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Abstract 

Neuronal inhibition is an essential feature of all brain areas. Besides controlling the 

average rate of neuronal firing, it also controls the precise timing of action potentials and 

mediates several types of network oscillations that are related to cognition. Inhibition is 

provided primarily by interneurons that release gamma-Aminobutyric acid (GABA). Many 

interneuron subtypes have been identified based on their morphology, electrophysiology, and 

molecular markers. Here we characterize a novel interneuron subtype of the hippocampus that 

is primarily found in the CA3 area. It colocalizes the molecular interneuron markers 

somatostatin (Sst) and glutamate decarboxylase (Gad) but also solute carrier family 17 member 

8 (Slc17a8). Slc17a8 is a gene encoding the vesicular glutamate transporter 3 and is therefore a 

marker of glutamatergic neurons. We used patch seq to transcriptomically and 

electrophysiologically characterize this Sst+/Slc17a8+ interneuron subtype, finding that it is 

electrophysiologically not clearly distinguishable from other interneuron subtypes. To 

investigate its functional role, future studies should establish methods to specifically target them 

with optogenetic constructs. We tested a transgenic mouse line that was developed to guide 

expression to Sst interneurons. 

Transgenic mouse lines are widely used to express constructs that allow targeted 

manipulation of neuronal activity. We used the SST-Cre mouse line to express 

channelrhodopsin attached to yellow fluorescent protein by intracranial viral injection in 

somatostatin positive interneurons of CA3. Viral transduction resulted in widespread axon 

signal in contralateral hippocampus and optogenetic activation caused strong excitatory 

postsynaptic currents in contralateral CA1 pyramidal cells. At the injection site, somatostatin 

negative cells in the pyramidal cell layer were expressing the viral construct. In other CA3 

layers almost all expressing cells were also somatostatin positive. These data show that the 

mouse line is unsuitable to optogenetically study somatostatin interneurons in CA3 because it 

also targets pyramidal cells. Pyramidal cells however, do not express Slc17a8 and an 

intersectional strategy with a mouse line expressing another recombinase in Slc17a8+ 

interneurons could in the future specifically target Sst+/Slc17a8+ interneurons. 

While circuit level experiments are key to understanding behavior, only small parts of 

the network are accessible for manipulation and measurement at the same time. Computational 

modeling can be a powerful tool and provide a more complete picture of the entire simulated 

network. Experimentally well constrained models can provide testable hypotheses. Many of the 

inputs into CA3 come from the dentate gyrus. The dentate gyrus has the special property that 



   

its outputs are pattern separated. We implemented a circuit model of the dentate gyrus to study 

the role feedback inhibition plays during pattern separation. 

Feedback inhibition is a specific type of inhibition that is activated by the same principal 

cells that receive the inhibition. For the model implementation we used data from optogenetic 

experiments to constrain properties of feedback inhibition. Pattern separation is a neuronal 

computation that decreases the similarity of the network output as compared to the networks 

input pattern. It is known to occur in the dentate gyrus and inhibition has been shown to support 

pattern separation. Accordingly, we found that removing feedback inhibition from the model 

impaired pattern separation. The size of this effect, however, depended on the frequency of 

oscillatory activity we imposed on the input pattern. At higher frequencies, feedback inhibition 

had a stronger effect. This was not the case for feedforward inhibition, which had similar effects 

regardless of frequency. These findings highlight the role of input frequency for pattern 

separation and suggest that different circuit motifs engage differently depending on the 

oscillatory state of the upstream area. Behaviorally our model predicts that interfering with 

oscillatory activity could affect hippocampal pattern separation
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1 Introduction 

The brain is a complex organ made of many different cell types. Neurons are a cell type 

that has a clear role in information processing. Neurons themselves can be divided into two 

major groups: principal cells and interneurons. Principal cells relay signals between different 

brain areas. Interneurons on the other hand control the excitability of principal cells and other 

interneurons. They do so mainly by directly inhibiting them. While it is important to keep 

principal cell excitability under control, interneurons fulfil a variety of other functions. They 

tune the precise spike timing at a millisecond range (Pouille & Scanziani, 2001) and control 

important network oscillations (Allen & Monyer, 2015). They have also been implicated in 

specific cognitive functions like memory formation and pattern discrimination (Sun et al., 

2020). 

Interneurons themselves are not one homogeneous cell type. In the visual cortex alone, 

28 different interneuron subtypes were identified based on their morphology, electrical 

properties and mRNA expression (Gouwens et al., 2020). Depending on their subtype, they 

engage differently with their microcircuit. Some interneuron subtypes participate primarily in 

feed-forward inhibition, feedback inhibition, lateral inhibition, or disinhibition. Furthermore, 

different cell types preferentially inhibit different cortical layers. These different types of 

connectivity together with the large number of interneuron subtypes paint a complex picture of 

interneuron diversity. 

Interneuron diversity has been approached with a variety of techniques, including 

intracellular electrophysiology, histochemistry and single cell transcriptomics. We used a 

technique called patch seq, a combination of intracellular electrophysiology and transcriptomic 

profiling (Cadwell, Scala, et al., 2017). Patch seq allows for the identification of subtypes with 

a combination of electrophysiological properties and molecular markers. However, 

identification of single cell subtypes alone is not sufficient to study the connectivity and larger 

network properties of interneuron populations. Ideally, patch seq could identify novel subtype 

markers to genetically target optogenetic actuators specifically to interneurons populations. 

This would allow for the manipulation of activity in specific population and the downstream 

effects. 

Another important technique is computational modeling. While it does not prove 

biological mechanisms, it is widely used to discover possible mechanisms and guide 

experimental designs. Taken together, patch seq, transgenic expression and computational 

modeling provide a powerful toolbox to investigate interneuron diversity at multiple levels. The 
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single cell, network and computational level will become more relevant as increasingly rare 

interneuron subtypes are identified. Experiments regarding the functional relevance of small 

interneuron populations should be guided by solid characterization of their properties but also 

strong computational theory of the circuit they engage in. 

This thesis focuses on the interneurons of the dentate gyrus – CA3 network of the mouse 

hippocampus. Therefore, the next chapter 1.1 will introduce some of the interneuron subtypes 

that are crucial in these regions. This network is interesting for several reasons. Unlike other 

hippocampal regions, the dentate gyrus and CA3 are recurrently connected (Scharfman, 2007). 

Chapter 1.2 will introduce the connectivity of the two regions. Furthermore, both regions are 

involved with two complementary functions of pattern separation and pattern completion. Both 

are introduced in Chapter 1.3. 

 

1.1 Interneurons of the DG-CA3 system 

In the hippocampus, any non-principal neuron capable of releasing gamma-

aminobutyric acid (GABA) is considered an interneuron (Freund & Buzsáki, 1996). GABA is 

the main inhibitory neurotransmitter of the central nervous system. In the rat hippocampus, 

these inhibitory interneurons constitute 10%-15% of the entire neuronal population. They can 

be subdivided into subcategories according to four key features: molecular markers, 

electrophysiology, morphology, and connectivity (Maccaferri & Lacaille, 2003; The Petilla 

Interneuron Nomenclature Group (PING), 2008). All four are highly relevant for the 

hippocampus (Pelkey et al., 2017) and the CA3-DG system (Hosp et al., 2014). Here, we will 

focus on a few interneuron subtypes that are particularly important for hippocampal function. 

 

1.1.1 Interneuron connectivity 

Connectivity is a key characteristic of many interneuron subtypes (Espinoza et al., 

2018). The input connectivity determines from which cell an interneuron receives its inputs. As 

we will discuss later, this is crucial for the function of interneurons, because the inputs 

determine whether they can participate in feedback, feed-forward or other inhibitory circuit 

motifs (Braganza & Beck, 2018). The output connectivity determines which cells an 

interneuron inhibits. For example, some interneuron subtypes more strongly target deep as 

opposed to superficial pyramidal cells in hippocampal CA1 (Soltesz & Losonczy, 2018). 

Moreover, the location of inhibition is crucial, as one of the most prominent interneuron 

distinctions is between dendritic (Klausberger, 2009) and perisomatic (Freund & Katona, 2007) 

targeting interneurons. 
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Two of the most extensively studied interneuron subtypes of the hippocampus are 

Parvalbumin (PV) positive basket cells (PVBCs) and oriens-lacunosum moleculare (O-LM) 

interneurons. Both interneuron subtypes feature distinct connectivity that is closely intertwined 

with their morphology. PVBCs are called basket cells because most of their axon is in the 

pyramidal cell layer, where they appear as thick, basket-like structures around principal cell 

somata during fluorescent imaging. O-LM cells on the other hand have most of their axon in 

the stratum lacunosum moleculare, where the distal dendrites of pyramidal cells are located.  

Axon location does not necessarily prove functional neurotransmitter release. However, 

for PVBC and O-LM cells the functional consequences of somatic versus dendritic innervation 

have been studied extensively. Dendritic patch clamp recordings have shown that silencing PV 

cells has little effect on dendritic potentials evoked by schaffer-collateral stimulation, whereas 

silencing O-LM cells increases the depolarization from excitatory synaptic inputs (Lovett-

Barron et al., 2012). This means that O-LM cells could exhibit control over post synaptic 

plasticity directly at the dendrite, whereas PVBCs have tighter control over somatic spiking. By 

controlling somatic spiking, they could indirectly influence plasticity because many plasticity 

mechanism depend on postsynaptic spiking. 

The two cell types also receive inputs from different principal cell populations. O-LM 

interneurons participate primarily in feedback inhibition because they are mainly driven by 

local principal cells. PVBCs on the other hand provide feedforward inhibition because they are 

driven by the upstream principal cells. However, PVBCs also receive feedback drive from their 

local principal cells. This means that they are driven by a mixture of feedback and feed-forward 

excitation (Freund & Katona, 2007). 

The inputs and outputs of a cell are crucial for the circuit motifs they participate in and 

thereby for their function. Feedforward inhibition for example has been shown to influence 

spike timing precision (Pouille & Scanziani, 2001) and normalizes the input-output relation of 

the network (Ferrante et al., 2009; Olsen et al., 2010). Feedback inhibition implements sparse 

computations such as Winner-Take-All mechanisms (de Almeida et al., 2009). 

Another interneuron feature are molecular markers. While these molecular markers are 

somewhat correlated with connectivity and function, many of the known interneuron markers 

are not specific for a single connectivity type. Nevertheless, molecular markers have been 

crucial for the study of interneurons for a long time. 

 



1. Introduction 

 4 

1.1.2 Molecular markers of interneurons 

Molecular markers are an important pillar of interneuron classification (Cauli et al., 

1997; Monyer & Markram, 2004). The Petilla nomenclature mentions ten types of molecular 

markers with the concession that there are probably more (The Petilla Interneuron 

Nomenclature Group (PING), 2008). Here we will focus on the three molecular markers that 

are important for hippocampal interneurons: parvalbumin (PV), somatostatin (Sst) and 

cholecystokinin (CCK; Kawaguchi, 2002). 

We already mentioned parvalbumin in the context of connectivity, because the 

parvalbumin positive basket cell is an important interneuron type that engages in perisomatic 

connectivity. However, they are not the only type of basket cell found in the hippocampus. 

Cholecystokinin basket cells (CCKBCs) are another prominent basket cell type. However, 

several CCK positive interneurons are not basket cells but are dendrite targeting (Pawelzik et 

al., 2002). An interesting feature of CCKBCs is that they are the only established hippocampal 

interneuron type that colocalizes solute carrier family 17 (Sodium-Dependent Inorganic 

Phosphate Cotransporter), Member 8 (Slc17a8), the gene protein coding for the vesicular 

glutamate transporter 3 (VGluT3). They were recently shown to release glutamate with 

excitatory postsynaptic effects onto hippocampal principal cells (Pelkey et al., 2020). 

Sst is another important interneuron marker. Most O-LM cells are Sst positive and some 

of them also contain PV (Katona et al., 1999). However, many Sst cells are bistratified 

interneurons (Buhl et al., 1996; Halasy et al., 1996). Bistratified interneurons express PV like 

O-LM cells, but additionally express neuropeptide Y (Müller & Remy, 2014). This complexity 

of molecular marker expression illustrates that molecular markers alone are not sufficient to 

identify well-defined interneuron sub types. Nevertheless, focusing on interneurons that have a 

molecular marker in common can reduce the scope of interneuron diversity. In particular, 

mouse lines that target molecular interneuron markers have been instrumental for the study of 

interneurons (He et al., 2016). The third feature that helps to distinguish interneuron subtypes 

is their electrophysiology. 

 

1.1.3 Electrophysiology of interneurons 

Electrophysiology describes the electrical features of cells. Probably the most prominent 

electrical feature of neurons is the action potential, which is also thought to be the main unit of 

information transfer in the nervous system. Many important electrophysiological features are 

therefore concerned with the number, timing, and shape of action potentials. Because action 

potentials are also called spikes, we use both interchangeably. 
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Interneurons vary widely regarding their electrophysiological features. They can 

generally sustain much higher firing rates than principal cells but some interneurons spike much 

faster than others. Therefore, the most prominent distinction between electrophysiological 

interneuron subtypes is between fast spiking (Espinoza et al., 2018; Hu et al., 2014) and non-

fast spiking (Urban-Ciecko & Barth, 2016). While fast firing rate is a salient feature, this 

dichotomy is likely an oversimplification, given the complexity of neuronal spiking and the 

many types of action potential discharge behavior. For example, interneurons can also be late-

spiking, such that there is a delay between the onset of current injection and spiking. They can 

also be bursting, with few spikes occurring together at extremely high frequency. Finally, 

stuttering describes spiking interrupted by periods without firing (Pelkey et al., 2017). 

On the one hand these spiking types are cell type markers. For example, basket cells can 

on average sustain higher maximum frequencies than dendrite targeting cells. However, 

electrophysiology alone is rarely used in this regard, because of the large variability in spiking 

behavior within subtypes. On the other hand, spiking types are also important for the function 

of interneurons. The type of action potential patterns they can sustain determines the role it can 

play in the network. 

To conclude, there are three established pillars of interneuron diversity: connectivity, 

molecular markers, and electrophysiology. Because the work described in this thesis was done 

in either the CA3 area or the dentate gyrus of the hippocampus, the next chapter gives a brief 

description of the connectivity within and between those two areas. 

 

1.2 Dentate gyrus and CA3 connectivity 

The dentate gyrus (DG) receives its excitatory input primarily from the entorhinal 

cortex. The predominant principal cell is the DG granule cell (GC). The DG features another 

excitatory principal cell called mossy cell (MC; Scharfman, 2016). They are crucial for 

regulating DG network activity by providing feedback excitation to GCs. They also project to 

the contralateral dentate gyrus, while GCs remain unilateral. Finally, MCs also excite other 

hilar interneurons, thereby providing polysynaptic feedback inhibition (Amaral et al., 2007). 

Like most cortical areas the microcircuit of the DG features an intricate combination of 

feedback and feed-forward inhibition. Basket cells are primarily driven by feed-forward inputs 

while the dendrite targeting interneurons are driven by a combination of feed-forward and 

feedback. The DG connectivity is complicated by the fact that MCs drive interneurons and 

many interneuron types inhibit each other.  
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The primary output of the DG is CA3, where each GC makes contact with 15-20 CA3 

pyramidal cells (Amaral et al., 2007). This connectivity is very sparse compared to other brain 

areas and it is thought to convert sparse firing of granule cells into sparse CA3 ensemble 

activity. Inhibition works somewhat similar in CA3 as it does in the DG regarding the different 

drives of basket and dendrite targeting cells. However, the pyramidal cell is the only principal 

cell type in CA3. The pyramidal cells in CA3 also receive direct excitatory input from the 

entorhinal cortex. Furthermore, CA3 pyramidal cells recurrently excite other pyramidal cells. 

Another interesting feature of CA3-DG connectivity is the CA3 backprojection 

(Scharfman, 2007). This is an excitatory projection from CA3 pyramidal cells to DG mossy 

cells and interneurons. This again highlights the prominent role of mossy cells but also the 

importance of feedback inhibition, as mossy cells primarily drive inhibition. 

The dentate gyrus is known to perform a computation called pattern separation, which 

will be introduced in the next chapter. 

 

1.3 Pattern separation 

Pattern separation decreases the similarity of synaptic input patterns at the spiking 

output of a network (Cayco-Gajic & Silver, 2019; Chavlis & Poirazi, 2017). It occurs in several 

brain areas such as the hippocampus (Leutgeb et al., 2007; Yassa & Stark, 2011), the cerebellum 

(Cayco-Gajic et al., 2017) and olfactory bulb (Friedrich & Laurent, 2001). In the hippocampus, 

pattern separation has memory related functions. It is thought to support encoding of episodic 

memories by disambiguating them. The inverse of pattern separation is pattern completion, and 

it is thought to primarily aid memory recall by activating full ensembles from incomplete 

patterns. The network mechanisms that support pattern separation have been studied 

extensively in computer models. 

The first computational description of pattern separation came from Marr (1969) and it 

was about motor learning in the cerebellum. Marr suggested that the activity patterns of mossy 

fibers are being separated by the cerebellar granule cells they innervate. He further introduced 

the codon representation, a mathematical formalism where a codon represents a set of active 

mossy fiber inputs which can activate codon cells (granule cells in case of the cerebellum). 

Pattern separation occurs when codons with many mossy fibers have few codon cells in 

common. This is easier to achieve when a small absolute number of codon cells is active and 

thus presents the first description of network sparsity as a pattern separation mechanism. D. 

Marr (1971) later applied the codon representation to the hippocampus. 
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One way to achieve sparse network activity is sparse synaptic input connectivity. A 

competition matrix model has shown that sparse connectivity as it is found between the DG and 

CA3 supports pattern separation (Rolls, 1989). Inhibition is another mechanisms besides sparse 

connectivity that also supports pattern separation by keeping principal cell activity sparse 

(Gibson et al., 1991). Dendrite morphology  in the dentate gyrus was also shown to support 

sparsity (Chavlis et al., 2017). Finally, the addition of a leak conductance can recover pattern 

separation during pathological hyperexcitability (Yim et al., 2015). In summary, anything that 

decreases principal cell activity is predicted to support pattern separation. 

Pattern separation has not only been studied with computational models but has also 

been demonstrated behaviorally in animal models. When gradually changing the environment 

of a rat, the population activity changes to a larger extent in DG than compared to CA3 (Leutgeb 

et al., 2007). This suggests that the DG amplifies small differences of the environment at the 

network level. Pattern separation was also shown to be relevant for olfactory behavior. Mice 

that were trained to distinguish similar odors in a lick/no-lick task were able to perform better 

when their network outputs were more different. Importantly, optogenetic activation of 

inhibitory neurons in the olfactory bulb improved network pattern separation as well as 

behavioral performance (Gschwend et al., 2015). 

Several features of the dentate gyrus and its connectivity to CA3 make it particularly 

well suited for pattern separation in the hippocampus. The next chapter highlights these cellular 

and network features as well as others that might hinder pattern separation. 

 

1.4 Aim and outline of this thesis 

This thesis begins with our work on interneuron diversity in hippocampal CA3. We used 

patch seq to characterize a novel interneuron subtype that co-expresses Sst and Slc17a8. We 

found that these cells are not electrophysiologically distinct from Sst or Slc17a8 interneurons 

but could express tyrosine hydroxylase as a marker. Somatic tyrosine hydroxylase expression 

has not been described previously in the hippocampus and remains to be validated. 

In the second part of this thesis we present published work about the validation about a 

transgenic mouse line that was used to genetically target Sst positive interneurons. We found 

that it specifically targets Sst positive interneuron specifically in stratum oriens and stratum 

radiatum of CA3 but also targets a large number of pyramidal like cells in the pyramidal cell 

layer. Some transduced cells make contralateral projections which produce strong functional 

excitation in CA1, as would be expected from CA3 projections. 
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Finally, we present work on the quantitative properties of feedback inhibition in the DG. 

We found that very few granule cells are sufficient to recruit the maximal amount of feedback 

inhibition. Furthermore, feedback inhibition is recruited more strongly onto nearby granule 

cells and facilitates at 50Hz. We incorporated these circuit features into a computational model 

of the dentate gyrus and quantified the ability of this model to separate input patterns. We found 

that the temporal structure of the input patterns in only relevant for pattern separation when the 

model includes feedback inhibition. We therefore predict that interfering with temporal 

oscillations in the dentate gyrus would interfere with pattern separation. 

  



2. Materials and Methods 

 9 

2 Materials and Methods 

2.1 RNAScope in situ hybridization 

The RNAScope experiments were performed by Dr. Erick Martinez Chavez at the 

Neurodevelopmental Genetics laboratory headed by Prof. Dr. Sandra Blaess. 

Animals were deeply anesthetized with ketamine-xylazine (100 mg/kg – 16 mg/kg body 

weight) and were transcardially perfused with 4% paraformaldehyde (PFA; Sigma-Aldrich). 

Brains were removed and post-fixed in 4% PFA overnight at 4 °C. Brains were then rinsed in 

PBS and cryoprotected in ascending sucrose series (10%, 20% and 30% in PBS), and 14-µm 

thick sections were cut on a cryostat. In situ hybridization on frozen sections was performed 

using RNAScope Fluorescent Multiplex Detection Reagents (323110, ACDBio) according to 

the manufacturer’s instruction for fixed frozen tissue (User Manual: 323100-USM). Probes 

(Mm-Gad1-O1-C3: 511931-C3; Mm-Gad2-C3: 439371-C3; Mm-Slc17a6: 319171; Mm-

Scl17a7: 416631; Mm-Scl17a8: 431261; Mm-Scl17a8-C3: 431261-C3; Mm-Sst-C2: 404631-

C2) were designed by ACDBio. Following in situ hybridization, sections were rinsed twice in 

TBST (0.005% Tween20 in TBS, 5 min), and incubated with blocking buffer (1% BSA in TBS) 

for 30 min. Sections were incubated in primary antibody (rabbit anti-Somatostatin-14 IgG, T-

4102, Peninsula Laboratories International; 1:500) in blocking buffer overnight at 4 °C. 

Sections were rinsed in TBST three times (5 min) and incubated with secondary antibody in 

blocking buffer (Alexa 488-conjugated donkey anti-rabbit, A-31573, Thermo Fischer 

Scientific; 1:100) at room temperature for 2 hrs. Sections were counterstained with Hoechst 

(Sigma-Aldrich), then rinsed twice in TBST (5 min) and twice in TBS. Sections were mounted 

with Aqua-PolyMount (18606, Polysciences Inc.). 

 

2.2 Imaging and colocalization analysis 

Images were taken on a Visitron VisiScope spinning disk microscope (images in Figure 

2 were taken on a confocal microscope. Details below). To image the Hoechst staining, a 405nm 

laser was used with a 460/50 emission filter at 200ms exposure time. Sst-AB was imaged with 

a 488nm laser laser and a 525/50 emission filter set. Sst-mRNA (Mm-Sst-C2: 404631-C2 

ACDBio probe) was imaged using a 561nm laser with a 609/54 bandpass emission filter. 

Slc17a8 (Mm-Scl17a8-C3: 431261-C3 ACDBio probe) was imaged using a 640nm laser with 

a 700/75 bandpass emission filter. For the experiments including Gad RNAScope (Figure 4) 

the RNAScope channel of Slc17a8 was changed to channel 2. Gad 1 and 2 were stained in 

channel 3. Therefore, Slc17a8 was visualized with the 561nm laser with the 609/54 bandpass 
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emission filter and Gad1/2 was visualized with the 640nm laser with a 700/75 bandpass 

emission filter. A 40x water immersion objective was used (C-Apochromat, 1.2 NA, 0.28 WD).  

Individual channels were segmented for somata using ilastik. It is freely available open 

source software which uses a random forest classifier to label pixels as foreground or 

background (Berg et al., 2019). Since this is a supervised learning algorithm, it requires some 

amount of labeled training data. Therefore, three images were randomly chosen and three 

somata in each region (CA1, CA3, Hilus) were manually labeled. Furthermore, some 

background was labeled in each region.  

After segmentation, regions of interest (ROIs) were extracted with the Fiji (Schindelin 

et al., 2012) particle analyzer. It groups connected pixels into ROIs. ROIs were only recorded 

if they were 500 to 6000 pixels in size and had a circularity index between 0.3 and 1.0. Next, 

images were thresholded to calculate the area fraction of each ROI in the other channels. Area 

fraction is a measure for the number of pixels inside a ROI that were above threshold. 

Thresholding was performed in Fiji with the “Yen White” method, which finds the optimal 

threshold by optimizing the difference between the original and the thresholded image as well 

as the bits required to encode the thresholded image. 

Colocalization was determined based on the area fraction. For example, a ROI extracted 

from the Sst channel might have an area fraction of 0.8 in the thresholded Slc17a8 channel. 

This means that 80% of pixels in the ROI were above threshold in the Slc17a8 channel. How 

large would the area fraction need to be, to classify a cell as colocalizing? To determine this 

colocalization threshold we calculated the area fraction for each ROI in its own channel and 

calculated the distribution, for example, the area fraction of Sst ROIs in the Sst channel. This 

yielded the area fraction of ROIs that were highly likely to be Sst positive. To ensure cells were 

colocalizing, we took the lower 5% percentile of the distribution as the colocalization threshold. 

For the experiment in Figure 3 the following thresholds were calculated: Sst-AB, 0.44; Sst-

mRNA, 0.44; Slc17a8, 0.06. To further illustrate this threshold: a ROI from a SST antibody 

soma with an area covered larger than 0.06 in the Slc17a8 channel would be classified as 

Slc17a8 colocalizing. The thresholds of the experiment in Figure 4 were: Sst-AB, 0.47; Gad1/2, 

0.25; Slc17a8, 0.26. 

Images in Figure 2 were taken with a SP8 confocal microscope (Leica). Overview 

images were taken with a 25x water immersion objective (HC PL; FLUOTAR; 0.95 NA, 2.5 

WD (mm) #(11)506374). Scan speed was 600Hz. Inset images were taken with a 40x water 

immersion objective (HC PL, APO; 1.1 NA Corr, 0.65 WD (mm) #(15)506357). 
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2.3 Stereotaxic injections of viral particles 

All animal experiments were carried out according to the guidelines stated in Directive 

2010/63/EU of the European Parliament on the protection of animals used for scientific 

purposes and were approved by authorities in Nordrhein-Westfalen (Landesamt für Natur, 

Umwelt und Verbraucherschutz Nordrhein Westfalen (LANUV), 81-02.04.2019.A192). To 

genetically label Sst or Slc17a8 positive cells we used viral gene transfer in SST-Cre (CA3 

characterized in Müller-Komorowska et al., 2020; Originally described by Savanthrapadian et 

al., 2014) or Tg(Slc17a8-icre)1Edw/SealJ mouse lines (Jackson Laboratory; Grimes et al., 

2011). 12 SST-Cre and 13 Tg(Slc17a8-icre)1Edw/SealJ mice were injected. They were 

anesthetized with a Fentanyl/Midazolam/Medetomidin mixture (0.05/5.0/0.5 mg/kg body 

weight, volume 10ml/g body weight) intraperitoneally (Microlance 3TM injection needles from 

BD Medical). 20 minutes ahead of first surgical cut, they also received Ketoprofen (5 mg/kg 

body weight, volume 10ml/g body weight) as an analgesic subcutaneously. To prevent the eyes 

from drying out, eye-nose cream (Bepanthen; Bayer) was applied to the eyes. Hair on the head 

was removed and Xylocain was applied to the skin on the head. Animals were woken up with 

a Naloxon/Flumazenil/Atipamezole mixture. During sugery, mice were placed on a heating 

blanket controlled with a temperature controller TC01 (multichannel systems) set to 37˚C. 

Injections were placed at the following stereotaxic coordinates: 2.3 mm posterior; 1.7 mm 

lateral; 2.4 mm ventral. All injections were made into the right hemisphere. A 1mm diameter 

burr hole was drilled above the coordinates using a K.1070 high speed rotary micromotor 

(Foredom). The injected recombinant adeno-associated virus led to gene transfer of a sequence 

expressing enhanced yellow fluorescent protein with a nuclear localization sequence (NLS-

EYFP, rAAV1/2-Ef1a-DIO-NLS-EYFP) in a Cre-Recombinase dependent manner. It was 

created and produced in the laboratory of Prof. Susanne Schoch. To achieve Cre-dependence, 

a LoxP site based genetic switch (DIO: Double-Floxed Inverted Open reading frame) was used 

(Schnütgen et al., 2003). Injection volume was 500nl at a speed of 100 nl/minute. After the five 

minutes of injection, the syringe was left in place for 2.5 minutes. It was then moved dorsally 

by less than a millimeter and left there for another 2.5 minutes to let the tissue relax. A NanoFil 

sub-microliter injection syringe (World Precision Instruments) was used with a 

UltraMicroPump3 with SMARTouch controller. After surgery, the skin above the skull was 

closed with coated Vicryl plus antibacterial (polyglactin 910) sutures (Ethicon). To prevent 

bacterial infection, Refobacin Crème (1 mg/g Gentamicin; Almirall) was applied to the head. 

Mice were used for electrophysiology 3 to 10 days after viral injections. 
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2.4 In vitro electrophysiology with patch seq sample acquisition 

To anesthetize mice, they were transferred to a bell-shaped glass vessel, where 2-4 drops 

of Isoflurane (Abbott Laboratories) were previously placed to evaporate. When animals were 

deeply anesthetized after approximately 30 seconds, they were rapidly decapitated. Their brain 

was removed from the skull by a series of incisions. One incision went through the skin from 

the neck to the nose. Then, sharp forceps were placed in the eye cavities for stability. To remove 

the skull, another incision was made through the skull on the left side of the brain from the 

spine to the eye, followed by an incision from the left to the right eye. The skull was then lifted, 

the brain was removed with a spatula and was placed in ice-cold, carbogenated artificial 

cerebrospinal fluid (ACSF) with sucrose (in mM: NaCl, 60; sucrose, 100; KCL, 2.5; NaH2PO4, 

1.25; NaHCO3, 26; CaCl2, 1; MgCl2, 5; glucose, 20; all from Sigma-Aldrich). 300 µm slices 

were cut on a vibratome (Leica VT 1200S) and stored in the same ACSF with sucrose at 37 ˚C 

for 30 min. Afterwards, they were transferred to ACSF without sucrose (in mM: NaCl, 125; 

KCL, 3.5; NaH2PO4, 1.25, NaHCO3, 26; CaCl2, 2; MgCl2, 2; glucose, 20; from Sigma-

Aldrich) for at least 1 hour at room temperature before experiments began. 

The intracellular solution in the patch pipettes consisted of (in mM) K-gluconate, 123; 

KCL 12; 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 10; ethylene glycol-

bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) 0.2; Mg-ATP 4; Na-GTP 0.3; Na2-

phosphocreatine 10 and finally glycogen 20 µg/ml. The solution was entirely prepared under 

an RNAse free laminar flow cabinet. The pH was adjusted to 7.25 with KOH and the pH meter 

was cleaned with ElectroZap (AM9785; Ambion/ThermoFisher Scientific). The water used for 

the intracellular solution was nuclease-free water (AM9930; Ambion/ThermoFisher Scientific). 

Spoons and other equipment that came in contact with any of the compounds were backed at 

220˚C for at least 2 hours. The intracellular solution was stored in aliquots at -20 ˚C and was 

thawed on days of experiments. After thawing, 2.3 µl of murine RNAse inhibitor (M0314S; 

BioLabs) was added. Glass pipettes were filled with 300 µl of intracellular solution. Access 

resistance in bath with positive pressure applied was between 4 MOhm and 9 MOhm. 

To ensure mRNA stability during patch seq experiments, all equipment that would come 

into contact with the intracellular solution had to undergo special treatment to eliminate 

RNAses. Thin pipette tips (Microloader; Eppendorf) used to backfill glass electrodes were 

autoclaved. The borosilicate glass with filament (Science Products) used to pull patch clamp 

glass electrodes was backed at 220˚C. The silver chloride wire used to record electrical signals 

was cleaned each day before experiments with ElectroZap (AM9785; Ambion/ThermoFisher 

Scientific) and rinsed with nuclease-free water (AM9930; Ambion/ThermoFisher Scientific). 
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The syringe and its tip that were used to eject the intracellular solution after recording and 

cytosol extraction were cleaned with RNaseZAP (Sigma-Aldrich Merck) and rinsed with 70% 

ethanol. Other patch clamp equipment that did not come in direct contact with intracellular 

solution was cleaned weekly with RNaseZAP and 70% ethanol.  

