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Abstract

Modern chemistry has almost no boundaries in elemental composition and molecular size. State-of-the-
art chemical systems reach tremendous dimensions containing thousands of atoms, due to signi�cant
progress in the �elds of polymer and supramolecular chemistry, material science, and biochemistry.
This is associated with an increasing demand for the performance of computational methods to compare
experiments and simulations without restrictions in size and composition of the investigated system.
Universal, fast, and yet accurate methods are therefore of increasing importance and related popularity
in the �eld of theoretical chemistry. Thus, this thesis is devoted to the development and application
of e�cient force-�eld (FF) and tight-binding (TB) methods for the robust atomistic simulation of large
molecules. In particular, a generic FF is introduced, as well as improvements to existing semiempirical
extended tight-binding (xTB) methods, for the accurate calculation of Geometries, harmonic vibrational
Frequencies (HVF), and Noncovalent interaction (NCI) energies, termed as GFN methods.

The main subjects of interest for experimental and theoretical comparisons are often molecular ge-
ometries, reaction free energies, and spectroscopic properties such as infrared (IR) spectra. Their de-
scription requires not only accurate energies, but also e�cient gradients (�rst derivative), harmonic
vibrational frequencies (second derivative), and corresponding solvation models. However, with in-
creasing molecular size and complexity, the number of computational methods that are applicable for
energies, geometries, and frequencies decreases rapidly. For ab initio electronic structure methods,
therefore, the limit is reached for not much more than one hundred atoms and hence, a fully quantum
mechanical (QM) description is not possible. The next consequent step towards higher computational
e�ciency is represented by semiempirical quantum mechanical (SQM) methods, even though they are
often not generally applicable due to incomplete parameterizations or conceptual shortcomings. Re-
cently, this changed by the development of the GFNn-xTB family of methods (n = {0, 1, 2}), which
are parameterized for a major part of the periodic table up to radon. The underlying approximations
extend the accessible atom size regime to ∼1000 atoms. Yet, without massively parallel supercomput-
ers, the description of larger systems remains denied and classical approaches such as FFs have to be
applied. Although many di�erent types of FFs exist, universally accurate variants still represent an al-
most blank space in the repertoire of theoretical methods. Therefore, the development of more accurate
(polarizable) FFs is named as a “holy grail” for computational organic- and biochemistry.

The �rst part of this thesis presents a new generic force-�eld within the GFN framework. This
method, termed GFN-FF, represents a unique, partially polarizable, universal FF for the accurate de-
scription of structures and dynamics of large molecules and is developed to combine FF speed with
SQM accuracy. What distinguishes it from other FFs is a full periodic table (Z ≤ 86) parameterization
and a completely automated setup routine. To yield high accuracy for NCIs, a sophisticated charge
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Abstract

model based on electronegativity equilibration (EEQ) of Gaussian type charge densities is employed
and the treatment of Pauli repulsion and London dispersion interactions is analogous to TB methods.
Additionally, a novel hydrogen bond correction is introduced. In this thesis, a detailed description of the
underlying theory is given followed by illustrative application examples. It is shown that for structures
of metal-organic frameworks (MOF) and biomacromolecules (proteins) the GFN-FF optimized struc-
tures correspond well to the experimental crystal structures. GFN-FF is here in many cases the only
applicable computational method. On established benchmark sets for conformational and NCI ener-
gies, GFN-FF often reaches an accuracy that is comparable to SQM methods or even more sophisticated
GGA density functionals.

The next part of this thesis explores the new possibilities of GFN-FF in combination with the conformer-
rotamer ensemble sample tool (CREST) in the context of conformational space exploration for large
and complex structures, ranging from biomacromolecules to metal-organic frameworks. In a �rst
application-based study, the gas storage of greenhouse gases and bio-fuels, such as carbon dioxide
and methanol, in MOFs and porous organic cages (POCs) is investigated. Optimal binding sites are
determined by the CREST algorithm at the GFN-FF level of theory and re-optimized by DFT. The asso-
ciation energies calculated by GFNn-xTB and GFN-FF show comparable accuracy to the good perform-
ing (meta-)GGAs. As a second study, spin–spin distance distributions for nitroxide labeled mutants of
azurin and T4 lysozyme are modeled by molecular dynamics (MD) simulations at the GFN-FF level of
theory and compared to experimental EPR results. With deviations to the experiment of less than 2 Å
in the mean spin–spin distances, GFN-FF outperforms competitive methods.

In the last part, GFN methods are assessed for the calculation of HVF from which the thermostatis-
tical contributions to the free energies are derived within the modi�ed rigid-rotor-harmonic-oscillator
(RRHO) approximation. The accuracy of GFN2-xTB and GFN-FF is benchmarked in comparison to
DFT reference data. As an outlook for future applications, free association energies, also including
solvation e�ects, are calculated for protein-drug complexes of almost 5000 atoms. In addition, a new
method termed single-point hessian (SPH) is introduced for improved HVF of general non-equilibrium
structures, in which the input geometry is retained by the application of a biasing potential. Thereby,
the SPH approach enables the calculation of accurate thermodynamics on every point of the potential
energy surface (PES). Signi�cant improvements in thermostatistical contributions and IR spectra are
obtained by the SPH approach at the SQM and FF level of theory, if, e.g., DFT structures are provided
as input. Finally, the e�ect of explicit solvation is investigated in the context of IR spectra. For the �rst
time, a novel algorithm named quantum cluster growth (QCG) is applied, yielding results remarkably
close to the experimental reference spectra.

Overall, the methods developed and evaluated in this work present a great leap forward in theoretical
chemistry, bridging the gap between theory and experiment for large molecules. GFN-FF and SPH
calculations are added to the portfolio of computational methods and represent valuable and versatile
tools for theoretical pre-screening and modeling. From organometallic to biochemical systems, the
unique combination of e�ciency, generality, and accuracy of the GFN-FF and GFNn-xTB methods is
promising for future applications in protein-drug design, gas storage, explicit solvation, free energy
computations, and IR spectra interpretation.
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Zusammenfassung

Die moderne Chemie kennt fast keine Grenzen in der elementaren Zusammensetzung und Größe
der Moleküle. Chemische Systeme erreichen heutzutage enorme Dimensionen mit Tausenden von
Atomen, aufgrund von bedeutenden Fortschritten auf den Gebieten der Polymer- und supramoleku-
laren Chemie, der Materialwissenschaft und der Biochemie. Damit verbunden ist eine steigende An-
forderung an die Leistungsfähigkeit von computergestützten Methoden, um Experiment und Simula-
tion ohne Einschränkungen in Größe und Zusammensetzung des untersuchten Systems zu vergleichen.
Allgemeine, schnelle und dennoch genaue Methoden sind deshalb von zunehmender Bedeutung und
damit verbundener Popularität im Bereich der theoretischen Chemie. Diese Arbeit widmet sich da-
her der Entwicklung und Anwendung e�zienter Kraftfeld und tight-binding (TB) Methoden für die
robuste Simulation großer Moleküle auf atomarer Ebene. Insbesondere werden ein generisches Kraft-
feld, sowie Verbesserungen bestehender semiempirischer extended tight-binding (xTB) Methoden für
die akkurate Berechnung von Geometrien, harmonischen Schwingungsfrequenzen und nichtkovalen-
ten Wechselwirkungsenergien vorgestellt. Im Folgenden werden diese Methoden mit dem Akronym
GFN bezeichnet.

Von Interesse für experimentelle und theoretische Vergleiche sind oft Molekülgeometrien, freie Reak-
tionsenergien und spektroskopische Eigenschaften wie Infrarot- (IR) Absorption. Deren Beschreibung
benötigt nicht nur akkurate Energien, sondern auch e�ziente Gradienten (erste Ableitungen), har-
monische Schwingungsfrequenzen (zweite Ableitungen) und entsprechende Solvatationsmodelle. Mit
zunehmender Molekülgröße und damit verbundener Komplexität nimmt jedoch die Anzahl der compu-
tergestützten Methoden, die für Energien, Geometrien und Frequenzen anwendbar sind, rapide ab. Für
ab initio Elektronenstrukturmethoden liegt die Grenze daher bei nicht viel mehr als hundert Atomen
womit eine vollständig quantenmechanische (QM) Beschreibung nicht möglich ist. Den nächsten kon-
sequenten Schritt zu höherer Rechene�zienz stellen semiempirische quantenmechanische (SQM) Me-
thoden dar, auch wenn sie aufgrund unvollständiger Parametrisierungen oder konzeptioneller De�zite
oft nicht allgemein anwendbar sind. Dies hat sich erst kürzlich durch die Entwicklung der GFNn-
xTB Methoden geändert (n = {0, 1, 2}), die für einen Großteil des Periodensystems bis hin zu Radon
parametrisiert sind. Die zugrundeliegenden Näherungen erweitern die zugängliche Molekülgröße auf
bis zu eintausend Atome. Jedoch ohne massiv parallele Supercomputer bleibt die Beschreibung größerer
Systeme verwehrt und man muss auf klassische Ansätze wie Kraftfelder zurückgreifen. Obwohl viele
verschiedene Arten von Kraftfeldern existieren, stellen genaue und gleichzeitig allgemeine Varianten
eine fast leere Stelle im Repertoire der theoretischen Methoden dar. Daher wird die Entwicklung
genauerer (polarisierbarer) Kraftfelder als “heiliger Gral” für die computergestützte organische Chemie
und Biochemie bezeichnet.
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Zusammenfassung

Der erste Teil dieser Arbeit präsentiert ein neues generischen Kraftfeldes im Rahmen der GFN Me-
thoden. Diese als GFN-FF bezeichnete Methode stellt ein einzigartiges, teilweise polarisierbares, uni-
verselles Kraftfeld für die akkurate Beschreibung der Struktur und Dynamik großer Moleküle dar.
GFN-FF verbindet dabei die Geschwindigkeit eines Kraftfeldes mit nahezu quantenmechanischer Ge-
nauigkeit. Was es von anderen etablierten Kraftfeldern unterscheidet, ist eine nahezu vollständige
Parametrisierung des Periodensystems (Z ≤ 86) und eine automatisierte Routine zum Aufsetzen der
Topologie und zur Bestimmung der Kraftkonstanten. Um eine hohe Genauigkeit für NCIs zu errei-
chen, wird ein hochentwickeltes Ladungsmodell, das auf Elektronegativitätsausgleich von gaußför-
migen Ladungsdichten basiert verwendet und die Behandlung von Pauli Repulsion und London Dis-
persionswechselwirkungen ist analog zu den TB Methoden. Zusätzlich wird eine neuartige Wasser-
sto�brückenbindungskorrektur eingeführt. In dieser Arbeit wird eine detaillierte Beschreibung der zu-
grundeliegenden Theorie gegeben, gefolgt von illustrativen Anwendungsbeispielen. Es wird gezeigt,
dass für Strukturen von metallorganischen Gerüsten und Biomakromolekülen die GFN-FF optimierten
Strukturen gut mit den experimentellen Kristallstrukturen übereinstimmen. Des weiteren erreicht
GFN-FF auf etablierten Benchmarksätzen für Konformations- und nichtkovalente Wechselwirkungsen-
ergien oft eine Genauigkeit, die mit SQM Methoden oder sogar mit wesentlich anspruchsvolleren GGA
Dichtefunktionalen vergleichbar ist.

Der nächste Teil dieser Arbeit erforscht neue Möglichkeiten, die GFN-FF für große und komplexe Sys-
teme bietet. Der Fokus liegt hierbei auf der Kombination mit dem Konformer-Rotamer-Ensemble Ge-
nerator (CREST) für die Erforschung des niederenergetischen molekularen Konformationsraums. Der
Anwendungsbereich reicht hierbei von Proteinen bis hin zu metallorganischen Gerüsten. In einer er-
sten anwendungsbezogenen Studie, wird die Gasspeicherung von Treibhausgasen und Biotreibsto�en,
wie Kohlendioxid und Methanol, in metallorganischen Gerüsten und porösen organischen Kä�gen un-
tersucht. Bevorzugte Bindungsstellen werden mit dem CREST-Algorithmus auf GFN-FF Theorieniveau
bestimmt und mit DFT Methoden nach optimiert. Die mit GFNn-xTB und GFN-FF berechneten Assozi-
ationsenergien zeigen eine vergleichbare Genauigkeit wie die gut funktionierenden (meta-)GGAs. Als
zweite Studie werden Spin–Spin Abstandsverteilungen für Nitroxid markierte Mutanten von Azurin
und T4 Lysozym durch MD Simulationen auf GFN-FF Niveau modelliert und mit experimentellen EPR
Ergebnissen verglichen. Mit Abweichungen von weniger als 2 Å von den mittleren Spin–Spin Abstän-
den zum Experiment übertri�t die Genauigkeit von GFN-FF alle konkurrierende Methoden.

Im letzten Teil dieser Arbeit werden GFN Methoden für die Berechnung von harmonischen Schwin-
gungsfrequenzen getestet, aus denen der thermostatistische Beitrag zu den freien Energien innerhalb
der modi�zierten Rigiden-Rotor-Harmonischer-Oszillator (RRHO) Näherung hergeleitet wird. Die Ge-
nauigkeit von GFN2-xTB und GFN-FF wird im Vergleich zu DFT Referenzdaten bewertet. Als Ausblick
auf zukünftige Anwendungen werden freie Assoziationsenergien, auch unter Einbeziehung von Solva-
tationse�ekten, für Protein-Wirksto� Komplexe mit fast 5000 Atomen berechnet. Darüber hinaus wird
eine neue Methode, single-point Hessian (SPH) genannt, für verbesserte harmonischen Schwingungsfre-
quenzen von allgemeinen Nicht-Gleichgewichtsstrukturen eingeführt, bei der die Eingangsgeometrie
durch die Anwendung eines Bias-Potentials erhalten bleibt. Dadurch ermöglicht der SPH Ansatz die
Berechnung von genauen thermodynamischen Beiträgen an jedem Punkt der Energiehyper�äche. Sig-
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ni�kante Verbesserungen der thermostatistischen Beiträge und IR Spektren werden durch den SPH
Ansatz auf SQM und Kraftfeld Niveau erreicht, wenn z.B. DFT Strukturen als Startpunkt zur Verfü-
gung gestellt werden. Abschließend wird der E�ekt von expliziter Solvatation für die Berechnung von
IR Spektren untersucht. Zum ersten Mal wird dazu ein neuartiger Algorithmus namens quantum cluster

growth (QCG) angewendet. Die auf diese Weise berechneten Ergebnisse kommen den experimentellen
Referenzspektren bemerkenswert nahe.

Insgesamt stellen die in dieser Dissertation entwickelten und evaluierten Methoden für die the-
oretischen Chemie einen großen Sprung nach vorn dar und schließen somit weiter die Lücke zwi-
schen Theorie und Experiment in der Beschreibung von großen Molekülen. GFN-FF und SPH Berech-
nungen ergänzen das Portfolio der computergestützten Chemie und stellen wertvolle und vielseitige
Werkzeuge für die theoretische Vorauswahl und Modellierung dar. Von metallorganischen bis hin zu
biochemischen Systemen, die einzigartige Kombination aus E�zienz, Universalität und Genauigkeit
der GFN-FF und GFNn-xTB Methoden ist vielversprechend für zukünftige Anwendungen im Bereich
des Protein-Wirksto� Designs, der Gasspeicherung, der expliziten Solvatation, der Berechnung von
freien Energie und der Interpretation von IR Spektren.
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1. Introduction

Theoretical chemistry has evolved over the past decades from a minority in science into an indis-
pensable companion of the experiment and an important and independent part of chemistry.1–3 With
the underlying laws of physics, the practical programming in computer codes, and the application to
chemical as well as biological problems, computational chemistry touches and combines many �elds of
science.4–14 Besides the veri�cation and interpretation of experimental �ndings, computer simulations
can yield further insights into the investigated systems on an atomistic level and reveal energetical,
structural, and dynamical e�ects.15–18 From a philosophical point of view, the computer may be re-
garded as a the microscope of the 21st century.

In academia and industry, computational simulations have found their way into scienti�c work-
�ows.19–22 A general scheme thereof is depicted in Figure 1.1. The driving force for academic and
industrial research is usually a chemical idea or problem. Here, some of the largest and most impor-
tant challenges of this century arise from the reasearch �elds of catalyst,23–26 drug,27–30 and material
design,31–33 energy storage,34–37 and sustainable chemistry.38–41 At the beginning of a scienti�c work,
there is usually a large number of potential compounds or substances (candidates) that look promising
in terms of solving the problem. A lot of time and large amounts of resources are spent investigating
and screening all possible candidates to end up with a much smaller number of �nal products that
show the desired properties. At this point, theoretical chemistry can intervene and help to accelerate
this process by computing equilibrium geometries, molecular dynamics (MD), reaction free energies,
and spectroscopic properties.42,43 While experimental synthesis and analysis are time consuming and
hence rather expensive, computational simulations require only a fraction of the time, are inexpensive,
and do not generate chemical waste. Especially the latter aspect is important in the context of green
chemistry and sustainability.

Chemical research often focuses on a fundamental question: Does a reaction (A + B) take place and
which is the thermodynamically most stable product (C or D, see Figure 1.1)?44–46 One of the most
important quantities in this context is the di�erence in the Gibbs free energy ∆G between products
and reactants, named after Josiah Willard Gibbs.47,48 The free energy provides information on how
reaction mechanisms proceed, which intermediates are formed, how high the reaction barriers are,
and which products are populated.49,50 The corresponding reaction kinetics may also be derived from
∆G and are accessible via transition state theory (TST), developed by Henry Eyring.51,52 The accurate
calculation of free energies for all types of atoms and molecules remains one of the largest tasks for
theoretical chemistry today and in the near future.2 This is because ∆G is a very complex quantity that
consists of multiple contributions, i.e., the molecular geometry, gas phase energy, thermodynamics,
and environmental e�ects, each of which is part of current theoretical research. This thesis focuses on
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Figure 1.1.: General work�ow of scienti�c research in academia and industry. To solve a chemical prob-
lem or to realize an idea, large amounts of possible compounds and substances (candidates)
have to be investigated to end up with a small number of �nal products. Computational
simulations can facilitate this process.

the improvement of ∆G and all of its components through the use of fast, accurate, and thus, e�cient
computational methods. In particular, large molecular systems (102–104 atoms) are investigated. For a
general overview of condensed-phase systems under periodic boundary conditions (PBC), the reader is
referred to Refs. 53,54. The individual contributions to the free energy are illustrated in Figure 1.2.

In the experimental laboratory, chemical reactions usually take place in solution at chosen temper-
ature and pressure. Commonly 1020 molecules of a compound, which is less than 1 mmol, and ad-
ditionally 1023 solvent molecules are present. In the initial theoretical model, on the contrary, often
only a single molecule or a set of representative conformations is considered in vacuum at absolute
zero (T = 0 K). The input geometry for the theoretical simulation is either generated manually,55 or
taken from crystallographic databases.56,57 The corresponding gas phase energy E of this structure is
calculated by molecular energy methods. To �nd the most stable atomic arrangement of the molecule,
where the net inter-atomic force on each atom is zero, it is necessary to arrive at a local minimum on the
potential energy surface (PES). Therefore, a geometry optimization is performed in which the molec-
ular energy is minimized with respect to the nuclear coordinates R to yield the equilibrium geometry
Re .58 Note that an optimized geometry (stationary point on the PES) is always connected to the en-
ergy method that de�nes the PES. For �exible molecules, a single geometry optimization is usually not
su�cient and multiple conformations need to be considered. Here, more sophisticated chemical space
exploration algorithms have to be applied to determine the low-energy conformer ensemble.59–61
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Figure 1.2.: Composition of the Gibbs free energy. The molecular energy is calculated on optimized
geometries. Molecular degrees of freedom are added by statistical thermodynamics and the
in�uence of the environment is accounted for by, e.g., solvation e�ects.

The molecular energy can be calculated by molecular mechanics (MM) and by quantum mechanical
(QM) methods. MM methods treat the dynamics of atoms classically, i.e., by Newton’s second law of
motion, and are therefore often referred to as force-�elds (FF).62–65 In FFs, the electrons are no individual
particles and the electronic structure is rather described by parametric functions. QM methods, on the
other hand, treat the electrons as quantum mechanical particles within the Born–Oppenheimer approx-
imation,66 while the nuclei are still considered as classical particles. For the description of the electrons,
the wave function Ψ is introduced, which is obtained by solving the electronic Schrödinger equation.67

Hence, the respective QM methods are commonly referred to as electronic structure methods. A more
detailed description of the underlying theory is given in Chapter 2. The molecular degrees of free-
dom (DOF) regarding translation, rotation, and vibration are added by statistical thermodynamics. The
sum of these thermostatistical contributions, also including zero-point vibrational energy (ZPVE), en-
ables the transition from the (electronic) gas phase energy (0 K) to the Gibbs free energy at a given
temperature.68,69 If the experiment is performed in solution, additional solvent e�ects must be taken
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into account by a suitable solvation model. Here, the most common representatives are either implicit
continuum models,70,71 or explicit approaches that introduce more molecules and often increase the
system size drastically.72

The underlying physical laws and mathematical equations necessary for the description of the molec-
ular energy are exactly known, but the emerging dimensions are much too many and computationally
demanding to be generally solvable.73 Note that for ∆G at least the �rst and second order derivative
of the molecular energy with respect to the nuclear displacements are required for equilibrium geome-
tries and thermodynamics, which additionally increases the overall complexity. For more than a few
atoms,74 the full QM description is thus not possible and with Moore’s law nearing its end, i.e., silicon-
based microprocessors reach their capability limits,75,76 computer hardware is not the solution to the
problem. Therefore, it becomes necessary to develop approximate, more e�cient, and yet accurate QM
and FF methods, which are applicable to large molecules for the calculation of energies, geometries, and
thermodynamic quantities. An overview of existing theoretical methods is given in Figure 1.3, focusing
on the degree of empiricism (approximations) and the applicable system size.

Figure 1.3.: Overview of computational methods according to their degree of empiricism and applica-
bility. The shown molecules are remdesivir, a rhodium–organic cuboctahedra, zinc azurin,
and the spike protein of SARS-CoV-2.

Wave function theory (WFT) is conceptually closest to the exact solution of the electronic Schrödinger
equation and thus, often the most accurate method available.17 In correlated WFT, the electrons are fully
interacting, which leads to many-body problems and incurs high computational costs. Molecules de-
scribed by di�erent WFT methods are mostly limited to less than one hundred atoms (see remdesivir77

in Figure 1.3), depending on the applied approximations. In the simplest form of WFT, which is called
Hartree–Fock (HF) theory,78,79 the exact many-body wave function of the system is approximated by
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a single Slater determinant (see Section 2.1.2).80 Kohn–Sham density functional theory (KS-DFT or
simply DFT) draws the connection between the energy of a system and its electron density (see Sec-
tion 2.1.5).81,82 With the introduction of reasonable approximations regarding the electron exchange-
correlation (XC), DFT methods can routinely treat systems with more than one hundred atoms.83 Con-
sequently, DFT is the most frequently used electronic structure method in computational chemistry
and was rewarded with the Nobel price in 1998 to Walter Kohn.84 Due to the low amount of empiri-
cism in both, WFT and DFT, they are generally applicable to any atom type or molecule and show high
accuracy. A more detailed description of WFT and DFT methods is given in Chapter 2. Semiempirical
quantum mechanical (SQM) methods introduce further approximations to ab initio schemes (see Sec-
tion 2.1.6). Formally, SQM methods are related to electronic structure methods because they are based
on either HF or DFT frameworks. The replacement of various interaction terms by empirical potentials
and the use of minimal basis sets accelerates the calculation times and increases the treatable system
size to roughly one thousand atoms. This enables the routine description of metal-organic polyhedra
such as the rhodium containing cuboctahedra in Figure 1.3.85 A disadvantage of SQM methods is that
parameters must be introduced for empirical approximations, limiting general applicability. Prominent
examples for SQM methods are the widely used, NDDO-based PMx 86–88 methods derived from HF, as
well as the DFT based density functional tight-binding89–92 (DFTB) methods and the more recently de-
veloped extended tight-binding methods of the GFNn-xTB family.93–96 An extensive overview of SQM
methods can be found in Refs. 97,98. Neglecting the electronic structure of a molecule and replacing
it by interatomic interaction potentials is the main approximation in atomistic FFs.15 This simpli�ca-
tion leads to a tremendous speedup compared to SQM methods and molecules beyond thousand atoms
can be described. FFs are thus frequently applied for the simulation of proteins such as zinc azurin.99

Nevertheless, the functional form of the FF potentials introduces a (large) set of atom and atom-pair
speci�c parameters. Such parameters often only exist for a limited number of elements and structural
motifs, requiring individual, laborious parametrizations. Here, a distinction is made between classical
atomistic FFs with �xed, usually atom-centered, charges and polarizable FFs, which account for varia-
tions in the charge distribution within a dielectric environment.100,101 Leaving the atomistic description,
coarse-grained (CG) FFs represent the next level of empiricism.102 The combination of several atoms
into chemically related fragments allows the description of millions of atoms, such as in the spike pro-
tein of the SARS-CoV-2 virus shown in Figure 1.3.103 Finally, chemoinformatic methods must also be
mentioned, as they are often represented by quantitative structure-activity relationships (QSAR).104–106

At the core of QSAR modeling are chemical descriptors re�ecting various levels of chemical structure
representation, which range from one-dimensional molecular formulas to two-dimensional structural
formulas.107 A second important class of chemoinformatics are neural networks, which aim at both,
WFT accuracy and FF speed.108,109 Machine learning (ML) potentials are not considered in this work,
for more information see Refs. 110,111.

A large gap regarding e�ciency, generality, and accuracy exists between FF and (S)QM methods.
The speedup of SQM methods is limited by expensive mathematical operations,112 such as matrix di-
agonalization, that show a cubic scaling with the system size. Accurate special purpose FFs exist, such
as AMBER,62 CHARMM,64 and OPLS,113 but lack generality and general FFs such as UFF,114 DREI-
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DING,115 and ESFF116 show insu�cient accuracy. For this reason, accurate (polarizable) force-�elds
are named as a remaining holy grail in computational chemistry.2 Within this thesis, a new generic
FF is developed that exceeds general FFs in terms of accuracy performing more like a specialized FF,
and thus, represents a missing piece in the “puzzle” of computational methods (see Figure 1.3). This
method, termed GFN-FF,117 is a completely automated, partially polarizable, generic FF designed in
close accordance with the GFNn-xTB methods. Furthermore, all important terms that contribute to the
Gibbs free energy, namely geometries, reaction energies, and thermodynamics, are extensively tested
and improved by GFN methods (SQM and FF) for large molecules ranging from organometallic to bio-
chemical systems.96 Therefore, this thesis deals with the following three objectives:

1. Development of GFN-FF, a generic force-�eld for the full periodic table (Part II).

2. Application of e�cient computational methods for organometallic and biochemical systems (Part III).

3. Improving vibrational frequencies and thermodynamics for association free energies of large
molecules (Part IV).

Overall, this thesis presents the development, evaluation, and application of new e�cient computa-
tional methods for the sophisticated simulation of large molecular systems. These methods are tested
for their individual performance and in combination with other existing state-of-the-art procedures to
enable new computational schemes and optimize chemical screening protocols. Thereby, various sub-
domains of theoretical chemistry including molecular dynamics, thermodynamics, free energies, and
related properties such as infrared (IR) spectroscopy of organic and inorganic compounds are studied
in detail. In Chapter 2 of Part I, an overview of the theoretical background of selected key methods
relevant for this thesis is given. Further, in Part II, GFN-FF is introduced. First, a detailed descrip-
tion of the underlying theory is given followed by illustrative application examples. GFN-FF optimized
structures are compared to the crystal structures of organometallic and biochemical systems. On es-
tablished benchmark sets for conformational and noncovalent interaction energies, the performance
of GFN-FF is compared to GFNn-xTB, PMx , and much more sophisticated density functionals. Part III
of this thesis explores new possibilities of GFN-FF in combination with the conformer-rotamer ensem-
ble sample tool (CREST). The gas storage of greenhouse gases and bio-fuels, such as carbon dioxide
and methanol, in metal-organic frameworks (MOFs) and porous organic cages (POCs) is investigated.
Further, spin-spin distance distributions for nitroxide labeled mutants of azurin and T4 lysozyme are
modeled by MD simulations (Appendix A2.3) at the GFN-FF level of theory and compared to experi-
mental EPR results. In Part IV, GFN methods are assessed for the calculation of the thermostatistical
contributions to the free energies. The accuracy of GFNn-xTB and GFN-FF is benchmarked in compar-
ison to DFT reference data. Free association energies, also including solvation e�ects, are calculated
for protein-drug complexes reaching from more than 2500 to almost 5000 atoms. In addition, a new
method termed single-point hessian (SPH) is introduced for improved thermodynamics and IR spectra
of general non-equilibrium structures on every point of the PES. Also, the e�ect of explicit solvation
is investigated in the context of IR spectra. For this purpose, a new algorithm termed quantum cluster
growth (QCG) is developed and tested. Part V �nally summarizes the achievements of this thesis and
provides perspectives regarding their use in chemical research.
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2. Theoretical Background

Chemistry is referred to as the science of molecular construction, transformation, and change.118 Changes
in free energies within a chemical reaction give insights into the underlying mechanisms and reveal
possible products. Hence, relative free energies are a fundamental quantity in chemistry. The associa-
tion free energy of molecules A and B (e.g., host and guest) forming a noncovalently bound complex C
is calculated in the supramolecular approach according to ∆G = G(C)−G(A)−G(B).119,120 This notation
is followed throughout this work and ∆ always refers to the di�erence between product and reactant
for a given quantity.

Thermodynamically, the Gibbs free energy of a reaction at temperature T is de�ned by the reaction
enthalpy ∆H and entropy ∆S as given in Eq. 2.1.15 The reaction enthalpy ∆H can be divided into a
temperature dependent ∆H (0K → T ) and independent ∆H (0K) part, as well as volume work p∆V (see
Eq. 2.1a). Assuming a normal reference state (1 mol L−1), the latter term is a constant for an ideal gas
with a molar volume of 24.8 L mol−1 (1 bar, 298.15 K). The temperature dependency in ∆H (and also ∆S)
results from molecular translations, rotations, and vibrations, which are themselves functions of T .

∆G(T ) = ∆H (T ) −T∆S(T ) (2.1)

=

∆H (T )︷                                     ︸︸                                     ︷
∆H (0K) + ∆H (0K → T ) + p∆V −T∆S(T ) (2.1a)

=

∆H (0K )︷           ︸︸           ︷
∆E + ∆ZPVE +∆H (0K → T ) + p∆V −T∆S(T ) (2.1b)

= ∆E + ∆Gcorr.(T ) (2.1c)

The temperature independent part of the reaction enthalpy consists of the di�erence in the molecular
energy ∆E = E(C) − E(A) − E(B) and the ZPVE (see Eq. 2.1c), which is the residual energy arising from
quantum mechanical motions at zero temperature. Finally, all terms besides the molecular energy can
be summarized as the thermostatistical contribution ∆Gcorr.(T ) to correct from a reaction energy ∆E to
a reaction free energy ∆G. This separation is common in theoretical chemistry119 and a large variety
of QM and FF methods exists for the computation of ∆E. On the contrary, the calculation of ∆Gcorr.(T )

introduces many di�culties that will be addressed in this thesis.
In this chapter, a general overview is given about the computational methods that are used through-

out this work, following the separation vide supra in ∆E and its corrections to the Gibbs free energy. The
focus lies on methodologies that are applied, but not explicitly developed in this thesis. First, molecular
energy methods will be discussed. Electronic structure theories, such as Hartree–Fock, Kohn–Sham
DFT and extended tight-binding methods, are introduced in Section 2.1 and classical force-�elds in
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2. Theoretical Background

Section 2.2. In the second part of this chapter (Section 2.3), the most important contributions to the
free energy will be given, namely thermodynamics, solvation e�ects, and molecule conformations. The
following theoretical background is mainly based on Refs. 15–17,96.

2.1. Electronic Energy Methods

2.1.1. Definition of the Electronic Hamiltonian

The object of study in electron structure theory is the movement of negatively charged electrons in
the presence of positively charged nuclei in atoms or molecules.17 Electrons are very light particles
and they cannot be described correctly by classical mechanics. In the Schrödinger picture of quan-
tum mechanics121, the electronic system is described by the time-dependent (TD) wave function ΨK (t)

according to Eq. 2.2
ΨK (t) = ΨKe

−iEK t . (2.2)

Here, ΨK is the amplitude of the wave function in the stationary electronic state K and e−iEK t refers to
the time-dependent phase factor. The evolution of the electrons in time is given by the non-relativistic,
time-dependent Schrödinger equation (SE)67

i~
∂

∂t
ΨK (t) = ĤΨK (t) , (2.3)

which describes the quantum mechanical connection between the TD wave function ΨK (t) and the
Hamiltonian Ĥ (vide infra), i.e., the operator corresponding to the total energy. Because Ĥ in Eq. 2.3 is
time-independent, the TD part of the wave function can be separated for stationary states. This way,
the time-independent SE is obtained15,16

Ĥ ΨK = EKΨK , (2.4)

where EK is the energy of the electronic state K and ΨK the corresponding wave function. Both are
obtained as the respective eigenvalue and eigenfunction of the non-relativistic Hamiltonian. In the fol-
lowing, atomic units are used throughout.16 Ĥ is composed of kinetic (T̂ ) and potential energy operators
(V̂ ) for the electrons and the nuclei, indicated by e and n, respectively (Eq. 2.5)

Ĥ = T̂n + T̂e + V̂ee + V̂ne + V̂nn . (2.5)

Within the Born–Oppenheimer approximation (BOA),66 the wave functions of atomic nuclei and elec-
trons are treated separately. This is based on the fact that the nuclei are much heavier than the elec-
trons. a As a result of the BOA, the kinetic energy operator of the nuclei (T̂n) and the nuclei–nuclei
repulsion operator (V̂nn) can be removed from Eq. 2.5, leading to the electronic Hamiltonian given

aThe mass of an electron is 5.485·10−4 u, whereas the mass of a proton is 1.007 u.122 Hence, the electron is three orders of
magnitude lighter than a proton.
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in Eq. 2.617

Ĥ ≡ Ĥe = T̂e + V̂ee + V̂ne = ĥe + V̂ee (2.6a)

= −
1
2

N∑
i

∇̂2
i +

N−1∑
i=1

N∑
j=i+1

1
|ri − rj |

−

N∑
i

O∑
A

ZA
|ri − RA |

. (2.6b)

The electronic Hamiltonian consists of the kinetic energy operator of the electrons T̂e , the electron–
electron interaction operator V̂ee , and the Coulomb interaction between electrons and nuclei V̂ne (cf.
Eq. 2.6a). All single-electron components are often expressed by the one-electron operator ĥe , i.e., T̂e
and V̂ne . In Eq. 2.6b, N is the total number of electrons and O the number of nuclei. Z corresponds to
the respective nuclear charge of atom A, while r and R represent the position vectors of the electrons,
denoted by the subscripts i and j, and the nuclei. Solving the electronic Schrödinger equation yields the
electronic energy as the expectation value of the electronic Hamilton operator given in Dirac’s bra–ket
notation123 (Eq. 2.7)∫ +∞

−∞

Ψ∗K Ĥ ΨKda ≡
〈
ΨK

��Ĥ ��ΨK 〉
≡ HKK = EK 〈ΨK |ΨK 〉 = EK . (2.7)

On the left hand side of Eq. 2.7 the integration is done over all variables a. The overlap integral on the
right hand side of Eq. 2.7 vanishes, since the wave function ΨK is orthonormalized according to Eq. 2.8

〈ΨK |ΨL〉 = δKL =


0 for K , L

1 for K = L
, (2.8)

where δKL is the Kronecker delta. Since the exact wave function necessary to solve the electronic
Schrödinger equation is a priori unknown, it is the objective of WFT to determine appropriate approx-
imations. One of the most important approximations in this context was introduced by Hartree and
Fock.78,79 HF theory is a cornerstone in theoretical chemistry and forms the basis for more accurate
WFT methods.

2.1.2. Hartree–Fock Theory

To generate approximate solutions to the exact N -body wave function ΨK , the variational principle is
employed, which states that any approximate wave function has an energy ẼK above or equal to the
exact energy EK (Eq. 2.9)124

ẼK =

〈
Φ̃K

��Ĥ �� Φ̃K
〉〈

Φ̃K |Φ̃K
〉 ≥

〈
ΨK

��Ĥ ��ΨK 〉
= EK . (2.9)

Therefore, a trial wave function Φ̃K is constructed from a set of parameters, and its energy is minimized
as a function of these parameters to determine the trial function that is closest to the exact ΨK .15 In
Hartree–Fock theory, the trial function of the exact N -body wave function is approximated by a single
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Slater determinant (SD) for the electronic ground state Φ0 (Eq. 2.10) containing N electrons

ΨK ≈ Φ̃K ≡ Φ0(1, 2, · · · ,N) =
1
√
N !

����������
ϕ1(1) ϕ2(1) · · · ϕN (1)
ϕ1(2) ϕ2(2) · · · ϕN (2)
...

...
. . .

...

ϕ1(N) ϕ2(N) · · · ϕN (N)

���������� . (2.10)

ϕi (k) denotes the ith molecular orbital (MO) occupied by the kth electron ∈ {1, · · · ,N }. A molecular
orbital is de�ned as the wave function of a single particle system and consists of the spin part σi ∈
{α , β}, and a spatial MOψi (r1) that depends on the position of electron r1 in Cartesian space (Eq. 2.11)

ϕi (1) = σiψ (r1) . (2.11)

The Pauli principle125 states that the total electronic wave function must be antisymmetric with respect
to the interchange of any two electrons (fermions) 1 and 2, i.e., Ψ(1, 2) = −Ψ(2, 1).16 Hence, the anti-
symmetrized product of one-particle functions represented in an SD is a valid wave function that is
exact for non-interacting particles.

Inserting Φ0 into the time-independent SE (cf. Eq. 2.4) yields the energy of a single SD. This corre-
sponds to the HF energy of the N -electron wave function given by Eq. 2.1215,16

EHF =
N∑
i=1

hi +
1
2

N∑
i=1

N∑
j=1

(
Ji j − Ki j

)
+VNN (2.12a)

=

N∑
i

〈ϕi |hi | ϕi 〉 +
1
2

N∑
i

N∑
j

(〈
ϕ j

�� Ĵi ��ϕ j 〉 − 〈
ϕ j

��K̂i
��ϕ j 〉) +VNN . (2.12b)

ĥi is the one-electron operator (cf. Eq. 2.6a). The Ji j matrix elements are the Coulomb integrals and
represent the classical Coulomb interaction (repulsion) between two charge distributions ϕ2

i (1) and
ϕ2
j (2). The Ki j matrix elements are termed as (Pauli) exchange integrals and have no classical analogy.

The HF energy is further expressed in terms of Coulomb Ĵ and exchange K̂ operators (cf. 2.12b), which
are given by Eq. 2.13

Ĵi
��ϕ j (2)〉 = 〈

ϕi (1)
���� 1
r1 − r2

����ϕi (1)〉 ��ϕ j (2)〉 (2.13a)

K̂i
��ϕ j (2)〉 = 〈

ϕi (1)
���� 1
r1 − r2

����ϕ j (1)〉 |ϕi (2)〉 . (2.13b)

With this, a set of MOs that minimize the HF energy whilst remaining orthogonal and normalized has
to be determined. This is achieved by Lagrange multipliers in a constrained optimization where the
condition is that the Lagrangian is stationary with respect to a small variation in the orbitals (Eq. 2.14)15
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2.1. Electronic Energy Methods

L = E −
N∑
i

N∑
j

λi j
(〈
ϕi |ϕ j

〉
− δi j

)
(2.14a)

∂L = ∂E −
N∑
i

N∑
j

λi j
(〈
δϕi |ϕ j

〉
−

〈
ϕi |δϕ j

〉)
= 0 . (2.14b)

Variation of the orbitals subject to this constrain leads to an e�ective one-electron problem known as
the canonical Hartree–Fock equations (Eq. 2.15)16

f̂iϕ̃i = ϵiϕ̃i , (2.15)

where ϕ̃i is a special set of molecular orbitals called canonical MOs and f̂ is the Fock operator (Eq. 2.16)

f̂i (r1) = ĥi (r1) +
N∑
j

(
Ĵj (r1) − K̂j (r1)

)
. (2.16)

The Hartree–Fock equations form a set of pseudo-eigenvalue equations since the Fock operator depends
on all the occupied MOs via the Coulomb and exchange operators (Eq. 2.16).15 A speci�c Fock orbital
can only be determined if all the other occupied orbitals are known. Therefore, the Hartree–Fock
equations are solved iteratively in a self-consistent �eld (SCF) procedure. The Fock orbital energies are
matrix elements of f̂i with the canonical MOs (Eq. 2.17a). The tilde notation is omitted for simplicity

ϵi =
〈
ϕi

��� f̂i ���ϕi 〉 = hi + N∑
j

(
Ji j − Ki j

)
(2.17a)

EHF =
N∑
i

ϵi −
1
2

N∑
i

N∑
j

(
Ji j − Ki j

)
+VNN . (2.17b)

The total energy can then be reformulated in terms of MO energies using the de�nition of the Fock
operator. Because it counts the electron–electron repulsion twice, the total energy is not the sum of
MO orbital energies. Also, note that for one electron the Coulomb Jii and exchange Kii terms exactly
cancel. HF and related WFT methods are therefore self-interaction error (SIE) free, which is one of
the major issues in DFT (vide infra). In HF, the electron–electron repulsion is accounted as an average
e�ect. It is assumed that the spatial distribution between an electron and all the other electrons is
described by one set of orbitals, due to the approximation of a single SD as the trial wave function.
Hartree–Fock is therefore referred to as a mean-�eld theory, which implies that electron correlation
(vide infra) is neglected. This drawback is present also in other mean-�eld theories such as DFT.

2.1.3. Basis Set Approximation

The HF equations (Eq. 2.15) represent a set of integro-di�erential equations and remain unsolvable
since the required MOs are unknown a priori.16 An e�cient way to express the unknown MOs in terms
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2. Theoretical Background

of a set of known functions was introduced by Roothaan and Hall.126,127 Here, the spatial part ψi of
the molecular orbitals is expanded as a linear combination of M atom-centered orbitals χµ (LCAO)
(Eq. 2.18)128

ψi (r1) =
M∑
µ

cµi χµ (r1) . (2.18)

Note that these orbitals are generally no solutions to the HF problem. In Eq. 2.18, the unknowns are
the coe�cients cµi instead of the functions themselves. Inserting the expansion in Eq. 2.15 yields

f̂i

M∑
µ

cµi χµ = ϵi

M∑
µ

cµi χµ . (2.19)

Multiplying from the left by χν followed by integration results in the Roothaan–Hall equations, which
are usually expressed in a single matrix equation (Eq. 2.20)15

FC = SCϵ . (2.20)

F is the Fock matrix with elements Fµν = 〈χµ | f̂ |χν 〉, C is is the corresponding LCAO-MO coe�cient
matrix, and S is the atomic orbital (AO) overlap matrix with elements Sµν = 〈χµ |χν 〉. ϵ is a diagonal
matrix and contains the MO eigenvalues (orbital energies). For a �xed set of AO functions located
on the atoms (basis set), the Roothaan–Hall formalism reduces the solution of the HF equations to a
variational optimization of the LCAO-MO coe�cients.17 The elements of the Fock matrix are in general
given by Eq. 2.21

Fµν = 〈χµ |ĥ |χν 〉︸     ︷︷     ︸
Hµν

+

M∑
λ

M∑
σ

Pλσ

[〈
χµ χν |χλ χσ

〉
−

1
2

〈
χµ χν |χσ χλ

〉]
,︸                                                          ︷︷                                                          ︸

Gµν

(2.21)

whereHµν is the one-electron part andGµν is the two-electron part. The evaluation of the two-electron
integrals Gµν is the most time consuming part in the Roothaan–Hall formalism and the computational
cost of mean-�eld procedures formally scales to O(M4) with respect to M atomic orbitals. Further in
Eq. 2.21, the density matrix Pµν is introduced, where the matrix elements are given by Eq. 2.22

Pµν =
Mocc.∑
i

niC
∗
µiCν i . (2.22)

Here, the sum runs over all occupied MOs (Mocc.) andni is the respective occupation number. Due to the
dependence of the Fock matrix elements on the coe�cients C and the density matrix P, the Roothaan–
Hall equations are solved iterative in a SCF procedure until the HF (or KS-DFT) energy (Eq. 2.23) is
converged16

EHF =
1
2

M∑
µ

M∑
ν

Pµν
(
Hµν + Fµν

)
. (2.23)
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2.1. Electronic Energy Methods

The Roothaan–Hall approach has become the standard way to solve the SCF, not just for HF, but also
for KS-DFT.

Employing basis sets is common practice in quantum chemistry and many pre-compiled sets of AOs
exist for each element. Some of the most prominent basis sets are Pople-style basis sets,129 Dunning’s
correlation-consistent basis sets,130–132 and Ahlrichs’ basis sets.133–135 The AO basis sets are given by
normalized linear combinations (contractions) of primitive Gaussian-type orbitals (GTO),136 due to the
analytic form and e�cient calculation of the involved integrals. GTOs can be written in Cartesian
coordinates as

χ (x ,y, z) = Nx lxylyzlze−ζ r
2
, (2.24)

where the sum of lx , ly , and lz determines the type of orbital, e.g., lx + ly + lz = 1 is a p-orbital. The
cardinal number ζ of the basis set is de�ned by the number of contracted GTOs per AO shell, i.e., the
occupied orbital shells of the free atom (s,p,d, f ). In an in�nitely large and complete basis set (CBS) of
AOs, the Roothaan–Hall formalism is equivalent to the exact HF solution. However, this is not practical,
and smaller but yet su�cient basis sets (triple-, or quadruple-ζ ) are employed. Calculations using �nite
basis sets result in the so-called basis set superposition error (BSSE) and the basis set incompleteness
error (BSIE). For too small basis sets, both can be severe and limit the achievable accuracy.137,138

2.1.4. Electron Correlation Methods

In Hartree–Fock theory, the exact electron–electron interaction is replaced by a mean-�eld, in which
N non-interacting electrons experience the average interaction of the remaining (N − 1) electrons.16

Based on a single Slater determinant, the HF wave function accounts for 99 % of the total energy in a
su�ciently large basis set. Nevertheless, the remaining 1 % is often decisive for the correct description
of chemical interactions. The di�erence in energy between the fully interacting system in the given
basis set and the HF energy is called the electron correlation energy (Eq. 2.25)139,140

Ecorr = E − EHF . (2.25)

Physically, Ecorr describes the correlated movement of the electrons avoiding each other. This in�uences
their mutual distance that is on average larger than described by a single SD wave function. In HF,
there is no intraorbital correlation from electron pairs with the same spin because the SD in HF is
antisymmetric and obeys the Pauli principle. This so-called Fermi correlation is thus inherent in HF
theory. The opposite spin correlation is called the Coulomb correlation and is not included in the HF
wave function. It has therefore the largest contribution to Ecorr.15

Within a given basis set, the HF method determines the energetically best one-determinant trial
wave function. To improve on HF results and include electron correlation, the trial wave function must
consist of more than one SD (Φ). A general multi-determinant approach can be written as16

Ψ = a0ΦHF +
∑
i

aiΦi . (2.26)
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2. Theoretical Background

Because the HF solution already recovers about 99 % of the total electronic energy, ΦHF is usually a good
starting point and a0 is close to one. All other determinantsΦi are generated by replacing occupied MOs
in the HF determinant with virtual (unoccupied) MOs, resulting in SDs that are singly, doubly, triply,
quadruply, etc. excited relative to the HF determinant. The maximum number of excitations is N , the

Figure 2.1.: Progression from atomic orbitals (AO) (basis functions), to molecular orbitals (MO), to Slater
determinants (SD), and to a many-electron (ME) wave function composed of SDs. Figure
adapted from Ref. 15.

number of electrons. The corresponding determinants are often referred to as singles (S), doubles (D),
triples (T ), quadruples (Q), etc. While the basis set (AOs) determines the size of the one-electron basis
and limits the description of the MOs, it is the number of included SD that determines the size of the
many-electron basis in a multi-determinant wave function. The number of included excitations (SDs)
limits the description of electron correlation.15 A general overview thereof is given in Figure 2.1. The
objective for electron correlation methods is now to determine the excitations that contribute the most
to Ecorr., and to calculate the coe�cients in front of the (excited) SDs.

The two most widely known WFT methods that follow this approach are con�guration interac-
tion141,142 (CI) and coupled cluster (CC) theory.143,144 First, an excitation operator T̂ is de�ned as T̂ =
T̂1 + T̂2 + T̂3 + · · · + T̂N , where N is the number of electrons. The T̂i operator acts on the HF ground
state wave function (ΦHF ≡ Φ0) and generates all ith exited SDs. In the CI formalism, the excitation
operator acts linear on the HF wave function, with λ being the order of excitation (Eq. 2.27a)

ΨCI =
(
1 + T̂

)
Φ0 =

(
1 +

N∑
λ

T̂λ

)
Φ0 (2.27a)

ΨCC = e T̂Φ0 =
∞∑
k=0

1
k! T̂

kΦ0 . (2.27b)

The corresponding coupled cluster wave function is de�ned in Eq. 2.27b. The di�erence in CC meth-
ods is that T̂ is applied as an exponential expanded in a Taylor series and optimized according to the
expansion coe�cients (excitation amplitudes). This includes all corrections of a given type to in�nite
order k = ∞. In practice, however, the expansion is truncated to �nite values of k . The CC wave
function contains at each excitation level additional terms arising from products of excitations, so-
called disconnected excitations, which are missing in the CI wave function. The main advantage of
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2.1. Electronic Energy Methods

CC over CI results from these disconnected excitations, as they preserve the size consistency (and size
extensivity) of CC methods. CI, on the other hand, is not size-consistent (extensive). With increasing
basis set size, the virtual orbital space grows tremendously, and hence, CI and CC methods show sig-
ni�cantly higher computational costs than HF. The incorporation of all possible excited determinants,
which corresponds in a given basis set to the exact solution of the electronic SE, is called full con�gura-
tion interaction (FCI).145 However, FCI is only applicable for a few light atoms.145,146 Instead CCSD(T),
that is CC with single and double excitations and triple excitations taken from perturbation theory
(vide infra), is often regarded as the “gold standard” in quantum chemistry.144 The formal scaling of
CCSD(T)

(
O(M7)

)
is further reduced by modern variants such as DLPNO-CCSD(T) whilst maintaining

the overall accuracy.147–150 Throughout this work, it is therefore often used as the theoretical reference
level.

Electron correlation e�ects may also be added to HF by the concept of perturbation theory (PT).151

Here, the full Hamiltonian Ĥ is expressed as

Ĥ = Ĥ0 + λĤ
′ , (2.28)

where Ĥ0 refers to an e�ective zeroth order Hamiltonian, Ĥ ′ is the perturbation operator, and λ is the
perturbation parameter. In Møller–Plesset (MP) perturbation theory, Ĥ0 is chosen to be the sum over
Fock operators.152 This approach counts electron–electron repulsion twice and the zeroth-order energy
equals the sum over orbital energies. The �rst-order energy correction �xes the double counting of the
electron–electron repulsion and reproduces the HF energy. The inclusion of correlation energy starts at
the second order in Møller–Plesset perturbation theory.152 The corresponding MP2 correlation energy
expression is given by Eq. 2.2915

EMP2 =
occ.∑
i<j

virt.∑
a<b

[
〈ϕiϕ j |ϕaϕb〉 − 〈ϕiϕ j |ϕbϕa〉

]2

ϵi + ϵj − ϵa − ϵb
, (2.29)

with i and j indicating occupied and a and b virtual orbitals. The MP2 approach recovers a signi�cant
portion of the correlation energy but also has well known weaknesses. For small HOMO-LUMO gaps,
as they occur, e.g., for metal complexes, the MP2 energy approaches −∞. The advantage of MP2 is its
non-iterative nature and its relatively small scaling with the AO basis set size of O

(
M5)), which is why

MP2 correction is frequently applied to compute the correlation energy.153

2.1.5. Kohn–Sham Density Functional Theory

Density functional theory draws the connection between the electron density of a system and its molec-
ular energy and properties.154 DFT originates from the Thomas–Fermi model155,156 for the electronic
structure of materials, but was initially implemented in a theoretical framework by Walter Kohn and
Pierre Hohenberg formulating the two Hohenberg–Kohn theorems.81,82 The �rst Hohenberg–Kohn
theorem states that there is a one-to-one connection between the exact energy and an (unknown)
functional F [ρ(r)] of the electron density ρ(r) (see Figure 2.2). This functional is universal and identical
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for any system. Following, the second Hohenberg–Kohn theorem introduces the variational principle,

Figure 2.2.: DFT draws the connection between the electron density of the ground state and the energy
of the system, as stated by the �rst Hohenberg–Kohn theorem.

E[ρ̃(r)] ≥ E0, stating that an energy for any trial density ρ̃(r) is always higher than the energy calulated
from the exact density.157

The Hohenberg–Kohn theorems form the basis for density functional theory but they lead to no
further applicable approximations on how to construct the exact density functional. In analogy to the
electronic Hamiltonian (Eq. 2.6), an electron density dependent energy can be formulated as154,158

EDFT[ρ] = Te [ρ] +Vne [ρ] +Vee [ρ] (2.30)

= Te [ρ] +Vne [ρ] + (J [ρ] + K[ρ]) , (2.30a)

whereTe [ρ] andVne [ρ] are the kinetic energy and the nuclear–electron interaction energy, respectively,
associated with a given electron density. The density dependent electron–electron interaction Vee [ρ]

is further divided into a Coulomb part J [ρ] and an exchange part K[ρ] (Eq. 2.30a). This basic DFT
approach is inherently orbital free and the density ρ(r) depends only on three spatial variables, instead
of 3N as in WFT. Nevertheless, the exact description of Te [ρ], in particular, remains problematic, and
the Thomas–Fermi model was not suitable for chemical reactions, as it did not yield bound molecules.

The problem was solved by Kohn and Sham who introduced a �ctitious reference system of non-
interacting electrons, but with the same (exact) density as the real system.82 In KS-DFT, the kinetic
energy is calculated in analogy to HF theory from a Slater determinant approach (TSD[ρ]) and hence,
orbitals are re-introduced.154 The approximate trial density is constructed from a set of auxiliary orbitals
ϕi (basis set) and given by the summed probability densities of the individual orbitals159

ρ(r) =
∑
σ=α,β

ρσ (r) =
∑
σ=α,β

Nσ∑
i

|ϕi (r)|2 . (2.31)

In Eq. 2.31 the density is divided into the di�erent spin components, and Nσ is the total number of
electrons with spin σ (Nσ = Nα + Nβ ).

The di�erence in between the exact and approximated kinetic energy, as well as the correlation and
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exchange energy, are combined in the exchange-correlation functional EXC[ρ] (Eq. 2.32)

EXC[ρ] = (T [ρ] −TSD[ρ]) + (Vee [ρ] − J [ρ]) (2.32)

= EX[ρ] + EC[ρ] (2.32a)

=

∫
εXC

[
∇̂aρ(r)

]
ρ(r)dr . (2.32b)

EXC is often further decomposed into an exchange EX and correlation EC part (cf. Eq. 2.32a) that depends
on the energy density εXC. This latter term is a functional of the di�erent electron density derivatives
∇̂aρ(r) (Eq. 2.32b). Thus, Eq. 2.30a can be reformulated in terms of Kohn–Sham DFT

EKS[ρ] = TSD[ρ] +Vne [ρ] + J [ρ] + EXC[ρ] (2.32)

=

[
N∑
i=1

〈
ϕi

����−1
2∇

2
����ϕi 〉] +Vne [ρ] + J [ρ] + (EX[ρ] + EC[ρ]) . (2.33a)

Minimizing EKS with respect to the orbitals results in the Kohn–Sham equations15 (Eq. 2.34)

f̂ KS
i [ρ]ϕi = ϵiϕi (2.34)

=

[
ĥi [ρ] +

N∑
j

(
Ĵi j [ρ] + ν XC[ρ]

)]
ϕi , (2.34a)

where the Kohn–Sham operator f̂ KS is given in Eq. 2.34a and the exchange-correlation potential ν XC[ρ]

is given by Eq. 2.35
ν XC[ρ] =

δEXC[ρ]

δρ
. (2.35)

In analogy to HF (Eq. 2.15), the Kohn–Sham equations (Eq. 2.34) are solved iteratively in an SCF pro-
cedure, employing the same methodologies such as the Roothaan–Hall formalism.

The exact density functional would provide the correct exchange and correlation energy. Thus, KS-
DFT o�ers an appealing approach to include electron correlation e�ects within a mean-�eld theory and
improves upon HF. Nevertheless, approximations to the density functional must be employed since the
exact functional of an arbitrary density is unknown.159 Note that in Eq. 2.34a νXC[ρ] is approximated
and hence, does not cancel the Coulomb interaction Jii of an electron with itself. This leads to the SIE in
local and semi-local density functionals, whereas HF is SIE free (cf. Eq. 2.17).160,161 Over the last decades,
theoreticians have developed an entire “zoo” of di�erent density functional approximations162 (DFA),
ranging from purely empirical to physically motivated approaches. Perdew and Schmidt introduced
the metaphor of “Jacob’s ladder” to rank di�erent DFAs according to the underlying approximations in
ν XC[ρ].154,159,163 A general overview is given in Figure 2.3.

The idea of Jacob’s ladder is that DFAs at higher levels build on those below them, always adding a
new level of complexity to get closer to the exact functional. The lowest runk, and thus the basis of
all DFAs, is occupied by local (spin) density approximations (LSDA) derived from the uniform electron
gas (UEG).164,165 In the UEG, there are no variations in the density and thus, EXC only depends on

19



2. Theoretical Background

"Heaven" of Chemical Accuracy

virtual double-hybrid

Ac
cu

ra
cy

Effi
ci

en
cy

Hartree World

LSDA

meta-GGA

hybridoccupied 

GGA

τ

Figure 2.3.: Illustration of DFA categorization according to the “Jacob’s ladder.” ρ is the electron density,
τ the kinetic energy density, ∇ the Nabla operator, and ϕ a molecular orbital.

ρ(r).164,165 LSDAs are improved by the general gradient approximation (GGA) type of functionals, which
additionally take into account the density derivative ∇ρ(r).166–168 Higher order derivatives ∇2ρ(r) or
the kinetic energy density169 τ are included by meta-GGA functionals.170,171 In hybrid DFAs, the (semi-
)local exchange functional is modi�ed by a fraction of non-local exact exchange from HF, the so-called
Fock exchange.172,173 Introducing Fock exchange reduces the SIE in hybrid functionals compared to
semi-local DFAs. Double-hybrid (DH) DFAs represent the highest rung on Jacob’s ladder and include
virtual orbital information, e.g., by means of (modi�ed) Møller–Plesset152 perturbation theory as in
WFT.174,175 For more information about the di�erent rungs of DFAs, see Appendix A2.1. In the following
DFT always refers to KS-DFT, if not stated di�erently.

2.1.6. Semi-Empirical Quantum Mechanical Methods

Tight-Binding Methods

Semiempirical QM methods are empirical extensions to ab initio methods.89 Formally, they belong
to the class of electronic structure methods but introduce empirical potentials and approximations to
various terms to accelerate calculations. Usually, minimal basis sets are employed as well. SQM meth-
ods derived from KS-DFT are called tight-binding (TB) methods. The most prominent representatives
thereof are the density functional based tight-binding (DFTB) methods, developed by Elstner and co-
workers,89–92,176–179 and the more recently introduced extended tight-binding (xTB) methods of the
GFNn-xTB family of methods.93–96 In the following, the connection of the xTB methods to DFT and
DFTB is outlined. The equations are adapted from Refs. 93,94,96.
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The energy expression for extended TB methods is derived from a general DFA that includes a non-
local (NL) correlation contribution. The total Kohn-Sham energy expression is then given by93 (Eq.
2.36)

Etot =
M∑
i

fi

∫
ϕ∗i (r)

[
T̂ (r) +Vn(r) + εLDA

XC [ρ(r)] +
1
2

∫ (
1

|r − r′ |
+ ΦNL

C (r, r
′)

)
ρ(r′)dr′

]
ϕi (r)dr +VNN .

(2.36)
Here,ψi are molecular spatial orbitals, M their total number, and fi their respective occupation. T̂ (r) is
the kinetic energy operator, V̂n(r) is the Coulomb operator, and εLDA

XC [ρ(r)] is the semilocal exchange-
correlation (XC) energy per particle. The inner integral contains the interelectronic Coulomb and
nonlocal correlation via the kernel ΦNL

C (r, r
′). The latter term includes dispersion interactions (see

Appendix A2.1) and establishes the connection between tight-binding and intermolecular force-�elds
(vide infra). The total energy can then be reformulated in terms of a reference density ρ0 composed
of a superposition of spherical, neutral atomic reference densities (SADs) ρ0 =

∑
A
ρA0 , and a density

di�erence ∆ρ with ρ = ρ0 + ∆ρ (Eq. 2.37)

Etot = EH
0 + ∆E

H + ELDA
XC [ρ] + E

NL
C [ρ, ρ

′] . (2.37)

Here, the last two terms on the right hand side are non-separable exchange-correlation (local and non-
local) energies. Eq. 2.37 is equivalent to Eq. 2.36, just reformulated in terms of the di�erence density
∆ρ. The energy at the reference density EH

0 and the energy di�erence ∆EH are given by

EH
0 = Enn +

M∑
i

f0,i

∫
ϕ∗i (r)

[
T̂ (r) +Vn(r) +

1
2

∫ 1
|r − r′ |

ρ0(r′)dr′
]
ϕi (r)dr , (2.38)

∆EH = +
M∑
i

∆fi

∫
ϕ∗i (r)

[
T̂ (r) +V0(r) +

1
2

∫ 1
|r − r′ |

∆ρ(r′)dr′
]
ϕi (r)dr , (2.39)

with the reference potential V̂0(r) given as

V0(r) =
O∑
A

(∫ 1
|r − r′ |

ρA0 (r
′)dr′ − ZA

|r − RA |

)
. (2.40)

In Eq. 2.40, M is the number of orbitals (Eqs. 2.38, 2.39) and O the number of nuclei. In DFTB methods,
the total energy is expanded in a Taylor series around ∆ρ = 0 (Eq. 2.41), where the density �uctuations
are typically restricted to the valence orbitals

E [ρ] = E(0) [ρ0] + E
(1) [ρ0,δρ] + E

(2) [ρ0, (δρ)
2] + E(3) [ρ0, (δρ)

3] + · · · . (2.41)

The most sophisticated variants truncate this expansion after the third order term,92,178 just like the
GFN1-xTB94 and GFN2-xTB93 methods. GFN0-xTB95 corresponds to truncation after the �rst order
term and GFN-FF truncates the expansion after the zeroth order term (vide infra). The zeroth order
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2. Theoretical Background

energy term only depends on neutral atomic reference densities as all terms but EH
0 cancel. The energy

is computed as the sum of non-interacting atomic total energies (EA), as well as interatomic repulsion
and London dispersion interaction terms (Eq. 2.42)

E(0) [ρ0] =
O∑
A

EA
[
ρA0

]
+

1
2

O∑
A

O∑
B

(
Erep

[
ρA0 , ρ

B
0
]
+ Edisp

[
ρA0 , ρ

B
0
] )

(2.42a)

=

O∑
A

EA
[
ρA0

]
+

(
E(0)rep + E

(0)
disp

)
︸          ︷︷          ︸

Lennard-Jones/Buckingham-type potential

. (2.42b)

In Eq.2.42, Edisp arises from the long-range correlation e�ects and Erep results from overlap of the atomic
reference densities ρA0 . This establishes the connection between TB methods and intermolecular force-
�eld potentials of Lennard-Jones180 or Buckingham181 type, which is important for the course of this
thesis.

At �rst order, density �uctuations enable changes in the energy but not in the electrostatic potential
and therefore, Coulomb interactions are yet missing. The energy term is given by Eq. 2.43

E(1) [ρ0,δρ] =∆E
H [∆fi = δfi ,∆ρ = 0] + 1

∂ρ

(
∂ELDA

XC [ρ0] + ∂E
NL
C [ρ0, ρ

′
0]
)
δρ (2.43a)

≈E(1)EHT + E
(1)
disp . (2.43b)

First order terms include the description of covalent bonds in TB theories. The ∆EH term is equivalent
to extended Hückel theory182,183 (EHT) and is given as the sum of the changes in the atomic valence
energies. The major savings of TB methods in computation time result from the EHT treatment, for
which only one-electron integrals are evaluated according to Eq. 2.44

E(1)EHT =
M∑
i

ni
〈
Ψi

��Ĥ0
��Ψi 〉 = M∑

µ,ν

M∑
i

niCµiCν i
〈
ϕµ

��Ĥ0
��ϕν 〉 ≡ M∑

µ,ν

Pµ,νHµ,ν . (2.44)

Here, Ĥ0 is formally a one-electron operator and the corresponding o�-diagonal matrix elements Hµ,ν

are approximated (see Appendix A2.2). The computationally demanding two-electron terms are thus
neglected or implicitly compensated by the empirical approximations to higher order Coulomb and XC
terms. TB methods are e�ectively 2–3 orders of magnitude faster than (semi-) local DFAs.184

At second order, interatomic electrostatic, one-center exchange-correlation, and NL correlation terms
occur (Eq. 2.45)

E(2) [ρ0,δρ] =∆E
H [∆fi = δfi ,∆ρ = δρ] +

1
∂ρ ∂ρ ′

(
∂2ELDA

XC [ρ0] + ∂
2ENL

C [ρ0, ρ
′
0]
)
δρ δρ ′ (2.45a)

≈E(2)ES+XC + E
(2)
disp (2.45b)

≈
1
2

O∑
A

O∑
B

qAqBγ
h
AB . (2.45c)
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2.1. Electronic Energy Methods

In GFNn-xTB schemes, these are generally condensed in a Mataga–Nishimoto–Ohno–Klopman damped
Coulomb interaction γhAB between atomic or shell charge monopoles qA,B .185–187 With second or higher
order terms, the tight-binding energies require a self-consistent solution, because the chargesq entering
the TB Hamiltonian (Eq. 2.45c) are obtained from a Mulliken population analysis.128 Thus, they depend
on the overlap integral Sµ,ν and density matrix Pµ,ν . TB methods are therefore often referred to as
self-consistent charge (SCC) procedures instead of SCF.

At third and higher orders, no contributions from ∆EH occur, and only the local and non-local XC
terms lead to energy according to (Eq. 2.46)

E(3) [ρ0,δρ] =
1

∂ρ ∂ρ ′ ∂ρ ′′

(
∂3ELDA

XC [ρ0] + ∂
3ENL

C [ρ0, ρ
′
0]
)
δρ δρ ′ δρ ′′ (2.46a)

≈E(3)XC + E
(3)
disp . (2.46b)

These (semi-)local e�ects are included in DFTB3, as well as in GFN1- and GFN2-xTB Hamiltonians to
stabilize relatively high charged atoms. Introducing empirical potentials inevitably leads to the use
of element (pair-wise) parameters,89,92 which are usually adapted from (or �tted to) pre-computed ab

initio values. Parameterizations are often available only for a few, mostly main group element pairs,
while a full periodic table parameterization is missing. In the context of general applicability, there is no
real alternative to KS-DFT. Recently, this changed with the development of the extended tight-binding
methods.

2.1.7. The GFN Family of Methods

The GFNn-xTB methods (n = {0, 1, 2}) represent a trilogy of general applicable extended tight-binding
methods with special focus on geometries, harmonic vibrational frequencies, and noncovalent interac-
tion energies.93–96 The evolution of GFNn-xTB methods further inspired the development of a generic
force-�eld, termed GFN-FF,117 which is the �rst non-electronic GFN variant. An overview of all GFN
methods and their mutual connection is given in Figure 2.4. What all GFN methods have in common,
is the coverage of a full periodic table parameterization for elements up to radon (Z ≤ 86). A mostly
global and element-speci�c �tting strategy is applied, thereby avoiding element-pair-speci�c param-
eters. The molecule training set is versatile and covers thousands of structures reaching from small
hydrides or oxides of the respective elements to large transition metal complexes. The description of
van-der-Waals interactions represents a second parallel between the GFN methods, treating London
dispersion and Pauli-exchange repulsion almost identically. The latest DFT-D dispersion correction is
always employed in combination with a classical, exponentially damped 1/R, pair-wise repulsion term.
Further, all GFN methods are equipped with robust and e�cient implicit solvation models.96 Two vari-
ants are currently available. One model is based on the analytical linearized Poisson–Boltzmann (ALPB)
model,188 the other is a generalized Born and surface area model (GBSA).189 All electronic GFN meth-
ods employ prede�ned minimal basis sets of the STO–mG type190 for the valence electrons, where
Slater-type orbitals (STO) are approximated by combinations of Gaussian-type atomic orbitals. The
application, evaluation, and improvement of the existing GFNn-xTB methods is a major part of this
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2. Theoretical Background

Figure 2.4.: The GFN family of methods. GFN1- and GFN2-xTB truncate the tight-binding energy ex-
pansion at third order. Truncation after the third order leads to the non-selfconsistent
GFN0-xTB method. The �rst non-electronic GFN variant is GFN-FF, a formally zeroth-
order-only TB scheme classi�ed as a generic force-�eld.

thesis. For more details about the underlying theory, see the original publications Refs. 93–96 or Ap-
pendix A2.2. The GFN methods can be sorted according to the order in which the tight-binding energy
expansion (Eq. 2.41) is truncated. Both, GFN1- and GFN2-xTB include up to third order terms. GFN1-
xTB94 represents the �rst generation of xTB methods. It features zeroth order Coulomb interactions
described by the empirical repulsion term Erep, the well-known D3 dispersion correction, and a halogen
bond correction EXB. Covalent bonds are described at �rst order by the Hückel term EEHT. At second
order, the isotropic monopole Coulomb interactions are described by Eq. 2.45c.

The essential novelty in the GFN2-xTB93 method is the inclusion of anisotropic second order density
�uctuation e�ects for the electrostatic EAES and exchange-correlation EAXC energies via short-range
damped interactions of cumulative atomic multipole moments (CAMM).191–193 As a result, the halo-
gen bond correction is obsolete in GFN2-xTB. The dispersion energy is described by a modi�ed, self-
consistently solved D4 dispersion model, where the atomic partial charges are taken from the Mulliken
population. GFN2-xTB is currently the most sophisticated TB method.

Truncation of the TB expansion (Eq. 2.41) after the �rst order leads to GFN0-xTB.95 Covalent bonds
are described by an extended Hückel term, which is improved by a classical short-range bond correction
ESRB. The classical repulsion term Erep and non-selfconsistent D4 dispersion energy are added. The
essential innovation in GFN0-xTB is the incorporation of semi-classical atomic charges, determined
variationally from a classical electronegativity charge equilibrium (EEQ) model.194,195 Hence, GFN0-
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2.2. Force-Field Methods

xTB is a non-selfconsistent method (no SCC required) and diagonalizes the Hamiltonian only once.
Computationally it is the fastest, but also the most empirical GFNn-xTB method.

GFN-FF117 is the �rst non-electronic GFN variant and can formally be regarded as a zeroth-order-
only TB scheme. The missing �rst order terms, which are responsible for covalent bonding, are replaced
by classical molecular mechanics for bonds, angles, and torsions. Therefore, GFN-FF is classi�ed as a
general force-�eld. The development, application, and evaluation of GFN-FF is a major part of this
thesis. Detailed information about the underlying theory are given in Chapter 3 of Part II. A general
overview of FF methods is given in Section 2.2.

2.2. Force-Field Methods

The QM calculation of the electronic energy for a given nuclear con�guration is non-trivial and be-
yond a certain system size rather impossible. Force-�eld methods circumvent the description of the
electronic structure by formulating the molecular energy as a parametric function of only the nuclear
coordinates. 15 The main actors in force-�eld methods are thus the atoms and electrons are not con-
sidered as individual particles. Consequently, the bonding information must be provided by suitable
functions, instead of emerging from the solution of the electronic Schrödinger equation.15 The corre-
sponding potential energy terms introduce parameters, which must be �tted to experimental or �rst
principle computational data. Often, many atom-pair-speci�c parameters are needed, making it di�cult
to develop broadly applicable FF methods.

A general FF energy can be expressed as a sum of terms that describe the energy required for speci�c
distortions of a molecule

EFF = Ebond + Ebend + Etors︸                    ︷︷                    ︸
covalent

+EvdW + Ees︸       ︷︷       ︸
noncovalent

. (2.47)

Here, the energy of bond stretching and compression is given by Ebond, Ebend is the energy required
for angle bending, and the torsional energy for rotation around a bond is Etors. EvdW is the van-der-
Waals energy, i.e., the sum of repulsion and dispersion energy. Ees is the electrostatic energy. The �rst
three terms describe the interaction of covalently bound atoms, while the latter two terms include the
noncovalent atom–atom interactions. The energy terms are illustrated in Figure 2.5.

bo
nd

angle torsion

noncovalent

Figure 2.5.: Illustration of the fundamental force-�eld energy terms. Figure adapted from Ref. 15.

