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Abstract

This thesis centrally focuses on the systematic exploration of the so-called “chemical space”

using fast quantum chemical methods. In computational chemistry any calculation requires

a detailed knowledge about a molecules spatial three-dimensional structure which defines the

potential energy surface (PES). The prediction of molecular properties is therein directly linked

to the populated (local) minima on the PES for a given connectivity. Because finding these

minima requires a systematic sampling of the PES, the use of conventional quantum mechanical

(QM) methods is often prohibitively expensive and other methodologies have to be pursued. The

reason for this can easily be seen for typical molecules up to a size of roughly 200 atoms, where

thousands to millions of energy evaluations are required to thoroughly explore the PES. One of

the few suitable schemes for this are extended tight-binding (xTB) methods, which are derived

from ab initio density functional theory (DFT) and introduce semiempirical approximations to

accelerate calculations.

The combination of semiempirical quantum mechanical (SQM) calculations at the xTB levels

with automatized sampling workflows and sophisticated sorting procedures led to the devel-

opment of a computer code called CREST, to which major parts of this thesis are dedicated.

As implied by the name CREST, an abbreviation for conformer-rotamer ensemble sampling

tool, this program was initially introduced as a procedure to identify molecular conformers, but

now adapts procedures for the screening of other representatives of the low-energy chemical

space such as protonation sites and tautomers. The automated sampling procedures in CREST

profit from the use of the so-called GFNn–xTB methods, purpose specific xTB schemes that

are parametrized for all elements up to radon (Z ≤ 86). It is shown that CREST and GFNn–

xTB can be employed to a wide variety of chemical systems, including drug like molecules and

polypeptides, organometallic compounds, transition state conformers and small molecular clus-

ters. Due to a high robustness of the calculations and low computational times, the program is

a sophisticated foundation in multilevel approaches for the calculation of molecular properties.

In an extension to the basic capabilities of CREST, a connection to a fundamental thermosta-

tistical property, the entropy, is established. For molecules, the entropy describes a temperature

dependent energy measure for the internal molecular degrees of freedom (DOF). It is commonly

associated with a state of disorder and is usually obtained from partition functions for molec-

ular motions (vibrations) in a rigid-rotor harmonic-oscillator (RRHO) approximation. In the

respective chapter of this thesis, the often missing conformational dependence in typical QM

calculations of the entropy is investigated, which can be obtained from partition functions for

the conformer ensemble. The problem herein is that a detailed knowledge of the (full) con-
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Abstract

formational space is required for these contributions to the entropy and so far no generally

applicable procedures existed for their calculation. A revised workflow of the CREST confor-

mational sampling procedure is presented that provides an automated and numerically stable

algorithm for the treatment of conformational entropies of flexible molecules. From thermody-

namic expressions closely related to the entropy also conformational molecular heat capacities

are obtained. Both quantities are benchmarked in comparison with experimental data and the

computational robustness of the procedure is tested for large, flexible molecules up to roughly

100 atoms. Furthermore, the significance of the conformational terms is exemplified for some

prototypical chemical reactions.

The last part of this thesis is devoted to the applications of low cost DFT, GFNn–xTB

and CREST for calculation of gas-phase infrared (IR) spectra and acid dissociation constants

(pKa). Vibrational spectroscopy such as IR spectroscopy is used to characterize molecules and

can identify unknown compounds when supplemented with other experiments or theoretical

calculations. Theoretical IR spectra are obtained in a harmonic approximation from second

derivatives of the energy and first derivatives of the molecular dipole moment with respect

to nuclear positions, respectively, providing the vibrational frequencies and IR intensities. In

comparison with over seven thousand experimental gas-phase IR spectra the performance of

GFNn–xTB and the composite DFT method B3LYP-3c is evaluated. It is found that B3LYP-

3c as a representative of DFT provides excellent, almost quantitative predictions of IR spectra.

GFNn–xTB also shows reasonable accuracy and much better performance than force field or

competitor SQM methods. Furthermore, an empirical correction of vibrational frequencies based

on modification of atomic masses is introduced and conformational effects are studied by the

use of CREST.

Acid dissociation constants are obtained from the eponymous acid dissociation reaction of

molecules in solution and the associated Gibbs free energies. These energies are calculated using

QM total energies from DFT or SQM, solvation free energies from implicit solvation models

and free energy contributions from GFNn–xTB vibrational frequencies. By fitting empirical

parameters of free energy relationship to experimental reference values a generally applicable

and efficient composite protocol for the calculation of pKa values is formulated. It is found that

rather independently of the underlying DFT method errors below one pKa unit can be achieved

for flexible drug like molecules, but a strong conformational dependence is observed. CREST is

herein used to identify (de-) protonation sites and to sample conformers. pKa values calculated

entirely at the GFNn–xTB level typically do not reach this accuracy and require corrections

for heterolytic dissociation free energies. However, due to the low computational cost and high

generalizability, they are still useful for pKa pre-screening applications.

In summary, this thesis provides a broadly applicable framework for computational studies of

conformational effects and other representatives of the low-energy chemical space. The CREST

program is already being used by several computational chemistry groups, but due to sophis-

ticated automatization and robustness of calculations is also aimed at the general chemistry

community.
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Zusammenfassung

Im Mittelpunkt dieser Arbeit steht die systematische Erforschung des sogenannten chemis-

chen Raums mit schnellen quantenchemischen Methoden. Jede Berechnung in der comput-

ergestützten Chemie erfordert eine detaillierte Kenntnis der räumlichen dreidimensionalen Struk-

tur eines Moleküls, welche die potentielle Energiehyperfläche (PES) definiert. Die Vorhersage

von molekularen Eigenschaften ist darin direkt mit den populierten (lokalen) Minima auf der

PES verbunden, unter Berücksichtigung einer gegebenen Konnektivität. Da das Auffinden dieser

Minima eine systematische Erfassung der PES erfordert, ist die Verwendung konventioneller

quantenmechanischer (QM) Methoden oft unerschwinglich und andere Vorgehensweisen müssen

angestrebt werden. Der Grund dafür lässt sich leicht an typischen Molekülen bis zu einer Größe

von etwa 200 Atomen erkennen, wo Tausende oder sogar Millionen von Energieberechnungen

erforderlich sind, um eine vollständige Untersuchung der PES durchzuführen. Eine geeignete

Möglichkeit hierfür sind erweiterte Tight-Binding (xTB) Methoden, welche aus der quanten-

mechanischen Dichtefunktionaltheorie (DFT) abgeleitet sind und semiempirische Näherungen

zur Beschleunigung der Berechnungen einführen.

Die Kombination von semiempirischen quantenmechanischen (SQM) Berechnungen auf den

xTB Levels mit automatisierten Sampling-Workflows und ausgereiften Sortierverfahren führte

zur Entwicklung eines Computercodes namens CREST, welchem wesentliche Teile dieser Arbeit

gewidmet sind. Wie der Name CREST, eine Abkürzung für Conformer-Rotamer-Ensemble-

Sampling-Tool, bereits andeutet, ist dieses Programm zunächst als Verfahren zur Identifizierung

von Molekülkonformeren eingeführt worden, adaptiert nun aber auch Prozeduren für die Unter-

suchung von anderen Vertretern des niederenergetischen chemischen Raums wie Protonierungs-

stellen und Tautomere. Die automatisierten Sampling-Verfahren in CREST profitieren von der

Verwendung der sogenannten GFNn–xTB Methoden, zweckgebundenen xTB Schemata, die für

alle Elemente bis hin zu Radon (Z ≤ 86) parametrisiert sind. Es wird gezeigt, dass CREST

und GFNn–xTB auf eine Vielzahl chemischer Systeme angewendet werden können, darunter

wirkstoffartige Moleküle und Polypeptide, metallorganische Verbindungen, Übergangszustand-

Konformere und kleine Molekülcluster. Durch eine hohe Reliabilität der Berechnungen und

geringe Rechenzeiten ist das Programm eine anspruchsvolle Grundlage in mehrstufigen Ansätzen

zur Berechnung molekularer Eigenschaften.

In einer Erweiterung der grundlegenden Fähigkeiten von CREST wird eine Verbindung zu

einer fundamentalen thermostatistischen Eigenschaft, der Entropie, hergestellt. Für Moleküle

beschreibt die Entropie ein temperaturabhängiges Energiemaß der internen molekularen Frei-

heitsgerade und wird üblicherweise aus Zustandsfunktionen für molekulare Bewegungen (Schwing-
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Zusammenfassung

ungen) in einer Starrer-Rotator und Harmonischer-Oszillator (RRHO)-Näherung gewonnen. Im

entsprechenden Kapitel dieser Arbeit wird die in typischen quantenmechanischen Berechnungen

fehlende Konformationsabhängigkeit der Entropie untersucht, welche aus Zustandsfunktionen

für das Konformerensemble gewonnen werden kann. Das Problem hierbei ist, dass für diese

fehlenden konformationellen Beiträge zur Entropie eine detaillierte Kenntnis des (vollständi-

gen) Konformationsraums erforderlich ist und bisher keine allgemein anwendbaren Verfahren

zu dessen Berechnung existieren. Ein überarbeiteter Workflow des CREST Konformations-

Sampling-Verfahrens wird vorgestellt, der einen automatisierten und numerisch stabilen Algo-

rithmus für die Behandlung von Konformationsentropien flexibler Moleküle bietet. Aus ther-

modynamischen Ausdrücken, die eng mit der Entropie verwandt sind, werden ebenfalls kon-

formationelle molekulare Wärmekapazitäten erhalten. Beide Größen werden im Rahmen einer

Vergleichsstudie mit experimentellen Daten verglichen und die rechnerische Robustheit des Ver-

fahrens wird für große, flexible Moleküle bis zu etwa 100 Atomen getestet. Weiterhin wird die

Bedeutung der Konformationsterme für einige prototypische chemische Reaktionen exemplarisch

dargestellt.

Der letzte Teil dieser Arbeit ist den Anwendungen von kostengünstiger DFT, GFNn–xTB und

CREST für Vorhersagen von Infrarotspektren (IR) in der Gasphase und Säuredissoziationskon-

stanten (pKa) gewidmet. Schwingungsspektroskopie wie die IR-Spektroskopie wird zur Charak-

terisierung von Molekülen verwendet und kann in Kombination mit anderen Experimenten oder

theoretischen Berechnungen unbekannte Verbindungen identifizieren. Theoretische Infrarot-

spektren werden aus zweiten Ableitungen der Energie und den ersten Ableitungen des moleku-

laren Dipolmoments in Bezug auf die Kernpositionen gewonnen und liefern die Schwingungsfre-

quenzen bzw. IR-Intensitäten. Im direkten Vergleich mit über siebentausend experimentellen

Gasphasen-Infrarotspektren wird die Performanz von GFNn–xTB und der Komposit-DFT-

Methode B3LYP-3c bewertet. Dabei wird gezeigt, dass B3LYP-3c als Vertreter der DFT hervor-

ragende, nahezu quantitative Vorhersagen von IR-Spektren liefert. GFNn–xTB zeigt ebenfalls

eine hinreichende Genauigkeit, welche weitaus bessere Vorhersagen liefert als Kraftfeld- oder

konkurrierende SQM-Methoden. Des Weiteren wird eine empirische Korrektur der Schwingungs-

frequenzen basierend auf der Modifikation der Atommassen eingeführt und Konformationsef-

fekte werden durch den Einsatz von CREST untersucht. Säuredissoziationskonstanten von

Molekülen in Lösung werden aus freien Gibbs-Dissoziationsenergien gewonnen. Diese Energien

werden berechnet unter Verwendung von elektronischen Gesamtenergien aus DFT oder SQM,

freien Solvatationsenergien aus impliziten Solvatationsmodellen und freien Energiebeiträgen

aus GFNn–xTB Frequenzberrechnungen. Durch die Anpassung empirischer Parameter der

sog. freien Energiebeziehung an experimentelle Referenzwerte wird ein allgemein anwend-

bares und effizientes Gesamtprotokoll für die Berechnung von pKa Werten formuliert. Es

zeigt sich, dass relativ unabhängig von der zugrundeliegenden DFT-Methode Fehler geringer

als eine pKa Einheit für flexible arzneimittelähnliche Moleküle erreicht werden können, jedoch

eine starke Konformationsabhängigkeit vorliegt. CREST wird hierbei zur Identifizierung von

(De-)Protonierungsstellen und zur Bestimmung von Konformeren verwendet. pKa Werte, die
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ausschließlich auf dem GFNn–xTB Level berechnet werden, erreichen typischerweise nicht diese

Genauigkeit und erfordern Korrekturen für heterolytische Dissoziationsenergien. Aufgrund des

geringen Rechenaufwands und der hohen Zuverlässigkeit sind sie aber dennoch für pKa Vorun-

tersuchungen nützlich.

Zusammenfassend bietet diese Arbeit einen umfassend einsetzbaren Ansatz für computer-

gestützte Studien von Konformationseffekten und anderen Vertretern des niederenergetischen

chemischen Raums. Das CREST Programm wird bereits von mehreren Arbeitsgruppen der

computergestützten Chemie verwendet, richtet sich aber aufgrund der ausgefeilten Automa-

tisierung und Robustheit der Berechnungen auch an die allgemeine Chemikergemeinschaft.
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1. Introduction

The continuous growth of computing capacities and advances of quantum mechanical (QM)

methods have made theoretical and computational chemistry a cornerstone of modern chem-

ical research.1–5 Computational simulations mainly serve the purpose to interpret and verify

experimental findings, but also enable the virtual study of chemical systems beyond technical or

resource limitations in the laboratory. This provides the opportunity to combine both experi-

mental and theoretical methodologies and establish iterative research processes (cf. Fig. 1.1). In

the past, theoretical investigations have been especially beneficial for research fields of drug,6–8

catalyst9–11 and materials design,12,13 as well as spectroscopy.14–16

selection of
canidates

computational
screeing

theoretical
investigation

experimental
validation

Figure 1.1.: “Back-feed” interplay of theoretical/computational chemistry and experiments in
context of drug and materials design. Calculations can either be used to efficiently
screen promising candidate structures or to verify and explain experimental findings.

A key aspect here is the knowledge about the spatial molecular structure, which can be

obtained from measurements or computational simulations and defines chemical and physical

properties.4 For a given molecular geometry, calculations can be conducted by classical force field

(FF) methods or by a variety of QM electronic structure methods, mainly belonging to either

wave function theory (WFT),17 Kohn–Sham density functional theory (KS–DFT, DFT),18,19 or

semiempirical quantum mechanics (SQM).20,21

Efficient algorithms and powerful processing units (CPUs, GPUs) are nowadays able to per-

form QM calculations on standard desktop computers.22–25 However, Moor’s law of technological

advance,26 which has been in act for over half a century, is beginning to falter and it is ex-

pected that silicon-based computing capacities reach their physical limitations by the end of the
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1. Introduction

decade.27,28 New developments will likely focus on the underlying architecture such as quantum

computing, and more efficient computational algorithms, also in the context of computational

chemistry.29–32 With respect to the latter, in an article by Houk and Liu titled “Holy Grails

for Computational Organic Chemistry and Biochemistry”32 several objectives of the research in

theoretical chemistry were formulated for the next decades. One of such “holy grails” is said to

be the conquest of the combinatorial conundrum, i.e., the development of methodologies for ac-

curately sampling the conformational space of molecules and its link to molecular properties and

thermostatistical quantities, especially the entropy. A significant portion of this thesis is devoted

to exactly this problem. More specifically, the CREST program (abbreviated from Conformer-

Rotamer Ensemble Sampling Tool) will be introduced, which combines fast and robust SQM

calculations with efficient sampling algorithms and sorting procedures for the exploration of the

low-energy chemical space.33

There is no clear-cut definition of chemical space. In the context of chemoinformatics, the

term typically refers to the entirety of all known molecules collected in databases.34,35 However,

in the scope of this thesis and theoretical chemistry in general, it is more sensible to relate the

concept of chemical space to the potential energy surface (PES) of a molecule. The intuitive

understanding provided by this is that the molecular chemical space consists out of all relevant

low-energy structures (minima on the PES) with respect to a similar composition or topology

of the molecule. From a simplified point of view, this topology refers to all PES minima associ-

ated with a single two-dimensional Lewis structure of a molecule. An appropriate labeling would

hence be the above mentioned low-energy chemical space. Some examples for these molecules are

shown in Fig. 1.2. In a broader sense, the low-energy chemical space includes closely related iso-

Figure 1.2.: Examples for the low-energy chemical space. From left to right: conformers of
n-pentane, neutral and protonated cytosine, tautomers of acetylacetone, (R)- and
(S )-alanine isomers, T-shaped and π–π-stacked benzene dimer.

mers and chemical “derivatives” of a molecule. Most important isomers therein are conformers,

i.e., spatial isomers of a molecule showing identical covalent connectivity and topology. Other

stereoisomers also have the same connectivity but differ with regards to the orientation or chi-
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rality of some atoms and are not interconvertible by rotation around covalent bonds. Chemically

different isomers can be relevant if they involve only comparatively small energetical changes

between the respective PES, for example upon protonation or tautomerization. A special case

of the low-energy chemical space are non-covalently bound aggregates or small molecular clus-

ters. Similar to conformers, the aggregates show the same covalent connectivity but relative

orientations of molecules within the system may differ. While a major part of the combina-

torial problem is the knowledge of the molecular conformation, it can be further complicated

by chemical differences due to the surrounding molecular environment leading to, e.g., different

protonation or tautomerization states of the molecule. Since each of these states also have con-

formers themselves, the knowledge of low-energy chemical space is not just a conundrum but

rather a combinatorial nightmare.

Essentially, the relevant question connecting the low-energy chemical space with theoretical

predictions and the combinatorial conundrum is “What structure(s) represent the system for the

calculation of a property best?” In principle all of these structures can be screened (explored) by

computational simulations without the need of costly and time-consuming experimental studies.

However, due to the enormous size of the low-energy chemical space a few requirements for the

underlying theoretical methods need to be formulated:

1. The underlying method should be general, i.e., most elements of the periodic table must

be treatable at the same theoretical level.

2. The method should be robust for the sake of automatizing calculations whilst providing

reasonable accuracy.

3. The method must be computationally cheap enough to handle hundreds to thousands of

consecutive energy and gradient (derivatives of the energy) evaluations.

The problem therein is that these points often are mutually exclusive. QM treatments are

general but often lack robustness and face convergence issues, e.g., for transition metal contain-

ing molecules. Furthermore, typical QM methods are not nearly fast enough to handle large

amounts of calculations. FFs, on the other hand, are highly robust and have low computational

cost but often specialized and hence only applicable to a limited number of systems. The only

practicable methods that are currently in use in computational chemistry and build a necessary

compromise between these three requirements are SQM methods. Combining the robustness of

parametrized methods (FFs) with the flexibility of quantum chemistry, SQM represent a “best

of two worlds” approach to electronic structure computations. Sadly, many SQM methods of-

ten face similar problems of the generalizability as FFs due to inchoate parametrizations. This

problem has recently been (largely) solved by introduction of the so-called GFNn–xTB meth-

ods (n= {0, 1, 2}) .36–39 These methods are an extension to the established density functional

Tight-Binding (DFTB) schemes20 and were constructed for the specific purposes of Geometry

optimizations, calculation of Frequencies and description of Non-covalent interactions (hence

the acronym GFNn–xTB). Importantly, these methods are parametrized for the major part of
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the periodic table (all elements up to radon, Z ≤ 86). Coupled with their robust and fast per-

formance, the GFNn–xTB methods build a great opportunity for the application in automated

screening procedures and exploration of the low-energy chemical space. In a more general per-

spective, they may be used in combination with CREST for initial stages of a computational

project where thousands of structures have to be evaluated and automatization is highly ben-

eficial. This may provide the basis for “bottom-up” screening procedures22,40 that result in

accurate molecular property predictions calculated with high level electronic structure methods

(cf. Fig. 1.3).

property

populated
conformers

relevant
conformational space

 (full) low-energy
chemical space

WFT, DFT

DFT, SQM

SQM, FF

theoretical method

~105-106

~103-104

~102

~101

ensemble size

CR
ES

T

"b
ot

to
m

-u
p"

 s
cr

ee
ni

ng
Figure 1.3.: Multilevel approach to theoretical modelling of molecular properties. The huge

low-energy chemical space (conformational space) requires fast and robust methods
for energy evaluations and geometry optimizations. For typical drug sized systems
initial ensembles can include thousands to millions of structures which have to be
screened by efficient procedures.

In the following section (Chapter 2), a more detailed overview of different methods in com-

putational chemistry is given, with a focus on electronic structure methods. The second part of

the chapter discusses how molecular properties are derived from quantum chemical calculations

and how the chemical space might influence predictions of the latter. A connection is also made

to free energy computations and the corresponding statistical thermodynamics.

Part II (Chapter 3) introduces the CREST program. The respective chapter reviews multiple

aspects of the low-energy chemical space exploration with a focus on molecular conformations.

Furthermore, the concept of atomic root-mean-square deviation (RMSD) based metadynamics

simulations (MTD) is re-introduced.41 Examples for the conformational sampling of challenging

systems are shown, including macrocyclic molecules, organometallic compounds, and a large

peptide. Additionally, special sampling types are discussed for conformers in the transition state,

non-covalently bound aggregates and protonation sites. This part serves as the foundation for

all further chapters of this thesis.

Part III is an extension to the CREST program and Chapter 3, discussing how the confor-

mational space is linked to physical quantities, namely the molecular entropy and heat capacity.
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These are in general obtained from thermostatistical expressions for the ro-vibrational frequen-

cies of the molecule, but often neglect important anharmonic and conformational contributions

due to an employed rigid-rotor harmonic-oscillator (RRHO) approximation42 and single struc-

tures as starting points. Corresponding mathematical formulations to account for the conforma-

tional entropy are known for a long time43 but no generally applicable computational procedure

was available so far. An algorithm was developed and implemented in CREST that enables the

accurate and numerically stable calculation of the conformational entropy (and heat capacity)

contributions. The approach was tested in comparison with experimental absolute molecular

entropies, where exceptionally low errors much below chemical accuracy were obtained. Fur-

thermore, some prototypical applications of the CREST entropy procedure are shown to point

out potential fields of usage in computational studies. This chapter provides a practical connec-

tion between the combinatorial conundrum and the thermostatistical description of drug sized

molecules, which is an important development towards the above mentioned “holy grail” defined

by Houk and Liu.32

Finally, Part IV is devoted to applications of the GFNn–xTB methods in combination with

CREST and KS–DFT. Chapter 5 treats the calculation of gas-phase infrared (IR) spectra from

vibrational harmonic frequency calculations. In this context, the performance of GFN1–, GFN2–

xTB, GFN–FF, and the newly introduced B3LYP-3c composite functional were evaluated in

comparison with more than seven thousand experimental IR spectra. Furthermore, a new atomic

mass scaling approach for improvement of harmonic frequencies is introduced and the influence

of conformational sampling is illustratively investigated for medium flexible systems. The goal

of this project was to provide robust and fast IR spectra computations for the use in automated

compound identification workflows.44 Chapters 6 and 7 present the computation of macroscopic

pKa values in solution from free energy relationships (FER). First attempts at this topic were

made in collaboration with the Novartis AG in context of the SAMPL6 blind challenge.45,46 By

combining high level KS–DFT calculations with GFN1–xTB and automated screening proce-

dures (pre-dating CREST) for conformers, protonation sites and tautomers, the most accurate

blind predictions of pKa values in the context of the challenge were contributed. Recently, the

respective computational workflow was refined and assessed for a larger number of structures.

The corresponding results are presented in Chapter 7. This includes the introduction of higher

order FERs for the conversion of free energies to pKa values and an empirical heterolytic dis-

sociation energy correction for the GFN2–xTB level. Excellent performance of KS–DFT and

GFN2–xTB for pKa calculations are observed, often with errors below one pKa unit for typical

drug molecules.

Finally, the findings and accomplishments of this thesis are summarized in Part V.
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2. Theoretical Background

2.1. Methodological Overview

Theoretical chemistry allows investigations of atoms, molecules, or solids by the means of com-

putational simulations based on physical principles. This is distinct from chemoinformatics, in

which chemical systems are not explicitly modelled, but rather represented by collections of low-

dimensional data and heuristic rules.47 Restricting ourselves to the molecular case in context

of this thesis, the computational simulations typically operate on an atomistic level. In other

words, the relevant motions (mechanics) of nuclei in a Cartesian or internal coordinate space and

the electrons around the nuclei are studied, which requires a set of rules or physical equations.4

The central quantity herein is the energy of the system as a function of the nuclear coordinates.

Generally, a distinction is made between classical molecular mechanics (MM) based on the New-

tonian equations of motion and quantum mechanical (QM) methodologies as governed by the

Schrödinger equation.

In case of computational chemistry the so-called Born–Oppenheimer approximation48 has

become a cornerstone for theoretical investigations. Within this approximation, the electrons

are treated as quantum mechanical particles that move around the much heavier nuclei, which

themselves are assumed to be moving according to classical mechanics. The respective QM

methods are commonly referred to as electronic structure methods. Another often employed

term is ab initio or first principles methods. These expressions are used somewhat inconsistently

in the literature and a better distinction would be “empirical” or “non-empirical”.4,49 Methods

discussed in the following are suitable for treating different chemical systems, mostly depending

on the methods degree of empiricism and the size (number of atoms) of the investigated system.

A schematic overview is provided in Fig. 2.1.

Methods that are conceptionally closest to exactly solving the Schrödinger equation are re-

ferred to as wave function theory (WFT).17 Electrons are fully interacting in WFT, leading to

archetypal many-body problems and high computational costs. While WFT methods gener-

ally provide the best accuracy,17 their high computational cost typically limits the application

to systems not much larger than a few atoms. In the simplest form of single determinant

WFT, Hartree–Fock (HF) theory50,51 is an ab initio method in which a single electron “experi-

ences” only the average field of all other electrons. HF is therefore referred to as a mean-field

method.4,17 Another mean-field method (not derived from WFT) of comparable cost but (poten-

tially) much better accuracy is density functional theory (DFT), or more specifically Kohn–Sham

(KS) DFT.52 While being mathematically similar to HF, DFT treats the otherwise missing
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quantum mechanics classical mechanics
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Figure 2.1.: Overview of methods in computational chemistry. The shown molecules are glycine,
penicillin, hemoglobin, and caffeine.

electronic exchange-correlation (XC) by an approximated potential. KS–DFT is the de facto

standard electronic structure method in computational chemistry and molecular physics,4,18,19,53

with two of the ten globally most cited scientific papers stemming from this field of research54,55

and a Nobel prize awarded to W. Kohn in 1998.56 The mean-field HF and DFT methods show

much lower computational cost than WFT and systems of a few tens to hundred atoms can be

treated.

If a large number of energy evaluations is required, or larger systems such as (small) proteins

shall be treated, faster methodologies are still necessary. Semiempirical quantum mechanical

(SQM) methods are an empirical approximation to ab initio schemes. Formally, they are also

electronic structure methods but introduce empirical potentials and approximations to various

terms in order to significantly accelerate calculations. Starting points for the construction of

SQM methods are either HF theory,21,57 for example leading to various NDDO/MNDO58–63

and PMx methods,64–67 or KS–DFT which is approximated by density functional tight-binding

(DFTB) theory.20,36,68–70 Whilst being significantly faster than most QM methods, SQM meth-

ods often face a lack of generalizability due to the parametrization of the empirical approxima-

tions. Excellent reviews of SQM methods can be found in Refs. 20,21. Even more approximations

than for SQM methods are required for classical force fields (FF).71–74 Here, no description of

QM electronic effects are necessary and atoms are modelled as classical particles. All interatomic

forces in FF must be parametrized with a (large) number of parameters, often defined for pairs

of elements.75–77 Hence, only a few general FFs are available that are able to treat many differ-
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2.2. Electronic Structure Methods

ent elements in the periodic table.78–80 Larger proteins, also including shells of explicit solvent

molecules, can only efficiently be treated at FF level. Even higher empiricism, e.g., by grouping

several atoms into chemically related fragments and describing the fragments movement/inter-

action as a whole, leads to coarse graining FFs.81,82 Ultimately, a connection is made here to

chemoinformatic methodologies as most commonly represented by machine learning (ML) or

quantitative structure–activity relationship (QSAR) models.47 If a screening of millions of data-

points is required, the latter models are often applied. However, the objective of such methods is

not the computation of an energy but rather directly the knowledge-based prediction of proper-

ties.47 Often, different methods are combined in multilevel approaches22,83 or in hybrid schemes

such as QM/MM.84,85 Herein, robust methods should be “backwards compatible”, i.e., low-cost

methods such as FFs and SQM should provide good results also for small systems.

In Section 2.2 an overview of electronic structure methods including tight-binding based SQM

is given and in Section 2.3 it is discussed how molecular properties are derived from theoretical

calculations, thus providing some background knowledge required for later chapters. No fur-

ther discussions will be provided for simulation techniques such as molecular dynamics (MD)

or geometry optimization procedures since these are rather technically involved and extensive

reviews can be found in Refs. 4,86–89.

2.2. Electronic Structure Methods

The subject of study in electronic structure methods are the negatively charged electrons in

presence of positively charged nuclei within atoms or molecules. Omitting relativistic effects,

the time-dependent Schrödinger equation

iℏ
∂

∂t
ΨK(t) = ĤΨK(t) (2.1)

herein describes the quantum mechanical connection between the (time-dependent) molecular

wave function ΨK(t) in the wave function state K and the Hamiltonian Ĥ, i.e., the operator

corresponding to the total energy of the molecular system. The Hamiltonian is composed of

individual operators for the kinetic energies and Coulomb interactions between the electrons e

and nuclei n according to

Ĥ = T̂n + T̂e + V̂nn + V̂ne + V̂ee . (2.2)

Here, it is common practice to apply the Born–Oppenheimer approximation,48,90 where the

electrons are treated as quantum mechanical particles, while the significantly heavier nuclei

are described as classical particles. Operators solely depending on the nuclei (T̂n, V̂nn) can be

removed from Eq. 2.2 and treated separately, allowing to formulate the electronic Hamiltonian

11
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for N electrons and M nuclei as

Ĥe = T̂e + V̂ne + V̂ee (2.3a)

= −1

2

N∑
i

∇̂2
i −

N∑
i

M∑
A

ZA

|ri −RA|
+

N∑
i>j

1

|ri − rj |
. (2.3b)

In Eq. 2.3, r and R are the spatial vectors of the electrons and the nuclei respectively, and Z

are the nuclear charges, all defined in atomic units for simplicity.4,90 Furthermore, since this Ĥe

is time-independent, the time-dependent component of ΨK(t) can be neglected for stationary

states, leading to the time-independent electronic Schrödinger equation

ĤeΨK = EKΨK . (2.4)

EK is the electronic energy corresponding to the wave function ΨK for the state K and denotes

the main target quantity in quantum chemistry. In mathematical terms, EK and ΨK are the

eigenvalues and eigenvectors of the electronic Hamiltonian, respectively. They are obtained by

integration of the entire space of variables λ, which in Dirac’s bra and ket notation90,91 is given

by ∫ ∞

−∞
Ψ∗

KĤΨKdλ ≡
〈

ΨK

∣∣∣Ĥ∣∣∣ΨK

〉
(2.5a)

≡ HKK = EK ⟨ΨK | ΨK⟩ . (2.5b)

Assuming the wave functions ΨK to be orthonormal, the overlap integral ⟨ΨK |ΨK⟩ equals unity,

i.e.,

⟨ΨK |ΨL⟩ =

0, if K ̸= L

1, otherwise
(2.6a)

= δKL , (2.6b)

where δKL is called the Kronecker delta.

The main problem in this formalism is that no exact eigenfunctions of Ĥe are known a priori

for many electron systems. However, a wide variety of methods exist in quantum chemistry to

solve the time-independent electronic Schrödinger equation approximately, some of which will

be discussed in the following.
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2.2.1. Hartree–Fock Theory and Roothaan–Hall Equations

A possible strategy for solving the time-independent electronic Schrödinger equation is the

variational principle

ẼK =

〈
Φ̃K

∣∣∣Ĥ∣∣∣ Φ̃K

〉
〈

Φ̃K

∣∣∣ Φ̃K

〉 ≥
〈

ΨK

∣∣∣Ĥ∣∣∣ΨK

〉
= EK , (2.7)

which states that the energy ẼK for any trial wave function Φ̃K will be higher or equal to

the energy for the exact wave function ΨK .90 Specifically, in Hartree–Fock (HF) theory50,51 a

sufficiently accurate trial wave function Φ̃K can be represented by a single Slater determinant

for the ground state, i.e., for the general case of N electrons in N spin-orbitals

ΨK ≈ Φ̃0 ≡ Φ0(1, 2, · · · ,N) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ1(1) ϕ2(1) · · · ϕN (1)

ϕ1(2) ϕ2(2) · · · ϕN (2)
...

...
. . .

...

ϕ1(N) ϕ2(N) · · · ϕN (N)

∣∣∣∣∣∣∣∣∣∣
. (2.8)

Herein, the spin-orbitals ϕi(k) denote the ith one-electron wave function for the kth electron.

Each spin-orbital refers to a molecular orbital (MO) composed from a spatial orbital ψi and a

spin part σi according to ϕi(k) = σiψi(rk), i.e., they depend on the spin and spatial (Cartesian or

internal) coordinates of the electron. The reason for assuming a Slater determinant rather than,

e.g. a much simpler product of spin-orbitals (Hartree product), is that the wave function has

to satisfy the Pauli principle.90,92 Wave functions for fermionic particles such as electrons must

be anti-symmetric upon permutation of two (electronic) coordinates (i.e., Ψ(1, 2) = −Ψ(2, 1)).

The insertion of Φ̃0 into Eq. 2.4 yields the HF energy of the N electron wave function, which

may be written as

EHF =
N∑
i

〈
ϕi

∣∣∣ĥi∣∣∣ϕi〉+
1

2

N∑
i,j

(〈
ϕj

∣∣∣Ĵi∣∣∣ϕj〉−
〈
ϕj

∣∣∣K̂i

∣∣∣ϕj〉) (2.9a)

=

N∑
i

hii +
1

2

N∑
i,j

[(ii|jj) − (ij|ji)] (2.9b)

=

N∑
i

ϵi −
1

2

N∑
i,j

(Jij −Kij) . (2.9c)

Here ĥ is the operator containing all single-electron operators of the Hamiltonian, i.e., T̂e and

V̂ne. The Coulomb (Ĵ) and exchange (K̂) operators are derived from the two-electron operator

Vee (cf. Eq. 2.3) leading to integrals of the type

(ij|kl) ≡
x

ϕ∗i (1)ϕj(1)
1

|r1 − r2|
ϕ∗k(2)ϕl(2)dr1dr2 . (2.10)
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For the same electron (i = j) the J and K terms exactly cancel each other. If this is not the

case as, e.g. in KS–DFT (vide supra), the so-called self-interaction error (SIE) arises.

The total energy of the system within the Born-Oppenheimer approximation is obtained by

adding the nuclear repulsion energy Vnn, i.e., E = EHF + Vnn. The third line in Eq. 2.9

formulates the HF energy in terms of MO energies ϵi, which are derived in the following.

Since the orbitals ϕi are unknown initially, a set of MOs has to be determined that minimizes

the energy. To do this while containing orthonormality (cf. Eq. 2.6), the variational orbital

optimization is carried out by the means of Lagrange multipliers90

L = EHF

N∑
i,j

λij (⟨ϕi|ϕj⟩ − δij) (2.11a)

∂L = ∂EHF

N∑
i,j

λij (⟨∂ϕi|ϕj⟩ − (⟨ϕi|∂ϕj⟩) , (2.11b)

which leads to

f̂iϕi =
∑
j

λijϕj (2.12)

and finally upon further simplification by unitary transformation of the Lagrange multiplier

matrix λ to

f̂iϕ̃i = ϵiϕ̃i . (2.13)

This (pseudo-)eigenvalue problem is referred to as canonical Hartree–Fock equations employing

the special set of canonical MOs ϕ̃i. Herein, f̂i is the so-called Fock operator

f̂i(r1) = ĥi(r1) +

N∑
j

(
Ĵij(r1) − K̂ij(r1)

)
, (2.14)

which acting on ϕi yields the energy ϵi of the respective MO, i.e., the eigenvalue in the mean field

of all other orbitals. As before, ĥi is the operator describing the kinetic energy and electron-

nuclei interaction of a single electron, while Ĵij and K̂ij are the operators for the Coulomb

electron-electron repulsion and (Pauli) exchange, respectively. For Ĵ and K̂ the summation

runs over all N MOs, which is due to the approximation of using a single Slater determinant.

However, contrary to the Coulomb interaction, the exchange interaction is only non-zero for

electrons of the same spin. As a further consequence of this, the interaction between the Jii and

Kii electron-electron interactions exactly cancel each other, and each electron experiences only

an average contribution of all other N − 1 electrons. HF is therefore referred to as a mean-field

theory.

Generally, the exact form of the MOs is unknown and can only be determined if all other or-

bitals are known. This requires solving the Hartree–Fock equations in a iterative, self-consistent
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2.2. Electronic Structure Methods

manner. The corresponding algorithm is referred to as self-consistent field (SCF) procedure,4,90

which is not further discussed here.

A convenient procedure for defining a set of unknown MOs from a set of known functions

was presented by Roothaan and Hall.93,94 The basis of their approach is the expansion of the

molecular orbitals as a linear combination of atomic orbitals (LCAO). The spatial MO ψi are

herein expanded in a basis of M atomic orbitals (AOs) χµ according to

ψi(r1) =
M∑
µ

Cµiχµ(r1) . (2.15)

Inserting the expansion into Eq. 2.13 gives

f̂i

M∑
µ

Cµiχµ = ϵi

M∑
µ

Cµiχµ , (2.16)

which in matrix notation takes the form of the Roothaan–Hall eigenvalue equation

FC = SCϵ . (2.17)

In this equation, the Fock matrix elements are given by Fµν =
〈
χµ|f̂ |χν

〉
and the overlap

elements are Sµν = ⟨χµ|χν⟩. Since the basis of AO orbitals is fixed, the only unknown are the

LCAO coefficients C which must be obtained from variational optimization of Eq. 2.17. Here,

it is convenient to define a density matrix P with the elements

Pµν = 2

N/2∑
i

CµiCνi (2.18)

and reformulate the Fock matrix elements in terms of a one-electron part hµν and a two-electron

part Gµν according to

Fµν =
〈
µ|ĥ|ν

〉
︸ ︷︷ ︸

hµν

+
∑
λσ

Pλσ

[
(µν|λσ) − 1

2
(µλ|σν)

]
︸ ︷︷ ︸

Gµν

. (2.19)

The AOs in Eq. 2.19 are referred to only by their subscript as a short notation. Since the Fock

matrix depends on the expansion coefficients C (via P) and the eigenvalue problem in Eq. 2.17

does so too, they are solved in an iterative SCF procedure.

An important point of the Roothaan–Hall formalism is that MOs and hence the total wave

function is determined in a finite basis of AOs. Employing this so-called basis set expansion

is common practice in quantum chemistry and led to the development of pre-compiled sets of

AOs for each element.4,95 Here, the quality of the final wave function is defined by the number
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2. Theoretical Background

and functional form of the employed AOs to describe an atom in the molecule. While different

functionals are employed for the AO shapes (e.g. Slater-type orbitals,96 plane waves97), the

most commonly employed basis sets for molecular calculations consist of linear combinations of

Gaussian-type orbitals (GTO).95,98,99 The decisive feature herein is the number of AOs combined

to represent the physically “correct” orbital or shells of the atoms, also referred to as cardinal

number ζ. A number of linearly combined AOs that provides the best possible description of the

N -electron wave function, i.e., approaching an infinite number of linear combinations, is called

the complete basis set limit (CBS). Any other basis set will, to a certain degree, suffer from the

so-called basis set incompleteness error (BSIE) and basis set superposition error (BSSE) as a

result of the insufficient LCAO expansion.4 Since integrals in the Roothaan–Hall formalism are

evaluated in the AO basis, the cardinal number is one of the determining factors with respect

to the computational cost. Triple-, or quadruple-ζ basis sets are most common in practice but

occasionally minimal basis sets98 find their use for cost efficient methods. The evaluation of

the two-electron integrals in Gµν is the most expensive part in solving SCF equations in the

Roothaan–Hall formalism. Hence, the computational cost of the mean-field procedure increases

as O(N4), with N being the number of AOs.

2.2.2. Electron Correlation Methods

Electron correlation methods do not play a vital role in this thesis and only a brief overview is

given in the following. While HF typically yields already about 99 % of a systems total energy,

the last missing percent of the energy often is crucial for the final accuracy.17 This is because

the total energy is a huge quantity so that even small variations can lead to deviations exceeding

the so-called chemical accuracy, i.e., energy differences smaller then 1 kcal mol−1. The part of

the energy not included in HF is defined from the difference between the total and mean-field

energy

Ecorr = Etot − EHF (2.20)

and is referred to as correlation energy. It is important, e.g. for the correct description of

covalent bonds and non-covalent van-der-Waals interactions.49,100 Accordingly, methods that

include (parts of) the correlation energy are called electron correlation, post-Hartree–Fock, or

simply wave function theory (WFT) methods (which technically also includes HF).17 They have

in common that electrons are fully interacting instead of being described in a mean-field manner.

Typically, this is described by including not only the ground state Slater determinant into the

calculation, but also determinants with electrons excited to virtual orbitals (cf. Fig. 2.2).

The three most commonly applied electron correlation methods are configuration interaction

(CI),102,103 coupled cluster (CC),104,105 and Rayleigh–Schrödinger perturbation theory (PT).90

In the Møller-Plesset (MP) variant of the latter,106 the perturbation is expanded as a power

series around a zeroth order Hamiltonian Ĥ0 and the perturbation λĤ ′, leading to different

orders MPn, depending on where the expansion is truncated. The correlation energy appears
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Figure 2.2.: The relation between electronic ground state wave function Ψ0 and its approxi-
mation by a Slater determinant Φ0. Wave functions labeled Ψ1−N contain also
configurations with electrons excited to virtual orbitals. Figure adapted from Ref.
101.

first at second order (MP2, zeroth plus first order MP-PT is equivalent to the HF energy),

EMP2
corr =

occ.∑
j>i

virt.∑
b>a

[(ij|ab) − (ia|jb)]2

ϵi + ϵj − ϵa − ϵb
. (2.21)

The summation in MP2 runs over the occupied orbitals i, j as in HF, but also over the virtual

orbitals a, b. This provides a significant portion of the correlation energy but introduces other

methodological shortcomings (e.g. for metals) that are not discussed here further. Formally,

the computational cost of the two-electron integrals in Eq. 2.21 is O(N4) (as in HF), but since

an AO to MO transformation is required the total cost of MP2 scales as O(N5).4

The perturbation-free CI and CC approaches to solving the electronic Schrödinger equation

(Eq. 2.4) are conceptionallay similar. Here the Slater determinant is expanded from a HF

calculation to include electronic excitations into virtual space. This is obtained via an excitation

operator T̂λ, with λ being the order of excitation (singles, doubles, triples, ...), applied to the

ground state Slater determinant Φ0.
4,17 The resulting CI and CC wave functions

ΨCI = (1 + T̂)Φ0 = (1 +
∞∑
λ

T̂λ)Φ0 (2.22a)

ΨCC = exp(T̂)Φ0 =
∞∑
k=0

1

k!
T̂kΦ0 (2.22b)

differ in the way the excitation operator is applied to Φ0 (linear for CI and exponential for

CC) and optimized according to the excitation amplitudes. Since expansions up to N -fold

excitations λ can not practically be calculated, they are truncated. One advantage of CC over

CI is that higher excitations are implicitly included to a certain degree upon truncation of

the CC expansion. However, the main advantage of CC is the so-called size consistency of the
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calculations.17 Both, CI and CC typically have significantly higher computational cost than HF.

For example, the so-called “gold standard” of quantum chemistry, CCSD(T),4,105 that is CC

with single and double excitations and triple excitations from MP–PT, already scales as O(N7).

Modern local implementations such as DLPNO-CCSD(T) reduce the computational cost while

largely maintaining the accuracy and often serve as reference level in benchmark studies.107–109

2.2.3. Kohn–Sham Density Functional Theory

Density functional theory originated due to a theorem by Hohenberg and Kohn110 which pos-

tulates the energy of a system in the ground state as a functional of its electron density ρ(r).

This is possible since ρ(r) in principle provides all information necessary to formulate a Hamil-

tonian.4,53,111 As a function of electronic coordinates, the electron density can be integrated to

yield the total number of electrons N in the system. Furthermore, ρ(r) has cusps only at the

positions of the nuclei and its gradient depends on the respective nuclear charge. Within this

framework, an electron density dependent energy may be formulated as

E [ρ(r)] = Vne [ρ] + T [ρ] + Vee [ρ] (2.23a)

=

∫
ρ(r)v(r)d3r + T [ρ] + Vee [ρ] , (2.23b)

where Vne [ρ] describes the interaction between electrons and the nuclei. Additionally, all other

external fields imposed on the molecule are included in this term, which is then expressed and

integrated as the external potential v(r). The terms Vee [ρ] and T [ρ] are the electron–electron

interaction energy and kinetic energy associated with a given electron density, respectively. This

theory depends only on three spatial variables for r instead of 3N for the electrons as in WFT

and therefore it is sometimes referred to as orbital-free density functional theory (OF–DFT).112

Early attempts at OF–DFT by Thomas, Fermi and Dirac113–115 actually pre-date the work by

Hohenberg and Kohn and also wave mechanics,4 but even with modern approaches the accuracy

is found to be insufficient for general use in computational chemistry.116,117 The reason for this

is that the exact forms of the functionals T [ρ] and Vee [ρ] inf Eq. 2.23 are unknown and have to

be approximated.

A breakthrough was achieved by Kohn and Sham52 who pointed out that the exact electron

density of an interacting system may be replaced by a fictitious determinantal wave function of

non-interacting electrons in a mean field potential. For the latter, the (approximate) density

can be constructed from a set of auxiliary orbitals ψi for the N electrons (or NMO MOs with

the occupation number ni) and is given by their summed probability densities

ρ (r) =
N∑
i

|ψi(r)|2 (2.24a)

=

NMO∑
i

ni

∫
ψ∗
i (r)ψi(r)dr . (2.24b)
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Formally, the electron density is given as the sum of individual densities of electrons with α and

β spin, i.e., ρ(r) = ρα(r) + ρβ(r), but for simplicity this is always implied in the following. In

analogy to HF theory, the formulation in terms of ψi provides an exact kinetic energy TS and

allows to reformulate Eq. 2.23 as the Kohn–Sham density functional theory (KS–DFT, or just

DFT in the following) energy expression

EKS [ρ] = TS [ρ] + Vne [ρ] + J [ρ] + EXC [ρ] (2.25a)

= −1

2

N∑
i

⟨ψi|∇2|ψi⟩ + Vne [ρ] + J [ρ] + EXC [ρ] . (2.25b)

Here, the density dependent exchange-correlation energy functional EXC [ρ] is introduced, which

in a general (semi-)local form118,119 is given by

EXC [ρ] = (T [ρ] − TS [ρ]) + (Vee [ρ] − J [ρ]) (2.26a)

= EX [ρ] + EC [ρ] (2.26b)

=

∫
εXC [∇aρ(r)] ρ (r) dr . (2.26c)

The exchange-correlation functional is often further decomposed into a exchange and correla-

tion part (cf. Eq. 2.26b) and depends on the energy density εXC , which is a functional of the

different electron density derivatives ∇aρ(r) and is often also separated into εXC = εX +εC . Em-

ploying the exchange-correlation potential vXC [ρ], i.e., the functional derivative ∂EXC [ρ] /∂ρ,

and minimizing EKS [ρ] (Eq. 2.25) with respect to the orbitals ψi gives rise to the Kohn–Sham

equations52

f̂KS
i [ρ]ψi = ϵiψi , (2.27)

with the Kohn–Sham operator

f̂KS
i [ρ] = ĥi[ρ] +

N∑
j

Ĵij [ρ] + vXC [ρ] . (2.28)

Eq. 2.27 has an obvious similarity to the Fock operator (cf. Eq. 2.14) and hence can be solved

employing the same methodologies as in HF (i.e., the Roothaan–Hall formalism). Both, KS–

DFT and HF, depend on 3N variables (instead of just 3 in OF–DFT), have similar computational

cost and are much less complicated than, e.g., advanced CI and CC models. If the exact

functional vXC [ρ] would be known, the fictitious system of non-interacting particles provides

the same density and energy as the fully interacting N electron system and EXC [ρ] yields

the exact exchange and correlation energies.18,52,120 Hence, the advantage of KS–DFT over

HF theory, which is missing the correlation energy, becomes clear. However, since no exact

exchange-correlation functional is known for an arbitrary density, the main goal in developing

KS–DFT methods is to find practical approximations for vXC [ρ]. These are either empirically
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derived and/or fitted to fulfill a number of theoretical constraints,121,122 which gave rise to an

enormous amount of density functional approximations (DFA).18,19,109,119,123 An often employed

metaphor for the classification of DFAs is the “Jacob’s ladder” picture as popularized by Perdew

and Schmidt.118 Here, DFAs are ranked according to their sophistication, from rather crude

approximations up to the “heaven” of chemical accuracy. A brief overview of DFA rungs is

given in the following.

Rungs of Density Functional Approximations

In the Jacob’s ladder picture, DFAs are primarily classified according to the (local) density

ρ(r) and its respective derivatives ∇aρ(r) considered for the exchange and correlation terms in

Eq. 2.26. Typically, higher rung DFAs show increasingly higher accuracy but also at higher

computational cost.

The least sophisticated DFAs are the so-called local spin density approximations (LSDA or

LDA). LSDA was initially derived from models for the uniform electron gas (UEG),115,124 i.e.,

constant density (∇ρ(r) = 0) and consequently the exchange-correlation only depends on ρ(r).

This leads to a comparatively simple formulation for the exchange energy

ELSDA
X [ρ] = −CX

∫ (
ρα(r)

4
3 + ρβ(r)

4
3

)
dr , (2.29)

where CX = 3
4

(
3
π

) 1
3 and ρα/β are the α and β spin densities. The corresponding correlation

part can be found in the literature.4,125,126

The second rung corresponds to functionals of the generalized gradient approximation (GGA)

type, which utilize information contained in the density derivative ∇ρ(r). Since the latter

describes variations around ρ(r) but still depends on a single r, GGAs are sometimes referred

to as being “semi-local”. In a very general form, GGAs are based on LSDA exchange and

correlation, but employ an enhancement factor FXC [ρ,∇ρ], yielding

EGGA
XC [ρ] =

∫
εLSDA
XC [ρ(r)]FGGA

XC [ρ(r),∇ρ(r)] dr . (2.30)

Many different enhancement factors for the exchange and correlation have been proposed, with

some of the most prominent DFAs being the B88 and PBE exchange127,128 and the LYP corre-

lation54 functionals.

Improvements upon the GGA rung lead to the meta-generalized gradient approximation

(meta-GGA) rung. Here, enhancement factors Fmeta−GGA
XC depend not only on ∇ρ, but also

higher derivatives ∇2ρ or the kinetic energy density

τ(r) =
1

2

N∑
i

|∇ψi(r)|2 . (2.31)

The latter is typically employed in meta-GGAs since less numerical noise is introduced into
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the calculations than by employing ∇2ρ.119 The most theoretically evolved semi-local DFAs

are of the meta-GGA rung.122,129,130 Computational costs formally scale as O(N4) due to the

semi-local two-electron integral evaluation, but can be accelerated to O(N3) by appropriate

approximations such as the resolution of identity (RI) approximation.131–133

The fourth rung of DFAs is referred to as hybrid DFT or (rarely also) hyper-GGA methods.4

The main idea here is to find a connection between the exact (non-local) exchange known from

HF theory (Fock exchange) and the exchange contained in the exchange-correlation functional

EXC [ρ].134 By invoking the adiabatic connection135 and assuming a linear correspondence120

between the Fock and (meta-)GGA exchange as the end points the empirical formula

Ehybrid
XC [ρ] = aXE

HF
X + (1 − aX)EDFT

X + EDFT
C (2.32)

is obtained, where EHF
X is the Fock exchange obtained from a HF calculation and aX is typi-

cally treated as fitting parameter.119,134 Naturally, employing EHF
X requires an additional Fock

energy evaluation which makes hybrid DFT more costly than GGA or meta-GGA calculations.

However, hybrid DFAs still are mean-field approaches for which a single KS operator can be

formulated, i.e., the Fock part is evaluated using the KS orbitals. In other words, the Fock

exchange is evaluated non-locally by integrating ρ(r, r′) over two spatial parts r and r′. The

respective computational performance hence still scales as O(N4). All (semi-)local DFAs suffer

from the above mentioned self-interaction error (SIE). The SIE describes the artificial Coulomb

interaction of a single electron with itself, which should be canceled by J [ρ] and the exact

EXC [ρ]. Since this is not the case for (semi-)local DFT, the improvements of hybrid functionals

compared to lower rung DFAs can be at least partially attributed to the compensation of SIE

due to Fock exchange. Note that the SIE is also linked to the delocalization of the electrons

and a wrong asymptotic behavior of the exchange-correlation potential. This gave rise to the

class of range-separated hybrid DFAs, in which the Coulomb operator for the Fock exchange is

separated in a short- and long-range part.136–141 This special case of fourth rung DFAs will not

be discussed further here. Hybrid functionals, either with globally employed or range-separated

Fock exchange, outperform most other (semi-)local DFAs and routinely provide better property

predictions for ground and excited states.18,109,123,134,142

The final rung on the DFA Jacob’s ladder are the so-called double-hybrid density functional

(DHDF) approximations.143–145 Similar to the exchange in hybrid DFAs, part of the correlation

energy in DHDFs is replaced by an MP2-like energy to include virtual orbitals, which leads to

the general expression

EDHDF
XC [ρ] = aXE

HF
X + (1 − aX)EDFT

X + bCE
DFT
C + (1 − bC)EMP2

C . (2.33)

Consequently, DFAs of the fifth rung are no mean-field methods. Many variants of DHDFs

exist that differ mainly in the parameters aX and bC . Furthermore, some DHDFs replace the

perturbative correlation energy term by other (modified) WFT or random-phase approximation

(RPA) components,146–150 although including higher order Møller-Plesset PT or CCSD(T) terms
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was found to no provide any significant improvements over the MP2 term.151 While results of

DHDFs are usually superior to other DFAs this comes at the cost of a worse O(N5) scaling due

to the MP2 correlation part.

Empirically Corrected KS–DFT

Besides the above mentioned SIE, other theoretical or practical shortcomings are observed for

KS–DFT. Some well understood errors result from the use of incomplete basis sets and con-

sequently are also present for HF (or other WFT). If basis set with a too low count of basis

functions are used, a large BSSE and BSIE can severely limit the achievable accuracy. While the

BSSE can efficiently be compensated by empirical corrections such as the geometrical Counter–

Poise (gCP) scheme,152–154 the BSIE may be redeemed by the use of more complete basis sets,

corrected partially via empirical potentials,155,156 or reduced via the parameter fit in the DFA

parametrization.157,158

A severe problem in KS–DFT are missing London dispersion159,160 interactions, which are

crucial for the description intra- and intermolecular non-covalent interactions.49,100,161 For ex-

ample, (semi-)local DFAs yield wrong asymptotic interaction energies (exponentially at short

and medium range, instead of −1/R6).162 Dispersion interactions are a purely non-classical elec-

tron correlation effect that is not captured by the mean-field approach and would require the

evaluation of non-local functionals.49 For brevity this is not further discussed here, but it was

generally found that dispersion interactions can be accounted for in KS–DFT by special correc-

tion schemes. In the last decade a large amount of dispersion corrections were introduced163–169

of which the so-called DFT–D schemes170–174 are among the most popular.100 In the often em-

ployed DFT–D3 (or just D3) variant,172,173 a pair-wise dispersion correction term is introduced

form pre-calculated dispersion coefficient CAB
n together with a DFA dependent parameter sn

and a distance dependent damping function f
(n)
damp(R) ensuring the correct asymptotic behavior

at short range. The resulting correction term

ED3,AB
disp = −

∑
AB

∑
n=6,8

sn
CAB
n

R
(n)
AB

f
(n)
damp(R) (2.34)

can be added directly to the KS energy and only depends on the molecular structure and atomic

coordination numbers (CN) used to calculate the CAB
n (CNA, CNB) dispersion coefficients. Dif-

ferent variants have been proposed for the damping function175 (D3(0),172 D3(BJ)173), where

the most commonly applied Becke–Johnson (BJ) damping function164,165 is given by

f
(n)
damp,BJ(R) =

Rn

Rn + (a1

√
CAB
8 /CAB

6 + a2)n
, (2.35)

with the two empirical parameters a1 and a2. Besides this two-body dispersion correction, three-

body contributions are often considered for larger systems via an Axilrod–Teller–Muto (ATM)

term176,177 but will not be further discussed here. The recently introduced DFT-D4 model
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represents the next generation of DFT-D dispersion corrections.174,178,179 Compared to the D3

models, in DFT–D4 atomic charge dependent reference polarizabilities α(iω) and modified elec-

tronegativity dependent CNs are used to calculate the CAB
n dispersion coefficients. Adding

dispersion corrections improves most KS–DFT results significantly100,109,179 and their inclusion

should always be considered.4,49

In the last years the so-called “3c” composite methods have become popular.157,158,180–182

These methods are derived from established DFAs (or HF) but incorporate pre-defined empirical

corrections to simplify the input handling in quantum chemistry codes and speed-up calculations.

To achieve the latter, one of the three eponymous corrections for all the 3c methods are tailored

small (minimal) to medium sized basis sets. Other employed modifications are the use of DFT–

D dispersion corrections, gCP, an empirical short-range bond (SRB) correction,180 or re-fits

of the DFAs exchange-correlation functionals. The 3c composite methods have proven to yield

good geometries, accurate conformational energies182,183 and reliable thermochemistry,109,184–186

which makes them a robust choice for DFT based computational studies.

2.2.4. Tight-Binding Methods

Tight-binding (TB) methods are a semiempirical approximation to Hartree–Fock or KS–DFT

and in the latter context also are referred to as density functional tight-binding (DFTB).68–70,187

As for all SQM methods, the foundation are first principles energy expressions but approxima-

tions for the integrals are introduced and other simplifications, such as the use of minimal basis

sets, are employed.20,21

The starting point for the TB energy, or more correctly for the extended TB energy (vide

infra), is a non-local correlation DFA169 of the general form

Etot = Vnn +

NMO∑
i

ni

∫
ψ∗
i (r)

[
T̂e + V̂ne + vLDA

XC [ρ] + vNL
C [ρ(r), ρ(r′)]

]
ψi(r)dr , (2.36)

where the different operators and the density are defined as in the previous section. The compo-

nent vNL
C is the operator for the non-local electron-electron Coulomb energy with the correlation

kernel ΦNL
C and is given by

vNL
C [ρ(r), ρ(r′)] =

1

2

∫ (
1

|r− r′|
+ ΦNL

C (r, r′)

)
ρ(r′)dr′ . (2.37)

At this point in TB the density ρ is reformulated in terms of a reference density ρ0 and density

difference ∆ρ, i.e., ρ = ρ0 + ∆ρ. The reference density is typically constructed from spherical

atomic reference densities ρo =
∑

A ρ
A
o and Eq. 2.36 may be expressed as

Etot = EH
0 + δEH + ELDA

XC [ρ] + ENL
C [ρ, ρ′] . (2.38)
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Herein, the energies at reference density EH
0 and at the density fluctuations δEH are given by

EH
0 = Vnn +

NMO∑
i

n0,i

∫
ψ∗
i (r)

[
T̂e + V̂ne +

1

2

∫
1

|r− r′|
ρ0(r

′)dr′
]
ψi(r)dr (2.39)

δEH =

NMO∑
i

∆ni

∫
ψ∗
i (r)

[
T̂e + V̂0 +

1

2

∫
1

|r− r′|
∆ρ(r′)dr′

]
ψi(r)dr , (2.40)

with the reference potential

V̂0 =
nuclei∑

A

(∫
1

|r− r′|
ρA0 (r′)dr′ − ZA

|r−RA|

)
. (2.41)

Eqs. 2.38–2.41 provide the basis for deriving all the energy terms in DFTB. To do so, as the

second central approximation the total energy for TB is Taylor expanded around the density

variations ∆ρ according to

E[ρ] =

∞∑
k=0

1

k!
E(k)[ρ0, (δρ)k] (2.42a)

= E(0)[ρ0] + E(1)[ρ0, δρ] + E(2)[ρ0, (δρ)2] + E(3)[ρ0, (δρ)3] + ... , (2.42b)

which is truncated depending on the sophistication of the respective TB SQM. The most ad-

vanced TB schemes truncate at third order.38,39,69,70 In doing so, different empirical approxima-

tions can be applied for the individual order terms. A brief overview is given in the following.

At zeroth order only EH
0 terms depending on the neutral atomic reference densities ρA0 remain,

which may be written as

E(0)[ρ0] =

nuclei∑
A

EA[ρA0 ] +
1

2

nuclei∑
A,B

(
Erep[ρ

A
0 , ρ

B
0 ] + Edisp[ρ

A
0 , ρ

B
0 ]
)

(2.43a)

=
nuclei∑

A

EA[ρA0 ] +
(
E(0)

rep + E
(0)
disp

)
. (2.43b)

EA[ρA0 ] herein denote non-interacting atomic energies that can be pre-computed for the refer-

ence density ρ0. The atomic pair-wise terms E
(0)
rep and E

(0)
disp result from the exchange-correlation

kernels and correspond to a pair-wise repulsion and non-local correlation (dispersion) energy,

respectively. In an empirical context, the latter can be seen as equivalent to the well-known

Buckingham/Lennard–Jones potentials employed to describe non-covalent interactions in clas-

sical FFs. For most DFTB methods the entire zeroth order term is expressed as an empirical

repulsion potential E(0)[ρ0] = 1
2

∑
A,B V

rep
AB , employing fitted element pair-wise parameters.

The first order term is derived from δEH , now experiencing density fluctuations via ∆ni = δni

but no interatomic Coulomb interactions, and long-range exchange and correlation part. This
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2.2. Electronic Structure Methods

is given by

E(1)[ρ0, δρ] = δEH +
∂

∂ρ

(
ELDA

XC [ρ0] + ENL
C [ρ0, ρ

′
0]
)
δρ (2.44a)

≈ E
(1)
EHT + E

(1)
disp , (2.44b)

where the first order non-local contribution E
(1)
disp contains the potential for the fluctuations δρ

experiencing the correlation with ρ0. The important extended Hückel theory (EHT) term188,189

E
(1)
EHT is primarily responsible for the covalent bonding in TB. It is usually formulated in terms

of AOs in a minimal basis set

E
(1)
EHT =

NMO∑
i

〈
ψi|ĤEHT |ψi

〉
=
∑
i

NAO∑
µν

niCµiCνiH
EHT
µν (2.45a)

=
∑
µν

PµνH
EHT
νµ , (2.45b)

where the density matrix elements are defined from the reference density and density fluctuations

Pµν = P 0
µν+δPµν . This is the essential QM component for all TB schemes, although variations in

the construction of the EHT Hamiltonian exist. In first order DFTB no self-consistent treatment

is necessary.37,190,191

The second order energy is, as the first order energy, derived from δEH , but now explicitly de-

pends on the interaction of density fluctuations δρ between the atoms. The resulting expression

E(2)[ρ0, (δρ)2] = δEH +
∂2

∂ρ∂ρ′
(
ELDA

XC [ρ0] + ENL
C [ρ0, ρ

′
0]
)
δρδρ′ (2.46a)

≈ E
(2)
ES+XC + E

(2)
disp (2.46b)

≈ 1

2

nuclei∑
AB

qAqBγAB (2.46c)

contains the respective short-range Coulomb electrostatic and (semi-)local exchange-correlation

energies, as well as second order non-local correlation. The former, as seen in the third line of

Eq. 2.46, are often approximated by (some form of) damped Coulomb term that depends on

atomic monopoles qA/B, e.g. obtained from a Mulliken population analysis. For the function

γAB in most DFTB schemes a Mataga–Nishimoto–Ohno–Klopman damping function192–195 is

employed.