Patch clamp experiments were performed with an Axopatch 200B and digitized on a 

Digidata 1322A or Digidata 1550B plus HumSilencer (Molecular Devices). All signals were 

lowpass filtered at 10kHz. 

We first recorded a protocol of depolarizing 1 s long current steps starting at 0 pA up in 

steps of 20 pA. The protocol was stopped when the number of elicited spikes visibly decreased 

or at a maximum of 600 pA. Afterwards we used 1 s long hyperpolarizing current steps starting 

from 0 pA in steps of minus 20 pA. This protocol was stopped after the recording where the 

voltage reached minus 100 mV or after minus 400 pA injected current. 

After the recording protocols, suction was applied to the pipette for up to 10 minutes to 

collect the cell contents. The glass pipette tip was then broken into the lysis buffer (details in 

2.6) and the pipette contents were ejected by applying positive pressure with a syringe. The 

lysis buffer was shock frozen in liquid nitrogen and stored at -80˚C before cDNA synthesis. 

 

2.5 Analysis of electrophysiological properties 

We quantified three passive properties, seven active properties and six single spike 

properties. The single spike properties were quantified for three different spikes: the first spike 

at rheobase, the first spike during the action potential series with the highest frequency and the 

last spike of that same action potential series. The rheobase is the minimum amplitude of step 

current injection required to elicit at least one action potential. Because we were injecting 

current in increasing steps of 20 pA, the estimation of the rheobase is limited to that resolution. 

The maximum frequency action potential series is the one that contains the maximum number 

of spikes during the step current injection (see Figure 4A for representative examples of action 

potential series at rheobase and maximum frequency). In total 28 electrophysiological features 

were extracted. 

The three passive properties were: 

• Input resistance (MOhm) - During small hyperpolarizing current steps, the voltage 

response increases linear with the input resistance. To make measurement more precise, 

the input resistance was calculated from at least three hyperpolarizing current steps. A line 

was fit through the current-voltage relationship. The slope of that line is the input 

resistance. 
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• Membrane capacitance (pF) – The voltage response to a step current injection rises faster 

when the membrane capacitance is smaller. Because the early voltage response is described 

by an exponential function, we fit an exponential decay function to these data. The 

membrane capacitance is then given by the time constant of the exponential function 

divided by the input resistance. 

• Resting membrane potential (mV) – The resting membrane potential is the voltage while 

no current is injected, and it was read from the amplifier shortly after opening the cell for 

patch clamp recordings. The liquid junction potential of 16mV was subtracted from the 

amplifier reading. 

 

Detecting action potentials is a critical step to calculating most active neuronal 

properties. Action potentials were detected by finding points in the recording where the voltage 

became larger than 0mV. The seven active properties were: 

• Maximum average frequency (Hz) – Largest number of action potentials during any of 

the one-second-long depolarizing current steps. 

• Current at maximum frequency (pA) – The amplitude of the current step necessary to 

elicit the maximum frequency. 

• Slow afterhyperpolarization (AHP; mV) – Most negative voltage after the current step 

that elicited the maximum frequency minus the voltage before the current injection. 

• Rheobase (pA) – The smallest amplitude of the current step necessary to evoke at least 

one action potential.  

• Adaptation ratio – The ratio between the time interval of the last two spikes divided by 

the time interval of the first two action potentials during the maximum frequency response. 

• Average spike time (s) – The mean spike time of all action potential during the maximum 

frequency response. 

 

To analyze the properties of single action potentials, their waveform must be extracted 

from the signal. To achieve this, we took the point where the signal crosses the 0mV threshold 

and extracted the signal 2ms to the left and 2.5ms to the right of the threshold point. This was 

done for the first action potential during the rheobase and the last action potential during the 

maximum frequency response. The six single spike properties were: 

• Action potential threshold (mV) – This is the voltage that is depolarized enough to enter 

a positive feedback loop that causes the action potential. We quantify the threshold by 
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finding the voltage at the first point during the action potential waveform where the voltage 

increases by more than 10 mV/ms. The liquid junction potential of 16 mV is subtracted. 

• Fast afterhyperpolarization amplitude (mV) – The minimum voltage during the action 

potential waveform minus the action potential threshold. 

• Maximum slope (mV/ms) – The largest voltage change during the waveform. Calculated 

by taking the maximum of the first order derivative of the voltage with respect to time. 

• Minimum slope (mV/ms) – The most negative voltage change during the waveform. 

Calculated by taking the minimum of the first order derivative of the voltage with respect 

to time. 

• Peak (mV) – The maximum voltage reached during the action potential waveform. The 

liquid junction potential of 16 mV is subtracted. 

• Half width (ms) – The half width is commonly used to express how wide an action 

potential is. It is calculated by first finding the voltage that is half-way between the 

threshold and the peak of the action potential, called the half-height. Then two time points 

need to be identified. The first time point is when the voltage crosses the half-high during 

the rising phase (before the peak) of the action potential and the second time point is when 

the voltage crosses the half-height during the decaying phase (after the peak). The half 

width is the time between these two time points. 

 

Raw recording files were loaded into Python with neo (Garcia et al., 2014). Analysis 

was performed with NumPy (van der Walt et al., 2011). Fitting of the exponential decay 

function for capacitance analysis and fitting of the linear function for membrane resistance 

measurement were both done with SciPy (Virtanen et al., 2020) 

 

2.6 Single cell sequencing 

Single cell sequencing was performed at the PRECISE core facility at the German 

Center for Neurodegenerative Diseases in Bonn, Germany. Cytosol and nucleus of patched cells 

was collected in lysis buffer (40mM Guanidine Hydrochloride, dNTPs 5mM each, 2uM 

SMART polyT RT primer) and processed to NGS sequencing libraries according to the 

SMART-Seq2 protocol (Picelli et al. 2014). 

In short, mRNA was reverse transcribed using Superscript II (Invitrogen) and a template 

switch oligo (TSO) to produce full-length cDNA copies of the mRNA containing PCR handles 

on both ends prior to PCR amplification. Amplified and cleaned cDNA was quantified via High 

Sensitivity DNA5000 assay on a Tapestation 4200 System (Agilent), 200pg each were 
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tagmented using a Nextera XT kit (Illumina) and amplified and indexed in a subsequent PCR 

reaction to create the final NGS library. Library fragment size distribution was analyzed via 

High Sensitivity DNA5000 assay on a Tapestation 4200 System (Agilent) and quantified using 

the Qubit HS dsDNA assay (Thermofisher). Cell libraries were equimolarly pooled, clustered 

at 1.4pM concentration using High Output v2.1 chemistry and sequenced SR 75 cycles and 8 

cycles each for i7 and i5 indexes on a NextSeq500 system (Illumina). Single-cell data was 

demultiplexed using bcl2fastq2 v2.20 and STAR aligned using the mouse GENCODE 

reference genome and transcriptome mm10. 

 

2.7 Transcriptomics analysis 

To convert ensemble identifiers to human readable gene names we used MyGene.py 

(Xin et al., 2016). Read count tables were analyzed using scanpy (Wolf et al., 2018). The first 

step was quality control to exclude low quality cells (Figure 1). This is necessary to avoid 

technical artifacts during further analysis. Low sample quality can occur when not enough 

mRNA has been collected from a cell or the mRNA has degraded during processing. 

First, we examined the total read counts of each cell summed (Figure 1A). It is likely 

that cells with extremely low total counts had a low amount of mRNA collected from them, 

giving an incomplete measurement of mRNA expression. We thus excluded cells with log10 

transformed total read counts below the median minus 3 times the median absolute deviation. 

The median absolute deviation is calculated from each samples deviation from the mean and 

taking the median of that distribution. This kind of measure that takes the sample deviation into 

account is useful when there are no previously established quality criteria (Lun et al., 2016). 

This is the case for patch seq from interneurons in CA3, which has not been performed thus far. 

11 of 136 cells were excluded based on the total reads counts. 

The second quality measure for cells was the total number of genes with read counts 

larger than one (Figure 1B). Cells that express very few genes likely suffer from similar quality 

issues as those with low total counts. We excluded cells based on the same criterion of median 

minus 3 times the median absolute deviation. 9 of 136 cells were excluded based on the number 

of expressed genes. 

The third and fourth quality measures were the percentage of reads aligned to exons or 

introns, respectively (Figure 1D,E). These statistics are calculated during alignment. Of all 

sequence reads from a cell, some are aligned to intronic or exonic parts of a gene and other 

reads do not align to any part. Low alignment rates indicate sample contamination with non-

murine RNA. We applied the same criterion of median minus 3 times the median absolute 
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deviation to both alignment rates. 4 of 136 cells were excluded because of exon alignment and 

0 of 136 were excluded because of intron alignment.  

The final quality control step of samples was performed based on mitochondrial genes. 

Large percentages of mitochondrial reads indicate an apoptotic cell state which will result in 

non-physiological expression profiles (Figure 1C; Ilicic et al., 2016). We excluded cells if more 

than 10% of their reads were from mitochondrial genes (Lun et al., 2016). 4 of 136 cells were 

excluded because of mitochondrial gene expression. Based on all quality criteria, 17 out of 136 

cells were excluded from further analysis. 

The next quality control step was performed to exclude genes containing little 

information about cells. Besides technical reasons like those at the sample level, some of these 

genes have low information content for biologically reasons. For example, a gene can be 

completely absent from neurons or it can be expressed at similar levels in all cells. Of 53465 

genes, 17024 had zero read counts across all samples and were removed. Next, we removed 

genes with low average counts. Those genes are prone to noise. Genes were excluded if their 

log10 transformed read counts were smaller than 0 (Figure 1F). 14246 of 36441 genes were 

excluded based on low read counts. 

 

2.8 Statistics and software 

Dimensionality reduction of electrophysiological parameters was done with scikit-learn 

(Pedregosa et al., 2011) on the top principal components that explain 99% of variance. Plotting 

was done with Matplotlib (Hunter, 2007) and Seaborn. The generalized linear model (GLM) 

was used from statsmodels (Seabold & Perktold, 2010). Hierarchical linkage clustering was 

used from SciPy (Virtanen et al., 2020). Pandas was used for saving and loading data frames 

(McKinney, 2010). The Wilcoxon rank sum tests were done in R (R Core Team, 2020). 
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Figure 1: Quality control of single cell sequencing samples. Samples below the 

threshold (dashed line) were excluded from further analysis. The threshold is the median minus 

three times the median absolute deviation. Except for C, where the threshold is 10% and cells 

above the threshold are excluded. In F the threshold is 0 and genes below are excluded. A) 

Log10 transformed total counts per cell. B) Log10 transformed number of genes per cell. C) 

Percentage of read counts from mitochondrial genes. D) Percentage of counts aligned to exonic 

parts of a gene. E) Percentage of counts aligned to intronic parts of a gene. F) Log10 

transformed mean counts per gene. Only includes genes that have more than zero counts. 
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3 Results 

3.1 RNAScope reveals Sst/Slc17a8 colocalizing interneurons 

We performed RNAScope to identify cells that colocalize somatostatin (Sst) mRNA and 

mRNA from either solute carrier family 17 (sodium-dependent inorganic phosphate 

cotransporter) member 6 (Slc17a6), solute carrier family 17 (sodium-dependent inorganic 

phosphate cotransporter), member 7 (Slc17a7) or solute carrier family 17 (sodium-dependent 

inorganic phosphate cotransporter), member 8 (Slc17a8). We found that Slc17a7 was strongly 

expressed in all principal cell layers of the hippocampus (Figure 2A). We found this qualitative 

pattern in 12 coronal sections from dorsal hippocampi of 4 wild type mice (3 sections per 

animal). This is expected, as Slc17a7 is protein-coding for the vesicular glutamate transporter 

1 (VGluT1), the main glutamate transporter of cortical principal cells. Slc17a6 expression on 

the other hand was found to be extremely low in all areas and layers of the dorsal hippocampus 

(Figure 2B). We observed nearly no Slc17a6 in 6 coronal slices from dorsal hippocampi of 2 

wild type mice (3 slices per animal). Slc17a8 showed a sparse expression pattern mostly outside 

of the principal layer (Figure 2C). 

We moved on to investigate whether Slc17a7 or Slc17a8 positive somata colocalize Sst. 

We did not investigate Slc17a6 further due to the low expression level. We also included an 

immunostaining for the peptide product of Sst. We denote the antibody labeling for that peptide 

product as Sst-Ab and the RNAScope labeling as Sst-mRNA. We found no evidence that 

Slc17a7 positive cells colocalize Sst-Ab or Sst-mRNA even when they are immediately 

adjacent to the pyramidal cell layer (Figure 3A). We manually scanned 12 coronal sections 

from the dorsal hippocampus of 4 wild type mice (3 slices per animal). Slc17a8 positive cells 

on the other hand were found to colocalize both Sst-Ab and Sst-mRNA (Figure 3B). 

To quantify somatic colocalization, we used an analysis pipeline (Methods 2.2) on 9 

sections from three wild type animals. We detected a total of 630 Slc17a8 positive cells and of 

those 101 (16.0%) colocalized Sst-mRNA and 20 were Sst-Ab positive (3.2%). The lower 

percentage for Sst-Ab colocalization is most likely due to a lower signal to noise ratio of 

immunolabeling compared to RNAScope. We furthermore quantified colocalization by 

hippocampal area, finding that Sst-Ab-mRNA/Slc17a8 colocalization is more frequent in CA3 

compared to CA1 and DG (Figure 3C). Out of 350 Slc17a8 positive cells detected in CA3, 79 

(22.6%) colocalized Sst-mRNA. In CA1 on the other hand, out of 215 detected cells, only 19 

(8.8%) were Sst-mRNA positive. The difference between CA3 and CA1 was even more 

pronounced for Sst-mRNA positive cells colocalizing Slc17a8. Of 320 Sst-mRNA positive cells 
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93 (29.1%) colocalized Slc17a8 in CA3. This contrasts with CA1, where out of 591 Sst-mRNA 

positive cells only 22 (3.8%) colocalized Slc17a8 (Figure 3C). 

Having identified this novel subtype containing Sst-mRNA, Sst-Ab and Slc17a8, we 

decided to ascertain, whether these cells are also gamma-aminobutyric acid (GABA) positive. 

This would be expected, because Sst is an interneuron marker and most hippocampal 

interneurons are GABAergic. Glutamic acid decarboxylase 1 (Gad1) and glutamic acid 

decarboxylase 2 (Gad2) are both markers for GABAergic cells, since they are protein coding 

for enzymes that catalyze L-glutamic acid to GABA. We combined Gad1 and Gad2 RNAScope 

probes into a single channel to detect GABAergic interneurons. Consistent with Sst being a 

marker for GABAergic interneurons we found that the vast majority of Sst-Ab or Slc17a8 

positive cells also colocalize Gad1-Gad2 in CA1, CA3 and DG (Figure 4A,B,C). For the 

following quantification (Figure 4C), 7 sections from 3 wild type mice were used. From a total 

of 470 Sst-Ab positive cells, 397 (84.5%) colocalized Gad1-Gad2. From 432 Slc17a8 positive 

cells, 363 (83.8%) colocalized Gad1-Gad2. This still leaves a small population of both Gad1-

Gad2 negative cells in both populations. To test whether the Sst/Slc17a8 colocalizing cells 

specifically are Gad1-Gad2 positive, we analyzed especially those colocalizing cells. In total 

we detected 44 Sst-Ab/Slc17a8 colocalizing cells (this includes both Sst positive cells 

colocalizing Slc17a8 and Slc17a8 positive cells colocalizing Sst-Ab). Of those 44 cells, 43 

(97.7%) colocalized Gad1-Gad2. These data suggest that the novel Sst/Slc17a8 colocalizing 

population is almost entirely GABAergic. 

We moved on to characterize the electrophysiological and transcriptomic properties of 

this novel interneuron subtype.  
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Figure 2: Distribution of RNAScope labeling from Slc17a7, Slc17a6 and Slc17a8. A) 

Overview of Slc17a7 distribution. Slc17a7 was strongly expressed in all hippocampal principal 

cell layers. B). Overview of Slc17a6 distribution. Slc17a6 was not detected in the hippocampus. 

C) Overview of Slc17a8 distribution. Slc17a8 was sparsely expressed, mostly outside the 

principal cell layers. All scalebars are 100 µm. The blue channel shows a Hoechst staining that 

is used to visualize DNA for anatomical orientation. CA1, cornu ammonis 1; CA3, cornu 

ammonis 3; Slc17a7, solute carrier family 17 member 7; Slc17a6, solute carrier family 17 

member 6; Slc17a8, solute carrier family 17 member 8. 
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Figure 3: Sst-mRNA+ and Sst-Ab+ cells in CA3 colocalize Slc17a8. A) Sst-mRNA/Sst-

Ab+ cells do not colocalize Slc17a7, even when they are adjacent to the pyramidal cell layer. 

Green arrows mark two Sst-mRNA/Sst-Ab+ cells. Example image from CA3. Scalebar 10 µm. 

B) Sst-mRNA/Sst-Ab+ cells colocalize Slc17a8 in CA3. Geen arrows mark two Sst-

mRNA/Sst-Ab+ cells that are also Slc17a8+. Scalebar 10 µm. C) Quantification of 

colocalization. In total 2479 cells were segmented from 9 slices of 3 animals. 783 were Sst-

Ab+, 1066 were Sst-mRNA+, 630 were Slc17a8+. Out of the Sst-Ab+ cells, 478 were in CA1, 

193 in CA3, 112 in DG. Out of the Sst-mRNA+ cells, 591 were in CA1, 320 in CA3, 155 in 

DG. Out of the Slc17a8+ cells, 215 were in CA1, 350 in CA3, 65 in DG. Around 30% of both 

Sst-Ab+ and Sst-mRNA+ cells in CA3 colocalize Slc17a8. Very few cells colocalize VGlut3 

in CA1 or DG. Percentage of cells that colocalize Sst-mRNA. Around 20% of VGlut3 positive 

cells colocalize Sst-mRNA+ in CA3. Very few cells colocalize Sst-mRNA in CA1 and DG. 

Virtually all cells that are Sst-mRNA+ colocalize Sst-AB as expected. A minority of Sst-

mRNA+ cells colocalizes Sst-Ab. Sst, somatostatin; Slc17a7, solute carrier family 17 member 

7; Slc17a8, solute carrier family 17 member 8, DG, dentate gyrus; CA1, cornu ammonis 1; 

CA3, cornum ammonis 3. 
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Figure 4: The majority of Sst and Slc17a8 positive cells colocalize Gad1-Gad2. A) 

Overviews of Sst-Ab, Gad1-Gad2, Slc17a8 and Hoechst in the same section. Scalebar 100 µm. 

B). Inset into red square from A in CA3. Green arrows mark two Slc17a8 positive cells, both 

of which colocalize Gad1-Gad2. One of them (right) also colocalizes Sst-Ab. Scalebar: 10 µm. 

C) The vast majority of Sst-Ab+ and Slc17a8+ cells colocalizes Gad1-Gad2 in all major areas. 

Quantification on 7 sections from 3 wild type mice. From a total of 470 Sst-Ab+ cells, 397 

(84.5%) colocalized Gad1-Gad2. From 432 Slc17a8+ cells, 363 (83.8%) colocalized Gad1-

Gad2. Sst, somatostatin; Gad1 & 2, glutamate decarboxylase 1 & 2; Slc17a8, solute carrier 

family 17 member 8; DG, dentate gyrus; CA1, cornu ammonis 1; CA3, cornu ammonis 3. 
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3.2 Electrophysiology alone does not identify interneuron cell types 

To characterize Sst+/Slc17a8+, we performed patch seq (Cadwell, Scala, et al., 2017) 

to acquire electrophysiological recordings and transcriptomic profiles from the same single 

cells. We recorded cells only in CA3 because our RNAScope data showed that Sst+/Slc17a8+ 

colocalizing cells were more frequent there. Moreover, we recorded most cells in SO, since Sst-

Ab positive cells are predominantly located there. To increase the number of recorded Sst and 

Slc17a8 positive cells we used the SST-Cre and Tg(Slc17a8-icre)1Edw/SealJ mouse lines 

which target Cre-recombinase to Sst and Slc17a8 positive cells respectively. Viral transduction 

with a Cre-dependent viral construct (Methods 2.3) led to yellow fluorescence in some cells 

and fluorescent cells were recorded whenever possible. In the absence of fluorescent cells other 

neurons in CA3 were also recorded. 

In total, 155 cells were recorded in CA3. These cells were recorded from 45 animals of 

which 12 were wild type, 19 were SST-Cre and 14 were Tg(Slc17a8-icre)1Edw/SealJ. Some of 

the cells recorded in the transgenic mouse lines were fluorescently labeled. Table 1 gives an 

overview of all cells, which mouse line and which layer of CA3 they were recorded in. Numbers 

of cells that were not fluorescently labeled are in parentheses. We also recorded cells in the 

pyramidal cell layer to have a cluster of cells that is expected to be exlectrophysiologically 

distinct from interneurons. 

 

Table 1: Numbers of recorded cells by mouse line and CA3 layer. First number are the 

cells that were fluorescently labeled and in parentheses are the recorded cells that were 

unlabeled. WT, wild type; SO, stratum oriens, PCL, pyramidal cell layer; SR, stratum radiatum. 

 SST-Cre Tg(Slc17a8-icre)1Edw/SealJ WT 

SO 23 (27) 12 (6) 0 (40) 

PCL 0 (7) 0 (0) 0 (10) 

SR 0 (0) 15 (15) 0 (0) 

 

We first asked whether transgenic interneuron subtypes can be identified by their 

electrophysiological properties. To this end, we calculated 22 electrophysiological features for 

each cell based on hyper- and depolarizing current steps (representative examples in Figure 

5A,B,C). The passive features were input resistance, membrane capacitance, sag amplitude and 

resting potential. The active features were maximum frequency, current at maximum frequency, 

slow afterhyperpolarization, rheobase, adaptation ratio and average spike time. The single spike 

properties were the fast afterhyperpolarization amplitude, maximum slope, minimum slope, 

peak, half-width, and threshold. Those single spike properties were quantified for the first action 
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potential at rheobase and the last action potential at maximum frequency. All properties are 

detailed in the methods chapter 2.5. 

For each feature we performed a Wilcoxon rank sum test to determine whether Sst-

EYFP and Slc17a8-EYFP positive cells were significantly different. After correction for 

multiple comparisons with the Benjamini-Hochberg method, only the sag amplitude was found 

to be significantly larger in Sst-EYFP cells. This is also seen in the hyperpolarizing example 

trace in Figure 5A,B. Descriptive statistics and statistical test for all features are in Table 2. 

We went on to use a non-linear clustering technique that could discover differences in high-

dimensional feature space although individual features are not significantly different. 

We used the non-linear dimensionality reduction technique TSNE (van der Maaten & 

Hinton, 2008) on the principal components that explain 99% of the sample variance of the 22 

parameters. This reliably identified two clusters (Figure 5D). One of those clusters consisted 

of 27 cells, 19 of which were recorded in the PCL. We concluded that this cluster contains 

putative principal cells and performed TSNE again with that cluster excluded. This did not 

result in well-defined clusters (Figure 5E). While the sag amplitude was significantly different, 

the distributions are not sufficiently separated to reliably distinguish cells (Figure 5F). This 

confirms electrophysiology alone does not identify these transgenic cell types. We therefore 

went on to analyze the single cell transcriptomic profiles. 
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Table 2: Descriptive statistics and results of the Wilcoxon rank sum test to compare 

Sst-EYFP and Slc17a8-EYFP positive cells. Only Sag Amplitude (mV) was significant after 

Benjamini-Hochberg correction for multiple comparisons at 0.05 false detection rate. Mad, 

median absolute deviation; W, test statistic of the Wilcoxon rank sum test; p, p-value of the 

Wilcoxon rank sum test; Sig., asterisk indicated significance after Benjamini-Hochberg 

correction for multiple comparison. 
 

Sst-EYFP Slc17a8-EYFP Wilcoxon rank sum test 

Feature Median Mad Median Mad W p Sig. 

Adaptation Ratio 1.36 0.4 1.42 1 269 0.5804 
 

Avg Spike Time (s) 0.48 0.01 0.46 0.06 349 0.3006 
 

Capacitance (pF) 82.36 30.98 72.56 21.01 355 0.2478 
 

I at Max. Freq. (pA) 390 163.09 360 148.26 344 0.349 
 

Input R (MOhm) 219.69 95.07 174.82 50.73 382 0.08941 
 

LS AHP Amp. (mV) -10.07 3.85 -8.85 6.33 231 0.1879 
 

LS Half Width (ms) 0.84 0.34 0.64 0.36 392 0.05746 
 

LS Max. Slope (mV/ms) 1140.59 653.23 1602.17 950.15 191.5 0.0348 
 

LS Min. Slope (mV/ms) -587.46 237.54 -747.68 610.81 380 0.09725 
 

LS Peak (mV) 7.65 12.44 7.8 13.57 276.5 0.6876 
 

LS Threshold (mV) -42.86 6.56 -50.48 7.69 421 0.01301 
 

Max. Freq. (Hz) 67 24.46 73 37.06 262.5 0.4942 
 

Resting (mV) -64 4.45 -65 5.93 345 0.3382 
 

Rheobase (pA) 60 29.65 80 29.65 213 0.08845 
 

RS AHP Amp. (mV) -19.53 5.66 -13.12 9.05 166 0.008705 
 

RS Half Width (ms) 0.57 0.12 0.42 0.15 459.5 0.001126 
 

RS Max. Slope (mV/ms) 2510.07 475.08 2983.09 373.27 201 0.05491 
 

RS Min. Slope (mV/ms) -1377.11 316.72 -1670.84 678.68 417.5 0.01586 
 

RS Peak (mV) 18.33 7.69 22.76 9.05 317.5 0.6876 
 

RS Threshold (mV) -56.44 4.52 -55.67 3.17 290 0.896 
 

Sag Amplitude (mV) -13.41 4.53 -8.22 2.81 76 9.33E-06 * 

Slow AHP (mV) -2.07 3.55 0.09 1.59 205 0.06588 
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Figure 5: Electrophysiological parameters alone do not divide CA3 interneurons into 

clusters. A,B,C) Representative example traces for the two transgenic cell types and PCs. Sst-

EYFP cells were EYFP positive cells in the SST-Cre mouse line. Slc17a8-EYFP cells were 

EYFP positive cells in the Tg(Slc17a8-icre)1Edw/SealJ mouse line. Putative pyramidal cells 

were patched in the pyramidal cell layer. D) TSNE dimensionality reduction of 28 

electrophysiological parameters from 155 cells. Colors indicate where the cell was recorded. 

27 cells in the cluster containing all PCL cells were classified as putative PCs. E) TSNE 

dimensionality reduction of 128 remaining interneurons. Colors indicate the transgenic type. 

Unlabeled cells were cells without fluorophore. Sst, somatostatin; Slc17a8, solute carrier family 

17 member 8; PC, pyramidal cell; SO, stratum oriens; SR, stratum radiatum, PCL, pyramidal 

cell layer. TSNE, t-distributed stochastic neighbor embedding.  



3. Results 

 28 

3.3 Electrophysiology of Sst-mRNA+/Slc17a8-mRNA+ cells 

In total 136 samples were sequenced. Quality control excluded 17 of those cells based 

on total read count, number of genes, percentage of exonic and intronic alignment and 

mitochondrial genes (Figure1, Methods 2.7). Another 7 cells were excluded because no 

electrophysiological recordings were available for them. Out of 53465 genes, 31270 were 

excluded because they were not expressed at all or their log10 transformed read count was too 

low (Figure 1F). The remaining read counts were converted to counts per million (CPM) by 

normalizing to the sample’s total counts. 

First, we identified Sst-mRNA+/Slc17a8-mRNA-, Sst-mRNA-/Slc17a8-mRNA+ and 

Sst-mRNA+/Slc17a8-mRNA+ based on CPM larger than 0 for the respective gene. We 

identified 11 Sst-mRNA+/Slc17a8-mRNA+ putative interneurons, confirming the existence of 

colocalizing neurons (Figure 6A). 

We then checked how these transcriptomic types relate to the transgenic types (Table 

3). With respect to EYFP expression, 23.52% of samples are false negative for Sst-mRNA and 

50.00% of samples are false negative for Slc17a8-mRNA. To estimate the false positive rate 

we investigated cells that were recorded in the PCL. Because cells form the PCL were all 

putative pyramidal cells regarding their electrophysiology (Figure 5D), we would expect them 

to express neither Sst-mRNA nor Slc17a8-mRNA. However, 3 of 12 samples were Sst-mRNA 

positive, hinting at a relatively high false positive rate. Slc17a8 on the other hand was not false 

positively expressed, which suggests that the false positive rate for colocalization should be 

low. 

 

Table 3: Correspondence between transgenic type (EYFP) and 

transcriptomic type (mRNA). Percentages are calculated column-wise. 

mRNA EYFP   

Sst Slc17a8 Sst Slc17a8 Unlabeled PCL 

+ - 10 (58.82%) 11 (42.31%) 23 (45.10%) 3 (25.00%) 

- + 0 11 (42.31%) 2 (3.92%) 0 (0%) 

+ + 3 (17.65%) 2 (7.69%) 6 (11.76%) 0 (0%) 

- - 4 (23.52%) 2 (7.69%) 20 (39.22%) 9 (75.00%) 

 

We first used the low-dimensional embedding of electrophysiological feature space we 

generated in chapter 3.2 and annotated the Sst-mRNA+/Slc17a8-mRNA+ colocalizing cells as 

identified by their CPM (Figure 6A). We found that colocalizing cells did not form a distinct 

cluster in the low dimensional embedding (Figure 6B). This suggests that Sst-mRNA+/Slc17a8-
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mRNA+ colocalizing cells are not electrophysiologically distinct from canonical Sst-

mRNA+/Slc17a8-mRNA- or Sst-mRNA-/Slc17a8-mRNA+ interneurons. 

To investigate whether any single electrophysiological parameter is different between 

Sst-mRNA+/Slc17a8-mRNA+ colocalizing and other cell types, we used the Wilcoxon rank sum 

test to find significant differences (Table 4). We found that none of the electrophysiological 

properties was significant for classifying colocalizing cells. These data suggest that colocalizing 

cells are not electrophysiologically distinct from other interneurons types in our dataset. We 

next moved on to identify gene expression patterns that might distinguish colocalizing cells 

from others.  

 

Figure 6: Sst-mRNA+/Slc17a8-mRNA+ colocalizing cells do not form a distinct cluster 

in low-dimensional electrophysiological space. A) 11 Sst-mRNA+/Slc17a8-mRNA+ cells were 

identified based on CPM larger than 0. B) The low-dimensional embedding of interneurons as 

calculated in chapter 3.2. The Sst colocalizing cells do not form a distinct cluster. TSNE, t-

distributed stochastic neighbor embedding; CPM, counts per million. 

The transcriptomic profile of these cells allowed us to identify Sst-mRNA+/Slc17a8-

mRNA+ colocalizing cells based on their CPM. However, the CPM suffer from high false 

negative rates. Therefore, we performed another analysis where we take the transgenic EYFP 

expression into account. This means that we included the 11 samples that were Sst-mRNA-

/Slc17a8-mRNA+ but Sst-EYFP positive were included in the colocalizing group (Figure 7A). 

As before, those colocalizing cells did not form a distinct electrophysiological cluster (Figure 

7A). 
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Table 4: Descriptive statistics and results of the Wilcoxon rank sum test to compare 

Sst-mRNA+/Slc17a8-mRNA+ positive cells to all others. None of the electrophysiological 

features was found to be significant. Mad, median absolute deviation; W, test statistic of the 

Wilcoxon rank sum test; p, p-value of the Wilcoxon rank sum test; Sig., asterisk indicated 

significance after Benjamini-Hochberg correction for multiple comparison. 
 

