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1. Introduction 
 
1.1 Biomarkers of aging  
The rapid aging of the global population has resulted in an increase in the personal and 

societal burden of age-associated diseases and disability, warranting urgent development 

of novel strategies for stimulating healthy aging (WHO 2015). Chronological age is a major 

risk factor for functional impairment, chronic diseases as well as mortality. However, 

individuals with the same chronological age often exhibit heterogeneous trajectories of 

age-related functional decline as well as marked differences in their risk of morbidity and 

mortality (Levine 2013; Lowsky et al. 2014). It is thought that different rates of biological 

aging could underlie inter-individual differences in the occurrence of age-related health 

outcomes. Therefore, interventions tailored towards slowing the biological process of 

aging might be more effective in maximizing health span (Fontana et al. 2014). Thus, a 

better estimation of biological aging and the elucidation of correlates of biological aging 

are critical for stimulating healthy aging. Recently, various measures of biological aging 

have been proposed, including, but not limited to, epigenetic biomarkers of aging and 

telomere length. 

 

1.1.1 Epigenetic biomarkers of aging  
DNA methylation is a major form of epigenetic modulation that is critically involved in the 

regulation of gene expression. With increasing chronological age, the methylation status 

of numerous DNA cytosine-phosphate-guanine (CpG) sites differentially changes across 

the genome, reflecting the effects of cumulative exposure to major risk factors involved in 

the pathogenesis of age-related conditions (Bell et al. 2012; Fraga and Esteller 2007; 

Jones et al. 2015). Consequently, DNA methylation patterns have been used to estimate 

biological age, also known DNA methylation (DNAm) age or epigenetic clock.  

 

First-generation DNAm-based biomarkers of aging, including Horvath’s and Hannum’s 

clocks, were developed using chronological age as a surrogate for biological age 

(Hannum et al. 2013; Horvath 2013). However, chronological age is a suboptimal proxy 

for biological age. It is crucial to not only include CpGs that display changes with 

chronological time, but also those that account for substantial inter-individual variation in 
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physiological and molecular characteristics among individuals of the same chronological 

age. Thus, second-generation DNAm age estimators, also known as lifespan estimators, 

including DNAm Phenotypic Age (PhenoAge) and DNAm GrimAge were optimized to 

capture multi-system physiological dysfunctions and health span (Levine et al. 2018; Lu 

et al. 2019). PhenoAge, trained on mortality-related clinical biomarkers, and GrimAge, 

developed using plasma proteins that are associated with age-related conditions, more 

closely reflect the high interindividual variability in the underlying biological aging 

processes than the first-generation estimators. Moreover, transcriptional analysis 

revealed that genes linked to Horvath/Hannum’s clocks are only related to development 

and differentiation pathways (Horvath and Raj 2018). By contrast, genes associated with 

lifespan estimators are involved in crucial aging pathways, including increased activation 

of pro-inflammatory and interferon pathways, cytokine-mediated signaling pathway, 

mitochondrial signatures, and fatty acid transmembrane transport (Levine et al. 2018; Lu 

et al. 2019). Studies have shown that the discrepancy (accelerated or decelerated) 

between an individual’s estimated biological age and chronological age, referred as 

DNAm age acceleration estimators (including AgeAccel.Horvath, AgeAccel.Hannum, 

AgeAccelPheno and AgeAccelGrim), is a strong predictor of mortality and associated with 

age-related phenotypes, especially cardiovascular diseases and vascular aging (Breitling 

et al. 2016; Chen et al. 2016; Fransquet et al. 2019; Horvath and Raj 2018; Marioni et al. 

2015a; Marioni et al. 2015b; Roetker et al. 2018). Recent studies further showed that 

AgeAccelGrim outperforms other epigenetic age acceleration estimators in the prediction 

of age-related diseases and all-cause mortality (McCrory et al. 2021; Protsenko et al. 

2021). 

 

1.1.2 Telomere length  
Telomeres are repetitive DNA-protein structures, comprising thousands of tandem 

repeats of the TTAGGG sequence, which are located at the ends of chromosomes. They 

serve to maintain genomic stability and determine cellular lifespan (O'Sullivan and 

Karlseder 2010). During each cell division, telomere length progressively shortens 

because of the inability of DNA polymerase to fully replicate the 3’ end of the DNA strand. 

When these sequences reach a critical length, the cellular DNA damage machinery is 

activated, which, in turn, triggers cellular senescence (Blackburn et al. 2015). Telomere 
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length is usually measured as leukocyte telomere length (LTL), which is relatively easy to 

obtain from blood samples and is highly correlated with telomere length in other tissues 

(Demanelis et al. 2020). LTL has been proposed as a biomarker of biological aging as it 

reflects the amount of cellular turnover within an individual. There is considerable variation 

in LTL across individuals, including those of the same chronological age. Accumulating 

evidence has suggested that telomere-triggered cellular senescence, a hallmark of 

biological aging, is highly associated with age-related diseases. Especially, telomere 

shortening could contribute to cardiovascular aging and thereby increase the risk of 

developing cardiovascular diseases (CVDs) (Fyhrquist et al. 2013). 

 

1.2 Correlates of aging  
1.2.1 Cardiovascular correlates of epigenetic aging  
CVDs are the leading causes of morbidity and mortality worldwide (CollaboratorsGBDCoD 

2017; North and Sinclair 2012). Chronological age is by far the single most important 

predictor of CVD occurrence (North and Sinclair 2012). However, substantial inter-

individual variation in cardiovascular aging and associated morbidity remains in individuals 

with the same chronological age, pointing towards markedly different rates of biological 

aging (Ben-Shlomo et al. 2014; Hamczyk et al. 2020; Medina-Lezama et al. 2018; Patel 

et al. 2015; Yusuf et al. 2020). Nevertheless, the extent to which different cardiovascular 

risk factors contribute to biological aging is still unclear. Elucidation of the relation between 

inter-individual differences in cardiovascular risk factors and the rate of biological aging is 

crucial for developing more potent preventive and therapeutic strategies for CVDs based 

on antiaging approaches.  

 

Several studies have shown that classical cardiovascular risk factors causally affect DNA 

methylation status. Large scale (epi)genomic analyses have shown that body mass index 

drives differential methylation status in blood, adipose tissue, and liver, as well as changes 

in methylation over time (Horvath et al. 2014; Mendelson et al. 2017; Sun et al. 2019; 

Wahl et al. 2017). Inter-individual variation in blood lipids, as well as hyperglycemia, could 

induce differential methylation changes in blood cells, human endothelial cells and skeletal 

muscle (Aref-Eshghi et al. 2020; Dekkers et al. 2016; Mudry et al. 2017). In addition, data 

from in-vitro studies suggest that blood flow induced methylation modifications are related 
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to endothelial and vascular functions, which may lead to atherosclerosis and CVDs (Dunn 

et al. 2014; Jiang et al. 2014). The latter is also supported by a recent population-based 

epigenetic study, which has shown a bidirectional association between blood pressure 

and DNA methylation (Richard et al. 2017). However, the association of quantitative 

markers of cardiovascular aging, including age-related changes in arterial stiffness, 

endothelial function and hemodynamics, with DNA methylation remains largely unknown.  

 

Importantly, it is still unknown whether and how inter-individual differences in 

cardiovascular risk factor profiles, as well as age-associated changes in cardiovascular 

functional parameters (arterial stiffness, endothelial function, systemic hemodynamics), 

are associated with DNAm age acceleration estimators at the population-level. In 

particular, studies that assess the relation between cardiovascular risk factors and lifespan 

acceleration estimators are lacking (Huang et al. 2019; Nannini et al. 2019; Quach et al. 

2017). Moreover, no studies investigated the association of quantitative and highly 

sensitive markers of cardiovascular aging with both generations DNAm age acceleration 

estimators and compared the utility of the first and second-generation DNAm age 

acceleration estimators in capturing similarities and differences in multi-domain 

cardiovascular dysfunction. 

 
1.2.2 Lipidomic correlates of epigenetic aging 
Lipid metabolism has been suggested to play an important role in biological aging. Key 

pathways that have been implicated in the aging process, including the insulin-like growth 

factor-Akt-mTOR pathway, the nuclear factor kB (NF-kB) pathway and the AMP-activated 

protein kinase (AMPK) pathway, are also crucial regulators of lipid metabolism (Burkewitz 

et al. 2014; Jesko et al. 2019; Rozing et al. 2009). Lipid metabolites are essential 

components of biological membranes and signaling molecules, and the lipidome 

represents an individual's biological state that is influenced by both genetic and epigenetic 

factors (Hahn et al. 2017). Importantly, various circulating lipid species have been linked 

to age-related phenotypes. Higher levels of plasma ceramides carrying different fatty acids 

were associated with various prediabetes markers (Lemaitre et al. 2018). A number of 

lipidomic features have been linked to obesity (Yin et al. 2020), and Alzheimer’s disease 

(Proitsi et al. 2017). Further evidence for the crucial role of lipid metabolism in aging stems 
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from studies of nonagenarians and centenarians and their offspring, which found favorable 

lipid profiles in healthy agers (Gonzalez-Covarrubias et al. 2013; Montoliu et al. 2014; 

Vaarhorst et al. 2011). Notably, in the Leiden Longevity Study, it was found that offspring 

of nonagenarians had higher levels of phosphocholine (PC) and sphingomyelin (SM) 

species and lower levels of phosphoethanolamine (PE) (38:6) and long-chain 

triacylglycerols (TAGs), independent of total triglyceride levels (Gonzalez-Covarrubias et 

al. 2013; Vaarhorst et al. 2011). Similarly, in another longevity cohort it was found that 

healthy agers had lower concentrations of lysophospatidylcholines and higher levels of 

SM species compared to their unhealthy contemporaries (Collino et al. 2013).  

 

There is ample evidence that levels of blood lipids, including HDL cholesterol, LDL 

cholesterol, TAGs, total cholesterol, and lipoprotein subfractions, are associated with DNA 

methylation status (Braun et al. 2017; Dekkers et al. 2016; Frazier-Wood et al. 2014; 

Gomez-Alonso et al. 2021; Hedman et al. 2017; Irvin et al. 2014; Nuotio et al. 2020; 

Pfeiffer et al. 2015; Xie et al. 2019). A recent large-scale epigenome-wide association 

study (EWAS) (N=16,265) found that numerous CpGs were associated with HDL, LDL, 

and TG in either trans-ethnic or ethnic-specific meta-analyses (Jhun et al. 2021). EWAS 

combined with Mendelian randomization analyses indicated that inter-individual variations 

in lipid levels are likely to be causally related to changes in DNA methylation (Dekkers et 

al. 2016; Jhun et al. 2021). Furthermore, many of the lipid-related CpGs have also been 

linked to age-related phenotypes, including metabolic syndrome, type 2 diabetes, and 

coronary artery disease (Gomez-Alonso et al. 2021; Hedman et al. 2017; Xie et al. 2019). 

Taken together, current evidence suggests that lipid changes may exert at least part of 

their (pathological) effects through epigenomic remodeling. 

 

Despite the intriguing connection between lipid metabolism and aging as detailed above, 

it is still unknown whether and how inter-individual differences in lipid profiles could 

contribute to different rates of biological aging in the general population. The 

heterogeneous chemical structure of lipids poses challenges for their accurate 

quantification, and until now only a few lipid species have been investigated in relation to 

aging and age-related health outcomes. Yet the vast diversity of lipid functions is reflected 

in the wide variation in the structure and composition of lipid molecules, which ultimately 
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determine their specific effects. Recently, high-throughput, in-depth molecular 

characterization of many lipid species has become available through Metabolon’s novel 

complex lipid assay platform. This lipidomics platform provides absolute quantitation of 14 

lipid classes across phospholipids, sphingolipids, and neutral lipids, as well as the 

complete fatty acid composition of each lipid class, including absolute concentrations of 

their constituent molecular species. These recent technological developments make it 

possible to investigate the contribution of complex lipids to biological aging – as estimated 

by epigenetic age acceleration – at a population level. 

 

1.2.3 Leukocyte telomere length and vascular phenotypes 
Accumulating evidence has suggested that telomere shortening may be part of the 

mechanistic pathway leading to endothelial and hemodynamic dysfunction (Fyhrquist et 

al. 2013). Indeed, progressive telomere shortening reduced human vascular smooth 

muscle cell life span triggering endothelial dysfunction, which was reversed by inhibition 

of telomere shortening (Maeda et al. 2019; Minamino et al. 2001; Minamino et al. 2002). 

Increased rates of cell turnover in the arterial system reportedly accelerate telomere loss, 

which in turn leads to higher levels of hemodynamic stress and endothelial senescence 

(Chang and Harley 1995; Chen et al. 2021). Treatment that reduced telomere length could 

also accelerate endothelial dysfunction (Yepuri et al. 2016).  

 

In contrast to many in vitro studies, only a few epidemiological and clinical studies have 

investigated the role of telomere length in relation to endothelial function, hemodynamics 

and other vascular phenotypes, with inconsistent results (De Meyer et al. 2009; Fitzpatrick 

et al. 2007; Gonzalez-Guardia et al. 2014; Masi et al. 2014; McDonnell et al. 2017; Nguyen 

et al. 2019). Shorter LTL was associated with thicker carotid intima-media thickness in 

older participants (Fitzpatrick et al. 2007), but neither cross-sectional nor longitudinal LTL 

were associated with cardiac measurements (Masi et al. 2014) or pulse wave velocity 

(Nguyen et al. 2019).  In contrast, in the Anglo-Cardiff Collaborative Trial LTL was 

associated with PWV, but only in people older than 50 years of age (McDonnell et al. 

2017). Altogether, detailed findings about the association between LTL and quantitative 

and sensitive preclinical markers of vascular function are lacking, especially in the general 

population across the adult lifespan.  
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Prior studies have reported cross-sectional associations between LTL and some vascular 

phenotypes, yet these findings may have been subject to residual confounding or due to 

reverse causation (De Meyer et al. 2009; Fernandez-Alvira et al. 2016; Fitzpatrick et al. 

2007; Masi et al. 2014; Nguyen et al. 2019). LTL has a strong inherited genetic component 

in humans, with an estimated heritability ranging from 44 % to 86 % (Broer et al. 2013; 

Njajou et al. 2007). Recently, a large genome-wide meta-analysis found 52 independent 

variants associated with LTL, accounting for ~2.93 % of the variance in LTL (Li et al. 2020). 

Of note, these variants were located in gene regions involved in telomere regulation, 

maintenance, as well as cellular aging and senescence. Therefore, taking advantage of 

these new genetic findings, weighted polygenic risk scores (PRS) of LTL can be created 

to assess the association between genetic predisposition to longer LTL and vascular 

phenotypes.  

 

1.3 Overall aim and study specific aim 
The overall aim of this thesis was to investigate biomarkers and correlates of biological 

aging across the adult lifespan in a population-based setting. More specifically, I aimed 

to address the following: 

 

Study I: Cardiovascular correlates of epigenetic aging across the adult lifespan: a 
population-based study 
In study I, I aimed to examine the relation of cardiovascular risk factors and cardiovascular 

aging markers with four different estimators of accelerated biological aging across the 

adult lifespan in a population-based study.  

 

Study II: The lipidomic correlates of epigenetic aging across the adult lifespan: a 
population-based study 
In study II, I aimed to delineate the contribution of complex lipids to biological aging – as 

estimated through epigenetic age acceleration – in a large population-based cohort. 

 

Study III: Associations of measured and genetically predicted leukocyte telomere 
length with vascular phenotypes: a population-based study 
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In study III, I aimed to elucidate the role of telomere-triggered cell senescence, a hallmark 

of biological aging, in the pathogenesis of endothelial and hemodynamic dysfunction. Here 

we systematically assessed the relations of both measured and genetically predicted LTL 

and four different vascular functional domains, including endothelial function, 

hemodynamics, arterial stiffness, and blood pressure.   
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2. Material and methods 
 
2.1 Study population 
2.1.1 The Rhineland Study 
All analyses were embedded within the Rhineland Study. The Rhineland Study is an 

ongoing single-center, population-based prospective cohort study that aims to invite up to 

20,000 participants among people aged 30 years and above in Bonn, Germany. All 

individuals living in two pre-defined recruitment areas are invited to participate in the study. 

The only exclusion criterion is an insufficient command of the German language to provide 

informed consent. Participants living in the two recruitment areas are predominantly 

German of Caucasian descent. One of the Rhineland Study’s primary objectives is to 

identify determinants and markers of healthy aging, applying a deep-phenotyping 

approach. At baseline, participants complete an 8-hour in-depth multi-domain phenotypic 

assessment of anthropometry, physical activity and fitness, cardiovascular health, brain 

imaging, cognitive testing, neurologic functioning, ophthalmologic health, and other 

sensory systems, and various types of biomaterials (blood, urine, stool, and hair) are 

collected.  

