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Abstract

We develop the foundations of G-global homotopy theory as a synthesis of clas-
sical equivariant homotopy theory on the one hand and global homotopy theory
in the sense of Schwede on the other hand. Using this framework, we then intro-
duce the G-global algebraic K-theory of small symmetric monoidal categories with
G-action, unifying G-equivariant algebraic K-theory, as considered for example by
Shimakawa, and Schwede’s global algebraic K-theory.

As an application of the theory, we prove that the G-global algebraic K-
theory functor exhibits the category of small symmetric monoidal categories with
G-action as a model of connective G-global stable homotopy theory, generalizing
and strengthening a classical non-equivariant result due to Thomason. This in par-
ticular allows us to deduce the corresponding statements for global and equivariant
algebraic K-theory.
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Introduction

Equivariant homotopy theory is concerned with spaces carrying additional ‘sym-
metries,’ encoded in the action of a suitable fixed group, and their (co)homology the-
ories. One of the early successes of the equivariant point of view was the proof of the
Atiyah-Segal Completion Theorem [AS69] using equivariant topological K-theory,
generalizing and greatly simplifying Atiyah’s original argument [Ati61] based on
non-equivariant K-theory. Subsequently, this motivated the Segal Conjecture on
the stable cohomotopy of classifying spaces, from which much of the original im-
petus for the development of equivariant stable homotopy theory derived [Car92],
culminating in Carlsson’s proof [Car84]. At around the same time, the spectrum
level foundations of equivariant stable homotopy theory were worked out by Lewis,
May, and Steinberger [LMS86], and several additional equivalent models have been
established by now [MM02,Hau17].

Since these early days, equivariant homotopy theory has seen striking appli-
cations and connections to other areas of mathematics, ranging from the Sullivan
Conjecture [Sul05, Chapter 5] (proven by Carlsson [Car91] and in an important
special case by Miller [Mil84]) on the relation between fixed points and homotopy
fixed points, which was motivated by questions about the homotopy types of real
algebraic varieties, to the celebrated solution of the Kervaire invariant one problem
by Hill, Hopkins, and Ravenel [HHR16] in all dimensions apart from 126.

Global homotopy theory, as investigated among others by Schwede [Sch18],
provides a rigorous framework to talk about ‘uniform equivariant phenomena,’ and
in particular provides a natural home for many equivariant (co)homology theories
that exist in a compatible way for all suitable groups, like equivariant topological
K-theory and equivariant stable bordism. The global formalism has in several
cases led to clean and conceptual descriptions of such uniform phenomena where
direct descriptions for each individual group are much more opaque, for example
for equivariant formal group laws [Hau19a] or for the zeroth equivariant homotopy
groups of symmetric products [Sch17].

However, not all G-equivariant cohomology theories come from global ones;
in particular, while there is a forgetful functor from the global stable homotopy
category to the G-equivariant one admitting both adjoints, this is not a (Bousfield)
localization unless G is trivial, i.e. global homotopy theory is not in any straight-
forward way a generalization or refinement of G-equivariant homotopy theory.

The present monograph studies G-global homotopy theory as a synthesis of
the above two approaches; in particular, 1-global homotopy theory recovers global
homotopy theory, while there exists for every finite group G a forgetful functor from
(unstable or stable) G-global to G-equivariant homotopy theory admitting both a
fully faithful left and a fully faithful right adjoint, yielding right and left Bousfield
localizations, respectively. In fact, we develop our theory more generally for all
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2 INTRODUCTION

discrete groups G, which for infinite G refines proper equivariant homotopy theory,
as developed stably in [DHL+19]. The idea of G-global homotopy theory has been
around for some time—for example, specific pointset models of unstable and stable
Z/2-global homotopy theory appeared in preliminary versions of [Sch18], while
Σn-global weak equivalences for n ≥ 0 have recently been used in [Bar20] for the
study of operads in unstable global homotopy theory—but this seems to be the first
time the theory is developed systematically.

While there should also be a notion of G-global homotopy theory with respect
to all compact Lie groups, we restrict our attention to the discrete case here. This
in particular allows us to construct models of a more combinatorial nature, which
is crucial for our main application:

G-global algebraic K-theory. The algebraic K-theory of small symmet-
ric monoidal categories was introduced by May [May74] using operadic tech-
niques, and later an equivalent construction using Segal’s theory of (special) Γ-
spaces [Seg74] was given by May [May78] and Shimada and Shimakawa [SS79].
Our study of G-global homotopy theory is motivated by refinements of this to
equivariant and global contexts:

On the one hand, Shimakawa [Shi89] generalized Segal’s theory to construct
the G-equivariant algebraic K-theory (a genuine G-spectrum) of a small symmetric
monoidal category with the action of a finite group G, refining a construction
of Fröhlich and Wall [FW69] of the (low-dimensional) equivariant K-groups and
extending work of Fiedorowicz, Hauschild, and May [FHM82], who considered
the equivariant algebraic K-theory of rings. More recently, equivariant algebraic
K-theory has been revisited in the work of May, Merling, and their collaborators
[GM17,Mer17,MMO17].

On the other hand, Schwede [Sch19b] introduced the global algebraic K-
theory of so-called parsummable categories, and he described how small symmetric
monoidal categories give rise to parsummable categories. As one of our contribu-
tions, we bring his construction on an equal footing with the classical equivariant
and non-equivariant approaches here by proving that this in fact accounts for all ex-
amples up to homotopy. More precisely, there is a notion of global weak equivalence
of parsummable categories, under which global algebraic K-theory is invariant, as
well as a notion of global weak equivalence of symmetric monoidal categories, which
was originally introduced by Schwede in the unstable context [Sch19a], and with
respect to these we prove:

Theorem A. The passage from symmetric monoidal categories to parsummable
categories from the construction of global algebraic K-theory induces an equivalence
on the quasi-localizations with respect to the global weak equivalences.

Equivariant and global algebraic K-theory generalize the classical non-equi-
variant construction into two different directions, and in particular neither is a
special case of the other—for example, in view of Theorem A the global theory takes
less general inputs, but it yields more structure on the output. Accordingly, any
direct comparison of the two constructions would be rather weak, only capturing a
fraction of each of them.

Here we take a different route to clarifying the relation between the two ap-
proaches by realizing them as facets of a more general construction: using the
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framework of G-global homotopy theory developed in this monograph, we intro-
duce the G-global algebraic K-theory of small symmetric monoidal categories with
G-action, which for G = 1 again recovers global algebraic K-theory, while for gen-
eral G it refines the equivariant construction. Together with a basic compatibility
property of G-global algebraic K-theory under change of groups, this in particu-
lar shows that Schwede’s global algebraic K-theory of a small symmetric monoidal
category C forgets to the G-equivariant algebraic K-theory of C equipped with
the trivial action, and we suggest to think of the existence of G-global algebraic
K-theory as a general comparison of the above two approaches.

In addition, we also give a construction of the G-global algebraic K-theory of
parsummable categories with G-action that is compatible with the construction for
symmetric monoidal categories with G-action in the evident sense, and we prove
Theorem A more generally in this G-global setting.

A G-global Thomason Theorem. A classical result of Thomason says that
all connective stable homotopy types arise as K-theory spectra of small symmet-
ric monoidal categories; even stronger, he proved as [Tho95, Theorem 5.1] that
the K-theory functor expresses the homotopy category of connective spectra as a
localization of the 1-category of small symmetric monoidal categories.

As our main result in this thesis, we prove the following G-global generalization
of Thomason’s theorem:

Theorem B. For any discrete group G, the G-global algebraic K-theory con-
struction exhibits the quasi-category of connective G-global stable homotopy types as
a quasi-categorical localization of both the category G-SymMonCat of small sym-
metric monoidal categories with G-action as well as the category G-ParSumCat
of parsummable categories with G-action.

This in particular immediately yields the corresponding statements for global
and equivariant algebraic K-theory:

Theorem C. Schwede’s global algebraic K-theory functor exhibits the quasi-
category of connective global stable homotopy types as a quasi-categorical localization
of both SymMonCat and ParSumCat.

Theorem D. For any finite G, Shimakawa’s equivariant algebraic K-theory
construction exhibits the quasi-category of connective G-equivariant stable homotopy
types as a quasi-categorical localization of G-SymMonCat.

Theorem C (or more precisely its parsummable case) had been conjectured by
Schwede in [Sch19b]; to the best of our knowledge, also Theorem D had not been
proven before.

In fact, our methods yield a bit more: Mandell [Man10] strengthened Thoma-
son’s result to an equivalence between symmetric monoidal categories (up to weak
homotopy equivalences) and special Γ-spaces; in view of Segal’s description of the
passage from special Γ-spaces to connective spectra, Mandell called this a ‘non-
group-completed’ version of Thomason’s theorem. Conversely, this result then gives
a conceptual description of algebraic K-theory as a ‘higher group completion.’

Generalizing his result, we also prove ‘non-group-completed’ versions of Theo-
rems B–D, in particular showing that small symmetric monoidal categories model
all ultra-commutative monoids in the sense of [Sch18] (when viewed through the
eyes of finite groups), and that small symmetric monoidal categories with G-action
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are equivalent to Shimakawa’s special Γ-G-spaces. This way, we also get conceptual
descriptions of equivariant, global, and G-global algebraic K-theory as ‘higher equi-
variant (global; G-global) group completions,’ which we can in particular view as
evidence that these are the ‘correct’ generalizations of classical algebraic K-theory.

While the study of global versions of Γ-spaces, which is a key ingredient to
our proof of Theorem C, naturally leads to G-global homotopy theory, it is in-
teresting that (G-)global techniques are also central to our proof of the purely
equviariant Theorem D. In particular, the argument given here makes crucial use
of parsummable categories (and their G-global generalizations), and I am not aware
of a simple way to bypass them to obtain a standalone proof of Theorem D.

Outline. Chapter 1 introduces and compares various models of unstable G-
global homotopy theory, laying the foundations for the results established in later
chapters. We also compare our approach to usual proper equivariant homotopy the-
ory (Theorem 1.2.87) and to Schwede’s model of unstable global homotopy theory
in terms of orthogonal spaces (Theorem 1.5.25).

We then study several notions of ‘G-globally coherently commutative monoids’
in Chapter 2, in particular G-global versions of Γ-spaces or ultra-commutative
monoids. As the main result of this chapter (Theorem 2.3.1) we prove that these
models are equivalent, harmonizing Schwede’s global approach with the classical
equivariant theory. Along the way, we moreover show that various Day convolu-
tion products on our models of unstable G-global homotopy theory are fully ho-
motopical, in particular providing G-global versions of the non-equivariant results
of [SS20].

Chapter 3 is concerned with stable G-global homotopy theory. We introduce gen-
eralizations of Hausmann’s global model structure [Hau19b] to symmetric spectra
with G-action, whose weak equivalences for finite G refine the usual G-equivariant
stable weak equivalences [Hau17]. Using this, we then prove a G-global strength-
ening of a classical result due to Segal (Theorem 3.4.21): any G-global Γ-space can
be delooped to a connective G-global spectrum, and this provides an equivalence
between so-called very special G-global Γ-spaces on the one hand and connective
G-global spectra on the other hand.

In Chapter 4 we give two compatible constructions of G-global algebraic K-
theory and compare them to both equivariant and global algebraic K-theory. Fi-
nally, we prove a G-global generalization of Theorem A, which we then use together
with almost all of the theory developed in the previous chapters as well as an ex-
plicit construction building a parsummable category from a so-called parsummable
simplicial set to prove Theorems B–D.

Conventions. We assume Grothendieck’s Axiom of Universes and fix once and
for all universes U ∈ V; we will refer to elements of U as sets and to elements of V
as classes. Accordingly, a small category will be a U-small category (i.e. a category
with sets of objects and morphisms), while we will refer to V-small categories simply
as ‘categories.’

By common abuse of language, we use the term ‘topological space’ to mean
compactly generated space in the sense of [McC69, §2].
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Schwede for his encouragement and support through the past years, for guidance
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CHAPTER 1

Unstable G-global homotopy theory

In this chapter we will introduce several models of unstable G-global homotopy
theory, generalizing Schwede’s unstable global homotopy theory [Sch18, Chapter 1].
These models are already geared towards the study of G-global algebraic K-theory,
and in particular, while we will be ultimately interested in stable G-global homotopy
theory and in the theory of G-global infinite loop spaces, the comparisons proven
here will be instrumental in establishing results on the latter.

1.1. Equivariant homotopy theory for monoids

Let G be a discrete group. In unstable G-equivariant homotopy theory one is
usually interested in G-spaces or G-simplicial sets up to so-called (genuine) G-weak
equivalences, i.e. G-equivariant maps that induce weak homotopy equivalences on
H-fixed points for all subgroups H ⊂ G. More generally, one can consider the
F-weak equivalences for any collection F of subgroups of G, i.e. those maps that
induce weak homotopy equivalences on H-fixed points for all H ∈ F . If F = A``
is the collection of all subgroups, this recovers the previous notion; at the other
extreme, if F consists only of the trivial subgroup, then the F-weak equivalences
are precisely the underlying weak homotopy equivalences. We will at several points
encounter proper equivariant homotopy theory, where one considers the class Fin
of finite subgroups of G; of course, Fin = A`` if G is finite, but for infinite G these
differ.

Our first approach to unstable G-global homotopy theory will rely on a gen-
eralization of this to actions of simplicial monoids, and this section is devoted to
generalizing several basic results from unstable equivariant homotopy theory to
this context. In particular, we will construct equivariant model structures, prove a
version of Elmendorf’s Theorem, and discuss functoriality with respect to monoid
homomorphisms.

1.1.1. Equivariant model structures. There are several approaches to the
construction of the usual equivariant model structures for group actions, for exam-
ple the criteria of Dwyer and Kan [DK84] or Stephan [Ste16]. In this subsection,
we will use the work of Dwyer and Kan to prove:

Proposition 1.1.1. Let M be a simplicial monoid and let F be a collection of
finite subgroups of M0. Then the category M-SSet of M -objects in SSet admits
a unique model structure such that a map f : X → Y is a weak equivalence or
fibration if and only if fH : XH → Y H is a weak homotopy equivalence or Kan
fibration, respectively, for all H ∈ F .

We call this the F-model structure (or, if F is clear from the context, the M -
equivariant model structure, or even simply the equivariant model structure) and
its weak equivalences the F-weak equivalences (or simply M -weak equivalences;

7



8 1. UNSTABLE G-GLOBAL HOMOTOPY THEORY

equivariant weak equivalences). It is simplicial, combinatorial, and proper. A
possible set of generating cofibrations is given by

I = {M/H × ∂∆n ↪→M/H ×∆n : n ≥ 0, H ∈ F},

and a possible set of generating acyclic cofibrations is given by

J = {M/H × Λnk ↪→M/H ×∆n : 0 ≤ k ≤ n, H ∈ F}.

Moreover, filtered colimits are homotopical in M-SSet.

The finiteness condition on the subgroups H is not necessary for the existence
of the model structure, but it guarantees that filtered colimits are fully homotopical,
which will simplify several arguments later. It is crucial for our argument that we
only test weak equivalences and fibrations with respect to discrete subgroups.

The proof of Proposition 1.1.1 will be given below. However, we already note:

Lemma 1.1.2. The weak equivalences of the above model structure are closed
under finite products and small (i.e. set-indexed) coproducts.

Proof. As fixed points commute with products and coproducts, this is imme-
diate from the corresponding statement for ordinary simplicial sets. �

In order to conveniently formulate the result of Dwyer and Kan, we introduce
the following notion:

Definition 1.1.3. Let D be a category enriched and tensored over SSet. We
call a family (Φi)i∈I (for some set I) of enriched functors D → SSet cellular if the
following conditions are satisfied:

(1) Each Φi preserves filtered colimits.
(2) Each Φi is corepresentable in the enriched sense.
(3) For each i, j ∈ I, n ≥ 0, and some (hence any) Xi corepresenting Φi, the

functor Φj sends pushouts along incl⊗Xi : ∂∆n⊗Xi → ∆n⊗Xi to homo-
topy pushouts in SSet (with respect to the weak homotopy equivalences).

By Proposition A.2.7 (or an easy direct argument), Φj more generally sends
pushouts along f⊗Xi : K⊗Xi → L⊗Xi for any cofibration f : K → L of simplicial
sets to homotopy pushouts. Thus, the above conditions immediately imply that the
corepresenting elements {Xi : i ∈ I} form a set of orbits in the sense of [DK84, 2.1].
Our terminology is instead motivated by [Ste16, Proposition 2.6].

Theorem 1.1.4 (Dwyer & Kan). Let D be a complete and cocomplete category
that is in addition enriched, tensored, and cotensored over SSet. Let (Φi)i∈I be a
cellular family, and fix for each i ∈ I an Xi ∈ D corepresenting Φi.

Then there is a unique model structure on D in which a map f is a weak
equivalence or fibration if and only if Φi(f) is a weak equivalence or fibration,
respectively, in SSet for each i ∈ I. This model structure is simplicial and moreover
cofibrantly generated with generating cofibrations

{incl⊗Xi : ∂∆n ⊗Xi → ∆n ⊗Xi : n ≥ 0, i ∈ I}

and generating acyclic cofibrations

{incl⊗Xi : Λnk ⊗Xi → ∆n ⊗Xi : 0 ≤ k ≤ n, i ∈ I}.

Finally, filtered colimits in D are homotopical.
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Proof. [DK84, Theorem 2.2] and its proof show that the model structure
exists, that it is simplicial, and that it is cofibrantly generated by the above sets
of (acyclic) cofibrations. The final statement follows immediately from the corre-
sponding statement for SSet as each Φi preserves filtered colimits. �

Next, we want to establish some additional properties of this model structure:

Proposition 1.1.5. In the above situation, D is a proper model category. A
commutative square in D is a homotopy pushout if and only if its image under Φi
is a homotopy pushout in SSet for each i ∈ I.

Here we use the term homotopy pushout for the dual of what Bousfield and
Friedlander called a homotopy fibre square in [BF78, Appendix A.2].

To prove the proposition, it will be convenient to realize the above model
structure on D as a transferred model structure:

Definition 1.1.6. Let D be a complete and cocomplete category, let C be a
model category, and let F : C � D : U be an (ordinary) adjunction. The model
structure transferred along F a U on D is the (unique if it exists) model structure
where a morphism f is a weak equivalence or fibration if and only if Uf is.

Transferred model structures will play a role at several points in this monograph
and we recall some basic facts about them in Appendix A.2.3.

Construction 1.1.7. Fix for each i ∈ I an Xi ∈ D corepresenting Φi, and
let OΦ• ⊂ D be the full simplicial subcategory spanned by the Xi’s. We define the
enriched functor Φ: D → Fun(Oop

Φ•
,SSet) as the composition

D
enriched Yoneda−−−−−−−−−−→ Fun(Dop,SSet)

restriction−−−−−−→ Fun(Oop
Φ•
,SSet),

where Fun denotes the enriched category of simplicially enriched functors.
In other words, Φ(X)(Y ) = mapsD(Y,X) with the obvious functoriality. In

particular, if Y ∈ OΦ• corepresents Φi, then we have an enriched isomorphism

(1.1.1) evY ◦ Φ ∼= Φi.

Construction 1.1.8. It is well-known—see e.g. [Kel05, Theorem 4.51] to-
gether with [Kel05, Theorem 3.73op] for a statement in much greater generality—
that for any essentially small simplicial category T , any cocomplete category D
enriched and tensored over SSet, and any simplicially enriched functor F : T → D ,
there exists an induced simplicial adjunction Fun(T op,SSet) � D with right ad-
joint R given by R(Y )(t) = maps(F (t), Y ) for all t ∈ T , Y ∈ D with the obvious
functoriality in each variable.

The left adjoint L can be computed by the simplicially enriched coend

L(X) =

∫ t∈T
X(t)⊗ F (t)

for any enriched presheaf X, together with the evident functoriality.

In particular, applying this to the inclusion of OΦ• yields:

Corollary 1.1.9. The simplicial functor Φ has a simplicial left adjoint Λ. �

By (1.1.1), the model structure from Theorem 1.1.4 is transferred along Λ a Φ
from the projective model structure, allowing us to use the general results from
Appendix A.2.3.
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Proof of Proposition 1.1.5. Right properness of the model structure on
D is immediate from Lemma A.2.14-(1).

For left properness and the characterization of homotopy pushouts, we observe
that homotopy pushouts in Fun(Oop

Φ•
,SSet) can be checked levelwise, so that it is

enough by Lemma A.2.15 that Φ sends pushouts along cofibrations to homotopy
pushouts. By Proposition A.2.7 it suffices to check this for a set of generating
cofibrations, which is then an instance of Condition (3) of Definition 1.1.3. �

We now want to apply this to construct the M -equivariant model structure,
for which we use the following well-known observation, cf. e.g. [DK84, 1.2] for the
case of topological groups acting on spaces or [Ste16, Example 2.14] for discrete
groups acting on simplicial sets.

Lemma 1.1.10. Let M be a simplicial monoid and let F be a collection of
finite subgroups of M0. For any H ∈ F , the enriched functor (–)H : M-SSet →
SSet is corepresented by M/H via evaluation at the class of 1 ∈ M . It preserves
filtered colimits and pushouts along underlying cofibrations. In particular, the family(
(–)H

)
H∈F is cellular.

Proof. The corepresentability statement is obvious. As limits and colimits in
M-SSet are created in SSet, filtered colimits commute with all finite limits, hence
in particular with fixed points with respect to finite groups. Similarly, one reduces
the statement about pushouts to the corresponding statement in Set, which is easy.

As each of the maps ∂∆n×M/H ↪→ ∆n×M/H is in particular an underlying
cofibration, the above immediately implies that the family of fixed point functors
is cellular, finishing the proof. �

Proof of Proposition 1.1.1. By the previous lemma, we may apply Theo-
rem 1.1.4 and Proposition 1.1.5, so it only remains to show that this model category
is combinatorial. But we know it is cofibrantly generated, and as an ordinary cat-
egory M-SSet is just the category of enriched functors of the category BM with
one object and endomorphism space M into SSet, hence locally presentable. �

1.1.2. Elmendorf’s Theorem. The classical Elmendorf Theorem [Elm83]
explains how G-equivariant homotopy theory (with respect to a fixed topological
or simplicial group G) can be modelled in terms of fixed point data. Dwyer and
Kan [DK84, Theorem 3.1] provided a generalization of this to the above context:

Theorem 1.1.11 (Dwyer & Kan). If (Φi)i∈I is any cellular family on D , then
the simplicial adjunction

Λ: Fun(Oop
Φ•
,SSet)� D :Φ

is a Quillen equivalence for the projective model structure on the source. �

If M is a simplicial monoid and F is a collection of finite subgroups of M0, then
we write OF (or simply OM if F is clear from the context) for the full subcategory
of M-SSet spanned by the M/H for H ∈ F . The above then specializes to:

Corollary 1.1.12. The simplicial adjunction

Λ: Fun(Oop
F ,SSet)�M-SSetF-equivariant :Φ

is a Quillen equivalence for any simplicial monoid M and any collection F of finite
subgroups of M0. Here Φ(X)(M/H) = mapsM (M/H,X) ∼= XH with the evident
functoriality. �
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1.1.3. Injective model structures. For a group G, it is an easy observa-
tion that the cofibrations of the A``-model structure on G-SSet are precisely the
underlying cofibrations. In the case of a general collection F , this will of course
no longer be true—for example, if F is closed under subconjugates, then we can
explicitly characterize the cofibrations as those injections such that all simplices
not in the image have isotropy in F , see e.g. [Ste16, Proposition 2.16].

However, it is well-known that there is still a model structure with the same
weak equivalences and whose cofibrations are the underlying cofibrations called the
mixed or injective F-model structure, see e.g. [Shi04, Proposition 1.3] for a pointed
version. We will now construct an analogue of this in our situation, which will use:

Corollary 1.1.13. Pushouts in M-SSet along underlying cofibrations are
homotopy pushouts (for any collection F of finite subgroups of M0).

Proof. By Lemma 1.1.10, each (–)H sends such a pushout to a pushout again.
As taking fixed points moreover obviously preserves underlying cofibrations, this is
then a homotopy pushout in SSet, so the claim follows from Proposition 1.1.5. �

Corollary 1.1.14. Let M be any simplicial monoid and let F be a collection
of finite subgroups of M0. Then there is a unique model structure on M-SSet
whose weak equvialences are the F-weak equivalences and whose cofibrations are the
injective cofibrations (i.e. levelwise injections). We call this the injective F-model
structure (or equivariant injective model structure if F is clear from the context).
It is combinatorial, simplicial, proper, and filtered colimits in it are homotopical.

Proof. As an ordinary category, M-SSet is just a category of enriched func-
tors into SSet, and hence the usual injective model structure (which has weak
equivalences the underlying non-equivariant weak homotopy equivalences) on it ex-
ists and is combinatorial. On the other hand, the F-equivariant model structure is
combinatorial, and its weak equivalences are stable under filtered colimits as well
as pushouts along underlying cofibrations by the previous corollary.

Thus, we can apply Corollary A.2.18 to combine the cofibrations of the injective
model structure with the F-weak equivalences, yielding the desired model structure
and proving that it is combinatorial, proper, and that filtered colimits in it are
homotopical. It only remains to prove that it is simplicial, which means verifying
the Pushout Product Axiom. So let i : K → L be a cofibration of simplicial sets
and let f : X → Y be an underlying cofibration of M -simplicial sets. Because SSet
is a simplicial model category, we immediately see that the pushout product map

K ×X K × Y

L×X (K × Y )qK×X (L×X)

L× Y

i×X

K×f

i×Y

L×f

i�f

is again an underlying cofibration. It only remains to prove that this is a weak
equivalence provided that either i or f is. For this we observe that the equivariant
weak equivalences are stable under finite products by Lemma 1.1.2; moreover, a
weak homotopy equivalence between simplicial sets with trivial M -action is already
an equivariant weak equivalence. Hence, if i is an acyclic cofibrations of simplicial
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sets, then the cofibration i×X is actually acyclic in the equivariant injective model
structure, and so is i× Y . Moreover, K × Y → (K × Y )qK×X (L×X) is also an
acyclic cofibration as the pushout of an acyclic cofibration. It follows by 2-out-of-3
that also i � f is an equivariant weak equivalence. The argument for the case that
f is an acyclic cofibration is analogous, and this finishes the proof. �

1.1.4. Functoriality. We will now explain how the above model structures
for different monoids or collections of subgroups relate to each other.

1.1.4.1. Change of monoid. If α : H → G is any group homomorphism, then
α∗ obviously preserves cofibrations, fibrations, and weak equivalences of the A``-
model structures. It follows immediately that the simplicial adjunctions α! a α∗
and α∗ a α∗ are Quillen adjunctions. For monoids and general F one instead has
to distinguish between the usual F-model structure and the injective one:

Lemma 1.1.15. Let α : M → N be any monoid homomorphism, let F be a
collection of finite subgroups of M0, and let F ′ be a collection of finite subgroups
of N0 such that α(H) ∈ F ′ for all H ∈ F . Then α∗ sends F ′-weak equivalences to
F-weak equivalences and it is part of a simplicial Quillen adjunction

α! : M-SSetF-equivariant �N-SSetF ′-equivariant :α∗.

Proof. If f is any morphism in N-SSet and H ⊂ M0 is any subgroup, then
(α∗f)H = fα(H). Thus, the claim follows immediately from the definition of the
weak equivalences and fibrations of the equivariant model structures. �

Lemma 1.1.16. In the situation of Lemma 1.1.15, also

α∗ : N-SSetF ′-equivariant injective �M-SSetF-equivariant injective :α∗.

is a simplicial Quillen adjunction.

Proof. We have seen in the previous lemma that α∗ is homotopical. Moreover,
it obviously preserves injective cofibrations. �

The questions when α! is left Quillen for the injective model structures or
when α∗ is right Quillen for the usual model structures are more complicated. The
following propositions will cover the cases of interest to us:

Proposition 1.1.17. Let α : H → G be an injective homomorphism of discrete
groups and let M be any simplicial monoid. Let F be any collection of finite sub-
groups of M0×H and let F ′ be a collection of finite subgroups of M0×G such that
the following holds: for any K ∈ F ′, g ∈ G also (M × α)−1(gKg−1) ∈ F . Then

α! : (M ×H)-SSetF-equiv. inj. � (M ×G)-SSetF ′-equiv. inj. :α∗ = (M × α)∗

is a simplical Quillen adjunction; in particular, α! is homotopical.

Proof. While we have formulated the result above in the way we later want
to apply it, it will be more convenient for the proof to switch the order in which
we write the actions, i.e. to work with (H ×M)- and (G×M)-simplicial sets.

We may assume without loss of generality that H is a subgroup of G and α
is its inclusion. Then G ×H – (with the M -action pulled through via enriched
functoriality) is a model for α!; if X is any H-simplicial set, then the n-simplices of
G×H X are of the form [g, x] with g ∈ G and x ∈ Xn where [g, x] = [g′, x′] if and
only if there exists an h ∈ H with g′ = gh and x = h.x′.
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Now let K ⊂ G×M0 be any subgroup. We set S := {g ∈ G : g−1Kg ⊂ H×M0}
and observe that this is a right H-subset of G. We fix representatives (si)i∈I of the
orbits. If now X is any (H ×M)-simplicial set, then we define

ι :
∐
i∈I

Xs−1
i Ksi → G×H X

as the map that is given on the i-th summand by x 7→ [si, x].
The following splitting ought to be well-known:

Claim. The map ι is natural in X (with respect to the evident functoriality
on the left hand side) and it defines an isomorphism onto (G×H X)K .

Proof. The naturality part is obvious. Moreover, it is clear from the choice of
the si as well as the above description of the equivalence relation that ι is injective,
so that it only remains to prove that its image equals (G×H X)K .

Indeed, assume [g, x] is a K-fixed n-simplex. Then in particular k1g ∈ gH for
any k = (k1, k2) ∈ K by the above description of the equivalence relation, hence
g−1k1g ∈ H which is equivalent to g−1kg ∈ H ×M0. Letting k vary, we conclude
that g ∈ S, and after changing the representative if necessary we may assume that
g = si for some i ∈ I. But then

[si, x] = k.[si, x] = [k1si, k2.x] = [si(s
−1
i k1si), k2.x]

= [si, (s
−1
i k1si, k2).x] = [si, (s

−1
i ksi).x]

for any k ∈ K, and hence x ∈ Xs−1
i Ksi asH acts faithfully onG. Thus, im ι contains

all K-fixed points. Conversely, going through the above equation backwards shows
that [si, x] is K-fixed for any (s−1

i Ksi)-fixed x, i.e. also im ι ⊂ (G×H X)K . 4

In particular, for K = 1 this recovers the fact that non-equivariantly G×H X
is given as disjoint union of copies of X; we immediately conclude that α! preserves
injective cofibrations. On the other hand, if K ∈ F ′, then we conclude from the
claim that for any morphism f in (H ×M)-SSet the map (G×H f)K is conjugate

to
∐
i∈I f

s−1
i Ksi for some si ∈ G with s−1

i Ksi ⊂ H ×M0 for all i ∈ I. Then by

assumptions on F already s−1
i Ksi ∈ F , so that each fs

−1
i Ksi is a weak homotopy

equivalence whenever f is a F-weak equivalence. As coproducts of simplicial sets
are fully homotopical, we conclude that (G×H f)K is a weak homotopy equivalence,
and letting K vary this shows G×H f is an F ′-weak equivalence. �

Proposition 1.1.18. In the situation of Proposition 1.1.17, also

α∗ : (M ×G)-SSetF ′-equivariant � (M ×H)-SSetF-equivariant :α∗.

is a simplicial Quillen adjunction. Moreover, if the index (G : imα) is finite, then
α∗ is fully homotopical.

Proof. We may again assume that α is the inclusion of a subgroup, so that
α∗ can be modelled as usual by mapsH(G, –).

Let K ⊂M0×G be any subgroup, and let K2 be its projection to G. We pick a
system of representatives (gi)i∈I of H\G/K2, and we let Li = (M×H)∩(giKg

−1
i ).

Similarly to the previous proposition, one checks that we have an isomorphism∐
i∈I(M × H)/Li → (M × G)/K given on summand i by [m,h] 7→ [m,hgi]. To-

gether with the canonical isomorphism mapsH(G, –)K ∼= mapsM×H((M ×G)/K, –)
induced by the projection, this shows that for any (M × H)-equivariant map
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f : X → Y the map α∗(f)K is conjugate to
∏
i∈I f

Li . If K ∈ F ′, then the as-
sumptions guarantee that Li ∈ F , so α∗ is obviously right Quillen. If in addition
(G : H) <∞, then H\G is finite, and hence so is I. As finite products in SSet are
homotopical, so is α∗ in this case. �

Remark 1.1.19. Let A,B be groups. We recall that a graph subgroup C ⊂
A × B is a subgroup of the form {(a, ϕ(a)) : a ∈ A′} for some subgroup A′ ⊂ A
and some group homomorphism ϕ : A′ → B; note that this is not symmetric in A
and B. Both A′ and ϕ are uniquely determined by C, and we write C =: ΓA′,ϕ. A
subgroup C ⊂ A×B is a graph subgroup if and only if C ∩ (1×B) = 1.

If A and B are monoids, then we can define its graph subgroups as the graph
subgroups of the maximal subgroup core(A × B) of A × B. If A′ ⊂ core(A) and
ϕ : A′ → B is a homomorphism, then we will abbreviate (–)ϕ := (–)ΓA′,ϕ .

Example 1.1.20. Let E be any collection of finite subgroups of M0 closed under
taking subconjugates. Then the assumptions of the previous two propositions are
in particular satisfied if we take F = GE,H to be the collection of those graph
subgroups ΓK,ϕ of M0 ×H with K ∈ E , and similarly F ′ = GE,G.

Let us consider a general homomorphism α : H → G now. Then (M × α)∗ is
right Quillen with respect to the GE,H - and GE,G-model structures for E as above, so
Ken Brown’s Lemma implies that α! preserves weak equivalences between cofibrant
objects. On the other hand, Proposition 1.1.17 says that α! is fully homotopical if
α is injective. The following proposition interpolates between these two results:

Proposition 1.1.21. Let E be a collection of finite subgroups of M0 closed
under subconjugates, let α : H → G be a homomorphism, and let f : X → Y be a
GE,H-weak equivalence in (M ×H)-SSet such that ker(α) acts freely on both X
and Y . Then α!(f) is a GE,G-weak equivalence.

Proof. By Proposition 1.1.17 we may assume without loss of generality that
α is the quotient map H → H/ ker(α), so that the functor α! can be modelled by
quotiening out the action of the normal subgroup K := ker(α).

The following splitting follows from a simple calculation similar to the above
arguments, which we omit. It can also be obtained from the discrete special case
of [Hau17, Lemma A.1] by adding disjoint basepoints:

Claim. Let L ⊂M0 be any subgroup and let ϕ : L→ H/K be any homomor-
phism. Then we have for any (L × H)-simplicial set Z on which K acts freely a
natural isomorphism ∐

[ψ : L→H]

Zψ/(CH(imψ) ∩K)
∼=−→ (Z/K)ϕ

given on each summand by [z] 7→ [z]. Here the coproduct runs over K-conjugacy
classes of homomorphisms lifting ϕ, and CH denotes the centralizer in H. 4

We can now prove the proposition. Let L ∈ E and let ϕ : L → H. In order
to show that (f/K)ϕ is a weak homotopy equivalence it suffices by the claim that
fψ/(CH(imψ)∩K) be a weak homotopy equivalence for all ψ : L→ H lifting ϕ. But
indeed, as K acts freely on X and Y , so does CH(imψ)∩K; in particular, it also acts
freely on Xψ and Y ψ. The claim follows as fψ is a weak homotopy equivalence
by assumption and since free quotients preserve weak homotopy equivalences of
simplicial sets (for example by the special case M = 1 of the above discussion). �
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1.1.4.2. Change of subgroups. We now turn to the special case that the monoid
M is fixed (i.e. α = idM ), but the collection F is allowed to vary. For this we will
use the notion of quasi-localizations, which we recall in Appendix A.1; in particular,
we will employ the notation C∞W (or simply C∞) introduced there for ‘the’ quasi-
localization of a category C at a class W of maps.

Proposition 1.1.22. Let M be a simplicial monoid and let F ,F ′ be collections
of finite subgroups of M0 such that F ′ ⊂ F . Then the identity descends to a quasi-
localization

(1.1.2) M-SSet∞F-weak equivalences →M-SSet∞F ′-weak equivalences

at the F ′-weak equivalences, and this functor admits both a left adjoint λ as well as
a right adjoint ρ. Both λ and ρ are fully faithful.

Proof. The identity obviously descends to the quasi-localization (1.1.2). It
then only remains to construct the desired adjoints, as they will automatically be
fully faithful as adjoints of quasi-localizations, see e.g. [Cis19, Proposition 7.1.17].

But indeed, Lemma 1.1.15 specializes to yield a Quillen adjunction

id: M-SSetF ′-equivariant �M-SSetF-equivariant : id

so that the left derived functor Lid in the sense of Theorem A.1.19 defines the
desired left adjoint. To construct the right adjoint, we observe that while

id : M-SSetF-equivariant �M-SSetF ′-equivariant : id

is typically not a Quillen adjunction with respect to the usual model structures, it
becomes one if we use Corollary A.2.17 to enlarge the cofibrations on the right hand
side to contain all generating cofibrations of the F-model structure (which we are
allowed to do by Corollary 1.1.13), or alternatively that it is a Quillen adjunction
for the corresponding injective model structures by Lemma 1.1.16. �

Remark 1.1.23. By the above proof, λ can be modelled by taking a cofibrant
replacement with respect to the F ′-model structure.

1.2. G-global homotopy theory via monoid actions

1.2.1. The universal finite group. Schwede [Sch20b] proved that unstable
global homotopy theory with respect to all compact Lie groups can be modelled by
spaces with the action of a certain topological monoid L, that he calls the universal
compact Lie group, and which we will recall in Section 1.5. For unstable global
homotopy theory with respect to finite groups, we will instead be interested in a
certain discrete analogue M, which (under the name M) also plays a central role
in Schwede’s approach [Sch19b] to global algebraic K-theory.

Definition 1.2.1. We write ω = {0, 1, 2, . . . }, and we denote byM the monoid
(under composition) of all injections ω → ω.

Analogously to the Lie group situation [Sch20b, Definition 1.6], when we model
a ‘global space’ by an M-simplicial set X, we do not expect the fixed point spaces
XH for all finite H ⊂M to carry homotopical information, but only those for cer-
tain so-called universal H. To define these, we first need the following terminology,
cf. [Sch19b, Definition 2.16]:
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Definition 1.2.2. Let H be any finite group. A countable H-set U is called a
complete H-set universe if the following equivalent conditions hold:

(1) Every finite H-set embeds H-equivariantly into U .
(2) Every countable H-set embeds H-equivariantly into U .
(3) There exists an H-equivariant isomorphism

U ∼=
∞∐
i=0

∐
K⊂H

subgroup

H/K.

(4) Every subgroup K ⊂ H occurs as stabilizer of infinitely many distinct
elements of U .

The proof that the above conditions are indeed equivalent is easy and we omit
it. For all of these statements except for the second one this also appears without
proof as [Sch19b, Proposition 2.17 and Example 2.18].

The following lemmas are similarly straightforward to prove from the defini-
tions, and they also appear without proof as part of [Sch19b, Proposition 2.17].

Lemma 1.2.3. Let U ⊂ V be H-sets, assume U is a complete H-set universe
and V is countable. Then also V is a complete H-set universe. �

Lemma 1.2.4. Let U be a complete H-set universe and let α : K → H be an
injective group homomorphism. Then α∗U (i.e. U with K-action given by k.x =
α(k).x) is a complete K-set universe. �

Definition 1.2.5. A finite subgroup H ⊂ M is called universal if the re-
striction of the tautological M-action on ω to H makes ω into a complete H-set
universe.

Lemma 1.2.4 immediately implies:

Corollary 1.2.6. Let K ⊂ H ⊂ M be subgroups and assume that H is
universal. Then also K is universal. �

Lemma 1.2.7. Let H be any finite group. Then there exists an injective monoid
homomorphism i : H → M with universal image. Moreover, if j : H → M is
another such homomorphism, then there exists a ϕ ∈ coreM such that

(1.2.1) j(h) = ϕi(h)ϕ−1

for all h ∈ H.

Proof. This is similar to [Sch20b, Proposition 1.5]: first, we observe that
there exists a complete H-set universe, for example

U :=

∞∐
i=0

∐
K⊂H

subgroup

H/K.

As this is countable, we can pick a bijection of sets ω ∼= U , which yields an H-
action on ω turning it into a complete H-set universe. The H-action amounts to a
homomorphism H → Σω ⊂M which is injective as the action is faithful, providing
the desired homomorphism i.

If j is another such homomorphism, then both i∗ω and j∗ω are complete H-
set universe, and hence there exists an H-equivariant isomorphism ϕ : i∗ω → j∗ω,
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see part (3) of Definition 1.2.2. The H-equivariance of ϕ then precisely means
that ϕ(i(h)(x)) = j(h)(ϕ(x)) for all h ∈ H and x ∈ ω, i.e. ϕi(h)ϕ−1 = j(h) as
desired. �

1.2.2. Global homotopy theory. Before we introduce models of unstable
G-global homotopy theory based on the above monoid M in the next subsection,
let us first consider the ordinary global situation in order to present some of the
main ideas without being overly technical.

Heuristically, we would like to think of a ‘global space’ X as having for each
abstract finite group H a fixed point space XH and for each abstract group ho-
momorphism f : H → K a suitably functorial restriction map f∗ : XK → XH .
One way to make this heuristic rigorous is given by Schwede’s orbispace model,
see [Sch19a, Theorem 2.12]—in fact, it turns out that there is also some additional
2-functoriality. The above lemma already tells us that we can assign to an M-
simplicial set X for each abstract finite group H an essentially unique fixed point
space XH as follows: we pick an injective group homomorphism i : H → M with
universal image and set XH := Xi(H). This is indeed independent of the group
homomorphism i up to isomorphism: namely, if j is another such group homomor-
phism, the lemma provides us with a ϕ such that j(h) = ϕi(h)ϕ−1 for all h ∈ H,
and ϕ.–: X → X clearly restricts to an isomorphism Xi(H) → Xj(H).

However, there is an issue here—namely, the element ϕ (or more precisely, its
action) is not canonical (in particular, it is not clear how to define 1-functoriality):

Example 1.2.8. Let us consider the special case H = 1, so that there is in
particular only one homomorphism i = j : H →M. Then any ϕ ∈ coreM satisfies
the condition (1.2.1) and hence produces an endomorphism ϕ.– of X = X{1}.

Looking at the orbispace model, we should expect all such endomorphisms of
X{1} to be homotopically trivial. However, for X = M any ϕ 6= 1 gives us a
non-trivial endomorphism.

This suggests that M-simplicial sets with respect to maps inducing weak ho-
motopy equivalences on fixed points for universal subgroups are not yet a model of
unstable global homotopy theory. In order to solve the issue raised in the example,
we will enhanceM to a simplicial (or categorical) monoid in particular trivializing
the above action. This uses:

Construction 1.2.9. Let X be any set. We write EX for the (small) category
with objects X and precisely one morphism x → y for each x, y ∈ X, which we
denote by (y, x). We extend E to a functor Set→ Cat in the obvious way.

We will moreover also write EX for the simplicial set given in degree n by

(EX)n = X×(1+n) ∼= maps({0, . . . , n}, X)

with structure maps via restriction and with the evident functoriality in X. We
remark that the simplicial set EX is indeed canonically isomorphic to the nerve
of the category EX, justifying the clash of notation. In fact, it will be useful at
several points to switch between viewing EX as a category or as a simplicial set.

Remark 1.2.10. It is clear that the category EX is a groupoid and that it is
contractible for X 6= ∅. In particular, the simplicial set EX is a Kan complex,
again contractible unless X = ∅.
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The functor E : Set → Cat is right adjoint to the functor Ob: Cat → Set;
likewise E : Set → SSet is right adjoint to the functor sending a simplicial set to
its set of zero simplices. In particular, E preserves products, so EM is canonically
a simplicial monoid. As it is contractible, any two translations u.–, v.– for u, v ∈M
are homotopic on any EM-object X; in fact, there is unique edge (v, u) from u to
v in EM, and acting with this gives an explicit homotopy u.–⇒ v.–.

We conclude that EM avoids the issue detailed in Example 1.2.8. Indeed,
Theorems 1.4.29 and 1.4.30 together with Theorem 1.5.25 will show thatEM-SSet
is a model of global homotopy theory in the sense of [Sch18] with respect to
finite groups. Maybe somewhat surprisingly, the main result of this subsection
(Theorem 1.2.20) will be that the same homotopy theory can be modelled by M-
simplicial sets with respect to a slightly intricate notion of weak equivalence.

Example 1.2.11. Let H be any finite group and let A be a countable faithful
H-set. The set Inj(A,ω) of injections A→ ω has a naturalM-action via postcom-
position and a commuting H-action via precomposition, inducing an EM-action
on EInj(A,ω)/H.

Note thatH acts freely from the right on Inj(A,ω) and hence on the contractible
simplicial set EInj(A,ω) as injections of sets are monomorphisms. In particular,
ignoring the EM-action, EInj(A,ω)/H is just an Eilenberg-Mac Lane space of
type K(H, 1). However, the EM-simplicial set EInj(A,ω)/H contains interesting
additional equivariant information compared to an ordinary K(H, 1) equipped with
trivial EM-action, and we call it ‘the’ global classifying space of H.

The basis for our comparison between EM-SSet and M-SSet will be the
following model categories provided by Proposition 1.1.1:

Corollary 1.2.12. The category M-SSet admits a unique model structure
such that a map f : X → Y is a weak equivalence or fibration if and only if the map
fH is a weak homotopy equivalence or Kan fibration, respectively, for each universal
H ⊂ M. We call this the universal model structure and its weak equivalences the
universal weak equivalences. It is simplicial, combinatorial, and proper. A possible
set of generating cofibrations is given by

I = {M/H × ∂∆n ↪→M/H ×∆n : n ≥ 0, H ⊂M universal}

and a possible set of generating acyclic cofibrations is given by

J = {M/H × Λnk ↪→M/H ×∆n : 0 ≤ k ≤ n, H ⊂M universal}.

Moreover, filtered colimits in M-SSet are homotopical. �

As already mentioned above, this will not yet model global equivariant homo-
topy theory, so we reserve the names ‘global model structure’ and ‘global weak
equivalences’ for a different model structure.

Corollary 1.2.13. The category EM-SSet of EM-simplicial sets admits
a unique model structure such that a map f : X → Y is a weak equivalence or
fibration if and only if it is so when considered as a map inM-SSet. We call this
the global model structure and its weak equivalences the global weak equivalences.
It is simplicial, proper, and combinatorial with possible set of generating cofibrations

I = {(EM)/H × ∂∆n ↪→ (EM)/H ×∆n : n ≥ 0, H ⊂M universal}
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and possible set of generating acyclic cofibrations

J = {(EM)/H × Λnk ↪→ (EM)/H ×∆n : 0 ≤ k ≤ n, H ⊂M universal}.

Moreover, filtered colimits in EM-SSet are homotopical. �

Construction 1.2.14. The forgetful functor EM-SSet →M-SSet admits
both a simplicial left and a simplicial right adjoint. While they exist for abstract
reasons (e.g. as simplicially enriched Kan extensions), they are also easy to make
explicit:

Let X be any M-simplicial set. We write EM×M X for the following EM-
simplicial set: as a simplicial set, this is the quotient of EM×X under the equiv-
alence relation generated in degree n by (u0v, . . . , unv;x) ∼ (u0, . . . , un; v.x) for all
u0, . . . , un, v ∈ M and x ∈ Xn. As usual, we denote the class of (u0, . . . , un;x) by
[u0, . . . , un;x].

The EM-action on EM×M X is induced by the obvious EM-action on the
first factor. If f : X → Y is anyM-equivariant map, then EM×M f is induced by
EM× f , and similarly for higher cells ∆n×X → Y . We omit the easy verification
that is well-defined.

We have a natural M-equivariant map η : X → forget(EM×M X) given in
degree n by sending an n-simplex x to the class [1, . . . , 1;x]. Moreover, if Y is an
EM-simplicial set, we have an EM-equivariant map ε : EM×M (forgetY ) → Y
giving in degree n by acting, i.e. [u0, . . . , un; y] 7→ (u0, . . . , un).y. We leave the easy
verification to the reader that these are well-defined, enriched natural, and define
unit and counit, respectively, of a simplicial adjunction EM×M – a forget.

Similarly, the forgetful functor has a simplicial right adjoint mapsM(EM, –)
(the simplicial set of M-equivariant maps), with EM-action induced by the right
EM-action on itself via postcomposition.

By definition of the model structures we immediately get:

Corollary 1.2.15. The simplicial adjunction

(1.2.2) EM×M –:M-SSet� EM-SSet : forget

is a Quillen adjunction and the right adjoint creates weak equivalences. �

As already suggested by our heuristic above, this is not a Quillen equivalence;
more precisely, forget∞ is not essentially surjective:

Example 1.2.16. If X is any EM-simplicial set, then all u ∈M act on X by
weak homotopy equivalences, and hence the same will be true for anyM-simplicial
set Y weakly equivalent to forgetX. On the other hand,M considered as a discrete
M-simplicial set withM-action by postcomposition does not satisfy this, and hence
can’t lie in the essential image.

In the example we have only looked at the underlying non-equivariant homotopy
type of a given M-simplicial set. However, in order to have a sufficient criterion
for the essential image of the forgetful functor, we should better take equivariant
information into account. While the translation maps will usually not be M-
equivariant (related to the fact that M is highly non-commutative), we can look
at those parts of the action that we can still expect to be preserved:
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Definition 1.2.17. An M-simplicial set X is called semistable if for each
universal subgroup H ⊂M and each u ∈M centralizing H the translation map

u.–: X → X

is an H-equivariant weak equivalence.

We observe that this is equivalent to demanding that for any such u ∈M and
H ⊂M the restriction of u.– to XH → XH is a weak homotopy equivalence (this
uses Corollary 1.2.6).

Example 1.2.18. Strengthening the previous example, any EM-simplicial set
X is in fact semistable when viewed as an M-simplicial set: namely, if u ∈ M
centralizes an (arbitrary) subgroup H ⊂M, then (u, 1) provides an H-equivariant
homotopy between u.– and the identity.

Remark 1.2.19. The term ‘semistable’ refers to Schwede’s characterization
[Sch08, Theorem 4.1 and Lemma 2.3-(iii)] of semistable symmetric spectra, i.e. sym-
metric spectra whose näıve homotopy groups agree with their true homotopy groups,
as those spectra for which a certain canonical M-action on the näıve homotopy
groups is given by isomorphisms, also cf. [Hau17, Corollary 3.32 and Proposi-
tion 3.16] for a similar characterization in the equivariant case due to Hausmann.

Both Schwede and Hausmann prove that in the respective situation the action
on näıve homotopy groups is actually trivial, i.e. all elements of M act by the
identity. Likewise, it will follow from Theorem 1.2.20 together with the argument
from Example 1.2.18 above that for a semistable M-simplicial set the translation
u.–, u ∈M centralizing some universal subgroup H ⊂M, is in fact the identity in
the H-equivariant homotopy category.

Obviously, semistability is invariant under universal weak equivalences, so it is a
necessary condition to lie in the essential image of forget by the above example. As
the main result of this section, we will show that it is also sufficient, and moreover
the above is everything that prevents forget∞ from being an equivalence:

Theorem 1.2.20. The adjunction (1.2.2) induces a Bousfield localization

EM×L
M –:M-SSet∞ � EM-SSet∞ : forget∞;

in particular, forget∞ is fully faithful. Moreover, its essential image consists pre-
cisely of the semistable M-simplicial sets.

Here we have tacitly identified the objects ofM-SSet∞ with those ofM-SSet,
cf. Remark A.1.9.

Remark 1.2.21. The theorem in particular tells us that the forgetful functor
identifies EM-SSet∞ with the full subcategory of M-SSet∞ spanned by the
semistable objects. In view of Proposition A.1.15, the latter is canonically identified
with the quasi-localization of semistable M-simplicial sets at the universal weak
equivalences, so we do not have to be careful to distinguish them. Put differently:
semistable M-simplicial sets with respect to the universal weak equivalences are a
model of unstable global homotopy theory.

Our proof of the theorem will proceed indirectly via the alternative models
provided by the Elmendorf Theorem for monoids (Corollary 1.1.12): namely, we
will exhibit the global orbit category OEM as an explicit simplicial localization
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of OM in the sense of Definition A.1.5, and then deduce the theorem from the
universal property of simplicial localizations (or more precisely its model categorical
manifestation Theorem A.1.16).

To do so, let us begin by understanding these categories a bit better:

Lemma 1.2.22. Let H,K ⊂ M, and let u0, . . . , un ∈ M such that [u0, . . . , un]
is H-fixed in (EM/K)n. Then there exists for any h ∈ H a unique σ(h) ∈ K such
that hui = uiσ(h) for all i. Moreover, σ : H → K is a homomorphism.

Conversely, whenever such a map σ exists, [u0, . . . , un] is H-fixed in (EM)/K.

Proof. As [u0, . . . , un] is H-fixed, (u0, . . . , un) ∼ (hu0, . . . , hun) for any h ∈
H, so by definition there indeed exists some σ(h) ∈ K such that hui = uiσ(h) for
all i; moreover, σ(h) is unique as K acts freely from the right on M.

To check that σ is a group homomorphism, let h1, h2 ∈ H arbitrary. Then
h1h2u = h1uσ(h2) = uσ(h1)σ(h2), hence σ(h1h2) = σ(h1)σ(h2) by uniqueness.

The proof of the converse is trivial. �

Construction 1.2.23. By definition, OEM ⊂ EM-SSet is the full simpli-
cial subcategory spanned by the EM/H for universal H ⊂ M. We have seen
in Lemma 1.1.10 that the simplicial set mapsOEM

(EM/H,EM/K) is isomor-

phic to (EM/K)H via evaluation at [1] ∈ EM/H. On 0-simplices, this gives
mapsOEM

(EM/H,EM/K)0
∼= (M/K)H ; an inverse is then given by sending

u ∈ (M/K)H to – · u : [v0, . . . , vn] 7→ [v0u, . . . , vnu].
More generally, an n-simplex of the mapping space mapsOEM

(EM/H,EM/K)
can be represented by an (n+1)-tuple (u0, . . . , un) such that [u0, . . . , un] ∈ EM/K
is H-fixed, which by Lemma 1.2.22 is equivalent to the existence of a group homo-
morphism σ : H → K such that hui = uiσ(h) for all i = 0, . . . , n. Two tuples
represent the same morphism iff they become equal in EM/K, i.e. iff they only
differ by right multiplication with some k ∈ K.

Moreover, one immediately sees by direct inspection, that if the n-simplex f ∈
mapsOEM

(EM/H,EM/K)n is represented by (u0, . . . , un) and the n-simplex f ′ ∈
mapsOEM

(EM/K,EM/L)n is represented by (u′0, . . . , u
′
n), then their composition

f ′f is represented by (u0u
′
0, . . . , unu

′
n) (note the different order!).

Likewise, OM is the full (simplicial) subcategory of M-SSet spanned by the
M/H, and we have an isomorphism Hom(M/H,M/K) ∼= (M/K)H via evaluation
at [1]; composition is again induced from multiplication in M.

We now define a functor i : OM → OEM as follows: an objectM/H is sent to
EM/H. On morphism spaces, i is given as the composition

mapsOM(M/H,M/K) ∼= (M/K)H ∼= mapsOEM
(EM/H,EM/K)0

↪→ mapsOEM
(EM/H,EM/K),

which then just sends the morphism represented by u to the morphism represented
by the same element. As an upshot of the above discussion, this is indeed functorial.

Definition 1.2.24. Let H ⊂ M be universal. A map f : M/H → M/H is
called centralizing if there exists a u ∈ M centralizing H such that f is given by
right multiplication by u. Analogously, we define centralizing morphisms in OEM.

The following will be the main ingredient to the proof of Theorem 1.2.20:

Proposition 1.2.25. The functor i : OM → OEM is a simplicial localization
at the centralizing morphisms.
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Proof. By construction, i induces an isomorphism onto the underlying cate-
gory u OEM = (OEM)0 of OEM. Thus, it is enough to prove that u OEM ↪→ OEM
is a quasi-localization at the centralizing morphisms, for which we will verify the
assumptions of Proposition A.1.10, i.e. that OEM has fibrant mapping spaces, that
the centralizing morphisms are homotopy equivalences, and that the functors

(1.2.3) s∗ :
(
(OEM)0,W

)
→
(
(OEM)n, s

∗W
)

induce equivalences on quasi-localizations, where W denotes the class of centralizing
morphisms and s is the unique map [n]→ [0] in ∆.

For the first claim we will show that all mapping spaces in OEM are actually
even nerves of groupoids. Indeed, it suffices to prove that each EM/H is, for
which it is then in turn enough to observe that EM is the nerve of a groupoid by
construction and that we can form the quotient by H already in the category of
groupoids as the nerve preserves quotients by free group actions.

For the second claim we note that if u centralizes H, then –·u is even homotopic
to the identity via the edge [1, u] in (EM/H)H ∼= mapsOEM

(EM/H,EM/H).
Finally, for the third claim it is by Corollary A.1.14 enough to prove that

(1.2.3) is a homotopy equivalence in the sense of Definition A.1.13. For this we will
show that i : [0] → [n], 0 7→ 0 induces a homotopy inverse. Indeed, i∗ is obviously
homotopical and moreover i∗s∗ = (si)∗ = id by functoriality. It remains to prove
that s∗i∗ is homotopic to the identity of (OEM)n.

We begin by picking for each universal H ⊂M an H-equivariant isomorphism
ω q ω ∼= ω, where H acts on each of the three copies of ω in the tautological
way; such an isomorphism indeed exists as both sides are complete H-set universes.
Restricting to the two copies of ω then gives injections αH , βH ∈M such that:

(1) αH and βH centralize H
(2) ω = im(αH) t im(βH), i.e. the images of αH and βH partition ω.

We now define f : (OEM)n → (OEM)n as follows: f is the identity on objects. A
morphism (EM)/H → (EM)/K represented by (u0, . . . , un) ∈ Mn+1 is sent to
the morphism represented by (v0, . . . , vn) where vi satisfies

(1.2.4) viαK = αHui and viβK = βHu0.

We first observe that there is indeed a unique such vi as αK and βK are injections
whose images form a partition of ω. Moreover, this is an injection as αH and βH
have disjoint image and as both αHui and βHu0 are injective.

Next, we show that (v0, . . . , vn) indeed defines a morphism, i.e. it represents an
H-fixed simplex of (EM)/K. Indeed, as (u0, . . . , un) represents anH-fixed simplex,
there is a (unique) group homomorphism σ : H → K such that hui = uiσ(h) for all
h ∈ H. But then

hviαK = hαHui = αHhui = αHuiσ(h) = viαKσ(h) = viσ(h)αK ,

where we have used Condition (1) twice as well as the definition of vi. Analogously
one shows hviβK = viσ(h)βK ; as the images of αK and βK together cover ω, we
conclude that hvi = viσ(h) for all i and all h, and hence [v0, . . . , vn] ∈ (EM)/K is
H-fixed as desired.

Moreover, this is independent of the choice of representative: if we pick any
other representative (u′0, . . . , u

′
n), then there is some k ∈ K such that u′i = uik for

all i, and thus the associated v′i satisfy

v′iαK = αHu
′
i = αHuik = viαKk = vikαK ,
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where we have used the definitions of vi and v′i as well as (1). Analogously one
shows v′iβK = vikβK ; as before we conclude that v′i = vik, so that (v0, . . . , vn) and
(v′0, . . . , v

′
n) represent the same morphism.

With this established, one easily checks that f is a functor (OEM)n → (OEM)n.
As our notion of homotopy equivalence does not require the intermediate functors to
be homotopical (although f actually is by a computation analogous to the above),
it only remains to prove that f is homotopic to both the identity and s∗i∗. For this
we observe that we have by the defining equation (1.2.4) natural transformations

id⇐ f ⇒ s∗i∗

where the left hand transformation is given on (EM)/H by the morphism corre-
sponding to s∗[αH ] = [αH , . . . , αH ] while the right hand transformation corresponds
to s∗[βH ], and these are levelwise weak equivalences by Condition (1) above. �

Corollary 1.2.26. In the Quillen adjunction

(iop)! : Fun(Oop
M,SSet)� Fun(Oop

EM,SSet) : (iop)∗,

the right adjoint is homotopical and the induced functor between associated quasi-
categories is fully faithful with essential image precisely those simplicial presheaves
on OM that invert the centralizing morphisms.

Proof. It is clear, that (iop)∗ is homotopical. By the previous proposition,
i : OM → OEM is a simplicial localization at the centralizing morphisms, and hence
iop is a simplicial localization at their opposites. As both source and target of iop

are small and locally fibrant, the claim now follows from Theorem A.1.16. �

Proof of Theorem 1.2.20. We already know from Corollary 1.2.15 that
EM×M (–) a forget is a Quillen adjunction with homotopical right adjoint. It
therefore suffices to prove that forget∞ is fully faithful with essential image the
semistable M-simplicial sets.

Claim. The diagram

(1.2.5)

EM-SSet M-SSet

Fun(Oop
EM,SSet) Fun(Oop

M,SSet)

forget

Φ Φ

(iop)∗

of homotopical functors commutes up to natural isomorphism.

Proof. An explicit choice of such an isomorphism τ is given as follows: if X is
any EM-simplicial set and H ⊂M is universal, then τX(M/H) is the composition

Φ(X)(i(M/H)) = Φ(X)(EM/H)
ev[1]−−−→ XH = (forgetX)H

(ev[1])
−1

−−−−−→ Φ(forgetX)(M/H).

To see that this is well-defined, let H,K ⊂ M universal, and let u ∈ M define an
K-fixed point of M/H. Then we have commutative diagrams

(1.2.6)

Φ(X)(EM/H) = mapsEM(EM/H,X) XH

Φ(X)(EM/K) = mapsEM(EM/K,X) XK

(–·u)∗

ev[1]

∼=
u.–

ev[1]

∼=
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and, for each Y ∈M-SSet,

(1.2.7)

Φ(Y )(M/H) = mapsM(M/H, Y ) Y H

Φ(Y )(M/K) = mapsM(M/K, Y ) Y K .

(–·u)∗

ev[1]

∼=
u.–

ev[1]

∼=

Taking Y = forgetX in (1.2.7), these two together then show that τX is natural
(and hence defines a morphism in Fun(Oop

M,SSet)). It is then obvious that τ is
natural (say, in the unenriched sense), as it is levelwise given by a composition of
natural transformations. 4

We can now deduce the theorem: the vertical functors in (1.2.5) induce equiv-
alences on quasi-localizations by Corollary 1.1.12, and by the previous corollary
the bottom horizontal arrow is fully faithful with essential image those presheaves
that invert centralizing isomorphisms. Thus, forget∞ is fully faithful with essential
image thoseM-simplicial sets X such that Φ(X) inverts centralizing isomorphisms.
Taking Y = X and a u ∈M centralizing H = K in (1.2.7), we see that Φ(X) inverts
centralizing morphisms if and only if X is semistable, finishing the proof. �

1.2.3. G-global model structures. Let us fix some (possibly infinite) dis-
crete group G. We now want to extend the above discussion to yield a G-global
model structure on the category EM-G-SSet of simplicial sets with a G-action
and a commuting EM-action, which we can equivalently think of as simplicial sets
with an action of EM×G, or as the category of G-objects in EM-SSet.

For G = 1 this will recover the previous model; however, as soon as G contains
torsion, the weak equivalences will be strictly finer than the underlying global weak
equivalences. In particular, we will show later in Theorem 1.2.87 that the weak
equivalences are fine enough that one can recover proper G-equivariant homotopy
theory as a Bousfield localization.

Definition 1.2.27. A graph subgroup Γ = ΓH,ϕ ofM×G is called universal if
the corresponding subgroupH ⊂M is universal. A graph subgroup Γ ⊂ (EM×G)0

is universal if it is universal as a subgroup of M×G.

Example 1.2.28. Let H ⊂ M be a subgroup and let ϕ : H → G be a group
homomorphism. We write

M×ϕ G := (M×G)/ΓH,ϕ and EM×ϕ G := (EM×G)/ΓH,ϕ

and call them G-global classifying spaces.
It follows immediately from the constructions that M×ϕ G corepresents (–)ϕ

onM-G-SSet and that EM×ϕ G corepresents (–)ϕ on EM-G-SSet.

As in the global situation we then conclude from Proposition 1.1.1:

Corollary 1.2.29. There exists a unique model structure on the category
M-G-SSet of M-G-simplicial sets in which a morphism f is a weak equivalence
or fibration if and only if fϕ is a weak homotopy equivalence or Kan fibration,
respectively, for each universal H ⊂M and each homomorphism ϕ : H → G.

We call this the G-universal model structure and its weak equivalences the G-
universal weak equivalences. It is simplicial, combinatorial, proper, and filtered
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colimits in it are homotopical. A possible set of generating cofibrations is given by

{(M×ϕ G)× (∂∆n ↪→ ∆n) : n ≥ 0, H ⊂M universal, ϕ : H → G homomorphism}
and a possible set of generating acyclic cofibrations by

{(M×ϕ G)× (Λnk ↪→ ∆n) : 0 ≤ k ≤ n,H ⊂M universal, ϕ : H → G}. �

Corollary 1.2.30. There is a unique model structure on EM-G-SSet in
which a map f is a weak equivalence or fibration if and only if it is so inM-G-SSet.

We call this the G-global model structure and its weak equivalences the G-
global weak equivalences. It is simplicial, combinatorial, proper, and filtered colim-
its in it are homotopical. A possible set of generating cofibrations is given by

{(EM×ϕG)×(∂∆n ↪→ ∆n) : n ≥ 0, H ⊂M universal, ϕ : H → G homomorphism}
and a possible set of generating acyclic cofibrations by

{(EM×ϕ G)× (Λnk ↪→ ∆n) : 0 ≤ k ≤ n,H ⊂M universal, ϕ : H → G}. �

Example 1.2.31. As a concrete instance of Example 1.2.28, we can consider
the case where G itself is a (universal) subgroup of M, and ϕ is the identity. In
this case, EM×id G ∼= EM with G acting via precomposition. We claim that this
is G-globally weakly contractible in the sense that the unique map to the terminal
object is a G-global weak equivalence. Indeed, if H is universal and ψ : H → G,
then (EM)ψ ∼= E(Mψ), so it suffices that Mψ 6= ∅, i.e. that there exists an
H-equivariant injection ψ∗ω → ω. This is immediate from universality of H.

More generally, the same argument shows that EInj(A,ω) is G-globally weakly
contractible for any countable G-set A.

Analogously to the global situation, we will now show that the forgetful functor
EM-G-SSet → M-G-SSet is fully faithful on associated quasi-categories and
characterize its essential image.

Definition 1.2.32. An M-G-simplicial set X is called G-semistable if the
(H×G)-equivariant map u.–: X → X is a GH,G-weak equivalence for any universal
H ⊂M and any u ∈M centralizing H, i.e. for any homomorphism ϕ : H → G the
induced map u.–: Xϕ → Xϕ is a weak homotopy equivalence.

1.2.3.1. Combinatorics of the G-global orbit category. As before, our compari-
son will proceed indirectly via the respective orbit categories. The mapping spaces
in OEM×G are again given by fixed points of quotients, and this section is devoted
to clarifying their structure. In fact we will do all of this in greater generality now
as we will need the additional flexibility later. For this let us fix a group K together
with a (finitely or infinitely) countable faithful K-set A and a G-K-biset X.

We begin with the following trivial observation:

Lemma 1.2.33. Let (u0, . . . , un;x), (v0, . . . , vn; y) ∈ Inj(A,ω)n+1 ×X.

(1) These represent the same n-simplex of EInj(A,ω) ×K X (where ‘×K’
means that we divide out the diagonal right K-action) if and only if there
exists some k ∈ K such that y = x.k and vi = ui.k for all i = 0, . . . , n.

(2) Assume these indeed represent the same n-simplex and that there is some
i such that ui = vi. Then x = y and uj = vj for all j = 0, . . . , n.

(3) Assume x = y. Then these represent the same n-simplex if and only if
there is a k ∈ StabK(x) (where StabK denotes the stabilizer) such that
vi = ui.k for i = 0, . . . , n.



26 1. UNSTABLE G-GLOBAL HOMOTOPY THEORY

Proof. The first statement holds by definition and the third one is obviously a
special case of this. Finally, the second statement follows from the first by freeness
of the right K-action on Inj(A,ω). �

We can now characterize the ϕ-fixed points for any universal H ⊂M and any
homomorphism ϕ : H → G, generalizing Lemma 1.2.22:

Lemma 1.2.34. Let (u0, . . . , un;x) ∈ Inj(A,ω) × X such that [u0, . . . , un;x] ∈
(EInj(A,ω)×K X)ϕ. Then there exists for any h ∈ H a unique σ(h) ∈ K with

(1.2.8) hui = ui.σ(h) for all i = 0, . . . , n,

and this satisfies

(1.2.9) x.σ(h) = ϕ(h).x.

The converse holds: whenever there exists a set map σ : H → K satisfying
(1.2.8) and (1.2.9) for all h ∈ H, then [u0, . . . , un;x] is a ϕ-fixed point. Moreover,
σ is automatically a group homomorphism in this case.

Proof. That (u0, . . . , un;x) is ϕ-fixed means by definition that for each h ∈ H

(u0, . . . , un;x) ∼ (h, ϕ(h)).(u0, . . . , un;x) = (hu0, . . . , hun;ϕ(h).x)

which again means by definition that there exists a σ(h) ∈ K such that hui =
ui.σ(h) and moreover ϕ(h).x = x.σ(h). This σ(h) is already uniquely characterized
by the first property (for i = 0) as K acts freely from the right on Inj(A,ω), proving
the first half of the proposition.

Conversely, if such a σ exists, then [u0, . . . , un;x] is clearly ϕ-fixed. Moreover,

u0.σ(hh′) = hh′u0 = hu0.σ(h′) = u0.σ(h)σ(h′),

and hence σ(hh′) = σ(h)σ(h′) by freeness of the right K-action. �

In the situation of Lemma 1.2.34 we write σ(u0,...,un) for the unique (homo-
morphism) H → K satisfying (1.2.8). One can show that the lemma provides a
complete characterization of the homomorphisms arising this way, which we will
only need on the level of vertices:

Corollary 1.2.35. Let σ : H → K be any group homomorphism. Then there
exists u ∈ Inj(A,ω) such that hu = u.σ(h) for all h ∈ H. Moreover, if x ∈ X
satisfies (1.2.9), then [u;x] is a ϕ-fixed point of EInj(A,ω)×K X.

Proof. When equipped with the tautological H-action, ω is a complete H-set
universe; on the other hand, σ∗A is a countable H-set by assumption, so that there
exists an H-equivariant injection u : σ∗A → ω. The H-equivariance of u directly
translates to hu = u.σ(h), and Lemma 1.2.34 then proves that [u;x] is ϕ-fixed. �

1.2.3.2. The comparison. We can now describe the orbit category OEM×G
(with respect to the universal graph subgroups) in more concrete terms:

Remark 1.2.36. The objects of OEM×G are the EM-G-simplicial sets of the
form EM×ϕ G where H ⊂ M is universal and ϕ : H → G is a homomorphism.
If K ⊂ M is another universal subgroup and ψ : K → G a homomorphism, then
Lemma 1.2.34 tells us that any n-simplex of mapsOEM×G

(EM×ϕ G,EM×ψ G)
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can be represented by a tuple (u0, . . . , un; g) ∈ M1+n ×G such that there exists a
(necessarily unique) group homomorphism σ : H → K satisfying

(1.2.10) hui = uiσ(h) and ϕ(h)g = gψ(σ(h))

for all i = 0, . . . , n and h ∈ H. Another such tuple (u′0, . . . , u
′
n; g′) represents the

same morphism if and only if there exists a k ∈ K such that u′i = uik for all
i = 0, . . . , n and g′ = gψ(k).

If L ⊂ M is another universal subgroup, θ : L → G a group homomorphism,
and if (u′0, . . . , u

′
n; g′) represents a morphism EM×ψ G → EM×θ G, then the

composition (u′0, . . . , u
′
n; g′)(u0, . . . , un; g) is represented by (u0u

′
0, . . . , unu

′
n; gg′).

Similarly, objects of OM×G are the M-G-sets M×ϕ G with ϕ as above, and
maps can be represented by pairs (u; g) with u ∈M and g ∈ G satisfying analogous
conditions to the above. Compositions are once more given by multiplication inM
and G. In particular, we again get a functor i : OM×G → OEM×G, sendingM×ϕG
to EM×ϕ G and a morphism M×ϕ G → M×ψ G represented by (u; g) to the
morphism EM×ϕ G→ EM×ψ G represented by the same pair (u; g).

Definition 1.2.37. A morphism f : M×ϕ G → M×ϕ G in OM×G is called
G-centralizing if there exists a u ∈M centralizing H such that f is represented by
(u; 1). Analogously, we define G-centralizing morphisms in OEM×G.

Proposition 1.2.38. The above functor i : OM×G → OEM×G is a simplicial
localization at the G-centralizing morphisms.

Proof. Let us write W ⊂ (OEM×G)0 for the subcategory of G-centralizing
morphisms. As in the purely global setting (Proposition 1.2.25), this consists of ho-
motopy equivalences and OEM×G has fibrant mapping spaces, so that it is enough
to prove that for each n ≥ 0 the homotopical functor

s∗ : ((OEM×G)0,W )→ ((OEM×G)n, s
∗W )

induced by the unique map s : [n] → [0] is a homotopy equivalence. As before we
have a strict left inverse given by restriction along i : [0]→ [n], 0 7→ 0 and it suffices
to construct a zig-zag of levelwise weak equivalences between s∗i∗ and the identity.

For this we recall from the proof of Proposition 1.2.25 that we can choose for
each universal subgroup H ⊂ M injections αH , βH ∈ M centralizing H and such
that ω = im(αH) t im(βH).

Now let H,K ⊂ M be universal and let ϕ : H → G and ψ : K → G be group
homomorphisms. Then any morphism EM×ϕG→ EM×ψG in (OEM×G)n can be
represented by a tuple (u0, . . . , un; g) such that there exists a group homomorphism
σ : H → K satisfying the relations (1.2.10). We recall from the proof of the ordinary
global case that there exists for each i = 0, . . . , n a unique vi such that

viαK = αHui and viβK = βHu0.

We claim that (v0, . . . , vn; g) again defines a morphism, i.e. its class in EM×ψ G
is ϕ-fixed. Indeed, we have seen in the global case that hvi = viσ(h), hence

(h, ϕ(h)).(v0, . . . , vn; g) = (hv0, . . . , hvn;ϕ(h)g)

= (v0σ(h), . . . , vnσ(h); gψ(σ(h))) ∼ (v0, . . . , vn; g)

as desired. Similarly, one uses the argument from the non-equivariant case to show
that the morphism represented by (v0, . . . , vn; g) does not depend on the chosen
representative (u0, . . . , un; g).
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We now define a functor f : (OEM×G)n → (OEM×G)n as follows: f is the
identity on objects and on morphisms given by the above construction. Using that
the above is independent of choices one easily checks that f is indeed a functor. As
before, we have by construction natural transformations id⇐ f ⇒ s∗i∗, where the
left hand transformation is given on EM×ϕ G by s∗[αH ; 1] = [αH , . . . , αH ; 1] and
the right hand one by s∗[βH ; 1]. As αH and βH centralize H by definition, these
are weak equivalences, finishing the proof. �

By the same arguments as in the ordinary global setting we deduce:

Theorem 1.2.39. The adjunction

EM×L
M –:M-G-SSet∞G-universal � EM-G-SSet∞ : forget∞

is a Bousfield localization; in particular, forget∞ is fully faithful. Moreover, its
essential image consists precisely of the G-semistable M-G-simplicial sets. �

1.2.3.3. Additional model structures. The following corollary lifts the above
comparison of quasi-categories to the level of model categories:

Corollary 1.2.40. There is a unique model structure onM-G-SSet in which
a map f : X → Y is a weak equivalence iff EM ×L

M f is an isomorphism in
Ho(EM-G-SSet), and a cofibration iff it is so in the G-universal model structure
onM-G-SSet. An object X ∈M-G-SSet is fibrant in this model structure if and
only if it is fibrant in the G-universal model structure and moreover G-semistable
in the sense of Definition 1.2.32.

We call this the G-global model structure and its weak equivalences the G-
global weak equivalences. It is combinatorial with generating cofibrations

{(M×ϕG)× (∂∆n ↪→ ∆n) : n ≥ 0, H ⊂M universal, ϕ : H → G homomorphism},

simplicial, left proper, and filtered colimits in it are homotopical.
Finally, the simplicial adjunction

EM×M –:M-G-SSetG-global � EM-G-SSet : forget

is a Quillen equivalence with homotopical right adjoint.

Proof. Theorem 1.2.39 allows us to invoke Lurie’s localization criterion (The-
orem A.2.3) which proves all of the above claims except for the part about filtered
colimits, which is in turn an instance of Lemma A.2.4. �

As a special case of Corollary 1.1.14, the G-global weak equivalences of EM-
G-simplicial sets are part of an injective model structure. We will now prove the
analogue of this forM-G-SSet:

Theorem 1.2.41. There exists a unique model structure onM-G-SSet whose
cofibrations are the underlying cofibrations and whose weak equivalences are the G-
global weak equivalences. We call this the injective G-global model structure. It is
combinatorial, simplicial, left proper, and filtered colimits in it are homotopical.

Finally, the simplicial adjunction

forget : EM-G-SSetinj. G-global �M-G-SSetinj. G-global :mapsM(EM, –)

is a Quillen equivalence with homotopical left adjoint.
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Proof. We first claim that the G-global weak equivalences are stable under
pushout along injective cofibrations. For this we let f : A→ B be a G-global weak
equivalence and i : A → C an injective cofibration. Applying the factorization
axiom in the G-global model structure, we can factor f = pk where k is an acyclic
cofibration and p is an acyclic fibration. As the G-global and G-universal model
structures on M-G-SSet have the same cofibrations, they also have the same
acyclic fibrations; in particular, p is a G-universal weak equivalence.

We now consider the iterated pushout

A X B

C Y D.

f

k

i

p

j

` q

Then ` is an acyclic cofibration in the G-global model structure as a pushout of
an acyclic cofibration. Moreover, j is an injective cofibration as a pushout of an
injective cofibration, so q is a G-universal (and hence in particular G-global) weak
equivalence by left properness of the equivariant injective model structure. The
claim follows as q` is a pushout of f along i.

We therefore conclude from Corollary A.2.18 that the model structure exists
and that it is combinatorial and left proper. Moreover, Lemma A.2.4 shows that
filtered colimits in it are still homotopical, so it only remains to verify the Pushout
Product Axiom for the simplicial tensoring.

For this we can argue precisely as in the proof of Corollary 1.1.14 once we show
that for any simplicial set K the functor K×– preserves G-global weak equivalences,
and that for any M-G-simplicial set X the functor –×X sends weak equivalences
of simplicial sets to G-global weak equivalences.

For the second statement it is actually clear that –×X sends weak equivalences
even to G-universal weak equivalences. For the first statement it is similarly clear
that K × – preserves G-universal weak equivalences, but it also preserves acyclic
cofibrations in the usual G-global model structure as the latter is simplicial. The
claim again follows as any G-global weak equivalence can be factored as a G-global
acyclic cofibration followed by a G-universal weak equivalence. �

Remark 1.2.42. With a bit of (combinatorial) work one can show that forget a
mapsM(EM, –) is also a Quillen equivalence for the usual G-global model struc-
tures. On the other hand, I do not know whether EM×M – preserves injective
cofibrations or G-global weak equivalences in general, so it is not clear whether
EM×M – a forget is also a Quillen equivalence for the injective G-global model
structures.

1.2.4. An explicit G-semistable replacement. If one wants to check if a
morphism f : X → Y inM-G-SSet is a G-global weak equivalence straight from
the definition, one runs into trouble as soon as at least one of X or Y is not cofibrant
because computing EM×L

M f then involves cofibrant replacements, and the ones
provided by the small object argument are completely intractable.

On the other hand, the G-universal weak equivalences are much easier to un-
derstand, so one could instead try to take G-semistable replacements of X and Y
and then apply the following general observation about Bousfield localizations:
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Lemma 1.2.43. A morphism f : X → Y of G-semistableM-G-simplicial sets is
a G-global weak equivalence if and only if it is a G-universal weak equivalence. �

However, this leaves us with the problem of finding (functorial) G-semistable
replacements. While the G-global model structure asserts that these exist, they
are again completely inexplicit. We could also try to construct them by means of
EM×L

M –, but then we would of course be back where we started.
In this subsection we will remedy this situation by constructing explicit G-

semistable replacements, yielding a characterization of the G-global weak equiva-
lences. This characterization will become crucial later (see e.g. Theorem 1.3.25),
and in particular I do not know how to prove the respective statements ‘by hand.’

Remark 1.2.44. Before we come to the construction, let us think about how
it should look like. The simplicial set EM is (weakly) contractible, and one can
conclude from this, see e.g. [Lur09, Proposition 4.2.4.4], that EM-SSet mod-
els ordinary non-equivariant homotopy theory when equipped with the underlying
weak equivalences. More precisely, with respect to these weak equivalences, the
homotopical functors

const : SSet→ EM-SSet and forget : EM-SSet→ SSet

induce mutually quasi-inverse equivalences on associated quasi-categories. It follows
that the composition

M-SSet∞G-universal

EM×L
M–−−−−−−→ EM-SSet∞G-global

forget−−−→ SSet∞

is equivalent to taking homotopy colimits over M, also cf. [SS20, Definition 3.2].

1.2.4.1. Action categories. The remark suggests that we might be lucky and
succeed in constructing the replacement by means of a suitable equivariant en-
hancement of one of the standard constructions of homotopy colimits. This will
indeed work for the model of what is usually called the action groupoid (although
it won’t be a groupoid in our case), which we now recall:

Construction 1.2.45. Let X be any M-set. We write X//M for the action
category, i.e. the category with set of objects X and for any x ∈ X and u ∈ M a
morphism u : x→ u.x; we emphasize that this means that if u 6= v with u.x = v.x
then u and v define two distinct morphisms x → u.x = v.x. The composition in
X//M is given by multiplication in M.

The M-action on X immediately gives an M-action on Ob(X//M); however,
it is not entirely clear how to extend this to morphisms. For an invertible element
α ∈ coreM, the condition that α.f for f : x→ y should be a morphism α.x→ α.y
naturally leads to the guess α.f = αfα−1. While general elements of M are not
invertible, there is still a notion of conjugation. This is made precise by the following
construction, which is implicit in [Sch08, proof of Lemma 5.2] (which Schwede
attributes to Strickland) and also appeared in an earlier version of [Sch19b]:

Construction 1.2.46. Let α ∈M. We define for any u ∈M the conjugation
cα(u) of u by α via

cα(u)(x) =

{
αu(y) if x = α(y)

x if x /∈ imα.

We remark that this is well-defined (as α is injective), and one easily checks that
this is again injective, so that we get a map cα : M→M.
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Put differently, cα(u) is the unique element of M such that

cα(u)α = αu and cα(u)(x) = x for x /∈ imα.

The first condition justifies the name ‘conjugation,’ and it means in particular that
cα(u) = αuα−1 for invertible α.

For a group G, conjugation by a fixed element g defines an endomorphism of
G, and letting g vary this yields an action of G on itself. The analogous statement
holds for the above construction:

Lemma 1.2.47. For any α ∈M, the map cα : M→M is a monoid homomor-
phism. Moreover, for varying α this defines an action ofM on itself, i.e. c1 = idM
and cα ◦ cβ = cαβ for all α, β ∈M.

Proof. We will only prove the first statement, the calculations for the other
claims being similar. For this let u, v ∈M. Then

cα(uv)α = αuv = cα(u)αv = cα(u)cα(v)α.

On the other hand, if x /∈ im(α), then cα(uv)(x) = x and cα(v)(x) = x /∈ imα,
hence also (cα(u)cα(v))(x) = x. We conclude that cα(uv) = cα(u)cα(v). Moreover,
clearly cα(1) = 1, so that cα is indeed a monoid homomorphism. �

Construction 1.2.48. We define aM-action on X//M as follows: the action
of M on objects is the one on X, and on morphisms α ∈M acts by sending

x
u−→ u.x to α.x

cα(u)−−−→ α.(u.x);

note that this is indeed a morphism as cα(u).(α.x) = (cα(u)α).x = (αu).x = α.(u.x)
by construction of cα. By the previous lemma, this is then an endofunctor of X//M,
and for varying α this yields an M-action.

If f : X → Y is a map of M-sets, then we write f//M for the functor that is
given on objects by f and that sends a morphism

x
u−→ u.x to f(x)

u−→ u.f(x) = f(u.x).

One easily checks that this is well-defined, functorial in f , and that f//M is M-
equivariant. Postcomposing with the nerve we therefore get a functor M-Set →
M-SSet that we denote by (–)//M again. If G is any group, we moreover get an
induced functorM-G-Set→M-G-SSet by pulling through the G-action (again
denoted by the same symbol).

If X is anyM-set, then there is a unique functor from X (viewed as a discrete
category) to X//M that is the identity on objects. This then yields a natural
transformation π : discr ⇒ (–)//M from the functor that sends an M-G-set X to
the discrete simplicial set X with the induced action.

Construction 1.2.49. Let X be anyM-G-simplicial set. Applying the above
construction levelwise yields a bisimplicial set X#M with (X#M)n,• = Xn//M,
and this receives a map from the bisimplicial set DiscrX with (DiscrX)n,• =
discrXn. This yields a functor M-G-SSet →M-G-BiSSet receiving a natural
transformation Π: Discr⇒ #.

Taking diagonals, we then obtain a functor M-G-SSet →M-G-SSet, that
we again denote by (–)//M, together with a natural transformation id⇒ (–)//M,
that we again denote by π. We remark that on M-G-sets (viewed as discrete
simplicial sets) this recovers the previous construction.
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1.2.4.2. The detection result. Now we are ready to state the main result of this
subsection:

Theorem 1.2.50. (1) For any X ∈ M-G-SSet, the map πX : X →
X//M is a G-global weak equivalence, and X//M is G-semistable.

(2) For any f : X → Y in M-G-SSet the following are equivalent:
(a) f is a G-global weak equivalence.
(b) f//M is a G-global weak equivalence.
(c) f//M is a G-universal weak equivalence.

The proof of the theorem will occupy the rest of this subsection.

Remark 1.2.51. We defined the bisimplicial set X#M in terms of the action
category construction. We can also look at this bisimplicial set ‘from the other
side,’ which recovers the bar construction (just as in the usual construction of non-
equivariant homotopy quotients):

If Y is any M-G-set, then (Y //M)m consists by definition of the m-chains

y
u1−→ u1.y

u2−→ (u2u1).y
u3−→ · · · um−−→ (um · · ·u1).y

of morphisms in Y //M. Such a chain is obviously uniquely described by the source
y ∈ Y together with the injections um, . . . , u2, u1 ∈ M, which yields a bijection
(Y //M)m ∼= Mm × Y . This bijection becomes M-G-equivariant, when we let G
act via its action on X and M via its action on X and the conjugation action on
each of the M-factors.

The assignment Y 7→ Mm×Y becomes a functor in Y in the obvious way, and
with respect to this the above bijection is clearly natural in M-equivariant maps.
Applying this levelwise, we therefore get a natural isomorphism

(1.2.11) (X#M)•,m ∼=Mm ×X

of M-G-simplicial sets. While we will not need this below, we remark that unrav-
elling the definitions, one can work out that under the isomorphism (1.2.11) the
simplicial structure maps of X#M indeed correspond to those of the usual bar
construction.

By construction and the previous remark, we understand the bisimplicial set
X#M in both its simplicial directions individually. In non-equivariant simplicial
homotopy theory, the Diagonal Lemma then often allows to leverage this to prove
statements about the diagonal (X//M in our case). Luckily, this immediately
carries over to our situation:

Lemma 1.2.52. Let M be a monoid, let F be a collection of subgroups of M ,
and let f : X → Y be a map of M -bisimplicial sets. Assume that for each n ≥ 0 the
map fn,• : Xn,• → Yn,• is a F-weak equivalence, or that for each m ≥ 0 the map
f•,m : X•,m → Y•,m is. Then also diag f : diagX → diagY is a F-weak equivalence.

Proof. By symmetry it suffices to consider the first case. If H ∈ F is any sub-
group, then (fn,•)

H literally agrees with (fH)n,• (if we take the usual construction
of fixed points), and likewise (diag f)H = diag(fH). Thus, the claim follows imme-
diately from the usual Diagonal Lemma, see e.g. [GJ99, Proposition IV.1.7]. �

Let us draw some non-trivial consequences from this:
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Corollary 1.2.53. The above functor (–)//M preserves G-universal weak
equivalences of M-G-simplicial sets.

Proof. By the previous lemma (applied to the universal graph subgroups of
the monoid M×G), it suffices that each (–#M)•,m does, which follows from the
isomorphism (1.2.11) together with Lemma 1.1.2. �

Lemma 1.2.54. Let X be anyM-G-simplicial set. Then X//M is G-semistable.

Proof. Let H ⊂ M be any subgroup and let α ∈ M centralize H. We will
show that α.–: X//M→ X//M is even an (H ×G)-weak equivalence.

By Lemma 1.2.52 we reduce this to the case that X is a M-G-set, in which
case X//M is the nerve of the action category. We then observe that the maps
α : x → α.x assemble into a natural transformation a : id ⇒ (α.–) by virtue of the
identity cα(u)α = αu. This natural transformation is obviously G-equivariant, but
it is also H-equivariant: if h ∈ H and x ∈ X are arbitrary, then h.ax is by definition
the map hαh−1 : h.x → h.(α.x); as h commutes with α, this agrees with ah.x as
desired. Upon taking nerves, a therefore induces an (H ×G)-equvariant homotopy
between the identity and α.–; in particular, α.– is an (H×G)-weak equivalence. �

The following two statements are again easily deduced from the isomorphism
(1.2.11), and we omit their proofs.

Corollary 1.2.55. The functor (–)//M : M-G-SSet →M-G-SSet is co-
continuous and it preserves injective cofibrations. �

Corollary 1.2.56. The functor (–)//M : M-G-SSet → M-G-SSet has a
natural simplicial enrichment with respect to which it preserves tensors. The natural
transformation π is simplicially enriched. �

The only remaining input that we need to prove the theorem is an explicit
computation of (–)//M on the M-G-sets M×ϕ G for universal H ⊂ M and any
group homomorphism ϕ : H → G. We will actually do this in greater generality,
which will become important later in the proof of Theorem 1.3.25:

Theorem 1.2.57. Let H ⊂ M be universal, let A be a countable faithful H-
set, and let X be any G-H-biset. If we consider Inj(A,ω) as an M-H-biset in
the obvious way, then the unique functor Inj(A,ω)//M → EInj(A,ω) that is the
identity on objects induces a G-universal weak equivalence

(1.2.12)
(
Inj(A,ω)×H X

)
//M∼=

(
Inj(A,ω)//M

)
×H X

∼−→
(
EInj(A,ω)

)
×H X.

Here the unlabelled isomorphism comes from the cocontinuity of (–)//M.

Remark 1.2.58. The theorem of course also holds for A uncountable (as then
both sides are just empty). However, some lemmas we will appeal to only hold for
countable A and this is also the only case we will be interested in. Therefore, we
have decided to state the theorem in the above form.

The proof of the theorem needs some preparations and will be given at the end
of this subsection. Before that, let us already use it to deduce the detection result.
This will involve a standard ‘cell induction’ argument; as similar lines of reasoning
will appear again later, we formalize this part once and for all:

Lemma 1.2.59. Let C be a cocomplete category, let I be a class of morphisms
and let S be a class of objects in C such that the following conditions are satisfied:
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(1) S contains the initial object ∅.
(2) If

(1.2.13)

A B

C D

i

is a pushout with C ∈ S and i ∈ I, then D ∈ S .
(3) S is closed under filtered colimits.

Then S contains all I-cell complexes. If in addition also

(4) S is closed under retracts,

then S contains all retracts of I-cell complexes. In particular, if C is a cofibrantly
generated model category and I a set of generating cofibrations, then S contains
all cofibrant objects.

Proof. It is enough to prove the first statement. For this let X be an I-cell
complex, i.e. there exists an ordinal α and a functor X• : {β < α} → C such that
the following conditions hold:

(A) X0 = ∅
(B) For each β with β + 1 < α, the map Xβ → Xβ+1 can be written as a

pushout of some generating cofibration i ∈ I.
(C) If β < α is a limit ordinal, then the maps Xγ → Xβ for γ < β exhibit Xβ

as a (filtered) colimit.

If α is a limit ordinal, we extend this to {β ≤ α} via Xα := colimβ<αXβ together
with the obvious structure maps; if α is a successor ordinal instead, we replace α
by its predecessor. In both cases we obtain a functor X• : {β ≤ α} → C satisfying
conditions (A)–(C) above (with ‘<’ replaced by ‘≤’) and such that Xα = X. We
will prove by transfinite induction that Xβ ∈ S for all β ≤ α which will then imply
the claim.

By Conditions (1) and (A) we see that X0 = ∅ ∈ S . Now assume β > 0,
and we know the claim for all γ < β. If β is a successor ordinal, β = γ + 1,
then Conditions (2) and (B) together with the induction hypothesis imply that
Xβ ∈ S . On the other hand, if β is a limit ordinal, then the maps Xγ → Xβ for
γ < β express Xβ as a filtered colimit of elements of S by Condition (C) together
with the induction hypothesis. Thus, Condition (3) immediately implies the claim,
finishing the proof. �

Corollary 1.2.60. Let C be a cocomplete category and let D be a left proper
model category such that filtered colimits in it are homotopical. Let I be any collec-
tion of morphisms in C , and let F,G : C → D be functors together with a natural
transformation τ : F ⇒ G. Assume the following:

(1) τ∅ is a weak equivalence and for every map (X → Y ) ∈ I both τX and τY
are weak equivalences.

(2) Both F and G send pushouts along maps i ∈ I to homotopy pushouts in
D .

(3) F and G preserve filtered colimits up to weak equivalence in the sense that
for any small filtered category J and any diagram X : J → C the canonical
maps colimJ F ◦X → F (colimJ X) and colimJ G ◦X → G(colimJ X) are
weak equivalences.
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Then τ is a weak equivalence on all retracts of I-cell complexes. In particular, if C
is a cofibrantly generated model category and I is a set of generating cofibrations,
then τX is a weak equivalence for all cofibrant X.

Proof. Let S be the class of objects X ∈ C such that τX is a weak equiv-
alence. It will suffice to verify the conditions of the previous lemma. Indeed,
Condition (1) of the lemma is in immediate consequence of our Condition (1).

In order to verify Condition (2) of the lemma, we consider a pushout as in
(1.2.13). By naturality, this induces a commutative cube

GA GB

FA FB

GC GD

FC FD

Gi

Fi

with all the diagonal maps coming from τ . The assumption C ∈ S implies that the
front-to-back map at the lower left corner is a weak equivalence, and our Condition
(1) tells us that the two top front-to-back maps are weak equivalences. Moreover,
both front and back square are homotopy pushouts by Condition (2). We conclude
that also the lower right front-to-back map is a weak equivalence, just as desired.

To verify Condition (3) of the lemma, we observe that for any small filtered
category J and any X• : J → C the map τcolimj∈J Xj fits into a commutative dia-
gram

colimj∈J F (Xj) colimj∈J G(Xj)

F (colimj∈J Xj) G
(

colimj∈J Xj

)
colimj∈J τXj

τcolimj∈J Xj

where the vertical maps are the canonical comparison maps and hence weak equiv-
alences by our Condition (3). If now all Xi lie in S , then the top horizontal map is
a filtered colimit of weak equivalences and hence a weak equivalence by assumption,
proving Condition (3) of the lemma.

Finally, Condition (4) for S is automatic as weak equivalences in any model
category are closed under retracts. This finishes the proof. �

Proof of Theorem 1.2.50. We will only prove the first statement; the sec-
ond one will then follow formally from this (cf. Lemma 1.2.43.)

We already know by Lemma 1.2.54 that X//M is G-semistable for any X ∈
M-G-SSet. It therefore only remains to prove that πX : X → X//M is a G-
global weak equivalence. Since we have seen in Corollary 1.2.53 that (–)//M
preserves G-universal weak equivalences, it suffices to prove this for cofibrant X,
and Corollary 1.2.55 together with Corollary 1.2.60 reduces this further to the
case that X is the source or target of one of the standard generating cofibrations,
i.e. X = (M×ϕ G) × ∂∆n or X = (M×ϕ G) × ∆n for some n ≥ 0. By Corol-
lary 1.2.56 we are then further reduced to X =M×ϕ G.
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In this case we observe that the unit η of the adjunction EM×M (–) a forget,
evaluated at M×ϕ G can be factored as

M×ϕ G
π−→ (M×ϕ G)//M (1.2.12)−−−−−→ EM×ϕ G ∼= forget

(
EM×M (M×ϕ G)

)
,

where the middle arrow comes from applying Theorem 1.2.57 for A = ω and X = G
with its left regular G-action and H acting from the right via ϕ, and the final
isomorphism uses that the left adjoint EM ×M – is cocontinuous. The above
composition is a G-global weak equivalence by Corollary 1.2.40, and the middle
arrow is even a G-universal weak equivalence by Theorem 1.2.57. Therefore, 2-
out-of-3 implies that π is a G-global weak equivalence as desired. By the above
reduction, this completes the proof. �

It remains to prove that the map (1.2.12) is a G-universal weak equivalence.

Example 1.2.61. As the proof of the theorem will be quite technical, let us
begin with something much easier that will nevertheless give an idea of the general
argument: we will show that the map in question is a non-equivariant weak equiva-
lence for A finite and H = 1, which amounts to saying that Inj(A,ω)//M is weakly
contractible as a simplicial set. This argument also appears as [SS20, Example 3.3].

By construction, the category Inj(A,ω)//M has objects the injections i : A→ ω
and it has for every u ∈M and i ∈ Inj(A,ω) a map u : i→ ui. If now i, j ∈ Inj(A,ω)
are arbitrary, then we can pick a bijection u ∈ M with ui = j, i.e. i and j are iso-
morphic in Inj(A,ω)//M. It follows that for our favourite i ∈ Inj(A,ω) the induced
functor BEnd(i)→ Inj(A,ω)//M is an equivalence of categories. Therefore it suf-
fices that the monoid End(i) has weakly contractible classifying space. However,
End(i) consists precisely of those u ∈ M that fix im(i) pointwise. Picking a bijec-
tion ω ∼= ωr im(i) therefore yields an isomorphism of monoidsM∼= End(i). Since
M has weakly contractible classifying space by [Sch08, Lemma 5.2] (whose proof
Schwede attributes to Strickland), this finishes the proof.

1.2.4.3. Equivariant analysis of action categories. Fix a universal subgroup
K ⊂ M and a homomorphism ϕ : K → G. By definition, the simplicial set
(Inj(A,ω) ×H X)//M is the nerve of the category of the same name, and as the
nerve is a right adjoint, this is compatible with ϕ-fixed points. In the following, we
want to understand these fixed point categories better and in particular describe
them as disjoint unions of monoids in analogy with the above example.

However, in Theorem 1.2.57 we allow A to be infinite (and A = ω is the case
we actually used in the proof of Theorem 1.2.50). In this case, there are ‘too
many isomorphism classes’ in (Inj(A,ω)//M)×HX: for example, not all objects in
M//M are isomorphic, though they all receive a map from 1 ∈M. To salvage this
situation we introduce the full subcategory CK ⊂ (Inj(A,ω) ×H X)//M spanned
by those [u, x] for which im(u)c ⊂ ω contains a complete K-set universe (this is
independent of the choice of representative as im(u) = im(u.h) for all h ∈ H).

Lemma 1.2.62. The inclusion CK ↪→ (Inj(A,ω)//M)×HX induces a (K×G)-
homotopy equivalence on nerves.

Proof. Let α ∈M be K-equivariant such that im(α)c contains a complete K-
set universe. Then α.– is (K×G)-equivariant and it takes all of (Inj(A,ω)//M)×HX
to CK . We claim that this is a (K×G)-homotopy inverse to the inclusion. Indeed,
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the proof of Lemma 1.2.54 shows that the maps α : x→ α.x define a natural trans-
formation from the identity to α.– as endofunctors of (Inj(A,ω)//M)×HX, showing
that α.– is a right (K×G)-homotopy inverse. However, as CK is a full subcategory,
these also define such a transformation for the other composite, proving that α.– is
also a left (K ×G)-homotopy inverse. �

The next lemma in particularly tells us that CK avoids the aforementioned
issue. For its proof we need the following notation:

Definition 1.2.63. Let A,B be sets, let A = A1 t A2 be any partition, and
let fi : Ai → B (i = 1, 2) be any maps of sets. Then we write f1 + f2 for the unique
map A→ B that agrees on A1 with f1 and on A2 with f2.

By slight abuse, we will also apply the above when f1 and f2 are maps into
subsets of B. Obviously, f1 + f2 will be injective if and only if f1 and f2 are
injections with disjoint image.

Lemma 1.2.64. Let p, q ∈ CϕK and fix a representative (u, x) ∈ Inj(A,ω)×X of
p. Then the following are equivalent:

(1) There exists a map f : p→ q in CϕK .
(2) There exists a representative of q of the form (v, x) such that in addition

σu = σv (see the discussion after Lemma 1.2.34).
(3) There exists an isomorphism f ′ : p→ q in CϕK .