Sst & Slc17a8 + Other Test 

Feature Median Mad Median Mad W p Sig. 

Adaptation ratio 1.43 0.64 1.77 1.14 670 0.3969 
 

Avg Spike Time (s 0.48 0.03 0.47 0.04 501 0.4358 
 

Capacitance (pF) 66.6 23.8 86.26 37.28 713 0.2065 
 

I at Max. Freq. (pA) 460 118.61 440 177.91 579 0.9806 
 

Input R (MOhm) 185.88 94.67 193.24 78.03 608 0.8050 
 

LS AHP Amp. (mV) -7.78 4.3 -10.07 5.43 432.5 0.1491 
 

LS Half Width (ms) 0.77 0.27 0.76 0.39 568 0.8960 
 

LS Max. Slope (mV/ms) 1731.87 1023.68 1533.51 893.6 518 0.5387 
 

LS Min. Slope (mV/ms) -644.68 254.51 -747.68 429.83 517 0.5324 
 

LS Peak (mV) 12.69 8.6 9.94 12.22 563.5 0.8616 
 

LS Threshold (mV) -50.48 7.24 -47.13 8.6 640.5 0.7863 
 

Max. Freq. (Hz) 80 34.1 72 51.89 506 0.4648 
 

Resting (mV) -64.5 4.45 -66 5.93 566.5 0.8844 
 

Rheobase (pA) 80 29.65 80 59.3 609 0.7958 
 

RS AHP Amp. (mV) -15.26 5.66 -13.43 8.14 640 0.5777 
 

RS Half Width (ms) 0.46 0.06 0.48 0.15 588.5 0.9537 
 

RS Max. Slope (mV/ms) 2967.83 571.22 3028.87 531.63 581 0.9961 
 

RS Min. Slope (mV/ms) -1510.62 622.12 -1640.32 622.12 527 0.5978 
 

RS Peak (mV) 20.32 10.86 24.28 9.5 664 0.4300 
 

RS Threshold (mV) -56.74 4.75 -56.59 4.52 514.5 0.5164 
 

Sag Amplitude (mV) -10.15 4.9 -9.65 6.89 637 0.5978 
 

Slow AHP (mV) -1.57 4.08 -0.08 3.71 760 0.0857 
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Figure 7: Like Figure 6 but with an extended definition of colocalization. A) 22 (Sst-

mRNA+ or EYFP+)/Slc17a8-mRNA+ cells were identified. B) The low-dimensional embedding 

of interneurons as calculated in chapter 3.2. Colocalizing cells do not form a distinct cluster. 

TSNE, t-distributed stochastic neighbor embedding; CPM, counts per million. 
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3.4 Tyrosine hydroxylase is a possible marker for  

Sst-mRNA+/Slc17a8-mRNA+ cells 

To identify marker genes that are enriched in Sst-mRNA+/Slc17a8-mRNA+ cells, we 

used differential expression analysis with the scanpy package (Wolf et al., 2018). We used it to 

identify the 50 top genes that are most enriched in the colocalizing group as opposed to all other 

cells. Because of the small sample size, we used a non-parametric Wilcoxon rank-sum test to 

statistically test enrichment. Since we tested 50 genes, we needed to correct for 50 statistical 

comparisons, and we used the Benjamini-Hochberg method for this correction. Figure 6C 

shows the log2 transformed CPM profiles of the top 50 genes. However, none of those was 

significantly enriched after correction for multiple comparison. 

Next, we analyzed whether colocalizing cells have different expression levels regarding 

known neuronal subtype markers (Muñoz-Manchado et al., 2018). Out of 26 marker genes, 12 

were excluded in our dataset due to zero counts or low variance (Gpr88, G-protein coupled 

receptor 88; D830015G02Rik, myosin heavy chain associated RNA transcript; Adora2a, 

adenosine A2a receptor; Drd1a, dopamine receptor D1; Pthlh, parathyroid hormone-like 

peptide; Chodl, chondrolectin; Hhip, Hedgehog-interacting protein; Mia, melanoma inhibitory 

activity; Slc5a7, solute carrier family 5 (choline transporter), member 7; Trh, thyrotropin 

releasing hormone; Igfbp4, insulin like growth factor binding protein 4; Igfbpl1, insulin-like 

growth factor binding protein-like 1). We used a binomial generalized linear model (GLM) to 

classify samples into colocalizing or non-colocalizing (non-colocalizing cells are all cells of the 

dataset that are not part of the 11 Sst-mRNA+/Slc17a8-mRNA+ cells), based on log2 CPM of 

the remaining 14 genes. A generalized linear model allows for statistical inference because it 

does not only calculate the optimal parameter but also calculates the variance for each parameter 

through maximum likelihood estimation. The z-statistic can be calculated with this variance, 

which in turn allows for p-value calculation. Only the tyrosine hydroxylase (Th) expression was 

significantly enriched in colocalizing cells (Table 5). Figure 8B shows log2 transformed CPM 

in violin plots. Th is a gene that is involved in the physiology of adrenergic neurons. Cell types 

expressing it in the hippocampus have not been described previously. Altogether, our 

exploratory analysis suggests that Th could be a specific marker of Sst/Slc17a8 colocalizing 

cells. 

We repeated the above analysis with cell type classifications that consider the transgenic 

expression. Sst-EYFP and Slc17a8-EYFP cells were included in the Sst or Slc17a8 positive 

groups and cells were included in the colocalizing group if they had either mRNA or EYFP 

expression (Figure 9). In this analysis Th was not significant (Table 6) because cells with low 
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Th CPM were included in the Sst-mRNA+/Slc17a8-mRNA+ group (Figure 9A). The Sst and 

Slc17a8 genes on the other hand were significantly enriched in colocalizing cells. The 

differential expression analysis did not reveal significantly enriched genes (heatmap in Figure 

9B). These data suggest that although Th is a putative Sst-mRNA+/Slc17a8-mRNA+ specific 

marker, few cells express it at high CPM. 
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Figure 8: Tyrosine Hydroxylase is a putative marker for Sst-mRNA+/Slc17a8-mRNA+ 

interneurons. A) Comparison of known interneuron markers between transcriptomic cell types. 

Compared are cells that are positive for both Sst & Slc17a8, cells expressing Sst or Slc17a8 but 

not both and finally all other cells of the dataset. The generalized linear model that detected Th 

as significant was trained to distinguish only two groups. For this, cells expressing either Sst or 

Slc17a8 but not both were grouped with other cells. B) Top 50 genes enriched in colocalizing 

cells a determined by scanpy differential expression analysis. None were found to be 

significantly enriched. Genes in A: Gad1, glutamate decarboxylase 1; Drd2, dopamine receptor 

D2; Npy, neuropeptide Y; Sst, somatostatin; Chat, choline acetyltransferase; Th, tyrosine 

hydroxylase; Pvalb, parvalbumin; Htr3a 5-hydroxytryptamine (serotonin) receptor 3A; Asap1, 

ArfGAP with SH3 domain, ankyrin repeat and PH domain1; Rgl1, ral guanine nucleotide 

dissociation stimulator,-like 1; Lhx6, LIM homeobox protein 6; Tac1, tachykinin 1; Cox6a2, 

cytochrome c oxidase subunit 6A2; Slc17a8, solute carrier family 17 member 8. Genes in B: 

Slc17a8, solute carrier family 17 member 8.; Appl1, adaptor protein, phosphotyrosine 

interaction, PH domain and leucine zipper containing 1; Thyn1, thymocyte nuclear protein 1;  
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Continuation Figure 8: Cacng3, calcium channel, voltage-dependent, gamma subunit 3; 

Cdc5l, cell division cycle 5-like (S. pombe); Stip1, stress-induced phosphoprotein 1, Mvp, 

major vault protein; Faf1, Fas-associated factor 1; Osbpl2, oxysterol binding protein-like 2; 

Ralyl, RALY RNA binding protein-like; Zfp941, zinc finger protein 941; Gm2974, predicted 

gene 2974; Pcnx2, pecanex homolog 2; Arhgef9, CDC42 guanine nucleotide exchange factor 

(GEF) 9; Ube2d3, ubiquitin-conjugating enzyme E2D 3; Prdm2, PR domain containing 2, with 

ZNF domain; Letm2, leucine zipper-EF-hand containing transmembrane protein; 2Bcas2, 

breast carcinoma amplified sequence 2; Rgl1, ral guanine nucleotide dissociation stimulator,-

like 1; Serf1, small EDRK-rich factor 1; Mybl1, myeloblastosis oncogene-like 1; Dnajc3, DnaJ 

heat shock protein family (Hsp40) member C3; Fancl, Fanconi anemia, complementation group 

L; Glod4, glyoxalase domain containing 4; Pkp2, plakophilin 2; Gm3604, predicted gene 3604; 

Gm3696, predicted gene 3696;Cab39l, calcium binding protein 39-like; Gm13328, predicted 

gene 13328; Fsd1l, fibronectin type III and SPRY domain containing 1-like; Yeats2, YEATS 

domain containing 2; Fam136a, family with sequence similarity 136, member A; Pum3, 

pumilio RNA-binding family member 3; Sp4, trans-acting transcription factor 4; Stip1, stress-

induced phosphoprotein 1; Ubac2, ubiquitin associated domain containing 2; Gm16332, 

predicted gene 16332; Zmat4, zinc finger, matrin type 4; Naa35, N(alpha)-acetyltransferase 35, 

NatC auxiliary subunit; Arl6, ADP-ribosylation factor-like 6; D3Ertd751e, DNA segment, Chr 

3, ERATO Doi 751, expressed; Arhgap26, Rho GTPase activating protein 26; Snd1, 

staphylococcal nuclease and tudor domain containing 1; Glb1l2, galactosidase, beta 1-like 2; 

5330434G04Rik, RIKEN cDNA 5330434G04 gene; Mak, male germ cell-associated kinase; 

Ncor1, nuclear receptor co-repressor 1; Atad3a, ATPase family, AAA domain containing 3A; 

Letm2, leucine zipper-EF-hand containing transmembrane protein 2; Mia3, melanoma 

inhibitory activity 3; Eda, ectodysplasin-A; Lrrc28, leucine rich repeat containing 28; Maf, 

avian musculoaponeurotic fibrosarcoma oncogene homolog; Mrnip, MRN complex interacting 

protein; Med30, mediator complex subunit 30; Kif17, kinesin family member 17; Ccdc149, 

coiled-coil domain containing 149; Tbx19, T-box 19; Gm28403, predicted gene 28403. 
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Table 5: Output of binomial GLM for classifying cells as colocalizing or non-

colocalizing based on 14 interneuron marker genes. Tyrosine hydroxylase (Th) was the only 

gene found to be significantly enriched in colocalizing cells. Coef, the mean coefficient or 

weight found by the model for a given feature. Std Err, standard error of the coefficient estimate. 

z, the z score of the coefficient. P>|z|, the absolute p value of the z score of the coefficient. 

[0.025, 0.975], the 2.5% and 97.5% percentile of the coefficient estimate, respectively. const, a 

constant term added to the linear model. Gad1, glutamate decarboxylase 1; Drd2, dopamine 

receptor D2; Npy, neuropeptide Y; Sst, somatostatin; Chat, choline acetyltransferase; Th, 

tyrosine hydroxylase; Pvalb, parvalbumin; Htr3a 5-hydroxytryptamine (serotonin) receptor 3A; 

Lhx6, LIM homeobox protein 6; Tac1, tachykinin 1; Cox6a2, cytochrome c oxidase subunit 

6A2; Sox11, SRY (sex determining region Y)-box 11; Slc17a8, solute carrier family 17 member 

8. 

Coef Std Err z P>|z| [0.025 0.975] 

const -21.5532 10.016 -2.152 0.031 -41.184 -1.923

Gad1 -0.0038 0.408 -0.009 0.992 -0.803 0.795 

Drd2 1.4454 1.177 1.228 0.219 -0.861 3.752 

Npy 0.3776 0.375 1.008 0.313 -0.357 1.112 

Sst 1.2193 0.763 1.598 0.110 -0.276 2.715 

Chat -6.9372 7.162 -0.969 0.333 -20.974 7.099 

Th 32.0976 13.227 2.427 *0.015 6.173 58.022 

Pvalb -0.4939 0.609 -0.811 0.417 -1.688 0.700 

Htr3a -0.5315 0.432 -1.231 0.218 -1.378 0.315 

Lhx6 -0.2952 0.580 -0.509 0.611 -1.431 0.841 

Tac1 -14.2569 4.94e+06 -2.89e-06 1.000 -9.68e+06 9.68e+06 

Cox6a2 1.8618 1.296 1.437 0.151 -0.677 4.401 

Sox11 -0.0513 0.632 -0.081 0.935 -1.290 1.188 

Slc17a8 1.8356 0.970 1.893 0.058 -0.065 3.736 
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Figure 9: Analysis as in Figure 8 but with transgenic EYFP included in cell type classification. 

22 cells were identified as Sst-mRNA+/Slc17a8-mRNA+ or Sst-EYFP+/Slc17a8-mRNA+. A) 

Comparison of known interneuron markers between transcriptomic/transgenic cell types. The 

GLM identified Sst and Slc17a8 as significantly enriched in colocalizing cells. Th was not 

positive in this analysis, most likely because the transgenic classification included several Th 

negative samples in the colocalizing group. B) Top 50 genes enriched in colocalizing cells a 

determined by scanpy differential expression analysis. None were found to be significantly 

enriched. Genes in A: Gad1, glutamate decarboxylase 1; Drd2, dopamine receptor D2; Npy, 

neuropeptide Y; Sst, somatostatin; Chat, choline acetyltransferase; Th, tyrosine hydroxylase; 

Pvalb, parvalbumin; Htr3a 5-hydroxytryptamine (serotonin) receptor 3A; Asap1, ArfGAP with 

SH3 domain, ankyrin repeat and PH domain1; Rgl1, ral guanine nucleotide dissociation 

stimulator,-like 1; Lhx6, LIM homeobox protein 6; Tac1, tachykinin 1; Cox6a2, cytochrome c 

oxidase subunit 6A2; Slc17a8, solute carrier family 17 member 8. Genes in B: Akap9, A-kinase 

anchoring protein; Slc24a4, solute carrier family 24 (sodium/potassium/calcium exchanger), 

member 4; Smim8, small integral membrane protein 8; Acot12, acyl-CoA thioesterase 12; Iqck, 

IQ motif containing K; Gm3604, predicted gene 3604; 
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Continuation Figure 9: Fancl, Fanconi anemia, complementation group L; Ccdc141, coiled-

coil domain containing 141; Gm16223, Predicted gene 16223; Tbc1d1, TBC1 domain family, 

member 1; Dach1, dachshund family transcription factor 1; Mideas, mitotic deacetylase 

associated SANT domain protein; Mybl1, myeloblastosis oncogene-like 1; Boll, boule 

homolog, RNA binding protein; Jazf1, JAZF zinc finger 1; Cdh13, cadherin 13; Slc16a12, 

solute carrier family 16 (monocarboxylic acid transporters), member 12; Nell2, NEL-like 2; 

Glis3, GLIS family zinc finger 3; Hcn2, hyperpolarization activated cyclic nucleotide gated 

potassium and sodium channel 2; Fsd1l, fibronectin type III and SPRY domain containing 1-

like; Fhit, fragile histidine triad gene; Cwc22, CWC22 spliceosome-associated protein; Syt9, 

synaptotagmin; Creb3l2, cAMP responsive element binding protein 3-like 2; Stx2, syntaxin 2; 

Rtkn2, rhotekin 2; Fam171a1, family with sequence similarity 171, member A1; Scel, sciellin; 

Mecom, MDS1 and EVI1 complex locus; Gapdh-ps14, glyceraldehyde-3-phosphate 

dehydrogenase, pseudogene 14; Zpbp, zona pellucida binding protein; Plch1, phospholipase C, 

eta 1; Cyp2c70, cytochrome P450, family 2, subfamily c, polypeptide 70; Gabra3, gamma-

aminobutyric acid type A receptor subunit alpha 3; Ubtd1, ubiquitin domain containing 1; 

Dhrsx, dehydrogenase/reductase (SDR family) X chromosome; Cabin1, calcineurin binding 

protein 1; Pou6f2, POU domain, class 6, transcription factor 2; Ttll11, tubulin tyrosine ligase-

like family, member 11; Tubd1, tubulin, delta 1; Lurap1l, leucin rich adaptor protein 1-like; 

Hnf1aos1, HNF1 homeobox A, opposite strand 1. 
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Table 6: Output of binomial GLM for classifying cells as colocalizing or non-

colocalizing based on 14 interneuron marker genes. Like Table 4 but including the transgenic 

type into the cell type classification. Tyrosine hydroxylase (Th) was not found to be 

significantly enriched in colocalizing cells. Instead, Sst and Slc17a8 were significant. Coef, the 

mean coefficient or weight found by the model for a given feature. Std Err, standard error of 

the coefficient estimate. z, the z score of the coefficient. P>|z|, the absolute p value of the z 

score of the coefficient. [0.025, 0.975], the 2.5% and 97.5% percentile of the coefficient 

estimate, respectively. const, a constant term added to the linear model. Gad1, glutamate 

decarboxylase 1; Drd2, dopamine receptor D2; Npy, neuropeptide Y; Sst, somatostatin; Chat, 

choline acetyltransferase; Th, tyrosine hydroxylase; Pvalb, parvalbumin; Htr3a 5-

hydroxytryptamine (serotonin) receptor 3A; Lhx6, LIM homeobox protein 6; Tac1, tachykinin 

1; Cox6a2, cytochrome c oxidase subunit 6A2; Sox11, SRY (sex determining region Y)-box 

11; Slc17a8, solute carrier family 17 member 8. 

Coef Std Err z P>|z| [0.025 0.975] 

const -3.7592     0.997 -3.770  0.000 -5.714 -1.805
Gad1 -0.0213     0.083 -0.258  0.796 -0.183     0.140 

Drd2 -0.5252     0.721 -0.728  0.466 -1.938     0.888 

Npy 0.0834     0.080     1.038  0.299 -0.074     0.241 

Sst 0.2991     0.099     3.028 *0.002     0.106     0.493 

Chat 0.1319     0.355     0.371  0.710 -0.565     0.828 

Th     8.1279     4.348     1.869  0.062 -0.395    16.651 

Pvalb -0.1025     0.115 -0.895  0.371 -0.327     0.122 

Htr3a -0.1619     0.192 -0.842  0.400 -0.539     0.215 

Lhx6 -0.1142     0.157 -0.727  0.467 -0.422     0.194 

Tac1 -1.0499    13.463 -0.078  0.938 -27.437    25.337 

Cox6a2     0.4060     0.263     1.547  0.122 -0.109     0.921 

Sox11 -0.0821     0.166 -0.496  0.620 -0.407     0.243 

Slc17a8     0.3125     0.115     2.712 *0.007     0.087     0.538 
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4 Discussion 

Using patch seq we were able to characterize a novel interneuron subtype that 

colocalizes Sst and Slc17a8. These colocalizing cells are not electrophysiologically distinct but 

they could be enriched in tyrosine hydroxylase (Th). Patch seq is a novel technique that 

combines advantages and limitations of intracellular patch clamp recordings and single cell 

sequencing. The next chapter will discuss these in the context of characterizing rare neuronal 

subtypes. 

 

4.1 Using patch seq to characterize rare neuronal subtypes 

Patch seq is an extension of patch clamp, where intracellular electrical access allows for 

the recording of the electrical potential across parts of the cell membrane. After the electrical 

recordings are finished, the cytosol of the cell is extracted, the cDNA is amplified and then 

sequenced. The most obvious advantage is that electrophysiology and transcriptomic profile 

can be assessed in the same single cell. Even morphological reconstruction of the same cell is 

possible but has low success rates (around 20%), even in laboratories that pioneered the 

technique (Cadwell et al., 2016; Cadwell, Sandberg, et al., 2017). Recently this has been pushed 

to roughly 45% success rate (Lee et al., 2020) 

The advantage of highly multimodal single cell data comes with some disadvantages 

regarding each data modality and a large workflow. From a patch clamp perspective, patch seq 

requires RNAse minimized working conditions. This means regular cleaning efforts at much 

higher rate than in normal patch clamp. It also changes the recording conditions, because 

RNAse inhibitors need to be introduced into the intracellular solution. The intracellular 

solutions is in direct contact with the cytosol and the RNA it contains, making RNAse inhibitors 

a necessity for sufficient RNA quality. Adding the RNAse inhibitors drastically increases the 

osmolarity of the solution, which makes it harder to get stable intracellular access to a cell and 

hold the recording stable. This limits the effective recording time to around 5 minutes. 

From the single-cell sequencing perspective, the RNA quality of patch seq is on average 

worse than that of microfluidics techniques used to isolate single cells (Kalisky et al., 2018). 

This is the case because despite the precautions described above, it is nearly impossible to 

completely avoid RNAse contamination of the cytosolic samples during patch seq, as the patch 

pipette must move through neuronal tissue. Another downside of patch seq has the lower 

throughput. With a highly optimized workflow, datasets of more than 3700 interneurons are 

possible (Gouwens et al., 2020). While this is large dataset for the field of intracellular 
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electrophysiology, it pales in comparison to sequencing datasets with more than a million cells 

(Yao et al., 2021). 

An advantage of patch seq that is particularly relevant for the characterization of rare 

neuronal subtypes is the high spatial precision of cell selection. During in-vitro patch clamp 

experimenters visualize the cell before and during patching. They therefore know exactly where 

the cell was recorded and to some extent even what type of cell. With microfluidics approaches 

it is possible to dissect specific areas such as CA1, CA3 or DG. However, dissecting layers such 

as SR, PCL or SO is not well established. This means that such datasets represent the most 

abundant cell types of an area. Cell type specificity can also be achieved through fluorescence-

activated cell sorting (FACS). However, this requires a specific and efficient fluorescent marker 

for the cell type population, which does not exist for most rare subtypes. In that case, patch seq 

can target specific areas, if the subtype is known to be more abundant there.  

Patch seq allowed us to perform electrophysiological and transcriptomic 

characterization in the same dataset. This has revealed the similarity of Sst/Slc17a8 colocalizing 

to known interneuron subtypes. Furthermore, we were able to identify tyrosine hydroxylase 

(Th) as a putative marker for these cells. Th is involved in the catecholaminergic system and is 

strongly expressed in the locus coeruleus (Benarroch, 2018) among other areas. In the following 

chapter we will discuss the possible role Th could play in this rare interneuron subtype. 

4.2 Functional roles for tyrosine hydroxylase expression 

The tyrosine hydroxylase gene (Th) is protein coding for the tyrosine hydroxylase 

enzyme (ThE). It catalyzes the amino acid L-tyrosine to L-3,4-dihydroxyphenylalanine (L-

DOPA), a precursor to dopamine. Dopamine can in turn be converted to Norepinephrine and 

Norepinephrine into Epinephrine (Kaufman, 1995). Dopamine (McNamara & Dupret, 2017) 

and Norepinephrine (Bacon et al., 2020) have both been shown to be released into the 

hippocampus with functional effects. However, in both cases the release source are fibers that 

project into the hippocampus from other brain regions. Namely, the ventral tegmental area 

(VTA) and the locus coeruleus (LC). Release from hippocampal neurons has not been reported. 

The only report of somatic ThE expression comes from Kosaka et al. (1987) who did antibody 

labeling in rat tissue. They found extremely rare ThE positive somata in the hippocampus. What 

might be the functional role of a rare, dopamine synthesizing interneuron population in the 

hippocampus? 

Dopamine released into the hippocampus has effects on memory in mice. Optogenetic 

activation of Th positive LC fibers in the hippocampus enhances memory in a similar way as 
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novel environments. At the network level optogenetic activation increases synaptic efficacy and 

this effect is blocked by the Dopamine1/Dopamine5 receptor antagonist SCH23390 (Takeuchi 

et al., 2016). Similarly, optogenetic burst activation of Th positive fibers from VTA facilitates 

the reactivation of pyramidal cell ensembles after mice explored a novel environment 

(McNamara et al., 2014). Importantly, both of these examples propose that the main effect of 

dopamine is on the schaffer-collateral synapses located in dorsal CA1. The cell type we identify 

here is primarily located in CA3 and could therefore influence synapses located in CA3 with 

behavioral effects distinct from those in CA1. 

In any case, the expression of Th in hippocampal neurons remains to be validated and 

there are several strategies for this. RNAScope for Th is especially promising since it has an 

exceptionally good signal-to-noise ratio (Anderson et al., 2016). It therefore has the potential 

to discover expression where previous techniques had negative results. An antibody strategy 

could also be feasible, since many anti-Th antibodies have been developed since Kosaka et al. 

(1987) performed their stainings. Some of these newer antibodies might show more labeling in 

the hippocampus. The third possibility is to use transgenic mouse lines that express Cre-

recombinase in Th expressing cells (for example Savitt, 2005). Such mouse lines would also 

offer a way to target optogenetic actuators to these cells for further functional experiments. 

However, putative Th expression is not the only interesting feature of this cell type. The 

colocalization of Sst and Slc17a8 - a GABAergic and a Glutamatergic marker respectively – 

opens the possibility of excitatory/inhibitory corelease. A rare type of synaptic connectivity but 

with interesting functions as discussed in the next chapter. 

4.3 GABA/Glutamate corelease in the hippocampus 

GABA and Glutamate are important neurotransmitters of the mammalian central 

nervous system. GABA has inhibitory and Glutamate has excitatory effects in adult animals. 

The corelease of these two opposing neurotransmitters is rare in the mammalian central nervous 

system but has been reporter for example in the rat VTA (Root et al., 2014). There, the neurons 

that project to the lateral habenula (LHb) express Slc17a6 (which is protein coding for VGluT2) 

and either Gad1 or Gad2 (both GABAergic interneuron markers). Furthermore, the same axon 

terminal has both GABAA and GluR1 located post-synaptically. Optogenetic stimulation elicits 

currents which are sensitive to pharmacological blockers of both Glutamatergic and 

GABAergic transmission. Together, these data make it likely that the same axon can release 

both GABA and Glutamate. In vivo stimulation of these axons has mixed effects, with some 

neurons showing increased spiking and other decreased. 
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In the hippocampus the cholecystokinin (CCK) positive basket cells have been known 

for a long time to colocalize GABA and Slc17a8 (Herzog et al., 2004; Somogyi et al., 2004) 

but their postsynaptic effects and their ability to corelease has been inconclusive for a long time. 

Knocking out Slc17a8 in interneurons had effects on the hippocampal network (Fasano et al., 

2017). For example, the frequency of mini-inhibitory postsynaptic currents was increased in 

the knockouts. This is thought to occur, because the glutamate released from hippocampal 

interneurons acts on presynaptic group-III metabotropic glutamate receptors (mGluRs). Those 

receptors have an inhibitory effect on the presynapse and when glutamate is not released in the 

Slc17a8 knockouts, event frequency is increased because a source of inhibition was knocked 

out. mGluR4 which is part of the group-III receptors colocalizes synaptically with VGluT3. 

Importantly, Fasano et al. (2017) never constrain their knockout or their analysis to CCK 

interneurons. Therefore, some of the effects they observe could come from Sst/Slc17a8 

colocalizing cells rather than the CCK/Slc17a8 interneurons. This highlights the demand for 

Slc17a8 knockouts in interneuron subtypes. 

Recently, Pelkey et al. (2020) provided evidence for glutamate release from 

hippocampal CCK basket cells with excitatory postsynaptic effects onto CA1 pyramidal cells. 

They performed paired patch clamp of CCK interneurons and pyramidal cells in CA1 and 

showed that spikes in CCKs cause currents with components that are sensitive to glutamate 

receptor blockers. They also find colocalization of genetic fluorophore expression in the 

VGluT3.Cre-Ai14 mouse line with Sst Ab in both SO and SR for a subset of Sst cells. This 

contrasts with our data, where we found fewer colocalizing Sst cells in CA1. This could be due 

to the use of the VGluT3.Cre-Ai14 mouse line, which might nonspecifically target some 

VGluT3 negative cells. Despite glutamate release, the net-effect of VGluT3 positive cells is 

inhibition. Inhibitory conductances are larger than excitatory conductances by a factor of 10. 

Paired patch clamp recordings are the ideal technique to disentangle connectivity 

between single cells because they provide intercellular access to multiple single cells at the 

same time. They therefore convincingly show corelease. However, even high-throughput paired 

patch clamp experiments only target a relatively small part of the whole population and do not 

work during animal behavior. Tools to specifically express transgenic constructs in large parts 

of a neuronal population are important to understand the role of a neuronal population inside 

the larger network and during animal behavior. The next chapter discusses strategies to achieve 

this in rare neuronal populations with a focus on investigating the novel Sst/Slc17a8 

colocalizing neurons. 
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4.4 Genetic targeting of rare Sst/Slc17a8 population 

Strategies to genetically express fluorophores, sensors or optogenetic actuators have 

been used with great success in many neuronal populations. One such strategy uses mice that 

express a transgene only in the presence of a recombinase protein. Madisen et al. (2016) alone 

present 17 such mouse lines. The two most widespread recombinases are Cre and Flp (Kim et 

al., 2018). To target specific neuronal populations, one of these recombinases must be expressed 

exclusively in the neuronal population. This can be achieved by virally transducing a vector 

expressing the recombinase or alternatively using a transgenic mouse line that expresses it. 

Mouse lines expressing Cre recombinase were found to be more specific for neuronal 

populations under most circumstances. In this case, the construct that should be expressed is 

virally transduced into the Cre expressing mice. 

What kind of strategy could target the novel Sst/Slc17a8 population? Here we already 

targeted a fluorophore to Sst cells in the SST-Cre mouse line and Slc17a8 cells in the 

Tg(Slc17a8-icre)1Edw/SealJ mouse line. An intersectional genetic approach (Madisen et al., 

2015) could allow expression only in those cells that express both Sst & Slc17a8. For this we 

have acquired Ssttm3.1(flpo)Zjh/J mice (Sst-ires-Flp; He et al., 2016), which expresses Flp-

recombinase under the Slc17a8 promoter. By crossing this line with the Tg(Slc17a8-

icre)1Edw/SealJ, we can generate mice that should express both Cre- and Flp-recombinase only 

in the Sst/Slc17a8 cells. We will then transduce the viral vector AAV phSyn1-FSF-FLEX-

ChR2(H134R)-EYFP-WPRE-bGHpA (#65454 addgene plasmid), which expresses the 

ChR2(H134R) optogenetic construct with the EYFP fluorophore. If successful, this approach 

can lead to several insights. 

For one, the fluorophore expression would allow for reconstruction of dendritic and 

axonal morphology. Such reconstructions could hint to functional insights, since the dendritic 

morphology is somewhat correlated with the types of inputs a neuron receives and the axon 

morphology is correlated with the output targets. For example, axon morphology like that of 

basket cells could hint at perisomatic targeting by these cells. Such findings could then be 

corroborated by function experiments with ChR2(H134R). This includes experiments regarding 

the possibility of GABA/Glutamate corelease. Although such experiments would themselves 

need to be confirmed with paired patch recordings. This is because a single CA3 pyramidal cell 

that nonspecifically expresses ChR2(H134R), could cause excitatory postsynaptic currents on 

other CA3 pyramidal cells. For such paired patch clamp experiments the genetic EYFP 

expression would be necessary to have a reasonable chance to record from the rare Sst/Slc17a8 

cell type. 
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Another line of experiments could give insights into the behavioral role of Sst/Slc17a8 

neurons. For behavioral experiments, optogenetic inhibition would be the preferred approach 

to show the effect of turning the population off during relevant behaviors. However, viral 

plasmids for intersectional expression under Cre-Flp-Recombinase do not exist yet for 

optogenetic inhibitors. Experiments limited to excitatory optogenetics would need to focus on 

over-excitation the Sst/Slc17a8 population. Excitation would be relevant since many 

interneuron populations have rhythmic activity or contribute to such activity in downstream 

populations. Continuously exciting them or driving them at different frequencies could disrupt 

these natural rhythms and could have interesting behavioral effects. 