 

Approval to undertake the study is obtained from the ethics committee of the University of 

Bonn, Medical Faculty. We obtain written informed consent from all participants in 

accordance with the Declaration of Helsinki. 

2.1.2 Study specific analysis samples  

The recruitment of the participants in the Rhineland Study started in March 2016 and is 

still ongoing. Each study was conducted based on the number of participants available at 

that time. We only measured LTL in the first 1828 samples. 

 

Study I 
For this study, we used baseline data of the first 3332 participants of the Rhineland Study 

with methylation data. We excluded samples that did not meet the methylation data quality 

control criteria (n = 4). The final analysis sample comprised 3328 participants. 
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Study II 
For this study, we used baseline data of the first 4471 participants of the Rhineland Study 

in whom complex lipids data were available. We excluded participants without methylation 

data (n=290). The final analysis sample consisted of 4181 participants. 

 

Study III 
In a subset of participants both measured LTL and vascular phenotypes were available (n 

= 1828). Baseline data of the first 4180 participants of the Rhineland Study with both 

genetic data and vascular phenotype data were used to assess the association between 

genetically predicted LTL and vascular phenotypes. 

 

2.2 Blood samples collection  
Blood samples were mainly collected between 7:00 to 9:45 in the morning from an 

antecubital or dorsal hand vein after overnight fasting. They were used in the 

measurement of DNA methylation, clinical biochemistry, complex lipids, genetics and LTL, 

as detailed below. 

 

2.3 DNA Methylation  
2.3.1 DNA methylation assessment  
Genomic DNA was extracted from buffy coat fractions of anti-coagulated blood samples 

using Chemagic DNA buffy coat kit (PerkinElmer, Germany), and was subsequently 

bisulfite converted using the DNA methylation kit according to the manufacturer’s 

instructions. DNA methylation levels were measured using Illumina’s Human 

MethylationEPIC BeadChip. The methylation level for each probe was derived as a beta 

value representing the fractional level of DNA methylation at that probe. Sample-level and 

probe-level quality control were performed using the ‘minfi’ package (Fortin et al. 2017) in 

R (version 3.5.0).  Probes with a missing rate >1 % (at a detection p-value >0.01) were 

excluded. Samples with sex mismatch or a missing rate at >1 % across all probes were 

also excluded following previously published recommendation guidelines for analyzing 

methylation data (Wu and Kuan 2018). 

2.3.2 Estimation of DNAm age acceleration 
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Four measures of DNAm age were calculated. DNAmAge.Horvath and 

DNAmAge.Hannum were calculated according to the algorithms described by Horvath 

and Hannum et al., using 353 and 71 CpG sites, respectively (Hannum et al. 2013; 

Horvath 2013). DNAm PhenoAge and DNAm GrimAge were calculated based on the 

algorithms developed by Levine et al. and Lu et al., using 513 and 1030 CpG sites, 

respectively (Levine et al. 2018; Lu et al. 2019). DNAm age acceleration estimator is 

defined as the residual (in years) that results from regressing DNAm age on chronological 

age. The corresponding age-adjusted measures of DNAm age acceleration estimator are 

denoted as AgeAccel.Horvath, AgeAccel.Hannum, AgeAccelPheno and AgeAccelGrim.  

 

2.4 Cardiovascular phenotypes measurement 
2.4.1 Measurement of classical cardiovascular risk factors 

Low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, 

triglycerides, total cholesterol, C-reactive protein (CRP), insulin, glucose, glycated 

haemoglobin (HbA1c) concentrations in venous blood samples were measured using 

standard methods at the local clinical chemistry laboratory of the University Hospital of 

Bonn. Insulin resistance was calculated as: insulin (mIU/L) × glucose (mmol/L)/22.5. 

Estimated glomerular filtration rate (eGFR) was estimated using the CKD-EPI equation 

(Inker et al. 2012). Percentage of body fat was measured by direct segmental multi-

frequency bioelectrical impedance analysis (InBody770). Body mass index (BMI) was 

calculated as weight in kilograms dived by height in meters squared. Waist circumference 

(WC) was measured according to the WHO recommendation, localizing the middle 

anatomical point between the lowest rib and the iliac crest with an anthropometric tape 

(SECA 201). Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 

measured three times (separated by ten minutes intervals), using an oscillometric blood 

pressure device (Omron 705 IT). The measurements were performed while people were 

sitting in a resting chair in a quiet environment, and the average of the second and third 

measurements was used for further calculation. Mean arterial pressure (MAP) was 

calculated as (SBP + 2 × DBP)/3. The Framingham 10-year cardiovascular risk score was 

calculated for individuals from 30 to 79 years old without coronary heart disease, stroke, 

or peripheral arterial diseases, using the published gender-specific algorithms (D'Agostino 

et al. 2008). 
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2.4.2 Measurement of hemodynamic and arterial stiffness 
All examinations were performed in temperature-controlled rooms after acclimatization of 

the participants in the study center and 5 minutes of rest in the supine position. Aorta-

femoral pulse wave velocity (PWV [m/s]) was assessed with an integrated oscillometric 

method, defining the propagation time of pulse wave as the delay between opening of the 

aortic valve determined with impedance cardiography (ICG) waves and the arrival of the 

pulse wave to mid-femoral cuff. PWV was calculated as the distance measured between 

supra-sternal notch and mid-femoral cuff divided by propagation time. Ankle-Brachial 

Index (ABI), calculated as the ratio of the ipsilateral ankle and brachial SBP, was 

measured on both sides with the oscillometric method. In cases where the ABI on both 

sides was lower than 1.40, the lower value was used for analysis, whereas in other cases 

the higher value was used as recommended previously (Aboyans et al. 2012).  

 

Hemodynamic variables were measured beat-to-beat for approximately 8 minutes with an 

impedance cardiography device (CardioScreen 2000, Medis, Germany). All hemodynamic 

variables were computed by Cardiovascular Lab Software (Medis, Germany), based on 

stroke volume (SV [mL]), simultaneously registered electrocardiography signals and blood 

pressure measured with 2-minute intervals. Average values of each variable were used 

for the analysis. Briefly, cardiac output (CO [L/min]) was computed as SV multiplied heart 

rate [beat per minute]. Total arterial compliance (TAC [mL/mmHg]) was calculated as SV 

divided by brachial pulse pressure (PP). PP was assessed as the difference between SBP 

and DBP. Systemic vascular resistance (SVR [dynes/sec/cm5]) was approximated as 

MAP divided by CO and multiplied by 80. These parameters were also divided by body 

surface area (BSA, m2) to obtain stroke index (SI), cardiac index (CI), total arterial 

compliance index (TACI) and SVR was multiplied with BSA to compute systemic vascular 

resistance index (SVRI).  

 

2.4.3 Measurement of endothelial function  
Endothelial function was assessed as reactive skin hyperemia (RSH) with a laser Doppler 

flowmetry device (Moors, UK) using a local thermal heating protocol. Skin blood flow 

(SBF) on the ventral surface of the forearm was measured for a total of 26 minutes. After 

2 minutes of baseline SBF measurement, the area was heated up to 40 degrees Celsius 
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with an integrated heating probe and kept constant until the end of the examination. The 

baseline SBF is followed by a nadir and after approximately 20 minutes it reaches a 

plateau that is linked to nitric oxide production capacity of the endothelial cells (Choi et al. 

2014). RSH was calculated as the percentage increase in SBF from baseline to the last 2 

minutes of plateau level ([(Plateau SBF - Baseline SBF) / Baseline SBF] x 100).  

 

2.5 Complex Lipids panel and the quality control  
The absolute concentration (µM) of 14 lipid classes, including cholesteryl ester (CE), 

triacylglycerol (TAG), diacylglycerol (DAG), monoacylglycerol (MAG), phosphatidylcholine 

(PC), phosphatidylethanolamine (PE) (including phosphatidylethanolamine ether (PE(O)) 

and phosphatidylethanolamine plasmalogen (PE(P))), phosphatidylinositol (PI), 

lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), sphingomyelin 

(SM), ceramide (CER), hexosylceramide (HCER), lactosylceramide (LCER), 

dihydroceramide (DCER), as well as the molecular species which were defined by the 

number of carbons and the number of double bonds  in all the side chains [e.g. CE (16:1), 

DAG(14:0/18:1), and PC(16:0/22:6)] of each of the 14 covered lipid classes, were 

measured in serum samples (100 µL) using the True Mass Complex Lipid Panel 

(Metabolon, Research Triangle Park, NC, USA).  Additional to the individual molecular 

species, one-fatty-acid-tail composition which consisted of one specific fatty acid of that 

class (e.g. DAG [FA14:1], PC[FA18:2]) was also measured. 

 

Lipids were extracted from the bio-fluid in the presence of deuterated internal standards 

using an automated BUME extraction according to the method of Lofgren et al (van Dijk 

et al. 2012). The extracts were dried under nitrogen and reconstituted in ammonium 

acetate dichloromethane: methanol (50:50).  The extracts were transferred to vials for 

infusion-mass spectroscopy analysis, performed on a Shimadzu LC with nano PEEK 

tubing and the Sciex SelexIon-5500 QTRAP. The samples were analyzed via both positive 

and negative mode electrospray. The 5500 QTRAP was operated in multiple reaction 

monitoring (MRM) mode with a total of more than 1100 MRMs. Individual lipid molecular 

species were quantified by taking the ratio of the signal intensity of each target compound 

to that of its assigned internal standard, then multiplying by the concentration of internal 

standard added to the sample.  Lipid class concentrations were calculated from the sum 
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of all molecular species within a class, and one-fatty-acid compositions were determined 

by calculating the proportion of each class comprised of individual fatty acid. The 

differences between each run day were normalised out by subtracting the background 

and normalising against its run day median for each dataset and then post-multiplied by 

the overall median of all datasets. The coefficients of variation (CVs) of lipid 

concentrations were all below 10 %. The median CV of species at 1 µM concentration in 

serum samples was approximately 5 %.  

 

The number of molecular species and the one-fatty-acid-tail compositions of each lipid 

class measured are presented in Table 1. In total, 1050 molecular species and 278 one-

fatty-acid-tail composition covering these 14 classes were measured in the complex 

lipids panel. Individual lipid species that contained more than 90 % missing values 

across all the participants were not included for statistical analysis (86 molecular species 

and 11 one-fatty-acid-tail compositions), leaving a total of 964 molecular species and 

267 one-fatty-acid-tail compositions for the analyses (Table 1). Lipids with zero double 

bond are defined as saturated fatty acids (SFA), lipids with one double bond are defined 

as monounsaturated fatty acids (MUFA), and lipids with more than one double bond are 

defined as polyunsaturated fatty acids (PUFA). 

 

Table 1. Lipid class and molecular species measured in complex lipids panel and 
were included in the analysis 
Group Abbreviat

ion 
 

Lipid class Molecular species One-fatty-acid-tail 
composition 

No. of 
measured  
(n= 1050) 

No. of 
included in 
the 
analysis  
(n = 964) 

No. of 
measured 
(n = 278) 

No. of 
included in 
the 
analysis 
(n = 267) 

Neutral lipids CE Cholesteryl ester 27 27 26 26 
MAG Monoacylglycerol 27 27 26 26 
TAG Triacylglycerol 519 519 21 21 
DAG Diacylglycerol 59 59 19 19 

Phospholipids PC Phosphatidylcholin
e 

121 106 23 23 

PE Phosphatidylethan
olamine 

80 42 21 16 

PE(O) phosphatidylethan
olamine ether 

26 17 - - 

PE(P) phosphatidylethan
olamine 
plasmalogen 

53 36 - - 
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PI Phosphatidylinosit
ol 

29 28 13 13 

LPC Lysophosphatidylc
holine 

22 19 21 18 

LPE Lysophosphatidylet
hanolamine 

21 18 20 17 

Sphingolipids SM Sphingomyelin 13 13 12 12 
CER Ceramide 13 13 12 12 
HCER Hexosylceramide 13 13 12 12 
LCER Lactosylceramide 13 13 12 12 
DCER Dihydroceramide 14 14 12 12 

 TOTAL 
FA 

Total fatty acid 
composition  

- - 28 28 

 

2.6 Measurement of leukocyte telomere length 
LTL was measured using the quantitative polymerase chain reaction (qPCR) method 

adapted from the published original method (Cawthon 2009). Genomic DNA was 

extracted from buffy coat fractions of anti-coagulated blood samples using Chemagic DNA 

buffy coat kit (PerkinElmer, Germany) and stored at -80°C before use.  The relative mean 

LTL (T/S ratio) was measured as the relative quantity of the telomeric TTAGGG repeat 

(T) and the single copy of a housekeeping gene, albumin (S). Each reaction contained 

25ng of DNA, 400 nM of the telomere length primers (tel-forward: ACA CTA AGG TTT 

GGG TTT GGG TTT GGG TTT GGG TTA GTGT; tel-reverse: TGT TAG GTA TCC CTA 

TCC CTA TCC CTA TCC CTA TCC CTA ACA) and 200 nM of the albumin primers (alb-

forward: CGG CGG CGG GCG GCG CGG GCT GGG CGG AAA TGC TGC ACA GAA 

TCC TTG; alb-reverse: GCC CGG CCC GCC GCG CCC GTC CCG CCG GAA AAG CAT 

GGT CGC CTG TT) and 1x SYBR green PCR Mastermix (iTaq Universal SYBR Green 

Supermix). The reactions were performed in triplicates for each sample using 7900HT 

machine (Applied biosystems). The intra-assay coefficient of variability was 4 % and the 

inter-assay coefficient of variability was 6 %. LTL (kb pairs) was calculated using the 

following equation: 3274 + 2413 * T/S ratio/ 1000 according to the literature (Rehkopf et 

al. 2016). 

 

2.7 Weighted polygenic scores for longer leukocyte telomere length 
DNA extracted from buffy coat samples were genotyped using Infinium Omni2.5Exome-8 

BeadChip containing 2,612,357 SNPs and processed using GenomeStudio (version 

2.0.5). Quality control of genotypes was performed using PLINK (version 1.9). Single-
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nucleotide polymorphisms (SNP) exclusion criteria were Hardy-Weinberg disequilibrium 

(p<1*10-6), minor allele frequency (<0.01) and poor genotyping rate (<99%) (Marees et al. 

2018). Participants with potentially problematic samples were excluded, comprising 34 

cases with poor call rate (<95%), 47 cases with abnormal heterozygosity, 143 cases with 

cryptic relatedness and 7 cases with gender mismatch. Since variation in population 

structure can cause systematic differences in allele frequencies, we used EIGENSTRAT 

(version 16000), which uses principal components (PCs) to detect and correct for variation 

in population structure (Price et al. 2006). Based on the EIGENSTRAT estimation, we 

exclude 101 cases of non-Caucasian descent and keeping only the participants with the 

Caucasian descent for the analysis. We used 1000 Genomes phase 3 reference panel for 

the imputation of missing genotypes using impute2 (version 2). To include only SNPs with 

high imputation quality, we filtered the SNPs based on an info score metric > 0.3 (Verma 

et al. 2014). 

 

A previous genome-wide association study including 78,592 individuals of European 

descent identified 52 variants independently associated with LTL at a false discovery rate 

(FDR) <0.05, accounting for ~2.93% of the variance in LTL (Li et al. 2020). Among these, 

20 sentinel variants reached genome-wide significance (5*10-8); 47 out of 52 SNPs were 

available in our genetic array. Of the missing ones, rs754017156, rs7510583, 

rs112347796 were not present in our imputed dataset. In addition, rs201375979 was 

excluded because it is an indel variant, and rs7510583 was excluded because it is tri-

allelic. Individual SNPs were coded for effect allele dosage associated with longer LTL, 

ranging from zero (no effect alleles) to two (two effect alleles). Two weighted polygenic 

risk scores (PRSs) for telomere length were calculated: one using 47 variants that were 

significant at FDR < 0.05 (PRSFDR of LTL) and one using 20 variants that reached genome-

wide significance (PRSGWAS of LTL), with a higher PRS scores representing longer LTL. 

The published regression coefficient (beta) estimates representing the per-allele effect on 

normalized LTL were assigned as weights for each SNP. These two PRSs were further 

standardized to have a mean of 0 and a standard deviation of 1 and were used in the 

analyses as proxies for genetically predicted LTL. 
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We defined delta LTL (ΔLTL) as the difference between measured and genetically 

predicted LTL for each participant, and estimated it as the residual remaining after 

regressing measured LTL on PRS of LTL, batch information of measured LTL and the first 

10 genetic PCs. 

