point-based landmark constraints
	Orthogonal landmark constraints
	Fully constraining the sliding window graph

	Time synchronization
	Particle filter vs. sliding window graphs
	Summary

	Delayed map refinements
	Refining maps for automated driving
	Adding, modifying, and deleting landmarks
	Estimating landmark positions
	Selecting suitable landmarks
	Sliding window marginalization
	Calculating the marginalization prior
	Sparsifying the marginalization prior
	Computing sparse global priors

	Summary

	Experimental Evaluation
	Dataset description
	Sensor setup
	Odometry evaluation
	Landmark detectors

	Localization on a third-party map
	Key parameters
	Incorporating a general-purpose third-party map
	Localization accuracy
	Outages and availability
	Runtime

	Particle filter vs. sliding window graphs
	Runtime behavior
	Accuracy
	Estimating past poses

	Implications of including low-cost GNSS
	Impact of our data association strategy
	Delayed map refinements
	Approximating marginalization with sparse global priors
	Global vs. local linearization vs. our approach
	Conservative estimates
	Sparsity pattern and accuracy of landmark additions
	Modifying map landmarks

	Summary of the evaluations

	Conclusion
	Short summary of key contributions
	Limitations, outlook, and discussion

	Acronyms
	Bibliography
	List of Figures
	List of Tables

