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Abstract

The thesis is concerned with providing a first natural generalization of M. Gromov’s non-
squeezing symplectic result in infinite dimensional case and applying it within the con-
text of Hamiltonian partial differential equations.

First part of the thesis covers a special case of the infinite dimensional generalization,
adapting the approach suggested by A. Sukhov and A. Tumanov for the treatment of the
finite dimensional case. We contend that this is an important generalization of Gromov’s
result and contribution to an open question whether the generalization holds in full gen-
erality in infinite dimensional case.

Second part covers an application of the aforementioned result to Hamiltonian equations.
Namely, we recover known non-squeezing results for mass subcritical and critical nonlin-
ear Schrödinger equation by R. Killip, M. Visan, X. Zhang and for Korteweg–De Vries
equation by J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao. The first result for
complex modified Korteweg–De Vries is obtained. All previous results relied heavily on
well-posedness theory at symplectic regularity. We follow the same principle, however,
first part of the thesis significantly simplifies proofs of known results. This is due to the
fact that all previous approaches were based on reduction of initial equations of interest
to the finite dimensional Hamiltonian flow, for which one would recall Gromov’s result.
Whilst the choice of the reduction to the finite dimensional case was usually an obvious
one, infinite dimensional formulation is natural and more flexible as approximations are
needed regardless of the equation.
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1 Introduction

The Euclidean space (R2d ,∥ · ∥), which we identify with the complex space (Cn,⟨·, ·⟩), has
the standard symplectic structure defined on it by

ωst(·, ·) = Im⟨·, ·⟩.

Denote by z = (z1, . . . , zd) ∈ R
2d , zi ∈ C, and by Br a ball Br = {z ∈ R

2d : |z| ≤ r} and ΣR a
cylinder such that ΣR = {z ∈ R2d : |z1| ≤ R}. A symplectomorphism ϕ : R2d → R

2d is a C1

diffeomorphism which preserves the symplectic structure, i.e. ϕ∗ωst = ωst. In [Gro85],
Gromov has formulated and proved what is now called symplectic non-squeezing theo-
rem in the finite dimensional set-up, and which shows that morphisms preserving sym-
plectic structure imply rigidity of the following kind

Theorem 1.0.1 (Gromov). There exists a symplectomorphism ϕ : (Br ,ωst)→ (R2d ,ωst) such
that ϕ(Br ) ⊂ ΣR if and only if r ≤ R.

This paper has been seen as one of the most influental ones in symplectic topology and
has inspired a lot of new research in this area. However, it is a long standing open ques-
tion whether the non-squeezing theorem generalizes to infinite dimensional symplectic
Hilbert spaces.

First results on this matter were due to Kuksin ([Kuk95a], [Kuk95b]), motivated by
implications that the non-squeezing property has on the qualitative information of the
flow. Firstly, a flow having the non-squeezing property does not allow the existence of
stable critical points, and secondly, it prohibits uniform evacuation of a fixed frequency
on a fixed ball of initial data. Kuksin’s approach was based on proving that the flows
of interest preserve symplectic capacities, loosely defined as limits of finite dimensional
ones as one tries to approximate the PDE with a finite dimensional Hamiltonian ODE.
Existence of symplectic capacities is equivalent to the symplectic non-squeezing theorem.
Kuksin considered equations posed on the torus T = R/2πZ, whose flow is a compact
perturbation of a linear one, namely the nonlinear string equation

∂ttu = ∆u + p(u,t,x), x ∈ T ,

where p is a smooth function that has at most polynomial growth as |u| →∞, the quadratic
nonlinear wave equation

∂ttu = ∆u + a(t,x)u + b(t,x)u2, x ∈ T2,

the nonlinear membrane equation

∂ttu = −∆2u + p(u,t,x), x ∈ T2,
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and the Schrödinger equation

−i∂tu = −∆u +V (x)u +
[
∂

∂U
G(U,U,x)

]
∗ ξ, U = u ∗ ξ, x ∈ Tn

where G is a smooth function and ξ fixed real function, and ∗ denotes the convolution.
Bourgain ([Bou94]) was the first to treat a flow that is not compact perturbation of a

linear one, namely defocusing cubic nonlinear Schrödinger equation (NLS) posed on the
torus

i∂tu +∆u = |u|2u, x ∈ T .

His approach was to approximate the flow by introducing a sharp frequency cutoff in the
nonlinearity

i∂tu +∆u + PN (u|u|2) = 0,

where PN is Dirichlet projection with respect to x, i.e. PN (f ) =
∑
|n|≤N f̂ (n)einx, hence

obtaining a finite dimensional Hamiltonian flow on space of data φ such that φ = PNφ,
and use Gromov’s result.

Motivated by their result [CKS+03] on sharpness of well-posedness in the strong sense
for Korteweg De-Vries equation (KdV)

∂tq = −qxxx + 6qqx,

Colliander, Keel, Staffilani, Takaoka and Tao proved non-squeezing for KdV on H
− 1

2
0 (T )

in [CKS+05]. While following the ideas of localizing the nonlinearity as done by Bour-
gain, the cutoff that was used was a classical Littlewood-Paley one, which is in contrast to
the sharp one in [Bou94]. This is due to delicate cancellative structure in the KdV equa-
tion which permits the decoupling of high and low frequencies. As a result of it, crude
frequency projection leads to impossibility of uniform approximation of KdV by a trun-
cated flow on balls of data, as shown in [CKS+05]. Whilst the approximated flow with
smooth frequency projection can easily be seen to be a finite dimensional Hamiltonian
on the space of functions which have the uniform upper bound for frequency in Fourier
series, the difficulty was proving directly that such approximation was a good one for
KdV. Said authors overcome this difficulty by using Muira transform to pass to the mod-
ified KdV (mKdV) and prove its invertibility. Then the regularity of the inverse of Muira
map, coupled with better smoothing properties of the mKdV and refining estimates for
well-posedness in [CKS+03], concludes the proof of approximation.

Up to that point, all known results were for subcritical flows. The first one, albeit
a conditional one, for the critical flow and global-in-time non-squeezing was a result of
Mendelson ([Men17]) for the Klein-Gordon equation on T

3. Conditionality comes due
to the absence of global well-posedness and any uniform control on the local time of
existence for arbitrary data. Additionally, Mendelson proved non-squeezing for short
time dynamics.
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First results in the unbounded case are due to Killip, Visan and Zhang ([KVZ19],
[KVZ21]) for the nonlinear Schrödinger equation in L2(Rd). These results address both
(de)focusing subcritical

i∂tu +∆u = κ|u|p−1u,

for 1 ≤ p < 1 + 4
d ,κ = ±1, and defocusing critical nonlinearity

i∂tu +∆u = |u|
4
d u,

and follow the approach based on a finite dimensional approximation of NLS by intro-
ducing a smooth frequency cutoff in the nonlinearity

i∂tu +∆u = P (F(P (u))).

The subcritical equation is easier to handle, as expected. To overcome the issues in the
critical-scaling case, said authors develop a general methodology for obtaining the uni-
form global space-time bounds for suitable Fourier truncations of dispersive PDE, which
allow them to conclude the non-squeezing property of critical flow by the one of fre-
quency truncated one. Inspired by Bahouri and Gérard’s work [BG99] which showed how
a nonlinear profile decomposition can be used to establish the well-posedness in the weak
topology in the setting of energy-critical wave equation, Killip, Visan and Zhang prove
and use profile decomposition for NLS to conclude the non-squeezing of NLS from the
non-squeezing property of truncated systems. Moreover, the profile decomposition plays
an important role for overcoming symmetries of the initial equation and allowing them
to uniformly approximate truncated systems by finite dimensional Hamiltonian ODE.

Recently, non-squeezing property of KdV on the line was resolved by Ntekoume (see
[Nte19]). Presented approach reproves the result for the torus obtained in [CKS+05] in
an easier manner. The main ideas are based on well-posedness result of Killip and Visan
for KdV on the line and the torus in H−1 ([KV19]). Even though a sharp result for well-
posedness on the torus was previously obtained by Kappeler and Topalov in [KT06], Kil-
lip and Visan introduced flows that approximate KdV in norm topology, on bounded sets
of data, uniformly on intervals of time, and thus obtained well-posedness both on the
line and the circle, in contrast to [KT06]. Non-squeezing property of KdV then reduces to
proving it for the approximate flows. Ntekoume proved that localizing in frequency ap-
proximate flows in a suitable way leads to finite dimensional approximation, from which
one can conclude non-squeezing by invoking Gromov’s result. We would like to point out
that Ntekoume’s result on the line is unaccessible by our approach; indeed, even though
both the line and the circle case have the same Poisson structure, the former does not
admit a non-degenerate almost complex structure, leading to the absence of a symplectic
structure. Nevertheless, Ntekoume was able to prove non-squeezing behaviour in the line
case as well.

All of the mentioned results depended on Gromov’s finite dimensional result. A nat-
ural question was whether one can prove a genuine infinite dimensional analogue of it in
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contrast to finite dimensional approximation, or at least, find a weaker version of it, which
can be used to conclude non-squeezing properties of infinite dimensional symplectomor-
phisms.

First results on infinite dimensional non-squeezing are due to Abbondandolo and Ma-
jer ([AM15]), for symplectomorphisms that map balls of data into convex sets. This was
the first result whose techniques were purely of infinite dimensional nature. Convexity
of the image allowed them to construct an infinite dimensional capacity, whose existence
directly implies the non-squeezing property. However, since there is no reason to expect
that nonlinear PDE take balls of initial data at any time to a convex set, aside from short
time intervals, one cannot apply it to many equations of interest previously stated.

Second results are due to Sukhov and Tumanov in [ST16a],[ST16b]. Stated results are
a continuation of their work [ST14], where said authors reproved Gromov’s finite result
[Gro85]. Motivated by Gromov’s approach of constructing a pseudo-holomorphic disc
with good boundary conditions and of desired area, instead of using topological tools as
done by Gromov, Sukhov and Tumanov treat the construction of the disc as an analytic
problem closely related to the Beltrami equation. They generalize the construction to the
infinite dimensional case in [ST16b], for a class of symplectomorphisms that have uniform
regularity behaviour with respect to Hilbert scales, allowing them to obtain compactness
in infinite dimensional case. Assuming this behaviour, one can consider long-time flows
- the scope of their result allows them to obtain non-squeezing for discrete Schrödinger
equation. Alternatively, in [ST16a] they also prove that the non-squeezing holds under
smallness assumption of the anti-holomorphic part of the symplectomorphism. Conse-
quently, small C2 perturbation of the identity and short-time flows are another class of
non-squeezing flows. However, this is just as restrictive as Abbondandolo and Majer’s
result ([AM15]).

As expected and shown in [ST16a], many important bounds carry over from finite
dimensional one, allowing the same fixed point argument to be used for construction
of the pseudo-holomorphic disc. Recurring issue in infinite dimensional generalization
(as in [ST16b]) is the compactness of the underlying function space in which all poten-
tial pseudo-holomorphic discs reside. The novelty of this thesis is the introduction of a
class of weakly continuous symplectomorphisms that solve this issue. Moreover, these as-
sumptions allow us to consider many important dispersive equations, regardless of short
or long-time dynamics. We contend that our result is the first infinite dimensional one
that is natural with respect to the applications to Hamiltonian PDE. In order to state it,
let us introduce some notation.

Let H be a separable complex Hilbert space with a Hermitian inner product ⟨·, ·⟩ and
an orthonormal basis {en}n∈N. Every complex Hilbert space H has the standard symplectic
structure given by

ω(x,y) = Im⟨x,y⟩
H
.

Denote by B(H) the space of bounded linear operators on H and by τweak the weak topol-
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ogy on H.

Definition 1.0.2. A symplectomorphism is a C1 diffeomorphism ϕ : H→H such that ϕ∗ω =
ω. A mapϕ : H→H is continuous with respect to weak topology ifϕ : (H, τweak)→ (H, τweak)
is continuous in the topological sense.

All equations of interest are maps that are continuous with respect to weak topology.
Moreover, at least from current perspective, it appears that this is a natural way of looking
at this equations (topologically wise) as the non-squeezing inequality is a weak type of
statement. We denote the ball of radius r with Br := {h ∈H : ∥h∥ ≤ r}. Moreover, let

ΣR := {h ∈H : |Π1h| ≤ R}

be a cylinder of radius R, where Π1 : H→ C denotes the projection defined as Π1(h) :=
⟨h,e1⟩. The principal result of this thesis is the following

Theorem 1.0.3. Let ϕ : (H,ω) → (H,ω) be a symplectomorphism such that ϕ and ϕ−1 are
continuous with respect to the weak topology on H and such that the map

Dϕ : (H, τweak)→ (B(H),∥ · ∥op)

is continuous. If ϕ(Br ) ⊂ ΣR, then r ≤ R.

We would like to point out that even though the stated continuity of the map Dϕ in
Theorem 1.0.3 may seem like an independent assumption, in our applications the conti-
nuity of Dϕ in operator norm will come off as a directly corollary of the weak continuity
of ϕ : (H, τweak) → (H, τweak). Assumption on the continuity of inverse ϕ−1 is stronger
than needed - it suffices to assume that inverse maps bounded sets into bounded sets,
from which the continuity with respect to weak topology follows. The result is also a
generalization of Gromov’s result since weak and strong topologies coincide in the finite
dimensional case. However, with applications to equations in mind, one can restate non-
squeezing inequality for arbitrary centered ball and cylinder in the following fashion

Corollary 1.0.4. Let ϕ : (H,ω)→ (H,ω) be a symplectomorphism such that ϕ and ϕ−1 are
continuous with respect to the weak topology on H and such that the map

Dϕ : (H, τweak)→ (B(H),∥ · ∥op)

is continuous. Let h0, l ∈H be such that ∥l∥
H

= 1 and 0 < R < r <∞, α ∈C. Then there exists

h1 ∈ Br(h0) := {h ∈H : ∥h− h0∥H < r}

such that
|⟨ϕ(h1), l⟩ −α| > R.
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Corollary follows directly by observation that

⟨ϕ(h1)−αl, l⟩ = ⟨U−1[ϕ(h1)−αl],U−1l⟩ = ⟨U−1[ϕ(h1)−αl], e1⟩,

whereU is a unitary operator on H such thatU (e1) = l, and the fact that unitary operators
and translations are symplectomorphisms, hence reducing the Corollary 1.0.4 to Theorem
1.0.3.

We will be interested in reproving non-squeezing for the (sub)critical NLS on R
d

and KdV on the torus. The result for mKdV on R is new and first to our knowledge.
Symplectomorphism by definition has to be at least a C1 map. Except mKdV, every
flow ((sub)critical NLS, KdV) we consider is of at least of C1 regularity with respect
to norm induced topology ([Bou93a],[Bou93b],[CKS+03],[CKS+05],[CCT03][CKS+04]) in
phase space and globally well-posed, meaning that symplectomoprhisms that we will be
considering, i.e. flows for any fixed time, are well defined. The mKdV on the contrary
is only continuous in L2 - analytic continuity holds sharply at H

1
4 regularity ([KPV93],

[KPV01], [CCT03]).
Both mass subcritical and critical NLS are continuous maps on L2 with respect to

weak topology. The issue with applying Theorem 1.0.3 is with the derivative continuity
assumption. Translation symmetry of the equation prohibits this possibility. We deal with
this issue by localizing the nonlinearity in space and use local smoothing to obtain a gain
in regularity, and hence compactness. Local smoothing plays crucial role in establishing
the non-squeezing property for truncated flows. The original case follows by arguments
presented in following section.

Regarding KdV, just as in [Nte19], we shall reduce checking non-squeezing to approx-
imate flows introduced in [KV19] and which were based on the integrable nature of the
equation. The non-squeezing property of KdV will follow by the fact that the symplectic
regularity is higher than one of endpoint of well-posedness, hence we will be able to ob-
tain necessary equicontinuity of the set we want to approximate and use result of [KV19].
However, this regularity disparity will lead to compactness, which we shall exploit in-
dependently in order to prove that approximate flows satisfy assumptions of Theorem
1.0.3.

Lastly, regarding mKdV on the line, low regularity global well-posedness result by
Harrop-Griffiths, Killip and Visan ([HGKV20]) plays a crucial role. Combining ideas of
[KVZ18] and [KV19], authors introduced approximate flows which imply low regular-
ity well-posedness theory for mKdV and NLS on the line. Reduction to proving non-
squeezing for approximate flows rather than the original one is of the same spirit as the
one for KdV.

1.1 Application of Theorem 1.0.3 to Hamiltonian PDE

We would like to present the ideas that inspired the assumptions of Theorem 1.0.3 and
the overall approach one takes in order to conclude the non-squeezing property of flows
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of nonlinear equations. While the continuity with respect to weak topology holds for ev-
ery equation of our interest, many notable equations, such as nonlinear Schrödinger one
on R

d , do not satisfy the continuity of derivative assumption of Theorem 1.0.3 - one needs
to make some adjustments and take a look at an equation similar to the original one. For
example, symmetries of said equation, translation one in particular, imply that in order to
get compactness of solutions one has to localize in some sense. These adjustments can be
interpreted as a family of one, having the property that if one fixes initial data, approxi-
mations converge to the solution of the initial equation. Moreover, these adjustments will
crucially lead to a family of maps which will retain the same property of the initial map
of interest - continuity with respect to the weak topology.

Families will be indexed by real numbers going to infinity, but we can reduce the index
set to the interval I = [0,1], where 1 corresponds to the infinity. We define it as a metric
space (I ,d1) via the norm | · | from R. Moreover, for any other metric space (M,dM ), the
product space I ×M is a metric space with the metric given by

d2

(
(x,τ1), (y,τ2)

)
=

(
d1(τ1, τ2)2 + dM(x,y)2

) 1
2 , ∀x,y ∈M, ∀τ1, τ2 ∈ I ,

and henceforth when talking about continuity of a map with product space for a domain,
the topology in question will be the one induced by d2. Naturally, ball Br ⊂H with weak
topology will be of particular interest, as it is metrizable with the metric we denote by dw.
In that case, Xr will denote said ball endowed with the topology induced by the metric
dw. This thesis follows the following general principle

Theorem 1.1.1. Let H be a complex Hilbert space with the standard symplectic form and let

Φτ := Φ(τ, ·) : I ×H→H

be a family of symplectomorphisms that exibits non-squeezing behaviour for a fixed functional
e1 ∈H∗ in the sense of Theorem 1.0.3 and for τ ∈ [0,1). Assume that for all τ ∈ I , Φτ (Br ) ⊂Bcr

for every r, where the constant c does not depend on the index set I , and that

Φτ := Φ(τ, ·) : I ×Xr → Xcr

is a continuous family as well. Then Φ1 is uniformly approximated by Φτ in C(Xr ,Xcr ) and is
consequently non-squeezing.

We shall distinguish different approximations. Some will be with respect to the norm
of the phase space, for bounded sets of data, which provide a good approximation of
the initial flow in an obvious way - the non-squeezing data mapped outside the cylinder
for the approximate flow will be the same one for the original flow. However, as we
are unable to approximate all flows of interest in this fashion, we shall be talking about
approximations with respect to the weak topology on the space of initial data as well. As
an example of the latter we state the nonlinear Schrödinger equation (NLS) on the line

i∂tu +∆u = |u|2u.
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posed in L2(R). Even though the equation is continuous with respect to the weak topology
on L2, the derivative of the flow is not continuous in the sense of Theorem 1.0.3 due to
translation symmetry of the equation. This can be readily seen by observing the sequence
un(t,x) = u(t,x +n)⇀ 0. We overcome this difficulty by observing that the truncated flow
(NLSR)

i∂tuR +∆uR = χR|uR|2uR,

where χR is a characteristic function of the interval [−R,R], fulfills the assumptions of
Theorem 1.0.3. Even more so, this truncation is a good one, as we can approximate NLS
uniformly for bounded initial data by NLSR. In particular, for fixed initial data u(0),
uR⇀u as R→∞.

Motivated by previous, we generalize and denote by Φ1 : H→H the flow of interest
and {Φτ }τ∈I : H → H family of approximations indexed by set I . The non-squeezing
inequality is a weak type one, that is we want to obtain relevant qualitative information
about the flow Φ1 by evaluating it with a fixed functional e1 ∈H∗ - we search for u0 ∈ Br
satisfying |e1

(
Φ1(u0)

)
| > R. Hence we shall be looking at the approximations Φτ that con-

verge weakly to Φ1 pointwise, i.e. Φτ (u0) ⇀ Φ1(u0). Crucial for finding the witness of
non-squeezing for Φ1 from the ones of Φτ will be the uniform approximation of Φ1 by
Φτ in C(Xr ,Xcr ). This is the first point at which assumptions of Theorem 1.0.3 come into
play - exploiting the weak continuity assumption for {Φτ }, we shall be looking at balls of
fixed radius Br ⊂H in the well-posedness space, which are compact when endowed with
weak topology, and hence we are able to apply Arzela-Ascholi theorem in this setting.
The radius cr will be the one given by the well-posedness theory - this comes as no sur-
prise since all equations of interest are globally well-posed, hence the norm if uniformly
bounded for all times.

Proof of Theorem 1.1.1. Firstly, let uτ ∈ Br represent the initial data witnessing the non-
squeezing in the sense of Theorem 1.0.3, that is |e1 ◦Φτ (uτ )| > R. Define u := w-limτ uτ ∈
Xr . Secondly, since

Φτ := Φ(τ, ·) : I ×Xr → Xcr

is continuous and I ×Xr is compact, Φ is uniformly continuous, i.e.

(∀ε > 0)(∃δ > 0) d2

(
(x,τ1), (y,τ2)

)
< δ =⇒ dw(Φτ1

(x),Φτ2
(y)) < ε,

x,y ∈ Xr , τ1, τ2 ∈ I . Consequently, {Φτ }τ∈I is an uniformly equicontinuous family in
C(Xr ,Xcr ). Arzela-Ascoli then implies that Φτ uniformly converges to Φ1 in C(Xr ,Xcr ).

The non-squeezing property of Φ1 follows from the ones of Φτ , τ ∈ [0,1), by

dw(Φτ (uτ ),Φ(u)) ≤ dw(Φτ (uτ ),Φτ (u)) + dw(Φτ (u),Φ(u)).
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2 Symplectic non-squeezing theorem

2.1 Symplectic geometry preliminaries

In contrast to the finite dimensional case, there are different notions of symplectic struc-
ture in infinite dimensional one. Namely,

Definition 2.1.1. A strong (weak) symplectic form ω on a real Hilbert space (H,⟨·, ·⟩) is a
skew-symmetric continuous 2-form

ω : H×H→R

which is non-degenerate, in the sense that the associated linear mapping

Ω : H→H
∗

Ω : h 7→ω(h, ·)

is an isomorphism (injective).

In this exposition we shall be dealing with strong symplectic forms exclusively, henceforth
symplectic form will always be a strong one. Let B(H) be the space of R-linear bounded
operators on H and denote by I the identity. Moreover, when talking about operators in
this chapter, we assume that they are R-linear, unless explicitly specified otherwise. We
identify the tangent space at every point of H with H.