The highest order term employed in the most sophisticated TB schemes, i.e., the third order
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energy,36,69 depends only on the derivatives of local and non-local XC energies

E(3)[ρ0, (δρ)3] =
∂3

∂ρ∂ρ′∂ρ′′
(
ELDA

XC [ρ0] + ENL
C [ρ0, ρ

′
0]
)
δρδρ′δρ′′ (2.47a)

≈ E
(3
XC + E

(3)
disp (2.47b)

≈ 1

3

∑
AB

(qA)2qBΓAB . (2.47c)

The empirical approximation to this term (Eq. 2.47c) depends cubically on the atomic charges

and on ΓAB, an empirical charge deviate term. Due to the latter, the on-site third order term

can be interpreted as a charge dependent correction to the second order term that improves the

description of highly charged systems.

By replacing the different order terms with empirical potentials significant savings (about

2–3 orders of magnitude) can be achieved in the computational cost of TB methods compared

to KS–DFT. A major part of this computational speed-up is accounted for by evaluation of

only one-electron integrals. The expensive two-electron terms are herein neglected or implicitly

compensated by the empirical approximations to higher order Coulomb and XC terms. Most

TB schemes are, as KS–DFT or HF, solved in a self-consistent procedure. This can be explained

because the charges q enter the TB Hamiltonian in Eqs. 2.46 and 2.47 and are obtained from a

population analysis, i.e., the charges themselves depend on the overlap integral Sµν and density

matrix Pµν . Since the central part of the self-consistency in DFTB are the charges, it is often

referred to as self-consistent charge (SCC), rather than SCF procedure.

While the performance of “conventional” DFTB methods is promising, a large flaw is the

general availability. Many of the semiempirical terms are constructed with element pair-wise

parameters that are pre-computed by first principles methods.196–200 Parameterizations are often

available only for a couple of element pairs and focus on a description of chemical interaction

energies, while other important features are taken little into account. Compared to e.g. KS–

DFT, DFTB methods lack the generalizability and are limited in their applicability to explore

the chemical space for a wide range of chemical systems. This led to the development of the

extended tight-binding methods that are discussed below.

Extended Tight-Binding Methods

Extended tight-binding (xTB) methods by construction employ only atomistic and a few global

fitting parameters which reduces the total amount of empirical data compared to other DFTB

significantly. They were introduced as part of the sTDA-xTB method201 for computation of

electronic spectra and later further developed in context of the GFNn–xTB (n= {0, 1, 2})

schemes, which were quickly adopted by the computational chemistry community.36–39 Herein,

the acronym GFN denotes the special purposes guiding the design of these methods, i.e., they

were constructed to yield good description of Geometries, (vibrational) Frequencies and Non-

covalent interactions. The eponymous extensions mainly refer to a broad parametrization (all
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2.2. Electronic Structure Methods

elements up to radon, Z = 86), the employed Gaussian AO minimal basis set, empirically aug-

mented EHT expressions and improvements of the underlying theory. An overview of the total

energy terms in the three GFNn–xTB variants is given in Fig. 2.3 and will be briefly discussed

below. A detailed composition of the individual energy terms is omitted here for brevity but

can be found in Appendix A1.

E (0) E (1) E (2) E (3)

SCC

SCC

Figure 2.3.: Overview of the GFNn–xTB energy expressions. The zeroth to third order TB
energy terms are color-coded for better distinction. Self-consistent parts of the
energy at GFN1– and GFN2–xTB level are marked by a SCC sling. All energies
additionally include a term GFermi (see Eq. 2.49), which is not shown here.

The first generation xTB method, GFN1–xTB,36,38 is conceptionally most similar to the

older DFTB3-D3 method. At zeroth order, Coulomb interactions and the Pauli repulsion are

described by an empirical repulsion term Erep, a correction for halogen bonds EXB, and the well

known D3 dispersion correction. For the first to third order terms, similar approximations as in

DFTB are employed. Covalent bonds are described by the Hückel term EEHT . The third order

term EΓ is approximated similar to Eq. 2.47c, but evaluated only for the diagonal elements. At

second order, Eγ is described as in Eq. 2.46c but mostly in a shell-wise manner in GFNn–xTB

and provides an approximation for the isotropic monopole Coulomb interactions.

Advances mainly in the second order term led to development the of GFN2–xTB method.36,39

Here, instead of only isotropic monopole interactions, anisotropic dipole and quadrupole terms

are included for the electrostatic EAES and exchange-correlation EAXC energies in a so-called

cumulative atomic multipole moment (CAMM) scheme.202,203 Furthermore, a self-consistent im-

plementation of the D4 dispersion model ED4′
disp is added at second order which uses self-consistent

charges of the SCC procedure. While the first and third order TB terms are mostly similar

to GFN1–xTB, at zeroth order the empirical halogen bond correction EXC was removed for

GFN2–xTB because halogen bonds are sufficiently described by the anisotropic terms. GFN2–

xTB currently is the most sophisticated available TB method and can be considered as a major

improvement over previous variants.

The latest xTB variant is GFN0–xTB,36,37 in which no second and third order terms are
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present. Covalent bonds are still described at first order by an extended Hückel term. This

is improved by a classical short-range bond correction ESRB, the regular repulsion Erep and

an non-self-consistent D4 dispersion ED4
disp energy. Furthermore, atomic charges and the elec-

trostatic energy are not obtained from QM Mulliken populations, but from a classical charge

equilibrium model (EEQ). Since this does not require an SCC procedure, GFN0–xTB requires

only a single diagonalization of the Hamiltonian matrix, which makes it the fastest, but most

empirical GFNn–xTB method.

Very recently also a non-electronic variant of the xTB methods, called GFN–FF, has been

proposed.80,204 It can be formally seen as a zeroth-order-only TB scheme and is classified as a

general FF method, i.e., it is available for the majority of elements in the periodic table. GFN–

FF is applicable to similar problems as its xTB predecessors but not discussed here further.

Some important ingredients are common among all GFNn–xTB methods. Most promi-

nently, all of them employ predefined minimal basis sets of the STO–mG type,205 where several

Gaussian-type atomic orbitals are used to approximate Slater-type orbitals (STO). The major-

ity of computational savings are therein achieved by only treating valence electrons. Another

prominent feature of the GFN approaches is that charges, for example in the second and third

order terms, are distributed over the atomic shells l, i.e., qA =
∑

l∈A ql, and atomic shell depen-

dent parameters are employed. This provides more flexibility in the methods parametrization.

With regards to the latter, only element specific parameters are employed, off-diagonal elements

of the Hamiltonian are derived from

HEHT
µν ∝ Sµν

1

2
(Hµµ +Hνν) . (2.48)

The final common GFNn–xTB ingredient to be mentioned here is an electronic entropy term206

GFermi = kBTel
∑
i

∑
σ=α,β

[niσ ln (niσ) + (1 − niσ) ln (1 − niσ)] (2.49)

that is used to augment the total energy. In Eq. 2.49, kB is the Boltzmann constant, niσ is a

fractional spin-MO occupation number, and Tel is an electronic temperature with the default

value of 300 K. The fractional occupation niσ depends on the energy ϵi of the spatial MO ψi and

the Fermi level ϵσ within the respective spin orbital space (σ ∈ {α, β}), according to

niσ = (exp [(ϵi − ϵσF )/kBTel] + 1)−1 . (2.50)

While the GFNn–xTB variants are formally spin-restricted, the fractional occupation can be

used to mimic open-shell systems and static correlation. Generally, GFermi serves as an enhance-

ment for the SCC convergence which can be modified (via Tel as an adjustable parameter) for

critical cases.

The leading computational cost component is the diagonalization of the Hamiltonian (a real

symmetric matrix), hence resulting in a formal O(N3) scaling of the xTB methods. Cost pre-
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factors differ slightly between the GFN schemes, with GFN0–xTB being roughly two to twenty

times faster than GFN1– and GFN2–xTB due to the missing SCC procedure.37 All GFNn–xTB

methods provide good robustness across the periodic table and due to their parametrization

are (almost) as generally applicable as KS–DFT. This makes them suitable for the quantum

mechanical exploration of chemical space.

2.3. Calculation of Molecular Properties

While the different quantum chemical methods give insight about the electronic structure on

a very fundamental and theoretical level, the extended objective in computational chemistry is

the calculation and prediction of molecular properties. Luckily, any observable property can be

derived from the wave function and its total energy. For intelligibility it is reasonable to think of

most molecular properties either as derivatives of the total energy or eigenvalues of a hermitian

operator for that property. For example, some properties derived from the energy are harmonic

vibrational frequencies

ν ∝ ∂2E

∂R2
=
∂2⟨Ψ|Ĥ|Ψ⟩

∂R2
, (2.51)

where R may be the nuclear coordinates, infrared and Raman intensities, or nuclear magnetic

resonance (NMR) parameters. The importance of energy (and wave function) derivatives for

various kinds of spectroscopy16 is obvious already from these examples.

In essence, what is interesting about the electronic structure with regards to observable prop-

erties is how it reacts to changes of external (i.e., measurement) conditions or perturbations.

More specifically, molecular properties are usually calculated from derivatives of the energy via

perturbation theory, or, for higher order properties, from the so-called propagator and response

methods.4,207 In the perturbation ansatz, the Hamiltonian is expanded around a unperturbed

Hamiltonian employing different order perturbation operators P̂n and the perturbation strength

λ, e.g. up to second order as

Ĥλ = Ĥ0 + λP̂1 + λ2P̂2 . (2.52)

For molecular properties Xλ obtained from first order perturbations, a theoretical formulation

was provided by Güttinger,208 Hellmann209 and Feynmann210 who theorized that

Xλ =
∂Eλ

∂λ
=

∂

∂λ
⟨Ψ(λ)|Ĥλ|Ψ(λ)⟩ (2.53a)

= ⟨Ψ(λ)|∂Ĥλ

∂λ
|Ψ(λ)⟩ . (2.53b)

In this aptly named Hellmann–Feynman theorem, a property Xλ with regards to some contin-

uous parameter λ is the derivative of the eigenvalue Eλ. The latter is obtained as expectation

value of the (perturbed) Hamiltonian Ĥλ and a wave function Ψ(λ). The theorem states that for
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molecular properties derived from first order perturbations only the derivative of the Hamilto-

nian with regards to λ is required. Importantly, it is valid even for variationally optimized wave

functions (cf. Sec. 2.2.1) and often employed to calculate simple first order properties such as the

dipole moment. Higher order properties usually require also the wave function response,17,207

i.e., the derivatives ∂Ψ
∂λ . However, this is not discussed here further for brevity.

The above discussion relates mostly to molecular properties of a single molecule as governed by

the Born–Oppenheimer approximation. Herein quantum effects of the nuclei and their movement

are neglected. If nuclei were to behave as quantum mechanical particles, they would tunnel to

the global minimum geometry4 and the expectation value of this hypothetical wave function

would provide the property accordingly. In fact, this would prove the simultaneous existence

of several minima on the PES that contribute to the observable. However, the only significant

borderline case for quantum mechanically-behaving nuclei is the hydrogen atom.4,211,212 For all

heavier atoms, the Born–Oppenheimer approximation is a central constituent and nuclei will

in good approximation behave as classical particles. Hence, the above mentioned coexisting

PES minima need to be identified to obtain a prediction of the property. At the timescale of

experimental measurements and finite temperature, the respective observable will be an average

⟨X⟩ over the occurring nuclear movements. Assuming the time period of the measurement to be

(infinitely) large compared to the time required for movement of nuclei, the averaged property

is obtained from

⟨X⟩ = lim
τ→∞

1

τ

∫ τ

0
X(t)dt . (2.54)

This is impracticable because no such long simulation of a physical system can be conducted.

A more practical solution is obtained by invoking the so-called ergodic hypothesis, which allows

the replacement of a large time average with an average over a representative collection of M

microstates, characterized by their energies Ei with

⟨X⟩ ≈ ⟨X⟩M =
1

M

M∑
1

X(Ei) . (2.55)

Herein, “representative” means that the sample size M is large enough to be proportional to

a probability distribution at infinite timescale.4,213 In a discrete form, the probability averaged

property ⟨X⟩ is hence expressed as

⟨X⟩ =
M∑
i

pi(Ei)Xi , (2.56)

where the Boltzmann population pi is introduced. Essentially, pi is the probability of “finding”
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a molecule in the state Ei at a given temperature, which is provided by

pi =
gie

−Eiβ∑
gie−Eiβ

, (2.57)

where β = 1
kT , with the temperature T and k being the Boltzmann constant. This equation

is of central importance and will appear several times in this thesis (Eqs. 3.2, 4.9, 6.1). Note

that here the “level” formulation of the Boltzmann population is used, i.e., the state Ei can be

degenerate by a factor of gi. The denominator in Eq. 2.57 is also referred to as the partition

function

Q =

M∑
i

gie
−Eiβ , (2.58)

which is the central quantity in statistical mechanics213,214 and acts as an normalization factor

for the populations. A goal at this point is to relate a QM calculation of an isolated molecule

to macroscopic observables of samples containing 1020 or more particles. The framework of

this is provided by statistical thermodynamics as discussed in the following. A central aspect

herein is to represent the single molecule as an conformational ensemble, i.e., the summation

in Eqs. 2.56–2.58 is made over M representative conformers of the molecule. Definitions and

further discussion of conformers are provided in Part II.

2.3.1. Statistical Thermodynamics and Free Energies

Statistical thermodynamics provides a connection between the partition function Q for an en-

semble of particles and external macroscopic parameters such as the temperature T and the

systems volume V . This allows the construction of the three fundamental quantities Gibbs free

energy G, enthalpy H, and entropy S.

G = H − TS = kTV

(
∂ lnQ

∂V

)
T

− kT lnQ (2.59)

H = kT 2

(
∂ lnQ

∂T

)
V

+ kTV

(
∂ lnQ

∂V

)
T

(2.60)

S = kT

(
∂ lnQ

∂T

)
V

+ k lnQ (2.61)

For any meaningful computational study at finite temperature, these are the desired quantities,

and not for example the total energy calculated from solving the electronic Schrödinger equation.

By again referring to the ergodic hypothesis, the partition function of many particles can be

replaced by the partition function of a single isolated molecule, given that all possible energetic

states of the molecule are known.213–215 In other words, all electronic, translational, rotational,

vibrational, and conformational (as a result of discretization in the harmonic approximation)

degrees of freedom (DOF) must be known, which leads of a product of the individual partition
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functions

Qtot = QelecQtransQrotQvibQconf . (2.62)

Since the enthalpy and entropy contributions depend on the logarithm of Q, the respective

quantities be separated according to their DOFs

Stot = Selec + Strans + Srot + Svib + Sconf (2.63a)

Htot = Helec +Htrans +Hrot +Hvib +Hconf . (2.63b)

This separation allows the efficient treatment of each individual contribution and approximations

are introduced. For example, in case of the electronic partition function often just the ground

state is considered,4 with all other contributions (rot., vib., conf.) computed at this surface, and

the vibrational contributions are calculated from harmonic frequencies (cf. Eq. 2.51). Conforma-

tional terms arise from the vibrational contributions due to the harmonic approximation and are

important for flexible molecules. However, in practice the separation of electronic, vibrational

and conformational terms can be problematic due to breakdown of the Born–Oppenheimer ap-

proximation. With a focus on the conformational contribution Part III is devoted to this topic.

There it is shown that the discrete total energies of (optimized) molecular conformations may be

treated as energetic states similar to the electronic partition function. For brevity, the individual

terms typically employed for the enthalpy and entropy are not shown here but can be found in

Appendix A1.

The free energy for a single molecule describes its energy content at finite temperature, i.e.,

it contains thermodynamic information at standard conditions. Following an established ther-

mostatistical protocol,22,42,216

G = Etot +GT
trv + δGT

solv , (2.64)

where Etot is the total energy for the molecule obtained from QM, SQM, or FF calculation using

the Born–Oppenheimer approximation, GT
trv is the thermodynamic contribution from transla-

tional, rotational and vibrational DOFs and δGT
solv are contributions to the solvation free energy.

GT
trv is calculated from the respective translational, rotational and vibrational entropy and en-

thalpy contributions, most commonly obtained in a rigid-rotor harmonic-oscillator (RRHO)

approximation. Furthermore, GT
trv includes a correction for the so-called zero-point vibrational

energy (ZPVE), that is the residual energy arising from quantum mechanical motions even at

zero temperature. In good approximation, the ZPVE correction is obtained by a sum over the

vibrational (RRHO) modes νi of the molecule

∆ZPVE =
1

2

modes∑
i

νi . (2.65)
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The contributions to the solvation free energy δGT
solv are only required if the molecule is not

modelled in the gas-phase, but in solution. Typically, this term comes from implicit solvation

models and includes continuum electrostatic, surface (cavity), and volume work terms. These

are not further discussed here and comprehensive reviews can be found in the literature (see

Refs. 217,218).

As mentioned above, the averaged molecular property is obtained from a population average

according to Eq. 2.56. For calculations of a single isolated molecule, the respective Boltzmann

∂
∂λ〈Ψ|Hλ|Ψ〉
property  X

G=Etot + Gtrv(T)
thermodynamics

pi(Gi)

stat. mechanics

(harm. frequencies)

ensemble

〈X〉
averaged property

∑piXi ∑piGi

Gconf

Boltzmann
populations

G + Gconf
= Gtot

individual structures

Figure 2.4.: Schematic representation of how to arrive at an averaged property ⟨X⟩. Correct
Boltzmann populations under consideration of thermodynamic information are cal-
culated from the individual free energies Gi of all conformers in the ensemble. The
conformational partition function furthermore provides Gconf , which together with
the population average G =

∑
piGi gives an absolute free energy Gtot.

populations are obtained from the conformational ensemble in order to satisfy ergodicity. Or,

in other words, the conformational ensemble should represent the entire phase space of the

molecule necessary to calculate the property average. Thermodynamic information is herein

included by calculating the populations from the free energies according to Eq. 2.64 instead of

total energies. However, the property itself and the vibrational modes required for GT
trv are

calculated directly from the total energy derivatives. A schematic representation can be seen

in Fig. 2.4. For the purpose of calculating reaction free energies ∆G, e.g. in a supramolecular

approach or thermodynamic cycles,42,216 it is also advisable to calculate an absolute free energy

Gtot =
∑
i

piGi +Gconf , (2.66)

where Gconf is the conformational contribution of the conformer ensemble (see Part III). The

conformational term is often neglected but it can be significant (several kcal mol−1) for flexible

molecules.216 Some thermodynamic properties, such as acid dissociation constants (pKa) or

phase partition coefficients (logK) are proportional to the reaction free energies and require an

accurate description of Gtot,
22 which translates back to accurate electronic structure methods.
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Part II (Chapter 3) is devoted to the CREST program and its applications. As outlined

in the introduction, some requirements have to be met for theoretical methods used in the

exploration of the low-energy chemical space. Due to limitations in modern days computing

capacities, essentially only SQM methods provide the necessary compromise between accuracy,

robustness, and computational cost suitable for this task. CREST provides an interface for

respective calculations at the GFNn–xTB SQM level.

A key aspect in the construction of a program such as CREST is the automatization of calcu-

lations and efficient handling of data. Therefore, in Sections 3.1 and 3.2 a review-like overview is

provided of automated workflows in quantum chemistry. The CREST algorithms are outlined in

detail in Section 3.3. This includes definitions of conformers and rotamers, and threshold based

identification thereof using differences of the total energy, atomic root-mean-square-deviations

(RMSDs) and rotational constants (Be). As a simulation technique for structure generation

the RMSD-based metadynamics (MTD) simulations are re-introduced from Ref. 41. Herein,

a history-dependent potential is used to alter molecular dynamics (MD) simulations and to

accelerate the conformational sampling while maintaining the underlying physical plausibility

and mechanics. Section 3.3 furthermore discusses the quality of conformational energies at the

GFNn–xTB level compared to other SQM and DFT methods based on data from the well-known

GMTKN55 database.109 An initial connection is also made to the conformational entropy, which

is discussed in more detail in Part III.

The remaining parts of Chapter 3 treat prototypical applications of CREST and GFNn–xTB.

Challenging conformational searches are shown exemplary for the (S )-citronellal molecule, the

Ac-Ala19-LysH+ polypeptide, several macrocyclic molecules and two organometallic systems

(trans-CuII(L-Valine)2 and [Pt(COMe)2(2-py)3COH]). The same workflow is applied also to

non-covalently bound aggregates such as the 1-napthol dimer and water hexamer. An unique

feature of the CREST workflows is the constrained conformational sampling which was tested

for the tyrosine molecule on a graphene surface cut-out and, in context of the Curtin–Hammett

principle,219 for transition state conformations of a SN2 methyl group transfer. Applications

of CREST to other representatives of the low-energy chemical space, namely (de-)protomers

and tautomers were re-implemented from earlier GFNn–xTB based studies.220,221 Examples are

shown here also for organic and inorganic molecules.

Overall, the workflows and their applications shown in this chapter are characterized by

excellent accuracy and broad field of usage provided by the state-of-the-art GFNn–xTB SQM

methods. The computational robustness and efficient algorithms even enable the use of CREST

on standard desktop computers.
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Abstract

We propose and discuss an efficient scheme for the in silico sampling for parts of the molecular

chemical space by semiempirical tight-binding methods combined with a metadynamics driven

search algorithm. The focus of this work is set on the generation of proper thermodynamic

ensembles at a quantum chemical level for conformers, but similar procedures for protonation

states, tautomerism and non-covalent complex geometries are also discussed. The conforma-

tional ensembles consisting of all significantly populated minimum energy structures normally

form the basis of further, mostly DFT computational work, such as the calculation of spectra or

macroscopic properties. By using basic quantum chemical methods, electronic effects or possible

bond breaking/formation are accounted for and a very reasonable initial energetic ranking of

the candidate structures is obtained. Due to the huge computational speedup gained by the

fast low-cost quantum chemical methods, overall short computation times even for systems with

hundreds of atoms (typically drug-sized molecules) are achieved. Furthermore, specialized appli-

cations, such as sampling with implicit solvation models or constrained conformational sampling

for transition-states, metal-, surface-, or non-covalently bound complexes are discussed, opening

many possible applications in modern computational chemistry and drug discovery. The pro-

cedures have been implemented in a freely available computer code called CREST, that makes

use of the fast and reliable GFNn–xTB methods.

3.1. Introduction

Over the past decades computational methods became a valuable tool in many modern fields

of chemistry, and some kind of quantum chemical (QC) calculation can be found in almost

every new publication. The big popularity of computational chemistry is also founded on recent

advances in density functional theory (DFT) methods, which nowadays can routinely provide

gas- or condensed-phase structures and energies for roughly a few hundred atoms.3,32 For many

interesting applications in biochemistry or supramolecular chemistry, however, those calculations

are still too expensive. Classical force fields (FFs) are often employed as alternatives for long

molecular dynamics simulations222 but their limitations are manifold and they are not suited

for general use, e.g., for metallic systems. Additionally chemoinformatic procedures are used in

the drug discovery with increasing popularity.223–226

Among the most important application of low-cost atomistic methods is the large scale struc-

tural sampling of molecular geometries, i.e., the generation of an ensemble of low-energy struc-

tures, generally referred to as conformers. The knowledge about a molecules’ conformations is

highly important since all its properties are rooted in a thermodynamic ensemble average of the

properties of its conformers that are accessible at finite temperature.227,228 This gave rise to a

large framework of computational approaches to generate and screen three-dimensional molec-

ular structures where many challenges have to be faced in the generation process, such as the

correct distinction between different conformers or the handling of macrocyclic systems. Hence,
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a huge number of conformer generators based on different algorithmic approaches is available

today.229–238 One of the most common types of conformer generators are knowledge-based algo-

rithms, which chemoinformatically try to reproduce structures from reference data (often taken

from experimental crystal structures), or generate structures based on heuristic rules.228 These

approaches, sometimes also referred to as systematic methods, have the advantage of very short

computation times, but are generally lacking a physically motivated methodology and thus are

often not generally applicable. An example for this is the treatment of macrocyclic molecules,

where special heuristics are required.239–242 By contrast a general workflow based on quantum

chemical calculations has no need for specialized rules and should recover any structural infor-

mation of the molecule by an analysis of the potential energy surface (PES). Furthermore such

general algorithms can also be exploited in order to find different arrangements of non-covalent

bound aggregates or to generate conformations under geometrical constraints.

A related problem to conformational sampling is the prediction of molecular protonation and

deprotonation sites. While there are many approaches to obtain these sites based on knowledge,

i.e., databases, the computational QC approach is just as simple.243–245 Here the different struc-

tures in the chemical space have to be (automatically) generated and can then be ranked by their

total energy (i.e., proton affinities).220,246,247 These so-called protomers are linked to some other

important properties such as the pKa value.248–252 Furthermore a sequence of protonation and

deprotonation at different positions can be employed to obtain all prototropic tautomers of a

molecule. By employing QC models that can intrinsically form and break bonds, such a tautomer

screening procedure has the advantage that even complicated rearrangements can be recovered,

which would otherwise require complicated rules in chemoinformatic treatments.253,254

In this article we present a new program called CREST (which is abbreviated from Conformer-

Rotamer Ensemble Sampling Tool) and describe the underlying algorithms and typical applica-

tions. CREST employs a new scheme for the generation of conformational ensembles based on

the direct sampling at a semiempirical QC (SQM) level, rather than using a knowledge based

algorithm. While such an approach naturally can not compete with chemoinformatics driven

procedures in terms of computation time, it has the clear advantage of providing reasonable

conformational energies for basically any chemical species. All procedures introduced in this

article are generally applicable and could in principle be employed at any quantum chemical

level. However, semiempirical methods have an excellent cost-to-accuracy ratio, and are hence

the preferred level of theory for such schemes which otherwise would be require supercomputer-

resources.

In the first section we provide a very brief overview on automated quantum chemical proce-

dures for the exploration of the chemical space in various flavors. We then discuss the quantum

chemical perspective on conformer ensembles and the employed protocol, with a focus on the

distinction between different conformations. Briefly some technical settings of the algorithm

are explained and the performance of the used quantum chemical low-cost method (GFNn–

xTB)37–39 for conformational energies is discussed. Several examples are shown for standard

and special applications of the CREST program, either in comparison with experimental ob-
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servables or high-level theoretical reference data.

3.2. Automatized Quantum Chemical Procedures in the Literature

Although there are many chemoinformatic schemes for the exploration of chemical space, there

exist only a few automatized procedures driven by quantum chemical calculations. The reason

for this is the enormous amount of required calculations, leading to very high computational

cost. However, the obvious inherent advantage of QC schemes is the possibility to generate

and predict results in an ab initio fashion. They also yield much more chemical insight than

purely heuristics guided results. There are several noteworthy efforts by our40,220,221,255–257 and

other groups83,258–267 for efficient quantum chemistry driven algorithms to calculate various

properties. One very large field of these automatized applications is the exploration of reaction

mechanisms by so-called reaction networks, which recently gained popularity, e.g., due to work

by the groups of Maeda258,259,268–273 and Reiher.260,274–277 These reaction networks function

by a throughout exploration of the normally reactive part of the PES under some pre-defined

(i.e., heuristics-guided) criteria, such as energy cut-offs or bias potentials.258,269 QC methods

are primarily applied in order to perform structure optimizations and transition-state (TS)

searches.259,271,274,275 Graph-based heuristic descriptors, from which verticies (i.e., intermediate

points on the different PES) and edges (i.e., reactions) are created, are used to generate the

eponymous networks, where a connected subgraph represents a single PES of the reaction. New

intermediate structures are generated from a single starting point (referred to as the zeroth-

generation structure) by identifying reactive sites and placing these in close proximity during a

structure optimization. Here it is important to consider the relative orientation of the fragments.

In the geometry optimization either the reactants are recovered or a new species is formed,

which is detected and yields an approximate reaction path. The exploration of reaction paths

can also be refined by the inclusion of conformational sampling.275 Recently the concept of

chemical reaction networks was extended with the application of a kinetic analysis by using

semiempirical QC methods.278,279 This is done for the reduction of noise within the possible

reaction pathways by removal of kinetically unfavorable structures. The motivation here is to

reduce the computational cost as far as possible, while still maintaining a reasonable degree

of accuracy, which is in fact also one of the main motivations of our work. All the different

tasks and the building of the network itself can be automatized and parallelized in an efficient

computer code, which makes the procedure feasible even at the underlying DFT or wave function

theory (WFT) level. The automatized exploration of reaction mechanisms is a huge field in

computational chemistry and more comprehensive reviews can be found in the literature (see

Refs. 259,265,278,280,281).

Another approach to automated QC is to provide the infrastructure for computational work-

flows. Representative programs here are for example the PyADF83 and QMflow267 frameworks

as pioneered by Visscher et al. or the atomistic simulation environment ASE.282 In general

these type of programs allow the setup of multiple quantum chemical calculations in a script-

42



3.3. The Automatized Conformational Search Algorithm

like manner, coupled to some semi-automated analysis of the results. However, many large

computational chemistry program packages today also come with their own scripting environ-

ments such as the PLAMS driver distributed with ADF2019.283,284 Although the setup of these

automation is certainly less exhausting than conventional scripting, it can still be tedious and

requires a large amount of user input. If, however, the setup was done once it can be re-used

for multiple calculations.

The research in our own group concerning automated processes so far mainly focused on

the generation of spectral data, such as UV-Vis/circular dichroism (CD),285 nuclear magnetic

resonance (NMR)40, and mass spectra.255–257 With the introduction of the tight-binding method

GFN–xTB38 (short for Geometries, Frequencies, and Noncovalent interactions – extended Tight-

Binding) the efficient automation of screening processes at a semiempirical QC level of theory

became feasible and was applied to conformers, protomers, and tautomers including all elements

up to Radon. The first SQM based conformer generator was published in scope of the automated

calculation of NMR spectra,40 while the screening of protonation sites and tautomers/isomers

had been published in Refs. 220 and 221 accordingly. Since then, the procedures have been

refined and implemented into a single computer code (i.e., CREST), which is the subject of this

work.

3.3. The Automatized Conformational Search Algorithm

We introduce a new tool called CREST (short for Conformer-Rotamer Ensemble Sampling

Tool), for the automatized exploration of the low-energy chemical structure space normally not

consisting of any covalent bond break/formation. As its name implies, the main application of

CREST is the generation of conformer ensembles with an algorithm called iMTD-GC,41 but

other related applications, such as the screening of different non-covalently bound aggregates, or

the screening for different protonation sites are also implemented. An overview of the different

procedures and their general workflows is shown in Fig. 3.1.

3.3.1. Identification of Conformer Ensembles

Stereoisomers of a molecule that differ only in their conformation but have the same covalent

topology are referred to as conformers and can be characterized by a distinct potential energy

minimum. By rotation around covalent chemical bonds (or other complicated inversion-type

processes) that interchange nuclei belonging to the same group of nuclides, as for example the

interchange of H nuclei at a methyl group, so called rotamers arise. Rotamers have degener-

ate potential energy minima and thus are indistinguishable by any nuclear spin-independent

quantum mechanical observable computed at the respective minima (see Fig. 3.2). In the fol-

lowing the Born–Oppenheimer-approximated equilibrium conformer including all its rotamers is

referred to as “conformation”. A set of different conformers and their rotamers within a certain

energy window around the same global covalent potential energy minimum is referred to as the

conformer/rotamer ensemble (CRE).
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For the calculation of properties it is often necessary to include different molecular conforma-

tions by averaging the individually obtained Boltzmann weighted property of each constituent

in the ensemble. Some examples where this ensemble average is highly relevant are nuclear

magnetic resonance (NMR) spectra,40,286–288 circular dichroism (CD) spectra,285,289–291 or pKa

values.221,292 In order to avoid double counting, which leads to incorrect Boltzmann averages

and subsequently falsely averaged properties, the precise distinction between identical struc-
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tures, conformers, and rotamers is mandatory. This distinction is possible on the basis of three

dimensional structures and (free) energies of the isomers. The energy is employed as a criterion,

since each conformer is characterized by its own minimum on the PES. For purely structure

based comparisons the root-mean-square deviation (RMSD) of atomic Cartesian coordinates

and the difference between rotational constants (Be) of two molecules can be used. However,

structural parameters do not include any information whether the structure is an equilibrium ge-

ometry or some higher-energetic intermediate.293 Therefore, structural information must always

be combined with the energetics for correct identification of different conformations. In practice,

however, many knowledge-based conformer generators still only employ structural criteria (two

or three dimensional) for the distinction of conformers,229,238,294 which can be useful, e.g., for

large scale screening of databases.228,295

The distinction between identical isomers, conformers, and rotamers on the basis of the energy,

the atomic Cartesian RMSD and the molecular rotational constant is schematically outlined in

Fig. 3.3. For practical reasons one has to work with predefined thresholds in order to eliminate
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Figure 3.3.: Schematic representation of the sorting criteria to distinguish between identical
structures, conformers and rotamers. Ethr, RMSDthr, and Bthr are the respective
predefined thresholds for the energy, atomic RMSD between the considered pair,
and rotational constant.

the effect of numerical noise. Conformers are those structures that either have different PES

minima (∆E > Ethr), or, if the energy difference is small, a high RMSD and unequal Be. Two

structures with similar energetics can be rotamers if their atomic coordinates differ, but at the

same time the rotational constants are equal. Only if two structures have the same energy and

matching structural criteria (RMSD≈ 0 and ∆Be ≈ 0), they can be discarded as duplicates.
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The final CRE for further practical calculations typically consists of all unique conformers and

rotamers within a certain energy window. The choice for this window depends on the accuracy

of the used QC and the type of application (i.e., sensitivity of the target property to details of

the conformational ensemble).

The quality of an ensemble is related to its completeness which can be assessed by a maximized

entropy SCR according to the standard thermodynamic expressions

SCR = −R
CRE∑
i=1

pi ln pi . (3.1)

where R is the molar gas constant and the sum runs over all populations pi of all species with

energy Ei at temperature T and the Boltzmann constant k, given as

pi =
e−Ei/kT∑CRE

j e−Ej/kT
. (3.2)

The ensemble entropy SCR is also linked to the ensemble free energy (at T=298 K) GCR =

−TSCR, which is minimized for a complete CRE. This completeness criterion of a maximized

SCR only holds if the global minimum conformation is included in the ensemble and breaks

down otherwise. Therefore, finding the lowest energy conformation of a molecule is the one

of the defining tasks a conformer generator must be able to perform robustly. A maximized

ensemble entropy was used for determining technical parameter sets that are employed in the

CREST program and is discussed in Ref. 41.

Practically, it is difficult to assign a quality and/or completeness to an ensemble, without

knowing the “true” conformations. The practical approach for identifying the ”true” low-energy

conformations are experimental measurements. Crystal structures determined from X-ray are

the most common source of experimental geometries. However, interpretation of CREs with re-

spect to crystal structures can be highly problematic, since conformations in the solid can differ

significantly from structures in the gas-phase or in solution, e.g., due to packing effects.296,297

Furthermore, crystal structures intrinsically yield only one or a few conformers instead of entire

ensembles. Other experimental techniques for structure elucidation, such as solution NMR (e.g.,

using variable temperature NMR, NOESY, residual dipolar and 3J scalar couplings), microwave

spectroscopy, and gas electron diffraction, are less common. In general experimental conditions

will always have an influence on the composition of the ensemble. Even under ideal experi-

mental conditions identifying the global minimum might not be possible, e.g., due to kinetic

trapping. For these reasons theoretical calculations provide a valuable alternative to experi-

ment for obtaining CREs under idealized environment. In the literature one can find a variety

of benchmark studies295,298–301 where computer generated conformers are compared to exper-

imentally observed ones in order to assess the performance of different conformer generators.

Although a comparison like this gives some insight into the ensembles, it has to be evaluated

with caution in respect to the ensemble completeness and the different ”measurement” con-
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ditions. Therefore in the following sections, rather than benchmarking on crystal structures,

we will compare selected conformer ensembles in the gas or liquid phase with spectroscopically

evaluated structures.

3.3.2. Algorithmic Details

Generating conformations, e.g., by rotation around dihedral angles is impractical for larger and

flexible molecules. In addition this approach requires the manual a priori definition of the con-

formational coordinates (i.e., the angles). To remedy this, we recently proposed a metadynamics

(MTD) simulation based screening procedure that can be routinely used for the generation of

molecular conformations in the gas-phase or in implicit solvation.41 A history-dependent bias-

ing potential is applied, where the collective variables (CVs) for the metadynamics are previous

structures on the PES, expressed as atomic RMSD between them, which is calculated according

to a quaternion algorithm.302 Although being a well-known concept of MD simulations303,304

and being used before in the general context of conformational changes,305–309 it is, to our

knowledge, the first combination of MTD simulations with atomic RMSDs in order to generate

conformers. The biasing contribution is given in the form of a Gaussian potential by

Vbias =

n∑
i

ki exp(−αi∆
2
i ) , (3.3)

where the RMSDs enter as collective variables ∆i, n is the number of reference structures, ki is

the pushing strength and the parameter αi determines the potentials’ shape. From this energy

expression atomic forces are derived that enter as additional forces in the MTD simulations,

which is also sometimes referred to as guiding forces.306 Since the addition of each bias Gaus-

sian potential drives the structure further away from previous geometries this allows otherwise

unlikely high-barrier crossings where all atoms collectively explore huge regions of the PES. A

schematic representation of a 1-dimensional PES that is filled by additive bias potentials over

time is given in Fig. 3.4. For more realistic examples see Sections 3.4 and 3.6.1.
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Figure 3.4.: Schematic one dimensional PES that is “filled” by several bias potentials over time,
which allows larger barrier heights to be overcome.

While calculations in this manuscript were conducted entirely at the semiempirical tight-
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binding level, it has to be noted that the application of a RMSD-based bias potential is a

general approach that, in principle, works at all levels of theory, i.e., at the FF, DFT or even

WFT level. Furthermore, the employed CVs do not have to be atomic RMSDs, but could also

be some other kind of alignment factor between structures, as long as forces can be obtained

from the partial derivatives ∂CV
∂r .

In the literature one can also find other MD based approaches with various bias potentials under

the general keyword accelerated molecular dynamics (aMD).310–318 The basic idea of those aMD

approaches is to smooth the PES and to fill its minima by reshaping the potential. This is done

in order to decrease inter-conformational energy barriers and enable the simulation to explore

larger regions of the PES. The aMD approach was already successfully applied in the generation

of molecular conformations, e.g., for macrocycles.319 The fundamental difference of aMD to the

RMSD based MTD approach is the missing directionallity of the PES exploration. In aMD the

shape of the energy surface is in general retained after addition of the bias potential, i.e., during

the simulation it is possible to arrive at the same minimum on the PES again. With the RMSD

based approach however, previous minima on the PES are ”occupied” by the Vbias, leading to

history dependent forces and thus to an implied directionallity of the simulation. Since the

potential in aMD is modified by a single bias potential and retains the general shape of the

energy surface, very long simulation times can still be required in order to sample the entire

conformational space. This time can be expected to be much shorter with a history dependent

guiding force. It must be stressed however, that the target quantities of the two approaches

are slightly different: In aMD, the desired quantity usually is the canonical ensemble average

of some observable on the unmodified PES, which can simply be obtained by back-correcting

the observable average on the biased energy surface.310,318,320 In our MTD based approach the

targets are the “true” quantum chemical energy minima, as defined in section 3.3.1. Therefore,

the latter requires a separate geometry optimization of the generated MTD structure snapshots.

For the automatized generation of conformers we developed a composite approach consisting

of MTD sampling, regular MD sampling and a procedure that is related to genetic structure

crossing algorithms (GC).230,321,322 Hence, the procedure was termed iMTD-GC, where the

lowercase i indicates an iterative strategy within the algorithm. As mentioned above, the ap-

proach heavily relies on the semiempirical GFNn–xTB methods (n = 0–2),37–39 which offer the

possibility for fast and robust calculations. The general workflow is outlined in Fig. 3.5.

First, the maximum MTD length is determined, which mainly depends on the molecular size

and flexibility of the system. Then, technical general settings are evaluated, to check if the

MTDs will run stable. The main step of each iMTD-GC conformational search is the MTD

sampling. Since the automatization is the key step and different molecules require adjusted

pairs of ki and αi to produce the best results, a set of twelve MTDs is performed with different

settings for the Vbias parameters. Here, αi typically has values between 0.1 and 1.3 Bohr−2,

which can be seen as the “range” of the bias. The constant ki is scaled by the number of

atoms N , where ki/N has magnitudes of 0.75 to 3.00 mEh. Within the MTD simulation a

new structure is added to the Vbias potential every 1.0 ps, which constantly drives the molecule
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Figure 3.5.: Outline of the iMTD-GC workflow.

into new conformations as time progresses. However, since the PES is constantly modified by

the bias potential, the conformers form the MTD trajectory can not directly compared to each

other and have to be re-optimized without the biasing potential. This is done in a two-step

filtering procedure, first with very crude and then with tight convergence criteria. Afterwards

the re-optimized structure snapshots from the trajectory are sorted according to the procedure

outlined in Fig. 3.3, which yields an initial CRE. If a new conformer is found that is lower in

energy than the input structure, the entire procedure is restarted on this conformer, otherwise

the workflow is continued. By default, the MTD iteration is restarted at least once, but not

more than five times. All intermediate CREs are saved to be compared at a later stage. In the

second step two unbiased MD simulations (i.e., at two different temperatures 400 K and 500 K)

are run on the three lowest conformers. This is done to get conformations with low-energy

barrier crossings, opposed to high barrier conformational changes that can be obtained by the

MTD simulations. The low-energy barrier crossings include simple torsional motions, such as

group rotations, which are needed to complete the CRE regarding the rotamers. All structures
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from the MD simulations are sorted again and included in the intermediate CRE. In the final

step the genetic structure crossing (GC) is performed with automatically generated Z-matrices,

as was described in previous publications.40,41 Together with the regular MD simulations this

approach helps to further complete the CRE and is particularly useful for flexible systems, e.g.,

with many alkyl chains. If in the MD or GC step a new lowest energy conformer is found, the

entire procedure is restarted. However, unlike the MTD iterations, these iterations do not have

a maximum number of cycles and will only terminate if the lowest conformer does not change

any more. The advantage of these restarts is mainly observed for larger molecules whose global

minimum structure can be way off the initial input geometry. All collected CREs are then

optimized once more with very tight energy convergence criteria and the final CRE is created.

Various energy thresholds and other MTD settings are employed within the workflow, which

will be discussed in detail below.

3.3.3. Conformations at Low-Cost QM Level

Conformations are generated at the GFNn–xTB level within the iMTD-GC workflow, as imple-

mented in the CREST program. For the reliable generation of conformers at a semiempirical

level there are two main questions that have to be answered: First, “how trustworthy are SQM

conformations (∆E and geometries) compared to higher level theoretical methods such as density

functional theory (DFT)? ” And secondly, “can experimentally observed low-energy conforma-

tions be reproduced at a low-cost level of theory?”

Concerning the first question a huge amount of literature exists in which various theoretical

methods are benchmarked on conformational energies and geometries. It seems to be consen-

sus in the literature that geometries are often quite well reproduced by SQM methods.323,324

This is particularly true for methods of the GFNn–xTB family, which, as their name conveys,

are parameterized to yield reasonable structures.38,39,324 However, the calculation of accurate

conformational energies at a semiempirical level remains difficult since small energy differences

have to be described quite accurately. In Fig. 3.6 the mean average deviations (MADs) for some

SQM methods are shown as evaluated on subsets of the GMTKN55 database109 that investi-

gate conformational energies and the MALT205 set containing the energies for 205 conformers

of maltose.325 The deviation of conformational energies from highly accurate WFT reference

values is very dependent on the type of molecular system. E.g., for simple alkane isomers in

the ACONF set the MADs of all depicted semiempirical methods are well below 1 kcal mol−1,

while for the conformers of maltose (MALT205 set) all methods show deviations >3 kcal mol−1.

Likewise, different semiempirical methods do not describe all systems equally well. For example

the Hartree-Fock derived method PM6-D3H4X66,326,327 has a MAD for the SCONF set that is

more than twice the MAD of the tight-binding based methods, while for the melatonin conform-

ers in MCONF it is the best performing semiempirical method. In Fig. 3.7 the mean average

deviations (MADs) from Fig. 3.6 are averaged for different levels of theory, which provides a

more general overview for the average performance of conformational energies. Their accurate

description requires a balanced description of covalent and non-covalent energy contributions.
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PCONF21,SCONF, and UPU23 subsets of the GMTKN55 database and the
MALT205 benchmark.
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Figure 3.7.: Averaged MADs for the subsets shown in Fig. 3.6, evaluated for different levels of
theory.

As Fig. 3.7 depicts, this balance in general is much better at the DFT level than at any semiem-

pirical level. The MAD of conformational energies calculated by semiempirical methods is on

average more than three times higher than at even a ”cheap” DFT level. At the DFT level, the
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3. Automated Exploration of the Low-Energy Chemical Space

PES appear to be much smoother and consistently shaped. The same observation was also made

in other publications.328 Nevertheless semiempirical methods allow much shorter computation

times while still maintaining a reasonable level of accuracy, which is sufficient for qualitative

results. Several recent studies also show that the GFNn–xTB methods are among the best

performing semiempirical methods for conformational energies and geometries.293,329 The good

trade-off between accuracy and computational cost enables the use of GFNn–xTB for the gener-

ation of conformers with the iMTD-GC workflow. Although it is technically possible, any higher

level theoretical method, even low cost DFT with a small basis set, would be much to expensive

for the vast amount of required geometry optimizations and evaluations.

3.4. Selection of Default Thresholds and Settings in CREST

Any (semi-)automated screening procedure requires the application of pre-defined thresholds of

various kinds. The by far most important threshold is the energy window, i.e., the maximum

relative energy up to which structures are considered further. This is naturally related to the

population of the structures at finite temperature, which is calculated according to Eq. 3.2. For

conformational energies at a semiempirical level the default size of this window is 6 kcal mol−1

in CREST, which is a reasonable but still conservative choice for many systems.41,329 This

window is applied even though significant Boltzmann populations at 298 K are obtained only

up to approximately 2 kcal mol−1. The larger “save choice” value should account for the non-

parallel PES of the semiempirical and higher level QM methods. In fact, the results from

benchmark studies suggest (cf. Fig. 3.6), that in some cases it may be necessary to increase

the energy window to 10 kcal mol−1 or more. For applications that involve chemical changes

such as the protonation, even larger energy windows have to be applied in order to recover all

thermodynamically accessible structures. By default, the corresponding energy threshold for the

protonation, deprotonation and tautomerization applications is 30 kcal mol−1. Other thresholds

are applied for the identification of conformers and rotamers as discussed in Section 3.3.1. These

thresholds are used to quantify the difference between two structures according their relative

energies (Ethr), atomic RMSD (RMSDthr), and rotational constants (Bthr). The default values

are given in Tab. 3.1. The selection of default threshold values has a significant influence on the

Table 3.1.: Overview of various default thresholds applied in the CREST program for structural
comparisons.

threshold value

Ewin energy (conformers) 6.0 kcal mol−1

Ewin energy (prot./deprot./taut.) 30.0 kcal mol−1

Ethr energy (between conformers) 0.1 kcal mol−1

RMSDthr 0.125 Å
Bthr (rot. constant) 15.0 MHz
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performance and results of an automated procedure, particularly on the computational wall-

times. Hence, it is important to carefully choose and adjust these settings. If for example

a smaller energy window is chosen, more structures will be discarded, which leads to shorter

computation times but also to less complete ensembles. Or, as another example, if the RMSD

threshold is increased, more structures will be (falsely) identified as the same conformer, also

leading to smaller ensembles and consequentially lower computational cost. Other settings, such

as the simulation time of the MTD simulations, have a more direct influence on the performance

of the workflow and are system dependent. Due to this dependence such settings have to be

determined dynamically for each simulation. In case of the MTD time tmtd (in picoseconds) the

scaling is chosen to be dependent on an effective number of atoms Neff ,

tmtd = 0.1 (Neff + 0.1N2
eff ) , where 5 ps ≤ tmtd ≤ 200 ps. (3.4)

This is justified because larger molecules typically require longer simulations in order to undergo

conformational changes. The effective atom number is obtained from the total atom number N

and a flexibility measure according to Neff = Nξf, where ξf is given by

ξf =

√
1

Nbonds

(
Nbonds∑

i

(
1 − e−5(BAB−2)10

)2 4

Nneigh
A Nneigh

B

(
R

(f)
i

)2) 1
2

. (3.5)

Here, the summation runs over all non-terminal bonds i with the involved atoms A and B (i.e.,

A,B ∈ i), BAB is the Wiberg-Mayer bond order330,331 between the two atoms as obtained from

a GFNn–xTB calculation, and Nneigh
A,B are the numbers of neighboring atoms of A and B. The

predefined factor R(f) is 1 if the bond i is not part of a ring and < 1 (depending on the ring size)

if it is. In total, the flexibility measure ξf can be 0 < ξf < 1, where values close to 1 indicate an

highly flexible system, e.g. n-alkanes, and values ≪ 1 indicate rigid systems. For other proposed

flexibility measures, see e.g. Refs. 332,333.

Another important system dependent variable is the bias potential Vbias (see Eq. 3.3). Since the

RMSD is a normalized variable, potentials of the same order of magnitude would be obtained

for any system. However, larger molecules do require higher bias to undergo conformational

changes. Therefore, the potentials Vbias have to be scaled by the system size, which in practice

is done by scaling the pre-factors in Eq. 3.3 by the number of atoms, i.e., ki = k′iNat . Finding

and optimizing a reasonable set of pairs for the variables ki and αi is a non-trivial task and was

done by hand.41 Different combinations of the two factors will act differently upon any system

and hence a set of all combinations of three different k′i and four different αi (yielding in total 12

MTD simulations, see Fig. 3.5) is applied. Additionally, two further simulations are performed

with extreme value combinations. For specialized applications such as the NCI–iMTD (for non-

covalently bound complexes, see Section 3.7.2) different sets of parameters are employed. The

default combinations of k′i and αi are listed in Table 3.2.

The influence of a single bias potential on a two dimensional PES of 1-bromo-3-chloropropane,
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Table 3.2.: Combinations of the parameters k′i and αi as applied by default in the CREST
program. k′i is multiplied by the number of atoms Nat in order to obtain ki of
Eq. 3.3.

MTD k′i [mEh] αi [Bohr−2]

1 3.00 1.300
2 1.50 1.300
3 0.75 1.300

4 3.00 0.780
5 1.50 0.780
6 0.75 0.780

7 3.00 0.468
8 1.50 0.468
9 0.75 0.468

10 3.00 0.281
11 1.50 0.281
12 0.75 0.281

13 1.00 0.100
14 5.00 0.800

obtained by rotation around two dihedral angles, is shown in Fig. 3.8. For this small molecule

the entire conformational PES is described by the two dihedral angles φ and θ. As can be

seen from Fig. 3.8b the surface is symmetric with two global minima (θ, φ) at (68◦, 66◦) and

(292◦, 294◦), which correspond to the different enantiomers of 1-bromo-3-chloropropane. Since

two enantiomers are distinguishable by their atomic RMSD it is possible to “fill” one of the global

minima with a bias potential while retaining the other. As a consistency check, by choosing

the enantiomer (292◦, 294◦) (Fig. 3.8a) as the center for Vbias, the biased PES in Fig. 3.8c is

obtained, which has only the global minimum at (68◦, 66◦). Furthermore, in this example a

combination of ki and αi similar to setting 10 of Tab. 3.2 was employed, which provides valuable

insight about their effect on the PES.

However, for small molecules (less 20 to 30 atoms) it is often not necessary to perform many

MTD runs and some reduced run-types exist for speeding up the sampling procedure in CREST

(i.e., with the command line keywords ”-quick”,”-squick”, and ”-mquick”).

3.5. Computational Details

All shown screening procedures are implemented in a computer program called CREST which

makes use of the xtb program. CREST makes full use of single node (OMP) parallelization

in order to execute several independent xtb calculations at once. All calculations executed

with xtb were performed using the 6.2 release version of the program. DFT calculations were

performed with the TURBOMOLE.7.3.1 program. The resolution-of-identity (RI) approximation

for the Coulomb integrals132 was generally applied using the matching default auxiliary basis
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Figure 3.8.: Comparison of the unbiased and biased two dimensional PES of 1-bromo-3-
chloropropane at the GFN2–xTB level. (a) Molecular structure and the dihedral
angles φ and θ used for the construction of the two dimensional PES of 1-bromo-3-
chloropropane. (b) Unbiased PES at the GFN2–xTB level. (c) PES under influence
of a single bias potential Vbias with ki = 0.03 Eh and αi = 0.3 Bohr−2 at the GFN2–
xTB level. The center of Vbias is is marked by “X”, which corresponds to the global
minimum structure shown in a.

sets.334 The integration of the exchange-correlation contribution was evaluated on the numerical

quadrature grids m4. The default convergence criteria for single-point energies were 10−7 Eh.
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3.6. Conformational Search Examples

3.6.1. Conformations of (S)-citronellal

Citronellal is an acyclic monoterpene with a characteristic lemon scent. This molecule was

chosen as it represents a typical organic molecule concerning size and flexibility and is therefore

well suited to demonstrate the standard application of CREST.

φ1

φ2 φ3

φ4

φ5

CONF14
0.06

CONF30
0.00

CONF3
0.51

CONF84
0.50

CONF38
0.26

CONF2
2.15

CONF1
1.00

(a)

(b) (c)

Figure 3.9.: Citronellal gas-phase conformers depicted with calculated enthalpies at 0 K in
kcal mol−1. (a) 15 conformers were experimentally identified by microwave spec-
troscopy and all 15 conformers were found in the calculated CRE. Only the five
highest populated conformers are shown. Enthalpies were calculated at 0 K as the
sum of PBEh-3c158 energies and zero point vibrational energies from GFN2–xTB.
(b) Lewis structure of (S )-citronellal with unhindered non-methyl-dihedral angle
rotations highlighted. (c) Conformers obtained initially at xTB level are too high
in energy at DFT level and not found under experimental conditions.

The (S )-stereoisomer and its conformers were investigated. Because of the acyclic geometry

and with five freely rotatable C-C bonds it is to be expected that the conformational space of

citronellal is relatively large. Fig. 3.10b shows a part of the multidimensional unbiased PES

of citronellal along two dihedral angles. The two dimensional PES shows many deep pocketed

minima connected by high energetic barriers of approximately 5-6 kcal mol−1. In Fig. 3.10c, the

2D-PES in a MTD run (with bias potential) is shown, which reduces the complexity of the PES

in terms of accessible conformations considerably.

The gas-phase iMTD-GC calculation generated 262 conformers, within the conservatively

chosen energy window of 6 kcal mol−1. As already mentioned, large energy windows allow

the compensation of non-parallel energy surfaces of SQM and DFT (see Fig. 3.7) thereby

preventing the loss of potentially low lying conformers at DFT level after re-optimization. The

conformers can be classified into two main types: chain-like and globular-folded conformations.

By visual inspection of the CRE it becomes apparent that the relative orientation of the aldehyd
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Figure 3.10.: Comparison of the unbiased and biased two dimensional PES of citronellal at the
GFN2–xTB level. (a) Citronellal with indicated dihedral angles φ and θ for the
construction of the two dimensional PES. (b) Unbiased PES of citronellal. (c)
PES with a single bias potential Vbias (ki = 0.06 Eh and αi = 0.15 Bohr−2). The
center of Vbias is is marked by “X”, which corresponds to the global minimum
structure shown in a. The Vbias center appears slightly shifted to the right of the
minimum, which is an artifact of the large φ and θ grid of 10◦ per turn and the
color interpolation of the plotting program.

functional group has a large influence on the conformation of citronellal and the globular-folded

conformation is stabilized by intramolecular non-covalent interactions of the aldeyhd and C-H

groups. The conformational flexibility of citronellal has been experimentally investigated by the

group of M. Schnell using chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy

where 15 gas-phase conformers were identified.335 Rotational constants contain information

about the entire geometry of the molecule and therefore conformational aspects as well. Since
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rotational constants are rather method dependant, the CRE is re-optimized at the PBEh-3c

(DFT) level to get a good comparison to the experiment. Conformers with small mean deviations

of the rotational constants between theory and experiment were visually inspected for matching

geometries in the literature.335 All 15 experimentally identified conformers are found in the

iMTD-GC-CRE. The first five of the 15 conformers are shown in Fig. 3.9a.

Post-optimization of the ensemble at a higher level is important as also shown by the fact

that the 30th conformer of the initial conformer search at GFN2–xTB level corresponds to

the lowest lying conformer of the refinement at PBEh-3c level, highlighting a noticeable re-

ranking. The conformers shown in Figure 3.9c are identified by iMTD-GC//GFN2–xTB to be

the highest populated and were also predicted by the computational investigation of Schnell et al.

Interestingly, the conformers CONF1 and CONF2 could not be identified within the experimental

spectrum. Experiments with different carrier gases suggested that conformational relaxation

towards more stable conformers is facilitated due to collision in the supersonic expansion. The

absence of CONF1 and CONF2 can be explained by conformational relaxation and their too

high enthalpy after refinement at DFT level.

After demonstrating that relevant conformers were found within the gas-phase CRE, the

completeness of the ensemble concerning the populated conformers is investigated by comparing

calculated and experimental 1H-NMR spectra in solution. To this end, a new CRE was gener-

ated in chloroform and the 1H-NMR spectrum was calculated (see Fig. 3.11) with the procedure

detailed in Ref. 40. The spectrum calculated with only one conformer clearly shows that the

multiplet splittings of the proton signals are not correct. Only if the whole populated ensemble

of 35 conformers is taken into account, the qualitatively correct splittings are obtained. The

differences between the experimental and calculated chemical shifts partly stem from the neglect

of zero-point effects, vibrational averaging, and errors in the respective DFT calculations. It

has to be stressed that in addition to the conformers the identification of rotamers is crucial for

calculating NMR spectra. Rotamers are very important since they are necessary to describe the

correct averaging of NMR parameters due to the fast interchange of nuclei at the slow time scale

of the NMR experiment. The overall good agreement between the calculated and experimental

multiplicities indicates that all major conformers were found. This in turn highlights the sophis-

tication and robustness of the iMTD-GC algorithm for generating conformer–rotamer–ensembles

(CRE).

3.6.2. Conformations of Macrocyclic Molecules

The treatment of macrocylic rings with chemoinformatic conformational sampling algorithms is

challenging since it requires special treatments or heuristic rules.228 Molecular dynamic-based

approaches prove to be useful as their application is straightforward and no additional adjust-

ments are required for these compounds.240,301,341 In particular, aMD based approaches seem to

be promising as the PES modification helps to overcome even high energetic ring-interconversion

barriers.319 Therefore, it can also be expected for the MTD approach to yield similarly good

results. To assess the performance of iMTD-GC for macrocycles, a conformational search was
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Figure 3.11.: Comparison of calculated and experimental 1H-NMR spectra of citronellal with
the focus on the aliphatic region. The upper theoretical spectrum (in blue) is
calculated with only one conformer. The theoretical spectrum (in black) better
reproduces the experimental spectrum and is calculated with the full CRE con-
sisting of 35 conformers. The lower experimental spectrum336 (red, inverted) was
measured in CHCl3 at 400 MHz, 298 K and the theoretical spectra were calcu-
lated with PBE0/def2-TZVP[COSMO]337 338 339//PBEh-3c[DCOSMO-RS]340 for
the coupling and shielding constants. The assignment of the multiplets is indi-
cated by capital letters.

conducted for three different macrocyclic systems taken from Ref. 301. Crystal structure ge-

ometries of the three compounds were obtained from the Cambridge Crystal Structure Database

(CCSD)342 with the IDs POXTRD, CAMVES, and CHPSAR. The geometries were optimized

in the gas-phase with GFN2–xTB. Their composition and size represent typical organic systems

in the target range of the iMTD-GC. The (gas-phase) conformer ensembles can be expected

to be sufficiently diverse if: A) a high RMSD to the input (crystal structure) conformation is

observed, B) a large number of conformers within the default energy window is obtained, and

C) there is a large energetic difference between the input structure and the lowest conformer.

Results according to these criteria are depicted in Fig. 3.12.

For all three systems the defined criteria for a diverse ensemble are fulfilled. The smallest

macrocycle POXTRD has a huge number of distinct conformers, while the other two examples

(CHPSAR, CAMVES) have smaller CREs. By visual inspection of the ensembles of CHPSAR

and CAMVES, pairs of hydrogen bonds are identified within the ring-systems. The hydrogen

bonding strongly stabilizes a few selected conformational motifs, leading to more compact en-
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CAMVESCHPSARPOXTRD

∆E  -2.4 kcal/mol
RMSDheavy 1.0 Å 
245 conformers

∆E  -4.3 kcal/mol
RMSDheavy 3.1 Å 
34 conformers

∆E  -13.8 kcal/mol
RMSDheavy 1.8 Å 
19 conformers

Figure 3.12.: iMTD-GC gas-phase ensembles of three macrocycles are shown. Below overlays be-
tween GFN2–xTB optimized geometries from the crystal structure and the lowest
lying conformer are presented. For POXTRD only the first 45 conformers of the
ensemble are shown. Energy differences (∆E) between the lowest lying conformer
and optimized input geometry are given in kcal mol−1. The RMSDheavy between
the lowest lying conformer and input geometry is given in Å.

sembles compared to POXTRD within the energy window of 6 kcal mol−1. The results show that

ring-interconversion poses no problem for the iMTD-GC procedure and highlights that different

molecular classes can be treated with the same set of search parameters.

3.6.3. Conformations of Ac-Ala19-LysH+

As a larger example we chose the protonated peptide Ac-Ala19-LysH+, consisting of 20 amino

acids (220 atoms). With the size and flexibility of this system we approach the current practical

limit of the iMTD-GC workflow conducted at a SQM level, although the application to larger

systems would easily be possible at a FF level. From combined theoretical and experimental

studies it is known that the conformation of this molecule depends on the protonation site.343–345

It was found that the protonation at the C-terminus stabilizes an α-helical form of the peptide,

which is shown in Fig. 3.13. The alternative N-terminal protonation at lysine destabilizes the

helical conformation and leads to more compact structures. Furthermore, the lysine protonated

conformations are preferred in the gas-phase, where a single unique conformer was suggested.345

Hence, the Ac-Ala19-LysH+ system is an ideal molecule to evaluate the performance of iMTD-

GC for larger systems. Three conformational searches were conducted: starting A) from the
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Figure 3.13.: The most stable conformer of Ac-Ala19-LysH+ with protonation at the C-terminus.
The protonation site is marked by the “⊕”-sign.

α-helical conformer protonated at the C-terminus, B) from a N-protonated helical structure,

and C) from the lowest-energy conformation proposed in Ref. 345.