Nonspecific expression is a major problem for genetic expression strategies, especially 

when targeting interneuron populations that are small in absolute terms. Therefore, transgenic 

animals require careful validation of their expression profiles. We performed such a validation 

for the SST-Cre mouse we used to increase the number of Sst positive cells in our patch seq 

data. We found that this mouse line is highly specific in stratum oriens and stratum radiatum of 

CA3. That means recording from cells in those areas indeed results in recordings from mostly 

Sst positive cells. However, in the pyramidal cell layer many Sst negative pyramidal like cells 

expresses nonspecifically. The next chapter details the transgenic characterization. 
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5 Nonspecific Expression in Limited Excitatory Cell 

Populations in Interneuron-Targeting Cre-driver Lines 

5.1 Introduction 

The ability to express transgenic constructs specifically in neuronal subtypes has been 

crucial to many advances in neuroscience. Especially the study of interneurons and their many 

subtypes has benefitted from the transgenic mouse lines that allow for cell type specific 

expression (He et al., 2016). These mouse lines can be used to record from specific cell types 

during patch clamp or express optogenetic actuators. However, optogenetic experiments are 

difficult to interpret when nonspecific expression occurs in other cell types. Therefore, it is 

important to carefully verify the identity of cells that are genetically targeted in a mouse line. 

This publication describes the results of verifying transgene expression in the SST-Cre mouse 

line, the same line we used to target Sst cells in CA3. While this line is highly specific to Sst 

cells in SO, we found that it is not suited for optogenetic experiments on interneurons because 

it also targets pyramidal cells in CA3. 
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Transgenic Cre-recombinase expressing mouse lines are widely used to express
fluorescent proteins and opto-/chemogenetic actuators, making them a cornerstone of
modern neuroscience. The investigation of interneurons in particular has benefitted from
the ability to genetically target specific cell types. However, the specificity of some Cre
driver lines has been called into question. Here, we show that nonspecific expression in
a subset of hippocampal neurons can have substantial nonspecific functional effects in
a somatostatin-Cre (SST-Cre) mouse line. Nonspecific targeting of CA3 pyramidal cells
caused large optogenetically evoked excitatory currents in remote brain regions. Similar,
but less severe patterns of nonspecific expression were observed in a widely used
SST-IRES-Cre line, when crossed with a reporter mouse line. Viral transduction on the
other hand yielded more specific expression but still resulted in nonspecific expression
in a minority of pyramidal layer cells. These results suggest that a careful analysis of
specificity is mandatory before the use of Cre driver lines for opto- or chemogenetic
manipulation approaches.

Keywords: Cre mouse line, cell-type specificity, optogenetics, interneuron, somatostatin, hippocampus, CA3

INTRODUCTION

Transgenic Cre-recombinase expressing mouse lines are widely used in modern neuroscience to
specifically direct the expression of fluorescent proteins or opto- and chemogenetic actuators to
neuronal subtypes. Accordingly, they are a key element of most neuronal perturbation studies.
Cre driver mouse lines have been extensively used to examine the function of interneuron
subtypes in vitro and in vivo, with increasing numbers of Cre mouse lines for specific molecular
markers of different interneuron subtypes (Taniguchi et al., 2011). Very commonly used are mice
expressing Cre in subsets of GABAergic interneurons under the parvalbumin (PV) or somatostatin
(SST) promoters. Those lines have allowed us to target two main categories of interneurons. In the
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hippocampus, PV+ cells include fast-spiking basket cells,
axo-axonic cells, and interneuron types targeting proximal
dendrites of pyramidal cells. SST+ cells, on the other hand,
are regularly spiking and inhibit pyramidal cells at their distal
dendrites (Lovett-Barron et al., 2012; Pelkey et al., 2017).

Commonly used Cre-lines have been widely assumed to be
specific, with Cre-expression confined to the cells of interest.
However, this assumption has been called into question in some
cases. For example, in the widely used somatostatin–IRES-Cre
line (SST-IRES-Cre, Taniguchi et al., 2011), a population of
5% of Cre-reporter positive cells were found to be fast-spiking
PV+ cells (Hu et al., 2013). In the hippocampal CA1 subfield,
this mouse line also targets a small (6%) population of
fast-spiking interneurons as well as several putative pyramidal
cells (Mikulovic et al., 2015). Opto- and chemogenetic studies
in particular often depend on highly specific expression patterns
to disseminate the function of neuronal subtypes. Even though
these findings are worrisome, one defense of such mouse lines is
that the absolute number of nonspecifically targeted cells is small.
One could therefore assume that the observed in vitro and in vivo
effects are dominated by the interneuron type in question.

Here we show that in SST-Cre mice (Savanthrapadian
et al., 2014), recombination is not only induced in GABAergic
interneuron types. Also, recombination occurs in a small subset
of excitatory neurons largely confined to the CA3 pyramidal
cell layer. Moreover, we find powerful functional effects of
optogenetic activation that are not only contaminated by
nonspecifically expressing glutamatergic cells but are completely
lacking any interneuron contribution. Finally, we were also
unable to find anatomical or functional differences between
nonspecifically targeted cells and canonical CA3 pyramidal cells.
This suggests that these cells are not a specific subtype of
CA3 pyramidal cells. Further control experiments should be
carried out in a region-specific manner, before using Cre-lines
for the investigation of circuit function in behavior.

MATERIALS AND METHODS

Transgenic Animals
All animal experiments were carried out according to
the guidelines stated in Directive 2010/63/EU of the
European Parliament on the protection of animals used
for scientific purposes and were approved by authorities in
Nordrhein-Westfalen (Landesamt für Natur, Umwelt und
Verbraucherschutz Nordrhein Westfalen (LANUV), AZ 84-
02.04.2014.A254).

The SST-Cre mouse line (C-SSTtm1Npa) was kindly provided
to us by Marlene Bartos and was described previously
(Savanthrapadian et al., 2014). We hereafter refer to this
line as the SST-Cre mouse line. In brief, the SST-Cre mice
were generated by knocking NLS-Cre into the endogenous
SST gene (Dinkel et al., 1999). The line was maintained
by backcrossing with C57B6/N mice. Animals were bred
heterozygously and were genotyped for Cre recombinase using
the forward primer CCATCTGCCACCAGCCAG and the
reverse primer TCGCCATCTTCCAGCAGG. Animals with an
amplified fragment at 281 bp were classified as transgenic.

For the cross-breeding experiments (Figure 6F), we used the
Ai14 reporter line (Jackson Laboratories Stock No. 007914).

B6N.Cg-Ssttm2.1(cre)Zjh/J mice (SST-IRES-Cre, stock number
018973, The Jackson Laboratory) express Cre recombinase
(IRES-Cre-pA cassette) in the 3′UTR of the Somatostatin
locus (Taniguchi et al., 2011). We consistently refer to this
line as the SST-IRES-Cre mouse line. These mice were
crossbred to B6.Cg-Tg(APPswe, PSEN1dE9) 85Dbo/Mmjax
(Jankowsky et al., 2004) mice and only Cre heterozygous
offspring were used for experiments. Mice used in this study
were negative for the APP/PS1 transgene. The wild type
C57BL/6J animals were negative for both the APP/PS1 gene
and SST-Cre. Mice were genotyped for SST-IRES-Cre with
the following primers: GGGCCAGGAGTTAAGGAAGA; TC
TGAAAGACTTGCGTTTGG and TGGTTTGTCCAAAC-TC
ATCAA. We genotyped for the APP/PS1 gene using AA
TAGAGAACGGCAGGAGCA; GCCATG-AGGGCACTAATC
AT; CTAGGCCACAGAATTGAAAGATCT; GTAGGTGGAA-
ATTCTAGCATCATCCW.

Stereotaxic Intracranial Viral Injections
Animals were anesthetized with a ketamine/rompun or a
fentanyl/midazolam/medetomidine mixture i.p. Animals
also received ketoprofen analgesia (5 mg/kg, 0.1 ml/10 g
body weight) before the surgery and daily 2 days after the
surgery. Viral particles (250 nl at a rate of 100 nl/min)
were injected into CA3/hilus of the right hemisphere at the
following coordinates relative to Bregma: 2.3 mm posterior;
1.6 mm lateral (1.75 for SST-IRES-Cre animals); 2.5 mm
ventral. We used rAAV1/2-Ef1a-DIO-hChR2(H134R)-
EYFP-WPRE-pA (received as a gift from Karl Deisseroth,
Addgene plasmid # 20298; http://n2t.net/addgene:20298;
RRID:Addgene_20298) for Cre-mediated opsin expression,
AAV1/2-Ef1a-DIO-Syp-miniSOG-t2A-mCherry-WPRE-hPa
(received as a gift from Roger Tsien; Shu et al., 2011)
for electron microscopy experiments and AAV1/2.Syn-
hChR2(H134R)-EYFP (received as a gift from Karl Deisseroth,
Addgene plasmid # 26973; http://n2t.net/addgene:26973;
RRID:Addgene_26973) for general expression. Cholera Toxin
subunit B (CT-B, 50 nl), Alexa Fluor 555 conjugate (C-34775,
Thermo Fischer) was injected into CA1 at Bregma coordinates:
1.9 mm posterior; 1.5 mm lateral; 1.7 ventral. Mice were
used for electrophysiological experiments 4–5 weeks after
viral injection.

Somatostatin Immunostaining and
Colocalization Analysis
Animals were transcardially perfused with 4% PFA and the
brains were post-fixed with 4% PFA overnight at 4◦C. The
brains were washed in PBS the next day and slices of the dorsal
hippocampus were cut on a vibratome (HM 650V; Thermo
Scientific) at 50 µm. Acute 300 µm slices were postfixed for
1 h in 4% PFA. After washing, slices were left in a blocking
solution, consisting of 3% BSA in 0.25% PBS-T, for 2 h at
room temperature (RT). Then the primary antibody, rabbit
anti-SST (T-4102, Peninsula Laboratories International), was
applied 1:500 in blocking solution overnight shaking at 4◦C.
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FIGURE 1 | The somatostatin-Cre (SST)-Cre line is not specific for SST+ interneurons in CA3. (A) CA3 and the hilus of the dentate gyrus were virally transduced by
intracranial stereotactic injection with a Cre dependent, enhanced yellow fluorescent protein (EYFP) expressing construct. Lower image shows SST staining in the
same slice. 10× objective. Scale bar: 200 µm. Contrast adjusted for visualization. (B) EYFP+ cell in CA3 pyramidal cell layer (PCL) and two apical dendrites in
stratum lucidum. Scale bar: 10 µm. (C) Example images showing two EYFP+ cells, one in stratum oriens (SO) and one in the PCL. The cell in SO is also SST
positive, the cell in the PCL is SST negative. 40× magnification. Scale bar: 10 µm. (D) Quantification of SST colocalization from 40× images in six slices of five
animals. Two of those were 300 µm thick acute slices.

The following day slices were left at RT for 30 min and
washed in a blocking solution. The secondary antibody, donkey
anti-rabbit IgG, Alexa fluor 647 (ab150075, Abcam), was applied
1:500 overnight shaking at 4◦C. Finally, slices were washed,
stained with 1:1,000DAPI for 30min at RT shaking andmounted
with aqua-poly mount. The SST staining for the cholera toxin-B
(CT-B) injected animals followed a slightly different protocol
where slices were blocked with 5% donkey serum instead of BSA
and the secondary antibody was donkey anti-rabbit IgG FITC
1:500 (ab6798, Abcam).

For colocalization, 40× confocal images were taken with a
Leica SP8 confocal microscope. Enhanced yellow fluorescent
protein (EYFP) positive cells were sought out in dentate gyrus
and CA3. Colocalization was quantified manually by inspecting
signals in the SST channel at the somatic localization of the EYFP
signal. Figure 1C shows representative examples for both SST
colocalizing and non-colocalizing cells. Automatic quantification
was not feasible because the eYFP neuropil signal did not allow

automatic soma segmentation. Overview image (Figures 5A,B)
was taken on a spinning-disk microscope.

In vitro Electrophysiology
Adult mice were anesthetized with isofluorane, rapidly
decapitated and the dissected brains were transferred to
ice-cold, carbogenated artificial cerebrospinal fluid with sucrose
(ACSF; in mM: NaCl, 60; sucrose, 100; KCL, 2.5; NaH2PO4,
1.25; NaHCO3, 26; CaCl2, 1; MgCl2, 5; glucose, 20; from Sigma-
Aldrich) and sliced to 300 µm. Slices were then transferred to
ACSF at 37◦C and left for 20 min. They were then transferred
to carbogenated ACSF without sucrose (NaCl, 125; KCL, 3.5;
NaH2PO4, 1.25, NaHCO3, 26; CaCl2, 2; MgCl2, 2; glucose,
20; from Sigma-Aldrich) and were used for experiments
after at least 1 h at RT. All experiments were performed
in the same ACSF without sucrose at RT. The intracellular
solution for voltage-clamp experiments contained in mM: Cs
methanesulfonate, 120; MgCl2, 0.5; 2-(4-(2-Hydroxyethyl)-
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FIGURE 2 | Stimulation of contralateral projections of CA3 neurons in the SST-Cre mouse line. (A) Confocal images from post-fixed acute slices of the ipsilateral
injection site (left) and the contralateral hippocampus (right). The inset shows the fluorescent fiber signal in the contralateral hemisphere. Scale bars: 200 µm; inset:
20 µm. (B) Slice showing the projection from CA3 to the septum in the SST-Cre line. Scale bar: 100 µm. (C–E) Excitatory postsynaptic currents (EPSCs) and
inhibitory postsynaptic currents (IPSCs) measured in contralateral CA1 pyramidal cells. Light stimulus is 5 ms long with 26 mW total light-fiber output. (C) The
application of tetrodotoxin (TTX) alone abolished both excitatory and inhibitory currents. However, the co-application of TTX+4-AP recovered EPSCs but not IPSCs in
all except one cell. Ratio t-test of dependent samples between artificial cerebrospinal fluid with sucrose (ACSF) and +TTX+4-AP one-tailed: EPSCs, p = 0.1412,
t = 1.241; IPSCs, p < 0.0001, t = 13.18; n = 5 cells from three animals. (D) The application of CNQX+D-AP5 abolishes both EPSCs and IPSCs. Ratio t-test of
dependent samples one-tailed: EPSCs, p = 0.0017, t = 4.681; IPSCs, p < 0.0001, t = 8.082; n = 7 cells from four animals. (E) The application of Gabazine does not
affect EPSCs but inhibits IPSCs. Ratio t-test of dependent samples one-tailed: EPSCs, p = 0.4818, t = 0.04799; IPSCs, p = 0.0021, t = 4.947; n = 6 cells from
three animals. All responses were recorded at 26 mW fiber output.

1-piperazinyl)-ethansulfonsäure (HEPES), 5; Ethylenglycol-
bis(aminoethyl ether)-N, N,N′,N′-tetraessigsäure (EGTA), 5;
Adenosine 5′-triphosphate disodium salt (Na2-ATP), 5; N-
(2,6-Dimethylphenylcarbamoylmethyl)triethylammonium
chloride (QX 314 Cl−), 5; from Sigma Aldrich. For
pharmacology, we furthermore used 10 µM gabazine (SR
95531 hydrobromide; Tocris), 1 µM tetrodotoxin (TTX, Tocris),
200 µM 4-aminopyridine (4-AP, Sigma Aldrich), 50 µM 6-
Cyano-7-nitroquinoxaline-2,3-dione disodium salt (CNQX,
Tocris), 200 µM D-(-)-2-Amino-5-phosphonopentanoic acid
(D-AP5, Tocris). All these compounds were applied in the
recording chamber for at least 10 min before continuing
measurements. Most were applied for 20 min.

Patch-clamp experiments were performed with an Axopatch
200B and digitized on a Digidata 1322A or Digidata 1550B
plus HumSilencer (Molecular Devices). Light stimulation was
performedwith anOmicron Luxx 473 nm laser attached to a light
fiber submerged in the ACSF. Light stimuli were 5 ms long unless
otherwise stated.

For the conductance analysis, we assumed a chloride reversal
potential of −80 mV (−78.9 mV calculated with Nernst
equation) and a cation reversal potential of 0 mV. The excitatory
conductance was calculated from a current trace measured at a
holding voltage near the chloride reversal with gabazine washed-
in, to ensure pure excitatory response. To isolate the inhibitory
conductance, we subtracted the pure excitatory response at a
depolarized holding voltage from the mixed response in normal
ACSF.

In Figure 2C we only included cells that showed complete
block by TTX wash-in. We excluded one cell that did not show a
complete block, which is likely due to a wash-in failure.

Electron Microscopy With miniSOG
Photooxidation
SST-Cre animals were virally transduced with AAV1/2-Ef1a-
DIO-Syp-miniSOG-t2A-mCherry-WPRE-hpA. Three weeks
later, mice were transcardially perfused with Ringer solution
followed by 4% formaldehyde in 0.15M cacodylate-buffer. Brains
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FIGURE 3 | Contralateral projections originating from Cre-expressing cells in CA3 vs. the general CA3 neuron population are functionally indistinguishable. (A)
Confocal images from post-fixed acute slices of the ipsilateral injection site (left) and the contralateral hippocampus (right). Unconditional viral expression. (B) EPSCs
and (C) IPSCs (right) before and after bath application of TTX and 4-AP measured in contralateral CA1 pyramidal cells. 5 ms light stimulation at 26 mW fiber output.
Ratio t-test of dependent samples one-tailed: EPSCs, p = 0.2284, t = 0.8519; IPSCs, p = 0.0069, t = 5.200, n = 4 cells from two animals. (D) Example from
conductance analysis of fibers in the SST-Cre mouse line, conditionally expressing. Twenty-six microwatt light fiber output and 5 ms light stimulation. Excitatory
conductance was calculated from gabazine traces. Inhibitory conductance was calculated from gabazine subtracted traces. (E) Quantification of excitatory and
inhibitory peak conductance at different laser powers. 2-way ANOVA Greenhouse-Geisser corrected: main effects, Laser Output: p = 0.0422, DF = 5,
F (1.182,7.091) = 5.849, Conductance Type: p = 0.2189, DF = 1, F (1.000,6.000) = 1.885. Interaction: p = 0.2527, DF = 5, F (1.115,6.693) = 1.600. n = 6 cells from
three animals, same as EF1a-DIO-hChR2(H134R) in (F–H). (F) Quantification of conductance ratios (inhibitory peak conductance divided by excitatory peak
conductance) for conditional viral expression (EF1a-DIO-hChR2(H134R)) and unconditional expression (Syn-hChR2(H134R)). 2-way ANOVA Greenhouse-Geisser
corrected: main effects, Laser Output: p = 0.1406, DF = 4, F (1.393,15.33) = 2.341, Expression Type: p = 0.9614, DF = 1, F (1,11) = 0.002455. Interaction: p = 0.7974,
DF = 4, F (4,44) = 0.4143. (G) Quantification of latency between excitatory peak conductance and inhibitory peak conductance. 2-way ANOVA Greenhouse-Geisser
corrected: main effects: Laser Output: p = 0.6446, DF = 4, F (1.720,18.92) = 0.4014, Expression Type: p = 0.1766, DF = 1, F (1,11) = 2.085. Interaction: p = 0.0320,
DF = 4, F (4,44) = 2.912. (H) Quantification of latency between excitatory conductance onset and inhibitory conductance onset. 2-way ANOVA Greenhouse-Geisser
corrected: main effects, Laser Output: p = 0.6474, DF = 4, F (2.306,25.37) = 0.4853, Expression Type: p = 0.1759, DF = 1, F (1,11) = 2.092. Interaction: p = 0.3588,
DF = 4, F (4,44) = 1.121. EF1a-DIO-hChR2(H134R) n = 6 cells from three animals; Syn-hChR2(H134R) n = 7 cells from three animals.

were removed and post-fixed overnight at 4◦C. Coronal slices
(100 µm) were taken on a vibratome and slices with distinct
mCherry fluorescence were chosen. Slices were fixed with 2%
glutaraldehyde for 30 min, washed with ice-cold cacodylate-

buffer, and blocked for 20 min in a solution containing 20 mM
glycine, 10 mMKCN, and 20 mM aminotriazoline in cacodylate-
buffer. For photooxidation, slices were immersed in freshly
prepared and filtered (0.22 µm) 3,3’-diaminobenzidine (DAB)
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FIGURE 4 | Contralaterally projecting axons originating from Cre-expressing neurons in CA3 are excitatory. (A–H) miniSOG positive electron-dense structure
making presynaptic contact on a spine (orange) in CA1 SO. Arrows in (C–F) show postsynaptic density. Arrows in (G–H) show the spine apparatus. Scale bar:
500 nm. (I) Cholera toxin-B tracing in CA1. Ipsilateral injection of CT-B subunit in CA1. Contralateral, retrogradely traced cells (cyan) and SST immunoreactive cells
(yellow). Scale bar: 200 µm.

solution (1 mg/ml DAB in 0.1 M cacodylate-Buffer, pH 7.4)
that was aerated with oxygen. The miniSOG was activated
with a blue light (FITC filter set: EX470/40, DM510, BA520)
applied through a LUMPlanFl 60 × NA 0.90 W at an inverted
Olympus microscope equipped with a 100 W HBO-Lamp.
Light was applied for 20 min and fresh DAB solution was
exchanged after 10 min. After illumination, slices were stored in
cacodylate-buffer for further processing.

After photoconversion, the converted region containing
DAB reaction product in the hippocampus was documented
and images were taken at a Zeiss Axiophot light microscope.
Thereafter the sections were rinsed three times in 0.1 M sodium
cacodylate buffer (pH 7.2–7.4; Sigma-Aldrich, Germany)
and incubated with 1% osmium tetroxide (Science Services,

Germany) in cacodylate buffer for 20 min on ice. The
osmication of sections was followed by dehydration through
ascending ethyl alcohol concentration steps and rinsing
twice in propylene oxide (Carl Roth, Germany). Infiltration
of the embedding medium was performed by immersing
the sections first in a mixture of 2:1 of propylene oxide
and Epon (Carl Roth, Germany) then in a 1:1 mixture
and finally in neat Epon and polymerized at 60◦C for
48 h. The region of interest was dissected and ultrathin
sections (60 nm) were prepared with a Leica Ultracut UC7.
Images were taken using an EM902 transmission electron
microscope (Zeiss, Germany) equipped with a CCD in lens 2K
digital camera and running the ImageSP software (Tröndle,
Moorenweis, Germany).
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FIGURE 5 | Viral transduction in the SST-IRES-Cre line results in a more specific expression. (A) Overview image of the ipsilateral injection site (left) and contralateral
hemisphere. Virtually no contralateral fibers were observed (compare with Figure 2A). Mosaic merge, 20× magnification. Scale bar: 200 µm. (B) Enlarged views
from (A) showing the lack of contralateral fiber signal. Even in ipsilateral CA1, fiber signal is constrained to stratum lacunosum moleculare, as would be expected
from OLM-interneuron specific labeling. Scale bar: 20 µm. (C) Image of EYFP positive cells in CA3 SO. 40× magnification confocal microscope. Scale bar: 10 µm.
(D) Quantification of EYFP and SST positive cells, 15 slices from six SST-IRES-Cre animals.

Quantification and Statistical Analysis
We used Python with Matplotlib (Hunter, 2007) and GraphPad
Prism for plotting. Electrophysiological data were analyzed
manually in Clampfit (Molecular Devices) or with python and
NumPy (van der Walt et al., 2011). To load .abf files into python
we used the python-neo package (Garcia et al., 2014). GraphPad
Prism was used for statistical analysis. We used the t-test to
compare 2 groups and two-way ANOVA to compare two groups
across multiple conditions.

For the quantification of the Allen Brain Institute data
(Oh et al., 2014), we used the Allen Software Development
Kit to download .jpg images. tdTomato positive cells were
segmented by maximum entropy thresholding, erosion, dilation
and the particle counter in ImageJ (Schindelin et al., 2012).
Colocalization with fluorescent in situ hybridization probe

was assessed manually. In total, we quantified 23 images of
the dorsal hippocampus from four experiments (Table 1).
A detailed technical description can be found in the
Transgenic Characterization whitepaper: http://help.brain-
map.org/display/mouseconnectivity/Documentation.

RESULTS

The SST-Cre Line Is Not Specific for SST+

Interneurons in CA3
Somatostatin (SST) positive interneurons in CA3 are located
predominantly in stratum oriens (SO) and stratum radiatum
(SR). SST positive cells have a characteristic dendrite
morphology, with most of the dendritic arbor confined to

Frontiers in Neural Circuits | www.frontiersin.org 7 April 2020 | Volume 14 | Article 16

53

http://help.brain-map.org/display/mouseconnectivity/Documentation
http://help.brain-map.org/display/mouseconnectivity/Documentation
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Müller-Komorowska et al. Nonspecific Cre Expression

FIGURE 6 | Specificity of expression in SST-IRES-Cre mice achieved by
crossing with a reporter mouse line. Images (A,B,D) from the Allen Brain
Institute. The SST-IRES-Cre mouse line was crossed with the tdTomato
reporter line Ai14. (A) Experiment 167643437, image ID 167643516.
Contrast auto-adjusted and lookup tables changed. Scale bar: 100 µm.
(B–E) Example images cropped from (A), contrast unadjusted. Quantification
on the right. Scale bar: 20 µm. (F) The SST-Cre mouse line crossed with the
Ai14 reporter line. Scale bar: 200 µm.

the same sublayer as the soma (Freund and Buzsáki, 1996). We
expressed a construct that leads to Cre-dependent expression of
EYFP in the CA3 region of heterozygous SST-Cre mice using
rAAV-dependent gene transfer. We found EYFP expression in
cells of the pyramidal cell layer (PCL; Figure 1A). In SO and
SR, cells also expressed EYFP but the signal there was almost
dominated by the neuropil. EYFP+ cells in the PCL showed
features typical for CA3 pyramidal cells (Figure 1B) such as
thorny excrescences on apical dendrites.

To determine if these EYFP+ cells are also SST+, we
immunostained for SST. This revealed that EYFP expression was
highly specific for SST+ interneurons in SO, where 50/53 EYFP+

cells expressed SST. Similarly, in SR 9/10 EYFP+ cells expressed
SST. In marked contrast, we found that a minority of EYFP+

cells in the pyramidal cell layer of CA3 coexpressed SST
(21/147 cells; Figures 1C,D data from six slices of five animals).
Injection of the Cre-dependent virus into control animals lacking
Cre-recombinase activity did not lead to EYFP expression (nine
slices, three animals).

These results show that Cre recombinase is not only targeted
to SST+ interneurons in the adult hippocampus. It is also
expressed in pyramidal-like neurons within the PCL that is
devoid of detectable somatostatin levels, leading to the targeting
of these cells even with viral gene transfer in adult animals.
In contrast, the SST-Cre mouse line showed local specificity in
CA3 SO, SR and the hilus of the dentate gyrus.

Commissural Projections Make Direct
Excitatory Connections in Contralateral
CA1
Does a relatively small number of CA3 neurons targeted
in SST-Cre mice have a measurable functional impact on
neuronal networks? CA3 pyramidal neurons are known to
make extensive long-range connections to the contralateral
hippocampus (Buzsáki and Czéh, 1981; Buzsáki and Eidelberg,
1982; Finnerty and Jefferys, 1993) and the septum (Risold and
Swanson, 1997). We therefore examined if the small number of
CA3 neurons targeted in SST-Cre mice is sufficient to generate
detectable contralateral projections. Unilateral rAAV injection in
the CA3 region of SST-Cre mice led to a strong axonal EYFP
signal in the contralateral hippocampus (Figure 2A) and the
septum (Figure 2B). The axon distribution was as described for
CA3 pyramidal cells, with EYFP-expressing axons mainly in SO
and SR of both the CA1 and CA3 regions.

Contralateral projections have been described not only for
CA3 pyramidal neurons but also for inhibitory hippocampal
interneurons including SST-expressing subtypes (Zappone and
Sloviter, 2001; Eyre and Bartos, 2019). We, therefore, went on to
further characterize the functional properties of contralaterally
projecting axons, to assess: (i) if they correspond to excitatory
projections arising from CA3 pyramidal neurons; and (ii) if
they are sufficiently numerous to cause significant physiological
effects. To this end, we obtained patch-clamp recordings from
CA1 pyramidal neurons in mice expressing hChR2 in the
contralateral CA3 region in SST-Cre mice. This allowed us
to perform light-based stimulation of contralaterally projecting
axons while recording from CA1 pyramidal neurons. To separate
excitatory from inhibitory neurotransmission, we voltage-
clamped CA1 neurons to different holding voltages. Currents

TABLE 1 | Experiments and images from the Allen Brain Institute used for the quantification in Figures 6, 7.

Line Experiment Img ID

SST-IRES-Cre 182530118 182530130 182530134 182530136 182530140 182530142 182530156
167643437 167643500 167643502 167643504 167643514 167643516

Pvalb-IRES-Cre 81657984 81636703 81636705 81636709 81636711 81636713 81636715
111192541 111192610 111192612 111192625 111192627 111192629

All images can be found here: http://connectivity.brain-map.org/transgenic.
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at −80 or −70 mV were evoked close to the chloride reversal
potential and are therefore dominated by excitatory postsynaptic
currents (EPSCs), whereas currents evoked at 0 or −10 mV
are dominated by inhibitory postsynaptic currents (IPSCs). In
all CA1 pyramidal neurons, blue light illumination reliably
evoked both excitatory and inhibitory currents (Figures 2C–E).
To ascertain which of these components are monosynaptic, we
applied the Na+ channel blocker tetrodotoxin (TTX, 1 µM),
which invariably blocked synaptic transmission completely.
Coapplying TTX with 4-aminopyridine (4-AP, 200 µM)
enables direct light-based transmitter release from terminals
expressing ChR2, and thus indicates monosynaptic connections.
Coapplication of 4-AP recovered EPSCs, but not IPSCs
(Figure 2C; EPSCs 217%, IPSCs 1% of baseline). The recovery
of EPSCs but not IPSCs indicates that contralateral projections
in SST-Cre mice are excitatory. Additionally, these results
indicate that the light-evoked IPSCs are due to polysynaptic
recruitment of interneurons. This idea is supported by the
temporal delay between excitatory and inhibitory conductances
(Figures 3G,H). Consistent with polysynaptic recruitment of
inhibitory interneurons, light-evoked IPSCs were abrogated by
blocking glutamatergic transmission with CNQX (50 µM) and
D-AP5 (200 µM; Figure 2D; EPSCs 29%, IPSCs 8% of baseline).
Finally, we show that—as expected—light-evoked IPSCs were
sensitive to the GABA-A blocker gabazine (10 µM; Figure 2E;
EPSCs 114%, IPSCs 14% of baseline).

Taken together, we found no evidence for direct commissural
inhibition from SST+ interneurons from CA3 to CA1.
Instead, direct excitatory transmission recruited strong
polysynaptic inhibition.

Properties of Commissural Axons Targeted
Unconditionally or in an SST-Cre Mouse
Line Are Functionally Indistinguishable
To investigate if this is consistent with the canonical CA3 to
CA1 commissural projection, we induced broad expression
of ChR2 in all CA3 cell types using viral gene transfer of
an unconditional construct leading to expression of EYFP-
hChR2. Light-based manipulations should be dominated by
the activity of pyramidal cells, since they vastly outnumber
other neuronal subtypes. Virus injection resulted in a strong
fluorescence signal in CA1, CA3, and DG that was dominated
by fiber signal at the injection site (Figure 3A). Contralateral
to the injection site, we found prominent labeling of axons in
CA1 and CA3 in both SR and SO as well as the inner molecular
layer of the DG. The DG fiber pattern was consistent with
the commissural mossy cell projection and the fiber patterns
in CA1 and CA3 with the commissural CA3 projection. We
again assessed the monosynaptic transmission onto contralateral
CA1 pyramidal cells using the combined application of TTX
and 4-AP (1 µM, 200 µM) and found that it completely
inhibited IPSCs (Figures 3B,C; EPSCs 88%, IPSCs 4% of
baseline). Next, we asked if there are quantitative differences
between the SST-Cre fibers and the unconditionally transduced
fibers. We converted the pharmacologically isolated currents
(Figure 2E) to conductances (Figure 3D) according to holding

and reversal potentials (see ‘‘Materials and Methods’’ section).
Because the density of EYFP-hChR2 positive fibers is much larger
in the unconditional case, the absolute conductances cannot
be compared meaningfully. However, because the inhibition
is polysynaptic, it is expected to scale to some extent with
the excitation. Therefore, the ratio between excitation and
inhibition can give insights into differential recruitment in
the micro-network.