Definition 2.1.2. An almost complex structure on (H,⟨·, ·⟩) is a continuous map

J : (H,∥ · ∥)→ (B(H),∥ · ∥op)

such that J2(h) = −I for every h ∈ H. Additionally, the Hilbert product ⟨·, ·⟩ and the induced
norm ∥ · ∥ are said to be compatible with a symplectic structure ω on H if there exists an almost
complex structure such that ⟨J ·, ·⟩ =ω(·, ·).

Previous definition indicates that having two out of the three structures determines a
third one. Moreover, for any symplectic form ω on (H,⟨·, ·⟩), there exists an equivalent
inner product ⟨·, ·⟩1 such that the operator J : H→H defined by

⟨J ·, ·⟩1 =ω(·, ·),

is a complex structure on H, i.e. J2 = −I .
For any real Hilbert space H and an almost complex structure J on it, there exists an

equivalent norm and an inner product on H making it a complex Hilbert space (Prop
2.2, [ST16a]). Lastly, all separable and infinite dimensional complex Hilbert spaces are
isometrically isomorphic.
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Previous comments allow us from now on to consider a separable complex Hilbert
space H with an inner product ⟨·, ·⟩. Standard symplectic structure is then given by

ωst = Im⟨·, ·⟩,

and the standard almost complex structure Jst given as multiplication by i : H → H,
i : h 7→ ih for all h ∈H. Standard complex structure Jst is compatible with ωst.

Let {en}n∈N be the orthonormal basis of H. We have coordinate series h =
∑∞
n=1hnen,

where hn = ⟨h,en⟩ = xn + iyn ∈ C, for every h ∈H. Moreover, we have complex conjugation
defined as h̄ =

∑∞
n=1 h̄nen. Abusing the given notation, we shall also write the decompo-

sition h = h1 + h2 for every h ∈H, where h1 represents the projection of h onto subspace
⟨e1⟩, that is h1 = Π1(h)e1, where Π1(h) := ⟨h,e1⟩. It should be clear from the text which
notation we are using.

Rewritten in complex coordinates, the standard symplectic structure is given as

ωst =
i
2

∞∑
k=1

dhk ∧ dhk ,

where dhk = dxk+ idyk and dh̄k = dxk− idyk are 1-forms coordinate-wise on C = R
2. In the

rest of the paper, we will denote the standard symplectic structure by ω.

Definition 2.1.3. A C1 diffeomorphism ϕ : (H1,ω1)→ (H2,ω2) is a symplectomorphism if
ϕ∗ω2 =ω1, where the pull-back is defined as

ϕ∗ω2[h](v1,v2) = ω2[ϕ(h)]
(
Dϕ(v1),Dϕ(v2)

)
, ∀h,v1,v2 ∈H1.

Let J1 be an almost complex structure on H1 compatible with ω1. Such diffeomor-
phism induces an almost complex structure on the image compatible with ω2 which we
call induced almost complex structure and which is given by

J2 = ϕ∗(J1) :=Dϕ ◦ J1 ◦Dϕ−1.

That J2 is an almost complex structure can be computed directly.
One of the main objects in this section is a notion of a pseudo-holomorphic disc

Definition 2.1.4. Denote by D := {z ∈ C : |z| < 1} the unit disc. We call a C1 smooth map
u : (D, i)→ (H, J) a J-holomorphic disc if

J ◦ du = du ◦ i, (2.1)

where du(z) : TzD→ Tu(z)H denotes the derivative.
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We shall rewrite the J-holomorphic property (2.1) in terms of complex derivatives.
Firstly, we write z = x+ iy ∈C and use the notation

dz = dx+ idy

and
∂
∂z

:=
1
2

(
∂
∂x
− i ∂
∂y

)
,
∂
∂z̄

:=
1
2

(
∂
∂x

+ i
∂
∂y

)
. (2.2)

Moreover, the complex structure on D acts on its tangent space so that ∂
∂y = i ∂∂x , where

∂
∂x and ∂

∂y are the tangent vectors spanning the tangent space. Hence we also consider ∂
∂z̄ ,

∂
∂z as vectors spanning the same tangent space on D. Denoting the vector by ∂u = du( ∂∂z ),
J-holomorphic condition (2.1) becomes

(Jst − J(u))∂u = (Jst + J(u))∂u.

This follows readily by equalities

J(u(z)) ◦ du
( ∂
∂x

)
= du

( ∂
∂y

)
J(u(z)) ◦ du

( ∂
∂y

)
= −du

( ∂
∂x

)
and using previously introduced complex notation.

Since u : D → H is a map that is invariant with respect to the underlying almost
complex structures i and J , and i is compatible with the standard symplectic form on D,
so is the case with J and ω on H. Compatibility, and hence non-degeneracy of form ω
implies that the operator Jst + J(u(z)) is invertible for every z ∈D (see Prop. 2.8, [ST16a]),
Indeed, the invertibility of the stated operator is equivalent to the one of I − JstJ(u), which
is equivalent to the form ⟨JstJ(u)h,h⟩ > 0 being positive for all non-zero h ∈ H. The last
however holds because both Jst , J(u) are compatible withω in the sense of Definition 2.1.2.
In particular the linear operator

L := (Jst + J(u))−1(Jst − J(u))

is well defined. Moreover, L is antilinear with respect to C, i.e., JstL = −LJst. Hence, there
exists a bounded linear with respect to C operator AJ ∈ B(H) such that

Lh = AJ h̄.

Indeed, every operator S ∈ B(H) can be uniquely written in the form

Su = P u +Qu,
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where P and Q are linear w.r.t C operators in B(H). Since L is antilinear w.r.t C, that
means that for every u = u1 + iu2 ∈H,

Lu = Lu1 +Liu2 = Lu1 − iLu2 = (P u1 +Qu1)− i(P u2 +Qu2),

Lu = (P u1 +Qu1) + i(P u2 −Qu2),

that is, P u2 = 0 for every u2 ∈H, hence P = 0, hence Lu =Qu. We denote Q by AJ .
We call AJ the complex representation of J . Finally, the J-holomorphicity gives the

following equation in complex coordinates which we call Beltrami type equation

∂̄u(z) = AJ (u(z))∂u(z). (2.3)

Inspired by this, the centerpiece of this chapter is construction of a disc u : D→H that
solves the equation

∂̄u(z) = A(u(z))∂u(z) (2.4)

A : (H, τweak)→ (B(H),∥ · ∥op),

and that has desired properties, such as boundary conditions and area. Consequently, we
shall be searching for a solution of said equation that has the integral form

u = C
(
∂̄u

)
+Φ , (2.5)

for suitably chosen operator C and a holomorphic function Φ : D→H.
Recalling the statement of Theorem 1.0.3 for a symplectomorphism ϕ : H→ H and

denoting by J the induced almost complex structure ϕ∗Jst, the proof of said theorem is
based on the existence of a J-holomorphic disc u : D→H such that its boundary lies in
∂ΣR, has an area equal to R2π and goes through the point ϕ(0). Now, as the problem
suggests, there are two separate issues emerging.

Firstly, regarding the boundary conditions and the area, the choice of C and Φ in
the integral form (2.5) will implicitly give desired properties. Here C denotes modified
classical Cauchy transform, introduced by Sukhov and Tumanov in [ST14] and used sub-
sequently in [ST16a], [ST16b], in order to obtain stated properties of a disc which solves
(2.4). These modifications reduce boundary conditions with respect to ∂ΣR to the cylin-
der with a triangle base, i.e. a linear boundary case, making it easier to construct explic-
itly the boundary behavior. Hence Schwarz-Christoffel mapping Φ comes into play as a
modification of the standard Cauchy transform by a conformal map that achieves such
transformation of the complex plane C into a desired polygon, namely triangle ∆R, with
corners −R,R, iR. This Schwarz-Christoffel map Φ fixes stated points. Consequently, by the
nature of integral form (2.5), the solution u will fix stated points as well, making it unique
with respect to Möbius symmetries of D (see Remark 2.1.8). Additionally, the degree of
the map Π1u : ∂D = S

1→Π1(∂ΣR) equals 1, giving the desired area. The degree is meant
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in the topological sense, i.e. as the multiplying scalar k ∈ Z defining the homomorphism
[Π1u]∗ :H1(S1)→H1(S1). Section 2.1.1 covers details on this matter.

Secondly, one can establish existence of a non-trivial solution to (2.4) in an integral
form (2.5) provided that there exists a constant 0 < a < 1 such that ∥A(h)∥op ≤ a for all
h ∈ H. Validity of this statement will be postponed for later discussion. Nevertheless,
existence of such uniform bound is a major obstacle we will face. A priori, ϕ need not
have have uniformly bounded derivative, nor will this be the case for equations of interest
which will be the topic of Chapter 3. Existence of a constant M > 0 such that ∥Dϕ(h)∥op ≤
M for all h ∈H is a sufficient condition for existence of the constant a < 1. Consequently,
we need to truncate the flow ϕ in some way, leading to A in (2.4), rather than AJ in
Beltrami equation (2.3), hence why we distinguish equation (2.4) from (2.3). Nevertheless,
we shall always refer to (2.3) when talking about the construction of the disc of equation
(2.4). Even though the main difference stems from the a priori bound, the mentioned
truncation will be such that it will preserve J on a desired set, implying that the solution
to (2.4) will crucially still be a J-holomorphic disc on it.

To see that the uniform bound for the derivative is a sufficient condition for obtaining
constant a < 1, recall firstly that Dϕ(h) is a linear symplectomorphism for all h ∈H. As
previously mentioned, every R-linear operator admits an unique decomposition

(Dϕ)u = P u +Qu,

by C-linear bounded operators P and Q. In this particular case, P = ∂hϕ and Q = ∂hϕ.
The following holds

Lemma 2.1.5 (Lemma 2.4, Prop 2.5, [ST16a]). Operator P is invertible since ϕ is symplectic
and

∥QP̄ −1∥ = ∥Q∥(1 + ∥Q∥2)−1/2 < 1. (2.6)

Moreover, the complex representation AJ is given by AJ =QP
−1

.

Denoting by λ = ∥Q∥2, the function λ 7→ λ(1 +λ)−1 is increasing for λ > 0, hence it follows
directly that the uniform bound on Dϕ implies the uniform bound on Q, so previous
statements imply uniform bound ∥AJ (h)∥op ≤ a < 1.

Returning to the Beltrami-type equation (2.3), solving it in an analytical fashion means
we consider it as a ∂̄ problem in infinite dimensional Hilbert space. Firstly, the ∂̄ problem
in the scalar case is the problem of solving the differential equation

∂̄f (z) = g(z),

for the function f : C→C, and g known. Here ∂̄ represents the complex derivative in the
sense of (2.2). Classical Cauchy-Green transform

C(f )(ζ) =
1

2πi

∫
C

f (z)
z − ζ

dz∧ dz,
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solves the ∂-problem, that is ∂C(f ) = f in the distributional sense. Moreover, it is bounded
as an operator C : Lp(C)→ Ẇ 1,p(C), for p > 1. Beurling transform is defined as

B(f ) = ∂C(f )

in the distributional sense, or alternatively

B(f )(ζ) := − 1
2πi

PV
∫
C

f (z)
(z − ζ)2dz∧ dz.

Beurling transform is a bounded linear operator B : Lp(C) → Lp(C) for p > 1, and is an
isometry for p = 2.

Since H is a Hilbert space, there exists a unique well-defined extension of any bounded
operator L ∈ B(Lp(D)) to an operator L

H
∈ B(Lp(D,H)) such that for every u ∈ Lp(D) and

h ∈H, L
H

(uh) = L(u)h holds. In the rest of the paper, we shall use the same notation for
the Cauchy and Beurling operators and their extensions to Hilbert space valued functions.
Moreover, we shall be using a modification of the Cauchy transform on Lp(D,H). Specif-
ically, denoting by i1 : Lp(D,H)→ Lp(C,H) the extension by zero to the entire complex
plane and by i2 : Lp(C,H)→ Lp(D,H) the restriction to the disc D, Cauchy transform

C̃ = i2 ◦C ◦ i1,

also solves the ∂̄ problem on the disc D and it is bounded as an operator C̃ : Lp(D,H)→
W 1,p(D,H). Corresponding bounds hold for the Beurling transform B̃ := ∂C̃. For clarity
sake, we shall omit writing the tilde sign, and denote by C Cauchy transform on D. Lastly,
for 2 < p <∞, Morrey’s embedding

W 1,p(D) ↪→ C0,1−2/p(D) (2.7)

implies that C : Lp(D,H)→ C0,1−2/p(D,H) is bounded as an operator as well.
We finish this discussion about Beltrami equation with the following lemma, which

we will prove in similar form in Lemma 2.2.1. For the time being, the purpose of the
following lemma is to provide a general model for proving the existence of Hilbert space
valued Beltrami equation.

Lemma 2.1.6. Let A : (H, τweak)→ (B(H),∥ · ∥op) be continuous such that ∥A(h)∥op ≤ a < 1,
for all h ∈H. For any holomorphic function f : D→H there exists u ∈W 1,p(D,H) for some
p > 2, satisfying the integral identity

u = C(∂̄u) + f

and which solves Beltrami equation (2.4).
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Proof. Denote by v = ∂̄u. For a solution of (2.4) in the form of u = Cv + f ,

v = A(u)(Bv + f ′)

holds. Then (
I −A(u) ◦B

)
v = A(u)f ′ .

Since ∥A∥ ≤ a and bp := ∥B∥B(Lp) ↘ 1 as p → 2, for p > 2 close enough to 2, operator
I −A(u) ◦B is invertible and

v =
[(
I −A(u) ◦B

)−1
A(u)

]
f ′ , (2.8)

hence we have the bound

∥v∥Lp ≤
a∥f ′∥Lp
1− abp

.

Then we have a priori bound for the solution u of (2.4) satisfying the integral identity

∥u∥W 1,p ≤
acp∥f ′∥Lp
1− abp

+ ∥f ∥W 1,p ≲p,f 1. (2.9)

In other words, fixing holomorphic f gives the a priori bound. Moreover, Morrey’s em-
bedding (2.7) implies a priori bound

∥u∥L∞(D,H) ≲p,f ∥u∥C0,α(D,H) ≲p,f 1,

where α = p−2
p . As a consequence, we only consider the space C(D,X), where X is the ball

BM := {h : ∥h∥ ≤M} andM is a constant given by the last inequality. X denotes the set BM ,
but endowed with weak topology from H, making it a compact space. More specifically,

B :=
{
u ∈ C(D,X) : ∥u∥W 1,p ≤M

}
is the set, and the map is

L : C(D,X)→ C(D,X)

L(u) = C
[(
I −A(u) ◦B

)−1
A(u)f ′

]
+ f .

Then the W 1,p regularity of the solutions and Morrey’s inequality imply equicontinuity
of all solutions to the equation (2.4) of the form u = Cv + f . Arzela-Ascoli implies the
compactness of the set L(B). Existence follows by applying Theorem 2.1.7, stated below.

Theorem 2.1.7 (Schauder’s fixed point theorem, [Sch30]). Let V be topological vector space
and F : V → V continuous map. Let K be a nonempty convex closed set with compact image in
itself. Then F has a fixed point.
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We remark that the uniform bound for A in the proof of Lemma 2.1.6 lead to a priori
bound (2.9) for solutions of Beltrami equation (2.4). However, continuity ofAwith respect
to weak topology plays crucial role for establishing the existence, allowing us to apply
Arzela-Ascoli theorem.

Remark 2.1.8. Notice as well that if u is a solution of (2.4), then for every conformal map
ψ : D→D, the map u ◦ψ is a solution as well.

2.1.1 Modified Cauchy transform

Let Q be a function in D and recall that C represents the classical Cauchy transform. We
call Q a weight function. Introduce the operator

CQf (ζ) =Q(ζ)
(
C(f /Q)(ζ) + ζ−1C(f /Q)(1/ζ̄)

)
(2.10)

=Q(ζ)
∫
D

( f (z)
Q(z)(z − ζ)

+
f (z)

Q(z)(z − ζ)

)dz∧ dz̄
2πi

.

As the boundary conditions are the crucial part of modifications, one observes that for
|ζ| = 1 one has

CQf (ζ) =Q(ζ)
(
C(f /Q)(ζ) + ζC(f /Q)(ζ)

)
(2.11)

= (Q(ζ)/
√
ζ)

(√
ζC(f /Q)(ζ) +

√
ζC(f /Q)(ζ)

)
= (Q(ζ)/

√
ζ) ·

[
Re

√
ζC(f /Q)(ζ)

]
.

In other words, for |ζ| = 1
ImCQf (ζ) =Q(ζ)/

√
ζ,

that is the imaginary part of the boundary values does not depend on the function f , but
only on the choice of weight function Q.

Schwarz-Christoffel mapping f is a conformal transformation of the upper half-plane

{ζ ∈C : Imζ > 0}

onto the interior of a simple n-polygon in C. Namely, if the polygon has interior angles
α1,α2, . . . ,αn, then the mapping f is given by

f (ζ) =
∫ ζ K

(w − a1)1− α1
π (w − a2)1− α2

π · · · (w − an)1− αnπ
dw,

where K is a constant and a1 < a2 < . . . < an are the values, along the real axis of the
half-plane, of points corresponding to the vertices of the polygon.
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We now turn to stating explicit weights

R(ζ) = e3πi/4(ζ − 1)1/4(ζ + 1)1/4(ζ − i)1/2, X(ζ) = R(ζ)/
√
ζ, Z(ζ) = ζ − 1.

The branch of R is chosen so that it is continuous in D, with R(0) = e3πi/4, with zeros being
exactly the corners of the triangle ∆1, to which we want to reduce desired construction.
OperatorCZ was firstly introduced by Vekua [Vek62], operators similar toCR by Antoncev
and Monakhov in [SNA67], [Mon83], whereas CR was firstly introduced by Sukhov and
Tumanov in [ST14].

With boundary condition in mind, we look at the function X only on the circle ∂D and
choose the branch of

√
ζ continuous in C without positive real line. Then argX is constant

on each arc γ1 = {eiθ : 0 < θ < π/2}, γ2 = {eiθ : π/2 < θ < π}, γ3 = {eiθ : π < θ < 2π}, and
equals to 3π/4, π/4 and 0 respectively. Then

arg(X(ζ) ·
√

2ei
π
4 ) = 3π

4 + π
4 = π, ζ ∈ γ1,

arg(X(ζ) ·
√

2ei
7π
4 ) = π

4 + 7π
4 = 2π, ζ ∈ γ2,

arg(X(ζ) · e0 = 0 + 0 = 0, ζ ∈ γ3,

(2.12)

Equivalently, the function X satisfies the boundary conditions
Im[(1 + i)X(ζ)] = 0, ζ ∈ γ1,
Im[(1− i)X(ζ)] = 0, ζ ∈ γ2,

Im[X(ζ)] = 0, ζ ∈ γ3,
(2.13)

which represent the lines through 0 parallel to the sides of the triangle ∆1. Moreover, for
the weight R, boundary conditions observed in (2.11) for Cauchy transform CR are given
by equations (2.13).

We will need only the operators corresponding to two special weights, namely CZ
and CR, which we shall denote by C1,C2 respectively. We also define formal derivatives
Bjf (ζ) = ∂Cjf (ζ), j = 1,2 as integrals in the sense of the Cauchy principal value.

Proposition 2.1.9 ([Vek62], [Mon83]; Proposition 4.1, [ST14]). Following properties of op-
erators Cj ,Bj , j = 1,2 hold

(i) Each Bj : Lp(D)→ Lp(D), j = 1,2, is a bounded linear operator for p1 < p < p2. Here for
B2 one has p1 = 1 and p2 =∞ and for B1 one has p1 = 4/3 and p2 = 8/3. For 2 < p < p2,
one has Bjf (ζ) = (∂/∂ζ)Cjf (ζ) as Sobolev’s derivatives.

(ii) Each Cj : Lp(D)→ W 1,p(D), j = 1,2, is a bounded linear operator for 2 < p < p2. For
f ∈ Lp(D), 2 < p < p2, one has (∂/∂ζ)Cjf = f on D as Sobolev’s derivative.

(iii) For every f ∈ Lp(D), p > 2, the function C2f satisfies ReC2f |∂D = 0 whereas C1f satis-
fies the same boundary conditions (2.13) as X.
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(iv) Each Bj : L2(D)→ L2(D), j = 1,2, is an isometry.

(v) The function p 7→ ∥Bj∥Lp approaches ∥Bj∥L2 = 1 as p↘ 2.

Notice that the boundedness of modified transforms does not hold for all p > 1 as they
did for original operators, but rather for indices in the neighborhood of p = 2. However,
for the purposes of this paper, this range of indices will suffice. For more details, as well
as for the proofs, we refer to [ST14].

2.2 Proof of the non-squeezing Theorem 1.0.3

As shown by Gromov in [Gro85], the proof of Theorem 1.0.3 is based on the existence of a
pseudoholomorphic disc u : D→H such that its boundary lies in ∂ΣR, has an area equal
to R2π and goes through the point ϕ(0). Following lemma shows the existence of the
disc with desired properties, with respect to weak continuity arising from assumptions of
Theorem 1.0.3. We present the existence in the case of cylinder with a unit triangle basis
∆1 ⊂ C, with corners −1,1, i. The idea of reduction to triangle base was of Sukhov and
Tumanov in [ST14]. General case of radius follows by obvious adding of constants in the
proof. We shall denote the cylinder by ∆̃1 ⊂H.

Lemma 2.2.1. Let h0 ∈ int(∆̃1) be arbitrary. Moreover, let AJ : (H, τweak) → (B(H),∥ · ∥op)
be continuous such that ∥AJ (h)∥op ≤ a < 1, for every h ∈H. Then there exists a solution u of
the Beltrami-type equation (2.3), such that u ∈ W 1,p(D,H) for some p > 2, area(u(D)) = 1,
u(∂D) ⊂ ∂∆̃1 and h0 ∈ u(D). In particular, deg(Π1u(∂D)) = 1.

Taking previous lemma into account, we prove Theorem 1.0.3

Proof of Theorem 1.0.3. Let J = ϕ∗Jst be the induced almost complex structure on H. Let
AJ : (H, τweak)→ (B(H),∥ · ∥op) be the complex representation of J . As mentioned earlier,
we would like to obtain a uniform bound for AJ . In order to do so, we shall construct two
truncations. First one will serve to control the image of the disc we want to construct,
namely to ensure that the disc cannot escape cylinder ΣR. The second one is the one that
implies uniform bound for AJ .

Firstly, let ε > 0 be arbitrary small and recall Π1(h) := ⟨h,e1⟩. We define the cut-off
η̃ε : (H, τweak)→ [0,1] in the following way

η̃ε(h) := ηε(Π1(h)), for every h ∈H,

where the ηε : C→ [0,1] is continuous cut-off such that

ηε(z) =

1 , |z| ≤ suph∈Br−ε |Π1(ϕ(h))|
0 , |z| ≥ suph∈Br |Π1(ϕ(h))| .
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Secondly,
f (h) := g

(
∥dϕ(ϕ−1(h))∥op

)
where g : R→ [0,1] is continuous cut-off such that g ≡ 1 for x ≤Mδ, g ≡ 0 for x ≥M (Mδ

andM are specific constants to be specified shortly). We observe that f : (H, τweak)→ [0,1]
is continuous as a composition of continuous functions, starting with ϕ and dϕ, then
taking the operator norm as a function, and finally composing with g.