Starting from the C-terminal protonated conformations (case A), the findings in the literature

can be confirmed already at the GFN2–xTB level. The entire ensemble consists of 54 α-helical

structures that differ only by the orientation of Lys. The most stable conformer is shown in

Fig. 3.13. No energetically close lying folded structures were found on the PES where the

protonation site is at the C-terminus. During the iMTD-GC search several of these structures

are created and then sorted out according to the energy threshold.

In the second conformational search (case B) the most stable helical conformer is taken as an

input structure and the protonation site is artificially set to the N-terminal lysine group. With

this setup only folded conformations are generated in the ensemble (126 conformers). Here, the

most stable conformers are very similar to the ”unique” conformer from the literature. For an

energy based comparison, the ”unique” structure identified as lowest conformer in Ref. 345 is

taken as the reference point.

A comparison between the most stable conformer of the iMTD-GC ensemble and the reference

structure is shown in Fig. 3.14. The folded conformers contain α- and 310-helical segments.

However, at the GFN2–xTB level the most stable conformers generated by iMTD-GC are up to

1.64 kcal mol−1 lower in energy than the reference structure.

When the conformational search is started from the reference structure (case C), a smaller

ensemble compared to the previous searches is obtained by iMTD-GC (56 molecules). The

energetically lowest conformers of ensemble B and C have similar structures and are up to

1.7 kcal mol−1 more stable than the reference. For better comparison between the iMTD-GC

structures and the reference all conformations were re-optimized at the PBEh-3c level and

single-point energies were calculated at the higher PBE0-D4/def2-TZVPD level.174 The relative

energies for selected conformers are plotted in Fig. 3.15. Although the obtained conformers from

the second conformational search are very similar to the reference structure and are favored by

a few kcal mol−1 at the GFN2–xTB level, at the hybrid DFT level the reference structure is still

preferred. However, by conducting the third conformational sampling (case C), the literature

ensemble could be extended. At the PBE0-D4/def2-TZVPD level, there are three conformers in

the new ensemble which are energetically lower (by 0.33 to 0.37 kcal mol−1) than the reference.
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Figure 3.14.: Overlay between the most stable conformer of Ac-Ala19-LysH+ taken from litera-
ture (magenta) and the highest populated conformer of ensemble B generated by
iMTD-GC (gray/green). The N-terminal protonation site is marked by the “⊕”-
sign.
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Figure 3.15.: (a) Comparison of relative energies for selected conformers at the GFN2–xTB
and PBE0-D4/def2-TZVPD//PBEh-3c levels. Conformers labeled by ”S” were
generated starting from the N-protonated helical conformer (case B). Conformers
labeled by ”N” were generated starting from the reference structure ”ref” (case
C). αH is the most stable α-helical conformer. (b) Overall most stable iMTD-GC
conformer at DFT level of Ac-Ala19-LysH+, labeled N3.

Furthermore, there are four other conformers which are less than 0.1 kcal mol−1 above the

reference and thus would be significantly populated. Compared to the PBE0-D4 results, most

conformations at the GFN2–xTB level are energetically close lying. This indicates a much flatter

PES at the SQM level compared with the DFT level. Since energies of up to 0.4 kcal mol−1 are

well within the error margin of conformational energies at a hybrid DFT level, it is not possible
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to determine if these new conformers are truly the most stable structures of Ac-Ala19-LysH+.

However, the ensemble indicates that there is not just one unique populated conformer of the

peptide in the gas-phase but rather an ensemble of several energetically and structurally close

conformations that are protonated at the lysine terminus. Furthermore, the example shows that

qualitative results can be obtained with the iMTD-GC//GFN2–xTB method at comparatively

low computational cost. In the original study several first-principles simulations based on replica-

exchange molecular dynamics (REMD)346–349 at the DFT (PBE) level128 were performed in

order to find the low energy conformations.345 This approach is extremely expensive, even

without including PBE0 single-point calculations. In contrast, the iMTD-GC//GFN2–xTB

sampling was conducted within a couple of days on a single workstation and yielded similar

low-energy conformations.

3.6.4. Conformers of Metal-Organic Systems

Metal-organic compounds can be routinely calculated with DFT but the computational cost

of applying the iMTD-GC procedure with DFT as underlying electronic structure method is

high as already mentioned. Combining the GFNn–xTB SQM methods with the iMTD-GC

algorithm has the advantage of low computational cost and enables treatment of organometallic

systems. In fact our approach is the only routinely available for that purpose on the market.

The possibilities are demonstrated for two metal-organic examples in the following chapter.

CONF7
0.14 kcal/mol

CONF23
4.62 kcal/mol

experimentally found in X-ray

CONF4
0.62 kcal/mol

CONF3
0.55 kcal/mol

CONF2
0.00 kcal/mol

highest populated

CONF27
11.22 kcal/mol

eq.

eq.eq.

ax. ax. ax. ax. ax.

ax.ax.eq.

Figure 3.16.: Conformers of trans-CuII(L-Valine)2 optimized in gas-phase at B97-3c180 level
of theory. The free energies given below the respective conformer name are in
kcal mol−1 (@ 298.15 K).
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The first example is trans-CuII(L-Valine)2. Each chelate ring can have an axial or equato-

rial conformation of the isopropyl-group. The valine residue can exhibit various conformations,

identifiable by comparing the highlighted methine-proton position in Fig. 3.16, where six rep-

resentative conformers are depicted. The generated structures were refined at the B97-3c level,

where the first four conformers are populated and conformers CONF23 and CONF27 are higher

lying conformations. Conformer CONF23 is not populated in the gas-phase but closely resem-

bles the experimentally observed conformation in the crystal structure.350 This indicates its

stabilization in the solid phase due to packing (or other related) effects.

As a second example, the κ2-tris(pyridyl)methanol-diacetylplatinum(II) complex was investi-

gated. The chelate complex was studied in implicit methanol and the ensemble consists of 68
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Figure 3.17.: Lewis structure of [Pt(COMe)2(2-py)3COH] and selected lowest and higher lying
conformers calculated at GFN2–xTB[GBSA(MeOH)] (GBSA = Generalized Born
(GB) with solvent accessible surface area(SA)) level of theory (∆E in kcal mol−1)
are shown. The numbering at the nitrogen atoms is aiding in the distinction of the
coordination centers.

conformers within an energy window of 10 kcal mol−1. The tris(pyridiyl)methanol ligand forms

a κ2-chelate complex with the Pt(II)-ion and has a free coordination site at the third uncoordi-

nated pyridyl group. In Fig. 3.17, a selection of conformers is shown, highlighting the flexibility

and dynamic processes that may occur in solution. The acetyl groups (COMe) are almost

freely rotatable and the uncoordinated pyridyl ring easily can rotate as well. The numbering

at the coordinating pyridinyl-nitrogens, illustrates that the chelate complex can open up and

re-coordinate to the free center. This is particularly visible in conformer 59, where the hydroxy

group coordinates to the Pt-ion and the pyridyl-group is facing away from the metal center. The

conformer search gives valuable insight into the flexibility of this Pt(II)-chelate-complex, which

has been confirmed experimentally.351 The wall computation time for this calculation was 12

minutes on 40 cores (Intel Xeon Gold 6148 CPU @ 2.4 GHz).

3.7. Specialized Applications

The general setup of the conformational search algorithm as a combination of molecular dy-

namics simulations and quantum chemical structure optimization enables several specialized
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applications. Atoms can be constrained in the input structure or removed from the bias poten-

tial. Furthermore, other potentials than Vbias can be included in the calculations.

3.7.1. Constrained Conformational Sampling

The first specialized application of the CREST program is the constrained conformational sam-

pling. Single atoms or parts of the molecular structure can be fixed and retain their geometry

during the calculations. This makes it possible to, e.g., screen for conformational changes only

occurring in some domains of a molecule. Atoms that are constrained must, however, not appear

in the bias, since this would counteract the constraining potential.

Tyrosine Conformation on a Graphene Surface

Bio-sensing of α-amino acids using nanomaterials is a vital research for which a detailed knowl-

edge of the amino acid conformations at the material-interface is essential.352,353 The confor-

mational search of L-tyrosine at a model graphene surface is demonstrated here. The graphene

sheet consists of 216 carbon atoms and has D6h symmetry. For the conformational search with

CREST, the graphene layer is constrained and all graphene atoms are removed from the RMSD

criterion. Otherwise, this would lead to the dissociation of the complex and a strong deformation

of the graphene monolayer. Fig. 3.18a shows the lowest lying L-tyrosine conformation found at

the graphene surface.

gas#1 gas#3

surface#19 surface#41

surface#1

(a) (b) (c)

Figure 3.18.: Tyrosine conformations on a model graphene surface and in the gas-phase.
(a) Most stable tyrosine conformer on the graphene surface. (b) Most stable ty-
rosine conformer depicted without graphene. (c) Comparison between gas-phase
and interface conformers.

On the surface 108, different tyrosine conformers were found. All low lying conformers show

the π-π interaction motif via parallel alignment of the phenyl-ring to the graph sheet. Higher-

energy conformations bend away from the parallel phenyl-ring arrangement. Other observed

interaction motifs are C(α/β)-H...π and N-H/O-H...π interactions. The interaction energy (Eint)
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3. Automated Exploration of the Low-Energy Chemical Space

for the most stable conformer and the graphene mono-layer amounts to -2.8 kcal mol−1 at the

GFN2–xTB level. To highlight the difference between a constrained conformational search at

an interface and in the gas-phase, tyrosine conformers were created in the gas-phase without

any constraints. Here, 30 conformers were found. Comparing the geometries taken from the

graphene-based ensemble and the gas-phase it is seen, that conformations are created at the

graphene interface, which are not present in the gas-phase ensemble.

As depicted in Fig. 3.18b and 3.18c some low lying gas-phase conformations can be found

on the graphene surface, but they are not the lowest populated conformers, e.g., the lowest

gas-phase tyrosine conformer is equal to the 19th conformer from the graphene-tyrosine ensem-

ble and is 1.3 kcal mol−1 higher in energy than the lowest graphene-tyrosine conformer. The

graphene potential clearly influences the tyrosine conformations and hence it is essential to create

conformations in their genuine environment.

Conformers of Transition-States

Studying reaction kinetics is usually done by investigating activation energies of rate determining

steps. Reactions are analyzed with the assumption that the reaction kinetics are termed by the

transition-state (TS) free energy, relative to the free energy of the reactants. It is assumed

that the reaction proceeds through the TS, which is linked to the energetically most favorable

substrate. If the substrate can interconvert quickly between its low energy conformations, the

reaction is governed by the Curtin–Hammett principle.219,354 In this case, the reaction proceeds

through the lowest TS which is not necessarily connected to the lowest lying substrate conformer.

Hence, for accurate results it may be necessary to search the chemical reaction space and find

low-lying TS conformations. Constraint conformer searches can be applied to a previously found

TS. The procedure is demonstrated for the enzyme COMT (catechol-O-methyl transferase),

which catalyzes the methyl group transfer from S -adenosyl-L-methionine (SAM) to a catechol

ion355,356 (see Fig. 3.19a for the Lewis structure of the TS). First, the basic SN2 reaction was

modeled by taking the active site of the enzyme and saturating all capped bonds with methyl

groups. A TS guess was optimized and checked for the reaction mode by performing a harmonic

frequency calculation. To preserve the TS vibrational mode in the conformational search, the

atoms dominantly contributing to this mode were constrained. In this system, the catechol

oxygen, the carbon of the transferred methyl group, and the sulfur of the SAM group were

fixed. To retain the magnesium-cation coordination the Mg-ligand distances were constrained

as well (only one constraint per ligand). Additionally, the water and the amid ligand were

constrained to an OH2O-Mg-OAmide angle of 180◦. For the TS conformational search only the

constraining of the breaking and forming bonds is necessary and all other constraints are used

to keep the active site of the enzyme intact. The iMTD-GC approach generates 141 conformers

within 6 kcal mol−1. Overall, the calculation takes 46 minutes on 40 cores (Intel Xeon Gold 6148

CPU @ 2.4 GHz). The conformers are good estimates for the further optimization into the TS

at GFN2–xTB[GBSA(MeOH)] level. Here, 138 true TS are obtained. During the optimization

of the TS, geometries can converge into the same TS geometry and have to be sorted out.
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(a) (b) (c)

Figure 3.19.: TS of the active site of the COMT enzyme. (a) Lewis structure of the SN2
methyl-group transfer reaction. (b) TS ensemble of 91 TS which are optimized
after the iMTD-GC conformer search (atoms in light blue depict the water oxy-
gen, all hydrogen atoms are omitted for clarity). (c) Lowest lying TS at GFN2–
xTB[GBSA(MeOH)] level.

After sorting, 91 unique conformers within 6.1 kcal mol−1 remain. Overlays of the optimized TS

ensemble and the lowest lying TS are depicted in Fig. 3.19b and 3.19c. The procedure provides

a semi-automated approach of finding lower lying TS by relaxing the ligand geometries.

For the COMT example the lowest-lying TS conformer is 13.5 kcal mol−1 lower in energy

than the initial TS. Comparing the barrier from the lowest substrate conformer and the lowest

TS-conformation with the reaction barrier from the single structure approach (see Fig. 3.20) the

barrier height is reduced by 8.7 kcal mol−1 when using the ensemble based protocol. Although

the work was conducted at a semiempirical level it should be stressed that the procedure is

generally applicable and that it is also possible to refine the TS at DFT-level.

3.7.2. Aggregate Sampling

With the MTD based approach it is possible to also screen for different conformations of non-

covalently bound aggregates and complexes (NCI–iMTD). This is a special run-type mode in

which an ellipsoidal shaped potential is added as a constraint to the MTD simulations. The

additional potential is necessary to avoid the dissociation of the non-covalently bound complexes.

However, to obtain unbiased conformations and aggregate structures the ellipsoidal constraint is

removed during the geometry optimization. The energy contribution Epot given by the ellipsoid

potential is defined as

Epot =

N∑
i

(
|Ri −O|
Ri,pot

)10

, (3.6)

where the summation runs over all atoms N . Ri are the Cartesian coordinates of atom i, O

is the center of the potential (i.e., the origin), and Ri,pot is the radius of the potential parallel
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Figure 3.20.: Reaction barriers of the SN2 methyl-group transfer. The reaction barrier from the
single structure approach (yellow) and barrier from the lowest conformers of the
CREs (green) are compared. Energies of the conformers relative to the lowest
substrate conformation are illustrated by horizontal blue lines. All energies were
calculated at the GFN2–xTB[GBSA(MeOH)] level.

to Ri − O. If such a potential is combined with a strong RMSD bias, chemical reactions can

be enforced, resulting in a mode similar to the nano-reactor presented in Ref. 41. However, the

aim of the NCI–iMTD procedure is to generate a low-energy ensemble for which the parameters

are adjusted accordingly. In the following two examples demonstrate the application of the

NCI–iMTD procedure.

Water Hexamer

Since each non-covalently interacting fragment can also have different conformations on its own

even for small systems a large number of complexes is possible. In the general case one would

search first with iMTD-GC the monomer conformations before NCI–iMTD is started. Hence,

as a primary example small molecular clusters such as (H2O)6 are used here, where fragment

conformations are irrelevant. In the first step the ellipsoidal potential is automatically generated

from scaled principal rotation axes. For the water hexamer the resulting potential is schemati-

cally shown in Fig. 3.21. Within a 6 kcal mol−1 energy window 69 different gas-phase aggregates

are found for (H2O)6. Many of the generated structures are isomers that differ only by the di-

rection of their hydrogen bonds and otherwise show a similar geometry. Hence, only a selection

of six noteworthy structures is shown in Fig. 3.22. The structures shown in Fig. 3.22a - 3.22d
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Figure 3.21.: Visualization of the almost spherical ellipsoidal potential around a (H2O)6 cluster.

(a) (b) (c)

(d) (e) (f)

0.00 (0.30) kcal/mol 0.10 (0.31) kcal/mol 1.62 (0.00) kcal/mol

3.84 (0.80) kcal/mol 1.72 (0.76) kcal/mol 3.47 (2.19) kcal/mol

Figure 3.22.: Six different aggregates that are automatically generated for (H2O)6. Relative
energies (∆E) at the GFN2–xTB level are given below the respective structures.
Energy values in parenthesis show relative energies at the PBEh-3c level.

are well-known from literature (i.e., the prism-, cage-, book-, and cyclic-hexamer respectively)

and are for example included in the WATER27 subset of the GMTKN55 database.109,357 The

two aggregates in Fig. 3.22e and Fig. 3.22f, which were chosen randomly from the ensemble,

additionally highlight the structural diversity created by the NCI–iMTD procedure.

69



3. Automated Exploration of the Low-Energy Chemical Space

1-Naphtol Dimer

The second example is the 1-naphthol dimer, where various π–π stacking and hydrogen bonding

motifs are possible. In the literature seven conformations were proposed based on a comparison

of the experimental and theoretical rotational constants.358 With the default NCI–iMTD mode,

88 unique aggregates of the 1-naphthol dimer are found at the GFN2–xTB level of theory within

a 6 kcal mol−1 energy window. To figure out whether the seven proposed complexes are included

in this ensemble, structures were pre-selected based on low mean relative deviations (MRD) of

the calculated GFN2–xTB and experimental rotational constants from Ref. 358. Afterwards,

these structures were visually inspected. The reference rotational constants were obtained for

geometries calculated at B3LYP-D3(BJ)/6-31++g(d,p) level of theory taken from the original

publication (see Ref. 358). For all seven complexes a corresponding (or at least closely related)

structure was found with the NCI–iMTD mode at the GFN2–xTB level of theory. The geometries

are shown in Fig. 3.23. From benchmark studies it is known that rotational constants for

V-shaped stacked-a stacked-b

stacked-c stacked-d stacked-e

hinge

Figure 3.23.: Seven 1-naphthol dimer aggregates that were generated at the GFN2–xTB level of
theory and match the structures proposed in the literature.

geometries calculated at a semiempirical level have larger relative deviations compared with

geometries calculated by DFT.359 Therefore, the GFN2–xTB geometries are not expected to

reproduce the hybrid DFT rotational constants very well but rather serve as a guideline for

the structure evaluation. The rotational constants for the seven predicted complexes of the
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1-naphthol dimer are given in Tab. 3.3. The rotational constants calculated for the GFN2–xTB

geometries deviate from the reference by 4–5 % on average. Many more aggregates are generated,

Table 3.3.: Rotational constants Be for the seven predicted aggregates shown in Fig. 3.23.

calc.a Be/MHz ref.b Be/MHz
system A B C A B C MRD

V-shaped 491.5 282.3 271.0 468.2 284.6 257.9 3.6 %
stacked-a 450.0 317.7 291.9 449.6 301.2 286.2 2.5 %
stacked-b 457.0 307.0 295.2 479.0 273.5 272.2 8.4 %
stacked-c 479.3 290.9 282.7 454.9 298.6 286.0 3.0 %
stacked-d 466.3 300.3 291.8 480.4 276.0 270.8 6.5 %
stacked-e 428.1 333.1 281.9 421.0 326.5 270.7 2.6 %

hinge 609.7 125.0 120.8 594.1 131.3 125.6 3.8 %

exp. (B0) — — — 462.4 275.9 252.5 —

a Calculated for GFN2–xTB geometries. b Taken from Ref. 358.

and none of the seven isomers is the most energetically favored complex of the ensemble at the

semiempirical level. However, the trend in the aggregate stability identified by Jäger et al.,358

that the V-shaped forms are more stable compared to the stacked and hinge forms is reproduced

for the GFN2–xTB ensemble. Comparing directly to the experimental rotational constants (see

Tab. 3.4), a total of five structures from the NCI–iMTD ensemble fit to the experimental values.

All five geometries have rotational constants matching the experiment but a clear identification

based only on the very similar rotational constants is not possible. Four of these structures

are V-shaped homologues. In fact, the most stable of them is the V-shaped complex that

was identified by the authors Ref. 358 and is shown in Fig. 3.23. Only one of the structures

is not V-shaped but appears to be a more symmetric form of the stacked b-complex. The

predicted complexes (except the already known V-shaped form) are shown in Fig. 3.24. The

Table 3.4.: Rotational constants Be for the four new predicted 1-napthol aggregates shown in
Fig. 3.24.

Be/MHz
system A B C MRD

exp.a (B0) 462.4 275.9 252.5 —

new-1 456.9 303.2 266.5 5.5 %
new-2 484.6 288.7 267.7 5.2 %
new-3 502.6 276.1 261.9 4.1 %
new-4 486.1 287.6 269.3 5.3 %

a Taken from Ref. 358.

new generated aggregates support the original conclusion that the true conformation of the

1-naphthol dimer is a V-shaped type complex.
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new-1
(5.5 %)

new-2
(5.2 %)

new-3
(4.1 %)

new-4
(5.3 %)

Figure 3.24.: Four new aggregates are predicted for the 1-naphthol dimer generated at the
GFN2–xTB level of theory. The MRD of the calculated rotational constant from
the respective experimental value is given in parenthesis.

3.7.3. Automated Protonation/Cationization

The procedure for the automated protonation was already discussed in Ref. 220 and is only

briefly outlined here. The computational protocol has since been optimized and was imple-

mented into CREST. The workflow is similar to the concept used within the chemical reaction

networks,274,276 where the reactive sites are determined first and then a reactive species is placed

in close vicinity during a geometry optimization. Here, reactive sites are π– and lone-pair (LP)–

centers that are obtained from localized molecular orbitals (LMOs) and the reactive species is

a proton (H+). The geometry optimization leads to a set of different protomers. Sorting the

protomer ensemble is based on relative proton affinities, in the same way that the CRE sort-

ing depends on conformational energies. GFNn–xTB is able to describe these proton affinities

sufficiently accurate.220 The procedure is schematically outlined in Fig. 3.1 and in Fig. 3.25 for

the benzocaine molecule, which is a prominent example for protomers in the literature.360–363 In

the gas-phase, the O-protonated benzocaine molecule is favored over the N-protonated species

(at GFN2–xTB level). All possible protonation sites in the aromatic ring are also obtained with

the automated procedure but are still not populated. However, if the calculation is performed

with implicit water solvation, both the N- and O-protonated species are obtained and popu-

lated. This corresponds to the experimental finding that N-protonation can (only) occur in the

gas-phase under the influence of microsolvation.363 In a modified version of the procedure also

the cationization of molecules, for example with a sodium ion Na+, is possible. The setup is

the same as for the protonation site screening, but the corresponding ion is placed at the π– or

LP–center, instead of a proton. An example from the literature364 is the cationization of adeno-
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sine to [Ade+Na]+. At the GFN2–xTB level ten different cationized structures are generated

within a conservative 30 kcal mol−1 energy window. The two energetically lowest structures are

found within 10 kcal mol−1 and agree with the predicted relative stabilities in the literature.364

Also reasonable higher-energetic coordination motives are generated by the automatized screen-

ing procedure. Gas-phase structures of the two lowest and one higher energetic [Ade+Na]+

complex are given in Fig. 3.26.

O-protonation

N-protonation

identification of
π- and LP-centers

 

localization degree of 
< 1.3 nuclei  or

(r1 + r2)/r0 > 1.04

input structure

add H+

screen

0.0 kcal/mol

19.7 kcal/mol

benzocaine

Figure 3.25.: Schematic procedure of an automatized protonation of the benzocaine molecule.

22.9 kcal/mol
1-[Ade+Na]+

0.0 kcal/mol
2-[Ade+Na]+

6.2 kcal/mol
7-[Ade+Na]+

22.9 kcal/mol

Figure 3.26.: Three of overall ten [Ade+Na]+ structures generated at the GFN2–xTB level
within a 30 kcal mol−1 energy window. Relative energies at GFN2–xTB level are
given below the corresponding structure.

The preferred coordination sites found, i.e., 1-[Ade+Na]+ and 2-[Ade+Na]+ in Fig. 3.26, are

correct and were already discussed in the literature.364 By default the screening procedure only

yields topologically unique structures without specific attention being paid to the conformation

and hence may not lead to the global minimum. Small conformational differences can, e.g.,

result from a different conformation of the input structure (here adenosine). Additional con-
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formational searches for the products were not performed but in real applications should be

conducted.

The trivial counterpart to the automated protonation is the automated deprotonation. Since

the screening only involves the removal of protons to generate input deprotomers and the results

are comparable to the automated protonation, it will not be discussed here. Overall the proto-

nation/cationization procedure provides an automated approach of finding relevant protomers

and coordination sites which can be used in further computational studies.

3.7.4. Automatized Tautomerization and Isomerization

Tautomerism is a widespread phenomenon that influences the chemistry of molecules with read-

ily interchangeable isomers. In the most common type of this inter-conversion the isomers only

differ in the position of a proton, which is called prototropy.354 Knowledge about a molecules

possible tautomeric behavior is of great importance, since the isomers can strongly differ in

their physical and chemical properties.253,365 It is also highly important in structural databases

and hence, many chemoinformatic approaches exist for the identification of tautomers.254,366,367

The automated quantum chemical tautomerization (or isomerization) is a standalone feature

implemented in CREST. The protocol involves a sequence of protonating and deprotonating

steps and was first applied in Ref. 221 for the calculation of pKa values in water. If larger

6-gua
10.1 kcal/mol

5-gua
4.1 kcal/mol

4-gua
3.5 kcal/mol

1-gua
0.0 kcal/mol

2-gua
1.0 kcal/mol

3-gua
2.1 kcal/mol

Figure 3.27.: Six lowest prototropic tautomers of guanine generated at the GFN2–
xTB[GBSA(H2O)] level within a 30 kcal mol−1 energy window. Relative energies
at the GFN2–xTB[GBSA(H2O)] level are given below the corresponding structure.
Proton positions that are changed during the tautomerization are highlighted.

topological changes are induced by this procedure, the obtained structures have to be consid-

ered structural isomers instead of prototropic tautomers. A starting geometry is protonated
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as described in section 3.7.3 and each resulting protomer is deprotonated at every position.

With this procedure all stable structures containing a single permutation of proton positions

with respect to the input are obtained. Typically, these ”first order” prototropic tautomers

are already a good estimate of a molecules’ tautomerism. However, even for simple molecules

such as guanine shown in Fig. 3.27, further permutation of protonation sites can lead to addi-

tional tautomers. Hence, the screening procedure is an iterative sequence of protonation and

deprotonation which is performed twice or more. Figure 3.27 shows automatically generated

low-energy tautomers of guanine. The tautomerization was started from the keto form of gua-

nine, dubbed 1-gua in Fig. 3.27. In the first protonation/deprotonation iteration, the tautomers

2-gua, 3-gua and 6-gua are obtained, which differ only by the position of a single hydrogen

atom (relative to 1-gua). Further iterations also yield the structures 4-gua and 5-gua with

two permutated hydrogen positions. Typically, two iterations of protonation and deprotonation

are sufficient to recover relevant low-energy tautomers. In case of the guanine ensemble at the

GFN2–xTB[GBSA(H2O)] level all experimentally known low-energy tautomers (Fig. 3.27) as

well as higher-energetic structures discussed in the literature were recovered.368–372

As already mentioned the QM based protocol enables its application also to metal containing

molecules. In terms of tautomerism this includes the typical prototropic case (e.g., at the lig-

ands), as well as less common phenomena such as proton-hydride tautomerism. An example for

the latter is the tautomerism of [(Cp*)Rh(bpy)H]+ as shown in Fig. 3.28, which is part of an

experimentally suggested catalytic cycle.373 The GBSA implicit solvation model for acetonitrile

was employed to resemble the experimental conditions. Within a 10 kcal mol−1 window there are

Rh-b
0.0 kcal/mol

Rh-c 
7.9 kcal/mol

Rh-a
9.1 kcal/mol

Figure 3.28.: Selected proton-hydride tautomers of [(Cp*)Rh(bpy)H]+ obtained automatically
by using Rh-a as an input. Relative energies at the GFN2–xTB[GBSA(MeCN)]
level are given below the structures.

three distinct proton-hydride tautomers of [(Cp*)Rh(bpy)H]+ at the GFN2–xTB[GBSA(MeCN)]

level (some broken structures were discarded). Rh-a is taken as input, where the proton is bound

to the Cp* ligand, facing downwards to the rhodium atom. The procedure automatically recov-
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ers the hydride structure Rh-b [(Cp*)RhH(bpy)]+, which is in fact the most stable tautomer

and another prototropic tautomer Rh-c, in which also the Cp* ligand is protonated, but the

proton is facing away from the metal center. While Rh-c is approximately 1.2 kcal mol−1 more

stable than Rh-a, only the latter is a reactive species in the catalytic cycle.373 However, since

there are reactive centers (LMOs) also on the up-facing side of Cp*, the procedure generates

Rh-c.

In general, the automated sequence of protonation/deprotonation allows to access any tautomer

that converges to a local minimum during the geometry optimization. The reason for this is that

no barriers for the addition or secession of protons are taken into account and hence thermody-

namically unfavorable (i.e., high energetic) isomers can be produced. Therefore, the procedure

recovers typically not only prototropic tautomers but also other structural isomers. Due to the

exploratory nature of the approach it is currently up to the user to decide which of the generated

structures shall be considered as tautomers and which as structural isomers. The exploration

has, however, the advantage that more complicated types of tautomerism, such as ring-chain-

tautomers, are often found by the same workflow. In contrast, many chemoinformatic tautomer-

ization tools require additional heuristics for the treatment of ring-chain-tautomerism.253,254

3.8. Troubleshooting

The algorithms used in CREST and xtb are physically very plausible and have been implemented

in a way to provide robust simulations under various conditions. Nevertheless, also because they

can be applied to almost any system composed of all common elements from the periodic table,

seeming discrepancies of the results to corresponding experiments or expectations may occur.

Assuming that they are not rooted in technical problems and a proper CREST ensemble file for

the chemically correct system has been written, we here want to discuss briefly common error

sources.

First, one should check if the real and simulated systems are close to each other. The mostly

applied continuum solvation models usually give good results but may fail for very polar or

ionic situations. The conformation/protomer/tautomer ensembles in the solid, liquid (solution),

or gaseous state may strongly differ from each other due to packing or solvation effects. One

should not expect in general that the conformation found in a X-ray diffraction experiment

corresponds to the lowest one in solution. The only ”clean” way to compare theoretical and

experimental results is under gas phase, low-temperature conditions. Although this very general

and seemingly trivial statement holds for practically all computational chemistry work, it is

nonetheless repeated here. Note that we always assume equilibrium conditions meaning that

effects e.g. by kinetic trapping are excluded so that species may be missing in the theoretical

ensemble.

If deviations occur in ”fair” comparisons, i.e., the simulated conditions match the experimen-

tal ones, their cause is mostly rooted in an inaccurate GFNn–xTB PES. This can be checked

by a re-ranking of the GFNn–xTB ensemble at a reasonable, dispersion-corrected DFT level
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(GGA or better a hybrid using at least a triple-zeta AO basis set). If the relative energies for

DFT optimized structures differ substantially from the GFNn–xTB results (strong re-ordering),

one has to be cautious. Another option to shed light on this case is to employ other, already

existing tight-binding variants, e.g., GFN1–xTB for comparison. In the future this problem is

may be solved by applying faster computers (i.e., running CREST on the DFT PES) or better

TB methods (we are working on this). At this point, however, the only general recommendation

is to employ in critical cases larger energy windows and to re-evaluate more structure candidates

at higher level.

Less often problems are encountered from the CREST algorithms themselves. If the system

is large and the PES is complicated, the applied finite run time in the MTDs may not allow

sufficient exploration of a huge structural space. The best way in our opinion to tackle this issue

is to employ many different initial structures for CREST. They can be obtained from chemical

intuition or other algorithms but could also be generated by CREST using the various ”-quick”

run modes.

Furthermore one should be aware that missorting of the CRE is possible due to the threshold

based approach. Hence, in cases of chemical systems with very dense conformational ensem-

bles (i.e., conformations with ∆E ≪ 0.1 kcal mol−1 and very similar rotational constants) it is

important to check the influence of different sorting thresholds on the final CRE. This is often

the case for large and/or flexible molecules with a huge conformational space, but can also be

encountered in smaller systems.

3.9. Conclusion

We presented a variety of automated quantum chemical screening procedures for the efficient

exploration of the low-energy chemical space. The main focus herein is the generation and

separation of the different isomers that are referred to as conformers. Different conformations

contribute to various physical observables, such as NMR shifts and coupling constants, reaction

barriers or pKa values. Therefore, the knowledge about a molecules’ ensemble of different

conformations is a valuable information required for accurate computational modeling. We have

shown a computational workflow for the generation of conformers based on a metadynamics

(MTD) approach with a self-similarity energy penalty Vbias that utilizes the atomic Cartesian

RMSD as a collective variable. Furthermore, the procedure includes a genetic structure crossing

(GC) step and was implemented in an iterative algorithm, which is conveyed in the abbreviation

iMTD-GC. The induced directionallity of the chemical space exploration due to the RMSD bias

allows for shorter simulation times compared with conventional MD based sampling approaches.

Savings in the computational cost are in turn invested for the re-optimization of geometries at a

low-cost QM level. The iterative ansatz hereby helps to explore the conformational space with

respect to the global minimum structure, as it only terminates if no lower energy conformers

are found. The algorithm is general in the sense that it will work on every level of theory

for the underlying PES. However, the metadynamics sampling shows its potential especially in
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combination with SQM methods that make the evaluation of thousands of molecular geometries

feasible. For this purpose, the robust and reliable GFN2–xTB method was employed. Even

at a relatively cheap level of quantum chemistry structures are generated that often match

quite well with the experimentally observed conformations. The performance was assessed for

several systems with up to 220 atoms in direct comparison with either experiment or high level

theoretical data. The investigated systems include typical organic compounds, organo-metallic

complexes, and non-covalently bound clusters. The conformational search algorithm can also

be modified by applying additional constraints, e.g., fixing of different bond lengths. This

constrained conformational sampling can be a valuable tool for obtaining better TS geometries

and barriers.

Additional screening workflows for the generation of non-covalently bound complexes as well

as protomer and tautomer ensembles are also implemented in the presented CREST program.

These procedures benefit from the SQM treatment in the same way as the conformational

sampling, leading to an efficient exploration of the respective chemical space. The examples

discussed here were investigated mainly at the GFN2–xTB level of theory, which is sufficient for

a qualitative discussion of the presented procedures. Hence, the resulting ensembles can be used

and evaluated in different ways. In the first case, the fast exploration of the potential energy

surface at SQM level provides information to enhance the chemical understanding of the system.

In the second scenario, if large-scale computational studies shall be conducted, the ensemble is

a good starting point for further refinement (re-optimization) at the DFT or WFT level.

Overall, the results show that the procedures implemented in CREST in combination with low-

cost QM methods provide a generally applicable workflow for sampling the low-energy chemical

space. The straight forward handling of the program make its standard application easily feasible

and hence can be an excellent staring point for chemical investigations. Ongoing work includes

the optimization of faster (entirely force field based) variants of the conformational screening

algorithm to extend the scope of CREST to much larger systems and its application for unknown

compound identification workflows.
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III. Calculation of Absolute Molecular Entropies and Heat Capacities

The entropy is one of the fundamental quantities in thermodynamics and commonly associated

with a state of uncertainty or disorder. Historically, “entropy” was introduced as a term in 1865

by R. Clausius,374 who later became dean at the University of Bonn. Important connections of

the entropy to statistical mechanics have been made by Boltzmann and Gibbs,213,214 and today

it is still an active field of research, e.g., in information theory.375 Part III hence follows a long

Sconf  ~ Rln( )?

Boltzmann

Clausius

Gibbs

Figure III.1.: Introduction figure to the article presented in Chapter 4. [Chem. Sci. 2021, 12,
6511–6568]

tradition of research and is dedicated to accurate calculations of the absolute molecular entropy.

As outlined in Chapter 2.3, the entropy of a molecule can be calculated from the vibrational

partition function in a rigid-rotor harmonic-oscillator approximation. Among other things, this

leads to a neglect of anharmonicities and missing degrees of freedom (DOF) due to other molec-

ular conformations. A detailed overview of the respective thermodynamical entropy expressions

and previous developments is provided in the chapter below. Mathematical formulations for

these terms are well known,43,376 but especially for the complicated conformational contribution

no generally applicable workflows existed so far. Hence, an automated and numerically stable

workflow has been implemented in CREST that calculates the missing conformational entropy

at GFNn–xTB or GFN–FF level from extended sampling of the conformational space. As a

novelty, conformational entropies are extrapolated from intermediate ensembles during execu-

tion of the CREST algorithm and frequencies (calculated by DFT and GFNn–xTB/FF) are

scaled and interpolated42 between vibrational and rotational partition functions.

In comparison with experimental data it is shown that with the presented approach excellent

accuracy, much better than “chemical accuracy” of 3 cal mol−1 K−1, can be achieved for absolute

entropies (and the related heat capacities) of flexible molecules. Due to its GFNn–xTB/FF

origin, the workflow can routinely be applied to systems up to roughly 200 atoms and (almost)

arbitrary elemental composition. This is demonstrated for a set of drug-like molecules and some

prototypical chemical reactions involving a large change of DOF.
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Abstract

We propose a fully-automated composite scheme for the accurate and numerically stable calcu-

lation of molecular entropies by efficiently combining density-functional theory (DFT), semiem-

pirical methods (SQM), and force field (FF) approximations. The scheme is systematically

expandable and can be integrated seamlessly with continuum-solvation models. Anharmonic

effects are included through the modified rigid-rotor-harmonic-oscillator (msRRHO) approxi-

mation and the Gibbs-Shannon formula for extensive conformer ensembles (CEs), which are

generated by a metadynamics search algorithm and are extrapolated to completeness. For the

first time, variations of the ro-vibrational entropy over the CE are consistently accounted-for

through a Boltzmann-population average. Extensive tests of the protocol with the two standard

DFT approaches B97-3c and B3LYP-D3 reveal an unprecedented accuracy with mean devia-

tions <1 cal mol−1 K−1(about <1–2%) for the total gas phase molecular entropy of medium-sized

molecules. Even for the hardship case of extremely flexible linear alkanes (C14H30–C16H34), er-

rors are only about 3 cal mol−1 K−1. Comprehensive tests indicate a relatively strong variation of

the conformational entropy on the underlying level of theory for typical drug molecules, inferring

the complex potential energy surfaces as the main source of error. Furthermore, we show some

application examples for the calculation of free energy differences in typical chemical reactions.

4.1. Introduction

A main goal of computational chemistry is to realistically model various chemical reactions and

predict their products. While those reactions are usually carried out at room temperature in

solution, quantum mechanical (QM) calculations are primarily conducted for isolated molecules

at absolute temperature zero. In order to compare theory with experiment, additional correc-

tions and computational steps are required. Calculations of thermodynamic properties at finite

temperatures are essential and if we neglect here the issue of solvation, the basic problem is an

efficient computation of the molecular entropy.3,32

As for most other thermodynamic properties, QM computations of the entropy are com-

monly based on frequency calculations in the harmonic oscillator (HO) approximation. This is

then usually extended by the rigid-rotor model, giving rise to the rigid-rotor-harmonic-oscillator

(RRHO) approach. A comparison of entropies calculated in this way to experimental values for

small molecules reveals an insufficient accuracy already for relatively rigid molecules mainly due

to anharmonicity effects.377–380 Because RRHO errors are often systematic, a common strategy

is linear or multi-parametric scaling of the HO vibrational frequencies to mimic the effect of

anharmonicity.381–387 However, even frequency scaling is unable to account for all of the missing

contributions to the entropy.

Approaches that compute the absolute entropy can be roughly categorized into two major

classes. The first go beyond the HO approximation and explicitly account for anharmonicities

in the description mainly for low-frequency, torsional normal modes. For example, this can be
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done by construction of one-dimensional (1D) potential energy surfaces (PES) along the respec-

tive normal modes, as in the uncoupled normal mode approach of Sauer and coworkers.388–390

This scheme was later adapted by Head-Gordon et al.380 to include a separate treatment of

vibrational and torsional modes (UM-VT). Advances have also been made for approaches that

investigate coupled torsional motions.391–393 Another method that includes the torsional anhar-

monicity via 1D-PES and takes multiple structures into account is the MS-T approach (and

its variants), developed by Truhlar and coworkers.394–396 Good results can be achieved with all

of the above schemes, but in practice the construction of the PES and the relevant modes is

technically involved, often only possible for relatively small molecules and unfeasible for routine

computational chemistry workflows.

A stronger focus on multiple minima (molecular configurations/conformers) leads to the sec-

ond class of approaches. Here, thermodynamic properties are approximated only by considering

the unique minima on the PES, which in the molecular case are the different conformations. In

the context of the mode following (MF) approaches discussed above, this can be understood be-

cause anharmonic torsional modes describe the transition between low-lying conformations.40,237

Although entropies and heat capacities are thermodynamic features encoded rather globally in

the shape of the PES397,398, conformations can be used to map the problem to well-defined

points on the PES. More specifically, part of the absolute entropy is computed by an informa-

tional thermostatistic partition function (Gibbs-Shannon entropy375,399) that only depends on

a given Boltzmann probability distribution of the conformers. This idea was pursued in the

so-called ”minima mining” approaches,376,400–402 where effects of anharmonicities are partially

absorbed into the conformational entropy. As for the MF methods, a wide variety of different

schemes exist,43,403–405 such as the so-called mutual information expansion (MIE)406,407, or the

maximum information spanning tree (MIST)408,409 procedures. More recent developments were

introduced by Suárez and coworkers.410–412 In their approach, the thermodynamic quantities

are obtained from snapshots along an extended molecular dynamics (MD) trajectory, which are

associated with unique molecular conformations. The vibrational contributions are averaged

over all snapshots, while the configurational entropy is calculated via an MIE. This is doable at

a force field (FF) level, but will become cumbersome for medium sized drug-like molecules at

higher theoretical levels. Note that essential parts of these schemes depend solely on structure

based descriptors (dihedral angles). Other studies in the literature,413 employ some kind of

flexibility measure to empirically derive molecular entropies and even more recently Hutchison

et al. have used structural descriptors to develop a promising machine learned estimation of

conformational entropy.414

In this study, we introduce an improved scheme that is developed from the minima mining

approach and is designed to work in an almost ”black box” fashion in combination with modified

RRHO calculations. Herein, for the calculation of conformational entropies the recently devel-

oped GFN2–xTB36,39 tight-binding MO and GFN–FF80 force field methods are employed to

keep computational cost under control and improve the PES description in comparison to many

standard FFs. Both methods are consistently available for all elements in the periodic table
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up to radon (Z=86). Below, we will first start with a general overview of the partitioning of

entropies and heat capacities, followed by a description of technical novelties and the automated

procedure used for the conformational part. After discussing general observations with regard

to entropy calculations, benchmark results for entropies and heat capacities are presented in

comparison with experimental gas phase values. In the last section we apply our scheme to

some biochemically relevant systems (drug molecules) and discuss a few prototypical chemical

applications.

4.2. Theory

The absolute molecular entropy in the Born-Oppenheimer approximation consists of transla-

tional (trans), rotational (rot), and vibrational (vib, also termed internal) parts

S = Strans + Srot + Svib . (4.1)

The most complicated vibrational contribution can be further decomposed according to

Svib = SHO + Sanharm + Sconf , (4.2)

where HO denotes the harmonic oscillator value, Sanharm its anharmonic correction and Sconf is

the conformational entropy arising from the population of different conformational minima. This

last term is relevant for many chemically important and often non-rigid molecules like alkanes

or typical drugs. Its efficient computation is the main point of this work. The corresponding

partitioning and formulas can be derived analogously for the heat capacity Cp for which only

the finally used equation is reported below (see Eq. 4.13).

If Sanharm is neglected or as usually absorbed into a scaled SHO term or partially accounted

for by Sconf (see below), Eq. 4.1 can be rewritten as

S = SRRHO + Sconf , (4.3)

where SRRHO refers to the usual rigid-rotor-harmonic-oscillator approximation for the rotation-

al/translational and internal parts, respectively. In the following, in order to avoid terminology

problems,43 we denote all parts of the entropy that are not included in SRRHO (or SmsRRHO, see

below) of a given reference structure as conformational or configurational entropy and will use

the terms interchangeably. The decomposition used above is physically motivated by the fact

that some vibrational anharmonicity effects, at least for not too large distortions, maintain the

equilibrium structure (bond stretching and many angle bendings), while many torsion motions

lead to new (conformational) minima with low barriers. This partitioning of the entropy into

vibrational and conformational parts was first introduced by Karplus et al., and has since been

used in many studies.43,401,404,415–417

A well-known problem of RRHO-based entropy calculations is that Svib tends to infinity for
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vibrational frequencies approaching zero. In actual calculations for larger, flexible molecules,

many low-frequency vibrational modes appear which are often better characterized by internal

rotations of functional groups rather than by stretching or bending vibrations. They are in

a typical range of 5–50 cm−1 and can spoil the computed entropy due to artificial numerical

errors and their strong anharmonicity components. Correction schemes exist which explicitly

treat such modes anharmonically in a coupled or uncoupled form380,396. These methods require

the costly computation of one-dimensional (1D) PES as well as definition of special internal

coordinates. In our opinion, while such methods can be beneficial and accurate for small to

medium sized and not too flexible molecules (≈ 20–30 atoms), they are not viable for a robust

and rather general treatment for systems with hundreds of atoms.

In 2012, one of us proposed to modify the treatment of the low-frequency part of the vi-

brational spectrum by taking a so-called rotor-approximation and continuously interpolating

between a rigid-rotor and vibrational description for each mode.42 Herein, the vibrational en-

tropy of a harmonic oscillator with frequency ν at temperature T is given by

SV = R

[
hν

kT

e−hν/kT

(1 − e−hν/kT )
− ln(1 − e−hν/kT )

]
. (4.4)

The rigid-rotor entropy for a free rotor is given by

SR = R

[
1

2
+ ln

{(
8π3µ′kT

h2

)1/2
}]

, (4.5)

where µ′ describes the dependence on the average molecular moment of inertia Bav and the

frequency of the normal mode

µ′ =
µBav

µ+Bav
, (4.6)

with µ = h
8π2ν

. In Eqs. 4.4–4.6, h is Planck’s constant, R is the gas constant, and k is Boltzmann’s

constant. The final continuously interpolated SmRRHO entropy (”m” for modified) is then given

by a sum over all normal modes

SmRRHO = Strans + Srot +

modes∑
i

[
SV

1 + ( τ
νi

)α
+

(
1 − 1

1 + ( τ
νi

)α

)
SR

]
, (4.7)

with α = 4 (introduced with the damping function in Ref. 140). This does not involve any com-

putational overhead compared to a standard HO calculation and merely requires the definition

of a vibrational energy threshold τ below that the rotor entropy instead of the vibrational one is

continuously taken. A related (but discontinuous) treatment has been proposed by Truhlar.418

A typical value used by us since years in standard thermochemical studies is τ = 50 cm−1. In

this work, we consider τ for the first time as an adjustable parameter to account for part of

the non-conformational anharmonicity effects. Furthermore, calculated harmonic frequencies

are linearly scaled by a factor νscal, as is common practice381–383 to account for deficiencies
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of the underlying method employed for the PES calculation and further anharmonicity effects

mainly in the high-frequency part. The only two empirical parameters included are adjusted

to reproduce experimental entropies for a benchmark set of mostly rigid molecules (see below).

For better distinction this modified RRHO treatment is in the following denoted by SmsRRHO

(”s” for scaled).

The major aim of this work was to find a robust approximation to Sconf which is already

significant for medium flexible molecules (see section 4.4.4). We build upon the original idea of

Gilson and co-workers376 termed ”minima mining” or ”mixture of conformers” strategy, which

has later been applied to organic molecule entropy calculations by DeTar401 and Guthrie402.

The basic formula reads

Sconf ≈ Smix = −R
conf∑
i

pi ln pi (4.8)

and approximates Sconf by the conformer mixing entropy Smix summed over a conformer en-

semble. The thermal populations p at absolute temperature T are given by

pi =
gie

−Eiβ∑
gje−Ejβ

, (4.9)

where β = 1
kT , Ei is the energy of the equilibrium structure of conformer i, and gi is a general

state degeneracy. The conformational entropy depends on the level of theory through the cal-

culated populations entering the Gibbs-Shannon entropy formulation in Eq. 4.8, which in turn

depend directly on the equilibrium (free) energies. But also for other configurational entropy

approaches, that are usually cited as being purely informational,43,411 there exists a bias towards

the underlying method used for the generation of molecular structures, for example by MD sim-

ulations. This is especially problematic for very crude approximations of the conformational

entropy, e.g., based only on the number of conformers Nconf according to Sconf ≈ R ln (Nconf ).

This approximation is used in some studies402,419 and is appealing due to its simplicity. How-

ever, while this formulation may be used for very simple molecules, it breaks down for more

complex PES. Further discussion of this point is given in Appendix A3.

The sum in Eq. 4.8 is taken over all significantly populated, distinguishable structures repre-

senting a so-called generalized Boltzmann distribution.399 The problem of this procedure (also

termed Gibbs-Shannon entropy based procedure) is that not only an almost complete conformer

ensemble has to be found but additionally, it should be ”pure”, i.e., free of so-called rotamers.

In this case for molecules with non-degenerate electronic ground states, all gi are unity. Ro-

tamers are structures indistinguishable by any nuclear spin-independent quantum mechanical

observable. They arise from rotation around covalent chemical bonds (or other inversion-type

processes) that interchange nuclei belonging to the same group of nuclides, as for example the

interchange of protons at a methyl group by rotation.

In this work, we propose and implement for the first time an automatic algorithm that gen-

erates a theoretically proper ensemble of unique conformer structures required for the accurate

computation of Sconf . For the conformer search problem, we employ our recently described
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CREST program33 (abbreviated from Conformer-Rotamer Ensemble Sampling Tool), which is

based on metadynamics simulations employing on-the-fly computed quantum mechanical tight-

binding PES.33,41 We assume at this point that the conformer-rotamer ensembles (CRE) ob-

tained from CREST are sufficiently complete and the energies Ei are accurate. If this is really

the case for very flexible molecules (e.g. long alkanes) can be tested by comparison of computed

and experimental entropies and heat capacities (see Sec. 4.4.2 and 4.4.3). Note that our ap-

proach works with any (on-the-fly computed) PES and hence, at least in principle, the errors

introduced by the underlying method for the PES and the other approximations to the entropy

problem could be decomposed.

The CREST algorithms were originally developed to generate rotamer containing ensembles

and the related nuclei-exchange information for the simulation of NMR spectra40. Hence, it

seems straightforward not only to identify rotamers, but to extend the algorithm to automat-

ically compute the proper degeneracy number gi. However, as mentioned above, conformer

ensembles (CE) must be free from the indistinguishable rotamers to be compatible with entropy

calculations. Therefore, gi are treated as unity in the usual case.

The only exception here are symmetrical molecules that can form “enantiomeric” (i.e., in

principle distinguishable) conformers through rotation of bonds. A typical case is the gauche

conformer of n-butane. These geometrical enantiomers are degenerate and would be falsely

classified as rotamers in our previous implementation. Effectively, this introduces a factor of

g′i = {1, 2} instead of gi in the degeneracy, depending on if the formation of a geometrical

enantiomer is possible. Our new approach considers this problem for the first time in a correct

and automated way. Inserting this into the standard entropy expression for degenerate states215

leads to

S′
conf = R

[
ln
∑

g′ie
−Eiβ +

∑
g′i(Eiβ)e−Eiβ∑
g′ie

−Eiβ

]
. (4.10)

The correct SmsRRHO entropy is a population average over the CE, analogously to other phys-

ical observables. Unfortunately, the many costly DFT geometry optimizations and frequency

calculations will quickly become the computational bottleneck for moderately sized systems.

Therefore, as a further approximation, we compute SmsRRHO at the DFT level for the lowest

conformer and add the respective ensemble contribution as a thermostatistical average over all

populated conformers at a less computationally demanding, lower theoretical level. The arising

SmsRRHO term is given by

SmsRRHO =
(∑

piSmsRRHO,i

)
− SmsRRHO,ref , (4.11)

where SmsRRHO,i is the absolute msRRHO entropy of the conformer calculated at the low force

field or SQM level to avoid very many (high level/DFT) HO calculations. SmsRRHO,i and the

free energies (Gi) are only explicitly calculated for the lowest ≥ 90% populated (based on initial

total energies Ei) conformers while for all others, the average is taken. The populations pi

refer to Eq. 4.9 and are calculated using Gi from the corresponding msRRHO calculations. For
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convenience, we subtract the entropy of a reference structure SmsRRHO,ref in Eq. 4.11 such

that SmsRRHO can be added directly taken as a further correction to the SmRRHO result taken

from any standard quantum chemistry code. SmsRRHO,ref typically refers to the DFT reference

structure, for which vibrational frequencies are calculated at the SQM or FF level. To avoid

changes to the geometry and appearance of imaginary vibrational modes, we here additionally

make use of a new procedure called Single Point Hessian (SPH),22,420 for which some details

are given in Appendix A3. Note that if SmsRRHO is calculated at the same level as SmsRRHO,

one would arrive at the correct population average because SmsRRHO and SmsRRHO,ref exactly

cancel each other. The treatment would then be exact.

Thus, our final working equation for the molecular entropy is given by

Sconf = S′
conf + SmsRRHO . (4.12)

The corresponding formula for the heat capacity at constant pressure is

Cp,conf = R

(∑
i gi (Eiβ)2 e−Eiβ∑

i gie
−Eiβ

)
−R

(∑
i gi (Eiβ) e−Eiβ∑

i gie
−Eiβ

)2

, (4.13)

and the enthalpy is

[H(T ) −H(0)]conf = RT

∑
i gi (Eiβ) e−Eiβ∑

i gie
−Eiβ

. (4.14)

Note that gi is used in Cp and H(T ) − H(0) instead of g′i. In our opinion, basing Sconf (and

related properties) directly on a given level of theory via the Gibbs-Shannon entropy of an

ensemble (Eq. 4.8 and 4.10) provides a genuine understanding of the quantity in accordance

with chemical intuition. Furthermore, it can be very well coupled to automated conformational

search tools, which are anyway necessary for accurate computation of other physical observables.

4.3. Implementation and Computational Details

4.3.1. Extrapolation to Ensemble Completeness

For very flexible systems (e.g. long alkanes), the number of accessible conformers Ω is roughly

proportional to Ω ≈ 3R, where R is the number of freely rotatable bonds (commonly associated

with the number of sp3-sp3 carbon single bonds).419 In principle, all conformers, i.e., the com-

plete ensemble and the respective energies are required for the calculation of Sconf but even for

only moderately sized systems this number is prohibitively huge.

Practically, the obtained ensemble quality depends mostly on the run time t of the (bi-

ased) molecular dynamics (MD) in CREST. Basically, it is the number of optimized snap-shot

structures gathered over all runs and will converge to a complete CE with the length of the

conformational search. On the other hand, the conformational entropy also exhibits predictable

behavior with regard to increasing ensemble completeness. If the lowest energy conformer is

known, adding higher-lying conformers to the ensemble can only increase the entropy. If many
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of the low-energy structures are already found, the entropy increase for additional states is

smooth and it seems possible to extrapolate to completeness without explicit knowledge of all

conformers. The pre-requisite for this is the generation of enough intermediate points, i.e.,

consecutive conformational ensembles with systematically improved quality. A smooth and con-

tinuous convergence of the entropy to its maximum value can only be observed if conformers

are added consistently from all regions of the PES (see Sec. 4.4.2 for examples).

In the implementation of the algorithm, information from incomplete CEs of consecutive

iterations is used for an extrapolation of the entropy according to

S′
conf (x) − S′

conf (0) = p1 (1 − exp (p2x
p3)) , (4.15)

where x is the iteration number, and S′
conf (0) refers to the result of the first initial conformer

ensemble from the new CREST workflow (see Sec. 4.3.2). The parameters p1, p2 and p3 are

fitted automatically to the available data points from each entropy sampling run employing

the Levenberg-Marquadt421,422 algorithm. In summary the extrapolation can be seen as an

unsupervised learning procedure used to correct for incompleteness.

4.3.2. Algorithmic and Technical Details

The conformational entropy calculation as described above is performed with the recently pub-

lished CREST program.33 A special run type was implemented for this purpose, where the focus

is set to an extensive sampling around the global and low-lying local minima. Ideally the cal-

culation of Sconf should be conducted from the already known global minimum conformer, e.g.,

obtained from another conformational search with default settings in CREST. The enantiomer

degeneracy number gi is obtained automatically as described in detail in Appendix A3. For the

msRRHO part, any quantum chemical method or even force fields can be applied. Here, we use

the composite DFT method B97-3c180 and the well-known B3LYP-D3 functional55,172,173 in a

standard def2-TZVP basis.338 Molecular symmetry numbers are automatically determined for

each conformer entering SmsRRHO and should be also included in the DFT frequency evaluation.

The few simple steps required for the calculation of the absolute entropy are

1. Run CREST in default mode on a starting structure to find the lowest conformer

2. Optimize the geometry of this conformer with DFT, compute the Hessian matrix from the

DFT structure and use the HO vibrational frequencies to calculate SmsRRHO

3. Run CREST in entropy mode on the lowest-energy conformer and employ the DFT refer-

ence structure for SmsRRHO, resulting in Sconf

4. Compute S = SmsRRHO + Sconf

Note that for large systems step two could in principle also be conducted at a low theory

level (SQM or FF). However, because step three is usually the computational bottleneck, it

91



4. Calculation of Absolute Molecular Entropies and Heat Capacities made simple

is recommended to take SmsRRHO from a more accurate DFT treatment. In general, this

partitioning allows systematic improvements of the scheme because the different contributions

can in principle be calculated at any level of theory.

If no low-lying conformers (relative energy <1-2 kcal/mol at ambient temperature) are found

in the first step, the entropy run is not necessary and the plain SmsRRHO value can be taken. The

default setup for the metadynamics bias potentials in the entropy mode and further technical

settings were empirically determined on a few test cases similar to the optimization of the run

parameters in a conventional conformer search run41 (see CREST documentation and source

code423). Note that the MD runs are by default initiated with random numbers and hence

the details of the obtained CE vary stochastically. For larger, very flexible molecules with a

complicated PES this can amount to stochastic variations of 2–5% for Sconf (see also Section 4.4.4

for discussion).

The general workflow for the computation of Sconf in CREST is outlined in Fig. 4.1. The

metadynamics (MTD) simulations

"static" metadynamics (sMTD) 

converged
estimates?

restart for new
lowest conformer

no yes
• calculate

SconfS'• extrapolate + SmsRRHOSconfS'

= Sconf,final

geometry optimization

sorting

conformers rotamers

estimate Sconf,est = -R Σi pi lnpibiased potential energy surface
to exclude old conformers

SmsRRHO

Figure 4.1.: Schematic representation of the workflow used for the computation of Sconf . See
text for details.

procedure is designed to work fully automatic and to provide intermediate ensembles for entropy

extrapolation as described above. For the input structure, the run time t of the biased MD is

determined automatically from a covalent and non-covalent flexibility measure (see Sec. 4.4.4 and

Appendix A3). To create an initial structural ensemble, 24 metadynamics (MTD) simulations

are conducted with several different bias parameters as in the default CREST runtype. The

structural ensemble obtained from this step is later used as the reference to calculate S′
conf (0) (see

Eq. 4.15). Structures are sorted according to their relative energy, structural Cartesian RMSD,
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and rotational constants to distinguish between unique conformers and degenerate rotamers, as

described in Ref. 33.

From the CEs two sets of structures are extracted via a combined principle component anal-

ysis (PCA)424,425 and k-Means clustering426,427 approach, using dihedral angles as geometrical

descriptors. The first set of structures, which always consists of 36 structures, is used as input

for further metadynamic simulations. The other set consists of a number of structures that

depends on the molecular flexibility and current ensemble size. This second ensemble is used

to generate a global bias potential in the metadynamics simulations and, in contrast to the

initial MTD simulation, is not updated with new bias structures. The idea here is to apply

this new unchanged bias similar to a global potential used in classical umbrella sampling428

or basin-hopping algorithms429,430 to efficiently block entire energy basins of the PES and di-

rect the conformational search to new minima. For better differentiation, this is referred to

as static metadynamics simulation (sMTD). The ensemble obtained by sMTD is merged with

the previous ensemble and a preliminary conformational entropy Sconf,est is determined. If no

change (within a 0.5 % threshold) in Sconf,est and the total number of unique conformers (within

2 %) is observed, the final conformational entropy is calculated. Otherwise, a new iteration of

36 sMTDs is conducted using input structures and static bias structures determined from the

updated ensemble. Furthermore, with each iteration the number of static bias structures is

increased. This procedure is repeated until convergence is reached both with regards to Sconf,est

and the number of unique conformers in the ensemble. For the final calculation of S′
conf , an

extrapolation as described in Sec. 4.3.1 is conducted. This new algorithm in CREST can also be

used for normal conformer search with the keyword --v4. The default convergence thresholds

were conservatively chosen to provide good reproducibility (see section 4.4.4), but can manually

be adjusted.

A problem may appear if the rather approximate PES used in CREST (here GFN2–xTB or

GFN–FF) is substantially different from the DFT PES (here B97-3c or B3LYP-D3/def2-TZVP).

This is indicated by different lowest-energy conformers and significant energetic re-ordering of

the CREST ensemble obtained with the GFN methods after refining (re-optimizing) it with the

respective DFT methods. In such cases, we suggest to use the SmsRRHO value obtained for the

lowest DFT conformer and corresponding Sconf from the GFN ensemble. If the lowest GFN

and DFT conformer structures agree qualitatively, this approximation seems to be reasonable

according to our experience.

Ideally, the PES employed for the initial conformational search and the one used for automatic

Sconf calculation should be the same. Here, we employ the GFN2–xTB tight-binding method39

and the recent general force field GFN–FF80 and compare the results. The latter speeds-up the

CREST calculations by a factor of 10–30 for typical cases with 50–100 atoms. The SmsRRHO

value is always computed with B97-3c and a frequency scaling factor νscal of 0.97, or B3LYP-

D3/def2-TZVP with a frequency scaling factor νscal of 0.98. Test calculations employing GFN2–

xTB in this step yield somewhat less accurate results and, because the calculation of Sconf is

the computational bottleneck, do not reduce the overall computational times significantly. In all
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frequency calculations, a SmsRRHO cut-off value of τ = 25 cm−1 was employed. τ and νscal (for

the DFT methods) were adjusted to perform equally well in combination with both GFN–FF

and GFN2–xTB. CREST is essentially a driver for the xtb program431 which is used for all

GFN calculations. For the DFT calculations, TURBOMOLE 7.4432,433 is used throughout.

4.3.3. Benchmark Sets

For the initial tests and determination of the empirical parameters τ (msRRHO cut-off) and

νscal (DFT frequency scaling factor) we employ the benchmark set of Li, Bell and Head-Gordon

(LBH).380 This LBH set consists of 39 organic molecules ranging from ethane (smallest) to

n-octane (largest) and is shown in Appendix A3. For cross-validation we extended this set

by 23 similar, but mostly larger molecules ranging from cyclohexane (smallest) to n-dodecane

(largest). This set is termed AS23 (Absolute Entropy) from now on and is described also

in Appendix A3. The corresponding experimental gas phase reference entropies and Cp(T )

values are taken from Refs. 434,435. Studies are available in the literature presenting much

larger collections of experimental reference data, e.g., in Ref. 419. However, these databases

contain mostly small, rather rigid systems (e.g., substituted aromatic compounds) which are

not in the focus of our study. Nonetheless, the combined LBH and AS23 sets should sufficiently

representative for benchmarking absolute entropies. To show possible limitations of our approach

a set of maximally flexible linear alkanes (up to C18H38) is investigated separately.