Proof. Obviously (3)⇒ (1); we will prove that also (1)⇒ (2) and (2)⇒ (3).
Assume f : p → q is any morphism in CϕK . Then q = f.p, so that (fu, x) is a

representative of q. We claim that this has the desired property, i.e. v := fu satisfies
σv = σu. But indeed, as f is ϕ-fixed, it has to be K-equivariant by definition of
the action. Then

v.σv(k) = kv = kfu = fku = fu.σu(k) = v.σu(k),

and hence σv(k) = σu(k) as H acts freely on Inj(A,ω). This proves (1)⇒ (2).
For the proof of (2)⇒ (3), we observe that im(u) and im(v) are both K-subsets

of ω: indeed, k.u(a) = (ku)(a) = u(σu(k).a) for all a ∈ A, and similarly for v.
Thus, ωr im(u) and ωr im(v) are K-sets in their own right; as they are obviously
countable and moreover contain a complete K-set universe each by definition of
CK , they are themselves complete K-set universes. It follows that there exists a
K-equivariant bijection f ′1 : ω r im(u) ∼= ω r im(v).

On the other hand, f ′0 = vu−1 : im(u)→ im(v) is also K-equivariant because

f ′0(k.u(a)) = f ′0(u(σu(k).a)) = v(σu(k).a) = v(σv(k).a) = k.v(x) = k.f ′0(u(a))

for all k ∈ K, a ∈ A. As it is moreover obviously bijective, we conclude that
f ′ := f ′0 + f ′1 defines an isomorphism [u, x]→ [v, x] in CϕK as desired. �

We fix for each isomorphism class of CϕK a representative p ∈ CϕK and for each
such p in turn a representative (u, x) ∈ Inj(A,ω) ×X. Let us write I for the set
of all these. The above lemma then implies:

Corollary 1.2.65. The tautological functor

Φ:
∐

(u,x)∈I

BEndCϕK ([u, x])→ CϕK

is an equivalence of categories. �
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Let us now study these monoids more closely:

Proposition 1.2.66. Let (u, x) ∈ Inj(A,ω)×X such that [u, x] ∈ CϕK .

(1) Let f : [u, x] → [u, x] be any map in CϕK . Then there exists a unique
τ(f) ∈ H such that fu = u.τ(f). Moreover, τ(f) centralizes imσu and
stabilizes x ∈ X. (We caution the reader that τ depends on the chosen
representative.)

(2) The assignment f 7→ τ(f) defines a monoid homomorphism

τ : EndCϕK ([u, x])→ CH(imσu) ∩ StabH(x).

(3) The homomorphism τ induces a weak equivalence on classifying spaces.

For the proof of the proposition we will need:

Lemma 1.2.67. The monoidMK of K-equivariant injections ω → ω has weakly
contractible classifying space.

Proof. This is an equivariant version of [Sch08, proof of Lemma 5.2]. As
K is universal, we can pick a K-equivariant bijection ω ∼= ω q ω which yields two
K-equivariant injections α, β ∈M whose images partition ω. Then the conjugation
homomorphism cα : M→M satisfies

cα(u)α = αu and cα(u)β = β

for all u ∈M. The first equality proves that α defines a natural transformation from
the identity to B(cα) : BM→ BM (also cf. the proof of Lemma 1.2.54) while the
second one shows that β defines a natural transformation from the constant functor
to it. Upon taking nerves, we therefore get a zig-zag of homotopies between the
identity and a constant map, proving the claim. �

Proof of Proposition 1.2.66. For the first statement we observe that there
exists at most one such τ(f) by freeness of the action. On the other hand, f being
a morphism in particular means that f.[u, x] = [u, x]. Plugging in the definition
of the action and of the equivalence relation we divided out, this means that there
exists τ(f) ∈ H with (fu, x) = (u.τ(f), x.τ(f)). Thus, it only remains to show that
τ(f) centralizes im(σu). Indeed, if k ∈ K is arbitrary, then on the one hand

kfu = fku = fu.σu(k) = u.(τ(f)σu(k))

(where we have used that f is K-equivariant since it is a morphism in CϕK), and on
the other hand

kfu = ku.τ(f) = u.(σu(k)τ(f)).

Thus, u.(τ(f)σu(k)) = u.(σu(k)τ(f)), whence indeed τ(f)σu(k) = σu(k)τ(f) by
the freeness of the right H-action. This finishes the proof of (1).

For the second statement, we observe that ff ′u = fu.τ(f ′) = u.(τ(f)τ(f ′))
and hence τ(ff ′) = τ(f)τ(f ′) by the above uniqueness statement. Analogously,
1u = u = u.1 shows τ(1) = 1.

For the final statement, we will first prove:

Claim. The assignment

T: EndCϕK ([u, x])→ Inj(ω r imu, ω r imu)K ×
(
CH(imσu) ∩ StabH(x)

)
f 7→

(
f |ωrim(u) : ω r im(u)→ ω r im(u), τ(f)

)
defines an isomorphism of monoids.
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Proof. This is well-defined by the first part and since the injection f restricts
to a self-bijection of im(u) by the above, so that it also has to preserve ω r im(u).
It is then obvious (using the second part of the proposition) that T is a monoid
homomorphism.

We now claim that it is actually an isomorphism of monoids. For injectivity, it
suffices to observe that if τ(f) = τ(f ′), then fu = uτ(f) = uτ(f ′) = f ′u.

For surjectivity, we let f1 : ωrim(u)→ ωrim(u) be anyK-equivariant injection
and we let t ∈ CH(imσu) ∩ StabH(x). Then there is a unique map f0 : im(u) →
im(u) with f0u = u.t and this is automatically injective (in fact, even bijective).
We claim that it is also K-equivariant. Indeed, if k ∈ K is arbitrary, then

k.f0(u(x)) = ku(t.x) = u(σu(k)t.x) = u(tσu(k).x) = f0(u(σu(k).x)) = f0(k.u(x))

where we have used that t commutes with σu(k). Thus, f := f0 + f1 defines a
K-equivariant injection ω → ω and we claim that this is an endomorphism of [u, x]
in CK , hence the desired preimage of (f1, t). Indeed, f.[u, x] is represented by

(fu, x) = (u.t, x) ∼ (u, x.t−1) = (u, x),

where we have used that t and hence also t−1 stabilizes x. 4

To prove that τ induces a weak homotopy equivalence on classifying spaces, we
now observe that the induced map factors as

N
(
BEnd([u, x])

) N(BT)−−−−→ N
(
B(Inj(ω r imu, ω r imu)K × L)

)
∼= N

(
B(Inj(ω r imu, ω r imu)K)

)
×N(BL)

pr−→ N(BL),

where L := CH(imσu)∩StabH(x). The first map is an isomorphism by the previous
statement, so it suffices that Inj(ω r imu, ω r imu)K has trivial classifying space.
But indeed, as in the proof of Lemma 1.2.64 we see that ω r imu is a complete
K-set universe, so that Inj(ω r imu, ω r imu)K ∼= MK as monoids. Thus, the
claim follows from Lemma 1.2.67. �

1.2.4.4. Equivariant analysis of quotient categories. We recall that the simpli-
cial set EInj(A,ω) × X is canonically and equivariantly isomorphic to the nerve
of the groupoid of the same name. On the other hand, the right H-action on
EInj(A,ω)×X is free, and as the nerve preserves quotients by free group actions,
the simplicial set EInj(A,ω)×H X is again canonically identified with the nerve of
the corresponding quotient of categories, which we denote by the same name.

In the following we want to devise a description of this category and its fixed
points analogous to the above results. For this we first observe that while hom sets
in quotient categories are in general hard to describe, the situation is easier here
because this particular quotient is preserved by the nerve: namely, any morphism
p → q (for p, q ∈ Inj(A,ω) ×K X) is represented by a triple (u, v;x) with u, v ∈
Inj(A,ω), x ∈ X such that [u;x] = q and [v, x] = p; moreover, a triple (u′, v′;x′)
represents the same morphism if and only if there exists an h ∈ H with u′ = u.h,
v′ = v.h, and x′ = x.h. The following lemma gives a more concrete description
once we have fixed representatives of p and q:

Lemma 1.2.68. Let (u, x), (v, y) ∈ Inj(A,ω)×X. Then the assignment

{h ∈ H : y.h = x} → HomEInj(A,ω)×HX([u;x], [v; y])

h 7→ [v.h, u;x] = [v, u.h−1, y]
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is well-defined and bijective. In particular, the assignment

(1.2.14)
StabH(x)→ EndEInj(A,ω)×HX([u;x])

h 7→ [u.h, u;x]

is bijective; in fact, this even defines an isomorphism of groups.

Proof. Let us denote the above map by α. We first observe that for any h
on the left hand side the representative (v.h, u;x) differs from (v, u.h−1, y) only by
right multiplication by h, so that the two given definitions of α(h) indeed agree. In
particular, they define an edge from [u;x] to [v; y], proving that α is well-defined.

Lemma 1.2.33-(2) already implies that α is injective. For surjectivity, we pick
an edge on the right hand side and let (a, b; c) be a representative. By definition
[b; c] = [u;x], so after acting suitably from the right by H on (a, b; c), we may
assume b = u and c = x, i.e. our chosen representative takes the form (a, u;x). But
by assumption this represents an edge to [v; y] and hence [a;x] = [v; y], i.e. there
exists an h ∈ H such that a = v.h and x = y.h, which then provides the desired
preimage.

Specializing to (v; y) = (u;x) shows that (1.2.14) is bijective. The calculation

[u.hh′, u;x] = [u.hh′, u.h′;x][u.h′, u;x] = [u.h, u;x][u.h′, u;x]

(where the final equality uses that x.(h′)−1 = x) then shows that it is in fact an
isomorphism of groups. �

Similarly, we can describe the hom sets in the fixed point categories:

Lemma 1.2.69. Let (u, x), (v, y) ∈ Inj(A,ω) × X such that [u;x], [v; y] are ϕ-
fixed points of EInj(A,ω)×H X. Then

{h ∈ H : y.h = x, hσu(k)h−1 = σv(k) ∀k ∈ K} → Hom(EInj(A,ω)×HX)ϕ([u;x], [v; y])

h 7→ [v.h, u;x] = [v, u.h−1, y].

is well-defined and bijective. In particular, this yields a bijection

StabH(x) ∩ CH(imσu)→ End(EInj(A,ω)×HX)ϕ([u;x])

h 7→ [u.h, u;x].

This map is in fact even an isomorphism of groups.

Proof. By the previous lemma we are reduced to proving that [v.h, u;x] is
ϕ-fixed if and only if σv(k) = hσu(k)h−1 for all k ∈ K. Indeed,

(k, ϕ(k)).(v.h, u;x) = (kv.h, k.u;ϕ(k).x) = (v.σv(k)h, u.σu(k);x.σu(k))

∼
(
v.(σv(k)hσu(k)−1), u;x

)
where we have applied Lemma 1.2.34 to (u;x). By freeness of the right H-action
this represents the same element as (v.h, u;x) if and only if σv(k)hσu(k)−1 = h,
which is obviously equivalent to the above condition. �

Proposition 1.2.70. The functor

Ψ:
∐

(u,x)∈I

B
(
CH(imσu) ∩ StabH(x)

)
→
(
EInj(A,ω)×H X

)ϕ
given on the (u, x)-summand by sending t ∈ CH(imσu)∩StabH(x) to the morphism
[u.t, u;x] is an equivalence of groupoids.
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Proof. Lemma 1.2.69 implies that this indeed lands in the ϕ-fixed points and
that each of the maps

CH(imσu) ∩ StabH(x)→ End(
EInj(A,ω)×HX

)ϕ([u;x])

is a group isomorphism; in particular, Ψ is a functor. As both source and target of
Ψ are groupoids, it suffices then to show that I also is a system of (representatives
of) representatives of the isomorphism classes on the right hand side.

To see that I hits every isomorphism class at most once, assume (u, x), (v, y) ∈
I represent isomorphic elements in (EInj(A,ω) ×H X)ϕ. Lemma 1.2.69 implies
that there exists an h ∈ H with y.h = x and h−1σv(k)h = σu(k) for all k ∈ K.
Then (w, x) := (v.h, y.h) represents the same element as (v, y) in both CϕK as well
as (EInj(A,ω)×HX)ϕ, and one easily checks that σw = σu. Thus, [u, x] ∼= [w, x] =
[v, y] in CϕK by Lemma 1.2.64, and hence (u, x) = (v, y) by definition of I .

But I also covers the isomorphism classes of (EInj(A,ω) ×H X)ϕ: if (v; y)
represents an arbitrary element of it and α ∈ M is again K-equivariant with
ω r imα a complete K-set universe, then one easily checks that [αv, v; y] is ϕ-
fixed, so that it witnesses [v; y] ∼= [αv; y]. In other words, we may assume that v
misses a complete K-set universe. But in this case it defines an element of CK ,
which is then by definition isomorphic in CK to some [u, x] with (u, x) ∈ I , and
hence also in (EInj(A,ω)×H X)ϕ by functoriality. �

1.2.4.5. Quotient vs. action categories. Putting all of the above results to-
gether, we finally get:

Proof of Theorem 1.2.57. As before let K ⊂ M be a universal subgroup,
and let ϕ : K → G be any group homomorphism. We have to show that (1.2.12)
induces a weak homotopy equivalence on ϕ-fixed points.

To this end, we consider the diagram of categories and functors∐
(u,x)∈I

BEndCϕK ([u, x])
∐

(u,x)∈I

B
(
CH(imσu) ∩ StabH(x)

)
CϕK

(
(Inj(A,ω)×H X)//M)ϕ (EInj(A,ω)×H X)ϕ

∐
Bτ

Φ Ψ

where the unlabelled arrow is induced by the map in question (viewed as a functor).
The top path through this diagram sends f : [u, x] → [u, x] to [u.τ(f), u;x] while
the lower one sends it to [fu, u;x]. As u.τ(f) = fu by definition of τ , these two
agree, i.e. the above diagram commutes.

We now observe that the top map is a weak homotopy equivalence by Proposi-
tion 1.2.66, that the vertical maps are equivalences by Corollary 1.2.65 and Propo-
sition 1.2.70, respectively, and that the lower left inclusion is a weak homotopy
equivalence by Lemma 1.2.62. The claim now follows by 2-out-of-3. �

1.2.5. Functoriality. We will now study various change-of-group functors
for the above models of G-global homotopy theory. We begin with the versions for
EM-actions, where Lemma 1.1.15 and Lemma 1.1.16, respectively, specialize to:

Corollary 1.2.71. Let α : H → G be any group homomorphism. Then

α! : EM-H-SSetH-global � EM-G-SSetG-global :α∗

is a simplicial Quillen adjunction with homotopical right adjoint. �
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Corollary 1.2.72. Let α : H → G be any group homomorphism. Then

α∗ : EM-G-SSetG-global injective � EM-H-SSetH-global injective :α∗

is a simplicial Quillen adjunction. �

On the other hand, Propositions 1.1.17 and 1.1.18 imply:

Corollary 1.2.73. Let α : H → G be an injective group homomorphism. Then

α! : EM-H-SSetH-global injective � EM-G-SSetH-global injective :α∗

is a simplicial Quillen adjunction. In particular, α! is homotopical. �

Corollary 1.2.74. Let α : H → G be an injective group homomorphism. Then

α∗ : EM-G-SSetG-global � EM-H-SSetH-global :α∗

is a simplicial Quillen adjunction. If (G : imα) <∞, then α∗ is homotopical. �

Finally, Proposition 1.1.21 specializes to:

Corollary 1.2.75. Let α : H → G be any group homomorphism. Then

α! : EM-H-SSet→ EM-G-SSet

preserves weak equivalences between objects with free ker(α)-action. �

The case of M-actions needs slightly more work:

Corollary 1.2.76. Let α : H → G be any group homomorphism. Then

α! :M-H-SSetH-global �M-G-SSetG-global :α∗

is a simplicial Quillen adjunction.

Proof. This follows as before for theH-universal andG-universal model struc-
ture, respectively. Thus, it suffices by Proposition A.2.6 that α∗ sends G-semistable
objects to H-semistable ones, which is obvious from the definition. �

Proposition 1.2.77. Let α : H → G be any group homomorphism. Then

α∗ :M-G-SSetG-global injective �M-H-SSetH-global injective :α∗

is a simplicial Quillen adjunction. In particular, α∗ is homotopical.

Proof. It is clear that α∗ preserves injective cofibrations, so it only remains
to show that it is homotopical. However, while α∗ commutes with EM×M –, it
is not clear a priori that it is also suitably compatible with EM×L

M – since α∗

usually does not preserve cofibrant objects of the universal model structures.
Instead, we consider the commutative diagram

M-G-SSetG-global M-G-SSetG-universal

M-H-SSetH-global M-H-SSetH-universal.

–//M

α∗ α∗

–//M

Then the horizontal arrows create weak equivalences by Theorem 1.2.50, while the
right vertical arrow is clearly homotopical. Thus, also the left hand vertical arrow
is homotopical. �
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Corollary 1.2.78. Let α : H → G be an injective group homomorphism. Then

α! :M-H-SSetH-global injective �M-G-SSetH-global injective :α∗

is a simplicial Quillen adjunction. In particular, α! is homotopical.

Proof. By Proposition 1.1.17, α! preserves injective cofibrations and it sends
H-universal weak equivalences to G-universal ones. On the other hand, any H-
global weak equivalence factors as an H-global acyclic cofibration followed by an H-
universal weak equivalence. Since α! sends the former to G-global weak equivalences
by Corollary 1.2.76, 2-out-of-3 implies that α! is also homotopical. �

1.2.6. G-global homotopy theory vs. G-equivariant homotopy theory.
As promised, we will now explain how to exhibit classical (proper) G-equivariant
homotopy theory as a Bousfield localization of our models of G-global homotopy
theory. In fact, we will construct for both models a chain of four adjoint functors,
in particular yielding two Bousfield localizations each. Before we can do any of
this however, we need to understand a particular case of the ‘change of family’
adjunction from Proposition 1.1.22 better:

Definition 1.2.79. We define E (for ‘equivariant’) as the collection of those
graph subgroups ΓH,ϕ of M×G such that H is universal and ϕ is injective.

Below we will need a characterization of the essential image of the left adjoint

(1.2.15) λ : EM-G-SSet∞E-w.e. → EM-G-SSet∞G-global w.e.

of the localization functor. Let us give some intuition for this: on the left hand side,
we only remember the fixed points for injective ϕ : H → G. If now X is any EM-
G-simplicial set, then λ(X)ϕ and Xϕ are weakly equivalent by abstract nonsense.
On the other hand, if ψ : H → G is not necessarily injective, then λ(X)ψ should be
somehow computable from the fixed points for injective homomorphisms. A natural
guess is that λ(X)ψ be weakly equivalent to Xψ̄ where ψ̄ : H/ ker(ψ) → G is the
induced homomorphism (and we have secretly identified H/ ker(ψ) with a universal
subgroup ofM isomorphic to it), and this indeed turns out to be true. However, we

of course do not want λ(X)ψ and λ(X)ψ̄ to be merely abstractly weakly equivalent,
but instead we want some explicit and suitably coherent way to identify them. The
following definition turns this vague heuristic into a rigorous notion:

Definition 1.2.80. An EM-G-simplicial set X is called kernel oblivious if the
following holds: for any universal H,H ′ ⊂M, any surjective group homomorphism
α : H → H ′, any arbitrary group homomorphism ϕ : H ′ → G, and any u ∈M such
that hu = uα(h) for all h ∈ H, the map

u.–: Xϕ → Xϕα

is a weak homotopy equivalence of simplicial sets.

Example 1.2.81. Any EM-G-simplicial set with trivial EM-action is kernel
oblivious: in fact, in this case Xϕ = Xϕα, and u.– is just the identity.

Theorem 1.2.82. The following are equivalent for an EM-G-simplicial set X:

(1) X is kernel oblivious.
(2) X lies in the essential image of (1.2.15).
(3) X is G-globally equivalent to an E-cofibrant X ′ ∈ EM-G-SSet.
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(4) In any cofibrant replacement π : X ′ → X in the E-model structure on
EM-G-SSet, π is actually a G-global weak equivalence.

The proof will require some preparations.

Lemma 1.2.83. Let f : X → Y be an E-weak equivalence in EM-G-SSet such
that X and Y are kernel oblivious. Then f is a G-global weak equivalence.

Proof. Let H ⊂ M be universal and let ϕ : H → G be any group homomor-
phism. We have to show that fϕ is a weak homotopy equivalence.

For this we choose a universal subgroup H ′ ⊂M together with an isomorphism
H ′ ∼= H/ kerϕ, which gives rise to a surjective homomorphism α : H → H ′ with
ker(α) = ker(ϕ). By the universal property of quotients, there then exists a unique
ϕ̄ : H ′ → G with ϕ̄α = ϕ; moreover, ϕ̄ is injective.

We now appeal to Corollary 1.2.35 to find a u ∈ M such that hu = uα(h) for
all h ∈ H, yielding a commutative diagram

Xϕ̄ Xϕ̄α = Xϕ

Y ϕ̄ Y ϕ̄α = Y ϕ.

f ϕ̄

u.–

fϕ

u.–

The horizontal maps are weak equivalences as X and Y are kernel oblivious, and
the left hand vertical map is a weak equivalence because f is an E-weak equivalence.
Thus, also the right hand map is a weak equivalence as desired. �

Proposition 1.2.84. Let K ⊂ M be any subgroup and let ψ : K → G be an
injective homomorphism. Then the projection EM×ψ G → G/ imψ is a G-global
weak equivalence (where the right hand side carries the trivial EM-action).

Proof. The map in question is conjugate to the image of the unique map
p : EM → ∗ under ψ! : EM-K-SSet → EM-G-SSet, where K acts on EM
from the right via k.(u0, . . . , un) = (u0k

−1, . . . , unk
−1).

As ψ! is homotopical (Corollary 1.2.73), it is then enough to show that p is a
K-global weak equivalence, which is just an instance of Example 1.2.31. �

Corollary 1.2.85. Let K ⊂M be universal, let ψ : K → G be injective, and
let L be any simplicial set. Then (EM×ψ G)× L is kernel oblivious.

Proof. The kernel oblivious EM-G-simplicial sets are obviously closed under
G-global weak equivalences. Thus, the claim follows from the previous proposition
together with Example 1.2.81. �

Proof of Theorem 1.2.82. The implications (4)⇒ (2) and (2)⇒ (3) follow
immediately from Remark 1.1.23. For the remaining implications we will use:

Claim. If X is cofibrant in EM-G-SSetE , then X is kernel oblivious.

Proof. Let α,ϕ, u as in Definition 1.2.80. It suffices to verify that the natural
transformation u.–: (–)ϕ ⇒ (–)ϕα satisfies the assumptions of Corollary 1.2.60.
But indeed, Condition (1) is an instance of the previous corollary, while all the
remaining conditions are part of Lemma 1.1.10. 4
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The implication (3) ⇒ (1) now follows immediately from the claim. On the
other hand, if X is kernel oblivious, and π : X ′ → X is any E-cofibrant replacement,
then alsoX ′ is kernel oblivious by the claim, so that π is aG-global weak equivalence
by Lemma 1.2.83. This shows (1)⇒ (4), finishing the proof. �

We now consider the functor trivEM : G-SSet→ EM-G-SSet that equips a
G-simplicial set with the trivial EM-action. The equality of functors

(1.2.16) (–)ϕ ◦ trivEM = (–)imϕ

(for anyH ⊂M and any homomorphism ϕ : H → G) shows that this is homotopical
with respect to the proper weak equivalences on the source and the G-global or E-
weak equivalences on the target.

Corollary 1.2.86. The diagram

(1.2.17)

G-SSet∞proper

EM-G-SSet∞E EM-G-SSet∞G-global

triv∞EM triv∞EM

λ

commutes up to canonical equivalence.

Proof. This is is obviously true if we replace λ by its right adjoint; in par-
ticular, there is a natural transformation filling the above, induced by the unit η
of λ a localization. To see that this is in fact an equivalence, it suffices (as λ is
fully faithful) that the right hand arrow lands in the essential image of λ. But by
Theorem 1.2.82 this is equivalent to demanding that trivEMX be kernel oblivious
for every G-simplicial set X, which is just an instance of Example 1.2.81. �

We can now prove the comparison between G-global and proper G-equivariant
homotopy theory:

Theorem 1.2.87. The functor trivEM : G-SSetproper → EM-G-SSetG-global

descends to a fully faithful functor on associated quasi-categories with essential
image the kernel oblivious EM-G-simplicial sets.

This induced functor admits both a left adjoint L(EM\–) as well as a right
adjoint (–)REM. Moreover, (–)REM is a quasi-localization at the E-weak equiva-
lences, and it in turn admits another right adjoint R, which is again fully faithful.

In particular, Example 1.2.81 accounts for all kernel oblivious EM-G-simplicial
sets up to homotopy.

Proof. We first observe that the adjunctions

(1.2.18) EM\–: EM-G-SSetG-global � G-SSetproper : trivEM

and

(1.2.19) EM\–: EM-G-SSetE � G-SSetproper : trivEM

are Quillen adjunctions with homotopical right adjoints by the equality (1.2.16),
and in particular (1.2.18) induces the desired left adjoint of triv∞EM.

To construct the right adjoint of trivEM it suffices to observe that while

trivEM : G-SSet� EM-G-SSet : (–)EM
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is not a Quillen adjunction with respect to the above model structures, it becomes
one once we use Corollary A.2.17 to enlarge the generating cofibrations of the G-
global model structure as to contain all G/H×∂∆n ↪→ G/H×∆n for H ⊂ G finite
and n ≥ 0 (which we are allowed to do by Corollary 1.1.13); in particular, trivEM
is left Quillen with respect to the injective G-global model structure on the target.

To prove the remaining statements we will need:

Claim. The Quillen adjunction (1.2.19) is a Quillen equivalence. In particular,

triv∞EM : G-SSet∞proper → EM-G-SSet∞E-w.e.

is an equivalence of quasi-categories.

Proof. It suffices to prove the first statement. The equality (1.2.16) shows
that the right adjoint preserves and reflects weak equivalences. It is therefore
enough that the ordinary unit η : X → trivEM(EM\X), which is given by the
projection map, is an E-weak equivalence for any E-cofibrant EM-G-simplicial set
X. By the above, both EM\– as well as trivEM are left Quillen (after suitably
enlarging the cofibrations in the target), and they moreover commute with tensoring
with simplicial sets. By Corollary 1.2.60 it therefore suffices that η is a weak
equivalence for every EM×ψ G with K ⊂M universal and ψ : K → G injective.

An easy calculation shows that the projection EM× G → G descends to an
isomorphism EM\(EM×ψG)→ G/ imψ, so we want to show that the projection
EM×ψG→ G/ imψ is an E-weak equivalence. But this is actually even a G-global
weak equivalence by Proposition 1.2.84, finishing the proof of the claim. 4

We now contemplate the diagram (1.2.17) from Corollary 1.2.86. By the above
claim together with Proposition 1.1.22 we then conclude that

triv∞EM : G-SSet∞proper → EM-G-SSet∞G-global

is fully faithful, and by Theorem 1.2.82 its essential image then consists precisely
of the kernel oblivious EM-G-simplicial sets. Moreover, we deduce by uniqueness
of adjoints that its right adjoint (–)REM is canonically equivalent to the composite

(1.2.20)
EM-G-SSet∞G-global

localization−−−−−−−→ EM-G-SSet∞E-w.e.

(triv∞EM)−1

−−−−−−−→ G-SSetproper

(where the right hand arrow denotes any chosen quasi-inverse) and hence indeed a
quasi-localization at the E-weak equivalences. Finally, (1.2.20) has a fully faithful
right adjoint by Proposition 1.1.22, given explicitly by

G-SSet∞proper

triv∞EM−−−−−→ EM-G-SSet∞E-w.e.
ρ−→ EM-G-SSet∞G-global

which is then also right adjoint to (–)REM, finishing the proof. �

Remark 1.2.88. In summary, we in particular have two Bousfield localizations

L(EM\–) a trivEM and (–)REM a R.

In the ordinary global setting one is mostly interested in the analogue of the ad-
junction trivEM a (–)REM (cf. Remark 1.4.56) which is a ‘wrong way’ (i.e. right)
Bousfield localization.
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Warning 1.2.89. Using the Quillen equivalence (1.2.19), we can give another
description of the composition (1.2.20) and hence of the right adjoint (–)REM of
triv∞EM: namely, this can be computed by taking a cofibrant replacement with
respect to the E-model structure and then dividing out the left EM-action.

In contrast to this, the left adjoint of triv∞EM is computed by taking a cofibrant
replacement with respect to the G-global model structure and then dividing out the
action. These two functors are not equivalent even for G = 1: namely, let H ⊂
M be any non-trivial universal subgroup and consider the projection p : EM →
EM/H. As EM and EM/H are both cofibrant in EM-SSet, we can calculate
the value of L(EM\–) at p simply by EM\p : EM\EM→ EM\EM/H, which
is a map between terminal objects, hence in particular an equivalence.

On the other hand, p is not an E-weak equivalence (i.e. underlying weak equiv-
alence) as EM/H is a K(H, 1) while EM is contractible. But (–)REM is a quasi-
localization at the E-weak equivalences, and these are saturated as they are part of
a model structure. Thus pREM is not an equivalence, and in particular it cannot
be conjugate to L(EM\–)(p).

The above descriptions of the adjoints are not really suitable for computations.
However, for finite G we can give easier constructions of (–)REM and R:

Proposition 1.2.90. Assume G is finite and choose an injective homomor-
phism i : G→M with universal image, inducing (i, id) : G→ EM×G. Then

(1.2.21) (i, id)∗ : EM-G-SSetG-global � G-SSet : (i, id)∗

is a Quillen adjunction with homotopical left adjoint, and there are preferred equiv-
alences (

(i, id)∗
)∞ ' (–)REM and R(i, id)∗ ' R.

Proof. It is obvious from the definition that (i, id)∗ sends E-weak equivalences
(and hence in particularG-global weak equivalences) toG-weak equivalences. More-
over, it preserves cofibrations as the cofibrations on the right hand side are just the
underlying cofibrations. We conclude that (1.2.21) is a Quillen adjunction and that
(i, id)∗ descends to EM-G-SSet∞E → G-SSet∞.

On the other hand, by Theorem 1.2.87 also (–)REM descends accordingly and
the resulting functor is quasi-inverse to the one induced by trivEM. The equality
(i, id)∗ ◦ trivEM = idG-SSet of homotopical functors then also exhibits the functor
induced by (i, id)∗ on EM-G-SSet∞E as left quasi-inverse to the one induced by
trivEM which provides the first equivalence. The second one is then immediate
from the uniqueness of adjoints. �

Finally, let us consider the analogues for M-actions:

Corollary 1.2.91. The homotopical functor

trivM : G-SSetproper →M-G-SSetG-global

descends to a fully faithful functor on associated quasi-categories. This induced
functor admits both a left adjoint L(M\–) as well as a right adjoint (–)RM. The
latter is a quasi-localization at those f such that EM×L

Mf is an E-weak equivalence,
and it in turn admits another right adjoint R which is again fully faithful.
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Moreover, the diagram

(1.2.22)

G-SSet∞proper

EM-G-SSet∞G-global M-G-SSet∞G-global

triv∞EM triv∞M

forget∞

commutes up to canonical equivalence.

It follows formally that the forgetful functor is also compatible with the re-
maining functors in the two adjoint chains constructed above, and likewise for its
own adjoints EM×L

M – and RmapsM(EM, –).

Proof. We obviously have a Quillen adjunction

trivM : G-SSetproper �M-G-SSetinjective G-global : (–)M,

justifying the above description of the right adjoint; in fact, as in the proof of
Theorem 1.2.87, it would have been enough to enlarge the generating cofibrations
by the maps G/H × ∂∆n ↪→ G/H ×∆n for H finite and n ≥ 0.

For the left adjoint, we now want to prove that also

M\–:M-G-SSetG-global � G-SSetproper : trivM

is a Quillen adjunction. For this we observe that this is true for the G-universal
model structure on the left hand side (as trivM is then obviously right Quillen);
in particular M\– preserves cofibrations and trivM sends fibrant G-simplicial sets
to G-universally fibrant M-G-simplicial sets. As this adjunction has an obvious
simplicial enrichment, it therefore suffices by Proposition A.2.6 and the character-
ization of the fibrant objects provided in Corollary 1.2.40 that trivM has image in
the G-semistable M-G-simplicial sets, which is in fact obvious from the definition.

To prove that (1.2.22) commutes up to canonical equivalence, it suffices to
observe that the evident diagram of homotopical functors inducing it actually com-
mutes on the nose. All the remaining statements then follow formally from the
commutativity of (1.2.22) as before. �

1.3. Tameness

In this section we will be concerned with the notion of tameness forM-actions
and EM-actions, and we will in particular show that the models from the previous
sections have tame analogues, that still model unstable G-global homotopy theory.

Our reason to study tameness here is twofold: firstly, the categories of tame
M- and EM-simplicial sets carry interesting symmetric monoidal structures, which
we will study in Chapter 2, and which play a central role in the construction of
global algebraic K-theory [Sch19b]; secondly, tame M- and EM-simplicial sets
are intimately connected to the diagram spaces we will consider in the next section,
and the theory developed here will be crucial in establishing those models.

1.3.1. A reminder on tameM-actions. We begin with the notion of tame
M-actions, which first appeared (for actions on abelian groups) as [Sch08, Defi-
nition 1.4], and which were then further studied (for actions on sets and simplicial
sets) in [SS20], see in particular [SS20, Definition 2.2 and Definition 3.1].
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Definition 1.3.1. Let A ⊂ ω be any finite set. We write MA ⊂ M for the
submonoid of those u ∈M that fix A pointwise, i.e. u(a) = a for all a ∈ A.

Let X be anyM-set. An element x ∈ X is said to be supported on A if u.x = x
for all u ∈ MA; we write X[A] ⊂ X for the subset of those elements that are

supported on A, i.e. X[A] = XMA .
We call x finitely supported if it is supported on some finite set, and we write

Xτ :=
⋃

A⊂ω finite

X[A]

for the subset of all finitely supported elements. We call X tame if X = Xτ .

On M-simplicial sets everything can be extended levelwise:

Definition 1.3.2. Let X be anM-simplicial set. An n-simplex x is supported
on the finite set A ⊂ ω if it is supported on A as an element of the M-set Xn of
n-simplices of X. Analogously, x is said to be finitely supported if it is so as an
element of Xn. We define Xτ via (Xτ )n = (Xn)τ , i.e. as the family of all finitely
supported simplices. We call X tame if Xτ = X.

1.3.1.1. Basic properties. Let us record some basic facts about the above no-
tions. All of these can be found explicitly in [SS20] for M-sets and are easily
extended to M-simplicial sets (for which they also appear implicitly in op. cit.).

Lemma 1.3.3. (1) If f : X → Y is a map of M-sets and A ⊂ ω is finite,
then f restricts to f[A] : X[A] → Y[A], hence in particular to fτ : Xτ → Y τ .

(2) If X is any M-simplicial set and A ⊂ ω is finite, then X[A] is a simplicial
subset of X. In particular, Xτ is a simplicial subset.

(3) If f : X → Y is a map of M-simplicial sets and A ⊂ ω is finite, then f
restricts to f[A] : X[A] → Y[A]. In particular, it restricts to fτ : Xτ → Y τ .

Proof. The first statement is a trivial calculation which we omit; this also ap-
pears without proof in [SS20, discussion before Lemma 2.6]. The second statement
follows by applying the first one to the structure maps, and the third one follows
then by applying the first one levelwise. �

Remark 1.3.4. The above lemma provides us with a functor (–)τ :M-SSet→
M-SSetτ right adjoint to the inclusion of the full subcategory of tameM-simplicial
sets. It follows formally thatM-SSetτ is complete and cocomplete, with colimits
created in SSet, also see [SS20, Lemma 2.6].

In fact, it is trival to check that tameM-simplicial sets are preserved by finite
products and passing to M-subsets, so also finite limits in M-SSetτ are created
in SSet, also cf. [Sch19b, Example 4.11].

Definition 1.3.5. Let X be any M-set and let x ∈ X be finitely supported.
Then the support supp(x) is the intersection of all finite sets A ⊂ ω on which x is
supported.

Lemma 1.3.6. In the above situation, x is supported on supp(x).

Proof. This is immediate from [SS20, Proposition 2.3]. �

Example 1.3.7. Let A be a finite set. Then theM-set Inj(A,ω) is tame and the
support of an injection i : A→ ω is simply its image, also see [SS20, Example 2.9]:
namely, it is clear from the definition that any injection i : A → ω is supported
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on its image; on the other hand, if B 6⊃ im(i) is any finite set, then we pick an
a ∈ im(i) r B together with an injection u ∈ MB such that a /∈ im(u). Then
a /∈ im(ui), so u.i 6= i, and hence i cannot be supported on B.

On the other hand, if A is countably infinite, then a similar computation shows
that Inj(A,ω) is not tame, and in fact even Inj(A,ω)τ = ∅. In particular,M itself
is not tame.

Lemma 1.3.8. Let u ∈M and let X be anyM-simplicial set. Then supp(u.x) =
u(supp(x)) for any finitely supported simplex x. In particular, u.–: X → X restricts
to X[A] → X[u(A)] for any finite A ⊂ ω, and Xτ is an M-simplicial subset of X.

Proof. The first statement is [SS20, Proposition 2.5-(ii)], which immediately
implies the second one. The final statement then in turn follows from the second
one, also cf. [SS20, discussion after Proposition 2.5-(ii)]. �

Lemma 1.3.9. Let X ∈M-SSet, u, u′ ∈ M, and let x ∈ Xn. Assume that x
is supported on some finite set A ⊂ ω such that u|A = u′|A. Then u.x = u′.x.

Proof. This is [SS20, Proposition 2.5-(i)], applied to the M-set Xn. �

1.3.1.2. The structure of tame M-G-simplicial sets. [SS20, Theorem 2.11],
which we recall below, describes how tame M-sets decompose into some standard
pieces. As a consequence of this we will prove:

Theorem 1.3.10. Let us define

(1.3.1)
Itame :={(Inj(A,ω)×ΣA X)× ∂∆n ↪→ (Inj(A,ω)×ΣA X)×∆n :

A ⊂ ω finite, X a G-ΣA-biset, n ≥ 0}.
Then the Itame-cell complexes inM-G-SSet are precisely the tameM-G-simplicial
sets.

If X is a tame M-set, let us write sn(X) for the subset of those x ∈ X with
supp(x) = {1, . . . , n}. Lemma 1.3.9 provides for any u ∈ Inj({1, . . . , n}, ω) a well-
defined map sn(X)→ X obtained by acting with any extension of u to an ū ∈M,
and Lemma 1.3.8 shows that this restricts to a Σn-action on sn(X).

Theorem 1.3.11. Let X be any tame M-set. Then the map

(1.3.2)

∞∐
n=0

Inj({1, . . . , n}, ω)×Σn sn(X)→ X

induced by the above construction is well-defined and an isomorphism of M-sets.

Proof. See [SS20, Theorem 2.11]. �

Corollary 1.3.12. Let X be any tame M-G-set. Then each sn(X) is a G-
subset of X, and the map (1.3.2) is an isomorphism of M-G-sets.

Proof. In order to prove that sn(X) is closed under the action of G, we have
to show that supp(g.x) = supp(x) for all g ∈ G and x ∈ X. The inclusion ‘⊂’ is an
instance of Lemma 1.3.3 because the G-action commutes with the M-action. The
inclusion ‘⊃’ then follows by applying the same argument to g−1 and g.x, or by
simply observing that injective M-equivariant maps strictly preserve supports.

Again using that theM-action commutes with the G-action, we see that (1.3.2)
is G-equivariant, hence an isomorphism of M-G-sets by the previous theorem. �
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The only remaining ingredient for the proof of Theorem 1.3.10 is the following:

Lemma 1.3.13. Let X be a tame M-G-set and let Y ⊂ X be an M-G-subset.
Then also X r Y is an M-G-subset.

We caution the reader that the above is not true in general for non-tame
actions—for example, the subset Y ⊂ M of non-surjective maps is closed under
the left regular M-action, but its complement is not.

Proof. The set X r Y is obviously closed under the G-action. The fact that
it is moreover closed under theM-action appeared in a previous version of [SS20];
let us give the argument for completeness. Assume x ∈ X r Y and let u ∈M such
that u.x ∈ Y . By tameness, there exists a finite set A on which x is supported. We
now pick any invertible v ∈M such that v|A = u|A. By Lemma 1.3.9 we then have
v.x = u.x ∈ Y and hence also x = v−1.(v.x) ∈ Y , which is a contradiction. �

Proof of Theorem 1.3.10. Obviously all sources and targets of maps in
Itame are tame. As the tame M-G-simplicial sets are closed under all colimits,
we see that all Itame-cell complexes are tame (cf. Lemma 1.2.59).

Conversely, let X be any tameM-G-simplicial set; we consider the usual skele-
ton filtration ∅ = X(−1) ⊂ X(0) ⊂ X(1) ⊂ · · · of X. It suffices to prove that each
X(n−1) → X(n) is a relative Itame-cell complex.

For this we contemplate the (a priori non-equivariant) pushout

Xnondeg
n × ∂∆n Xnondeg

n ×∆n

X(n−1) X(n)

where Xnondeg
n denotes the subset of nondegenerate n-simplices. The degenerate

simplices obviously form anM-G-subset of Xn, and hence so do the nondegenerate
ones by the previous lemma. With respect to this action, all maps in the above
square are obviously M-G-equivariant so that this is a pushout in M-G-SSet.
But applying Corollary 1.3.12 to Xnondeg

n expresses the top horizontal map as a
coproduct of maps in Itame, finishing the proof. �

1.3.2. Tame EM-actions. Next, we will introduce and study analogues of
tameness and support for EM-simplicial sets.

Definition 1.3.14. Let A ⊂ ω be finite and let X be an EM-simplicial set.
An n-simplex x of X is said to be supported on A if E(MA) acts trivially on x,
i.e. the composition

E(MA)×∆n ↪→ EM×∆n EM×x−−−−−→ EM×X act−−→ X

agrees with

E(MA)×∆n pr−→ ∆n x−→ X.

The simplex x is finitely supported if it is supported on some finite set A.
We write X[A] for the family of simplices supported on a finite set A ⊂ ω and

Xτ :=
⋃
A⊂ω finiteX[A] for the family of all finitely supported simplices. We call X

tame if X = Xτ , i.e. if all its simplices are finitely supported.
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Example 1.3.15. Let A be a finite set. Then EInj(A,ω) is tame, and the
support of an n-simplex (i0, . . . , in) is given by B := im(i0)∪ · · · im(in): namely, to
prove that (i0, . . . , in) is supported on B we have to show that

(u0, . . . , um).f∗(i0, . . . , in) = f∗(i0, . . . , in)

for any f : [m]→ [n] in ∆ and any u0, . . . , um ∈MB . But plugging in the definition,
the left hand side evaluates to (u0if(0), . . . , umif(m)) while the right hand side is
given by (if(0), . . . , if(m)), so the claim is obvious. Conversely, one argues as in
Example 1.3.7 that (i0, . . . , in) is not supported on any finite C 6⊃ B, or one simply
notes that if (i0, . . . , in) is supported on C, then so are the individual injections
i0, . . . , in as elements of the M-set Inj(A,ω).

Again, one similarly shows that (EM)τ = ∅; in particular, EM is not tame.

Lemma 1.3.16. Let f : X → Y be a map of EM-simplicial sets, and let A ⊂ ω
be any finite set. Then X[A] and Y[A] are simplicial subsets of X and Y , respectively,
and f restricts to f[A] : X[A] → Y[A].

Proof. The first statement is clear from the definition.
For the second statement we have to show that (u0, . . . , um).g∗f(x) = g∗f(x)

for any g : [m]→ [n] in ∆ and any u0, . . . , um ∈MA. But using that f is simplicial
and EM-equivariant, the left hand side equals f((u0, . . . , um).g∗x), while the right
hand side equals f(g∗x), so the claim follows from the definitions. �

It is a straight-forward but somewhat lengthy endeavor to also verify the ana-
logues of the other basic properties of tame M-actions established above in the
world of EM-simplicial sets. We will not do this at this point as they have shorter
proofs once we know the following theorem, that is also of independent interest:

Theorem 1.3.17. Let X be an EM-simplicial set, let n ≥ 0, and let A ⊂ ω be
any finite set. Then x ∈ Xn is supported on A in the sense of Definition 1.3.14 if
and only if it is supported on A as a simplex of the underlying M-simplicial set of
X (see Definition 1.3.2). In other words, X[A] = (forgetX)[A] as simplicial sets,
where forget denotes the forgetful functor EM-SSet→M-SSet.

Moreover, the subfunctor (–)[A] : EM-SSet→ SSet of the forgetful functor is
corepresented in the enriched sense by EInj(A,ω) via evaluation at the 0-simplex
given by the inclusion A ↪→ ω.

The proof requires some combinatorial preparations:

Proposition 1.3.18. Let A ⊂ ω be any finite set, and let u0, . . . , un ∈ M.
Then there exists a χ ∈MA such that im(u0χ)∪ · · · ∪ im(unχ) has infinite comple-
ment in ω.

Proof. We will construct strictly increasing chains B0 ( B1 ( · · · and C0 (
C1 ( · · · of finite subsets of ω rA and ω, respectively, such that for all j ≥ 0

(1.3.3) Cj ∩
n⋃
i=0

ui(Bj) = ∅.

Let us first show how this yields the proof of the claim: we set B∞ :=
⋃∞
j=0Bj

and C∞ :=
⋃∞
j=0 Cj . Then both of these are infinite sets, and moreover each

ui(B∞) misses C∞ by Condition (1.3.3) and since the unions are increasing. As
B∞ is infinite, we find an injection c : ω r A → ω with image B∞. We claim
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that χ := c + idA has the desired properties: indeed, this is again an injection as
B∞ ∩A = ∅, and it is the identity on A by construction. On the other hand,

n⋃
i=0

im(uiχ) =

n⋃
i=0

ui(A)︸ ︷︷ ︸
=:A′

∪
n⋃
i=0

ui(B∞)︸ ︷︷ ︸
=:B′

and B′ has infinite complement in ω (namely, at least C∞) whereas A′ is even finite;
we conclude that also their union has infinite complement as desired.

It therefore only remains to construct the chains B0 ( · · · and C0 ( · · · , for
which we will proceed by induction. We begin by setting B0 = C0 = ∅ which
obviously has all the required properties. Now assume we’ve already constructed
the finite sets Bj and Cj satisfying (1.3.3).

The set
(
A ∪Bj ∪

⋃n
i=0 u

−1
i (Cj)

)
is finite as A,Bj , Cj are finite and each ui is

injective, so we can pick a b ∈ ω not contained in it. We now set Bj+1 := Bj ∪ {b},
which is obviously finite and a proper superset of Bj by construction. We moreover
observe that Cj misses all ui(Bj+1) as it misses ui(Bj) by the induction hypothesis
and moreover ui(b) /∈ Cj for any i by construction.

By the same argument we can pick c ∈ ω r (Cj ∪
⋃n
i=0 ui(Bj+1)) and define

Cj+1 := Cj ∪ {c}; this is obviously again finite and a proper superset of Cj . We
claim that Condition (1.3.3) is satisfied for Bj+1 and Cj+1. Indeed, we have already
seen that Cj misses all of ui(Bj+1). On the other hand, also c /∈ ui(Bj+1) for each
i by construction, verifying the condition. This finishes the inductive construction
and hence the proof of the proposition. �

Proposition 1.3.19. Let A ⊂ ω be finite, and let (u0, . . . , un), (v0, . . . , vn) ∈
M1+n such that ui|A = vi|A for i = 0, . . . , n. Then [u0, . . . , un] = [v0, . . . , vn] in
M1+n/MA.

Proof. Applying the above to the 2n+ 2 injections u0, . . . , un, v0, . . . , vn, we
may assume without loss of generality that

B := ω r

(
n⋃
i=0

imui ∪
n⋃
i=0

im vi

)
is infinite. We can therefore choose an injection ϕ : ω r A → ω with image in B,
and we moreover pick a bijection ωrA ∼= (ωrA)q (ωrA), yielding two injections
j1, j2 : ωrA→ ωrA whose images partition ωrA. We now define for i = 0, . . . , n

wi(x) :=


ui(x) if x ∈ A
ui(y) if x = j1(y) for some y ∈ ω rA

ϕ(y) if x = j2(y) for some y ∈ ω rA.

This is indeed well-defined as ω is the disjoint union At im(j1)t im(j2) and since j1
and j2 are injective. We now claim that wi is injective (and hence an element ofM):
indeed, assume wi(x) = wi(x

′) for x 6= x′. Since im(ui) is disjoint from imϕ and
since ϕ is injective, we conclude that x, x′ /∈ im j2. As moreover wi|A = ui|A and
wij1 = ui|ωrA are injective, we can assume without loss of generality that x ∈ A
and x′ = j1(y′) for some y′ ∈ ω r A. But then ui(x) = wi(x) = wi(x

′) = ui(y
′),

which contradicts the injectivity of ui as y′ /∈ A and hence in particular y′ 6= x.
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We now observe that by construction wi(inclA + j1) = ui and wi(inclA + j2) =
ui|A + ϕ. On the other hand, inclA + j1 and inclA + j2 are obviously injections
fixing A pointwise, so that they witness the equalities

[u0, . . . , un] = [w0, . . . , wn] = [u0|A + ϕ, . . . , un|A + ϕ]

inM1+n/MA. Analogously, one shows that [v0, . . . , vn] = [v0|A +ϕ, . . . , vn|A +ϕ],
and as vi|A = ui|A by assumption, this further agrees with [u0|A+ϕ, . . . , un|A+ϕ],
finishing the proof. �

Corollary 1.3.20. Let (u0, . . . , un), (u′0, . . . , u
′
n) ∈ (EM)n, let X be an EM-

simplicial set, and let x ∈ Xn. Assume that x is supported as an element of the
M-set Xn on some finite set A ⊂ ω such that ui|A = u′i|A for i = 0, . . . , n.

Then (u0, . . . , un).x = (u′0, . . . , u
′
n).x.

Proof. We begin with the special case that there exists an α ∈MA such that
u′i = uiα for all i. In this case

(u′0, . . . , u
′
n).x = (u0α, . . . , unα).x = (u0, . . . , un).α.x = (u0, . . . , un).x

as desired, where the last step uses that x is fixed by α ∈MA.
We conclude that M1+n → Xn, (u0, . . . , un) 7→ (u0, . . . , un).x descends to

M1+n/MA; the claim therefore follows from the previous proposition. �

Proof of Theorem 1.3.17. Let χ : EInj(A,ω) × ∆n → X be any EM-
equivariant map. We claim that the image of the n-simplex (i, . . . , i; id[n]), where i
denotes the inclusion A ↪→ ω, is supported on A. Indeed, (i, . . . , i; id[n]) is supported
on A by the argument from Example 1.3.15, hence so is its image by Lemma 1.3.16.

On the other hand, let x ∈ Xn be supported on A with respect to the under-
lying M-action. We define χm : (EInj(A,ω) × ∆n)m → Xm as follows: we send
a tuple (u0, . . . , um; f), where the ui are injections A → ω and f : [m] → [n] is
any map in ∆, to (ū0, . . . , ūm).f∗x where each ūi is an extension of ui to all of ω,
i.e. to an element of M. Such extensions can certainly be chosen as A is finite,
and we claim that this is in fact independent of the choice of extension: indeed,
as x is fixed by MA, so is f∗x, and hence this follows from the previous corollary.
With this established, it is trivial to prove that the χm assemble into a simplicial
map EInj(A,ω) × ∆n → X and that this is EM-equivariant. Moreover, a pos-
sible extension of i : A ↪→ ω is given by the identity of ω and hence we see that
χm(i, . . . , i; id[n]) = x.

We conclude that if x ∈ Xn is supported on A with respect to the underlying
M-action, then it is obtained by evaluating some EM-equviariant χ : EInj(A,ω)×
∆n → X at the canonical element (by the second paragraph), and hence it is
actually supported on A with respect to the EM-action (by the first one). As
the converse holds for trivial reasons, we conclude that the two notions of ‘being
supported on A’ indeed agree. It then follows from the above that evaluation at
the canonical element defines a surjection

(1.3.4) maps(EInj(A,ω), X)→ X[A].

As we have seen in Lemma 1.3.16, X 7→ X[A] defines a subfunctor of the
forgetful functor EM-SSet→ SSet, and with respect to this (1.3.4) is obviously
natural. To finish the proof of the claimed corepresentability result, it therefore
suffices that (1.3.4) is also injective. For this we let χ, χ′ : EInj(A,ω)×∆n → X with
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χ(i, . . . , i; id[n]) = χ′(i, . . . , i; id[n]). Then we have for any (u0, . . . , um) ∈ M1+m

and f : [m]→ [n] in ∆

χ(u0, . . . , um; f) = (ū0, . . . , ūm).χ(i, . . . , i; f) = (ū0, . . . , ūm).f∗χ(i, . . . , i; id[n])

= (ū0, . . . , ūm).f∗χ′(i, . . . , i; id[n]) = χ′(u0, . . . , um; f)

where again ūi is any extension of ui to an element of M. This finishes the proof
of corepresentability and hence of the theorem. �

The above theorem has the following computational consequence:

Corollary 1.3.21. For any simplicial set K, any finite set A, and any G-ΣA-
biset X, the map

EM×M
(
(Inj(A,ω)×ΣA X)×K

)
→ (EInj(A,ω)×ΣA X)×K

adjunct to the product of the inclusion of the 0-simplices with the identity of K is
an isomorphism of EM-G-simplicial sets.

Proof. As EM×M – is a simplicial left adjoint, we are reduced to proving
that the corresponding map EM×M Inj(A,ω)→ EInj(A,ω) is an isomorphism (it
is obviously left-M-right-ΣA-equivariant). For this we observe that by the above
theorem EInj(A,ω) corepresents (–)[A] by evaluating at the inclusion ι : A ↪→ ω. On
the other hand, it is obvious that Inj(A,ω) corepresents (–)[A] :M-SSet → SSet
by evaluating at the same element, also see [SS20, Example 2.9]. By adjointness,
EM×M Inj(A,ω) therefore corepresents (–)[A] ◦ forget via evaluating at [1; ι]. By
the previous theorem this agrees with (–)[A], and as the above map sends [1; ι] to
ι, this completes the proof. �

We now very easily prove the EM-analogue of Lemma 1.3.8:

Lemma 1.3.22. Let (u0, . . . , un) ∈ (EM)n, let A ⊂ ω be finite, and let X be
any EM-simplicial set. Then the composition

(1.3.5) ∆n ×X[A]
(u0,...,un)×incl−−−−−−−−−−→ EM×X act−−→ X

has image in X[u0(A)∪···∪un(A)]; in particular, Xτ is an EM-simplicial subset of X.

Proof. It suffices to prove the first statement. For this we observe that any
simplex in the image of (1.3.5) can be written as

(
f∗(u0, . . . , un)

)
.x for some m-

simplex x of X[A] and some f : [m]→ [n] in ∆. We now calculate for any v ∈M

(1.3.6) v.(f∗(u0, . . . , un).x) = v.(uf(0), . . . , uf(m)).x = (vuf(0), . . . , vuf(n)).x.

If now v is the identity on u0(A)∪ · · · ∪un(A), then vuf(i) and uf(i) agree on A for
all i = 0, . . . ,m. Hence, if x is supported on A, then

(vuf(0), . . . , vuf(m)).x = (uf(0), . . . , uf(m)).x = f∗(u0, . . . , un).x

by Corollary 1.3.20. Together with (1.3.6) this precisely yields the claim. �

Corollary 1.3.23. The full simplicial subcategory EM-SSetτ ⊂ EM-SSet
is complete and cocomplete, and it is closed under all small colimits and finite limits.
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Proof. As in Remark 1.3.4, the previous lemma provides a right adjoint (–)τ

to the inclusion EM-SSetτ ↪→ EM-SSet, which shows that EM-SSetτ is com-
plete and cocomplete with colimits created in EM-SSet. As the forgetful functor
EM-SSet→M-SSet creates limits and preserves and reflects tameness by The-
orem 1.3.17, the identification of finite limits follows from Remark 1.3.4. �

Remark 1.3.24. Of course, we could have just turned Theorem 1.3.17 into
the definition instead—however, this does not buy as anything, as we then instead
would have had to do all of the above work in order to prove Corollary 1.3.20 (or
equivalently the corepresentability statement), which will be crucial below. More-
over, defining support by means of the mere M-action is ‘evil’ from a homotopical
viewpoint, as we a priori throw away a lot of higher information: for example, if
u ∈ M and x is a vertex of an EM-simplicial set, then we can think of the edge
(u, 1).(s∗x), where s : [1]→ [0] is the unique morphism in ∆, as providing a natural
comparison between x and u.x. From the homotopical viewpoint we should then
always be interested in this edge itself and not only in its endpoints.

A hindrance to understanding the G-global weak equivalences of general M-
simplicial sets was that it is not clear whether EM×M– is fully homotopical. Using
the above theory, we can prove the following comparison result, which in particular
tells us that this issue goes away when restricting to tame actions:

Theorem 1.3.25. The simplicial adjunction EM×M – a forget restricts to

(1.3.7) EM×M –:M-G-SSetτ � EM-G-SSetτ : forget .

Both functors in (1.3.7) preserve and reflect G-global weak equivalences, and they
descend to mutually inverse equivalences on associated quasi-categories.

Proof. The forgetful functor obviously restricts to the full subcategories of
tame objects. To see that also EM×M – restricts accordingly, we appeal to The-
orem 1.3.10: as the tame EM-G-simplicial sets are closed under all colimits, we
are reduced (Lemma 1.2.59) to showing that EM×M

(
(Inj(A,ω)×ΣA X)×K

)
is

tame for every G-ΣA-biset X and any simplicial set K, which follows easily from
Corollary 1.3.21.

The forgetful functor creates weak equivalences (even without the tameness as-
sumption) as it is homotopical and part of a Quillen equivalence by Corollary 1.2.40.

Let us now prove that the unit η : Y → forgetEM×M Y is a G-global weak
equivalence for every Y ∈M-G-SSetτ . We caution the reader that this is not just
a formal consequence of Corollary 1.2.40 because we are not deriving EM×M – in
any way here. Instead, we will use Theorem 1.2.50 together with the full generality
of Theorem 1.2.57:

Both EM×M – as well as forget are left adjoints and hence cocontinuous. As
both functors preserve tensors, the composition forget(EM×M –) sends the maps
in Itame to underlying cofibrations. Corollary 1.2.60 therefore reduces this to the
case that Y = (Inj(A,ω)×ΣAX)×K for H,A,X as above and K any simplicial set.
Again using that both EM×M – and forget preserve tensors (and that the above
is a simplicial adjunction) we reduce further to the case that Y = Inj(A,ω)×ΣA X.
After postcomposing with the isomorphism from Corollary 1.3.21, the unit simply
becomes the inclusion of the 0-simplices, and this factors as

Inj(A,ω)×ΣA X
π−→
(
Inj(A,ω)×ΣA X

)
//M→ EInj(A,ω)×ΣA X,
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where the right hand map is the G-universal weak equivalence from Theorem 1.2.57.
As the left hand map is moreover a G-global weak equivalence by Theorem 1.2.50,
thus so is the unit.

Now let f : X → Y be any map inM-G-SSetτ . In the naturality square

X Y

forgetEM×M X forgetEM×M Y

η

f

η

forgetEM×Mf

both vertical maps are G-global weak equivalences by the above. Thus, if f is a
G-global weak equivalence, then so is the lower horizontal map. But forget reflects
these, hence also EM×Mf is a G-global weak equivalence, proving that EM×M–
is homotopical. Conversely, if EM×M f is a G-global weak equivalence, then so is
forgetEM×M f and hence also f by the above square, i.e. EM×M – also reflects
G-global weak equivalences.

Finally, ifX ∈ EM-G-SSetτ is arbitrary, then the triangle identity for adjunc-
tions shows that forget εX : forgetEM×M (forgetX)→ forgetX is right inverse to
ηforgetX , hence a G-global weak equivalence. As forget reflects these, we conclude
that also ε is levelwise a G-global weak equivalence, proving that the functors in
(1.3.7) induce mutually inverse equivalences of quasi-categories. �

1.3.3. The Taming of the Shrew. As promised, we can now finally prove
that also tame EM-G-simplicial sets and tame M-G-simplicial sets are models of
G-global homotopy theory. At this point, we will only consider them as categories
with weak equivalences whereas suitable G-global model structures are the subject
of Subsection 1.4.5.

Theorem 1.3.26. The inclusions

EM-G-SSetτ ↪→ EM-G-SSet and M-G-SSetτ ↪→M-G-SSet

are homotopy equivalences with respect to the G-global weak equivalences.

For the proof we will need:

Proposition 1.3.27. Let H ⊂ M be a universal subgroup, let A ⊂ ω be a
faithful H-subset, and let ϕ : H → G be any homomorphism. Then:

(1) The restriction r : EM×ϕG→ EInj(A,ω)×ϕG is a G-global weak equiv-
alence in EM-G-SSet.

(2) The restriction r : M×ϕG→ Inj(A,ω)×ϕG is a G-global weak equivalence
in M-G-SSet.

Proof. For the first statement, we note that the restriction EM→ EInj(A,ω)
is an H-global weak equivalence (with respect to H acting on M and A via its
tautological action on ω) by Example 1.2.31. On the other hand, the H-action on
both sides is free, so Corollary 1.2.75 implies that its image under ϕ! is a G-global
weak equivalence. But this is clearly conjugate to r, finishing the proof of the first
statement.

For the second statement, we note that the inclusion M×ϕ G ↪→ EM×ϕ G
is a G-global weak equivalence by Theorem 1.2.39, and so is Inj(A,ω) ×ϕ G ↪→
EInj(A,ω)×ϕ G by the proof of Theorem 1.3.25. The claim therefore follows from
the first statement together with 2-out-of-3. �
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Corollary 1.3.28. Let H ⊂ M be a universal subgroup, and let A ⊂ ω be a
finite faithful H-subset.

(1) Let X be fibrant in the injective G-global model structure on EM-G-SSet.
Then the H-action on X restricts to X[A], and X[A] ↪→ X is a GH,G-weak
equivalence. In particular, Xτ ↪→ X is a G-global weak equivalence.

(2) Let Y be fibrant in the injective G-global model structure onM-G-SSet.
Then the H-action on Y restricts to Y[A], and Y[A] ↪→ Y is a GH,G-weak
equivalence. In particular, Y τ ↪→ Y is a G-universal weak equivalence.

Proof. We will only prove the claims for EM-actions, the proof of the other
ones being analogous.

Let ϕ : H → G be any homomorphism. Using Theorem 1.3.17, we see that the
inclusion Xϕ

[A] ↪→ Xϕ agrees up to conjugation by isomorphisms with

(1.3.8) r∗ : mapsEM×G(EInj(A,ω)×ϕ G,X)→ mapsEM×G(EM×ϕ G,X),

where r is as in the previous proposition. As r is a G-global weak equivalence be-
tween injectively cofibrant EM-G-simplicial sets, and since the injective G-global
model structure is simplicial by Corollary 1.1.14, (1.3.8) is a weak homotopy equiv-
alence, proving the first statement.

For the second statement we consider the commutative diagram

colimAX[A] colimAX

Xτ X,

where the colimits run over the filtered poset of finite faithful H-subsets A ⊂ ω,
and all maps are induced by the inclusions. The right hand vertical arrow is an
isomorphism as the indexing category is filtered, and so is the left hand vertical
map since a simplex supported on some finite set B is also supported on the finite
faithful H-subset HB ∪ F , where F ⊂ ω is any chosen free H-orbit (which exists
by universality). The claim therefore follows from the first statement as GH,G-weak
equivalences are closed under filtered colimits. �

Proof of Theorem 1.3.26. Again, we will only prove the first statement.
For this, we factor the inclusion through the full subcategory EM-G-SSetwτ of
those EM-G-simplicial sets X for which Xτ ↪→ X is a G-global weak equivalence.
It suffices to prove that both intermediate inclusions are homotopy equivalences.

Indeed, a homotopy inverse to EM-G-SSetτ ↪→ EM-G-SSetwτ is obviously
given by (–)τ , whereas the previous corollary implies that taking functorial fibrant
replacements in the injective G-global model structure provides a homotopy inverse
to the remaining inclusion. �

1.4. G-global homotopy theory via diagram spaces

We will now consider models of unstable G-global homotopy theory in terms
of more general ‘diagram spaces,’ i.e. functors from suitable indexing categories to
SSet. These models will in particular be useful in Chapter 3 to connect unstable
and stable G-global homotopy theory.
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Definition 1.4.1. We write I for the category of finite sets and injections, and
we write I for the simplicial category obtained by applying E to the hom sets. An
I-simplicial set is a functor I → SSet, and we write I-SSet for the simplicially en-
riched functor category Fun(I,SSet). An I-simplicial set is a simplicially enriched
functor I → SSet, and we write I-SSet := Fun(I,SSet).

In the literature, the category I is also denoted by I [Lin13] and unfortunately
also by I [SS12]. Sagave and Schlichtkrull proved that I-SSet models ordinary
homotopy theory, see [SS12, Theorem 3.3].

We can also view I as a discrete analogue of the topological category L used in
Schwede’s model of unstable global homotopy theory in terms L-spaces, see [Sch18,
Sections 1.1–1.2]. In an earlier version, Schwede also sketched that I-spaces model
global homotopy theory (with respect to finite groups), also cf. [Hau19b, Sec-
tion 6.1], for which we will give a full proof as Theorem 1.5.25.

1.4.1. Model structures. Next, we will introduce G-global model structures
on G-I- and G-I-simplicial sets (i.e. G-objects in I-SSet or I-SSet, respectively),
and prove that they are equivalent to the models from the previous sections. As
usual in this context, we begin by constructing a suitable level model structure that
we will then later Bousfield localize at the desired weak equivalences:

Proposition 1.4.2. There is a unique model structure on G-I-SSet in which a
map f : X → Y is a weak equivalence or fibration if and only if f(A) : X(A)→ Y (A)
is a GΣA,G-weak equivalence or fibration, respectively, for every finite set A, i.e. for
each finite group H acting faithfully on A and each homomorphism ϕ : H → G the
induced map X(A)ϕ → Y (A)ϕ is a weak equivalence or fibration, respectively.

We call this the strict level model structure and its weak equivalences the strict
level weak equivalences. It is proper, simplicial, combinatorial, and filtered colimits
in it are homotopical. A possible set of generating cofibrations is given by the maps

(I(A, –)×ϕ G)× ∂∆n ↪→ (I(A, –)×ϕ G)×∆n

for n ≥ 0 and H, A, and ϕ as above, and a set of generating acyclic cofibrations is
likewise given by the maps

(I(A, –)×ϕ G)× Λnk ↪→ (I(A, –)×ϕ G)×∆n

with 0 ≤ k ≤ n.
The analogous model structure on G-I-SSet exists and has the same proper-

ties; we again call it the strict level model structure and its weak equivalences the
strict level weak equivalences. A possible set of generating cofibrations is given by
the maps

(I(A, –)×ϕ G)× ∂∆n ↪→ (I(A, –)×ϕ G)×∆n

for n ≥ 0 and H, A, and ϕ as above, and a set of generating acyclic cofibrations is
likewise given by the maps

(I(A, –)×ϕ G)× Λnk ↪→ (I(A, –)×ϕ G)×∆n

with 0 ≤ k ≤ n.
Finally, the forgetful functor is part of a simplicial Quillen adjunction

(1.4.1) I ×I –: G-I-SSetstrict level � G-I-SSetstrict level : forget .
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Remark 1.4.3. To be entirely precise, the above generating (acyclic) cofibra-
tions of course do not form a set since there are too many finite groups H and
finite faithful H-sets A. However, this issue is easily solved by restricting to a set
of finite groups H and sets of finite H-sets such that these cover all isomorphism
classes, and we will tacitly do so. Similar caveats apply to several of the other
model structures considered below.

1.4.1.1. Generalized projective model structures. We will obtain these model
structures as an instance of a more general construction from [Sch18] of ‘generalized
projective model structures’ for suitable index categories. For this we will need the
following terminology:

Definition 1.4.4. Let C be a complete and cocomplete closed symmetric
monoidal category. We say that a C -enriched category I has a dimension function
if there exists a function dim: Ob(I )→ N such that

(1) Hom(d, e) is initital in C whenever dim(e) < dim(d).
(2) If dim(d) = dim(e), then d ∼= e.

Example 1.4.5. Both I and I have dimension functions; a canonical choice
is the function sending a finite set A to its cardinality |A|. Moreover, if G is any
discrete group, then composing with the projection I × BG → I or I × BG → I
yields a dimension function on I ×BG or I ×BG, respectively.

Proposition 1.4.6. Let I be a C -enriched category with dimension func-
tion dim, and assume we are given for each A ∈ I a model structure on the
category End(A)–C := Fun(BEnd(A),C ) of enriched functors such that the fol-
lowing ‘consistency condition’ holds: if dim(A) ≤ dim(B), then any pushout of
Hom(A,B)⊗End(A) i is a weak equivalence in End(B)–C for any acyclic cofibration
i in End(A)–C .

Then there exists a unique model structure on Fun(I ,C ) such that a map
f : X → Y is a weak equivalence or fibration if and only if f(A) : X(A)→ Y (A) is
a weak equivalence or fibration, respectively, in End(A)–C for each A ∈ I .

Moreover, if each End(A)–C is cofibrantly generated with set of generating
cofibrations IA and set of generating acyclic cofibrations JA, then the resulting
model structure is cofibrantly generated with set of generating cofibrations

{Hom(A, –)⊗End(A) i : A ∈ I , i ∈ IA},

and generating acyclic cofibrations

{Hom(A, –)⊗End(A) j : A ∈ I , j ∈ JA}.

Proof. See [Sch18, Proposition C.23]. �

Here, Hom(A, –) ⊗End(A) – is the left adjoint of the functor Fun(I ,SSet) →
End(A)–C given by evaluation at A. For C = SSet, we have a concrete model
of Hom(A,B) ⊗End(A) X as the balanced product Hom(A,B) ×End(A) X, i.e. the
quotient of the ordinary product by the equivalence relation generated in each
simplicial degree by (fσ, x) ∼ (f,X(σ)(x)).

We can also chacterize the cofibrations of the above model structure in analogy
with the usual characterization in Reedy model structures. For this we need the
following notion from [Sch18, Construction C.13 and Definition C.15]:
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Construction 1.4.7. For any m ≥ 0, we define I ≤m ⊂ I as the full subcate-
gory of those objects A satisfying dim(A) ≤ m. Then restriction along im : I ≤m ↪→
I admits a left adjoint im! : Fun(I ≤m,C )→ Fun(I ,C ) via enriched left Kan ex-
tension, and we write εm for the counit of the adjunction im! a i∗m. We now define
the Ath latching object of X : I → C via LA(X) := (i(dim(A)−1)!i

∗
dim(A)−1X)(A)

and the Ath latching map `A : LA(X)→ X(A) as εdim(A)−1(A).

Remark 1.4.8. If I is an ordinary category with dimension function, then the
latching category ∂(I ↓ A) is defined for A ∈ I as the full subcategory of the slice
I ↓ A on all objects B → A that are not isomorphisms. In analogy with the usual
terminology in Reedy categories, we can then define the Ath latching object as

LA(X) := colim
B→A∈∂(I ↓A)

X(B) ∈ End(A)–C ,

and the maps X(B)→ X(A) induced by the given maps B → A assemble via the
universal property of colimits into a map `A : LA(X) → X(A) that we again call
the Ath latching map. Note that this is indeed a special case of the above general
definition by the usual pointwise formula for left Kan extension.

Example 1.4.9. While we view BG× I as a simplicially enriched category, the
category Fun(BG × I,C ) of enriched functors is isomorphic to the usual functor
category, so the previous remark applies to this setting to express the latching
objects as colimits over the latching categories.

However, we can give an even simpler description in this case: namely, the
evident inclusion of the poset {B ( A} into ∂(BG × I ↓ A) is an equivalence for
any A ∈ I, in particular cofinal. Thus, we can describe the Ath latching object
for X ∈ G-I-SSet as colimB(AX(B) with the induced (ΣA ×G)-action, and the
latching map is again induced by the inclusions B ↪→ A.

Proposition 1.4.10. A map f : X → Y is a cofibration in the model structure
of Proposition 1.4.6 if and only if the map

X(A)qLA(X) LA(Y )
(f(A),`A)−−−−−−→ Y (A)

(where the pushout is taken over the maps `A : LA(X) → X(A) and LA(f)) is a
cofibration in the given model structure on End(A)–C for all A ∈ I .

Proof. This is part of [Sch18, Proposition C.23] �

1.4.1.2. Strict level model structures. Using the above criterion we now get:

Proof of Proposition 1.4.2. We will only construct the model structure
on G-I-SSet, the construction for G-I-SSet being analogous. For this we want
to appeal to Proposition 1.4.6 (for C = SSet, I = BG × I), so we have to check
the consistency condition. To this end we claim that in the above situation, the
functor (BG× I)(A,B)×G×ΣA – ∼= I(A,B)×ΣA – sends acyclic cofibrations of the
usual GΣA,G-model structure to acyclic cofibrations in the injective GΣB ,G-model
structure. But indeed, by cocontinuity it suffices to check this on generating acyclic
cofibrations, where this is obvious.

This already shows that the model structure on G-I-SSet exists, and that it
is cofibrantly generated with generating (acyclic) cofibrations as claimed above. As
G-I-SSet is locally presentable, we conclude that it is in fact combinatorial.
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The category G-I-SSet is enriched, tensored, and cotensored over SSet in the
obvious way, and as the GΣA,G-model structures are simplicial and since pullbacks,
cotensors, and (acyclic) fibrations are defined levelwise, alsoG-I-SSet is simplicial.
Similarly one proves right properness and the preservation of weak equivalences
under filtered colimits.

Moreover, the forgetful functor admits a simplicial left adjoint (via simplicially
left Kan extension along I → I), which we denote by I ×I –; explicitly, we can
arrange that I ×I (I(A, –) × K) = I(A, –) × K for all A ∈ I and K ∈ G-SSet
with the evident functoriality, and this in turn describes I ×I – up to canonical
(simplicial) isomorphism. It is then obvious from the definition that forget is right
Quillen, so that (1.4.1) is a Quillen adjunction.

It only remains to establish left properness, for which we observe that any of
the above generating cofibrations is a levelwise cofibration, and hence so is any
cofibration of the strict level model structure. The claim therefore follows from
Corollary 1.1.13. �

Proposition 1.4.10 specializes to:

Corollary 1.4.11. A map f : X → Y in G-I-SSet is a cofibration in the
strict level model structure if and only if for each finite set A the map

(1.4.2) X(A)qLA(X) LA(Y )
(f(A),`A)−−−−−−→ Y (A)

is a cofibration in the GΣA,G-model structure on (ΣA ×G)-SSet.
In particular, X is cofibrant in the strict level model structure if and only if for

each finite set A the latching map colimB(AX(B) → X(A) is a cofibration in the
above model category. �

Example 1.4.12. If G = 1, the GΣA,G-cofibrations are precisely the underlying
cofibrations of simplicial sets. In this case, the strict level cofibrations on I-SSet
have been considered non-equivariantly under the name flat cofibrations [SS12,
Definition 3.9].

1.4.1.3. G-global weak equivalences. Before we can introduce the G-global weak
equivalences for the above models, we need some preparations.

Construction 1.4.13. We write I for the category of all sets and injections,
and we write I for the simplicial category obtained by applying E to each hom set.
Then I and I are full (simplicial) subcategories of I and I, respectively. We will
now explain how to extend any I- or I-simplicial set to I or I, respectively:

In the case of X : I → SSet we define

X(A) = colim
B⊂A finite

X(B)

for any set A. If i : A→ A′ is any injection, we define the structure map X(A)→
X(A′) as the map induced via the universal property of the above colimit by the
family

X(B)
X(i|B)−−−−→ X(i(B))→ colim

B′⊂A′ finite
X(B′) = X(A′)

for all finite B ⊂ A, where the unlabelled arrow is the structure map of the colimit
for the term indexed by i(B) ⊂ A′. We omit the trivial verification that this
functorial.
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In the case of a simplicially enriched X : I → SSet we define the extension
analogously on objects and morphisms. If now (i0, . . . , in) is a general n-cell of
I(A,A′), then we define X(i0, . . . , in) as the composition

∆n × colim
B⊂A finite

X(B) ∼= colim
B⊂A finite

∆n ×X(B)→ colim
B′⊂A′ finite

X(B′)

where the isomorphism is the canonical one and the unlabelled arrow is induced
by X(i0|B , . . . , in|B) : ∆n × X(B) → X(i0(B) ∪ i1(B) ∪ · · · ∪ in(B)) for all finite
B ⊂ A. We omit the easy verification that this defines a simplicially enriched
functor I → SSet.

One moreover easily checks that these become simplicially enriched functors by
sending F : ∆n ×X → Y to the transformation given on a set A by

∆n × colim
B⊂A finite

X(B) ∼= colim
B⊂A finite

∆n ×X(B)
colimF (B)−−−−−−−→ colim

B⊂A finite
Y (B),

and that with respect to this the structure maps

X(A)→ colim
B⊂A finite

X(B) = X(A)

for finite A define simplicially enriched natural isomorphisms; accordingly, we will
from now on no longer distinguish notationally between the extension and the
original object.

Remark 1.4.14. It is not hard to check that the above is a model for the
(simplicially enriched) left Kan extension; however, we will at several points make
use of the above explicit description.

Remark 1.4.15. Simply by functoriality, the above construction lifts to provide
simplicially enriched extension functors

G-I-SSet→ G-I-SSet and G-I-SSet→ G-I-SSet

for any group G.

For later use we record:

Lemma 1.4.16. Let U be a complete H-set universe, let A be any H-set, and
let i : U → A be an H-equivariant injection. Then X(i) : X(U) → X(A) is an
(H ×G)-weak equivalence for any X ∈ G-I-SSet.

The proof will rely on the following easy observation:

Lemma 1.4.17. If X is a G-I- or G-I-simplicial set, then its extension pre-
serves filtered colimits, i.e. if J is a small filtered category and A• : J → I any
functor, then the canonical map

colimj X(Aj)→ X
(

colimj Aj
)

is an isomorphism. (Here it does not matter whether we form the colimit on the
right hand side in Set or in I).

Proof. Unravelling the definition, the left hand side is given by the double
colimit colimj colimB⊂Aj finiteX(B). Write A := colimj∈J Aj ; we define a map in

the other direction as follows: a finite subset B ⊂ A is contained in the image of
some structure map i : Aj → A, and we send X(B) via X(i−1) to X(i−1(B)) in
the (j, i−1(B))-term on the left hand side. We omit the easy verification that this
is well-defined and inverse to the above map. �
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Proof of Lemma 1.4.16. Let us first assume that A is countable. As U is
a complete H-set universe by assumption, we can therefore find an H-equivariant
injection j : A → U . Then X(j) is an (H × G)-homotopy inverse to X(i), as ex-
hibited by the (H ×G)-equivariant homotopies X(idA, ij) and X(idU , ji), finishing
the proof of the special case.

In the general case we now observe that the map in question factors as

X(U) ∼= colim
i(U)⊂B⊂A countable H-set

X(U)
∼−→ colim

i(U)⊂B⊂A countable H-set
X(B) ∼= X(A),

where the left hand map is induced by the inclusion of the term indexed by i(U)
(which is an isomorphism because {i(U) ⊂ B ⊂ A} is a filtered poset, so that it has
connected nerve), the second map uses the above special case levelwise, and the final
isomorphism comes from the previous lemma. The claim follows immediately. �

Construction 1.4.18. By applying Construction 1.4.13 and then restricting
along the inclusion BM ↪→ I or B(EM) → I, respectively, sending the unique
object to ω, we get functors

evω : G-I-SSet→M-G-SSet and evω : G-I-SSet→ EM-G-SSet.

Definition 1.4.19. A map f : X → Y in G-I-SSet or G-I-SSet is called
a G-global weak equivalence if f(ω) = evωf is a G-global weak equivalence in
M-G-SSet or EM-G-SSet, respectively.

Lemma 1.4.20. Let f : X → Y be a strict level weak equivalence in G-I-SSet
or G-I-SSet. Then f is also a G-global weak equivalence.

Proof. It suffices to consider the second case. Let H ⊂ M be universal; we
will show that X(ω)→ Y (ω) is a GH,G-weak equivalence.

Pick a free H-orbit F inside ω (which exists by universality). We then observe
that we have a commutative diagram

colim
F⊂A⊂ω finite H-set

X(A) colim
A⊂ω finite

X(A)

colim
F⊂A⊂ω finite H-set

Y (A) colim
A⊂ω finite

Y (A)

colim f(A) colim f(A)

where the horizontal maps are induced from the inclusion of filtered posets {F ⊂
A ⊂ ω finite H-set} ↪→ {A ⊂ ω finite}. This is is cofinal: any finite subset A ⊂ ω
is contained in the finite H-set F ∪HA which is an element of the left hand side.

Thus, the horizontal maps are isomorphisms, and it therefore suffices that the
left hand vertical map is a GH,G weak equivalence. But on this side, H simply
acts on each term of the colimit by functoriality, and each f(A) is a GH,G-weak
equivalence with respect to this action as A is in particular faithful. The claim
follows as the GH,G-weak equivalences are closed under filtered colimits. �

In order to later characterize the fibrant objects in theG-global model structure,
we introduce:

Definition 1.4.21. A G-I-simplicial set (or G-I-simplicial set) X is called
static, if for all finite faithful H-sets A and each H-equivariant injection i : A→ B
into another finite H-set, the induced map X(i) : X(A) → X(B) is a GH,G-weak
equivalence.
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Lemma 1.4.22. Let f : X → Y be a map of static G-I-simplicial sets or G-I-
simplicial sets. Then f is a G-global equivalence if and only if f is a strict level
weak equivalence.

Proof. Again it suffices to consider the first case.
The implication ‘⇐’ holds without any assumptions by Lemma 1.4.20. For the

remaining implication we first observe:

Claim. Both X(ω) and Y (ω) are G-semistable.

Proof. It suffices to prove the first statement. Let H ⊂ M be universal, let
u ∈ M centralize H, and pick a finite faithful H-subset A ⊂ ω. We now consider
the commutative diagram

X(A) colim
A⊂B⊂ω finite H-set

X(B) X(ω)

X(u(A)) colim
u(A)⊂B⊂ω finite H-set

X(B) X(ω)

X(u|A)

∼=

u.–

∼=

where the isomorphisms on the right come from cofinality again, and the left hand
horizontal maps are structure maps of the respective colimits, hence GH,G-weak
equivalences as all transition maps are. As the left hand vertical map is an isomor-
phism for trivial reasons, we conclude that also the right hand vertical map is a
GH,G-weak equivalence, i.e. X(ω) is semistable as desired. 4

Let H be a finite group and A a finite faithful H-set; we have to show that f(A)
is a GH,G-weak equivalence, for which we may assume without loss of generality that
H is a universal subgroup of M and A an H-subset of ω. But the same argument
as above then shows that f(A) agrees up to conjugation by GH,G-weak equivalences
with f(ω). The latter is a G-global weak equivalence between G-semistable M-G-
simplicial sets by the above claim, hence a G-universal weak equivalence. Thus,
also f(A) is a GH,G-weak equivalence by 2-out-of-3 as desired. �

1.4.1.4. Connection to tame actions. In order to construct the G-global model
structures on G-I-SSet and G-I-SSet and to compare them to our previous
models, we will exploit a close connection between them on the pointset level.
Namely, Sagave and Schwede showed that the 1-category of tameM-simplicial sets
is equivalent to the full subcategory of I-SSet spanned by the flat (i.e. globally
cofibrant) objects. In order to state their precise comparison, we need:

Construction 1.4.23. Let X be any M-simplicial set. We write X• for the
I-simplicial set with (X•)(A) = X[A] for each finite A ⊂ ω; an injection j : A→ B
acts by extending it to an injection ̄ ∈ M and then using the M-action (this
is well-defined by Lemma 1.3.8 together with Lemma 1.3.9). As any finite set is
isomorphic to a subset of ω, there is an essentially unique way to extend this to a
functor I → SSet, and we fix any such extension.

This becomes a simplicial functor by the enriched functoriality of the individual
X[A]; in particular, we get an induced functor (–)• :M-G-SSet → G-I-SSet for
any group G.

The inclusions X[A] ↪→ X assemble into an enriched natural map ε : X•(ω)→ X
for any M-G-simplicial set X. Moreover, if Y is a G-I-simplicial set, then the



66 1. UNSTABLE G-GLOBAL HOMOTOPY THEORY

structure map Y (A)→ Y (ω) for any finite A ⊂ ω factors through Y (ω)[A], and for
varying A these assemble into an enriched natural map Y → Y (ω)•.

The above construction is a ‘coordinate free’ version of [SS20, Construction 5.5]
applied in each simplicial degree (and withG-actions pulled through), also cf. [SS20,
discussion before Corollary 5.7]. In particular, [SS20, Proposition 5.6] implies, also
cf. [SS20, Corollary 5.7]:

Lemma 1.4.24. The above defines a simplicial adjunction

(1.4.3) evω : G-I-SSet�M-G-SSet : (–)•

where the left adjoint has image in M-G-SSetτ , and for any M-G-simplicial set
X the counit X•(ω)→ X factors through an isomorphism onto Xτ . In particular,
(1.4.3) restricts to a Bousfield localization G-I-SSet�M-G-SSetτ .

Finally, the right adjoint has essential image the flat G-I-simplicial sets, i.e. the
unit η : Y → Y (ω)• is an isomorphism if and only if Y is cofibrant in I-SSet. �

Using Theorem 1.3.17, we will now give an analogous comparison between
G-I-SSet and EM-G-SSet.

Construction 1.4.25. Let X be any EM-simplicial set. We write X• for
the I-simplicial set with (X•)(A) = X[A] for every finite A ⊂ ω; an (n + 1)-tuple
of injections j0, . . . , jn : A → B acts by extending each of them to an injection
̄k : ω → ω and then using the EM-action (which is well-defined by Corollary 1.3.20
together with Lemma 1.3.22). Again we fix an extension to all of I.

This becomes a simplicial functor by enriched functoriality of the individual
X[A]; in particular, if G is any group we then again get an induced simplicial
functor (–)• : EM-G-SSet→ G-I-SSet.

We define ε : X•(ω) → X as the map induced by the inclusions X[A] ↪→ X.
Moreover, if Y ∈ G-I-SSet, then Y (A) → Y (ω) factors through Y (ω)[A] by defi-
nition of the action, and one easily checks that these assemble into η : Y → Y (ω)•.

Remark 1.4.26. By Theorem 1.3.17, the diagram

(1.4.4)

EM-G-SSet G-I-SSet

M-G-SSet G-I-SSet

(–)•

forget forget

(–)•

commutes strictly, and the same can be arranged for evω instead of (–)• by con-
struction. Under these identifications, also the unit and counit are preserved,
i.e. forget(ηY ) = ηforgetY and forget(εX) = εforgetX .

As the notions of tameness in EM-G-SSet andM-G-SSet agree by another
application of Theorem 1.3.17, we conclude from Lemma 1.4.24:

Lemma 1.4.27. The above yields a simplicially enriched adjunction

(1.4.5) evω : G-I-SSet� EM-G-SSet : (–)•

where the left adjoint has image in EM-G-SSetτ . Moreover, for any EM-G-
simplicial set X the counit (X•)(ω)→ X factors through an isomorphism onto Xτ ,
so that (1.4.5) restricts to a Bousfield localization G-I-SSet� EM-G-SSetτ .

Finally, the essential image of (–)• consists precisely of those G-I-simplicial
sets that are flat, i.e. whose underlying I-simplicial sets are globally cofibrant. �
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As an upshot of this, we can now very easily prove the following alternative
description of the G-global weak equivalences of G-I-simplical sets, that will become
useful at several points later:

Theorem 1.4.28. The following are equivalent for a map f in G-I-SSet:

(1) f is a G-global weak equivalence in G-I-SSet.
(2) f(ω) is a G-global weak equivalence in M-G-SSet.
(3) I ×I f is a G-global weak equivalence in G-I-SSet.
(4) EM×M f(ω) is a G-global weak equivalence in EM-G-SSet.

We emphasize that the above functors are not derived in any way.

Proof. The equivalence (1) ⇔ (2) holds by definition, and (2) ⇔ (4) is an
instance of Theorem 1.3.25. It therefore only remains to show that (3) ⇔ (4), for
which we observe that the total mate of (1.4.4) provides a natural isomorphism
filling

EM-G-SSetτ G-I-SSet

M-G-SSetτ G-I-SSet.

evω

EM×M–

evω

I×I–

The claim then follows immediately from the definitions. �

1.4.1.5. G-global model structures. Using the above as well as our knowledge
about tame M- and EM-actions we can now prove:

Theorem 1.4.29. There is a unique model structure on G-I-SSet whose weak
equivalences are the G-global weak equivalences and with cofibrations those of the
strict level model structure. We call this model structure the G-global model struc-
ture. It is proper, combinatorial, simplicial, and filtered colimits in it are homotopi-
cal. Moreover, the fibrant objects of this model structure are precisely the strictly
level fibrant static G-I-simplicial sets.

Finally, the simplicial adjunction (1.4.5) is a Quillen equivalence with respect
to the G-global injective model structure on EM-G-SSet.

Proof. By Lemma 1.4.20, evω sends strict level weak equivalences to G-global
weak equivalences, and it clearly sends generating cofibrations to injective cofibra-
tions. In particular, the simplicial adjunction

evω : G-I-SSetstrict level � EM-G-SSetinjective G-global : (–)•

is a Quillen adjunction. We now want to apply Lurie’s localization criterion (The-
orem A.2.3) to this, for which we have to show that R(–)• is fully faithful with
essential image the static G-I-simplicial sets.

Indeed, Corollary 1.3.28 shows that R(–)• restricts accordingly, and that the
counit X•(ω) → X is a G-global weak equivalence for any injectively fibrant X.
On the other hand, for any G-I-simplicial set Y , the map η(ω) : Y (ω)→ Y (ω)•(ω)
is a one-sided inverse of εY (ω), hence an isomorphism by Lemma 1.4.27 as Y (ω) is
tame. Since (–)• clearly preserves G-global weak equivalences in EM-G-SSetwτ

(i.e. the subcategory of those EM-G-simplicial sets X for which Xτ ↪→ X is a
G-global weak equivalence), and as this contains both the injectively fibrant ob-
jects by Corollary 1.3.28 as well as the tame EM-G-simplicial set Y (ω) for trivial
reasons, we conclude that the derived unit ηY , represented by the composition
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Y → Y (ω)• → Z• for some injectively fibrant replacement Y (ω)→ Z, is a G-global
weak equivalence. Thus, if Y is static, then the derived unit is a G-global weak
equivalence between static G-I-simplicial sets, hence a strict level weak equivalence
by Lemma 1.4.20. This completes the proof of the claim.

Lurie’s criterion then shows that the desired model structure exists, and that
it is left proper, combinatorial, simplicial, has the fibrant objects described above,
and that (1.4.5) becomes a Quillen equivalence for this model structure. Moreover,
Lemma A.2.4 shows that filtered colimits in this model structure are homotopical.

Finally, we consider a pullback square

P X

Y Z

f

p q

g

in G-I-SSet such that q is a strict level fibration and g is a G-global weak equiv-
alence. We will show that also f is a G-global weak equivalence, which will in
particular imply right properness of the G-global model structure.

As finite limits in SSet commute with filtered colimits, and as limits com-
mute with each other, we get for any universal subgroup H ⊂ M and any group
homomorphism ϕ : H → G a pullback square

P (ω)ϕ X(ω)ϕ

Y (ω)ϕ Z(ω)ϕ

f(ω)ϕ

p(ω)ϕ q(ω)ϕ

g(ω)ϕ

in SSet. The map g(ω)ϕ is a weak equivalence by definition, and we have to show
that also f(ω)ϕ is. For this it suffices by right properness of SSet that q(ω)ϕ is a
Kan fibration. But as before, after picking a free H-orbit F ⊂ ω, it can be identified
with the filtered colimit

colim
F⊂A⊂ω finite H-set

q(A)ϕ

of Kan fibrations, and hence is itself a Kan fibration as desired. �

Theorem 1.4.30. There is a unique model structure on G-I-SSet whose cofi-
brations are the strict level cofibrations and whose weak equivalences are the G-global
weak equivalences. We call this the G-global model structure. It is left proper,
combinatorial, simplicial, and filtered colimits in it are homotopical. Moreover, its
fibrant objects are precisely the static strictly fibrant ones.

Finally, the simplicial adjunctions

evω : G-I-SSetG-global �M-G-SSetinjective G-global : (–)•

I ×I –: G-I-SSetG-global � G-I-SSetG-global : forget(1.4.6)

are Quillen equivalences, and both functors in (1.4.6) are fully homotopical.

Proof. All statements except for those about the adjunction (1.4.6) are proven
just as in the previous theorem.

For the remaining statements, we observe that I ×I – preserves cofibrations by
Proposition 1.4.2 while it is homotopical by Theorem 1.4.28; in particular it is left
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Quillen. On the other hand, the forgetful functor is clearly homotopical. We then
consider the diagram

G-I-SSet G-I-SSet

EM-G-SSet M-G-SSet

evω

forget

evω

forget

of homotopical functors (with respect to the G-global weak equivalences every-
where), which commutes up to canonical isomorphism. By the above, the vertical
maps induce equivalences on associated quasi-categories, and so does the lower
horizontal map by Corollary 1.2.40. The claim follows by 2-out-of-3. �

1.4.1.6. Further model structures. For later use we record the existence of pos-
itive G-global model structures, which can be constructed in precisely the same way
as above; we leave the details to the reader.

Theorem 1.4.31. There is a unique cofibrantly generated model structure on
G-I-SSet with weak equivalences the G-global weak equivalences and generating
cofibrations the maps

I(A, –)×ϕ G× ∂∆n ↪→ I(A, –)×ϕ G×∆n

for n ≥ 0, finite groups H, homomorphisms ϕ : H → G and non-empty finite faith-
ful H-sets A. We call this the positive G-global model structure. It is combinato-
rial, simplicial, proper, and filtered colimits in it are homotopical. Moreover, a G-
I-simplicial set X is fibrant if and only if X(A) is fibrant in the GΣA,G-equivariant
model structure for all non-empty A and X is positively static in the sense that
X(i) : X(A) → X(B) is a GΣA,G-weak equivalence for any injection i : A → B of
non-empty finite sets.

Finally, the identity adjunction G-I-SSetpositive G-global � G-I-SSetG-global

is a Quillen equivalence. �

Theorem 1.4.32. There is a unique cofibrantly generated model structure on
G-I-SSet with weak equivalences the G-global weak equivalences and generating
cofibrations the maps

I(A, –)×ϕ G× ∂∆n ↪→ I(A, –)×ϕ G×∆n

for n ≥ 0, finite groups H, homomorphisms ϕ : H → G and non-empty finite faith-
ful H-sets A. We call this the positive G-global model structure. It is left proper,
combinatorial, simplicial, and filtered colimits in it are homotopical. Moreover, its
fibrant objects are precisely the positively static strictly fibrant ones. Finally, the
simplicial adjunctions

I ×I –: G-I-SSetpositive G-global � G-I-SSetpositive G-global : forget

id : G-I-SSetpositive G-global � G-I-SSetG-global : id

are Quillen equivalences. �

Remark 1.4.33. Again, there are suitable positive level model structures in the
background of which the above are Bousfield localizations.

Lemma 1.4.34. Let f : X → Y be a cofibration in either of the G-global positive
model structures. Then f(∅) : X(∅)→ Y (∅) is an isomorphism.
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Proof. The class of such maps is obviously closed under retracts, pushouts,
and transfinite compositions. Thus, it suffices to verify the claim for each generating
cofibration i. But in this case both source and target are obviously empty in degree
∅, in particular i(∅) is an isomorphism. �

Finally, we come to injective model structures:

Theorem 1.4.35. There exists a unique model structure on G-I-SSet whose
cofibrations are the injective cofibrations and whose weak equivalences are the G-
global weak equivalences. We call this the injective G-global model structure. It is
combinatorial, proper, simplicial, and filtered colimits in it are homotopical.

For the proof we will need:

Lemma 1.4.36. The G-global weak equivalences in G-I-SSet and G-I-SSet
are stable under pushout along injective cofibrations, and a commutative square in
either of these is a homotopy pushout if and only if its image under evω is.

Proof. As the left adjoint functor evω preserves injective cofibrations and
creates G-global weak equivalences, this is simply an instance of Lemma A.2.15 to-
gether with the existence of the injective G-global model structures onM-G-SSet
and EM-G-SSet (Theorem 1.2.41 and Corollary 1.1.14, respectively). �

Proof of Theorem 1.4.35. As observed in the proof of Proposition 1.4.2,
the cofibrations of the G-global model structure are in particular injective cofibra-
tions. On the other hand, pushouts along injective cofibrations preserve G-global
weak equivalences by Lemma 1.4.36. Corollary A.2.18 therefore shows that the
model structure exists, that it is combinatorial and proper, and that filtered colim-
its in it are homotopical.

It only remains to verify the Pushout Product Axiom for the simplicial tensor-
ing, which in turn follows immediately for the Pushout Product Axiom for SSet
and for the injective model structure on EM-G-SSet. �

Theorem 1.4.37. There exists a unique model structure on G-I-SSet whose
cofibrations are the injective cofibrations and whose weak equivalences are the G-
global weak equivalences. We call this the injective G-global model structure. It
is combinatorial, left proper, simplicial, and filtered colimits in it are homotopical.
Moreover, the forgetful functor is part of a simplicial Quillen equivalence

(1.4.7) forget : G-I-SSetinj. G-global � G-I-SSetinj. G-global : mapsI(I, –).

Proof. The first part is analogous to the proof of the previous theorem.
For the final statement, we observe that the forgetful functor admits a simplicial

right adjoint given by simplicially enriched right Kan extension along I → I, which
we denote by mapsI(I, –). As the forgetful functor preserves weak equivalences and
injective cofibrations for trivial reasons, it is left Quillen. Thus, (1.4.7) is a Quillen
equivalence by Theorem 1.4.30. �

1.4.2. Functoriality. We will now discuss change of group functors for the
above models.

Lemma 1.4.38. Let α : H → G be any group homomorphism. Then

(1.4.8) α! : H-I-SSetH-global � G-I-SSetG-global :α∗
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is a simplicial Quillen adjunction with fully homotopical right adjoint, and likewise
for the positive model structures on either side.

Proof. For the first statement, one immediately checks that α∗ is right Quillen
with respect to the strict level model structures. On the other hand, it obviously
sends static G-I-simplicial sets to static H-I-simplicial sets, so that also the sim-
plicial adjunction (1.4.8) is a Quillen adjunction by Proposition A.2.6.

To see that α∗ is homotopical, we observe that in the commutative diagram

G-I-SSetG-global EM-G-SSetG-global

H-I-SSetH-global EM-H-SSetH-global

evω

α∗ α∗

evω

the horizontal arrows create weak equivalences by definition while the right hand
vertical arrow obviously preserves weak equivalences; the claim follows immediately.

The proof for the positive model structures is analogous. �

Corollary 1.4.39. Let α : H → G be any group homomorphism. Then

α∗ : G-I-SSetG-global injective �H-I-SSetH-global injective :α∗

is a simplicial Quillen adjunction.

Proof. It is obvious that α∗ preserves injective cofibrations, and it is moreover
homotopical by the previous lemma, hence left Quillen. �

Lemma 1.4.40. Let α : H → G be an injective group homomorphism. Then

α! : H-I-SSetH-global injective � G-I-SSetG-global injective :α∗

is a simplicial Quillen adjunction. In particular, α! is homotopical.

Proof. We may assume without loss of generality that H is a subgroup of G
and that α is its inclusion, in which case α! can be modelled by applying G ×H –
levelwise. We immediately see that α! preserves injective cofibrations. To finish the
proof it suffices now to show that it is also homotopical, for which we consider

H-I-SSet EM-H-SSet

G-I-SSet EM-G-SSet.

α!

evω

α!

evω

We claim that this commutes up to isomorphism. Indeed, as α! is cocontinuous,
there is a canonical G-equivariant isomorphism filling this, and one easily checks
that this isomorphism is also EM-equivariant.

But the horizontal arrows in the above diagram preserve and reflect weak equiv-
alences by definition and the right hand arrow is homotopical by Corollary 1.2.73,
so the claim follows immediately. �

Lemma 1.4.41. Let α : H → G be an injective group homomorphism. Then

α∗ : G-I-SSetG-global �H-I-SSetH-global :α∗

is a simplicial Quillen adjunction, and likewise for the positive model structures. If
(G : imα) <∞, then α∗ is homotopical.
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Proof. Let us first show that this is a Quillen adjunction. We already know
that α∗ is homotopical, so it suffices to show that the above is a Quillen adjunction
for the strict level model structures, which follows in turn by applying Proposi-
tion 1.1.18 levelwise.

Finally, if (G : imα) < ∞, then α∗ is non-equivariantly just given by a finite
product. Using that filtered colimits commute with finite products in SSet, one
concludes similarly to the argument from the previous lemma that α∗ commutes
with evω. The claim follows as α∗ : EM-H-SSet→ EM-G-SSet is homotopical
by Corollary 1.2.74.

The proof for the positive model structures is again analogous. �

As an application of the calculus just developed we can now prove:

Proposition 1.4.42. Let X be fibrant in the injective G-global model structure
on G-I-SSet and let i : A→ B be a G-equivariant injection of (not necessarily fi-
nite) G-sets. Then X(i) : X(A)→ X(B) is a proper G-equivariant weak equivalence
with respect to the diagonal G-action.

Proof. Fix a finite subgroup H ⊂ G; we have to show that X(i)H : X(A)H →
X(B)H is a weak homotopy equivalence. By 2-out-of-3 we may assume without loss
of generality that A = ∅, and filtering B by its finite H-subsets we may assume
that B itself is finite.