 

2.8 Demographic and health variables 
We included age, sex and education level as demographic factors. Education level was 

grouped as less than high school, high school, or higher. Smoking status was defined as 

current smoker or non-current smoker. Participants were considered to have diabetes if 

they had a self-reported physician diagnosis of diabetes, glycated hemoglobin (%) levels 

of 6.5 % or more, or used insulin or other anti-diabetic drugs. Hypertension was defined 

as a self-reported physician diagnosis of hypertension, use of antihypertensive drugs, or 

an average systolic blood pressure > 140 mmHg and/or diastolic blood pressure > 90 

mmHg. Stroke and myocardial infarction were defined as self-reported physician 

diagnosis. 

 
2.9 Statistical analyses  
2.9.1 Study I 
Data were summarized as mean ± standard deviation (SD) or counts with proportions, for 

continuous and categorical variables, respectively. Differences between women and men 

were compared using linear regression for continuous variables, and logistic regression 

for categorical variables adjusting for age. Pearson correlation coefficients were used to 

assess correlations among cardiovascular risk factors, markers of cardiovascular aging, 

and DNAm age acceleration estimators. Multiple linear regression analyses were applied 

to assess the association between each cardiovascular factor (independent variable) and 

each different DNAm age acceleration estimator (dependent variable). All cardiovascular 

variables were standardized before further analyses to better compare the effect sizes 

across different physiological domains. For all the analyses, complete data were used. 

There is no missing for age, sex, batch information of methylation data. The missingness 

rate for each main independent variable was less than 5 %, therefore we did not impute 

missing values. In total, 3016 participants had all the complete data. Model 1 was adjusted 

for batch information of the methylation data. In model 2, we additionally adjusted for sex. 
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Model 3 was further adjusted for smoking status (current or not). Hierarchical clustering 

was applied to group cardiovascular risk factors, as well as blood pressure, arterial 

stiffness, endothelial function and hemodynamic variables into homogenous clusters 

according to their degree of interrelatedness (R package ‘ClustOfVar’). Average Z-scores 

were calculated across each cluster, and were included in the multivariable regression 

model to assess the independent relation between each cluster and DNAm age 

acceleration estimator, adjusting for sex, batch information of the methylation data and 

smoking status. To explore sex differences between cardiovascular factors and DNAm 

age acceleration estimator, we assessed the interaction between sex and each 

cardiovascular factor and performed sex-stratified analyses if the interaction term was 

statistically significant. To test whether our results would be affected by cardiovascular co-

morbidity, we also performed a sensitivity analysis by excluding participants with diabetes, 

stroke or myocardial infarction. Potential nonlinear relationships were examined by 

plotting each cardiovascular factor against DNAm age acceleration estimator. If there was 

a potentially nonlinear relationship based on visual inspection, quadratic terms for 

cardiovascular factor were added to the regression models. All statistical analyses were 

performed using R version 3.5.2. All standardized effect estimates are reported with their 

95 % confidence intervals (CIs). Statistical significance level was set at P < 0.05. 

 

2.9.2 Study II 
Data were summarized as mean + standard deviation (SD) or counts with proportions, for 

continuous and categorical variables, respectively. Differences between women and men 

were compared using linear regression for continuous variables, and logistic regression 

for categorical variables adjusting for age. Age and sex-adjusted partial-correlations were 

used to assess the correlations among standard clinical lipid measures (i.e. LDL, HDL, 

total cholesterol, TAG, LDL/HDL ratio), BMI and the 14 main lipid classes (i.e. CE, MAG, 

DAG, TAG, PC, PE, PI, LPC, LPE, SM, CER, DCER). All lipid variables were z-

transformed to have a mean of 0 and standard deviation of 1 before further analyses to 

enable a better comparison of the effect sizes across different lipid classes. Given the low 

missingness rate, for all analyses we used complete data without imputation of missing 

values. 
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Association analysis 
Multiple linear regression analyses were applied to assess the association between each 

lipid class, molecular species, one-fatty-acid-tail composition (independent variable), and 

each different DNAm age acceleration estimator (dependent variable). The base model 

was adjusted for sex, batch information of lipids as well as methylation data, smoking 

status (current or not). As HDL and LDL transport lipids in the circulation and have 

important clinical utility, we further adjusted for HDL and LDL separately and jointly. To 

assess whether the association of lipid species and DNAm age acceleration estimators 

was independent of BMI, we also adjusted for BMI based on the base model. The false 

discovery rate (FDR) method was used to account for multiple comparisons, considering 

FDR < 0.05 as statistically significant.  

The overall patterns between all lipid classes/species and DNAm age acceleration 

estimators were shown as forest plots. Patterns across all species of specific lipid class 

were also shown as forest plots. To assess whether the effect (strength and direction) of 

the associations depended on the total number of carbon and double bonds in the lipids, 

the effect estimates of the lipid species were plotted as circles with their position in the 2-

dimensional lipid class graphs determined by the total acyl chain carbon numbers (x-axis) 

and double bonds (y-axis). To assess whether the effect (strength and direction) of the 

associations depended on the number of carbons in one specific fatty acid tail, heat maps 

were shown for the effect estimates of the lipid species at FDR <0.05 level. To examine 

whether the associations differed by degree of saturation in each lipid molecular species, 

beta estimates across lipid classes were shown as forest plots.  

 

Sex interaction and sex-stratified analysis  
To examine sex differences between lipid class and lipid molecular species and DNAm 

age acceleration estimators, we assessed the interaction effects between sex and each 

lipid species on AgeAccel. In case statistically significant sex-lipid interactions were 

identified, additional sex-stratified analyses were performed. 

 
Pathway analysis  
Epigenome-wide association analyses were performed for each AgeAccel-associated 

lipid species, adjusted for age, sex, smoking status, batch information of lipids as well as 



 
27 

methylation data, first 10 genetic PCs and cell counts which includes CD8T, CD4T, natural 

killer cells, B cells, monocytes, and granulocytes. The associated CpGs were used as a 

proxy for each lipid to perform the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway analysis using g:Profiler (https://biit.cs.ut.ee/gprofiler/). 

 
2.9.3 Study III 
Data were summarized as mean ± standard deviation (SD) or counts with proportions, for 

continuous and categorical variables, respectively. Multiple linear regression analyses 

were applied to assess the association between measured LTL and each vascular 

phenotype. All vascular phenotypes were standardized using z-scores before further 

analyses to enable a better comparison of the effect sizes across different physiological 

domains. The missingness rate for each main independent variable was less than 5 %, 

therefore we did not impute missing values and used complete data for the analyses. 

Model 1 was adjusted for age, sex, batch information of LTL. In model 2, we additionally 

adjusted for smoking status and BMI. As a previous study found that controlling for 

leukocyte compositions attenuated the association between LTL and cardiovascular risk 

factors by between 10 % to 20 % (Rehkopf et al. 2016), model 3 was further adjusted for 

cell type proportions estimated from the same DNA samples, including CD8T, CD4T, 

natural killer cells, B cells, monocytes, and granulocytes (Houseman et al. 2012).  

 

For assessing the association of measured and genetically determined LTL, LTL was 

standardized using z-scores. First, we assessed and confirmed whether the previously 

reported genetic variants of LTL were associated with measured LTL in our cohort using 

multiple linear regression. The model was adjusted for age, sex, and the first 10 PCs, 

following the approach described in a previous GWAS (Li et al. 2020). Second, multiple 

linear regression analyses were applied to examine the association between PRS of LTL 

and measured LTL, adjusted for age, sex, and the first 10 PCs. Third, the association 

between PRS of LTL and each vascular phenotype was assessed using multiple linear 

regression. Base model was adjusted for age, sex, and the first 10 genetic PCs. In model 

2, we additionally adjusted for smoking status. Model 3 was further adjusted for BMI. 

Finally, the association between ΔLTL and each vascular phenotype was assessed while 

adjusting for age, sex, PRS of LTL, BMI and smoking.   
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To assess whether age, sex, and smoking modified the associations between LTL and 

vascular phenotypes, we assessed the interaction between age, sex, smoking status and 

each vascular phenotype. In case of significant interaction effects, additional stratified 

analyses were performed. 

 

All statistical analyses were performed using R version 3.5.2. All standardized effect 

estimates are reported with their 95 % confidence intervals (CIs). The statistical 

significance level was set at P < 0.05. 
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3. Results 
 

3.1 Results study I: Cardiovascular Correlates of Epigenetic Aging across the 
Adult Lifespan: A population-based Study 
 
The characteristics of the study population are presented in Table 2. A total of 3,328 

participants had DNA methylation data and were included in the analyses.  

 
Table 2. Characteristics of the study population 
 Overall 

(n=3328) 

Women  

(n=1864) 

Men  

(n=1464) 

Adjusted  
p value* 

Demographic characteristics 

Age, year    0.352 

    Mean (SD) 55.3 (14.3) 55.1 (14.0) 55.5 (14.7)  

    Median [Min, Max] 54.0 [30.0, 95.0] 54.0 [30.0, 95.0] 55.0 [30.0, 91.0]  
Education, n (%)    <0.001 

    Low 67 (2.0 %) 52 (2.8 %) 15 (1.0 %)  

    Middle 1484 (44.6 %) 919 (49.3 %) 565 (38.6 %)  

    High 1745 (52.4 %) 873 (46.8 %) 872 (59.6 %)  

BMI, kg/m2, mean (SD) 25.8 (4.4) 25.3 (4.7) 26.5 (3.9) <0.001 

SBP, mmHg, mean (SD) 127 (16.1) 124 (16.8) 131 (14.1) <0.001 

DBP, mmHg, mean (SD) 75.9 (9.3) 74.3 (9.0) 78.0 (9.4) <0.001 

Current smoking, n (%) 424 (12.7 %) 218 (11.7 %) 206 (14.1 %) 0.036 

Hypertension, n (%) 1296 (39.0 %) 642 (34.4 %) 654 (44.7 %) <0.001 

Diabetes, n (%) 173 (5.2 %) 68 (3.7 %) 105 (7.2 %) <0.001 

Stroke, n (%) 102 (3.1 %) 47 (2.5 %) 55 (3.8 %) 0.065 

Myocardial infarction, n (%) 61 (1.8 %) 15 (0.8 %) 46 (3.1 %) <0.001 

DNAm age acceleration estimators, year, mean (SD) 

AgeAccel.Horvath 0 (5.1) -0.6 (5.0) 0.7 (5.1) <0.001 

AgeAccel.Hannum 0 (5.7) -0.9 (5.7) 1.1 (5.5) <0.001 

AgeAccelPheno 0 (6.8) -0.5 (6.9) 0.6 (6.5) <0.001 

AgeAccelGrim 0 (3.8) -1.1 (3.4) 1.4 (3.7) <0.001 

Cardiovascular risk factors, arterial stiffness, endothelial function and hemodynamics, mean (SD) 

LDL, mg/dL 126 (35.9) 125 (36.9) 127 (34.7) 0.066 

HDL, mg/dL 62.8 (18.0) 70.2 (17.3) 53.5 (14.0) <0.001 
LDL/HDL ratio, % 2.2 (0.9) 1.9 (0.8) 2.6 (1.0) <0.001 
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Triglyceride, mg/dL 113 (71.0) 98.5 (52.9) 131 (85.4) <0.001 

Total cholesterol, mg/dL 200 (40.0) 204 (40.4) 195 (38.9) <0.001 

Cystatin C, mg/L 0.9 (0.2) 0.9 (0.2) 1.0 (0.2) <0.001 

Estimated glomerular filtration 

rate, ml/min/1.73m2 

91.4 (19.3) 91.4 (18.3) 91.3 (20.5) 0.340 

C-reactive protein, mg/L 1.9 (3.5) 1.9 (3.5) 1.9 (3.4) 0.650 

Percentage of body fat, % 28.4 (9.1) 32.2 (8.6) 23.7 (7.3) <0.001 
Waist circumference, cm 88.2 (13.4) 82.8 (12.1) 95.1 (11.7) <0.001 

Insulin, mIU/L 10.8 (8.1) 9.7 (6.7) 12.1 (9.4) <0.001 

Insulin resistance 2.6 (2.5) 2.2 (1.8) 3.0 (3.0) <0.001 

Glucose, mg/dL 93.0 (17.2) 90.3 (15.8) 96.4 (18.3) <0.001 

HbA1c, mmol/mol 37.0 (6.2) 36.7 (5.6) 37.3 (6.9) 0.010 

Mean arterial pressure, mmHg 93.1 (10.6) 90.9 (10.6) 95.8 (9.9) <0.001 

Pulse pressure, mmHg 51.8 (10.6) 50.5 (11.1) 53.3 (9.7) <0.001 
Cardiovascular risk score# 0.4 (0.4) 0.1 (0.1) 0.8 (0.2) <0.001 

Total arterial compliance index, 

mL/mmHg/m2 

1.0 (0.3) 1.1 (0.3) 0.9 (0.2) <0.001 

Pulse wave velocity, m/s 6.8 (1.4) 6.6 (1.4) 7.0 (1.5) <0.001 

Ankle-Brachial index 1.1 (0.1) 1.1 (0.1) 1.2 (0.1) 0.002 

Log reactive skin hyperemia, 

log (%) 

5.8 (1.0) 5.8 (1.0) 5.8 (1.0) 0.287 

Cardiac index, L/min/m2 3.2 (0.5) 3.3 (0.5) 3.0 (0.5) <0.001 
Systemic vascular resistance 

index, dynes· sec/cm5/m2 

2130 (471) 1980 (405) 2300 (483) <0.001 

Stroke index, mL/m2 51.8 (8.5) 53.3 (8.5) 50.0 (8.2) <0.001 

Abbreviations: BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood 
pressure; HDL, high-density lipoproteins; LDL, low-density lipoproteins; HbA1c, glycated 
hemoglobin. SD, standard deviation. The missingness for each variable is less than 5 %.   
#Cardiovascular risk score was calculated among participants < 80 years old without 
cardiovascular diseases (n=3016). * Comparison between women and men, adjusted for 
age.  
 

 

Estimations of DNAm age acceleration 
Table 2 displays the descriptive characteristics of AgeAccel.Horvath, AgeAccel.Hannum, 

AgeAccelPheno, AgeAccelGrim. Compared to women, DNAm age acceleration estimator 

was significantly higher in men for all the four measures. The correlation structure of 

DNAm age acceleration estimators is shown in Figure 1. 
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Figure 1. Correlation structure of DNAm age acceleration estimators 
 

 

Relation between classical cardiovascular risk factors and DNAm age acceleration 
estimators   
Most classical cardiovascular risk factor categories (including lipoproteins, kidney 

function, inflammation, adiposity and measures of glucose homeostasis) were only weakly 

correlated with each other (Figure 2), suggesting that different risk factor categories 

represent different physiological domains. Figure 3 shows the effects of each classical 

cardiovascular risk factor on DNAm age acceleration estimators within the five categories, 

i.e. lipoproteins, kidney function, inflammation, adiposity, glucose homeostasis, as well as 
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an overall cardiovascular risk score. Eleven out of 16 cardiovascular risk factors were 

significantly associated with all four DNAm age acceleration estimators in model 1. Most 

of these associations remained significant after adjustment for sex, batch information and 

smoking status (Figure 3). Most DNAm age acceleration estimators decreased by more 

than 0.30 years per SD increase in kidney function (eGFR) and increased by 

approximately 0.20 – 0.90 years per SD increase in measures of inflammation (CRP), 

adiposity (% body fat, BMI, and waist circumference), and glucose homeostasis (insulin, 

insulin resistance and blood glucose). Moreover, per SD increase in cardiovascular risk 

score, DNAm age acceleration estimator increased by between 0.80 – 1.40 years, 

depending on the aging acceleration estimators (Figure 3). However, within the 

lipoprotein category, HDL and triglyceride levels were only associated AgeAccelPheno 

and AgeAccelGrim. Moreover, except for the CVD risk score, effect sizes were larger for 

AgeAccelPheno and AgeAccelGrim compared to the AgeAccel.Horvath and 

AgeAccel.Hannum for all cardiovascular risk factors. These findings indicate that 

variations in cardiovascular risk factors across multiple physiological domains underlie 

variations in accelerated biological aging beyond chronological age, and that, compared 

to the first-generation aging acceleration estimators, lifespan acceleration estimators are 

more sensitive in capturing age-related changes across different physiological systems.
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Figure 2. Correlation structure of cardiovascular variables 
Abbreviations: LDL, low-density lipoproteins; HDL, high-density lipoproteins; eGFR, 
estimated glomerular filtration rate; CRP, C-reactive protein; BMI, body mass index; 
HbA1c, glycated hemoglobin; DBP, diastolic blood pressure; SBP, systolic blood 
pressure; MAP, mean arterial pressure; PP, pulse pressure; TACI, total arterial 
compliance index; PWV, pulse wave velocity; ABI, ankle-brachial index; RSH, reactive 
skin hyperemia; CI, cardiac index; SVRI, systemic vascular resistance index; SI, stroke 
index
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Figure 3. Relation between classical cardiovascular risk factors and DNAm age 
acceleration estimators 
Abbreviations: LDL, low-density lipoproteins; HDL, high-density lipoproteins; eGFR, 
estimated glomerular filtration rate; CRP, C-reactive protein; BMI, body mass index; 
HbA1c, glycated hemoglobin; SD, standard deviation. 
Model: DNAm age acceleration estimator ~ each independent variable + batch information 
+ sex + smoking status. 
 