Changes in the bond distance RAB between two atoms A and B are described by the energy function
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Ebond. The expansion in a Taylor series around an equilibrium bond length R0, which is then terminated
at second order, leads to Eq. 2.48.15

Ebond
(
RAB − R

0
AB

)
= E(0) + dE

dR

(
RAB − R

0
AB

)
+

1
2
d2E

dR2
(
RAB − R

0
AB

)2
. (2.48)

Here, E0 is the zero point for the energy scale and thus set to zero. Since the derivatives are evaluated at
R = R0, the second term in the expansion is also equal to zero. The �rst non-zero term arises at second
order and Eq. 2.48 can be re-written as Eq. 2.49

Ebond
(
RAB − R

0
AB

)
=

∑
bonds

kAB
(
RAB − R

0
AB

)
=

∑
bonds

kAB (∆RAB)
2 , (2.49)

where the sum is over all bonds A–B and kAB is the respective force constant (FC). The potential in
Eq. 2.49 is quadratic in the displacement ∆ from the equilibrium geometry and has the form of a har-
monic oscillator. Simple harmonic bond potentials are widely used in common FFs62,64,113 as they are
su�cient for determining most equilibrium geometries. Nevertheless, the harmonic potential does
not allow bond dissociation and yields unphysical values for strongly distorted structures. For a bond
stretched to in�nity, the energy should convergence towards the dissociation energy. This criterion is
satis�ed by the Morse potential (Eq. 2.50a)196

EMorse(∆R) = D
(
1 − e−α∆R

)2
(2.50a)

α =

√
k

2D , (2.50b)

where D is the dissociation energy, α controls the width of the potential, and k is the related FC at the
minimum of the potential well. The Morse function reproduces the correct dissociation behavior over
a wide range of distances and is frequently used in dissociative FFs.197

Bending an angle θABC formed by three atoms A–B–C , where B is the central atom, requires the
energy Ebend. In analogy to the bond energy, Ebend is usually expanded as a Taylor series around a
reference bond angleθ 0

ABC and terminated at second order. In this harmonic approximation, the bending
energy is given by Eq.2.51 as the sum over all angles

Ebend
(
θACB − θ

0
ABC

)
=

∑
angles

kABC
(
θABC − θ

0
ABC

)2
, (2.51)

where kABC is the bending force constant. If the central atom B is sp2-hybridized and in a trigonal
planar arrangement with atoms A, C, and D, then there is a signi�cant energy penalty associated with
the pyramidalization of B.15 Therefore, an out-of-plane energy bend term (Eoop) is added, while the in-
plane angles (θABC , θABD , and θCBD ) are treated as in the general case above. Eoop may also be written
as a quadratic function (Eq. 2.52)

Eoop(d) =
∑
B

kBd
2, (2.52)
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2.2. Force-Field Methods

where d is the out-of-plane distortion and kB the respective force constant.
Etors is the energy required for the rotation around the B–C bond in a four-atom sequenceA–B–C–D.

The torsion angle, also known as a dihedral angle, is formed by three consecutive bonds in a molecule
(A–B, B–C , C–D) and de�ned by the angle created between the two outer bonds (cf. Figure 2.5). The
torsional energy function is periodic in the angle ω and can be expressed as a Fourier series given in
Eq. 2.53

Etors(ω) =
∑

torsins

∑
n=1

Vn cos(nω) . (2.53)

Vn is the force constant that determines the magnitude of the rotation barrier around the B–C bond.
For n = 1, the rotation is periodic by 360◦, for n = 2 by 180◦, for n = 3 by 120◦, etc. The sum is in
Eq. 2.53 is over all respective torsion angles.

The noncovalent contributions to EFF consist of the van-der-Waals energy and the electrostatic in-
teractions.62,198 Evdw is a distance-dependent interaction between atoms or molecules, which is zero at
larger interatomic distances. At short distances, EvdW becomes very repulsive as a result of the Pauli
exclusion principle that prevents the collapse of molecules. At intermediate distances, there is mod-
erate but highly important interatomic attraction from induced multipole interactions, due to electron
correlation e�ects. Thereof, the leading term is the induced dipole–dipole interaction, which varies
as the inverse sixth power of the distance between atoms A and B (1/R6). Other contributions from
induced dipole–quadrupole (1/R8) , quadrupole–quadrupole (1/R10), etc., interactions exist as well. The
asymptotic behavior at long distances is dominated by the (1/R6) dependence and the force associated
with this interactions is well-know as the London dispersion force199,200 (see Chapter 6 in Part III or
Appendix A2.1). A general functional form that ful�lls the above mentioned criteria for EvdW is the
Lennard–Jones (LJ) potential180 in Eq. 2.54, which is often applied in FFs

ELJ (RAB) =
O−1∑
A=1

O∑
B=A+1

C12

(RAB)
12 −

C6

(RAB)
6 (2.54a)

=

O−1∑
A=1

O∑
B=A+1

ε


(
R0
AB

RAB

)12

− 2
(
R0
AB

RAB

)6 . (2.54b)

In Eq. 2.54a, the repulsive part is given by an (1/R12) dependence and C12 and C6 are the respective
constants. O is the total number of atoms. A more widely used form of the LJ potential is given in
Eq. 2.54b, where R0

AB is the minimum energy distance and ε the depth of the minimum. Note that it is
not possible to derive the functional form of the repulsive interaction and the exponent in the repulsive
part is an empirical parameter. A generalized Lennard–Jones type potential is applied, e.g., in the Merck
Molecular Force-Field (MMFF).201

Atomic partial charges in molecules result from di�erences in the electronegativities of the respective
atoms. The electrostatic interaction between point charges is given by the Coulomb potential

Ees (RAB) =
O−1∑
A=1

O∑
B=A+1

QAQB

εRAB
, (2.55)
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where QA and QB are the atomic partial charges of atoms A and B, RAB is their mutual distance, and ε
the dielectric constant. The MM2 and MM3 force-�elds use a bond dipole description instead of atomic
partial charges, but only little di�erence in the performance was observed.202,203 Note that due to the
sum over atom pairs, the noncovalent contributions (EvdW, Ees) scale quadratically with the system size,
while the covalent terms scale linearly. Atomic partial charges are assigned by �tting to the molecular
electrostatic potential (MEP) from ab initio electronic structure methods.204 The MEP ϕes at the point r
is de�ned by the nuclear charges Z and the electronic wave function Ψ (Eq. 2.56)15

ϕes(r) =
O∑
A

ZA
|Ra − r|

−

∫
Ψ2(r′)
|r′ − r|

dr′ . (2.56)

In the �tting procedure, an error function of the form shown in Eq. 2.57 is minimized

ErrF (Q) =
Npoints∑

r

(
ϕes(r) −

O∑
A

QA(RA)
|RA − r|

)2

, (2.57)

constraining the sum of the partial charges Qi to equal the total charge of the molecule. Usually thou-
sands of points (Npoints) are sampled near around the molecule. Restrained MEP �tting techniques are
used, e.g., in the AMBER force-�eld.62

2.3. Free Energy Contributions

At the very beginning of Chapter 2 in Eq. 2.1c, the Gibbs free energy for a reaction was decomposed
in two parts, the molecular energy ∆E and the sum of all corrections to free energy ∆Gcorr.(T ). In Sec-
tions 2.1 and 2.2, QM, TB, and FF methods were introduce to calculate the molecular energy. In this
section, the focus will lie on the correction term to free energies. Following an established thermosta-
tistical protocol,119 ∆Gcorr.(T ) is separated in two parts (Eq. 2.58)

∆Gcorr.(T ) = ∆Gtrv(T ) + ∆δGsolv(T ) . (2.58)

Here Gtrv is the thermostatistical contribution from energy to free energy at absolute temperature T ,
accounting for translation, rotation, and vibration degrees of freedom (DOF), also including the zero-
point vibrational and volume work terms. ∆δGsolv.(T ) is the temperature dependent solvation free
energy, which has to be considered when the reaction takes place in solution. First, an overview of
statistical thermodynamics is given in Section 2.3.1, followed by an introduction to solvation e�ects in
Section 2.3.2. Conformational degrees of freedom are considered in Section 2.3.3.

2.3.1. Statistical Thermodynamics

Statistical thermodynamics provides the connection between the partition functionQ for a microscopic
system and external macroscopic properties.68 Fundamental thermodynamic functions, such as the
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2.3. Free Energy Contributions

Gibbs free energy G, enthalpy H , and the entropy S can be derived directly from Q according to15

G = H −TS = kT V

(
∂lnQ

∂V

)
T
− kT lnQ (2.59a)

H = kT 2
(
∂lnQ

∂T

)
V
+ kT V

(
∂lnQ

∂V

)
T

(2.59b)

S = kT

(
∂lnQ

∂T

)
V
+ k lnQ . (2.59c)

The symbols used in Eq. 2.59 and throughout this section are listed in Table 2.1. The calculation of Q

Table 2.1.: Symbols used in this section for the derivation of thermostatistical quantities.

Q partition function
дi degeneracy of state i
ϵi energy of state i
k (kB ) Boltzmann’s constant
T the temperature
M mass of the molecule
h Planck’s constant
V volume of molecule con�ned in a cubic box (molar volume of an ideal gas)
R the gas constant
NA Avogadro’s number
IA, IB , IC moment of inertia around principle axes of rotation A, B, and C
νi the vibrational frequency for mode i
σ rotational symmetry number

requires the knowledge of all possible quantum states of a given system. For this, the electronic and
the nuclear Schrödinger equation have to be solved, which is practically impossible for more than three
atoms.15 Instead, the energy levels for an isolated molecule in a single conformation are often calcu-
lated within the rigid-rotor harmonic-oscillator (RRHO) approximation.68,119 Therein, the electronic,
translation, vibration, and rotation DOFs are assumed to be separable and the total energy can be ap-
proximated as a sum of the respective terms. Applying the RRHO approximation, the partition function
can be calculated exactly for an ideal gas (isolated molecule). Qtot is then written as the product of the
individual partition functions (Eq. 2.60)

Qtot = QelecQtransQrotQvib , (2.60)

where the individual terms are given in Eq. 2.61

Qelec =
∑
i

дie
−ϵi /kT (2.61a)

Qtrans = (2πMkT )
3
2 h−3V (2.61b)

Qrot =
8π 2

σh3 (2πkT )
3
2
√
IA IB IC (2.61c)

Qvib =
modes∏

i

e−hνi /2kT

1 − e−hνi /kT
. (2.61d)
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The enthalpy and entropy contributions depend on the logarithm ofQ , and hence, the respective quan-
tities can be formulated as the sums of their DOFs

Htot = Helec + Htrans + Hrot + Hvib (2.62a)

Stot = Selec + Strans + Srot + Svib . (2.62b)

The electronic partition function involves a sum over electronic quantum states obtained by solving
the electronic Schrödinger equation. Because the energy di�erence between the ground state and the
�rst excited state is usually much larger than kT , only the ground state is further considered. With
the partition functions at hand (cf. Eq. 2.61), the enthalpy and entropy terms can be calculated by
performing the di�erentiation in Eq. 2.59. The results for one mole of non-linear molecules are given
in Eqs. 2.63 and 2.64

Htrans =
5
2RT (2.63a)

Hrot =
3
2RT (2.63b)

Hvib = RT
modes∑

i

(
hνi
kT

)
e−hνi /kT

1 − e−hνi /kT
, (2.63c)

Strans =
5
2R + R ln

(
V

NA

(
2πMkT

h2

) 3
2
)

(2.64a)

Srot = R

[
3
2 + ln

(√
π

σ

(
8π 2kT

h2

) 3
2 √

IAIBIC

)]
(2.64b)

Svib = R
modes∑

i

[(
hνi
kT

e−hνi /kT

1 − e−hνi /kT

)
− ln

(
1 − e−hνi /kT

)]
. (2.64c)

Note that the �rst part of the vibrational enthalpy (Eq. 2.63c), which is the sum of 1/2hν contributions,
gives the zero-point energies. Finally, Gtrv can be calculated according to Eq. 2.59, where the enthalpy
and entropy terms are expressed as the sums of their translation, rotation, and vibration DOFs according
to Eq. 2.65

Gtrv = (Htrans + Hrot + Hvib) −T (Strans + Srot + Svib) . (2.65)

2.3.2. Solvation Effects

To model chemical systems in solution realistically, solvent e�ects must be taken into account. This
can be done either by the explicit inclusion of solvent molecules and dynamical sampling,205,206 or
by a parameterized implicit solvent model.207–210 Due to its much higher computational e�ciency,
an implicit treatment of solvent e�ects is desirable in combination with the GFN methods, for the
application to large molecules. Two kinds of implicit solvation models are available in the xtb program, a
recently implemented analytical linearized Poisson–Boltzmann (ALPB) model211 and a well established
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2.3. Free Energy Contributions

generalized Born (GB) model. During the course of this thesis, the GB model was applied and the
theoretical details will be limited to this model. The equations are adapted from Ref. 96.

In the GB model, a molecule is considered as a continuous region with a dielectric constant ϵin, which
is surrounded by an in�nite solvent with a dielectric constant ϵout.212 The electrostatic interaction in
the presence of a polarized solvent within the GB model is given by Eq. 2.66189

δGGB = −
1
2

(
1
ϵin
−

1
ϵout

) O∑
A=1

O∑
B=1

qAqB(
R2
AB + aAaB exp

[
−

R2
AB

4aAaB

] ) 1
2
, (2.66)

where aA, aB are the e�ective Born radii of the atoms A and B, and O is the total number of atoms.
The denominator on the right-hand side of Eq. 2.66 corresponds to the canonical interaction kernel
proposed by Still.189 The Born radii are evaluated by an Onufriev–Bashford–Case (OBC) corrected
pairwise approximation to the molecular volume according to

1
aA
=

1
ascale

(
1

Rcov
A − Ro�set

−
1

Rcov
A
· tanh

[
bηA − cη

2
A + dη

3
A

] )
, (2.67)

where Rcov
A is the covalent radius of atom A, ascale and Ro�set are global parameters and b = 1.0, c = 0.8

and d = 4.85 are the parameters for the OBC correction.213 ηA is the pairwise approximation to the
volume integral given by

ηA =
Rcov
A − Ro�set

2
∑
B

Ω(RAB ,R
cov
A , sBR

cov
B ) , (2.68)

where Ω is the pairwise function used to approximate the volume integral. The covalent radius of atom
B is scaled by the element-speci�c descreening value sB , which compensates for the inherent volume
overestimation. In addition to the polar term, a non-polar surface area contribution is added, which
depends on the solvent accessible surface area (SASA)

δGSASA =
N∑
A=1

γAσA . (2.69)

Here, γA is the surface tension, and σA is the SASA of atomA. The SASA is calucalted by integration on
an angular Lebedev grid.214 Combining the GB and the SASA term leads to a generalized Born surface
area (GBSA) model,189 for which the total solvation free energy is given by Eq. 2.70

δGsolv = δGGB + δGSASA + δGshift . (2.70)

δGshift is included as an additional shift depending on the chosen reference state of the solution. The
GBSA solvation free energy includes four global parameters that are �tted to reproduce COSMO-RS16
solvation free energies.215–218 For further details about the solvation models in the xtb program, see
Refs. 96,188. Leaving out the explicit atomistic description of solvent comes at the cost of an insu�-
cient description of local solute–solvent interactions, i.e., hydrogen bonds, ion distributions, and salt
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2. Theoretical Background

bridges.219 Therefore, in Chapter 9 of Part IV, an explicit solvation model, termed quantum cluster
growth (QCG), is introduced to investigate the e�ect of explicit solvent molecules in the context of
IR-spectroscopy.

2.3.3. Conformations

For rigid molecules, the partitioning in Eq. 2.1c and Eq.2.58 is su�ciently accurate. Nevertheless, for
�exible systems several problems arise15 and the concept of a single molecular structure is replaced by
that of an ensemble of structures, which are in equilibrium with each other.59 Under the assumption
that all DOFs (electronic, translation, rotation, vibration, conformation, solvent) are separable, the free
energy of the structure ensemble is obtained as (Eq. 2.71)

Gensemble = Ḡ +Gconf . (2.71)

Here, Gconf is the conformational free energy part consisting of C distinguishable conformers in the
ensemble. The average free energy Ḡ is then given by Eq. 2.72

Ḡ =
C∑
i

piGi , (2.72)

where the Boltzmann population pi is calculated according to Eq. 2.73

pi =
e−

Gi
kT∑C

i e
Gi
kT

. (2.73)

k is the Boltzmann constant and Gi is the molecular free energy of the ensemble member i obtained as
(cf. Eqs. 2.1c, 2.58)

G = Egas +Gtrv(T ) +Gsolv(T ) . (2.74)

Taking into account an entire structure ensemble of a �exible molecule, Eq. 2.74 is rewritten as

∆G = ∆Ē + ∆ḠmRRHO(T ) + ∆δḠsolv.(T ) + ∆Gconf.(T ) , (2.75)

where the overlined quantities are computed in analogy to Eq. 2.72. Prerequisite for the accurate cal-
culation of Gconf is the knowledge of the complete structure ensemble, wherefore the exploration of
the PES and the detection of global minima is necessary. Therefore, the conformer-rotamer ensemble
sampling tool, abbreviated CREST, is applied several times throughout this thesis. A short overview is
given in Appendix A2.3. For a detailed description, see the original publication Ref. 60. A description
on how to compute Gconf using the crest program is given in Ref. 61.
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Experimental chemistry usually deals with billions of atoms simultaneously. Already an invisible drop,
like a micromole of water (∼10-7 g) contains 1017 atoms. As a matter of fact, the description of such
large systems by high accuracy DFT will probably never be possible and instead, classical force-�elds
must be employed. Therefore, the development of new FFs with improved accuracy is an important
part of research in theoretical chemistry.2

Currently, there is an imbalance between highly specialized FFs, which are tailor-made for a certain
type of molecules, and general FFs, whose parameterization covers a larger amount of elements (see
Figure 2.6). Prominent and widely applied specialized FFs, such as AMBER,62 CHARMM,64 or OPLS,113

can yield high accuracy but are mostly limited to the systems and properties they were designed for.
The universal force-�eld114 (UFF) was introduced in 1992 and remains one of the few truly general FFs
to date. The challenge is to design an e�cient FF that pairs computational speed, accuracy, and general
applicability. In addition, an e�cient FF must be backward compatible and describe not only large but
also small systems with comparable accuracy. This is especially important in the context of chemical
space exploration,60,220 where not the molecular size is the time determining step, but rather the sheer
number of calculations that need to be performed due to the enormous combinatorial complexity of the
problem.2 A force-�eld that combines all requirements of accuracy, speed, and universal applicability
is yet missing.

Figure 2.6.: Imbalance between specialized and general force-�elds. With GFN-FF, an e�cient FF is
introduced that combines accuracy, computational speed, and full periodic table parame-
terization.

Therefore, Part II (Chapter 3) of this thesis is devoted to the development and initial testing of a
partially polarizable, generic FF for the accurate description of geometries, harmonic frequencies, and
noncovalent interaction energies.117 This method, termed GFN-FF, is parameterized for all elements up
to radon (Z ≤ 86) and employs only element-speci�c and a few global �tting parameters, which reduces
the total amount of empirical data compared to other FFs drastically. GFN-FF is designed to describe
small and medium sized transition metal complexes equally well as large metal-organic frameworks or
biomacromolecules.

Section 3.1 outlines existing simpli�ed methods and their underlying approximations brie�y. The
theoretical background of GFN-FF is given in Section 3.2. Here, the connection between GFN-FF and
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the closely related GFNn-xTB methods is drawn and common “ingredients” are pointed out. Also, the
automatized topology assignment is outlined, which is a key aspect in the construction of a robust force-
�eld. Next, the total energy of GFN-FF is presented and broken down into its components, whereof each
term is discussed individually.

With this new FF method at hand, the computational modeling of a variety of chemical systems
involving transition metals and biochemical compounds becomes possible. Section 3.3 deals with
the geometry optimization of large metal-organic polyhedra and cutouts from periodic frameworks
in comparison to experimental crystal structure cutouts. The quality of GFN-FF for transition metal
complex structures is evaluated on the TMG145 benchmark set.221 Furthermore, the structures of
(metallo-)proteins are investigated. Among others, the structure of hemoglobin (∼10.000 atoms) is fully
optimized and an MD simulation is conducted for mutants of myoglobin. GFN-FF is compared to other
established force-�elds, such as OPLS200565 and AMBER∗,222,223 on a set of 70 organic peptide and pro-
tein structures.224 Finally, the accuracy of GFN-FF for the calculation of various interaction energies is
tested on standard benchmark sets, such as the GMTKN55162 and S30L,120 in comparison to high-level
QM reference data.

Overall, it is found that GFN-FF optimized structures are in excellent agreement with the experiment,
and in terms of interaction energies, almost the accuracy of much more sophisticated (S)QM methods
is reached. Thereby, GFN-FF is two orders of magnitude faster than established TB methods, and six
orders of magnitude faster than DFT methods, enabling the use on standard desktop computers.
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3. Modeling of Materials, Organometallic, and Biochemical Systems

AbstractModern chemistry seems to be unlimited in molecular size and elemental composition. Metal-
organic frameworks or biological macromolecules involve complex architectures and a large variety of
elements. Yet a general and broadly applicable theoretical method to describe the structures and in-
teractions of molecules beyond the 1000 atom size regime semi-quantitatively is not self-evident. For
this purpose, a generic force-�eld named GFN-FF is presented, which is completely newly developed
to enable fast structure optimizations and molecular dynamic simulations for basically any chemical
structure consisting of elements up to radon. The freely available computer program requires only
starting coordinates and elemental composition as input from which, fully automatically, all poten-
tial energy terms are constructed. GFN-FF outperforms other force-�elds in terms of generality and
accuracy, approaching in many cases the performance of much more elaborate quantum mechanical
methods.

3.1. Introduction

Concepts for designing molecules with desired (bio)chemical activities or physical properties have be-
come state-of-the-art in experimental chemistry.225,226 Molecular size and complexity has no bound-
aries and the elemental composition is versatile227. Within the last decades, the �eld of theoretical
chemistry has evolved into an indispensable part of chemistry and is proven to be an important com-
panion of the experiment.1 Computational chemistry is able to explore the chemical space and provide
experimentalists with useful information in order to circumvent resource demanding trial and error
procedures.228,229 In a cleaner and greener future for chemistry, theory is an essential tool supporting
the experiment and increasing economic and environmental sustainability.230 The constantly growing
diversity of chemical compound space requires the development of new methods that can be applied
in the analysis and prediction of complex molecular systems. Yet, a universal, fast, and easy to use
method is missing that is capable of providing qualitatively correct molecular models beyond the size
of a thousand atoms with arbitrary elemental composition.2

Even though today’s ensemble of theoretical methods is quite versatile, it is limited in application.
On the basis of wave function theory (WFT), methods have been developed that can provide highly
accurate total energies and potential energy surfaces (PES) for small to medium sized molecules in
the gas phase.147 Kohn-Sham density functional theory (KS-DFT or simply DFT) draws the connection
between the energy of a system and its electron density. With the introduction of reasonable approx-
imations, DFT methods can provide accurate PES for systems with up to a few hundred atoms rou-
tinely.231 Latest developments in the �eld of semiempirical quantum mechanical (SQM)98,232 methods
have further extended the treatable molecular size with special attention regarding the computation of
Geometries, Frequencies, and Noncovalent interactions (GFN).93,94 Within the extended tight-binding
(xTB) theoretical framework, equilibrium structure optimizations and molecular dynamics (MD) sim-
ulations are feasible for large molecular systems, aiming at a comparable accuracy as DFT.233 Still, the
routine handling of several thousands of atoms is beyond the scope for the aforementioned methods
and it is, therefore, necessary to apply more drastic but still physically reasonable approximations to
reduce computational demands.3
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3.1. Introduction

Figure 3.1.: Modeling of metal-organic porous materials with GFN-FF. (A-E) RMSD minimized structure
overlay between the optimized GFN-FF geometries (transparent blue) and crystal structures
of �ve systems. The CSD identi�er are given as well as heavy atom RMSD values, total
computation wall-times, and the required number of geometry optimization cycles.
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3. Modeling of Materials, Organometallic, and Biochemical Systems

Neglecting the electronic structure of a molecule and replacing it with classical interatomic interac-
tion potentials is the main approximation in classical, atomistic force-�elds (FFs). Their great bene�t
is to leave out the costly and di�cult description of the electronic structure and substituting it by
chemical-knowledge-motivated classical energy expressions. Force-�elds specialized for the accurate
description of a certain class of chemical systems exist for various application �elds. Organics are well
described by GAFF and MM3,203 while CHARMM,234,235 Amber,62 and OPLS113 focus on the descrip-
tion of proteins. In material science, DREIDING115 and MOF-FF236 are widely used. Limitations of
those special purpose force-�elds are manifold as they are not suited for interdisciplinary use, given
the fact that parameters only exist for a limited amount of elements and structural motifs. Until now,
only a single general applicable FF covering a full periodic table parameterization exists. This univer-
sal force-�eld (UFF)114 was �rst introduced in 1992 and ever since advancements on this subject could
not prevail, requiring most of the time individual, laborious parameterizations. Within this work, the
idea of a general, easy to use force-�eld is revived within the GFN framework. The presented method,
named GFN-FF, represents a generic, fully automated potential for the accurate description of an un-
limited variety of molecular systems. GFN-FF is designed to combine high force-�eld speed with the
accuracy of QM methods at unsurpassed robustness. For a manifold of systems, GFN-FF is currently the
only applicable atomistic method to provide reasonable theoretical molecular structures. As examples
for the diverse possible applications, a selected set of �ve porous metal-organic materials is shown in
Figure 3.1. Their discussion will follow in the results Section 3.3 below.

3.2. Methodology

3.2.1. The GFN Force-Field

The idea of a general GFN-type FF is inspired by the latest developments in the �eld of SQM methods,
namely the evolution of GFN1-, GFN2, and especially GNF0-xTB95 methods, where the latest key ingre-
dient was the introduction of a classical electronegativity equilibrium (EEQ) atomic charge model194,195

for the description of pair–wise interatomic electrostatic interactions. This allowed truncating the
fundamental expansion of the DFT energy E[ρ] in terms of electron density �uctuations δρ after the
�rst-order term, leading to a non-self-consistent method that employs classical atomic charges. GFN-
FF introduces approximations to the remaining quantum mechanical terms in GFN0-xTB by replacing
most of the extended Hückel type theory (EHT) for covalent bonding by classical bond, angle, and tor-
sion terms. To highlight the ancestry from the xTB methods, the similarities and di�erences between
FF and QM methods are illustrated in Figure 3.2.

All GFN methods cover a full periodic table parameterization for elements up to radon (Z ≤ 86). This
broad coverage is not self-evident even for SQM methods. To yield accurate results, the empirical FF
parameters are �tted to reproduce DFT (B97-3c237) equilibrium geometries and frequencies as well as
theoretical reference noncovalent interactions energies. A mostly global and element speci�c �tting
strategy is applied thereby mostly avoiding element pair speci�c parameters. The molecule training
set is versatile and covers currently about 8.000 structures reaching from small hydrides or oxides of
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3.2. Methodology

Figure 3.2.: The GFN-family of methods. The graphic shows the ingredients to the GFN-FF potential
energy and the connection to the family members.

the respective elements to large transition-metal complexes. This approach is a unique feature of all
GFN methods and di�ers strongly from the parameterization strategies of other force-�elds.205,235,238,239

The potential energy terms in GFN-FF are physically based and more sophisticated than simple, often
used harmonic functions. Due to this well-de�ned basis, parameters arise naturally from the potential
energy terms and their number is rather small. With only 18 speci�c parameters per element, GFN-
FF is constructed upon a framework �exible enough to describe a vast majority of chemical systems.
The quality and complexity of the potential functions determine the accuracy of GFN-FF rather than
the sheer amount of parameters. This contradicts a current trend in theoretical chemistry to solve
complicated many-body problems with a huge number of parameters, as it is done in, e.g., machine
learning and neural networks.240,241 The description of van-der-Waals interactions represents another
parallel between the GFN methods, treating London-dispersion and Pauli-exchange repulsion almost
identically. To accurately treat the important π -conjugated systems such as aromatic hydrocarbons or
graphenic materials, GFN-FF retains an iterative Hückel QM scheme for a selected set of atoms. From
the resulting bond orders, the force constants and other energy relevant terms are derived, leading to
high accuracy for conjugated molecules. The assignment of parameters and setup of force constants
is key to the performance of any FF. A simpli�ed �ow-chart of the automatic setup is given in Figure
3.3. The automation of the force-�eld setup is a unique feature of GFN-FF. As input, only Cartesian
coordinates and the elemental composition are required, from which the topological covalent bonding
information, as well as atomic charges and bond orders, are generated fully automatically. With this
information at hand, all potential energy terms are constructed.
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3. Modeling of Materials, Organometallic, and Biochemical Systems

Figure 3.3.: GFN-FF internal �ow chart. The implementation in the xtb program provides fully auto-
mated force-�eld setup, which is the generation of the topology and derivation of the force
constants and other energy term related parameters.

3.2.2. The GFN-FF Total Energy

The total GFN-FF energy expression is given by

EGFN-FF = Ecov + ENCI , (3.1)

where Ecov refers to the bonded FF energy and ENCI describes the intra- and intermolecular noncovalent
interactions (NCI). In the covalent part interactions are described by asymptotically correct bonding,
angular and torsional terms. For the bonding term a new Gaussian-type potential is proposed that
allows bond cleavage thus turning GFN-FF into a dissociative force-�eld. Repulsive terms are added for
bonded and non-bonded interactions separately. Additionally, a new three-body bonding correction
that extends beyond the sum of pair–wise interactions is included yielding

Ecov = Ebond + Ebend + Etors + E
bond
rep + E

bond
abc . (3.2)

In the noncovalent part, electrostatic interactions are described by the EEQ model. It is employed to
calculate the entire electrostatic energy and isotropic atomic partial charges, which goes beyond the
�xed charge model used in many other FFs. Overall GFN-FF uses two sets of EEQ charges. One set de-
pends on the actual molecular geometry, whereas another set of charges is exclusively bond topology
based, introducing further polarizability to the FF and leading to large simpli�cations for the gradient
computations. Dispersion interactions are taken into account by a simpli�ed version of the established
D4 scheme,242 which is the most accurate dispersion correction available and superior to the corre-
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3.2. Methodology

sponding description in standard FFs. Without detailed QM information, the accurate description of
important noncovalent hydrogen (and halogen) bonds (HB/XB) is challenging. Therefore, newly devel-
oped charge-dependent HB/XB corrections are applied. These unique potentials include information
about the location of electron lone-pairs, via an exclusion principle over neighboring atoms. The non-
covalent energy expression is given by

ENCI = EIES + Edisp + EHB + EXB + E
NCI
rep . (3.3)

Despite its complexity, GFN-FF reaches quadratic scalingO(N 2) in terms of energy and gradient calcula-
tion time with respect to system size at a moderate prefactor and is thus, almost on par with established
force-�elds in terms of computational speed.

Covalent topology

In GFN-FF the covalent topology is implemented in neighbor lists. In a �rst step, neighbor lists are gen-
erated according to highly selective inter-atomic distance criteria, where the actual distance between
two atoms RAB , is compared to a pre-computed reference value R0

AB , describing a common bonding
distance between those two atoms in their actual environment. It is calculated according to

R0
AB =

(
R0
A + R

0
B + Rsf t

) (
1 − c1 |∆EN | − c2 |∆EN |

2) , (3.4)

where R0
A and R0

B are modi�ed CN dependent D3 damping radii and c1 and c2 are period-speci�c param-
eters. The parameters are �tted to reproduce PBEh-3c231 (a few) and B97-3c (mainly) equilibrium bond
lengths, using about 15–20 reference molecules per element. For the atomic electronegativity (EN ),
Pauling values are used. Rsf t is an empirically determined element speci�c shift to the interatomic
distance. For RAB < fR(q)R

0
AB a covalent bond is assigned between atoms A and B, where fR(q) is a

charge-dependent scaling function that is unknown at this point and therefore set to unity. Depending
on the number of neighbors, a hybridization state is assigned to each atom. With the information of
neighboring atoms and their formal hybridization state at hand, π -conjugated fragments can be as-
signed with a corresponding number of π -electrons to separated parts of the entire system. Based on
this initial topology, the �rst set of topology based EEQ charges qt is derived. Having atomic charges
at hand, the procedure is iterated once (see Figure 3.3), applying qt to generate the function fR(q). This
results in an improved description of the topology that is propagated in a better π -fragment assignment
and an improved set of topological charges within only one iteration step. Applying more than one it-
eration did not lead to further improvements in the results. Subsequently, ring systems are identi�ed
automatically and this information is included up to a ring size of six atoms.

The proper description of π -conjugated systems is one of the key ingredients for an accurate force-
�eld. In GFN-FF, Hückel theory is applied to describe conjugation for the elements B, C, N, O, F, P, and
S. This is done in an iterative fashion, where the o�-diagonal elements of the Hückel matrix depend on
the density matrix PAB in order to avoid over-delocalization. For more details, the reader is referred to
the xtb source code.243 The former π -assignment is used and for each fragment a Hückel matrix is set
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up. Matrix diagonalization is performed in parallel, returning a set of eigenvalues ϵi and eigenvectors
ci, which are then used to construct the ground state density matrix according to

PAB =
∑
i

niciAciB . (3.5)

The Fermi smearing technique244 is used to allow fractional orbital occupations ni throughout this rou-
tine. This ensures that electronically degenerate and (poly)radical situations are treated automatically.
Hückel theory introduces quantum mechanics to GFN-FF and provides important bonding information
as used previously in MMFF94.201 This comes at the cost of cubic scaling with regard to the number of
π -electrons in the Hückel subsystems and thus, the formal scaling of the GFN-FF setup is for large π -
conjugated molecules O(N 3). However, due to the fact that normally only small π -fragments are taken
into account and the entire setup procedure is called just once, the overall computational costs remain
low. Nevertheless, the program has been successfully tested for molecule adsorption problems on huge
graphene �akes with about 5000 atoms. With a complete topology assignment and knowledge about
atomic charges, ring- and π -systems, in combination with the set of element speci�c �tted parameters,
all force constants (FC), and relevant equilibrium values for the bond, bend, and torsion potentials can
be derived. Along with the other energy terms as discussed below, the total energy E and its analytical
gradient g are calculated. In GFN-FF the entire setup routine and calculation of energy and gradient,
as formulated above (see Figure 3.3), is executed fully automatic.

Bond term

For a covalent bond between two atoms A and B, the energy Ebond is calculated by a newly developed
Gaussian type function

Ebond =
∑

bonds
−kstr · exp

[
−ηstr

(
1 + kEN |∆EN (AB)|2

)
·
(
RAB − R

0
AB

)2
]
, (3.6)

which allows smooth dissociation of the AB bond into the separated atoms. This is a reversible process
allowing broken bonds to reform. However, the formation of new bonds is not possible. In Eq. 3.6, RAB
is the actual interatomic distance, R0

AB is the equilibrium value (Eq. 3.4) and ηstr and kEN are global
�tting parameters. ∆EN is the di�erence between the EN of the elements ∆EN = ENA − ENB . kstr
is the bonding force constant, which is determined as a function of the coordination number (fCN ),
atomic charges (fqq ), π -bond character (fπ ), element type (main group metal or heavy element fhvy ),
and whether the atoms are part of a ring system frnд)

kstr (AB) = fCN · fqq · fπ · fhvy · frnд · kb (A)kb (B) . (3.7)

kb represent element speci�c bond parameters determined from the �t to reference data. In general, an
element speci�c parameter that represent a function of global parameter and atomic properties will be
termed with an f . In terms of FCs, element speci�c parameter that were determined by a �t to reference
data will be termed with a k . If a covalent bond is of OH or NH type and the O/N atoms are involved
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in hydrogen bonding, the exponent in Eq. 3.6 is multiplied by the function fCNH

fCNH = (1.0 − 0.1mCNH ) , (3.8)

where mCNH is the modi�ed D3 coordination number of the hydrogen atom that is part of the bond
and also the central atom within a hydrogen bond. The mCN is discussed in the electrostatic inter-
action part. For bonds involved in hydrogen bonding motifs, this modi�cation of Eq. 3.6 models the
population of the anti-bonding σ ∗ orbital by the hydrogen bond acceptor atom and the resulting weak-
ening/elongation of the respective bond. As a result, GFN-FF reproduces the splitting of, e.g., the OH
stretching vibrational band in the spectrum of the water dimer.

Bending term

For the bending term involving three atoms A-B-C, where A is the central atom, the following energy
expression is employed for angles θABC

Ebend =
∑

angles
fdmpkbnd


(
θABC − θ

0
ABC

)2
θ 0
ABC ≈ π(

cos(θABC ) − cos(θ
0
ABC )

)2 else.
(3.9)

Here, a case distinction is made between equilibrium angles close to linearity (θ 0
ABC ≈ π ) and all other

cases, which apply a double-minimum function that allows inversion. The FCs ka represent element
speci�c parameters. Here, kbnd is the bending FC, which is determined as a function of the atomic
charges (fqq ) also including a correction for small angles fsml and metals as the central atom of the
angle fmtl

kbnd (ABC) = fqq · fsml · fmtl · ka(A)ka(B)ka(C) . (3.10)

ka represent element speci�c angular bending parameters determined from the �t to reference data.
fdmp = fdmp (AB)fdmp (AC) is the product of the distance dependent damping functions (modi�ed from
Ref. 245) for AB and AC that are given by

fdmp (AB,R) =
1

1 + kdmp

(
RAB
RcovAB

)4 , (3.11)

with the covalent distance for the pair RcovAB = RcovA + RcovB as the sum of covalent atomic radii246 and
a global parameter kdmp , chosen such that the potential vanishes approximately at twice the covalent
distance. This damping of bending as well as torsional terms (vide infra) for long distances allows
proper dissociation of the molecule into atoms.
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Torsion term

The energy expression Etors for a rotation around a bond AB with atom C connected to A and atom D
to B is given by

Etors =
∑

torsions
fdmpktor [1 + cos (n(ψ −ψ0) + π )] , (3.12)

where fdmp is the triple damping product in analogy with the bending term (for CA, AB, BD) and ψ0

is the equilibrium torsion angle. The appropriate multiplicity number n describes a rotation that is
periodic by 360◦ for n = 1, the n = 2 term is periodic by 180◦, the n = 3 term is periodic by 120◦ and
so on. ktor is the torsion force constant, which determines the size of the rotational barrier around the
A-B bond. It is determined as a function of the σ - (fσ ) and π - (fπ ) character of the A-B bond and of the
atomic partial charges (fqq )

ktor = fσ · fπ · fqq · kt (AB)kt (CD) . (3.13)

kt represent element speci�c torsion parameters determined from the �t to reference data. Out-of-
plane or improper torsion terms are constructed in the same manner, taking into account all three-fold
coordinated sp2-hybridized atoms, π -atoms, and additionally three-coordinated nitrogen atoms. This
choice yields physically correct double-minimum potentials and proper inversion barriers. For out-of-
plane and improper torsion, a di�erent force constant k ′tor is applied.

Repulsion term

Unlike other force-�elds, where harmonic potentials, generalizations of Lennard-Jones245 or Morse-
type potentials are applied to describe bond stretching, in GFN-FF bond elongation and compression
are considered separately. As a novelty in GFN-FF, repulsive forces arising upon bond compression are
treated in analogy to classical nuclear repulsion terms as in Ref. 94

Ebond
rep =

∑
A

∑
B

ηbond
rep

Z e�
A Z e�

B

RAB
exp

(
−

√
αAαBR

3
AB

)
. (3.14)

Here Z e�
A and Z e�

B are e�ective nuclear valence charges of atoms A and B, which, like αA and αB are
element speci�c parameters. ηbond

rep is a global scaling parameter of the repulsion energy especially for
covalently bond atoms.

Bonded three-body term

For the description of three-body e�ects, the well-known ATM term247,248 taken from the theory of
dispersion forces is adopted here for the covalent regime. Therefore, the atoms A-B and B-C must be
covalently connected. Such a term has never been used before in a force-�eld. In GFN-FF, the following
expression is used to describe a correction to the interaction between three covalently bond atoms A,
B, and C

Ebond
abc =

∑
ABC

Cabc
(3 cosθa cosθb cosθc + 1)
(RABRACRBC )3

. (3.15)
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Here, θa , θb and θc are the internal angles of the triangle formed by RAB , RBC and RAC , respectively. In
comparison to the description of three-body e�ects in the context of dispersion interaction, the triple-
dipole constant CABC

9 is replaced by the triple-nuclear constant Cabc given by

Cabc = fq,a fq,b fq,c ηabc (ZAZBZC )
1/3 , (3.16)

where fq are linear functions of the respective atomic charge. ηabc is a global parameter and Z is
the scaled nuclear charge. Ebond

abc may be considered as a non-additive three-body correction to covalent
binding which appears in QM methods as many center nuclear-electron attraction and electron-electron
repulsion integrals.

Electrostatic energy

For the description of isotropic electrostatic (IES) energy, a classical charge model based on electroneg-
ativity equilibration (EEQ) of Gaussian type model charge densities is used, as previously applied in the
DFT-D4 scheme.242,249 This EEQ model allows charge distribution on the whole system in an optimal
way, includes penetration e�ects, and thus can describe neutral, as well as charged systems. The IES
energy expression, which is obtained variationally, is given by

EIES =
∑
A

[
χAqA +

1
2

(
JAA +

2γAA
√
π

)
q2
A

]
+

∑
A>B

qAqB
er f (γABRAB)

RAB
, (3.17)

or within matrix notation as
EIES = qT

(
1
2Aq − X

)
, (3.18)

where elements of the X vector and elements of the A matrix are given by

XA = ΩA − ENA , (3.19)

with

AAB =


JAA +

2γAA
√
π for A = B,

er f (γABRAB )
RAB

otherwise.
(3.20)

Here, γAB = 1√
a2
A+a

2
B

with the atomic radii aA and JAA represents element dependent atomic hardness.
The modi�ed electronegativity XA is computed from the �tted atomic electonegativities ENA and a
scaled logarithmic coordination number (CN) ΩA

ΩA = κA

√
loд

(
1 + exp(CNmax)

1 + exp(CNmax −mCNA)

)
, (3.21)

where κA is an element dependent scaling factor,CNmax the maximum CN andmCNA the modi�ed D3
CN according to

mCNA =
1
2

∑
B,A

[
1 + er f

(
−7.5

(
RAB
RcovAB

− 1
))]
. (3.22)
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The logarithmic function applied has the following properties. For small values, it is identical to the
modi�ed CN in Eq. 3.22, but for larger values, it approaches asymptotically the highest chemically
reasonable value for a CN in the molecular case (CNmax ). This behavior of ΩA prevents the modi�ed
electronegativity XA to adopt nonphysical values in highly coordinated systems. In molecular sys-
tems the atomic charges have to sum up to the total charge of the system

∑
A qA = qtot . Adding this

constrains in terms of Lagrange multipliers to Eq. 3.18 leads to the modi�ed linear system of equations(
A 1
1T 0

) (
q
λ

)
=

(
X
qtot

)
. (3.23)

Solving this set of linear equations leads to the geometry dependent charges qA. This classical charge
model introduces four further empirical parameters (JAA , aa , ENA and κA) per element to GFN-FF.
The formal scaling of the procedure is O(N 2)with the number of atoms N and therefore GFN-FF scales
with this same order of magnitude. The analytical derivative of the partial atomic charges with respect
to nuclear displacements ∂q

∂Ri
scales cubic O(N 3) and thus it is impractical for a fast and general force-

�eld. Thus, in GFN-FF a second set of purely topology dependent charges qt is introduced as mentioned
already above in the setup procedure. The Floyd–Warshall algorithm250 is employed to determine the
shortest covalent path between all pairs of atoms. Replacing the interatomic distance RAB in Eq. 3.17
by the sum of all covalent radii that lie on the shortest path between atom A and B leads to geometry
independent but purely topology based atomic partial charges

R
topo
AB =

A→B∑
i

ηtopo R
′cov
i . (3.24)

Here, ηtopo is a global scaling parameter and the sum of covalent radii R′covAB = RcovA + RcovB .251 This
topological approach eliminates the costly analytical derivative of these charges with respect to nuclear
displacements but still includes the environmental e�ects of neighboring atoms. In addition to the
dependency of the charges on the system geometry in the EEQ model, the topology based GFN-FF
charges (which are used to derive various potential energy terms) take further polarization e�ects into
account. GFN-FF is thus a partially polarizable but still e�cient force-�eld with environment dependent
atomic charges.

Dispersion energy

In GFN-FF long-range dispersion is treated by applying a modi�ed version of the DFT-D4 scheme. Here,
in analogy to the well established D3 scheme,252,253 the pair–wise dipole-dipole dispersion coe�cients
are calculated from a Casimir–Polder integration over atomic dynamic polarizabilities α(iω).

CAB,D3
6 =

3
π

∫ ∞

0
dω αA(iω)αB(iω) . (3.25)

48



3.2. Methodology

The resulting CD3
6 coe�cients are multiplied by a charge-scaling function ζ

CAB
6 = ζ Aζ B CAB,D3

6 , (3.26)

with the atom speci�c charge function ζ A de�ned as

ζ A
(
zA, zA,r ef

)
= exp

[
β1

{
1 − exp

[
γA

(
1 − zA,r ef

zA

)]}]
, (3.27)

where the chemical hardnessγA is taken from Ref. 254 and determines as an element speci�c parameter
the steepness of the scaling function while β1 is a global parameter. The e�ective nuclear charge zA is
de�ned as the sum of the nuclear charge of atom A and the topological atomic partial charges qAt

zA = ZA + qat . (3.28)

zA,r ef are e�ective nuclear charges for element speci�c reference systems employing modi�ed nuclear
charges for all elements beyond krypton. In contrast to the D4 model, where atomic reference polar-
izabilities α(iω) are scaled by ζ , in GFN-FF the charge scaling is applied to pair–wise CAB

6 coe�cients.
CAB

8 coe�cients are computed recursively from the CAB
6 coe�cients. The dispersion energy is calcu-

lated according to

E(6,8)disp = −
∑
A,B

∑
n=6,8

sn
CAB
(n)

R(n)AB

f (n)damp (RAB) , (3.29)

where sn scales the individual multipolar contributions and f (n)damp denotes the rational Becke–Johnson
(BJ) damping function.255 Treating only two-body dispersion contributions in GFN-FF leads to a scaling
of O(N 2) for the energy and gradient computation.

Hydrogen bond correction

For atom pairs involving the electronegative elements C, N, O, F, Si, P, S, Cl, As, Se, Br, Sb, Te, and
I, an additional hydrogen bonding correction is applied when as third atom hydrogen is involved. A
case distinction is made between a classical hydrogen bonding motif, where the hydrogen atom is
covalently bound to the donor atom A and noncovalently interacting with a hydrogen acceptor atom
B. In the second case, the H atom is noncovalently interacting with both, the donor and the acceptor
atom (i.e., it is covalently bonded neither to A nor to B). The total hydrogen bonding energy is given
by

EHB = EA−H · · ·BHB + EA · · ·H · · ·BHB . (3.30)

Here, the sum is taken over speci�c atom triples AHB (donor–hydrogen–acceptor) as

EA−H · · ·BHB = −
∑
AHB

f sr tdmp f
lnд
dmpϒ

out
dmp χ

α
AHB

(
ωAB

R3
AB
+
ωBH

R3
BH

)
, (3.31)
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where ωAB and ωBH are global parameters that determine the weighting of the distance dependency
between donor–acceptor (RAB ) and acceptor–hydrogen (RBH ). The dependence on the inverse third
power of the distance is chosen due to the strong polarization and dipole-dipole character of hydrogen
bonding, which di�ers from the electrostatic Coulomb interaction. To smoothly interpolate between
donor/acceptor character, the interaction strength is modi�ed to ensure that the hydrogen bonding
correction vanishes for weak donor basicity and weak acceptor acidity character

χαAHB = c
A
a ρ

A
q c

B
b ρ

B
q ρ

H
q ηhb . (3.32)

Here, ηhb is a global scaling parameter and cAa and cBb are global �tting parameters describing the acidity
of atom A and the basicity of atom B. Charge dependencies are included for atoms A, B and H by
employing the charge functions ρq , which are based on the topology dependent charges qt and the
global parameters kq1 and kq1

ρA,Bq =
exp

(
−kq1 q

A,B
t

)
exp

(
−kq1 q

A,B
t

)
+ kq2

, (3.33)

and
ρHq =

exp
(
kq1 q

H
t
)

exp
(
kq1 qHt

)
+ kq2

. (3.34)

Here, f sr tdmp is a damping function reducing the H-bond contribution to zero for short distances between
donor and acceptor

f sr tdmp =
1

1 +
(
ηsr tR

′cov
AB

R2
AB

)γsr t , (3.35)

where ηsr t and γsr t are global parameters and R
′cov
AB = R

′cov
A + R

′cov
B . For long distances between donor

and acceptor a corresponding damping function f
lnд
damp is applied withηsr t andγsr t as global parameters

f
lnд
dmp =

1

1 +
(
R2
AB

ηlnд

)γlnд . (3.36)

The strength of a hydrogen bond correlates with the angle formed by the three atoms AHB involved.
In order to introduce an angular dependency the out-of-line damping function ϒoutdmp is introduced

ϒoutdmp = f outH

∆B∏
i

f outi . (3.37)

Here, the �rst out-of-line term f outH is applied so that the hydrogen bond contribution vanishes for
nonlinear arrangements

f outH =
2

1 + exp
[

ηHout
R′covA +R′covB

(
RAH+RBH

RAB

)
− 1

] , (3.38)
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where ηHout is a global parameter. For the correct description of hydrogen bonding motifs, knowledge
about the presence and location of paired electrons in lone-pair orbitals (LP) is crucial. Because of the
absence of information on electrons and occupied orbitals in a force-�eld, this dependence is nontrivial
to realize. GFN-FF addresses the problem of how to locate the LP by a simple geometrical model. The
LP is assumed to be located at maximum distance to all covalently bound neighbors of the hydrogen
accepting atom, obeying the chemical VSEPR principle. The second term in Eq. 3.37 is the product of
damping functions f outi over the number of covalently bound neighbors of the hydrogen acceptor ∆B

f outi =
2

1 + exp
[
−

η∆out
RcovA +RcovB

(
RAi+RBi
RAB

)
− 1

] − 1 , (3.39)

where η∆out is a global parameter. This damping function can be regarded as the inverse of f outH and it
is applied so that the hydrogen bond contribution vanishes for linear arrangements of the neighboring
atoms of the acceptor atom in between the donor–acceptor bond. To the authors knowledge, this is the
�rst attempt to introduce LPs to force-�elds via an exclusion principle over neighbor lists.

For carbonyl- and nitro-groups involved as a lone-pair donor within a hydrogen bond, a torsion and
bending potential is applied for the noncovalent interaction between donor and acceptor. The hydrogen
bond potential is modi�ed by,

EA−H · · ·BHB = −
∑
AHB

f sr tdmp f
lnд
dmpϒ

out
dmp χ

α
AHB

(
ωAB

R3
AB
+
ωBH

R3
BH

)
ftors (ψ ) fbend (θ ) , (3.40)

where ftors (ψ ) is a torsion function and fbend (θ ) a bending function, derived from the potentials used
for covalent bending and torsion respectively (vide supra). The anglesψ and θ are de�ned in Figure 3.4.
By this re�nement of the HB potential, the position of the hydrogen atom is favored within the plane of
the carbonyl group at an angle θ of 120◦ or 240◦ respectively, which are the positions of the lone-pairs
at the carbonyl oxygen atom.

Figure 3.4.: Torsion and bend angle of the noncovalent interaction of water and formaldehyde. Bending
and torsion potentials are chosen to place the hydrogen atom of the H-bond in the carbonyl
plane at an angle of 120◦ or 240◦.
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The H-bond term for the second case is given by a sum over speci�c atom triples AHB (donor/acceptor–
hydrogen–donor/acceptor) as

EA · · ·H · · ·BHB = −
∑
AHB

f sr tdmp f
lnд
dmp f

out
H

χ
β
AHB

R3
AB
. (3.41)

Here the same short- and long-range damping functions are used as before. For the out-of-line damp-
ing only the linearity relation regarding the hydrogen atom is applied and neighbors are not further
included. For symmetric H-bonds the interaction strength is modi�ed by

χ
β
AHB =

cAa R
4
BH + c

B
a R

4
AH

R4
AH + R

4
BH

·
cAb ρ

A
q R

4
BH + c

B
b ρ

B
qR

4
AH

R4
AH + R

4
BH

· qHt , (3.42)

where the �rst term is a measure of the acidity of hydrogen donor and acceptor and the second term the
corresponding basicity scaled by the topological charge of the hydrogen atom. Again, for weak donor
basicity and acceptor acidity character the hydrogen bonding correction vanishes.

Halogen bond correction

The electron acceptor property of the halogens is based on the so-called sigma hole model.256 To de-
scribe this e�ect in GFN-FF, a similar potential as for the hydrogen bond correction is used for the
halogen bonding situation D-X-Y where atom D is any donor atom, X is the halogen or other sigma-
hole containing elements257 (P, S, Cl, As, Se, Br, Sb, Te, and I) and Y can be any acceptor atom from
group 15–17. The interaction is treated similar to hydrogen bonding as a sum over all atom triples DXY

EXB = −
∑
DXY

f sr tdmp f
lnд
dmp f

out
X

χαDXY
R3
XY
, (3.43)

where again short- and long-range damping functions are applied and f outX is the out-of-line damping
function for atom X. The interaction strength χαDXY in this version depends only on the halogen atom
and its acceptor

χαDXY = c
Y
b ρ

Y
q cXb ρ

X
q , (3.44)

where cb are the corresponding global basicity parameters and ρq the charge dependent scaling func-
tions.

3.3. Results and Discussion

To conduct chemically sensible atomistic modeling, knowledge about molecular structure, binding mo-
tifs, and structural dynamics is essential. Accurate molecular geometries give insights into the compo-
sition and functionality of the investigated system. GFN-FF, as implemented in the free xtb program,
is equipped with a highly sophisticated quasi-Newton geometry optimization engine,96 which is also
used by QM methods. Implementation of a fragmented Hessian scheme provides the necessary speedup
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to be practical also at the FF level. All results discussed in the following examples are given in detail in
Appendix A3.

The class of organic-inorganic hybrid crystalline porous materials, referred to as metal-organic frame-
works (MOF), attracts much attention due to their potential application in gas storage, chemical sepa-
ration, drug transport, and catalysis.258 For their theoretical description only a few specialized methods
are in principle available, as for instance UFF, UFF4MOF,259 and MOF-FF. Since the latter is only pa-
rameterized for certain metal-organic binding motifs, UFF is the only true competitor for GFN-FF as a
general black-box FF. However, UFF shows de�ciencies in the description of conjugated systems and
η-metal-coordinated bonding motifs. For a selected set of �ve metal-organic polyhedra (MOP) and MOF
cut-outs depicted in Figure 3.1, GFN-FF is to the authors’ knowledge the only method capable of per-
forming geometry optimizations whilst keeping the initial structure intact. Fujita et al.260 synthesized
the world’s largest metal-organic Goldberg polyhedra through a self-assembly reaction. The structure
consists of 3888 atoms in total and is made of 46 Pd2+ ions coordinated square planar by 96 organic
ligands. Charge neutrality is conserved by two BF−4 molecules per palladium ion. With GFN-FF the
structure is optimized properly. An overlay with the crystal structure is shown in Figure 3.1A. The
heavy-atom root mean square deviation (RMSD) of only 0.75 Å, indicates an excellent agreement be-
tween experiment and theory. For the second largest MOP shown in Figure 3.1B, a similarly accurate
result is obtained. Gong et al.261 performed a bottom-up construction of supramolecular organic poly-
hedra with tetrahedral symmetries. In a noncovalently bound three-dimensional mesh of tetrahedra,
each tetrahedral corner consists of vanadium-oxide clusters. For the geometry optimization, the struc-
tural motif was truncated in a star-like shape to end up at 2496 atoms in total shown in Figure 3.1C.
With an RMSD of 0.54 Å, the GFN-FF optimized structure corresponds very well with the experiment. A
triangular channel framework constructed of FeIII

2(BDP)3 units (BDP2- = 1,4-benzenedipyrazolate) was
synthesized by Herm et al.262 A cutout of 4064 atoms, shown in Figure 3.1D, is chosen and optimized
by GFN-FF, yielding an RMSD of only 0.43 Å. With 1344 atoms the cuboctahedron CoII

12L6 hosting two
C60 fullerene molecules, synthesized by Rizzuto et al.263 and shown in Figure 3.1E, is small enough to
be described at the SQM level of theory. However, the electronic structure of twelve cobalt ions and
eight negatively charged borate-clusters, leading to an overall molecular charge of +16, is too di�cult,
and hence, the iterative self-consistent �eld calculations fail to converge. On contrary, GFN-FF is able
to describe the structure with an RMSD of 1.22 Å compared to the experimental crystal structure. This
somewhat larger RMSD is mainly caused by a movement of the noncovalently bound borate-clusters
due to the absence of con�ning crystal packing e�ects in the molecular calculation.

To further show the excellent performance of GFN-FF, the molecular structure of hemoglobin is opti-
mized starting from a molecular crystal structure cut-out. The theoretical treatment is challenging here
because of the co-existence of a large bio-organic framework (overall ≈ 9000 atoms) and the chemically
complicated organometallic heme groups. The overlay of the crystal structure (yellow) and the GFN-FF
optimized geometry (blue) of hemoglobin is shown in Figure 3.5A. The calculation was conducted with
an implicit Generalized Born (GB) solvation model augmented with the solvent accessible surface area
(SA). This GBSA solvation model is implemented in the xtb program and available for GFN-FF. The
inclusion of solvation e�ects is essential for the accurate modeling of bio-macromolecules or porous
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Figure 3.5.: Structures and dynamics of metallo-proteins. (A) Geometry optimization of the hemoglobin
structure at the GFN-FF/GBSA(H2O) level of theory. (B) Myoglobin mutant Q8R1 with an
open shell iron (III) and a nitroxide spin label covalently attached. (C) Comparison of P(r )
and P(ξ ) to experimental EPR data and previous MtsslWizzard results.

materials in order to prevent structures from a “gas phase collapse”. Within only 5 hours and 621 opti-
mization cycles on four Intel© Xeon E5-2660 v4 @ 2.00 GHz CPUs, a stationary point on the PES was
found. The heavy atom RMSD between the experimental and the GFN-FF structure is only 1.02 Å,
which is an excellent result for such a comparison. It shows that GFN-FF is an e�cient and technically
robust FF with a physically reasonable potential that is capable of describing amino acids and metal
containing heme groups similarly well. Due to the current occurrences, COVID-19, the illness caused
by the new coronavirus, is the focus of clinical research. To show the utility of GFN-FF, a successful ge-
ometry optimization was performed on the COVID-19 main protease in complex with an inhibitor N3
starting from the crystal structure.264 Again, a small RMSD between the theoretical and experimental
structure of 0.95 Å is found (for details see Appendix A3).

One of the prime application of force-�eld methods is MD simulations. From the obtained (space-
time) trajectory of the atoms, geometrical and molecular properties are derived that can be directly
compared to the experiment. Abdullin et al.265 conducted electronic paramagnetic resonance (EPR)
measurements on a met-myoglobin mutant (Q8R1) shown in Figure 3.5B. EPR spectroscopy was used
to measure the average distance r between a high-spin Fe3+ ion and a nitroxide spin label termed
MTSSL, as well as the angle ξ formed by the iron ion, its nitrogen ligand of a histidine amino acid,
and the nitroxide group. To obtain the radial distribution P(r ) and angular distribution P(ξ ) for Q8R1,
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the structure and dynamics were determined in silico by GFN-FF and compared to experimental EPR
values and previous theoretical estimates performed with MtsslWizard.266 MtsslWizard is a program
that searches for possible MTSSL conformations, which do not clash with a static model of the protein.
Such a simple model is often the method of choice since established protein force-�elds do neither
provide parameters for metals, nor the chosen nitroxide spin-label. With GFN-FF, MD simulations were
carried out for 1 ns at 298 K employing the GBSA(H2O) solvation model (see Figure 3.5C). Compared to
the maximum in the EPR measured distance distribution, GFN-FF shows a deviation in the maximum
of only 3 Å, which is within the experimental error. For the angular distribution, the di�erence is
only 2 ◦ and hence, the GFN-FF dynamical structure average is in almost perfect agreement with the
experiment. This again demonstrates the accuracy of the presented FF and proves the reliability of the
therewith calculated PES also for non-equilibrium situations. The results with MtsslWizard (deviations
for maxima of P(r ) of 9 Å and 15◦ for P(ξ ), respectively) are clearly worse. A related study on the
B1 immunoglobulin-binding domain of a protein termed GB1 using a tailored FF for Cu-containing
metallo-proteins appeared recently.267 The laborious “hand-made” parameterization described could
have been completely avoided by using GFN-FF, which is available not only for copper but also all
other transition metals.

The performance of GFN-FF compared to other general as well as highly specialized FFs is depicted
in Figure 3.6 for a benchmark set of 70 organic peptide and protein structures,224 where geometry op-
timizations with OPLS2005,65 AMBER*,222,223 UFF, and GFN2-xTB were conducted. Figure 3.6A shows
the average deviations of four dihedral angles in degree and the Cα and heavy atoms RMSD in Å with
respect to the X-Ray structures. A structural example is shown in Figure 3.6B. The deviations of the
angles ϕ, ψ , χ , and ω are soft descriptors regarding local displacements of the protein backbone and
are shown in detail in Appendix A3. For the angles ϕ,ψ , and χ , GFN-FF yields about the same or even
better accuracy as the special-purpose method OPLS2005 and is clearly more accurate than AMBER*.
The larger deviations for ω indicate that the barrier for rotation around the peptide C-N bond seems to
be underestimated by GFN-FF, which is only observed for larger proteins but not for smaller peptides.
The RMSD forCα and heavy atoms are comparable to the much more elaborate GFN2-xTB QM method.
For a general FF that has not been speci�cally developed for proteins, GFN-FF performs overall excel-
lently on the tested protein structures. On the other hand, UFF provides large deviations for the angles
ϕ,ψ and ω as well as for the Cα and heavy atom RMSD, indicating that protein structures are not well
described by UFF.

For transition-metal complexes, the quality of theoretical structures is tested on the challenging
TMG145 benchmark set221 (for structural examples see Figure 3.6E). The performance of GFN-FF is
compared to UFF and GFN2-xTB with reference to high-quality DFT optimized structures (TPSSh-
D3(BJ)-ATM/def2-TZVPP134,252,268 level). In Figure 3.6C, 941 bond lengths d(M-A), including mainly
the transition-metal ligands, are shown. With a mean absolute deviation (MAD) of 9.7 pm, GFN-FF per-
forms just as well as the GFN2-xTB QM method with a MAD of 8.3 pm. Furthermore, the reproduction
of 2846 bond angles around the transition-metal center ∠(A-M-B) is compared in Figure 3.1D. Again
GFN-FF (MAD = 5.7 ◦) performs similar as GFN2-xTB (MAD = 3.9 ◦). For angles and bond lengths,
GFN-FF clearly outperforms UFF, which yields a MAD of 14.6 pm, and 8.4 ◦, respectively. All 145 GFN-
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Figure 3.6.: Comparison of GFN-FF to established theoretical methods. (A) Average deviations of four
types of dihedral angles (in degree) for 70 protein structures with respect to the crystal
structure as well as averageCα and heavy atoms RMSD (in Å) with example (B). (C-D) Per-
formance for computed bond lengths and angles of the TMG145 benchmark set. Correlation
plots for bond lengths and angles obtained with GFN2-xTB, GFN-FF and UFF with reference
to DFT structures. An example complex shown in (E).

FF optimized structures ful�ll the previous chemical correctness criteria used to identify structures
that are chemically transformed, dissociated, or critically deformed during optimization, while UFF
produces 75 out of 145 structures completely wrong. The performance and robustness of GFN-FF for
transition-metal complexes are outstanding and unmatched by its direct competitor UFF.

As the previous results and comparisons suggest, GFN-FF provides almost as accurate results for
equilibrium structures as sophisticated QM methods. To investigate this further for interaction energies,
GFN-FF results are compared to QM ones on various interaction energy benchmark sets as shown in
Figure 3.7. Intermolecular noncovalent interactions are investigated on supramolecular host–guest
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Figure 3.7.: Comparing GFN-FF performance for established benchmark sets. (A) Association energies
averaged over all systems in the S30L set computed with di�erent methods. The reference
energies are obtained at the DLPNO-CCSD(T)/CBS level. Four examples of structures are
shown in (B). In (C) MAD values are given for intermolecular noncovalent interaction sets
and several conformational benchmark sets in (D), including the two xTB methods, GFN-FF,
PM7 and PM6-D3H4X.

systems taken from the S30L benchmark.120 In Figure 3.7A, the performance of GFN-FF and other QM
methods is shown compared to DLPNO-CCSD(T)/CBS reference values.237 The MAD of the association
energy for the entire test set is given and Figure 3.7B shows four example complexes. With an overall
MAD of 4.15 kcal mol−1, GFN-FF outperforms most of the SQM methods and is even on par with
some dispersion corrected DFT methods. In Figure 3.7C, the performance of GFN-FF is shown for all
NCI energy subsets of the huge GMTKN55 database.162 With an overall MAD of 1.13 kcal mol−1 the
accuracy of GFN-FF is comparable to that of GFN1-xTB and outperforming the SQM method PM7.
The GMTKN55 subsets dealing with conformational energies are shown in Figure 3.7D. Again, GFN-
FF is just as good as the GFNn-xTB QM methods with a MAD of 1.53 kcal mol−1. Here, the excellent
performance for the relative energies of alkane (ACONF) and melatonin (MCONF) conformers is noted.
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3.4. Conclusion

The development of accurate polarizable force-�elds is named as one of the remaining holy grails for
computational chemistry.2 With GFN-FF, a generic partially polarizable force-�eld is presented that
is unique in its universality and accuracy, meeting, to a large extent, the speci�ed requirements in
Ref. 2. It is a robust and fully automated black-box method for the modeling and design of materials,
organometallic and biochemical systems. The performance is tested on various examples and many es-
tablished benchmark sets. For biological macro-molecules, it is shown that GFN-FF is able to simulate
the dynamics of a met-myoglobin mutant and reproduces the experimental EPR distance measurements
par excellence. For a test set of 70 protein equilibrium structures, GFN-FF has proven to perform sim-
ilarly or even slightly better than highly specialized protein force-�elds. For metal-organic materials,
GFN-FF is, in many cases, the only currently applicable method, and for a highly complex test set of
transition-metal complexes, it exceeds the only real competitor UFF by far in terms of accuracy, robust-
ness, and e�ciency. For structures and energies, GFN-FF is approaching the accuracy of semiempirical
QM methods, in some cases reaching even DFT accuracy. The main limitation of GFN-FF (similar to all
other non-reactive force-�elds) is that the input structure must be reasonably close to a “normal” chem-
ical bonding situation such that the initial topology analysis works properly. If this is not the case, a few
pre-optimization steps with a GFNn-xTB QM method to adjust the covalent bonding network may be
applied. In this work, a new quality standard is set for general force-�elds, providing high universality
paired with almost QM accuracy at still high computational speed. An easy-to-use and freely available
computer program implementing GFN-FF can be downloaded for extended applications in physical-
and biochemistry.243
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III. Application of E�cient Computational Methods

Force-�elds enable new computational possibilities regarding molecular size and complexity. Two of
the most important �elds of application are materials science and biochemistry. In material science,
force-�elds are often the method of choice for predicting properties of, e.g., metal-organic frameworks,
due to the di�cult electronic structure and sheer size of the systems.269 In the modeling of biochem-
ical systems, MD simulations at the force-�eld level represent a valuable tool for characterizing the
structural dynamics of DNA, (m)RNA, and (metallo-)proteins.270

Part III of this thesis represents the application and evaluation of GFN-FF, and the GFNn-xTB meth-
ods in general, to fundamental scienti�c questions regarding gas adsorption and storage in porous
materials and the structural investigation of (metallo-)proteins.271,272 The e�cient storage of gases and
fuels in porous materials is one of the most important �elds of research in the context of sustainable
chemistry, energy conservation, and greenhouse gas reduction. Therefore, in Chapter 4, the adsorp-
tion of climate gases, bio-fuels, and anti-cancer drugs in metal-organic frameworks and porous organic
cages is modeled by a combination scheme of GFN-FF and the NCI-iMTD algorithm of CREST (see Fig-
ure 3.8).273 The determined binding sites are further re-optimized at the DFT level to conduct a large
and versatile benchmark set of 117 di�erent gas–framework combinations. The accuracy of the GFN
methods is compared to highly accurate DFT reference association energies (PBE0-D4/def2-TZVP) and
the fully automatic determined binding sites are compared to other studies in the literature.

Figure 3.8.: Various applications of GFN-FF. On the left, GFN-FF is employed in combination with
CREST to determine automatically optimal binding sites of gases in metal-organic frame-
works. On the right, GFN-FF MD simulations are performed to model distance distributions
of spin-labeled (metallo-)proteins.

In Chapter 5, a new approach termed CREST/MD is developed and tested for the calculation of dis-
tance distributions in spin-labeled (metallo-)proteins. The elucidation of the three-dimensional pro-
tein structures is inevitable for the understanding of their biological function. Theoretical approaches
are desirable to facilitate this complex task and yield further insights at the microscopic level. In
CREST/MD, GFN-FF MD simulations are performed for the most populated spin-label conformations,
obtained by the CREST algorithm at the GFN-FF level (see Figure 3.8).274 For realistic modeling of pro-
tein dynamics the incorporation of solvation e�ects is essential and the implicit GBSA solvation model
is employed within all GFN-FF calculations. Experimental reference distributions were provided by
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means of electron paramagnetic resonance (EPR) spectroscopy for spin-labeled mutants of azurin and
T4 lysozyme. Since the EPR measurements were performed in a highly diluted glassy frozen solution,
a non-periodic description with an implicit solvation model is well suited for the comparison between
experiment and theory. The new CREST/MD approach is tested in comparison to previously existing
theoretical approaches of modeling spin–spin distance distributions.

Chapter 6 presents a benchmark set, termed IONPI19, which is compiled for inter- and intramolec-
ular ion–π interactions.184 Ion-π interactions have implications for protein structure and function.275

Thereby, the interaction of charged amino groups with aromatic side chains is a common binding mo-
tif.276 The focus in this chapter lies on accurate dispersion corrected DFT methods in comparison to
highly accurate coupled cluster reference values. The applied and evaluated methods represent state-
of-the-art density functionals from di�erent rungs of Jacob’s ladder (cf. Section 2.1.5). With an average
molecule size of 31 atoms, the IONPI19 set is also an excellent benchmark to test the backward com-
patibility of the GFN methods for smaller but electronically di�cult systems. Besides DFT, GFNn-xTB,
PM6-D3H4X, PM7, and GFN-FF are tested.

Regarding the variety and complexity of the investigated systems, ranging from organometallic, over
highly charged, to biochemical systems, Part III displays the accuracy, robustness, and versatility of the
GFN-FF and GFNn-xTB methods for the description of geometries and noncovalent interactions.
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4. Small Molecule Binding in MOFs and POCs

Abstract The activation, storage, and separation of gases and fuels are closely related to the reduc-
tion of greenhouse gas emissions, the widespread use of renewable energies, and the application of
industrial gases. Metal-organic frameworks (MOF) and porous organic cages (POC) are an emerging
class of crystalline porous materials that show promising characteristics in this �eld. Yet, their accu-
rate theoretical description poses a challenge to existing methods due to the sheer size of the pores and
cages, as well as their often complex structure. In this work, the performance of generally applicable
density functional approximations (DFAs), semiempirical quantum mechanical (SQM) methods, and
force-�elds (FFs) for the calculation of binding energies of various gases in molecular cutouts of MOFs
and POCs is tested with reference to high-level PBE0-D4/def2-TZVP hybrid DFT energies. Therefore,
favorable binding sites for greenhouse gases (CO2), energy-related gases (H2, methanol, and benzene),
and industrial gases (N2) are determined by an e�cient conformer search algorithm (CREST). The re-
sulting structures are further optimized by DFT (B97-3c), semiempirical (GFN2-xTB), and force-�eld
(GFN-FF) methods, to yield the binding sites and corresponding energies. With mean absolute devi-
ations ranging from 1.1 to 1.4 kcal mol−1 for all tested systems, the considered GFN methods reach
an accuracy remarkably close to the DFT reference, justifying their application for e�cient binding
site screening. In comparison, the widely used PMx methods show on average 1.0 kcal mol−1 larger
deviations. Furthermore, the application of single-point, multi-level approaches and the parallelism of
potential energy surfaces are discussed.

4.1. Introduction

The e�cient storage and targeted use of gases and fuels are one of the large challenges of this cen-
tury.34,277,278 Carbon dioxide separation is crucial for the alleviation of the global greenhouse e�ect279

and the storage of, e.g., hydrogen or methanol is indispensable for the further development of new
biological fuels and concepts of renewable energy applications.280–283 The storage and application of
gases, such as nitrogen and oxygen, are important for environmental284 as well as industrial processes
and the synthesis of industrial chemicals.285,286

A widespread and promising class of compounds for future developments are metal-organic frame-
works (MOF). They represent an aspiring class of crystalline porous materials consisting of metal-
organic nodes coordinated by mostly organic linker ligands to form one-, two-, or three-dimensional
structures.287–290 MOFs are characterized by an open framework leading to high porosity and a large
surface area, which is well suited for application in gas storage, chemical separation, drug transport
and catalysis.37,291–297 Unlike in�nite MOFs, metal-organic polyhedra (MOP) form a subgroup of dis-
crete self-assembled supramolecules, composed of edge-sharing molecular polygons.298–300 A second
emerging class of such materials are porous organic cages (POC), which are discrete, three-dimensional
molecular assemblies.301–303 POCs show comparable characteristics in terms of fuel/gas adsorption as
their metal-organic relatives.304–306 The exploration of advanced porous materials and their possible
applications has become an intense subject of research at the border between organic and inorganic
chemistry.307
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In order to gain an atomistic understanding of molecular structures and interactions, theoretical
modeling of MOFs and POCs serves as a valuable tool, and hence, the accurate description of porous
frameworks is a crucial goal in computational chemistry.308–312 One of the main challenges for ab initio
methods such as density functional theory (DFT) is the sheer size of the systems of interest. For periodic
MOFs it is common practice to choose saturated molecular cutouts that represent a repeating unit
within the in�nite framework.313,314 For MOPs and POCs this is not necessary, since those are already
discrete molecular systems. Thus, the size of the pore determines the minimal chemically reasonable
molecular size that can be truncated to, varying from 200 to far over 1000 atoms.260 This restricts
the range of applicable DFT methods drastically, and even low-cost DFT methods like the composite
methods B97-3c237 and PBEh-3c231 reach their practicable limits for the larger systems.