We now observe that X is also fibrant in the H-global injective model structure
by Lemma 1.4.40. On the other hand, by the Yoneda Lemma X(i)H agrees up to
conjugation by isomorphisms with

mapsH(p,X) : mapsH(∗, X)→ mapsH(I(B, –), X)

where p : I(B, –)→ ∗ is the unique map, and H acts on I(B, –) via B.
As the injective H-global model structure is simplicial and since all its objects

are cofibrant, it therefore suffices that p is an H-global weak equivalence, which by
definition amounts to saying that EInj(B,ω)→ ∗ is an H-global weak equivalence
of EM-H-simplicial sets. This is however just the content of Example 1.2.31. �

All of the above functoriality properties have analogues for the models based
on I-simplicial sets. Let us demonstrate this for a selection of these:

Corollary 1.4.43. Let α : H → G be any group homomorphism. Then

α! : H-I-SSetH-global � G-I-SSetG-global :α∗

is a simplicial Quillen adjunction with fully homotopical right adjoint, and likewise
for the corresponding positive model structures on either side.

Proof. One proves as in Lemma 1.4.38 that these are Quillen adjunctions. To
prove that α∗ is homotopical, we consider the commutative diagram

G-I-SSet G-I-SSet

H-I-SSet H-I-SSet.

I×I–

α∗ α∗

I×I–

The horizontal arrows preserve and reflect weak equivalences by Theorem 1.4.28
while the right hand vertical arrow is homotopical by Lemma 1.4.38; the claim
follows immediately. �
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Corollary 1.4.44. Let α : H → G be any group homomorphism. Then

α∗ : G-I-SSetG-global injective �H-I-SSetH-global injective :α∗

is a simplicial Quillen adjunction.

Proof. By the previous corollary α∗ is homotopical and it obviously preserves
injective cofibrations, so it is left Quillen. �

Corollary 1.4.45. Let α : H → G be an injective group homomorphism. Then

α! : H-I-SSetH-global injective � G-I-SSetG-global injective :α∗

is a simplicial Quillen adjunction. In particular, α! is homotopical.

Proof. One proves analogously to Lemma 1.4.40 that α! preserves injective
cofibrations. We now consider the commutative square on the left in

H-I-SSet H-I-SSet

G-I-SSet G-I-SSet

forget

α∗

forget

α∗

H-I-SSet H-I-SSet

G-I-SSet G-I-SSet.

α!

I×I–

α!

I×I–

Passing to total mates yields a canonical isomorphism filling the square on the
right. But the horizontal arrows in this preserve and reflect weak equivalences by
Theorem 1.4.28 while the right hand vertical arrow is homotopical by Lemma 1.4.40.
The claim follows immediately. �

Remark 1.4.46. By direct computation, the (homotopical) restriction functors
α∗ for any homomorphism α : H → G are compatible with evω : G-I-SSet →
EM-G-SSet, evω : G-I-SSet→M-G-SSet, as well as all the forgetful functors.

It follows by abstract nonsense that (α∗)∞ is actually compatible with all the
equivalences of associated quasi-categories constructed above, and so are its adjoints
Lα! and Rα∗.

Using the characterization of the cofibrations given in Corollary 1.4.11 and the
above functoriality properties, we can now prove:

Theorem 1.4.47. The simplicial adjunction

forget : G-I-SSetG-global � G-I-SSetG-global :mapsI(I, –)

is a Quillen equivalence.

Proof. As the forgetful functor is homotopical and descends to an equivalence
of associated quasi-categories (Theorem 1.4.30), it only remains to prove that it
sends generating cofibrations to cofibrations.

Claim. Let A,B be finite sets and let n ≥ 0. Then the latching map

colimC(B I(A,C)n+1 → I(A,B)n+1

is injective.

Proof. Let (f0, . . . , fn) be a family of injections A → C and let (f ′0, . . . , f
′
n)

be a family of injections A→ C ′ for proper subsets C,C ′ ( B, such that both are
sent to the same element of I(A,B)n+1, i.e. for each a ∈ A and i = 0, . . . , n

C 3 fi(a) = f ′i(a) ∈ C ′.
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We conclude that fi and f ′i both factor through the same injection f ′′i : A → C ∩
C ′. But then obviously (f0, . . . , fn) represents the same element of the colimit as
(f ′′0 , . . . , f

′′
n ), and so does (f ′0, . . . , f

′
n), finishing the proof of the claim. 4

Now let A be a finite faithful H-set and let B be any finite set. We can then
view I(A,B)n+1 as a (ΣB × H)-set. We claim that the isotropy group of any
(f0, . . . , fn) ∈ I(A,B)n+1 is contained in GΣB ,H . Indeed, this just amounts to
saying that H acts freely on I(A,B) via its action on A, which is trivial to check.

We are now ready to finish the proof of the proposition: let A be any finite
faithful H-set, and let B be any finite set. By the above claim, the latching map

(1.4.9) `B : colimC(B I(A,C)→ I(A,B)

is injective, and the argument from the previous paragraph tells us in particular
that any simplex not in the image has isotropy a graph subgroup of ΣB × H.
This precisely means that (1.4.9) is a cofibration for the GΣB ,H -model structure on
(ΣB ×H)-SSet. We conclude from Corollary 1.4.11 that I(A, –) (with H acting
via A) is cofibrant in the H-global model structure on H-I-SSet.

If now ϕ : H → G is any homomorphism, then ϕ! : H-I-SSet → G-I-SSet is
left Quillen for the H-global and G-global model structure, respectively, by Corol-
lary 1.4.43, so I(A, –)×ϕ G ∼= ϕ!I(A, –) is cofibrant. As the G-global model struc-
ture is simplicial, we conclude that I(A, –) ×ϕ G × ∂∆n ↪→ I(A, –) ×ϕ G ×∆n is
indeed a cofibration in G-I-SSet as desired. �

1.4.3. Another connection to monoid actions. We will now provide an-
other comparison between G-I-SSet and EM-G-SSet in terms of a certain
‘reparametrization functor’ appearing in the construction of global algebraic K-
theory [Sch19b, Constructions 3.3 and 8.2].

Construction 1.4.48. We write Iω ⊂ I for the full subcategory of countably
infinite sets, and analogously Iω ⊂ I. Then the inclusion BM→ I factors through
an equivalence i : BM→ Iω. We pick once and for all a retraction r; this is then
automatically quasi-inverse to i and we fix τ : ir ∼= id with τω = idω. The functor r
uniquely extends to a simplicially enriched functor Iω → BEM, which we denote
by the same symbol; this is automatically a retraction of the inclusion i, and τ is a
simplicially enriched isomorphism ir ∼= id.

For any EM-G-simplicial set X, we now write X[–] := X ◦ r : Iω → G-SSet.
We then defineX[ω•] to be the followingG-I-simplicial set: if A 6= ∅, thenX[ωA] =
X(r(ωA)) as above. The G-action is as before, and for any injection i : A→ B we
take the structure map to be X[i!] : X[ωA] → X[ωB ], i.e. it is given by applying
X ◦ r to the ‘extension by zero map’ i! : ω

A → ωB with

i!(f)(b) =

{
f(a) if b = i(a)

0 if b /∈ im i.

More generally, we let an n-simplex (i0, . . . , in) act by X[i0!, . . . , in!]. We remark
that this means that as a G-simplicial set X[ωA] = X, and all of the above (higher)
structure maps are given by acting with certain (inexplicit and mysterious) elements
of EM.

Finally, define X[ω∅] := X[∅]. The structure maps X[ω∅] → X = X[ωA] are
given by the inclusions, and we choose all higher cells to be trivial. As all the
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remaining structure is given by acting with elements of EM, this is easily seen to
be functorial, yielding a G-I-simplicial set.

This extends to a simplicially enriched functor EM-G-SSet→ G-I-SSet by
sending an n-simplex f : ∆n ×X → Y of the mapping space to the transformation
given in non-empty degree by f itself and in degree ∅ by f[∅].

Remark 1.4.49. There is an alternative ‘coordinate-free’ perspective on the
above construction, that we briefly sketch; for the arguments in this paper we will
however only be interested in the above version of the construction.

If A is any non-empty set, then EInj(ωA, ω) is left EM-isomorphic to EM by
precomposing with the isomorphism τ ; for A = ∅, EInj(ω∅, ω) ∼= Eω corepresents
the functor (–)[{0}].

It is then not hard to produce a natural map from X[ω•] to the G-I-simplicial
set sending A ∈ I to mapsEM(EInj(ωA, ω), X) with the functoriality in A is as
above. This map is an isomorphism in all positive degrees and hence in particular
a G-global weak equivalence. This ‘coordinate free’ description is then analogous
to [Sch20b, construction after Proposition 3.5], also cf. [Lin13, Section 8].

We can now state our comparison:

Proposition 1.4.50. The functors

evω : G-I-SSet� EM-G-SSet : (–)[ω•]

are mutually inverse homotopy equivalences.

For the proof we will need the following example of a complete H-set universe
from [Sch19b, Proposition 2.19]:

Lemma 1.4.51. Let A be a finite H-set containing a free H-orbit. Then ωA

with left H-action via (h.f)(a) = f(h−1.a) is a complete H-set universe. �

Remark 1.4.52. We can give an alternative description of evω ◦ [ω•] in non-
empty degrees as follows: for any A 6= ∅ the isomorphism τ : ω → ωA from the
construction of (–)[ω•] induces

(1.4.10) X(ωA)
X(τ−1)−−−−−→ X(ω) = X(ω)[ωA]

and these are by definition compatible with all the relevant (higher) structure maps
and moreover natural in X.

Using this, we define θX : X → X(ω)[ω•] in degree A 6= ∅ as the composition

X(A)
X(e)−−−→ X(ωA)

(1.4.10)−−−−−→ X(ω)[ωA],

where e : A → ωA sends a ∈ A to its characteristic function, i.e. e(a)(a) = 1 and
e(a)(b) = 0 otherwise. In degree ∅, we define θX(∅) : X → X(ω)[∅] via the unit of
evω a (–)•. We omit the easy verification that θX is a map of G-I-simplicial sets
and natural in X.

Proof of Proposition 1.4.50. We first show that (–)[ω•] is homotopical,
for which we let f be any G-global weak equivalence in EM-G-SSet. If now
H ⊂ M is any universal subgroup, and A is any finite H-set containing a free
H-orbit (in particular A 6= ∅), then Lemma 1.4.51 shows that ωA is a complete H-
set universe. We can therefore pick an H-equivariant isomorphism ω ∼= ωA, which
shows that f [ωA] agrees up to conjugation by (H × G)-equivariant isomorphism
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with f [ω] = f ; in particular, f [ωA] is a GH,G-weak equivalence. The argument from
Lemma 1.4.20 thus shows that f [ω•] is a G-global weak equivalence as desired.

Next, let us show that θX : X → X(ω)[ω•] is a G-global weak equivalence
for any X ∈ G-I-SSet. As evω and (–)[ω•] are homotopical, we may assume
without loss of generality that X is static. We then let A be any finite non-empty
faithful H-set, and observe that θX(A) agrees by the usual cofinality argument up
to (H ×G)-equivariant isomorphism with the composition

X(A)
X(e)−−−→ X(e(A))→ colim

e(A)⊂B⊂ωA finite H-set
X(B),

where the unlabelled arrow is the structure map. As the left hand map is an
isomorphism and all transition maps of the colimit are GH,G-weak equivalences since
X is static, this is a GH,G-weak equivalence, so θX is a G-global weak equivalence
as before. In particular, evω is right homotopy inverse to (–)[ω•].

To see that it is also left homotopy inverse, we consider the following zig-zag
for each EM-G-simplicial set Y :

Y [ω•](ω) = colim
A⊂ω finite

Y [ωA]
α−→ colim

A⊂ω finite
Y [ωA q ω]

β←− colim
A⊂ω finite

Y [ω] ∼= Y.

The transition maps on the two left hand colimits come from the extension by zero
maps ωA → ωB , and the transition maps of the remaining colimit are trivial. The
group G acts by its action on Y everywhere. Moreover, EM acts on all the colimits
analogously to Construction 1.4.13 (observe that this part of the action is trivial for
the rightmost colimit), in addition on the middle colimit by its tautological action
on the ω-summand of Y [ωA q ω], and finally by its given action on Y [ω] = Y for
the final colimit. The maps α and β are given in each degree by the inclusions
ωA ↪→ ωA q ω ←↩ ω. One immediately checks that they are well-defined and EM-
G-equivariant. Moreover, we can make the middle term into a functor in Y in the
obvious way and with respect to this the maps α and β are clearly natural.

It only remains to prove that α and β are G-global weak equivalences. We prove
this for α, the other argument being similar. For this let H ⊂M be universal. We
pick a free H-orbit F inside ω; by the same argument as before, α agrees up to
conjugation by (H ×G)-equivariant isomorphisms with the map

(1.4.11) colim
F⊂A⊂ω finite H-set

Y [ωA]→ colim
F⊂A⊂ω finite H-set

Y [ωA q ω]

still induced in each degree by the inclusion i : ωA ↪→ ωA q ω. We claim that each
of these maps is even an (H × G)-equivariant homotopy equivalence. But indeed,
as both ωA and ωAqω are complete H-set universes by Lemma 1.4.51, there exists
an H-equivariant injection j : ωA q ω → ωA, and Y [j] is (H × G)-equivariantly
homotopy inverse to Y [i] as witnessed by the equivariant homotopies Y [ij, id] and
Y [ji, id]. �

1.4.4. Comparison to G-equivariant homotopy theory. We can now
prove the analogues of the results of Section 1.2.6 for G-I-simplicial sets:

Corollary 1.4.53. The homotopical functor

const : G-SSetproper → G-I-SSetG-global

induces a fully faithful functor on associated quasi-categories. This induced functor
admits both a left adjoint LcolimI as well as a right adjoint Rev∅. The latter is
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a quasi-localization at those f such that f(ω) is an E-weak equivalence of EM-G-
simplicial sets (see Definition 1.2.79), and it in turn admits another right adjoint
R, which is again fully faithful.

Finally, the diagram

(1.4.12)

G-SSet∞proper

G-I-SSet∞G-global G-EM-SSet∞G-global

const∞ triv∞EM

(evω)∞

commutes up to canonical equivalence.

Proof. The adjunction

const : G-SSetproper � G-I-SSetG-global injective : ev∅

is easily seen to be a Quillen adjunction, providing the above description of the
right adjoint. Similarly, for the left adjoint we want to prove that the simplicial
adjunction

(1.4.13) colimI : G-I-SSetG-global � G-SSetproper : const

is a Quillen adjunction. For this we first observe that this is a Quillen adjunction
when we equip the left hand side with the strict level model structure (as const is
then obviously right Quillen). In particular, colimI preserves G-global (i.e. strict
level) cofibrations, and const sends fibrant G-simplicial sets to strictly fibrant G-I-
simplicial sets. It then suffices by Proposition A.2.6 and the characterization of the
fibrant objects in G-I-SSetG-global provided by Theorem 1.4.29 that const sends
fibrant objects to static ones, which is immediate from the definitions.

In order to construct a canonical equivalence filling (1.4.12), it suffices to ob-
serve that the evident diagram of homotopical functors inducing it even commutes
up to canonical isomorphism. The remaining statements then follow formally from
Theorem 1.2.87 and commutativity of (1.4.12) as (evω)∞ is an equivalence. �

In the world of G-I-simplicial sets there are rather explicit pointset models of
the right adjoints Rev∅ and R, which we will introduce now. To this end, we define

(1.4.14) UG :=

∞∐
i=0

∐
H⊂G,H finite

G/H.

If G is finite, the above is just a particular construction of a complete G-set
universe. However, in general this need not be countable and it can even have
uncountably many orbits (e.g. for G =

⊕
R Z/2Z). Despite these words of warning

we always have:

Lemma 1.4.54. Let H be any finite group and let ι : H → G be any injective
group homomorphism. Then the H-set ι∗UG contains a complete H-set universe.

Proof. We may assume without loss of generality that ι is literally the inclu-
sion of a finite subgroup H of G. We then have an H-equivariant injection

∞∐
i=0

∐
K⊂H

H/K → UG
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induced from H ↪→ G (and using that each subgroup K ⊂ H is in particular a finite
subgroup of G). As the left hand side is a complete H-set universe, this finishes
the proof. �

By the universal property of enriched presheaves, the simplicial functor evUG
given by evaluation at UG has a simplicial right adjoint given explicitly by

R(X)(A) = maps(EInj(A,UG), X)

(where maps denotes the simplicial set of all maps, with G acting by conjugation)
with the obvious functoriality in each variable. We can now prove:

Proposition 1.4.55. The simplicial adjunction

(1.4.15) uG := evUG : G-I-SSetG-global � G-SSetproper :R

is a Quillen adjunction with homotopical left adjoint, and there are preferred equiv-
alences (

evUG
)∞ ' Rev∅ and RR ' R.

Proof. Let us call a map of G-I-simplicial sets that becomes an E-weak equiv-
alences after evaluating at ω an E-weak equivalence again. Because of the canonical
isomorphism evUG ◦ const ∼= id it then suffices that (1.4.15) is a Quillen adjunction
and that evUG is homotopical in E-weak equivalences.

If H ⊂ G is any finite subgroup, then we pick an injective homomorphism
ι : H ′ → G with image H from a universal subgroup H ′ ⊂M. With this notation
we then have for any G-I-simplicial set X an actual equality(

X(UG)
)H

= X
(
ι∗(UG)

)ι
,

and analogously for morphisms. By the previous lemma there exists an H ′-equi-
variant embedding ω → ι∗(UG) (with respect to the tautological action on the left
hand side), and by Lemma 1.4.16 we conclude that the induced natural transfor-
mation (–)ι ◦ evω ⇒ (–)H ◦ evUG is a weak equivalence. Thus, evUG is homotopical
in E-weak equivalences (and hence in particular in G-global weak equivalences).

It only remains to prove that evUG sends the standard generating cofibrations
to proper cofibrations. As the proper model structure is simplicial, we are reduced
to showing that the G-simplicial set EInj(A,UG) ×ϕ G is cofibrant in the proper
model structure (i.e. has finite isotropy groups) for any finite group H, any finite
(faithful) H-set A and any group homomorphism ϕ : H → G. For this we let
(f0, . . . , fn; g) represent any n-simplex. If g′ fixes [f0, . . . , fn; g], then in particular
g′g = gϕ(h) for some h ∈ H, and hence g′ = gϕ(h)g−1. As the right hand side can
only take finitely many values for any fixed g, the claim follows. �

Remark 1.4.56. For G = 1 the above adjunction is the I-analogue of [Sch18,
Remark 1.2.24 and Proposition 1.2.27]. As we will show in Section 1.5, there exists
a zig-zag of homotopical functors

I-SSet
forget−−−→ I-SSet

|–|−→ I-Top
forget←−−− L-Top

where L-Top denotes Schwede’s orthogonal spaces (with respect to the global weak
equivalences for the class of finite groups), and all of these induce equivalences on
associated quasi-categories. It is then not hard to check directly that under this
identification the adjunction const∞ a Rev∅ a R corresponds to the adjunction
L1 a Rev0 a RR considered in loc. cit. for the trivial group.
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In fact, there is also a completely abstract way to prove this: namely, in both
cases the leftmost adjoint under consideration preserves the terminal object (in our
case because we have explicitly constructed a further left adjoint, in Schwede’s case
by direct inspection). If we now have any equivalence Φ between L-Top∞ and
I-SSet∞, then both ways through the diagram

SSet∞

I-SSet∞ L-Top∞

const∞ L1

Φ

are cocontinuous and send the terminal object to the terminal object. By the uni-
versal property of spaces [Lur09, Theorem 5.1.5.6], there is therefore a contractible
space of natural equivalences filling this, and as before Φ is then also compatible
with the other adjoints.

1.4.5. Model structures for tame actions. Above, we have used our un-
derstanding of tame M- and EM-actions to introduce the G-global model struc-
tures on G-I-SSet and G-I-SSet. Conversely, we will now use the results of this
section to constructG-global model structures onEM-G-SSetτ andM-G-SSetτ :

Theorem 1.4.57. There exists a unique model structure on EM-G-SSetτ in
which a map f is a weak equivalence, fibration, or cofibration if and only if f• is
a weak equivalence, fibration, or cofibration, respectively, in the positive G-global
model structure on G-I-SSet. We call this the positive G-global model structure.
Its weak equivalences are precisely the G-global weak equivalences, and hence they
are in particular closed under filtered colimits.

This model structure is proper, simplicial, and combinatorial with generating
cofibrations

(1.4.16) (EInj(A,ω)×ϕ G)× ∂∆n ↪→ (EInj(A,ω)×ϕ G)×∆n

where H runs through finite groups, A 6= ∅ is a finite faithful H-set, ϕ is a homo-
morphism H → G, and n ≥ 0. Finally, the simplicial adjunctions

incl : EM-G-SSetτ � EM-G-SSetinjective G-global : (–)τ(1.4.17)

and

evω : G-I-SSet� EM-G-SSetτ : (–)•(1.4.18)

are Quillen equivalences.

Proof. The adjunction evω a (–)• exhibits EM-G-SSetτ as accessible Bous-
field localization of the locally presentable category G-I-SSet, so it is itself locally
presentable, cf. [Lur09, Remark 5.5.1.6].

Let us now show that the above defines a model structure on EM-G-SSetτ .
Instead of using Crans’ Transfer Criterion (Proposition A.2.13), we can actually
easily verify the model structure axioms directly here as the adjunction evω a (–)•
is already well-behaved 1-categorically, also see [SS20, Theorem 5.10 and Corol-
lary 5.11] where a similar argument is used to non-equivariantly relate I-SSet and
M-SSetτ :

The 2-out-of-3 property for weak equivalences as well as the closure under
retracts for all three classes are obvious. Moreover, as (–)• is fully faithful, the
lifting axioms are inherited from the lifting axioms for G-I-SSet.
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It only remains to verify the factorization axioms, for which we let f : X → Y
be any map of tame EM-G-simplicial sets. Then we can factor f• as a cofibration
i : X• → Z followed by an acyclic fibration p : Z → Y•. But cofibrations in the
positive G-global model structure are in particular cofibrations in I-SSet (Theo-
rem 1.4.47 together with Lemma 1.4.41), so Z is flat again and hence lies in the
essential image of (–)•. We can therefore assume without loss of generality that
Z = Z ′• for some Z ′ ∈ EM-G-SSetτ . By full faithfulness of (–)• we can then
write i = i′•, p = p′•, which yields the desired factorization f = p′i′. The remaining
factorization axiom is proven analogously.

This completes the proof of the existence of the positive G-global model struc-
ture. By definition, f : X → Y is a weak equivalence if and only if f• is, which in
turn is equivalent by definition to f•(ω) being a G-global weak equivalence of EM-
G-simplicial sets. As (–)• is fully faithful, f•(ω) is conjugate to f , which shows that
the weak equivalences are precisely the G-global weak equivalences. In particular,
they are closed under filtered colimits (which are created in EM-G-SSet).

The model structure is right proper since it is transferred from a right proper
model stucture, see Lemma A.2.14-(1). Moreover, EM-G-SSetτ is tensored and
cotensored over SSet with the tensoring given by the tensoring on EM-G-SSet
and the cotensoring given by applying (–)τ to the usual cotensoring. As (1.4.18) is
a simplicial adjunction, the positive G-global model structure on EM-G-SSetτ is
then simplicial by Lemma A.2.14-(2).

It is clear from the construction that (–)• is right Quillen so that (1.4.18) is a
Quillen adjunction. Moreover, both adjoints preserve and reflect weak equivalences
by definition and the above characterization of the weak equivalences. To show that
(1.4.18) is a Quillen equivalence it is therefore enough that the counit X•(ω)→ X
be a G-global weak equivalence for each tame EM-G-simplicial set X, but we
already know that it is even an isomorphism.

Now let I and J be sets of generating cofibrations and generating acyclic cofibra-
tions, respectively, of the positiveG-global model structure onG-I-SSet. We claim
that the positive G-global model structure on EM-G-SSetτ is cofibrantly gener-
ated (hence combinatorial) with generating cofibrations I(ω) := {i(ω) : i ∈ I} and
generating acyclic cofibrations J(ω). Indeed, I(ω) and J(ω) permit the small object
argument asEM-G-SSetτ is locally presentable, and they detect acyclic fibrations
and fibrations, respectively, by adjointness. Taking I to be the usual set of gen-
erating cofibrations and using the canonical isomorphism I(A, –)(ω) ∼= EInj(A,ω)
shows that (1.4.16) is a set of generating cofibrations.

Next, let us show that (1.4.17) is a simplicial Quillen adjunction. It is obvious
that the left adjoint preserves tensors, so that this is indeed a simplicial adjunction.
Moreover, incl sends the above generating cofibrations to injective cofibrations, and
it is homotopical by the above characterization of the weak equivalences, hence left
Quillen. Finally, the inclusion descends to an equivalence on homotopy categories
by Theorem 1.3.26, i.e. (1.4.17) is a Quillen equivalence.

It only remains to show that EM-G-SSetτ is left proper. But indeed, we
have seen that the weak equivalences are precisely the G-global weak equivalences,
and since (1.4.17) is a Quillen adjunction, the cofibrations are in particular injec-
tive cofibrations. As pushouts in EM-G-SSetτ can be computed inside all of
EM-G-SSet, the claim therefore follows from the left properness of the injective
G-global model structure on EM-G-SSet. �
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Remark 1.4.58. While we will be almost exclusively interested in the positive
G-global model structure considered above, the analogous statement for the G-
global model structure on G-I-SSet holds and can be proven in the same way.
We call the resulting model structure the G-global model structure; its generating
cofibrations are again given by evaluating the usual generating cofibrations for the
corresponding model structures on G-I-SSet at ω.

Remark 1.4.59. Similarly to Corollary 1.3.28, if X is fibrant in the G-global
positive model structure, then all its simplices have ‘small support up to weak
equivalence.’ More precisely, let H ⊂ M be universal and let A ⊂ ω be a non-
empty faithful H-set. Then the H-action on X restricts to X[A], and the inclusion
X[A] ↪→ X is a GH,G-weak equivalence as X• is fibrant in the positive G-global
model structure on G-I-SSet, hence in particular positively static.

Of course, the analogous statement for the G-global model structure holds.

For later use, we record two properties of the above cofibrations:

Lemma 1.4.60. Let f : X → Y be a map in EM-G-SSetτ .

(1) If f is a cofibration in the G-global positive model structure, then f re-
stricts to an isomorphism f[∅] : X[∅] → Y[∅].

(2) If f is a G-global cofibration (for example, if f is a positive G-global
cofibration), then it is also a GH,G-cofibration for any subgroup H ⊂ M,
i.e. f is injective and G acts freely on Y outside the image of f .

Proof. For the first statement we observe that f• is a G-global positive cofi-
bration by definition, so f[∅] = f•(∅) is an isomorphism by Lemma 1.4.34.

For the second statement, it suffices to prove this for the generating cofibra-
tions. As the GH,G-model structure is simplicial, it suffices further to show that
EInj(A,ω)×ϕG is cofibrant in the GH,G-model structure, i.e. that G acts freely on
it. This is immediate from Lemma 1.2.33-(2). �

While the above argument for the construction of the positive G-global model
structure does not apply for the injective G-global model structure on G-I-SSet,
we still have:

Theorem 1.4.61. There is a unique model structure on EM-G-SSetτ with
cofibrations the injective cofibrations and weak equivalences the G-global weak equiv-
alences. We call this the injective G-global model structure. It is combinatorial,
proper, simplicial, and filtered colimits in it are homotopical. Moreover, the simpli-
cial adjunction

(1.4.19) evω : G-I-SSetinj. G-global � EM-G-SSetτinj. G-global : (–)•

is a Quillen equivalence.

Proof. Let Î be a set of generating cofibrations for the injective G-global
model structure on G-I-SSet, and define I := Î(ω) = {i(ω) : i ∈ Î}.

Claim. The injective cofibrations are precisely the retracts of relative I-cell
complexes.

Proof. It is clear that any element of I is an injective cofibration. As the
latter are closed under pushouts, retracts, and transfinite composition, it suffices
to show conversely that any injective cofibration is a retract of an I-cell complex.



82 1. UNSTABLE G-GLOBAL HOMOTOPY THEORY

But indeed, if f is an injective cofibration, then so is f• by direct inspection,
so that it can be written as a retract of a relative Î-cell complex. As evω is a left
adjoint, we conclude that f•(ω) is a retract of a relative Î(ω) = I-cell complex. But
by full faithfulness of (–)•, f•(ω) is conjugate to f , which completes the proof. 4

We have seen in the proof of Theorem 1.4.57 that pushouts along injective
cofibrations in EM-G-SSetτ preserve G-global weak equivalences, and that pos-
itive G-global cofibrations are in particular injective cofibrations. As the injective
cofibrations are generated by the set I, Corollary A.2.17 therefore shows that the
model structure exists, that is combinatorial and proper, and that filtered colimits
in it are homotopical.

To prove that the model structure is also simplicial, it suffices to observe that
colimits and tensors can be computed in all of EM-G-SSet and that the latter is
simplicial by Corollary 1.1.14.

Finally, it is clear that evω preserves injective cofibrations and weak equiv-
alences, so that (1.4.19) is a Quillen adjunction, hence a Quillen equivalence by
Theorem 1.4.57. �

Next, we come to an analogue of Theorem 1.4.57 for tame M-actions, which
can be proven in exactly the same way:

Theorem 1.4.62. There exists a model structure on M-G-SSetτ in which a
map f is a weak equivalence, fibration, or cofibration, if and only if f• is a weak
equivalence, fibration, or cofibration, respectively, in the positive G-global model
structure on G-I-SSet. We call this the positive G-global model structure. Its
weak equivalences are precisely the G-global weak equivalences.

This model structure is left proper, simplicial, combinatorial with generating
cofibrations

{(Inj(A,ω)×ϕ G)× ∂∆n ↪→ (Inj(A,ω)×ϕ G)×∆n :

H finite group, A 6= ∅ finite faithful H-set, ϕ : H → G homomorphism},
and filtered colimits in it are homotopical. Finally, the simplicial adjunctions

incl :M-G-SSetτ �M-G-SSetinjective G-global : (–)τ

evω : G-I-SSet�M-G-SSetτ : (–)•

are Quillen equivalences. �

Corollary 1.4.63. The simplicial adjunction

EM×M –:M-G-SSetτ � EM-G-SSetτ : forget

is a Quillen equivalence, and both adjoints are homotopical.

Proof. We have seen in Theorem 1.3.25 that both adjoints are homotopical,
and that they descend to equivalences on homotopy categories. It only remains to
show that EM×M – sends the above generating cofibrations to cofibrations, which
is immediate from Corollary 1.3.21. �

Remark 1.4.64. Again we get an analogous result for the G-global model
structure. Moreover, one can construct an injective G-global model structure by
an argument similar to the above. We leave the details to the interested reader.

Finally, let us discuss functoriality for EM-G-SSetτ :
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Lemma 1.4.65. Let α : H → G be any group homomorphism. Then

α! : EM-H-SSet� EM-G-SSet :α∗

restricts to a Quillen adjunction

(1.4.20) α! : EM-H-SSetτpositive H-global � EM-G-SSetτpositive G-global :α∗.

The right adjoint is fully homotopical, and if α is injective, so is the left adjoint.

Proof. It is clear that α∗ preserves tameness, and so does α! as the full sub-
category EM-SSetτ ⊂ EM-SSet is closed under colimits.

To see that (1.4.20) is a Quillen adjunction with homotopical right adjoint,
it suffices to observe that α∗ commutes with (–)• on the nose, so that the claim
follows from Lemma 1.4.38. Finally, if α is injective, then α! sends H-global weak
equivalences to G-global weak equivalences by Corollary 1.2.73. �

Similarly, one deduces from Corollary 1.2.75:

Corollary 1.4.66. In the above situation, α! preserves H-global weak equiva-
lences between objects with free ker(α)-action. �

The situation for right adjoint is a bit more complicated: of course, α∗ still
has a right adjoint α∗, and α∗ a α∗ is a Quillen adjunction for the injective model
structures—however, α∗ : EM-H-SSetτ → EM-G-SSetτ will usually not be
given as restriction of α∗ : EM-H-SSet → EM-G-SSet because the inclusion
EM-SSetτ ↪→ EM-SSet does not preserve infinite limits.

However, we still have:

Lemma 1.4.67. If α : H → G is injective with (G : imα) <∞, then

α∗ : EM-G-SSet� EM-H-SSet : α∗

restricts to a Quillen adjunction

α∗ : EM-G-SSetτpositive G-global � EM-H-SSetτpositive H-global : α∗

in which both functors are fully homotopical.

Proof. We already know that α∗ preserves tameness and is fully homotopical.
To see that also α∗ preserves tameness, we observe that as an EM-simplicial set,
α∗X is just a (G : imα)-fold product of copies of X, and that EM-SSetτ ⊂
EM-SSet is closed under finite limits by Corollary 1.3.23.

It only remains to show that α∗ preserves fibrations as well as weak equiv-
alences. But indeed, as α∗ commutes with evω, α∗ commutes with (–)• up to
(canonical) isomorphism, so these follow from Lemma 1.4.41. �

By abstract nonsense, (finite) products of fibrations in EM-G-SSetτ are fi-
brations, and we have seen that also finite products of G-global weak equivalences
are weak equivalences. If now S is any finite set and X is any EM-G-simplicial set,
then X×S :=

∏
s∈S X carries a natural ΣS-action by permuting the factors, and

this way (–)×S lifts to EM-G-SSetτ → EM-(G×ΣS)-SSet
τ
. We will later

need the following (non-formal) strengthening of this observation:

Corollary 1.4.68. The above lift of (–)×S sends G-global weak equivalences
or fibrations to (G× ΣS)-global weak equivalences or fibrations, respectively.
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Proof. The claim is trivial if S is empty. Otherwise, we pick s0 ∈ S, and we
write Σ0

S ⊂ ΣS for the subgroup of permutations fixing s0, p : G×Σ0
S → G for the

projection to the second factor, and i : G× Σ0
S ↪→ G× ΣS for the inclusion.

Claim. The functor (–)×S is isomorphic to i∗ ◦ p∗.

Proof. Fix for each s ∈ S a permutation σs ∈ ΣS with σs(s0) = s. Then we

consider for X ∈ EM-G-SSetτ the natural map mapsG×Σ0
S (G × ΣS , X) → X×S

given on the s-th factor by evaluating at (1, σ−1
s ). We omit the easy verification

that this is (G× ΣS)-equivariant and an isomorphism. 4

Thus, the statement follows from Lemmas 1.4.65 and 1.4.67. �

Remark 1.4.69. Again, there are similar functoriality properties for the re-
maining models. We leave the details to the interested reader.

1.5. Comparison to global homotopy theory

In this section we prove as promised that our theory generalizes Schwede’s
unstable global homotopy theory with respect to finite groups. More precisely, we
will give a chain of Quillen adjunctions between I-SSet and Schwede’s orthogonal
spaces that on associated quasi-categories exhibits the former as a (right Bousfield)
localization with respect to an explicit class of ‘Fin-global weak equivalences.’

1.5.1. A reminder on orthogonal spaces. Orthogonal spaces are based
on a certain topological analogue L of the categories I and I considered above.
Explicitly, the objects of L are the finite dimensional real inner product spaces
V , and as a set L(V,W ) is given by the linear isometric embeddings V → W . For
V = W , L(V,W ) carries the topology of the orthogonal group O(V ), and in general
L(V,W ) is topologized as a Stiefel manifold; since we can completely black box the
topology, we omit the details and refer the curious reader to [Sch18, discussion
before Definition 1.1.1] instead.

Definition 1.5.1. An orthogonal space is a topologically enriched functor L→
Top. We write L-Top := Fun(L,Top).

Schwede [Sch18, Definition 1.1.1] denotes the above category by ‘spc’ and he
constructs a global model structure on it that we will recall now.

1.5.1.1. The strict level model structure. As before, we begin by constructing
a suitable level model structure.

Definition 1.5.2. A map f : X → Y of orthogonal spaces is called a strict level
weak equivalence or strict level fibration if f(V ) is a weak equivalence or fibration,
respectively, in the equivariant model structure on O(V )-Top with respect to all
closed subgroups for every V ∈ L, i.e. f(V )H is a weak homotopy equivalence or
Serre fibration, respectively, for every closed subgroup H ⊂ O(V ).

Schwede [Sch18, Definition 1.1.8] calls the above ‘strong level equivalences’
and ‘strong level fibrations,’ respectively.

If H is a compact Lie group, then an orthogonal H-representation is an object
V ∈ L together with a continuous homomorphism ρ : H → O(V ); equivalently, we
can view this as a pair of a finite dimensional real inner product space V together
with a continuous H-action by linear isometries. Restricting along ρ, X(V ) is then
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naturally an H-space for every orthogonal space X, and f(V ) : X(V )→ Y (V ) is H-
equivariant for any map f : X → Y of orthogonal spaces. The above condition can
then be rephrased as saying that f(V ) should be a weak equivalence or fibration,
respectively, in H-Top for every compact Lie group H and every orthogonal H-
representation V , see [Sch18, Lemmas 1.2.7 and 1.2.8].

Proposition 1.5.3. There is a unique model structure on L-Top with weak
equivalences the strict level weak equivalences and fibrations the strict level fibra-
tions. It is topological and cofibrantly generated with generating cofibrations

{L(V, –)/H × ∂Dn ↪→ L(V, –)/H ×Dn : V ∈ L,H ⊂ O(V ) closed, n ≥ 0}.

Proof. This is [Sch18, Proposition 1.2.10] and the discussion after it. �

1.5.1.2. Global weak equivalences. The global weak equivalences of orthogonal
spaces are slightly intricate to define due to some pointset topological issues. In-
tuitively speaking, however, they should again be created by ‘evaluating at R∞,’
analogously to the approach for I- and I-simplicial sets:

Construction 1.5.4. We write L (the ‘universal compact Lie group’) for the
topological monoid of linear isometric embeddings R∞ → R∞ under composition;
here the scalar product on R∞ = R(ω) (the vector space of functions ω → R vanish-
ing almost everywhere) is so that the canonical basis consisting of the characteristic
functions of elements of ω is orthonormal. The topology on L is given as a subspace
of the mapping space.

Let X be an orthogonal space. Then [Sch20b, Construction 3.2] describes how
X yields a space X(R∞) with a continuous L-action. Explicitly, we define

X(R∞) := colimV⊂R∞ finite dimensionalX(V ),

where the structure maps of the colimit system are induced via X from the inclu-
sions. A continuous L-action is given as follows: if x is contained in the image of
X(V )→ X(R∞), then u.x is the image of x under the composition

X(V )
X(u|V : V→u(V ))−−−−−−−−−−−→ X(u(V ))→ X(R∞)

for any u ∈ L, where the right hand map is the structure map of the colimit.
By functoriality of colimits this yields a functor evR∞ : L-Top→ L-Top.

Unlike for simplicial sets, filtered (and even sequential) colimits of topological
spaces do not preserve weak equivalences in general, which already suggests that
evR∞ is not homotopically meaningful. [Sch18, Definition 1.1.2] avoids this problem
by defining the weak equivalences in terms of a ‘homotopy extension lifting property’
instead. We will take a different approach following [Sch20b] here:

Namely, non-equivariantly we could solve this issue by replacing the above
colimit by a homotopy colimit, but this of course does not retain equivariant infor-
mation: surely, whether f : X → Y is a global weak equivalence should not only
depend on f(R∞) as a map of ordinary topological spaces, but it should take into
account the L-action and in particular suitable actions of all compact Lie groups.
Concretely, see [Sch20b, Definitions 1.3, 1.4, and 1.6]:

Definition 1.5.5. A compact subgroup H ⊂ L is called universal if it admits
the structure of a Lie group and the tautological H-action on R∞ makes the latter
into a complete H-universe, i.e. any finite dimensional orthogonal H-representation
embeds H-equivariantly linearly isometrically into R∞.
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A map f : X → Y of L-spaces is a global weak equivalence if fH : XH → Y H is
a weak homotopy equivalence for every universal H ⊂ L.

Remark 1.5.6. Analogously to the situation for M, any compact Lie group
is isomorphic to a universal subgroup of L, and any two such embeddings are
conjugate [Sch20b, Proposition 1.5].

One way to calculate sequential homotopy colimits is by replacing the diagram
in question by a sequence of closed embeddings. The same strategy works mutatis
mutandis in our situation:

Definition 1.5.7. An orthogonal space X is called closed if for every map
ϕ : V →W in L the induced map X(ϕ) : X(V )→ X(W ) is a closed embedding.

Example 1.5.8. Any orthogonal space that is cofibrant in the strict level model
structure is closed, see [Sch18, Proposition 1.2.11-(iii)].

Definition 1.5.9. Let f : X → Y be a map of orthogonal spaces and let

X̂ X

Ŷ Y

f̂

∼

f

∼

be a commutative diagram such that the horizontal maps are strict level weak
equivalences and X̂, Ŷ are closed. Then f is called a global weak equivalence if

f̂(R∞) is a global weak equivalence of L-spaces.

Note that we can always find such a square by just taking functorial cofibrant re-
placements in the strict level model structure. Moreover, [Sch20b, Proposition 3.5]
together with [Sch18, Proposition 1.1.9-(i)] shows that the above is independent
of the choice of replacement and equivalent to Schwede’s original definition.

We can now finally introduce the global model structure on L-Top [Sch18,
Theorem 1.2.21]:

Theorem 1.5.10. There is a unique model structure on L-Top with the same
cofibrations as the strict level model structure and with the global weak equivalences
as weak equivalences. This model structure is topological, proper, and cofibrantly
generated with generating cofibrations

{L(V, –)/H × ∂Dn ↪→ L(V, –)/H ×Dn : V ∈ L,H ⊂ O(V ) closed, n ≥ 0}.
Moreover, an orthogonal space X is fibrant if and only if it is static in the sense that
X(ϕ) : X(V )→ X(W ) is an H-equivariant weak equivalence for every compact Lie
group H and every H-equivariant linear isometric embedding ϕ : V →W of faithful
finite dimensional orthogonal H-representations. �

Remark 1.5.11. Again, there is also a positive global model structure where
one restricts the generating cofibrations by demanding in addition that V 6= 0,
see [Sch18, Proposition 1.2.23].

By design, our models of global homotopy theory considered in the previous
sections only see equivariant information with respect to finite groups, so we should
not hope for them to be equivalent to the above model category. Instead, we
consider the following coarser notion of weak equivalence:
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Definition 1.5.12. A map of L-spaces is called a Fin-global weak equivalence
if it restricts to an H-equivariant weak equivalence for each finite universal H ⊂ L.

A map f of orthogonal spaces is called a Fin-global weak equivalence if f̂(R∞)
is a Fin-global weak equivalence in L-Top for some (hence any) replacement of f

up to strict level weak equivalence by a map f̂ between closed orthogonal spaces.

Remark 1.5.13. As remarked without proof in [Sch20b, Remark 3.11], there is
a version for the global model structure on L-Top which only sees representations
of groups belonging to a given global family F , i.e. a collection of compact Lie
groups closed under isomorphisms and subquotients. For F = Fin the family of
finite groups this precisely recovers the above Fin-global weak equivalences.

1.5.2. I-spaces. The intermediate step in our comparison will be a global
model structure on I-Top. For this the following terminology will be useful, see
e.g. [Sch18, Definition A.28 and discussion after it]:

Definition 1.5.14. Let C be a category enriched and tensored over Top. Then
a map f : A → B in C is an h-cofibration if the natural map

(
A × [0, 1]

)
qA B →

B × [0, 1] from the mapping cyclinder of f admits a retraction.

Example 1.5.15. For C = Top with the usual enrichment, the h-cofibrations
are the classical (Hurewicz) cofibrations.

Lemma 1.5.16. Let G be a finite group and let

(1.5.1)

A B

C D

i

be a pushout in G-Top such that i is an h-cofibration. Then Sing: G-Top →
G-SSet sends (1.5.1) to a homotopy pushout.

Proof. Let H ⊂ G be any subgroup. The functor (–)H preserves pushouts
along closed embeddings by [Sch18, Proposition B.1-(i)] and it clearly preserves
tensors; it easily follows that it preserves h-cofibrations, also cf. [Sch19b, Corol-
lary A.30-(ii)]. We conclude that iH is a Hurewicz cofibration and that the square
on the left in

AH BH

CH DH

iH (SingA)H (SingB)H

(SingC)H (SingD)H

(Sing i)H

is a pushout in Top. It is well-known that Sing sends pushouts along Hurewicz
cofibrations to homotopy pushouts (which also follows from Lemma A.2.15 applied
to |–|, using that the counit ε : |SingX| → X is a weak homotopy equivalence for
any X ∈ Top), and as it moreover commutes with fixed points, we conclude that
the square on the right is a homotopy pushout in SSet.

The claim now follows as homotopy pushouts in G-SSet can be checked on
fixed points by Proposition 1.1.5. �

Corollary 1.5.17. Let i : A → B be any h-cofibration of I-spaces. Then
Sing: I-Top→ I-SSet sends pushouts along i to homotopy pushouts in the global
model structure.
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Proof. The evaluation functors evA : I-Top→ ΣA-Top for A ∈ I are cocon-
tinuous and preserve tensors, so h-cofibrations of I-spaces are in particular levelwise
h-cofibrations by [Sch18, Corollary A.30-(ii)].

Thus, if we are given a pushout in I-Top along i, then applying the previous
lemma levelwise shows that its image under Sing is a levelwise homotopy pushout
in the sense that evaluating at any A ∈ I yields a homotopy pushout in ΣA-SSet.
As one easily concludes from the existence of the injective global model structure on
I-SSet, such a levelwise homotopy pushout is in particular a homotopy pushout,
finishing the proof. �

Proposition 1.5.18. There is a unique model structure on I-Top in which a
map f is a weak equivalence or fibration if and only if Sing f is a weak equivalence
or fibration, respectively, in the global model structure on I-SSet. We call this the
global model structure and its weak equivalences the global weak equivalences. An
I-space X is fibrant in this model structure if and only if it is static in the sense that
X(i)H : X(A)H → X(B)H is a weak homotopy equivalence for every finite group H
and every H-equivariant injection i : A→ B of finite faithful H-sets.

The global model structure is topological, left proper, and cofibrantly generated
with generating cofibrations

I(A, –)/H × ∂Dn ↪→ I(A, –)/H ×Dn,

where A and H are as above and n ≥ 0. Moreover, pushouts along h-cofibrations
are homotopy pushouts.

Finally, the adjunction

(1.5.2) |–| : I-SSetglobal � I-Topglobal :Sing

is a Quillen equivalence in which both adjoints are homotopical.

Proof. The adjunction |–| : SSet � Top : Sing is a Quillen equivalence in
which both adjoints are homotopical. In particular, the unit η : X → Sing |X| is a
weak homotopy equivalence for any space X. As both adjoints commute with finite
limits, it follows further that for any group K acting on X, the unit ηX induces
weak homotopy equivalences on K ′-fixed points for all finite K ′ ⊂ K, so that the
unit of (1.5.2) is a strict level weak equivalence for all X ∈ I-SSet.

Let us now construct the model structure, for which we will verify the conditions
of Crans’ Transfer Criterion (Proposition A.2.13): we let I∆ be the usual set of
generating cofibrations, and we pick any set J∆ of generating acyclic cofibrations of
I-SSetglobal. As each cofibration is in particular a levelwise injection, we conclude
that |I∆| and |J∆| consist of closed embeddings. As Sing preserves transfinite
compositions along closed embeddings (see e.g. [Hov99, Proposition 2.4.2]), the
local presentability of I-SSet implies that |I∆| and |J∆| permit the small object
argument.

It remains to show that any relative |J∆|-cell complex is sent to a global weak
equivalence under Sing. Again using that Sing preserves transfinite compositions
along closed embeddings, it suffices to show that pushouts of maps in |J∆| are global
weak equivalences.

It is clear that the maps in |I∆| are h-cofibrations, hence so is the geometric
realization of any cofibration by [Sch18, Corollary A.30-(i)] and in particular any
map in |J∆|. As the unit is a levelwise global (in fact, even strict level) weak
equivalence, all maps in |J∆| are sent to global weak equivalences under Sing, and
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hence so is any pushout of a map in |J∆| by Corollary 1.5.17. This completes the
proof of the existence of the model structure. Moreover, again using that the unit
is a levelwise global weak equivalence and in addition that the right adjoint creates
weak equivalences by definition, we immediately conclude that (1.5.2) is a Quillen
equivalence and that also |–| is homotopical.

By Corollary 1.5.17, Sing sends pushouts along h-cofibrations (hence in partic-
ular along cofibrations of the above model structure) to homotopy pushouts. Thus,
Lemma A.2.15 implies that I-Top is left proper and that Sing creates homotopy
pushouts. In particular, pushouts along h-cofibrations are homotopy pushouts.

As a functor category, I-Top is enriched, tensored, and cotensored over Top in
the obvious way. Restricting along the adjunction |–| : SSet� Top :Sing therefore
makes it into a category enriched, tensored, and cotensored over SSet. With respect
to this, (1.5.2) is naturally a simplicial adjunction, so I-Top is a simplicial model
category by Lemma A.2.14-(2). To see that it is topological, we then simply observe
that it suffices to verify the Pushout Product Axiom for generating cofibrations
and generating (acyclic) cofibrations, and that the usual ones for Top agree up to
conjugation by isomorphisms with the images under geometric realization of the
standard generating (acyclic) cofibrations of SSet. �

Remark 1.5.19. In analogy to Definition 1.5.7, let us call an I-space X closed
if all structure maps X(A) → X(B) are closed embeddings. As Sing preserves
sequential colimits along closed embeddings, it easily follows that Sing commutes
with evω on the subcategory of closed I-spaces. In particular, if f : X → Y is a map
of closed I-spaces that is a weak equivalence at infinity in the sense that f(ω)H is a
weak homotopy equivalence for each universal H ⊂M, then f is already a G-global
weak equivalence.

1.5.3. Proof of the comparison. In order to compare I-spaces to orthogonal
spaces, we will relate their indexing categories:

Construction 1.5.20. We define a functor R• : I → L as follows: a finite set
A is sent to the real vector space RA of maps A→ R, where the inner product on
RA is the unique one such that the characteristic functions of elements of A form
an orthonormal basis.

If f : A → B is an injection of finite sets, then Rf : RA → RB is defined to
be the unique R-linear map sending the characteristic function of a ∈ A to the
characteristic function of f(a) ∈ B. It is clear that Rf is isometric, and that this
makes R• into a well-defined functor.

Restricting along R• yields a forgetful functor L-Top → I-Top. By topo-
logically enriched left Kan extension, this admits a topological left adjoint L ×I –
satisfying L×I I(A, –) = L(A, –) for any finite set A; the unit is then given on such
corepresentables by R• : I(A, –)→ L(RA,R•) = forgetL(RA, –).

Remark 1.5.21. Let H be a finite group and let U be a countable set containing
infinitely many free H-orbits (for example if U is a complete H-set universe). Then
the R-linearization R(U) contains infinitely many copies of the regular representation
RH , so it is a complete H-universe in the usual sense. In particular, if H ⊂ M
is universal, then the induced H-action on R∞ = R(ω) makes the latter into a
complete H-universe.
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Proposition 1.5.22. The map R• : I(A, –)/H ×X → L(RA,R•)/H ×X is a
global weak equivalence in I-Top for any finite group H, any finite faithful H-set
A, and any CW-complex X.

Proof. Taking products with X obviously preserves strict level weak equiva-
lences, and it preserves global acyclic cofibrations as I-Top is topological. Thus,
–×X is fully homotopical, and it suffices that R• : I(A, –)/H → L(RA,R•)/H is a
global weak equivalence. For this we consider the commutative diagram

(1.5.3)

|I(A, –)|/H

I(A, –)/H
(
|I(A, –)| × L(RA,R•)

)
/H

L(RA,R•)/H

pr

pr

where the maps from left to right are induced by the inclusion I(A, –) ↪→ |I(A, –)|
and by R• : I(A, –)→ L(RA,R•). We begin by showing that the vertical arrows on
the right are global weak equivalences.

It is clear that the I-space |I(A, –)| is closed, and so is L(RA,R•) by Exam-
ple 1.5.8. From this we can conclude by [Sch18, Proposition B.13-(iii)] that all the
I-spaces on the right of (1.5.3) are closed, so that it suffices that the vertical maps
are weak equivalences at infinity (see Remark 1.5.19).

Let K ⊂ M be a universal subgroup. Obviously, |I(A, –)|(ω) ∼= |EInj(A,ω)|
is A``-cofibrant in (K ×H)-Top, and so is L(RA,R•)(ω) by [Sch18, Proposi-
tion 1.1.19-(ii)] together with [Sch20b, Proposition A.5-(ii)]. We claim that both
are classifying spaces for GK,H in the sense that their T -fixed points for T ⊂ K×H
are contractible if T ∈ GK,H , and empty otherwise. Indeed, for L(RA,R•)(ω) this
is an instance of [Sch18, Proposition 1.1.26-(i)]. On the other hand, if K ′ ⊂ K,
ϕ : K ′ → H, then |I(A, –)|(ω)ϕ ∼= |E(Inj(A,ω)ϕ| is weakly contractible by Exam-
ple 1.2.31. Finally, H acts freely on Inj(A,ω), so I(A,ω)T has no vertices when
T ⊂ K ×H is not contained in GK,H , whence |I(A, –)|(ω)T has to be empty.

Thus, the projections

|I(A, –)|(ω)←
(
|I(A, –)| × L(RA,R•)

)
(ω)→ L(RA,R•)(ω)

are weak equivalences of cofibrant objects in (K ×H)-Top with respect to the
A``-model structure. Applying Ken Brown’s Lemma to the Quillen adjunction

p! : (K ×H)-TopA`` �K-TopA`` :p∗

where p : K×H → K denotes the projection, therefore shows that after evaluation
at ω the vertical maps in (1.5.3) become K-weak equivalences. The claim follows
by letting K vary.

To finish the proof, we observe now that I(A, –)/H → |I(A, –)|/H agrees up
to conjugation by isomorphisms with the image of

(1.5.4) I(A, –)/H ↪→ I(A, –)/H

under geometric realization. The proposition follows as (1.5.4) is a global weak
equivalence by Theorem 1.4.30 and since geometric realization is fully homotopical
by Proposition 1.5.18. �
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We define a monoid homomorphism i : M → L by sending f : ω → ω to
Rf : R∞ → R∞, i.e. the unique linear isometry sending the i-th standard basis
vector to the f(i)-th one.

Lemma 1.5.23. Let X be an L-space. Then Sing(i∗X) ∈M-SSet is semistable.

Proof. Let H ⊂ M be universal, and let u ∈ M centralize H. It suffices to
show that i(u).–: X → X is an i(H)-equivariant weak equivalence.

Indeed, Remark 1.5.21 implies that i(H) is a universal subgroup of L, so Li(H)

is contractible by [Sch18, Proposition 1.1.26-(i)] together with [Sch20b, Proposi-
tion A.10]. In particular, there exists a path γ : [0, 1] → Li(H) connecting i(u) to
the identity. The composition

[0, 1]×X γ×X−−−→ L×X action−−−−→ X

is then an i(H)-equivariant homotopy from i(u).– to the identity, so i(u).– is in
particular an i(H)-equivariant (weak) homotopy equivalence. �

Proposition 1.5.24. Let f : X → Y be a map of orthogonal spaces. Then the
following are equivalent:

(1) f is a Fin-global weak equivalence (Definition 1.5.12).
(2) forget f is a global weak equivalence of I-spaces.

Moreover, if X and Y are closed, then also the following statements are equivalent
to the above:

(3) Sing
(
i∗f(R∞)

)
is a universal weak equivalence of M-simplicial sets.

(4) Sing
(
i∗f(R∞)

)
is a global weak equivalence of M-simplicial sets.

Proof. Let us first assume that X and Y are closed; we will show that all of
the above statements are equivalent.

For the equivalence (1) ⇔ (3) we observe once more that i : M → L sends
universal subgroups to universal subgroups. As any two abstractly isomorphic
universal subgroups of L are conjugate [Sch20b, Proposition 1.5], the claim now
follows from the definitions.

The equivalence (3)⇔ (4) is immediate from the previous lemma. Finally, for
(2)⇔ (4) it suffices by Remark 1.5.19 to show that the diagram

L-Top L-Top

I-Top M-Top

evR∞

forget i∗

evω

commutes up to natural isomorphism. This follows easily from the definitions once
we observe that the map of posets {A ⊂ ω finite} → {V ⊂ R∞ finite dimensional}
sending A to the image of the canonical map RA → R∞ is cofinal: if v ∈ R∞,
then there is only a finite set S(v) of i ∈ ω such that pri(v) 6= 0 for the projection
pri : R∞ → R to the i-th summand. Thus, if V ⊂ R∞ is any finite dimensional
subspace, and v1, . . . , vn is a basis, then S := S(v1) ∪ · · · ∪ S(vn) is finite, and
obviously V is contained in the image of RS → R∞.

Now assume X and Y are not necessarily closed. If j : A → B is a strict level
weak equivalence of orthogonal spaces, then j is in particular a Fin-global weak
equivalence; moreover Sing(forget(j)) is obviously a strict level weak equivalence of
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I-simplicial sets, hence in particular a global weak equivalence. Thus, (1) ⇔ (2)
follows from the above special case together with 2-out-of-3. �

Theorem 1.5.25. The topologically enriched adjunction

(1.5.5) L×I –: I-Top� L-Top : forget

is a Quillen adjunction. The induced adjunction of associated quasi-categories is a
right Bousfield localization with respect to the Fin-global weak equivalences.

Non-equivariantly, this comparison was proven by Lind [Lin13, Theorem 6.2].

Proof. Let us first show that (1.5.5) is a Quillen adjunction. As it is a topolog-
ically enriched adjunction of topological model categories, it in particular becomes
a simplicial adjunction of simplicial model categories when we restrict along the
usual adjunction SSet� Top. It therefore suffices (Proposition A.2.6) to observe
that L×I – obviously preserves generating cofibrations, and that the forgetful func-
tor preserves fibrant objects by the characterizations given in Theorem 1.5.10 and
Proposition 1.5.18, respectively.

By the previous proposition, the forgetful functor is homotopical and it precisely
inverts the Fin-global weak equivalences. It therefore only remains to show that the
unit X → forget(L×IX) is a global weak equivalence for any cofibrant X ∈ I-Top.

This will again be a cell induction argument (although we cannot literally apply
Corollary 1.2.60): if X is the source or target of one of the standard generating
cofibrations of I-Top, then the claim is an instance of Proposition 1.5.22. On the
other hand, any pushout

I(A, –)/H × ∂Dn−1 I(A, –)/H ×Dn

X Y

along a generating cofibration is a homotopy pushout by left properness, and its
image under forget ◦(L×I –) is a pushout along an h-cofibration by [Sch18, Corol-
lary A.30-(ii)], hence again a homotopy pushout by Proposition 1.5.18 above. We
conclude that ηY is a global weak equivalence if ηX is.

Using that transfinite compositions of closed embeddings in I-Top are homo-
topical (as they are preserved by Sing), we see that ηZ is a global weak equivalence
for any cell complex Z in the generating cofibrations. The claim follows as any
cofibrant object of I-Top is a retract of such a cell complex. �

Corollary 1.5.26. The functor Sing ◦ forget : L-Top → I-SSet preserves
global fibrations and global weak equivalences, and it induces a quasi-localization
L-Top∞ → I-SSet∞ at the Fin-global weak equivalences. �

Remark 1.5.27. It is not hard to show that (1.5.5) is a Quillen adjunction with
respect to the Fin-global model structure on L-Top mentioned in Remark 1.5.13,
hence a Quillen equivalence by the above theorem.

On the other hand, one can easily adapt the above proof to transfer the global
model structure from I-Top to L-Top. This way one obtains a model structure
with the Fin-global weak equivalences as weak equivalences, but slightly fewer
cofibrations than the model structure sketched by Schwede.



CHAPTER 2

Coherent commutativity

Several equivalent notions of ‘commutative monoids up to coherent homotopies’
have been studied classically, in particular in relation to infinite loop spaces and
algebraic K-theory [May72,Seg74,May74]. In this chapter, we introduce a vari-
ety of models of ‘G-globally coherently commutative monoids,’ either based on the
notion of ultra-commutativity studied by Schwede [Sch18] in the global context, or
on Γ-spaces, as generalized equivariantly by Shimakawa [Shi89]. As the main result
of this chapter (Theorem 2.3.1), we prove that all these approaches are equivalent.

2.1. Ultra-commutativity

This section is concerned with various box products on our different models of
G-global homotopy theory, and in particular we will revisit the box products on
M-SSetτ and I-SSet of [SS20,SS12] from a G-global perspective. Among other
things, we will show that all these box products are in fact fully homotopical, in
particular yielding G-global versions of [SS20, Theorems 1.2 and 4.8].

Our main goal is then to lift the equivalences of models of unstable G-global
homotopy theory to equivalences between the corresponding homotopy theories of
commutative monoids. In particular, this will give a G-global refinement of the
equivalence between the non-equivariant homotopy theories of the categories of
commutative monoids CMon(M-SSetτ ) and CMon(I-SSet) due to Schwede and
Sagave, see [SS20, proof of Theorem 5.13].

2.1.1. A reminder on box products. We briefly recall the box products of
tame M- and of I-simplicial sets, which will serve as blueprints for our definition
of the box products of tame EM- and I-simplicial sets.

Construction 2.1.1. The coproduct of (finite) sets enhances I to a symmetric
monoidal category. More precisely, we have a functor I × I → I given on objects
by (A,B) 7→ A q B, and on morphisms by sending a pair f : A → A′, g : B → B′

to f q g : A q B → A′ q B′. The usual unitality, associativity, and symmetry
isomorphisms of the cocartesian symmetric monoidal structure on Set then induce
natural isomorphisms for the corresponding functors on I, and these satisfy the
usual coherence condition.

This symmetric monoidal structure then induces a Day convolution product
[Day70] on I-SSet as follows: by the universal property of enriched presheaves,
there is a simplicially enriched functor – � –: I-SSet × I-SSet → I-SSet that
preserves tensors and small colimits in each variable separately and such that
I(A, –) � I(B, –) = I(A q B, –) with the evident (contravariant) functoriality in
A and B. The functor � is unique up to a unique simplicial isomorphism that
is the identity on pairs of corepresentables. We fix such a choice and call it ‘the’
box product on I-SSet. This is the symmetric monoidal product of a preferred

93
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simplicial symmetric monoidal structure on I-SSet, where all the structure iso-
morphisms are induced from the corresponding structure isomorphisms of q. More
precisely, the symmetry isomorphism τ is the unique simplicially enriched natural
isomorphism such that τ : I(A, –)� I(B, –)→ I(B, –)� I(A, –) agrees for all finite
A,B with restriction along the inverse of the flip AqB → BqA, and similarly for
associativity and unitality.

Remark 2.1.2. Another common perspective on the Day convolution of two
functors X,Y—and in particular the one taken in our references [SS20,Sch18]—is
as ‘the’ object corepresenting bimorphisms, i.e. families of maps X(A) × Y (B) →
Z(AqB) for A,B ∈ I that are natural in both variables.

However, this approach is equivalent to the above description as the resulting
monoidal product again preserves small colimits and tensors in each variable (see
e.g. [Sch18, Remark C.12 and discussion after Theorem C.10]), has the correct
behaviour on corepresentables [Sch18, Remark C.11], and since also the structure
isomorphisms of the symmetric monoidal structure are compatible with tensoring by
direct computation and are given on corepresentables as above, while the monoidal
unit is again corepresented by the unit of the indexing category.

Sagave and Schlichtkrull [SS12, Theorem 1.2] showed that strictly commutative
monoids for the box product on I-SSet model all coherently commutative monoids
in non-equivariant spaces. Moreover, Schwede [Sch18, Chapter 2] used a variant of
this for orthogonal spaces as the basis for his approach to coherent commutativity
in the global context; we will revisit his construction later in Subsection 2.1.6.

Next, we come to the box product of tameM-sets andM-simplicial sets, which
was introduced and studied in [SS20].

Definition 2.1.3. Let X,Y be tame M-sets. Their box product is the M-
subset X � Y ⊂ X × Y consisting of precisely those (x, y) ∈ X × Y such that
supp(x) ∩ supp(y) = ∅.

By [SS20, Proposition 2.13] this is indeed anM-subset of X ×Y ; moreover, it
becomes a subfunctor of the cartesian product, and the usual unitality, associativity,
and symmetry isomorphisms restrict to make the box product the tensor product
of a preferred symmetric monoidal structure onM-Setτ [SS20, Proposition 2.14].
Applying the box product levelwise and pulling through the G-actions we therefore
also get a box product on M-G-SSetτ , and the remaining data then make this
into a simplicial symmetric monoidal category.

Example 2.1.4. The map Inj(AqB,ω)→ Inj(A,ω)×Inj(B,ω) induced by the
restrictions factors through an isomorphism Inj(A q B,ω) ∼= Inj(A,ω)� Inj(B,ω),
see [SS20, Example 2.15].

Remark 2.1.5. In [SS20, Proposition 4.7], Sagave and Schwede used the
above example to construct a preferred strong symmetric monoidal structure on
evω : I-Set→M-Setτ , which yields a simplicial strong symmetric monoidal struc-
ture on evω : I-SSet →M-SSetτ . It follows formally that the right adjoint (–)•
acquires a simplicial lax symmetric monoidal structure (which happens to be strong
in this case) given by the composites

X• � Y•
η−→ (X• � Y•)(ω)•

∇−1
•−−−→ (X•(ω)� Y•(ω))•

ε�ε−−→ (X � Y )•
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(i.e. the canonical mates of the inverse structure isomorphism of evω) and the unique
map ι : ∗ → ∗•. In particular, we get an induced simplicial adjunction

evω : CMon(I-SSet)� CMon(M-SSetτ ) : (–)•,

and Sagave and Schwede show in [SS20, proof of Theorem 5.13] that this is an
equivalence of homotopy theories with respect to suitable weak equivalences.

2.1.2. The box product of tame EM-simplicial sets. In order to define
the box product of tame EM-G-simplicial sets, we need a finer notion of support:

Definition 2.1.6. Let X be an EM-simplicial set, and let 0 ≤ k ≤ n. Then
we say that x ∈ Xn is k-supported on a finite set A ⊂ ω if it is supported on A
as an element of the M-set i∗kXn where ik : M →Mn+1 denotes the inclusion of
the (k + 1)-th factor. We say that x is k-finitely supported if it is k-supported on
some finite set A, in which case we define its k-support suppk(x) as its support as
an element of i∗kXn.

Lemma 2.1.7. Let X be an EM-simplicial set, n ≥ 0, and x ∈ Xn. Then
X is supported on the finite set A ⊂ ω if and only if it is k-supported on A for
all 0 ≤ k ≤ n. In particular, x is finitely supported if and only if it is k-finitely
supported for all 0 ≤ k ≤ n, in which case supp(x) =

⋃n
k=0 suppk(x).

Proof. It suffices to prove the first statement. For this we observe that if
x is k-supported on A for all 0 ≤ k ≤ n, then u.x = i0(u).i1(u). . . . .in(u).x = x
for all u ∈ MA by an immediate inductive argument, i.e. x is supported on A by
Theorem 1.3.17. Conversely, if x is supported on A and u ∈ MA, then ik(u) ∈
Mn+1

A , so ik(u).x = x by definition. �

Example 2.1.8. Let A be a finite set. Then Example 1.3.7 shows that the
k-support of an n-simplex (i0, . . . , in) ∈ EInj(A,ω)n is suppk(i0, . . . , in) = im(ik).

Warning 2.1.9. In the above example, the k-support of an n-simplex x agrees
with the support of its k-th vertex. This is not true for general tame EM-simplicial
sets. Even worse, the support of an n-simplex can be strictly larger than the union
of the supports of its vertices, for which we will give an example now:

Let A be a non-empty finite set, and let X be obtained from EInj(A,ω)×∆1

by collapsing both copies of EInj(A,ω) to a single point. This is still tame as a
quotient of a tame EM-simplicial set, and moreover the unique vertex of X has
empty support for trivial reasons.

However, the quotient does not identify any two edges {i} ×∆1, {j} ×∆1 for
distinct injections i, j : A→ ω. In particular, supp[{i} ×∆1] = im(i) 6= ∅.

Using this finer notion of support we can now define:

Definition 2.1.10. Let X,Y be tame EM-simplicial sets. Their box product
X � Y is the subcomplex of X × Y whose n-simplices are precisely those pairs
(x, y) ∈ Xn × Yn such that suppk(x) ∩ suppk(y) = ∅ for all 0 ≤ k ≤ n.

Proposition 2.1.11. Let X,Y be tame EM-simplicial sets. Then the above
indeed defines an EM-simplicial subset X � Y ⊂ X × Y .

Moreover, X � Y is tame, –� – is a simplicial subfunctor

EM-SSetτ ×EM-SSetτ → EM-SSetτ

of the cartesian product, and it preserves tensors in each variable.
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The proof requires some preparations.

Lemma 2.1.12. Let X be a tame EM-simplicial set, let 0 ≤ k ≤ n, let x ∈ Xn,
and let u0, . . . , un ∈M. Then suppk((u0, . . . , un).x) = uk(suppk(x)).

Proof. We have

(u0, . . . , un).x = i0(u0). . . . .ik−1(uk−1).ik+1(uk+1). . . . .in(un).ik(uk).x.

For each ` 6= k, the map i`(u`).–: i∗k(Xn) → i∗k(Xn) is M-equivariant, and it
is moreover injective by [SS20, Proposition 2.7]. It easily follows that i`(u`).–
preserves k-supports, so that suppk((u0, . . . , un).x) = suppk(ik(uk).x). The claim
now follows from Lemma 1.3.8. �

Remark 2.1.13. The same argument shows that if X is not necessarily tame
and x is k-supported on a finite set A, then (u0, . . . , un).x is k-supported on uk(A).

Lemma 2.1.14. Let X be an EM-simplicial set, let f : [m]→ [n] be a morphism
in ∆, and let 0 ≤ k ≤ m. Assume x ∈ Xn is f(k)-supported on A for some finite
set A ⊂ ω. Then f∗x is k-supported on A.

Proof. Write f−1(f(k)) = {k0, . . . , kr} and let i : Mr+1 → Mm+1 be the
homomorphism i(u0, . . . , ur) = ik0

(u0) · · · ikr (ur). We now consider the map of
sets

α : Mr+1 → Xm, (u0, . . . , ur) 7→ i(u0, . . . , ur).f
∗x.

Then we have for any v ∈MA

α(u0v, . . . , urv) = i(u0, . . . , ur).i(v, . . . , v).f∗x

= i(u0, . . . , ur).f
∗(if(k)(v).x)

= i(u0, . . . , ur).f
∗x

= α(u0, . . . , ur),

so α factors through the projection to Mr+1/MA. Proposition 1.3.19 therefore
shows that α(u0, . . . , ur) = α(u′0, . . . , u

′
r) whenever ui|A = u′i|A for all i = 0, . . . , r.

In particular, ik(u).f∗x = f∗x for any u ∈ MA, which completes the proof of the
lemma. �

Proof of Proposition 2.1.11. Lemma 2.1.14 immediately implies that X�
Y is a simplicial subset of X × Y , and Lemma 2.1.12 shows that it is also closed
under the (diagonal) EM-action. As X × Y is tame, hence so is X � Y .

If f : X → X ′ and g : Y → Y ′ are EM-equivariant, then (f×g)(X�Y ) ⊂ X ′�
Y ′ by Lemma 1.3.3. Finally, the natural isomorphism K× (X×Y )→ (K×X)×Y
restricts to an isomorphism K × (X � Y ) → (K ×X)� Y for every simplicial set
K and every X,Y ∈ EM-SSetτ as supp`(k, x) = supp`(x) for every k ∈ Kn,
x ∈ Xn, and 0 ≤ ` ≤ n, and similarly for the second variable. Thus, the box
product is a simplicial subfunctor of the cartesian product that preserves tensors
in each variable. �

Proposition 2.1.15. The unitality, associativity, and symmetry isomorphisms
of the cartesian product on EM-SSetτ restrict to corresponding isomorphisms for
�. This makes EM-SSetτ into a simplicial symmetric monoidal category with
tensor product � and unit the terminal EM-simplicial set.
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Proof. We will show that the simplicial associativity isomorphism (X ×Y )×
Z → X × (Y ×Z) restricts to an isomorphism (X � Y )�Z → X � (Y �Z) for all
X,Y, Z ∈ EM-SSetτ .

Indeed, we have to show that if x ∈ X, y ∈ Y, z ∈ Z, then ((x, y), z) ∈
(X�Y )�Z if and only if (x, (y, z)) ∈ X�(Y �Z). But the first condition is equiv-
alent to demanding that suppk(x)∩ suppk(y) = ∅ and suppk(x, y)∩ suppk(z) = ∅.
Obviously suppk(x, y) = suppk(x) ∪ suppk(y), so these two together are equivalent
to demanding that suppk(x), suppk(y), suppk(z) be pairwise disjoint. By a sym-
metric argument this is then in turn equivalent to (x, (y, z)) ∈ X � (Y � Z) as
desired.

The arguments for the symmetry and unitality isomorphisms are similar, and
we omit them. All the necessary coherence conditions of the resulting isomor-
phisms then follow automatically from the corresponding results for the cartesian
symmetric monoidal structure. �

Example 2.1.16. Let A,B be finite sets. Then the map EInj(A q B,ω) →
EInj(A,ω) × EInj(B,ω) induced by the inclusions A ↪→ A q B ←↩ B restricts to
EInj(A q B,ω) ∼= EInj(A,ω) � EInj(B,ω): indeed, on n-simplices this is given
by sending (j0, . . . , jn) to (j0|A, . . . , jn|A; j0|B , . . . , jn|B), which is clearly injective.
But it is also surjective: if (u0, . . . , un; v0, . . . , vn) is an n-simplex of the right hand
side, then im(uk) = suppk(u0, . . . , un) is disjoint from im(vk) = suppk(v0, . . . , vn)
for each k, so wk := (uk, vk) : A q B → ω is injective. But then (w0, . . . , wn) is
obviously a preimage of (u0, . . . , un; v0, . . . , vn).

As usual, we can pull through the G-actions everywhere to get a simplicial
strong symmetric monoidal structure on EM-G-SSetτ .

Definition 2.1.17. We write G-ParSumSSet := CMon(EM-G-SSetτ ) for
the category whose objects are the commutative monoids (with respect to the box
product) inEM-G-SSetτ , and whose morphisms are the monoid homomorphisms.
We call its objects G-parsummable simplicial sets.

Remark 2.1.18. Let X1, . . . , Xn be tame EM-simplicial sets. One easily shows
by induction that the image of the canonical injection X1 � · · · � Xn →

∏n
i=1Xi

is independent of the chosen bracketing on the left and consists in degree m of
precisely those (x1, . . . , xn) such that suppk(xi)∩ suppk(xj) = ∅ for all 0 ≤ k ≤ m
and 1 ≤ i < j ≤ n. We will from now on use the notation X1 � · · · �Xn for this
‘unbiased’ iterated box product.

Convention 2.1.19. In order to avoid excessive notation, we agree that for any
category C , any object X ∈ C , and any singleton set S, the product

∏
S X = X×S

is taken to be X itself, with projection the identity of X. In particular X�S = X
for any singleton set S and any tame EM-simplicial set X.

2.1.2.1. Homotopical properties. We will now study the behaviour of the G-
global weak equivalences under the above box product. While the proofs are similar
to the categorical situation considered for G = 1 in [Sch19b], we nevertheless
include them for completeness.

Theorem 2.1.20. Let X,Y ∈ EM-G-SSetτ . Then the inclusion X � Y ↪→
X × Y is a G-global weak equivalence. In particular, � preserves G-global weak
equivalences in each variable.
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Proof. It suffices to prove the first statement. We let H ⊂M be any universal
subgroup and we will show that the inclusion i is an (H×G)-equivariant homotopy
equivalence.

To this end we choose an H-equivariant isomorphism ω ∼= ω q ω, yielding
α, β ∈M centralizing H and such that im(α)∩ im(β) = ∅. We define r : X ×Y →
X � Y via (x, y) 7→ (α.x, β.y) for all (x, y) ∈ (X × Y )n. This is well-defined by
Lemma 2.1.12; it is moreover obviously G-equivariant and it is H-equivariant as α
and β centralize H.

The composition ri is by definition given by (α.–) × (β.–) : X × Y → X × Y .
Acting with (α, 1) ∈ EM on X yields an equivariant homotopy ∆1×X → X from
the identity to α.–; analogously, (β, 1) ∈ EM yields id ⇒ β.–. Altogether we get
an (H ×G)-equivariant homotopy Φ from the identity to ri as desired.

To show that also ir is (H×G)-equivariantly homotopic to the identity, we only
have to show that Φ restricts to ∆1 × (X � Y ) → X � Y . Unravelling definitions
this means that for all −1 ≤ k ≤ n and all x, y ∈ (X � Y )n also

(2.1.1)
(
(α, . . . , α︸ ︷︷ ︸
k+1 times

, 1, . . . , 1).x, (β, . . . , β︸ ︷︷ ︸
k+1 times

, 1, . . . , 1).y) ∈ (X � Y )n.

But indeed, for any 0 ≤ ` ≤ k, the previous lemma implies that

supp`((α, . . . , α, 1, . . . , 1).x) = α(supp`(x)),

supp`((β, . . . , β, 1, . . . , 1).y) = β(supp`(y)),

and these are disjoint as imα∩ imβ = ∅. On the other hand, if ` > k, then by the
same argument

supp`((α, . . . , α, 1, . . . , 1).x) = supp`(x), supp`((α, . . . , α, 1, . . . , 1).y) = supp`(y)

which are again disjoint by assumption. Thus, Φ restricts to the desired homotopy
between ir and the identity, finishing the proof of the theorem. �

Applying the theorem inductively, we in particular see that the inclusion X1�
· · · � Xn ↪→ X1 × · · · × Xn is a G-global weak equivalence for all X1, . . . , Xn ∈
EM-G-SSetτ . Specializing to X1 = · · · = Xn =: X, we see that X�n ↪→ X×n is
a G-global weak equivalence. However, the right hand side has an additional Σn-
action given by permuting the factors, and the left hand side is preserved by this.
The following theorem then refines the above comparison to take this additional
action into account:

Theorem 2.1.21. For any X ∈ EM-G-SSetτ the inclusion X�n ↪→ X×n is
a (G× Σn)-global weak equivalence.

Proof. Let H ⊂ M be any universal subgroup and let ϕ : H → Σn × G
be a weak equivalence. We have to show that the inclusion i induces a weak
homotopy equivalence on ϕ-fixed points. To this end let us write ϕ1 : H → Σn for
the projection of ϕ to the first factor. Then it is obviously enough to show that i is
an (H × G)-equivariant homotopy equivalence where H acts on both sides via ϕ1

and the EM-action, and G acts as before.
We now pick an H-equivariant injection u : {1, . . . , n} × ω → ω where H acts

on {1, . . . , n} via ϕ1 and on ω as before; this exists since the source is countable
and the target is a complete H-set universe. If we write ui := u(i, –) : ω → ω then
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the ui’s are elements of M with pairwise disjoint image and the H-equivariance of
u translates into the relation

uih = huh−1.i

for all i = 1, . . . , n. Let us now define r : X×n → X�n as the restriction of

n∏
i=1

(ui.–) : X×n → X×n;

note that this indeed lands in X�n ⊂ X×n as for any n-tuple (x1, . . . , xn) in the
image already supp(xi) ∩ supp(xj) = ∅ for i 6= j since the images of the ui’s are
pairwise disjoint.

It is obvious that r is G-equivariant. But it is also H-equivariant: if (x1, . . . , xn)
is any m-simplex of X×n, then

(2.1.2)

r(h.(x1, . . . , xn)) = r(h.xh−1.1, . . . , h.xh−1.n)

=
(
u1.(h.xh−1.1), . . . , un.(h.xh−1.n)

)
= (h.uh−1.1.xh−1.1, . . . , h.uh−1.n.xh−1.n)

= h.(u1.x1, . . . , un.xn) = h.
(
r(x1, . . . , xn)

)
.

Thus it only remains to construct (H × G)-equivariant homotopies ir ' id and
ri ' id. For the first one we observe that we have for each i = 1, . . . , n a homotopy
id⇒ ui given by the action of (ui, 1) ∈ (EM)1, and these assemble into a homotopy
Φ: id ⇒ ir. This homotopy is obviously G-equivariant, and it is moreover H-
equivariant by a similar calculation as in (2.1.2), so that it provides the desired
(H ×G)-equivariant homotopy.

To finish the proof it is then enough to show that Φ also restricts to a homotopy
id⇒ ri, for which one argues precisely as in the proof of Theorem 2.1.20. �

Together with Lemma 1.4.67 we immediately conclude:

Corollary 2.1.22. Let f : X → Y be a G-global weak equivalence of tame
EM-G-simplicial sets. Then f�n : X�n → Y �n is a (G× Σn)-global weak equiva-
lence. �

The following corollary will be crucial later for establishing model structures
on categories of commutative monoids:

Corollary 2.1.23. Let f : X → Y be a G-global weak equivalence of tame
EM-G-simplicial sets, and assume that neither X nor Y contain vertices of empty
support. Then Symn(f) := f�n/Σn is a G-global weak equivalence for all n ≥ 0.

Proof. The previous corollary asserts that f�n is a (G × Σn)-global weak
equivalence. By Corollary 1.4.66 it is therefore enough to show that Σn acts freely
on both X�n and Y �n.

We prove the first statement, the other one being analogous. For this it suffices
to show that Σn acts freely on (X�n)0; but indeed, if (x1, . . . , xn) is any vertex
and i 6= j, then supp(xi) ∩ supp(xj) = ∅ 6= supp(xj), so supp(xi) 6= supp(xj) and
hence in particular xi 6= xj . If now σ ∈ Σn is non-trivial, then we find an i with
σ−1(i) 6= i, so (x1, . . . , xn) and σ.(x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n)) differ in the
i-th component. �
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2.1.2.2. The box product as an operadic product. Finally, we come to an alterna-
tive description of the box product of tame EM-simplicial sets analogous to [SS20,
Proposition A.17]; this construction was suggested to me by Stefan Schwede.

Construction 2.1.24. Let X1, . . . , Xn be EM-simplicial sets. We consider

(2.1.3) EInj(n× ω, ω)×(EM)n (X1 × · · · ×Xn),

i.e. the quotient of EInj(n × ω, ω) × (X1 × · · · × Xn) by the equivalence relation
generated on m-simplices by

(f0, . . . , fm; (u
(1)
0 , . . . , u(1)

m ).x1, . . . (u
(n)
0 , . . . , u(n)

m ).xn, )

∼ (f0u
•
0, · · · , fmu•m;x1, . . . , xn)

for all injections f0, . . . , fm : n× ω → ω, all u
(j)
k ∈M (k = 0, . . . ,m; j = 1, . . . , n),

and (x1, . . . , xn) ∈ (X1 × · · · × Xn)m; here we write u•k : n × ω → n × ω for the

injection with u•k(j, t) = (j, u
(j)
k (t)).

The simplicial set (2.1.3) has a natural EM-action given by postcomposition.
Moreover, one easily checks that for all αj : Xj → X ′j (j = 1, . . . , n) the map
EInj(n× ω, ω)× (α1 × · · · × αn) descends to

EInj(n×ω, ω)×(EM)n (X1× · · · ×Xn)→ EInj(n×ω, ω)×(EM)n (X ′1× · · · ×X ′n),

and that this yields a functor (EM-SSet)n → EM-SSet.
Finally, we have a natural EM-equivariant map

Φ: EInj(n× ω, ω)×(EM)n (X1 × · · · ×Xn)→ X1 × · · · ×Xn

given on m-simplices by

[f0, . . . , fm;x1, . . . , xn] 7→ ((f0ι1, . . . , fmι1).x1, . . . , (f0ιn, . . . , fmιn).xn)

where ιj : ω → n× ω is defined via ιj(t) = (j, t).

Theorem 2.1.25. For any X1, . . . , Xn ∈ EM-SSetτ the map Φ restricts to
an isomorphism EInj(n× ω, ω)×(EM)n (X1 × · · · ×Xn)→ X1 � · · ·�Xn.

For the proof we will need:

Lemma 2.1.26. In the above situation, let (x1, . . . , xn) ∈ (X1 × · · · × Xn)m
and f0, . . . , fm; g0, . . . , gm ∈ Inj(n × ω, ω) such that fk and gk agree for every k
on
⋃n
j=1{j}× suppk(xj). Then [f0, . . . , fm;x1, . . . , xn] = [g0, . . . , gm;x1, . . . , xn] in

EInj(n× ω, ω)×(EM)n (X1 × · · · ×Xn).

Proof. By induction we may assume that there exists a k′ such that fk = gk
for all k 6= k′, and by symmetry we may assume that k′ = 0. We now consider

α : Inj(n× ω, ω)→
(
EInj(n× ω, ω)×(EM)n (X1 × · · · ×Xn)

)
m

h 7→ [h, f1, . . . , fm;x1, . . . , xn] = [h, g1, . . . , gm;x1, . . . , xn].

We claim that this factors over Inj(n×ω, ω)/(Msupp0(x1)×· · ·×Msupp0(xn)): indeed,

given u(j) ∈Msupp0(xj) for 1 ≤ j ≤ n,

[h, f1, . . . , fm;x1, . . . , xn] = [h, f1, . . . , fm, (u
(1), 1, . . . , 1).x1, . . . , (u

(n), 1, . . . , 1).xn]

= [hu•, f1, . . . , fm;x1, . . . , xn]

by definition, i.e. α is compatible with generating relations and hence factors over
the quotient. But [f0] = [g0] in Inj(n × ω, ω)/(Msupp0(x1) × · · · × Msupp0(xn))
by [SS20, Lemma A.5], which completes the proof the lemma. �
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Proof of Theorem 2.1.25. Lemma 2.1.12 readily implies that the image of
Φ is contained in X1�· · ·�Xn. Let us now prove the other inclusion: if (x1, . . . , xn)
is any m-simplex of X1�· · ·�Xn, then we pick for each k an injection fk : n×ω → ω
with fk(i, t) = t for all t ∈ suppk(xi); this is possible as the sets suppk(xi) are
pairwise disjoint and finite for fixed k and varying i. It is then easy to check that
Φ[f0, . . . , fm;x1, . . . , xn] = (x1, . . . , xn).

For the proof of injectivity, we pick any f0, . . . , fm; g0, . . . , gm ∈ Inj(n × ω, ω)
and (x1, . . . , xn), (y1, . . . , yn) ∈ X1× · · · ×Xn such that Φ[f0, . . . , fm;x1, . . . , xn] =
Φ[g0, . . . , gm; y1, . . . , yn].

Claim. If fk = gk for all k = 0, . . . ,m, then also xj = yj for all j = 1, . . . , n.

Proof. For any j = 1, . . . , n, we have

(f0ιj , . . . , fmιj).xj = (g0ιj , . . . , gmιj).yj = (f0ιj , . . . , fmιj).yj .

The claim follows as (f0ιj , . . . , fmιj).–: X1 × · · · × Xn is injective as composition
of the injections i0(f0ιj).–, . . . , im(fmιj).– (see [SS20, Proposition 2.7]). 4

In the general case, we observe that for each 1 ≤ j ≤ n and 0 ≤ k ≤ m in
particular

suppk
(
(f0ιj , . . . , fmιj).xj

)
= suppk

(
(g0ιj , . . . , gmιj).yj

)
,

hence (fkιj)(suppk xj) = (gkιj)(suppk yj) by Lemma 2.1.12. By injectivity of

fkιj and gkιj it follows that there exists a (unique) bijection σ
(j)
k : suppk(xj) →

suppk(yj) with gkιjσ
(j)
k = fkιj |suppk(xj).

We now pick an extension of σ
(j)
k to an injection s

(j)
k ∈ M. Letting j vary, we

conclude from the above definition that gks
•
k and fk agree on

⋃n
j=1{j}× suppk(xj).

Letting k vary, Lemma 2.1.26 therefore shows

[f0, . . . , fm;x1, . . . , xn] = [g0s
•
0, . . . , gms

•
m;x1, . . . , xn]

= [g0, . . . , gm; (s
(1)
0 , . . . , s(1)

m ).x1, . . . , (s
(n)
0 , . . . , s(n)

m ).xn].

But then

Φ[g0, . . . , gm; y1, . . . , yn] = Φ[f0, . . . , fm;x1, . . . , xn]

= Φ[g0, . . . , gm; (s
(1)
0 , . . . , s(1)

m ).x1, . . . , (s
(n)
0 , . . . , s(n)

m ).xn],

so the above claim implies that (s
(j)
0 , . . . , s

(j)
m ).xj = yj , finishing the proof. �

Corollary 2.1.27. The box product of tame EM-simplicial sets is cocontin-
uous in each variable.

Proof. By Theorem 2.1.25 it suffices to check the corresponding statement
for EInj(2× ω, ω)×(EM)2 (–× –), where this is obvious. �

2.1.3. Ultra-commutative monoids. Purely by abstract nonsense, there is
a unique way to extend the symmetric monoidal structure on I to a simplicially
enriched symmetric monoidal structure on I. In particular, we again get a simplicial
symmetric monoidal structure on I-SSet with monoidal product characterized by
I(A, –)� I(B, –) = I(AqB, –) and structure isomorphisms induced by those of I.
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Proposition 2.1.28. There exists a unique enhancement of evω : I-SSet →
EM-SSetτ to a simplicial strong symmetric monoidal functor such that for all
finite sets A,B the inverse structure isomorphism

(2.1.4)
(
I(A, –)� I(B, –)

)
(ω) = I(AqB, –)(ω)→ I(A, –)(ω)� I(B, –)(ω)

is induced by the map I(AqB, –)→ I(A, –)× I(B, –) given by restriction.

Proof. As seen in Example 2.1.16, the restrictions induce an isomorphism
EInj(A q B,ω) ∼= EInj(A,ω) � EInj(B,ω). Using the canonical isomorphisms
I(C, –)(ω) ∼= EInj(C,ω) for C ∈ I, we therefore conclude that (2.1.4) is well-
defined and an isomorphism.

As evω is cocontinuous and preserves tensors, the universal property of enriched
presheaves now easily implies that the inverses of (2.1.4) extend to a unique sim-
plicial natural isomorphism ∇ : evω � evω ⇒ evω(–� –). On the other hand, there
is a unique isomorphism ι : ∗ → evωI(∅, –) as both sides are terminal.

Finally, to show that∇ and ι endow evω with the structure of a simplicial strong
symmetric monoidal functor, we simply observe that it again suffices to check the
coherence conditions on corepresentables, where this is a trivial calculation. �

We can define the box product of G-I-simplicial sets by pulling through the
G-action again. The above then induces a simplicial strong symmetric monoidal
structure on evω : G-I-SSet→ EM-G-SSetτ .

Corollary 2.1.29. The box product of G-I-simplicial sets is homotopical in
each variable.

Proof. Let f : X → X ′ and g : Y → Y ′ be G-global weak equivalences. We
have to show that f � g is a G-global weak equivalence, i.e. that (f � g)(ω) is a G-
global weak equivalence of EM-G-simplicial sets. But by the previous proposition
this is conjugate to f(ω)�g(ω), and by assumption both f(ω) and g(ω) are G-global
weak equivalences. The claim therefore follows from Theorem 2.1.20. �

Corollary 2.1.30. Let f : X → Y be a G-global weak equivalence of G-I-
simplicial sets such that X and Y are cofibrant in the positive G-global model
structure. Then Symnf := f�n/Σn is a G-global weak equivalence for all n ≥ 0.

Proof. As in the previous corollary, we see that f�n(ω) agrees with f(ω)�n

up to conjugation by (G×Σn)-equivariant isomorphisms (the Σn-equivariance uses
that we have a strong symmetric monoidal structure). As evω is a left adjoint,
it commutes with quotients, so we conclude that also (Symnf)(ω) agrees with
Symn(f(ω)) up to conjugation.

By Corollary 2.1.23 we are therefore reduced to showing that Z(ω) has no ele-
ments of empty support for any Z cofibrant in the positive G-global model struc-
ture. This follows from Lemma 1.4.60 as evω : G-I-SSet→ EM-G-SSetτ is left
Quillen for the positive G-global model structures. �

Definition 2.1.31. We write G-UCom := CMon(G-I-SSet) and call its
objects G-ultra-commutative monoids.
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2.1.3.1. A reminder on model structures for commutative monoids. We want
to construct a suitable G-global model structure on G-UCom, for which we need
to recall the general machinery of [Whi17] and [GG16].

Definition 2.1.32. A model category C equipped with a closed symmetric
monoidal structure is called a symmetric monoidal model category if the following
two conditions are satisfied:

(1) (Unit Axiom) If X ∈ C is cofibrant, then I ⊗ X → 1 ⊗ X is a weak

equivalence for some (hence any) cofibrant replacement I
∼−→ 1 of the

unit.
(2) (Pushout Product Axiom) If i : X → X ′ and j : Y → Y ′ are cofibrations,

then so is the pushout product map i � j : (X ⊗ Y ′) qX⊗Y (X ′ ⊗ Y ) →
X ′ ⊗ Y ′. Moreover, if at least one of i and j is acyclic, then so is i � j.

It is a well-known fact that for cofibrantly generated C it suffices to check
the Pushout Product Axiom on some chosen generating (acyclic) cofibrations, see
e.g [SS00, Lemma 3.5-(1)].

Definition 2.1.33. A symmetric monoidal model category C satisfies the
Monoid Axiom if every transfinite composition of pushouts of maps of the form
X ⊗ j with X ∈ C and j an acyclic cofibration is a weak equivalence again.

Again, if C is cofibrantly generated, then it is enough to restrict to the case
that j belongs to a chosen set J of generating acyclic cofibrations, i.e. the above
condition can be reformulated as saying that any relative (C ⊗ J)-cell complex is a
weak equivalence, see [SS00, Lemma 3.5-(2)].

It is a classical result of Schwede and Shipley [SS00, Theorem 4.1-(3)] that
for a combinatorial symmetric monoidal model category C satisfying the Monoid
Axiom the transferred model structure on the category Mon(C ) of not necessarily
commutative monoids exists, i.e. Mon(C ) can be equipped with a model structure
in which the fibrations and weak equivalences are created in C . We will need a
version of this for commutative monoids due to White [Whi17]. This relies on the
following additional notion:

Construction 2.1.34. Let C be a cocomplete symmetric monoidal category.
As usual in the context of model structures on commutative monoids, we will sup-
press the associativity isomorphisms to keep the notation tractable. The reader
uncomfortable with this may rest assured that we will only ever apply this to box
products, which have a preferred unbiased n-ary tensor product anyhow.

For n ≥ 1 we let Cn denote the n-cube, i.e. the poset of subsets of {1, . . . , n}. If
f : X → Y is any morphism in C , then we have a functor Kn

n (f) : Cn → C sending
I ⊂ {1, . . . , n} to Z1 ⊗ · · · ⊗ Zn where Zi = Yi if i ∈ I, and Zi = Xi otherwise; the
structure maps are given by the obvious tensor products of f and the respective
identities.

We write Qnn−1(f) for the colimit of the subdiagram obtained by removing the
terminal vertex of Cn. This has a natural Σn-action obtained by the Σn-action on
the punctured n-cube and the symmetry isomorphisms of the tensor product on C .
The natural map f�n : Qnn−1(f)→ Y ⊗n induced by the remaining structure maps
of Kn

n is then equivariant with respect to the Σn-action on the target via permuting
the tensor factors.
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Remark 2.1.35. Note that f�n would be usually used to denote the iterated
pushout product of f with itself, which is indeed canonically and Σn-equivariantly
conjugate to the above whenever ⊗ is cocontinuous in each variable, see e.g. [GG16,
Section 3] (in fact, it suffices that pushouts are preserved). However, we will only
care about the above description except in the proof of Corollary 2.1.46.

Definition 2.1.36. A symmetric monoidal model category C satisfies the
Strong Commutative Monoid Axiom if i�n/Σn is a a cofibration for all n ≥ 0
and any cofibration i in C , and an acyclic cofibration if i is.

Although this is much harder to prove than the analogous statements for the
previous axioms we still have:

Lemma 2.1.37. Let C be a cofibrantly generated symmetric monoidal model
category, let I be a set of generating cofibrations, and let J be a set of generat-
ing acyclic cofibrations. Then C satisfies the Strong Commutative Monoid Axiom
provided that i�n/Σn is a cofibration for each i ∈ I and that j�n/Σn is an acyclic
cofibration for all j ∈ J .

Proof. See [Whi17, Lemma A.1] or [GG16, Corollary 9]. �

In many practical situations the following lemma due to Gorchinskiy and Gulet-
skĭı further simplifies the verification of the Strong Commutative Monoid Axiom:

Lemma 2.1.38. Let C be a cofibrantly generated model category, let I be a set
of generating cofibrations, and let J be a set of generating acyclic cofibrations such
that all maps in J have cofibrant source. Then C satisfies the Strong Commutative
Monoid Axiom provided that i�n/Σn is a cofibration for all i ∈ I and that Symnj =
j⊗n/Σn is a weak equivalence for all j ∈ J .

Proof. By the argument from the proof of the previous lemma, i.e. by [GG16,
Corollary 9], i�n/Σn is actually a cofibration for all cofibrations i. It remains to
show that the cofibration j�n/Σn is acyclic for each j ∈ J . But as j is by assumption
a map of cofibrant objects, this is an instance of [GG16, Corollary 23] together
with [GG16, Corollary 10]. �

The forgetful functor CMon(C )→ C has a left adjoint P given on objects by

X 7→
∐
n≥0

X⊗n/Σn =
∐
n≥0

SymnX

and analogously on morphisms; the monoid structure is given by concatenation.

Theorem 2.1.39 (White). Let C be a combinatorial symmetric monoidal model
category satisfying both the Monoid Axiom and the Strong Commutative Monoid
Axiom. Then there exists a unique model structure on CMon(C ) in which a map
is a weak equivalence or fibration if and only if it so in C . This model structure is
again combinatorial, and when I and J are generating cofibrations and generating
acyclic cofibrations of C , then PI and PJ are sets of generating cofibrations and
generating acyclic cofibrations, respectively, for CMon(C ).

Proof. See [Whi17, Theorem 3.2] and the discussion after it. �

Theorem 2.1.40 (White). In the situation of the previous theorem, CMon(C )
is left proper provided that the following additional conditions are satisfied:
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(1) C is left proper and filtered colimits in it are homotopical. Moreover, there
exists a set of generating cofibrations with cofibrant sources.

(2) If X ∈ C and i is any cofibration, then pushouts in C along X ⊗ i are
homotopy pushouts. Moreover, if X is cofibrant, then X⊗– is homotopical.

Proof. This is a special case of [Whi17, Theorem 4.17], also see [Whi17,
discussion after Definition 4.15] and [BB17, discussion after Definition 2.4]. �

2.1.3.2. Construction of the model structure. We can now prove:

Theorem 2.1.41. There is a unique model structure on G-UCom in which a
map is a weak equivalence or fibration if and only if it is so in the positive G-global
model structure on G-I-SSet.

We call this the positive G-global model structure. It is proper, simplicial, and
combinatorial with generating cofibrations (say, as maps in G-I-SSet)∐

n≥0

(
I(n×A, –)×Gn × (∂∆m ↪→ ∆m)×n

)
/(Σn oH),

where m ≥ 0, H runs through all finite groups, and A through finite faithful non-
empty H-sets. Moreover, filtered colimits in this model category are homotopical.

Finally, the adjunction

P : G-I-SSetpositive G-global � G-UCompositive G-global : forget

is a simplicial Quillen adjunction.

Proof. Let us first establish the model structure, for which it suffices to verify
the assumptions of Theorem 2.1.39.

The Unit Axiom is immediate because � is homotopical by Corollary 2.1.29.
In order to verify the Pushout Product Axiom for cofibrations, we may restrict

to the standard generating cofibrations. We therefore let H1, H2 be finite groups, we
let Ai (i = 1, 2) be a finite faithful non-empty Hi-set, we let ϕi : Hi → G (i = 1, 2)
be a group homomorphism, and we let n1, n2 ≥ 0. We consider I(A1, –)×G with
H1 acting from the right on the first factor via its action on A1 and on the second
factor via ϕ1; similarly, we equip I(A2, –)×G with a right H2-action. Then(

I(A1, –)×G× (∂∆n1 ↪→ ∆n1)
)
�
(
I(A2, –)×G× (∂∆n2 ↪→ ∆n2)

)
agrees up to conjugation by the evident isomorphisms with

I(A1 qA2, –)×
(
(G× ∂∆n1 ↪→ G×∆n1) � (G× ∂∆n2 ↪→ G×∆n2)

)
.

These isomorphisms are equivariant in H1, H2, and G if we let G act in the obvious
way, H1 via its action on A1 and its action on the first G-factor, and H2 via its
action on A2 and its action on the second G-factor. All the H1-actions commute
with all the H2-actions, so that they assemble into an (H1 × H2)-action. As �
preserves colimits in each variable, we conclude that(

(I(A1, –)×ϕ1 G)× (∂∆n1 ↪→ ∆n1) �
(
(I(A2, –)×ϕ2 G)× (∂∆n2 ↪→ ∆n2)

agrees up to conjugation by isomorphisms with(
I(A1 qA2, –)×

(
(G× ∂∆n1 ↪→ G×∆n1) � (G× ∂∆n2 ↪→ G×∆n2)

))
/(H1 ×H2).

The (H1 × H2)-set A1 q A2 is obviously faithful and non-empty, while the map
(G × ∂∆n1 ↪→ G × ∆n1) � (G × ∂∆n2 ↪→ G × ∆n2) is injective by the Pushout
Product Axiom for SSet; moreover, G clearly acts freely on the target. We claim
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that this already implies that the above is a positive G-global cofibration. Indeed,
for any faithful H-set A 6= ∅ the adjunction

I(A, –)×H –: (G×Hop)-SSet� G-I-SSet : evA

is a Quillen adjunction with respect to the GHop,G-equivariant model structure on
the source and the positive level model structure on the target, hence in particular
with respect to the G-global positive model structure. The claim follows as the
cofibrations on the left hand side are precisely the injections i such that G acts
freely outside the image of i.