We found that in the SST-Cre line, the inhibitory conductance
was stronger than the excitatory one (Figures 3D,E). Comparing
the SST-Cre line with the unconditional case, we did not detect
a difference between the ratios of maximum inhibition and
excitation (Figure 3F). In both cases, the amplitude of inhibition
was larger than that of inhibition for different strengths of
light-based stimulation. Furthermore, the latencies between
the onset of excitation and inhibition showed no significant
difference (Figure 3H) and were consistent with values found
in CA3 to CA1 Schaffer collateral projections (Pouille and
Scanziani, 2001). However, the latencies between the peak of the
excitatory conductance and the inhibitory conductance showed
a significant interaction between laser output and the type of
expression. The main effects were not significant (Figure 3G,
Greenhouse-Geisser corrected 2-way ANOVA).

Commissural CA3 Fibers Make Synaptic
Contacts on Spines and Originate Primarily
From PCL Cells
To further confirm that contralateral projections are excitatory,
we used miniSOG photooxidation to generate electron-dense
labeling in contralateral CA1 SO localized to fibers with
Cre recombinase activity in the SST-Cre line (Figure 4). Of
70 miniSOG positive structures, 40 were presynaptic boutons
making postsynaptic contacts. All 40 structures made contact on
a spine, four of them made contact on two spines. Serial imaging
sections of 25 boutons showed that 22 of them unambiguously
made contact on spines (Figures 4A–H, quantification from two
slices). The other three boutons were not entirely sectioned.
The types of most synaptic contacts could not be defined
clearly because of the electron-dense labeling in the pre-synapse.
However, the postsynaptic densities that are clearly in the
imaging plane appear asymmetric. Together with the fact that
they all contact spines, this data suggests that the direct contacts
are predominantly excitatory, and we found no evidence for
direct inhibitory contacts in CA1 SO.

Next, we used retrograde tracing in CA1 with CT-B
to determine which cell types project to contralateral CA1
(Figure 4I). We found that virtually all projecting cells were in
the CA3 pyramidal cell layer. With the SST staining we identified
81 cells (12 slices from four animals), none of which was CT-B
positive. This data suggests that somatostatin interneurons are
not part of the commissural projection.

Finally, we related our findings to the more commonly used
SST-IRES-Cre mouse line (Taniguchi et al., 2011). For this
purpose, we used data from the Allen Brain Institute. We also
virally injected SST-IRES-Cre animals for direct comparison of
genetic and viral expression.
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Viral Gene Transfer Leads to More Specific
Expression Compared to the Use of
Reporter Mouse Lines
Do these findings generalize to other, commonly used SST-Cre
mouse lines? The SST-IRES-Cre line (Taniguchi et al., 2011) has
been widely used, with 203 publications relating to it according to
Jackson Laboratories (as of 11.10.2019). We therefore examined
if viral transduction in adult SST-IRES-Cre animals also leads
to nonspecific expression in non-SST expressing neurons. We
found that viral gene transfer in SST-IRES-Cre mice led to a
much more specific expression pattern in CA3 compared to
the SST-Cre line. Labeling of contralaterally projecting axons
was almost completely absent in the contralateral CA1 region.
Few axons were present in the contralateral CA3 region and
DG, potentially corresponding to DG interneuronal axons
(Figures 5A,B). The fiber signal in the ipsilateral CA1 region
was strongest in stratum lacunosum moleculare, as would
be expected for SST positive oriens lacunosum moleculare
cells. Somatostatin staining confirmed that viral expression
is highly specific for somatostatin positive cells (Figure 5C).
Quantification in 15 slices from 6 animals showed that 257/272
(94.5%) EYFP+ cells were also SST positive. In the CA3 SO
84/85 (98.8%), in SR 32/34 (94.1%) and DG 99/102 (97.1%) of
EYFP+ cells were SST positive. In the CA3 PCL, the specificity
was somewhat lower (42/51 cells, 82.4%), Thus, also in the SST-
IRES-Cre mouse, specificity was least in the PCL of CA3, with
almost 20% of neurons lacking SST expression. However, SST-
IRES-Cre mice are more selective than SST-Cre mice following
viral transduction.

Since many experimenters also breed Cre driver mouse lines
with conditional mouse lines expressing fluorescent proteins or
opto- or chemogenetic actuators, we also evaluated the specificity
of both the SST-Cre or the SST-IRES-Cre line when they were
crossed with the Ai14 tdTomato reporter mouse line. For the
SST-IRES-Cre line, we used the Allen Brain Institute transgenic
characterization data of the mouse connectome project (Oh
et al., 2014). We used two experiments in which the SST-IRES-
Cre mouse line was crossed with the Ai14 tdTomato reporter
mouse line and fluorescent in situ hybridization (FISH) was
performed for SST.We found that in these experiments, the SST-
IRES-Cre mouse line is nonspecific in CA3, with only 48/127
(37.8%) tdTomato+ cells being SST-mRNA+ in the PCL, 82/100
(82%) in SO and 61/74 (82.4%) in SR (Figures 6A–C). The
CA1 area also contained some SST- cells in the PCL but appeared
overall more specific with 29/51 (56.9%) tdTomato+ cells being
SST-mRNA positive, 281/299 (94%) in SO and 20/24 (83.3%) in
SR (Figures 6A,D,E). Thus, using breeding with reporter mouse
lines, even the more specific SST-IRES-Cre mouse line lacks
sufficient specificity, in particular in the subfield most affected
in the SST-Cre mouse line.

We also crossed SST-Cre mice with Ai14 tdTomato reporter
mice. This approach led to an even more unselective pattern of
expression, with pyramidal-like tdTomato expressing cells in the
PCL of CA3, but also the CA2 and CA1 subregions. We also
found a very small number of granule cell-like neurons in the
granule cell layer of the dentate gyrus (Figure 6F) that were not

observed in virally transduced animals. Since this pattern was
unselective, it was not further quantified.

Finally, we also assessed the quality of a third commonly
used mouse line targeting PV containing interneurons. We
quantified the colocalization of Cre-induced recombination with
PV expression in the Pvalb-IRES-Cre mouse line (Hippenmeyer
et al., 2005). We found that this mouse line was much more
specific than both SST-Cre mouse lines in both the CA3 and
CA1 regions (Figures 7A–E; CA3: 45/46, 97.8% SO; 112/112,
100% PCL; 26/26, 100% SR. CA1: 170/191, 89% SO; 284/294,
96.6% PCL; 29/34, 85.3% SR).

DISCUSSION

We show that CA3 PCs that are nonspecifically targeted in
an SST-Cre mouse line (Savanthrapadian et al., 2014) make
functional connections indistinguishable from those of canonical
CA3 PCs. While the specificity of SST-Cre lines has been
questioned before, the functional relevance of the nonspecific
expression of Cre-recombinase was unknown. Estimating the
potential effects of nonspecific expression is essential for
neuronal perturbation studies that seek to isolate the function
of specific cell-types. Our data suggest that studies that perturb
SST cells in CA3 with the SST-Cre line would be massively
confounded by Cre-recombinase expression in CA3 pyramidal
cells. We also demonstrate that a commonly used SST-IRES-Cre
line is more specific, but still exhibits low levels of nonspecific
Cre expression in particular in specific subfields, in this case, the
Ca3 pyramidal cell layer. We also show that crossing SST-Cre
and SST-IRES-Cre mouse lines with a reporter mouse line leads
to more extensive nonspecific expression compared to viral gene
transfer. This may be due to the widespread activity of the SST
promoter in non-SST interneurons during early development
(Zingg et al., 1984; Lowe et al., 1987; Xiang et al., 2001).
Additionally, the activity of the SST promoter may be regulated
by neuronal activity (Gonzalez and Montminy, 1989).

An additional comparison is of interest: nonspecific Cre
expression was more widespread in the SST-Cre compared to
the SST-IRES-Cre mouse line. This was surprising as both
Cre mouse lines were generated using a knockin strategy into
the endogenous SST gene. However, the targeting strategy was
different. While the SST-IRES-Cre mouse was generated by
inserting an IRES-Cre cassette immediately after the STOP
codon (Taniguchi et al., 2011), the SST-Cre mouse was
generated by knocking NLS-Cre into the endogenous SST gene
(Savanthrapadian et al., 2014). It is thus possible that these
different targeting strategies, with a different relationship of the
inserted gene sequence to the endogenous SST promoter, affect
the expression pattern of Cre recombinase.

How Relevant Are These Findings for
Other Cre Mouse Lines?
We demonstrate wide-spread physiological effects of nonspecific
Cre-expression in the SST-Cre mouse line but have found
anatomical evidence for a less pronounced nonspecific genetic
expression in the SST-IRES-Cre mouse line. Indeed, specificity
issues with an SST-IRES-Cre mouse line were raised previously
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FIGURE 7 | Specificity of expression in a parvalbumin (PV)-Cre mouse line achieved by crossing with a reporter mouse line images (A,B,D) from the Allen Brain
Institute. (A) Experiment 111192541, image ID 111192610. Contrast auto-adjusted and lookup tables changed. (B–E) Example images cropped from (A) contrast
unadjusted. Quantification on the right. Scale bars: 100 and 20 µm.

(Taniguchi et al., 2011). Moreover, a further study has found
targeting of a large number (31%) of slow-spiking cells in the
CA1 PCL, also consistent with nonspecific genetic expression
(Mikulovic et al., 2015). Specificity can vary widely between
Cre lines and brain areas, as our comparison of the SST-IRES-
Cre and the Pvalb-IRES-Cre lines shows. Therefore, specificity
should not be generalized lightly to other Cre mouse lines or
even to other brain areas in the same mouse line. We suggest
that pending careful quantitative analysis in all the subregions
under investigation in the specific study, caution is warranted in
assuming specificity.

Do SST-Expressing Interneurons Make
Contralateral Connections?
In addition to CA3 pyramidal cells, the SST-Cre mouse line
targets SST+ INs in CA3. We found that the projection of
the contralateral CA1 region arises mainly from nonspecifically
targeted pyramidal cells. We found no evidence for direct
inhibition from SST+ interneurons onto contralateral CA1 PCs
in our patch-clamp experiments. Even slices with nonconditional
ChR2 expression did not exhibit monosynaptic inhibition,
despite all inhibitory cell types being targeted. Furthermore, our
anatomical EM data showed no evidence for inhibitory synapses
in contralateral CA1 SO. Finally, the CT-B data did not reveal
cells outside CA3 PCL projecting to contralateral CA1. This leads

us to the conclusion that an inhibitory CA3 to contralateral
CA1 connection is extremely weak or nonexistent and SST+

interneurons do not contribute to it.
Although we focused on the CA3 and CA1 subfields, we noted

a very sparse fiber signal in the outer molecular layer of DG
in the SST-Cre line. This is in line with previous anatomical
evidence showing a commissural projection with a GABAergic
component (Deller et al., 1995; Zappone and Sloviter, 2001).
However, using in vivo patch-clamp and optogenetics we did not
find evidence for a functional connection onto granule cells (data
not shown).

Eyre and Bartos (2019) have also assessed interhemispheric
connections of inhibitory interneurons using unilateral viral gene
transfer in either GAD2-Cre and the SST-IRES-Cre mouse lines.
In the SST-IRES-Cre mouse line, virus injection into the CA3
regions revealed a large number of cells in the CA3 PCL far
exceeding cell numbers in CA3 stratum radiatum or oriens (see
Eyre and Bartos, 2019; Figure 2B). This distribution of targeted
cells in CA3 is reminiscent of the SST-Cre mouse line described
in this article (Figures 1A–D, 2A) and is not in line with our
experiments in the SST-IRES-Cre line (Figures 5A–D). As the
high number of CA3 PCL neurons in the SST-Cre mouse line
was due mainly to neurons nonspecifically expressing Cre, this
raises the disturbing possibility that with some viral injection
protocols, even the SST-IRES-Cre mouse may display substantial
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nonspecific expression patterns. In line with our findings, Eyre
and Bartos (2019) did not find evidence for functional direct
interhemispheric inhibitory connections in the hippocampal
dentate gyrus.

The Utility of Mouse Lines With
Nonspecific Principal Cell Expression for
in vivo Experiments
A common use of Cre lines is circuit perturbation during
behavioral tasks. Principal cell connections can span wide
areas of the brain and must be accounted for when studying
interneurons. When light is delivered to the brain through
light fibers, it can travel considerable distances. Therefore, light
delivered to areas where transgene expression is specific, could
affect nonspecifically expressing cells and fibers in faraway areas.
Notably, such effects cannot be excluded with a commonly used
control group expressing only GFP (or another fluorophore)
instead of a light-sensitive opsin. The same applies to a larger
extent to chemogenetic experiments, where the agonist might be
delivered systemically, rather than locally.

To ensure that principal cell expression does not confound
a behavioral experiment, the colocalization between transgene
expressing cells and the appropriate interneuron marker should
be quantified for all areas where viral transduction occurred.
This includes the injection cannula tract. When the transgene
is expressed by crossing mouse lines, the expressing fiber
distribution throughout the entire brain should be examined
carefully. Especially for optogenetic experiments, it would be
valuable to additionally check for direct excitatory synaptic
transmission. For a specific mouse line, no direct excitatory
currents should be detectable. Importantly, the net effect of a
direct excitatory connection can be reduced spiking through
recruitment of feedforward and feedback inhibition (Buzsáki and
Czéh, 1981). Therefore, it is not sufficient to quantify spiking or
activity levels in the post-synaptic population to exclude direct
excitation. These issues should be considered when using any
Cre-mouse line for in vivo behavioral experiments, particularly
the SST-Cre mouse lines used in the present study.
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5.3 Summary 

We found that most cells that are transduced in the PCL are Sst-Ab negative. 

Contralateral fibers and excitatory postsynaptic currents in contralateral CA1 suggest that these 

cells are CA3 pyramidal cells. Fortunately, this nonspecific SST-Cre mouse line is not widely 

used and the more common SST-ires-cre mouse line appears to be more specific as far as Sst-

Ab colocalization is concerned. However, our findings have important implications for the 

validation of Cre mouse lines. 

The SST-Cre mouse line was considered Sst specific. This is probably due to the fact 

that it was primarily validated in the DG, where nearly all expressing cells are indeed Sst-Ab 

positive. We were only able to find out that it is nonspecific because we specifically investigated 

the CA3 pyramidal cell layer. Mouse lines can be specific in one brain area but nonspecific in 

another. This means that mouse line validations should only be accepted when they are 

validated for the specific brain area and layer of interest. 

Another crucial finding was the difference between genetic expression through a 

reporter mouse line and viral transduction. In the SST-Cre mouse line, nonspecific expression 

was more severe under genetic expression as opposed to viral. It is not clear whether this is a 

general rule or what the mechanism is. However, these findings suggest, that validations from 

one expression strategy do not necessarily transfer to another expression strategy. 

Transgenic animals are useful if they are properly validated for their purpose because 

they allow for optogenetic control of a neuronal population. This kind of control can afford 

insights into the quantitative properties of neuronal circuits. In the following paper we describe 

some of the quantitative properties of feedback inhibition in the dentate gyrus. In a 

computational model we investigate these quantitative features in the context of pattern 

separation. Pattern separation important for precise memory formation during novelty behavior 

and our findings make predictions that can be tested in behavioral experiments. 
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6 Quantitative properties of a feedback circuit predict 

frequency-dependent pattern separation 

6.1 Introduction 

Feedback inhibition is found in many brain areas and species. It is driven by the principal 

cells of a microcircuit and inhibits those same principal cells. In this way, principal cells control 

their own activity, which is important to avoid overly excitable network states. Excitability is 

also relevant for pattern separation, a neuronal computation that helps with distinguishing 

similar patterns. A sparse network where few cells are active at a time and produce few action 

potentials is usually a good pattern separator. The dentate gyrus is known for pattern separation 

during behavioral tasks (Leutgeb et al., 2007) and its in vivo activity is sparse. 

Feedback inhibition is particularly interesting for pattern separation because it has a 

complex temporal structure. We therefore incorporated frequency modulation into our model 

of the dentate gyrus inputs. We found that input patterns are better separated when they have a 

modulation frequency above 10Hz. This is behaviorally relevant because the input area of the 

dentate gyrus changes its population frequency and our model predicts that interfering with 

population frequencies above 10Hz would decrease performance during pattern separation 

dependent behaviors. 

We furthermore found that the input frequency lost relevance for pattern separation 

when we removed feedback inhibition from our model. Importantly, we experimentally 

constrained the quantitative properties of feedback inhibition using in-vitro experiments. 

Removing feed-forward inhibition on the other hand had not effect on the frequency dependent 

component of pattern separation. These data predict that the two types of inhibition could have 

dissociable effects on pattern separation behaviors. 
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Abstract Feedback inhibitory motifs are thought to be important for pattern separation across

species. How feedback circuits may implement pattern separation of biologically plausible,

temporally structured input in mammals is, however, poorly understood. We have quantitatively

determined key properties of netfeedback inhibition in the mouse dentate gyrus, a region critically

involved in pattern separation. Feedback inhibition is recruited steeply with a low dynamic range

(0% to 4% of active GCs), and with a non-uniform spatial profile. Additionally, net feedback

inhibition shows frequency-dependent facilitation, driven by strongly facilitating mossy fiber inputs.

Computational analyses show a significant contribution of the feedback circuit to pattern

separation of theta modulated inputs, even within individual theta cycles. Moreover, pattern

separation was selectively boosted at gamma frequencies, in particular for highly similar inputs.

This effect was highly robust, suggesting that frequency-dependent pattern separation is a key

feature of the feedback inhibitory microcircuit.

Introduction
Efficiently discriminating similar percepts or experiences is a central capability common to inverte-

brate and vertebrate species. In general terms, such discrimination can be achieved by decreasing

the overlap in representations by neuronal ensembles between input and output patterns, a process

termed ‘pattern separation’ (Cayco-Gajic and Silver, 2019; Marr, 1971; McNaughton and Morris,

1987; Rolls, 2013). Numerous studies have proposed cellular and circuit mechanisms that support

this computation. For instance, sparse divergent inputs, specialized intrinsic properties and feedfor-

ward inhibition are thought to generally contribute (Cayco-Gajic et al., 2017; Cayco-Gajic and Sil-

ver, 2019; Krueppel et al., 2011; Mircheva et al., 2019). Another common feature of most of

these models and experimental studies is a critical role of feedback inhibition (Cayco-Gajic et al.,

2017; Rolls, 2013). Feedback circuits differ from the above mechanisms in that they can i) imple-

ment direct competition between active cells through lateral inhibition and ii) integrate information

about the actual global activity level in a population allowing efficient normalization (Braganza and

Beck, 2018; Wick et al., 2010; Wiechert et al., 2010). Indeed, in the insect olfactory system a criti-

cal role of such a circuit has been causally demonstrated (Lin et al., 2014; Papadopoulou et al.,

2011).

In mammals, substantial evidence points toward a role of the hippocampal dentate gyrus (DG) for

pattern separation during memory formation and spatial discrimination (Bakker et al., 2008;

Berron et al., 2016; Gilbert et al., 2001; Leal and Yassa, 2018; Leutgeb et al., 2007;

McHugh et al., 2007; Neunuebel and Knierim, 2014; Stefanelli et al., 2016; van Dijk and Fenton,

2018). The DG is thought to subserve this task by converting different types of inputs to sparse,
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non-overlapping activity patterns of granule cells (GCs). However, in contrast to the insect olfactory

system, the DG feedback circuit is extremely complex, comprising numerous interconnected inter-

neuron types (Supplementary Table 1) (Bartos et al., 2002; Dasgupta and Sikdar, 2015;

Espinoza et al., 2018; Ewell and Jones, 2010; Freund and Buzsáki, 1996; Geiger et al., 1997;

Harney and Jones, 2002; Hefft and Jonas, 2005; Kraushaar and Jonas, 2000; Larimer and Strow-

bridge, 2008; Lee et al., 2016; Liu et al., 2014; Lysetskiy et al., 2005; Sambandan et al., 2010;

Savanthrapadian et al., 2014; Sik et al., 1997; Yu et al., 2015; Yuan et al., 2017; Zhang et al.,

2009). For instance, interneurons subserving feedback inhibition are also incorporated into circuits

mediating feedforward inhibition (Ewell and Jones, 2010; Hsu et al., 2016; Lee et al., 2016) and

disinhibition (Savanthrapadian et al., 2014; Yuan et al., 2017). This makes it difficult to predict the

net inhibition arising from GC activity.

We reasoned that to assess if feedback inhibition is indeed suitable for the purpose of pattern

separation in the DG, it is necessary to determine how efficiently the activity of sparse GC ensembles

recruits net inhibition, that is the dynamic range and gain of the feedback inhibitory microcircuit. It is

furthermore necessary to quantify the spatial and temporal properties of the elicited inhibition, in

order to investigate its impact on biologically plausible, temporally structured input. For instance,

the DG shows prominent theta oscillations during exploration and distinctive slow-gamma activity

during associative memory encoding (Hsiao et al., 2016; Lasztóczi and Klausberger, 2017; Pernı́a-

Andrade and Jonas, 2014; Sasaki et al., 2018; Trimper et al., 2017). Importantly, both sparsity

and temporal oscillations will critically affect a proposed pattern separation function. For instance,

feedback inhibition must by definition occur with a delay, a property frequently abstracted away in

computational models (Myers and Scharfman, 2009; Rolls, 2016), but potentially critical during

oscillatory activity.

Here, we combine patch-clamp recordings, multiphoton imaging and optogenetics to provide a

first quantitative, empirical description of the net input-output function of a feedback inhibitory

eLife digest You can probably recall where you left your car this morning without too much

trouble. But assuming you use the same busy parking lot every day, can you remember which space

you parked in yesterday? Or the day before that? Most people find this difficult not because they

cannot remember what happened two or three days ago, but because it requires distinguishing

between very similar memories. The car, the parking lot, and the time of day were the same on each

occasion. So how do you remember where you parked this morning?

This ability to distinguish between memories of similar events depends on a brain region called

the hippocampus. A subregion of the hippocampus called the dentate gyrus generates different

patterns of activity in response to events that are similar but distinct. This process is called pattern

separation, and it helps ensure that you do not look for your car in yesterday’s parking space.

Pattern separation in the dentate gyrus is thought to involve a form of negative feedback called

feedback inhibition, a phenomenon where the output of a process acts to limit or stop the same

process. To test this idea, Braganza et al. studied feedback inhibition in the dentate gyrus of mice,

before building a computer model simulating the inhibition process and supplying the model with

two types of realistic input. The first consisted of low-frequency theta brainwaves, which occur, for

instance, in the dentate gyrus when animals explore their environment. The second consisted of

higher frequency gamma brainwaves, which occur, for example, when animals experience something

new.

Testing the model showed that feedback inhibition contributes to pattern separation with both

theta and gamma inputs. However, pattern separation is stronger with gamma input. This suggests

that high frequency brainwaves in the hippocampus could help animals distinguish new events from

old ones by promoting pattern separation.

Various brain disorders, including Alzheimer’s disease, schizophrenia and epilepsy, involve

changes in the dentate gyrus and altered brain rhythms. The current findings could help reveal how

these changes contribute to memory impairments and to a reduced ability to distinguish similar

experiences.
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microcircuit. This includes the spatiotemporal organization of net feedback inhibition elicited by a

spatially restricted GC population and the net short-term dynamics within the feedback microcircuit.

Finally, we integrate our data into a biophysically realistic computational model and probe its ability

to perform pattern separation. We find a moderate feedback inhibition mediated pattern separation

effect during theta modulated input but a substantial separation, particularly of highly similar inputs,

during gamma oscillations.

Results

Input-output relation of the feedback inhibitory microcircuit
We reasoned that the ultimately relevant parameter for the putative pattern separation effect of

feedback inhibition is the net inhibition arriving at GCs. We therefore treated the feedback microcir-

cuit as a black-box striving to relate only its net input (fraction of GCs active) to its net output (feed-

back inhibition in GCs). To this end, we antidromically recruited feedback inhibitory circuits, while

simultaneously recording GC inhibition and population activity (see schematic in Figure 1A). Electri-

cal stimulation reliably evoked graded IPSCs in dentate GCs, that increased with stimulation strength

(maximal amplitude of 324.1 ± 99.2 pA, n = 8; Figure 1B). Feedback IPSCs were completely blocked

by 10 mM GABAzine (to 1.5 ± 0.9%, n = 7 cells, P(df = 6, t = 117.4)<0.001, one-sided t-test), as

expected (Figure 1C). To ascertain that IPSCs were mediated by synaptically activated interneurons

rather than interneurons directly recruited by electrical stimulation, we only included slices where

inhibition was successfully blocked by glutamatergic antagonists (25 mM CNQX and 50 mM D-APV, 8

of 21 experiments, Figure 1C). We also tested if inhibition of glutamate release from mossy fibers,

which can be specifically achieved via mGluR2/3 activation by DCG-IV (Doherty and Dingledine,

1998; Toth et al., 2000), reduces feedback IPSCs. Indeed, we found that IPSCs were reduced to

16.3 ± 6.1% by 0.5 mM DCG-IV (n = 4 cells, P(df = 3, t = 13.73)<0.001, one-sided t-test, Figure 1C).

In order to relate the measured IPSCs to the fraction of GCs activated by a given stimulation

strength, we used population Ca2+ imaging with multibeam two-photon microscopy (Figure 1A, see

Materials and methods). After bolus-loading GCs with the Ca2+ indicator OGB-1-AM (see

Materials and methods), antidromic stimulation caused action potential associated Ca2+ elevations in

a subset of GCs (Figure 1D, transients indicated by *). Before quantifying population activity, we

verified the reliable detection of single action potentials under our conditions using simultaneous

cell-attached recordings from dentate GCs (Figure 1E; Figure 1—figure supplement 1). Briefly,

cells were differentiated into true responders or non-responders on the basis of cell-attached record-

ings (Figure 1E,F; responders green, non-responders grey). A histogram of the peak DF/F of non-

responders upon a single stimulus was fitted with a Gaussian (Figure 1F right, grey dots, grey bars,

n = 33) and the threshold set to the quadruple standard deviation of this fit (0.94% DF/F, dashed

line in Figure 1F). We estimated that this threshold would yield approximately equal numbers of

false positives and false negatives (Figure 1—figure supplement 1F). We additionally controlled for

possible errors through variable dye loading and the overestimation of the active cell-fraction

through accidental detection of adjacent active cells (Figure 1—figure supplement 1G,H,

respectively).

Orientation of hippocampal slices may be a critical feature in determining the extent of feedback

connectivity. We therefore systematically assessed the magnitude of feedback activation of GCs

using imaging in slices obtained from different dorso-ventral levels of the hippocampus (see inset of

Figure 1G). We found a clear connectivity maximum within horizontal slices obtained at a distance

of ~1750 mm from the temporal pole (Figure 1G,H; Bischofberger et al., 2006). In these and all fol-

lowing experiments we therefore used exclusively slices obtained at 1400–2100 mm from the tempo-

ral pole, where the orientation of hippocampal slices matches the orientation of mossy fibers.

Combining the IPSC recordings with population Ca2+ imaging allowed us to probe the input-out-

put relationship of the feedback inhibitory microcircuit. Inhibition was recorded in a GC within or

immediately adjacent to the imaging field, and stimulation strength was increased gradually

(Figure 1I). The IPSC saturated at 300mA stimulation strength, where the mean active cell fraction

was 2.2 ± 0.7% and the mean IPSC reached 93.1 ± 3.4% of the maximal IPSC (Figure 1I,J, n = 20 for

imaging, n = 8 for IPSCs including six slices with both). Plotting the IPSC magnitude vs. the cell
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Figure 1. Recruitment of feedback inhibition assessed using population Ca2+ imaging. Combined population Ca2+ imaging and IPSC recordings of

GCs during antidromic electrical stimulation. (A) Schematic illustration of the experimental setup. Dashed lines represent cuts to sever CA3

backprojections. (B) Top: reconstruction of the dendritic tree of a representative GC. Bottom: Feedback IPSC at increasing stimulation strength during

stratum lucidum stimulation. (C) IPSCs were completely blocked by GABAzine and CNQX + D-APV and largely by DCG-IV. (D) Left: overlay of

exemplary OGB1-AM-loaded GC population (green) with a DF/F map (white). right: traces of DF/F over time of a subpopulation of cells depicted on the

Figure 1 continued on next page
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fraction showed that the magnitude of feedback inhibition rises steeply, reaching ~90% with less

than 3% of GCs active and complete saturation at 3.7 ± 1.7% of cells (Figure 1K).

Optogenetic quantification of the recruitment of feedback inhibition
These experiments yielded a first quantitative estimate of the input-output relation of the feedback-

inhibitory microcircuit in the DG. We then decided to verify these findings using an alternative

method, which allowed spatially controlled and less synchronous GC activation. Mice selectively

expressing ChR2(H134R)-eYFP in GCs were created by crossing Prox1-Cre mice with Ai32-mice

(Figure 2A, see Materials and methods). Focal optogenetic stimulation was achieved through a laser

coupled into the microscope light path, yielding an 8 mm stimulation spot (Figure 2B). Brief (20 ms,

473 nm) light pulses within the molecular layer approximately 40 mm from the dentate GC layer eli-

cited reliable IPSCs in GCs (Figure 2C). Increasing the light intensity evoked larger IPSCs that

showed clear saturation (Figure 2C,D, Power = 7 AU corresponding to 1.7 mW, see

Materials and methods). Inhibition was completely blocked by combined application of 40 mM

CNQX and 50 mM D-APV (Figure 2E, n = 9), confirming that it is recruited via glutamatergic collater-

als. The maximal IPSC amplitude obtained optically vs. electrically in experiments in which both stim-

ulations were performed were similar (Figure 2F, paired t-test, P(df = 3, t = 1.568)=0.2148, n = 4),

indicating that similar maximal inhibition is recruited despite the differences in the activated GC

population (distributed vs local; synchronous vs. less synchronous).

In order to relate feedback inhibition to the underlying GC activity levels, we performed system-

atic cell attached recordings of GCs in the same slices in which inhibition was recorded (~2 cells per

slice, Figure 2—figure supplement 1). Briefly, we recorded the spatial firing probability distribution

in response to focal stimulation for each laser power. We then estimated the mean firing probability

of GCs throughout the section, which is equivalent to the expected active GC fraction, by incorpo-

rating measurements of the light intensity distribution throughout the slice (Figure 2G, black). We

additionally estimated an upper and lower bound by assuming either no decay of firing probability

with slice depth or isometric decay (Figure 2G, grey dashed lines). Combining the input-output rela-

tions of IPSCs (Figure 2D) and the estimated active cell fraction (Figure 2G) again revealed that inhi-

bition is recruited steeply, saturating when approximately 4% of GC are active (Figure 2H).

Importantly, the resulting recruitment function of inhibition is unlikely to be affected by voltage

escape errors (Figure 2—figure supplement 2). This is because such errors scale linearly with synap-

tic conductance and will thus affect the absolute but not the relative amplitude of the somatically

measured IPSC. Next, we compared the focal light activation with global activation via a light fiber

positioned over the surface of the slice (with powers up to 50 mW, Figure 2I). Under global stimula-

tion all cells tested fired APs with 100% reliability and independent of location, even though focal

stimulation in direct proximity to the cell led to much lower maximal firing probabilities (Figure 2I,

middle, 100.0 ± 0.0 versus 31.2 ± 7.1% respectively, paired t-test, P(df = 7, t = 9.74)<0.001, n = 8).

At the same time, the maximal IPSC amplitude did not increase further upon global stimulation

(Figure 2I, right, 356.9 ± 76.2 versus 344.3 ± 77.5 pA, paired t-test, P(df = 9, t = 1.112)=0.29,

n = 10). This implies that additional activation of remote GCs cannot recruit interneurons beyond

those activated by local GC populations. Thus, the recruitment of feedback inhibition in the DG is

steep, with a dynamic range tuned to sparse populations of GCs (up to 3–4% of cells).