For the heat capacities, we additionally test the temperature dependence in a typical range of

200–1500 K, while for entropies only the value at 298 K is considered. For this a subset of the

LBH molecule set is used, as described in Ref. 380. Note that the numerical values and errors

for entropy and Cp are similar and thus, the conclusions for the temperature dependence of the

latter should also apply for the entropy.

Furthermore, in Sec. 4.4.4 we present a case study for 25 pharmaceutical (Clinical Drug)

molecules, denoted CD25. There are no experimental entropy values available for this set, but

differences between the ensembles (e.g., gas phase versus implicit solvation) and different PES

employed to calculate the entropy can be studied theoretically. We suggest this set also as a

challenging test for other approaches.

4.4. Results

4.4.1. General Considerations

The absolute entropy is a complicated property which includes various terms of different mag-

nitude that can be qualitatively interpreted.43,376 As an example the suggested partitioning of

the absolute entropy for two molecules is shown in Tab. 4.1.

The largest portion of the entropy results from the vibrational, rotational, and translational

degrees of freedom (DOF), as commonly obtained by standard quantum mechanical frequency

calculations employing the RRHO approximation. Contributions from translational and rota-
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Table 4.1.: Contributions to the total molecular entropy for n-decane and tamiflu. RRHO and

msRRHO values correspond to the B97-3c level of theory, S′
conf and SmsRRHO were

calculated at the GFN2–xTB level. Relative contributions are given in percent next
to the respective contribution.

S cal mol−1 K−1

contribution n-decane tamiflu

RRHO 116.4 169.0
msRRHO 117.3 (89.9%) 173.4 (91.6%)

vib. 47.2 95.4
rot. 29.4 34.9
trans. 40.8 43.1

anharm. (msRRHO-RRHO) 0.9 4.4
S′
conf 12.5 (9.6%) 13.7 (7.2%)

SmsRRHO 0.7 (0.5%) 2.3 (1.2%)

sum 130.5 (100.0%) 189.4 (100.0%)
exptl. 130.4 —

aValues taken from Ref. 380.

tional DOF have the same order of magnitude (about 30-40 cal mol−1 K−1 in Tab. 4.1) for all

chemical systems of about this size (mass). In contrast, vibrational contributions quickly exceed

several hundred cal mol−1 K−1 for molecules >100 atoms. In the important drug-size regime, the

vibrational entropy is clearly the largest contribution and hence its accuracy depends also on how

good anharmonicities are described. As defined in Sec. 4.2, the effect of anharmonicities can be

estimated from the difference between the entropy calculated by the new msRRHO and standard

RRHO scheme (i.e., without modifying τ and frequency scaling). Looking at the two example

molecules, decane shows only a relatively small RRHO-msRRHO difference of 0.9 cal mol−1 K−1

while tamiflu exhibits a much higher anharmonic contribution of 4.4 cal mol−1 K−1. This is in

line with chemical intuition, as one would expect many more anharmonic ro-vibrational modes

for a complicated drug molecule like tamiflu than for a rather simple linear structure composed of

only CH and CC bonds. In any case, the anharmonicity is non-negligible and must be accounted

for by either τ and νscal or some more elaborate, explicit scheme. With increasing flexibility

of the molecule the configurational contribution increases drastically and in fact, Sconf can be

taken as a molecular flexibility measure (see Sec. 4.4.4).

For decane and tamiflu the conformational entropy S′
conf accounts for 12.5 and 13.7 cal mol−1 K−1,

respectively. Though decane (32 atoms) is smaller than the drug molecule tamiflu (50 atoms),

their conformational entropy values are rather similar. The simple explanation for this is the

higher flexibility of decane, which is typically indicated by a larger relative contribution of S′
conf

to the absolute entropy for similar sized structures. In general S′
conf will be close to zero for the

most rigid molecules or molecules with only a few distinct conformers, but adds a significant

portion (ten or more percent) to the absolute entropy for highly flexible molecules.

The last contribution to Sconf is the population average SmsRRHO. This term may provide
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insight about the variation of SmsRRHO within the ensemble. It will be small if all contributing

conformers have a similar ro-vibrational entropy as the reference structure (e.g. for decane with

0.7 cal mol−1 K−1), or yields a large contribution in the opposite case (tamiflu, 2.3 cal mol−1 K−1).

For the latter, computed msRRHO entropies can vary by several entropy units for different

conformations rather independently of the chosen τ or νscal values. An example is provided in

Fig. 4.2, where SmsRRHO was calculated for 299 (random) conformers of tamiflu at two different

theoretical levels (GFN–FF and B97-3c). Here, entropies at the GFN–FF level are overestimated

Figure 4.2.: Spread of entropies calculated in the msRRHO approximation at the GFN–FF (red)
and B97-3c (blue) level. On the right side box plots for the two methods are given
for an easier visualization of the metric averages and shifts.

by 4 cal mol−1 K−1 on average compared to the more accurate B97-3c level. Both methods show

a similar spread of the SmsRRHO values, which range approximately 6 cal mol−1 K−1 from lowest

to highest value thus reconfirming the use of SmsRRHO. Hence, the validity of an approximate

SmsRRHO obtained at SQM or FF level depends on the performance for relative msRRHO

entropies and may be used if a shifted (cf. Eq. 4.11) population average similar to the higher

reference DFT level is expected.

Another novelty of our approach is the extrapolation of S′
conf to the ensemble completeness

as discussed in section 4.3.1. The corresponding procedure requires systematically and smoothly

improving CE quality in each iteration. In practice, the required number of iterations is very

molecule specific but convergence is typically achieved within 5–15 iterations (see Fig. 4.3 for

some examples). The entropy difference between the last iteration and the extrapolated value

is often relatively small but very significant for very flexible systems with huge ensembles. For

example the CE of n-octadecane contains over half a million conformers within 6 kcal mol−1 at

the last iteration. In a more typical case the entropy gain due to the extrapolation is smaller
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Octadecane

Tamiflu

Apixaban

Figure 4.3.: Examples for the extrapolation of conformational entropy at the GFN–FF level of
theory. The iteration number x refers to the sMTD iteriation cycle depicted in
Fig. 4.1.

than one entropy unit (1 cal mol−1 K−1). Apixaban and tamiflu depicted in Fig. 4.3 are such

examples, but nonetheless exhibit different convergence behavior. For small molecules the ex-

trapolation is mostly not necessary because the entire ensemble will be found during the initial

sampling procedure. From another viewpoint, the extrapolation scheme might rather be seen

as a technical supplement for reduction of stochastical noise between the iterations and con-

sequently, an improved prediction the final Sconf value. Note, that 3 cal mol−1 K−1 ”entropy

units” refer to the usual 1 kcal mol−1 chemical accuracy at room temperature. Thus, with an

accuracy for S better than about 1-2 cal mol−1 K−1, the electronic energies of the molecules from

DFT or wave function theory (WFT) become the accuracy bottleneck in typical thermochemical

calculations.

4.4.2. Benchmarking Absolute Entropy

Recently, Head-Gordon et al. published the LBH set containing 39 organic molecules and their

experimental gas-phase entropies, which provides an excellent reference for the evaluation of ab-

solute entropies.380 For a more thorough evaluation the set was extended by the AS23 molecules.

Entropy values for the two sets were calculated for four combinations of theory levels. These are

SmsRRHO contributions obtained with either B97-3c or B3LYP-D3/def2-TZVP and the confor-

mational entropies calculated at GFN–FF or GFN2–xTB level and with τ and νscal values as

described above. Parity plots for the different levels of theory with reference to the experimental

data are given in Fig. 4.4 and the corresponding statistical data are provided in Tab. 4.2.

The excellent performance of our approach is obvious from both Tab. 4.2 and the parity plots

(Fig. 4.4). To the best of our knowledge, the RMSD of 0.79 cal mol−1 K−1 calculated at the

B97-3c+Sconf (GFN–FF) level refers to the best performance of a theoretical method for this

benchmark set ever reported in the literature. For comparison, the best performing method

discussed in Ref. 380, (UM-VT, a DFT based MF approach) has a RMSD of 1.24 cal mol−1 K−1.

For the combined LBH+AS23 set the errors are slightly larger (RMSD of 1.1–1.3 cal mol−1 K−1).
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Figure 4.4.: Parity plots for calculated and experimental entropies for all molecules of the LBH
and AS23 set. The combinations of B97-3c and B3LYP-D3/def2-TZVP SmsRRHO

values with GFN2–xTB and GFN–FF Sconf values, respectively are shown. For
reference also the plain SmsRRHO entropies are plotted. The solid line corresponds
to perfect correlation between theory and experiment. Error bars of 3 cal mol−1 K−1

are given as dashed lines and correspond to chemical accuracy at T = 298 K.

Table 4.2.: Mean deviation (MD), mean average deviation (MAD), root-mean-square deviation
(RMSD), and standard deviation (SD) for absolute entropies obtained at different
theoretical levels in comparison to experimental data. All values correspond to stan-
dard entropies at 298.15 K in cal mol−1 K−1. Three outliers have been removed for
the final GFN–FF results (see text).

SRRHO B97-3c B3LYP-D3/TZ UM-VTa

Sconf GFN–FF GFN2–xTB GFN–FF GFN2–xTB

LBH set
MD 0.32 0.23 0.23 0.09 -0.52
MAD 0.59 0.65 0.60 0.65 0.86
RMSD 0.84 0.91 0.85 0.93 1.24
SD 0.79 0.89 0.83 0.93 1.14

full set
MD 0.21 0.15 0.24 0.07 —
MAD 0.73 0.83 0.73 0.92 —
RMSD 1.09 1.19 1.16 1.29 —
SD 1.08 1.19 1.15 1.30 —

aValues taken from Ref. 380.

Yet, all of the four tested method combinations are well below the targeted chemical accuracy

of 3 cal mol−1 K−1. A similar performance on a set of 128 experimental absolute entropies was

reported by Guthrie402 using B3LYP/6-31G**, with an RMSD of 1.29 cal mol−1 K−1. Larger,
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flexible molecules in this set are identical with the ones in the LBH+AS23 set. However, Guthries

benchmark set is mainly composed from rather rigid structures for which the SRRHO entropy is

already quite accurate.

For both B97-3c and B3LYP-D3, deviations between the calculated SmsRRHO (or SRRHO

values, data not shown) and the experimental value increase with the size and flexibility of the

molecule. Only by including the conformational contributions it is possible to reach chemical

accuracy. Overall, the different method combinations show fairly similar performance, although

some trends can be recognized. A good performance of B3LYP-D3 is unsurprising as it is well

known to be among the best performing DFT functionals for the calculation of vibrational prop-

erties381,382 and was basically constructed for this purpose.55 Although the (computationally

cheaper) B97-3c method performs slightly better than B3LYP-D3/def2-TZVP, this is sensitive

to the choice of τ and νscal and furthermore depends on the technical settings of the DFT

calculations, like the choice of the grid or SCF convergence thresholds.436 Therefore, a clear

preference for one out of the two tested methods is difficult to draw.

The same is true when comparing the two assessed methods for calculating Sconf . Sconf

strongly depends on the shape of the PES which can be rather different between a force field and

a quantum chemical method. Since GFN2–xTB has the more physically reasonable PES of the

two methods, usually a better performance should be expected. However, GFN–FF seemingly

outperforms GFN2–xTB in combination with both B97-3c and B3LYP-D3 but this is mainly due

to the removal of three strong outliers (3,3-dimethylpentane, 3,3-diethyl-2-methylpentane and

perfluorheptane) that were discarded from the GFN–FF error statistics. For all three molecules

GFN–FF produces some artificially low-lying conformers resulting in an overestimation of the

conformational entropy (7 %, 5 % and 3 % respectively). Only one additional outlier, triethy-

lamine (TEA), is observed for the combined LBH+AS23 set, but since it is present for all four

method combinations, it may not be attributed to a wrong conformational energy landscape.

The origin of the error for TEA (overestimation by approximately 5 %) remains unknown, but

it has not been removed from the statistics presented in Tab. 4.2. Without TEA the statistics

would improve even further to low MADs and RMSDs of 0.77 and 1.04 cal mol−1 K−1 for B97-3c

and 0.87 and 1.18 cal mol−1 K−1 for B3LYP-D3 in combination with Sconf (GFN2–xTB), respec-

tively. The best overall result for the LBH+AS23 set after removing all outliers is obtained with

B97-3c+Sconf (GFN–FF). Interestingly, our SmsRRHO+Sconf values tend to slightly overestimate

compared to the experimental data, while the opposite holds for approaches that go beyond the

harmonic approximation, such as UM-VT.380 This is indicated by the mean deviation, which

for the LBH benchmark set is always positive for our approach and always negative for differ-

ent version of the methods presented in Ref. 380. Tentatively, this may be attributed to some

missing (configurational) contributions in UM-VT and/or to our strict separation of harmonic

vibrational terms and conformational terms. The latter mainly concerns low frequency modes

that are correlated to conformational transitions and which were a key motivation for the mR-

RHO method with the rotor cut-off τ as an adjustable variable. In other schemes, for example

the one introduced by Zheng and Truhlar,396 attempts have been made to tackle this problem
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by explicitly combining the rotational, vibrational, and confromational partition function.

Linear Alkanes

Computational and accuracy limits of the presented approach are explored for the example of

n-alkanes of increasing size, up to C18H38 (see Fig. 4.5). Such extremely large flexible systems

have not been considered before quantitatively.

Figure 4.5.: Parity plot for calculated and experimental entropies for n-alkanes from ethane
to octadecane. All values correspond to B97-3c SmsRRHO, either combined with
GFN2–xTB or GFN–FF Sconf , or without the conformational contribution. For
C14H30 up to C18H38 two values are shown each, which correspond to the competing
linear and folded global minima (see text for details). As example the folded and
linear minimum energy conformers for hexadecane are depicted.

The experimental entropy values434,435 show a strict linear increase with the number of carbon

atoms and the reproduction of this relation represents a challenging task for theoretical methods.

Both the RRHO as well as the msRRHO models increasingly underestimate the entropy with

growing system size leading to a strongly non-linear behavior and errors of more than 20% for

the largest alkanes considered. The major part of this difference can be accounted for by Sconf .

In fact, up to tetradecane (C14H30), the computed values are all still within chemical accuracy of

3 cal mol−1 K−1 upon adding the conformational term. However, other effects start to come into

play at this system size. The global minimum of C14H30 and of smaller n-alkanes in the gas-phase

always correspond to a linear (unfolded) structure. As intramolecular interactions, in particular

London dispersion, become stronger with increasing system size, other conformers will be fa-
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vored eventually. For C14H30 up to C18H38, a competing folded conformer (in which dispersion

interactions are maximized) is observed.437,438 The folded conformers are energetically similar

to the respective linear structure but differ strongly in their msRRHO entropy. Depending on

the applied theoretical level, either conformation could be the global gas-phase minimum, which

makes the choice of Sref in Eq. 4.11 ambiguous and could introduce errors. In the ideal case,

the variations between different reference conformers in SmsRRHO and SmsRRHO would cancel

and lead to the same conformational entropy regardless of the chosen global minimum. This is

observed for C18H38 and Sconf calculated at the GFN–FF level and would always be the case

if SmsRRHO (see Eq. 4.11) is calculated at the same level as SmsRRHO. For C16H34 variations

between the different theory levels are larger and only the GFN2 conformational entropy for the

folded conformer as reference is still within chemical accuracy. Nevertheless, accurate entropies

of extremely flexible large alkanes have been consistently obtained for the first time and this can

be considered as a major achievement even though some issues for C18H38 remain. The detailed

reasons for the deviations for the ”worst cases” C16H34 and particularly C18H38 are not fully

clear at this point but originate tentatively from the Sconf part.

Technical size limitations of our approach should also be noted. The computational cost

increases strongly with molecule size at high flexibility and can make the conformational entropy

calculation unfeasible for larger molecules. At the GFN2 level, the Sconf calculation for C16H34

already takes a few hundred hours of computation time, and hence, we did not attempt to

calculate C18H38 at this level of theory. With the much cheaper GFN–FF method, on the other

hand, the entropy for both C16H34 and C18H38 can still be computed roughly ”over night” on

a standard CPU node with 14 cores. Somewhat larger (up to 100-200 atoms) but less flexible

molecules (e.g., typical drugs, see Sec. 4.4.4) are also feasible at the GFN–FF level due to

the shorter MD run times required. Neither of these system sizes can routinely be treated by

DFT based MF approaches. In summary, the combination of SmsRRHO calculations with the

specialized conformational sampling procedure for Sconf , and the SmsRRHO averaging performs

excellently and is on par with or even better than complicated and computationally demanding

mode based approaches. Improvements of our approach may be necessary for molecules with

a very large number of internal rotors at least if absolute values are considered and hence, a

beneficial error compensation is not given.

4.4.3. Benchmarking Heat Capacity

Heat capacities and enthalpies (see Eqs. 4.13,4.14) depend less strongly on the ensemble partition

function than the entropy. Hence, it is sufficient to calculate Cp and enthalpies [H(T ) −H(0)]

only for a single converged ensemble without extrapolation. The performance of our approach

was evaluated on a subset of the LBH benchmark with 44 experimental heat capacities for linear

and branched alkanes at different temperatures between 300 and 500 K. For reference, we again

compare with the UM-VT results provided in Ref. 380. Parity plots for the comparison with

experimental data are shown in Fig. 4.6 and the corresponding statistical data are given in

Tab. 4.3.
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Figure 4.6.: Parity plots for calculated and experimental heat capacities for a subset of the LBH
set. Method combinations of B97-3c and B3LYP-D3/def2-TZVP Cp,msRRHO values
with GFN2–xTB and GFN–FF Cp,conf values are shown. UM-VT values were taken
from Ref. 380.

Table 4.3.: Mean deviation (MD), mean average deviation (MAD), root-mean-square devia-
tion (RMSD) and standard deviation (SD) for heat capacities obtained at differ-
ent theoretical levels in comparison to experimental data. All values are given in
cal mol−1 K−1.

Cp,RRHO B97-3c B3LYP-D3/TZ UM-VTa

Cp,conf GFN–FF GFN2–xTB GFN–FF GFN2–xTB

MD 0.05 0.17 -0.39 -0.11 -0.05
MAD 0.47 0.57 0.47 0.25 0.68
RMSD 0.58 0.69 0.54 0.32 0.78
SD 0.58 0.68 0.38 0.31 0.79

aValues taken from Ref. 380.

Excellent performance is achieved for all assessed methods with RMSDs and SDs (much)

smaller than 0.7 cal mol−1 K−1. In Fig. 4.6, virtually all data points are within an error range of

1 cal mol−1 K−1. The choice of the theoretical level used for the msRRHO calculations seems to

be less important as both B97-3c and B3LYP-D3 perform well. Looking at the corresponding

mean deviations B97-3c tends to slightly overestimate Cp while B3LYP-D3 shows the opposite

trend. This is attributed to the choice of the frequency scaling factor and the cut-off value τ ,

which were adjusted for the computation of entropies. Accordingly, the results could be seen as
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further evidence for the conceptional validity of this treatment. At ambient temperature absolute

values of heat capacities are smaller than absolute values for entropies. The corresponding

conformational contributions are mostly not the accuracy bottleneck for the heat capacities but

can be significant at lower temperatures. For example in the LBH subset, the largest Cp,conf

values are obtained only for the most flexible systems (n-heptane, n-octane) and even then it

accounts only to about 2–3 cal mol−1 K−1. However, it should be noted that the errors in the

standard RRHO treatment will quickly exceed the desired 3 cal mol−1 K−1 range.

Temperature Dependence of the Heat Capacity

As Cp,conf converges to zero with increasing temperature (all conformers are equally populated

for T → ∞), the accuracy of the calculated heat capacity for large T depends mostly on the

underlying frequency calculation. n-Octane is shown as an example in Fig. 4.7a, in compar-

ison with experimentally derived439 heat capacities for in the temperature range from 300 to

1500 K. For temperatures below 500 K, the RRHO approach systematically underestimates the

Cp values, which is improved by the msRRHO treatment. To reach chemical accuracy for this

temperature regime, adding the conformational contribution is mandatory. With increasing tem-

perature the unmodified RRHO value starts to overestimate the experimental Cp. Because the

msRRHO treatment always increases the heat capacity in comparison to the RRHO value, no

improvement is obtained with our approach for very high temperatures. For n-octane at 1500 K

this leads to an overestimation of 7 cal mol−1 K−1 in comparison to experiment. However, it

should be noted that the high temperature reference values in Fig. 4.7 are derived indirectly

from low temperature experimental data439,440 and hence these data points may have a larger

uncertainties than the low temperature ones. In fact, other references can be found that differ

from the here shown data and are slightly closer to the computed values.441 In the chemically

important temperature regime of up to 500 K, where our approach is very accurate, a significant

conformational contribution to the total Cp value is obtained (for a few examples see Fig. 4.7b).

The temperature dependence of Cp,conf (T ) is very characteristic for each molecular structure

and may contain maxima/minima in the curves. Extrema of Cp,conf (T ) can be associated with

large changes of the individual conformer populations and may be interpreted as conformational

phase transitions. For a more general review of interpretations of PES related heat capacity

features see the work of Wales (Ref. 397). The linear chain-like molecules in Fig. 4.7b (decane,

octane and hexanethiol) only have a single maximum in the range 100–200 K. Around 200 K,

many folded, higher energetic conformations start to be populated, while at lower tempera-

tures only very linear structures are obtained. The global maximum of Cp,conf depends on the

molecule specific energetic distribution of the conformers within a given energy window. For

example, the CE of hexanethiol and octane consist of about the same number of conformers (150

and 152 structures respectively within 6 kcal mol−1), but differ with regard to their relative con-

formational energies. Molecular characteristics become even more pronounced for complicated

molecules, e.g., tamiflu and penicilin , where often multiple extrema are obtained for Cp,conf (T )

(see Fig. 4.7b).

103



4. Calculation of Absolute Molecular Entropies and Heat Capacities made simple

n-Octane

(a) (b)

Figure 4.7.: (a) Heat capacities calculated for n-octane in the temperature range 300 to 1500 K.
(b) Temperature dependence of the conformational heat capacity shown for octane
and other example molecules from the AS23 and CD25 sets. (ms)RRHO values
correspond to the B97-3c level and CE were obtained at the GFN2–xTB level.

4.4.4. Case Studies

Drug Molecules

After demonstrating the excellent performance of the presented approach to calculate absolute

entropies in section 4.4.2, we now turn our attention to biochemically more important systems.

The CD25 set is introduced, containing 25 commercial drug molecules with 28 to 98 atoms.

For these molecules no experimental entropy and Cp values are available to compare with.

Nonetheless also a purely theoretical investigation of the CE and respective entropies may yield

important insights. Note that a comprehensive evaluation of the entropy for such important

molecules with a highly accurate method is missing in the chemical literature.

Due to their similar size and elemental composition, similar Sconf values may be expected for

typical drugs. This is not the case as can be seen from the entropies calculated for the CD25

set, shown for the GFN2–xTB and GFN–FF levels in Fig. 4.8. Conformational entropies in the

CD25 set range from close-to-zero to over 20 cal mol−1 K−1. The reason for this is rooted in the

very diverse and complicated PES of the molecules. Compared to the smaller and chemically

rather similar molecules in the LBH and AS23 set, the molecules in the CD25 set show a

variety of functional groups and intramolecular non-covalent binding motifs. This leads to a

fine balance of covalent and non-covalent forces which characteristically shape the overall PES.

Certain energy basins (a collection of related minima), for example, could be strongly favored

because of intramolecular hydrogen bonding and thus reduce the overall number of energetically

accessible minima. In such cases, an accurate description of the respective potentials is required

and the computed Sconf value is strongly dependent on the underlying theoretical method.
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Figure 4.8.: Calculated Sconf values for a set of 25 clinical drug molecules at the GFN2–xTB
and GFN–FF levels of theory sorted according to increasing value. Averaged values
(shown as horizontal bars) and their standard deviations (shown as errors) have been
determined by multiple executions of the above described algorithm, as described
in the text below. On the right side Lewis structures of some of the molecules are
shown (see Appendix A3 for all molecules).

With a few notable exceptions, the conformational entropies calculated with GFN2–xTB and

GFN–FF only differ by 1 to 2 cal mol−1 K−1 and therefore provide the same semi-quantitative

description of the PES. The exceptions are cases in which GFN2 produces much larger CE

(chloroquine, lisdexamfetamin, pregabalin, rosuvastatin, sofosbuvir) than GFN–FF, or vice versa

(rivaroxaban, tenofovir). For the most rigid molecule (oxycodone), only a single conformer is

significantly populated (pi = 0.98 at 298 K) at the GFN2 level, while three conformers are

populated at the GFN–FF level, resulting in a larger entropy. For the other cases with larger

differences between both methods, the interpretation is difficult because of a large number of

significantly populated structures (about hundreds) in the CE. A better understanding would be

provided by an improved theoretical description, i.e., the ensemble calculated by DFT or WFT
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but this is unfeasible due to the extremely high computational effort. Instead, one could refer

to other qualitative descriptors when interpreting conformational entropies at a low theoretical

level. Because the entropy is correlated with molecular structural features, one such descriptor

could be the flexibility measure ξf , which is used for determining the simulation length settings

in CREST.33 This comparison of ξf and the Sconf is shown in Fig. 4.9 and in Appendix A3.

Note that conformational entropies must be normalized to system size (number of atoms Nat)

in order to be comparable in between molecules.

(b)(a)

C14

Figure 4.9.: Correlation plots for the molecules of the CD25 set. (a) Correlation between
Sconf/Nat and the empirical flexibility measure ξf . (b) Correlation of the Sconf/Nat

values at GFN–FF and GFN2–xTB level. The respective Pearson correlation coef-
ficients ρ are shown in the legends.

Both methods show a relatively high correlation with the empirical flexibility ξf in (Fig. 4.9a).

The only outlier here is tetradecane, denoted as ”C14” in the figure, which is chemically differ-

ent from the drug molecules and was added only as an upper bound reference for the flexibility.

When quantified via the well-known Pearson correlation coefficient ρ, it can be seen that GFN2–

xTB (ρ = 0.81) corresponds slightly better with ξf than GFN–FF (ρ = 0.79). This indicates

a better description of the few critical cases mentioned above at the tight-binding level. The

correlation of Sconf/Nat between the two methods (Fig. 4.9b, ρ = 0.71) again shows the in-

trinsic theory level dependence of the configurational entropy but is devoid from any deeper

interpretation. Nonetheless, these examples demonstrate that the conformational entropy can

be nicely correlated with purely structure based features of an ensemble or even empirical de-

scriptors, which is why schemes such as the MIE406 and MIST408 have been proven to work

comparatively well.

Finally, the CD25 set was employed to evaluate the robustness and reproducibility of the

presented approach. As discussed above the stochastical nature of the MD runs leads to slightly

varying results for different runs started on the same input structure. Hence, all of the 25
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molecules were run several times in repetition and averaged to obtain Sconf and its standard

deviation (SD) shown in Fig. 4.8. On average over the 25 systems, GFN2–xTB and GFN–FF

yield SD values of 0.25 cal mol−1 K−1 and 0.35 cal mol−1 K−1 respectively. The only significantly

larger SD of 1.6 cal mol−1 K−1 is obtained for the lisdexamfetamin molecule at GFN2–xTB

level, which results from a large and complicated CE leading to convergence problems in S′
conf .

In general GFN2–xTB has the more accurate PES of the two methods and produces more

consistent results. Both GFN2–xTB and GFN–FF show reproducibility errors much below

chemical accuracy and hence are appropriate for routine computations of Sconf . The much

shorter computation times of GFN–FF might favor its default application for large systems and

also enables the averaging over multiple entropy calculations to eradicate statistical differences

(which would be rather costly at the GFN2–xTB level).

Chemical Applications

In this last section we give a few chemical examples, where absolute entropies are used to

compute reaction entropies and Gibbs free energies.

Adsorption processes are important for a variety of applications, such as heterogeneous catal-

ysis442 where the entropy change can be measured via calorimetric experiments. Here, a rather

well studied class of reactions is the adsorption of n-alkanes onto zeolites.443 As an example

the adsorption entropy of n-butane, n-pentane, and n-hexane (Fig. 4.10) in a H-ZSM-5 zeolite

cut-out was calculated with GFN–FF.

Figure 4.10.: The n-hexane molecule adsorbed by a H-ZSM-5 zeolite. Hydrogen atoms used for
the saturation of the zeolite have been omitted for better visibility.

For a given zeolite structure cut-out (e.g., obtained from a crystal structure and saturated

with hydrogen atoms) thermodynamic properties can be obtained with the (ms)RRHO ap-

proach. Sampling of the configurations in CREST then simply requires some additional ge-

ometrical constraints, as was discussed in previous work.33,444 This is necessary because the

zeolite chunk shall mimic a solid and its structure would be strongly deformed or even broken

by the metadynamic simulations and geometry optimizations at GFN level. The configurational

problem is of course complicated by the combinatorical nature of different conformers at dif-

ferent adsorption sites, but in the present case the total system size is small enough to not

pose major problems. Adsorption entropies are directly calculated from absolute entropies by
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∆S = Salkane/zeolite − Salkane − Szeolite (see Tab. 4.4) and assessed with respect to experimental

values.

Table 4.4.: Adsorption entropies (in cal mol−1 K−1) for small linear alkanes on H-ZSM-5 zeolite
cut-outs, calculated fully at the GFN–FF level of theory. Experimental adsorption
entropies were obtained from Ref. 443.

adsorbed molecule ∆SmsRRHO ∆Sconf ∆Sads,calc. ∆Sads,exp.

n-butane -34.1 3.1 -31.0 -24.9
n-pentane -36.5 4.1 -32.4 -28.2
n-hexane -38.1 2.8 -35.3 -28.9

The final calculated ∆Sads,calc. shows deviations of only 4.2 to 6.4 cal mol−1 K−1 compared to

experiment and show the same qualitative trend of adsorption strength (butane < pentane <

hexane). While this trend is also reproduced already by SmsRRHO, it is important to notice that

the configurational contribution accounts for roughly 10 % of the overall adsorption entropy and

furthermore shifts ∆SmsRRHO in the direction of the experimental value. Because the zeolite

is identical for all structures and configurations, all msRRHO entropies are similar and the

term SmsRRHO consequently is ≪1 cal mol−1 K−1. Therefore the main part of ∆Sconf can be

attributed to S′
conf and qualitatively interpreted. Here, n-butane has the smallest amount of

conformers but many configurations (adsorption orientations) in the zeolite while it is vice versa

for n-hexane, leading to a similar contribution of ∆Sconf ≈ 3 cal mol−1 K−1 in both cases. For

n-pentane on the other hand, both the conformational and configurational space are large and

hence it shows the largest ∆Sconf value of the three systems. The calculated ∆Sads,calc. are

in very good agreement with experiment, considering that all results were obtained at a cost

efficient force field level and none of the values exceed a deviation of 2 kcal mol−1 at 298 K. Note

that the full calculation for each of the final ∆Sads values only took about 1.5–2 h on a standard

desktop computer (4 cores on a Intel i7-7700K 4.2 GHz CPU).

A more common usage for Sconf is to improve the calculation of reaction free energies. The

conformational entropies and enthalpies are converted to ensemble free energies Gconf via the

usual relation G = H − TS and can be added directly to the GmsRRHO values of all reactands

and products of the reaction. In general, a significant change of the DOF in the course of the

reaction can cause significant entropic effects and a non-negligible effect on the reaction free

energy.

Three examples (A, B, and C) are shown in Fig. 4.11 and the corresponding reaction energy

differences are shown in Tab. 4.5.

Reaction A is the cyclization of a 1,5-diene into the perfume molecule β-georgywood.445

Ring-closure reactions are often associated with a decrease of DOF, and hence an entropic

destabilization is expected. This view is supported by the computed free energies, where the

addition of ∆Gconf decreases the reaction free energy from -10.3 kcal mol−1 to -8.7 kcal mol−1.

For the typical ”chemical accuracy” of 1 kcal mol−1, adding the conformational term would
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O O

β-georgywood1,5-diene precursor

A)

B)

C)

butylamine cation @ cucurbit[6]uril

Ru

PMe3Cl
Cl CH2 Ru

PMe3Cl
Cl CH2

4
ROMP

+

Figure 4.11.: Example reactions with large entropic contributions. A) cyclization of a 1,5-diene
to the β-georgywood compound, B) simplified catalytic reaction of a ring-opening
metathesis polymerization (ROMP), C) complexation of butylammonium in cu-
curbit[6]uril.

Table 4.5.: Energy differences for the reactions shown in Fig. 4.11. All values are given in
kcal mol−1 and were obtained at the B97-3c level with conformational contributions
calculated at GFN2–xTB level. Free energies correspond to 298.15 K.

reaction energies
reaction ∆E ∆G ∆G+ ∆Gconf

A -15.0 -10.3 -8.7
B -8.1 4.6 2.8
C -82.0 -64.8 -64.3

therefore be necessary. Note, that ring-closures are common in many syntheses and biochemical

processes (e.g. terpene chemistry,446 or, as an example from a previous section, the synthesis of

oxycodone447) and therefore will profit from a better description by our method.

Reaction B is a simplified catalytic reaction of a ring-opening metathesis polymerization

(ROMP).184 ROMP was pioneered by the groups of Chauvin, Grubbs and Schrock and are

among the most important catalytic reactions in industrial chemistry.448,449 The reaction free

energy balance of B is positive as a result of the sterically undemanding PMe3 ligand, but

nonetheless the influence of Gconf is nicely demonstrated. Here, due to a loss of DOFs (two
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reactants form one product molecule), ∆G becomes initially positive, which is counteracted by

a DOF gain in Gconf of the product. The effect of the ensemble treatment has the same origin

as in the ring-opening reaction A, but in this case favors the formation of the product by about

1.8 kcal mol−1. This example furthermore shows the capability of GFN2–xTB (and GFN–FF),

which can be routinely be applied to transition-metal containing systems.

The influence of configurational entropy can also be studied for non-covalent associations.

Reaction C shows the binding of butylammonium in cucurbit[6]uril.450,451 Binding affinities for

small cations in cucurbiturils are well studied,452 but for more flexible guest molecules such as

butylammonium, entropic effects may become important. The association free energy changes

from -64.8 kcal mol−1 to -64.3 kcal mol−1 upon addition of ∆Gconf in the gas phase. On first

sight, the increase of about 0.5 kcal mol−1 seems negligible compared to the large overall value

of about -64 kcal mol−1. However, the latter value is quenched in solution450,451 to about -6.9

kcal mol−1 indicating that under more realistic conditions ∆Gconf is indeed relevant.

All the examples discussed in this subsection have been modelled in the gas-phase, but the

extension to solutions is easily possible by using implicit solvation models. Inclusion of solva-

tion effects will modify the PES and therefore produce different ensembles (and conformational

entropies) than in the gas-phase. A direct impact of this would be noticeable, e.g., for phase-

partition coefficients like logKow, which strongly depend on the respective ensemble.453 Tech-

nically, such calculations are straightforward and are investigated currently in our laboratory.

4.5. Conclusion

An automated workflow for the calculation of absolute molecular entropies is presented. The

molecular entropy is a fundamental thermodynamic quantity necessary for a complete under-

standing of molecular interactions. The main component of the absolute entropy is usually ob-

tained from vibrational frequency calculations in the RRHO approximation, which for medium

sized molecules (50–100 atoms) often underestimates anharmonicities for low-frequency modes

and is missing configurational contributions arising from many accessible low-energy confor-

mations. In the presented approach both sources of error are treated by a separation of the

molecular entropy into a configurational (conformational) part and the entropy arising from

translational, rotational, and vibrational degrees of freedom. For the latter, vibrational frequen-

cies were obtained at the B97-3c and B3LYP-D3/def2-TZVP DFT level, employing a modified

and scaled RRHO approximation (termed msRRHO) with two adjustable parameters τ and

νscal. The conformational entropy is calculated from an ensemble of conformers using the well

known Gibbs-Shannon entropy formula (S′
conf ) and an population average over individual msR-

RHO contributions of the conformers (SmsRRHO). We here make use of the fast and accurate

GFN–FF and GFN2–xTB methods for the generation and energetic ranking of structures, driven

by the recently introduced CREST program. The entire procedure is designed to work with only

a few simple steps and minimal user input, which makes it routinely applicable to a broad range

of systems.
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The presented workflow was tested on a set of 62 experimental molecular gas phase entropies.

An excellent performance (better than the chemical accuracy of 3 cal mol−1 K−1) was observed

with MADs ranging from 0.73 to 0.92 cal mol−1 K−1 and SDs from 1.08 to 1.30 cal mol−1 K−1

respectively, depending on the combination of the DFT method with either GFN2–xTB or

GFN–FF. Heat capacities were assessed on a set of linear and branches alkanes at different

temperatures. The MAD and SD values are with 0.5 cal mol−1 K−1 even smaller than for absolute

entropies but increase at very high temperatures > 800 K. The presented method performs better

than related yet computationally significantly more costly approaches and to our knowledge

provides the smallest errors for molecular entropies ever reported in the literature. This includes

large, extremely flexible n-alkanes up to octadacene for which an unprecedented accuracy for

the absolute entropy in comparison to experiment of about 5% was obtained.

Biochemically important systems and chemical applications were discussed on the basis of

set of 25 drug molecules and four reaction examples, including the calculation of adsorption

entropies, two reaction free energies and a non-covalent association free energy calculation. For

the drug molecules, a correlation of molecular flexibility and the entropy was observed. The

examples revealed a significant contribution of the configurational terms to the overall free

energy, often exceeding the magnitude of chemical accuracy. In the future, a more thorough

study of these effects across a wide range of chemical reactions is desirable.

In general, GFN2–xTB was found to provide (as expected) a more consistent description

of the PES and hence the conformational entropy than GFN–FF. However, as calculations of

Sconf tend to get very expensive for larger systems at GFN2–xTB or higher theoretical levels,

GFN–FF is strongly recommended as the standard approach in routine treatments on common

desktop computers. In theory, the basic components of the proposed scheme are systematically

improvable by a better description of the PES. The modular partition of the absolute value

into ro-vibrational and configurational parts enables a convenient replacement of the different

methods, which provides a starting point for future studies. This also includes the extension

to implicit solvation models that will allow to investigate molecular entropy differences between

the gas-phase and solution or between different solvents.
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In Part IV applications of low-cost quantum mechanical methods are discussed. One of the

design purposes of GFNn–xTB methods is the calculation of vibrational frequencies, which are

used in the following chapters for the computation of thermal free energy contributions GT
trv

and vibrational modes for the simulation of infrared (IR) spectra. However, it is shown that the

SQM methods can also be used for some “off-target” properties, i.e., the calculation of quantities

which are not considered in the construction or parametrization of GFNn–xTB, but still can be

calculated with reasonable accuracy.

Chapter 5 is dedicated to the calculation of gas-phase IR spectra from the so-called second

harmonic approximation. Vibrational frequencies are obtained from the second derivatives of

the energy with respect to nuclear coordinates. IR intensities are calculated from derivatives of

the molecular dipole moment along the respective modes. Calculations of these properties can

be conducted at a QM, SQM, or even FF level. This is of particular importance for IR spectra

prediction in the context of unknown compound identification procedures,44 where hundreds of

expensive frequency calculations for a variety of systems are required and SQM or FF methods

have the advantage. The performance for IR spectra simulation of GFNn SQM and FF methods

and the composite DFT method B3LYP-3c is evaluated in comparison with over seven thousand

experimental gas-phase references. As a general trend, it is found that IR spectra quality

decreases here in the order B3LYP-3c ≫ GFN2–xTB ≳ GFN1–xTB > GFN–FF, which is

consistent with the quality of atomic charges and dipole moments produced by these methods.

With regards to frequencies, a well-known problem are missing anharmonicities arising from the

harmonic approximation as outlined in Chapter III. To correct for this model deficiency, a new

correction scheme based on modification of atomic masses is introduced.

Chapters 6 and 7 present the calculation of acid dissociation constants in water (pKa values)

from dissociation free energies. A protocol is employed that combines computations of the to-

tal energy at DFT level, thermal contributions GT
trv at SQM level and solvation free energies

from continuum solvation models. The resulting acid dissociation free energies can be fitted to

experimental pKa with the so-called free energy relationship (FER), most commonly applied in

a linear form (LFER). An initial attempt of LFER-based pKa predictions was made with this

protocol in a collaborative study with the Novartis AG in context of the SAMPL6 blind chal-

lenge.45,46 The combination of high level double hybrid DFT calculations with ro-vibrational

free energy contributions from GFN1–xTB and COSMO-RS implicit solvation218,454 herein pro-

vided the best results of all SAMPL6 contestants. In a second study (Chapter 7) the pKa

protocol is revised and generalized. Here, higher order FER are used to provide more flexibility

with regards to a single input parameter (the dissociation free energy). Several different DFT

methods are tested in comparison with over three hundred experimental pKa values. Rather

independently of the employed functional it is found that low errors below 1 pKa unit can be

achieved. The special purpose GFNn–xTB methods, on the other hand, were not designed to

yield good absolute energies and consequently good heterolytic dissociation free energies. Upon

correction of the latter with an empirical energy term, pKa values calculated entirely at the

GFN level are shown to be of use at least for qualitative interpretations or initial screening and
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are broadly applicable to arbitrarily composed systems.

For all three chapters in this part, CREST is used to sample the low-energy chemical space.

While for the IR spectra calculations this involves only the screening of conformers, for pKa

calculations also initial (de-)protonation sites and tautomers are generated. Significant influence

of the molecular conformations are observed, e.g. for pKa values of drug like molecules. The

final objective for all studies presented here is to formulate efficient QM workflows that do not

rely on proprietary software and provide reasonable accuracy even on a SQM level.
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5. Calculation of Gas-Phase IR Spectra with GFN Tight-Binding and Composite DFT Methods

Abstract

Vibrational spectroscopy is a valuable and widely used analytical tool for the characterization

of chemical substances. We investigate the performance of semiempirical quantum mechanical

GFN tight-binding and force field methods for the calculation of gas-phase infrared spectra in

comparison to experiment and low-cost (B3LYP-3c) density functional theory. A data set of

7247 experimental references was used to evaluate method performance based on automatic

spectra comparison. Various quantitative spectral similarity measures were employed for the

comparison between theory and experiment and for determining empirical scaling factors. It is

shown that the scaling of atomic masses provides an accurate yet simple alternative to stan-

dard global frequency scaling in DFT and semiempirical calculations. Furthermore, the method

performance for 58 exemplary transition metal complexes was investigated. The efficient DFT

composite method B3LYP-3c, that was introduced in the course of this work, was found to be

excellently suited for general IR spectra calculations. The GFN1- and GFN2–xTB tight-binding

methods clearly outperformed the PMx competitors. Conformational changes were investigated

for a subset of the data and are found to have a mediocre strong influence on the simulated

spectra suggesting that the corresponding elaborate sampling steps may be neglected in auto-

mated compound identification workflows.

5.1. Introduction

Rotational-vibrational spectroscopy is one of the most common analytical tools for the character-

ization of chemical substances.455 The analysis of experimental infra-red (IR) or Raman spectra

gives detailed insight into molecular structure and can be used, e.g., for analytical compound

identification purposes.44,456 Theoretical, mainly quantum chemistry calculations of vibrational

spectra including assignment of the involved normal modes have a long and very successful his-

tory.457,458 Vibrational spectra can be calculated by various classical atomistic and quantum

chemical (QM) methods, of which density functional theory (DFT) is the most common today.

Still, even with modern theoretical and technological advances, the calculation of vibrational

frequencies can be prohibitively expensive for moderately sized (100-200 atoms) molecules. Ac-

curate and fast calculation of IR spectra and the related thermostatistical free energy corrections

at a reduced theoretical level (see e.g. Ref. 204) is therefore desirable. Progress has been made

in this field with classical force fields (FF), but their errors are much larger and less systematic

than at a QM level.459,460 Semiempirical quantum chemical methods (SQM) can provide a good

alternative because they are considered to bridge the gap between FFs and QM, both in terms

of computational cost and accuracy. In particular methods of the recently developed GFN fam-

ily36 are promising candidates since they are designed to yield good Geometries, Frequencies,

and Noncovalent interaction energies.

Vibrational frequencies are commonly calculated within the harmonic approximation and

depend on the second derivatives of the energy with respect to atomic displacements and ad-

118



5.1. Introduction

ditionally on the atomic masses. The comparison of harmonic theoretical with experimental

(fundamental) frequencies leads to systematic errors also in higher rung DFT treatments.381,461

A typical countermeasure is to linearly scale the harmonic vibrational frequencies (HVF) ob-

tained from QM (or FF) calculations, where different levels of theory (e.g., DFT functionals,

basis sets) require varying scaling factors.381–383,457 In the case of hybrid functional DFT the

HVF error can be attributed mainly to the employed Fock exchange, which consistently overes-

timates frequency values. For FF or SQM, the errors are less systematic and global frequency

scaling works less well than in (hybrid) DFT so that other means to improve the accuracy

have been investigated.462–464 Introducing more adjustable parameters provides a higher degree

of empirical freedom, but also many more data points are required for a robust fit. Multi-

parameter frequency scaling methods have been proposed in the past and yield more accurate

results than simple linear and uniform global scaling.386,463,465–470 More recently, machine learn-

ing approaches have successfully been combined with molecular dynamics and QM calculations

for the computation of IR spectra and anharmonic frequency corrections.471,472

Due to the intrinsic relation of molecular vibrational motions to the involved atomic masses,

the latter could also be used as a parameter in calculations. Here, we explore the scaling of

atomic masses as an alternative to the standard global scaling of the HVF. Atomic mass scaling

has been introduced by Irikura473 for diatomics and is related to the approach of Pulay and co-

workers, who proposed an internal coordinate specific scaling of force constant matrix elements

instead of global frequency scaling.385,474

In this work, we used a data set of 7247 experimental gas-phase IR spectra (obtained from

the NIST chemical database434) to evaluate the performance of SQM methods of the GFN

family (GFN1-, and GFN2–xTB)38,39 for IR spectra calculations. In addition, the performance

of the recently introduced, non-electronic variant GFN–FF is investigated as a representative

of an advanced classical FF.80 This involves the introduction of a similarity measure for the

quantitative comparison between experimental and theoretical spectra. Furthermore, a low-

cost composite DFT method based on the B3LYP density functional55 similar to the the well

established PBEh-3c158 composite method is proposed and tested. For recent studies with our

GGA-based low-cost method B97-3c180 for IR spectra calculations see Refs. 475,476.

In a recent study,464 Henschel et al. pursued a similar approach to evaluate the performance

of several FFs for the calculation of IR spectra. In their work two different metrics (Pearson cor-

relation coefficient, Spearman rank correlation) were used for the evaluation. For comparability

the same spectral similarity scores were used here, plus two metrics (match score, Euclidian

norm) we originally based this work on. In the literature, other measures have been proposed

and adapted for various purposes.47,477 The different similarity scores have different advantages

and disadvantages but it has been suggested464 that they can be used complementarily. Still

it remains an open question whether all of the similarity measure mentioned above are equally

suitable for the quantitative comparison of IR spectra. The long term goal of this work is to

provide the theoretical basis for automated high-throughput workflows in analytical chemistry

(unknown compound identification) applications.

119



5. Calculation of Gas-Phase IR Spectra with GFN Tight-Binding and Composite DFT Methods

5.2. Theory

5.2.1. Calculation of IR Spectra

By a Taylor expansion of a general molecular potential energy surface, vibrational motions

can be related to force constants. Force constants are the second derivatives of the total en-

ergy with respect to nuclear displacements.4 In ab initio (or semiempirical) calculations vibra-

tional frequencies and the corresponding eigenfunctions (normal modes) are most commonly

obtained within the harmonic approximation, where the force constants are contained in the

mass-weighted Hessian matrix

F
(m)
ij =

1
√
mimj

(
∂2E

∂Ri∂Rj

)
. (5.1)

In Eq. 5.1 E is the total molecular energy, Ri/j is the displacement in Cartesian space and mi/j

are the masses of nuclei i and j respectively. The second derivatives may be obtained analytically,

or numerically from the first-order derivative, i.e., the nuclear gradient. Diagonalization of the

matrix F(m) according to

F(m)Q = ϵQ , (5.2)

yields the diagonal matrix ϵ that contains the eigenvalues of F(m) and Q are the normal modes

in Cartesian space. The vibrational frequencies ν are given by

νp =
1

2π

√
ϵp (5.3)

for mode p.

The IR absorption intensity for each fundamental transition is associated with the change of

the molecular dipole moment µ along the normal mode coordinate qi
478 with the leading term

∂µ
∂qi

. Very accurate calculations of intensities require knowledge also of higher order terms,479

however, they are approximately (the so-called double harmonic approximation) proportional

to the squared derivative
(

∂µ
∂qi

)2
480 which is is used in this work. Since intensities depend

on the quality of the calculated dipole moments their description is rather sensitive to the

employed level of theory (e.g., the quality of the AO basis set) and several approaches for

the improved calculation of IR intensities exist.481–483 In particular, the mode localization and

intensity tracking approaches pioneered by Reiher and coworkers484–487 seem to be capable tools

for the improved calculation and interpretation of vibrational spectra. However, the fine details

of IR spectra calculations are not the subject of the present work. Instead, we focus here on a

reasonably accurate and straightforward description of the more typical case of a low-resolution

/ large molecule.
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5.2.2. Comparing IR Spectra

In general, a molecule with n nuclei has 3n − 6 normal modes (3n − 5 for linear molecules)

which in principle can be compared with an experimental reference IR spectrum. For the latter,

fundamental frequencies need to be extracted and assigned to the respective theoretical modes.

This can become tedious for medium sized molecules where modes in the fingerprint regime, <

1500 cm−1 often have small intensities and strongly overlap due to their line width. To evaluate

larger compounds and a large number of spectra, it is therefore neither sufficient nor efficient to

compare only selected fundamental frequencies. Instead, metrics for a quantitative comparison

of two (entire) spectra have to be developed and tested.

Experimental spectra typically consist of a set of k equidistant frequency data points with

respective intensities. In order to be comparable the spectra need to be normalized. Different

procedures are possible, but in this work all spectra will be normalized according to√√√√ k∑
i

uidu
!

= 1 , (5.4)

where u can be considered as a k-dimensional vector, ui is the intensity of the i-th point in the

spectrum and du is the distance between the points ui and ui+1 (here set to 1.0 cm−1), i.e., the

normalization is done via a Riemann integration. The square-root dependence in Eq. 5.4 was

chosen to increase the weight of small intensities relative to larger intensities. Normalizations

to single signals, e.g., the largest peak of the spectrum, should be avoided because relative

intensities and frequencies are strongly dependent on the theoretical level and hence it cannot

always be ensured that the same peak is selected. For theoretical spectra, the frequencies and

intensities of the vibrational modes are available as isolated signals (’stick spectrum’) and first

have to be expanded to the same spectral domain as the experimental data. This is achieved by

employing a Lorentzian line shape function for each mode

ϕp(ν) = Ip

(
1 +

νp − ν

0.5w

)−1

, (5.5)

where νp is the position (calculated frequency) of the mode p, Ip is its intensity and w is the

full width at half maximum (FWHM). Typical values employed for the FWHM in theoretical

studies range from 20 to 40 cm−1, whereas the average line width in experimental spectra was

determined as 24 cm−1.488 The simulated spectrum is then simply given by the sum of all the

Lorentzian functions over the modes

Φnorm(ν) = Inorm

Np∑
p

ϕp(ν) , (5.6)

with the normalization constant Inorm. Analogously to Eq. 5.4, the spectrum is normalized

by
√∫

Φnormdν
!

= 1 and in this form is directly (point wise) comparable to experimental data.
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Hence, in order to match experimental and theoretical spectra, a vector v with the same number

of points as u is constructed from Φnorm.

In this study four different spectral similarity measures have been investigated. The first is a

simple match score (rmatch),

rmatch =

(∑k
i uivi

)2(∑k
i u

2
i

)(∑k
i v

2
i

) , (5.7)

where u and v are the k-dimensional vectors obtained for the two compared spectra. The rmatch

corresponds to a Cauchy-Schwarz inequality in Rk dimensional Euclidian space which essentially

is a simplified overlap. rmatch values range from 0 ≤ rmatch ≤ 1, where unity denotes a perfect

match.

The second measure used is the Euclidean norm (reuclid),

reuclid =

(
1.0 +

∑k
i (ui − vi)

2∑k
i (vi)2

)−1

. (5.8)

In the literature two additional measures have been employed for IR and Raman spectra

comparisons.489–492 One is the Pearson correlation coefficient (rpearson), which is similar to the

rmatch,

rpearson =

∑k
i (ui − ū)(vi − v̄)√∑k

i (ui − ū)2
√∑k

i (vi − v̄)2
, (5.9)

with the mean values ū and v̄ for u and v. Both the rmatch and rpearson are linear correlation

measures that are based on the Cauchy-Schwarz inequality. The other (nonlinear) measure that

has often been employed is the Spearman rank correlation coefficient (rspearman)

rspearman = 1.0 −
6
∑k

i (rg(ui) − rg(vi))
2

k (k2 − 1)
, (5.10)

where rg(ui) and rg(vi) are the respective ranks of ui and vi.

Note that if fundamental frequencies can be clearly identified in the experimental spectra,

one is able to create a synthetic (noise-less) spectrum similar to the theoretical spectrum using

Eq. 5.6 for the comparison. This has been tested in the course of our work. However, auto-

mated identification of the peaks in experimental spectra is challenging for molecules with many

normal modes and prone to errors due to experimental noise. Therefore, using the measured

experimental data points as a reference seems to be a more robust and general approach. If

required, additional values can be estimated by linear interpolation between points ui and ui+1.
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5.3. Computational Details

Calculations at the GFN–FF, GFN1–xTB, and GFN2–xTB level were performed with version

6.3.2 of the xtb code which was also used as a wrapper for numerical Hessian calculations with

PM6-D3H4,66,327 PM6-D3H4X,326 and PM7,67 using the MOPAC program (version 19.179L).

DFT calculations at the B3LYP-3c level were conducted with the Turbomole program package

(version 7.4.1).493 The term B3LYP-3c stands for a standard self-consistent B3LYP-D3(BJ)ATM-

gCP/def2-mSVP55,152,158,172,173 calculation, i.e., the method employs the well-known B3LYP

exchange-correlation functional with a small (adapted) double-zeta Ahlrichs type Gaussian AO

basis set, the standard D3 dispersion correction with three-body term added and a geometrical

correction for BSSE (gCP). This composite approach has been benchmarked in the course of

this work on subsets of the GMTKN55 meta-database109 and found to perform similar for ther-

mochemistry and non-covalent interactions as the PBEh-3c parent method. A similar composite

scheme based on the B3LYP functional has already been proposed for computations of molecular

thermochemistry.494 As opposed to PBEh-3c, however, the functional (GGA) part has not been

modified in B3LYP-3c. D3(BJ)ATM and gCP are additive corrections that are implemented in

the Turbomole program packages (version 7.4 and higher) and can be requested with the $gcp

dft/sv(p) and $disp3 -bj -abc keywords. Similar usage options exist, e.g., for the ORCA

program package.495 The composition of the def2-mSVP basis set is discussed in Ref. 158.

The DFT calculations in Turbomole were conducted with a m4 grid, using the RI approxima-

tion and matching auxiliary basis functions. The xtb, Turbomole, and ORCA program packages

allow a modification of atomic masses via the input files. For the metal-containing complexes

in section 5.4.4 reference HVF were calculated at the B3LYP-D4/def2-TZVPP174,338 level us-

ing the RIJCOSX approximation496 (with keywords: gridx7, nofinalgridx ) throughout. These

calculations were performed using the ORCA program (version 4.2).495 All structures were op-

timized using the xtb program as a driver for the ANCOPT optimizer with normal convergence

criteria. The various similarity measures were calculated with a small standalone code called

newspecmatch written in Fortran. For the FWHM a value of 30 cm−1 was chosen. From Ref.

464 it is known that optimization of the FWHM with respect to an experimental-theoretical

best match yields larger values (>60 cm−1). This is physically not plausible and seems to be an

artifact of errors in the theoretical frequencies. A width of 30 to 35 cm−1 is physically realistic

but still provides some leeway for slightly larger frequency deviations between the spectra.

6556 experimental gas-phase IR spectra and corresponding molecule structures were obtained

from the NIST database,434 containing combinations of the elements H, C, N, O, F, Cl, and Br.

We will refer to this simply as the ’HCNO’ set. Ionic structures were excluded. Furthermore,

538 sulfur-, 100 phosphorus-, and 53 silicon-containing structures and their associated gas-phase

IR spectra were also obtained from the NIST. The molecules are mainly ”organic” but contain

various, sometimes rather complex inorganic parts. Because very few experimental spectra were

available for transition metal complexes, HVF were calculated for 58 species taken from the

TMG145 database,324 and the high B3LYP-D4/def2-TZVPP level taken as reference for the
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tested SQM and FF methods.

5.4. Results and Discussion

5.4.1. General Performance and Global Scaling of Frequencies

It is standard practice in computational chemistry to scale the calculated HVF by a method

dependent parameter, that is typically determined by minimization of the root-mean-square

deviation (RMSD) between experimental fundamental frequencies and theoretical HVF.381,383

Special scale factors exist also for thermochemical applications.382,497 A fitting strategy based

on the maximization of the rpearson and rspearman was reported in Ref. 464. In contrast to

QM or SQM methods, force field methods already include (by fitting to experimental data)

some empirical adjustment and global scaling of the frequencies has very little impact on overall

performance.464 The tested GFN–FF employs a default global scaling factor of 1.03 which was

adjusted to match reference B97-3c computed HVF in the course of its development.

The SQM methods aim at bridging the gap between FFs and ab initio methods, both quali-

tatively and in terms of computational cost. Due to their underlying quantum chemical nature

and the use of (minimal) AO basis sets, dipole moment estimations are expected to be bet-

ter than in FFs but worse than with DFT. The quality of the force constants in SQM on the

other hand is strongly dependent on the methods parametrization and will mainly determine

the quality of the HVF. As noted above, methods of the GFN family were developed to provide

good performance for the calculation of frequencies and therefore are a natural choice for this

study. The monopole based GFN1- and multipole extended GFN2–xTB tight-binding schemes,

and a non-electronic variant called GFN–FF, are tested. For a broader perspective, results will

also be shown for some PMx methods (PM6-D3H4,327 PM6-D3H4X,326 PM767) because they

are another important class of SQM methods. These results will, however, not be discussed in

detail.

A point of reference for all further comparisons is, besides the experimental IR spectra, the

performance of the B3LYP-3c method. B3LYP is often cited among the best performing DFT

methods for the calculation of vibrational frequencies.381,382 This was confirmed for a few test

cases in comparison to PBEh-3c,158 B97-3c,180 as well as PBE0337 functionals in the course of

this project. Because B3LYP is a non-local, global hybrid functional, the calculations can become

quite expensive which is counterbalanced here by the use of the pre-defined small def2-mSVP

basis. Dipole moments, IR intensities, and frequencies on a medium accuracy level are rather

insusceptible to the basis set size as long as proper polarization functions are present.498–501

Hence, B3LYP-3c is expected to yield reasonable results for typical organic molecules, but for

more complicated electronic structures the level of theory should be improved. Whether B3LYP-

3c really represents an efficient standard DFT level for IR spectra calculations of large systems

is one of the questions of the present work.

The IR spectra for the 6556 compounds in the HCNO set were calculated at all levels of
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theory. Respective geometry optimizations were consistently started from the structures in the

NIST database and in this first evaluation, conformational effects were not considered, i.e., the

structures taken correspond to some random conformation in the case of flexible systems (see

Section 5.4.3).

The distribution of similarity measures (Eqs. 5.7-5.10) between the unscaled theoretical and

the experimental IR spectra over the benchmark set are shown in Fig. 5.1.
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Figure 5.1.: Similarity measure distribution (6556 cases) for unscaled theoretical spectra at the
B3LYP-3c, GFN1–xTB, GFN2–xTB and GFN–FF level. Bars were binned (40 bins)
for better visualization.

Several observations can be made for the unscaled spectra comparison. The rmatch and rpearson

yield similar distributions at all levels of theory, with the rmatch yielding slightly higher scores.

This is expected since both scores have the same mathematical origin. As already noted in the

literature the rspearman can display also non-linear correlations and yields higher scores than the

rmatch or rpearson on average. The distribution of the rspearman scores is more narrow than those
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of rmatch and rspearman, except at the FF level. This could either indicate a general non-linear

correlation between experimental and theoretical spectra, or an inability of the rspearman to

reflect finer characteristics. The reuclid also gives relatively high values for the correlation and

shows a very narrow score distribution at all levels of theory. Of the four investigated metrics

the reuclid seems to be the least sensitive to the spectral features but this issue has not been

investigated in detail. In all further comparisons we will mainly discuss results obtained with

the rmatch.

In terms of performance GFN2–xTB gives the best (average) qualitative correspondence to

the experimental spectra, followed by GFN1–xTB, B3LYP-3c and lastly GFN–FF. The three

different PMx methods perform very similar, but overall worse than the GFN methods. The

average scores are given in Table 5.1. At first glance it may be surprising that the DFT method

performs worse than both tight-binding variants. The simplest reason for this observation is

the systematic deviation (overestimation) of the HVF with hybrid DFT methods. Intensities

in the IR spectra are well reproduced by B3LYP-3c, but in particular the higher frequency

modes are not described well by the harmonic approximation. A typical correction for this

behavior is the linear scaling of frequencies by a global factor (global frequency scaling, GFS).

For the 6556 systems and all methods, molecule specific frequency scaling (MSFS) factors, i.e.,

an optimum scaling factor for each case, were determined by maximizing the rmatch in a steepest

descent optimization approach. The corresponding similarity measure distributions are shown

in Fig. 5.2 and the average scores are given in Table 5.1.

Table 5.1.: Average metrics rmatch, reuclid, rspearman, and rpearson for the 6556 unscaled and
ideally (MSFS) scaled IR spectra calculated at all tested levels of theory. For better
visibility standard deviations have been omitted from the table and can be found in
the electronic supporting information.

unscaled molecule specific scaling
method rmatch reuclid rspearman rpearson rmatch reuclid rspearman rpearson

B3LYP-3c 0.628 0.710 0.739 0.597 0.864 0.880 0.810 0.873
GFN1–xTB 0.632 0.714 0.727 0.587 0.727 0.775 0.752 0.710
GFN2–xTB 0.690 0.751 0.748 0.661 0.765 0.802 0.759 0.750
GFN–FF 0.545 0.659 0.650 0.459 0.597 0.691 0.666 0.528
PM6-D3H4 0.518 0.644 0.591 0.424 0.640 0.713 0.640 0.584
PM6-D3H4X 0.518 0.644 0.591 0.424 0.634 0.713 0.641 0.584
PM7 0.476 0.620 0.570 0.366 0.634 0.713 0.641 0.582

The rmatch and rpearson distributions in Fig. 5.2 are much more narrow compared to Fig. 5.1 for

all methods but the force field. As expected, the largest improvements by scaling are obtained for

B3LYP-3c. The average rmatch increases by 0.236, with an average scaling factor of 0.970±0.011.