This proves the Pushout Product Axiom for cofibrations. For the part about
acyclic cofibrations we will use:

Claim. Let i : A → B be an injective cofibration in G-I-SSet and let X be
arbitrary. Then any pushout along X � i is a homotopy pushout.

Proof. Lemma 1.4.36 shows that evω creates homotopy pushouts, so it is
enough to show that any pushout along (X�i)(ω) in EM-G-SSetτ is a homotopy
pushout. But evω is strong symmetric monoidal, so this is conjugate to X � i(ω)
which is evidently an injective cofibration. The claim follows immediately. 4

If now i1 : X1 → Y1 is any cofibration and i2 : X2 → Y2 is any acyclic cofibra-
tion, then we consider the commutative diagram

X1 �X2 Y1 �X2

X1 � Y2 P

Y1 � Y2.

p
X1�i2

i1�X2

Y1�i2

i1�Y2

i1�i2

By the above, the top square is a homotopy pushout, and the left hand arrow as well
as the rightmost arrow are weak equivalences as � is homotopical (Corollary 2.1.29).
We conclude that Y1 � X2 → P is a weak equivalence, and hence so is i1 � i2 by
2-out-of-3. Since we already know that it is a cofibration, it is therefore an acyclic
cofibration, which completes the verification of the Pushout Product Axiom.

Let us now verify the Monoid Axiom. If j is any acyclic cofibration, then it is
in particular an injective cofibration. If now X is any object, then pushouts along
X � j are therefore homotopy pushouts by the above claim. However, X � j is
also a weak equivalence because � is homotopical, so any pushout of it is a weak
equivalence. The claim follows as filtered colimits in G-I-SSet are homotopical.

Next, we consider the Strong Commutative Monoid Axiom. We let H be a
finite group, A a finite faithful non-empty H-set, and m,n ≥ 0. Then

(2.1.5)
(
(I(A, –)×G)× (∂∆m ↪→ ∆m)

)�n
agrees up to conjugation by the evident isomorphisms with

(2.1.6) I(n×A, –)× (G× ∂∆m ↪→ G×∆m)�n.

Now let ϕ : H → G be any group homomorphism. There are n commuting H-
actions on (2.1.5), the i-th one of which is given by acting on the i-th �-factor in
the obvious way. We similarly have n commuting H-actions on n×A with the i-th
action given by acting in the prescribed way on the i-th copy of A and trivially on all
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other copies, and we have n further commuting H-actions on (G× ∂∆m ↪→ ∆m)�n

analogously to the above. By taking the respective diagonals we get n commuting
H-actions on (2.1.6), and the above isomorphism is equivariant with respect to all
these actions. Finally, Σn acts on n×A via its tautological action on n and on the
�-powers via permuting the factors. Again taking the diagonal for (2.1.6) we get
Σn-actions compatible with the above identification.

We now observe that the Σn-actions and the H-actions assemble into (Σn oH)-
actions on both (2.1.5) and (2.1.6), so we altogether conclude that(

(I(A, –)×ϕ G)× (∂∆m ↪→ ∆m)
)�n

/Σn

agrees up to conjugation by isomorphisms with

(2.1.7)
(
I(n×A, –)× (G× ∂∆m ↪→ G×∆m)�n

)
/(Σn oH)

But the (Σn o H)-action on n × A is faithful: if (σ;h1, . . . , hn) acts trivially on
n × A, then each hi has to act trivially on A, so hi = 1 for all i. But then if
a ∈ A is arbitrary (here we used that A 6= ∅), then (σ;h1, . . . , hn) = σ sends
(i, a) to (σ(i), a) for each i, hence also σ = 1. Thus, (2.1.7) is a positive G-global
cofibration for n > 0 by the same argument as in the verification of the Pushout
Product Axiom; for n = 0, it is obviously even an isomorphism.

For the Strong Commutative Monoid Axiom for acyclic cofibrations, we observe
that the positive G-global model structure on G-I-SSet is combinatorial and that
the standard generating cofibrations have cofibrant sources. By [Bar10, Corol-
lary 2.7] we may conclude that there exists a set of generating acyclic cofibrations
J with cofibrant sources. By Lemma 2.1.38 it therefore suffices that for each j ∈ J
and n ≥ 0 the map Symnj is a weak equivalence. But as the source (and hence
also the target) of j was assumed to be cofibrant in the positive G-global model
structure, this is an instance of Corollary 2.1.30.

This completes the verification of the assumptions of Theorem 2.1.39; we con-
clude that the positive G-global model structure on G-UCom exists and that it is
combinatorial with generating cofibrations PI and generating acyclic cofibrations
PJ , where I and J are sets of generating cofibrations and generating acyclic cofi-
brations for G-I-SSet. If we take I to be the standard generating cofibrations,
then a calculation analogous to the verification of the Strong Commutative Monoid
Axiom identifies PI with the proposed generating cofibrations.

This model structure is right proper by Lemma A.2.14-(1) because it is trans-
ferred from a right proper model structure, and it is also left proper by an imme-
diate application of Theorem 2.1.40, all of whose assumptions have been verified
above. Moreover, filtered colimits in it are homotopical, as the forgetful functor to
G-I-SSet creates both weak equivalences as well as filtered colimits.

Moreover, CMon(G-I-SSet) has an evident simplicial enrichment, and it is
cotensored over SSet with cotensors formed in G-I-SSet. For fixed K, (–)K

preserves limits and sufficiently highly filtered colimits (since these are created by
the forgetful functor), so it admits a left adjoint by the Special Adjoint Functor
Theorem, i.e. CMon(G-I-SSet) is also tensored over SSet. Since the forgetful
functor has an obvious enrichment with respect to which it preserves cotensors, P a
forget becomes a simplicial adjunction. Thus, we conclude from Lemma A.2.14-(2)
that the positive G-global model structure on G-UCom is simplicial.

Finally, the forgetful functor is right Quillen by design, so that P a forget is a
simplicial Quillen adjunction. �
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2.1.4. The model structure on G-parsummable simplicial sets. We
now want to lift our comparison between EM-G-SSetτ and G-I-SSet to com-
mutative monoids, for which we introduce:

Theorem 2.1.42. There exist a unique model structure on G-ParSumSSet
in which a map is a weak equivalence or fibration if and only if it so in the positive
G-global model structure on EM-G-SSetτ .

We call this the positive G-global model structure. It is proper, simplicial, and
combinatorial with generating cofibrations (say, as maps in EM-G-SSetτ )∐

n≥0

(
EInj(n×A,ω)×Gn × (∂∆m ↪→ ∆m)×n

)
/(Σn oH),

where m ≥ 0, H runs through all finite groups, and A is a finite faithful non-empty
H-set; moreover, filtered colimits in this model category are homotopical. Finally,

P : (EM-G-SSetτ )positive G-global � G-ParSumSSetpositive G-global : forget

is a simplicial Quillen adjunction.

Proof. We again verify the assumptions of Theorems 2.1.39 and 2.1.40.
It suffices to check the Pushout Product Axiom on generating (acyclic) cofibra-

tions. As these are given by applying the strong symmetric monoidal left adjoint
evω to the generating (acyclic) cofibrations of G-I-SSet, this is a formal conse-
quence of the Pushout Product Axiom for G-I-SSet. Analogously, the Strong
Commutative Monoid Axiom follows from the one for G-I-SSet.

The Unit Axiom is again automatic as � is homotopical (Theorem 2.1.20).
Next, we observe that X � – preserves injective cofibrations, which immediately
implies that pushouts along X� i are homotopy pushouts for any positive G-global
cofibration i. Thus, the Monoid Axiom holds by the same argument as before.

We conclude as before that the (transferred) model structure exists, is proper,
and that filtered colimits in it are homotopical. Moreover, it is combinatorial with
generating cofibrations PI for any set I of generating cofibrations ofEM-G-SSetτ .
Again using that evω is cocontinuous and strong symmetric monoidal, the calcula-
tion from the previous theorem yields the above description of PI.

Finally, one argues as in the previous theorem to establish that the model
structure is simplicial and that P a forget is a simplicial Quillen adjunction. �

In order to compare this model category to the one from the previous sec-
tion, we first observe that there is again by abstract nonsense a preferred way
to make the right adjoint (–)• into a simplicial lax symmetric monoidal functor,
inducing an enriched adjunction evω : G-UCom � G-ParSumSSet : (–)•. By
Lemma 1.4.27 the right adjoint is fully faithful with essential image precisely those
G-ultracommutative monoids whose underlying G-I-simplicial sets are flat.

Warning 2.1.43. As opposed to the situation for I-simplicial sets, I do not
know whether the above makes (–)• into a strong symmetric monoidal functor,
i.e. whether the canonical maps X• � Y• → (X � Y )• are isomorphisms. As (–)• is
fully faithful with essential image precisely the flat I-simplicial sets, this is equiva-
lent to the question whether the box product of I-simplicial sets preserves flatness.

Corollary 2.1.44. The simplicial adjunction

evω : G-UCom� G-ParSumSSet : (–)•
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is a Quillen equivalence.

Proof. While this follows from the corresponding result for the underlying
adjunction G-I-SSet � EM-G-SSetτ by [Whi17, Theorem 4.19], there is an
easy direct argument available: by construction, (–)• preserves weak equivalences
and fibrations, and evω creates weak equivalences, so it suffices that the counit
X•(ω) → X be a weak equivalence for every (fibrant) X. But this is given by the
counit of the underlying adjunction, so it is in fact an isomorphism for all X. �

For later use we record:

Lemma 2.1.45. Let i : A → B and j : C → D be injective cofibrations of tame
EM-simplicial sets. Then i � j is an injective cofibration.

Proof. It is clear that B � j : B � C → B �D and i�D are injective.
Now assume (a, d) ∈ (A �D)n and (b, c) ∈ (B � C)n have the same image in

(B � D)n. Then by definition b = i(a) and d = j(c); so to show that (b, c) and
(a, d) represent the same element in the pushout (A�D)qA�C (B �C) it suffices
that (a, c) ∈ (A�C)n, i.e. suppk(a) ∩ suppk(c) = ∅ for all 0 ≤ k ≤ n. But indeed,
as i is injective and EM-equivariant, suppk(a) = suppk(i(a)) = suppk(b), which is
disjoint from suppk(c) as (b, c) ∈ (B � C)n. �

Corollary 2.1.46. Let i : A → B be an injective cofibration of tame EM-
simplicial sets, and let n ≥ 0. Then i�n and i�n/Σn are injective cofibrations.

Proof. Identifying i�n with the iterated pushout product, the first claim fol-
lows by applying the previous lemma inductively. The second statement follows as
quotients by group actions in Set preserve injections. �

2.1.5. I vs. I and M vs. EM. We will now establish analogues of the
above model structures for commutative monoids in G-I-SSet andM-G-SSetτ ,
and show that these are equivalent in the evident way to the models considered so
far. This will in particular allow us in the next subsection to compare our notion
of ultra-commutative monoids to the one introduced by Schwede.

We begin with the following observation that is proven analogously to Propo-
sition 2.1.28:

Lemma 2.1.47. There is a unique way to make I ×I –: I-SSet→ I-SSet into
a simplicial strong symmetric monoidal functor such that the structure isomorphism(

I ×I I(A, –)
)
�
(
I ×I I(B, –)

)
→ I ×I

(
I(A, –)� I(B, –)

)
is the identity for all A,B ∈ I. �

We can now deduce the following G-global version of [SS20, Theorem 1.1]:

Theorem 2.1.48. The box product on G-I-SSet is homotopical in G-global
weak equivalences.

Proof. By Theorem 1.4.28 the functor I ×I – detects G-global weak equiva-
lences (without any need to derive). The claim therefore follows from the previous
lemma together with Corollary 2.1.29. �



110 2. COHERENT COMMUTATIVITY

Theorem 2.1.49. There is a unique model structure on CMon(G-I-SSet) in
which a map is a weak equivalence or fibration if and only if it is so in the positive
G-global model structure on G-I-SSet. We call this the positive G-global model
structure again. It is left proper, simplicial, combinatorial, and filtered colimits in
it are homotopical. Finally, the simplicial adjunction

(2.1.8) I ×I –: CMon(G-I-SSet)� CMon(G-I-SSet) = G-UCom : forget

is a Quillen equivalence in which both adjoints are fully homotopical.

Here we again used that forget acquires a simplicial lax symmetric monoidal
structure from the simplicial strong symmetric monoidal structure on I ×I –.

Proof. We will once again verify the assumptions of Theorem 2.1.39: the
Pushout Product Axiom for cofibrations is verified analogously to Theorem 2.1.41,
and for acyclic cofibrations it then follows from the one for G-I-SSet as I ×I – is
left Quillen, symmetric monoidal, and reflects weak equivalences. Analogously, one
verifies the Strong Commutative Monoid Axiom and the Monoid Axiom. Finally,
the Unit Axiom is again automatic by Theorem 2.1.48.

We therefore conclude as before that the model structure exists, is simplicial,
combinatorial, and that filtered colimits in it are homotopical.

As the forgetful functors create fibrations and weak equivalences, we conclude
from Theorem 1.4.32 that (2.1.8) is a Quillen adjunction. As both adjoints in
I×I–: G-I-SSet� G-I-SSet : forget are homotopical (see Theorem 1.4.28 for the
non-trivial case), we conclude that the ordinary unit and counit already represent
the derived unit and counit and that they are weak equivalences. From this one
easily deduces that both adjoints in (2.1.8) are fully homotopical and that unit and
counit are weak equivalences, so (2.1.8) is in particular a Quillen equivalence.

Finally, the left Quillen functor I ×I –: CMon(G-I-SSet) → G-UCom cre-
ates weak equivalences, so left properness of CMon(G-I-SSet) follows from left
properness of G-UCom as before (see Lemma A.2.15). �

Finally, let us turn to the box product onM-SSetτ :

Lemma 2.1.50. For any X,Y ∈M-SSetτ the composition

EM×M (X � Y ) ↪→ EM×M (X × Y )
pr1,pr2−−−−→ (EM×M X)× (EM×M Y )

factors through an isomorphism EM×M (X�Y )→ (EM×MX)� (EM×M Y ).
Together with the unique maps EM×M ∗ → ∗, the inverses of these isomorphisms
make EM×M – into a simplicial strong symmetric monoidal functor.

Proof. Let X,Y be tame EM-simplicial sets. Then Lemma 2.1.7 implies
that the box product of their underlyingM-simplicial sets is a subcomplex of their
box product as EM-simplicial sets, so the inclusions define a simplicial natural
transformation forget(–� –)⇒ forget(–)� forget(–). As the (simplicial) symmetric
monoidal structure isomorphisms of both M-SSetτ and EM-SSetτ are defined
in terms of the one for the cartesian monoidal structure, it is clear that this makes
forget into a simplicial lax symmetric monoidal functor. One easily checks from
the definition that the resulting simplicial oplax structure on EM×M – consists of
precisely the above maps EM×M (X � Y )→ (EM×M X)� (EM×M Y ), so it
only remains to show that these are isomorphisms.

But indeed, the box product of M-simplicial sets is cocontinuous in each vari-
able by [SS20, Corollary 2.17] and it obviously preserves tensors in each variable.
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The same holds for the box product of EM-simplicial sets by Corollary 2.1.27.
As EM×M – is a simplicial left adjoint, we therefore conclude that the set of all
pairs (X,Y ) such that the above comparison map is an isomorphism is closed under
tensoring and small colimits in each variable. By Theorem 1.3.10 we are therefore
reduced to verifying the claim for X = Inj(A,ω) and Y = Inj(B,ω) for some finite
sets A,B. This is then a straightforward calculation using Corollary 1.3.21 together
with Examples 2.1.4 and 2.1.16. �

Together with Theorem 1.3.25 we conclude as before:

Corollary 2.1.51. The box product on M-G-SSetτ is homotopical with re-
spect to the G-global weak equivalences. �

Theorem 2.1.52. There is a unique model structure on CMon(M-G-SSetτ )
in which a map is a weak equivalence or fibration if and only if it is so in the positive
G-global model structure onM-G-SSetτ . We call this the positive G-global model
structure. It is left proper, simplicial, combinatorial, and filtered colimits in it are
homotopical. Finally, the simplicial adjunctions

(2.1.9) EM×M –: CMon(M-G-SSetτ )� CMon(EM-G-SSetτ ) : forget

and

(2.1.10) evω : CMon(G-I-SSet)� CMon(M-G-SSetτ ) : (–)•

are Quillen equivalences.

Proof. Let us verify the assumptions of Theorem 2.1.39 again.
For the Pushout Product Axiom, it suffices to check this on generating cofibra-

tions and generating acyclic cofibrations. As the positive G-global model structure
onM-G-SSetτ is transferred fromG-I-SSet and since evω is symmetric monoidal
(Remark 2.1.5), it is therefore implied by the Pushout Product Axiom for the latter.
Analogously, one deduces the Strong Commutative Monoid Axiom.

The Unit Axiom is immediate from the previous corollary, and the Monoid
Axiom follows from the one for EM-G-SSetτ (Theorem 2.1.42) as EM×M – is
left Quillen, monoidal, and creates weak equivalences.

We therefore conclude as before that the model structure exists and that it is
combinatorial and simplicial (with respect to the obvious enrichment).

The forgetful functor CMon(EM-G-SSetτ )→ CMon(M-G-SSetτ ) preserves
weak equivalences and fibrations as they are created in the underlying categories,
so it is in particular right Quillen. Similarly, EM×M – is fully homotopical. The
ordinary unit and counit of EM×M –:M-G-SSetτ � EM-G-SSetτ : forget
are G-global weak equivalences by Theorem 1.3.25, so we conclude as in the proof
of Theorem 2.1.49 that (2.1.9) is a Quillen equivalence.

By definition, (–)• : CMon(M-G-SSetτ )→ CMon(G-I-SSet) preserves both
weak equivalences and fibrations, so (2.1.10) is a Quillen adjunction. As also evω is
homotopical, Theorem 1.4.62 implies by the same arguments as before that (2.1.10)
is a Quillen equivalence.

Finally, left properness of the model structure on CMon(M-G-SSetτ ) again
follows from left properness of the one on CMon(EM-G-SSetτ ) as EM×M – is
left Quillen and creates weak equivalences. �
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2.1.6. Ultra-commutative monoids vs. ultra-commutative monoids.
The orthogonal spaces of Definition 1.5.1 admit a Day convolution product simi-
larly to our models of G-global homotopy theory, i.e. there is an essentially unique
topologically enriched functor

–� –: L-Top×L-Top→ L-Top

that preserves tensors and small colimits in each variable and satisfies L(V, –) �
L(W, –) = L(V ⊕W, –) with the obvious functoriality in each variable. There is then
again a unique way to make this into the tensor product of a symmetric monoidal
structure on L-Top such that the structure isomorphisms on corepresentables are
induced by the structure isomorphisms of the cartesian symmetric monoidal struc-
ture on VectR. Schwede introduced the term ultra-commutative monoid for a
commutative monoid in L-Top, and he proved as [Sch18, Theorem 2.1.15-(i)]:

Theorem 2.1.53. There is a unique model structure on CMon(L-Top) in
which a map is a weak equivalence or fibration if and only if it is so in the positive
global model structure on L-Top. This model structure is proper, topological, and
cofibrantly generated. �

In this subsection, we will lift our comparison between I-SSet and L-Top to
the level of commutative monoids.

To this end, we first observe that also I-Top admits a box product induced
by the symmetric monoidal structure on I given by disjoint union. As before one
then makes |–| : I-SSet → I-Top and L ×I –: I-Top → L-Top into strong sym-
metric monoidal functors. We conclude that their right adjoints are lax symmetric
monoidal, so that we get induced adjunctions of categories of commutative monoids.
We can now state our comparison result:

Theorem 2.1.54. The adjunction

(2.1.11) L×I |–| : CMon(I-SSet)� CMon(L-Top) :Sing ◦ forget

is a Quillen adjunction, and the induced adjunction of associated quasi-categories
is a (right Bousfield) localization with respect to the Fin-global weak equivalences.

In order to deduce Theorem 2.1.54 from the comparison between I-SSet and
L-Top provided in Section 1.5, we will need the following cofibrancy property:

Lemma 2.1.55. Let M be cofibrant in CMon(G-I-SSet). Then M is cofibrant
in the G-global model structure on G-I-SSet.

Proof. We will show that any cofibration X → Y in CMon(G-I-SSet) with
X cofibrant in the G-global model structure on G-I-SSet is also a G-global cofi-
bration in G-I-SSet. Applying this to 0→ X then yields the lemma.

While we cannot literally apply [Whi17, Corollary 3.6] to the positive G-global
model structure (as the unit is not cofibrant in the positive G-global model struc-
ture) nor the G-global model structure (because the acyclicity part of the Strong
Commutative Monoid Axiom fails), the same argument works in our situation, as
also observed for example in [Sch18, proof of Theorem 2.1.15-(ii)] for L-Top:

Namely, we first note that the G-global model structure still satisfies the
Pushout Product Axiom. On the other hand, it is clear by direct inspection that
the forgetful functor sends generating cofibrations of CMon(G-I-SSet) to G-global
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cofibrations in G-I-SSet. If now f : X → Y is a pushout of a generating cofi-
bration, then [Whi17, Proposition B.2] (say, applied to the model structure on
G-I-SSet in which all maps are cofibrations, but only the isomorphisms are weak
equivalences) shows that f can be written as a transfinite composition of pushouts
of maps of the form X� i�nn /Σn for generating cofibrations in. By the Strong Com-
mutative Monoid Axiom, each i�nn /Σn is a positive G-global cofibration, and if X
is G-globally cofibrant, then X � i�nn /Σn is a G-global cofibration by the Pushout
Product Axiom for the G-global model structure.

Inductively we see that if X is G-globally cofibrant and X → Y is any relative
cell complex in the generating cofibrations, then the underlying map inG-I-SSet is
a G-global cofibration. Finally, if f : X → Z is a general cofibration with cofibrant
source, then Quillen’s Retract Argument shows that f is a retract of some relative
cell complex g : X → Y (note that the sources agree!). As the underlying map of g
is a G-global cofibration, so is the underlying map of f as desired. �

Proof of Theorem 2.1.54. Analogously to the arguments in Section 1.5 one
shows that L ×I |–| : I-SSet � L-Top : Sing ◦ forget is a Quillen adjunction for
the positive global model structures. Thus, also (2.1.11) is a Quillen adjunction.

As weak equivalences are created in the underlying categories, we conclude from
Propositions 1.5.18 and 1.5.24 that the right adjoint is homotopical and inverts
precisely the Fin-global weak equivalences. It therefore only remains to show that
the unit is a weak equivalence on any cofibrant object X ∈ CMon(I-SSet). But
by the previous lemma, X is cofibrant in the global model structure on I-SSet, so
the claim follows from Proposition 1.5.18 and Theorem 1.5.25. �

Remark 2.1.56. Recently, Barrero Santamaŕıa [Bar20] studied global E∞-
operads in L-Top and proved that the homotopy theory of the corresponding alge-
bras (with respect to the box product) is equivalent to the global homotopy theory
of ultra-commutative monoids (with respect to all compact Lie groups, and there-
fore in particular with respect to finite groups). By the results of this chapter, this
operadic approach is then equivalent to all of our models of ‘globally coherently
commutative monoids.’

2.2. G-global Γ-spaces

In this section we study a G-global version of Segal’s theory of Γ-spaces. While
we focus on them as models of ‘G-globally coherently commutative monoids’ in this
section, we will discuss their relation to G-global spectra in Section 3.4.

2.2.1. A reminder on Γ-spaces. Let us briefly recall the classical non-
equivariant and equivariant theory of Γ-spaces due to Segal [Seg74] and Shi-
makawa [Shi89], respectively.

Definition 2.2.1. We write Γ for the category of finite pointed sets and base
point preserving maps. For any n ≥ 0, let n+ := {0, . . . , n} with base point 0.

A Γ-space is a functor X : Γ → SSet such that X(0+) is terminal. We write
Γ-SSet∗ for the full subcategory of Fun(Γ,SSet) spanned by the Γ-spaces.

Segal [Seg74, Definition 1.2] originally considered contravariant functors from
a category equivalent to the opposite of the above category Γ (into topological
spaces), and he reserved the term ‘Γ-space’ for functors which are special in the
sense of Definition 2.2.3 below.
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Remark 2.2.2. The category SSet∗ of pointed simplicial sets has a zero object,
so it admits a unique Set∗-enrichment; explicitly the base point of Hom(X,Y ) is
taken to be the constant map. Similarly, there is a unique Set∗-enrichment of Γ.

As observed for example in [MMO17, Lemma 1.13] (for topological spaces),
any Set∗-enriched functor X : Γ → SSet∗ satisfies X(0+) = ∗, so its underlying
ordinary functor Γ → SSet is a Γ-space. Conversely, every Γ-space X factors
uniquely through the category of based simplicial sets by taking the image of X(0+)
as the base point of X(S+) for any S+ ∈ Γ, and the induced functor Γ→ SSet∗ is
Set∗-enriched [MMO17, Remark 1.15]. Altogether we see that we can equivalently
think of Γ-SSet∗ as the category of Set∗-enriched functors Γ → SSet∗, with the
isomormophism given by the forgetting base points and enrichment.

Definition 2.2.3. Let S be a finite set and let s ∈ S. Then we write ps : S+ →
1+ for the map in Γ with ps(s) = 1 and ps(t) = 0 otherwise.

Now let X be a Γ-space. The Segal map

ρ : X(S+)→
∏
s∈S

X(1+)

is the map given on the factor corresponding to s ∈ S by X(ps). We call X special
if the Segal map is a weak homotopy equivalence for every finite set S.

Intuitively, if X is a special Γ-space, then we want to think of X(1+) as its
‘underlying space’ with the remaining structure encoding ‘(higher) additions.’ Ex-
plicitly, consider for each n ≥ 0 the map µ : n+ → 1+ sending every non-base point
to 1. Then we have a zig-zag

X(1+)n X(n+) X(1+)∼
ρ X(µ)

which we think of as n-fold addition. In particular, for n = 2, passing to π0 yields
a map π0(X(1+))2 ∼= π0(X(1+)2)→ π0(X(1+)) and one can show that this equips
π0(X(1+)) with the structure of a commutative monoid.

Example 2.2.4. If A is any simplicial abelian monoid, then we can define a
special Γ-space HA via (HA)(S+) = A×S ; writing elements of HA(S+) as for-
mal sums

∑
s∈S ass, the structure map for f : S+ → T+ is given by

∑
s∈S ass 7→∑

f(s)6=∗ asf(s) =
∑
t∈T

(∑
s∈f−1(t) as)t.

Example 2.2.5. Building on a construction of Segal [Seg74, discussion after
Corollary 2.2], Shimada and Shimakawa [SS79, Definition 2.1] (and earlier May
[May78, Construction 10] in an important special case) showed how to functorially
associate to a small symmetric monoidal category C a ‘categorically special Γ-
category,’ i.e. a functor Γ(C ) : Γ → Cat with Γ(C )(0+) = ∗ and such that the
obvious analogues of the Segal maps Γ(C )(S+) →

∏
s∈S Γ(C ) are equivalences of

categories [SS79, Lemma 2.2]. In particular, applying the nerve levelwise yields a
special Γ-space in the above sense.

Somewhat more concretely, an object of Γ(C )(S+) consists of an object XA ∈ C
for each A ⊂ S together with isomorphisms αA,B : XA∪B → XA⊗XB for all disjoint
A,B ⊂ S, such that X∅ = 1 is the tensor unit, and the isomorphisms α are suitably
compatible with the associativity, unitality, and symmetry isomorphisms of C . A
morphism (X•, α•,•) → (Y•, β•,•) consists of a map fA : XA → YA for any A ⊂ S
suitably compatible with α, β and such that f∅ is the identity of 1.
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The structure maps of Γ(C ) are given by restriction along preimages, and Γ
becomes a functor in strictly unital strong symmetric monoidal functors (i.e. strong
symmetric functors such that the unit isomorphism is the identity) essentially by
pushforward, see [SS79, discussion after Definition 2.4] for a precise definition.

On the level of underlying categories, Γ(C ) recovers the original symmetric
monoidal category C ; more precisely, there is a natural isomorphism ι : C →
Γ(C )(1+), sending X ∈ C to the unique object (X•, α•,•) with X{1} = X and
sending f : X → Y to the unique morphism f• with f{1} = f .

Remark 2.2.6. Let us call a morphism f : X → Y of Γ-spaces a level weak
equivalence if each f(S+) : X(S+)→ Y (S+) is a weak homotopy equivalence. Bous-
field and Friedlander [BF78, Theorem 3.5] showed that the level weak equivalences
are part of a ‘Reedy type’ model structure on Γ-SSet∗; however, for our purposes
only the usual projective model structure on Γ-SSet∗ will be relevant.

For the rest of this subsection, let G be a finite group. Shimakawa [Shi89]
provided a G-equivariant generalization of Segal’s theory.

Definition 2.2.7. A Γ-G-space is a functor X : Γ→ G-SSet such that X(0+)
is terminal. We write Γ-G-SSet∗ for the evident category of Γ-G-spaces.

Shimakawa originally considered so-called ‘ΓG-spaces,’ i.e. suitably equivariant
functors from the G-category ΓG of finite based G-sets and not necessarily G-
equivariant maps to G-SSet, but he showed in [Shi91, Theorem 1] that restricting
along Γ ↪→ ΓG provides an equivalence to the above category Γ-G-SSet∗.

Remark 2.2.8. We can also make the quasi-inverse of this equivalence explicit:
if X is any Γ-G-space, and S is a finite G-set, then X(S+) carries two commuting G-
actions: the exterior action via the action of G on X and the interior action induced
by functoriality from the action on S, and we equip X(S+) with the diagonal of
these two actions. This way, we can evaluate Γ-G-spaces more generally at finite
pointed G-sets. A not necessarily G-equivariant map f : S+ → T+ of finite based G-
sets then induces via the original functoriality in Γ a map X(f) : X(S+)→ X(T+)
(not necessarily G-equivariant), which provides the desired extension to ΓG.

We will only be interested in the case where f is actually G-equivariant, in
which case X(f) : X(S+)→ X(T+) is obviously also G-equivariant.

The crucial insight in the theory of Γ-G-spaces is that, while it is enough to
specify Γ-G-spaces on trivial G-sets, the correct notion of specialness should still
take general G-sets into account:

Definition 2.2.9. A Γ-G-space X is called special if the Segal map X(S+)→
X(1+)×S =

∏
s∈S X(1+) is a G-equivariant weak equivalence for every finite G-set

S. Here we equip the left hand side with the diagonal G-action as before, and the
right hand side carries the diagonal of the G-actions on X(1+) and the permutation
action on the factors via the G-action on S.

We can also reformulate the above condition as saying that the Segal map
X(S+)→

∏
S X(1+) should be a GG,ΣS -weak equivalence for every finite set S; note

that this is indeed equivalent as any finite H-set S for H ⊂ G is an H-equivariant
retract of the finite G-set G×H S.

Remark 2.2.10. The above strong version of specialness is necessary in order
for special Γ-G-spaces to yield the correct notion of equivariant infinite loop spaces,
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i.e. spaces that admit deloopings against all representation spheres; a particularly
clear explanation of this can be found in [Blu06, Section 3.5]. Moreover the ar-
gument we give in 2.2.3.4 (for G-global Γ-spaces) shows how the above yields a
Wirthmüller isomorphism for Γ-G-spaces, encoding an additional equivariant, or
‘twisted,’ form of semiadditivity.

Example 2.2.11. If C is a small symmetric monoidal category with G-action
through strictly unital strong symmetric monoidal functors, then we can equip the
Γ-category Γ(C ) from Example 2.2.5 with the induced G-action. However, the
nerve of this is usually not special in the above sense.

It was a crucial insight of Shimakawa [Shi89, discussion before Theorem A′],
recently extensively used by Merling [Mer17], that we can solve this issue by
replacing the Γ-G-category Γ(C ) with Fun(EG, –)◦Γ(C ), where G acts on EG from
the right in the obvious way. Namely, if H is any subgroup, then Fun(EG, –)H just
computes the categorical homotopy fixed points, so it sends G-equivariant functors
that are underlying equivalences of categories to ordinary equivalences of categories,
see e.g. [Mer17, Corollary 3.7]. If now S is any finite G-set, then the Segal map
Γ(C )(S+) → Γ(C )(1+)×S is G-equivariant, and it is of course still an underlying
equivalence of categories. The image of this under NFun(EG, –) will therefore be
a G-equivariant weak equivalence. However, this is clearly conjugate to the Segal
map of NFun(EG,Γ(C )).

Remark 2.2.12. Already when X is special in the näıve sense, the zig-zag

X(1+)×X(1+) X(2+) X(1+)∼
ρ X(µ)

equips πH0 (X(1+)) = π0(X(1+)H) with an abelian monoid structure for all H ⊂ G.

The special Γ-G-spaces are not invariant under the näıve notion of levelwise
weak equivalences. Instead, one should require that f(S+) be a G-equivariant
weak equivalence for every finite G-set S (and not only the trivial G-sets); by
the same argument as above, this is equivalent to the following condition, also
see [Ost16, Remark 4.11]:

Definition 2.2.13. A map f : X → Y of Γ-G-spaces is called a G-equivariant
level weak equivalence if f(S+) is a GG,ΣS -equivariant weak equivalence for every
finite set S.

Note that a map of Γ-G-spaces with trivial G-action can be a non-equivariant
level weak equivalence and still fail to be a G-equivariant level weak equivalence as
the following example for G = Σ2 shows:

Example 2.2.14. We define a Γ-space X as follows: X(S+) is the nerve of
the category with objects Γ(2+, S+) and a unique morphism α → β (possibly the
identity) for any two α, β : 2+ → S+ with imα = imβ. One easily checks that
Γ(2+, f) extends uniquely to X(S+) → X(T+) for any f : S+ → T+ in Γ, which
then makes X into a Γ-space.

Let now Y be the quotient obtained from Γ(2+, –) by identifying for each S+ ∈ Γ
any two α, β : 2+ → S+ with the same image. Then the quotient map extends
uniquely to f : X → Y , and this a non-equivariant level weak equivalences, as it is
given by contracting disjoint copies of EΣ2.
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However, with respect to the usual Σ2-action on 2+, f(2+)Σ2 : X(2+)Σ2 →
Y (2+)Σ2 is a map from a discrete simplicial set with 2 vertices to one with 3
vertices, so f is not a Σ2-equivariant level weak equivalence.

Remark 2.2.15. As remarked by Ostermayr [Ost16, Theorem 4.7] without
proof, the G-equivariant level weak equivalences are part of a ‘generalized projec-
tive model structure’ on Γ-G-SSet∗. The fibrations in this model structure are
precisely those maps f such that f(S+) is a fibration in the GG,ΣS -model structure
on (G×ΣS)-SSet for all finite sets S. In addition, Ostermayr also constructs an
equivariant version of the Bousfield-Friedlander model structure in [Ost16, Theo-
rem 4.12].

2.2.2. G-global level model structures. In this subsection we will intro-
duce various G-global analogues of Γ-spaces together with suitable level model
structures. As the arguments for the existence of these model structures are rather
similar, we will formalize them.

For this we begin with the following ‘undirected’ version of [Sch18, Proposition
C.23] (the relevant parts of which we recalled as Proposition 1.4.6 above):

Proposition 2.2.16. Let A be an essentially small Set∗-enriched category and
let C be a locally presentable category with 0-object (which then has a unique Set∗-
enrichment). Assume we are given for each a ∈ A a combinatorial model structure
on the ordinary functor category AutA(a)-C := Fun(BAutA(a),C ) with sets of
generating cofibrations Ia and generating acyclic cofibrations Ja, satisfying the fol-
lowing ‘consistency condition’: for all b ∈ A, any relative {HomA(a, b)⊗AutA(a) j :
a ∈ A, j ∈ JA}-cell complex is a weak equivalence in AutA(b)-C .

Then there exists a unique model structure on the category A-C of Set∗-
enriched functors A → C in which a map f : X → Y is a weak equivalence or
fibration if and only if f(a) : X(a) → Y (a) is a weak equivalence or fibration, re-
spectively, in AutA(a)-C for each a ∈ A. We call this the generalized projective
model structure. It is combinatorial with generating cofibrations

IA := {Hom(a, –)⊗Aut(a) i : a ∈ A, i ∈ Ia}

and generating acyclic cofibrations.

JA := {Hom(a, –)⊗Aut(a) j : a ∈ A, j ∈ Ja}.

Moreover:

(1) If each of the model categories Aut(a)-C is simplicial, then so is A-C .
(2) If each of the model categories Aut(a)-C is right proper, then so is A-C .
(3) If filtered colimits are homotopical in each of the Aut(a)-C , then also

filtered colimits in A-C are homotopical.

Here we again use for a pointed G-H-biset X the notation X ⊗H Y for the
balanced tensor product, i.e. the quotient of the Set∗-tensoring X ⊗ Y by the di-
agonal H-action, with the induced G-action. In particular, in the world of pointed
simplicial sets X ⊗H – can be identified with the usual balanced smash product
X ∧H –.

Proof of Proposition 2.2.16. For a ∈ A, let Ea : A-C → AutA(a)-C de-
note the evaluation functor. This admits a left adjoint Ga, which by the usual coend
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formula for enriched left Kan extensions (or the Yoneda Lemma) can be calculated
as

Ga(X)(b) = HomA(a, b)⊗AutA(a) X

with the obvious functoriality in each variable. Thus

IA =
⋃
a∈A

Ga(Ia) and JA =
⋃
a∈A

Ga(Ja).

To construct the model structure in question and to show that it is cofibrantly
generated (hence combinatorial) with generating cofibrations IA and generating
acyclic cofibrations JA, it therefore suffices by Cran’s criterion (Proposition A.2.13)

applied to
∏
a∈Ã AutA(a)-C (where Ã is any small essentially wide subcategory of

A) to show, also cf. [Ste16, Theorem A.1 and Remark A.2]:

(1) The sets IA and JA permit the small object argument, and
(2) Relative JA-cell complexes are weak equivalences (i.e. sent to weak equiv-

alences in AutA(a)-C under Ea for all a ∈ A).

The first condition is automatically satisfied as C and hence also A-C is locally
presentable. On the other hand, the second condition is an immediate consequence
of the consistency condition.

The additional properties (1)–(3) follow easily from the fact that all the rel-
evant constructions are defined levelwise, also see Lemma A.2.14 for the first two
properties. �

Instead of verifying the consistency condition by hand, we will employ the
following criterion, which at the same time takes care of left properness:

Proposition 2.2.17. Let A be an essentially small Set∗-enriched category and
let C be a pointed locally presentable category. Assume we are given for each a ∈ A
a cofibrantly generated (hence combinatorial) model structure on AutA(a)-C with
sets of generating cofibrations Ia and generating acyclic cofibrations Ja, such that
AutA(a)-C is left proper and such that filtered colimits in it are homotopical. As-
sume moreover:

(1) For all a, b ∈ A and j ∈ Ja, the map Hom(a, b)⊗Aut(a) j is a weak equiv-
alence in Aut(b)-C .

(2) For all a, b ∈ A and i ∈ Ia, every pushout along Hom(a, b) ⊗Aut(a) i is a
homotopy pushout in Aut(b)-C .

Then the generalized projective model structure exists and is combinatorial with gen-
erating cofibrations IA and generating acyclic cofibrations JA as above. Moreover,
it is left proper and a square

(2.2.1)

W X

Y Z

in A-C is a homotopy pushout if and only if it is a levelwise homotopy pushout,
i.e. for every b ∈ A the induced square

W (b) X(b)

Y (b) Z(b)
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is a homotopy pushout in Aut(b)-C . Finally, filtered colimits are homotopical in
A-C , and the conclusions (1) and (2) of Proposition 2.2.16 still hold.

Proof. We begin with the following observation:

Claim. If i is any IA-cofibration, then pushouts along i(b) are homotopy
pushouts in Aut(b)-C for any b ∈ A. In particular, pushouts along i in A-C
are levelwise homotopy pushouts.

Proof. We fix b ∈ A and consider the class Hb of all morphisms i in A-C
such that pushouts along i(b) are homotopy pushouts. Using Proposition A.2.7
and that evb is cocontinuous, we see that Hb is closed under pushouts, transfinite
compositions, and retracts. On the other hand, IA ⊂ Hb by assumption, so that
Hb contains all IA-cofibrations as desired. 4

As each Ga is cocontinuous, Ga(i) is an IA-cofibration for any a ∈ A and any
cofibration i in Aut(a)-C , so we in particular see that the second assumption holds
more generally for all cofibrations i of Aut(a)-C .

Let us now verify the assumptions of Proposition 2.2.16, i.e. that for any b ∈ B
any transfinite composition of pushouts of maps of the form HomA(a, b)⊗AutA(a) j
(a ∈ A, j ∈ JA) is a weak equivalence. Indeed, any HomA(a, b)⊗AutA(a) j is a weak
equivalence by the first assumption, and the above strengthening of the second
assumption then implies that also pushouts of it are weak equivalences. The claim
follows as filtered colimits were assumed to be homotopical.

We are therefore allowed to apply Proposition 2.2.16, and it only remains to
show that A-C is left proper and that the homotopy pushouts are precisely the level-
wise homotopy pushouts. But the the functor (Ea)a∈Ã : A-C →

∏
a∈Ã AutA(a)-C

(for Ã as above) clearly preserves and reflects weak equivalences, and it sends
pushouts along cofibrations to homotopy pushouts by the above claim, so this is
simply an instance of Lemma A.2.15. �

2.2.2.1. Pointed G-global homotopy theory. The above model categories are in-
herently pointed, so in order to apply them to G-global homotopy theory, we need
to develop suitable pointed versions of the models of Chapter 1. These are in fact
formal consequences of the corresponding unbased results, and in order to avoid a
long list of similar looking statements, we will be somewhat terse here.

Let C be a category with terminal object ∗. Then we write C∗ := ∗ ↓ C for
the category of objects under ∗ and call it the category of pointed objects in C .
If C has binary coproducts, then the forgetful functor C∗ → C has a left adjoint
(–)+ sending an object X to X+ = X q ∗ (with structure map the inclusion of the
second summand), and similar on morphisms.

Theorem 2.2.18. There is a unique model structure on EM-G-SSet∗ in
which a map is a weak equivalence, fibration, or cofibration if and only if it is
so in the G-global model structure on EM-G-SSet. We call this the G-global
model structure again. It is proper, simplicial, and combinatorial with generating
cofibrations

{(EM×ϕG×∂∆n)+ ↪→ (EM×ϕG×∆n)+ : H ⊂M universal, ϕ : H → G,n ≥ 0}
and generating acyclic cofibrations

{(EM×ϕG×Λnk )+ ↪→ (EM×ϕG×∆n)+ : H ⊂M universal, ϕ : H→G, 0 ≤ k ≤ n}.
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Moreover, filtered colimits in it are homotopical, and pushouts along injective cofi-
brations are homotopy pushouts.

Proof. The model structure exists by [Hir03, Theorem 7.6.5-(1)] applied to
the model structure from Corollary 1.2.30. Moreover, the model structure is cofi-
brantly generated by the above sets according to [Hir15, Theorem 2.7], hence
combinatorial, and it is proper by [Hir15, Theorem 2.8-(3)]. Finally, filtered col-
imits in EM-G-SSet∗ are homotopical since both weak equivalences as well as
connected colimits are created in EM-G-SSet. Likewise, the characterization of
homotopy pushouts follows from Lemma A.2.15 applied to the forgetful functor to
EM-G-SSet.

Finally, with respect to the evident simplicial enrichment EM-G-SSet∗ is
tensored and cotensored over SSet with the cotensoring created in EM-G-SSet.
It follows that the above model structure is simplicial. �

One gets analogous statements for all the other model structures established in
Chapter 1; instead of making them explicit, we will freely refer to the corresponding
unbased statement whenever we actually need the based statement.

If F : C � D : G is a Quillen adjunction such that F preserves the terminal
object, then we have an induced adjunction C∗ � D∗, which is obviously a Quillen
adjunction again. In particular, if α : H → G is any homomorphism, then we
can apply this to the various change of group adjunctions α∗ a α∗ discussed in
Chapter 1. Moreover, as weak equivalences are created in the corresponding models
of unstable G-global homotopy theory, all results established above on whether α∗

or α∗ is fully homotopical, immediately transfer from the unpointed to the pointed
setting. We will therefore freely refer to the results from Chapter 1 when arguing
about the corresonding based adjunctions.

While the functors α! : H-C → G-C usually do not preserve the base point, the
functor α∗ : G-C∗ → H-C∗ still has a left adjoint in each case; as above one deduces
that α∗ is still right Quillen, so these are again Quillen adjunctions. The only results
that do not immediately transfer via the above strategy are the criteria on when
α! is suitably homotopical. Let us therefore explicitly prove those statements that
we will need later:

Corollary 2.2.19. Let α : H → G be an injective homomorphism. Then
α! : EM-H-SSet∗ → EM-G-SSet∗ and α! : EM-H-SSetτ∗ → EM-G-SSetτ∗
are homotopical.

Proof. It suffices to prove the first statement, for which we observe that α!

is left Quillen for the injective model structures by the above arguments applied
to Corollary 1.2.73. As all pointed EM-H-simplicial sets are injectively cofibrant,
the claim follows from Ken Brown’s Lemma. �

Corollary 2.2.20. Let α : H → G be any homomorphism. Then

α! : EM-H-SSet∗ → EM-G-SSet∗ and α! : EM-H-SSetτ∗ → EM-G-SSetτ∗

preserve weak equivalences between objects with free ker(α)-action outside the base
point.

Proof. It again suffices to prove the first statement, and the previous corollary
reduces to the case that α is surjective, i.e. α! is given by dividing out the action of
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K := ker(α). If we let L ⊂M be any subgroup, then [Hau17, Lemma A.1] shows
that there is for any ϕ : L→ G a natural isomorphism∨

[ψ : L→H]

Zψ/(CH(imψ) ∩K) ∼= (Z/K)ϕ

analogous to Proposition 1.1.21 whenever K acts freely on Z outside the basepoint.
Analogously to the unbased case, CH(imψ) ∩ K acts freely on Zψ outside the
base point, so Zψ is cofibrant in the (non-equivariant) projective model structure
on (CH(imψ)∩K)-SSet∗. As the quotient functor (CH(imψ)∩K)-SSet∗ →
SSet∗ is left Quillen, the claim follows. �

Remark 2.2.21. In fact the same argument as above more generally yields a
pointed version of Proposition 1.1.21.

2.2.2.2. Construction of G-global level model structures. With this at hand we
can now prove:

Theorem 2.2.22. There exists a unique model structure on Γ-EM-G-SSet∗
in which a map f : X → Y is a weak equivalence or fibration if and only if f(S+)
is a (G× ΣS)-global weak equivalence or fibration, respectively, for every finite set
S. We call this the G-global level model structure and its weak equivalences the
G-global level weak equivalences. It is proper, simplicial, and combinatorial with
generating cofibrations{(

Γ(S+, –) ∧ (EM×G)+

)
/H ∧ (∂∆n ↪→ ∆n)+ : H ∈ GU,G, S finite H-set, n ≥ 0

}
(where U denotes the collection of universal subgroups) and generating acyclic cofi-
brations{(

Γ(S+, –)∧(EM×G)+

)
/H∧(Λnk ↪→ ∆n)+ : H ∈ GU,G, S finite H-set, 0 ≤ k ≤ n

}
Moreover, filtered colimits in it are homotopical, and a square is a homotopy pushout
with respect to it if and only if it so levelwise. In particular, pushouts along injective
cofibrations (i.e. levelwise injections) are homotopy pushouts.

Proof. One immediately proves by inspection that

(2.2.2) Γ(A+, B+) ∧ΣA –: EM-(G×ΣA)-SSet∗ → EM-(G×ΣB)-SSet∗

sends the generating (acyclic) cofibrations of the usual (G×ΣA)-global model struc-
ture on the source to (acyclic) cofibrations in the injective (G× ΣB)-global model
structure on the target (where we for simplicity confuse AutΓ(S+) with ΣS for any
finite set S). We may therefore apply Proposition 2.2.17, which proves all of the
above statements except for the description of the generating cofibrations.

Instead, the aforementioned proposition shows that a set of generating cofibra-
tions is given by the maps

Γ(S+, –)∧ΣS (EM×G×ΣS×∂∆n)+/H → Γ(S+, –)∧ΣS (EM×G×ΣS×∆n)+/H

induced by the inclusions ∂∆n ↪→ ∆n, with H ∈ GU,G×ΣS , n ≥ 0 as above, and S
an ordinary finite set. This is obviously conjugate to

Γ(S+, –) ∧ΣS (EM×G× ΣS)+ ∧ (∂∆n ↪→ ∆n)+;

on the other hand, Γ(S+, –) ∧ΣS (EM × G × ΣS)+
∼= Γ(S+, –) ∧ (EM × G)+

via [f,m, g, σ] 7→ [fσ,m, g], which is right ΣS- and both left and right (EM ×
G)-equivariant. As quotients and smash products preserve colimits, we conclude
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Γ(S+, –)∧ΣS (EM×G×ΣS)/ΓH,(ϕ,ρ) ∼= (Γ(S+, –)∧ (EM×G)+)/ΓH,(ϕ,ρ) for any
H ⊂M and any homomorphisms ϕ : H → G and ρ : H → ΣS . Finally, if we view S
as an ΓH,ϕ-set via ρ◦prH , then the above equals (Γ(S+, –)∧(EM×G)+)/ΓH,ϕ. This
completes the verification of the given set of generating cofibrations; the argument
for the generating acyclic cofibrations is analogous. �

Warning 2.2.23. If |B| ≥ 3, then (2.2.2) is not left Quillen with respect to
the ordinary (G×ΣB)-global model structure on the target. Namely, any cofibrant
object in the latter has free ΣB-action outside the basepoint while Γ(A+, B+) ∧ΣA

(EM×ΣA)+ has non-trivial ΣB-fixed points: for example, if b ∈ B is arbitrary and
β : A+ → B+ denotes the map sending every non-basepoint to b, then [β, idω, idA]
is fixed by the non-trivial subgroup of ΣbB ⊂ ΣB of the bijections fixing b.

In particular, if f is a G-global cofibration, then f(B+) need not be a (G×ΣB)-
global cofibration for |B| ≥ 3. However, one can at least show that it is a G-global
cofibration, cf. Proposition 2.2.26 below.

We now want to prove a tame analogue of this:

Theorem 2.2.24. There exists a unique model structure on Γ-EM-G-SSetτ∗
in which a map f is a weak equivalence or fibration if and only if f(S+) is a positive
(G×ΣS)-global weak equivalence or fibration, respectively, for any finite set S. We
call this the positive G-global level model structure and its weak equivalences the
G-global level weak equivalences.

This model structure is combinatorial with generating cofibrations(
Γ(S+, –) ∧ (EInj(A, –)×G)+

)
/H ∧ (∂∆n ↪→ ∆n)+

where H runs through finite groups, S through finite H-sets, and A through non-
empty finite faithful H-sets. Moreover, it is simplicial, proper, filtered colimits in it
are homotopical, and a square is a homotopy pushout if and only if it so levelwise.
In particular, pushouts along injective cofibrations are homotopy pushouts.

Here we use the positive model structure merely to faciliate the comparison to
G-parsummable simplicial sets given in the next section.

To prove the theorem we will employ:

Lemma 2.2.25. Let i : Y → Z be an acyclic cofibration in the (G × H)-global
model structure on EM-(G×H)-SSet

τ
∗ and let X be a left-H ′-right-H-simplicial

set. Then X ∧H i is a (G×H ′)-global weak equivalence.

Proof. Let K ⊂ M be any universal subgroup. By Lemma 1.4.60, i is a
GK,G×H -cofibration, and it is obviously acyclic. Thus, it is enough to show that
X ∧H – sends acyclic cofibrations in the GK,G×H -model structure to acyclic cofibra-
tions in the injective GK,G×H′ -model structure. But as before it suffices to prove
this for the generating acyclic cofibrations, where this is trivial. �

Proof of Theorem 2.2.24. By the same arguments as in Theorem 2.2.22 it
suffices that for every A+, B+ ∈ Γ the functor

Γ(A+, B+) ∧ΣA –: EM-(G×ΣA)-SSet
τ
∗ → EM-(G×ΣB)-SSet

τ
∗

sends positive (G×ΣA)-global (acyclic) cofibrations to (acyclic) cofibrations in the
injective (G×ΣB)-global model structure: indeed, it is clear that Γ(A+, B+)∧ΣA i
is an injective cofibration, and if i is acyclic, then the previous lemma implies that
Γ(A+, B+) ∧ΣA i is a (G× ΣB)-global weak equivalence as desired. �
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As before, if i is a cofibration in the above model structure, then i(S+) will in
general not even be a (G × ΣS)-global cofibration for a finite set S with at least
three elements. However we have:

Proposition 2.2.26. Let f : X → Y be a cofibration in Γ-EM-G-SSetτ∗, and
let S be any finite set. Then f(S+) is a positive G-global cofibration.

Proof. It suffices to prove this for generating cofibrations, for which we are
then reduced by the same arguments as before to showing that(

Γ(T+, S+) ∧ (G× EInj(A,ω))+

)
/H ∼=

(
EInj(A,ω)+ ∧ (G+ ∧ Γ(T+, S+))

)
/H

is cofibrant in the positive G-global model structure for any finite group A, any non-
empty faithful H-set A, any finite H-set T , and any homomorphism ϕ : H → G,
where H acts from the right via its given actions on A and T and via its right
action on G via ϕ.

We now claim that the functor

(2.2.3)
(Hop ×G)-SSet∗ → EM-G-SSetτ∗

X 7→ (EInj(A,ω)+ ∧X)/H

is left Quillen with respect to the GHop,G-equivariant model structure on the source
and the positive G-global model structure on the target. As the cofibrant objects
on the source are precisely those simplicial sets with free G-action outside the
basepoint, this will then immediately imply the proposition.

To prove the claim, we observe that (2.2.3) factors up to isomorphism as the
composition of the left Quillen functor evω : G-I-SSet∗ → EM-G-SSetτ∗ and the
functor

(Hop ×G)-SSet∗ → G-I-SSet∗, X 7→ (I(A, –)+ ∧X)/H

which is left adjoint to X 7→ X(A)ϕ. The latter is by definition right Quillen with
respect to the G-global positive level model structure on the source, hence also with
respect to the G-global positive model structure. This completes the proof of the
claim and hence of the proposition. �

Together with Lemma 1.4.60 we immediately conclude:

Corollary 2.2.27. Let i : X → Y be a cofibration in the positive G-global
model structure on Γ-EM-G-SSetτ∗ and let S be any finite set. Then:

(1) Y (S+) has no simplices of empty support outside the image of i(S+).
(2) G acts freely on Y (S+) outside the image of i(S+). �

Finally, let us consider the models based on I-simplicial sets:

Theorem 2.2.28. There exists a unique model structure on Γ-G-I-SSet∗ in
which a map f is a weak equivalence or fibration if and only if f(S+) is a (G×ΣS)-
global weak equivalence or fibration, respectively, for any finite set S.

We call this the G-global level model structure and its weak equivalences the
G-global level weak equivalences. It is combinatorial with generating cofibrations{(

Γ(S+, –) ∧ (I(A, –)×G)+

)
/H ∧ (∂∆n ↪→ ∆n)+ : H finite group, S finite H-set,

A finite faithful H-set
}

and moreover simplicial, proper, and filtered colimits in it are homotopical. Finally,
a square is a homotopy pushout if and only if it so levelwise. In particular, pushouts
along injective cofibrations are homotopy pushouts.
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Proof. As before it suffices that Γ(A+, B+) ∧ΣA –: (G×ΣA)-I-SSet∗ →
(G×ΣB)-I-SSet∗ sends (G× ΣA)-global (acyclic) cofibrations to (acyclic) cofi-
brations in the injective (G× ΣB)-global model structures for all A+, B+ ∈ Γ.

If i is a (G × ΣA)-global cofibration, then it is clear that Γ(A+, B+) ∧ΣA i
is an injective cofibration. Moreover, if i is acyclic, then i(ω) is an acyclic cofi-
bration in the (G × ΣA)-global model structure on EM-(G×ΣA)-SSet

τ
∗ . As

(Γ(A+, B+) ∧ΣA i)(ω) is conjugate to Γ(A+, B+) ∧ΣA (i(ω)), the acyclicity part
therefore follows from Lemma 2.2.25. �

Remark 2.2.29. The analogue of the above theorem for the positive G-global
model structure holds and can be proven in the same way. Finally, we note that
similar arguments yield various G-global level model structures on Γ-M-G-SSet∗,
Γ-M-G-SSetτ∗ , and Γ-G-I-SSet∗; as they will play no role in the arguments to
come, we leave the details to the interested reader.

2.2.2.3. Comparison of level model structures. Let us now lift some of the equiv-
alences between the models of unstable G-global homotopy theory to Γ-spaces:

Theorem 2.2.30. The functors

(2.2.4) evω : Γ-G-I-SSet∗ � Γ-EM-G-SSet∗ : (–)[ω•]

are homotopical, and they descend to mutually inverse equivalences of associated
quasi-categories.

Proof. We first observe that each of the functors

(–)[ω•] : EM-(G×ΣS)-SSet∗ → (G×ΣS)-I-SSet∗

is homotopical by Proposition 1.4.50, so that the right hand functor in (2.2.4) is
homotopical. On the other hand, each of the functors

evω : (G×ΣS)-I-SSet∗ → EM-(G×ΣS)-SSet∗

is homotopical by definition, hence so is the left hand functor in (2.2.4).
Now the proof of Proposition 1.4.50 constructs a natural transformation from

the endofunctor (–)[ω•]◦evω of I-SSet to the identity and shows that for any group
H the induced transformation of endofunctors of H-I-SSet is a levelwise H-global
weak equivalence; this then provides a levelwise G-global level weak equivalence
exhibiting evω as right inverse to (–)[ω•] on the level of Γ-spaces.

Analogously, we have constructed a natural zig-zag between evω ◦ (–)[ω•] and
the identity of EM-SSet, and we proved that for any H the induced zig-zag of
endofunctors of EM-H-SSet is a levelwise weak equivalence. We conclude as
before that evω is left homotopy inverse to (–)[ω•] on the level of Γ-spaces. �

Similarly one deduces from Theorem 1.4.57:

Theorem 2.2.31. The functors

evω : Γ-G-I-SSet∗ � Γ-EM-G-SSetτ∗ : (–)•

are homotopical, and they descend to mutually inverse equivalences of associated
quasi-categories. �

By 2-out-of-3 we conclude from the above two theorems:

Corollary 2.2.32. The inclusion Γ-EM-G-SSetτ∗ ↪→ Γ-EM-G-SSet∗ in-
duces an equivalence of associated quasi-categories. �
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2.2.2.4. Connection to equivariant Γ-spaces. We now want to clarify the rela-
tion between G-global Γ-spaces and the G-equivariant Γ-spaces discussed before.
To this end, we introduce the following model structure which for finite G recov-
ers [Ost16, Theorem 4.7]:

Proposition 2.2.33. There is a unique model structure on Γ-G-SSet∗ in
which a map f is a weak equivalence or fibration if and only if f(S+) is a weak equiv-
alence or fibration, respectively, in the GFin,ΣS -model structure on (G×ΣS)-SSet.
We call this the G-equivariant level model structure and its weak equivalences the
G-equivariant level weak equivalences. It is simplicial, proper, and combinatorial
with generating cofibrations

{(Γ(S+, –) ∧G+)/K ∧ (∂∆n ↪→ ∆n)+ : K ⊂ G finite, S finite K-set}.

Finally, the G-equivariant level weak equivalences are stable under filtered colimits.

Proof. As before it suffices that

Γ(A+, B+) ∧ΣA –: (G×ΣA)-SSet∗ → (G×ΣB)-SSet∗

sends the standard generating (acyclic) cofibrations of the GFin,ΣA -model structure
to (acyclic) cofibrations in the injective GFin,ΣB -model structure, which is clear by
direct inspection. �

The above condition is equivalent to demanding that f(S+) be anH-equivariant
weak equivalence or fibration for any finite subgroup H ⊂ G and any finite H-set
S. We caution the reader that unlike for finite G this is stronger than demanding
that f(S+) be a Fin-weak equivalence or fibration for every finite G-set S:

Example 2.2.34. Let f : X → Y be a level weak equivalence of Γ-spaces that is
not a Z/n-level weak equivalence (with respect to the trivial Z/n-action) for some
n ≥ 2, see e.g. Example 2.2.14. Then f is not a Q/Z-level weak equivalence either
as Z/n embeds into Q/Z. However, f(S+) is a Q/Z-weak equivalence for every
finite Q/Z-set S, as Q/Z admits no non-trivial actions on finite sets.

We will now discuss some homotopical properties of the passage from G-global
Γ-spaces to H-equivariant Γ-spaces along a group homomorphism ϕ : H → G, which
will become crucial later in the comparison between G-global Γ-spaces and G-global
spectra. While similar results can be achieved for the other models introduced
above, we will restrict to the approach via I-simplicial sets.

Definition 2.2.35. Let H be any group (not necessarily finite), let UH as
in (1.4.14), and let ϕ : H → G be any homomorphism. Then the ϕ-underlying
equivariant Γ-space uϕ(X) of X ∈ Γ-G-I-SSet∗ is (ϕ∗X)(UH). If f : X → Y is
any map in Γ-G-I-SSet∗, then we define uϕ(f) := (ϕ∗f)(UH).

If H ⊂ G and ϕ is the inclusion, then we abbreviate uH := uϕ.

Lemma 2.2.36. The following are equivalent for any map f in Γ-G-I-SSet∗:

(1) f is a G-global level weak equivalence.
(2) uϕ(f) is an H-equivariant level weak equivalence for all groups H and all

homomorphisms ϕ : H → G.
(3) uϕ(f) is an H-equivariant level weak equivalence for all finite groups H

and all homomorphisms ϕ : H → G
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Proof. Clearly (2)⇒ (3); we will show that also (1)⇒ (2) and (3)⇒ (1).
For (1)⇒ (2), let H be any group and ϕ : H → G any homomorphism. By defi-

nition, f(S+) is a (G×ΣS)-global weak equivalence for any finite set S; in particular,
if K ⊂ H is any finite subgroup, then (ϕ∗f)(S+) is a K-global weak equivalence
for any K-action on S. As UH (viewed as a K-set) contains a complete K-set
universe (Lemma 1.4.54), Lemma 1.4.16 implies that (uϕ f)(S+) = evUH (ϕ∗f(S+))
is a K-equivariant weak equivalence. Letting K and S vary, this precisely means
that uϕ f is an H-equivariant level weak equivalence.

For (3)⇒ (1), let H ⊂M be any universal subgroup together with homomor-
phisms ϕ : H → G, ρ : H → ΣS ; we have to show that f(S+)(ω)(ϕ,ρ) is a weak
homotopy equivalence. But as both UH as well as ω are complete H-set universes,
f(S+)(ω) agrees up to conjugation by (ΣS × H)-equivariant isomorphisms with
f(S+)(UH) = (uϕ f)(S+). Thus, f(S+)(ω)(ϕ,ρ) is conjugate to the weak homotopy
equivalence (uϕ f)(ρ∗S+)H , hence a weak homotopy equivalence itself. �

We now want to give a simpler construction of uH under suitable fibrancy
conditions. For this we will need:

Corollary 2.2.37. There is a unique model structure on Γ-G-I-SSet∗ with
the injective cofibrations as cofibrations and the G-global level weak equivalences as
weak equivalences.

We call this the injective G-global level model structure. It is combinatorial,
simplicial, proper, and filtered colimits in it are homotopical.

Proof. As pushouts along injective cofibrations preserve weak equivalences,
Corollary A.2.18 shows that the model structure exists, that it is proper, and that
filtered colimits in it are homotopical. Finally, the Pushout Product Axiom for the
simplicial tensoring follows by applying Theorem 1.4.35 levelwise (with G replaced
by G× ΣS for varying finite sets S). �

Warning 2.2.38. In general, fibrations in Γ-G-I-SSet∗ need not be levelwise
injective fibrations, i.e. evT+

: Γ-G-I-SSet∗ → (ΣT ×G)-I-SSet∗ need not be
right Quillen with respect to the injective G-global level and injective (ΣT × G)-
global model structures. Equivalently, the left adjoint GT+

need not be homotopical
as the following example for G = 1 shows: we let T be any finite set with |T | ≥ 2.
If GT+ were homotopical, then the same would be true for

(2.2.5) Γ(T+, 1
+) ∧ΣT – ∼= ev1+ ◦GT+ : ΣT -I-SSet∗ → I-SSet∗.

However, the map f : T+ → 1+ with f(t) = 1 for all t ∈ T is ΣT -fixed, and so is
the map sending everything to the base point. We conclude that S0 with trivial
ΣT -action is a ΣT -equivariant retract of Γ(T+, 1

+), so that (–)/ΣT ∼= S0 ∧ΣT – is a
retract of (2.2.5); in particular, it would have to be homotopical.

But we have seen in the proof of Proposition 1.4.42 that I(T, –)+ → ∗+ (where
ΣT acts on the left hand side via its right action on T ) is a ΣT -global weak equiva-
lence, and we claim that (I(T, –)/ΣT )+ → ∗+ is not a global weak equivalence. In-
deed, it suffices that (EInj(T, ω)/ΣT )→ ∗ is not a global weak equivalence of EM-
simplicial sets, but this isn’t even an underlying weak equivalence as EInj(T, ω)/ΣT
is a K(ΣT , 1) and hence in particular not weakly contractible.

However, we at least have:
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Proposition 2.2.39. Let H ⊂ G and let S be a finite H-set. Then

(2.2.6) evS+ : (Γ-G-I-SSet∗)injective G-global level → (H-I-SSet∗)injective H-global

is right Quillen. Here X(S+) for X ∈ G-Γ-I-SSet∗ is as usual equipped with the
diagonal of the H-action on S and the restriction of the G-action on X.

Proof. We first observe that in the adjunction

G+ ∧H –: Γ-H-I-SSet∗ � Γ-G-I-SSet∗ : resGH

(where resGH denotes restriction from G to H) the left adjoint obviously preserves
injective cofibrations and that it sends H-global level weak equivalences to G-global
level weak equivalences by Lemma 1.4.40 (applied to H×ΣS ↪→ G×ΣS for varying
finite set S). In particular, resGH is right Quillen with respect to the injective level
model structures, and we may therefore assume without loss of generality that
H = G.

Let ρ : G → ΣS be the homomorphism classifying the G-action on S. Then
(2.2.6) factors as

Γ-G-I-SSet∗
evS+−−−→ (G×ΣS)-I-SSet∗

(id,ρ)∗−−−−→ G-I-SSet∗,

so a left adjoint is given by GS+
◦ (id, ρ)!. This obviously preserves injective cofi-

brations, so it suffices to prove that it is homotopical, i.e. if f is a weak equivalence
of pointed G-I-simplicial sets, then

(2.2.7) (GS+
(id, ρ)!f)(T+) = Γ(S+, T+) ∧ΣS (G× ΣS)+ ∧G f

(where G acts on both G and ΣS from the right) is a (G×ΣT )-global weak equiv-
alence for every finite set T .

Let us write Γ(S+, T+)conj for Γ(S+, T+) with G action via S and ΣT -action via
T . Then an analogous calculation to the one from the proof of Theorem 2.2.22 shows
that (2.2.7) is conjugate to Γ(S+, T+)conj∧f . One easily checks that smashing with
any pointed (G×ΣT )-simplicial set sends G-global weak equivalences to (G×ΣT )-
global weak equivalences, which then completes the proof. �

Corollary 2.2.40. Let X be fibrant in the injective G-global level model struc-
ture, let H ⊂ G, and let i : A → B be an H-equivariant injection of H-sets. Then
X(–)(A)→ X(–)(B) is an H-equivariant level weak equivalence of Γ-H-spaces.

Proof. Let H ′ ⊂ H be finite and let S be a finite H ′-set. We have to show
that X(S+)(i) : X(S+)(A) → X(S+)(B) is an H ′-equivariant weak equivalence.
But by the previous proposition X(S+) is an injectively fibrant H ′-I-simplicial set,
so the claim follows from Proposition 1.4.42. �

Corollary 2.2.41. Let X be fibrant in the injective G-global level model struc-
ture on Γ-G-I-SSet∗ and let H ⊂ G. Then ∅ → UH induces an H-equivariant
level weak equivalence resGHX(–)(∅)→ X(–)(UH) = uH(X). �

Finally, let us lift the comparison between G-I-simplicial sets and G-simplicial
sets established in Subsection 1.4.4 to the level of Γ-spaces:

Proposition 2.2.42. The simplicial adjunctions

uG = evUG : Γ-G-I-SSet∗ � Γ-G-SSet∗ :R(2.2.8)

const : Γ-G-SSet∗ � (Γ-G-I-SSet∗)injective : ev∅(2.2.9)
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are Quillen adjunctions, evUG is homotopical, and ev∞UG ' Rev∅. Moreover, the
induced adjunctions ev∞UG a RR and L const a Rev∅ are a left and right Bousfield
localization, respectively, with respect to the uG-weak equivalences (i.e. those maps
sent to G-equivariant level weak equivalences under uG).

For the proof we will need:

Lemma 2.2.43. Let H be a group, S a finite H-set, and i : X → Y a cofibration
in the GFin,H-model structure on (G×H)-SSet∗. Then (Γ(S+, –) ∧ i)/H is a
cofibration in the G-equivariant level model structure on Γ-G-SSet∗.

Proof. As (Γ(S+, –) ∧ –)/H is cocontinuous and preserves tensors, it suffices
to prove that (Γ(S+, –)∧(G×H)+/ΓK,ϕ)/H is cofibrant for any finite group K ⊂ G
and any homomorphism ϕ : K → H. But this is isomorphic to (Γ(ϕ∗S+, –)∧G+)/K
where K acts on S and on G in the obvious way. The claim follows immediately
from the description of the generating cofibrations given in Proposition 2.2.33. �

Proof of Proposition 2.2.42. Lemma 2.2.36 shows that evUG is homotopi-
cal. To prove that it is left Quillen, it is then enough by the previous lemma and the
explicit description of the generating cofibrations that EInj(A,UG)×G is GFin,H -
cofibrant for every finite faithful H-set A and H acting from the right on G via any
homomorphism ϕ. But indeed, H acts freely on the first factor, so every isotropy
group belongs to GG,H ; on the other hand, G acts freely on the second factor, hence
every isotropy group belongs to GH,G, so it is in particular finite, as desired.

To prove that (2.2.9) is a Quillen adjunction, too, let f : X → Y be a fibration or
acyclic fibration in Γ-G-I-SSet∗; we have to show that f(S+)(∅) is a fibration or
acyclic fibration, respectively, in H-SSet∗ for each H ⊂ G and each finite H-set S.
But f(S+) is a fibration or acyclic fibration in the injectiveH-global model structure
by Proposition 2.2.39, so the claim follows from the proof of Corollary 1.4.53.

Next, we observe that the inclusion ∅ ↪→ UG induces a natural transformation
ι : ev∅ ⇒ evUG , which is a G-equivariant level weak equivalence on injectively
fibrant G-global Γ-spaces by Corollary 2.2.41. As evUG is homotopical, this yields
the desired equivalence (evUG)∞ ' Rev∅.

It only remains to show that the derived unit X → Rev∅(constX) is a G-
equivariant level weak equivalence for every (cofibrant) equivariant Γ-space X. For
this we fix an injectively fibrant replacement κ : constX → Y and consider the
commutative diagram

X ev∅ constX evUG constX

ev∅Y evUGY

η

∼=
ι
∼=

ev∅κ evUGκ∼

∼
ι

The composition X → ev∅Y represents the derived unit. But the top horizontal
arrows are isomorphisms by direct inspection, the lower horizontal arrow is a G-
equivariant weak equivalence by the above, and the right hand vertical map is
a G-equivariant weak equivalence as evUG is homotopical. The claim follows by
2-out-of-3. �

Warning 2.2.44. The functor const : Γ-G-SSet∗ → Γ-G-I-SSet∗ is not ho-
motopical with respect to the G-global level weak equivalences on the target. How-
ever, it is indeed homotopical with respect to the uG-weak equivalences.
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2.2.2.5. Functoriality. The results on the change-of-group adjunctions for the
models of (pointed) unstable G-global homotopy theory discussed in Chapter 1
easily transfer to statements about the corresponding adjunctions on the level of
Γ-spaces. Instead of making all of these explicit, we will only collect the results
here that we will need below:

Corollary 2.2.45. Let α : H → G be any group homomorphism. Then the
adjunction

α! : Γ-EM-H-SSetτ∗ � Γ-EM-G-SSetτ∗ :α∗

is a Quillen adjunction with fully homotopical right adjoint. Moreover, if α is
injective, then also the left adjoint is homotopical.

Proof. As weak equivalences and fibrations are defined levelwise, this follows
by applying Lemma 1.4.65 to α× ΣS for varying finite set S. �

Similarly one deduces from Lemma 1.4.67:

Corollary 2.2.46. Let α : H → G be an injective homomorphism such that
(G : imα) <∞. Then the adjunction

α∗ : Γ-EM-G-SSetτ∗ � Γ-EM-H-SSetτ∗ :α∗

is a Quillen adjunction in which both functors are homotopical. �

2.2.3. Special G-global Γ-spaces. Just as in the classical equivariant or
non-equivariant setting, we want to think for a G-global Γ-space X of the maps
X(S+) → X(1+) induced by the unique maps S → {1} as ‘generalized multipli-
cations.’ In order for this intuition to apply, we need to Bousfield localize at a
suitable class of G-global Γ-spaces:

Definition 2.2.47. We call X ∈ Γ-EM-G-SSet∗ special if the following
holds: for all finite sets S the Segal map

X(S+)
ρS :=X(ps)s∈S−−−−−−−−−→

∏
s∈S

X(1+)

is a (G×ΣS)-global weak equivalence, where ΣS acts on both sides via its tautolog-
ical action on S, and analogously for X ∈ Γ-EM-G-SSetτ∗ or X ∈ Γ-G-I-SSet∗.

We denote the corresponding full subcategories by the superscript ‘special.’

One easily proves by direct inspection similarly to Lemma 2.2.36:

Lemma 2.2.48. A G-global Γ-space X ∈ Γ-G-I-SSet∗ is special if and only
if uϕX is special in the sense of Definition 2.2.9 for all finite groups H and all
homomorphisms ϕ : H → G. �

Example 2.2.49. In Example 2.2.11 we have seen how one can assign a special
Γ-G-space to a small symmetric monoidal category C with G-action through strictly
unital strong symmetric monoidal functors. By a slight variation, we can actually
build a special G-global Γ-space from the same data. For this, let us consider the
functor Fun(EM, –) : G-Cat → EM-G-Cat, where EM acts on itself from the
right via precomposition. We claim that NFun(EM,Γ(C )) is a special G-global
Γ-space for any C as above.
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Indeed, if H ⊂ M is any subgroup, then H acts freely from the right on M,
so there exists a right H-equivariant map r : M → H. It is then trivial to check
that EH ↪→ EM is an H-equivariant equivalence, i.e. an equivalence in the 2-
category of right H-categories, H-equivariant functors, and H-equivariant natural
transformations: a quasi-inverse is given by Er, and the unique maps h → ri(h)
in EH assemble into an H-equivariant isomorphism id ∼= (Er)(Ei). Analogously,
there is a (unique) H-equivariant isomorphism id ∼= (Ei)(Er).

It follows that the functor Fun(EM, –)H is just naturally equivalent to the cat-
egorical homotopy fixed point functor Fun(EH, –)H ; in particular, it sends underly-
ing equivalences of H-categories to equivalences of categories. Restricting along all
homomorphisms H → G×ΣS , we therefore conclude that NFun(EM, –) sends un-
derlying equivalences of (G×ΣS)-categories to (G×ΣS)-global weak equivalences in
EM-(G×ΣS)-SSet, and it follows as in Example 2.2.11 that NFun(EM,Γ(C ))
is G-globally special in the above sense.

The comparisons from the previous subsection carry over to the context of
special G-global Γ-spaces:

Corollary 2.2.50. All the functors in the diagram

Γ-EM-G-SSetτ,special
∗ Γ-EM-G-SSetspecial

Γ-G-I-SSetspecial
∗

(–)[ω•]evω

are homotopical, and they induce equivalencess of associated quasi-categories. More-
over, the resulting diagram commutes up to preferred equivalence.

Proof. As specialness is obviously invariant under G-global level weak equiv-
alences, Proposition A.1.15 implies that for all of the above models the inclusion of
the full subcategory of special G-global Γ-spaces descends to a fully faithful functor
of associated quasi-categories.

Next we observe that all of the functors are defined levelwise. The correspond-
ing functors in each level preserve and reflect (G × ΣS)-global weak equivalences
(as they are homotopical and induce equivalences by the results of Chapter 1), and
they preserve finite products by direct inspection. We therefore conclude that they
preserve and reflect specialness.

Thus, the comparisons of G-global Γ-spaces from the previous section imply
that all of the above functors descend to equivalences of quasi-localizations. It only
remains to show the commutativity up to equivalence, which now follows easily
from Theorem 2.2.30. �

2.2.3.1. A model categorical manifestation. For all of our above model cate-
gories of G-global Γ-spaces, one can obtain a model of special G-global Γ-spaces
via Bousfield localization. We will make this explicit for Γ-EM-G-SSetτ∗ :

Definition 2.2.51. A morphism f : X → Y in Γ-EM-G-SSetτ∗ is called a
G-global special weak equivalence if the induced map f∗ : [Y, T ]→ [X,T ] is bijective
for all special G-global Γ-spaces T . Here [ , ] denotes the hom sets in the homotopy
category of Γ-EM-G-SSetτ∗ with respect to the G-global level weak equivalences.
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Theorem 2.2.52. There exists a unique model structure on Γ-EM-G-SSetτ∗
with the same cofibrations as the positive G-global level model structure, and whose
weak equivalences are the G-global special weak equivalences. Its fibrant objects are
precisely the positively level fibrant special G-global Γ-spaces, and we call this the
G-global special model structure.

It is left proper, simplicial, and filtered colimits in it are homotopical. More-
over, it is combinatorial and there exists a set J of generating acyclic cofibrations
consisting only of maps between cofibrant objects.

Proof. For the existence of the model structure, and the proof that it is
simplicial, left proper, and combinatorial, it suffices by Theorem A.2.2 that there
exists a set T of maps between cofibrant objects such that the special G-global
Γ-spaces are precisely the T -local objects Z, i.e. those such that the induced map
f∗ : maps(Y,Z ′) → maps(X,Z ′) is a weak homotopy equivalence of simplicial sets
for all f : X → Y in T and some (hence any) choice of fibrant replacement Z ′ of Z
in the positive G-global level model structure.

For this we let H be a universal group of M, S a finite set, and ϕ : H → G,
ψ : H → ΣS any group homorphisms. We now fix a free H-orbit F ⊂ ω. Then(
Γ(S+, –) ∧ (EInj(F, ω) × G)+

)
/H (where H acts on G from the right via ϕ, on

S via ψ, and on F in the tautological way) corepresents X 7→ X(S+)
(ϕ,ψ)
[F ] in

the simplicially enriched sense. Here H acts via ϕ, ψ and the restriction of the
EM-action to H (which preserves simplices supported on the H-set F ). Similarly,

(S+ ∧ Γ(1+, –) ∧ (EInj(F, ω)×G)+) /H corepresentsX 7→
(∏

s∈S X(1+)
)(ϕ,ψ)

[F ]
. By

the Yoneda Lemma we therefore get a map

λH,S,ϕ,ψ :
(
S+∧Γ(1+, –)∧(EInj(F, ω)×G)+

)
/H→

(
Γ(S+, –)∧(EInj(F, ω)×G)+

)
/H

such that for any Z the restriction maps(λH,S,ϕ,ψ, Z) is conjugate to

(ρS)
(ϕ,ψ)
[F ] : Z(S+)

(ϕ,ψ)
[F ] →

(∏
S
Z(1+)

)(ϕ,ψ)

[F ]
;

explicitly, λH,S,ϕ,ψ is induced by the map

(2.2.10) S+ ∧ Γ(1+, T+)→ Γ(S+, T+), [s, f ] 7→ f ◦ ps
Now assume Z fibrant in the G-global positive level model structure. Then Z(S+)
is fibrant in the positive (G×ΣS)-global model structure, so the inclusion induces a

weak equivalence Z(S+)
(ϕ,ψ)
[F ] ↪→ Z(S+)(ϕ,ψ) by Remark 1.4.59. On the other hand,∏

s∈S Z(1+) is fibrant in the (G×ΣS)-global model structure by Corollary 1.4.68; we
conclude by the same argument as before that the inclusion induces a weak equiv-

alence
(∏

s∈S Z(1+)
)(ϕ,ψ)

[F ]
→
(∏

s∈S Z(1+)
)(ϕ,ψ)

. Altogether we see that ρ
(ϕ,ψ)
S is

a weak equivalence if and only if maps(λH,S,ϕ,ψ, Z) is a weak equivalence. In par-
ticular, ρS is a (G × ΣS)-global weak equivalence if and only if maps(λH,S,ϕ,ψ, Z)
is a weak equivalence for all ϕ and ψ as above.

Now we define T to be set of all λH,S,ϕ,ψ for all H in a chosen set of represen-
tatives of isomorphism classes of finite groups, all S = {1, . . . , n} for n ≥ 0, and all
homomorphisms ϕ : H → G, ψ : H → ΣS . The above then shows that a positively
level fibrant Z is special if and only if maps(f, Z) is a weak equivalence for all
f ∈ T . On the other hand, the targets of the maps in S are obviously cofibrant,
while for the sources we observe that the functor corepresented by them sends
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acyclic G-global cofibrations to acyclic Kan fibrations by Corollary 1.4.68, hence
in particular to surjections on 0-simplices. Thus, also the sources are cofibrant,
finishing the proof of the existence of the model structure.

Lemma A.2.4 immediately implies that filtered colimits in the resulting model
structure are homotopical. Finally, if I is the usual set of generating cofibrations
of the positive G-global level model structure, then I is also a set of generating
cofibrations for the new model structure. As I obviously consists of maps between
cofibrant objects, [Bar10, Corollary 2.7] implies that also the set J of generating
acyclic cofibrations can be chosen to consist of maps between cofibrant objects. �

Lemma 2.2.53. Let f : X → Y be a map in Γ-EM-G-SSetτ,special
∗ . Then the

following are equivalent:

(1) f is a G-global special weak equivalence.
(2) f is a G-global level weak equivalence.
(3) f(1+) is a G-global weak equivalence.

Proof. It is clear that (2)⇒ (1) and (2)⇒ (3). The implication (1)⇒ (2) is a
general fact about Bousfield localizations, using that the special G-global Γ-spaces
are precisely the local objects. Finally, if S is any finite set, then f(S+) agrees with∏
s∈S f up to conjugation by (G× ΣS)-global weak equivalences. The implication

(3)⇒ (2) thus follows from Corollary 1.4.68. �

For later use we record:

Proposition 2.2.54. Let α : H → G be any group homomorphism. Then the
simplicial adjunction

α! : (Γ-EM-H-SSetτ∗)special � (Γ-EM-G-SSetτ∗)special :α∗

is a Quillen adjunction. If α is injective, then α! is fully homotopical.

Proof. For the corresponding level model structures, this was shown as Corol-
lary 2.2.45. To prove the first statement, it is therefore enough to show that α∗

preserves specialness, which is immediate from Lemma 1.4.65.

The second statement then follows from Corollary 2.2.45 as any G-global special
weak equivalence factors as a special G-global acyclic cofibration followed by a G-
global level weak equivalence. �

Lemma 2.2.55. Let f : X → Y be an injective cofibration in Γ-EM-G-SSetτ∗.
Then any pushout along f is a homotopy pushout in the G-global special model
structure.

Proof. As the injective cofibrations are closed under pushout, it suffices that
pushouts of G-global special weak equivalences along injective cofibrations are again
G-global special weak equivalences, see e.g. [BB17, Proposition 1.6].

Indeed, the G-global level weak equivalences are stable under pushouts along
injective cofibrations by Theorem 2.2.24, and the general case then follows as in
the proof of Theorem 1.2.41. �
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2.2.3.2. G-global vs. G-equivariant specialness. Let us call a Γ-G-space for a
general discrete group G special, if it is special as a Γ-H-space for all finite subgroups
H ⊂ G. We now want to use the comparison between G-global and G-equivariant
Γ-spaces from Proposition 2.2.42 to prove:

Theorem 2.2.56. The homotopical functor evUG: Γ-G-I-SSet∗→Γ-G-SSet∗
induces a Bousfield localization (Γ-G-I-SSetspecial

∗ )∞ → (Γ-G-SSetspecial
∗ )∞.

The proof of this is slightly more involved because being G-globally special
is a much stronger condition than being G-equivariantly special; in particular, it
turns out that const : Γ-G-SSet∗ → Γ-G-I-SSet∗ does not preserve specialness.
Instead, we will have to consider the right adjoint RR of ev∞UG , but proving that
this has the desired properties requires some preparations.

We begin with the following analogue of Theorem 2.2.52:

Proposition 2.2.57. There is a unique model structure on Γ-G-SSet∗ with
the same cofibrations as the G-equivariant level model structure and with fibrant
objects the G-equivariantly level fibrant special Γ-G-spaces. This model structure
is combinatorial, simplicial, left proper, and filtered colimits in it are homotopical.

Proof. This is proven in precisely the same way as Theorem 2.2.52 by local-
izing with respect to the maps

(2.2.11) (S+ ∧ Γ(1+, –) ∧G+)/H → (Γ(S+, –) ∧G+)/H

induced by (2.2.10) for every finite H ⊂ G and every finite H-set S (up to iso-
morphism); observe that the sources of these maps are indeed cofibrant as they
corepresent X 7→ maps(S+, X(1+))H , which is isomorphic to X 7→

∏r
i=1X(1+)Ki

when S ∼=
∐n
i=1H/Ki. �

We call the weak equivalences of the above model structure the G-equivariant
special weak equivalences. They can again be detected by mapping into special Γ-
G-spaces in the homotopy category (with respect to the G-equivariant level weak
equivalences); in particular, each of the maps (2.2.11) is a G-equivariant special
weak equivalence.

Proposition 2.2.58. There is a unique model structure on Γ-G-I-SSet∗ with
the same cofibrations as the G-global level model structure and with fibrant objects
the G-globally level fibrant special G-global Γ-spaces. This model structure is com-
binatorial, simplicial, left proper, and filtered colimits in it are homotopical.

Proof. This follows similarly by localizing with respect to the maps

λH,S,ϕ,ψ :
(
S+ ∧ Γ(1+, –) ∧ (I(H, –)×G)+

)
/H →

(
Γ(S+, –) ∧ (I(H, –)×G)+

)
/H

analogous to the above. �

Lemma 2.2.59. Let K be any group and let X ∈ (G×K)-SSet∗ be cofibrant
in the GFin,K-equivariant model structure. Then the map (S+∧Γ(1+, –)∧X)/K →
(Γ(S+, –) ∧ X)/K induced by (2.2.10) is a G-equivariant special weak equivalence
between cofibrant objects for every finite K-set S.

Proof. We first note that the target is indeed cofibrant by Lemma 2.2.43, and
so is the source by the following observation:
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Claim. The functor (S+ ∧ Γ(1+, –) ∧ –)/K : (G×K)-SSet∗ → Γ-G-SSet∗
sends GFin,K-cofibrations to cofibrations in the G-global level model structure.

Proof. We will show that (S+∧Γ(1+, –)∧ (G×K)+/ΓH,ϕ)/K is cofibrant for
any finite H ⊂ G and any homomorphism ϕ : H → K; the claim will then follow
as in Lemma 2.2.43. But indeed, this is isomorphic to ((ϕ∗S)+ ∧ Γ(1+, –) ∧G)/H,
which is cofibrant by the proof of Proposition 2.2.57 above. 4

We will verify the assumptions of Corollary 1.2.60 for the natural transforma-
tion τ : (S+ ∧ Γ(1+, –) ∧ –)/K ⇒ (Γ(S+, –) ∧ –)/K induced by (2.2.10).

If X = (G×K)/ΓH,ϕ for some finite subgroup H ⊂ G and some homomorphism
ϕ : H → K, then τX is clearly conjugate to the map (ϕ∗S+ ∧ Γ(1+, –) ∧ –)/H →
(Γ(ϕ∗S+, –)∧ –)/H induced by (2.2.10), hence a G-equivariant special weak equiv-
alence by the above. Moreover, if Y is any simplicial set, then τX×Y is conjugate
to τX × Y , so τ is a G-equivariant special weak equivalence for (G×K)/ΓH,ϕ × Y
as the G-global special model structure is simplicial. In particular, τ is a G-global
special weak equivalences on the sources and targets of the generating cofibrations.
The claim now follows as (S+∧Γ(1+, –)∧–)/K and (Γ(S+, –)∧–)/K each preserve
cofibrations as well as small colimits. �

Corollary 2.2.60. The simplicial adjunction

(2.2.12) evUG : (Γ-G-I-SSet∗)G-global special � (Γ-G-SSet∗)G-equiv. special :R

is a Quillen adjunction with fully homotopical left adjoint.

Proof. Let us first show that this is a Quillen adjunction. Since we already
know this for the respective level model structures (Proposition 2.2.42), it suffices
to show that R sends fibrant objects to special G-global Γ-spaces.

For this we let H be any finite group and ϕ : H → G any homomorphism,
yielding a right H-action on G. Then we have seen in the proof of Proposition 2.2.42
that (EInj(H,UG) × G)+ is cofibrant in the GFin,H -model structure, so the map
(S+ ∧ Γ(1+, –) ∧ (EInj(H,UG) × G)+)/H → (Γ(S+, –) ∧ (EInj(H,UG) × G)+)/H
induced by (2.2.10) is a G-equivariant special weak equivalence of cofibrant objects
by the previous lemma. The claim now follows from an easy adjointness argument.

We conclude in particular that evUG sends G-global special acyclic cofibrations
to G-equivariant special weak equivalences. As any G-global special weak equiva-
lence factors as an acyclic cofibration followed by a G-global level weak equivalence,
we conclude together with Lemma 2.2.36 that evUG is homotopical. �

Proof of Theorem 2.2.56. It is easy to check that evUG sends special G-
global Γ-spaces to special Γ-G-spaces. On the other hand, the previous corollary
implies that the right derived functor

RR : (Γ-G-SSet∗)
∞
G-equivariant level → (Γ-G-I-SSet∗)

∞
G-global level

sends special Γ-G-special spaces to special G-global Γ-spaces, so that the Bousfield
localization ev∞UG a RR from Proposition 2.2.42 restricts to a Bousfield localization
between the full subcategory of Γ-G-I-SSet∞∗ spanned by the special G-global Γ-
spaces and the full subcategory of Γ-G-SSet∞∗ spanned by the special Γ-G-spaces.
The claim now follows from Proposition A.1.15. �
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2.2.3.3. Semiadditivity. We want to think of special G-global Γ-spaces as G-
globally homotopy coherent versions of commutative monoids, so at the very least
their homotopy category should be semiadditive. In this subsection we will prove
the following ‘underived’ version of this:

Theorem 2.2.61. The canonical map ι : X ∨ Y → X × Y is a G-global special
weak equivalence for all X,Y ∈ Γ-EM-G-SSetτ∗.

The proof we will give below is a spiced-up version of the usual argument that
finite coproducts and products in a category of commutative monoids agree. This
requires some preparations.

Construction 2.2.62. Let A,B,C ∈ Γ, and let f : B → C be any morphism.
Then we have an induced map A ∧ f : A ∧B → A ∧ C. If C = 1+, then we will by
slight abuse of notation also denote the composition A ∧B → A ∧C ∼= A with the
canonical isomorphism A ∧ C ∼= A, [a, 1] 7→ a by A ∧ f , and similarly for B = 1+.

Now let T ∈ Γ-EM-G-SSetτ∗ . Applying the above to the map µ : 2+ → 1+,
µ(1) = µ(2) = 1 induces T (µ ∧ –) : T (2+ ∧ –) → T , and this is clearly natural
in T . On the other hand, the assignment T 7→ T (2+ ∧ –) obviously preserves G-
global level weak equivalences, so it descends to a functor on the homotopy category
Ho(Γ-EM-G-SSetτ∗)strict with respect to these. It follows formally that the map
µ : T (2+ ∧ –)→ T is also natural with respect to maps in the homotopy category.

Similarly the Segal maps assemble into a natural morphism

ρ := (T (p1 ∧ –), T (p2 ∧ –)) : T (2+ ∧ –)→ T × T ;

as the product preserves G-global level weak equivalences, this again descends to a
natural transformation on the strict homotopy category.

The following lemma follows easily from the definitions and we omit its proof.

Lemma 2.2.63. Let T ∈ Γ-EM-G-SSetτ∗ be special. Then ρ : T (2+ ∧ –) →
T × T is a G-global level weak equivalence. �

If T is special, then we write mT for the map T ×T → T in the strict homotopy
category corresponding to the zig-zag

T × T T T.∼
ρ T (µ∧–)

Proof of Theorem 2.2.61. Let us fix a special T ∈ Γ-EM-G-SSetτ∗ ; we
have to show that ι∗ : [X × Y, T ] → [X ∨ Y, T ] is bijective, where [ , ] denotes hom
sets in the strict homotopy category.

As ∨ is homotopical in G-global level weak equivalences, X∨Y is also a coprod-
uct in the strict homotopy category, so that (i∗X , i

∗
Y ) : [X ∨ Y, T ] → [X,T ] × [Y, T ]

is bijective. It therefore suffices to show that the composition α : [X × Y, T ] →
[X,T ] × [Y, T ] is bijective; plugging in the definition, we see that this is given by
(j∗X , j

∗
Y ), with jX : X → X × Y , jY : Y → X × Y the usual inclusions.

To prove the claim, we define β : [X,T ] × [Y, T ] → [X × Y, T ] as follows: if
f ∈ [X,T ], g ∈ [Y, T ] are arbitrary, then β(f, g) := mT ◦ (f × g); note that this
indeed makes sense because × descends to the homotopy category as above.

We claim that β is a two-sided inverse of α. Indeed, if f ∈ [X,T ], g ∈ [Y, T ] are
arbitrary, then αβ(f, g) = α(mT ◦(f×g)) = (mT ◦(f×g)◦jX ,mT ◦(f×g)◦jY ). We
will prove that mT ◦ (f×g)◦jX = f , the argument for the second component being
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similar. Indeed, we have (f × g)jX = j1f as both sides agree after postcomposing
with each of the two projections T × T → T (here we use that T × T is a product
in the homotopy category). On the other hand, let us consider the diagram

(2.2.13)

T

T T (2+ ∧ –)

T × T

=

T (i1∧–)

j1

T (µ∧–)

ρ

(say, on the poinset level), where i1 : 1+ → 2+ is defined by i1(1) = 1. Then the top
triangle commutes because µi1 = id1+ , and we claim that also the lower triangle
commutes. Indeed, after postcomposing with the projection to the first factor both
paths through the diagram are the identity (as p1i1 = id1+). On the other hand,
pr2j1 is constant at the basepoint, as is pr2 ◦ ρ ◦ T (i1 ∧ –) = T (p2 ∧ –) ◦ T (i1 ∧ –)
since it factors through T (0+) = ∗. From commutativity of (2.2.13) we can now
conclude mT j1 = T (µ ∧ –)T (i1 ∧ –) = id, hence mT ◦ (f × g) ◦ jX = f as desired.

Finally, let F ∈ [X × Y, T ] be arbitrary and consider the diagram

(X × Y )× (X × Y ) T × T

X × Y X(2+ ∧ –)× Y (2+ ∧ –) T (2+ ∧ –)

X × Y T

F×F

=

jX×jY

X(i1∧–)×Y (i2∧–)

ρ

X(µ∧–)×Y (µ∧–)

F (2+∧–)

ρ

T (µ∧–)

F

(2.2.14)

in the strict homotopy category. The right hand portion commutes by the naturality
established in Construction 2.2.62, and as above one shows that the triangles on
the left already commute on the pointset level.

Using the commutativity of (2.2.14) we then compute

βα(F ) = β(FjX , F jY )

= mT ◦
(
(FjX)× (FjY )

)
= mT ◦ (F × F ) ◦ (jX × jY )

= mT ◦ ρ ◦ F (2+ ∧ –) ◦
(
X(i1 ∧ –)× Y (i2 ∧ –)

)
= T (µ ∧ –) ◦ F (2+ ∧ –) ◦

(
X(i1 ∧ –)× Y (i2 ∧ –)

)
= F,

which completes the proof of the theorem. �

Corollary 2.2.64. Finite coproducts and finite products in Γ-EM-G-SSetτ∗
preserve G-global special weak equivalences.

Proof. It suffices to treat the case of binary coproducts and products, for
which we let f : X → X ′′ and g : Y → Y ′′ be any G-global special weak equiva-
lences. Then we can factor f as an acyclic cofibration i : X → X ′ followed by an
(automatically acyclic) fibration p : X ′ → X ′′, and similarly g = qj with an acyclic
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fibration q and an acyclic cofibration j. In the commutative diagram

X ∨ Y X ′ ∨ Y ′ X ′′ ∨ Y ′′

X × Y X ′ × Y ′ X ′′ × Y ′′

i∨j

ι ι

p∨q

ι

i×j p×q

the vertical arrows are G-global special weak equivalences by the previous theorem,
and so are the top left and bottom right arrows as acyclic cofibrations in any model
category are stable under (all) coproducts while acyclic fibrations are stable under
products. The claim follows by 2-out-of-3. �

Warning 2.2.65. We can define specialness for elements of the ordinary functor
category Γ-EM-G-SSetτ := Fun(Γ,EM-G-SSetτ ) in the same way as above,
which leads to a notion of G-global special weak equivalences on Γ-EM-G-SSetτ .
These are however not stable under finite products: for example the map

f : (Γ(1+, –)q Γ(1+, –))× EInj(∗, ω)×G→ Γ(2+, –)× EInj(∗, ω)×G

induced by restricting along p1, p2 is a G-global special weak equivalence because for
any level fibrant T the induced map [f, T ] is conjugate to the map π0T (2+)(ω)→
π0T (1+)×π0T (1+)(ω) induced by the Segal map. However, Γ(1+, –)×f is conjugate
to a map (Γ(2+, –)qΓ(2+, –))×EInj(∗, ω)×G→ Γ(3+, –)×EInj(∗, ω)×G by the
universal property of coproducts in Γ, hence not a G-global special weak equivalence
by a similar calculation as before.

Thus, the fact that also non-special G-global Γ-spaces are trivial in degree 0+

(or at least weakly contractible) is crucial for the theorem, which is why we have
been a bit more verbose in verifying that certain diagrams commute than usual.

2.2.3.4. The Wirthmüller isomorphism. Let α : H → G be an injective ho-
momorphism of finite groups. If X is a genuine H-equivariant spectrum, the
Wirthmüller isomorphism is a specific G-weak equivalence γ : α!X → α∗X, see
e.g. [Hau17, Proposition 3.7] and also [DHL+19, Theorem 2.1.10] or [LMS86,
Theorem II.6.2] for generalizations to the proper or compact Lie case, respectively.

In a precise sense, the Wirthmüller isomorphism marks the distinction between
genuine stable equivariant homotopy theory (encoding deloopings against all rep-
resentation spheres) and näıve stable equivariant homotopy theory (only admitting
deloopings against spheres with trivial actions). As non-equivariantly α! is given
by a (G : imα)-fold wedge, while α∗ is a (G : imα)-fold product, we can also view
this as some sort of ‘twisted semiadditivity.’ Below, we will construct an analogue
of the Wirthmüller map γ in our Γ-space context and prove:

Theorem 2.2.66. Let α : H → G be an injective homomorphism (of not nec-
essarily finite groups) such that (G : imα) < ∞, and let X ∈ Γ-EM-H-SSetτ∗.
Then the Wirthmüller map γ : α!X → α∗X is a G-global special weak equivalence.

The above theorem (in the guise of Corollary 2.3.6) will also be instrumental
in the proof of the equivalence between G-ultra-commutative monoids and special
G-global Γ-spaces that we will give in the next section.

Construction 2.2.67. Let us first recall the Wirthmüller map, which actually
already exists in the based context:
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Without loss of generality, we may assume for the rest of this discussion that
H is a finite index subgroup of G and that α is its inclusion. Then α! can be
modelled by applying G+ ∧H –: H-Set∗ → G-Set∗ levelwise and pulling through
the EM-action; the counit of this Set∗-level adjunction is then given by i : Y →
G+ ∧H Y, y 7→ [1, y]. Similarly, α∗ is given by applying mapsH(G, –) levelwise.

If now Y is any pointed H-set, then we define the Wirthmüller map as the
G-equivariant map γ : G+ ∧H Y → mapsH(G, Y ) adjunct to the H-equivariant
map

G+ ∧H Y → Y, [g, y] 7→

{
g.y if g ∈ H
∗ otherwise.

Explicitly,

γ[g, y](g′) =

{
g′g.y if g′g ∈ H
∗ otherwise.

It is easy to check that the Wirthmüller map is natural; in particular, we can apply
it levelwise to get a natural map γ : α!X → α∗X for any X ∈ Γ-EM-H-SSetτ∗ .

Just like we can think of Theorem 2.2.66 as twisted semiadditivity, the basic
idea of our proof will be similar to the proof of semiadditivity (Theorem 2.2.61);
however, the actual combinatorics are a bit more complicated and one has to be
slightly careful in keeping track of all the actions involved.