The next consequent step regarding better e�ciency represent semiempircal quantum mechanical
(SQM) methods, which are routinely applicable to systems with 500–1000 atoms.96 Nevertheless, most
of these methods lack a full parameterization for transition-metals and are thus not generally appli-
cable in this �eld of chemistry. The two most notable exceptions are the widely used, NDDO based
PMx 87,88,315 methods and the more recently developed extended tight-binding methods of the GFNn-
xTB93,94,96 family. The latter proved to be more robust and accurate for structure optimization and ther-
mochemistry of transition-metal complexes.221 Even more commonly used, due to further decreased
computational costs compared to SQM and DFT methods, are force-�elds (FFs), which are established as
a common choice for the description of porous materials.269,311,316,317 As FFs describe the atoms within
a molecule only by classical potentials, they are applicable to much larger (> 1000 atoms) systems than
SQM methods. Nevertheless, the functional form of the FF potentials introduces a set of atom speci�c
parameters, which is unique for each FF. Such parameters often only exist for a limited number of el-
ements and structural motifs, requiring individual, laborious parameterizations for the description of
MOFs.311,318–320 Recently, a partially polarizable generic FF has been introduced, termed GFN-FF,117

which is a promising, generally applicable candidate for the description of porous materials due to its
full periodic table parameterization (Z ≤ 86).

Special method adaptions and speci�c method developments were used in many studies of gas ad-
sorption in porous (metal-)organic systems. FF re-parameterization321–323 and neural network train-
ing324 represent some of the most common, even though inconvenient, techniques. A comparison of
general, e�cient out-of-the-box applicable methods on a versatile test set for small molecule binding
to large (metal-)organic structures like MOPs or POCs is yet missing. Thus, in this work, a bench-
mark study for binding energies of gases and fuels at various metal-organic frameworks, polyhedra,
and porous organic cages is presented. Generally applicable low-cost DFT, SQM and FF methods,
namely B97-3c, PBEh-3c, GFN1-xTB,94 GFN2-xTB,93 PM6-D3H4,86 PM7,88 GFN-FF, and UFF114 are
tested for their performance compared to hybrid DFT gas phase binding energies (PBE0-D4242,325/def2-
TZVP326//B97-3c). Other popular density functional approximations (DFAs) such as the range-separated
hybrid ωB97X-V/def2-TZVP,327 TPSS-D4/def2-TZVP,328 and PBE-D4/def2-TZVP166 are tested as well
for comparison. Further, a work�ow for the determination of binding sites by the e�cient confor-
mational search algorithm CREST60 in combination with GFN-FF is presented, serving as the starting
point for subsequent higher-level structure optimizations.
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4. Small Molecule Binding in MOFs and POCs

4.2. Molecular Test Set

The presented test set consists of one saturated metal-organic framework cutout (MOF-5, 1a: H, C, O,
Zn), two metal-organic polyhedra (Rh-MOP, 1b: H, C, O, Rh; Pd-MOP+, 1c: H, C, N, Pd), where one is
highly positively charged, and three di�erent porous organic cages (Q-POC, 2a: H, C, N, O; B-POC, 2b:
H, C, B, O; F-POC, 2c: H, C, N, F) with sizes between 144 and 480 atoms. All structures are illustrated
in Figure 4.1.

Figure 4.1.: Molecular structures of the MOFs, MOPs and POCs investigated in this work. (A) Molecular
cutout of the cavity of MOF-5 (1a). (B) Rhodium containing metal-organic polyhedra (Rh-
MOP, 1b) saturated with water. (C) Positively charged ocatahedral Palladium containing
MOP (Pd-MOP+, 1c). (D) A porous organic quinoline cage (Q-POC, 2a). (E) Cuboctahedral
[12+8] boron dotted cage (B-POC, 2b). (F) A porous �uorinated organic [4+4] imine cage
showing CO2 and H2 adsorption (F-POC, 2c).

Figure 4.1A shows the molecular cutout of one cavity in the Zn4(O)(BDC)3, MOF-5, framework329

(BDC=benzene-dicarboxylate). Eight clusters constitute a unit cell and enclose a large cavity. Figure
4.1B shows a rhodium-based metal-organic cuboctahedra, [Rh2(bdc)2(solv)2]12·(solv).85 It is constructed
from 12 units of binuclear paddlewheel complexes (M2) with 24 dicarboxylate BDC bridging linkers.
The metal centers are saturated with water molecules. The octahedral coordination cage in Figure 4.1C
is self-assembled from four electron-de�cient panel ligands (2,4,6-tris(4-pyridyl)-1,3,5-triazine) and six
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metal corners (cis-endcapped Pd(II) complexes).330 The overall net charge of the MOP accounts to +12
and it resembles an example for charged systems. In Figure 4.1D a robust porous organic quinoline
cage is shown, transformed of a [4+6] salicylimine cage by Povarov cyclization.331 In a one-step 48-fold
condensation reaction of twelve molecules of triptycene tetraol with eight molecules of triboronic acid,
the cuboctahedral [12+8] boron dotted cage in Figure 4.1E is formed.332 Finally, Figure 4.1F shows a
porous organic [4+4] imine cage containing per�uorinated aromatic panels.333 The electronic structure
of these systems is closed-shell with signi�cant HOMO-LUMO gaps, i.e., no to very little bi- or poly-
radical character is present. As guest molecules, CO2, H2, N2, benzene (C6H6), and methanol (CH3OH)
are bound to the six hosts. Overall, 117 di�erent binding sites of non-covalently bound host-guest
complexes are evaluated. The mean binding energy at the reference DFT level is −6.1 kcal mol−1.

4.3. Methods

A chemically reasonable binding site determination is the starting point for the successful calcula-
tion of host-guest binding energies. As geometry optimization algorithms may just �nd the next local
minimum on the potential energy surface (PES), much more elaborate PES screening techniques are
required to identify various possible binding sites. Recently, CREST has been introduced as an ef-
�cient automated scheme for the in silico sampling of the low-energy molecular chemical space by
semiempirical tight-binding methods combined with the meta-dynamics (MTD) driven search algo-
rithm iMTD.220 In this work CREST is employed in combination with GFN-FF as the underlying level
of theory. The computational e�ciency of a FF method is mandatory in the context of (metal-)organic
cages, due to the investigated system sizes of up to 500 atoms. The general work�ow applied in this
work is illustrated in Figure 4.2. The molecular input in Cartesian coordinates is generated starting
from the crystal structure database56 (CSD) entry. For MOFs, molecular pore cutouts are saturated by
hydrogen atoms accordingly. Guest molecules are placed manually at the center of mass (COM) of the
respective molecular pores/cages (host). To screen for di�erent binding sites, the non-covalent interac-
tion (NCI)/iMTD algorithm in CREST is employed. This is a special run-type in which a constraining
ellipsoidal shaped potential is added in the MTD simulations. The additional potential prevents dis-
sociation or transformation of the noncovalently interacting (NCI) complexes. Since possible binding
sites of the guest molecule inside the host are in the focus, the biasing root-mean-square deviation
(RMSD) potential in the MTD is only applied to the guest molecule throughout. The host is free of any
constraints, allowing structural relaxation and adaption to the guest. From the CREST calculation, a
structure ensemble of NCI complexes within a 6 kcal mol−1 energy window is obtained. The energetic
ranking of such an ensemble is depicted in Figure 4.2. The selection of binding sites consists of the
following steps. The energetically lowest conformation on the GFN-FF PES is always selected as the
�rst binding site. From there on, the conformational energy ladder is ascended and further structurally
di�erent binding sites are determined manually, based on chemical intuition. All selected binding sites
are post-processed by full geometry optimizations on di�erent levels of theory including B97-3c as
the reference structure level of theory. Note, that an accurate account of London dispersion correc-
tions334 in DFT as well as in the low-level methods is mandatory for an accurate description of the here
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4. Small Molecule Binding in MOFs and POCs

Figure 4.2.: Work�ow for the calculation of optimal binding sites and binding energies for small
molecules. Binding sites are determined by the NCI/iMTD algorithm in CREST employing
GFN-FF as the underlying method. The resulting structures are post-processed on di�erent
levels of theory including B97-3c as the reference structure level.

considered NCIs and adsorption phenomena. This, in particular, holds for MOF/POC which contains
highly polarizable atoms and functional groups. Without dispersion correction, e.g., in DFT calcula-
tions, the binding energies decrease signi�cantly and many of the investigated association complexes
are not bound (∆Ebind ≥ 0). This is re�ected by the mean binding energy, which absolutely decreases
from −6.1 kcal mol−1 (PBE0-D4/def2-TZVP) to 1.6 kcal mol−1 for PBE0/def2-TZVP without dispersion
correction (at B97-3c optimized geometries).
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4.4. Results and Discussion

4.3.1. Computational Details

All quantum mechanical calculations were performed with the TURBOMOLE 7.2.1 or 7.5335,336 (DFT,
UFF114), xtb 6.3.2337 (GFN1-xTB,94 GFN2-xTB,93, GFN-FF117), and MOPAC 2016338 (PM6-D3H4,86 PM788)
program packages. The ANCOpt optimizer was applied for GFNn-xTB, GFN-FF and PMx optimizations
as implemented in the xtb 6.3.2 program package for comparability with default convergence criteria
10−7 Eh for energies and 10−5 Eh/bohr for gradients. All reference binding energies were calculated ap-
plying the PBE0325 hybrid functional with the def2-TZVP326 basis set with default convergence criteria
for energies and gradients as implemented in TURBOMOLE. The D4242,249,339 London dispersion cor-
rection was applied throughout. Default e�ective core potentials (ECPs) ECP-28 and ECP-60340 were
used for all elements with atomic numbers larger than 36 (Kr) to take into account scalar relativistic
e�ects in the DFT calculations. The resolution-of-identity (RI) approximation for the Coulomb inte-
grals was generally used to speed up the DFT calculations by using matching default auxiliary basis
sets.341,342 For the integration of the exchange-correlation contribution, the numerical quadrature grid
m4 was employed. For UFF the partial charges needed for the electrostatic terms were calculated with
the Charge Equilibration model (QEq) from Rappé343 as implemented in TURBOMOLE’s version of
UFF. All calculations were performed on Intel© Xeon E5-2660 v4 @ 2.00 GHz machines.

4.4. Results and Discussion

4.4.1. Structure Optimization

First, the following question is addressed: how accurate are the chosen low-cost methods for the de-
scription of the molecular structures of MOFs, MOPs, and POCs?344 Therefore, B97-3c, GFN2-xTB,
PM6-D3H4, UFF, and GFN-FF fully optimized gas phase geometries were compared to the initial molec-
ular crystal structures cutouts (without guest molecules). As a measure for structural correlation, the
heavy atom (excluding hydrogen) root-mean-square deviation (hRMSD345 in Å) from either the X-ray
structure cutout or the B97-3c optimized structure was calculated. The results are listed in Table 4.1
and illustrated in Figure 4.3A.

Table 4.1.: hRMSD between the molecular crystal structure cutout and the structures optimized with
B97-3c, GFN2-xTB, PM6-D3H4, UFF, and GFN-FF. The CSD identi�ers, if available, are given
in bold font. The hRMSD (in Å) in comparison to the B97-3c optimized structure is given in
parentheses.

hRMSD / Å MOF-5 Rh-MOP Pd-MOP+ Q-POC B-POC F-POC Avg.
(SAHYIK) (DALTES) (HUMJIL) (WUTGOK) (ZIRCIO)

B97-3c 0.04 0.18 0.53 0.46 0.18 0.03 0.24
PM6-D3H4 0.07 (0.03) 0.54 (0.57) 0.51 (0.15) 0.59 (0.43) 0.26 (0.13) 0.62 (0.61) 0.43 (0.32)
GFN2-xTB 0.23 (0.27) 0.20 (0.05) 0.47 (0.08) 0.44 (0.16) 0.31 (0.18) 0.10 (0.11) 0.29 (0.14)
GFN-FF 0.08 (0.11) 0.33 (0.26) 0.52 (0.09) 0.41 (0.24) 0.24 (0.14) 0.50 (0.50) 0.35 (0.22)
UFF 2.19 (2.21) 0.64 (0.62) 1.34 (1.22) 0.48 (0.53) 0.46 (0.39) 0.44 (0.44) 0.93 (0.90)
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4. Small Molecule Binding in MOFs and POCs

Figure 4.3.: (A) hRMSD between the molecular crystal structure cutout and the structures optimized
with B97-3c, GFN2-xTB, PM6-D3H4, UFF, and GFN-FF. (B) CPU time per optimization cycle
in seconds on one Intel© Xeon E5-2660 v4 @ 2.00 GHz CPU for B97-3c, PM6-D3H4, GFN2-
xTB, and GFN-FF using the example of 1b.

On average, all methods, except UFF, produce reasonable hRMSD of less than 0.5 Å. For the com-
parison of molecular crystal structure cutouts and gas phase optimized structures, and considering the
neglect of secondary solvent and crystal packing e�ects, the agreement between theory and experiment
is remarkable. The largest deviations occur for Pd-MOP+ 1c, which is to be expected, due to the high
net charge and the absence of counter ions in our treatment. For the �uorinated POC 2c, PM6-D3H4
shows a noticeable deviation, which is mainly due to wrong torsion angles at the imine bonds. Also,
the saturated Rh-MOP 1b shows larger deviations from the crystal structure cutout, arising from the
re-organization of the water ligands at the metal centers. B97-3c produces good structures, showing
the lowest average RMSD of 0.24 Å. It is noticeable that going from a force-�eld method to much more
sophisticated SQM methods and even beyond high-level DFT calculations, the changes in accuracy are
rather small. For example, GFN-FF, which is 5-6 orders of magnitude faster than B97-3c, is capable of
providing structures at (almost) DFT quality. Computational timings for a single geometry optimization
cycle of each respective method for 1b illustrate the distinct di�erences in computational cost (Figure
4.3B). The good structural agreement with experimental and full DFT optimized structures justi�es the
usage of GFN-FF in combination with CREST for the generation of host–guest binding complexes as
binding site candidates, which is computationally not feasible at any other theoretical level (except for
GFN1-, GFN2-xTB but at much higher computational cost).

4.4.2. Binding Sites and Energies

Combining six hosts and �ve guests at three to �ve di�erent binding sites leads to a benchmark set
of 117 structures in total. Binding energies ∆Ebind in kcal mol−1 are calculated as the di�erences in
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total energies E between the fully optimized complex and the respective hosts and guests (Eq. 4.1, i.e.,
the geometry relaxation induced by the binding is included. The calculation of Gibbs free energies by
adding standard thermostatistical contributions is easily possible and has recently been considered in
detail346 but is not pursued here.

∆Ebind = E(Complex) − E(Host) − E(Guest) (4.1)

According to our years of experience with the calculation of NCIs,120,162,334,347 the residual basis set
superposition error for the large AO basis sets used is small (< 5% of ∆Ebind) or even practically negli-
gible by construction of the methods (for PBEh-3c, B97-3c and GFN methods). The performance of all
tested methods is evaluated in terms of the mean absolute deviation (MAD) from the reference PBE0-
D4/def2-TZVP//B97-3c values. MADs are calculated separately for each molecular host (1a–2c). As
the geometry optimization of 2a at the DFT level showed convergence di�culties due to the rotat-
able tert-butyl and phenyl-residues, for the energy study a truncated version of 2a was used, where
those residues were replaced by hydrogen atoms. The correlation of binding energies calculated by the
tested low-cost methods and the reference is further evaluated by the Pearson correlation coe�cient
rp . Conformational ordering is evaluated by the Spearman rank correlation coe�cient rs . For rp and
rs values close to unity are desired, indicating high correlation and parallelism of the corresponding
PESs. Combined MADmean, rp,mean, and rs,mean values are calculated as the arithmetic mean for all six
host systems. The results for the entire test set are illustrated in Figure 4.4. MAD values for each

Figure 4.4.: Statistical evaluation of MADmean, rp,mean, and rs,mean coe�cients with respect to PBE0-
D4/def2-TZVP reference values. For all density functionals, beside the composite methods,
a def2-TZVP basis set is employed.

system and the averaged mean values (MADmean) are additionally listed in Table 4.2. The binding en-
ergy level diagrams for each host-guest combination are shown in Appendix A4. Employing di�erent
DFAs serves as a cross-check for the chosen PBE0-D4/def2-TZVP reference. Except for PBEh-3c, all
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4. Small Molecule Binding in MOFs and POCs

DFT methods behave as expected and follow Jacob’s ladder159,163 scheme for DFA classi�cation. B97-3c
and TPSS-D4/def2-TZVP perform almost equally good with a MADmean of 0.2 kcal mol−1 compared to
the reference, followed by PBE-D4/def2-TZVP with a MADmean of 0.4 kcal mol−1. The range-separate
hybrid ωB97X-V is the only applied functional with nonlocal correlation (VV10348), whereas all other
DFAs are combined with the semi-classical DFT-D correction.334 With a MADmean of 0.3 kcal mol−1,
the performance is similar to the best performing (meta-)GGAs with reference to PBE0-D4. For the
accurate description of NCI, a su�ciently large basis set is mandatory. The built-in double-ζ basis set
in PBEh-3c may be too small compared to the triple-ζ basis employed for the other density functionals
which probably explains the MADmean of 0.7 kcal mol−1. To validate this assumption, PBE-D4/def2-SVP
single-point calculations were additionally performed for the entire test set, yielding a MADmean value
of 2.2 kcal mol−1. This is an increase in the mean absolute deviation of 1.8 kcal mol−1 compared to
the triple-ζ basis set calculation (MADmean(PBE-D4/def2-TZVP) = 0.4 kcal mol−1). All DFAs yield high
correlation coe�cients rp and rs , with excellent values ≥ 0.98 throughout the entire test set (detailed
rp and rs values are given in Appendix A4).

Table 4.2.: MAD between PBE0-D4/def2-TZVP (reference) and all other tested methods.

MAD / kcal mol−1 MOF-5 Rh-MOP Pd-MOP+ Q-POC B-POC F-POC MADmean
(1a) (1b) (1c) (2a) (2b) (2c)

PBEh-3c 0.75 1.02 0.74 0.44 0.56 0.88 0.73
B97-3c 0.16 0.25 0.15 0.17 0.23 0.24 0.20
TPSS-D4 0.16 0.27 0.14 0.19 0.14 0.22 0.19
PBE-D4 0.22 1.01 0.21 0.33 0.29 0.36 0.40
PM6-D3H4 0.85 10.05 1.31 0.78 0.96 3.27 2.87
PM7 1.05 2.13 2.20 1.26 0.94 5.12 2.31
GFN2-xTB 0.75 1.47 1.64 0.99 0.44 1.13 1.07
GFN1-xTB 0.84 2.79 0.77 1.26 1.20 1.48 1.39
GFN-FF 0.77 2.13 1.07 1.30 0.77 2.36 1.40
UFF 12.16 15.21 3.23 32.32 2.78 8.79 12.4

In the SQM class of methods, both GFNn-xTB variants perform only slightly worse compared to
the DFT methods, yielding small MADmean of 1.1 kcal mol−1 and 1.4 kcal mol−1 for GFN2-xTB and
GFN1-xTB, respectively (see Figure 4.4). This is further indicated by the high correlation coe�cients
around 0.95 clearly outperforming the tested PMx methods, which yield worse MADmean of 2.9 and
2.3 kcal mol−1 for PM6-D3H4 and PM7, respectively. PM6-D3H4 speci�cally fails for 1b, strongly over-
estimating the binding energies for benzene and CO2 (see Table 4.2). The GFN-FF force-�eld reaches
almost the quality of GFN1-xTB with a MADmean value of 1.4 kcal mol−1 of and mean correlation coef-
�cients around 0.95, whilst being two orders of magnitude faster. A correlation diagram comparing all
GFN methods to the DFT reference is shown in Figure 4.5. The two outliers observed for GFN2-xTB are
H2 and N2 coordinating to the Pd2+ metal center of the charged Pd-MOP+ (1c). With GFN2-xTB this
interaction is overestimated compared to GFN1-xTB and GFN-FF whereby the di�erences arise from
the electrostatic energy term. UFF is included in this study as the only available generally applicable FF
alternative to GFN-FF. UFF provides a large MADmean value >10 kcal mol−1 and correlation coe�cients
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<0.1. Thus, regarding its poor performance, UFF should be avoided for such applications.

Figure 4.5.: Correlation plots for binding energies obtained with GFN2-xTB, GFN1-xTB, and GFN-FF
with reference to the PBE0-D4/def2-TZVP energies. All binding energies are calculated on
B97-3c geometries.

The accurate calculation of binding properties requires chemically reasonable binding motifs. Hence,
the binding site generation is a major part of this and related application works. Therefore, the quality
of the fully automated binding structure ensembles, which were used for all previous calculations, was
exemplary tested. Optimal binding sites of CO2 molecules in MOF-5 have previously been investigated
by ONIOM (MP2/6-31G∗∗:HF/6-31G∗∗) calculations.349 Pianwanit et al. used clusters of four metal cor-
ners and three connecting linkers as a model for MOF-5. Guest molecules were manually assigned to
lie parallel and perpendicular to linker and corner domains of each cluster. The optimal binding site
and orientation of CO2 in the cavity of MOF-5 were predicted to be perpendicular to the metal corner
at 5 Å distance with corresponding binding energy of −2.2 kcal mol−1. The CO2@MOF-5 system is
used to compare the automatically generated complexes with previous results. Contrary to Ref. 349, all
binding sites in this work were obtained fully automatically by the conformational search procedure in
CREST and the whole unit cell was taken into account (see Figure 4.1A), rather than a truncated cluster
model. Binding energies were calculated on the fully B97-3c optimized structures and larger triple-ζ
basis sets were employed for all other DFT calculations in contrast to the double-ζ basis used in Ref.
349. The results for CO2@MOF-5 are depicted in Figure 4.6.

With our fully automated approach, the same binding sites as in Ref. 349 are found and the same
trends for binding energies are obtained. The two orientations of CO2 perpendicular to corner and
linker mark the two weakest bound motifs. The two most strongly bound motifs show CO2 orientated
parallel to the corner. We obtain distances of 4.5 Å between the carbon atom in CO2 and the central
oxygen atom of the respective MOF-5 corner. Binding energies range from −5 to −6 kcal mol−1 on
the PBE0-D4/def2-TZVP level of theory. The absolute larger binding energies compared to Ref. 349
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4. Small Molecule Binding in MOFs and POCs

Figure 4.6.: Binding motifs and binding energies for CO2@MOF-5 (MOF-5). On top, the four di�erent
binding motifs (1–4) of CO2@MOF-5 are shown. The ordering corresponds to the respective
PBE0-D4/def2-TZVP energies. For all DFAs, beside the composite methods, a def2-TZVP
basis set is employed. Colored backgrounds indicate the matching structural binding motifs.

may result from the larger triple-ζ basis set and the underlying fully relaxed DFT geometries applied
in this study. All tested DFAs reproduce the energetic ordering of the binding motifs correctly, while
the GFNn-xTB methods overestimate the binding energy in motif 2 (yellow), which is on the other
hand underestimated by the PMx methods and GFN-FF. GFN-FF further overestimates the binding
energy in motif 3 (grey). Motif 4 (green) is correctly identi�ed as the weakest one by all methods.
Overall, although none of the SQM/FF methods is able to predict the correct energetic ordering in all
cases, qualitatively reasonable orderings and absolute interaction energies are obtained at very low
computational e�ort.

4.4.3. Structure Energy Correlation

A common practice in theoretical studies is a so-called multi-level approach (see e.g., Ref. 120) in which
structures are optimized on a more e�cient, lower theoretical level compared to the �nal single-point
energy (SPE) computation. Looking at Figure 4.3, the comparison of CPU times per optimization cy-
cle, reveals the urgency for this approach. While B97-3c geometry optimizations take up to �ve hours
per optimization step for the largest structures of the test set, GFN2-xTB and GFN-FF require just a
few seconds. To validate this approach, all structures obtained from the CREST conformational search
were additionally optimized on the GFN2-xTB and GFN-FF level of theory. Based on GFN2-xTB and
GFN-FF structures, binding energies were calculated by the same methods as before. In the follow-
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Figure 4.7.: A Energy level diagram of the four conformations of benzene@2b. Binding energies are
shown for PBE0-D4/def2-TZVP, B97-3c, GFN1-xTB, GFN2-xTB, and GFN-FF calculated on
DFT, SQM and FF optimized structures. B Energetically lowest binding site of benzene on
2b at the PBE0-D4/def2-TZVP level of theory.

ing, binding energies of each method calculated on the SQM or FF structure (method//GFN2-xTB,
method//GFN-FF) are compared with the binding energy obtained by the same method on the DFT
structure (method//B97-3c). To ensure a meaningful comparison, it must be guaranteed that the opti-
mized motifs do not change signi�cantly upon geometry optimizations by the di�erent methods. B-POC
(2b) ful�lls these criteria for all 23 di�erent binding motifs and is thus well suited for this comparison.
The correlation of binding energies and the underlying structures is explicitly shown for the benzene
guest in 2b. Figure 4.7 depicts the energy level diagram of all four motifs found for benzene@2b (Figure
4.7A) and the B97-3c structure of benzene(1)@2b (Figure 4.7B). Three connected energy levels belong to
the binding energy calculated by the same method, but on di�erently optimized structures. In this com-
parison, PBE0-D4 and B97-3c are chosen as representative DFT methods. It is noticeable that all DFT
binding energies calculated on SQM or FF structures decrease absolutely compared to those calculated
on the DFT reference structure. This has an in�uence on the ordering of the conformational energies
and some re-ranking is observed. For GFNn-xTB and GFN-FF methods, this e�ect is less pronounced,
and moving from a DFT to a force-�eld structure causes only small changes. Hence, GFN1-xTB, GFN2-
xTB, and GFN-FF binding energies are quite similar on all tested geometries and the energetic ordering
remains unchanged compared to those computed on B97-3c structures. These �ndings also hold for the
other guest molecules bound to B-POC. The results for all 23 complexes are quanti�ed in Figure 4.8.
Detailed values are listed in Appendix A4. The MADmean for DFT methods calculated on GFN struc-
tures (DFT/GFN-xTB and DFT/GFN-FF)) ranges from 1.0 to 1.5 kcal mol−1 with reference to the same
DFT method calculated on the B97-3c optimized structures (DFT//B97-3c). This deviation is signi�cant
in comparison to the mean reference binding energy of −6.2 kcal mol−1 and is also re�ected in smaller
correlation coe�cients, with values of about 0.90 for rp and rs , respectively. For the tested GFN methods
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Figure 4.8.: MADmean, rp,mean, and rs,mean calculated for 23 di�erent guest binding motifs in 2b on ge-
ometries optimized at di�erent theoretical levels. For all density functionals, beside the
composite methods, a def2-TZVP basis set is employed.

on GFN structures (GFN//GFN) the binding energy deviations from the respective GFN//B97-3c level
amount to an average of just 0.5 kcal mol−1 and all correlation coe�cients lie above 0.95. Some caution
is therefore required in multi-level approaches where DFT energies are calculated on GFN structures,
not only because binding energies decrease, but especially because conformational ranks may change.
Nevertheless, GFN2-xTB energies calculated on GFN-FF structures, as it would be done in applications
beyond the 1000 atom regime, seem to yield rather good results, indicating higher parallelism of the
corresponding PES.

4.4.4. Highly Charged Species

To increase the diversity in terms of strength and nature for the interactions considered, binding ener-
gies are further investigated for anionic guests bound to cationic hosts. Such systems are speci�cally
interesting in the context of anion templated synthesis.350 Therefore, binding positions were assessed
for the sulfate (SO2−

4 ) and tetra�uoroborate (BF−4 ) within a Zn variant of a cationic urea-functionalized
M4L6 host351 (3a) shown in Figure 4.9. The strong electrostatic interactions in the gas phase lead to high
mean interaction energies of −675 kcal mol−1 for the sulfate anion and −269 kcal mol−1 for the tetra�u-
oroborate anion, respectively. Thus it is convenient to also consider the relative MADmean within the
statistical evaluation for better comparison to previous results. For the calculation of binding energies,
the same methods as before are applied. The results in comparison to the PBE0-D4/def2-TZVP reference
are given in Figure 4.10. Reference binding energies are best reproduced by the (meta-)GGA functionals
TPSS and PBE deviating by only 1.3 and 1.1 kcal mol−1 respectively, which is a relative error of just
0.2 %. The composite low-cost DFT composite methods PBEh-3c and B97-3c perform slightly worse
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Figure 4.9.: Sulfate (SO2−
4 ) and tetra�uoroborate (BF−4 ) anions binding to [Zn4L6]8+ forming, i.e., com-

plex [Zn4L6(SO4)]6+ 3a. XUXJUX was modi�ed, replacing Ni by Zn to avoid SCF conver-
gence issues in the DFT calculations.

with deviations of 3.7 to 6.6 kcal mol−1 (1.0-1.4 %). The range-separate hybrid ωB97X-V with non-local
correlation yields comparable deviations of 1.4 % with respect to the PBE0 reference interaction en-
ergies. In the SQM class of methods, GFN1-xTB performs only slightly worse than the DFT methods,
yielding small MADmean of 6.3 kcal mol−1 (1.4 %). PM6-D3H4 and GFN2-xTB follow with deviations of
10.1 and 13.8 kcal mol−1, which represent errors of 2.7 and 3.5 % respectively. PM7 fails for the highly
charged systems considered here, underestimating the binding energies for BF−4 and SO2−

4 by more than
37 %. GFN-FF applied with default settings strongly overestimates the interaction energy by 95 % due to
the arti�cial charge transfer of the EEQ model. Thus, employing charge constraints for the molecular
fragments (host and guest) either manually or via GFNn-xTB charges is recommended. This reduces
the MADmean value drastically to 8.9 kcal mol−1 (relative MADmean = 2.5 %), whilst remaining two or-
ders of magnitude faster than all SQM methods. This approach was also recommended in the context
of supramolecular association reactions and protein optimizations in Ref. 117. UFF, which applies an
unconstrained charge equilibration model, deviates by more than 60 % from the reference values and
should thus be avoided for highly charged systems.

4.4.5. Drug Binding

The molecular guests considered so far were limited to small organic molecules only. As an outlook and
future perspective, the complexity is increased by a transition metal complex as a guest. Ruthenium
arene PTA (RAPTA) represents a class of experimental cancer drugs,352,353 consisting of a central ruthe-
nium(II) ion coordinated by an arene ligand, chlorides, and 1,3,5-triaza-7-phosphaadamantane (PTA).
One derivative is [Ru(η6-p-cymene)Cl2(PTA)] (RATPA-C) (Figure 4.11A). RAPTA-C was bound to the
POCs 2a and 2b, focusing on the most favorable binding site at the GFN-FF level. Therefore, the same
procedure as before was applied, but only the energetically lowest CREST conformation was post-
processed by DFT. B97-3c optimized structures of RAPTA-C@2a and RAPTA-C@2b are shown in Fig-
ure 4.11B and 4.11C. Binding energies were calculated by the same DFT, SQM, and FF methods as before.
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Figure 4.10.: Statistical evaluation of the MADmean and relative MADmean with respect to PBE0-D4/def2-
TZVP reference values for BF−4 and SO2−

4 bound to 3a. For all density functionals, beside
the composite methods, a def2-TZVP basis set is employed.

Figure 4.11.: A MADmean for the binding energies of RAPTA-C to 2a and 2b with reference to PBE0-
D4/def2-TZVP reference data. B B97-3c optimized structure of RAPTA-C bound to 2a. C
B97-3c optimized structure of RAPTA-C bound to 2b. Also, the respective binding energies
on the PBE0-D4/def2-TZVP level are given.

PBE0-D4/def2-TZVP reference energies for RAPTA-C@2a and RAPTA-C@2b amount to −35.6 and
−17.1 kcal mol−1 respectively. Although the deviations are generally larger, the results shown in Figure
4.11A (note the logarithmic scale) are comparable to those discussed vide supra. All (meta-)GGA func-
tionals reproduce the hybrid reference values within a deviation of less than 0.9 kcal mol−1. Detailed
values are given in Appendix A4. As noted before, PBEh-3c again does not achieve this accuracy. GFN2-
xTB and GFN-FF show an acceptable degree of accuracy with MADmean values of about 3 kcal mol−1,
whereas GFN1-xTB is the best performing GFN method with a deviation of just 2.2 kcal mol−1. As for
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the other systems, neither of the PMx methods nor UFF are capable of providing an adequate descrip-
tion of transition metal complexes bound to porous organic cages.

4.5. Conclusion

In this work, small molecule binding in metal-organic constructs and porous organic cages by DFT
and low-cost (mainly quantum mechanical) methods was investigated. An e�cient, fully automated
procedure for the generation of preferred binding sites was shown, combining the conformer search
algorithm CREST with GFN-FF. The obtained binding motifs at MOPs, MOFs, and POCs were further
optimized on the B97-3c DFT level of theory and reference binding energies were calculated at the
PBE0-D4/def2-TZVP hybrid level for 117 di�erent host-guest complexes.

The resulting binding motifs were compared to those from previous theoretical studies for CO2@MOF5
and a good mutual agreement was observed. For the entire benchmark set, the accuracy for binding
energies and structures calculated by SQM and FF methods was evaluated compared to DFT results. Of
all SQM approaches tested, the GFN methods performed well, yielding small deviations in the range
from 1.1 to 1.4 kcal mol−1 throughout. The GFN-FF force-�eld yields particularly good results, regard-
ing its very low computation times compared to the SQM methods. PM6-D3H4 and PM7 worked well in
some cases but showed a large deviation for others. With MADmean values of 2.3 to 2.9 kcal mol−1, the
accuracy is clearly lower than with GFN methods. UFF on the other hand, which was tested as a second
general FF, was not able to adequately describe any of the occurring noncovalent binding motifs.

In the context of non-covalent binding to MOFs/MOPs and POCs a substitution of both, the energy
calculation and the geometry optimization, by any of the GFNn-xTB methods is justi�ed if the corre-
sponding geometry optimization does not indicate signi�cant basic issues in reproducing the electronic
structure of the investigated host-guest complex. If the energy calculation is performed with a DFT
method, non-parallel PES between DFT and the SQM/FF methods applied for the geometry optimiza-
tion may also increase the deviations in binding energy compared to the fully DFT calculated values.
We recommend to investigate this e�ect on a case-by-case basis. The complexity of the systems was
increased by binding two anions (BF−4 and SO2−

4 ) and the ruthenium containing cancer drug RAPTA-C
on di�erent cages, where only GFN methods produced results comparable to the DFT reference. Even
though this work focuses on gas phase binding energies, the performance and computational e�ciency
of the GFN methods also enables the computation of Gibbs free association energies as recently shown
in Ref. 346, which is not practicable at the DFT level of theory due to the high computational cost. Such
calculations, also including solvation e�ects by the available continuum models, open up completely
new possibilities for the comparison between theory and experiment in this �eld of supramolecular
chemistry.
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5. Modeling of Distance Distributions for Biomacromolecules

Abstract Electron Paramagnetic Resonance (EPR) spectroscopy is a powerful method for unraveling
the structures and dynamics of biomolecules. Out of the EPR toolbox, Pulsed Electron–Electron Double
Resonance spectroscopy (PELDOR or DEER) enables one to resolve such structures by providing dis-
tances between spin centers on the nanometer scale. Most commonly, both spin centers are spin-labels
or one is a spin-label and the other is a paramagnetic metal ion, cluster, amino acid, or cofactor radical.
Often, the translation of the measured distances into structures is complicated by the long and �exible
linker connecting the spin center of the spin-label with the biomolecule. Nowadays, this challenge is
overcome by computational methods but the currently available approaches have a rather large mean
error of roughly 2-3 Å. Here, the new GFN-FF general force-�eld is combined with the fully automated
Conformer-Rotamer Ensemble Sample Tool (CREST) [Pracht et al., Phys. Chem. Chem. Phys., 2020,
22, 7169-7192] to generate conformer ensembles of the R1 side chain (methanthiosulfonate spin-label
(MTSL) covalently bound to a cysteine) in several cysteine mutants of azurin and T4 lysozyme. In order
to determine the Cu2+-R1 and R1-R1 distance distributions, GFN-FF based MD simulations were car-
ried out starting from the most probable R1 conformers found by CREST. The deviation between theory
and experiment in mean inter-spin distances was 0.98 Å on average for the mutants of azurin (1.84 Å
for T4 lysozyme) and the right modality was obtained. The error of the most probable distances for
each mode was only 0.76 Å in the case of azurin. This CREST/MD procedure does thus enable precise
distance-to-structure translations and provides a means to disentangle label from protein conformers.

5.1. Introduction

Knowledge of the structure and dynamics of biomacromolecules is important for an understanding
of their function.354 In this regard techniques such as X-ray crystallography,355 cryogenic electron
microscopy (cryo-EM),356–358 Förster resonance energy transfer (FRET),359–361 nuclear magnetic res-
onance (NMR) spectroscopy,362,363 and electron paramagnetic resonance (EPR) spectroscopy364 have
delivered important insights. The latter one o�ers in the form of Pulsed Electron–Electron Double
Resonance spectroscopy (PELDOR or DEER)365,366 a method that provides distances between spin
centers in the range of 1.6 to 16 nm. Such spin centers can be paramagnetic metal ions367 or clus-
ters,368 as well as amino acid or cofactor radicals.369 If diamagnetic, spin centers can be introduced by
means of site-directed spin-labeling (SDSL) with nitroxides.370,371 The most widely used spin-label is
the methanethiosulfonate spin-label (MTSL),372 which binds covalently to cysteines, forming the so-
called R1 side chain (Figure 5.1). In this side chain, the electron spin is localized on the N-O group of
the nitroxide and the PELDOR experiment provides the distance to this spin center in form of distance
distributions. However, for the structure of the biomolecule, the distance to the Cα atom, which the
R1 side chain is connected to, is of interest. Thus, in order to translate the measured spin-spin distance
into a structure, the intrinsic �exibility and length of the R1 side chain have to be taken into account.
Yet, there is a non-trivial correlation between theCα -Cα and the spin-spin distances, which depend on
the conformational ensemble of the R1 side chain in its macromolecular environment.

In recent years, the �eld of theoretical chemistry has evolved into an indispensable part of natural
science and is proven to be an important companion to the experiment.1 Theory is able to provide
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Figure 5.1.: The chemical reaction of a cysteine residue and MTSL forming the so-called R1 side chain.
The spin is localized to more than 95 % between the N and O atoms. The �ve dihedral angles
χ1-χ5 corresponding to the rotatable bonds of R1 are shown by red arrows.

accurate equilibrium structures by geometry optimizations as well as atomistically resolved classical
motions by molecular dynamics (MD) simulations.373 It is thus well suited for applications in structural
biology.374 However, the sheer size of typical biomacromolecules consisting of thousands of atoms ex-
cludes basically all ab initio quantum mechanical (QM) methods and also most of the semiempirical
QM methods as potential candidates for the computation of dynamics for the entire system.97,375–377

Therefore, atomistic force-�elds (FF) are established as the standard level of theory in the description of
biomacromolecules239,378–380 and used routinely by common programs such as Amber,62 CHARMM,235

or OPLS.113 However, specialized biomolecular FFs are not suited for interdisciplinary use, because
their parameters only exist for a limited amount of chemical elements and structural motifs. For highly
coordinated metal centers, which are present in metalloproteins, laborious “hand-made” parameteriza-
tion is often required.267 For consistent routine application, this approach is not practical and, hence,
experimentalists are in urgent need of reliable routine theoretical support.381 For this reason, it is of-
ten necessary to use much simpler methods such as mtsslWizard,382,383 PRONOX,384 Rosetta,385 or
MMM386,387 that are based on an accessible volume or an energy-weighted library approach, respec-
tively. Alternatively, MD-based approaches that employ simpli�ed FFs, like the one used in the MDDS
approach by Islam et. al.,388 have been proposed and were shown to be slightly better than the more
simple methods above when used to predict inter-spin distance distributions.

Recently, a completely automated, partially polarizable generic FF has been developed for the ac-
curate description of geometries, frequencies and non-covalent interactions (GFN-FF),117,346 covering
a full periodic table parameterization (Z ≤ 86). This universal method combines the high computa-
tional speed of FFs with an accuracy approaching that of low-level QM methods. Furthermore, a new
conformer-rotamer ensemble sample tool (CREST)60 has recently been published, which is an e�cient
scheme for the sampling of the low-energy chemical space by GFN methods96 combined with a meta-
dynamics (MTD)220 driven search algorithm. All these computational methods are coded e�ciently
and are freely available for general use.337

In this work, we propose an automated composite scheme for the calculation of inter-spin distance
distributions of MTSL spin-labeled proteins. For the �rst time, the combination of CREST and MD,
both employing GFN-FF as the underlying theoretical model, is applied to large biomolecules. This
CREST/MD approach is advantageous compared to conventional MD based treatments of the R1 con-
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formers.389–394 Purely MD based methods are problematic for the prediction of the conformer ensemble,
because conformational barriers may not be overcome in unbiased simulations at ambient temperature.
This problem was further addressed by Sezer et al.395,396 The potential of GFN-FF based MD simula-
tions for the prediction of distance distributions between paramagnetic metal ions and spin-labels has
been brie�y described in the original publication.117 Here, the more thorough CREST/MD approach
is described and extensively tested for several single-labeled azurin mutants and double-labeled T4
lysozyme (T4L) mutants (Figure 5.2).

Figure 5.2.: Graphic illustration of the two investigated biomacromolecules. (A) Crystal structure of
azurin with MTSL attached at position T21. (B) Crystal structure of T4 lysozyme with two
MTSL attached at positions 60 and 90. The PDB identi�ers are given in bold.

5.2. Method

The general work�ow from the input structure to the �nal distance distribution, including CREST and
MD at the GFN-FF level of theory, is illustrated in Fig 5.3. The main idea is to perform a constrained con-
formational search, followed by completely unconstrained independent MD simulations for di�erent
conformers to obtain a thermally equilibrated (classically averaged) structure. The inter-spin distance
distributions are then calculated from the MD trajectory. The procedure can be divided into four steps

Figure 5.3.: The proposed general scheme for the calculation of spin-label distance distributions. Con-
formational analysis is performed on the input structure by the CREST algorithm, employ-
ing GFN-FF for the underlying potential energy surface. MD simulations on the same level
of theory are performed on the highly populated conformers. The resulting trajectories
are evaluated to obtain the distance distribution function per conformer. Their Boltzmann
weighted sum yields the overall distance distribution.
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employing four di�erent programs which are all non-commercial and freely available:

1) Input structure preparation: e.g., mtsslWizard 382,383

2) CREST conformer search: crest 60

3) GFN-FF MD simulation: xtb 337

4) Trajectroy analysis: TRAVIS 397

First, the input structure was generated from the PDB entry of the protein by attaching a conformer
of the R1 side chain at each position needed. Various alternative computer methods for this step are
available,55,382,383,385,386,398,399 here mtsslWizard was used. Hydrogen atoms were added automatically.
This pre-processed input structure resembles a random conformation of the spin-label in the protein.

In the second step, low-energy spin-label conformations were generated via CREST at the GFN-FF
level of theory, employing an implicit GBSA(H2O)96 solvation model. A full CREST conformational
search for the entire proteins is not feasible, even at the GFN-FF level of theory. Therefore, it was
assumed that the protein backbone is only weakly a�ected by the presence of the label.381 The main
focus is on the conformations of the R1 side chain, but the protein core is allowed to relax, i.e., it is
not geometrically frozen. In the CREST calculation, a biasing potential was added for all atoms of
the spin-label. More speci�cally, the 31 atoms (62 atoms for T4 lysozyme) of the R1 side chains were
included in the RMSD criteria of the MTD simulations. See the original Ref. 220 for smaller examples
of this selective heating procedure. An additional constraint via harmonic pairwise potentials was
applied for all other atoms of the protein structure. Therefore, a weak constraining force constant of
0.01 Eh/bohr was chosen. This reduction of the number of active degrees of freedom is necessary to
decrease the size of the conformation space and, consequently to make the CREST run practical. In
general, a weak constraining force is favorable, being physically closer to the real system and allowing
structural relaxation of the protein upon the conformational change induced by the spin-label. On
the downside, this leads to an increased computation time. The resulting fully optimized conformer
ensemble of the R1 side chain attached to the protein consisted of 20 to 200 structures. The distance
distribution of an ensemble was obtained as the sum of the inter-spin distances from all conformers
weighted by their Boltzmann factor based on GFN-FF relative energies at the respective temperature.
If multiple conformers were found, which showed a very similar distance between the spin centers (<1
Å), they were considered as one R1 conformer cluster. For more details about the conformer ensemble
see Appendix A5.

In the third step, unconstrained GFN-FF MD simulations of the full system were performed for all
conformers that had a relative Boltzmann weight larger than 50 % compared to the energetically low-
est conformer (whose population is set to 100 %). In addition, only the conformer with the highest
Boltzmann weight in a R1 conformer cluster was taken as the starting point for the MD simulation.
The threshold of 0.5 was found to yield good results in comparison to the experiment at reasonable
computational costs. Yet, this is an empirical parameter, which might have to be varied for other sys-
tems. Again, an implicit GBSA(H2O) solvation model was applied. Subsequent MD simulations were
performed in order to reach thermal equilibrium for the unconstrained system. Note, that the MD run
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was not applied to overcome barriers and �nd structurally new conformations since the conformational
space exploration step has already been conducted by CREST. The GFN-FF MD simulation adds tem-
perature e�ects to the optimized equilibrium structures and removes all applied constraints introduced
above. For this purpose, a simulation time of 1 ns after an equilibration phase of 200 ps was found to
be su�cient. Shorter and longer simulation times were tested but did not lead to signi�cant changes
in the distance distributions, for more details see Appendix A5. Nevertheless, for systems with �exible
domains longer simulation times might be necessary. The applied temperature in the MD was set to
the freezing point of the solvent because it was assumed, that the conformational ensemble examined
in the PELDOR experiment corresponds to the one conserved at the freezing point of the solvent. The
e�ect of the glass transition temperature on the outcome of the MD simulations will be a point for
future investigations, as it amounts to roughly 2/3 of the freezing point of the solvent.400,401 Detailed
investigation of temperature e�ects is given below which sheds some light on the reliability of this
scenario.

The last step in this protocol was the analysis and evaluation of the obtained MD trajectories. The
trajectory analyzer and visualizer TRAVIS 397 was chosen to calculate the radial distribution functions.
The overall distance distribution was calculated as the Boltzmann weighted sum of distributions ob-
tained from the MD trajectories of each evaluated conformer.

5.3. Results and Discussion

5.3.1. Azurin

First, we investigated six spin-labeled mutants of the metallo-protein azurin,402–404 namely D69R1,
S100R1, T21R1, T30R1, T61R1, and T91R1. Their synthesis and spin-labeling as well as the correspond-
ing PELDOR experiments are described in Ref. 403. As a starting structure of azurin, its Zn-bound crys-
tal structure (PDB ID 1E67) was taken due to the higher resolution as compared to Cu-bound azurin.
Here, GFN-FF can show its full strength, as it is able to describe both metals without any additional pa-
rameterization. After full geometry optimization, the heavy atom root mean square deviation (hRMSD)
between copper and zinc azurin was only 0.1 Å, which is negligible (see Appendix A5 for more details).
For the azurin mutants, a water-ethylene glycol mixture (50 v/v %) was used as a bu�er,403 which has
a freezing temperature of roughly 237 K. Thus, all MD simulations were performed at this tempera-
ture. The calculated Cu2+-NO distance distributions of the six mutants are shown in Figure 5.4. Note
that the distances measured in the PELDOR experiment are the distances between the spin densities
ρ distributed over several atoms (Figure 5.4, top). For the R1 side chain, the spin density is equally
distributed between the nitrogen and oxygen atoms (ρN = ρO = 0.5). Yet for the metal center, only 35 %
of the spin density is on the Cu2+ ion, whereas 60 % are on the neighboring sulfur atom403 of residue
C112. This distribution of spin densities was taken into account in the evaluation of the MD trajectories
(see Appendix A5).

To quantify the results, the obtained mean distance r̄ , the most probable distance rp , and the dis-
tributions width by standard deviations σr (Table 5.1) were compared to the experimental distances
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Figure 5.4.: Spin-label distance distributions for the six azurin mutants D69R1, S100R1, T21R1, T30R1,
T61R1, and T96R1 (A-F). Top half of each plot: The results from the CREST conformations
without any MD averaging (gray) overlayed with the distribution obtained by the GFN-FF
MD simulation (yellow) and the experimental PELDOR data (blue). Bottom half of each plot:
MMM (green) and mtsslWizard (red) distance distributions and the experimental PELDOR
data (blue). The spin centers between which the distances were measured are illustrated on
top.

in terms of mean absolute deviation (MAD), standard deviation (SD), and relative MAD (relMAD). For
all six mutants, the agreement between the CREST/MD approach and the experiment for the most
probable distances rp is remarkable with a MAD of 0.83 Å, SD of 1.14 Å and a relative error of 3.5 %.
On the other hand mtsslWizard and MMM show MAD values ranging from 2.55 to 2.78 Å, which are
relative deviations of more than 10 %. For the mean distances r̄ , almost equally good results are ob-
tained for CREST/MD with a MAD of 0.97 Å, SD of 0.92 Å and a relative error of 4.3 %. mtsslWizard
and MMM yield MAD values of 1.03 and 1.47 Å respectively. These relative deviations of 4–7 % for
r̄ are signi�cantly smaller than the errors in rp . The distribution widths σr of the experimental dis-
tance distributions were best reproduced by the CREST/MD approach with a MAD of just 0.29 Å, being
on average only 12.2 % broader. MtsslWizard and MMM show on average 35–45 % broader distribu-
tions with absolute deviations of 1.19 and 1.72 Å respectively. In addition to the correspondence of

87



5. Modeling of Distance Distributions for Biomacromolecules

Table 5.1.: Statistical evaluation (in Å) of the mean spin-label distances r̄ , the most probable distances rp ,
and the standard deviationσr for all distance distributions obtained in silico with CREST/MD,
MMM, mtsslWizard and by PELDOR (Exp.) for the six azurin mutants.

Mutant Exp. CREST/MD MMM mtsslWizard

r̄ rp σr r̄ rp σr r̄ rp σr r̄ rp σr

D69R1 20.6 20.6 2.0 19.7 20.1 2.1 19.0 19.5 3.3 19.9 21.5 2.5
S100R1 30.8 30.8 1.4 29.5 29.3 1.5 32.6 32.6 3.9 31.2 31.2 3.6
T21R1 24.8 21.5 2.8 23.4 20.9 3.1 23.9 26.5 3.6 24.2 25.5 3.6
T30R1 21.7 21.2 1.7 22.7 21.4 2.3 24.9 26.5 3.3 23.7 24.5 2.7
T61R1 19.6 18.9 2.6 18.5 18.6 2.4 19.5 18.5 4.5 19.9 20.5 3.6
T96R1 23.6 22.7 1.9 23.5 24.6 2.5 24.2 26.5 4.2 23.7 25.5 3.6

MAD 0.97 0.83 0.29 1.47 2.78 1.72 1.03 2.55 1.19
SD 0.92 1.14 0.30 1.84 3.55 0.62 1.51 1.11 0.63
relMAD 4.3 % 3.5 % 12.2 % 6.7 % 12.4 % 44.8 % 4.1 % 10.3 % 35.5 %

the mean and most probable distances, the determination of the correct number of modes (modality) is
of importance. Here, it should be highlighted that the presented CREST/MD procedure was the only
theoretical model that predicted the multi-modal distance distributions correctly. MMM also yielded
multi-modal distributions but di�ered signi�cantly from the experiment. No multi-modality was ob-
served for mtsslWizard. Thus, the good agreement of mtsslWizard with the experiment in terms of r̄
loses its value, as the modality was not reproduced.

As the CREST/MD procedure was able to reproduce the experimentally found modality, it was further
possible to compare the most probable distances per mode. For MMM and mtsslWizard this evaluation
is not possible, due to missing or wrong modalities. The results are listed in Table 5.2. For the most
probable distances rp per mode, the deviation between the CREST/MD approach and the experiment is
very small with a MAD of 0.76 Å, SD of 0.78 Å and a relative error of 3.0 %.

Table 5.2.: Statistical evaluation (in Å) of the most probable spin-label distances rp obtained in silico
with CREST/MD and by EPR for each mode of the �ve azurin mutants.

Mutant Exp. CREST/MD
rp rp

D69R1 20.6 20.1
S100R1 30.8 29.3
T21R1 21.5 20.9

28.4 26.9
T30R1 21.2 21.4

24.5 25.4
T61R1 18.9 18.6
T96R1 22.7 22.4

25.5 24.6

MAD 0.76
SD 0.78
relMAD 3.0 %
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For mutants T21R1 and T30R1, the importance of multiple MD simulations starting from di�erent
conformers for obtaining the experimentally observed bimodal distributions was revealed. While in
both cases, the energetically lowest conformer yields the main peak at shorter distance, the second peak
at longer distances is generated only by the second most probable conformation. For the chosen MD
conditions, the energy barrier can not be overcome and, hence, the correct distribution is only obtained
by using starting conformations from di�erent R1 conformer clusters. For the mutants D69R1, S100R1,
and T61R1, the picture is di�erent. In all three cases, a similar mean distance is obtained from all starting
conformations, implying low energy barriers between the conformers. The individual distributions
obtained for each conformer are shown in Appendix A5. Mutant T96R1 is the only example where
the relative probabilities of the R1 conformations are mismatched, indicating wrong conformational
energies at the GFN-FF level. At this point, it should be mentioned that the performance of the whole
procedure depends heavily on the accuracy of GFN-FF/GBSA for the potential energy surface and, in
particular, the conformational energies. Even though this was tested thoroughly in Ref. 117 for small
to medium sized systems, the extension to large biomolecules can not be assumed per se.

5.3.2. Temperature Effects

As mentioned above, all MD simulations were performed at the freezing point of the solvent, 237 K
(freezing point of water with 50 v/v % ethylene glycol). To validate this approximation, temperature
e�ects were investigated for the bimodal distributions of T21R1 and T30R1. Therefore, MD simulations
were performed from 237 K to 298 K. Distance distributions obtained for all temperatures are given in
Appendix A5. In Figure 5.5, the distributions are shown for the freezing point of the solvent (237 K) and
at room temperature (298 K). In Figure 5.5A, two conformations that were found in silico are exemplary

Figure 5.5.: Investigation of temperature e�ects in the MD simulation. In (A), two conformations with
shorter (C1) and longer (C2) inter-spin distances of T21R1 are illustrated. Computations
are performed at the freezing point of the solvent (237 K) and at room temperature (298 K),
respectively, for the azurin mutants T21R1 [(B) and T30R1 (C)]. The starting conformation
for the MD simulation is indicated by a red dot.

shown for T21R1. In the following, the conformation with the shorter inter-spin distance is called C1,
while the conformation with the larger inter-spin distance is called C2. The main conformation C1 of
the R1 side chain in T21R1 is independent of temperature (see Appendix A5), indicating that the rel-
evant conformational barriers are rather high (about 5–10 kcal mol−1). However, when starting from
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the C2 conformation (Figure 5.5B, indicated by the red dot), signi�cant changes were observed as the
temperature was increased. The low-temperature MD indicates a small, but visible relative population
of C1. For the high-temperature MD, C2 completely vanishes and converts to C1. This highlights the
importance of the chosen temperature for the MD simulation step. Importantly, the experimentally
observed bimodality of T21R1 is obtained theoretically only for simulations close to the freezing point
of the solvent. For T30R1 (Figure 5.5C), temperature e�ects were investigated as well. Here, the C1 con-
former was again associated with the shorter Cu2+-R1 distances and the C2 conformer with the longer
distances. When starting the MD simulations from the conformation C1, only the C1 conformation is
obtained at low temperature (237 K), whereas the conformation C1 partially converts into conformation
C2 at 298 K. When compared to the PELDOR distance distribution, a slight overpopulation of the con-
formation C2 is observed, indicating a small error in the compared GFN-FF conformational energies.
The conformation C2, on the other hand, is independent of temperature (see Appendix A5).

5.3.3. T4 Lysozyme

The second investigated system consists of 19 mutants of T4 lysozyme.405,406 Since there is no metal
center present in T4L, two MTSL labels were attached in order to perform PELDOR measurements.
Computing the distance distributions between two �exible R1 side chains rather than between one label
and a �xed metal ion makes the conformational search considerably more complicated. The combined
CREST/MD protocol was applied to all 19 structures. For the MD simulations, the temperature was set
to 273 K (water with 20 v/v % glycerol). PELDOR distance distributions were taken from Ref. 405, where
mean distances r̄ for all mutants are tabulated. The in silico computed results are shown in Figure 5.6.
The calculated values for r̄ , rp , and σr are listed in Table 5.3.

Figure 5.6.: Comparison of theory and experiment for mean spin-label distances of 19 T4L mutants. The
experimental values are given in black and the distribution width is indicated by error bars.
Mean distances obtained from GFN-FF MD simulations are shown in yellow. An illustration
of the nitroxide-nitroxide distance is given on top.
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Table 5.3.: Statistical evaluation (in Å) of the mean spin-label distances r̄ , the most probable distances rp ,
and the standard deviationσr for all distance distributions obtained in silico with CREST/MD,
MMM, mtsslWizard and by PELDOR (Exp.) for the 18 T4L mutants.

Mutant Exp. CREST/MD MMM mtsslWizard MDDS

r̄ rp σr r̄ rp σr r̄ rp σr r̄ rp σr r̄ rp σr

59/159 41.9 42.4 4.1 41.6 40.8 4.0 39.1 40.5 5.4 42.1 43.5 4.8 39.2 41.0 7.1
60/90 37.8 38.5 7.2 37.6 37.1 5.0 44.1 45.0 5.1 45.5 46.5 4.8 40.2 40.0 5.3
60/94 25.5 26.2 4.6 27.9 27.3 3.6 29.8 29.5 7.3 32.1 32.5 5.9 26.6 28.0 7.4
60/109 35.2 33.2 3.3 37.0 35.8 3.4 37.0 38.5 6.8 38.3 39.5 5.3 31.2 35.0 7.4
60/154 34.1 34.9 2.8 31.5 30.5 2.5 36.0 36.5 7.0 38.6 39.5 5.1 34.9 35.0 5.6
62/134 41.1 40.6 2.0 41.8 41.4 1.8 45.8 47.0 3.4 48.5 48.5 2.2 42.2 43.0 5.1
64/122 34.1 32.5 2.5 35.2 35.1 3.5 35.9 36.0 6.0 38.3 38.5 3.9 32.6 33.0 5.6
82/94 30.7 32.1 4.7 30.8 31.3 2.4 30.2 29.5 5.1 32.2 33.5 4.8 29.9 30.0 5.9
82/132 26.3 29.1 5.2 24.7 25.6 4.2 28.0 28.5 6.0 26.9 28.5 5.1 24.7 25.0 6.5
82/155 35.8 38.5 3.7 32.3 34.4 3.7 35.8 37.0 4.5 37.2 38.5 5.3 35.4 35.0 5.3
93/112 26.1 26.2 1.7 26.9 26.8 3.8 28.4 26.5 4.7 32.3 33.5 3.9 25.4 25.0 5.4
93/123 24.8 24.6 2.6 26.0 25.9 2.0 24.8 25.0 5.6 25.4 26.5 5.9 28.2 28.0 4.5
93/154 25.1 27.5 2.7 23.8 23.9 2.2 26.0 27.0 4.7 25.6 26.5 4.8 27.2 28.0 3.6
94/132 31.7 32.4 1.6 27.1 27.1 1.9 31.7 33.5 4.4 32.0 32.5 2.7 30.0 31.0 4.8
108/155 35.2 36.2 3.3 30.8 30.9 2.5 35.8 35.0 3.7 36.8 36.5 3.0 32.5 34.0 4.7
109/134 30.6 32.3 2.8 28.1 29.3 3.2 29.9 30.0 4.4 31.0 32.5 4.5 27.9 30.0 5.6
115/155 28.2 27.6 2.9 30.3 29.1 4.4 30.9 31.0 4.1 32.4 33.5 3.9 30.4 33.0 6.8
116/134 20.2 20.6 2.2 17.8 17.8 2.1 21.0 25.0 5.4 18.5 18.5 4.5 21.5 22.0 6.5

MAD 1.86 2.57 0.83 1.88 2.60 2.10 2.92 3.39 1.44 1.84 2.06 2.60
SD 2.21 2.69 1.13 2.15 3.00 1.53 2.85 3.47 1.32 2.13 2.50 1.48
r elMAD 6.2 % 8.2 % 26.9 % 5.9 % 8.2 % 61.8 % 9.4 % 10.9 % 45.8 % 6.0 % 6.7 % 96.6 %

With a MAD of 1.86 Å, SD of 2.27 Å and a relative error of 6 %, the computed mean distances r̄

show again a very good agreement with the experiment, although the error is roughly twice as large
as for the azurin mutants. This is in line with the expectation, that the error per spin-label amounts to
approximately 1.0 Å and is roughly additive. On the same test set, MMM and mtsslWizard yield MAD
values of 1.88 and 2.92 Å respectively.266 T4L mutants were also calculated in Ref. 388 with the MDDS
approach, yielding a comparable MAD of 1.84 Å. rp values for all tested methods are also listed in Table.
5.3. Due to the resolution limit of 0.5 Å for MMM and 1.0 Å for MDDS, the methods are subject to an
uncertainty of ± 0.25 and ± 0.5 Å respectively.

While the performance in terms of r̄ is quite similar for CREST/MD, MMM, and MDDS for the mu-
tants of T4L, CREST/MD is the only method that is capable of reproducing the experimental distribu-
tion widths. The broadening amounts to 27 % with CREST/MD, while mtsslWizard and MMM predict
46%–62 % wider distributions. For MDDS, the distance distributions are almost twice as wide as the ex-
periment. Distance distributions for all 19 mutants are shown in Appendix A5. For multiple mutants, a
multi-modal distribution was found in the PELDOR experiment and by the CREST/MD protocol. While
for most of them, the most intensive peak corresponds nicely with the experiment (e.g., 60/90, 60/94,
60/109, 82/132), for some mutants di�erences in the modality occur (e.g., 64/122, 60/94). For mutant
83/123 the experimentally found mean distance was not reproduced with CREST/MD. Comparison of
the MD snapshots with the initial crystal structure revealed non-covalent interactions between the
two spin-labels and, even though the tertiary structure was similar on a global view, signi�cant di�er-
ences in the positions of individual loops and helices (see Appendix A5). These conformational changes
caused the short mean distance of only 5.8 Å, which is out of range for PELDOR measurements, where
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the lower limit is about 16 Å.407 Nevertheless, the strongly reduced modulation depth shown in Ref.
405 is an indication, that the predicated conformation was also present in the experiment. For this rea-
son, mutant 83/123 was excluded from the statistical evaluation here. The overall agreement between
theory and experiment can be regarded as remarkably good.

5.4. Conclusion

In this work, an automated work�ow for the computation of structural (conformational) ensembles of
nitroxide spin-labeled (metallo-) protein mutants was developed and tested. The procedure combines
the conformer search algorithm CREST with the generic GFN force-�eld. The key ingredient in the
protocol was the constrained generation of the conformer ensemble with CREST at the GFN-FF level
of theory followed by a completely unconstrained GFN-FF MD simulation at the freezing point of the
solvent to obtain thermally equilibrated structures. An implicit GBSA solvation model was applied
throughout and necessary for realistic protein simulations. With this CREST/MD composite scheme,
experimental distance distributions of azurin and T4 lysozyme mutants were successfully reproduced
with a mean absolute deviation from the experiment of less than 2 Å (5–10 %) for r̄ . Compared to pre-
vious theoretical methods (see Ref. 404), this is the highest accuracy ever reached for the mutants of
azurin. For T4 lysozyme, CREST/MD outperforms MMM and mtsslWizard and is on par with MDDS
for r̄ . In terms of distribution width σr , CREST/MD best reproduces the experiment throughout all
tested systems. A further advantage of this newly developed scheme is the obtained information about
the modality of the distance distribution. Because no general assumptions about the structure of the
biomolecule and spin-label were made in this work, the conclusions can be generalized to basically ar-
bitrary labels, including those based on metal ions, as well as arbitrary biomolecules. The CREST/MD
method is intended to serve as an accurate and robust tool for the comparison and validation of ex-
perimental �ndings, such as distance distributions measured by PELDOR. It may also help to translate
data from paramagnetic relaxation enhancement (PRE) measurements in NMR or to predict/analyze
site-speci�c e�ects in Dynamic Nuclear Polarization (DNP). Finally, it should be mentioned that the
introduction of the spin-label was only needed for the PELDOR experiment, yet, the combination of
CREST and GFN-FF may also be applied straight forward to other biological systems without any mu-
tations or modi�cations.
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6. London Dispersion Corrected DFT for Ion–π Interactions

Abstract The strongly attractive noncovalent interactions of charged atoms or molecules with π -
systems are important binding motifs in many chemical and biological systems. These so-called ion–π
interactions play a major role in enzymes, molecular recognition, and the structure of proteins. In
this work, a molecular test set termed IONPI19 is compiled for inter- and intramolecular ion–π in-
teractions, which is well balanced between anionic and cationic systems. The IONPI19 set includes
interaction energies of signi�cantly larger molecules (up to 133 atoms) than in other ion–π test sets
and covers a broad range of binding motifs. Accurate (local) coupled cluster values are provided as
references. Overall, 19 density functional approximations, including seven (meta-)GGAs, eight hybrid
functionals, and four double-hybrid functionals combined with three di�erent London dispersion cor-
rections, are benchmarked for interaction energies. DFT results are further compared to wave function
based methods such as MP2 and dispersion corrected Hartree–Fock. Also, the performance of semiem-
pirical QM methods such as the GFNn-xTB and PMx family of methods is tested. It is shown that
dispersion-uncorrected DFT underestimates ion–π interactions signi�cantly, even though electrostatic
interactions dominate the overall binding. Accordingly, the new charge dependent D4 dispersion model
is found to be consistently better than the standard D3 correction. Furthermore, the functional perfor-
mance trend along Jacob’s ladder159,163 is generally obeyed and the reduction of the self-interaction
error leads to an improvement of (double) hybrid functionals over (meta-)GGAs, even though the e�ect
of the SIE is smaller than expected. Overall, the double-hybrids PWPB95-D4/QZ and revDSD-PBEP86-
D4/QZ turned out to be the most reliable among all assessed methods for the description of ion–π
interactions, which opens up new perspectives for systems where coupled cluster calculations are no
longer computationally feasible.

6.1. Introduction

Ion–π interactions refer to strongly attractive noncovalent interactions (NCI) between ions and mostly
organic π -systems.408,409 They are of crucial importance for many processes in chemistry and biol-
ogy, such as controlling the regio- and stereoselectivity in organic reactions,410,411 enabling important
biological processes,412–416 and determining the structures of molecules and proteins.417–420 The ap-
plication of quantum mechanical (QM) methods in the description of such ion–π systems is desirable
for an in-depth understanding. Kohn–Sham Density Functional Theory (DFT), with its vast number
of density functional approximations (DFA), is one of the most promising electronic structure methods
for this purpose regarding the accuracy and computational e�ciency.3,421 Nevertheless, DFT methods
have well-known weaknesses, like the one- and many-electron self-interaction error (SIE),160,161,422 er-
rors due to nondynamical correlation e�ects,423,424 and the lack of long-range electronic correlation,
so-called London dispersion (LD) interactions.334 The e�ect on ion–π interactions is shown in this
work.

The SIE a�ects even modern DFAs and may lead to severe SCF convergence problems,425 arti�cial
charge-transfer (CT),426,427 and inaccurate NCI energies for larger inter-fragment distances. This is
in contrast to Hartree–Fock (HF) theory and second-order Møller–Plesset perturbation theory (MP2),
which are SIE free because the exchange integrals exactly cancel the self-interaction contributions
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from the Coulomb integrals. This behavior is exploited by hybrid DFAs, where a fraction of exact
exchange (also called Fock exchange) is mixed in, partially canceling the SIE. While large amounts
of Fock exchange reduce the SIE, the resulting hybrid DFAs also inherit general shortcomings of HF,
e.g., a lacking description of Coulomb interactions by overestimating ionic contributions in the wave
function. For a more general discussion on the one-electron SIE in DFT see, e.g., Ref. 428, and for the
related many-electron SIE see, e.g., Ref. 422.

Mean-�eld electronic structure methods like HF do not describe long-range electronic correlation
e�ects and hence cannot account for LD interactions. This drawback of HF is also present in DFT. The
absence of LD interactions is long known429 and various solutions have been developed in the context
of LD-corrected DFT methods.334,430–433 One strategy to �x the dispersion problem of conventional DFT
has been the development of additive corrections. A popular and frequently used additive scheme is the
“DFT-D3” correction, where the majority of the missing dispersion energy is accounted for by summing
up the dispersion contributions of each atom pair.252,253,334 Another approach is to add the nonlocal (NL)
correlation energy e�ects as a function of the electron density to standard exchange-correlation DFAs,
which is known as van der Waals density functional theory (vdW-DFT),434 or approximations thereof
(VV10).348

For the development and testing of state-of-the-art DFT methods, ion–π interactions as a class of
NCIs are of special interest. Symmetry adapted perturbation theory435–437 (SAPT) studies, which al-
low the separation into di�erent energy components namely electrostatics, Pauli repulsion, induction,
and LD, revealed that ion–π systems incorporate strong electrostatic and inductive components.438

For highly polarizable systems, however, also LDs were identi�ed as a crucial part of the ion–π inter-
action.439 For this reason, ion–π interactions present a challenge for the density functional itself as
well as for the added dispersion correction. In this work, we introduce a benchmark set composed of
19 molecules with strong ion–π interactions. It is termed IONPI19 and contains signi�cantly larger
molecules than in existing compilations and is well balanced between anionic and cationic systems.
Various common “real-life” binding situations are covered as they occur in protein structures, molecu-
lar recognition, and supramolecular receptors. Intramolecular ion–π interactions are included as well.
Hence, the IONPI19 set is an interesting test case for DFT and important addition to the pool of available
benchmark sets.

As has been shown in previous studies,440,441 well performing LD-corrected DFAs are able to re-
produce coupled cluster reference interaction energies for cation-anion complexes, representing the
building blocks of ionic liquids. These chemically often rather saturated systems are less prone to the
SIE. Good results for small charged systems could also be obtained with DFT-D methods in Refs. 437
and 162, even though the benchmark sets discussed in these studies are composed of rather small ion–π
systems. In this work, we want to �nd out if previous trends and �ndings also hold true for the IONPI19
set and we want to investigate the general importance of LD corrections for prototypical systems com-
posed of cations/anions and π -systems. The common belief is that ion–π systems are dominated by
electrostatic and inductive interactions439 but little attention has been paid so far to the importance of
LD in this context. In the present work, we will put a particular focus on the latter in the framework of
LD-corrected DFT. Also MP2 (see e.g., Refs. 442,443) and variants thereof444 are common methods for
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modeling ion–π interactions, although there are severe and well-known problems such as the overes-
timation of NCIs involving π -systems, particularly for π -π interactions.445–449 Furthermore, similar to
other post-HF correlation methods, MP2 is highly susceptible to the basis set superposition error450,451

(BSSE), which leads to systematic overbinding with small and medium sized atom-centered basis sets.
Due to persisting popularity of MP2 in NCI studies (see e.g., Refs. 452,453), it is evaluated here as a
competitor method.

To evaluate the performance of the methods mentioned above, reliable reference values of high ac-
curacy are needed. For small to medium sized systems (up to about 30 atoms) explicitly correlated cou-
pled cluster composite schemes such as the Weizmann protocols454 (W1-F12 and W2-F12) have proven
to yield highly accurate reference values. Yet, the respective computational cost is considerable. For
larger systems (up to about 150 atoms), domain based local pair natural orbital coupled cluster theory
(DLPNO-CCSD(T))147,148 is still computational feasible and was already successfully applied,150,237 even
though the high accuracy of the Wn-F12 protocols cannot be fully achieved. To reduce the additional
errors due to the local (DLPNO) approximations, very tight threshold settings have to be applied149

in addition to a proper complete basis set (CBS) extrapolation, which in turn also makes these cal-
culations quite computationally demanding. The high-level reference values calculated in this work
can also be useful in the development and validation of low-cost methods, e.g., of special force-�elds
(FF),455,456 since hardly any reliable coupled cluster reference values for ion–π interactions energies of
larger molecules exist so far,457 and neither have they been calculated with such an accurate setup.458

The development of such FFs and respective work�ows is an emerging �eld of research, especially with
respect to the e�cient description of ion–π interactions in proteins.459,460

First, a brief survey of the employed semi-classical LD-correction schemes is given followed by a
description of the compiled IONPI19 benchmark set. Further, the results for this test set are presented
and discussed for all employed methods. An energy decomposition analysis (EDA) is performed for
the dissociation of an ion–π complex to investigate the e�ect of the SIE for GGA and hybrid DFAs.
Due to signi�cant increases in e�ciency, accuracy, and related popularity, semiempirical QM (SQM)
and FF methods are additionally tested and evaluated on the IONPI19 set. Timings are compared for
all di�erent types of methods with regard to their accuracy. Finally, general conclusions and method
recommendations will be given.

6.2. Semi-Classical London Dispersion Corrections

To account for the missing LD interactions in the framework of DFT (and also HF), we apply two closely
related semi-classical LD-correction schemes. First, the widely used DFT-D3 method with two-body
contributions (only E(2)disp) with the standard Becke–Johnson (BJ) rational damping.461,462 Second, we
consider the default version of the recently introduced DFT-D4 scheme242,249,339 including also three-
body Axilrod–Teller–Muto247,248 (ATM) contributions, where the dispersion energy is given by

EDFT-D4
disp = E(2)disp + E

ATM
disp . (6.1)
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The basic formula for two-body dispersion interactions is the same in the D3 and D4 model, where the
BJ rational damping form for the interatomic pair sum is employed,

E(2)disp = −
∑
AB

[
CAB

6

R6
AB + f

(
R0

AB
)6 + s8

CAB
8

R8
AB + f

(
R0

AB
)8

]
, (6.2)

with the three �tted damping and scaling parameters a1, a2, and s8. Here, AB labels atom pairs, and
f (R0

AB) = a1R
0
AB + a2 is the BJ damping function with appropriate covalent radii.253

In both methods, the C6 (and C8) coe�cients are obtained from precalculated frequency-dependent
time-dependent DFT dipole polarizabilities.463 In addition to the coordination number dependence in
DFT-D3, classical atomic partial charges are included in DFT-D4, which are calculated by a charge
model based on electronegativity equilibration of Gaussian type charge densities (EEQ).464 According to
many tests on neutral organic systems, DFT-D3 and DFT-D4 methods provide both accurate asymptotic
dispersion energies of roughly coupled cluster accuracy334 while D4 is somewhat superior for ionic or
metallic cases.242,465 Whether this also holds true for the important class of ion–π complexes is one
of the main questions of the present work. Due to the high computational e�ciency of the additive
DFT-D schemes, they are also suitable for low-cost methods including force-�elds.117,273,274,346,466

Other popular LD correction schemes exist, e.g., the exchange-hole dipole method,467–470 the many-
body dispersion model,430,471 the van der Waals family of density functionals.472, or the non-local elec-
tron density dependent dispersion correction termed VV10 or DFT-NL.348,473,474 For comparison, the
latter is also tested in this work. For an in-depth analysis of other LD corrections and a more general
discussion on the importance of LD e�ects for chemical bonding, see, e.g., Refs. 334,433.