 

Relation between blood pressure, arterial stiffness, endothelial function, 
hemodynamics and DNAm age acceleration estimators 
Measures of blood pressure, arterial stiffness, endothelial function and hemodynamics 

were only weakly correlated with most of the classical cardiovascular risk factors and 

across the categories, with expected higher correlation within each category (Figure 2). 

Measures of blood pressure (including DBP, SBP, MAP), arterial stiffness (including TACI 

and PWV) and hemodynamic function (SI) were consistently associated with different 

DNAm age acceleration estimators (Figure 4). Most DNAm age acceleration estimators 

increased by more than 0.20 years per SD increase of DBP, SBP, MAP, and PWV, while 
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they decreased by around 0.20 years for each SD increase of TACI and SI. Endothelial 

function was only significantly associated with AgeAccelGrim [-0.13 (-0.25, -0.01)].  

 

 
Figure 4. Relation between quantitative markers of cardiovascular aging and DNAm 
age acceleration estimators 
Model: DNAm age acceleration estimator ~ each independent variable + batch information 
+ sex + smoking status. 
 
 
The independent effects of cardiovascular risk factor clusters on DNAm age 
acceleration estimators 
Conforming to their known physiological interrelations, hierarchical clustering of the 

classical cardiovascular risk factors yielded five categories (Figure 5A), comprising of 

lipoproteins (LDL, total cholesterol, triglyceride, HDL, LDL/HDL ratio), kidney function 

(cystatin C and eGFR), inflammation (CRP), adiposity (% Body fat, BMI, waist 

circumference), and glucose homeostasis (insulin, insulin resistance, glucose, HbA1c). 

Decreased kidney function, increased inflammation and adiposity profiles were 
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independently associated with higher AgeAccel.Hannum, AgeAccelPheno and 

AgeAccelGrim after adjusting for sex, batch information, and smoking status.  Lower levels 

of lipoproteins or higher levels of glucose homeostasis was also independently associated 

with higher AgeAccelPheno and AgeAccelGrim. Higher levels of lipoproteins, and 

decreased kidney function were independently associated with higher AgeAccel.Horvath 

(Figure 6). 
 

 
Figure 5. Hierarchical clustering of cardiovascular correlates  
Abbreviations: LDL, low-density lipoproteins; HDL, high-density lipoproteins; eGFR, 
estimated glomerular filtration rate; CRP, C-reactive protein; BMI, body mass index; 
HbA1c, glycated hemoglobin; DBP, diastolic blood pressure; MAP, mean arterial 
pressure; SBP, systolic blood pressure; PP, pulse pressure; TACI, total arterial 
compliance index; PWV, pulse wave velocity; ABI, ankle-brachial index; RSH, reactive 
skin hyperemia; CI, cardiac index; SVRI, systemic vascular resistance index; SI, stroke 
index. 
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Figure 6. Independent effects of cardiovascular risk factor clusters on DNAm age 
acceleration estimators 
Model: DNAm age acceleration estimator ~ Lipoproteins + Kidney function + Inflammation 
+ Adiposity + Glucose homeostasis + Sex + Batch information + Smoking status. 
 
 
The independent effects of quantitative markers of cardiovascular aging clusters 
on DNAm age acceleration estimators 
Conforming to their known physiological interrelations, hierarchical clustering of 

quantitative markers of cardiovascular aging yielded four categories, comprising of blood 

pressure (DBP, MAP, SBP), arterial stiffness (PP, TACI, PWV, ABI), endothelial function 

(RSH), and hemodynamics (CI, SVRI, SI) (Figure 5B). An unfavourable blood pressure 
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profile was independently associated with AgeAccel.Horvath and AgeAccel.Hannum, 

whereas arterial stiffness was independently associated with AgeAccelPheno and 

AgeAccelGrim (Figure 7). 
 

 
Figure 7. Independent effects of blood pressure, arterial stiffness, endothelial 
function and hemodynamics clusters on DNAm age acceleration estimators 
Model: DNAm age acceleration estimator ~ Blood pressure + Arterial stiffness + 
Endothelial function + Hemodynamics + Sex + Batch information + Smoking status 
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Sex-stratified analyses 

All four DNAm age acceleration estimators were consistently higher in men compared to 

women (Table 2). Several sex-specific effects of classical cardiovascular risk factors on 

AgeAccelGrim were observed (Figure 8). Table 3 shows the effects of unfavorable 

profiles of cystatin C, eGFR, CRP, % body fat, glucose, and HbA1c on AgeAccelGrim 

were more than 0.20 year/SD larger in men than in women. Sex differences were more 

apparent when assessing the effects of arterial stiffness, endothelial function and 

hemodynamics on DNAm age acceleration estimators (Figure 8). Compared to women, 

men with an unfavorable arterial stiffness (e.g. higher PWV) and hemodynamic profile 

(e.g. higher SVRI, lower SI) had around 0.30 year/SD higher increases in 

AgeAccel.Hannum, AgeAccelPheno, AgeAccelGrim (Table 3). 

 

Sensitivity analyses 
The estimated effects of all cardiovascular risk factors and cardiovascular aging markers 

on DNAm age acceleration estimators remained virtually identical after exclusion of 

participants with diabetes or who had had a stroke or myocardial infarction (n = 305). We 

also examined potentially nonlinear relationships between cardiovascular risk factors and 

cardiovascular aging markers and DNAm age acceleration estimators. None of the 

associations obviously deviated from linearity. 
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Figure 8. Assessment of interaction effects between sex and cardiovascular 
variables on DNAm age acceleration estimators 
Abbreviations: LDL, low-density lipoproteins; HDL, high-density lipoproteins; eGFR, 
estimated glomerular filtration rate; CRP, C-reactive protein; BMI, body mass index; 
HbA1c, glycated hemoglobin; DBP, diastolic blood pressure; MAP, mean arterial 
pressure; SBP, systolic blood pressure; PP, pulse pressure. 
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Table 3. Sex-stratified analyses of the relation between cardiovascular variables and DNAm age acceleration 
estimators 

Determinant 
(Standardized) 

Increase in 
AgeAccel.Horvath (year) 

Increase in 
AgeAccel.Hannum (year)  

Increase in 
AgeAccelPheno (year)  

Increase in 
AgeAccelGrim (year)  

Men Women Men Women Men Women Men Women 

Estimate (95 % CI) Estimate (95 % CI) Estimate (95 % CI) Estimate (95 % CI) Estimate (95 % CI) Estimate (95 % CI) Estimate (95 % CI) Estimate (95 % CI) 

Cardiovascular risk factors 

LDL 0.21 
(-0.06, 0.49) 

0.25 
(0.05, 0.46) 

-0.04 
(-0.29, 0.21) 

0.04 
(-0.16, 0.24) 

-0.24 
(-0.61, 0.13) 

-0.06 
(-0.38, 0.26) 

-0.09 
(-0.3, 0.13) 

0.13 
(-0.02, 0.29) 

HDL -0.20 
(-0.55, 0.14) 

-0.10 
(-0.33, 0.13) 

-0.16 
(-0.47, 0.14) 

-0.02 
(-0.24, 0.2) 

-0.58 
(-1.03, -0.12) 

-0.48 
(-0.84, -0.13) 

-0.45 
(-0.71, -0.18) 

-0.24 
(-0.40, -0.07) 

HDL/LDL ratio 0.16 
(-0.11, 0.42) 

0.34 
(0.09, 0.59) 

0.05 
(-0.19, 0.28) 

0.09 
(-0.14, 0.33) 

0.07 
(-0.28, 0.42) 

0.29 
(-0.09, 0.68) 

0.15 
(-0.06, 0.35) 

0.31 
(0.12, 0.49) 

Triglycerides -0.02 
(-0.24, 0.21) 

0.43 
(0.15, 0.71) 

0.08 
(-0.11, 0.28) 

0.22 
(-0.05, 0.49) 

0.10 
(-0.19, 0.39) 

0.78 
(0.35, 1.22) 

0.28 
(0.11, 0.45) 

0.54 
(0.34, 0.75) 

Total 
cholesterol 

0.13 
(-0.14, 0.41) 

0.24 
(0.03, 0.46) 

-0.07 
(-0.31, 0.18) 

0.05 
(-0.15, 0.26) 

-0.33 
(-0.69, 0.04) 

-0.08 
(-0.41, 0.25) 

-0.10 
(-0.31, 0.11) 

0.13 
(-0.02, 0.29) 

Cystatin C 0.21 
(-0.05, 0.47) 

0.38 
(0.13, 0.62) 

0.41 
(0.18, 0.64) 

0.32 
(0.09, 0.56) 

0.84 
(0.50, 1.17) 

0.80 
(0.42, 1.18) 

0.59 
(0.40, 0.79) 

0.30 
(0.12, 0.48) 

eGFR -0.30 
(-0.56, -0.05) 

-0.38 
(-0.61, -0.14) 

-0.51 
(-0.73, -0.28) 

-0.35 
(-0.58, -0.13) 

-0.86 
(-1.19, -0.52) 

-0.59 
(-0.95, -0.23) 

-0.57 
(-0.76, -0.37) 

-0.21 
(-0.39, -0.04) 

CRP 0.13 
(-0.13, 0.4) 

0.16 
(-0.04, 0.37) 

0.57 
(0.34, 0.8) 

0.38 
(0.19, 0.58) 

0.83 
(0.49, 1.18) 

0.92 
(0.6, 1.23) 

0.55 
(0.35, 0.75) 

0.24 
(0.09, 0.40) 

% Body fat 0.25 
(-0.07, 0.58) 

0.34 
(0.11, 0.57) 

0.51 
(0.23, 0.8) 

0.35 
(0.13, 0.56) 

0.93 
(0.5, 1.36) 

0.92 
(0.58, 1.26) 

0.80 
(0.55, 1.05) 

0.45 
(0.28, 0.61) 

BMI 0.03 
(-0.26, 0.32) 

0.32 
(0.12, 0.52) 

0.37 
(0.12, 0.63) 

0.39 
(0.2, 0.58) 

0.77 
(0.39, 1.15) 

0.90 
(0.6, 1.2) 

0.55 
(0.33, 0.77) 

0.45 
(0.31, 0.60) 

Waist 
circumference 

0.13 
(-0.17, 0.43) 

0.39 
(0.15, 0.63) 

0.54 
(0.28, 0.81) 

0.53 
(0.3, 0.75) 

0.94 
(0.55, 1.34) 

1.10 
(0.74, 1.45) 

0.69 
(0.46, 0.92) 

0.55 
(0.38, 0.72) 

Insulin 0.05 
(-0.18, 0.28) 

0.29 
(0.02, 0.55) 

0.32 
(0.12, 0.53) 

0.31 
(0.06, 0.56) 

0.48 
(0.18, 0.78) 

0.85 
(0.44, 1.25) 

0.43 
(0.25, 0.6) 

0.41 
(0.22, 0.60) 

Insulin 
resistance 

0.09 
(-0.13, 0.3) 

0.28 
(-0.01, 0.58) 

0.32 
(0.13, 0.51) 

0.33 
(0.05, 0.61) 

0.43 
(0.15, 0.71) 

0.87 
(0.42, 1.32) 

0.42 
(0.26, 0.59) 

0.51 
(0.30, 0.72) 

Glucose 0.19 
(-0.05, 0.44) 

0.22 
(-0.01, 0.45) 

0.15 
(-0.07, 0.37) 

0.25 
(0.03, 0.47) 

0.55 
(0.23, 0.88) 

0.41 
(0.06, 0.76) 

0.60 
(0.41, 0.79) 

0.29 
(0.12, 0.45) 

HbA1c 0 
(-0.25, 0.25) 

0.16 
(-0.08, 0.4) 

0.22 
(0, 0.44) 

-0.05 
(-0.28, 0.18) 

0.42 
(0.09, 0.74) 

0.10 
(-0.27, 0.47) 

0.58 
(0.39, 0.77) 

0.20 
(0.02, 0.38) 

Cardiovascular Disease risk score* 

CVD risk 
score 

0.93 
(0.42, 1.44) 

0.34 
(-0.56, 1.24) 

1.15 
(0.7, 1.59) 

0.20 
(-0.65, 1.06) 

1.53 
(0.86, 2.2) 

0.72 
(-0.67, 2.1) 

0.92 
(0.54, 1.31) 

0.54 
(-0.12, 1.2) 

Blood pressure, arterial stiffness, endothelial function and hemodynamics 

DBP 0.28 
(0.01, 0.54) 

0.24 
(0.02, 0.47) 

0.32 
(0.08, 0.55) 

0.34 
(0.12, 0.55) 

0.37 
(0.03, 0.72) 

0.33 
(-0.01, 0.68) 

0.02 
(-0.18, 0.22) 

0.26 
(0.1, 0.43) 

SBP 0.25 
(-0.05, 0.56) 

0.19 
(-0.02, 0.4) 

0.29 
(0.01, 0.56) 

0.2 
(0, 0.4) 

0.38 
(-0.02, 0.79) 

0.24 
(-0.08, 0.56) 

0.22 
(-0.02, 0.46) 

0.19 
(0.04, 0.34) 
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MAP 0.30 
(0.02, 0.58) 

0.23 
(0.02, 0.45) 

0.34 
(0.09, 0.59) 

0.29 
(0.09, 0.5) 

0.42 
(0.05, 0.8) 

0.31 
(-0.02, 0.65) 

0.11 
(-0.11, 0.33) 

0.25 
(0.09, 0.41) 

TACI -0.26 
(-0.59, 0.07) 

-0.01 
(-0.23, 0.21) 

-0.53 
(-0.82, -0.24) 

-0.08 
(-0.29, 0.13) 

-0.60 
(-1.04, -0.17) 

-0.07 
(-0.41, 0.28) 

-0.47 
(-0.72, -0.22) 

-0.18 
(-0.35, -0.01) 

PWV 0.38 
(0.11, 0.64) 

0.08 
(-0.15, 0.31) 

0.51 
(0.28, 0.74) 

0.15 
(-0.08, 0.37) 

0.49 
(0.14, 0.84) 

0.13 
(-0.24, 0.5) 

0.43 
(0.23, 0.63) 

0.19 
(0, 0.38) 

ABI 0.31 
(0.05, 0.57) 

0.05 
(-0.19, 0.29) 

0.05 
(-0.18, 0.28) 

-0.32 
(-0.56, -0.09) 

0.03 
(-0.32, 0.37) 

-0.77 
(-1.15, -0.39) 

-0.25 
(-0.44, -0.05) 

-0.42 
(-0.6, -0.24) 

Log RSH -0.22 
(-0.49, 0.04) 

-0.04 
(-0.26, 0.19) 

-0.16 
(-0.4, 0.08) 

0.07 
(-0.14, 0.28) 

-0.31 
(-0.66, 0.04) 

0.15 
(-0.19, 0.49) 

-0.29 
(-0.50, -0.08) 

0.02 
(-0.14, 0.19) 

CI -0.23 
(-0.53, 0.07) 

0.03 
(-0.19, 0.24) 

-0.09 
(-0.35, 0.18) 

0.15 
(-0.06, 0.36) 

-0.26 
(-0.66, 0.13) 

0.43 
(0.09, 0.77) 

0.08 
(-0.15, 0.31) 

0.13 
(-0.03, 0.30) 

SVRI 0.34 
(0.07, 0.60) 

0.10 
(-0.16, 0.36) 

0.31 
(0.08, 0.54) 

0.04 
(-0.21, 0.29) 

0.48 
(0.13, 0.83) 

-0.19 
(-0.60, 0.22) 

0.14 
(-0.06, 0.35) 

-0.01 
(-0.21, 0.19) 

SI -0.24 
(-0.52, 0.04) 

0.00 
(-0.23, 0.22) 

-0.48 
(-0.72, -0.23) 

-0.08 
(-0.30, 0.14) 

-0.78 
(-1.15, -0.41) 

0.20 
(-0.15, 0.56) 

-0.42 
(-0.63, -0.20) 

-0.06 
(-0.23, 0.11) 

Abbreviations: LDL, low-density lipoproteins; HDL, high-density lipoproteins; eGFR, estimated glomerular filtration rate; CRP, 
C-reactive protein; BMI, body mass index; HbA1c, glycated hemoglobin; DBP, diastolic blood pressure; SBP, systolic blood 
pressure; MAP, mean arterial pressure; TACI, total arterial compliance index; PWV, pulse wave velocity; ABI, Ankle-brachial 
index; RSH, reactive skin hyperemia; CI, cardiac index; SVRI, Systemic vascular resistance index; SI, stroke index. 
*The analyses were among participants < 80 years old without cardiovascular diseases (n=3016). 
The missingness for each determinant is less than 5 %.   
Boldface indicates statistical significance.  
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3.2 Results study II: The Lipidomic Correlates of Epigenetic Aging across the 
Adult Lifespan: A Population-based Study 
 
Estimations of DNAm age acceleration 
The characteristics of the study population are presented in Table 4. AgeAccelPheno and 

AgeAccelGrim were significantly higher in men than in women. 