This is consistent with GFS factors reported for B3LYP in the literature.381–383,502,503 For the

GFN1- and GFN2–xTB methods smaller improvements are observed for linear, molecule specific

scaling of the frequencies.
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Figure 5.2.: Similarity measure distribution (6556 cases) for spectra at the B3LYP-3c, GFN1–
xTB, GFN2–xTB and GFN–FF level. The calculated frequencies were uniformly,
but specifically scaled for each molecule in order to maximize the rmatch to experi-
ment. Bars were binned (40 bins) for better visualization. Values of unity for the
rmatch result from graphic interpolation by the plot program.

The average scaling factor is 0.982 and 0.990 with standard deviations of 0.019 and 0.017,

respectively. GFN–FF shows the least improvement by MSFS scaling. Among the investigated

GFN methods, the factor of GFN–FF is the one closest to unity and further has the largest

standard deviation, i.e., the error is more molecule specific and randomly distributed. In case of

the PMx methods this effect is even more pronounced than for the force field. Using MSFS the

average similarity measures among the PMx methods is again very similar and the performance

is in between GFN–FF and GFN1–xTB. Determined GFS factors are around 1.019 and show

a very large standard deviation of 0.04–0.05, which essentially obviates the value of global

frequency scaling for the PMx methods. This seems to be consistent with the literature, where
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non-linear scaling schemes are used in combination with PM6 or PM7 because the linear scaling

factors tend to be large.463,504,505

Table 5.2.: Frequency scaling factors for the investigated theoretical methods determined as
the average of the MSFS factors and the respective similarity measures obtained by
application of these factors as global frequency scaling parameters.

method νscal SD(νscal) rmatch reuclid rspearman rpearson

B3LYP-3c 0.970 0.011 0.862 0.879 0.869 0.819
GFN1–xTB 0.982 0.019 0.686 0.747 0.660 0.754
GFN2–xTB 0.990 0.017 0.723 0.773 0.702 0.757
GFN–FF 0.993 0.020 0.564 0.670 0.434 0.659

Based on the absolute similarity measure values provided in this section a clear qualitative

trend can be seen. DFT on average has the highest correspondence to experimental gas-phase

data while GFN–FF shows the worst performance. The SQM methods GFN1–xTB and GFN2–

xTB are in between the FF and B3LYP-3c, but overall closer to the DFT performance. The

initial performance expectations of the SQM methods thus were validated. Although the IR

spectra at the GFN–FF level are less accurate than at the SQM level, the calculated frequencies

still might be useful to obtain thermostatistical corrections.204 Visual inspection of a few typical

cases reveals that a major part of the observed error with GFN–FF stems from bad intensities,

which is understandable considering the relatively simple description of the electrostatics in the

FF. Furthermore, the GFN1- and GFN2–xTB tight-binding methods clearly outperform the

PMx competitors.

For all investigated levels of theory the different metrics provide consistent descriptions of

the similarity, i.e., there is no performance reordering between different theoretical methods

if another similarity measure is used in Table 5.2. Furthermore the absolute values (and the

respective standard deviations, see electronic supporting information) of rmatch and rpearson, as

well as reuclid and rspearman are often very similar. This indicates that any of the similarity

measures could be used for spectra comparisons, or that they can be used complementary.

The rmatch is a quantitative similarity measure, but since errors from mismatching frequencies

and errors from wrong intensities are often inseparable, the scores should be interpreted with

care, and on a qualitative rather than quantitative basis. For rmatch around 0.6 or smaller, the

largest deviations result from systematic frequency shifts for unscaled DFT. In case of SQM and

FF methods errors in the fingerprint frequency range are common and intensities are often not

well described. Spectra with rmatch between 0.7 and 0.8 already match well to the experiment

and in particular intensities are much better reproduced, but some smaller peaks might still

be missing or shifted. Spectra with a rmatch above 0.9 have predictive quality and some of the

remaining deviations are often only a result of noise in the experimental data. A few examples

for the comparison of theoretical and experimental spectra are shown in Fig. 5.3 to provide a

qualitative impression for different rmatch values.
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Figure 5.3.: Comparison between the theoretical (black) and the experimental (red) spectra for
six exemplary molecules, at GFN2–xTB or B3LYP-3c level.

At all rmatch ranges, noise in the experimental data can be a problem. For better comparability

one could either try to smooth-out the experimental data by standard polynomial procedures

(e.g., Savitzky-Golay filtering506), or automatically identify fundamental frequencies from the

spectra. Both strategies pose their own problems and can also depend on the amount of noise.

Based on our experience, where applicable, a direct comparison to the experimental data is to

be preferred.

The aim of this study is to find theoretical methods that provide maximum similarity scores
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when comparing a calculated spectrum with its experimental counterpart. However, with regard

to possible applications in the field of automated unknown compound identification, it is not

fully clear whether a candidate ranking based on a maximized spectral similarity is the optimum

search strategy. The reason for this is that comparisons of theory and experiment are then

made between different molecules, opposed to the already known structure in this study. The

application of similarity measures for compound discrimination under realistic conditions is

currently investigated in our labs and will be discussed elsewhere.

5.4.2. Scaling of Atomic Masses

In this section, another easily applicable scheme to improve calculated spectra is explored. ¿From

Eq. 5.1–5.3 it is obvious that modification of the atomic massesmi/j will have a (non-linear) effect

on the frequencies. As noted in the introduction this is known in context of isotope effects in

IR spectra.455,507 In a recent study Irikura473 proposed a scaling of reduced masses for diatomic

molecules as a possible alternative to linear frequency scaling factors νscal. The modification

of the masses could be interpreted as an atom specific way to mimic effects of anharmonicities.

In an extension to this idea we investigate the effect of element mass scaling (EMS) factors,

which should provide more flexibility than scaling of the frequencies directly. This has never

been tested thoroughly for a large data set of polyatomic molecules. This approach is related to

the work of Pulay et al., who proposed individual scaling of the internal coordinate force matrix

elements.385,468,474,508 In contrast to this scheme, however, the EMS does not require additional

internal coordinate setup or any other modification to the frequency computation. All modern

DFT and SQM methods are designed as atomistic models, i.e., basis functions are defined for

different atoms, and SQM parametrizations are normally element dependent. Thus, an element-

dependent EMS parameter is physically plausible and technically feasible. Scaling factors βi for

the atomic masses mi non-linearly enter the Hessian matrix F(m) in Eq. 5.1 by the power of

minus one half. Because the normal modes are affected depending on the involved atom types,

the non-linear mass scaling should be able to improve normal modes that include movements of

different atom types, e.g., C-O or N-N stretches are treated differently. For simplicity (and easy

input handling) instead of introducing an element dependent scaling parameter βi into Eq. 5.1,

the masses can directly be treated as a variable parameter (m′
i = miβi). Many computational

chemistry program packages allow users to read in atomic masses via the input, and hence code

modifications are not necessary.

The masses m′
i for H, C, N, O, F, Cl, Br were fitted directly to the experimental data

by maximization of the rmatch. A single global fit was performed for these elements using a

Levenberg-Marquardt algorithm.421,422 The 6556 spectra were randomly split (≈50%/50%) into

a training and a evaluation set, which is common practice for cross-validation in data sciences.509

The resulting optimized masses m′
i are shown in Table 5.3.

Note that the masses m′
i should not be interpreted as actual atomic masses, but can only be

understood by their effect on the force constants. Since the masses are in the denominator of

the prefactor in Eq. 5.1, the usually obtained larger mass m′
i repairs too large force constants
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Table 5.3.: Optimized atomic masses for the elements H, C, N, O, F, Cl, and Br (in a.u.).
mi refers to standard atomic masses, modified values m′

i for the GFN methods and
B3LYP-3c were determined by fitting to experimental IR spectra.

reference B3LYP-3c GFN1–xTB GFN2–xTB GFN–FF
Atom type mi m′

i m′
i m′

i m′
i

H 1.0079 1.07823 1.0801 1.0518 1.0607
C 12.0110 12.7059 11.7831 11.7844 11.6786
N 14.0067 15.1762 14.1462 12.8194 11.8136
O 15.9994 17.4074 18.8858 17.5056 15.7004
F 18.9984 15.7403 13.5474 11.8874 9.3633
Cl 35.4530 23.1230 52.3449 14.0078 14.1648
Br 79.9040 79.9040a 60.3144 45.4038 43.1998

aModification of mass did not improve the fit.

(missing anharmonicity). The GFN methods show similar trends for the adjusted masses H to

F, which suggests systematic errors of the force constants within the method family. During

the fitting procedure it was observed that a modification of the hydrogen mass has the largest

influence on the frequencies. This is expected since it is the most common element in the

data set. The heavier elements Cl and Br show the largest deviations from their true masses.

However, their overall effect on the frequencies is small and drastic changes of the masses are

necessary to obtain any influence at all. For Cl and Br GFN1–xTB is the only method that

does not follow the general trend observed for these elements in the other methods. This could

be related to the halogen bond correction terms employed in GFN1–xTB.

The average similarity measures calculated with the fitted masses are shown in Table 5.4.

Following good cross-validation practices, these scores were obtained only for the test set, but

the results are nearly identical to the similarity measures of the fitting set.

Table 5.4.: Averaged similarity measures between experimental and theoretical IR spectra ob-
tained from fitted-mass spectra calculations.

method rmatch reuclid rspearman rpearson

B3LYP-3c 0.865 0.881 0.813 0.873
GFN1–xTB 0.721 0.771 0.747 0.699
GFN2–xTB 0.750 0.793 0.756 0.731
GFN–FF 0.589 0.686 0.678 0.516

With the EMS, average similarity measures are only slightly worse than the scores obtained

by MSFS in Table 5.1. Keep in mind that the actual comparison has to be made with the

values provided in Table 5.2. MSFS spectra represent some upper limit for the correspondence

to the experiment, but in practice spectra are normally globally scaled by the same fixed factor

νscal. Compared to these values the mass-scaling approach yields better results throughout. For
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B3LYP-3c the EMS scheme even slightly outperforms MSFS, but the difference between the two

schemes is small. The reason for this behavior in DFT is that errors are much more systematic

compared to SQM. A few examples for mass scaled spectra in comparison with unscaled and

the experimental spectra for GFN2–xTB, GFN–FF and B3LYP-3c are shown in Fig. 5.4.
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Figure 5.4.: Comparison between the theoretical mass scaled (black), theoretical unscaled (blue)
and the experimental (red) spectra for six exemplary molecules, at GFN2–xTB,
GFN–FF or B3LYP-3c level.

Performances are summarized for all four methods as box plots in Fig. 5.5. As can be seen, at

all levels of theory there is a clear tendency suggesting that the mass-scaling approach provides
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better spectra than global frequency scaling.
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Figure 5.5.: Similarity measures (rmatch) for the 6556 spectra comparisons at the B3LYP-3c,
GFN1–xTB, GFN2–xTB and GFN–FF levels of theory, visualized as box plots.

We tested the transferability of the mass scaling approach for B3LYP-3c and GFN2–xTB for

molecules containing other, heavier atoms. The idea is that once optimum atomic masses are

determined for a set of elements, other effective element masses can easily be determined in

separate fits. This was investigated for the main group elements sulfur, phosphorus and silicon.

Experimental gas phase IR spectra were again obtained from the NIST database, totaling 538

spectra for sulfur containing compounds, 100 for phosphorus, and 53 for silicon. The masses of

Si, P, S were modified on top of the previously defined masses m′
i of H, C, N, O, F, Cl, Br from

Table 5.3, and are given in Table 5.5.

In general, the procedure of fitting only the mass of a single element separate from prede-

termined scaled masses of the other elements improves the overall result. At the B3LYP-3c

level the average rmatch for the silicon, phosphorus and sulfur sets is again better than the un-

scaled or globally scaled results. The improvement of the mass scaling in comparison with the

GFS for B3LYP-3c is larger here than for the HCNO set above. Note, however, that the same

νscal = 0.970 was used here and no new linear scaling factor was determined for the silicon,

phosphorus, and sulfur containing molecules and that a specific linear scaling factor might im-

prove the rmatch,lin. Surprisingly, at the GFN2–xTB level the mass scaling does not provide a

better overall performance than the linear frequency scaling. The main issue here likely is that

the fit is stuck in a local minimum due to predetermined masses of the other elements. This

hypothesis was briefly tested with a fit for GFN2–xTB on the 538 sulfur containing structures,

in which all element masses were adjusted. Significant changes in the HCNO masses can be

observed this way, but the average match score (rmatch,mass) for the sulfur subset increases to

0.677. However, the average similarity measure for the 6556 structure set decreases to 0.731
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Table 5.5.: Optimum masses for the elements Si, P, and S and average match scores for the
sets. rmatch,unscal. is the average similarity measure without any modification of the
frequencies, rmatch,lin is the average similarity measure with a fixed νscal applied.
rmatch,mass refers to similarity measures obtained with the fitted masses given in this
table and Table 5.3.

Atom type reference B3LYP-3c GFN2–xTB

Si m′
i [a.u.] 28.0855 31.1671 26.1354

rmatch,unscal 0.650 0.668
rmatch,lin 0.795 0.686
rmatch,mass 0.802 0.681

P m′
i [a.u.] 30.9738 26.0246 25.2719

rmatch,unscal 0.748 0.734
rmatch,lin 0.791 0.740
rmatch,mass 0.822 0.742

S m′
i [a.u.] 32.0600 26.0670 23.7071

rmatch,unscal 0.576 0.612
rmatch,lin 0.782 0.640
rmatch,mass 0.806 0.637

using these masses. The performance is still slightly better than that seen for a global νscal, but

overall worse than the result for ideally scaled masses (cf. Table 5.4). This apparently confirms

the assumption of a local minimum in the fit. As a consequence, when using scaled masses

some errors can be expected for modes with large contributions of non-mass scaled elements. A

larger global adjustment that includes the other elements would likely solve this problem. This

was not pursued here because too few experimental reference data points were available for the

heavier elements.

5.4.3. Conformational Dependence

The molecular conformation can have a significant influence on the IR spectrum510 but this is

rarely investigated comprehensively in the literature. Spectra can be affected due to steric effects

or intramolecular non-covalent interactions and in our experience, different hydrogen bonding

patterns in particular can have a strong influence. Intensities can be influenced as well if dipole

moment changes are large. An example is presented in Fig. 5.6. The 9-aminononanoic acid

zwitterion was chosen as an extreme case to demonstrate the effect of different conformations on

the dipole moment and IR spectrum. No experimental spectrum is available for this molecule.

For a folded conformation a much smaller dipole moment is expected than for a structure

with a large spatial charge separation. This is confirmed at the GFN2–xTB[GBSA(H2O)] level

where the folded structure is the global minimum energy conformer. As can be seen in Fig. 5.6,

most vibrational frequencies are not affected by the conformation. Significant shifts are only

observed for the signal at around 3200 cm−1, which corresponds to a N-H stretch, and the signal

134



5.4. Results and Discussion

μ = 57.9 Debye

μ = 10.6 Debye

0 1000 2000 3000 4000
Frequency [cm-1]

0

0.02

0.04

0.06

0.08

0.1

0.12

re
l. 

In
te

ns
ity

rmatch = 0.786

Figure 5.6.: Two conformations of the 9-aminononanoic acid zwitterion and their respective
calculated IR spectra. Orientation of the dipole vector is indicated by the green
arrow. The dipole moments and frequencies were calculated at the GFN2–
xTB[GBSA(H2O)] level. The spectrum plotted in black corresponds to the linear
conformer, the red spectrum refers to the folded conformer.

at 1800-1900 cm−1, corresponding to a C=O vibration. Note that both functional groups are

connected by intramolecular hydrogen bonding in the folded conformer. Larger differences can

also be seen for the intensities, overall leading to a rmatch between the two spectra of only 0.786.

Ideally one would conduct a conformational search before calculating the IR spectrum and

use the lowest energy conformer or compute Boltzmann population weighted spectra. To obtain

a more conclusive impression of the conformational effect, we selected a subset of 554 flexible

molecules from the 6556 set, and compared the unscaled GFN2–xTB IR spectrum of the lowest

conformer with that just computed for the input structure (as obtained from the NIST database).

The subset structures were selected based on the flexibility score ξf proposed in Ref. 33. Con-

formational searches were conducted with the iMTD-GC workflow as implemented in the crest

code33 at the GFN2–xTB level. All 554 molecules have flexibility scores of 0.8 < ξf < 0.9 com-

monly obtained for relatively floppy structures such as poly-peptides or medium sized branched

alkanes.

Conformational effects are investigated by a similarity measure based comparison of the spec-

tra before and after the conformational sampling, i.e., two theoretical spectra are compared here.

For molecules with a similarity measure close to unity, the conformation either does not affect

the spectrum, or the input geometry already was (close to) the minimum energy conformer.
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The average rmatch between the two spectra at GFN2 level over all 554 cases is 0.965, i.e., on

average a deviation of about 3.5 % was observed. An example is shown in Fig. 5.7.
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Figure 5.7.: Comparison between the theoretical IR spectra (GFN2–xTB) of two conformations
of ethyl 3-amino-4,4,4-trifluorocrotonate. The conformer (and spectrum) marked in
red corresponds to the structure as obtained from the NIST database. The con-
former marked in gray (black line) was obtained through conformational sampling.
The experimental spectrum is plotted in blue.

For this molecule significant differences between the two IR spectra are observed, both regard-

ing frequencies and intensities. With a rmatch of 0.886, the conformational effect is considered

to be quite large. Furthermore, the lowest energy conformation found matches better with the

experiment (rmatch=0.746) than the structure from the NIST database (rmatch=0.699). This

results mainly from better matching signals in the 1000 to 1500 cm−1 and 3000 to 3600 cm−1

regions. Note that for this example only two dihedral angles differ significantly between the

two conformations and the effect on the simulated vibrational spectrum is already large. This

indicates that general conclusions based solely on inspection of the structure are difficult to draw

but that at a high accuracy level conformational changes should be considered when calculat-

ing IR spectra for all but the most rigid structures. According to our limited experience, even

moderately flexible structures with approximately 0.5 > ξf > 0.3 can still undergo considerable

conformational changes. In fact, several low energy conformations will typically contribute to

the experimental spectrum according to their respective Boltzmann population at given tem-

perature and should be considered for very accurate predictions.471,510 In automatic workflows,

IR spectra averaging could be adapted similar to previously discussed averaging of calculated

NMR spectra.40
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5.4.4. IR Spectra of Transition Metal Compounds

A major advantage of the GFN methods over other semiempirical schemes is their robustness

with regards to the possible chemical composition of the investigated molecules. The methods are

consistently parameterized up to radon (Z=86) and do not require any manual structure prepa-

ration step. In this last section we briefly investigate the performance of GFN1-, GFN2–xTB

and GFN–FF for the calculation of IR spectra of transition metal (TM) containing compounds.

The benchmark set is composed of 58 structures taken from the recently published TMG145

benchmark set.324 Only those structures were selected from TMG145 that are known to quali-

tatively maintain the correct geometry upon optimization at the GFN levels and for which we

were able to obtain reasonable structures and frequencies at the B3LYP-D4/def2-TZVPP level.

Because no gas-phase IR spectra are available for these molecules we compare directly to DFT

as reference. The larger basis set was used because transition metal complexes usually involve

more challenging electronic structures than the mostly organic systems from the previous sec-

tions. Since the difference between the mass scaling and linear frequency scaling is small for

B3LYP and we do not have a reference for the masses m′
i of the transition metal atoms, the

DFT frequencies were scaled by a global factor of 0.967, which was taken from the literature.383

The rmatch for all complexes are shown as bar plots for GFN1-, GFN2–xTB and GFN–FF in

Fig. 5.8.
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Figure 5.8.: Bar plots for the rmatch of all the 58 transition metal compounds investigated at the
GFN1–, GFN2–xTB and GFN–FF level. The reference IR spectra were calculated
at the B3LYP-D4/def2-TZVPP level. The light-colored bars denote the rmatch ob-
tained by using mass scaling. The system indicated by the red arrow is discussed
in the text below.

For this set and taking B3LYP as a reference, GFN2–xTB (avg. rmatch,unscal = 0.714,

rmatch,mass = 0.716) performs better than GFN1–xTB (avg. rmatch,unscal = 0.662, rmatch,mass =

0.682), and both SQM methods perform better than GFN–FF (avg. rmatch,unscal = 0.532,

rmatch,mass = 0.544) . For all three methods, the mass scaling improves the performance only

slightly compared to the unscaled result. One case (indicated by the red arrow in Fig. 5.8) is
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very problematic for all the GFN methods. The corresponding structure is a mercury complex,

in which the metal is bound in between two dicarba-closo-dodecaboranyl clusters.511 The IR

spectrum of this structure is not very complicated, but is dominated by a very strong signal at

2600 cm−1 corresponding to many B-H vibrations (see Fig. 5.9). Because the hydrogen mass is

fitted and the mass of boron is not, this signal is too strongly shifted in the mass scaling ap-

proach which has a large impact on the rmatch. Frequencies in the fingerprint region are barely

affected by the mass scaling. However, the intensities are not well described at the SQM level

which is the main problem in many cases with low rmatch values. At B3LYP-3c level a similary
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Figure 5.9.: Theoretical IR spectra for the [Hg(C2B10H11)2] complex.

frequency shift is observed due to the mass scaling, but intensities are reproduced very well. In

fact, if neither the calculated B3LYP-D4/def2-TZVPP reference nor the B3LYP-3c spectrum

is scaled, the rmatch will be very close to unity (0.972). This excellent agreement is a further

indication for the viability of B3LYP-3c.

Many other IR spectra in this benchmark are reasonably well reproduced by the GFN meth-

ods, with most of the errors resulting from the fingerprint frequency region. The main factor

determining the similarity to the reference here is probably the description of the electrostatic

interactions. Of the three GFN methods GFN2–xTB provides the most sophisticated descrip-

tion also including up to atomic quadrupoles39 while GFN1–xTB and the force field rely only

on atomic charges. For GFN–FF they are determined classically while in GFN1–xTB they are

based on the total valence electron density. This usually leads to slightly better intensities

and rmatch at the GFN2–xTB level. As a typical example, a ruthenium based catalyst512 is

shown in Fig. 5.10. The intensities computed at the GFN2–xTB level more closely resemble the
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Figure 5.10.: Theoretical IR spectra for the Cl2Ru(=CH-o-OMeC10H6)(PCy3) complex.

B3LYP reference in comparison with GFN1–xTB. Upon scaling with the same GFS factor as the

reference, B3LYP-3c yields a very good spectrum and in particular the frequencies are almost

perfectly reproduced. Apparently, B3LYP-3c seems to be applicable also for electronically more

complicated structures in the TMG145 subset.

5.5. Conclusion

We investigated the performance of the semiempirical GFN tight-binding and force field methods

for the simulation of IR spectra in direct comparison with experimental data. The performance

of a new low-cost DFT method termed B3LYP-3c, which was introduced and tested in the

course of this study, was investigated as well. A large benchmark set of 7247 gas-phase IR

spectra was compiled with molecules containing the elements H, C, N, O, the halogens and

the heavier elements silicon, phosphorus and sulfur. Electronically more complicated transition

metal-containing structures and the effect of conformational changes on the IR spectra were also

investigated.

For the comparison between theory and experiment several similarity measures (spectral over-

lap metrics) were investigated in order to avoid manual identification and assignment of fun-

damental frequencies from the spectra. We find that all of the tested measures can be used to

sufficiently represent the similarity between two IR spectra. One similarity measure was then

used to determine global frequency scaling factors and to explore a new atomic mass scaling

approach which provides more flexibility than the linear scaling.

Our results show on a sufficiently large sample size that the low-cost DFT (B3LYP-3c) com-
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puted harmonic vibrational spectra can be brought into good agreement with experimental

spectra upon linear scaling of the frequencies. The small but well balanced double-zeta AO ba-

sis set employed provides sufficiently accurate intensities leading to overall excellently simulated

IR spectra. For the semiempirical methods the scaling of frequencies is less effective and their

overall performance is worse than for DFT. In general, GFN2–xTB provides the best and still

useful results at a semiempirical QM level, followed by GFN1–xTB. The GFN–FF mainly suffers

from relatively large errors in the intensities.

Similar trends were also observed for a benchmark of 58 transition metal complexes, which

are only slightly worse than the (mostly) organic compounds at the GFN levels. Furthermore,

it was found that molecular conformation can play an important role for IR spectra calculations

in some cases. For medium flexible molecules, the conformation can influence the molecular

dipole moments and vibrational modes might be differently coupled, leading to differences in

both intensities and frequencies.

All methods suffer from inherent errors for the potential energy surface and the employed

harmonic approximation. For the GFN methods and B3LYP-3c an atomic mass scaling correc-

tion approach was successfully employed as an alternative to standard linear frequency scaling.

For the semiempirical methods, mass scaling yields more consistent and overall better results,

but also at the DFT level the performance is slightly better than with a global frequency scaling

factor. Attention has to be paid, however, for molecules that contain elements without a fitted

mass scaling parameter. This problem was observed for the transition metal complexes and the

silicon, phosphorus, and sulfur subsets.

Based on the presented results, we recommend the usage of semiempirical QM methods as

a cost efficient and reasonably accurate tool to study vibrational spectra in initial steps of

large scale compound identification workflows where thousands of DFT Hessian calculations are

prohibitive in terms of computational effort. In particular the GFN2–xTB method seems to be

promising for this task due to a sophisticated description of the electrostatic energy terms and

an excellent cost/accuracy trade-off. If higher accuracy is required, low-cost DFT or even higher

level ab initio methods can be used for smaller sets of compounds. Furthermore, for flexible

molecules it is important to investigate conformational ensembles.

Empirical adjustment of the atomic masses provides a robust alternative to linear frequency

scaling and is particularly promising at the SQM level. Frequencies might be further improved

by combining the linear and mass scaling approaches, or by including anharmonicities explicitly.

Pairwise atomic mass scaling factors would probably provide the highest flexibility, but would

require modification of the QM codes and complicates the fitting procedure. First advances

have also recently been made to obtain anharmonicity corrections via machine learning.472 A

combination of the mass scaling approach with machine learning could be potentially promising.

However, these techniques only improve vibrational frequencies and in fact, larger deviations

from experiment often results from mismatching intensities. A better description of molecular

dipole moments and their derivatives is particularly problematic for low-level SQM methods with

their small AO basis sets and in particular FFs due to the classical monopole models. Another
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5.5. Conclusion

problem is the availability and quality of experimental reference data. For metal-containing

substances very few gas-phase IR spectra are available. Some experimental spectra also show

significant noise, which can produce artifacts in the similarity measures. A possible strategy for

future work to address these problems might be the fit to very high level theoretical data which,

however, will limit the size and number of the molecules considered.
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6. High Accuracy Calculation and Blind Prediction of Acid Dissociation Constants

Abstract

Recent advances in the development of low-cost quantum chemical methods have made the pre-

diction of conformational preferences and physicochemical properties of medium-sized drug-like

molecules routinely feasible, with significant potential to advance drug discovery. In the context

of the SAMPL6 challenge, macroscopic pKa values were blindly predicted for a set of 24 of such

molecules. In this paper we present two similar quantum chemical based approaches based on the

high accuracy calculation of standard reaction free energies and the subsequent determination

of those pKa values via a linear free energy relationship (LFER). Both approaches use extensive

conformational sampling and apply hybrid and double-hybrid density functional theory (DFT)

with continuum solvation to calculate free energies. The blindly calculated macroscopic pKa

values were in excellent agreement with the experiment.

6.1. Introduction

A significant number of drugs on the market today contain ionizable functional groups.513 Owing

to the influence of ionization state on a range of ADME (”absorption, distribution, metabolism,

excretion”) properties from solubility to permeability and blood-brain-barrier penetration, pKa

values are routinely determined in the pharmaceutical industry alongside other physicochemi-

cal properties like logD. New methods that can accurately predict pKa values for drug-like514

molecules in water but also in non-aqueous solvents and solvent mixtures have great utility

across the industry. It is therefore not surprising that historic SAMPL challenges (SAMPL0–

SAMPL5)515–521 have featured the prediction of physicochemical properties such as solvation

free energies and distribution coefficients alongside prediction of host-guest complex affinities.

In the current SAMPL6 blind test514 macroscopic pKa values should be calculated for a set of 24

medium sized, drug-like molecules. While a microscopic pKa is specific for each functional group

of a molecule and refers to the deprotonation at this position, the macroscopic pKa is defined by

the dissociation constant of deprotonation regardless of from which functional group the proton

dissociates.522–524 Hence, the macroscopic pKa is directly related to the standard reaction free

energy for the general loss of a proton. In the following we apply three computational schemes

for the quantum chemical calculation of macroscopic pKa values of the 24 SAMPL6 molecules,

which correspond to the Type III submissions “xvxzd”, “yqkga” and “8xt50”. Due to the in-

dependence of the macroscopic pKa from the deprotonation position it is necessary to use the

Boltzmann average of all so-called microstates, i.e., the differently protonated and deprotonated

subspecies of each molecule. Different conformations and tautomers might also contribute to the

standard reaction free energy. Therefore, our approaches are based on extensive sampling of the

chemical ensemble, consisting of the different conformers for all tautomers and microstates. To

obtain high accuracy of the standard reaction free energies we apply hybrid and double-hybrid

DFT, including entropic corrections to the free energy in the rigid-rotor-harmonic-oscillator

(RRHO) approximation and corrections to the free solvation energy calculated with continuum
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solvation models for water.

6.1.1. Theoretical Details

Boltzmann populations for the ranking of different conformations are calculated from the free

energies according to

pi =
e−ϵi/kBT∑N
j=1 e−ϵj/kBT

, (6.1)

where pi is the population of state i, kBT is the Boltzmann constant times temperature and ϵi

is the energy of state i, which is calculated as the free energy G according to

G = Eel +GT
RRHO + δGT

solv(X) (6.2)

and consists of the electronic energy Eel, an entropic and thermostatistical contribution calcu-

lated in the modified rigid-rotor-harmonic-oscillator approximation42 GT
RRHO and a solvation

contribution δGT
solv(X) for the solvent X.

The macroscopic pKa value is directly related to the dissociation free energy ∆Gdiss attributed

to the loss of a proton. This can be expressed as the chemical equation

AnHsolv + Bm
solv → An−1

solv + Bm+1Hsolv (6.3)

where the proton dissociates from species A, reducing the molecular charge from n to n-1. The

proton is then absorbed by B, which could for example be a solvent molecule with the molecular

charge m. The dissociation free energy can then be calculated in a thermodynamic cycle525–527

from the individual free energies

∆Gdiss = (GAn−1

−GAnH) + (GBm+1H −GBm

). (6.4)

To obtain the ∆Gdiss for a macroscopic pKa, the correctly averaged and Boltzmann weighted

free energies G have to be used in Eq. 6.4. pKa values can be calculated from ∆Gdiss using the

linear free energy relationship (LFER)252

pKa = c1
∆Gdiss

ln(10)RT
+ c0, (6.5)

where RT is the ideal gas constant times the temperature and the parameters c1 and c0 are

fitted to experimental data.
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6. High Accuracy Calculation and Blind Prediction of Acid Dissociation Constants

6.2. Methodology

6.2.1. Fully Quantum Chemical Calculation of Macroscopic pKa Values

(submission xvxzd)

Since macroscopic pKa values are related to the dissociation free energy ∆Gdiss via the LFER, it

is possible to obtain pKa values from quantum chemical calculations. It is also crucial to use only

a single, correctly weighted ∆Gdiss, since deprotonation at different positions could contribute

to the macroscopic pKa. Therefore all low energy conformers for all low energy tautomers for

different microstates have to be determined and weighted according to Eq. 6.1.

For the first approach (submission xvxzd) in this work we use the semiempirical tight binding

method GFN–xTB38 in combination with high level quantum chemical calculations for the

prediction of macroscopic pKa values. The LFER parameters c1 and c0 are fitted at the same

level of theory to a set of 59 small molecules, taken from related pKa studies.252,528

Generation of Conformers, Tautomers and Protonation States

The procedure is based on a correct averaging of the free energy for all relevant neutral and

ionic structures. Hence, determining correct conformations, tautomers and ionic microstates is

the major prerequisite for the success of the pKa calculation. The general workflow is outlined

in Fig. 6.1.

Starting from a provided SMILES identifier string, three-dimensional structures for the 24

SAMPL6 molecules were created in the neutral state. From these structures, an initial con-

formational search was conducted using the recently published MF-MD-GC//GFN–xTB work-

flow.40 Most notable in this MF-MD-GC procedure is the mode following (MF) approach, in

which new conformations are obtained from the minima on 1-dimensional potential energy sur-

faces of the molecules normal modes (NM). This approach is physically motivated and generates

conformations directly on the semiempirical GFN–xTB level, which also enables the search to

be conducted with an implicit solvation model (generalized Born solvent accessible surface area,

GBSA) for water to obtain solution geometries. The conformational search yields an initial

conformer ensemble (CE) that is used in the automated searches of prototropic tautomers and

the determination of the protonation and deprotonation sites.

Protonation sites are determined by calculating the localized molecular orbitals (LMOs), adding

a proton at the positions of π-LMO and lone pair centers and then screening over all the newly

generated protomers using the GFN–xTB method.38,220 Deprotonation sites are generated with

a similar screening procedure, but instead of using the LMOs one simply has to remove the

protons at different positions to generate anions. Both procedures are automated and can use

an input CE to enhance the respective search space. The determination of tautomers is done by

a sequence of automated protonation and deprotonation as described above and yields all the

permuted prototropic structures, as well as possible ring-chain tautomers. This procedure is also

automated and will be published in detail elsewhere. From the newly generated tautomers the
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Figure 6.1.: Workflow from an initial 3D-input structure to the macroscopic pKa value, involving
several automated GFN–xTB procedures.

protonation/deprotonation site search is conducted again. Since only representative molecules

for the ionic and tautomeric species are created in the procedures, another conformational search

with the MF-MD-GC//GFN–xTB workflow has to be conducted for every one of these struc-

tures.

One obtains ensembles consisting of conformers for several tautomers, i.e., one such ensemble for

the neutral, one for the singly protonated and one ensemble for the singly deprotonated state.

Energy thresholds have to be applied in each of the different automated procedures to limit the

number of generated structures in each ensemble to the energetically most accessible species.

For ionic microstates and tautomers this threshold was set to 10 kcal mol−1 and for conformers

to 6 kcal mol−1 as default. For each of these three ensembles a high level total free energy has

to be calculated using the Boltzmann weighted total free energies of each conformer, tautomer

and protomer calculated according to Eq. 6.2.

Free energies were obtained within an multilevel ansatz that was already successfully applied in

the calculation of spin-spin-coupled nuclear magnetic resonance spectra (NMR) (see Ref. 40):

• GFN–xTB geometries are reoptimized at the PBEh-3c158 level of theory, including
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DCOSMO-RS340, the self-consistent implementation of the COSMO-RS218,529 implicit

solvation model for water.

• Total energies Eel are calculated with the DSD-BLYP-D3(BJ)/def2-TZVPD double-hybrid

density functional.148,172,173,530

• Solvation contributions δG298K
solv are calculated using the COSMO-RS(fine) continuum sol-

vation model for water.218,529

• Entropic contributions G298K
RRHO are calculated in the rigid-rotor-harmonic-oscillator ap-

proximation using GFN–xTB(GBSA).38

The Boltzmann weighted free energies are then used for the calculation of ∆Gdiss and the

macroscopic pKa via the LFER.

Fit to Experimental Data and pKa Calculation

For the calculation of macroscopic pKa values with the LFER it is necessary to determine the

parameters c1 and c0. In common practice both values are fitted to experimental pKa values

and calculated dissociation energies. It is crucial to be aware that such a fit is not universally

applicable to any standard reaction free energy calculation. The fit reflects the level of theory at

which the standard reaction free energies for the reference molecules were calculated and thus

must only be used for calculations of the exact same level.

We fitted the LFER to a set of 59 small organic and inorganic molecules taken from related

literature252,528 where the level of theory corresponds to the one described above. The fit set

is mainly composed out of Klamt’s dataset for pKa calculation252 and therefore exclusively

contains small acids. We chose this dataset to have a better comparison between our results

and the COSMOtherm pKa calculations (as used in submissions yqkga and 8xt50), since these

calculations are based on a LFER fit with the very same set of molecules. The fit is shown in

Fig. 6.2.

From Fig. 6.2 a clear linear correlation between the experimental pKa and the calculated dis-

sociation free energy can be seen. The corresponding R2 value is 0.896. The LFER parameters

were determined from the linear fit as c1 = 0.5665 and c0 = −1.1473.

Several outliers can be observed for smaller pKa values that correspond mostly to small inorganic

acids. Another outlier for which we have no detailed explanation so far is for the dimethadione

molecule, which has a standard reaction free energy of 19.5 kcal mol−1, but only shows a ex-

perimental pKa of 6.10. The fit set of molecules including the calculated standard reaction free

energies is listed in Appendix A5.

Since pKa values depend on the pH value, it is possible to observe more than one macroscopic

pKa, depending on the protonation state of the molecule. Therefore dissociation free energies
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Figure 6.2.: Fit to experimental data to obtain the LFER parameters c1 and c0.

were calculated for two different types of reactions:

AHsolv + (H2O)4,solv → A−1
solv + H3O

+(H2O)3,solv (6.6)

AH+
solv + (H2O)4,solv → Asolv + H3O

+(H2O)3,solv (6.7)

In the first case the neutral structure is the starting point, while in the second case the input

is the protonated species AH+
solv, which would typically be expected for smaller pH values. For

each molecule, two macroscopic pKa values are obtained in this way. Doubly protonated and

deprotonated microstates were not included in this study, but can be handled with the same

computational protocol. Since all calculations were performed in scope of a blind challenge,

including multiply charged ions would have required the additional application of our protocol to

every doubly protonated and deprotonated microstate of all 24 molecules, which naturally leads

to huge computational effort. By omitting these calculations we tried to limit the computational

cost. Also, we expected large standard reaction free energies for the multiply charged ions and

therefore only few of the molecules to show additional macroscopic pKa values in the range of

pKa 2 to pKa 12. It is evident from the results of our other submissions(yqkga and 8xt50), that

this is true since only two out of 24 molecules (SM14 and SM18) turned out to have relevant

doubly charged species for which pKa values could be measured.

As can be seen in the chemical equations 6.6 and 6.7, a small water tetramer was chosen as the

proton adsorbant. In principle it is also possible to use other reference molecules or just a single
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water monomer, or even calculating the ”raw” deprotonation without any baseline, as long as

these calculations are also consistently performed throughout the fit. The small water cluster

was chosen since it better reflects the experimental setup for the proton state in solution than

an isolated water molecule.

Computational Details

All GFN–xTB calculations were conducted with version xtb 4.9.4 code. Automated procedures

for conformer, tautomer and protonation site search were implemented in standalone Fortran

codes. The PBEh-3c geometry optimizations including the self-consistent DCOSMO-RS imple-

mentation were conducted with the TURBOMOLE 7.2 program package433. The calculation

of the solvation free energy contributions within the COSMO-RS framework were performed

with COSMOtherm, using the 2014 fine-parametrization. DSD-BLYP-D3(BJ) calculations were

performed with the ORCA 4.0.1 program package531.

6.2.2. ReSCoSS Workflow and COSMOtherm pKa Calculations (Submissions

yqkga and 8xt50)

Determining Relevant Microspecies

Starting from the neutral form of each of the 24 SAMPL6 pKa molecules, we generated plausible

tautomer structures manually and repeated the tautomer analysis for singly and where reason-

able doubly charged species. In order to allow a meaningful comparison of relative tautomer

energetics, we used the recently developed ReSCoSS (short for ”Relevant Solution Conformer

Sampling and Selection”) workflow which is discussed in detail elsewhere.532

Briefly, starting from 2D structures, 3D conversion was done using the CORINA software533

and a full conformational search was carried out using Schrodinger MacroModel534 with the

Monte Carlo multiple minimum (MCMM) method,535,536 the OPLS2005 force field,74,76,537 in-

cluding the GBSA implicit solvation model for water, while the all-atom RMSD threshold set

to 0.75 Å and the potential energy cutoff increased to 30 kJ/mol. The geometries of all con-

formers for each microspecies (protomers of tautomers) were then optimized using the GFN–

xTB method also employing a GBSA continuum solvation model for water38. Following a

BP86/TZVP/COSMO125,127,538–540 single point calculation, the conformations were clustered

by shape diversity and within each cluster, any conformer corresponding to the lowest-energy

conformation in either of 10 different COSMO-RS solvents (water, DMSO, hexane, octanol,

methanol, propan-one, ammonia, acetonitrile and vacuum) was deemed relevant and retained.

Single point electronic energies were then computed at the PW6B95-D3(BJ)/TZVPD530,541 level

and combined G298K
RRHO at the GFN–xTB[GBSA(water)] level and solvation free energies at the

COSMO-RS/FINE17 level. The total free energy of each conformer was obtained from a sum-

mation of these three terms according to Eq. 6.2. Only microstates where at least one conformer

was within 10 kcal mol−1 compared to the minimum-energy microstate conformer were retained.
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Full Quantum Chemical Optimizations of Relevant Conformer Sets

For all microstates carried forward from the first step, all chosen conformers were then fully

optimized at the PBE-D3(BJ)/def2-TZVP/COSMO128,172,173,338,540 level using the TURBO-

MOLE 7.2 program package.433 Total free energies according to Eq. 6.2 were then calculated

at the DSD-BLYP-D3(BJ)/def2-TZVPD//PBE-D3(BJ)/def2-TZVP/COSMO level, including

G298K
RRHO[GFN–xTB(GBSA)] and δG298K

solv [COSMO-RS(FINE17/TZVPD)] contributions.

Calculation of Macroscopic pKa Values

For submissions yqkga and 8xt50 we used COSMOtherm’s own LFER fit, COSMOtherm,pKa
252

as implemented in COSMOtherm17. Our two submissions differ in how COSMOtherm was ap-

plied to calculate the pKa values. In the first submission (yqkga), we selected all conformers

which had at least 5 % Boltzmann weights at the DSD-BLYP-D3/def2-TZVPD+RRHO(GFN–

xTB)+COSMO-RS(fine) level for each microspecies and applied COSMOtherm pKa directly to

those sets of conformers. This led to an internal re-weighting of the conformers within COS-

MOtherm at the so-called fine level which employs a standard GGA functional125,127 without

dispersion corrections (BP86/TZVPD), but since the selection of the input conformations was

done according to the Boltzmann weights from the higher-level QM method, the calculated pKa

values should still be influenced by the conformer selection strategy outlined before. In the sec-

ond submission (8xt50), we computed conformationally aware pKa values with COSMOtherm

at the conformer level using the conformer Boltzmann weights at the DSD-BLYP-D3/def2-

TZVPD+RRHO(GFN–xTB)+COSMO-RS(fine) level and the equations from Bochevarov et

al.542 to obtain final pKa values.

6.3. Results and Discussion

6.3.1. Results of Submission xvxzd

The SAMPL6 molecule set514 consists of 24 medium sized drug like molecules, of which most

show several different protonation/deprotonation sites. Most of the 24 molecules can also be

expected to have several populated conformations at ambient temperature in water. Hence

the described computational protocol was used to generate, optimize and weight the different

structures for each of the blind-test molecules and then calculate macroscopic pKa values from

their free energies. In the following we refrain from a detailed discussion of the chemical ensem-

bles, but give some information in Appendix A5. The calculated pKa values are presented in

Table 6.1.

Overall the mean absolute deviation (MAD) and root-mean-square deviation (RMSD) have

the values of 0.579 and 0.680 respectively, and the determination coefficient R2 is 0.937. With

this result, the best overall agreement between theory and experiment in scope of the SAMPL6

challenge was achieved. The correlation plot is shown in Fig. 6.3.
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Table 6.1.: Calculated macroscopic pKa values in comparison with experimental data.45,46. The
two missing values (submission xvxzd) for molecules SM14 and SM18 stem from the
doubly charged ions, which were neglected for pKa calculation.

molecule pKa(xvxzd) pKa(yqkga) pKa(8xt50) pKa(exptl.)

SM01 10.14 9.69 9.69 9.53
SM02 4.93 6.26 6.27 5.03
SM03 7.52 6.92 7.18 7.02
SM04 5.17 7.27 6.84 6.02
SM05 4.36 4.85 4.58 4.59
SM06 3.41, 11.25 4.45, 12.51 4.72, 13.17 3.03, 11.74
SM07 5.43 7.43 6.94 6.08
SM08 5.72 5.33 4.67 4.22
SM09 5.07 6.78 7.00 5.37
SM10 8.27 7.97 10.32 9.02
SM11 3.95 4.08 3.87 3.89
SM12 5.04 6.48 6.55 5.28
SM13 5.14 7.10 7.82 5.77
SM14 (–), 4.62 3.38, 5.17 3.38, 5.17 2.58, 5.30
SM15 4.18, 9.35 4.44, 9.19 4.44, 9.19 4.70, 8.94
SM16 4.99, 9.59 5.98, 11.59 6.05, 12.27 5.37, 10.65
SM17 2.07 3.78 3.41 3.16
SM18 2.08, 8.52, (–) 2.14, 7.53, 9.26 2.12, 8.74, 10.54 2.15, 9.58, 11.02
SM19 8.56 9.14 12.55 9.56
SM20 6.52 4.92 5.89 5.70
SM21 3.86 4.17 4.24 3.86
SM22 3.09, 6.90 0.06, 7.32 1.17, 6.44 2.40, 7.43
SM23 4.52 4.79 4.54 4.52
SM24 2.61 2.46 2.24 2.60

MAD 0.58 0.80 0.81 —
RMSD 0.68 1.01 1.07 —

The smallest deviation from the experiment can be observed for molecule SM24, where the

pKa value was overestimated only by 0.01 units. The largest disagreement between theory and

experiment was observed for molecule SM08 with 1.5 pKa units. Out of 29 predicted macro-

scopic pKa values, 13 are within the ≤0.5 pKa confidence interval, 12 are within 0.5 and ≤1.0

pKa confidence and only 4 predictions show a deviation >1.0 pKa units, which demonstrates

the predictive power of our composite quantum chemical approach.

Interestingly, the MAD and RMSD values for the SAMPL6 set are slightly smaller than the

ones we achieved on our calibration set. This is even more surprising when considering that

the fit molecules are mostly small acids, while in the blind test typical drug like molecules were

given. As for the time of writing we have no explanation for this behavior, but apparently the

LFER approach is depending much more on the accuracy of ∆Gdiss than it depends on the
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Figure 6.3.: Correlation plot for the calculated (submission xvxzd) and experimental macro-
scopic pKa values of the SAMPL6 challenge molecules.

size and diversity of the reference molecules. Using the LFER to determine pKa values from

dissociation energies is an established approach that has already been published several times

before using various levels of theory.248–250,252,526,543–545 In contrast to most (but not all249,542)

of these studies we tried to include a complete chemical ensemble for each molecule, consisting

of conformers, tautomers and protomers obtained from quantum chemical calculations. In our

opinion the inclusion and right averaging of species in those chemical ensembles and pairing

this with high level quantum chemical calculations are the major reasons for the success of our

approach. The QM calculation of such ensembles also makes it possible to take into account

temperature via frequency calculations and solvation effects via an implicit solvent model, which

would be neglected by chemoinformatic approaches, for example.

Conformations, tautomers and protomers were obtained at the GFN–xTB level of theory, in-

cluding implicit solvation via the GBSA model. Structure generation and screening at this level

was shown to be a well working procedure, which can be used as a starting point for higher

ranking DFT calculations. Hence, the desired accuracy of the pKa values is an interplay be-

tween a good chemical structure ensemble and the high level DFT accuracy. Since the energetic

difference between different conformations can reach several kcal mol−1, a flawed conformational

ensemble would quickly show up in strongly deviating macroscopic pKa, barring unfortunate

error compensation. Inaccurate conformational energies would have the same effect, which is

why a high level of theory should be used. DSD-BLYP-D3, for example, was chosen because this

density functional showed the best performance for conformational energies on the GMTKN55
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benchmark set109. However, concerning the calculation of pKa values via the LFER, the influ-

ence of the DFT level of theory is comparably small. Since the data is fitted to experimental

pKa values, useful results can be obtained with a variety of functionals, of which we tested the

PBEh-3c, BP86125,127 and PW6B95541 functionals.

In literature252,525 the constant c0 has been reported to have the theoretical value c0 = − log[H2O]

= −1.74, but depending on the chosen method or density functional large deviations from this

value are obtained in the fitting procedure. Even values with the opposite sign have been pub-

lished.252 The best match with the value we encountered so far is the result for our fit, where

c0 = −1.1473. It should be mentioned, however, the constant c0 is an ill-defined expression

(since it is not possible to take the logarithm of a unit) and thus has no physical meaning apart

from defining a correction to the arbitrary baseline within the LFER. Therefore c0 should not

be used as a measure for the correlation between level of theory and the quality of the LFER

fit.

The inclusion of the RRHO term and the entropic contribution at finite temperature has only

a small effect on the calculated pKa values, which is why it has been completely neglected in

some studies.252,543 The main component of the RRHO contribution to a proton dissociation free

energy (or proton affinity) is the loss of zero-point vibrational energy of the cut X-H bond. This

value, however, is similar (but of opposite sign) when the bond is formed with the conjugated

base and hence the overall effect is negligible in a LFER treatment. However, we were able to

see a slight overall improvement by including it. For example, omitting the RRHO term leads

to an MAD of 0.77 pKa units and and RMSD of 1.10 pKa units on the used fit set, while the

c0 parameter increased to -0.5847. Higher level RRHO calculations might even further improve

the results, but were not tested due to the immense computational effort.

A larger error source is attributed to the accuracy of the solvation free energies, calculated with

the continuum solvation models. Omitting the solvation terms in the conformer search leads to

very different conformations, and hence must never be neglected for the pKa calculation. Since

the mere presence of a electrostatic screening continuum influences the conformation, even simple

models as the GBSA are sufficient for the geometry generation, i.e., to generate good starting

conformations representing a CE in solution. Concerning the free solvation energies however, we

noticed in the early stages of the project that even the standard COS-MO-RS parametrization

(compared to the fine parametrization) yields unreasonable free total energies. Therefore we

have used only the COSMO-RS fine parametrized model for the final calculations, the SMD

model546–548 showed comparable performance however and could alternatively be used, which

was also tested in the early stages of this work. The accuracy of solvation free energies is still a

limiting factor and in our opinion gives the largest room for improvements.

6.3.2. Results of Submissions yqkga and 8xt50

Over the whole dataset our two submissions yqkga and 8xt50 achieved rankings #4 and #6

respectively, representing the best QM-based predictions behind the winning submission xvxzd

but not quite matching the two best QSPR-based methods. The calculated macroscopic pKa
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values are shown in Table 6.1 and the respective correlation plots are shown in Fig. 6.4 and 6.5.
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Figure 6.4.: Correlation plot for the calculated (submission yqkga) and experimental macro-
scopic pKa values of the SAMPL6 challenge molecules.
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Figure 6.5.: Correlation plot for the calculated (submission 8xt50) and experimental macroscopic
pKa values of the SAMPL6 challenge molecules.
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SM02 SM04 SM07

SM09 SM12 SM13

pKa exp = 5.03
MOKA pKa = 4.91 (-0.12)
CT-pKa (yqkga) = 6.26 (+1.23)

pKa exp = 6.02
MOKA pKa = 5.65 (-0.37)
CT-pKa (yqkga) = 7.27 (+1.25)

pKa exp = 6.08
MOKA pKa = 5.65 (-0.43)
CT-pKa (yqkga) = 7.43 (+1.35)

pKa exp = 5.37
MOKA pKa = 4.91 (-0.46)
CT-pKa (yqkga) = 6.78 (+1.41)

pKa exp = 5.28
MOKA pKa = 4.91 (-0.37)
CT-pKa (yqkga) = 6.48 (+1.20)

pKa exp = 5.77
MOKA pKa = 5.41 (-0.36)
CT-pKa (yqkga) = 7.10 (+1.33)

Figure 6.6.: Comparison of an empirical method (MoKa) and QM-based pKa predictions (COS-
MOtherm) for six related relatively simple molecules from SAMPL6. The molecules
are predicted by both methods to be protonated at the ring nitrogen opposite the
amino group resulting in 4-aminoquinazolin-1-ium species.

Analysing the 24 molecules from the SAMPL6 pKa challenge in more detail, it is apparent

that there are several subgroups of highly similar molecules. For instance, six out of 24 molecules

– SM02, SM04, SM07, SM09, SM12 and SM13 – share the same aminoquinazoline scaffold which

is very common in drug-like molecules and should be well parameterized in the QSPR codes due

to availability of experimental data. Indeed, retrospective analysis with MoKa 2.5.4549 reveals

that these are well captured (MAD = 0.35 units) while our COSMOtherm pKa values from sub-

mission yqkga seem to be systematically off (MAD = 1.30 pKa units for this subset; Fig. 6.6).

On the other hand, our procedure does identify the correct protonation site on the scaffold as

determined experimentally by NMR45,46 – protonation leading to the 4-aminoquinazolin-1-ium

species – and as the ionization constants for these molecules are much better described in our

other submission xvxzd, the most likely cause for this systematic deviation is the COSMOth-

erm LFER fit. We believe that a re-fit of the COSMOtherm pKa LFER based on higher-level

QM calculations – for instance, using hybrid functionals such as PBE0337,550 or PW6B95 with

a large basis set and, most crucially, including D3 dispersion – could significantly improve its

performance.

SM18 is arguably the most interesting and complex of the 24 molecules, both with regards

to its conformational flexibility and its possible tautomerism. The Quinazolinone moiety alone

could exist as Quinazolin-4(1H )-one, Quinazo-lin-4(3H )-one or Quinazoline-4-ol tautomer in the

neutral state, and there is additional potential for tautomerism in the thiazolylamide moiety.
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protonated neutral deprotonated

Thiazole-NH+

(85.3%)
Quinazolin-4(1H)-one
(88.2%)

Quinazolinone-N deprotonated
(89.5%)

Quinazolinone-NH+

(13.0%)
Quinazolin-4(3H)-one
(11.8%)

Quinazolinone-N deprot. with IMHB
(7.6%)

Figure 6.7.: 3D conformations of the dominant conformer in each relevant microspecies
predicted by our DSD-BLYP-D3/def2-TZVPD+RRHO(GFN–xTB)+COSMO-
RS(fine) scheme based on the ReSCoSS workflow. Percentages indicate the sum
of the Boltzmann weights for all related species (i.e., all conformations of that mi-
crospecies), but only the energetically favoured conformation is depicted

We enumerated a total of 16 microstates spanning formal charges -2 to +2 for this molecule.

Through our workflow we predicted that only two tautomers are relevant in the neutral state,

namely the two Quinazolinone forms, with the Quinazolin-4(1H )-one form dominating over

the (3H ) form. We predicted that the lowest pKa (exp: 2.15; 8xt50: 2.12) belongs to the

protonation of the molecule which should occur predominantly (85.3 %) at the thiazole moiety;

that the second pKa (exp: 9.58, 8xt50: 8.74) represents the first deprotonation step taking

place at the Quinazolinone moiety with a second deprotonation step to the doubly negatively

charged species (exp: 11.02, 8xt50: 10.54) at the remaining amide moiety. Fig. 6.7 illustrates

the conformations of the main species predicted to be relevant in the neutral and singly ionized

states of SM18.
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6.4. Conclusion

Ionizable groups are very common motifs in drugs513 owing to their significant influence on

solubility, permeability, and biological activity of a molecule. Therefore it is not surprising that

significant efforts have been made in the development of pKa prediction programs, usually with

focus on fast structure-based QSPR codes that can predict aqueous pKa in a matter of seconds.

We have previously reported on our internal efforts to re-train the MoKa pKa model based on

internal data.251,549,551,552

QM-based pKa predictions via LFER, while undoubtedly much slower than empirical QSPR,

allow a very different perspective on the exact molecular structures involved – in terms of being

expected to more or less accurately predict tautomers, protonation sites, and conformations in

addition to working better for novel chemistry and mixed or non-aqueous solvents.

As is evident from our results in the SAMPL6 challenge, the fully quantum-chemically based cal-

culation of macroscopic pKa values for drug-like molecules is a competitive and general approach

which works well for systems of medium size. It allows detailed insight into tautomeric states,

conformers and protomers and should be easily generalized to non-aqueous solvents, making it

attractive for application within the pharmaceutical industry.

Both the combined ReSCoSS+COSMOtherm and the GFN–xTB based approach show excellent

MAD and RMSD, which led to ranks 1 (submission xvxzd), 4 (submission yqkga) and 6 (sub-

mission 8xt50) in the blind test. What these two approaches have in common is the focus on

the best possible chemical ensemble consisting of the different conformations for different neu-

tral, protonated and deprotonated forms of a molecule. By selecting efficient quantum chemical

methods, an acceptable computation time could be achieved so that a macroscopic pKa value

for a molecule could be calculated within approximately one day on a 28 CPU node. This is

just a crude estimate, since the computation time depends on the number of different structures

included in the chemical ensemble, which can strongly vary depending on the molecule. Since

the computational bottleneck for all methods presented here is the geometry optimization of the

molecule conformations, the approaches are most likely limited to medium-sized systems with

about 50-100 atoms, at least at this high level of theory.

Possible improvements could be made in terms of the solvation free energies, for which contin-

uum models seem to be not accurate enough. In terms of computing time, however, implicit

solvation models are still the only routinely applicable option for calculating free solvation en-

ergies, but explicit solvation models are an option for future studies.

Finally, the novel GFN2–xTB method39 currently in development offers the possibility for fu-

ture improvements. Compared to the GFN–xTB predecessor method, GFN2–xTB contains a

number of theoretical innovations, the most important of which is a multipole expansion of the

electrostatic term and the use of the newly developed D4 dispersion correction.178 First tests

show a general improvement of GFN2–xTB compared to GFN–xTB results at practically the

same computational speed, even and especially for relative tautomeric and conformational ener-

gies. Thus further improvements in the calculation of macroscopic pKa values could be achieved
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in the future by replacing GFN–xTB by GFN2–xTB in the presented workflow.
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7. Efficient Quantum-Chemical Calculations of Acid Dissociation Constants

Abstract

The calculation of acid dissociation constants (pKa) is an important task in computational

chemistry and chemoinformatics. Theoretically and with minimal empiricism, this is possible

from computed acid dissociation free energies via so-called linear free energy relationships. In

this study some modifications are introduced to the latter, providing a straight-forward, broadly

applicable protocol with adjustable degree of sophistication for quantum chemistry based cal-

culations of pKa in water. It targets a wide pKa range (about 70 units) and medium-sized,

flexible molecules. Herein, a focus is set on the recently published r2SCAN-3c and related effi-

cient composite density functionals and the semiempirical GFN2–xTB method including a newly

introduced energy correction for heterolytic dissociation, both in combination with implicit sol-

vation models. The performance is evaluated in comparison with experimental data, showing

mean errors often smaller than a targeted 1 pKa unit accuracy. Larger deviations are observed

only upon inclusion of challenging highly negative (<-5) or positive (>15) pKa values . Among

all those tested, it is found that B97-3c is the best performing functional, although rather in-

dependently of the DFT method used, low root-mean-square errors of 0.8 to 1.0 pKa units for

typical drugs are obtained. For optimal performance, it is recommended to employ DFT func-

tional specific free energy relationship parameters. Additionally, a significant conformational

dependence of the pKa values is revealed and quantified for some non-rigid drug molecules.

7.1. Introduction

Acid dissociation constants (pKa) are among the most featured physicochemical properties in

the literature.251,553,554 The significance of pKa values is owing to the importance of ionization

states of drug molecules under physiological conditions and their direct influence on a range

of other properties. In the pharmaceutical industry an understanding about a molecule’s ion-

ization behavior is critical for an accurate prediction and characterization, e.g., of solubility,

permeability, and an associated range of ADME (absorption, distribution, metabolism, excre-

tion) properties.251 This process can be aided by computational methods, which enable the a

priori calculation of pKa values without the need for costly and time consuming experimental

titration studies.

Over the last few decades a wide variety of computational models have become available for

pKa calculations. The two arguably most common approaches are based on quantum mechanical

(QM) free energy calculations using linear free-energy relationships (LFER)553,554 and, more em-

pirically quantitative structure-activity relationship (QSAR) and machine learning (ML) mod-

els,555–557 which derive the pKa from chemoinformatic rules and large collections of reference

data. The latter approaches have an obvious advantage with regards to their computational

cost and also enable the screening of pKa values in large databases. However, many studies

show that the achievable accuracy of QSAR and ML models strongly depends on their ability to

recognize ionization sites and thus on the used test and training data sets.245,557–559 QM based

(LFER) models on the other hand, despite the much higher computational cost provide a high
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degree of generality in the computational modeling and allow for more detailed investigations,

e.g., of conformational or stereochemical effects.292,542,560,561 This furthermore includes the ap-

plicability to highly negative (<-5) or positive (>15) pKa values, which is out of the usual range

for highly parameterized QSAR/ML models.

Many different flavors of LFER schemes have been proposed over the years that differ with

regards to their computational setup or parametrizations for different functional groups. How-

ever, any of these methods center on the accurate description of the dissociation free energy of a

proton in solution (usually water) and, at least in principle, could be described by any wave func-

tion theory (WFT), density functional theory (DFT) or even semiempirical quantum chemical

(SQM) method. The respective QM data may also be used as descriptors for QSAR model-

ing, e.g., in the form of HOMO-LUMO gaps562,563 or atomic charges.564–566 One major source

of error for computed pKa values is the description of solvation effects, which are commonly

treated by implicit solvation models252,543,553,560,567–571, explicit solvation572,573 or a combina-

tion thereof.574–577 Nonetheless, predictions of the pKa based purely on QM have been proven

to work very well,554,560 for example in comparison with experimental data in the SAMPL645,46

blind challenge. Here, LFER results based on QM provided by our group and others221 made

the best predictions compared to the experiment with errors smaller than 1 pKa unit which is

commonly considered as ’chemical accuracy’. As noted above, the main drawback of LFER/QM

based calculations is the comparatively large computational cost required for the calculation of

high quality dissociation free energies at DFT level. However, in recent studies, for example

by Jensen et al.249,560,566, it was shown that reasonable accuracy and errors of only 1–2 pKa

units can still be achieved using computationally much cheaper SQM methods. Overall, the in

silico calculation of pKa values is one of the most studied subjects in computational chemistry

and chemoinformatics. Hence it is no surprise that a large number of pKa prediction tools are

commercially available, based either on the LFER or QSAR models (e.g., COSMOtherm252,543,

ACD/pka578, ChemAxon579, SimulationPlus580, Schrödinger244,542,581, and Optibrium557). In

contrast, no specialized software is required for QM free energy calculations and very efficient

protocols exist that can automate major parts of these computations.22 Furthermore, QM cal-

culations are, at least in principle, also possible for molecules containing inorganic elements, for

which no reference (training) data is available for QSAR/ML based models.

In this study we present the calculation of pKa values by means of the recently intro-

duced r2SCAN-3c composite functional182 using COSMO-RS implicit solvation218,454 and by

the GFN2–xTB SQM method36,39 including the ALPB implicit solvation model.22 A protocol

for the routine calculation of the pKa from dissociation free energies is discussed that involves

free energy computations only for two species, i.e., the acid and its conjugate base. In the

following section a short review of the theory is given and a higher-order free energy relation-

ship (FER) is introduced. Furthermore, conformational effects and a correction for GFN2–xTB

dissociation energies are briefly discussed. The latter is first evaluated in Sec. 7.4.1 for a set

of 171 small molecule pKa values in comparison with r2SCAN-3c/COSMO-RS. Afterwards, the

performance of several theoretical methods is shown for different chemical functional groups in
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Sec. 7.4.3, followed by challenging pKa calculations for flexible molecules in Sec. 7.4.4. Finally,

in Sec. 7.4.5 conformational effects are investigated.