6.3. Description of the Molecular Test Set

The composition of the test set aims at both, smaller model systems as well as experimentally investi-
gated ion–π systems. We arrived (after considering more than 30 candidate structures) at a statistically
balanced set containing 19 exemplary systems featuring typical ion–π binding motifs. The average
system size is about 32 atoms per molecule with the largest system consisting of 133 atoms. The test
set is divided into smaller (≤ 30 atoms) and larger (> 30 atoms) systems, of which the �rst subset is
shown in Figure 6.1 and the latter in Figure 6.2. For the ten cationic and nine anionic systems the mean
interaction energy is −20.9 kcal mol−1. Reference energies and estimated errors for each system as well
as the corresponding computational reference level of theory are listed in Table 6.1.

Figure 6.1A shows the �rst seven systems of the IONPI19 set which are all cationic. Systems 1–3 show
Li+, Na+, and K+ bound to benzene. The three alkali-benzene complexes were taken from the CHB6
benchmark set162,437 with the original reference interaction energies obtained at the CCSD(T)/CBS level
of theory. Cation–π interactions are of particular interest for structural biology as the DNA bases are
also able to participate therein. Systems 4–6 show Na+ in complex with cytosine, Li+ coordinated
to the �ve-membered ring of adenine, and Na+ in complex with the �ve-membered ring of guanine.
The systems were taken from Ref. 475, where reference binding energies were also computed at the
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CCSD(T)/CBS level of theory. System 7 was newly added to this benchmark and consists of anthracene
and the cyclopropenyl cation (C3H +

3 ). The reference interaction energy of the rigid monomers was
computed at the W1-F12 level.

Figure 6.1.: Subset of the IONPI19 benchmark set containing small molecules (≤ 30 atoms). (A) Systems
1–7 include cation–π interactions. (B) Systems 8–14 include anion–π interactions.

The anionic systems of the small molecule subset are shown in Figure 6.1B. For 8 the anion–π interac-
tion of hexa�uorobenzene (C6F6) and chloride (Cl– ) is achieved by placing strong electron withdrawing
substituents along the π -system. The reference interaction energy was computed at the W1-F12 level.
Systems 9–11 show chlorine anions in complex with the six-membered ring of thymine, adenine, and
guanine. These systems and their respective reference interaction energies were taken from Ref. 475.
The test systems 12–14 are newly added to this benchmark and were taken from a study on designing
receptors for molecular recognition. There, the additivity of anion–π interactions for 1:1, 1:2, and 1:3
(anion:π ) complexes of tri�uoro-1,3,5-triazine (C3F3N3) with Cl– ions476 was investigated. All three
systems were newly compiled for the IONPI19 set. Reference energies for the 1:1 complex were calcu-
lated at the W2-F12 level, whereas the 1:2, and 1:3 complex were computed at the DLPNO-CCSD(T1) /
VeryTightPNO / CBS(aug-cc-pVTZ/aug-cc-pVQZ) level of theory.

The subset of larger molecules shown in Figure 6.2 was newly compiled for this work. 15 and 16 show
the electron-de�cit and cavity self-tunable macrocyclic host tetraoxacalix[2]arene[2]triazine forming
1:1 complexes with small anions (NO –

3 , SCN– ) as revealed by Wang and co-workers.477 In complex,
the two opposing triazine rings of tetraoxacalix[2]arene[2]triazine act as a pair of tweezers to inter-
act with the included anions through cooperative anion–π and lone-pair electron-π interactions. The
supramolecular cyclophane host-guest complex 17 is another interesting test system of practical rel-
evance. This complex is able to catalyze N-alkylation to form cationic products via the Menschutkin
reaction,478 where it is assumed that the cation–π interaction plays a central role in catalysis. Hence, it
is of relevance for the understanding of several biological methylation reactions.479 For intramolecular
ion–π interactions two test cases were chosen in which cation–π interactions contribute signi�cantly
to the stability of conformations.150 18 is based on a study of Dougherty et al.,480 who proposed that
the neurotransmitter acetylcholine can bind to acetylcholinesterase through cation–π interactions. A
simpli�ed system is taken from Ref. 481, where the folded ester conformation is proposed to be more
stable than the unfolded one. For the isosteric 3,3-dimethylbutyl indole-3-acetate (i.e., replaced ammo-
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Figure 6.2.: Subset of the IONPI19 benchmark containing large molecules (> 30 atoms). Systems 15–17
show intermolecular ion–π interaction, whereas 18 and 19 are examples for intramolecular
ion–π interactions.

nium nitrogen with carbon), an analogous folding is not observed. This implies that the cationic nature
of the quaternary trimethylammonium group is responsible for this preferable association with the in-
dole ring through cation–π interactions. Folded and unfolded conformations were generated with the
recently published CREST algorithm.60 19 contains multiple interaction motifs that are able to compete
with each other. This seesaw balance482 adopts two distinct conformations that are either stabilized
by cation–π or by π–π interactions. Experimental 1H-NMR studies453,483 in solution proposed that the
cation–π bound conformer is stabilized by about 1.5 kcal mol−1.

We are aware that intramolecular ion–π interactions introduce di�culties for fragment based meth-
ods such as SAPT. Therefore, full statistics are also given in Appendix A6 (Table A6.11, A6.12) for the
IONPI17 set, where the intramolecular test cases (18 and 19) are excluded.

6.4. Computational Details

Typical DFAs from di�erent classes of Jacob’s ladder combined with the large def2-QZVPP basis set134,135

were evaluated for the IONPI19 benchmark set. The DFA selection is based on results for previous
benchmark studies162 and on their popularity in the computational chemistry community.484 All DFAs
were assessed with the D3 and D4 London dispersion correction in the Becke–Johnson scheme and/or
the nonlocal density-dependent NL (VV10) treatment in a non self-consistent form. For M06-L485 and
M06-2X486 D3 was applied with zero damping.252 D3 and D4 dispersion corrections were calculated
with the dftd3 and dftd4 standalone programs.487 The ORCA488 implementation was used for ωB97X-
D3(BJ) and to calculate all NL corrections. A list of the tested DFAs and dispersion correction combi-
nations is given in Table 6.2.

All composite (“3c”) DFT and r 2SCAN calculations were performed using the TURBOMOLE 7.5.1
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Table 6.1.: Summary of the reference interaction and association energies ∆E and methods for the
IONPI19 benchmark set. Values are given in kcal mol−1.

System ∆ERef. Estimated error Reference

1 -39.1 ± 0.8 (2.0 %) 437a)

2 -25.6 ± 0.5 (2.0 %) 437a)

3 -19.9 ± 0.8 (4.0 %) 437a)

4 -14.8 ± 0.2 (1.5 %) 475b)

5 -25.7 ± 0.4 (1.5 %) 475b)

6 -19.7 ± 0.3 (1.5 %) 475b)

7 -21.5 ± 0.2 (1.0 %) this workc)

8 -14.6 ± 0.2 (1.0 %) this workc)

9 -10.4 ± 0.1 (1.0 %) 475d)

10 -1.9 < 0.1 (1.0 %) 475d)

11 -5.7 ± 0.1 (1.0 %) 475d)

12 -18.6 ± 0.1 (0.5 %) this worke)

13 -33.7 ± 0.8 (2.5 %) this workf)

14 -45.0 ± 1.1 (2.5 %) this workf)

15 -29.4 ± 0.6 (2.0 %) this workg)

16 -26.3 ± 0.5 (2.0 %) this workg)

17 -37.2 ± 1.9 (5.0 %) this workh)

18 -5.0 ± 0.1 (2.5 %) this workf)

19 -2.4 ± 0.1 (2.5 %) this workf)

mean −20.9 ± 0.5 (2.2 %)
a) CCSD(T)/δCBS + counterpoise correction (details: see original publication).
b) CCSD(T)/δCBS + counterpoise correction + modi�ed frozen core approximation, i.e., Li+ = 1s2 (no core) and Na+ = [He]2s22p6 ([He]

core) (details: see original publication).
c) W1-F12.
d) CCSD(T)/deltaCBS + counterpoise correction (details: see original publication).
e) W2-F12.
f) DLPNO-CCSD(T1)/VeryTightPNO/CBS(aug-cc-pVTZ/aug-cc-pVQZ).
g) DLPNO-CCSD(T1)/VeryTightPNO/CBS(aug-cc-pVTZ/aug-cc-pVQZ) + counterpoise correction and deformation energy.
h) DLPNO-CCSD(’T1’)/VeryTightPNO/’CBS(def2-TZVPP/def2-QZVPP)’ + counterpoise correction and deformation energy.

program package.335,501 Computations of energies and geometry optimizations were conducted using
the ridft and jobex programs of TURBOMOLE, respectively. The resolution-of-identity (RI) approxima-
tion for the Coulomb integrals was always applied using matching default auxiliary basis sets.341,342

For the integration of the exchange-correlation contribution, the numerical quadrature grid m4 was
employed. The default convergence criteria (10−7 Eh for energies and 10−5 Eh/bohr for gradients) were
used throughout.

All other DFT, HF, MP2, and local coupled cluster calculations were carried out with the ORCA
4.2.1 program package.488,502 The frozen core and RI approximations for the correlation part as well as
TightSCF convergence criteria for the HF energy was employed for all double-hybrids, MP2, and CC
methods. The domain based pair natural orbital local coupled cluster method147 in its sparse maps148 it-
erative triples503 implementation (DLPNO-CCSD(T1)) employing VeryTightPNO 149 threshold settings
was applied. An aug-cc-pVTZ/aug-cc-pVQZ504 and def2-TZVPP/def2-QZVPP CBS extrapolation ac-
cording to the schemes proposed by Helgaker/Klopper505 (aug-cc basis sets) or Neese/Valeev506 (def2
basis sets) was carried out for DLPNO-CCSD(T1). Matching auxiliary basis sets were applied for the
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Table 6.2.: Tested DFAs and dispersion correction combinations.

Functional D3 D4 NL Reference

composite (3c)
PBEh-3c 3 5 5 231
B97-3c 3 5 5 237
r 2SCAN-3c 5 3 5 489

(meta-)GGA
PBE 3 3 3 166
M06-L 3 3 5 485
TPSS 3 3 3 171
r 2SCAN 3 3 3 490,491
B97M 3 3 3 492

hybrid
M06-2X 3 5 5 486
MN15 5 5 5 493
PBE0 3 3 3 494
PW6B95 3 3 3 495
B3LYP 3 3 3 496,497
ωB97M 3 3 3 498
ωB97X 3 3 3 327

double-hybrid
B2PLYP 3 3 3 174
revDSD-PBEP86 5 3 5 499
revDSD-BLYP 5 3 5 499
PWPB95 3 3 3 500

density �tting.507 DLPNO-CCSD(T1)/VeryTightPNO/CBS(aug-cc-pVTZ/aug-cc-pVQZ) values were in
general counterpoise (CP) corrected unless for the 1:2 (13) and 1:3 (14) complexes of C3F3N3 with Cl– ,
as the corresponding calculations with and without CP correction for the 1:1 complex (12) revealed a
negligible residual BSSE of only 0.01 kcal mol−1. Detailed information about the reference calculation
for each system is shown in Table 6.1. To validate the accuracy of the DLPNO-CCSD(T1) reference
values and to determine whether some of the systems show multireference character, a T1 diagnos-
tic according to Ref. 508 was performed (see Appendix A6 Table A6.10). Empirically, a value larger
than 0.02 may indicate a signi�cant nondynamical correlation.509 This is not the case for the systems
in the IONPI19 set, where the largest value is 0.017 for adenine in system 4. The small to moderate
values of the maximum T2 amplitudes (largest value 0.067 for anthracene in 7) further indicates that no
problematic systems in terms of nondynamical correlation are included in the IONPI19 benchmark.510

CBS extrapolation was also performed for MP2. The MP2/CBS schemes correspond to the DLPNO-
CCSD(T1) extrapolations for the individual systems. For 1, 2, and 6 MP2/CBS(aug-cc-pCVTZ/aug-cc-
pCVQZ) was employed without RI since the AutoAux507 basis showed linear dependencies. For 3 RI-
MP2/CBS(aug-cc-pVTZ/aug-cc-pVQZ) was employed for C6H6 and RI-MP2/CBS(def2-TZVPPD/def2-
QZVPPD) for K+ as no non-relativistic “aug basis” was available. Corresponding auxiliary basis sets
were employed. RI-MP2/CBS(aug-cc-pCVTZ/aug-cc-pCVQZ) (AutoAux507 option in ORCA 4.2.1) was
employed for 4 and 5. For all systems 1–6, the Boys-Bernadi CP correction was applied. The interaction
energy of systems 7–16 was calculated without CP correction by RI-MP2/CBS(aug-cc-pVTZ/aug-cc-
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pVQZ) including the corresponding auxiliary basis sets. For 17, RI-MP2/CBS(def2-TZVPP/def2-QZVPP)
was employed including the corresponding auxiliary basis sets, the CP correction, and deformation
energy. RI-MP2/CBS(aug-cc-pVTZ/aug-cc-pVQZ) with the corresponding aux basis sets but without
CP correction was employed for 18 and 19. In general, the CP correction was applied only when basis
set size or CBS extrapolation was not su�cient enough to minimize the BSSE.

For the largest test system 17, a slightly more approximate CBS extrapolation scheme was employed
for the local coupled cluster correlation energy since the full def2-QZVPP calculation was computation-
ally unfeasible with the latter method. It is labelled as CBS/’def2-TZVPP/def2-QZVPP’ in the following
and refers to a multiplicative scaling of the DLPNO-CCSD(’T1’) correlation energy by the quotient
of the respective CBS(def2-TZVPP/def2-QZVPP) and def2-TZVPP MP2 correlation energies. A similar
CBS protocol was already successfully employed in Ref. 150. Note that the iterative correction to the
triples correlation energy was calculated with the def2-TZVPP134 basis set (labeled as ’T1’) for this test
system. The fact that the iterative triples could only be calculated with the def2-TZVPP basis set intro-
duces a small additional error in the di�erence between iterative and non-iterative triples, but this is
not signi�cant since this correction amounts to 0.5 kcal mol−1 only and given that the estimated total
error of the total association energy is ∼1.9 kcal mol−1. The high-level composite explicitly correlated
coupled cluster protocols W1-F12 and W2-F12454 were applied with the Molpro program package V.
2015.1.511,512

For systems 1–6 the Boys-Bernardi counterpoise correction513 was applied for HF and all non-"3c"
DFAs, which do not feature a �xed, composite basis set. This was because the alkali metal ion complexes
showed a systematic overestimation of the interaction energy for all assessed DFT methods, which
was not observed for the other 13 systems of the IONPI19 set. The CP correction reduced this BSSE
on average by 0.3 kcal mol−1. The CP uncorrected values are given in Appendix A6 in Table A6.9.
Structures that were newly generated for the IONPI19 benchmark set (7, 8, 12–19) were all optimized
at the PBEh-3c231 level of theory. The lowest energy molecular conformers were obtained from the
advanced conformer rotamer ensemble sampling tool60,514 (CREST) in its default settings at the GFN2-
xTB93,96 level followed by DFT geometry re-optimizations at the PBEh-3c level of theory. All SQM
and FF calculations were performed with the xtb 6.3.3515 (GFN1-xTB,94 GFN2-xTB, GFN-FF117), and
MOPAC 2016338 (PM6-D3H4X,86 PM788) program packages.

6.5. Results and Discussion

In Section 6.5.1 the performance of all tested DFAs and WFT methods for the IONPI19 set is presented
and discussed. The dissociation curve of an ion–π complex is shown in Section 6.5.2. SQM and FF
methods are evaluated in Section 6.5.3 and a comparison of computation times is given in Section 6.5.4.

6.5.1. Benchmark Study on IONPI19

A representative set of di�erent DFAs including �ve (meta-)GGAs, seven hybrid functionals, and four
double-hybrid (DH) functionals was assessed. In addition, HF and MP2 were tested. Furthermore, the
recently developed e�cient composite DFT-D methods B97-3c (GGA), r 2SCAN-3c (meta-GGA), and
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PBEh-3c (hybrid) are evaluated in comparison. Moreover, three correction schemes for capturing long-
range London dispersion interactions with DFAs were applied, the D3 correction with Becke–Johnson
(BJ) or zero (0) damping, the newly developed D4 correction with three-body ATM contributions, and
the nonlocal dispersion correction (VV10) in its non self-consistent implementation. First, we want to
determine which combination of DFA and dispersion correction works best for the compiled IONPI19
benchmark set. The performance in terms of the mean absolute deviation (MAD) from the reference
values of a subset of DFAs, for which all three dispersion corrections are available, is shown in Figure
6.3. With a mean MAD of 0.9 kcal mol−1 averaged over all 12 tested methods, the recently introduced

Figure 6.3.: Comparison of the performance of the D3(BJ), D4(BJ)-ATM, and NL dispersion corrections
for di�erent DFAs and HF on the IONPI19 benchmark set.

charge scaled D4 scheme outperforms its predecessor D3, which yields a mean MAD of 1.3 kcal mol−1.
Considering the mean interaction energy ∆E of −20.9 kcal mol−1, this improvement is signi�cant. The
nonlocal dispersion correction performs on average equally well as the D4 scheme with a mean MAD
of also 0.9 kcal mol−1. Yet, this is mostly due to the better performance of the NL correction within the
B97M-V and ωB97X-V functionals, which were developed together with the VV10 correction (see Refs.
492, 498). To further investigate the origin of the di�erence in performance between the D3 and D4
schemes, the role of three-body contributions is taken into account. The results are shown in Figure
6.4. Here, the ATM term which is the default in DFT-D4 was also added to the D3 correction.

Adding the three-body ATM term to the D3 scheme on average improves the mean MAD from 1.3
kcal mol−1 to 1.2 kcal mol−1, which is still clearly o� the accuracy of the D4-ATM approach with a mean
MAD of 0.9 kcal mol−1. As an extension to the ATM term, the many-body dispersion (MBD) approach
by Tkatchenko–Sche�er has also been tested430 in combination with the D4 scheme. Again, the MAD
is shown in comparison to respective reference values. Exchanging the ATM term by the MBD approach
has nearly no e�ect, the MADs are only slightly larger. This proves that the three-body term in D4-
ATM is not the reason for the improvement over the D3 scheme for the IONPI19 but the incorporation
of atomic partial charges in D4 yielding charge scaled polarizabilities. The rather negligible contribu-
tion of three-body e�ects is further con�rmed by the previously discussed good performance of the NL
correction, which also does not include ATM or MBD terms. Another important fact that can be taken
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Figure 6.4.: Comparison of the performance of D3(BJ), D3(BJ)-ATM, D4(BJ)-ATM, and D4(BJ)-MBD dis-
persion corrections for di�erent DFAs on the IONPI19 benchmark set. The LD-uncorrected
results are shown for comparison.

from Figure 6.4 is the general in�uence of the dispersion correction. It is shown that LD-uncorrected
DFT underestimates ion–π interactions signi�cantly, even though electrostatic interactions dominate
the overall binding. The mean MAD without an LD correction amounts to 4.0 kcal mol−1. This is in
line with SAPT studies, which revealed, that for polarizable systems also LD interactions contribute a
crucial part of the ion–π interaction.439 In general, LD-corrections improve also the Minnesota-type
functionals (with D3(0)), although to a smaller extent, since they already capture some dispersion inter-
actions at intermediate interatomic distances by density dependent terms and their parameterization.
Yet, on this speci�c ion–π benchmark no improvement was achieved neither with the D3 nor the D4
scheme. Hence, the LD-uncorrected functionals M06-L, M06-2X, and MN15 will be discussed in the
following.

Figure 6.5 shows the statistical data of the performance for the best combinations of all tested DFA and
LD corrections. The e�cient composite DFT methods, HF, and MP2 are also included for comparison.
The assessed DFAs perform on average as expected according to the picture of “Jacob’s Ladder” and
resemble closely the results for the extensive GMTKN55 main group benchmark set.162 The tested
(meta-)GGA functionals yield a mean MAD of 1.0 kcal mol−1 and mean SD of 1.2 kcal mol−1. With an
MAD of 0.7 kcal mol−1 the newly developed r 2SCAN-D4 functional is the best performing DFA, closely
followed by the B97M-V functional with an MAD of 0.8 kcal mol−1. TPSS-D4 and PBE-D4 perform
reasonably well at the limit of chemical accuracy (1.0 kcal mol−1) with an MAD of 1.0 kcal mol−1 and
1.1 kcal mol−1, respectively. The worst among all tested DFAs is M06-L with an MAD of 1.5 kcal mol−1.
Also, while most (meta-)GGAs tend to systematically overbind the IONPI19 set (MD < 0), M06-L is the
only DFA thereof with a signi�cant positive MD of 1.4 kcal mol−1.

An improvement is obtained with hybrid DFAs. The mean MAD and SD are reduced to 0.8 kcal mol−1

and 1.0 kcal mol−1, respectively. The MD is negative for all hybrids, indicating a small systematic er-
ror. Out of all tested hybrid DFAs, B3LYP-NL, MN15, ωB97X-V, and ωB97M-D4 perform best with an
MAD of 0.7 kcal mol−1, followed by PW6B95-D4 and PBE0-D4 with an MAD of 0.8 and 0.9 kcal mol−1,
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Figure 6.5.: Deviations of calculated ion–π interaction energies with di�erent DFT and WFT methods
for the IONPI19 set. The minimum deviation and maximum deviation for each data set are
shown as range together with the �rst and third quartiles as the central box for each data
set, the inter-quartile range contains 50 % of the data set. Additionally, the mean and median
deviation are depicted as dots and vertical bars, respectively.

respectively. The smallest SD is obtained by B3LYP-NL (0.8 kcal mol−1). The global-hybrid MN15
is the best performing Minnesota-type hybrid functional. It clearly improves upon M06-2X (54 % of
Fock-exchange), which yields an MAD of 1.1 kcal mol−1 and also has the largest MD and SD among
all tested hybrid DFAs with −0.9 kcal mol−1 and 1.2 kcal mol−1, respectively. Overall, the improve-
ment from (meta-)GGAs to hybrid DFAs is rather small. Hence, the SIE seems to be less severe for the
IONPI19 set since the (meta-)GGAs are able to compete with the hybrid functionals. This observation
is consistent with the fact that the DFA with the largest amount of Fock-exchange (M06-2X) performs
worst. Tentatively it seems that at some point around 30 % to 40 % Fock-exchange contribution in the
hybrid functional, the results are not improved any more.

Going to double-hybrid functionals, the mean MAD and SD are further reduced to 0.6 kcal mol−1

and 0.8 kcal mol−1, respectively. The best performing DFAs are revDSD-PBEP86-D4 (0.4 kcal mol−1

MAD, 0.5 kcal mol−1 SD) and PWPB95-D4 (0.5 kcal mol−1 MAD, 0.6 kcal mol−1 SD), which both nearly
approach the accuracy of the reference values. This generally good performance is in agreement with
the conclusions of other benchmark studies.162 revDSD-BLYP-D4 has an MAD of 0.6 kcal mol−1 and
the DH-DFA with the largest deviation from the reference values is B2PLYP-D4 (0.7 kcal mol−1 MAD),
whose performance is comparable to the best hybrid DFAs. It is noticeable, that B2PLYP-D4 shows the
largest error range out of all DFAs discussed so far. The reason, therefore, is the overestimation of the
association energy of 17 by 5.1 kcal mol−1 indicating an outlier of B2PLYP. For 17, which is the largest
system from the test set, a CBS(def2-TZVPP/def2-QZVPP) extrapolation and counterpoise correction
were employed for MP2 to correct for the BSSE and basis set incompleteness error. To �nd out if this
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is also necessary for double-hybrids, which include perturbative correlation energy terms, the same
scheme was also applied for PWPB95-D4. The corresponding correction for MP2/CBS amounts to 1.3
kcal mol−1, whereas a correction of only 0.4 kcal mol−1 was obtained for PWPB95-D4/CBS, which is
less than the mean estimated error of the entire IONPI19 set (± 0.5 kcal mol−1). Hence for the IONPI19
set, a CBS extrapolation is not necessary for DH-DFAs if they are employed together with the relatively
large def2-QZVPP basis set.

The basic philosophy of “3c” composite methods is to provide a consistent description, i.e., with-
out systematic deviations to as low as possible computational cost. Hence, small but well-balanced
atomic orbital (AO) basis sets are employed, while the remaining basis set errors are corrected by a
geometrical counterpoise correction or in the case of B97-3c absorbed into the DFA itself via a slight
reparameterization. DFT-3c methods are tested on the IONPI19 set to investigate whether the elec-
trostatics of ion–π interactions are su�ciently described also without large amounts of polarization
functions as in the def2-QZVPP basis set. PBEh-3c with its modi�ed SVP basis yields a rather large
MAD of 3.5 kcal mol−1 and SD of 4.4 kcal mol−1. B97-3c performs already signi�cantly better with a
modi�ed TZVP basis, yielding an MAD of 1.4 kcal mol−1 (SD = 1.8 kcal mol−1). Best performing “3c”
method is the very recently developed r 2SCAN-3c functional with an MAD and SD of 1.3 kcal mol−1

and 1.4 kcal mol−1, respectively. Compared to, e.g., the well-established TPSS-D4 meta-GGA with the
large def2-QZVPP basis set, r 2SCAN-3c yields only a 0.3 kcal mol−1 larger MAD, whilst being one order
of magnitude faster. Due to the relatively small but well balanced mTZVP basis set, the calculations
need only a fraction of computation time compared to the large def2-QZVPP calculations. Hence, the
performance of r 2SCAN-3c is promising for large scale computational studies of this type of chemistry.
A more detailed look at computation times is given in Section 6.5.4.

For ion–π interactions, the MP2/CBS method (2.0 kcal mol−1 MAD) can not reach the accuracy of
good DFAs, despite the application of computationally demanding CBS extrapolation schemes. As ex-
pected, the ion–π and π–π interactions are systematically overestimated, a trend that was not observed
for DH-DFAs. The largest deviation from the reference is obtained for 17, where the association en-
ergy is overbound by 15.2 kcal mol−1 with MP2/CBS. In general, MP2/CBS can not be recommended
for the description of ion–π interactions. Here, common DFAs o�er higher accuracy at signi�cantly
lower computational cost and without CBS extrapolation. Much better results are obtained by HF-NL.
The MAD of 1.1 kcal mol−1 is comparable to good performing (meta-)GGAs. Since Hartree–Fock is SIE
free, the remaining error is mainly due to the comparably poor description of electrostatic interactions.

The calculation of the functional mean deviation (MD) is shown in Figure 6.6. Here, the deviation
from the reference averaged over all DFAs is given per system. The composite DFT methods are ex-
cluded due to the di�erent basis set sizes. The functional mean is a good indication, whether certain
subsets (cation, anionic, large systems) or individual systems of the IONPI19 benchmark are particu-
larly challenging or show systematic errors. The largely inconspicuous course of the curve presented
in Figure 6.6 indicates a statistically well-balanced test set, without major outliers. The average ratio of
1.3 of the MAD to the SD is a further indication of a normally distributed test set.516 Neither the systems
size nor the anions or cations induce systematic errors. Yet, it is noticeable that the largest functional
MDs occur for 3 and 17 with ±1.2 kcal mol−1, respectively. For many tested DFAs these two systems
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Figure 6.6.: Functional mean deviation from the reference values calculated as the average of all tested
DFAs (“3c” methods excluded).

determine the error range, e.g., TPSS-D4, ωB97M-D4, B3LYP-NL, and B2PLYP-D4. System 3 is the only
K+ containing complex. Here, the error seems to be attributed more to the def2-QZVPP basis set than
to the DFAs.437 For the largest and most complex system of the IONPI19 set 17, a proportionally larger
error can be expected. The estimated error of the DLPNO-CCSD(T1)/CBS reference amounts to 1.9
kcal mol−1 and hence, the functional MD is well below this value.

6.5.2. Dissociation of Ion–π Complexes

The results presented for equilibrium geometries (vide supra) did not suggest a major in�uence of the
SIE on the interaction energies of the IONPI19 set. Now, we want to investigate if the SIE becomes
more severe for the GGA and meta-GGA classes of DFAs when looking at the dissociation of an ion–π
complex. Figure 6.7 shows the dissociation curves of C6F6 and the chloride anion (system 8) computed
with PBE-D4, TPSS-D4, PBE0-D4, and MP2/CBS in comparison to the W1-F12 reference for �ve dif-
ferent CMA distances within a range of 5–8 bohr. For shorter distances (5–6 bohr), all tested DFAs

Figure 6.7.: Intermolecular potential energy curve of C6F6 and the chloride anion (Cl– ) obtained with
PBE-D4, TPSS-D4, PBE0-D4, and MP2/CBS. All DFT calculations were performed in a def2-
QZVPP basis set.
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perform similarly and slightly underbind compared to the reference values, whereas MP2/CBS tends to
overbind. For larger distances (6–8 bohr), all tested methods are reasonably close to the reference. At
�rst sight, also for this system the SIE seems to be less severe since the (meta-)GGAs are able to com-
pete with the hybrid functional (cf. PBE vs. PBE0) and the di�erence is marginal. To better understand
this observation we conducted an EDA517 for PBE-D4 and PBE0-D4 to investigate the e�ect of Fock
exchange at four CMA distances taken from the dissociation curve in Figure 6.7 from 5 to 8 bohr, see
Table 6.3).

For all tested CMA distances, PBE0-D4 is only slightly more accurate with an MAD of 0.7 kcal mol−1

than PBE-D4 (0.8 kcal mol−1). The EDA interaction energy (INT) is calculated as the sum of electrostat-
ics (EL), Pauli repulsion (REP), DFA correlation (CORR), and LD contributions. Table 6.3 lists deviations
from W1-F12 reference interaction energies (denoted as ∆ref = Ecalc

INT−E
ref
INT) for both DFAs. At CMA dis-

tances of 5, 6, and 7 bohr no signi�cant SIE related issues occur and the energy contributions of PBE-D4
and PBE0-D4 are on the same order of magnitude. This changes, however, for the largest CMA distance
of 8 bohr, where PBE-D4 results in nonphysical contributions for EL (repulsive) and REP (attractive) of
46.3 and −47.7 kcal mol−1, respectively. This error is probably due to a violation of the Perdew–Parr–
Levy–Balduz condition,518–522 meaning that the total electronic energy as a function of electron number
under a �xed external potential is not interpolating straight between integers. For GGA methods, this
usually results in over-delocalization errors161,523 and thus, the SIE becomes a problem for dissociating
ion–π systems. Yet, despite the nonphysical contributions for EL and REP, an accurate PBE-D4 total
interaction energy is obtained based on fortuitously error compensation.

Table 6.3.: Energy decomposition analyses of the C6F6· · ·Cl– complex for PBE-D4 and PBE0-D4. The
total interaction energy (INT), the electrostatic (ES), the Pauli repulsion (REP), the short-
range DFA correlation (CORR), and the LD contributions are listed. All values are given in
kcal mol−1.

CMA distance of C6F6· · ·Cl–

5 a0 6 a0 7 a0 8 a0

DFA PBE PBE0 PBE PBE0 PBE PBE0 PBE PBE0
INT 5.1 -5.6 -13.4 -13.5 -11.7 -11.5 -8.7 -8.5
EL -34.0 -33.5 -12.2 -12.4 -6.1 -6.5 46.3 -4.4
REP 55.8 53.8 13.8 12.9 3.1 2.9 -47.7 0.5
CORR -24.4 -23.5 -13.1 -12.2 -7.6 -6.7 -6.8 -3.9
LD‡ -3.3 -2.9 -2.5 -2.3 -1.7 -1.6 -1.1 -1.1
∆ref † 1.9 1.7 0.5 0.6 -0.3 0.0 -0.6 -0.3
† ∆ref = Ecalc

INT − E
ref
INT. ‡ LD contribution calculated with D4.

6.5.3. Performance of SQM Methods

In recent years, SQM methods have become increasingly popular due to signi�cant improvements in
accuracy and applicability.96 Two widely used examples are the NDDO-based PMx 86,88 methods and
the more recently developed extended tight-binding methods of the GFNn-xTB93,94,96 family. The latter
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proved to be in general more robust and accurate for structure optimization and noncovalent interac-
tions. Recently, also a partially polarizable generic FF has been introduced, termed GFN-FF,117 which
is a promising, generally applicable candidate for a very e�cient description of noncovalent interac-
tions. In this section, the performance of the introduced SQM and FF methods is tested for the IONPI19
benchmark set. The statistical data are summarized in Figure 6.8.

Figure 6.8.: Deviations of calculated ion–π interaction energies with SQM and FF methods for the
IONPI19 set. The minimum deviation and maximum deviation for each data set are shown
as range together with the �rst and third quartiles as the central box for each data set, the
inter-quartile range contains 50 % of the data set. Additionally, the mean and median devia-
tion are depicted as dots and vertical bars, respectively. The asterisk indicates that systems
with wrong topology assignments were excluded for GFN-FF.

Out of the four tested SQM methods, GFN2-xTB is the best performer with an MAD of 4.7 kcal mol−1,
followed by GFN1-xTB (6.8 kcal mol−1 MAD). PM6-D3H4X and PM7 show larger deviations from the
reference with an MAD of 7.9 and 18.8 kcal mol−1, respectively. With GFN-FF, the topology assignment
is initially wrong for the Li+ containing systems 1 and 5, where the coordination number of Li+ is six
rather than zero. Hence, these systems are excluded from the statistical evaluation indicated in Figure
6.8 by the asterisk. To circumvent wrong topology assignments, the topology �le can be generated on
the GFN-FF equilibrium structure. For the remaining 17 systems, an MAD of 11.9 kcal mol−1 is achieved.
This somewhat larger deviation for the tested ion–π interactions can be attributed to the classical EEQ
charge model in GFN-FF. In comparison to previous studies on mostly neutral NCI complexes,273 the
overall trend among the tested SQM and FF methods is comparable, but the absolute errors are much
larger. This is mainly due to the large contribution of electrostatics to the total interaction energy of
ion–π systems. Thus, it is not surprising, that GFN2-xTB performs best out of all tested SQM methods,
as it contains a sophisticated multipole electrostatic model. The combination of su�cient accuracy with
computational e�ciency in GFN2-xTB is promising for large scale applications of ion–π interactions
in biomacromolecular systems. Nevertheless, the description of electrostatic/induction interactions by
SQM and FF methods can not reach the same accuracy as the tested DFAs.
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6.5.4. Timing Comparison

The cost to accuracy ratio is evaluated for the best performing methods of the assessed levels of theory.
Computational timings for the single-point (SP) calculations of 15 are shown in Figure 6.9 in combi-
nation with the respective MAD of the entire IONPI19 set. The wall times are given in seconds on a
logarithmic scale and were calculated in parallel on ten CPU cores.

Figure 6.9.: Total wall time for the single-point energy of 15 calculated by the best performing methods
of each theoretical level in parallel on ten Intel© Xeon E5-2660 v4 @ 2.00 GHz CPUs.

With 42 atoms, 15 is well suited as a representative for the IONPI19 set, where the average sys-
tem size is about 32 atoms per molecule. The calculation of the reference values at the DLPNO-
CCSD(T1)/VeryTightPNO/CBS(aug-cc-pVTZ/aug-cc-pVQZ) level of theory took about three months.
RI-MP2/CBS(aug-cc-pVTZ/aug-cc-pVQZ) calculations lasted more than six days and resulted in an
MAD of 1.9 kcal mol−1. DFT methods show signi�cant improvements in the total wall time compared
to the MP2/CBS schemes. PWPB95-D4 and B3LYP-NL SP calculations in the large def2-QZVPP basis set
converge within a few hours and show lower MADs than MP2/CBS. Here, the double-hybrid PWPB95-
D4 is almost as fast as B3LYP-NL, because the MP2 part employing the RI approximation takes up only
5 % of the total wall time. Also, the PWPB95-D4 calculation requires one SCF iteration cycle less to
converge than B3LYP-NL. The meta-GGA B97M-V SP calculation �nishes within ten minutes and the
MAD (0.8 kcal mol−1) is still within chemical accuracy. r 2SCAN-3c shows almost the same deviation
as B97M-V whilst being one order of magnitude faster. With MADs close to chemical accuracy, meta-
GGA functionals yield in general the best cost-to-accuracy ratio. GFN2-xTB signi�cantly reduces the
computational wall time further to less than a second but the underlying approximations increase the
MAD to 4.7 kcal mol−1. GFN-FF as the only assessed FF method is yet two orders of magnitude faster
than GFN2-xTB.
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6.6. Conclusion

In this work, a comprehensive benchmark set was compiled for a wide range of ion–π interactions. This
IONPI19 compilation represents a diverse set of (bio)chemically relevant molecules, also of larger size,
and consists of 19 molecular structures that cover inter- as well as intramolecular interactions between
anions/cations and π -conjugated systems. The IONPI19 set was used to benchmark various DFAs as
well as HF, MP2, SQM, and FF methods. For all non-composite DFAs and HF, a large def2-QZVPP basis
set was applied. In the context of DFT, the main focus was put on the e�ect of the self-interaction error
and of London dispersion interactions for ion–π interactions. Second-order Møller–Plesset perturba-
tion theory extrapolated to the complete basis set limit (MP2/CBS) and Hartree–Fock were evaluated as
computationally more expensive but self-interaction error free competitors. Reference interaction and
association energies were generated with high-level coupled cluster (CCSD(T)/CBS, W1-F12, W2-F12,
and DLPNO-CCSD(T1)/VeryTightPNO/CBS) protocols.

First, the e�ect of di�erent LD corrections was tested and the performance of di�erent DFAs in
combination with the D3, D4, and NL dispersion correction schemes were assessed. With a mean
MAD of 0.9 kcal mol−1 each, the D4 and NL dispersion correction performed equally accurate. In
comparison to its predecessor D3, the newly developed D4 model performed consistently better for
each tested functional. The di�erence between these two schemes is mainly due to the inclusion of
atomic partial charges in DFT-D4. The incorporation of three- and higher-body dispersion terms was
found to have rather small e�ects. In general, the application of a dispersion correction is inevitable
for the IONPI19 benchmark, as LD-uncorrected DFT underestimates ion–π interactions signi�cantly,
and the mean MAD amounts to 4.0 kcal mol−1.

For the IONPI19 set the trend along Jacob’s ladder functional classi�cation scheme was mostly pre-
served among the tested combinations of DFAs and LD correction meaning that the average perfor-
mance of (meta-)GGAs (1.0 kcal mol−1 MAD) was improved by hybrids (0.8 kcal mol−1 MAD), whereas
the highest accuracy was reached by the double-hybrids (0.6 kcal mol−1 MAD). DH-DFAs reach in many
cases an accuracy that is remarkably close to the high-level coupled cluster reference values but at up
to two orders of magnitude lower computational cost than MP2/CBS. And, even more importantly,
the double-hybrids are also signi�cantly more accurate than MP2/CBS, which systematically and sig-
ni�cantly overestimates ion–π interactions (MD = −1.9 kcal mol−1, MAD = 2.0 kcal mol−1). The best
cost-to-accuracy ratio was obtained with the newly developed r 2SCAN-3c composite method, which
yielded an accuracy close to meta-GGAs like TPSS in a much larger def2-QZVPP basis, whilst being
one order of magnitude faster. It was found that the SIE has a relatively small e�ect on ion–π inter-
actions. This is re�ected in the fact that hybrid DFAs, which include Fock exchange to correct for the
SIE, performed only slightly better than (meta-)GGAs. Energy decomposition analysis for the disso-
ciation of ion–π complex 8 further revealed that the SIE of a GGA is rather small for the equilibrium
geometry and may become signi�cant only at larger intermolecular distances. SQM and FF methods
were additionally tested for the IONPI19 set. The simpler description of electrostatic interactions in
comparison to DFAs resulted in generally larger errors than obtained in previous studies on neutral
systems, as electrostatic interactions are the major contribution of ion–π interactions. The best per-
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forming method was GFN2-xTB, which takes into account anisotropic electronic e�ects by higher order
multipole terms.

In conclusion, we generally recommend the use of DH-DFAs with the D4 dispersion correction in
a large def2-QZVPP basis set for calculating reference interaction energies of larger (100-250 atoms)
ion–π systems. DH-DFAs in combination with D4 extend the possibilities for generating reliable ref-
erence values for larger systems, which are essential for the development of low-cost methods to de-
scribe ion–π interactions in very large systems such as proteins. This conclusion only really becomes
apparent, when larger systems are investigated with high-level references as in the presented IONPI19
benchmark set.
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To this point, geometries in gas phase and in solution, as well as noncovalent interaction energies,
were studied in detail using GFN-FF and GFNn-xTB methods on a variety of large molecules. The im-
portant quantity to convert from energy to free energy is the thermostatistical contribution, which is
yet missing. In ab initio or semiempirical calculations, thermodynamic quantities are most commonly
obtained within the RRHO approximation (cf. Section 2.3.1). The required vibrational frequencies and
the corresponding normal modes are calculated from second derivatives, either analytically or numeri-
cally from the �rst-order derivative, i.e., the nuclear gradient. The polynomial increase in computation
time brings DFT methods much sooner to their system size limit and hence, requires the application of
simpli�ed methods.

Part IV of this thesis goes beyond the description of geometries and gas phase energies and includes
thermodynamic quantities in the description of molecules. GFN methods are applied and evaluated
for the e�cient computation of free energy contributions of large molecules and a new approach is
presented for improved vibrational frequencies (see Figure 6.10). Solvation e�ects are treated implicitly
and explicitly.

Figure 6.10.: Free energy calculations for di�erent system sizes. For larger systems, e�cient empirical
methods need to be employed to derive the required thermodynamic quantities. SPH cal-
culations help to increase the accuracy of approximated methods towards DFT accuracy.

In Chapter 7, the accuracy of GFN methods is �rst tested in the context of free energy contributions
for standard benchmark sets of complexation reactions.346 The deviation from DFT reference values
is generally small and both methods, GFN2-xTB and GFN-FF, reach a high accuracy at a much lower
computational cost. Based on this foundation, the system size is increased drastically (∼5000 atoms)
and association free energies are computed, e.g., for the human serum retinol binding protein (RBP)
encapsulating retinol (vitamin A) and rivaroxaban binding to factor Xa. For the latter example, the
GFN-FF result is compared to previous QM studies.

A prerequisite for accurate thermodynamics within the RRHO approximation is usually a fully op-
timized input structure since the harmonic approximation is only valid in close proximity to the equi-
librium geometry. For general, non-equilibrium structures, thermodynamic quantities are usually not
accessible. In Chapter 8, a new method is developed for the computation of harmonic vibrational fre-
quencies and thermodynamic contributions to the free energy within the modi�ed RRHO approxima-
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tion for general non-equilibrium geometries.524 The method is termed single-point Hessian (SPH), in
analogy to single-point energy (SPE) calculations, and can also be calculated at every position of the
PES. The SPH approach is tested for supramolecular association reactions, MD simulations, reaction
paths, and IR spectra. In comparison to conventional calculation on fully optimized geometries or
unrelaxed structures, the SPH approach is in general superior.

In Chapter 9, the e�ect of explicit solvation on IR spectra and the underlying harmonic frequencies is
investigated.525,526 Here, a newly developed cluster algorithm, termed quantum cluster growth (QCG),
is applied, in which explicit solvent molecules are added to energetically favorable positions around the
solute molecule. The energetic screening is executed by the intermolecular force-�eld xTB-IFF466 and
subsequent cluster optimizations are performed by GFN2-xTB. Explicit solvation approaches account
for local solute–solvent interactions, such as hydrogen bonds, which are necessary for qualitatively
correct frequencies. The IR spectra calculated from QCG cluster show in general better agreement
with experimental reference spectra than implicit approaches employing, e.g., the COSMO model.

In general, the quality of harmonic frequencies calculated with GFN-FF and GFNn-xTB methods is
comparable to that of ab initio DFT. With the GFN methods at hand, Part IV shows that the compu-
tation of association free energies are now feasible for new dimensions of molecular size, which was
previously impossible at this high accuracy level.
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7. Free Energy Contributions for Large Molecules

Abstract Modern density functional theory (DFT) methods are capable of providing accurate associa-
tion energies for supramolecular systems and even protein-ligand complexes. However, the calculation
of the essential harmonic vibrational frequencies needed to correct to free energies is often computa-
tionally too demanding. In this work, the corresponding thermostatistical contributions are computed
in the well established (modi�ed) rigid-rotor-harmonic-oscillator approximation with structures and
frequencies taken from low-cost quantum chemical methods, namely GFN2-xTB and PM6-D3H4. Addi-
tionally, a recently developed new general force-�eld (GFN-FF) is tested for this purpose. DFT reference
values for 59 complexes composed of three standard noncovalent and supramolecular benchmark sets
(S22, L7, S30L) are used in the evaluation. Overall the accuracy of the low-cost methods is remarkable
with typical deviations of only 0.5–2 kcal mol−1 (5–10 %) from the DFT reference values. Especially
the performance of the GFN force-�eld is promising considering the speedup of �ve and 2–3 orders of
magnitude compared to DFT and GFN2-xTB, respectively. This opens new perspectives for comput-
ing thermodynamic properties of, e.g., (bio-)macromolecules as shown exemplarily for the binding of
retinol and rivaroxaban in protein complexes consisting of up to 4700 atoms.

7.1. Introduction

A common task of computational chemistry is to realistically model various chemical reactions and
predict their outcome.229,527,528 While those reactions are usually carried out at room temperature in
solution, quantum mechanical (QM) calculations are primarily conducted for isolated molecules at zero
Kelvin. To compare theory with experiment, additional corrections and computational steps are re-
quired. A common non-dynamical, super-molecule approach towards association free energies ∆Ga

for the formation of a noncovalently interacting (NCI) complex at a given temperature employs Eq. 7.1

∆Ga = ∆Ea + ∆δGsolv + ∆Gtrvc , (7.1)

where Ea is the total molecular gas phase energy, δGsolv is the corresponding free solvation energy,
andGtrvc is the thermostatistical contribution from energy to free energy at 298 K accounting for trans-
lation, rotation, vibration and conformational degrees of freedom. The ∆ implies the product/educt
di�erence with appropriate stoichiometric factors. In principle, this scheme can be applied to any reac-
tion but we restrict it here to noncovalently bound species, i.e., typically A + B→ A· · ·B (see Ref. 68 for
further discussion). Out of all three terms in Eq. 7.1 it isGtrvc which is by far computationally the most
demanding. Thus in this work, the performance of so-called low-cost methods is tested for its e�cient
calculation.

Employing accurate dispersion corrected DFT for the energies of single, geometry optimized struc-
tures of large supramolecular complexes, a scheme based on Eq. 7.1 was introduced in 2012.119 Therein,
Gtrvc values were obtained in a low-frequency modi�ed rigid-rotor-harmonic-oscillator approximation
(mRRHO), also including the harmonic zero-point vibrational energy (ZPVE) and thermal/volume work
corrections, but neglecting conformations for each species (i.e., Gtrvc ≈ G

298
mRRHO). The physically sound

rotor-type modi�cation of the standard RRHO term mainly addresses the treatment of low-frequency
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modes and their large (and numerically problematic) contribution to the entropy and has been success-
fully used as default in our group for years.

The reader should note that the �rst term in Eq. 7.1 is numerically often the largest, while the third
one is of approximately the same order of magnitude (but di�erent sign), and usually only the sol-
vation contribution is smaller, at least for neutral systems. Hence, a reasonably accurate and robust,
yet still fast standard treatment for ∆GmRRHO is mandatory for large molecules. Alternative methods
for approximating ∆Gtrvc (or ∆Ga ) directly for the process are thermodynamic integration (TI)529,530

or free energy perturbation (FEP)531,532 mostly based on classical (force-�eld, FF) molecular dynamics
simulations.533,534 Apart from serious numerical problems in the DFT calculation of harmonic vibra-
tional frequencies (HVF) due to the employed exchange-correlation integration grids,535 the analytical
(or numerical) computation of Hessian matrices by �rst-principles methods with reasonably large AO
basis sets becomes prohibitively expensive.

The urgent need for faster methods becomes evident from Figure 7.1 showing computer timings
for HVF calculations on a prototypical complex taken from our S30L benchmark set.120 Calculations

Figure 7.1.: CPU times given in seconds for the calculation of vibrational frequencies of pentakis(1,4-
benzodithiino)-corannulene binding a C70 guest with PBEh-3c, B97-3c, PM6-D3H4, GFN2-
xTB and GFN-FF methods. Computations were performed on a single Intel© Xeon E5-2660
v4 @ 2.00 GHz CPU.

were conducted with two DFT composite methods (hybrid functional PBEh-3c231 and the GGA B97-
3c237) and the here tested semiempirical quantum mechanical (SQM) methods GFN2-xTB,93 PM6-D3H4
(mainly used for comparison),86 as well as the recently presented general GFN-FF.117 The well-established
GFN methods were developed with a special focus on a good description of Geometries, Frequencies,
and Noncovalent interactions (GFN) as reviewed recently in some detail.96 Also note, that both DFT
methods were specially developed with small to medium-sized (truncated) AO basis sets and hence
already represent a best-practice compromise between accuracy and computational cost.

For the complex shown in Figure 7.1 consisting of 150 atoms, the HVF calculations took 58 days with
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PBEh-3c and 14 days with B97-3c, respectively, which is unacceptable even when parallel computers
are applied. The PM6-D3H4 SQM calculation still took almost two days, whilst GFN2-xTB �nished
within 16 hours. GFN-FF on the other hand took only 11 seconds for the same calculation. One of the
big advantages of GFN-FF is that it can be applied out-of-the-box to all elements of the periodic table
up to radon, including metal containing complexes. Hence, this approach for GmRRHO computations
may open completely new possibilities. Therefore, the important question arises, how accurate are the
resulting free energy contributions, or in other words what is lost for the tremendous speed-up of two
to �ve orders of magnitude? Surprisingly, this problem has rarely been investigated thoroughly in the
literature so far (see e.g., Ref. 536).

7.2. Results and Discussion

7.2.1. Benchmark Sets

To address this question thoroughly, GmRRHO values are calculated for three standard benchmark sets,
S30L, S22,537 and L7.538 They cover various noncovalent binding motifs, from hydrogen bonds to π–π
stacking and ionic interactions. The system size varies from six atoms (water dimer in S22) to 200 atoms
for the supramolecular complexes in S30L. The reference values are calculated as the arithmetic mean
of the two DFT methods, PBEh-3c and B97-3c. The corresponding standard deviation is taken as an
uncertainty measure of the reference data and denoted as the error bar in the plots. All thermostatistical
values are computed within the mRRHO approximation at 298 K. A standard rotational cut-o� value of
50 cm−1 is chosen in the mRRHO treatment (see Ref. 119 for details) and small imaginary frequencies
below 20 cm−1 (mostly methyl group torsions) are set real (multiplied by −i). Note, that theG298 values
by the rotational partition function also depend on the molecular geometry, meaning that in addition
to the HVF, the accuracy of the optimized equilibrium (minimum energy) structure is tested as well.
Further technical details are given in Appendix A7.

Figure 7.2.: Thermostatistical ∆GmRRHO values (in kcal mol−1) to the association free energy of the com-
plexes taken from the S30L, S22, and L7 benchmark sets.

The results for the thermostatistical contributions to binding for all 59 NCI complexes are shown in
Figure 7.2. For each benchmark, structural examples illustrate the various binding motifs. Note again
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that the ∆Ea term is not included at this point. Overall, the three tested low-cost methods provide
a very good agreement with the (averaged) DFT reference values, and importantly, no outliers are
observed. Their performance is evaluated statistically by the mean deviation (MD), mean absolute
deviation (MAD), and root-mean-square deviation (RMSD) given in Table 7.1. Due to the averaged

Table 7.1.: Statistical evaluation (in kcal mol−1) of the thermostatistical contribution ∆GmRRHO for the
59 complexesa. The relMAD values are given in %.

S30L S22 L7 all sets

DFT

MD ±0.24 ±0.12 ±0.22 ±0.04
MAD 0.36 0.23 0.42 0.34
RMSD 0.47 0.38 0.55 0.47
relMAD 2.1 2.5 2.7 2.4

GFN2-xTB

MD -0.50 0.71 0.21 0.14
MAD 0.98 1.03 0.95 0.99
RMSD 1.27 1.39 1.28 1.31
relMAD 5.6 10.3 5.9 7.3

PM6-D3H4

MD -0.70 0.67 0.10 0.02
MAD 1.57 1.46 0.55 1.19
RMSD 1.92 1.55 0.66 1.38
relMAD 8.8 15.0 3.5 9.1

GFN-FF

MD -0.40 1.40 0.21 0.40
MAD 1.06 1.40 1.86 1.44
RMSD 1.25 1.71 1.94 1.63
relMAD 6.1 13.7 11.4 10.4

a The statistical measures are given with respect to the average DFT reference for GFN2-xTB, PM6-D3H4 and GFN-FF. For
the DFT reference, average values for PBEh-3c and B97-3c are taken and their RMSD of 0.47 kcal mol−1 is taken as an
uncertainty estimate.

reference values obtained from two reliable density functionals, an uncertainty estimate can be given
for each value. The average of all complexes is only 0.34 kcal mol−1 (RMSD of 0.47 kcal mol−1) but
de�nitely not negligible. Roughly speaking this is at best what one can expect from the tested low-
level methods. Vibrational anharmonicity e�ects not considered here are probably of the same order of
magnitude.68 For the whole set, GFN2-xTB performs best with an MAD of 0.99 kcal mol−1, followed by
PM6-D3H4 with an MAD of 1.19 kcal mol−1. Both SQM methods yield rather accurate results across the
entire test set with a maximum absolute deviation of 3.5 and 2.5 kcal mol−1, respectively. GFN-FF also
yields good results with an MAD of only 1.44 kcal mol−1, which is excellent for a FF and comparable to
the much more elaborated SQM methods. The performance of the universal force-�eld (UFF114) which
is the only available competitor to GFN-FF is clearly worse (MAD=2.05 kcal mol−1, relMAD = 17 % and
partially distorted structures, see Appendix A7). The small MD and RMSD measures of all low-cost
methods indicate robustness and the absence of any systematic errors for this wide variety of binding
motifs. A similar picture emerges when relative deviations are considered (relMAD in Table 7.1). The
reference has an uncertainty of about 2 % for ∆GmRRHO for all three sets. This is closely approached by
GFN2-xTB, yielding only about 6 % error for S30L and L7 and an overall small relMAD value of 7.3 %.
For the highly important S30L benchmark, GFN-FF performs similarly well with a 6 % error on average
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thus clearly outperforming PM6-D3H4. Both, GFN-FF and PM6-D3H4 yield somewhat less accurate
values for the small S22 complexes such that a total relMAD value of about 10 % is obtained which is,
nevertheless, su�ciently small to be useful in practice.

Furthermore, we consider the somewhat simpler enthalpic contribution∆HmRRHO including the ZPVE.
This quantity is of course part of the already discussed ∆GmRRHO values but in some applications539 it
is of practical relevance in itself. The results are illustrated in Figure 7.3 and the statistical evaluation is
given in Appendix A7. Similar to the case of the free energies, the reference values are well reproduced

Figure 7.3.: Enthalpic contribution ∆HmRRHO (kcal mol−1) to the association free energy of the com-
plexes taken from the S30L, S22, and L7 benchmark set.

by the low-level methods and no signi�cant outliers occur, con�rming the above observations. Be-
cause the ∆H298 values are absolutely smaller compared to the ∆G298 ones, all deviations and statistical
measures diminish. The order of their accuracy is for the low-cost methods the same as before, with
GFN2-xTB being closest to the reference with an MAD of 0.49 kcal mol−1, followed by PM6-D3H4 with
an MAD of 0.74 kcal mol−1 and GFN-FF with an MAD of 0.83 kcal mol−1.

7.2.2. Protein-Drug Binding

Finally, three very di�cult examples are discussed which were deliberately chosen to explore the limits
of the low-cost methods. Complexes involving strong hydrogen bonds are practically important and are
speci�cally problematic for FFs because electronic many-body (polarization e�ects) play an important
role.

In the �rst case study, we test the accuracy of theGmRRHO values for the formation of water clusters.
We investigate the association of (H2O)4 to (H2O)8 and their formation of the dodecahedron structure
of (H2O)20. All starting geometries were taken from the WATER27 benchmark540 and are illustrated in
Figure 7.4A. Note that here and in the last two examples we additionally discuss total (free) association
energies in addition to the mRRHO contributions in order to put them and their error into better per-
spective. The reaction to (H2O)20 is mainly discussed. All value are given in Table 7.2 The reference
∆G298 values are again obtained by PBEh-3c and B97-3c, but not averaged here to indicate their spread
(1.6 kcal mol−1) explicitly. Compared to the (average) reference value (28.0 kcal mol−1) GFN2-xTB is
spot-on. Even in this very di�cult scenario, including, e.g., important induction and other many-body
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Figure 7.4.: (A) The three investigated water clusters from the WATER27 benchmark set. (B) Human
serum retinol binding protein (RBP) encapsulating retinol (Vitamin A). (C) Factor Xa in
complex with rivaroxaban in the presence of crystal water molecules. The PDB identi�er is
given in bold.

e�ects, GFN-FF yields a result (31.8 kcal mol−1) relatively close to the DFT reference. The fact that even
this error of 2–3 kcal mol−1 is not alarming becomes clear if the variations in the association energies
∆Ea are considered. The DFT methods di�er by almost 5 kcal mol−1, indicating that the accuracy lim-
iting factor in such applications is not the use of approximate mRRHO contributions from the low-cost
methods, but the highest theoretical level one can a�ord for the bare interaction energy. The perfor-
mance of the two GFN methods (and the FF in particular) is striking for the ∆Ea values with only minor
deviations from the respective DFT values. PM6-D3H4 on the other hand shows di�culties in the de-
scription of the (H2O)20 cluster as both, the ∆GmRRHO contribution and the ∆Ea value deviate clearly
from the DFT values. The reaction to (H2O)8 on the other hand is reasonably described by PM6-D3H4,
yet still worse than with the GFN methods regarding ∆Ea and ∆GmRRHO indicating higher robustness
of the latter.

Table 7.2.: ∆GmRRHO, ∆HmRRHO and∆Ea values (in kcal mol−1) for two water cluster formation reactions.

PBEh-3c B97-3c GFN2-xTB PM6-D3H4 GFN-FF

2 (H2O)8 + (H2O)4→ (H2O)20

∆GmRRHO 29.3 27.7 28.0 55.7 31.8
∆HmRRHO 2.1 2.1 2.7 16.4 6.4
∆Ea -33.4 -28.8 -24.4 -6.6 -35.0

2 (H2O)4→ (H2O)8

∆GmRRHO 16.6 17.6 17.1 23.8 20.6
∆HmRRHO 2.3 2.2 1.8 2.4 3.1
∆Ea -20.5 -19.6 -19.9 -12.9 -13.4

In the last two examples, we want to highlight the potential of low-cost methods, especially GFN-FF,
in real-life biochemical applications. As a showcase the association free energy of the human serum
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retinol binding protein (RBP) with Vitamin A541 is calculated by GFN-FF employing the same static
super-molecule approach. The system is illustrated in Figure 7.4B and consists of 2796 atoms and hence
the calculation of ∆GmRRHO is only a�ordable at the GFN-FF level of theory. The entire computation,
consisting of full, unconstrained geometry optimization starting from the PDB structure and HVF cal-
culation took roughly 15 hours on a single Intel© Xeon E5-2660 v4 @ 2.00 GHz CPU with GFN-FF. The
total association free energy is calculated according to Eq. 7.1 employing our implicit GBSA continuum
solvation model96 for water in all computational steps (geometry optimization and HVF calculation).
The results are shown in Table 7.3. With GFN-FF, the association energy without the solvation con-

Table 7.3.: Computed association free energy (in kcal mol−1) for human serum retinol binding protein
(RBP) with retinol (Vitamin A) and Factor Xa with rivaroxaban by GFN-FF.

∆Ea ∆G298
mRRHO ∆δGsolv(H2O) ∆Ga

Retinol @ 1RBP -30.7 17.2 0.6 -12.9
Rivaroxaban @ 2W26 -83.8 22.5 35.0 -26.3

tribution amounts to −30.7 kcal mol−1. Adding the ∆δGsolv term of 0.6 kcal mol−1 leads to a value of
−30.1 kcal mol−1. For comparison, a value of −29.6 kcal mol−1 is obtained with GFN2-xTB. The GFN-FF
calculation of the vibrational frequencies with default technical settings yields only a single imagi-
nary frequency of 5 cm−1 introduced by the �nite grid size for the surface integration part in GBSA.
No imaginary frequencies were obtained in gas phase computations. This technical robustness of the
implementation in the xtb program243 is not self-evident. Due to the mentioned numerical grid error
for the exchange-correlation energy, such a calculation is technically hardly possible with DFT meth-
ods. GFN-FF yields a thermostatistical contribution ∆GmRRHO of 17.2 kcal mol−1 resulting in a predicted
overall free association energy ∆Ga of −12.9 kcal mol−1. This value is close to the a�nities observed
for typical protein-drug complexes of −5 to −15 kcal mol−1.542 Although this value is rather prelimi-
nary lacking, e.g., any conformational contributions, it seems to indicate a relatively small error for all
components in Eq. 7.1 with our new GFN-FF(GBSA) approach. A related protein-ligand study mainly
based on Hartree–Fock (HF) and DFT calculations was performed in 2017375 on cutouts of Factor Xa in
complex with rivaroxaban.543 With GFN-FF at hand, an unconstrained optimization of the full protein-
drug complex is now possible including two calcium ions and important crystal water molecules (see
Figure 7.4C). The result obtained without any empirical adjustment for a large system with compli-
cated interactions is remarkable from a quantum chemistry perspective. With a calculated association
free energy of −26.3 kcal mol−1 (see Table 7.3), the GFN-FF result is just about 14 kcal mol−1 o� the
experimentally measured value of −12.5 kcal mol−1. The ∆Ea and ∆δGsolv contributions are in good
agreement with the calculated values from Ref. 375 of −50 to −70 kcal mol−1 for ∆Ea and 20 to 40 kcal
mol−1 for ∆δGsolv, respectively. With very tight convergence thresholds for the geometry optimization,
only a single imaginary frequency of 6 cm−1 remains, yielding a thermostatistical contribution of 22.5
kcal mol−1 also closely agreeing to the previous results.
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7.3. Conclusion

In this work, we investigated the performance of low-cost SQM and FF methods for the calculation
of the rigid-rotor-harmonic-oscillator contributions to the enthalpy and entropy parts of free associa-
tion energies for various noncovalently bound complexes. The initial question was whether low-cost
methods, whose computational e�ciency is absolutely necessary for large molecules, can approach the
accuracy of DFT methods for the calculation of ∆GmRRHO. In a multi-level modeling scheme, one would
like to replace the most costly DFT steps of geometry optimization and frequency calculation with cor-
responding SQM or even FF ones which can save up to �ve orders of magnitude computation time.
Throughout all assessed sets, GFN2-xTB, PM6-D3H4, and GFN-FF show accurate results with MAD
values < 1.4 kcal mol−1 and relative deviations of 5–10 % for ∆GmRRHO. The GFN methods also perform
excellently for the di�cult case of water cluster formation. As an outlook for future applications, the
association free energies of two protein-ligand complexes were successfully computed with GFN-FF.

In conclusion, one may reformulate the initial question and ask if one should “waste” a lot of com-
puter time (and electrical power) for the computation of a not very system dependent property such
as ∆GmRRHO by costly high-level DFT methods instead of using the available robust SQM or FF alter-
natives. Under the premise that the low-level methods can correctly describe the basic noncovalent
interactions (which they mostly do), the answer is clearly ”no”.
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8. SPH Calculations for Vibrational Frequencies and Thermodynamics

Abstract The calculation of harmonic vibrational frequencies (HVF) to interpret IR spectra and to con-
vert molecular energies into free energies is one of the essential steps in computational chemistry. A
prerequisite for accurate thermostatistics so far was to optimize the molecular input structures in order
to avoid imaginary frequencies, which inevitably leads to changes in the geometry if di�erent theoret-
ical levels are applied for geometry optimization and frequency calculations. In this work, we propose
a new method termed single-point Hessian (SPH) for the computation of HVF and thermodynamic
contributions to the free energy within the modi�ed rigid-rotor-harmonic-oscillator approximation,
for general non-equilibrium molecular geometries. The key ingredient is the application of a biasing
potential given as Gaussian functions expressed with the root-mean-square deviation (RMSD) in Carte-
sian space in order to retain the initial geometry. The herein derived theory is generally applicable to
quantum mechanical (QM), semiempirical QM (SQM), and force-�eld (FF) methods. Besides a detailed
description of the underlying theory, including the important back-correction of the biased HVF, the
SPH approach is tested for reaction paths, molecular dynamics snapshots of crambin, and supramolec-
ular association free energies in comparison to high-level DFT values. Further, the e�ect on IR spectra
is investigated for organic dimers and transition metal complexes revealing improved spectra at the
low theoretical levels. On average DFT reference free energies are better reproduced by the newly de-
veloped SPH scheme than by conventional calculations on freely optimized geometries or without any
relaxation.

8.1. Introduction

Harmonic vibrational frequencies (HVF) represent characteristic properties of molecular systems that
are used for the calculation of infrared (IR)544–546 and Raman spectroscopy547,548 and, maybe even more
importantly, are applied in statistical thermodynamics to derive the ro-vibrational enthalpic and en-
tropic contributions to the Gibbs free energy G.68,69,542 As statistical thermodynamics conveniently
enable the transition from energy E to G as given in Eq. 8.1, HVF have a major contribution in the
comparison of theory and experiment21,457,549,550 and are commonly computed in quantum chemistry.
Here, G(T ) refers to an individual molecule in a de�nite minimum (equilibrium) energy conformation
at standard conditions in the gas phase

G(T ) = Egas +Gtrv(T ) , (8.1)

where Egas is the total molecular gas phase energy, and Gtrv is the thermostatistical correction from E

to G at absolute temperature T , accounting for translation, rotation, and vibration degrees of freedom
(DOF), also including the zero-point vibrational energy (ZPVE) and thermal/volume work corrections.
In this work, we will focus on the latter term (Gtrv) and its computation for general non-equilibrium
(Re ) structures. For the transition from gas phase to solution, the free solvation energy δGsolv(T ) needs
to be added, which is commonly done in the framework of continuum solvation models,551–555 but not
further considered here explicitly. The indicated temperature dependence is omitted in the following.

In quantum mechanics (QM) and partially also in force-�eld (FF) methods, free energy contribu-
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tions are often calculated within the rigid-rotor-harmonic-oscillator (RRHO) approximation536,556–558.
Herein, vibrational frequencies and the corresponding normal modes are obtained within the harmonic-
oscillator (HO) approximation by a Taylor expansion around the equilibrium geometry, which is fur-
thermore used to compute the rotational contributions. Accordingly, until now, a prerequisite for accu-
rate HVF and derived thermodynamics was a molecular structure, which represents a stationary point
(local minimum or transition state) on the respective potential energy surface (PES).120,559–561 Other-
wise, spurious imaginary, as well as inaccurate low-lying, HVF may arise for geometries, that are not
fully optimized by the applied theoretical method for the PES. The resulting loss of (real) vibrational
DOFs and errors in low-lying HVF causes signi�cant �aws for the derived Gtrv values (see Section 8.4
for numerical examples). This is evident from Eq. 8.2, where the vibrational contribution to the entropy
is expressed as536

Svib = R

nvib∑
i

(
hνi
kT

1
ehνi /kT

− ln
(
1 − e−hνi /kT

))
. (8.2)

Here, the sum runs over all vibrational DOFs (nvib), N is Avogadro’s number, h and k are Planck’s
and Boltzmann’s constants, and νi are the respective HVF. Because the last term in Eq. 8.2 approaches
in�nity for ν → 0, small changes in the low-lying HVF are causing large changes in Svib and Gtrv.

As the HO approximation is notoriously inaccurate for the description of low-lying vibrational modes
and they are furthermore heavily a�ected by numerical noise in the quantum chemical calculations
(DFT grids in particular535) a modi�ed scheme termed mRRHO from now on was already introduced
in 2012119 by one of us. It was developed with a focus on the thermodynamics of large supra-molecular
complexes treated by dispersion corrected density functional theory (DFT), but is generally applicable
and our group default since then. Therein,Gtrv values are obtained in a low-frequency modi�ed RRHO
version where a physically sound and non-empirical rotor-type approximation is applied. Importantly,
it yields a �nite Svib even for ν = 0. The mRRHO treatment of low-frequency modes as internal ro-
tations and thus, correcting for their large (and numerically problematic) contribution to the entropy,
is practically done by an interpolation between rotational and HO approximations. With the help of
a standard switching function and a corresponding rotor cuto� value (typically set to 50 cm−1), Svib is
obtained mostly from a proper rotational description below this value while for large frequencies, ef-
fectively the pure vibration formula is applied. This established mRRHO procedure lays the foundation
for the calculation of thermostatistical contributions for general non-equilibrium structures because it
eliminates the wrong and practically relevant ν → 0 asymptotics. Note, that chemically interesting,
�exible systems (e.g., drugs) have typically many HVF in the 10–20 cm−1 regime resulting in Gv(298)
values on the order of −1 to −2 kcal mol−1 per mode.

The need for low-frequency corrections in the HO approximation for non-equilibrium geometries
is further illustrated in Figure 8.1, where a prototypical double-well potential describes some chemical
reaction path. Note that Hessian matrices and harmonic frequencies can of course be computed for any
point on a PES but here we speci�cally focus on their physical meaning and practical use. Along the
transition from one minimum x1 to the other x2, the force constant (FC), which is proportional to ∂2f (x )

∂x 2 ,
�rst leaves the harmonic region. Close to the turning point (TP) of the function, FC (and ν ) approaches
zero and becomes negative beyond. In the standard RRHO approximation, the vibrational entropy
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Figure 8.1.: Double well potential f(x) (black) and its second derivative (red) resembling the respective
force constant (in arbitrary units). Beyond the harmonic approximation regime (grey), the
force constant approaches zero and becomes negative after the turning point (TP) leading
eventually to imaginary frequencies. The red-shaded area denotes the regime, where the
modi�cations in the mRRHO scheme are most e�ective.

approaches in�nity at the TP (see Eq. 8.2), while in mRRHO, it stays �nite and is applicable up to the
TP. The appearance of imaginary frequencies after the TP indicates that the (partially) unoptimized
system resides in a transition state,51,52 even though this is not necessarily the case. However, it is
common practice that only real HVF are considered in Eq. 8.2,68,562, which we follow also here in a
slightly modi�ed form. This analysis suggests that calculating the Hessian in the mRRHO framework
yields meaningfulGtrv values as long as the system is in the harmonic regime (but not necessarily at Re ).
The proposed method, which we call for obvious reasons single-point Hessian (SPH) is outlined below
in detail. It tries to increase this so-called “trust-region” in an absolutely automatic manner thereby
minimizing the number of spurious imaginary frequencies and increasing the reliability of Gtrv.

From another point of view, one can argue that for a multi-dimensional model PES composed of a
simple sum of HO potentials, the computed frequencies are completely independent of the point where
the Hessian is evaluated. Hence, in real anharmonic systems,563,564 the dependence of the HVF on this
evaluation geometry is stronger for shallow and more anharmonic modes than, e.g., for sti� stretching
vibrations. In fact, standard Hessian calculations on non-Re structures often yield only many low-
frequency imaginary modes, which is problematic for the calculation of Svib.

Non-equilibrium structures are commonly used in quantum chemistry for energy calculations, i.g., a
lower theoretical level method Y is applied in the computationally demanding geometry optimization
procedure, while a high theoretical level method X is taken only for a �nal energy calculation on the
lower level structure. This is indicated by the standard X //Y nomenclature. Along the same line of
thought, one may wish to replace the very costly Hessian calculation at the high X level with a cheap
calculation with method Y (see Ref. 346 for a recent thorough evaluation of this approach). Normally,
this requires re-optimization of the Re (X ) structure at the Y level as illustrated in Figure 8.2 Although a
re-optimization restores the validity of the HO approximation, and hence in the ideal case no spurious
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Figure 8.2.: One dimensional schematic potential energy diagram of a molecule calculated at two di�er-
ent levels of theory, X and Y, which di�er in their equilibrium geometries. Here, X refers to
high-level reference method (usually DFT) and Y represents a lower theoretical level such
as SQM or FF methods.

imaginary frequencies occur, it may lead to a distortion of the geometry in an unwanted direction. In the
extreme but commonly found case for larger molecules, the low-level method produces a qualitatively
di�erent structure (conformation), and in fact, this observation initiated our work. This di�erence in
structure causes an error in the calculation of the rotational entropy,68 which only depends on the
Cartesian coordinates (and atomic masses) according to

Srot = R

(
3
2 + ln

(√
π

σ

(
8π 2kT

h2

) 3
2 √

I1I2I3

))
, (8.3)

where the actual geometry enters directly via the moment of inertia Ik and the symmetry number σ .
Calculation of geometries and free energies at di�erent levels is thus a balancing act. Retaining the
reference geometry at level X may lead to imaginary HVF at low level Y , which vanishes upon re-
optimization, but changing the desired geometry and in turn introducing an error in Srot . According
to our experience in the �eld of conformational analysis of large molecules,565 such e�ects can be con-
siderable on the order of 0.5 kcal mol−1 for a relative conformational free energy at room temperature.
Hence, a method is still needed which modi�es the PES of method Y to yield the same Re structure
as method X , thereby reducing the number of imaginary modes signi�cantly (at best to zero), but still
providing the correct Srot (of method Y ). So far, to the best of the author’s knowledge, only methods
exist, which tackle the issue of partially optimized systems by considering subblocks of the Hessian
matrix in the so-called partial Hessian vibrational analysis (PHVA).566,567

In this work, we therefore, introduce the new concept of the single-point Hessian. SPH calculations
employ a biasing root-mean-square-deviation (RMSD) based constraining potential220 in order to re-
tain the target geometry. The systematic shift of the HVF caused by the modi�cation of the PES due to
the biasing potential is subsequently removed approximately (but rather accurately) by individual fre-
quency scaling, giving access to accurate thermostatistical contributions for general non-equilibrium
geometries with low-level methods.
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As the analytical or numerical computation of HVF by ab initio methods558 becomes prohibitively ex-
pensive for large molecules, semiempirical QM (SQM)86,96,568 and force-�eld (FF)201,569 methods present
faster but still reasonable candidates for SPH treatments. Especially the GFNn-xTB methods93,94 and
the GFN force-�eld (GFN-FF)117 have proven to yield goodGmRRHO vales in comparison to DFT calcula-
tions. They can be used for molecular sizes up to a few thousand atoms enabling the calculation of free
energies for huge noncovalently interacting (NCI) complexes, and biomacromolecules.346 The prime ap-
plication of SPH calculations is thus in so-called multi-level approaches, which are common practice in
computational chemistry.570 Here, the theoretical level di�ers from single-point energies (SPE, cheap),
over geometry optimizations (�rst derivative, medium e�ort), to HVF calculations (second derivative,
expensive). Hence, the high-level (X ) optimized reference structure represents a non-equilibrium ge-
ometry at the lower level (Y ) at which the thermostatistical contributions are calculated. Exemplary
work�ows thereof are illustrated in Figure 8.3 for di�erently sized systems. For small systems < 50–

Figure 8.3.: Multi-level approach for the calculation of free energies consisting of three steps: geometry
optimization, single-point energies, and the calculation of the free energy from HVF in the
mRRHO framework. For small systems (< 50–100 atoms) all three steps are feasible by high
level ab initio (mostly DFT) calculations, whereas for medium to large sized molecules SQM
or FF methods have to be applied for geometries and frequencies.