Construction 2.2.68. If Z is a pointed G-set and Y = resGHZ, then we can
partially ‘untwist’ the action on α!Y = G+ ∧H resGHZ by the usual G-equivariant
shearing isomorphism

shear : (G/H)+ ∧ Z → G+ ∧H resGHZ, [[g], z] 7→ [g, g−1.z],

and dually we have a natural G-equivariant coshearing isomorphism

coshear : ZG/H → mapsH(G, resGHZ)

defined by coshear(y•)(g) = g.z[g−1]. Again, applying this levelwise we can extend
these to natural maps of G-global Γ-spaces.

Construction 2.2.69. Let X be a G-global Γ-space. We define the twisted
Segal map % : X(G/H+ ∧ –)→ mapsH(G, resGHX) as the composition

X(G/H+ ∧ –)
ρ−→ XG/H coshear−−−−→ mapsH(G, resGHX).

Here the map ρ is obtained by applying in each degree the ‘generalized Segal map’
X(G/H+ ∧S+)→ X(S+)×(G/H) induced on factor [g] by p[g] ∧S+ : G/H+ ∧S+ →
S+.

As in the previous section, % is natural on the pointset level. Moreover,
mapsH(G, resGH–) is homotopical in the G-global level weak equivalences by Corol-
lary 2.2.46, and so is X(G/H+ ∧ –) for trivial reasons. As before we conclude that
% is also natural in maps in the strict homotopy category.

Lemma 2.2.70. Let T be a special G-global Γ-space. Then % : T (G/H+ ∧ –)→
mapsH(G, resGHT ) is a G-global level weak equivalence.



2.2. G-GLOBAL Γ-SPACES 139

Proof. It suffices to show that the generalized Segal map ρ : T (G/H+ ∧ –)→
TG/H is a G-global level weak equivalence (where G acts via its action on T and
on G/H). For this we observe that for any finite set S the composition

T ((G/H × S)+) ∼= T (G/H+ ∧ S+)
ρ−→ T (S+)×(G/H)

ρ
×(G/H)
S−−−−−→ (T (1+)×S)×(G/H) ∼= T (1+)×(G/H×S)

agrees with the Segal map ρG/H×S for G/H × S, so it is a (G × ΣG/H×S)-global
weak equivalence. Applying Corollary 2.2.45 to the homomorphism G×ΣS → G×
ΣG/H×S induced by the identity of G and the homomorphism G×ΣS → ΣG/H×S
classifying the obvious (G × ΣS)-action on G/H × S, then shows that this is in
particular a (G× ΣS)-global weak equivalence.

Similarly, ρS is a (G×ΣS)-global weak equivalence, so ρ
×(G/H)
S is a (G×ΣS ×

ΣG/H)-global weak equivalence by Corollary 1.4.68, hence in particular a (G×ΣS)-
global weak equivalence. The claim now follows by 2-out-of-3. �

We can now use this to define a twisted version of the ‘multiplication map’ mT

considered before:

Construction 2.2.71. We write ν : G/H+ → 1+ for the map with ν[g] =
1 for all g ∈ G, which induces for any X ∈ Γ-EM-G-SSetτ∗ a natural map
X(ν ∧ –) : X(G/H+ ∧ –) → X. As before this descends to a natural map on the
strict homotopy category.

If X = T is special, then we define nT : mapsH(G, resGHT ) → T as the map in
the strict homotopy category represented by the zig-zag

mapsH(G, resGHT ) T (G/H+ ∧ –) T.∼
% T (ν∧–)

Construction 2.2.72. We now define a ‘diagonal map’ δ : mapsH(G,X) →
mapsH(G,X)(G/H+ ∧ –) for every H-global Γ-space X as follows: if S is a a finite
set, n ≥ 0, and f : G→ X(S+)n is H-equivariant, then δ(f) : G→ X(G/H+∧S+)n
is defined via δ(f)(g) = X(i[g−1] ∧ S+)(f(g)), where i[g] : 1+ → S+ sends 1 to [g].

Lemma 2.2.73. The above defines a map in Γ-EM-G-SSetτ∗.

Proof. We first show that δ(f) is H-equivariant, for which it is important to
observe that the H-action from the definition of mapsH(G,X)(G/H+ ∧ S+) is via
the H-action on X only; the H-action on G/H does not come into play yet. Thus,

h.
(
δ(f)(g)

)
= h.

(
X(i[g−1])(f(g))

)
= X(i[g−1])

(
h.(f(g))

)
= X(i[g−1])

(
f(hg)

)
= X(i[(hg)−1])

(
f(hg)

)
= δ(f)(hg)

where the second equality uses that X(i[g−1]) is equivariant with respect to the H-

action coming from X only, whereas the penultimate equation uses that [(hg)−1] =
[g−1h−1] = [g−1] in G/H.

Thus, δ indeed lands in mapsH(G,X)(G/H+ ∧ –). It is then easy to check that
δ is compatible with the simplicial structure maps, the structure maps of Γ, and
the EM-action, so it only remains to prove G-equivariance. For this we observe
that the G-action on mapsH(G,X)(G/H+ ∧ S+) is via the diagonal of the right
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G-action on G and the left G-action on G/H. Thus, the chain of equalities

δ(g′.f)(g) = X(i[g−1])
(
(g′.f)(g)

)
= X(i[g−1])

(
f(gg′))

= X
(
(g′.–) ∧ –

)
X(i[(gg′)−1])

(
f(gg′)

)
= X

(
(g′.–) ∧ –

)(
δ(f)(gg′)

)
precisely shows that δ is G-equivariant. �

Construction 2.2.74. We define for any pointed H-set Y an H-equivariant
map j : Y → resGHmapsH(G, Y ) via

j(y)(g) =

{
g.y if g ∈ H
∗ otherwise.

This is clearly natural, and in particular we can apply it levelwise to get a natural
map X → resGHmapsH(G,X) for any H-global Γ-space X.

Proposition 2.2.75. Let F : mapsH(G,X)→ T be any morphism in the strict
homotopy category of Γ-EM-G-SSetτ∗. Then the diagram

mapsH(G, resGHmapsH(G,X)) mapsH(G, resGHT )

mapsH(G,X) mapsH(G,X)(G/H+ ∧ –) T (G/H+ ∧ –)

mapsH(G,X) T

mapsH(G,resGHF )

mapsH(G,j)

δ

=

F (G/H+∧–)

%

mapsH(G,X)(ν∧–)

%

T (ν∧–)

F

in the strict homotopy category commutes.

Proof. The right hand portion commutes by the above naturality considera-
tions, and we will now prove that the two triangles on the left already commute on
the pointset level.

Let us consider the lower triangle first. If S is a finite set, n ≥ 0, and f : G→
X(S+)n is H-equivariant, then

mapsH(G,X)(ν ∧ S+)(δ(f))(g) = X(ν ∧ S+)(δ(f)(g))

= X(ν ∧ S+)X(i[g−1] ∧ S+)
(
f(g)) = f(g)

for all g ∈ G, i.e. mapsH(G,X)(ν ∧ S+) ◦ δ = id.
Similarly, we compute for the upper left triangle

%(δ(f))(g) = coshear
(
ρ(δ(f))

)
(g) = g.

(
ρ(δ(f))[g−1])

= g.
(
mapsH(G,X)(p[g−1]))(δ(f))

)
∈ resGHmapsH(G,X(S+)n),

hence

%(δ(f))(g1)(g2) =
(
g1.
(
mapsH(G,X)(p[g−1

1 ]))(δ(f))
))

(g2)

=
(
mapsH(G,X)(p[g−1

1 ])(δ(f))
)
(g2g1)

= X(p[g−1
1 ])

(
δ(f)(g2g1)

)
= X(p[g−1

1 ])X(i[g−1
1 g−1

2 ])
(
f(g2g1)

)
.

If g2 ∈ H, then [g−1
1 g−1

2 ] = [g−1
1 ], hence X(p[g−1

1 ])X(i[g−1
1 g−1

2 ]) = id. On the other

hand, if g2 /∈ H, then [g−1
1 g−1

2 ] 6= [g−1
1 ] and X(p[g−1

1 ])X(i[g−1
1 g−1

2 ]) factors through
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the base point. Thus,

(2.2.15) %(δ(f))(g1)(g2) =

{
f(g2g1) if g2 ∈ H
∗ otherwise

=

{
g2.
(
f(g1)

)
if g2 ∈ H

∗ otherwise

for all g1, g2 ∈ G, where the second equality uses H-equivariance of f .
On the other hand,

(
mapsH(G, j)(f)

)
(g) = j(f(g)) ∈ resGHmapsH(G,X(S+)n)

for all g ∈ G, hence(
mapsH(G, j)(f)

)
(g1)(g2) = j(f(g1))(g2) =

{
g2.
(
f(g1)

)
if g2 ∈ H

∗ otherwise

for all g1, g2 ∈ G, which agrees with (2.2.15), finishing the proof. �

Proof of Theorem 2.2.66. By Corollary 2.2.45, G+ ∧H – and resGH are ho-
motopical in the respective level weak equivalences, and they descend to an ad-
junction between strict homotopy categories. We conclude that we have for every
X ∈ Γ-EM-H-SSetτ∗ and T ∈ Γ-EM-G-SSetτ∗ a bijection

[G+ ∧H X,T ]G → [X,T ]H , F 7→ resGH(F ) ◦ i;
here we write [ , ]H for the hom-sets in the strict homotopy category of H-global
Γ-spaces, and [ , ]G for the corresponding hom-sets of G-global Γ-spaces. Using that
j = resGH(γ) ◦ i, we are then reduced to showing that θ : [mapsH(G,X), T ]G →
[X,T ]H , F 7→ resGH(F ) ◦ j is bijective whenever T is special.

For this, we define an explicit inverse ζ : [X,T ]H → [mapsH(G,X), T ]G via
ζ(f) = nT ◦mapsH(G, f); here we have used again that mapsH(G, –) descends to
strict homotopy categories (Corollary 2.2.46).

If now f : X → resGHT is any map in the strict homotopy category of H-global
Γ-spaces, then θζ(f) = θ(nT ◦mapsH(G, f)) = resGH(nT )◦ resGH(mapsH(G, f))◦ j =
resGH(nT ) ◦ j ◦ f by naturality of j. A straight-forward calculation then shows that
the diagram

resGHmapsH(G, resGHT )

resGHT resGH(T×(G/H))

resGHT (G/H ∧ –)

j

resGHk

resGH(T (i[1]∧–))

resGHcoshear

ρ

in Γ-EM-H-SSetτ∗ commutes, where k : T → T×(G/H) is the inclusion of the
factor corresponding to [1] ∈ G/H. From this we immediately conclude that
resGH(nT ) ◦ j = resGH

(
T (ν ∧ –) ◦T (i[1] ∧ –)) = id, hence θζ(f) = resGH(nT ) ◦ j ◦ f = f

as desired.
Finally, ζθ(F ) = ζ(resGH(F ) ◦ j) = nT ◦mapsH(G, resGHF ) ◦mapsH(G, j), which

agrees with F by the previous proposition. �

2.3. Comparison of the approaches

A priori, the ultra-commutative or parsummable models are of a very different
nature than the models based on Γ-spaces. However, in this section we will con-
struct specific homotopical functors ϝ: G-ParSumSSet→Γ-EM-G-SSetτ,special

∗
and ϝ : G-UCom→ Γ-G-I-SSetτ,special

∗ , and prove:
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Theorem 2.3.1. The diagram

G-UCom G-ParSumSSet

Γ-G-I-SSetspecial
∗ Γ-EM-G-SSetτ,special

∗

ϝ

evω

ϝ

evω

of homotopical functors comutes up to canonical isomorphism. Moreover, all these
functors induce equivalences of associated quasi-categories.

Together with Theorem 2.1.54 this will in particular show that through the eyes
of finite groups, Schwede’s ultra-commutative monoids (i.e. commutative monoids
for the box product on L-Top) are equivalent to a suitable notion of ‘special global
Γ-spaces,’ connecting them to classical approaches to equivariant coherent commu-
tativity, see Corollary 2.3.17.

On the other hand, together with Theorem 2.1.49 we can also view the above
result as a G-global strengthening of the equivalence between commutative monoids
for the box product on I-SSet and coherently commutative monoids in SSet due
to Sagave and Schlichtkrull [SS12, Theorem 1.2].

Our construction of the functors ϝ (the archaic Greek letter digamma) is an
analogue of [Sch19b, Construction 4.3] for so-called parsummable categories, which
we will also recall later in Subsection 4.1.1. While Schwede uses the letter γ, this is
already taken in our context by the Wirthmüller isomorphism (which will actually
play a crucial role in the proof of the theorem).

Construction 2.3.2. Let us write Γ-G-ParSumSSet∗ for the category of
Set∗-enriched functors Γ→ G-ParSumSSet, which we can identify as before with
ordinary functors X such that X(0+) is terminal. Then the evaluation functor
ev: Γ-G-ParSumSSet∗ → G-ParSumSSet, X 7→ X(1+) has a left adjoint Ϝ
(capital digamma) given by Set∗-enriched left Kan extension.

Explicitly, (ϜX)(S+) = X�S (as � is the coproduct on G-ParSumSSet) with
the evident functoriality in X. The functoriality in S+ is as follows: if f : S+ → T+

is any map in Γ, then (ϜX)(f) is the map X�S → X�T given in each simplicial
degree by (xs)s∈S 7→ (yt)t∈T with yt =

∑
s∈f−1(t) xs. By direct inspection, the

Segal maps X�S = (ϜX)(S+) → X(1+)×S = X×S are precisely the inclusions, so
the underlying G-global Γ-space of ϜX is special by Theorem 2.1.21.

We now write ϝ for the composition

(2.3.1) G-ParSumSSet
Ϝ−→ Γ-G-ParSumSSet∗

forget−−−→ Γ-EM-G-SSetτ∗ .

The construction of ϝ : G-UCom→ Γ-G-I-SSetτ∗ is analogous.

The main part of the proof of Theorem 2.3.1 will be establishing that the
composition (2.3.1) induces an equivalence of homotopy theories. To this end we
will introduce a suitable model structure on Γ-G-ParSumSSet∗ and then show
that both Ϝ and the forgetful functor are already equivalences of homotopy theories.

2.3.1. Symmetric products. On Γ-EM-G-SSetτ∗ , we can define a box
product by performing the box product of tame EM-simplicial sets levelwise; this
is indeed well-defined as ∗� ∗ = ∗. We can then identify Γ-G-ParSumSSet∗ with
the category of commutative monoids for � on Γ-EM-G-SSetτ∗ , which suggests
constructing the required model structure via the general machinery recalled in
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2.1.3.1. While we cannot directly apply this (as � no longer preserves initial ob-
jects in each variable separately), our arguments will still be very close to the usual
approach, and in particular we will need homotopical information about G-global
Γ-spaces of the form X�n/Σn.

Construction 2.3.3. Let X be a G-global Γ-space and let n ≥ 1. The n-th
symmetric product SPnX is defined as X�n/Σn; we will confuse SP1X with X.

There is an evident way to make SPn into an endofunctor of Γ-EM-G-SSetτ∗ .
The map X�n → X�(n+1) given by inserting the basepoint in the last factor
descends to a natural map SPnX → SPn+1X. We define the functor SP∞ as the
colimit SP1 ⇒ SP2 ⇒ · · · along these natural maps.

Remark 2.3.4. We have previously employed the notation SymnX forX⊗n/Σn
for any symmetric monoidal model category C . Our reason for introducing new
notation is twofold: firstly, writing Sym∞ for SP∞ would be ambiguous, as it is
often used for

∐
n≥0 SymnX; secondly, the change of notation forces us to remember

that we cannot apply any of the previous results on Symn directly as � is no longer
cocontinuous in each variable.

The following theorem will be the key ingredient in establishing the model
structure on Γ-G-ParSumSSet∗ and comparing it to Γ-EM-G-SSetτ∗ :

Theorem 2.3.5. Let X ∈ Γ-EM-G-SSetτ∗ and assume that X(S+) has no
M-fixed points apart from the base point for any finite set S. Then all the maps in

X = SP1X → SP2X → · · · → SP∞X

are G-global special weak equivalences.

The proof of the theorem will be given below after some preparations. We
begin with the following consequences of the results of the previous sections:

Corollary 2.3.6. Let n ≥ 0 and X ∈ Γ-EM-G-SSetτ∗. Then the maps

X∨n → X�n ↪→ X×n

(where the first map is induced by the n natural inclusions X → X�n) are (G×Σn)-
global special weak equivalences.

Proof. All the above maps are even isomorphisms for n = 0, so we may
assume that n ≥ 1.

Theorem 2.1.21 implies that the right hand map is even a (G×Σn)-global level
weak equivalence, so it suffices to prove the claim for the composition X∨n → X×n.
For this we write Σ1

n ⊂ Σn for the subgroup of those permutations that fix 1, and
we let p : G × Σ1

n → G denote the projection. As in the proof of Corollary 1.4.68
we have a (G× Σn)-equivariant isomorphism

mapsG×Σ1
n(G× Σn, p

∗X)→ X×n

given on the i-th factor by evaluating at (1, σ−1
i ), where σi is any fixed permutation

with σi(1) = i. Dually, we have a (G× Σn)-equivariant isomorphism

X∨n → (G× Σn)+ ∧G×Σ1
n
p∗X

given on the i-th summand and in each simplicial degree by x 7→ [(1, σi), x]. One
then easily checks that the natural map X∨n → X×n factors as

X∨n
∼=−→ (G× Σn)+ ∧G×Σ1

n
p∗X

γ−→ mapsG×Σ1
n(G× Σn, p

∗X)
∼=−→ X×n,
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so that the claim follows from Theorem 2.2.66. �

As we have already seen in several instances above, quotients by free group
actions are often fully homotopical, and in particular one can prove that quotiening
out a free H-action sends (G × H)-global special weak equivalences to G-global
special weak equivalences. Unfortunately, this does not yet imply Theorem 2.3.5;
namely, while Σn acts freely on X�n for any EM-simplicial set X withoutM-fixed
points, in the situation of our theorem the Σn-action is usually not free (outside
the base point) for n ≥ 3 as an (x1, . . . , xn) with 1 < k ≤ n base point entries has
non-trivial isotropy. However, this is the only thing that can go wrong:

Lemma 2.3.7. Let X be a pointed EM-simplicial set without M-fixed points
apart from the base point. Then the canonical Σn-action on X�n is free outside
those simplices with at least one base point component for any n ≥ 0.

Proof. Let (x1, . . . , xn) be an m-simplex such that no xi is the base point.
We claim that xi 6= xj for all i 6= j, which will immediately imply that (x1, . . . , xn)
has trivial isotropy.

For the proof of the claim we let 1 ≤ i < j ≤ n be arbitrary. Then supp(xi) =⋃m
k=0 suppk(xi) is non-empty by assumption, so there exists a 0 ≤ k ≤ m with

suppk(xi) 6= ∅. On the other hand, suppk(xj)∩ suppk(xi) = ∅ 6= suppk(xi), hence
suppk(xj) 6= suppk(xi), and hence in particular xj 6= xi as desired. �

Using this, we can now salvage the above argument by exploiting the filtration
of X�n by the number of base point components. For this we will need the following
relative version of the above ‘free quotient’ heuristic:

Lemma 2.3.8. Let f : X → Y be a (G × H)-global special weak equivalence
in Γ-EM-(G×H)-SSet

τ
∗. Assume that f is an injective cofibration and that

H acts freely on Y (S+) outside the image of f(S+) for all finite sets S. Then
f/H : X/H → Y/H is a G-global special weak equivalence.

Proof. We factor f as a (G×H)-global special acyclic cofibration i followed
by a fibration q (automatically acyclic). Proposition 2.2.54 implies that i/H is a
G-global special weak equivalence, so to finish the proof it suffices that also q/H is.

We claim that q/H is even a G-global level weak equivalence. For this we pick
a finite set S and a universal subgroup K ⊂M; we have to show that q(S+)/H is
a GK,G×ΣS -weak equivalence, for which we make the following crucial observation:

Claim. q(S+) is an F-weak equivalence, where F ⊂ GK×H,G×ΣS is the collec-
tion of those subgroups ΓL,ϕ (L ⊂ K × H, ϕ : L → G × ΣS) such that ϕ(k, h) =
ϕ(k, h′) for all (k, h), (k, h′) ∈ L.

Proof. We first observe that q is an acyclic fibration in the positive special
(G × H)-global model structure, hence in particular a (G × H)-global level weak
equivalence. Thus, q(S+) is a (G × H × ΣS)-global weak equivalence, hence in
particular a GK,H×G×ΣS -weak equivalence.

Now let T := ΓL,ϕ ∈ F r GK,H×G×ΣS . We claim that q(S+)T is even an
isomorphism, for which it is enough to show that both f(S+)T and i(S+)T are
isomorphisms.

Indeed, f(S+)T is levelwise injective by assumption, so we only have to show
that it is also surjective. For this we observe that T contains an element of the
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form (1, h, g, σ) with (h, g, σ) 6= (1, 1, 1) as it is not contained in GK,H×G×ΣS , but
on the other hand (g, σ) = ϕ(1, h) = ϕ(1, 1) = (1, 1) as T = ΓL,ϕ is contained in F .
Thus, (1, h, g, σ) = (1, h, 1, 1) with h 6= 1, and hence T ∩H 6= 1. But H and hence
also T ∩ H acts freely outside the image of f(S+) by assumption, so any T -fixed
simplex of Y (S+) already lies in the image of f(S+) (and hence in the image of
f(S+)T by injectivity) as desired.

On the other hand, Corollary 2.2.27-(2) shows that also i(S+) is an injective
cofibration with free H-action outside the image, so the same argument shows that
i(S+)T is an isomorphism, which completes the proof of the claim. 4

We have to show that ϕ∗(q(S+)/H) is a K-equivariant weak equivalence for
each ϕ : K → G × ΣS (where K acts via the diagonal of the K-action via ϕ and
the one given by restriction of the M-action). However, this can be rewritten
as
(
(ϕ×H)∗q(S+)

)
/H, and using that q(S+) is an F-weak equivalence by the

above claim, one easily checks that (ϕ×H)∗q(S+) is a (K ×H)-equivariant weak
equivalence. To finish the proof, we now simply observe that

(–)/H : (K ×H)-SSet→K-SSet

is left Quillen for theA``-model structures, hence fully homotopical by Ken Brown’s
Lemma as all (K ×H)-simplicial sets are A``-cofibrant. �

The filtration of X�n and SPnX according to the number of base point com-
ponents is an instance of a more general construction for tensor powers which we
will now recall:

Construction 2.3.9. Let C be a cocomplete symmetric monoidal category
and let f : X → Y be a morphism in C . We recall for each n ≥ 1 the n-cube Cn
and the functor Kn(f) : Cn → C from Construction 2.1.34.

For 0 ≤ k ≤ n we let Kn
k (f) denote the subdiagram spanned by all those sets

I with |I| ≤ k, and we define Qnk (f) := colimKn
k (f). The inclusions of diagram

shapes then induce

X⊗n ∼= Qn0 (f)
i1−→ Qn1 (f)

i2−→ · · · → Qnn−1(f)
in−→ Qnn(f) ∼= Y ⊗n.

where the outer isomorphisms are induced by the structure maps corresponding to
the unique terminal objects of Kn

0 and Kn
n , respectively.

The composition of these is precisely f⊗n, while the composite map Qnn−1(f)→
Y ⊗n was previously denoted f�n.

For any 0 ≤ k ≤ n there is a Σn-action on Qnk (f) induced by the Σn-action on
Kn and the symmetry isomorphisms of⊗. All of the above maps are Σn-equivariant,
and for X⊗n, Y ⊗n and Qnn−1(f) this recovers the actions considered before.

Theorem 2.3.10 (Gorchinskiy & Guletskĭı). Assume that C is locally pre-
sentable and that ⊗ is cocontinuous in each variable. Moreover, let f : X → Y be
any morphism in C and let 1 ≤ k ≤ n. We write α : Σn−k×Σk → Σn for the usual
block sum embedding. Then we have a Σn-equivariant pushout square

α!(X
⊗(n−k) ⊗Qkk−1(f)) α!(X

⊗(n−k) ⊗ Y ⊗k)

Qnk−1 Qnk (f)

α!(X
⊗(n−k)⊗f�k)

ik
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and a pushout square

Symn−kX ⊗ (Qkk−1(f)/Σk) Symn−kX ⊗ SymkY

Qnk−1(f)/Σn Qnk (f)/Σn.

Symn−kX⊗(f�k/Σk)

ik/Σn

Proof. The assumptions guarantee that C is a symmetric monoidal model
category in which all maps are cofibrations (and fibrations). The claim is therefore
established in [GG16, proof of Theorem 22]. (In fact, going through their proof
one only needs the existence of pushouts and that the tensor product preserves
these, but we want to avoid repeating their argument.) �

While the theorem as stated above does not directly apply to the levelwise box
product on Γ-EM-G-SSetτ∗ , we can apply it to the levelwise box product on the
ordinary functor category Γ-EM-G-SSetτ := Fun(Γ,EM-G-SSetτ ). As the full
subcategory Γ-EM-G-SSetτ∗ is closed under all connected colimits, we then see a
posteriori that we also have the corresponding pushouts there.

With this established, we can adapt the proof strategy of [GG16, Corollary 23]
to deduce Theorem 2.3.5 from the Wirthmüller isomorphism:

Proof of Theorem 2.3.5. We will prove that the composite X → SPnX
(induced by any of the n canonical embeddings X → X�n) is a G-global special
weak equivalence for any n ≥ 1. By 2-out-of-3 we can then conclude that SPnX →
SPn+1X is a G-global special weak equivalence, and so is X → SP∞X as transfinite
composition of G-global special weak equivalences.

It remains to prove the claim. For this we let f : ∗ → X denote the inclusion
of the basepoint, and we will prove more generally by induction on n:

(1) For all 2 ≤ k ≤ n and any group H the map ik : Qnk−1(f) → Qnk (f) is a
(G×H×Σn)-global special weak equivalence when we let H act trivially.

(2) For all 2 ≤ k ≤ n the induced map ik/Σn is a G-global weak equivalence.

For n = 1 there is nothing to prove, so assume n ≥ 2. If 2 ≤ k < n, then we let
α : Σn−k×Σk → Σn be the evident embedding again. By the induction hypothesis,
f�k is in particular a (G×H ×Σn−k×Σk)-global special weak equivalence for any
group H. Moreover, it is an injective cofibration by Corollary 2.1.46 (where we have
again used that we can form the corresponding colimit in Γ-EM-G-SSetτ ), hence
also α!(f

�k) is an injective cofibration. On the other hand, Proposition 2.2.54 shows
that it is a (G×H ×Σn)-global special weak equivalence. Applying Lemma 2.2.55
to the pushout

α!Q
k
k−1(f) α!(X

�k)

Qnk−1(f) Qnk (f)

α!(f
�k)

ik

from the above discussion (where we used that ∗�(n−k) is terminal) therefore shows
that ik is a (G×H)-global special weak equivalence as desired.
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Similarly, we deduce part (2) for 2 ≤ k < n from the induction hypothesis
together with the pushout

Qkk−1(f)/Σk SPkX

Qnk−1(f)/Σn Qnk (f)/Σn,

f�k/Σk

ik/Σn

so it only remains to treat the case k = n of both statements.
For the first statement we observe that the composition

X∨n ∼= Qn1 (f)→ Qn2 (f)→ · · ·Qnn−1(f)→ Qnn(f) ∼= X�n,

where the unlabelled isomorphism on the left is induced on the i-th summand
by the iterated unitality isomorphism X ∼= Kn({i}), is precisely the canonical
map X∨n → X�n, hence a (G × H × Σn)-global special weak equivalence by
Corollary 2.3.6 applied to X with trivial H-action. On the other hand, we have seen
above that all the maps in Q1

n(f) → Qn2 (f) → · · · → Qnn−1(f) are (G ×H × Σn)-
global special weak equivalences, so also Qnn−1(f)→ Qnn(f) is a (G×H×Σn)-global
special weak equivalence by 2-out-of-3.

For the second statement, we observe that in is a (G×Σn)-global weak equiv-
alence by the first statement, and an injective cofibration as seen above. On the
other hand, the image of in(S+) : Qnn−1(f)(S+)→ X�n(S+) contains all n-tuples of
simplices with at least one basepoint component by construction, so the Σn-action
is free outside the image of in(S+) by Lemma 2.3.7. We may therefore conclude
from Lemma 2.3.8 that also in/Σn is a G-global weak equivalence, which completes
the proof of the theorem. �

2.3.2. The intermediate model. In this section we will establish the model
structure on Γ-G-ParSumSSet∗ and compare it to Γ-EM-G-SSetτ∗ .

Construction 2.3.11. If X ∈ Γ-EM-G-SSetτ∗ , then SP∞X naturally be-
comes an element of Γ-G-ParSumSSet∗ by declaring for each finite set S that
the unit of (SP∞X)(S+) should be the basepoint and that the composition should
be induced by the canonical isomorphisms X�m �X�n ∼= X�(m+n). We omit the
easy verification that this lifts SP∞ to Γ-EM-G-SSetτ∗ → Γ-G-ParSumSSet∗.

The structure map of SP1X yields a natural map η : X → forget SP∞X, and
we have for each Y ∈ Γ-G-ParSumSSet∗ a natural map ε : SP∞(forgetY ) →
Y induced by the iterated multiplication maps Y �n → Y . We omit the easy
verification that η and ε satisfy the triangle identities, making them into unit and
counit, respectively, of an adjunction SP∞ a forget.

Theorem 2.3.12. There is a unique model structure on Γ-G-ParSumSSet∗
in which a map is a weak equivalence or fibration if and only if it so in the special
G-global model structure on Γ-EM-G-SSetτ∗. Moreover, the adjunction

SP∞ : Γ-EM-G-SSetτ∗ � Γ-G-ParSumSSet∗ : forget

is a Quillen equivalence.

One might be tempted to prove the theorem by first constructing a suitable
level model structure and then Bousfield localizing. However, in this approach it
is not clear a priori how the resulting weak equivalences in Γ-G-ParSumSSet∗
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relate to the G-global special weak equivalences of underlying G-global Γ-spaces.
Instead, the main ingredient to our proof will be Theorem 2.3.5 established above.
However, there are some pointset level issues we will have to deal with first.

Lemma 2.3.13. Let X be any G-global Γ-space. Then X � – preserves G-global
special weak equivalences.

Proof. The functor X × – preserves G-global special weak equivalences by
Corollary 2.2.64. If now Y is any G-global Γ-space, then the inclusion X � Y ↪→
X × Y is a G-global level weak equivalence by Theorem 2.1.20. Moreover, this is
clearly natural in Y , so the claim follows by 2-out-of-3. �

Proposition 2.3.14. Let f : X → Y be an injective cofibration and a G-global
special weak equivalence in Γ-G-EM-SSetτ∗ such that the M-actions on X(S+)
and Y (S+) have no fixed points apart from the base point for any finite set S.

Then f�n/Σn is a G-global special weak equivalence.

Proof. We first observe that Symnf = SPnf is a G-global special weak equiv-
alence by Theorem 2.3.5 together with 2-out-of-3.

With this established, we can argue by induction on n similarly to the proof
of Theorem 2.3.5. For n ≤ 1 the claim is trivial; for n ≥ 2 we will prove more
generally that all the maps in

(2.3.2) Qn0 (f)/Σn → Qn1 (f)/Σn → · · · → Qnn−1(f)→ Qnn(f)/Σn

are G-global special weak equivalences; the claim will then follow because the right
hand map is conjugate to f�n/Σn.

For the proof of the claim we observe that Qnk−1(f)/Σn → Qnk (f)/Σn for k < n

is a pushout of SPn−kX � (f�k/Σk) as seen in the previous subsection. The latter
is a G-global special weak equivalence by the induction hypothesis together with
the previous lemma, and it is an injective cofibration by Corollary 2.1.46 together
with Lemma 2.1.45. Thus, also Qnk−1(f)/Σn → Qnk (f)/Σn is a G-global weak
equivalence by Lemma 2.2.55.

It only remains to consider the case k = n, for which we observe that the
composition (2.3.2) is conjugate to SPnf , hence a G-global special weak equivalence
by the above observation. The claim therefore follows by 2-out-of-3. �

Proposition 2.3.15. Let f : A→ B be a map in Γ-EM-G-SSetτ∗, and let

(2.3.3)

SP∞A SP∞B

X Y

SP∞f

g

be a pushout in Γ-G-ParSumSSet∗. Then the underlying map forget g of G-global
Γ-spaces can be written as a transfinite composition

X = Y0
g1−→ Y1

g2−→ Y2 → · · · → Y∞ = Y
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where each gn fits into a pushout square

(2.3.4)

X �Qnn−1(f)/Σn X � SPn(B)

Yn−1 Yn

X�f�n/Σn

gn

in Γ-EM-G-SSetτ∗.

The definition of the vertical maps in (2.3.4) is slightly involved, but fortunately
we will never need their explicit form.

Proof. We recall the left adjoint P : Γ-EM-G-SSetτ → Γ-G-ParSumSSet
of the forgetful functor; explicitly, PX =

∐
n≥0 SymnX with the evident functo-

riality in X. The unit is given by X ∼= Sym1X ↪→ PX. There is a natural map
p : PX → SP∞X induced by the structure maps SymnX = SPnX → SP∞X, and
this is compatible with the adjunction units in the sense that pη = η.

Claim. The naturality square

PA PB

SP∞A SP∞B

Pf

p p

SP∞f

is a pushout in Γ-G-ParSumSSet.

Proof. We first observe that the pushout of SP∞A ← PA → PB formed in
Γ-G-ParSumSSet belongs to Γ-G-ParSumSSet∗ as (Pf)(0+) = P(f(0+)) is an
isomorphism because f(0+) is. It therefore suffices to check the universal property
with respect to every T ∈ Γ-G-ParSumSSet∗, which is an easy diagram chase
using the defining properties of P and SP∞ as left adjoints and the compatibility
of p with the unit maps. 4

As the inclusion of Γ-G-ParSumSSet∗ preserves connected colimits (hence in
particular pushouts), (2.3.3) is also a pushout in Γ-G-ParSumSSet. Pasting with
the pushout from the claim we therefore get a pushout

PA PB

X Y

Pf

g

in Γ-G-ParSumSSet. As Γ-EM-G-SSetτ becomes a symmetric monoidal model
category with respect to the levelwise box product when we declare all maps to be
both cofibrations and fibrations, [Whi17, Proposition B.2] shows that forget g can

be written as a transfinite composition X = Y0
g1−→ Y1 → · · · in Γ-EM-G-SSetτ

with each gn fitting into a pushout

(2.3.5)

X �Qnn−1(f)/Σn X � Symn(B)

Yn−1 Yn

X�f�n/Σn

gn
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in Γ-EM-G-SSetτ . Note that it does not matter whether we form Qnn−1(f)/Σn
and f�n/Σn in Γ-EM-G-SSetτ∗ or in Γ-EM-G-SSetτ as the former is closed
under connected colimits. To finish the proof it therefore suffices that Yn belongs to
Γ-EM-G-SSetτ∗ and that (2.3.5) is a pushout in Γ-EM-G-SSetτ∗ for all n ≥ 1.
This is easily proven by induction using the closure under pushouts. �

Proof of Theorem 2.3.12. Let us first prove the existence of the model
structure, for which we will use Crans’ Transfer Criterion (Proposition A.2.13).

The category Γ-G-ParSumSSet∗ is locally presentable asG-ParSumSSet is;
in particular, any set of maps permits the small object argument, and we therefore
only have to show that every relative SP∞(J)-cell complex is a weak equivalence
for a suitable set J of generating acyclic cofibrations of the positive special model
structure on Γ-EM-G-SSetτ∗ .

For this we pick any such set J such that all maps in it have cofibrant sources;
this is possible by Theorem 2.2.52. As filtered colimits and weak equivalences in
Γ-G-ParSumSSet∗ are created in Γ-EM-G-SSetτ∗ and since filtered colimits in
the latter are homotopical, it suffices that in any pushout

SP∞A SP∞B

X Y

SP∞j

g

with j ∈ J also g is a weak equivalence in Γ-G-ParSumSSet∗.
By Lemma 2.3.13 together with Proposition 2.3.14 we see that X � j�n/Σn is

a G-global special weak equivalence for every n ≥ 1. As it is moreover an injective
cofibration by the same argument as above, also every pushout of such a map
is a G-global special weak equivalence by Lemma 2.2.55. We therefore conclude
from the previous proposition that the underlying map of g can be written as
a transfinite composition of G-global special weak equivalences, so g itself is a
weak equivalence as filtered colimits are homotopical in Γ-EM-G-SSetτ∗ . This
completes the verification of Crans’ criterion and hence of the existence of the
model structure.

The forgetful functor preserves and reflects weak equivalences and fibrations by
definition; to see that SP∞ a forget is a Quillen equivalence it therefore only remains
to show that the unit X → forget SP∞X is a G-global special weak equivalence for
every cofibrant X ∈ Γ-EM-G-SSetτ∗ . But for any such X, the M-action on
X(S+) has no M-fixed points apart from the basepoint for any finite set S by
Corollary 2.2.27-(1); the claim is therefore an instance of Theorem 2.3.5. �

2.3.3. Proof of the comparison theorem. In this section we will complete
the proof of Theorem 2.3.1 by comparing Γ-G-ParSumSSet∗ toG-ParSumSSet.

Proposition 2.3.16. The adjunction

(2.3.6) Ϝ : G-ParSumSSet� Γ-G-ParSumSSet∗ : ev

is a Quillen equivalence with fully homotopical left adjoint.

Proof. The (acyclic) fibrations in Γ-G-ParSumSSet∗ are created in the G-
global special model structure on Γ-EM-G-SSetτ∗ , hence they are in particular
(acyclic) fibrations in the G-global level model structure. On the other hand, the
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(acyclic) fibrations of G-ParSumSSet are created in EM-G-SSetτ∗ , so it imme-
diately follows that ev is right Quillen, i.e. (2.3.6) is a Quillen adjunction.

Next, we observe that ev is homotopical in G-global level weak equivalences,
and hence in particular homotopical in G-global special weak equivalences between
special Γ-G-parsummable simplicial sets by Lemma 2.2.53. As any fibrant object
of the above model structure on Γ-G-ParSumSSet∗ is special, we conclude that
Rev can be computed by taking a special replacement.

On the other hand, Corollary 2.1.22 shows that Ϝ is homotopical, and we have
already noted in Construction 2.3.2 that it takes values in special Γ-G-parsummable
simplicial sets. Together with the above we conclude that the ordinary unit X →
ev(ϜX) already represents the derived unit for all G-parsummable simplicial sets;
this shows that the derived unit is an isomorphism. Finally, Lemma 2.2.53 shows
that Rev is conservative; it follows that Ho(Ϝ) a Rev is an adjoint equivalence,
finishing the proof of the proposition. �

Proof of Theorem 2.3.1. The functor evω : I-SSet→EM-SSetτ is strong
symmetric monoidal by Proposition 2.1.28, so evω : UCom → ParSumSSet pre-
serves finite coproducts. It follows easily that the canonical mate Ϝ◦ evω ⇒ evω ◦Ϝ
of the identity transformation

Γ-G-UCom∗ Γ-G-ParSumSSet∗

G-UCom G-ParSumSSet

evω

ev ev⇒
evω

is an isomorphism. On the other hand, evω commutes with the forgetful functors
on the nose, so we altogether get an isomorphism filling

G-UCom G-ParSumSSet

Γ-G-I-SSet∗ Γ-EM-G-SSetτ∗ ,

ϝ

evω

ϝ

evω

hence (as evω preserves and reflects specialness) also

G-UCom G-ParSumSSet

Γ-G-I-SSetspecial
∗ Γ-EM-G-SSetτ,special

∗ .

ϝ

evω

ϝ

evω

commutes up to natural isomorphism.
The horizontal maps in this induce equivalences on associated quasi-categories

by Corollary 2.1.44 and Theorem 2.2.30, respectively. Moreover, the right hand ver-
tical arrow induces an equivalence by Theorem 2.3.12 together with the previous
proposition. By 2-out-of-3 we conclude that also the left hand vertical arrow de-
scends to an equivalence of associated quasi-categories, which completes the proof
of the theorem. �

Together with Theorem 2.1.54 and Corollary 2.2.50 we immediately conclude:

Corollary 2.3.17. There are preferred equivalences between

• the quasi-category UCom∞ of ultra-commutative monoids in the sense of
Definition 2.1.31,
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• the quasi-category of ultra-commutative monoids in the sense of [Sch18]
with respect to Fin-global weak equivalences (see Subsection 2.1.6), and

• the quasi-category (Γ-EM-SSetspecial
∗ )∞ of special Γ-EM-spaces with re-

spect to the global level weak equivalences. �

On the other hand, Theorem 2.3.1 also provides information about the classical
equvariant approach as well as its proper equivariant generalization:

Theorem 2.3.18. There exists a preferred equivalence between

• the quasi-category (Γ-G-SSetspecial
∗ )∞ of special Γ-G-spaces (with respect

to the G-equivariant level weak equivalences), and
• the quasi-category G-UCom∞ of G-ultra-commutative monoids with re-

spect to those maps f such that uG f is a proper G-equivariant weak equiv-
alence.

As alluded to in the introduction of this section, the special case G = 1 was
known by [SS12, Theorem 1.2] and the usual comparison between E∞-algebras
and Γ-spaces (see e.g. [BM20, Corollary 7.3] for a proof in modern language). It
seems that the above generalization has not appeared in the literature before, even
for finite G.

Proof. By Theorem 2.3.1, ϝ restricts to G-UCom → Γ-G-I-SSetspecial
∗ ,

and this restriction descends to an equivalence of quasi-localizations with respect
to the G-global weak equivalences and G-global level weak equivalences, respec-
tively. In particular, the composition with evUG exhibits the special Γ-G-spaces as
a (Bousfield) localization of G-UCom∞ by Theorem 2.2.56.

It only remains to show that this composition precisely inverts the uG-weak
equivalences. But indeed, a map g : X → Y of special Γ-G-spaces is a G-equivariant
level weak equivalence if and only if g(1+) is a proper G-equivariant weak equiva-
lence; the claim follows as (evUG ◦ ϝ)(f)(1+) is actually equal to uG f = evUG(f)
for any map f of G-ultra-commutative monoids. �



CHAPTER 3

Stable G-global homotopy theory

In this chapter we introduce a model of stable G-global homotopy theory based
on looking at the usual symmetric spectra with G-action through a finer notion of
weak equivalence than the ordinary G-equivariant stable weak equivalences.

We then discuss several connections to the models considered in the previous
two chapters, and in particular we will prove a G-global version of Segal’s classical
Delooping Theorem, relatingG-global spectra toG-globally coherently commutative
monoids.

3.1. G-global homotopy theory of G-spectra

3.1.1. Recollections on equivariant stable homotopy theory. We begin
by recalling symmetric spectra [HSS00] which will serve as the basis of our models
of G-global homotopy theory below.

Construction 3.1.1. We write Σ for the following SSet∗-enriched category:
the objects of Σ are the finite sets, and if A and B are finite sets, then

mapsΣ(A,B) =
∨

i : A→B injective

SBri(A).

If C is yet another finite set, then the composition mapsΣ(A,B)∧mapsΣ(B,C)→
mapsΣ(A,C) is given on the summand corresponding to i : A→ B, j : B → C by

SBri(A) ∧ SCrj(B) → Sj(B)rji(A) ∧ SCrj(B) ∼= SCrji(A) ↪→ mapsΣ(A,C)

where the unlabelled arrow on the left is induced by j, the isomorphism is the
canonical one, and the final map is the inclusion of the summand corresponding to
the injection ji.

Definition 3.1.2. A symmetric spectrum (or, by slight abuse of language,
‘spectrum’ for short) is an SSet∗-enriched functor Σ→ SSet∗. We write Spectra
for the SSet∗-enriched category Fun(Σ,SSet∗) of enriched functors.

Definition 3.1.3. Let G be any discrete group, possibly infinite. A G-spectrum
(or, more precisely, a G-symmetric spectrum) is a G-object in Spectra. We write
G-Spectra for the SSet∗-enriched category of G-spectra.

For finite G, Hausmann [Hau17] studied G-spectra as a model of G-equivariant
stable homotopy theory in the sense of [LMS86]. In the rest of this subsection
we will recall some of his results as the G-global theory sometimes parallels the
equivariant ones. We restrict ourselves to the foundations here and will recall other
results later as needed.

Remark 3.1.4. Strictly speaking, [HSS00] and [Hau17] define a symmetric
spectrum as a sequence of based Σn-simplicial setsXn, n ≥ 0, together with suitably

153
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equivariant and associative structure maps Sm ∧Xn → Xm+n; the equivalence to
the above definition is noted for example in [Hau17, 2.4]. In what follows we will
tacitly translate the results of [Hau17] to the above language where necessary.

3.1.1.1. Equivariant level model structures. Assume for the rest of this sub-
section that G is finite. Before we can introduce the stable homotopy theory of
G-spectra, we first need to consider suitable level model structures again.

Proposition 3.1.5. There exists a unique model structure on G-Spectra in
which a map f is weak equivalence or fibration if and only if f(A) is a GG,ΣA-
weak equivalence or fibration, respectively, for every finite set A. We call this the
G-equivariant projective level model structure and its weak equivalences the G-
equivariant level weak equivalences. It is proper, combinatorial, and simplicial.

Proof. [Hau17, Corollary 2.26] and the discussion following it show that
the model structure exists and that it is proper as well as cofibrantly generated
(hence combinatorial). Finally, as all the relevant constructions are levelwise, one
immediately checks that the cotensoring is a right Quillen bifunctor, i.e. the above
is a simplicial model category. �

To describe the generating cofibrations we introduce the following notation:

Construction 3.1.6. Let A be any finite set. Then the evaluation functor
evA : Spectra→ ΣA-SSet∗ admits a simplicial left adjoint GA via SSet∗-enriched
left Kan extension. If X is any pointed ΣA-simplicial set, then we call the spectrum
GAX a semifree spectrum; explicitly, (GAX)(B) = Σ(A,B) ∧ΣA X.

An easy adjointness argument then shows that the maps GA((G× ΣA)/H+ ∧
(∂∆n ↪→ ∆n)+) for H ∈ GG,ΣA form a set of generating cofibrations, and similarly
for the generating acyclic cofibrations.

We will be mostly interested in a variant of the above model structure that has
more cofibrations.

Definition 3.1.7. A map f : X → Y of spectra is called a flat cofibration if it
has the left lifting property against those p : S → T such that p(A) : S(A)→ T (A)
is an acyclic fibration in the ΣA-equivariant model structure for all finite sets A.

If G is any group, then a map f : X → Y of G-spectra is called a flat cofibration
if its underlying map of non-equivariant spectra is a flat cofibration in the above
sense. A G-spectrum X is called flat if 0→ X is a flat cofibration.

Example 3.1.8. Any projective cofibration of G-spectra is a flat cofibration;
in particular, the sphere spectrum S is flat as a G-spectrum (with respect to the
trivial action) for any G. More generally, if T is any set, then S∨T =

∨
T S is flat

since flat cofibrations are characterized by a left lifting property.

Example 3.1.9. Let T be a finite set. Then it is a non-trivial result that also
S×T =

∏
T S is flat, see [Ost16, Proposition B.1].

Proposition 3.1.10. There exists a unique model structure on G-Spectra in
which a map f is weak equivalence or fibration if and only if f(A) is a weak equiv-
alence or fibration, respectively, in the injective GG,ΣA-equivariant model structure
for every finite set A. The cofibrations of this model category are precisely the flat
cofibrations. We call this the G-equivariant flat level model structure. It is proper,
combinatorial, and simplicial.
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Proof. [Hau17, Corollary 2.25] constructs a model structure with the de-
sired weak equivalences and fibrations, and shows that it is proper and cofibrantly
generated (hence combinatorial). The same argument as above shows that this
model structure is simplicial. It remains to show that the resulting cofibrations are
precisely the flat cofibrations. This is mentioned in [Hau17, Remark 2.20], but we
detail the argument here as we will need it again later.

We first observe that the model structure can be constructed as an instance
of the generalized projective model structures of Proposition 1.4.6; the consistency
condition is verified as [Hau17, Proposition 2.24]. In particular, the cofibrations are
those maps f such that each latching map (cf. Construction 1.4.7) is a cofibration
in the injective GG,ΣA -equivariant model structure, i.e. a cofibration of underlying
simplicial sets.

As the latching maps are independent of the the group G (they are defined in
terms of left Kan extensions, which are compatible with passing to functor cate-
gories), this shows that a map in G-Spectra is a cofibration in the above model
structure if and only if it is so in 1-Spectra. But the cofibrations in the latter
are characterized by the same left lifting property as the flat cofibrations, which
completes the proof. �

3.1.1.2. Equivariant stable homotopy theory. The main disadvantage of sym-
metric spectra is that the correct notion of ‘stable weak equivalence’ turns out to
be coarser than those maps inducing isomorphisms on the näıvely defined homotopy
groups—even worse, the correct weak equivalences are only obtained indirectly by
Bousfield localizing at the Ω-spectra. The equivariant situation is analogous:

Definition 3.1.11. A G-spectrum X is called a G-Ω-spectrum if the following
holds: for all H ⊂ G and all finite H-sets A,B, the adjoint structure map X(A)→
RΩBX(A q B) is an H-equivariant weak equivalence. Here H acts on both sides
via its actions on X and on A and B (hence on AqB).

Theorem 3.1.12. There is a unique model structure on G-Spectra whose
cofibrations are the G-equivariant projective cofibrations, and whose fibrant objects
are those G-Ω-spectra that are fibrant in the G-equivariant projective level model
structure. This model structure is simplicial, proper, and combinatorial. We call
it the G-equivariant stable projective model structure, or G-equivariant projective
model structure for short.

Similarly, there is a unique model structure on G-Spectra whose cofibrations
are the flat cofibrations, and whose fibrant objects are those G-Ω-spectra that are
fibrant in the G-equivariant flat level model structure. This model structure is again
simplicial, proper, and combinatorial. We call it the G-equivariant stable flat model
structure, or G-equivariant flat model structure for short.

As before, we can by abstract nonsense characterize the weak equivalences of
these model structures as the maps f : X → Y such that [f, T ] : [Y, T ] → [X,T ] is
an isomorphism for any G-Ω-spectrum T , where [ , ] denotes the hom sets in the
homotopy category with respect to the G-equivariant level weak equivalences. In
particular, the two model structures have the same weak equivalences, which we
call the G-equivariant (stable) weak equivalences.

Proof. Proper combinatorial model structures with the corresponding cofibra-
tions and fibrant objects are constructed as [Hau17, Theorem 4.8] and [Hau17,
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Theorem 4.7], respectively, and this completely determines the model structures by
Proposition A.2.5.

It only remains to show that these model structures are simplicial, for which
it suffices (by the corresponding statements for the level model structures) that
the pushout product i � j of a cofibration i of simplicial sets with a G-equivariant
flat acyclic cofibration is a G-equivariant weak equivalence again, which appears
as [Hau17, Lemma 4.5]. �

3.1.1.3. Näıve homotopy groups. As in the non-equivariant setting, the above
weak equivalences are quite hard to grasp. On the other hand, it is often easier to
show that a map f : X → Y of ordinary symmetric spectra induces an isomorphism
of the näıve homotopy groups, and any such map is indeed a (non-equivariant)
stable weak equivalence by [HSS00, Theorem 3.1.11]. This motivates looking for
a generalization of the stable homotopy groups to the equivariant setting:

Construction 3.1.13. Let U be a complete H-set universe and let Y be any
H-spectrum (e.g. the underlying H-spectrum of a G-spectrum X with H ⊂ G).
We define

(3.1.1) πUk (Y ) = colim
A∈s(U)

[SAq{1,...,k}, X(A)]H∗

for k ≥ 0 and

πUk (Y ) = colim
A∈s(U)

[SA, X(Aq {1, . . . ,−k})]H∗

for k < 0, where s(U) is the filtered poset of finite H-subsets of U and [ , ]H∗ denotes
the set of maps in the based H-equivariant homotopy category. The transition map
of (3.1.1) for an inclusion A ⊂ B is given by

[SAq{1,...,k}, X(A)]H∗
SBrA∧–−−−−−→ [SBq{1,...,k}, SBrA ∧X(A)]H∗

[SBq{1,...,k},σ]H∗−−−−−−−−−−−→ [SBq{1,...,k}, X(B)]H∗ ,

where we have secretly identified SBrA ∧SAq{1,...,k} ∼= SBq{1,...,k} via the obvious
isomorphism. The definition of the transition maps for k ≤ 0 is similar.

For the purposes of this monograph, we fix for every finite group H once and for
all the complete H-set universe UH as in (1.4.14), and we abbreviate πH∗ := πUH∗ .

Definition 3.1.14. A map f : X → Y of G-spectra is called a π∗-isomorphism
if πH∗ f is an isomorphism of Z-graded abelian groups for every subgroup H ⊂ G.

Analogously to the non-equivariant situation we have:

Theorem 3.1.15. Any π∗-isomorphism of G-spectra is a G-equivariant stable
weak equivalence.

Proof. See [Hau17, Theorem 3.36]. �

Remark 3.1.16. As we already know, any two complete H-set universes U ,U ′
are isomorphic, and any choice of such isomorphism yields a natural isomorphism
πU∗
∼= πU

′

∗ ; in particular, the notion of π∗-isomorphism is independent of any
choices. However, this isomorphism is not canonical, and in a precise sense this
non-canonicity captures the failure of π∗ to compute the ‘true’ homotopy groups,
see [Hau17, 3.3–3.6].
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3.1.1.4. Stability. The stable model structures from Theorem 3.1.12 are indeed
stable in the model categorical sense, i.e. the suspension/loop adjunction on the
homotopy category is an equivalence. We will need the following pointset level
strengthening of this later:

Proposition 3.1.17. The adjunction

Σ = S1 ∧ –: G-SpectraG-equiv. proj. � G-SpectraG-equiv. proj. : maps(S1, –) = Ω

is a Quillen equivalence. Moreover:

(1) Σ preserves G-equivariant weak equivalences.
(2) Ω preserves G-equivariant weak equivalences between G-spectra that are

fibrant in the G-equivariant projective level model structure.

Proof. The above adjunction is a Quillen adjunction as the G-equivariant
projective model structure is simplicial. Moreover, S1 ∧ – obviously preserves G-
equivariant level weak equivalences; as any G-equivariant weak equivalence factors
as an acyclic cofibration followed by an G-equivariant level weak equivalence, this
shows that Σ is in fact homotopical.

To see that it is a Quillen equivalence, we consider the category G-SpectraTop

of symmetric G-spectra in topological spaces, i.e. G-objects in Fun(Σ,Top∗). This
again comes with a notion of G-equivariant weak equivalences [Hau17, Defini-
tion 2.35] such that the adjunction |–| a Sing preserves and reflects weak equiva-
lences [Hau17, Proposition 2.38]. As unit and counit of this are even G-equivariant
level weak equivalences, we conclude that |–| a Sing induces an equivalence between
the corresponding homotopy categories. Now consider the diagram

G-Spectra G-Spectra

G-SpectraTop G-SpectraTop

|–|

S1∧–

|–|

|S1|∧–

of homotopical functors, commuting up to natural isomorphism. By the above, the
vertical arrows induce equivalences of homotopy categories, and so does the lower
arrow by [Hau17, Proposition 4.9]. By 2-out-of-3, also the top horizontal arrow
descends to an equivalence, i.e. Σ a Ω is a Quillen equivalence.

It remains to show that Ω sends any G-equivariant weak equivalence f : X → Y
of projectively level fibrant G-spectra to a G-equivariant weak equivalence. For this
we consider the naturality square

X Sing |X|

Y Sing |Y |;

η

f Sing |f |

η

as the horizontal arrows are G-equivariant level weak equivalences, Sing |f | is a G-
equivariant weak equivalence. On the other hand, SingZ is obviously level fibrant
for any Z ∈ G-SpectraTop; as Ω preserves G-equivariant level weak equivalences
between level fibrant G-spectra, it therefore suffices to show that Ω Sing |f |, which
is conjugate to Sing Ω|f |, is a G-equivariant weak equivalence. But indeed, |f |
is a G-equivariant weak equivalence, so Ω|f | is a G-equivariant weak equivalence
by [Hau17, Proposition 4.2-(3)], and hence so is Sing Ω|f | as desired. �
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3.1.2. G-global model structures. In [Hau19b, Theorem 2.17], Hausmann
introduced a global model structure on the category Spectra of ordinary sym-
metric spectra analogous to Schwede’s global model structure on orthogonal spec-
tra [Sch18, Theorem 4.3.17]. We will now generalize this construction to yield
G-global model structures on G-Spectra for any discrete G (possibly infinite);
while we cast them differently, our arguments for this are mostly analogous to
Hausmann’s.

3.1.2.1. Level model structures. Before we can construct the desired model
structures on G-Spectra modelling stable G-global homotopy theory, we again
need to introduce several models with a stricter notion of weak equivalence:

Proposition 3.1.18. There is a unique model structure on G-Spectra in
which a map f : X → Y is a weak equivalence or fibration if and only if for every
finite set A the (G × ΣA)-equivariant map f(A) : X(A) → Y (A) is a GΣA,G-weak
equivalence of fibration, respectively. We call this the G-global projective level
model structure and its weak equivalences G-global level weak equivalences. It is
right proper and moreover combinatorial with generating cofibrations{
GA
(
((G× ΣA)/H × ∂∆n)+

)
↪→ GA

(
(G× ΣA)/H ×∆n)+

)
: n ≥ 0, H ∈ GΣA,G

}
and generating acyclic cofibrations{
GA
(
((G×ΣA)/H×Λnk )+

)
↪→ GA

(
(G×ΣA)/H×∆n)+

)
: 0 ≤ k ≤ n,H ∈ GΣA,G

}
.

Finally, filtered colimits in this model category are homotopical.

We will see in Lemma 3.1.25 below that this model structure is also left proper.

Warning 3.1.19. If G is finite, then being a G-global projective level fibration
or weak equivalence is in some sense orthogonal to being a G-equivariant projective
level fibration or weak equivalence, respectively: in level A, the former is a condition
on H-fixed points for H ∈ GΣA,G, while the latter one is a condition on H-fixed
points for H ∈ GG,ΣA .

Proof of Proposition 3.1.18. We equip (G×ΣA)-SSet∗ with the GΣA,G-
model structure for every finite set A. In order to construct the desired model struc-
ture on G-Spectra, to show that it is cofibrantly generated (hence combinatorial)
with the above sets of generating cofibrations and generating acyclic cofibrations,
and to verify the above characterization of the cofibrations, it then suffices to verify
that these model categories satisfy the ‘consistency condition’ of Proposition 1.4.6,
i.e. that for all finite sets A,B with |A| ≤ |B| and any acyclic cofibration i in the
GΣA,G-model structure on (G×ΣA)-SSet∗ any pushout of Σ(B,A)∧Σ(A,A) i is a
GΣB ,G-weak equivalence. For this it is again enough to show that this is an acyclic
cofibration in the injective GΣB ,G-equivariant model structure for every generating
acyclic cofibration, which is obvious.

It remains to show that this model structure is right proper, simplicial (i.e. that
the cotensoring is a right Quillen bifunctor), and that filtered colimits in it are ho-
motopical. However, these follow easily from the corresponding statements for
(G×ΣA)-SSet with varying A as all the relevant constructions are defined level-
wise. �

The G-global projective level model structure has few cofibrant objects; while
this will be useful in several arguments, an unfortunate side effect is that many
examples we care about in practice are not projectively cofibrant:
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Remark 3.1.20. We claim that the sphere spectrum S is not G-globally projec-
tively cofibrant unless G = 1. Indeed, if A,B are any finite sets, then ΣA acts freely
on Σ(A,B) outside the base point because it freely permutes the wedge summands.
We therefore conclude from the explicit description of GA that each of the standard
generating cofibrations is of the form X ∧ (∂∆n ↪→ ∆n)+ for some G-spectrum X
on which G acts levelwise freely outside the base point.

By cell induction one then easily concludes that G acts levelwise freely outside
the basepoint on any cofibrant object of the G-global projective level model struc-
ture. In particular, for G 6= 1 the only cofibrant spectrum with trivial G-action is
the zero spectrum.

To salvage this issue, we will introduce another model structure based on the
flat cofibrations:

Proposition 3.1.21. There is a unique model structure on G-Spectra whose
cofibrations are the flat cofibrations and whose weak equivalences are the G-global
level equivalences. We call this the G-global flat level model structure. It is right
proper, simplicial, and combinatorial with generating cofibrations{
GA
(
((G×ΣA)/H × ∂∆n)+

)
↪→ GA

(
(G×ΣA)/H ×∆n)+

)
: n ≥ 0, H ⊂ ΣA ×G

}
Moreover, filtered colimits in it are homotopical. Finally, a map f : X → Y is an
(acyclic) fibration if and only if f(A) : X(A) → Y (A) is an (acyclic) fibration in
the injective GΣA,G-equivariant model structure on (G×ΣA)-SSet for all A.

Proof. To construct the model structure, it is enough to show that for all
finite sets A,B with |A| ≤ |B| the functor

(3.1.2) Σ(A,B) ∧ΣA –: (G×ΣA)-SSet∗ → (G×ΣB)-SSet∗

is left Quillen with respect to the injective GΣA,G-equivariant model structure on
the source and the injective GΣB ,G-model structure on the target.

For this, we fix a finite set C together with a bijection B ∼= A q C, which
induces an injective group homomorphism α : ΣA×ΣC → ΣB . Then [Hau17, proof
of Proposition 2.24] shows that (3.1.2) is isomorphic to the composition

(G×ΣA)-SSet∗
–∧SC−−−−→ (G×ΣA ×ΣC)-SSet∗

(G×α)!−−−−−→ (G×ΣB)-SSet∗

and we claim that both of these are left Quillen when we equip the middle term
with the injective GΣA×ΣC ,G-equivariant model structure. Indeed, it is obvious that
the first functor preserves injective cofibrations as well as weak equivalences, and
for the second functor it suffices to prove the unbased version, which is an easy
application of Proposition 1.1.17.

As in the proof of Proposition 3.1.18 we now get a model structure with the
desired weak equivalences, (acyclic) fibrations, and generating cofibrations. More-
over, we conclude as in Proposition 3.1.10 that the cofibrations are precisely the
flat cofibrations. Finally, to see that this model structure is right proper, simpli-
cial, and that filtered colimits in it are homotopical, one argues as in the projective
situation above. �

Again, we will prove later that this model structure is also left proper.

Remark 3.1.22. It is clear that if p is an acyclic fibration in the G-global flat
model structure, then p(A) is in particular a (G × ΣA)-weak equivalence for all
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finite sets A. Such maps will become useful at several points below and we call
them strong level weak equivalences. The factorization axiom for the above model
structure then in particular shows that any map of G-spectra factors as a G-global
flat cofibration followed by a strong level weak equivalence.

Warning 3.1.23. While the G-global flat level model structure has the same
cofibrations as the G-equivariant flat level model structure (if G is finite), its weak
equivalences are once again very different. As a drastic example, if G = 1, then
a morphism f of ordinary spectra is a G-equivariant level weak equivalence if and
only if it is levelwise an underlying weak equivalence while it is a G-global level
weak equivalence if and only if each f(A) is a ΣA-weak equivalence. For general G,
the two notions of weak equivalence are incomparable.

In particular, the fibrations of the G-global flat level model structure are very
different from the ones of the G-equivariant flat level model structure—the cofree-
ness conditions are once again ‘orthogonal’ to each other. However we have:

Lemma 3.1.24. Let H be a finite group, and let ϕ : H → G be any group
homomorphism. Then the simplicial adjunction

ϕ! : H-SpectraH-equivariant projective level � G-SpectraG-global flat level :ϕ∗

is a Quillen adjunction. In particular, if G is finite, then any fibration or acyclic
fibration in the G-global flat level model structure is also a fibration or acyclic
fibration, respectively, in the G-equivariant projective level model structure.

Proof. It suffices to prove the first statement. As this is canonically a simpli-
cial adjunction, it only remains to prove that ϕ∗ is right Quillen.

A map p of G-spectra is a fibration or acyclic fibration in the G-global flat level
model structure if and only if for each finite set A the map p(A) is a fibration or
acyclic fibration, respectively, in the injective GΣA,G-model structure; in particular,
p(A) is a fibration or acyclic fibration in the A``-model structure. But

ϕ∗ : (ΣA ×G)-SSet→ (ΣA ×H)-SSet

is right Quillen with respect to the A``-model structures, so (ϕ∗p)(A) = ϕ∗(p(A))
is a fibration or acyclic fibration in the A``-model structure on (ΣA ×H)-SSet,
hence in particular in the GH,ΣA -model structure as desired. �

Lemma 3.1.25. Both of the above model structures on G-Spectra are left
proper. Moreover, pushouts along injective cofibrations (i.e. levelwise injections)
preserve G-global level weak equivalences.

Proof. This follows immediately from left properness of the injective GΣA,G-
equivariant model structure for any (finite) set A. �

3.1.2.2. Stable model structures. We now turn to the appropriate stable model
structures on G-Spectra that will then model stable G-global homotopy theory.

Definition 3.1.26. A map f : X → Y is called a G-global stable weak equiva-
lence if for all finite groups H and all group homomorphisms ϕ : H → G the induced
map ϕ∗f : ϕ∗X → ϕ∗Y is an H-equivariant (stable) weak equivalence.

For brevity, we will again drop the word ‘stable’ and just use the term ‘G-global
weak equivalence.’
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Remark 3.1.27. By the 2-out-of-6 property for the H-equivariant weak equiva-
lences, also the G-global weak equivalences satisfy 2-out-of-6 and hence in particular
2-out-of-3.

In general, the G-global weak equivalences are hard to grasp as already the H-
equivariant weak equivalences are quite complicated. However, as in the equivariant
setting, there is a notion of π∗-isomorphism that is easier to understand and coarse
enough to be useful in many practical situations:

Definition 3.1.28. Let X be any G-spectrum and let ϕ : H → G be any group
homomorphism from a finite group H to G. Then we define the ϕ-equivariant
(stable) homotopy groups of X as the Z-graded abelian group

πϕ∗ (X) := πH∗ (ϕ∗X).

If f : X → Y is a map of G-spectra, then we define πϕ∗ (f) := πH∗ (ϕ∗f). The map
f is called a π∗-isomorphism if πϕ∗ (f) is an isomorphism for all homomorphisms
ϕ : H → G from finite groups H to G.

Lemma 3.1.29. Let f : X → Y be a G-global level weak equivalence. Then f is
a π∗-isomorphism.

Proof. Let H be any finite group and let ϕ : H → G be a group homo-
morphism. We will only show that πϕ0 (f) is an isomorphism; the proof in other
dimensions is analogous, but requires more notation.

For this we define s′(UH) as the poset of all finite faithful H-subsets of UH .
Then s′(UH) is again filtered and the inclusion s′(UH) ↪→ s(UH) is cofinal. Thus,
it induces isomorphisms fitting into a commutative diagram

colim
A∈s′(UH)

[SA, (ϕ∗X)(A)]H∗ colim
A∈s′(UH)

[SA, (ϕ∗Y )(A)]H∗

colim
A∈s(UH)

[SA, (ϕ∗X)(A)]H∗ colim
A∈s(UH)

[SA, (ϕ∗Y )(A)]H∗ .

∼=

colimA[SA,(ϕ∗f)(A)]H∗

∼=

πϕ0 (f)

On the other hand, if A is a finite faithful H-set, then (ϕ∗f)(A) is an H-equivariant
weak equivalence. Thus, also the top horizontal arrow is an isomorphism, and hence
so is πϕ0 (f) as desired. �

On the other hand, Theorem 3.1.15 implies:

Corollary 3.1.30. Let f be a π∗-isomorphism (for example if f is a G-global
level weak equivalence). Then f is a G-global weak equivalence. �

In the equivariant setting we have seen a definition of the weak equivalences
in terms of G-Ω-spectra, and a similar characterization exists in the global context,
see [Hau19b, Sections 2.2–2.3]. Here is a G-global generalization of this:

Definition 3.1.31. A G-spectrum X is called a G-global Ω-spectrum if the
following holds: for any finite group H, any group homomorphism ϕ : H → G, any
finite faithful H-set A, and any finite H-set B the adjoint structure map

(ϕ∗X)(A)→ RΩB(ϕ∗X)(AqB)

is an H-weak equivalence.



162 3. STABLE G-GLOBAL HOMOTOPY THEORY

An equivalent way of formulating the above is the following: for any H,A,B
as above the map X(A) → RΩBX(A q B) is a GH,G-weak equivalence. If X is
G-globally projectively level fibrant (and hence in particular if it is fibrant in the
G-global flat level model structure), then (ϕ∗X)(A q B) is a fibrant H-simplicial
set and X(AqB) is fibrant in the GH,G-model structure on (G×H)-simplicial sets
(both of these use that AqB is faithful). Thus, we can in this case just work with
non-derived loop space in either of the above equivalent definitions.

Proposition 3.1.32. A map f : X → Y is a G-global weak equivalence if and
only if for every G-global Ω-spectrum T the induced map [f, T ] : [Y, T ] → [X,T ] is
bijective, where [ , ] denotes the hom sets in the homotopy category with respect to
the G-global level weak equivalences.

The proof will be given later once we have constructed the relevant model
structures.

Lemma 3.1.33. Let H be a finite group and ϕ : H → G any homomorphism.
Then the simplicial adjunction

ϕ∗ : G-SpectraG-global flat level �H-SpectraH-equivariant flat :ϕ∗

is a Quillen adjunction with homotopical left adjoint. Moreover, the essential image
of Rϕ∗ is contained in the class of G-global Ω-spectra.

Proof. It is obvious that ϕ∗ preserves flat cofibrations, and it is actually
homotopical by Lemma 3.1.30, hence in particular left Quillen. To finish the proof
it suffices now that for any fibrant spectrum X in the H-equivariant flat model
structure the G-spectrum ϕ∗X is a G-global Ω-spectrum, which by the Quillen
adjunction just established amounts to saying that the adjoint structure map

(3.1.3) (ϕ∗X)(A)→ ΩB(ϕ∗X)(AqB)

is a GK,G-weak equivalence for every finite group K, finite faithful K-set A, and
finite K-set B. We will show that it is in fact even a (K ×G)-weak equivalence.

Indeed, by [Hau19b, proof of Proposition 2.13] the adjoint structure map

(3.1.4) X(A)→ ΩBX(AqB)

is actually a (K ×H)-weak equivalence. Moreover, both sides are easily seen to be
fibrant in the A``-model structure on (K ×H)-SSet. As ϕ∗ : (K ×G)-SSet→
(K ×H)-SSet is left Quillen for the A``-model structures on both sides, its right
adjoint ϕ∗ is right Quillen, so it sends (3.1.4) to a (K×G)-weak equivalence by Ken
Brown’s Lemma. This image agrees with (3.1.3) up to conjugation by isomorphisms
(as ϕ∗ preserves cotensors), which completes the proof of the lemma. �

Lemma 3.1.34. Let f : X → Y be a map of G-global Ω-spectra. Then f is a
G-global level weak equivalence if and only if f is a G-global weak equivalence.

Proof. The implication ‘⇒’ holds by Lemma 3.1.30 even without any assump-
tions on X and Y .

For the implication ‘⇐’, we may assume without loss of generality by 2-out-of-3
that X and Y are fibrant in the G-global flat level model structure. Now let H be
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any finite group, let ϕ : H → G be a group homomorphism, and let A be a finite
faithful H-set. We consider the diagram

ϕ∗X ΩAshAϕ∗X

ϕ∗Y ΩAshAϕ∗Y

λX

ϕ∗f ΩAshAϕ∗f

λY

with λX given in degree B by the adjoint structure map ϕ∗X(B)→ ΩA(ϕ∗X)(Aq
B), and analogously for Y . Thus, λX and λY are H-global level weak equivalences
by assumption on X and Y , and hence in particular H-equivariant weak equiva-
lences by Lemma 3.1.30. Moreover, ϕ∗f is an H-equivariant weak equivalence by
definition, so that ΩAshAϕ∗f is an H-equivariant weak equivalence by 2-out-of-3.
As both its source and target are H-Ω-spectra by definition, ΩAshAϕ∗f is an H-
equivariant level weak equivalence [Hau17, Remark 2.36]. In particular, if B is

any finite H-set, then (ΩAshAϕ∗f)(B) is an H-equivariant weak equivalence. But
this fits into a commutative diagram

(ϕ∗X)(B) (ΩAshAϕ∗X)(B)

(ϕ∗Y )(B) (ΩAshAϕ∗X)(B),

λX(B)

(ϕ∗f)(B) (ΩAshAϕ∗f)(B)

λY (B)

and if B is actually faithful, then also the horizontal arrows are H-weak equivalences
by the above. It follows by 2-out-of-3 that in this case also the left hand vertical
arrow is an H-equivariant weak equivalence as desired. �

Construction 3.1.35. Let H be a finite group, let A be a finite faithful H-
set, and let ϕ : H → G be any homomorphism. Then enriched adjointness yields
a natural isomorphism (–)ϕ ◦ evA ∼= mapsG

(
GA((G × ΣA)/H+), –

)
(where H acts

via A and ϕ). If B is another finite H-set, then GAqB
(
(SB ∧ (G × ΣAqB)+)/H

)
similarly corepresents T 7→ (ΩBT (AqB))ϕ. Thus the Yoneda Lemma yields a map

λBA,ϕ : GAqB
(
(SB ∧ (G× ΣAqB)+)/H

)
→ GA

(
(G× ΣA)+/H

)
such that the restriction mapsG(λBA,ϕ, T ) is conjugate to the ϕ-fixed points of the

adjoint structure map T (A)→ ΩBT (AqB) for any G-spectrum T .

We can now finally prove:

Theorem 3.1.36. There is a unique model structure on G-Spectra whose
cofibrations are the flat cofibrations and whose weak equivalences are the G-global
weak equivalences. We call this the G-global flat model structure. It is left proper,
combinatorial, simplicial, and filtered colimits in it are homotopical. Moreover, a
G-spectrum is fibrant in it if and only if it is fibrant in the G-global flat level model
structure and moreover a G-global Ω-spectrum.

Proof. Clearly, the sources and targets of the maps λBA,ϕ from the previous
construction are cofibrant in the projective G-global level model structure, hence in
particular in the flat G-global level model structure. Thus, picking representatives
of isomorphism classes of such H,A,B, ϕ, we may apply Theorem A.2.2 to obtain
a left proper, simplicial, and combinatorial model structure on G-Spectra with
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the same cofibrations as the flat G-global level model structure and whose fibrant
objects are precisely those X that are fibrant in the G-global flat level model struc-
ture and for which mapsG(λBA,ϕ, X) is a weak homotopy equivalence for all A,B,ϕ.
By construction, the latter is equivalent to X being a G-global Ω-spectrum.

Let us call the weak equivalences of this model structure G-global Ω-weak equiv-
alences for the time being. Lemma A.2.4 shows that they are stable under filtered
colimits, and it only remains to show that they agree with the G-global weak equiv-
alences, which amounts to saying that

(3.1.5) (ϕ∗)ϕ : H→G : G-SpectraG-global Ω-w.e. →
∏

ϕ : H→G
H-SpectraH-equiv. w.e.

preserves and reflects weak equivalences, where the product runs over a system of
representatives of finite groups H and all homomorphisms ϕ : H → G.

Indeed, let us equip the left hand side with the above model structure and the
right hand side with the product of the H-equivariant flat model structures; we
claim that (3.1.5) is left Quillen, for which it suffices to show that (ϕ∗)ϕ preserves
cofibrations and that its right adjoint (which sends a family (Xϕ)ϕ of H-spectra
to the product

∏
ϕ ϕ∗Xϕ) preserves fibrant objects. But as fibrant objects are

stable under products, this is immediate from Lemma 3.1.33. As (ϕ∗)ϕ moreover
sends G-global level weak equivalences to weak equivalences by the same lemma,
we conclude that it is homotopical in G-global Ω-weak equivalences.

It therefore only remains to show that (3.1.5) also reflects weak equvialences.
But since we already know that it is homotopical, it suffices to show this for maps
between fibrant objects, in which case the claim follows from Lemma 3.1.34. �

Proof of Proposition 3.1.32. This is immediate from the description of
the weak equivalences of the above model structure provided by Theorem A.2.2. �

Theorem 3.1.37. There is a unique model structure on G-Spectra whose
cofibrations are the G-global projective cofibrations and whose weak equivalences
are the G-global weak equivalences. We call this the G-global projective model
structure. It is left proper, combinatorial, simplicial, and filtered colimits in it are
homotopical. Moreover, a G-spectrum is fibrant in it if and only if it is fibrant in
the G-global projective level model structure and moreover a G-global Ω-spectrum.

Proof. Analogously to Theorem 3.1.36, one constructs a model structure with
the desired cofibrations and fibrant objects, and shows that it is left proper, com-
binatorial, simplicial, and that filtered colimits in it are homotopical. The weak
equivalences of this model structure can then again be detected by mapping into
G-global Ω-spectra, so Proposition 3.1.32 shows that they agree with the G-global
weak equivalences. �

Lemma 3.1.38. The G-global weak equivalences in G-Spectra are stable under
all small coproducts.

Proof. This is clear for the G-global level weak equivalences; the claim follows
as the acyclic cofibrations in any model structure are stable under coproducts. �

Remark 3.1.39. If we fix a finite group G, then we can equip G-Spectra with
either the G-global flat model structure or the G-equivariant flat model structure.
Both of these have the same cofibrations, but the G-global weak equivalences are
strictly finer than the G-equivariant ones even for G = 1.
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As a model structure is characterized by its cofibrations together with its fi-
brant objects (Proposition A.2.5), it follows that being fibrant in the G-global flat
model structure is strictly weaker than being fibrant in the G-equivariant flat model
structure. However, we will show later in Proposition 3.3.1 that a fibrant object in
the G-global flat model structure is at least still a G-Ω-spectrum.

Lemma 3.1.40. Pushouts of G-global weak equivalences along injective cofibra-
tions are again G-global weak equivalences.

Proof. This follows from Lemma 3.1.25 as in the proof of Theorem 1.2.41. �

Corollary 3.1.41. There is a unique model structure on G-Spectra whose
weak equivalences are the G-global weak equivalences and whose cofibrations are the
injective cofibrations. We call this the injective G-global model structure. It is
combinatorial, simplicial, left proper, and filtered colimits in it are homotopical.

Proof. Applying Corollary A.2.18 to the above, it only remains to show is that
this model structure is simplicial. To this end, it suffices as before that for each
K ∈ SSet∗ the functor K ∧ – is homotopical and that for each G-spectrum X so is
–∧X : SSet∗ → G-Spectra. But indeed, the second statement is obvious, and for
the first we observe that K∧– preserves G-global projective acyclic cofibrations (by
Theorem 3.1.37) as well asG-global level weak equivalences (by an easy calculation).
The claim follows immediately. �

Proposition 3.1.42. Let

(3.1.6)

P X

Y Z

g

p

f

be a pullback diagram in G-Spectra such that p is a G-global projective level fibra-
tion and f is a G-global weak equivalence. Then g is a G-global weak equivalence,
too. In particular, the G-global projective model structure, the G-global flat model
structure, and the G-global injective model structure are right proper (hence proper).

Proof. It suffices to prove the first statement. For this we employ the factor-
ization axiom of the G-global flat level model structure to write f as a composition

Y
i−→ H

s−→ Z,

where i is a G-global level weak equivalence and s is a fibration in the G-global flat
level model structure. We observe that s is moreover a G-global weak equivalence
by Lemma 3.1.30 together with 2-out-of-3. The diagram (3.1.6) now factors as

P I X

Y H Z

j t

q p

i s

where both squares are pullbacks. In particular, q is again a G-global projective
level fibration and hence j is a G-global level weak equivalence by right proper-
ness of the G-global projective level model structure. By another application of
Lemma 3.1.30 and 2-out-of-3, it is therefore enough to show that t is a G-global
weak equivalence.
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For this let ϕ : H → G be any homomorphism from a finite group H to G; then

ϕ∗I ϕ∗X

ϕ∗H ϕ∗Z

ϕ∗t

ϕ∗q ϕ∗p

ϕ∗s

is a pullback, and ϕ∗s is anH-equivariant projective level fibration by Lemma 3.1.24
as well as an H-equivariant weak equivalence by the above. It therefore follows
from [Hau17, discussion after Proposition 4.2] that also ϕ∗t is an H-equivariant
weak equivalence. Letting ϕ vary we see therefore see that t is a G-global weak
equivalence, finishing the proof. �

Finally we observe:

Proposition 3.1.43. The G-global projective model structure, the G-global flat
model structure, and the G-global injective model structure all are stable.

Proof. Each of these are simplicial model categories, so this amounts to saying
that the suspension/loop adjunction Σ := S1 ∧ – a maps(S1, –) := Ω (which is
always a Quillen adjunction) is a Quillen equivalence for each of these. As the left
adjoint is homotopical and all of these have the same weak equivalences, it suffices
to show:

(1) For every G-spectrum X and some (hence any) fibrant replacement ΣX →
Y in the G-global flat model structure, the composition X → ΩΣX → ΩY
is a G-global weak equivalence.

(2) For every G-spectrum Y that is fibrant in the G-global flat model struc-
ture, the counit ΣΩX → X is a G-global weak equivalence.

We will prove the first statement, the argument for the second one being analogous.
If f : ΣX → Y is any fibrant replacement in the G-global flat model structure,
then ϕ∗(f) is an H-equivariant weak equivalence and ϕ∗(Y ) is fibrant in the H-
equivariant projective level model structure for every homomorphism ϕ : H → G.
By Proposition 3.1.17, Σ is also homotopical with respect to H-equivariant weak
equivalences, and Ω preserves H-equivariant weak equivalences between objects
that are fibrant in the H-equivariant projective level model structure; we therefore
conclude that ϕ∗(fη) is a model for the derived unit of the suspension loop ad-
junction on H-SpectraH-equiv. proj.. The claim follows by another application of
Proposition 3.1.17. �

3.1.3. Functoriality. We will now discuss how the above models relate to
each other when the group G varies.

Lemma 3.1.44. For any homomorphism α : H → G, the simplicial adjunction

α! : H-SpectraH-global projective � G-SpectraG-global projective :α∗

is a Quillen adjunction, and likewise for the corresponding level model structures.

Proof. It is clear that α∗ preserves G-global level weak equivalences and fi-
brations, proving the second statement. For the first statement it then suffices that
α∗ preserves fibrant objects, which by the above together with the characterization
of fibrant objects amounts to saying that α∗ sends G-globally projectively fibrant
G-global Ω-spectra to H-global Ω-spectra. This is obvious from the definitions. �



3.1. G-GLOBAL HOMOTOPY THEORY OF G-SPECTRA 167

Lemma 3.1.45. For any homomorphism α : H → G, the simplicial adjunction

α∗ : G-SpectraG-global flat �H-SpectraH-global flat :α∗.

is a Quillen adjunction.

Proof. By definition, α∗ preserves weak equivalences and flat cofibrations. �

Unfortunately, α∗ is not in general right Quillen with respect to the correspond-
ing flat model structures:

Example 3.1.46. We let X be any globally fibrant spectrum whose underlying
non-equivariant stable homotopy type agrees with the Eilenberg-Mac Lane spec-
trum HZ/2. As globally fibrant spectra are in particular non-equivariant Ω-spectra
(the trivial group acts faithfully on any set) and levelwise Kan complexes, we con-
clude that X(∗) represents the first singular cohomology group with coefficients in
Z/2, i.e. π0maps(–, X(∗)) ∼= H1(–,Z/2).

Now let α : Z/2→ 1 be the unique group homomorphism. We claim that α∗X
is not even fibrant in the Z/2-global flat level model structure: namely, this would
in particular mean that

mapsZ/2(E(Z/2), (α∗X)(∗)) ' mapsZ/2(∗, (α∗X)(∗))
as E(Z/2)→ ∗ is a GΣ∗,Z/2-equivariant (i.e. underlying) weak equivalence. Thus,

maps(E(Z/2)/(Z/2), X(∗)) ∼= mapsZ/2(E(Z/2), (α∗X)(∗))

' mapsZ/2(∗, (α∗X)(∗)) = maps(∗, X(∗)).
However, E(Z/2) is a contractible space with free Z/2-action, so that its quotient
by Z/2 is a K(Z/2, 1) and hence equivalent to RP∞. Thus taking π0 of the above we
could conclude that H1(RP∞,Z/2) ∼= H1(∗,Z/2). However, the right hand side is
trivial while the left hand side is cyclic of order 2, yielding the desired contradiction.

However, we have:

Proposition 3.1.47. Let α : H → G be an injective group homomorphism.
Then the simplicial adjunction

α! : H-Spectraflat H-global � G-Spectraflat G-global :α∗

is a Quillen adjunction and likewise for the corresponding level model structures.

Proof. For the second statement it suffices to observe that

α! : (ΣA ×H)-SSetinj. GΣA,H
-equiv. � (ΣA ×G)-SSetinj. GΣA,G

-equiv. :α∗,

is a Quillen adjunction for every finite set A by Proposition 1.1.17. With this
established, it suffices for the first statement to prove that α∗ sends fibrant objects
to H-global Ω-spectra. This holds in fact for any group homomorphism α by
Lemma 3.1.44. �

The same example as above shows that α∗ is not right Quillen with respect to
the corresponding injective model structures. However, we still have:

Proposition 3.1.48. Let α : H → G be an injective group homomorphism.
Then the simplicial adjunction

α! : H-Spectrainjective H-global � G-Spectrainjective G-global :α∗

is a Quillen adjunction.
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Proof. It is obvious that α! preserves levelwise injections. To prove that it is
homotopical, we use the factorization axiom in the flat H-global model structure to
factor any given H-global weak equivalence f as an acyclic H-global flat cofibration
i followed by a strong level weak equivalence p. By Proposition 3.1.47, α!(i) is a
G-global weak equivalence, and so is α!(p) for obvious reasons. �

The functor α! preserves injective cofibrations in full generality, so the failure
of α∗ to be right Quillen with respect to the injective model structures can be
reinterpreted as a failure of α! to be homotopical. However, similarly to the unstable
situation we have:

Proposition 3.1.49. Let α : H → G be any homomorphism, and let f : X → Y
be an H-global weak equivalence such that ker(α) acts levelwise freely on X and Y
outside the base point. Then α!f is a G-global weak equivalence.

Proof. Lemma 3.1.44 in particular implies that α! preserves weak equivalences
between H-globally projectively cofibrant objects. Choosing functorial factoriza-
tions in the H-global projective model structure, it therefore suffices to show: if
p : X ′ → X is any H-global level weak equivalence such that X ′ is cofibrant in the
H-global projective model structure, then α!(p) is a G-global weak equivalence.

Indeed, if A is any finite set, then p(A) is a GΣA,H -weak equivalence, and ker(α)
acts freely outside the basepoint on X(A) by assumption. On the other hand, as
seen in Remark 3.1.20, all of H acts freely on X ′(A), so the claim is an instance of
Remark 2.2.21. �

3.1.4. Additivity and the Wirthmüller isomorphism. The stability of
the G-global model structures in particular implies that the G-global stable homo-
topy category is additive, so that finite coproducts and products agree in it. The
following lemma provides an underived version of this:

Lemma 3.1.50. Let T be a finite set and let (Xt)t∈T be any family of G-spectra.
Then the canonical map

∨
t∈T Xt →

∏
t∈T Xt is a G-global weak equivalence (and

in fact a π∗-isomorphism).

Proof. Let ϕ : H → G be a group homomorphism from a finite group H to
G. Then restricting the canonical map along ϕ agrees with the canonical map∨
t∈T ϕ

∗(Xt) →
∏
t∈T ϕ

∗(Xt) (on the nose if we use the usual construction of
colimits, up to conjugation by isomorphism in general). The claim follows as the
latter is an equivariant π∗-isomorphism by [Hau17, Proposition 3.6-(3)] and hence
in particular an H-equivariant weak equivalence. �

As in Corollary 2.2.64 we immediately deduce:

Corollary 3.1.51. Finite products preserve G-global weak equivalences. �

Remark 3.1.52. In the same way, one deduces from the equivariant comparison
cited above that finite products preserve H-equivariant weak equivalences for any
finite group H. Moreover, they preserve H-equivariant π∗-isomorphisms for trivial
reasons.

If X is any G-spectrum, then we can in particular apply Lemma 3.1.50 to the
family constant at X, proving that

(3.1.7) X∨T → X×T
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is a G-global weak equivalence. As for G-global Γ-spaces, we want to strengthen
this to a comparison taking the ΣT -symmetries into account:

Proposition 3.1.53. The canonical map (3.1.7) is a (G × ΣT )-global weak
equivalence (in fact, even a π∗-isomorphism) with respect to the ΣT -actions per-
muting the summands or factors, respectively.

While this is not the easiest way to prove the proposition, we will deduce it
from a suitable version of the Wirthmüller isomorphism again. More precisely,
recall from Construction 2.2.67 the natural Wirthmüller map γ : α!Y → α∗Y for
any injective homomorphism α : H → G and any pointed H-set Y . Applying this
levelwise in the simplicial and spectral directions, we then obtain a Wirthmüller
map γ : α!X → α∗X for any H-spectrum X. Below we will prove:

Theorem 3.1.54. Let X be any H-spectrum, and let α : H → G be an injective
homomorphism with (G : imα) < ∞. Then the Wirthmüller map γ : α!X → α∗X
is a G-global weak equivalence (and in fact even a π∗-isomorphism).

The proof of the theorem needs some preparations, but before we come to this,
let us observe that it immediately implies the proposition:

Proof of Proposition 3.1.53. This follows from Theorem 3.1.54 by the
same argument as in the proof of Corollary 2.3.6. �

We will establish the Wirthmüller isomorphism by reduction to the equivariant
statement; a similar argument appears in [DHL+19, proof of Theorem 2.1.10].
This will need the following classical pointset level manifestation of the Mackey
double coset formula whose proof we leave to the interested reader, also see [Hau17,
discussion after Definition 1.5] where this is stated without proof for finite G.

Construction 3.1.55. Let K,H ⊂ G be any two subgroups and let A be a
pointed H-set. We define a K-equivariant map

χ :
∨

[g]∈K\G/H

K+ ∧K∩gHg−1 c∗g(A|g−1Kg∩H)→ (G+ ∧H A)|K ,

where the wedge runs over a fixed choice of double coset representatives, (–)|K de-
notes the underlying K-set, and cg is the conjugation homomorphism K∩gHg−1 →
g−1Kg ∩H, k 7→ g−1kg, as follows: on the summand corresponding to g ∈ G, the
map is given by [k, a] 7→ [kg, a].

Analogously, we define

θ : mapsH(G,A)
∣∣
K
→

∏
[g]∈K\G/H

mapsK∩gHg
−1(

K, c∗g(A|g−1Kg∩H)
)

as the map given on the factor corresponding to g ∈ G by restricting along K →
G, k 7→ g−1k.

We omit the easy verification that these are indeed well-defined, K-equivariant,
and moreover isomorphisms. Again, we get spectral versions (denoted by the same
symbols) by applying these levelwise.

Construction 3.1.56. Let ϕ : L → G be a surjective group homomorphism
and let H ⊂ G be any subgroup. Then we define for any pointed H-set A a map

ζ : L+ ∧ϕ−1H (ϕ|∗ϕ−1(H)A)→ ϕ∗(G+ ∧H A)
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via ζ[`, a] = [ϕ(`), a]. Moreover, we write

ν : ϕ∗
(
mapsH(G,A)

)
→ mapsϕ

−1(H)
(
L, (ϕ|ϕ−1(H))

∗A
)

for the restriction along ϕ. We again omit the easy verification, that these are
well-defined, L-equivariant, and natural isomorphisms. As before, we get natural
isomorphisms of L-spectra, denoted by the same symbols.

Proof of Theorem 3.1.54. We may again assume without loss of generality
that α is the inclusion of a subgroup. Let ϕ : L → G be any homomorphism from
a finite group L; we have to show that ϕ∗(γ) is an L-equivariant weak equivalence.

For this we factor ϕ as the composition of the surjection ϕ̄ : L → im(ϕ) =: K
followed by the inclusion i : K ↪→ G. One then immediately checks that the diagram∨

[g]

K+ ∧K∩gHg−1 c∗g(X|g−1Kg∩H) (G+ ∧H X)|K

mapsH(G,X)|K

∏
[g]

K+ ∧K∩gHg−1 c∗g(X|g−1Kg∩H)
∏
[g]

mapsK∩gHg
−1

(K, c∗g(X|g−1Kg∩H))

χ

canonical

γ

θ

∏
γ

in K-Spectra commutes, where the products and coproducts run over represen-
tatives of K\G/H again. As seen above, χ and θ are K-equivariant isomorphisms;
moreover, K\G/H is finite by assumption on H, and hence the left hand ver-
tical arrow in the above diagram is a K-global weak equivalence (and in fact a
π∗-isomorphism) by Lemma 3.1.50. It is therefore enough to show that the lower
horizontal map becomes an L-equivariant weak equivalences after restricting along
ϕ̄, for which it is enough (Remark 3.1.52) to show this for each individual factor.

Up to renaming, we are therefore reduced to the case that ϕ : L→ G is surjec-
tive (and G = K is finite). But in this case, the diagram

L+ ∧ϕ−1(H) (ϕ|ϕ−1(H))
∗X mapsϕ

−1(H)
(
L, (ϕ|ϕ−1(H))

∗X
)

ϕ∗(G+ ∧H X) ϕ∗
(
mapsH(G,X)

)
γ

ζ

ϕ∗(γ)

ν

commutes by direct inspection. The vertical arrows were seen to be L-equivariant
isomorphisms above, and the top horizontal arrow is an L-equivariant weak equiv-
alence (and in fact a π∗-isomorphism) by the usual Wirthmüller isomorphism, see
e.g. [Hau17, Proposition 3.7] for a proof attributed to Schwede. The claim there-
fore follows by 2-out-of-3. �

3.1.5. The smash product. The ordinary smash product of symmetric spec-
tra gives rise to a smash product onG-Spectra by functoriality, and analogously for
its right adjoint, the function spectrum construction F . Explicitly, F (X,Y )(A) =

maps(X, shAY ), where here—and in the discussion below—we agree on the con-
vention that maps denotes the simplicial set of not necessarily G-equivariant maps,
equipped with the conjugation action.

We will now discuss some model categorical properties of these two functors:
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Proposition 3.1.57. (1) If X is any flat G-spectrum, then X ∧ – pre-
serves G-global weak equivalences.

(2) If X is any spectrum, then X ∧ – preserves G-global weak equivalences
between flat G-spectra.

Proof. For the first statement, we let f : Y → Y ′ be any G-global weak
equivalence. If ϕ : H → G is any group homomorphism, then we have to show
that ϕ∗(X ∧f) is an H-equivariant weak equivalence. But this literally agrees with
ϕ∗(X)∧ϕ∗(f), and as ϕ∗(X) is flat and ϕ∗(f) is an H-weak equivalence, the claim
follows from the usual equivariant Flatness Theorem [Hau17, Proposition 6.2-(i)].

The second statement follows similarly from [Hau17, Proposition 6.2-(ii)]. �

Proposition 3.1.58. (1) The smash product is a left Quillen bifunctor
with respect to the G-global flat model structures everywhere.

(2) The function spectrum is a right Quillen bifunctor with respect to the G-
global flat model structures everywhere.

Proof. It suffices to prove the first statement, for which we want to verify the
Pushout Product Axiom. However, as in the previous proof one readily reduces this
to the corresponding equivariant statement, which appears for example as [Hau17,
Proposition 6.1]. �

Next, we want to establish the analogue of the above result with respect to the
G-global projective model structures. In fact, we will prove a stronger ‘mixed’ ver-
sion of this, that (in the guises of Corollary 3.1.61 and Theorem 3.2.17) will become
crucial later in the proof of the G-global Delooping Theorem (Theorem 3.4.21).

Proposition 3.1.59. (1) The smash product is a left Quillen bifunctor

– ∧ –: G-SpectraG-global flat ×G-SpectraG-global proj. → G-SpectraG-global proj..

(2) The function spectrum is a right Quillen bifunctor

F : G-Spectraop
G-global flat ×G-SpectraG-global proj. → G-SpectraG-global proj..

The proof will rely on the following observation:

Lemma 3.1.60. Let A be a finite faithful G-set (in particular G is finite). Then

shA : G-SpectraG-global projective → G-SpectraG-global flat

preserves acyclic fibrations.

Proof. Let p : X → Y be an acyclic fibration in the G-global projective model
structure. We have to show that (shAp)(B)H is an acyclic Kan fibration for every
finite set B and any subgroup H ⊂ G× ΣB .

But by definition the (G × ΣB)-action on (shAp)(B) = p(A q B) is given by
restricting the G× ΣAqB-action on the right hand side along the homomorphism

ϕ : G× ΣB G× ΣA × ΣB G× ΣAqB

(g, σ) (g, ρ(g), σ)

(where ρ : G→ ΣA classifies the action on A), i.e. (shAp)(B)H = p(AqB)ϕ(H). It
therefore suffices that ϕ(H) ∈ GΣAqB ,G. But indeed, if ϕ(h, σ) = (g, 1), then σ = 1
and ρ(h) = 1 by definition of ϕ. As A is faithful, ρ is injective, so that h = 1 and
hence also g = 1. This finishes the proof. �
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Proof of Proposition 3.1.59. Let i : X → X ′ be a flat cofibration and let
p : Y → Y ′ be an acyclic fibration of the G-global projective model structure. We
will first show that that the map

(p∗, i
∗) : F (X ′, Y )→ F (X ′, Y ′)×F (X,Y ′) F (X,Y )

is an acyclic G-global projective fibration, i.e. if ϕ : H → G is any group homo-

morphism and A a finite faithful H-set, then
(
ϕ∗(p∗, i

∗)(A)
)H

is an acyclic Kan
fibration. Indeed, this map agrees up to conjugation by isomorphisms with

((shAϕ∗(p))∗, ϕ
∗(i)∗) : mapsH(ϕ∗X ′, shAϕ∗Y )

→ mapsH(ϕ∗X ′, shAϕ∗Y ′)×mapsH(ϕ∗X,shAϕ∗Y ′) mapsH(ϕ∗X, shAϕ∗Y ).

By the previous lemma together with Lemma 3.1.44, shAϕ∗(p) is an acyclic fibration
in the H-global flat model structure, and moreover ϕ∗(i) is a flat cofibration by
definition. The claim follows because the H-global flat model structure is simplicial.

By adjointness we may therefore conclude that the pushout product

j � k : (A ∧B′)q(A∧B) (A′ ∧B)→ A′ ∧B′

of any G-global flat cofibration j : A→ A′ with any G-global projective cofibration
k : B → B′ is a G-global projective cofibration. On the other hand, if at least one
of j or k is acyclic, then Proposition 3.1.58 shows that j � k is a G-global acyclic
flat cofibration (as any G-global projective cofibration is also a flat cofibration),
hence in particular a G-global weak equivalence. This proves the first part of the
proposition, and the second one then follows by the usual adjointness argument. �

If X is an H-spectrum and Y is a G-spectrum, then F (X,Y ) carries an (H×G)-
action, yielding a functor F : H-Spectraop ×G-Spectra → (H ×G)-Spectra.
As an application of the above proposition we can now prove:

Corollary 3.1.61. (1) If X is any flat H-spectrum, then

(3.1.8) F (X, –) : G-SpectraG-gl. proj. → (H ×G)-Spectra(H ×G)-gl. proj.

is right Quillen.
(2) If Y is fibrant in the G-global projective model structure, then

F (–, Y ) : H-Spectraop
H-global flat → (H ×G)-Spectra(H ×G)-global projective

is right Quillen.

Proof. We will prove the first statement, the proof of the second being similar.
For this we let pr1 : H ×G→ H and pr2 : H ×G→ G denote the projections.

Then (3.1.8) agrees with the composition

G-SpectraG-global proj.

pr∗2−−→ (H ×G)-Spectra(H ×G)-global proj.

F (pr∗1X,–)−−−−−−−→ (H ×G)-Spectra(H ×G)-global proj..

By Lemma 3.1.44 the first functor is right Quillen, and so is the second one by
Proposition 3.1.59 as pr∗1X is flat. �
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Remark 3.1.62. By another adjointness argument, Proposition 3.1.59 implies
that F is also a right Quillen bifunctor with respect to the G-global projective model
structures on the source and the G-global flat model structure in the target. While
this may sound somewhat odd, we emphasize again that the G-global projective
model structure has ‘few’ cofibrant objects for G 6= 1. In particular, S is not
cofibrant, so this does not apply to F (S, –) ∼= id.

3.2. Connections to unstable G-global homotopy theory

We can now connect the above stable models to the unstable ones discussed in
Chapter 1, and in particular to G-I-simplicial sets and G-I-simplicial sets.

3.2.1. Suspension spectra. We begin by recalling the suspension/loop ad-
junction between I-SSet∗ and Spectra, see e.g. [SS12, discussion before Propo-
sition 3.19]:

Construction 3.2.1. If X is any I-simplicial set, then we define a symmetric
spectrum Σ•X via (Σ•X)(A) = SA ∧ X(A) together with the evident structure
maps; Σ• becomes a simplicially enriched functor in the obvious way. On the other
hand, if Y is a symmetric spectrum, then we define Ω•Y via (Ω•Y )(A) = ΩAY (A)
together with the evident structure maps. Again, this becomes a functor in the
obvious way, and we omit the easy verification that Σ• is a simplicial left adjoint
to Ω•. By functoriality, this gives rise to a simplicial adjunction G-I-SSet∗ �
G-Spectra that we denote by Σ• a Ω• again.

Proposition 3.2.2. The simplicial adjunction

(3.2.1) Σ• : (G-I-SSet∗)G-global � G-SpectraG-global projective : Ω•

is a Quillen adjunction, and Σ• is fully homotopical.