7.2. Theory

The pKa is the logarithm of the equilibrium constant Ka for the dissociation reaction of an

acidic molecule HA in a given solvent (commonly water) according to the chemical equation

HAn + H2O
Ka−−→ An−1 + H3O

+ , (7.1)

where n is the molecular charge of the acid. For simplicity, it is assumed that n = 0 in this

section. The reaction free energy of this dissociation, ∆Gdiss, is related to the equilibrium con-

stant via the Gibbs free energy relation ∆G = −RT lnKa, which is applied to pKa calculations

in the form of a linear free energy relationship (LFER)

pKa = c1
∆Gdiss

RT ln 10
+ c0 . (7.2)

In the literature many works based on the LFER are found,542,543,553,560 where ∆Gdiss is ob-

tained from thermodynamic cycles and c1 and c0 are adjustable parameters, chosen as to best

reproduce experimental reference pKa values. Ideally, c0 is unity if ∆Gdiss correctly reflects the

experimental conditions, but systematic errors of the theoretical methods may be compensated

by adjustment of this parameter. Because according to Eq. 7.1 the dissociation free energy can

be defined as

∆Gdiss =
(
G(A−) −G(HA)

)
+
(
G(H3O

+) −G(H2O)
)︸ ︷︷ ︸

const.

, (7.3)

the solvent, which is acting as the base, has a constant contribution to ∆Gdiss and hence its

effect can be entirely absorbed into a1. This suggests employing ∆G′
diss = G(A−) − G(HA)

directly instead of ∆Gdiss.

The LFER assumes a linear relation for the entire range of HA dissociation energies. However,

non-linear contributions, e.g., in the solvation terms may appear for very high or very low pKa

values. Hence, as a simple alternative we propose a more flexible, n-th order polynomial FER

given by

pKa = c0 + c1Γdiss + c2 (Γdiss)
2 + ...+ cn (Γdiss)

n , (7.4)

with the empirical fit parameters c0 to cn, and the reduced free energy variable Γdiss =
∆G′

diss
RT ln 10 .

Higher-order free FER are known in physical chemistry, e.g., from the Marcus theory, which

employs a quadratic free energy relationship (QFER) formulation to describe electron trans-

fers.582 As for the LFER, the free energy contribution of the solvent acting as a base in the

higher-order FER is assumed to be constant and absorbed into the fit parameters, i.e., ∆G′
diss

is used. For the final working equation this leads to only two required free energies G(HA) and

G(A−), which can be routinely obtained from standard QM calculations in implicit solvation
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according to

G = Eel +GT
trv + δGT

solv(S) . (7.5)

Here, Eel is the electronic energy calculated by any QM or SQM method, GT
trv is the ro-

vibrational free energy contribution at finite temperature T calculated in a modified rigid-rotor

harmonic-oscillation (mRRHO) approximation,42,186,420 and δGT
solv(S) is the implicit solvation

free energy for the solvent S, including volume work. Conformational effects may be included

by a population averaged free energy G =
∑

i piGi, where the sum is taken over the entire

conformational ensemble. The thermal populations pi at absolute temperature T are given by

pi =
e−Giβ∑
e−Giβ

, (7.6)

where β = 1
RT , R is the gas constant, and Gi is the free energy (Eq. 7.5) of the equilibrium

structure of conformer i. The extension to different tautomeric states can be very comprehensive

by taking into account all the possible reactions of the tautomers of HA to all the tautomers

of A− (see, e.g., the work of Bochevarov et al.542). For simplicity, additional tautomers are

not considered in this study, and only the most relevant protonation sites for each molecule

are employed. However, motivated by the fact that there is only one observable ∆Gdiss for

the reaction, G may simply be calculated by including all conformational ensembles for all

tautomers. In general, the individual conformers and tautomers of the ensemble can be seen

as free energy “levels” for the acid or its conjugate base. Hence, the ensembles define the pKa

value obtained from the respective Boltzmann population averaged free energies G
A

and G
B

as shown in Fig. 7.1. Furthermore, in order to improve the accuracy, separately computed

conformational free energies22,186,216 G
A/B
conf could be added for the acid and the base. However,

for the cause of efficient computations as subject of this study, this term and its influence on

the pKa will be omitted here and discussed elsewhere. In contrast, if only single, random

conformations are chosen from the ensembles for the acid and the base, the calculated pKa can

lie anywhere between the limits given by the minimum and maximum possible dissociation free

energies.

The calculation of pKa values from free energies with either the LFER or higher-order FER

is straightforward and works across a range of theoretical methods. Even with comparatively

inexpensive SQM methods reasonably accurate results are obtained.249,557,560 Because errors for

chemical reaction energies are typically larger for SQM methods than for higher level (DFT)

methods,36,109 it seems appropriate to introduce an energy correction term specifically for acidic

dissociation reactions. This holds specifically for the here considered GFN methods which have

not been parameterized originally for thermochemical applications. The here newly proposed

energy correction ETB
mod depends on the chemical topology (via bond orders) and atomic charges

in the acid/base species and is given by

ETB
mod = ε(X) + k1∆BOab(X) + k2qa(X) + k3qb(X) + k4qa(H) . (7.7)
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acid base
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max. ∆Gdissmax. ∆G'
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Figure 7.1.: Schematic representation of (free)energy levels for conformational ensembles of an
acid and its conjugate base. The observable pKa value is calculated from the popu-

lation averages G
A

and G
B

. The minimum and maximum possible dissociation free
energies are visualized by the dashed lines.

In Eq. 7.7, X is the reactive atom from which the acidic proton is dissociated, ε(X) is an el-

ement dependent energy shift, ∆BOab(X) is the bond order difference of X between the acid

and the deprotonated molecule, and qa and qb are the atomic charges of X and the proton in

the acid or the base as shown schematically in Fig. 7.2. The four parameters k1−4 and the

qa(H)

qa(O), BOa(O), ε(O) qb(O), BOb(O)

- H+

acid base

Figure 7.2.: Structural description of the parameters qa, qb, BOa, BOb, and ε for the example
of glycine with X=oxygen in Eq. 7.7.

energy shift ε(X) are fitted so that ∆ETB
el +ETB

mod at GFN2–xTB/ALPB(H2O) level reproduces

DFT r2SCAN-3c/COSMO-RS(H2O)//GFN2–xTB/ALPB(H2O) dissociation energies (see be-

low). The r2SCAN-3c composite functional has been chosen because it is one of the generally

most accurate, robust, and efficient DFT methods available and is our group default for general

chemistry applications.
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7.3. Computational Details

Calculations at the GFN2–xTB/ALPB(H2O) level were conducted with version 6.4.0 of the

xtb program. Higher-level calculations were mainly carried out at the r2SCAN-3c/COSMO-

RS(H2O) level.182 In Sec. 7.4.3 calculations were additionally performed at the B97-3c,180

B97-D/def2-TZVPP,171 PBE0-D3/def2-TZVPP,172,173,337,338 PW6B95-D3/def2-TZVPP541 and

ωB97X-V/ def2-TZVPP583 levels of theory, all including COSMO-RS(H2O) using the 2019 ”nor-

mal” parametrization. All COSMO-RS calculations use the density and basis set corresponding

to the respective DFT level. For simplicity, in the following discussions the levels of theory

are often just referred to by their underlying DFT functional or SQM method, although im-

plicit solvation is always used. DFT calculations were done with Turbomole 7.5.1432,493 and

COSMO-RS implicit solvation contributions were calculated with COSMOtherm19.529,584 Ge-

ometry optimizations were conducted at the r2SCAN-3c/DCOSMO-RS340 level, using the xtb

program as a driver. Free energy contributions GT
trv from a rigid-rotor harmonic-oscillator

(RRHO) treatment were always calculated at the GFN2–xTB/ALPB(H2O) level, using the re-

cently introduced single-point-Hessian (SPH) approach420 to avoid changes to the geometry

and the appearance of imaginary modes. For the initial determination of ETB
mod parameters in

Sec. 7.4.1 r2SCAN-3c/COSMO-RS(H2O) energies are calculated on GFN2–xTB/ALPB(H2O)

geometries. All other DFT calculations were performed using the r2SCAN-3c/DCOSMO-RS

geometries. The calculation of pKa values and related routines were implemented in a devel-

opment version of the CREST program,33,423 which was also used for generating molecular

conformations at the GFN2–xTB/ALPB level. For post-processing of the final conformational

ensembles and calculation of DFT energies the censo script22,585 was used (version 1.0.5, part1

and part2, default settings). The three simple steps required for the calculation of pKa values

are given by:

1. Starting structures for the acid and the base are determined and conformational ensembles

are computed for both independently using CREST.

2. G
A

and G
B

at the DFT level are calculated using censo script585 from the two GFN2–

xTB/ALPB ensembles.

3. From the resulting ∆G′
diss the pKa is determined using Eq. 7.4.

For further automation aspects and technical details, the reader is referred to Ref. 22 and

Appendix A6.

7.3.1. Benchmark Sets

Four benchmark sets were used in this study. For the fit of GFN2–xTB dissociation energy

corrections, element dependent parameters in Eq. 7.7 were determined for the elements C, N, O,

F, Si, P, S, and Cl as possible deprotonation sites, using a set of 171 small molecules. A subset

of this fit set consisting of 82 small molecules (elements HCNO only) was then used for the
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determination of the parameters in Eq. 7.4, with reference pKa values spanning the full experi-

mentally known range from -24 (protonated benzene) to 50 (ethane). Because of this pKa range

we refer to the set as PKA74 in the following. In a cross-validation procedure FER parameters

are also determined for a second, larger set, but with a smaller pKa range. This set was com-

posed by Thapa and Raghavachari577 and contains 224 experimental pKa for small molecules,

distributed on 12 different functional groups (aliphatic alcohols R-OH, phenols Ph-OH, thiols

R-SH, thiophenols Ph-SH, carboxylic acids R-COOH, benzoic acids Ph-COOH, primary R-NH2,

secondary R2-NH and tertiary amines R3-N, anilines Ph-NH2, nitrogen containing hetereocy-

cles Ar-N, and carbon acids R-C-H). In the following we refer to this set as TR224. For an

independent validation for the final pKa procedure, the second and third sets contain values for

larger, drug like molecules, and also enable the study of conformational effects. One of these sets

was introduced in the SAMPL6 challenge and contains 24 molecules with 31 experimental pKa

values.45,46 The other was first introduced by Eckert and Klamt543 and later revised by Jensen

et al.560 and contains 53 pKa values for 48 molecules. Details are given in Appendix A6. For

the sake of computational efficiency, only a single protonation site of each molecule as described

in the literature was considered in this study and no additional tautomers were investigated.

The respective structures were either taken from the literature45,543,557,560,577 as Cartesian coor-

dinates directly or converted from SMILES codes using OpenBabel.586 However, we note that,

if desired, protonation sites and tautomers could easily be screened33,220 and included within

the same computational framework.

7.4. Results

7.4.1. Free Energy Relationships and Corrected Dissociation Energies

Motivated by systematically underestimated and overall inaccurate heterolytic dissociation en-

ergies at the GFN2–xTB/ALPB(H2O) level (see Appendix A6), an element dependent energy

correction term ETB
mod was developed and fitted to r2SCAN-3c/COSMO-RS reference dissocia-

tion energies. Thermostatistic contributions Gtrv were neglected here because they are always

calculated at the same GFN2–xTB level of theory in this study. Hence, only the respective re-

action energies ∆E′
diss were adjusted in element-wise fits for which the respective mean absolute

deviation (MAD), root-mean-square deviation (RMSD) and standard deviation (SD) are shown

in Tab. 7.1.

The table clearly shows the large errors of uncorrected GFN2–xTB/ALPB(H2O) compared to

DFT. The ∆E′
diss values at the SQM level are underestimated by roughly a factor of two, which

translates into errors of about 150 kcal mol−1(cf. Tab. A6.2 in Appendix A6). This systematic

deviation is attributed to a wrong energy description of the ionic species in the dissociation, as

result of the not energy-parameterized TB-Hamiltonian as well as not self-interaction error free

second- and third-order electrostatic terms.39 Similar errors have been observed in the past and

can also be seen, e.g., for some subsets of the well-known GMTKN55 benchmark set109 as well
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Table 7.1.: Error measures for the fit of GFN2–xTB/ALPB(H2O) ∆E′
diss energies and respective

corrected energies in comparison with r2SCAN-3c/COSMO-RS//GFN2–xTB/ALPB
(denoted as ∆∆EDFT/GFN2). Statistics for the C, N, O set are shown separately
because they make up for roughly half of the benchmark set and are most important
for the studied pKa values. All values in Eh and kcal mol−1.

∆∆EDFT/GFN2 ∆∆EDFT/GFN2 + ETB
mod

Eh kcal mol−1 Eh kcal mol−1

C,N,O MAD 0.242 152.00 0.006 4.07
RMSD 0.243 152.47 0.009 5.34
SD 0.019 12.02 0.008 5.27

all MAD 0.242 151.84 0.008 5.00
RMSD 0.242 152.37 0.012 7.39
SD 0.020 12.69 0.012 7.24

as in electrochemical applications185. In comparison, differences between the implicit solvation

models ALPB and COSMO-RS are much smaller.22 The developed dissociation energy correction

is able to reduce the error by the earlier-mentioned order of magnitude and yield MADs of only

4.1 and 5.0 kcal mol−1 for the CNO and full fit set, respectively.

Methods providing accurate dissociation free energies should enable reasonable pKa calcu-

lations using a similar set of FER parameters. Therefore, in this study an initial comparison

between DFT and GFN2–xTB is given for pKa values obtained from the same reference FER

parameters determined at the r2SCAN-3c/COSMO-RS level. As already mentioned, the mo-

tivation for using a higher-order free energy relationship instead of the well-known LFER is a

better flexibility of the fit with respect to the same input quantity (∆G′
diss). Different orders of

FER (linear LFER, quadratic QFER, and cubic CFER) were tested for the PKA74 set and are

shown in Tab. 7.2. The shown values demonstrate the expected trend of decreasing errors with

increasing polynomial order. Naturally, a larger number of empirical parameters provides a more

detailed adjustment of the fit, although over-fitting has to be avoided. In the discussed FER

case a data point–to–parameter ratio of ten (or more) to one is expected to yield reasonable fits.

To estimate the best FER order without over-fitting, statistical measures such as the Bayesian

information criterion (BIC) are used, which has to be minimized (see Appendix A6). Here, this

is the case for the CFER, fourth- and fifth-order polynomial FER, but the CFER was chosen

to avoid extremely large FER prefactors c0 to c3. In fact, cross-checking on the TR224 and

drug benchmarks sets revealed typical over-fitting problems for polynomial FERs larger than

third-order, despite the seemingly better statistical performance for the PKA74 set.

The statistical deviations of the calculated pKa values (MAD) at the DFT level seem to be

higher than for comparable studies in the literature. This is attributed to the considered large

range of pKa values over more than 70 units (from −24 to 50) while the vast majority of QSAR

training data sets include the more typical range from −5 to 15 units.555 For the small/large

value regions of the pKa scale there are often no well defined functional groups (which need to
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Table 7.2.: Free energy relationship (FER) parameters obtained from polynomial regression of
∆G′

diss
RT ln 10 and experimental pKa values for the PKA74 set. The reference level r2SCAN-
3c/COSMO-RS is abbreviated as r2SCAN-3c and GFN2–xTB+ETB

mod/ALPB is ab-
breviated as GFN2–xTB. Statistical error measures are given in pKa units. CFER*
denotes a fit to GFN2–xTB/ALPB free energies instead of DFT ones.

FER parameters statistics [pKa]
method c0 c1 c2 c3 MAD RMSD

LFER r2SCAN-3c -177.715641 0.930626 — — 2.06 2.67
GFN2–xTB 3.04 4.05

QFER r2SCAN-3c -68.715113 -0.134833 0.002590 — 1.94 2.58
GFN2–xTB 2.89 3.96

CFER r2SCAN-3c -1511.889979 21.110068 -0.101200 0.000168 1.86 2.42
GFN2–xTB 2.84 3.86

CFER* r2SCAN-3c -1855.025277 26.075982 -0.124964 0.000206 1.96 2.64
GFN2–xTB 2.79 3.68

be identified by QSAR schemes) involved in the acid dissociation reaction, but QM free energies

can easily be calculated and FER based methods offer an intrinsic advantage. However, extreme

pKa values may lead to significant errors even in QM methods because of the more complicated

electronic structures involved, often associated with unusual solvation effects. A parity plot for

pKa calculated with the CFER of Tab. 7.2 is shown in Fig. 7.3.

For the r2SCAN-3c/COSMO-RS reference level a good correlation of R2 = 0.96 and a MAD

of 1.86 pKa units is obtained while GFN2–xTB/ALPB with the same CFER parameters yields

a slightly lower correlation of R2 = 0.92 and higher MAD of 2.84 pKa units. As previously

noted, the same FER fit should ideally work with any theoretical method able to compute

dissociation free energies. This was tested for GFN2–xTB/ALPB by a separate re-fit (CFER* in

Tab. 7.2, i.e., CFER parameters were adjusted by fitting on GFN2–xTB/ALPB energies) which

results in only minor changes (of about 0.1 pKa units) of the statistical measures, although the

FER parameters are noticeably different. Hence, remaining errors are attributed to methodical

shortcomings of the different levels of theory, i.e., inaccurate dissociation free energies, instead

to the quality of the FER fit. Seemingly, the same FER fit may therefore be used in conjunction

with different levels of DFT or SQM as long as the absolute free dissociation energies are on

the same level. Because the performance for the r2SCAN-3c reference is slightly better, in the

following sections the CFER fit shown in Tab. 7.2 is taken as a standard. Whether this is an

adequate choice was investigated in comparison with other DFT methods.

7.4.2. Method and Reference Data Dependence

To put results from the previous section into perspective, additional CFER fits for other DFT

methods were determined on the PKA74 set. Additionally, the influence of the selection of

reference data is investigated in this section. For this purpose CFER fits were performed on the

TR224 set introduced by Thapa and Raghavachari.577 The TR224 set contains more reference
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Figure 7.3.: Parity plot for the r2SCAN-3c/COSMO-RS pKa value (blue dots) in comparison
with experimental values. GFN2–xTB+ETB

mod/ALPB data (red triangles) were cal-
culated using the same regression CFER. The dashed lines correspond to a SD of
2.43 pKa units obtained for r2SCAN-3c.

data points than the PKA74 set but only represents a smaller range of about 20 pKa units,

similar to typical QSAR training data. With two sets of CFER parameters for two fit sets and

one ”reference” CFER determined at the r2SCAN-3c level (Tab. 7.2), the performance for each

level of theory can be cross validated. Statistical data is given in Tab. 7.3 and the respective

CFER parameters can be found in Appendix A6.

Interesting observations can be made from the presented data. Despite the assumption in

the previous section, no universal or ”default” CFER should be applied for all levels of theory.

The respective MADs and RMSDs are strongly increased in comparison to CFER fits that were

determined for each individual method. Obviously, CFER fits show the best performance for

each method on the benchmark set for which they were determined (i.e., PKA74 or TR224).

This is expected because the polynomial regression minimizes the errors. However, while CFER

parameters determined on PKA74 seem to be applicable also to pKa predictions of the TR224

set and produce errors of similar magnitude, the vice versa approach shows an opposing trend.

In fact, CFER parameters determined for the TR224 set only yielded very large RMSDs of up

to 10.8 pKa units at DFT level when applied to the PKA74 set. On the other hand, within the

smaller pKa range of TR224, the respectively fitted parameters showed superior performance

and produced MADs within the target 1 pKa unit range.

A probable interpretation is that the large pKa range of PKA74 can be seen as a CFER
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Table 7.3.: Statistical values for pKa calculated at various levels of theory. CFER parameters
were either determined for the PKA74 or TR224 set and evaluated with the respec-
tive other set. The ”default” CFER refers to r2SCAN-3c parameters from Tab. 7.2.
All DFT calculations employ COSMO-RS(H2O) implicit solvation. TZ is an abbre-
viation for the def2-TZVPP basis set. GFN2–xTB includes the energy correction
ETB

mod and employs ALPB(H2O) implicit solvation. All values are provided in pKa

units.

”default” CFER CFER adjusted CFER adjusted
on PKA74 on TR224

method MAD RMSD MAD RMSD MAD RMSD

PKA74
GFN2–xTB 2.84 3.86 2.79 3.68 5.54 11.59
r2SCAN-3c — — 1.86 2.42 4.84 10.10
B97-3c 2.58 3.23 1.81 2.30 3.64 6.69
B97-D/TZ 3.48 3.96 1.70 2.28 5.10 10.79
PBE0-D3/TZ 1.93 2.54 1.90 2.50 5.28 10.55
PW6B95-D3/TZ 2.47 3.10 1.67 2.26 4.80 10.03
ωB97X-V/TZ 2.52 3.14 1.64 2.30 2.32 3.91

TR224
GFN2–xTB 1.98 2.47 1.75 2.16 1.38 1.81
r2SCAN-3c — — 1.43 1.89 0.93 1.22
B97-3c 2.67 2.97 1.19 1.52 0.70 1.04
B97-D/TZ 3.77 4.04 1.22 1.65 0.79 1.03
PBE0-D3/TZ 2.61 3.10 2.43 2.89 0.97 1.22
PW6B95-D3/TZ 2.64 3.14 1.29 1.66 0.93 1.18
ωB97X-V/TZ 2.47 3.02 1.11 1.50 0.87 1.12

parameter constraint for very complicated systems that still model a proper dependence on the

dissociation free energies. In this case, fits on TR224 would be ”fine-tuning” for the smaller

pKa range, but could fail for the extreme values. Note that this is reflected in the empirical

factors c0 to c3, which differ significantly (in magnitude and pre-sign) between the two fits

for all methods, with exception for the range-separated hybrid ωB97X-V. Since ωB97X-V/def2-

TZVPP is the highest level method tested within this study, the reason for its good performance

are very well behaved and practically charge self-interaction free dissociation free energies, es-

pecially for challenging anionic systems. However, at least for the limited number of methods

employed in this study, there is no significant correlation between the DFT rung and the quality

of pKa calculations. Rather independently of the employed functional, all DFT methods yielded

qualitatively and quantitatively similar results. All three employed hybrid functionals involved

significantly higher computational cost than the r2SCAN-3c method (factor of 50 and more) but

in comparison showed only minor improvements for the computed pKa values (< 0.2 pKa units).

Surprisingly, the otherwise very robust and commonly applied PBE0 functional even shows the

worst performance of all evaluated DFT methods. In view of the higher computing efficiency,

it makes thus sense to employ a cheaper yet accurate ”all-purpose” composite functional such
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as r2SCAN-3c. Interestingly at about the same computational effort, the B97-D/def2-TZVPP

GGA functional and its composite counterpart B97-3c outperformed all other methods, at least

for the TR224 set. However, this good performance must be attributed mainly to beneficial

compensation of the self-interaction error (SIE) that is present in GGA functionals, and this

will be discussed briefly in the next subsection. r2SCAN-3c suffers slightly less from SIE and

should provide a more physical description of dissociation free energies.182 Furthermore, out-

standing performance of r2SCAN-3c was observed for conformational energies, which is relevant

for the treatment of ensembles of non-rigid molecules (see Sec. 7.4.4).

GFN2–xTB as the only SQM method in the evaluation provides the most cost efficient

calculations of all discussed theory levels. Nonetheless, predictions of pKa values at GFN2–

xTB+ETB
mod/ALPB level are only slightly worse than the DFT results for both the TR224 and

PKA74 sets. Considering that the method was not designed for thermochemistry and a com-

paratively simple ALPB implicit solvation model is used, this is encouraging. Trends of pKa

values will likely be qualitatively correct at the GFN2–xTB level and hence may provide the

opportunity for fast pre-screening applications. Note, however, that the ETB
mod term is required

here. SQM might also be used for supportive thermostatistical calculations (GT
trv, as has been

applied here), to provide chemoinformatic descriptors557,566, initial conformational sampling33,

or calculation of the conformational entropy.186

All discussed results clearly demonstrated a good correlation between dissociation free energies

and experimental pKa values. The main conclusion here is that, given a method specific CFER

fit, any of the employed methods may be used for pKa calculations with sufficient accuracy,

indicating the physical plausibility of the presented approach.

7.4.3. Functional Group pKa Values

To further decompose the errors, the functional group dependent performance is discussed. MAD

values with respect to experimental data for the 12 chemical groups included in the TR224 set at

the GFN2–xTB+ETB
mod and r2SCAN-3c level are shown as a radial plot in Fig. 7.4. Because the

investigated molecules were mostly rigid, only a small influence of the molecular conformation

was expected and single structures for acid/base were considered. Non-rigid molecules are

discussed in the following section.

From the radial chart the largest errors at the r2SCAN-3c/COSMO-RS reference level can be

seen for alcohols and thiols. This is qualitatively consistent with results for other DFT or QM

methods observed in Ref. 577. Errors at the GFN2–xTB/ALPB level were larger on average and

in particular for the R-C-H, R2-NH, R-NH2, and R/Ph-COOH subsets. However, the overall

maximum deviations of GFN2–xTB for TR224 are not larger than those of DFT. The CFER

parameters determined from PKA74 seemingly worked quite well in these cases. A minimization

of errors by polynomial regression of the TR224 set reveals slightly mismatching slopes and shifts

of the pKa values compared to the fit set. This is evident form Fig. 7.4, as large errors for some

functional groups were minimized (mainly R-OH), while others (R-C-H) are increased by the

set-specific regression (e.g., compare the red area and black outline for r2SCAN-3c/COSMO-
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Figure 7.4.: Radial plot for MADs of GFN2–xTB+ETB
mod/ALPB and r2SCAN-3c/COSMO-RS

pKa values for different chemical groups included in the TR224 set. The benchmark
set on which CFER parameters have been determined is given in parentheses behind
the levels of theory.

RS). The differences were mainly caused by the functional groups with very high and very low

acid dissociation constants, which can be seen from the color-coded parity plot of experimental

and calculated (CFER from PKA74, r2SCAN-3c/COSMO-RS) pKa values in Fig. 7.5a.

Here, pKa values for R-OH, Ph-OH, anilines, and R-NH2 evidently require a much steeper

slope, while other functional groups within the 5–10 pKa range are in relatively good agreement

with the experiment. As can be seen from Fig. 7.5b, calculated pKa for phenols and alcohols

agree especially well with the experiment at the B97-3c level. As mentioned earlier, this is

presumably an effect of error compensation. One possible explanation is that the SIE will lower

the energy of the anionic bases relative to the energy of the conjugate acids for these molecules

and hence will less strongly overestimate the pKa values, e.g., compared to the r2SCAN-3c

level. High-level ωB97X-V calculations do not profit from similar error compensation, but

expectedly should yield the most consistent dissociation energies of all tested methods. Hence,

its performance is in between r2SCAN-3c and B97-3c. Values for thiols seem to be systematically

underestimated (i.e., shifted) at all levels of theory and are seemingly only very little affected

by the CFER re-fit (cf. Fig. 7.4). Thiols furthermore comprise the only outlier in the set. The

respective molecule, 3-mercaptopropanoic acid, denotes a thiol pKa according to the reference

literature.576,577 Here, carboxylic acid dissociates first, but neither the corresponding pKa nor

the one calculated for the thiol, nor the double deprotonation yields a value corresponding

to the reference. The reason for this mismatch is not clear, but note that another reference

value of 4.34 can be found in the literature587 that deviates by only 0.1 pKa units from our

calculated value using the TR224 CFER parameters. Overall, all trends and observations from
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r2SCAN-3c/COSMO-RS

(a) (b)

Figure 7.5.: Parity plots for pKa values calculated at DFT level. (a) Values calculated at the
r2SCAN-3c/COSMO-RS level of theory using the CFER parameters from PKA74,
colored by functional group. (b) Comparison of r2SCAN-3c/COSMO-RS pKa val-
ues with B97-3c/COSMO-RS and ωB97X-V/def2-TZVPP/COSMO-RS, all with
CFER data fitted on TR224. The dashed lines correspond to a target error range
of 1 pKa unit.

the literature577 could be reproduced, and all methods tested here provide the same qualitative

results. Mismatching slopes can be easily repaired by the CFER re-fit, which is visible from

the correlation plots in Fig. 7.5b. The few remaining errors, e.g., the earlier-mentioned shift

for thiols, seem to be systematic and depend on the theoretical description provided by the

DFT method, rather than on the CFER quality. Thapa and Raghavachari have shown that

remaining errors for this set can efficiently be reduced by including 1–3 explicit water molecules

into the calculation. In this way, low MADs of about 0.45 pKa units at the CBS-CQB3 level of

theory were obtained.577 Similar observations have been made in Refs. 574–576. In the present

study we have limited ourselves to the use of implicit solvation models and (semi-)automated

workflows for the calculation of ∆G′
diss, but the automatic inclusion of solvent molecules as an

extension of the presented method is currently under investigation in our lab.

7.4.4. Flexible Drug Molecules

After having discussed different levels of theory and CFER fits in the previous sections, the

protocol is tested for pKa calculations of larger, non-rigid molecules. The benchmark sets

compiled by Jensen et al.560 and the SAMPL6 set45,46 will be used. Because experimental pKa

values for these molecules more closely resemble a range similar to the TR224 set, the respective

CFER parameters were employed. Furthermore, dissociation free energies were calculated from

Boltzmann averaged dissociation free energies for the acid and base to include conformational
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effects. A more detailed investigation of conformational effects will be given in the following

section.

As in previous sections, the GFN2–xTB/ALPB and r2SCAN-3c/COSMO-RS methods are

tested here, as well as B97-3c/COSMO-RS because it was the best performing method in

Sec. 7.4.3. The corresponding error measures are shown in Tab. 7.4 in comparison with data

from the literature. For all FER methods discussed in this work, good agreement with exper-

Table 7.4.: Error measures (MAD, RMSD, in pKa units) and dimensionless R2 for r2SCAN-
3c/COSMO-RS, GFN2–xTB+ETB

mod/ALPB and B97-3c/COSMO-RS in comparison
with other methods from the literature. The CFER parameters were adjusted on the
TR224 set.

this work, CFER literature
GFN2–xTB r2SCAN-3c B97-3c other DFT Epike ACDlabsf

drug set (Jensen et al.)
MAD 1.18 0.71 0.63 0.53a,b 0.43a 0.39a

RMSD 1.43 0.84 0.86 0.69a,b 0.72a 0.64a

R2 0.71 0.88 0.88 0.92a,b 0.91a 0.93a

SAMPL6
MAD 1.74 0.77 0.85 0.58c 0.78d 0.55d

RMSD 2.68 0.89 0.97 0.68c 0.95d 0.77d

R2 0.14 0.89 0.87 0.94c 0.88d 0.92d

a Ref. 560 b Ref. 543, COSMOtherm c Ref. 221, DSD-BLYP-D3/def2-TZVPD/COSMO-RS
d Refs. 45,46 e Ref. 244 f Ref. 578

imental data is observed. Both r2SCAN-3c and B97-3c show MADs, and in case of the drug

benchmark set also RMSDs, below the target 1 pKa error. Note that errors would be larger than

this target when employing PKA74 CFER parameters, which are not shown in the following.

Only one major outlier was seen for the drug set, which overestimated the pKa by about 6

units. For the respective molecule, cimetidine, a proton transfer is observed in the conjugate

acid upon geometry optimization at the r2SCAN-3c level, hence explaining the mismatch. This

value was excluded from the statistics. Note, that if only single-point energies at the r2SCAN-3c

level are calculated on GFN2–xTB geometries and the proton transfer is avoided, the computed

pKa is shifted by 3 units in direction of the experiment. Also at other levels of theory, rare

outliers appear, e.g., at the B97-3c/COSMO-RS level no pKa could be calculated for cefadroxil

due to SCF convergence problems for the zwitterionic conjugate base. GFN2–xTB provides

excellent results also close to the target 1 pKa error range for the drug set while for SAMPL6

only results of mixed quality are obtained. Out of the 31 reference values in the set, 15 showed

a deviation much smaller than 1 pKa units at GFN2–xTB+ETB
mod level, but 7 systems (all with

an anionic conjugate base) produced errors larger than 3 pKa units. To get qualitatively correct

results for these systems DFT calculations seem to be required, but due to the considerably

lower computational costs compared to DFT, SQM results are nonetheless useful.

In comparison with methods from the literature the CFER results for all three methods were
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slightly worse. As already observed by Jensen et al., chemoinformatic tools such as Epik244

or ACDlabs/pka578 provide exceptionally good results at a fraction of the computational cost

of FER based approaches for systems for which these tools were developed. This can be seen

again in Tab. 7.4, where ACDlabs/pka and Epik outperform all QM and SQM results. However,

for the drug set it is very likely that all experimental pKa values were included within the

training parameters of the chemoinformatic tools, hence explaining the good predictions.560 For

molecules presumably not included in the training data, e.g., the SAMPL6 set, larger errors are

seen and DFT results from the literature221 are slightly better than the still surprisingly well-

performing Epik and ACDlabs/pka predictions. The slightly worse results of the FER approaches

are mainly attributed to the CFER parameters fitted for TR224, which are not the optimum

for the drug and SAMPL6 set. In fact, if CFER parameters are re-adjusted for these sets (see

Tab. A6.20 in Appendix A6), RMSDs for the drug molecules decrease to 0.74 and 0.69 pKa units

for the r2SCAN-3c and B97-3c methods, respectively. For the SAMPL6 set, RMSDs decrease

to 0.67 and 0.55 pKa units, which even outperforms the ”winning” submission of the SAMPL6

blind challenge, calculated with the DSD-BLYP-D3(BJ) double hybrid functional.148,221 The

respective CFER parameters are found in Appendix A6 and could easily be used in a problem

specific manner (i.e., for other drug-like molecules). For general purpose pKa predictions the

TR224 and PKA74 parameters yield sufficient accuracy. Note again that the presented CFER

protocol only involves free energy computations for the acid and conjugate base, and does not

require manual selection of tailored reference systems as, e.g., suggested in Ref. 560. Hence, its

simplicity and efficiency makes the protocol a good choice in screening applications.

It is unlikely that errors much below 0.5 pKa units can be achieved with either QSAR/ML

or FER methods since this is already the realistic regime of errors for the reference data from

titration and NMR experiments.588 For any of the FER based methods the quality of free energies

is limited by the accuracy of the δGT
solv term, which is partially compensated by the CFER fits.

As mentioned earlier, one possible improvement for this is the combination with microsolvation

models or the inclusion of single solvent molecules.577 In other words, while QSAR models are

already limited by the available training data, systematic improvements are possible for all FER

methods.

7.4.5. Conformational Effects

Any theoretical approach that computes the pKa value explicitly from the free energy of molecu-

lar structures may show a dependence on the conformation for non-rigid cases. Input geometries,

e.g., generated from SMILES strings, have a more or less random conformation that is typically

several kcal mol−1 higher in energy than the respective global minimum, and this can occur

randomly for the acid/base pair in pKa calculations. The inclusion of conformational ensembles

significantly increases the computational cost but is often necessary to achieve sufficient accu-

racy and represents the physically correct approach. To quantify this influence, the spread of

individual microstate pKa values, i.e., values calculated for single conformers in the acid and

base ensembles, were evaluated for the drug and SAMPL6 set. Here, the differences between
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the experimental pKa and the Boltzmann averaged, minimum and maximum possible micro

pKa were obtained from the respective averaged, minimum and maximum ∆G′
diss as shown in

Fig. 7.1. For both benchmark sets the respective ∆pKa at the r2SCAN-3c/COSMO-RS level

(using CFER parameters fitted on TR224) are shown as boxplots in Fig. 7.6. The significance of
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Figure 7.6.: Deviations (∆pKa) for the drug and SAMPL6 set at the r2SCAN-3c/COSMO-RS
level, visualized as box plots. Data is shown for the conformational (Boltzmann)
average, as well as the minimum and maximum possible pKa from the ensembles.
The dashed lines denote a target error range of ±1 pKa units. On the right side
the six molecules with the largest min./max. pKa spread are shown in their neutral
protonation state. The circles in the boxplots are outliers not included within 95%
confidence interval around the median.

the conformational treatment is obvious from the plot. For the flexible drug molecules, the pKa

is either strongly over- or underestimated depending on the choice of conformers, and only the

Boltzmann averaged value gives results close to the experiment. Herein, flexible molecules, such

as the ones shown on the right side in Fig. 7.6, show differences of as much as three pKa units

between the minimum and maximum possible microstate pKa. For the SAMPL6 sets, pKa

values seem to be overestimated in general, and taking the minimum pKa gives the smallest

mean deviation to the experiment. However, the SAMPL6 set contains several rigid molecules

and furthermore consists of many cases with anionic conjugate bases. Hence, in accordance with

previous the sections, an overestimation of pKa values is expected here. In fact, at the r2SCAN-

3c/COSMO-RS level MADs for the drug set could increase from 0.71 pKa units to as much as

1.23 pKa units by neglect or wrong choice of conformations. In case of the SAMPL6 set, MADs

could increase from 0.77 to 1.27 pKa units. The corresponding MADs are visualized in Fig. 7.7

in comparison with GFN2–xTB+ETB
mod/ALPB and B97-3c/COSMO-RS, where MADs resulting

from a wrong conformer selection (either min/max ∆G′
diss) are shown as light-colored bars. All
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Figure 7.7.: pKa MADs for GFN2–xTB+ETB
mod/ALPB, r2SCAN-3c/COSMO-RS and B97-

3c/COSMO-RS. The third bin combines the drug and SAMPL6 set. The
light-colored thinner bars show the upper limit MADs resulting from non-
conformationally averaged dissociation free energies. The dashed line denotes a
target error range of 1 pKa unit.

three methods clearly owe their good performance to the conformational treatment and, in case

of the two DFT levels, would exceed a MAD of 1 pKa unit otherwise. Notice that the minimum

and maximum ∆G′
diss values refer to conformational ensembles from the censo program’s de-

fault sorting procedure, i.e., only structures up to 2.5 kcal mol−1 relative to the lowest structure

are included. The spread between minimum and maximum pKa could be even larger in reality

because relative conformational energies from a (semi-)random conformer selection can easily

exceed 2.5 kcal mol−1 by up to an order of magnitude for large, flexible molecules. At the GFN2–

xTB level, conformational ensembles up to a relative energy of 6 kcal mol−1 were included, which

explains the comparably large MAD differences in Fig. 7.7. As an alternative to the Boltzmann

averages one could also simply use the free energy of the global minima for the acid and base

molecules. Compared to the averaged value G =
∑
piGi, the global minimum free energy Gmin

will be slightly lower for both species and hence yield a pKa close to the population-averaged

value. But since free energies are required for the correct ranking and identification of the global

minima anyways, calculating the Boltzmann average involves no additional computational cost.

7.5. Conclusion

The prediction of pKa values is an important field of research with many different approaches

available from chemoinformatics and computational chemistry. In the presented study, we have
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applied the latter in combination with molecular free energy computations and a new CFER

equation to compute acid dissociation constants. Four benchmark sets have been used for

the evaluation of the CFER approach with a total of 390 experimental reference pKa val-

ues. Herein, several theoretical methods have been tested, with a focus on the recently pub-

lished r2SCAN-3c/COSMO-RS(H2O) DFT composite functional and the semiempirical GFN2–

xTB/ALPB(H2O) method.

In some initial tests it was shown that dissociation free energies at the GFN2–xTB level are

underestimated approximately by a factor of two compared to DFT. Upon application of a new

element-dependent correction term, heterolytic dissociation free energies were improved and

could be used for the calculation of pKa values. Using different orders of FER for both GFN2–

xTB and r2SCAN-3c, accurate pKa values were obtained for a test set of 82 molecules spanning

a large pKa range of 74 units (PKA74 set). On the basis of the respective results, a new cubic

FER (CFER) was chosen as final working equation which requires just two ensembles (i.e., the

acid and base) for the calculation of the dissociation free energy. More detailed insights into

method performance were provided by fits and cross-evaluations on the PKA74 and TR224 sets

with several levels of DFT. This revealed a strong functional group dependence of the error for

the pKa but only comparatively small performance differences between different levels of theory,

with RMSDs between 1.03 and 1.22 pKa units for DFT and 1.81 for GFN2–xTB. Surprisingly, it

was observed that even cheap composite functionals such as B97-3c can provide higher accuracy

than high level ωB97X-V/def2-TZVPP calculations, mainly due to error compensations. pKa

calculations for larger, non-rigid molecules were investigated at r2SCAN-3c, GFN2–xTB, and

B97-3c levels using two benchmark sets from the literature and CFER parameters determined

for the TR224 set. Excellent correspondence to experimental pKa was achieved for the DFT

methods with RMSDs below 1.0 pKa units, despite showing strong conformational dependencies.

For the latter it was shown that the neglect of conformational effects can strongly influence the

errors, increasing MADs by more than 0.5 pKaunits.

Some concise conclusions can be drawn from the presented data. In general, FER based

approaches at the DFT level can perform similarly to highly specialized chemoinformatic pKa

predictors, although strongly exceeding them with regards to computational costs. Calculations

at the GFN2–xTB/ALPB level are less expensive and accuracy-wise seem to be suitable at a

semi-quantitative level and for trend recognition. Furthermore, FER approaches are attractive

because they do not rely on proprietary software and allow more detailed insights, e.g., into

conformational dependencies or even uncommon chemical systems with highly positive or neg-

ative pKa values. However, for optimum performance, method-specific FER parameters should

be determined.

Future work on this topic will focus on the automatic inclusion of explicit solvent molecule

(microsolvation) and investigations of conformational entropy effects. The latter could be im-

portant for molecules with very different ensembles for the conjugate acid and base.
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In this thesis the capabilities of fast quantum chemical methods for the systematic exploration

of the low-energy chemical space were investigated. The main focus was the application of the

so-called GFNn–xTB schemes, semiempirical quantum mechanical (SQM) methods belonging

to the (extended) tight-binding type. These methods are characterized by an element-wise

parametrization of almost the entire periodic table (Z ≤ 86) and a special-purpose construction

for the good description of molecular geometries, frequencies, and non-covalent interactions. In

combination with low computation times and relatively high robustness, large scale screening

procedures, i.e., the exploration of the low-energy chemical space, are the archetypal field of

usage for GFNn–xTB SQM. With regards to the chemical space, the screening of molecular

conformations is of special importance and requires a fine balance between non-covalent and

strongly directional short-range covalent interactions. This led to the development of a broadly

applicable and efficient program called CREST based on the GFNn–xTB methods as the central

part of this thesis.

Knowledge of the low-energy chemical (conformational) space is imperative for the calcula-

tion of molecular properties such as spectroscopic features or free energy based equilibrium rate

constants. The link between QM calculations for single structures and macroscopic observables

is provided by statistical mechanics via Boltzmann population averages. Different members of

the conformational space are discretized by their energy as a function of the nuclear spatial

coordinates, which defines the potential energy surface (PES). It is the task of programs such as

CREST to systematically explore the PES and find relevant stationary points (minima) defin-

ing the low-energy chemical space. The approach for finding molecular conformers pursued in

CREST is based on a combination of specialized metadynamics (MTD) simulations and effi-

cient geometry optimizations at a highly robust SQM level. A key component of the respective

algorithm is an efficient sorting procedure based on energetic differences and purely structural

descriptors such as the atomic RMSDs and differences between the rotational constants Be.

Other representatives of the low-energy chemical space, such as protomers, tautomers, and non-

covalent aggregates can also be sampled with CREST due to the computational robustness

of GFNn–xTB. Here, the quantum mechanical origin of GFNn–xTB provides the necessary

methodological flexibility for these applications, e.g., by the ability to freely form and break

bonds. In reviewing all these procedures, Part II was dedicated to CREST and its prototypical

applications. The performance of conformational searches was demonstrated for small organic

compounds, a large polypeptide with 220 atoms, several macrocyclic and two organometallic

molecules. While the comparison of conformers to experimental data is often difficult, in all of

these examples diverse ensembles were obtained providing an excellent starting point for higher

level QM post-processing.22,589 Furthermore, it was shown that the general workflow in CREST

can be employed to special problems such as conformational sampling with structural constraints

applied to parts of the system as, e.g., successfully demonstrated for tyrosine on a fixed graphene

cut-out and conformers of a SN2 methyl-group transfer transition state. With the latter, it was

shown that due to the so-called Curtin–Hammett principle219 knowledge of the conformational

185



V. Final Summary and Conclusion

space is especially important for mechanistic studies. Non-covalent aggregates were sampled

with a conformational workflow employing similar constraints and the system was encapsulated

within a spherical potential in order to avoid dissociation. Finally, protonation, cationization,

and tautomerization schemes were discussed for some organic and inorganic compounds, ex-

tending the capabilities of CREST for applications to low-energy chemical space sampling. In

conclusion, CREST is a powerful tool for simulations of molecules up to a few hundred atoms

and will potentially find wide spread application in computational chemistry. Since first being

published, the program has already been applied for a diverse number of projects, e.g., the

large scale conformer generation of organometallic compounds,183,590 protein side chain con-

formational sampling,591 gas docking in metal-organic frameworks (MOF),444 input generation

of machine-learning approaches,414 and various other mechanistic,592–594 conceptual,595–598 and

spectroscopic studies.22,476,599–601

In Part III, a recent extension to the CREST code was presented and discussed linking the

conformational low-energy chemical space to statistical thermodynamics. The central quantity

here is the absolute molecular entropy, or more specifically, the conformational contribution to

it. A numerically robust and accurate algorithm was introduced for calculation of the latter.

This approach is based on the separation of the molecular partition function (Eq. 2.62) into

molecular electronic, translational, rotational, vibrational parts and a conformational contri-

bution. Since this partitioning, especially with regards to rotational, vibrational and confor-

mational components, is problematic due to a breakdown of the truncated Taylor expansion

in the harmonic approximation, all treatments of the conformational entropy include some de-

gree of uncertainty. Various schemes for the calculation of conformational entropies have been

proposed in the past,43,376 but no generally applicable workflow existed up to this point. The

newly implemented algorithm in CREST generates conformational ensembles on an iterative

basis with a converged conformational entropy and ensemble size as criteria for termination.

As another introduced novelty, the intermediate ensembles were used to extrapolate the calcu-

lated entropy, which serves as a convergence enhancement. Herein, the conformational terms

are basically treated as additional electronic energy levels for which standard thermodynamic

expressions were employed. To treat the problematic separation of rotational, vibrational and

conformational degrees of freedom (DOF), frequency calculations at DFT level were conducted

in a modified and scaled msRRHO approximation.42 While being computational less expensive

than full anharmonic DFT treatments,380 the new approach proved to provide exceptional ac-

curacy in comparison with absolute molecular entropies from experimental measurements, in

most cases with better than chemical accuracy (about 3 cal mol−1 K−1). Even for complicated

non-rigid molecules up to one hundred atoms and hardship cases such as long n-alkanes up to

C16H44 numerically stable and accurate entropies were obtained. Results of similar quality were

obtained for absolute molecular heat capacities that are calculated from related thermodynamic

equations, including the conformational contribution. The significance of the conformational

terms was demonstrated in this part by some prototypical calculations of reaction free energies.
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Due to a large change in DOF, for example by ring-closure during the reaction, large conforma-

tional free energy contributions up to several kcal mol−1 energy difference were observed. The

computational efficiency and accuracy of the presented workflow allows its standard application

for thermodynamical investigations of non-rigid molecules. As was shown, both GFNn–xTB

and GFN–FF can be routinely applied for such calculations, where the latter may also enable

applications of the workflow for molecular systems with up to 200 atoms.

Part IV included three computational studies where the fast and reasonably accurate GFNn–

xTB methods and composite DFT-3c methods158,180,387 have been applied for the calculation of

gas-phase IR spectra and acid dissociation constants. CREST (and its conceptional predecessor)

was used in all three chapters of Part IV to sample molecular conformations. For the calcula-

tion of pKa values, it was furthermore employed to determine (de-)protonation sites. Chapter 5

presented the calculation of gas-phase IR spectra from harmonic vibrational frequencies and

derivatives of the molecular dipole moment obtained at the GFN1–xTB, GFN2–xTB, GFN–FF

and B3LYP-3c levels. Based on a sufficiently large sample size of more than seven thousand

experimental gas-phase reference spectra, it was shown that all these methods can be applied for

the IR spectra simulation with a varying degree of accuracy. At DFT level (B3LYP-3c), prob-

lems arise mainly from systematically overestimated frequencies, which could be sufficiently

repaired by application of linear frequency scaling factors. For SQM calculations at GFNn–xTB

level, errors in harmonic frequencies and molecular dipole moments are less systematic due to

the more empirical nature of the methods. However, spectra at the SQM level were found to

be only slightly worse than DFT ones, even for complicated organometallic molecules. Only at

FF level problems arise due to wrong harmonic frequencies and errors of the dipole moments

derived from classical EEQ charges. Hence, improvements for the SQM and FF levels are re-

quired. For IR frequencies this was achieved by an atomic mass scaling approach which was

found to perform better than the often employed linear frequency scaling at all employed levels

of theory. Overall, the low-level SQM and FF methods were found to be suitable for larger

scale pre-screening of IR spectra in context of unknown compound identification processes,44

but can not be recommended for final predictions where DFT should be used instead. More-

over, IR spectra simulation for non-rigid molecules requires conformational sampling as it was

shown exemplary for a subset of the experimental reference data. Chapters 6 and 7 discussed

the calculation of pKa values from free energy relationships. Several different levels of theory

were employed but in general free energies were obtained from Eq. 2.64, where the total energy

was computed at DFT or SQM level, thermal contributions were generated at the GFNn–xTB

level, and solvation free energies were calculated from implicit solvation models. Computations

in this part are straight forward and require only a free energy for an acid and its conjugate base

to calculate the dissociation constant. The general finding here was that excellent accuracy can

be achieved in comparison with experimental data, often with lower than one pKa unit error for

drug like molecules. This performance was found to be rather independent of the employed level

of DFT for the total energies. Also GFN2–xTB in combination with ALPB implicit solvation
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and an empirical correction for heterolytic dissociation energies was able to provide reasonable

pKa predictions. However, for flexible molecules, a strong conformational dependence of the

pKa was found which requires thorough sampling. In summary, Part IV presented the ap-

plication of robust and efficient computational protocols based on GFNn–xTB, CREST, and

low-cost DFT for the prediction of molecular properties. Multilevel or “bottom-up” screening

procedures (cf. Fig 1.3) enable efficient computational studies and are of essential importance

for thermochemical investigations in modern computational chemistry.

As mentioned in the introduction, the conquest of the combinatorial conundrum, i.e., the

need for practical workflows that provide a full understanding of conformational ensembles of

(bio-)molecules and associated thermodynamic properties such as the entropy, is one of the

“holy grails” in computational chemistry.3,32 The naturally arising question after this thesis is

“Does CREST in combination with GFNn–xTB provide a suitable solution to the combinatorial

conundrum?” No definite answer can be given to this. With good confidence one can state

that CREST will provide an approximate solution to the conformational problem and accurate

entropy calculations for reasonably sized molecules with up to about 100 atoms. In aspect of

generalizability, due to the broad parametrization and robustness of GFNn–xTB, conformational

sampling in CREST provides unprecedented capabilities and computational performance in

comparison to similar tools. Similar conclusions can be made for the quality of generated

conformers and their relative energies. The concept of conformers is intrinsically related to the

PES and conformational energies at SQM (GFNn–xTB) level will for a wide range of systems be

more accurate than at FF level, which is traditionally applied for large-scale sampling procedures.

Molecular geometries are a target feature of GFNn–xTB and for most systems should yield good

quality structures. However, (conformational) energies and geometries obtained at SQM level

are worse than at higher (ab initio) levels of theory.589 As extensively discussed in Part II,

CREST at GFNn–xTB level is a compromise between computational cost and accuracy and

in practice a re-ranking of the conformers at DFT level is often required.22,589 The general

construction of CREST workflows and sorting procedures would in principle allow running all

parts at a DFT PES, which would yield the required ensembles directly and diminish the need

of a multilevel procedure. However, this is unfeasible due to the enormous computational cost.

Already at SQM level capabilities for conformational searches of non-rigid molecules are nearing

the limit with approximately 200 atoms. Sampling at DFT level for such systems is practically

impossible and computational or theoretical advances are obviously desired. For technological

developments it is often reasonable “to expect the un-expected” and, despite current deviations

from Moor’s law, more powerful computers will most likely exist in the future further extending

the capabilities in computational chemistry. Hence, running CREST at a cheap DFT level may

be possible within the next decade or two. This will require some changes to the program in its

current form, e.g., implementation of molecular dynamics and geometry optimization routines

in CREST but first steps in this direction have already been taken. From a theoretical point

of view, mainly applications of CREST’s conformational entropy procedures are of scientific
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interest in the near future. The combination with fast implicit solvation models (ALPB, GBSA)

enables for the first time the study of conformational entropy effects in different phases and has

yet to be investigated as part of ongoing research.

In summary, the programs and workflows presented in this thesis provide powerful, efficient,

and widely applicable methodologies for computational simulations of molecular systems. The

developments will pave the way for a range of scientific projects across many fields of theoretical

and computational chemistry.
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[20] Christensen, A. S.; Kubař, T.; Cui, Q.; Elstner, M. Chem. Rev. 2016, 116, 5301–5337.

[21] Thiel, W. WIREs Comput. Mol. Sci. 2014, 4, 145–157.

191



Bibliography

[22] Grimme, S.; Bohle, F.; Hansen, A.; Pracht, P.; Spicher, S.; Stahn, M. J. Phys. Chem. A 2021, 125,

4039–4054.

[23] Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2009, 5, 2619–2628.

[24] Yasuda, K. J. Chem. Theory Comput. 2008, 4, 1230–1236.

[25] Wu, X.; Koslowski, A.; Thiel, W. J. Chem. Theory Comput. 2012, 8, 2272–2281.

[26] Moore, G. Electronics 1965, 38, 114.

[27] Waldrop, M. M. Nature 2016, 530, 144–147.

[28] Shalf, J. Philos. Trans. R. Soc. A 2020, 378, 20190061.

[29] Leiserson, C. E.; Thompson, N. C.; Emer, J. S.; Kuszmaul, B. C.; Lampson, B. W.; Sanchez, D.;

Schardl, T. B. Science 2020, 368 .

[30] Lanyon, B. P.; Whitfield, J. D.; Gillett, G. G.; Goggin, M. E.; Almeida, M. P.; Kassal, I.; Bia-

monte, J. D.; Mohseni, M.; Powell, B. J.; Barbieri, M.; Aspuru-Guzik, A.; White, A. G. Nature

Chem. 2010, 2, 106–111.

[31] McArdle, S.; Endo, S.; Aspuru-Guzik, A.; Benjamin, S. C.; Yuan, X. Rev. Mod. Phys. 2020, 92,

015003.

[32] Houk, K. N.; Liu, F. Acc. Chem. Res. 2017, 50, 539–543.

[33] Pracht, P.; Bohle, F.; Grimme, S. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192.

[34] Kirkpatrick, P.; Ellis, C. Nature 2004, 432, 823–823.

[35] Reymond, J.-L.; Awale, M. ACS Chem. Neurosci. 2012, 3, 649–657.

[36] Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, S.;

Grimme, S. WIREs Comput. Mol. Sci. 2020, e01493; https://doi.org/10.1002/wcms.1493.

[37] Pracht, P.; Caldeweyher, E.; Ehlert, S.; Grimme, S. ChemRxiv preprint 2019,

https://doi.org/10.26434/chemrxiv.8326202.v1.

[38] Grimme, S.; Bannwarth, C.; Shushkov, P. J. Chem. Theory Comput. 2017, 13, 1989–2009.

[39] Bannwarth, C.; Ehlert, S.; Grimme, S. J. Chem. Theory Comput. 2019, 15, 1652–1671.

[40] Grimme, S.; Bannwarth, C.; Dohm, S.; Hansen, A.; Pisarek, J.; Pracht, P.; Seibert, J.; Neese, F.

Angew. Chem. Int. Ed. 2017, 56, 14763–14769.

[41] Grimme, S. J. Chem. Theory Comput. 2019, 15, 2847–2862.

[42] Grimme, S. Chem. Eur. J. 2012, 18, 9955–9964.
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A1. Supporting Information to Chapter 2

Appendix A1 contains:

• Outline of energy terms in the GFNn–xTB schemes

• Equations for thermostatistical contributions

Energy Terms of GFNn–xTB

The following equations were taken from Ref. 36. The general GFNn–xTB energy terms are:

EGFN1−xTB = Erep + ED3
disp + EXB + EEHT + Eγ + EΓ +GFermi (A1.1)

EGFN2−xTB = Erep + EEHT + ED4′
disp + Eγ + EAES + EAXC + EΓ +GFermi (A1.2)

EGFN0−xTB = Erep + ED4
disp + ESRB + EEEQ + EEHT +GFermi (A1.3)

Empirical (fitted) parameters will be pointed out, but no detailed information about the terms

origin is given, which instead can be found in the original literature.36–39 Also, all auxiliary

functions such as damping functions or formulations for coordination numbers (CNs) will be

omitted here.

Common GFNn–xTB Ingredients

The extended Hückel term is calculated in all GFNn–xTB schemes as

EEHT =
∑
µν

PµνH
EHT
νµ , (A1.4)

where the Hamiltonian elements are constructed via

HEHT
µν =

1

2
K ll′

AB Sµν (Hµµ +Hνν) X(ENA, ENB) Π(RAB, l, l
′) Y (ζAl , ζ

B
l′ ) (A1.5)

Herein the indices µ/ν indicate AOs, A/B are atoms and l/l′ indicate shells. Furthermore, µ ∈
l(A) and ν ∈ l′(B). K ll′

AB is a shell-specific scaling constant, X(ENA, ENB) is electronegativity

dependent function, and Y (ζAl , ζ
B
l′ ) is a shell-exponent dependent term that is only present for

GFN2–xTB. The distance-dependent polynomial scaling function Π(RAB, l, l
′) is

Π(RAB, l, l
′) =

(
1 + kpolyA,l

(
RAB

Rcov,AB

) 1
2

)(
1 + kpolyB,l′

(
RAB

Rcov,AB

) 1
2

)
(A1.6)
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with the summed covalent radii Rcov,AB and the fitted parameters kpolyA,l .

The other term included in all GFNn–xTB methods is

Erep =
1

2

∑
A,B

Zeff
A Zeff

B

RAB
e−

√
αAαB(RAB)

kf
, (A1.7)

where Zeff and α are element-specific parameters and kf is a global parameter. This term is

related to the zeroth order potential used in other DFTB schemes,20 but employs no pair-wise

parameters.

Energies in GFN1–xTB

The EHT Hamiltonian components Hµµ and X(ENA, ENB) in GFN1–xTB are

HGFN1
µµ = hlA (1 + kCN,lCNA) (A1.8)

with the element-specific parameter hlA and the global angular momentum-specific parameter

kCN,l, and

X(ENA, ENB) =
(
1 + kEN∆EN2

AB

)
, (A1.9)

with the global parameter kEN . CNA is the coordination number of atom A, calculated by the

well-known D3 coordination number formula.172,173

The second order isotropic ES/XC tight-binding energy in GFN1–xTB is similar to the one

employed in DFTB20, but shell-dependent

EGFN1
γ =

1

2

∑
A,B

∑
l∈A

∑
l′∈B

ql ql′ γAB,ll′ , (A1.10)

where γAB,ll′ is a Mataga–Nishimoto–Ohno–Klopman damping function for the Coulomb inter-

action, employing several global and element-specific parameters.

At third order the GFN1–xTB energy is given as

EGFN1
Γ =

1

3

∑
A

(qA)3ΓA , (A1.11)

i.e., it is (as the second order term) similar to DFTB, but modified to include only the on-site

interaction. ΓA is an element-specific parameter.

The remaining two terms in GFN1–xTB are the D3 dispersion energy (cf. Eq. 2.34) and a

220



correction for halogen bonds (XB)

EGFN1
XB =

NXB∑
AB

fAXB
damp kX

[(
kXRRcov,AX

RAX

)12

− kX2

(
kXRRcov,AX

RAX

)6
][(

kXRRcov,AX

RAX

)12

− 1

]−1

(A1.12)

with the global parameters kXR and kX2, the halogen-specific parameter kX and the angular

three-body damping function fAXB
damp .

Energies in GFN2–xTB

While the the electronegativitiy dependent scaling function X(ENA, ENB) in GFN2–xTB has

the same form as Eq. A1.9, the Hamiltonian elements are reformulated as

HGFN2
µµ = hlA − δhlCN ′

A
CN ′

A (A1.13)

where hlA and δhlCN ′
A

are shell- and element-specific parameters and CN ′
A is a modified39 version

of the D3 coordination number. Additionally, the AO exponent ζ dependent term

Y (ζA, ζB) =

2
√
ζAl ζ

B
l′

ζAl + ζBl′


1
2

(A1.14)

is present as an additional scaling function of the Hamiltonian elements.

At second order, the GFN2–xTB isotropic electrostatic and exchange-correlation (IES, IXC)

energy is the same as Eq. A1.10, but slightly differs with regards to the employed damping

function.39 As a novelty, GFN2–xTB is the first TB scheme that also employs anisotropic elec-

trostatic (AES) and exchange-correlation (AXC) terms, which are given by

EAES =Eqµ + EqΘ + Eµµ (A1.15)

=
1

2

∑
A,B

{f3(RAB)
[
qA(µT

BRBA) + qB(µT
ARAB)

]
+ f5(RAB)[qAR

T
ABΘBRAB + qBR

T
ABΘARAB

− 3(µT
ARAB)(µT

BRAB) + (µT
AµB)R2

AB]} (A1.16)

EAXC =
∑
A

(
fµA
XC |µA|2 + fΘA

XC ||ΘA||2
)
. (A1.17)

These so-called cumulative atomic multipole moments (CAMM) describe the anisotropic in-

teraction between the atomic charge qA, the dipole moment µA and quadrupole moment ΘA.

fn(RAB) are distance dependent damping functions employing global parameters and fµA
XC and

fΘA
XC are element-specific parameters.

Additionally at second order a self-consistent charge version of the D4 dispersion model174,178
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is employed according to

ED4′
disp = −

∑
A>B

∑
n=6,8

sn
CAB
n (qA, CNA, qB, CNB)

Rn
AB

f
(n)
damp,BJ(RAB)

− s9
∑

A>B>C

(3 cos(θABC) cos(θBCA) cos(θCAB) + 1)CABC
9 (CNA

cov, CN
B
cov, CN

C
cov)

(RABRACRBC)3

(A1.18)

× f
(9)
damp,zero(RAB, RAC , RBC) ,

which depends on the atomic charges, coordination numbers and employs both Becke–Johnson

f
(n)
damp,BJ and zero damping f

(9)
damp,zero functions.

The third order IES and IXC term in GFN2–xTB is closely related to the one of GFN1–xTB,

but is shell-dependent and additionally depends on a global shell-specific parameter KΓ
l

EGFN2
Γ =

1

3

∑
A

∑
l∈A

(ql)
3KΓ

l ΓA . (A1.19)

Due to the sophisticated AES/AXC description in GFN2–xTB no additional empirical XB

correction is needed.