100 atoms, all properties can be calculated routinely by ab initio QM methods.334 Highly accurate SPE
are feasible by DLPNO-CCSD(T)147 or density functional theory (DFT) at, e.g., double hybrid level.571

Geometry optimizations, as well as HVF calculations, are still practical at the hybrid-GGA level,166,172

while for medium to large molecules (100–500 atoms), however, the situation changes. Here, (low-
cost) DFT231,237 is maximally applicable for geometry optimizations and HVF have to be calculated at
the SQM or FF level of theory. In many important areas of research, such as supramolecular chem-
istry,572–574 for metal-organic frameworks,287–290 or protein-drug binding375,575, the relevant molecular
size increases far beyond 100 atoms and multi-level approaches are often applied. For this purpose, the
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SPH approach at SQM and FF low levels is presented as a new methodology, which further increases
the accuracy of calculating thermostatistical contributions towards DFT values whilst retaining com-
putational e�ciency. In fact, the proposed method has already been tested internally in our group for
some months with great success and is taken as a new default in our standard conformational search
work�ow.60

First, the theoretical background of the SPH method is given and its advantage for applications in
computational chemistry over conventional approaches is motivated. Because of the enormous poten-
tial of the here-proposed method in combination with SQM and FF methods in many areas of chemistry,
not every possible application is yet explored, and only selected illustrative examples and benchmarks
are presented in this work. The performance of SPH calculations for GmRRHO values is shown in com-
parison to the conventional standard method in which the reference structure is �rst fully re-optimized
at a low theoretical level. Throughout this work, this approach is abbreviated by OHESS. Furthermore,
the results of the SPH procedure for thermostatistical contributions are compared to another procedure
in which the reference structure is used at the low level without any optimization (unrelaxed), which
is abbreviated as HESS. As test systems, we show and evaluate a Diels–Alder reaction path, the molec-
ular dynamics simulation of the small protein crambin, and IR spectra of the uracil dimer and a silver
containing transition metal complex. Moreover, free association energies for standard supramolecular
benchmark sets are investigated.

8.2. Theory and Implementation

8.2.1. RMSD Potential

The use of the Cartesian RMSD as a generally applicable collective variable in QM driven meta-dynamics
was described by one of us in 2019 in the context of chemical space exploration220. Here, the total en-
ergy Etot of the system is the sum of the total molecular (internal) energy Emol of the applied method
(e.g., QM, SQM, or FF) plus the biasing root-mean-square deviation (RMSD) potential ERMSD

bias

Etot = Emol + E
RMSD
bias . (8.4)

The biasing potential was originally introduced for meta-dynamics (MTD) simulations, where a history-
dependent potential �lls the minima of the PES over time to overcome large reaction barriers. Such
MTD simulations are successfully applied in the context of chemical space exploration by the crest

program60 and related applications.273,274 Here, we pursue the opposite intention of retaining the initial
geometry. More speci�cally, the biasing potential used is given by

ERMSD
bias =

M∑
i=1

ki exp
(
−β∆2

i
)
, (8.5)

where M is the number of reference structures associated with the pushing (ki > 0) or pulling (ki <
0) strength k , ∆ is the collective variable, and the parameter β determines the width of the biasing
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potential in the RMSD space. By limiting M to just the input structure (M = 1) and choosing a negative
value for k1, a restraining potential is added for any kind of molecular distortion away from the input
structure. In other words, the PES is modi�ed so that a local minimum can be created at the position of
the input geometry for su�ciently negative values of k1. Hence, in standard geometry optimizations
irrespective of the actual coordinate system chosen, for large absolute k1 values the input (reference)
structure is obtained. For the collective variable, the standard RMSD in Cartesian space is chosen as a
metric given by

∆ =

√
1
n

∑
j=1

(
ri − r

ref
i

)2
, (8.6)

where ri is an atomic position vector of the actual molecule, r ref
i is the corresponding element in the

reference structure, and n is the number of atoms. Here and in the following, the structural RMSD
∆ always refers to the di�erence between the reference (input) structure calculated at a high-level of
theory (X, usually DFT) and the lower level (Y, SQM or FF) structure. As we are interested in geometry
optimizations and the Hessian, also the gradient of the RMSD as a function of the actual coordinates is
required. For this purpose, the quaternion algorithm of Coutsias et al.576 is employed.

8.2.2. Optimal Bias

Application of the biasing RMSD potential causes modi�cations of the PES and a change of the HVF.
Hence, it is desirable to �nd the smallest possible bias, which retains the reference structure within a
chosen tolerance. For SPH, a modi�ed bisection algorithm577 is applied to determine this bias potential.
The algorithm, which is schematically shown in Figure 8.4 determines the optimal pulling strength kopt

that yields a structural RMSD between reference and re-optimized structure close to the chosen target
value ∆target.

First, an unbiased geometry optimization (Etot = Emol) is performed on the input structure, whereof
the initial RMSD ∆init between the reference structure and the fully optimized structure at a lower
theoretical level is calculated. If this value is below the target (∆init < ∆target), no additional bias is
needed. Otherwise (∆init > ∆target), the pulling strength is determined by the bisection algorithm. The
required input is a continuous function, which in our case is ∆ (see Eq. 8.6), an interval [kmin, kmax], and
the function value ∆(kbias). The structural RMSD is not an analytical function of the pulling strength,
but calculated from the di�erence of the initial structure and the optimized geometry. Hence, apply-
ing di�erent pulling strengths within the biased geometry optimizations (Etot = Emol + E

RMSD
bias ) e�ects

the RMSD. The optimal pulling strength is then obtained iteratively. If convergence is reached, i.e.,
∆current − ∆target is smaller than a chosen threshold η, kopt is returned as the current pulling strength
(kbias). This value is applied in biased geometry optimizations yielding (almost) the reference structure
for which HVF are calculated. The introduction of multiple (biased) geometry optimizations for the
determination of the optimal pulling strength inevitably leads to some computational overhead before
the actual Hessian calculation. Instead of one single unconstrained geometry optimization before the
Hessian calculation as in the OHESS approach, SPH requires multiple iterations (limited to 10) to �nd
kopt. Yet, the number of optimization cycles decreases in each iteration due to the improved bias poten-
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Figure 8.4.: Bisection algorithm for the determination of the optimal pulling strength. The structural
RMSD is calculated between the high-level input structure and the fully unconstrained op-
timized structure at a lower theoretical level. If the value is above the target, the pulling
strength of the bias potential is varied iteratively until biased geometry optimizations yield
the desired small target RMSD.

tial. As an example, for GFN2-xTB calculations on N,N,N’,N’-tetramethylpropane-1,3-diamine (TPMA)
in complex with the tridentate halogen bond donor578 (cf. Figure 8.4, 69 atoms), the SPH approach in-
creases the optimization time by a factor of �ve compared to the OHESS approach. Nevertheless, for
large systems, this increase is small considering the much more costly Hessian calculation. The SPH
treatment is typically slower by a factor of 1.7 compared to a plain Hessian calculation and a factor of
1.5 compared to OHESS.

8.2.3. Restoring the Frequencies

Adding ERMSD
bias to the total energy is necessary to retain the reference geometry, but on the downside

this modi�es the HVF and hence, the latter needs to be corrected. In general, HVF are related to FC via
a Taylor expansion of the PES up to second order around the equilibrium geometry. Hence, FC are the
second order derivatives of the total energy with respect to nuclear displacements, which are contained
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in the mass-weighted Hessian matrix

F(m)i j =
1

√
mimj

(
∂2Etot
∂Ri∂R j

)
, (8.7)

where Etot is the total molecular energy, Ri, j is the displacement in Cartesian space, and mi, j are the
respective masses of nuclei i and j. Diagonalization of the matrix F(m) according to

F(m)Q = ®ϵQ (8.8)

yields the eigenvalues ®ϵ of F(m), and Q are the normal modes (eigenvectors). The corresponding HVF
ν are obtained from

νp =
1

2π
√
ϵp , (8.9)

for each mode p. In analogy to Eq. 8.4, the total mass-weighted Hessian can further be written as

F(m) = F(m)mol + F
(m)
bias , (8.10)

where F(m)mol is the Hessian matrix derived from the total energy of the applied low-level method, and F(m)bias
is the second-derivative of the added RMSD biasing potential. Calculating the latter term numerically
and subtracting it from F(m) gives access to the unconstrained Hessian matrix F(m)mol. The corresponding
force constants ®ϵ ′mol and ®ϵ ′bias are calculated as expectation values (indicated by the prime) over the
normal modes Q.

Q†F(m)molQ = ®ϵ
′mol (8.11)

Q†F(m)biasQ = ®ϵ
′bias (8.12)

To remove the frequency shift caused by the bias RMSD potential, ®ϵ ′mol and ®ϵ ′bias are then employed
to construct a scaling factor for the HVF of every mode p given by

νSPH
p =

√√
sдn(ϵ ′mol,p )

ϵ ′mol,p

ϵ ′mol,p + α ϵ
′
bias,p

· νp . (8.13)

Here, νSPH are the resulting scaled frequencies of the SPH procedure, and sдn(ϵ ′mol) is the sign function
of the force constant. The functional form was chosen to obtain unbiased frequencies for ERMSD

bias = 0,
which is the case for small di�erences between the input and reference geometry. In this case, ®ϵ ′bias

is also zero and the scaling function is equal to unity. For �nite ERMSD
bias and hence with ®ϵ ′bias , 0, the

scaling term is smaller than one and removes the shift in νp . The great advantage of this approach is
thus an individual frequency scaling, as some vibrational modes are stronger in�uenced by the biasing
potential than others. Since Q are no eigenvectors of F(m)mol and F(m)bias, the scaling is approximate, mainly
neglecting mode couplings as well as mode changes. To correct this approximation, a single empirical
parameter α = 1.27 is applied. This parameter was determined on a small molecular test set, where
reference equilibrium and (identical) input geometries were obtained at the GFN2-xTB level of theory.
For di�erent values of kbias, α was varied to minimize the di�erence between biased and unbiased
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GFN2-xTB GmRRHO values over the set of molecules. The optimum value of α was found to be rather
insensitive to the value of kbias and to the choice of the level of theory (GFN-FF instead of GFN2-xTB).
Due to the sign function, true imaginary HVF as they occur for transition states are preserved by the
SPH approach.

Small imaginary HVF are generally (in HESS, OHESS, and SPH) treated by “inversion”, i.e., values
< i20 cm−1 are set real (multiplied by −i) and consistently included in the thermostatistical treatment.
Since molecular symmetry entering in Eq. 8.3 byσ is a discontinuous classi�cation that creates a discon-
tinuity in GmRRHO, it is ignored (set to C1) throughout this work. For consistent automated work�ows,
one may introduce continuous symmetry measures579.

8.3. Computational Details

All quantum mechanical calculations were performed with the TURBOMOLE 7.2.1335,336,580 (DFT), and
xtb 6.3.3515 (GFN1-xTB,94 GFN2-xTB,93 GFN-FF117) program packages. The ANCOpt optimizer was
applied for GFNn-xTB and GFN-FF optimizations as implemented in the xtb program package96 with
default convergence criteria 10−7 Eh for energies and 10−5 Eh/bohr for gradients. For NCI complexes,
the optimization threshold was tightened if necessary to remove all spurious imaginary HVF. The same
optimization thresholds hold also true for SPH calculations by GFNn-xTB or GFN-FF. The default target
RMSD threshold (∆target) of 0.1 Å was applied for SPH calculations. For transition states this value was
eventually lowered to 0.08 Å. Computations of HVF at the DFT level were performed analytically using
the aoforce code of TURBOMOLE, while GFN2-xTB and GFN-FF HVF were calculated numerically.
GmRRHO values were computed with the thermo module of xtb, applying a rotor cuto� of 50 cm−1 and
generally refer to T = 298 K.

All DFT reference GmRRHO values were calculated applying the PBEh-3c231 hybrid functional or the
B97-3c237 GGA functional with default convergence criteria for energies and gradients as implemented
in TURBOMOLE. For the computation of thermodynamic properties, PBEh-3c HVF are scaled by a fac-
tor of 0.95. Default e�ective core potentials (ECPs) ECP-28 and ECP-60340 were used for all elements
with atomic numbers larger than 36 (Kr) in order to approximately account for scalar relativistic ef-
fects in the DFT calculations. The resolution-of-identity (RI) approximation for the Coulomb integrals
was generally used to speed up the DFT calculations using matching default auxiliary basis sets.341,342

For the integration of the exchange-correlation contribution, the numerical quadrature grid m4 was
employed. All calculations were performed on Intel© Xeon E5-2660 v4 @ 2.00 GHz machines.

The spectral similarity measure (match score) for the IR spectra calculations was obtained with a
small standalone code called newspecmatch, which was also used in Ref. 546. For the full-width-half-
maximum of the Lorentzian peaks, a value of 30 cm−1 was chosen. The SPH method is e�ciently im-
plemented in the freely available xtb program package,96,515 but can easily be extracted and integrated
into other codes for application with other DFT, SQM, or FF methods.
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8.4. Results and Discussion

8.4.1. Noncovalent Interactions

For noncovalent interactions, an accurate description of ∆GmRRHO is notoriously di�cult, as the newly
formed intermolecular normal modes typically appear at low frequencies and are rather sensitive to
structural changes. Yet, the e�ect of di�erentRe structures at varying theoretical levels and the resulting
errors in the thermostatistical contributions are mostly neglected as it is generally assumed that these
are small. Figure 8.5A shows that this can be invalid in a prototypical case, as severe structural reorgani-
zations are not uncommon due to shallow PES if, e.g., DFT geometries are re-optimized at the SQM level
of theory. Free association energies for iodobenzene in cyclobis(paraquat-p-phenylene) (CBPQT4+)581

Figure 8.5.: Calculation of the thermostatistical contribution to the free energy for the inclusion of
iodobenzene in CBPQT4+. (A) TPSS-D3/def2-TZVP reference structure and GFN2-xTB op-
timized structure as blue overlay. (B) TPSS-D3/def2-TZVP reference and the structure ob-
tained within the SPH approach as blue overlay. (C) Thermostatistical contribution cal-
culated with and without re-optimization of the reference geometry, and with the SPH
approach in comparison to the DFT result. The RMSD and number of imaginary modes
(> i20 cm−1) are given for the reaction.

were calculated at the GFN2-xTB level of theory starting from the reference TPSS-D3328/def2-TZVP326

structure. Calculating HVF directly for the DFT structure (HESS) leads to many imaginary modes,
which vanish upon re-optimization (OHESS), but lead to a large RMSD of 1.4 Å between high and low
level optimized structures (Figure 8.5A,C). The number of imaginary modes (> i20 cm−1) and the total
RMSD are given as the sum for host, guest, and complex. The deviations in ∆GmRRHO amount to 0.7
and 1.1 kcal mol−1, respectively. In comparison, SPH calculations have no imaginary modes, yield an
RMSD of just 0.2 Å compared to the reference structure (Figure 8.5B,C), and the error in ∆GmRRHO is
only 0.1 kcal mol−1. One reason for the better agreement of SPH calculations with the DFT references
is the improved description of Srot connected with the small RMSD. OHESS calculations yield a di�er-
ence for Srot of 0.5 cal mol−1 K−1 in comparison to the DFT value, which corresponds to a signi�cant
deviation of 0.15 kcal mol−1 at room temperature. SPH calculations on the other hand show a deviation
of less than 0.2 cal mol−1 K−1 (0.05 kcal mol−1 at 298 K). Hence, GFN2-xTB SPH calculations better re-

138



8.4. Results and Discussion

produce high-level reference DFT values for ∆GmRRHO compared to the standard approach of deriving
frequencies from fully re-optimized geometries.

To further con�rm these �ndings, the SPH approach was tested on three standard benchmark sets
for NCIs, namely S30L.120, S22,162,537 and L7.538. Reference values for ∆GmRRHO were calculated with
the e�cient composite DFT methods B97-3c and PBEh-3c. Note that the electronic energy is not in-
cluded here. GFN2-xTB free energy contributions were again calculated by the HESS, OHESS, and SPH
approaches. The results for all 59 NCI complexes are shown in Figure 8.6. For each benchmark, the
exemplary molecular structures shown in Figure 8.6 illustrate the various binding motifs. The results

Figure 8.6.: Thermostatistical ∆GmRRHO values to the association free energy of the complexes taken
from the S30L, S22, and L7 benchmark sets calculated directly from the Hessian, after opti-
mization, and by the SPH approach at the GFN2-xTB level of theory.

are evaluated statistically by the mean deviation (MD), mean absolute deviation (MAD), standard de-
viation (SD), and relative MAD (relMAD) listed in Table 8.1 (see Appendix A8 for their de�nitions).
As can be seen in Figure 8.6, throughout the entire test set, no signi�cant outliers occur neither for
the SPH approach nor for the unconstrained OHESS calculation scheme. In contrast, the HESS scheme
leads repeatedly to shifts in ∆GmRRHO in comparison to the reference values. Out of the three tested
schemes for the calculation of ∆GmRRHO, the newly developed SPH method performs best with an MAD
of 0.59 kcal mol−1 and SD of 0.72 kcal mol−1 averaged over all three benchmarks. The relative error of
∆GmRRHO from the DFT reference amounts to 4.3 %. The conventional OHESS approach yields an MAD
of 0.69 kcal mol−1 and SD of 0.88 kcal mol−1, which corresponds to a relative error of 5.0 %. Calculating
GmRRHO without any relaxation results in an MAD of 1.12 kcal mol−1 and SD of 1.19 kcal mol−1, which
is in relative error (8.1 %) almost twice as large compared to SPH.

The reason for the di�erences between the three approaches becomes visible in Figure 8.7. Here,
the total number of imaginary frequencies (> i20 cm−1) and the total structural RMSD between the
reference and GFN2-xTB optimized structure are shown as the sum over all 169 systems (host, guest,
and complex). Calculating frequencies on unrelaxed structures leads to 156 imaginary frequencies that
cause a loss of Svib. Upon re-optimization (unconstrained and biased), the number of imaginary fre-
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Table 8.1.: Statistical evaluation of the thermostatistical contribution ∆GmRRHO for the 59 complexesa at
the GFN2-xTB level of theory in comparison to DFT reference values. The relMAD values
are given in %.

S30L S22 L7 all sets

HESS

MD 0.98 0.69 0.17 0.61
MAD 1.27 0.89 1.21 1.12
SD 1.19 0.93 1.47 1.19
relMAD 7.65 8.90 7.65 8.07

OHESS

MD 0.32 -0.07 -0.15 0.03
MAD 0.96 0.57 0.54 0.69
SD 1.17 0.72 0.74 0.88
relMAD 5.57 6.19 3.28 5.01

SPH

MD 0.14 0.03 -0.08 0.03
MAD 0.89 0.52 0.35 0.59
SD 1.10 0.65 0.42 0.72
relMAD 5.06 5.69 2.14 4.29

a The statistical measures are given with respect to the DFT reference, which is B97-3c for S30L and S22 and PBEh-3c for L7.

quencies is reduced signi�cantly to 9 and 13 respectively, where the few remaining imaginary modes
are all in the order of i20 to i50 cm−1. The disadvantage of unconstrained re-optimizations is the result-
ing structural rearrangement. The di�erence in DFT and GFN2-xTB PES manifests in a total structural
RMSD of 25.6 Å. In the SPH approach, this deviation is reduced drastically to 9.5 Å in total. This proves
that for accurate ∆GmRRHO values a small RMSD in comparison to the reference structure and a mini-
mum number of imaginary frequencies are desirable and this is only ful�lled by SPH calculations.

Figure 8.7.: Number of imaginary frequencies (> i20 cm−1) and structural RMSD between the DFT and
GFN2-xTB structures given as the sum over all 169 molecules (complex, host, and guest) of
the S30L, S22, and L7 benchmark set.

To further investigate the contribution of the error of Srot in the OHESS approach, a modi�ed version
of it was additionally tested for the L7 benchmark, where the DFT reference geometry is taken for the
calculation of Srot, but Svib is still evaluated on the fully optimized GFN2-xTB structure. Thereby, the
MAD in comparison to the DFT reference is reduced to 0.50 kcal mol−1 (0.54 kcal mol−1 for OHESS).
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This shows that the e�ect of the choice of the structure for Srot is small but signi�cant for accurate
∆GmRRHO values. However, we can also conclude that the improvements of SPH calculations over the
standard OHESS approach are also due to the fact that Svib is evaluated on the correct input struc-
ture. Hence, the reference geometry does not only a�ect Srot, but also Svib signi�cantly, especially for
noncovalent interactions.

8.4.2. Camphor Model Structures

To further investigate the e�ects of SPH calculations in covalently bonded systems, theGmRRHO values
of camphor were calculated for di�erent displacements of the nuclear coordinates. With the center of
mass placed at the origin in Cartesian space, the nuclear coordinates were scaled in a range from 0.90 to
1.10 to simulate a common dissociation process. The equilibrium geometry was obtained at the GFN2-
xTB level of theory and the overlay of all �ve displacements is shown in Figure 8.8A. Re-optimization

Figure 8.8.: (A) Structural overlay of di�erent displacements of camphor. The equilibrium geometry
is obtained at the GFN2-xTB level of theory. (B) GmRRHO calculated by di�erent schemes
for the �ve structures by GFN2-xTB. (C) The corresponding GmRRHO values calculated by
GFN1-xTB.

of the �ve displaced structures by GFN2-xTB yields of course to the same minimum geometry and
the corresponding (constant) GmRRHO values are given by the horizontal line in Figure 8.8B. For small
displacements in geometry, the change in GmRRHO is also expected to be small as long as one stays
well inside the harmonic trust region. This behavior is observed for SPH calculations, which show
similar GmRRHO values for displacements around Re in the range 0.95–1.05 of only ±5 %. For larger
displacements of ±10 %, theGmRRHO values start to di�er signi�cantly from the value of the equilibrium
geometry. Increased GmRRHO values occur for compressed bonds, and decreased values for elongated
bonds, as the entropic part increases/decreases for weaker/stronger bonds (longer/shorter bond lengths)
with decreasing/increasing HVF. This qualitative behavior of the pure Hessian calculation is reproduced
by the SPH approach but obviously damped, i.e., values closer to that of the Re structure are more
preserved for stronger distortions. Similar results are obtained at the GFN1-xTB (see Figure 8.8C) and
GFN-FF (see Appendix A8) levels. These results suggest the general use of the SPH method as a robust
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default procedure for GmRRHO calculations on any geometry yielding either the exact values (if the
reference and low-level PES are identical) or ones that are closer to those obtained near the equilibrium
structure by the high-level method. This is further exempli�ed with the following case studies.

8.4.3. Diels–Alder Reaction

As shown above, for a model dissociation reaction, SPH calculations represent a promising approach
to compute free energies along a reaction path. Normally, paths or PES are shown in the pure en-
ergy domain, while free energies are only computed for reactant, product, and transition state (TS).
For related free energy path determinations see, e.g., Refs. 582–586. The reason is that unconstrained
optimizations along with the reaction coordinate just yield the educt/product before/after the TS, while
just conducting standard Hessian calculations on the path geometries su�er from the problem of arti-
�cial imaginary modes as discussed above. One approach to circumvent this di�culty was introduced
by Miller, Handy, and Adams,587 which uses a projection technique to remove imaginary frequencies
along with an intrinsic reaction coordinate (IRC).588

In Figure 8.9A, the path for the Diels–Alder reaction of two cyclopentadiene molecules is shown. The
exergonic reaction path was calculated by the double-ended growing string method (GSM) at the GFN2-
xTB level of theory589–591 starting from GFN2-xTB optimized reactant and product. TheGmRRHO values

Figure 8.9.: (A) GSM reaction energy path calculated for the Diels–Alder reaction of two cyclopenta-
diene molecules at the GFN2-xTB level of theory. (B) GmRRHO calculated with and without
previous optimization and by the SPH approach along the reaction coordinate with GFN2-
xTB. (C) The corresponding calculations carried out at the GFN-FF level of theory.

computed along the path at the GFN2-xTB level of theory are shown in Figure 8.9B. Optimization and
subsequent Hessian calculation on the reaction path trivially leads to a step function withGmRRHO val-
ues of ∼90.5 kcal mol−1 (reactant) and ∼99.5 kcal mol−1 (product), respectively. The increase inGmRRHO

is due to the loss of entropy within the [4+2] cycloaddition of cyclopentadiene by the conversion of low-
to high-frequency modes. Without any relaxation, theGmRRHO values almost linearly increase. Similar
to the results obtained by the reaction path Hamiltonian approach of Miller et. al.,587,592,593 however,
only small changes for small displacements around the two minima and a larger one in the TS region
(S-shaped curve) are observed for SPH calculations.
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In Figure 8.9C, the corresponding thermostatistical contributions were calculated at the GFN-FF level
of theory. The FF topology was recomputed for every point of the reaction path. This is a challeng-
ing test because the dissociation of chemical bonds is not easily possible with FFs and discontinuous
PES may arise. In fact, GFN-FF optimizations with geometries 13 and 14 as starting points yield in-
termediates with one single bond between the two cyclopentadiene monomers. The constrained SPH
calculations prevent these arti�cial products and yield the expected S-shaped curve which is in much
better agreement with the one from GFN2-xTB as compared to the HESS treatment. This is a very en-
couraging result enabling the application of the very fast FFs even in cases for which they are originally
not suited. The much higher ∆GmRRHO values by the HESS approach in comparison to SPH calculations,
especially before the TS, are resulting from a large number of imaginary modes which are absent in the
SPH treatment.

8.4.4. Transition State Example

For transition states52,594 in general, the question arises, whether semiempirical SPH calculations are
capable of reproducing the DFT imaginary frequency and transition normal mode, when starting from a
DFT TS structure. Therefore, frequency calculations were performed for the TS of the trans addition of
dihydrogen to a pincer Ir(I) complex595,596 as an example. Figure 8.10 shows the reaction, where trace
amounts of water facilitate the proton transfer reaction steps. The TS structure was obtained at the

Figure 8.10.: Trans addition of dihydrogen to a pincer Ir(I) complex at the TPSS-D3/def2-SVP level.

TPSS-D3-def2-TZVP level of theory in Ref. 591. HVF calculations at the same level yield one imaginary
frequency at i256.1 cm−1. Starting from the DFT structure OHESS, HESS, and SPH calculations were
performed at the GFN2-xTB level of theory. The frequencies of the �ve lowest vibrational normal
modes for each calculation are listed in Table 8.2. As expected, the imaginary transition frequency
vanishes upon optimization by the OHESS approach. The HESS calculation leads to more than one
imaginary frequency as the DFT TS structure is no stationary point on the unconstrained GFN2-xTB
PES. SPH calculations on the other hand yield only one imaginary frequency at i183.6 cm−1 and the
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corresponding normal mode closely reproduces the DFT vibrational mode. Hence, SPH calculations can
be used to determine if the DFT TS optimization found the correct TS without computing the costly
DFT Hessian. Furthermore, the corresponding normal mode can be used to initiate an IRC at the DFT
level of theory.

Table 8.2.: Vibrational frequenciesa for the �ve lowest vibrational normal modes, calculated for the
transition state of the Ir(I) complex by TPSS-D3/def2-SVP and GFN2-xTB. At the SQM level
results are shown for OHESS, HESS, and SPH calculations.

TPSS-D3/def2-SVP GFN2-xTB
Mode OHESS OHESS HESS SPH

1 i256.1 26.6 i589.6 i183.6
2 50.6 29.7 i482.3 117.8
3 60.5 36.4 i196.1 125.4
4 80.3 41.5 54.7 131.8
5 116.9 42.3 59.7 143.4
a Values are given in cm−1.

8.4.5. MD of Crambin

Molecular dynamics (MD) simulations give access to thermally averaged structures of biomacromole-
cules.274,597,598 The SPH approach can be used as a new and convenient tool to properly average free
energy contributions over snapshots along MD trajectories. In this application, the reference structure
does not necessarily refer to a structure from higher-level theoretical treatment but one that may di�er
from Re additionally by the thermal e�ects introduced by the MD. This is shown here for the example of
a GFN2-xTB/GBSA(H2O) MD simulation on crambin (100 ps length with a 4 fs time step at an increased
hydrogen mass of 4 amu). The input geometry was taken from the protein database and is illustrated
in Figure 8.11A. Snapshots were taken in 1 ps steps after an equilibration phase of 50 ps. The calculated
free energies are shown in Figure 8.11B (GFN2-xTB) and 8.11C (GFN-FF).

In general, the computation ofGmRRHO without any relaxation is not recommended for larger, �exible
systems. In this case, typically more than 50 imaginary HVF (up to i600 cm−1) are observed for the
snapshots. The resulting loss of Svib leads to about 10–15 kcal mol−1 larger GmRRHO values at 298 K
compared to computations on fully relaxed structures for both GFN methods. For GFN2-xTB, OHESS
yields a mean GmRRHO value of 3006 kcal mol−1 with a standard deviation (SD) of 1.6 kcal mol−1. The
corresponding SPH results are very similar with a mean of 3001 kcal mol−1 and SD of 2.0 kcal mol−1.
The increase in entropy (decrease in GmRRHO) from optimized to thermally equilibrated structures as
obtained by the SPH calculations seems to be realistic and is intuitively understandable if many higher-
energy conformational states are thermally populated. GFN-FF GmRRHO calculations on the respective
GFN2-xTB MD snapshots are shown in Figure 8.11C. Here, re-optimization results in GFN-FF minimum
snapshot structures, which strongly di�er from the thermally equilibrated GFN2-xTB input structures,
and GmRRHO values are far o� the GFN2-xTB result. The GmRRHO values calculated without relaxation
show large jumps along the trajectory manifested in a large SD of 4.8 kcal mol−1. In contrast, SPH
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Figure 8.11.: (A) Molecular structure of crambin, the PDB identi�er is given in bold. (B)GmRRHO values
calculated with and without relaxation and by the SPH approach at the GFN2-xTB level of
theory for 50 MD snapshots. (C) The corresponding calculations computed at the GFN-FF
level of theory on the same GFN2-xTB snapshots.

calculations closely approach the GFN2-xTB result with a mean GmRRHO value of 3049 kcal mol−1 and
SD of 2.8 kcal mol−1. This suggests a general procedure for obtaining averaged GmRRHO values for
�exible systems based on low-level SPH calculations on higher-level MD trajectories. Replacing the
Hessian calculation at the GFN2-xTB level of theory by a GFN-FF calculation additionally leads to
signi�cant savings in computation time by about two orders of magnitude.

8.4.6. IR Spectra

The performance of the semiempirical GFN tight-binding and force-�eld methods for the simulation of
IR spectra in direct comparison with experimental gas phase data was recently investigated in Ref. 546.
As IR spectra are quite sensitive to structural changes,599 the SPH approach seems to be promising to
further improve the accuracy of SQM and FF methods by constraining to the higher-level structure. An
example is given in Figure 8.12, where the IR spectrum of the uracil dimer is calculated at the GFN-FF
level of theory in comparison to the B97-3c reference spectrum. In contrast to the DFT result, GFN-FF
favors a hydrogen bonded dimer which is lower in energy by ∼9 kcal mol−1 compared to the π -stacked
conformation. The B97-3c reference and the fully relaxed GFN-FF structures are shown in Figure 8.12A.
The e�ect of re-optimization on the GFN-FF IR spectrum is signi�cant, as the N-H stretching intensity
is arti�cially ampli�ed by the hydrogen bonding which is absent in the DFT structure, resulting in
a spectral match score between DFT and GFN-FF of just 0.26 (unity means perfect agreement of the
two spectra while zero corresponds to absolutely no agreement). The GFN-FF IR spectrum without
relaxation is shown in Figure 8.12B. Here, the structure is naturally identical with the DFT structure,
but two signi�cant imaginary modes arise for this non-Re structure and the N-H stretching consists
of three peaks instead of two as in the DFT spectrum. Overall, this leads to a slightly better match
score of 0.32. In contrast, GFN-FF SPH calculations maintain the input geometry as shown in Figure
8.12C, whilst eliminating all imaginary frequencies. This IR spectrum matches the DFT computed in-
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Figure 8.12.: IR spectra for the uracil dimer calculated by GFN-FF in comparison to the reference B97-3c
spectrum. (A) IR spectrum calculated after re-optimization. (B) Without relaxation on the
B97-3c structure. (C) SPH calculation. Structural overlays of the DFT structure and the
GFN-FF re-optimized structures are shown as blue overlays.

tensity of the N-H stretching mode better and the corresponding doublet splitting is also qualitatively
reproduced, which improves the match score to a value of 0.38. Hence, for large structural changes
upon re-optimization, SPH calculations represent a clear improvement over the conventional OHESS
approach for the simulation of IR spectra in comparison to the DFT reference.

Figure 8.13.: (A) IR spectrum of a silver containing transition metal complex (CSD ID in bold) calculated
by GFN2-xTB in comparison to the reference B97-3c spectrum. The GFN2-xTB spectra ob-
tained without relaxation, after unconstrained re-optimization, and with the SPH approach
are given. (B) Structural overlay of the DFT structure and the fully relaxed GFN2-xTB
structure in blue. (C) Structural overlay of the DFT structure and the SPH structure in
blue.

But even for less signi�cant di�erences between high- and low-level PES, SPH calculations lead to
some improvement over the conventional approach. Figure 8.13A shows the IR spectrum of a silver-P4

transition metal complex with a weakly coordinating aluminum anion (P4)AgAl[OC(CH3)(CF3)2]4.221,600

The GFN2-xTB optimized structure is shown in Figure 8.13B with a structural RMSD of 1.23 Å in com-
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parison to the DFT structure while by construction, the SPH structure has the default RMSD of just
0.10 Å and is shown in Figure 8.13C. Without relaxation, a match score of 0.67 is obtained, whereas
unconstrained re-optimization yields a match score of 0.84. The best agreement with the reference IR
spectrum is obtained by SPH calculations with a match score of 0.86. Even though smaller than in the
previous example, an improvement could yet be achieved by the SPH approach. As pointed out in Ref.
546, the decisive factor for high match scores with low-level methods is the intensity, rather than the
HVF. Since SPH calculations improve mainly the latter, only slightly increased match scores can be
expected if the structural di�erences are small.

8.5. Conclusion

In this work, we introduced the new concept of single-point Hessian (SPH) calculations for thermosta-
tistical free energy contributions for general non-equilibrium geometries within the modi�ed RRHO
approximation and the computation of IR spectra. The HVF obtained from the SPH method improve
the accuracy of SQM or FF computedGmRRHO values in comparison to high-level DFT reference values
if a corresponding DFT structure is used as input. Multi-level approaches for the calculation of free en-
ergies are thus the prime �eld of application. The key ingredient is the application of a biasing potential
given as Gaussian functions expressed with the structural RMSD in Cartesian space to retain the input
geometry. E�ects on the HVF caused by the applied constraining potential are approximately removed
by an empirical scaling function, which employs only one global parameter derived from normal mode
expectation values in order to recover the unconstrained frequencies. The whole procedure is fully
automatic and general. Moreover, it requires no further user input other than reference coordinates.

The performance of the SPH method was tested for GmRRHO values in comparison to calculations
with and without structure relaxation at low theoretical level. High-level DFT input structures and
GmRRHO values computed at the same DFT level served as reference. On a versatile test set composed
of the S30L, S22, and L7 noncovalent interaction benchmarks, GFN2-xTB SPH calculations reduced the
mean absolute deviation of ∆GmRRHO from 0.69 kcal mol−1 with the conventional OHESS approach to
0.59 kcal mol−1 in comparison to DFT reference values. The two main reasons for the improvement are
the reduced structural RMSD between the DFT input and SQM optimized structure (better rotational
entropy) and the much smaller number of imaginary frequencies. We can only speculate on a secondary
general “shaping” e�ect of the biasing potential on the low-level PES and concomitantly improving the
HVF.

For two model reaction paths (nuclear displacements around Re for (S)-camphor and the Diels–Alder
reaction of two cyclopentadiene molecules), SPH calculations showed the correct behavior of small de-
viations inGmRRHO for small changes around the Re geometry and an increase for larger distortions. At
the GFN-FF level of theory, SPH calculations additionally solved the problem of arti�cial intermediates
near the transition state of the Diels–Alder reaction.

In the context of MD simulations, it was shown that SPH calculations give access to GmRRHO values
for thermally equilibrated MD snapshots in a robust and automated way. The computational savings are
signi�cant (two orders of magnitude) if GFN-FF SPH are computed on GFN2-xTB snapshots instead of
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always taking GFN2-xTB. Improvements were also observed for the simulation of IR spectra. For the π -
stacked uracil dimer, which converts to a hydrogen bonded conformation upon GFN-FF re-optimization
as required by the standard OHESS approach, SPH calculation signi�cantly improved the match score
with the corresponding DFT IR spectrum by almost 50 % compared to the relaxed calculation. Even
for the challenging case of predicting the IR spectrum of a transition metal complex, SPH calculations
slightly improved the match score with the DFT spectrum in comparison to the standard approach of
unconstrained re-optimization.

In general, calculations of GmRRHO values from HVF without relaxation should be avoided as the
results are often totally arti�cial due to the frequent occurrence of signi�cant imaginary modes. The
reason that sometimes reasonable values were calculated is attributable to the modi�ed RRHO ap-
proach, which partly corrects for inaccurate low-lying frequencies. In fact, RRHO calculations on non-
equilibrium structures are generally useless yielding totally unreasonable results. Although this seems
to be common sense, many computational chemistry textbooks do not provide a detailed explanation
of this issue and we hope to shed light on this.

In comparison to the conventional approach of re-optimizing the input structure at lower, e.g., SQM
level prior to the Hessian calculation, the SPH approach achieved improvements in almost every test
case. The computational overhead required for the automatic determination of the optimum bias
strength is moderate, i.e., the SPH treatment is typically slower by a factor of 1.5 compared to a re-
optimized Hessian calculation. Thus, SPH calculations represent a step towards higher accuracy in
routine computations of free energies or IR spectra for large systems with e�cient SQM or FF meth-
ods. The implementation in the xtb program package is open source and a transfer to other codes and
QM/FF methods is easily achievable.
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9. Modeling of IR Spectra of Condensed-Phase Systems

Abstract An e�cient approach for an accurate quantum mechanical (QM) modeling of infrared (IR)
spectra of condensed-phase systems is described. An ensemble of energetically low-lying cluster struc-
tures of a solute molecule surrounded by an explicit shell of solvent molecules is e�ciently generated
at the semiempirical tight-binding QM level and then reoptimized at the density functional theory
level of theory. The IR spectrum of the solvated molecule is obtained as a thermodynamic average of
harmonically computed QM spectra for all signi�cantly populated cluster structures. The accuracy of
such simulations in comparison to experimental data for some organic compounds and their solutions
is shown to be the same or even better than the corresponding QM computations of the gas phase IR
spectrum for the isolated molecule.

9.1. Introduction

The infrared (IR) absorption spectrum is a unique characteristic of a chemical substance, which is one of
the main reasons for the wide applicability of IR spectroscopy in chemistry and related areas of science.
An IR spectrum contains information not only about the electronic and spatial structure of the molecule
but also about its intermolecular interactions. Modern spectroscopic techniques allow IR experiments
to detect the response of the molecular system to subtle changes in the surroundings. This richness of
information is accompanied by increased complexity in the interpretation of the experiment, which is
often impossible without computational analysis/modeling of IR spectra. The latter task is di�cult and
truly nonstandard for condensed-phase systems representing an overwhelming majority of samples
experimentalists deal with.

Quantum chemical computations, widely used for the simulation and interpretation of gas phase IR
spectra, are also applicable to molecular crystals, provided that single-crystal X-ray data on their struc-
ture are available.601,602 In the more common case of liquids, solutions, and amorphous substances,
where information on the supramolecular or dynamical structure of condensed matter is limited, peri-
odic ab initio molecular dynamics (AIMD)603,604 represent a rather rigorous method for IR spectra com-
putations. However, this approach involves a huge amount of computer resources while the assignment
of IR bands to nuclear motions (spectrum interpretation) is not straightforward and requires additional
e�orts.605 Thus, less-demanding approaches combining a quantum mechanical (QM) description of the
target molecule responsible for the spectral signal and classical molecular mechanical treatment of the
environment, that is, mostly the solvent, come into prominence.606–608 However, the accuracy of the
theoretical spectra strongly depends on the quality of the applied force �elds,608 which are furthermore
not parameterized for many, more uncommon elements, (e.g., neat organometallic compounds). Fur-
ther simpli�cation of the theoretical treatment of the environmental e�ects, for example, by implicit
polarizable continuum models, produces unsatisfactory results in particular for the computed IR inten-
sities.609 Furthermore, typical continuum models are available only for common solvents and hence
many pure liquids cannot be treated adequately.

Here, we propose a new, rather general approach, in which the system under consideration is rep-
resented by an ensemble of molecular clusters. Hereby, the semiempirical GFN2-xTB93 QM method
is applied to generate structures of a solute surrounded by explicit solvent molecules forming solva-
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tion shells. By taking the solute molecule also as a solvent, neat liquids or amorphous solids can be
described, and the extension to arbitrary mixtures is straightforward. All available GFN methods96 are
consistently parameterized for the entire periodic table up to radon (Z ≤ 86). Full-structure optimiza-
tion of the GFN2-xTB-generated clusters at the low-cost B97-3c237 level of density functional theory
(DFT) provides equilibrium structures suitable for standard vibrational frequency calculations. The
B97-3c method (internally employing a reasonably large modi�ed TZVP atomic orbital (AO) basis set)
has been recently shown610 to perform very well for IR spectra computations in the usual harmonic
approximation (which is also applied in this work). The IR spectrum of the system is then calculated as
a thermodynamic average of the individual QM spectra computed for each complete cluster at the DFT
level. This approximation was tested by comparison of calculated IR spectra of clusters, comprising
an organic molecule (“solute”) surrounded by N solvent molecules (CCl4 or CS2) with the experimen-
tal spectra of the corresponding dilute solutions in these solvents featuring a moderately transparent
mid-IR spectral range. N was chosen so that the �rst solvation shell of the solute molecule was formed.
Typical values of N ≈ 10–20 were taken for the test molecules described in Appendix A9, though in
some cases, we intentionally increasedN to estimate the possible in�uence of a further increased cluster
size (vide infra). Neat liquids or amorphous solids were modeled in a similar way. In order to minimize
�nite cluster size e�ects in the latter case, the IR spectrum of the central “solute” molecule was sepa-
rated from the spectra of the surrounding molecules and compared to the corresponding experimental
spectra of the neat compound. To achieve such separation, atomic masses for all species in the cluster,
except the “solute”, were increased to 400 amu, and thus, their spectra were shifted to the low-frequency
region.

9.2. Methodology

9.2.1. Cluster Generation

The clusters are generated with a new algorithm termed quantum cluster growth (QCG).611 The QCG
algorithm combines a force-�eld based docking algorithm (xTB-IFF466) with the fast and robust semiem-
pirical QM method GFN2-xTB93 to add a given number of solvent molecules iterative at energetically
favorable positions around a given solute. Molecular dynamics (MD) simulations of the thereby gen-
erated cluster followed by full geometry optimizations of each snapshot generate a large ensemble of
energetically low lying clusters. Thereof, the most populated representatives serve as the starting point
for the calculation of IR spectra in solution. QCG consists of the following steps:

1 One solvent molecule is added to the solute with xTB-IFF. At this point, all structures are treated
rigid, i.e., only intermolecular degrees of freedom are optimized.

2 The complex is fully optimized on the GFN2-xTB level of theory.

3 Steps 1–2 are repeated until a su�cient (or selected) number of solvent molecules are added.

4 MD simulations are performed for 50 ps at 298 K on the generated cluster under gas phase con-
ditions.
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5 Every snapshot (typically about 500 in total) is fully optimized on the GFN2-xTB level of theory
and energetically sorted.

6 The �nal cluster ensemble consists of the lowest clusters found within a 6 kcal mol−1 energy
window.

A relative di�erence of 3 kcal mol−1 between di�erent clusters in the ensemble already leads to a neg-
ligible Boltzmann population of less than 1 % at room temperature. Only clusters that are populated by
more than 10 % are taken into account for the IR spectra calculations.

9.2.2. Computational Details

All calculations were carried out using the Turbomole 7.2 program package.612 Following full geom-
etry optimizations at each level of theory, harmonic vibrational frequencies and IR intensities were
calculated analytically for the DFT methods employed in this study, corresponding to the B97-3c237

generalized gradient approximation (GGA) functional with the polarized valence-triple-zeta basis set
mTZVP.326 Note, B97-3c applies the D3 London dispersion correction in the Becke–Johnson sampling
scheme,252,253 but additionally a short-range bond length correction potential as well as a speci�c ad-
justment of the electronic parameters in the B97 Taylor expansion. We have shown very recently,610

that B97-3c, being much faster than the well-recognized hybrid functional B3LYP, o�ers similarly good
quantitative performance in comparison to experimental data for relative IR intensities and fundamen-
tal frequencies (ν ≤ 2200 cm−1) for isolated molecules. Infrared intensities were computed in the double
harmonic approximation, ignoring cubic and higher force constants and omitting second and higher
order dipole moment derivatives. To minimize the in�uence of this neglect of the anharmonicity e�ects
on a comparison of the computed and experimental (anharmonic) intensities, the bands of the most an-
harmonic CH stretching modes were excluded. Moreover, only experimental IR bands reliably assigned
to fundamental vibrations were chosen for the comparison. The harmonic frequencies obtained using
the B97-3c computations were compared with their experimental counterparts directly without any
frequency scaling. The correlation between experimental and theoretical frequencies was based on a
manual normal mode assignment of individual bands. The shown spectra represent the experimen-
tally measured or computed absolute intensities plotted against experimental or non-scaled computed
frequencies, respectively, with a Lorentzian broadening (fwhm = 30 cm−1).

9.3. Results and Discussion

Cluster generation is performed with the QCG algorithm combining a force �eld-based rigid-structure
docking algorithm with a subsequent fast and robust semiempirical QM GFN2-xTB treatment to add a
given number of solvents molecules at energetically favorable positions around a solute. MD simula-
tions followed by full geometry optimizations of each snapshot generate a large ensemble of structures.
The �nal ensemble consists of the lowest energy clusters found within a 6 kcal mol−1 energy window.
The number of clusters usually varies from 10 to 20 depending on the system. Clusters with a popula-
tion of more than 10 % are included for the IR spectra (an example for individual, weighted spectra is
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given in Appendix A9). Standard deviations (SD) of the averaged vibrational frequencies are typically
less than 5 cm−1 while for the intensities, SD values usually did not exceed 10 % of the corresponding
absolute intensities. In the majority of cases, the deviations of frequencies and intensities computed for
the energetically lowest-lying cluster from the thermodynamically averaged values over all the clusters
did not exceed the SD.

Molecules used to test our approach are chosen based on two principles: (1) availability of reliably
interpreted IR spectra in gas and condensed state with quantitatively measured frequencies and inten-
sities; (2) conformational rigidity of compounds to avoid di�culties with averaging simulated spectra
of di�erent conformers. Conformationally �exible species can be treated similarly by an initial QM-
based conformational search using a continuum model as discussed recently,60 followed by subsequent
cluster generation for individual conformers and proper averaging of their spectra. The molecules cy-
clohexane (C6H12), cyclohexane-d12 (C6D12), 1,4-dioxane (C4H8O2), 1,4-dioxane-d8 (C4D8O2), acetone
(CH3COCH3), acetonitrile (CH3CN), tetrahydropyrane (C5H10O), pyridine (C5H5N), benzene (C6H6),
benzene-d6 (C6D6), methanol (CH3OH), and methanol-d4 (CD3OD) were considered. These molecules,
except methanol, do not form hydrogen bonds in neat liquids/solids or CCl4/CS2 solutions. Never-
theless, their IR intensities change signi�cantly when going from the gas to a condensed state. For
example, the solution of nonpolar cyclohexane-d12 in an innocent solvent like CCl4 results in an al-
most two-fold increase of absolute IR intensities (A) of some bands (Table 9.1). Many attempts have

Table 9.1.: Experimental IR Intensities (A, km·mol−1)613 of cyclohexane-d12 in the gas phase and in
CCl4/CS2 solution and the corresponding B97-3c computed values. Values are given in cm−1.

Integration range 1240–1130 1130–1045 1045–950 950–880 770–600 450–350

Agas(exp.) 6.4 6.5 5.9 3.5 3.5 0.4
Agas(comp.) 9.4 7.8 6.4 4.0 4.4 0.4
Asol.(exp.) 4.6 8.7 5.4 4.6 5.6 0.8
Asol.(comp.) 6.1 (0.3)a 9.9 (0.5)a 4.7 (0.4)a 4.5 (0.1)a 8.8 (2.0)b , 8.3 (1.0)c 0.7 (0.1)a
Asol./Agas(exp.) 0.7 1.4 0.9 1.3 1.6 2.0
Asol./Agas(comp.) 0.7 (0.04)a 1.3 (0.1)a 0.7 (0.1)a 1.1 (0.04)a 2.0 (0.5)b , 1.9 (0.2)c 1.8 (0.2)a
Asol./Agas(COSMO) 1.2 1.2 1.2 1.4 1.5 2.0

a for 1:19 C6D12/CCl4 ratio.
b for 1:20 C6D12/CS2 ratio.
c for 1:30 C6D12/CS2 ratio.

been made to explain the ratio of band intensities in solution and gas phases assuming the absence of
speci�c intermolecular interactions. In particular, according to the Polo–Wilson equation614

Asol.

Agas =

(
n2 + 2

)2

9n , (9.1)

where n is the refractive index of the medium, the intensity enhancement should be 1.3 for CCl4. Sol-
vent e�ects can be modeled by a QM description of a solute including a classical polarizable continuum
within the framework of the COSMO model.215 This approach predicts an intensi�cation of each IR
band by factors from 1.2 to 2.0 while experimental Asol./Agas ratios for cyclohexane-d12 range from 0.7
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to 2.0 (Table 9.1). The values of A(cluster)/A(isolated molecule) computed with our cluster model also
varies from 0.7 to 2.0 and reproduce all qualitative trends (increase or decrease of A) found experimen-
tally for each pair of compared IR bands (Table 9.1).

The excellent quality of the cluster modeling approach for C6D12 is demonstrated in Figure 9.1. The
main redistribution of relative intensities of the IR bands found in experimental spectra in passing
from gas to nonpolar solution is reproduced by the simulations. In contrast, the COSMO model yields
qualitatively wrong condensed state-induced changes for relative intensities of IR bands in the spectral
region of 1200–900 cm−1.

Figure 9.1.: (A) Experiment for gas (black) and B97-3c simulations for the isolated molecule (red). (B)
Experiment for CCl4/CS2 solutions (black) and the corresponding cluster (red) comprising
one C6D12 and 19 CCl4 molecules (or 20 CS2 molecules for 730–680 cm−1 range) or COSMO
modeling (blue).

The same is true for the comparative analysis of the IR intensities of polar acetone in the gas phase
and in an amorphous solid sample (Figure 9.2, Table 9.2). Gas/amorphous-solid intensity ratios collected
in Table 9.2 demonstrate that the observed failure is not speci�c for the COSMO model but is similarly
observed for other widely used continuum methods like PCM207–209 or SMD210. Thus, the problem
seems to be unrelated to the di�erent treatments (or entire neglect) of cavitation/dispersion contribution
to solvation but instead is pointing to de�ciencies in the electrostatic description.

The results obtained for other test molecules are collected in Tables A9.1–A9.3 (Appendix A9) and
illustrate a similarly good performance of our approach. The general agreement between absolute IR
intensities computed for the whole series of cluster models and their experimental condensed-phase
counterparts is practically the same as in the case of the isolated gas phase molecules (Figure 9.3). Even
slightly better results are obtained for relative IR intensities (Figure A9.2).

Our cluster model also nicely reproduces dramatic di�erences in both the intensities and vibrational
frequencies of liquid methanol (CH3OH) and methanol-d4 (CD3OD) compared to their vapors,616,617

which are caused by formation of strong hydrogen bonds in the liquid state (Figure 9.4 and Table
A9.3). The huge intensi�cation and pronounced red shift of the hydroxyl group stretching bands
(νOH /νOD ) are reproduced already by the smallest clusters, modeling the �rst solvation shell of the
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Figure 9.2.: IR spectra of acetone in the spectral region of 1800–400 cm−1. (A) Experiment for gas (black)
and amorphous solid at 100 K (red). (B) B97-3c simulations for the isolated molecule (black),
cluster comprising 11 acetone molecules (red), and COSMO model (blue).

Table 9.2.: Experimental IR intensities (A, km·mol−1) of acetone in gas613 and amorphous low-
temperature solid615 and the corresponding B97-3c Computed Valuesa . Values are given
in cm−1.

Frequency613 1738 1456–1438 1363–1360 1218 1093–1067 896 779 528–483

Agas(exp.) 145 (5) 35 69 66.5 (1.5) 4.5 (0.2) 7.6 (0.3) 1.9 (0.4) 17
Agas(comp.) 170.2 56.4 81.9 77.9 3.4 11.5 2.2 12.8

Integration range615 1740–1680 1500–1380 1380-1335 1250–1210 1100–1080 940–840 820–760 545–524

Asol.(exp.) 161 55 84 44 9.5 5.0 1.0 12.8
Asol.(comp.)b 170 (9) 67 (6) 82 (4) 49 (3) 12 (2) 7 (1) 1.4 (0.4) 12.2 (0.6)
Asol./Agas(exp.) 1.1 1.6 1.2 0.7 2.1 0.7 0.5 0.8
Asol./Agas(comp) 1.0 1.2 1.0 0.6 3.4 0.6 0.6 0.9
Asol./Agas(COSMO) 2.1 1.9 2.0 1.4 3.7 1.2 2.0 1.7
Asol./Agas(CPCM) 1.8 1.7 1.7 1.4 3.1 1.3 1.6 1.6
Asol./Agas(IEFPCM) 1.8 1.7 1.6 1.4 3.0 1.3 1.6 1.6
Asol./Agas(SMD) 1.8 1.9 2.0 1.4 4.5 1.5 1.6 1.7

a In parentheses: SD for experimental measurements or cluster computations.
b For cluster comprising 11 acetone molecules.

central methanol molecule. In particular, the red shifts of νOH /νOD computed in this simplest model,
which comprises 20 methanol molecules (∆νOH/OD= 292/210 cm−1), are very close to the corresponding
experimental values (318/224 cm−1). The same is true for the computed absolute intensity AνOH /AνOD :
601/319 km·mol−1 versus experimental 585/310 km·mol−1. Increase of the cluster size to 30 molecules
results in an increase of the computed red shifts ∆νOH/OD to 483/349 cm−1 caused by cooperative
strengthening of hydrogen bonds. Further increase of the number of H-bonded methanol molecules
in the cluster practically does not in�uence the ∆νOH/OD values.

The dependence of theAνOH /AνOD value on the cluster size is more pronounced: 631/334 and 790/407
km·mol−1 for 30 and 40 methanol molecules, respectively. The computedAνOH /AνOD and νOH /νOD val-
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Figure 9.3.: Correlation plot of absolute IR intensities (km·mol−1) calculated for the isolated molecules
of cyclohexane, cyclohexane-d12, 1,4-dioxane, 1,4-dioxane-d8, acetone, tetrahydropyrane,
pyridine, benzene, and benzene-d6 (A) and corresponding cluster models (B) vs experimen-
tal gas phase (A) and condensed-phase (B) intensities, respectively. R, correlation coe�cient;
SD, standard deviation; and n, total number of data included in the analysis.

Figure 9.4.: IR spectra of CH3OH in the spectral region of 4000–800 cm−1. (A) Experiment for gas (black)
and B97-3c simulations for isolated molecule (red). (B) Experiment for liquid (black) and the
corresponding cluster model (red) comprising 20 methanol molecules.

ues are also a�ected by a rather strong coupling of vibrations of neighboring methanol molecules (see
Appendix A9 for details). Nevertheless, both the coupling and the cooperative strengthening of the
H-bonds in the larger clusters produce only minor re-distributions of the relative IR intensities and
moderate shifts of the bands in the simulated spectra, still allowing a reliable correlation of the com-
puted and experimental bands (Figure A9.1). The same is true for the possible in�uence of anharmonic-
ity e�ects hampering direct comparison of the computed (harmonic) and experimental (anharmonic)
IR spectra. According to recent experimental618 and quantum chemical619 data, anharmonicity e�ects
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on the ∆νOH/OD and AνOH /AνOD values are similar for the isolated methanol molecule and its various
H-bonded clusters and does not exceed 20 %.

To rationalize possible main reasons for the condensed state induced IR intensity variations in the ab-
sence of H-bonding, which are well described by our cluster models (vide supra), we discuss the follow-
ing factors: (1) geometry changes; (2) intermolecular charge transfer; (3) charge redistribution within
the solute molecule; and (4) changes of normal modes of the solute molecule induced by the solvent. Ge-
ometry e�ects turned out to be rather small. For example, CC and CH bond lengths in cyclohexane/CCl4
clusters shorten by less than 0.003 Å relative to the gas phase, and bond angles change by ≤ 0.1–0.2◦.
Charge transfer between solute/solvent molecules in the clusters is rather small, for example, ≤ 0.01
electrons for relatively weakly interacting systems like 1,4-dioxane or cyclohexane in CCl4. Changes
of Mulliken atomic charges, as a qualitative measure of electron density redistribution, within a solute
molecule in the cluster compared to the gas are somewhat larger with about 0.05 electrons at most (up
to 0.07 in methanol clusters). Normal modes remain qualitatively the same irrespective of the state,
but some atomic amplitudes vary within ca. ±20 % in passing from the isolated molecule to the same
molecule in a cluster. An example illustrating the above e�ects of atomic charge and normal mode
changes on IR intensity variations can be found in Appendix A9, Table A9.1. Clearly, factors (3) and
(4) can simultaneously in�uence the molecular dipole moment derivative determining the IR intensity
of the vibration. Tentatively, we can state that factor (4) is most relevant, at least for relative inten-
sities. For example, Table A9.4 in Appendix A9 demonstrates that more pronounced cluster-induced
”deformation” of the normal modes of cyclohexane-d12 is accompanied by stronger relative intensity
change.

In order to assess more generally the accuracy of the cluster approach for condensed state vibrational
frequencies, we included, in addition to methanol and methanol-d4, frequencies of acetone,613,615 which
also undergo rather strong shifts upon the “vapor-amorphous solid” transition but for reasons di�erent
from the H-bond formation. To minimize the in�uence of the neglected anharmonicity e�ects, the bands
of the most anharmonic CH/CD and OH/OD stretching modes were excluded. The agreement between
the frequencies computed for cluster models of these compounds and their experimental condensed-
phase counterparts is the same as in the case of the isolated gas phase molecules (Figure A9.3).

It should be noted that the in�uence of the condensed state on relative IR intensities can also be
dramatic even in the absence of H-bonds, which is demonstrated by the example of acetonitrile.620,621

Again, a minimal-size cluster model qualitatively reproduces the very strong intensi�cation of the νCN
band at ca. 2300 cm−1 relative to the CH3-bending bands at ca. 1500 cm−1 (Figure 9.5). The performance
of our approach is rather independent of the cluster size (11, 15, or 21 acetonitrile molecules, as shown
in Figure 9.4).

Fast convergence of the quality of computed IR spectra with the cluster size is found for all studied
systems and this is further demonstrated in Appendix A9, for the example of modeling liquid benzene.
This enables a huge reduction of the computational costs because clusters comprising only the �rst
solvation shell of a solute molecule produce IR spectra of su�cient accuracy (Tables 9.1, 9.2, A9.1–A9.3).
The wall time required for such computations carried out in parallel on 14 processors varies from about
2 hours (e.g., for clusters comprising 11 acetone molecules, Figure 9.2) to about 1 day (e.g., for 16 C6H12).
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Figure 9.5.: IR spectra of acetonitrile in the spectral region of 2500–750 cm−1. (A) Experiment620 for gas
(black) and B97-3c simulations for the isolated molecule (red). (B) Experiment621 for liquid
(black), and the corresponding cluster model comprising 11 (red), 15 (blue), and 21 (green)
acetonitrile molecules.

The entire procedure from cluster generation to the �nal spectrum took from one to four days of wall
computation time, which is suitable even for application in routine spectrochemical practice. Further
reduction of the required computational resources can be achieved in a simpli�ed work�ow, where the
IR spectrum is calculated only for the energetically most-stable cluster. The di�erence between this
and the thermodynamically averaged spectrum is mostly statistically insigni�cant. This is true even
for the case of methanol clusters, where minor variations of mutual positions of methanol molecules
in�uence the H-bonding pattern and produce di�erences of OH stretching frequencies of ca. 130 cm−1

accompanied with changes of IR intensities by ca. 200 km·mol−1 (see Appendix A9).

9.4. Conclusion

We presented an e�cient approach to an accurate QM modeling of IR spectra of condensed-phase sys-
tems. A fully automatic cluster generation algorithm is applied to construct an ensemble of explicit
solvated molecular clusters that are reoptimized at a reasonable but e�cient DFT level of theory. The
latter was represented by the B97-3c composite scheme but in principle could be replaced by any rea-
sonable quantum chemical method. For example, the B3LYP-D3/def2-TZVP level may yield a slightly
more accurate description, of course at a much higher computational cost (factor of 5–10). The IR spec-
trum of the system, calculated as a Boltzmann average of the DFT spectra, matches the corresponding
condensed-phase IR experiment better, or at least no worse, than the theoretical spectrum of the iso-
lated molecule compared to the gas phase IR spectrum. In order to simulate IR spectra in the condensed
phase with similar accuracy as for individual molecules in vacuum, it was su�cient to take into account
mainly the �rst solvation shell of the solute. This holds even for strongly hydrogen-bonded systems
like methanol and suggests that the vibrational modes and dipole moment derivatives are mainly in-
�uenced locally by their immediate surroundings. We hope that the outcome of our study will help
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researchers to simplify the modeling of common condensed-phase systems and furthermore represents
a practical tool for computational chemists for various analytical purposes.

Acknowledgments

Travel grant from scholarship programs of the German Academic Exchange Service (DAAD, personal
Ref. number 91577762) is gratefully acknowledged (S.A.K.).

159





Part V.

Final Summary and Conclusion

161





V. Final Summary and Conclusion

Science evolves rapidly and new areas of research continue to emerge. This is re�ected in the con-
stantly rising number of articles published in major scienti�c journals. As an example, the number of
published articles in the German general chemistry �agship journal Angewandte Chemie has almost
doubled within �ve years from 2009 to 2014.622 Chemical compounds that are state-of-the-art in en-
ergy storage, drug delivery, biocatalysis, and supramolecular chemistry always increase in molecular
size, complexity, and the variety of elements. This progress continues to pose new challenges to the
�eld of computational chemistry, which provides theoretical models to predict or interpret experimen-
tal results. Here, a valid and often chosen approach is to design a separate specially adapted method
for each chemical problem. Consequently, the number of theoretical models must be equally large and
versatile as the whole of chemistry. From a purist’s point of view, a general approach is more desirable,
where the underlying physics describes a broad range of molecules with equal accuracy. Following this
philosophy, the presented doctoral thesis was devoted to the development and application of e�cient
computational methods for describing large molecules with an elemental composition across the peri-
odic table. This thesis aimed to develop methods for the improvement of free energy calculations and
all underlying contributions (cf. Section 2.3) or to make it possible for large molecules (> 1000 atoms)
in the �rst place.

The starting point was given by the recently introduced GFNn-xTB methods developed by Grimme
and co-workers, whose conception allows the fully quantum mechanical treatment of a wide range of
organic as well as inorganic systems (cf. Section 2.1.6). GFNn-xTB methods feature a full periodic table
parameterization and are thus applicable to a broad range of molecules. Nevertheless, the QM nature
limits the molecular size to roughly 1000 atoms for geometries, harmonic frequencies, and noncovalent
interaction energies. To extend the treatable molecule size scale even further, a generic force-�eld was
developed in the course of this thesis (Part II, Chapter 3), building upon the existing GFN framework. In
relation to the anticipated target properties, this FF method was termed GFN-FF.117 Formally, GFN-FF
can be regarded as a zeroth-order-only TB scheme, where the QM terms in form of extended-Hückel-
type theory (EHT) were replaced by classical bond, angle, and torsion terms. An exponentially damped
1/R term for the nuclear repulsion, a variation of the D4 dispersion correction, and a sophisticated elec-
trostatic interaction term based on the EEQ model completed the total GFN-FF energy expression (cf.
Section 3.2). In close accordance with the GFNn-xTB methods, mostly global and element-speci�c pa-
rameters for the entire periodic table up to radon (Z ≤ 86) were included in GFN-FF. With this generic FF
method at hand, new possibilities in the description of large and complex molecules opened up. Chap-
ter 3 started with a showcase of �ve large metal-organic frameworks, where none of them was fully
optimized before by any other method, due to either the sheer size or the complicated electronic struc-
ture. Here, the GFN-FF optimized structures showed excellent agreement with the experimental crystal
structure cutouts. A remarkable accuracy for a FF method was also achieved for the small to medium
sized transition metal complex structures of the TMG145 benchmark set,221 where the structural RMSD
of GFN-FF was close to the RMSD of GFN2-xTB. In the context of biomacromolecules, geometry op-
timizations were performed for the metallo-protein hemoglobin (∼10.000 atoms, RMSD = 1.02 Å) and
for an entire benchmark set of 70 organic peptide and protein structures.224 For the latter set, GFN-FF
showed about the same or even better accuracy as the special-purpose methods OPLS2005 and AMBER∗.
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The performance for noncovalent interaction energies was tested on standard benchmark sets, such as
the GMTKN55162 and the S30L.120 On average, GFN-FF yielded an accuracy for conformation and as-
sociation energies that was comparable to GFN1-xTB, only slightly worse than GFN2-xTB, and much
better than other SQM methods such as PM6-D3H4X and PM7. Even though GFN-FF was mainly �tted
to ab initio values of small and medium sized molecules, the transferability to large (bio-)metal-organic
compounds proved to be outstanding. This is mainly due to the sophisticated and physically motivated
interaction terms, which distinguishes GFN-FF from other force-�elds. GFN-FF provided throughout
Chapter 3 high universality paired with almost QM accuracy at high computational speed and hence,
a new quality standard was set for general FFs.

Part III of this thesis presented the application of GFN-FF along with the other GFNn-xTB methods
to interdisciplinary problems ranging from material science to structural biology. In Chapter 4, the fuel
storage, greenhouse gas capture, and drug delivery in porous (metal-)organic materials were modeled
by GFN methods. Therefore, optimal binding sites of H2, N2, CO2, CH3OH, and C6H6 in various metal-
organic frameworks and porous organic cages were determined by the fully automated combination
scheme of GFN-FF and CREST.273 Re-optimization of the structure ensembles at the B97-3c level of
theory delivered a versatile test set of 117 di�erent gas–cage combinations. It was demonstrated that
GFN methods, in general, reproduce the DFT reference values (PBE0-D4/def2-TZVP) remarkably well
and that GFN-FF reaches a comparable accuracy as the GFNn-xTB methods, whilst being two orders
of magnitude faster. The study on gas adsorption in MOFs and POCs showed that GFN methods can
be applied reliably for the generation and energetic sorting of gas–cage association complexes, which
was impossible before for the given size of the investigated systems. The presented approach is already
used by other groups in the context of ethylene puri�cation.623

Combining CREST and GFN-FF as the underlying level of theory emerged as a powerful tool for
the automatic conformational space exploration. After successfully determining the gas binding sites
in porous materials, this scheme was further applied to the structure elucidation of biochemical sys-
tems. Therefore in Chapter 5, a new methodology (CREST/MD) was developed for the computation
of distance distributions in spin-labeled mutants of azurin and T4 lysozyme (cf. Chapter 5).274 EPR
distance measurements of the corresponding spin–spin distances served as a reliable reference. The
CREST/MD approach employed the default iMTD-GC algorithm at the GFN-FF level for the entire pro-
tein to determine the conformations of the MTSL label. This is to date the largest application of the crest
program for more than 2500 atoms in total. On the energetically lowest conformations subsequent GFN-
FF/GBSA(H2O) MD simulations were performed. The overall distance distribution was then calculated
as the Boltzmann weighted sum of distributions obtained from the MD trajectories of each evaluated
conformer. For the tested systems, CREST/MD showed superior accuracy and the deviation from the
experiment was on average less than 2 Å, which was within the experimental error. This clearly out-
performed other computational approaches such as MMM and mtsslWizard. The novel CREST/MD
approach provided valuable insights into the structures and dynamics of biomacromolecules and also
captured temperature e�ects. This opens up new possibilities for the structure elucidation of biochem-
ical systems in the future. A common binding motif in biological systems is the interaction of charged
amino groups with aromatic side chains.276 Thus, the so-called ion–π interactions, have an important
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contribution to the structure and function of proteins.275 In Chapter 6, the IONPI19 benchmark set
was introduced to apply and evaluate the most advanced computational methods for the di�cult ion–
π interactions.184 As references, (local) coupled cluster values were provided. It was shown that the
functional performance trend along Jacob’s ladder is generally obeyed and double-hybrid DFAs repro-
duce the CC reference values with the closest accuracy. Dispersion uncorrected DFT underestimated
ion–π interactions signi�cantly. The description of ion–π interactions with GFN methods was quite
su�cient, but the error was larger than for neutral systems. This study on charged systems including
ion–π interactions revealed two important �ndings. On the one hand, it showed that modern DFAs
are well suited to describe complex molecules (up to 133 atoms) with almost CC accuracy at a much
lower computational cost. On the other hand, the IONPI19 set showed that GFN methods are in general
backward compatible and hence, the presented molecules with an average size of 31 atoms are equally
well described as the much large systems in the previous Chapters 3–5.

Figure 9.6.: Summarized �ndings and achievements of this thesis. With CREST, the GFN-FF and GFNn-
xTB methods, SPH calculations and the GBSA solvation model, robust and e�cient methods
were evaluated for calculating free association energies of large molecules and all contribut-
ing terms.

Summarizing Parts II and III of this thesis, it was demonstrated that GFN-FF manages the balancing
act between complex inorganic frameworks, large biochemical proteins, and small charged systems.
This versatility is unique among all existing force-�elds. At the beginning of this thesis, the calculation
of association free energies for large molecules was set as an overall target. As an interim result, it can
already be recorded that the �rst two principal components to ∆G, namely accurate geometries and gas

165



V. Final Summary and Conclusion

phase association energies, can now be computed with su�cient accuracy by the GFN-FF and GFNn-
xTB methods for previously inaccessible molecule sizes (see Figure 9.6). The next consequent step to-
wards free energy computations was the incorporation of statistical thermodynamic e�ects. Therefore,
Part IV of this thesis evaluated and improved the quality of vibrational frequencies and thermodynamics
computed with GFN methods in the modi�ed RRHO approximation.

Due to the naming, GFN methods suggest to yield accurate harmonic frequencies and thermostatis-
tical contributions derived therefrom. Nevertheless, this was not extensively tested in Refs. 93–95,117.
In Chapter 7, the thermostatistical contribution within the mRRHO approximation was �rst computed
by the GFN methods for a test set composed of the S22,537 L7,538 and S30L120 benchmark set. For har-
monic frequencies and thermodynamic quantities, the GFN methods were able to convince with small
deviations from the DFT reference (B97-3c, PBEh-3c), whilst being three (GFN2-xTB) to �ve (GFN-FF)
orders of magnitude faster. Building on this observation, the molecular size was increased to study as-
sociation free energies of protein-drug binding. For rivaroxaban binding to factor Xa543 (∼5000 atoms),
GFN-FF/GBSA(H2O) yielded a binding free energy that was much closer to the reference than previous
QM studies.375 This result is highly encouraging for future studies of protein-drug binding by GFN-FF,
having in mind that the calculations took on average just one day on a standard desktop computer
with 4 CPUs. So far, the calculation of accurate frequencies and thermodynamics within the RRHO
approximation always required a full geometry optimization to eliminate spurious imaginary frequen-
cies. Hence, for general non-equilibrium geometries, the harmonic approximation becomes invalid and
thermodynamic quantities are not accessible. This was changed in Chapter 8, where the concept of
single-point Hessians was introduced. For the very �rst time, this novel approach enabled the calcu-
lation of GmRRHO values for distorted structures, reactions paths, transition states, and MD simulation
snapshots. Starting from DFT input structures, SPH calculations at the SQM (or FF) level showed to be
superior to conventional calculations on fully re-optimized geometries or unrelaxed structures. Thus,
SPH calculations represent the next step towards higher accuracy in routine calculations of free ener-
gies or IR spectra for large systems using e�cient SQM or FF methods.