Figure 1 continued

left. (E) Simultaneous cell attached recording and calcium imaging to measure the action potential induced somatic calcium transient amplitude. (F)

Scatterplot and histogram of the calcium fluorescence peaks of cells which either did (green) or did not (grey) fire action potentials, as assessed by cell

attached recordings. (G) Illustration of the anatomical localization of maximum connectivity plane slices. Short black dashed lines indicate depth at

which the slice plane is aligned to the dorsal brain surface. (H) Antidromic stimulation elicited Ca2+ transients primarily at this depth (black bars). (I)

Normalized IPSC amplitude and activated cell fraction both increase with increasing stimulation strength (example from a single slice). (J) Summary of

all slices (K) Summary data plotted to show the increase of inhibition as a function of the active GC fraction.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Detection of single action potential induced calcium transients.
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Figure 2. Recruitment of feedback inhibition assessed optogenetically. (A) EYFP fluorescence in dentate GCs of Prox1/ChR2(H134R)-EYFP transgenic

mice. The field of view for rapid focal optogenetic stimulation is indicated by a blue square. A typical stimulation site approx. 40 mm from the GC layer

(two short black lines) is indicated by a blue dot. (B) Schematic of the microscope setup used to achieve spatially controlled illumination. The inset

shows the intensity profile of the laser spot. (C) Top left, reconstruction of an Alexa594 filled GC. Left, illustration of optical stimulation. Right, IPSCs

following 20 ms light pulses at increasing laser power (p=1 to 7 AU). Each trace represents an average of three trials. (D) Summary of IPSC amplitudes

from cells in the superior blade (n = 7 cells). IPSC amplitudes were normalized to the maximum amplitude within each cell. (E) Optogenetically elicited

IPSCs are abolished by glutamatergic blockers (40 mM CNQX + 50 mM D-APV, n = 9). (F) Left, Schematic of focal optical and electrical stimulation.

Dashed lines indicate cuts to sever CA3 backprojections. Middle, Example traces for IPSCs following electrical or focal optogenetic stimulation. Right,

maximal IPSC amplitude for the two stimulation paradigms (361 ± 37 vs. 410 ± 13 pA for electrical and optogenetic stimulation respectively, paired

t-test, p=0.28, n = 4) (G) The optogenetically activated GC fraction responsible for recruiting the IPSC at the respective laser powers was estimated

from systematic cell attached recordings (see Figure 2—figure supplement 1 for details). The best estimate (black) incorporates measurements of the

3D light intensity profile in the acute slice. Upper and lower bounds were estimated by assuming no firing probability decay with increasing slice depth

(upper grey dashed line) or isometric firing probability decay (lower grey dashed line. (H) Data from (D) and (H, best estimate) plotted to show the

recruitment of feedback inhibition. (I) Comparison of focal optogenetic stimulation to global (light fiber mediated) optogenetic stimulation. Left,

Schematic illustration. Middle, Comparison of the AP probability of individual GCs at maximal stimulation power for focal and global stimulation

assessed by cell attached recordings. Right, Comparison of the maximal IPSC amplitude under focal and global stimulation for individual GCs.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Optogenetically activated cell fraction.

Figure supplement 2. Error in somatic IPSC measurements with increasing inhibitory conductance.

Figure supplement 3. Absence of single GC induced feedback inhibition.
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Lower limit of feedback recruitment
Previous work has addressed the lower limit of the recruitment of feedback inhibition in various corti-

cal areas (Jouhanneau et al., 2018; Kapfer et al., 2007; Miles, 1990; Silberberg and Markram,

2007). The authors report the ability of even a single principal cell to activate feedback inhibitory

interneurons and a supralinear increase of inhibition as the second and third principal cells are co-

activated (Kapfer et al., 2007). Given our findings so far we asked whether single GCs might also

suffice to elicit feedback inhibition in the DG. To this end, we performed dual patch clamp record-

ings and elicited short trains of 10 action potentials at 100 Hz in one cell while monitoring inhibition

in the other (Figure 2—figure supplement 3, n = 15). However, in contrast to the neocortex

(Kapfer et al., 2007; Silberberg and Markram, 2007) and area CA3 (Miles, 1990), we did not find

single GC-induced feedback inhibition in any of these experiments, consistent with a recent large

scale study reporting that such connections are extremely sparse (0.124%) (Espinoza et al., 2018).

Spatial distribution of feedback inhibition
Recent evidence indicates that inhibition by individual PV+ fast spiking hilar border interneurons is

non-uniformly distributed over space, with decreasing connectivity and inhibition at greater distan-

ces from the interneuron (Espinoza et al., 2018; Strüber et al., 2015). To test whether feedback

inhibition by the entire ensemble of feedback inhibitory interneurons also displays a spatial gradient,

we activated cell populations at 100 mm intervals along the GC layer while recording inhibition in

individual GCs (Figure 3A). Spatial profiles were recorded for increasing laser powers in cells in the

superior as well as inferior blade of the DG (Figure 3B,C respectively; n = 8 cells for each blade).

IPSC amplitudes across locations and powers were normalized to the maximal IPSC amplitude in

each respective cell. This maximal amplitude did not differ between cells in different blades

(366 ± 40 vs 390 ± 84 pA for superior and inferior blades, respectively; t-test, P(df = 14, t = 0.258)

=0.0686). Next, we investigated the spatial organization of feedback inhibition at stimulation powers

at which inhibition had saturated (Figure 3D,E). In all GCs tested, the inhibition was greatest when

stimulating in the direct vicinity of the recorded cell. Activating cells at increasing distances led to

monotonically decreasing IPSC amplitudes for both blades. Importantly, the term distance here

refers to the functional distance along the GC layer and not to Euclidean distance. However, inhibi-

tion was observed even at the most remote stimulation sites, indicating that even the most remote

cells from the contralateral blade can contribute to the activation of feedback inhibition in a given

GC. In order to statistically compare the relation of local versus remote inhibition between blades,

we defined a remote location in the contralateral blade at 800 mm from the recorded cell (measured

along the GC layer and equidistant in all slices; Figure 3D,E; grey lines) and compared it to the local

IPSC (black lines). Remote inhibition was significantly smaller than local inhibition while no difference

between blades or significant interaction was observed (Figure 3F; two-way RM ANOVA; Distance:

F(1,14)=3.341, p<0.001; Blade: F(1,14)=2.615, p=0.128; Interaction: F(1,14)=3.341, p=0.089). Postt-

ests suggested inhibition of inferior GCs by superior activation might be greater than vice versa.

However, the difference was not significant (Sidak’s multiple comparison corrected posttest, P

(df = 28)=0.932, P(df = 28)=0.051 for local and remote, respectively).

Next, we investigated whether there are differences in the steepness of recruitment of local ver-

sus remote inhibition between blades (black and grey, respectively; Figure 3G,H). To this end, we

calculated the active cell fraction which produces half-maximal inhibition during local or remote stim-

ulation for each individual slice. Comparison of the recruitment between the four groups revealed

no differences between blades (Figure 3I, two-way RM ANOVA; Distance: F(1,14)=7.889, p=0.014;

Blade: F(1,14)=0.5506, p=0.470; Interaction: F(1,14)=0.0976, p=0.759). However, local inhibition was

significantly more steeply recruited than remote inhibition (1.99 ± 0.22% vs. 3.17 ± 0.57% active cells

for half-maximal inhibition).

Next, we tested if IPSCs elicited by increasing active GC populations differed between local and

remote activation with respect to their kinetic properties. Since all previous data showed no indica-

tion of blade specific differences the analysis of the kinetics of feedback IPSCs were performed on

the pooled data for both blades. Interestingly, local and remote inhibition differed in all tested

respects (Figure 3J–M, two-way RM ANOVAs with dfDistance = 1,183, dfcell fraction = 6,183 and dfinter-

action = 6,183). Local IPSCs occurred with shorter latency and lower jitter than remote IPSCs

(Figure 3J,K; Latency: p<0.001, <0.001 and =0.031 for distance, cell fraction and interaction,
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Figure 3. Spatial organization of feedback inhibition. Feedback IPSCs recorded from an individual GC while GCs at varying distances were activated.

(A) Schematic illustration of the stimulation paradigm and example IPSC traces of an individual trial (p=3). (B, C) Distribution of normalized IPSC

amplitudes as a function of laser power and distance from stimulation spot for superior and inferior blade GCs (n = 8 for each blade). The relative

location of the DG apex ± standard deviation is indicated by the black bar and grey area respectively. (D, E) IPSC distribution over space at saturation

(p�5). Black and grey bars indicate a local and a remote location at 800 mm from the recorded cell respectively. (F) Comparison of the amplitude of the

Figure 3 continued on next page
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respectively; Jitter: p<0.001, =0.037 and =0.707 for distance, cell fraction and interaction, respec-

tively). Furthermore, both latency and jitter decreased as larger populations were activated. IPSCs

were also significantly slower in remote versus local inhibition. IPSC rise time was slightly shorter in

the larger local IPSCs but did not correlate with the active cell fraction (Figure 3L: p=0.010, =0.633

and =0.388 for distance, cell fraction and interaction, respectively). Similarly, decay times were signif-

icantly shorter in local versus remote inhibition while they progressively increased with increasing

stimulation power (Figure 3M; p<0.001, <0.001 and =0.124 for distance, cell fraction and interac-

tion, respectively). These data demonstrate that remote inhibition shows greater delay, greater jitter

and slower kinetics than local inhibition.

Short-term dynamics in the feedback inhibitory microcircuit
Different connections within the feedback inhibitory microcircuit have been shown to variably facili-

tate or depress during trains of activity (Savanthrapadian et al., 2014) (Tabular overview provided

in supplementary file 1). This makes it difficult to predict the net effect on the short-term dynamics

of GC feedback inhibition. We therefore characterized the frequency-dependence of net feedback

inhibition using antidromic electrical stimulation as described above (Figure 4A–C). In marked con-

trast to the CA1 region of the hippocampus (Pothmann et al., 2014), feedback IPSCs showed

strong frequency-dependent facilitation (Figure 4C, n = 10 cells, one-way RM ANOVA; Frequency: F

(2.69, 29.54)=13.99, p<0.001; Wilcoxon signed rank tests for deviation from unity at each frequency

with Bonferroni corrected p-values; p>0.99, p=0.004, p=0.002 and p=0.002 for 1, 10, 30 and 50 Hz,

respectively). Furthermore, the facilitation indices significantly increased with increasing stimulation

frequency (1 Hz: 0.99 ± 0.07; 10 Hz: 1.41 ± 0.11; 30 Hz: 1.83 ± 0.16; 50 Hz: 2.09 ± 0.19; posttest for

linear trend: p<0.0001, R2=0.436). We found no evidence for a spatial gradient of net feedback

inhibitory short-term dynamics (Figure 4—figure supplement 1).

Because this unusual degree of facilitation may be important in allowing sparse activity of GCs to

recruit significant inhibition over time, we further examined the underlying circuit mechanisms. Inter-

estingly, dentate interneuron inputs to GCs appear to be generally depressing (Supplementary file

1, blue rows), rendering our finding of pronounced facilitation at the circuit level even more striking.

We reasoned that a facilitating excitatory synapse driving feedback interneurons could underlie cir-

cuit level facilitation. We therefore measured feedback excitation of hilar neurons by stimulating

mossy fiber axons as described above (Figure 4D–L). Mossy cells and interneurons were classified

according to their morpho-functional properties (Larimer and Strowbridge, 2008) (Figure 4D,E,G,

H,J,K). Cell classification was confirmed using unbiased k-means clustering (Figure 4K). We found

that feedback excitation of hilar cells displayed marked facilitation, which was similar for both INs

and MCs (Figure 4F,I,L; n = 9, 12 respectively, two-way RM-ANOVA, Frequency: F(3,57)=6.642,

p<0.001; Cell type: F(1,19)=0.0075, p=0.932; Interaction: F(3,57)=0.743, p=0.531). Facilitation indi-

ces of hilar cells significantly deviated from one for all frequencies tested (Figure 4E,F; n = 23 cells;

Wilcoxon signed rank tests with Bonferroni corrected p-values; p<0.001 for all frequencies). These

data demonstrate a pronounced frequency-dependent net facilitation of the feedback inhibitory

microcircuit, which is supported by strongly facilitating mossy fiber inputs to hilar cells.

Quantitative properties of the feedback circuit predict frequency-
dependent pattern separation
Together, these data indicate that the dentate feedback circuit is able to deliver strong, spatially

graded inhibition with a high gain and the ability for temporal integration. To probe how these

quantitative properties of the feedback circuit affect the pattern separation capability of the DG, we

incorporated them into a biophysically realistic model of the lamellar microcircuit (Figure 5) based

Figure 3 continued

locally and remotely activated IPSCs at saturation (two-way RM ANOVA, overall test significance indicated by §). (G, H) Comparison of the recruitment

curves during local (black) or remote (grey) stimulation for superior and inferior blade respectively. (I) Comparison of the cell fraction required for

halfmaximal IPSC activation between stimulation sites and blades (two-way RM ANOVA overall test significance indicated by §). (J–M) Temporal

properties of IPSCs between local (black) and remote (grey) stimulation. To test for systematic variations of kinetic parameters with increasing active cell

fractions as well as stimulation site two-way RM ANOVAs with no post tests were performed. Overall significance indicated by §. (K) Latency from

beginning of light pulse to IPSC (L) temporal jitter of IPSCs (SD of latency within cells) (M) 20% to 80% rise time (N) IPSC decay time constant.
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Figure 4. Short-term dynamics in the feedback inhibitory microcircuit. Trains of ten antidromic electrical stimulations at 1, 10, 30 or 50 Hz were applied

to elicit disynaptic feedback inhibition or excitation of hilar cells (electrical stimulation artifacts were removed in all traces). (A, D, G) Schematic

illustration of the experimental setup and example traces of voltage responses to positive and negative current injections of GC and hilar cells (dashed

lines indicate cuts to sever CA3 backprojections). (B) Exemplary GC feedback IPSCs before (black) and after (grey) glutamatergic block (n = 7). (C)

Figure 4 continued on next page
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on Santhakumar et al. (2005); Yim et al. (2015), making use of their carefully experimentally con-

strained DG cell-types (Figure 5A; Figure 5—figure supplement 1A). To maximize our models

inferential value we clearly separated a tuning phase, in which we constrained the model by our

experimental data, and an experimental phase, in which pattern separation was tested without fur-

ther changes to the model. In the tuning phase, we first scaled up the model four-fold to contain

400 perforant path afferents (PPs), 2000 GCs, 24 basket cells (BCs), 24 hilar perforant path associ-

ated cells (HC) and 60 MCs (Figure 5A,B). BCs, HCs and MCs comprise the feedback inhibitory cir-

cuit and BCs receive direct PP input thereby additionally mediating feedforward inhibition

(Ewell and Jones, 2010). We then adapted the spatial extent of the target pools of BC and HC out-

puts to produce local and global inhibition, respectively, reproducing the experimentally determined

spatial tuning of net feedback inhibition (Figure 5C). We further adjusted synaptic decay time con-

stants and weights in order to reproduce the measured PSCs of hilar neurons and GCs and the

empirical recruitment curves (Figure 5D, Figure 5—figure supplement 1). Finally, we incorporated

Figure 4 continued

Facilitation indices (mean of the last three IPSCs normalized to the first; n = 10 cells). (D-L) Hilar cells were manually classified into putative interneurons

(blue) or mossy cells (green) based on their morpho-functional properties. (E) Reconstruction of biocytin filled hilar interneuron (axon in red). (F)

Interneuron EPSCs in response to stimulation trains. (H) Reconstruction of biocytin filled mossy cell (axon in red). (I) Mossy cell EPSCs in response to

stimulation trains. (J) Quantification of intrinsic properties of hilar cells (see Materials and methods). (K) k-means clustering based on intrinsic properties

of hilar cells (coloring according to manual classification). (L) Facilitation indices of classified hilar cells. (§ indicates significance in one-way RM ANOVA,

* show significance in Bonferroni corrected Wilcoxon signed rank tests for deviation from 1).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Frequency dependence of feedback inhibition over space.
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Figure 5. Computational model of the DG feedback circuit. A biophysically realistic model of DG was tuned to capture the key quantitative features of

the feedback circuit. All analyses were performed as for the real data (including IPSC normalization to maximal IPSC over space and power within each

respective cell) (A) Schematic of the model circuit. GC: granule cell, BC: basket cell, HC: hilar perforant path associated cell, MC; mossy cell. (B) Intrinsic

responses of model cell types to positive and negative current injections. (C) Spatially graded net feedback inhibition following simulated focal GC

activation. (D) Local and remote recruitment curves of the feedback inhibitory circuit (left) and the resulting saturated IPSC amplitudes and GC fractions

recruiting halfmaximal inhibition (right). (E) Facilitation indices resulting from simulated, 10 pulse, frequency stimulation of GCs as above.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Model tuning and validation.
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facilitation of the experimentally determined magnitude into feedback excitatory mossy-fiber out-

puts, leading to GC IPSC facilitation in the experimentally observed range (Figure 5E, Figure 5—fig-

ure supplement 1B). Together, these minimal adaptations resulted in a model with remarkably

similar properties to our experimental findings (Figure 5C–E). We therefore concluded the tuning

phase of the model and proceeded to an in silico pattern separation experiment without further

changes to the model.

To investigate the implications for pattern separation, we probed the ability of this model to sep-

arate PP input patterns with behaviorally relevant temporal structure and varying degrees of overlap

(Myers and Scharfman, 2009; Yim et al., 2015). Specifically, we created input trains with constant

mean rate, but with either theta (10 Hz) or slow-gamma (30 Hz) modulation (Figure 5—figure sup-

plement 1C), which are prominent during exploration and novelty exposure, respectively

(Sasaki et al., 2018; Trimper et al., 2017). To model rapid pattern separation in a behaviorally rele-

vant timescale we chose an input duration of approximately five theta cycles (600 ms, corresponding

to the approximate duration of place cell spiking during traversal of its place field). To obtain a

range of input similarities, we generated input patterns in which 24 of 400 PP afferents were acti-

vated (Figure 6A) and compared pairs of such patterns ranging from no overlap (two separate sets

of afferents) to complete overlap (identical trains in the same 24 afferents in both patterns). Each

model network was run with 25 input patterns leading to a total of 325 comparisons (data points in

Figure 6C). To quantify pattern separation we compared input correlation (Rin) to output correlation

(Rout; Figure 6B) both measured as Pearson’s R between the population rate vectors over the full

600 ms time window (Leutgeb et al., 2007; Wiechert et al., 2010).

Our full, tuned model reliably decreased the population vector correlations for similar patterns

(0 < Rin < 1) thereby demonstrating robust pattern separation over the whole range of input similari-

ties (Rout <Rin; Figure 6C, left). Next, we isolated the contribution of feedback inhibition to pattern

separation by rerunning the same input pattern combinations on the network in which mossy fiber

outputs to interneurons were removed (Figure 6C, middle). As expected this manipulation

decreased interneuron activity and GC sparsity (Figure 6—figure supplement 1C,D) leading to

impaired pattern separation (Figure 6D, noFB). Note that removing mossy fiber outputs also elimi-

nates BC activity through cooperative activation of summating feedforward and feedback inputs

(Ewell and Jones, 2010). Removal of all inhibitory outputs led to a further decrease in pattern sepa-

ration, demonstrating the effect of additionally removing feedforward inhibition (Figure 6C, right).

As expected, each of these manipulations increased both the fraction of active GCs and the activity

per GC (Figure 6—figure supplement 1C,D). In order to quantify the respective pattern separation

effects over the full range of input similarity, we computed the bin wise mean Rout (Figure 6C, Rin

bin-width: 0.1, dashed line) and measured the area to the identity line (Figure 6C, black lines). The

resulting mean DRout was calculated for seven separate random networks, each challenged with

theta as well as slow-gamma modulated inputs in each of the three conditions. Both the frequency

of the input modulation as well as network manipulations significantly affected pattern separation

(Figure 6D; two-way RM ANOVA with both factors matching, condition: F(2,12)=145.1, p<0.001; fre-

quency: F(1,6)=31.48, p=0.001; interaction: F(2,12)=11.77, p=0.002; n = 7 random network seeds for

these and all subsequent analyses). Specifically, both feedback and feedforward inhibition signifi-

cantly contributed to pattern separation (Sidak’s multiple comparison posttest, P(df = 12, t = 11.33)

<0.001 and P(df = 12, t = 5.36)<0.001, respectively). These results are consistent with the standard

account, by which any source of inhibition supports pattern separation by decreasing GC activity

(Figure 6—figure supplement 1C,D). Notably, the effect of inhibition on GC sparseness was more

pronounced during gamma than theta modulated activity, translating to improved pattern separa-

tion in the sparser gamma regime (Figure 6D, Figure 6—figure supplement 1C,D). Remarkably,

this increased sparsity in the gamma domain was achieved despite the same excitatory drive from

perforant path (Figure 6—figure supplement 1A,B), and with less interneuron activity (Figure 6—

figure supplement 1C,D).

Next, we more closely investigated the isolated pattern separation effects of feedback and feed-

forward inhibition. To this end, we computed the difference in Rout between the respective condi-

tions for each individual comparison (i.e. data point in Figure 6C). For instance, the individual

comparison shown in Figure 6A, will lead to a single Rout value in the network with MF inputs to

interneurons (full model), which is subtracted from the corresponding Rout value in the same network

without this input (no FB). This procedure isolates the effect of interest (DRout) for each individual
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Figure 6. Frequency dependent pattern separation of temporally structured inputs. The quantitative DG model was challenged with theta (10 Hz) or

slow gamma (30 Hz) modulated input patterns with defined overlap to probe its pattern separation ability. (A) Pair of theta modulated perforant path

input patterns in which 50% of afferents overlap (grey area). (B) Resulting pair of GC output patterns of the full tuned network. Bottom: Representative

individual GC underlying the observed patterns. (C) Comparison of 325 input pattern pairs and their resulting output pattern pairs. Each pair is

Figure 6 continued on next page
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comparison, controlling for other sources of variability. A single pattern separation measure was

then obtained as before, as the area under the curve of bin-wise means of these DRout values

(Figure 6E, bottom). We found a significant effect of both inhibitory motif and frequency domain

(Figure 6E; two-way RM ANOVA with both factors matching, Motif: F(1,6)=15.58, p=0.008; Fre-

quency: F(1,6)=9.91, p=0.020; Interaction: F(1,6)=76.37, p<0.001). Posttests revealed that the fre-

quency dependence of pattern separation was driven by feedback inhibition (Sidak’s multiple

comparison posttest: FB: P(df = 6, t = 13.68)<0.001; FF: P(df = 6, t = 1.33)=0.412. Interestingly, this

frequency dependence of feedback inhibition mediated pattern separation was particularly pro-

nounced for highly similar input patterns (0.9 < Rin < 1; Figure 6E, right; Motif: F(1,6)=261.7,

p<0.001; Frequency: F(1,6)=108.1, p<0.001; Interaction: F(1,6)=109.5, p<0.001; Sidak’s multiple

comparison posttest: FB: P(df = 6, t = 15.78)<0.001; FF: P(df = 6, t = 0.98)=0.595). Indeed, feedback

inhibitory pattern separation for highly similar input at 30 Hz compared to 10 Hz was more than dou-

bled (from 0.04 ± 0.01 to 0.09 ± 0.01, mean ± SD, Cohen’s d = 4.1, Figure 6E, right). This again

demonstrates feedback inhibitory pattern separation effects beyond those explainable by decreases

in GC activity, since comparisons for highly similar inputs are computed on the exact same model

runs as comparisons for less similar inputs and thus by definition have the same GC activity levels

(also see Figure 6F,G, arrows).

It has recently been emphasized, that the assessment of pattern separation can depend critically

on the similarity measure used (Madar et al., 2019; Wick et al., 2010). Therefore, we tested the

robustness of this result for two alternative similarity measures, namely normalized dot product

(NDP, also known as cosine similarity) and pattern overlap (# of coactive/ # of totally active cells; Fig-

ure 6—figure supplement 2). The frequency dependence of feedback inhibition-mediated pattern

separation, especially for highly similar inputs, proved robust for all three similarity measures.

Effect of spatial tuning and facilitation of net feedback inhibition
Next, we investigated the specific effects of two interesting empirical findings of the present study,

1) the spatial tuning and 2) the facilitation of the feedback circuit (Figure 6—figure supplement 3).

To this end, we undertook two targeted, minimal manipulations of the full tuned network. To probe

the effect of spatially graded inhibition, we redistributed BC output synapses to a global target pool

(the whole GC population), leading to spatially uniform inhibition (global FB; Figure 6—figure sup-

plement 3B,E). To probe the effect of facilitation, we removed facilitation from mossy fiber outputs

(Figure 6—figure supplement 3C,E). We isolated the effects of these manipulations by pairwise

comparison to the corresponding full tuned networks as described above (Figure 6—figure

Figure 6 continued

characterized by its rate vector correlation for inputs (Rin) and outputs (Rout), where rates are measured over the full 600 ms time window. Dashed black

lines represent the bin-wise mean Rout (in Rin bins of 0.1). Left: full tuned model, middle: model without mossy fiber inputs to interneurons, right: model

without inhibitory synapses. (D) Full pattern separation effects (mean DRout) of all three conditions for both frequency domains quantified as the area

enclosed by the dashed and unity lines in (C). Black lines represent individual network seeds. Two-way RM ANOVA indicated significance of condition,

frequency and interaction, * indicate significance in Sidak’s posttests between individual conditions. (E) Isolated effects of feedback and feedforward

motifs obtained by pairwise subtraction of Rout between conditions for each individual comparison. The inset shows the resulting DRout for each Rin bin.

The area under the curve quantifies the mean DRout as in (D). Two-way RM ANOVA indicated significance of condition, frequency and interaction. ***

indicate p<0.001 in Sidak’s posttest. (F). 100 ms time-resolved pattern separation effects of the full model, isolated FB or FF inhibition for theta

modulated input (10 Hz). All analyses were performed as above but with rate vector correlations computed for 100 ms time windows. The bottom insets

show DRout as a function of input similarity for each time window. The bottom right insets show the evolution of the mean DRout over time. (G) Same as

(F) but for slow gamma (30 Hz) modulated inputs. Arrow indicate the region of selectively increased pattern separation. Data in D-G represent

mean ± SEM of n = 7 random network seeds.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Activity levels and pattern separation.

Figure supplement 2. Robustness over different Similarity Metrics.

Figure supplement 3. Isolated pattern separation effects of spatial tuning and MF facilitation.

Figure supplement 4. Robustness for shorter analysis time-window.

Figure supplement 5. Robustness over various IPSC decay time-constants and over the full gamma range.

Figure supplement 6. Robustness for increased feedforward inhibition.

Figure supplement 7. Robustness for increased perforant path (PP) drive.
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supplement 3F–I). The results showed a small but significant contribution of facilitation (~20% of the

isolated FB effect for both frequency paradigms), but not spatial tuning to pattern separation (Fig-

ure 6—figure supplement 3G, left; Wilcoxon signed rank test for deviation from 0, n = 7, Bonferroni

corrected p-values: p=0.031 and p=1 respectively for 10 Hz; p=0.031 and p=1 respectively for 30

Hz). We noted that while spatial tuning did not affect mean pattern separation, it appeared to

reduce its variability (CoV) for a given input similarity, although the effect was again small (Figure 6—

figure supplement 3G, right; Wilcoxon signed rank test for deviation from 0, n = 7, Bonferroni cor-

rected p-values: p=0.031 and p=0.750 for tuning and facilitation respectively at 10 Hz; p=0.438 and

p>0.999 respectively at 30 Hz).

Frequency-dependent pattern separation is robust over analysis scales
and input strengths
So far, all pattern separation analyses were conducted on the population rate vectors during a 600

ms time window. However, many neural computations are likely to occur on shorter timescales, such

as within individual theta (~100 ms) and gamma (~10–33 ms) cycles (Buzsáki, 2010; van Dijk and

Fenton, 2018). Indeed, the time window in which correlation is recorded can nontrivially affect the

resulting correlation, depending on the timing of spikes within it (Madar et al., 2019). We therefore

first computed the networks pattern separation ability within 100 ms time windows, revealing i) the

pattern separation ability within such short timescales and ii) the temporal evolution of pattern sepa-

ration throughout a 600 ms stimulus presentation (Figure 6F,G). We find that pattern separation

occurs even within a single theta cycle, including a contribution of feedback inhibition in both fre-

quency paradigms (mean DRout > 0 within the first 100 ms bin, Wilcoxon signed rank test with Bon-

ferroni corrected p-values: p=0.031,=0.031 for full and FB effect respectively in both paradigms).

While mean DRout did not differ between frequency paradigms within this first time window, it was

significantly elevated in the 30 Hz paradigm in all subsequent time windows (full model effect, two-

way RM ANOVA, p<0.001,<0.001 and=0.004 for time-bin, frequency and interaction respectively,

Sidak’s posttest p=0.234 for 1st bin and p<0.001 for all subsequent bins). Again, the selective

increase during slow-gamma modulated inputs was driven by feedback inhibition (isolated FB effect,

two-way RM ANOVA, p=0.007,<0.001 and=0.041 for time-bin, frequency and interaction respec-

tively, Sidak’s posttest p=0.708 for 1st bin and p<0.002 for all subsequent bins), including a contri-

bution from MF facilitation (Figure 6—figure supplement 3). As above, the effect was

predominantly driven by the separation of highly similar input patterns (isolated FB effect, Rin >0.5;

two-way RM ANOVA on last time-bin, p<0.001,=0.010 and<0.001 for Rin-bin, frequency and interac-

tion respectively, Sidak’s posttest on differences between frequency paradigms for each input simi-

larity: p=1 for Rin <0.6 and p=0.032 to p<0.001 for Rin = 0.6 to 0.9). These results were robust when

analysis time windows were decreased even further (to the duration of a slow gamma cycle, 33 ms,

Figure 6—figure supplement 4). This 33 ms resolved analysis additionally reveals that the pattern

separation effect, particularly of feedback inhibition, ramps up within a 100 ms window, becoming

effective only at the end of a theta cycle (Figure 6—figure supplement 4A).

Next, we asked if the frequency dependence of feedback inhibitory pattern separation was sensi-

tive to variations of the inhibitory decay time constants and if there might be an interaction between

these decay time constants and the frequency range at which pattern separation is most effective

(Figure 6—figure supplement 5). Remarkably, we found the differential effect between 10 and 30

Hz to be highly robust across a range of different decay time-constants (0.5x to 5x of the experimen-

tally matched decay, Figure 6—figure supplement 5A–C, Supplementary file 2). Furthermore, the

selective enhancement of feedback inhibitory pattern separation of highly similar inputs was robust

over the entire gamma range (up to 100 Hz, Figure 6—figure supplement 5D,E).

Next, we tested if our main results were robust to alterations in the relative strengths of feedfor-

ward vs. feedback inhibition. Since, our model is closely constrained with respect to the recruitment

and functional properties of the feedback circuit, we are confident about the resulting computational

inferences concerning this circuit. However, the model does not allow strong inferences about the

relative roles of feedback and feedforward inhibition, and it is thus necessary to probe if extremely

powerful feedforward inhibition might occlude the effects described here. We therefore selectively

enhanced the feedforward inhibitory circuit in our model by increasing the PP to BC circuit 2x (Fig-

ure 6—figure supplement 6). This robustly increased the feedforward inhibitory contribution to pat-

tern separation above that of feedback inhibition (Figure 6—figure supplement 6B). However, it
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did not affect the frequency dependence of the feedback inhibitory effect. Indeed, for highly similar

input patterns, the feedback inhibitory effect was so prominently enhanced during gamma input, as

to again dominate the feedforward inhibitory effect (Figure 6—figure supplement 6C).

Finally, we probed the robustness of our findings for various perforant path input strengths (Fig-

ure 6—figure supplement 7). We found that frequency-dependent pattern separation by the feed-

back circuit occurred over a large range of PP-input strengths and resulting mean sparsities of the

GC population (Figure 6—figure supplement 7B–D). These data additionally suggest that for highly

similar input patterns, the more efficient sparsification of the GC population at 30 Hz did not fully

account for the gains in pattern separation (Figure 6—figure supplement 7F). Specifically, selecting

a PP-input strength at 10 Hz that produced the same sparsity as during 30 Hz did not allow to reach

similar pattern separation (Figure 6—figure supplement 7F). This result suggests that the feedback

circuit mediates direct assembly competition, allowing pattern separation beyond a pure sparsifica-

tion effect.