Energies in GFN0–xTB

GFN0–xTB is the most empirical GFNn–xTB scheme and employs no second and third order

charge dependent terms. Instead, a charge dependence is built-in into the EHT Hamiltonian

elements

HGFN1
µµ = hlA − δhlmCNA

mCNA − δhlqA qA − Γl
qaq

2
A , (A1.20)

where hlA and δhlmCNA
are element-specific parameters as in GFN2–xTB, and δhlqA and Γl

qA
are

element-specific parameters related to the chemical hardness. mCNA is a modified coordination

number based on the D4 CN.37 As a further modification to the EHT Hamiltonian in GFN0–

xTB, the electronegativity dependent scaling function X(ENA, ENB) is modified and made shell

dependent according to

X ll′(ENA, ENB) = 1 + kll
′

EN∆EN2
AB + kll

′
ENbEN∆EN4

AB , (A1.21)

with the shell-specific parameter kll
′

EN and the global parameter bEN . The electronegativity is

also used for the “short-range basis” correction157,180

ESRB = ksrb
∑
A,B

exp
[
−ηsrb

(
1 + gscal∆EN

2
AB

) (
RAB −Rsrb

AB

)]
, (A1.22)
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where ksrb, ηsrb, and gscal are global fit parameters and the covalent bond radii RAB
srb are modified

by the electronegativities.37 The dispersion energy is included via the standard D4 model.174,178

This (and the Hamiltonian) requires atomic charges, which are not obtained from Mulliken

populations but an classical charge equilibrium model (EEQ). From this also the zeroth order

electrostatic energy is obtained according to

EEEQ =
∑
A

[
χA qA +

1

2

(
JAA +

2√
π
γAA

)]
+

1

2

∑
A,B

qA qB
erf(γABRAB)

RAB
. (A1.23)

Here, JAA, χA(ENA, κA,mCNA) are fitted element-specific parameters and γAB is related to

the inverse root mean square of the atomic radii.37

Additional Equations for Thermostatistical Contributions

The following symbols are used in this section:
Q partition function

gi degeneracy of state i

ϵi energy of state i

k (kB) Boltzmann’s constant

T the temperature

M mass of the molecule

h Planck’s constant

V volume of molecule confined in a cubic box (molar volume of an ideal gas)

R the gas constant

NA Avogadro’s number

IA, IB , IC moment of inertia around principle axes of rotation A, B, and C

νi the vibrational frequency for mode i

σ rotational symmetry number

The formulas were taken from Refs. 4,215. Conformational contributions are discussed in

Part III and are derived from the electronic partition function.

Partition Functions

Qelec =
∑
i

gie
−ϵi/kT (A1.24)

Qtrans = (2πMkT )
3
2 h−3V (A1.25)

Qrot =
8π2

σh3
(2πkT )

3
2

√
IA IB IC (A1.26)

Qvib =

modes∏
i

e−hνi/2kT

1 − e−hνi/kT
(A1.27)
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The Enthalpy

Note that the enthalpies given below refer to [H(T ) −H(0)]. The translational and rotational

enthalpy only depend on the temperature and the ideal gas constant

Htrans =
5

2
RT (A1.28)

Hrot =
3

2
RT (A1.29)

H linear
rot = RT . (A1.30)

The vibrational and electronic enthalpies given by

Hvib = RT
modes∑

i

(
hνi
kT

)
e−hνi/kT

1 − e−hνi/kT
(A1.31)

Helec = RT

∑
i gi(ϵi/kT )e−ϵi/kT∑

i gie
−ϵi/kT

. (A1.32)

The Entropy

The translational and rotational entropies are given by

Strans =
5

2
R+R ln

(
V

NA

(
2πMkT

h2

) 3
2

)
(A1.33)

Srot = R

[
3

2
+ ln

(√
π

σ

(
8π2kT

h2

) 3
2 √

IAIBIC

)]
(A1.34)

Slinear
rot = R

[
1 + ln

(
8π2IkT

σh2

)]
. (A1.35)

The vibrational and electronic entropies are

Svib = R

modes∑
i

[(
hνi
kT

e−hνi/kT

1 − e−hνi/kT

)
− ln

(
1 − e−hνi/kT

)]
(A1.36)

Selec = R ln

(∑
i

gie
−ϵi/kT

)
+R

∑
i gi(ϵi/kT )e−ϵi/kT∑

i gie
−ϵi/kT

. (A1.37)
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Appendix A2 contains:

• List of important changes to the CREST program since publication

• Information about RMSD and Be calculations

• Front cover of the associated publication

Important Changes to the CREST Code since Publication

• Revision of the rotational constant comparison. Instead of a fixed 15.0 MHz threshold,

comparison are now made using a dynamical relative threshold of 1.0–2.5 %, based on the

anisotropy of rotational constants in the ensemble.

• For GFNn–xTB the energy threshold (ETHR) between conformers was

lowered to 0.05 kcal mol−1. For GFN–FF the threshold is still 0.1 kcal mol−1.

• The CREGEN sorting procedure now includes a topology comparison and the technical

performances (computation times) of the comparisons were improved.

• The flexibility measure was revised and now includes a non-covalent component. See

Appendix A3.

• Additional procedures for the conformational entropy (see Chapter 4) and pKa values (see

Chapter 7) were implemented.

Note on the Calculation of Atomic RMSDs

The atomic RMSDs are referred to above as

RMSD =

√∑N
i |xi − yi|2

N
, (A2.1)

where N is the number of atoms and xi/yi are the spatial coordinate vectors for atom i in

the two structures X and Y. However, the actual task of finding the RMSD is a problem of

linear algebra, which results in some computational overhead. The goal is to find an orthogonal

transformation U that minimizes a residual E (=the RMSD)

E :=
1

N

N∑
i

|Uxi + r − yi|2 , (A2.2)
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where r is a spatial translation. In CREST a quaternion algorithm is employed for this min-

imization problem. The mathematical formulation is quite lengthy and can be found in Ref.

302.

Note on the Calculation of Rotational Constants

The rotational constants Be are, as the RMSD, a purely structure based quantity that can be

used for structure comparisons. In contrast to the RMSD however, there is no dependence on

the atomic order, allowing a distinction between conformers and rotamers (i.e., all rotamers of

a conformer have the same Be). Be herein refers to the equilibrium (i.e., optimized) geometry

and is derived from B. The rotational B constant will have three spatial components (for linear

molecules only two), depending on three moments of inertia IA, IB, IC , around the respective

orthogonal principle axes of inertia A, B, and C. Both, moments and axes of inertia can be

obtained from diagonalization of a 3 × 3 inertia matrix

I =


∑

imi(y
2
i + z2i ) −

∑
imixiyi −

∑
imixizi

−
∑

imixiyi
∑

imi(x
2
i + z2i ) −

∑
imiyizi

−
∑

imixizi −
∑

imiyizi
∑

imi(x
2
i + y2i )

 , (A2.3)

with the mass mi and spatial coordinates (relative to the center of mass) {xi, yi, zi} for atom i.

Upon diagonalization the moments of inertia are obtained as eigenvalues and the principle axes

as eigenvectors of I. The rotational constants B is then calculated via

Bn =
h

8π2cIn
∀n ∈ {A,B,C} , (A2.4)

where h is Planck’s constant and c is the constant speed of light.
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Associated Publication Front Cover

Figure A2.1.: Front cover associated with the publication Phys. Chem. Chem. Phys. 2020, 22,
7169–7192.
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Appendix A3 contains:

• Additional technical details of the calculations

• Supplementary figures

• Tables with detailed results

Implementation, Algorithmic and Calculation Details

RMSD based metadynamics

The RMSD metadynamics (MTD) were introduced in Ref. 41 and are based on a bias potential

Vbias =
∑
i

ki exp
(
−αi∆

2
i

)
, (A3.1)

where ∆i is the atomic RMSD302 between a reference structure i and the calculated molecule.

ki and αi empirical or automatically determined parameters that shape the potential. During

a metadynamics simulation points on the simulated PES, i.e. snapshots of the MD simulation

are saved for the calculation of ∆i, which is then used to generate a repulsive Vbias contribution

at the respective geometry. By a continuous collection and update of reference structures (from

new snapshots) over the whole length of the simulation, Vbias will dynamically increase and form

a history-dependent potential. This way previously found regions of the PES are blocked for

the exploration and new conformers (PES minima) are found more safely.

As a new alternative we introduce another type of metadynamics, called static metadynamics

(sMTD). In contrast to the MTD discussed in Refs. 33,41, this simulation is initialized with

a given set of reference geometries and the MD will hence exhibit one global (and unchanged)

Vbias potential. This version of MTD is more similar in nature to the well-known umbrella

sampling or global optimization procedures. With regards to the PES sampling, sMTD has a

less explorative character than MTD for finding the global minimum, but will more continuously

expand the conformational ensemble with new higher-energetic structures.

Molecular flexibility description

Many settings for the here discussed workflow are generated automatically and based on the

individual structure of the investigated molecule. An important parameter is the molecular
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flexibility, because it is directly related to the molecules accessible low-energy space. In Ref. 33

we proposed a molecular flexibility measure ξf,cov, defined by

ξf,cov =

√
1

Nbonds

(
Nbonds∑

i

(
1 − e−5(BAB−2)10

)2 4

Nneigh
A Nneigh

B

(
R

(f)
i

)2) 1
2

. (A3.2)

The summation over all non-terminal bonds i with the atoms A,B ∈ i includes the Wiberg-

Mayer bond order330,331 (WBO) BAB between the two atoms. It is always obtained from a

GFN0-xTB calculation because no WBO is accessible from FF data. Nneigh
A,B are the numbers of

neighboring atoms of A and B, respectively. R(f) is a predefined factor of value 1 if the bond i is

not part of a ring and < 1 (depending on the ring size) otherwise. The measure ξf,cov works well

for assigning a quantitative covalent (as indicated by the subscript addendum) flexibility, where

values close to unity indicate an highly flexible system and values ≪ 1 indicate rigid systems. It

fails, however, for systems that are stabilized by non-covalent interactions like hydrogen-bonds

or dispersion. Reasonably sized organic molecules, such as polypeptides, are often much more

rigid as described by ξf,cov, due to the formation of intramolecular hydrogen-bonding networks.

Likewise, dispersion interactions are always present and might stabilize certain conformations,

but do not contribute to the flexibility in Eq. A3.2. Therefore, a modified molecular flexibility

is proposed that includes non-covalent contributions ξf,NCI from hydrogen bonds and dispersion

to the total molecular flexibility

ξf,tot =
1

2
ξf,cov +

1

2

(
ξf,NCIξ

1
2
f,cov

)
. (A3.3)

Non-covalent interactions are quantified from the total hydrogen-bond energy EHB and D4

dispersion energy Edisp, relative to the respective energies of a known reference system. In order

to be comparable to the reference, the energies must be normalized to the number of atoms N

in the system. The final formulation for ξf,NCI then is given by

ξf,NCI = 1.0 − 1

2

(
EHB

EHB,ref
+

Edisp

Edisp,ref

)(
N

Nref

)−1

. (A3.4)

The energy contributions EHB and Edisp are readily available from a simple GFN-FF singlepoint

energy calculation. Respective reference contributions EHB,ref and Edisp,ref are then assumed to

be a calibration standard for all further computations of the molecular flexibility. As a reasonably

flexible reference in which NCI interactions are important, the crambin protein was chosen for

the calculation of Edisp,ref and EHB,ref.

Rotamer Numbers

One of the key assumptions in the proposed scheme is that every contributing conformer i can

be effectively represented by a number of energetically degenerate rotamer structures with its
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degeneracy number gi. This number is composed of three parts

gi =
grot gcore
gsym

, (A3.5)

where grot is a factor arising from single-bond rotations, gcore denotes a factor resulting from

complex inversion and gsym includes the molecular symmetry into gi. Here, the factor grot is a

constant that is the same for all unique conformers and (pseudo-)enantiomers. All conformers of

a molecule have the same number of rotatable groups, each resulting in a fixed prefactor equal

to the number of equivalent nuclei exchanged by the rotation (i.e., 3 for methyl, 2 for phenyl, 5

for η5-C5H
−
5 , and so forth). We assume this factor to be constant for a given molecules since all

combinations of the rotations would be observed at some point in time (t→ ∞). The factor gcore

results from more complicated inversion-type processes that are responsible for the generation

of other degenerate structures such as (pseudo-)enantiomers of a conformer. gcore is unique for

every conformer since it is linked to the molecular symmetry of the respective structure.

C3

C2

C2

C2

C-5

C-1

C-1 C-1

C-1

C-5

C-5 C-5

(a) (b)

(c)

Figure A3.1.: Structures of ethane and n-pentane. a) Lowest conformer of n-pentane in the gas-
phase. b) Second lowest conformer of n-pentane. The conformer has four different
pseudo-enantiomers, for better distinguishability the first and fifth carbon atom
are labeled as such. c) Main symmetry elements within the ecliptic (D3d) ethane
molecule.

As an example the two lowest conformers of the n-pentane molecule are shown in Fig. A3.1a
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and A3.1b. With two terminal methyl groups n-pentane has a rotamer degeneration of grot = 32.

The lowest conformer of n-pentane in the gas-phase has C2v symmetry and no other enantiomeric

structures exist (gcore = 1). In the second conformer, however, one of the terminal methyl groups

is slightly twisted resulting in a total of four different (pseudo-)enantiomers (gcore = 4). Hence,

9 rotamers are to be expected for the lowest conformer of n-pentane, but there are 36 degenerate

rotamers for the second conformer.

The rotamer number gi also depends on the molecular symmetry. If symmetry operations

exist that coincide with some of the rotations included in grot and can impose a nucleus on itself,

gi has to be reduced by a factor gsym. A simple example is the ethane molecule as shown in

Fig. A3.1c. With two terminal methyl groups one could expect 32 rotamers, but since ethane

has D3d symmetry (D3h for the eclipsed form) there are only three different rotamers for the

molecule. Here, grot equals the symmetry number of the primary rotation axis. Other examples

are neopentane (Td), isobutane (C3v), or ferrocene (D5d/D5h). For most molecules grot simply

is unity and is only important for high symmetry cases.

The rotamer number gi is generated automatically from the CRE obtained by a conformational

search as implemented in the CREST program and information of chemically equivalent nuclei.

Nuclear equivalencies are obtained as a by-product of the conformational search directly from

the structure comparison as described in Ref. 40. For the identification of rotational groups,

the topology of the molecule is set up for the lowest energy conformer and analyzed. Herein,

the topology can be either based on quantum chemical data (covalent bond orders) or just set

up directly from the coordination numbers (CNs). Molecular rings are identified in a graph

representation of the topology, using an custom depth-first all-pair-shortest-path algorithm.

Rotational groups are obtained form groups of equivalent nuclei and must obey some simple

heuristic rules:

• The equivalent nuclei must be connected to a common neighboring atom.

• The neighboring atom may have a maximum of one neighbor other than the equivalent

nuclei to be considered “freely rotatable”. (An alternative definition via the WBO is

possible).

• Rotations from different groups of equivalent atoms in the same ring must only be counted

once to avoid double counting.

• The rotation number of the group is equivalent to the number of its members (i.e., the

equivalent nuclei).

These rules work recursively (e.g., a tert-butyl group results in 34 rotamers), but special con-

sideration has to be paid to freely coordinated rings (e.g., Cp in ferrocene), which will not be

discussed here any further.

The factor gcore is generated from a Cartesian RMSD comparison302 of all structures in a

CRE that belong to the same conformer. In this comparison all atoms that are rotationally

equivalent must be neglected in the RMSD, leading to the identification of all the different
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”core” structures for each conformer, i.e., its (pseudo-)enantiomers. For an example again see

Fig. A3.1b. The key assumption for this is, that the conformational search was able to generate

all relevant enantiomeric structures of a single conformer at least once.

Single Point Hessian Procedure

Within the described workflow and the calculation of the SmsRRHO population average, the

entropy for a reference structure SmsRRHO,ref has to be calculated. For consistency this reference

term has to be calculated at the same level of theory as the population average in SmsRRHO,

that is GFN2-xTB or GFN-FF. A geometry optimization at this level might lead to an alteration

of the frequencies and hence calculated entropy. On the other hand, if calculated directly for

the DFT reference geometry, there is a high probability to observe imaginary modes because the

DFT geometry will not necessarily be a minimum on the GFN2 or GFN-FF PES. To account

for this problem in a ”best of two worlds” approach we employ a new procedure called single

point hessians (SPH). Details of the SPH approach will be published elsewhere,420 but basically

it works by applying an additive potential33,41 similar to Eq. 3.3 above,

VSPH = k exp
(
−α∆2

)
, (A3.6)

where ∆ is the atomic RMSD302 between two molecular structures, and k and α define the

potential shape. Within the SPH procedure k and α are calculated automatically in an iterative

process, by repeatedly calculating the RMSD between the DFT input structure and a GFNn-

xTB or GFN-FF re-optimized structure and updating Vbias, until no change in the geometry is

observed. This essentially reshapes the PES at GFN2-xTB (or GFN-FF) level and removes any

imaginary modes for frequencies calculated directly for the DFT geometry. Entropies calculated

with frequencies from SPH resemble those at the DFT level, but retain a slight level of theory

dependent shift, which makes them compatible with SmsRRHO. With regards to computational

cost the SPH approach is much cheaper than calculating frequencies at the DFT level, but more

expensive as standard GFN2-xTB or GFN-FF Hessian calculations.
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Test Sets

The LBH Test Set

Table A3.1.: Absolute entropies for the LBH benchmark380 set. Entropies are given for a combi-
nation of SmsRRHO entropy calculated at DFT (B97-3c or B3LYP-D3/def2-TZVP)
and Sconf calculated at a lower (GFN2-xTB or GFN-FF) level. Mean deviation
(MD), mean average deviation (MAD), root-mean-square deviation (RMSD) and
standard deviation (SD) are given below. ”plain” values correspond to msRRHO
without Sconf . All values correspond to cal mol−1 K−1.

B97-3c B3LYP-D3/TZ
UM-VTa

experiment plain GFN-FF GFN2-xTB plain GFN-FF GFN2-xTB

1 ethane 54.79 54.48 54.50 54.51 54.48 54.49 54.49 54.75
2 propane 64.61 64.32 64.36 64.52 64.28 64.28 64.44 64.57
3 n-butane 74.21 72.07 74.21 74.14 72.07 74.05 74.08 74.21
4 isobutane 70.63 70.22 70.25 70.35 70.20 70.21 70.25 70.22
5 n-pentane 83.55 79.71 83.76 83.53 79.74 83.72 83.83 83.56
6 isopentane 82.16 80.05 82.19 82.10 80.00 82.12 82.25 81.51
7 neopentane 73.14 72.86 72.87 73.02 73.01 72.97 73.03 73.18
8 n-hexane 92.94 87.39 93.12 93.18 87.52 93.30 93.39 93.49
9 2,2-dimethylbutane 85.66 85.91 85.95 86.07 85.70 85.81 85.64 84.97
10 2,3-dimethylbutane 87.46 85.70 88.08 87.19 85.32 87.66 87.04 85.17
11 2-methylpentane 91.06 87.68 91.48 91.57 87.72 91.27 91.01 90.56
12 3-methylpentane 91.54 87.86 91.00 90.84 87.88 90.71 90.25 90.54
13 n-heptane 102.32 94.97 102.61 102.99 95.19 102.79 102.60 102.88
14 2,2-dimethylpentane 93.86 93.06 94.37 94.73 93.13 94.45 94.39 92.71
15 2,3-dimethylpentane 99.11 94.44 98.63 97.68 94.20 98.11 97.10 94.72
16 2,4-dimethylpentane 94.89 91.86 95.39 95.46 92.13 95.48 95.54 92.8

17 3,3-dimethylpentane 95.20 90.55 102.11b 96.48 90.46 101.62b 96.21 93.66
18 3-ethylpentane 98.37 93.61 99.33 97.71 94.04 99.42 98.16 96.25
19 2-methylhexane 100.50 95.24 100.92 100.76 95.46 100.83 100.46 100.48
20 3-methylhexane 101.84 95.47 102.52 101.89 95.61 102.57 101.29 99.94
21 2,2,3-trimethylbutane 91.63 92.56 92.65 92.08 92.52 92.43 92.21 90.06
22 n-octane 111.70 102.52 112.00 112.18 102.87 112.07 112.04 113.51
23 1-butene 73.58 71.22 74.55 73.33 71.14 74.65 73.17 73.36
24 1,3-butadiene 66.63 66.34 67.57 66.88 66.22 67.49 66.78 66.05
25 ethyl methyl ether 73.91 72.79 75.28 75.26 72.78 74.49 75.14 73.07
26 ethanol 67.07 64.58 66.65 66.28 64.57 66.79 66.24 66.41
27 propionaldehyde 72.75 70.01 73.03 72.44 70.05 72.38 72.87 72.73
28 2-butanone 81.12 79.63 84.22 83.74 80.19 84.70 83.86 80.63
29 acetic acid 67.75 69.97 70.04 69.98 69.08 69.60 69.11 68.06
30 propylamine 77.78 72.80 76.85 76.33 72.91 76.90 76.40 76.63
31 1-nitropropane 83.80 81.68 84.03 85.50 81.79 84.13 86.00 84.68
32 1-fluoropropane 72.85 70.68 72.67 73.04 70.65 72.61 72.96 73.11
33 1-chloropropane 75.43 73.27 75.52 75.67 73.17 75.38 75.49 75.54
34 1-bromopropane 79.07 76.04 78.27 78.45 75.93 78.21 78.36 78.08
35 ethyl methyl sulfide 79.64 77.13 80.13 79.54 76.92 80.15 79.14 79.41
36 methyl disulfide 80.16 78.97 80.14 80.99 78.61 79.79 80.52 80.12
37 ethanethiol 70.79 68.21 70.49 70.52 68.22 70.54 70.16 71.01
38 ethylene glycol 72.61 69.89 73.60 74.54 69.84 73.55 74.51 74.56
39 acrylic acid 73.54 71.90 73.29 72.99 71.71 73.08 72.61 72.18

MD — -2.62 0.32 0.23 -2.63 0.23 0.09 -0.52
MAD — 2.79 0.59 0.65 2.74 0.60 0.65 0.86
RMSD — 3.46 0.84 0.91 3.39 0.85 0.93 1.24
SD — 2.29 0.79 0.89 2.18 0.83 0.93 1.14

aValues taken from Ref. 380. bOutlier neglected from the statistics.
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The AS23 Test Set

Table A3.2.: Absolute entropies for the AS23 benchmark set. Entropies are given for a combi-
nation of SmsRRHO entropy calculated at DFT (B97-3c or B3LYP-D3/def2-TZVP)
and Sconf calculated at a lower (GFN2-xTB or GFN-FF) level. Mean deviation
(MD), mean average deviation (MAD), root-mean-square deviation (RMSD) and
standard deviation (SD) are given for the combined LBH+AS23 below. ”plain” val-
ues correspond to msRRHO without Sconf . All values correspond to cal mol−1 K−1.

B97-3c B3LYP-D3/TZ
experiment plain GFN-FF GFN2-xTB plain GFN-FF GFN2-xTB

40 cyclohexane 71.27 71.33 71.31 71.31 71.26 71.27 71.24
41 cycloheptane 81.82 80.21 80.48 80.24 80.18 81.15 80.15
42 cyclooctane 87.66 86.51 87.52 88.61 86.47 87.78 91.44

43 perfluorheptane 158.88 152.65 164.32b 159.90 152.51 165.84b 160.04
44 2,2,4,4-tetramethylpentane 103.13 101.30 102.10 102.76 101.06 102.07 102.41
45 2,2,3,4,4-pentamethylpentane 108.70 106.47 107.14 106.12 106.35 106.99 105.77

46 3,3-Diethyl-2-methylpentane 116.00 109.55 121.75b 115.81 109.32 121.87b 115.00
47 dipropylether 100.98 92.59 103.52 103.86 93.00 103.84 103.81
48 triethylamine 96.90 92.78 101.57 101.63 93.31 102.57 101.05
49 1-heptanol 114.83 102.72 113.61 113.83 102.99 114.33 113.74
50 Thiacycloheptane 86.50 83.62 87.95 87.43 83.54 87.66 87.65
51 nonane 121.06 109.97 121.30 121.06 110.40 121.46 121.44
52 decane 130.44 117.31 130.96 130.51 117.79 131.02 130.77
53 dodecane 148.78 131.60 149.42 149.21 132.09 149.81 149.11
54 butyl-propyl-sulfide 117.90 105.43 118.31 120.15 105.58 118.54 120.05
55 1-hexanol 105.50 94.92 104.11 104.29 95.13 104.61 104.22
56 1-pentanol 96.20 87.41 94.90 95.06 87.42 95.17 94.78
57 1-butanol 86.80 79.75 85.60 85.79 79.75 85.84 85.65
58 1-propanol 77.10 72.12 76.37 76.21 72.03 76.47 76.02
59 1-butanthiol 89.70 83.39 89.67 89.17 83.46 89.74 89.22
60 1-pentanthiol 99.30 90.98 99.00 98.45 91.17 99.18 98.53
61 1-hexanthiol 108.60 98.62 108.50 107.80 98.89 108.64 107.95
62 1-heptanthiol 117.90 106.18 118.00 117.09 106.61 118.21 116.96

LBH+AS23 errors
MD — -4.36 0.21 0.15 -4.32 0.24 0.07
MAD — 4.48 0.73 0.83 4.40 0.73 0.92
RMSD — 5.90 1.09 1.19 5.77 1.16 1.29
SD — 4.00 1.08 1.19 3.85 1.15 1.30

bOutlier neglected from the statistics.
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Linear Alkanes

Table A3.3.: Entropies calculated for linear alkanes up to octadecane. All values correspond to
cal mol−1 K−1.

SmsRRHO Sabs Sabs

alkane carbon atoms experiment B97-3c B97-3c + GFN-FF B97-3c + GFN2-xTB
ethane 2 54.79 54.48 54.50 54.51
propane 3 64.61 64.32 64.36 64.52
n-butane 4 74.21 72.07 74.21 74.14
n-pentane 5 83.55 79.71 83.76 83.53
n-hexane 6 92.94 87.39 93.12 93.18
n-heptane 7 102.32 94.97 102.61 102.99
n-octane 8 111.70 102.52 112.00 112.18
nonane 9 121.06 109.97 121.30 121.06
decane 10 130.44 117.31 130.96 130.51
dodecane 12 148.78 131.60 149.42 149.21
tetradecane(linear) 14 167.40 144.73 165.85 166.01
tetradecane(folded) 14 167.40 140.44 165.68 167.10
hexadecane(linear) 16 186.02 158.25 180.02 182.79
hexadecane(folded) 16 186.02 153.76 182.08 184.85
octadecane(linear) 18 204.50 171.72 193.19 —
octadecane(folded) 18 204.50 164.09 193.66 —

LBH Set Heat Capacities

Table A3.4.: Heat capacities for n-octane in the range of 300 up to 1500K. All values correspond
to cal mol−1 K−1.

T / K experimenta Cp,RRHO Cp,msRRHO Cp,msRRHO+Cp,conf

300 45.10 40.6 42.4 45.95
400 57.30 53.2 55.4 58.17
500 68.55 65.2 67.6 69.71
600 78.10 75.7 78.2 79.80
700 86.10 84.7 87.2 88.47
800 92.80 92.5 94.9 95.94
900 98.40 99.2 101.5 102.38
1000 103.10 105.0 107.3 107.94
1100 107.20 110.0 112.2 112.75
1200 110.70 114.3 116.4 116.91
1300 114.00 118.0 120.1 120.50
1400 117.00 121.3 123.2 123.61
1500 119.00 124.1 126.0 126.31

aValues taken from Refs. 434,439.
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Table A3.5.: Heat capacities for a subset of the LBH benchmark set. Cp are given for a com-
bination of Cp,msRRHO calculated at DFT(B97-3c or B3LYP-D3/def2-TZVP) and
Cp,conf calculated at a lower (GFN2-xTB or GFN-FF) level. Mean deviation (MD),
mean average deviation (MAD), root-mean-square deviation (RMSD) and standard
deviation (SD) are given below. All values correspond to cal mol−1 K−1.

B97-3c B3LYP-D3/TZ
UM-VTa

T / K experiment GFN-FF GFN2-xTB GFN-FF GFN2-xTB

isopentane 317.2 29.95 29.47 29.61 29.17 29.65 29.97
358.2 33.25 32.79 32.91 32.44 32.91 33.04
402.3 36.72 36.33 36.45 35.95 36.41 36.29
449.2 40.24 39.98 40.08 39.57 40.00 39.59
487.1 42.93 42.79 42.88 42.36 42.76 42.11

n-hexane 333.9 37.35 37.16 37.75 36.80 37.20 36.86
365.2 40.22 40.22 40.72 39.81 40.13 39.54
398.9 43.30 43.47 43.89 43.03 43.28 42.42
433.7 46.39 46.74 47.09 46.27 46.46 45.33
468.9 49.46 49.92 50.21 49.42 49.56 48.17

2,2-dimethylbutane 341.6 38.10 37.97 37.97 37.58 37.89 39.24
353.2 39.25 39.10 39.10 38.70 39.04 40.33
376.1 41.50 41.32 41.32 40.90 41.30 42.45
412.4 44.95 44.77 44.77 44.32 44.82 45.73
449.4 48.33 48.16 48.16 47.68 48.27 48.92

2,3-dimethylbutane 341.6 37.78 37.57 37.57 37.18 37.18 38.91
371.2 40.69 40.45 40.45 40.02 40.02 41.58
402.3 43.63 43.43 43.43 42.98 42.98 44.32
436 46.73 46.57 46.57 46.10 46.10 47.17
471.2 49.77 49.72 49.72 49.23 49.23 50.00

2-methylpentane 325.1 36.77 37.31 37.69 36.71 36.94 36.51
362.2 40.30 40.98 41.27 40.33 40.52 39.79
402.3 44.08 44.83 45.04 44.16 44.32 43.26
436.2 47.14 47.95 48.12 47.28 47.42 46.10
471.2 50.16 51.03 51.15 50.35 50.49 48.90

3-methylpentane 332.1 36.88 36.98 36.77 36.29 36.38 37.54
367.6 40.25 40.46 40.20 39.74 39.76 40.54
402.4 43.43 43.82 43.52 43.08 43.05 43.46
436.2 46.52 46.98 46.67 46.23 46.18 46.23
471.2 49.55 50.12 49.81 49.37 49.30 48.99

n-heptane 357.1 45.77 46.02 46.54 45.61 45.80 46.18
373.2 47.51 47.84 48.30 47.42 47.55 47.66
400.4 50.37 50.89 51.25 50.44 50.47 50.18
434.4 53.85 54.58 54.84 54.10 54.06 53.29
466.1 57.00 57.89 58.08 57.38 57.29 56.12

2,2,3-trimethylbutane 328.8 42.74 41.83 41.83 42.04 42.68 44.11
348.9 45.09 44.13 44.13 44.30 45.00 46.22
369.2 47.39 46.43 46.43 46.57 47.32 48.33
400.4 50.92 49.90 49.90 50.01 50.81 51.49
434.3 54.54 53.55 53.55 53.63 54.47 54.79
461.8 57.36 56.39 56.39 56.46 57.33 57.36

n-octane 405.7 58.00 58.34 58.89 57.67 58.19 57.51
462.5 64.70 65.25 65.58 64.52 64.84 63.38
522.7 70.60 71.99 72.17 71.22 71.40 69.24
MD — 0.05 0.17 -0.39 -0.11 -0.05
MAD — 0.47 0.57 0.47 0.25 0.68
RMSD — 0.58 0.69 0.54 0.32 0.78
SD — 0.58 0.68 0.38 0.31 0.79

aValues taken from Ref. 380.
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The CD25 Set: Drug Molecules

Table A3.6.: Comparison of a qualitative empirical flexibility measure ξf (see above) and the
conformational entropy per atom for all molecules of the CD25 set at GFN2-xTB
and GFN-FF level. Entropy values are given in cal mol−1 K−1 and are normalized
to the number of atoms Nat. Values for tetra- and octadecane are given as further
reference.

Sconf/Nat

molecule ξf GFN-FF GFN2-xTB

Apixaban 0.188 0.20 0.18
Aripiprazole 0.317 0.26 0.25
Celecoxib 0.161 0.15 0.13
Chloroquine 0.395 0.25 0.40
Duloxetine 0.376 0.30 0.25
Enzalutamide 0.160 0.10 0.12
Esomeprazole 0.379 0.27 0.24
Ezetimibe 0.258 0.21 0.18
Guaiol 0.230 0.10 0.15
Ibrutinib 0.189 0.17 0.19
Ibuprofen 0.341 0.18 0.13
Imatinib 0.214 0.19 0.16
Lenalidomid 0.135 0.18 0.11
Lisdexamfetamin 0.452 0.22 0.50
Oxycodone 0.160 0.05 0.01
Palbociclib 0.235 0.16 0.18
Penicilin 0.301 0.20 0.19
Pregabalin 0.515 0.33 0.46
Ritonavir 0.348 0.16 0.16
Rivaroxaban 0.280 0.24 0.12
(z)-Rosuvastatin 0.318 0.16 0.25
Sitagliptin 0.265 0.27 0.25
Sofosbuvir 0.292 0.03 0.15
Tamiflu 0.471 0.30 0.32
Tenofovir 0.302 0.25 0.14

C14 0.852 0.48 0.48
C18 0.836 0.53 –
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Figure A3.2.: Lewis structures for all 25 molecules included in the CD25 set. Molecule names
are given below the respective structure. Input structures are available from
https://github.com/grimme-lab/mol-entropy.
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Empirical Entropy Estimates

As mentioned in the manuscript, the empirical formulation

Ssimple = R ln (Nconf ) (A3.7)

is used in some studies402,419 to estimate the conformational entropy. However, while this for-

mulation may be used for very simple molecules, it breaks down for challenging energy surfaces.

One could easily imagine a case where only a few conformers of an otherwise large ensemble

contribute to the entropy (e.g., sofosbuvir at GFN-FF level), or an opposite case with many

high-energetic conformers that individually contribute nothing, but in sum make a large part of

the entropy (e.g., continuous ensembles, large n-alkanes). Population differences can thus lead

to significant differences even for ensembles of same size, and would therefore not be captured

by the approximation via Nconf . The approximation is further unable to capture vibrational

entropy averages as in SmsRRHO. Differences ∆Sconf/simple between this estimated and the fully

converged entropy often exceed several cal mol−1 K−1 in either direction, which is shown for the

CD25 in Tabs. A3.7,A3.8 below.
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Table A3.7.: Conformational entropies and standard deviations (SD) calculated for the CD25 set
from repeated CREST entropy sampling runs at GFN2-xTB level. Also shown is
the simple entropy Ssimple = R ln (Nconf ), estimated only from the number of con-
formers Nconf for each structure. All entropy values correspond to cal mol−1 K−1.

molecule Sconf (GFN2-xTB) SD Nconf Ssimple ∆Sconf/simple

Apixaban 10.42 0.04 123 9.56 0.85
Aripiprazole 14.22 0.49 4273 16.61 -2.39
Celecoxib 5.08 0.38 10 4.51 0.57
Chloroquine 18.99 0.16 6499 17.45 1.54
Duloxetine 10.06 0.11 726 13.09 -3.02
Enzalutamide 5.96 0.11 23 6.20 -0.24
Esomeprazole 10.16 0.24 440 12.10 -1.93
Ezetimibe 9.33 0.15 664 12.91 -3.59
Guaiol 6.22 0.15 125 9.59 -3.38
Ibrutinib 10.76 0.54 470 12.23 -1.47
Ibuprofen 4.36 0.03 14 5.20 -0.84
Imatinib 11.10 0.22 851 13.41 -2.30
Lenalidomib 3.50 0.06 12 4.99 -1.49
Lisdexamfetamin 22.07 1.58 10044 18.31 3.76
Oxycodone 0.30 0.00 9 4.37 -4.07
Palbociclib 11.24 0.23 613 12.75 -1.52
Penicilin 7.62 0.14 193 10.46 -2.84
Pregabalin 12.86 0.31 870 13.45 -0.59
Ritonavir 15.34 0.17 11895 18.65 -3.31
Rivaroxaban 5.65 0.12 40 7.35 -1.69
(z)-Rosuvastatin 15.30 0.13 572 12.62 2.68
Sitagliptin 10.83 0.49 930 13.58 -2.75
Sofosbuvir 9.58 0.03 1756 14.85 -5.27
Tamiflu 16.04 0.13 8863 18.06 -2.03
Tenofovir 4.63 0.03 65 8.29 -3.66
average — 0.25 — — -1.56
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Table A3.8.: Conformational entropies and standard deviations (SD) calculated for the CD25
set from repeated CREST entropy sampling runs at GFN-FF level. Also shown is
the simple entropy Ssimple = R ln (Nconf ), estimated only from the number of con-
formers Nconf for each structure. All entropy values correspond to cal mol−1 K−1.

molecule Sconf (GFN-FF) SD Nconf Ssimple ∆Sconf/simple

Apixaban 11.69 0.34 262 11.07 0.62
Aripiprazole 14.89 0.16 3602 16.27 -1.39
Celecoxib 6.14 0.44 19 5.80 0.34
Chloroquine 11.95 0.14 4972 16.91 -4.97
Duloxetine 12.07 0.69 1157 14.02 -1.95
Enzalutamide 4.87 0.21 17 5.65 -0.78
Esomeprazole 11.62 0.61 490 12.31 -0.69
Ezetimibe 10.47 0.33 214 10.66 -0.20
Guaiol 4.21 0.45 67 8.35 -4.14
Ibrutinib 9.45 0.35 1110 13.94 -4.48
Ibuprofen 5.98 0.24 54 7.94 -1.96
Imatinib 13.03 0.19 1916 15.02 -1.99
Lenalidomib 5.86 0.22 9 4.37 1.50
Lisdexamfetamin 9.76 0.70 2429 15.49 -5.73
Oxycodone 2.23 0.02 28 6.61 -4.38
Palbociclib 9.90 0.33 571 12.61 -2.72
Penicilin 8.10 0.21 582 12.65 -4.55
Pregabalin 9.19 0.15 771 13.21 -4.02
Ritonavir 16.02 0.72 1467 14.49 1.53
Rivaroxaban 11.20 0.56 190 10.43 0.77
(z)-Rosuvastatin 9.65 0.41 628 12.80 -3.15
Sitagliptin 11.52 0.32 917 13.55 -2.03
Sofosbuvir 1.66 0.38 103 9.21 -7.55
Tamiflu 15.21 0.24 9559 18.21 -3.00
Tenofovir 8.36 0.36 236 10.85 -2.50
average — 0.35 — — -2.30
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Appendix A2 contains:

• Revised results obtained with xtb 6.4.1

Revised Calculations of IR Spectra

In the article [J. Chem. Theor. Comput. 2020, 16, 7044–7060.] calculations were conducted

with version 6.3.2 of the xtb code. Unfortunately, up to program version 6.4.0 the calculation

of IR intensities was wrongly implemented. In all calculations at the GFNn levels in Chapter 5

IR intensities were hence obtained as

IR intensity ∝ ∂µ

∂qi
, (A4.1)

whereas it correctly (as stated in the article) should be

IR intensity ∝
(
∂µ

∂qi

)2

. (A4.2)

DFT results at the B3LYP-3c level are not affected by this as they were obtained with TUR-

BOMOLE. For completeness in scope of this thesis, results obtained for the 6556 structures in

the HCNO set at the GFNn levels were revised with xtb 6.4.1 and are shown in Tab. A4.1 and

Fig. A4.1.

Table A4.1.: Revised average metrics rmatch, reuclid, rspearman, and rpearson for the 6556 unscaled
and ideally (MSFS) scaled IR spectra calculated at the GFN1–xTB, GFN2–xTB
and GFN-FF levels of theory.

unscaled molecule specific scaling
method rmatch reuclid rspearman rpearson rmatch reuclid rspearman rpearson

GFN1–xTB 0.629 0.712 0.745 0.604 0.804 0.768 0.981 0.771
GFN2–xTB 0.670 0.739 0.749 0.665 0.814 0.785 0.990 0.758
GFN–FF 0.470 0.618 0.604 0.386 0.648 0.455 0.993 0.618

As can be seen from Tab. A4.1, average similarity measures for unscaled GFN1– and GFN2–

xTB are similar but slightly worse than the original values (cf. Tab. 5.1). This is the same trend

for GFN–FF, but here the differences are more significant. However, upon MSFS the correct

IR intensities seem to improve predictions for all GFNn methods. Since atomic mass scaling
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showed performances more close to MSFS than to the unscaled results, an improvement would

be expected therein also, but is not tested here again.
r m

at
ch

Figure A4.1.: Similarity measures (rmatch) for the revised 6556 spectra comparisons (unscaled
and with molecule specific frequency scaling) at the GFN1–xTB, GFN2–xTB and
GFN–FF levels of theory, visualized as box plots.

General conclusions drawn in the article remain unchanged. An improved version of the mass

scaling is already being investigated and will not be revised in its current form.

244



A5. Supporting Information to Chapter 6

Appendix A5 contains:

• Tables with detailed results for submission xvxzd

• LFER fit set data for submission xvxzd

Submission: xvxzd

Calculated Free Energies

Free energies for all the 24 molecules were calculated at the DSD-BLYP-D3/def2-TZVPD//PBEh-

3c[DCOSMO-RS(water)] level including RRHO(GFN-xTB[GBSA(water)]) entropic and COSMO-

RS(fine) free solvation energy contributions. For every molecule the chemical ensemble was

generated as described in the manuscript. The Boltzmann averaged free energies for the 24

ensembles in the neutral, anionic and cationic form are shown in Table A5.1 below.

Table A5.1.: Calculated and Boltzmann averaged free energies for the 24 SAMPL6 molecules

in their neutral (|Gneutral|), anionic (|Ganion|) and cationic (|Gcation|) form. All
free energies are in Eh, calculated at the DSD-BLYP-D3/def2-TZVPD//PBEh-
3c[DCOSMO-RS]+RRHO(GFN-xTB[GBSA])+COSMO-RS level.

molecule |Gneutral| |Ganion| |Gcation|

SM01 -743.7625031037 -743.304788054 -744.1797905832
SM02 -1040.7353285759 -1040.2726514917 -1041.173044208
SM03 -1575.0340919676 -1574.5864421631 -1575.4597665047
SM04 -1202.4860068249 -1202.0146845191 -1202.9246444728
SM05 -1339.1374887118 -1338.6714899641 -1339.5730059192
SM06 -3390.0017408338 -3389.5397698749 -3390.4335912621
SM07 -743.0317437548 -742.5601021141 -743.4713811308
SM08 -974.6507758069 -974.210045212 -975.071439758
SM09 -818.2140852338 -817.7501438044 -818.6523439353
SM10 -1329.5898905202 -1329.1393702205 -1330.0145992036
SM11 -697.7974209236 -697.3544887555 -698.2313575709
SM12 -1163.2298569976 -1162.7664450465 -1163.6679815996
SM13 -971.9133840241 -971.4475719151 -972.3518768465
SM14 -665.6950182003 -665.1988446134 -666.1315341035
SM15 -685.5782512469 -685.1235888474 -686.0130711228
SM16 -1566.4043299299 -1565.9487240186 -1566.8422637859
SM17 -1176.9574534087 -1176.46109157 -1177.3841878893
SM18 -1776.1133054991 -1775.6618360661 -1776.5400521634
SM19 -2233.5806110999 -2233.128985007 -2234.0042211518
SM20 -2252.2700686168 -2251.8262655113 -2252.6698786386
SM21 -6081.5402750583 -6081.0749829135 -6081.9738638345
SM22 -1070.5772599332 -1070.1320102089 -1071.0078985211
SM23 -1409.7020267963 -1409.2351107628 -1410.1381492314
SM24 -1315.0474897735 -1314.5727724932 -1315.4762931794

(H2O)4 -306.1838613663 — —

H3O
+(H2O)3 — — -306.6040567912

(H2O)4 and H3O
+(H2O)3 were used as reference molecules in the calculation of |∆Gdiss|.
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Fit Data

The LFER parameters c0 and c1 were obtained by fitting calculated free dissociation energies of

59 small organic and inorganic molecules to their corresponding experimental pKa values. The

free dissociation energies |∆Gdiss| (for the reaction according to Eq. 6.6 below) were calculated at

the DSD-BLYP-D3(BJ)/def2-TZVPD//PBEh-3c[DCOSMO-RS(water)] level including RRHO

contributions at the GFN-xTB[GBSA(water)] level and contributions to the free solvation energy

calculated with COSMO-RS(fine). Most of the molecules are small and show only a single

protonation or deprotonation site. Hence, the conformational search and averaging of the free

energies was only performed for the more flexible molecules for which several conformations can

be expected, such as pentanoic acid. The (averaged) |∆Gdiss|, experimental and fitted pKa

values of the 59 molecules are shown in Table A5.2.

Calculated Macroscopic pKa

Macroscopic pKa values were calculated according to the free dissociation energy of either one

of the two reactions:

AHsolv + (H2O)4,solv → A−1
solv + H3O

+(H2O)3,solv (A5.1)

AH+
solv + (H2O)4,solv → Asolv + H3O

+(H2O)3,solv (A5.2)
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Table A5.2.: Set of 59 small organic and inorganic molecules used to fit calculated free dissoci-
ation energies to experimental pKa values via the LFER. Conformational searches
were conducted where deemed necessary. |∆Gdiss| in kcal mol−1 calculated at the
DSD-BLYP-D3/def2-TZVPD//PBEh-3c level.

molecule |∆Gdiss|
|∆Gdiss|
ln(10)RT

pKa(exptl.) pKa(calc., fitted)

2,2-Dimethylsuccinimide 23.2986 17.0780 9.50 8.53
2,3,4,6-Tetrachlorphenol 16.5083 12.1007 5.62 5.71
2,3,4-Trichlorphenol 19.4950 14.2899 7.10 6.95
2,3-Dichlorphenol 21.9997 16.1259 7.76 7.99
2,4,5-Trichlorphenol 19.5371 14.3208 7.07 6.96
2,4,6-Trichlorphenol 18.2140 13.3509 6.21 6.42
2,4-Dichlorphenol 22.5525 16.5311 8.09 8.22
2,5-Dichlorphenol 21.6007 15.8335 7.51 7.82
2,6-Dihclorphenol 19.8357 14.5396 6.79 7.09
2-Acetylbutanedioic acid 8.0680 5.9139 2.86 2.20
2-Chloropropanoic acid 11.8961 8.7199 2.83 3.79
2-Chlorphenol 24.0541 17.6318 8.29 8.84
2-Hydroxypropanoic acid 11.3521 8.3211 3.86 3.57
3,4-Dichlorphenol 22.8374 16.7399 8.68 8.34
3,5-Dichlorophenol 21.9947 16.1222 8.27 7.99
3-Chloropropanoic acid 13.9477 10.2238 3.98 4.64
3-Chlorphenol 24.2560 17.7798 8.78 8.92
4-Chlorphenol 25.7218 18.8542 9.14 9.53
4-Nitrophenol 18.2826 13.4012 7.14 6.44
5-Formyluracil 15.7631 11.5544 6.84 5.40
5-Nitrouracil 13.9895 10.2544 5.30 4.66
Acetic acid 15.1742 11.1227 4.76 5.15
Acrylic acid 14.3777 10.5389 4.25 4.82
Benzoic acid 15.6034 11.4374 4.20 5.33
Boric acid 24.2896 17.8044 9.23 8.94
Bromoacetic acid 11.9388 8.7512 2.86 3.81
Carbonic acid 11.0107 8.0709 3.58 3.42
Chloroaceticacid 11.5827 8.4902 2.86 3.66
Cyanoacetic acid 10.2971 7.5478 2.43 3.13
Dichloroacetic acid 7.7051 5.6479 1.29 2.05
Dimethadione 26.5509 19.4619 6.10 9.88
Fluoro acetic 10.1897 7.4691 2.66 3.08
Fluorouracil 19.8093 14.5203 8.00 7.08
Formic acid 12.1143 8.8798 3.77 3.88
Fumaric acid 11.6516 8.5407 3.02 3.69
Hypobromous acid 24.0432 17.6238 8.55 8.84
Hypochlorous acid 21.7570 15.9480 7.40 7.89
Hypoiodous acid 25.7266 18.8578 10.50 9.53
Iodoacetic acid 13.0036 9.5317 3.12 4.25
Maleic acid 12.9390 9.4843 1.93 4.23
Methylperoxide 27.1417 19.8950 11.50 10.12
Methylthiouracil 20.7597 15.2170 8.20 7.47
Nitroacetic acid 8.1799 5.9959 1.68 2.25
Nitrous acid 6.3838 4.6794 3.29 1.50
Oxalic acid 5.6623 4.1505 1.23 1.20
Pentanoic acid 15.5898 11.4274 4.84 5.33
Peroxide 27.2617 19.9830 11.60 10.17
Phenol 26.4243 19.3691 9.82 9.82
Phenytoin 23.1427 16.9637 8.30 8.46
Phosphoric acid 4.0589 2.9752 2.16 0.54
Phthalic acid 12.6270 9.2556 2.98 4.10
Phthalimide 23.2423 17.0367 8.30 8.50
Pivalic acid 15.3076 11.2206 5.03 5.21
Succinimide 22.9325 16.8096 9.60 8.37
Sulfurous acid 1.6421 1.2036 1.90 -0.47
Thymine 23.8240 17.4631 9.75 8.74
Trichloracetic acid 4.1161 3.0171 0.65 0.56
Trifluoroethanol 32.0117 23.4648 12.50 12.14
Uracil 22.4289 16.4405 9.42 8.17
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Table A5.3.: Macroscopic pKa values calculated with the fitted LFER for the reaction shown in
Eq. A5.1. |∆Gdiss| in kcal mol−1. ”*” denotes pKa calculations that were omitted
from the SAMPL6 submission.

molecule |∆Gdiss|
|∆Gdiss|
ln(10)RT

pKa(calc.)

SM01 27.1940 19.9334 10.14
SM02 30.3077 22.2157 11.44
SM03 20.8780 15.3037 7.52
SM04* 35.7327 26.1923 13.69
SM05 32.3921 23.7436 12.30
SM06 29.8646 21.8909 11.25
SM07* 35.9331 26.3391 13.77
SM08 16.5361 12.1211 5.72
SM09 31.1011 22.7973 11.77
SM10 22.6792 16.6240 8.27
SM11 17.9176 13.1337 6.29
SM12 30.7689 22.5538 11.63
SM13 32.2750 23.6577 12.25
SM14* 51.3271 37.6230 20.16
SM15 25.2785 18.5292 9.35
SM16 25.8705 18.9632 9.59
SM17* 51.4452 37.7096 20.21
SM18 23.2748 17.0606 8.52
SM19 23.3731 17.1326 8.56
SM20 18.4641 13.5343 6.52
SM21 31.9487 23.4186 12.12
SM22 19.3719 14.1997 6.90
SM23* 32.9677 24.1655 12.54
SM24* 37.8631 27.7538 14.57

Table A5.4.: Macroscopic pKa values calculated with the fitted LFER for the reaction shown in
Eq. A5.2. |∆Gdiss| in kcal mol−1. ”*” denotes pKa calculations that were omitted
from the SAMPL6 submission.

molecule |∆Gdiss|
|∆Gdiss|
ln(10)RT

pKa(calc.)

SM01* 1.8253 1.3380 -0.39
SM02 14.6442 10.7343 4.93
SM03 7.0883 5.1958 1.80
SM04 15.2228 11.1584 5.17
SM05 13.2647 9.7231 4.36
SM06 10.9637 8.0365 3.41
SM07 15.8501 11.6182 5.43
SM08* 3.9441 2.8910 0.49
SM09 14.9850 10.9841 5.07
SM10* 6.4822 4.7515 1.54
SM11 12.2728 8.9961 3.95
SM12 14.9008 10.9224 5.04
SM13 15.1319 11.0918 5.14
SM14 13.8914 10.1824 4.62
SM15 12.8271 9.4023 4.18
SM16 14.7811 10.8346 4.99
SM17 7.7534 5.6833 2.07
SM18 7.7611 5.6889 2.08
SM19* 5.7928 4.2462 1.26
SM20* -9.1419 -6.7011 -4.94
SM21 12.0546 8.8361 3.86
SM22 10.2033 7.4791 3.09
SM23 13.6444 10.0015 4.52
SM24 9.0517 6.6349 2.61
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Appendix A6 contains:

• Additional computational details

• Tables with fit data

• CFER parameters c0−3

• Tables with detailed results

• Figures with molecular structures

Additional Computational Details

In the manuscript the three steps for computation of dissociation free energies and consequently

pKa values were discussed. Some additional technical aspects are given here:

• Ionic starting geometries for the acid and its conjugate base can either be taken from

the literature (as was the case, i.e. for the SAMPL6 benchmark sets), or generated from

the neutral species at GFN2-xTB level with the command crest inp.xyz --protonate

--alpb h2o (respectively --deprotonate for the anion).

• Alternatively, if the acid input geometry is known the pKa at GFN2-xTB level can be

calculated in a single-structure approach via crest inp.xyz --pka <acidic H>, where

<acidic H> is the number of the acidic proton in the acid input file. This will automati-

cally generate the base and calculate a pKa value. Note that the charge of the acid should

be specified via the --chrg command.

• Conformational ensembles for consecutive DFT treatment were generated separately for

the acid and base with crest. To reduce computational cost, GFN2-xTB structures were

clustered using the --cluster command.

• Clustered ensembles were passed to the censo program, which interfaces Turbomole and

yields ensemble files containing the final free energies at DFT level.

• The respective censo ensembles can directly be read by crest, which calculates the

Boltzmann averaged G
A

/G
B

and from this the pKa. The corresponding command is

crest --pka --pkaensemble acid-ensemble.xyz base-ensemble.xyz. CFER param-

eters can be read from a plain text file via --pkaparam <file>.
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Detailed Results

Adjustment of GFN2-xTB Dissociation Energies

Table A6.1.: Element specific parameters to calculate an energy correction term ETB
mod for disso-

ciation energies at the GFN2-xTB/ALPB(H2O) level.

element X ε(X) k1 k2 k3 k4

C 0.243240 0.006819 -0.012581 0.154801 0.143015
N 0.257074 0.037121 -0.055775 0.106734 0.023837
O 0.194618 0.024046 0.028236 0.014825 0.149677
F 0.122274 -0.147062 0.328353 -0.327531 0.234198
Si 0.212852 0.019048 -0.061229 0.026066 0.008854
P 0.274942 -0.023403 0.025728 -0.013699 -0.026747
Si 0.301025 0.008263 -0.080627 0.093954 -0.051587
Cl 0.278736 -0.008886 -0.008372 0.014058 -0.057756
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Table A6.2.: Energy differences ∆E = Ebase − Eacid at the r2SCAN-3c/COSMO-RS(H2O),
GFN2-xTB/ALPB(H2O) and GFN2-xTB+ETB

mod/ALPB(H2O) levels. The element
specific parameters of ETB

mod in Tab. A6.1 were fitted to these energies. All energies
are in Eh. The ”tag” is a trivial label corresponding to the system as provided in
the separate input structure zip file.

fit element tag ∆EDFT ∆EGFN2 ∆EGFN2 + ETB
mod ∆∆EDFT/GFN2 + ETB

mod

C acetaldehyd 0.518258 0.297300 0.528032 -0.009774
C aceton 0.479308 0.246949 0.472988 0.006320
C acetylaceton 0.446127 0.205680 0.437789 0.008339
C barbituric 0.434592 0.181474 0.420908 0.013684
C benzol 0.529184 0.325102 0.527222 0.001962
C butadien 0.527351 0.323373 0.525149 0.002202
C bzh+ 0.375641 0.126545 0.400290 -0.024648
C c4oen 0.512839 0.280436 0.522994 -0.010154
C cf3h 0.500405 0.217474 0.503984 -0.003579
C ch2no22 0.421813 0.147368 0.404471 0.017342
C ch3cn 0.485975 0.268872 0.493184 -0.007209
C ch3nh2 0.547339 0.328233 0.551091 -0.003752
C chbr3 0.484328 0.196193 0.485281 -0.000953
C chcl3 0.489328 0.205443 0.473581 0.015747
C chexanon 0.479771 0.245278 0.474416 0.005356
C chlorethin 0.475893 0.265922 0.471883 0.004011
C chme2+ 0.489907 0.241325 0.488522 0.001385
C cpdien 0.458051 0.236263 0.477236 -0.019185
C cyclohexandion 0.435026 0.198086 0.432699 0.002327
C cyclononyl 0.448908 0.230845 0.471853 -0.022945
C dihydrofuran 0.536414 0.306699 0.534830 0.001583
C diphenylmethan 0.503804 0.262988 0.495229 0.008575
C ethan 0.547117 0.333451 0.548228 -0.001111
C ethen 0.526964 0.321775 0.527700 -0.000736
C ethin 0.470002 0.302895 0.488944 -0.018943
C fluoren 0.483967 0.245019 0.482208 0.001759
C lacton5 0.487312 0.241447 0.469354 0.017958
C malonitril 0.442189 0.209823 0.449159 -0.006970
C pyridin 0.525787 0.314269 0.531305 -0.005518
C tbutyl+ 0.403114 0.159821 0.408595 -0.005481
C toluol 0.515513 0.285823 0.510551 0.004962
N acetamid 0.473020 0.228146 0.468414 0.004606
N anilin 0.488184 0.254263 0.490695 -0.002512
N ch3cnh+ 0.395281 0.156339 0.413997 -0.018715
N diphenylamineh+ 0.422952 0.159406 0.425642 -0.002690
N guanidinium+ 0.465492 0.214756 0.457551 0.007941
N hn3 0.428340 0.203318 0.435842 -0.007501
N hydrazinium+ 0.444366 0.182031 0.442370 0.001997
N imidazol 0.461993 0.221536 0.468007 -0.006014
N imidazolh+ 0.447593 0.192420 0.445405 0.002188
N isocyanic 0.429788 0.199369 0.433278 -0.003489
N morpholineh+ 0.450425 0.180689 0.442596 0.007829
N Naphthyridinium 0.438535 0.181843 0.439902 -0.001367
N nh3 0.508929 0.291057 0.525937 -0.017008
N nh4+ 0.450836 0.200003 0.451506 -0.000669
N nph3h+ 0.411569 0.147858 0.416860 -0.005291
N phnh3+ 0.434460 0.174413 0.434555 -0.000095
N phtalimid 0.449301 0.205287 0.452585 -0.003284
N pyridinium+ 0.444893 0.182091 0.440050 0.004843
N pyrimidinium 0.433031 0.166103 0.424219 0.008811
N pyrrol 0.470363 0.240632 0.486836 -0.016472
N sacharin 0.428778 0.178392 0.421435 0.007343
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Table A6.2.: Continue previous table...

fit element tag ∆EDFT ∆EGFN2 ∆EGFN2 + ETB
mod ∆∆EDFT/GFN2 + ETB

mod

O acetamidh+ 0.424986 0.171974 0.424438 0.000548
O acetonh+ 0.413485 0.160852 0.419367 -0.005881
O ala 0.437842 0.193654 0.440525 -0.002683
O ccl3cooh 0.427043 0.161688 0.417721 0.009321
O cf3cooh 0.425982 0.159606 0.417870 0.008113
O ch3cooh2+ 0.412401 0.153267 0.410678 0.001723
O ch3cooh 0.438220 0.198504 0.444044 -0.005824
O dmsoh+ 0.427113 0.172271 0.419320 0.007793
O enol 0.454712 0.225257 0.463282 -0.008570
O h2co3 0.431799 0.182002 0.430707 0.001092
O h2o2 0.462396 0.220957 0.474283 -0.011887
O h2o 0.476512 0.257044 0.486801 -0.010289
O h2po4- 0.438474 0.204968 0.444697 -0.006224
O h2so4 0.407784 0.168973 0.408284 -0.000501
O h3o+ 0.426699 0.165183 0.422124 0.004575
O h3po4 0.428554 0.183783 0.428061 0.000493
O hclo3 0.408558 0.163076 0.418918 -0.010361
O hclo4 0.399627 0.134184 0.393783 0.005844
O hco3- 0.452962 0.224171 0.456057 -0.003095
O hcooh 0.436114 0.185716 0.436182 -0.000068
O hno2 0.429749 0.179599 0.432729 -0.002980
O hno3 0.415951 0.160589 0.413361 0.002590
O hocl 0.451763 0.200210 0.451526 0.000237
O hso4- 0.418432 0.193737 0.432452 -0.014020
O meoh2+ 0.417264 0.153797 0.418185 -0.000921
O meoh 0.484921 0.239711 0.477903 0.007017
O mesulfons 0.412470 0.176101 0.419065 -0.006595
O odiphenol 0.453611 0.217875 0.455454 -0.001843
O oxal1 0.426535 0.179940 0.433176 -0.006641
O oxal2 0.430682 0.194329 0.443352 -0.012670
O phboron 0.456836 0.227545 0.462502 -0.005666
O phcooh 0.438015 0.197940 0.443596 -0.005581
O phenol 0.457422 0.223836 0.463281 -0.005859
O pikrin 0.426762 0.166828 0.419855 0.006907
O quadratic1 0.425330 0.175504 0.426235 -0.000905
O quadratic2 0.427702 0.197336 0.443395 -0.015693
O salicylat 0.435005 0.192297 0.438312 -0.003307
O tbutanol 0.487440 0.254921 0.489114 -0.001674
O thfh+ 0.413682 0.148052 0.414586 -0.000905
O trifluorethanol 0.471973 0.216740 0.460124 0.011849
O tropolon 0.446291 0.210060 0.452503 -0.006212
O uracil 0.450681 0.208806 0.456783 -0.006102
O uronium+ 0.428774 0.178438 0.423027 0.005746
O vitcmod 0.436900 0.187780 0.435886 0.001014
F etfh+ 0.357602 0.081647 0.347701 0.009901
F f2h+ 0.293090 0.029602 0.297628 -0.004539
F fethenh+ 0.354159 0.123378 0.406676 -0.052517
F hfdimer 0.414417 0.148024 0.398024 0.016393
F lifh+ 0.423745 0.129430 0.425556 -0.001811
F mefh+ 0.351819 0.079171 0.349800 0.002020
F phfh+ 0.332818 0.072970 0.337974 -0.005156
Si sif2h 0.475726 0.255362 0.471139 0.004587
Si sih2cl2 0.470784 0.252445 0.477973 -0.007188
Si sih3+ 0.423495 0.214151 0.415387 0.008109
Si sih3cn 0.469097 0.279804 0.485893 -0.016796
Si sihbr3 0.448203 0.202407 0.423487 0.024716
Si sihcl2+ 0.384558 0.177256 0.403282 -0.018724
Si sihcl3 0.457577 0.229032 0.456155 0.001422
Si sihclch2 0.472265 0.253635 0.503635 -0.031370
Si sihcls 0.439781 0.228606 0.455766 -0.015985
Si sihf-ethene 0.470471 0.274598 0.487869 -0.017398
Si sihfo 0.493141 0.256100 0.506100 -0.012959
Si sihme2+ 0.449635 0.229321 0.438321 0.011315
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Table A6.2.: Continue previous table...

fit element tag ∆EDFT ∆EGFN2 ∆EGFN2 + ETB
mod ∆∆EDFT/GFN2 + ETB

mod

P p2me2h+ 0.386058 0.159947 0.404984 -0.018926
P p2meh 0.452386 0.223084 0.484567 -0.032180
P p4o6h+ 0.388565 0.139646 0.389646 -0.001082
P p-betaine 0.433219 0.201049 0.451049 -0.017830
P pbr3h+ 0.371490 0.046515 0.300179 0.071312
P pcl3h+ 0.375187 0.123525 0.379625 -0.004438
P ph3 0.461970 0.199120 0.460304 0.001666
P ph3ph+ 0.431622 0.177402 0.435493 -0.003871
P ph4+ 0.418091 0.158223 0.424313 -0.006223
P phcl2 0.478012 0.191442 0.474129 0.003883
P pme3h+ 0.447142 0.190459 0.448621 -0.001479
P poh3h+ 0.431011 0.167001 0.429280 0.001731
P pphh3+ 0.422571 0.162900 0.425931 -0.003360
P p-sbetaine 0.437980 0.198606 0.448606 -0.010626
P verkadeh+ 0.472521 0.238576 0.488576 -0.016055
S allylthiol 0.443474 0.211998 0.449145 -0.005671
S diphenylsh+ 0.390624 0.140349 0.394892 -0.004268
S etsh2+ 0.400411 0.146905 0.395044 0.005367
S etsh 0.444463 0.214382 0.449585 -0.005121
S h2s2 0.436570 0.184950 0.424855 0.011715
S h2s 0.429694 0.206467 0.443384 -0.013690
S hsoh 0.437938 0.202132 0.439223 -0.001285
S isopentylthiol 0.447607 0.220069 0.456043 -0.008436
S mesh 0.443412 0.211144 0.446565 -0.003152
S nh2sh 0.443779 0.207725 0.443774 0.000004
S nitrophenol 0.433827 0.179988 0.435886 -0.002059
S o-nh2thiopenol 0.437640 0.204633 0.448381 -0.010741
S phsh2+ 0.389787 0.139083 0.391911 -0.002124
S phsh 0.438371 0.202816 0.444290 -0.005919
S s8h+ 0.360310 0.115683 0.369747 -0.009438
S scl2h+ 0.359797 0.128463 0.374592 -0.014795
S senol 0.436870 0.203782 0.443672 -0.006801
S shpyridone 0.436175 0.201701 0.445757 -0.009582
S sthfh+ 0.409844 0.154024 0.402663 0.007180
S tbutylsh 0.447163 0.220320 0.456369 -0.009205
S thioac 0.438270 0.196116 0.445785 -0.007515
S thioacetamidh+ 0.417425 0.164474 0.412065 0.005360
S thioacetonh+ 0.408605 0.155542 0.407414 0.001192
S thioessig 0.429063 0.174817 0.423240 0.005824
S thionapthol 0.440106 0.201315 0.446364 -0.006258
S thiuronium 0.419348 0.170448 0.413593 0.005755
Cl br2clh 0.381402 0.158967 0.387806 -0.006403
Cl brclh+ 0.324728 0.067346 0.305718 0.019009
Cl cl2h+ 0.321884 0.097324 0.333836 -0.011951
Cl clethenh+ 0.342988 0.111484 0.353297 -0.010309
Cl clh2+ 0.346346 0.111824 0.348884 -0.002537
Cl etclh+ 0.356187 0.116316 0.357475 -0.001289
Cl hclhf 0.393733 0.158526 0.395230 -0.001497
Cl meclh+ 0.353979 0.116803 0.357406 -0.003427
Cl phclh+ 0.340075 0.108151 0.350073 -0.009998
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Free Energy Relationships

Table A6.3.: Statistical measures of different orders of FER, determined for r2SCAN-
3c/COSMO-RS on the PKA74 set.