Solvent e�ects in the context of IR spectra were additionally investigated in Chapter 9. The strict
separation of vibration and solvation e�ects according to Eq. 2.74 is only an approximation in solution
and the vibrational frequencies of a solute molecule depend on the solvent environment. So far, solvent
e�ects to energies, geometries, and frequencies were included only implicitly. In Chapter 9, the new
quantum cluster growth approach towards explicit solvation was applied. The QCG algorithm com-
bined an FF-based genetic docking algorithm with GFN2-xTB structure optimizations to generate ex-
plicitly solvated clusters of neat liquids. The explicit treatment of local solute–solvent hydrogen bonds
improved the quality of the calculated IR spectra signi�cantly in comparison to implicit solvent models
such as COSMO or SDM. This study showed that for the high accuracy of liquid phase IR spectra, the
inclusion of explicit solvent molecules is inevitable for polar solvents.

Summarizing Part IV of this thesis, also the remaining two contributions to ∆G, i.e., thermodynamic
quantities and solvation e�ects, were extensively tested and signi�cantly improved (see Figure 9.6). Just
like in the previous parts, the game-changing components were the GFN-FF and GFNn-xTB methods,
which enabled the e�cient calculation of thermodynamic properties. SPH calculation yielded further
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improvements in thermodynamic quantities, not only in terms of accuracy but also in terms of applica-
bility to general non-equilibrium geometries. Overall, it was demonstrated extensively that the GFN-FF
and GFNn-xTB methods combine robustness, e�ciency, and accuracy for the calculation of ∆G and all
its contributing terms. This unique combination provides access to large molecules, versatile in their
elemental composition, that could not previously be described with such high accuracy. Yet, there is
still much to be done in the research �eld of simpli�ed methods and numerous challenges remain.

In total, the GFN methods consist of three SQM and one FF method. Thus, the next consequent
step is their mutual combination within so-called QM/MM techniques,624 which were rewarded with
the Nobel prize in 2013.625,626 FF methods, and GFN-FF is no exception, are unable to describe the
changes in the electronic structure of a system within a chemical reaction, i.e., bond-breaking, bond-
forming, and charge transfer.624 Here, proper treatment requires the application of QM methods. In
large systems, often only small parts are included in the actual chemical reaction and hence, just the
reaction center must be treated at the QM level (GFN2-xTB), whereas the rest of the molecule is properly
described by a force-�eld (GFN-FF). In fact, an ONIOM scheme627 was already implemented in the xtb

code, but it has not yet been tested extensively. This will be part of future work. Furthermore, the
application of GFN methods in this work was limited mainly to the description of molecular structures.
While periodic implementations of the GFNn-xTB methods already exist,628 a corresponding periodic
version of GFN-FF is yet missing. For further studies on materials and biological systems, at some
point, periodic boundary conditions must be implemented. This will also attract many users of other
free available molecular simulation software packages such as GROMACS 629 that feature PBCs. GFN-FF
was developed from the beginning as a generic FF. Even though the general accuracy is outstanding
for a force-�eld, certain �elds of application remain where an even higher accuracy closer to (S)QM
methods is desirable. Especially for conformational energies, which are in general small numbers, it was
recently shown that DFT re-ranking is necessary to calculate properties, such as partition coe�cients,
circular dichroism (CD), or NMR spectra, with chemical accuracy.59 In order not to change the original
parameterization of GFN-FF, neural networks represent an appealing approach to construct an additive
potential for special purpose applications.630 This approach bene�ts from the correct inherent physics
of GFN-FF and the machine learning potential only has to learn the di�erence to the DFT result. This
is by far much simpler than constructing an ML potential from scratch. ML corrections can further be
applied to improve the description of thermochemistry, protonations, and tautomerizations. For the
description of molecules in solution, with GBSA and QCG, two di�erent approaches were applied to
capture solvent e�ects. Recently, the ALPB model188 was implemented in the xtb code, as the successor
of the GBSA model. For future studies, the implicit ALPB solvation model will also be applied and
evaluated, since it promises to be more accurate in the description of polar solvents. The QCG algorithm
represents an explicit approach not only for IR spectra computations but also for the calculation of
solvation free energies. The latter quantity will be the subject of future studies. The QCG algorithm
may also be used in the context of microsolvation.631

At the end of this thesis, the introductory scienti�c question and the formulated objectives are con-
clusively addressed. First, the development of accurate polarizable force-�elds was named as one of the
remaining holy grails for computational chemistry.2 With GFN-FF, a generic, partially polarizable FF
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was presented in the course of this work, which is currently one of the most sophisticated FFs for the de-
scription of molecular systems, combining unique universality and accuracy. Nevertheless, thinking of
the in�nitely large chemical space, plenty of systems remain, where the description with GFN-FF is in-
su�cient or just wrong. To correct this, promising approaches including periodic boundary conditions,
explicit solvation, and machine learning corrections already exist and will be applied in the near future.
From today’s perspective, GFN-FF already ful�lls to a large extent all the speci�ed requirements in Ref.
2 and comes closest to the desired accuracy of polarizable FFs. Yet, through the continuous progress in
theoretical chemistry, a method that is state-of-the-art today can be improved even further tomorrow.
The second objective of this work was the calculation of association free energies and all contributing
terms (see Figure 9.6) for large molecules that were inaccessible before. Free energies enable the direct
comparison between theory and experiment and are the starting point for the derivation of important
molecular properties. The calculation of ∆G for every conceivable chemical compound is a di�cult
task and will continue to occupy theoretical chemistry in the future. Nevertheless, the methods used
in this thesis (GFN-FF, GFNn-xTB, CREST, SPH, GBSA, QCG) represent a step forward in the accurate
description of large molecules, ranging from organometallic to biochemical systems, and thus, further
reduce the gap between theoretical simulations and experimental �ndings.

In conclusion, the results presented in this thesis are pioneering for prospective computational stud-
ies in numerous �elds of chemistry. The developed theoretical models continue to approach chemical
accuracy for an ever-increasing amount of compounds. This may help to predict ligand-protein bind-
ing energies, design materials and devices, and better understand the functionality of biomacromolecu-
les. Already today, computer-aided methods are commonly applied in the support of experimentation.
Theoretical models help to verify experimental �ndings, and computational pre-screening replaces to
a certain extend laborious and costly synthetic approaches. The joint collaboration of theory and ex-
periment can increase economic and ecological sustainability in future chemical research.

168



Bibliography

[1] Thiel, W. Angew. Chem. Int. Ed. 2011, 50, 9216–9217.

[2] Houk, K.; Liu, F. Acc. Chem. Res. 2017, 50, 539–543.

[3] Grimme, S.; Schreiner, P. R. Angew. Chem. Int. Ed. 2018, 57, 4170–4176.

[4] Cavalleri, M. Int. J. Quantum Chem. 2013, 113, 1–1.

[5] McArdle, S.; Endo, S.; Aspuru-Guzik, A.; Benjamin, S. C.; Yuan, X. Rev. Mod. Phys. 2020, 92, 015003.

[6] Krylov, A.; Windus, T. L.; Barnes, T.; Marin-Rimoldi, E.; Nash, J. A.; Pritchard, B.; Smith, D. G.; Altarawy, D.;
Saxe, P.; Clementi, C.; Crawford, T. D.; Harrison, R. J.; Jha, S.; Pande, V. S.; Head-Gordon, T. J. Chem. Phys.
2018, 149, 180901.

[7] Breslow, R.; Tirrell, M. V.; Barton, J. K.; Barteau, M. A.; Bertozzi, C. R.; Brown, R. A.; Gast, A. P. et al.
Beyond the Molecular Frontier, Challenges for Chemistry and Chemical Engineering; National Academies
Press: Washington (DC), 2003.

[8] Challenges and Advances in Computational Chemistry and Physics; Springer, 2006–2021, Vol. 1–28.

[9] Young, D. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems;
John Wiley & Sons, Inc.: New York (NY), 2001.

[10] Linder, M. Comput. Struct. Biotechnol. J. 2012, 2, e201209009.

[11] Lin, X.; Li, X.; Lin, X. Molecules 2020, 25, 1375.

[12] Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E. W. Pharmacol. Rev. 2014, 66, 334–395.

[13] Hafner, J.; Wolverton, C.; Ceder, G. MRS Bulletin 2006, 31, 659–665.

[14] Rogl, P.; Podloucky, R.; Wolf, W. J. Phase Equilibria Di�us. 2014, 35, 221–222.

[15] Jensen, F. Introduction to Computational Chemistry; Wiley, 2007, Vol. 2.

[16] Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry; Dover Publications, 1996.

[17] Helgaker, T.; Jørgensen, P.; Olsen, J. Molecular Electronic-Structure Theory; J. Wiley: New York, 2000.

[18] Schaefer, H. F.; Methods of electronic structure theory; Springer Science & Business Media, 2013.

[19] Peat, T. S.; Dolezal, O.; Newman, J.; Mobley, D.; Deadman, J. J. J. Comput. Aided Mol. Des. 2014, 28, 347–362.

[20] Skillman, A. G. J. Comput. Aided Mol. Des. 2012, 26, 473–474.

[21] Muddana, H. S.; Fenley, A. T.; Mobley, D. L.; Gilson, M. K. J. Comput. Aided Mol. Des. 2014, 28, 305–317.

169



Bibliography

[22] Pracht, P.; Wilcken, R.; Udvarhelyi, A.; Rodde, S.; Grimme, S. J. Comput. Aided Mol. Des. 2018, 32, 1139–
1149.

[23] MacMillan, D. W. Nature 2008, 455, 304–308.

[24] Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606–5655.

[25] Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2004, 43, 5138–5175.

[26] Crabtree, R. H. J. Organomet. Chem. 2004, 689, 4083–4091.

[27] Sinko, W.; Lindert, S.; McCammon, J. A. Chem. Biol. Drug Des. 2013, 81, 41–49.

[28] Verma, J.; Khedkar, V. M.; Coutinho, E. C. Curr. Top. Med. Chem. 2010, 10, 95–115.

[29] Hartenfeller, M.; Schneider, G. Chemoinformatics and computational chemical biology 2010, 299–323.

[30] Noble, M. E.; Endicott, J. A.; Johnson, L. N. Science 2004, 303, 1800–1805.

[31] Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D. J. Mater. Chem. 2011, 21, 9938–9954.

[32] Yersin, H. Highly e�cient OLEDs with phosphorescent materials; Wiley Online Library, 2008.

[33] Sagara, Y.; Mutai, T.; Yoshikawa, I.; Araki, K. J. Am. Chem. Soc. 2007, 129, 1520–1521.

[34] Li, H.; Wang, K.; Sun, Y.; Lollar, C. T.; Li, J.; Zhou, H.-C. Mater. Today 2018, 21, 108–121.

[35] Mason, J. A.; Veenstra, M.; Long, J. R. Chem. Sci. 2014, 5, 32–51.

[36] Farrusseng, D. Metal-organic frameworks: applications from catalysis to gas storage; John Wiley & Sons,
2011.

[37] Morris, R. E.; Wheatley, P. S. Angew. Chem. Int. Ed. 2008, 47, 4966–4981.

[38] Sheldon, R. A.; Woodley, J. M. Chem. Rev. 2018, 118, 801–838.

[39] Fotouhi, A.; Auger, D. J.; Propp, K.; Longo, S.; Wild, M. Renew. Sustain. Energy Rev. 2016, 56, 1008–1021.

[40] Ishida, T.; Haruta, M. Angew. Chem. Int. Ed. 2007, 46, 7154–7156.

[41] Collins, T. Science 2001, 291, 48–49.

[42] Hillisch, A.; Heinrich, N.; Wild, H. Chem. Med. Chem. 2015, 10, 1958–1962.

[43] Boyd, D. B. Rev. Comput. Chem. 2007, 23, 401.

[44] Shakhnovich, E. Chem. Rev. 2006, 106, 1559–1588.

[45] Alberty, R. A. Thermodynamics of biochemical reactions; John Wiley & Sons, 2005.

[46] Rowan, S. J.; Cantrill, S. J.; Cousins, G. R.; Sanders, J. K.; Stoddart, J. F. Angew. Chem. In. Ed. 2002, 41,
898–952.

[47] Gibbs, J. W. Trans. Conn. Acad. Arts Sci. 1873, 382–404.

[48] Atkins, P.; Jones, L. Chemical principles: The quest for insight; Macmillan, 2007.

170



Bibliography

[49] Georg, I.; Teichmann, J.; Bursch, M.; Tillmann, J.; Endeward, B.; Bolte, M.; Lerner, H.-W.; Grimme, S.;
Wagner, M. J. Am. Chem. Soc. 2018, 140, 9696–9708.

[50] Stepen, A. J.; Bursch, M.; Grimme, S.; Stephan, D. W.; Paradies, J. Angew. Chem. Int. Ed. 2018, 57, 15253–
15256.

[51] Laidler, K. J.; King, M. C. J. Phys. Chem. 1983, 87, 2657–2664.

[52] Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. J. Phys. Chem. 1996, 100, 12771–12800.

[53] Makov, G.; Payne, M. Phys. Rev. B 1995, 51, 4014.

[54] Sauer, J. Chem. Rev. 1989, 89, 199–255.

[55] Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. J. Cheminformatics
2012, 4, 17.

[56] Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. Acta Cryst. B 2016, 72, 171–179.

[57] Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E.
Nucleic Acids Res. 2000, 28, 235–242.

[58] Schlegel, H. B. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 790–809.

[59] Grimme, S.; Bohle, F.; Hansen, A.; Pracht, P.; Spicher, S.; Stahn, M. J. Phys. Chem. A 2021, 125, 4039–4054.

[60] Pracht, P.; Bohle, F.; Grimme, S. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192.

[61] Pracht, P.; Grimme, S. Chem. Sci. 2021, 12, 6551–6568.

[62] Salomon-Ferrer, R.; Case, D. A.; Walker, R. C. WIREs Comput. Mol. Sci. 2013, 3, 198–210.

[63] Zhu, X.; Lopes, P. E. M.; MacKerell, A. D. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 167–185.

[64] Brooks, B. R.; Brooks III, C. L.; Mackerell Jr, A. D.; Nilsson, L.; Petrella, R. J.; Roux, B.; Won, Y.; Archontis, G.;
Bartels, C.; Boresch, S. J. Comput. Chem. 2009, 30, 1545–1614.

[65] Banks, J. L. et al. J. Comput. Chem. 2005, 26, 1752–1780.

[66] Born, M.; Oppenheimer, R. Ann. Phys. 1927, 389, 457–484.

[67] Schrödinger, E. Phys. Rev. 1926, 28, 1049.

[68] Jensen, J. H. Phys. Chem. Chem. Phys. 2015, 17, 12441–12451.

[69] Zhou, H.-X.; Gilson, M. K. Chem. Rev 2009, 109, 4092–4107.

[70] Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999–3094.

[71] Tomasi, J. Theor. Chem. Acc. 2004, 112, 184–203.

[72] Mark, P.; Nilsson, L. J. Phys. Chem. A 2001, 105, 9954–9960.

[73] Dirac, P. A. M.; Fowler, R. H. Proc. R. Soc. Lond. 1929, 123, 714–733.

171



Bibliography

[74] Knowles, P. J.; Werner, H.-J. Chem. Phys. Lett. 1988, 145, 514–522.

[75] Waldrop, M. M. Nature News 2016, 530, 144.

[76] Lundstrom, M. Science 2003, 299, 210–211.

[77] Yang, K. Clin. Transl. Sci. 2020, 13, 842–844.

[78] Hartree, D. R. Math. Proc. Cambridge 1928, 24, 89–110.

[79] Fock, V. Z. Physik 1930, 61, 126–148.

[80] Slater, J. C. Phys. Rev. 1929, 34, 1293.

[81] Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.

[82] Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.

[83] Burke, K. J. Chem. Phys. 2012, 136, 150901.

[84] Kohn, W. Rev. Mod. Phys. 1999, 71, 1253.

[85] Furukawa, S.; Horike, N.; Kondo, M.; Hijikata, Y.; Carne-Sanchez, A.; Larpent, P.; Louvain, N.; Diring, S.;
Sato, H.; Matsuda, R. Inorg. Chem. 2016, 55, 10843–10846.

[86] Řezáč, J.; Hobza, P. J. Chem. Theory Comput. 2012, 8, 141–151.

[87] Stewart, J. J. P. J. Mol. Model. 2007, 13, 1173.

[88] Stewart, J. J. P. J. Mol. Model. 2013, 19, 1–32.

[89] Elstner, M.; Seifert, G. Philos. Trans. R. Soc. A 2014, 372, 20120483.

[90] Porezag, D.; Frauenheim, T.; Köhler, T.; Seifert, G.; Kaschner, R. Phys. Rev. B 1995, 51, 12947–12957.

[91] Seifert, G.; Porezag, D.; Frauenheim, T. Int. J. Quantum Chem. 1996, 58, 185–192.

[92] Gaus, M.; Cui, Q.; Elstner, M. J. Chem. Theory Comput. 2011, 7, 931–948.

[93] Bannwarth, C.; Ehlert, S.; Grimme, S. J. Chem. Theory Comput. 2019, 15, 1652–1671.

[94] Grimme, S.; Bannwarth, C.; Shushkov, P. J. Chem. Theory Comput. 2017, 13, 1989–2009.

[95] Pracht, P.; Caldeweyher, E.; Ehlert, E.; Grimme, S. ChemRxiv, 2019, DOI: 10.26434/chemrxiv.8326202.v1.

[96] Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, S.; Grimme, S. Wiley
Interdiscip. Rev. Comput. Mol. Sci. 2020, e01493.

[97] Christensen, A. S.; Kubař, T.; Cui, Q.; Elstner, M. Chem. Rev. 2016, 116, 5301–5337.

[98] Thiel, W. WIREs Comput. Mol. Sci. 2014, 4, 145–157.

[99] Nar, H.; Huber, R.; Messerschmidt, A.; Filippou, A. C.; Barth, M.; Jaquinod, M.; van de Kamp, M.; Can-
ters, G. W. Eur. J. Biochem. 1992, 205, 1123–1129.

[100] Halgren, T. A.; Damm, W. Curr. Opin. Struct. Biol. 2001, 11, 236–242.

172



Bibliography

[101] Lemkul, J. A.; Huang, J.; Roux, B.; MacKerell Jr, A. D. Chem. Rev. 2016, 116, 4983–5013.

[102] Monticelli, L.; Kandasamy, S. K.; Periole, X.; Larson, R. G.; Tieleman, D. P.; Marrink, S.-J. J. Chem. Theory
Comput. 2008, 4, 819–834.

[103] Yu, A.; Pak, A. J.; He, P.; Monje-Galvan, V.; Casalino, L.; Gaieb, Z.; Dommer, A. C.; Amaro, R. E.; Voth, G. A.
Biophys. J. 2021, 120, 1097–1104.

[104] Karelson, M.; Lobanov, V. S.; Katritzky, A. R. Chem. Rev. 1996, 96, 1027–1044.

[105] Gramatica, P. QSAR Comb. Sci. 2007, 26, 694–701.

[106] Tropsha, A. Mol. Inform. 2010, 29, 476–488.

[107] Cherkasov, A.; Muratov, E. N.; Fourches, D.; Varnek, A.; Baskin, I. I.; Cronin, M.; Dearden, J.; Gramatica, P.;
Martin, Y. C.; Todeschini, R. J. Med. Chem. 2014, 57, 4977–5010.

[108] Smith, J. S.; Nebgen, B. T.; Zubatyuk, R.; Lubbers, N.; Devereux, C.; Barros, K.; Tretiak, S.; Isayev, O.;
Roitberg, A. E. Nat. Commun. 2019, 10, 1–8.

[109] Fariselli, P.; Pazos, F.; Valencia, A.; Casadio, R. Eur. J. Biochem. 2002, 269, 1356–1361.

[110] Goh, G. B.; Hodas, N. O.; Vishnu, A. J. Comput. Chem. 2017, 38, 1291–1307.

[111] Chmiela, S.; Tkatchenko, A.; Sauceda, H. E.; Poltavsky, I.; Schütt, K. T.; Müller, K.-R. Sci. Adv. 2017, 3,
e1603015.

[112] Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.;
Hammarling, S.; McKenney, A.; Sorensen, D. LAPACK Users’ Guide, 3rd ed.; Society for Industrial and
Applied Mathematics: Philadelphia, PA, 1999.

[113] Jorgensen, W. L.; Tirado-Rives, J. J. Am. Chem. Soc. 1988, 110, 1657–1666.

[114] Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Ski�, W. M. J. Am. Chem. Soc. 1992, 114,
10024–10035.

[115] Mayo, S. L.; Olafson, B. D.; Goddard, W. A. J. Phys. Chem. 1990, 94, 8897–8909.

[116] Shi, S.; Yan, L.; Yang, Y.; Fisher-Shaulsky, J.; Thacher, T. J. Comput. Chem. 2003, 24, 1059–1076.

[117] Spicher, S.; Grimme, S. Angew. Chem. Int. Ed. 2020, 59, 15665–15673.

[118] Hall, P. J. Chem. Edu. 1995, 72, A71.

[119] Grimme, S. Chem. Eur. J. 2012, 18, 9955–9964.

[120] Sure, R.; Grimme, S. J. Chem. Theory Comput. 2015, 11, 3785–3801.

[121] Bohm, D Quantum Theory; Dover Publications: New York, 1989.

[122] Mohr, P. J.; Taylor, B. N.; Newell, D. B. J. Phys. Chem. Ref. Data 2008, 80, 633–1284.

[123] Dirac, P. A. M. Math. Proc. Cambridge 1939, 35, 416–418.

173



Bibliography

[124] Ekeland, I. J. Math. Anal. and Appl. 1974, 47, 324–353.

[125] Pauli, W. Phys. Rev. 1940, 58, 716.

[126] Roothaan, C. C. J. Rev. Mod. Phys. 1951, 23, 69.

[127] Hall, G. Proc. R. Soc. Lond. 1951, 205, 541–552.

[128] Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833–1840.

[129] Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265–3269.

[130] Dunning, T. H. J. Chem. Phys. 1989, 90, 1007–1023.

[131] Peterson, K. A. J. Chem. Phys. 2003, 119, 11099–11112.

[132] Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119, 11113–11123.

[133] Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571–2577.

[134] Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.

[135] Weigend, F.; Furche, F.; Ahlrichs, R. J. Chem. Phys. 2003, 119, 12753–12762.

[136] Hill, J. G. Int. J. Quantum Chem. 2013, 113, 21–34.

[137] Gutowski, M.; Van Lenthe, J.; Verbeek, J.; Van Duijneveldt, F.; Chałasinski, G. Chem. Phys. Lett. 1986, 124,
370–375.

[138] Xantheas, S. S. J. Chem. Phys. 1996, 104, 8821–8824.

[139] Wigner, E. Phys. Rev. 1934, 46, 1002.

[140] Löwdin, P.-O. Phys. Rev. 1955, 97, 1509.

[141] Sherrill, C. D.; Schaefer III, H. F. Adv. Quant. Chem. 1999, 34, 143–269.

[142] Szalay, P. G.; Muller, T.; Gidofalvi, G.; Lischka, H.; Shepard, R. Chem. Rev. 2012, 112, 108–181.

[143] Bartlett, R. J. Annu. Rev. Phys. Chem. 1981, 32, 359–401.

[144] Bartlett, R. J.; Musiał, M. Rev. Mod. Phys. 2007, 79, 291.

[145] Knowles, P. J.; Handy, N. C. Chem. Phys. Lett. 1984, 111, 315–321.

[146] Bauschlicher Jr, C. W.; Langho�, S. R.; Taylor, P. R.; Partrigge, H. Chem. Phys. Lett. 1986, 126, 436–440.

[147] Riplinger, C.; Neese, F. J. Chem. Phys. 2013, 138, 034106.

[148] Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E. F.; Neese, F. J. Chem. Phys. 2016, 144, 024109.

[149] Pavošević, F.; Peng, C.; Pinski, P.; Riplinger, C.; Neese, F.; Valeev, E. F. J. Chem. Phys. 2017, 146, 174108.

[150] Kruse, H.; Mladek, A.; Gkionis, K.; Hansen, A.; Grimme, S.; Sponer, J. J. Chem. Theory Comput. 2015, 11,
4972–4991.

174



Bibliography

[151] Hirschfelder, J. O.; Brown, W. B.; Epstein, S. T. 1964, 1, 255–374.

[152] Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618–622.

[153] Head-Gordon, M.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett. 1988, 153, 503–506.

[154] Engel, E.; Dreizler, R. M. Density Functional Theory; Springer, 2011.

[155] Thomas, L. H. Math. Proc. Camb. Philos. Soc. 2008, 23, 542–548.

[156] Fermi, E. Z. Phys. 1928, 48, 73–79.

[157] Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press, 1989.

[158] Koch, W.; Holthausen, M. C. A Chemists Guide to Density Functional Theory; Wiley, 2001.

[159] Perdew, J. P.; Schmidt, K. AIP Conf. Proc. 2001, 577, 1–20.

[160] Bao, J. L.; Gagliardi, L.; Truhlar, D. G. J. Phys. Chem. Lett. 2018, 9, 2353–2358.

[161] Zhang, Y.; Yang, W. J. Chem. Phys. 1998, 109, 2604–2608.

[162] Goerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S.; Najibi, A.; Grimme, S. Phys. Chem. Chem. Phys. 2017, 19,
32184–32215.

[163] Perdew, J. P.; Ruzsinszky, A.; Tao, J.; Staroverov, V. N.; Scuseria, G. E.; Csonka, G. I. J. Chem. Phys. 2005,
123, 062201.

[164] Dirac, P. A. 1930, 26, 376–385.

[165] Slater, J. C. Phys. Rev. 1951, 81, 385.

[166] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868.

[167] Perdew, J. P. Phys. Rev. B 1986, 33, 8822–8824.

[168] Becke, A. D. Phys. Rev. A 1988, 38, 3098–3100.

[169] Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. J. Phys. Chem. A 2007, 111, 10439–10452.

[170] Sun, J.; Ruzsinszky, A.; Perdew, J. P. Phys. Rev. Lett. 2015, 115, 036402.

[171] Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401.

[172] Becke, A. D. J. Chem. Phys. 1993, 98, 1372–1377.

[173] Csonka, G. I.; Perdew, J. P.; Ruzsinszky, A. J. Chem. Theory Comput. 2010, 6, 3688–3703.

[174] Grimme, S. J. Chem. Phys. 2006, 124, 034108.

[175] Zhao, Y.; Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 4786–4791.

[176] Christensen, A. S.; Kubař, T.; Cui, Q.; Elstner, M. Chem. Rev. 2016, 116, 5301–5337.

[177] Aradi, B.; Hourahine, B.; Frauenheim, T. J. Phys. Chem. A 2007, 111, 5678–5684.

175



Bibliography

[178] Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Phys.
Rev. B 1998, 58, 7260–7268.

[179] Hourahine, B. et al. J. Chem. Phys. 2020, 152, 124101.

[180] Jones, J. E. Proc. R. Soc. A 1924, 106, 463–477.

[181] Buckingham, R. A. Proc. R. Soc. A 1938, 168, 264–283.

[182] Ho�mann, R. J. Chem. Phys. 1963, 39, 1397–1412.

[183] Imamura, A. J. Chem. Phys. 1970, 52, 3168–3175.

[184] Spicher, S.; Caldeweyher, E.; Hansen, A.; Grimme, S. Phys. Chem. Chem. Phys. 2021, 23, 11635–11648.

[185] Ohno, K. Theor. Chim. Act. 1964, 2, 219.

[186] Klopman, G. J. Am. Chem. Soc. 1964, 86, 4450.

[187] Nishimoto, K.; Mataga, N. Z. Phys. Chem. 1957, 12, 335–338.

[188] Ehlert, S.; Stahn, M.; Spicher, S.; Grimme, S. J. Chem. Theory Comput. 2021, 10.1021/acs.jctc.1c00471.

[189] Clark Still, W.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. J. Am. Chem. Soc. 1990, 112, 6127–6129.

[190] Hehre, W. J.; Stewart, R. F.; Pople, J. A. J. Chem. Phys. 1969, 51, 2657–2664.

[191] Koester, A. M.; Leboeuf, M.; Salahub, D. R. In Molecular Electrostatic Potentials: Concepts and Applications
(Eds. Murray, J. S., Sen, K.); Elsevier, 1996, Vol. 3, pp. 105–142.

[192] Sokalski, W.; Shibata, M.; Rein, R.; Ornstein, R. J. Comput. Chem. 1992, 13, 883–887.

[193] Sokalski, W. A.; Sawaryn, A. J. Mol. Struct. 1992, 256, 91–112.

[194] Mortier, W. J.; Ghosh, S. K.; Shankar, S. J. Am. Chem. Soc. 1986, 108, 4315–4320.

[195] Ghasemi, S. A.; Hofstetter, A.; Saha, S.; Goedecker, S. Phys. Rev. B 2015, 92, 045131.

[196] Morse, P. M. Phys. Rev. 1929, 34, 57.

[197] Fujimoto, K.; Payal, R. S.; Hattori, T.; Shinoda, W.; Nakagaki, M.; Sakaki, S.; Okazaki, S. J. Comput. Chem.
2019, 40, 2571–2576.

[198] Tschumper, G. S. Rev. Comput. Chem. 2009, 26, 39.

[199] London, F. Zeitschrift für Physik 1930, 63, 245–279.

[200] Eisenschitz, R.; London, F. Zeitschrift für Physik 1930, 60, 491–527.

[201] Halgren, T. A. J. Comput. Chem. 1996, 17, 490–519.

[202] Allinger, N. L. J. Am. Chem. Soc. 1977, 99, 8127–8134.

[203] Allinger, N. L.; Yuh, Y. H.; Lii, J. H. J. Am. Chem. Soc. 1989, 111, 8551–8566.

[204] Cox, S.; Williams, D. J. Comput. Chem. 1981, 2, 304–323.

176



Bibliography

[205] Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. J. Chem. Theory Comput. 2010, 6,
1509–1519.

[206] Gilson, M. K.; Given, J. A.; Bush, B. L.; McCammon, J. A. Biophys. J. 1997, 72, 1047–1069.

[207] Mennucci, B. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 386–404.

[208] Miertuš, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117–129.

[209] Miertus, S.; Tomasi, J. Chem. Phys. 1982, 65, 239–245.

[210] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378–6396.

[211] Sigalov, G.; Fenley, A.; Onufriev, A. J. Chem. Phys. 2006, 124, 124902.

[212] Onufriev, A. V.; Case, D. A. Annu. Rev. Biophys. 2019, 48, 275–296.

[213] Onufriev, A.; Bashford, D.; Case, D. A. Proteins 2004, 55, 383–394.

[214] Im, W.; Lee, M. S.; Brooks III, C. L. J. Comput. Chem. 2003, 24, 1691–1702.

[215] Klamt, A.; Schüürmann, G. J. Chem. Soc., Perkin Trans. 2 1993, 0, 799–805.

[216] Klamt, A. J. Phys. Chem. 1995, 99, 2224–2235.

[217] Eckert, F.; Klamt, A. AIChE Journal 2002, 48, 369–385.

[218] Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J. C. J. Phys. Chem. A 1998, 102, 5074–5085.

[219] Zhang, J.; Zhang, H.; Wu, T.; Wang, Q.; van der Spoel, D. J. Chem. Theory Comput. 2017, 13, 1034–1043.

[220] Grimme, S. J. Chem. Theory. Comput. 2019, 15, 2847–2862.

[221] Bursch, M.; Neugebauer, H.; Grimme, S. Angew. Chem. Int. Ed. 2019, 58, 11078–11087.

[222] McDonald, D. Q.; Still, W. C. Tetrahedron Lett. 1992, 33, 7743–7746.

[223] Ferguson, D. M.; Kollman, P. A. J. Comput. Chem. 1991, 12, 620–626.

[224] Schmitz, S.; Seibert, J.; Ostermeir, K.; Hansen, A.; Göller, A. H.; Grimme, S. J. Phys. Chem. B 2020, 124,
3636–3646.

[225] Skorupskii, G.; Trump, B. A.; Kasel, T. W.; Brown, C. M.; Hendon, C. H.; Dincă, M. Nat. Chem. 2020, 12,
131–136.

[226] Bryson, J. W.; Betz, S. F.; Lu, H. S.; Suich, D. J.; Zhou, H. X.; O’Neil, K. T.; DeGrado, W. F. Science 1995, 270,
935–941.

[227] Ruijter, E.; Sche�elaar, R.; Orru, R. V. Angew. Chem. Int. Ed. 2011, 50, 6234–6246.

[228] Vriend, G. J. Mol. Graph. 1990, 8, 52–56.

[229] Gund, P.; Andose, J. D.; Rhodes, J. B.; Smith, G. M. Science 1980, 208, 1425–1431.

[230] Poliako�, M.; Fitzpatrick, J. M.; Farren, T. R.; Anastas, P. T. Science 2002, 297, 807–810.

177



Bibliography

[231] Grimme, S.; Brandenburg, J. G.; Bannwarth, C.; Hansen, A. J. Chem. Phys. 2015, 143, 054107.

[232] Yilmazer, N. D.; Korth, M. Comput. Struc. Biotechnol. J. 2015, 13, 169–175.

[233] Bursch, M.; Hansen, A.; Grimme, S. Inorg. Chem. 2017, 56, 12485–12491.

[234] Momany, F. A.; Rone, R. J. Comput. Chem. 1992, 13, 888–900.

[235] MacKerell Jr., A. D.; Banavali, N.; Foloppe, N. Biopolymers 2000, 56, 257–265.

[236] Bureekaew, S.; Amirjalayer, S.; Ta�polsky, M.; Spickermann, C.; Roy, T. K.; Schmid, R. Phys. Status Solidi B
2013, 250, 1128–1141.

[237] Brandenburg, J. G.; Bannwarth, C.; Hansen, A.; Grimme, S. J. Chem. Phys. 2018, 148, 064104.

[238] Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157–1174.

[239] Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Proteins 2006, 65, 712–725.

[240] Smith, J. S.; Isayev, O.; Roitberg, A. E. Chem. Sci. 2017, 8, 3192–3203.

[241] Behler, J. Phys. Chem. Chem. Phys. 2011, 13, 17930–17955.

[242] Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. J. Chem.
Phys. 2019, 150, 154122.

[243] Semiempirical Extended Tight-Binding Program Package xtb, Version 6.3.0., 2020,
https://github.com/grimme-lab/xtb.

[244] Grimme, S.; Hansen, A. Angew. Chem. Int. Ed. 2015, 54, 12308–12313.

[245] Grimme, S. J. Chem. Theory Comput. 2014, 10, 4497–4514.

[246] Pyykkö, P.; Atsumi, M. Chem. Eur. J. 2009, 15, 186–197.

[247] Axilrod, B. M.; Teller, E. J. Chem. Phys. 1943, 11, 299–300.

[248] Muto, Y. Proc. Phys. Math. Soc. Jpn. 1943, 17, 629–631.

[249] Caldeweyher, E.; Bannwarth, C.; Grimme, S. J. Chem. Phys. 2017, 147, 034112.

[250] Floyd, R. W. Commun. ACM 1962, 5, 345.

[251] Mantina, M.; Valero, R.; Cramer, C. J.; Truhlar, D. G. CRC Handbook of Chemistry and Physics 2013, 94.

[252] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132.

[253] Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456–1465.

[254] Ghosh, D. C.; Islam, N. Int. J. Quant. Chem. 2010, 110, 1206–1213.

[255] Johnson, E. R.; Becke, A. D. J. Chem. Phys. 2005, 123, 024101.

[256] Bleiholder, C.; Werz, D. B.; Köppel, H.; Gleiter, R. J. Am. Chem. Soc. 2006, 128, 2666–2674.

[257] Bleiholder, C.; Gleiter, R.; Werz, D. B.; Köppel, H. Inorg. Chem. 2007, 46, 2249–2260.

178



Bibliography

[258] Férey, G. Chem. Soc. Rev. 2008, 37, 191–214.

[259] Addicoat, M. A.; Vankova, N.; Akter, I. F.; Heine, T. J. Chem. Theory. Comput. 2014, 10, 880–891.

[260] Fujita, D.; Ueda, Y.; Sato, S.; Mizuno, N.; Kumasaka, T.; Fujita, M. Nature 2016, 540, 563–566.

[261] Gong, Y.; Zhang, Y.; Qin, C.; Sun, C.; Wang, X.; Su, Z. Angew. Chem. Int. Ed. 2019, 58, 780–784.

[262] Herm, Z. R.; Wiers, B. M.; Mason, J. A.; van Baten, J. M.; Hudson, M. R.; Zajdel, P.; Brown, C. M.; Mascioc-
chi, N.; Krishna, R.; Long, J. R. Science 2013, 340, 960–964.

[263] Rizzuto, F. J.; Nitschke, J. R. Nat. Chem. 2017, 9, 903–908.

[264] Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C. Nature 2020, 582,
289–293.

[265] Abdullin, D.; Matsuoka, H.; Yulikov, M.; Fleck, N.; Klein, C.; Spicher, S.; Hagelueken, G.; Grimme, S.;
Lützen, A.; Schiemann, O. Chem. Eur. J. 2019, 25, 8820–8828.

[266] Hagelueken, G.; Ward, R.; Naismith, J. H.; Schiemann, O. Appl. Magn. Reson. 2012, 42, 377–391.

[267] Bogetti, X.; Ghosh, S.; Gamble Jarvi, A.; Wang, J.; Saxena, S. The Journal of Physical Chemistry B 2020, 124,
2788–2797.

[268] Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P. J. Chem. Phys. 2003, 119, 12129–12137.

[269] Boyd, P. G.; Moosavi, S. M.; Witman, M.; Smit, B. J. Phys. Chem. Lett. 2017, 8, 357–363.

[270] MacKerell Jr, A. D.; Banavali, N. K. J. Comput. Chem. 2000, 21, 105–120.

[271] Li, Y.; Yang, R. T. Langmuir 2007, 23, 12937–12944.

[272] Xu, D.; Zhang, Y. Proteins 2012, 80, 1715–1735.

[273] Spicher, S.; Bursch, M.; Grimme, S. J. Phys. Chem. C 2020, 124, 27529–27541.

[274] Spicher, S.; Abdullin, D.; Grimme, S.; Schiemann, O. Phys. Chem. Chem. Phys. 2020, 22, 24282–24290.

[275] Lund-Katz, S.; Phillips, M. C.; Mishra, V. K.; Segrest, J. P.; Anantharamaiah, G. Biochemistry 1995, 34,
9219–9226.

[276] Burley, S.; Petsko, G. FEBS Lett. 1986, 203, 139–143.

[277] Chen, Z.; Li, P.; Anderson, R.; Wang, X.; Zhang, X.; Robison, L.; Redfern, L. R.; Moribe, S.; Islamoglu, T.;
Gómez-Gualdrón, D. A.; Yildirim, T.; Stoddart, J. F.; Farha, O. K. Science 2020, 368, 297–303.

[278] Cohen, R. L.; Wernick, J. Science 1981, 214, 1081–1087.

[279] Mercer, J. H. Nature 1978, 271, 321–325.

[280] Jacobson, M. Z.; Colella, W.; Golden, D. Science 2005, 308, 1901–1905.

[281] Liu, H.; Song, C.; Zhang, L.; Zhang, J.; Wang, H.; Wilkinson, D. P. J. Power Sources 2006, 155, 95–110.

[282] Hamnett, A. Catal. Today 1997, 38, 445–457.

179



Bibliography

[283] Kamarudin, S. K.; Achmad, F.; Daud, W. R. W. Int. J. Hydrogen Energ. 2009, 34, 6902–6916.

[284] Post, W. M.; Pastor, J.; Zinke, P. J.; Stangenberger, A. G. Nature 1985, 317, 613–616.

[285] Dhakshinamoorthy, A.; Garcia, H. Chem. Soc. Rev. 2014, 43, 5750–5765.

[286] Milton, R. D.; Cai, R.; Abdellaoui, S.; Leech, D.; De Lacey, A. L.; Pita, M.; Minteer, S. D. Angew. Chem. Int.
Ed. 2017, 56, 2680–2683.

[287] Li, J.-R.; Sculley, J.; Zhou, H.-C. Chem. Rev. 2012, 112, 869–932.

[288] Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R. E.; Serre, C.
Chem. Rev. 2012, 112, 1232–1268.

[289] Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112,
1105–1125.

[290] Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y. Chem. Soc. Rev. 2014, 43, 6011–6061.

[291] Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R.
Chem. Rev. 2012, 112, 724–781.

[292] Ma, S.; Zhou, H.-C. Chem, Comm, 2010, 46, 44–53.

[293] Farha, O. K.; Yazaydın, A. Ö.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.;
Snurr, R. Q.; Hupp, J. T. Nat. Chem. 2010, 2, 944–948.

[294] Kitagawa, S. Angew. Chem. Int. Ed. 2015, 54, 10686–10687.

[295] Yang, Q.; Zhong, C.; Chen, J.-F. J. Phys. Chem. C 2008, 112, 1562–1569.

[296] Gascon, J.; Corma, A.; Kapteijn, F.; Llabres i Xamena, F. X. Acs Catal. 2014, 4, 361–378.

[297] Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.;
Kreuz, C. Nat. Mater. 2010, 9, 172–178.

[298] Vardhan, H.; Yusubov, M.; Verpoort, F. Coord. Chem. Rev. 2016, 306, 171–194.

[299] Perry Iv, J. J.; Perman, J. A.; Zaworotko, M. J. Chem. Soc. Rev. 2009, 38, 1400–1417.

[300] Tranchemontagne, D. J.; Ni, Z.; O’Kee�e, M.; Yaghi, O. M. Angew. Chem. Int. Ed. 2008, 47, 5136–5147.

[301] Mastalerz, M. Acc. Chem. Res. 2018, 51, 2411–2422.

[302] Tozawa, T.; Jones, J. T.; Swamy, S. I.; Jiang, S.; Adams, D. J.; Shakespeare, S.; Clowes, R.; Bradshaw, D.;
Hasell, T.; Chong, S. Y. Nat. Mater. 2009, 8, 973–978.

[303] Briggs, M. E.; Cooper, A. I. Chem. Mater. 2017, 29, 149–157.

[304] Evans, J. D.; Huang, D. M.; Hill, M. R.; Sumby, C. J.; Sholl, D. S.; Thornton, A. W.; Doonan, C. J. J. Phys.
Chem. C 2015, 119, 7746–7754.

[305] Hasell, T.; Cooper, A. I. Nat. Rev. Mater. 2016, 1, 1–14.

180



Bibliography

[306] Chen, L.; Reiss, P. S.; Chong, S. Y.; Holden, D.; Jelfs, K. E.; Hasell, T.; Little, M. A.; Kewley, A.; Briggs, M. E.;
Stephenson, A. Nat. Mater. 2014, 13, 954–960.

[307] Liang, J.; Nuhnen, A.; Millan, S.; Breitzke, H.; Gvilava, V.; Buntkowsky, G.; Janiak, C. Angew. Chem. Int. Ed.
2020, 59, 6068–6073.

[308] Yang, Q.; Liu, D.; Zhong, C.; Li, J.-R. Chem. Rev. 2013, 113, 8261–8323.

[309] Dzubak, A. L.; Lin, L.-C.; Kim, J.; Swisher, J. A.; Poloni, R.; Maximo�, S. N.; Smit, B.; Gagliardi, L. Nat. Chem.
2012, 4, 810–816.

[310] He, Y.; Cubuk, E. D.; Allendorf, M. D.; Reed, E. J. J. Phys. Chem. Lett. 2018, 9, 4562–4569.

[311] Haldoupis, E.; Borycz, J.; Shi, H.; Vogiatzis, K. D.; Bai, P.; Queen, W. L.; Gagliardi, L.; Siepmann, J. I. J. Phys.
Chem. C 2015, 119, 16058–16071.

[312] Kharissova, O. V.; Kharisov, B. I.; González, L. T. J. Mater. Res. 2020, 35, 1424–1438.

[313] Mancuso, J. L.; Mroz, A. M.; Le, K. N.; Hendon, C. H. Chem. Rev. 2020,

[314] Buda, C.; Dunietz, B. D. J. Phys. Chem. B 2006, 110, 10479–10484.

[315] S. Brahmkshatriya, P.; Dobeš, P.; Fanfrlík, J.; Řezáč, J.; Paruch, K.; Bronowska, A.; Lepšík, M.; Hobza, P.
Curr. Comput.-Aid. Drug. 2013, 9, 118–129.

[316] Ta�polsky, M.; Schmid, R. J. Phys. Chem. B 2009, 113, 1341–1352.

[317] Mercado, R.; Vlaisavljevich, B.; Lin, L.-C.; Lee, K.; Lee, Y.; Mason, J. A.; Xiao, D. J.; Gonzalez, M. I.;
Kapelewski, M. T.; Neaton, J. B. J. Phys. Chem. C 2016, 120, 12590–12604.

[318] Zang, J.; Nair, S.; Sholl, D. S. J. Phys. Chem. C 2013, 117, 7519–7525.

[319] Dürholt, J. P.; Fraux, G.; Coudert, F.-X.; Schmid, R. J. Chem. Theory Comput. 2019, 15, 2420–2432.

[320] Greathouse, J. A.; Allendorf, M. D. J. Am. Chem. Soc. 2006, 128, 10678–10679.

[321] Addicoat, M. A.; Vankova, N.; Akter, I. F.; Heine, T. J. Chem. Theory Comput. 2014, 10, 880–891.

[322] Vanduyfhuys, L.; Vandenbrande, S.; Verstraelen, T.; Schmid, R.; Waroquier, M.; Van Speybroeck, V. J. Com-
put. Chem. 2015, 36, 1015–1027.

[323] Siwaipram, S.; Bopp, P. A.; Soetens, J.-C.; Schmid, R.; Bureekaew, S. J. Mol. Liq. 2019, 285, 526–534.

[324] Yıldız, Z.; Uzun, H. Micropor. Mesopor. Mat. 2015, 208, 50–54.

[325] Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158–6170.

[326] Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829–5835.

[327] Mardirossian, N.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2014, 16, 9904–9924.

[328] Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401.

[329] Li, H.; Eddaoudi, M.; O’Kee�e, M.; Yaghi, O. M. Nature 1999, 402, 276–279.

181



Bibliography

[330] Takezawa, H.; Shitozawa, K.; Fujita, M. Nat. Chem. 2020, 1–5.

[331] Alexandre, P.-E.; Zhang, W.-S.; Rominger, F.; Elbert, S. M.; Schröder, R. R.; Mastalerz, M. Angew. Chem. Int.
Ed. 2020, 59, 19675–19679.

[332] Zhang, G.; Presly, O.; White, F.; Oppel, I. M.; Mastalerz, M. Angew. Chem. Int. Ed. 2014, 53, 1516–1520.

[333] Kunde, T.; Nieland, E.; Schröder, H. V.; Schalley, C. A.; Schmidt, B. M. Chem. Comm. 2020, 56, 4761–4764.

[334] Grimme, S.; Hansen, A.; Brandenburg, J. G.; Bannwarth, C. Chem. Rev. 2016, 116, 5105–5154.

[335] Furche, F.; Ahlrichs, R.; Hättig, C.; Klopper, W.; Sierka, M.; Weigend, F. Wiley Interdiscip. Rev. Comput. Mol.
Sci. 2014, 4, 91–100.

[336] Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem. Phys. Lett. 1989, 162, 165–169.

[337] Semiempirical Extended Tight-Binding Program Package xtb, Version 6.3.2., 2020,
https://github.com/grimme-lab/xtb.

[338] MOPAC2016, Stewart Computational Chemistry, 2016; available from http://OpenMOPAC.net.

[339] Bursch, M.; Caldeweyher, E.; Hansen, A.; Neugebauer, H.; Ehlert, S.; Grimme, S. Acc. Chem. Res. 2019, 52,
258–266.

[340] Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Theor. Chim. Acta 1990, 77, 123–141.

[341] Eichkorn, K.; Treutler, O.; Oehm, H.; Häser, M.; Ahlrichs, R. Chem. Phys. Lett. 1995, 240, 652–660.

[342] Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.

[343] Rappe, A. K.; Goddard III, W. A. J. Phys. Chem. 1991, 95, 3358–3363.

[344] Daniel, C. R.; Rodrigues, N. M.; da Costa Jr, N. B.; Freire, R. O. J. Phys. Chem. C 2015, 119, 23398–23406.

[345] Coutsias, E. A.; Seok, C.; Dill, K. A. J. Comput. Chem. 2004, 25, 1849–1857.

[346] Spicher, S.; Grimme, S. J. Phys. Chem. Lett. 2020, 11, 6606–6611.

[347] Grimme, S. J. Comput. Chem. 2004, 25, 1463–1473.

[348] Vydrov, O. A.; Van Voorhis, T. J. Chem. Phys. 2010, 133, 244103.

[349] Pianwanit, A.; Kritayakornupong, C.; Vongachariya, A.; Selphusit, N.; Ploymeerusmee, T.; Remsungnen, T.;
Nuntasri, D.; Fritzsche, S.; Hannongbua, S. Chem. Phys. 2008, 349, 77–82.

[350] Vilar, R. Angew. Chem. Int. Ed. 2003, 42, 1460–1477.

[351] Custelcean, R.; Bonnesen, P. V.; Duncan, N. C.; Zhang, X.; Watson, L. A.; Van Berkel, G.; Parson, W. B.;
Hay, B. P. J. Am. Chem. Soc. 2012, 134, 8525–8534.

[352] Rausch, M.; Dyson, P. J.; Nowak-Sliwinska, P. Adv. Ther. 2019, 2, 1900042.

[353] Weiss, A.; Berndsen, R. H.; Dubois, M.; Müller, C.; Schibli, R.; Gri�oen, A. W.; Dyson, P. J.; Nowak-
Sliwinska, P. Chem. Sci. 2014, 5, 4742–4748.

182



Bibliography

[354] Kuhlman, B.; Bradley, P. Nat. Rev. Mol. Cell Biol. 2019, 20, 681–697.

[355] Shi, Y. Cell 2014, 159, 995–1014.

[356] Dubochet, J.; Lepault, J.; Freeman, R.; Berriman, J.; Homo, J.-C. J. Microsc. 1982, 128, 219–237.

[357] Adrian, M.; Dubochet, J.; Lepault, J.; McDowall, A. W. Nature 1984, 308, 32–36.

[358] Frank, J. Ultramicroscopy 1975, 1, 159–162.

[359] Förster, T. Ann. Phys. 1948, 437, 55–75.

[360] Clapp, A. R.; Medintz, I. L.; Mattoussi, H. Chem. Phys. Chem. 2006, 7, 47–57.

[361] Ghisaidoobe, A. B.; Chung, S. J. Int. J. Mol. Sci. 2014, 15, 22518–22538.

[362] Kainosho, M.; Torizawa, T.; Iwashita, Y.; Terauchi, T.; Ono, A. M.; Güntert, P. Nature 2006, 440, 52–57.

[363] Castellani, F.; Van Rossum, B.; Diehl, A.; Schubert, M.; Rehbein, K.; Oschkinat, H. Nature 2002, 420, 99–102.

[364] Goldfarb, D.; Stoll, S. EPR spectroscopy: fundamentals and methods; John Wiley & Sons, 2018.

[365] Tsvetkov, Y. D.; Bowman, M. K.; Grishin, Y. A. Pulsed Electron–Electron Double Resonance; Springer, 2019.

[366] Schiemann, O.; Prisner, T. F. Q. Rev. Biophys. 2007, 40, 1.

[367] Abdullin, D.; Schiemann, O. ChemPlusChem 2020, 85, 353–372.

[368] Elsässer, C.; Brecht, M.; Bittl, R. J. Am. Chem. Soc. 2002, 124, 12606–12611.

[369] Denysenkov, V.; Prisner, T.; Stubbe, J.; Bennati, M. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 13386–13390.

[370] Hubbell, W. L.; Ca�so, D. S.; Altenbach, C. Nature Struct. Biol. 2000, 7, 735–739.

[371] Timmel, C. R.; Harmer, J. R. Structural Information from Spin-Labels and Intrinsic Paramagnetic Centres in
the Biosciences; Springer, 2014, Vol. 125.

[372] Berliner, L. J.; Grunwald, J.; Hankovszky, H. O.; Hideg, K. Anal. Biochem. 1982, 119, 450–455.

[373] Adcock, S. A.; McCammon, J. A. Chem. Rev. 2006, 106, 1589–1615.

[374] Levitt, M. Nat. Struct. Biol. 2001, 8, 392–393.

[375] Ehrlich, S.; Göller, A. H.; Grimme, S. Chem. Phys. Chem. 2017, 18, 898–905.

[376] Cui, Q. J. Chem. Phys. 2016, 145, 140901.

[377] Stewart, J. J. J. Mol. Model. 2009, 15, 765–805.

[378] Ponder, J. W.; Case, D. A. Adv. Protein Chem. 2003, 66, 27–85.

[379] Wang, W.; Donini, O.; Reyes, C. M.; Kollman, P. A. Annu. Rev. Biophys. 2001, 30, 211–243.

[380] Mackerell Jr, A. D.; Feig, M.; Brooks III, C. L. J. Comput Chem. 2004, 25, 1400–1415.

[381] Sale, K.; Song, L.; Liu, Y.-S.; Perozo, E.; Fajer, P. J. Am. Chem. Soc. 2005, 127, 9334–9335.

183



Bibliography

[382] Hagelueken, G.; Abdullin, D.; Ward, R.; Schiemann, O. Mol. Phys. 2013, 111, 2757–2766.

[383] Hagelueken, G.; Abdullin, D.; Schiemann, O. Method Enzymol. 2015, 563, 595–622.

[384] Hatmal, M. M.; Li, Y.; Hegde, B. G.; Hegde, P. B.; Jao, C. C.; Langen, R.; Haworth, I. S. Biopolymers 2012, 97,
35–44.

[385] Hirst, S. J.; Alexander, N.; Mchaourab, H. S.; Meiler, J. J. Struct. Biol. 2011, 173, 506–514.

[386] Polyhach, Y.; Bordignon, E.; Jeschke, G. Phys. Chem. Chem. Phys. 2011, 13, 2356–2366.

[387] Jeschke, G. Prog. Nucl. Magn. Reson. Spectrosc. 2013, 72, 42–60.

[388] Islam, S. M.; Roux, B. J. Phys. Chem. B 2015, 119, 3901–3911.

[389] Robinson, B.; Slutsky, L.; Auteri, F. J. Chem. Phys. 1992, 96, 2609–2616.

[390] Steinho�, H.-J.; Hubbell, W. L. Biophys. J. 1996, 71, 2201–2212.

[391] Budil, D. E.; Sale, K. L.; Khairy, K. A.; Fajer, P. G. J. Phys. Chem. A 2006, 110, 3703–3713.

[392] Tombolato, F.; Ferrarini, A.; Freed, J. H. J. Phys. Chem. B 2006, 110, 26248–26259.

[393] DeSensi, S. C.; Rangel, D. P.; Beth, A. H.; Lybrand, T. P.; Hustedt, E. J. Biophys. J. 2008, 94, 3798–3809.

[394] Oganesyan, V. S. Phys. Chem. Chem. Phys. 2011, 13, 4724–4737.

[395] Sezer, D.; Freed, J. H.; Roux, B. . Phys. Chem. B 2008, 112, 5755–5767.

[396] Sezer, D.; Freed, J. H.; Roux, B. J. Am. Chem. Soc. 2009, 131, 2597–2605.

[397] Brehm, M.; Kirchner, B. J. Chem. Inf. Model. 2011, 51, 2007–2023.

[398] Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J.
Comput. Chem. 2004, 25, 1605–1612.

[399] Schrödinger Release 2020-2: Maestro, Schrödinger, LLC, New York, NY, 2020.

[400] Kauzmann, W. Chem. Rev. 1948, 43, 219–256.

[401] Angell, C. A.; Sare, J. M.; Sare, E. J. J. Phys. Chem. 1978, 82, 2622–2629.

[402] Florin, N.; Schiemann, O.; Hagelueken, G. BMC Struct. Biol. 2014, 14, 1–10.

[403] Abdullin, D.; Florin, N.; Hagelueken, G.; Schiemann, O. Angew. Chem. 2015, 127, 1847–1851.

[404] Abdullin, D.; Hagelueken, G.; Schiemann, O. Phys. Chem. Chem. Phys. 2016, 18, 10428–10437.

[405] Kazmier, K.; Alexander, N. S.; Meiler, J.; Mchaourab, H. S. J. Struct. Biol. 2011, 173, 549–557.

[406] Borbat, P. P.; Mchaourab, H. S.; Freed, J. H. J. Am. Chem. Soc. 2002, 124, 5304–5314.

[407] Schiemann, O.; Piton, N.; Mu, Y.; Stock, G.; Engels, J. W.; Prisner, T. F. J. Am. Chem. Soc. 2004, 126, 5722–
5729.

[408] Müller-Dethlefs, K.; Hobza, P. Chem. Rev. 2000, 100, 143–168.

184



Bibliography

[409] Rodgers, M.; Armentrout, P. Chem. Rev. 2016, 116, 5642–5687.

[410] Gutierrez, O.; Aubé, J.; Tantillo, D. J. J. Org. Chem. 2012, 77, 640–647.

[411] Kennedy, C. R.; Lin, S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2016, 55, 12596–12624.

[412] Goldstein, R.; Cheng, J.; Stec, B.; Roberts, M. F. Biochemistry 2012, 51, 2579–2587.

[413] Estarellas, C.; Frontera, A.; Quiñonero, D.; Deyà, P. M. Angew. Chem., Int. Ed. 2011, 50, 415–418.

[414] Faraldos, J. A.; Antonczak, A. K.; González, V.; Fullerton, R.; Tippmann, E. M.; Allemann, R. K. J. Am. Chem.
Soc. 2011, 133, 13906–13909.

[415] Raines, D. E.; Gioia, F.; Claycomb, R. J.; Stevens, R. J. J. Pharmacol. Exp. Ther. 2004, 311, 14–21.

[416] Tantry, S.; Ding, F.-X.; Dumont, M.; Becker, J. M.; Naider, F. Biochemistry 2010, 49, 5007–5015.

[417] Wu, D.; Hu, Q.; Yan, Z.; Chen, W.; Yan, C.; Huang, X.; Zhang, J.; Yang, P.; Deng, H.; Wang, J. Nature 2012,
484, 214–219.

[418] Kapoor, K.; Du�, M. R.; Upadhyay, A.; Bucci, J. C.; Saxton, A. M.; Hinde, R. J.; Howell, E. E.; Baudry, J.
Biochemistry 2016, 55, 6056–6069.

[419] Chen, C.-C.; Hsu, W.; Kao, T.-C.; Horng, J.-C. Biochemistry 2011, 50, 2381–2383.

[420] Chen, C.-C.; Hsu, W.; Hwang, K.-C.; Hwu, J. R.; Lin, C.-C.; Horng, J.-C. Arch. Biochem. Biophys. 2011, 508,
46–53.

[421] Mardirossian, N.; Head-Gordon, M. Mol. Phys. 2017, 115, 2315–2372.

[422] Mori-Sánchez, P.; Cohen, A. J.; Yang, W. J. Chem. Phys. 2006, 125, 201102.

[423] Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Science 2008, 321, 792–794.

[424] Becke, A. D. J. Chem. Phys. 2014, 140, 18A301.

[425] Rudberg, E. J. Phys. Condens. Matter 2012, 24, 072202.

[426] Ruiz, E.; Salahub, D. R.; Vela, A. J. Am. Chem. Soc. 1995, 117, 1141–1142.

[427] Lundberg, M.; Siegbahn, P. E. J. Chem. Phys. 2005, 122, 224103.

[428] Lonsdale, D. R.; Goerigk, L. Phys. Chem. Chem. Phys. 2020, 22, 15805–15830.

[429] Kristyán, S.; Pulay, P. Chem. Phys. Lett. 1994, 229, 175–180.

[430] Tkatchenko, A.; DiStasio Jr, R. A.; Car, R.; Sche�er, M. Phys. Rev. Lett. 2012, 108, 236402.

[431] Hermann, J.; DiStasio Jr, R. A.; Tkatchenko, A. Chem. Rev. 2017, 117, 4714–4758.

[432] Johnson, E. R.; Mackie, I. D.; DiLabio, G. A. J. Phys. Org. Chem. 2009, 22, 1127–1135.

[433] Grimme, S. WIREs Comput. Mol. Sci. 2011, 1, 211–228.

[434] Lee, K.; Murray, É. D.; Kong, L.; Lundqvist, B. I.; Langreth, D. C. Phys. Rev. B 2010, 82, 081101.

185



Bibliography

[435] Szalewicz, K. WIREs Comput. Mol. Sci. 2012, 2, 254–272.

[436] Jansen, G. WIREs Comput. Mol. Sci. 2014, 4, 127–144.

[437] Lao, K. U.; Schä�er, R.; Jansen, G.; Herbert, J. M. J. Chem. Theory Comput. 2015, 11, 2473–2486.

[438] Wheeler, S. E. Acc. Chem. Res. 2013, 46, 1029–1038.

[439] Kim, D.; Tarakeshwar, P.; Kim, K. S. J. Phys. Chem. A 2004, 108, 1250–1258.

[440] Grimme, S.; Hujo, W.; Kirchner, B. Phys. Chem. Chem. Phys. 2012, 14, 4875–4883.

[441] Perlt, E.; Ray, P.; Hansen, A.; Malberg, F.; Grimme, S.; Kirchner, B. J. Chem. Phys. 2018, 148, 193835.

[442] Abbas, H. J. Biol. Phys. 2017, 43, 105–111.

[443] Ferretti, A.; d’Ischia, M.; Prampolini, G. J. Phys. Chem. A 2020, 124, 3445–3459.

[444] R̆ezác̆, J.; Greenwell, C.; Beran, G. J. J. Chem. Theory Comput. 2018, 14, 4711–4721.

[445] Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M. J. Chem. Phys. 2004, 120, 647–659.

[446] Sinnokrot, M. O.; Sherrill, C. D. J. Phys. Chem. A 2004, 108, 10200–10207.

[447] Janowski, T.; Pulay, P. J. Am. Chem. Soc. 2012, 134, 17520–17525.

[448] Cybulski, S. M.; Lytle, M. L. J. Chem. Phys. 2007, 127, 141102.

[449] Heßelmann, A. J. Chem. Phys. 2008, 128, 144112.

[450] Estarellas, C.; Lucas, X.; Frontera, A.; Quiñonero, D.; Deyà, P. M. Chem. Phys. Lett. 2010, 489, 254–258.

[451] Goldey, M.; Head-Gordon, M. J. Phys. Chem. Lett. 2012, 3, 3592–3598.

[452] Giese, M.; Albrecht, M.; Rissanen, K. Chem. Rev. 2015, 115, 8867–8895.

[453] Yamada, S. Chem. Rev. 2018, 118, 11353–11432.

[454] Karton, A.; Martin, J. M. J. Chem. Phys. 2012, 136, 124114.

[455] Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L. J. Phys. Chem. B 2001, 105, 6474–6487.

[456] Minoux, H.; Chipot, C. J. Am. Chem. Soc. 1999, 121, 10366–10372.

[457] Sure, R.; Antony, J.; Grimme, S. J. Phys. Chem. B. 2014, 118, 3431–3440.

[458] Kumar, K.; Woo, S. M.; Siu, T.; Cortopassi, W. A.; Duarte, F.; Paton, R. S. Chem. Sci. 2018, 9, 2655–2665.

[459] Turupcu, A.; Tirado-Rives, J.; Jorgensen, W. L. J. Chem. Theory Comput. 2020, 16, 7184–7194.

[460] Liu, H.; Fu, H.; Shao, X.; Cai, W.; Chipot, C. J. Chem. Theory Comput. 2020, 16, 6397–6407.

[461] Becke, A. D.; Johnson, E. R. J. Chem. Phys. 2007, 127, 154108.

[462] Becke, A. D.; Johnson, E. R. J. Chem. Phys. 2007, 127, 124108.

186



Bibliography

[463] Van Gisbergen, S.; Snijders, J.; Baerends, E. J. Chem. Phys. 1995, 103, 9347–9354.

[464] Ghasemi, S. A.; Hofstetter, A.; Saha, S.; Goedecker, S. Physical Review B 2015, 92, 045131.

[465] Caldeweyher, E.; Mewes, J.-M.; Ehlert, S.; Grimme, S. Phys. Chem. Chem. Phys. 2020, 22, 8499–8512.

[466] Grimme, S.; Bannwarth, C.; Caldeweyher, E.; Pisarek, J.; Hansen, A. J. Chem. Phys. 2017, 147, 161708.

[467] Becke, A. D.; Johnson, E. R. J. Chem. Phys. 2005, 123, 154101.

[468] Johnson, E. R.; DiLabio, G. A. Chem. Phys. Lett. 2006, 419, 333–339.

[469] Johnson, E. R.; Becke, A. D. J. Chem. Phys. 2006, 124, 174104.

[470] Otero-de-la Roza, A.; Johnson, E. R. J. Chem. Phys. 2013, 138, 054103.

[471] DiStasio Jr, R. A.; Gobre, V. V.; Tkatchenko, A. J. Phys.: Condens. Matter 2014, 26, 213202.

[472] Berland, K.; Cooper, V. R.; Lee, K.; Schröder, E.; Thonhauser, T.; Hyldgaard, P.; Lundqvist, B. I. Rep. Prog.
Phys. 2015, 78, 066501.

[473] Hujo, W.; Grimme, S. J. Chem. Theory Comput. 2013, 9, 308–315.

[474] Najibi, A.; Goerigk, L. J. Chem. Theory Comput. 2018, 14, 5725–5738.

[475] Ernst, B. G.; Lao, K. U.; Sullivan, A. G.; DiStasio Jr, R. A. J. Phys. Chem. A 2020, 124, 4128–4140.

[476] Schottel, B. L.; Chifotides, H. T.; Dunbar, K. R. Chem. Soc. Rev. 2008, 37, 68–83.

[477] Wang, D.-X.; Wang, M.-X. J. Am. Chem. Soc. 2013, 135, 892–897.

[478] Parker, A. J. Chem. Rev. 1969, 69, 1–32.

[479] McCurdy, A.; Jimenez, L.; Stau�er, D. A.; Dougherty, D. A. J. Am. Chem. Soc. 1992, 114, 10314–10321.

[480] Dougherty, D. A.; Stau�er, D. A. Science 1990, 250, 1558–1560.

[481] Aoki, K.; Murayama, K.; Nishiyama, H. J. Chem. Soc., Chem. Commun. 1995, 2221–2222.

[482] Yamada, S.; Yamamoto, N.; Takamori, E. Org. Lett. 2015, 17, 4862–4865.

[483] Yamada, S.; Yamamoto, N.; Takamori, E. J. Org. Chem. 2016, 81, 11819–11830.

[484] Goerigk, L.; Mehta, N. Aust. J. Chem. 2019, 72, 563–573.

[485] Zhao, Y.; Truhlar, D. G. J. Chem. Phys 2006, 125, 194101.

[486] Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215–241.

[487] Generally Applicable Atomic-Charge Dependent London Dispersion Correction dftd4, 2021,
https://github.com/grimme-lab/dftd4.

[488] ORCA – an ab initio, density functional and semiempirical program package, V. 4.2.1, F. Neese, MPI für
Kohlenforschung, Mülheim a. d. Ruhr (Germany), 2019.

[489] Grimme, S.; Hansen, A.; Ehlert, S.; Mewes, J.-M. J. Chem. Phys. 2021, 154, 064103.

187



Bibliography

[490] Furness, J. W.; Kaplan, A. D.; Ning, J.; Perdew, J. P.; Sun, J. J. Phys. Chem. Lett. 2020, 11, 8208–8215.

[491] Ehlert, S.; Huniar, U.; Ning, J.; Furness, J. W.; Sun, J.; Kaplan, A. D.; Perdew, J. P.; Brandenburg, J. G. J.
Chem. Phys. 2021, 154, 061101.

[492] Mardirossian, N.; Head-Gordon, M. J. Chem. Phys. 2015, 142, 074111.

[493] Haoyu, S. Y.; He, X.; Li, S. L.; Truhlar, D. G. Chem. Sci. 2016, 7, 5032–5051.

[494] Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158–6170.

[495] Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2005, 109, 5656–5667.

[496] Becke, A. D. J. Chem. Phys 1993, 98, 5648–5652.

[497] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

[498] Mardirossian, N.; Head-Gordon, M. J. Chem. Phys. 2016, 144, 214110.

[499] Santra, G.; Sylvetsky, N.; Martin, J. M. J. Phys. Chem. A 2019, 123, 5129–5143.

[500] Goerigk, L.; Grimme, S. J. Chem. Theory Comput. 2011, 7, 291–309.

[501] TURBOMOLE V7.5.1 2020, a development of University of Karlsruhe and Forschungszentrum Karlsruhe
GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.

[502] Neese, F. WIREs Comput. Mol. Sci. 2018, 8, e1327.

[503] Guo, Y.; Riplinger, C.; Becker, U.; Liakos, D. G.; Minenkov, Y.; Cavallo, L.; Neese, F. J. Chem. Phys. 2018,
148, 011101.

[504] Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796–6806.

[505] Helgaker, T.; Klopper, W.; Koch, H.; Noga, J. J. Chem. Phys. 1997, 106, 9639–9646.

[506] Neese, F.; Valeev, E. F. J. Chem. Theory Comput. 2011, 7, 33–43.

[507] Stoychev, G. L.; Auer, A. A.; Neese, F. J. Chem. Theory Comput. 2017, 13, 554–562.

[508] Lee, T. J.; Taylor, P. R. Int. J. Quantum Chem. 1989, 36, 199–207.

[509] Gersdorf, P.; John, W.; Perdew, J. P.; Ziesche, P. Int. J. Quantum Chem. 1997, 61, 935–941.

[510] Fogueri, U. R.; Kozuch, S.; Karton, A.; Martin, J. M. Theor. Chem. Acc. 2013, 132, 1–9.

[511] Werner, H. J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. WIREs Comput. Mol. Sci. 2012, 2, 242–253.

[512] Molpro V15.1 2015, a package of ab initio programs, 2015, http://www.www.molpro.net.

[513] Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553–566.

[514] Conformer-Rotamer Ensemble Sampling Tool based on the xtb Semiempirical Extended Tight-Binding Program
Package crest, 2021, https://github.com/grimme-lab/crest.

[515] Semiempirical Extended Tight-Binding Program Package xtb, Version 6.3.3., 2020,
https://github.com/grimme-lab/xtb.

188



Bibliography

[516] Geary, R. C. Biometrika 1935, 27, 310–332.

[517] Su, P.; Li, H. J. Chem. Phys. 2009, 131, 014102.

[518] Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz Jr, J. L. Phys. Rev. Lett. 1982, 49, 1691.

[519] Zhang, Y.; Yang, W. Theor. Chem. Acc. 2000, 346–348.

[520] Yang, W.; Zhang, Y.; Ayers, P. W. Phys. Rev. Lett. 2000, 84, 5172.

[521] Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Staroverov, V. N.; Tao, J. Phys.
Rev. A 2007, 76, 040501.

[522] Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Phys. Rev. B 2008, 77, 115123.

[523] Johnson, E. R.; Mori-Sánchez, P.; Cohen, A. J.; Yang, W. J. Chem. Phys. 2008, 129, 204112.

[524] Spicher, S.; Grimme, S. J. Chem. Theory Comput. 2021, 17, 1701–1714.

[525] Katsyuba, S. A.; Spicher, S.; Gerasimova, T. P.; Grimme, S. J. Phys. Chem. B 2020, 124, 6664–6670.

[526] Katsyuba, S. A.; Spicher, S.; Gerasimova, T. P.; Grimme, S. J. Chem. Phys. 2021, 10.1063/5.0057024.

[527] Houk, K. N.; Paddon-Row, M. N.; Rondan, N. G.; Wu, Y.-D.; Brown, F. K.; Spellmeyer, D. C.; Metz, J. T.;
Li, Y.; Loncharich, R. J. Science 1986, 231, 1108–1117.

[528] Fooshee, D.; Mood, A.; Gutman, E.; Tavakoli, M.; Urban, G.; Liu, F.; Huynh, N.; Van Vranken, D.; Baldi, P.
Mol. Sys. Des. Eng. 2018, 3, 442–452.

[529] Kirkwood, J. G. J. Phys. Chem. 1935, 3, 300–313.

[530] Henriksen, N. M.; Gilson, M. K. J. Chem. Theory Comput. 2017, 13, 4253–4269.

[531] Zwanzig, R. W. J. Chem. Phys. 1954, 22, 1420–1426.

[532] Aqvist, J. J. Phys. Chem. 1990, 94, 8021–8024.

[533] Mobley, D. L.; Gilson, M. K. Annu. Rev. Biophys. 2017, 46, 531–558.

[534] Hansen, N.; Van Gunsteren, W. F. J. Chem. Theory Comput. 2014, 10, 2632–2647.

[535] Bootsma, S., Andrea N.; Wheeler ChemRxiv 2019, https://doi.org/10.26434/chemrxiv.8864204.v5.