Proof. One immediately checks from the definitions that

SA ∧ –: (G×ΣA)-SSet∗ � (G×ΣA)-SSet∗ :ΩA

(where ΣA acts on SA via its tautological A-action) is a Quillen adjunction with
respect to the GΣA,G-equivariant model structure on both sides, proving that (3.2.1)
is a Quillen adjunction with respect to the strict level model structure on the source
and the G-global projective level model structure on the target, hence also with
respect to the G-global projective model structure on the target. To prove that
also (3.2.1) itself is a Quillen adjunction it is then enough that Ω• sends fibrant
objects to static G-I-simplicial sets, which is immediate from the definitions.

To show that Σ• is homotopical, it is now enough to observe that any weak
equivalence in G-I-SSet∗ factors as an acyclic cofibration followed by a strict level
weak equivalence. The former are preserved according to the above, and clearly
strict level weak equivalences are even sent to G-global level weak equivalences. �

Corollary 3.2.3. The simplicial adjunction (3.2.1) is also a Quillen adjunc-
tion with respect to the G-global injective model structures.

Proof. It is obvious that Σ• preserves injective cofibrations, and by the pre-
vious proposition it also preserves G-global weak equivalences. �

Remark 3.2.4. The above adjunction is compatible with (non-negatively in-
dexed) homotopy groups; we will make one special case of this precise that will
become relevant later:
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Assume G is finite, let X be any G-spectrum, and let U = UG be our fixed
complete G-set universe. Then we have natural maps

πG0
(
(Ω•X)(U)

) ∼= πG0
(

colimA∈s(U) ΩAX(A)
)

∼= colimA∈s(U) π
G
0 ΩAX(A) = colimA∈s(U) π0mapsG(SA, X(A))

→ colimA∈s(U)[S
A, X(A)]G∗ = πG0 (X)

(where the first isomorphism comes from cofinality, the second one uses that πG0
preserves filtered colimits, and the final map is induced by the localization functor),
yielding a natural transformation πG0 ◦ Ω• ⇒ πG0 . If X is fibrant in the G-global
projective level model structure, then X(A) is fibrant in the G-equivariant model
structure for every finite faithful G-set A, so that the final map is an isomorphism
as a colimit of eventual isomorphisms, and hence so is the above composition.

Example 3.2.5. Let H be a finite group, let A be a finite faithful H-set,
and let ϕ : H → G be a homomorphism. Generalizing [Hau19b, Example 6.3],
Σ•+I(A, –)×ϕ G corepresents the true zeroth ϕ-equivariant homotopy group in the
following sense: if X is any G-global Ω-spectrum, then a similar adjointness argu-
ment to the above shows that evaluating in degree A and then restricting along

– ∧ [idA, 1] : SA → SA ∧ (I(A, –)×ϕ G)+ = Σ•+(I(A, –)×ϕ G)(A)

induces a bijection [Σ•+(I(A, –) ×ϕ G), X] → πϕ0 (X), where [ , ] denotes the hom
set in the G-global stable homotopy category. In general, [Σ•+(I(A, –) ×ϕ G), Y ]
computes πϕ0 of a replacement of Y by a G-global Ω-spectrum.

We now turn to a variant for G-I-simplicial sets:

Corollary 3.2.6. The simplicial adjunction

Σ• := Σ•◦forget : (G-I-SSet∗)G-global � G-SpectraG-global proj. :mapsI(I, –)◦Ω•

is a Quillen adjunction, and likewise for the injective G-global model structures.

Proof. This is immediate from the above as the forgetful functorG-I-SSet→
G-I-SSet is left Quillen for the G-global model structures as well as for the injec-
tive G-global ones (Theorems 1.4.47 and 1.4.37, respectively). �

Remark 3.2.7. Composing with the adjunction

(–)+ : G-I-SSet� G-I-SSet∗ : forget

(or its I-version) we also get unpointed versions of all of the above adjunctions.
We denote the right adjoints as before and write Σ•+ for the left adjoints.

Remark 3.2.8. By Theorem 1.4.47, the counit forget mapsI(I, Y )→ Y is a G-
global weak equivalence (hence strict level weak equivalence) for any G-I-simplicial
set Y that is fibrant in the G-global model structure. By Proposition 3.2.2, this
in particular applies to Y = Ω•X for any G-spectrum X fibrant in the G-global
projective model structure. Composing with the transformation from Remark 3.2.4
we therefore get a natural transformation

πG0
(
mapsI(I,Ω•(–))(U)

)
⇒ πG0 ,

which is an isomorphism for all fibrant objects of G-SpectraG-global projective.
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3.2.2. Enrichment and tensoring over G-I-simplicial sets. We will now
exhibit another connection between (G-)spectra and (G-)I-simplicial sets. For this
we first recall the usual tensoring of G-Spectra over G-I-SSet∗, see e.g. [Sch07,
Example 2.31] where this is denoted ‘∧’:

Construction 3.2.9. Let X be a spectrum and let Y be a pointed I-simplicial
set. We write X⊗Y for the spectrum with (X⊗Y )(A) = X(A)∧Y (A) and structure
maps

SBri(A) ∧
(
X(A) ∧ Y (A)

) ∼= (SBri(A) ∧X(A)
)
∧ Y (A)

σ∧Y (i)−−−−→ X(B) ∧ Y (B)

for any injection i : A → B of finite sets, where the unlabelled isomorphism is the
associativity constraint. The tensor product becomes a simplicially enriched func-
tor in both variables by applying the enriched functoriality of the smash product
of pointed simplicial sets levelwise. If G is any discrete group, then taking the
diagonal of the two actions promotes the tensor product to a simplicially enriched
functor G-Spectra×G-I-SSet∗ → G-Spectra that we denote by the same sym-
bol. Finally, precomposing with the forgetful functor we get a simplicially enriched
functor

(3.2.2) G-Spectra×G-I-SSet∗ → G-Spectra

that we again denote by –⊗ –.

Remark 3.2.10. It is not hard to verify that these indeed become actions of
G-I-SSet∗ and G-I-SSet∗ (with the symmetric monoidal structure given by the
levelwise smash product), respectively, on G-Spectra in a preferred way; we leave
the details to the curious reader.

3.2.2.1. Homotopical properties of the tensor product. It will be natural to first
study these equivariantly, so let us fix a finite group H. We begin with a comparison
of homotopy groups:

Lemma 3.2.11. Let X ∈ H-Spectra and Y ∈ H-I-SSet∗. Then there exists
a natural isomorphism

πH∗ (X ⊗ Y ) ∼= πH∗ (X ∧ Y (UH)).

Proof. This is a standard argument, see e.g. [Sch20a, Proposition 5.14]. We
will only prove the claim for πH0 ; the general case is done analogously, but requires
more notation. For this we consider

πH∗ (X ⊗ Y ) = colimA∈s(UH)[S
A, (X ⊗ Y )(A)]H∗

= colimA∈s(UH)[S
A, X(A) ∧ Y (A)]H∗

∼= colim(A,B)∈s(UH)2 [SA, X(A) ∧ Y (B)]H∗
∼= colimA∈s(UH) colimB∈s(UH)[S

A, X(A) ∧ Y (B)]H∗
∼= colimA∈s(UH)[S

A, X(A) ∧ colimB∈s(UH) Y (B)]H∗
∼= colimA∈s(UH)[S

A, X(A) ∧ Y (UH)]H∗

= πH∗ (X ∧ Y (UH)).

Here the first isomorphism uses that the diagonal s(UH) → s(UH)2 is cofinal, the
second one is the Fubini Theorem for colimits, and the third one uses that SA is
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compact (in the derived sense) and that ∧ is cocontinuous in each variable. As all
of the above isomorphisms are clearly natural, this finishes the proof. �

For the rest of this section we focus on (3.2.2) as it is more tractable:

Proposition 3.2.12. Let X ∈H-Spectra, Y ∈H-I-SSet∗. Then the maps

X ⊗ Y → X ⊗ Y (UH q –)← X ⊗ constY (UH) = X ∧ Y (UH)

induced by the inclusions A ↪→ UH qA←↩ UH are equivariant π∗-isomorphisms.

Proof. Replacing H by a subgroup K ⊂ H if necessary and using that UH
is also a complete K-set universe, it suffices to show this for πH∗ . By the previous
lemma it is then enough to prove that the induced maps

πH∗ (X ∧ Y (UH))→ πH∗ (X ∧ Y (UH q –)(UH))← πH∗ (X ∧ (constY (UH))(UH))

are isomorphisms. For this we simply observe that up to the natural isomorphisms
Y (UH q –)(UH) ∼= Y (UH q UH) (see Lemma 1.4.17) and (constY (UH))(UH) ∼=
Y (UH), these are induced from the two inclusions UH ⇒ UH q UH , so that the
claim follows from Lemma 1.4.16. �

Proposition 3.2.13. Let X be an H-spectrum and let Y be any H-I-simplicial
set. Then the map

ψ : X ∧ Σ•Y → X ⊗ Y
associated to the bimorphism given in degree A,B by

X(A) ∧ (Σ•Y )(B) = X(A) ∧ SB ∧ Y (B)
twist−−−→ SB ∧X(A) ∧ Y (B)

σB,A∧Y (B↪→AqB)−−−−−−−−−−−−→ X(B qA) ∧ Y (AqB)

X(twist)∧id−−−−−−−−→ X(AqB) ∧ Y (AqB) = (X ⊗ Y )(AqB)

is natural in both variables. Moreover, if X is flat, then ψ is a π∗-isomorphism,
hence in particular an H-equivariant weak equivalence.

Proof. The naturality is obvious. For the second statement, we observe that

X ∧ Σ•Y X ⊗ Y

X ∧ Σ•Y (UH q –) X ⊗ Y (UH q –)

X ∧ Σ• constY (UH) X ⊗ constY (UH)

ψ

ψ

ψ

commutes by naturality, where the vertical arrows are induced from the zig-zag in
Proposition 3.2.12 (using that Σ• = S ⊗ –). In particular, the proposition tells us
that the right hand vertical maps are π∗-isomorphisms and as X ∧ – preserves π∗-
isomorphisms by [Hau17, Proposition 6.2-(i)], so are the left hand vertical maps.

But the lower horizontal map in the above diagram literally agrees with the
canonical comparison map X ∧ Σ∞Y (UH) → X ∧ Y (UH), so it is even an isomor-
phism, see e.g. [Sch07, Proposition 3.5]. The claim follows by 2-out-of-3. �

We can now use this to establish G-global properties of the tensor product:
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Proposition 3.2.14. Let X be a flat G-spectrum, and let Y be any G-I-
simplicial set. Then the above map ψ : X ∧ Σ•Y → X ⊗ Y is a G-global weak
equivalence (in fact, even a π∗-isomorphism).

Moreover, if Y is cofibrant in the G-global model structure, then α!(ψ) is a
G′-global weak equivalence for any homomorphism α : G→ G′.

Proof. For the first statement we let ϕ : H → G be any homomorphism. Then
ϕ∗(ψ) literally agrees with ψ : (ϕ∗X) ∧ Σ•(ϕ∗Y )→ (ϕ∗X)⊗ (ϕ∗Y ). As flatness is
a property of the underlying non-equivariant spectrum, ϕ∗X is again flat, so the
claim follows from the previous proposition.

For the second statement we observe that X ∧Σ•Y is cofibrant in the G-global
projective model structure by Proposition 3.2.2 together with Proposition 3.1.59, so
G acts levelwise freely outside the base point on it by Remark 3.1.20. Moreover, G
also acts levelwise freely outside the base point on Y , hence also onX⊗Y . The claim
therefore follows from the first statement together with Proposition 3.1.49. �

3.2.2.2. G-global mapping spaces. We now introduce a certain ‘G-global map-
ping space’ adjoint to the above tensor product:

Construction 3.2.15. We define a simplicially enriched functor

FI : G-Spectraop ×G-Spectra→ G-I-SSet∗

as follows: if X and Y are G-spectra and A is a finite set, then

FI(X,Y )(A) = maps(X ⊗ I(A, –)+, Y )

(we remind the reader that maps consists of all not necessarily G-equivariant maps
and that it is a G-simplicial set by conjugation, with based point coming from the
constant map). The covariant functoriality in A is given by contravariant functori-
ality of I(A, –); the contravariant functoriality in X and the covariant functoriality
in Y are the obvious ones.

We define a map εX,Y : X ⊗ FI(X,Y ) → Y as follows: in degree A, εX,Y is
given by the composition

X(A)∧maps(X⊗ I(A, –)+, Y )→X(A) ∧maps(X(A) ∧ I(A,A)+, Y (A))

→X(A)∧I(A,A)+∧maps(X(A)∧I(A,A)+,Y (A))

→ Y (A)

where the first map is induced by evaluating in degree A, the second one sends
x ∈ Xn to x∧ (idA, . . . , idA), and the final one is the counit of the usual smash-hom
adjunction in SSet∗. We omit the easy verification that εX,Y is a map of G-spectra
and that it is natural (in the enriched sense) in both variables.

We further define ηX,Y : Y → FI(X,X⊗Y ) as follows: in degree A, ηX,Y is the
map Y (A)→ maps(X ⊗ I(A, –)+, X ⊗ Y ) whose postcomposition with evaluation
at B is the map Y (A) → maps(X(B) ∧ I(A,B)+, X(B) ∧ Y (B)) adjunct to the
map

X(B) ∧ I(A,B)+ ∧ Y (A)→ X(B) ∧ Y (B)

induced by the enriched functoriality of Y (here we have suppressed the associativity
isomorphism for simplicity). We again omit the straight-forward verification that
this is well-defined and a simplicially enriched natural transformation. We moreover
omit that for any fixed G-spectrum X the natural transformation εX,– and ηX,–
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satisfy the triangle equations, so that they form unit and counit of a simplicially
enriched adjunction

X ⊗ –: G-I-SSet∗ � G-Spectra :FI(X, –).

Let X,Y be G-spectra. Then there is also another way to cook up a ‘mapping
G-I-space’ between X and Y , namely mapsI(I,Ω•F (X,Y )). Our goal for the rest
of this section is to compare these two; more generally, we will need a version where
we allow X to be an H-spectrum and we want a (G×H)-global comparison.

Construction 3.2.16. If T is any spectrum, then we have by adjointness and
the simplicially enriched Yoneda Lemma a sequence of isomorphisms

mapsI(I,Ω•T )(A) ∼= mapsI-SSet(I(A, –),mapsI(I,Ω•T ))

∼= mapsI-SSet(I(A, –),Ω•T ) ∼= mapsSpectra(Σ•+I(A, –), T )

natural in T and the finite set A. Applying this to T = F (X,Y ) for X and Y
spectra and appealing to the adjunction between ∧ and F we get an isomorphism

(3.2.3) mapsI
(
I,Ω•F (X,Y )

)
(A) ∼= maps(X ∧ Σ•+I(A, –), Y )

natural in X, Y , and A. In particular, if the group H acts on X and the group
G acts on Y , then these maps for varying A assemble into an isomorphism in
(G×H)-I-SSet∗.

We now define ψ̂ : FI(X,Y ) → mapsI(I,Ω•F (X,Y )) as the map given in de-
gree A by the composition

maps(X ⊗ I(A, –)+, Y )
ψ∗−−→ maps(X ∧ Σ•+I(A, –), Y ) ∼= mapsI

(
I,Ω•F (X,Y )

)
(A)

where the unlabelled isomorphism is (3.2.3). We omit the easy verification that
this is well-defined, and natural in both variables.

Now we are ready to state and prove the main result of this section:

Theorem 3.2.17. If X is a flat H-spectrum and Y is fibrant in the G-global
injective model structure, then

(3.2.4) ψ̂ : FI(X,Y )→ mapsI
(
I,Ω•F (X,Y )

)
is a (G×H)-global weak equivalence.

Proof. We show that it is a (G×H)-global level weak equivalence. For this
we let K be any finite group acting faithfully on A and ϕ : K → G×H any group

homomorphism. We have to show that ϕ∗(ψ̂)(A)K is a weak homotopy equivalence,

for which it is enough by construction of ψ̂ that ϕ∗(ψ∗)(A)K is. But if we write
ϕ1 : K → G and ϕ2 : K → H for the components of ϕ, then this agrees with

mapsK(ψ,ϕ∗1Y ) : mapsK(ϕ∗2X⊗I(A, –)+, ϕ
∗
1Y )→ mapsK(ϕ∗2X∧Σ•+I(A, –), ϕ∗1Y ).

Using that ϕ1! is a simplicial left adjoint to ϕ∗1 we see that this agrees up to conju-
gation by isomorphisms with(
ϕ1!(ψ)

)∗
: mapsG(ϕ1!(ϕ

∗
2X ⊗ I(A, –)+), Y )→ mapsG(ϕ1!(ϕ

∗
2X ∧ Σ•+I(A, –)), Y ).

But ϕ1!(ψ) is a G-global weak equivalence by Proposition 3.2.14, and Y is fibrant
in the injective G-global model structure by assumption. The claim follows since
the latter is a simplicial model structure. �
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3.3. G-global spectra vs. G-equivariant spectra

In this section we will finally prove as promised:

Proposition 3.3.1. Let G be a finite group. Then the simplicial adjunctions

id : G-SpectraG-equivariant projective � G-SpectraG-global flat : id(3.3.1)

Σ•+I(A, –) ∧ –: G-SpectraG-equiv. proj. � G-SpectraG-global proj. :ΩAshA(3.3.2)

are Quillen adjunctions, where A is any finite faithful G-set. In particular, if X is
fibrant in the G-global flat model structure, then X is a G-Ω-spectrum.

In addition, the adjunctions induced by (3.3.1) and (3.3.2) on associated quasi-
categories are equivalent in a preferred way and moreover right Bousfield localiza-
tions at the G-equivariant weak equivalences.

A key ingredient is the following consequence of the results of Subsection 3.1.5:

Proposition 3.3.2. Let A be a finite faithful G-set. Then

(3.3.3) Σ•I(A, –) ∧ –: G-SpectraG-global flat � G-SpectraG-global proj. :ΩAshA

is a simplicial Quillen equivalence. Moreover, the adjunction induced on associated
quasi-categories is canonically equivalent to the identity adjunction.

Proof. Forgetting about the action on A, we have for any spectra X, Y a
sequence of SSet-enriched natural isomorphisms

maps(Σ•+I(A, –) ∧X,Y )∼= maps(Σ•+I(A, –), F (X,Y ))∼= maps(I(A, –),Ω•F (X,Y ))

∼= ΩAmaps(X, shAY ) ∼= maps(X,ΩAshAY )

where we have used in this order: the smash-function spectrum adjunction; the
adjunction Σ•+ a Ω•; the SSet-enriched Yoneda Lemma together with the definition

of Ω• and F ; the fact that ΩA is defined in terms of the cotensoring of Spectra
over SSet∗. If G acts on X, Y , and A, then these isomorphisms are G-equivariant
with respect to the conjugate action by naturality, and taking G-fixed points of this
thus witnesses that (3.3.3) is indeed a simplicial adjunction.

As A is faithful, I(A, –) ∼= I(A, –) ×id G is cofibrant in the G-global model
structure on G-I-SSet, and hence Σ•+I(A, –) is G-globally projectively cofibrant
by Proposition 3.2.2; thus, (3.3.3) is a Quillen adjunction by Proposition 3.1.59.

To finish the proof it suffices to provide an equivalence R ΩAshA ' id, for which
it is enough to give a natural levelwise weak equivalence between

ΩAshA : (G-SpectraG-global projective)f → G-SpectraG-global flat

and the respective inclusion. A preferred such choice is provided by the maps λ
from the proof of Lemma 3.1.34. �

Proof of Proposition 3.3.1. Let us show that the simplicial adjunction
(3.3.1) is a Quillen adjunction. Composing with the simplicial Quillen adjunction
from Proposition 3.3.2 will then show that the same holds true for (3.3.2).

We already know from Lemma 3.1.24 that this is a Quillen adjunction for the
respective level model structures. It therefore suffices to prove that any X fibrant
in the G-global flat model structure is a G-Ω-spectrum.

By the proof of the previous proposition, λ : X → ΩAshAX is a G-global weak
equivalence, and both source and target are fibrant in the G-global flat model
structure, so Brown’s Factorization Lemma [Bro73, I.3] asserts that λ factors as
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λ = ps where p is an acyclic fibration and s is a section of an acyclic fibration.
As acyclic fibrations in the G-global flat model structure are in particular strong
level weak equivalences, we conclude that also λ is a strong level weak equivalence.
As G-Ω-spectra are obviously closed under these, it then suffices that ΩAshAX is
a G-Ω-spectrum, which is obvious from the explicit characterization of the fibrant
objects provided by Theorem 3.1.36. This completes the proof that (3.3.1) is a
Quillen adjunction.

Proposition 3.3.2 already implies that the induced adjunctions are canonically
equivalent, so it only remains to show that (3.3.1) induces a right Bousfield local-
ization at the G-equivariant weak equivalences. This is however obvious because

id∞ = Rid : G-Spectra∞G-global flat → G-Spectra∞G-equivariant projective

is evidently a quasi-localization at these. �

On the other hand one immediately concludes from the definitions:

Corollary 3.3.3. Let G be a finite group. Then the simplicial adjunction

id : G-SpectraG-global flat � G-SpectraG-equivariant flat : id.

is a Quillen adjunction. The induced adjunction on associated quasi-categories is a
(left) Bousfield localization at the G-equivariant weak equivalences. �

As an upshot of the above we conclude:

Corollary 3.3.4. Let G be a discrete group (not necessarily finite) and let
ϕ : H → G be a homomorphism from a finite group to G. Then the simplicial
adjunctions

uϕ := ϕ∗ : G-SpectraG-global flat �H-SpectraH-equivariant flat :ϕ∗(3.3.4)

and

ϕ!(Σ
•
+I(A, –) ∧ –) : H-SpectraH-equiv. proj. � G-SpectraG-gl. proj. :ΩAshAϕ∗

are Quillen adjunctions for any finite faithful H-set A (e.g. A = H with the left
regular action). In particular, u∞ϕ admits both a left and a right adjoint.

For G = 1, this (or rather its analogue in the world of orthogonal spectra
and with respect to all compact Lie groups) is sketched in [Sch18, Remark 4.5.25]
and an alternative proof of the existence of adjoints on the level of the homotopy
categories is spelled out as Theorem 4.5.24 of op. cit.

Proof. It is immediate from Lemma 3.1.45 together with Corollary 3.3.3 that
ϕ∗ in (3.3.4) is left Quillen, proving the first statement.

For the second statement it suffices to factor this as

H-SpectraH-equiv. proj. H-SpectraH-gl. proj. G-SpectraG-gl. proj.

Σ•+I(A,–)∧–

ΩAshA

ϕ!

ϕ∗

and then appeal to Proposition 3.3.1 and Lemma 3.1.44. Finally, Proposition 3.3.2
identifies the right adjoint of the induced adjunction with u∞ϕ , which shows that
Lϕ!(Σ

•
+I(A, –) ∧ –) is the desired left adjoint. �
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3.4. Delooping

Segal’s classical Delooping Theorem [Seg74, Proposition 3.4] exhibits the ho-
motopy theory of connective spectra as an explicit Bousfield localization of the
homotopy theory of Γ-spaces, also see [BF78, Theorem 5.8] for a model categori-
cal formulation. A G-equivariant version of this (for any finite group G) appeared
as [Ost16, Theorem 6.5]. In this section we will strengthen this to a G-global
comparison for any discrete group G.

3.4.1. Non-equivariant and equivariant deloopings. We begin by briefly
recalling the usual equivariant and non-equivariant theory.

Construction 3.4.1. The restriction Fun(SSet∗,SSet∗) → Γ-SSet∗ along
the evident embedding Γ ↪→ SSet∗ admits a fully faithful left adjoint via SSet∗-
enriched Kan extension. We call this the prolongation of X. As a Kan extension
along a fully faithful functor, the prolongation of X agrees with X on Γ up to
canonical isomorphism, so we will not distinguish it notationally from the original
Γ-space.

Explicitly, if X ∈ Γ-SSet∗ and K is any pointed simplicial set, then we define
X(K) as the SSet∗-enriched coend (or, equivalently, SSet-enriched coend)∫ S+∈Γ

F (S+)×K×S ;

here the contravariant functoriality of S+ 7→ K×S is induced by the canonical
identification of K×S with the simplicial set maps(S+,K) of base-point preserving
maps.

By the enriched functoriality of coends, we obtain an SSet∗-enriched functor
SSet∗ → SSet∗, and any map X → Y of Γ-spaces induces X(K)→ Y (K) for any
K ∈ SSet∗.

Now let G be a finite group. If X is a Γ-G-space and K is any pointed G-
simplicial set, then we make X(K) into a pointed G-simplicial set via the diagonal
of the two actions.

It is a classical observation that for finite K there exists a natural isomorphism
between X(K) and the diagonal of the bisimplicial set (m,n) 7→ X(Km)n (with the
evident functoriality in m and n), see e.g. [Sch99, p. 331]. Thus, the equivariant Di-
agonal Lemma (Lemma 1.2.52) immediately implies, also see [Ost16, Lemma 4.8]:

Corollary 3.4.2. If X → Y is a G-equivariant level weak equivalence, then
the induced map X(K)→ Y (K) is a G-equivariant weak equivalence for any finite
pointed G-simplicial set K. �

In fact, we can get rid of the finiteness assumption by filtering K appropriately,
but we will only need the above version.

Construction 3.4.3. We recall that a (symmetric) spectrum Y is an SSet∗-
enriched functor Σ → SSet∗. As the prolongation of any Γ-space X is SSet∗-
enriched, we can therefore define X(Y ) := X ◦ Y : Σ → SSet∗. This becomes a
functor in X and Y in the obvious way.

Taking the convention that coends and limits in functor categories are computed
pointwise, the above literally agrees with the SSet∗-enriched coend∫ S+∈Γ

X(S+) ∧ Y ×S .
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We can also describe X(Y ) explicitly as follows: if B is a finite set, then X(Y )(B) =
X(Y (B)) with the evident ΣB-action; for any further finite set A, the structure map
SA ∧X(Y )(B) = SA ∧X(Y (B))→ X(Y (AqB)) = X(Y )(AqB) is given by the
composite

SA ∧X(Y (B))
asm−−→ X(SA ∧ Y (B))

X(σ)−−−→ X(Y (AqB))

where the left hand arrow is the assembly map induced by the SSet∗-enrichment.

Again, we can evaluate any Γ-G-space X at any G-spectrum by applying the
above construction and then pulling through the actions.

Definition 3.4.4. The associated spectrum of a Γ-G-spaceX is theG-spectrum
X(S). We write EG : Γ-G-SSet∗ → G-Spectra for the functor X 7→ X(S).

Note that X(S)(∅) = X(S0) ∼= X(1+) is the ‘underlying G-space’ of the Γ-
G-space X. For suitable X, we can think of the remaining data as an equivariant
delooping of this G-space:

Definition 3.4.5. A Γ-G-space is called very special if it is special and the
monoid πH0 (X(1+)) from Remark 2.2.12 is a group for all H ⊂ G.

Theorem 3.4.6. If X is very special, then X(S) is a G-Ω-spectrum.

Proof. See e.g. [Ost16, Proposition 5.7]. �

In [Ost16, Theorem 6.2], Ostermayr constructs a stable model structure on
Γ-G-SSet∗ with the same cofibrations as the G-equivariant level model structure
(see Proposition 2.2.33) and whose fibrant objects are precisely the very special
level fibrant Γ-G-spaces.

Proposition 3.4.7. The functor EG is part of a simplicial Quillen adjunction

EG : (Γ-G-SSet∗)stable � G-SpectraG-equivariant :ΦG.

Proof. [Ost16, Proposition 5.2] shows this for the level model structures; the
claim follows as the right adjoint sends fibrant objects to very special Γ-G-spaces
by [Ost16, proof of Theorem 5.9]. �

Together with Corollary 3.4.2 we conclude that EG is in fact homotopical with
respect to the above model structures.

Proposition 3.4.8. The G-spectrum X(S) is connective for any Γ-G-space
X, i.e. π∗X

′ vanishes in negative degrees for some (hence any) G-equivariant weak
equivalence X(S)→ X ′ to a G-Ω-spectrum X ′.

Proof. [Ost16, Corollary 5.5] shows that the negative näıve homotopy groups
of Y (S) vanish for any Y ∈ Γ-G-SSet∗.

To prove the proposition, we now simply choose the replacement X(S)→ X ′ as
the image under EG of a fibrant replacement X → Y in the stable model structure
on Γ-G-SSet∗; here we used that X ′ → Y is indeed a weak equivalence as EG is
homotopical and that X ′ = Y (S) is a G-Ω-spectrum by Theorem 3.4.6. �

Remark 3.4.9. One can in fact show that the näıve homotopy groups π∗(X(S))
agree with the homotopy groups of X ′ (i.e. X(S) is semistable), but we will not
need this below.
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The following comparison is the key result on the homotopy theory of very
special Γ-G-spaces:

Theorem 3.4.10. The adjunction (EG)∞ a RΦG restricts to a Bousfield local-
ization

(EG)∞ : (Γ-G-SSet∗)
∞
level w.e. � (G-Spectra≥0)∞ : RΦG

where G-Spectra≥0 denotes the subcategory of connective G-spectra. Moreover,
the essential image of RΦG consists precisely of the very special Γ-G-spaces.

Proof. This is immediate from the model categorical statement proven in
[Ost16, Proposition 5.2 and Theorem 6.5], also see [BF78, Theorem 5.8] for the
special case G = 1. �

3.4.2. The G-global Delooping Theorem. Before we can properly state a
G-global version of the Delooping Theorem, we first need to understand what it
means to be ‘connective’ or ‘very special’ in the G-global context.

Definition 3.4.11. A G-spectrum X is G-globally connective if ϕ∗X is H-
equivariantly connective for all finite groups H and all homomorphisms ϕ : H → G.

Definition 3.4.12. We call X ∈ Γ-G-I-SSet∗ very special if uϕX is very
special for every finite group H and every homomorphism ϕ : H → G.

Put differently (see Lemma 2.2.48), X is very special if and only if it is special
and the abelian monoid structure on πH0 ((ϕ∗X)(UH)(1+)) induced by

X(1+)×X(1+) X(2+) X(1+)∼
ρ X(µ)

is a group structure for every finite group H and every homomorphism ϕ : H → G.
Next we introduce the G-global delooping functor, cf. [Sch19b, Construc-

tion 3.3]:

Construction 3.4.13. We define E⊗ : Γ-G-I-SSet∗ → G-Spectra via the
SSet∗-enriched coend

E⊗(X) =

∫ T+∈Γ

S×T ⊗X(T+).

together with the evident SSet∗-enriched functoriality.

Remark 3.4.14. We again take the convention that the above coend is con-
structed by forming the levelwise coend. In this case,

E⊗(X)(A) =

∫ T+∈Γ

(SA)×T ∧X(A)(T+) = X(A)(SA),

and the structure map E⊗(X)(B)→ E⊗(X)(AqB) is given by the diagonal com-
posite

SA ∧X(B)(SB) X(B)(SA ∧ SB) X(B)(SAqB)

SA ∧X(AqB)(SB) X(AqB)(SA ∧ SB) X(AqB)(SAqB)

SA∧X(i)(SB)

asm ∼=

X(i)(SAqB)

asm ∼=

where i : B ↪→ AqB is the inclusion.



184 3. STABLE G-GLOBAL HOMOTOPY THEORY

3.4.2.1. Comparison to equivariant deloopings. We now want to relate this to
Shimakawa’s equivariant version of Segal’s machinery, for which we begin with the
following trivial observation:

Remark 3.4.15. If X is any Γ-G-space, then E⊗(constX) = EG(X). More
precisely, the diagram

Γ-G-SSet∗ G-Spectra

Γ-G-I-SSet∗

const

EG

E⊗

of simplicially enriched functors is strictly commutative.

Corollary 3.4.16. Let X ∈ Γ-G-I-SSet∗ be fibrant in the injective G-global
model structure. Then the degree zero inclusion induces a G-equivariant level weak
equivalence EG(X(∅)) = E⊗(constX(∅))→ E⊗(X).

Proof. We have to show that the inclusion induces a G-equivariant weak
equivalence X(∅)(SA) → X(A)(SA) for every finite G-set A. But X(∅) → X(A)
is a G-equivariant level equivalence of Γ-G-spaces by Corollary 2.2.40, so the claim
follows from Corollary 3.4.2. �

Corollary 3.4.17. Let G be finite and assume X ∈ Γ-G-I-SSet∗ is fibrant
in the injective G-global model structure and moreover G-globally very special. Then
E⊗(X) is a G-Ω-spectrum.

Proof. By the previous corollary, E⊗(X) is G-equivariantly level equivalent to
EG(X(∅)). The claim now follows from Theorem 3.4.6 as X(∅) is G-equivariantly
level equivalent to uGX by Corollary 2.2.41, hence very special by definition. �

For a general comparison we introduce:

Construction 3.4.18. Let H be a finite group and let ϕ : H → G be a ho-
momorphism. We define Eϕ : Γ-G-I-SSet∗ → H-Spectra as follows: if A is any
finite set and X is any Γ-G-I-space, then Eϕ(X)(A) = (ϕ∗X)(U qA)(SA), where U
is a fixed complete H-set universe, e.g. the one from the definition of the underlying
H-simplicial set of a G-I-simplicial set. The structure maps of Eϕ(X) are defined
analogously to Remark 3.4.14, and the functoriality in X is the obvious one.

We now consider the zig-zag of natural transformations

(3.4.1) uϕ ◦ E⊗ = ϕ∗ ◦ E⊗ ⇒ Eϕ ⇐ EH ◦ evU ◦ ϕ∗ ∼= EH ◦ uϕ

induced in degree A by the inclusions A ↪→ U qA←↩ U .

The following in particular generalizes (the simplicial analogue of) [Sch19b,
Theorem 3.13]:

Lemma 3.4.19. Both maps in (3.4.1) are π∗-isomorphisms (and hence in par-
ticular H-equivariant weak equivalences).

Proof. Analogously to Lemma 3.2.11 one gets natural isomorphisms

π∗ uϕ E⊗(X) ∼= π∗EH
(
(ϕ∗X)(U)

)
and π∗(EϕX) ∼= π∗EH

(
(ϕ∗X)(U q U)),

for every X ∈ Γ-G-I-SSet∗, and under this identification the actions of the maps
(3.4.1) on homotopy groups are induced by the two inclusions U ↪→ U q U ←↩ U .
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Thus, it is enough to show that the induced maps (ϕ∗X)(U) ⇒ (ϕ∗X)(U q U)
are H-equivariant weak equivalences of Γ-H-spaces, i.e. if T is any finite H-set,
then the induced maps (ϕ∗X)(U)(T+) ⇒ (ϕ∗X)(U q U)(T+) are H-equivariant
weak equivalences. But this is simply an instance of Lemma 1.4.16 applied to the
H-I-simplicial set (ϕ∗X)(–)(T+). �

Corollary 3.4.20. The functor E⊗ sends G-global level weak equivalences to
G-global weak equivalences. Moreover, it takes values in G-globally connective G-
spectra. �

Now we can finally state the main result of this section:

Theorem 3.4.21. Let G be any group. Then

(E⊗)∞ : (Γ-G-I-SSet∗)
∞
G-global level → (G-Spectra≥0

G-global)
∞

(where the superscript ‘≥ 0’ denotes the subcategory of G-globally connective spectra)
has a fully faithful right adjoint RΦ⊗, yielding a Bousfield localization. Moreover:

(1) The essential image of RΦ⊗ consists precisely of the very special G-global
Γ-spaces.

(2) (E⊗)∞ inverts a map f if and only if uϕ f is a stable weak equivalence for
all finite groups H and all homomorphisms ϕ : H → G.

(3) For any finite group H and any homomorphism ϕ : H → G there are
preferred equivalences filling

Γ-G-I-SSet∞∗ Γ-H-SSet∞∗

G-Spectra∞G-gl. H-Spectra∞H-equiv.

(E⊗)∞

u∞ϕ

E∞H

u∞ϕ

Γ-G-I-SSet∞∗ Γ-H-SSet∞∗

G-Spectra∞G-gl. H-Spectra∞H-equiv.

u∞ϕ

u∞ϕ

RΦ⊗ RΦH

and these are moreover canonical mates of each other.

3.4.2.2. G-global Γ-spaces from G-global spectra. The proof of the theorem re-
quires some preparations and will occupy the rest of this subsection. We begin by
introducing a pointset level model of the right adjoint of (E⊗)∞:

Construction 3.4.22. We define Φ⊗ : G-Spectra → Γ-G-I-SSet∗ as fol-
lows: if X is a G-spectrum and T is a finite set, then (Φ⊗X)(T+) = FI(S×T , X).
The functoriality in T+ is induced by the natural identification S×T ∼= maps(T+,S),
and the SSet∗-enriched functoriality in X is the obvious one.

We define for every G-spectrum X the map εX : E⊗Φ⊗X → X as the one
induced by the maps εS×T ,X : S×T ⊗ FI(S×T , X) → X for varying T+ ∈ Γ, where
ε comes from Construction 3.2.15. We omit the easy verification that this is well-
defined and a SSet∗-enriched natural transformation.

For a G-global Γ-space Y , we write ηY : Y → Φ⊗E⊗Y for the map given in
degree T+ by the composition

Y (T+)
η−→ FI

(
S×T ,S×T ⊗ Y (T+)

)
→ FI

(
S×T ,

∫ U+∈Γ S×U ⊗ Y (U+)
)

where the right hand arrow is induced by the structure map of the coend and the
left hand arrow is again from Construction 3.2.15. We omit the easy verification
that also η is a well-defined simplicial transformation, and that ε and η satisfy the
triangle identities, yielding an enriched adjunction

(3.4.2) E⊗ : Γ-G-I-SSet∗ � G-Spectra :Φ⊗.
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Remark 3.4.23. One immediately checks from the above definitions that the
counit εX : E⊗Φ⊗X → X is an isomorphism in degree ∅ for any G-spectrum X.

Corollary 3.4.24. The simplicial adjunction (3.4.2) is a Quillen adjunction
with respect to the G-global injective model structures.

Proof. Using the description from Remark 3.4.14 it is obvious that E⊗ pre-
serves injective cofibrations. Moreover, it is homotopical by Corollary 3.4.20. �

We first give an alternative, more tractable description of the right adjoint:

Construction 3.4.25. Define ΦΣ : G-Spectra→ Γ-G-Spectra∗ (where the
right hand side again denotes Set∗-enriched functors) via ΦΣ(X)(T+) = F (S×T , X);
here the functoriality in T+ is as before, and the SSet∗-enriched functoriality in X
is the obvious one.

Using this, we can now define Φ∧ as the composite

G-Spectra
ΦΣ

−−→ Γ-G-Spectra∗
Ω•−−→ Γ-G-I-SSet∗

mapsI(I,–)−−−−−−−→ Γ-G-I-SSet∗.

Corollary 3.4.26. The maps ψ̂ from Construction 3.2.16 define a natural

transformation ψ̂ : Φ⊗ ⇒ Φ∧. If X is fibrant in the G-global injective model struc-

ture, then ψ̂X : Φ⊗X → Φ∧X is a G-global level weak equivalence.

Proof. As S×T is a flat ΣT -spectrum for any finite set T (Example 3.1.9),
this follows by applying Theorem 3.2.17 levelwise. �

Remark 3.4.27. Also Φ∧ admits a simplicial left adjoint, which can be com-

puted via the coend E∧(X) :=
∫ T+∈Γ S×T ∧ Σ•X, and the resulting adjunction

E∧ a Φ∧ is left Quillen with respect to the G-global level model structure on the
source and the G-global projective model structure on the target (this uses Propo-
sition 3.1.59 again, also cf. the argument in the proof of the proposition below). As
we will not need this below, we leave the details to the interested reader.

Proposition 3.4.28. Let X ∈ G-Spectra be fibrant in the G-global projective
model structure. Then Φ∧(X) is very special.

Proof. Let us first prove that Φ∧(X) is special, for which we let T be any
finite set. Up to isomorphism, the Segal map Φ∧(X)(T+)→

∏
T Φ∧(X)(1+) is then

given by

(3.4.3) mapsI
(
I,Ω•F (S×T , X)

) mapsI(I,Ω•c∗)−−−−−−−−−→ mapsI
(
I,Ω•F (S∨T , X)

)
where c is the canonical map S∨T → S×T . The latter is a ΣT -global weak equiv-
alence (Proposition 3.1.53) between flat ΣT -spectra (Examples 3.1.8 and 3.1.9, re-
spectively); as X is fibrant in the G-global projective model structure, c∗ is therefore
a (G×ΣT )-global weak equivalence between (G×ΣT )-globally projectively fibrant
(G × ΣT )-spectra by Corollary 3.1.61 and Ken Brown’s Lemma. As both Ω• and
mapsI(I, –) are right Quillen with respect to the corresponding projective model
structures, we conclude that also (3.4.3) is a (G×ΣT )-global weak equivalence, and
hence so is the Segal map.

Now let ϕ : H → G be any homomorphism from a finite group to G and let U =
UH be our fixed complete H-set universe. By the above, uϕ(Φ∧X) = (ϕ∗Φ∧X)(U)
is a special Γ-H-space, and to finish the proof we have to show that the induced
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monoid structure on πH0 (ϕ∗Φ∧X(U)(1+)) = πH0
(
mapsI(I,Ω•ϕ∗F (S, X))(U)

)
is ac-

tually a group structure. As in the classical setting, this is an application of the
Eckmann-Hilton argument: first, we consider the commutative diagram

πH0
(
mapsI(I,Ω•ϕ∗F (S, X))(U)

)
πH0 (ϕ∗F (S, X))

πH0
(
mapsI(I,Ω•ϕ∗F (S× S, X))(U)

)
πH0 (ϕ∗F (S× S, X))

πH0
(
mapsI(I,Ω•ϕ∗F (S, X))(U)

)×2
πH0 (ϕ∗F (S, X))×2

(p1∗,p2∗) ∼=

µ∗ µ∗

(p1∗,p2∗)∼=

(3.4.4)

where the horizontal arrows are those from Remark 3.2.8 applied to the H-spectra
ϕ∗F (S, X) and ϕ∗F (S×S, X). As both of these are fibrant in the H-global projec-
tive model structure by Proposition 3.1.59 together with Lemma 3.1.44, the remark
tells us (by invoking Theorem 1.4.47) that the horizontal arrows are bijective.

By commutativity, we then conclude that the right hand vertical arrows equip
πH0 (ϕ∗F (S, X)) with the structure of an abelian monoid, and that the top hori-
zontal arrow in (3.4.4) is an isomorphism with respect to this monoid structure.
But on the other hand, the vertical arrows on the right are group homomor-
phisms with respect to the usual group structure on πH0 , so the Eckmann-Hilton
argument implies that this monoid structure on πH0 (ϕ∗F (S, X)) agrees with the
standard group structure on πH0 . We conclude that also the monoid structure
on πH0

(
mapsI(I,Ω•ϕ∗F (S, X))(U)

)
= πH0 (ϕ∗Φ∧(X)(U)(1+)) is a group structure,

which completes the proof. �

Corollary 3.4.29. Let X ∈ G-Spectra be fibrant in the G-global injective
model structure. Then Φ⊗(X) is very special. �

3.4.2.3. Proof of the Delooping Theorem. The following will be the main step
in the proof of Theorem 3.4.21:

Proposition 3.4.30. Let X ∈ G-Spectra≥0 be fibrant in the G-global injective
model structure. Then the counit ε : E⊗Φ⊗X → X is a G-global weak equivalence.

Proof. Let H be a finite group, let ϕ : H → G be a homomorphism, and let
i : ϕ∗X → X ′ be a fibrant replacement in the injective H-global model structure.

Claim. Φ⊗(i) : Φ⊗(ϕ∗X)→ Φ⊗(X ′) is an H-global level weak equivalence.

Proof. By Corollary 3.4.29, the H-global Γ-space Φ⊗(X ′) is special, and so is
the G-global Γ-space Φ⊗(X). It follows that also Φ⊗(ϕ∗X) = ϕ∗Φ⊗(X) is special.

It is therefore enough to show that Φ⊗(i)(1+) is an H-global weak equivalence.
But this agrees up to conjugation by isomorphisms with mapsI(I,Ω•(i)), cf. Con-
struction 3.2.16. As both ϕ∗X and X ′ are in particular fibrant in the H-global
projective model structure, the claim follows from Ken Brown’s Lemma. 4

To show that ϕ∗(εX) = εϕ∗X is an H-equivariant weak equivalence, we consider
the naturality square

E⊗Φ⊗(ϕ∗X) ϕ∗X

E⊗Φ⊗(X ′) X ′.

εϕ∗X

E⊗Φ⊗(i) i

εX′
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The right hand vertical arrow is an H-global weak equivalence, and so is the left
hand vertical arrow by the above claim together with Corollary 3.4.20. Thus, it is
enough to show that εX′ is an H-equivariant weak equivalence.

For this we observe that Φ⊗(X ′) is fibrant in the injective H-global model
structure on Γ-H-I-SSet∗ by Corollary 3.4.24 and moreover very special by Corol-
lary 3.4.29. Thus, Corollary 3.4.17 implies that E⊗Φ⊗(X ′) is an H-Ω-spectrum. In
addition, Corollary 3.4.20 implies that it is also H-globally connective.

On the other hand, also X ′ is an H-Ω-spectrum by Proposition 3.3.1, and it is
connective by assumption. As εX′(∅) is an isomorphism, we immediately see that
εX′ is an H-equivariant π∗-isomorphism, finishing the proof. �

Instead of the above approach, we could have compared the counit of our
delooping adjunction to the counit of the usual equivariant one. However, we have
carefully avoided such a comparison because the computations involved can become
quite cumbersome. Instead, we will get all these compatibilities for free now thanks
to the following easy observation:

Lemma 3.4.31. Let

(3.4.5) F : C � D :U

be an adjunction of quasi-categories, let I be a set (or more generally any class),
and let (Si : C → Ci)i∈I and (Ti : D → Di)i∈I be two jointly conservative families.
Assume moreover we are given for each i ∈ I a Bousfield localization

Fi : Ci � Di :Ui

such that ess imSiU ⊂ ess imUi, together with a natural equivalence ϕi filling

(3.4.6)

C Ci

D Di.

Si

F Fi
ϕi

'

⇒

Ti

Then the following are equivalent:

(1) U is fully faithful, i.e. also (3.4.5) is a Bousfield localization.
(2) For all i ∈ I, the canonical mate SiU ⇒ UiTi of (3.4.6) is an equivalence.

Moreover, in this case X ∈ D lies in the essential image of U if and only if SiX
lies in the essential image of Ui for all i ∈ I, and a map f is inverted by F if and
only if Sif is inverted by Fi for all i ∈ I.

Proof. (1) ⇒ (2): For any i ∈ I, the canonical mate of ϕi is defined as the
pasting

(3.4.7)

D C Ci

D Di Ci.

U

=

ε

⇒

Si

F Fi
ϕi

'

⇒ =

Ti

η ⇒

Ui

Since U is fully faithful, ε is an equivalence, and so is ϕi by assumption. On the
other hand, SiUX ∈ ess imUi for any X ∈ D by assumption, so that also ηi
evaluated at SiUX is an equivalence because Ui is fully faithful. We conclude that
the above pasting is indeed an equivalence as desired.
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(2)⇒ (1): We have to show that the counit εX of F a U is an equivalence for
every X ∈ D . As the Ti’s are jointly conservative, this is equivalent to TiεX being
an equivalence for all i ∈ I, and since Ui is fully faithful, this is in turn equivalent
to UiTiεX being an equivalence. But (2) precisely tells us that ‘the’ composition

SiUX
(ηi)SiUX−−−−−−→ UiFiSiU

Ui(ϕi)UX−−−−−−→ UiTiFUX
UiTiεX−−−−−→ UiTiX

is an equivalence, and so are the first two arrows in it by the assumption on
ess imSiU and ϕi, respectively. The claim follows by 2-out-of-3.

It only remains to prove the characterizations of the maps inverted by F and
the essential image of U under these equivalent assumptions. But indeed, if f is
any morphism in C , then Ff is an equivalence if and only if each TiFf is, which
by the equivalence (3.4.6) is equivalent to FiSif being an equivalence.

Finally, if X lies in the essential image of U , then SiX ∈ ess imUi for all i ∈ I
by assumption. For the converse, we observe that ηX : X → UFX is inverted by
F for all X ∈ C , so FiSiηX is an equivalence for all i ∈ I by the above. But
SiUFX ' UiTiFX ∈ ess imUi while SiX ∈ ess imUi by assumption; thus, both
source and target of SiηX lie in ess imUi, so SiηX is conjugate to the equivalence
UiFiSiηX , hence itself an equivalence. Letting i vary and using joint conservativity
again, we therefore conclude that ηX is an equivalence, hence X ∈ ess imU . This
completes the proof of the lemma. �

We can now use the lemma to finally prove the G-global Delooping Theorem.
It turns out to be convenient to prove this in parallel with the following result:

Theorem 3.4.32. The inclusion ι : (G-Spectra≥0
G-gl.)

∞ ↪→ G-Spectra∞G-gl. of
the G-globally connective G-spectra admits a right adjoint τ . Moreover, for any
homomorphism ϕ the canonical mate u∞ϕ τ ⇒ τ u∞ϕ of the natural equivalence

(G-Spectra≥0
G-global)

∞ G-Spectra∞G-global

(H-Spectra≥0
H-equivariant)

∞ H-Spectra∞H-equivariant

u∞ϕ u∞ϕ⇒

induced by the identity is an equivalence.

Proof of Theorems 3.4.21 and 3.4.32. We will break up the argument
into several steps.

Step 1. We prove a version of Theorem 3.4.21 for connective G-global/H-
equivariant spectra. For this we let I be the class of all homomorphisms ϕ : H → G
from finite groups to G. We want to apply Lemma 3.4.31 to the adjunction (3.4.8)
together with the family of the Bousfield localizations

(3.4.8) E∞H : (Γ-H-SSet∗)
∞
H-equivariant � (H-Spectra≥0

H-equivariant)
∞ :RΦH

from Theorem 3.4.10 for all ϕ : H → G and the jointly conservative families(
u∞ϕ : (Γ-G-I-SSet∗)

∞
G-global level → (Γ-H-SSet∗)

∞
H-equivariant level

)
ϕ∈I(

u∞ϕ : (G-Spectra≥0
G-global)

∞ → (H-Spectra≥0
H-equivariant)

∞)
ϕ∈I .

The equivalences (3.4.6) are provided by Lemma 3.4.19, whereas Corollary 3.4.29
together with Theorem 3.4.10 shows that ess im u∞ϕ RΦ⊗ ⊂ ess im RΦH . Finally,
Proposition 3.4.30 verifies Condition (1) of the lemma. Together with another
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application of Theorem 3.4.10, we may therefore conclude that the essential image
of RΦ⊗ consists precisely of the very special G-global Γ-spaces, that a map is
inverted by (E⊗)∞ if and only if it sent under uϕ to a stable weak equivalence for
all ϕ, and that the canonical mates

(3.4.9)

(Γ-G-I-SSet∗)
∞
G-global level (G-Spectra≥0

G-global)
∞

(Γ-H-SSet∗)
∞
H-equivariant level (H-Spectra≥0

H-equivariant)
∞

u∞ϕ ⇒

RΦ⊗

u∞ϕ

RΦH

of the given equivalences are again equivalences. Note that this almost completes
the proof of Theorem 3.4.21, except that we want the equivalences (3.4.9) without
the connectivity requirement.

Step 2. We will now prove Theorem 3.4.32. In order to avoid confusion, let us
momentarily write (e⊗)∞ for (E⊗)∞ viewed as a functor to (G-Spectra≥0

G-global)
∞,

i.e. (E⊗)∞ = ι◦(e⊗)∞. It is then a purely formal calculation (using the results of the
previous step) that τ := (e⊗)∞◦RΦ⊗ is the desired right adjoint; the counit can be
taken to be the counit of (E⊗)∞ a RΦ⊗ (which is indeed a natural transformation
from (E⊗)∞ ◦ RΦ⊗ = ι ◦ (e⊗)∞ ◦ RΦ⊗ = ι ◦ τ to the identity). The rest of the
claim then follows by an easy application of the opposite of Lemma 3.4.31.

Step 3. We can now finish the proof of Theorem 3.4.21: we have to show that
the canonical mate of the equivalence

(3.4.10)

(Γ-G-I-SSet∗)
∞
G-global level G-Spectra∞G-global

(Γ-H-SSet∗)
∞
H-equivariant level H-Spectra∞H-equivariant

(E⊗)∞

u∞ϕ u∞ϕ

E∞H

⇒

considered above is itself an equivalence. However, (3.4.10) agrees up to canonical
higher homotopy with the pasting

(Γ-G-I-SSet∗)
∞
G-gl. level (G-Spectra≥0

G-global)
∞ G-Spectra∞G-global

(Γ-H-SSet∗)
∞
H-equiv. level H-Spectra∞H-equiv. (H-Spectra≥0

H-equiv.)
∞

(E⊗)∞

u∞ϕ u∞ϕ u∞ϕ

E∞H

⇒ ⇒

where the left hand square is filled with the restriction of the previous equivalence
while the right hand equivalence is induced by the identity. Thus, the canonical
mate of (3.4.10) is equivalent to the pasting of the individual mates of these two
squares, and both of these were seen to be equivalences above. �

Corollary 3.4.33. The homotopical functor E⊗ induces a (Bousfield) local-
ization

(3.4.11) (Γ-G-I-SSetspecial
∗ )∞G-global level → (G-Spectra≥0

G-global)
∞.

Proof. By the above theorem, the fully faithful right adjoint RΦ⊗ of

(E⊗)∞ : (Γ-G-I-SSet∗)
∞
G-global level → (G-Spectra≥0

G-global)
∞

factors through the (very) special G-global Γ-spaces, so it restricts to a fully faithful
right adjoint to (3.4.11) by Proposition A.1.15. �



CHAPTER 4

G-global algebraic K-theory

In this final chapter, we construct G-global algebraic K-theory, generalizing
Schwede’s global algebraic K-theory [Sch19b] and refining classical G-equivariant
algebraic K-theory. We then employ the theory of G-globally coherently commu-
tative monoids developed in the previous chapters to prove G-global refinements of
the Barratt-Priddy-Quillen Theorem and of Thomason’s theorem [Tho95, Theo-
rem 5.1] that symmetric monoidal categories model all connective stable homotopy
types.

4.1. Definition and basic properties

We will give two equivalent constructions of G-global algebraic K-theory: one
as a straight-forward generalization of Schwede’s global algebraic K-theory, and
the other one by adapting Shimakawa’s construction of G-equivariant algebraic
K-theory.

4.1.1. G-global K-theory of G-parsummable categories. Schwede’s ap-
proach to global algebraic K-theory is based on parsummable categories, which are
a categorical version of the parsummable simplicial sets we introduced in Chapter 2.
Analogously to the simplicial setting, these are commutative monoids in a suitable
symmetric monoidal category of tame EM-categories [Sch19b, Section 2] which
we will study first.

4.1.1.1. EM-categories and tameness. Recall that the monoidM gives rise to a
categorical monoid (i.e. a strict monoidal category) EM, whose nerve is canonically
identified with the simplicial monoid of the same name. We write EM-Cat for
the category of small EM-categories (i.e. categories with a strict action of EM)
and strictly EM-equivariant functors.

It will be convenient to denote EM-categories by calligraphic letters C,D, . . .
in order to distinguish them from ordinary categories denoted by C ,D , and so on.

If C is an EM-category, then we in particular have an action of the discrete
monoid M on C, which then restricts to an M-action on the (large) set Ob C. In
addition, we are given for each u, v ∈M a natural isomorphism [u, v] : (v.–)⇒ (u.–)
given on x ∈ C by (u, v).idx : v.x → u.x. Specializing to v = 1 this yields in
particular for each x ∈ C an isomorphism ux◦ : x → u.x. From functoriality and
associativity of the action one easily concludes that

(4.1.1) (uv)x◦ = uv.x◦ vx◦

for all u, v ∈M and x ∈ C. The following useful lemma shows that EM-actions on
categories can conversely be described by the above data, considerably simplifying
their construction:

191
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Lemma 4.1.1. Let C be a category, and assume we are given an M-action on
Ob C together with for each u ∈ M, x ∈ C an isomorphism ux◦ : x → u.x such that
these data satisfy the relation (4.1.1).

Then there exists a unique EM-action on C extending the M-action on Ob C
and such that ux◦ = [u, 1]x for all x ∈ C and u ∈M.

Proof. See [Sch19b, Proposition 2.6]. �

There is also a relative version of the lemma, that allows us to check EM-
equivariance of functors in terms of the above data:

Lemma 4.1.2. Let C,D be EM-categories and let f : C → D be a functor of
their underlying categories. Then f is EM-equivariant if and only if Ob f : Ob C →
ObD isM-equivariant and f(ux◦) = u

f(x)
◦ : f(x)→ u.(f(x)) = f(u.x) for all x ∈ C,

u ∈M.

Proof. This is [Len21, Corollary 1.3]. �

Next, let us introduce the categorical counterpart of the support:

Definition 4.1.3. Let C ∈ EM-Cat, let x ∈ C, and let A ⊂ ω be a finite
set. Then we say that x is supported on A if x is supported on A as an element of
the M-set Ob(C) (in the sense of Definition 1.3.1). We write C[A] ⊂ C for the full
subcategory spanned by the objects supported on A.

We morever say that x is finitely supported if it is supported on some finite set,
and we write Cτ for the full subcategory of those. In this case we define the support
supp(x) of x as its support as an element of the M-set Ob(C).

Finally, we call C tame if all its objects are finitely supported (i.e. if Ob(C)
is tame), and we denote the full subcategory of EM-Cat spanned by the tame
EM-categories by EM-Catτ .

Analogously to Theorem 1.3.17 we have:

Lemma 4.1.4. Let C ∈ EM-Cat, let x ∈ C be finitely supported, and let
u, v ∈ M agree on supp(x). Then u.x = v.x. If moreover u′, v′ ∈ M agree on
supp(x), then [u′, u]x = [v′, v]x : u.x = v.x→ u′.x = v′.x.

In particular, ux◦ = idx if u restricts to the identity on supp(x).

Proof. This follows from [Sch19b, Proposition 2.13-(ii)]. �

We can now introduce the box product of tame EM-categories:

Definition 4.1.5. The box product C�D of two tame EM-categories is the full
subcategory of C × D spanned by all pairs (c, d) such that supp(c) ∩ supp(d) = ∅.

The box product becomes a subfunctor of the cartesian product on EM-Catτ ,
and [Sch19b, Proposition 2.31] shows that the structure isomorphisms of the carte-
sian symmetric monoidal structure restrict to make � into the tensor product of a
preferred symmetric monoidal structure on EM-Catτ .

With this established, we can now define parsummable categories as originally
introduced in [Sch19b, Definition 4.1]:

Definition 4.1.6. We write ParSumCat := CMon(EM-Catτ ) and call its
objects parsummable categories.
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In the next subsection, we will see how any small symmetric monoidal category
gives rise to a parsummable category. For now, let us recall Schwede’s construction
[Sch19b, Construction 10.1] of the parsummable category P(R) associated to a
(not necessarily commutative) ring R:

Example 4.1.7. We write R(ω) for the left R-module of functions ω → R
vanishing almost everywhere; this is free with basis given by the characteristic
functions e0, e1, . . . , with ei(j) = 1 for i = j and ei(j) = 0 otherwise.

An object of P(R) is a finitely generated R-submodule M ⊂ R(ω) such that
the inclusion admits an R-linear retraction (which is not part of the data); note
that any such M is in particular projective. The morphisms M → N in P(R) are
the (abstract) R-linear isomorphisms, and the composition in P(R) is the evident
one. In particular, we have a fully faithful embedding P(R) ↪→P(R) into the usual
category of finitely generated projective left R-modules and R-linear isomorphisms.

Any u ∈ M defines an R-linear embedding u! : R
(ω) → R(ω) via u!(ei) = eu(i).

We define the u-action on objects via u.M := u!(M) ⊂ R(ω), and we moreover
set uM◦ = u!|M : M → u!(M). We omit the easy verification that this satisfies the
assumptions of Lemma 4.1.1, yielding a small EM-category, and that this is tame.

We define the sum of two disjointly supported M,N ∈ P(R) as their internal
sum as submodules of R(ω). One easily shows that this sum is actually direct,
which allows us to define the sum of two morphisms f : M →M ′, g : N → N ′ with
disjointly supported sources and disjointly supported targets via (f + g)(m+ n) =
f(m) + g(n) for all m ∈M , n ∈ N . Finally, the additive unit is given by the trivial
submodule 0 ⊂ R(ω).

4.1.1.2. From parsummable categories to parsummable simplicial sets. We will
now relate the above to the parsummable simplicial sets considered before by show-
ing that the nerve of any parsummable category is naturally a parsummable simpli-
cial set. For this, it will be useful to have a description of the induced EM-action
on N(C) in terms of the maps u◦ for varying u ∈M:

Remark 4.1.8. Let C be a tame EM-category. We then calculate for all
u, v ∈M and f : x→ y in C:

(v, u).f =
(
(v, u) ◦ idu

)
.(idy ◦ f) =

(
(v, u).idy

)
◦ (idu.f) = [v, u]y ◦ u.f ;

as u.f = uy◦ ◦ f ◦ (ux◦)
−1 by naturality, this means that the diagram

x y

u.x v.y

ux◦

f

vy◦

(v,u).f

commutes. Since the vertical maps are isomorphisms, this in fact completely
determines (v, u).f . We can therefore immediately conclude that the action of

(u0, . . . , un) ∈ (EM)n on an n-simplex x0
α1−→ x1 → · · · → xn is uniquely charac-

terized by demanding that inserting it as the lower row in

x0 x1 · · · xn

u0.x0 u1.x1 · · · un.xn

α1

(u0)
x0
◦ (u1)

x1
◦ (un)xn◦

makes all the squares commute.
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With this at hand we can now easily prove:

Lemma 4.1.9. Let C be a tame EM-category. Then an n-simplex α• := (x0
α1−→

x1 → · · · → xn) of N(C) is k-supported on the finite set A ⊂ ω if and only if
A ⊃ supp(xk), i.e. iff xk is supported on A. In particular, α• is finitely supported
and suppk(α•) = supp(xk), supp(α•) =

⋃n
k=0 supp(xk).

Proof. It suffices to prove the first statement. For this let us first assume that
A contains supp(xk); we will show that ik(u).α• = α• for all u fixing A pointwise.
Indeed, applying the above description of (u0, . . . , un).α• for (u0, . . . , un) = ik(u),
it suffices that uxk◦ is the identity, which is immediate from Lemma 4.1.4.

Conversely, assume α• is k-supported on A, and let u be any injection fixing
A pointwise, so that in particular ik(u).α• = α•. Comparing the k-th vertices of
these n-simplices then shows that u.xk = xk, and letting u vary we see that xk is
supported on A as desired. �

In particular, we conclude that the nerve restricts toEM-Catτ →EM-SSetτ.

Proposition 4.1.10. The canonical isomorphism N(C) × N(D) → N(C × D)
restricts to an isomorphism N(C) � N(D) → N(C � D) for all C,D ∈ EM-Catτ .
Together with the unique map ∗ → N(∗) this makes N: EM-Catτ → EM-SSetτ

into a strong symmetric monoidal functor with respect to the box products.

Proof. Let us prove the first statement, which amounts to saying that if

x0
α1−→ x1 → · · ·xn and y0

β1−→ y1 → · · · yn
are n-simplices of N(C) and N(D), respectively, then

(4.1.2) (x0, y0)
(α1,β1)−−−−−→ (x1, y1)→ · · · → (xn, yn)

lies in the image of N(C � D) → N(C × D) if and only if (α•, β•) ∈ N(C) � N(D).
But indeed, the latter condition is equivalent to suppk(α•)∩ suppk(β•) = ∅ for all
0 ≤ k ≤ n, which by Lemma 4.1.9 is further equivalent to supp(xk)∩ supp(yk) = ∅
for all 0 ≤ k ≤ n. But this is by definition equivalent to (xk, yk) ∈ C � D for all
0 ≤ k ≤ n, which is in turn equivalent to (αk, βk) : (xk−1, yk−1)→ (xk, yk) being a
morphism in C �D for 1 ≤ k ≤ n as C �D ⊂ C × D is a full subcategory. Finally,
by definition of the nerve this is further equivalent to (4.1.2) lying in the image of
N(C �D)→ N(C × D), which completes the proof of the first statement.

It is clear that also ∗ → N(∗) is an isomorphism. As all the structure iso-
morphisms on both EM-Catτ and EM-SSetτ are defined as restrictions of the
structure isomorphisms of the cartesian symmetric monoidal structures, all the nec-
essary coherence conditions hold automatically, which completes the proof of the
proposition. �

The proposition in particular shows that the nerve lifts to ParSumCat →
ParSumSSet. Explicitly, this sends a parsummable category C to N(C) with the
induced EM-action; the additive unit is given by the vertex 0 ∈ C, and if

x0
α1−→ x1 → · · · → xn and y0

β1−→ y1 → · · · → yn

are summable n-simplices, then supp(xk) ∩ supp(yk) for 0 ≤ k ≤ n, and α• + β• is
the n-simplex

(x0 + y0)
α1+β1−−−−→ (x1 + y1)→ · · · → (xn + yn).
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4.1.1.3. Global and G-global algebraic K-theory. The construction of the global
algebraic K-theory of a parsummable category can be broken up into two steps:
first, we construct a ‘global Γ-category,’ which we will then later deloop to a global
spectrum.

Construction 4.1.11. Let us write Γ-EM-Cat∗ for the category of functors
X : Γ→ EM-Cat with X(0+) = ∗.

Analogously to Construction 2.3.2, we can now define ϝ : ParSumCat →
Γ-EM-Cat∗ with ϝ(C)(n+) = C�n and the evident functoriality in C; the struc-
ture maps of ϝ(C) are again given by the universal property of � as coproduct in
ParSumCat, also see [Sch19b, Construction 4.3].

We obtain a functor Γ-EM-Cat∗ → Γ-EM-SSet∗ by applying the nerve
levelwise. From there, one can then use the following construction from [Sch19b,
Construction 3.3] to pass to symmetric spectra:

Construction 4.1.12. Let X ∈ Γ-EM-SSet∗. The associated (symmetric)
spectrum X〈S〉 is given by

X〈S〉(A) = X[ωA](SA)

(see Construction 1.4.48). If i : A → B is an injection, then the structure map
SBri(A) ∧X〈S〉(A)→ X〈S〉(B) is the composition

SBri(A)∧X[ωA](SA)
asm−−→X[ωA](SBri(A)∧SA)∼=X[ωA](SB)

X[i!](S
B)−−−−−−→X[ωB ](SB).

This becomes a functor in X in the obvious way.

Put differently (see Remark 3.4.14), (–)〈S〉 agrees with the composition

Γ-EM-SSet∗
(–)[ω•]−−−−→ Γ-I-SSet∗

E⊗−−→ Spectra.

Remark 4.1.13. To be entirely precise, Schwede instead works with the cat-
egory SpectraTop of symmetric spectra in topological spaces, and he first passes
to Γ-|EM|-Top∗ via geometric realization. We omit the routine verification that
after postcomposing with |–| : Spectra → SpectraTop the above agrees with his
construction up to isomorphism; the only non-trivial ingredient is the comparison
between prolongations of Γ-spaces in the simplicial and in the topological world,
which appears for example as [Sch18, Proposition B.29].

We are now ready to define, see [Sch19b, Definition 4.14]:

Definition 4.1.14. We write Kgl for the composition

ParSumCat
ϝ−→ Γ-EM-Cat∗

N−→ Γ-EM-SSet∗
(–)〈S〉−−−−→ Spectra.

For any parsummable category C we call Kgl(C) the global algebraic K-theory of C.
Example 4.1.15. Let R be any ring. Applying the above to the parsummable

category P(R) from Example 4.1.7 yields Schwede’s definition [Sch19b, Defini-
tion 10.2] of the global algebraic K-theory Kgl(R) of R.

The correct notion of equivariant algebraic K-theory of small symmetric mon-
oidal categories with G-action is not given by simply applying the non-equivariant
Segal-May-Shimada-Shimakawa construction and pulling through the G-action; in-
stead, this required Shimakawa’s insight explained in Example 2.2.11 above. In-
terestingly, it turns out that this is not necessary when generalizing from global to
G-global algebraic K-theory:
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Definition 4.1.16. Let C be a G-parsummable category (i.e. a G-object in
ParSumCat). Its G-global algebraic K-theory KG-gl(C) is the G-global spectrum
obtained by equipping Kgl(C) with the G-action induced by functoriality. We write
KG-gl : G-ParSumCat→ G-Spectra for the resulting functor.

We will explain in the next subsection how this in particular yields the G-global
algebraic K-theory of a small symmetric monoidal category with G-action, and
prove later in Theorem 4.1.48 that this indeed refines usual G-equivariant algebraic
K-theory. Moreover, we can now use this to introduce the G-global algebraic K-
theory of G-rings:

Example 4.1.17. Schwede’s construction of P recalled above is actually strictly
functorial in ring homomorphisms α : R→ S as follows:

We write α♦ for the unique S-linear map S ⊗R R(ω) → S(ω) sending s ⊗ ei
to s · ei for all i ∈ ω, s ∈ S; this map is clearly an isomorphism. Then P(α) is
given on objects by P(α)(M) = α♦(S ⊗R M) where we identify S ⊗R M with its
image in S⊗RR(ω), which secretly uses the existence of a retraction to M ↪→ R(ω).
Similarly, if f : M → N is an R-linear isomorphism, then P(α)(f) is obtained from
S ⊗R f by conjugating with the restrictions of α♦. We omit the straight-forward
verification that this is well-defined and functorial.

In particular, if R is a ring equipped with a G-action through ring homomor-
phisms, then P(R) inherits a G-action. Explicitly, we have for each g ∈ G a map
g.–: R(ω) → R(ω) sending

∑
i∈ω ri · ei to

∑
i∈ω(g.ri) · ei, and this is semilinear in

the sense that g.– is additive and g.(r · x) = (g.r) · (g.x) for all x ∈ R(ω). The
G-action on objects is then defined via g.M = (g.–)(M), and if f : M → N is a
morphism, then g.f = (g.–) ◦ f ◦ (g−1.–) : g.M → g.N .

Thus, the above construction yields for any such G-ring R a G-global algebraic
K-theory spectrum KG-gl(R), generalizing Schwede’s global algebraic K-theory. In
particular, if E/F is any Galois extension (of fields, or more generally of rings),
then we obtain a Gal(E/F )-global algebraic K-theory spectrum KGal(E/F )-gl(E)
(viewing Gal(E/F ) as a discrete group only, even if E/F is infinite).

We close this discussion by establishing a basic invariance property of G-global
K-theory:

Definition 4.1.18. A map f : C → D of G-parsummable categories is called
a G-global weak equivalence if the induced functor Cϕ → Dϕ is a weak homotopy
equivalence (i.e. weak equivalence on nerves) for each universal subgroup H ⊂ M
and each homomorphism ϕ : H → G.

For G = 1, Schwede [Sch19b, Definition 2.26] considered these under the name
‘global equivalence.’ We can now prove the following generalization of [Sch19b,
Theorem 4.16]:

Proposition 4.1.19. The functor KG-gl preserves G-global weak equivalences.

For the proof it will be convenient to slightly reformulate the above construction
of KG-gl. This will use the following observation:
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Lemma 4.1.20. The diagram

G-ParSumCat Γ-EM-G-Cat∗

G-ParSumSSet Γ-EM-G-SSetτ∗ Γ-EM-G-SSet∗

N

ϝ

N

ϝ

commutes up to canonical natural isomorphism.

Proof. The top arrow obviously factors through Γ-EM-G-Catτ∗ , so it suf-
fices to construct a natural isomorphism filling

G-ParSumCat Γ-EM-G-Catτ∗

G-ParSumSSet Γ-EM-G-SSetτ∗ .

N

ϝ

N

ϝ

But as in the proof of Theorem 2.3.1, it follows by abstract nonsense that the struc-
ture isomorphisms of the strong symmetric monoidal functor N: EM-G-Catτ →
EM-G-SSetτ (see Proposition 4.1.10) assemble into the desired isomorphism. �

Proof of Proposition 4.1.19. By Lemma 4.1.20 we can factor KG-gl up to
isomorphism as

G-ParSumCat
N−→ G-ParSumSSet

ϝ−→ Γ-EM-G-SSetτ∗ ↪→ Γ-EM-G-SSet∗

(–)[ω•]−−−−→ Γ-G-I-SSet∗
E⊗−−→ G-Spectra.

Of these the first arrow preserves G-global weak equivalences as N preserves lim-
its; moreover, the second arrow sends these to G-global level weak equivalences
by Proposition 2.3.16, which are preserved by the inclusion by definition and by
the penultimate arrow by Theorem 2.2.30. Finally, E⊗ is homotopical by Corol-
lary 3.4.20. �

G-global algebraic K-theory is compatible with restrictions along group homo-
morphisms in the following sense:

Proposition 4.1.21. Let ϕ : H → G be any group homomorphism. Then the
diagram

G-ParSumCat∞ G-Spectra∞G-global

H-ParSumCat∞ H-Spectra∞H-global

(ϕ∗)∞

K∞G-gl

(ϕ∗)∞

K∞H-gl

commutes up to canonical equivalence.

Proof. By construction, we even have an equality ϕ∗ ◦KG-gl = KH-gl ◦ ϕ∗ of
homotopical functors. �
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4.1.2. G-global K-theory of symmetric monoidal G-categories. Recall
that a permutative category is a symmetric monoidal category in which the unitality
and associativity isomorphisms are required to be the respective identities. We write
PermCat for the 1-category of small permutative categories and strict symmetric
monoidal functors. In [Sch19b, Constructions 11.1 and 11.6], Schwede constructs
a specific functor Φ: PermCat→ ParSumCat as a variation of a ‘strictification’
construction due to Schlichtkrull and Solberg [SS16, Sections 4.14 and 7]:

Construction 4.1.22. While we will be able to completely black box the def-
inition of Φ, let us give the basic idea of its construction for motivational purposes;
for details, we refer the reader to Schwede’s article.

Let C be a small permutative category. An object of ΦC is a family (Xi)i∈ω
of objects of C such that Xi = 1 for all but finitely many i ∈ ω. If Y• is another
object of ΦC , then

HomΦC (X•, Y•) := HomC

(⊗
i∈ω

Xi,
⊗
i∈ω

Yi

)
;

note that these infinite tensor products are indeed well-defined as the tensor product
of C is strictly unital. The composition in ΦC is given by the composition in C .

We have an action of M on Ob(ΦC ) via ‘shuffling and extending by 1,’ i.e.

(u.X•)i =

{
Xj if i = u(j)

1 if i /∈ imu

for any u ∈M, X• ∈ ΦC . For any further v ∈M, the structure isomorphism [v, u]
is given by a suitable composition of the symmetry isomorphisms of the permutative
structure on C .

Clearly, suppX• = {i ∈ ω : Xi 6= 1}, so we can define the sum of two disjointly
supported objects X•, Y• by

(X• + Y•)i =

{
Xi if i ∈ suppX•

Yi otherwise.

The additive unit is the constant family at 1. The sum of morphisms f : X• → X ′•,
g : Y• → Y ′• with pairwise disjoint sources and pairwise disjoint targets is given by
suitably conjugating the tensor product f ⊗ g in C by symmetry isomorphisms.

Finally, if F : C → D is a strict symmetric monoidal functor, then Φ(F ) is
given by pushforward along F .

Again, we formally extend this to a functor G-PermCat → G-ParSumCat
from the category of permutative G-categories, i.e. permutative categories with a
strict G-action through strict symmetric monoidal functors, to the category of G-
parsummable categories.

Unfortunately, already for G = 1 the global algebraic K-theory of the par-
summable category Φ(C ) is not yet the ‘correct’ definition of the global algebraic
K-theory of C —for example, if C is a small permutative replacement of the cate-
gory P(C) of finite dimensional C-vector spaces and C-linear isomorphisms under
⊕, then Kgl(ΦC ) does not agree with the global algebraic K-theory of C intro-
duced in Example 4.1.15, see [Sch19b, Proposition 11.9]. In fact, as we explain
in [Len21, Remark 3.27], there is no (small) permutative category D at all such
that Kgl(ΦD) ' Kgl(C).
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4.1.2.1. Saturation. Ultimately, the above issue stems from the fact that while
we have good control over the underlying category of Φ(C ) (which is equivalent to C
itself), the equivariant information encoded in the EM-action is not that natural.
On the other hand, there is an interesting class of G-parsummable categories for
which the categorical information is enough to describe the underlying G-global
homotopy type:

Definition 4.1.23. An EM-G category C is called saturated if the canonical
map Cϕ → C‘h’ϕ := Fun(EH, C)ϕ from the honest fixed points to the categorical
homotopy fixed points (induced by restricting along EH → ∗) is an equivalence of
categories for each universal subgroupH ⊂M and each homomorphism ϕ : H → G;
here H acts on EH from the right as usual.

Here we use the notation ‘h’ instead of the usual h in order to emphasize that
while our notion of weak equivalences of G-parsummable categories is based on
weak homotopy equivalences, the above are homotopy fixed points with respect to
the underlying equivalences of categories. In particular, (–)‘h’ϕ does not preserve G-
global weak equivalences, i.e. ‘homotopy’ fixed points are not homotopy invariant.

Remark 4.1.24. The canonical map Cϕ → C‘h’ϕ is always fully faithful as a
limit of fully faithful functors.

Lemma 4.1.25. Let f : C → D be a map between saturated EM-G-categories
that is an underlying equivalence of categories. Then fϕ is an equivalence of cate-
gories for any universal subgroup H ⊂ M and any homomorphism ϕ : H → G; in
particular, f is a G-global weak equivalence if C and D are small.

Proof. Let H ⊂M and ϕ as above. Then we have a commutative diagram

Cϕ Dϕ

C‘h’ϕ D‘h’ϕ

fϕ

f ‘h’ϕ

where the vertical maps are the canonical inclusions. The bottom map is an equiva-
lence of categories because f is, and so are the vertical maps by assumption. Thus,
also the top arrow is also an equivalence by 2-out-of-3 as desired. �

Example 4.1.26. Let R be any G-ring. Then the G-parsummable category
P(R) of Example 4.1.17 is saturated. For G = 1 this appears as [Sch19b, Theo-
rem 10.3-(i)]; we will now give a similar argument for the general case:

Let H ⊂ M be a universal subgroup, let ϕ : H → G be any homomorphism,
and let F ∈ P(R)‘h’ϕ arbitrary; we want to show that F is isomorphic to the image
of some N ∈ P(R)ϕ. To this end, we set M := F (1); a straight-forward diagram
chase shows that M admits a ϕ∗R-semilinear H-action with h ∈ H acting via

M = F (1)
(h,ϕ(h)).–−−−−−−→ (h, ϕ(h)).F (1) = F (h)

F (1,h)−−−−→ F (1) = M,

where the first arrow is given by the action on R(ω).
We now pick i1, i2, · · · ∈ ω such that the H-orbits Hij ⊂ ω are free and pairwise

disjoint, and we write X for the R-linear span R〈ei1 , ei2 , . . . , 〉 ⊂ R(ω). As M is
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finitely generated, there exists an R-linear surjection p : X →M , which then admits
a section s : M → X as M is projective. We now define s̃ : M → R(ω) by

s̃(m) :=
∑
h∈H

(h, ϕ(h)).s(h−1.m),

which one easily checks to be R-linear and H-equivariant (with H acting on R(ω)

via M and ϕ as before). Moreover, we let p̃ : R(ω) → M be the unique R-linear
map with p̃(ei) = p(ei) for i ∈ {i1, i2, . . . } and p̃(ei) = 0 otherwise.

As (h, ϕ(h)).X∩X = 0 for h 6= 1, it follows that p̃s̃ = idM , so thatN := s̃(M) ⊂
R(ω) is an object of P(R). Unravelling definitions and usingH-equivariance of s̃, one
then readily verifies that N is ϕ-fixed and that the maps

(
(h, ϕ(h)).–

)
◦ s̃ = s̃(h.–)

for varying h ∈ H define an isomorphism in P(R)‘h’ϕ between the given functor F
and the functor constant at N .

While the parsummable G-categories of the form ΦC are usually not saturated,
our saturation construction, which first appeared for G = 1 as [Sch19b, Construc-
tion 7.18], provides a universal way to remedy this situation:

Construction 4.1.27. Let C be a tame EM-category and equip Fun(EM, C)
with the diagonal of the EM-action on C and the left EM-action induced by the
right EM-action on EM via precomposition. We define Csat := Fun(EM, C)τ and
call it the saturation of C. The natural functor s : C → Fun(EM, C) sending an
object c ∈ C to the constant functor at c restricts to C → Csat; we omit the easy
verification that this is natural with respect to the evident functoriality of (–)sat.

Finally, we lift (–)sat to an endofunctor of EM-G-Catτ by pulling through
the G-action; we observe that s automatically defines a natural transformation
idEM-G-Catτ ⇒ (–)sat.

Theorem 4.1.28. The above functor (–)sat takes values in the full subcategory
EM-G-Catτ,s of saturated tame EM-G-categories. Moreover:

(1) The map s : C → Csat is an underlying equivalence of categories for any
C ∈ EM-G-Catτ .

(2) The inclusion Csat ↪→ Fun(EM, C) induces equivalences of categories on
ϕ-fixed points for every universal H ⊂M and each ϕ : H → G; in partic-
ular, it is a G-global weak equivalence.

Proof. This is similar to the usual global situation, where this argument ap-
peared in slightly different form as [Sch19b, Theorem 7.22].

It is clear that s : C → Fun(EM, C) is an equivalence of categories. It then
suffices to prove the second statement and that Fun(EM, C) is saturated. Namely,
specializing (2) to H = 1 in particular shows that Csat ↪→ Fun(EM, C) is an
underlying equivalence, and hence so is s : C → Csat by 2-out-of-3, proving the
first statement. On the other hand, these show that for any ϕ as above the top
horizontal and right hand vertical map in the evident commutative diagram

(Csat)ϕ Fun(EM, C)ϕ

(Csat)‘h’ϕ Fun(EM, C)‘h’ϕ

are equivalences of categories. Moreover, we can also deduce that the lower hori-
zontal map is an equivalence of categories (as a homotopy limit of equivalences),
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hence so is the left hand vertical map by 2-out-of-3, which will precisely prove that
Csat is saturated.

It remains to prove the two claims. To prove that Fun(EM, C) is saturated,
we have to show that for all H,ϕ as above the canonical map Fun(EM, C)ϕ →
Fun(EH,Fun(EM, C))ϕ is an equivalence. Under the identification

Fun(EH,Fun(EM, C)) ∼= Fun(EH × EM, C) ∼= Fun(E(H ×M), C)
given by the adjunction isomorphism and the fact that E preserves products, the
right hand side of the above map corresponds to the fixed points with respect to the
same H-action on C as before and the H-action on E(H×M) induced by the right
regular H-action and the H-action on M via u.h = uh. Under this identification,
the canonical map is induced by E(pr) : E(H×M)→ EM, and it will be enough to
show that this is a right H-equivariant equivalence of categories, i.e. an equivalence
in the 2-category of right H-categories, right H-equivariant functors, and right
H-equivariant natural transformations.

For this we observe that both H×M andM are free right H-sets. Thus, there
exists a right H-equivariant map r : M→ H×M. As before, we see that for varying
u ∈ M the unique maps pr(r(u))→ u in EM assemble into a right H-equivariant
isomorphism E(pr)E(r) = E(pr◦r) ∼= idEM, and similarly E(r)E(pr) ∼= idE(H×M)

equivariantly. This completes the proof of the first claim.
For the second claim we observe that (Csat)ϕ → Fun(EM, C)ϕ is always fully

faithful as a limit of fully faithful functors, so that it is enough to show that it
is also essentially surjective. Moreover, [Sch19b, Proposition 7.20] shows that
Ψ: EM→ C is supported on some finite set A if (and only if) all Ψ(u) are supported
on A and Ψ factors through the restriction E(res) : EM→ EInj(A,ω).

As ω is a complete H-set universe, it contains a finite faithful H-subset S
(for example, we could take any free H-orbit). By faithfulness, Inj(S, ω) is then a
free right H-set, hence there exists a right H-equivariant map χ : Inj(S, ω) → H.
As above one then argues that E(χ ◦ res)∗ : Fun(EH, C)ϕ → Fun(EM, C)ϕ is an
equivalence of categories. Moreover, the above characterization shows that it lands
in Fun(EM, C)τ = Csat; more precisely, E(χ ◦ res)∗(Ξ) = E(res)∗E(χ)∗(Ξ) is sup-
ported on the finite set S∪

⋃
h∈H supp(Ξ(h)) for any Ξ: EH → C. We conclude that

the canonical functor (Csat)ϕ ↪→ Fun(EM, C)ϕ is essentially surjective, completing
the proof of the remaining claim and hence of the theorem. �

Remark 4.1.29. There is an alternative characterization of (small) saturated
EM-categories that will be useful below: the forgetful functor EM-Cat → Cat
admits a right adjoint Fun(EM, –). We claim that a small EM-G-category is
saturated if and only if the unit C → Fun(EM, forget C) induces equivalences on
ϕ-fixed points for all universal H ⊂M and all ϕ : H → G.

Indeed, the unit is always an equivalence of categories and its target is saturated
by the previous theorem. Thus, if also the source is saturated, then ηϕ is an
equivalence by Lemma 4.1.25. Conversely, by the same argument as above saturated
EM-G-categories are closed under functors inducing equivalences on all ϕ-fixed
points for ϕ as before.

As explained in [Sch19b, Construction 7.23], the usual lax symmetric monoidal
structure on (–)sat with respect to the cartesian product restricts to a lax symmetric
monoidal structure with respect to the box product. In particular, (–)sat canonically
lifts to an endofunctor of G-ParSumCat. Using this we can now finally introduce:
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Definition 4.1.30. We define the G-global algebraic K-theory of permutative
G-categories as the composition

G-PermCat
Φ−→ G-ParSumCat

(–)sat

−−−→ G-ParSumCat
KG-gl−−−−→ G-Spectra,

which we denote by KG-gl again.

Remark 4.1.31. For G = 1 the above agrees with Schwede’s global definition
implicit in [Sch19b, discussion after Proposition 11.9].

It is not hard to show that the above sends underlying equivalences of categories
in G-PermCat to G-global weak equivalences. We will be interested in a stronger
statement based on the following notion of weak equivalence:

Definition 4.1.32. A G-equivariant functor f : C → D of small G-categories
is called a G-global weak equivalence if the induced functor Fun(EH,ϕ∗C )H →
Fun(EH,ϕ∗D)H is a weak homotopy equivalence for every finite group H and
every homomorphism ϕ : H → G.

For G = 1 this recovers the ‘global equivalences’ of [Sch19a, Definition 3.2].

Example 4.1.33. Any underlying equivalence of small G-categories is a G-
global weak equivalence.

Remark 4.1.34. Using that EH ↪→ EM is an H-equivariant equivalence of
right H-categories (i.e. an equivalence in the 2-category of right H-categories, equi-
variant functors, and equivariant natural transformations) for every H ⊂ M, we
easily see that f is a G-global weak equivalence in the above sense if and only if
NFun(EM, f) is a G-global weak equivalence in EM-G-SSet.

In what follows, we will again abbreviate Fun(EH,ϕ∗(–))H =: (–)‘h’ϕ, corre-
sponding to the fact that the above agrees with the previous definition of (–)‘h’ϕ

for the case of a trivial EM-action. As this creates potential ambiguity for EM-
G-categories with non-trivial EM-action, we will always distinguish between an
EM-G-category and its underlying G-category below; homotopically, however, this
ambiguity is inconsequential anyhow by the following easy observation:

Lemma 4.1.35. Let C ∈ EM-G-Cat, and let forget : EM-G-Cat → G-Cat
be the forgetful functor. Then there is a natural zig-zag of equivalences between C‘h’ϕ

and (forget C)‘h’ϕ for any subgroup H ⊂M and any ϕ : H → G.

Proof. While the claim could be proven analogously to [Sch19b, Proposi-
tion 7.6], we will give a slightly different argument: let us consider the zig-zag

(4.1.3) C action←−−−− EM×Ctriv pr−→ Ctriv,

where Ctriv denotes C with trivial EM-action. There is an evident way to make the
middle term functorial in C, and with respect to this the above two maps are clearly
natural. Moreover, one easily checks that they are both (EM×G)-equivariant.

We now claim that they are also underlying equivalences of categories. Indeed,
this is obvious for the projection as EM is contractible. The non-equivariant
functor (1, –) : C → EM× C is right-inverse to it, hence again an equivalence of
categories. But it is also right inverse to the action map EM×C → C, hence also
the latter is an equivalence of categories as desired.

The claim now simply follows by applying (–)‘h’ϕ to (4.1.3). �
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Using this, we can now compare the G-global weak equivalences of small sym-
metric monoidal categories with G-action to those of G-parsummable categories:

Proposition 4.1.36. The functor (–)sat ◦Φ: G-PermCat→ G-ParSumCat
preserves and reflects G-global weak equivalences.

Proof. We fix a universal subgroup H ⊂M together with a homomorphism
ϕ : H → G. If now f : C → D is a G-equivariant strict symmetric monoidal functor,
then Theorem 4.1.28 implies that Φ(f)sat induces a weak homotopy equivalence on
ϕ-fixed points if and only if Φ(f)‘h’ϕ : Φ(C )‘h’ϕ → Φ(D)‘h’ϕ is a weak homotopy
equivalence, which is in turn equivalent by Lemma 4.1.35 to (forget Φ(f))‘h’ϕ being a
weak equivalence. Finally, we have natural equivalences of categories forget Φ(C ) '
C , forget Φ(D) ' D by [Sch19b, Remark 11.4], and these are automatically G-
equivariant as the G-actions on the left hand sides are induced by functoriality.

Thus, we altogether see that Φ(f)sat induces a weak homotopy equivalence on
ϕ-fixed points if and only if f ‘h’ϕ is a weak homotopy equivalence. Letting ϕ vary
and using that any finite group H is isomorphic to a universal subgroup ofM, this
yields the definitions of the G-global weak equivalences on G-ParSumCat and
G-PermCat, respectively, which completes the proof of the proposition. �

Together with Proposition 4.1.19 we immediately conclude:

Corollary 4.1.37. The functor KG-gl : G-PermCat→ G-Spectra preserves
G-global weak equivalences. �

4.1.2.2. An alternative description. We now want to extend the above con-
struction in order to define the G-global algebraic K-theory of a more general class
of symmetric monoidal categories with G-actions.

We denote by SymMonCat the category of small symmetric monoidal cat-
egories and strong symmetric monoidal functors, and we define SymMonCat0

as the wide subcategory with morphisms those strong symmetric monoidal func-
tors that are strictly unital, i.e. for which the unit isomorphism is the identity.
As usual, we write G-SymMonCat and G-SymMonCat0 for the corresponding
categories of G-objects; in particular, objects of G-SymMonCat are symmet-
ric monoidal categories with a strict G-action through strong symmetric monoidal
functors, whereas objects of G-SymMonCat0 have G-actions through strictly uni-
tal strong symmetric monoidal functors.

Lemma 4.1.38. The inclusions

G-PermCat ↪→ G-SymMonCat0 ↪→ G-SymMonCat

are homotopy equivalences with respect to the underlying equivalences of categories
(and hence in particular with respect to the G-global weak equivalences).

Proof. It suffices to prove the first statement, for which it is in turn enough
to consider the case G = 1.

The composition PermCat ↪→ SymMonCat is a homotopy equivalence as a
consequence of MacLane’s strictification construction [Mac98, Section XI.3], see
e.g. [Len21, Theorem 1.19] for an elaboration on this argument.

We are therefore reduced to showing that SymMonCat0 ↪→ SymMonCat is
a homotopy equivalence; this is again well-known, but I do not know of an explicit
reference, so let me explain the construction of a homotopy inverse:
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For any small symmetric monoidal category C consider the map π : Ob(C ) q
{1′} → Ob(C ) that is given by the identity on Ob(C ) and that sends 1′ to 1.
We then define C 0 as the category with set of objects Ob(C )q {1′} and hom sets
HomC 0(X,Y ) := HomC (π(X), π(Y )); then π tautologically extends to a functor
C 0 → C , and this is clearly an equivalence of categories.

We extend the tensor product from Ob(C ) to Ob(C 0) by demanding that 1′ be
a strict unit. Then π commutes with the tensor products on objects, so there is by
full faithfulness a unique way to extend the tensor product on Ob(C 0) to morphisms
in such a way that π strictly preserves the tensor products. By the same argument,
we can uniquely lift the associativity, unitality, and symmetry isomorphism from
C to C 0 through π, making C 0 a symmetric monoidal category with unit 1′, and
π a strict symmetric monoidal functor.

On the other hand, the inclusion η : C ↪→ C 0 is right inverse to π, so there is
a unique strong symmetric monoidal structure on η such that the composition πη
agrees as a strong symmetric monoidal functor with the identity. We now claim that
η : C → C 0 has the following universal property: for any strong symmetric monoidal
f : C → D there exists a unique strictly unital strong monoidal functor f̃ : C 0 → D
with f = f̃◦η. With this established, it will then follow formally that the assignment
C 7→ C 0 extends to a functor (–)0 : SymMonCat → SymMonCat0 left adjoint
to the inclusion and with unit η. As η is an underlying equivalence and the inclusion
SymMonCat0 ↪→ SymMonCat creates underlying equivalences, it follows by 2-
out-of-3 that also (–)0 is homotopical. Moreover, the triangle identity shows that
also the counit ε is an underlying equivalence, finishing the proof (in fact, one can
also easily check that the counit is simply the functor π considered above).

It remains to prove the claim. Let us first show that the underlying functor
of f̃ is unique. Indeed, as f̃ is strictly unital, f̃(1′) = 1; together with f̃ ◦ η = f ,

this means that f̃ is uniquely prescribed on objects. On the other hand, this also
prescribes f̃ on all morphisms between objects of C , whereas the equality of the unit
isomorphisms for f̃ ◦ η and f prescribes f̃ on the unit isomorphism ι : 1′ → 1 of η
(i.e. the map corresponding to the identity of 1). The claim follows as any morphism
in C 0 can be expressed as a composition of a morphism in C and (possibly) ι and

ι−1. To see that f̃ is also unique as a strictly unital strong symmetric monoidal
functor, it suffices to show that there is at most one choice of the multiplicativity
isomorphisms ∇X,Y : f̃(X) ⊗ f̃(Y ) → f̃(X ⊗ Y ). But indeed, as ∇ is natural, it
suffices to show this after precomposing with the equivalence η × η, where this
follows from the equality f̃ ◦ η = f of strong symmetric monoidal functors.

Finally, we construct a strictly unital strong symmetric monoidal f̃ : C 0 → D
as follows: we define f̃(X) = f(X) for any X ∈ C and f̃(1′) = 1. We now consider

the isomorphisms θX = idf(X) : f̃(X) → f(π(X)) for X ∈ C and θ1′ = ι : 1 →
f(1) = f(π(1′)). There is then a unique way to extend f̃ to a functor such that θ

becomes a natural transformation f̃ ⇒ f ◦ π, and f̃ then acquires a unique strong
symmetric monoidal structure such that θ is (symmetric) monoidal. It is easy to

check that f̃ is strictly unital and satifies f̃ ◦ η = f , finishing the proof. �

The lemma already tells us that we can extend the definition of G-global al-
gebraic K-theory from G-PermCat to G-SymMonCat by simply precomposing
with a homotopy inverse to the inclusion. However, the above homotopy inverse is
based on Mac Lane’s strictification construction, which is rather complicated.
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Instead, we will now use the construction from Example 2.2.49 to give an ex-
plicit construction onG-SymMonCat0 more in the spirit of Shimakawa’s approach
to G-equivariant algebraic K-theory. This already covers many examples arising in
practice, and if necessary the extension to G-SymMonCat can then again be con-
structed by precomposing with the above homotopy inverse (which is much simpler
in this case as it simply duplicates the tensor unit).

Definition 4.1.39. We write K′G-gl for the composition

G-SymMonCat0 Γ−→ Γ-G-Cat∗
Fun(EM,–)−−−−−−−→ Γ-EM-G-Cat∗

N−→ Γ-EM-G-SSet∗
(–)〈S〉−−−−→ G-Spectra.

Here Γ is again obtained from the Segal-May-Shimada-Shimakawa functor (see
Example 2.2.5) by pulling through the G-action.

In order to relate the above to our previous definition of the G-global algebraic
K-theory of permutative G-categories, it will be useful to also conversely express
the G-global algebraic K-theory of saturated G-parsummable categories in terms of
K′G-gl. For this we let µ : 2× ω → ω be any injection. Schwede shows in [Sch19b,
Proposition 5.7] that if C is any parsummable category, then its underlying category
admits a canonical symmetric monoidal structure with tensor product given on ob-
jects by X⊗Y = µ(1, –)∗X+µ(2, –)∗Y ; more precisely [Sch19b, Constructions 5.1
and 5.6]:

Construction 4.1.40. Let C be a parsummable category; for any n ≥ 0 and
any injection ψ : n×ω → ω, we write ψ∗ for the functor C×n → C given on objects
by ψ∗(X1, . . . , Xn) := ψ(1, –)∗(X1)+· · ·+ψ(n, –)∗(Xn) and similarly on morphisms;
note that this sum is indeed well-defined by Lemma 1.3.8. If θ : n× ω → ω is any
other injection, then we write [θ, ψ] for the natural transformation ψ∗ ⇒ θ∗ given
by the sum [θ(1, –), ψ(1, –)] + · · ·+ [θ(n, –), ψ(n, –)].

Now fix an injection µ : 2 × ω → ω; we define a symmetric monoidal category
µ∗C with underlying category C, monoidal unit 0, and tensor product µ∗ as follows:
for any X ∈ C, the left unitality isomorphism 1⊗X = µ∗(0, X) = µ(2, –)∗(X)→ X
is given by [1, µ(2, –)]X , and similarly for the right unitality isomorphism. If Y ∈ C
is another object, then the symmetry isomorphism µ∗(X,Y ) → µ∗(Y,X) is given
by [µ ◦ t, µ](X,Y ), where t : 2× ω ∼= 2× ω exchanges the two copies of ω. Finally, if
Z ∈ C is yet another object, then the associativity isomorphism µ∗(µ∗(X,Y ), Z)→
µ∗(X,µ∗(Y, Z)) is the natural map [µ(id, µ), µ(µ, id)]X,Y,Z ; here we write µ(f, g)
for all f : m × ω → ω, g : n × ω → ω for the map with µ(f, g)(i, x) = µ(1, f(i, x))
for i ≤ m and µ(f, g)(i, x) = µ(2, g(i−m,x)) otherwise.

Any morphism C → D of parsummable categories is actually strict symmetric
monoidal when viewed as a functor µ∗C → µ∗D [Sch19b, Remark 5.8], in partic-
ular yielding a functor ParSumCat → SymMonCat0, which we as usual lift to
G-ParSumCat→ G-SymMonCat0. We will now prove:

Theorem 4.1.41. The functor K′G-gl preserves G-global weak equivalences and
there exist natural equivalences of functors to G-Spectra∞G-global

K′G-gl ◦ µ∗|G-ParSumCats ' KG-gl|G-ParSumCats(4.1.4)
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(for any injection µ : 2× ω → ω) and

K′G-gl|G-PermCat ' KG-gl.(4.1.5)

For the proof we will use the following categorical comparison due to Schwede;
here we call a map f in Γ-G-Cat∗ a categorical equivalence if each f(S+) is an
underlying equivalence of categories.

Proposition 4.1.42. For any injection µ : 2×ω → ω there exists a natural lev-
elwise categorical equivalence Ψ: forget◦ϝ⇒ Γ◦µ∗ of functors G-ParSumCat→
Γ-G-Cat∗.

We will not need any information on the concrete construction of the transfor-
mation Ψ below, except that it is given in degree 1+ by the canonical isomorphism
ι : C → Γ(C )(1+) from Example 2.2.5. The curious reader can find the complete
definition as [Sch19b, Construction 5.14].

Proof. As the G-actions are simply pulled through everywhere, it suffices to
prove this for G = 1, which is [Sch19b, proof of Theorem 5.15-(ii)]. �

Proof of Theorem 4.1.41. We first observe that N◦Fun(EM, –) sends un-
derlying equivalences of G-categories to G-global weak equivalences as a conse-
quence of Remark 4.1.34. Applying this with G replaced by G × ΣS for varying
finite set S, we therefore see that N ◦Fun(EM, –) sends categorical equivalences to
G-global level weak equivalences, and (using in addition that N and Fun(EM, –)
preserve products) that it sends categorically special Γ-G-categories to special G-
global Γ-spaces.

In particular, as we already observed in Example 2.2.49, NFun(EM,Γ(–))
takes values in special G-global Γ-spaces since Γ sends symmetric monoidal cat-
egories with strictly unital G-actions to categorically special Γ-G-categories. Thus,
NFun(EM,Γ(f)) is aG-global level weak equivalence if and only if NFun(EM, f) ∼=
NFun(EM,Γ(f))(1+) is a G-global weak equivalence. The latter is equivalent to
f being a G-global weak equivalence in G-SymMonCat0 by Remark 4.1.34, in
particular proving that K′G-gl is invariant under G-global weak equivalences.

On the other hand, applying this reasoning to the map Ψ from above yields a
natural levelwise G-global level weak equivalence

NFun(EM,Ψ): N ◦ Fun(EM, –) ◦ forget ◦ ϝ⇒ N ◦ Fun(EM, –) ◦ Γ ◦ µ∗.

Moreover, we may conclude in the same way from [Sch19b, proof of Theorem 2.32]
that the G-global Γ-space NFun(EM, forgetϝ(C)) is G-globally special for any G-
parsummable category C.

Since also Nϝ(C) ∼= ϝ(NC) is special, the map

Nη : Nϝ(C)→ NFun(EM, forgetϝ(C))

induced by the unit is therefore a G-global level weak equivalence if and only if
η : C → Fun(EM, forget C) is a G-global weak equivalence, which is in particular
true for saturated C by Remark 4.1.29. This provides the equivalence (4.1.4).