Together these results suggest that frequency dependence is a key feature of the feedback inhib-

itory microcircuits and predict that feedback inhibition selectively boosts the separation of highly

similar input patterns during gamma oscillations.

Discussion
Across brain regions and species, inhibitory circuits contribute critically to regulating the sparsity

and overlap of neural representations (Cayco-Gajic and Silver, 2019; Lin et al., 2014;

Papadopoulou et al., 2011; Stefanelli et al., 2016). In most, if not all brain regions, feedback inhibi-

tion is viewed as important in these capabilities, by directly mediating competition between active

cell ensembles (de Almeida et al., 2009; Myers and Scharfman, 2009; Rolls, 2010). In the mamma-

lian DG, feedback inhibition is implemented by an intricate network of interneurons that is capable

of delivering spatiotemporally defined inhibition to the principal cell population. How net feedback

inhibition is functionally organized in mammals, and how it may contribute to pattern separation of

biologically relevant, temporally structured input patterns is, however, incompletely understood.

Quantitative physiological properties of DG feedback inhibition
We have therefore quantitatively described the recruitment of net feedback inhibition by defined

GC population sizes in space and time in the hippocampal DG, a structure in which sparse activity

and inhibition are thought to critically contribute to the function of pattern separation

(Gilbert et al., 2001; Hunsaker et al., 2008; Leal and Yassa, 2018; McHugh et al., 2007;

Stefanelli et al., 2016). The proposed role of the feedback inhibitory circuit depends critically on its

dynamic range, that is the relation between the number of active principal cells and the resulting

feedback inhibition. This property of the feedback circuit is determined by complex, mainly hilar cel-

lular connectivity patterns including the synaptic and intrinsic properties of all participating cells (see

e.g. Espinoza et al., 2018; Savanthrapadian et al., 2014), tabular overview in Supplementary file

1). While delving into detailed cell-cell connectivities is clearly important, such studies do not allow

the quantitative determination of the gain and dynamic range of net feedback inhibition

(Kapfer et al., 2007; Silberberg and Markram, 2007). Using two complementary experimental

approaches, we found that net feedback inhibition is steeply recruited by sparse populations of GCs

(<4%). This is in good agreement with the sparse range of GC activity reported in vivo

(Diamantaki et al., 2016; Hainmueller and Bartos, 2018; Pernı́a-Andrade and Jonas, 2014;

Pilz et al., 2016; Schmidt et al., 2012). In these studies, different time windows were used to define

active vs. non-active granule cell populations (one to tens of minutes for electrophysiological, imag-

ing or immediate-early gene studies). The relevant window for assembly competition, however, is

much shorter. If we assume random Poisson firing, the electrophysiologically determined rates by

Pernı́a-Andrade and Jonas (2014) and Diamantaki et al. (2016), suggest active GCs fractions

of <2% for realistic assembly competition time windows of <100 ms. Accordingly, the gain and sensi-

tivity of the circuit are well suited to strongly modulate feedback inhibition within the range of GC

activity reported in vivo.
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Frequency-dependent effects of feedback inhibition on pattern
separation
In addition to steep recruitment, we have described the temporal and spatial distribution of net inhi-

bition delivered by feedback circuits in the DG. How do these properties influence the pattern sepa-

ration capability of the dentate gyrus? To address this question, we adapted an established

biophysically realistic computational model of the DG circuitry (Santhakumar et al., 2005;

Yim et al., 2015). We first carefully constrained the model to match the spatial and temporal proper-

ties of net feedback inhibition as assessed in our physiological data. We then fixed all model param-

eters, and proceeded to probe the ability of this circuit to perform pattern separation on temporally

complex oscillatory inputs. The major, highly robust, result of this computational study was that the

impact of feedback inhibition on pattern separation is frequency-dependent. Specifically, we find

that the separation of input patterns during gamma oscillations > 30 Hz is powerfully and selectively

enhanced by the feedback circuit. Remarkably, this mechanism involved decreased interneuron activ-

ity and was particularly efficient for very similar input patterns. Such an effect has not been discov-

ered in earlier modeling studies, because most models have discretized time, calculating the pre-

inhibition population activity, the resulting inhibition, and the inhibition-corrected population activity

in a single time step, sometimes assuming an average corrected population rate within this time

step (Myers and Scharfman, 2009; Rolls and Treves, 1998; Trappenberg, 2010). Thus, they do

not capture temporal features of feedback circuits. On the other hand, a number of spike based,

temporally resolved models have considered only temporally unstructured (Poisson) inputs

(Chavlis et al., 2017; Hendrickson et al., 2015; Hummos et al., 2014; Yim et al., 2015). We sug-

gest that the precise spatiotemporal organization of the feedback circuit, together with the temporal

structure of DG inputs is a crucial determinant of pattern separation. Indeed, the DG and its inputs

have a strong, behaviorally relevant, temporal structure (Lasztóczi and Klausberger, 2017;

Mizuseki et al., 2009; Pernı́a-Andrade and Jonas, 2014; Skaggs et al., 1996). Novelty experience

can induce increased gamma and beta range activity (Berke et al., 2008; Rangel et al., 2015;

Trimper et al., 2017), and explorative activity with rearing is also associated with increased gamma

oscillations (Barth et al., 2018). A previous model has addressed how fast, rhythmic gamma-fre-

quency feedback inhibition may implement a type of ‘k-winners-take-all’ operation, a basic computa-

tional component of pattern separation models (de Almeida et al., 2009), although this model

relies on faster synaptic timescales than we observed in our compound IPSCs. Perhaps most interest-

ingly, the occurrence of oscillations in the slow-gamma range has recently been reported to be caus-

ally related to associative memory formation (Sasaki et al., 2018; Trimper et al., 2017), a process

thought to require pattern separation. Consistent with this finding, Hsiao et al. (2016) report DG

driven gamma entrainment of CA3, the presumed primary storage location of associative memories.

Together, this suggests that the dentate pattern separator may be optimized to rapidly detect sub-

tle degrees of difference within the environment in gamma-dominated exploratory brain states, a

capability likely to support successful memory encoding of novel environmental features, and poten-

tially aiding in rapid discrimination during recall.

Importantly, the frequency-dependency of pattern separation was driven by the feedback circuit.

This effect was highly robust when varying the decay time constants of the inhibitory synaptic con-

ductances, the time windows of analysis, the similarity measure, or the PP input strength. By con-

trast, feedforward inhibition and anatomical pattern separation was robustly independent of

frequency modulation. Together this suggests that frequency-dependent pattern separation is a key

property of the local inhibitory feedback circuit. Importantly, this does not preclude that additional,

long range projections may add further complexity (Szabo et al., 2017). Also note that in addition

to the instantaneous pattern separation mechanisms investigated here, potentially complementary

mechanisms at much longer time scales have been proposed involving ongoing neurogenesis

(Aimone et al., 2011; Clelland et al., 2009; Li et al., 2017; Sahay et al., 2011; Severa et al., 2017;

Temprana et al., 2015).

Spatiotemporal organization of inhibition and pattern separation
The model also allowed us to examine the impact of the spatiotemporal organization of inhibition

on pattern separation. Facilitation of feedback circuits produced a small but robust enhancement of

pattern separation, while spatial tuning of feedback inhibition did not. The facilitation of feedback
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inhibition is a remarkable feature of the DG, which we to our knowledge have described for the first

time. It is in marked contrast to area CA1, where somatically measured feedback inhibition shows

strong depression (Pothmann et al., 2014; Pouille and Scanziani, 2004) and is particularly surpris-

ing given the prevalence of depression in the literature on pairwise connections (Supplementary file

1). Our experimental and modeling data suggest that the strong facilitation of the mossy fiber input

to the feedback circuit is the principal mediator of this net facilitation. Physiologically, facilitation

may aid sparse GC spiking to efficiently recruit inhibition, particularly during burst-like activity (Per-

nı́a-Andrade and Jonas, 2014).

In our model, spatial tuning of feedback inhibition had no effects on pattern separation. This may

derive from the fact that PP inputs were spatially broad and random, as suggested by anatomical

studies (Tamamaki, 1997; Tamamaki and Nojyo, 1993). In general, the effect of localized inhibition

could be more relevant if synchronously activated populations of GCs are locally clustered

(Feldt Muldoon et al., 2013). For instance, GCs in the inferior and superior blades of the DG are

known to be differentially active (Alme et al., 2010; Chawla et al., 2005). Accordingly, localized

inhibition might be important for independent processing between the two blades. An alternative

function of spatially graded inhibition has been proposed by Strüber et al. (2015), who suggest

that it is more effective in promoting synchronous gamma oscillations. Accordingly, spatial tuning

may play a role in creating the oscillatory dynamics, found here to critically impact the feedback

inhibitory pattern separation performance.

In conclusion, this study provides the first comprehensive, quantitative description of the spatio-

temporal properties of the DG feedback inhibitory microcircuit, and predicts that these properties

will selectively enhance the separation of highly similar input patterns during learning-related gamma

oscillations. This mechanism may be relevant for understanding disease states in which there is a

coincidence of dentate gyrus-centered pathology with abnormal oscillatory activity, and memory

and pattern separation deficits such as temporal lobe epilepsy, Alzheimer’s disease or schizophrenia

(Andrews-Zwilling et al., 2012; Gillespie et al., 2016; Leal and Yassa, 2018; Verret et al., 2012).

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background (Mus musculus)

C57BL/6N Charles River Strain Code
027

Strain, strain
background (Mus musculus)

Prox1-Cre MMRRC-UCD RRID: MMRRC_036632-UCD obtained as cryopreserved
sperm and rederived in
the local facility

Strain, strain
background (Mus musculus)

Ai32-ChR-eYFP Jackson Laboratory RRID: IMSR_JAX:012569

Other UGA-40 RAPP Optoelectronics Galvanometric, focal laser
stimulation device

Software, algorithm Igor Pro 6.3 Wavemetrics

Software, algorithm Python 3.5
scikit learn

Pedregosa et al. (2011) https://scikit-learn.org/stable/

Software, algorithm ouropy Custom Python code. This Paper https://github.com/
danielmk/ouropy

Software, algorithm pyDentate Custom Python code, This Paper https://github.com/danielmk/pyDentateeLife2020

Software, algorithm Neuron 7.4 Carnevale and Hines, 2006

Software, algorithm Prism 6 Graphpad

Animals and slice preparation
All experimental procedures were conducted in accordance to federal law of the state of North

Rhine-Westphalia (Aktenzeichen 84–02.04.2014.A254), minimizing unnecessary pain and discomfort.

Experiments were performed on horizontal hippocampal slices of 21- to 97-day-old mice. Ca2+ imag-

ing and a subset of dual recording experiments were performed in C57/Bl6 mice obtained from
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Charles River Laboratories (Wilmington, MA). Optogenetic experiments and the remaining dual

recording experiments were performed on double transgenic offspring of Tg(Prox1-cre)SJ39Gsat/

Mmucd, MMRRC Cat# 036632-UCD, RRID: MMRRC_036632-UCD) obtained as cryopreserved sperm

and rederived in the local facility (Gong et al., 2007; Gong et al., 2003) and Ai32-mice (B6;129S-Gt

(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J, IMSR Cat# JAX:012569, RRID: IMSR_JAX:012569). For

preparation the animals were deeply anesthetized with Isoflurane (Abbott Laboratories, Abbot Park,

USA) and decapitated. The head was instantaneously submerged in ice-cold carbogen saturated arti-

ficial cerebrospinal fluid (containing in mM: NaCl, 60; sucrose, 100; KCl, 2.5; NaH2PO4, 1.25;

NaHCO3, 26; CaCl2, 1; MgCl2, 5; glucose, 20) and the brain removed.

Horizontal 350 mm thick sections were cut with a vibratome (VT1200 S, Leica, Wetzlar, Germany,

300 mm sections for hilar recordings). To obtain maximum-connectivity-plane slices the brain was

glued to its dorsal surface (compare Bischofberger et al., 2006). The slicing depth at which the tem-

poral pole of the hippocampus first became visible was noted (depth = 0 mm). From here the first

four sections were discarded (up to a depth of 1400 mm). The following two to three sections were

secured such that one further section before the beginning of the dorsal hippocampus (approxi-

mately 2400 mm) could be discarded. Slices were incubated at 35˚C for 20 to 40 min and then stored

in normal ACSF (containing in mM: NaCl, 125; KCl, 3.5; NaH2PO4, 1.25; NaHCO3, 26; CaCl2, 2.0;

MgCl2, 2.0; glucose, 15) at room temperature. Recordings were performed in a submerged record-

ing chamber at 33–35˚C under constant superfusion with carbogen saturated ACSF (3 ml/min).

Experiments were performed in the superior blade unless otherwise indicated.

Electrophysiological recordings
Hippocampal dentate GCs were visually identified using infrared oblique illumination contrast

microscopy in a 20x or 60x water immersion objective (Olympus, XLumPlanFl, NA0.95W or Nikon,

N60X-NIR Apo, NA1.0W) on an upright microscope (TriMScope, LaVision Biotech, Bielefeld, Ger-

many or Nikon Eclipse FN1, Tokyo, Japan). For IPSC measurements the whole-cell patch-clamp con-

figuration was established with a low chloride cesium-methane-sulfonate based intracellular solution

(intracellular solution containing in mM: CH3O3SCs, 140; 4-(2-hydroxyethyl)�1-piperazineethanesul-

fonic acid (HEPES-acid), 5; ethylene glycol tetraacetic acid (EGTA), 0.16; MgCl2, 0.5; sodium phos-

phocreatine, 5; glucose, 10). For GC current clamp experiments a low-chloride solution (CC-

intracellular solution containing in mM: K-gluconate, 140; 4-(2-hydroxyethyl)�1-piperazineethanesul-

fonic acid (HEPES-acid), 5; ethylene glycol tetraacetic acid (EGTA), 0.16; MgCl2, 0.5; sodium phos-

phocreatine, 5) was used. GCs with input resistances greater than 300 MW were discarded in order

to exclude immature GCs (Schmidt-Hieber et al., 2004). Hilar cells were recorded with intracellular

solution containing in mM: K-gluconate, 140; KCL, 5; HEPES-acid, 10; EGTA, 0.16; Mg-ATP, 2; Na2-

ATP, 2; pH adjusted to 7.25; 277 mmol/kg without biocytin. 0.3% biocytin (Sigma-Aldrich, B4261). In

all imaging experiments and a subset of optogenetic experiments, the intracellular solution addition-

ally contained 100 mM Alexa 594 hydrazide sodium salt (Life Technologies, Carlsbad, USA). The iden-

tity of visually and electrophysiologically identified mature GC was confirmed by their dendritic

morphology after dye filling in every case tested. Pipette resistance of the patch pipettes was 3–7

MW. Voltage-clamp recordings were performed with a Multiclamp 700B (Molecular Devices, Sunny-

vale) or a BVC-700A amplifier (Dagan Corporation, Minneapolis). Current-clamp recordings were

performed with a Multiclamp 700B. Voltage or current signals were digitized with a Digidata 1322A

(Molecular Devices) or (Instrutech ITC-16, Heka Electronics, Ludwigshafen, Germany) at 10 or 50 kHz

and recorded using Clampex 10.2 (Molecular Devices) or Igor Pro 6 (Wavemetrics, Lake Oswego) on

a PC running Windows XP. All electrophysiological recordings were obtained at least in triplicate,

then averaged and counted as a single biological replicate. For IPSC measurements, cells were held

at 0 mV including liquid-junction potential correction (estimated at 16 mV). To aid the voltage clamp

throughout the cell, this depolarized membrane potential was slowly approached during a 15 min

pre-equilibration period, during which Cs+ entered the cell. For CC-recordings liquid junction poten-

tial was not corrected. IPSCs were normalized to the maximally elicited IPSC over space and power

for each respective cell. Importantly, this normalization does not require prespecification of the loca-

tion or power at which a respective cell’s maximum occurs. Note, that due to this procedure all nor-

malized IPSC values are by definition below 100%. Chemicals for electrophysiological experiments

were obtained from Sigma-Aldrich (St. Louis). All drugs were purchased from Tocris Bioscience (Bris-

tol, UK).
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Dual patch experiments
Two GCs within 100 mm of each other were recorded. To test for single GC-induced feedback inhibi-

tion 10 to 15 trains of 10 APs at 100 Hz were elicited by brief (3 ms) current injections in one cell.

Inhibition was monitored either in VC, while holding the cell at 0 mV to allow the detection of small

IPSCs (Figure 2—figure supplement 3, n = 7 cell pairs, seven directions) or current clamp while

holding the cell at �60 mV, allowing to probe for inhibition in both directions (not shown, n = 4 cell

pairs, eight directions).

Ca2+ imaging
Dye loading was modified from Garaschuk et al. (2006) and performed in the submerged chamber

at 35˚C under constant superfusion. Briefly, a dye solution containing: 1 mM Oregon Green 488

BAPTA-1 acetoxy-methyl ester (OGB-1 AM); 2% pluronic F-127; 150 mM; 2.5 mM KCl; 10 mM

HEPES). The dye was injected into the slice along the superior blade of the GC layer using standard

patch pipettes (4–5 locations, 100 mm intervals, 30 mm depth, 3 min at 500 mbar per location).

Recordings were started at least 45 min after the staining procedure. Population Ca2+ Imaging was

performed using a multibeam two-photon fluorescence microscope (TriMScope, LaVision Biotech,

Bielefeld, Germany) with excitation light at 810 nm. Images were acquired with a digital CMOS cam-

era (ORCA-Flash, Hamamatsu) through a high numerical aperture 20x water immersion Objective

(XLumPlanFl, NA-0.95, Olympus). This allowed imaging of a large field of view (320 � 240 mm) with

high spatial and temporal resolution (1920 � 1440 pixels, 20 Hz) at acceptable signal to noise ratios.

Time series were processed with ImageJ 1.48o and IGOR Pro 6.3 in a semiautomatic manner.

Regions of interest were manually placed onto all well loaded cells which remained visible through-

out the experiment. Ca2+ fluorescence increase normalized to baseline (DF/F) traces of individual

cells were calculated without background subtraction. The fraction of responders for each time

series was extracted by automatic thresholding at DF/F = 0.94%. The threshold was determined by

combined cell-attached and Ca2+ imaging experiments. Note, that for these experiments the stimu-

lation electrode was placed into the hilus in order to obtain a sufficient number of true positive res-

ponders. The imaged cell population comprised on average 46 ± 18 (standard deviation) cells

(n = 23 slices). The active cell fraction corresponds to the fraction of responders normalized to the

dye-loaded population within each section. To assess the spatial distribution of cell activation in

imaging experiments, DF/F projections were created by averaging and smoothing four frames during

the transient and four frames at baseline fluorescence and then calculating the pixel wise DF/F.

Antidromic electrical stimulation was achieved using a bipolar cluster microelectrode (FHC, Bow-

doin) connected to a digital stimulus isolator (AM-systems, Sequim), placed into stratum lucidum in

the CA3 region. IPSCs at individual powers were elicited 5 to 13 times at 0.1 Hz and averaged (0.1

ms pulse time). The amplitude beyond which the stimulus isolator could not pass the full current,

determined the maximal stimulation amplitude for each experiment.

In order to obtain the input-output relationships of the feedback inhibitory circuit data, each vari-

able was averaged over slices by power. This was necessary since only a small subset of experiments

in which inhibition was completely blocked could also be successfully imaged (6 of 8 sections). Due

to the small numbers of active cells within individual slices with sufficient dye loading (n = 23 slices)

analysis of only these six slices leads to a very piecemeal recruitment curve. A more accurate estima-

tion of the recruitment of feedback inhibition was obtained by averaging the cell activation and inhi-

bition over all appropriate slices and relating them by power, respectively. Note that while the

fraction of activated cells in non-MCP sections (not included in the quantitative analysis) was mostly

zero, IPSCs were almost always present (in 28 of 29 cells in non-MCP sections).

Optogenetic stimulation
Focal optogenetic stimulation was achieved through a galvanometer driven spot illumination device

coupled to a 473 nm DPSS Laser (UGA-40, DL-473, Rapp Optoelectronics, Hamburg, Germany) on

an upright microscope (Nikon Eclipse FN1, Tokyo, Japan). The width of the resulting stimulation

spot at the focal plane was 8.36 ± 0.04 mm (full width at half max; Nikon 10X Plan Fluor, NA 0.3 Laser

powers are given in arbitrary units from 1 to 7 corresponding to 15 ± 1 mW, 107 ± 14 mW, 292 ± 42

mW, 762 ± 105 mW, 1433 ± 49 mW, 1729 ± 165 mW and 1660 ± 163 mW at the objective (n = 5
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measurements). All illumination spots were placed at approximately 40 mm into the ML at the slice

surface. Stimulation pulses were of 20 ms duration.

Light intensity distribution
To measure the light intensity distribution throughout a slice the setup was modified to image the

slice from below while the laser beam was focused to its surface (Figure 2—figure supplement 1C–

F). This was achieved by focusing a surgical Microscope with 36x magnification (M695, Leica Micro-

systems, Wetzlar, Germany) to the lower slice surface. Images were taken with a CCD camera (Nikon

D60). Acute sections of 100, 150, 200, 250, 300 and 350 mm thickness were cut from Prox1-ChR-

eYPF mice as described above. The laser was focused to the surface of the slice in the molecular

layer and an image was taken at every laser power (p=1 to 7 AU). The stage was moved for every

image to avoid bleaching or phototoxicity. Linear profiles of the resulting isometric light distribution

were measured in several directions and averaged to obtain an x profile per section. The x-profiles

of slices of different thickness were then stacked to obtain the xz-profile. Values below 100 mm

depth were obtained through fitting a Gaussian function in x-direction at 100 mm depth and an

exponential function in z-direction. Complete three-dimensional intensity profiles of three different

locations of two slices within the dentate molecular layer were averaged.

Calculation of the optogenetically activated cell fraction
To assess the active fraction of GCs, approximately two GCs were recorded in cell-attached mode in

each slice in which an IPSC was recorded. Illumination spots were placed along the GC layer at 100

mm intervals (Figure 2—figure supplement 1). The entire profile was probed in triplicate with 1 s

intervals between individual locations. When the stimulation spot was in sufficient proximity to the

recorded cell clear APs were generally visible (in 25 of 26 cells), and otherwise could be induced

through simultaneous cell attached depolarization. Cell-attached spikes were detected by automatic

thresholding at 6x standard deviation of the baseline. The spatial profile of firing probabilities, cen-

tered on the recorded cells, was averaged within each section. To test if cell activation properties

differed between blades the maximum firing probabilities (at p=7) as well as the slopes (increase in

firing probability from p=1 to 7) when simply averaging over all location of a given cell were com-

pared by t-test (n = 7 sections per blade, p=0.490 and 0.684 for max. AP probability and slope,

respectively). Since no difference was observed a single firing probability distribution as a function of

the distance along the GC layer (x – distance) was calculated for each power (Figure 2—figure sup-

plement 1B, n = 14 sections, seven per blade). However, the firing probability of cells in the vicinity

of the illumination spot is likely to increase not only as a function of the laser power and spread at

the surface, but also of the penetration depth of the light cone. In order to calculate the firing prob-

abilities throughout the slice, the firing probability distribution at the surface was related to the mea-

sured light intensity distribution throughout the slice (Figure 2—figure supplement 1C–F; see

above) utilizing a ‘virtual distance’ measure. Since cells were measured at random distances from the

molecular layer border, the light intensity distribution, like the firing probabilities were collapsed to

two dimensions, x-distance along the GC layer and z-distance with increasing slice depth. The ‘vir-

tual distance’ was calculated as the mean distance from a given slice-surface pixel to all other pixels

of the light intensity distribution weighted by the intensity within those pixels (Figure 2—figure sup-

plement 1G). Assigning the firing probabilities of pixels at the slice surface to their respective virtual

distance yields the firing probability distribution as a function of virtual distance, which was well

approximated by a gaussian fit (Figure 2—figure supplement 1H). This fit was used to also calculate

the firing probabilities of pixels/cells deeper in the slice using the measured light intensity distribu-

tion as input. The active cell fraction then corresponds simply to the mean firing probability through-

out the slice. This calculation is independent of the size and number of GC and was performed for

every power individually. We noted that a large fraction of the recorded spikes occurred with larger

latency than the typical IPSC following the beginning of the 20 ms stimulation pulse (Figure 2—fig-

ure supplement 1I, example from a single slice). Since only APs preceding the IPSC can participate

in its recruitment, we calculated the fraction of total spikes which preceded mean IPSC latency for

every power, and fitted the resulting relation with an exponential function (Figure 2—figure supple-

ment 1J). All active cell fractions were corrected by this factor (Figure 2—figure supplement 1J,

bottom). Note that this does not take account of the disynaptic delay between mossy fiber output
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and GC input, thereby potentially slightly overestimating the true recruiting population. For compar-

ison, the active cell fraction was also computed with alternative assumptions about the decay of the

firing probability with increasing slice depth. If no firing probability decay with increasing depth is

assumed, the active cell fraction throughout the slice is given simply by the average of the measured

firing probabilities at the slice surface (Figure 2—figure supplement 1K, upper grey dashed line).

Alternatively, the firing probability decay with depth was assumed to be identical to the measured

decay along the slice surface (isometric firing probability distribution; Figure 2—figure supplement

1K, lower grey dashed line). In this case, Gaussian functions were fit to the probability distributions

at the surface and these Gaussian functions were then assumed to extend also in the z-dimension.

The active GC fraction was then calculated by numerical integration under the two dimensional

Gaussian (with the bounds from 0 to 350 mm in z and �888 to 888 mm in x, which corresponds to the

mean GC layer length) normalized to the same area with a uniform firing probability of one. The

best estimate of the active GC fraction, incorporating light intensity measurements (Figure 2—fig-

ure supplement 1K, black line), was within these upper and lower bound estimates.

Comparison of focal and global activation
To globally activate the GC population a multimode light fiber (BF-22, Thorlabs, New Jersey) cou-

pled to a 473 nm laser (Omicron Phoxx, Rodgau-Dudenhofen, Germany) was placed above the slice

surface, non-specifically illuminating the entire hippocampus. Analogous to focal stimulations, the

activated cell fraction was calculated as the firing probability of individual cells following 20 ms

pulses. Here, no spatial normalization is necessary since cells were sampled from random locations

with respect to the light fiber. Firing probabilities for the focal stimulation in these sections was cal-

culated as the simple average of all stimulation locations.

Spatial distribution of feedback inhibition
The same stimulation paradigm which was used to assess cell activation was used to assess the spa-

tial distribution of feedback inhibition. For individual cells, IPSCs at each location and power were

averaged. The entire profile was normalized to the largest measured IPSC of that cell, independent

of the power and stimulation location at which it occurred. For analysis, all IPSC profiles were spa-

tially aligned to the recorded cells. The mean distance to apex ± one standard deviation was

356 ± 163 mm and 322 ± 97 mm for cells from the superior and inferior blade, respectively (n = 8 cells

in each blade). In order to test whether there were any distinct effects of the apex, such as a steep

decay of inhibition, which would be masked by alignment to the recorded cells, we also aligned the

profiles to the apex (not shown). However, no such effects were visible. To analyze the saturated

IPSC profiles, normalized IPSC amplitudes from p=5 to 7 were averaged for each cell. In order to

analyze the effects of local versus remote stimulation for each blade a distance was chosen such that

each remote location was still within the DG but in the other blade (800 mm from the recorded cell).

Normalized IPSCs of the three locations surrounding the recorded cell or this remote location were

averaged within each power to obtain the IPSC amplitudes for further analysis. The cell fraction

required for the activation of a half-maximal IPSC in each section was assessed for each cell by linear

interpolation between the measured values. Since no differences were found between superior and

inferior inhibition, recordings of both blades were pooled to analyze the kinetic properties of IPSCs.

All parameters were calculated on the multiple trials of individual cells. The latency was measured as

the time from the beginning of the pulse to when the IPSC superseded six fold standard deviation

of the baseline. The jitter was calculated as the standard deviation of these latencies for individual

cells. The rise time was calculated as the mean 20 to 80 rise time of each cell and the decay time

constant was obtained from an exponential fit to the decaying phase of the compound IPSC.

Hilar recordings
Intrinsic properties of hilar cells were quantified based on 4.6 s long depolarizing current steps or

500 ms hyperpolarizing current steps. AP threshold and fast AHP amplitude were measured from

the first AP in the first current step in which an AP occurred within the first 10 ms. Clustering fraction

and mean AP time were calculated from the current injection that elicited the maximum average AP

frequency. The Clustering fraction represents the fraction of APs that occur within 60 ms before or

after another AP (Larimer and Strowbridge, 2008). Mean AP time was calculated as the mean AP
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time point normalized to the duration of the current injection (4.6 s). Input resistance was calculated

as the slope of the IO curve from the hyperpolarizing current ladder. Cells were manually classified

as mossy cells or interneurons based on these intrinsic properties. To objectively confirm classifica-

tion, we performed unsupervised k-means clustering using scikit-learn (Pedregosa et al., 2011). For

clustering all six measures were normalized by mean and variance. Two cells with conflicting classifi-

cation were not included in further analysis.

After recording, slices were fixed for 1 hr in 4% PFA and stored overnight in 0.25% PBS-T at

room temperature. The following day they were transferred to PBS for short term storage or imme-

diately stained. For biocytin staining, sections were washed with PBS and incubated with Streptavi-

din-Alexa-Fluor-555 Conjugate (Invitrogen, S32355), 1:1000 in 0.25% PBS-T overnight at 4˚C. The

following day they were co-stained with DAPI 1:1000 in PBS for 30 min and mounted with Aqua-

Poly/Mount. Cells were imaged with the Leica SP8 Confocal Microscope of the Microscopy Core

Facility at the University Clinic Bonn using a 40x water immersion objective.

Short-term dynamics
Short-term dynamics of GCs and hilar cells were assessed using antidromic electrical or optogenetic

stimulation at minimal power (the smallest stimulation power that yielded reliable responses). Trains

of 10 pulses at 1, 10, 30, 50 Hz were delivered in triplicate and averaged (excluding sweeps with

action currents for hilar cells). In all GCs and a subset of hilar cells we confirmed that PSCs could be

blocked by at least 90% with 40 mM CNQX + 50 mM D-APV (n = 12, 23 for GCs and hilar cells

respectively). Facilitation indices were obtained by normalizing the average of the last three PSC

peaks to the first.

To test for differential dynamics between local and remote inhibition analogous trains of optoge-

netic 20 ms pulses at powers below saturation (usually p=2 for local inhibition and p=3 for remote

inhibition) were delivered. For each power and frequency, five repeats were recorded and averaged.

AP probabilities were assessed by cell-attached recordings with the stimulation site close to the

recorded cell. Cell-attached spikes were detected by automatic thresholding as above.

Voltage escape estimation model
A simple multicompartmental passive ‘ball and stick’ model with number of segments following the

d_lambda rule (Carnevale and Hines, 2006) and passive properties Ra = 181 Wcm, Cm = 1 uFcm�2

and a leak conductance = 0.0002 Scm�2, which gave an Rin of 165 MW, were adopted from

Carnevale and Hines (2006) and Krueppel et al. (2011). A soma (20 mm diameter) contained one

dendrite (3 mm diameter, 200 mm length) with an alpha synapse point mechanism (Erev �90 mV)

placed at 180 mm from the soma. The range of synaptic conductances (0.1–50 nS; adopted from

Williams and Mitchell, 2008) elicited IPSC amplitudes in the model, which covered the range of

somatic IPSC amplitudes that were experimentally measured (3 pA – 1nA). Voltage clamp experi-

ments were simulated using a single electrode point mechanism at the soma (Rs 5 MOhms, to model

a Rs of 15 MW compensated 70%) with a holding potential of 0 mV. The transfer (Zc) and input

impedance (Zn) were determined from the model and used to calculate the actual peak IPSC ampli-

tude at the soma for a given synaptic conductance. Simulations were run in the Neuron 7.5 simula-

tion environment.