[536] Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502–16513.
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A1. Abbreviations

AES Anisotropic electrostatics
AO Atomic orbital
ATM Axilrod–Teller–Muto
AXC Anisotropic exchange
BJ Becke–Johnson
BO Bond order
BSIE Basis set incompleteness error
BSSE Basis set superposition error
CAMM Cumulative atomic multipole moments
CBS Complete basis set
CC Coupled cluster
CI Con�guration interaction
CN Coordination number
COSMO Conductor-like screening model
COSMO-RS Conductor-like screening model for real solvents
CP Counterpoise
CPCM Conductor-like Polarizable Continuum Model
CPU Central processing unit
CREST Conformer-rotamer ensemble sampling tool
CSD Cambridge Structural Database
CT Charge transfer
DFA Density functional approximation
DFG Deutsche Forschungsgemeinschaft
DFT Density functional theory
DFTB Density functional tight binding
DLPNO Domain based local pair natural orbital
DNP Dynamic nuclear polarization
DOF Degrees of freedom
ECP E�ective core potential
EDA Energy decomposition analysis
EEQ Electronegativity equilibrium
EHT Extended Hückel theory
EN Electronegativity
EPR Electron paramagnetic resonance
FC Force constant
FCI Full con�guration interaction
FEP Free energy perturbation

II



FF Force-�eld
FRET Förster resonance energy transfer
GB Generalized Born
gCP Geometrical counterpoise
GGA Generalized gradient approximation
GSM Growing string method
GTO Gaussian type orbital
HB Hydrogen bond
HF Hartree–Fock
HOMO Highest occupied molecular orbital
HVF Harmonic vibrational frequencies
IES Isotropic electrostatics
IR Infrared
IXC Isotropic exchange
KS-DFT Kohn–Sham density functional theory
LCAO Linear combination of atomic orbitals
LD London dispersion
LMO Localized molecular orbital
LP Lone-pair
LUMO Lowest unoccupied molecular orbital
MAD Mean absolute deviation
MBD Many-body dispersion
MD Molecular dynamics
MEP Molecular electrostatic potential
ML Machine learning
MO Molecular orbital
MOF Metal organic framework
MOP Metal organic polyhedron
MP Møller–Plesset
MTD Metadynamics
MTSL Methanethiosulfonate spin-label
NCI Noncovalent interactions
NDDO Neglect of diatomic di�erential overlap
NMR Nuclear magnetic resonance
PCM Polarizable Continuum Model
PELDOR Pulsed electron–electron double resonance
PES Potential energy surface
PHVA Partial Hessian vibrational analysis
POC Porous organic cage
PRE Paramagnetic relaxation enhancement
QM Quantum mechanical
QSAR Quantitative structure-activity relationships
RI Resolution-of-identity
RMSD Root-mean-square deviation
RPA Random phase approximation

III



A1. Abbreviations

RRHO Rigid-rotor-harmonic-oscillator
SAPT Symmetry adapted perturbation theory
SCF Self-consistent �eld
SD Standard deviation
SDSL Site-directed spin-labeling
SE Schrödinger equation
SIE Self-interaction error
SPE Single-point energy
SPH Single-point Hessian
SQM Semiempirical quantum mechanical
SRB Short-ranged basis set
STO Slater type orbital
TI Thermodynamic integration
TM Transition metal
TS Transition state
TST Transition state theory
UEG Uniform electron gas
WFT Wave function theory
ZPVE Zero-point vibrational energy
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A2. Supporting Information to Chapter 2

Appendix A2 contains:

• Kohn–Sham Density Functional Theory

• Extended Tight-Binding Methods

• Molecular Dynamics and Structure Ensembles

A2.1. Kohn–Sham Density Functional Theory

A2.1.1. Density Functional Approximations

Local (Spin) Density Approximation

The local density approximation (LDA) is derived from the uniform electron gas (UEG), which assumes
only small variations in the electron density of the system.154 The more general form accouting for indi-
vidual α and β densities is termed local spin density approximation (LSDA). Both directly depend on the
local density ρ(r) and the exchange functional is based on the formulas derived by Dirac (Eq. A2.1)164,165

ELSDA
X [ρ] = −

3
4

(
3
π

) 1
3
∫ (

ρα (r)
4
3 + ρβ (r)

4
3
)
dr. (A2.1)

The correlation part is discussed in Refs. 167,168. Due to the UEG foundation, systems with a homoge-
nous electron density like metals are described reasonably well by LSDA approaches. For systems with
inhomogeneous electron densities, as found in most molecules, the accuracy is rather low.

Generalized Gradient Approximation

In the general gradient approximation (GGA), EXC of LSDAs is modi�ed by an enhancement factor
FGGA

XC [ρ,∇ρ].
154 This enhancement factor depends on the local electron density and its gradient (Eq. A2.2).

It is further required that the Fermi and Coulomb holes integrate to the correct values of −1 and 0, re-
spectively.15

EGGA
XC =

∫
ϵLSDAXC [ρ(r)]FGGA

XC [ρ(r),∇ρ(r)]dr (A2.2)

GGAs are typically referred to as semi-local DFAs, because ∇ρ(r) introduces information about the
gradient of the electron density. Semi-local DFAs su�er from the self-interaction error (SIE) resulting
in an over-delocalization of the electron density.
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Meta-Generalized Gradient Approximation

Meta-generalized gradient approximations (meta-GGA) include the second order derivatives of the elec-
tron density in the enhancement factor Fmeta-GGA

XC [ρ,∇ρ].154 As the Laplacian ∇2ρ is known to show
numerical instability, it is often replaced by the kinetic energy density τ (r) (Eq. A2.3)169.

τ (r) =
1
2

∑
σ=a,b

Nσ∑
i

|∇ϕi (r)|2 (A2.3)

Here, the density is divided into di�erent spin components, and Nσ is the total number of electrons
with spin σ ∈ {α , β}. In contrast to the signi�cant improvement of GGA over LSDA functionals, the
meta-GGA approach improves the accuracy of GGAs only slightly. The computational costs formally
scale as O(M4), due to the semi-local two-electron integral evaluation, but can be accelerated to O(M3)

by appropriate approximations such as the resolution-of-identity (RI).341,342

Hybrid DFT

Semi-local DFAs are improved by adding non-local information about the occupied Kohn-Sham orbitals.
Therefore, the exchange functional is modi�ed by a fraction aX of exact exchange from HF, called Fock
exchange EHF

X . By invoking the adiabatic connection632 and assuming a linear dependence172 between
the Fock and (meta-)GGA exchange as the limits of integration, an empirical expression is obtained

E
hybrid
XC = E(meta-)GGA

C + (1 − aX)E
(meta-)GGA
X + aXE

HF
X . (A2.4)

The Fock exchange reduces the SIE in hybrid DFAs. As a result, most hybrids outperform the semi-
local DFAs in terms of accuracy for the calculation of many chemical properties162,424 This accuracy
gain comes at the cost of an increased formal scaling

(
O(M4)

)
, since the Fock exchange is evaluated

non-locally by integrating ρ(r, r′) over two spatial parts r and r′.154

In global hybrid functionals, as well as meta-GGAs, the exchange potential is not described correctly
in the asymptotic limit. A correction for this is established in range-separated hybrid DFAs. Therein,
the exchange part is divided into a short-ranged and a long-ranged part (Eq. A2.5)633,634

1
r12
=

1 − a′X − a
′′
X erf(µ r12)

r12︸                      ︷︷                      ︸
short−range

+
a′X + a

′′
X erf(µ r12)

r12︸                ︷︷                ︸
long−range

. (A2.5)

Here, a modi�ed (semi-)local DFA is employed for the short-range part, while the long-range part is
exactly evaluated by a regular and modi�ed Fock exchange term scaled by a′X and a′′X , respectively. The
error function is employed to interpolate smoothly between both parts. µ is a parameter controlling
the steepness of the interpolation.
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Double-hybrid DFT

By construction, mean-�eld methods typically lack a su�cient description of the electron correlation,
and DFT is no di�erent. The double-hybrid functionals introduce information about the virtual Kohn-
Sham orbitals to the correlation part in terms of modi�ed second order Møller–Plesset perturbation
theory,152 or the random phase approximation (RPA)635 (Eq. A2.6).174,175,636 Most variants apply an
MP2-like treatment, which leads to the general expression

E
double-hybrid
XC = (1 − aX)E

(meta-)GGA
X + aXE

HF
X + (1 − bC)E

(meta-)GGA
C + bCE

PT2
C , (A2.6)

where aX andbC are typically treated as a �tting parameters. Due to the MP2 correlation energy, typical
double-hybrid functionals scale as O(M5) with the number of AOs. This limits the applicability to
large systems. Nevertheless, double-hybrid functionals are computationally more e�cient than coupled
cluster methods, whilst almost reaching their accuracy.162,184,637

A2.1.2. London Dispersion Corrected DFT

Electronic structure methods based on mean-�eld approximations like HF and (semi-)local Kohn–Sham
DFT do not describe long-range electronic correlation e�ects, and hence they cannot account for so-
called London dispersion (LD) interactions.334,638 As a result, DFAs (and HF) yield wrong asymptotic
interaction energies that decay exponentially at short and medium range, instead of −1/R6.339 Disper-
sion interactions can be empirically de�ned as the attractive part of a van der Waals (vdW) interaction
between non-bonded atoms or molecules. More precisely, LD interactions result from relatively long-
ranged electron correlation e�ects in many-electron systems and involve coupled local components
that can be explained in a stationary, time-independent electronic state picture. London and Eisen-
schitz derived the famous asymptotic formula for the dispersion energy between two atoms A and B at
large distance R in 1930 (Eq. A2.7) from perturbation theory199,200

EABdisp ≈ −
CAB

6,approx

R−6 , (A2.7)

with the pair-speci�cC6 dispersion coe�cient. In a more general form, the pair-wise dispersion energy
Edisp(RAB) is given in A2.8

EABdisp =
∑

n=6,8,10, ...
E(n)disp = −

∑
AB

∑
n=6,8,10, ...

CAB
n

R(n)AB

f (n)damp . (A2.8)

The dispersion coe�cientsCAB
n of nth order are chosen to be generally positive and the damping func-

tion f (n)damp is introduced to avoid arti�cial overbinding in typical covalent bonding regimes. The most
prominent and e�cient LD correction schemes is the DFT-D approach of Grimme and co-workers,
which is simply additive to the electronic mean-�eld energy.334 In the most used DFT-D3 variant,252,334

the pair-wise dispersion correction term is obtained form precalculated dispersion coe�cientCAB
n , the

DFA dependent parameter sn , and the distance dependent damping function f (n)damp (R). The resulting
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term (Eq. A2.9)

ED3,AB
disp =

∑
n=6,8

E(n)disp = −
∑
AB

∑
n=6,8

sn
CAB
n

R(n)AB

f (n)damp (R) (A2.9)

depends on the molecular structure and the atomic coordination numbers (CN) that is used to calcu-
late the dispersion coe�cients CAB

n (CNA,CNB). As damping functions f (n)damp (R) two variants can be
applied, the originally applied zero-damping (Eq. A2.10) or the more frequently used Becke–Johnson
damping253,255,639 (Eq. A2.11), termed as D3(0) and D3(BJ), respectively

f (n)damp,0(R) =
1

1 + 6(R/(sr,nR0))an
(A2.10)

f (n)damp,B J (R) =
Rn

Rn + (a1R0 + a2)n
. (A2.11)

For these damping functions R0 =
√
CAB

8 /C
AB
6 , and sr,n , a1, a2 are functional speci�c parameters. Re-

cently, the DFT-D4 model has been introduced as the successor of DFT-D3.242,339 In DFT-D4, atomic
charge dependent reference polarizabilities α(iω) and modi�ed, electronegativity dependent CNs are
used to calculate the dispersion coe�cient CAB

n . The usage of DFT in combination with an LD cor-
rection is standard nowadays. For a more detailed evaluation of di�erent LD correction schemes, see
Section 6.

A2.1.3. Composite DFT Methods

Composite DFT methods introduce (empirical) corrections to enhance the e�ciency of DFT methods.640

The basic philosophy of the so-called “3c” composite methods is to provide a consistent description, i.e.,
without systematic deviations at the lowest possible computational cost.231,237,489,641,642 Hence, small
but well-balanced AO basis sets are employed, while the remaining basis set errors are corrected by a
geometrical counterpoise correction (gCP) or absorbed into the DFA itself via the parameterization.643

Further, short-ranged basis set (SRB) errors, mainly in�uencing covalent bond lengths in most (meta-)
GGA DFAs, can be addressed by a speci�c correction. For some of the 3c methods, even direct modi-
�cations in the exchange-correlation part are made. All 3c composite methods apply either the D3 or
D4 London dispersion correction. 3c methods reach in general a high accuracy at comparably small
computational costs and are intensively used in the course of this thesis. An overview of the most
important 3c composite methods is given in Table A2.1.
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Table A2.1.: Overview of 3c composite methods used in this thesis and their speci�c components and
modi�cations.

PBEh-3c231 B97-3c237 r2SCAN-3c489

AO basis set def2-mSV(P) mTZVP mTZVPP
# parameters in FX 2 4 0
# parameters in FC 1 6 0
Fock exchange / % 42 0 0
Dispersion correction D3 D3 D4
SRB correction no yes no
gCP correction yes no yes

A2.2. Extended Tight-Binding Methods

The following equations are taken from Ref. 96. The general GFNn-xTB energy terms are:

EGFN1-xTB = Erep + E
D3
disp + EXB + EEHT + Eγ + EΓ +GFermi , (A2.12a)

EGFN2-xTB = Erep + EEHT + E
D4’
disp + Eγ + EAES + EAXC + EΓ +GFermi , (A2.12b)

EGFN0-xTB = Erep + E
D4
disp + ESRB + EEEQ + EEHT +GFermi . (A2.12c)

All information that is ommited here for brevity can be found in the original literature.93–96

A2.2.1. Common GFNn-xTB Ingredients

The GFNn-xTB wave functions are formulated in terms of partially polarized, (mostly) minimal valence
basis sets, consisting of spherical Gaussian-type atomic orbital (GTO) basis functions. Contracted GTOs
ϕµ are constructed from primitive GTOs χ µz , where dzµ are the corresponding contraction coe�cients.
Each contracted GTO ϕµ then approximates a Slater-type orbital (STO) ϕSTO

µ
190

ϕSTO
µ (r) ≈ ϕµ (r) =

N µ
prim∑
z

dzµ χ
µ
z (r) . (A2.13)

The molecular orbitalsψj are expanded as a linear combination in this atomic orbital (AO) basis

ψj (r) =
NAO∑
µ

Cµ jϕµ (r) . (A2.14)

Deriving the respective energy expressions for the orbital coe�cients yields a Roothaan–Hall-type
generalized eigenvalue equation (cf. Section 2.1.3). GFNn-xTB methods employ a �nite electronic tem-
perature (Tel = 300 K),644 which introduces fractional orbital occupations and static electron correla-
tion e�ects with formally a single-reference treatment. The xTB energy expressions (Eq. A2.12) are
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augmented with an electronic entropy term

GFermi = kBTel
∑
σ=α,β

∑
i

[niσ ln (niσ ) + (1 − niσ ) ln (1 − niσ )] . (A2.15)

Tel refers to the electronic temperature, kB the Boltzmann constant, and niσ is the fractional occupation
number of the spin-MOψiσ , which is given by the Fermi-distribution

niσ =
1

exp[(ϵi − ϵσF )/(kBTel)] + 1 . (A2.16)

Here, ϵi is the energy of the orbitalψi and ϵσF is the Fermi level within the respective spin orbital space
(α or β). The xTB variants are formally spin-restricted and thus, the fractional occupation can be used
to introduce spin dependencies and open-shell systems. The repulsion energy in all GFN-type methods
is given as an atom-pairwise expression (Eq. A2.17)

Erep =
1
2
∑
A,B

Z e�
A Z e�

B

RAB
e−
√
αAαB (RAB )

kf
. (A2.17)

Here, Z e� are element-speci�c �tting parameter that correspond to e�ective nuclear charges, which
are screened by the core reference density ρA,core

0 . kf = 3
2 is a global parameter, while the α exponents

are element-speci�c parameters. The extended Hückel term is calculated in all GFNn-xTB schemes as

EEHT =
∑
µν

PµνH
EHT
ν µ , (A2.18)

where the Hamiltonian elements are constructed via

HEHT
µν =

1
2 K l l ′

AB Sµν
(
Hµµ + Hνν

)
X (ENA,ENB) Π(RAB , l , l

′) Y (ζ Al , ζ
B
l ′ ) . (A2.19)

Herein A/B are atoms, the indices µ/ν indicate AOs, l/l ′ indicate shells, and µ ∈ l(A) and ν ∈ l ′(B).
K l l ′
AB is a shell-speci�c scaling constant, X (ENA,ENB) is a electronegativity dependent function, and

Y (ζ Al , ζ
B
l ′ ) is a shell-exponent dependent term that only occurs in GFN2-xTB. The distance-dependent

polynomial scaling function Π(RAB , l , l
′) is

Π(RAB , l , l
′) =

(
1 + kpolyA,l

(
RAB

Rcov,AB

) 1
2
) (

1 + kpolyB,l ′

(
RAB

Rcov,AB

) 1
2
)
, (A2.20)

where Rcov,AB are the the summed covalent radii and k
poly
A,l the �tted parameters.

A2.2.2. Energies in GFN1-xTB

In GFN1-xTB, the EHT Hamiltonian components Hµµ and X (ENA,ENB) are given by

HGFN1
µµ = hlA

(
1 + kCN ,lCNA

) ∀ µ ∈ l ∈ A , (A2.21)
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with the element-speci�c parameter hlA, the global angular momentum-speci�c parameter kCN ,l , and

X (ENA,ENB) =
(
1 + kEN∆EN 2

AB
)
, (A2.22)

where kEN is a global parameter. CNA is the coordination number of atom A, which is calculated in
analogy to the D3 coordination number.252,253 The second-order exchange-correlation and isotropic
electrostatic energy contributions are described by equation A2.23

EGFN1
γ =

1
2

Natoms∑
A,B

∑
l ∈A

∑
l ′∈B

qlql ′γAB,l l ′ , (A2.23)

withql representing the Mulliken128 partial shell charges. γAB,l l ′ is a Mataga–Nishimoto–Ohno–Klopman
damping function for the Coulomb interaction (Eq. A2.24), damped by the term ηAB,l l ′ (Eq. A2.25)

γAB,l l ′ =
1√

R2
AB + η

−2
AB,l l ′

. (A2.24)

In this short-range damping function, η is an element-speci�c atomic hardness parameter and κ a shell-
dependent scaling parameter

ηAB,l l ′ = 2
(

1
ηA(1 + κlA)

+
1

ηB(1 + κl
′

B )

)−1

. (A2.25)

At third order the GFN1-xTB energy is given by

EGFN1
Γ =

1
3
∑
A

(qA)
3ΓA , (A2.26)

which is an on-site third order electrostatic and exchange-correlation correction term. ΓA is an element-
speci�c parameter. What remains in GFN1-xTB are the D3 dispersion energy (cf. Eq. A2.9) and a halogen
bonds (XB) correction

EGFN1
XB =

NXB∑
AB

f AXB
dampkX

[(
kXRRcov,AX

RAX

)12
− kX 2

(
kXRRcov,AX

RAX

)6
] [(

kXRRcov,AX
RAX

)12
− 1

]−1

. (A2.27)

Here, kXR and kX 2 are global parameters, kX is the halogen-speci�c parameter, and f AXB
damp is the angular

three-body damping function.

A2.2.3. Energies in GFN2-xTB

In GFN2-xTB, the electronegativitiy dependent scaling function X (ENA,ENB) has the same form as in
GFN1-xTB (Eq. A2.22). The Hamiltonian elements are reformulated as

HGFN2
µµ = hlA − δh

l
CN ′A

CN ′A , (A2.28)
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where hlA and δhlCN ′A
are shell and element speci�c parameters. CN ′A is a modi�ed93 version of the

D3 coordination number. GFN2-xTB additionally introduces the AO exponent ζ dependent term as a
further scaling function of the Hamiltonian elements

Y (ζA, ζB) =
©«

2
√
ζ Al ζ

B
l ′

ζ Al + ζ
B
l ′

ª®®¬
1
2

. (A2.29)

The isotropic second order electrostatic energy Eγ is given in Eq. A2.23. The short-range damping is
modi�ed according to93

ηAB,l l ′ =
1
2

[
ηA

(
1 + κlA

)
+ ηB

(
1 + κl ′B

)]
, (A2.30)

where ηA and ηB are element-speci�c �t parameters, while κlA and κl
′

B are element-speci�c scaling
factors for the individual shells (with κlA = 0 for l = 0). GFN2-xTB is the �rst TB scheme that employs
at second order anisotropic electrostatic (AES) and exchange-correlation (AXC) terms according to

EAES =Eqµ + EqΘ + Eµµ (A2.31)

=
1
2
∑
A,B

{ f3(RAB)
[
qA(µ

T
BRBA) + qB(µ

T
ARAB)

]
+ f5(RAB)[qARTABΘBRAB + qBRTABΘARAB

− 3(µTARAB)(µ
T
BRAB) + (µ

T
AµB)R

2
AB]} (A2.32)

EAXC =
∑
A

(
f
µA
XC |µA |

2 + f ΘAXC | |ΘA | |
2
)
. (A2.33)

The cumulative atomic multipole moments (CAMM) describe the anisotropic interaction between the
atomic charge qA, the dipole moment µA, and the quadrupole moment ΘA. fn(RAB) are distance de-
pendent damping functions with global parameters. f

µA
XC and f ΘAXC are element-speci�c parameters.

The dispersion energy at second order is described by a self-consistent version of the D4 model242,249

according to

ED4’
disp = −

∑
A>B

∑
n=6,8

sn
CAB
n (qA,CNA,qB ,CNB)

RnAB
f (n)damp,B J (RAB)

− s9
∑

A>B>C

(3 cos(θABC ) cos(θBCA) cos(θCAB) + 1)CABC
9 (CNA

cov ,CN
B
cov ,CN

C
cov )

(RABRACRBC )
3 (A2.34)

× f (9)damp,0(RAB ,RAC ,RBC ) .

This model depends on the atomic charges taken from the Mulliken population and employs both,
Becke–Johnson f (n)damp,B J , and zero damping f (9)damp,0 functions. The third order IES/IXC term in GFN2-
xTB is closely related to Eq. A2.26. In addition, it is shell-dependent and introduces a global shell-
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speci�c parameter KΓ
l

EGFN2
Γ =

1
3
∑
A

∑
l ∈A

(ql )
3 KΓ

l ΓA . (A2.35)

In GFN2-xTB, an empirical XB correction is obsolete due to the sophisticated AES/AXC description.

A2.2.4. Energies in GFN0-xTB

GFN0-xTB truncates the TB energy expansion already at �rst order and is thus the most empirical
GFNn-xTB scheme. To account for the isotropic electrostatic interactions, which appear at second
order, a classical charge equilibrium model (EEQ) is employed (cf. Chapter 3 in Part II). With this, a
charge dependence is built into the EHT Hamiltonian elements

HGFN1
µµ = hlA − δh

l
mCNA

mCNA − δh
l
qA qA − Γ

l
qaq

2
A . (A2.36)

Here, hlA, δhlmCNA
, δhlqA and ΓlqA are element-speci�c parameters, where the latter two are related to

the chemical hardness. mCNA is a modi�ed coordination number.95 The GFN0-xTB EHT Hamiltonian
is further modi�ed by the electronegativity dependent scaling function X (ENA,ENB), which is shell
dependent according to

X l l ′(ENA,ENB) = 1 + kl l ′EN∆EN
2
AB + k

l l ′
ENbEN∆EN

4
AB , (A2.37)

where kl l ′EN is a shell-speci�c parameter and bEN a global parameter. The electronegativity is addition-
ally applied within the short-range basis (SRB) correction237,641

ESRB = ksrb
∑
A,B

exp
[
−ηsrb

(
1 + дscal∆EN 2

AB
) (
RAB − R

srb
AB

)]
, (A2.38)

with the global �t parameters ksrb , ηsrb , and дscal . The covalent bond radii RABsrb are modi�ed by the
electronegativities.95 In GFN0-xTB, the dispersion energy is described by the standard D4 model.242,249

The D4 model and the GFN0 Hamiltonian require atomic charges, which are not obtained from Mulliken
populations but from the EEQ model. This model yields the zeroth order electrostatic energy according
to

EEEQ =
∑
A

[
χA qA +

1
2

(
JAA +

2
√
π
γAA

)]
+

1
2
∑
A,B

qA qB
erf(γABRAB)

RAB
, (A2.39)

with, JAA, χA(ENA,κA,mCNA) as �tted element-speci�c parameters. γAB is related to the inverse root
mean square of the atomic radii.95
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A2.3. Molecular Dynamics and Structure Ensembles

A convenient approach to sample the conformational space of a �exible molecule is given by molecular
dynamics (MD) simulations. MD simulations analyze the physical movements of atoms and molecules
and give a view of the dynamic “evolution” of the system. Given the KS-DFT, GFNn-xTB, or GFN-FF
expressions for Etot, the negative gradient with respect to the nuclear positions, i.e., the forces may
be computed. In Born-Oppenheimer MD simulations, the molecular trajectories are determined by
numerically solving Newton’s equations of motion for a system of interacting particles (Eq. A2.40)645,646

MI
d2 ®RI
dt2 = −

®∇IEtot︸︷︷︸
®FI

. (A2.40)

Here, MI is the mass of nucleus I , ®RI its position, and ®FI the force acting on it. The right-hand side of
Eq. A2.40 is obtained from a molecular energy calculation. The nuclear positions at a new point in time
t + ∆t are computed numerically, using a �nite time step ∆t , which is governed by the fastest nuclear
motions. The nuclear position and velocity υI are computed, e.g., by the leap-frog algorithm given in
Eq. A2.41646

®RI (t + ∆t) = ®RI (t) + ®υI

(
t +

∆t

2

)
∆t (A2.41a)

®υI

(
t +

∆t

2

)
= ®υI

(
t −

∆t

2

)
+
®FI
MI

∆t . (A2.41b)

In Eqs. A2.41a and A2.41b, the position and velocity updates are out of phase by half a time step. This in-
terleaving evaluation of positions and velocities gains numerical stability concerning the conservation
of energy.

With standard MD simulations it is often di�cult to overcome larger energetic barriers and hence,
only small parts of the chemical space are within the reach of MD simulations. To improve upon
that, the concept of meta-dynamics (MTD) was introduced,220 in which a biasing potential is added to
globally explore the conformer space. The bias potential is as a sum of Gaussian functions expressed
with the root-mean-square deviation (RMSD) in Cartesian space as a metric for the collective variables
(cf. Eq. 8.4, Chapter 8)

ERMSD
bias =

n∑
i=1

kie(
−α∆2

i ) . (A2.42)

Here, n is the number of reference structures associated with the pushing (or pulling) strength k , ∆ is
the structural RMSD, and the parameter α determines the width of the biasing potential. Adding ERMSD

bias
to the molecular energy within a MTD simulation leads to a chemically realistic exploration of the PES
by allowing otherwise impossible barrier crossings. The operating principle of MTD simulations is
illustrated in Figure A2.1A.

The crest program represents an e�cient scheme for the in silico sampling for parts of the molecu-
lar low-energy chemical space by semiempirical TB or FF methods, combined with a meta-dynamics
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Figure A2.1.: (A) Schematic one dimensional PES that is “�lled” by several biaspotentials over time,
which allows larger barrier heights to be overcome. (B) Simplie�ed work�ow of the
CREST algorithm. Figure adapted from Ref. 60

driven search algorithm. A simpli�ed scheme is depicted in Figure A2.1B. Here the key aspect is the
combination of MTD and MD simulations followed by full geometry optimizations of the respective
trajectories. Based on the RMSD, the rotation constant Be , and the di�erence in energy ∆E, the re-
sulting structures are identi�ed as conformers or rotamers, and duplicates are sorted out. The CREST
algorithm is applied several times throughout this thesis and highly important for the generation of the
starting structures. For further information, see the original publication Ref. 60.
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Appendix A3 contains:

• General remarks

• Supplementary text

• Materials and methods

General remarks

The Supplementary Material of the original publication is available:
Spicher, S.; Grimme, S. “Robust Atomistic Modeling of Materials, Organometallic, and Biochemical Sys-
tems”, Angew. Chem. Int. Ed. 2020, 59, 15665–15673.

The free xtb source code243 can be obtained online from:
https://github.com/grimme-lab/xtb.

Supplementary text

Use of additional fragment charge information

In GFN-FF the computed atomic charges from the EEQ model may be improved by constraints if addi-
tional information about the charge distribution in the system is known. There are three di�erent ways
to incorporate this information. If the system consists of more than one NCI fragment, the charges per
fragment can be written by the user into a speci�c �le (named .CHRG) and will be constrained ac-
cordingly in the EEQ model, thus preventing arti�cial charge transfer between the NCI fragments. If
a GFN-xTB calculation is performed in advance, the written �le ”charges” is read by the program, and
the corresponding QM charges are used to constrain the values on the molecular fragments. The last
option is useful, especially for biological systems. If a “pdb” �le is provided with known charges on
speci�c residues, the xtb program reads this information, determines the overall charge of the system
automatically, and applies this charge constrain per residue, again preventing (inter-residue) charge
transfer.

XVI
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Potential energy curves

GFN-FF is a dissociative force-�eld allowing cleavage of all covalent bonds that are assigned by the ini-
tial topological procedure. Forming new covalent bonds after the setup stage (i.e., a reactive force-�eld)
is not possible. Figure A3.1 shows the computed potential energy curves for �ve diatomic molecules
and includes reference dissociation energies taken from Ref. 647. The asymptotic correct value is in-
dicated by dashed lines in the same color as the corresponding GFN-FF result. For a broad range of
bonds with di�erent polarity and bond orders, GFN-FF is able to describe the dissociation qualitatively
correct. No attempt in the parameter �tting procedure was made to improve the description of atom-
ization energies, i.e., this test can be seen as a di�cult cross-check of the covalent part of the GFN-FF
potential.
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Figure A3.1.: Potential energy curves for diatomic molecules. Computed GFN-FF potential energy
curves and reference dissociation energies (asymptotic value indicated by the dashed line)
for �ve diatomic molecules.

Parameterization strategy

The �tting procedure is technically done with the Levenberg–Marquardt algorithm.648,649 Applying
this method, global and the element-speci�c parameters are determined by minimizing the root-mean-
square deviation (RMSD) between reference (PBEh-3c231 and B97-3c237) and GFN-FF computed data.
The reference data consist of equilibrium and distorted geometries for force matching, harmonic fre-
quencies, and NCI energies of subsets from the GMTKN55 database. The reference structure set is an
extended and re�ned version of the GFN2-xTB training set, owing to the fact that larger systems can be
treated by the force-�eld. Special attention is paid towards the correct description of transition-metal
(TM) complexes by the inclusion of highly coordinated TM systems. Furthermore, the general �tting
strategy is identical, meaning the global parameters have been determined along with the element spe-
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ci�c parameters for the elements H, C, N, and O �rst and the parameters for all other elements were
�tted while keeping the existing (HCNO)-parameters �xed. The element speci�c parameters for the
lanthanoids are linearly interpolated between the elements La and Lu by means of the nuclear charge
Z . Due to the number of parameters, they will not be listed in the appendix. However, the xtb code is
open source and parameters can be looked up in the code provided on our github website.243

Trouble-shooting

The implementation of GFN-FF was tested to the best of our ability for very many di�erent chemical
systems. However, incorrect assignments of bond topology leading to bad results may still occur in
particular for unusual element combinations. Therefore we refer to our github website,243 where a
detailed manual of how to use GFN-FF in xtb can be found. This website also o�ers the possibility to
open up issues and ask questions directly. Since it is impossible for us to test every possible molecular
system, in some cases GFN-FF might fail. If such a case is observed we are pleased about user feedback
and we will try to correct it. Updates of the program in this respect as well as other revisions will always
be announced on this website. This procedure worked already well informally during the development
of the program/method thanks to many beta-users worldwide.

Materials and Methods

In this section, all the necessary information is given to reproduce the data in this work. The compu-
tational methods and software packages used are listed as well as all the data necessary to construct
the graphics. For the given statistics, the following abbreviations are used throughout: mean devia-
tion (MD), mean absolute deviation (MAD), standard deviation (SD), and root mean square deviation
(RMSD).

Computational details

Detailed comparisons between GFN1-xTB and GFN2-xTB with other semiempirical methods have been
conducted in the respective original method publications.93,94 Therefore we will compare the perfor-
mance of GFN-FF to its predecessors and results for other semiempirical calculations, such as DFTB3-
D3(BJ),92,650 PM6-D3H4X,315 and PM7.88 All GFN calculations have been performed with our stan-
dalone program termed xtb (version 6.3.0). PMx calculations have been performed with MOPAC2016
(version 18.151).338 DFT and coupled cluster calculations have been conducted with the
TURBOMOLE.7.3.1651 and ORCA.4.1.1652,653 program packages. Computational data for each bench-
mark set was taken from the respective publication. For the geometry optimizations of metal-organic
frameworks and proteins in Section 3.1 and 3.3, an implicit GBSA solvation model is used throughout.
For all optimizations a convergence thresholds of Econv = 5·10−6Eh are employed. For the optimizations
of all protein structures in Section 3.3 this value is changed to Econv = 5 · 10−5Eh . MD simulations with
GFN-FF were carried out for 1 ns at 298 K employing the implicit GBSA(H2O) solvation model. A time
step of 4 fs (at an increased hydrogen mass of 4 amu) and equilibration phase of 200 ps was chosen.
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Figure A3.2.: RMSD of Q8R1 as a function of time. The �rst 200 ps are chosen as the equilibration phase
and not considered for further structural evaluation.
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Figure A3.3.: Geometry optimization of the COVID-19 main protease in complex with an inhibitor N3.
Within 1 hour and 622 optimization cycles on four Intel© Xeon CPUs, a stationary point
on the PES is found. The RMSD between the experimental and the GFN-FF structure is
0.95 Å. A GBSA(H2O) solvation model was used. The structure is taken from Ref. 264.
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Figure A3.4.: Depiction of the four dihedral angles. The angles ϕ, ψ and ω discussed in this work are
backbone angles, whereas χ is the �rst side chain angle.

Table A3.1.: Organic protein benchmark set. Average deviations of four types of dihedral angles (in
degree) for the test set of 70 protein structures as well as average Cα and heavy atom (ha)
RMSD (in Å) in each case with respect to the crystal structure.

angles / ◦ RMSD / Å

∆ϕ ∆ψ ∆ξ ∆ω Cα ha

UFF 24.2 22.3 11.7 23.2 1.82 2.22
GFN2-xTB 14.2 14.7 10.1 5.4 0.59 0.87
AMBER* 19.8 15.3 12.1 5.0 0.69 0.97
OPLS2005 12.4 12.3 10.7 4.6 0.58 0.84
GFN-FF 12.4 11.4 9.4 7.5 0.60 0.81

Table A3.2.: TMG145 benchmark set. Statistical evaluation of the performance in terms of bond lengths
and angles of the TMG145 benchmark set. Bond lengths in pm and angles in degree.

bonds(M-A) / pm angles(A-M-B) / ◦

MD MAD SD MD MAD SD

GFN2-xTB 2.1 8.3 15.1 -0.50 3.9 6.6
UFF 2.6 14.6 21.1 -0.26 8.4 12.0
GFN-FF -2.4 9.7 14.7 -0.03 5.7 8.7
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Table A3.3.: MAD of the noncovalent interaction energies computed with GFN-FF and other semiem-
pirical QM methods. Subsets taken from the GMTKN55 benchmark set. The values are
given in kcal mol−1.

benchmark GFN0-xTB GFN1-xTB GFN2-xTB PM7 GFN-FF

S22 1.630 1.330 0.758 0.768 0.89
S66 1.298 1.080 0.730 0.755 0.76
RG18 0.442 0.324 0.112 0.644 0.39
ADIM6 0.508 1.007 1.152 0.202 0.61
CARBHB12 2.316 0.670 1.084 1.883 1.81
HAL59 1.769 1.345 1.276 4.106 1.88
HEAVY28 0.908 0.658 0.608 2.948 0.77
PNICO23 2.000 2.331 1.104 5.673 1.98

Table A3.4.: MAD of the conformational energies computed with GFN-FF and other semiempirical QM
methods. Subsets taken from the GMTKN55 benchmark set. The values are given in kcal
mol−1.

benchmark GFN0-xTB GFN1-xTB GFN2-xTB PM6-D3H4X GFN-FF

ACONF 0.80 0.66 0.19 0.46 0.13
Amino20x4 1.00 1.11 0.95 1.47 1.52
BUT14DIOL 0.81 0.95 1.25 1.49 1.12
ICONF 2.33 2.63 1.63 3.13 3.02
MCONF 1.66 1.44 1.72 1.42 0.48
PCONF21 1.79 2.17 1.76 2.58 1.60
SCONF 1.69 2.50 1.64 5.32 1.41
UPU23 1.34 1.24 2.90 2.38 2.95
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Table A3.5.: Association energies of the S30L benchmark set. Values are computed with GFN-FF and
semiempirical methods for 30 large noncovalent complexes containing only main group
elements (S30L). The values are given in kcal mol−1.

System GFN-FF GFN2-xTB PM6-D3H4X ref.

1 -28.41 -25.93 -28.83 -29.04
2 -20.81 -18.02 -18.63 -20.78
3 -20.07 -22.50 -22.41 -23.54
4 -10.47 -21.72 -19.18 -20.27
5 -28.78 -33.88 -33.96 -28.99
6 -25.05 -25.57 -20.83 -25.50
7 -36.64 -42.20 -30.95 -35.06
8 -39.38 -48.70 -35.57 -36.79
9 -33.84 -34.83 -27.66 -28.38
10 -35.60 -35.86 -29.12 -29.78
11 -41.72 -41.74 -38.69 -32.95
12 -41.78 -42.21 -38.45 -33.92
13 -26.86 -22.30 -29.32 -30.83
14 -31.36 -25.64 -29.45 -31.33
15 -18.01 -24.10 -21.86 -17.39
16 -25.72 -25.85 -30.03 -25.12
17 -29.12 -26.78 -39.73 -33.38
18 -22.88 -20.38 -29.11 -23.31
19 -17.16 -13.05 -19.32 -17.47
20 -19.64 -15.23 -23.48 -19.25
21 -33.02 -22.14 -31.35 -24.21
22 -40.62 -36.57 -44.06 -42.63
23 -57.76 -60.72 -61.72 -61.32
24 1 -160.1 -136.59 -162.49 -135.5
25 -26.75 -28.08 -25.95 -25.96
26 -26.82 -28.21 -25.89 -25.77
27 -87.95 -83.16 -104.03 -82.18
28 -84.20 -79.49 -101.22 -80.11
29 -42.98 -50.95 -59.62 -53.54
30 -43.28 -50.52 -56.39 -49.28
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Figure A3.6.: Noncovalent interaction (A) and conformational (B) energies from the subsets of the
GMTKN55 benchmark set. The MAD is given in kcal mol−1.
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Table A3.6.: MAD of the S30L benchmark set and the noncovalent and conformational energies for the
GMTKN55 benchmark set. Values are computed with GFN-FF and other QM methods and
are given in kcal mol−1.

S30L GMTKN55

Method noncovalent interactions conformational energies

GFN0-xTB − 1.36 1.62
GFN1-xTB 6.08 1.09 1.59
GFN2-xTB 4.05 0.85 1.51
GFN-FF 4.15 1.13 1.53
PM6-D3H4X 5.15 2.45 2.28
PM7 16.4 2.12 2.14
HF-3c 5.20 1.09 1.76
PBE-D3 3.10 0.77 0.53
SCAN-D3 2.00 0.62 0.38
B97-3c 3.20 0.95 0.47
B3LYP-D3 5.88 0.39 0.32
PBE0-D3 − 0.54 0.35
DSD-BLYP-D3 − 0.27 0.20

The description of water

The performance of GFN-FF for small to medium sized clusters is shown in Figure A3.7. In part A,
the dissociation curve of the water dimer is shown and compared to accurate CCSD(T)/CBS reference
values.654 Energies are shown relative to the equilibrium structure. GFN-FF shows the energetic mini-
mum at the same inter-monomer distance as the reference, indicating the correct length of the hydrogen
bond. For the water dimer, the interaction energy is semi-quantitatively correct but slightly overesti-
mated at larger distances with GFN-FF. In part B dissociation energies of small to medium sized neutral
water clusters are shown, taken from the WATER27 benchmark set.540 The larger clusters are slightly
underbound by GFN-FF but the error is in all cases <10% of De which is di�cult to achieve even with
sophisticated DFT methods. The GFN2-xTB method shown for comparison performs exceptionally well
for this set. The errors of the UFF competitor method (not shown) exceed hundreds of kcal/mol for this
benchmark set.

For a water cluster consisting of 1451 molecules an MD simulation at 298 K was performed for 5 ps
with an equilibration time of the same length. An average density of 1.13 ± 0.003 g cm−1 is obtained.
The deviation of 0.13 g cm−1 from the well-known experimental value corresponds to an average under-
estimation of the intermolecular distances by about 4 %. However, this is not seen for the water dimer
as depicted in Figure A3.7, where the inter-monomer distance corresponds well with the reference.

Thermostatistical corrections

GFN-FF computed zero-point vibrational energies (ZPVE) and total molecular free energies at 298 K
(G298) are compared to corresponding values at the low-cost B97-3c DFT theoretical level. Figure A3.8
shows a comparison of ZPVE values at B97-3c and GFN2-xTB values for a set of 39 medium sized
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Figure A3.7.: Performance of GFN-FF for the description of water clusters. (A) Dissociation curve of the
water dimer at di�erent inter-monomer separations, where the equilibrium distance re is
multiplied by the scaling factor shown (taken from revised S66x8 set, see Ref. 654). (B)
Performance of di�erent methods on the neutral complexes of the WATER27 benchmark
set. Given are the cluster binding energies on a logarithmic scale and the corresponding
MAD values compared to the CCSD(T)/CBS reference data shown as solid grey line.

organic molecules taken from a benchmark study of Li et al.655
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Figure A3.8.: Comparison of GFN-FF thermostatistical data with corresponding B97-3c DFT reference
values. The set consists of 39 organic molecules ranging from ethane (smallest) to n-
octane (largest). The solid line shows the one-to-one correspondence and the dashed ones
indicate a common error range for chemical accuracy, i.e., ±1 kcal mol−1.
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The data have been used to determine as usual a frequency scale factor for GFN-FF. An optimum value
of 1.03 was found and should be used as default in corresponding vibrational or thermostatistical ap-
plications. The scaled frequencies are listed in the output of the xtb program. As can be clearly seen
from the graph, there is a very good reproduction of the DFT reference thermostatistical properties by
GFN-FF. The MAD for the ZPVE data is only 0.37 kcal mol−1 (MD=0.20 kcal mol−1). In actual applica-
tions where normally di�erences of the values for reactants and products are taken, the e�ective error
is maybe even smaller because of cancellation. The performance for the free energies is similar with a
MAD of only 0.42 kcal mol−1 (MD=0.22 kcal mol−1).
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Figure A3.9.: Timings for energy and gradient computation of di�erent GFN methods. CPU times (given
in seconds) for single-point energy/gradient calculations of 14 proteins. GBSA(H2O) had
to be used for GFN1-xTB and GFN2-xTB in order to achieve SCC convergence. This is not
necessary for GFN0-xTB and GFN-FF. Thus, for GFN-FF the timings including the GBSA
model are shown separately. Additionally, the timings for OPLS-AA SPC/E with counter
ions under periodic boundary conditions are shown for those proteins, where parame-
ters are available. The PDB identi�ers are given on the bottom x-axis, the corresponding
number of atoms is given on top. Computations were performed on a single core of a
quad-core desktop machine with 4.20 GHz Intel© i7-7700K CPUs.
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A4. Supporting Information to Chapter 4

Appendix A4 contains:

• General remarks

• Statistical error measures

• Computational results

General remarks

The xtb 337 program package is available free of charge for academic use. Collected atomic Cartesian
coordinates (XYZ format) of all input and optimized structures are available in addition to the Support-
ing Information:
Spicher, S.; Bursch, M.; Grimme, S. “E�cient Calculation of Small Molecule Binding in Metal-Organic
Frameworks and Porous Organic Cages”, J. Phys. Chem. C 2020, 124, 27529–27541.

Statistical error measures

Statistical measure for a set x1, · · · ,xn of data points with references r1, · · · , rn are:

• Average:

x =
1
n

n∑
i

xi (A4.1)

• Mean deviation (MD):

MD =
1
n

n∑
i

(xi − ri ) (A4.2)

• Mean absolute deviation (MAD):

MAD =
1
n

n∑
i

|xi − ri | (A4.3)

• relative MAD (relMAD):

relMAD =
1
n

n∑
i

|xi − ri |

ri
(A4.4)
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• Standard deviation (SD):

SD =

√∑n
i |(xi − ri ) −MD |2

n − 1 (A4.5)

• Root-mean-square deviation (RSMD):

RMSD =

√∑n
i |xi − ri |

2

n
, (A4.6)

• Pearson correlation coe�cient (rp ):

rp =

∑n
i=1(xi − x i )(ri − r i )√∑n

i=1(xi − x i )
2 ∑n

i=1(ri − r i )
2
, (A4.7)

• Empirical Spearman rank correlation coe�cient (rs ):

rs =

∑n
i=1(R(xi ) − Rx )(R(yi ) − Ry )√∑n

i=1(R(xi ) − Rx )
2
√∑n

i=1(R(yi ) − Ry )
2
, (A4.8)

• Binding energy ∆Ebind :

∆Ebind = E(Complex) − E(Host) − E(Guest). (A4.9)

Computational results

Table A4.1.: MADmean, rp,mean , and rs,mean between PBE0-D4/def2-TZVP (reference) and all other
tested methods, namely PBEh-3c, B97-3c, TPSS-/def2-TZVP, PBE-D4/def2-TZVP, GFN2-
xTB, GFN1-xTB, GFN-FF, PM6-D3H4, PM7, and UFF respectively.

MADmean rp,mean rs,mean
kcal mol−1

PBEh-3c 0.73 0.98 0.98
B97-3c 0.20 0.99 0.99
TPSS-D4 0.19 0.99 0.99
PBE-D4 0.40 0.99 0.99
GFN2-xTB 1.07 0.95 0.94
GFN1-xTB 1.39 0.96 0.97
GFN-FF 1.40 0.94 0.95
PM6-D3H4 6.06 0.84 0.86
PM7 4.91 0.86 0.91
UFF 12.4 0.02 0.09
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Figure A4.1.: MAD in kcal mol−1 for binding energies of H2, N2, CO2, CH3OH, and C6H6 in 6 di�erent
porous cages (1a-2c) computed by ten di�erent methods in comparison to PBE-D4/def2-
TZVP reference values. For PBE-D4 and TPSS-D4 a def2-TZVP basis set is employed as
well.

Figure A4.2.: MADmean in kcal mol−1 for binding energies of H2, N2, CO2, CH3OH, and C6H6 in 6
di�erent porous cages (1a-2c) computed by ωB97X-V/def2-TZVP in comparison to PBE-
D4/def2-TZVP reference values.
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Figure A4.3.: Binding energies ∆E for H2, N2, CO2, CH3OH, and C6H6 adsorbed on metal-organic frma-
works 1a-1c visualized by energy level diagrams. Energies are given relative to the lowest
conformation at the PBE0-D4/def2-TZVP level of theory. For TPSS-D4 and PBE-D4, the
same basis set is employed.
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Figure A4.4.: Binding energies ∆E for H2, N2, CO2, CH3OH, and C6H6 adsorbed on porous organic
cages 2a-2c visualized by energy level diagrams. Energies are given relative to the lowest
conformation at the PBE0-D4/def2-TZVP level of theory. For TPSS-D4 and PBE-D4, the
same basis set is employed.
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Table A4.2.: MADmean, rp,mean , and rs,mean for the binding energies of all listed methods calculated on
the GFN2-xTB and GFN-FF optimized structures in comparison to the respective binding
energies an the reference structure (B97-3c).

MADmean rp,mean rs,mean
kcal mol−1

PBE0-D4//GFN2-xTB 1.588 0.906 0.881
B97-3c//GFN2-xTB 1.623 0.904 0.888
GFN2-xTB//GFN2-xTB 0.330 0.985 0.974
GFN1-xTB//GFN2-xTB 0.551 0.988 0.964
GFN-FF//GFN2-xTB 0.606 0.974 0.929
PBE0-D4//GFN-FF 1.134 0.924 0.899
B97-3c//GFN-FF 1.236 0.899 0.901
GFN2-xTB//GFN-FF 0.481 0.966 0.976
GFN1-xTB//GFN-FF 0.525 0.956 0.955
GFN-FF//GFN-FF 0.580 0.974 0.967

Table A4.3.: Binding energies for the interaction of H2, N2, CO2, CH3OH, and C6H6 with MOF-5 (1a)
calculated with the listed methods on B97-3c optimized structures. For all density func-
tionals, beside the composite methods, a def2-TZVP basis set is employed.

∆E / PBE0 PBEh- B97- TPSS PBE GFN2- GFN1- GFN- PM6- PM7 UFF
kcal mol−1 3c 3c xTB xTB FF D3H4

H2

1 -1.52 -1.22 -1.54 -1.49 -1.81 -2.03 -2.19 -1.50 -2.48 -1.15 4.31
2 -1.01 -0.81 -0.86 -0.97 -1.03 -1.97 -1.35 -0.76 -1.18 -1.11 -85.22
3 -0.72 -0.58 -0.50 -0.59 -0.74 -0.59 -0.45 -0.55 -0.74 -0.71 3.06
4 -0.11 -0.01 0.06 -0.03 -0.00 -0.09 -0.21 -0.16 -0.05 -0.29 3.43
5 0.05 0.11 0.23 0.13 0.16 -0.03 -0.08 -0.04 0.06 -0.08 2.33

N2

1 -3.93 -4.53 -3.81 -3.75 -3.72 -5.51 -5.38 -1.92 -2.51 -1.12 -11.94
2 -2.35 -3.18 -2.46 -2.18 -2.49 -3.97 -3.16 -2.77 -3.39 -3.18 -11.30
3 -1.93 -2.41 -2.10 -1.84 -1.81 -3.61 -2.04 -0.60 -2.86 -2.86 -12.13
4 0.37 -0.05 0.05 0.71 0.59 -0.02 -0.13 0.15 -0.04 -0.57 -12.43

CO2

1 -6.11 -5.99 -5.88 -5.96 -5.83 -6.45 -4.51 -3.67 -4.00 -4.04 -23.47
2 -5.25 -5.11 -4.81 -5.09 -5.10 -7.11 -4.64 -3.45 -3.70 -1.43 -18.42
3 -3.08 -2.13 -2.95 -2.94 -3.21 -4.23 -4.20 -5.37 -4.39 -3.90 -20.29
4 -1.05 -1.28 -1.27 -0.84 -1.07 -1.31 -1.80 -1.98 -1.48 -1.14 -21.39

CH3OH

1 -9.17 -7.49 -8.76 -8.93 -9.20 -7.95 -9.28 -8.58 -10.90 -9.84 -9.77
2 -8.84 -7.35 -8.46 -8.58 -9.06 -7.91 -9.12 -8.64 -10.64 -8.86 -8.27
3 -8.29 -6.37 -7.64 -8.06 -8.57 -8.04 -7.96 -9.05 -9.86 -9.32 3.31
4 -5.03 -4.81 -4.95 -4.82 -5.10 -3.60 -3.42 -3.56 -4.53 -4.11 -6.71
5 -4.79 -4.31 -4.54 -4.53 -5.00 -4.67 -5.76 -5.64 -6.15 -5.78 -10.30

C6H6

1 -10.43 -8.74 -10.42 -10.66 -10.08 -12.07 -8.87 -9.55 -10.31 -11.22 2.57
2 -9.13 -7.25 -9.25 -9.17 -8.97 -9.61 -7.51 -8.55 -9.16 -9.51 2.17
3 -7.83 -6.62 -7.37 -7.63 -7.59 -7.91 -6.12 -7.67 -7.72 -10.14 -1.60
4 -6.21 -5.28 -6.09 -6.11 -5.98 -6.31 -5.06 -6.30 -5.72 -8.60 5.90
5 -5.72 -4.58 -5.61 -5.70 -5.85 -6.17 -4.20 -5.76 -4.39 -7.19 3.67
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Table A4.4.: Binding energies for the interaction of H2, N2, CO2, CH3OH, and C6H6 with Rh-MOP (1b)
calculated with the listed methods on B97-3c optimized structures. For all density func-
tionals, beside the composite methods, a def2-TZVP basis set is employed.

∆E / PBE0 PBEh- B97- TPSS PBE GFN2- GFN1- GFN- PM6- PM7 UFF
kcal mol−1 3c 3c xTB xTB FF D3H4

H2
1 -6.22 -6.28 -5.45 -6.05 -6.33 -7.14 -4.92 -4.83 -4.89 -9.55 -2.54
2 -5.14 -4.96 -4.30 -4.96 -5.17 -6.02 -4.49 -3.63 -5.01 -8.64 -3.05
3 -4.09 -3.69 -3.74 -4.06 -4.32 -4.26 -2.81 -3.29 -4.15 -5.88 -0.41

N2
1 -8.64 -10.05 -8.05 -8.60 -8.84 -9.27 -7.34 -7.22 -4.83 -13.18 -11.18
2 -6.79 -7.75 -6.42 -6.92 -7.16 -7.50 -5.59 -4.86 -2.67 -11.28 -10.27
3 -6.28 -7.49 -6.03 -6.24 -6.56 -6.83 -5.16 -5.72 -4.04 -11.38 -4.49

CO2

1 -14.73 -14.31 -13.22 -14.38 -14.46 -15.76 -12.61 -15.66 -2.86 -16.43 -23.85
2 -12.88 -12.90 -11.46 -12.40 -12.84 -13.51 -10.52 -14.20 -3.95 -15.12 -9.47
3 -12.19 -11.76 -10.88 -11.74 -11.95 -13.11 -10.12 -13.63 -1.37 -13.08 -9.42
4 -10.56 -8.44 -9.23 -10.01 -10.74 -9.27 -8.38 -14.95 -1.18 -8.04 -5.13

CH3OH
1 -19.26 -18.28 -17.77 -19.41 -20.00 -17.28 -15.36 -16.30 -9.54 -19.79 17.94
2 -18.38 -16.05 -17.32 -18.69 -19.17 -16.90 -15.24 -14.76 -11.76 -18.29 80.98
3 -9.69 -7.74 -9.11 -9.74 -10.14 -10.93 -9.11 -8.94 -4.92 -9.87 -14.41

C6H6

1 -22.09 -20.50 -20.46 -21.39 -22.08 -20.06 -16.19 -21.84 3.84 -22.83 -2.08
2 -20.65 -19.83 -19.18 -20.55 -20.72 -18.72 -15.09 -14.77 1.20 -22.58 -8.47
3 -19.80 -18.55 -18.49 -19.59 -20.06 -15.33 -13.36 -14.80 4.81 -19.07 9.74
4 -18.90 -17.71 -18.07 -18.65 -19.16 -14.79 -12.68 -16.89 5.77 -17.01 -1.27

Table A4.5.: Binding energies for the interaction of H2, N2, CO2, CH3OH, and C6H6 with Pd-MOP+
(1c) calculated with the listed methods on B97-3c optimized structures. For all density
functionals, beside the composite methods, a def2-TZVP basis set is employed.

∆E / PBE0 PBEh- B97- TPSS PBE GFN2- GFN1- GFN- PM6- PM7 UFF
kcal mol−1 3c 3c xTB xTB FF D3H4

H2

1 -2.16 -1.76 -2.09 -2.06 -2.32 -11.97 -3.47 -1.68 -3.52 -3.57 -1.91
2 -1.73 -1.72 -1.41 -1.44 -1.72 -1.64 -0.99 -1.52 -1.62 -1.04 -3.48
3 -1.64 -1.66 -1.35 -1.64 -1.71 -1.48 -1.03 -0.96 -0.98 -0.95 -1.20
4 -1.35 -1.16 -1.12 -1.41 -1.41 -1.18 -0.88 -0.93 -0.93 -0.87 -1.09
5 -1.13 -1.05 -0.92 -1.08 -1.20 -1.00 -0.93 -1.02 -1.05 -1.24 -2.40

N2

1 -4.47 -7.18 -4.77 -4.36 -4.53 -13.87 -6.69 -3.57 -3.98 -4.77 -0.51
2 -3.24 -3.48 -3.26 -3.18 -3.37 -2.92 -2.79 -3.16 -3.12 -2.54 -4.26
3 -3.10 -3.97 -3.14 -3.05 -3.21 -3.03 -2.94 -3.04 -2.23 -4.39 -4.47
4 -2.68 -3.19 -2.85 -2.54 -2.77 -1.98 -2.65 -2.54 -2.03 -1.63 -5.87

CO2

1 -7.34 -7.48 -7.28 -7.19 -7.28 -12.57 -7.04 -5.25 -4.53 -3.36 -3.96
2 -4.89 -4.63 -4.66 -4.92 -4.94 -5.20 -3.94 -3.57 -3.20 -4.88 -4.26
3 -4.54 -4.57 -4.60 -4.38 -4.61 -3.89 -4.25 -4.39 -2.96 -2.37 -12.48
4 -3.65 -3.01 -3.40 -3.68 -3.56 -3.29 -2.76 -4.17 -1.07 -5.50 -10.11

CH3OH
1 -17.47 -18.65 -16.48 -17.28 -17.45 -21.60 -17.23 -12.99 -15.00 -4.24 -4.85
2 -7.02 -5.68 -6.61 -7.23 -7.55 -7.10 -6.85 -4.59 -7.76 -6.10 1.79
3 -6.69 -6.19 -6.29 -6.76 -7.03 -6.84 -5.86 -5.38 -5.53 -7.90 -7.75

C6H6

1 -11.36 -10.26 -11.36 -11.71 -10.99 -11.39 -8.81 -11.28 -8.58 -14.26 -10.76
2 -11.32 -10.17 -11.29 -11.63 -11.05 -11.39 -9.07 -10.88 -8.84 -14.30 -10.86
3 -9.55 -8.11 -9.63 -9.79 -9.74 -10.14 -8.96 -12.12 -7.61 -13.50 -13.45
4 -6.90 -4.99 -7.01 -7.21 -6.89 -6.45 -6.84 -9.84 -5.82 -11.08 -12.19
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Table A4.6.: Binding energies for the interaction of H2, N2, CO2, CH3OH, and C6H6 with Q-POC (2a)
calculated with the listed methods on B97-3c optimized structures. For all density func-
tionals, beside the composite methods, a def2-TZVP basis set is employed.

∆E / PBE0 PBEh- B97- TPSS PBE GFN2- GFN1- GFN- PM6- PM7 UFF
kcal mol−1 3c 3c xTB xTB FF D3H4

H2

1 -3.67 -3.52 -3.47 -3.60 -3.85 -2.97 -2.80 -1.73 -2.95 -2.68 59.15
2 -3.48 -3.25 -3.26 -3.48 -3.69 -2.72 -2.70 -1.30 -2.48 -2.27 55.37
3 -2.97 -2.98 -2.84 -3.02 -3.18 -2.36 -2.27 -0.85 -2.18 -2.16 66.24
4 -1.50 -1.27 -1.23 -1.42 -1.53 -1.27 -0.92 -1.45 -1.30 -1.35 -11.84

N2
1 -3.57 -3.80 -3.69 -3.60 -3.73 -3.68 -2.62 -3.17 -3.92 -4.95 -7.45
2 -3.52 -4.14 -3.69 -3.28 -3.68 -3.56 -3.19 -2.84 -4.25 -4.94 19.37
3 -2.27 -2.83 -2.50 -2.13 -2.54 -2.39 -2.05 -2.37 -3.44 -4.10 -8.33

CO2

1 -7.68 -7.93 -7.11 -7.34 -7.59 -6.63 -5.23 -5.77 -6.83 -6.97 25.63
2 -5.95 -6.05 -5.88 -5.80 -5.88 -5.62 -3.77 -3.76 -5.31 -5.36 20.50
3 -5.08 -4.78 -4.82 -4.78 -5.23 -4.63 -4.54 -5.17 -5.12 -5.21 21.60
4 -5.03 -4.94 -4.86 -4.92 -5.10 -4.50 -3.90 -3.95 -4.07 -4.27 29.12

CH3OH
1 -13.93 -13.35 -12.97 -13.65 -14.33 -10.74 -11.29 -11.44 -13.44 -12.78 30.79
2 -12.53 -12.01 -11.56 -12.40 -12.98 -9.29 -9.88 -10.30 -12.47 -11.52 -7.78
3 -7.10 -5.79 -6.64 -7.24 -7.45 -5.46 -5.12 -7.58 -6.61 -7.54 3.80

C6H6

1 -10.64 -10.46 -10.20 -10.52 -10.71 -9.16 -9.38 -8.45 -8.89 -12.72 65.80
2 -10.29 -8.84 -10.10 -10.88 -10.20 -10.14 -8.97 -9.93 -8.89 -13.53 0.67
3 -9.09 -8.70 -8.87 -9.36 -9.37 -7.76 -8.43 -7.29 -7.79 -11.33 49.40
4 -8.39 -7.73 -8.04 -8.36 -8.50 -6.56 -7.03 -7.36 -7.27 -10.93 12.51

Table A4.7.: Binding energies for the interaction of H2, N2, CO2, CH3OH, and C6H6 with B-POC (2b)
calculated with the listed methods on B97-3c optimized structures. For all density func-
tionals, beside the composite methods, a def2-TZVP basis set is employed.

∆E / PBE0 PBEh- B97- TPSS PBE GFN2- GFN1- GFN- PM6- PM7 UFF
kcal mol−1 3c 3c xTB xTB FF D3H4

H2

1 -2.26 -2.18 -1.99 -2.07 -2.25 -1.90 -1.38 -1.55 -1.68 -1.61 -4.81
2 -1.94 -1.89 -1.64 -1.80 -1.96 -1.64 -1.19 -1.23 -1.40 -1.34 -3.60
3 -1.85 -1.58 -1.45 -1.57 -1.71 -1.34 -0.87 -1.14 -0.99 -0.80 -4.88
4 -1.72 -1.63 -1.42 -1.57 -1.65 -1.27 -1.01 -1.11 -1.08 -1.06 -4.39
5 -0.69 -0.63 -0.48 -0.62 -0.55 -0.36 -0.37 -0.20 -0.09 -0.36 -1.78

N2

1 -4.15 -4.49 -4.08 -3.81 -3.94 -3.71 -2.80 -2.75 -3.58 -4.39 -6.34
2 -2.93 -3.42 -2.94 -2.55 -2.75 -2.69 -2.09 -2.09 -2.42 -3.16 -5.10
3 -2.76 -3.50 -2.86 -2.65 -2.86 -2.82 -2.24 -2.13 -2.21 -2.35 -3.53
4 -2.66 -3.51 -2.72 -2.32 -2.50 -2.44 -2.05 -1.94 -2.25 -2.82 -7.99
5 -2.15 -2.49 -2.26 -1.77 -1.92 -2.05 -1.78 -1.93 -1.71 -2.83 -6.05

CO2

1 -5.72 -5.67 -5.43 -5.38 -5.41 -5.21 -3.23 -3.88 -4.42 -4.96 -10.07
2 -5.03 -4.85 -4.68 -4.91 -4.96 -4.42 -2.93 -3.18 -3.05 -3.99 -5.99
3 -4.32 -4.48 -4.03 -4.07 -4.20 -4.07 -2.44 -3.03 -2.57 -3.18 -5.75
4 -3.78 -3.83 -3.50 -3.32 -3.61 -3.29 -2.87 -3.94 -3.01 -3.62 -10.93
5 -3.72 -4.03 -3.58 -3.61 -3.69 -3.40 -2.07 -2.07 -2.21 -3.21 -4.44

CH3OH

1 -7.30 -5.99 -6.54 -7.19 -7.67 -6.91 -6.78 -7.61 -7.77 -6.70 1.15
2 -7.13 -6.30 -6.74 -6.87 -7.18 -5.25 -4.43 -5.72 -5.57 -6.20 -7.68
3 -6.01 -4.40 -5.44 -5.77 -6.18 -5.93 -5.26 -6.21 -6.64 -5.10 -0.22
4 -5.55 -5.01 -5.07 -5.34 -5.67 -4.88 -3.59 -5.28 -4.06 -4.43 -3.24

C6H6

1 -8.46 -6.38 -8.00 -8.69 -8.30 -8.67 -7.54 -8.26 -7.20 -11.88 -11.87
2 -8.14 -7.24 -7.86 -8.65 -8.03 -7.74 -6.58 -7.40 -6.71 -10.06 -10.51
3 -7.64 -6.49 -7.42 -7.61 -7.44 -6.77 -5.79 -7.22 -6.37 -9.60 -7.96
4 -5.93 -5.42 -5.58 -5.88 -5.99 -5.58 -4.91 -5.54 -4.89 -8.00 -5.24
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Table A4.8.: Binding energies for the interaction of H2, N2, CO2, CH3OH, and C6H6 with F-POC (2c) cal-
culated with the listed methods on B97-3c optimized structures. For all density functionals,
beside the composite methods, a def2-TZVP basis set is employed.

∆E / PBE0 PBEh- B97- TPSS PBE GFN2- GFN1- GFN- PM6- PM7 UFF
kcal mol−1 3c 3c xTB xTB FF D3H4

H2
1 -0.66 -0.19 -0.88 -0.84 -0.85 -1.56 -2.11 -3.98 -5.61 -6.06 -4.47
2 -0.56 -0.20 -0.52 -0.79 -0.83 -1.13 -1.65 -3.53 -4.30 -4.73 -5.93
3 0.07 0.56 -0.04 -0.10 -0.09 -0.89 -1.23 -3.12 -4.20 -4.17 -1.86

N2
1 -4.00 -3.85 -3.95 -3.99 -4.06 -3.72 -3.48 -3.84 -4.82 -5.75 -5.44
2 -3.88 -3.72 -3.77 -3.88 -4.00 -3.42 -3.32 -3.45 -4.57 -5.83 -4.23
3 -3.14 -2.54 -3.42 -3.45 -3.37 -4.05 -4.14 -5.94 -9.26 -10.86 -0.20

CO2
1 -6.99 -6.40 -6.45 -6.99 -6.92 -6.05 -4.70 -6.14 -6.93 -7.88 -5.89
2 -6.48 -5.87 -5.76 -6.35 -6.55 -5.90 -4.70 -6.14 -6.65 -7.09 -5.68
3 -6.14 -5.39 -6.07 -6.41 -6.30 -6.59 -5.56 -7.99 -12.76 -13.46 -2.02

CH3OH

1 -14.38 -14.21 -13.63 -14.27 -14.78 -10.62 -11.41 -12.71 -14.02 -14.40 17.36
2 -12.01 -11.78 -10.79 -11.85 -12.73 -7.75 -8.29 -11.51 -11.61 -12.14 16.68
3 -9.73 -8.54 -9.63 -9.95 -10.27 -9.56 -10.29 -10.29 -20.36 -21.11 21.20
4 -6.77 -5.79 -6.56 -6.82 -6.99 -5.23 -6.11 -8.83 -6.71 -7.71 -11.11

C6H6
1 -14.47 -12.35 -14.73 -15.01 -14.42 -13.86 -16.08 -19.88 -18.35 -26.00 -20.67
2 -14.19 -12.28 -14.47 -14.67 -13.98 -12.75 -14.48 -17.15 -13.32 -21.26 -26.26
3 -12.18 -8.90 -13.00 -13.16 -12.24 -12.42 -15.39 -20.93 -20.88 -30.52 -17.06

Table A4.9.: Binding energies for B-POC (2b) and H2, N2, CO2, CH3OH, and C6H6 calculated with the
listed methods based on GFN2-xTB and GFN-FF optimized structures. For all density func-
tionals, beside the composite methods, a def2-TZVP basis set is employed.

∆E / PBE0// B97-3c-3c// GFN2-xTB// GFN1-xTB// GFN-FF// PBE0// B97-3c-3c// GFN2-xTB// GFN1-xTB// GFN-FF//
kcal mol−1 GFN2-xTB GFN2-xTB GFN2-xTB GFN2-xTB GFN2-xTB GFN-FF GFN-FF GFN-FF GFN-FF GFN-FF

H2

1 -1.60 -1.22 -1.35 -0.71 -1.15 -0.86 -0.46 -0.31 -0.04 -1.25
2 -1.27 -0.76 -1.12 -0.39 -0.71 -1.41 -1.07 -1.09 -0.77 -0.88
3 -0.73 -0.50 -1.18 -0.37 -0.71 -0.30 0.23 0.68 0.87 -0.77
4 0.28 0.41 0.33 0.34 0.33 -0.51 -0.48 -0.47 -0.51 0.16
5 -0.87 -0.68 -1.22 -0.46 -0.81 -1.05 -0.57 -0.27 -0.14 -1.05

N2

1 -2.26 -2.17 -3.94 -2.19 -2.16 -4.19 -4.25 -4.40 -3.31 -2.77
2 -0.50 -0.26 -2.22 -1.85 -2.33 -0.43 -0.07 -1.85 -2.22 -2.62
3 2.15 1.88 -3.70 -1.03 -0.00 -2.37 -2.47 -3.12 -2.49 -1.94
4 1.23 1.24 -3.27 -1.11 -0.72 -2.83 -3.00 -3.48 -2.59 -2.05
5 0.33 0.14 -2.69 -1.29 -1.09 -2.68 -2.93 -2.98 -2.47 -1.87

CO2

1 -3.23 -2.48 -3.21 -2.62 -4.67 -1.92 -0.58 -3.33 -2.28 -5.58
2 -1.67 -1.51 -3.64 -2.61 -3.68 -2.13 -1.97 -4.41 -3.35 -3.96
3 -1.49 -1.37 -3.63 -2.45 -3.53 -1.85 -1.68 -4.30 -3.12 -3.91
4 -2.43 -2.28 -2.99 -1.19 -1.40 -1.38 -1.19 -3.80 -2.72 -3.68
5 -4.41 -4.03 -4.86 -2.27 -3.07 -4.65 -4.35 -5.05 -2.82 -3.58

CH3OH

1 -6.39 -5.39 -6.80 -6.36 -8.42 -5.54 -4.44 -6.89 -6.85 -9.02
2 -5.14 -4.46 -5.70 -4.83 -6.51 -3.89 -3.40 -5.04 -4.46 -7.82
3 -6.43 -6.15 -4.84 -4.03 -5.23 -7.31 -6.92 -5.41 -4.68 -5.80
4 -5.07 -4.58 -4.76 -3.07 -4.81 -5.69 -5.33 -5.08 -4.05 -5.17

C6H6

1 -7.33 -6.78 -8.72 -7.21 -8.35 -7.32 -6.93 -9.11 -7.80 -8.87
2 -6.79 -6.56 -6.34 -5.10 -7.45 -6.37 -6.31 -6.55 -5.39 -8.04
3 -6.52 -6.40 -7.67 -6.09 -7.00 -7.43 -7.30 -8.13 -6.84 -7.35
4 -5.21 -4.47 -5.55 -5.07 -5.97 -4.42 -3.58 -5.49 -4.71 -6.56

XXXV
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Table A4.10.: Binding energy ∆E for RAPTA-C in Q-POC (2a) and B-POC (2b) for all methods listed as
well as the mean MAD in comparison to PBE0-D4/def2-TZVP (reference). For all density
functionals, beside the composite methods, a def2-TZVP basis set is employed.

∆E / kcal mol−1 RAPTA-C@2a RAPTA-C@2b MADmean

PBE0-D4 -37.57 -17.11 –
PBEh-3c -39.30 -13.87 2.48
B97-3c -36.10 -16.89 0.84
TPSS-D4 -36.32 -17.62 0.88
PBE-D4 -36.72 -16.68 0.64
PM6-D3H4 -19.18 -3.01 16.2
PM7 -48.71 -25.02 9.53
GFN2-xTB -31.15 -17.14 3.22
GFN1-xTB -34.13 -18.02 2.18
GFN-FF -35.62 -21.95 3.40
UFF 16.55 -25.49 31.3
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A5. Supporting Information to Chapter 5

Appendix A5 contains:

• General remarks

• Computational details

• Statistical error measures

• Computational results

General remarks

The xtb 337 program package is available free of charge for academic use. Collected atomic Cartesian
coordinates (XYZ format) of all input structures are available in addition to the Supporting Information:
Spicher, S.; Abdullin, D.; Grimme, S.; Schiemann, O “Modeling of spin-spin distance distributions for
nitroxide labeled biomacromolecules”, Phys. Chem. Chem. Phys. 2020, 22, 24282–24290.

Computational details

Input structures were generated with mtsslWizard.266 Structures were converted from pdb to xyz for-
mat with the maestro 399 software package. All CREST/MD computations were performed with the
crest 60 and xtb 337 stand alone programs. The default convergence criteria (10−7 Eh for energies and
10−5 Eh/bohr for gradients) were used throughout. MMM calculations were performed with version
2020.2 employing the R1A-298K-UFF-216-r1-CASD rotamer library for the R1 side chain. MtsslWizard
calculations were performed with the server version656 with clashes settings tight. For the azurin mu-
tants, the distribution of the Cu(II) spin density was taken into account with each respective method.
Trajectory evaluation was performed with the program travis.397 Structure visualization was done in
pymol.657 MD simulations with GFN-FF were carried out for 1 ns at the respective freezing temperature
of the solvents, employing the implicit GBSA(H2O) solvation model. A time step of 2 fs at an increased
hydrogen mass of 4 amu and equilibration phase of 200 ps was chosen.
For the mutants of azurin (1952 atoms), 100 ps of the MD simulation took on average 7.3 hours on 4
Intel© Xeon E5-2660 v4 @ 2.00 GHz CPUs. On the same machine, the 100 ps took on average 16.4 hours
for the mutants of T4L (2683 atoms), again on 4 CPUs.

XXXVII

https://doi.org/10.1039/D0CP04920D


A5. Supporting Information to Chapter 5

Statistical error measures

In this work, the following statistical measures were used. p is an arbitrary property.

δp = pcalc . − pr ef . (A5.1)

The error measures are de�ned by:

• Mean absolute deviation (MAD):

MAD =
1
N

N∑
i

|δpi | (A5.2)

• Standard deviation (SD):

SD =

√∑N
i |δpi −MD |2

N − 1 (A5.3)

• relative MAD (relMAD):

relMAD =
1
N

N∑
i

|δpi |

pr ef
. (A5.4)

For the calculation of the distance distributions fur azurin, the distribution of spin densities is taken
into account. ρCu = 0.35, ρS = 0.60 and for nitroxide, the center of the N-O bond is taken (ρN = ρO =
0.50). The spin density weighted distances are calculated according to:

1
r 3 =

1
ρCu + ρS

(
ρCu

1
r 3
NO−Cu

+ ρS
1

r 3
NO−S

)
, (A5.5)

r =
©« 0.95

0.35
r 3
NO−Cu

+ 0.60
r 3
NO−S

ª®¬
1
3

. (A5.6)

The most probable distance rp is the distance with the highest intensity/probability within the dis-
tance distribution. The mean distance r̄ is calculated as follows,

r̄ =

∑
i r P(ri )∑
r P(ri )

(A5.7)

where I (r ) is the respective probability associated with each distance.

Computational results

Molecular dynamics settings

MD simulations with GFN-FF were carried out for 1 ns at the freezing point of the respective solvent
employing the implicit GBSA(H2O) solvation model. A time step of 2 fs (at an increased hydrogen
mass of 4 amu) and equilibration phase of 200 ps was chosen. In the following, the e�ects of di�erent
MD simulation lengths and temperatures are investigated (see Figure A5.1A). Regarding the simulation
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time, the limiting factor is the computation time. GFN-FF is a physically motivated partially polarizable
force-�eld with many sophisticated energy terms that lead to a scaling that is roughly a factor of 10
slower than specialized protein FFs. For 1 ns an overall wall time of four to seven days (dependent on
the system size) is reached on 4 Intel© Xeon E5-2660 v4 @ 2.00 GHz CPUs.