Let
Mδ := sup

h∈Br−δ
∥dϕ(h)∥op

and
M := sup

h∈Br
∥dϕ(h)∥op,

for an arbitrary δ > 0. Due to compactness of Br , and continuity of dϕ, M1 and M2 exist
and are finite.

Finally, we define the complex representation

Ã(h) := η̃ε(h)f (h)AJ (h).

With the abuse of notation, we shall denote ÃJ by AJ in the rest of the proof. We remark
that these truncations still respect the weak topology, so the modified AJ will still retain
the weak continuity condition. Moreover, this truncation implies the uniform bound for
AJ . We distinguish two cases. First, if f (h) = 0, then AJ (h) = 0. Second, if f (h) , 0,
then the definition of f implies that ∥dϕ(ϕ−1(h))∥op ≤ M on the set f −1((0,1]). Then by
Lemma 2.1.5, there exists a uniform bound a < 1 on complex representation AJ on the set
f −1((0,1]). This is the bound for the AJ as well.

Note that the final truncation f does not affect the induced almost complex structure
J on ϕ(Br−δ) since f ≡ 1 on a set whose subset is ϕ(Br−δ). This means that the disc attained
by the Theorem 2.2.1 will be a J-holomorphic disc on ϕ(Br−δ).

Recall that ω = i
2
∑∞
k=1dhk ∧ dhk and decompose every h ∈H as h = h1e1 +Π⊥1 (h). Π⊥1

represents the projection on the orthogonal space to e1. A diffeomorphism m of C that
preserves the volume, is symplectic with respect to ω1 = dh1 ∧ dh1. Thus, the diffeomor-
phism ϕ1 : H→H obtained as a tensor sum

ϕ1(h) :=m(h1)e1 +Π⊥1 (h)

of m and of the identity map on the (symplectic) orthogonal of Ce1 is a symplectomo-
prhism. Let m be a symplectomorphism such that it maps circle BR(0) ⊂ C into

√
πR∆1,

where ∆1 = {z ∈ C : 0 < Imz < 1 − |Rez|}. Hence ϕ1 transforms ΣR to a triangle cylin-
der, denoted by ∆̃R, with base

√
πR∆1. This reduction of the non-squeezing theorem to

the case of a cylinder with triangle base was introduced by [ST14], in order to use mod-
ified Cauchy transforms previously introduced. Moreover, notice that in our case, with
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respect to Lemma 2.2.1, map ϕ1 is weak-weak continuous. Hence, the continuity of AJ is
preserved under such deformation of H, i.e. we obtain our final almost complex repre-
sentation AJ ◦ϕ1.

Now from Lemma 2.2.1 follows that there exists a solution u ∈W 1,p(D,H), for some
p > 2, of equation (2.3) such that its area is equal to R2π, u(∂D) ⊂ ∂∆̃R and that ϕ(0) ∈
u(D).

We finish the proof in the same manner as Gromov ([Gro85]). Let D be the connected
component of the preimage of u−1(u(D)∩ϕ(Br−ε)). Then ũ := ϕ−1(u(D)) is a closed Jst-
holomorphic curve in Br−ε with boundary contained in the boundary of the ball. More-
over, 0 ∈ ũ(D) and due to integration over smaller set and ϕ being a symplectomorphism,
area(ũ(D)) ≤ area(u(D)) = R2π.

The approximation argument through finite dimensions for which Lelong’s mono-
tonicity formula holds gives us the inequality r2π ≤ area(ũ), which concludes the proof.

2.3 Existence of the pseudoholomorphic disc

We paraphrase the approach of Sukhov and Tumanov introduced in [ST14], consequently
adapted for infinite dimensional case in [ST16b]. Our contribution is showing that the
fixed point argument still follows with respect to adaptations arising from assumptions
of Theorem 1.0.3, namely that we can construct a compact function space of pseudo-
holomorphic discs on which the fixed point map, introduced in [ST14], adjusted in [ST16b],
is well-defined.

Proof of Lemma 2.2.1. We denote by u : D → H the solution of Beltrami equation (2.3)
and write its decomposition u = u1 + u2, where u1 = Π1(u)e1. Moreover, let v = ∂u. Then
it is obvious that v = v1 +v2 where ∂uk = vk , for k = 1,2. We look for a solution u = u1 +u2 :
D→H of (2.3) of class W 1,p(D,H), p > 2, in the form introduced in [ST14] u1 = C1v1 +Φe1,

u2 = C2v2 −C2v2(τ) + h0 −Π1(h0)e1,
(2.14)

for some τ ∈D, and Schwarz-Christoffel mapping Φ : D→ ∆1 of the unit circle into the
triangle, such that it preserves corners Φ(±1) = ±1 and Φ(i) = i. Note that Φ ∈ W 1,p(D)
for 2 ≤ p < 4, since

Φ(z) :=
∫ z

0

dw

e3πi/4(w − 1)
1
4 (w+ 1)

1
4 (w − i)

1
2

.

Solutions of Beltrami equation (2.3) having integral form (2.14) have a priori estimate

∥u∥W 1,p(D,H) ≤ C(Φ , a,h0,p) <∞
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(see Proof of Theorem 3.2 in [ST16b] for explicit computations). This follows since the
integral form (2.14) as a solution of (2.3) satisfies(

v1
v2

)
= A(u)

(
B1v1 +Φ ′

B2v2

)
, (2.15)

where we define A : C(D,Hw)→ (B(Lp(D,H)),∥ · ∥op), Hw denotes (H, τweak), as

A[u](v)(z) := AJ [u(z)](v(z)),

for u ∈ C(D,Hw) and v ∈ Lp(D,H). Observe that ∥A(u)∥B(Lp(D,H)) ≤ sup
z∈D
∥AJ (u(z))∥B(H) ≤

a < 1, hence A(u) is bounded for every u ∈ C(D,Hw).
Moreover, as p > 2, we have that because of Morrey’s embedding (2.7) such solution u

is actually in C0,α(D,H) (α = p−2
p ), where ∥u∥C0,α(D,H) ≲ ∥u∥W 1,p(D,H). Thus we obtain the

radius M of the ball BH

M(0) = X, depending on C.
This loop-sided argument for obtaining the a-priori bound for a solution of Beltrami

equation (2.3) of the integral form (2.14), and hence the function space C(D,X), can be
thought of in three steps, each of which defines a continuous map denoted by Γ ,E ,C, and
whose composition defines the fixed point map

F̃ (u) := (C ◦ E ◦ Γ ) (u)

F̃ : (C(D,X),∥ · ∥∞)→ (C(D,X),∥ · ∥∞).

Here

Γ : (C(D,X),∥ · ∥∞)→
(
B (Lp (D,H)) ,∥ · ∥op

)
Γ (u) :=

(
I −A(u)[B2 ◦Π1e1 +B1 ◦ (I −Π1(·)e1)]

)−1
◦A(u),

represents obtaining the inverse of the Beltrami operator,

E :
(
B (Lp (D,H))∥ · ∥op

)
→ (Lp (D,H) ,∥ · ∥Lp )

E(T ) := T (Φ ′e1),

represents obtaining v = ∂̄u from u by evaluation of a specific holomorphic function for
operator Γ (u), based on integral form (2.14), and

C : (Lp (D,H) ,∥ · ∥Lp )→
(
W 1,p (D,H) ,∥ · ∥W 1,p

)
C(u) := C1(Π1(u)e1) +C2(u −Π1(u)e1)− [C2(u −Π1(u)e1)](τ) +Φe1 + h0 −Π1(h0)e1,

represents the integral form (2.14).
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We justify continuity of F̃ by proving the continuity of each appearing term. Γ is
well-defined since the invertibility of operator

I −A(u)[B2 ◦Π1e1 +B1 ◦ (I −Π1(·)e1)]

follows from the bound ∥A(u)[B2 ◦Π1e1 +B1 ◦ (I −Π1(·)e1)]∥B(Lp(D,H)) ≤ aCpbp < 1. Conti-
nuity of Γ follows from the continuity of mapping

A : (C(D,X),∥ · ∥∞)→ (B(Lp(D,H)),∥ · ∥op),

since Γ (u) is obtained from A(u) via operations in B(Lp(D,H)), which are continuous with
respect to operator norm. As the inequality

∥A(u1)−A(u2)∥(B(Lp(D,H)) ≤ sup
z∈D
∥AJ (u1(z))−AJ (u2(z))∥B(H)

holds, the continuity of A follows from uniform norm on C(D,X) and continuity of AJ :
(H, τweak)→ (B(H),∥ · ∥op). Map E is continuous as a bounded linear operator. Map C is
continuous since it is obtained via operations on bounded linear operators. Hence, F̃ is
continuous.

Moreover, note that the choice of function space C(D,X) leads to observation of the
embeddings

W 1,p(D,H) ↪→ C0,α(D,H) ↪→ C0,α(D,Hweak) ↪→ C(D,Hweak).

Hence, as X is compact, Arzela-Ascoli theorem implies that the embedding C0,α(D,X) ↪→
C(D,X) is compact. We fix the convex set

S = {u ∈ C(D,X)|u ∈W 1,p(D,H),∥u∥W 1,p ≤ C}.

From construction of mapping F̃ and the a priori bounds from equation (2.3), one ob-
serves that F̃ (C(D,X)) ⊂W 1,p(D,H), and more specifically,

F̃ (S) ⊂ {u ∈ C(D,X)|u ∈W 1,p(D,H),∥u∥W 1,p ≤ C},

that is
F̃ (S) ⊂ {u ∈ C(D,X)|u ∈ C0,α(D,X),∥u∥W 1,p ≤ C}.

Hence, F̃ (S) ⊂ S, where F̃ (S) is compactly embedded in S.
Lastly, define a continuous map Ψ : C→D

Ψ (z) =

Φ−1(z), z ∈ ∆̄,
Φ−1(∂∆∩ [⟨h0, e1⟩, z]), z ∈C \ ∆̄.
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and a map
Ψ̃ (τ) = Ψ

(
Π1(h0)−C1(∂̄Π1(u)(τ))

)
,

both of which were introduced in [ST14] as well. Finally, we define the map

F (u,τ) := F̃ (u)⊕ Ψ̃ (τ) : C(D,X)×C→ C(D,X)×C.

We fix the convex set S1 = S ×D. As F̃ (S) ⊂ S and Ψ̃ (D) ⊂D, thus F (S1) ⊂ S1. Schauder
fixed point theorem implies the existance of the disc solving Beltrami equation (2.3) and
having the integral form (2.14).

2.3.1 Properties of the disc

As stated previously, our approach was motivated by authors of [ST14], who reproved
Gromov’s finite result using Cauchy transforms that we have used in our proof as well.
For that matter, the resulting properties of disc in our infinite setting and theirs in [ST16b]
differ not, and the proofs from [ST16b] carry over completely but with one essential dif-
ference in the proof of Lemma 2.3.1 - addressing the holomorphicity of disc at points
at which truncation is 0 and its implications on maximum principle implying that disc
cannot leave the cylinder.

Lemma 2.3.1. The solution map u of Beltrami equation (2.3) constructed in Lemma 2.2.1
satisfies u1(D) ⊂ ∆1, u1(∂D) ⊂ ∂∆1, and degu1 = 1; here degu1 denotes the degree of the map
u|∂D : ∂D→ ∂∆1. In particular, u satisfies the required boundary conditions and area(u(D)) =
1. Lastly, for τ obtained as a fixed point of the second argument of the map F in the end of
Lemma 2.2.1, τ ∈ int(D) and u1(τ) = h1, hence u(τ) = h0.
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3 Application to Hamiltonian equations

3.1 Preliminaries and notation

Let t ∈ R and x ∈ Rd for dimension d ≥ 1 and let 1 ≤ p,q ≤ ∞. We denote by S(Rd) the
set of Schwartz functions on R

d , or simply by S when the dimension is evident, and by S ′
the dual space, i.e. space of tempered distributions. We define mixed Lebesgue spaces as
L
q,p
t,x (R×Rd) as

f ∈ Lq,pt,x (R×Rd)⇔ ∥f ∥Lqt Lpx(R×Rd ) :=
∥∥∥∥∥f (t, ·)∥Lpx(Rd )

∥∥∥∥
L
q
t (R)

<∞.

In general, for a Banach space (X,∥ · ∥X), a space Lp(R,X) is defined as

f ∈ Lp(R,X)⇔ f : R→ X is weakly measurable and ∥f ∥Lp(R,X) :=
∥∥∥∥∥f (t, ·)∥X

∥∥∥∥
Lp(R)

<∞.

We adopt the following convention for the Fourier transform, which we denote by F ,

F (f )(ξ) = f̂ (ξ) :=
1

(2π)
d
2

∫
R
d
e−2πiξ·xf (x)dx, ξ ∈Rd ,

F (f )(k) = f̂ (k) :=
1

2π

∫
T

e−ikxf (x)dx, k ∈Z.

Concomitant to this, we define inhomogeneous and homogeneous Sobolev norms

∥f ∥2H s(Rd ) :=
∫
R
d
|f̂ (ξ)|2(1 + |ξ |2)sdξ, ∥f ∥2

Ḣ s(Rd ) :=
∫
R
d
|f̂ (ξ)|2|ξ |2sdξ

∥f ∥2H s(T ) :=
∑
ξ∈2πZ

|f̂ (ξ)|2(1 + ξ2)sdξ, ∥f ∥2
Ḣ s(T ) :=

∑
ξ∈2πZ

|f̂ (ξ)|2ξ2sdξ

for s ∈R, and Sobolev spaces

H s(Rd) :=
{
f ∈ S ′(Rd ,C)

∣∣∣∥f ∥H s <∞
}
, Ḣ s(Rd) :=

{
f ∈ S ′(Rd ,C)

∣∣∣∥f ∥Ḣ s <∞
}
,

H s(T ) :=
{
f ∈ S ′(Rd ,C)

∣∣∣∥f ∥H s <∞
}
, Ḣ s(T ) :=

{
f ∈ S ′(Rd ,C)

∣∣∣∥f ∥Ḣ s <∞
}
.

Let ϕ : Rd → [0,1] be smooth, spherically symmetric function such that

ϕ(x) ≡ 1 for |x| ≤ 1, and ϕ(x) ≡ 0 for |x| ≥ 2.

Define projections onto low, respectively high, frequencies

̂P≤N f (ξ) := ϕ(ξ/N )f̂ (ξ), ̂P>N f (ξ) := (1−ϕ(ξ/N ))f̂ (ξ).

Denoting by S(t) the Schrödinger semigroup

S(t)f (x) = eit∆f (x) := (4iπt)−
d
2

∫
R
d
ei
|x−y|2

4t f (y)dy,

we state Strichartz estimates
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Theorem 3.1.1 (Strichartz estimates, [KT98]). Let (q,p) be an admissible pair, i.e.

2
q

+
d
p

=
d
2
, 2 ≤ q,p ≤∞, (q,p,d) , (2,∞,2).

Then for any admissible exponent pairs (q,p), (q̃, p̃), we have the following homogeneous Stri-
chartz estimate (for the solution S(t)u0 of the homogeneous problem i∂tu +∆u = 0, u|t=0 = u0)

∥S(t)u0∥Lqt Lpx(R×Rd ) ≤ C(q,p,d)∥u0∥L2
x(Rd ),

and the inhomogeneous Strichartz estimate (for the solution
∫ t

0 S(t − t′)f (t′)dt′ of the inhomo-
geneous problem i∂tu +∆u = f , u|t=0 = 0)∥∥∥∥∫ t

0
S(t − t′)f (t′)dt′

∥∥∥∥
L
q
t L

p
x(R×Rd )

≤ C(q,p, q̃, p̃)∥f ∥
L
q̃′
t L

p̃′
x (R×Rd )

,

where 1
q+ 1

q′ = 1. In the above, the time definition domain R can be replaced by any time interval
[−T ,T ], T > 0.

Regularity properties of the equation

i∂tu +∆u = f , (3.1)

will be of interest. Firstly,

Definition 3.1.2. Given an interval 0 ∈ I ⊂ R, we say that u : I ×Rd → C is a solution to
(3.1) with initial data u0 at time t = 0, if for any compact interval J ⊂ I , u ∈ C0

t L
2
x(J ×Rd)∩

L
2(d+2)
d

t,x (J ×Rd), and for all t, t0 ∈ I , Duhamel’s formula

u(t) = S(t − t0)u(t0)− i
∫ t

t0

S(t − s)f (s)ds

holds.

Definition 3.1.3. Strichartz norm, for d ≤ 4, is defined by

∥u∥S = ∥u∥ST := ∥u∥L∞t L2
x([−T ,T ]×Rd ) + ∥u∥

L
2(d+2)
d

t,x ([−T ,T ]×Rd )
+ ∥u∥

L
d+4
d

t L
2(d+4)
d

x ([−T ,T ]×Rd )
.

In general case, d ≥ 5, we omit the last term in the sum as it is not a Strichartz pair.

Denote by BR := {x ∈Rd : ∥x∥ ≤ R}.
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Remark 3.1.4. Solutions u(t) of (3.1) with initial data u0 ∈ L2 have the following gain of
regularity

∥u(t)∥L2
tH

1/2
x ([−T ,T ]×BR) ≲ R

1
2
{
∥u0∥L2

x
+ ∥f ∥L1

t L
2
x([−T ,T ]×Rd )

}
,

which follows from local smoothing property of Schrödinger propagator ([CS88])

∥u∥L2
t,x([−T ,T ]×BR) ≲ R

1
2
{∥∥∥|∇|− 1

2u(0)
∥∥∥
L2
x

+
∥∥∥|∇|− 1

2 f
∥∥∥
L1
t L

2
x([−T ,T ]×Rd )

}
, (3.2)

where |∇|s, s ∈R, denotes a Fourier multiplier given by symbol |ξ |s.

Lemma 3.1.5. Fix T > 0 and let u : [−2T ,2T ]×Rd → C be a solution with initial data u(0) ∈
L2(Rd) of the equation (3.1). Then∥∥∥u(t + τ,x+ y)−u(t,x)

∥∥∥
L2
t,x([−T ,T ]×BR)

≲T ,R (|y|
1
2 + |τ |

1
4 )
(
∥u0∥L2 + ∥f ∥L1

t L
2
x([−2T ,2T ]×Rd )

)
,

uniformly for |τ | ≤ T and y ∈Rd .

Proof. Triangle inequality allows us to consider time and space regularity separately.
Firstly, consider the linear Schrödinger equation

i∂tv +∆v = 0,

with initial data u0, i.e.

v(t) =
{

0 , t < 0

S(t)u0 , t > 0,

and for which we want to prove that

∥v(t + τ,x+ y)− v(t,x)∥L2
t,x([−T ,T ]×BR) ≲ (|y|

1
2 + |τ |

1
4 )∥u0∥L2(Rd ).

Local smoothing, that is Remark 3.1.4 gives

∥v(t,x+ y)− v(t,x)∥L2([−T ,T ]×BR) ≤ |y|
1
2 ∥v(t,x)∥

L2
t Ḣ

1
2
x ([−T ,T ]×BR+|y|)

≲R |y|
1
2 ∥u0∥L2 .

Denoting by vN := P≤Nu for some N > 0, we write

v(t + τ)− v(t) = v(t + τ)− vN (t + τ) + vN (t + τ)− vN (t) + vN (t)− v(t), (3.3)

and estimate terms separately. Firstly, by (3.2),

∥v(t)− vN (t)∥L2([−T ,T ]×BR) ≲R
∥∥∥|∇|− 1

2 v>N (0)
∥∥∥
L2
x
≲R N

− 1
2 ∥u0∥L2

x
.
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Since i∂tvN = −∆vN , and denoting by ŵN = |ξ |2v̂N , i∂twN = −∆wN with initial data
ŵN (0) = |ξ |2v̂N (0). Then by (3.2)

∥vN (t + τ)− vN (t)∥L2([−T ,T ]×BR) ≤ ∥vN (t + τ)∥L2([−τ,0]×BR) + ∥vN (t + τ)− vN (t)∥L2([0,T ]×BR)

≤ τ
1
2 ∥u0∥L2 +

∫ t+τ

t
∥∆vN (s)∥L2([0,T ]×BR)ds

≲R τ
1
2 ∥u0∥L2 +

∫ t+τ

t

∥∥∥|∇|− 1
2wN (0)

∥∥∥
L2
x
ds

≲T ,R (τ
1
2 +N

3
2 τ)∥u0∥L2

x
.

Choosing N so that τ =N−2, and plugging previous inequalities in (3.3), one gets

∥v(t + τ)− v(t)∥L2([−T ,T ]×BR) ≲
(
N−

1
2 + τ

1
2 +N

3
2 τ

)
∥u0∥L2 ≲T ,R τ

1
4 ∥u0∥L2 , (3.4)

concluding the proof of the linear case.
In the nonlinear case, Lemma 3.1.4 implies the space regularity∥∥∥u(t,x+ y)−u(t,x)

∥∥∥
L2
t,x([−T ,T ]×BR)

≤ |y|
1
2
∥∥∥u(t,x)

∥∥∥
L2
t Ḣ

1
2
x ([−T ,T ]×BR)

≲R |y|
1
2
{
∥u(0)∥L2

x
+ ∥f ∥L1

t L
2
x([−2T ,2T ]×Rd )

}
.

For the time regularity we use Duhamel’s formula

u(t) = S(t)u0 +
∫ t

0
S(t − s)f (s)ds = v(t) +

∫ t

0
S(t − s)f (s)ds

and estimate each term separately. First term follows by (3.4). Regarding the second term,
denote by

w(t, s) =
{

0 , t ≤ s or t < 0

S(t − s)f (s) , t > s .

Then using Minkowski and (3.4)∥∥∥∥∫ t+τ

0
S(t + τ − s)f (s)ds −

∫ t

0
S(t − s)f (s)ds

∥∥∥∥
L2
t,x([−T ,T ]×BR)

=
∥∥∥∥∫ 2T

0
(w(t + τ,s)−w(t, s))ds

∥∥∥∥
L2
t,x([−T ,T ]×BR)

≤
∫ 2T

0
∥w(t + τ,s)−w(t, s)∥L2

t,x([−T ,T ]×BR)ds

≲T ,R

∫ 2T

0
τ

1
4 ∥f (s)∥L2

x
ds ≲T ,R τ

1
4

∫ 2T

0
∥f (s)∥L2

x
ds ≲T ,R τ

1
4 ∥f ∥L1

t L
2
x([−2T ,2T ]×Rd ).
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Remark 3.1.6. In general case d ≥ 5 we cannot bound the nonlinearity f = |u|
4
d u in L1

t L
2
x

and we have to use dual Strichartz spaces instead. The changes in proof of Lemma 3.1.5 are
standard, only the local smoothing estimate requires a different argument. It can be proven
using U2 and V 2 spaces (see [HHK09], [KT18], [KTV14], [KT05])

∥u∥L2H1/2((−T ,T )×BR) ≤ ∥u∥U2
∆

((−T ,T );L2) ≲ ∥u0∥L2 + ∥f ∥DU2
∆

(−T ,T );L2)

and
∥f ∥DU2

∆
≲ ∥f ∥Lq′Lp′

where (q,p) is a Strichartz pair with q > 2.