For the equivalence (4.1.5) it is then enough to construct a zig-zag of levelwise
G-global weak equivalences between µ∗◦(–)sat◦Φ and the inclusionG-PermCat ↪→
G-SymMonCat0. We will even give a zig-zag of underlying equivalences: by
Theorem 4.1.28, (–)sat ' id, so it suffices that µ∗ ◦Φ is equivalent to the inclusion.
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This has been sketched by Schwede in [Sch19b, Remark 11.4], and we give a full
proof in [Len21, Corollary 2.19]. �

Remark 4.1.43. Unravelling all definitions, one can actually check that the
equivalence (4.1.5) is induced by a single natural transformation on the pointset
level, and that this pointset level map is independent of the choice of µ : 2×ω → ω
in the strong sense that for any other injection ν the resulting map is even equal.

Remark 4.1.44. Instead of requiring strict actions, we can also canonically
extend the above construction to accept small symmetric monoidal categories with
homotopy coherent G-actions. While this generalization will play no role here, let
me briefly sketch what goes into this:

It is well-known (and an easy application of Proposition A.1.10) that the in-
clusion N(SymMonCat) ↪→ N∆(SymMonCat2,1) is a quasi-localization at the
underlying equivalences of categories, where SymMonCat2,1 is the strict (2, 1)-
category of small symmetric monoidal categories, strong symmetric monoidal func-
tors, and symmetric monoidal isomorphisms. By Lemma 4.1.38, the same is then
true for γ : N(PermCat) ↪→ N∆(SymMonCat2,1).

On the other hand, the 1-category PermCat inherits the structure of a ho-
motopy U-complete category with fibrations and weak equivalences in the sense of
[Cis19, Definitions 7.4.12 and 7.7.2] (where U is our implicitly chosen Grothendieck
universe in the background) from the canonical model structure on Cat; the only
non-formal statement is the existence of factorizations into weak equivalences fol-
lowed by fibrations, for which one can use the usual mapping cocylinder construc-
tion. By Example 7.9.6op or alternatively Remark 7.9.7op of op. cit., PermCat
is moreover U-hereditary in the sense of Definition 7.9.4op of op. cit., so Cisin-
ski’s Theorem 7.9.8op shows that quasi-localizations of PermCat are stable under
taking diagram categories, i.e. for any small category I the composite

N(PermCatI) ∼= N(PermCat)NI γNI

−−→ N∆(SymMonCat2,1)NI

is a quasi-localization at the underlying equivalences of categories (and the same

holds for N(SymMonCatI)→ N∆(SymMonCat2,1)NI by another application of
Lemma 4.1.38). Specializing to I = BG then yields the desired claim as KG-gl is
invariant under underlying equivalences of categories.

In more 2-categorical terms, the objects of N∆(SymMonCat2,1)N(BG) can
be identified with the symmetric monoidal categories with strictly unital pseudo-
functorial G-action through strong symmetric monoidal functors, see e.g. [Lur18,
Tags 00AV and 00KY]. While I do not know of a satisfactory proof of this
in the literature, it is well-known (and follows for example from the results an-
nounced on [Dus01, p. 204]) that N∆(SymMonCat2,1)N(BG) is in fact equivalent
to the homotopy coherent nerve of the strict (2, 1)-category of symmetric monoidal
categories with pseudofunctorial G-actions, pseudoequivariant strong symmetric
monoidal functors, and pseudoequivariant symmetric monoidal isomorphisms.

Remark 4.1.45. Let R be any G-ring, and fix an injection µ : 2 × ω → ω.
Then applying Theorem 4.1.41 to the saturated G-parsummable category P(R)
(Examples 4.1.17 and 4.1.26), shows that the G-global algebraic K-theory KG-gl(R)
of R is G-globally weakly equivalent to the G-global algebraic K-theory of the
symmetric monoidal category µ∗P(R).

https://kerodon.net/tag/00AV
https://kerodon.net/tag/00KY
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Let us now write P(R) for the category of finitely generated projective R-
modules and R-linear isomorphisms. To be entirely precise, P(R) is not small as
there are too many representatives of each isomorphism class, so we should restrict
to a small essentially wide subcategory; to simplify the exposition below, we do
this as follows: we fix any set U of sets containg all subsets of R(ω) and restrict to
those projective R-modules M whose underlying set belongs to U .

The category P(R) inherits a symmetric monoidal structure from ‘the’ cocarte-
sian symmetric monoidal structure on the ambient category of R-modules. While
the result will of course be independent of the chosen coproducts up to canonical
isomorphism, we will make a very specific choice now that will trivialize several
computations below: namely, we insist that the monoidal unit be the trivial sub-
module of R(ω), that our choices of coproducts be obtained from fixed choices of
coproducts in Ab (so that the underlying abelian groups of our chosen coproducts
only depend on the underlying abelian groups of their inputs on the nose), and that
for all M,N ∈ P(R) their chosen coproduct be given by µ∗(M,N) with structure
maps

M
[µ(1,–),1]−−−−−−→ µ(1, –)∗(M) ↪→ µ∗(M,N) and N

[µ(2,–),1]−−−−−−→ µ(2, –)∗(N) ↪→ µ∗(M,N).

Following [Mer17, 4.3], we can make P(R) into an object in G-SymMonCat0

as follows: if g ∈ G is arbitrary, and M ∈P(R), then gM has the same underlying
abelian group, but the scalar multiplication is instead given by r ·gm = (g−1.r) ·m
(note that Merling lets r act by g.r instead, but this would give a right G-action);
moreover, if f : M → N is any morphism, then gf : gM → gN agrees with f as a
morphism of underlying abelian groups. We omit the easy verification that this is a
well-defined G-action on the underlying category. Our specific choice of coproducts
then ensures that each g(–) is actually strict symmetric monoidal, in particular
yielding an object in G-SymMonCat0.

Ignoring G-actions, the inclusion ι : µ∗P(R) ↪→P(R) is again strict symmetric
monoidal by our specific choice of coproducts, and it is clearly an equivalence of
categories. However, ι is typically not G-equivariant unless G acts trivially on
R: namely, if M ∈ P(R), then g.M = (g.–)(M) will typically have a different
underlying set than M and hence gM . However, acting with g−1 on R(ω) still gives
us a preferred isomorphism g.M → gM , and one easily checks that for varying g
and M these equip ι with the structure of a pseudoequivariant strong symmetric
monoidal functor.

Thus, taking the previous remark for granted, we see that K′G-gl(µ
∗P(R)) and

K′G-gl(P(R)) are G-globally weakly equivalent, and hence so are KG-gl(R) and

K′G-gl(P(R)). However, we can actually also prove this equivalence unconditionally,
using a trick of Merling’s:

Consider Fun(EG,P(R)) with the levelwise symmetric monoidal structure and
G-action via conjugation; here we view EG as coming with the usual left G-action
as opposed to the right action considered before in order to keep our notation
consistent with Merling’s. We define a functor ι̃ : µ∗P(R) → Fun(EG,P(R)) as
follows: if M ∈ P(R) is arbitrary, then ι̃(M)(g) = gι(g−1.M) for all g ∈ G, with
structure maps ι̃(M)(g2, g1) = g−1

2 g1.–: g1ι(g−1
1 .M) → g2ι(g−1

2 .M); moreover, if
f : M → N is any morphism in P(R), then ι̃(f)g = ι(g−1.f). [Mer17, Propo-
sition 3.3] (restricted to constant diagrams) shows that this is a well-defined and
strictlyG-equivariant functor. Moreover, it is once again strict symmetric monoidal,
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and it is an equivalence of underlying categories as it becomes one after evaluating
at 1 ∈ EG. We therefore obtain a zig-zag

µ∗P(R)
ι̃−→ Fun(EG,P(R))

const←−−−P(R)

of underlying equivalences in G-SymMonCat0, which is then sent under K′G-gl to
the desired zig-zag of G-global weak equivalences.

Finally we note that we have analogously to Proposition 4.1.21:

Proposition 4.1.46. Let ϕ : H → G be any group homomorphism. Then the
diagram

(G-SymMonCat0)∞ G-Spectra∞G-global

(H-SymMonCat0)∞ H-Spectra∞H-global

(ϕ∗)∞

(K′G-gl)
∞

(ϕ∗)∞

(K′H-gl)
∞

commutes up to preferred equivalence. �

4.1.2.3. Comparison to G-equivariant algebraic K-theory. Let G be finite; the
alternative description of G-global algebraic K-theory provided by Theorem 4.1.41
above allows for an easy comparison to Shimakawa’s construction of G-equivariant
algebraic K-theory [Shi89, Theorem A′]:

Definition 4.1.47. We write KG for the composition

G-SymMonCat0 Γ−→ Γ-G-Cat∗
Fun(EG,–)−−−−−−−→ Γ-G-Cat∗

N−→ Γ-G-SSet∗
EG−−→ G-Spectra;

here G acts on EG from the right in the obvious way.
If C is any small symmetric monoidal category with strictly unital G-action,

then KG(C ) is called the G-equivariant algebraic K-theory of C .

Strictly speaking, Shimakawa uses a bar construction instead of the prolon-
gation functor EG; however, the two delooping constructions are equivalent, as
explained in [MMO17, Sections 2–3].

Theorem 4.1.48. There are natural equivalences of functors

(KG|G-PermCat)
∞ ' u∞G ◦(KG-gl)

∞ : G-PermCat∞ → G-Spectra∞G-equiv.

K∞G ' u∞G ◦(K
′
G-gl)

∞ : (G-SymMonCat0)∞ → G-Spectra∞G-equiv..

Proof. By Theorem 4.1.41 it suffices to prove the second statement, for which
it is turn enough to exhibit a zig-zag of levelwise G-equivariant weak equivalences
between KG and K′G-gl.

To this end we let i : G → M be any injective homomorphism with universal
image. Then i∗ω is a complete G-set universe, so Corollary 3.4.19 (for ϕ = id)
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shows that the rectangle on the right in

(4.1.6)

Γ-EM-G-SSet∗ Γ-G-I-SSet∗ G-SpectraG-global

Γ-EM-G-SSet∗

Γ-G-SSet∗ G-SpectraG-equivariant

(–)[ω•]

=

E⊗

evω

evi∗ω =

i∗

EG

commutes up to a zig-zag of levelwise G-equivariant weak equivalences. On the
other hand, the triangle on the left commutes up to G-global level weak equivalence
by Theorem 2.2.30, reducing us to comparing the Γ-G-categories i∗Fun(EM, C)
and Fun(EG, i∗C) for any Γ-category C. But Ei : EG→ EM is an equivalence in
the 2-category of right G-categories, equivariant functors, and equivariant natural
transformations; thus, restricting along Ei produces the desired G-equivariant level
weak equivalence. �

Remark 4.1.49. From a higher categorical point of view, the choice of i can
again be shown to be inessential: for example, the right hand portion of (4.1.6)
can be parameterized over the contractible 2-groupoid with objects the injective
homomorphisms G → M, 1-morphisms i → j the invertible ϕ ∈ M such that
j(g) = ϕi(g)ϕ−1 for all g ∈ G (cf. Lemma 1.2.7), and a unique 2-cell between any
pair of parallel arrows.

Remark 4.1.50. Let R be any G-ring. By the comparison from Remark 4.1.45,
we in particular conclude from the above that the underlying G-equivariant spec-
trum of KG-gl(R) recovers KG(P(R)). Thus, the G-global algebraic K-theory of G-
rings as introduced above refines Merling’s G-equivariant construction by [Mer17,
Corollary 5.26].

Together with Proposition 4.1.46 applied to the unique homomorphism G→ 1,
we in particular get the following comparison between global and equivariant alge-
braic K-theory:

Corollary 4.1.51. The diagram

PermCat∞ Spectra∞global

(G-SymMonCat0)∞ G-Spectra∞G-equivariant

triv∞

K∞gl

u∞G

K∞G

commutes up to natural equivalence. �

Remark 4.1.52. Analogously, we conclude from Remark 4.1.50 above that
Schwede’s global algebraic K-theory of rings forgets for any finite group G to Mer-
ling’s G-equivariant construction restricted to rings with trivial action, confirming
the expectation expressed in [Sch19b, Remark 10.4].

4.2. G-global versions of the Barratt-Priddy-Quillen Theorem

It is custom that any paper on infinite loop space machinery should prove some
version of the Barratt-Priddy-Quillen Theorem, see e.g. [Seg74, Propositions 3.5
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and 3.6], [GM17, Theorems 6.1 and 6.2], and [Sch19b, Theorems 8.7 and 9.7]
for non-equivariant, equivariant, and global versions, respectively. In this section
we will honour this tradition by providing several versions for the two different
constructions of G-global algebraic K-theory given above.

4.2.1. Versions for G-parsummable simplicial sets. We begin by identi-
fying the G-global spectra associated to certain free G-parsummable simplicial sets.
For this we will use the following comparison of G-global Γ-spaces, which one can
view as a ‘non-group-completed’ G-global Barratt-Priddy-Quillen Theorem, also
cf. the ‘special’ Barratt-Priddy-Quillen Theorem of [BM20, Theorem 1.2]:

Proposition 4.2.1. Let X ∈ EM-G-SSetτ∗ be cofibrant in the positive G-
global model structure. Then the map

η̃ : Γ(1+, –) ∧X → ϝ(SP∞X)

adjunct to the unit η : X → forget SP∞X = ϝ(SP∞X)(1+) is a G-global special
weak equivalence.

Proof. Obviously, ev1+ : Γ-EM-G-SSetτ∗ → EM-G-SSetτ∗ is right Quillen
for the G-global positive level model structure on the source and the G-global
positive model structure on the target, hence also with respect to the G-global
special model structure on the source. Thus, we have a Quillen adjunction

i! := Γ(1+, –) ∧ –: (EM-G-SSetτ∗)positive � (Γ-EM-G-SSetτ∗)special : ev1+

and one easily checks that the left adjoint is fully homotopical, while the right
adjoint is homotopical in G-global level weak equivalences; in particular, Rev1+

can be computed by choosing for any G-global Γ-space a G-global special weak
equivalence ι : X → X ′ to some special X ′; we agree that ι should be the identity
whenever X is already special. With this convention, the middle square in

Ho(Γ-EM-G-SSetτ∗) Ho(ParSumCat) Ho(EM-G-SSetτ∗)

Ho(Γ-EM-G-SSetτ∗) Ho(EM-G-SSetτ∗) Ho(EM-G-SSetτ∗)

=

Rev1+

Ho(ϝ)

Ho(forget)

LSP∞

=

ε⇒

Ho(i!)
=

id⇒ η⇒

commutes strictly. On the other hand, also Ho(forget) admits a left adjoint as
the forgetful functor is right Quillen (with left adjoint given by SP∞). Thus, we
can pass to canonical mates with respect to the vertical arrows, yielding the above
pasting. As the horizontal maps in the middle square are equivalences (the non-
trivial case being Theorem 2.3.1), this pasting is an isomorphism. Chasing through
X therefore yields an isomorphism Γ(1+, –) ∧ X ∼= ϝ(SP∞X) in the homotopy
category and it only remains to show that this is represented by η̃.

Indeed, as forget is fully homotopical, we can choose the derived unit of LSP∞ a
forget to be represented by the ordinary unit on all cofibrant objects; similarly, we
can take the derived counit of Ho(i!) a R ev1+ to be represented by the ordinary
counit on all special G-global Γ-spaces. With these choices, the above isomorphism
in the homotopy category is then represented by the composite

Γ(1+, –) ∧X Γ(1+,–)∧η−−−−−−→ Γ(1+, –) ∧ forget SP∞X

= Γ(1+, –) ∧ ϝ(SP∞X)(1+)
ε−→ ϝ(SP∞X),

which is precisely η̃ as desired. �
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Construction 4.2.2. Define ρ : Σ•Y (S0)→ E⊗Y for any Y ∈ Γ-G-I-SSet∗
as the map given in degree A by

SA ∧ Y (S0)(A)
asm−−→ Y (SA ∧ S0)(A) ∼= Y (SA)(A) = (E⊗Y )(A)

where the unlabelled isomorphism is induced by the unitality isomorphism. It is
clear that ρ is natural.

Example 4.2.3. Let X ∈ G-I-SSet∗ be arbitrary. Then

ρ : Σ•(Γ(1+, –) ∧X)(S0)→ E⊗(Γ(1+, –) ∧X)

is an isomorphism: indeed, arguing levelwise we are reduced to the statement that
the analogous map Σ∞(Γ(1+, –)∧X ′)(S0)→ (Γ(1+, –)∧X ′)(S) is an isomorphism
for every X ′ ∈ SSet∗, which is well-known (and just an instance of the enriched
co-Yoneda Lemma).

In particular, precomposing with the unit isomorphism yields an isomorphism
% : Σ•X → E⊗(Γ(1+, –) ∧X).

Theorem 4.2.4. The composition

(4.2.1) Σ•X[ω•]
Σ•η[ω•]−−−−−→ Σ•(SP∞X)[ω•]

ρ−→ E⊗
(
ϝ(SP∞X)[ω•]

)
= ϝ(SP∞X)〈S〉

is a G-global weak equivalence for any positively cofibrant X ∈ EM-G-SSetτ∗.

Proof. We begin with the following observation:

Claim. The functor (–)〈S〉 = E⊗ ◦ (–)[ω•] : Γ-EM-G-SSetτ∗ → G-Spectra
sends G-global special weak equivalences to G-global weak equivalences.

Proof. By Theorem 2.2.30 and Corollary 3.4.20, (–)〈S〉 descends to a functor

(4.2.2) (Γ-EM-G-SSetτ∗)
∞
G-global level → G-Spectra∞G-global,

and it suffices that this inverts G-global special weak equivalences. However, (4.2.2)
is left adjoint to ev∞ω ◦ RΦ⊗ by Theorem 2.2.30 together with Theorem 3.4.21,
and it is then enough that this right adjoint takes values in the local objects for
the special G-global weak equivalences, i.e. the special G-global Γ-spaces. This is
however immediate from Theorem 3.4.21 and Corollary 2.2.50. 4

Applying this to Proposition 4.2.1, we therefore get a G-global weak equivalence
η̃〈S〉 : (Γ(1+, –) ∧ X)〈S〉 → ϝ(SP∞X)〈S〉 while the previous example tells us that
% : Σ•X[ω•] → (Γ(1+, –) ∧ X)〈S〉 is an isomorphism. The claim follows as (4.2.1)
agrees with the composition η̃〈S〉 ◦ % by naturality of ρ and the definition of η̃. �

Next, let us give an unpointed version:

Corollary 4.2.5. Let X ∈ EM-G-SSetτ, and assume that X has no vertices
of empty support. Then the composition

Σ•+X[ω•] = Σ•X+[ω•]
Σ•η̃[ω•]−−−−−→ Σ•(PX)[ω•]

ρ−→ ϝ(PX)〈S〉
is a G-global weak equivalence; here η̃ is the adjunct of the unit X → forget PX.

Proof. If X is cofibrant in the G-global positive model structure, the claim
follows from the previous theorem using that there exists a (unique) isomorphism
PX ∼= SP∞(X+) compatible with the units.

The general case now follows by 2-out-of-3 since both sides are homotopical in
G-global weak equivalences between objects without vertices of empty support: the
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left hand side is even fully homotopical by Proposition 3.2.2 together with Propo-
sition 1.4.50, and so are ϝ and (–)〈S〉 as recalled in the proof of Proposition 4.1.19.
Finally, P =

∐
n≥0 Symn preserves G-global weak equivalences between objects

without vertices of empty support by Corollary 2.1.23 applied to each summand of
the coproduct. �

Theorem 4.2.6. Let H be a finite group, let ϕ : H → G be a homomorphism,
let A be a non-empty finite faithful H-set, and let f : A→ ω be an injection that is
H-equivariant with respect to the action on ω obtained by transporting the H-action
on ωA to ω via the isomorphism τ from Construction 1.4.48. Then the composition

Σ•+(I(A, –)×ϕG)
Σ•(η̃[ω•]◦f̃+)−−−−−−−−−→ Σ•P(EInj(A,ω)×ϕG)

ρ−→ ϝ
(
P(EInj(A,ω)×ϕG)

)
〈S〉

is a G-global weak equivalence, where f̃ : I(A, –) ×ϕ G → (EInj(A,ω) ×ϕ G)[ω•] is
the map classifying [f ; 1]. Moreover, such an injection f exists, and for any two
such choices the resulting maps are simplicially homotopic.

Proof. One easily checks that [f ; 1] is ϕ-fixed (so that f̃ is well-defined), and

that for any other H-equivariant injection f ′ so is the edge [f ′, f ; 1], so that f̃

and f̃ ′ are simplicially homotopic. By the previous corollary, it therefore suffices
to give one such map f and to show that the induced map Σ•+(I(A, –) ×ϕ G) →
Σ•+
(
(EInj(A,ω) ×ϕ G)[ω•]

)
is a G-global weak equivalence, for which it is in turn

enough by Proposition 3.2.2 that f̃ itself is a G-global weak equivalence.
For this we take f = τχ, where χ : A → ωA sends a ∈ A to its character-

istic function 1a. This is clearly H-equivariant, and moreover f̃ factors up to
the canonical isomorphism EInj(A,ω) ∼= I(A, –)(ω) as the composition of the in-
clusion I(A, –) ×ϕ G ↪→ I(A, –) ×ϕ G (which is a G-global weak equivalence by
Theorem 1.4.30) with the map θX from Remark 1.4.52 (which is a G-global weak
equivalence by the proof of Proposition 1.4.50), finishing the proof. �

We may also think of [f ; 1] as a vertex of P(EInj(A,ω) ×ϕ G), and by slight
abuse of notation we also denote the map (I(A, –)×ϕG)+→P(EInj(A,ω)×ϕG)[ωA]

classifying [f ; 1] by f̃ . With this notation, the left hand map in the above compo-

sition will then simply be written as Σ•f̃ .

4.2.2. Versions for G-parsummable categories. Also the forgetful func-
tor G-ParSumCat → EM-G-Catτ has a left adjoint P. Using the above, we
can now very easily describe the G-global algebraic K-theory of certain free G-
parsummable categories PC, generalizing Schwede’s global Barratt-Priddy-Quillen
Theorem [Sch19b, Theorem 8.7]:

Theorem 4.2.7. Let C be a tame EM-G-category without objects of empty
support. Then the composition

Σ•+N(C)[ω•] Σ•Ñ(η)[ω•]−−−−−−−→ Σ•N(forget PC)[ω•] ρ−→ N
(
ϝ(PC)

)
〈S〉 = KG-gl(PC)

is a G-global weak equivalence.

Proof. By adjointness, there is a unique map p : P(NC)→ N(PC) compatible
with the units of the two free-forgetful adjunctions, and we claim that this map is an
isomorphism. With this established, the theorem will follow from Corollary 4.2.5.
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For the proof of the claim it suffices to observe that p is the coproduct of the
maps N(C)�n/Σn ∼= N(C�n)/Σn → N(C�n/Σn), where the first map is induced by
the strong symmetric monoidal structure on N, and the second one is the canonical
comparison map. However, Σn again acts freely on C�n as C has no objects of
empty support, and the nerve preserves quotients by free group actions. �

Let H be a finite group, ϕ : H → G a homomorphism, and A a non-empty finite
faithful H-set. We write Fϕ for the G-parsummable category P(EInj(A,ω)×ϕG).
Analogously to the above, we can conclude from Theorem 4.2.6:

Theorem 4.2.8. Let f : A → ω be an H-equivariant injection (with respect to
the H-action transported from ωA as before). Then the composite map

Σ•+(I(A, –)×ϕ G)
Σ•f̃−−→ Σ•N(Fϕ)[ω•]

ρ−→ KG-gl(Fϕ)

is a G-global weak equivalence. Moreover, this map is independent of the choice of
f up to simplicial homotopy. �

Together with Example 3.2.5, we in particular see that KG-gl(Fϕ) corepresents
the true zeroth ϕ-equivariant homotopy group.

4.2.3. Versions for symmetric monoidal G-categories. Throughout, let
H, ϕ, and A be as above. For our final version of the G-global Barratt-Priddy-
Quillen Theorem, we want to express Σ•+I(A, –)×ϕG asG-global algebraicK-theory
of certain explicit symmetric monoidal G-categories. The crucial observation that
allows reducing this to category theoretic considerations is the following:

Proposition 4.2.9. The G-parsummable category Fϕ is saturated.

For the proof we will need:

Lemma 4.2.10. Let K be a finite group, let B be a countable faithful K-set, and
let X be any G-K-biset. Then the EM-G-category EInj(B,ω)×K X is saturated.

Proof. Let L ⊂ M universal and let θ : L → G be any homomorphism. We
want to show (see Remark 4.1.29) that ηθ is an equivalence of categories, for which
it is enough to show that it is essentially surjective. If we equip L with the right
L-action via `′.` = `−1`′, then L→M, ` 7→ `−1 is right-L-equivariant; as both sides
are free, we conclude as before that Fun(EM, forget C)θ → Fun(EL, forget C)θ =

FunL(EL, θ∗ forget C) is an equivalence of categories for all EM-G-categories C.
Taking C = EInj(B,ω)×K X, it is therefore enough to show that the resulting

composition Θ: (EInj(B,ω) ×K X)θ → FunL(EL, θ∗ forget(EInj(B,ω) ×K X)) is
essentially surjective; we can explicitly describe Θ on objects as follows: [u;x] is
sent to the left L-equivariant functor F[u;x] : EL→ θ∗(forgetEInj(B,ω)×KX) with

F[u;x](`0, . . . , `n) = [`−1
0 u, . . . , `−1

n u;x] (n = 0, 1).
Now let F : EL → θ∗ forget(EInj(B,ω) ×K X) be any L-equivariant functor

and fix a representative (u;x) of F (1). By L-equivariance we then have F (`) =
`.(F (1)) = [u; θ(`).x] for any ` ∈ L. Lemma 1.2.68 therefore implies that there is a
unique κ(`) ∈ K such that F (`, 1) = [u.κ(`)−1, u;x] and

(4.2.3) x.κ(`) = θ(`).x;

the usual argument then shows that κ is a group homomorphism L→ K. Together
with (4.2.3) we see that κ satisfies the assumptions of Corollary 1.2.35, so that
we get a v ∈ Inj(B,ω) with `v = v.κ(`) and such that [v;x] is a θ-fixed point of
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EInj(A,ω) ×K X. To finish the proof, it suffices to show that the maps τ(`) :=
[u, v; θ(`).x] assemble into an L-equivariant natural isomorphism F[v;x]

∼= F .
For this we first observe that τ is obviously L-equivariant and a levelwise iso-

morphism, so it only remains to check naturality. As the edges (`, 1) generate the
morphisms of EL (in the groupoid sense), it suffices to prove compatibility with
respect to those, i.e. to check commutativity of the squares

[v;x] [u;x]

[`−1v;x] [u, θ(`).x]

[`−1v,v;x]

τ(1)=[u,v;x]

F (`,1)=[u.κ(`)−1,u;x]

τ(`)=[u,v;θ(`).x]

in EInj(B,ω) ×K X. But indeed, the top path through this diagram is given by
[u.κ(`)−1, v;x] whereas the lower one evaluates to

[u, v; θ(`).x︸ ︷︷ ︸
=x.κ(`)

][`−1v, v;x] = [u.κ(`)−1, v.κ(`)−1︸ ︷︷ ︸
=`−1v

;x][`−1v, v;x] = [u.κ(`)−1, v;x]

as desired. This completes the proof of the lemma. �

Proof of Proposition 4.2.9. By the same argument as in the simplicial
setting, P(EInj(A,ω) ×ϕ G) ∼=

∐
n≥0EInj(n × A,ω) ×ΣnoH Gn. As Σn o H acts

faithfully on n× A, the previous lemma implies that all summands are saturated.
The claim follows as both Fun(EM, –) and (–)θ preserve coproducts. �

Corollary 4.2.11. Let f : A → ω be an H-equivariant injection, and set
F := η[f ; 1] ∈ Fun(EM, forgetFϕ)ϕ. Then the composition

(4.2.4) Σ•+
(
I(A, –)×ϕ G

) Σ• ι̃◦F−−−−→ Σ•NFun(EM,Γ(µ∗Fϕ))[ω•]
ρ−→ K′G-gl(µ

∗Fϕ)

is a G-global weak equivalence. Moreover, such an f exists and the resulting map
is independent of the choice of f up to simplicial homotopy.

Proof. We have a commutative diagram

Σ•+
(
I(A, –)×ϕ G

)
Σ•N(Fϕ)[ω•] KG-gl(Fϕ)

Σ•+
(
I(A, –)×ϕ G

)
Σ•N

(
Fun(EM,Γ(µ∗Fϕ)(S0))

)
[ω•] K′G-gl(µ

∗Fϕ)

Σ•f̃

∼

ρ

∼

Σ• ι̃◦F ρ

where the vertical arrows on the right are induced by the G-global level weak
equivalence Nϝ(Fϕ) ' NFun(EM,Γ(µ∗Fϕ)) from the proof of Theorem 4.1.41; in
particular, the middle vertical arrow is induced by NFun(EM, ι) ◦ η. The claim
therefore follows from Theorem 4.2.8. �

Construction 4.2.12. Let C ∈ G-SymMonCat0 be arbitrary. Then we
write ρ′ for the composition

Σ•NFun(EM,C )[ω•]
Σ•NFun(EM,ι)[ω•]−−−−−−−−−−−−−→ Σ•NFun(EM,Γ(C ))(S0)[ω•]

ρ−→K′G-gl(C ).

Simply by naturality, (4.2.4) then agrees with

Σ•+
(
I(A, –)×ϕ G

) Σ•F̃−−−→ Σ•NFun(EM, µ∗Fϕ)[ω•]
ρ′−→ K′G-gl(µ

∗Fϕ).
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Corollary 4.2.11 is not yet the result we are after as the symmetric monoidal
G-category µ∗Fϕ is a rather unnatural and also somewhat unwieldy object. In the
remainder of this section, we therefore want to discuss two simpler but equivalent
symmetric monoidal G-categories:

Construction 4.2.13. We define a small category F̂ϕ as follows: an object of
F̂ϕ is a finite free right H-set A together with a right H-equivariant map f : A→ G;
here H acts on G from the right via ϕ, i.e. g.h := gϕ(h). To be entirely precise, we
again have to restrict to a suitable set U of such H-sets, and for technical reasons
that will become apparent soon, we take one that contains the sets n×H for n ∈ N.

A map (A, f) → (A′, f ′) is a right H-equivariant map λ : A → A′ such that
f = f ′λ; composition and identities are defined in the evident way. Put differently,

F̂ϕ is the full subcategory of the slice Set-H ↓ G of the category of right H-sets
over G, that is spanned by the objects whose source is finite free (and contained in

U ). In particular, F̂ϕ has finite coproducts and these are created in Set-H.

The group G acts on the objects of F̂ϕ from the left via postcomposition,

i.e. g.(A, f) = (A, (g.–) ◦ f), and this extends to a G-action on all of F̂ϕ by letting
g send a map λ : (A, f)→ (A′, f ′) to λ : (A, (g.–) ◦ f)→ (A′, (g.–) ◦ f ′).

Any choice of coproducts in Set-H (that preserves U ) makes F̂ϕ into a sym-
metric monoidal category; by construction, the G-action is through strict symmetric
monoidal functors, in particular yielding an object of G-SymMonCat0, and this
is independent of choices in the sense that for any two different choices the identity
functor admits a unique G-equivariant strong symmetric monoidal structure; this
is automatically strictly unital as in both cases the tensor unit is the unique initial
object. In particular, we get a symmetric monoidal G-structure on the maximal

subgroupoid Fϕ := core(F̂ϕ), which is independent of choices in the sense that
for any two different choices of coproducts in Set-H the identity of Fϕ admits a
canonical G-equivariant strictly unital strong symmetric monoidal structure.

Example 4.2.14. If G = 1, then forgetting the reference map to G defines an

equivalence between F̂ϕ and the category of finite free right H-sets, and this functor
admits a unique strictly unital strong symmetric monoidal structure. In particular,
we get a canonical strictly unital strong symmetric monoidal equivalence between
Fϕ and the category of finite free right H-sets and H-equivariant isomorphisms
(with symmetric monoidal structure via disjoint union).

In order to compare this to µ∗Fϕ, we will need the following more rigid version
of the above construction:

Construction 4.2.15. We write Fϕ for the coproduct
∐
n≥0G

n//(Σn o H)
of the action groupoids. Here the left action of Σn o H on G is as follows: Σn
acts naturally on Gn from the right via permutation of the factors, whereas H
acts on G from the right via ϕ. These assemble into a right Σn oH-action, which
we turn into a left action by passing to inverses, i.e. (σ;h1, . . . , hn).(g1, . . . , gn) =
(gσ−1(1)ϕ(h−1

σ−1(1)), . . . , gσ−1(n)ϕ(h−1
σ−1(n))).

Explicitly, this means that an object of Fϕ is an n-tuple (g1, . . . , gn) of elements
of G (n ≥ 0), and a map (g1, . . . , gn) → (g′1, . . . , g

′
n) is a (σ;h1, . . . , hn) ∈ Σn o H

with (g′1, . . . , g
′
n) = (σ;h1, . . . , hn).(g1, . . . , gn) while there are no maps between

tuples of different lengths.
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The group G acts on Fϕ from the left as follows: the action on objects is given
by g.(g1, . . . , gn) = (gg1, . . . , gg

′
n), and a morphism (σ;h1, . . . , hn) : (g1, . . . , gn) →

(g′1, . . . , g
′
n) is sent to the morphism (σ;h1, . . . , hn) : g.(g1, . . . , gn)→ g.(g′1, . . . , g

′
n).

We omit the easy verification that this is well-defined and functorial.
We make Fϕ into a permutative category as follows: the tensor product is

given on objects by (g1, . . . , gn) ⊗ (g′1, . . . , g
′
n′) = (g1, . . . , gn, g

′
1, . . . , g

′
n′), and on

morphisms by (σ;h1, . . . , hn) ⊗ (σ′;h′1, . . . , h
′
n′) = (σ × σ′, h1, . . . , hn, h

′
1, . . . , h

′
n′),

where σ × σ′ ∈ Σn+n′ is the usual block sum. We omit the easy verification that
this is well-defined, functorial, strictly associative, and strictly unital with unit the
empty tuple ε. It is moreover clear that the tensor product is strictly G-equivariant.
Finally, we define the symmetry isomorphism as

τ := (χ; 1, . . . , 1) : (g1, . . . , gn)⊗ (g′1, . . . , g
′
n′)→ (g′1, . . . , g

′
n′)⊗ (g1, . . . , gn)

where χ ∈ Σn+n′ is the shuffle moving the first n entries to the end. We omit the
easy verification that τ satisfies the coherence conditions required to make Fϕ into
a permutative category (which will also follow automatically from the argument
given in Lemma 4.2.17 below). It is then clear, that τ strictly commutes with the
G-action, i.e. G acts by strict symmetric monoidal functors, so that Fϕ becomes an
object of G-PermCat.

Construction 4.2.16. We now construct a functor i : Fϕ → Fϕ on objects
as follows: i(g1, . . . , gn) = (n × H, g̃), where g̃ : n × H → G is the unique right
H-equivariant map with g̃(k, 1) = gk. Moreover, if (σ;h1, . . . , hn) is a morphism
(g1, . . . , gn)→ (g′1, . . . , g

′
n), then i(σ;h1, . . . , hn) is the isomorphism n×H → n×H

given by acting with (σ;h1, . . . , hn) from the left, i.e. sending (k, h) to (σ(k), hkh).

Lemma 4.2.17. The above is well-defined, G-equivariant, and an equivalence
of categories. Moreover, i admits a preferred G-equivariant strictly unital strong
symmetric monoidal structure, making it into a morphism in G-SymMonCat0.

Proof. Let us first show that i is well-defined and fully faithful. For this we
recall that we have a bijection between Σn o H and the right-H-equivariant au-
tomorphisms of n × H given by sending f ∈ Σn o H to the map f.–: n × H →
n × H (for the usual left (Σn o H)-action). It therefore suffices to show that
(g′1, . . . , g

′
n) = (σ;h1, . . . , hn).(g1, . . . , gn) if and only if g̃′ ◦ ((σ;h1, . . . , hn).–) = g̃.

For ‘⇐,’ plugging in (k, 1) shows g′σ(k)ϕ(hk) = g̃′(σ(k), hk) = gk, i.e. (g1, . . . , gn) =

(g′1, . . . , g
′
n).(σ;h1, . . . , hn) = (σ;h1, . . . , hn)−1.(g′1, . . . , g

′
n), and the claim follows

by acting on both sides with (σ;h1, . . . , hn). Conversely, reading the same calcu-
lation backwards shows that g̃′ ◦ ((σ;h1, . . . , hn).–) and g̃ agree on the elements
(k, 1) ∈ n × H if (g′1, . . . , g

′
n) = (σ;h1, . . . , hn).(g1, . . . , gn); the claim follows by

right H-equivariance of both sides.
Next, let us show that i is essentially surjective: if (A, f) is any object of Fϕ,

then we can choose an isomorphism λ : n×H ∼= A for a suitable n ≥ 0; clearly, λ
defines an isomorphism (n ×H, fλ) → (A, f). On the other hand, fλ is uniquely
described by its values at (k, 1) for k = 1, . . . , n; thus, if we set gk := fλ(k, 1), then
(n × H, fλ) = i(g1, . . . , gn). This completes the proof that i is an equivalence of
categories.

It is clear that i is strictly G-equivariant. To prove that we can make it into
a morphism in G-SymMonCat0 in a preferred way, it suffices to consider one
specific choice of coproducts on Set-H. We therefore agree that for all m,n ≥ 0 the
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coproduct (m×H)q(n×H) should be taken to be (m+n)×H with the inclusions
induced by m ↪→ m + n and n → m + n, k 7→ k + m. With this choices, one
easily checks that the full symmetric monoidal G-subcategory F ′ϕ ⊂ Fϕ spanned
by the objects of the form (n×H, f) is actually a permutative G-category, and that
i defines a strict symmetric monoidal functor Fϕ → F ′ϕ ⊂ Fϕ. �

Construction 4.2.18. Choose for each n ≥ 0 an injection f (n) : n × A → ω.
We define a functor j : Fϕ → µ∗Fϕ as follows: an object g• := (g1, . . . , gn) is sent to

j(g•) = [f (n); g•] (where we confuse Fϕ with
∐
n≥0(EInj(n×A,ω)×Gn)/(Σn oH)

as before); moreover, if α ∈ Σn o H defines a morphism g• → g′•, then j(α) =
[f (n).α, f (n); g•]. Finally, we define for all g• = (g1, . . . , gn), g′• = (g′1, . . . , g

′
n′)

∇g•,g′• := [f (n+n′), µ(f (n), f (n′)); g• ⊗ g′•] : j(g•)⊗ j(g′•)→ j(g• ⊗ g′•).

Proposition 4.2.19. This is a well-defined morphism in G-SymMonCat0

and an underlying equivalence of categories.

Proof. Let α ∈ Σn o H define a map g• → g′•; then Lemma 1.2.68 implies
that j(α) is indeed a map j(g•) → j(g′•), and that j actually defines a bijection
HomFϕ(g•, g

′
•) → HomFϕ(j(g•), j(g

′
•)). It is then easy to check that j preserves

compositions and identities, making it into a fully faithful functor. To see that it
is an equivalence of categories, it is therefore enough to show that it is essentially
surjective. But indeed, if X := [f ′; g•] is any object of Fϕ, then [f ′, f (n); g•] defines
an isomorphism j(g•) ∼= X.

It is clear that j is strictly G-equivariant and that it strictly preserves the tensor
unit, so it only remains to show that ∇ is a strictly G-equivariant natural transfor-
mation compatible with associativity, unitalitiy, and symmetry isomorphisms.

Equivariance of∇ is again obvious; moreover, one easily checks that it is natural
and compatible with the unit and associativity isomorphisms on both sides (as in
each of these cases the required equalities already hold on the level of the chosen
representatives), so it only remains to show that∇ is compatible with the symmetry
isomorphisms.

By definition, the symmetry isomorphism j(g•) ⊗ j(g′•) → j(g′•) ⊗ j(g•) is

given by [(µ ◦ t)(f (n), f (n′)), µ(f (n), f (n′)); g• ⊗ g′•]. If we write χ ∈ Σn+n′ for

the permutation shuffling the first n entries to the end, then (µ ◦ t)(f (n), f (n′)) =

µ(f (n′), f (n)) ◦ (χ × id) = µ(f (n′), f (n)).(χ; 1, . . . , 1), hence the symmetry isomor-

phism agrees with [µ(f (n′), f (n)).(χ; 1, . . . , 1), µ(f (n), f (n′)); g• ⊗ g′•]. Moreover,

∇g′•,g• = [f (n′+n), µ(f (n′), f (n)); g′• ⊗ g•]

= [f (n′+n), µ(f (n′), f (n)); (g• ⊗ g′•).(χ; 1, . . . , 1)−1]

= [f (n′+n).(χ; 1, . . . , 1), µ(f (n′), f (n)).(χ; 1, . . . , 1); g• ⊗ g′•],

hence ∇g′•,g• ◦ τ = [f (n′+n).(χ; 1, . . . , 1), µ(f (n), f (n′)); g• ⊗ g′•].
On the other hand, straight from the definitions

j(τ)◦∇g•,g′• = [f (n+n′).(χ; 1, . . . , 1), f (n+n′); g•⊗g′•][f (n+n′), µ(f (n), f (n′)); g•⊗g′•]

= [f (n+n′).(χ; 1, . . . , 1), µ(f (n), f (n′)); g• ⊗ g′•],

finishing the proof that ∇ makes j into a morphism in G-SymMonCat0. �
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Remark 4.2.20. While we will not need this, it is in fact not hard to show
that j is independent of the choices of the injections f (n) up to canonical isomor-
phism; more precisely, for any other such choice f̃ (n), the maps [f (n), f̃ (n), g•] for
(g1, . . . , gn) ∈ Fϕ assemble into a G-equivariant symmetric monoidal isomorphism.

Now we can finally prove:

Theorem 4.2.21. (1) Let F ∈ Fun(EM,Fϕ)ϕ such that

F (1.h2, 1.h1) =
(
h2h

−1
1 : (ϕ(h−1

1 ))→ (ϕ(h−1
2 ))

)
for all h1, h2 ∈ H (where H acts on M from the right via its action on ω
as before). Then

(4.2.5) Σ•+
(
I(A, –)×ϕ G

) Σ•F̃−−−→ Σ•N
(
Fun(EM,Fϕ)

)
[ω•]

ρ′−→ K′G-gl(Fϕ)

is a G-global weak equivalence.
(2) Let F ∈ Fun(EM,Fϕ)ϕ such that F (1.h2, 1.h1) is given by

H H

G
ϕ(h−1

1 ·–)

h2h
−1
1 ·–

ϕ(h−1
2 ·–)

for all h1, h2 ∈ H. Then the composition

Σ•+
(
I(A, –)×ϕ G

) Σ•F̃−−−→ Σ•N
(
Fun(EM,Fϕ)

)
[ω•]

ρ′−→ K′G-gl(Fϕ)

is a G-global weak equivalence.
Moreover, in each of these cases such a functor F exists, and for any two such

choices the resulting maps are canonically simplicially homotopic.

Proof. Let us prove the first statement. As H acts faithfully on ω, its right
action on M is free; in particular, restricting along the map induced by h 7→ 1.h
again induces an equivalence Fun(EM,C )ϕ → Fun(EH,C )ϕ for any G-category
C . As the prescribed restriction of F is obviously ϕ-fixed, we conclude that such
an F exists and that any two choices are uniquely isomorphic relative EH, yielding
a canonical simplicial homotopy between the induced maps.

To prove that (4.2.5) is a G-global weak equivalence, we now pick any such
F , and we choose an injection µ : 2 × ω → ω as well as for each n ≥ 0 an in-
jection f (n) : n × A → ω such that f (1) is H-equivariant, yielding an underlying
equivalence j : Fϕ → µ∗Fϕ in G-SymMonCat0. If we write f : A → ω for the

composition of f (1) with the canonical bijection A ∼= 1 × A, then one immedi-
ately checks (using H-equivariance of f) that j ◦ F agrees with η[f ; 1] on EH
for η : Fϕ → Fun(EM, forgetFϕ) as before. In particular, these are equivariantly
isomorphic, yielding a simplicial homotopy filling the left hand square in

Σ•+
(
I(A, –)×ϕ G

)
Σ•N

(
Fun(EM,Fϕ)

)
[ω•] K′G-gl(Fϕ)

Σ•+
(
I(A, –)×ϕ G

)
Σ•N

(
Fun(EM, µ∗Fϕ)

)
[ω•] K′G-gl(µ

∗Fϕ)

Σ•F̃

'

ρ′

'

Σ•η̃[f ;1] ρ′

where the vertical arrows are induced by j. By the previous proposition, the right
hand vertical map is a G-global weak equivalence, and so is the lower horizontal
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composite by Corollary 4.2.11. Thus, also (4.2.5) is a G-global weak equivalence
by 2-out-of-3 as desired.

The second statement follows similarly from the first statement together with
Lemma 4.2.17. �

4.3. G-global algebraic K-theory as a quasi-localization

In this final section, we will will use almost all of the theory developed above
to prove, as the main results of this thesis, various G-equivariant, global, and G-
global versions of Thomason’s classical equivalence between symmetric monoidal
categories and connective stable homotopy types.

4.3.1. G-global homotopy theory of G-parsummable categories. We
begin by establishing a version of Thomason’s result for the G-global algebraic K-
theory of G-parsummable categories. By the results of the previous chapters, we al-
ready have a precise understanding of the relation between G-parsummable simpli-
cial sets and G-global spectra, so it remains to relate the former to G-parsummable
categories:

Theorem 4.3.1. The nerve N: G-ParSumCat→ G-ParSumSSet descends
to an equivalence of the quasi-localizations at the G-global weak equivalences.

The proof will occupy the rest of this subsection. Before we come to that,
however, let us already use the theorem to deduce several of the results announced
in the introduction. We begin with the parsummable case of Theorem B:

Theorem 4.3.2. The G-global algebraic K-theory functor KG-gl defines a quasi-

localization G-ParSumCat→ (G-Spectra≥0
G-global)

∞.

For G = 1, this in particular shows that global algebraic K-theory defines a
quasi-localization Kgl : ParSumCat → (Spectra≥0

global)
∞, proving a conjecture of

Schwede [Sch19b, p. 7] and one half of Theorem C from the introduction.

Proof of Theorem 4.3.2. At this point, this only amounts to collecting re-
sults we proved above. We first recall from the proof of Proposition 4.1.19 that
KG-gl agrees up to isomorphism with the composition

G-ParSumCat
N−→ G-ParSumSSet

ϝ−→ Γ-EM-G-SSetτ∗ ↪→ Γ-EM-G-SSet∗

(–)[ω•]−−−−→ Γ-G-I-SSet∗
E⊗−−→ G-Spectra≥0;

moreover, if we equip these categories with the G-global weak equivalences or G-
global level weak equivalences, then all of the above functors are homotopical.

By the previous theorem, the first of these induces an equivalence on quasi-
localizations; moreover, we have seen in Theorem 2.3.1 that ϝ induces an equiva-

lence G-ParSumSSet∞ → (Γ-EM-G-SSetτ,special
∗ )∞, while the next two func-

tors induce equivalences between the respective quasi-categories of special G-global
Γ-spaces by Corollary 2.2.50. Finally, Corollary 3.4.33 shows that E⊗ induces a
Bousfield localization (Γ-G-I-SSetspecial

∗ )∞ → (G-Spectra≥0
G-global)

∞. �

In fact, the above argument also shows:
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Theorem 4.3.3. The functor G-ParSumCat → Γ-EM-G-SSet∗ from the
definition of KG-gl descends to an equivalence between the quasi-categories of G-
parsummable categories (with respect to the G-global weak equivalences) and the
special G-global Γ-spaces (with respect to the G-global level weak equivalences). �

We can view this as a ‘non-group-completed’ version of the G-global Thoma-
son Theorem in the spirit of Mandell’s non-equivariant comparison between small
permutative categories and special Γ-spaces [Man10, Theorem 1.4].

Remark 4.3.4. In view of the other comparisons established in Chapter 2,
this also yields equivalences between G-parsummable categories on the one hand
and G-ultra-commutative monoids or any of the other flavours of special G-global
Γ-spaces discussed above on the other hand.

4.3.1.1. The tame EM-category associated to an EM-simplicial set. In order
to prove Theorem 4.3.1 we will construct an explicit homotopy inverse. For this it
will be instructive to first recall the usual unstable non-equivariant situation, where
a possible homotopy inverse of the nerve (going back to Quillen) is the following:

Definition 4.3.5. Let X be a simplicial set. Its category of simplices ∆ ↓ X
is the small category with objects the simplicial maps f : ∆n → X (n ≥ 0) and
morphisms α : f → g those simplicial maps α satisfying f = g ◦ α.

If S ⊂ [m], let us write ∆S for the unique (|S| − 1)-simplex of ∆m with set of
vertices S.

Construction 4.3.6. Let X be simplicial set. A general k-simplex α• of
N(∆ ↓ X) then corresponds to a diagram

∆n0 ∆n1 · · · ∆nk .

X

α1

f0

α2

f1

αk

fk

There is a unique k-simplex σα• of ∆nk with `-th vertex (0 ≤ ` ≤ k) given by
αk · · ·α`+1(∆{n`}) as ∆nk is the nerve of a poset and since ∆{n`+1} ≥ α`+1(∆{n`})
in ∆n`+1 for all ` = 0, . . . , k − 1.

We now define the ‘last vertex map’ ε : N(∆ ↓ X)→ X via ε(α•) := fk(σα•).

One can show that ε is indeed a simplicial map, and that it is natural with
respect to the functoriality of ∆ ↓ – via postcomposition. If X is the nerve of a cat-
egory, the above construction appears in [Ill72, VI.3] (with attribution to Quillen),
while the above general version seems to originate with Thomason [Tho95, Propo-
sition 4.2].

Proposition 4.3.7. The ‘last vertex map’ ε : N(∆ ↓ X)→ X is a weak homo-
topy equivalence for any simplicial set X.

Proof. Thomason proves the topological analogue of this as [Tho95, Propo-
sition 4.2]; unfortunately, this does not immediately imply the above simplicial
version because it is not clear a priori that N(∆ ↓ –) preserves weak homotopy
equivalences.

Instead, we will use that ε is a quasi-localization, see e.g. [Cis19, Proposi-
tion 7.3.15]; as any quasi-localization is in particular a weak homotopy equivalence,
this immediately implies the proposition. �
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One crucial step [Tho95, Proposition 4.5] in Thomason’s comparison between
small symmetric monoidal categories and connective spectra is a variant of the
above construction yielding a functor from E∞-algebras in spaces to small lax
symmetric monoidal categories. Similarly, our proof of Theorem 4.3.1 will rely on
a parsummable refinement C• of this, which we will first construct as a functor to
EM-Catτ :

Construction 4.3.8. Let X be an EM-simplicial set. We define a small
category CX as follows: an object of CX is a quadruple (A,S,m•, f) consisting
of two finite subsets A,S ⊂ ω, a family (ma)a∈A of non-negative integers ma ≥
0, and an EM-equivariant map f : EInj(S, ω) ×

∏
a∈A ∆ma → X, where EM

acts on EInj(S, ω) as usual. A morphism (A,S,m•, f) → (B, T, n•, g) is an EM-
equivariant map α : EInj(S, ω) ×

∏
a∈A ∆ma → EInj(T, ω) ×

∏
b∈B ∆nb such that

gα = f . Composition is inherited from the composition inEM-SSet; in particular,
the identity of (A,S,m•, f) is given by the identity of EInj(S, ω)×

∏
a∈A ∆ma .

We now define for each u ∈ M and each object (A,S,m•, f) of CX the
object u.(A,S,m•, f) as the quadruple (u(A), u(S),mu−1(•), f ◦ (u∗ × u∗)) where
(mu−1(•))b = mu−1(b) for each b ∈ u(A), u∗ : EInj(u(S), ω)→ EInj(S, ω) is restric-
tion along u : S → u(S), and u∗ :

∏
b∈u(A) ∆mu−1(b) →

∏
a∈A ∆ma is the unique

map with pra ◦ u∗ = pru(a).

Finally, we define u
(A,S,m•,f)
◦ : (A,S,m•, f)→ u.(A,S,m•, f) as

(u∗ × u∗)−1 : EInj(S, ω)×
∏
a∈A

∆ma → EInj(u(S), ω)×
∏

b∈u(A)

∆mu−1(b) .

Warning 4.3.9. We have to be slightly careful as two different morphisms in
CX might be given by the same morphism of EM-simplicial sets. As a consequence,
whenever we want to prove two morphisms in CX to be equal, we first have to show
that their sources and targets agree.

Lemma 4.3.10. The above defines an EM-action on CX .

Proof. As u∗ × u∗ is EM-equivariant, (u(A), u(S),mu−1(•), f ◦ (u∗ × u∗))
is again an object of CX . Moreover, u∗ × u∗ is clearly an isomorphism, so that
(u∗×u∗)−1 is well-defined and again EM-equivariant; as it tautologically commutes

with the reference maps to X, we see that u
(A,S,m•,f)
◦ is indeed an isomorphism

(A,S,m•, f)→ u.(A,S,m•, f).
To finish the proof it suffices that the above defines an M-action on Ob(CX)

and that

(4.3.1) u
v.(A,S,m•,f)
◦ v

(A,S,m•,f)
◦ = (uv)

(A,S,m•,f)
◦

for all u, v ∈M and (A,S,m•, f) ∈ CX .
It is clear from the definition that 1.(A,S,m•, f) = (A,S,m•, f). Moreover,

one easily checks that the diagram

EInj((uv)(S), ω)×
∏

c∈(uv)(A)

∆m(uv)−1(c) EInj(S, ω)×
∏
a∈A

∆ma

EInj(u(v(S)), ω)×
∏

c∈u(v(A))

∆(mv−1(•))u−1(c) EInj(v(S), ω)×
∏

b∈v(A)

∆mv−1(b)

(uv)∗×(uv)∗

u∗×u∗

v∗×v∗
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commutes, which immediately implies the associativity of theM-action. Moreover,
it shows that the identity (4.3.1) holds as morphisms in EM-SSet; as both sides
are morphisms (A,S,m•, f) → (uv).(A,S,m•, f) = u.(v.(A,S,m•, f)), they then
also agree as morphisms in CX , which completes the proof of the lemma. �

Lemma 4.3.11. The EM-category CX is tame. Moreover, supp(A,S,m•, f) =
A ∪ S for any object (A,S,m•, f) ∈ CX .

Proof. Let us first show that (A,S,m•, f) is supported on A ∪ S, which
will in particular imply tameness of CX . If u fixes A and S pointwise, then
obviously u(A) = A, u(S) = S and mu−1(•) = m•. Moreover, it is clear from
the definition that both u∗ : EInj(u(S), ω) → EInj(S, ω) and u∗ :

∏
a∈A ∆ma →∏

b∈u(A) ∆mu−1(b) are the respective identities, so f ◦ (u∗ × u∗) = f , and hence

altogether u.(A,S,m•, f) = (A,S,m•, f) as desired.
Conversely, let (A,S,m•, f) be supported on some finite set B; we have to show

that A ⊂ B and S ⊂ B. We will only prove the first statement (the argument for
the second one being analogous), for which we argue by contradiction: if A 6⊂ B,
then we choose any a ∈ A r B and an injection u fixing B pointwise such that
a /∈ imu. But then a /∈ u(A), hence u(A) 6= A and u.(A,S,m•, f) 6= (A,S,m•, f)
contradicting the assumption that (A,S,m•, f) be supported on B. �

Construction 4.3.12. Let θ : X → Y be an EM-equivariant map. We define
Cθ : CX → CY as follows: an object (A,S,m•, f) is sent to (A,S,m•, θ ◦ f) and
a morphism (A,S,m•, f) → (B, T, n•, g) given by α : EInj(S, ω) ×

∏
a∈A ∆ma →

EInj(T, ω)×
∏
b∈B ∆nb is sent to the morphism (A,S,m•, θ ◦ f)→ (B, T, n•, θ ◦ g)

given by the same α.

Lemma 4.3.13. In the above situation, Cθ is an EM-equivariant functor. This
defines a functor C• : EM-SSet→ EM-Catτ .

Proof. It is clear that Cθ is a well-defined functor and that it commutes
with the M-action on objects. To show that it is EM-equivariant, it is then

enough to show that Cθ(u
(A,S,m•,f)
◦ ) = u

(A,S,m•,θ◦f)
◦ . As we already know that

both sides are maps between the same objects, it suffices to prove this as maps in
EM-SSet, where it is indeed immediate from the definition that both sides are
given by (u∗×u∗)−1 : EInj(S, ω)×

∏
a∈A ∆ma → EInj(u(S), ω)×

∏
b∈u(A) ∆mu−1(b) .

Finally, it is obvious from the definition that Cid = id, and that CζCθ = Cζθ

for any further EM-equivariant map ζ : Y → Z, which then completes the proof of
the lemma. �

In order to construct the EM-equivariant refinement of the ‘last vertex map,’
we need the following easy structural insight on the EM-simplicial sets appearing
in the definition of C•:

Remark 4.3.14. If A is any set and (ma)a∈A is an A-indexed family of non-
negative integers, then

∏
a∈A ∆ma is isomorphic to the nerve of the poset

∏
a∈A[ma].

The latter has a unique terminal object (i.e. maximum element) given by (ma)a∈A,
and we write ∗ for the corresponding vertex of

∏
a∈A ∆ma , i.e. ∗ =

∏
a∈A ∆{ma}.

If S is any further set, then EInj(S, ω) is by construction the nerve of a category
in which there is precisely one morphism u→ v for any two objects u, v. It follows,
that there exists for any u ∈ Inj(S, ω) and any vertex x of EInj(S, ω)×

∏
a∈A ∆ma

a unique edge x→ (u, ∗).
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Finally, again using that in EInj(S, ω) and [ma] there is at most one morphism
x→ y for any two objects x, y, we see that any n-simplex of EInj(S, ω)×

∏
a∈A ∆ma

is completely determined by its (n + 1)-tuple of vertices. Conversely, such an
(n + 1)-tuple (x0, . . . , xn) comes from an n-simplex if and only if there exists for
each 1 ≤ i ≤ n a (necessarily unique) edge xi−1 → xi.

Construction 4.3.15. Let X be an EM-simplicial set; we define ε : N(CX)→
X as follows: if (A0, S0,m

(0)
• , f0)

α1−→ (A1, S1,m
(1)
• , f1)→ · · · αk−−→ (Ak, Sk,m

(k)
• , fk)

is a k-simplex of N(CX), then we write σα• for the unique k-simplex of EInj(Sk, ω)×∏
a∈Ak ∆m(k)

a whose `-th vertex (` = 0, . . . , k) is given by αk · · ·α`+1(ιS` , ∗), where

ιS` ∈ Inj(S`, ω) denotes the inclusion. This is indeed well-defined as there exists an
edge α`(ιS`−1

, ∗)→ (ιS` , ∗) in EInj(S`, ω)×∆n` for all 1 ≤ ` ≤ n.
We then set ε(α•) := fk(σα•) ∈ Xk.

Proposition 4.3.16. The above defines a natural transformation ε : N ◦C• ⇒
id of endofunctors of EM-SSet.

Proof. Let us first show that εX is indeed a simplicial map; this is completely
analogous to the argument for the usual last vertex map, but we nevertheless include

it for completeness. For this we let (A0, S0,m
(0)
• , f0)

α1−→ · · · αk−−→ (Ak, Sk,m
(k)
• , fk)

be any k-simplex of NCX , and we let κ : [`] → [k] be any map in ∆. Then

κ∗(σα•) is the unique `-simplex of EInj(Sk, ω) ×
∏
a∈Ak ∆m(k)

a with i-th vertex

αk · · ·ακ(i)+1(ιSκ(i)
, ∗) for i = 0, . . . , `. On the other hand, σκ∗α• is by definition

the unique `-simplex of EInj(Sκ(`), ω)×
∏
a∈Aκ(`)

∆m(κ(`))
a with i-th vertex given by

κ∗(α•)` · · ·κ∗(α•)i+1(ιSκ(i)
, ∗) = ακ(`) · · ·ακ(i)+1(ιSκ(i)

, ∗)
for each i = 0, . . . , `. Thus, αk · · ·ακ(`)+1(σκ∗(α•)) = κ∗σα• and hence

ε(κ∗(α•)) = fκ(`)(σκ∗(α•)) = fkαk · · ·ακ(`)+1(σκ∗(α•))

= fk(κ∗σα•) = κ∗fk(σα•) = κ∗ε(α•),

i.e. ε is indeed a simplicial map.
Next, we have to show that ε is EM-equivariant, for which we let (u0, . . . , uk) ∈

Mk+1 arbitrary. Then we have a commutative diagram

(A0, S0,m
(0)
• , f0) (A1, S1,m

(1)
• , f1) · · · (Ak, Sk,m

(k)
• , fk)

u0.(A0, S0,m
(0)
• , f0) u1.(A1, S1,m

(1)
• , f1) · · · uk.(Ak, Sk,m

(k)
• , fk)

α1

(u0)◦ (u1)◦

α2 αk

(uk)◦

in CX , where the lower row is given by (u0, . . . , uk).α•. Thus, σ(u0,...,uk).α• is the
unique k-simplex with i-th vertex given by

(4.3.2) (uk)◦αk · · ·αi+1(ui)
−1
◦ (ιu(Ai), ∗).

By definition, (ui)
−1
◦ (ιu(Ai), ∗) = (ui|A, ∗) = ui.(ιA, ∗); EM-equivariance of αk, . . . ,

αi+1 therefore implies that (4.3.2) equals (uk)◦(ui.(αk · · ·αi+1(ιAi , ∗))). Comparing
vertices, we conclude that σ(u0,...,uk).α• = (u∗k × u∗k)−1((u0, . . . , uk).σα•), hence

ε((u0, . . . , uk).α•) = fk ◦ (u∗k × u∗k)(σ(u0,...,uk).α•) = fk((u0, . . . , uk).σα•)

= (u0, . . . , uk).fk(σα•) = (u0, . . . , uk).ε(α•),

i.e. ε is EM-equivariant.
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Finally, let us show that ε is natural. If θ : X → Y is any EM-equivariant map,

then N(Cθ)(α•) = (A0, S0,m
(0)
• , θ ◦ f0)

α1−→ · · · αk−−→ (Ak, Sk,m
(k), θ ◦ fk). Thus,

σN(Cθ)(α•) = σα• and ε(N(Cθ)(α•)) = θfk(σN(Cθ)(α•)) = θfk(σα•) = θ(ε(α•)).
This completes the proof of the proposition. �

Remark 4.3.17. Let C be a small EM-category. Then applying Construc-
tion 4.3.15 to the EM-simplicial set N(C) yields an EM-equivariant map N(CNC)→
N(C). As the nerve is fully faithful, this is induced by a unique functor ε̃ : CNC → C,
which is then automatically EM-equivariant again. This way, we get a (unique)
natural transformation ε̃ : C• ◦N⇒ id of endofunctors of EM-Cat with N(ε̃C) =
εNC .

Explicitly, ε̃C is the functor sending an object (A,S,m•, f) to the object cor-
responding to the image of (ιS , ∗) under f , and a morphism α : (A,S,m•, f) →
(B, T, n•, g) to the morphism corresponding to the image under g of the unique
edge α(ιS , ∗)→ (ιT , ∗) of EInj(T, ω)×

∏
b∈B ∆nb .

So far we have only considered C• as a functor EM-SSet → EM-Catτ .
However, we can formally lift this to EM-G-SSet → EM-G-Catτ by pulling
through the G-action via functoriality. Explicitly, if X is an EM-G-simplicial set,
then g ∈ G acts on (A,S,m•, f) via g.(A,S,m•, f) = (A,S,m•, (g.–) ◦ f), and if
α : (A,S,m•, f)→ (A′, S′,m′•, f

′), then g.α is the same morphism of EM-simplicial
sets, but this time considered as a map (A,S,m•, (g.–)◦f)→ (A′, S′,m′•, (g.–)◦f ′).
It follows formally that ε and ε̃ are G-equivariant, and that they define natural
transformations of endofunctors of EM-G-SSet and EM-G-Catτ , respectively.

4.3.1.2. An unstable comparison. Our next goal is to prove the following un-
stable predecessor to Theorem 4.3.1:

Theorem 4.3.18. The nerve and the functor C• from Lemma 4.3.13 restrict
to mutually inverse homotopy equivalences

C• : EM-G-SSetτ � EM-G-Catτ : N

with respect to the G-global weak equivalences on both sides. More precisely, the
natural transformations ε from Construction 4.3.15 and ε̃ from Remark 4.3.17 re-
strict to natural levelwise G-global weak equivalences between the composites N◦C•
and C• ◦N and the respective identities.

The proof will be given below after some preparations.

Remark 4.3.19. Let H ⊂ M be any subgroup and let ϕ : H → G be a group
homomorphism. We will now make the ϕ-fixed points of CX explicit: if (A,S,m•, f)
is any object, and h ∈ H, then

(h, ϕ(h)).(A,S,m•, f) = (h(A), h(S),mh−1(•), (ϕ(h).–) ◦ f ◦ (h∗ × h∗)).
In particular, the first three components are fixed if and only if A,S ⊂ ω are H-
subsets and m• is constant on H-orbits, i.e. mh.a = ma for all a ∈ A, h ∈ H. In this
case, we have an H-action on EInj(S, ω)×

∏
a∈A ∆ma given by h.– = (h∗ × h∗)−1,

i.e. H acts by the diagonal of the H-action on S and the ‘shuffling’ action on∏
a∈A ∆ma ; we call this the preaction as it is essentially given by precomposition.

The condition that (ϕ(h).–) ◦ f ◦ (h∗ × h∗) = f for all h ∈ H then precisely means
that f is an H-equivariant map

(4.3.3) EInj(S, ω)×
∏
a∈A

∆ma → ϕ∗X
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with respect to the above H-action on the source. In analogy with the terminology
for the action on the source, we will also refer to the H-action on the target as
preaction.

The EM-action on EInj(S, ω)×
∏
a∈A ∆ma commutes with the preaction, and

in particular restricting it to H gives another H-action commuting with the preac-
tion, and that we denote by ‘∗’ instead of the usual ‘.’ in order to avoid confusion.
We will refer to this action as the postaction as it is given by postcomposition.
The pre- and postaction together make EInj(S, ω)×

∏
a∈A ∆ma into an (H ×H)-

simplicial set. Similarly the EM-action on X gives rise to another H-action (again
denoted by ∗ and again called the postaction) commuting with the one given by
restring the G-action along ϕ, making it into another (H ×H)-simplicial set. As f
is always EM-equivariant, the above condition that (4.3.3) be H-equivariant with
respect to the preactions is then equivalent to f being (H × H)-equivariant and
equivalent to f being ∆-equivariant, where ∆ denotes the diagonal subgroup of
H ×H.

Now let α : (A,S,m•, f) → (A′, S′,m′•, f
′) be a map of ϕ-fixed objects. Then

(h, ϕ(h)).α is again a map (A,S,m•, f) → (A′, S′,m′•, f
′) for all h ∈ H, so α =

(h, ϕ(h)).α as morphisms of CX if and only if both sides agree in EM-SSet. But
acting with ϕ(h) does not affect α as a morphism of EM-SSet, and the action of
h is given by conjugating with (h∗×h∗). Thus, α is a ϕ-fixed point if and only if it
is H-equivariant with respect to the preactions constructed above. As before this is
equivalent to α being (H×H)-equivariant and equivalent to α being ∆-equivariant.

The following technical lemma provides the necessary equivariant information
about the above objects:

Lemma 4.3.20. Let S ⊂ ω be finite, let Y ∈ SSet be isomorphic to the nerve
of a poset P with a maximum element, and let ∗ denote the corresponding vertex
of Y . Write X := EInj(S, ω)× Y and let H be any group.

(1) Any H-action on X restricts to an H-action on EInj(S, ω)× {∗}.
(2) If the H-action on X is through EM-equivariant maps, then its restriction

to EInj(S, ω)× {∗} is induced by a unique H-action on S.
(3) Assume again that H acts on X through EM-equivariant maps, so that X

is an (EM×H)-simplicial set, but assume moreover that H is a subgroup
of M. Let ∆ be the diagonal subgroup of M×H, let T be any H-subset
of ω, and consider EInj(S, T )× Y with the restriction of the ∆-action on
EInj(S, ω)× Y .

Then
(
EInj(S, T )×Y

)∆
is contractible if there exists an H-equivariant

injection S → T with respect to the H-action on S from (2).

Proof. For the first statement we observe that X is canonically identified
with the nerve of C := EInj(S, ω) × P , and as N is fully faithful, it suffices to
prove the analogous statement for C. For this it is then enough to observe that any
isomorphism of categories preserves the full subcategory spanned by the terminal
objects, and that this is precisely given by EInj(S, ω)× {∗} in our case.

For the second statement we observe that evaluation at ιS provides a bijec-
tion HomEM(EInj(S, ω), EInj(S, ω)) → (EInj(S, ω)[S])0 = Inj(S, ω)[S] by Theo-
rem 1.3.17. On the other hand, we have a map

(4.3.4) ΣS → HomEM(EInj(S, ω), EInj(S, ω))
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sending σ to the map given by precomposition with σ−1. The composition ΣS →
Inj(S, ω)[S] is then given by σ 7→ ιSσ

−1, which is obviously bijective. We conclude
that also (4.3.4) is bijective. In particular, there exists for each h ∈ H a unique
σ(h) such that h.–: EInj(S, ω)→ EInj(S, ω) agrees with –◦σ(h)−1. It only remains
to show that this defines an action on S, i.e. that σ is a group homomorphism, for
which it is enough to observe that (4.3.4) is a monoid homomorphism.

For the final statement, we again switch to the categorical perspective. As the
nerve is continuous, it then suffices to show that C∆ is contractible, for which it
is enough that it has a terminal object. For this we observe that there is at most
one map x→ y for any x, y ∈ C = EInj(S, ω)× P . Thus, a morphism in C is fixed
by ∆ if and only if its two endpoints are, i.e. C∆ is a full subcategory of C. It is
therefore enough to show that one of the terminal objects of C is fixed by ∆. But by
the previous steps, the ∆-action restricts to a ∆-action on EInj(S, T )×{∗}, where
(h, h) for h ∈ H acts by (f, ∗) 7→ (h ◦ f ◦ (h−1.–), ∗). Obviously, a terminal object
(f, ∗) is fixed under this action if and only if the injection f is H-equivariant, and
such an f exists by assumption. �

Proof of Theorem 4.3.18. We will show that εX is a G-global weak equiva-
lence for each tame EM-G-simplicial set X. If C is any tame EM-G-category, then
applying this to N(C) will also show that N(ε̃C) = εNC is a G-global weak equiva-
lence, and as the nerve creates the G-global weak equivalences in EM-G-Catτ ,
this will then imply that also ε̃ is a levelwise G-global weak equivalence. Moreover,
we can conclude from this by 2-out-of-3 that N ◦C• is homotopical, and hence so
is C•, which then altogether implies the theorem.

Therefore let us fix a tame EM-G-simplicial set X, a universal subgroup H ⊂
M, and a homomorphism ϕ : H → G. We will show that the restriction of ε to
N(CX)[T ] → X[T ] induces a weak equivalence on ϕ-fixed points for each finite H-
subset T ⊂ ω containing an H-fixed point. For varying T , these exhaust NCX and
X, as both are tame by assumption and since any finite set T ′ ⊂ ω is contained
in a finite H-subset containing an H-fixed point (the latter uses that ωH 6= ∅ by
universality). Passing to the filtered colimit over all such T will thus yield the claim
as filtered colimits in SSet are homotopical and commute with finite limits.

To prove the claim, we fix t ∈ TH and we consider the functor i : ∆ ↓ Xϕ
[T ] →

(CX)[T ] sending an object k : ∆n → X to ({t}, T, n, k̃), where k̃ is the unique EM-

equivariant map EInj(T, ω)×∆n → X with k̃(ιT , –) = k, and a morphism α : k → `
to EInj(T, ω)× α. We omit the easy verification that i is well-defined.

We now claim that i actually lands in the ϕ-fixed points. Let us first check this
on objects: if k : ∆n → X is any object of ∆ ↓ Xϕ

[T ], then we have to show that

({t}, T, n, k̃) is ϕ-fixed. But indeed, T ⊂ ω is an H-subset by assumption, {t} ⊂ ω
is an H-subset as t ∈ TH , and any family on {t} is constant on orbits for trivial

reasons, so it only remains to show by Remark 4.3.19 that k̃ is equivariant with
respect to the preactions. But since for any h ∈ H both k̃ ◦ (h.–) and (h.–) ◦ k̃ are
EM-equivariant, it suffices to show that they agree on {ιT }×∆n, for which we let
σ denote any simplex of ∆n. Then

k̃(h.ιT , σ) = k̃(ιT ◦ h−1|T , σ) = k̃(h−1 ∗ ιT , σ) = h−1 ∗ (k̃(ιT , σ)) = ϕ(h).(k̃(ιT , σ))

as desired, where the last equation uses that k̃(ιT , σ) = k(σ) is ϕ-fixed.
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Now let ` : ∆n′ → Xϕ
[T ] be another object of ∆ ↓ Xϕ

[T ] and let α : k → ` be any

morphism. Then EInj(T, ω)×α : EInj(T, ω)×∆n → EInj(T, ω)×∆n′ is obviously
equivariant in the preactions, hence ϕ-fixed by Remark 4.3.19. This completes the
proof that i lands in (CX)ϕ[T ].

Next, we consider the composite

(4.3.5) N(∆ ↓ Xϕ
[T ])

N(i)−−−→ N
(
(CX)ϕ[T ]

) ∼= (NCX)ϕ[T ]

εϕ
[T ]−−→ Xϕ

[T ],

where the unlabelled isomorphism comes from Lemma 4.1.9 together with the fact
that N is a right adjoint.

If g0
α1−→ g1 → · · ·

αk−−→ gk is a k-simplex of the left hand side (where each g` is
a map ∆n` → Xϕ

[T ]), then the above composite sends this to the image of σ under

g̃k, where σ is the unique k-simplex of EInj(T, ω)×∆mk whose `-th vertex is

i(αk) · · · i(α`+1)(ιT , ∗) = (EInj(T, ω)× αk) · · · (EInj(T, ω)× α`+1)(ιT , ∗)

= (ιT , αk · · ·α`+1(∗)) = (ιT , αk · · ·α`+1(∆{n`}))

Thus, if τ is the unique k-simplex of ∆nk with `-th vertex αk · · ·α`+1(∆{n`}) for
` = 0, . . . , k, then σ = (ιT , τ), and hence g̃k(σ) = g̃k(ιT , τ) = gk(τ) = ε(α•). We
conclude that the composite (4.3.5) agrees with the last vertex map N(∆ ↓ Xϕ

[T ])→
Xϕ

[T ], so that it is a weak homotopy equivalence by Proposition 4.3.7.

It is therefore enough to show that i is a weak homotopy equivalence. By
Quillen’s Theorem A [Qui73, §1], it suffices for this that the slice i ↓ (A,S,m•, f)
has weakly contractible nerve for each (A,S,m•, f) ∈ (CX)ϕ[T ].

So let (A,S,m•, f) be any ϕ-fixed point supported on T . Then the simplicial
set K := EInj(S, T )×

∏
a∈A ∆ma is canonically identified with the subcomplex of

EInj(S, ω)×
∏
a∈A ∆ma consisting of the simplices supported on T , and from this

it inherits the two commuting H-actions considered before: the postaction given
by restriction of the EM-action on EInj(S, ω) (i.e. induced by the H-action on T )
and the preaction given by the H-actions on A and S. We will be interested in
the fixed points K∆ for the diagonal of these two actions. Namely, let us define a
functor c : i ↓ (A,S,m•, f) → ∆ ↓ K∆ as follows: an object of the left hand side
consists by definition of a map g : ∆n → Xϕ

[T ] together with a ϕ-fixed morphism

α : i(g)→ (A,S,m•, f), i.e. an (EM×H)-equivariant map α : EInj(T, ω)×∆n →
EInj(S, ω)×

∏
a∈A ∆ma such that g̃ = fα. We now claim that the composition

∆n (ιT ,–)−−−−→ EInj(T, ω)×∆n α−→ EInj(S, ω)×
∏
a∈A

∆ma

actually lands in K∆. Indeed, it is clear that it lands in K, so we only have to
show that α(ιT , σ) is ∆-fixed for each simplex σ of ∆n. As α is ∆-equivariant,
it suffices that ιT is a ∆-fixed point of EInj(T, ω), which is immediate from the
definition. With this established, we now define c(g, α) as α(ιT , –) considered as a
map ∆n → K∆.

Given now any other object (g′ : ∆n′ → Xϕ
[T ], α

′ : i(g′) → (A,S,m•, f)) of

i ↓ (A,S,m•, f), a morphism (g, α)→ (g′, α′) is a map a : ∆n → ∆n′ with g = g′ ◦a
(i.e. a is a map g → g′ in ∆ ↓ Xϕ

[T ]) and α = i(a) ◦ α′. As i(a) = EInj(T, ω) × a,

restricting to {ιT } × ∆n shows that α(ιT , –) = α′(ιT , –) ◦ a, i.e. a also defines a
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morphism c(g, α)→ c(g′, α′) in ∆ ↓ K∆, which we take as the definition of c(a). It
is clear that c is a functor.

Claim. c is an equivalence of categories.

Proof. We will show that c is fully faithful and surjective on objects; in fact,
it is not hard to show that c is also injective on objects, hence an isomorphism of
categories, but we will not need this.

It is clear from the definition that c is faithful. To see that it is full we let
(g : ∆n → Xϕ

[T ], α), (g′ : ∆n′ → Xϕ
[T ], α

′) be objects of the left hand side, and we let

a : ∆n → ∆n′ be a morphism c(g, α)→ c(g′, α′), i.e.

(4.3.6) α(ιT , –) = α′(ιT , –) ◦ a.
We want to show that a also defines a morphism (g, α)→ (g′, α′), i.e. that the two
triangles

∆n ∆n′

Xϕ
[T ]

a

g g′
and

EInj(T, ω)×∆n EInj(T, ω)×∆n′

EInj(S, ω)×
∏
a∈A

∆ma

EInj(T,ω)×a

α α′

commute. For the second one we observe that both paths through the diagram
are EM-equivariant, so that it suffices to show this after restricting to {ιT } ×∆n,
where this is precisely the identity (4.3.6). On the other hand, the commutativity
of the first diagram follows once we observe that g̃ = f ◦ α as α is a morphism
i(g) → (A,S,m•, f), hence g = f ◦ α(ιT , –) and analogously g′ = f ◦ α′(ιT , –).
Thus, a also defines a morphism (g, α) → (g′, α′) which is then obviously the
desired preimage.

Finally, let us show that c is surjective on objects. We let α̂ : ∆n → K∆ be any
map; then the composition

∆n α̂−→ K∆ =

(
EInj(S, T )×

∏
a∈A

∆ma

)∆

↪→ EInj(S, ω)×
∏
a∈A

∆ma

by construction lands in the subcomplex of those simplices that are supported on T ,
so it extends to a unique EM-equivariant map α : EInj(T, ω)×∆n → EInj(S, ω)×∏
a∈A ∆ma .

We claim that (fα̂, α) defines an element of i ↓ (A,S,m•, f), which amounts
to saying that fα̂ : ∆n → X factors through Xϕ

[T ], that α is H-equivariant with

respect to the preactions, and that the diagram

EInj(T, ω)×∆n EInj(S, ω)×
∏
a∈A

∆ma

X

α

(̃fα̂) f

commutes. For the first statement, we observe that fα̂ lands in X[T ] as α̂ lands in
(EInj(S, ω)×

∏
a∈A ∆ma)[T ] and because f is EM-equivariant. To see that it also

lands in the ϕ-fixed points, it suffices to observe that f restricts to (EInj(S, ω) ×∏
a∈A ∆ma)∆ → Xϕ by Remark 4.3.19.

For the second statement it is again enough that h.(α̂(σ)) = α(h.ιT , σ) for
all simplices σ of ∆n and all h ∈ H. But indeed, h.ιT = h−1 ∗ ιT as before, so
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α(h.ιT , σ) = h−1 ∗ (α̂(σ)), and this in turn agrees with h.(α̂(σ)) because α̂(σ) is
∆-fixed.

Finally, for the third statement it suffices again to check this on {ιT } × ∆n,
where it holds tautologically. Altogether we have shown that (fα̂, α) defines an
element of i ↓ (A,S,m•, f). It is then immediate from the definition that c(fα̂, α) =
α̂, which completes the proof of the claim. 4

We conclude that in particular N(i ↓ (A,S,m•, f)) ' N(∆ ↓ K∆). By Propo-
sition 4.3.7 we further see that N(∆ ↓ K∆) is weakly equivalent to K∆, so it only
remains to prove that the latter is (weakly) contractible. This is a direct applica-
tion of Lemma 4.3.20: the restriction of the preaction on EInj(S, ω) ×

∏
a∈A ∆ma

to EInj(S, ω)× {∗} is by construction induced by the H-action on S coming from
the H-action on ω. On the other hand, S is a subset of supp(A,S,m•, f) ⊂ T
by Lemma 4.3.11, so the inclusion S ↪→ T is the desired H-equivariant injection.
Altogether, this completes the proof of the theorem. �

4.3.1.3. Weak saturatedness. The EM-G-categories of the form CX are not
quite saturated (see Remark 4.3.25 below), but they satisfy an only slightly weaker
condition, that will become crucial later in the comparison between G-parsummable
categories and small symmetric monoidal G-categories:

Definition 4.3.21. A small EM-G-category C is called weakly saturated if
the canonical map Cϕ → C‘h’ϕ is a weak homotopy equivalence for every universal
H ⊂M and every homomorphism ϕ : H → G.

Below we will use Lemma 4.3.20 in its full generality to prove:

Proposition 4.3.22. Let X be a tame EM-G-simplicial set. Then CX is
weakly saturated.

Remark 4.3.23. Since the above proposition will have non-trivial consequences
later, let us give some intuition why one should expect this to be true: as the
inclusion Cϕ ↪→ C‘h’ϕ is fully faithful for any EM-G-category C, we can heuristically
interpret the failure of C to be saturated either as C not having enough fixed points
or as C having too many (categorical) homotopy fixed points. While our previous
saturation construction solves this issue by potentially introducing additional fixed
points, we will see below that the categories of the form CX instead have very few
homotopy fixed points. This is in turn to be expected as CX contains only few non-
trivial isomorphisms; more specifically, all automorphisms of objects in CX come
from automorphisms of the EM-equivariant simplicial sets EInj(S, ω)×

∏
a∈A ∆ma ,

over which we have good control by Lemma 4.3.20. In particular, if X = NC, then
the isomorphisms in CNC are detached from the isomorphisms in C.

(In fact, CX has so few isomorphisms, that usually not every homotopy fixed

point will be isomorphic to an honest fixed point, i.e. Cϕ
X ↪→ C‘h’ϕ

X won’t be an
equivalence, see Remark 4.3.25. What will be implicit in the proof below, however,
is that for each homotopy fixed point the space of maps from honest fixed points to
it is contractible, which is enough to imply that the inclusion is a weak homotopy
equivalence.)

In order to turn the above intuition into a rigorous proof, we need to understand

the categories C‘h’ϕ
X better:
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Remark 4.3.24. Let us first assume that X = ∗, and let Φ ∈ C‘h’ϕ
∗ arbitrary.

As there are no non-trivial actions on ∗, this means that Φ: EH → C∗ is H-
equivariant with respect to the restriction of the M-action on C∗ to H.

Let us write (A,S,m•, ∗) := Φ(1) (where ∗ will always denote the unique map
from an implicitly understood object to the fixed terminal simplicial set ∗). Then
we have for each h ∈ H an EM-equivariant self-map h.– of EInj(S, ω)×

∏
a∈A ∆ma

given by the composition

Φ(1)
h◦=(h∗×h∗)−1

−−−−−−−−−−→ h.Φ(1) = Φ(h)
Φ(1,h)−−−−→ Φ(1);

it is not hard to check that this defines an H-action, also cf. [Sch19b, Construc-
tion 7.4]. In analogy with Remark 4.3.19 we call this the preaction induced by
Φ.

Now let Ψ be any other element of C∗, Ψ(1) =: (B, T, n•, ∗), and let α : Φ→ Ψ
be any morphism. Then αh = h.α1, so α is completely determined by the EM-
equivariant map α1 : EInj(S, ω)×

∏
a∈A ∆ma → EInj(T, ω)×

∏
b∈B ∆nb (assuming

we have fixed the objects Φ and Ψ). In the diagram

(4.3.7)

Φ(1) h.Φ(1) Φ(h) Φ(1)

Ψ(1) h.Ψ(1) Ψ(h) Ψ(1)

α1

h◦

h.α1 αh

Φ(1,h)

α1

h◦ Ψ(1,h)

the left hand square commutes by naturality of h◦, the middle square commutes by
equivariance of α, and the right hand square commutes by naturality of α. Thus,
the total rectangle commutes, i.e. α1 is equivariant in the preactions.

Conversely, if α1 : Φ(1) → Ψ(1) is H-equivariant, let us define αh := h.α1 =
(h∗ × h∗)−1 ◦ α1 ◦ (h∗ × h∗). Then the outer rectangle in (4.3.7) commutes, and so
do the left hand and middle square by the same arguments as above. As all hor-
izontal morphisms are isomorphisms, we conclude that also the right hand square
commutes, i.e. α is compatible with the edges (1, h) in EH. Since these generate
EH as a groupoid, we conclude that α is natural. As it is H-equivariant by con-
struction, it is therefore a morphism Φ → Ψ in C‘h’ϕ

∗ . Altogether we have shown
that the assigment α 7→ α1 defines a bijection between Hom(Φ,Ψ) and the set of
(EM×H)-equivariant maps EInj(S, ω)×

∏
a∈A ∆ma → EInj(T, ω)×

∏
b∈B ∆nb .

Now assume X ∈ EM-G-SSet is arbitrary, and let Φ ∈ C‘h’ϕ
X . Applying the

functor C‘h’ϕ
X → C‘h’ϕ

∗ induced by the unique map X → ∗ to Φ then shows that the
composites

h.–: EInj(S, ω)×
∏
a∈A

∆ma (h∗×h∗)−1

−−−−−−−→ EInj(h(S), ω)
∏

b∈h(A)

∆mh−1(b)

Φ(1,h)−−−−→ EInj(S, ω)×
∏
a∈A

∆ma

define an H-action on EInj(S, ω)×
∏
a∈A ∆ma by EM-equivariant maps, which we

again call the preaction induced by Φ. However, the h.– typically do not define self-
maps of Φ(1) anymore; instead, the identities f ◦Φ(1, h) = (ϕ(h).–) ◦ f ◦ (h∗ × h∗)
coming from the requirement that Φ(1, h) be a map (h, ϕ(h)).Φ(1) = Φ(h)→ Φ(1)
imply that f : EInj(S, ω)×

∏
a∈A ∆ma → ϕ∗X is H-equivariant with respect to the

above H-action on the source, i.e. f is equivariant in the preactions. As before,
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this is equivalent for the EM-equivariant map f to being equivariant with respect
to the diagonal actions.

Next, let Ψ ∈ C‘h’ϕ
X be another object, and let α : Φ→ Ψ be any morphism. As

before, α is completely determined by α1, and pushing α forward to C‘h’ϕ
∗ shows

that α1 is equivariant with respect to the preactions. In addition, the diagram

(4.3.8)

EInj(S, ω)×
∏
a∈A ∆ma EInj(T, ω)×

∏
b∈B ∆nb

X
f

α1

g

commutes as α1 is a morphism Φ(1)→ Ψ(1).
On the other hand, if α1 is an (EM × H)-equivariant map making (4.3.8)

commute, then the above shows that αh := (h∗ × h∗)−1 ◦ α1 ◦ (h∗ × h∗) defines
an H-equivariant natural transformation, so to see that this defines a map Φ→ Ψ

in C‘h’ϕ
X it only remains to show that each αh is a map Φ(h) → Ψ(h), i.e. that(

(ϕ(h).–) ◦ g ◦ (h∗ × h∗)
)
◦ αh = (ϕ(h).–) ◦ f ◦ (h∗ × h∗). This however follows

immediately from the explicit description of αh.
Altogether we have shown that α 7→ α1 defines a bijection between Hom(Φ,Ψ)

and the set of those (EM × H)-equivariant maps EInj(S, ω) ×
∏
a∈A ∆ma →

EInj(T, ω)×
∏
b∈B ∆nb making the diagram (4.3.8) commute. As before, (EM×H)-

equivariance is equivalent to being EM- and ∆-equivariant.

Proof of Proposition 4.3.22. Let H ⊂ M be a universal subgroup and
let ϕ : H → G be a group homomorphism. We have to show that the canonical

map c : Cϕ
X → C‘h’ϕ

X is a weak homotopy equivalence. To this end we consider for

each (finite) H-subset T ⊂ ω the following full subcategory (C‘h’ϕ
X )〈T 〉 ⊂ C‘h’ϕ

X :

if Φ ∈ C‘h’ϕ
X , (A,S,m•, f) := Φ(1), then Remark 4.3.24 describes a canonical H-

action on EInj(S, ω)×
∏
a∈A ∆ma , whose restriction to EInj(S, ω)×{∗} is induced

by a unique H-action on S according to Lemma 4.3.20; we now declare that Φ

should belong to (C‘h’ϕ
X )〈T 〉 if and only if the H-set S admits an H-equivariant

injection into T .
If (A,S,m•, f) is ϕ-fixed, then A,S ⊂ ω are H-subsets, and the above H-

action on EInj(S, ω)×
∏
a∈A ∆ma is simply the preaction from Remark 4.3.19. In

particular, its restriction to EInj(S, ω)×{∗} is induced by the tautological H-action
on S ⊂ ω. Thus, if (A,S,m•, f) is supported on T , then the inclusion S ↪→ T is

H-equivariant with respect to the above action, so that c : Cϕ
X → C‘h’ϕ

X restricts to

(CX)ϕ[T ] → (C‘h’ϕ
X )〈T 〉.

Next, we observe that the (C‘h’ϕ
X )〈T 〉 exhaust C‘h’ϕ

X when we let T run through

all finite H-subsets of ω with TH 6= ∅: indeed, if Φ is arbitrary, (A,S,m•, f) :=
Φ(1), then we consider the finite H-set S q {∗} where H acts on S as above and
trivially on ∗. As ω is a complete H-set universe, there exists an H-equivariant
injection S q {∗} → ω, whose image is then the desired T . Thus, the inclusions

express C‘h’ϕ
X as a filtered colimit along the inclusions of the (C‘h’ϕ

X )〈T 〉 over all

finite H-subsets T ⊂ ω with TH 6= ∅.

Altogether, we are reduced to showing that (CX)ϕ[T ] → (C‘h’ϕ
X )〈T 〉 is a weak

homotopy equivalence for all such T , for which it is enough by 2-out-of-3 that the
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composition

j : ∆ ↓ Xϕ
[T ]

i−→ (CX)ϕ[T ]

c−→ (C‘h’ϕ
X )〈T 〉

is a weak homotopy equivalence, where i is the weak homotopy equivalence from
the proof of Theorem 4.3.18.

For this it is again enough by Quillen’s Theorem A that the slice j ↓ Φ has

weakly contractible nerve for each Φ ∈ (C‘h’ϕ
X )〈T 〉. To prove this, let Φ(1) =:

(A,S,m•, f) and define K := EInj(S, T ) ×
∏
a∈A ∆ma with H-action via the H-

action on T and the restriction of the preaction on EInj(S, ω)×
∏
a∈A ∆ma induced

by Φ. Using Remark 4.3.24 one can show precisely as in the proof of Theorem 4.3.18
that we have an equivalence of categories d : j ↓ Φ → ∆ ↓ K∆ sending an object
α : j(g : ∆n → Xϕ

[T ])→ Φ to α1(ιT , –) and a map (g, α)→ (g′, α′) given by a : ∆n →
∆n′ to the map d(g, α)→ d(g′, α′) given by the same a.

In particular, we conclude together with Proposition 4.3.7 that N(j ↓ Φ) '
N(∆ ↓ K∆) ' K∆. By definition of (C‘h’ϕ

X )〈T 〉 there exists an H-equivariant injec-
tion S → T with respect to the H-action on S induced by Φ. Thus, Lemma 4.3.20
implies that K∆ is contractible, which completes the proof of the proposition. �

Remark 4.3.25. Let X 6= ∅ be a tame EM-G-simplicial set. Then CX is not
saturated:

Indeed, let x ∈ X0 be arbitrary and write S := supp(x). Then there exists
a (unique) EM-equivariant map x̃ : EInj(S, ω) → X sending ιS to x. We pick a
finite set T ⊂ ωr S with at least two elements and we define f as the composition

EInj(S ∪ T, ω)×∆1 pr−→ EInj(S ∪ T, ω)
res−−→ EInj(S)

x̃−→ X.

We moreover choose a universal subgroup H of M together with an isomorphism
ψ : H → ΣT , and we write ϕ : H → 1 for the unique homomorphism. For any h ∈ H
we define its action on EInj(S ∪T, ω)×∆1 as the unique self-map τh sending (u, 0)
to (u, 0) and (u, 1) to (u ◦ (idS + ψ(h−1)), 1) for each u ∈ M. We omit the easy
verification that this is a well-defined H-action.

Let now a ∈ ω be any H-fixed point. It is then not hard to check that Φ: EH →
CX with

Φ(h) = ({a}, h(S ∪ T ), 1, f ◦ (h∗ × h∗))

and structure maps

Φ(h2, h1) = (h2)◦τh−1
2 h1

(h1)−1
◦

defines an element of C‘h’ϕ
X . The induced H-action on EInj(S ∪ T, ω) × ∆1 is

then simply the one given above. By the description of the morphisms in C‘h’ϕ
X

given in Remark 4.3.24 it is then enough to show that this is not H-equivariantly
isomorphic to a simplicial set of the form EInj(U, ω) ×

∏
b∈B ∆nb for some finite

H-subsets B,U ⊂ ω, with H acting via its tautological actions on B and U .
Indeed, if there were such an isomorphism α, then it would restrict to H-

equivariant isomorphisms EInj(U, ω) ×
∏
b∈B ∆{0} ∼= EInj(S ∪ T, ω) × ∆{0} and

EInj(U, ω) ×
∏
b∈B ∆{nb} ∼= EInj(S ∪ T, ω) × ∆{1}. In particular, the two H-

simplicial sets EInj(S ∪ T, ω) × ∆{0} and EInj(S ∪ T, ω) × ∆{1} would be H-
equivariantly isomorphic. But this is obviously not the case as precisely one of
them has trivial H-action, yielding the desired contradiction.
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4.3.1.4. Lifting the parsummable structure. We will now complete the proof
of Theorem 4.3.1—and hence of the parsummable cases of the global and G-global
Thomason theorem—by lifting C• to a functorG-ParSumSSet→G-ParSumCat
and proving that the natural transformations ε, ε̃ are compatible with the resulting
structure.

Construction 4.3.26. Let A′, S′ be finite sets and let A ⊂ A′, S ⊂ S′. Let
moreover (ma)a∈A′ be a family of non-negative integers. Then we define

ρA
′,S′

A,S : EInj(S′, ω)×
∏
a∈A′

∆ma → EInj(S, ω)×
∏
a∈A

∆ma

as the product of the restriction EInj(S′, ω) → EInj(S, ω) and the projection∏
a∈A′ ∆

ma →
∏
a∈A ∆ma .

Lemma 4.3.27. Throughout, let m• be an appropriately indexed family of non-
negative integers.

(1) ρA
′,S′

A,S is EM-equivariant for all A ⊂ A′, S ⊂ S′.
(2) If A ⊂ A′ ⊂ A′′, S ⊂ S′ ⊂ S′′, then ρA

′,S′

A,S ρA
′′,S′′

A′,S′ = ρA
′′,S′′

A,S .

(3) ρA,SA,S = id for all A,S

(4) If A∩B = ∅ = S ∩T , then (ρA∪B,S∪TA,S , ρA∪B,S∪TB,T ) restricts to an isomor-
phism

EInj(S∪T, ω)×
∏

i∈A∪B
∆mi ∼=

(
EInj(S, ω)×

∏
a∈A

∆ma

)
�

(
EInj(T, ω)×

∏
b∈B

∆mb

)
.

(5) If A′, S′ ⊂ ω, and u ∈M, then ρA
′,S′

A,S ◦ (u∗×u∗) = (u∗×u∗) ◦ ρu(A′),u(S′)
u(A),u(S)

for all A ⊂ A′, S ⊂ S′.

Proof. The first three statements are obvious, and the fourth one follows from
Example 2.1.16 as the box product preserves tensors in each variable.

For the final statement, it suffices to observe that the diagram

EInj(u(S′), ω) EInj(S′, ω)

EInj(u(S), ω) EInj(S, ω)

u∗

res res

u∗

commutes as both paths through it are given by restricting along S → u(S′), s 7→
u(s), and that ∏

b∈u(A′) ∆mu−1(b)
∏
a∈A′ ∆

ma

∏
b∈u(A) ∆mu−1(b)

∏
a∈A ∆ma

u∗

pr pr

u∗

commutes because after postcomposition with pra, a ∈ A, both paths agree with
the projection

∏
b∈u(A′) ∆mu−1(b) → ∆ma onto the u(a)-th factor. �

In the situation of part (4) of above the lemma, we will always view the map

(ρA∪B,S∪TA,S , ρA∪B,S∪TB,T ) as a map into the box product below.
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Construction 4.3.28. Let X,Y ∈ EM-SSetτ . We define

∇ : CX �CY → CX�Y

as follows: an object
(
(A,S,m•, f), (B, T, n•, g)

)
is sent to (A ∪ B,S ∪ T, (m ∪

n)•, f ∪ g) where

(m ∪ n)i =

{
mi if i ∈ A
ni if i ∈ B

and f∪g = (f�g)◦(ρA∪B,S∪TA,S , ρA∪B,S∪TB,T ) = (f◦ρA∪B,S∪TA,S , g◦ρA∪B,S∪TB,T ). Moreover,

we send a morphism
(
(A,S,m•, f), (B, T, n•, g)

)
→
(
(A′, S′,m′•, f

′), (B′, T ′, n′•, g
′)
)

given by a pair

α : EInj(S, ω)×
∏
a∈A

∆ma → EInj(S′, ω)×
∏
a′∈A′

∆m′
a′

β : EInj(T, ω)×
∏
b∈B

∆nb → EInj(T ′, ω)×
∏
b′∈B′

∆n′
b′

to the morphism (A∪B,S∪T, (m∪n)•, f ∪g)→ (A′∪B′, S′∪T ′, (m′∪n′)•, f ′∪g′)
given by the composition

(ρA
′∪B′,S′∪T ′

A′,S′ , ρA
′∪B′,S′∪T ′

B′,T ′ )−1 ◦ (α� β) ◦ (ρA∪B,S∪TA,S , ρA∪B,S∪TB,T )

= (ρA
′∪B′,S′∪T ′

A′,S′ , ρA
′∪B′,S′∪T ′

B′,T ′ )−1 ◦ (αρA∪B,S∪TA,S , βρA∪B,S∪TB,T ).

Finally, we define ι : ∗ → C∗ as the functor sending the unique object of the left
hand side to (∅,∅,∅, 0), where 0 denotes the unique map EInj(∅, ω)×

∏
∅ → ∗.

Proposition 4.3.29. The above functors are well-defined and EM-equivariant.

Proof. Let us first show that ∇ is well-defined. For this we observe that
A ∪ S is disjoint from B ∪ T by Lemma 4.3.11, so in particular A ∩ B = ∅ and

S ∩ T = ∅. Thus, m ∪ n is well-defined. Moreover, ρA∪B,S∪TA,S and ρA∪B,S∪TB,T are

EM-equivariant by Lemma 4.3.27-(1), and (ρA∪B,S∪TA,S , ρA∪B,S∪TB,T ) lands in the box

product by part (4), so f ∪ g = (f � g) ◦ (ρA∪B,S∪TA,S , ρA∪B,S∪TB,T ) is well-defined and
EM-equivariant. This shows that ∇ is well-defined on objects.

To prove that it is well-defined on morphisms, we observe that as above A′ ∩
B′ = ∅, S′ ∩ T ′ = ∅, so that (ρA

′∪B′,S′∪T ′
A′,S′ , ρA

′∪B′,S′∪T ′
B′,T ′ ) is indeed invertible (as

a map into the box product) by Lemma 4.3.27-(4). By another application of
Lemma 4.3.27-(1) we then see that ∇(α, β) is EM-equivariant. Finally,

(f ′ ∪ g′)∇(α, β) = (f ′ � g′)(α� β)(ρA∪B,S∪TA,S , ρA∪B,S∪TB,T )

=
(
(f ′α)� (g′β)

)
(ρA∪B,S∪TA,S , ρA∪B,S∪TB,T )

= (f � g)(ρA∪B,S∪TA,S , ρA∪B,S∪TB,T ) = f ∪ g,
i.e. ∇(α, β) is indeed a morphism in CX�Y from ∇((A,S,m•, f), (B, T, n•, g)) to
∇((A′, S′,m′•, f

′), (B′, T ′, n′•, g
′)).

It is trivial to check that ∇ is a functor. Let us now prove that it is EM-
equivariant, for which we let u ∈M be arbitrary. Then

∇(u.(A,S,m•, f), u.(B, T, n•, g))

= ∇
(
(u(A), u(S),mu−1(•), f ◦ (u∗ × u∗)), (u(B), u(T ), nu−1(•), g ◦ (u∗ × u∗))

)
=
(
u(A ∪B), u(S ∪ T ), (mu−1(•) ∪ nu−1(•))•, (f ◦ (u∗ × u∗)) ∪ (g ◦ (u∗ × u∗))

)
.