 
Table 4. Characteristics of the study population  

 
Overall 

(N=4181) 

Women 

(N=2354) 

Men 

(N=1827) 

Adjusted p 
value* 

Age, year     
   Mean (SD) 55.1 (14.0) 54.9 (13.7) 55.3 (14.4) <0.001 

   Median [Min, Max] 
55.0  

[30.0, 95.0] 

54.0  

[30.0, 95.0] 

55.0  

[30.0, 91.0] 

 

Current smoking, n (%) 529 (12.7 %) 279 (11.9 %) 250 (13.7 %) 0.068 

BMI, kg/m2, mean (SD) 25.9 (4.5) 25.4 (4.8) 26.5 (3.9) <0.001 

SBP, mmHg, mean (SD) 126 (15.9) 123 (16.4) 131 (14.1) <0.001 

DBP, mmHg, mean (SD) 75.5 (9.4) 73.8 (9.1) 77.5 (9.3) <0.001 

Hypertension, n (%) 1569 (37.5 %) 783(33.2 %) 786 (43.1 %) <0.001 
Diabetes, n (%) 218 (5.2 %) 85 (3.6 %) 133 (7.3 %) <0.001 

HDL, mg/dL 62.6 (17.9) 69.9 (17.3) 53.2 (13.9) <0.001 

LDL, mg/dL 126 (35.6) 126 (36.4) 127 (34.6) 0.137 

Cholesterol, mg/dL 199 (39.3) 203 (39.6) 194 (38.4) <0.001 

Triglyceride, mg/dL 112 (70.4) 97.9 (51.7) 130 (85.6) <0.001 

DNAm age acceleration estimators, year, mean (SD) 

AgeAccelPheno 0.2 (6.6) -0.3 (6.7) 0.8 (6.4) <0.001 

AgeAccelGrim 0.0 (6.8) -1.0 (6.6) 1.3 (6.8) <0.001 
Complex lipid class, µM, mean (SD) 

Neutral lipids     

Cholesteryl ester (CE) 2870 (645) 2900 (654) 2820 (632) <0.001 

Monoacylglycerol (MAG) 2.2 (5.34) 2.1 (3.99) 2.4 (6.69) 0.070 

Diacylglycerol (DAG) 25.9 (16.2) 22.8 (12.1) 29.9 (19.6) <0.001 

Triacylglycerol (TAG) 1060 (667) 924 (511) 1230 (794) <0.001 

Phospholipids     
Phosphatidylcholine (PC) 2010 (408) 2080 (401) 1920 (399) <0.001 

Phosphatidylethanolamine (PE) 157 (42.8) 161 (41.6) 152 (43.7) <0.001 

Phosphatidylinositol (PI) 38.1 (10.2) 39.2 (10.2) 36.8 (10.1) <0.001 
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Lysophosphatidylcholine (LPC) 163 (38.4) 156 (36.6) 171 (38.9) <0.001 

Lysophosphatidylethanolamine 

(LPE) 
6.2 (2.1) 6.1 (2.1) 6.3 (2.2) 

0.001 

Sphingolipids     

Sphingomyelin (SM) 486 (89.3) 505 (90.0) 460 (81.9) <0.001 

Ceramide (CER) 5.1 (1.4) 5.0 (1.4) 5.2 (1.4) <0.001 

Dihydroceramide (DCER) 1.3 (0.4) 1.3 (0.4) 1.3 (0.5) <0.001 
Hexosylceramide (HCER) 4.3 (1.2) 4.4 (1.2) 4.3 (1.1) 0.077 

Lactosylceramide (LCER) 3.4 (0.8) 3.5 (0.8) 3.3 (0.7) <0.001 

Abbreviations: BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood 
pressure; HDL, high-density lipoproteins; LDL, low-density lipoproteins; SD, standard 
deviation. The missingness for each variable is less than 5 %.   
* Comparison between women and men, adjusted for age. 
 

 

Associations of lipid class and molecular species with DNAm age acceleration 
estimators 
Age-, sex-, and batch-adjusted partial-correlations showed that all lipid classes except for 

MAG, LPE, LPC were moderately to highly correlated. The strongest correlations for LDL 

and cholesterol were with CE, PC, PI and sphingolipids, whereases HDL was only weakly 

correlated with almost all main lipid classes, except for DAG and TAG. As expected, 

clinically measured total triglycerides were highly correlated with DAG and TAG, and 

moderately correlated with PC, PE, PI, CER and DCER. BMI was only weakly correlated 

with DAG, TAG, LPC, LPE, HCER, and LCER (Figure 9). 

Out of 964 lipid species, 196 and 525 were associated with AgeAccelPheno and 

AgeAccelGrim at FDR < 0.05, respectively (Figure 10). For MAG, TAG, DAG, PE, CER 

and DCER classes, each SD concentration increase in each molecular species was 

associated with around 0.25 – 0.75 year increase in AgeAccelPheno and AgeAccelGrim. 

For LPC, HCER and LCER classes, each SD concentration increase in each molecular 

species was associated with around 0.25 – 1.00 year decrease in AgeAccelPheno and 

AgeAccelGrim. Concentration changes of molecular species in CE, PC, PI, and LPE 

classes were both negatively and positively associated with AgeAccelPheno and 

AgeAccelGrim. However, there were more molecular species associated with 

AgeAccelGrim, and the effect sizes were larger compared to AgeAccelPheno (Figure 10).  
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After adjustment for HDL and/or LDL levels, the associations of many molecular species 

belonging to the neutral lipids and phospholipids classes − especially TAG, DAG, PC, PE 

– with AgeAccelPheno and AgeAccelGrim became non-significant. Conversely, 

adjustment for HDL and/or LDL levels did not materially affect the results for sphingolipids. 

These findings are in line with the known function of lipoproteins as key regulators of 

mainly neutral lipids and phospholipids metabolism, which however, have a smaller 

influence on sphingolipids metabolism (Borodzicz et al. 2015). The results remained 

almost identical after adjustment for BMI (Figure 10). 

As LPC species were mainly negatively associated with both AgeAccelPheno and 

AgeAccelGrim, but the pattern across all the species remains unknown. Figure 11 shows 

more details of all the LPC species. In general, the effect sizes increased with shorter 

chain lengths for SFA (except for LPC 16:0). There is no clear pattern for double bonds. 

LPE species showed a very similar pattern of association with AgeAccelPheno and 

AgeAccelGrim (Figure 11).  
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Figure 9. Age, sex, batch-adjusted partial-correlation matrix of standard clinical 
lipid measures, BMI, and main lipid classes  
Abbreviations: high-density-lipoprotein (HDL), low-density-lipoprotein (LDL), BMI, body 
mass index, cholesteryl ester (CE), triacylglycerol (TAG), diacylglycerol (DAG), 
monoacylglycerol (MAG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), 
phosphatidylinositol (PI), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine 
(LPE), sphingomyelin (SM), ceramide (CER), hexosylceramide (HCER), lactosylceramide 
(LCER), dihydroceramide (DCER). 
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                     AgeAccelPheno                                            AgeAccelGrim               
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                     AgeAccelPheno                                            AgeAccelGrim               

 
Figure 10. Associations of lipid species with AgeAccelPheno and AgeAccelGrim 
Each dot represents one molecular species; dot color indicates the significance level. 
Base model: AgeAccel ~ lipid + sex + batch information + smoking status.  
Abbreviations: cholesteryl ester (CE), monoacylglycerol (MAG), triacylglycerol (TAG), 
diacylglycerol (DAG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), 
phosphatidylethanolamine ether (PE(O)), phosphatidylethanolamine plasmalogen 
(PE(P)),phosphatidylinositol (PI), lysophosphatidylcholine (LPC), 
lysophosphatidylethanolamine (LPE), sphingomyelin (SM), ceramide (CER), 
hexosylceramide (HCER), lactosylceramide (LCER), dihydroceramide (DCER), high-
density-lipoprotein (HDL), low-density-lipoprotein (LDL), body mass index (BMI), false 
discovery rate (FDR). 
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Figure 11. LPC, LPE species associated with DNAm age acceleration estimators 
Abbreviations: lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), 
saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), polyunsaturated fatty acid 
(PUFA). 
 
 
Associations of the total number of carbons and double bonds and DNAm age 
acceleration estimators 
Within the neutral lipid category, TAG molecular species with even numbers of carbons 

were positively associated with AgeAccelPheno and AgeAccelGrim, whereas fewer 

significant associations were observed with species containing an odd numbered chain 

length. Regarding phospholipids, molecular species belonging to PC, PE(O), PE(P), and 

PI classes with more double bonds (i.e. polyunsaturated fatty acids) and more carbons 

tended to be negatively associated with AgeAccelPheno and AgeAccelGrim, while 

species with fewer double bonds and fewer carbons tended to be positively associated 

with AgeAccelPheno and AgeAccelGrim. Predominantly LPC and LPE molecular species 

with fewer carbons were associated with lower AgeAccelPheno and AgeAccelGrim 

(Figures 12 and 13). There was no clear pattern for the association of sphingolipids 

species with AgeAccelPheno and AgeAccelGrim (Figure 14).  
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Figure 12. Associations between total numbers of carbons and double bonds in 
lipid species and AgeAccelPheno 
Individual lipid species are depicted by filled circles and arranged by lipid class according 
to the total number of carbon atoms (x-axes) and double bonds (y-axes). Color indicates 
the magnitude and direction (positive or negative) of effect size, and circle size 
corresponds to the significance level. Lipids with the same number of carbon atoms and 
double bonds are pulled apart vertically to increase their visibility. Abbreviations: 
triacylglycerol (TAG), phosphatidylcholine (PC), phosphatidylethanolamine ether (PE(O)), 
phosphatidylethanolamine plasmalogen (PE(P)), phosphatidylinositol (PI), 
lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), false discovery rate 
(FDR). 
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Figure 13. Associations between total numbers of carbons and double bonds in 
lipid species and AgeAccelGrim 
Individual lipid species are depicted by filled circles and arranged by lipid class according 
to the number of total carbon atoms (x-axes) and number of double bonds (y-axes). Color 
indicates the magnitude of effect size, and circle size corresponds to the significance level. 
Lipids with the same number of carbon atoms and double bonds are pulled apart vertically 
to increase their visibility. Abbreviations: cholesteryl ester (CE), triacylglycerol (TAG), 
phosphatidylcholine (PC), phosphatidylethanolamine ether (PE(O)), phosphatidyl-
ethanolamine plasmalogen (PE(P)), phosphatidylinositol (PI), lysophosphatidylcholine 
(LPC), lysophosphatidylethanolamine (LPE), false discovery rate (FDR). 
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Figure 14. Associations of total numbers of carbons and double bonds in 
sphingolipids with AgeAccelPheno and AgeAccelGrim 
Individual lipid species are depicted by filled circles and arranged by lipid class according 
to the number of total carbon atoms (x-axes) and number of double bonds (y-axes). Color 
indicates the magnitude of effect size, and circle size corresponds to the significance level. 
Lipids with the same number of carbon atoms and double bonds are pulled apart vertically 
to increase their visibility. Abbreviations: ceramide (CER), dihydroceramide (DCER), 
hexosylceramide (HCER), lactosylceramide (LCER), sphingomyelin (SM), false discovery 
rate (FDR).  
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Associations of number of carbons in one specific fatty acid tail across lipid 
classes with DNAm age acceleration estimators 
Each lipid carries specific fatty acid tail with varying numbers of acyl chain carbons, which 

define their specific biological effects. In this analysis, 267 lipids with one specific fatty 

acid tail covering 14 lipid classes were included. In general, across lipid classes, the 

direction and strength of the effect on DNAm age acceleration estimators were determined 

by the chain length of this specific fatty acid tail (Figure 15). Lipid molecular species with 

an even number (i.e. 14, 16, 18, 20, 22, 24, and 26) of carbons in the fatty acid tail were 

positively associated with DNAm age acceleration estimators across lipid classes (except 

for lysophospholipids, HCER, and LCER), while lipid species with an odd number (i.e. 15 

and 17) of carbons in the fatty acid tail were negatively associated with DNAm age 

acceleration estimators. In addition, shorter fatty acid tails were related to larger effect 

sizes (Figure 15). Importantly, the direction of the effects also depended on the lipid class 

(Figure 10).  
 

Associations of saturation of fatty acid tails with DNAm age acceleration estimators 
Differences in the content and fraction of mono- and polyunsaturated lipids determine 

membrane peroxidation, which has been linked to longevity (Gonzalez-Covarrubias et al. 

2013). For saturated and monounsaturated lipids, the effect on DNAm age acceleration 

estimators became stronger with shorter (even numbered) chain lengths of the fatty acid 

tail. In contrast, for polyunsaturated lipids with the same chain length, fewer double bonds 

were related to a stronger effect on DNAm age acceleration estimators (Figure 16). 
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Figure 15. Relationship between numbers of carbons in one fatty acid tail and 
DNAm age acceleration estimators 
Color indicates the magnitude of effect size. To better visualize the results, only the effect 
sizes of lipid species at FDR < 0.05 level were shown. Abbreviations: cholesteryl ester 
(CE), triacylglycerol (TAG), diacylglycerol (DAG), monoacylglycerol (MAG), 
phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), 
lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), sphingomyelin 
(SM), ceramide (CER), hexosylceramide (HCER), lactosylceramide (LCER), 
dihydroceramide (DCER).
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Figure 16. Relationship between fatty acid tails and DNAm age acceleration 
estimators 
Abbreviations: saturated fatty acid (SFA), monounsaturated fatty acids (MUFA), 
polyunsaturated fatty acid (PUFA). 
 
 
Sex-interaction and sex-stratified analyses 
We found a few lipid species, mostly within the neutral lipids, that were differently 

associated with DNAm age acceleration estimators between men and women (Figure 
17). Sex-stratified analyses on these lipid species showed that each SD increase of the 
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concentration of these MAG, DAG or TAG species, AgeAccelPheno increased with 0.5-

years in women, but not in men. Each SD increase of the concentration of PE(P-

16:0/16:0), MAG (18:1), MAG (18:2), and 8 DAG species, AgeAccelGrim increased with 

around 0.5-years in women, whereases per SD increase of the concentration of PI 

(18:0/16:1) and PI (16:0/16:1), AgeAccelGrim increased with around 0.5-years in men. 

Concentrations of TAG (42:2-FA18:2), TAG (42:2-FA12:0) and TAG (40:0-FA14:0) were 

only negatively associated with AgeAccelGrim in women (Figure 18 and Figure 19). 

 

 

 
Figure 17. Interaction effects between sex and lipid species on DNAm age 
acceleration estimators  
Numbers between brackets behind each class indicate number of significant sex-
interaction lipid species/total number of lipid species in that class. Abbreviations: 
cholesteryl ester (CE), triacylglycerol (TAG), diacylglycerol (DAG), monoacylglycerol 
(MAG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol 
(PI), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), sphingomyelin 
(SM), ceramide (CER), hexosylceramide (HCER), lactosylceramide (LCER), dihydro-
ceramide (DCER). 
  