3.2 Mass subcritical NLS

This section is concerned with proving the non-squeezing property of the flow of mass
subcritical NLS in L2(Rd)

i∂tu +∆u = κ|u|p−1u, (3.5)

for 1 < p < 1 + 4
d , κ = ±1. Specifically,

Theorem 3.2.1. Let h0, l ∈ L2 such that ∥l∥L2 = 1 and 0 < r2 < r1 < 0, α ∈ C. Then for every
time T > 0 there exists the initial data u0 ∈ Br1(h0) such that the solution u given by (3.5)
satisfies

|⟨u(T ), l⟩L2 −α| > r2.

Equation (3.5) is Hamiltonian with energy functional

H(u) =
1
2

∫
R
d
|∇u|2dx+

κ
p+ 1

∫
R
d
|u|p+1dx,

defined on H : S(Rd)→R. The equation (3.5) also preserves the L2 norm. Choosing

ω(f ,g) = Im
∫
R
d
f (x)g(x)dx = Im⟨f ,g⟩L2

for symplectic form and J = i for an almost complex structure, equation (3.5) becomes
a symplectic one. Note that ω is a strong symplectic form on L2 and weak on S(Rd)
([MNc+20]).

We shall restrict ourselves to defocusing case, since the sign of κ plays no role in the
following exposition. The goal is to approximate the said flow with its truncated version

i∂tu +∆u = χR|u|p−1u, (3.6)

where χR represents a characteristic function of a ball B(0,R) := {x ∈ Rd : ∥x∥ ≤ R}, gener-
ated by Hamiltonian

HR(u) =
1
2

∫
R
d
|∇u|2dx+

κ
p+ 1

∫
R
d
χR|u|p+1dx,
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and prove that (3.6) obeys the assumptions of Theorem 1.0.3, as it is symplectic in the
same manner as (3.5). Truncation χR directly introduces a family of symplectomorphisms
indexed by R ≥ 1, or equivalently, by set [0,1) via identity τ = 1−R−1. Endpoint 1 of I =
[0,1] corresponds to the initial NLS (3.5). To be more precise, denote the flow generated
by (3.6) as ΦR and (3.5) by Φ . We define the continuous family of symplectomorphisms

Ψ : I ×L2(Rd)→ L2(Rd)

Ψ (1) := Φ

Ψ (τ) := ΦR, τ ∈ [0,1).

Conservation of L2 norm for all Ψ (τ), τ ∈ [0,1], directly reduces to consideration of the
family

Ψ : I ×Xr1 → Xr1 ,

where Xr1 denotes the ball Br1 endowed with weak topology and centered at 0 ∈ L2. It
suffices to consider stated family in the context of Theorem 1.0.3. The choice of family
Ψ is motivated by the fact that symplectomorphisms Ψ (τ), τ ∈ [0,1), satisfy assumptions
of Theorem 1.0.3 (equivalently Corollary 1.0.4), namely both weak continuity of the flow
map Ψ (τ) and its derivative DΨ (τ). The endpoint Ψ (1) however does not have weakly
continuous derivative, but it does satisfy the assumption of weak continuity of the flow
Ψ (1), allowing consideration of the continuity of family Ψ : I × Xr1 → Xr1 . Stated ho-
motopy is indeed continuous, allowing non-squeezing property of Ψ (1) to be deduced by
uniform approximation argument (see Theorem 1.1.1) from flows Ψ (τ), τ ∈ [0,1), which
are non-squeezing by Theorem 1.0.3.

Motivation behind the truncation χR of nonlinearity in (3.6) lies in local smoothing of
Schrödinger operator. In other words, when localized in space, solutions to (3.5) and
(3.6) gain a half of derivative in regularity as shown in Lemma 3.1.5, which coupled
with well-posedness of said equations gives precompactness of the set of solutions in a
suitable Lebesgue space. This allows us to uniformly control the nonlinearity |u|p−1u
in a compact fashion. Namely, for initial data un,0 ⇀ u0 and the corresponding solu-
tions un,u of (3.6), nonlinearities |un|p−1un ⇀ |u|p−1u converge in L1

t L
2
x, and even more,

χR|un|p−1un→ χR|u|p−1u in L1
t L

2
x. While this observation holds true for NLS and approx-

imate flows (3.6), localization χR of the nonlinearity is crucial for obtaining the weak
continuity of the derivative of the flow (3.6), allowing us to apply Theorem 1.0.3.

Nevertheless, well-posedness of NLS and approximate flows (3.6) will allow uniform,
independent of R, control of nonlinearities |u|p−1u, leading to continuity with respect to
weak topology in L2 of the family Ψ .

We shall restrict ourselves to the case d ≤ 4 in order to preserve clarity of the following
exposition. General case d ≥ 5 follows by Remark 3.1.6. We start by stating the following
well-posedness theory
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Lemma 3.2.2. Let u0 ∈ L2(Rd) such that ∥u0∥L2 ≲ 1. Then there exists a unique global solution
u : R × Rd → C to the approximate flow (3.6) (or NLS (3.5)) with initial data u(0) = u0.
Additionally, for any T > 0

∥u∥S ≲T 1, and
∥∥∥|u|p−1u

∥∥∥
L1
t L

2
x
≲T 1,

and flows are Lipschitz on bounded balls of initial data.

In other words, for bounded initial data and fixed time T , Strichartz norms for solutions
of (3.5) and (3.6) are independent of space truncation χR. Same holds for nonlinearities
|u|p−1u in L1L2. We briefly state the proof

Proof of Lemma 3.2.2. The proof follows classically by fixed point argument of the map

Φ(u)(t) := S(t)u0 − i
∫ t

0
S(t − s)|u(s)|p−1u(s)ds.

Since for u ∈ S, u ∈ L1
t L

2
x([−T ,T ]×Rd) and u1+4/d ∈ L1

t L
2
x([−T ,T ]×Rd), by interpolation

∥u∥Lpt L2p
x ([−T ,T ]×Rd ) =

∥∥∥|u|p−1u
∥∥∥
L1
t L

2
x([−T ,T ]×Rd )

≲∥u∥S T
θ(p), θ(p) > 0,

follows, obtaining the bound for the nonlinear term. Contraction of maps ΦR,Φ in Stri-
chartz space S then follows by Strichartz bounds, bound for the nonlinearity in L1

t L
2
x and

subcriticallity of exponent p, which imply smallness in time existence T .
Lastly, we prove the Lipschitz regularity of flows ΦR,Φ . We only state it for ΦR, as the

bound will be relevant later on. Namely∥∥∥∥∫ T

0
S(t − s)χR(|u|p−1u − |v|p−1v)ds

∥∥∥∥
S
≲ ∥χR(|u|p−1u − |v|p−1v)∥L1

t L
2
x

≲
(
∥χR|u|p−1∥

L
p
p−1
t L

2p
p−1
x

+ ∥χR|v|p−1∥
L

p
p−1
t L

2p
p−1
x

)
∥u − v∥Lpt L2p

x

(3.7)

≲ ∥u − v∥c(p)
S .

Remark 3.2.3. Lipschitz regularity of flow map ΦR suggests the consideration of a linearized
equation

i∂tu +∆u = Vu, V = χR|v|p−1 ∈ L
p
p−1
t L

2p
p−1
x . (3.8)

Equation (3.8) is well-posed in the same sense as equations (3.5) and (3.6), as per (3.7), and
moreover, it is continuous as a map

S ×L
p
p−1
t L

2p
p−1
x → S : u0 ×V 7→ u. (3.9)

This continuity extends to uniform one with respect to V on bounded balls of initial data in S.
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Forthcoming discussion crucially lies on the precompactness of the set of solutions to
(3.5) and (3.6), for bounded initial data. Observe the set

MT ,M =
{
χT ,MΦ(u0),χT ,MΦR(u0)

∣∣∣∣ ∥u0∥L2 ≲ 1, R ≥ 1
}

(3.10)

:=
{
χT ,MΨ (τ,u0)

∣∣∣∣ ∥u0∥L2 ≲ 1, τ ∈ I
}
,

where χT ,M is a smooth space-time localization on [−T ,T ] ×B(0,M) ⊂ R ×Rd . Following
lemma, due to M. Riesz ([Rie33]), gives necessary and sufficient conditions for a set to be
precompact in Lebesgue space

Lemma 3.2.4 ([Rie33]). Fix 1 ≤ p < ∞. A family of functions F ⊂ Lp(Rd) is precompact in
this topology if and only if it obeys the following three conditions:

(i) There exists C > 0 such that ∥f ∥Lp ≤ C for all f ∈ F .

(ii) For any ε > 0, there exists δ > 0 so that
∫
R
d |f (x + y)− f (x)|pdx < ε for all f ∈ F and all

|y| < δ.

(iii) For any ε > 0 there exists R so that
∫
|x|≥R |f (x)|pdx < ε for all f ∈ F .

Second and third condition from previous lemma are equicontinuity and tightness,
respectively.

Corollary 3.2.5. The setMT ,M is precompact in Lr(R×Rd), for r ∈ [1, 2(d+2)
d ).

Proof. Precompactness in L2
t,x follows directly by invoking Lemma 3.2.4 . Indeed, uni-

form boundedness follows directly from independent of truncation χR Strichartz bounds
given by Lemma 3.2.2. Tightness is directly implied by the space-time localization χT ,M .
Equicontinuity follow from Lemma (3.1.5) by applying ∥χT ,M∥L∞ ≤ 1 and uniform Stri-
chartz bounds (3.2.2).

Precompactness in Lr for general r follows by interpolation with respect to uniform,

independent of truncation χR, Strichartz bounds L
2(d+2)
d

t,x given by Lemma 3.2.2 and Hölder
inequality.

Remark 3.2.6. Precompactness ofMT ,M implies precompactness of the set of nonlinearities

NT ,M =
{
χT ,M |u|p−1u

∣∣∣∣ ∥u0∥L2 ≲ 1, u solves (3.5),(3.6) for initial data u0

}
in L1

t L
2
x. Indeed,NT ,M is precompact in L1

t,x due to Hölder inequality (a = 2(d+2)
d(p−1) >

2(d+2)
d+4 )∥∥∥χT ,M |u|p−1u −χT ,M |v|p−1v

∥∥∥
L1
t,x
≲

(
∥up−1∥

L

2(d+2)
d(p−1)
t,x

+ ∥vp−1∥
L

2(d+2)
d(p−1)
t,x

)
∥χT ,M(u − v)∥La′t,x

Strichartz estimates and precompactness ofMT ,M . Precompactness in L1
t L

2
x follows from one in

L1
t,x by interpolation, Strichartz estimates and the fact that |u|4/du ∈ L1

t L
2
x.

32



Lemma 3.2.7. Family Ψ : I ×Xr1 → Xr1 is continuous, where Xr1 represents the ball of initial
data Br1(0) ⊂ L2 endowed with weak topology.

Proof. We distinguish two cases coming from the continuity in the first variable in I -
τ → 1 (R→∞) and τn→ τ < 1 (Rn→ R ∈ R). We prove the continuity only in the former
case, which is the harder case, coupled with a convergent sequence in the metric space
(Xr1 ,dw). We omit the proof of the easier case, as it follows with minor adjustments of
the following proof and hence is obvious. However, we would like to point out the the
precompactness of the setMT ,M is what allows us to prove the continuity of the family
uniformly on I ×Xr1 .

Let Rn > 0 be a sequence such that Rn→∞ and un(0),u(0) ∈ Br1 be a sequence of initial
data such un(0)⇀u(0). We want to prove that then

un := ΦRn(un(0))⇀u := Φ(u(0)).

Strichartz norms (Lemma 3.2.2) for all flows Φt,Rn are uniformly bounded by constants
depending on r1, T , p, h0, and dimension d, and not by the truncation constant R, hence
∥un∥S ≲T 1. Then the proof follows from the precompactness of set MT ,M . Indeed, one
has that there exists v such that, after passing to a subsequence,

lim
n→∞

∥un − v∥Lr ([−T ,T ]×BM ) = 0,

for 1 ≤ r < 2(d+2)
d . Uniform Strichartz bounds for un imply that

∥v∥L∞L2 + ∥v∥
L

2(d+2)
d
≲ 1.

We want to prove that v = u∞. Let us go back to the Duhamel’s formula

un(t) = eit∆un(0)− i
∫ t

0
ei(t−s)∆χRn |un(s)|p−1un(s)ds

and look at the weak limit of this equality. Then on the LHS we have v. As the Schrödinger
semigroup is linear, first summand on RHS will be equal to eit∆u∞(0). It remains to prove
that

w- lim
n→∞

∫ t

0
ei(t−s)∆χRn |un(s)|p−1un(s)ds =

∫ t

0
ei(t−s)∆|v(s)|p−1v(s)ds.

Then the Strichartz bounds and well-posedness theory imply v = u∞.
Firstly, see that

w- lim
n→∞

∫ t

0
ei(t−s)∆χRn |un(s)|p−1un(s)ds = w- lim

n→∞

∫ t

0
ei(t−s)∆|un(s)|p−1un(s)ds.
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Indeed, fixing arbitrary ϕ ∈ L2(Rd), one has∣∣∣∣∣∣〈ϕ,
∫ t

0
ei(t−s)∆(1−χRn)|un(s)|p−1un(s)ds

〉∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫ t

0

〈
(1−χRn)e

−i(t−s)∆ϕ, |un(s)|p−1un(s)
〉
ds

∣∣∣∣∣∣
≤ ∥(1−χRn)e

−i(t−s)∆ϕ∥L∞L2T θ∥un∥
p
S

≲ ∥(1−χRn)e
−i(t−s)∆ϕ∥L∞L2 → 0, (3.11)

as n→∞. Hence we have reduced the problem to proving

w- lim
n→∞

∫ t

0
ei(t−s)∆|un(s)|p−1un(s)ds =

∫ t

0
ei(t−s)∆|v(s)|p−1v(s)ds

in L2. Similarly to the argument in inequality (3.11), that is exploiting that ei(t−s)∆ creates
a tight orbit {ei(t−s)∆ϕ : t ∈ [0,T ]} and ∥un∥S ≲ 1, we can reduce the last equality to the
following one

w- lim
n→∞

∫ t

0
ei(t−s)∆χR|un(s)|p−1un(s)ds =

∫ t

0
ei(t−s)∆χR|v(s)|p−1v(s)ds,

for some big enough R > 0.
Finally, the last equality follows from convergence of un to v locally in space and time∣∣∣∣∣∣〈ϕ,

∫ t

0
ei(t−s)∆χR(|un(s)|p−1un(s)− |v(s)|p−1v(s))ds

〉∣∣∣∣∣∣
≲

∥∥∥∥∥∥
∫ t

0
ei(t−s)∆χR(|un(s)|p−1un(s)− |v(s)|p−1v(s))ds

∥∥∥∥∥∥
L∞t L

2
x

≲
∥∥∥∥χR(|un(s)|p−1un(s)− |v(s)|p−1v(s))

∥∥∥∥
L1
t L

2
x

→ 0,

as n→∞ due to Remark 3.2.6.

We now turn to proving that ΦR is non-squeezing by proving the properties of the
flow allowing us to invoke Theorem 1.0.3. Following lemma concerning continuity of ΦR
is a direct corollary of the continuity of family Ψ : I ×Xr1 → Xr1 .

Corollary 3.2.8. Approximate flow (3.6) maps weakly convergent sequence of initial data into
a weakly convergent sequence, i.e. flow is continuous with respect to the weak topology on the
space of initial data L2.

Corresponding derivative DΦR at point u0 is given as an evolution map of the equation

i∂tv +∆v = χR
[p − 1

2
|u|p−3u2v̄ +

p+ 1
2
|u|p−1v

]
, (3.12)
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where v(t) := DΦR[u0](v0). In order to make sense of the statement, let us discuss the
well-posedness of (3.12). For that purpose, we can restrict ourselves to observing the
equation

i∂tv +∆v = χR|u|p−1v, (3.13)

as the right hand side of (3.12) can be bounded pointwise by C|u|p−1v. We shall denote the
time-dependent potential |u|p−1 as V . We would like to point out that one should think
of the derivative of flow (3.6) as a perturbation of the Laplacian by a rough potential V .
The proof of the continuity of DΦR then reduces to proving that potentials converge in a
suitable Lebesgue space.

Well-posedness of (3.12) follows in the same fashion as well-posedness of (3.13) by
applying triangle inequalities accordingly in the proof that follows. Duhamel’s formula
for solution v can be written as

v(t) :=DΦR[u0](v0) = eit∆v0 − i
∫ t

0
ei(t−s)∆χRV (s)v(s)ds,

where we treat the potential V as a nonlinearity.

Lemma 3.2.9. Cauchy problem for (3.13) is locally well-posed in L2(Rd) in the following sense:
There exists a positive time T > 0 depending on the norm of initial data ∥v0∥L2(Rd ),p,d and a
unique solution v = v(t,x) defined on the time interval [−T ,T ] such that

v ∈ ST :=
{
v ∈ C([−T ,T ],L2)

∣∣∣∣ v ∈ L 2(d+2)
d ([−T ,T ]×Rd)

}
.

Moreover, the evolution map DΦR[u0] : L2 −→ L2 is Lipschitz on balls of initial data with a
constant that depends on ∥v0∥L2(Rd ),p,d.

Proof. This was previously discussed in Remark 3.2.3. We remark that T depends on the
size of data, and a priori time t at which we are looking at the flow of (3.6) may be greater.
However, for the purpose of proving the next theorem, we can restrict ourselves to ball of
initial data of small scale, in order to obtain t < T .

Remark 3.2.10. Space of potentials

VT ,M =
{
χT ,M |u|p−1

∣∣∣∣ ∥u0∥L2 ≲ 1, u solves (3.5),(3.6) for initial data u0

}
is precompact in LrtL

2r
x (R ×Rd), 1 ≤ r < d+4

d(p−1) . This follows in the same manner as Remark
3.2.6.

Having made sense of DΦR(u0), we claim that

Lemma 3.2.11. Derivative DΦR : (L2(Rd), τweak) −→ (B(L2(Rd)),∥ · ∥op) is continuous.
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Proof. Continuity follows by continuity argument in Remark 3.2.3 and Remark 3.2.10,
since p

p−1 <
d+4
d(p−1) , which is equivalent to subcriticality of exponent p. Strichartz bounds

in Lemma 3.2.2, resp. Lemma 3.2.9, allow uniform treatment of terms |u|p−1, resp. v, in
(3.13).

More specifically, let un(0) ⇀u(0) be a weakly convergent sequence and un,u the cor-
responding Cauchy solutions to (3.6), similarly with potentials Vn,V . Lemma 3.2.8 im-
plies that un⇀u uniquely. Let

i∂twn +∆wn = χRVnwn,

i∂tw+∆w = χRVw,

be solutions of (3.13) for same initial data w(0) = wn(0) = w0. Denoting v = w−wn, we get

i∂tv +∆v = χRV v −wnχR(Vn −V ),

for initial data v(0) = 0. We want to prove that solutions v := [DΦT ,R(u(0))−DΦT ,R(un(0))]w0
converge to 0 uniformly on a ball of initial data that has a small radius. We note that the
Strichartz norms of wn are uniformly bounded by a constant depending on the size of
initial data, which we have fixed. Well-posedness of (3.13) gives the inequality

∥v∥X ≲
∥∥∥∥∫ T

0
S(t − s)wnχR(Vn −V )ds

∥∥∥∥
S

≲ ∥wnχR(Vn −V )∥L1
t L

2
x
≤ ∥wn∥Lpt L2p

x
∥χR(Vn −V )∥

L
p
p−1
t L

2p
p−1
x

≲ ∥χR(Vn −V )∥
L

p
p−1
t L

2p
p−1
x

.

Remark 3.2.12. Lemmata 3.2.8 and 3.2.11 imply that the flow (3.6) up to time T := T (r1 +
∥h0∥) dependent on the size of data in Br1(h0), obeys assumptions of Corollary 1.0.4. How-
ever, one can extend this result to the flow at any time t by iteration. Indeed, rewriting
Φt,R = Φt−NT ,R ◦ (ΦT ,R)N , the chain rule gives DΦt,R = DΦt−NT ,R ◦ (DΦT ,R)N . Then that
DΦt,R : (L2, τweak)→ B(L2) is continuous follows from Lemma 3.2.11, and the fact that ΦT ,R :
(L2, τweak)→ (L2, τweak) is continuous.

3.3 Mass critical NLS

Now we turn our attention to proving the non-squeezing property of mass critical defo-
cusing NLS in L2(Rd)

i∂tu +∆u = |u|
4
d u, (3.14)

that is,
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Theorem 3.3.1. Let h0, l ∈ L2 such that ∥l∥L2 = 1 and 0 < r2 < r1 < 0, α ∈ C. Then for every
time T > 0 there exists the initial data u0 ∈ Br1(h0) such that the solution u given by mass
critical NLS (3.14) satisfies

|⟨u(T ), l⟩ −α| > r2.

Equation is invariant with respect to scaling, namely if u(t,x) solves (3.14) on [0,T ]
with initial data u(0,x) = u0(x), then

λ
d
2u(λ2t,λx) (3.15)

solves (3.14) on [0, Tλ2 ] with initial data λ
d
2u0(λx). Additionally, L2(Rd) and L

2(d+2)
d (R×Rd)

norms are invariant, hence Strichartz norm ∥ · ∥S as well. Equation is Hamiltonian with
energy functional

H(u) =
1
2

∫
R
d
|∇u|2dx+

d
2(d + 2)

∫
R
d
|u|

2d+4
d dx.

defined on H : S(Rd) → R. Symplectic property of the flow (3.14) follows in the same
fashion as the one for subcritical one presented in Section 3.2.

The goal is to approximate the said flow with the truncated version introduced in
[KVZ21], following ideas of [CKS+05], and choosing a smooth frequency projector. Namely,
authors of [KVZ21] introduced the flow ΦPD

i∂tu +∆u = PD(F(PD(u))), (3.16)

where F(u) = |u|
4
d u and PD represents a Fourier multiplier mD(ξ) defined as follows: Let

ϕ : Rd → [0,1] be the bump function used in definition of Littlewood-Paley projections.
For 1 ≤D ∈ 2Z define

mD(ξ) :=
1

log2(2D)

D∑
N≥1

ϕ(ξ/N ) (3.17)

= ϕ(ξ) +
D∑
N≥2

[ log2(2D)− log2(N )
log2(2D)

]
[ϕ(ξ/N )−ϕ(2ξ/N )]

Symbol mD : Rd → [0,1] is a Mikhlin multiplier uniformly for D ≥ 1 and it is compactly
supported. Namely, mD(ξ) ≡ 1 if |ξ | ≤ 1

2 and mD(ξ) ≡ 0 if |ξ | > 2D.
Global existence theory proven in [KVZ21] relies on the critical one, which is resolved

by Dodson ([Dod16a],[Dod16b],[Dod12]), and observing solutions of (3.16) as regulariza-
tion of a solution of (3.14) or a perturbation of a linear solution. The following result is
obtained
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Theorem 3.3.2 ([KVZ21]). Given M > 0, there are constants C(M) and D0(M) so that the
following holds: For any u0 ∈ L2(Rd) with ∥u0∥L2 ≤ M and any D ≥ D0(M), there exists a
unique global solution u of the frequency truncated flow (3.16); moreover,

∥u∥S(R) ≤ C(M). (3.18)

In particular, there exist u± ∈ L2(Rd) such that

lim
t→±∞

∥u(t)− eit∆u±∥L2 = 0.