236 4. G-GLOBAL ALGEBRAIC K-THEORY

It is clear that (mu−1(•)∪nu−1(•))• = (m∪n)u−1(•), so forM-equivariance on objects
it only remains to show that (f ◦ (u∗ × u∗)) ∪ (g ◦ (u∗ × u∗)) = (f ∪ g) ◦ (u∗ × u∗).
But indeed, Lemma 4.3.27-(5) implies that

(4.3.9)

(ρA∪B,S∪TA,S , ρA∪B,S∪TB,T ) ◦ (u∗ × u∗)

= (ρA∪B,S∪TA,S ◦ (u∗ × u∗), (ρA∪B,S∪TB,T ◦ (u∗ × u∗))

= ((u∗ × u∗) ◦ ρu(A∪B),u(S∪T )
u(A),u(S) , (u∗ × u∗) ◦ ρu(A∪B),u(S∪T )

u(B),u(T ) ),

hence

(f ◦ (u∗ × u∗)) ∪ (g ◦ (u∗ × u∗))

= (f ◦ (u∗ × u∗) ◦ ρu(A∪B),u(S∪T )
u(A),u(S) , g ◦ (u∗ × u∗) ◦ ρu(A∪B),u(S∪T )

u(B),u(T ) )

= (f � g) ◦ ((u∗ × u∗) ◦ ρu(A∪B),u(S∪T )
u(A),u(S) , (u∗ × u∗) ◦ ρu(A∪B),u(S∪T )

u(B),u(T ) )

= (f � g) ◦ (ρA∪B,S∪TA,S , ρA∪B,S∪TB,T ) ◦ (u∗ × u∗)
= (f ∪ g) ◦ (u∗ × u∗).

Next, we have to show that∇(u
(A,S,m•,f)
◦ , u

(B,T,n•,g)
◦ ) = u

∇((A,S,m•,f),(B,T,n•,g))
◦ .

As we already know that both sides are maps between the same two objects in
CX�Y , it suffices to show this as maps in EM-SSet, for which it is in turn
enough that their inverses agree. But indeed,

∇(u
(A,S,m•,f)
◦ , u

(B,T,n•,g)
◦ )−1

= ∇
(
(u

(A,S,m•,f)
◦ )−1, (u

(B,T,n•,g)
◦ )−1

)
= (ρA∪B,S∪TA,S , ρA∪B,S∪TB,T )−1 ◦

(
(u∗ × u∗)ρu(A∪B),u(S∪T )

u(A),u(S) , (u∗ × u∗)ρu(A∪B),u(S∪T )
u(B),u(T )

)
= (ρA∪B,S∪TA,S , ρA∪B,S∪TB,T )−1 ◦ (ρA∪B,S∪TA,S , ρA∪B,S∪TB,T ) ◦ (u∗ × u∗)

= u∗ × u∗ = (u
∇((A,S,m•,f),(B,T,n•,g))
◦ )−1

where we used (4.3.9). This completes the argument for ∇.
Finally, EM-equivariance of ι amounts to saying that ι(∗) = (∅,∅,∅, 0) has

empty support, which is immediate from Lemma 4.3.11. �

Proposition 4.3.30. The functors ι and ∇ define a lax symmetric monoidal
structure on C• : EM-SSetτ → EM-Catτ .

Proof. It is trivial to check that ∇ is natural; it remains to show the compat-
ibility of ∇ and ι with the unitality, symmetry, and associativity isomorphisms.

Unitality. We will only prove left unitality, the argument for right unitality
being analogous (in fact, right unitality will also follow from left unitality together
with symmetry). For this we have to show that the composition

∗�CX
ι�CX−−−−→ C∗ �CX

∇−→ C∗�X
Cλ−−→ CX

agrees with the left unitality isomorphism of (EM-Catτ ,�), i.e. projection to the
second factor.

Let us first check this on objects: if (A,S,m•, f) ∈ CX is arbitrary, then the
above sends (∗, (A,S,m•, f)) by definition to (∅ ∪A,∅ ∪A, (∅ ∪m)•, λ ◦ (0 ∪ f)),
so the only non-trivial statement is that λ ◦ (0 ∪ f) = f . Indeed, by definition

0 ∪ f = (0 ◦ ρA,S∅,∅, f ◦ ρ
A,S
A,S). As the left unitality isomorphism λ : ∗ �X → X is
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given by projection to the second factor, we conclude λ ◦ (0 ∪ f) = f ◦ ρA,SA,S , so the

claim follows from Lemma 4.3.27-(3).
Next, let α : (A,S,m•, f) → (B, T, n•, g); we have to show that the above

composite sends (id∗, α) to α. As we already know that this has the correct source
and target, it suffices to show this as morphism in EM-SSet. But indeed, plugging
in the definition we see that α is sent to

(4.3.10) (ρA,S∅,∅, ρ
A,S
A,S)−1(id ◦ ρA,S∅,∅, α ◦ ρ

A,S
A,S).

As ρA,SA,S = id by Lemma 4.3.27-(3), we see that projecting onto the second factor is

left inverse to (ρA,S∅,∅, ρ
A,S
A,S); as the latter is an isomorphism (or alternatively using

that the projection is an isomorphism for obvious reasons), it is then also right

inverse, and (4.3.10) equals αρA,SA,S = α as desired.
Associativity. We have to show that the diagram

(CX �CY )�CZ CX � (CY �CZ)

CX�Y �CZ CX �CY�Z

C(X�Y )�Z CX�(Y�Z)

a
∼=

∇�CZ CX�∇

∇ ∇
∼=
Ca

commutes for all X,Y, Z ∈ EM-SSetτ ; here we denote the associativity isomor-
phism by ‘a’ instead of the usual ‘α’ in order to avoid confusion with our notation
for a generic morphism in C•.

To check this on objects we let
(
((A,S,m•, f), (B, T, n•, g)), (C,U, o•, h)

)
be

any object of the top left corner. Then the upper right path through the diagram
sends this to (A∪(B∪C), S∪(T ∪U), (m∪(n∪o))•, f ∪(g∪h)) while the lower left
path sends it to ((A∪B)∪C, (S ∪T )∪U, ((m∪n)∪ o)•, a ◦ ((f ∪ g)∪h). It is clear
that the first three components agree, so it only remains to show that f ∪ (g∪h) =
a◦ ((f ∪g)∪h) as maps EInj(S∪T ∪U, ω)×

∏
i∈A∪B∪C ∆(m∪n∪o)i → X� (Y �Z).

But indeed,

f ∪ (g ∪ h) = (fρA∪B∪C,S∪T∪UA,S , (g ∪ h)ρA∪B∪C,S∪T∪UB∪C,T∪U )

= (fρA∪B∪C,S∪T∪UA,S , (gρB∪C,T∪UB,T , hρB∪C,T∪UC,U )ρA∪B∪C,S∪T∪UB∪C,T∪U )

= (fρA∪B∪C,S∪T∪UA,S , (gρA∪B∪C,S∪T∪UB,T , hρA∪B∪C,S∪T∪UC,U ))

where the final equality follows from Lemma 4.3.27-(2). Analogously, one shows
that

a ◦
(
(f ∪ g) ∪ h

)
= a ◦ ((fρA∪B∪C,S∪T∪UA,S , gρA∪B∪C,S∪T∪UB,T ), hρA∪B∪C,S∪T∪UC,U )

and this is obviously equal to the above.
Next, we let

(
((A′, S′,m′•, f

′), (B′, T ′, n′•, g
′)), (C ′, U ′, o′•, h

′)
)

be another such
object, and we let ((α, β), γ) be a morphism. We have to show that both paths
through the diagram send this to the same morphism in CX�(Y�Z), for which it
is then enough to show equality as morphisms in EM-SSetτ . For this we first
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observe that on the one hand by Lemma 4.3.27-(2)

(ρA
′∪B′∪C′,S′∪T ′∪U ′

A′,S′ , (ρA
′∪B′∪C′,S′∪T ′∪U ′

B′,T ′ , ρA
′∪B′∪C′,S′∪T ′∪U ′

C′,U ′ ))

=
(
id� (ρB

′∪C′,T ′∪U ′
B′,T ′ , ρB

′∪C′,T ′∪U ′
C′,U ′ )

)
◦ (ρA

′∪B′∪C′,S′∪T ′∪U ′
A′,S′ , ρA

′∪B′∪C′,S′∪T ′∪U ′
B′∪C′,T ′∪U ′ )

(in particular this is an isomorphism), and on the other hand obviously

(ρA
′∪B′∪C′,S′∪T ′∪U ′

A′,S′ , (ρA
′∪B′∪C′,S′∪T ′∪U ′

B′,T ′ , ρA
′∪B′∪C′,S′∪T ′∪U ′

C′,U ′ ))

= a ◦
(
(ρA

′∪B′∪C′,S′∪T ′∪U ′
A′,S′ , ρA

′∪B′∪C′,S′∪T ′∪U ′
B′,T ′ ), ρA

′∪B′∪C′,S′∪T ′∪U ′
C′,U ′

)
.

We now calculate

(4.3.11)

(ρA′,S′ , (ρB′,T ′ , ρC′,U ′))∇(α,∇(β, γ))

= (id� (ρB′,T ′ , ρC′,U ′))(αρA,S ,∇(β, γ)ρB∪C,T∪U )

= (αρA,S , (ρB′,T ′ , ρC′,U ′)∇(β, γ)ρB∪C,T∪U )

= (αρA,S , (βρB,T , γρC,U ))

where we omitted the superscripts for legibility. Analogously,

(ρA′,S′ , (ρB′,T ′ , ρC′,U ′))∇(∇(α, β), γ) = a ◦ ((ρA′,S′ , ρB′,T ′), ρC′,U ′)∇(∇(α, β), γ)

= a ◦ ((αρA,S , βρB,T ), γρC,U )

which equals (4.3.11). We conclude that ∇(α,∇(β, γ)) = ∇(∇(α, β), γ) as mor-
phisms in EM-SSetτ as they agree after postcomposing with an isomorphism.
This completes the proof of associtativity.

Symmetry. Finally, we have to show that the diagram

CX �CY CY �CX

CX�Y CY�X

τ
∼=

∇ ∇
∼=
Cτ

commutes for all tame EM-simplicial sets X,Y , where τ denotes the symmetry
isomorphism of � on EM-Catτ and EM-SSetτ , respectively; in both cases it is
given by restriction of the flip map K × L ∼= L×K.

Again, let us first check this on objects. If
(
(A,S,m•, f), (B, T, n•, g)

)
is an

object of the top left corner, then the upper right path through this diagram sends
this to (B ∪ A, T ∪ S, (n ∪m)•, g ∪ f), while the lower left path sends it to (A ∪
B,S ∪T, (m∪n)•, τ ◦ (f ∪ g)). The first three components agree trivially, while for
the fourth components we simply calculate

τ ◦ (f ∪ g) = τ ◦ (fρA,S , gρB,T ) = (gρB,T , fρA,S) = g ∪ f.

This proves commutativity on objects. If now
(
(A′, S′,m′•, f

′), (B′, T ′, n′•, g
′)
)

is
another such object and (α, β) is a morphism between them, then in order to show
that both paths through the diagram send (α, β) to the same morphism of CY�X it
is again enough to check this as morphisms in EM-SSet. But indeed, the top right
path through the diagram sends (α, β) to (ρB′,T ′ , ρA′,S′)

−1(βρB,T , αρA,S). Using
that (ρB′,T ′ , ρA′,S′) = τ ◦ (ρA′,S′ , ρB′,T ′), this equals

(ρA′,S′ , ρB′,T ′)
−1 ◦ τ ◦ (βρB,T , αρA,S) = (ρA′,S′ , ρB′,T ′)

−1(αρA,S , βρB,T )

which is by definition the image of (α, β) under the lower left composition. This
completes the proof of symmetry and hence of the proposition. �
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As before, the corresponding result for C• : EM-G-SSetτ → EM-G-Catτ

follows formally. In particular, C• canonically lifts to a functorG-ParSumSSet→
G-ParSumCat. Explicitly, if X is a parsummable simplicial set, then CX has the
same underlying EM-G-category as before. The sum of two disjointly supported
objects (A,S,m•, f), (B, T, n•, g) is (A∪B,S ∪T, (m∪n)•, f + g), with f + g given
by the composition

EInj(S ∪ T, ω)×
∏

i∈A∪B
∆(m∪n)i f∪g−−→ X �X

+−→ X

where + denotes the sum operation of the G-parsummable simplicial set X. More-
over, the sum of two morphisms α, β having disjointly supported sources and
disjointly supported targets agrees as a map of EM-simplicial sets with ∇(α, β) as
defined above. Finally, the unit is given by (∅,∅,∅, 0) where 0 denotes the map
EInj(∅, ω)×

∏
∅ → X with image the zero vertex of X.

Next, we will show that the natural maps ε and ε̃ also define natural transfor-
mations between these lifts.

Proposition 4.3.31. The natural transformation ε : N ◦C• ⇒ idEM-SSetτ is
(symmetric) monoidal.

Proof. We have to show that the diagrams

(NCX)� (NCY ) X � Y

NCX�Y

ε�ε

∇
ε

∗ ∗

NC∗

=

ι
ε

commute, where ∇ and ι denote the compositions of the structure maps of N and
C• of the same name. The commutativity of the right hand triangle is trivial as the
target is terminal. For the other one, we consider any k-simplex of (NCX)�(NCY ).
This is by definition and Lemma 4.1.9 given by a pair of a k-simplex

(A0, S0,m
(0)
• , f0)

α1−→ · · · αk−−→ (Ak, Sk,m
(k)
• , fk)

of N(CX) and a k-simplex

(B0, T0, n
(0)
• , g0)

β1−→ · · · βk−→ (Bk, Tk, n
(k)
• , gk)

of N(CY ) such that supp(Ai, Si,m
(i)
• , fi)∩supp(Bi, Ti, n

(i)
• , gi) = ∅ for i = 0, . . . , k.

If σα• , σβ• are defined as before, then the top arrow in this diagram sends
(α•, β•) to (fk(σα•), gk(σβ•)). On the other hand, the lower path sends (α•, β•) to
(fk ∪ gk)(σ∇(α•,β•)). Here σ∇(α•,β•) is uniquely characterized by demanding that
its `-th vertex (for each ` = 0, . . . , k) be given by

∇(αk, βk) · · · ∇(α`+1, β`+1)(ιS`∪T` , ∗) ∈ EInj(Sk ∪ Tk, ω)×
∏

i∈Ak∪Bk

∆(m∪n)i .

By functoriality of ∇ and its definition, this is equal to

(ρAk,Sk , ρBk,Tk)−1
(
(αk · · ·α`+1)� (βk · · ·β`+1)

)
(ρA`,S` , ρB`,T`)(ιS`∪T`,∗),

and as obviously (ρA`,S` , ρB`,T`)(ιS`∪T` , ∗) =
(
(ιS` , ∗), (ιT` , ∗)

)
, we conclude that

σ∇(α•,β•) = (ρAk,Sk , ρBk,Tk)−1(σα• , σβ•). Thus,

ε(∇(α•, β•)) = (fk ∪ gk)(σ∇(α•,β•)) = (fk � gk)(σα• , σβ•) = (fk(σα•), gk(σβ•))

as claimed. �
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Proposition 4.3.32. The natural transformation ε̃ : C• ◦ N ⇒ idEM-Catτ is
(symmetric) monoidal.

Proof. We have to prove commutativity of the diagrams

CNC �CND C �D

CN(C�D)

ε̃�ε̃

∇
ε̃

∗ ∗

CN(∗)

=

ι
ε̃

which in the case of the right hand triangle is trivial again. For the left hand
diagram, it suffices to prove this after applying N as the latter is fully faithful. The
resulting diagram is

(4.3.12)

N(CNC �CND) N(C �D)

N(CN(C�D))

N(ε̃�ε̃)

N(∇)
ε

where we have applied the definition of ε̃. We now consider the three-dimensional
diagram

N(CNC �CND) N(C �D)

(NCNC)� (NCND) (NC)� (ND)

NCN(C�D)

NC(NC)�(ND)

∼=
∇ ∼=

∇

NC∇
∼=

where the back face is (4.3.12), the front face is the coherence diagram for ε : N ◦
C• ⇒ id, and the front-to-back maps are induced by the structure isomorphisms
of the strong symmetric monoidal functor N as indicated. Then the front face
commutes by the previous proposition, the left face commutes by the definition of
the structure maps of a composition of lax symmetric monoidal functors, the top
face commutes by naturality of ∇, and the lower right face commutes by naturality
of ε. As all the front-to-back maps are isomorphisms, it follows that also the back
face commutes, which then completes the proof of the proposition. �

As before, we automatically get the corresponding statements for the lifts of
ε and ε̃ to EM-G-SSetτ and EM-G-Catτ , respectively. Using this, we can
now finally establish the comparison between G-parsummable categories and G-
parsummable simplicial sets:

Proof of Theorem 4.3.1. We first observe that ε and ε̃ assemble into nat-
ural transformations N ◦ C• ⇒ idG-ParSumSSet and C• ◦ N ⇒ idG-ParSumCat

by Propositions 4.3.31 and 4.3.32, respectively. As the G-global weak equiva-
lences of G-ParSumSSet and G-ParSumCat are created in EM-G-SSetτ and
EM-G-Catτ , respectively, the claim now follows from Theorem 4.3.18. �
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4.3.2. G-global homotopy theory of permutative G-categories. Fi-
nally, we want to establish versions of Thomason’s theorem for the G-global al-
gebraic K-theory of small permutative (or symmetric monoidal) categories with
G-action. The only missing ingredient to this is the following G-global version of
Theorem A from the introduction:

Theorem 4.3.33. The composition

G-PermCat
Φ−→ G-ParSumCat

(–)sat

−−−→ G-ParSumCat

descends to an equivalence of the quasi-localizations at the G-global weak equiva-
lences.

For the proof we will use the following categorical comparison which we proved
as [Len21, Theorem 3.1]:

Theorem 4.3.34. The functor Φ: PermCat → ParSumCat is a homo-
topy equivalence with respect to the underlying equivalences of categories on both
sides. �

Proof of Theorem 4.3.33. Let us write G-ParSumCatws for the full sub-
category of G-ParSumCat spanned by the weakly saturated G-parsummable cat-
egories in the sense of Definition 4.3.21. Theorem 4.1.28 then in particular implies
that (–)sat restricts to a homotopy inverse of the inclusion G-ParSumCatws ↪→
G-ParSumCat with respect to the underlying equivalences of categories. Together
with Theorem 4.3.34 (using that homotopy equivalences are preserved by passing
to functor categories), we conclude that

(4.3.13) (–)sat ◦ Φ: G-PermCat→ G-ParSumCatws

is a homotopy equivalence with respect to the underlying equivalences of categories
on both sides.

By the same argument as in Lemma 4.1.25, any underlying equivalence of
categories in G-ParSumCatws is in particular a G-global weak equivalence. Thus,
(4.3.13) is also a homotopy equivalence when we equip the target with the G-global
weak equivalences and the source with those maps that are sent under (–)sat ◦Φ to
G-global weak equivalences. By Proposition 4.1.36, these are precisely the G-global
weak equivalences of permutative G-categories.

To finish the proof of the theorem, it then only remains to show that the
inclusion G-ParSumCatws ↪→ G-ParSumCat is also a homotopy equivalence
with respect to the G-global weak equivalences on both sides. While the saturation
construction (–)sat does not provide a homotopy inverse (it is actually not even
homotopical in G-global weak equivalences), we can use the results of the previous
subsection: namely, Proposition 4.3.22 shows that the composition

(4.3.14) G-ParSumCat
N−→ G-ParSumSSet

C•−−→ G-ParSumCat

factors throughG-ParSumCatws, while we have seen in the proof of Theorem 4.3.1
above that the natural map ε̃ : CNC → C is a G-global weak equivalence for any
C ∈ G-ParSumCat. Thus, (4.3.14) restricts to a homotopy inverse to the inclu-
sion of G-ParSumCatws (with respect to the G-global weak equivalences), which
completes the proof of the theorem. �

We now immediately obtain the remaining half of Theorem B (and hence also
of Theorem C) from the introduction:
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Theorem 4.3.35. The functors KG-gl : G-PermCat→ (G-Spectra≥0
G-global)

∞

and K′G-gl : G-SymMonCat0 → (G-Spectra≥0
G-global)

∞ are quasi-localizations.

Together with Lemma 4.1.38 this in particular allows us to express connective
stable G-global homotopy theory as quasi-localization of G-SymMonCat.

Proof. The first statement follows from Theorem 4.3.33 together with Theo-
rem 4.3.2. Moreover, as G-PermCat ↪→ G-SymMonCat0 is a homotopy equiv-
alence with respect to the G-global weak equivalences, the second statement now
follows from Theorem 4.1.41. �

We also get the following ‘non-group-completed’ version:

Theorem 4.3.36. The composition

G-SymMonCat0 Γ−→ Γ-G-Cat∗
Fun(EM,–)−−−−−−−→ Γ-EM-G-Cat∗

N−→ Γ-EM-G-SSet∗

defines an equivalence (G-SymMonCat0)∞G-gl. ' (Γ-EM-G-SSetspecial
∗ )∞G-gl. level.

Proof. As before, it suffices to prove this after restricting to G-PermCat.
As we have seen in the proof of Theorem 4.1.41, the resulting functor factors up to
homotopy as

G-PermCat
(–)sat◦Φ−−−−−→ G-ParSumCat→ Γ-EM-G-SSetspecial

∗

where the second functor is the composite from the construction of G-global al-
gebraic K-theory. The claim therefore follows from Theorem 4.3.33 together with
Theorem 4.3.3. �

The above argument in particular also yields the corresponding statement for
the functor PermCat → Γ-EM-SSetspecial

∗ arising in Schwede’s construction of
global algebraic K-theory.

We close this discussion by establishing the analogous results for G-equivariant
algebraic K-theory, in particular proving Theorem D from the introduction.

Theorem 4.3.37. Assume G is finite. The composition

(4.3.15) G-SymMonCat0 Γ−→ Γ-G-Cat∗
Fun(EG,–)−−−−−−−→ Γ-G-Cat∗

N−→ Γ-G-SSet∗

yields a quasi-localization G-SymMonCat0 → (Γ-G-SSetspecial
∗ )∞G-equiv. level.

Proof. By the proof of Theorem 4.1.48, (4.3.15) agrees up to G-equivariant
level weak equivalence with the composition

G-SymMonCat0 → Γ-EM-G-SSetspecial
∗

(–)[ω•]−−−−→ Γ-G-I-SSetspecial
∗

evUG−−−→ Γ-G-SSetspecial
∗

where the unlabelled arrow is the composite from the previous theorem, and UG
is any complete G-set universe. The claim now follows from the previous theorem
together with Corollary 2.2.50 and Theorem 2.2.56. �

Theorem 4.3.38. The equivariant K-theory functor

KG : G-SymMonCat0 → (G-Spectra≥0
G-equivariant)

∞

is a quasi-localization.
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Proof. This follows from the previous theorem by the usual G-equivariant
Delooping Theorem (which we recalled as Theorem 3.4.10). �

Remark 4.3.39. We emphasize that we are working with the näıve notion of
symmetric monoidal or permutative categories with G-action here, not with the
genuine permutative G-categories in the sense of Guillou and May [GM17, Defi-
nition 4.5]. Following Shimakawa, they observed in Proposition 4.6 of op. cit. that
the endofunctor Fun(EG, –) of G-PermCat lifts to a functor into the category of
genuine permutative G-categories, and they further mention that (while expecting
other examples to exist) they are not aware of any genuine permutative G-category
not arising this way.

On the other hand, the theorem above tells us that näıve permutative G-
categories actually model—via a similar construction—all (genuine)G-equivariantly
coherently commutative monoids. This makes it plausible that the Guillou-May-
Shimakawa construction should actually yield an equivalence of homotopy theories
between G-PermCat (with respect to the maps inducing weak equivalences on
categorical homotopy fixed points) and the genuine permutative G-categories (with
respect to maps inducing weak equivalences on honest fixed points); in particular,
up to G-equivariant weak equivalence any genuine permutative G-category should
indeed arise this way. We plan to come back to this question in future work.





APPENDIX A

Abstract homotopy theory

In this appendix we recall for easy reference some general results about quasi-
categories and model categories that we use in the main text.

A.1. Quasi-localizations

While we in most cases use tools from homotopical algebra to prove our state-
ments, we are ultimately interested in comparisons on the level of quasi-categories.
The passage from the former to the latter is as usual provided by the following
definition:

Definition A.1.1. Let C be a quasi-category and let W ⊂ C1 be a collection of
morphisms. A functor γ : C → D of quasi-categories is called a quasi-localization at
W if it has the following universal property: for every quasi-category T , restriction
along γ induces an equivalence

(A.1.1) Fun(D ,T )→ FunW (C ,T ),

where FunW (C ,T ) ⊂ Fun(C ,T ) is the full subcategory spanned by the homotopi-
cal functors, i.e. functors sending morphisms in W to equivalences. (We remark
that taking T = D implies that γ itself sends morphisms in W to equivalences.)

By common abuse, we will often supress W from notation and call γ : C → D
(and in fact, by further abuse also simply D itself) ‘the’ quasi-localization of C .

Warning A.1.2. Lurie [Lur09, Definition 5.2.7.2] uses the term ‘localization’
for a functor with a fully faithful right adjoint, for which we use the more classi-
cal name ‘Bousfield localization’ in this paper; the above terminology is used for
example by Joyal in [Joy08].

While every Bousfield localization is a quasi-localization by [Lur09, Proposi-
tion 5.2.7.12], the converse does not hold and in fact most of the quasi-localizations
we are interested in are not Bousfield localizations.

Remark A.1.3. In the 1-categorical situation one often adds the condition
that W is a wide subcategory (in which case the pair (C ,W ) is called a relative
category) and sometimes also that it satisfies the 2-out-of-3 property (categories
with weak equivalences) or even 2-out-of-6 (homotopical categories). While in all of
our applications W is indeed a wide subcategory, the stronger properties need not
always be satisfied.

However, assume γ : C → D is a quasi-localization at some collection W .
Then by definition any functor sending W to equivalences factors up to equivalence
through γ and hence it sends (by 2-out-of-3 for equivalences in quasi-categories)
more generally all morphisms f ∈ W to equivalences where W is the collection of
morphisms sent to equivalences by γ. It follows that γ is also a quasi-localization
at any collection W ′ of morphisms such that W ⊂ W ′ ⊂ W . As W is a wide

245
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subcategory satisfying the 2-out-of-6 property, this will allow us in some proofs to
restrict to this case.

Remark A.1.4. Specializing T in (A.1.1) to nerves of categories and using the
enriched adjunction h a N, we see that if C → D is a quasi-localization at some
collection W of morphisms, then the induced functor hC → hD is a localization at
the same collection. In particular, if C is an ordinary relative category (which we
confuse with its nerve) and C → D is a quasi-localization, then C ∼= hNC → hD
is an ordinary localization (where the isomorphism is the inverse of the counit).

A.1.1. Simplicial localization. While we use the above theory mostly as a
conceptual way to pass from homotopical algebra to higher category theory, there
is also a simplicial version of it (which historically predates the systematic study of
higher categories), that is central to some arguments in Chapter 1.

For this we recall that a simplicial category C can be equivalently viewed as
a simplicial object in categories that is constant on objects. We will write Cn (an
ordinary category) for the n-simplices of the corresponding simplicial object. For
n = 0 this yields what is usually called the underlying category of C and accordingly
we will write u C := C0.

Definition A.1.5. Let C be a simplicial category that is fibrant in the Bergner
model structure [Ber07], i.e. all its mapping spaces are Kan complexes. Moreover,
let W be any collection of morphisms in u C . A simplicially enriched functor
γ : C → D is called a simplicial localization at W if for some (hence any) fibrant
replacement D → E the induced map N∆C → N∆E on homotopy coherent nerves
is a quasi-localization at W (considered as a collection of morphisms in N∆C in the
obvious way).

Construction A.1.6. We refer the reader to [DK80a, 2.1] for the definition
of the Hammock localization LH of a relative category (C ,W ). We will not need
any details about the construction (except in the proof of Proposition A.1.15, where
the necessary properties will be recalled), but only that it is a strict 1-functor and
that there is a natural map C → LH(C ,W ).

We also recall from [DK80a, Remark 2.5] that this definition can be extended
to a simplicial category C together with a wide simplicial subcategory W as follows:
we define LH(C ,W ) to be the diagonal of the bisimplicial object in categories
obtained by applying LH levelwise to (Cn,Wn). We remark that LH becomes
a functor by employing functoriality of LH levelwise, and we get a natural map
C → LH(C ,W ) induced from the unenriched situation.

Definition A.1.7. A relative simplicial category consists of a simplicial cate-
gory C together with a wide simplicial subcategory W . We call the pair (C ,W )
fibrant if both C and W are fibrant in the Bergner model structure.

Theorem A.1.8 (Dwyer & Kan, Hinich). Let (C ,W ) be a fibrant relative sim-
plicial category. Then the natural map C → LH(C ,W ) is a simplicial localization
at the 1-morphisms of W .

Proof. This is [Hin16, Proposition 1.2.1], also cf. [Hin16, 1.1.3]. �

Note that this theorem in particular tells us that if (C ,W ) is an ordinary
relative category, then C → LH(C ,W ) is a simplicial localization.
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Remark A.1.9. Let C be a relative category. Then the above map C → LH(C )
is the identity on objects. A standard fibrant replacement in the Bergner model
structure proceeds by applying Kan’s Ex∞-functor to morphism spaces and hence
again is the identity on objects, i.e. we get a simplicial localization γ : C → D with
D fibrant such that γ is the identity on objects.

As the objects of NC and N∆(D) are canonically identified with the objects of
C and D , respectively, we conclude that any relative category C admits a quasi-
localization N(C ) → E that is an isomorphism on objects. In this case we can of
course just rename the 0-simplices of E so that our quasi-localization is the identity
on objects. We will call the quasi-localization constructed this way (and by abuse
of terminology, also the resulting quasi-category E ) the associated quasi-category
of C . We write E =: C∞.

Of course, insisting on a statement about equality (or already about isomor-
phism) of the class of objects is ‘evil’ in the sense that it is not invariant under
equivalences. However, we think that this is justified as this convention allows us
to simplify several statements and it is moreover also close to the way we usu-
ally think about quasi-localizations (as higher versions of the ordinary homotopy
category, whose standard construction is the identity on objects).

Dwyer and Kan already proved that for a simplicial model category C its full
subcategory C ◦ of cofibrant-fibrant objects is the simplicial localization of u C ◦

at the weak homotopy equivalences; more precisely, the inclusion u C ◦ ↪→ C ◦ is a
quasi-localization, see [DK80b, Proposition 4.8]. Their proof in fact gives a general
criterion, which we exploit in the main text:

Proposition A.1.10. Let C be a fibrant simplicial category and let W ⊂ u C
be a wide subcategory all of whose morphisms are homotopy equivalences in C .

Assume moreover that for every n ≥ 0 the map

LH(C0,W )→ LH(Cn, s
∗W )

induced by the unique map s : [n]→ [0] is a Dwyer-Kan equivalence (i.e. it induces
an equivalence of Ho(SSet)-enriched homotopy categories). Then u C ↪→ C is a
simplicial localization at W .

Proof. This is implicit in [DK80b, Proof of Proposition 4.8], also cf. [Hin16,
1.4.3 and 1.4.4]. We begin with the following observation:

Claim. The canonical map C → LH(C ,W ) is a Dwyer-Kan equivalence.

Proof. Let LH(C ,W ) → E be a fibrant replacement. Then Theorem A.1.8
implies that the induced map N∆(C )→ N∆(E ) is a quasi-localization at a subclass
of the equivalences of C , hence it is an equivalence of quasi-categories. As N∆

reflects weak equivalences between fibrant simplicial categories (as the right half of
a Quillen equivalence), we conclude that C → E is a Dywer-Kan equivalence. The
claim follows from 2-out-of-3. 4

Looking at the naturality square

u C C

LH(u C ,W ) LH(C ,W )
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it therefore suffices by 2-out-of-3 that LH(u C ,W ) → LH(C ,W ) is a Dwyer-Kan
equivalence. This map is the identity of objects so it suffices to prove that it is
given on mapping spaces by weak equivalences of simplicial sets.

For this we observe that for objects X,Y ∈ C the mapping space on the right
is by definition the diagonal of the bisimplicial set mapsLH(C•,W )(X,Y ), and the

map mapsLH(u C ,W )(X,Y ) → mapsLH(C ,W )(X,Y ) in question is the diagonal of
the map of bisimplicial sets

const mapsLH(C0,W )(X,Y )→ mapsLH(C•,W )(X,Y )

induced in degree n by the degeneracy [n]→ [0]. The assumption guarantees that
this is a levelwise weak equivalence and hence its diagonal is a weak equivalence
by the ‘Diagonal Lemma’ from simplicial homotopy theory, see [GJ99, Proposi-
tion IV.1.7], finishing the proof. �

Remark A.1.11. The same proof works in the case where W is any wide fibrant
simplicial subcategory and one replaces s∗W by Wn. However, we will only need
the above version.

We recall one of the standard ways to produce Dwyer-Kan equivalences on
simplicial localizations, also see [DK80b, 2.5].

Definition A.1.12. Let F,G : C → D be homotopical simplicial functors of
relative simplicial categories. Then F and G are called homotopic if they can be
connected by a zig-zag of simplicially enriched transformations that are at the same
time levelwise weak equivalences.

Definition A.1.13. A homotopical functor F : C → D of relative simplicially
enriched categories is called a homotopy equivalence if there exists a homotopical
functor G : D → C such that FG is homotopic to the identity of D and GF is
homotopic to the identity of C .

Corollary A.1.14. Let F : C → D be a homotopy equivalence of fibrant sim-
plicial categories equipped with fibrant wide subcategories of weak equivalences. Then
the induced functor on LH is a Dwyer-Kan equivalence.

Proof. This follows from the universal property in the same way as in the
claim in the proof of Proposition A.1.10.

Alternatively, we reduce to the case of ordinary categories as in the proof of
Proposition A.1.10. We can then enlarge the weak equivalences on both sides so
that they satisfy 2-out-of-3, so that all the intermediate functors in the zig-zags are
themselves homotopical. The claim then follows by inductively applying [DK80a,
Proposition 3.5]. �

Finally we note:

Proposition A.1.15. Let C be a model category with functorial factorizations
and let B ⊂ C be a full subcategory closed under weak equivalences. Then the
inclusion B ↪→ C induces a fully faithful functor on quasi-localizations.

Proof. It suffices that LH(B)→ LH(C ) is a weak equivalence on morphism
spaces. For this let us pick X,Y ∈ B arbitrary.

We consider the category MX,Y with objects the zig-zags

X A B Y∼ ∼
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and morphisms the commutative diagrams

A B

X Y.

A′ B

∼

∼ ∼

∼

∼∼

The important observation is that it does not matter whether we form this in B
or C as B is closed under weak equivalences. In the terminology of [DK80a], the
k-simplices of N(MX,Y ) are hammocks of width k and length 3 (in B or equiva-
lently in C ) between X and Y , whereas the k-simplices of mapsLH(B)(X,Y ) and

mapsLH(C )(X,Y ) are reduced hammocks of width k and arbitrary length between
X and Y in B resp. C . We then have a commutative diagram

N(MX,Y ) mapsLH(B)(X,Y )

N(MX,Y ) mapsLH(C )(X,Y )

where the horizontal maps are given by reduction (i.e. iteratively removing identity
columns and composing adjacent horizontal arrows in the same direction). The
lower map is a weak homotopy equivalence by [DK80b, 7.2]; it therefore suffices
that the top map is also a weak equivalence, for which we can use the same argu-
ment as Dwyer and Kan. Namely, it is enough by [DK80a, Proposition 6.2-(i)]
together with [DK80a, Proposition 8.2] to exhibit subcategories W1,W2 of the
weak homotopy equivalences in B satisfying the following conditions:

(1) Any diagram

X Y

X ′

i∈W1

with i ∈W1 can be functorially completed to a square

X Y

X ′ Y ′

i∈W1 j∈W1

with j ∈W1.
(2) Any diagram

Y ′

X Y

p∈W2

with p ∈W2 can be functorially completed to a square

X ′ Y ′

X Y

q∈W2 p∈W2

with q ∈W2.
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(3) Every weak equivalence w admits a functorial factorization w = w2w1

with wi ∈Wi, i = 1, 2.

All of these properties are actually formal consequences of the fact that B is closed
under weak equivalences together with the respective properties for C , cf. [DK80a,
Proposition 8.4], but as Dwyer and Kan omit most of the (simple) argument for
these, we give a full proof here for completeness:

We take W1 to be the acyclic cofibrations and W2 to be the acyclic fibrations.
Then invoking the functorial factorizations of C in, say, an acyclic cofibration fol-
lowed by a fibration (which is automatically acyclic by 2-out-of-3), we get for any
weak equivalence w : X → Y in B a functorial diagram

X
w1∈W1−−−−−→ H

w2∈W2−−−−−→ Y

in C ; as B is closed under weak equivalences, also H ∈ B, and as B is full, this
yields the desired functorial factorizations, proving Condition (3).

It remains to verify Condition (1), Condition (2) will then follow from duality.
For this we simply pass to pushouts in C ; then j is again an acylic cofibration, and
hence also Y ′ ∈ B. Functoriality is induced (and in fact, uniquely determined) by
the universal property. This finishes the proof. �

A.1.2. Quasi-localizations and functor categories. Let A and B be sim-
plicial categories; it will be convenient to use the exponential notation A B :=
Fun(B,A ) for the enriched category of simplicially enriched functors below, and
similarly for functor categories of quasi-categories. In this subsection, we want to
prove the following model categorical manifestation of the universal property of
quasi-localizations:

Theorem A.1.16 (Dwyer & Kan). Let A,B be small and fibrant simplicial
categories, let f : A → B be a simplicial localization at some collection W of mor-
phisms, and let C be any combinatorial simplicial model category. Then the functor
induced by f∗ : CB → CA on associated quasi-categories is fully faithful and its es-
sential image consists precisely of those elements of CA that send morphisms in W
to weak homotopy equivalences in C .

The fibrancy assumptions on A and B are not necessary, but merely an artifact
of our methods. In the special case that C = SSet with the usual Kan-Quillen
model structure (which is the only case we use in the main text), a proof without
this assumption can be found as [DK87, Theorem 2.2]. However, the language and
setup used in op. cit. differ from ours, and rigorously translating their statement
would require quite a bit of additional terminology. Instead, we will give an alter-
native proof here using a ‘rigidification’ result due to Lurie. This requires some
preparations, throughout which we fix the combinatorial simplicial model category
C .

Lemma A.1.17. Let A be a small simplicial category and equip CA with either
the projective or injective model structure. Then each of the inclusions

(CA)◦ ↪→ (C ◦)A ↪→ CA

induces an equivalence on the quasi-localizations of the underlying categories at the
levelwise weak equivalences.
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Proof. This is true for the composition (in even greater generality) by [Hin16,
Proposition 1.3.8]; we remark that in our case a simpler proof can be given analo-
gously to [DK80b, 7.1]. We will use the same strategy to prove that the first map
also has the desired property, which is enough to prove the lemma.

The model category CA is combinatorial and hence we can in particular find
functorial cofibrant and fibrant replacements, i.e. a functor Q : CA → CA together
with a natural transformation π : Q ⇒ id and a functor P : CA → CA together
with a natural transformation ι : id ⇒ P such that for each X ∈ CA, πX : QX →
X is an acyclic fibration with cofibrant source and ιX : X → PX is an acyclic
cofibration with fibrant target; we remark that we do not make any claim about
these functors or transformations being simplicially enriched. We observe that P
and Q are homotopical, preserve the underlying categories of (CA)◦ and (C ◦)A

(the latter because (co)fibrations in CA are in particular levelwise (co)fibrations),
and that moreover PQ sends all of u(CA) to u((CA)◦).

We claim that (the restriction of) PQ is homotopy inverse to the inclusion
u
(
(CA)◦

)
↪→ u

(
(C ◦)A

)
. Indeed, we have for each X ∈ CA a natural zig-zag of

levelwise weak equivalences

PQ(X)
(ιQ◦X)←−−−− Q(X)

πX−−→ X

in CA. By the above remarks, Q preserves u((C ◦)A) (hence the above exhibits PQ
as right homotopy inverse to the inclusion) and u((CA)◦) (hence the above exhibits
PQ also as left homotopy inverse); this finishes the proof. �

Proposition A.1.18. Let A be a small fibrant simplicial category. Then the
composition

N
(
(C ◦)A

)
↪→ N∆

(
(C ◦)A

)
→ N∆(C ◦)N∆(A),

where the second map is adjunct to

N∆

(
(C ◦)A

)
×N∆(A) ∼= N∆

(
(C ◦)A ×A

) eval−−→ N∆(C ◦),

is a quasi-localization at the levelwise weak equivalences.

Here we abbreviate N(D) := N(u D) for any simplicial category D .

Proof. Equip CA with either the projective or injective model structure. By
the previous lemma we may restrict to (CA)◦, and this can then be factored as

N
(
(CA)◦

)
↪→ N∆

(
(CA)◦

)
↪→ N∆

(
(C ◦)A

)
→ N∆(C ◦)N∆(A).

Here the first map is a quasi-localization at the levelwise weak equivalences by
[DK80b, Proposition 4.8], while the composition of the latter two maps is an
equivalence by a special case of [Lur09, Proposition 4.2.4.4], also see [Lur09, proof
of Corollary 4.2.4.7]. Thus, the whole composition is a quasi-localization at the
levelwise weak equivalences, finishing the proof. �

Proof of Theorem A.1.16. Let us say that the essential image of a functor
is created by a collection X if it consists precisely of the objects equivalent to
elements of X. The above statement is then equivalent to demanding that the
essential image of f∗ be created by those diagrams that send morphisms in W to
weak equivalences (as this collection is already closed under equivalences by the
2-out-of-3-property for weak equivalences in C and as weak equivalences in CA are
saturated). This notion has the advantage that it is invariant under equivalences.
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We observe that the subcollection of levelwise cofibrant-fibrant diagrams in-
verting W creates the same essential image: indeed, by the proof of the previ-
ous proposition, any X ∈ CA admits a zig-zag of levelwise weak equivalences in
CA (and hence of equivalences in the quasi-localization) to one that is levelwise
cofibrant-fibrant, and if X inverts W , so does this replacement by 2-out-of-3.

Now let us consider the diagram

N
(
(C ◦)B

)
N(CB) D

N
(
(C ◦)A

)
N(CA) E

f∗ f∗

where the right hand horizontal maps are quasi-localizations and the right hand
vertical map is induced by f∗; the right hand square commutes up to equivalence
while the left hand one commutes strictly.

By Lemma A.1.17 also the horizontal composites are quasi-localizations at the
levelwise weak equivalences, and obviously the right hand vertical map still qualifies
as induced map. Altogether we see that it suffices to prove: the functor induced by
f∗ : (C ◦)B → (C ◦)A on quasi-localizations is fully faithful and its essential image is
created by those elements of (C ◦)A that invert W (or, more precisely, their images
under the quasi-localization functor).

For this we may pick any model of quasi-localizations, and we choose the one
from the previous proposition. We then have a (strictly) commutative diagram

N
(
(C ◦)B

)
N∆(C ◦)N∆(B)

N
(
(C ◦)A

)
N∆(C ◦)N∆(A)

f∗ N∆(f)∗

which allows us to identify the induced map with the obvious restriction. By
assumption, this is fully faithful with essential image those N∆(A)→ N∆(C ◦) that
invert W , which obviously includes all images of diagrams in (C ◦)A sending W
to weak homotopy equivalences (as weak homotopy equivalences in C ◦ agree with
honest homotopy equivalences). So it only remains to prove the following converse:
each such diagram N∆(A) → N∆(C ◦) is equivalent to the image of an object of
(C ◦)A inverting W . But indeed, as quasi-localizations are essentially surjective
(see e.g. Remark A.1.9), it is equivalent to some X ∈ (C ◦)A, which by 2-out-of-3
for equivalences in the quasi-category N∆(C ◦) then sends W to (weak) homotopy
equivalences as desired. �

A.1.3. Derived functors. Assume we are given a Quillen adjunction

(A.1.2) F : C � D :G.

While the above associates quasi-categories to C and D , in most cases F and G
are not homotopical, so they a priori do not give rise to functors between them.
In the classical situation, one instead has left and right derived functors, respec-
tively, yielding an adjunction LF : Ho(C )� Ho(D) :RG on the level of homotopy
categories. We are interested in the following higher categorical version of this:

Theorem A.1.19 (Mazel-Gee). In the above situation, there is an adjunction

(A.1.3) LF : C∞ � D∞ :RG
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of associated quasi-categories that is induced by (A.1.2) in the following sense: the
restriction of LF to C c is equivalent (in a preferred way) to the composition

C c F−→ D → D∞,

and dually for the restriction of RG to Df .

Proof. This is [Maz16, Theorem 2.1] and its proof. �

In analogy with the classical situation, we call LF the left derived functor of F
and RG the right derived functor of G. The adjunction (A.1.3) is called the derived
adjunction.

Remark A.1.20. By [DK80b, Proposition 5.2] the inclusions C c ↪→ C and
Df ↪→ D induce equivalences on quasi-localizations, also see [Maz16, Lemma 2.8]
or [Hin16, Proposition 1.3.4]. It follows that the above functors LF and RG
are determined up to (canonical) equivalence by their restrictions to C c or Df ,
respectively, prescribed above.

Now assume F is actually homotopical. Then it induces F∞ : C∞ → D∞ by
the universal property of quasi-localizations. But the restriction of F∞ to C c is
by definition equivalent to the restriction of LF , so we conclude from the above
that LF ' F∞ (in a preferred way) in this case. Dually, we see that RG ' G∞

whenever G is homotopical.

Remark A.1.21. The above characterization together with Remark A.1.4 al-
ready implies that the functors induced by LF and RG on the homotopy categories
are canonically equivalent to the classical derived functors.

However, it is a bit subtle to identify the unit or counit transformation of the
quasi-categorical adjunction (A.1.3). In the case that C and D admit functorial
factorizations, there are obvious candidates of this, mimicking the construction of
the derived adjunction on homotopy categories, and Mazel-Gee sketches a proof
that one can use this to get a unit transformation in [Maz16, A.3.1].

While all the model categories appearing in this monograph admit functorial
functorizations, we do not need this identification. In fact, we only care about the
adjunction data to exist and whether unit and/or counit are equivalences. The
latter can be checked on the level of homotopy categories, where they are conjugate
to the unit and counit, respectively, of the classical derived adjunction for purely
formal reasons.

A.2. Some homotopical algebra

A.2.1. Bousfield localizations of model categories. Let C be any model
category. We recall that a (left) Bousfield localization of C is a model structure
Cloc on the same underlying category with the same cofibrations as C and such
that each weak equivalence of C is also a weak equivalence in Cloc. If Wloc is the
collection of weak equivalences in Cloc, we also call Cloc the Bousfield localization
of C with respect to Wloc.

It follows directly from the definitions that

(A.2.1) id : C � Cloc : id

is a Quillen adjunction with homotopical left adjoint. Note that (A.2.1) indeed
induces a Bousfield localization on associated quasi-categories as any adjoint of a
quasi-localization is fully faithful [Cis19, Proposition 7.1.17].
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We will now recall two criteria for the existence of Bousfield localizations for
combinatorial simplicial model categories. These are based on the following notions:

Definition A.2.1. Let C be a simplicial model category, and write 〈X,Y 〉 for
the mapping spaces in the Ho(SSet)-enriched homotopy category of C ; explicitly,
〈X,Y 〉 can be computed as the mapping space in C between a cofibrant replacement
of X and a fibrant replacement of Y .

Now let S be any set of maps in C .

(1) An object Z ∈ C is called S-local if 〈f, Z〉 is an isomorphism in Ho(SSet)
for all f ∈ S.

(2) A map g : X → Y in C is called an S-weak equivalence if 〈g, Z〉 is an
isomorphism in Ho(SSet) for all S-local Z ∈ C .

We remark that in the second condition we could equivalently ask that the
induced map [g, Z] of hom-sets in the unenriched homotopy category be bijective
(as the S-local objects are closed under the cotensoring over SSet). However, in
the definition of S-locality the use of the mapping spaces is indeed essential.

Theorem A.2.2. Let C be a left proper, combinatorial, and simplicial model
category, and let S be a set of maps in C . Then there exists a unique model structure
Cloc on C with the same cofibrations as C and the S-weak equivalences as weak
equivalences. This model structure is left proper, simplicial, and combinatorial.
Moreover, its fibrant objects consist precisely of the fibrant objects of C that are in
addition S-local.

Proof. The notion of S-locality is obviously invariant under changing the el-
ements of S by conjugation with weak equivalences, and hence so is the notion
of S-weak equivalences. We may therefore assume without loss of generality that
S consists of cofibrations of C , for which the above appears as [Lur09, Proposi-
tion A.3.7.3]. �

Theorem A.2.3 (Lurie). Let

(A.2.2) F : C � D :G

be a simplicial Quillen adjunction of left proper simplicial combinatorial model cat-
egories, and assume that the right derived functor RG is fully faithful (say, as a
functor between homotopy categories). Then there exists a Bousfield localization
Cloc of C whose weak equivalences are precisely those maps f such that (LF )(f)
is an isomorphism in Ho(D). The resulting model structure is again left proper,
and an object is fibrant in Cloc if and only if it is fibrant in C and contained in the
essential image of RG.

Moreover, (A.2.2) defines a simplicial Quillen equivalence

(A.2.3) F : Cloc � D :G.

Proof. [Lur09, Corollary A.3.7.10] proves all of this except for the charac-
terization of the fibrant objects. We record that the proof of the aforementioned
corollary uses [Lur09, Proposition A.3.7.3] (i.e. the previous theorem) to construct
the model structure, so the fibrant objects of Cloc are closed inside the fibrant ob-
jects of C under the weak equivalences of C (this is in fact true for any Bousfield
localization, but I do not know a good reference for this more general statement).
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It is obvious that the fibrant objects of Cloc are fibrant in C . Let us now
consider the composition

(A.2.4) Ho(D)
fibrant replacement−−−−−−−−−−−−→ Ho(Df )

Ho(G)−−−−→ Ho(C f
loc).

Postcomposing with the equivalence Ho(C f
loc) ↪→ Ho(Cloc) yields the standard con-

struction of the right derived functor RG associated to the Quillen equivalence
(A.2.3), hence we conclude that (A.2.4) is an equivalence of categories. In particu-

lar, Ho(G) : Ho(Df ) → Ho(C f
loc) is essentially surjective. By Ken Brown’s Lemma

applied to the Quillen adjunction C � Cloc, the weak equivalences between the
fibrant objects of Cloc are the same as the weak equivalences in C , so we can find
for any fibrant object X of Cloc a zig-zag of C -weak equivalences to some GY with
G ∈ Df , i.e. X is contained in the essential image of RG : Ho(D)→ Ho(C ).

It remains to prove the converse, i.e. that any C -fibrant objectX in the essential
image of RG is also fibrant in Cloc. For this we observe that, since Ho(C f )→ Ho(C )
and Ho(Df ) → Ho(D) are equivalences, X can be connected by a zig-zag of weak
equivalences inside C f to GY for some Y ∈ Df . The latter is fibrant in Cloc as

(A.2.3) is a Quillen adjunction. But C f
loc ⊂ C f is closed under C -weak equivalences

as remarked above, hence also X is fibrant in Cloc, finishing the proof. �

In the main text we are usually concerned with model categories C in which
filtered colimits are homotopical, i.e. for any small filtered category I the colimit
functor C I → C sends levelwise weak equivalences to weak equivalences. The
following lemma in particular tells us that this property is preserved under the
localization process of the above theorems:

Lemma A.2.4. Let C be a model category in which filtered colimits are homo-
topical, and let Cloc be a Bousfield localization that is moreover cofibrantly generated
as a model category. Then filtered colimits in Cloc are also homotopical.

Proof. Let I be a small filtered category. As Cloc is cofibrantly generated, the
projective model structure on (Cloc)I exists, and with respect to this the colimit
functor is left Quillen.

If now f : X → Y is any weak equivalence in (Cloc)I , then we can factor it into
an acyclic cofibration i followed by a fibration p, which is again acyclic by 2-out-
of-3. As the acyclic fibrations in (Cloc)I are defined levelwise, and since the acyclic
fibrations of Cloc and C agree, p is then in particular levelwise a weak equivalence
of C . The assumption therefore guarantees that colimI p is a weak equivalence (in
C and hence also in Cloc). On the other hand, colimI being left Quillen implies
that colimI i is an acyclic cofibration and hence in particular a weak equivalence in
Cloc. The claim then follows by another application of 2-out-of-3. �

The localization criterion given in Theorem A.2.3 has the disadvantage that the
weak equivalences of Cloc can be hard to grasp as soon as the left adjoint F in (A.2.2)
is not homotopical, and of course the situation is even worse for Theorem A.2.2. On
the other hand, in both cases we usually have good control over the fibrant objects,
so it will be useful to know how much this tells us about the model structure.

Proposition A.2.5. Let C0,C1 be model structures on the same underlying
category that have the same cofibrations as well as the same fibrant objects. Then
the two model structures actually agree.
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Proof. A proof can be found as [Rie14, Theorem 15.3.1], where this result is
attributed to Joyal. �

There is also a ‘relative’ version of this statement that needs some additional
assumptions:

Proposition A.2.6. Let C ,D be simplicial model categories such that D is left
proper, and let

(A.2.5) F : C � D :G

be a simplicial adjunction such that F preserves cofibrations and G preserves fibrant
objects. Then (A.2.5) is already a Quillen adjunction.

Proof. See [Lur09, Corollary A.3.7.2]. �

A.2.2. Homotopy pushouts. While we freely use several basic properties
of homotopy pushouts in the main text, this appendix is devoted to proving the
following closure property:

Proposition A.2.7. Let C be a left proper model category, let D be any cocom-
plete category, and let U : D → C be any functor preserving filtered colimits up to
weak equivalence, i.e. for any small filtered category I and any diagram X• : I → D ,
the canonical map colimi∈I U(Xi)→ U(colimi∈I Xi) is a weak equivalence. Assume
moreover that filtered colimits in C are homotopical.

Then the class H of morphisms i : A→ B in D such that U sends all pushouts
along i to homotopy pushouts is closed under pushouts, transfinite compositions,
and retracts.

Remark A.2.8. If U is the identity, then the above says that in a left proper
model category in which filtered colimits are homotopical, the class of maps i such
that pushouts along i are homotopy pushouts is stable under pushout, transfinite
compositions, and retracts. Because of the left properness assumption these agree
with the so-called flat maps [BB17, Proposition 1.6], i.e. those maps such that
pushouts along pushouts of them preserve weak equivalences. The flat maps are al-
ways (i.e. without the above assumptions) stable under pushout, finite composition,
and retracts, as appears for example without proof in [HHR16, Proposition B.11]
or [BB17, Lemma 1.3].

Remark A.2.9. The corresponding closure properties when one considers ordi-
nary pushouts as opposed to homotopy pushouts in C are proven (by a very similar
argument to the one we will give below) as [BMO+15, Lemma 3.1].

To prove the proposition, we will need some preliminary work.

Lemma A.2.10. Let C be a cocomplete category, let I be a small filtered category
with an initial object ∅, let X•, Y• : I → C be functors, and let τ : X• ⇒ Y• be a
natural transformation such that for each i ∈ I the naturality square

X∅ Xi

Y∅ Yi

τ∅ τi
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is a pushout. Then the induced square

(A.2.6)

X∅ colimi∈I Xi

Y∅ colimi∈I Yi

τ∅ colimi∈I τi

is also a pushout.

Proof. We decompose (A.2.6) as

X∅ colimi∈I X∅ colimi∈I Xi

Y∅ colimi∈I Y∅ colimi∈I Yi.

τ∅ colimi∈I τ∅ colimi∈I τi

The right hand square is a pushout as a colimit of pushout squares. But the two
left hand horizontal maps are isomorphisms as filtered categories have connected
nerve, so also the total rectangle is a pushout as desired. �

Here is the homotopy theoretic analogue of the previous result:

Lemma A.2.11. Let C be a left proper model category such that filtered colimits
in C are homotopical, let I be a small filtered category with an initial object ∅, let
X•, Y• : I → C be functors, and let τ : X• ⇒ Y• be a natural transformation such
that for each i ∈ I the naturality square

(A.2.7)

X∅ Xi

Y∅ Yi

τ∅ τi

is a homotopy pushout. Then the induced square

(A.2.8)

X∅ colimi∈I Xi

Y∅ colimi∈I Yi

τ∅ colimi∈I τi

is also a homotopy pushout.

Proof. We choose a factorization X∅
κ∅−−→ P∅

ϕ∅−−→ Y∅ of τ∅ : X∅ → Y∅ into
a cofibration followed by a weak equivalence. Next, we choose for each i ∈ I an
honest pushout

(A.2.9)

X∅ Xi

P∅ Pi

κ∅ κi

in such a way that for i = ∅ the lower horizontal map P∅ → P∅ is the identity.
By the universal property of pushouts there is a unique way to extend the chosen
maps P∅ → Pi to a functor P• : I → C in such a way that the κi assemble into
a natural transformation κ : X• ⇒ P•. Moreover, we define ϕi : Pi → Yi to be
the map induced by the square (A.2.7) via the universal property of the pushout
(A.2.9). Then each ϕi is a weak equivalence by definition of homotopy pushouts in
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left proper model categories. Moreover, the ϕi obviously assemble into a natural
transformation ϕ : P• ⇒ Y• such that τ = ϕκ.

Thus we can factor (A.2.8) as

X∅ colimi∈I Xi

P∅ colimi∈I Pi

Y∅ colimi∈I Yi.

κ∅ colimi∈I κi

ϕ∅ colimi∈I ϕi

The top square is a pushout by the previous lemma and the left hand vertical map
is a cofibration by construction, so it is a homotopy pushout by left properness of C .
On the other hand, the lower left vertical map is a weak equivalence by construction,
whereas the lower right vertical map is a weak equivalence as a filtered colimit of
weak equivalences. Thus the total square is a homotopy pushout, finishing the
proof. �

Proof of Proposition A.2.7. Consider any diagram

A C E

B D F

f

in D with f ∈ H and such that both squares are pushouts. Applying U to it
then yields by assumption a diagram in C such that both the left square as well as
the big rectangle are homotopy pushouts. It follows that also the right square is a
homotopy pushout, and hence we conclude that H is indeed closed under pushouts.

Next, assume that we have a diagram

A′ A A′

B′ B B′

f ′

i

f

r

f ′

j s

exhibiting f ′ as a retract of some f ∈H and consider any pushout

(A.2.10)

A′ B′

C ′ D′.

α′

f ′

β′

We now construct a commutative cube

A B

A′ B′

C D

C ′ D′

f

i

f ′ j

k

`
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as follows: starting from

A B

A′ B′

C ′ D′

f

α′

i

f ′

β′

j

we form the pushout C of C ′ ← A′ → A, yielding the left hand square. With this
constructed, we can also form the pushout D of C ← A → B, yielding the back
square. Finally, the map ` : D′ → D is induced by i, j, k via the functoriality of
pushouts.

On the other hand we also have a commutative cube

A′ B′

A B

C ′ D′.

C D

f ′

r

f s

t
u

Here t is induced via the universal property of the pushout C by α′r : A→ C ′ and
id: C ′ → C ′; in particular, it makes the left hand square commute by construction.
Finally, we let u be the map induced by the remaining front-to-back maps via the
functoriality of pushouts again.

By assumption we have ri = id and sj = id while tk = id by construction; the
universal property of the pushout D′ then implies that also u` = id. Altogether,
we have exhibited the pushout (A.2.10) as retract of a pushout along f ∈ H . In
particular we see that applying U to (A.2.10) yields a square that is a retract of
a homotopy pushout, hence itself a homotopy pushout. We conclude that H is
indeed closed under retracts.

Finally, we have to prove that H is closed under transfinite compositions.
Analogously to the argument in the proof of Lemma 1.2.59 this amounts to the
following: given any ordinal α and a functor X• : {β ≤ α} → D such that

(A) For each β < α, the map Xβ → Xβ+1 is in H ,
(B) If β ≤ α is a limit ordinal, then the maps Xγ → Xβ for γ < β express Xβ

as (filtered) colimit,

then the induced map X0 → Xα is in H again. So let us consider any pushout

(A.2.11)

X0 Xα

C D

f g

in D ; we have to prove that U sends this to a homotopy pushout.
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For this we define C0 = C, τ0 = f , and then choose for each β ≤ α a pushout

(A.2.12)

X0 Xβ

C0 Cβ

τ0 τβ

in such a way that for β = 0 the lower horizontal map is the identity and for β = α
the chosen pushout is given by (A.2.11). By the universal property of pushouts,
there is a unique way to extend the chosen maps C0 → Cβ as to yield a functor
C• : {β ≤ α} → C so that the τβ assemble into a natural transformation X• ⇒ C•.
We observe that by Lemma A.2.10 together with the uniqueness of colimits, the
maps Cγ → Cβ , γ < β exhibit Cβ as colimit for every limit ordinal β ≤ α.

We will now prove by transfinite induction that the square (A.2.12) is sent by
U to a homotopy pushout for each β ≤ α. Specializing to β = α then precisely
proves the claim.

For β = 0 both horizontal maps are identity arrows, hence the same holds
after applying U . In particular, the resulting square is a homotopy pushout. Now
assume β > 0 and we have already proven the claim for all γ < β.

If β is a successor ordinal, β = γ + 1, then we decompose our square into

X0 Xγ Xβ

C0 Cγ Cβ .

τ0 τγ τβ

Both the left hand square as well as the total rectangle are pushouts by construc-
tion, hence so is the right hand square. The left hand square is sent by U to a
homotopy pushout by induction hypothesis; on the other hand (Xγ → Xβ) ∈ H
by assumption, hence also the right hand square is sent to a homotopy pushout.
But then the whole square is sent to a homotopy pushout, just as desired.

On the other hand, if β is a limit ordinal, then we decompose our square into

X0 colimγ<β Xγ Xβ

C0 colimγ<β Cγ Cβ .

f colimγ<β τγ τβ

We have seen above that the two right hand horizontal maps are isomorphisms. To-
gether with the assumption that U preserve filtered colimits up to weak equivalence,
we conclude that in the diagram

U(X0) colimγ<β U(Xγ) U(Xβ)

U(C0) colimγ<β U(Cγ) U(Cβ).

U(f) colimγ<β U(τγ) U(τβ)

the right hand horizontal maps are weak equivalences. Thus it suffices to prove that
the left hand square is a homotopy pushout, which is just an instance of the previous
lemma. We conclude that H is indeed stable under transfinite composition, which
finishes the proof. �
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A.2.3. Transferring model structures. Here we collect several basic facts
about transferred model structures that are used in the main text. We begin by
recalling the definition once more for convenience:

Definition A.2.12. Let D be a complete and cocomplete category, let C be
a model category, and let F : C � D :U be an (ordinary) adjunction. The model
structure transferred along F a U on D is the (unique if it exists) model structure
where a morphism f is a weak equivalence or fibration if and only if Uf is.

Crans [Cra95] and Kan gave useful criteria on when we can transfer a cofi-
brantly generated model structure in the above sense:

Proposition A.2.13. Let D be a complete and cocomplete category, let C be
a cofibrantly generated model category, I a set of generating cofibrations, J a set of
generating acyclic cofibrations, and let

F : C � D :U

be an (ordinary) adjunction. Assume the following:

(1) The sets FI and FJ permit the small object argument.
(2) Any relative FJ-cell complex is a weak equivalence (i.e. sent by U to a

weak equivalence).

Then the transferred model structure exists. Moreover, it is cofibrantly generated
with sets of generating cofibrations FI and generating acylic cofibrations FJ .

Here we as usual say that a set K of maps permits the small object argument
if the sources of all maps in K are small relative to relative K-cell complexes.

Proof. Crans [Cra95, Theorem 3.3] proved a slightly weaker statement; the
above appears as [Hir03, Theorem 11.3.2], where this is attributed to Kan. �

The following folklore result tells us that several convenient model categorical
properties are preserved by the above transfer process:

Lemma A.2.14. Let F : C � D : U be as above, and assume the transferred
model structure on D exists.

(1) If C is right proper, then so is D .
(2) Assume that C is a simplicial model category, D is enriched, tensored,

and cotensored over SSet, and that F a U can be enriched to a simplicial
adjunction. Then D is a simplicial model category.

Proof. We prove the second statement, the argument for the first one being
similar but easier. For this we have to verify that for any cofibration i : K ↪→ L in
SSet and any fibration p : X → Y in D the map

(i∗, p∗) : XL → XK ×Y K Y L

is a fibration, and that this is acyclic if at least one of i and p is. By definition,
this can be detected after applying U , and as U is a simplicial right adjoint the
resulting map agrees up to conjugation by isomorphisms with

(i∗, U(p)∗) : U(X)L → U(X)K ×U(Y )K U(Y )L.

As U is right Quillen, U(p) is a fibration, acyclic if p is. Hence the claim follows
from the fact that C is simplicial. �
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The question whether the transferred model structure is also left proper is more
subtle. The following criterion covers all cases relevant to us:

Lemma A.2.15. Let C be a left proper model category, let D be any model
category, and let U : D → C be a functor of their underlying categories. Assume
that U preserves and reflects weak equivalences, and that it sends pushouts along
cofibrations to homotopy pushouts. Then D is left proper, and U preserves and
reflects homotopy pushouts.

Proof. Consider any commutative square

(A.2.13)

A B

C D

f

i

g

in D . If this is a pushout and i is a cofibration, then its image under U is a homotopy
pushout by assumption. In particular, if f is in addition a weak equivalence, then
so is Uf and hence also Ug. As U creates weak equivalence, this means that g is a
weak equivalence, proving left properness of D .

For a general commutative square (A.2.13), we now factor i into a cofibration
A→ H followed by a weak equivalence H → B, yielding a commutative cube

A B

A H

C D

C P

=
∼

=

where the front face is a pushout. All front-to-back maps are weak equivalences
except possibly the lower right one, which is (as D is left proper) a weak equivalence
if and only if (A.2.13) is a homotopy pushout.

Applying U to this diagram, we get a commutative cube in C whose front
face is a homotopy pushout (by assumption) and all of whose front-to-back maps
except possibly the lower right one are weak equivalences (as U is homotopical). We
conclude that the lower right front-to-back map of this cube is a weak equivalence
if and only if also the back square is a homotopy pushout.

If now (A.2.13) is a homotopy pushout, then P → D and hence also U(P → D)
is a weak equivalence. We conclude from the above that U preserves homotopy
pushouts. On the other hand, if the back square of the cube obtained by applying
U , i.e. the result of applying U to (A.2.13), is a homotopy pushout, then the map
U(P → D) is also a weak equivalence. As U reflects weak equivalences, so is P → D,
and we conclude that U reflects homotopy pushouts, finishing the proof. �

A.2.4. Enlarging the class of cofibrations. At several points, we want
to enlarge the cofibrations of a given model structure, in particular to construct
several injective model structures. In this section we devise two criteria for this,
both of them relying on the following characterization of certain combinatorial
model structures, which is due to Lurie building on previous work of Jeff Smith.
Here the notion of a perfect class of morphisms occurs as a black box; the curious
reader can find the definition as [Lur09, Definition A.2.6.10].
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Theorem A.2.16 (Lurie). Let C be a locally presentable category, let W be a
class of morphisms in C , and let I be a set of morphisms in C . Then the following
are equivalent:

(1) There exists a (necessarily unique) left proper combinatorial model struc-
ture on C with weak equivalences W and generating cofibrations I. More-
over, filtered colimits are homotopical with respect to this model structure.

(2) All of the following conditions are satisfied:
(a) The class W is perfect.
(b) W is closed under pushouts along pushouts of morphisms of I.
(c) If a morphism f in C has the right lifting property against I, then

f ∈W .

Proof. The implication (1) ⇒ (2) is [Lur09, Remark A.2.6.14], whereas
(2)⇒ (1) is [Lur09, Proposition A.2.6.13]. �

Corollary A.2.17. Let C be a left proper combinatorial model category in
which filtered colimits are homotopical. Let I1 be a set of generating cofibrations
and let I2 be any other set of morphisms in C such that weak equivalences in C are
closed under pushouts along pushouts of maps in I2.

Then there exists a unique combinatorial model structure on C with generating
cofibrations I := I1 ∪ I2 and weak equivalences the weak equivalences of C . This
model structure is left proper, and filtered colimits in it are homotopical. It is right
proper if the original one was.

Proof. Let us prove that the sets W and I satisfy the assumptions for the
implication ‘⇐’ of the previous theorem.

We first observe that W is perfect by the other direction of the theorem, veri-
fying Condition (a). Moreover, weak equivalences are closed under pushouts along
pushouts of maps in I1 (by left properness of the original model structure) and
closed under pushouts along pushouts of maps in I2 (by assumption), which proves
Condition (b). Finally, as I ⊃ I1, any map with the right lifting property against
I also has the right lifting property against I1 and hence is a weak equivalence,
verifying Condition (c). This proves that the model structure exists, is left proper,
and that filtered colimits in it are homotopical.

It only remains to show that the new model structure is right proper provided
that the original one was. It is a general (and somewhat surprising) fact, that
being right proper only depends on the class of weak equivalences, see [Rez02,
Proposition 2.5]. However, in the present situation there is an easier argument:
both model structures have the same weak equivalences and any cofibration in the
old model structure is also a cofibration in the new one, so that any new fibration is
already a fibration in the old model structure. The claim thus follows immediately
from the definition of right properness. �

As a special case of this we can now often ‘borrow’ the cofibrations of another
model structure on the same underlying category:

Corollary A.2.18. Let C1,C2 be combinatorial model structures on the same
category, such that every cofibration of C1 is also a cofibration in C2. Assume
moreover that the weak equivalences of C1 are closed under filtered colimits and
under pushouts along cofibrations of C2 (!).
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Then there exists a unique model structure C12 on the same category whose
weak equivalences are the weak equivalences of C1 and whose cofibrations are the
cofibrations of C2. This model structure is left proper, combinatorial, and filtered
colimits in it are homotopical. If C1 is right proper, then so is C12.

Note that this is not an instance of Cole’s Mixing Theorem [Col06, Theo-
rem 2.1] nor of its dual—in particular, we do not require any containment relation
between the two classes of weak equivalences. In fact, in our applications in the
main text, the weak equivalences of C1 (and hence also of C12) will be strictly
finer than the ones of C2, whereas Cole’s result produces a model structure for the
coarser notion of weak equivalence.

Proof. As C1-cofibrations are in particular C2-cofibrations, the assumptions
guarantee that C1 is left proper; moreover, we have explicitly assumed that filtered
colimits in it are homotopical.

Now let Ik be any set of generating cofibrations of Ck, k = 1, 2. As the weak
equivalences of C1 are stable under pushouts along all cofibrations of C2, they are in
particular stable under pushouts along pushouts of I2. We can therefore apply the
previous corollary to get a left proper combinatorial model structure (right proper
if C1 is) with the same weak equivalences as C1 and with generating cofibrations
I1 ∪ I2. We omit the easy verification that this is the desired model structure. �
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Ponto, and Carolyn Yarnall, A Model Structure on GCat, Women in Topology: Col-

laborations in Homotopy Theory. WIT: Women in Topology Workshop, Banff Inter-

national Research Station, Banff, Alberta, Canada, August 18–23, 2013, Providence,
RI: American Mathematical Society (AMS), 2015, pp. 123–134.

[Bro73] Kenneth S. Brown, Abstract Homotopy Theory and Generalized Sheaf Cohomology,

Transactions of the American Mathematical Society 186 (1973), 419–458.
[Car84] Gunnar Carlsson, Equivariant Stable Homotopy and Segal’s Burnside Ring Conjec-

ture, Ann. Math. (2) 120 (1984), 189–224.

[Car91] , Equivariant Stable Homotopy and Sullivan’s Conjecture, Invent. Math. 103

(1991), no. 3, 497–525.

[Car92] , A Survey of Equivariant Stable Homotopy Theory, Topology 31 (1992), no. 1,
1–27.

[Cis19] Denis-Charles Cisinski, Higher Categories and Homotopical Algebra, Camb. Stud.

Adv. Math., vol. 180, Cambridge: Cambridge University Press, 2019.
[Col06] Michael Cole, Mixing Model Structures, Topology Appl. 153 (2006), no. 7, 1016–1032.

[Cra95] Sjoerd E. Crans, Quillen Closed Model Structures for Sheaves, J. Pure Appl. Algebra

101 (1995), no. 1, 35–57.
[Day70] Brian Day, On Closed Categories of Functors, Reports of the Midwest Category Sem-

inar IV (Saunders MacLane, ed.), Lect. Notes Math., vol. 137, Springer Berlin Hei-

delberg, 1970, pp. 1–38.
[DHL+19] Dieter Degrijse, Markus Hausmann, Wolfang Lück, Irakli Patchkoria, and

Stefan Schwede, Proper Equivariant Stable Homotopy Theory, available as
arxiv:1908.00779, to appear in Mem. Am. Math. Soc., 2019.

[DK80a] William G. Dwyer and Daniel M. Kan, Calculating Simplicial Localizations, J. Pure

Appl. Algebra 18 (1980), 17–35.
[DK80b] , Function Complexes in Homotopical Algebra, Topology 19 (1980), 427–440.

265



266 BIBLIOGRAPHY

[DK84] , Singular Functors and Realization Functors, Indag. Math. 46 (1984), 147–
153.

[DK87] , Equivalences Between Homotopy Theories of Diagrams, Algebraic Topology

and Algebraic K-Theory, Proc. Conf., Princeton, NJ (USA), Ann. Math. Stud., vol.
113, 1987, pp. 180–205.

[Dus01] John W. Duskin, Simplicial Matrices and the Nerves of Weak n-Categories I: Nerves

of Bicategories, Theory Appl. Categ. 9 (2001), 198–308.
[Elm83] Anthony D. Elmendorf, Systems of Fixed Point Sets, Trans. Am. Math. Soc. 277

(1983), 275–284.
[FHM82] Zbigniew Fiedorowicz, Henning Hauschild, and J. Peter May, Equivariant Algebraic

K-Theory, Algebraic K-Theory, Proc. Conf., Oberwolfach 1980, Part I (R. Keith

Dennis, ed.), Lect. Notes Math., vol. 967, Springer Berlin Heidelberg, 1982, pp. 23–
80.
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List of symbols

(–)[A] (simplicial) subset of elements

supported on A, 49

Ab category of abelian groups

A`` collection of all subgroups, 7

α, β, . . . generic names for group

homorphisms (when discussing functoriality)

α∗ restriction along α, 12

α! left adjoint to restriction, 12

α∗ right adjoint to restriction, 12

asm assembly map (for an SSet∗-enriched

functor, e.g. prolongation of a Γ-space), 182

BiSSet category of bisimplicial sets, 31

BM (enriched) category with one object and

hom set/mapping space M , 10

cα conjugation by α ∈M, 30

Cat category of small categories

C c subcategory of cofibrant objects of a

model category

C f subcategory of fibrant objects of a model

category

CH(K) centralizer of K in H, 14

C∞ associated quasi-category

(quasi-localization that is the identity on

objects), 247

CMon category of commutative monoids, 93

C ◦ subcategory of cofibrant-fibrant objects

of a model category

core maximal subgroup of a monoid, 14

CX tame EM-category associated to an

EM-simplicial set, 222

∆ simplex category

∆ diagonal subgroup, 226

Ϝ (digamma) lift of ϝ to Γ-G-parsummable

simplicial sets, 142

ϝ (digamma) G-global Γ-space associated to

a G-parsummable simplicial

set/G-ultra-commutative monoid, 142

E collection of graph subgroups

ΓH,ϕ ⊂M×G with H universal and ϕ

injective, 43

E right adjoint to Ob: Cat→ Set; right

adjoint to ev0 : SSet→ Set, 17

E⊗ G-global delooping of a G-global Γ-space

(in terms of tensoring over G-I-SSet), 183

E∧ G-global delooping of a G-global Γ-space

(in terms of smash product of G-global

spectra), 186

EG G-equivariant delooping of a Γ-G-space

(via evaluating at the sphere spectrum), 182

EM simplicial (or categorical) monoid

obtained from M, 18

EM×M – left adjoint to forgetful functor

EM-SSet→M-SSet, 19

ε generic name for an adjunction counit

ε last vertex map, 221

ε̃ categorical last vertex map CNC → C, 225

ess im essential image of a functor

η generic name for an adjunction unit

evω functor I-SSet→M-SSet or

I-SSet→ EM-SSet given by evaluating

at ω, 64

Ϝ see Ϝ (digamma)

ϝ see ϝ (digamma)

F generic collection of subgroups, 7

F function spectrum, right adjoint to smash

product of symmetric spectra, 170

FI right adjoint to tensoring of Spectra

over I-SSet, 177

Fin collection of finite subgroups, 7

Fϕ a small symmetric monoidal G-category,

twisted version of the symmetric monoidal

category of finite free H-sets and

H-equivariant isomorphisms, 216

Fϕ a specific small permutative G-category

equivalent to Fϕ, 216

Fϕ G-parsummable version of Fϕ, 214

Fun functor category

Fun enriched category of enriched functors, 9

G generic discrete group

GA,B graph subgroups of A×B for

homomorphisms A→ B, 14

GE,B graph subgroups ΓH,ϕ ⊂ A×B with

H ∈ E, 14

Ga semifree diagram/spectrum, left adjoint

to evaluation at a with induced

Aut(a)-action, 118

Γ category of finite pointed sets and based

maps, 113

γ Wirthmüller map, 138

269



270 LIST OF SYMBOLS

Γ(C ) Γ-category built from the small

symmetric monoidal category C , 114

ΓH,ϕ graph subgroup {(h, ϕ(h)) : h ∈ H}, 14

(G : H) index of the subgroup H in G

–⊗H – balanced tensor product (quotient of

tensoring by diagonal H-action), 117

h homotopy category of a quasi-category or

general (large) simplicial set, 246

Ho homotopy (1-)category of a category with

weak equivalences

(–)‘h’ϕ ‘homotopy’ fixed points (homotopy

fixed points with respect to underlying

equivalences of categories), 199

I category of finite sets and injections, 59

I extension of I to all sets, 62

I simplicially enriched category built from

I, 59

I extension of I to all sets, 62

I ×I – left adjoint to forgetful functor

I-SSet→ I-SSet, 59

im image of a map

Inj(A,B) set of injective maps A→ B, 18

ι unit map of a lax (symmetric) monoidal

functor, 95

ιS inclusion of the subset S ⊂ ω into ω, 224

KG G-equivariant algebraic K-theory, 209

KG-gl G-global algebraic K-theory, 196

K′G-gl variant of KG-gl for small symmetric

monoidal categories with strictly unital

G-action, 205

Kgl global algebraic K-theory, 195

L topologically enriched category of finite

dimensional real inner product spaces and

linear isometric embeddings, 84

L ‘universal compact Lie group,’ topological

monoid of linear isometric embeddings

R∞ → R∞, 85

`A Ath latching map, 61

LA Ath latching object, 61

Λ left adjoint in Elemendorf’s Theorem, 9

λ left adjoint to forgetful functor along

change of subgroups, 15

λ left unitality isomorphism in a (symmetric)

monoidal category

L(EM\–) left adjoint to triv, 45

LF left derived functor (on homotopy

categories or associated

quasi-categories), 253

LH Hammock localization, 246

L(M\–) left adjoint to triv, 47

(–)//M G-global action category/bar

construction, 30

M ‘universal finite group,’ monoid of

self-injections of ω, 15

maps simplicial mapping space (possibly

based, possibly equipped with conjugation

action)

mapsI(I, –) right adjoint to forgetful functor

I-SSet→ I-SSet, 70

mapsM(EM, –) right adjoint to forgetful

functor EM-SSet→M-SSet, 19

n the set {1, . . . , n}
N nerve of a small category

∇ (nabla) multiplicativity map of a lax

(symmetric) monoidal functor, 95

N∆ homotopy coherent nerve, 246

OF (also OM ) (simplicially enriched) orbit

category, 10

Ω loop space, based mapping space

maps(S1, –), 157

ω set of non-negative integers, 15

Ω• loop I-simplicial set of a global

spectrum, 173

(–)[ω•] reparametrization of EM-action;

I-simplicial set built from an EM-simplicial

set this way, 74

P free commutative monoid functor (left

adjoint to forgetful functor), 104

ParSumCat category of parsummable

categories, 192

ParSumSSet category of parsummable

simplicial sets, 97

PermCat category of small permutative

categories and strict symmetric monoidal

functors, 198

(–)ϕ fixed points for the graph subgroup

corresponding to ϕ, 14

Φ parsummable category associated to a

small permutative category, 198

ϕ,ψ, . . . generic names for group

homomorphisms from finite groups to G

(when discussing G-global weak

equivalences)

Φ right adjoint in Elmendorf’s Theorem, 9

–×ϕ G quotient of –×G by graph

subgroup, 24

Φ⊗ right adjoint to E⊗, 185

Φ∧ right adjoint to E∧, 186

πH∗ H-equivariant stable homotopy groups of

a G-spectrum (H ⊂ G), 156

πϕ∗ ϕ-equivariant stable homotopy groups of

a G-global spectrum (ϕ : H → G), 161

P(R) parsummable category associated to a

ring R, 193

P(R) symmetric monoidal category of

finitely generated projective R-modules and

R-linear isomorphisms, 193

ps map S+ → 1+ in Γ projecting onto s ∈ S;

used to define the Segal map, 114

Qnk filtration of nth tensor power, 145

R right adjoint to right adjoint to usual

embedding from proper G-equivariant into

G-global homotopy theory (triv or

const), 45
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R pointset level model of R for

G-I-simplicial sets, 78

(–)REM right adjoint to triv, 45

resGH restriction of G-action to H for

H ⊂ G, 127

RG right derived functor (on homotopy

categories or associated

quasi-categories), 253

ρ right adjoint to forgetful functor along

change of subgroups, 15

ρ (generalized) Segal map, 114

ρ a specific map from the suspension

spectrum of the underlying space of a global

Γ-space to its delooping, 212

% twisted Segal map, 138

(–)RM right adjoint to triv, 47

(–)sat saturation of an EM-G-category or

parsummable category, 200

Set category of sets

Σ suspension, S1 ∧ –, 157

Σ indexing category for symmetric

spectra, 153

σα a certain simplex of NCX (or N(∆ ↓ X))

build out of the ‘last vertices’ of the

αi’s, 224

Σ• suspension spectrum of an I- or

I-simplicial set, 173

Σn oH wreath product

σ(u0,...,un) homomorphism witnessing that

[u0, . . . , un] is a fixed point, 26

SPn n-th symmetric product (in pointed

contexts), agrees with n-th symmetric power

for n <∞, 143

SSet category of simplicial sets

StabH(x) stabilizer of x with respect to a

given action of H, 25

s(U) (filtered) poset of finite H-subsets of the

complete H-set universe U , 156

supp support (with respect to M- or

EM-action), 49

suppk support of a simplex of an

EM-simplicial set with respect to (k + 1)-th

M-action, 95

SymMonCat category of small symmetric

monoidal categories and strong symmetric

monoidal functors, 203

SymMonCat0 category of small symmetric

monoidal categories and strictly unital

strong symmetric monoidal functors, 203

Symn(f) n-th symmetric power of f ,

f⊗n/Σn, 99

(–)τ (simplicial) subset of finitely supported

elements; subcategory of tame objects, 49

Top category of ‘topological spaces’

(i.e. compactly generated spaces)

triv embedding of unstable proper

G-equivariant into G-global homotopy

theory via trivial M- or EM-actions, 45

U implicitly chosen Grothendieck universe, 4

u underlying category (of 0-simplices) of a

simplicially enriched category, 22
UCom category of ultra-commutative

monoids, 102

UG union of countably infinitely many copies
of all transitive G-sets with finite isotropy up

to isomorphism (replacement for complete

set universe in the proper context), 77
uG underlying proper G-equivariant space of

a G-I-simplicial set, 78
uϕ (also uH) underlying Γ-H-space of a

G-global Γ-space for ϕ : H → G or H ⊂ G,

respectively, 125
uϕ (also uH) underlying H-equivariant

spectrum of a G-global spectrum for

ϕ : H → G or H ⊂ G, 180
u, v, . . . generic names for elements of M
VectR category of R-vector spaces

1 tensor unit
2 see n

(–)• right adjoint to evω , see also (–)[A], 65

∇ see ∇ (nabla)
� pushout product, 11

⊗ generic notation for monoidal product
⊗ tensoring of Spectra over I-SSet via

levelwise smash product, 175

(–)+ left adjoint to forgetful functor from
pointed to unpointed category, 119

t internal disjoint union of sets, 22
� box product, 93





Index

action category, 30

algebraic K-theory

G-equivariant, see G-equivariant

algebraic K-theory

G-global, see G-global algebraic

K-theory

global, see global algebraic K-theory

assembly map, 182

associated quasi-category, 247

associated spectrum, see also delooping,
195

Barratt-Priddy-Quillen Theorem, see
G-global Barratt-Priddy-Quillen

Theorem

Bergner model structure on simplicial
categories, 246

bimorphism, 94

Bousfield localization, 245

for model categories, 253–255

along a Quillen adjunction, 254

at a set of maps, 254

box product

on EM-Catτ , 192

on EM-SSetτ , 95

as an operadic product, 100

homotopical properties, 97–99

on Γ-EM-SSetτ∗ , 142

on I-SSet, 93

on I-SSet, 101

on M-SSet, 94

categorical equivalence, 206

category of simplices, 221

last vertex map, see last vertex map,

category of simplices

category with weak equivalences, 245

cell induction, 33

cellular family, 8

centralizing morphism, see also
G-centralizing morphism, 21

coherently commutative monoid

commutative monoid in I-SSet, 94

G-equivariant, see Γ-G-space

G-global, see G-globally coherently
commutative monoid

Γ-space, see Γ-space

complete H-set universe, 16

complete H-universe, 85

conjugation on M, 30

connective

G-equivariantly, see G-equivariantly
connective

G-globally, see G-globally connective

coshearing isomorphism, 138

Day convolution, see also box product, 93

delooping

G-equivariant, see G-equivariant

delooping

G-global, see G-global delooping

derived functor, 252

Diagonal Lemma, 32

equivariant, 32

dimension function, see also generalized

projective model structure, for

categories with dimension function, 60

Elmendorf’s Theorem

classical, 10

for monoids, 10

equivariant injective model structure, see
injective F-model structure

equivariant model structure, see

F-equivariant model structure

equivariant weak equivalence, see F-weak
equivalence

F-model structure, 7

injective, see injective F-model structure

F-weak equivalence, 7

Fin-global weak equivalence, 87, 91

flat, see also flat cofibration

G-spectrum, 154

I-simplicial set, 65

I-simplicial set, 66

flat cofibration

in G-Spectra, 154
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in I-SSet, 62

function spectrum

G-globally, 170

comparison to G-global mapping
space, 178

functoriality in homomorphisms

for EM-G-SSet, 41–42

for EM-G-SSetτ , 82–84

for G-I-SSet, 72–73

for G-I-SSet, 70–72

for G-Spectra, 166–168

for Γ-EM-G-SSetτ∗ , 129, 132

for M-G-SSet, 42–43

for M-SSet, 12–15

pointed versions, 120–121

G-centralizing morphism, 27

G-equivariant algebraic K-theory, 209

vs. G-global algebraic K-theory, 209,

210

G-equivariant delooping, 182

G-equivariant flat level model structure

on G-Spectra, 154

G-equivariant flat model structure

on G-Spectra, 155

G-equivariant homotopy theory, 7

proper, see proper G-equivariant

homotopy theory

stable, see G-equivariant stable

homotopy theory

G-equivariant level model structure

flat, see G-equivariant flat level model
structure

on Γ-G-SSet∗, 125

projective, see G-equivariant projective

level model structure

G-equivariant level weak equivalence

in G-Spectra, 154

in Γ-G-SSet∗, 116, 125

G-equivariant model structure

flat, see G-equivariant flat model
structure

flat level, see G-equivariant flat level
model structure

level, see G-equivariant level model
structure

projective, see G-equivariant projective
model structure, on G-Spectra

G-equivariant projective level model
structure

on G-Spectra, 154

G-equivariant projective model structure

on G-Spectra, 155

G-equivariant special weak equivalence,
133

G-equivariant stable flat model structure,

see G-equivariant flat model structure,
on G-Spectra

G-equivariant stable homotopy theory,
155–158

vs. G-global stable homotopy theory,

179–180

G-equivariant stable model structure

flat, see G-equivariant flat model
structure, on G-Spectra

on Γ-G-SSet∗, 182

projective, see G-equivariant projective

model structure, on G-Spectra

G-equivariant stable projective model

structure, see G-equivariant projective

model structure, on G-Spectra

G-equivariant stable weak equivalence, see

G-equivariant weak equivalence, stably

G-equivariant Thomason Theorem

for permutative G-categories, 242

non-group-completed, 242

G-equivariant weak equivalence

special, see G-equivariant special weak
equivalence

stably, 155

unstably, see G-weak equivalence

G-equivariantly connective, 182

G-global algebraic K-theory

of G-parsummable categories, 196

of G-rings, 196

of permutative G-categories, 202

of symmetric monoidal G-categories, 205

these are compatible, 206, 207

vs. G-equivariant algebraic K-theory,

209, 210

G-global Barratt-Priddy-Quillen-Theorem

for G-parsummable categories, 213, 214

for G-parsummable simplicial sets, 212

for pointed G-parsummable simplicial

sets, 212

for symmetric monoidal G-categories,
215, 219

non-group-completed, 211

G-global delooping, 183, 186

G-global flat level model structure

on G-Spectra, 159

G-global flat model structure

on G-Spectra, 163

G-global Γ-space, 121–123

semiadditivity, 135

special, 129

special model structure, see G-global

special model structure

special weak equivalence, see G-global

special weak equivalence

very special, 183

vs. G-ultra-commutative monoids, 151

Wirthmüller isomorphism, see
Wirthmüller isomorphism, for G-global

Γ-spaces

G-global level model structure
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flat, see G-global flat level model
structure

injective, see injective G-global level

model structure

on Γ-EM-G-SSet∗, 121

on Γ-G-I-SSet∗, 123

positive, see positive G-global level

model structure

projective, see G-global projective level
model structure

G-global level weak equivalence

in G-Spectra, 158

in Γ-EM-G-SSet∗, 121

in Γ-EM-G-SSetτ∗ , 122

in Γ-G-I-SSet∗, 123, 125

G-global mapping space, 177

comparison to function spectrum, 178

G-global model structure

flat, see G-global flat model structure

flat level, see G-global flat level model

structure

injective, see injective G-global model

structure

injective level, see injective G-global level
model structrue

level, see G-global level model structure

on EM-G-SSet, 25

on EM-G-SSetτ , 81

on G-I-SSet, 68

on G-I-SSet, 67

on M-G-SSet, 28

on M-G-SSetτ , 82

pointed versions, 119

positive, see positive G-global model

structure

positive level, see positive G-global level

model structure

projective, see G-global projective model
structure

projective level, see G-global projective

level model structure

special, see G-global special model

structure

strict level, see strict level model
structure

G-global Ω-spectrum, 161, 179

G-global orbit category, 25–28

as a simplicial localization, 27

G-global projective level model structure

on G-Spectra, 158

G-global projective model structure

on G-Spectra, 164

G-global special model structure

on Γ-EM-G-SSetτ∗ , 130

on Γ-G-I-SSet, 133

G-global special weak equivalence

in Γ-EM-G-SSetτ∗ , 130

G-global stable weak equivalence, see
G-global weak equivalence, in

G-Spectra

G-global Thomason Theorem

for G-parsummable categories, 220

non-group-completed, 221

for permutative G-categories, 242

non-group-completed, 242

G-global weak equivalence

in EM-G-SSet, 25

in G-Cat, 202

in G-I-SSet, 64, 67

in G-I-SSet, 64

in G-ParSumCat, 196

in G-Spectra, 160, 162

in M-G-SSet, 28

G-globally coherently commutative monoid

commutative monoid in G-I-SSet,

109–110

model structure, see positive G-global

model structure, on
CMon(G-I-SSet)

commutative monoid in M-G-SSetτ ,

110–111

model structure, see positive G-global

model structure, on
CMon(M-G-SSetτ )

G-global Γ-space, see G-global Γ-space

G-parsummable simplicial set, see

G-parsummable simplicial set

G-ultra-commutative monoid, see
G-ultra-commutative monoid

G-globally connective, 183

truncation, 189

G-Ω-spectrum, 155

G-parsummable category, 192

G-global algebraic K-theory, see

G-global algebraic K-theory, of
G-parsummable categories

G-global weak equivalence, see G-global
weak equivalence, in G-ParSumCat

saturated, 199, 201

saturation, 200

vs. G-parsummable simplicial sets, 220

vs. permutative G-categories, 241

G-parsummable simplicial set, 97

model structure, see positive G-global
model structure, on G-ParSumSSet

vs. G-parsummable categories, 220

G-semistable

M-G-simplicial set, 25

replacement, 29–36

G-ultra-commutative monoid, 102

model structure, see positive G-global

model structure, on G-UCom

vs. G-global Γ-spaces, 151

vs. Γ-G-spaces, 152

G-universal model structure, 24
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G-universal weak equivalence, 24

G-weak equivalence, 7

Γ-G-space, 115

evaluation at finite G-sets, 115

prolongation to G-SSet∗, 181

special, 115, 133

stable model structure, see G-equivariant
stable model structure, on Γ-G-SSet∗

very special, 182

vs. G-ultra-commutative monoids, 152

Wirthmüller isomorphism, 116

ΓG-space, 115

Γ-space, 113

as enriched functor, 114

prolongation to SSet∗, 181

special, 114

generalized projective model structure

for categories with dimension function,

60

cofibrations, 61

undirected, 117, 118

genuine G-weak equivalence, see G-weak

equivalence

global algebraic K-theory, see also
G-global algebraic K-theory

of parsummable categories, 195

of rings, 195

vs. G-equivariant algebraic K-theory,

210

global E∞-algebra, 113

global Γ-category, see G-global Γ-category,

195

global homotopy theory, 17–24, 84–92

global model structure, see also G-global

model structure

on EM-SSet, 18

on I-Top, 88

on L-Top, 86

global orbit category, see also G-global
orbit category, 20, 21–23

as a simplicial localization, 21

global Thomason Theorem, see G-global
Thomason Theorem

global weak equivalence, see also G-global

weak equivalence

in EM-SSet, 18

in L-Top, 86

in L-Top, 86, see also Fin-global weak
equivalence

graph subgroup, 14

h-cofibration, 87

Hammock localization, 246

homotopic functors, 248

homotopical category, 245

homotopical functor, 245

homotopy coherent nerve, 246

homotopy equivalence

between relative (simplicial) categories,
248

‘homotopy’ fixed points

for EM-G-categories, 199

for G-categories, 202

these are equivalent, 202

homotopy pushout, 9, 256–260, 262

injective F-model structure, 11

injective G-global level model structure

on Γ-G-I-SSet∗, 126

injective G-global model structure

on EM-G-SSet, 28

on EM-G-SSetτ , 81

on G-I-SSet, 70

on G-I-SSet, 70

on G-Spectra, 165

on M-G-SSet, 28

on M-G-SSetτ , 82

injective model structure, 262

kernel oblivious, 43, 43–45

last vertex map

for C, 224

for category of simplices, 221

latching category, 61

latching map, 61

latching object, 61

left Bousfield localization, see Bousfield
localization

left derived functor, see derived functor

level weak equivalence

G-equivariant, see G-equivariant level
weak equivalence

G-global, see G-global level weak
equivalence

in Γ-SSet∗, 115

local object, 131, 254

localization, see also quasi-localization

Bousfield, see Bousfield localization

Hammock, see Hammock localization

simplicial, see simplicial localization

M -equivariant model structure, see

F-model structure

M -weak equivalence, see F-weak
equivalence

model structure on commutative monoids,
104, 101–105, see also positive

G-global model structure

Monoid Axiom, 103

Ω-spectrum, 155

G-global Ω-spectrum, see G-global

Ω-spectrum

G-Ω-spectrum, see G-Ω-spectrum

orthogonal space, 84

closed, 86
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global model structure, see global model
structure, on L-Top

positive global model structure, see

positive global model structure, on

L-Top

vs. I-spaces, 92, 89–92

parsummable, see G-parsummable

permit the small object argument, 261

permutative G-category, 198

homotopy coherent version, 207

vs. G-parsummable categories, 241

vs. genuine permutative G-categories?,

243

π∗-isomorphism

G-equivariantly, 156

G-globally, 161

pointed G-global homotopy theory, 119–121

positive G-global level model structure

on Γ-EM-G-SSetτ∗ , 122

positive G-global model structure

on CMon(G-I-SSet), 110

on CMon(M-G-SSetτ ), 111

on EM-G-SSetτ , 79

on G-I-SSet, 69

on G-I-SSet, 69
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Pushout Product Axiom

for simplicial model categories, 11

for symmetric monoidal model

categories, 103
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Strong Commutative Monoid Axiom, 104
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for EM-actions, 51, 95–96, 192
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see tensoring of G-Spectra over
G-I-SSet
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Thomason Theorem, 3
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model structure, on CMon(L-Top)

vs. global Γ-spaces, 151
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special
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special
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Wirthmüller isomorphism
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G-globally, 169
in Γ-EM-G-SSetτ∗ , 137, 137–141

in Γ-G-SSet∗, 116

Wirthmüller map, see also Wirthmüller
isomorphism, 137



Zusammenfassung

Die vorliegende Dissertation befasst sich mit äquivarianten und globalen Verall-
gemeinerungen der algebraischen K-Theorie von Ringen und kleinen symmetrisch
monoidalen Kategorien.

Äquivariante algebraische K-Theorie, wie sie z.B. von May oder Shimakawa
untersucht wurde, verallgemeinert die übliche nicht-äquivariante Theorie auf Situa-
tionen, in denen die Eingabe mit zusätzlichen Symmetrien in Gestalt einer Wirkung
durch eine endliche Gruppe G ausgestattet ist, wie z.B. im Fall der Galoiswirkung
auf dem Oberkörper E einer endlichen Galoiserweiterung E/F . Dabei weist sie einer
solchen Eingabe einen (konnektiven) genuinen G-äquivarianten stabilen Homotopie-
typ zu, der Informationen weit über die des üblichen algebraischen K-Theorie-
Spektrums mit der induzierten Wirkung hinaus enthält.

Im Gegensatz dazu stellt globale algebraische K-Theorie im Sinne Schwedes
eine Verfeinerung des klassischen Ansatzes dar, die einen (konnektiven) globalen
stabilen Homotopietyp aus der üblichen nicht-äquivarianten Eingabe konstruiert,
der zusätzliche Informationen darstellungstheoretischer Art codiert. Während ein
solcher globaler stabiler Homotopietyp zu genuinen G-äquivarianten stabilen Ho-
motopietypen für alle endlichen Gruppen G vergisst, stellt globale algebraische
K-Theorie dennoch keinesfalls eine Verallgemeinerung des äquivarianten Ansatzes
dar – insbesondere ist sie nur für Ringe bzw. symmetrisch monoidale Kategorien
ohne explizite Wirkung definiert und man kann sogar zeigen, dass sich interes-
sante Beispiele wie die Gal(C/R)-äquivariante algebraische K-Theorie der kom-
plexen Zahlen überhaupt nicht als unterliegender äquivarianter Homotopietyp eines
globalen stabilen Homotopietyps darstellen lassen.

In dieser Arbeit entwickeln wir G-globale algebraische K-Theorie als gleichzei-
tige Verallgemeinerung globaler und Verfeinerung G-äquivarianter algebraischer K-
Theorie. Zu diesem Zweck arbeiten wir zunächst die Grundlagen G-globaler Homo-
topietheorie als Synthese G-äquivarianter und globaler Homotopietheorie aus. Ein
besonderes Augenmerk liegt dabei auf dem Studium und Vergleich verschiedener
Modelle G-global kohärent kommutativer Monoide, wodurch wir insbesondere eine
Verbindung zwischen dem klassischen äquvarianten Ansatz mittels sogenannter
(spezieller) Γ-G-Räume und der globalen Philosophie basierend auf dem Begriff
der Ultrakommutativität herstellen.

Innerhalb dieses neugeschaffenen Rahmens beweisen wir als Hauptergebnis,
dass G-globale algebraische K-Theorie die Quasikategorie der konnektiven sta-
bilen G-globalen Homotopietypen als Lokalisierung der Kategorie der kleinen sym-
metrisch monoidalen Kategorien mit G-Wirkung darstellt, was ein klassisches Re-
sultat von Thomason über nicht-äquivariante K-Theorie verallgemeinert und ver-
schärft. Als direkte Konsequenz unseres G-globalen Vergleichs erhalten wir ins-
besondere analoge Aussagen für globale undG-äquivariante algebraischeK-Theorie.
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Wesentliche Bausteine für den Beweis dieses Resultats sind neben dem be-
reits erwähnten Vergleich der verschiedenen Modelle G-global kohärent kommuta-
tiver Monoide eine G-globale Verallgemeinerung eines klassischen Resultats von
Segal, welche diese zu G-globalen stabilen Homotopietypen in Beziehung setzt,
sowie eine Reduktion des homotopietheoretischen Vergleichs zwischen kleinen sym-
metrisch monoidalen Kategorien mit G-Wirkung und sogenannten G-parsummablen
Kategorien auf einen wesentlich einfacher zu handhabenden kategorientheoretischen
Vergleich, den wir bereits in einer früheren Arbeit bewiesen haben (T. Lenz. Par-
summable Categories as a Strictification of Symmetric Monoidal Categories. Theory
Appl. Categ. 37 (2021) No. 17, S. 482–529).
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