57 

 
Figure 18. Sex difference between lipid species concentration and AgeAccelPheno 
Abbreviations: triacylglycerol (TAG), diacylglycerol (DAG), monoacylglycerol (MAG), 
phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI).  
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Figure 19. Sex difference between lipid species concentration and AgeAccelGrim 
Abbreviations: triacylglycerol (TAG), diacylglycerol (DAG), monoacylglycerol (MAG), 
phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI).  
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Uncovering potential pathways through which lipids affect DNAm age acceleration 
estimators 
Epigenome-wide association analyses were performed for 525 lipids, belonging to 14 

different classes, which were identified to be associated with DNAm age acceleration 

estimators (Figure 10 and Figure 11). This approach resulted in the identification of lipid-

associated CpGs that were subsequently used as uniquely defined proxies for the 

respective lipids, enabling KEGG pathway analysis to delineate the underlying biological 

pathways modulated by AgeAccel-associated lipids. A total of 65 pathways were 

identified, including many known longevity-related pathways such as the mTOR signaling 

pathway, AMPK signaling pathway, MAPK signaling pathway, and growth hormone 

synthesis, secretion, and action pathway. Moreover, pathways involved in age-related 

diseases, including type 2 diabetes mellitus, insulin resistance and secretion, cortisol 

synthesis and secretion, and long-term depression were among those related to lipid-

associated CpGs. Importantly, also molecular pathways associated with brain aging were 

highlighted, including cholinergic synapse, dopaminergic synapse, axon guidance, 

neurotrophy signaling pathway, and GABAergic synapse (Figure 20). 
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Figure 20. Biological pathways involved in the association between lipids and 
DNAm age acceleration estimators 
Abbreviations: false discovery rate (FDR) 
  



61 

3.3 Results study III: Associations of Measured and Genetically Predicted 
Leukocyte Telomere Length with Vascular phenotypes: A Population-based Study 
 

In the subset of 1828 participants with measured LTL data, the mean age was 54.8 years 

(SD = 14.1 years, range from 30 – 95 years), and 56.8 % were women. Mean LTL was 

3280 kb base pairs (SD = 0.8) (Table 5). Measured LTL was strongly associated with 

chronological age, with values slightly higher in women compared to men [sex effect: 0.02 

(95% CI: 0.05, 0.01), p-value = 0.04]. In 4180 participants (56.2 % women) with data on 

PRS of LTL, the mean age was 55.5 years (SD = 14.0 years, range 30 – 95 years). A 

summary of the characteristics of the study population is provided in Table 5.  
 
The association between measured LTL and vascular phenotypes 
Longer measured LTL was significantly associated with better endothelial function, and 

cardiac index (per kb increase in measured LTL: 0.07 (95% CI: 0.01, 0.14) SD increase 

in reactive skin hyperemia, and 0.08 (95% CI: 0.01, 0.15) SD increase in cardiac index) 

(Figure 21). These findings remained similar after adjustment for smoking, BMI, and cell 

counts. Longer measured LTL also tended to be associated with lower systemic vascular 

resistance index, although this association did not reach statistical significance [-0.06 SD 

change (95% CI: -0.14, 0.01)]. Measured LTL was not significantly associated with arterial 

stiffness or blood pressure phenotypes in the overall analyses (Figure 21). 

 

There were statistically significant interactions between age and different vascular 

phenotypes, including total arterial compliance index (beta interaction =0.006, p = 0.006), 

ankle-brachial index (beta interaction = 0.005, p = 0.064), systolic blood pressure (beta 

interaction = -0.007, p = 0.002), and pulse pressure (beta interaction = -0.011, p =0.000), 

but not with other traits. Further stratified analyses by age tertiles (i.e. 30 - 48 years old, 

49 – 60 years, and 61- 95 years old) showed positive associations of measured LTL with 

total arterial compliance index, and ankle-brachial index in the oldest age tertile. Negative 

associations of measured LTL with systolic blood pressure, and pulse pressure were also 

only observed in older (61-95 years old), but not in younger participants (Figure 22). 
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Table 5. Characteristics of the study population  

 
Participants with 

measured LTL data  
(N=1828) 

Participants with  
PRS of LTL data 

(N=4180) 

Age, year   
Mean (SD) 54.8 (14.1) 55.5 (14.0) 
Median [Min, Max] 54.0 [30.0, 95.0] 55.0 [30.0, 95.0] 

Sex, n (%)   
Women 1038 (56.8 %) 2349 (56.2 %) 
Men 790 (43.2 %) 1831 (43.8 %) 

Body mass index, kg/m2, mean 
(SD) 25.8 (4.6) 25.8 (4.4) 

Current smoking, n (%) 257 (14.1 %) 512 (12.2 %) 
Leucocyte telomere length, kb 
pairs, mean (SD) 3280 (0.8) - 

Vascular phenotypes, mean (SD) 
Systolic blood pressure, mmHg 128 (16.5) 127 (16.1) 
Diastolic blood pressure, mmHg 76.9 (9.6) 75.4 (9.3) 
Mean arterial pressure, mmHg 93.9 (10.9) 92.6 (10.6) 
Pulse pressure, mmHg 51.7 (10.7) 51.6 (10.5) 
Cardiac index, L/min/m2 3.2 (0.5) 3.2 (0.5) 
Systemic vascular resistance 
index, dynes· sec/cm5/m2 2120 (475) 2120 (469) 

Stroke index, mL/m2 51.7 (8.5) 52.1 (8.7) 
Reactive skin hyperemia 485 (447) 499 (492) 
Total arterial compliance index, 
mL/mmHg/m2 1.0 (0.3) 1.1 (0.3) 

Pulse wave velocity, m/s 6.9 (3.6) 6.8 (2.9) 
Ankle-Brachial index 1.1 (0.1) 1.2 (0.1) 
Abbreviation: SD, standard deviation. The missingness for each variable is less than 5 
%.   
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Figure 21. The association between measured leukocyte telomere length and 
vascular phenotypes 
Base model: vascular phenotype ~ measured leukocyte telomere length (LTL) + age + 
sex + batch information of LTL. 
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Figure 22. The association between the measured leucocyte telomere length and 
vascular phenotypes in different age tertiles 
 
 
The associations of the previously reported variants, PRS of LTL with measured 
LTL 
When evaluating individual SNPs that had previously been associated with LTL, we could 

replicate the previously reported top variants, including rs10936600 (TERC), rs2853677 

(TERT), rs9419958 (OBFC1), rs75691080 (STMN3), with the same direction and even 

larger effect sizes (Table 6). Regarding other variants, although the p-values did not reach 

statistical significance, the direction of the associations and the magnitude of the 

estimates were quite similar to those previously reported. Both the PRS that was based 

on genome-wide significant SNPs (PRSGWAS), as well as the PRS that was based on SNPs 

that were significant at FDR < 0.05-level (PRSFDR) in the previous meta-GWAS, were 

associated with longer measured LTL in our cohort (PRSGWAS: 0.05 SD increase (95% CI: 

0.05, 0.14) and PRSFDR: 0.10 SD increase (95% CI: 0.05, 0.14)). Adjustment for smoking, 

BMI and cell counts did not change the estimates. Taken together, these findings support 

the reliability of our LTL measurements and validate the derived genetic instruments. 
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Table 6. Genetic variants associated with telomere length in prior genome-wide 
association study (GWAS) and replication in the Rhineland Study 

Prior GWAS  
Replication in  
the Rhineland study 

Chr SNP closest gene EA Estimate SE P Estimate SE P 

Genome-wide significance (5*10-8) 
3 rs10936600 LRRC34 (TERC) T -0.0858 0.0057 6.42E-51 -0.1098 0.0354 0.0020 
5 rs7705526 TERT A 0.0820 0.0058 4.82E-45 0.0394 0.0375 0.2946 

5 rs2853677 TERT A -0.0638 0.0055 3.12E-31 -0.0705 0.0321 0.0282 

4 rs4691895 NAF1 C 0.0577 0.0061 1.47E-21 0.0266 0.0370 0.4727 
10 rs9419958 STN1 (OBFC1) C -0.0636 0.0071 4.77E-19 -0.0814 0.0446 0.0681 

20 rs75691080 STMN3 T -0.0671 0.0089 5.75E-14 -0.1578 0.0559 0.0048 

7 rs59294613 POT1 A -0.0407 0.0055 1.12E-13 -0.0108 0.0342 0.7512 

19 rs8105767 ZNF208 G 0.0392 0.0054 5.21E-13 0.0557 0.0342 0.1035 
20 rs73624724 ZBTB46 C 0.0507 0.0074 6.08E-12 -0.0088 0.0477 0.8533 

1 rs3219104 PARP1 C 0.0417 0.0064 9.31E-11 0.0128 0.0406 0.7519 

20 rs932827 ZBTB46 T -0.0374 0.0060 3.28E-10 -0.0557 0.0358 0.1200 
6 rs2736176 PRRC2A  C 0.0345 0.0055 3.41E-10 0.0345 0.0360 0.3378 

16 rs3785074 TERF2 G 0.0351 0.0056 4.50E-10 0.0259 0.0357 0.4684 

16 rs7194734 MPHOSPH6 T -0.0369 0.0060 6.72E-10 -0.0032 0.0388 0.9339 
20 rs34978822 RTEL1 G -0.1397 0.0227 7.04E-10 0.0303 0.1284 0.8137 

6 rs34991172 CARMIL1 G -0.0608 0.0105 6.03E-09 -0.0929 0.0739 0.2089 

11 rs228595 ATM A -0.0285 0.0050 1.39E-08 0.0030 0.0317 0.9247 
14 rs2302588 DCAF4 C 0.0476 0.0084 1.64E-08 -0.0217 0.0503 0.6664 

4 rs13137667 MOB1B  C 0.0765 0.0137 2.37E-08 0.0383 0.0906 0.6723 

3 rs55749605 SENP7 A -0.0373 0.0067 2.38E-08 0.0342 0.0324 0.2902 
16 rs62053580 RFWD3 G -0.0389 0.0071 3.96E-08 -0.0414 0.0413 0.3157 

False-discovery rate < 0.05 
2 rs754017156 ACYP2 D 0.0471 0.0088 7.52E-08 - - - 
15 rs12909131 ATP8B4 T -0.0308 0.0058 1.15E-07 0.0132 0.0363 0.7150 

20 rs1744757 MROH8  T 0.0359 0.0068 1.38E-07 0.0441 0.0454 0.3314 

18 rs2124616 TYMS A -0.0374 0.0072 1.72E-07 -0.0232 0.0433 0.5930 
3 rs2613954 RP11-572M11.4 T -0.0381 0.0078 1.10E-06 0.0074 0.0473 0.8766 

1 rs12065882 MAGI3 G 0.0298 0.0062 1.36E-06 0.0078 0.0377 0.8367 

10 rs2386642 ASB13 A -0.0256 0.0053 1.44E-06 -0.0112 0.0327 0.7312 

2 rs56810761 UNC80 T 0.0275 0.0057 1.45E-06 0.0165 0.0352 0.6392 
5 rs62365174 TENT2 G -0.0544 0.0113 1.50E-06 0.0486 0.0530 0.3591 

12 rs112655343 ATF7IP T 0.0425 0.0090 2.22E-06 0.0826 0.0514 0.1087 

15 rs55710439 ANKDD1A T 0.1050 0.0223 2.65E-06 0.0891 0.1378 0.5180 
16 rs11640926 CACNA1H G 0.0557 0.0119 2.93E-06 -0.0538 0.0461 0.2427 

4 rs60160057 DCLK2 A -0.0287 0.0062 3.15E-06 0.0248 0.0381 0.5158 

14 rs117536281 CDCA4 G 0.0850 0.0183 3.31E-06 -0.0471 0.0977 0.6298 
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22 rs7510583 KIAA1644 G 0.0347 0.0075 3.38E-06 - - - 

14 rs59192843 

BBOF1 

(CCDC176) G 0.0655 0.0141 3.52E-06 0.0310 0.0748 0.6783 
8 rs57415150 CSMD1 A -0.0584 0.0126 3.68E-06 -0.1557 0.0741 0.0357 

20 rs6038821 LINC01706 T 0.0596 0.0129 3.98E-06 -0.0044 0.0835 0.9584 

17 rs144204502 TK1 T -0.0896 0.0196 4.92E-06 -0.0359 0.1300 0.7824 
20 rs6107615 PROKR2 C -0.0228 0.0050 5.30E-06 0.0040 0.0315 0.9002 

15 rs9972513 RP11-275I4.2 T 0.0247 0.0055 5.75E-06 - - - 

11 rs117037102 CEP295 T 0.0979 0.0218 6.81E-06 -0.0469 0.1535 0.7600 
21 rs7276273 KRTAP10-4 C -0.1502 0.0334 6.90E-06 -0.3428 0.2033 0.0920 

19 rs11665818 IFNL2 A 0.0278 0.0062 7.04E-06 0.0012 0.0407 0.9765 

14 rs3213718 CALM1 T 0.0224 0.0050 7.22E-06 0.0195 0.0323 0.5458 
5 rs112347796 UBE2D2 D 0.0691 0.0154 7.29E-06 - - - 

19 rs143276018 NMRK2 C -0.1015 0.0229 9.02E-06 0.0020 0.1411 0.9887 

8 rs201375979 COX6C D 0.0332 0.0075 9.11E-06 - - - 

12 rs7311314 SMUG1 A 0.0240 0.0054 9.50E-06 0.0069 0.0334 0.8362 
1 rs35675808 CD247 G 0.0736 0.0166 9.54E-06 -0.0712 0.1106 0.5201 

15 rs117610974 UNC13C G -0.1540 0.0350 1.05E-05 0.0887 0.1578 0.5740 

Abbreviation: Chr, chromosome; SNP, single nucleotide polymorphism; EA, effect allele; 
SE, standard error.  
Estimate; the per-allele effect on z-scored LTL.  
 
 
The association between genetically predicted LTL and vascular phenotypes  
Each SD increase in PRS of LTL was associated with higher cardiac index [0.04 SD 

increase (95% CI: 0.01, 0.07) for both PRSGWS and PRSFDR]. There were also non-

significant trends for the associations of genetically predicted LTL and other hemodynamic 

traits, including systemic vascular resistance index and stroke index (both p < 0.10), as 

well as with better endothelial function [0.03 SD increase (95% CI: -0.01, 0.06), p-value = 

0.09]. There was no association between genetically predicted LTL and arterial stiffness 

traits (Figure 23). Overall, both the magnitudes and directions of the associations with 

vascular phenotypes were consistent between measured and genetically predicted LTL. 

Age, sex and smoking status did not significantly modify the association of measured and 

genetically predicted LTL with vascular phenotypes (all interaction P-values > 0.10). 

 

To explore which variants drove the associations of LTL with vascular phenotypes, we 

further investigated the associations of the 47 individual genetic variants with vascular 

phenotypes that were identified to be significantly associated with genetically predicted 
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LTL (Figure 24). For reactive skin hyperemia, per-allele associations with were found for 

rs8105767 (ZNF208), rs112655343 (ATF7IP), rs55710439 (ANKDD1A), and 

rs144204502 (TK1). Per-allele associations with cardiac index were observed for 

rs2124616 (TYMS), whereas rs9419958 (OBFC1), rs2124616 (TYMS), rs56810761 

(UNC80) and rs62365174 (TENT2) were associated with stroke index. Three SNPs, 

including rs10936600 (TERC), rs73624724 (ZBTB46), rs2302588 (DCAF4) was 

associated with pulse pressure.  

 

The association between ΔLTL and vascular phenotypes  
Each SD increase in ΔLTL was associated with 0.06 SD increase (95% CI: 0.12, 0.00) in 

reactive skin hyperemia, 0.07 SD increase (95% CI: 0.01, 0.13) in cardiac index, and 0.06 

SD decrease (95% CI: -0.12, -0.01) in systemic vascular resistance index, after 

adjustment for genetically predicted LTL (Figure 25). The associations remained similar 

after further adjustment for smoking and BMI. However, ΔLTL was not associated with 

arterial stiffness traits. 
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Figure 23. The association between the genetically predicted longer telomere length 
and vascular phenotypes 
Base model: vascular phenotype~ polygenic risk score (PRS) of LTL + age + sex + 
population stratification (first 10 genetic principal components) 
Threshold for SNP inclusion: genome-wide significance (5*10-8) includes 20 variants; 
False-discovery rate < 0.05 includes 47 variants.  
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Figure 24. The association between each variant with significant vascular 
phenotypes 
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Figure 25. The association between the delta leukocyte telomere length and 
vascular phenotypes 
Base model: vascular phenotype~ ΔLTL + polygenic risk score (PRS) of LTL + age + sex 
PRS of LTL (FDR) includes 47 variants at false-discovery rate < 0.05, and PRS of LTL 
(GWS) includes 20 variants at genome-wide significance (5*10-8) level.  
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4. Discussion 
 
4.1 Cardiovascular and epigenetic aging  
We performed one of the largest and most comprehensive studies to date on the relation 

between cardiovascular risk factors across multiple domains, as well as novel quantitative 

markers of cardiovascular aging, applying and comparing different epigenetic estimators 

of accelerated biological aging. Using a population-based approach, we found that across 

a wide age range, individuals with an unhealthy cardiovascular risk profile, as well as 

those who had unfavourable quantitative markers of arterial stiffness and hemodynamics, 

consistently displayed accelerated epigenetic aging, with lifespan acceleration estimators 

outperforming first-generation epigenetic age acceleration estimators in capturing 

multisystem dysregulation. Importantly, the effects of cardiovascular risk factors and 

cardiovascular aging markers on accelerated DNAm age were largely independent, 

suggesting that targeting of (modifiable) cardiovascular risk profiles across different 

physiological domains is likely to have a cumulative effect with respect to slowing of the 

unhealthy aging process.  