Since we only care about bounded data for concluding non-squeezing behaviour, pre-
vious theorem directly gives the lower bound for D for which we need to consider flows
(3.16). Hence in the forthcoming discussion, D will be implicitly known and fixed. Pur-
suing clarity, we shall omit D in PD , and simply write P . Moreover, we shall denote by Pn
a Fourier multiplier with symbol mD(ξ/n), n ∈R, n ≥ 1.

Finally, we want to approximate NLS (3.14) with

i∂tu +∆u = Pn(F(Pn(u))), (3.19)

on a bounded ball of initial data. The reasoning behind the choice of the flow (3.19) is
that it approximates (3.14) in weak topology as n→∞, uniformly on balls of initial data.
Then the non-squeezing property of (3.14) follows directly from one of (3.19). Uniform
weak approximation was already proven in [KVZ21], relying on (3.18) and using profile
decomposition. Specially, consideration of solutions to (3.19) with respect to n reduces
to the one of (3.16) by scaling λ(n) = 1

n . Moreover, denoting by Φ the mass-critical flow
(3.14) and by ΦPn the flow of (3.19), scaling invariance of Strichartz norm and (3.18) imply
that

max
{
∥Φ(u0)∥S ,∥ΦPn(u0)∥S

}
≲ C(∥u0∥L2),∀n ∈R. (3.20)

These observations, just like in the mass subcritical case, lead to the consideration of the
family of symplectomorphisms

Ψ : I ×L2(Rd)→ L2(Rd)

Ψ (1) := Φ

Ψ (τ) := ΦPn , τ ∈ [0,1),

where the correspondence between n ≥ 1 and τ ∈ [0,1) is obvious. It is natural to ask how
is the family defined for all data in L2 given the global existence Theorem 3.3.2 and the
existence of global solutions up to the size of initial data dependent on the truncation P .
However, frequency truncated flow (3.19) is a subcritical flow, as shall be discussed more
in details later on. This observation, coupled with the conservation of L2 norm for flows
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(3.14) and (3.19) implies the the family is well defined for all data and all times T > 0,
and we consider the continuous family

Ψ : I ×Xr1 → Xr1 .

Nevertheless, uniform Strichartz bounds of Theorem 3.3.2 are crucial for allowing the
family to be considered in the context of Theorem 1.1.1, i.e. to discuss continuity of the
family with respect to weak topology for a fixed ball Br1 .

We shall go a step further and introduce additional truncation following the idea of
the mass-subcritical case, namely space localization of the nonlinearity. More specifically,
we consider the flow ΦP ,R

i∂tu +∆u = P (χRF(P (u))). (3.21)

As in (3.14), equation (3.21) conserves the L2 norm of the solution and the energy given
by

HP ,R(u) =
1
2

∫
R
d
|∇u|2dx+

d
2d + 4

∫
R
d
χR|P (u)|

2d+4
d dx.

Equation (3.21) is Hamiltonian generated by HP ,R. It is symplectic in the same manner as
mass-subcritical NLS (3.5).

The proof of non-squeezing property of ΦP ,R (3.21) by invoking Theorem 1.0.3 shall
be the same as in Section 3.2, since this flow is subcritical (as is (3.19)), and the local
existence theory will allow to prove the continuity of the derivative in an easier way.
Consequently, we shall introduce the family of symplectomorphisms in the same spirit as
the one in Section 3.2

Ψ̃P : I ×L2(Rd)→ L2(Rd)

Ψ̃P (1) := ΦP

Ψ̃P (τ) := ΦP ,R, τ ∈ [0,1),

where R ≥ 1 and τ ∈ [0,1) correspond in an obvious way, which will imply the non-
squeezing property of ΦP (3.19).

We remark that the global theory of frequency truncated flow (3.19) developed in
[KVZ21] is necessary in order to obtain uniform bounds for the truncated flows and re-
duce non-squeezing of NLS (3.14) to the one of (3.19) via the family Ψ , but for the sake
of proving that ΦPn (3.19) is non-squeezing, local existence theory shall suffice for estab-
lishing it via family Ψ̃ , as expected due to Section 3.2.

Firstly, let us prove the compactness of all solutions to NLS (3.14) and frequency trun-
cated flow (3.19) with bounded initial data in a suitable mixed-norm space. We consinder
initial data u0 such that ∥u0∥L2 ≲ 1 and subsequent P = PD , where D is given by Theorem
3.3.2. We define the set

MT ,M =
{
χT ,MΦ(u0),χT ,MΦPn(u0)

∣∣∣∣ ∥u0∥L2 ≲ 1
}
, (3.22)
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for all n ∈ R and any finite smooth space-time localization χT ,M on [−T ,T ] × B(0,M) ⊂
R×Rd . Similarly to sub-critical case, we shall restrict ourselves to the case d ≤ 4, for the
sake of clarity of exposition.

Lemma 3.3.3. The setMT ,M is precompact in Lr(R×Rd), for r ∈ [1, 2(d+2)
d ).

Proof. Precompactness in L2
t,x follows directly by applying Lemma 3.2.4 . Indeed, uniform

boundedness follows directly from uniform Strichartz bounds (3.20). Equicontinuity fol-
lows from Lemma 3.1.5 and uniform Strichartz bounds (3.20). Tightness is implicit in
space-time localization χT ,M .

Precompactness in Lr for general r follows by interpolation with respect to uniform
Strichartz bounds (3.20) and Hölder inequality.

Remark 3.3.4. Precompactness ofMT ,M implies precompactness of the set

NT ,M =
{
χT ,M |u|p−1u

∣∣∣∣ ∥u0∥L2 ≲ 1, u solves (3.14),(3.19) for initial data u0

}
in Lrt,x, 1 ≤ r < 2(d+2)

d+4 , just like in the subcritical case, and Strichartz bounds (3.20).

These observations imply the following

Lemma 3.3.5. Family Ψ : I ×Xr1 → Xr1 is continuous.

Proof. Just like in Section 3.2, we distinguish two cases coming from the continuity in the
first variable in I - τ→ 1 (n→∞) and τn→ τ < 1 (mn→m ∈R). We prove the continuity
only in the former case, which is the harder case, coupled with a convergent sequence in
the metric space (Xr1 ,dw). We omit the proof of the easier case, as it follows with minor
adjustments of the following proof and hence is obvious. The only difference is the fact
thatmn→m ∈R corresponds to scaling, and hence the convergence of Fourier multipliers
mD(ξ/mn)→mD(ξ/m) (Pmn

→Pm in strong operator topology).
Let n→∞ and un(0),u(0) ∈ Br1 be a sequence of initial data such un(0) ⇀ u(0) in L2.

We want to prove that then

un := ΦPn(un(0))⇀u := Φ(u(0)).

Since initial data un(0) is bounded, the sequence un converges due to precompactness
ofMT ,M , hence there exists v such that, after passing to a subsequence,

lim
n→∞

∥un − v∥Lr ([0,T ]×BM ) = 0,

for 1 ≤ r < 2(d+2)
d , fixed T > 0 and any M > 0. Moreover, this implies that un(t)⇀v(t) in L2

for almost every t ∈ [−T ,T ]. Uniform Strichartz bounds for un imply that

∥v∥L∞L2 + ∥v∥
L

2(d+2)
d
≲ 1,
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hence, per Remark 3.3.4,

lim
n→∞

∥∥∥χT ,M |un|p−1un −χT ,M |v|p−1v
∥∥∥
Lrt,x

= 0, 1 ≤ r < 2(d + 2)
d + 4

,

and

|un|p−1un⇀ |v|p−1v in Lrt,x, 1 ≤ r ≤ 2(d + 2)
d + 4

. (3.23)

We observe Duhamel’s formula

un(t) = eit∆un(0)− i
∫ t

0
ei(t−s)∆Pn(F(Pn(un)))ds

and look at the weak limit of this equality. On the LHS we have v and the first summand
on RHS will be equal to eit∆u(0). It remains to prove that

w- lim
n→∞

∫ t

0
ei(t−s)∆Pn(F(Pn(un)))ds =

∫ t

0
ei(t−s)∆F(v)ds.

Then, as RHS of above Duhamel’s formula is continuous with respect to time, after chang-
ing v at a set of measure zero to make it continuous with respect to time in L2, Strichartz
bounds and well-posedness theory imply v = u.

Firstly, see that

w- lim
n→∞

∫ t

0
ei(t−s)∆Pn(F(Pn(un)))ds = w- lim

n→∞

∫ t

0
ei(t−s)∆F(P (un))ds.

Indeed, fixing arbitrary ϕ ∈ L2(Rd), and without loss of generality assuming that ϕ ∈ S ,
one has∣∣∣∣∣∣〈ϕ,

∫ t

0
ei(t−s)∆(1−Pn)F(Pn(un))ds

〉∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫ t

0

〈
(1−Pn)e−i(t−s)∆ϕ,F(Pn(un))

〉
ds

∣∣∣∣∣∣
≤ ∥(1−Pn)e−i(t−s)∆ϕ∥

L
2(d+2)
d
∥F(Pn(un))∥

L
2(d+2)
d+4

≲ ∥(1−Pn)e−i(t−s)∆ϕ∥
L

2(d+2)
d
→ 0, (3.24)

as n→∞. Hence we have reduced the problem to proving

w- lim
n→∞

∫ t

0
ei(t−s)∆F(Pn(un))ds =

∫ t

0
ei(t−s)∆F(v)ds

in L2. Since ∥Pnv∥
L

2(d+2)
d
≲ ∥v∥L2

x
≲ 1 and ∥F(Pnv) − F(v)∥

L
2(d+2)
d+4
≲ ∥(1 − Pn)v∥

L
2(d+2)
d
→ 0, as

n→∞, the proof reduces to

w- lim
n→∞

∫ t

0
ei(t−s)∆F(Pnun)ds =

∫ t

0
ei(t−s)∆F(Pnv)ds.
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Similarly to the argument in inequality (3.24), that is exploiting that ei(t−s)∆ creates a tight
equicontinuous orbit {ei(t−s)∆ϕ : t ∈ [0,T ]} and ∥un∥S ≲ 1, we can reduce the last equality
to the following one

w- lim
n→∞

∫ t

0
ei(t−s)∆χRF(Pnun)ds =

∫ t

0
ei(t−s)∆χRF(Pnv)ds.

for some big enough R > 0. However,∥∥∥∥χR(Pnun −Pnv)∥∥∥∥
L2
t,x

≲ ∥χ2R(un − v)∥L2
t,x

+ (nR)−1
{
∥un∥L2

t,x
+ ∥v∥L2

t,x

}
,

and ∥Pnun∥
L

2(d+2)
d
≲ ∥un∥L2

x
≲ 1, thus lim

n→∞

∥∥∥χT ,R(Pnun − Pnv)
∥∥∥
Lrt,x

= 0, 1 ≤ r < 2(d+2)
d . Then

similarly to (3.23)

lim
n→∞

∥∥∥χT ,RF(Pnun)−χT ,RF(Pnv)
∥∥∥
Lrt,x

= 0, 1 ≤ r < 2(d + 2)
d + 4

,

and

F(Pnun)⇀F(Pnv) in Lrt,x, 1 ≤ r ≤ 2(d + 2)
d + 4

, (3.25)

which finishes the proof since ϕ ∈ S .

We now turn to proving that ΦPn (3.19) has non-squeezing property. We omit n in Pn
in the following, as it plays no role. In contrast to previous exposition, where we relied
heavily on uniform Strichartz bounds with respect to the frequency truncation (3.20), and
which hold globally in time, the proof of non-squeezing of flow (3.19) will rely heavily on
local well-posedness, as we will treat it as what it is - a subcritical flow. Firstly,

Lemma 3.3.6. Let u0 ∈ L2(Rd) such that ∥u0∥L2 ≲ 1. Then there exists a unique global solu-
tion u : R ×Rd → C to the approximate flows (3.19) and (3.21) with initial data u(0) = u0.
Additionally, for any T > 0

∥u∥S ≲T 1, and
∥∥∥|u|p−1u

∥∥∥
L1
t L

2
x
≲T 1.

Proof. Subcriticality of (3.19) and (3.21) follows from the observation that the following
inequalities hold

∥P (u)∥L∞ ≤P ∥u∥L2 ,

∥P (u)∥L2 ≤ ∥u∥L2 ,
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and interpolating these bounds. Then, observing the Strichartz norms for the nonlinearity∥∥∥∥∫ T

0
S(t − s)P (χRF(P (u)))ds

∥∥∥∥
S
≤ ∥P (χRF(P (u)))∥L1L2 ≤ ∥F(P (u))∥L1L2

≤ T ∥F(P (u))∥L∞L2 = T ∥P (u)∥
d+4
d

L∞L
2(d+4)
d

≲P T ∥u∥
d+4
d

L∞L2 ≲P T ∥u∥
d+4
d
S ,

local well-posedness follows directly, and global well-posedness from the conservation of
L2 norm.

The approach we will take then will be essentially the same as the one in previous
Section 3.2, which comes as no surprise due to subcritical nature. Denote by

MPT ,M =
{
χT ,MΦP (u0),χT ,MΦP ,R(u0)

∣∣∣∣ ∥u0∥L2 ≲ 1
}
,

for any finite smooth space-time localization χT ,M on [0,T ] × B(0,M) ⊂ R ×Rd . We omit
the proof of the following lemma, as it follows by the same arguments as the proof of
Lemma 3.2.5.

Lemma 3.3.7. The setMPT ,M is precompact in Lr(R×Rd), for r ∈ [1, 2(d+2)
d ).

As it will be of use in forthcoming proofs due to recurring terms of type Pu, the set

Lemma 3.3.8.

M̃PT ,M =
{
χT ,MPΦP (u0),χT ,MPΦP ,R(u0)

∣∣∣∣ ∥u0∥L2 ≲ 1
}

is precompact in Lrt,x(R×Rd) for 1 ≤ r <∞.

Proof. For clarity sake, we shall only pay attention to solutions of (3.21), denoting them
by u. Since ∥u∥S ≲P 1, then Pu ∈ Lrt,x([0,T ]×Rd) for 2 ≤ r ≤∞. Tightness follows directly
via space-time localization χT ,M . Equicontinuity once again follows directly from Lemma
(3.1.5) and Lemma 3.3.6.

Then lemma 3.2.4 ensures precompactness in stated Lebesgue space. Range 1 ≤ r ≤ 2
follows from previous bounds and Hölder inequality.

Remark 3.3.9. As a consequence, if un converges u due to precompactness ofMPT ,M , then it also
converges weakly in L2

t,x, which combined with the fact that P is bounded linear operator, means
that Pun⇀ Pu in L2

t,x. However, precompactness of M̃PT ,M then implies that χMPun→ χMPu
in Lrt,x, 1 ≤ r <∞.

Previous observations imply
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Corollary 3.3.10. Precompactness of M̃PT ,M implies that

N PT ,M =
{
χT ,M |Pu|p−1Pu

∣∣∣∣ ∥u0∥L2 ≲ 1, u solves (3.19),(3.21) for initial data u0

}
is precompact in L1

t L
2
x.

Corollary 3.3.10 is the analogue of precompactness of nonlinearities in the subcritical
case covered in Remark 3.2.6, adjusted to the nonlinearity of the flow ΦP (3.19), and as
result implies in the same manner that

Lemma 3.3.11. Family Ψ̃ : I ×Xr1 → Xr1 is continuous.

Proof. The proof is exactly the same as the one for Lemma 3.2.7 with obvious adjustments
for frequency projection in the nonlinearity (rewriting Pu instead of u), whilst relying on
the compactness of space localized solutions of equations (3.21) and (3.19), i.e. the set
MPT .M , and nonlinearitiesN PT ,M .

Finally, let us prove that flow given by (3.21) fulfills assumptions of Corollary 1.0.4.
Following lemma is a direct corollary of the continuity of family Ψ̃ : I ×Xr1 → Xr1 .

Lemma 3.3.12. Space-frequency truncated flow ΦP ,R (3.21) maps weakly convergent sequence
of initial data into a weakly convergent sequence, i.e. flow is continuous with respect to weak
topology on space of initial data L2.

Similarly to Section 3.2, derivative of the flow (3.21)

u(t) := ΦP ,R(u0) = eit∆u0 − i
∫ t

0
ei(t−s)∆P (χR|Pu(s)|

4
d Pu(s))ds.

at point u0 is given by

i∂tv +∆v = PχR
[p − 1

2
|Pu|p−3(Pu)2P v̄ +

p+ 1
2
|Pu|p−1Pv

]
, (3.26)

where p = 4
d + 1 is the critical exponent. Well-posedness theory of (3.26) and reduction to

simply observing

i∂tv +∆v = PχR
[
|Pu|p−1Pv

]
, (3.27)

holds in the same manner as in the previous section. Likewise, same holds for iterating
the flow up to a desired time, by applying the time obtained by well-posedness theory
dependent on the size of ball of data. Denote by V := |Pu|p−1.

Lemma 3.3.13. Derivative DΦP ,R : (L2, τweak)→ (B(L2),∥ · ∥op) is continuous.
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Proof. Let un(0) ⇀ u(0) be a weakly convergent sequence and un,u the corresponding
Cauchy solutions to (3.21), similarly with potentials Vn,V . Let

i∂twn +∆wn = PχR[VnPwn],

i∂tw+∆w = PχR[VPw],

be solutions of (3.26) for same initial data w(0) = wn(0) = w0. Denoting v = w −wn, for
initial data v(0) = 0, we get

i∂tv +∆v = PχR[VPv] +PχR[(Vn −V )Pwn],

We want to prove that solutions v := [DΦT ,R(u(0)) −DΦT ,R(un(0))]w0 converge to 0 uni-
formly on a ball of initial data that has a small radius. We note that the Strichartz norms
of wn are uniformly bounded by a constant depending on the size of initial data, which
we have fixed. Well-posedness of (3.27) and Lemma 3.3.8 gives the inequality

∥v∥X ≲
∥∥∥∥∫ T

0
S(t − s)PχR[(Vn −V )Pwn]ds

∥∥∥∥
S

≲ ∥PχR[(Vn −V )Pwn]∥L1
t L

2
x

= ∥χR[(Vn −V )Pwn]∥L1
t L

2
x

≤ ∥Pwn∥L∞t,x∥χR(Vn −V )∥L1
t L

2
x
≲P ∥wn∥L∞L2∥χR(Vn −V )∥L1

t L
2
x
,

completing the proof.

3.4 KdV on the torus

We turn to proving the non-squeezing property of the KdV flow on T = R/2πZ

∂tq = −qxxx + 6qqx (3.28)

in H
− 1

2
0 (T ) = {q ∈H−

1
2 (T ) : q̂(0) :=

∫
T
qdx = 0}, namely

Theorem 3.4.1. Let T > 0, 0 < R < r < ∞, α ∈ C and h0 ∈ H−
1
2 (T ), l ∈ H

1
2 (T ) such that

∥l∥
H

1
2

= 1. Then there exists u0 ∈ Br(h0) := {h ∈ H−
1
2

0 : ∥h − h0∥H− 1
2
≤ r} such that the corre-

sponding solution u(T ) of KdV (3.28) satisfies

|⟨u(T ), l⟩ −α| > R.

KdV is Hamiltonian with respect to the Poisson structure defined by

{F,G} :=
∫
δF
δq

∂
∂x

(
δG
δq

)
dx.
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for F,G : C∞→R, and functional

HKdV (q) =
∫
T

1
2
q2
x + q3dx.

For future reference, another important Hamiltonian is momentum

P (q) :=
1
2

∫
|q|2dx,

which generates translations. Moreover, P and HKdV Poisson commute {P ,HKdV } = 0, i.e.
one quantity is preserved under the flow generated by another one, and as a consequence
the flows generated by them commute, at least for data in C∞.

Given Poisson structure is degenerate due to existence of Casimir function q 7→
∫
q.

Poisson structure is defined via almost complex structure J = ∂x, which is degenerate

as well, and L2 product. Motivated by this, choice of space of initial data H
− 1

2
0 leads to

restricting the flow to symplectic leaf on which J becomes non-degenerate, meaning we

obtain the symplectic form ω− 1
2

:H
− 1

2
0 ×H

− 1
2

0 →C given by

ω− 1
2
(u,v) :=

∫
T

u(x)∂−1
x v(x)dx, (3.29)

and where ∂−1
x :H

− 1
2

0 (T )→H
1
2

0 (T ) is the inverse to the differential operator ∂x defined via
Fourier transform by

̂∂−1
x f (k) :=

1
ik
f̂ (k), k , 0.

Operator ∂−1
x is well-defined since f̂ (0) = 0 for all f ∈ H−

1
2

0 (T ). Moreover, for a real func-
tion u, û(k) = û(−k), k ∈N. Plancherel theorem then allows us to rewrite (3.29) as

ω− 1
2
(u,v) =

∞∑
k=−∞,k,0

û(−k)
1
ik
v̂(k)

=
∞∑
k=1

1
ik

(û(−k)v̂(k)− û(k)v̂(−k))

=
∞∑
k=1

2
k

(Im(v̂(k)û(k))) (3.30)

In contrast to previously discussed NLS, the underlying symplectic space (and the form
itself) is not the standard one. However, having statement of non-squeezing Theorem
1.0.3 in mind and motivated by (3.30), this can be readily solved by observing a bounded
linear symplectomorphism

S :H
− 1

2
0 (T ) −→ l2(Z∗),
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given by

S(eikx) =
1
√
k
ek , k , 0,

where H := l2(Z∗) has orthonormal basis {ek}k∈Z∗. That is, S is rescaling the corresponding
basis vectors. Conjugation of the flow ΦKdV with S

Φ := S ◦ΦKdV ◦ S−1 : H −→H,

gives a symplectomorphism that preserves the standard symplectic form on H, and due
to linearity of S, analyzing properties of the flow ΦKdV is equivalent to the one of Φ .
Hence, it suffices to prove the weak continuity properties of ΦKdV in order to conclude its
symplectic non-squeezing behaviour.

Well-posedness in H−1 was initially obtained in [KT06]. However, key strategy in
our proof is based on an approach of Killip and Visan [KV19] on well-posedness in H−1.
Well-posedness at that regularity is proven by observing an approximation of KdV flow
inH−1 norm, uniformly on precompact sets of initial data. Namely, the authors of [KV19]
introduce family of Hamiltonians Hκ, which Poisson commute with HKdV

{HKdV ,Hκ} = {P ,Hκ} = {HKdV , P } = 0

and for which the asymptotic expansion holds

Hκ(q) =HKdV (q) +O(κ−2), for q ∈ C∞.