Biophysically realistic dentate gyrus lamella model
Simulations were run in python 2.7 with NEURON 7.4 (Carnevale and Hines, 2006) on Windows 7/

10. We created a generic python-NEURON interface (https://github.com/danielmk/ouropy; copy

archived at https://github.com/elifesciences-publications/ouropy) which wraps NEURON’s python

module, into which we ported the conductance based DG model by Santhakumar et al. (2005).

Model code is available at https://github.com/danielmk/pyDentateeLife2020 (copy archived at

https://github.com/elifesciences-publications/pyDentateeLife2020).

We first tuned the original model to capture our experimentally determined properties in the

most parsimonious way. During tuning we also updated some model properties to better reflect cur-

rent data and our experimental paradigm in an individual DG lamella:

We introduced a T-type Ca2+ channel mechanism into MCs to more realistically reflect the depo-

larizing envelope at the onset of a positive current step observed in real MCs. Furthermore, while
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the original model placed the perforant path input at the distal dendrite of GCs, we moved all perfo-

rant path synapses to the middle compartment of the dendrite. In order to be able to capture the

results of convergent and divergent synaptic inputs in sufficient resolution to produce the empirically

observed activity gradations, we up-scaled cell numbers by a factor of four. To model space, we

assumed all cell types to be spread out on a 2 mm DG lamella. Since MCs project to GCs primarily

outside the lamellar plane, we removed the MC to GC connection. To allow patterned PP input we

adapted PP input specifications from Yim et al. (2015).

We then proceeded in a first phase of model adjustment, and adapted several parameters to

reproduce our in vitro findings regarding spatial and temporal feedback inhibition

(Supplementary file 2). To model frequency-dependent facilitation on mossy fiber outputs, we

implemented a simple frequency-dependent synapse model (tmgsyn) (Tsodyks et al., 1998), and

matched the facilitation time constant as well as the decay time constants of individual PSCs to our

experimental observations. As in the original model, each cell gives rise to a fixed number of synap-

tic connections which are spatially restricted to a target pool of adjacent cells. We tuned the size

and spatial extent of this target pool to reproduce our spatial data. To provide local inhibition we

implemented a ‘local’ interneuron type (BC), whose inputs and outputs were spatially restricted to

an ~600 mm area (as described by Strüber et al., 2015). To provide global inhibition we imple-

mented a second class of inhibitory interneurons (HC) whose inputs and outputs connect to GCs

independent of space. This simple formulation allowed us to reproduce the recruitment curves seen

for local, remote and global GC activation paradigms. To achieve plausible activity levels, we further

adapted synaptic weights similar to Yim et al. (2015). We call the network incorporating both spa-

tially restricted BC synapses and mossy fiber facilitation the full tuned network. To isolate the contri-

bution of intrinsic GC properties to pattern separation, we created a disinhibited network by setting

the synaptic weight from all interneurons to zero. We also isolated feedforward inhibition by

decreasing the mossy fiber to interneuron synaptic weight to zero. To evaluate the effect of spatially

constrained inhibition, we created a global network, where the target pool of all interneuron was the

entire GC population. To evaluate the effect of mossy fiber facilitation, we set the facilitation time

constant to zero, effectively eliminating facilitation. Details on the model parameters are summarized

in Supplementary file 2).

To study pattern separation, we generated 400 PP inputs. Each PP synapsed onto 100 randomly

chosen GCs with the spatial connection probability being governed by a gaussian probability distri-

bution with standard deviation 1 mm and random peak position, modeling a full, nearly uniform

input connectivity of individual afferents (Tamamaki and Nojyo, 1993). To generate theta modu-

lated spike patterns, we used the inhomogeneous Poisson generator from Elephant 0.5.0-Electro-

physiology-Analysis-Toolkit with a 10 Hz (theta) sinusoidal rate profile with a peak of 100 Hz, a

minimum of 0 Hz and a duration of 600 ms. To generate input patterns with varying overlap from PP

afferents i = 1 to 400, we activated afferents i to i+23 in increments of i = 1 per run. We performed

25 runs for each condition resulting in 300 unique comparisons, excluding self-comparisons. The ran-

dom seed was held constant between different runs of the same condition, resulting in differing

input patterns being fed into the same network. All randomness was generated with the python

module numpy.random.

To quantify pattern similarity, we used Pearson’s product moment correlation coefficient R of the

population rate vectors for input and output patterns. The population rate vector refers to the vector

of the mean firing rates of all cells in the population within the entire 600 ms simulation, or 100 or 33

ms time windows for the time resolved analyses. All statistical analyses of the model were performed

with n = 7 different random network seeds. During Model development (tuning phase), we first

ported the model by Santhakumar et al. (2005) with closely constrained DG cell-types, and further

constrained it to reproduce our physiological data. We then locked the model and proceeded to an

(in silico) experimental phase, in which pattern separation was investigated.

To compute full pattern separation effects (Figure 6D), we calculated the mean Rout within Rin

bins of 0.1 and measured the area to the unity line (computed as the mean of the binwise Rin – Rout

differences). To compute isolated pattern separation effects of specific manipulations we subtracted

the respective Rout values with and without the manipulation, thereby obtaining a DRout value for

each individual Rin. We then again computed the bin-wise mean and quantified the area under the

curve, yielding the mean DRout analogous to the full effects. Note, that the sequence of averaging

and subtracting is irrelevant, and was inverted only to match the figure panels. Data are displayed as
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mean ± SEM for each Rin bin (Figure 6E–G). The coefficient of variance (CoV) was calculated by nor-

malizing the standard deviation of DRout within each bin by the mean of that bin, and then averaging

over bins, analogous to the previous analyses. However, only bins within 0.2 < Rin < 0.8 were

included, since at the borders very small means led to unreliable results. DCoV represents the differ-

ence between the mean CoV of the global (or nonfacilitating) and the tuned network models. For

the temporally resolved pattern separation analysis, all measures were computed as above, but on

population vector correlations within 100 or 33 ms time bins.

Statistics and Data Analysis
Analyses were performed using ImageJ, Microsoft Excel, Python and Igor Pro. Fits were performed

using Igor Pro. Statistical analyses were performed using GraphPad Prism six or Igor Pro. Compari-

sons were two-tailed whenever applicable. Replicates refer to cells unless otherwise indicated (slices

for imaging experiments and network seeds for modeling data). Given the lack of previous informa-

tion on effect sizes, sample sizes were chosen according to field norms, such that only large effects

can be detected (e.g. Cohen’s d > 1 for paired tests). A single outlier facilitation index (Figure 5E)

during model tuning was removed, as it was outside the triple standard deviation (due to a very

small initial IPSC). Group allocation was achieved by alternating acquisition between groups. Statisti-

cal significance in Analysis of Variance (ANOVA) is indicated by §. F-values and degrees of freedom

are given as F(DFn, DFd). When ANOVAs were followed by specific comparisons these are indicated

by asterisks, where *p<0.05, **p<0.01 and ***p<0.001. Bargraphs and XY plots show means where

error bars indicate standard error of the mean. In boxplots error bars represent the data range and

boxes the upper and lower quartiles and the median.
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Figure 1. Recruitment of feedback inhibition assessed using population Ca2+ imaging. Combined population Ca2+ imaging and IPSC recordings of

GCs during antidromic electrical stimulation. (A) Schematic illustration of the experimental setup. Dashed lines represent cuts to sever CA3

backprojections. (B) Top: reconstruction of the dendritic tree of a representative GC. Bottom: Feedback IPSC at increasing stimulation strength during

stratum lucidum stimulation. (C) IPSCs were completely blocked by GABAzine and CNQX + D-APV and largely by DCG-IV. (D) Left: overlay of

Figure 1 continued on next page
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Figure 1 continued

exemplary OGB1-AM-loaded GC population (green) with a DF/F map (white). right: traces of DF/F over time of a subpopulation of cells depicted on the

left. (E) Simultaneous cell attached recording and calcium imaging to measure the action potential induced somatic calcium transient amplitude. (F)

Scatterplot and histogram of the calcium fluorescence peaks of cells which either did (green) or did not (grey) fire action potentials, as assessed by cell

attached recordings. (G) Illustration of the anatomical localization of maximum connectivity plane slices. Short black dashed lines indicate depth at

which the slice plane is aligned to the dorsal brain surface. (H) Antidromic stimulation elicited Ca2+ transients primarily at this depth (black bars). (I)

Normalized IPSC amplitude and activated cell fraction both increase with increasing stimulation strength (example from a single slice). (J) Summary of

all slices (K) Summary data plotted to show the increase of inhibition as a function of the active GC fraction.
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Figure 1—figure supplement 1. Detection of single action potential induced calcium transients. A section of the dentate gyrus was loaded with

OGB1-AM and imaged with multibeam two-photon microscopy while antidromically eliciting action potentials and recording from individual cells in

cell-attached mode. (A) A schematic illustration of the experimental setup. (B) Example of OGB1-AM loaded GCs. Scale bar: 10 mm (C) Cells were

stimulated with a single pulse (left) or bursts of 5 pulses at 30 Hz (middle) or 100 Hz (right). Cell attached recordings revealed the exact number of

induced action potentials (bottom), which could then be correlated with the intracellular calcium signal (middle). (D) Superposition of the calcium

fluorescence traces of 49 recorded cells constituted of cells identified as responders (green) or non-responders (grey) by cell attached recordings. (E)

Peak DF/F for single APs of identified responders and non-responders plotted against their respective baseline fluorescence (left). A histogram of the

peak DF/F of both groups fitted with a Gaussian distribution of the non-responders (right, scale bar = 5 cells). The dashed line indicates detection

threshold at the quadruple standard deviation of this fit (0.94% DF/F). (F) False-positive (gray) and false-negative (green) rates were plotted as a function

of the detection threshold and fitted with sigmoidal functions. A detection threshold of 0.94% leads to exactly equal numbers of false positives and

false negatives if the actually active fraction of GCs is 3% (inset, dashed lines). (G) To test for potential effects of variable dye loading on detection

efficacy, we tested for a correlation between peak DF/F of responders and baseline fluorescence intensity (p>0.05). (H) To test if increasing numbers of

Figure 1—figure supplement 1 continued on next page
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Figure 1—figure supplement 1 continued

responders at increasing stimulation power led to increases of false positives in the densely packed GC layer, we correlated peak DF/F of non-

responders with stimulation power (p>0.05). Dashed lines in (G) and (H) represent the 95% confidence intervals of linear regressions.
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Figure 2. Recruitment of feedback inhibition assessed optogenetically. (A) EYFP fluorescence in dentate GCs of Prox1/ChR2(H134R)-EYFP transgenic

mice. The field of view for rapid focal optogenetic stimulation is indicated by a blue square. A typical stimulation site approx. 40 mm from the GC layer

(two short black lines) is indicated by a blue dot. (B) Schematic of the microscope setup used to achieve spatially controlled illumination. The inset

shows the intensity profile of the laser spot. (C) Top left, reconstruction of an Alexa594 filled GC. Left, illustration of optical stimulation. Right, IPSCs

following 20 ms light pulses at increasing laser power (p=1 to 7 AU). Each trace represents an average of three trials. (D) Summary of IPSC amplitudes

from cells in the superior blade (n = 7 cells). IPSC amplitudes were normalized to the maximum amplitude within each cell. (E) Optogenetically elicited

IPSCs are abolished by glutamatergic blockers (40 mM CNQX + 50 mM D-APV, n = 9). (F) Left, Schematic of focal optical and electrical stimulation.

Dashed lines indicate cuts to sever CA3 backprojections. Middle, Example traces for IPSCs following electrical or focal optogenetic stimulation. Right,

maximal IPSC amplitude for the two stimulation paradigms (361 ± 37 vs. 410 ± 13 pA for electrical and optogenetic stimulation respectively, paired t-

test, p=0.28, n = 4) (G) The optogenetically activated GC fraction responsible for recruiting the IPSC at the respective laser powers was estimated from

systematic cell attached recordings (see Figure 2—figure supplement 1 for details). The best estimate (black) incorporates measurements of the 3D

light intensity profile in the acute slice. Upper and lower bounds were estimated by assuming no firing probability decay with increasing slice depth

(upper grey dashed line) or isometric firing probability decay (lower grey dashed line. (H) Data from (D) and (H, best estimate) plotted to show the

recruitment of feedback inhibition. (I) Comparison of focal optogenetic stimulation to global (light fiber mediated) optogenetic stimulation. Left,

Schematic illustration. Middle, Comparison of the AP probability of individual GCs at maximal stimulation power for focal and global stimulation

assessed by cell attached recordings. Right, Comparison of the maximal IPSC amplitude under focal and global stimulation for individual GCs.
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Figure 2—figure supplement 1. Optogenetically activated cell fraction. (A) Schematic illustration of the experimental setup. Cells were recorded in cell

attached mode (two per slice), while systematically stimulating at varying distances. Traces from a representative trial at p=3. (B) Mean firing probability

of every location over trials and cells for each laser power (three example powers shown). (C) Schematic of the modified setup to record the three

dimensional light intensity profile in an acute slice. In order to avoid saturation a neutral density filter (ND4) was inserted into the light path. (D) Cross-

section of the light intensity profile of the laser spot at increasing slice depth. The dashed white lines indicate the location of the cross sections shown

in (E) and (F). Depths below 100 mm were extrapolated from fits to (E) and (F). (G) Top, Illustration of the calculation of the virtual distance for a

particular cell/pixel 440 mm lateral to the laser focus. The distances between the given cell/pixel and all other pixels (individual xz-distances) were

weighted by the intensity at those pixels. Bottom, this weighting is illustrated by a histogram displaying the intensities for each respective xz-distance.

The virtual distance corresponds to the intensity weighted mean of xz-distances. (H) The measured firing probabilities were assigned to the respective

Figure 2—figure supplement 1 continued on next page
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Figure 2—figure supplement 1 continued

virtual distances. The resulting firing probability distribution was well approximated by a Gaussian fit (black lines). (I) Example of the IPSC and AP

latencies upon a stimulation pulse from an individual slice. Laser Powers are color coded. (J) Top, Example Histogram of the distribution of all AP

latencies for p=3 (blue). The black bar indicates the mean IPSC latency ± standard deviation at that power. Bottom, The fraction of action potentials

that precede the mean IPSC for each power was well approximated by an exponential fit (black line). Light stimulation in (I) and (J) was from 0 to 20 ms.

(K, black) Estimated active cell fraction in the slice calculated from the light intensity profiles in (D) and the virtual firing probability distributions in (H)

and corrected by the fraction of APs occurring after the mean IPSC (J). The estimated active cell fraction is identical to the mean firing probability

throughout the slice. For comparison, the cell fraction was also estimated assuming no firing probability decay with increasing depth (upper grey

dashed line) or assuming isometric decay (lower grey dashed line).
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Figure 2—figure supplement 2. Error in somatic IPSC measurements with increasing inhibitory conductance. A simple ball and stick model was used

to estimate the impact of voltage escape errors for dendritic IPSCs (soma diameter 20um; dendrite diameter and length 3 mm and 200 mm,

respectively). To estimate the maximum errors the inhibitory synapse was placed at a distal site (180 mm from the soma) and inhibitory currents were

measured using a single electrode voltage-clamp at the soma. (A) Illustration of the model and an attenuated somatic IPSC measurement. (B) Peak

amplitudes of the measured IPSC over a range of distal synaptic conductances (measured peak IPSC), as well as the actual peak IPSC in the absence of

voltage errors, calculated from the transfer and input impedances of the model. (C) Error in somatically measured peak IPSC as percentage of the

actual peak IPSC (I syn, % error) at a given synaptic conductance. Errors in estimating synaptic inhibitory currents were linear. (D) Illustration of

corrected and uncorrected recruitment curves of absolute IPSC amplitudes for varying degrees of voltage error (using data from the recruitment curve

in Figure 2H). Note that due to the linearity of voltage escape errors, absolute IPSC amplitudes change, but the saturation point does not. (E) This is

illustrated by the normalized recruitment curves, as shown throughout the manuscript (see Figure 2H). Note that normalized curves are practically

unaffected by voltage escape errors.
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Figure 2—figure supplement 3. Absence of single GC induced feedback inhibition. Pairs of juxtaposed GCs (<100 mm distance) were recorded to test

for single GC induced feedback inhibition. (A) Schematic illustration of the experimental setup. (B) Example of a paired recording where cell one is fired

at 100 Hz in current clamp mode while cell two is recorded in voltage clamp mode in order to detect IPSCs. (gray, 10 individual trials; black, average).
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Figure 3. Spatial organization of feedback inhibition. Feedback IPSCs recorded from an individual GC while GCs at varying distances were activated.

(A) Schematic illustration of the stimulation paradigm and example IPSC traces of an individual trial (p=3). (B, C) Distribution of normalized IPSC

amplitudes as a function of laser power and distance from stimulation spot for superior and inferior blade GCs (n = 8 for each blade). The relative

location of the DG apex ± standard deviation is indicated by the black bar and grey area respectively. (D, E) IPSC distribution over space at saturation

Figure 3 continued on next page
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Figure 3 continued

(p�5). Black and grey bars indicate a local and a remote location at 800 mm from the recorded cell respectively. (F) Comparison of the amplitude of the

locally and remotely activated IPSCs at saturation (two-way RM ANOVA, overall test significance indicated by §). (G, H) Comparison of the recruitment

curves during local (black) or remote (grey) stimulation for superior and inferior blade respectively. (I) Comparison of the cell fraction required for

halfmaximal IPSC activation between stimulation sites and blades (two-way RM ANOVA overall test significance indicated by §). (J–M) Temporal

properties of IPSCs between local (black) and remote (grey) stimulation. To test for systematic variations of kinetic parameters with increasing active cell

fractions as well as stimulation site two-way RM ANOVAs with no post tests were performed. Overall significance indicated by §. (K) Latency from

beginning of light pulse to IPSC (L) temporal jitter of IPSCs (SD of latency within cells) (M) 20% to 80% rise time (N) IPSC decay time constant.
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Figure 4. Short-term dynamics in the feedback inhibitory microcircuit. Trains of ten antidromic electrical stimulations at 1, 10, 30 or 50 Hz were applied

to elicit disynaptic feedback inhibition or excitation of hilar cells (electrical stimulation artifacts were removed in all traces). (A, D, G) Schematic

Figure 4 continued on next page
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Figure 4 continued

illustration of the experimental setup and example traces of voltage responses to positive and negative current injections of GC and hilar cells (dashed

lines indicate cuts to sever CA3 backprojections). (B) Exemplary GC feedback IPSCs before (black) and after (grey) glutamatergic block (n = 7). (C)

Facilitation indices (mean of the last three IPSCs normalized to the first; n = 10 cells). (D-L) Hilar cells were manually classified into putative interneurons

(blue) or mossy cells (green) based on their morpho-functional properties. (E) Reconstruction of biocytin filled hilar interneuron (axon in red). (F)

Interneuron EPSCs in response to stimulation trains. (H) Reconstruction of biocytin filled mossy cell (axon in red). (I) Mossy cell EPSCs in response to

stimulation trains. (J) Quantification of intrinsic properties of hilar cells (see Materials and methods). (K) k-means clustering based on intrinsic properties

of hilar cells (coloring according to manual classification). (L) Facilitation indices of classified hilar cells. (§ indicates significance in one-way RM ANOVA,

* show significance in Bonferroni corrected Wilcoxon signed rank tests for deviation from 1).
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Figure 4—figure supplement 1. Frequency dependence of feedback inhibition over space. Trains of 10 focal optic stimulations (20 ms duration) were

applied either locally (1) or remotely (2) to elicit feedback inhibition. (A) Schematic of the experimental paradigm and example traces of elicited cell

attached spikes or IPSCs. (B) Example traces for stimulation at 1, 10, 30 Hz or continuously for 200 ms of a local or remote GC populations (black and

grey, respectively). (C) The AP probability index (mean probability during the last three pulses normalized to the first pulse (one-way RM ANOVA,

p < 0.001 for frequency, Bonferroni corrected Wilcoxon signed rank test for deviation from 1; p = 0.024, = 0.008, = 0.008 and = 0.008 for 1 Hz, 10 Hz, 30

Hz and continuous stimulation, respectively). (D) Facilitation indices of local (dark grey) and remote (light grey) stimulation (two-way RM ANOVA;

p = 0.635, = 0.314 and = 0.687 for location, frequency and interaction, respectively).
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Figure 5. Computational model of the DG feedback circuit. A biophysically realistic model of DG was tuned to capture the key quantitative features of

the feedback circuit. All analyses were performed as for the real data (including IPSC normalization to maximal IPSC over space and power within each

respective cell) (A) Schematic of the model circuit. GC: granule cell, BC: basket cell, HC: hilar perforant path associated cell, MC; mossy cell. (B) Intrinsic

responses of model cell types to positive and negative current injections. (C) Spatially graded net feedback inhibition following simulated focal GC

activation. (D) Local and remote recruitment curves of the feedback inhibitory circuit (left) and the resulting saturated IPSC amplitudes and GC fractions

recruiting halfmaximal inhibition (right). (E) Facilitation indices resulting from simulated, 10 pulse, frequency stimulation of GCs as above.
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Figure 5—figure supplement 1. Model tuning and validation. (A) Frequency responses to somatic current injections of model cell types (GC: granule

cells, BC: basket cells, HC: hilar perforant path associated cells, MC: mossy cells). All model cells were matched to data by Santhakumar et al. (2005).

Figure 5—figure supplement 1 continued on next page
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Figure 5—figure supplement 1 continued

(B) Simulation of synchronous frequency stimulation of GCs and the resulting PSCs in modeled cell types, analogous to Figure 4. (C) Representative

theta modulated PP input and population responses (scatterplots) of all modeled cell types. Following each scatterplot are three examples of spiking

cells of the respective type. (D) Same as (C) but for slow gamma modulated inputs.
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Figure 6. Frequency dependent pattern separation of temporally structured inputs. The quantitative DG model was challenged with theta (10 Hz) or

slow gamma (30 Hz) modulated input patterns with defined overlap to probe its pattern separation ability. (A) Pair of theta modulated perforant path

Figure 6 continued on next page
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Figure 6 continued

input patterns in which 50% of afferents overlap (grey area). (B) Resulting pair of GC output patterns of the full tuned network. Bottom: Representative

individual GC underlying the observed patterns. (C) Comparison of 325 input pattern pairs and their resulting output pattern pairs. Each pair is

characterized by its rate vector correlation for inputs (Rin) and outputs (Rout), where rates are measured over the full 600 ms time window. Dashed black

lines represent the bin-wise mean Rout (in Rin bins of 0.1). Left: full tuned model, middle: model without mossy fiber inputs to interneurons, right: model

without inhibitory synapses. (D) Full pattern separation effects (mean DRout) of all three conditions for both frequency domains quantified as the area

enclosed by the dashed and unity lines in (C). Black lines represent individual network seeds. Two-way RM ANOVA indicated significance of condition,

frequency and interaction, * indicate significance in Sidak’s posttests between individual conditions. (E) Isolated effects of feedback and feedforward

motifs obtained by pairwise subtraction of Rout between conditions for each individual comparison. The inset shows the resulting DRout for each Rin bin.

The area under the curve quantifies the mean DRout as in (D). Two-way RM ANOVA indicated significance of condition, frequency and interaction. ***

indicate p<0.001 in Sidak’s posttest. (F). 100 ms time-resolved pattern separation effects of the full model, isolated FB or FF inhibition for theta

modulated input (10 Hz). All analyses were performed as above but with rate vector correlations computed for 100 ms time windows. The bottom insets

show DRout as a function of input similarity for each time window. The bottom right insets show the evolution of the mean DRout over time. (G) Same as

(F) but for slow gamma (30 Hz) modulated inputs. Arrow indicate the region of selectively increased pattern separation. Data in D-G represent

mean ± SEM of n = 7 random network seeds.
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Figure 6—figure supplement 1. Activity levels and pattern separation. (GCs: granule cells; MCs: mossy cells; BCs: basket cells; HCs: HIPP cells; n = 7

model runs). (A) Exemplary raster plots of 10 Hz and 30 Hz modulated inputs. (B) Mean number of action potentials per active perforant path afferent.

(C) Percentages of active cells within the model. (D) Mean number of action potentials per active cell within the model. Activity rates (A, B) were tested

with two-way ANOVAs followed by Sidak’s posttests for differences between frequencies. Asterisks indicate significance in posttests given significant

overall effects (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).
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Figure 6—figure supplement 2. Robustness over different Similarity Metrics. To test if the main finding of frequency dependent pattern separation,

particularly for highly similar inputs, depended on the similarity metric used, the original data was reanalyzed with two alternative similarity metrics. As

in the main figures data points in bar graphs represent the seven independent network seeds. For each network (seed), we ran sets of patterns for the

full model, a network without feedback inhibition (no FB) and a model with no inhibition (no inh.). (A) Pearson’s correlation coefficient R (as in Figure 6)

left: exemplary scatterplots of pattern separation effects. right: bargraphs of the mean pattern separation effect over the full input similarity range

(0 < Rin1) or only highly similar input patterns (0.9 < Rin < 1). Full effects measure the mean pattern separation effect for each network condition: full

model, no feedback (no FB) and no inhibition (no inh.). Isolated effects measure the pattern separation contribution of individual circuit motifs:

feedback inhibition (FB) and feedforward inhibition (FF). (B) Same as (A) but using normalized dot product (NDP) as similarity metric for input and

output comparisons. (C) Same as (A) but using population overlap as similarity metric. Overlap is defined as the number of cells active in both patterns

(logical and) divided by the number of cells active in either pattern (logical or). The full effects were tested with 2 � 3 ANOVAs followed by Sidak’s

posttests for differences between conditions. Isolated effects were tested with 2 � 2 ANOVAs followed by Tukey posttests for differences between

frequencies. Asterisks indicate significance in posttests given significant overall effects (*p<0.05,**p<0.01,***p<0.001).
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Figure 6—figure supplement 3. Isolated pattern separation effects of spatial tuning and MF facilitation. Effects of isolated manipulations were

computed for the DG model as in Figure 6. (A) Schematic of the full tuned network and the resulting spatial profile of inhibition (as in Figure 5). (B)

Schematic of the global network (with unrestricted BC target pool) and the resulting spatial profile of inhibition. (C) Schematic of the non-facilitating

network. (D) Isolated mean feedback effects of the global, tuned and non-facilitating models. Two-way RM ANOVA showed: p < 0.001, = 0.020, = 0.402

for frequency, condition and interaction respectively with * indicating significance in Dunnett’s posttest against the full tuned effect. p = 0.742 and 0.020

for global and non-facilitating, respectively at 10 Hz; p = 0.650 and 0.001 for global and non-facilitating, respectively at 30 Hz. (E) Exemplary pattern

separation plots of theta modulated inputs when spatial tuning (left) or MF facilitation (right) was removed. (F) Isolated pattern separation effects of the

given manipulation for theta (blue) or gamma (green) modulated inputs as a function of input similarity. (G) Isolated effect of the given manipulation on

Figure 6—figure supplement 3 continued on next page
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Figure 6—figure supplement 3 continued

mean DRout (left) and the coefficient of variance (DCoV) of pattern separation between individual comparisons (right). (H, I) Time-resolved analyses of

isolated effects of spatial tuning (left) and MF facilitation (right) for theta (top row) and slow gamma (bottom row) modulated inputs. In each subpanel,

the bottom left and middle insets show DRout as a function of input similarity of the first and last time windows respectively. The bottom right insets

show the evolution of the mean DRout over time.
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Figure 6—figure supplement 4. Robustness for shorter analysis time-window. (A) 33 ms time-resolved pattern separation effects of the full model,

isolated feedback (FB) or feedforward (FF) inhibition for theta modulated input (10 Hz). All analyses were performed as above but with rate vector

correlations computed for 33 ms time windows (instead of 100 ms or 600 ms, as in Figure 6). The bottom insets show DRout as a function of input

similarity for the first and last three time windows. The bottom right insets show the evolution of the mean DRout over time. (B) Same as (A) but for slow

gamma (30 Hz) modulated inputs. Data represent mean ± SEM of n = 7 random network seeds.
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Figure 6—figure supplement 5. Robustness over various IPSC decay time-constants and over the full gamma range. (A–C) To test if the frequency

dependence of feedback inhibitory pattern separation remained robust for different IPSC decay time constants we probed a range of altered time

constants (our experimentally matched time constant x0.5, x1, x2 and x5) while maintaining total inhibitory conductance in the network constant by

complementary adjustment of IPSC amplitude. As we expected a potential interaction between IPSC decay and modulation frequency, we probed

model runs for each factor with 10 Hz, 30 Hz and 60 Hz modulation. The isolated feedback inhibitory effects were computed and impacts of decay and

frequency were examined with 4 � 3 ANOVAs followed by Tukey posttests for differences between frequencies. Asterisks indicate significance in

posttests given significant overall effects (*p<0.05,**p<0.01,***p<0.001). (A) Illustration of modified IPSC time-courses. (B) Mean pattern separation

effect of isolated feedback inhibition over the full input similarity range (0 < Rin < 1). (C) Same as (B) but only for highly similar input patterns. Analyses

in A-C were performed on seven new network seeds with simulation and analysis otherwise identical to Figure 6. (D–E) To probe the robustness of

frequency-dependent feedback inhibitory pattern separation over an even larger range of frequency modulation, we next simulated the effects over a

range from 10 to 100 Hz in 5 Hz steps. To provide computational tractability, we performed only eight runs per frequency (instead of 24 runs as in all

other simulations) leading to fewer pattern comparisons, and somewhat noisier readouts. For the majority of frequencies, no input comparisons with

R > 0.9 occurred so we defined (0.8 < Rin < 1) as highly similar input patterns, potentially leading to a slight underestimation of our effects.
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Figure 6—figure supplement 6. Robustness for increased feedforward inhibition. To test if the frequency-dependent enhancement of feedback

inhibitory pattern separation of highly similar inputs was sensitive to the changes in the relative strengths of feedforward and feedback inhibition, we

increased the perforant path (PP) to basket cell (BC) synapse weight 2x. (A) Illustration of the network alteration. (B) The resulting full pattern separation

effects (left) and isolated feedback (FB) and feedforward (FF) effects (right) as mean over all input similarities. (C) Same as (B) but only for highly similar

input patters. Full effects were tested with 2 � 3 ANOVAs followed by Sidak’s postests for differences between conditions. Isolated effects were tested

with 2 � 2 ANOVAs followed by Tukey posttests for differences between frequencies. Asterisks indicate significance in posttests given significant

overall effects (*p<0.05,**p<0.01,***p<0.001).
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Figure 6—figure supplement 7. Robustness for increased perforant path (PP) drive. The weight of the PP input synapses was varied between 0.6x to

2x their original weight. (A) Illustration of the network alteration. (B) Active GC fractions for the full network (full), the no feedback inhibition network (no

FB) and the no inhibition network (no inh.), each for 10 and 30 Hz modulated PP input. The black arrow indicates the frequency effect for the default PP-

weight (1x). (C) Full pattern separation effects over all input similarities (0 < Rin < 1). Asterisks indicate p<0.05 (uncorrected t-tests). (D) Full pattern

separation effects for highly similar input patterns (0 < Rin < 1). Asterisks indicate p<0.05 (uncorrected t-tests). (E) Data for the full network from (B) and

(C) plotted to show pattern separation as a function of GC sparsity. The arrow represents the default PP input strength. (F) Same as E, but only for

highly similar input patterns.
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6. Quantitative properties of a feedback circuit predict frequency-dependent pattern separation

121 

6.3 Summary 

We incorporated the quantitative properties of feedback inhibition in the dentate gyrus 

into a computational model and found that its role in pattern separation depends on the 

frequency modulation of the input patterns. Thus far, pattern separation has been investigated 

mostly as a computation that depends mostly on the static elements of a circuit, such as 

threshold and overall connectivity. Our model proposes that network dynamics could influence 

the extent of pattern separation. This finding might have implications in brain areas other than 

the dentate gyrus since neuronal activity in most areas is temporally structure by oscillation 

activity. 
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