 

These findings indicate that an unfavourable cardiovascular health profile could underlie 

interindividual differences in biological aging beyond chronological age, contributing to 

unhealthy aging-related morbidity and mortality. Biological aging has been linked to an 

increased risk of all-cause mortality and is strongly associated with chronological age. By 

assessing the association between cardiovascular aging markers with both generation 

epigenetic age acceleration estimators, we show that unfavourable changes in 

cardiovascular aging markers across multiple physiological domains are consistently 

associated with all epigenetic age acceleration estimators, capturing variations in the rate 

of biological aging beyond chronological age. Moreover, our study also provides clues on 

how lifespan acceleration estimators might capture more aspects of biological aging and 

outperform first-generation age acceleration estimators as determinants of morbidity and 

mortality. Aging involves complex changes across multiple physiological domains, which 

together determine the pace of aging (Harman 1991; Khan et al. 2017). Compared with 

first-generation DNAm age estimators, which use chronological age as a proxy of 

biological age, lifespan estimators, including DNAm PhenoAge and DNAm GrimAge, 
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include not only CpGs with strong time-dependent changes, but also those related to 

divergence in the rate of aging (Horvath and Raj 2018; Levine et al. 2018; Lu et al. 2019). 

Indeed, we found that more cardiovascular factors were associated with lifespan 

acceleration estimators, and that the effect sizes were larger for the lifespan acceleration 

estimators as compared to the first-generation age acceleration estimators, suggesting 

that lifespan acceleration estimators are more sensitive to physiological changes reflected 

at the epigenetic level. Collectively, these findings suggest that lifespan acceleration 

estimators more closely reflect the cumulative effects of the underlying aging-related 

molecular mechanisms on the epigenome (Gao et al. 2019; Hannum et al. 2013; Horvath 

2013; Levine et al. 2018; Lu et al. 2019; Schottker et al. 2020). 

 

Our findings confirm and substantially extend previous findings by showing that 

unfavourable changes in cardiovascular risk factors across multiple physiological domains 

are consistently associated with both first and second-generation DNAm age acceleration 

estimators. Moreover, the effects were largely independent and were seen across a wide 

age spectrum. This indicates that the effects of changes in multiple cardiovascular 

domains are additive at the epigenetic level, suggesting an independent modification of 

the rate of biological aging. The relation between many cardiovascular risk factors, 

including hypertension and obesity, increased cardiovascular-associated morbidity, and 

decreased life expectancy has been well established (Collaborators 2017; D'Agostino et 

al. 2008; Yusuf et al. 2004). However, the underlying molecular pathways mediating these 

associations are much less clear. A potential mechanism could be the influence of 

cardiovascular risk factors on systemic gene expression profiles through changes in DNA 

methylation (Mendelson et al. 2017; Richard et al. 2017). Although several studies have 

indeed found associations between BMI, blood pressure, metabolic syndrome, and DNAm 

age acceleration estimators, these were mostly small-scaled and focused on only a few 

cardiovascular risk factors, mainly in relation to first-generation DNAm age acceleration 

estimators (Huang et al. 2019; Nannini et al. 2019; Nevalainen et al. 2017; Quach et al. 

2017). Conversely, our findings highlight a robust relation between most known 

cardiovascular risk factors and accelerated epigenetic aging, and thereby support the 

notion that managing common modifiable risk factors could prevent detrimental changes 

in DNA methylation patterns and contribute to healthy aging.  
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Importantly, we also found that novel quantitative markers of cardiovascular aging were 

robustly associated with accelerated DNAm age. Previous studies of such markers mainly 

focused on studying the methylation status of single genes (Jiang et al. 2014; Murray et 

al. 2016). They showed that hemodynamic changes may exert part of their role in the 

pathogenesis of vascular diseases through epigenetic remodeling (Dunn et al. 2014; Jiang 

et al. 2014). We found that unfavourable changes in measures of arterial stiffness and 

hemodynamics were associated with accelerated DNAm age. As DNAm age acceleration 

estimators take the methylation status of a panel of CpG changes into account, our 

findings support the notion that cardiovascular dysfunction may induce multiple 

methylation changes across the epigenome, which could have an impact on the rate of 

biological aging. Therefore, our findings suggest that targeting age-related changes in 

cardiovascular functions may beneficially influence the underlying aging process.  

 

Our study has both strengths and limitations. First, we were able to scrutinize the effects 

of a wide range of cardiovascular risk factors and novel quantitative cardiovascular aging 

markers conjointly in one of the largest studies to date concerning the relation between 

cardiovascular and accelerated epigenetic aging. Second, we present results for first and 

second-generation DNAm age acceleration estimators, showing that although the effects 

are consistent across the different “epigenetic clock acceleration estimators”, the lifespan 

acceleration estimators more closely reflect changes in cardiovascular risk factors. Third, 

our estimates are based on a broad age spectrum, ranging from 30 to 95 years old, and 

are therefore likely to represent the association between cardiovascular and accelerated 

epigenetic aging across most of the adult lifespan. On the other hand, the cross-sectional 

nature of our study precludes formal evaluation of the directionality of the effects. So, 

although we consider it likely, based on findings from prior experimental studies, that 

cardiovascular risk factors trigger changes in DNA methylation, the converse cannot be 

excluded.  

 

In conclusion, we found that multiple cardiovascular risk factors and quantitative 

cardiovascular aging markers across different physiological systems were consistently 

and independently associated with accelerated DNAm age. These classical risk factors 

and quantitative cardiovascular aging makers per se were highly associated with vascular 
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aging. Our study suggested that beyond vascular consequences, they were consistently 

and independently related to biological aging. These cardiovascular risk factors may 

hence serve as targets to modify the rate of biological aging with health impacts beyond 

the mere cardiovascular aspects of the aging process. 
 

4.2 Lipidomics and epigenetic aging 
We investigated 14 complex lipid classes, covering 964 molecular species and 267 one-

fatty-acid-tail compositions, in relation to biological aging. We found many complex lipid 

species to be differently associated with different rates of biological aging. Higher levels 

of molecular species belonging to the neutral lipids (MAG, DAG, TAG), phospholipids (PE, 

PE(O), PE(P)), sphingolipids (CER, DCER) classes were associated with accelerated 

biological aging, whereas higher levels of distinct other molecular species (i.e. LPC, HCER 

and LCER) were associated with slower biological aging. CE, PC, LPE molecular species 

with odd-numbered (i.e. 15 and 17) fatty acid tail lengths were associated with slower 

biological aging, whereas even-numbered fatty acid tail lengths were associated with 

faster biological aging. Importantly, in silico pathway analysis revealed that lipids that were 

associated with biological aging estimators were mainly involved in known longevity and 

aging-related pathways, supporting their role as potential determinants of biological aging 

across lifespan in the general population. 

 

We found higher levels of odd-numbered fatty acid tail lengths (15:0 and 17:0) to be 

associated with slower biological aging, but even-numbered fatty acid tail lengths with 

faster biological aging. This fits observations from previous studies. The EPIC-InterAct 

study (n = 27,296) found that higher levels of odd-chain saturated fatty acids (15:0; 17:0) 

were associated with a reduced risk of type 2 diabetes, whereas this risk was increased 

for people with higher levels of even-chain saturated fatty acids (Forouhi et al. 2014). The 

EPIC-Norfolk study (n=7354) likewise found that even-chain saturated fatty acids were 

positively associated with incident coronary heart disease (CHD), while odd-chain 

saturated fatty acids (15:0; 17:0) were inversely associated with incident CHD (Khaw et 

al. 2012). However, the underlying mechanisms are largely unknown. C15:0 and C17:0 

have an exogenous origin, and are mainly derived from dietary dairy fats, especially from 

ruminant fat (Brevik et al. 2005; Smedman et al. 1999; Wolk et al. 1998). These two odd-
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chain length fatty acids are produced by the rumen microbiome and then incorporated into 

the fat tissue of the host animal, and have been suggested as potential biomarkers of milk 

or dairy fat intake in humans (Brevik et al. 2005; Hodson et al. 2008; Smedman et al. 

1999). Even-chain length saturated fatty acids are mainly derived from de novo 

lipogenesis, through which carbohydrates and alcohol are converted to fatty acids in the 

liver or adipose tissue. Biochemical experiments also demonstrated toxic effects of 16:0, 

18:0, 24:0, including activation of inflammatory cytokines and lipotoxicity to pancreatic β 

cells (Huang et al. 2012; Maedler et al. 2001; Pararasa et al. 2016). This suggests that 

lipid composition of the diet might have an impact on rate of biological aging.   

 

Very little work has explicitly assessed the value of LPC species as potential human blood-

derived biomarkers of human aging. Circulating LPCs are generated by phospholipases 

A2 from PC. The most abundant LPC in human plasma is 16:0, followed by 18:2, 18:0, 

18:1, 20:4, and other minor species (Drzazga et al. 2014). We showed that 13 out of 19 

measured LPC species exhibit a robust negative association with epigenetic markers of 

biological aging, suggesting that many LPC species may contribute to healthy aging. Our 

findings expand on those from recent epidemiological studies, involving assessment of a 

limited number of LPC species, that also reported low concentrations of certain circulating 

LPCs (i.e. 18:2 and/or 17:0) to be associated with several aging-related phenotypes and 

disorders, including memory impairment (Mapstone et al. 2014), gait speed decline 

(Gonzalez-Freire et al. 2019), and incident myocardial infarction (Ward-Caviness et al. 

2017). Conversely, elevated LPC (18:1) levels were reported in centenarians (Montoliu et 

al. 2014). A potential biological mechanism through which LPCs could contribute to 

biological aging and age-associated disorders is oxidative stress and inflammatory 

responses (Knuplez and Marsche 2020; Law et al. 2019). Accumulating evidence 

indicates that LPCs are involved in NADPH oxidase stimulation of the production of 

reactive oxygen species (ROS), thereby converting pro-cytokines to their biologically 

active forms (Brandes and Kreuzer 2005). Moreover, polyunsaturated LPCs (e.g. LPC 

20:4, 22:6) were shown to exert anti-inflammatory effects in animal studies (Hung et al. 

2012; Lucas et al. 2008). Recently, lower levels of several LPC species (LPC 16:0, 16:1, 

17:0, 18:1, 18:2, 20:3) were also linked to impaired mitochondrial oxidative capacity in 

adults, another important hallmark of aging (Semba et al. 2019).  
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For other phospholipids, which are major components of cell membranes, we found that 

polyunsaturated PCs were generally associated with slower aging, whereas species with 

fewer double bonds and carbons tended to be associated with accelerated aging. These 

findings are in line with those from previous studies that found associations between 

saturated and monounsaturated PCs and cardiovascular diseases and type 2 diabetes 

(Tabassum et al. 2019). Moreover, unsaturated PC species (PC 36:2, 36:3, 34:1, 34:3) 

have been linked to longevity, which might be due to their antioxidative and 

cardioprotective properties (e.g. PC 34:1, 36:6) (Gonzalez-Covarrubias et al. 2013; 

Montoliu et al. 2014; Pradas et al. 2019). PE species, the second most abundant 

membrane phospholipids, have also been identified as modulators of inflammation and 

apoptosis (Pamplona 2008), yet little is known about the properties of specific PE species. 

Here we show that that higher levels of various PE species are robustly related to 

accelerated aging across life span, thereby supporting and substantially extending 

previous reports of lower PE (38:6) levels in the offspring of nonagenarians (Gonzalez-

Covarrubias et al. 2013). 

 

Higher TAG levels are linked to an increased risk of cardiovascular diseases and type 2 

diabetes (Rhee et al. 2011; Stegemann et al. 2014). Small-scale lipidomic profiling in 

longevity studies also found lower levels of TAG species (including TAG 46:5, 47:5, 52:1, 

54:7, 54:6, 56:6, 56:7, 57:2) to be associated with healthy aging (Collino et al. 2013; 

Gonzalez-Covarrubias et al. 2013; Montoliu et al. 2014). Our findings parallel and 

considerably extend these previous reports by showing that 361 out of 519 TAG species 

across different chain lengths and double bonds were associated with accelerated 

biological aging. Few studies have investigated the association between other neutral 

lipids (including CE, MAG, DAG) and longevity or healthy aging. Here we show that higher 

levels of DAG species or lower levels of CE species are related to an accelerated rate 

biological aging, indicating that almost all neutral lipids could potentially influence 

longevity. 

 

Plasma sphingolipids have also been proposed as biomarkers of various age-related 

diseases, including Alzheimer’s disease, Parkinson’s disease, diabetes, obesity, and 

CVDs (Holland and Summers 2008; Nelson et al. 2006; Piccinini et al. 2010; Proitsi et al. 
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2017).  We found that lower levels of SM (20:0, 20:1, 22:0, 22:1) were associated with 

accelerated aging, which supports previous studies showing higher levels of certain SM 

species in the offspring of long-lived individuals (Gonzalez-Covarrubias et al. 2013; 

Vaarhorst et al. 2011). Moreover, the SM species that we found to be associated with 

accelerated aging, have previously been associated with diabetes and hypertension 

(Gonzalez-Covarrubias et al. 2013; Vaarhorst et al. 2011). It is known that SM species 

can be hydrolyzed into ceramides by sphingomyelinase, whose activity increases with 

aging. Therefore, increased sphingomyelinase activity could result in declining levels of 

SMs and increasing levels of CERs with aging (Smith et al. 2006).  

 

HDL and LDL levels are well-established biomarkers for various CVDs and are widely 

used in assessing CVD risk in the clinic (Barter et al. 2007; Toth 2004). We demonstrate 

that the effects of neutral lipids and phospholipids on biological aging largely depend on 

HDL and LDL levels, whereas those of sphingolipids are largely independent of HDL and 

LDL levels. This finding reflects the well-characterized role of lipoproteins in lipid 

metabolism: Lipoproteins are complex aggregates of lipids and proteins that render the 

hydrophobic lipids compatible with the body fluids and enable their transport throughout 

the body to tissues where they are required. Their most abundant lipid constituents are 

TAGs, free cholesterol, CEs and phospholipids (especially PCs and PEs). Lipoproteins 

are the main player in exogenous, endogenous and reverse cholesterol transport 

pathways, thus contributing predominantly to the neutral lipids and phospholipids 

metabolism (Kwiterovich 2000). In contrast, sphingolipid metabolism is more independent 

of lipoproteins (Borodzicz et al. 2015). Our findings provide a detailed overview of the 

differential effects of lipoproteins across a wide range of lipid classes and species and 

underscore the importance of accounting for their potentially confounding effects in 

lipidomics analyses. 

 

The main strength of our study is that we were able to delineate the effects of a 

comprehensive quantitative panel of well-characterized plasma lipids on two novel 

epigenetic estimators of biological aging. Moreover, we provide in-depth analyses of the 

associations between the wide variation in the structure and fatty acid composition of a 

wide array of lipid molecules on these biological aging estimators. Third, leveraging on 
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extensive individual-level methylation array data, we were able to scrutinize the underlying 

biological pathways likely to be involved in mediating the effects of complex lipids on 

biological aging. In addition, our estimates are based on a broad age spectrum, ranging 

from 30 to 95 years, and are therefore likely to represent the lipidomic correlates of 

epigenetic aging across most of the adult lifespan. However, the cross-sectional nature of 

our study precludes formal evaluation of the directionality of the effects. Based on findings 

from previous studies we nevertheless consider it most likely that changes in lipid 

composition can alter DNA methylation (Dekkers et al. 2016; Jhun et al. 2021). Mendelian 

randomization analyses could possibly help inferring causality. Furthermore, longitudinal 

studies are needed to scrutinize the temporal dynamics of the relationship between 

plasma lipids and biological aging.   