The choice of Hamiltonian Hκ is motivated by integrable nature of KdV and associated
Lax pair

L(t) := −∂2
x + q(t,x) and P (t) := −4∂3

x + 3(∂xq(t,x) + q(t,x)∂x).

Choosing κ ≥ 1 and defining resolvent

R0(κ) = (−∂2
x +κ2)−1,

they prove that quantity

α(κ,q) :=
∞∑
l=2

(−1)l

l
Tr

{(√
R0q

√
R0

)l}
,

gives important information about high frequency part ofH−1 norm, proving to be essen-
tial for obtaining well-posedness of KdV at that regularity. The series converges provided
that κ−

1
2 ∥q∥H−1 ≤ δ for some δ > 0. We adopt the notation from [KV19]

Bδ,κ := {q ∈H−
1
2 (T ) : κ−

1
2 ∥q∥H−1 ≤ δ}.
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More specifically, they prove that the analytic flow (eq. (3.11) in Proposition 3.2,
[KV19]), denoted by ΦKdV

κ ,

∂tq = 16κ5g ′(x,κ,q) + 4κ2q′ , (3.31)

generated by Hamiltonian

Hκ(q) := −16κ5α(κ,q) + 4κ2P (q), (3.32)

approximates KdV flow on H−1, uniformly on precompact set of initial data, for κ ≥ 1
large. Here g(x,κ,q) denotes the diagonal part of continuous integral kernel G(x,y,κ,q)
associated with the resolvent R := (L+ κ2)−1, which is a Hilbert-Schmidt operator. More-
over, [KV19] shows that g : Bδ,κ → H1 is a diffeomorphism. Functional derivative is de-
fined using the L2 pairing, namely

d
dθ

∣∣∣∣∣
θ=0

F(f1 +θf2) =
〈
δF
δq

(f1), f2

〉
L2

.

In order to make notation simpler, in the following we denote ΦKdV ,ΦKdV
κ by Φ ,Φκ. Cru-

cially, [KV19] shows that for a precompact set of data Q ⊂H−1 ∩C∞

lim
κ→∞

sup
u0∈Q
∥Φ(u0)−Φκ(u0)∥H−1 = 0.

Approximation suggests that non-squeezing property of (3.28) could follow from one of
(3.31). Both flows are analytic ([CKS+03], [KV19] resp.). As we shall see in the following,
dealing with weak topology (which seems to be omnipresent in non-squeezing approach)
will not be an issue due to compactness of embedding H−

1
2 (T ) ↪→ H−1(T ), and being

able to push the initial data down to the sharp regularity for which we have the well-
posedness.

We remark that in the rest of the section we shall be discussing flows (3.28) and (3.31)
for mean-zero functions, and will be using non-homogeneous Sobolev norms. However,
both are not an issue due to the fact that both flows are mean-preserving and equivalence

of homogeneous and non-homogeneous Sobolev norm on H
− 1

2
0 (T ).

Choosing κ ≥ 1 big enough allows the following exposition to be well-defined in accor-
dance with g : Bδ,κ ⊂ H−1→ H1 being defined for suitable data. For the sake of Theorem
3.4.1, we can assume without loss of generality that the ball is centered around 0 as trans-
lations are symplectomorphisms, and observe that then we are only interested in initial
data in a ball of fixed radius r, which directly imposes bounds on δ. Indeed, restricting
to set of data with H−

1
2 norm at most r, one only needs to consider κ such that

√
κ ≥ r

δ .
However, the problem with concluding non-squeezing property of the flow Φκ (3.31) by
trying to prove assumptions of Theorem 1.0.3 is that the flow itself is not defined for all
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data in H−
1
2 , but rather for data in Bδ,κ. We overcome this difficulty by defining a smooth

symplectic flow Φ̃κ on H−
1
2 whose restriction to a ball Bδ,κ is the flow Φκ (3.31). Specifi-

cally, without going into rigorous details for the time being, the flow Φ̃κ will be generated
by a Hamiltonian

H̃κ = ηα + 4κ2P ,

where η is such a function that ensures that H̃κ is well defined for all data in H−
1
2 .

Just like in the NLS case, κ introduces a family of symplectomorphisms indexed by√
κ ≥ r

δ , or equivalently, by set [0,1). Endpoint 1 of I = [0,1] corresponds to the KdV flow
(3.28). We define the family of symplectomorphisms

Ψ : I ×H−
1
2

0 (T )→H
− 1

2
0 (T )

Ψ (1) = ΦKdV

Ψ (τ) = Φ̃κ, τ ∈ [0,1).

Global well-posedness of KdV and Φκ (3.31) obtained in [KV19] leads to consideration of
family

Ψ : I ×Xr → Xcr ,

where Xr denotes the ball Br from Theorem 3.4.1, endowed with weak topology, and the
constant c is given by well-posedness result [KV19] (and is independent of κ). We will
justify the choice of this family soon via explicit construction of Φ̃κ, which will show
that Φ̃κ is indeed an extension of Φκ for all times on ball of initial data Br . All these
observations reduce the proof of non-squeezing of KdV in the context of Theorem 1.1.1,
for which we will have to prove that the constructed family Ψ satisfies its assumptions.

Now we turn our attention to the extension of Φκ (3.31), which we denoted by Φ̃κ.
Define Hamiltonian

H̃κ(q) = H̃(κ,q) := −16κ5η(κ−1∥q∥2H−1)α(κ,q) + 4κ2P (q), (3.33)

where η : [0,∞)→ [0,1] is a smooth cut-off such that η ≡ 1 on [0, δ2 ] and η ≡ 0 on [δ,∞).

Note that functional derivative of f (q) := η(κ−1∥q∥2H−1) :H−
1
2 →R is given by

δf

δq
:= 2κ−1η′(κ−1∥q∥2H−1)B2(q),

where B2(f ) := F −1[(1 + ξ2)−1f̂ (ξ)]. Moreover, B2 is a bounded linear map that gives two
derivative of regularity to initial data, i.e. B2 : H s → H s+2 for every s ∈ R. Equation
generated by Hamiltonian H̃κ (3.33) is then given by

∂tq = 16κ4
[
κη(κ−1∥q∥2H−1)g(x,κ,q) + 2η′(κ−1∥q∥2H−1)α(κ,q)B2(q)

]′
+ 4κ2q′ . (3.34)
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Denote by F : [1,∞)×H−1→H1 the smooth map

F(κ,q) := 16κ5η(κ−1∥q∥2H−1)g(x,κ,q) + 32κ4η′(κ−1∥q∥2H−1)α(κ,q)B2(q).

F is indeed smooth, since g,α : [1,∞) × Bκ,δ ⊂ [1,∞) ×H−1 → H1 are analytic and B2 :
H s → H s+2 is a bounded linear operator for every s ∈ R. In particular, for any κ ≥ 1,
Fκ := F(κ, ·) :H−1→H1. Denoting by ι :H−

1
2 →H−1 the compact embedding, one rewrites

flow Φ̃κ (3.34) as
∂tq = [Fκ ◦ ι(u)]′ + 4κ2q′ .

Term 4κ2q′ coming from momentum P (q) generates translations, hence it is an unitary
linear operator on H−

1
2 , which we shall denote by Lκ(t)(q(x)) := q(x + 4κ2t). Equivalently,

solution to (3.34) is then given by Duhamel’s formula

Φ̃κ(q(0)) := q(t,x) = Lκ(t)q(0) +
∫ t

0
Lκ(t − s)[Fκ ◦ ι(q)]′ds (3.35)

Notice that similarly to the case of Lemma ??, we do not have to care about which time t
we are fixing, since composition of flows that are defined up to a time dependent on the
size of the data preserves all analytic and symplectic properties we need. Firstly, we shall
start with well-posedness theory

Lemma 3.4.2. Approximate flow Φ̃κ (3.34) is globally well-posed in H−
1
2 .

Proof. Local well-posedness, both in H−1 and H−
1
2 , follow from the fact that H̃κ is smooth

with respect to both norms, hence the functional derivative ∂H̃κ
∂q is Lipschitz on bounded

sets of data. Existence follows directly by applying fixed point argument.
Global well-posedness in H−

1
2 follows from one in H−1. Namely, local well-posedness

in H−1 gives time of existence depending on the size of initial data in H−1. Having the
definition of flow Φ̃κ in mind, this creates a dichotomy. In the case of initial data u0
which is above threshold ∥u0∥H−1 >

√
κδ, dynamics of Φ̃κ is governed by momentum P ,

which generates translations Lκ. This operator is unitary, hence solution with such data is
global. Otherise, when ∥u0∥H−1 ≤

√
κδ, local well-posedness of Φ̃κ gives iteration in time

depending only on κ,δ. This allows for infinite, if needed, iteration in time, leading to
global well-posedness as well.

Lemma 3.4.3. For a ball of initial data Br ⊂H
− 1

2
0 , there exists κ0 depending on r such that for

all κ ≥ κ0, Φ̃κ is an extension of Φκ on ball of data Br , for all times T > 0, and∥∥∥Φ̃κ,T (q0)
∥∥∥
H−

1
2
≲r 1, ∀q0 ∈ Br . (3.36)

Consequently, Φ̃κ approximates KdV as well, that is for Q = Br ∩C∞ one has

lim
κ→∞

sup
u∈Q

sup
t≤T
∥Φt(u)− Φ̃κ,t(u)∥H−1 = 0. (3.37)
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Proof. Flows preserving α(κ, ·), for all κ greater than some fixed value κ0, have a priori
bound based on initial data (see Theorem 2.4, [KVZ18]). Namely, authors of [KVZ18]
prove that for initial data q(0) and a global, in the sense for all time, trajectory q(t) ∈H−1,
along which d

dtα(κ,q(t)) = 0 for all κ ≥ κ0 := 1 + 90∥q(0)∥H−1 , the bound

∥q(t)∥H−1 ≤ 40κ2
0∥q(0)∥H−1

holds. Even more so, same holds for higher regularity

∥q(t)∥H s ≲ (1 + 90∥q(0)∥H−1)|s|∥q(0)∥H s ≲∥q(0)∥Hs 1

(−1 ≤ s < 0), as shown in the same theorem. As shown in [KV19], Φκ on Bκ,δ preserves
α(κ1) for all κ1 greater than some fixed value depending on κ and δ.

In our particular case, as we are only interested in data such that ∥q(0)∥
H−

1
2
≤ r, we can

pick κ0 so that (40κ2
0)−1κ−

1
2 ∥Φκ(q(0))∥H−1 ≤ κ−

1
2 r ≤ δ, for all κ ≥ κ0. This ensures that for

q(0) ∈ Br and for all time T > 0, η(κ−1∥Φ̃(q(0))∥2H−1) ≡ 1. Hence Φ̃κ

∣∣∣
Br

= Φκ for all κ ≥ κ0

and (3.36) holds.
Embedding Q := Br ∩C∞ ⊂ H−

1
2 into H−1 creates an equicontinuous set with respect

to H−1 norm topology. The limit

lim
κ→∞

sup
u∈Q

sup
t≤T
∥[Φt(Φκ,t)−1]u −u∥H−1 = 0,

holds, as proven in [KV19] for any bounded equicontinuous set Q of Schwartz data in
H−1. Since Φ̃κ|Q ≡ Φκ for big enough κ, approximation (3.37) holds.

Henceforth, when talking about κ, we shall always assume that it is greater that κ0
given by previous lemma. This directly implies how the family Ψ is defined, but as previ-
ously mentioned, this is fine with application to Theorem 1.1.1 in mind and the constants
appearing in it.

Lemma 3.4.4. Family Ψ : I ×Xr → Xcr is continuous.

Proof. The constant c is given by global bounds (3.36) of Lemma 3.4.3. For continuity
discussion we shall fix arbitrary l ∈ H

1
2 such that ∥l∥

H
1
2
≤ 1. Density argument allows to

assume without the loss of generality that l ∈ C∞, since for any ε > 0 there exists l̃ ∈ C∞
such that ∥l − l̃∥

H
1
2
< ε. Similarly, for any initial data q0 ∈ Xr we may assume that q0 ∈ C∞

since the well-posedness of KdV (3.28) and Φ̃κ (3.34) imply that for any ε > 0 and every

τ ∈ I exists q̃0 ∈H
− 1

2
0 such that ∥Ψτ (q0)−Ψτ (q̃0)∥

H
− 1

2
0

< ε.

We distinguish two cases of continuity in the I variable - first one is the endpoint
τn→ 1 (κn→∞), which corresponds to Φ̃κ convergence to KdV, and the second one when
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τn→ τ < 1 (κn→ κ <∞). Regardless of this dichotomy, we shall always have a sequence

qn(0,x)→ q(0,x) in Xr , that is qn(0,x)⇀q(0,x) in H
− 1

2
0 . Then qn(0,x)→ q(0,x) in H−1, and

hence the sequence is a precompact set in H−1.
Regarding the first case, let κn→∞. Since∣∣∣〈Ψ (1,q(0))−Ψ (τn,qn(0)), l

〉∣∣∣ =
∣∣∣〈Φ(q(0))− Φ̃κn(qn(0)), l

〉∣∣∣
≤ ∥Φ(q(0))− Φ̃κn(qn(0))∥H−1∥l∥H1

≲
∥∥∥Φ(q(0))−Φ(qn(0))

∥∥∥
H−1 +

∥∥∥Φ(qn(0))− Φ̃κn(qn(0))
∥∥∥
H−1 ,

well-posedness of KdV and (3.37) imply that Φ̃κn(qn(0))→ Φ(q(0)) in Xcr .
Regarding the second case, κn → κ, we can equivalently observe the closed interval

τ ∈ I ⊂ I\{1} (corresponding finite closed interval Ĩ such that κ ∈ Ĩ) and the compact set
I ×Xr . Recall that for τ ∈ I

Ψ (τ,q0) = Φ̃κ(q0) := q(κ,t) = Lκ(t)q0 +
∫ t

0
Lκ(t − s)[F(κ, ι(q))]′ds.

That the time t in the formula of Ψ makes sense and that it is continuous as a map Ψ :
I×H−1→H−1 follows from the boundedness of Ĩ , smoothness of the Hamiltonian H̃(κ,q) :
Ĩ×H−1→R and the fact that the gradient ∇H̃(κ,q) is Lipschitz on bounded balls of data in
H−1, with Lipschitz constant independent of κ. Since qn(0)→ q(0) in H−1, Ψ (τn,qn(0))→
Ψ (τ,q(0)) in H−1 and∣∣∣〈Ψ (τn,qn(0))−Ψ (τ,q(0)), l

〉∣∣∣ ≤ ∥Ψ (τn,qn(0))−Ψ (τ,q(0))∥H−1∥l∥H1

conclude the proof.

We now turn to proving that Φ̃κ (3.34) is non-squeezing in the sense of Theorem 1.0.3.

Lemma 3.4.5. Nonlinear flow Φ̃κ (3.34) is continuous with respect to weak topology in H
− 1

2
0 .

Proof. Let qn(0,x)⇀q(0,x) inH
− 1

2
0 . Then qn(0,x)→ q(0,x) inH−1. Local well-posedness of

(3.34) in H−1 implies that qn(t)→ q(t) uniformly in time on [0,T ] in H−1 norm topology.

That qn(t)⇀q(t) in the weak sense H
− 1

2
0 then follows from strong convergence in H−1 and

density argument for functionals being represented by functions of C∞ regularity.

Derivative of Φ̃κ (3.34) at point q0 and solution q is given by the equation

∂tv = [DFκ ◦ ι(q)v]′ + 4κ2v′ , (3.38)
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or, equivalently, by Duhamel’s formula

v(t) :=DΦ̃κ[q0]v(0) = Lκ(t)v0 +
∫ t

0
Lκ(t − s)

[
[DFκ ◦ ι(q)]v

]′
ds. (3.39)

In order to make sense of the derivative flow, one has to prove that it is well-posed inH−
1
2 .

This readily follows from

∥v∥
H−

1
2
≤ ∥v(0)∥

H−
1
2

+
∫ t

0
∥
[
[DFκ ◦ ι(q(s))]v(s)

]′
∥
H−

1
2

≤ ∥v(0)∥
H−

1
2

+
∫ t

0
∥[DFκ ◦ ι(q(s))]v(s)∥H1

≤ ∥v(0)∥
H−

1
2

+ t∥DFκ ◦ ι(q)∥
B(H−

1
2 ,H1)
∥v∥

H−
1
2
,

and the fact that Fκ is smooth. These inequalities give existence up to a time depending
on the size of data v(0), but we can obviously iterate up to any finite time T by applying
the well-defined flow, as the data blows up at most exponentially.

We can now prove the weak continuity of the derivative of flow (3.34) and conclude
non-squeezing property of Φ̃κ

Lemma 3.4.6. Derivative DΦ̃κ : (H−
1
2 , τweak) −→ (B(H−

1
2 ),∥ · ∥op) is continuous.

Proof. Let qn(0) ⇀ q(0) in H−
1
2 , and let qn,q be corresponding Cauchy solutions of (3.34).

Well-posedness of (3.34) in H−1 gives uniform convergence of ∥qn−q∥H−1 on [0,T ]. Let wn
and w be solutions of (3.38) with the same initial data w(0).

∂twn =
[
[DFκ ◦ ι(qn)]wn

]′
+ 4κ2w′n,

∂tw =
[
[DFκ ◦ ι(q)]w

]′
+ 4κ2w′ .

We want to prove that as n→∞, vn := wn −w goes to 0. Previous equations give

∂tvn =
[
(DFκ ◦ ι(qn)−DFκ ◦ ι(q))wn

]′
+
[
DFκ ◦ ι(q)vn

]′
+ 4κ2v′n.

Writing down Duhamel’s formula we get

vn(t) =
∫ T

0

[
DFκ ◦ ι(q)vn

]′
ds+

∫ T

0

[
(DFκ ◦ ι(qn)−DFκ ◦ ι(q))wn

]′
ds.

Once again, scaling with respect to q and correspondingly rescaling the data w0 up to a
fixed constant allows us to move the first summand on RHS to LHS and enables us to
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directly obtain the bound on norm of difference of derivatives

∥v(t)∥
H−

1
2
≲

∥∥∥∥∫ T

0

[
(DFκ ◦ ι(qn)−DFκ ◦ ι(q))wn

]′
ds

∥∥∥∥
H−

1
2

≲T sup
t∈[0,T ]

∥∥∥∥[(DFκ ◦ ι(qn)−DFκ ◦ ι(q))wn
]′∥∥∥∥

H−
1
2

≲T sup
t∈[0,T ]

∥∥∥∥(DFκ ◦ ι(qn)−DFκ ◦ ι(q))wn
∥∥∥∥
H1

≲T sup
t∈[0,T ]

∥(DFκ ◦ ι(qn)−DFκ ◦ ι(q))∥
B(H−

1
2 ,H1)
∥wn∥H− 1

2
.

Then continuity in operator norm follows from compactness of ι and smoothness of Fκ.

3.5 AKNS/mKdV

We now consider nonlinear Schrödinger equation

iut +uxx = ±2|u|2u (3.40)

and complex modified Korteweg-de Vries equation

ut +uxxx = ±6|u|2ux, (3.41)

in L2(R). Principal result of this section is as follows

Theorem 3.5.1. Let h0, l ∈ L2(R) such that ∥l∥L2 = 1 and 0 < r2 < r1 < 0, α ∈C. Then for every
time T > 0 there exists the initial data u0 ∈ Br1(h0) such that the solution u given by mKdV
(3.41) satisfies

|⟨u(T ), l⟩ −α| > r2.

Equations are invariant with respect to the scaling

u(x, t)→ λu(λx,λ2t)

and
u(x, t)→ λu(λx,λ3t)

respectively, while initial data scales in the same manner for both u0(x)→ λu0(λx). Both
equations are Hamiltonian with respect to the same symplectic structure

ω(·, ·) = Im⟨·, ·⟩L2 .

Poisson structure is given by

{F,G} := −i
∫
δF
δu

δG
δv
− δF
δv
δG
δu
dx,
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for F,G : S →R, where v := ±ū. Hamiltonians generating the flows are

HNLS(u) :=
∫
|u′ |2 + |u|4dx and HmKdV (u) := −i

∫
u′ū′′ + 3u2ūū′dx.

Two other important Hamiltonians are mass and momentum

M(u) :=
∫
uūdx and P (u) := −i

∫
uū′dx,

which generate phase shifts and translations, respectively. All four stated Hamiltonians
Poisson commute, i.e. for ∗ =NLS,mKdV

{HNLS ,HmKdV } = {H∗,M} = {H∗, P } = {M,P } = 0,

indicating intricate, yet important fact - NLS and mKdV are completely integrable.
The line case for NLS was already covered in one of the previous sections, but we shall

present another proof that is more in line with the integrable nature of the equation, and
which is closely tied to the one of mKdV. Regarding mKdV on the line, as mentioned pre-
viously, the flow itself is not uniformly continuous on L2(R), hence it cannot be smooth
nor symplectic. Nonetheless we can conclude non-squeezing property of mKdV by ap-
proximation arguments based on flows that are actually smooth and symplectic. Similarly
to the previous discussion on KdV, integrability plays important role. Both equations ad-
mit Lax pairs, while a part of it is the same for both equations

L(κ) = L0(κ) +
[

0 u
−ū 0

]
where L0(κ) :=

[
κ −∂ 0

0 κ+∂

]
. (3.42)

and κ ∈ R with |κ| ≥ 1. For sufficiently small δ > 0, L(κ) is invertible as an operator on
L2(R) for all u ∈ Bsδ

Bsδ := {q ∈H s : ∥q∥H s ≤ δ},

−1
2 < s ≤ 0 and for all κ. We denote Bδ := B0

δ. The inverse R(κ) = L(κ)−1 admits an integral
kernel G(x,y,κ) whose entries prove to be crucial for treatment of well-posedness and via
which we define the following quantities

γ(x,κ) := sign(κ)[G11(x,x,κ) +G22(x,x,κ)]− 1,

g12(x,κ) := sign(κ)G12(x,x,κ),

g21(x,κ) := sign(κ)G21(x,x,κ).

Important quantity is logarithmic perturbation determinant given by

A(κ,u) := sign(κ)
∞∑
l=1

(−1)l−1

l
Tr

{(√
R0(L−L0)

√
R0

)l}
,
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which as expected plays an important role in integrability theory since for any |κi | ≥ 1,
i = 1,2

{A(κ1),A(κ2)} = {A(κ1),HNLS} = {A(κ1),HmKdV } = 0.