Figure A5.1.: (A) E�ect of di�erent MD settings on the radial distribution function of azurin mutant
T21R1. For longer MD simulation times the intensities decrease while the distribution
width becomes slightly larger. The mean distances remain roughly the same. (B) Con-
former ensemble for azurin mutant S100R1. In blue, the sum of all distances obtained
from the entire CREST ensemble. In yellow, the Boltzmann weighted sum of all distances.

CREST conformations

From the constrained CREST calculations for the R1 side chain, conformer ensembles with sizes from 20
(for azurin mutants) to 200 (for T4L mutants) were obtained. For each conformer, the distance between
the respective spin center was calculated. The distance distribution was obtained as the sum of all the
distances from the conformers as illustrated for S100R1 in Figure A5.1B. The Boltzmann population of
each conformer determines the intensity. Relative probabilities were calculated by dividing the intensity
of each conformer by the maximum value of the energetically lowest conformer. If multiple conformers
existed that showed a very similar distance between the spin center (<1 Å), they were considered
as one R1 conformer cluster. For S100R1, 34 conformers existed, which lead to three R1 conformer
clusters as shown in Figure A5.1B. The division into conformer clusters was done manually. Since
only one R1 conformer cluster had a relative probability of more than 0.5, one GFN-FF MD simulation
was carried out for the conformer with the highest Boltzmann population within the respective R1
conformer cluster. In blue, the conformer ensemble without Boltzmann weighting is shown. Here, a
critical aspect of the applied procedure should be addressed. All conformational energies were obtained
at the GFN-FF level of theory for a constrained system. Even though this was tested in Ref. 117 for small
to medium sized systems, the extrapolation to large biomolecules can not be assumed.
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A5. Supporting Information to Chapter 5

Figure A5.2.: RMSD minimized structure overlay between the optimized GFN-FF geometries for zinc-
azurin (yellow) and the copper-azurin analogue (transparent blue). The CSD identi�er are
given as well as heavy atom RMSD values, total computation wall-times, and the required
number of geometry optimization cycles.

Figure A5.3.: E�ect of di�erent MD temperatures on the radial distribution function of azurin mutant
T21R1 and T30R1. For T21R1 the starting conformation is taken from the MTSL confor-
mation of larger distance. For T30R1 the shorter conformation was the starting point of
the MD. More information is in the manuscript.
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Figure A5.4.: Spin label distance distribution functions for the 19 T4L mutants. The results from the
CREST conformations without any MD averaging are shown in gray, the distribution ob-
tained by the GFN-FF MD simulation in yellow and experimental EPR data are shown in
blue.
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A5. Supporting Information to Chapter 5

Figure A5.5.: Investigation of temperature e�ects in the MD simulation. In A, two conformations with
shorter (C1) and longer (C2) inter-spin distances of T21R1 are illustrated. Computations
are performed at the freezing point of the solvent (237 K) and at room temperature (298 K),
respectively, for the azurin mutants T21R1 (B) and T30R1 (C). The starting conformation
for the MD simulation is indicated by a red dot.

Figure A5.6.: Contributions of the individual conformers to the radial distribution. For D69R1 MD sim-
ulations are performed for three conformers. T21R1, T30R1, and T62R1 show two con-
formations with a relative probability larger than 0.5. The MTSL conformers are named
according to their relative probability, e.g Conf. 1 for the highest probability. Only con-
formers with a relative probability larger than 0.5 are shown.
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Figure A5.7.: Overlay of an MD snapshots (green) with the initial X-ray structure (blue) for mutant
83/123 revealing non-covalent interactions between the two spin-labels. Even though the
tertiary structure is similar on a global view, signi�cant di�erences in the positions of
individual loops and helices are visible. These conformational changes cause the short
mean distance of only 5.8 Å.

XLIII



A6. Supporting Information to Chapter 6

Appendix A5 contains:

• General remarks

• Statistical measures

• Detailed results

General remarks

The xtb 515 and crest 60 program packages are available free of charge for academic use. Collected atomic
Cartesian coordinates (XYZ format) of all benchmark structures are available as additional supplemen-
tary material (geometries.zip):
Spicher, S.; Caldeweyher, E.; Hansen, A.; Grimme, S. “Benchmarking London dispersion corrected den-
sity functional theory for noncovalent ion–π interactions”, Phys. Chem. Chem. Phys. 2021, 23, 11635–
11648.

The nomenclature of the benchmark set is the following. For systems 1–17 the complex is termed
AB and A/B are the respective fragments of which B is the ion. For systems 18 and 19, A and B are the
respective conformers. The CHRG �les contain the molecular charge.

Statistical measures

For statistical analysis of a set {x1, . . . ,xn } of data points with references {r1, . . . , rn } we use the following
measures:

• Average : x = 1
n
∑
i
xi

• Mean deviation (MD): MD = 1
n
∑
i
(xi − ri )

• Mean absolute deviation (MAD): MAD = 1
n
∑
i
|xi − ri |

• Standard deviation (SD) : SD =

√∑
i
(xi−x )2

n

• relative MAD (relMAD): relMAD = 1
n
∑
i

|xi−ri |
ri
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Detailed results

Results of the tested methods

For all DFAs and HF, a large def2-QZVPP basis set was employed. The composite 3c methods have their
own adjusted basis set. For MP2, a CBS extrapolation was performed. For all systems including alkali
metals (1–6), a counterpoise (CP) correction was additionally applied.

Table A6.1.: Interaction energies in kcal mol−1 for the IONPI19 benchmark calculated with the listed
WFT methods and di�erent LD corrections.

System Ref. HF MP2/CBS

D3 D4 NL −

1 -39.09 -42.30 -37.36 -41.64 -39.36
2 -25.63 -27.00 -27.00 -26.99 -25.71
3 -19.90 -14.78 -16.85 -19.79 -20.49
4 -14.81 -14.85 -14.51 -13.35 -15.31
5 -25.65 -34.19 -23.13 -25.94 -25.11
6 -19.74 -25.18 -18.62 -19.67 -19.84
7 -21.51 -22.40 -20.21 -19.36 -24.92
8 -14.57 -13.82 -15.56 -14.60 -15.08
9 -10.41 -10.23 -12.72 -11.04 -10.89
10 -1.93 0.33 -2.40 -0.83 -2.81
11 -5.70 -4.21 -6.86 -5.36 -6.48
12 -18.56 -17.38 -19.18 -17.61 -19.07
13 -33.66 -32.41 -34.69 -32.91 -35.59
14 -45.03 -44.38 -46.92 -45.45 -48.49
15 -29.43 -28.84 -30.62 -30.33 -32.54
16 -26.27 -25.25 -27.80 -25.72 -29.83
17 -37.17 -39.57 -40.86 -43.73 -52.40
18 -5.01 -5.66 -4.89 -5.59 -6.22
19 -2.42 -2.87 -2.81 -2.86 -2.66

Table A6.2.: Interaction energies in kcal mol−1 for the IONPI19 benchmark calculated with the listed
double hybrid functionals and di�erent LD corrections.

System Ref. PWPB95 revDSD-BLYP revDSD-PBEP86 B2PLYP

D3 D4 NL D4 D4 D3 D4 NL

1 -39.09 -41.86 -40.56 -41.49 -38.39 -38.53 -40.30 -39.09 -39.96
2 -25.63 -27.47 -26.31 -26.78 -25.37 -25.15 -26.33 -25.63 -25.80
3 -19.90 -20.34 -18.52 -19.66 -17.84 -18.14 -19.15 -18.18 -19.06
4 -14.81 -16.80 -15.75 -16.03 -14.95 -14.75 -15.83 -15.15 -15.11
5 -25.65 -28.67 -27.14 -27.82 -24.97 -25.03 -27.58 -25.74 -26.32
6 -19.74 -21.66 -20.00 -20.67 -19.23 -19.25 -21.24 -19.76 -20.10
7 -21.51 -22.55 -22.22 -22.18 -21.41 -21.49 -22.64 -21.99 -21.69
8 -14.57 -14.30 -14.51 -14.58 -14.86 -14.49 -14.39 -14.65 -14.70
9 -10.41 -10.61 -11.02 -10.87 -11.29 -11.00 -10.77 -11.18 -11.05
10 -1.93 -1.74 -2.14 -1.99 -2.57 -2.36 -2.04 -2.55 -2.36
11 -5.70 -5.55 -5.94 -5.85 -6.37 -6.09 -5.88 -6.37 -6.25
12 -18.56 -18.00 -18.47 -18.44 -18.8 -18.36 -17.88 -18.17 -18.35
13 -33.66 -33.05 -33.74 -33.85 -34.39 -33.72 -33.03 -33.33 -33.84
14 -45.03 -45.29 -45.86 -46.41 -46.08 -45.21 -44.78 -45.10 -45.88
15 -29.43 -28.41 -29.39 -29.70 -30.58 -29.99 -30.08 -30.92 -31.56
16 -26.27 -25.90 -26.28 -26.27 -27.3 -26.71 -27.11 -27.66 -27.42
17 -37.17 -40.62 -37.69 -40.31 -37.19 -37.09 -42.53 -42.25 -42.06
18 -5.01 -5.49 -5.12 -5.48 -4.58 -4.75 -5.28 -5.00 -5.16
19 -2.42 -2.48 -2.45 -2.49 -2.31 -2.36 -2.31 -2.31 -2.30

XLV



A6. Supporting Information to Chapter 6

Table A6.3.: Interaction energies in kcal mol−1 for the IONPI19 benchmark calculated with the listed
range-separated hybrid functionals and di�erent LD corrections as well as two Minnesota-
type hybrid functionals.

System Ref. ωB97M ωB97X M06-2x MN15

D3 D4 NL D3 D4 NL − −

1 -39.09 -40.71 -39.52 -41.33 -37.22 -37.30 -41.21 -42.20 -39.88
2 -25.63 -25.73 -25.57 -26.72 -23.89 -24.42 -26.55 -27.23 -25.53
3 -19.90 -17.51 -17.34 -19.78 -17.71 -18.63 -19.58 -20.30 -19.20
4 -14.81 -14.66 -14.56 -15.38 -13.37 -13.28 -15.06 -15.87 -14.71
5 -25.65 -28.11 -25.89 -27.24 -23.91 -23.47 -26.75 -28.06 -26.23
6 -19.74 -20.83 -19.43 -20.84 -18.62 -18.47 -20.46 -21.04 -19.50
7 -21.51 -22.38 -21.23 -21.62 -20.46 -19.79 -20.65 -22.02 -21.85
8 -14.57 -13.76 -14.24 -14.79 -13.34 -14.29 -14.34 -15.07 -15.38
9 -10.41 -10.55 -11.35 -11.55 -10.24 -11.30 -11.11 -11.45 -11.75
10 -1.93 -1.42 -2.33 -2.39 -1.37 -2.34 -2.02 -1.96 -2.64
11 -5.70 -5.34 -6.21 -6.46 -5.13 -6.19 -6.02 -6.15 -6.61
12 -18.56 -17.13 -17.66 -18.40 -16.30 -17.78 -17.95 -19.07 -18.77
13 -33.66 -31.70 -32.30 -34.00 -30.32 -33.09 -33.22 -35.09 -34.52
14 -45.03 -43.16 -43.78 -46.47 -41.69 -44.88 -45.35 -48.77 -47.99
15 -29.43 -28.87 -30.07 -31.01 -29.08 -30.31 -30.34 -29.38 -29.22
16 -26.27 -25.69 -26.61 -27.14 -25.16 -26.48 -26.24 -26.40 -26.47
17 -37.17 -40.72 -40.10 -42.27 -41.18 -37.05 -40.49 -35.96 -38.89
18 -5.01 -5.70 -5.19 -5.67 -5.64 -5.11 -5.48 -5.53 -5.88
19 -2.42 -2.59 -2.57 -2.62 -2.52 -2.38 -2.63 -2.47 -2.60

Table A6.4.: Interaction energies in kcal mol−1 for the IONPI19 benchmark calculated with the listed
hybrid functionals and di�erent LD corrections.

System Ref. B3LYP PW6B95 PBE0

D3 D4 NL D3 D4 NL D3 D4 NL

1 -39.09 -40.45 -38.18 -40.25 -42.53 -41.38 -42.34 -42.07 -40.97 -42.14
2 -25.63 -26.57 -25.98 -26.17 -27.86 -27.34 -27.54 -27.07 -26.85 -27.21
3 -19.90 -18.47 -17.55 -19.24 -20.06 -18.84 -20.00 -19.34 -18.95 -20.25
4 -14.81 -16.18 -15.67 -15.35 -17.03 -16.62 -16.58 -16.31 -16.15 -16.25
5 -25.65 -28.97 -25.40 -26.79 -29.61 -28.14 -28.79 -29.16 -27.40 -28.22
6 -19.74 -22.19 -19.88 -20.46 -21.91 -20.69 -21.16 -21.88 -20.80 -21.3
7 -21.51 -23.55 -22.34 -21.80 -22.61 -22.36 -22.18 -23.48 -22.84 -23.02
8 -14.57 -14.03 -14.75 -14.78 -14.22 -14.65 -14.70 -13.52 -13.99 -14.37
9 -10.41 -10.59 -11.63 -11.34 -10.60 -11.19 -11.05 -10.18 -10.81 -11.01
10 -1.93 -1.67 -2.85 -2.40 -1.62 -2.18 -2.01 -1.22 -1.93 -1.95
11 -5.70 -5.56 -6.72 -6.42 -5.44 -6.01 -5.92 -5.04 -5.74 -5.93
12 -18.56 -17.00 -17.90 -18.22 -17.65 -18.44 -18.41 -17.09 -17.66 -18.36
13 -33.66 -31.48 -32.60 -33.54 -32.40 -33.61 -33.76 -31.37 -32.15 -33.64
14 -45.03 -42.78 -44.08 -45.59 -44.21 -45.50 -46.12 -42.14 -43.13 -45.33
15 -29.43 -29.09 -30.65 -31.52 -27.79 -28.82 -29.38 -28.27 -29.37 -30.53
16 -26.27 -26.57 -27.83 -27.06 -25.34 -25.91 -25.89 -25.74 -26.63 -26.86
17 -37.17 -42.48 -41.96 -39.58 -38.81 -35.86 -37.74 -38.92 -38.66 -38.44
18 -5.01 -5.33 -4.80 -5.07 -5.32 -4.90 -5.28 -5.35 -5.03 -5.35
19 -2.42 -2.23 -2.23 -2.23 -2.36 -2.35 -2.38 -2.41 -2.42 -2.45
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Table A6.5.: Interaction energies in kcal mol−1 for the IONPI19 benchmark calculated with the listed
meta GGA functionals and di�erent LD corrections.

System Ref. B97M r 2SCAN TPSS M06-L

D3 D4 NL D3 D4 NL D3 D4 NL −

1 -39.09 -39.63 -35.58 -37.42 -38.98 -38.65 -39.05 -40.50 -38.82 -40.69 -35.37
2 -25.63 -27.03 -24.02 -24.30 -26.15 -26.04 -26.35 -25.93 -25.77 -26.22 -22.63
3 -19.90 -19.35 -16.57 -18.19 -18.89 -18.72 -19.40 -18.08 -17.64 -19.49 -16.78
4 -14.81 -17.36 -14.52 -14.35 -15-98 -15.88 -16.19 -16.21 -16.17 -16.20 -13.58
5 -25.65 -29.09 -24.02 -25.26 -26.20 -25.63 -26.00 -29.03 -26.45 -27.75 -24.10
6 -19.74 -23.54 -18.93 -19.64 -21.11 -20.72 -21.15 -21.60 -20.14 -20.91 -18.43
7 -21.51 -22.73 -22.14 -21.57 -23.49 -23.03 -23.08 -24.81 -24.27 -24.38 -21.26
8 -14.57 -13.41 -14.14 -14.02 -13.51 -13.61 -13.92 -13.33 -14.16 -14.54 -12.52
9 -10.41 -10.91 -11.99 -11.54 -10.77 -10.91 -11.13 -10.27 -11.38 -11.46 -10.22
10 -1.93 -1.95 -3.15 -2.67 -2.02 -2.20 -2.32 -1.60 -2.77 -2.63 -1.77
11 -5.70 -5.74 -6.89 -6.51 -5.80 -5.97 -6.17 -5.28 -6.46 -6.54 -5.29
12 -18.56 -17.31 -18.06 -17.88 -17.57 -17.70 -18.15 -16.87 -17.96 -18.72 -16.19
13 -33.66 -31.95 -32.93 -32.99 -32.27 -32.41 -33.33 -30.77 -32.33 -34.00 -30.35
14 -45.03 -43.35 -44.43 -44.94 -43.54 -43.74 -45.03 -41.11 -43.09 -45.66 -43.61
15 -29.43 -28.89 -30.85 -31.25 -30.16 -30.57 -31.01 -27.63 -29.35 -30.71 -29.66
16 -26.27 -26.09 -27.78 -27.11 -26.28 -26.46 -26.58 -25.57 -27.14 -27.18 -25.70
17 -37.17 -37.60 -38.95 -39.27 -38.85 -37.97 -36.52 -39.64 -39.96 -39.50 -34.67
18 -5.01 -4.98 -4.73 -5.07 -5.23 -5.04 -5.01 -5.17 -4.82 -5.28 -5.17
19 -2.42 -1.96 -1.97 -1.99 -2.08 -2.07 -2.06 -2.05 -2.08 -2.14 -1.86

Table A6.6.: Interaction energies in kcal mol−1 for the IONPI19 benchmark calculated with the listed
GGA functional and di�erent LD corrections.

System Ref. PBE

D3 D4 NL

1 -39.09 -40.43 -39.25 -40.60
2 -25.63 -26.06 -26.06 -26.39
3 -19.90 -18.32 -18.20 -19.58
4 -14.81 -16.38 -16.47 -16.51
5 -25.65 -28.71 -26.83 -27.77
6 -19.74 -21.62 -20.64 -21.24
7 -21.51 -24.54 -24.08 -24.23
8 -14.57 -13.44 -14.09 -14.51
9 -10.41 -10.57 -11.42 -11.61
10 -1.93 -2.08 -3.00 -3.03
11 -5.70 -5.72 -6.64 -6.84
12 -18.56 -16.95 -17.74 -18.38
13 -33.66 -30.86 -32.01 -33.42
14 -45.03 -40.88 -42.34 -44.48
15 -29.43 -28.60 -29.9 -31.29
16 -26.27 -25.79 -27.06 -27.41
17 -37.17 -37.16 -37.61 -38.45
18 -5.01 -5.06 -4.76 -5.19
19 -2.42 -2.04 -2.06 -2.10
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Table A6.7.: Interaction energies in kcal mol−1 for the IONPI19 benchmark calculated with the listed
composite (3C) DFT methods.

System Ref. PBEh-3c B97-3c r 2SCAN-3c

1 -39.09 -39.95 -37.34 -37.87
2 -25.63 -27.43 -24.94 -24.95
3 -19.9 0 -20.32 -15.82 -16.77
4 -14.81 -16.94 -15.82 -16.60
5 -25.65 -27.75 -26.90 -26.52
6 -19.74 -23.47 -21.97 -21.69
7 -21.51 -23.66 -25.51 -23.86
8 -14.57 -16.84 -15.56 -15.43
9 -10.41 -13.35 -11.45 -12.15
10 -1.93 -2.68 -2.52 -3.07
11 -5.70 -7.56 -6.30 -7.16
12 -18.56 -25.35 -18.58 -18.75
13 -33.66 -46.57 -35.02 -35.27
14 -45.03 -62.26 -46.49 -46.71
15 -29.43 -32.81 -27.75 -30.83
16 -26.27 -29.24 -26.39 -26.28
17 -37.17 -39.74 -39.76 -39.07
18 -5.01 -5.13 -5.20 -5.37
19 -2.42 -2.85 -2.22 -2.29

Table A6.8.: Interaction energies in kcal mol−1 for the IONPI19 benchmark calculated with the listed
SQM and FF methods.

System Ref. PM6-D3H4X PM7 GFN2-xTB GFN1-xTB GFN-FF

1 -39.09 -12.23 -36.61 -36.55 -40.77 −

2 -25.63 -29.04 -15.42 -28.48 -14.76 -30.84
3 -19.90 -20.35 -6.62 -24.72 -20.47 -60.7
4 -14.81 -26.78 -19.74 -23.60 -15.16 -17.98
5 -25.65 4.15 -23.89 -30.44 -41.87 −

6 -19.74 -33.71 -16.73 -29.43 -21.41 -12.13
7 -21.51 -14.63 -3.03 -20.11 -13.69 -7.31
8 -14.57 -9.63 -5.49 -19.75 -16.65 -14.14
9 -10.41 -8.45 -6.03 -9.60 -7.53 -1.9
10 -1.93 -0.17 -5.43 -1.12 2.37 3.54
11 -5.70 -3.55 -6.54 -4.76 -1.58 0.81
12 -18.56 -19.15 -6.54 -23.77 -10.73 -8.77
13 -33.66 -35.59 -13.16 -43.85 -20.47 -17.76
14 -45.03 -49.41 -19.08 -61.93 -29.31 -26.39
15 -29.43 -22.93 56.84 -26.20 -18.27 -11.09
16 -26.27 -20.40 -1.59 -24.90 -22.17 -10.73
17 -37.17 -37.15 11.39 -29.60 -27.24 -23.02
18 -5.01 -5.03 -3.88 -2.43 -1.73 0.86
19 -2.42 -4.01 0.10 -1.61 -0.58 0.30
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Table A6.9.: CP uncorrected interaction energies in kcal mol−1 for systems 1-6 of the IONPI19 bench-
mark calculated with the listed methods. The MAD for the entire test set is also given.

Method 1 2 3 4 5 6 MAD

HF-NL -41.66 -27.01 -19.82 -13.42 -26.02 -19.75 1.12
double hybrids
PWPB95-D4 -40.79 -27.08 -18.93 -16.59 -27.43 -20.89 0.65
revDSD-BLYP-D4 -38.79 -26.97 -18.61 -16.68 -25.45 -21.06 0.72
revDSD-PBEP86-D4 -38.95 -26.72 -18.91 -16.44 -25.52 -21.04 0.45
B2PLYP-D4 -39.32 -26.63 -18.66 -16.25 -26.04 -20.93 0.89
hybrids
ωB97M-D4 39.54 -25.62 -17.41 -14.69 -25.99 -19.56 0.73
ωB97X-V -41.23 -26.60 -19.65 -15.18 -26.83 -20.58 0.75
B3LYP-NL -40.29 -26.26 -19.34 -15.51 -26.89 -20.62 0.76
PW6B95-D4 -41.41 -27.43 -18.94 -16.76 -28.22 -20.83 0.85
PBE0-D4 -41.01 -26.92 -19.03 -16.27 -27.48 -20.92 0.90
MN15 -39.90 -25.73 -19.40 -14.97 -26.29 -19.78 0.71
M06-2x -42.22 -27.26 -20.35 -15.96 -28.14 -21.13 1.07
(meta-)GGAs
B97M-V -37.44 -24.33 -18.24 -14.45 -25.35 -19.75 0.80
r 2SCAN-D4 -38.67 -26.08 -18.77 -15.98 -25.71 -20.82 0.72
TPSS-D4 -38.90 -25.88 -17.76 -16.33 -26.57 -20.30 1.02
M06-L -35.51 -22.81 -16.93 -13.76 -24.26 -18.64 1.43
PBE-D4 -39.31 -26.17 -18.33 -16.65 -26.95 -20.83 1.06

Table A6.10.: DLPNO-CCSD(T)/TightPNO/def2-SVP diagnostic for nondynamical correlation and
multi-reference character for the systems of the IONPI19 set.

System T1 diagnostic max. T2 amplitudes

AB A B AB A B

1 0.0101 0.0106 0.0005 0.0386 0.0430 0.0446
2 0.0093 0.0105 0.0004 0.0388 0.0191 0.0667
3 0.0092 0.0104 0.0016 0.0385 0.0389 0.0409
4 0.0157 0.0172 0.0004 0.0513 0.0439 0.0667
5 0.0152 0.0151 0.0005 0.0430 0.0491 0.0446
6 0.0146 0.0155 0.0004 0.0340 0.0468 0.0667
7 0.0103 0.0106 0.0092 0.0106 0.0672 0.0031
8 0.0111 0.0120 0.0043 0.0409 0.0365 0.0354
9 0.0150 0.0159 0.0043 0.0510 0.0465 0.0354
10 0.0144 0.0151 0.0043 0.0528 0.0513 0.0354
11 0.0148 0.0155 0.0043 0.0437 0.0430 0.0354
12 0.0148 0.0155 0.0043 0.0465 0.0468 0.0354
13 0.0152 0.0155 0.0043 0.0466 0.0468 0.0354
14 0.0153 0.0156 0.0043 0.0495 0.0464 0.0354
15 0.0150 0.0144 0.0167 0.0622 0.0622 0.0500
16 0.0147 0.0144 0.0155 0.0622 0.0622 0.0608
17 0.0125 0.0126 0.0132 0.0125 0.0126 0.0362
18 − 0.0114 0.0114 − 0.0494 0.0507
19 − 0.0106 0.0106 − 0.0405 0.0398
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IONPI17 subset statistics

Table A6.11.: Statistical evaluation of all tested low-cost DFT, SQM, and FF methods on the IONPI17
subset. The MD, MAD and SD are given in kcal mol−1, the relMAD is given in %.

Method MD MAD SD r elMAD

composite (3c) DFT
PBEh-3c -3.93 3.93 4.49 18.88
B97-3c -0.53 1.50 1.86 8.69
r 2SCAN-3c -0.82 1.41 1.41 10.86
SQM
PM6-D3H4X 3.44 7.77 11.21 40.05
PM7 16.46 17.46 22.21 75.93
GFN2-xTB -2.93 5.12 6.14 24.10
GFN1-xTB 4.58 7.26 7.76 42.87

FF
GFN-FF* 6.07 11.86 14.07 80.28
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Table A6.12.: Statistical evaluation of all tested WFT and DFT methods on the IONPI17 subset. The MD,
MAD and SD are given in kcal mol−1, the relMAD is given in %.

Method LD MD MAD SD r elMAD

MP2/CBS − -2.05 2.11 3.65 10.26

HF
D3 -0.44 2.14 3.13 16.38
D4 -0.37 1.55 1.80 8.99
NL -0.31 1.19 1.95 7.88

double hybrids

PWPB95
D3 -0.81 1.18 1.41 5.42
D4 -0.38 0.57 0.67 3.27
NL -0.81 0.86 0.99 3.54

revDSD-BLYP D4 -0.15 0.66 0.83 5.23
revDSD-PBEP86 D4 0.10 0.41 0.58 3.43

B2PLYP
D3 -0.74 1.03 1.43 4.49
D4 -0.51 0.80 1.38 5.45
NL -0.73 0.86 1.24 4.81

hybrids

ωB97M
D3 0.05 1.20 1.58 6.34
D4 0.05 0.81 1.17 4.92
NL -1.08 1.11 1.23 6.11

ωB97X
D3 1.18 1.65 1.62 8.50
D4 0.59 0.93 0.97 5.86
NL -0.49 0.78 1.03 3.55

B3LYP
D3 -0.50 1.53 2.01 6.84
D4 -0.41 1.13 1.54 8.07
NL -0.67 0.81 0.77 5.23

PW6B95
D3 -0.66 1.39 1.70 6.69
D4 -0.50 0.91 1.10 4.93
NL -0.85 0.92 1.10 4.26

PBE0
D3 -0.22 1.58 1.87 8.79
D4 -0.29 0.99 1.17 4.08
NL -0.93 0.98 0.95 4.37

MN15 − -0.59 0.75 0.87 5.84
M06-2x − -1.00 1.15 1.22 4.93
(meta-)GGAs

B97M
D3 -0.40 1.24 1.65 5.82
D4 0.24 1.34 1.64 10.07
NL 0.01 0.89 1.12 6.56

r 2SCAN
D3 -0.15 0.86 1.07 4.15
D4 -0.07 0.77 0.91 4.47
NL 0.13 1.06 1.58 7.66

TPSS
D3 0.05 1.71 2.11 8.07
D4 -0.28 1.09 1.39 7.73
NL -1.03 1.08 0.86 7.29

M06-L − 1.58 1.61 1.26 7.40

PBE
D3 0.06 1.43 1.92 6.32
D4 -0.25 1.12 1.34 8.76
NL -0.98 1.14 0.95 9.08
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IONPI19 statistics

Table A6.13.: Statistical evaluation of all tested low-cost DFT, SQM, and FF methods on the IONPI19
set. The MD, MAD and SD are given in kcal mol−1, the relMAD is given in %.

Method MD MAD SD r elMAD

composite (3c) DFT
PBEh-3c -3.55 3.55 4.39 17.96
B97-3c -0.48 1.36 1.76 8.41
r 2SCAN-3c -0.75 1.29 1.35 10.37
SQM
PM6-D3H4X 3.00 7.04 10.66 39.32
PM7 14.92 15.82 21.45 74.61
GFN2-xTB -2.44 4.76 5.98 26.03
GFN1-xTB 4.37 6.76 7.34 45.82

FF
GFN-FF* 6.06 11.86 14.07 80.28

Table A6.14.: Functional mean deviation from the reference values calculated as the average of all tested
DFAs (3c methods excluded). For system 1-6 the values are given with and without CP
correction.

System Functional MD

CP w/o CP

1 -0.38 -0.49
2 -0.15 -0.52
3 1.21 1.07
4 -0.53 -0.97
5 -0.63 -0.80
6 -0.27 -0.74
7 -0.62 −

8 0.23 −

9 -0.78 −

10 -0.41 −

11 -0.47 −

12 0.49 −

13 0.55 −

14 0.03 −

15 -0.59 −

16 -0.40 −

17 -1.16 −

18 -0.08 −

19 0.12 −
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Table A6.15.: Statistical evaluation of all tested WFT and DFT methods on the IONPI19 set. The MD,
MAD and SD are given in kcal mol−1, the relMAD is given in %.

Method LD MD MAD SD r elMAD

MP2/CBS − -1.91 1.97 3.47 10.98

HF
D3 -0.45 1.97 2.95 16.32
D4 -0.34 1.41 1.70 9.01
NL -0.33 1.12 1.84 8.62

double hybrids

PWPB95
D3 -0.75 1.09 1.35 5.48
D4 -0.35 0.51 0.64 3.11
NL -0.76 0.80 0.95 3.82

revDSD-BLYP D4 -0.11 0.62 0.79 5.37
revDSD-PBEP86 D4 0.10 0.39 0.55 3.47

B2PLYP
D3 -0.67 0.94 1.36 4.32
D4 -0.45 0.72 1.32 5.13
NL -0.66 0.78 1.19 4.72

hybrids

ωB97M
D3 0.00 1.12 1.50 6.76
D4 0.03 0.74 1.10 4.92
NL -1.01 1.04 1.18 5.59

ωB97X
D3 -1.02 1.52 1.61 9.48
D4 0.52 0.84 0.94 5.43
NL -0.47 0.73 0.98 4.12

B3LYP
D3 -0.46 1.39 1.90 6.87
D4 -0.34 1.04 1.46 7.85
NL -0.60 0.73 0.76 5.15

PW6B95
D3 -0.57 1.26 1.61 6.44
D4 -0.44 0.83 1.05 4.68
NL -0.78 0.84 1.07 4.19

PBE0
D3 -0.21 1.43 1.77 8.25
D4 -0.26 0.88 1.10 3.68
NL -0.85 0.90 0.93 4.32

MN15 − -0.59 0.73 0.83 6.53
M06-2x − -0.92 1.06 1.17 5.07
(meta-)GGAs

B97M
D3 -0.34 1.13 1.57 6.24
D4 0.26 1.24 1.55 10.28
NL 0.03 0.82 1.06 6.87

r 2SCAN
D3 -0.13 0.80 1.01 4.68
D4 -0.04 0.71 0.87 4.79
NL 0.13 0.97 1.49 7.63

TPSS
D3 0.06 1.56 1.99 8.20
D4 -0.23 1.00 1.32 7.85
NL -0.92 1.00 0.88 7.42

M06-L − 1.44 1.48 1.27 8.01

PBE
D3 0.07 1.30 1.81 6.54
D4 -0.19 1.03 1.27 8.89
NL -0.87 1.05 0.96 9.01
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Appendix A7 contains:

• General remarks

• Computational details

• Statistical error measures

• Computational results

• Comparison of other theoretical methods

General remarks

The xtb 243 program package is available free of charge for academic use. The Supporting Information
is available in addition:
Spicher, S.; Grimme, S. “E�cient Computation of Free Energy Contributions for Association Reactions
of Large Molecules”, J. Phys. Chem. Lett 2020, 11, 6606–6611.

Computational details

All DFT calculations are performed using the TURBOMOLE 7.2 program package.335,336,612 The resolution-
of-identity (RI) approximation for the Coulomb integrals is applied in all cases using matching default
auxiliary basis sets.341,342 For the integration of the exchange-correlation contribution, the numerical
quadrature gridm5 is employed. The default convergence criteria (10−7 Eh for energies and 10−5 Eh/bohr
for gradients) are used throughout. Computations of harmonic vibrational frequencies are performed
analytically using the aoforce code of TURBOMOLE. All low-cost computations are performed with the
xtb stand-alone program,243 where GFN2-xTB as well as GFN-FF are implemented. PM6-D3H4 calcu-
lations have been performed via the xtb interface driver using MOPAC2016.338 The same convergence
criteria as before have been chosen in order to guarantee comparable results. For the computation of
thermodynamic properties, PBEh-3c frequencies are scaled by a factor of 0.95 and GFN-FF frequencies
by a factor of 1.03. A scaling factor slightly smaller and larger than unity has been tested for PM6-D3H4
but did not lead to any improvements. On the entire test set of 59 complexes (168 molecules), none of
the tested methods showed more than twenty (small) imaginary frequencies in total, and not more than
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one imaginary (less than i20 cm−1) frequency per system. As mentioned in the text, all small imaginary
frequencies are set real (multiplied by −i) and consistently included in the thermostatistical treatment.

Statistical error measures

In this work, the following statistical measures were used. p is an arbitrary property.

δp = pcalc . − pr ef . (A7.1)

The error measures are de�ned by:

• Mean deviation (MD):

MD =
1
N

N∑
i

δpi (A7.2)

• Mean absolute deviation (MAD):

MAD =
1
N

N∑
i

|δpi | (A7.3)

• Root-mean-square deviation (RMSD):

RMSD =

√∑N
i |δpi |

2

N
(A7.4)

• relative MAD (relMAD):

relMAD =
1
N

N∑
i

|δpi |

pr ef
. (A7.5)
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Table A7.1.: Statistical evaluationa of the enthalpic contribution ∆H298 to the free binding energy of 59
NCI complexes.

S30L S22 L7 Average

DFT Ref.

MD ±0.19 ±0.05 ±0.22 ±0.01
MAD 0.26 0.15 0.44 0.29
RMSD 0.34 0.26 0.56 0.39

GFN2-xTB

MD 0.12 -0.14 -0.18 -0.07
MAD 0.50 0.38 0.60 0.49
RMSD 0.70 0.52 0.86 0.69

PM6-D3H4

MD 0.29 -0.19 0.43 0.18
MAD 0.91 0.36 0.94 0.74
RMSD 1.11 0.49 1.05 0.88

GFN-FF

MD -0.23 0.40 -0.48 -0.10
MAD 0.89 0.60 1.01 0.83
RMSD 1.17 0.80 1.19 1.05

a The statistical measures are given with respect to the DFT reference for GFN2-xTB, PM6-D3H4 and GFN-FF. For the DFT reference,
average values for PBEh-3c and B97-3c are taken and their RMSD of 0.39 kcal mol−1 is taken as a uncertainty estimate.

Computational results

Table A7.5.: ∆HmRRHO contribution to the association free energiesa for the S22 benchmark set.

PBEh-3c B97-3c Ref. GFN2-xTB PM6-D3H4 GFN-FF

1 1.54 0.91 1.23 0.79 1.72 1.32
2 1.71 1.64 1.68 1.55 1.57 2.05
3 1.46 1.32 1.39 0.75 1.05 2.81
4 1.88 1.83 1.86 1.38 1.24 2.62
5 1.39 1.34 1.37 0.92 0.80 2.51
6 1.34 1.19 1.27 0.70 1.07 2.64
7 1.45 1.79 1.62 0.71 0.99 3.23
8 1.18 1.23 1.21 1.21 1.24 1.20
9 1.23 1.28 1.26 1.25 0.08 0.03
10 1.19 -0.57 0.31 -0.56 -0.03 -0.57
11 1.13 -0.02 0.56 0.64 0.58 0.62
12 1.20 0.70 0.95 1.25 1.17 1.22
13 1.23 1.43 1.33 1.32 1.08 2.36
14 1.27 1.34 1.31 1.24 1.24 1.22
15 1.36 1.53 1.45 1.50 1.29 1.87
16 0.99 0.96 0.98 0.92 0.89 0.97
17 0.70 0.77 0.74 1.23 0.74 0.95
18 0.66 0.67 0.67 1.25 0.71 0.89
19 -0.27 -0.08 -0.17 0.93 0.84 1.00
20 0.02 0.14 0.08 0.05 -0.03 0.10
21 0.03 0.81 0.42 -0.55 -0.01 0.89
22 1.46 1.65 1.56 1.37 0.64 1.96

a Values are given in kcal mol−1.
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Table A7.2.: ∆GmRRHO contribution to the association free energiesa for the S30L benchmark set.120

PBEh-3c B97-3c Ref. GFN2-xTB PM6-D3H4 GFN-FF

1 16.38 15.92 16.15 16.02 16.25 17.16
2 14.33 14.11 14.22 14.63 14.86 15.85
3 16.59 16.81 16.70 16.65 16.22 15.80
4 14.66 15.17 14.91 14.70 13.18 14.52
5 17.53 18.44 17.98 18.25 16.98 16.84
6 15.53 16.72 16.12 16.63 16.57 16.14
7 17.58 18.65 18.11 19.07 21.13 18.77
8 18.17 19.80 18.98 20.69 20.09 16.23
9 16.22 16.32 16.27 18.23 18.29 17.99
10 17.00 17.61 17.30 18.37 18.37 18.47
11 15.57 16.91 16.24 18.14 19.18 18.49
12 16.36 17.69 17.02 17.95 19.36 18.53
13 14.10 15.39 14.74 14.48 14.72 16.07
14 14.91 15.42 15.16 14.64 13.10 14.58
15 15.29 15.23 15.26 17.34 19.41 16.80
16 16.55 16.72 16.63 18.80 19.70 16.62
17 16.88 16.66 16.77 16.59 17.60 17.64
18 14.64 16.94 15.79 16.12 16.87 17.36
19 13.73 14.78 14.25 14.76 16.60 15.54
20 15.20 16.18 15.69 16.19 17.27 16.02
21 18.45 18.55 18.50 15.37 16.94 18.01
22 20.22 18.06 19.14 18.10 18.42 21.18
23 −b 18.34 18.34 16.83 18.22 18.13
24 23.11 23.74 23.42 25.10 21.20 22.49
25 16.75 17.23 16.99 17.34 15.61 16.19
26 −b 16.72 16.72 17.43 15.09 15.76
27 16.06 15.56 15.81 17.68 18.52 16.91
28 14.33 15.41 14.87 17.01 18.71 16.76
29 −b 16.06 16.06 16.22 16.61 16.06
30 17.20 17.53 17.36 17.24 17.59 16.73

a Values are given in kcal mol−1.
b The aoforce calculation did not converge for the host-guest complex system.

Table A7.3.: ∆GmRRHO contribution to the association free energiesa for the S22 benchmark set.537

PBEh-3c B97-3c Ref. GFN2-xTB PM6-D3H4 GFN-FF

1 7.17 7.56 7.365 7.38 8.63 7.66
2 7.76 7.70 7.73 8.55 7.38 8.89
3 12.94 12.90 12.92 11.8 11.62 13.87
4 13.09 13.58 13.33 12.55 11.61 13.63
5 13.53 13.64 13.58 12.92 12.29 14.32
6 12.52 12.65 12.58 12.31 12.05 14.25
7 14.10 13.33 13.71 13.87 12.74 14.64
8 3.61 3.82 3.71 5.36 6.06 5.31
9 7.04 6.87 6.95 7.64 9.35 8.60
10 4.95 7.19 6.07 9.56 8.56 9.53
11 7.65 9.77 8.71 11.25 11.19 11.15
12 9.34 10.12 9.73 10.94 10.95 10.78
13 12.77 13.28 13.02 12.73 12.05 14.32
14 9.72 9.59 9.65 11.29 11.52 10.47
15 14.00 13.75 13.87 14.81 13.56 14.00
16 6.10 6.04 6.07 6.10 5.85 6.44
17 7.01 6.97 6.99 7.41 9.12 9.71
18 6.34 6.38 6.36 7.23 8.54 9.82
19 7.80 7.95 7.875 7.68 6.93 8.25
20 9.09 9.37 9.23 11.24 11.75 12.04
21 11.14 10.21 10.67 13.35 12.75 12.43
22 11.66 11.98 11.82 11.64 12.27 12.63

a Values are given in kcal mol−1.
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Table A7.4.: ∆HmRRHO contribution to the association free energiesa for the S30L benchmark set.

PBEh-3c B97-3c Ref. GFN2-xTB PM6-D3H4 GFN-FF

1 1.71 2.75 2.23 2.16 1.04 1.64
2 1.45 2.60 2.03 2.17 1.17 1.63
3 1.06 1.22 1.14 0.66 1.49 1.40
4 0.88 0.97 0.93 0.51 1.37 1.15
5 1.20 1.82 1.51 0.61 1.15 1.33
6 1.15 1.84 1.50 1.31 0.49 1.37
7 0.44 0.38 0.41 1.37 0.15 2.83
8 1.18 0.40 0.79 1.40 1.94 1.71
9 1.18 1.54 1.36 1.30 0.71 0.95
10 1.34 1.92 1.63 1.35 0.74 0.97
11 1.77 3.03 2.40 1.71 0.71 0.79
12 1.83 3.01 2.42 1.72 0.70 0.79
13 1.45 1.36 1.41 1.60 1.61 1.33
14 1.39 1.10 1.25 1.44 1.83 1.62
15 2.20 2.49 2.35 2.56 1.65 1.49
16 2.46 2.77 2.62 3.09 1.54 1.66
17 1.25 1.99 1.62 2.06 2.01 3.87
18 1.36 1.38 1.37 0.70 1.94 3.88
19 1.19 1.81 1.50 1.46 3.41 2.29
20 1.45 2.00 1.73 1.46 2.95 2.36
21 1.12 2.36 1.74 1.41 2.58 2.15
22 2.17 3.05 2.61 0.46 0.15 3.62
23 −b 3.19 3.19 1.32 1.44 2.90
24 3.68 4.97 4.33 5.14 1.95 2.51
25 1.34 1.77 1.56 1.79 1.97 1.54
26 −b 1.79 1.79 1.83 1.89 1.43
27 2.05 1.89 1.97 1.75 0.96 2.00
28 1.45 0.62 1.04 1.73 1.10 2.18
29 −b 1.52 1.52 2.20 2.03 3.90
30 1.71 1.91 1.81 1.77 2.42 3.28

a Values are given in kcal mol−1.
b The aoforce calculation did not converge for the host-guest complex system.

Table A7.6.: ∆GmRRHO contribution to the association free energiesa for the L7 benchmark set.538

PBEh-3c B97-3c Ref. GFN2-xTB PM6-D3H4 GFN-FF

1 18.75 20.59 19.67 16.73 20.03 16.91
2 13.41 15.40 14.40 15.81 15.40 15.75
3 16.02 15.20 15.61 15.09 15.63 14.22
4 17.02 16.49 16.75 16.84 16.94 15.18
5 16.49 16.75 16.62 16.61 16.06 15.09
6 14.67 14.96 14.81 16.77 13.72 16.73
7 16.42 16.54 16.48 16.58 15.86 19.00

a Values are given in kcal mol−1.

Comparison of other theoretical methods

We also tested the performance of a second generic force-�eld, namely UFF.114 Its performance on all
three subsets and the averaged values are given below in Table A7.8.
For the subset with the smallest molecules (S22) UFF performs surprisingly well, whereas, for the more
di�cult S30L and L7 benchmark sets, the error becomes signi�cantly larger. The averaged MAD is 2.05
kcal mol−1, and thus the worst performing low-cost method tested in this work. For S22 the good result
is surprising because many of the UFF optimized geometries are arti�cially distorted. As an example,
two structure overlays between the DFT reference and the UFF optimized geometry are shown in A7.2.
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Figure A7.1.: Thermostatistical ∆GmRRHO and ∆HmRRHO values (in kcal mol−1) to the association free
energy of the complexes taken from the S30L, S22, and L7 benchmark set in a scatter plot.
Results obtained by the low-cost methods GFN2-xtb, PM6-D3H4, and GFN-FF are plotted
against DFT reference values. The correlation coe�cients are given.

Table A7.7.: ∆HmRRHO contribution to the association free energiesa for the L7 benchmark set.

PBEh-3c B97-3c Ref. GFN2-xTB PM6-D3H4 GFN-FF

1 -0.18 -1.38 -0.78 1.26 1.01 1.65
2 1.19 2.60 1.90 1.34 0.69 0.78
3 0.68 1.72 1.20 1.44 0.02 1.59
4 1.00 0.77 0.89 1.32 0.51 1.38
5 1.14 3.14 2.14 1.47 1.21 1.41
6 1.66 1.58 1.62 1.61 1.28 2.70
7 2.11 2.29 2.20 1.97 1.43 3.01

a Values are given in kcal mol−1.

Table A7.8.: Statistical evaluation (in kcal mol−1) of the thermostatistical contribution ∆GmRRHO for the
59 complexesa with UFF. The relMAD values are given in %.

S30L S22 L7 all sets

UFF

MD 0.29 -0.52 1.04 0.27
MAD 2.04 0.82 3.30 2.05
RMSD 2.57 1.05 4.35 2.66
r elMAD 13.4 9.8 27.9 17.0

a The statistical measures are given with respect to the average DFT reference consisting of PBEh-3c and B97-3c values.

We further validated the accuracy of our averaged DFT reference values. Therefore we computed
∆GmRRHO values at the higher B3LYP-D3252,658–660 functional in a large def2-TZVPP basis set326 for the
S22 benchmark set. A standard scaling factor of 0.96 for the vibrational frequencies661 is applied. The
results are shown in Figure A7.3 and Table A7.9, respectively. With a MAD of 0.31 kcal mol−1 and an
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Figure A7.2.: (A) DFT structure of the water dimer (S22) and optimized UFF structure in transparent
blue. (B) DFT structure of a molecular picer complex (S30L) and optimized UFF structure
in transparent blue.

RMSD of 0.46 kcal mol−1, the deviation between the B3LYP-D3 results and the averaged DFT reference
is very similar to the uncertainty of the DFT reference itself. Consequently, the DFT reference used in
this work can be considered as reliable within the given RMSD of about 0.4 kcal mol−1.

Figure A7.3.: Thermostatistical ∆GmRRHO values (in kcal mol−1) to the association free energy of the
complexes taken from the S22 benchmark set.
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Table A7.9.: Statistical evaluation (in kcal mol−1) of the thermostatistical contribution ∆GmRRHO for the
22 complexesa for B3LYP-D3/def2-TZVPP. The relMAD values are given in %.

S22

B3LYP-D3/def2-TZVPP

MD 0.15
MAD 0.31
RMSD 0.46
r elMAD 3.4

a The statistical measures are given with respect to the average
DFT reference consisting of averaged PBEh-3c and B97-3c val-
ues.
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A8. Supporting Information to Chapter 8

Appendix A4 contains:

• General remarks

• Statistical error measures

• Computational results

General remarks

The xtb 515 program package is available free of charge for academic use. Collected atomic Cartesian
coordinates (XYZ format) of all input and optimized structures are available in addition to the Support-
ing Information:
Spicher, S.; Grimme, S. “Single-Point Hessian Calculations for Improved Vibrational Frequencies and
Rigid-Rotor-Harmonic-Oscillator Thermodynamics”, J. Chem. Theory Comput. 2021, 17, 1701–1714.

Statistical error measures

In this work, the following statistical measures were used. p is an arbitrary property. Statistical measure
for a set x1, · · · ,xn of data points with references r1, · · · , rn are:

• Average:

x =
1
n

n∑
i

xi (A8.1)

• Mean deviation (MD):

MD =
1
n

n∑
i

(xi − ri ) (A8.2)

• Mean absolute deviation (MAD):

MAD =
1
n

n∑
i

|xi − ri | (A8.3)

• relative MAD (relMAD):

relMAD =
1
n

n∑
i

|xi − ri |

ri
(A8.4)
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• Standard deviation (SD):

SD =

√∑n
i |(xi − ri ) −MD |2

n − 1 (A8.5)

• Match-score

rmatch =

(∑k
i uivi

)2(∑k
i u

2
i

) (∑k
i v

2
i

) (A8.6)

• Association energy:
∆Easso = E(Complex) − E(Host) − E(Guest). (A8.7)

Computational results

Table A8.1.: ∆GmRRHO contribution to the association free energiesa for the S30L benchmark set120 cal-
culated by three di�erent approaches with GFN2-xTB in comparison to B97-3c reference
vales.

HESS OHESS SPH Reference

1 16.33 16.94 17.06 18.20
2 15.05 15.56 15.70 16.39
3 17.66 16.54 16.46 16.81
4 15.10 14.65 14.82 15.17
5 15.98 17.01 17.55 18.44
6 15.34 16.57 16.79 17.54
7 17.98 18.75 20.61 19.05
8 18.44 19.92 21.69 20.70
9 16.32 16.68 18.39 18.33
10 18.45 18.26 18.57 18.98
11 18.05 19.33 19.09 20.03
12 18.23 19.17 18.91 19.75
13 15.01 13.51 13.81 14.55
14 15.29 14.46 14.45 14.31
15 17.12 18.49 18.55 16.90
16 18.73 19.97 19.97 18.40
17 15.88 17.52 18.05 17.07
18 15.29 16.55 15.72 15.96
19 14.39 14.79 14.63 14.78
20 16.58 16.17 15.21 16.18
21 16.12 15.93 15.92 18.56
22 16.64 17.89 18.31 20.39
23 17.32 17.35 17.37 19.16
24 22.88 25.11 24.88 24.39
25 16.23 16.62 17.33 17.64
26 16.31 17.43 17.38 17.54
27 15.13 17.73 17.76 16.39
28 15.83 17.09 16.39 14.82
29 15.23 17.03 16.52 16.06
30 17.64 17.45 17.91 17.53

a Values are given in kcal mol−1.
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Table A8.2.: ∆GmRRHO contribution to the association free energiesa for the S22 benchmark set537 cal-
culated by three di�erent approaches with GFN2-xTB in comparison to B97-3c reference
vales.

HESS OHESS SPH Reference

1 8.21 7.35 7.35 8.45
2 9.23 8.57 8.57 8.52
3 12.38 11.79 11.79 12.49
4 13.26 12.70 13.34 13.17
5 13.08 13.00 13.00 13.23
6 12.44 12.26 12.47 12.65
7 14.73 13.90 13.77 13.33
8 8.27 5.05 5.05 5.70
9 9.76 7.55 7.55 7.69
10 9.26 8.56 8.56 7.27
11 11.03 11.81 11.00 10.14
12 12.22 10.97 11.10 10.93
13 12.26 12.73 12.53 12.87
14 11.59 11.00 12.15 11.06
15 12.95 14.79 14.56 13.75
16 8.24 6.13 6.13 6.86
17 9.11 7.46 7.55 8.25
18 9.26 7.37 8.12 7.83
19 9.48 7.62 7.63 8.08
20 10.18 11.11 11.11 10.27
21 11.45 10.45 10.78 10.80
22 11.99 11.61 11.83 11.98

a Values are given in kcal mol−1.

Table A8.3.: ∆GmRRHO contribution to the interaction energiesa for the L7 benchmark set538 calculated
by three di�erent approaches with GFN2-xTB in comparison to PBEh-3c reference vales.

HESS OHESS SPH Reference

1 19.52 16.75 17.34 18.07
2 15.00 15.91 16.14 16.05
3 14.91 15.09 15.09 15.00
4 15.01 16.87 16.87 17.15
5 14.19 16.88 16.63 16.19
6 15.61 15.83 15.24 14.80
7 17.48 16.68 16.22 16.57

a Values are given in kcal mol−1.

Table A8.4.: GmRRHO contributionsa for �ve displacements of (S)-camphor calculated with and without
previous optimization and by the SPH approaches at the GFN2-xTB and GFN1-xTB level
of theory.

GFN2-xTB GFN1-xTB

Scale HESS OHESS SPH HESS OHESS SPH

0.90 148.36 127.45 134.23 146.72 127.00 133.97
0.95 137.90 127.41 127.60 137.99 127.05 127.42
1.00 127.40 127.40 127.40 126.72 127.04 127.04
1.05 119.08 127.44 125.86 120.25 127.06 125.90
1.10 107.02 127.44 118.14 109.97 127.06 118.63

a Values are given in kcal mol−1.
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Figure A8.1.: Thermostatistical contributionGmRRHO calculated with and without previous optimization
and by the SPH approach for �ve displaced structures of (S)-camphor with GFN-FF.

Table A8.5.: ∆GmRRHO contributionsa for the Diels-Alder reaction of two cyclopentadiene molecules
calculated with and without previous optimization and by the SPH approaches at the GFN2-
xTB and GFN-FF level of theory.

GFN2-xTB GFN-FF

RC HESS OHESS SPH HESS OHESS SPH

1 90.64 90.64 90.64 91.78 89.27 89.27
2 90.86 90.71 90.71 91.91 89.28 89.28
3 91.13 90.65 90.65 92.10 89.38 89.90
4 91.37 90.60 90.79 92.33 89.28 90.05
5 91.73 90.55 91.10 92.66 89.41 90.27
6 92.12 90.56 91.33 92.34 89.27 90.55
7 92.50 90.54 91.58 92.75 89.33 90.89
8 92.76 90.50 91.89 92.28 89.25 91.29
9 93.82 90.52 92.25 92.91 89.27 91.76
10 94.32 90.51 92.64 93.16 89.27 92.22
11 94.83 90.53 93.01 93.49 89.36 92.59
12 95.32 99.61 95.95 94.03 89.27 93.07
13 96.90 99.62 97.83 94.89 94.34 93.52
14 98.02 99.62 98.50 95.47 94.35 94.72
15 98.63 99.62 98.80 96.47 97.64 96.70
16 99.43 99.62 99.03 97.28 97.64 96.84
17 99.59 99.62 99.30 97.74 97.65 97.07
18 99.66 99.62 99.62 98.13 97.65 97.34
19 99.64 99.62 99.62 98.30 97.64 97.59
20 99.63 99.63 99.62 98.30 97.64 97.64

a Values are given in kcal mol−1.
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Table A8.6.: GmRRHO contributionsa calculated along the MD trajectory of crambinb with and without
previous optimization and by the SPH approaches at the GFN2-xTB and GFN-FF level of
theory.

GFN2-xTB GFN-FF

time / ps HESS OHESS SPH HESS OHESS SPH

51 3013.4 3007.6 2997.3 3056.8 3079.2 3048.1
52 3015.8 3007.1 2999.0 3055.0 3084.7 3052.9
53 3013.3 3005.8 2994.5 3059.6 3085.2 3049.1
54 3013.8 3003.7 3002.3 3058.3 3084.7 3052.5
55 3013.6 3004.5 2997.7 3061.0 3082.6 3047.3
56 3015.4 3007.0 3001.5 3058.2 3077.4 3050.0
57 3019.6 3006.5 3001.8 3058.6 3081.0 3047.4
58 3017.3 3006.4 3000.8 3062.9 3079.0 3050.5
59 3013.0 3005.2 2997.7 3058.6 3078.3 3051.4
60 3017.8 3004.9 3001.3 3059.5 3078.3 3056.5
61 3013.6 3005.1 2999.8 3050.3 3080.1 3052.0
62 3018.8 3005.7 3000.2 3063.3 3079.5 3050.0
63 3018.0 3005.8 2999.0 3066.8 3081.0 3052.2
64 3018.6 3008.3 3001.4 3061.2 3078.4 3051.9
65 3012.1 3008.5 2999.3 3053.3 3081.2 3048.4
66 3014.0 3008.8 3002.4 3057.8 3088.6 3047.1
67 3012.0 3009.5 3000.7 3055.2 3081.1 3048.2
68 3010.9 3008.7 2998.2 3054.0 3082.3 3046.9
69 3015.8 3008.3 3001.6 3049.6 3081.7 3049.4
70 3017.4 3008.6 3000.7 3059.2 3083.9 3049.7
71 3015.0 3006.2 3001.6 3049.3 3081.7 3049.6
72 3015.1 3005.7 3002.0 3057.0 3080.4 3052.1
73 3014.3 3005.6 2998.8 3055.1 3087.8 3050.5
74 3014.3 3007.8 3001.5 3044.2 3083.5 3045.5
75 3015.1 3008.2 3000.7 3053.6 3083.4 3050.3

a Values are given in kcal mol−1.
b Values are given from 51 to 75 ps.
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Table A8.7.: GmRRHO contributionsa calculated along the MD trajectory of crambinb with and without
previous optimization and by the SPH approaches at the GFN2-xTB and GFN-FF level of
theory.

GFN2-xTB GFN-FF

time / ps HESS OHESS SPH HESS OHESS SPH

76 3016.2 3008.3 3002.3 3061.3 3084.2 3053.2
77 3014.6 3005.6 3003.5 3062.5 3088.4 3051.4
78 3013.7 3006.2 3000.9 3057.1 3090.9 3048.8
79 3015.7 3006.5 2999.0 3068.9 3085.3 3051.7
80 3018.4 3005.7 3001.4 3060.6 3089.0 3046.6
81 3015.8 3006.8 2997.8 3057.0 3082.8 3045.6
82 3011.7 3007.0 2996.1 3052.4 3081.8 3047.6
83 3015.4 3008.2 3000.1 3059.3 3085.4 3045.9
84 3016.1 3007.4 2998.5 3059.2 3086.1 3049.7
85 3013.7 3007.9 2998.9 3057.2 3082.4 3044.1
86 3019.0 3006.9 2999.7 3062.0 3084.5 3049.3
87 3016.5 3005.4 3000.4 3063.6 3087.4 3051.4
88 3017.5 3003.9 3001.7 3057.4 3086.7 3052.1
89 3019.1 3003.5 3003.3 3061.3 3079.9 3056.2
90 3019.8 3004.1 3001.1 3067.0 3078.5 3050.0
91 3019.0 3003.2 3002.5 3062.4 3079.9 3052.7
92 3018.8 3004.9 3000.7 3060.6 3086.0 3047.7
93 3015.5 3007.3 2995.5 3060.7 3081.5 3046.8
94 3014.7 3005.2 2998.7 3054.7 3080.2 3050.2
95 3016.3 3004.7 3002.0 3058.5 3082.8 3054.5
96 3011.4 3004.3 2998.7 3060.7 3083.4 3044.9
97 3016.8 3007.1 2999.7 3065.3 3077.5 3053.9
98 3015.5 3004.6 2998.5 3063.4 3080.7 3049.9
99 3018.5 3006.7 3000.0 3062.2 3083.5 3048.7
100 3012.9 3005.0 2999.6 3059.9 3079.8 3047.5

a Values are given in kcal mol−1.
b Values are given from 76 to 100 ps.
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Appendix A9 contains:

• General remarks

• Computational results

General remarks

Intensities and frequencies of IR bands in the spectra of the test molecules and details of computations,
an example for averaging of individual, weighted spectra, and computed AνOH /AνOD and νOH /νOD val-
ues a�ected by rather strong coupling of vibrations of neighboring methanol molecules are available
in addition to the Supporting Information:
Katsyuba, S. A.; Spicher, S.; Gerasimova, T. P.; Grimme, S. “Fast and Accurate Quantum Chemical Mod-
eling of Infrared Spectra of Condensed-Phase Systems”, J. Phys. Chem. B 2020, 124, 6664–6670.

Computational results

Table A9.1.: Experimental IR intensities (A, km·mol−1) of all assessed molecules in the gas phase and
the corresponding B97-3c computed values.

Molecule Integration range Agas(exp.) rel. Agas(exp.) Agas(comp.) Agas(comp.)

cyclohexane-d12 1240–1130 6.4 0.98 9.4 1.21
1130–1045 6.5 1.00 7.8 1.00
1045–950 5.9 0.91 6.4 0.82
950–880 3.5 0.54 4.0 0.51
770–600 3.5 0.54 4.4 0.56
450–350 0.4 0.06 0.4 0.05

acetone 1738 145 1.00 170.2 1.00
1456–1438 35.0 0.24 56.4 0.33
1363–1360 69.0 0.48 81.9 0.48
1218 66.5 0.46 77.9 0.46
1093–1067 4.5 0.03 3.4 0.02
896 7.6 0.05 11.5 0.07
779 1.9 0.01 2.2 0.01
528–483 17.0 0.12 12.8 0.08
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Molecule Integration range Agas(exp.) rel. Agas(exp.) Agas(comp.) Agas(comp.)

cyclohexane 1500–1330 24.0 1.00 30.9 1.00
1310–1190 3.6 0.15 3.0 0.10
1100–970 2.0 0.08 2.3 0.07
970–800 6.6 0.28 8.5 0.28
560–480 0.5 0.02 0.7 0.02

1,4-dioxane 1520–1410 16.2 0.09 13.2 0.07
1410–1335 13.4 0.08 21.7 0.11
1335–1200 48.6 0.28 38.0 0.19
1200–1000 176.5 1.00 197.9 1.00
960–800 84.9 0.48 88.1 0.45
660–540 14.6 0.08 12.0 0.06

1,4-dioxane-d8 1300–1070 231.7 1.00 224.2 1.00
1070–1000 41.0 0.18 57.7 0.26
1000–840 17.4 0.08 16.2 0.07
840–700 59.7 0.26 47.6 0.21
560–440 9.6 0.04 8.5 0.04

tetrahydropyrane 1550–1415 19.9 0.19 21.4 0.18
1415–1325 11.7 0.11 14.4 0.12
1325–1235 14.9 0.14 15.2 0.13
1235–1165 41.2 0.40 26.4 0.22
1165–1140 2.3 0.02 2.8 0.02
1140–977 103.8 1.00 117.4 1.00
977–930 2.4 0.02 3.7 0.03
925–832 27.9 0.27 28.9 0.25
832–780 4.0 0.04 5.1 0.04
620–520 3.7 0.04 3.1 0.03
450–340 7.2 0.07 5.3 0.05
290–200 4.3 0.04 3.8 0.03

benzene 1484 13 0.13 13.8 0.12
1038 7.5 0.07 12.2 0.10
674 104.0 1.00 119.7 1.00

benzene-d6 1330 2.9 0.04 13.8 0.12
812 8.2 0.12 12.2 0.10
496 66.0 1.00 119.7 1.00

pyridine 1540–1660 31.9 0.42 29.3 0.39
1477–1512 2.5 0.03 2.2 0.03
1472–1480 27.3 0.36 26.3 0.35
1334–1400 1.0 0.01 0.0 0.00
1256–1308 0.1 0.00 0.7 0.01
1182–1246 3.7 0.05 3.4 0.05
1110–1173 3.6 0.05 1.9 0.03
1054–1100 2.8 0.04 4.4 0.06
1009–1054 9.1 0.12 5.5 0.07
958–1009 0.0 0.00 5.4 0.07
671–735 75.7 1.00 74.9 1.00
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Molecule Integration range Agas(exp.) rel. Agas(exp.) Agas(comp.) Agas(comp.)

650–659 0.0 0.00 0.3 0.00
570–632 4.5 0.06 3.4 0.05

MeOD 775 0.47 0.47 0.57 0.57
895 0.0 0.06 0.0 0.03
980 1.0 1.0 1.0 1.0
1028 0.2 0.23 0.4 0.44
1069 0.1 0.08 0.0 0.02
1078 0.1 0.08 0.2 0.15
1135 0.6 0.55 0.7 0.65

MeOH 1034 1.0 1.0 1.0 1.0
1075 0.0 0.02 0.0 0.04
1145 0.0 0.02 0.0 0.0
1336 0.1 0.13 0.2 0.21
1455 0.1 0.09 0.0 0.04

acetonitrile 2267 1.00 0.11 1.00 0.33
1448 9.1 1.00 3.0 1.00
1382 0.8 0.09 0.6 0.21
1042 1.2 0.14 0.7 0.24
920 0.5 0.05 0.1 0.02

Table A9.2.: Experimental IR intensities (A, km·mol−1) of all assessed molecules in solution and the
corresponding B97-3c computed cluster values.

Molecule Integration range Asol.(exp.) rel. Asol.(exp.) Asol.(comp.) Asol.(comp.)

cyclohexane-d12 1240–1130 4.6 0.53 6.1 0.62
1130–1045 8.7 1.00 9.9 1.00
1045–950 5.4 0.62 4.7 0.47
950–880 4.6 0.53 4.5 0.45
770–600 5.6 0.64 8.8 0.89
450–350 0.8 0.09 0.7 0.07

acetone 1740–1680 161.0 1.00 170.0 1.00
1500–1380 55.0 0.34 67.0 0.39
1380–1335 84.0 0.52 82.0 0.48
1250–1210 44.0 0.27 49.0 0.29
1100–1080 9.5 0.06 12.0 0.07
940–840 5.0 0.03 7.0 0.04
820–760 1.0 0.01 1.4 0.01
545–524 12.8 0.08 12.2 0.07

cyclohexane(CCl4) 1500–1330 28.7 1.00 32 1.00
1310–1190 3.0 0.10 1.8 0.06
1100–970 4.3 0.15 3.2 0.10
970–800 7.3 0.25 9.3 0.29
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Molecule Integration range Asol.(exp.) rel. Asol.(exp.) Asol.(comp.) Asol.(comp.)

560–480 1.1 0.04 1.1 0.03
cyclohexane(liq.) 1500–1330 33.1 1.00 32.5 1.00

1310–1190 4.4 0.13 2.2 0.07
1100–970 2.8 0.08 3.7 0.11
970–800 7.3 0.22 11.1 0.34
560–480 0.7 0.02 1.8 0.06

1,4-dioxane 1520–1410 22.0 0.10 19.1 0.09
1410–1335 11.9 0.05 18.5 0.09
1335–1200 55.5 0.26 42.6 0.21
1200–1000 216.5 1.00 201.8 1.00
960–800 108.8 0.50 106.3 0.53
660–540 19.9 0.09 16.5 0.08

1,4-dioxane-d8 1300–1070 234.9 1.00 217.6 1.00
1070–1000 48.9 0.21 81.5 0.37
1000–840 19.0 0.08 19.2 0.09
840–700 83.4 0.36 48.1 0.22
560–440 13.1 0.06 11.7 0.05

tetrahydropyrane 1550–1415 27.5 0.24 27.6 0.23
1415–1325 12.2 0.10 15.1 0.12
1325–1235 18.5 0.16 17.0 0.14
1235–1165 33.2 0.28 22.7 0.19
1165–1140 3.8 0.03 2.0 0.02
1140–977 117.0 1.00 121.7 1.00
977–930 4.40 0.04 6.1 0.05
925–832 36.6 0.31 38.1 0.31
832–780 6.1 0.05 9.1 0.07
620–520 5.9 0.05 3.8 0.03
450–340 11.2 0.10 7.9 0.06
290–200 4.9 0.04 4.1 0.03

pyridine 1540–1660 26.0 0.38 30 0.48
1477–1512 4.0 0.06 3.1 0.05
1472–1480 31.0 0.46 34.0 0.54
1334–1400 0.5 0.01 0.2 0.00
1256–1308 0.0 0.00 0.4 0.01
1182–1246 4.3 0.06 5.8 0.09
1110–1173 3.6 0.05 2.8 0.04
1054–1100 4.5 0.07 8.6 0.14
1009–1054 7.7 0.11 4.5 0.07
958–1009 5.4 0.08 7.0 0.11
671–735 68.0 1.00 63.0 1.00
650–659 1.1 0.02 1.0 0.02
570–632 4.4 0.06 4.2 0.07

MeOD 824 0.1 0.33 0.03 0.18
902 0.0 0.07 0.01 0.03
979 0.2 1.00 0.17 1.00
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Molecule Integration range Asol.(exp.) rel. Asol.(exp.) Asol.(comp.) Asol.(comp.)

1057 0.0 0.09 0.01 0.06
1064 0.0 0.07 0.01 0.06
1097 0.1 0.87 0.10 0.57
1125 0.1 0.40 0.03 0.20

MeOH 1035 0.2 1.00 0.15 1.00
1116 0.0 0.13 0.01 0.08
1423 0.1 0.56 0.03 0.22
1450 0.0 0.06 0.00 0.01
1477 0.0 0.00 0.01 0.08
1477 0.0 0.13 0.01 0.06

benzene 1508–1425 23.3 0.23 32.6 0.32
1095–910 15.6 0.16 20.9 0.21
730–615 100.0 1.00 101.0 1.00

benzene-d6 1330 5.4 0.11 7.5 0.13
812 11.4 0.23 18.7 0.33
496 49.7 1.00 55.9 1.00
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Figure A9.1.: IR spectra of CH3OH in the spectral region of 4000–800 cm−1. Experiment for liquid
(black), and the corresponding cluster models (blue and red) comprising 40 methanol
molecules. Vibrations of the central “solute” methanol molecule(s) are separated from
other methanol molecules by setting the mass of all atoms of the “solvent” molecules to
400 amu. The blue spectrum corresponds to the case that only one “light” solute molecule
is surrounded by 39 “heavy” molecules. The red spectrum belongs to a hydrogen bonded
dimer of two “light” solute molecules (whose vibrations are strongly coupled) surrounded
by 38 “heavy” molecules.
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Table A9.3.: Experimental frequencies (cm−1) of all assessed molecules in gas- and condensed-phase
and the corresponding B97-3c computed values.

Molecule Freq.gas(exp) Freq.gas(comp.) Freq.sol.(exp) Freq.sol.(comp.)

acetone 1738 1753 1711 1711
1456 1492 1442 1496
1456 1476 1442 1486
1438 1468 1419 1476
1438 1467 1419 1464
1363 1387 1364 1401
1360 1385 1351 1395
1218 1223 1229 1245
1093 1113 1096 1119
1067 1080 1071 1090
896 879 897 912
896 878 871 890
779 775 791 797
528 530 534 538
483 488 534 503

MeOH 1034 1030.2 1035 1022
1075 1079 1116 1130
1145 1164 1423 1457
1336 1386 1450 1483
1455 1481 1477 1501
2844 2943. 1477 1523
3672 3760.1
1465 1498
1478.5 1517
2970 2987
2999 3073

MeOD 775 780 824 834
895 898 902 914
980 977 979 972
1028 1070 1064 1089
1069 1084 1097 1113
1078 1096 1125 1138
1135 1149 2072 2144
2074 2112 2216 2268
2717 2737 2245 2313
2213 2216 2493 2527
2250 2276
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Figure A9.2.: Correlation plot of relative IR intensities calculated for isolated molecules of cyclohex-
ane, cyclohexane-d12, 1,4-dioxane, 1,4-dioxane-d8, acetone, tetrahydropyrane, pyridine,
benzene, benzene-d6, acetonitrile (A) and the corresponding cluster models (B) vs. ex-
perimental gas- phase (A) and condensed-phase (B) relative intensities, respectively. R,
correlation coe�cient; SD, standard deviation; n, the total number of data included in the
analysis.

Figure A9.3.: Correlation plot of frequencies calculated for isolated molecules of acetone, methanol and
methanol-d4 (A) and corresponding cluster models (B) vs. experimental gas phase (A) and
condensed-phase (B) frequencies, respectively. R, correlation coe�cient; SD, standard
deviation; n, total number of data included in the analysis.
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Table A9.4.: Comparison of Mulliken charges of atoms (q) and normal modes for the isolated C6D12
molecule and the same molecule in the C6D12:19CCl4 cluster. Upper indices 1 and 2 refer
to the cases of the isolated molecule and the cluster, respectively. Atomic amplitudes (R)
are compared for two vibrations whose IR intensities (A in km·mol−1) increase by ca. 10 %
and ca. 70 %, respectively on passing from the isolated molecule to the cluster.

Atom q1 q2 R1 R2 R1-R2 R1 R2 R1-R2

1C -0.3029 -0.3221 0.16871 0.17005 -0.0013 0.0666 0.0762 -0.0096
2C -0.3029 -0.3063 0.16871 0.1692 -0.0005 0.0666 0.0669 -0.0003
3C -0.3029 -0.2218 0.16872 0.1711 -0.0024 0.0666 0.0563 0.0103
4C -0.3029 -0.3167 0.16871 0.16991 -0.0012 0.0666 0.0540 0.0126
5C -0.3029 -0.2711 0.16871 0.16793 0.0008 0.0666 0.0665 0.0001
6C -0.3029 -0.2139 0.16872 0.16917 -0.0005 0.0666 0.0781 -0.0115
7H 0.1646 0.1543 0.36734 0.36868 -0.0013 0.2337 0.2468 -0.0131
8H 0.1383 0.1317 0.05717 0.05508 0.0021 0.3281 0.3534 -0.0253
9H 0.1646 0.1299 0.36734 0.37083 -0.0035 0.2337 0.2325 0.0012
10H 0.1383 0.1260 0.05717 0.06413 -0.0070 0.3281 0.3223 0.0058
11H 0.1646 0.1472 0.36733 0.36855 -0.0012 0.2337 0.2177 0.0160
12H 0.1383 0.1196 0.05717 0.05705 0.0001 0.3281 0.2971 0.0310
13H 0.1646 0.1788 0.36734 0.36707 0.0003 0.2337 0.2357 -0.0020
14H 0.1383 0.1214 0.05717 0.05093 0.0062 0.3281 0.3146 0.0135
15H 0.1646 0.1390 0.36734 0.36273 0.0046 0.2337 0.2335 0.0002
16H 0.1383 0.0956 0.05717 0.05672 0.0004 0.3281 0.3291 -0.0010
17H 0.1646 0.1376 0.36733 0.36402 0.0033 0.2337 0.2342 -0.0005
18H 0.1383 0.1099 0.05717 0.05523 0.0019 0.3281 0.3486 -0.0205
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