FER orders
LFER QFER CFER (4)FER (5)FER (6)FER

MAD 2.061 1.939 1.856 1.675 1.603 1.603
RMSD 2.668 2.584 2.416 2.315 2.250 2.250
SD 2.685 2.600 2.431 2.330 2.263 2.263
R2 0.956 0.959 0.964 0.967 0.969 0.969
BIC 531.108 530.256 523.663 521.067 520.758 525.164

Table A6.4.: CFER parameters for GFN2-xTB/ALPB with and without the energy correction
ETB

mod on the PKA74 set.

FER parameters statistics [pKa]
method c0 c1 c2 c3 MAD RMSD

CFER GFN2-xTB -95.392771 2.318512 -0.018978 0.000068 3.13 4.30
CFER GFN2-xTB+ETB

mod -1855.025277 26.075982 -0.12496355 0.00020571 2.79 3.68

Table A6.5.: CFER parameters determined for GFN2-xTB+ETB
mod/ALPB, r2SCAN-3c, B97-3c,

B97-D/TZ, PBE0-D3/TZ, PW6B95-D3/TZ, and ωB97X-V/TZ levels of theory
using data from the PKA74 set. All DFT methods employ COSMO-RS implicit
solvation, GFN2-xTB uses ALPB implicit solvation. TZ is an abbreviation for the
def2-TZVPP basis set.

CFER parameters
c0 c1 c2 c3

GFN2-xTB -1855.0252772 26.0759822 -0.1249636 0.0002057
r2SCAN-3c -1511.8899792 21.1100681 -0.1011999 0.0001683
B97-3c -1835.3033945 25.4169227 -0.1201689 0.0001956
B97-D/TZ -1852.5125079 25.7839522 -0.1226496 0.0002009
PBE0-D3/TZ -1441.4834019 20.0872293 -0.0961330 0.0001597
PW6B95-D3/TZ -1580.6043989 22.2170835 -0.1069510 0.0001777
ωB97X-V/TZ -1796.5154741 25.4641832 -0.1231099 0.0002043
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Table A6.6.: CFER parameters determined for GFN2-xTB+ETB
mod/ALPB, r2SCAN-3c, B97-3c,

B97-D/TZ, PBE0-D3/TZ, PW6B95-D3/TZ, and ωB97X-V/TZ levels of theory
using data from the TR224 set. All DFT methods employ COSMO-RS implicit
solvation, GFN2-xTB uses ALPB implicit solvation. TZ is an abbreviation for the
def2-TZVPP basis set.

CFER parameters
c0 c1 c2 c3

GFN2-xTB 6702.3111485 -100.4483504 0.4988740 -0.0008201
r2SCAN-3c 5014.2837220 -75.7090708 0.3781462 -0.0006239
B97-3c 3032.1086142 -45.1533848 0.2212100 -0.0003555
B97-D/TZ 7250.3854583 -106.5703614 0.5191041 -0.0008370
PBE0-D3/TZ 5655.4664440 -84.3407514 0.4163611 -0.0006795
PW6B95-D3/TZ 5013.0940026 -74.7015098 0.3682453 -0.0005996
ωB97X-V/TZ -1852.6895447 25.5589506 -0.1193445 0.0001901

The PKA74 Set

Table A6.7.: Dissociation free energy for the PKA74 set for all levels of theory discussed in the
manuscript. All DFT methods employ COSMO-RS.

∆G′
diss

RT ln(10)

exp. pKa GFN2-xTB r2SCAN-3c B97-3c B97-D PBE0-D3 PW6B95-D3 ωB97X-V

aceton 20.00 212.20352 214.76880 217.32276 217.95139 214.99135 217.17341 217.87325
acetylaceton 9.00 195.88290 199.74523 202.21462 203.55419 199.80033 202.03999 203.99023
barbituric 4.00 189.09334 195.19923 198.15227 199.14465 195.39072 197.18324 198.74507
benzol 43.00 234.50254 235.82799 238.19299 238.40700 236.18575 238.10884 236.73326
bzh+ -24.00 181.47535 169.24948 172.97912 173.40195 169.34709 169.44482 169.62491
ch3cn 25.00 219.67854 216.56670 219.67577 219.83199 216.84529 219.70658 220.61503
chcl3 25.00 212.26211 217.91378 221.46449 222.48056 219.49572 223.62573 225.12038
cpdien 16.00 214.32850 204.20298 208.03149 208.59722 204.80820 206.52780 207.04647
cyclohexandion 5.00 193.87012 195.03204 197.36135 199.21603 194.91731 197.76590 199.63630
diphenylmethan 33.50 221.42982 224.64024 227.72958 228.23777 225.26239 228.18801 231.60312
ethan 50.00 242.81419 241.56928 244.05712 243.63445 243.07631 243.92646 243.24671
ethen 44.00 233.89682 232.51591 234.67055 234.61881 234.15880 234.72940 233.66125
ethin 25.00 218.48936 209.29619 211.57882 211.96208 210.08057 211.76499 210.47333
fluoren 23.00 215.58056 215.83960 219.36070 220.14240 216.38988 219.12034 221.31874
malonitril 11.20 200.92355 197.81855 200.69295 201.41488 197.71336 201.08317 203.20410
tbutyl+ -12.00 183.79697 182.60914 185.09901 185.39320 182.38892 182.35252 182.96778
toluol 41.00 228.03701 229.77670 233.32908 233.40761 230.50261 233.37531 234.56750
acetamid 15.00 212.77864 212.09974 214.39543 215.45646 212.41026 214.57754 214.08831
anilin 27.00 219.66524 218.21182 221.06173 221.71120 218.48169 221.45857 221.30201
ch3cnh+ -10.00 186.62335 178.26390 180.78428 181.53533 178.00898 179.66644 179.05868
diphenylamineh+ 0.80 189.93869 189.10111 193.41511 193.24644 188.96276 190.55723 191.92577
guanidinium+ 13.40 204.81388 208.42280 211.30658 211.91802 208.34904 210.76512 210.32000
hn3 4.70 196.93040 195.02320 197.48753 198.77380 193.16997 198.09892 198.44004
hydrazinium+ 8.10 198.60457 199.85492 203.60415 203.32436 199.23569 201.53644 201.43695
imidazol 14.50 198.93214 200.10742 202.73512 203.39539 200.24171 201.82940 201.54800
imidazolh+ 7.00 209.76073 206.51012 209.32085 210.35081 206.69316 209.08698 208.36953
isocyanic 3.90 195.43616 194.42710 197.04591 198.24342 193.82645 196.07387 195.19715
morpholineh+ 8.50 197.55272 201.49350 204.95763 205.11424 201.21260 202.66967 202.65111
Naphthyridinium 3.40 197.03335 195.99162 198.77070 199.79041 196.13148 197.72451 197.28197
nh3 36.00 234.76382 226.74442 230.48856 229.71389 227.12123 229.86449 229.19075
nh4+ 9.40 201.63088 201.90391 205.82940 204.82143 201.92648 203.34136 203.28099
nph3h+ -5.00 185.77282 184.05552 187.99155 188.64328 183.85070 185.33975 186.75997
phnh3+ 4.60 194.66299 194.43714 198.88709 198.21552 194.62543 196.31647 196.60919
phtalimid 9.60 202.67650 200.98894 203.58549 205.45821 201.15931 203.67594 203.08803
pyridinium+ 5.20 196.73601 198.81479 201.43017 202.06016 198.96258 200.13778 199.86478
pyrimidinium 1.30 190.10311 193.96579 196.46963 197.29926 193.85476 195.32419 195.19211
pyrrol 15.00 217.72524 209.83845 212.44663 213.59191 210.14841 212.51300 211.75736
sacharin 1.60 188.97227 192.44899 195.73433 197.59603 192.34721 194.61154 194.07873
acetamidh+ 0.00 189.78396 189.89838 191.84264 192.86571 189.96835 191.34970 191.13705
acetonh+ -7.00 188.58811 185.56096 187.29736 188.23528 185.45734 186.17292 185.93249
ala 2.40 197.42156 195.96900 197.08868 199.37158 196.33711 198.21193 197.75204
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Table A6.7.: Continue previous table...

∆G′
diss

RT ln(10)

exp. pKa GFN2-xTB r2SCAN-3c B97-3c B97-D PBE0-D3 PW6B95-D3 ωB97X-V

ccl3cooh 0.65 187.66397 190.46348 192.35554 194.29844 191.41585 193.12826 192.98196
cf3cooh 0.00 186.75904 189.66818 191.27395 193.51122 190.42088 191.83530 191.64673
ch3cooh 4.80 184.54494 185.12829 187.01868 188.08384 185.02627 186.29746 186.15939
ch3cooh2+ -6.00 199.55347 196.06586 197.18986 199.47730 196.26689 198.31271 197.90082
dmsoh+ -1.50 188.61974 191.49020 194.08632 193.40534 192.11592 192.06835 192.04927
enol 10.50 207.00412 202.66913 203.80724 205.53057 203.07367 205.18904 205.01668
h2co3 3.60 192.76472 193.55052 194.93697 197.07089 193.56484 195.78770 195.39406
h2o 15.70 213.47525 208.53482 209.50865 211.88403 208.30854 211.12815 210.86365
h2o2 11.60 219.20978 214.85623 216.59402 217.72147 214.78288 217.42654 216.77278
h2po4- 7.20 199.97158 198.08996 199.29085 201.56372 197.11522 200.56114 200.02687
h2so4 -3.00 183.72398 183.41473 186.04267 187.21730 183.54725 184.69039 184.23503
h3o+ -1.74 189.34861 192.07450 195.05873 194.83849 191.66506 193.43670 193.38388
h3po4 2.20 192.14726 191.80256 193.69456 195.28014 192.62767 193.82087 193.39499
hclo3 -2.70 188.77803 185.54831 189.32549 189.67510 183.53572 184.82092 183.47234
hclo4 -10.00 178.47795 181.48394 185.12952 185.49504 179.81486 181.05272 180.13684
hco3- 10.30 205.70287 203.44705 203.46371 207.85270 203.50794 206.97226 206.25532
hcooh 3.80 195.06533 193.04378 194.11707 196.37165 194.72352 195.25132 195.06118
hno2 3.30 194.43467 193.44207 195.31018 197.79133 192.75863 196.12839 195.88125
hno3 -1.40 186.34188 187.38380 189.31676 191.75670 186.72517 188.78617 188.35846
hocl 7.50 203.83681 202.86709 205.87096 206.76133 203.94697 205.65656 205.49720
hso4- 1.90 195.93799 189.44101 191.36947 193.61575 188.38498 191.31376 190.70213
meoh 15.50 187.40273 187.74261 190.30081 190.76659 186.89417 188.90374 188.89700
meoh2+ -2.00 213.70884 215.02545 216.02343 217.21571 216.45186 217.12785 216.87814
mesulfons -2.60 189.06169 185.58173 188.19856 189.13506 185.56030 186.59931 186.05905
odiphenol 9.50 204.13115 203.09149 204.41329 206.31205 203.28127 205.63722 205.49574
oxal1 1.20 194.36952 191.16753 192.65389 194.90959 191.12668 193.26832 192.88966
oxal2 4.20 199.62809 193.25085 194.26556 197.41446 193.20140 196.09355 195.61609
phboron 8.80 206.58483 203.44663 204.88763 206.40646 204.32205 205.81007 205.32084
phcooh 4.20 199.02042 196.08712 197.68422 199.79158 196.14091 198.31370 197.67026
phenol 10.00 207.89355 204.57893 205.91167 208.08181 204.86121 207.45840 207.17486
pikrin 0.25 187.79133 191.28660 193.56643 195.57454 190.93559 193.98405 194.70205
quadratic1 1.50 191.01450 190.33864 191.95712 194.09027 190.55319 192.80673 192.74606
quadratic2 3.40 199.90976 192.16528 193.33408 196.23422 191.78332 195.15793 194.98446
salicylat 2.75 196.21715 194.67003 196.31027 198.24702 194.68809 196.94799 196.20726
tbutanol 20.00 219.54687 217.87329 217.80392 220.27849 218.28955 219.77573 219.53119
thfh+ -2.10 184.67089 186.01943 188.49426 189.57540 184.68914 186.94628 186.86012
trifluorethanol 12.50 205.68129 210.18702 211.33660 213.50609 211.10963 212.76205 212.58870
tropolon 6.50 202.93731 199.48237 201.23362 203.41057 199.76824 202.44953 202.23078
uracil 9.40 204.22204 200.73761 203.29906 205.26579 201.41371 203.41862 202.90427
uronium+ 0.10 189.02196 191.73113 193.87550 195.06031 191.99404 193.49317 193.10196
vitcmod 4.50 195.59710 195.91690 197.56262 199.67952 195.98809 198.52243 198.29509
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The TR224 Set

Table A6.8.: Acid dissociation free energies calculated for the Ar-N subset of TR224. Various
levels of theory are shown. All DFT methods employ COSMO-RS implicit solva-
tion, GFN2-xTB uses ALPB implicit solvation.

∆G′
diss

RT ln(10)

Nr. exp. pKa GFN2-xTB r2SCAN-3c B97-3c B97-D PBE0-D3 PW6B95-D3 ωB97X-V

1 1.10 190.115867 193.977038 196.483659 197.310060 195.599813 195.344158 195.212046
2 2.10 197.240853 195.015125 197.881165 198.583421 196.986500 196.692696 196.395971
3 2.84 195.249593 195.635663 198.370557 199.176163 197.424035 197.202207 196.943663
4 3.28 194.838811 196.365336 199.269024 200.128078 198.146915 197.853330 197.549057
5 3.39 198.441879 196.523354 199.497979 200.291161 198.473750 198.203529 197.571257
6 4.85 197.184139 198.165439 201.048686 201.854425 199.824570 199.679565 199.120046
7 4.86 196.859786 198.826531 201.529807 202.255870 200.273334 199.982081 199.434848
8 4.88 196.321834 198.297739 201.044074 201.783543 199.766898 199.493749 198.952970
9 5.05 197.541736 198.187766 201.148605 201.989145 199.837582 199.697936 199.050610
10 5.17 196.721605 198.776474 201.389449 202.018938 200.291350 200.095951 199.822849
11 5.60 198.673928 198.618401 201.642914 202.688140 200.524452 200.426506 199.873110
12 5.70 197.056020 199.012875 201.666119 202.366093 200.573698 200.405929 199.942684
13 5.82 197.433857 199.149922 201.919099 202.576136 200.763649 200.526754 200.072279
14 5.87 200.020069 200.894281 204.739112 204.935278 203.178968 202.838327 202.302087
15 5.97 198.757867 199.336643 202.092071 202.842371 200.984329 200.754089 200.265330
16 5.99 197.631772 199.581448 202.237806 202.958036 201.150456 200.906799 200.503295
17 6.00 198.646376 198.175052 201.108307 201.846684 200.175755 200.125761 199.693576
18 6.02 197.543085 199.715160 202.301734 203.003398 201.279155 201.094776 200.691385
19 6.45 198.693371 198.790957 201.644842 202.553870 200.998628 200.788467 200.433444
20 6.62 199.321102 200.454591 203.028456 203.776849 201.947559 201.724978 201.374327
21 7.05 199.899897 199.565994 202.067651 202.817369 201.246355 201.182517 200.786681
22 7.75 202.422789 201.220654 203.940811 204.660141 203.136484 203.018673 202.567536

Table A6.9.: Acid dissociation free energies calculated for the R-OH subset of TR224. Various
levels of theory are shown. All DFT methods employ COSMO-RS implicit solva-
tion, GFN2-xTB uses ALPB implicit solvation.

∆G′
diss

RT ln(10)

Nr. exp. pKa GFN2-xTB r2SCAN-3c B97-3c B97-D PBE0-D3 PW6B95-D3 ωB97X-V

23 11.60 209.037950 212.153040 212.827748 215.350180 214.700359 214.272191 214.132604
24 12.02 203.360314 209.041596 210.596351 212.344186 212.344332 212.290220 212.446469
25 12.43 205.591053 210.084215 211.232873 213.415284 212.838167 212.649483 212.477988
26 13.55 213.958350 210.499430 211.715152 213.443423 212.844100 213.060691 212.711728
27 14.80 212.755883 213.819875 213.857787 216.375618 216.161466 216.214021 215.977647
28 14.90 206.779384 210.887787 212.107666 213.578032 212.839351 213.880197 213.329939
29 15.10 207.896957 210.749159 211.682885 213.226716 212.567223 213.378013 212.944860
30 15.40 213.753676 213.389716 214.388939 216.399404 215.775155 215.873375 215.720534
31 15.52 214.508838 213.791948 214.627761 216.764668 216.185507 216.340681 216.112463
32 15.54 213.739857 215.114006 216.115700 217.298355 217.059246 217.216412 216.959534
33 15.90 214.702139 215.426546 215.627909 217.537746 217.365908 217.460453 217.239901
34 16.10 214.632956 215.172641 215.331292 217.516034 217.238437 217.338072 217.048762
35 16.84 216.691498 216.185789 216.064294 218.679743 218.370962 218.326296 217.985604
36 17.00 219.416616 217.732738 217.666263 220.146252 219.760677 219.638594 219.403941
37 17.10 217.044434 216.417537 216.357809 218.637530 218.352796 218.357526 218.125359
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Table A6.10.: Acid dissociation free energies calculated for the R-SH subset of TR224. Various
levels of theory are shown. All DFT methods employ COSMO-RS implicit solva-
tion, GFN2-xTB uses ALPB implicit solvation.

∆G′
diss

RT ln(10)

Nr. exp. pKa GFN2-xTB r2SCAN-3c B97-3c B97-D PBE0-D3 PW6B95-D3 ωB97X-V

38 7.86 201.513422 197.204107 200.535311 203.149968 200.376856 201.282013 200.487229
39 7.95 200.744478 197.560197 201.032557 203.610363 200.981917 201.772230 201.146538
40 8.62 197.982347 199.789849 202.831003 205.398865 202.862854 203.910627 203.192934
41 9.38 199.795227 199.388646 202.641670 205.149047 202.546244 203.468691 202.636618
42 9.72 200.321726 199.403833 202.474235 205.071624 202.498721 203.288284 202.776414
43 9.85 203.505379 200.171414 203.137848 205.511524 202.784151 203.496539 203.073069
44 9.96 202.798602 199.514601 202.934889 205.440851 202.889813 203.859737 203.115982
45 10.27a 192.480106 195.384472 196.712235 198.982670 197.909141 197.695733 197.232550
46 10.33 202.177916 199.844077 203.075787 205.626446 203.226642 204.230034 203.539655
47 10.61 202.863657 200.188027 203.365549 205.854229 203.360012 204.306277 203.581392
48 10.67 202.560474 200.169139 203.484169 205.886284 203.351077 204.340194 203.448571
49 10.86 204.749428 200.931692 204.121264 206.458184 203.893087 204.787613 203.987366
50 11.05 206.692815 201.742469 205.029854 207.149297 204.527850 205.318580 204.514290
51 11.22 206.144958 202.106424 205.457969 207.503475 204.912029 205.715085 204.842760

aAlternative value found in the literature: 4.34

Table A6.11.: Acid dissociation free energies calculated for the R-NH2 subset of TR224. Var-
ious levels of theory are shown. All DFT methods employ COSMO-RS implicit
solvation, GFN2-xTB uses ALPB implicit solvation.

∆G′
diss

RT ln(10)

Nr. exp. pKa GFN2-xTB r2SCAN-3c B97-3c B97-D PBE0-D3 PW6B95-D3 ωB97X-V

52 5.30 194.662725 195.110667 199.203321 198.511168 196.958901 196.647033 196.658606
53 9.34 200.736907 201.698589 205.778403 205.255248 203.562330 203.209171 203.054539
54 9.68 200.812020 201.875349 205.857766 205.373319 203.877945 203.545827 203.442054
55 9.80 202.076768 203.193613 207.069401 206.629577 204.941020 204.492905 204.287754
56 10.59 200.899498 203.124429 206.910425 206.458417 204.915422 204.536721 204.381489
57 10.60 200.942397 203.270006 207.041604 206.566662 205.049204 204.672601 204.540834
58 10.63 200.950249 203.857769 207.535744 206.913660 205.538895 205.199720 205.158102
59 10.68 202.832649 203.215633 207.199354 206.760641 205.015583 204.493889 204.248799
60 10.70 201.024693 203.361598 207.090920 206.576482 205.093298 204.717720 204.587262
61 11.23 201.674387 202.720452 206.812209 206.422595 204.656995 204.212218 203.901430

Table A6.12.: Acid dissociation free energies calculated for the R2-NH subset of TR224. Var-
ious levels of theory are shown. All DFT methods employ COSMO-RS implicit
solvation, GFN2-xTB uses ALPB implicit solvation.

∆G′
diss

RT ln(10)

Nr. exp. pKa GFN2-xTB r2SCAN-3c B97-3c B97-D PBE0-D3 PW6B95-D3 ωB97X-V

62 8.55 201.849709 202.414582 206.003067 205.920654 203.974036 203.623884 203.580596
63 10.54 201.227946 204.194754 207.610055 207.502593 205.651774 205.363595 205.331964
64 10.78 200.799674 204.185214 207.516458 207.324669 205.644248 205.396289 205.475774
65 11.00 200.836799 203.794234 207.348991 207.405619 205.280868 204.960347 204.751460
66 11.02 201.179214 203.867257 207.354168 207.319584 205.261270 204.981375 204.821812
67 11.22 200.934314 204.231320 207.783461 207.782240 205.819870 205.442119 205.359229
68 11.23 200.904716 203.697764 207.372827 207.507393 205.251683 204.971884 204.616073
69 11.27 200.789471 204.787758 208.244691 208.245968 206.310707 206.043943 205.956774
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Table A6.13.: Acid dissociation free energies calculated for the R3-N subset of TR224. Various
levels of theory are shown. All DFT methods employ COSMO-RS implicit solva-
tion, GFN2-xTB uses ALPB implicit solvation.

∆G′
diss

RT ln(10)

Nr. exp. pKa GFN2-xTB r2SCAN-3c B97-3c B97-D PBE0-D3 PW6B95-D3 ωB97X-V

70 9.69 202.133797 202.541872 205.824312 206.353399 203.694107 203.436760 203.403418
71 9.69 202.174824 202.607752 205.889439 206.400243 203.734311 203.472000 203.443435
72 9.80 201.855754 203.584649 206.441310 206.708106 204.692030 204.513669 204.784778
73 10.16 202.046195 203.667295 206.533912 206.921077 204.747218 204.512621 204.692042
74 10.75 202.087589 204.171933 207.322477 207.683954 205.212442 205.023919 204.942692

Table A6.14.: Acid dissociation free energies calculated for the R-COOH subset of TR224. Var-
ious levels of theory are shown. All DFT methods employ COSMO-RS implicit
solvation, GFN2-xTB uses ALPB implicit solvation.

∆G′
diss

RT ln(10)

Nr. exp. pKa GFN2-xTB r2SCAN-3c B97-3c B97-D PBE0-D3 PW6B95-D3 ωB97X-V

75 -0.26 186.596023 189.584151 191.190858 193.438633 192.165648 191.749687 191.540387
76 0.65 187.217078 190.335127 192.228814 194.172398 193.221878 192.979023 192.817915
77 1.24 190.952639 191.503693 192.985112 195.283318 194.107245 193.765296 193.555324
78 1.30 190.268271 191.976924 193.714282 195.778907 194.686207 194.450449 194.185869
79 2.44 192.963036 193.677885 194.995400 196.791395 195.997114 195.827334 195.563628
80 2.66 195.186535 193.077929 194.341239 196.614303 195.739689 195.460850 195.159831
81 2.80 194.262459 193.903271 195.312008 197.435154 196.416501 196.224959 195.876856
82 2.81 194.102665 193.373608 194.826289 197.006985 196.254577 196.055042 195.924226
83 2.86 197.564805 194.943041 196.150567 198.250764 197.456045 197.350669 196.991985
84 2.86 192.344778 193.244529 194.886621 196.894354 195.988088 195.813211 195.688340
85 3.07 193.690388 194.165437 195.636043 197.808207 196.685958 196.357132 196.056207
86 3.53 194.041093 195.264270 196.336941 198.326374 197.743830 197.543932 197.420947
87 3.54 196.759069 193.806672 195.010781 197.457182 196.447698 196.257871 195.905411
88 3.75 195.042475 193.364806 194.416025 196.526145 195.620690 195.457764 195.309873
89 3.83 195.756453 194.341207 195.508787 197.436785 196.531545 196.279217 196.069921
90 3.87 196.412473 194.721480 195.883504 197.849754 196.746653 196.433137 196.264253
91 4.10 196.551424 195.598476 196.950613 199.115460 198.146830 197.897942 197.580953
92 4.26 198.818863 195.592421 196.923091 199.206608 198.028008 197.858047 197.351410
93 4.31 197.653624 196.159828 197.574794 199.764081 198.813777 198.639094 198.200909
94 4.35 197.805492 195.693588 197.072664 199.315251 198.299100 198.126832 197.741088
95 4.52 197.440755 196.064702 197.388578 199.621380 198.604710 198.403365 197.955825
96 4.76 198.994457 196.037076 197.172787 199.461770 198.478741 198.302242 197.890309
97 4.82 198.769803 196.466089 197.530190 199.815678 198.892160 198.714255 198.219475
98 4.87 199.450318 196.481917 197.638155 199.917711 198.963637 198.761792 198.321672
99 4.90 199.103301 196.892194 197.947430 200.239982 199.213837 198.983822 198.478865
100 5.05 199.595908 197.125912 198.416052 200.511514 199.514616 199.247195 198.814270
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Table A6.15.: Acid dissociation free energies calculated for the Ph-SH subset of TR224. Various
levels of theory are shown. All DFT methods employ COSMO-RS implicit solva-
tion, GFN2-xTB uses ALPB implicit solvation.

∆G′
diss

RT ln(10)

Nr. exp. pKa GFN2-xTB r2SCAN-3c B97-3c B97-D PBE0-D3 PW6B95-D3 ωB97X-V

101 4.72 197.033546 195.059912 198.265454 200.734142 198.561857 199.215724 199.156030
102 5.24 199.249799 195.553563 198.980015 201.498759 198.747066 199.508298 198.801346
103 5.30 197.301170 194.619619 198.036210 200.627683 197.829910 198.563839 197.791704
104 5.33 199.401909 195.891518 199.266352 201.755253 199.193037 199.955242 199.373430
105 5.78 198.849278 196.596119 200.028000 202.597159 199.855303 200.665167 199.809384
106 6.02 197.229989 196.910394 200.321703 202.841144 200.090615 200.926758 200.040078
107 6.14 199.716082 196.891931 200.293470 202.860053 200.084718 200.903387 200.023331
108 6.39 200.415895 197.056654 200.511001 203.122202 200.257067 201.114626 200.183583
109 6.61 200.970487 197.213209 200.621832 203.153199 200.347686 201.247112 200.342006
110 6.64 201.960016 198.309556 201.698159 204.247113 201.338604 202.174312 201.297490
111 6.66 201.461880 197.484687 200.949991 203.505544 200.661265 201.573652 200.636302
112 6.78 201.145213 197.339990 200.758663 203.336409 200.500669 201.383909 200.474405
113 6.82 201.361864 197.420360 200.848347 203.399052 200.567312 201.479556 200.550574
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Table A6.16.: Acid dissociation free energies calculated for the Ph-OH subset of TR224. Var-
ious levels of theory are shown. All DFT methods employ COSMO-RS implicit
solvation, GFN2-xTB uses ALPB implicit solvation.

∆G′
diss

RT ln(10)

Nr. exp. pKa GFN2-xTB r2SCAN-3c B97-3c B97-D PBE0-D3 PW6B95-D3 ωB97X-V

114 6.79 200.909051 202.429487 204.152676 206.168918 205.486801 205.163560 205.060773
115 7.14 198.053483 198.836150 200.078007 201.997337 201.836901 201.733325 202.784103
116 7.23 198.102956 200.309466 202.169679 204.303421 203.573265 203.033084 203.460629
117 7.66 201.225078 200.399777 201.745554 203.623295 203.210437 203.289895 203.570396
118 7.95 202.430834 201.222793 202.643440 204.472998 203.854117 203.996638 204.025344
119 8.00 202.439794 203.354571 204.590906 206.544792 206.030941 206.147983 206.185827
120 8.35 200.314357 202.481770 203.742129 205.730118 205.162275 205.171284 205.291321
121 8.41 202.800699 201.983561 203.378937 205.364359 204.634294 204.716246 204.776999
122 8.47 202.901739 201.940665 203.326745 205.273611 204.614219 204.708433 204.755345
123 8.47 202.914083 202.054610 203.466496 205.454791 204.720244 204.809159 204.835410
124 8.48 200.732351 203.174012 204.787002 206.754617 205.918513 206.102403 205.846497
125 8.50 202.850103 202.178594 203.572808 205.563417 204.848121 204.905926 204.969904
126 8.61 201.455197 202.791743 204.152594 206.025486 205.419147 205.551595 205.495102
127 8.81 201.597007 203.270042 204.673838 206.866072 206.067836 206.172665 205.952450
128 9.02 203.784992 203.677294 205.053729 207.110087 206.394365 206.542248 206.326912
129 9.28 203.992254 204.014599 205.405886 207.384488 206.592663 206.734899 206.417153
130 9.38 203.913365 204.453703 205.760269 207.796545 207.020272 207.181536 206.896255
131 9.39 202.892311 201.999086 203.391296 205.338959 204.753884 204.816511 204.846531
132 9.44 206.139898 204.530905 205.981492 208.104759 207.115323 207.355594 206.901685
133 9.48 203.951068 203.067744 204.317215 206.174159 205.347011 205.492717 205.414120
134 9.51 207.136961 204.675435 206.060637 208.128706 207.258563 207.435002 207.397142
135 9.59 206.458170 204.815467 206.259067 208.454417 207.547574 207.786430 207.311187
136 9.65 206.185014 204.195202 205.671254 207.826849 206.829987 207.063988 206.615375
137 9.82 206.908367 204.360411 205.623428 207.736508 207.049218 207.288901 207.084507
138 9.83 206.280805 204.400741 205.741758 207.914112 207.225448 207.493145 207.101374
139 9.90 206.994444 204.624572 206.064881 208.257478 207.347454 207.676699 207.214600
140 9.92 203.335681 203.763221 205.126796 206.917016 205.854349 206.200276 205.905730
141 9.93 206.873409 205.405143 207.062397 208.951355 207.994706 208.222821 208.043097
142 9.93 207.177091 203.981825 205.403351 207.770903 206.908727 207.165891 206.855512
143 9.94 203.319712 203.950759 205.250647 207.300027 206.560739 206.654343 206.543176
144 9.95 204.033210 205.189412 206.363167 208.491469 207.793910 207.920622 207.707362
145 9.96 205.767361 205.888688 207.114265 209.308363 208.587830 208.815202 208.491318
146 9.98 207.871925 204.563042 205.912840 208.064297 207.175833 207.467089 207.168639
147 10.00 208.321447 205.102586 206.434088 208.649647 207.750016 208.030858 207.731961
148 10.08 208.157009 204.742900 206.194117 208.366908 207.418359 207.718866 207.327010
149 10.19 207.458478 205.455379 206.760528 208.965126 208.096394 208.378681 208.085396
150 10.20 206.108328 205.593426 206.814740 209.087135 208.292721 208.541468 207.971787
151 10.20 207.149732 205.619428 207.149234 209.035823 208.078584 208.314010 208.120948
152 10.28 207.359504 205.318367 206.773883 208.658450 207.794087 208.053897 207.791171
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Table A6.17.: Acid dissociation free energies calculated for the Ph-NH2 subset of TR224. Var-
ious levels of theory are shown. All DFT methods employ COSMO-RS implicit
solvation, GFN2-xTB uses ALPB implicit solvation.

∆G′
diss

RT ln(10)

Nr. exp. pKa GFN2-xTB r2SCAN-3c B97-3c B97-D PBE0-D3 PW6B95-D3 ωB97X-V

153 0.28 186.352434 185.918123 190.501609 190.092091 188.573829 188.203735 189.819965
154 0.98 187.614365 187.339686 191.611497 191.136015 190.222450 190.032994 192.376690
155 2.04 191.657059 191.023414 195.888287 195.319056 193.530950 193.067341 193.933827
156 2.10 191.858795 191.428060 196.298579 195.792173 193.868773 193.466474 194.206269
157 2.16 191.510344 191.022385 195.875417 195.355095 193.488552 193.089035 193.860989
158 2.30 190.689464 189.693007 194.277294 193.496736 191.859737 191.742566 192.929457
159 2.32 190.415432 189.828727 194.399550 193.618925 192.065918 191.934243 193.117128
160 2.38 190.842596 189.956817 194.560882 193.827607 192.123648 192.001087 193.131425
161 2.45 189.554222 190.219545 194.654795 194.078453 192.443135 192.204487 193.122634
162 2.62 194.690857 190.812244 195.479375 195.062860 193.158640 192.930137 193.253127
163 2.96 191.232249 192.055582 196.542434 195.953707 194.152998 193.881475 194.302432
164 3.05 192.691402 192.564900 196.999123 196.455229 194.658868 194.467920 195.098420
165 3.32 194.033200 192.464149 196.990180 196.456369 194.591375 194.415943 194.841082
166 3.38 191.820806 192.645312 197.168956 196.547337 194.668107 194.450409 194.783292
167 3.56 192.531694 192.728222 197.163498 196.618027 194.804096 194.599016 195.223503
168 3.78 194.762281 193.451676 198.140076 197.642821 195.567227 195.355253 195.626544
169 3.81 194.220926 193.165135 197.593920 197.046057 195.264519 195.091429 195.431216
170 4.05 194.298369 193.848024 198.415374 197.923407 195.873345 195.724966 195.801258
171 4.17 194.953193 194.430868 198.952124 198.413019 196.380197 196.175725 196.262374
172 4.17 194.684914 194.278093 198.797094 198.335221 196.237144 196.004869 196.118692
173 4.20 194.753281 194.150250 198.693086 198.178903 196.095540 195.873846 196.008273
174 4.36 194.775272 194.044623 198.533093 197.931533 195.964487 195.791857 196.169753
175 4.38 195.822700 194.176737 198.678079 198.143214 196.193666 195.971592 196.275742
176 4.40 194.378135 194.323279 198.646092 198.299945 196.328950 196.274743 195.960799
177 4.47 196.700665 194.654769 199.115231 198.724586 196.756076 196.508005 196.823669
178 4.49 196.405521 194.523212 198.991885 198.549811 196.701224 196.455912 196.719847
179 4.52 193.037499 194.317726 198.594989 198.085386 196.366146 196.104195 196.454543
180 4.64 195.957433 194.502122 198.974994 198.420989 196.526243 196.363521 196.621676
181 4.67 195.089093 194.691317 199.156655 198.563246 196.642274 196.497927 196.725906
182 4.72 196.971706 195.059484 199.515060 199.076705 197.182708 196.905277 197.162978
183 5.07 195.168492 195.176196 199.518231 198.940599 197.144803 196.989605 197.237486
184 5.25 195.691837 196.133112 200.435560 200.027464 198.044452 197.771375 198.047211
185 5.29 195.488759 196.002540 200.296759 199.873124 197.916370 197.629734 197.930709
186 5.50 195.497038 196.214509 200.477383 200.044710 198.220842 197.941816 198.126742
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Table A6.18.: Acid dissociation free energies calculated for the Ph-COOH subset of TR224.
Various levels of theory are shown. All DFT methods employ COSMO-RS implicit
solvation, GFN2-xTB uses ALPB implicit solvation.

∆G′
diss

RT ln(10)

Nr. exp. pKa GFN2-xTB r2SCAN-3c B97-3c B97-D PBE0-D3 PW6B95-D3 ωB97X-V

187 2.17 195.593567 192.544080 194.131094 196.380730 195.259439 195.007026 194.847357
188 2.94 195.895702 194.479705 195.960207 198.027235 197.128882 197.124409 196.240295
189 2.95 195.535872 192.550045 194.496704 195.378276 193.762134 195.139789 194.659183
190 2.98 197.099556 194.635076 196.275048 198.212432 196.857458 196.905173 196.162863
191 3.27 196.440701 195.249445 196.545804 198.654662 197.819287 197.692827 196.866082
192 3.45 196.986370 194.750711 196.392409 198.394074 197.156717 196.943227 196.468812
193 3.46 197.899793 195.596055 197.201981 199.231243 198.111047 197.939219 197.366377
194 3.51 197.735929 195.161528 196.816027 198.863780 197.601974 197.401534 196.825259
195 3.54 197.999338 195.409908 197.044377 199.104897 197.823876 197.614199 197.061466
196 3.77 198.091297 196.174383 197.357330 199.462400 198.508515 198.560171 197.610272
197 3.83 198.036197 195.533359 197.172165 199.274165 197.984870 197.776183 197.187298
198 3.87 197.908003 195.655625 197.264981 199.342779 198.052238 197.838347 197.211545
199 3.91 198.032368 195.904056 197.068309 199.109113 198.344541 198.451497 197.348222
200 3.99 198.729355 195.740632 197.363103 199.485730 198.166584 197.967542 197.292710
201 4.08 198.641259 196.229263 197.855069 199.980228 198.638817 198.428678 197.707353
202 4.09 198.361167 195.494009 196.621369 198.882721 198.042130 198.077713 196.825011
203 4.09 198.685519 196.067369 197.698475 199.820042 198.471160 198.262409 197.540213
204 4.14 198.520598 196.021934 197.596123 199.710525 198.446139 198.239135 197.576068
205 4.17 198.571529 196.062118 197.691920 199.823306 198.456048 198.253627 197.525179
206 4.21 198.001872 195.205792 196.353425 198.614193 197.767267 197.830152 196.474136
207 4.24 199.191224 196.340598 197.948618 200.066568 198.745040 198.567333 197.876445
208 4.34 199.100048 196.484473 198.044803 200.188864 198.864235 198.677088 197.986557
209 4.35 199.034183 196.381257 198.007029 200.104997 198.792321 198.611338 197.894593
210 4.35 199.051093 196.525333 198.106532 200.226503 198.928613 198.759182 198.032216
211 4.45 199.357707 196.916548 198.480738 200.682125 199.255111 199.039896 198.270377
212 4.47 199.272296 196.758994 198.331906 200.515455 199.129737 198.924348 198.146680
213 4.58 199.251745 196.945246 198.494937 200.688812 199.314401 199.096561 198.315641
214 4.92 197.224953 194.686107 196.360924 198.378938 197.074146 196.834805 196.394891

Table A6.19.: Acid dissociation free energies calculated for the R-C-H subset of TR224. Various
levels of theory are shown. All DFT methods employ COSMO-RS implicit solva-
tion, GFN2-xTB uses ALPB implicit solvation.

∆G′
diss

RT ln(10)

Nr. exp. pKa GFN2-xTB r2SCAN-3c B97-3c B97-D PBE0-D3 PW6B95-D3 ωB97X-V

215 9.90 201.812041 203.531214 206.613864 207.523152 205.575771 205.944535 209.056243
216 10.40 199.331032 204.162891 206.424802 207.738451 206.655999 206.776807 209.759801
217 10.50 196.584359 204.004173 207.327558 208.412228 206.096227 206.579712 209.494424
218 11.50 198.202156 203.758310 206.988746 208.067598 205.839274 206.195696 209.508460
219 13.10 201.085907 205.600759 208.132871 209.079514 207.965298 208.390748 210.695094
220 14.80 210.016244 208.569445 210.609520 211.853374 210.759149 211.085392 213.417162
221 16.70 206.453168 209.447682 212.004739 212.732900 211.711031 212.118604 213.081832
222 18.30 210.682116 213.011765 215.893633 216.756786 215.176947 215.576407 215.972555
223 19.20 212.059500 214.049231 216.946529 217.760383 216.091307 216.488731 216.838420
224 19.30 211.829018 213.164619 215.708822 216.558276 215.306788 215.615683 216.385332
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Non-rigid Molecules

Table A6.20.: CFER parameters determined for r2SCAN-3c/COSMO-RS, GFN2-
xTB+ETB

mod/ALPB and B97-3c/COSMO-RS from the drug and SAMPL6
set.

CFER parameters
c1 c2 c3 c4

r2SCAN-3c 37659.112434 -568.698226 2.858687 -0.004782
GFN2-xTB 12284.084912 -186.207085 0.938732 -0.001573
B97-3c 34751.943849 -515.624632 2.546401 -0.004185
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Figure A6.1.: Investigated drug molecules in their neutral protonation state (pt. 1)
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Table A6.21.: Acid dissociation free energies for the flexible drug benchmark set at the r2SCAN-
3c/COSMO-RS, GFN2-xTB+ETB

mod/ALPB and B97-3c/COSMO-RS level.

∆G′
diss

RT ln(10)

exp. pKa r2SCAN-3c GFN2-xTB B97-3c

1 acebutolol 9.50 203.998707 205.860197 207.372498
2 acyclovir 2.20 193.537952 194.735579 196.478811
3 alphaprodine 8.70 201.323400 200.604678 204.752763
4 alprenolol 9.60 203.023857 202.389308 206.796334
5 atenolol 9.60 202.228354 202.096999 205.836038
6 benzocaine 2.50 190.092551 190.332008 194.721840
7 betahistine 10.00 203.299444 205.772887 206.920214
8 betahistine+ 3.90 195.966529 191.969840 198.939911
9 cefadroxil- 7.00 198.919657 196.614623 —
10 chloroquine 10.60 202.416045 205.017334 205.689354
11 cimetidine0 6.80 207.180120a 198.776353 209.662065a

12 clomipramine 9.40 202.024218 202.836156 205.279785
13 clotrimazole 5.80 198.189084 197.644979 201.090956
14 clozapine 7.50 197.981240 198.344544 201.161951
15 clozapine+ 3.90 197.786666 199.394335 201.059971
16 codeine 8.10 200.208203 199.190383 203.789814
17 desipramine 10.30 202.842364 200.848801 206.500956
18 guanethidine 11.40 206.652562 207.892505 209.163574
19 histamine 9.70 202.509310 205.919226 206.529420
20 hydroquinine 9.10 202.078423 200.093147 205.810353
21 hydroquinine+ 4.10 197.535923 197.187386 200.556105
22 imipramine 9.60 202.094964 202.680539 205.520923
23 labetalol 9.30 201.255348 202.119568 205.264672
24 lidocaine 7.90 199.315283 200.462297 202.126331
25 maprotiline 10.30 202.912397 201.173762 206.569462
26 mechlorethamine 6.40 199.659045 196.842763 203.082943
27 metaproterenol 9.90 202.157590 202.727757 205.888678
28 metoprolol 9.60 202.354476 202.324562 205.981459
29 miconazole 6.40 198.888428 197.999825 201.487964
30 morphine 8.20 200.089781 199.087744 203.698130
31 nafronyl 9.10 201.368051 203.486634 204.838803
32 nefopam 8.50 201.101947 199.896133 204.512113
33 niacine- 4.80 198.139303 196.226316 200.727399
34 nicotine 8.10 199.950574 199.217766 203.361273
35 nicotine+ 4.80 196.049681 194.425384 198.801962
36 nikethamide 3.50 196.261462 194.280926 199.013279
37 papaverine 8.07 200.302895 200.118983 203.176066
38 p-Cl-amphetamine 9.90 201.462146 202.605859 205.622131
39 phenacaine 9.30 203.342334 201.367618 206.335734
40 phenylalanine- 8.90 200.257527 201.986584 204.182521
41 piroxicam 5.30 196.269551 196.566943 199.272837
42 prazosin 7.00 200.412901 195.957535 203.652849
43 procaine 9.10 202.487330 202.545609 205.990229
44 procaine+ 2.00 189.181533 188.538912 193.668393
45 propanolol 9.60 202.004559 206.336238 205.704995
46 quinine 8.50 201.399294 199.821850 205.092518
47 sotalol 9.30 201.737329 203.085999 205.437554
48 sparteine 12.00 207.046798 208.899822 210.762596
49 tetracaine 8.50 202.331854 201.834995 205.640921
50 thenyldiamine 8.90 203.381151 203.379449 207.017171
51 trazodone 6.80 198.663543 204.212586 203.128758
52 trimipramine 9.40 201.964598 198.617859 205.630875
53 tryptophan- 9.10 201.749066 202.988346 205.649437

aneglected outlier
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Table A6.22.: Minimum and maximum acid dissociation constants calculated for the flexible
drug benchmark set at the B97-3c/COSMO-RS, r2SCAN-3c/COSMO-RS and
GFN2-xTB+ETB

mod/ALPB level. All pKa values in this table were obtained us-
ing the CFER parameters fitted on the TR224 set.

r2SCAN-3c GFN2-xTB B97-3c
exp. pKa min. pKa max. pKa min. pKa max. pKa min. pKa max. pKa

1 acebutolol 9.50 8.93 11.60 7.26 14.13 9.45 12.57
2 acyclovir 2.20 2.42 4.53 1.75 6.96 2.43 4.84
3 alphaprodine 8.70 7.63 9.08 3.84 11.07 8.47 9.51
4 alprenolol 9.60 8.22 10.85 5.47 12.19 9.06 12.04
5 atenolol 9.60 7.71 10.31 4.75 12.31 8.57 11.35
6 benzocaine 2.50 1.33 2.00 0.94 1.94 2.06 2.79
7 betahistine 10.00 9.49 10.42 10.62 13.06 10.31 11.26
8 betahistine+ 3.90 4.07 4.94 1.28 2.70 4.26 5.18
9 cefadroxil 7.00 6.28 7.56 1.79 10.71 — —
10 chloroquine 10.60 7.79 10.39 7.35 13.85 8.25 10.98
11 cimetidine 6.80 11.32a 13.06a 3.52 9.82 11.6a 13.39a

12 clomipramine 9.40 7.65 10.05 5.84 12.87 8.18 10.47
13 clotrimazole 5.80 5.46 6.74 4.61 6.83 5.65 6.93
14 clozapine 7.50 5.74 6.52 3.70 8.57 6.09 6.89
15 clozapine+ 3.90 4.78 6.31 4.07 9.03 5.30 6.80
16 codeine 8.10 6.81 8.66 4.27 9.15 7.49 9.38
17 desipramine 10.30 7.92 10.40 4.72 11.83 8.78 11.40
18 guanethidine 11.40 10.68 12.96 8.67 14.89 10.78 13.69
19 histamine 9.70 8.86 9.89 10.97 12.81 9.96 11.26
20 hydroquinine 9.10 7.64 10.11 4.10 10.42 8.67 11.11
21 hydroquinine+ 4.10 4.73 6.96 2.59 9.40 4.97 7.13
22 imipramine 9.60 7.80 9.81 5.77 12.95 8.33 10.42
23 labetalol 9.30 7.24 9.63 5.56 12.06 8.16 10.91
24 lidocaine 7.90 6.10 7.86 3.99 10.55 6.27 8.10
25 maprotiline 10.30 7.98 10.76 4.32 11.78 8.84 11.59
26 mechlorethamine 6.40 5.95 8.23 2.21 6.11 6.45 8.62
27 metaproterenol 9.90 7.63 10.10 5.53 12.01 8.54 11.31
28 metoprolol 9.60 7.81 10.39 5.03 12.12 8.53 11.62
29 miconazole 6.40 5.75 7.77 3.37 11.44 5.30 8.08
30 morphine 8.20 6.96 8.57 4.17 8.95 7.61 9.26
31 nafronyl 9.10 7.29 9.67 6.36 12.33 7.92 10.39
32 nefopam 8.50 7.37 9.27 4.15 9.68 7.90 10.21
33 niacine 4.80 6.18 6.18 4.57 4.57 6.16 6.16
34 nicotine 8.10 7.09 8.85 4.33 9.26 7.65 9.58
35 nicotine+ 4.80 3.61 5.18 2.17 5.57 3.53 5.27
36 nikethamide 3.50 4.22 5.69 1.59 6.46 4.30 5.78
37 papaverine 8.07 7.19 8.74 4.91 10.67 7.48 8.91
38 p-Cl-amphetamine 9.90 7.74 9.10 5.98 12.26 8.91 10.39
39 phenacaine 9.30 8.34 10.76 5.93 10.65 8.74 11.58
40 phenylalanine 8.90 7.26 8.54 6.04 10.38 8.19 9.52
41 piroxicam 5.30 4.92 5.68 2.50 7.23 5.16 6.15
42 prazosin 7.00 6.85 8.38 1.77 9.38 7.29 8.94
43 procaine 9.10 7.93 10.54 4.73 12.42 8.42 11.24
44 procaine+ 2.00 0.58 2.12 0.93 3.40 0.86 3.09
45 propanolol 9.60 7.27 10.27 4.85 14.01 8.13 11.28
46 quinine 8.50 7.16 9.68 4.14 9.84 8.00 10.67
47 sotalol 9.30 7.36 10.04 5.42 12.29 8.11 11.25
48 sparteine 12.00 12.24 12.24 10.61 15.57 13.33 13.33
49 tetracaine 8.50 7.71 10.17 4.55 10.70 8.12 10.70
50 thenyldiamine 8.90 8.63 10.78 5.85 12.07 9.50 11.73
51 trazodone 6.80 5.46 7.73 5.80 13.21 6.32 9.08
52 trimipramine 9.40 7.88 9.98 3.47 13.01 8.41 10.91
53 tryptophane 9.10 7.69 9.82 6.88 12.45 8.61 10.98

MAD — 1.23 0.92 3.25 2.58 0.82 1.57
RMSD — 1.40 1.13 3.57 2.92 0.96 1.73

aneglected outlier
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SAMPL6 Benchmark Set
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Figure A6.3.: Investigated SAMPL6 molecules in their neutral protonation state.
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Table A6.23.: Acid dissociation free energies for the SAMPL6 benchmark set at the r2SCAN-
3c/COSMO-RS, GFN2-xTB+ETB

mod/ALPB and B97-3c/COSMO-RS level.

∆G′
diss

RT ln(10)

exp. pKa r2SCAN-3c GFN2-xTB B97-3c

1 SM01- 9.53 204.873812 205.840476 206.124628
2 SM02 5.03 198.268219 196.235418 201.237057
3 SM03- 7.02 199.798406 192.099444 202.804185
4 SM04 6.02 198.914314 198.113983 201.700387
5 SM05 4.59 195.792115 187.282571 199.433817
6 SM06 3.03 193.373074 193.566269 196.514900
7 SM06- 11.74 207.109076 206.161299 209.349298
8 SM07 6.08 199.083159 197.851320 201.993863
9 SM08- 4.22 195.583327 193.591560 197.612225
10 SM09 5.37 198.589074 196.967774 201.548259
11 SM10- 9.02 201.601089 192.243970 204.497921
12 SM11 3.89 195.432361 192.575935 198.262989
13 SM12 5.28 198.181950 197.073423 201.130245
14 SM13 5.77 199.453897 197.661042 202.278515
15 SM14+ 2.58 190.727305 189.962271 195.137044
16 SM14 5.30 198.753585 200.324025 201.776296
17 SM15 4.70 197.245681 195.917449 200.248178
18 SM15- 8.94 204.140073 205.221013 205.506767
19 SM16 5.37 198.551263 198.524350 201.257822
20 SM16- 10.65 204.243065 199.121457 206.322877
21 SM17 3.16 196.602559 195.948580 199.256822
22 SM18 2.15 192.568925 191.328006 196.596531
23 SM18 2 9.58 203.343184 203.755478 204.765284
24 SM18- 11.02 203.901229 193.945662 206.037370
25 SM19- 9.56 203.134766 196.349667 205.916339
26 SM20- 5.70 198.744610 188.908059 201.788779
27 SM21 3.86 195.570797 189.335496 198.671954
28 SM22 2.40 193.626473 187.303665 196.667554
29 SM22- 7.43 201.186391 200.328920 203.166492
30 SM23 4.52 196.821424 195.738072 199.830464
31 SM24 2.60 193.653266 192.941149 195.872067
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Table A6.24.: Minimum and maximum acid dissociation constants calculated for the SAMPL6
benchmark set at the B97-3c/COSMO-RS, r2SCAN-3c/COSMO-RS and GFN2-
xTB+ETB

mod/ALPB level. All pKa values in this table were obtained using the
CFER parameters fitted on the TR224 set.

r2SCAN-3c GFN2-xTB B97-3c
exp. pKa min. pKa max. pKa min. pKa max. pKa min. pKa max. pKa

1 SM01- 9.53 10.78 10.82 9.82 13.95 9.96 9.99
2 SM02 5.03 6.13 7.33 2.77 5.93 6.24 7.33
3 SM03- 7.02 6.32 8.01 1.64 3.24 6.52 8.62
4 SM04 6.02 6.37 7.01 3.73 8.58 6.38 7.26
5 SM05 4.59 4.17 5.54 0.93 2.06 4.76 6.28
6 SM06 3.03 2.54 3.46 1.41 4.30 2.93 3.66
7 SM06- 11.74 11.97 13.17 9.82 12.87 12.01 14.05
8 SM07 6.08 6.46 7.06 3.69 8.02 6.73 7.37
9 SM08- 4.22 4.21 4.76 1.64 3.43 3.37 4.37
10 SM09 5.37 5.47 7.39 3.15 7.20 5.97 7.41
11 SM10- 9.02 7.83 9.37 1.28 6.05 7.96 9.54
12 SM11 3.89 4.44 4.44 2.61 2.61 4.53 4.53
13 SM12 5.28 5.96 7.15 3.34 7.31 6.20 7.14
14 SM13 5.77 6.57 7.42 3.28 7.58 7.00 7.54
15 SM14+ 2.58 1.86 1.93 1.18 2.12 2.59 2.69
16 SM14 5.30 6.50 7.02 6.34 8.38 6.78 7.23
17 SM15 4.70 5.28 5.90 3.60 5.28 5.54 6.11
18 SM15- 8.94 10.05 10.38 9.58 10.75 9.32 9.61
19 SM16 5.37 6.35 7.57 5.36 8.32 6.38 7.21
20 SM16- 10.65 9.19 11.48 4.75 10.02 9.41 11.78
21 SM17 3.16 4.65 5.56 2.65 6.36 4.78 5.56
22 SM18 2.15 2.13 3.68 0.93 5.50 2.18 4.42
23 SM18 2 9.58 8.78 10.61 5.07 12.23 7.97 10.61
24 SM18- 11.02 9.16 10.98 1.08 7.94 8.85 11.00
25 SM19- 9.56 8.34 10.77 1.99 6.79 8.50 10.98
26 SM20- 5.70 5.56 7.50 0.93 3.36 5.90 7.89
27 SM21 3.86 3.98 5.52 0.94 2.59 4.12 5.94
28 SM22 2.40 3.38 3.38 1.02 1.02 3.54 3.54
29 SM22- 7.43 8.26 8.26 7.27 7.27 7.85 7.85
30 SM23 4.52 4.36 6.59 2.68 7.24 4.57 6.91
31 SM24 2.60 2.66 4.12 1.20 5.33 2.32 4.04

MAD — 0.71 1.27 2.72 2.08 0.73 1.37
RMSD — 0.86 1.41 3.61 2.33 0.91 1.55
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A7. List of Statistical Error Measures

Statistical measure for a set x1, · · · , xn of data points with references r1, · · · , rn are:

• Average:

x =
1

n

n∑
i

xi (A7.1)

• Mean deviation (MD):

MD =
1

n

n∑
i

(xi − ri) (A7.2)

• Mean absolute deviation (MAD):

MAD =
1

n

n∑
i

|xi − ri| (A7.3)

• Standard deviation (SD):

SD =

√∑n
i |(xi − ri) −MD|2

n− 1
(A7.4)

• Root-mean-square deviation (RSMD):

RMSD =

√∑n
i |xi − ri|2

n
(A7.5)

• Residual sum of squares (RSS):

RSS =
∑
i

(yi − f(xi))
2 (A7.6)

• Bayesian information criterion (BIC) with k fit parameters:

BIC = n ln(RSS/n) + k ln(n) (A7.7)
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A7. List of Statistical Error Measures

• Match score (rmatch):

rmatch =
(
∑n

i rixi)
2(∑n

i r
2
i

) (∑n
i x

2
i

) (A7.8)

• Euclidian norm (reuclid):

reuclid =

(
1.0 +

∑n
i (ri − xi)

2∑n
i (xi)2

)−1

(A7.9)

• Pearson correlation coefficient (rpearson or ρ):

rpearson =

∑n
i (ri − r̄)(xi − x̄)√∑n

i (ri − r̄)2
√∑n

i (xi − x̄)2
(A7.10)

• Spearman correlation coefficient (rspearman):

rspearman = 1.0 −
6
∑n

i (rg(ri) − rg(xi))
2

k (n2 − 1)
(A7.11)
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A8. List of Abbreviations

AES Anisotropic electrostatics

AIMD ab initio molecular dynamics

ALPB Analytical linearized Poisson–Boltzmann implicit solvation model

AMAX Absolute maximum deviation

AO Atomic orbital

ATM Axilrod-Teller-Muto

AXC Anisotropic exchange

BJ Becke-Johnson

BO Bond order

BSIE Basis set incompleteness error

BSSE Basis set superposition error

CAMM Cumulative atomic multipole moments

CBS Complete basis set

CC Coupled cluster

CCDC Cambridge Crystallographic Data Centre

CCE Clustered conformer ensemble

CE Conformer ensemble

CFER Cubic free energy relationship

CI Configuration interaction

CN Coordination number

COSMO Conductor-like screening model

COSMO-RS Conductor-like screening model for real solvents

CPCM Conductor-like polarizable continuum solvation model

CPU Central processing unit

CREST Conformer-rotamer ensemble sampling tool

CSD Cambridge Structural Database

CT Charge transfer

DFA Density functional approximation

DFG Deutsche Forschungsgemeinschaft

DFT Density functional theory

DFTB Density functional tight binding

DLPNO Domain based local pair natural orbital

DOF Degrees of freedom

ECP Effective core potential

EDA Energy decomposition analysis

EEQ Electronegativity equilibrium

EHT Extended Hückel theory

EN Electronegativity

FER Free energy relationship

FF Force field

FT-IR Fourier-transform infrared

FWHM Full-width at half maximum

GC Genetic crossing

GBSA Generalized Born, solvent accessible surface area

GFN Geometries, frequencies, non-covalent interactions (referring to GFNn–xTB)
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GFS Global frequency scaling (factor)

gCP Geometrical counterpoise

GGA Generalized gradient approximation

GTO Gaussian type orbital

HB Hydrogen bond

HF Hartree–Fock

HO Harmonic oscillator

HOMO Highest occupied molecular orbital

HVF Harmonic vibrational frequencies

IES Isotropic electrostatics

IR Infrared

IXC Isotropic exchange

KS–DFT Kohn-Sham density functional theory

LCAO Linear-combination of atomic orbitals

LFER Linear free energy relationship

LMO Localized molecular orbital

LP Lone-pair

LDA, LSDA Local (spin) density approximation

LUMO Lowest unoccupied molecular orbital

MAD Mean absolute deviation

MD Molecular dynamics

MIE Mutual information expansion

MIST Maximum information spanning tree

MNDO Modified neglect of diatomic overlap

MO Molecular orbital

MP Møller-Plesset

msRRHO Modified and scaled RRHO

MSFS Molecule specific frequency scaling (factor)

MTD Metadynamics

NDDO Neglect of diatomic differential overlap

NMR Nuclear magnetic resonance (spectroscopy)

PCA Principle component analysis

PM Parametric method (referring to PMx methods)

PES Potential energy surface

QFER Quadratic free energy relationship

QM Quantum mechanical

RI Resolution-of-identity

RMSD Root-mean-square deviation

RRHO Rigid-rotor harmonic-oscillator approximation

RPA Random phase approximation

SCC Self-consistent charge

SCF Self-consistent field

SD Standard deviation

SIE Self-interaction error

SPE Single point energy

SQM Semiempirical quantum mechanical

SRB Short-range bond

STO Slater type orbital

TM Transition metal

TS Transition state

UEG Uniform electron gas

UV Ultraviolet

VIS Visible

WBO Wiberg bond order

WFT Wave function theory

xTB Extended tight-binding

ZPVE Zero-point vibrational energy
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