This observation suggests that both equations can be treated in a similar way for well-
posedness results, which turns out to be true, as can be seen in [HGKV20], in which au-
thors obtain well-posedness on R at low regularity. Inspired by ideas of [KVZ18], [KV19],
authors of [HGKV20] make use of classical asymptotic expansion

A(κ) = 1
2κM + −i

(2κ)2 P + (−i)2

(2κ)3HNLS + (−i)3

(2κ)4HmKdV +O(κ−5)

for data in Bδ ∩S , which suggests that flows generated by Hamiltonians

Hκ
NLS := −8κ3ReA(κ) + 4κ2M and Hκ

mKdV := 16κ4ImA(κ) + 4κ2P ,

should prove useful for establishing well-posedness of NLS and mKdV at low regularity.
In particular and crucially, HamiltoniansHκ

NLS ,H
κ
mKdV ,HNLS ,HmKdV all Poisson commute

for data in Bsδ. Inner product on L2 leads to the notion of functional derivatives defined
by

d
dθ

∣∣∣∣∣
θ=0

F(f +θg) =
〈
g,
δF
δu

〉
+
〈
g,
δF
δv

〉
,

for F : S →R of at leastC1 regularity. Then flows generated by HamiltoniansHκ
NLS ,H

κ
mKdV

are given by equations

iut = 4κ3(g12(κ,u)− g12(−κ,u)) + 4κ2u (3.43)

and
ut = 8κ4(g12(κ,u) + g12(−κ,u)) + 4κ2ux, (3.44)

respectively and we denote them by ΦNLS
κ ,ΦmKdV

κ . Here g12 denotes the upper right entry
of integral kernel associated to matrix valued R−R0 (we refer to previous section on KdV
for notation). Also, δA

δu = g12 holds. Since the map g12 : Bsδ → H s+1, g12 : u 7→ g12(κ,u)
is a diffeomorphism for every −1

2 < s ≤ 0 and κ ≥ 1, these equations are well-posed and
analytic for data in Bsδ.

Lastly, ∗ = {NLS,mKdV }, [HGKV20] shows that for a precompact set Q ⊂ Bsδ ∩ S of
data

lim
κ→∞

sup
u0∈Q
∥Φ∗(u0)−Φ∗κ(u0)∥H s = 0, (3.45)

for fixed −1
2 < s < 0. Scaling of NLS (3.40) and mKdV (3.41) coupled with previous ap-

proximation establishes well-posedness at that regularity for all data in H s. This obser-
vation suggests that flows (3.43),(3.44) serve as a good approximation for concluding that
(3.40),(3.41) are non-squeezing. However, while scaling of the equations (3.40),(3.41) al-
lows reduction to consideration of the small data case and defining flows (3.43),(3.44)
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on ball Bsδ, proving to be crucial for treatment of well-posedness, (3.43),(3.44) are not
defined on the entire space of initial data. This is a problem with having application
of Theorem 1.0.3 in mind, as symplectomoprhisms should be defined for all data in L2.
We remedy this issue by observing that non-squeezing statement is also scale invariant,
which we shall write down explicitly soon, and constructing symplectomorphisms whose
restriction on small ball of data Bsδ coincides with (3.43),(3.44). More precisely, but omit-
ting forthcoming details, the symplectomorphisms approximating mKdV on Bδ will be
generated by Hamiltonians

H̃κ = η · ImA(κ,χR(κ)·) + 4κ2P ,

for suitably chosen cut-off η and space truncation χR(κ) (R(κ) denoting dependence on κ),
which ensures that Hamiltonians are well-defined for all data in L2. We shall denote these
flows by Φ̃κ.

Just like in the KdV case, κ ≥ 1 introduces a family of symplectomorphisms equiva-
lently indexed by τ ∈ [0,1). Endpoint 1 of I = [0,1] corresponds to the mKdV flow (3.41).
We define the family of symplectomorphisms, reducing the proof of non-squeezing of
mKdV in the context of Theorem 1.1.1,

Ψ : I ×L2(R)→ L2(R)

Ψ (1) = ΦmKdV

Ψ (τ) = Φ̃κ, τ ∈ [0,1).

Conservation of L2 norm for all Ψ (τ), τ ∈ [0,1], implies the consideration of the family

Ψ : I ×Xr1 → Xr1 ,

where Xr1 denotes the ball Br1 from Theorem 3.5.1, endowed with weak topology and
centered at 0 ∈ L2. Once again, centering at 0 does not make us lose on generality, as
translations are symplectomorphisms. However, as we wish to use the approximation
(3.45) in order to obtain the continuity of Ψ : I ×Xr1 → Xr1 at endpoint case τ → 1, arbi-
trary r1 will not suffice since (3.45) holds for small data case. Following arguments show
how scaling of mKdV and of non-squeezing statement allows us to reduce everything to
small data setting, i.e. to assume that r1≪ 1.

Remark 3.5.2. Firstly, using the terms appearing in Theorem 3.5.1, introduce the following
notation

r2,λ :=
√
λr2, r1,λ :=

√
λr1, αλ =

√
λα, Tλ = λ−3T ,

hλ(x) = λh(λx), ∥hλ∥L2 =
√
λ∥h∥L2

lλ(x) =
√
λl(λx), ∥lλ∥L2 = ∥l∥L2 = 1,
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and recall the scaling of mKdV

u(t,x)→ λ−1u(λ−3t,λ−1x), u0(x)→ λ−1u0(λ−1x).

Taking λ≪ 1, the inequalities

∥u(0)− h∥L2 =
√
λ
−1
∥uλ(0)− hλ∥L2 <

√
λ
−1
r1,λ = r1,∣∣∣⟨u(T ), l⟩ −α

∣∣∣ =
√
λ
−1∣∣∣⟨uλ(Tλ), lλ⟩ −αλ

∣∣∣ > √λ−1
r2,λ = r2

show that non-squeezing for flow at time T > 0 and general size of ball of initial data r1 follows
from one of flow at rescaled time λ−3T and for arbitrarily small data of size

√
λr1.

Similarly to KdV case, we shall exploit the fact that symplectic regularity is higher that
one accessible by well-posedness theory, and pushing ball of initial data to lower regular-
ity to obtain equicontinuity. The issue of tightness on R is resolved by the fact that when
evaluating bounded set of data with respect to fixed functional, it suffices to localize in
space set of testing data. We remark that this is a significant contrast to treatment of KdV
in [KV19], where equicontinuity was enough to prove that approximations are justified,
independently of geometry of R and T . Tightness, and hence local smoothing, plays cen-
tral role in obtaining well-posedness at low regularity in [HGKV20]. Lastly, motivated by
[KV19], authors of [HGKV20] prove that equicontinuity and tightness of set of data is an
invariant property preserved by mKdV and ΦmKdV

κ flows, and by diffeomorphism g12.
Regarding the case of NLS and mKdV posed on torus, [HGKV20] shows that g12 is

diffeomorphism in the line case. However, one readily sees that the same is true in the
torus case for suitably chosen κ based on the size of data, as shown in [KVZ18] for the Lax
structure for ANKS/mKdV hierarchy, which holds in both cases. Hence flows (3.43),(3.44)
are well-defined for suitably small data in the torus case, and for which we shall prove
that non-squeezing property holds. Those flows are analytic, and in essence, behave in
the exact same manner as ΦKdV

κ flows, meaning that one exploits the gain of regularity of
nonlinearity and the fact that well-posedness theory of flows holds below the regularity
of space at which the flow is symplectic. This approach may lead to obtaining Bourgain’s
result for NLS in [Bou94]. On the other hand, mKdV on T is not well-posed at L2 reg-
ularity, since H

1
2 is the sharp threshold for continuous dependence of the initial data, as

shown by Chapouto [Cha21].
Proofs for NLS and mKdV are same, so for clarity sake we will only present the one

for mKdV and denote mKdV and ΦmKdV
κ flows by Φ ,Φκ. Only difference is that the linear

propagators are different, but both are uniformly bounded by 1 for all κ ≥ 1. However,
we will distinguish the line and the torus case, since the latter can be directly proven to
fulfill assumptions of Corollary 1.0.4, whilst former needs adjustments that are, in a way,
of the same nature as ones for NLS discussion in Section 3.2.

We finish this preliminary part with two lemmata that will be of relevance later on.
First one also serves as a complimentary result to the approximation (3.45) for precompact
sets.
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Lemma 3.5.3. Fix any −1
2 < s < 0. For any compactly supported smooth function ϕ : R→ R

and a bounded equicontinuous set Q ⊂H s

lim
κ→∞

sup
u∈Q
∥ϕ(Φ(u)−Φκ(u))∥L∞H s = 0.

Proof. Let suppϕ ⊂ [−R,R]. Proposition 7.1 from [HGKV20] assures that for smooth nor-
malized cut-off ψ, denoting by φh := ψ(·−h), and for a set of bounded equicontinuous data
Q, one has uniform convergence

ψhg12(ΦΦ−1
κ u0)→ ψhg12(u0)

in C([0,T ],H1+s) as κ → ∞ and for all h ∈ R. Here the inverse Φ−1
κ denotes the time

reversed flow. Denote by Φ̄κ := ΦΦ−1
κ . Then the following uniform convergence with

respect to κ holds since

sup
u0∈Q

∥∥∥ϕ[
g12(Φ(u0))− g12(Φκ(u0))

]∥∥∥
L∞H1+s

= sup
u0∈Q

∥∥∥ϕ[
g12(Φ[Φκ]−1Φκ(u0))− g12(Φκ(u0))

]∥∥∥
L∞H1+s

≲R sup
u∈Q∗

∥∥∥ψh[g12(Φ̄κ(u))− g12(u)]
∥∥∥
L∞H1+s ,

where Q∗ := {Φκu0 : u0 ∈ Q} is an equicontinuous set in H s. Equicontinuity is an invari-
ance of flows Φ ,Φκ, proven in [HGKV20] (Prop. 4.5). Then, previous inequality and the
following identity

ϕg12(f ) = −(2κ −∂)−1
[
ϕ′g12(f ) +ϕf (γ(f ) + 1)

]
,

alongside with invertibility of L = 2κ − ∂ : H1+s → H s, imply uniform convergence with
respect to κ of the following

lim
κ→∞

sup
u∈Q∗

∥∥∥∥∥ϕ′[g12(Φ̄κu)− g12(u)
]

+ϕ
(
(Φ̄κu)(γ(Φ̄κu) + 1)−u(γ(u) + 1)

)∥∥∥∥∥
L∞H s

= 0.

Just like previously,

lim
κ→∞

sup
u∈Q∗

∥∥∥∥∥ϕ′[g12(Φ̄κu)− g12(u)
]∥∥∥∥∥
L∞H s

≤ lim
κ→∞

sup
u∈Q∗

∥∥∥∥∥ϕ′[g12(Φ̄κu)− g12(u)
]∥∥∥∥∥
L∞H1+s

≲R lim
κ→∞

sup
u∈Q∗

∥∥∥∥∥ψh[g12(Φ̄κu)− g12(u)
]∥∥∥∥∥
L∞H1+s

= 0,
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which in turn reduces to

0 = lim
κ→∞

sup
u∈Q∗

∥∥∥∥∥ϕ(
(Φ̄κu)(γ(Φ̄κu) + 1)−u(γ(u) + 1)

)∥∥∥∥∥
L∞H s

= lim
κ→∞

sup
u∈Q∗

∥∥∥ϕ(Φ̄κu −u) +ϕ
(
(Φ̄κu)γ(Φ̄κu)−uγ(u)

)∥∥∥
L∞H s .

Since

∥ϕ(Φ̄κu)γ(Φ̄κu)∥L∞H s ≤ κ−(s+ 1
2 )∥Φ̄κu∥H s∥γ(Φ̄κu)∥H1+s ≤ κ−2s−1∥Φ̄κu∥3H s ≲δ κ

−2s−1,

we obtain

0 = lim
κ→∞

sup
u∈Q∗

∥∥∥ϕ(Φ̄κu −u)
∥∥∥
L∞H s = lim

κ→∞
sup
u0∈Q

∥∥∥ϕ(Φ(u0)−Φκ(u0))
∥∥∥
L∞H s .

Lemma 3.5.4. mKdV (3.41) is continuous with respect to the weak topology in L2.

We delay the proof of Lemma 3.5.4 for the end of the following Subsection 3.5.1, as we
shall need to introduce additional structure in order to prove it.

3.5.1 Line case

As in the case for NLS, translation symmetry for ΦNLS
κ ,ΦmKdV

κ suggests that we have to
localize the nonlinearity in some way. Additionally, we need flows to be defined for all
data in L2. Motivated by these observations, define Hamiltonians

HNLS(κ,R, ·) =HNLS
κ,R (·) := −8κ3η(∥χR · ∥2H s )ReA(κ,χR·) + 4κ2M(·) (3.46)

and
HmKdV (κ,R, ·) =HmKdV

κ,R (·) := 16κ4η(∥χR · ∥2H s )ImA(κ,χR·) + 4κ2P (·), (3.47)

where η : [0,∞) → [0,1] is a smooth cut-off such that η ≡ 1 on [0,0.49δ] and η ≡ 0 on
[0.5δ,∞) and −1

2 < s < 0 is arbitrary. We shall denote them by ΦNLS
κ,R and ΦmKdV

κ,R , respec-
tively. Here χR presents a smooth cut-off such that χR ≡ 1 on [−R,R] and χR ≡ 0 for
|x| ≥ R+ 1. Note that functional derivative of f (u) := η(∥χRu∥2H s ) : L2→R is given by

δf

δv
:= η′(∥χRu∥2H s )χRLs(χRu),

where Ls(f ) := F −1[(1 +ξ2)s f̂ ]. Moreover, Ls is a bounded linear map that gives −2s regu-
larity to initial data, i.e. Ls :H t→H t−2s for every t ∈R.
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Then Hamiltonians (3.46) and (3.47) generate flows

iut =4κ3χRη(∥χRu∥2H s )(g12(κ,χRu)− g12(−κ,χRu)) (3.48)

+ 8κ3χRLs(χRu)η′(∥χRu∥2H s )ReA(κ,χRu) + 4κ2u

and

ut =8κ4χRη(∥χRu∥2H s )(g12(κ,χRu) + g12(−κ,χRu)) (3.49)

+ 16κ4χRLs(χRu)η′(∥χRu∥2H s )ImA(κ,χRu) + 4κ2ux,

Linear propagators are given by LNLSκ (t)(u) := ei4κ
3tu and LmKdVκ (t)(u) := ei4κ

4∂xu respec-
tively. We shall only present approach one takes for mKdV - the one for NLS follows in
the exact same fashion with obvious, but purely technical, adaptations. Note that

∥LNLSκ (t)∥op = ∥LmKdVκ (t)∥op = 1.

Equations make sense definition wise since A(κ) and g12(κ) are defined on Bδ. We shall
extensively be using the fact that g12 : Bsδ→H1+s is diffeomorphism, and for that purpose
we shall fix −1

2 < s < 0. Moreover, denote by

F(κ,u) := 8κ4χRη(∥u∥2H s )(g12(κ,u) + g12(−κ,u)) + 16κ4χRLs(u)η′(∥u∥2H s )ImA(κ,u)

a smooth map F : [1,∞)×H s→ L2. Smoothness of F follows from the fact that

η(∥ · ∥2H s ) :H s→R, A(κ, ·) : Bsδ→C,

g12(κ, ·) : Bsδ→H s+1, χRLs : L2→ L2,

are smooth. Additionally, denote by χR· : L2 → H s a compact linear operator and by
Fκ(·) := F(κ, ·) :H s→ L2. Equation (3.49) than stands

ut = Fκ(χRu) + 4κ2ux.

Corresponding Duhamel’s formula is

u(t) = Lκ(t)u0 +
∫ t

0
Lκ(t − s)Fκ(χRu(s))ds,

and we denote the flow by Φκ,R. Now that we have introduced the notation, let us address
the well-posedness theory.

Lemma 3.5.5. Fix κ ≥ 1. For every R > 0, the flow Φκ,R given by equation (3.49) is globally
well-posed in L2(R) and locally well-posed in H s. The flow is Lipschitz on bounded sets, with
constant depending only on δ and κ, and not on truncation constant R. Lastly, Φκ,R preserves
the L2 norm.
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Proof. Since

∥F(χRu)−F(χRu)∥L2 ≤ ∥DF∥∥χR(u − v)∥H s ≲ ∥u − v∥H s ≲ ∥u − v∥L2 ,

local well-posedness in L2 and H s follow directly by fixed point argument. Global well-
posedness follows from the fact that L2 norm is preserved along the flow. Indeed, com-
puting Poisson bracket

{HmKdV
κ,R ,M} = {16κ4η(∥χR · ∥2H s )ImA(κ,χR·) + 4κ2P ,M}

= η(∥χR · ∥2H s ){A(κ,χR·),M}+ {η(∥χR · ∥2H s ),M}A(κ,χR·) + {P ,M} = 0.

Remark 3.5.6. Moreover, notice that the conservation of L2 norm implies that for small initial
data data ∥u0∥L2 < 0.25δ flow of Φκ,R is given by equation

iut = 4κ3χR(g12(κ,χRu)− g12(−κ,χRu)) + 4κ2u,

since ∥Φκ,R(u0)∥H s ≤ ∥Φκ,R(u0)∥L2 = ∥u0∥L2 < 0.25δ , for all times T > 0„ and hence η ≡ 1
along the trajectory. Then the choice of localized Hamiltonians is warranted Φκ,R, aside from
one being able to prove that flows fulfill assumptions of Theorem 1.0.3, by the fact that they
approximate Φκ in uniform fashion for bounded sets of Schwartz initial data Q := B0.5δ ∩S ⊂
L2, for κ large, reminiscent of uniform approximation of Φ by Φκ on bounded intervals obtained
in Lemma 3.5.3. More specifically,

Denote by ϕR := ϕ( xR ) a rescaled version of a smooth cut-off such that ϕ ≡ 1 on [−1,1] and
ϕ(x) ≡ 0 for |x| ≥ 2.

Lemma 3.5.7. Let Q := B0.25δ ∩S ⊂ L2. There exists some −1
2 < s0 < 0, so that for r = r(κ) :=

2κ3 and every −1
2 < s ≤ s0

lim
κ→∞

sup
u0∈Q
∥ϕκ3(Φκu0 −Φκ,ru0)∥L∞H s = 0.

Proof. Let R := κ3. For every κ ≥ 1 and r = r(κ) = 2κ3, χr ≡ 1 on suppϕR.
Uniform convergence of the difference of solutions of flow Φκ and Φκ,r for data in

B0.25δ can be equivalently stated by observing equation generated by the difference of
Hamiltonians HmKdV

κ −HmKdV
κ,r

ut = 8κ4(g12(κ,u) + g12(−κ,u))− 8κ4χr(g12(κ,χru) + g12(−κ,χru)).

Solution is given by Duhamel’s formula

u(t) = 8κ4
∫ t

0
[(g12(κ,u) + g12(−κ,u))−χr(g12(κ,χru) + g12(−κ,χru))]ds,
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and one can see that this flow is well-posed in H s, −1
2 < s < 0, and is actually a map into

H1+s. With the statement of lemma in mind, we have interest in

ϕRu(t) = 8κ4
∫ t

0
ϕR[(g12(κ,u) + g12(−κ,u))− (g12(κ,χru) + g12(−κ,χru))]ds,

for initial data in B0.25δ. Lemma 3.5.5 also gives global well-posedness of solutions to this
equation for data in B0.25δ. Independence of the sign of κ for all functions in question
allows us to reduce last line to control of the norm

κ4∥ϕR(g12(u)− g12(χru))∥L∞H s ≤ κ3∥ϕR(g12(u)− g12(χru))∥L∞H1+s .

We make use again of identities introduced in [HGKV20], namely

g ′12(f ) = 2κg12(f ) + f (γ(f ) + 1),

ϕRg12(f ) = −(2κ −∂)−1ϕ′Rg12(f )− (2κ −∂)−1ϕRf (γ(f ) + 1),

denoting by L := −(2κ −∂)−1. Then

ϕR(g12(u)− g12(χru)) = L[ϕ′R(g12(u)− g12(χru))] +L[ϕRu(γ(u) + 1)−ϕRχru(γ(χru) + 1)]

= L[ϕ′R(g12(u)− g12(χru))] +L[ϕRu(γ(u)−γ(χru))].

We bound summands individually in the following way

∥L[ϕ′R(g12(u)− g12(χru))]∥L∞H1+s ≲ (|κ|R)−1∥u∥H s
κ
≲δ (|κ|R)−1 ≲δ (|κ|)−4,

∥L[ϕRu(γ(u)−γ(χru))]∥L∞H1+s ≲ κ−1∥ϕRuγ(u)∥H s
κ
≲ κ−1−(s+ 1

2 )∥u∥H s
κ
∥γ(u)∥H1+s

κ

≲ κ−2−2s∥u∥3H s
κ
≲ κ−2−5s∥u∥3L2 ≲δ κ

−2−5s.

Hence choosing s0 so that −2− 5s0 < −3, we get that

∥ϕRu∥L∞H s0 ≤ κ3∥ϕR(g12(u)− g12(χru))∥L∞H1+s0 ≲δ κ
1−5s0 ,

concluding the proof.

Lemma 3.5.7 finalizes the definition of family of Ψ . Fix s0 ∈ (−1
2 ,0) and denote by

r(κ) = 2κ3, both given by Lemma 3.5.7. Denote by Φ̃κ := Φκ,r(κ) the flow generated by a
smooth Hamiltonian H(κ,2κ3) : H s0 → R (3.47). Recall the definition of (3.47) and the
arbitrary choice of s. In what follows we can choose any −1

2 < s ≤ s0, but for clarity sake,
we shall fix s = s0. Since κ ≥ 1, note that flows Ψ (τ), τ ∈ [0,1) are generated by a smooth
Hamiltonian

H̃ : [0,1)×H s0 →R

H̃(τ,u) :=H(κ,2κ3,u).
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Finally,

Ψ : I ×L2(R)→ L2(R)

Ψ (1) = ΦmKdV

Ψ (τ) = Φ̃κ, τ ∈ [0,1).

Correspondence between τ and κ is obvious. As proven, all flows in the family Ψ preserve
L2 norm, and with Remark 3.5.2 in mind, we can consider for r1 ≤ δ

4 the family

Ψ : I ×Xr1 → Xr1 .

Lemma 3.5.8. Family Ψ : I ×Xr1 → Xr1 is continuous.

Proof. For continuity discussion we shall fix arbitrary l ∈ L2 such that ∥l∥L2 ≤ 1. Den-
sity argument allows to assume without the loss of generality that l ∈ S where supp l ⊂
[−M,M] for some M > 0, since for any ε > 0 there exists l̃ ∈ C∞c such that ∥l − l̃∥L2 < ε.
Similarly, for any initial data u0 ∈ Xr1 we may assume that u0 ∈ S since the well-posedness
of mKdV (3.41) and Φ̃κ (3.49) imply that for any ε > 0 and every τ ∈ I exists ũ0 ∈ L2 such
that ∥Ψτ (u0)−Ψτ (ũ0)∥L2 < ε.

We distinguish two cases of continuity in the I variable - first one is the endpoint
τn → 1 (κn → ∞), which corresponds to Φ̃κ convergence to mKdV, and the second one
when τn → τ < 1 (κn → κ < ∞). Regardless of this dichotomy, we shall always have a
Schwartz sequence un(0,x) → u(0,x) in Xr1 , that is un(0,x) ⇀ u(0,x) in L2. Hence the
sequence is a bounded equicontinuous set in H s0 , which we denote by Q := {un(0),u(0)}.