 

To sum up, we provide a comprehensive in-depth overview of the lipidomic correlates of 

biological aging across lifespan in a large well-characterized community-based cohort 

study. Our findings indicate that diverse complex lipid species are associated with different 

rates of biological aging, with lipid class as well as fatty acid chain length and saturation 

as key determinants of their influence on biological aging. These findings emphasize the 

importance of investigating in-depth lipidomics in aging research beyond the standard 

clinical lipid panel. Since lower LPC species were predominantly negatively associated 

with biological aging and have been linked to age-related biological mechanisms (e.g. 

oxidative stress and mitochondrial dysfunction), they represent promising candidate 

human blood-derived biomarkers of human aging. Finally, investigating the sources of 

different lipids which have disparate association patterns with biological aging may 

increase our understanding of the underlying biological mechanisms. 

 

4.3 Leukocyte telomere length and vascular aging 
Using a hypothesis-driven approach, we systematically examined the associations of 

measured and genetically predicted LTL with a large number of sensitive quantitative 

markers of cardiovascular function across four major vascular domains in the general 

population, including endothelial function, hemodynamics, arterial stiffness and blood 

pressure. We found that both measured and genetically predicted LTL, as well as ΔLTL, 

the difference between measured and genetically predicted LTL, were all consistently 
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associated with endothelial function and hemodynamic traits, but not with markers of 

arterial stiffness. Taking advantage of findings from a recent meta-GWAS, we were able 

to develop a robust PRS of LTL that we also validated against measured LTL values in 

our cohort. Importantly, the consistent associations of measured and genetically predicted 

LTL with vascular phenotypes indicate that longer LTL is likely to be causally related to 

better endothelial and cardiac function. Additionally, ΔLTL was associated with endothelial 

function, cardiac index, and systemic vascular resistance index. This suggests that 

telomere shortening itself, rather than genetically or non-genetically determined, 

contributes to cardiovascular dysfunction (Werner et al. 2019; Yeh et al. 2019). Of note, 

ΔLTL was stronger associated with endothelial function and cardiac index than either 

measured LTL or genetically predicted LTL. These findings have profound implications for 

our understanding of cardiovascular senescence and suggest that counteracting telomere 

shortening via non-genetic factors, including nutrition (Crous-Bou et al. 2019; Leung et al. 

2018), physical activity (Tucker 2017; Werner et al. 2019), and sleep (Jackowska et al. 

2012; Tempaku et al. 2018), may reduce the risk of CVDs. 

 

We found that both longer measured and genetically predicted LTL, as well as a lower 

ΔLTL, are associated with better endothelial function. These findings support the notion 

that telomere-triggered cell senescence could potentially cause endothelial dysfunction, 

which is an early feature of atherosclerosis and vascular diseases. Although experimental 

studies have suggested that telomere function is a crucial determinant of endothelial 

function (Chang and Harley 1995; Chen et al. 2021; Maeda et al. 2019; Minamino et al. 

2001; Minamino et al. 2002; Yepuri et al. 2016), only a few small-scaled clinical and 

epidemiological studies have investigated the association of telomere length with 

endothelial function (Gonzalez-Guardia et al. 2014; Nezu et al. 2015). One cross-sectional 

study in 102 patients with a history of cerebrovascular diseases found shortened telomeric 

3’-overhang (G-tail), but not total telomere length, to be associated with endothelial 

function (Nezu et al. 2015). Another cross-sectional study from the LIPGENE cohort 

including 88 patients with metabolic syndrome also found that endothelial function, 

through high oxidative stress, was associated with shorter telomere length (Gonzalez-

Guardia et al. 2014). Our study, with a much larger sample size and a wide age range 

among community-dwelling adult, not only confirms and substantially extends these 
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previous finding but also provides evidence for a causal connection between telomere-

triggered cell senescence and endothelial dysfunction at population level.  

 

The relationship of both measured and genetically predicted LTL with hemodynamic 

measures indicates that telomere-triggered cell senescence may be a biologically 

important factor that contributes to the age-related decline in heart function. Experimental 

studies highlighted the important role of cardiac telomere length in heart development, 

function and disease (Booth and Charchar 2017). Decreases in telomere length in 

cardiomyocytes induced apoptosis and heart disease (Anderson et al. 2019; Leri et al. 

2003). Several lines of evidence also show that telomere-induced senescence in cardiac 

stem cells forces the cells to undergo apoptosis when the telomere length reaches a 

critical threshold, which in turn, prevents cardiomyocyte replenishment of damaged cells 

and consequently leads to heart disease (Aguado et al. 2017; Cesselli et al. 2011; Chen 

et al. 2021; Fathi et al. 2019). However, there are much fewer epidemiological studies 

assessing the association between LTL and hemodynamic traits. In particular, the relation 

between PRS of LTL and hemodynamic markers had not been examined before. Beyond 

the studies mentioned previously, a recent study in 566 normotensive and never-treated 

hypertensive subjects found that mean LTL was only associated with the augmentation 

index, but not with other hemodynamic variables (including aortic blood pressure and 

pulse wave velocity), independent of CVD risk factors; although mean LTL correlated with 

systemic vascular resistance in the univariate analyses (Honkonen et al. 2020). Applying 

a population-based approach in which we leveraged new genetic findings to create a more 

powerful PRS of LTL than previously possible, our findings support a causal role for 

telomere-triggered cell senescence in the pathogenesis of cardiovascular dysfunction 

across the adult life course.  

 

There was little evidence of an association between LTL measures, arterial stiffness, and 

blood pressure parameters, which echoed previous studies. Prior studies have observed 

inconsistent associations between measured LTL/ genetically predicted LTL, arterial 

stiffness and blood pressure traits, with several null results reported (Bekaert et al. 2007; 

Brown et al. 2018; Denil et al. 2014; Nguyen et al. 2019; Rehkopf et al. 2016). The 

marginal associations could be residual confounding (LTL measurement and/or 
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environmental effects) and biological pleiotropy related to genetic determinants of LTL 

(Demanelis et al. 2021). Moreover, there is sparse biological evidence of telomere-

triggered cell senescence with arterial stiffness and blood pressure traits. 

 

Our study has both strengths and limitations. Strengths of our study include the relatively 

large sample size, inclusion of individuals across a wide age range from the general 

population, as well as the availability of estimates of both measured and genetically 

predicted LTL. This enabled internal validation of the PRS of LTL in our cohort, as well as 

derivation of another metric, ΔLTL, which allowed estimation of difference between 

measured LTL and genetically predicted LTL in relation to vascular phenotypes 

independent of genetically predicted LTL. Indeed, we were able to replicate the previously 

identified top hits related to LTL and were able to construct two PRSs of LTL based on 

SNPs with a clear relevance to telomere biology, further supporting the biological 

plausibility of our findings. Moreover, the availability of robust PRSs of LTL allowed us to 

provide evidence for a causal role of telomere length in cardiovascular senescence and 

dysfunction. A limitation of our study is the lack of longitudinal follow-up data, which 

precluded assessment of the effects of telomere shortening on incident CVDs. In addition, 

five SNPs previously identified to be associated with LTL were not available on our genetic 

arrays; however, the subset of 20 genome-wide significant variants was available.  

 

In conclusion, both measured and genetically predicted LTL, as well as ΔLTL, were 

consistently associated with endothelial function and hemodynamic traits. Importantly, the 

robust association between a validated PRS of LTL and different quantitative markers of 

cardiovascular function support a causal role for telomere shortening in the pathogenesis 

of endothelial and cardiac dysfunction. These findings implicate telomere-triggered cell 

senescence in the mechanistic pathways underlying cardiovascular dysfunction and 

CVDs. Together with prior studies, our data provide evidence that lifestyle interventions 

may not only reduce the risk of CVDs, but also of other age-related disorders (Elks and 

Scott 2014; Sindi et al. 2021). These findings also suggest that besides lifestyle 

interventions that can slow telomere shortening, the development of treatments that target 

telomere shortening, might reduce the risk of CVDs, and potentially also other aging-

related diseases.  
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4.4 Summary and outlook  
Aging is a universal process of physiological and molecular changes that are strongly 

associated with susceptibility to disease and ultimately death (Ahadi et al. 2020). 

Measuring biological aging at the individual level reveals distinct aging signatures 

declining at faster, or slower rates (Hannum et al. 2013; Horvath 2013; Lehallier et al. 

2020; Mamoshina et al. 2018; Nazish Sayed 2019; Robinson et al. 2020). Biomarkers of 

aging, including DNAm age acceleration estimators and LTL, can distinguish between 

individuals who are of the same chronological age but differ in their biological aging rates 

(Hannum et al. 2013; Horvath 2013; Levine et al. 2018; Lu et al. 2019; Rizvi et al. 2014).  

 

Quantitative biomarkers of biological aging offer several benefits in that they can be 

utilized as: 1) proxy outcome measures in etiologic research, as they reflect individuals’ 

physiological state and the underlying mechanisms related to aging throughout the 

lifespan (Horvath and Raj 2018; Jones et al. 2015; Jylhava et al. 2017); 2) predictive 

biomarkers of age-related phenotypes, and may even be used to predict lifespan (Chen 

et al. 2016; Lu et al. 2019); 3) surrogate endpoints, which enable to evaluate the efficacy 

and safety of interventions/treatments to slow down the biological aging process or to 

extend the healthspan (Belsky et al. 2020); 4) health metrics, which allow public health 

officials to test whether policies or programs can promote healthier and longer lives. 

 

Assessing the determinants or correlates of biological aging is a prerequisite to apply such 

biomarkers as surrogate endpoint measures or predictive biomarkers. In the scope of this 

thesis, we found that multiple cardiovascular risk factors and quantitative cardiovascular 

aging markers across different physiological systems, as well as different complex lipid 

species, are associated with DNAm age acceleration estimators. Our data provide 

evidence that DNAm age acceleration estimators could be utilized not only as proxy 

outcome measures in etiologic research and intervention studies but also as predictive 

biomarkers of age-related conditions. Moreover, we found that measured, genetically 

predicted LTL, as well as ΔLTL, were consistently associated with endothelial function 

and hemodynamic traits. These findings suggest that telomere length could be used as a 
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surrogate measure in etiologic studies or in interventions to evaluate if counteracting 

telomere shortening could have beneficial health impacts.  

 

These findings provide valuable evidence supporting the promising utility of these 

biomarkers, but also more studies are needed to address the following questions. First, it 

is essential to determine whether these associations reflect causal pathways or rather 

consequences of the aging process. Mendelian randomization analyses or other causal 

inference models could help to infer causality. Second, assessing how these biomarkers 

change across the lifespan and how these biomarkers interact with modifiable risk factors 

is of great importance. In this regard, longitudinal studies are essential to examine these 

changes and how lifestyle shapes the aging phenotypes. In addition, to have a better 

understanding of specific biological changes in aging and its implications, systems biology 

approaches could offer insights into the organ and systems-specific functions (Bell et al. 

2019). Last but not the least, it has been suggested that a composite biological aging 

measure may be of greatest interest, which reflects the global susceptibility to disease 

with aging (Ferrucci et al. 2020).  

 

In summary, this thesis provided a comprehensive in-depth overview of the cardiovascular 

and lipidomic correlates of biological aging across adult lifespan and the role of telomere-

triggered cell senescence in cardiovascular dysfunction. These findings yield insight into 

the underlying process of biological aging and can lay the groundwork for future studies 

to explore their therapeutic relevance to promote healthy aging.  
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5. Abstract 
 
The rapid aging of the global population, often accompanied by disabilities and various 

age-related diseases, is becoming a major public health burden (WHO 2015). Stimulating 

healthy aging is therefore of tremendous importance. However, substantial inter-individual 

variation in aging and aging-associated morbidity remain in individuals of the same 

chronological age, pointing towards markedly different rates of biological aging (Ben-

Shlomo et al. 2014; Hamczyk et al. 2020; Medina-Lezama et al. 2018; Patel et al. 2015; 

Yusuf et al. 2020). The determinants of biological aging are largely unknown. Elucidation 

of the factors underlying interindividual differences in biological aging and delineation of 

their precise contributions are essential for the development of individualized approaches 

to promoting healthy aging. 

 

CVDs are the leading causes of morbidity and mortality worldwide (CollaboratorsGBDCoD 

2017; North and Sinclair 2012). As with other age-related diseases, inter-individual 

variation in cardiovascular aging and associated morbidity in individuals of the same 

chronological age, points towards markedly different rates of biological aging (Ben-

Shlomo et al. 2014; Hamczyk et al. 2020; Medina-Lezama et al. 2018; Patel et al. 2015; 

Yusuf et al. 2020). Whether and to what extent different cardiovascular risk factors and 

cardiovascular aging markers contribute to different rates of biological aging, estimated 

as DNAm age acceleration, remains largely unknown. Therefore, in study I, I examined 

whether classical cardiovascular risk factors involving multiple domains as well as novel 

quantitative markers of cardiovascular aging, including arterial stiffness, endothelial 

function and systemic hemodynamics, have consistent and independent effects on 

various epigenetic age accelerations across a wide age range in the general population. 

Using a population-based approach with extensive deep-(endo)phenotype data on nearly 

3,500 participants aged 30 years and above (30 - 95 years old), we found that multiple 

cardiovascular risk factors, arterial stiffness and hemodynamics were consistently and 

independently associated with DNAm age acceleration estimators, and could contribute 

to different rates of biological aging. 
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Lipid metabolites are essential components of biological membranes and signaling 

molecules, and the lipidome represents an individual's biological state (Hahn et al. 2017). 

Certain lipid profiles have been associated with human longevity and lifespan (Gonzalez-

Covarrubias et al. 2013; Montoliu et al. 2014; Vaarhorst et al. 2011), yet systematic studies 

assessing which lipid species across different classes and compositions influence 

biological aging are lacking. The heterogeneous chemical structure of lipids poses 

challenges for their accurate quantification, and until now only a few lipid species have 

been investigated in relation to aging and age-related health outcomes. Therefore, in 

study II, I investigated 14 complex lipid classes, covering 964 molecular species and 267 

one-fatty-acid-tail compositions, in relation to different rates of epigenetic aging – a proxy 

for biological aging – across the adult lifespan on the first 4181 participants of the 

Rhineland Study. We present the largest and most comprehensive study to date showing 

that across neutral lipids, phospholipids, and sphingolipids, different complex lipid species 

are associated with different rates of biological aging, with the effects mainly depending 

on lipid class and fatty acid chain length. These findings offer novel potential targets for 

promoting healthy aging. 
 

Telomeres are DNA-protein complexes located at the end of chromosomes and have 

been proposed as another hallmark of biological aging as they shorten with age and each 

cell division, thereby triggering cellular senescence (Blackburn et al. 2015; O'Sullivan and 

Karlseder 2010). Emerging evidence has suggested that telomere-triggered cellular 

senescence might contribute to the pathogenesis of endothelial and hemodynamic 

dysfunction (Maeda et al. 2019; Minamino et al. 2001; Minamino et al. 2002). However, 

cross-sectional studies have yielded conflicting results regarding the associations 

between LTL and vascular phenotypes, and the temporality of associations remains 

unclear. Therefore, in study III, I assessed the association of measured, genetically 

predicted LTL, and ΔLTL with vascular phenotypes, including endothelial function, 

hemodynamics, arterial stiffness, blood pressure, across the adult lifespan in a population-

based study. Using a hypothesis-driven approach, we observed that both measured and 

genetically predicted LTL, as well as ΔLTL, were all consistently associated with 

endothelial function and hemodynamic traits, but not with markers of arterial stiffness. 

Importantly, the robust association between a validated PRS of LTL and different 
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quantitative markers of cardiovascular function support a causal role for telomere 

shortening in the pathogenesis of endothelial and cardiac dysfunction. These findings 

implicate telomere-triggered cell senescence in the mechanistic pathways underlying 

cardiovascular dysfunction and CVDs. Additionally, ΔLTL was associated with endothelial 

function, cardiac index, and systemic vascular resistance index. This suggests that 

telomere shortening itself, rather than genetically or non-genetically determined, 

contributes to cardiovascular dysfunction (Werner et al. 2019; Yeh et al. 2019).   

 

In summary, in this thesis I presented novel evidence about the precise contributions of 

cardiovascular phenotypes and complex lipids to different rates of biological aging, and 

the role of telomere-triggered cell senescence in cardiovascular aging. In a progressively 

older world population, these findings could provide the basis for the development of more 

potent anti-aging approaches focused on biological aspect of the aging process. 
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