Regarding the first case, let κn→∞. Then∣∣∣〈Ψ (1,u(0))−Ψ (τn,un(0)), l
〉∣∣∣ =

∣∣∣〈Φ(u(0))− Φ̃κn(un(0)), l
〉∣∣∣

=
∣∣∣〈ϕM(

Φ(u(0))− Φ̃κn(un(0))
)
, l
〉∣∣∣

≤ ∥ϕM
(
Φ(u(0))− Φ̃κn(un(0))

)
∥H s0 ∥l∥H−s0

≲
∥∥∥ϕM(

Φ(u(0))−Φ(un(0))
)∥∥∥
H s0

+
∥∥∥ϕM(

Φ(un(0))−Φκn(un(0))
)∥∥∥
H s0

+
∥∥∥ϕM(

Φκn(un(0))− Φ̃κn(un(0))
)∥∥∥
H s0
.

We estimate the convergence of each term separately. First one follows from Lemma
3.5.4 for regularity L2 and compact embedding ϕM · : L2 → H s0 . The second one from
equicontinuity of set Q and Lemma 3.5.3. Convergence of the third term follows from
inequality∥∥∥ϕM(

Φκn(un(0))− Φ̃κn(un(0))
)∥∥∥
H s0
≤

∥∥∥ϕκ3
n

(
Φκn(un(0))− Φ̃κn(un(0))

)∥∥∥
H s0

which holds for all κn such that κ3
n ≥M, equicontinuity of set Q in H s0 and Lemma 3.5.7.
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Regarding the second case, κn → κ, we can equivalently observe the closed interval
τ ∈ I ⊂ I\{1} (corresponding a finite closed neighborhood Ĩ of κ) and the compact set
I ×Xr . Recall that for τ ∈ I

Ψ (τ,u(0)) = Φ̃κ(q0) := u(t) = Lκ(t)u(0) +
∫ t

0
Lκ(t − s)Fκ(χ2κ3u(s))ds.

That the time t in the formula of Ψ makes sense and that it is continuous as a map Ψ :
I × L2 → L2 follows from the boundedness of Ĩ , smoothness of the Hamiltonian H̃(κ,u) :
Ĩ × L2 → R and the fact that the gradient ∇H̃(κ,u) is Lipschitz on bounded balls of data
in L2, with Lipschitz constant independent of κ due to uniformity from boundedness of
Ĩ . Denot by κ̃ the right endpoint of Ĩ .

We want to prove that un := Φ̃κn(un(0))⇀u := Φ̃κ(u(0)). Since ∥un∥L∞t L2
x
≲ 1, we define

v := w- lim
n→∞

un,

where the weak limit is taken in L2, and hence ∥v∥L∞t L2
x
≲ 1. Then ∥χR(un − v)∥H s0 → 0, for

every space localization χR (R > 0). We take weak limits in L2 of

un(t) = Lκn(t)un(0) +
∫ t

0
Lκn(t − s)Fκn(χ2κ3

n
un(s))ds.

LHS equals v. Also,∣∣∣⟨Lκnun(0)−Lκu(0), l⟩
∣∣∣ =

∣∣∣⟨Lκnun(0)−Lκun(0), l⟩
∣∣∣+

∣∣∣⟨Lκun(0)−Lκu(0), l⟩
∣∣∣

=
∣∣∣⟨un(0), (Lκn −Lκ)l⟩

∣∣∣+
∣∣∣⟨un(0)−u(0),Lκl⟩

∣∣∣
≤ ∥un(0)∥L2∥(Lκn −Lκ)l∥L2 +

∣∣∣⟨un(0)−u(0),Lκl⟩
∣∣∣,

shows that the limit for the first term on RHS is Lκu(0), due to continuity of L(·) : Ĩ → B(L2)
with respect to strong operator topology and weak convergence un(0) ⇀ u(0). Lastly, we
want to show that

w- lim
n→∞

∫ t

0
Lκn(t − s)Fκn(χ2κ3

n
un(s))ds =

∫ t

0
Lκ(t − s)Fκ(χ2κ3v(s))ds,

which would coupled with well-posedness imply that v = u, concluding the proof. How-
ever, the last limit holds in a stronger fashion, i.e. with respect to L2 norm. Firstly, rewrite∫ t

0
Lκn(t − s)Fκn(χ2κ3

n
un(s))ds −

∫ t

0
Lκ(t − s)Fκ(χ2κ3v(s))ds

=
∫ t

0

[
Lκn(t − s)Fκn(χ2κ3

n
un(s))ds −Lκ(t − s)Fκ(χ2κ3v(s))±Lκn(t − s)Fκn(χ2κ3

n
v(s))

]
ds.
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Firstly,

∥∥∥∥∫ t

0
Lκn(t − s)Fκn(χ2κ3

n
un(s))ds −

∫ t

0
Lκn(t − s)Fκn(χ2κ3

n
v(s))

∥∥∥∥
L2

≤
∥∥∥Fκn(χ2κ3

n
un(s))−Fκn(χ2κ3

n
v(s))

∥∥∥
L∞L2

≤
∥∥∥χ2κ3

n

(
un(s)− v(s)

)∥∥∥
L∞H s0

≤
∥∥∥χ2κ̃3

(
un(s)− v(s)

)∥∥∥
L∞H s0

→ 0.

Lastly,∥∥∥∥∫ t

0
Lκ(t − s)Fκ(χ2κ3v(s))ds −

∫ t

0
Lκn(t − s)Fκn(χ2κ3

n
v(s))

∥∥∥∥
L2

≤
∥∥∥Fκ(χ2κ3v(s))−Fκn(χ2κ3

n
v(s))

∥∥∥
L∞L2 +

∥∥∥(Lκ(t − s)−Lκn(t − s)
)
Fκ(χ2κ3v(s))

∥∥∥
L∞L2

which converges to 0 as well, due to smoothness of F : Ĩ ×H s0 → L2 and continuity of
L(·) : Ĩ → B(L2) with respect to strong operator topology.

Remark 3.5.9. We would like to comment about the regularity s0. The sole purpose of it is
to ensure that we have approximation in the sense of Lemma 3.5.7. Hence, for any definition
of Φκ,R (3.49) (and hence choice of s), the entire construction of family Ψ holds, continuity
properties as well, as long as s ≤ s0. That the existence of s0 does not depend on the definition of
Φκ,R (i.e. s), one can readily see it from Remark 3.5.6, which translates directly into the proof of
Lemma 3.5.7, as cut-off η from the definition of Hκ 3.47 becomes obsolete for small data case.
This observation is crucial for obtaining weak continuity of mKdV in Lemma 3.5.4.

Now we turn to proving non-squeezing property of Φκ,R, and we fix arbitrary regu-
larity −1

2 < s̃ < s0 < 0 and use it as regularity in the definition of Φκ,R (3.49). As a special
case, Φ̃κ will have non-squeezing property as well. Note that we will be independently
proving the weak continuity of Φ̃κ, since it does not follow from Lemma 3.5.8, where we
considered only small data case.

Lemma 3.5.10. Flow Φκ,R (3.49) is continuous with respect to weak topology in H s, for every
s > s̃.

Proof. We prove the weak continuity for arbitrary regularity s̃ < s̄ < 0. That continuity
holds for higher regularities t > s̄ follows directly by the weak continuity for s̄, embedding
H t→H s̄ and density argument for functionals.

Let un(0,x) ⇀ u(0,x) in H s̄. Let un be corresponding Cauchy solutions of (3.49), and
define

v(t) := w- lim
n→∞

un(t)
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for each t, where weak limit is taken inH s̄. Hence v ∈ L∞([0,T ],H s̄).We want to prove that
v is then the solution of (3.49) for initial data u(0). Sequence χRun converges strongly and
uniformly on time interval [0,T ] to χRv in H s̃. Taking weak limits in Duhamel’s formula

un(t) = Lκ(t)un(0) +
∫ t

0
Lκ(t − s)Fκ(χRun(s))ds

one obtains

v(t) = Lκ(t)u(0) + w- lim
n→∞

∫ t

0
Lκ(t − s)Fκ(χRun(s))ds.

Proving that

w- lim
n→∞

∫ t

0
Lκ(t − s)Fκ(χRun(s))ds =

∫ t

0
Lκ(t − s)Fκ(χRv(s))ds

would conclude the proof by invoking local well-posedness. However, last equalities hold
in stronger fashion, that is taking limits with respect to norm in L2∥∥∥∥∥∥

∫ t

0
Lκ(t − s)

[
Fκ(χRun(s))−Fκ(χRv(s))

]
ds

∥∥∥∥∥∥
L2

≲ sup
[0,t]

∥∥∥∥Fκ(χRun)−Fκ(χRv)
∥∥∥∥
L2

≲ sup
[0,t]

∥∥∥∥χR(un − v)
∥∥∥∥
H s̃
.

Derivative of flow given by (3.49) at point u0 is given by the equation

∂tv =D[Fκ ◦ (χR·)](u)v + 4κ2v′ , (3.50)

or equivalently, by Duhamel’s formula

v(t) = Lκ(t)v0 +
∫ t

0
Lκ(t − s)

[
DFκ(χRu(s))χRv(s)

]
ds, (3.51)

where v(t) := DΦκ,R[u0]v(0). In order to make sense of the derivative flow, one has to
prove that it is well-posed in L2. This readily follows from

∥v∥L2 ≲ ∥v(0)∥L2 +
∫ t

0
∥
[
DFκ(χRu(s))v(s)

]
∥L2

≲ ∥v(0)∥L2 + t∥DFκ(χRu)∥B(H s̃ ,L2)∥v∥H s̃

≲ ∥v(0)∥L2 + t∥DFκ(χRu)∥B(H s̃ ,L2)∥v∥L2 ,

and the fact that Fκ is smooth onH s̃, hence ∥DFκ(χRu)∥B(H s̃ ,L2) ≲ ∥u0∥L2 . These inequalities
give existence up to a time depending on the size of data v(0), but we can obviously iterate
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up to any finite time T by applying the well-defined flow, as the data blows up at most
exponentially.

Proving the weak continuity of the derivative of flow Φκ,R concludes the proof of its
non-squeezing property

Lemma 3.5.11. Derivative DΦκ,R : (L2, τweak) −→ (B(L2),∥ · ∥op) is continuous.

Proof. Let un(0)⇀u(0), and let un,u be corresponding Cauchy solutions of (3.49). Let wn
and w be solutions with the same initial data w(0), ∥w0∥L2 ≤ δ1 for some constant δ1.

∂twn =DFκ(χRun)χRwn + 4κ2w′n,

∂tw =DFκ(χRu)χRw+ 4κ2w′ .

We want to prove that as n→∞, v := wn −w goes to 0. Previous equations give

∂tv = [DFκ(χRun)−DFκ(χRu)]χRwn +DFκ(χRu)χRv + 4κ2v′ .

Writing down Duhamel’s formula we get

v(t) =
∫ t

0
Lκ(t − s)[DFκ(χRu(s))χRv(s)]ds

+
∫ t

0
Lκ(t − s)

[
[DFκ(χRun(s))−DFκ(χRu(s))]χRwn(s)

]
ds.

Once again, scaling with respect to u and correspondingly rescaling the data w0 up to
a fixed constant allows us to move the first summand on RHS to LHS and enables us to
directly obtain the bound on norm of difference of derivatives

∥v(t)∥L2 ≲T sup
t∈[0,T ]

∥∥∥∥[[DFκ(χRun(s))−DFκ(χRu(s))]χRwn(s)
]∥∥∥∥
L2

≲T sup
t∈[0,T ]

∥DFκ(χRun)−DFκ(χRu)∥B(H s̃ ,L2)∥wn∥H s̃

≲T ,δ sup
t∈[0,T ]

∥DFκ(χRun)−DFκ(χRu)∥B(H s̃ ,L2).

Since χRun converges strongly to χRu inH s̃ due to Lemma 3.5.10, smoothness of F implies
that the last term converges to 0 as n→∞. These bounds serve up to a time dependent
on the size of the data v, but iterating the flow for arbitrary finite time gives the desired
result for flow at any fixed time T .

Proof of Lemma 3.5.4. Scaling of mKdV (3.41) reduces the proof to small data case. Hence,
we want to prove that Φ : Xr1 → Xr1 is continuous. Here Xr1 denotes the ball Br1 ⊂ L

2

endowed with weak topology, and r1 is chosen with an upper bound as in Lemma 3.5.8.
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Without a loss of generality, fix a Schwartz function l ∈ B1 ⊂ H1 which is compactly
supported on [−M,M].

Let un(0)⇀u(0) in Br1 . Well-posedness of mKdV implies that we can assume without
a loss of generality that initial data is Schwartz. Hence set Q := {u(0),un(0) : n ∈N} ⊂ S is
bounded and equicontinuous in H s̃. Then∣∣∣⟨Φ(un)−Φ(u), l⟩

∣∣∣ =
∣∣∣⟨ϕM(

Φ(un)−Φ(u)
)
, l⟩

∣∣∣ ≤ ∥∥∥ϕM(
Φ(un)−Φ(u)

)∥∥∥
H s̃

≤
∥∥∥ϕM(

Φ(u)−Φκ(u)
)∥∥∥
H s̃ +

∥∥∥ϕM(
Φ(un)−Φκ(un)

)∥∥∥
H s̃

+
∥∥∥ϕM(

Φκ(un)−Φκ(u)
)∥∥∥
H s̃ = I1 + I2 + I3.

where I1, I2, I3 denote the three terms correspondingly. We estimate first two terms jointly

I1 + I2 ≤ 2sup
q∈Q

∥∥∥ϕM(
Φ(q)−Φκ(q)

)∥∥∥
H s̃ , (3.52)

and the third one

I3 ≤
∥∥∥ϕM(

Φ̃κ(u)−Φκ(u)
)∥∥∥
H s̃ +

∥∥∥ϕM(
Φ̃κ(un)−Φκ(un)

)∥∥∥
H s̃

+
∥∥∥ϕM(

Φ̃κ(un)− Φ̃κ(u)
)∥∥∥
H s̃ = J1 + J2 + J3,

where J1, J2, J3 denote the three terms correspondingly. Flow Φ̃κ (3.49) is defined for reg-
ularity s̃. Now

J1 + J2 ≤ 2sup
q∈Q

∥∥∥ϕκ3

(
Φ̃κ(q)−Φκ(q)

)∥∥∥
H s̃ , (3.53)

for κ ≥M. For every ε > 0, there exist κ1, κ2, so that right hand sides of (3.52), (3.53) are
strictly bounded by ε, which follows from Lemma 3.5.3 and Lemma 3.5.7 respectively.
Define κ3 := max{M,κ1,κ2}. Then

(∃n0) n ≥ n0 =⇒
∥∥∥ϕM(

Φ̃κ3
(un)− Φ̃κ3

(u)
)∥∥∥
H s̃ < ε,

which follows from Lemma 3.5.10 and compact embedding ϕM : L2→H s̃, concluding the
proof.

3.5.2 Torus case

Denote by
Bsδ,κ := {q ∈H s(T ) : κ−

1
2 ∥q∥H s ≤ δ}.

For proving well-posedness, once again, we shall be using the fact that for |κ| ≥ 1 large,
map g12 : Bsδ,κ → H1+s is a diffeomorphism, and for that purpose we shall fix −1

2 < s < 0.
Having Theorem 1.0.3 in mind and the choice of ball of initial data Br in the said theorem,
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we will consider only κ such that κ ≥ κ0 :=
(
r
δ

)2
, which ensures that Φ∗κ (3.43),(3.44) are

defined for data Br ⊂ L2. Similarly to the line case, we introduce Hamiltonians

H̃NLS
κ := −8κ3η(κ−1∥ · ∥2H s )ReA(κ, ·) + 4κ2M (3.54)

and
H̃mKdV
κ := 16κ4η(κ−1∥ · ∥2H s )ImA(κ, ·) + 4κ2P , (3.55)

where η : [0,∞)→ [0,1] is a smooth cut-off such that η ≡ 1 on [0, δ
2

2 ] and η ≡ 0 on [δ2,∞).
Choice of cut-off function implies that these Hamiltonians are well defined on entire L2,
and more, on H s as well. Hamiltonians (3.54) and (3.55) generate flows, which we denote
by Φ̃NLS

κ and Φ̃mKdV
κ respectably, given by equations

iut =4κ3η(κ−1∥u∥2H s )(g12(κ,u)− g12(−κ,u)) (3.56)

+ 8κ2χRLs(u)η′(κ−1∥u∥2H s )ReA(κ,u) + 4κ2u

and

ut =8κ4η(κ−1∥u∥2H s )(g12(κ,u) + g12(−κ,u)) (3.57)

+ 16κ3Ls(u)η′(κ−1∥u∥2H s )ImA(κ,u) + 4κ2ux.

Here Ls(f ) := F −1[(1 + ξ2)s f̂ ] is the same bounded linear map that gives −2s regularity to
initial data, i.e. Ls : H t(T ) → H t−2s(T ) for every t ∈ R. We shall only present the proof
for mKdV, and will denote Φ̃mKdV

κ by Φ̃κ and H̃mKdV
κ by H̃κ. Proofs for NLS follow in the

same fashion.
Denote by

F(κ,u) := 8κ4η(κ−1∥u∥2H s )(g12(κ,u) + g12(−κ,u)) + 16κ3Ls(u)η′(κ−1∥u∥2H s )ImA(κ,u)

a smooth map F : [κ0,∞) ×H s → L2. Smoothness follows directly from regularity of the
maps

η(∥ · ∥2H s ) :H s→R, A(κ, ·) : Bsδ,κ→C, g12(κ, ·) : Bsδ,κ→H s+1, Ls :H s→H−s.

That H̃κ : H s → R is smooth follows by the same arguments. Denoting by Fκ(·) := F(κ, ·) :
H s → L2 and ι : L2 → H s the compact embedding, equation (3.57) can then be rewritten
as

ut = Fκ(ι(u)) + 4κ2ux,

while Duhamel’s formula is given by

u(t) = Lκ(t)(u(0)) +
∫ t

0
Lκ(t − s)Fκ(ι(u(s)))ds.

Due to conservation of L2 norm, one readily sees from the definition of Hamiltonians
that they are proper extension of Φκ from Br to entire L2, for every time T > 0.
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Lemma 3.5.12. Fix κ ≥ κ0. Flow Φ̃κ (3.57) is globally well-posed inH s and locally well-posed
in L2. The flow is Lipschitz on bounded sets, with constant depending only on δ and κ. Lastly,
it preserves the L2 norm.

Proof. Local well-posedness, both in H s and L2, follow from the fact that H̃κ is smooth

with respect to both norms, hence the functional derivative ∂H̃κ
∂q is Lipschitz on bounded

sets of data. Existence follows directly by applying fixed point argument.
Global existence in H s follows by the same arguments of Lemma 3.4.2. Preservation

of L2 follows by the same computation for the line case (Lemma 3.5.5).

Lemma 3.5.13. Flow Φ̃κ (3.57) is continuous with respect to weak topology in L2.

Proof. Let un(0,x) ⇀ u(0,x) in L2. Then un(0,x)→ u(0,x) in H s. Local well-posedness of
(3.57) in H s implies that un(t) → u(t) uniformly in time on [0,T ] in H s norm topology.
That un(t) ⇀ u(t) in the weak sense L2 then follows from strong convergence in H s and
density argument for functionals being represented by functions of C∞ regularity.

Derivative of (3.57) at point u0 is given by the equation

∂tv =D[Fκ ◦ ι](u)v + 4κ2v′ . (3.58)

Since Fκ : H s → L2 is smooth, DFκ(u) : H s → L2 is a bounded linear operator for every
u ∈H s. Equivalently, by Duhamel’s formula

v(t) = Lκ(t)v0 +
∫ t

0
Lκ(t − s)

[
D[Fκ ◦ ι](u(s))v(s)

]
ds, (3.59)

where v(t) := DΦ̃κ[u0]v(0). Derivative DΦ̃κ, as a flow, is well-defined in this manner as
well-posedness of (3.58) follows from

∥v∥L2 ≲κ ∥v(0)∥L2 +
∫ t

0
∥
[
D[Fκ ◦ ι](u(s))

]
v(s)∥L2

≲κ ∥v(0)∥L2 + t∥D[Fκ ◦ ι](u)∥B(H s ,L2)∥v∥H s

≲κ ∥v(0)∥L2 + t∥D[Fκ ◦ ι](u)∥B(H s ,L2)∥v∥L2 ,

and the fact that Fκ is smooth onH s, hence ∥DFκ(ι(u))∥B(H s ,L2) ≲ ∥u0∥L2 . These inequalities
give existence up to a time depending on the size of data v(0), but we can obviously iterate
up to any finite time T by applying the well-defined flow, as the data blows up at most
exponentially. Proving the weak continuity of the derivative of flow Φ̃κ concludes the
proof of its non-squeezing property by invoking Theorem 1.0.3

Lemma 3.5.14. The derivative DΦ̃κ : (L2, τweak) −→ (B(L2),∥ · ∥op) is continuous.
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Proof. Let un(0)⇀u(0), and let un,u be corresponding Cauchy solutions of (3.57). Let wn
and w be solutions with the same initial data w(0), ∥w0∥L2 ≤ δ1 for some constant δ1.

∂twn =D[Fκ ◦ ι](un)wn + 4κ2w′n,

∂tw =D[Fκ ◦ ι](u)w+ 4κ2w′ .

We want to prove that as n→∞, v := wn −w goes to 0. Previous equations give

∂tv =
[
D[Fκ ◦ ι](un)−D[Fκ ◦ ι](u)

]
wn +D[Fκ ◦ ι](u)v + 4κ2v′ .

Writing down Duhamel’s formula we get

v(t) =
∫ t

0
Lκ(t − s)

[
D[Fκ ◦ ι](un(s))−D[Fκ ◦ ι](u(s))

]
wn(s)ds+

∫ t

0
Lκ(t − s)D[Fκ ◦ ι](u)vds.

Scaling with respect to time and correspondingly rescaling the data w0 up to a fixed con-
stant allows us to move the first summand on RHS to LHS and enables us to directly
obtain the bound on norm of difference of derivatives

∥v(t)∥L2 ≲T sup
t∈[0,T ]

∥∥∥∥[D[Fκ ◦ ι](un(s))−D[Fκ ◦ ι](u(s))
]
wn(s)

∥∥∥∥
L2

≲T sup
t∈[0,T ]

∥D[Fκ ◦ ι](un)−D[Fκ ◦ ι](u)∥B(H s ,L2)∥wn∥H s

≲T sup
t∈[0,T ]

∥D[Fκ ◦ ι](un)−D[Fκ ◦ ι](u)∥B(H s ,L2).

Since un converges weakly to u in L2, it converges strongly H s due to compact embedding
L2 ↪→H s, and smoothness of Fκ implies that the last term converges to 0 as n→∞. These
bounds serve up to a time dependent on the size of the data v, but iterating the flow for
arbitrary finite time gives the desired result for flow at any fixed time T .
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